Institut fir Visualisierung und Interaktive Systeme
Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Bachelorarbeit Nr. 289

Visuelle Eyetracking-Analyse von
Quellcodedarstellungen

Aretina lazzolino

Studiengang: Informatik
Prifer/in: Prof. Daniel Weiskopf
Betreuer/in: Dipl.-Inf. Kuno Kurzhals,

Dipl.-Inf. Dr. rer. nat. Fabian Beck

Beginn am: 20. November 2015

Beendet am: 24. Mai 2016

CR-Nummer: H.5.1,H.5.2

Kurzfassung

Im Entstehungsprozess von Software gibt es eine Reihe von Vorgéinge, um die Qualitat und die
Sicherheit eines Systems zu testen. Die Codeanalyse ist eines der wichtigsten Vorgange, die in
allen Phasen der Entwicklung vorgenommen wird. Es gilt, den Fehler so schnell wie méglich zu
finden, da das Beheben von Fehlern in spéteren Phasen der Entwicklung oftmals mit hoheren
Kosten verbunden ist. Der Wunsch, in Zukunft diesen Vorgang so effizient wie moglich zu
gestallten, fiihrt zu zahlreichen Studien, die sich intensiv mit der Analyse von Review Vorgiange
beschaftigen. Es ist dennoch schwer, einen allgemeinen Analysevorgang zu bestimmen, da
menschliche Faktoren und die individuelle Performance einen pradominanten Einfluss beim
Review Vorgang haben. Ziel dieser Arbeit ist es, die Durchfithrung einer Benutzerstudie, sowie
die Erstellung eines Werkzeugs, fiir die visuelle Analyse der Daten der Benutzerstudie. Mit
Hilfe eines Eyetrackers, soll das Blickverhalten der Teilnehmer aufgenommen werden und
anschlieflend mit dem entwickelten Werkzeug analysiert werden.

Abstract

During the development process of software there are various stages to test the quality and
safety of a system. Code analysis is one of the most important operations that is performed
at all stages of development. It is meant to find and fix errors as quickly as possible, since
doing it in later stages of development is often associated with higher costs. It is still difficult
to determine a general analysis approach, because human factors and individual performance
have a predominant influence in the review process. The aim of this work is to conduct a user
study, as well as the creation of a tool for visual analysis of the obtained data from the user
study. Using an eyetracking system, gaze behavior of the participants should be captured and
finally analyzed with the developed tool.

Inhaltsverzeichnis

1 Einleitung
2 Einfahrung in Eyetracking
2.1 Motivation zur Forschung der Blickbewegung
2.2 Die Anatomiedes Auges
23 Eyetracking
3 Verwandte Arbeiten
3.1 Programmverstindnis Modelle oL
3.2 Erkenntnisse aus Eyetrackingstudien
4 Visualisierungswerkzeug
41 Technologien.
4.2 Realisierung
5 Eyetracking-Studie
5.1 AblaufderStudie
5.2 Hypothesen
5.3 Variablen
54 Stimuli
5.5 Aufgabe
5.6 Teilnehmer
6 Auswertung
6.1 VorverarbeitungderDaten
6.2 Ergebnisse der unabhdngigen Variablen
6.3 Visuelle AnalysederDaten
6.4 Auswertung des Fragebogens.

7 Diskussion
8 Zusammenfassung und Ausblick
A Anhang

Literaturverzeichnis

11

15
15
15
18

23
24
25

29
29
34

39
39
41
42
42
42
45

47
47
47
49
60

63

67

69

75

Abbildungsverzeichnis

1.1

2.1

2.2

2.3

24
2.5

3.1

3.2

3.3

4.1
4.2

4.3

4.4

4.5
4.6

Code Darstellungen

[http://www.lasikon.de/]. Aufbau des menschlichen Auges. Hier sind die ein-
zelnen Bestandteile des Auges zu erkennen die oben erklart wurden.
Dieses Bild [GB09] zeigt die Verteilung der Stdbe und Zapfen in der Netzhaut.
Das Linke Auge zeigt insbesondere die Lage auf der Netzhaut, die in Grad,
relativ zur fovea centralis, angegeben wird. In der rechten Abbildung, entspricht
dies der x-Achse. Der braune Balken stellt den blinden Fleck dar, der keine
Rezeptoren besitzt.
In diesem Bild[GB09] wird die Wahrnehmung und das Zusammenspiel des
Bottom-Upund Top-Down Verfahren deutlich. Dabei wird das betrachtete Objekt
zunachst via Bottom-Up Verfahren auf die Rezeptoren abgebildet. Anschlieflen
wird mittels Top-Down das bendtigte Wissen abgerufen, um das Objekt zu
erkennen.
[www.tobii.com]Remoter Eyetracker Tobii T60XL des Herstellers Tobii.
Bild eines Scanpaths (links) und einer Heatmap (rechts).

[http://de.slideshare.net/]. Die Graphik betont das exponentielle Wachstum der
Kosten um einen Fehler zu beheben in jeder Entwicklungsphase von Software.
Diese Abbildung [UNM+06] zeigt, wie ein Teilnehmer ein Stimulus der Studie
betrachtete. Dabei wurde ein besonderes Muster entdeckt, das Scan Muster.

Der Teilnehmer macht sich ein generelles Bild vom Code bevor er ins Detail geht.

Graphische Darstellung [UNM+06] des Retrace Declaration Musters.

Hierarchische Struktur einer Webseite. Bildquelle: www.w3schools.com
Beispiel eines HTML Dokuments und das zugehorige DOM. Bildquelle:
www.w3schools.com L o
Das Bild zeigt den Aufbau eines JSON-Objekts. Dabei wird ein Objet von
geschweiften Klammern umschlossen. Jeder Wert besitzt einen eindeutigen
Schliissel, iiber welchen man auf den Wert zugreifen kann. Ein Schliissel-Werte-
Paar wird durch einen Doppelpunkt getrennt. [wiki.selfthtml.org]
Unterschied zwischen einer Pixelgrafik und einer Vektorgrafik. Bildquelle:
www.wikibooks.org L
Paragraphen-Auswahl mittels DOM-APL
Paragraphen-Auswahl mittels Selection Ansatz.

12

16

16

18
20
21

23

26
26

30

31

32

33

4.7
4.8
4.9

4.10

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

Visualisierungsprogramm und Darstellung der Timeline im Browser
GazePoints werden zu einer Fixation zusammengefasst.
Hier werden die einzelnen Programmkomponenten angezeigt, und die jeweilige
Zeile in welche sie sich befinden. Die Balken signalisieren wie lange sie im
vergleich zu den anderen Komponenten angeschaut wurden.
Hier sieht man den Wechsel der Leserichtung. Gelb signalisiert, dass der Leser
von rechts nach links liest und blau im anderen Fall.

Die Abbildung zeigt denselben Code in den 3 unterschiedlichen Darstellun-
gen. (von links nach rechts: Java Syntax Highlighting, PlainText, Java Syntax
Highlighting inkl. CSD)
Programmverteilung mittels Graeco Latin Square

Durchschnittliche Fixationsanzahl pro AOI in den drei unterschiedlichen Co-
dedarstellungen.
Dieses Boxplot zeigt die durchschnittliche Zeit in Sekunden an, mit der der
Fehler in den unterschiedlichen Codedarstellungen gefunden wurde. Dabei
sieht man, dass man in der Java Darstellung im Durchschnitt den Fehler schnel-
ler gefunden hat, verglichen zur CSD und PlainText Darstellung. Die PlainText
Darstellung war im Schnitt schneller als die CSD Darstellung. Betrachtet man
jedoch die individuelle Performance der Teilnehmer (siehe gestrichelte Linien),
variieren die Werte zwischen den Codedarstellungen sehr, sodass PlainText
insgesamt schlechter ausfallt.
Hier werden die Review-Vorgéange von 5 Teilnehmer verglichen, die dasselbe
Programm Accumulate PlainText angeschaut haben. Man sieht, die unterschied-
lichen Performances der Teilnehmer untereinander aufgelistet. Dadurch ist ein
direkter Vergleich moglich. Hier erkennt man unter anderem verschiedene Scan
Muster, sowie die unterschiedliche Dauer der individuellen Review-Vorgange.
Es wird auch der Richtungswechsel innerhalb der Zeilen gezeigt unterhalb der
Timeline (blau, wenn der Blick vom aktuellen Stand nach rechts wandert, gelb
im umgekehrten Fall). Zusatzlich wird links die Haufigkeit, mit der eine AOI
angeschaut wird angezeigt. Dies varriert auch je nach Performance.
Scanpath von Teilnehmer 1 und 2 im Vergleich. Man erkennt, dass die Fixatio-
nen bei Teilnehmer 2(organge) viel weniger dauern (sieche Grofle des Kreises)
und die Anzahl groflerist.
Hier werden weitere Review-Vorgiange von Teilnehmer Nummer 3 gezeigt.
Dabei sieht man deutlich, dass er in anderen Reviews unstrukturierter vorge-
gangen ist und langer gebrauchthat. 0000 L.
Reviews von Teilnehmer 4. Hier siecht man den unterschied, wie er die PlainText
Aufgabe und die Java Aufgabe gel6st hat und man erkennt, dass er fiir die
PlainText Aufgabe linger gebraucht hat um den Fehler zu erkennen.

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

7.1
7.2

7.3

Hier werden die Teilnehmer angezeigt, die das Programm Accumulate Java
angeschaut haben. Der direkte Vergleich zeigt die unterchiedlich lange Dauer
der Review-Vorginge, sowie der Fokus, den die jeweiligen Teilnehmer auf die
Komponenten des Programms gesetzt haben.
Scanpath von Teilnehmer 1 und 2 im Vergleich. Teilnehmer 1 (links oben) hat
eine hohe Anzahl an Fixationen, verglichen zu Teilnehmer 2.
Hier werden die Review-Vorgange der Teilnehmer gezeigt, die das Programm
Accumulate CSD angeschaut haben.
Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs im
Programm Accumulate CSD.
Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs im
Programm Accumulate JAVA.
Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs im
Programm Accumulate PT.
Diese Abbildung zeigt das Verhalten eines Teilenehmers, beim der Codeanalyse
von 3 Programmen in jeweils 3 unterschiedlichen Codedarstellungen. Man
erkennt, dass die Fehlersuche in der Java Darstellung am schnellsten war, sowie
eine Lesestrategie, charakterisiert durch viele Scan Muster, die der Leser in
allen Vorgangen anwendet. oL
Diese Grafik zeigt die Relation zwischen der Programmiererfahrung des Teil-
nehmers und die gesamte Dauer des Review-Vorgangs in Sekunden. Dabei ist
zu erkennen, dass Programmierer mit derselben Programmiererfahrung auch
unterschiedliche Performances haben kénnen.
Durchschnittliche Zeit in Sekunden bis der Fehler gefunden wird, in den un-
terschiedlichen Codedarstellungen.
Diese Abbildung zeigt, wie sehr sich die Teilnehmer anstrengen mussten, von
einer Skalavon 1bis 6. L L
Durchschnittliche Scores des Rankings. Man sieht, dass Java bevorzugt wird,
gefolgt von CSD und PlainText(PT)

Review Unterschied zwischen CSD und Java Darstellung
Review Vorgang eines Programmieranfangers. Der Vorgang ist von vielen
Fixationen charakterisiert, der Sakkadenbalken unter der Timeline signalisiert
den haufigen spriinghaften Wechsel zwischen den Zeilen im Programm.
Review Vorgang eines fortgeschrittenen Programmierer. Der Review Vorgang
ist gleichmafig, die Fixationsanzahlist gering.

56

Abbildungsverzeichnis

10

8.1

Al
A2
A3
A4
A5
A.6
A7
A8

[UNM+06]. Visualisierungswerkzeug, das in der Uwano Studie verwendet
wurde. Links wird das betrachtete Programm angezeigt, und rechts wird die
zugehorige Timeline angezeigt. Der Unterschied zwischen Uwanos Visualisie-
rungswerkzeug und das in dieser Studie realisierte Tool ist, dass die definierten
AOQISs farblich in der Timeline unterschieden werden, die Hits der AOIs mit Hilfe
eines horizontalen Balkendiagramms angezeigt werden und die Leserichtung
der Teilnehmer in einem Balken unterhalb der Timeline visualisiert werden.

(sieche Abb. 6.3) 68
Fragebogen zur Person. 70
Fragebogen zur subjektiven Empfindung 71
Accumulateo 72
Averageb 72
AverageAny 73
Prime 73
Swap . . 74
Informationen zu den verwendeten Stimuli. 74

1 Einleitung

Code-Review, was unter anderem das Verstandnis und die Fehlersuche im Programm beinhaltet,
ist einer der wichtigsten Vorgéange bei der Software Entwicklung. Durch die Inspektion des
Codes soll fortlaufend die korrekte Funktionsweise des Produktes getestet und die Reduzierung
von Fehlern ermoglicht werden. Denn das Beheben von Fehlern in spateren Phasen der Entwick-
lung ist oft mit hoheren Kosten verbunden. Die zentrale Frage, mit der sich Wissenschaftler seit
Jahren beschaftigen ist, wie man diesen Prozess so effizient wie moglich gestalten kann. Dabei
sind viele Techniken und Prinzipien entstanden, um den Review Vorgang zu unterstiitzen, wie
beispielsweise Style-Guides, die als Ziel haben dem Programmierer eine Richtlinie bei der Soft-
ware Entwicklung zu geben und auch helfen sollen, eine Struktur im Code zu schaffen, damit
Aufgaben wie Wiederverwendbarkeit und Wartbarkeit durch eine Dritte Person mit geringem
Aufwand moglich sind. Auch durch Code-Highlighting, also bestimmte Stellen oder Schliis-
selworter farblich hervorzuheben wurde die Verstandlichkeit unterstiitzt. Zahlreiche Studien,
wie z.B. die von Feigenspan [FKA+13], haben sich genau mit dieser Frage auseinandergesetzt,
und mit farblicher Hintergrund Markierung bestimmter Bereiche festgestellt, dass dadurch
das Programmverstidndnis durchaus gesteigert werden kann. Da beim Programmverstandnis
kognitive Prozesse involviert sind, die man nicht direkt beobachten kann [KR91], hat man
in den letzten 15 Jahren Eyetracking Studien durchgefiihrt, die den kognitiven Vorgang von
Menschen bei der Code-Inspektion analysierten. Dabei wurden besondere Muster entdeckt,
wie z.B. das Scan-Muster [UNM+06], die im weiteren Verlauf niher erlautert werden.

Mit Hilfe der seit iiber hundert Jahren erforschten und weiterentwickelten Eyetracking Tech-
nologie und dank seiner vielfaltigen Anwendungsmoglichkeit in vielen Bereichen, ist es nicht
nur moglich, die Augenbewegungen von Menschen zu erfassen und zu analysieren es wurde in
vielen Studien auch gezeigt, dass man Riickschliisse auf den Prozess der Wahrnehmung ziehen
kann. Die Ergebnisse solcher Studien und die damit verbundene Kenntnis tiber die Kognition,
soll in Zukunft idealerweise den Inspektionsaufwand minimieren und somit den essentiellen
Vorgang des Code-Reviews bei der Software-Entwicklung effizienter gestallten.

Durch die Erfassung der Blickbewegungen mittels Eyetracking entsteht eine Menge von Daten.
Eine grof3e Herausforderung ist die Repréasentation dieser selbst. Die einfache und vor allem
verstandliche Darstellung von Daten spielt eine wichtige Rolle in vielen Bereichen. Dabei soll
die Information besser dargestellt werden, nicht nur aus asthetischen Griinden, sondern um sie
intuitiver erfassen zu konnen. Aus graphischen Représentationen ist es oft einfacher gewisse
Verhaltensmuster zu erkennen, oder schwierige Konzepte verstandlicher zu gestallten.

11

1 Einleitung

Im Vergleich zur ausgereiften Eyetracking Technologie sind die teilweise nur beschrankt
existierenden Visualisierungstechniken, insbesondere in Verbindung mit Code-Review, der
Grund fiir die Entstehung dieser Arbeit.

Der Umfang stellt sich zusammen aus einer durchgefithrten Studie und die Erstellung eines
Visualisierungswerkzeugs fiir die aufgenommenen Daten. Die Studie dient dazu, mit Hilfe eines
Eyetracking Apparates, die Blickbewegungen der Teilnehmer zu erfassen. Die Aufgabe besteht
darin, Java Programme, die jeweils in drei unterschiedlichen Darstellungen den Teilnehmern
prasentiert werden, visuell auf semantischen Fehlern zu durchsuchen. Abbildung 1.1 zeigt
die drei unterschiedlichen Darstellungen - Plain Text, Java Syntax Highlighting und letzteres
noch zusatzlich mit Control Structure Diagrams(CSD) angereichert, die im weiteren Verlauf
detaillierter erklart werden.

Das Visualisierungswerkzeug wird fiir die retrospektive Analyse der aufgenommenen Daten
entwickelt. Mit Hilfe dessen soll insbesondere analysiert werden, wie Menschen mit unter-
schiedlicher Programmiererfahrung individuell nach Fehlern im Programmcode suchen und
in welchem Mafle die verwendeten Darstellungen zum Verstandnis und bei der Fehlersuche
hilfreich waren. Die Werkzeuge, die in den Vergangenen Studien verwendet wurden, waren
beispielsweise in der Lage den Review Vorgang in Form einer Timeline darzustellen, in welcher
man den Lesefluss des Teilnehmers nachempfinden konnte. Das entwickelte Visualisierungs-
werkzeug soll zusétzlich noch erméglichen, Bereiche von besonderem Interesse, sogenannte
Areas of Interest (AOI), die auf den Programmen definiert werden, in der Timeline farblich zu
unterscheiden. Dadurch kann man den Fokus auf spezielle Komponenten des Codes setzen,
beispielsweise auf Schliisselworter, CSD- oder Kontrollstrukturen, um somit eine detaillierte
Analyse durchfithren zu konnen. Zum Schluss werden anhand der Visualisierung die Ergebnisse
der Teilnehmer untereinander verglichen und ausgewertet.

import java.util.Scanner;
| import java.util.Scanner; 1 import java.util.Scanner;
2

3 public class Sum5 { public class Sum5 {
4 ic static void main(Stri
: [public static void main(String[] args) {
o = int i, input;

int i, input; int i, input;

2
3
1
public static void main(String[] args) { 5 public static void main(String[] args) {

6
7

8 8

9 i=o0; 9 i=0;

10 10 while(i

11 while(i < 5) { 11 while(i < 5) { while(i < 5)

12 12

13 Scanner sc = new Scanner (System.in); 13 Scanner sc = new Scanner (System.in);

—i=o0;

Scanner sc = new Scanner(System.in);

. 4 1 I t m r: ")
15 System.out.println("Input Number: "); 15 System.out.println("Input Number: "); System.out.println(”Input Number: °);
16 16

17 input = sc.nextInt(); 17 input = sc.nextInt(); input = sc.nextInt();

19 sum = sum + input; 19 sum = sum + input; sum = sum + input;

21 i=1i+1; 21 i=1i+1; i=i+1;
22 ¥ 22 ¥ 22 }

24 System.out.println("Sum: " + sum); 24 System.out.println("Sum: " + sum); [— System.out.println(“Sum: " + sum);
25 } 25 } 2)

Abbildung 1.1: Code Darstellungen

12

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Einflhrung in Eyetracking: In Kapitel 2 wird zuerst eine Einfithrung in die
Anatomie des menschlichen Auges gegeben, sowie einige Wahrnehmungsstrategien und
die Eyetracking Technologie vorgestellt.

Kapitel 3 — Verwandte Arbeiten: Kapitel 3 ist der Arbeit gewidmet, die in den letzten Jahren
im Bereich Code-Review in Verbindung mit Eyetracking absolviert wurde.

Kapitel 4 — Visualisierungswerkzeug: Kapitel 4 beschreibt die konkrete Realisierung des
Visualisierungswerkzeugs sowie die Funktionsweise.

Kapitel 5 — Eyetracking-Studie: In Kapitel 5 wird der Ablauf der durchgefiihrten Studie
vorgestellt.

Kapitel 6 — Auswertung: Kapitel 6 umschlieit die gewonnenen Erkenntnisse aus der Studie.
Kapitel 7 — Diskussion In Kapitel 7 werden die Ergebnisse aus Kapitel 6 diskutiert.

Kapitel 8 - Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen
und stellt Ankniipfungspunkte vor.

13

2 Einfuhrung in Eyetracking

2.1 Motivation zur Forschung der Blickbewegung

Das Beobachten und Analysieren menschlicher Verhaltensweisen liegt uns in der Natur. Das
Auge, zusammen mit den restlichen Sinnesorganen, stellt die Schnittstelle zur Umgebung
dar. Das ermoglicht uns mit der Auflenwelt zu interagieren. Studien haben bewiesen, dass
etwa 80 % der Perzeption [Zith11] tiber das Auge erfolgt, wodurch standig Reize, auch Stimuli
genannt, aus der Umgebung wahrgenommen werden. Deshalb ist es bei Eyetracking Studien
interessant die Augenbewegungen zu untersuchen, um Informationen iitber Wahrnehmungs-
und Verstandnisprozesse zu erhalten. Das Auge ist somit eines der wichtigsten Sinnesorgane des
Menschen. Im Gehirn findet der Prozess der Umwandlung dieser Reize statt, wodurch dann eine
individuelle Reaktion auf den eingehenden Stimulus determiniert wird. In diesem Kapitel wird
eine kurze Einfiihrung in die Anatomie des menschlichen Auges gegeben. Dies soll dazu dienen,
die Funktionsweise der Informationsverarbeitung zu verstehen. Anhand der Videookulographie,
die wichtigste Technik die heutzutage verwendet wird um Blickbewegungen aufzunehmen,
soll erklart werden wie Eyetracking funktioniert. Der Unterschied zwischen stationare und
head-mounted Systeme, sowie wichtige Begriffe die in Verbindung mit Code-Review in Kapitel
drei nochmal genauer erklart werden, werden auch vorgestellt. Zum Schluss werden wichtige
Datentypen vorgestellt die von Eyetrackern aufgezeichnet werden und fiir diese Arbeit auch
relevant sind.

2.2 Die Anatomie des Auges

Abbildung 2.1 ist eine Illustration des Querschnittes des menschlichen Auges. Der hintere
Teil des Glaskorpers, ab den Ziliarmuskeln, hat eine kreisrunde Form, wéhrend im vorderen
Bereich die Hornhaut eine deutlich hervorgehobene Wélbung aufzeigt. Im Innenraum des
Glaskorpers befindet sich die Netzhaut, die mit Rezeptoren ausgestattet ist. Sie erreichen
ihre maximale Dichte dort, wo die optische Achse des Auges die Netzhaut schneidet, in der
fovea centralis. An dieser Stelle ist es uns moglich am schéarfsten zu sehen. Je weiter man
sich von diesem Bereich entfernt, desto rapide fillt die Rezeptordichte der Netzhaut ab. Die
Aufmerksamkeit auf ein bestimmtes Objekt, hdngt somit eng mit der Lage der optischen
Achse zusammen. Insgesamt betragt die Grofe des visuellen Feldes etwa 130° vertikal und
180° horizontal [Duc07]. Abbildung 2.2 zeigt das Innenleben des menschlichen Auges und

15

2 Einflhrung in Eyetracking

verdeutlicht anhand des Aufbaues der Rezeptoren, die aus Staben und Zapfen besteht (engl.
Rod and Cones), die eben beschriebene Funktionsweise. Die Zapfen sind insbesondere fiir das
Farbsehen verantwortlich, wéhrend die Stibe fiir das Helligkeitsempfinden zustédndig sind.
Der Bereich, in dem keine Rezeptoren vorhanden sind, da sie in den Sehnerv ibergehen, wird
blinder Felck genannt.

Riif TN 0
Aufbau des Auges Ziliarmuskel Lederhaut

Bindehaut
Netzhaut

Vordere Augenkammer - ;
) (Retina)

Hornhaut —_
Gelber Fleck

pupille ((ffnung) —— (Makula)

Regenbogenhaut (Iris) ——

Tranenflissigheit ~

|
Sehbahn

Bindehaut (Sehnerv)

Tiliarmuskel

Abbildung 2.1: [http://www.lasikon.de/]. Aufbau des menschlichen Auges. Hier sind die
einzelnen Bestandteile des Auges zu erkennen die oben erklart wurden.

Blind spot Cones
Fovea (g receptors) Rods
180,000 —
160,000 [
140,000 [~
120,000 - \
100,000

S~

80,000 [~ L .
60,000 —/
e 40.000
A\ _ zn.nmi{ A

~ Optic nerve ol D 1 —T] |

70° BO° BO® 400 300 20° 10° 0 10" 20° 30° 40* 50° B0 7O 80°
Angle (degree)

Number of receptors
per square millimeter

Abbildung 2.2: Dieses Bild [GB09] zeigt die Verteilung der Stabe und Zapfen in der Netzhaut.
Das Linke Auge zeigt insbesondere die Lage auf der Netzhaut, die in Grad, re-
lativ zur fovea centralis, angegeben wird. In der rechten Abbildung, entspricht
dies der x-Achse. Der braune Balken stellt den blinden Fleck dar, der keine

Rezeptoren besitzt.

16

2.2 Die Anatomie des Auges

2.2.1 Die Augenbewegungen

Die zwei wichtigsten Augenbewegungen, die unbewusst im Alltag am héaufigsten stattfinden
werden nun vorgestellt [Duc07]:

Die Fixation

Fixationen sind im engeren Sinne keine Augenbewegung, sondern viel mehr ein zeitlich
begrenzter Moment, in welchem die Aufmerksamkeit auf ein Objekt gerichtet ist. Die Dauer
einer Fixation betragt im Durchschnitt 100— 600ms. Nur hier fangt das Gehirn an die visuelle
Information zu verarbeiten.

Die Sakkade

Sakkaden sind schnelle sprunghafte Augenbewegungen zwischen Fixationen. Die Durch-
schnittsdauer einer Sakkade betragt zwischen 10ms und 100ms.

2.2.2 Wahrnehmung und Informationsverarbeitung

Im Allgemeinen lassen sich zwei Vorgehensweisen beim Wahrnehmungsprozess unterscheiden,
die Bottom-Up und die Top-Down Strategie [GB09]. Beide Strategien werden in Kapitel drei
nochmal aufgegriffen und die genauere Verbindung zum Programmverstandis wird herge-
stellt.

Bottom-up

Das Bottom-up Verfahren, auch data-based Verfahren genannt [GB09], beschreibt die Daten-
verarbeitung der von der Auflenwelt eingehenden Information. Durch das einfallende Licht
auf die Rezeptoren der Netzhaut, wird die Information visuell aufgenommen. Erst durch das
Erkennen von Eigenschaften, das im Gehirn stattfindet, erhélt das betrachtete Objekt eine
exakte Form und einen Namen.

17

2 Einflhrung in Eyetracking

Top-Down

Die Top-Down Strategie, auch knowledge-based Verfahren genannt [GB09], stellt ein Ver-
arbeitungsmechanismus dar, das sich auf schon vorhandenes Wissen stiitzt. Das bedeutet,
der Betrachter stellt eine allgemeine Hypothese iiber das betrachtete Objekt auf. Wenn beim
Betrachten diese Eigenschaften mit dem tibereinstimmen, was angenommen wurde, findet der
Prozess der Erkennung und Kategorisierung des Objektes statt.

In der Regel finden beide Prozesse auf natiirliche und nebenldufige Weise statt. Das Zusam-
menspiel beider Strategien wird in Abbildung 2.2 gezeigt.

(o) Existing knowiedge §
({top down}

Abbildung 2.3: In diesem Bild[GB09] wird die Wahrnehmung und das Zusammenspiel des
Bottom-Up und Top-Down Verfahren deutlich. Dabei wird das betrachtete
Objekt zunéchst via Bottom-Up Verfahren auf die Rezeptoren abgebildet. An-
schlieflen wird mittels Top-Down das bendtigte Wissen abgerufen, um das
Objekt zu erkennen.

Praattentive Percepeption

Die Praattentive Wahrnehmung ist ein Mechanismus der uns erlaubt unbewusst Informatio-
nen aufzunehmen. Diese Art von Information wird innerhalb von 200-250 ms aufgenommen.
Eigenschaften wie die Farbe oder Form eines Objekts, gehoren zu dieser Wahrnehmungskate-
gorie[GB09].

2.3 Eyetracking

Zur Erfassung und Analyse visueller Reize bedarf es spezieller Werkzeuge wie z.B. der Eye-
tracker Tobii T60XL, welcher die Augenbewegungen des menschlichen Auges registriert und

18

2.3 Eyetracking

in dieser Studie auch zum Einsatz kommt. Anhand der aufgenommen Daten kann dann im
einem néchsten Schritt analysiert werden, wie die Probanden die Stimuli betrachtet haben. Der
folgende Abschnitt stellt die aktuellen Systeme vor und erkléart die Technik der Videookulogra-
phie, die bei modernen Eytrackern zum Einsatz kommt und fiir die Blickbewegunsaufnahme
eingesetzt wird.

2.3.1 Eyetracking Techniken und Systeme

Bei den Eyetrackern die es aktuell auf dem Markt gibt, unterscheidet man zwischen stationdre
und head-mounted Systeme. Die Wahl des Eyetrackers ist stark von der gestellten Aufgabe
abhingig. Beim Betrachten von Webseiten oder Benutzeroberflachen wird oft ein stationéres
System eingesetzt. Wahrend man fiir Aufgaben die mehr Bewegungsfreiheit erfordern gerne
head-mounted Systeme einsetzt. In diesem Kapitel wird der unterschied zwischen stationdren
und head-moundet Systemen erklart, die Technik der Videookulographie vorgestellt, sowie
weitere Datentypen erklart, die bei Eyetrackingstudien aufgenommen werden.

Stationare Systeme

Stationdre, auch Remote Eyetracking Systeme genannt, sind direkt im Monitor eines Computers
integriert oder konnen frei im Raum aufgestellt werden. Der Eyetracker von der Firma Tobii
T60XL, der auch in dieser Studie zum Einsatz kommt, gehort zu dieser Kategorie. Diese
Eyetracker basieren auf der Technik der Videookulaographie[Duc07], welche Infrarotstrahlen
verwendet, um die Blickbewegungen aufzufassen. Die Infrarotstrahlen werden vom Eyetracker
ausgesendet, die dann von der Hornhaut reflektiert werden und anschlieffend von einer Kamera
aufgenommen werden. Dadurch ist es dem Teilnehmer gestattet, bis zu einem gewissen Grad
uneingeschrankt mit dem Gerat zu interagieren und sich relativ frei zu bewegen.

Head-Mounted Systeme

Bei head-mounted Gerédten wird das System hingegen direkt im Rahmen einer Brille montiert.
Dadurch kann sich der Benutzer frei im Raum bewegen, ohne an ein bestimmtes Gerét gebunden
zu sein. Sie werden oft bei Usability Testing verwendet, um z.B. das Kaufverhalten in einem
Supermarkt zu analysieren.

19

2 Einflhrung in Eyetracking

Infrarotlichtquellen

Abbildung 2.4: [www.tobii.com]Remoter Eyetracker Tobii T60XL des Herstellers Tobii.

2.3.2 Visualisierung von Eyetrackingdaten

Zu den wichtigsten Visualisierungstechniken gehdren Scanpaths und Heatmaps.
Heatmap

Mit Hilfe von Heatmaps ist es molich, aggregierte Fixationen zu visualisieren. Dadurch hat
man eine generelle Sicht der Daten und man erkennt, welche Bereiche besonders stark fixiert
wurden. Diese Bereiche werden auf dem Stimulus farblich hervorgehoben. Dabei wird die Fixa-
tionsdichte durch einen Farbverlauf von griin nach rot dargestellt. Je hoher die Fixationsdichte
in einem Bereich ist, desto rétlicher wird dieser Bereich gefarbt [BKR+14].

Scanpath

Ein Scanpath stellt die Augenbewegungen in Form eines Pfades dar. Der Pfad besteht aus
Fixationen, die als Kreise dargestellt werden und aus Sakkaden, die als Linien zwischen diesen
Kreisen gezeichnet werden. Dabei wird der Kreis grof3er, je langer man einen Punkt fixiert.
Zusétzlich werden die Punkte im Scanpath durchnummeriert, wodurch nachvollziehbar ist, in
welcher Reihenfolge die Punkte angeschaut werden [BKR+14].

20

2.3 Eyetracking

import java.util.Scanner;

publie

Abbildung 2.5: Bild eines Scanpaths (links) und einer Heatmap (rechts).

2.3.3 Datentypen
Die Datentypen die vom Eyetracker geliefert werden und auch in der Benutzer-Studie eine

zentrale Rolle spielen werden nun vorgestellt und erklart. Die in Abschnitt 2.2.2 eingefithrten
Bewegungen, Fixation und Sakkade, gehéren auch dazu [TobiiStudio2.XUserManual].

Stimulus
Als Stimulus bezeichnet man in einer Benutzerstudie alles was die visuelle Aufmerksamkeit
des Teilnehmers fangt. In diesem Kontext ist das ein statisches Bild, also die prasentierten

Java Programme. Es kann aber auch ein Video oder eine Webseite als Stimulus verwendet
werden.

Gaze

Gaze gilt als Oberbegriff fiir eine Ansammlung von Fixationen in einem bestimmten Bereich,
sogenannte Area of Interest.

Area of Interest (AOI)

Eine Area of Interest schrankt einen Bereich auf dem Stimulus ein, dem man besondere
Aufmerksamkeit widmet und tiber welchen Daten aufgenommen werden. Dadurch kann man

21

2 Einflhrung in Eyetracking

bestimmten AOIs, Fixationen zuordnen und gruppiert analysieren. Der Eyetracker annotiert
zu jeder AOI eine AoilD und einen AoiName.

Timestamp

Der Zeitstempel gibt die Zeit in Millisekunden an, iiber die gesamte Dauer in der die Blickdaten
aufgenommen werden.

MappedFixationPointX/Y
MappedFixationPointX/Y gibt jeweils die x und y Koordinate des Auges an. Sie werden relativ

zum Ursprung des Koordinatensystems angegeben, wobei der Ursprung der obere linke Punkt
ist.

22

3 Verwandte Arbeiten

Code-Review ist ein Verfahren, das angewendet wird, um Fehler im Code zu entdecken. Es
wird hauptsachlich von Menschen durchgefiihrt, ohne das Programm auszufiithren. Bei der
Entwicklung von Software nimmt es eine wichtige Rolle ein, denn dadurch wird fortlaufend
die korrekte Funktionsweise des Produktes gepriift. Zudem ist es wichtig Fehler im Code
frithzeitig zu entdecken. Es gilt, je frither ein Fehler entdeckt wird, desto giinstiger ist es ihn
zu beheben [Boe+81]. Abbildung 3.1 stellt die wichtigsten Phasen der Software-Entwicklung
dar. Dabei ist deutlich zu erkennen, wie die Kosten fiir das Finden und Beheben von Fehlern
exponentiell mit fortschreiten der Entwicklungsphasen zunimmt.

Kosten zur Fehlerbehebung

A Kosten (€)

Fehler frichzeitig in elnem Projekt
(Entwicklungsprozess) zu finden spart Geld 11!

>

Anforderungsanalyse Systementwurf Umsetzung Integrationstest Systerntest Betrieb

Abbildung 3.1: [http://de.slideshare.net/]. Die Graphik betont das exponentielle Wachstum
der Kosten um einen Fehler zu beheben in jeder Entwicklungsphase von
Software.

Weigers [Wie96] verdeutlicht die Wichtigkeit von Code-Review durch eine seiner Studien.
Er fand heraus, dass dadurch 50-70% der Fehler entdeckt werden konnen. Wenn man zusatz-
lich den Aspekt betrachtet, dass die Wartung der Software meist nicht von derselben Person

23

3 Verwandte Arbeiten

durchgefiithrt wird, die das Programm geschrieben hat, wird die Wichtigkeit des Programm-
verstandnisses noch deutlicher. Programmverstdndnis ist jedoch etwas sehr individuelles,
was von vielen menschlichen Faktoren abhingt, wie zum Beispiel die Programmiererfahrung.
Deshalb ist es von besonderem Interesse die kognitiven Prozesse bei diesem Vorgang genauer
zu untersuchen und auf Erkenntnisse zu stoflen, die in Zukunft den Inspektionsaufwand
effizienter und so gering wie moglich halten. Uwano [UNM+06] setzt als langfristiges Ziel, ein
effizientes Verfahren zu schaffen, dass dem Reviewer erlaubt so viele Mangel wie moglich im
Softwareprodukt zu finden.

3.1 Programmverstandnis Modelle

Es gibt unterschiedliche Stratiegien, die jeder Reviewer bewusst oder unbewusst beim analy-
sieren eines Quellcodes verfolgt. Uwano zitiert unter anderem Methodologien wie das Ad-Hoc
Review (AHR), bei welchem man den Code ohne bestimmte Kriterien liest. Das Perspektive Based
Review, wo man den Code aus unterschiedlichen Perspektiven liest (z.B. Programmierer, Tester
etc.), Checklist Based Review, mit welchem man den Code anhand einer Liste typischer Fehler
untersucht und weitere, die an dieser Stelle nicht weiter erlautert werden. Diese Methoden
haben als Ziel gewisse allgemeingiiltige Kriterien beim Lesen zu schaffen, um der Inspektion
einen durchdachten Ablauf zu geben. Jedoch haben viele empirische Studien gezeigt, dass man
keine genauen Aussagen treffen kann, welche der Methoden mehr Fehler im Code aufdeckt
[LV00].

In vergangenen Studien haben sich einige Modelle herauskristallisiert, wie Programmierer
den Quellcode perzipieren und lesen [FKA+13]. Allgemein gibt es Programmverstindnis-
modelle wie Top-Down, Bottom-Up und Integrated Modells. Die ersten zwei Begriffe wurden
Allgemein in Kapitel 2 eingefiihrt. In Verbindung mit Programmkognition kann man sich das
folgendermafien vorstellen: Ein Entwickler setzt das Top-Down Verfahren ein, wenn schon
gewisse Vorkenntnisse vorhanden sind, z.B. wenn er die Programmiersprache des Quelltextes
beherrscht. Dabei formuliert er eine generelle Hypothese zur Funktionsweise des Programms,
die er dann verifiziert oder falsifiziert. Beim Bottom-Up Verfahren hingegen wird der Code
stiickweise analysiert. Diese Stiicke werden dann zu grof3eren kombiniert. Der Programmierer
puzzelt sich somit sein Wissen zusammen. Integrierte Modelle sind ein Hybrid aus Bottom-Up
und Top-Down. Generell verwendet ein Programmierer Top-Down wo es moglich ist und Bottom-
Up wo es notig ist [FKA+13]. Diese Modelle sind eine gute Grundlage, um den Programmierer
anhand seiner Fahigkeiten zu Kategorisieren. Was jedoch an dieser Stelle fehlt ist eine Metrik,
um das Programmverstidndnis zu messen.

3.1.1 Programmverstandnis messen

Eine der zentralen Fragen vieler Studien ist, wie man Programmverstandnis am besten messen
kann. Durch konkrete Metriken, wie z.B. die durchschnittliche Antwortzeit, oder die Korrektheit

24

3.2 Erkenntnisse aus Eyetrackingstudien

der Antwort lasst sich Programmverstandnis bis zu einem gewissen Grad messen. Wenn aber
kognitive Prozesse involviert sind, die schwer zu messen sind, muss man nach alternativen
Methoden suchen, wie im Folgenden deutlich wird. In vielen Studien wird die Arbeit von
Ericson und Simon [1984] zitiert, welche sich ausgiebig mit verbalen Protokollen befasst haben.
Sie beschreiben unter anderem die Think Aloud Methode, bei welcher man die Gedanken, die
im Review Prozess entstehen, protokolliert [BT06]. Um das Ganze abzurunden und um verbale
Protokolle zu validieren, hat man zusatzlich Videoprotokolle oder die direkte Beobachtung
eingefiihrt. Die Zuverlassigkeit dieser Verfahren wurde jedoch stark kritisiert, unter anderem
weil die kognitiven Vorgénge durch blofle Beobachtung nicht objektiv genug beurteilt werden
konnen [UNM+06]. Es fehlt somit an Abstration und Neutralitat.

3.2 Erkenntnisse aus Eyetrackingstudien

Um den kognitiven Vorgang besser zu studieren, setzt man die Eyetracking Technologie ein.
Die frithen Anfange reichen bis zu den Jahren 1990 zuriick, als Crosby und Stelovsky [CS90]
eine Eyetrackingstudie durchfiihrten, wo die visuelle Aufmerksamkeit der Teilnehmer bei
der Inspektion eines in Pascal geschriebenen binaren Suchalgorithmus aufgenommen wurde.
Durch die Blickbewegungsaufnahme fand man heraus, dass erfahrene Programmierer sich
mehr auf relevante Bereiche des Codes fokussierten, wahrend sich die visuelle Aufmerksamkeit
der Anfanger eher auf Kommentare und Vergleiche limitierte [BT06].

Uwano fiihrte eine Eyetrackingstudie durch, um die kognitiven Prozesse genauer zu studieren.
Die Aufgabe der Reviewer bestand darin Fehler semantischer Art im Quelltext zu entdecken.
Bei der Studie wurden unterschiedliche Muster erkannt, wie z.B. das Scan Muster in Abbildung
3.2. Sie fanden heraus, dass einige Teilnehmer dazu neigten, den Code zuerst von oben bis unten
kurz durchzuschauen, um sich dann auf bestimmte Teile des Codes zu konzentrieren. Dieser
Vorgang wurde als kognitiver Prozess aufgefasst, denn der Teilnehmer versucht zuerst die
gesamte Programmstruktur zu verstehen und wahrenddessen identifiziert er suspekte Stellen
im Code, die einen Fehler beinhalten konnten. Ein weiteres Muster, das entdeckt wurde ist das
Retrace Declaration Pattern, das in Abbildung 3.3 zu sehen ist. Wenn ein Teilnehmer auf eine
Variable stof3t, die zum ersten Mal benutzt wird, springt er zu der Stelle zuriick, wo sie deklariert
wird. Die Ergebnisse zeigten vor allem, dass die Teilnehmer, die nicht viel Zeit investierten den
Code zu scannen, mehr Zeit benotigten um die Fehler aufzuspiiren. Sharif [SFM12] wiederholte
teilweise die Studie von Uwano, indem Eyetracking Messungen durchgefiithrt wurden und eine
groflere Anzahl an Teilnehmer rekrutiert wurde, mit unterschiedlicher Programmiererfahrung.
Die Ergebnisse bestatigten die Hypothese von Uwano, und stellten auch fest, dass durch
Eyetracking durchaus die individuelle Performance der Teilnehmer vorhergesagt werden
kann.

Allgemein kann man die bis dato durchgefiihrten Studien folgendermaflen differenzieren.
Zum einen analysieren sie den Review-Vorgang durch Verwendung von Tools, die speziell

25

3 Verwandte Arbeiten

Fixation num.
1 31 61 91 121 151 181

01 void main({void){ /
02 inti, num, isPrime =0, I
03 |
04 print("Input Number:"); L
05 scanf{"%d", &num); ‘.
06 -
07 i=2;

08 while(i < num){
(] ifnum%i == 0)
10 isPrime = 1;
11 i=i+1;

12} 1st scan ‘\\ \
13

14 if{isPrime == 1)

15 printf{"%d is prime number.¥n", num};

16 else

17 printf{"%d is NOT prime number.¥n", num);
18}

a) Subject E reviewing Prime

Abbildung 3.2: Diese Abbildung [UNM+06] zeigt, wie ein Teilnehmer ein Stimulus der Studie
betrachtete. Dabei wurde ein besonderes Muster entdeckt, das Scan Muster.
Der Teilnehmer macht sich ein generelles Bild vom Code bevor er ins Detail
geht.

Fixation num.
1 3 61 91

L L 0 L L R L N N AR R R RN R AR IR R RN IR R]
e
I
I
S

01 void main(void){ Retrace of i
02 inti, input, sum; declarations* =L 3% - A __ N\ ______ Y ____ M}\—A—ﬁ}w— —————— d
03

04 i=0;

05 while(i <5){ A: An 11 m" t“ Ath

06 scanf{"%d", &input); J “’WV‘” L V VVF Y
07 sum = sum + input;

08 i=i+1;

¥ i y’
09}
10 1
11 printf{"Sum:%d¥n", sum); LE
12}

Abbildung 3.3: Graphische Darstellung [UNM+06] des Retrace Declaration Musters.

fir das Programmverstiandnis entwickelt werden. Zum anderen wird das Verstandnis un-
terstiitzt, indem man die Programme mit Farbelemente oder Symbole anreichert. Bednarik
[BT06] fiihrte beispielsweise eine Eyetrackingstudie durch, wo Programmierer mit Hilfe eines
Visualisierungsprogramms, Jeliot 3 [MMS+04], Programme auf Fehler durchsuchen sollten.
Dabei wurde insbesondere beobachtet, wie sie mit dem Tool interagieren und wie sich die
visuelle Aufmerksamkeit zwischen der simplen Quelltext Reprasentation und der animierten
Version des Codes verhilt. Studien wie die von Hendrix [HCM+02] versuchten durch das
Einfiigen graphischer Symbole im Code, sogenannte Control Structure Diagrams (CSD), den
Reviewer visuell zu unterstiitzen. Die Forscher erkldren, wie wichtig graphische Elemente
im Review-Vorgang sein konnen, und untermauern ihre Hypothese mit den Ergebnissen der
Studie, die in Punkt Schnelligkeit und Korrektheit der Antworten sehr gut ausgefallen sind.

26

3.2 Erkenntnisse aus Eyetrackingstudien

Da Farben préattentiv wahrgenommen werden [GB09], haben Studien wie die von Feigenspan
[2012] den Einfluss erforscht, sie im Programmcode einzubinden. In Software Product Line Engi-
neering beispielsweise werden aus einem Basiscode viele Varianten erzeugt, indem man je nach
Funktionsalitaitswunsch Featurecode einsetzt. Dabei kann die Identifikation von Features bei
grofien Programmen sehr schwer und mithsam werden, insbesondere beim Wartungsvorgang.
Die Studie von Feigenspan [FKA+13] hat versucht diesem Problem entgegenzuwirken, durch
die farbliche Markierung von Featurestellen im Code. Das Ergebnis war, dass nicht nur die
Idee gut ankam, auch das Programmverstandnis, selbst fiir umfangreiche Programme, konnte
gesteigert werden. Es gibt aber auch Studien die Code Highlighting nicht befiirworten. Die
Studie von Hakala [HNS06] beispielsweise beschaftigt sich mit drei unterschiedlichen Code-
Highlighting-Techniken. Die Aufgabe der Teilnehmer bestand darin nach Kontrollstrukturen,
Methodenaufrufe, etc. in Java Programmen zu suchen. Dabei hat man Schliisselworter, wie in
den Standard-Editoren, sowie umfangreiche Syntaxblocke farblich gekennzeichnet und fir
Kontrollstrukruren kein Highlighting verwendet. Obwohl die Kommentare der Teilnehmer
sehr positiv ausfielen, sprachen die Ergebnisse der Studie eher gegen einer Verbesserung der
Performance durch Code-Highlighting.

Alle Studien versuchen das Verstandnis auf eigene Weise zu messen und zu unterstiitzen.
Durch Eyetracking ist es in den vergangenen Jahren gelungen Details zu entdecken, die durch
das blofie Beobachten méoglicherweise nie zum Vorschein gekommen wéren. Deshalb ist es von
besonderem Interesse weiterhin in diesem Gebiet zu forschen und Studien durchzufiithren.

27

4 Visualisierungswerkzeug

In dieser Arbeit soll der Einfluss unterschiedlicher Codevisualisierungen beim Programmver-
standnis mit Hilfe von Eyetracking untersucht werden. In den bisherigen Studien war es bereits
moglich, den Lesefluss der Teilnehmer in Form einer Timeline darzustellen, weshalb diese
Arbeit teilweise eine Wiederholung der Studie von Uwano [UNM+06] ist. Das vorgestellte
Visualisierungswerkzeug ist zusétzlich in der Lage, Areas of Interest (AOI) farblich zu unter-
scheiden. Damit soll eine detailreichere Analyse moglich sein, indem man das Augenmerk
beispielsweise auf bestimmte Schliisselworter setzt. Die Realisierung, die genaue Funktions-
weise, sowie die verwendeten Technologien werden im folgenden Kapitel vorgestellt.

4.1 Technologien

Fiir die Realisierung der Timeline wurden die Webtechnologien JavaScript, HTML, CSS und
die Bibliothek D3.js verwendet. Diese Technologien und weitere wichtige Begriffe werden nun
naher erklart.

4.1.1 HTML

HTML steht fur Hypertext Markup Language. Es ist “eine textbasierte Auszeichnungssprache
zur Strukturierung von digitalen Inhalten wie Texten, Bildern und Hyperlinks”[Gul14]. Fur
die Darstellung solcher Dokumente werden Browser eingesetzt, mit deren Hilfe man die
Inhalte einsehen kann. HTML wird vom World Wide Web Consotrium (W3C) standardisiert
und weiterentwickelt, wobei seine aktuellste Version HTMLS5 ist. Mit diesem Standard werden
im Vergleich zur Vorgéangerversion diverse Sachen erméglicht, ohne zusatzliche Plug-ins
installieren zu missen. Es lassen sich beispielsweise Audio- und Video Dateien direkt einbinden
[www.w3.org]. Die Struktur des Dokuments wird mit Hilfe von “Tags”’modelliert. Der obere
Kasten in Abbildung 4.2 ist ein Beispiel dafiir. Eine Einschrankung, sowohl bei der Entwicklung,
als auch bei der Darstellung der Webseite ist, dass nicht jeder Browser immer die aktuellste
Version unterstiitzt. Die Konsequenz ist, dass dieselbe Webseite oder Web-Anwendung, nicht
auf allen Browsern gleich dargestellt wird. Eine Mdglichkeit dies zu umgehen ist, gewisse
Voreinstellungen von JavaScript zu niitzen, durch die man in der Lage ist, den verwendeten
Browsertypen zu identifizieren. Somit kann man unterschiedliche Operationen fiir jeden
Browsertypen implementieren [www.w3.org].

29

4 Visualisierungswerkzeug

DOM

Fir die Entwicklung mit HTML und insbesondere mit der Bibliothek D3.js ist es wichtig den
Aufbau und die Funktionsweise des Document Object Model (DOM) zu kennen. Das DOM kann
als abstrakte Version einer HTML Seite interpretiert werden, das ebenfalls vom World Wide
Web Consortium (W3C) standardisiert und weiterentwickelt wird [www.w3schools.com].

Daocurment

Root element:
<html=
Elerment: Element:
<head:> <hody>

Elerment: Attribute: Elermert: Element:
<title= "“href” £ax zhl>
Text: Text: Text:

"My title” "My link” "My header”

Abbildung 4.1: Hierarchische Struktur einer Webseite. Bildquelle: www.w3schools.com

Abbildung 4.1 zeigt die hierarchische Struktur einer Webseite. Wenn eine Seite vom Browser
geladen wird, wird automatisch ein DOM Element davon generiert [www.w3schools.com]. Das
DOM hat eine baumartige Struktur und stellt die Schnittstelle fiir die Kommunikation zwischen
HTML und JavaScript dar. Alle ihm angehangten Elemente werden namlich zu Objekten, die
mittels JavaScript dynamisch manipuliert werden kénnen [wiki.selfhtml.org].

4.1.2 JavaScript

JavaScript ist eine vielseitige und flexible Sprache mit objektorientierten Fahigkeiten und kann
direkt im HTML Dokument eingebettet, oder in einem externen Dokument verwaltet werden,
das dann im HTML Dokument eingebunden wird. Im Unterschied zu vielen anderen Skriptspra-
chen wie PHP, ASP oder JSP, die serverseitig ausgefithrt werden, wird JavaScript hauptsachlich
vom Browser lokal interpretiert. Seine Hauptaufgabe ist, statische HTML Dokumente mit
Funktionalitat zu versehen, wodurch es moglich ist dynamische und interaktive Webseiten zu
erstellen. Der Vorteil dieser Sprache ist, dass sie plattformunabhéngig ist und somit von nahezu
jedem Webbrowser interpretiert werden kann [www.itwissen.info]. JavaScript verwendet
auflerdem keine Variablentypen und durch die Verwendung unterschiedlicher Frameworks
wie jQuery [https://jquery.com/] wird die Webentwicklung erheblich erleichtert. Durch die
Fahigkeit Aktualisierungen des DOMs leicht umzusetzen, wurde die Verwaltung der Objekte
die im DOM enthalten sind quasi komplett JavaScript iibergeben. So konnen HTML Elemente,
Attribute, CSS-Styles entfernt, hinzufiigt oder modifiziert werden [www.w3schools.com]. Dank
seiner Flexibilitat hat sich JavaScript in den letzten Jahren immer mehr zu einem essentiellen
Bestandteil von Web-Applikationen entwickelt.

30

4.1 Technologien

<main>
<hl>{berschrift</hl>
<!-- Hier ist ein Kommentar -->
<p>
Textinhalt

</p>
</main>

Textinhalt

Abbildung 4.2: Beispiel eines HTML Dokuments und das zugehorige DOM. Bildquelle:
www.w3schools.com

4.1.3 CSS

CSS ist die Abkiirzung fiir Cascading Style Sheets. Mit diesem Instrument kann man die
graphische Darstellung (Layout, Farbe, Absténde, Schriftart, usw.) der Elemente einer Webseite
modifizieren. Dadurch hat man, verglichen zum Standard HTML, designtechnisch viel mehr
Moglichkeiten die Elemente zu modifizieren und zu verwalten. Der Vorteil liegt darin, eine
einzige Datei zu verwenden, die dann mit allen HTML Dokumenten, die darauf referenzieren,
kommuniziert. Somit kann man schon verwendete graphische Einstellungen auch fiir andere
Elemente verwenden. Sie sind eine Empfehlung des W3C Konsortiums, das schon mehrere
Versionen auf dem Markt gebracht hat. Die aktuellste ist CSS3, die im HTML5 Standard
integriert ist. Allgemein kann man sagen, dass HTML fiir die Struktur der Webseite zustandig
ist, wahrend man mit CSS das Design bestimmt [wiki.selfhtml.org].

4.1.4 JSON

Fir die Speicherung der Daten wurde unter anderem eine dateibasierte Datenspeicherung
verwendet, das JSON Objekt. JSON steht fiir JavaScript Object Notation. Der Vorteil dieser Nota-
tion ist, dass es sowohl client- als auch serverseitig eingesetzt werden kann. Der Aufbau eines
JSON-Objekts kann man in Abbildung 4.2 sehen. Die Objekte sind jeweils von geschweiften
Klammern umgeben. Die Daten werden als Key-Value-Pairs gespeichert [wiki.selfhtml.org].

31

4 Visualisierungswerkzeug

JSON-Objekte stellen ein leichtgewichtiges Datenaustauschformat dar, wodurch die Arbeit mit
der Bibliothek D3.js erheblich erleichtert wird.

{
"Name": "Georg",
"Alter": 47,
"Verheiratet": false,
"Beruf": null,

"Kinder": [

{
"Name": "Lukas",
"Alter": 19,
"Schulabschluss": "Realschule"

}e

{
"Name": "Lisa",
"Alter": 14,
"Schulabschluss": null

}

}

Abbildung 4.3: Das Bild zeigt den Aufbau eines JSON-Objekts. Dabei wird ein Objet von
geschweiften Klammern umschlossen. Jeder Wert besitzt einen eindeutigen
Schliissel, iiber welchen man auf den Wert zugreifen kann. Ein Schliissel-
Werte-Paar wird durch einen Doppelpunkt getrennt. [wiki.selfthtml.org]

4.1.5 SVG

SVG steht fiir Scalable Vector Graphic und ist ein Dateiformat fiir Vektorgrafiken. Der Vorteil
solcher Grafiken ist, dass sich Bilder, verglichen zu Pixelgrafiken, ohne Verluste in jede Grofle
skalieren lassen [Gul14]. Das ergibt sich dadurch, dass SVG-Grafiken Bilder anhand von
Vektoren beschreiben, anstatt der Rastertechnik, die in Pixelgrafiken verwendet wird. SVG
Grafiken konnen mit verschiedenen Javascript Bibliotheken realisiert werden. In dieser Arbeit
werden sie mit Hilfe der Bibliothek D3.js erstellt.

4.1.6 D3.js

Das Akronym D3 steht fiir Data Driven Documents. Damit wird auf die Funktionsweise hinge-
wiesen, mit deren Hilfe sich Dokumente (HTML-Seiten) auf Datenbasis dynamisch erzeugen
lassen. Um dies zu ermoglichen, werden in D3 mehrere Technologien wie HTML, SVG und CSS
integriert. Dabei werden die geladenen Datensétze an das oben erklarte DOM gebunden und
anschlieend manipuliert und transformiert. Mit Hilfe eines sogenanntes Selection-Ansatzes
kann die Auswahl der Elemente im DOM erheblich vereinfacht werden [Gul14]. Abbildung

32

4.1 Technologien

S 3

Raster \Vector

Jpeqg .gif .png SVQ

Abbildung 4.4: Unterschied zwischen einer Pixelgrafik und einer Vektorgrafik. Bildquelle:
www.wikibooks.org

4.5 und 4.6 zeigen den Unterscheid zwischen einer Selektion von Paragraphen mit der DOM
Schnittstelle, verglichen zu dem Ansatz der von D3 verwendet wird. Dadurch wird die Komple-
xitat um ein vielfaches reduziert und somit die Performance gesteigert. Des Weiteren arbeitet
diese Bibliothek hervorragend mit JSON Objekten zusammen, da sie, nachdem sie Zugang zum
Objekt hat, die Werte direkt tiber die Keys selektieren kann. Die Bibliothek ist auflerdem sehr
beliebt, aufgrund der vielen Dokumentierungen und Tutorials die im Internet zu finden sind.

var absatz = document.getElementByTagName("p");
(var i=0; i<absatz.length; i++) {

var absatz = absatz.item(i):
absatz.style["color"] = "green";

Abbildung 4.5: Paragraphen-Auswahl mittels DOM-APL

d3.selectAll("p").style("color","green");

Abbildung 4.6: Paragraphen-Auswahl mittels Selection Ansatz.

33

4 Visualisierungswerkzeug

4.2 Realisierung

Die Aufgabe bestand darin, ein Visualiserungswerkzeug zu erstellen, das die aufgenommenen
Eyetracking Daten grafisch darstellt. Dies soll fiir die retrospektive Analyse dienen. Dafiir
wurden die oben genannten Webtechnologien verwendet, um eine HTML basierte Webanwen-
dung zu erstellen. Die zu verarbeitenden Daten sind zum einen die vom Eyetracker generierten
Daten. Sie konnen im Tobii Studio im .tsv Format exportiert werden. Um sie in der Timeline
anzeigen zu lassen, missen sie allerdings im .csv Format umgewandelt werden. Zum anderen
werden weitere externe Daten geladen, die fiir die graphische Reprasentation wichtig sind,
wie beispielsweise die Koordinaten der annotierten AQOIs. Diese werden in einer .csv Datei
gespeichert. Die Bibliothek D3.js bietet eine Funktion queue() an, mit welcher man externe
Daten dynamisch laden kann. Diese Funktion wandelt .csv-Dateien direkt in JSON Objekte
um. Dabei muss geachtet werden, dass die erste Zeile der Datei als Schliissel (Key) von der
Funktion interpretiert wird. Im Programm selbst, werden intern die nétigen Daten aus der
.csv Datei herausgefiltert (siche Abschnitt 2.3.2) und in ein JSON Objekt gespeichert. In vielen
Literaturbiichern wird angemerkt, dass das Laden externer Dateien, besonders in Verbindung
mit der queue()-Methode, zu Problemen fithren kann. Dies ist auch hier der Fall, weshalb
man zur Umgehung des Problems einen simplen lokalen Server startet. Das Programm an
sich bestehst aus drei Dateien: timeline.html, style.css und timeline.js. Diese befinden sich alle
im selben Ordner. Um das Programm zu starten, ruft man im Browser, nachdem man den
simplen Server gestartet hat, die Datei timeline.html auf. Der grofie Vorteil Browser-basierter
Anwendungen ist, dass man sie nicht lokal auf der Festplatte installieren muss. Somit kann
man die Datei, sofern sie lokal gespeichert ist und man in diesem Fall eine Internetverbindung
hat, direkt im Browser abrufen.

4.2.1 Datei auswahlen

Die Daten der Teilnehmer werden vom Tobii Studio exportiert und in zwei Ordner unterteilt.
Ein Ordner beinhaltet die Review Vorgénge der einzelnen Teilnehmer, der andere enthélt
die Review Vorgéange geordnet nach Programmen und Programmdarstellung. Diese befinden
sich lokal auf dem Rechner. Die ausgewahlten Dateien werden untereinander in Form einer
Timeline angezeigt, die aus vielen Rechtecken besteht. Die Dauer einer Fixation erkennt man
dabei an der Breite des Rechtecks. Je breiter, desto Langer dauerte die Fixation in diesem Punkt.
Somit kann man die unterschiedlichen Leistungen der Teilnehmer singuldr oder untereinander
vergleichen. Abbildung 4.7 zeigt den eben beschriebenen Vorgang. Fiir die x-Achse wird aus der
.csv Datei der Wert TimeStamp verwendet. Dies ist ein Zeitstempel, der die Zeit in Millisekunden
aufzeichnet, ab dem Beginn der Blickbewegungsaufzeichnung. Dabei wird eine Fixation aus
mehreren aufeinanderfolgenden GazePoints zusammengesetzt (siche Abbildung 4.8), wenn der
Abstand zwischen ihnen innerhalb bestimmter Bereiche bleibt [TobiiStudio2.XUserManual].
Die Fixationsdauer wird aus der Differenz zwischen aufeinanderfolgenden Fixationspunkten
berechnet.

34

4.2 Realisierung

® © ® [iocainosti4s41s/esktop/ x

m e

& C fi localhost:49415/Desktop/TimeLine/Timeline/materialize/tex..

http Server starten und
.html Datei aufrufen

Lade lokale .csv II

Datei und zeige sie
im Browser an

©® © ® [iocatnost:49415/Desktop/

& CcC f localhost:49415/Desktop/TimeLine/Timeline/materialize/text. html

S N

NN R

Abbildung 4.7: Visualisierungsprogramm und Darstellung der Timeline im Browser

Zusétzlich zur Visualisierung werden Fixationsanzahl und Sakkadenanzahl angezeigt, sowie
die Gesamtdauer der Betrachtung des Stimulus. Die im Vorfeld im Tobii Studio definierten
AOQIs werden farblich unterschieden. Somit kann man in der Timeline nachvollziehen, welche
AOI angeschaut wurde. Links neben der Timeline wird jeweils immer der Stimulus angezeigt,
sowie die Programmkomponenten. Die lange der Balken gibt jeweils an, wie lange eine AOI
verglichen zu den anderen angeschaut wurde. Links neben den Hits wird das aktuell betrachtete
Stimulus im Original Format 1900 x 1200 Pixel angezeigt siehe (Abbildung 4.9).

Die Balken der Koponenten haben dieselbe Farbe der ihnen zugehorigen AOIs in der Timeline.
Schwarze Rechtecke in der Timeline signalisieren, dass keine AOI angeschaut wurde. Wenn
man mit der Mouse tiber die Elemente gleitet, erscheint ein Tooltip mit den Namen der AOL
Somit hat man eine kompakte Darstellung der zusammengehorigen AOIs. Unterhalb der
Timeline kann man zusétzlich den Wechsel der Leserichtung der betrachteten Zeilen in Form
eines Balkens ansehen(siehe Abbildung 4.10). Dabei zeigt gelb die Richtung an, wenn man von
rechts nach links schaut und blau im anderen Fall.

35

4 Visualisierungswerkzeug

e0e P01-AverageSJAVA.csv
PEHOHS OB & ©- ZriurEr [@] B @ [100%/+] @ (9 (Fixation Gount_Accumulate.@) 4 | »)
A POS1 | Layout | Tabellen | Diagramme | SmartArt | Formeln | Daten | Uberprifen ~ B
Seite einrichien Ansicht Drucken Fenster
S N S E‘ = s L= = Gitternetzlinien Anpassen 1 |%| | Skalierung: [+ B =]
5 137 L] = EERN e = R
Ausrichtung GroBe Rander Umbriiche Hintergrund Kopt- und FuBzeile Normal Seitsnlayout Optionen Vorschau Titel wiederholen Unerschriften 1 5 100% 5 Neu = H
A4 T Jx -
A R P w—) L I R S———— et e s b s i), el et s s ot s .
| 23 |Eye: Average
[22| vaidity: Nor
| 25 | Fixation fite
| 26 |velacity thr
| 27 | Distance thre
== |
| 29 |Timestamp | GazePointyLi CamiLeft _ Camvieft Distanceleft Pupilleft Validityleft GazePointXR GazePeintYR CamRight Cam¥Right _DistanceRigh PupilRight _ ValidityRight Fixationinde: GazePointX_ GazePointY _Event Eventk
250616 ImageStart
254630| 5114743 06188655 0503104 6451736 2601974 0 837024 5028753 04174814 (4932142 6413818 2,515385 [543 243 507
254547| 4995750 0,6190448 05032361 6451483 2,582745 0 8458544 5192312 04176498 04932364 6417167 2,528859 [543 852 509
254663| 497,2837 0,6190950 05032144 6450426 2,557671 0 8465038 5083868 04178458 04932134 6414334 2,50864 [543 224 503
254680| 504004 0,6191258 05032264 6450898 2,604785 0 8413846 509,89 04178876 04932045 6414012 2,892779 o 543 843 507
250697 5008046 0,6191084 05032091 6451224 2567162 0 8436777 5060086 0417863 0493164 6414316 2,504776 0 543 85 503
254713| 5104974 06190712 05030895 6452499 2,508297 0 8350464 5104782 04177163 0493004 6418965 2,487337 [543 26 510
254730| 4959579 0,6190171 05030994 6452277 2,574494 0 847,3923 5065501 04176153 04929956 641,9099 2,519782 [543 229 501
254747| 4819431 0,618950 05033624 6455337 2,555279 0 8415478 5093279 04175637 04930785 6417858 2,504 [543 229 496
254763| 5140005 0,6189384 05034961 6455869 2,614455 0 8396016 512,0374 04175418 04932591 6417277 2,503507 o 543 835 513
254780| 507,7813 0,6189395 0,50354 6455451 2,502867 0 8350741 5178872 0417538 04933424 6416689 2,480745 0 543 844 513
254797 494478 0618961 05035264 6455807 2,583334 0 839,325 5096233 04175639 (04933921 6417304 2,488856 [543 851 502
254813 5062162 0,6190023 05035275 6455049 2,509561 0 8434620 5101017 04176219 04935223 6419191 2,485823 [543 850 508
254830| 507,888 0,6190411 05035999 6453314 2,585916 0 8467748 5114705 04176844 04935631 642,0048 2,492952 [543 228 510
5059362 0,6190663 0,5036296 645,267 2,610355 0 8457267 5043056 04177685 04935532 541,8987 2,497529 [543 851 505
254863 527,2336 0,6197936 05037124 6456478 266017 0 7362657 4920872 0,A1B4975 04936156 6416398 2,526747 0 544 738 510
254880| 508,7021 0,6201107 05038521 6454114 2619008 0 7145018 5053864 04189156 04936685 641,3752 2510662 0 544 714 507
254807| 519,836 0,6200482 05038906 6451756 2,624817 0 719447 5071655 04188051 04937221 641,343 2518627 0 544 718 514
254913| SOB,0605 0,6200410 05038406 6451426 2,641735 0 7189905 5077998 0,4188779 04936986 641,008 2,509751 0 544 721 508
254930| 5089617 0,6200103 05035933 6451198 2,601041 O 716847 511628 04188191 04935028 B41681 2,521866 0 544 77 510
|50 | 254947) 526825 06200075 05033119 6450447 2,68128 0 7288472 5117116 04188458 04933131 6415268 2,547653 0 544 726 519
| 51| 254963 5257039 06200323 05032024 6450916 2,682767 0 7194138 5136783 04188832 04932157 641371 2507585 0 544 720 520
|52 | 254980) 5963956 06201074 05030408 6445424 2,666771 0 7410016 5885350 0,4189612 04931196 641,7557 2,558782 0 544 728 592
|53 | 254997) 5205727 06202117 05030022 6447336 2,684578 0 727,81 5234208 04190608 0493151 641,9034 2576105 0 544 737 522
|54 | 255013) 527,556 06202639 05032576 6447868 2,675512 O 7303755 5296094 0,4191653 04933473 641756 2,586416 0 544 731 528
| 55| 255030) 518,8925 06203038 05034928 6447274 2,646754 0 7255195 5249072 04192561 0493559 6414275 2,591148 0 544 728 522
56 255046| 537,2813 0,6203355 05036722 6448138 2,689038 0 7270231 5132002 0,419307 04938125 641,3323 250384 0 544 728 525

<< =~ 7] Po1-Average5)AVAcsy | +]

Abbildung 4.8: GazePoints werden zu einer Fixation zusammengefasst.

Component: Keyword public (1.22)
s | y

Component: Variable i (1.11)
Component: undefined
Component: undefined
Component: undefined
Component: Variable i (1.7)
Component: Keyword int (1.9)
Component: Variable sum (1.9)
Component: undefined
Component: Keyword public (1.3)
Component: undefined
Component: While-Loop (1.13-18)
Component: Keyword static(l.22)
Component: Keyword void (1.22)
Component: Scaner input (1.32)
Component: Main function (1.22)
Component: CSD symbol for public static classll
Component: Scanner variable (1.26)
Component: undefined

Component: Variable input (1.24)
Component: Variable input (1.30)
Component: Scanner System in (1.26)
Component: Console input (1.28)
Component: undefined

Component: Keyword int (1.24)
Component: Keyword int (1.7)
Component: undefined

Component: Return statement (1.19)

) (1.5)

Abbildung 4.9: Hier werden die einzelnen Programmkomponenten angezeigt, und die jewei-
lige Zeile in welche sie sich befinden. Die Balken signalisieren wie lange sie
im vergleich zu den anderen Komponenten angeschaut wurden.

36

4.2 Realisierung

50,000 100,000 150,000 200,000 2

0
(AT ATV N T LA A (A

Fixation count: 417 Saccade count: 416 Time in minutes: 2.8

Abbildung 4.10: Hier sieht man den Wechsel der Leserichtung. Gelb signalisiert, dass der
Leser von rechts nach links liest und blau im anderen Fall.

37

5 Eyetracking-Studie

In diesem Kapitel wird die Durchfiihrung der Eyetracking-Studie vorgestellt. Die Aufgabe der
Teilnehmer bestand darin, 6 Java Programme in jeweils drei unterschiedlichen Darstellungen,
Plaintext, Java-Syntax-Highlighting und letzteres noch inklusive mit Control Structure Diagrams,
jeweils auf einen Semantikfehler zu untersuchen und die Funktionsweise zu bestimmen. Die
Studie wurde zum Teil bereits von Uwano [UNM+06] mit 5 Teilnehmer und von Sharif [SFM12]
mit 15 Teilnehmer nochmals durchgefiihrt (siehe Kapitel 3.2).

5.1 Ablauf der Studie

Vor der eigentlichen Studie wurde eine Pilotstudie mit zwei Probanden durchgefiihrt, um
mogliche Fehlerquellen beim Studienverlauf frithzeitig zu erkennen. Der Versuchsaufbau im
Tobii Studio bestand insgesamt aus 12 Folien, die nacheinander eine Introduktionsfolie und
das Stimulus aufzeigte. Der Aufbau wurde optimiert, indem eine zusatzliche Folie eingefiigt
wurde, zwischen der Introduktionsfolie und dem eigentlichen Stimulus, auf der das Programm
nochmals angezeigt wurde mit Zeilenangabe. Sie diente dazu, den Teilnehmern die Zeit fiir
Kommentare zu gewéhren. Fiir die eigentlichen Stimuli hatten sie maximal 5 Minuten Zeit. Die
Zeit wurde dabei nebenher gepruft und nach Ablauf, oder nachdem sie den Fehler gefunden
hatten, wurden die Teilnehmer aufgefordert auf die Spacetaste zu driicken. Es wurden auch
einige eher Formale Fehler, die den Fragebogen betrafen angemerkt. Diese wurden vor der
durchfithrung der Studie behoben.

Der formale Ablauf sah fiir jeden Probanden folgendermaf3en aus:

1. Einverstandniserklarung:

Zu Beginn der Studie bekommt jeder Teilnehmer eine Einverstdndniserkldrung. Darin
steht, dass er jeder Zeit dazu berechtigt ist, die Studie abzubrechen und die Daten anonym
aufgenommen werden.

2. Fragebogen zur Person:

Nach der Einverstandniserklarung fiillt der Teilnehmer den ersten Teil des Fragebogens.
Er enthalt Fragen zu Alter, Geschlecht, Sehhilfe, Hochschulabschluss und angestrebter
Abschluss (siehe Anhang A.1).

39

5 Eyetracking-Studie

3. Farb- und Sehtest:

Um zu testen, ob der Teilnehmer eine Sehschwache hat, wurde ein Farb- und Sehtest
durchgefithrt. Somit wurde sichergestellt, dass die Daten nicht beeintrachtigt werden
(siehe Kapitel 5.6).

4. Tutorial:

Vor der Studie war es wichtig die Teilnehmer auf denselben Kenntnisstand zu brin-
gen, weshalb ein Tutorial zu den CSDs erstellt wurde. Dafiir wurden Beispielcodes
(siehe Beispiel in Abbildung 5.2) verwendet um die eingesetzten Symbole zu erklaren.
Anschlieend wurde der Allgemeine Ablauf der Studie erklart.

5. Kalibrierung:

Durch die Kalibrierung wird gewéhrleistet, dass die Augenbewegungen von der Kamera
richtig aufgefasst werden. Dabei miissen 9 Punkte auf dem Bildschirm verfolgt und
fixiert werden. Mit einer Kinnstiitze wird die Position des Kopfes stabilisiert und ein
Abstand zwischen 63 und 66 cm zum Bildschirm sichergestellt.

6. Betrachten der Programme:

Jeder Teilnehmer besitzt eine Identifikationsnummer, wobei jede Nummer durch die
Graeco Latin Square-Aufteilung eine unterschiedliche Sequenz der Bilder aufzeigt(siehe
Abbildung 5.3). Nach einer Folie wird ein Stimulus aufgezeigt, gefolgt von einer Zwischen-
folie. Dort hat jeder Teilnehmer Zeit, die Funktionsweise und den Fehler des betrachteten
Programms wiederzugeben. Die maximale Zeit pro Stimulus betrug 6 Minuten.

7. Fragebogen zu den Programmen:

Nach Ablauf der Studie fiillt der Teilnehmer den zweiten Teil des Fragebogens(siehe
Anhang A.2) aus, der sich auf die betrachteten Stimuli bezieht. Es wurden Fragen zu
Vorkenntnisse, Verstandnis, Anstrengung gestellt. Um zu wissen, welche Darstellung er
bevorzugt, wird er gebeten, die Codedarstellungen zu bewerten. Die letzten Seite des
Fragebogens ist fiir Kommentare gedacht.

8. Aufwandsentschadigung:

Nach Beendigung der Studie wird dem Teilnehmer als Aufwandsentschadigung ein
iiberraschungsei gegeben.

5.1.1 Technischer Aufbau

Die Studie fand im Labor des VISUS-Gebédudes der Universitat Stuttgart statt. Damit mogliche
Storfaktoren keinen Einfluss auf die Studie haben konnten, wurden sowohl die Tir als auch die
Fenster geschlossen gehalten. Die Rollladen wurden auch heruntergelassen. Auflerdem wurden
die Teilnehmer darum gebeten ihre Handys auszuschalten. Fiir die Blickbewegungsaufnahme

40

5.2 Hypothesen

wurde der Eyetracker T60 XL der Firma Tobii verwendet. Fiir die Datenaufnahme wurde die
Software Tobii Studio 2.2.8 verwendet. Die Programmsequenz wurde auf einem 24“Monitor
mit einer Bildschirmauflosung von 1920 x 1200 Pixel dargestellt.

5.2 Hypothesen

Folgende Hypothesen wurden in den vergangenen Studien formuliert (Uwano [UNM+06] und
Sharif [SFM12]):

Hypothese 1

Die durchschnittliche Dauer, bis der Teilnehmer den Fehler findet, ist gleich unabhangig davon,
ob der Code anfangs gescannt wurde oder nicht .

Hypothese 2

Die Genauigkeit, mit der der Fehler gefunden wird, ist gleich unabhangig von der Scan-Zeit.

Hypothese 3

Die visuelle Anstrengung ist gleich, unabhangig, von der Scan-Zeit.

Hypothese 4

Die Erfahrung hat keinen Einfluss auf die Scan-Zeit, und somit keine Auswirkungen auf die
Zeit bis zur Fehlerdetektion und Genauigkeit.

Die Hypothesen, die wahrend dieser Studie entstanden sind, werden im Diskussionskapitel
vorgestellt.

41

5 Eyetracking-Studie

5.3 Variablen

Man unterscheidet zwei Typen von Variablen, unabhdngigen und abhdngigen, die die Hypo-
thesen betreffen. Bei den unabhdngigen Variablen handelt es sich um Variablen, die wihrend
eines Experiments gedndern werden konnen. In dieser Studie sind das die verwendeten Java
Programme in den unterschiedlichen Darstellungen(siehe Kapitel 5.4).

Die abhdngigen Variablen hangen von den unabhangigen ab. Sie sollten sich wahrend einer
Studie nicht 4ndern, denn in ihnen Zeigt sich die Auswirkung der unabhdngigen und werden
in einer Studie gemessen. Die abhdngigen Variablen dieser Studie sind z.B. die Zeit bis zur
Fehlererkennung oder die Fixationsanzahl pro AOL

5.4 Stimuli

Die verwendeten Stimuli fiir die Studie sind 6 Programme, die urspriinglich von Uwano in der
Programmiersprache C geschrieben wurden. Fir diese Studie wurden sie in der Programmier-
sprache Java umgeschrieben, da die Teilnehmer Studenten waren, die als erste Programmier-
sprache Java gelernt haben und beinhalten jeweils denselben logischen Fehler. Die Grofle der
Bilder wurde auf 1900 x 1200 Pixel gesetzt, wobei jede Zeile eine Hohe von 21 Pixel besitzt. In
der folgenden Tabelle sind alle wichtigen Details zu den Programmen enthalten.

Zusatzlich wurden drei unterschiedliche Codedarstellungen verwendet, Plaintext, Java Sy-
stax Highlighting und letzteres mit Control Strukture Diagrams (CSD) ergénzt. Dabei soll
der unterschiedliche Einfluss, den sie wiahrend der Coderanalyse haben konnen, untersucht
werden.

Control Strukture Diagrams (CSD) wurden entwickelt, um den Programmierer beim Pro-
grammverstdndnis zu unterstiitzen. Dabei sollen die Diagramme im Programm integriert
werden, indem sie wie eine natiirliche Erweiterung des Programms selbst wirken, ohne das
Erscheinungsbild drastisch zu andern [HCM+02]. GRASP Editoren [www.eng.auburn.edu]
automatisieren die Generierung von CSDs im Programmcode und wurden auch hier verwendet.
Das Ergebnis kann man in Abbildung 5.2 sehen. Um eine ausgeglichene Verteilung der Stimuli
zu erreichen und Lerneffekte durch Wiederholung zu minimieren, wurden Graeco Latin Squares
[Hol03] verwendet. Die Verteilung der Programme wird in Abbildung 5.3 gezeigt. Dabei steht
P fiir Plaintext,] fir Java Syntax Highlighting und C fiir Java Syntax Highlighting inklusive
CSD. Das zugehorige Programm zu der Nummer, kann man in der Tabelle 5.1 ablesen.

5.5 Aufgabe

Die Aufgabe der Teilnehmer bestand darin eine Sequenz von 6 Java Programmen die jeweils in
drei unterschiedlichen Codedarstellungen prasentiert wurden, auf einen semantischen Fehler

42

5.5 Aufgabe

Nummer | Programm Name | Funktionsweise Semantik Fehler Zeilen

1 Accumulate Der User gibt eine nicht | Die Schleifenbedin- | 38
negative Integer Zahln | gung ist falsch. Die
ein. Das Programm bil- | Besingung sollte lauten
det die Summe aus allen | (n<=0) statt (n<0).

Zahlen von 1..n.

2 Average-5 Der User gibt 5 Integer | Eine Typkonvertierung 35
Zahlen ein und das Pro- | von Integer zu dou-
gramm berechnet dar- | ble fehlt. somit entsteht
aus den Durchschnitt. | ein Rundungsfehler im

Durchschnitt.

3 Average-Any | Der User gibt eine belie- | Die Anzahl der Schlei- | 46
bige Anzahl an Integer | fendurchlaufe ist falsch.
Zahlen ein (max.255) | Das Programm berech-
bis 0 eingegeben wird. | net immer den Durch-

Das Programm berech- | schnitt von 255 Zah-
net den Durchschnitt | len unabhingig von den
der eingegebenen Zah- | eingegebenen Zahlen.
len.

4 Prime Der User gibt n Inte- | Die Logik in der Be-| 40
ger Zahlen ein. Das Pro- | dingungsabfrage ist ver-
gramm uberpriift, ob n | kehrt, somit wird das
eine Primzahl ist oder | Ergebnis auch umge-
nicht. kehrt.

5 Swap Der User gibt zwei Zah- | Die Pointer werden 46
len ein. Das Programm | falsch verwendet und
vertauscht die, durch | somit werden die Zah-
die swap()-Funktion | len nicht ausgetauscht.
und gibt dann das
Ergebnis aus.

6 Sum-5 Der User gibt 5 Inte- | Die Variable sum wurde 26
ger Zahlen ein. Das Pro- | nicht initialisiert.
gramm berechent die
Summe dieser Zahlen.

Tabelle 5.1: Informationen zu den verwendeten Stimuli

43

5 Eyetracking-Studie

import java.util.Scanner;
1 import java.util.Scanner; 1 import java.util.Scanner; 2
2 2 S public class sums {
3 public class Sums { 3 public class Sum5 { 7
4 4 [public static void main(String[] args) {
5 public static void main(String[] args) { 5 public static void main(String[] args) {
o A 6 R = int i, input;
7 int i, input; 7 int i, input;
8 8 -
— i =0;
9 i=0; 9 i=0;
10 10
whil <
11 while(i < 5) { 11 while(i < 5) { hile(i < 5)
12 12
13 Scanner sc = new Scanner(System.in); 13 Scanner sc = new Scanner(System.in); Scanner sc = new Scanner(System.in);
14 14 o I
15 System.out.println("Input Number: "); 15 System.out.println("Input Number: "); System.out.println(”Input Number: °);
16 16
17 input = sc.nextInt(); 17 input = sc.nextInt(); input = sc.nextint();
18 18
19 sum = sum + input; 19 sum = sum + input; sum = sum + input;
20 20
21 i=4+ 1; 21 i=1+1; 21 i=1+1;
22 } 22 } 22 }
23 23 23
24 System.out.println("Sum: " + sum); 24 System.out.println("Sum: " + sum); 24 |— System.out.println(“Sum: * + sum);
25 } 25 } : Ly
26 } 26 } }

Abbildung 5.1: Die Abbildung zeigt denselben Code in den 3 unterschiedlichen Darstellungen.
(von links nach rechts: Java Syntax Highlighting, PlainText, Java Syntax
Highlighting inkl. CSD)

Teilnehmerl
Teilnehmer?2
Teilnehmer3

Teilnehmer5
Teilnehmer6

Teilnehmer?7

Teilnehmer$8

Teilnehmer9
TeilnehmerlO
Teilnehmerll
Teilnehmerl?2

Abbildung 5.2: Programmverteilung mittels Graeco Latin Square

zu untersuchen. Zusétzlich sollte auch die Funktionsweise des Algorithmus bestimmt werden,
um, infolgedessen, den logischen Fehler zu finden. Pro Programm hatten sie maximal 6 Minuten
Zeit. Spatestens dann wurden sie aufgefordert, auf einer nachsten Folie im Studienverlauf,
mittels Think Aloud Methode die Funktionsweise und den Fehler laut zu sagen. Jedes Programm
beinhaltet einen semantischen Fehler. In Tabelle 5.1 sind alle Programme aufgelistet, mit der
entsprechenden Funktionsweise und den Programmfehler.

44

5.6 Teilnehmer

5.6 Teilnehmer

Insgesamt haben 12 Personen an der Studie teilgenommen. Davon waren 3 weiblich und 9
méannlich. Das Durschnittsalter lag bei 26,28 Jahren mit einer Alterspanne von 22-36 Jahren. 8
Personen waren Brillentrager und 3 davon haben Kontaktlinsen getragen. Vor der Eyetracking
Studie, musste jeder Teilnehmer ein Sehtest und ein Farbtest (Ishihara-Test) durchfiithren.
Der Test ergab, dass alle Teilnehmer eine normale Sehkraft hatten. Durch die Ergebnisse
des Farbtests wurde festgestellt, dass keine Farbfehlsichtigkeiten der Teilnehmer vorhanden
waren.

Unter den Teilnehmern waren 8 Bachelorstudenten, 3 Masterstudenten und ein Diplomstudent.
Die Studienange umfassten: Informatik, Softwaretechnik, Physik, Elektrotechnik, Infomations-
technik, Technische Kybernetik und Luft- und Raumfahrttechnik. Alle hatten Programmierer-
fahrung und im speziellen mit der Programmiersprache Java.

45

6 Auswertung

Es folgt nun die Auswertung der Daten, mittels der von Tobii Studio ermittelten deskriptiven
Statistik und die visuelle Analyse der Daten, mit Hilfe des entwickelten Visualisierungspro-
gramms. Im Folgenden wird der Einfachheit halber die Java Syntax Highlighting Darstellung
inklusive CSD mit CSD abgekiirzt und die Java Syntax Highlighting Darstellung mit Java.

6.1 Vorverarbeitung der Daten

4 Probanden mussten wieder neu aufgenommen werden, um die Ausgeglichenheit der betrach-
teten Stimuli zu gewéahrleisten.

Annotation der AOIs

Bevor man die Daten in Tobii Studio auswertet, mussen die AOIs annotiert werden. Dieser
Vorgang ist auch fiir das Entwickelte Tool wichtig. Bei der Definition der AOIs wurde dabei die
Lage des semantischen Fehlers beriicksichtigt. Beispielsweise wurde im Programm Accumulate
PlainText die While-Schleife als AOI definiert, wie in der folgenden Auswertung erkennbar ist,
weil sich dort der Fehler befand.

6.2 Ergebnisse der unabhangigen Variablen

Es folgt nun die statistische und visuelle Auswertung der Daten. Es wird keine inferentielle
Statistik durchgefithrt. Die Hypothesen werden aus den Ergebnissen der durchgefiihrten
Studie und des entwickelten Tools formuliert und sollten in einer weiteren Studie vertieft und
statistisch ausgewertet werden. Dennoch wird ein Blick auf die deskriptive Statistik geworfen,
um eine generelle Sicht auf die Daten zu erhalten.

In den vergangenen Studien wurden die Hypothesen aus Kapitel 5 analysiert. Dabei hat
Sharif [SFM12], basierend auf die Ergebnisse der Studie von Uwano [UNM+06], beispielsweise
untersucht, wie die Zeit bis zur Fehlerdetektion und die Scan-Zeit in Beziehung zueinander
stehen (siehe Hypothese 1). Dabei wurde festgestellt, dass die Scan-Zeit einen relevanten

47

6 Auswertung

Durchschnittliche Fixationsanzahl pro AOI

30

I

PlainText Java Syntax Java Syntax
Highlighting Highlighting inkl. CSD

Abbildung 6.1: Durchschnittliche Fixationsanzahl pro AOI in den drei unterschiedlichen
Codedarstellungen.

Einfluss auf die Zeit bis zur Fehlerdetektion hat. Je sorgfiltiger das Programm gescannt wird,
desto schneller kommt man zum Ergebnis. Somit wurde die erste Hypothese verworfen. Da
die Scan-Zeit in Verbindung steht mit der Anzahl der Fixationen, wurde in der Studie somit die
dritte Hypothese auch verworfen. Die zweite Hypothese konnte nicht verworfen werden, da
man es nicht fiir die Gesamtheit der Daten verallgemeinern konnte. Hypothese 4 wurde auch
verworfen, da man herausfand, dass Anfanger im Schnitt ca. 25,8 Sekunden ldnger brauchten
beim Review-Vorgang, als Fortgeschrittene. Uwano fand unterschiedliche Muster in den Review-
Vorgangen der Teilnehmer, die neue Einblicke in die Leseweise des Codes verschaftfen konnten.
Beispielsweise das Scan Muster, das auch in dieser Arbeit in vielen Reviews erkannt wird, oder
das Retrace Declaration Pattern (siehe Kapitel 3 Abb. 3.3). Das Scan Muster bezieht sich dabei
auf die Zeit, bis 80% des Codes gelesen wurde. Beide Studien differenzieren sich nicht nur in
der Anzahl der Teilnehmer (Sharif: 15 Teilnehmer, Uwano: 5), Sharif fiirhrte mehr statistische
Tests durch, die die Hypothesen von Uwano teilweise unterstiitzen (Beispiel: Relevanz der
Scan-Zeit bei der Fehlererkennung).

Die subjektive Empfindung der Teilnehmer in dieser Studie, lasst vermuten, dass sie sich
durch das fehlende Highlighting mehr anstrengen mussten beim Code Review. Die deskriptive
Statistik in Abbildung 6.2 zeigt, dass die durchschnittliche Dauer bis zur Fehlererkennung pro
Programmdarstellung, bei der CSD Variante am gréfiten war. Fiir die PlainText Darstellung,
haben die Teilnehmer im Schnitt 181,5 Sekunden, fiir die Java Darstellung 167 Sekunden und
fur die CSD Darstellung 225,5 Sekunden gebraucht. Somit hat die Fehlersuche in der CSD
Darstellung 58,5 Sekunden ldnger gedauert als in der Java Darstellung und 44 Sekunden langer
als in der PlainText Darstellung.

Die deskriptive Statistik in Abbildung 6.1 zeigt auflerdem, dass bei der PlainText Darstellung
eine AOI im Schnitt 8 Mal angeschaut wurde, bei der Java Darstellung 11 Mal und bei der CSD
Darstellung 9,5 Mal.

48

6.3 Visuelle Analyse der Daten

Durchschnittliche Zeit um den Fehler zu finden

—
- X o
1 —_—
% 2 | .
o 1 S E— |
o « I]
E . ‘#
= (=]
o - : [1
- —_ —_—
[I I
PlainText Java Syntax Java Syntax

Highlighting Highlighting inkl. CSD

Abbildung 6.2: Dieses Boxplot zeigt die durchschnittliche Zeit in Sekunden an, mit der der Feh-
ler in den unterschiedlichen Codedarstellungen gefunden wurde. Dabei sieht
man, dass man in der Java Darstellung im Durchschnitt den Fehler schneller
gefunden hat, verglichen zur CSD und PlainText Darstellung. Die PlainText
Darstellung war im Schnitt schneller als die CSD Darstellung. Betrachtet
man jedoch die individuelle Performance der Teilnehmer (siehe gestrichelte
Linien), variieren die Werte zwischen den Codedarstellungen sehr, sodass
PlainText insgesamt schlechter ausfillt.

6.3 Visuelle Analyse der Daten

In diesem Abschnitt werden die Daten, mit Hilfe des entwickelten Tools, visuell analysiert.

In Abbildung 6.3 wird ein Vergleich gemacht zwischen allen Teilnehmern die das Stimulus
Accumulate PlainText angeschaut haben. Im ersten Fenster sieht man den Review-Vorgang von
Teilnehmer Nummer 1. Mit 14,6 Minuten hat er verglichen zu den anderen Teilnehmern, fiir den
gesamten Studienversuch am wenigsten gebraucht. Fir diese Aufgabe (Accumulate PlainText)
hat er 2,8 Minuten gebraucht. Es ist deutlich erkennbar, wie der Code zuerst gescannt wurde, um
dann den Fokus auf die While-Schleife zu setzten, wo sich der Fehler auch befand. Wenn man
seinen gesamten Studienverlauf anschaut kann dieses Verhalten in 83% der Review-Vorgiange
beobachtet werden.

Teilnehmer Nummer 2 hat 4,54 Minuten gebraucht fiir dieselbe Aufgabe. Der Review-Vorgang
von Teilnehmer zwei sieht im Vergleich dazu anders aus. Man findet in seiner Visualisierung
auch einen Scan Muster, allerdings zieht sich das in die Lange, bis das komplette Programm
angeschaut wurde. Sein Blick verweilt in der While-Schleife und man erkennt, dass sich die
Leserichtung innerhalb der Zeilen selbst sich oft &ndern (sieche Abbildung 6.3 Balken unterhalb
der Timeline). Man sieht, dass er den Fehler méglicherweise schon zu Beginn gefunden hat,
weshalb er den Fokus hauptséchlich auf die While-Schleife setzt, dann den Rest des Programms
beobachtet, um wiederrum zum Fehler zu springen. Die Fixationsanzahl und Dauer sind auch

49

6 Auswertung

150,000 200,000

0 50,000 100,000
00T AR AT VI AT T (TR

Fixation count: 417 | Saccade count: 416 | Time in minutes: 2.8

e W - y
I T O L TR L T by
Y I ! !

| ‘ﬁ ' !
LT TR

. e) 0 50,000 100,000 150,000 200,000
= YRR TRRAAN TN AR A

Fixation count: 934 | Saccade count: 933 | Time in minutes: 4.54

W, T
! Wﬂl; T

50,000 100,000 150,000 200,000

0
(T AT R

Fixation count: 200 | Saccade count: 199 | Time in minutes: 1.4

b K Y ! '

wh o b mo, IR

h s o L R AL IR L ML
= e) 0 50,000 100,000 150,000 200,000
= 00 T AR T T A N AR MITN

Fixation count: 1059 | Saccade count: 1058 | Time in minutes: 5.8

R R T I

! I\‘Au‘\‘ " . “
(] i i [oy

: e) 0 50,000 100,000 150,000 200,000
- 0 K

Fixation count: 443 | Saccade count: 442 | Time in minutes: 2.65

Abbildung 6.3: Hier werden die Review-Vorginge von 5 Teilnehmer verglichen, die das-

50

selbe Programm Accumulate PlainText angeschaut haben. Man sieht, die
unterschiedlichen Performances der Teilnehmer untereinander aufgelistet.
Dadurch ist ein direkter Vergleich moglich. Hier erkennt man unter anderem
verschiedene Scan Muster, sowie die unterschiedliche Dauer der individuellen
Review-Vorgénge. Es wird auch der Richtungswechsel innerhalb der Zeilen
gezeigt unterhalb der Timeline (blau, wenn der Blick vom aktuellen Stand
nach rechts wandert, gelb im umgekehrten Fall). Zusatzlich wird links die
Haufigkeit, mit der eine AOI angeschaut wird angezeigt. Dies varriert auch je
nach Performance.

6.3 Visuelle Analyse der Daten

Abbildung 6.4: Scanpath von Teilnehmer 1 und 2 im Vergleich. Man erkennt, dass die Fixatio-
nen bei Teilnehmer 2(organge) viel weniger dauern (sieche Grofie des Kreises)
und die Anzahl grofier ist.

unterschiedlich (siehe Scanpath Abb. 6.4). Dieses Verhalten sieht man in all seine Review-
Vorgange. Er hat fiir den gesamten Versuch 34,4 Minuten gebraucht.

Der dritte Teilnehmer, hat im Vergleich zu den ersten zwei mit 1,4 Minuten am kiirzesten
gebraucht. Sein Scan Muster ist nicht gleichméfig, wie das des ersten Teilnehmers. Es scheint
sogar, als wiirde er die While-Schleife tiberspringen, um zuerst die main()-Methode zu analy-
sieren und anschlieffend springt er wieder hoch zur While-Schleife. Seine Strategie konnte ihm
einen zeitlichen Vorsprung gegeben haben, da er versucht den Kontrollfluss, beginnend von
der Hauptmethode des Programms, zu analysieren. Was man bei diesem Teilnehmer feststellen
kann ist, dass er diese Strategie nicht in all seinen Review-Vorgéngen konsequent durchgefiihrt

hat (siehe Abbildung 6.5).

50% seines gesamten Review-Vorgangs dhnelt dem Review-Vorgang des zweiten Teilnehmer. In
den restlichen 50% fallt auf, dass seine Strategie in der PlainText Darstellung mit Scan Muster
versehen ist. Dies konnte ein Indiz dafiir sein, dass durch das fehlende Highlithing, sein Blick
nicht von spezifischen Programmkomponenten gefangen wird, weshalb er gezwungen ist, eine
Struktur im Programm kiinstlich herzustellen und im Schnitt ca. 2 Minuten langer gebraucht
hat, um den Fehler zu finden. In der CSD und in der Java Darstellung, sind die Vorgiange

51

6 Auswertung

Jonent; Variable ¢ (117)
t: Variable sum=0 (.11)

1
- — hip " oo h

fym, I|I|i||I| i ih ULLTE A | | iy ‘.\ !
” :\I""‘l"w/\m\ \‘. ‘\‘wf "'Jul'wu wlll‘ 'nl,II [Il\ uiu - e 'ﬁl‘ \ I\ y “
! | " i v W
—
-
.
50,000 100,000 150,000 200,000
H||| (R UMV CRCETT AR CCAIRAIE] O T R
Fixation count: 962 | Saccade count: 961 | Time in minutes: 7.28
"
H 1" w“‘"‘. L) ' : “I “‘ \‘.‘ I“‘ H‘III\‘I MM | "\ ‘i. ‘
hry ‘u' L , y oy o Yoy
:_ l |I' '|||||u u\- ‘\V"\-\'E i | ‘ “y "‘ . “
= ! Wow '\\"!‘I‘I“I T yin NERET
- - | [Ll L] g emo oy |
h
- e 50,000 100,000 150,000 200,000

Fixation count: 585 | Saccade count: 584 | Time in minutes: 4.05

Abbildung 6.5: Hier werden weitere Review-Vorgéange von Teilnehmer Nummer 3 gezeigt.
Dabei sieht man deutlich, dass er in anderen Reviews unstrukturierter vorge-
gangen ist und langer gebraucht hat.

eher unstrukturiert und von langen Fixationen unterschiedlicher Programmkomponenten
charakterisiert. Insgesamt hat er 26,3 Minuten gebraucht.

Beim vierten Teilnehmer springt als erstes ins Auge, dass er mit 5,8 Minuten am langsten fiir
dieselbe Aufgabe gebraucht hat. Die Komponenten, die er am ldngsten betrachtet hat, sind
hauptséchlich Schliisselworter und die While-Schleife, wo sich der Fehler befindet. Verglichen
zu den anderen Vorgéngen erkennt man, dass er vom oberen Anfang des Programms zum Ende
wandert und umgekehrt, und das mehrmals im Review-Verlauf. Diesen Lesevorgang erkennt
man in allen Reviews seines Studien-Vorgangs. Zudem sieht man deutlich, dass er bei der CSD
und der PlainText Darstellung um einiges langer gebraucht hat (siehe Abbildung 6.6).

Dies konnte daran liegen, dass er bei der PlainText Darstellung zu wenig Farbreferenzen zu
den Komponenten hat, um den Code strukturiert zu analysieren, somit muss er auch, wie
Teilnehmer Nummer 3, eine Struktur im Code bilden, um dann den Fehler zu finden. Bei
der Java Darstellung hat er hingegen durch das Highlighting eine Struktur im Programm,
somit wird er beim Review unterstiitzt. Man muss auch erwahnen, dass die Programme eine
unterschiedliche Lange haben. Dies kann auch ein Grund, fiir die unterschiedliche Dauer der
Reviews sein. Insgesamt benétigte er 37,1 Minuten.

Teilnehmer Nummer 5 hat einen dhnlichen Lesefluss wie Teilnehmer Nummer 1 und 3. Man
sieht, dass er im Vergleich zu den anderen Kandidaten weniger AOIs angeschaut hat und sich
hauptsachlich auf den Fehler in der While-Schleife konzentriert. Innerhalb seines gesamten
Review-Vorgangs erkennt man keine genaue Lesestrategie, da sich die Review-Vorgénge nicht

52

6.3 Visuelle Analyse der Daten

b | | [| i

[\\ l\l‘“l‘H \‘\ . oy ‘lﬂlu |

50,000 100,000 150,000 200,000

0
QR T AR AT EROTCURTY A AR T

Fixation count: 1059 | Saccade count: 1058 | Time in minutes: 5.8

l\.l‘l H"‘ 1 [1 e ‘\
I
(I !I”I‘”\“‘ , ! n“
'y L} I
| W g W i

50,000 100,000 150,000 200,000

: 0
AT O AT T

Fixation count: 468 | Saccade count: 467 | Time in minutes: 2.12

Abbildung 6.6: Reviews von Teilnehmer 4. Hier sieht man den unterschied, wie er die Plain-
Text Aufgabe und die Java Aufgabe gelost hat und man erkennt, dass er fiir
die PlainText Aufgabe langer gebraucht hat um den Fehler zu erkennen.

ahneln und zusétzlich haben die Codedarstellungen auch keinen Einfluss gehabt, da der Fehler
auch in unterschiedlichen Codedarstellungen gefunden wurde. Insgesamt hat er 28,4 Minuten
gebraucht.

Die Programmiererfahrung von Teilnehmer 1 und 3 liegen im hohen Niveau (5-6). Teilnehmer
Nummer 2 und 5 haben eine fortgeschrittene Programmiererfahrung (3-4) und Teilnehmer
Nummer 4 ist ein Programmieranfanger.

Es folgt nun die Anaylse aller Teilnehmer die Accumulate JAVA angeschaut haben die in
Abbildung 6.7 zu sehen ist.

Teilnehmer Nummer 1, hat in seinem Review-Vorgang die While-Schleife am langsten an-
geschaut und es ist keine genaue Lesestrategie zu erkennen. Die Fixationspunkte sind kurz
und springen haufig von einem Extrem zum andern des Programms. Was man auch in seinen
restlichen Review-Vorgiangen beobachten kann. Fiir den gesamten Versuch hat er 28,6 Minuten
gebraucht.

Bei Teilnehmer Nummer 2 hingegen, erkennt man das Scan Muster und die Komponente die
am meisten angeschaut wurde, ist ebenfalls die While-Schleife. Diese Lesestrategie behalt er in
jedem seiner Review-Vorgange bei. In 67% der Review-Vorgéange seiner gesamten Studie, hat er
den Fehler durch diese Strategie gefunden. Insgesamt brauchte er 21 Minuten. Verglichen zum
ersten Kandidaten erkennt man eine strukturierte Vorgehensweise beim Lesen des Programms.
Abbildung 6.8 zeigt die unterschiedlichen Scanpaths von Teilnehmer 1 und 2 .

53

6 Auswertung

= L ‘| | o a0 fy h'”w“ ol I\”‘I‘“‘.“" "r"\w‘ by ¥
. I
— ‘ i I l\\ "V a hy \Wu '\‘H ' h f “\II " ' i\ ! 'fl‘. My |‘
- ! !‘\ M “lu\‘uu"l ’\ 1 “‘W ww" 4 ‘\J 'H‘ fl
— I [| I
. G
' 1
! 50,000 100,000 150,000 200,000
: H|||\| 0 AN Ot
Fixation count: 1004 | Saccade count: 1003 | Time in minutes: 4.08

: iy '

o U, A " Wiy
.- I 1
: \ “'H ! I .'w"l‘lw ‘«\ Wb n“ ' hY | i
= L™ 'hu W g

50,000 100,000 150,000 200,000

Fixation count: 703 | Saccade count: 702 | Time in minutes: 3.55

"‘mm |h'“w\ Illf ‘I‘ mm" ! Mu '\ﬂ, " iy

[t ! [}
W 'I‘um“ ‘ ! |I‘ "\.n'H uy iy, ﬂ\ll‘
o g Voo’ e

50,000 100,000 150,000 200,000

Fixation count: 590 | Saccade count: 589 | Time in minutes: 3.04

- TR "L T y
- ‘A II " o
" e Wiy

50,000 100,000 150,000 200,000

‘Component: Keyword static '

Fixation count: 245 | Saccade count: 244 | Time in minutes: 1.33

Abbildung 6.7: Hier werden die Teilnehmer angezeigt, die das Programm Accumulate Java
angeschaut haben. Der direkte Vergleich zeigt die unterchiedlich lange Dauer
der Review-Vorginge, sowie der Fokus, den die jeweiligen Teilnehmer auf die
Komponenten des Programms gesetzt haben.

54

6.3 Visuelle Analyse der Daten

pupllc @katie int mai@Sun @iingn {
¢ eTe
= ® P

Abbildung 6.8: Scanpath von Teilnehmer 1 und 2 im Vergleich. Teilnehmer 1 (links oben) hat
eine hohe Anzahl an Fixationen, verglichen zu Teilnehmer 2.

Der Review-Vorgang von Teilnehmer Nummer 3, sieht kompakter aus und man sieht im
Vergleich zu den andern Teilnehmern, keine grofien unterschiede. Er brauchte insgesamt 22,5
Minuten fiir den gesamten Versuch und auch er fand in 67% der Review-Vorgénge einen Fehler.
Diese Lesestrategie findet man in seinem gesamten Studienverlauf.

Der letzte Teilnehmer hat den Fehler am schnellsten gefunden. Er wandert zur main()-Methode
und simuliert den Kontrollfluss des Programms, wie Teilnehmer Nummer 4 im Accumulate PT
Stimulus. Er hat 100% der Fehler gefunden und eine Gesamtdauer von 21,35 Minuten gebraucht.
Wenn man seinen gesamten Review-Vorgang getrachtet, erkennt man viele kleine Scan Muster
und die Performance zwischen den jeweiligen Codedarstellungen unterscheidet sich kaum, sie
variiert nur in der Dauer, abhéngig von der Lange des Programms.

Teilnehmer 1 ist ein Programmieranfianger(1-2), der Teilnehmer Nummer 2 hat eine mit-
telmafBige Programmiererfahrung (3-4) und die restlichen zwei haben eine fortgeschrittene
Programmiererfahrung(5-6).

Es werden nun alle Teilnehmer verglichen, die das Accumulate CSD Programm angeschaut
haben. Die Review-Vorgiange sieht man in Abbildung 6.9. Der Review-Vorgang vom ersten
Teilnehmer weist gewisse Scan Muster auf, iiber den gesamten Ablauf. Er hat eine hohe
Anzahl an Fixationen benétigt, dennoch hat er den Fokus nicht auf die While-Schleife gesetzt,
im Gegensatz zu den anderen Teilnehmen. Seine restlichen Review-Vorgange sind durch
wiederholte Scan Muster charakterisiert. Insgesamt brauchte er 32,3 Minuten und hat in 50%
des Review-Vorgangs den Fehler gefunden.

55

6 Auswertung

‘\-l” wWa o0 'n".- Nl 1 '\‘1..) iy i

g .'”ﬁ\i‘l..l.‘,n \ - i g m\\‘ ‘ull,| oy I‘\W'I‘H'H"“‘ \,‘ A
" Y | 1

o ey W I i Wi i

50,000 100,000 150,000 200,000

Fixation count: 723 | Saccade count: 722 | Time in minutes: 3.82

Component: Variable | (1.7) —

TN \ll\.u (LI T A

‘Component: Keyword public (15) .

‘Component: undefined

‘Component: Keyword it 9)

‘Component: undefined -
¢

sum (19 -
‘Component: Return statement (119)
int(1:29)

50,000 100,000 150,000 200,000

Fixation count: 242 | Saccade count: 241 | Time in minutes: 1.79

L

WY

M A e AR
. N f 1 i

W 1
by |

‘..\‘\I-I

50,000 100,000 150,000 200,000

Fixation count: 820 | Saccade count: 819 | Time in minutes: 4.55

Abbildung 6.9: Hier werden die Review-Vorgiange der Teilnehmer gezeigt, die das Programm
Accumulate CSD angeschaut haben.

Teilnehmer Nummer 2 hat den Fehler in kiirzerer Zeit gefunden. Seine Fixationsanzahl ist
geringer und die Leserichtung dndert sich seltener als bei Teilnehmer 1. Die Anzahl der
betrachten AOIs ist auch kleiner und die am ldngsten betrachtete ist die While-Schleife. Er
brauchte 20,5 Minuten und fand auch in 50% des Review-Vorgangs den Fehler. Er hat den Fokus
hauptsichlich auf die While-Schleife setzte.

Teilnehmer Nummer 3, hat im Vergleich zu den anderen Teilnehmern am ldngsten gebraucht
und zeigt einen strukturierten Vorgang beim Review. Er scannt den Code von oben bis unten,
springt dann wieder zur Funktion makeSum() und hélt sich fiir eine gewisse Zeit auf der
While-Schleife auf und wiederholt erneut diesen Vorgang. Wenn man seinen gesamten Verlauf
anschaut, erkennt man dass er fiir die CSD Darstellung langer gebraucht hat (im Schnitt 1,2
Minuten), im Vergleich zur Java oder PlainText Darstellung.

Die Programmiererfahrung des ersten Teilnehmers ist im mittelmafig(3-4), wahrend der letzte
Teilnehmer im Bild ein Programmieranfanger ist.

56

6.3 Visuelle Analyse der Daten

1197

273 & Durchschnittliche Fixationsanzahl pro

183 Programmkomponente
2 163 .
8,7 8|
1

37 A0 34 33

A 22 oo ne g

Abbildung 6.10: Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs
im Programm Accumulate CSD.

Abbildung 6.11: Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs
im Programm Accumulate JAVA.

Abbildung 6.10, 6.11, 6.12 zeigen die durchschnittliche Anzahl der betrachteten AOIs im
Programm Accumulate in den jeweiligen Codedarstellungen. Dabei erkennt man z.B. dass in
der PlainText Darstellung, im Schnitt weniger AOIs angeschaut wurden, verglichen zur Java
oder CSD Darstellung. Schliisselworter, wie public oder class, werden in der Java Darstellung
im Durchschnitt am meisten angeschaut mit 42,5 Mal, gefolgt von der CSD Darstellung mit
42,0 withrend in der PlainText Darstellung nur 24,2 Mal angeschaut wurden. Die Variablen
wurden bei der PlainText Darstellung auch relativ wenig mit 40,4 Mal angeschaut, in der CSD
Darstellung 58,0 Mal und in der Java Darstellung 66,75 Mal. Die While-Schleife wurde von
allen am meisten angeschaut, dort befand sich auch der Fehler. In der CSD Darstellung wurden
die CSD Symbole relativ wenig angeschaut im Vergleich zu anderen Komponenten (im Schnitt
3,9 Mal). Im Schnitt wird jede AOI in der PlainText Darstellung 10.7 Mal angeschaut, in der
Java Darstellung 10,25 und in der CSD Darstellung 9,2 Mal angeschaut.

Alle Review-Vorgange haben schlussendlich dazu gefiihrt, dass die Funktionsweise des Pro-
gramms richtig erfasst und auch der Fehler gefunden wurde, trotz der zum Teil groflen Diskre-
panzen zwischen der Zeit, die sie fiir den Review-Vorgang gebraucht haben und der Lesestrate-
gie. Vergleicht man die Performances untereinander, so kann man, aufler der unterschiedlichen
Dauer der Betrachtung, in jeder Visualisierung eine andere Lesestrategie erkennen.

57

6 Auswertung

180
163,6

160

140

120

 Anzah!

& Durchschnittliche Fixationsanzahl pro
Programmkomponente

Abbildung 6.12: Diese Abbildung zeigt, die durchschnittliche Anzahl der Betrachteten AOIs

New operator .
onent: CSD symbol while-loop

Keyword public 116)
Keyword static (116) —
main(-method (116)

-
-
-
.
'
'
'

ol —
Variable b (13) -
Keyword static (116) '

ymethod (116) =

im Programm Accumulate PT.

50,000 100,000 150,000 200,000

Fixation count: 392 Saccade count: 391 Time in minutes: 2.2

I"ln'\ It

! i \||M\|A||‘|
Mll‘ﬂ ! \'h,u"'l '

o ‘\ gy Y

50,000 100,000 150,000 200,000

Fixation count: 250 Saccade count: 249 Time in minutes: 1.35

|\l||'.II \‘.ul ‘I Imq“ ‘ll ' ‘ \ "|I| | \
AU |

ﬂ‘ll wl III‘lll.l‘ |-

50,000 100,000 150,000 200,000

Fixation count: 417 Saccade count: 416 Time in minutes: 2.8

Abbildung 6.13: Diese Abbildung zeigt das Verhalten eines Teilenehmers, beim der Codeana-

58

lyse von 3 Programmen in jeweils 3 unterschiedlichen Codedarstellungen.
Man erkennt, dass die Fehlersuche in der Java Darstellung am schnellsten
war, sowie eine Lesestrategie, charakterisiert durch viele Scan Muster, die
der Leser in allen Vorgéngen anwendet.

6.3 Visuelle Analyse der Daten

2

w — O [w]

2

I= - o

§ - 0 0
| -

o — Q Q
E o o

g — o o
P o o o

o [[| | |] |

1000 1200 1400 1600 1800 2000 2200

Dauer in Sekunden

Abbildung 6.14: Diese Grafik zeigt die Relation zwischen der Programmiererfahrung des Teil-
nehmers und die gesamte Dauer des Review-Vorgangs in Sekunden. Dabei
ist zu erkennen, dass Programmierer mit derselben Programmiererfahrung
auch unterschiedliche Performances haben kénnen.

In Abbildung 6.13 werden die Review-Vorgéange eines einzelnen Teilnehmers verglichen. Dabei
werden fiir den Vergleich jeweils 3 unterschiedliche Programme in den drei Darstellungen
gewahlt. Die Programme sind Accumulate PlainText Average5 Java und Swap CSD. Man erkennt
in jedem Analyse Vorgang eine Lesestrategie, die aus Scan Mustern zusammengesetzt ist.
Der Teilnehmer fand den Fehler in der Java Darstellung in 1,35 Minuten, in der PlainText
Darstellung in 2,8 und in der CSD Darstellung in 2,2 Minuten. Somit war die Fehlersuche in
der Java Darstellung am schnellsten, gefolgt von der CSD und der PlainText Darstellung.

Abbildung 6.15 zeigt zusammenfassend die durchschnittliche Dauer in Sekunden, um den
Fehler zu finden. Dabei wird die Dauer fiir die jeweiligen Stimuli in den unterschiedlichen Code-
darstellungen angezeigt. Man erkennt, dass die CSD Darstellung und die PlainText Darstellung,
im Vergleich zur Java Darstellung schlechter abschneiden.

59

6 Auswertung

350
300
250
200 mpT
150 — — — — —] , i JAVA

100 D

50“‘....‘

0
Accumulate Average5 AverageAny Prime Swap

Abbildung 6.15: Durchschnittliche Zeit in Sekunden bis der Fehler gefunden wird, in den
unterschiedlichen Codedarstellungen.

6.4 Auswertung des Fragebogens

Im Folgenden werden die Ergebnisse des Fragebogens vorgestellt. Diese dienen zur Messung
des subjektiven Empfindens der einzelnen Codedarstellungen. Um eine bessere Aufteilung zu
erhalten, wurde die Skala nochmals in 3 Kategorien aufgeteilt, niedrig(1-2), mittelmaflig(3-4)
und fortgeschritten(5-6).

6.4.1 Vorkenntnisse

1. Ich habe Programmiererfahrung: Skala: 1 = wenig,6 = viel

Insgesamt lag der Mittelwert bei 3,8. 2 von 12 Teilnehmer haben eine hohe Programmiererfah-
rung, 7 von 12 eine mittelméflige und 3 von 12 eine niedrige Programmiererfahrung.

2. Ich habe Programmiererfahrung in Java : Skala = 1 wenig, 6 = viel

Hier lag der Mittelwert bei 2,4. Insgesamt gab es 2 Teilnehmer mit fortgeschrittenen Program-
miererkenntnissen in Java, 4 Teilnehmer mit einer mittelmafligen und 6 Teilnehmer mit einer
niedrigen Programmiererfahrung in Java.

6.4.2 Anstrengung

Wie sehr mussten Sie sich anstrengen, um die gestellte Aufgabe zu erfiillen? Skala 1
= gar nicht, 6 = viel

Der Mittelwert lag bei 3,7. Abbildung 6.16 stellt die Anstrengung grafisch dar.

60

6.4 Auswertung des Fragebogens

6

5 +—

4 —

9 .

N ' . . B

0 T T T T - T -—\
1 2 2 5 2 0

Anzahl der Teilnehmer

Anstrengung

Abbildung 6.16: Diese Abbildung zeigt, wie sehr sich die Teilnehmer anstrengen mussten,
von einer Skala von 1 bis 6.

Verstandnis

Wie sehr haben die unterschiedlichen Visualisierungen dazu beigetragen, den Code
besser schneller zu verstehen?

1. Plaintext : Skala: 1 = gar nicht, 6 = viel

Der Mittelwert lag bei 1,5. 6 Teilnehmer haben es auf einer Skala von 1 bis 6 mit 1 bewertet, 2
mit 3 und 3 mit 2.

2. Java Syntax Highlighting : Skala: 1 = gar nicht, 6 = viel
Der Mittelwert lag bei 5,3. 6 Teilnehmer haben es mit 6 bewertet, 3 mit 5 und 3 mit 4.
3. Java Code inkl. COntrol Strukture Diagrams : Skala: 1 = gar nicht, 6 = viel

Der Mittelwert lag bei 3,0. Es gab ein Teilnehmer der des mit 3 bewertet hat, d mit 3, einer mit
4, einer mit 5 und zwei mit 6.

Ranking

Welche der Visualisierungen wiirden Sie bevorzugen, wenn Sie den Java-Code auf
Fehlerexistenz analysieren miissten? (Ranking von 1(hoch) bis 3(niedrig))

1. Plaintext

2. Java-Syntax-Hyghlighting

3. Java Code mit Control Structure Diagrams

Die Mittelwerte waren, fiir PlainText 2,9 , fiir CSD 2,1 und fiir Java 1,0. (siehe Abbildung 6.17)

61

6 Auswertung

35
3,0
2,5 7
2,0 -
1,5
1,0
” -
0,0 -
Ranking PT Ranking CSD RankingAVA

Abbildung 6.17: Durchschnittliche Scores des Rankings. Man sieht, dass Java bevorzugt wird,
gefolgt von CSD und PlainText(PT)

62

7 Diskussion

In diesem Kapitel werden die Ergebnisse der Studie anhand der entstandenen Hypothesen
diskutiert.

Hypothese 1

Control Structure Diagrams beschleunigen die Fehlersuche im Programm, verglichen zu den
anderen Darstellungen.

Sowohl die subjektive Empfindung der Teilnehmer als auch die deskriptive Statistik haben
gezeigt, dass die CSD Diagramme, keinen unterstiitzenden Effekt bei der Fehlersuche im
Programm hatten. Die Statistik in Abbildung 6.16 zeigt, dass man in den CSD Darstellungen
der Stimuli, im Schnitt langer gebraucht hat, um den Fehler zu finden, verglichen zu den
anderen Darstellungen. Wahrend Programmieranfianger die CSDs als gute Ergdnzung zum
Code empfanden, wurden sie von fortgeschrittenen Programmierern eher als tiberfliissig oder
ablenkend empfunden. Dies konnte dazu gefithrt haben, dass sie beim Review Vorgang eher
ignoriert wurden, oder den Reviewer durch die zusatzlichen Informationen eher verwirrt

haben.

Auf visueller Ebene konnte man durch das Visualisierungswerkzeug in einzelnen Review
Vorgéngen jedoch beobachten, dass die CSD Darstellung (siehe visuelle Analyse in Kapitel 6),
oft genauso lange Zeit in Anspruch genommen hat, wie die anderen zwei Darstellungen. Somit
konnte der Teilnehmer in diesen Féllen die CSDs ignoriert haben. In anderen Beispielen, wurde
sogar mehr Zeit fiir die Fehlersuche gebraucht im Vergleich zu den anderen Darstellungen. Das
zeigt, dass die Reviewperformance und das Programmverstandnis von vielen menschlichen
Faktoren abhangt, wie auch Uwano [UNM+06] erkannte und man, zumindest in dieser Studie,
keine konkreten Aussagen iiber den Effekt von CSDs im Programmcode treffen kann.

Hypothese 2
Die durchschnittliche Fixationsanzahl pro AOI in der PlainText Darstellung ist kleiner, vergli-
chen zu den zwei anderen Darstellungen.

Die deskriptive Statistik in 6.1 unterstiitzt diesen Gedanken. Der Grund fiir den niedrigeren
Wert bei der PlainText Darstellung konnte sein, dass durch das fehlende Highlighting die
Teilnehmer nicht dazu animiert werden, bestimmte Komponenten zu fixieren, die fiir das

63

7 Diskussion

50,000 100,000 150,000 200,000

0
RO AR

Fixation count: 250 Saccade count: 249 Time in minutes: 1.35

1 " | \
| i ’u
-, \ | !
h t
P h‘ i ‘NI|II“I III I l‘n‘.w:ﬁl“u

Wy
I

50,000 100,000 150,000 200,000

0
LAY TR LT

Fixation count: 300 Saccade count: 299 Time in minutes: 1.52

Abbildung 7.1: Review Unterschied zwischen CSD und Java Darstellung

Programmverstandnis relevant sein konnten. Dies konnte unter anderem dazu gefiithrt haben,
dass die Fehlerdetektion bei dieser Darstellung langer gedauert hat, gefolgt von der CSD
Darstellung, wo der Zusatz an Symbolen den Review Vorgang gestort haben konnte.

Bei der Auswertung der durchschnittlichen Fixationsanzahl pro AOL fiir die Darstellungen des
Programmes Accumulate (Abbildung 6.10 bis 6.12) wurde bemerkt, dass die Schliisselworter
(public, class, static etc.) in der Java Darstellung im Durchschnitt am meisten angeschaut
wurden mit 42,5 Hits, gefolgt von der CSD Darstellung mit 42,0 Hits wahrend in der PlainText
Darstellung sie nur 24,2 Mal angeschaut wurden. Dies weist darauf hin, dass durch das High-
lighing bestimmte Programmkomponenten hervorgehoben werden, und die Aufmerksamkeit
dadurch leichter gefangen wird. Auflerdem fallt auf, dass auch die Variablen in der PlainText
Darstellung weniger angeschaut wurden. Das konnte an ihrer Position im Programm liegen.
Wenn man bei der Java Darstellung die Schliisselworter der Variablendeklaration anschaut,
wandert der Blick automatisch zur zugehorigen deklarierten Variable. Da diese Farbinformation
in der PlainText Darstellung entfallt, werden sie auch automatisch weniger betrachtet.

Durch die visuelle Analyse konnte man aber auch oft beobachten, dass der Review Vorgang
in den PlainText Darstellungen sogar strukturierter war, als in den Java Reviews. Das kann
man als Lesestrategie interpretieren. Die PlainText Darstellung, zwingt den Leser selbst eine
Struktur im Code zu schaffen, da sie ohne Hilfsmittel auskommen miussen, wahrend die Java
Darstellung, durch das Highlighting, dem Teilnehmer die notige Struktur vorgibt, um darauf
die Fehlersuche zu starten.

64

Hypothese 3

Die durchschnittliche Dauer, bis der Teilnehmer den Fehler findet, ist in der PlainText Darstel-
lung am grofiten, verglichen zu den anderen zwei Darstellungen.

Anders als erwartet, war die Fehlersuche im Schnitt in der CSD Darstellung am langsamsten.
Was man aber auch noch erkennt ist, dass die individuelle Performance der Teilnehmer in den
unterschiedlichen Darstellungen variiert, sodass PlainText insgesamt schlechter ausfallt.

Was man auflerdem feststellen konnte ist, dass, selbst wenn der Fehler nicht immer gefunden
wurde, die Funktionsweise des Programms von 96% der Teilnehmer erfasst wurde. In diesen
Vorgiangen wurde jeweils auch immer der Programmname mit einer durchschnittlichen Anzahl
von 5,5 Fixationen durchgefiihrt. Der Name hat einen hilfreichen Hinweis auf die Funktionswei-
se gegeben, wie beispielsweise Sum5(bildet die Summe von 5 Zahlen) oder Prime(entscheidet,
ob eingegebene Zahl eine Primzahl ist oder nicht). So konnte man aus einer rein logischen
Schlussfolgerung die Funktionsweise herleiten. Daraus kann man schlielen, dass ein gut
gewahlter Funktions- oder Programmname, den Review Vorgang durchaus unterstiitzen kann
und sollte bei der Programmentwicklung beriicksichtigt werden.

Die Programmiererfahrung der Teilnehmer, stimmt nicht in allen Fallen mit der Performance
tiberein. Dies bestétigt auch Abbildung 6.14, in welcher die Relation zwischen der Program-
miererfahrung und der gesamten Dauer in Sekunden gezeigt wird. Teilnehmer mit derselben
Programmiererfahrung konnen trotzdem unterschiedlich lange fiir dieselbe Aufgabe gebraucht
haben. Es ist auflerdem schwer, die Performance anhand der Programmiererfahrung zu klassi-
fizieren, da sie vom Teilnehmer selbst angegeben wird und somit eine subjektive Einschatzung
ist.

Das Scan Muster, das erstmals von Uwano [UNM+06] entdeckt wurde, ist auch in dieser
Studie in vielen Review Vorgiangen zu finden. Er definiert die Scan-Zeit als die Zeit, bis die
ersten 80% des Codes gelesen wurden. Sharif [SFM12] bestatigt durch statistischen Tests,
dass die Lange der Scan-Zeit einen eindeutigen Einfluss auf die Zeit bis zur Fehlererkennung
hat. Je akkurater der Scan Vorgang am Anfang, desto schneller oder genauer wurde der
Fehler in ihrer Studie gefunden. In dieser Studie konnte man beobachten, dass Teilnehmer
mit mehr Programmiererfahrung (5 oder 6), den Scanvorgang sogar mehrmals durchgefiihrt
haben, bis sie zu einem Ergebnis gekommen sind. Tatsachlich, wenn man Abbildung 6.3
anschaut, und beispielsweise die ersten zwei Teilnehmer vergleicht, erkennt man, dass der
erste Teilnehmer den Code in kiirzerer Zeit scannt, und auch den Fehler schneller findet. Der
zweite Teilnehmer hingegen, braucht fiir das Scanning ldnger und findet den Fehler auch spéter.
Das Scan Muster kann somit ein Indiz fiir eine strukturierte und kognitive Vorgehensweise
beim Review interpretiert werden. In Hendrix [HCM+02] Studie wurde der Effekt von CSDs
im Programmverstandnisprozess analysiert. Dabei wurde festgestellt, dass sie einen positiven
Effekt bei diesen Vorgang haben. Die Teilnehmer dieser Studie wurden hauptsachlich in
Anfanger und Fortgeschrittene Programmierer unterteilt. Besonders fiir Programmieranfianger
wurden positive Effekte erzielt, in Bezug auf das Verstdndnis des Programms. Was sich in

65

7 Diskussion

dieser Studie auch zeigt, jedoch ist die Anzahl der Teilnehmer in Hendrix Studie um einiges
grofler.

Durch die Analyse mit Hilfe des Visualisierungswerkzeugs, konnte man vor allem bei Program-
miernfanger beobachten, dass die Review Vorgéange langer und unstrukturierter waren. Die
Sakkadenrichtungen dnderten sich hdufig wie man am Balken unterhalb der Timeline sehen
konnte. Bei fortgeschrittenen Programmieren konnte man hingegen eine genaue Struktur im
Leseverhalten sehen und die Sakkadenspriinge waren insgesamt ausgeglichener im Balken
verteilt. Einen Vergleich zwischen einem Anfanger und einem Fortgeschrittenen Programmier-
anfanger kann man in den Abbildungen 7.2 und 7.3 sehen.

"t Yoy | / ' o [l '
I i

iy “\ I\ ’ V .‘\‘ . o |‘| } ‘I .

ol | iy)) ,w! | '|\ / ! !

Iy “Iq ! o, . ” . il
| | ! Wt \‘\ 'mn,u o o
e | i g el h"‘ﬂ"‘w“d(“.m,'.i X

50,000 100,000 150,000 200,000 250,000 300,000 350,000

HII L0 O RRE L R AR T N TR TR

Fixation count: 1068 Saccade count: 1067 Time in minutes: 5.35

Abbildung 7.2: Review Vorgang eines Programmieranfiangers. Der Vorgang ist von vielen
Fixationen charakterisiert, der Sakkadenbalken unter der Timeline signalisiert
den héaufigen spriinghaften Wechsel zwischen den Zeilen im Programm.

) ||‘||n ’u lum'\ o ‘Il Wy 0

L l"ugll i

50,000 100,000 150,000 200,000 250,000 300,000 350,000

Fixation count: 417 Saccade count: 416 Time in minutes: 2.8

Abbildung 7.3: Review Vorgang eines fortgeschrittenen Programmierer. Der Review Vorgang
ist gleichméaflig, die Fixationsanzahl ist gering.

66

8 Zusammenfassung und Ausblick

Zusammenfassend kann man sagen, dass die unterschiedlichen Darstellungsarten evtl. in
einigen Fallen geholfen haben, den Code besser und schneller aufzufassen, oder den Review
Vorgang sogar verlangsamt haben. Die strikte Unterteilung folgt, da die individuelle Perfor-
mance einen starkeren Einfluss auf das Ergebnis hat. Die Ergebnisse der Studie, vor allem die
visuelle Analyse, haben gezeigt, dass man die Performance der einzelnen Teilnehmer durchaus
durch Eyetracking bestimmen kann. Die CSD Diagramme wurden vor allem von Program-
mieranfangern sehr hoch gerankt und von fortgeschrittenen Programmierer als tiberfliissig
empfunden. Was aber nicht bedeutet, dass sie komplett ignorieret wurden, die deskriptive Sta-
tistik zeigt sogar, dass sie zu einer schlechteren durchschnittlichen Zeit, bis zur Fehlerdetektion
gefiithrt haben. Griinde konnten sein, dadurch dass keiner davor mit CSDs gearbeitet hat, die
Teilnehmer durch die zusatzliche Information tiberfordert waren. Die PlainText Darstellung
wurde nicht positiv bewertet, aufgrund mangelnder Informationen in Form von Highlighting.
Das Highlighting erzwingt namlich im Code eine gewisse Strukturierung, die wiederrum den
Teilnehmer dazu bringt, das Programm kritischer und zu analysieren, weshalb das Java Syntax
Highlighling bevorzugt wurde.

Insgesamt schneidet die CSD Visualisierung schlechter ab, in Bezug auf die durchschnittliche
Zeit bis der Fehler gefunden wird, gefolgt von der PlainText Darstellung. Java Syntax High-
lighting hat am besten abgeschnitten und wurde auch von den Teilnehmern bevorzugt. Ein
moglicher Grund, weshalb die CSD Darstellung nicht so gut abgeschnitten hat wie gedacht ist,
dass es sich bei den Aufgaben hauptsichlich um Wartungsaufgaben handelt. Weshalb sich die
meisten nicht darauf konzentriert haben, das Programm anhand der Symbole zu verstehen,
sondern eher darauf, unabhangig von der moglichen Hilfestellung, den Fehler so schnell wie
moglich zu finden. Wiirde die Aufgabe lauten, den syntaktischen Fehler zu finden, kénnten die
CSDs durchaus hilfreich sein, da man zusammenhangende Blocke schneller auf einen Blick
erkennt.

Durch die Analyse mit Hilfe des entwickelten Visualisierungswerzeugs, kann man die Perfor-
mance der einzelnen Teilnehmer untersuchen und vor allem miteinander vergleichen. Man
sieht, wie sich die Review Vorgéange von Teilnehmer zu Teilnehmer unterscheiden. Vor allem
bei fortgeschrittenen Teilnehmer, erkennt man eine bestimmte Lesestrategie, die sie im gesam-
ten Studienverlauf in jeder Aufgabe anwenden und damit in den meisten Fallen die gestellte
Aufgabe 16sen. Bei Programmieranfianger hingegen, sieht man zwischen den Visualisierungen
grof3e Unterschiede, da keine genauen Strategien beim Codereview angewendet wurden. Durch
die farbliche Unterscheidung der einzelnen AOIs kann man sogar sehen, welche Komponente

67

8 Zusammenfassung und Ausblick

des Programms genau angeschaut wird und wie lange, im Vergleich zu anderen. Das war in
den Visualisierungstools der vergangenen Studien nicht moglich. In Abbildung 8.1 wir das
Visualisierungswerkzeug, das in der Uwano Studie entstanden ist, angezeigt.

Abbildung 8.1: [UNM+06]. Visualisierungswerkzeug, das in der Uwano Studie verwendet
wurde. Links wird das betrachtete Programm angezeigt, und rechts wird
die zugehorige Timeline angezeigt. Der Unterschied zwischen Uwanos Vi-
sualisierungswerkzeug und das in dieser Studie realisierte Tool ist, dass die
definierten AOIs farblich in der Timeline unterschieden werden, die Hits der
AOQIs mit Hilfe eines horizontalen Balkendiagramms angezeigt werden und
die Leserichtung der Teilnehmer in einem Balken unterhalb der Timeline
visualisiert werden. (siehe Abb. 6.3)

Ausblick

Man muss an dieser Stelle spezifizieren, dass die Hypothesen nur auf deskriptiv statistischer
Ebene evaluiert wurden, weshalb man eine weitere Studie fithren sollte, um die Hypothesen
zu verifizieren oder falsifizieren. Interessant wire es auch die Effektivitat von Control Struture
Diagrams an einer Gruppe von ausschliefSlich Programmieranfidngern zu testen und das tiber
einen langeren Zeitraum, um zu schauen, ob die Control Strukture Diagrams in gewisser Weise
den Verstandnis Vorgang beschleunigen kénnen.

Man konnte zuséatzlich das Visualisierungswerkzeug so erweitern, dass man beispielsweise die
AOQIs direkt im Tool einzeichnen kann. Dadurch hat man einen gewissen Freiheitsgrad bei der
Wahl der AOIs und kann evtl. eine kategorisierte komponentenweise Analyse durchfiihren.

68

A Anhang

Im Anhang befinden sich folgende Dokumente:

1. Fragebogen zur Person
2. Fragebogen zur subjektiven Empfindung

3. Stimuli (Java Pogramme)

69

A Anhang

70

FRAGEBOGEN:

Allgemeine Fragen zu den Probanden:
Geschlecht:

O mannlich
Q weiblich

Alter:

Tragen Sie eine Sehhilfe?

Q NEIN
Q BRILLE

() KONTAKTLINSEN

Abschluss:

Q ALLGEMEINE Q BACHELOR
HOCHSCHULREIFE

Q MASTER

O STAATSEXAMEN O DIPLOM

Sonstige:

Studienfach:

Nebenfacher:

Angestrebter Abschluss:

Q ALLGEMEINE O BACHELOR
HOCHSCHULREIFE

O MASTER

O STAATSEXAMEN O DIPLOM

Sonstige:

Abbildung A.1: Fragebogen zur Person.

Vorkenntnisse:
1. Ich habe Programmiererfahrung: () NEIN () JA

Falls JA:
wenig viel
Q | o [© | o [© | 0
1 2 3 4 5 6
Programmiersprachen (Java ausgeschossen):
2. Ich habe Programmiererfahrung in Java: O NEN o JA
Falls JA:
wenig viel
Q | e | o | e [o | Q
1 2 3 4 5 6
3. Ich habe bereits mit Control Structure Diagrams gearbeitet: o NEIN o JA
Anstrengung:
Wie sehr mussten Sie sich anstrengen, um die gestellte Aufgabe zu erfillen?
gar nicht viel
Q | Q [o] Q [o [©
1 2 3 4 5 6
Verstandnis:
1. Wie sehr haben die unterschiedlichen Visualisierungen dazu beigetragen, den Code
besser/schneller zu verstehen?
Plain Text:
gar nicht viel
Q | o [o] o [o [©
1 2 3 4 5 6
Java Syntax Highlithing:
gar nicht viel
Q | o [o [o [o [o
1 2 3 4 5 6
Java Code inkl. Control Structure Diagrams :
gar nicht viel
Q | o [o [o [o [o
1 2 3 4 5 6

Ranking : Welche Visualisierung wiirden Sie bevorzugen, wenn Sie den Java-Code auf
Fehlerexistenz analysieren mussten? (Ranking von 1(hoch) bis 3(niedrig)).

O Plain Text
O Java Highlighted Syntax (wie in IDE Eclipse)
O Java Code mit Control Structure Diagrams

1

Abbildung A.2: Fragebogen zur subjektiven Empfindung

A Anhang

72

import java.util.Scanner;
public class Accumulate {
public static int makeSum(int max) {
int i;
int sum = 0;
i=0;
while(i < max) {
sum = sum + i;
i=41i+ 1;

return sum;

}

public static void main(String[] args) {
int input, sum;
Scanner sc = new Scanner(System.in);

System.out.println("Input number: ");

input = sc.nextInt();
sum = makeSum(input);
System.out.println("Sum from 1 to " + input + " is " + sum +

Abbildung A.3: Accumulate

import java.util.Scanner;
public class Average5 {
public static void main(String[] args) {
int i, input, sum;
double ave;
sum = @;
i= 0;
while(i < 5) {
Scanner sc = new Scanner(System.in);

System.out.println{"Input number: "

input = sc.nextInt();

sum = sum + input;

ave = sum / i;

System.out.println(“Average: + ave);

Abbildung A.4: Average5

<)

import java.util.Scanner;
public class AverageAny {
public final static int MAX = 255;
public static wvoid main(String[] args) {
int i, num;
int[) list = new int[MAX);
double sum = 0;
i=0;
while(i < MAX) {
Scanner sc = new Scanner(System.in);
System.out.println("Input number: ");
list[i] = sc.nextInt();
if(list(i) == 0) {

break;

i=1i4+1;

while(i < MAX) {
sum = sum + list[i];

i=1i+1;

}

System.out.println("Average of" + i + "Num is" + sum / i);

Abbildung A.5: AverageAny

import java.util.Scanner;
public class Prime {
public static void main(String[] args) {
int i, num;
boolean isPrime = false;
Scanner sc = new Scanner(System.in);
System.out.print(”Input Number:");
num = sc.nextInt();
i=2;
while(i < num) {
if(num % i == false) {

isPrime = 1;

if(isPrime == true) {

System.out.println(num + ° is prime number.”);

¥
else {

System.out.println(num + * is NOT prime number.”);
}

Abbildung A.6: Prime

73

A Anhang

import java.util.Scanner;
public class Swap {
public static void swap(int a, int b) {
int tmp;
tmp = a;
a = b;

b

tmp;

}
public static void main(String(] args) {
int[]) list = new int(2];
int i;
i= 0;
while(i < 2) {
System.out.print("Data " + (i + 1) + ":");
Scanner sc = new Scanner(System.in});
list[i) = sc.nextInt();

i=41i+1;

}
swap(list[0]), list(1]);
i= 0;
while(i < 2) {
System.out.println("Data #" + (i + 1) + ":" + list[i]);

i=1i+1;

Abbildung A.7: Swap

import java.util.Scanner;
public class SumS5 {
public static wvoid main(String[] args) {
int i, input;
i= 0;
while{i < 5) {
Scanner sc = new Scanner({(System.in);

System.out.println{"Input Number: ");

input = sc.nextInt();
sum = sum + input;
i= i+ 1;

System.out.println("Sum: + sum);

Abbildung A.8: Informationen zu den verwendeten Stimuli.

74

Literaturverzeichnis

[BKR+14]

[Boe+81]

[BT06]

[CS90]

[Duc07]

[FKA+13]

[GB09]

[Gul14]

[HCM+02]

[HNS06]

[Hol03]

[KR91]

T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, T. Ertl. ,State-of-
the-art of visualization for eye tracking data®. In: Proceedings of EuroVis. Bd. 2014.
2014 (zitiert auf S. 20).

B. W. Boehm et al. Software engineering economics. Bd. 197. Prentice-hall Engle-
wood Cliffs (NJ), 1981 (zitiert auf S. 23).

R. Bednarik, M. Tukiainen. ,An eye-tracking methodology for characterizing
program comprehension processes®. In: Proceedings of the 2006 symposium on Eye
tracking research & applications. ACM. 2006, S. 125-132 (zitiert auf S. 25, 26).

M.E. Crosby, J. Stelovsky. ,How do we read algorithms? A case study”. In: Com-
puter 23.1 (1990), S. 25-35 (zitiert auf S. 25).

A. Duchowski. Eye tracking methodology: Theory and practice. Bd. 373. Springer
Science & Business Media, 2007 (zitiert auf S. 15, 17, 19).

J. Feigenspan, C. Kastner, S. Apel, J. Liebig, M. Schulze, R. Dachselt, M. Papendieck,
T. Leich, G. Saake. ,Do background colors improve program comprehension in
the# ifdef hell?” In: Empirical Software Engineering 18.4 (2013), S. 699-745 (zitiert
auf S. 11, 24, 27).

E. Goldstein, J. Brockmole. Sensation and perception. Nelson Education, 2009
(zitiert auf S. 16-18, 27).

C. Gull. BigData mit JavaScript visualisieren. Franzis Verlag GmbH, 2014 (zitiert
auf S. 29, 32).

D. Hendrix, J. H. Cross, S. Maghsoodloo et al. , The effectiveness of control struc-
ture diagrams in source code comprehension activities®. In: Software Engineering,
IEEE Transactions on 28.5 (2002), S. 463—477 (zitiert auf S. 26, 42, 65).

T. Hakala, P. Nykyri, J. Sajaniemi. ,An experiment on the effects of program code
highlighting on visual search for local patterns®. In: Psychology of Programming
Interest Group (2006), S. 38—52 (zitiert auf S. 27).

A.F.G. Hole. How to Design and Report Experiments. SAGE Publications Ltd, 2003
(zitiert auf S. 42).

J. Koenemann, S.P. Robertson. ,Expert problem solving strategies for program
comprehension®. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. 1991, S. 125-130 (zitiert auf S. 11).

75

[LV00] F. Lanubile, G. Visaggio. ,Evaluating defect detection techniques for software
requirements inspections®. In: ISERN Report no. 00-08 (2000), S. 1-24 (zitiert auf
S. 24).

[MMS+04] A. Moreno, N. Myller, E. Sutinen, M. Ben-Ari et al. ,,Visualizing programs with
Jeliot 3% In: Proceedings of the working conference on Advanced visual interfaces.
ACM. 2004, S. 373-376 (zitiert auf S. 26).

[SFM12] B. Sharif, M. Falcone, J.I. Maletic. ,An eye-tracking study on the role of scan time
in finding source code defects®. In: Proceedings of the Symposium on Eye Tracking
Research and Applications. ACM. 2012, S. 381-384 (zitiert auf S. 25, 39, 41, 47, 65).

[UNM+06] H.Uwano, M. Nakamura, A. Monden, K.-i. Matsumoto et al. ,Analyzing indivi-
dual performance of source code review using reviewers’ eye movement”. In:
Proceedings of the 2006 symposium on Eye tracking research & applications. ACM.
2006, S. 133-140 (zitiert auf S. 11, 24-26, 29, 39, 41, 47, 63, 65, 68).

[Wie96] K.E. Wiegers. Creating a software engineering culture. Pearson Education, 1996
(zitiert auf S. 23).

[Zuh11] D. Zihlke. Nutzergerechte Entwicklung von Mensch-Maschine-Systemen: Useware-
Engineering fiir technische Systeme. Springer-Verlag, 2011 (zitiert auf S. 15).

Alle URLs wurden zuletzt am 19.05. 2016 gepriift.

Erklirung

Ich versichere, diese Arbeit selbststandig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngemaf3 aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priiffungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Einführung in Eyetracking
	2.1 Motivation zur Forschung der Blickbewegung
	2.2 Die Anatomie des Auges
	2.3 Eyetracking

	3 Verwandte Arbeiten
	3.1 Programmverständnis Modelle
	3.2 Erkenntnisse aus Eyetrackingstudien

	4 Visualisierungswerkzeug
	4.1 Technologien
	4.2 Realisierung

	5 Eyetracking-Studie
	5.1 Ablauf der Studie
	5.2 Hypothesen
	5.3 Variablen
	5.4 Stimuli
	5.5 Aufgabe
	5.6 Teilnehmer

	6 Auswertung
	6.1 Vorverarbeitung der Daten
	6.2 Ergebnisse der unabhängigen Variablen
	6.3 Visuelle Analyse der Daten
	6.4 Auswertung des Fragebogens

	7 Diskussion
	8 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

