
Institut für Visualisierung und Interaktive Systeme
Universität Stuttgart

Universitätsstraße 38
D-70569 Stuttgart

Bachelorarbeit Nr. 289

Visuelle Eyetracking-Analyse von
Quellcodedarstellungen

Aretina Iazzolino

Studiengang: Informatik

Prüfer/in: Prof. Daniel Weiskopf

Betreuer/in: Dipl.-Inf. Kuno Kurzhals,
Dipl.-Inf. Dr. rer. nat. Fabian Beck

Beginn am: 20. November 2015

Beendet am: 24. Mai 2016

CR-Nummer: H.5.1,H.5.2

Kurzfassung

Im Entstehungsprozess von Software gibt es eine Reihe von Vorgänge, um die Qualität und die
Sicherheit eines Systems zu testen. Die Codeanalyse ist eines der wichtigsten Vorgänge, die in
allen Phasen der Entwicklung vorgenommen wird. Es gilt, den Fehler so schnell wie möglich zu
finden, da das Beheben von Fehlern in späteren Phasen der Entwicklung oftmals mit höheren
Kosten verbunden ist. Der Wunsch, in Zukunft diesen Vorgang so effizient wie möglich zu
gestallten, führt zu zahlreichen Studien, die sich intensiv mit der Analyse von Review Vorgänge
beschäftigen. Es ist dennoch schwer, einen allgemeinen Analysevorgang zu bestimmen, da
menschliche Faktoren und die individuelle Performance einen prädominanten Einfluss beim
Review Vorgang haben. Ziel dieser Arbeit ist es, die Durchführung einer Benutzerstudie, sowie
die Erstellung eines Werkzeugs, für die visuelle Analyse der Daten der Benutzerstudie. Mit
Hilfe eines Eyetrackers, soll das Blickverhalten der Teilnehmer aufgenommen werden und
anschließend mit dem entwickelten Werkzeug analysiert werden.

Abstract

During the development process of software there are various stages to test the quality and
safety of a system. Code analysis is one of the most important operations that is performed
at all stages of development. It is meant to find and fix errors as quickly as possible, since
doing it in later stages of development is often associated with higher costs. It is still difficult
to determine a general analysis approach, because human factors and individual performance
have a predominant influence in the review process. The aim of this work is to conduct a user
study, as well as the creation of a tool for visual analysis of the obtained data from the user
study. Using an eyetracking system, gaze behavior of the participants should be captured and
finally analyzed with the developed tool.

3

Inhaltsverzeichnis

1 Einleitung 11

2 Einführung in Eyetracking 15
2.1 Motivation zur Forschung der Blickbewegung 15
2.2 Die Anatomie des Auges . 15
2.3 Eyetracking . 18

3 Verwandte Arbeiten 23
3.1 Programmverständnis Modelle . 24
3.2 Erkenntnisse aus Eyetrackingstudien . 25

4 Visualisierungswerkzeug 29
4.1 Technologien . 29
4.2 Realisierung . 34

5 Eyetracking-Studie 39
5.1 Ablauf der Studie . 39
5.2 Hypothesen . 41
5.3 Variablen . 42
5.4 Stimuli . 42
5.5 Aufgabe . 42
5.6 Teilnehmer . 45

6 Auswertung 47
6.1 Vorverarbeitung der Daten . 47
6.2 Ergebnisse der unabhängigen Variablen . 47
6.3 Visuelle Analyse der Daten . 49
6.4 Auswertung des Fragebogens . 60

7 Diskussion 63

8 Zusammenfassung und Ausblick 67

A Anhang 69

Literaturverzeichnis 75

5

Abbildungsverzeichnis

1.1 Code Darstellungen . 12

2.1 [http://www.lasikon.de/]. Aufbau des menschlichen Auges. Hier sind die ein-
zelnen Bestandteile des Auges zu erkennen die oben erklärt wurden. 16

2.2 Dieses Bild [GB09] zeigt die Verteilung der Stäbe und Zapfen in der Netzhaut.
Das Linke Auge zeigt insbesondere die Lage auf der Netzhaut, die in Grad,
relativ zur fovea centralis, angegeben wird. In der rechten Abbildung, entspricht
dies der x-Achse. Der braune Balken stellt den blinden Fleck dar, der keine
Rezeptoren besitzt. 16

2.3 In diesem Bild[GB09] wird die Wahrnehmung und das Zusammenspiel des
Bottom-Up und Top-DownVerfahren deutlich. Dabei wird das betrachtete Objekt
zunächst via Bottom-Up Verfahren auf die Rezeptoren abgebildet. Anschließen
wird mittels Top-Down das benötigte Wissen abgerufen, um das Objekt zu
erkennen. 18

2.4 [www.tobii.com]Remoter Eyetracker Tobii T60XL des Herstellers Tobii. 20
2.5 Bild eines Scanpaths (links) und einer Heatmap (rechts). 21

3.1 [http://de.slideshare.net/]. Die Graphik betont das exponentielle Wachstum der
Kosten um einen Fehler zu beheben in jeder Entwicklungsphase von Software. 23

3.2 Diese Abbildung [UNM+06] zeigt, wie ein Teilnehmer ein Stimulus der Studie
betrachtete. Dabei wurde ein besonderes Muster entdeckt, das Scan Muster.
Der Teilnehmer macht sich ein generelles Bild vom Code bevor er ins Detail geht. 26

3.3 Graphische Darstellung [UNM+06] des Retrace Declaration Musters. 26

4.1 Hierarchische Struktur einer Webseite. Bildquelle: www.w3schools.com 30
4.2 Beispiel eines HTML Dokuments und das zugehörige DOM. Bildquelle:

www.w3schools.com . 31
4.3 Das Bild zeigt den Aufbau eines JSON-Objekts. Dabei wird ein Objet von

geschweiften Klammern umschlossen. Jeder Wert besitzt einen eindeutigen
Schlüssel, über welchen man auf denWert zugreifen kann. Ein Schlüssel-Werte-
Paar wird durch einen Doppelpunkt getrennt. [wiki.selfhtml.org] 32

4.4 Unterschied zwischen einer Pixelgrafik und einer Vektorgrafik. Bildquelle:
www.wikibooks.org . 33

4.5 Paragraphen-Auswahl mittels DOM-API. 33
4.6 Paragraphen-Auswahl mittels Selection Ansatz. 33

7

4.7 Visualisierungsprogramm und Darstellung der Timeline im Browser 35
4.8 GazePoints werden zu einer Fixation zusammengefasst. 36
4.9 Hier werden die einzelnen Programmkomponenten angezeigt, und die jeweilige

Zeile in welche sie sich befinden. Die Balken signalisieren wie lange sie im
vergleich zu den anderen Komponenten angeschaut wurden. 36

4.10 Hier sieht man den Wechsel der Leserichtung. Gelb signalisiert, dass der Leser
von rechts nach links liest und blau im anderen Fall. 37

5.1 Die Abbildung zeigt denselben Code in den 3 unterschiedlichen Darstellun-
gen. (von links nach rechts: Java Syntax Highlighting, PlainText, Java Syntax
Highlighting inkl. CSD) . 44

5.2 Programmverteilung mittels Graeco Latin Square 44

6.1 Durchschnittliche Fixationsanzahl pro AOI in den drei unterschiedlichen Co-
dedarstellungen. 48

6.2 Dieses Boxplot zeigt die durchschnittliche Zeit in Sekunden an, mit der der
Fehler in den unterschiedlichen Codedarstellungen gefunden wurde. Dabei
sieht man, dass man in der Java Darstellung im Durchschnitt den Fehler schnel-
ler gefunden hat, verglichen zur CSD und PlainText Darstellung. Die PlainText
Darstellung war im Schnitt schneller als die CSD Darstellung. Betrachtet man
jedoch die individuelle Performance der Teilnehmer (siehe gestrichelte Linien),
variieren die Werte zwischen den Codedarstellungen sehr, sodass PlainText
insgesamt schlechter ausfällt. 49

6.3 Hier werden die Review-Vorgänge von 5 Teilnehmer verglichen, die dasselbe
ProgrammAccumulate PlainText angeschaut haben. Man sieht, die unterschied-
lichen Performances der Teilnehmer untereinander aufgelistet. Dadurch ist ein
direkter Vergleichmöglich. Hier erkennt man unter anderem verschiedene Scan
Muster, sowie die unterschiedliche Dauer der individuellen Review-Vorgänge.
Es wird auch der Richtungswechsel innerhalb der Zeilen gezeigt unterhalb der
Timeline (blau, wenn der Blick vom aktuellen Stand nach rechts wandert, gelb
im umgekehrten Fall). Zusätzlich wird links die Häufigkeit, mit der eine AOI
angeschaut wird angezeigt. Dies varriert auch je nach Performance. 50

6.4 Scanpath von Teilnehmer 1 und 2 im Vergleich. Man erkennt, dass die Fixatio-
nen bei Teilnehmer 2(organge) viel weniger dauern (siehe Größe des Kreises)
und die Anzahl größer ist. 51

6.5 Hier werden weitere Review-Vorgänge von Teilnehmer Nummer 3 gezeigt.
Dabei sieht man deutlich, dass er in anderen Reviews unstrukturierter vorge-
gangen ist und länger gebraucht hat. 52

6.6 Reviews von Teilnehmer 4. Hier sieht man den unterschied, wie er die PlainText
Aufgabe und die Java Aufgabe gelöst hat und man erkennt, dass er für die
PlainText Aufgabe länger gebraucht hat um den Fehler zu erkennen. 53

8

6.7 Hier werden die Teilnehmer angezeigt, die das Programm Accumulate Java
angeschaut haben. Der direkte Vergleich zeigt die unterchiedlich lange Dauer
der Review-Vorgänge, sowie der Fokus, den die jeweiligen Teilnehmer auf die
Komponenten des Programms gesetzt haben. 54

6.8 Scanpath von Teilnehmer 1 und 2 im Vergleich. Teilnehmer 1 (links oben) hat
eine hohe Anzahl an Fixationen, verglichen zu Teilnehmer 2. 55

6.9 Hier werden die Review-Vorgänge der Teilnehmer gezeigt, die das Programm
Accumulate CSD angeschaut haben. 56

6.10 Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs im
Programm Accumulate CSD. 57

6.11 Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs im
Programm Accumulate JAVA. 57

6.12 Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs im
Programm Accumulate PT. 58

6.13 Diese Abbildung zeigt das Verhalten eines Teilenehmers, beim der Codeanalyse
von 3 Programmen in jeweils 3 unterschiedlichen Codedarstellungen. Man
erkennt, dass die Fehlersuche in der Java Darstellung am schnellsten war, sowie
eine Lesestrategie, charakterisiert durch viele Scan Muster, die der Leser in
allen Vorgängen anwendet. 58

6.14 Diese Grafik zeigt die Relation zwischen der Programmiererfahrung des Teil-
nehmers und die gesamte Dauer des Review-Vorgangs in Sekunden. Dabei ist
zu erkennen, dass Programmierer mit derselben Programmiererfahrung auch
unterschiedliche Performances haben können. 59

6.15 Durchschnittliche Zeit in Sekunden bis der Fehler gefunden wird, in den un-
terschiedlichen Codedarstellungen. 60

6.16 Diese Abbildung zeigt, wie sehr sich die Teilnehmer anstrengen mussten, von
einer Skala von 1 bis 6. 61

6.17 Durchschnittliche Scores des Rankings. Man sieht, dass Java bevorzugt wird,
gefolgt von CSD und PlainText(PT) . 62

7.1 Review Unterschied zwischen CSD und Java Darstellung 64
7.2 Review Vorgang eines Programmieranfängers. Der Vorgang ist von vielen

Fixationen charakterisiert, der Sakkadenbalken unter der Timeline signalisiert
den häufigen sprünghaften Wechsel zwischen den Zeilen im Programm. . . . 66

7.3 Review Vorgang eines fortgeschrittenen Programmierer. Der Review Vorgang
ist gleichmäßig, die Fixationsanzahl ist gering. 66

9

Abbildungsverzeichnis

8.1 [UNM+06]. Visualisierungswerkzeug, das in der Uwano Studie verwendet
wurde. Links wird das betrachtete Programm angezeigt, und rechts wird die
zugehörige Timeline angezeigt. Der Unterschied zwischen Uwanos Visualisie-
rungswerkzeug und das in dieser Studie realisierte Tool ist, dass die definierten
AOIs farblich in der Timeline unterschieden werden, die Hits der AOIs mit Hilfe
eines horizontalen Balkendiagramms angezeigt werden und die Leserichtung
der Teilnehmer in einem Balken unterhalb der Timeline visualisiert werden.
(siehe Abb. 6.3) . 68

A.1 Fragebogen zur Person. 70
A.2 Fragebogen zur subjektiven Empfindung . 71
A.3 Accumulate . 72
A.4 Average5 . 72
A.5 AverageAny . 73
A.6 Prime . 73
A.7 Swap . 74
A.8 Informationen zu den verwendeten Stimuli. 74

10

1 Einleitung

Code-Review, was unter anderem das Verständnis und die Fehlersuche im Programm beinhaltet,
ist einer der wichtigsten Vorgänge bei der Software Entwicklung. Durch die Inspektion des
Codes soll fortlaufend die korrekte Funktionsweise des Produktes getestet und die Reduzierung
von Fehlern ermöglicht werden. Denn das Beheben von Fehlern in späteren Phasen der Entwick-
lung ist oft mit höheren Kosten verbunden. Die zentrale Frage, mit der sich Wissenschaftler seit
Jahren beschäftigen ist, wie man diesen Prozess so effizient wie möglich gestalten kann. Dabei
sind viele Techniken und Prinzipien entstanden, um den Review Vorgang zu unterstützen, wie
beispielsweise Style-Guides, die als Ziel haben dem Programmierer eine Richtlinie bei der Soft-
ware Entwicklung zu geben und auch helfen sollen, eine Struktur im Code zu schaffen, damit
Aufgaben wie Wiederverwendbarkeit und Wartbarkeit durch eine Dritte Person mit geringem
Aufwand möglich sind. Auch durch Code-Highlighting, also bestimmte Stellen oder Schlüs-
selwörter farblich hervorzuheben wurde die Verständlichkeit unterstützt. Zahlreiche Studien,
wie z.B. die von Feigenspan [FKA+13], haben sich genau mit dieser Frage auseinandergesetzt,
und mit farblicher Hintergrund Markierung bestimmter Bereiche festgestellt, dass dadurch
das Programmverständnis durchaus gesteigert werden kann. Da beim Programmverständnis
kognitive Prozesse involviert sind, die man nicht direkt beobachten kann [KR91], hat man
in den letzten 15 Jahren Eyetracking Studien durchgeführt, die den kognitiven Vorgang von
Menschen bei der Code-Inspektion analysierten. Dabei wurden besondere Muster entdeckt,
wie z.B. das Scan-Muster [UNM+06], die im weiteren Verlauf näher erläutert werden.

Mit Hilfe der seit über hundert Jahren erforschten und weiterentwickelten Eyetracking Tech-
nologie und dank seiner vielfältigen Anwendungsmöglichkeit in vielen Bereichen, ist es nicht
nur möglich, die Augenbewegungen von Menschen zu erfassen und zu analysieren es wurde in
vielen Studien auch gezeigt, dass man Rückschlüsse auf den Prozess der Wahrnehmung ziehen
kann. Die Ergebnisse solcher Studien und die damit verbundene Kenntnis über die Kognition,
soll in Zukunft idealerweise den Inspektionsaufwand minimieren und somit den essentiellen
Vorgang des Code-Reviews bei der Software-Entwicklung effizienter gestallten.

Durch die Erfassung der Blickbewegungen mittels Eyetracking entsteht eine Menge von Daten.
Eine große Herausforderung ist die Repräsentation dieser selbst. Die einfache und vor allem
verständliche Darstellung von Daten spielt eine wichtige Rolle in vielen Bereichen. Dabei soll
die Information besser dargestellt werden, nicht nur aus ästhetischen Gründen, sondern um sie
intuitiver erfassen zu können. Aus graphischen Repräsentationen ist es oft einfacher gewisse
Verhaltensmuster zu erkennen, oder schwierige Konzepte verständlicher zu gestallten.

11

1 Einleitung

Im Vergleich zur ausgereiften Eyetracking Technologie sind die teilweise nur beschränkt
existierenden Visualisierungstechniken, insbesondere in Verbindung mit Code-Review, der
Grund für die Entstehung dieser Arbeit.

Der Umfang stellt sich zusammen aus einer durchgeführten Studie und die Erstellung eines
Visualisierungswerkzeugs für die aufgenommenen Daten. Die Studie dient dazu, mit Hilfe eines
Eyetracking Apparates, die Blickbewegungen der Teilnehmer zu erfassen. Die Aufgabe besteht
darin, Java Programme, die jeweils in drei unterschiedlichen Darstellungen den Teilnehmern
präsentiert werden, visuell auf semantischen Fehlern zu durchsuchen. Abbildung 1.1 zeigt
die drei unterschiedlichen Darstellungen - Plain Text, Java Syntax Highlighting und letzteres
noch zusätzlich mit Control Structure Diagrams(CSD) angereichert, die im weiteren Verlauf
detaillierter erklärt werden.

Das Visualisierungswerkzeug wird für die retrospektive Analyse der aufgenommenen Daten
entwickelt. Mit Hilfe dessen soll insbesondere analysiert werden, wie Menschen mit unter-
schiedlicher Programmiererfahrung individuell nach Fehlern im Programmcode suchen und
in welchem Maße die verwendeten Darstellungen zum Verständnis und bei der Fehlersuche
hilfreich waren. Die Werkzeuge, die in den Vergangenen Studien verwendet wurden, waren
beispielsweise in der Lage den Review Vorgang in Form einer Timeline darzustellen, in welcher
man den Lesefluss des Teilnehmers nachempfinden konnte. Das entwickelte Visualisierungs-
werkzeug soll zusätzlich noch ermöglichen, Bereiche von besonderem Interesse, sogenannte
Areas of Interest (AOI), die auf den Programmen definiert werden, in der Timeline farblich zu
unterscheiden. Dadurch kann man den Fokus auf spezielle Komponenten des Codes setzen,
beispielsweise auf Schlüsselwörter, CSD- oder Kontrollstrukturen, um somit eine detaillierte
Analyse durchführen zu können. Zum Schluss werden anhand der Visualisierung die Ergebnisse
der Teilnehmer untereinander verglichen und ausgewertet.

 1 import java.util.Scanner;
 2
 3 public class Sum5 {
 4
 5 public static void main(String[] args) {
 6
 7 int i, input;
 8
 9 i = 0;
10
11 while(i < 5) {
12
13 Scanner sc = new Scanner(System.in);
14
15 System.out.println("Input Number: ");
16
17 input = sc.nextInt();
18
19 sum = sum + input;
20
21 i = i + 1;
22 }
23
24 System.out.println("Sum: " + sum);
25 }
26 }

 1 import java.util.Scanner;
 2
 3 public class Sum5 {
 4
 5 public static void main(String[] args) {
 6
 7 int i, input;
 8
 9 i = 0;
10
11 while(i < 5) {
12
13 Scanner sc = new Scanner(System.in);
14
15 System.out.println("Input Number: ");
16
17 input = sc.nextInt();
18
19 sum = sum + input;
20
21 i = i + 1;
22 }
23
24 System.out.println("Sum: " + sum);
25 }
26 }

!

Abbildung 1.1: Code Darstellungen

12

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Einführung in Eyetracking: In Kapitel 2 wird zuerst eine Einführung in die
Anatomie des menschlichen Auges gegeben, sowie einige Wahrnehmungsstrategien und
die Eyetracking Technologie vorgestellt.

Kapitel 3 – Verwandte Arbeiten: Kapitel 3 ist der Arbeit gewidmet, die in den letzten Jahren
im Bereich Code-Review in Verbindung mit Eyetracking absolviert wurde.

Kapitel 4 – Visualisierungswerkzeug: Kapitel 4 beschreibt die konkrete Realisierung des
Visualisierungswerkzeugs sowie die Funktionsweise.

Kapitel 5 – Eyetracking-Studie: In Kapitel 5 wird der Ablauf der durchgeführten Studie
vorgestellt.

Kapitel 6 – Auswertung: Kapitel 6 umschließt die gewonnenen Erkenntnisse aus der Studie.

Kapitel 7 – Diskussion In Kapitel 7 werden die Ergebnisse aus Kapitel 6 diskutiert.

Kapitel 8 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen
und stellt Anknüpfungspunkte vor.

13

2 Einführung in Eyetracking

2.1 Motivation zur Forschung der Blickbewegung

Das Beobachten und Analysieren menschlicher Verhaltensweisen liegt uns in der Natur. Das
Auge, zusammen mit den restlichen Sinnesorganen, stellt die Schnittstelle zur Umgebung
dar. Das ermöglicht uns mit der Außenwelt zu interagieren. Studien haben bewiesen, dass
etwa 80 % der Perzeption [Züh11] über das Auge erfolgt, wodurch ständig Reize, auch Stimuli
genannt, aus der Umgebung wahrgenommen werden. Deshalb ist es bei Eyetracking Studien
interessant die Augenbewegungen zu untersuchen, um Informationen über Wahrnehmungs-
und Verständnisprozesse zu erhalten. Das Auge ist somit eines der wichtigsten Sinnesorgane des
Menschen. Im Gehirn findet der Prozess der Umwandlung dieser Reize statt, wodurch dann eine
individuelle Reaktion auf den eingehenden Stimulus determiniert wird. In diesem Kapitel wird
eine kurze Einführung in die Anatomie des menschlichen Auges gegeben. Dies soll dazu dienen,
die Funktionsweise der Informationsverarbeitung zu verstehen. Anhand der Videookulographie,
die wichtigste Technik die heutzutage verwendet wird um Blickbewegungen aufzunehmen,
soll erklärt werden wie Eyetracking funktioniert. Der Unterschied zwischen stationäre und
head-mounted Systeme, sowie wichtige Begriffe die in Verbindung mit Code-Review in Kapitel
drei nochmal genauer erklärt werden, werden auch vorgestellt. Zum Schluss werden wichtige
Datentypen vorgestellt die von Eyetrackern aufgezeichnet werden und für diese Arbeit auch
relevant sind.

2.2 Die Anatomie des Auges

Abbildung 2.1 ist eine Illustration des Querschnittes des menschlichen Auges. Der hintere
Teil des Glaskörpers, ab den Ziliarmuskeln, hat eine kreisrunde Form, während im vorderen
Bereich die Hornhaut eine deutlich hervorgehobene Wölbung aufzeigt. Im Innenraum des
Glaskörpers befindet sich die Netzhaut, die mit Rezeptoren ausgestattet ist. Sie erreichen
ihre maximale Dichte dort, wo die optische Achse des Auges die Netzhaut schneidet, in der
fovea centralis. An dieser Stelle ist es uns möglich am schärfsten zu sehen. Je weiter man
sich von diesem Bereich entfernt, desto rapide fällt die Rezeptordichte der Netzhaut ab. Die
Aufmerksamkeit auf ein bestimmtes Objekt, hängt somit eng mit der Lage der optischen
Achse zusammen. Insgesamt beträgt die Größe des visuellen Feldes etwa 130◦ vertikal und
180◦ horizontal [Duc07]. Abbildung 2.2 zeigt das Innenleben des menschlichen Auges und

15

2 Einführung in Eyetracking

verdeutlicht anhand des Aufbaues der Rezeptoren, die aus Stäben und Zapfen besteht (engl.
Rod and Cones), die eben beschriebene Funktionsweise. Die Zapfen sind insbesondere für das
Farbsehen verantwortlich, während die Stäbe für das Helligkeitsempfinden zuständig sind.
Der Bereich, in dem keine Rezeptoren vorhanden sind, da sie in den Sehnerv übergehen, wird
blinder Felck genannt.

Abbildung 2.1: [http://www.lasikon.de/]. Aufbau des menschlichen Auges. Hier sind die
einzelnen Bestandteile des Auges zu erkennen die oben erklärt wurden.

Abbildung 2.2: Dieses Bild [GB09] zeigt die Verteilung der Stäbe und Zapfen in der Netzhaut.
Das Linke Auge zeigt insbesondere die Lage auf der Netzhaut, die in Grad, re-
lativ zur fovea centralis, angegeben wird. In der rechten Abbildung, entspricht
dies der x-Achse. Der braune Balken stellt den blinden Fleck dar, der keine
Rezeptoren besitzt.

16

2.2 Die Anatomie des Auges

2.2.1 Die Augenbewegungen

Die zwei wichtigsten Augenbewegungen, die unbewusst im Alltag am häufigsten stattfinden
werden nun vorgestellt [Duc07]:

Die Fixation

Fixationen sind im engeren Sinne keine Augenbewegung, sondern viel mehr ein zeitlich
begrenzter Moment, in welchem die Aufmerksamkeit auf ein Objekt gerichtet ist. Die Dauer
einer Fixation beträgt im Durchschnitt 100– 600ms. Nur hier fängt das Gehirn an die visuelle
Information zu verarbeiten.

Die Sakkade

Sakkaden sind schnelle sprunghafte Augenbewegungen zwischen Fixationen. Die Durch-
schnittsdauer einer Sakkade beträgt zwischen 10ms und 100ms.

2.2.2 Wahrnehmung und Informationsverarbeitung

Im Allgemeinen lassen sich zwei Vorgehensweisen beimWahrnehmungsprozess unterscheiden,
die Bottom-Up und die Top-Down Strategie [GB09]. Beide Strategien werden in Kapitel drei
nochmal aufgegriffen und die genauere Verbindung zum Programmverständis wird herge-
stellt.

Bottom-up

Das Bottom-up Verfahren, auch data-based Verfahren genannt [GB09], beschreibt die Daten-
verarbeitung der von der Außenwelt eingehenden Information. Durch das einfallende Licht
auf die Rezeptoren der Netzhaut, wird die Information visuell aufgenommen. Erst durch das
Erkennen von Eigenschaften, das im Gehirn stattfindet, erhält das betrachtete Objekt eine
exakte Form und einen Namen.

17

2 Einführung in Eyetracking

Top-Down

Die Top-Down Strategie, auch knowledge-based Verfahren genannt [GB09], stellt ein Ver-
arbeitungsmechanismus dar, das sich auf schon vorhandenes Wissen stützt. Das bedeutet,
der Betrachter stellt eine allgemeine Hypothese über das betrachtete Objekt auf. Wenn beim
Betrachten diese Eigenschaften mit dem übereinstimmen, was angenommen wurde, findet der
Prozess der Erkennung und Kategorisierung des Objektes statt.

In der Regel finden beide Prozesse auf natürliche und nebenläufige Weise statt. Das Zusam-
menspiel beider Strategien wird in Abbildung 2.2 gezeigt.

Abbildung 2.3: In diesem Bild[GB09] wird die Wahrnehmung und das Zusammenspiel des
Bottom-Up und Top-Down Verfahren deutlich. Dabei wird das betrachtete
Objekt zunächst via Bottom-Up Verfahren auf die Rezeptoren abgebildet. An-
schließen wird mittels Top-Down das benötigte Wissen abgerufen, um das
Objekt zu erkennen.

Präattentive Percepeption

Die Präattentive Wahrnehmung ist ein Mechanismus der uns erlaubt unbewusst Informatio-
nen aufzunehmen. Diese Art von Information wird innerhalb von 200–250 ms aufgenommen.
Eigenschaften wie die Farbe oder Form eines Objekts, gehören zu dieser Wahrnehmungskate-
gorie[GB09].

2.3 Eyetracking

Zur Erfassung und Analyse visueller Reize bedarf es spezieller Werkzeuge wie z.B. der Eye-
tracker Tobii T60XL, welcher die Augenbewegungen des menschlichen Auges registriert und

18

2.3 Eyetracking

in dieser Studie auch zum Einsatz kommt. Anhand der aufgenommen Daten kann dann im
einem nächsten Schritt analysiert werden, wie die Probanden die Stimuli betrachtet haben. Der
folgende Abschnitt stellt die aktuellen Systeme vor und erklärt die Technik der Videookulogra-
phie, die bei modernen Eytrackern zum Einsatz kommt und für die Blickbewegunsaufnahme
eingesetzt wird.

2.3.1 Eyetracking Techniken und Systeme

Bei den Eyetrackern die es aktuell auf dem Markt gibt, unterscheidet man zwischen stationäre
und head-mounted Systeme. Die Wahl des Eyetrackers ist stark von der gestellten Aufgabe
abhängig. Beim Betrachten von Webseiten oder Benutzeroberflächen wird oft ein stationäres
System eingesetzt. Während man für Aufgaben die mehr Bewegungsfreiheit erfordern gerne
head-mounted Systeme einsetzt. In diesem Kapitel wird der unterschied zwischen stationären
und head-moundet Systemen erklärt, die Technik der Videookulographie vorgestellt, sowie
weitere Datentypen erklärt, die bei Eyetrackingstudien aufgenommen werden.

Stationäre Systeme

Stationäre, auch Remote Eyetracking Systeme genannt, sind direkt imMonitor eines Computers
integriert oder können frei im Raum aufgestellt werden. Der Eyetracker von der Firma Tobii
T60XL, der auch in dieser Studie zum Einsatz kommt, gehört zu dieser Kategorie. Diese
Eyetracker basieren auf der Technik der Videookulaographie[Duc07], welche Infrarotstrahlen
verwendet, um die Blickbewegungen aufzufassen. Die Infrarotstrahlen werden vom Eyetracker
ausgesendet, die dann von der Hornhaut reflektiert werden und anschließend von einer Kamera
aufgenommen werden. Dadurch ist es dem Teilnehmer gestattet, bis zu einem gewissen Grad
uneingeschränkt mit dem Gerät zu interagieren und sich relativ frei zu bewegen.

Head-Mounted Systeme

Bei head-mounted Geräten wird das System hingegen direkt im Rahmen einer Brille montiert.
Dadurch kann sich der Benutzer frei im Raum bewegen, ohne an ein bestimmtes Gerät gebunden
zu sein. Sie werden oft bei Usability Testing verwendet, um z.B. das Kaufverhalten in einem
Supermarkt zu analysieren.

19

2 Einführung in Eyetracking

Abbildung 2.4: [www.tobii.com]Remoter Eyetracker Tobii T60XL des Herstellers Tobii.

2.3.2 Visualisierung von Eyetrackingdaten

Zu den wichtigsten Visualisierungstechniken gehören Scanpaths und Heatmaps.

Heatmap

Mit Hilfe von Heatmaps ist es mölich, aggregierte Fixationen zu visualisieren. Dadurch hat
man eine generelle Sicht der Daten und man erkennt, welche Bereiche besonders stark fixiert
wurden. Diese Bereiche werden auf dem Stimulus farblich hervorgehoben. Dabei wird die Fixa-
tionsdichte durch einen Farbverlauf von grün nach rot dargestellt. Je höher die Fixationsdichte
in einem Bereich ist, desto rötlicher wird dieser Bereich gefärbt [BKR+14].

Scanpath

Ein Scanpath stellt die Augenbewegungen in Form eines Pfades dar. Der Pfad besteht aus
Fixationen, die als Kreise dargestellt werden und aus Sakkaden, die als Linien zwischen diesen
Kreisen gezeichnet werden. Dabei wird der Kreis größer, je länger man einen Punkt fixiert.
Zusätzlich werden die Punkte im Scanpath durchnummeriert, wodurch nachvollziehbar ist, in
welcher Reihenfolge die Punkte angeschaut werden [BKR+14].

20

2.3 Eyetracking

Abbildung 2.5: Bild eines Scanpaths (links) und einer Heatmap (rechts).

2.3.3 Datentypen

Die Datentypen die vom Eyetracker geliefert werden und auch in der Benutzer-Studie eine
zentrale Rolle spielen werden nun vorgestellt und erklärt. Die in Abschnitt 2.2.2 eingeführten
Bewegungen, Fixation und Sakkade, gehören auch dazu [TobiiStudio2.XUserManual].

Stimulus

Als Stimulus bezeichnet man in einer Benutzerstudie alles was die visuelle Aufmerksamkeit
des Teilnehmers fängt. In diesem Kontext ist das ein statisches Bild, also die präsentierten
Java Programme. Es kann aber auch ein Video oder eine Webseite als Stimulus verwendet
werden.

Gaze

Gaze gilt als Oberbegriff für eine Ansammlung von Fixationen in einem bestimmten Bereich,
sogenannte Area of Interest.

Area of Interest (AOI)

Eine Area of Interest schränkt einen Bereich auf dem Stimulus ein, dem man besondere
Aufmerksamkeit widmet und über welchen Daten aufgenommen werden. Dadurch kann man

21

2 Einführung in Eyetracking

bestimmten AOIs, Fixationen zuordnen und gruppiert analysieren. Der Eyetracker annotiert
zu jeder AOI eine AoiID und einen AoiName.

Timestamp

Der Zeitstempel gibt die Zeit in Millisekunden an, über die gesamte Dauer in der die Blickdaten
aufgenommen werden.

MappedFixationPointX/Y

MappedFixationPointX/Y gibt jeweils die x und y Koordinate des Auges an. Sie werden relativ
zum Ursprung des Koordinatensystems angegeben, wobei der Ursprung der obere linke Punkt
ist.

22

3 Verwandte Arbeiten

Code-Review ist ein Verfahren, das angewendet wird, um Fehler im Code zu entdecken. Es
wird hauptsächlich von Menschen durchgeführt, ohne das Programm auszuführen. Bei der
Entwicklung von Software nimmt es eine wichtige Rolle ein, denn dadurch wird fortlaufend
die korrekte Funktionsweise des Produktes geprüft. Zudem ist es wichtig Fehler im Code
frühzeitig zu entdecken. Es gilt, je früher ein Fehler entdeckt wird, desto günstiger ist es ihn
zu beheben [Boe+81]. Abbildung 3.1 stellt die wichtigsten Phasen der Software-Entwicklung
dar. Dabei ist deutlich zu erkennen, wie die Kosten für das Finden und Beheben von Fehlern
exponentiell mit fortschreiten der Entwicklungsphasen zunimmt.

Abbildung 3.1: [http://de.slideshare.net/]. Die Graphik betont das exponentielle Wachstum
der Kosten um einen Fehler zu beheben in jeder Entwicklungsphase von
Software.

Weigers [Wie96] verdeutlicht die Wichtigkeit von Code-Review durch eine seiner Studien.
Er fand heraus, dass dadurch 50-70% der Fehler entdeckt werden können. Wenn man zusätz-
lich den Aspekt betrachtet, dass die Wartung der Software meist nicht von derselben Person

23

3 Verwandte Arbeiten

durchgeführt wird, die das Programm geschrieben hat, wird die Wichtigkeit des Programm-
verständnisses noch deutlicher. Programmverständnis ist jedoch etwas sehr individuelles,
was von vielen menschlichen Faktoren abhängt, wie zum Beispiel die Programmiererfahrung.
Deshalb ist es von besonderem Interesse die kognitiven Prozesse bei diesem Vorgang genauer
zu untersuchen und auf Erkenntnisse zu stoßen, die in Zukunft den Inspektionsaufwand
effizienter und so gering wie möglich halten. Uwano [UNM+06] setzt als langfristiges Ziel, ein
effizientes Verfahren zu schaffen, dass dem Reviewer erlaubt so viele Mängel wie möglich im
Softwareprodukt zu finden.

3.1 Programmverständnis Modelle

Es gibt unterschiedliche Stratiegien, die jeder Reviewer bewusst oder unbewusst beim analy-
sieren eines Quellcodes verfolgt. Uwano zitiert unter anderem Methodologien wie das Ad-Hoc
Review (AHR), bei welchemman den Code ohne bestimmte Kriterien liest. Das Perspektive Based
Review, wo man den Code aus unterschiedlichen Perspektiven liest (z.B. Programmierer, Tester
etc.), Checklist Based Review, mit welchem man den Code anhand einer Liste typischer Fehler
untersucht und weitere, die an dieser Stelle nicht weiter erläutert werden. Diese Methoden
haben als Ziel gewisse allgemeingültige Kriterien beim Lesen zu schaffen, um der Inspektion
einen durchdachten Ablauf zu geben. Jedoch haben viele empirische Studien gezeigt, dass man
keine genauen Aussagen treffen kann, welche der Methoden mehr Fehler im Code aufdeckt
[LV00].

In vergangenen Studien haben sich einige Modelle herauskristallisiert, wie Programmierer
den Quellcode perzipieren und lesen [FKA+13]. Allgemein gibt es Programmverständnis-
modelle wie Top-Down, Bottom-Up und Integrated Modells. Die ersten zwei Begriffe wurden
Allgemein in Kapitel 2 eingeführt. In Verbindung mit Programmkognition kann man sich das
folgendermaßen vorstellen: Ein Entwickler setzt das Top-Down Verfahren ein, wenn schon
gewisse Vorkenntnisse vorhanden sind, z.B. wenn er die Programmiersprache des Quelltextes
beherrscht. Dabei formuliert er eine generelle Hypothese zur Funktionsweise des Programms,
die er dann verifiziert oder falsifiziert. Beim Bottom-Up Verfahren hingegen wird der Code
stückweise analysiert. Diese Stücke werden dann zu größeren kombiniert. Der Programmierer
puzzelt sich somit sein Wissen zusammen. Integrierte Modelle sind ein Hybrid aus Bottom-Up
und Top-Down. Generell verwendet ein Programmierer Top-Downwo es möglich ist und Bottom-
Up wo es nötig ist [FKA+13]. Diese Modelle sind eine gute Grundlage, um den Programmierer
anhand seiner Fähigkeiten zu Kategorisieren. Was jedoch an dieser Stelle fehlt ist eine Metrik,
um das Programmverständnis zu messen.

3.1.1 Programmverständnis messen

Eine der zentralen Fragen vieler Studien ist, wie man Programmverständnis am besten messen
kann. Durch konkreteMetriken, wie z.B. die durchschnittliche Antwortzeit, oder die Korrektheit

24

3.2 Erkenntnisse aus Eyetrackingstudien

der Antwort lässt sich Programmverständnis bis zu einem gewissen Grad messen. Wenn aber
kognitive Prozesse involviert sind, die schwer zu messen sind, muss man nach alternativen
Methoden suchen, wie im Folgenden deutlich wird. In vielen Studien wird die Arbeit von
Ericson und Simon [1984] zitiert, welche sich ausgiebig mit verbalen Protokollen befasst haben.
Sie beschreiben unter anderem die Think Aloud Methode, bei welcher man die Gedanken, die
im Review Prozess entstehen, protokolliert [BT06]. Um das Ganze abzurunden und um verbale
Protokolle zu validieren, hat man zusätzlich Videoprotokolle oder die direkte Beobachtung
eingeführt. Die Zuverlässigkeit dieser Verfahren wurde jedoch stark kritisiert, unter anderem
weil die kognitiven Vorgänge durch bloße Beobachtung nicht objektiv genug beurteilt werden
können [UNM+06]. Es fehlt somit an Abstration und Neutralität.

3.2 Erkenntnisse aus Eyetrackingstudien

Um den kognitiven Vorgang besser zu studieren, setzt man die Eyetracking Technologie ein.
Die frühen Anfänge reichen bis zu den Jahren 1990 zurück, als Crosby und Stelovsky [CS90]
eine Eyetrackingstudie durchführten, wo die visuelle Aufmerksamkeit der Teilnehmer bei
der Inspektion eines in Pascal geschriebenen binären Suchalgorithmus aufgenommen wurde.
Durch die Blickbewegungsaufnahme fand man heraus, dass erfahrene Programmierer sich
mehr auf relevante Bereiche des Codes fokussierten, während sich die visuelle Aufmerksamkeit
der Anfänger eher auf Kommentare und Vergleiche limitierte [BT06].

Uwano führte eine Eyetrackingstudie durch, um die kognitiven Prozesse genauer zu studieren.
Die Aufgabe der Reviewer bestand darin Fehler semantischer Art im Quelltext zu entdecken.
Bei der Studie wurden unterschiedliche Muster erkannt, wie z.B. das Scan Muster in Abbildung
3.2. Sie fanden heraus, dass einige Teilnehmer dazu neigten, den Code zuerst von oben bis unten
kurz durchzuschauen, um sich dann auf bestimmte Teile des Codes zu konzentrieren. Dieser
Vorgang wurde als kognitiver Prozess aufgefasst, denn der Teilnehmer versucht zuerst die
gesamte Programmstruktur zu verstehen und währenddessen identifiziert er suspekte Stellen
im Code, die einen Fehler beinhalten könnten. Ein weiteres Muster, das entdeckt wurde ist das
Retrace Declaration Pattern, das in Abbildung 3.3 zu sehen ist. Wenn ein Teilnehmer auf eine
Variable stößt, die zum erstenMal benutzt wird, springt er zu der Stelle zurück, wo sie deklariert
wird. Die Ergebnisse zeigten vor allem, dass die Teilnehmer, die nicht viel Zeit investierten den
Code zu scannen, mehr Zeit benötigten um die Fehler aufzuspüren. Sharif [SFM12] wiederholte
teilweise die Studie von Uwano, indem Eyetracking Messungen durchgeführt wurden und eine
größere Anzahl an Teilnehmer rekrutiert wurde, mit unterschiedlicher Programmiererfahrung.
Die Ergebnisse bestätigten die Hypothese von Uwano, und stellten auch fest, dass durch
Eyetracking durchaus die individuelle Performance der Teilnehmer vorhergesagt werden
kann.

Allgemein kann man die bis dato durchgeführten Studien folgendermaßen differenzieren.
Zum einen analysieren sie den Review-Vorgang durch Verwendung von Tools, die speziell

25

3 Verwandte Arbeiten

Abbildung 3.2: Diese Abbildung [UNM+06] zeigt, wie ein Teilnehmer ein Stimulus der Studie
betrachtete. Dabei wurde ein besonderes Muster entdeckt, das Scan Muster.
Der Teilnehmer macht sich ein generelles Bild vom Code bevor er ins Detail
geht.

Abbildung 3.3: Graphische Darstellung [UNM+06] des Retrace Declaration Musters.

für das Programmverständnis entwickelt werden. Zum anderen wird das Verständnis un-
terstützt, indem man die Programme mit Farbelemente oder Symbole anreichert. Bednarik
[BT06] führte beispielsweise eine Eyetrackingstudie durch, wo Programmierer mit Hilfe eines
Visualisierungsprogramms, Jeliot 3 [MMS+04], Programme auf Fehler durchsuchen sollten.
Dabei wurde insbesondere beobachtet, wie sie mit dem Tool interagieren und wie sich die
visuelle Aufmerksamkeit zwischen der simplen Quelltext Repräsentation und der animierten
Version des Codes verhält. Studien wie die von Hendrix [HCM+02] versuchten durch das
Einfügen graphischer Symbole im Code, sogenannte Control Structure Diagrams (CSD), den
Reviewer visuell zu unterstützen. Die Forscher erklären, wie wichtig graphische Elemente
im Review-Vorgang sein können, und untermauern ihre Hypothese mit den Ergebnissen der
Studie, die in Punkt Schnelligkeit und Korrektheit der Antworten sehr gut ausgefallen sind.

26

3.2 Erkenntnisse aus Eyetrackingstudien

Da Farben präattentiv wahrgenommen werden [GB09], haben Studien wie die von Feigenspan
[2012] den Einfluss erforscht, sie im Programmcode einzubinden. In Software Product Line Engi-
neering beispielsweise werden aus einem Basiscode viele Varianten erzeugt, indem man je nach
Funktionsalitätswunsch Featurecode einsetzt. Dabei kann die Identifikation von Features bei
großen Programmen sehr schwer und mühsam werden, insbesondere beim Wartungsvorgang.
Die Studie von Feigenspan [FKA+13] hat versucht diesem Problem entgegenzuwirken, durch
die farbliche Markierung von Featurestellen im Code. Das Ergebnis war, dass nicht nur die
Idee gut ankam, auch das Programmverständnis, selbst für umfangreiche Programme, konnte
gesteigert werden. Es gibt aber auch Studien die Code Highlighting nicht befürworten. Die
Studie von Hakala [HNS06] beispielsweise beschäftigt sich mit drei unterschiedlichen Code-
Highlighting-Techniken. Die Aufgabe der Teilnehmer bestand darin nach Kontrollstrukturen,
Methodenaufrufe, etc. in Java Programmen zu suchen. Dabei hat man Schlüsselwörter, wie in
den Standard-Editoren, sowie umfangreiche Syntaxblöcke farblich gekennzeichnet und für
Kontrollstrukruren kein Highlighting verwendet. Obwohl die Kommentare der Teilnehmer
sehr positiv ausfielen, sprachen die Ergebnisse der Studie eher gegen einer Verbesserung der
Performance durch Code-Highlighting.

Alle Studien versuchen das Verständnis auf eigene Weise zu messen und zu unterstützen.
Durch Eyetracking ist es in den vergangenen Jahren gelungen Details zu entdecken, die durch
das bloße Beobachten möglicherweise nie zum Vorschein gekommen wären. Deshalb ist es von
besonderem Interesse weiterhin in diesem Gebiet zu forschen und Studien durchzuführen.

27

4 Visualisierungswerkzeug

In dieser Arbeit soll der Einfluss unterschiedlicher Codevisualisierungen beim Programmver-
ständnis mit Hilfe von Eyetracking untersucht werden. In den bisherigen Studien war es bereits
möglich, den Lesefluss der Teilnehmer in Form einer Timeline darzustellen, weshalb diese
Arbeit teilweise eine Wiederholung der Studie von Uwano [UNM+06] ist. Das vorgestellte
Visualisierungswerkzeug ist zusätzlich in der Lage, Areas of Interest (AOI) farblich zu unter-
scheiden. Damit soll eine detailreichere Analyse möglich sein, indem man das Augenmerk
beispielsweise auf bestimmte Schlüsselwörter setzt. Die Realisierung, die genaue Funktions-
weise, sowie die verwendeten Technologien werden im folgenden Kapitel vorgestellt.

4.1 Technologien

Für die Realisierung der Timeline wurden die Webtechnologien JavaScript, HTML, CSS und
die Bibliothek D3.js verwendet. Diese Technologien und weitere wichtige Begriffe werden nun
näher erklärt.

4.1.1 HTML

HTML steht für Hypertext Markup Language. Es ist “eine textbasierte Auszeichnungssprache
zur Strukturierung von digitalen Inhalten wie Texten, Bildern und Hyperlinks”[Gul14]. Für
die Darstellung solcher Dokumente werden Browser eingesetzt, mit deren Hilfe man die
Inhalte einsehen kann. HTML wird vom World Wide Web Consotrium (W3C) standardisiert
und weiterentwickelt, wobei seine aktuellste Version HTML5 ist. Mit diesem Standard werden
im Vergleich zur Vorgängerversion diverse Sachen ermöglicht, ohne zusätzliche Plug-ins
installieren zu müssen. Es lassen sich beispielsweise Audio- und Video Dateien direkt einbinden
[www.w3.org]. Die Struktur des Dokuments wird mit Hilfe von “Tags”modelliert. Der obere
Kasten in Abbildung 4.2 ist ein Beispiel dafür. Eine Einschränkung, sowohl bei der Entwicklung,
als auch bei der Darstellung der Webseite ist, dass nicht jeder Browser immer die aktuellste
Version unterstützt. Die Konsequenz ist, dass dieselbe Webseite oder Web-Anwendung, nicht
auf allen Browsern gleich dargestellt wird. Eine Möglichkeit dies zu umgehen ist, gewisse
Voreinstellungen von JavaScript zu nützen, durch die man in der Lage ist, den verwendeten
Browsertypen zu identifizieren. Somit kann man unterschiedliche Operationen für jeden
Browsertypen implementieren [www.w3.org].

29

4 Visualisierungswerkzeug

DOM

Für die Entwicklung mit HTML und insbesondere mit der Bibliothek D3.js ist es wichtig den
Aufbau und die Funktionsweise des Document Object Model (DOM) zu kennen. Das DOM kann
als abstrakte Version einer HTML Seite interpretiert werden, das ebenfalls vomWorld Wide
Web Consortium (W3C) standardisiert und weiterentwickelt wird [www.w3schools.com].

Abbildung 4.1: Hierarchische Struktur einer Webseite. Bildquelle: www.w3schools.com

Abbildung 4.1 zeigt die hierarchische Struktur einer Webseite. Wenn eine Seite vom Browser
geladen wird, wird automatisch ein DOM Element davon generiert [www.w3schools.com]. Das
DOM hat eine baumartige Struktur und stellt die Schnittstelle für die Kommunikation zwischen
HTML und JavaScript dar. Alle ihm angehängten Elemente werden nämlich zu Objekten, die
mittels JavaScript dynamisch manipuliert werden können [wiki.selfhtml.org].

4.1.2 JavaScript

JavaScript ist eine vielseitige und flexible Sprache mit objektorientierten Fähigkeiten und kann
direkt im HTML Dokument eingebettet, oder in einem externen Dokument verwaltet werden,
das dann im HTML Dokument eingebunden wird. Im Unterschied zu vielen anderen Skriptspra-
chen wie PHP, ASP oder JSP, die serverseitig ausgeführt werden, wird JavaScript hauptsächlich
vom Browser lokal interpretiert. Seine Hauptaufgabe ist, statische HTML Dokumente mit
Funktionalität zu versehen, wodurch es möglich ist dynamische und interaktive Webseiten zu
erstellen. Der Vorteil dieser Sprache ist, dass sie plattformunabhängig ist und somit von nahezu
jedem Webbrowser interpretiert werden kann [www.itwissen.info]. JavaScript verwendet
außerdem keine Variablentypen und durch die Verwendung unterschiedlicher Frameworks
wie jQuery [https://jquery.com/] wird die Webentwicklung erheblich erleichtert. Durch die
Fähigkeit Aktualisierungen des DOMs leicht umzusetzen, wurde die Verwaltung der Objekte
die im DOM enthalten sind quasi komplett JavaScript übergeben. So können HTML Elemente,
Attribute, CSS-Styles entfernt, hinzufügt oder modifiziert werden [www.w3schools.com]. Dank
seiner Flexibilität hat sich JavaScript in den letzten Jahren immer mehr zu einem essentiellen
Bestandteil von Web-Applikationen entwickelt.

30

4.1 Technologien

Abbildung 4.2: Beispiel eines HTML Dokuments und das zugehörige DOM. Bildquelle:
www.w3schools.com

4.1.3 CSS

CSS ist die Abkürzung für Cascading Style Sheets. Mit diesem Instrument kann man die
graphische Darstellung (Layout, Farbe, Abstände, Schriftart, usw.) der Elemente einer Webseite
modifizieren. Dadurch hat man, verglichen zum Standard HTML, designtechnisch viel mehr
Möglichkeiten die Elemente zu modifizieren und zu verwalten. Der Vorteil liegt darin, eine
einzige Datei zu verwenden, die dann mit allen HTML Dokumenten, die darauf referenzieren,
kommuniziert. Somit kann man schon verwendete graphische Einstellungen auch für andere
Elemente verwenden. Sie sind eine Empfehlung des W3C Konsortiums, das schon mehrere
Versionen auf dem Markt gebracht hat. Die aktuellste ist CSS3, die im HTML5 Standard
integriert ist. Allgemein kann man sagen, dass HTML für die Struktur der Webseite zuständig
ist, während man mit CSS das Design bestimmt [wiki.selfhtml.org].

4.1.4 JSON

Für die Speicherung der Daten wurde unter anderem eine dateibasierte Datenspeicherung
verwendet, das JSON Objekt. JSON steht für JavaScript Object Notation. Der Vorteil dieser Nota-
tion ist, dass es sowohl client- als auch serverseitig eingesetzt werden kann. Der Aufbau eines
JSON-Objekts kann man in Abbildung 4.2 sehen. Die Objekte sind jeweils von geschweiften
Klammern umgeben. Die Daten werden als Key-Value-Pairs gespeichert [wiki.selfhtml.org].

31

4 Visualisierungswerkzeug

JSON-Objekte stellen ein leichtgewichtiges Datenaustauschformat dar, wodurch die Arbeit mit
der Bibliothek D3.js erheblich erleichtert wird.

Abbildung 4.3: Das Bild zeigt den Aufbau eines JSON-Objekts. Dabei wird ein Objet von
geschweiften Klammern umschlossen. Jeder Wert besitzt einen eindeutigen
Schlüssel, über welchen man auf den Wert zugreifen kann. Ein Schlüssel-
Werte-Paar wird durch einen Doppelpunkt getrennt. [wiki.selfhtml.org]

4.1.5 SVG

SVG steht für Scalable Vector Graphic und ist ein Dateiformat für Vektorgrafiken. Der Vorteil
solcher Grafiken ist, dass sich Bilder, verglichen zu Pixelgrafiken, ohne Verluste in jede Größe
skalieren lassen [Gul14]. Das ergibt sich dadurch, dass SVG-Grafiken Bilder anhand von
Vektoren beschreiben, anstatt der Rastertechnik, die in Pixelgrafiken verwendet wird. SVG
Grafiken können mit verschiedenen Javascript Bibliotheken realisiert werden. In dieser Arbeit
werden sie mit Hilfe der Bibliothek D3.js erstellt.

4.1.6 D3.js

Das Akronym D3 steht für Data Driven Documents. Damit wird auf die Funktionsweise hinge-
wiesen, mit deren Hilfe sich Dokumente (HTML-Seiten) auf Datenbasis dynamisch erzeugen
lassen. Um dies zu ermöglichen, werden in D3 mehrere Technologien wie HTML, SVG und CSS
integriert. Dabei werden die geladenen Datensätze an das oben erklärte DOM gebunden und
anschließend manipuliert und transformiert. Mit Hilfe eines sogenanntes Selection-Ansatzes
kann die Auswahl der Elemente im DOM erheblich vereinfacht werden [Gul14]. Abbildung

32

4.1 Technologien

Abbildung 4.4: Unterschied zwischen einer Pixelgrafik und einer Vektorgrafik. Bildquelle:
www.wikibooks.org

4.5 und 4.6 zeigen den Unterscheid zwischen einer Selektion von Paragraphen mit der DOM
Schnittstelle, verglichen zu dem Ansatz der von D3 verwendet wird. Dadurch wird die Komple-
xität um ein vielfaches reduziert und somit die Performance gesteigert. Des Weiteren arbeitet
diese Bibliothek hervorragend mit JSON Objekten zusammen, da sie, nachdem sie Zugang zum
Objekt hat, die Werte direkt über die Keys selektieren kann. Die Bibliothek ist außerdem sehr
beliebt, aufgrund der vielen Dokumentierungen und Tutorials die im Internet zu finden sind.

Abbildung 4.5: Paragraphen-Auswahl mittels DOM-API.

Abbildung 4.6: Paragraphen-Auswahl mittels Selection Ansatz.

33

4 Visualisierungswerkzeug

4.2 Realisierung

Die Aufgabe bestand darin, ein Visualiserungswerkzeug zu erstellen, das die aufgenommenen
Eyetracking Daten grafisch darstellt. Dies soll für die retrospektive Analyse dienen. Dafür
wurden die oben genannten Webtechnologien verwendet, um eine HTML basierte Webanwen-
dung zu erstellen. Die zu verarbeitenden Daten sind zum einen die vom Eyetracker generierten
Daten. Sie können im Tobii Studio im .tsv Format exportiert werden. Um sie in der Timeline
anzeigen zu lassen, müssen sie allerdings im .csv Format umgewandelt werden. Zum anderen
werden weitere externe Daten geladen, die für die graphische Repräsentation wichtig sind,
wie beispielsweise die Koordinaten der annotierten AOIs. Diese werden in einer .csv Datei
gespeichert. Die Bibliothek D3.js bietet eine Funktion queue() an, mit welcher man externe
Daten dynamisch laden kann. Diese Funktion wandelt .csv-Dateien direkt in JSON Objekte
um. Dabei muss geachtet werden, dass die erste Zeile der Datei als Schlüssel (Key) von der
Funktion interpretiert wird. Im Programm selbst, werden intern die nötigen Daten aus der
.csv Datei herausgefiltert (siehe Abschnitt 2.3.2) und in ein JSON Objekt gespeichert. In vielen
Literaturbüchern wird angemerkt, dass das Laden externer Dateien, besonders in Verbindung
mit der queue()-Methode, zu Problemen führen kann. Dies ist auch hier der Fall, weshalb
man zur Umgehung des Problems einen simplen lokalen Server startet. Das Programm an
sich bestehst aus drei Dateien: timeline.html, style.css und timeline.js. Diese befinden sich alle
im selben Ordner. Um das Programm zu starten, ruft man im Browser, nachdem man den
simplen Server gestartet hat, die Datei timeline.html auf. Der große Vorteil Browser-basierter
Anwendungen ist, dass man sie nicht lokal auf der Festplatte installieren muss. Somit kann
man die Datei, sofern sie lokal gespeichert ist und man in diesem Fall eine Internetverbindung
hat, direkt im Browser abrufen.

4.2.1 Datei auswählen

Die Daten der Teilnehmer werden vom Tobii Studio exportiert und in zwei Ordner unterteilt.
Ein Ordner beinhaltet die Review Vorgänge der einzelnen Teilnehmer, der andere enthält
die Review Vorgänge geordnet nach Programmen und Programmdarstellung. Diese befinden
sich lokal auf dem Rechner. Die ausgewählten Dateien werden untereinander in Form einer
Timeline angezeigt, die aus vielen Rechtecken besteht. Die Dauer einer Fixation erkennt man
dabei an der Breite des Rechtecks. Je breiter, desto Länger dauerte die Fixation in diesem Punkt.
Somit kann man die unterschiedlichen Leistungen der Teilnehmer singulär oder untereinander
vergleichen. Abbildung 4.7 zeigt den eben beschriebenen Vorgang. Für die x-Achse wird aus der
.csv Datei derWert TimeStamp verwendet. Dies ist ein Zeitstempel, der die Zeit inMillisekunden
aufzeichnet, ab dem Beginn der Blickbewegungsaufzeichnung. Dabei wird eine Fixation aus
mehreren aufeinanderfolgenden GazePoints zusammengesetzt (siehe Abbildung 4.8), wenn der
Abstand zwischen ihnen innerhalb bestimmter Bereiche bleibt [TobiiStudio2.XUserManual].
Die Fixationsdauer wird aus der Differenz zwischen aufeinanderfolgenden Fixationspunkten
berechnet.

34

4.2 Realisierung

!

http!Server!starten!und!
.html!Datei!aufrufen!!!!

!!

Lade!lokale!.csv!!
Datei!und!zeige!sie!
im!Browser!an!!

Abbildung 4.7: Visualisierungsprogramm und Darstellung der Timeline im Browser

Zusätzlich zur Visualisierung werden Fixationsanzahl und Sakkadenanzahl angezeigt, sowie
die Gesamtdauer der Betrachtung des Stimulus. Die im Vorfeld im Tobii Studio definierten
AOIs werden farblich unterschieden. Somit kann man in der Timeline nachvollziehen, welche
AOI angeschaut wurde. Links neben der Timeline wird jeweils immer der Stimulus angezeigt,
sowie die Programmkomponenten. Die länge der Balken gibt jeweils an, wie lange eine AOI
verglichen zu den anderen angeschaut wurde. Links neben den Hits wird das aktuell betrachtete
Stimulus im Original Format 1900 x 1200 Pixel angezeigt siehe (Abbildung 4.9).

Die Balken der Koponenten haben dieselbe Farbe der ihnen zugehörigen AOIs in der Timeline.
Schwarze Rechtecke in der Timeline signalisieren, dass keine AOI angeschaut wurde. Wenn
man mit der Mouse über die Elemente gleitet, erscheint ein Tooltip mit den Namen der AOI.
Somit hat man eine kompakte Darstellung der zusammengehörigen AOIs. Unterhalb der
Timeline kann man zusätzlich den Wechsel der Leserichtung der betrachteten Zeilen in Form
eines Balkens ansehen(siehe Abbildung 4.10). Dabei zeigt gelb die Richtung an, wenn man von
rechts nach links schaut und blau im anderen Fall.

35

4 Visualisierungswerkzeug

Abbildung 4.8: GazePoints werden zu einer Fixation zusammengefasst.

P04-Acc…CSD.csvDateien auswählen

0 50,000 100,000 150,000 200,000 250,000

Fixationsanzahl: 723 Sakkadenanzahl: 722 Dauer in Minuten: 3.82

Component: Keyword public (l.22)
Component: Functioncall makeSum() (l.5)
Component: Variable i (l.11)
Component: undefined
Component: undefined
Component: undefined
Component: Variable i (l.7)
Component: Keyword int (l.9)
Component: Variable sum (l.9)
Component: undefined
Component: Keyword public (l.3)
Component: undefined
Component: While-Loop (l.13-18)
Component: Keyword static(l.22)
Component: Keyword void (l.22)
Component: Scaner input (l.32)
Component: Main function (l.22)
Component: CSD symbol for public static class
Component: Scanner variable (l.26)
Component: undefined
Component: Variable input (l.24)
Component: Variable input (l.30)
Component: Scanner System in (l.26)
Component: Console input (l.28)
Component: undefined
Component: Keyword int (l.24)
Component: Keyword int (l.7)
Component: undefined
Component: Return statement (l.19)

Abbildung 4.9: Hier werden die einzelnen Programmkomponenten angezeigt, und die jewei-
lige Zeile in welche sie sich befinden. Die Balken signalisieren wie lange sie
im vergleich zu den anderen Komponenten angeschaut wurden.

36

4.2 Realisierung

P01-Acc…ePT.csvDateien auswählen

0 50,000 100,000 150,000 200,000 250,000 300,000

Fixation count: 417 Saccade count: 416 Time in minutes: 2.8

Abbildung 4.10: Hier sieht man den Wechsel der Leserichtung. Gelb signalisiert, dass der
Leser von rechts nach links liest und blau im anderen Fall.

37

5 Eyetracking-Studie

In diesem Kapitel wird die Durchführung der Eyetracking-Studie vorgestellt. Die Aufgabe der
Teilnehmer bestand darin, 6 Java Programme in jeweils drei unterschiedlichen Darstellungen,
Plaintext, Java-Syntax-Highlighting und letzteres noch inklusivemitControl Structure Diagrams,
jeweils auf einen Semantikfehler zu untersuchen und die Funktionsweise zu bestimmen. Die
Studie wurde zum Teil bereits von Uwano [UNM+06] mit 5 Teilnehmer und von Sharif [SFM12]
mit 15 Teilnehmer nochmals durchgeführt (siehe Kapitel 3.2).

5.1 Ablauf der Studie

Vor der eigentlichen Studie wurde eine Pilotstudie mit zwei Probanden durchgeführt, um
mögliche Fehlerquellen beim Studienverlauf frühzeitig zu erkennen. Der Versuchsaufbau im
Tobii Studio bestand insgesamt aus 12 Folien, die nacheinander eine Introduktionsfolie und
das Stimulus aufzeigte. Der Aufbau wurde optimiert, indem eine zusätzliche Folie eingefügt
wurde, zwischen der Introduktionsfolie und dem eigentlichen Stimulus, auf der das Programm
nochmals angezeigt wurde mit Zeilenangabe. Sie diente dazu, den Teilnehmern die Zeit für
Kommentare zu gewähren. Für die eigentlichen Stimuli hatten sie maximal 5 Minuten Zeit. Die
Zeit wurde dabei nebenher geprüft und nach Ablauf, oder nachdem sie den Fehler gefunden
hatten, wurden die Teilnehmer aufgefordert auf die Spacetaste zu drücken. Es wurden auch
einige eher Formale Fehler, die den Fragebogen betrafen angemerkt. Diese wurden vor der
durchführung der Studie behoben.

Der formale Ablauf sah für jeden Probanden folgendermaßen aus:

1. Einverständniserklärung:

Zu Beginn der Studie bekommt jeder Teilnehmer eine Einverständniserklärung. Darin
steht, dass er jeder Zeit dazu berechtigt ist, die Studie abzubrechen und die Daten anonym
aufgenommen werden.

2. Fragebogen zur Person:

Nach der Einverständniserklärung füllt der Teilnehmer den ersten Teil des Fragebogens.
Er enthält Fragen zu Alter, Geschlecht, Sehhilfe, Hochschulabschluss und angestrebter
Abschluss (siehe Anhang A.1).

39

5 Eyetracking-Studie

3. Farb- und Sehtest:

Um zu testen, ob der Teilnehmer eine Sehschwäche hat, wurde ein Farb- und Sehtest
durchgeführt. Somit wurde sichergestellt, dass die Daten nicht beeinträchtigt werden
(siehe Kapitel 5.6).

4. Tutorial:

Vor der Studie war es wichtig die Teilnehmer auf denselben Kenntnisstand zu brin-
gen, weshalb ein Tutorial zu den CSDs erstellt wurde. Dafür wurden Beispielcodes
(siehe Beispiel in Abbildung 5.2) verwendet um die eingesetzten Symbole zu erklären.
Anschließend wurde der Allgemeine Ablauf der Studie erklärt.

5. Kalibrierung:

Durch die Kalibrierung wird gewährleistet, dass die Augenbewegungen von der Kamera
richtig aufgefasst werden. Dabei müssen 9 Punkte auf dem Bildschirm verfolgt und
fixiert werden. Mit einer Kinnstütze wird die Position des Kopfes stabilisiert und ein
Abstand zwischen 63 und 66 cm zum Bildschirm sichergestellt.

6. Betrachten der Programme:

Jeder Teilnehmer besitzt eine Identifikationsnummer, wobei jede Nummer durch die
Graeco Latin Square-Aufteilung eine unterschiedliche Sequenz der Bilder aufzeigt(siehe
Abbildung 5.3). Nach einer Folie wird ein Stimulus aufgezeigt, gefolgt von einer Zwischen-
folie. Dort hat jeder Teilnehmer Zeit, die Funktionsweise und den Fehler des betrachteten
Programms wiederzugeben. Die maximale Zeit pro Stimulus betrug 6 Minuten.

7. Fragebogen zu den Programmen:

Nach Ablauf der Studie füllt der Teilnehmer den zweiten Teil des Fragebogens(siehe
Anhang A.2) aus, der sich auf die betrachteten Stimuli bezieht. Es wurden Fragen zu
Vorkenntnisse, Verständnis, Anstrengung gestellt. Um zu wissen, welche Darstellung er
bevorzugt, wird er gebeten, die Codedarstellungen zu bewerten. Die letzten Seite des
Fragebogens ist für Kommentare gedacht.

8. Aufwandsentschädigung:

Nach Beendigung der Studie wird dem Teilnehmer als Aufwandsentschädigung ein
überraschungsei gegeben.

5.1.1 Technischer Aufbau

Die Studie fand im Labor des VISUS-Gebäudes der Universität Stuttgart statt. Damit mögliche
Störfaktoren keinen Einfluss auf die Studie haben konnten, wurden sowohl die Tür als auch die
Fenster geschlossen gehalten. Die Rollläden wurden auch heruntergelassen. Außerdem wurden
die Teilnehmer darum gebeten ihre Handys auszuschalten. Für die Blickbewegungsaufnahme

40

5.2 Hypothesen

wurde der Eyetracker T60 XL der Firma Tobii verwendet. Für die Datenaufnahme wurde die
Software Tobii Studio 2.2.8 verwendet. Die Programmsequenz wurde auf einem 24“Monitor
mit einer Bildschirmauflösung von 1920 x 1200 Pixel dargestellt.

5.2 Hypothesen

Folgende Hypothesen wurden in den vergangenen Studien formuliert (Uwano [UNM+06] und
Sharif [SFM12]):

Hypothese 1

Die durchschnittliche Dauer, bis der Teilnehmer den Fehler findet, ist gleich unabhängig davon,
ob der Code anfangs gescannt wurde oder nicht .

Hypothese 2

Die Genauigkeit, mit der der Fehler gefunden wird, ist gleich unabhängig von der Scan-Zeit.

Hypothese 3

Die visuelle Anstrengung ist gleich, unabhängig, von der Scan-Zeit.

Hypothese 4

Die Erfahrung hat keinen Einfluss auf die Scan-Zeit, und somit keine Auswirkungen auf die
Zeit bis zur Fehlerdetektion und Genauigkeit.

Die Hypothesen, die während dieser Studie entstanden sind, werden im Diskussionskapitel
vorgestellt.

41

5 Eyetracking-Studie

5.3 Variablen

Man unterscheidet zwei Typen von Variablen, unabhängigen und abhängigen, die die Hypo-
thesen betreffen. Bei den unabhängigen Variablen handelt es sich um Variablen, die während
eines Experiments geändern werden können. In dieser Studie sind das die verwendeten Java
Programme in den unterschiedlichen Darstellungen(siehe Kapitel 5.4).

Die abhängigen Variablen hängen von den unabhängigen ab. Sie sollten sich während einer
Studie nicht ändern, denn in ihnen Zeigt sich die Auswirkung der unabhängigen und werden
in einer Studie gemessen. Die abhängigen Variablen dieser Studie sind z.B. die Zeit bis zur
Fehlererkennung oder die Fixationsanzahl pro AOI.

5.4 Stimuli

Die verwendeten Stimuli für die Studie sind 6 Programme, die ursprünglich von Uwano in der
Programmiersprache C geschrieben wurden. Für diese Studie wurden sie in der Programmier-
sprache Java umgeschrieben, da die Teilnehmer Studenten waren, die als erste Programmier-
sprache Java gelernt haben und beinhalten jeweils denselben logischen Fehler. Die Größe der
Bilder wurde auf 1900 x 1200 Pixel gesetzt, wobei jede Zeile eine Höhe von 21 Pixel besitzt. In
der folgenden Tabelle sind alle wichtigen Details zu den Programmen enthalten.

Zusätzlich wurden drei unterschiedliche Codedarstellungen verwendet, Plaintext, Java Sy-
stax Highlighting und letzteres mit Control Strukture Diagrams (CSD) ergänzt. Dabei soll
der unterschiedliche Einfluss, den sie während der Coderanalyse haben können, untersucht
werden.

Control Strukture Diagrams (CSD) wurden entwickelt, um den Programmierer beim Pro-
grammverständnis zu unterstützen. Dabei sollen die Diagramme im Programm integriert
werden, indem sie wie eine natürliche Erweiterung des Programms selbst wirken, ohne das
Erscheinungsbild drastisch zu ändern [HCM+02]. GRASP Editoren [www.eng.auburn.edu]
automatisieren die Generierung von CSDs im Programmcode und wurden auch hier verwendet.
Das Ergebnis kann man in Abbildung 5.2 sehen. Um eine ausgeglichene Verteilung der Stimuli
zu erreichen und Lerneffekte durchWiederholung zu minimieren, wurden Graeco Latin Squares
[Hol03] verwendet. Die Verteilung der Programme wird in Abbildung 5.3 gezeigt. Dabei steht
P für Plaintext, J für Java Syntax Highlighting und C für Java Syntax Highlighting inklusive
CSD. Das zugehörige Programm zu der Nummer, kann man in der Tabelle 5.1 ablesen.

5.5 Aufgabe

Die Aufgabe der Teilnehmer bestand darin eine Sequenz von 6 Java Programmen die jeweils in
drei unterschiedlichen Codedarstellungen präsentiert wurden, auf einen semantischen Fehler

42

5.5 Aufgabe

Nummer Programm Name Funktionsweise Semantik Fehler Zeilen
1 Accumulate Der User gibt eine nicht

negative Integer Zahl n
ein. Das Programm bil-
det die Summe aus allen
Zahlen von 1..n.

Die Schleifenbedin-
gung ist falsch. Die
Besingung sollte lauten
(n<=0) statt (n<0).

38

2 Average-5 Der User gibt 5 Integer
Zahlen ein und das Pro-
gramm berechnet dar-
aus den Durchschnitt.

Eine Typkonvertierung
von Integer zu dou-
ble fehlt. somit entsteht
ein Rundungsfehler im
Durchschnitt.

35

3 Average-Any Der User gibt eine belie-
bige Anzahl an Integer
Zahlen ein (max.255)
bis 0 eingegeben wird.
Das Programm berech-
net den Durchschnitt
der eingegebenen Zah-
len.

Die Anzahl der Schlei-
fendurchläufe ist falsch.
Das Programm berech-
net immer den Durch-
schnitt von 255 Zah-
len unabhängig von den
eingegebenen Zahlen.

46

4 Prime Der User gibt n Inte-
ger Zahlen ein. Das Pro-
gramm überprüft, ob n
eine Primzahl ist oder
nicht.

Die Logik in der Be-
dingungsabfrage ist ver-
kehrt, somit wird das
Ergebnis auch umge-
kehrt.

40

5 Swap Der User gibt zwei Zah-
len ein. Das Programm
vertauscht die, durch
die swap()-Funktion
und gibt dann das
Ergebnis aus.

Die Pointer werden
falsch verwendet und
somit werden die Zah-
len nicht ausgetauscht.

46

6 Sum-5 Der User gibt 5 Inte-
ger Zahlen ein. Das Pro-
gramm berechent die
Summe dieser Zahlen.

Die Variable sumwurde
nicht initialisiert.

26

Tabelle 5.1: Informationen zu den verwendeten Stimuli

43

5 Eyetracking-Studie

 1 import java.util.Scanner;
 2
 3 public class Sum5 {
 4
 5 public static void main(String[] args) {
 6
 7 int i, input;
 8
 9 i = 0;
10
11 while(i < 5) {
12
13 Scanner sc = new Scanner(System.in);
14
15 System.out.println("Input Number: ");
16
17 input = sc.nextInt();
18
19 sum = sum + input;
20
21 i = i + 1;
22 }
23
24 System.out.println("Sum: " + sum);
25 }
26 }

 1 import java.util.Scanner;
 2
 3 public class Sum5 {
 4
 5 public static void main(String[] args) {
 6
 7 int i, input;
 8
 9 i = 0;
10
11 while(i < 5) {
12
13 Scanner sc = new Scanner(System.in);
14
15 System.out.println("Input Number: ");
16
17 input = sc.nextInt();
18
19 sum = sum + input;
20
21 i = i + 1;
22 }
23
24 System.out.println("Sum: " + sum);
25 }
26 }

!

Abbildung 5.1: Die Abbildung zeigt denselben Code in den 3 unterschiedlichen Darstellungen.
(von links nach rechts: Java Syntax Highlighting, PlainText, Java Syntax
Highlighting inkl. CSD)

Teilnehmer1 P,1 J,2 C,6 P,3 J,5 C,4
Teilnehmer2 J,2 C,3 P,1 J,4 C,6 P,5
Teilnehmer3 C,3 P,4 J,2 C,5 P,1 J,6
Teilnehmer4 J,4 C,5 J,3 J,6 C,2 C,1
Teilnehmer5 J,5 C,6 P,4 J,1 C,3 P,2
Teilnehmer6 J,6 J,1 P,5 C,2 C,4 J,3

Teilnehmer7 C,4 J,5 P,3 C,6 J,2 P,1
Teilnehmer8 P,5 P,6 J,4 C,1 J,3 P,2
Teilnehmer9 P,6 J,1 C,5 C,2 C,4 P,3
Teilnehmer10 C,1 J,2 P,6 C,3 J,5 P,4
Teilnehmer11 P,2 C,3 J,1 P,4 C,6 J,5
Teilnehmer12 J,3 P,4 C,2 J,5 P,1 C,6
!

Abbildung 5.2: Programmverteilung mittels Graeco Latin Square

zu untersuchen. Zusätzlich sollte auch die Funktionsweise des Algorithmus bestimmt werden,
um, infolgedessen, den logischen Fehler zu finden. Pro Programm hatten sie maximal 6 Minuten
Zeit. Spätestens dann wurden sie aufgefordert, auf einer nächsten Folie im Studienverlauf,
mittels Think Aloud Methode die Funktionsweise und den Fehler laut zu sagen. Jedes Programm
beinhaltet einen semantischen Fehler. In Tabelle 5.1 sind alle Programme aufgelistet, mit der
entsprechenden Funktionsweise und den Programmfehler.

44

5.6 Teilnehmer

5.6 Teilnehmer

Insgesamt haben 12 Personen an der Studie teilgenommen. Davon waren 3 weiblich und 9
männlich. Das Durschnittsalter lag bei 26,28 Jahren mit einer Alterspanne von 22-36 Jahren. 8
Personen waren Brillenträger und 3 davon haben Kontaktlinsen getragen. Vor der Eyetracking
Studie, musste jeder Teilnehmer ein Sehtest und ein Farbtest (Ishihara-Test) durchführen.
Der Test ergab, dass alle Teilnehmer eine normale Sehkraft hatten. Durch die Ergebnisse
des Farbtests wurde festgestellt, dass keine Farbfehlsichtigkeiten der Teilnehmer vorhanden
waren.

Unter den Teilnehmern waren 8 Bachelorstudenten, 3 Masterstudenten und ein Diplomstudent.
Die Studienänge umfassten: Informatik, Softwaretechnik, Physik, Elektrotechnik, Infomations-
technik, Technische Kybernetik und Luft- und Raumfahrttechnik. Alle hatten Programmierer-
fahrung und im speziellen mit der Programmiersprache Java.

45

6 Auswertung

Es folgt nun die Auswertung der Daten, mittels der von Tobii Studio ermittelten deskriptiven
Statistik und die visuelle Analyse der Daten, mit Hilfe des entwickelten Visualisierungspro-
gramms. Im Folgenden wird der Einfachheit halber die Java Syntax Highlighting Darstellung
inklusive CSD mit CSD abgekürzt und die Java Syntax Highlighting Darstellung mit Java.

6.1 Vorverarbeitung der Daten

4 Probanden mussten wieder neu aufgenommen werden, um die Ausgeglichenheit der betrach-
teten Stimuli zu gewährleisten.

Annotation der AOIs

Bevor man die Daten in Tobii Studio auswertet, müssen die AOIs annotiert werden. Dieser
Vorgang ist auch für das Entwickelte Tool wichtig. Bei der Definition der AOIs wurde dabei die
Lage des semantischen Fehlers berücksichtigt. Beispielsweise wurde im Programm Accumulate
PlainText die While-Schleife als AOI definiert, wie in der folgenden Auswertung erkennbar ist,
weil sich dort der Fehler befand.

6.2 Ergebnisse der unabhängigen Variablen

Es folgt nun die statistische und visuelle Auswertung der Daten. Es wird keine inferentielle
Statistik durchgeführt. Die Hypothesen werden aus den Ergebnissen der durchgeführten
Studie und des entwickelten Tools formuliert und sollten in einer weiteren Studie vertieft und
statistisch ausgewertet werden. Dennoch wird ein Blick auf die deskriptive Statistik geworfen,
um eine generelle Sicht auf die Daten zu erhalten.

In den vergangenen Studien wurden die Hypothesen aus Kapitel 5 analysiert. Dabei hat
Sharif [SFM12], basierend auf die Ergebnisse der Studie von Uwano [UNM+06], beispielsweise
untersucht, wie die Zeit bis zur Fehlerdetektion und die Scan-Zeit in Beziehung zueinander
stehen (siehe Hypothese 1). Dabei wurde festgestellt, dass die Scan-Zeit einen relevanten

47

6 Auswertung

Abbildung 6.1: Durchschnittliche Fixationsanzahl pro AOI in den drei unterschiedlichen
Codedarstellungen.

Einfluss auf die Zeit bis zur Fehlerdetektion hat. Je sorgfältiger das Programm gescannt wird,
desto schneller kommt man zum Ergebnis. Somit wurde die erste Hypothese verworfen. Da
die Scan-Zeit in Verbindung steht mit der Anzahl der Fixationen, wurde in der Studie somit die
dritte Hypothese auch verworfen. Die zweite Hypothese konnte nicht verworfen werden, da
man es nicht für die Gesamtheit der Daten verallgemeinern konnte. Hypothese 4 wurde auch
verworfen, da man herausfand, dass Anfänger im Schnitt ca. 25,8 Sekunden länger brauchten
beimReview-Vorgang, als Fortgeschrittene. Uwano fand unterschiedlicheMuster in den Review-
Vorgängen der Teilnehmer, die neue Einblicke in die Leseweise des Codes verschaffen konnten.
Beispielsweise das Scan Muster, das auch in dieser Arbeit in vielen Reviews erkannt wird, oder
das Retrace Declaration Pattern (siehe Kapitel 3 Abb. 3.3). Das Scan Muster bezieht sich dabei
auf die Zeit, bis 80% des Codes gelesen wurde. Beide Studien differenzieren sich nicht nur in
der Anzahl der Teilnehmer (Sharif: 15 Teilnehmer, Uwano: 5), Sharif fürhrte mehr statistische
Tests durch, die die Hypothesen von Uwano teilweise unterstützen (Beispiel: Relevanz der
Scan-Zeit bei der Fehlererkennung).

Die subjektive Empfindung der Teilnehmer in dieser Studie, lässt vermuten, dass sie sich
durch das fehlende Highlighting mehr anstrengen mussten beim Code Review. Die deskriptive
Statistik in Abbildung 6.2 zeigt, dass die durchschnittliche Dauer bis zur Fehlererkennung pro
Programmdarstellung, bei der CSD Variante am größten war. Für die PlainText Darstellung,
haben die Teilnehmer im Schnitt 181,5 Sekunden, für die Java Darstellung 167 Sekunden und
für die CSD Darstellung 225,5 Sekunden gebraucht. Somit hat die Fehlersuche in der CSD
Darstellung 58,5 Sekunden länger gedauert als in der Java Darstellung und 44 Sekunden länger
als in der PlainText Darstellung.

Die deskriptive Statistik in Abbildung 6.1 zeigt außerdem, dass bei der PlainText Darstellung
eine AOI im Schnitt 8 Mal angeschaut wurde, bei der Java Darstellung 11 Mal und bei der CSD
Darstellung 9,5 Mal.

48

6.3 Visuelle Analyse der Daten

Abbildung 6.2: Dieses Boxplot zeigt die durchschnittliche Zeit in Sekunden an, mit der der Feh-
ler in den unterschiedlichen Codedarstellungen gefunden wurde. Dabei sieht
man, dass man in der Java Darstellung im Durchschnitt den Fehler schneller
gefunden hat, verglichen zur CSD und PlainText Darstellung. Die PlainText
Darstellung war im Schnitt schneller als die CSD Darstellung. Betrachtet
man jedoch die individuelle Performance der Teilnehmer (siehe gestrichelte
Linien), variieren die Werte zwischen den Codedarstellungen sehr, sodass
PlainText insgesamt schlechter ausfällt.

6.3 Visuelle Analyse der Daten

In diesem Abschnitt werden die Daten, mit Hilfe des entwickelten Tools, visuell analysiert.

In Abbildung 6.3 wird ein Vergleich gemacht zwischen allen Teilnehmern die das Stimulus
Accumulate PlainText angeschaut haben. Im ersten Fenster sieht man den Review-Vorgang von
Teilnehmer Nummer 1. Mit 14,6 Minuten hat er verglichen zu den anderen Teilnehmern, für den
gesamten Studienversuch am wenigsten gebraucht. Für diese Aufgabe (Accumulate PlainText)
hat er 2,8Minuten gebraucht. Es ist deutlich erkennbar, wie der Code zuerst gescannt wurde, um
dann den Fokus auf die While-Schleife zu setzten, wo sich der Fehler auch befand. Wenn man
seinen gesamten Studienverlauf anschaut kann dieses Verhalten in 83% der Review-Vorgänge
beobachtet werden.

Teilnehmer Nummer 2 hat 4,54 Minuten gebraucht für dieselbe Aufgabe. Der Review-Vorgang
von Teilnehmer zwei sieht im Vergleich dazu anders aus. Man findet in seiner Visualisierung
auch einen Scan Muster, allerdings zieht sich das in die Länge, bis das komplette Programm
angeschaut wurde. Sein Blick verweilt in der While-Schleife und man erkennt, dass sich die
Leserichtung innerhalb der Zeilen selbst sich oft ändern (siehe Abbildung 6.3 Balken unterhalb
der Timeline). Man sieht, dass er den Fehler möglicherweise schon zu Beginn gefunden hat,
weshalb er den Fokus hauptsächlich auf die While-Schleife setzt, dann den Rest des Programms
beobachtet, um wiederrum zum Fehler zu springen. Die Fixationsanzahl und Dauer sind auch

49

6 Auswertung

P12-Acc…ePT.csvDateien auswählen

0 50,000 100,000 150,000 200,000

Fixation count: 417 | Saccade count: 416 | Time in minutes: 2.8

Component: While Loop
Component: Keyword public
Component: undefined
Component: Keyword static
Component: Program name
Component: Keyword public
Component: Variable declaration
Component: Variable i
Component: Variable declaration
Component: Variable i
Component: Keyword return
Component: Keyword static
Component: Function main()
Component: Variable input
Component: Scanner
Component: Variable sum
Component: Scanner system
Component: Console input
Component: Input scanner
Component: Variable input
Component: Variable sum
Component: Functioncall makeSum()
Component: Console output
Component: Keyword public
Component: Keyword void
Component: undefined
Component: function makeSum()
Component: Variable sum=0;
Component: undefined

0 50,000 100,000 150,000 200,000

Fixation count: 934 | Saccade count: 933 | Time in minutes: 4.54

Component: Variable i
Component: Keyword public
Component: Program name
Component: Variable declaration
Component: function makeSum()
Component: Variable sum=0;
Component: Variable i
Component: While Loop
Component: Variable declaration
Component: undefined
Component: Keyword return
Component: Keyword public
Component: Keyword static
Component: Keyword public
Component: Keyword static
Component: Variable input
Component: Function main()
Component: New operator
Component: Console input
Component: Variable input
Component: Input scanner
Component: Variable sum
Component: Variable sum
Component: Scanner
Component: Functioncall makeSum()
Component: Console output
Component: Scanner variable
Component: Keyword void

0 50,000 100,000 150,000 200,000

Fixation count: 200 | Saccade count: 199 | Time in minutes: 1.4

Component: undefined

Component: Program name

Component: Variable i

Component: Variable declaration

Component: undefined

Component: Variable sum=0;

Component: Keyword return

Component: While Loop

Component: Variable i

Component: Keyword static

Component: Scanner

Component: Console output

Component: Variable sum

Component: Console input

Component: New operator

Component: Scanner variable

Component: Input scanner

Component: Functioncall makeSum()

Component: Function main()

Component: Scanner system

Component: Keyword void

0 50,000 100,000 150,000 200,000

Fixation count: 1059 | Saccade count: 1058 | Time in minutes: 5.8

Component: Package
Component: Program name
Component: function makeSum()
Component: undefined
Component: Keyword public
Component: Keyword static
Component: Variable i
Component: Variable sum=0;
Component: Variable i
Component: While Loop
Component: Keyword return
Component: undefined
Component: Keyword static
Component: Keyword void
Component: Function main()
Component: Variable input
Component: Variable sum
Component: Variable declaration
Component: Scanner
Component: Scanner variable
Component: New operator
Component: Scanner system
Component: Console input
Component: Variable input
Component: Input scanner
Component: Variable sum
Component: Functioncall makeSum()
Component: Console output
Component: Variable declaration
Component: Keyword public

0 50,000 100,000 150,000 200,000

Fixation count: 443 | Saccade count: 442 | Time in minutes: 2.65

Component: Keyword static
Component: undefined
Component: Program name
Component: function makeSum()
Component: Keyword static
Component: Function main()
Component: Variable sum=0;
Component: Variable i
Component: While Loop
Component: Variable i
Component: Keyword return
Component: New operator
Component: Console output
Component: Variable input
Component: Variable sum
Component: Scanner
Component: Scanner variable
Component: Scanner system
Component: Console input
Component: Variable input
Component: Input scanner
Component: Functioncall makeSum()
Component: Variable sum
Component: Keyword public

Abbildung 6.3: Hier werden die Review-Vorgänge von 5 Teilnehmer verglichen, die das-
selbe Programm Accumulate PlainText angeschaut haben. Man sieht, die
unterschiedlichen Performances der Teilnehmer untereinander aufgelistet.
Dadurch ist ein direkter Vergleich möglich. Hier erkennt man unter anderem
verschiedene Scan Muster, sowie die unterschiedliche Dauer der individuellen
Review-Vorgänge. Es wird auch der Richtungswechsel innerhalb der Zeilen
gezeigt unterhalb der Timeline (blau, wenn der Blick vom aktuellen Stand
nach rechts wandert, gelb im umgekehrten Fall). Zusätzlich wird links die
Häufigkeit, mit der eine AOI angeschaut wird angezeigt. Dies varriert auch je
nach Performance.

50

6.3 Visuelle Analyse der Daten

Abbildung 6.4: Scanpath von Teilnehmer 1 und 2 im Vergleich. Man erkennt, dass die Fixatio-
nen bei Teilnehmer 2(organge) viel weniger dauern (siehe Größe des Kreises)
und die Anzahl größer ist.

unterschiedlich (siehe Scanpath Abb. 6.4). Dieses Verhalten sieht man in all seine Review-
Vorgänge. Er hat für den gesamten Versuch 34,4 Minuten gebraucht.

Der dritte Teilnehmer, hat im Vergleich zu den ersten zwei mit 1,4 Minuten am kürzesten
gebraucht. Sein Scan Muster ist nicht gleichmäßig, wie das des ersten Teilnehmers. Es scheint
sogar, als würde er die While-Schleife überspringen, um zuerst die main()-Methode zu analy-
sieren und anschließend springt er wieder hoch zur While-Schleife. Seine Strategie könnte ihm
einen zeitlichen Vorsprung gegeben haben, da er versucht den Kontrollfluss, beginnend von
der Hauptmethode des Programms, zu analysieren. Was man bei diesem Teilnehmer feststellen
kann ist, dass er diese Strategie nicht in all seinen Review-Vorgängen konsequent durchgeführt
hat (siehe Abbildung 6.5).

50% seines gesamten Review-Vorgangs ähnelt dem Review-Vorgang des zweiten Teilnehmer. In
den restlichen 50% fällt auf, dass seine Strategie in der PlainText Darstellung mit Scan Muster
versehen ist. Dies könnte ein Indiz dafür sein, dass durch das fehlende Highlithing, sein Blick
nicht von spezifischen Programmkomponenten gefangen wird, weshalb er gezwungen ist, eine
Struktur im Programm künstlich herzustellen und im Schnitt ca. 2 Minuten länger gebraucht
hat, um den Fehler zu finden. In der CSD und in der Java Darstellung, sind die Vorgänge

51

6 Auswertung

P03-Ave…CSD.csvDateien auswählen

0 50,000 100,000 150,000 200,000

Fixation count: 962 | Saccade count: 961 | Time in minutes: 7.28

Component: Variable sc (l.17)

Component: Variable sum=0 (l.11)

Component: Keyword static (l.5)

Component: undefined

Component: Variable i (l.13)

Component: While-loop (l.15)

Component: Scanner (l.17)

Component: ave (l.29)

Component: Console input (l.19)

Component: Console output (l.31)

Component: i (l.25)

Component: Sum (l.23)

Component: Scanner input (l.21)

Component: Variable input (l.21)

Component: undefined

Component: undefined

Component: Keyword double (l.9)

Component: Keyword int (l.7)

Component: Keyword class (l.3)

Component: Program name (l.3)

0 50,000 100,000 150,000 200,000

Fixation count: 585 | Saccade count: 584 | Time in minutes: 4.05

Component: Keyword static (l.5)
Component: Keyword class (l.3)
Component: Program name (l.3)
Component: undefined
Component: Keyword int (l.7)
Component: Keyword double (l.9)
Component: undefined
Component: Variable sc (l.17)
Component: Scanner (l.17)
Component: Scanner(System) (l.17)
Component: Variable input (l.21)
Component: Scanner input (l.21)
Component: Brace (l.27)
Component: undefined
Component: undefined
Component: Sum (l.23)
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: undefined
Component: ave (l.29)

Abbildung 6.5: Hier werden weitere Review-Vorgänge von Teilnehmer Nummer 3 gezeigt.
Dabei sieht man deutlich, dass er in anderen Reviews unstrukturierter vorge-
gangen ist und länger gebraucht hat.

eher unstrukturiert und von langen Fixationen unterschiedlicher Programmkomponenten
charakterisiert. Insgesamt hat er 26,3 Minuten gebraucht.

Beim vierten Teilnehmer springt als erstes ins Auge, dass er mit 5,8 Minuten am längsten für
dieselbe Aufgabe gebraucht hat. Die Komponenten, die er am längsten betrachtet hat, sind
hauptsächlich Schlüsselwörter und die While-Schleife, wo sich der Fehler befindet. Verglichen
zu den anderen Vorgängen erkennt man, dass er vom oberen Anfang des Programms zum Ende
wandert und umgekehrt, und das mehrmals im Review-Verlauf. Diesen Lesevorgang erkennt
man in allen Reviews seines Studien-Vorgangs. Zudem sieht man deutlich, dass er bei der CSD
und der PlainText Darstellung um einiges länger gebraucht hat (siehe Abbildung 6.6).

Dies könnte daran liegen, dass er bei der PlainText Darstellung zu wenig Farbreferenzen zu
den Komponenten hat, um den Code strukturiert zu analysieren, somit muss er auch, wie
Teilnehmer Nummer 3, eine Struktur im Code bilden, um dann den Fehler zu finden. Bei
der Java Darstellung hat er hingegen durch das Highlighting eine Struktur im Programm,
somit wird er beim Review unterstützt. Man muss auch erwähnen, dass die Programme eine
unterschiedliche Länge haben. Dies kann auch ein Grund, für die unterschiedliche Dauer der
Reviews sein. Insgesamt benötigte er 37,1 Minuten.

Teilnehmer Nummer 5 hat einen ähnlichen Lesefluss wie Teilnehmer Nummer 1 und 3. Man
sieht, dass er im Vergleich zu den anderen Kandidaten weniger AOIs angeschaut hat und sich
hauptsächlich auf den Fehler in der While-Schleife konzentriert. Innerhalb seines gesamten
Review-Vorgangs erkennt man keine genaue Lesestrategie, da sich die Review-Vorgänge nicht

52

6.3 Visuelle Analyse der Daten

P07-Ave…AVA.csvDateien auswählen

0 50,000 100,000 150,000 200,000

Fixation count: 1059 | Saccade count: 1058 | Time in minutes: 5.8

Component: Package
Component: Program name
Component: function makeSum()
Component: undefined
Component: Keyword public
Component: Keyword static
Component: Variable i
Component: Variable sum=0;
Component: Variable i
Component: While Loop
Component: Keyword return
Component: Keyword int
Component: Keyword static
Component: Keyword void
Component: Function main()
Component: Variable input
Component: undefined
Component: Variable declaration
Component: Scanner
Component: undefined
Component: undefined
Component: Scanner system
Component: Console input
Component: Variable input
Component: Input scanner
Component: Variable sum
Component: Functioncall makeSum()
Component: Console output
Component: Variable declaration
Component: Keyword public

0 50,000 100,000 150,000 200,000

Fixation count: 468 | Saccade count: 467 | Time in minutes: 2.12

Component: Variable sum=0;
Component: undefined
Component: Package
Component: Program name
Component: Keyword int
Component: function makeSum()
Component: While Loop
Component: Variable i
Component: Keyword return
Component: Variable declaration
Component: Variable declaration
Component: brace
Component: Keyword public
Component: Keyword static
Component: Keyword void
Component: Variable declaration
Component: Variable input
Component: Scanner
Component: undefined
Component: undefined
Component: undefined
Component: Console input
Component: Variable input
Component: Variable i
Component: Function main()

Abbildung 6.6: Reviews von Teilnehmer 4. Hier sieht man den unterschied, wie er die Plain-
Text Aufgabe und die Java Aufgabe gelöst hat und man erkennt, dass er für
die PlainText Aufgabe länger gebraucht hat um den Fehler zu erkennen.

ähneln und zusätzlich haben die Codedarstellungen auch keinen Einfluss gehabt, da der Fehler
auch in unterschiedlichen Codedarstellungen gefunden wurde. Insgesamt hat er 28,4 Minuten
gebraucht.

Die Programmiererfahrung von Teilnehmer 1 und 3 liegen im hohen Niveau (5-6). Teilnehmer
Nummer 2 und 5 haben eine fortgeschrittene Programmiererfahrung (3-4) und Teilnehmer
Nummer 4 ist ein Programmieranfänger.

Es folgt nun die Anaylse aller Teilnehmer die Accumulate JAVA angeschaut haben die in
Abbildung 6.7 zu sehen ist.

Teilnehmer Nummer 1, hat in seinem Review-Vorgang die While-Schleife am längsten an-
geschaut und es ist keine genaue Lesestrategie zu erkennen. Die Fixationspunkte sind kurz
und springen häufig von einem Extrem zum andern des Programms. Was man auch in seinen
restlichen Review-Vorgängen beobachten kann. Für den gesamten Versuch hat er 28,6 Minuten
gebraucht.

Bei Teilnehmer Nummer 2 hingegen, erkennt man das Scan Muster und die Komponente die
am meisten angeschaut wurde, ist ebenfalls die While-Schleife. Diese Lesestrategie behält er in
jedem seiner Review-Vorgänge bei. In 67% der Review-Vorgänge seiner gesamten Studie, hat er
den Fehler durch diese Strategie gefunden. Insgesamt brauchte er 21 Minuten. Verglichen zum
ersten Kandidaten erkennt man eine strukturierte Vorgehensweise beim Lesen des Programms.
Abbildung 6.8 zeigt die unterschiedlichen Scanpaths von Teilnehmer 1 und 2 .

53

6 Auswertung

P11-Acc…AVA.csvDateien auswählen

0 50,000 100,000 150,000 200,000

Fixation count: 1004 | Saccade count: 1003 | Time in minutes: 4.08

Component: Variable i
Component: Program name
Component: undefined
Component: Function main()
Component: Keyword return
Component: While Loop
Component: Variable declaration
Component: Keyword static
Component: Keyword class
Component: Keyword public
Component: Keyword public
Component: Variable sum=0;
Component: Keyword static
Component: Functioncall makeSum()
Component: Console output
Component: Variable sum
Component: Console input
Component: Keyword void
Component: Input scanner
Component: Variable declaration
Component: function makeSum()
Component: Variable i
Component: Variable input
Component: Variable sum
Component: Scanner
Component: Scanner variable
Component: Scanner system
Component: Variable input
Component: Brace
Component: New operator
Component: Variable declaration
Component: Keyword public
Component: Package

0 50,000 100,000 150,000 200,000

Fixation count: 703 | Saccade count: 702 | Time in minutes: 3.55

Component: Keyword static
Component: undefined
Component: Package
Component: Keyword public
Component: Keyword class
Component: Program name
Component: Keyword static
Component: Keyword public
Component: function makeSum()
Component: Variable declaration
Component: Variable sum=0;
Component: While Loop
Component: Variable i
Component: Keyword return
Component: Keyword public
Component: Function main()
Component: Variable declaration
Component: Variable input
Component: Variable sum
Component: Scanner
Component: Scanner variable
Component: New operator
Component: Scanner system
Component: Console input
Component: Variable input
Component: Input scanner
Component: Variable sum
Component: Functioncall makeSum()
Component: Console output
Component: Keyword void
Component: Variable declaration
Component: Variable i

0 50,000 100,000 150,000 200,000

Fixation count: 590 | Saccade count: 589 | Time in minutes: 3.04

Component: While Loop
Component: Keyword public
Component: Variable declaration
Component: Variable sum=0;
Component: Variable i
Component: function makeSum()
Component: Keyword return
Component: Keyword public
Component: Keyword static
Component: Keyword void
Component: Function main()
Component: Variable i
Component: Variable declaration
Component: Program name
Component: Variable input
Component: Scanner
Component: Scanner system
Component: Scanner variable
Component: Console input
Component: Input scanner
Component: Variable input
Component: Variable sum
Component: Functioncall makeSum()
Component: Console output
Component: Variable declaration
Component: New operator
Component: Variable sum

0 50,000 100,000 150,000 200,000

Fixation count: 245 | Saccade count: 244 | Time in minutes: 1.33

Component: While Loop

Component: Variable sum

Component: Function main()

Component: Console input

Component: Scanner variable

Component: Input scanner

Component: Console output

Component: Functioncall makeSum()

Component: Keyword static

Component: Variable i

Component: Variable sum=0;

Component: Scanner

Component: Variable sum

Component: Variable i

Component: Keyword class

Component: undefined

Component: Keyword return

Component: function makeSum()

Component: Keyword static

Abbildung 6.7: Hier werden die Teilnehmer angezeigt, die das Programm Accumulate Java
angeschaut haben. Der direkte Vergleich zeigt die unterchiedlich lange Dauer
der Review-Vorgänge, sowie der Fokus, den die jeweiligen Teilnehmer auf die
Komponenten des Programms gesetzt haben.

54

6.3 Visuelle Analyse der Daten

Abbildung 6.8: Scanpath von Teilnehmer 1 und 2 im Vergleich. Teilnehmer 1 (links oben) hat
eine hohe Anzahl an Fixationen, verglichen zu Teilnehmer 2.

Der Review-Vorgang von Teilnehmer Nummer 3, sieht kompakter aus und man sieht im
Vergleich zu den andern Teilnehmern, keine großen unterschiede. Er brauchte insgesamt 22,5
Minuten für den gesamten Versuch und auch er fand in 67% der Review-Vorgänge einen Fehler.
Diese Lesestrategie findet man in seinem gesamten Studienverlauf.

Der letzte Teilnehmer hat den Fehler am schnellsten gefunden. Er wandert zur main()-Methode
und simuliert den Kontrollfluss des Programms, wie Teilnehmer Nummer 4 im Accumulate PT
Stimulus. Er hat 100% der Fehler gefunden und eine Gesamtdauer von 21,35 Minuten gebraucht.
Wenn man seinen gesamten Review-Vorgang getrachtet, erkennt man viele kleine Scan Muster
und die Performance zwischen den jeweiligen Codedarstellungen unterscheidet sich kaum, sie
variiert nur in der Dauer, abhängig von der Länge des Programms.

Teilnehmer 1 ist ein Programmieranfänger(1-2), der Teilnehmer Nummer 2 hat eine mit-
telmäßige Programmiererfahrung (3-4) und die restlichen zwei haben eine fortgeschrittene
Programmiererfahrung(5-6).

Es werden nun alle Teilnehmer verglichen, die das Accumulate CSD Programm angeschaut
haben. Die Review-Vorgänge sieht man in Abbildung 6.9. Der Review-Vorgang vom ersten
Teilnehmer weist gewisse Scan Muster auf, über den gesamten Ablauf. Er hat eine hohe
Anzahl an Fixationen benötigt, dennoch hat er den Fokus nicht auf die While-Schleife gesetzt,
im Gegensatz zu den anderen Teilnehmen. Seine restlichen Review-Vorgänge sind durch
wiederholte Scan Muster charakterisiert. Insgesamt brauchte er 32,3 Minuten und hat in 50%
des Review-Vorgangs den Fehler gefunden.

55

6 Auswertung

P10-Acc…CSD.csvDateien auswählen

0 50,000 100,000 150,000 200,000

Fixation count: 723 | Saccade count: 722 | Time in minutes: 3.82

Component: Keyword public (l.22)
Component: Functioncall makeSum() (l.5)
Component: Variable i (l.11)
Component: undefined
Component: undefined
Component: undefined
Component: Variable i (l.7)
Component: Keyword int (l.9)
Component: Variable sum (l.9)
Component: undefined
Component: Keyword public (l.3)
Component: undefined
Component: While-Loop (l.13-18)
Component: Keyword static(l.22)
Component: Keyword void (l.22)
Component: Scaner input (l.32)
Component: Main function (l.22)
Component: CSD symbol for public static class
Component: Scanner variable (l.26)
Component: undefined
Component: Variable input (l.24)
Component: Variable input (l.30)
Component: Scanner System in (l.26)
Component: Console input (l.28)
Component: undefined
Component: Keyword int (l.24)
Component: Keyword int (l.7)
Component: undefined
Component: Return statement (l.19)

0 50,000 100,000 150,000 200,000

Fixation count: 242 | Saccade count: 241 | Time in minutes: 1.79

Component: Variable i (l.7)

Component: Keyword public (l.3)

Component: undefined

Component: undefined

Component: Variable i (l.11)

Component: Functioncall makeSum() (l.5)

Component: Keyword public (l.5)

Component: undefined

Component: Keyword int (l.9)

Component: undefined

Component: undefined

Component: Variable sum (l.9)

Component: Return statement (l.19)

Component: Keyword int (l.24)

Component: undefined

Component: Scanner variable (l.26)

Component: undefined

Component: Scaner input (l.32)

Component: Scanner System in (l.26)

Component: Variable input (l.24)

0 50,000 100,000 150,000 200,000

Fixation count: 820 | Saccade count: 819 | Time in minutes: 4.55

Component: undefined
Component: Variable i (l.7)
Component: Variable i (l.11)
Component: undefined
Component: Keyword public (l.3)
Component: undefined
Component: Functioncall makeSum() (l.5)
Component: Keyword int (l.9)
Component: Keyword public (l.5)
Component: Variable sum (l.9)
Component: While-Loop (l.13-18)
Component: Keyword public (l.22)
Component: undefined
Component: Keyword void (l.22)
Component: Keyword static(l.22)
Component: Return statement (l.19)
Component: CSD symbol for public static class
Component: Main function (l.22)
Component: Keyword int (l.24)
Component: Variable sum (l.24)
Component: Scanner (l.26)
Component: Scanner variable (l.26)
Component: Variable input (l.30)
Component: Scanner System in (l.26)
Component: undefined
Component: Console input (l.28)
Component: Scaner input (l.32)
Component: undefined
Component: undefined
Component: undefined
Component: Variable sum (l.32)

Abbildung 6.9: Hier werden die Review-Vorgänge der Teilnehmer gezeigt, die das Programm
Accumulate CSD angeschaut haben.

Teilnehmer Nummer 2 hat den Fehler in kürzerer Zeit gefunden. Seine Fixationsanzahl ist
geringer und die Leserichtung ändert sich seltener als bei Teilnehmer 1. Die Anzahl der
betrachten AOIs ist auch kleiner und die am längsten betrachtete ist die While-Schleife. Er
brauchte 20,5 Minuten und fand auch in 50% des Review-Vorgangs den Fehler. Er hat den Fokus
hauptsächlich auf die While-Schleife setzte.

Teilnehmer Nummer 3, hat im Vergleich zu den anderen Teilnehmern am längsten gebraucht
und zeigt einen strukturierten Vorgang beim Review. Er scannt den Code von oben bis unten,
springt dann wieder zur Funktion makeSum() und hält sich für eine gewisse Zeit auf der
While-Schleife auf und wiederholt erneut diesen Vorgang. Wenn man seinen gesamten Verlauf
anschaut, erkennt man dass er für die CSD Darstellung länger gebraucht hat (im Schnitt 1,2
Minuten), im Vergleich zur Java oder PlainText Darstellung.

Die Programmiererfahrung des ersten Teilnehmers ist im mittelmäßig(3-4), während der letzte
Teilnehmer im Bild ein Programmieranfänger ist.

56

6.3 Visuelle Analyse der Daten

Abbildung 6.10: Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs
im Programm Accumulate CSD.

Abbildung 6.11: Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs
im Programm Accumulate JAVA.

Abbildung 6.10, 6.11, 6.12 zeigen die durchschnittliche Anzahl der betrachteten AOIs im
Programm Accumulate in den jeweiligen Codedarstellungen. Dabei erkennt man z.B. dass in
der PlainText Darstellung, im Schnitt weniger AOIs angeschaut wurden, verglichen zur Java
oder CSD Darstellung. Schlüsselwörter, wie public oder class, werden in der Java Darstellung
im Durchschnitt am meisten angeschaut mit 42,5 Mal, gefolgt von der CSD Darstellung mit
42,0 wührend in der PlainText Darstellung nur 24,2 Mal angeschaut wurden. Die Variablen
wurden bei der PlainText Darstellung auch relativ wenig mit 40,4 Mal angeschaut, in der CSD
Darstellung 58,0 Mal und in der Java Darstellung 66,75 Mal. Die While-Schleife wurde von
allen am meisten angeschaut, dort befand sich auch der Fehler. In der CSD Darstellung wurden
die CSD Symbole relativ wenig angeschaut im Vergleich zu anderen Komponenten (im Schnitt
3,9 Mal). Im Schnitt wird jede AOI in der PlainText Darstellung 10.7 Mal angeschaut, in der
Java Darstellung 10,25 und in der CSD Darstellung 9,2 Mal angeschaut.

Alle Review-Vorgänge haben schlussendlich dazu geführt, dass die Funktionsweise des Pro-
gramms richtig erfasst und auch der Fehler gefunden wurde, trotz der zum Teil großen Diskre-
panzen zwischen der Zeit, die sie für den Review-Vorgang gebraucht haben und der Lesestrate-
gie. Vergleicht man die Performances untereinander, so kann man, außer der unterschiedlichen
Dauer der Betrachtung, in jeder Visualisierung eine andere Lesestrategie erkennen.

57

6 Auswertung

Abbildung 6.12: Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs
im Programm Accumulate PT.

P01-Acc…ePT.csvDateien auswählen

0 50,000 100,000 150,000 200,000

Fixation count: 392 Saccade count: 391 Time in minutes: 2.2

Component: Keyword int i(l.20)
Component: Keyword public (l.5)
Component: Keyword class (l.3)
Component: Keyword import (l.1)
Component: Keyword public (l.3)
Component: Method swap() (l.5)
Component: Variable tmp (l.9)
Component: Variable a (l.11)
Component: Variable b (l.13)
Component: Keyword void (l.5)
Component: undefined
Component: int[2] (l.18)
Component: Console input (l.26)
Component: int[] (l.18)
Component: Keyword static (l.5)
Component: Keyword public (l.16)
Component: While-loop (l.24)
Component: i (l.22)
Component: Scanner (l.28)
Component: sc (l.28)
Component: undefined
Component: list (l.30)
Component: Scanner input (l.30)
Component: swap() function (l.37)
Component: While-loop (l.39)
Component: Variable i (l.37)
Component: Console output (l.41)
Component: i (l.43)
Component: Variable tmp (l.7)
Component: undefined
Component: main()-method (l.16)
Component: i (l. 32)
Component: New operator (l.28)
Component: CSD symbol while-loop
Component: undefined
Component: Variable int (l.7)
Component: undefined

0 50,000 100,000 150,000 200,000

Fixation count: 250 Saccade count: 249 Time in minutes: 1.35

Component: Variable int (l.7)

Component: Variable tmp (l.7)

Component: Keyword public (l.3)

Component: Keyword static (l.5)

Component: Keyword void (l.5)

Component: Variable a (l.11)

Component: Variable tmp (l.9)

Component: CSD symbol public static

Component: Keyword public (l.16)

Component: Keyword static (l.16)

Component: main()-method (l.16)

Component: undefined

Component: int[] (l.18)

Component: undefined

Component: New operator (l.18)

Component: int[2] (l.18)

Component: Keyword int i(l.20)

Component: While-loop (l.24)

Component: undefined

Component: Variable b (l.13)

Component: undefined

0 50,000 100,000 150,000 200,000

Fixation count: 417 Saccade count: 416 Time in minutes: 2.8

Component: While Loop
Component: Keyword import (l.1)
Component: Keyword public (l.3)
Component: Keyword public (l.5)
Component: Keyword class (l.3)
Component: Program name (l.3)
Component: Method swap() (l.5)
Component: Variable i
Component: Variable int (l.7)
Component: Variable i
Component: Variable b (l.13)
Component: Keyword static (l.16)
Component: main()-method (l.16)
Component: int[] (l.18)
Component: New operator (l.18)
Component: undefined
Component: i (l.22)
Component: While-loop (l.24)
Component: Console input (l.26)
Component: undefined
Component: Scanner (l.28)
Component: sc (l.28)
Component: New operator (l.28)
Component: Keyword public (l.16)
Component: undefined
Component: Keyword static (l.5)
Component: Keyword void (l.5)
Component: Variable sum=0;
Component: int[2] (l.18)

Abbildung 6.13: Diese Abbildung zeigt das Verhalten eines Teilenehmers, beim der Codeana-
lyse von 3 Programmen in jeweils 3 unterschiedlichen Codedarstellungen.
Man erkennt, dass die Fehlersuche in der Java Darstellung am schnellsten
war, sowie eine Lesestrategie, charakterisiert durch viele Scan Muster, die
der Leser in allen Vorgängen anwendet.

58

6.3 Visuelle Analyse der Daten

Abbildung 6.14: Diese Grafik zeigt die Relation zwischen der Programmiererfahrung des Teil-
nehmers und die gesamte Dauer des Review-Vorgangs in Sekunden. Dabei
ist zu erkennen, dass Programmierer mit derselben Programmiererfahrung
auch unterschiedliche Performances haben können.

In Abbildung 6.13 werden die Review-Vorgänge eines einzelnen Teilnehmers verglichen. Dabei
werden für den Vergleich jeweils 3 unterschiedliche Programme in den drei Darstellungen
gewählt. Die Programme sind Accumulate PlainText Average5 Java und Swap CSD. Man erkennt
in jedem Analyse Vorgang eine Lesestrategie, die aus Scan Mustern zusammengesetzt ist.
Der Teilnehmer fand den Fehler in der Java Darstellung in 1,35 Minuten, in der PlainText
Darstellung in 2,8 und in der CSD Darstellung in 2,2 Minuten. Somit war die Fehlersuche in
der Java Darstellung am schnellsten, gefolgt von der CSD und der PlainText Darstellung.

Abbildung 6.15 zeigt zusammenfassend die durchschnittliche Dauer in Sekunden, um den
Fehler zu finden. Dabei wird die Dauer für die jeweiligen Stimuli in den unterschiedlichen Code-
darstellungen angezeigt. Man erkennt, dass die CSD Darstellung und die PlainText Darstellung,
im Vergleich zur Java Darstellung schlechter abschneiden.

59

6 Auswertung

Programm,PT,CSD,JAVA
Accumulate4,206,203,180
Average5,225,222,271
AverageAny,245,268,300
Prime,241,187,262
Sum,100,146,91
Swap,265,240,273

PT JAVA CSD
Accumulate4 206 203 180
Average5 225 222 271
AverageAny 245 268 300
Prime 241 187 262
Sum 100 146 91
Swap 265 240 273

04

504

1004

1504

2004

2504

3004

3504

Accumulate44 Average54 AverageAny4 Prime4 Sum4 Swap4

PT4

JAVA4

CSD4

Abbildung 6.15: Durchschnittliche Zeit in Sekunden bis der Fehler gefunden wird, in den
unterschiedlichen Codedarstellungen.

6.4 Auswertung des Fragebogens

Im Folgenden werden die Ergebnisse des Fragebogens vorgestellt. Diese dienen zur Messung
des subjektiven Empfindens der einzelnen Codedarstellungen. Um eine bessere Aufteilung zu
erhalten, wurde die Skala nochmals in 3 Kategorien aufgeteilt, niedrig(1-2), mittelmäßig(3-4)
und fortgeschritten(5-6).

6.4.1 Vorkenntnisse

1. Ich habe Programmiererfahrung: Skala: 1 = wenig,6 = viel

Insgesamt lag der Mittelwert bei 3,8. 2 von 12 Teilnehmer haben eine hohe Programmiererfah-
rung, 7 von 12 eine mittelmäßige und 3 von 12 eine niedrige Programmiererfahrung.

2. Ich habe Programmiererfahrung in Java : Skala = 1 wenig, 6 = viel

Hier lag der Mittelwert bei 2,4. Insgesamt gab es 2 Teilnehmer mit fortgeschrittenen Program-
miererkenntnissen in Java, 4 Teilnehmer mit einer mittelmäßigen und 6 Teilnehmer mit einer
niedrigen Programmiererfahrung in Java.

6.4.2 Anstrengung

Wie sehr mussten Sie sich anstrengen, um die gestellte Aufgabe zu erfüllen? Skala 1
= gar nicht, 6 = viel

Der Mittelwert lag bei 3,7. Abbildung 6.16 stellt die Anstrengung grafisch dar.

60

6.4 Auswertung des Fragebogens

Abbildung 6.16: Diese Abbildung zeigt, wie sehr sich die Teilnehmer anstrengen mussten,
von einer Skala von 1 bis 6.

Verständnis

Wie sehr haben die unterschiedlichen Visualisierungen dazu beigetragen, den Code
besser schneller zu verstehen?

1. Plaintext : Skala: 1 = gar nicht, 6 = viel

Der Mittelwert lag bei 1,5. 6 Teilnehmer haben es auf einer Skala von 1 bis 6 mit 1 bewertet, 2
mit 3 und 3 mit 2.

2. Java Syntax Highlighting : Skala: 1 = gar nicht, 6 = viel

Der Mittelwert lag bei 5,3. 6 Teilnehmer haben es mit 6 bewertet, 3 mit 5 und 3 mit 4.

3. Java Code inkl. COntrol Strukture Diagrams : Skala: 1 = gar nicht, 6 = viel

Der Mittelwert lag bei 3,0. Es gab ein Teilnehmer der des mit 3 bewertet hat, d mit 3, einer mit
4, einer mit 5 und zwei mit 6.

Ranking

Welche der Visualisierungen würden Sie bevorzugen, wenn Sie den Java-Code auf
Fehlerexistenz analysieren müssten? (Ranking von 1(hoch) bis 3(niedrig))

1. Plaintext

2. Java-Syntax-Hyghlighting

3. Java Code mit Control Structure Diagrams

Die Mittelwerte waren, für PlainText 2,9 , für CSD 2,1 und für Java 1,0. (siehe Abbildung 6.17)

61

6 Auswertung

Abbildung 6.17: Durchschnittliche Scores des Rankings. Man sieht, dass Java bevorzugt wird,
gefolgt von CSD und PlainText(PT)

62

7 Diskussion

In diesem Kapitel werden die Ergebnisse der Studie anhand der entstandenen Hypothesen
diskutiert.

Hypothese 1

Control Structure Diagrams beschleunigen die Fehlersuche im Programm, verglichen zu den
anderen Darstellungen.

Sowohl die subjektive Empfindung der Teilnehmer als auch die deskriptive Statistik haben
gezeigt, dass die CSD Diagramme, keinen unterstützenden Effekt bei der Fehlersuche im
Programm hatten. Die Statistik in Abbildung 6.16 zeigt, dass man in den CSD Darstellungen
der Stimuli, im Schnitt länger gebraucht hat, um den Fehler zu finden, verglichen zu den
anderen Darstellungen. Während Programmieranfänger die CSDs als gute Ergänzung zum
Code empfanden, wurden sie von fortgeschrittenen Programmierern eher als überflüssig oder
ablenkend empfunden. Dies könnte dazu geführt haben, dass sie beim Review Vorgang eher
ignoriert wurden, oder den Reviewer durch die zusätzlichen Informationen eher verwirrt
haben.

Auf visueller Ebene konnte man durch das Visualisierungswerkzeug in einzelnen Review
Vorgängen jedoch beobachten, dass die CSD Darstellung (siehe visuelle Analyse in Kapitel 6),
oft genauso lange Zeit in Anspruch genommen hat, wie die anderen zwei Darstellungen. Somit
könnte der Teilnehmer in diesen Fällen die CSDs ignoriert haben. In anderen Beispielen, wurde
sogar mehr Zeit für die Fehlersuche gebraucht im Vergleich zu den anderen Darstellungen. Das
zeigt, dass die Reviewperformance und das Programmverständnis von vielen menschlichen
Faktoren abhängt, wie auch Uwano [UNM+06] erkannte und man, zumindest in dieser Studie,
keine konkreten Aussagen über den Effekt von CSDs im Programmcode treffen kann.

Hypothese 2

Die durchschnittliche Fixationsanzahl pro AOI in der PlainText Darstellung ist kleiner, vergli-
chen zu den zwei anderen Darstellungen.

Die deskriptive Statistik in 6.1 unterstützt diesen Gedanken. Der Grund für den niedrigeren
Wert bei der PlainText Darstellung könnte sein, dass durch das fehlende Highlighting die
Teilnehmer nicht dazu animiert werden, bestimmte Komponenten zu fixieren, die für das

63

7 Diskussion

P01-PrimeCSD.csvDateien auswählen

0 50,000 100,000 150,000 200,000

Fixation count: 250 Saccade count: 249 Time in minutes: 1.35

Component: Keyword int (l.7)

Component: Variables (l.7)

Component: Keyword class (l.3)

Component: Keyword static (l.5)

Component: Keyword void (l.5)

Component: Variable ave (l.9)

Component: Keyword double (l.9)

Component: Variable i (l.13)

Component: While-loop (l.15)

Component: Scanner (l.17)

Component: New-Operator (l.17)

Component: Variable sc (l.17)

Component: Console input (l.19)

Component: Variable input (l.21)

Component: Scanner input (l.21)

Component: Sum (l.23)

Component: i (l.25)

Component: ave (l.29)

Component: Console output (l.31)

Component: Variable sum=0 (l.11)

Component: Scanner(System) (l.17)

0 50,000 100,000 150,000 200,000

Fixation count: 300 Saccade count: 299 Time in minutes: 1.52

Component: Variable input (l.21)

Component: undefined

Component: Keyword int (l.7)

Component: Main function (l.5)

Component: Variables (l.7)

Component: Variable sum=0 (l.11)

Component: Variable sc (l.17)

Component: Scanner (l.17)

Component: Keyword double (l.9)

Component: Variable i (l.13)

Component: New-Operator (l.17)

Component: Scanner(System) (l.17)

Component: Console input (l.19)

Component: Sum (l.23)

Component: undefined

Component: undefined

Component: undefined

Component: undefined

Component: undefined

Component: undefined

Component: undefined

Component: undefined

Abbildung 7.1: Review Unterschied zwischen CSD und Java Darstellung

Programmverständnis relevant sein könnten. Dies könnte unter anderem dazu geführt haben,
dass die Fehlerdetektion bei dieser Darstellung länger gedauert hat, gefolgt von der CSD
Darstellung, wo der Zusatz an Symbolen den Review Vorgang gestört haben könnte.

Bei der Auswertung der durchschnittlichen Fixationsanzahl pro AOI, für die Darstellungen des
Programmes Accumulate (Abbildung 6.10 bis 6.12) wurde bemerkt, dass die Schlüsselwörter
(public, class, static etc.) in der Java Darstellung im Durchschnitt am meisten angeschaut
wurden mit 42,5 Hits, gefolgt von der CSD Darstellung mit 42,0 Hits während in der PlainText
Darstellung sie nur 24,2 Mal angeschaut wurden. Dies weist darauf hin, dass durch das High-
lighing bestimmte Programmkomponenten hervorgehoben werden, und die Aufmerksamkeit
dadurch leichter gefangen wird. Außerdem fällt auf, dass auch die Variablen in der PlainText
Darstellung weniger angeschaut wurden. Das könnte an ihrer Position im Programm liegen.
Wenn man bei der Java Darstellung die Schlüsselwörter der Variablendeklaration anschaut,
wandert der Blick automatisch zur zugehörigen deklarierten Variable. Da diese Farbinformation
in der PlainText Darstellung entfällt, werden sie auch automatisch weniger betrachtet.

Durch die visuelle Analyse konnte man aber auch oft beobachten, dass der Review Vorgang
in den PlainText Darstellungen sogar strukturierter war, als in den Java Reviews. Das kann
man als Lesestrategie interpretieren. Die PlainText Darstellung, zwingt den Leser selbst eine
Struktur im Code zu schaffen, da sie ohne Hilfsmittel auskommen müssen, während die Java
Darstellung, durch das Highlighting, dem Teilnehmer die nötige Struktur vorgibt, um darauf
die Fehlersuche zu starten.

64

Hypothese 3

Die durchschnittliche Dauer, bis der Teilnehmer den Fehler findet, ist in der PlainText Darstel-
lung am größten, verglichen zu den anderen zwei Darstellungen.

Anders als erwartet, war die Fehlersuche im Schnitt in der CSD Darstellung am langsamsten.
Was man aber auch noch erkennt ist, dass die individuelle Performance der Teilnehmer in den
unterschiedlichen Darstellungen variiert, sodass PlainText insgesamt schlechter ausfällt.

Was man außerdem feststellen konnte ist, dass, selbst wenn der Fehler nicht immer gefunden
wurde, die Funktionsweise des Programms von 96% der Teilnehmer erfasst wurde. In diesen
Vorgängen wurde jeweils auch immer der Programmname mit einer durchschnittlichen Anzahl
von 5,5 Fixationen durchgeführt. Der Name hat einen hilfreichen Hinweis auf die Funktionswei-
se gegeben, wie beispielsweise Sum5(bildet die Summe von 5 Zahlen) oder Prime(entscheidet,
ob eingegebene Zahl eine Primzahl ist oder nicht). So konnte man aus einer rein logischen
Schlussfolgerung die Funktionsweise herleiten. Daraus kann man schließen, dass ein gut
gewählter Funktions- oder Programmname, den Review Vorgang durchaus unterstützen kann
und sollte bei der Programmentwicklung berücksichtigt werden.

Die Programmiererfahrung der Teilnehmer, stimmt nicht in allen Fällen mit der Performance
überein. Dies bestätigt auch Abbildung 6.14, in welcher die Relation zwischen der Program-
miererfahrung und der gesamten Dauer in Sekunden gezeigt wird. Teilnehmer mit derselben
Programmiererfahrung können trotzdem unterschiedlich lange für dieselbe Aufgabe gebraucht
haben. Es ist außerdem schwer, die Performance anhand der Programmiererfahrung zu klassi-
fizieren, da sie vom Teilnehmer selbst angegeben wird und somit eine subjektive Einschätzung
ist.

Das Scan Muster, das erstmals von Uwano [UNM+06] entdeckt wurde, ist auch in dieser
Studie in vielen Review Vorgängen zu finden. Er definiert die Scan-Zeit als die Zeit, bis die
ersten 80% des Codes gelesen wurden. Sharif [SFM12] bestätigt durch statistischen Tests,
dass die Länge der Scan-Zeit einen eindeutigen Einfluss auf die Zeit bis zur Fehlererkennung
hat. Je akkurater der Scan Vorgang am Anfang, desto schneller oder genauer wurde der
Fehler in ihrer Studie gefunden. In dieser Studie konnte man beobachten, dass Teilnehmer
mit mehr Programmiererfahrung (5 oder 6), den Scanvorgang sogar mehrmals durchgeführt
haben, bis sie zu einem Ergebnis gekommen sind. Tatsächlich, wenn man Abbildung 6.3
anschaut, und beispielsweise die ersten zwei Teilnehmer vergleicht, erkennt man, dass der
erste Teilnehmer den Code in kürzerer Zeit scannt, und auch den Fehler schneller findet. Der
zweite Teilnehmer hingegen, braucht für das Scanning länger und findet den Fehler auch später.
Das Scan Muster kann somit ein Indiz für eine strukturierte und kognitive Vorgehensweise
beim Review interpretiert werden. In Hendrix [HCM+02] Studie wurde der Effekt von CSDs
im Programmverständnisprozess analysiert. Dabei wurde festgestellt, dass sie einen positiven
Effekt bei diesen Vorgang haben. Die Teilnehmer dieser Studie wurden hauptsächlich in
Anfänger und Fortgeschrittene Programmierer unterteilt. Besonders für Programmieranfänger
wurden positive Effekte erzielt, in Bezug auf das Verständnis des Programms. Was sich in

65

7 Diskussion

dieser Studie auch zeigt, jedoch ist die Anzahl der Teilnehmer in Hendrix Studie um einiges
größer.

Durch die Analyse mit Hilfe des Visualisierungswerkzeugs, konnte man vor allem bei Program-
miernfänger beobachten, dass die Review Vorgänge länger und unstrukturierter waren. Die
Sakkadenrichtungen änderten sich häufig wie man am Balken unterhalb der Timeline sehen
konnte. Bei fortgeschrittenen Programmieren konnte man hingegen eine genaue Struktur im
Leseverhalten sehen und die Sakkadensprünge waren insgesamt ausgeglichener im Balken
verteilt. Einen Vergleich zwischen einem Anfänger und einem Fortgeschrittenen Programmier-
anfänger kann man in den Abbildungen 7.2 und 7.3 sehen.

P07-Aver…yPT.csvDateien auswählen

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000

Fixation count: 1068 Saccade count: 1067 Time in minutes: 5.35

Abbildung 7.2: Review Vorgang eines Programmieranfängers. Der Vorgang ist von vielen
Fixationen charakterisiert, der Sakkadenbalken unter der Timeline signalisiert
den häufigen sprünghaften Wechsel zwischen den Zeilen im Programm.

P01-Acc…ePT.csvDateien auswählen

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000

Fixation count: 417 Saccade count: 416 Time in minutes: 2.8

Abbildung 7.3: Review Vorgang eines fortgeschrittenen Programmierer. Der Review Vorgang
ist gleichmäßig, die Fixationsanzahl ist gering.

66

8 Zusammenfassung und Ausblick

Zusammenfassend kann man sagen, dass die unterschiedlichen Darstellungsarten evtl. in
einigen Fällen geholfen haben, den Code besser und schneller aufzufassen, oder den Review
Vorgang sogar verlangsamt haben. Die strikte Unterteilung folgt, da die individuelle Perfor-
mance einen stärkeren Einfluss auf das Ergebnis hat. Die Ergebnisse der Studie, vor allem die
visuelle Analyse, haben gezeigt, dass man die Performance der einzelnen Teilnehmer durchaus
durch Eyetracking bestimmen kann. Die CSD Diagramme wurden vor allem von Program-
mieranfängern sehr hoch gerankt und von fortgeschrittenen Programmierer als überflüssig
empfunden. Was aber nicht bedeutet, dass sie komplett ignorieret wurden, die deskriptive Sta-
tistik zeigt sogar, dass sie zu einer schlechteren durchschnittlichen Zeit, bis zur Fehlerdetektion
geführt haben. Gründe könnten sein, dadurch dass keiner davor mit CSDs gearbeitet hat, die
Teilnehmer durch die zusätzliche Information überfordert waren. Die PlainText Darstellung
wurde nicht positiv bewertet, aufgrund mangelnder Informationen in Form von Highlighting.
Das Highlighting erzwingt nämlich im Code eine gewisse Strukturierung, die wiederrum den
Teilnehmer dazu bringt, das Programm kritischer und zu analysieren, weshalb das Java Syntax
Highlighling bevorzugt wurde.

Insgesamt schneidet die CSD Visualisierung schlechter ab, in Bezug auf die durchschnittliche
Zeit bis der Fehler gefunden wird, gefolgt von der PlainText Darstellung. Java Syntax High-
lighting hat am besten abgeschnitten und wurde auch von den Teilnehmern bevorzugt. Ein
möglicher Grund, weshalb die CSD Darstellung nicht so gut abgeschnitten hat wie gedacht ist,
dass es sich bei den Aufgaben hauptsächlich um Wartungsaufgaben handelt. Weshalb sich die
meisten nicht darauf konzentriert haben, das Programm anhand der Symbole zu verstehen,
sondern eher darauf, unabhängig von der möglichen Hilfestellung, den Fehler so schnell wie
möglich zu finden. Würde die Aufgabe lauten, den syntaktischen Fehler zu finden, könnten die
CSDs durchaus hilfreich sein, da man zusammenhängende Blöcke schneller auf einen Blick
erkennt.

Durch die Analyse mit Hilfe des entwickelten Visualisierungswerzeugs, kann man die Perfor-
mance der einzelnen Teilnehmer untersuchen und vor allem miteinander vergleichen. Man
sieht, wie sich die Review Vorgänge von Teilnehmer zu Teilnehmer unterscheiden. Vor allem
bei fortgeschrittenen Teilnehmer, erkennt man eine bestimmte Lesestrategie, die sie im gesam-
ten Studienverlauf in jeder Aufgabe anwenden und damit in den meisten Fällen die gestellte
Aufgabe lösen. Bei Programmieranfänger hingegen, sieht man zwischen den Visualisierungen
große Unterschiede, da keine genauen Strategien beim Codereview angewendet wurden. Durch
die farbliche Unterscheidung der einzelnen AOIs kann man sogar sehen, welche Komponente

67

8 Zusammenfassung und Ausblick

des Programms genau angeschaut wird und wie lange, im Vergleich zu anderen. Das war in
den Visualisierungstools der vergangenen Studien nicht möglich. In Abbildung 8.1 wir das
Visualisierungswerkzeug, das in der Uwano Studie entstanden ist, angezeigt.

Abbildung 8.1: [UNM+06]. Visualisierungswerkzeug, das in der Uwano Studie verwendet
wurde. Links wird das betrachtete Programm angezeigt, und rechts wird
die zugehörige Timeline angezeigt. Der Unterschied zwischen Uwanos Vi-
sualisierungswerkzeug und das in dieser Studie realisierte Tool ist, dass die
definierten AOIs farblich in der Timeline unterschieden werden, die Hits der
AOIs mit Hilfe eines horizontalen Balkendiagramms angezeigt werden und
die Leserichtung der Teilnehmer in einem Balken unterhalb der Timeline
visualisiert werden. (siehe Abb. 6.3)

Ausblick

Man muss an dieser Stelle spezifizieren, dass die Hypothesen nur auf deskriptiv statistischer
Ebene evaluiert wurden, weshalb man eine weitere Studie führen sollte, um die Hypothesen
zu verifizieren oder falsifizieren. Interessant wäre es auch die Effektivität von Control Struture
Diagrams an einer Gruppe von ausschließlich Programmieranfängern zu testen und das über
einen längeren Zeitraum, um zu schauen, ob die Control Strukture Diagrams in gewisser Weise
den Verständnis Vorgang beschleunigen können.

Man könnte zusätzlich das Visualisierungswerkzeug so erweitern, dass man beispielsweise die
AOIs direkt im Tool einzeichnen kann. Dadurch hat man einen gewissen Freiheitsgrad bei der
Wahl der AOIs und kann evtl. eine kategorisierte komponentenweise Analyse durchführen.

68

A Anhang

Im Anhang befinden sich folgende Dokumente:

1. Fragebogen zur Person

2. Fragebogen zur subjektiven Empfindung

3. Stimuli (Java Pogramme)

69

A Anhang

FRAGEBOGEN:

Allgemeine Fragen zu den Probanden:
Geschlecht:

männlich

weiblich

Alter: _________

Tragen Sie eine Sehhilfe?

NEIN

BRILLE

KONTAKTLINSEN

Abschluss:

ALLGEMEINE
HOCHSCHULREIFE

BACHELOR

MASTER

STAATSEXAMEN DIPLOM Sonstige:

Studienfach:__
Nebenfächer:___

Angestrebter Abschluss:

ALLGEMEINE
HOCHSCHULREIFE

BACHELOR

MASTER

 STAATSEXAMEN DIPLOM Sonstige:

!

Abbildung A.1: Fragebogen zur Person.

70

ID:	
 	

1	

Vorkenntnisse:
1. Ich habe Programmiererfahrung: NEIN JA

Falls JA:
wenig viel

 1 2 3 4 5 6

Programmiersprachen (Java ausgeschossen):___________________________________

2. Ich habe Programmiererfahrung in Java: NEIN JA

Falls JA:
wenig viel

 1 2 3 4 5 6

3. Ich habe bereits mit Control Structure Diagrams gearbeitet: NEIN JA

Anstrengung:
Wie sehr mussten Sie sich anstrengen, um die gestellte Aufgabe zu erfüllen?
gar nicht viel

 1 2 3 4 5 6

Verständnis:
1. Wie sehr haben die unterschiedlichen Visualisierungen dazu beigetragen, den Code
besser/schneller zu verstehen?
Plain Text:
gar nicht viel

 1 2 3 4 5 6

Java Syntax Highlithing:
gar nicht viel

 1 2 3 4 5 6

Java Code inkl. Control Structure Diagrams :
gar nicht viel

 1 2 3 4 5 6

Ranking : Welche Visualisierung würden Sie bevorzugen, wenn Sie den Java-Code auf
Fehlerexistenz analysieren müssten? (Ranking von 1(hoch) bis 3(niedrig)).

Plain Text

Java Highlighted Syntax (wie in IDE Eclipse)

Java Code mit Control Structure Diagrams

Abbildung A.2: Fragebogen zur subjektiven Empfindung

71

A Anhang

Abbildung A.3: Accumulate

Abbildung A.4: Average5

72

Abbildung A.5: AverageAny

Abbildung A.6: Prime

73

A Anhang

Abbildung A.7: Swap

Abbildung A.8: Informationen zu den verwendeten Stimuli.

74

Literaturverzeichnis

[BKR+14] T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, T. Ertl. „State-of-
the-art of visualization for eye tracking data“. In: Proceedings of EuroVis. Bd. 2014.
2014 (zitiert auf S. 20).

[Boe+81] B.W. Boehm et al. Software engineering economics. Bd. 197. Prentice-hall Engle-
wood Cliffs (NJ), 1981 (zitiert auf S. 23).

[BT06] R. Bednarik, M. Tukiainen. „An eye-tracking methodology for characterizing
program comprehension processes“. In: Proceedings of the 2006 symposium on Eye
tracking research & applications. ACM. 2006, S. 125–132 (zitiert auf S. 25, 26).

[CS90] M. E. Crosby, J. Stelovsky. „How do we read algorithms? A case study“. In: Com-
puter 23.1 (1990), S. 25–35 (zitiert auf S. 25).

[Duc07] A. Duchowski. Eye tracking methodology: Theory and practice. Bd. 373. Springer
Science & Business Media, 2007 (zitiert auf S. 15, 17, 19).

[FKA+13] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt, M. Papendieck,
T. Leich, G. Saake. „Do background colors improve program comprehension in
the# ifdef hell?“ In: Empirical Software Engineering 18.4 (2013), S. 699–745 (zitiert
auf S. 11, 24, 27).

[GB09] E. Goldstein, J. Brockmole. Sensation and perception. Nelson Education, 2009
(zitiert auf S. 16–18, 27).

[Gul14] C. Gull. BigData mit JavaScript visualisieren. Franzis Verlag GmbH, 2014 (zitiert
auf S. 29, 32).

[HCM+02] D. Hendrix, J. H. Cross, S. Maghsoodloo et al. „The effectiveness of control struc-
ture diagrams in source code comprehension activities“. In: Software Engineering,
IEEE Transactions on 28.5 (2002), S. 463–477 (zitiert auf S. 26, 42, 65).

[HNS06] T. Hakala, P. Nykyri, J. Sajaniemi. „An experiment on the effects of program code
highlighting on visual search for local patterns“. In: Psychology of Programming
Interest Group (2006), S. 38–52 (zitiert auf S. 27).

[Hol03] A. F. G̃. Hole. How to Design and Report Experiments. SAGE Publications Ltd, 2003
(zitiert auf S. 42).

[KR91] J. Koenemann, S. P. Robertson. „Expert problem solving strategies for program
comprehension“. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. 1991, S. 125–130 (zitiert auf S. 11).

75

[LV00] F. Lanubile, G. Visaggio. „Evaluating defect detection techniques for software
requirements inspections“. In: ISERN Report no. 00-08 (2000), S. 1–24 (zitiert auf
S. 24).

[MMS+04] A. Moreno, N. Myller, E. Sutinen, M. Ben-Ari et al. „Visualizing programs with
Jeliot 3“. In: Proceedings of the working conference on Advanced visual interfaces.
ACM. 2004, S. 373–376 (zitiert auf S. 26).

[SFM12] B. Sharif, M. Falcone, J. I. Maletic. „An eye-tracking study on the role of scan time
in finding source code defects“. In: Proceedings of the Symposium on Eye Tracking
Research and Applications. ACM. 2012, S. 381–384 (zitiert auf S. 25, 39, 41, 47, 65).

[UNM+06] H. Uwano, M. Nakamura, A. Monden, K.-i. Matsumoto et al. „Analyzing indivi-
dual performance of source code review using reviewers’ eye movement“. In:
Proceedings of the 2006 symposium on Eye tracking research & applications. ACM.
2006, S. 133–140 (zitiert auf S. 11, 24–26, 29, 39, 41, 47, 63, 65, 68).

[Wie96] K. E. Wiegers. Creating a software engineering culture. Pearson Education, 1996
(zitiert auf S. 23).

[Züh11] D. Zühlke. Nutzergerechte Entwicklung von Mensch-Maschine-Systemen: Useware-
Engineering für technische Systeme. Springer-Verlag, 2011 (zitiert auf S. 15).

Alle URLs wurden zuletzt am 19. 05. 2016 geprüft.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Einführung in Eyetracking
	2.1 Motivation zur Forschung der Blickbewegung
	2.2 Die Anatomie des Auges
	2.3 Eyetracking

	3 Verwandte Arbeiten
	3.1 Programmverständnis Modelle
	3.2 Erkenntnisse aus Eyetrackingstudien

	4 Visualisierungswerkzeug
	4.1 Technologien
	4.2 Realisierung

	5 Eyetracking-Studie
	5.1 Ablauf der Studie
	5.2 Hypothesen
	5.3 Variablen
	5.4 Stimuli
	5.5 Aufgabe
	5.6 Teilnehmer

	6 Auswertung
	6.1 Vorverarbeitung der Daten
	6.2 Ergebnisse der unabhängigen Variablen
	6.3 Visuelle Analyse der Daten
	6.4 Auswertung des Fragebogens

	7 Diskussion
	8 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

