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Kurzfassung

Automatisierte Systemtests sind die wohl gängigste Methode sinnvoll den Aufwand des Sys-

temtests zu verringern. Die Tests zu schreiben, ist jedoch noch immer mit Aufwand verbunden

und die Tests decken in der Regel nur eine Teilmenge der von Nutzern ausgelösten Szenarien

ab. Fuzz-Tests sind Tests auf Basis zufällig generierter Eingaben. Sie versprechen bei langer

Ausführungszeit mehr Nutzerszenarien bei geringerem Aufwand abzudecken. Um die Aus-

führungszeit zu verkürzen wird ein lernfähiger Algorithmus evaluiert und mit einem rein

zufälligen Algorithmus verglichen. Die Evaluation zeigt, dass in der Theorie ein lernfähiger

Algorithmus in der Lage ist, eine hohe Überdeckung der Szenarien zu erreichen.
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1. Einleitung

Diese Ausarbeitung befasst sich mit Systemtests und deren Automatisierung. Der System-

test ist der einzige Test im Softwarezyklus, der Funktionalität des Prüflings vollständig tes-

ten kann[Joc13][S.491]. Er kann als Integrationstest auf höchster Ebene verstanden wer-

den[Joc13][S.491]. Ein Integrationstest testet ob Programmteile richtig miteinander agieren

[Joc13][S.491]. Beim Systemtest, sind diese Programmteile der Prüfling, andere Komponenten

des Systems und vor allem anderen der Nutzer. Der Systemtest ist notwendig, richtig aus-

geführt jedoch mit einem sehr hohen Aufwand verbunden [Joc13][S.62]. Selbst die bereits

verwendeten Automatisierungstechniken, erfordern einiges an Implementierungsaufwand.

Deshalb befasst sich diese Arbeit mit der automatischen Generierung der Testskripte, anhand

der bereits eingesetzten Technologie und durch Fuzz-Tests. Fuzz-Tests sind Tests mit zufällig

generierten Eingabewerten. Bei Black-Box Fuzz-Tests, die Nutzereingaben simulieren, spricht

man häufig von „Monkey Tests“ Kapitel 4. Die zufälligen Eingaben, erzeugen viele Szenarien,

die ein menschlicher Tester nicht testen würde [Nym00], jedoch auch viele redundante Sze-

narien. Deshalb wird evaluiert, ob durch einen lernfähigen randomisiserten Algorithmus die

erzeugten Szenarien weniger redundant und vielfältiger werden. Die verwendete existierende

Technologie sind die so genannten Page-Objects [sel17]. Sie erlauben es die Oberfläche des

Prüflings zu automatisieren. Durch das ihnen zugrunde liegende Entwurfsmuster, bilden sie

den möglichen Weg des Nutzers durch den Prüfling ab [sel17]. Diese Eigenschaft kann genutzt

werden, um automatisch einen Zustandsgraphen zu erzeugen, auf dem die zufälligen Tests

äußerst präzise ausgeführt werden können. Der Aufwand für die Vorbereitung des Verfahrens

wurde ermittelt und ein geeigneter Algorithmus gefunden. Die Eigenschaften des Algorithmus

wurden in einem Experiment geprüft Kapitel 6.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Automatische Systemtests: Hier werden die Anforderungen an Systemtest

und ihre Automatisierung vorgestellt und der Aufwand erörtert.

Kapitel 3 – Zustand basiertes Testen: bietet eine Einführung in Zustandsbasiertes Testen

und stellt eine Testbaum basierte Methode vor.

Kapitel 4 – Monkey-Tests: befasst sich mit den Monkey-Tests und stellt zwei unterschiedli-

che Ansätze.
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1. Einleitung

Kapitel 5 – Das Verfahren: stellt die Problemdefinition. Die automatisierte Generierung des

Zustandsgraphen und der Testfälle wird hier beschrieben.

Kapitel 6 – Lernfähigkeit: betrachtet wie der Algorithmus zur Testfallauswahl, durch Lernfä-

higkeit verbessert werden kann und beinhaltet einen Vergleichmit einem herkömmlichen

Algorithmus.

Kapitel 7 – Bewertung: Hier wird das Verfahren nach einigen Kriterien bewertet. So soll

eine Einschätzung der Eignung des Verfahrens ermöglicht werden.

Kapitel 8 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen

und stellt Anknüpfungspunkte vor.
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2. Automatische Systemtests

2.1. Anforderungen an Systemtests

Um zu klären, inwiefern automatisch generierte Systemtests, manuelle Tests ersetzen oder

ergänzen können, ist es wichtig die allgemeinen Anforderungen an Systemtests zu spezi-

fizieren. Zudem spielt die Einordnung der Tests in den Software-Prozess eine Rolle, wenn

der Aufwand an Zeit und Ressourcen der Vorgehensweisen verglichen werden soll. Nach

der Fertigung einer Spezifikation und der darin enthaltenen Anwendungsfälle, liegen alle

grundlegenden, benötigten Informationen vor, um mit der Vorbereitung der Systemtests zu

beginnen [Joc13, S.505]. Dadurch sind die Tests schon früh verfügbar, was gerade bei einem

agilen Entwicklungsprozess entscheidend sein kann, da hier nach jeder Iteration und vor

jedem Release
1
die relevanten Systemtests ausgeführt werden sollten. Ein weiterer Vorteil

der entsteht, wenn die Testfälle erarbeitet werden sobald die Spezifikation vorliegt, ist die

Überprüfung des Dokuments [And12][505].

Systemtests sind Black-Box-Tests und ziehen nur den Funktionsumfang des Prüflings in Be-

tracht, nicht jedoch die Implementierung. Die Sicht des Testers auf den Prüfling ist hier also die

Sicht des Nutzers oder des Kunden [And12][S.58]. Die Systemtests sollten diese Sicht wider-

spiegeln. Um die Systemtests in einem „systematischen Test“ verwenden zu können, müssen

die Ergebnisse des Tests dokumentiert werden [Joc13][S.480]. Folglich müssen die Ergebnisse

auch in einer von Menschen interpretier- und beurteilbaren Form vorliegen. Der Test soll

zeigen, wie gut der Prüfling die funktionalen Anforderungen erfüllt [And12][S.59]. Dies ist für

den Tester gerade dann einfach zu bewerten, wenn die Testergebnisse die Nutzersicht umset-

zen und erkenntlich wird, was der Nutzer (im Test der simulierte Nutzer) getan hat, um das

Fehlverhalten auszulösen. Wenn möglich, muss vor dem Test bereits ein Soll-Resultat definiert

sein, gegen das die Testergebnisse validiert werden können [Joc13][S.482]. Die Spezifikation

dient bei der Testvorbereitung als Anleitung für den Tester, welche Funktionen und Abläufe

auszuführen sind. Sie stellt zudem auch das Soll-Resultat, anhand dessen der Tester erkennt,

ob das Programm korrekt auf die Eingaben des Testfalls reagiert hat. Bei der Vorbereitung der

Tests muss der Tester die Spezifikation also ausführlich studieren und kann Inkonsistenzen

oder Unklarheiten entdecken [Joc13, S.504].

1
Auslieferung an einen Kunden oder Veröffentlichung auf einem freien Markt.
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2. Automatische Systemtests

Ähnlich wie bei Glass-Box oder Unit-Tests, können die ausgeführten Tests anhand einer

Überdeckungsmetrik qualifiziert werden [Joc13, S.514ff].

Aus der Spezifikation direkt ergibt sich die Funktionsüberdeckung. Eine vollständige Funk-
tionsüberdeckung ist erreicht, wenn alle in der Spezifikation definierten Funktionen

ausgeführt werden. Benötigt wird für die Funktionsüberdeckung die Liste aller Funktio-

nen und zugehörig eine Eingabegröße und eine erwartete Ausgabegröße, bzw. Reaktion

des Prüflings [Joc13][S.506].

Die Eingabeüberdeckung ist deutlich komplexer, da sie für jede Funktion eine Ausfüh-

rung mit jeder möglichen Eingabe bedeutet. Für Programme mit einer nicht trivialen

Komplexität ist dies natürlich unmöglich. Daher verwendet man für die Eingaben Äqui-

valenzklassen [Joc13][S.506], wie sie auch im White-Box-Test gebräuchlich sind. Grob

werden hier Eingaben, deren Auswirkungen auf die Funktion des Programms gleich sein

sollen, in Äquivalenzklassen zusammengefasst. Es genügt nun eine Eingabe je Klasse

auszuführen, um alle in der Äquivalenzklasse enthaltenen Werte abzudecken[And12,

S.110]. Der Überdeckungsgrad kann dann anhand der abgedeckten Äquivalenzklassen,

wie in Gleichung (2.1) ermittelt werden [And12][S.119].

Überdeckung = Anzahl getestete Äquivalenzklassen
Äquivalenzklassen

(2.1)

Die Ausgabeüberdeckung kann ähnlich wie die Eingabeüberdeckung durch Äquivalenz-

klassen erreicht werden. Wie der Name erahnen lässt, sind die Äquivalenzklassen jedoch

bezogen auf die Ausgaben des Programms.

Neben diesen rein funktionalen Tests, bieten Systemtests noch die Möglichkeit, nicht funktio-

nale Tests durchzuführen [And12][S.72]. Leistungsgrenzen z.B. die Anzahl an Aktionen auf

der Nutzeroberfläche oder Mengengrenzen, wie besonders große Datenmengen als Eingabe,

können getestet werden.

2.2. Aufwand in der Praxis und Motivation

2.2.1. Motivation

Um den Anforderungen an einen Systemtest gerecht zu werden, ist ein enormer Aufwand

nötig. Die Vorbereitung der Tests anhand der Spezifikation, die Ausführung und die Analyse

der Ergebnisse, kann große Teile der Ressourcen eines Projekts verschlingen. Der Systemtest

ist jedoch der einzige Test, der die Funktionalität des gesamten Systems testet [Joc13][S.504].

Mit anderen Worten, ob das Projekt überhaupt seinen Zweck erfüllt. Ein Projekt, dass nicht

die geforderte Funktionalität entwickelt, ist voraussichtlich zum Scheitern verurteilt. Der

Systemtest ist somit der wohl wichtigste Test und alle anderen Tests, können als Ergänzung
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2.2. Aufwand in der Praxis und Motivation

des Systemtests
2
betrachtet werden [Joc13][S.504]. Die Kosten für Integration und Test können,

wenn die Wartungskosten außen vor gelassen werden, etwa ein Viertel der Entwicklungs-

kosten betragen [Joc13][S.62]. In einem iterativen Prozess, handelt es sich am Ende einer

jeden Iteration um eine Integration der neu entwickelten Funktionalität. Diese muss selbst-

verständlich getestet werden. Da die Entwicklung in einem iterativen Projekt häufig mit dem

ersten Release nicht abgeschlossen ist, sondern geplant vor Fertigstellung der vollständigen

Funktionalität veröffentlicht wird, ist der Übergang von Erstentwicklung zur Wartung fließend.

Die Tätigkeiten der Wartung sind „Korrektur, Anpassung und Erweiterung“ [Joc13][S.62].

Nach jeder dieser Tätigkeiten, muss ein System-, bzw. Regressionstest durchgeführt werden

[And12][S.74]. Es müssen also nicht nur die Kosten des Systemtests in der Erstentwicklung,

sondern zusätzlich die Wartungskosten beachtet werden. In diesem Fall liegen die Kosten für

Wartung inklusive Integration und Test bereits bei etwa zwei Dritteln der Gesamtkosten des

Projekts [Joc13][S.72]. Ein Teil dieser Kosten, entsteht durch den Systemtest. Abhängig davon

wie groß der Funktionsumfang und wie kompliziert die Ausführung der Funktionalität, können

manuelle Systemtests viele Entwicklerstunden benötigen.

Um denAufwand zu verdeutlichen, ist hier ein Beispiel aus [And12][S.14] aufgeführt. Der Graph

in Abbildung 2.1 zeigt den Kontrollflussgraph einer Anwendung mit vier Verzweigungen und

einer Schleife um diese Verzweigungen herum. Die Schleife ergibt sich durch den Übergang von

B zurück nach A. Um jeden Pfad durch die Verzweigungen einmal ausgeführt zu haben, benötigt

man 51
Testfälle. Die Menge aller Kombinationen in einer Schleife ist natürlich unendlich,

da die Schleife unendlich oft wiederholt werden kann. Begrenzt man nun die Anzahl der

Schleifendurchläufe auf 20, ergibt sich noch immer 520 + 519 + · · · + 51
Testfälle [And12][S.14].

Bei einer Ausführungsdauer von fünf Minuten je Testfall, dauert eine manuelle Ausführung

etwa 1.000.000.000 Jahre [And12][S.14]. Sind die Tests automatisiert, dauert die Ausführung

nur noch 19 Jahre, da im Beispiel von einer Laufzeit von fünf Mikrosekunden ausgegangen

wird [And12][S.14]. Stellt jeder Pfad des Graphen eine Funktion des Programms dar, benötigt

selbst eine einfache Funktionsüberdeckung des Prüflings 25 Minuten, da 51
Testfälle mit je fünf

Minuten Dauer ausgeführt werden müssen. Eine automatisierte Funktionsüberdeckung ist in

verschwindend geringer Zeit ausgeführt. Abgesehen davon, dass es in der Praxis unmöglich

ist „vollständig zu testen“ [And12][S.15], zeigt es auch grob, wie viel Aufwand automatisierte

Systemtests einsparen können.

Besonders für iterative Prozesse und in Anbetracht der Tatsache, dass der Aufwandsunterschied

bei Regressionstests erneut ins Gewicht fällt, ist es lohnenswert die Ausführung der Systemtests

weitestgehend zu automatisieren, solange dies unter Einhaltung der in Abschnitt 2.1 genannten

Anforderungen an Systemtests möglich ist.

2
In [Joc13] wird hier von „Black-Box-Test“ anstelle des Systemtests gesprochen. Die Aussage trifft jedoch auf

den Systemtest, der durch Black-Box-Techniken ausgeführt wird, zu.
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2. Automatische Systemtests

Abbildung 2.1.: Kontrollflussgraph einer Anwendung mit vier Verzweigungen [And12][S.14]

2.2.2. Aufwand der automatisierten Tests

Es existieren unterschiedliche Ansätze zur Automatisierung von Systemtests.

Capture-and-Replay Ein Test-Tool zeichnet die Eingaben an der Nutzeroberfläche, alsoMaus-

klicks und Tastatureingaben auf und speichert sie in einem Testskript ab [And12][S.210].

Diese Tools verfügen zwar über eine gewisse Robustheit gegen Änderungen der Nut-

zeroberfläche, bedürfen jedoch oftmals Nachbearbeitung bei Änderungen. Auch äußere

Einflüsse von Simulatoren oder Netzwerkkomponenten im System müssen in die Skripts

eingefügt werden, wenn sie nicht innerhalb des Programms gesteuert werden.

Oberflächenautomatisierung Es existieren zahlreiche Tools, welche die Automatisierung

der Oberfläche rein programmatisch verwalten [Wik17b]. Sie nutzen Dienste der Be-

triebssysteme, um Objekte der Nutzeroberfläche zu erkennen [ldt17]. Im Gegensatz

zu Capture-and-Replay Tools, müssen die Testskripts jedoch von Hand geschrieben

werden. Die Objekt Repräsentanten können in einer objektorientierten Art und Weise in

sogenannten „Page-Objects“ implementiert werden (siehe Abschnitt 2.3).
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2.2. Aufwand in der Praxis und Motivation

In dieser Ausarbeitung, wird lediglich die Oberflächenautomatisierung weiter behandelt. Trotz

der händischen Erzeugung der Page-Objects, hat das Verfahren einige Vorteile. Einer davon ist

die Objektorientierung der Page-Objects und somit die hohe Wiederverwendbarkeit und die

vermeintlich gute Wartbarkeit. Zudem kann mit einem Capture-and-Replay (Car) Tool nur

genau die Funktionalität aufgezeichnet werden, die bereits vorhanden ist und vor allem auch

korrekt funktioniert, da der Testfall ja bei der manuellen Ausführung aufgezeichnet wird. Diese

Methode kann also ausschließlich zur Regression eines manuellen Tests zum Einsatz kommen

oder erzeugt einen hohen Mehraufwand bei der händischen Bearbeitung der Testskripts

[And12][S.211]. Eine automatisierte Oberfläche hingegen kann anhand der Spezifikation,

noch bevor die Funktionalität umgesetzt ist, implementiert werden. Die Implementierung

der Page-Objects lässt sich dadurch ideal in den Software-Prozess eingliedern und sofort

nach Spezifizierung der Anforderungen durchführen [Joc13][S.504f]. Zudem lässt sich so

der „Test-first“ Ansatz
3
aus dem Komponententest auf Systemtests anwenden. Auch eine

bessere Lesbarkeit der Tests ist gegenüber den Car Tests zu erwarten. Die Testskripts der Car

Tools beinhalten in der Regel die Bezeichner der Oberflächenkomponenten, anhand derer sie

diese erkannt haben. Wenn keine Komponente erkannt wurde sogar Koordinaten. Die Page-

Objects verstecken diesen Bezeichner Code vor den Tests und bieten eine von Menschenhand

geschriebene Schnittstelle zur Nutzeroberfläche an Abschnitt 2.3.

Die Automatisierung der Systemtests, ermöglicht es, den Aufwand der Tests deutlich zu verrin-

gern. Tests die bei manueller Ausführung Minuten dauern, können innerhalb von Sekunden

ausgeführt werden. Jedoch ist die Oberflächenautomatisierung selbst mit einigem Aufwand

verbunden. Die Tests müssen vorbereitet und die Ergebnisse analysiert und verifiziert wer-

den. Vorbereitend muss die Spezifikation gelesen und verstanden werden [Joc13][S.504f]. Die

relevanten Testfälle werden anhand der spezifizierten Funktionalität und dem gewünschten

Überdeckungskriterium ausgewählt [Joc13][S.504ff]. Noch während der Entwicklung sind die

Page-Objects zu schreiben. Da ein System nur selten in seiner eigentlichen Einsatzumgebung

getestet wird, werden etwaige Simulatoren benötigt, die diese Umgebung simulieren. Sobald die

Page-Objects implementiert sind, müssen die Testskripts geschrieben werden. Nach deren Aus-

führung, können die Testergebnisse verifiziert werden. Möglicherweise gab es falsch-positive

Testergebnisse, die von einem Fehler bei der Automatisierung oder einem inkorrekt geschrie-

benen Testfall ausgelöst wurden. Anschließend steht die Korrektur der Fehler an, nach der die

Testausführung wiederholt wird, um sicherzustellen, dass die gefundenen behoben und keine

neuen Fehler eingebaut wurden [Joc13][S.484f]. Dieser erneute Test ist der Regressionstest

[Joc13][S.484f].

3
Kurze Erläuterung in [And12][S.49].
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2. Automatische Systemtests

2.3. Page-Objects

2.3.1. Funktionsweise

Um die Automatisierung von Systemtests zu realisieren, muss die Nutzeroberfläche des Prüf-

lings programmatisch bedient werden können. Es existieren etliche Testframeworks, die das

ermöglichen [Wik17b]. Sie bieten die Funktionalität, Oberflächenobjekte wie Fenster, Buttons

oder Textfelder zu finden und zu bedienen. Die folgenden Frameworks sind Open-Source und

für unterschiedliche Betriebssysteme geeignet. Sie stehen repräsentativ für eine Vielzahl an

proprietären und Open-Source Lösungen, die Nutzeroberflächen automatisieren können.

ldtp 4

Testet Windows, Gnome und Java Applications

Lizenziert unter GNU LGPL

Selenium 5

Testet Web-Applikationen

Webdriver basiert

Unterstützt verteiltes Testen auf SeleniumGrid

Lizenziert unter Apache License 2.0

Appium 6

Testet Web- und native Applikationen auf iOS und Android

Nutzt Selenium Webdriver Protokoll

Lizenziert unter Apache License 2.0

Weitere Android alternativen für Appium sind Espresso
7
und Robotium

8
. Es kann also davon

ausgegangen werden, dass für alle gängigen Systeme, die zur Oberflächenautomatisierung

benötigte Technologie zur Verfügung steht. Die Frameworks haben alle eine sehr ähnliche

Funktionsweise. Sie erkennen Oberflächenelemente anhand von Bezeichnern oder vorkom-

menden Strings. Das Linux Desktop Testing Project (Ldtp) verwendet beispielsweise die AT-SPI

Layer, über die das Betriebssystem Desktop Dienste anbietet [ldt17]. Dadurch hat das Ldtp

Zugriff auf die Bezeichner der angezeigten Oberflächenelemente wie der angezeigten Fenster

oder Buttons.

4
https://ldtp.freedesktop.org/wiki/

5
http://www.seleniumhq.org/

6
http://appium.io/

7
https://google.github.io/android-testing-support-library/docs/espresso/

8
https://github.com/RobotiumTech/robotium/wiki
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2.3. Page-Objects

Um Testcode wiederverwendbar und lesbar zu machen, lohnt es sich den Framework-Code in

eigene Page-Objects zu verpacken. Für Ldtp gibt es bereits einen Ansatz
9
, der eine objektorien-

tierte Programmierweise mit Ldtp erleichtern soll.

2.3.2. Page-Object Entwurfsmuster

Ausführlichere Informationen, wie objektorientierte Page-Objects implementiert werden kön-

nen, finden sich auf der Selenium Website
10
. Die in dieser Ausarbeitung beschriebenen Page-

Objects beruhen hauptsächlich auf dem dort aufgeführten Entwurfsmuster. Der Begriff Page,

auf Deutsch übersetzt „Seite“ passt bei Seleniums Web Applikationen, bei denen es sich tat-

sächlich um Webseiten handelt gut. Aus Konsistenzgründen, werden im Folgenden auch

Fenster einer Desktop Anwendung mit Seite bezeichnet. Bei der Erläuterung des Page-Object

Entwurfsmusters, dürfte klar werden, dass die Implementierung von Seiten und Fenstern

weitestgehend gleich sind. Jede Seite des Prüflings benötigt ein eigenes Page-Object [sel17].

Jedoch können auch einzelne Sektionen einer Seite, die häufig wiederverwendet werden eige-

ne Page-Object Implementierungen haben [sel17]. Alle Methoden eines Page-Objects geben

wiederum ein Page-Object zurück. Eine Ausnahme davon sind Methoden, die den Zustand der

Seite überprüfen lassen. Beispielsweise kann ein Page-Object ein Textfeld anzeigen und eine öf-

fentliche
11 showTextF ield() Methode implementieren, die es erlaubt im Testfall Assertions

12

zu schreiben um zu überprüfen, ob die Seite den richtigen Wert anzeigt[sel17]. Die sonstigen

öffentlichen Methoden repräsentieren hier die Eingabemöglichkeiten, welche die Seite dem

Nutzer anbietet. Wichtig hierbei ist, dass das Page-Object low-level code des Testframeworks

und die interne Funktionalität der Seite versteckt[sel17]. Bietet ein Dialog beispielsweise die

Möglichkeit einen „Cancel“ und einen „Ok“ Button zu drücken, so findet das Testframework

die beiden Nutzeroberflächenobjekte über ihre internen Bezeichner und erkennt, dass es sich

um Buttons handelt, bietet also eine „click“ Methode an. Im entsprechenden Page-Object, sollte

die Suche nach den Buttons und das Klicken in entsprechenden Methoden „pressCancel“ und

„pressOK“ versteckt sein, die wiederum die folgenden Page-Objects zurück geben. So versteckt

das Page-Object den Framework-Code und bietet nur die Bedienung des Page-Objects an.

Durch den Aufruf der Methoden wird so der Weg des Nutzers durch das Programm modelliert

[sel17]. Existieren Vorbedingungen, die bei gleichem Input zu unterschiedlichen Ergebnissen

führen, müssen diese in unterschiedlichen Methoden implementiert werden [sel17]. Wichtig ist

es auf das Timing zu achten und Funktionen einzubauen, die den Framework-Code auf etwaige

Verzögerungen beim Aufbau der Nutzeroberfläche warten lassen. Auch bei Netzwerkkommuni-

kation kann es zu Verzögerungen kommen wie eine Anfrage auf einen Backend-Server. Damit

der Test auf diesem Page-Object nicht fehlschlägt und das nachfolgende Objekt gefunden

9
https://ldtp.freedesktop.org/wiki/Object-Oriented_LDTP

10
https://github.com/SeleniumHQ/selenium/wiki/PageObjects

11
Öffentlich im Sinne der Datenkapselung.

12
https://en.wikipedia.org/w/index.php?title=Assertion_(software_development)&oldid=779561246
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2. Automatische Systemtests

werden kann, muss die in der Spezifikation des Prüflings angegebene Reaktionszeit des Servers

gewartet werden.
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3. Zustand basiertes Testen

3.1. Einführung in Zustand basiertes Testen

In diesem Kapitel wird ein zustandsbasiertes Verfahren zum Test einer Software beschrieben,

wie es in [Cho78] vorgestellt wird. Der Test stellt eine Evaluation gegen die Spezifikation dar

[Cho78]. Die Methode impliziert Nutzereingaben und Reaktionen des Prüflings, daher lassen

sich mit diesem Test die funktionalen Anforderungen überprüfen. Das Verfahren kann also

im Systemtest eingesetzt werden, da dieser eben diese Anforderungen testet [And12][S.58].

Verwendet wird ein endlicher Automat dessen Knoten die Zustände des Programmes reprä-

sentieren und dessen Kanten entweder Stimuli oder Operationen sind [Cho78]. Stimuli sind

Impulse von außerhalb der Prüflings, also beispielsweise Nutzereingaben. Operationen sind

Aktionen innerhalb des Systems, die von Stimuli ausgelöst werden [Cho78]. Es können jedoch

nicht alle Softwaresysteme auf diese Art dargestellt und getestet werden [Cho78]. Nicht ein-

gebettete Software mit einer umfangreichen Nutzeroberfläche oder Command line interface

(CLI), sollten jedoch einfach in Operationen und Stimuli darstellbar sein. Dies ist im Einzelfall

zu prüfen.

Für den verwendeten Automaten werden folgende Annahmen getroffen[Cho78]:

Der Automat ist vollständig spezifiziert.

Der Automat ist minimal.

Der Automat hat einen Startzustand.

Der Automat hat nur erreichbare Zustände.

Vollständig spezifiziert, bezieht sich hier auf den Begriff der Automatentheorie. Es bedeutet,

dass für alle Zustände Z und alle Eingabezeichen X die Zustandsübergangsfunktion δ und die

Ausgabefunktion λ definiert sind [Stu17]. Es bedeutet insbesondere nicht, dass der Automat den

vollständigen Funktionsumfang des Prüflings beinhaltet. Wird die „fertige“ Software getestet,

muss diese Bedingung natürlich erfüllt sein. In einem iterativen oder agilen Prozess, sollte

der Graph jedoch nur soweit die Spezifikation wiedergeben, wie der Prüfling im aktuellen

Iterationsschritt implementiert sein soll. Ein Automat welcher die Zustände des Prüflings

repräsentiert, muss ein deterministischer endlicher Automat sein. Ein Programm muss in

einem Zustand immer gleich auf eine Nutzereingabe reagieren. Es ist klar, dass ein System das

sich nicht deterministisch verhält nicht testbar ist, da es unmöglich ist die Soll-Resultate zu

definieren. Auch beginnt der Automat immer in einem bestimmten Startzustand und hat eine
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3. Zustand basiertes Testen

Menge von Endzuständen, die das getestete Programm beenden [Cho78]. Er lässt sich also

wie ein deterministischer endlicher Automat über ein Tupel wie in folgender Gleichung (3.1)

definieren [Sch92]:

Z ist die Menge der Zustände

Σ ist das Eingabealphabet

δ ist die Übergangsfunktion

z0 ist der Startzustand

E ist die Menge der Endzustände

M = (Z, Σ, δ, z0, E) (3.1)

Um den Prüfling zu testen werden diese Schritte auf dem Automaten ausgeführt [Cho78]:

1. Schätze maximale Anzahl der Zustände im korrekten Automaten

2. Erstelle Durchläufe durch den Automaten

3. Verifiziere Zustand gegen Schritt 2

Die Schätzung der maximalen Anzahl Zustände des korrekten Automaten ist von Menschen

gemacht [Cho78]. Im Verlauf der Erläuterung wird klar werden, dass dies einen gewissen

Einfluss auf die Zuverlässigkeit des Verfahrens hat.

Testdurchläufe

Die Testdurchläufe werden anhand eines Testbaumes und einer Testsequenz erstellt [Cho78].

Die Testdurchläufe sind eine Konkatenation von P und Z . P ist eine Menge von Einga-

besequenzen. Für jeden Übergang von einem Zustand Ai zu einem Zustand Aj existieren

Eingabesequenzen p und px in P , sodass der Automat von seinem Initialzustand Astart in den

Zustand Aj gebracht wird. px ist die Eingabesequenz p gefolgt von einer weiteren Eingabe x
[Cho78].

P kann auch als ein Testbaum dargestellt werden, der sich aus dem Automaten erzeugen lässt.

Jeder von der Wurzel des Baumes ausgehende Pfad ist ein p ∈ P [Cho78]. Erzeugung des

Testbaumes:

1. Die Wurzel des Baumes wird ein Knoten, der den Startzustand des Zustandsautomaten

repräsentiert. Er wird mit dem Initialzustand Astart gelabelt.

2. Erzeuge die Tiefenebenen des Baumes wie folgt:
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3.1. Einführung in Zustand basiertes Testen

a) Gehe die Eingabesymbole des vom Wurzelknote repräsentierten Zustandes durch.

Hat der Zustand einen Übergang für ein Eingabesymbol, dann füge einen Kindkno-

ten zum Baum hinzu, dessen Label der Folgezustand Ai ist. Der Ast im Baum wird

mit dem Eingabesymbol gelabelt.

b) Wiederhole dies mit den Knoten in der nächsten Tiefenebene von links nach rechts.

Existiert ein Knoten mit dem selben Label bereits in einer höheren Ebene, wird der

Knoten ein Blatt. Sonst gehe vor wie beim Wurzelknoten.

Abbildung 3.1 zeigt einen Automaten und einen Baum der aus diesem erzeugt wurden. Zustand

1 ist der Startzustand und Zustand 3 ein Endzustand. In diesem Beispiel ist zu erkennen, dass der

Testbaum endliche Pfade für den Zyklus des Automaten enthält. Der Pfad „a, a, a“ terminiert

nicht im Knoten 1 in Ebene 3, obwohl dieser Knoten bereits im Testbaum ist, da der Knoten mit

„a“ beschriftet ist. Entscheidend ist, dass es einen Pfad zu 1 gibt, der andere Eingabesymbole

verwendet als der bereits im Testbaum vorhandene Pfad, weshalb der Knoten 1 noch einmal

behandelt werden muss. Im aufgezeichneten Beispiel ist eindeutig, dass neue Eingabesymbole

verwendet wurden, da 1 bisher nur als Startzustand im Baum aufgenommen wurde und keine

Eingabe getätigt wurde. Anschließend terminiert der Pfad jedoch, da der Knoten 2 bereits mit

dem Label „a“ vorhanden ist. Abhängig davon in welcher Reihenfolge die Eingabesymbole

durch gegangen werden, ergibt sich eventuell ein anderer Baum. Z ist eine Menge die wie

in Gleichung (3.2) angegeben definiert wird [Cho78]. W wird als das „Characterization-Set“

bezeichnet [Cho78]. Es ist eine Verknüpfung aus Zustand, Eingabesymbol und Reaktion eines

jeden Zustands im Automaten. X ist das Eingabealphabet. Da für die geschätzte maximale

Anzahl Zustände im korrekten Automaten m und die Anzahl Zustände im Automaten des

Prüflings n gilt: m ≥ n, ist Xm−n
eine Menge von Eingaben größer oder gleich Null.

Z := W ∪ X · W · · · ∪ Xm−n · W (3.2)

Das „Characterization-Set“ des Automaten in Abbildung 3.1 ist tabellarisch in Abschnitt 3.1

dargestellt. Die linke Spalte zeigt die Zustände des Automaten. Die Spalten rechts davon, zeigen

die Operationen, welche ausgeführt werden, wenn im Zustand der Reihe das Eingabesymbol der

Spalte (hier a oder b) eingegeben wird. Um das Beispiel einfach zu halten, sind die Operationen

nur Platzhalter die nach dem Fortschritt des Übergangs durch den Automaten benannt sind.

Die Menge der Testdurchläufe P ◦ Z zu diesem Automaten ist dann:

• {a, b}

• a ◦ {a, b}

• b ◦ {a, b}

• a a ◦ {a, b}

• a b ◦ {a, b}

• a a a ◦ {a, b}

• a a b ◦ {a, b}
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3. Zustand basiertes Testen

Abbildung 3.1.: Ein Automat und darunter der daraus erzeugte Testbaum.

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤Zustände

Eingabesymbole

a b

1 fortfahren halt

2 zurück fortfahren

3 Ende Ende

Tabelle 3.1.: „Characterization-Set“ des in Abbildung 3.1 aufgezeichneten Automaten.
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3.2. Verifikation

3.2. Verifikation

Um den aktuellen Prüfling zu verifizieren, gibt es zwei Möglichkeiten.

Test-Mode Zunächst werden die korrekten Abläufe anhand der Spezifikation erstellt. Diese

geben das Verhalten des Systems bei einer bestimmten Sequenz von Eingaben wieder

[Cho78]. Anschließend werden die Reaktionen des Systems damit verglichen.

Walk-Through Mode Es werden „Pfad-Programme“ geschrieben, die Eingabesequenzen und

die erwarteten Reaktionen beinhalten und die Testdurchläufe ausführen. Die Korrektheit

dieser Programme muss anhand der Spezifikation sichergestellt werden [Cho78].

3.3. Zuverlässigkeit und Überdeckung

Das Verfahren des zustandsbasierten Tests, kommt nur dann für die Anwendung in einem

automatisierten Systemtest in Frage, wenn die Aussagekraft und Zuverlässigkeit der Test-

ergebnisse den Anforderungen genügen. Die Verifikation des Prüflings, wie sie nach dem in

[Cho78] vorgestellten Verfahren durchgeführt wird, kann ausgedrückt werden, als die Frage,

ob der Automat des Prüflings und der aus der Spezifikation abgeleitete Vergleichsautomat P ·Z
äquivalent sind [Cho78]. Also ob sich die Automaten bei Eingabe der Sequenzen aus der Menge

P · Z gleich verhalten. Das Theorem 1 drückt die Voraussetzungen für einen nachgewiesen

korrekten Prüfling in bezug auf die im vorgestellten Verfahren auffindbaren Fehler aus. In

[Cho78] ist das Theorem und dessen Beweis aufgeführt.

Theorem 1
Der Prüfling ist fehlerfrei genau dann, wenn der Automat des Prüflings und der korrekte Automat
P · Z äquivalent sind und folgende Bedingungen gelten:

1. Beide Automaten haben das selbe Eingabealphabet

2. Die Schätzung der maximalen Anzahl an Zuständen(m) ist korrekt

Um das Verfahren vergleichen zu können, ist in der Abschnitt 3.3 eine aus [Cho78] abgeleitete

Vergleichsmatrix abgebildet. „x“ bedeutet, dass alle Fehler dieses Typs gefunden werden, „/“

dass micht alle Fehler dieses Typs gefunden werden und „-“ bedeutet, dass dieser Fehlertyp

nicht gefunden wird.

Operation Error Ein Automat führt bei einer Eingabe die falsche Operation aus. Zustand und

Folgezustand sind jedoch richtig.

Transfer Error Ein Automat hat einen Übergang, der bei einer korrekten Eingabe zum fal-

schen Folgezustand übergeht.
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3. Zustand basiertes Testen

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵Überdeckung

Fehlertyp

Operation Error Transfer Error Extra States Missing States

Branch Cover x - - -

Switch Cover x / - -

Boundary-Interior x / - -

n-switch cover x x x -

Tabelle 3.2.: Vergleichsmatrix Testüberdeckungstechniken

Extra States / Missing States Die Anzahl der Zustände der Automaten stimmt nicht über

ein. Dies bedeutet immer einen Fehler, da das Verfahren von minimalen Zuständen aus-

geht, deren Anzahl Zustände also gleich sein müssen, um äquivalent zu sein [Sch92][S.37].

Die Arten der Überdeckung hier im Vergleich sind Kontrollfluss orientiert und können deshalb

mit dem hier vorgestellten Verfahren verglichen werden [Cho78]. Die Überdeckungen werden

folgendermaßen erreicht [Cho78]:

Branch cover Eingabesequenzen bestehen aus Eingaben, die jeden Übergang des Automaten

mindestens einmal durchlaufen.

Switch cover Eine Erweiterung der Branch cover. Die „Switches“ bestehen aus Übergangs-

paaren. Die „Switches“ für den Automaten in Abbildung 3.1 sind {12, 21, 23 } wobei 12
den Übergang von Zustand 1 zu Zustand 2 benennt.

Boundary-interior cover Eine Branch cover, jedoch wird zusätzlich jede Schleife des Auto-

maten betreten und ein mal iteriert. Für den Automaten in Abbildung 3.1 genügt die

Eingabesequenz {a, a, a, a, b} um die Überdeckung zu erreichen.

Das vorgestellte Verfahren findet im Gegensatz zu den anderen Überdeckungsstrategien alle

Fehlertypen [Cho78]. Sind die Bedingungen in Theorem 1 erfüllt, werden sogar alle vorhande-

nen Fehler dieser Fehlertypen entdeckt. Das Verfahren ist also zuverlässig und valide [Cho78].

Bei der Vorbereitung und Ausführung von Tests, auch in Bezug zur Automatisierung, ist

jedoch nicht nur die Zuverlässigkeit entscheidend. Oft stehen zum Test nur begrenzt Zeit

und Ressourcen zur Verfügung, weshalb die Dauer und Kosten des Verfahrens eine Rolle

spielen [And12][S.15ff]. Bei einem algorithmischen Verfahren wie dem hier vorgestellten, ist

die Komplexität der Algorithmen eine Orientierungshilfe, anhand derer sich der Aufwand

bewerten lässt.

3.4. Komplexität

Die Aufwändigen Schritte des Verfahrens sind die Konstruktion der Menge P und des

„Characterization-set“ W . Um P zu bestimmen erzeugt man einen Testbaum aus dem Au-

tomaten und benennt alle Pfade des Baumes wie in Abschnitt 3.1 beschrieben. Dies geschieht
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3.4. Komplexität

für alle Zweige die aus dem Automaten abgeleitet werden. Das sind etwa n × k wobei n die

Anzahl der Zustände und k die Menge der Eingabesymbole ist [Cho78]. W lässt sich über Pk

Tabellen erzeugen [Cho78], die alle Kombinationen von Eingaben darstellen. Ein minimaler

Automat hat n − 1 solcher Pk Tabellen, die jeweils etwa n × k Schritte benötigen. Der nötige

Aufwand um W zu erzeugen ist also etwa (n − 1) × n × k also grob n2 × k [Cho78]. Qua-

dratische Laufzeit ist im Allgemeinen bei einem Algorithmus nicht wünschenswert. Jedoch

wird nur vor Beginn der Systemtests und für den Regressionstest
1
der Baum aufgebaut und

Eingabesequenzen bestimmt. Für den Regressionstest gilt dies auch nur, wenn ein vollständiger

Systemtest erneut ausgeführt wird, was in der Praxis häufig aufgrund mangelnder Resourcen

vernachlässigt wird [And12][S.75]. In jedem Fall, müssen die Fehler verursachenden Eingaben

aus der ursprünglichen Testreihe ausgeführt werden. Bei einem vollständigen Regressionstest,

müssen neue Sequenzen aus P · Z generiert werden. In einem iterativen Prozess, bedeutet dies

zweimal eine Komplexität von n2 × k und n × k je Iteration.

1
Wird in einem Test ein Fehler gefunden, muss nach der Korrektur des Fehlers ein gleichwertiger Test erneut

ausgeführt werden, um zu überprüfen, dass der Fehler behoben und keine neuen Fehler eingebaut wurden.

Dieser Test wird Regressionstest genannt [And12][S.74f]
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4. Monkey-Tests

4.1. Infinite Monkey Theorem

In diesemAbschnitt sollen stochastische Test Methoden behandelt werden. Dies sindMethoden,

die zufällige Eingaben verwenden um den Prüfling zu testen. Genauer geht es um so genannte

Monkey-Tests. Diese sollen vorgestellt werden. Das Prinzip der Monkey-Tests, geht auf das

„Infinite Monkey Theorem“ zurück, dass Theorem 2 ist eine Übersetzung des Theorems. Der

Affe ist eine Metapher für eine Maschine, die zufällige Eingaben tätigt [Wik17c].

Theorem 2
Ein Affe der für eine unendliche Zeit zufällige Tasten auf einer Schreibmaschine tippt, wird
mit hoher Wahrscheinlichkeit einen Text, wie die gesammelten Werke von William Shakespeare
hintereinander abtippen [Wik17c].

Dieses Theorem lässt sich auch auf Software Tests übertragen. Ein Affe, der unendlich lange

Eingaben in ein Programm tätigt, führt mit hoher Wahrscheinlichkeit alle Testfälle aus, die

auch ein menschlicher Tester ausführen würde. Mehr noch, ein Affe führt alle relevanten
Testfälle aus, also nicht nur die von einem Tester ausgewählten, sondern auch all jene die

von einem Nutzer in der Produktivumgebung ausgeführt werden. Natürlich ist es für einen

Softwaretest in der Praxis unmöglich eine unendliche Zeit zu Testen. Jedoch selbst für große

endliche Zeiträume ist die Wahrscheinlichkeit relevante Testfälle auszuführen sehr gering.

Dem Affen des Theorems entsprechen die so genannten „Dumb Monkeys“ [Nym00]. Diese

ignorieren wie ein Mensch die Software bedienen würde und wählen ihre Eingaben zufällig und

ohne den Zustand des Prüflings zu kennen aus [Nym00]. Diese Tests können kostengünstig

und sobald ein lauffähiger Prüfling existiert ausgeführt werden [Nym00]. Sie eignen sich für

Belastungstests und finden „memory leaks“ [Nym00]. Zudem führen die „Dumb Monkeys“

komplexe Eingabesequenzen aus die ein Tester sich nicht ausdenken würde. Nyman schreibt

dazu in [Nym00], dass „Dumb Monkeys nicht viele Fehler finden werden, jene die sie finden

jedoch Abstürze und Aufhänger sind“, denn häufig treten diese Fehler nur bei komplexen

und verketteten Eingaben auf. Für einen Systemtest und besonders einen systematischen Test,

sind die „Dumb Monkeys“ jedoch nicht geeignet, da es ihnen an Struktur und Dokumentation

fehlt. Auch führen sie eine Vielzahl an Eingabesequenzen aus, die keine Rolle beim Erreichen

gewünschter Überdeckungskriterien spielen. Ein „Dumb Monkey“ erreicht eventuell erst nach

einem Tag eine einfache Funktionsüberdeckung, die durch einen Menschen in Minuten oder

wenigen Stunden erreicht werden kann.
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4.2. Smart Monkeys

Um die Präzision des Affen zu erhöhen, können „Smart Monkeys“ verwendet werden [Nym00].

Diese verwenden ein Zustandsmodell des Prüflings und kennen die Funktionalität auf einfacher

Ebene [Nym00]. In [Nym00] wird als Zustandsmodell eine Zustandstabelle genannt, diese sind

jedoch äquivalent mit einem Zustandsgraphen wie im Zustand basierten Test aus Kapitel 3,

da die Tabellen Zustände, Übergänge und Eingabesymbole enthalten. Durch die Kenntnis der

Zustände, werden nur noch dem Zustandsmodell entsprechende Eingaben ausgeführt. Trotz-

dem erzeugen die „Smart Monkeys“ noch immer Eingabesequenzen, an die ein menschlicher

Tester nicht denken wird, die trotz allem von Nutzern ausgeführt werden [Nym00]. Ein Grund

dafür, dass „Smart Monkeys“ näher an den Eingaben eines echten Nutzers liegen als manuell

geschriebene Tests ist, dass die manuellen Tests zwischen jedem Testfall zu einen bekannten

Standartzustand zurückkehren [Nym00]. Damit löschen sie die Historie der Ausführung. In

der Praxis ist es jedoch eher unwahrscheinlich, dass ein Nutzer den Prüfling startet, genau

eine Funktion ausführt und das Programm dann, möglicherweise sogar durch einen Neustart,

in eine Ausgangssituation zurück versetzt. Die „Smart Monkeys“ führen deutlich komplexere

Sequenzen aus [Nym00] und können so vom Nutzer hervorgerufene Situationen simulieren

und entdecken auch Fehlerkaskaden. In Abbildung 4.1 sind drei Mengen abgebildet, die den

zu erwartenden Überdeckungsgrad, der durch die jeweiligen Verfahren erreicht werden wird,

zeigen. Gültig ist dies jedoch nur, wenn die stochastischen Tests, also die „Smart Monkeys“

und die „Dumb Monkeys“ eine sehr lange Zeit ausgeführt werden. Die gestrichelt dargestellte

Menge, stellt die voraussichtlich relevanten Testfälle dar. Das sind jene Testfälle, bei denen der

Aufwand für das Finden in ökonomischer Relation zur Eintrittswahrscheinlichkeit und dem

verursachten Schaden steht.

Der große Nachteil sind die hohen Kosten, die beim Erstellen des Zustandsmodells entstehen.

N. Nyman schreibt in [Nym00], dass bei einem „Projekt mit moderater Komplexität“ ein

Zustandsmodell mit 50000 Knoten benötigt wird. In einem iterativen Prozess, steigt die Zahl

der Zustände konstant an, da neue Funktionalität und Änderungen übernommen werden

müssen [Nym00]. Der Aufwand ist also nicht nur initial zu bewältigen, sondern zieht sich

durch das gesamte Projekt. Die Kosten für die Vorbereitung und Ausführung der Tests, sollte die

Kosten, die entstehen wenn ein Fehler auftritt, nicht übersteigen [And12][S.15]. Andernfalls

ist der Test nicht „ökonomisch sinnvoll“ [And12][S.15]. Eben dies kann geschehen, wenn der

Aufwand das Zustandsmodell zu erstellen und zu warten zu hoch ist [Nym00].

Ein weiterer Kostenfaktor sind die Testergebnisse. Die erwarteten Kosten eines Fehlers, ergeben

sich aus dem finanziellen Schaden den er anrichtet und seiner Eintrittswahrscheinlichkeit

[And12][S.15, S.178f]. Ein „Smart Monkey“ kann theoretisch hundert mal einen Dialog öffnen

und wieder schließen. Anschließend, wird der Dialog fehlerhaft angezeigt. Die Kosten eines

solchen Fehlers sind in den meisten Fällen verschwindend gering, da ein Nutzer kein derartiges

Verhalten zeigt und der Fehler im Feld wohl nie eintreten wird. Trotzdem findet der Test den

Fehler und einem Tester wird das Ergebnis vorliegen. Der Tester muss dann die Eingabesequenz

nachvollziehen, den Test idealerweise wiederholen um die Reproduzierbarkeit zu verifizieren,
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4.2. Smart Monkeys

Abbildung 4.1.:Wahrscheinliche Testfallüberdeckung nach sehr langer Ausführungsdauer.

den Fehler dokumentieren und erst dann kann ein Verantwortlicher den Fehler priorisieren. Die

Wirtschaftlichkeit des Aufwands, für das Bearbeiten der Testergebnisse eines „Smart Monkey“

Tests insgesamt, ist von folgenden Faktoren abhängig:

1. Lesbarkeit und Nachvollziehbarkeit der Testergebnisse

2. Anzahl der „irrelevanten“
1
Fehler

3. Anzahl der falsch-positiven Testergebnisse

Letzteres hängt stark vom Prüfling und seiner Komplexität ab. Das Timing ist erfahrungs-

gemäß immer eine häufige Fehlerursache, selbst bei manuell geschriebenen Tests. Ein weit

verteiltes System mit viel Netzwerkkommunikation, läuft häufig Gefahr aufgrund von Verzö-

gerungen Fehler zu erzeugen, die in Wirklichkeit keine Fehler des Systems selbst, sondern der

Testinfrastruktur bedeuten.

Die Anzahl der „irrelevanten“ Fehler die gefunden werden, hängt von der Auswahl der Testfälle

ab. Ein „Smart Monkey“, der 1000 mal die selbe Aktion ausführt, ist höchstwahrscheinlich

weit weg vom Verhalten eines echten Nutzers. Führt er jedoch 10 bis 50 mal eine Aktion aus,

simuliert er vermutlich Situationen, die ein Nutzer herbeiführen wird. Welches Nutzerprofil

relevant ist, kommt auf den Prüfling und seine spätere Anwendung an.

1
Natürlich sollte das Ziel sein möglichst alle Fehler des Systems zu beheben. Wie bereits erwähnt, existieren

jedoch Fehler, bei denen der Aufwand für die Fehlerfindung und Korrektur nicht im Verhältnis zu den

Fehlerkosten steht. Diese Fehler sind hier unter „irrelevanten“ Fehlern zu verstehen.
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Die Lesbarkeit der Testergebnisse ist wohl der schwerwiegendste Faktor für die Kosten eines

„Smart Monkeys“, zumal er die Auswirkungen der anderen Hauptfaktoren mindern kann. Dies

liegt trivialerWeise daran, dass falsch-positive und irrelevante Testergebnisse schneller erkannt

werden, wenn der Tester die Ergebnisse gut nachvollziehen kann. Die Studie in [CMM+12]

beschäftigt sich mit der Lesbarkeit von zufällig generierten Tests im Vergleich zu manuell

geschriebenen. Jedoch handelt es sich um Unit-Tests und nicht um Systemtests. Verglichen

wurde die Genauigkeit und Effizienz zweier Gruppen mit vergleichbaren Fähigkeiten, also die

Anzahl der korrigierten Fehler und die Anzahl der korrigierten Fehler pro Minute [CMM+12].

Eine Gruppe verwendete die zufällig erzeugten Tests, die andere die von Menschen geschriebe-

nen. Der Hauptunterschied der manuellen Tests zu den randomisierten bestand darin, dass die

randomisierten Tests automatisch generierte, nichtssagende Bezeichner verwendeten, jedoch

weniger komplex waren. Da die randomisierten Tests in allen Versuchen besser abschnitten,

schließen die Autoren der Studie, dass die Komplexität bei der Analyse der Testfälle der größte

Faktor für die Nachvollziebarkeit der Tests war [CMM+12]. Um diese Studie auf die „Smart

Monkeys“ zu übertragen, muss jedoch beachtet werden, dass es sich hier um Black-Box-Tests

handelt. Der Tester hat also keine Einsicht, was mit den Objekten, die hinter den Bezeichnern

stehen geschieht. Alles was der Tester beim Systemtest weiß, ist was auf der Oberfläche passiert.

Zur Nachvollziehbarkeit der Tests, ist zusätzlich zur Komplexität vermutlich wichtig, dass

er die Bezeichner aus den Testergebnissen Objekten der Nutzeroberfläche zuordnen kann.

Der Schluss, der sich aus der Studie für Systemtests schließen lässt, ist trotz der größeren

Rolle der Bezeichner, dass die Komplexität der Testfälle die Nachvollziehbarkeit entscheidend

beeinflusst.

Mit „Smart Monkeys“ lassen sich also viele Situationen testen, die ein Nutzer herbeiführt, in

manuellen Tests jedoch nicht ausgeführt werden. Gerade in komplexen Systemumgebungen

kommt dieser Vorteil zum tragen [Nym00]. Die Kosten für das Erstellen des Zustandsmodells

sind jedoch sehr hoch und auch die Auswertung der Testergebnisse kann, vor allem aufgrund

der hohen Komplexität der Eingabesequenzen, die „Smart Monkeys“ unökonomisch werden

lassen. Sie eigenen sich also nur für leicht automatisierbare Prüflinge [Nym00].
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5.1. Problemdefinition

Um Ressourcen in der Software Entwicklung zu sparen, sollen Zustand basierte Systemtests

automatisch generiert werden. Im Idealfall erzielen die automatisch generierten Tests eine an-

dere, mindestens genauso große Überdeckung wie manuell ausgeführte oder manuell erzeugte

automatisierte Tests und erfüllen die in Kapitel 3 genannten Anforderungen. Dafür in Frage

kommen automatisierte stochastische Tests, die „Smart Monkeys“ verwenden, um anhand

eines Zustandsmodells randomisierte Tests auf dem Prüfling auszuführen. Diese Testmethode

hat zwei große Einschränkungen.

1. Die Kosten der „Smart Monkeys“.

2. Das implizite Soll-Resultat.

Die Kosten der „Smart Monkeys“, insbesondere die für den Aufbau des Zustandsgraphen,

sind in Kapitel 4 näher erläutert. Da die Testscripts nicht von Hand geschrieben werden,

kennen die Tests keine explizit angeführten Soll-Resultate. Ein von Hand geschriebener Test,

enthält implizit die Abläufe und erwarteten Page-Objects und explizit Assertions [Wik17a],

mit denen der Tester die erwarteten Reaktionen weiter spezifizieren kann. Auto generierte

Tests haben lediglich die Informationen, die im Zustandsmodell enthalten sind [Nym00]. In

herkömmlichen Zustandsgraphen, wie sie von T. S. Chow in [Cho78] verwendet werden, sind

Kontrollflussinformationen enthalten. Das Soll-Resultat ist in diesen Graphen sehr umfangreich.

Der Aufbau eines solchen Zustandsgraphen bedarf jedoch eines hohen Aufwands
1
[Cho78].

Gesucht ist also ein Verfahren, dass den Aufwand der Testvorbereitung minimiert, den Umfang

des impliziten Soll-Resultatsmaximiert und ein Testauswahlverfahren verwendet, dasmöglichst

nahe an echtem Nutzerverhalten ist und trotzdem Aussagen zum Überdeckungsgrad zulässt.

Zudem sollen die Testergebnisse möglichst relevante Fehler erkennen. Für die letzte Eigenschaft

soll in Kapitel 6 untersucht werden, wie effektiv Lernalgorithmen eingesetzt werden können,

um irrelevante Pfade durch den Testgraphen zu eliminieren.

1
Algorithmus in quadratischer Laufzeit und dasmanuelle Erzeugen des Zustandsautomaten aus der Spezifikation.
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5. Das Verfahren

5.2. Erzeugung eines Zustandsgraphen aus Page-Objects

Im Kapitel 3 wird der Systemtest basierend auf dem Zustandsgraph des Prüflings behandelt.

Von der Validität und Korrektheit des Verfahrens, wird in diesem Abschnitt ausgegangen.

Um den Aufwand, der durch die Vorbereitung des Verfahrens entsteht zu minimieren, sollen

die in Kapitel 2 vorgestellten Page-Objects verwendet werden, um den Zustandsgraph des

Programms automatisch zu generieren. Erhoffen lassen sich dadurch geringere Kosten und ein

reduzierter Aufwand für den Systemtest. Ausgangspunkt des Verfahrens ist ein Programm mit

einer Nutzeroberfläche, dass den Prüfling darstellt. Es liegt die Spezifikation des Prüflings vor,

eventuell sogar bereits eine Implementierung.

Aus der Spezifikation abgeleitet, hat ein Softwareentwickler bereits Page-Objects geschrieben,

anhand derer der gewünschte Programmablauf in Form von Eingaben und den Reaktionen

des Programms simuliert werden kann. Diese Page-Objects zu implementieren ist bereits mit

hohem Aufwand verbunden. Man beachte jedoch, dass die Page-Objects auch für manuell ge-

schriebene automatisierte Tests benötigt werden, die Oberflächenautomatisierung
2
verwenden.

Es entsteht dadurch also zunächst kein Mehraufwand im Vergleich zur konventionellen Testau-

tomatisierung. Das Page-Object Entwurfsmuster, induziert durch die Page-Object erzeugenden

Methoden, den Kontrollfluss der Nutzeroberfläche in die Page-Object Klassen. Eine Aktion

auf Objekt A, führt zu Objekt B als Reaktion. Um sich diesen Umstand zu Nutze zu machen,

soll nun anhand des Quellcodes dieser Page-Objects ein Zustandsautomat abgeleitet werden.

Dazu muss ein Programm existieren, das im Folgenden als Erzeugerprogramm bezeichnet

wird. In diesem Zustandsautomaten stellen die Page-Objects die Knoten und die Methoden der

Page-Objects die Übergänge dar. Dem Erzeugerprogramm muss eine (abstrakte) Page-Object

Klasse, hier AbstractPageObject vorliegen, welche die Superklasse aller Page-Objects dar-
stellt. Es werden dann nur Klassen beachtet, die Subklassen dieser Klasse sind. Zudem muss ein

Page-Object als „Root“ Knoten angegeben werden. Dieses muss das erste bei Programmstart

angezeigte Page-Object repräsentieren, damit der Ablauf der Tests der echten Programmaus-

führung entspricht. Zu beachten ist, dass sich die Übergänge und Knoten leicht von denen in

[Cho78] vorgestellten unterscheiden. Dort sind die Knoten die Zustände und Übergänge sind

Operationen oder Stimuli [Cho78]. Da die Page-Objects keinen Einblick in die Implementierung

des Programmcodes gewähren, können aus ihnen nicht ohne weiteres Operationen abgeleitet

werden. Ohnehin sollen die erzeugten Tests Black-Box Tests und ohne Kenntnis von den

Abläufen im Programmcode, sein [Joc13]. Die Zustände werden statt vom internen Zustand

des Programms, von der dem Nutzer angebotenen Funktionalität abgeleitet. Operationen sind

Eingaben des Nutzers und Stimuli sind externe Einflüsse wie Interaktionen mit Simulatoren

oder Datenbankzugriffe. Der Zustandsgraph, der aus den Page-Objects erzeugt wird, setzt also

eine Abstraktionsebene höher an, da der Nutzer als intern und Netzwerkeinflüsse als extern be-

trachtet werden, anstatt die Operationen im Programm als intern und die Eingaben des Nutzers

als externe Stimuli zu betrachten [Cho78]. Die Überprüfung der Programmfunktionalität läuft

2
siehe Abschnitt 2.2.2
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5.2. Erzeugung eines Zustandsgraphen aus Page-Objects

auf beiden Automaten gleich ab. Eine Eingabe wird getätigt, die Nutzeroberfläche ist in einem

neuen Zustand, dieser Zustand wird verifiziert. Wichtig beim Schreiben der Page-Objects für

das Erzeugerprogramm ist, dass jede Eingabe, die für den Zustand des Programms relevant ist,

in einer Methode stattfindet, die die erwartete Reaktion kennt und über das zurückgegebene

Page-Object repräsentiert. Nur so erkennt das Erzeugerprogramm, dass der Prüfling über die

Eingabe in einen neuen Zustand übergeht.

5.2.1. Analyse der Page-Object Klassen

Das Page-Object Entwurfsmuster erlaubt nur öffentliche Methoden, deren Rückgabewert

erneut ein Page-Object sind, außer sie dienen der Kontrolle der angebotenen Dienste auf

dieser Seite [sel17]. Für die Erzeugung des Zustandsautomaten, sind zunächst jedoch nur

die Page-Object erzeugenden Methoden relevant. Sei der Knoten K1 nun der „Root“ Knoten

also das gegebene erste Page-Object. Das Erzeugerprogramm betrachtet nun alle Methoden

dieses Page-Objects und erzeugt von K1 ausgehende Kanten für jede, die ein Objekt das

von AbstractPageObject erbt, als Rückgabewert hat. Die Kanten münden dann in Knoten

K2...Kn, welche die jeweils von der Methode erzeugten Page-Objects repräsentieren. Das

Erzeugerprogramm wiederholt dies dann rekursiv in den Page-Objects der Knoten K2...Kn

und deren Kindknoten. Ausgehend von K1 geht es so durch alle Page-Objects, bis für alle

Methoden in allen Page-Objects Kanten existieren. Führt eine Kante zu einer Page-Object-

Klasse, die bereits untersucht wurde, entstehen Zyklen. Ein zusätzlicher Fall, sind Methoden,

die das Programm beenden sollen. Diese haben alle eine Kante auf denselben Endknoten, der

kein Page-Object repräsentiert.

Externe Stimuli

Bei einer Programmausführung, können externe Stimuli das Programm beeinflussen. Dies

geschieht entweder automatisch, also ein Server oder Simulator sendet eine Anfrage an das

Programm, welches dann darauf reagiert oder der Nutzer setzt aktiv eine Anfrage ab, die

meist auch eine Reaktion des Angesprochenen Simulators hervorruft. Wird beispielsweise eine

Nachricht an den Prüfling gesendet und dieser soll einen Dialog als Reaktion darauf öffnen,

muss der externe Stimuli in einer Methode des Page-Objects verpackt sein. Diese erzeugt das

Page-Object des Dialogs, da der Aufruf neuer Page-Objects durch die öffentlichen Methoden

ausgelöst wird [sel17]. Werden die Tests manuell geschrieben, löst ein Tester im Test aktiv die

Anfrage des Simulators aus. Da die Tests jedoch nicht geschrieben werden, muss die Interaktion

mit dem Simulator in den Page-Object Methoden geschehen, damit das Erzeugerprogramm sie

in den Kontrollfluss aufnimmt.

Abbildung 5.1 zeigt ein Beispiel eines Login Dialogs. Zuerst wird ein Login Fenster angezeigt

(1) in dem der Nutzer Nutzername und Passwort eingeben muss. Bei einem klick auf Login
werden die Login Daten an einen Server weiter geleitet. Sind die Nutzerdaten valide, öffnet
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5. Das Verfahren

Abbildung 5.1.: Beispiel eines Login Dialogs

sich die MainPage (2). Sind die Nutzerdaten falsch, öffnet sich der Loginfehlgeschlagen
Dialog (3).

Abbildung 5.2 zeigt einen Automaten, der den aus den Page-Objects gewonnenen Kontrollfluss

zeigt, wenn keine Methoden für unterschiedliche Reaktionen der Simulatoren geschrieben

wurden. Das Login Fenster Page-Object hat lediglich eine Methode zum Login mit den gegebe-

nen Daten. Im Tests selbst, wird dann bestimmt, welche Nutzerdaten eingegeben werden und

welche Reaktion erwartet wird. Auch wenn unterschiedliche Zustände des Servers getestet

werden sollen, muss dies dann im Test geschehen. Der Server muss dort aktiv beeinflusst

werden, wenn etwa getestet werden soll, wie sich der Prüfling verhält, wenn der Server nicht
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Listing 5.1 Login Methoden die unterschiedliche Reaktionen hervorrufen.

public MainPage loginWithCorrectCredentials() {
userNameField.enter("EchterNutzer");
passwordField.enter("EchtesPasswort");
loginButton.click();
wait(4);
return new MainPage();

}

public LoginFailedPage loginWithIncorrectCredentials() {
userNameField.enter("FalscherNutzer");
passwordField.enter("FalschesPasswort");
loginButton.click();
wait(4);
return new LoginFailedPage();

}

erreicht werden kann. Der Graph aus Abbildung 5.2 eignet sich also nicht für einen vollständi-

gen automatisierten Test, da in der Regel mehr Szenarios als nur ein korrekter Login getestet

werden sollen [Joc13][S.505].

Abbildung 5.3 zeigt einen Automaten, dessen Page-Objects die für alternative Testfälle nö-

tigen Methoden implementieren. Der LoginScreen bietet eine Methode für korrekte und

eine Methode für falsche Login Daten an. Eine Methode führt zur MainPage, eine andere
zur Loginfehlgeschlagen Seite. Zudem gibt es eine Methode die Nutzerdaten eingibt und

versucht sich einzuloggen, wenn der Server nicht erreichbar ist. Dieser landet ebenfalls auf der

Loginfehlgeschlagen Seite. Von dort führt eine Methode für den Klick auf Ok wieder zurück

zur Login Seite.

In Listing 5.1 sind die beiden zusätzlichen Methoden des LoginScreen Page-Objects skizziert,

die für unterschiedliche Login Daten nötig sind. Die erwartete Reaktion auf einen erfolgrei-

chen Login, ist das Erscheinen der MainPage. Daher gibt die loginWithCorrectCredentials()
Methode ein MainPage Objekt zurück. Die Nutzerdaten werden über das verwendete Frame-

work zur Automatisierung in die Textfelder eingegeben und anschließend auf den Login
Knopf geklickt. Eine wait(s) Funktion zeigt dem Testframework an, dass eine Zeit s gewartet

werden soll, bis das korrekte Erscheinen des Page-Objects überprüft wird. Sollte die Reakti-

onszeit des Programms oder des Servers größer als s sein, wird der Test fehlschlagen. Die

loginWithIncorrectCredentials() Methode geht gleich vor, gibt aber falsche Nutzerdaten

ein und gibt deshalb eine LoginFailedPage zurück.

Die Methoden die auf den von den Zugrunde liegenden Testframeworks basieren, wie die

enter(Strings) Methode oder click(), sind hier exemplarisch zu betrachten. Die Signatur

und auch die Funktionalität, hängt im Einzelfall vom verwendeten Testframework ab. Das

Testframework sucht in den Konstruktoren der Page-Objects immer nach dem entsprechenden

Oberflächenelement. Wird es nicht gefunden, verhält sich der Prüfling offenbar falsch und der

Test schlägt fehl.
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Listing 5.2 Server nicht erreichbar Methode

public loginFailedScreen loginWhenBackendUnavailable() {
userNameField.enter("EchterNutzer");
passwordField.enter("EchtesPasswort");
server.setUnavailable();
loginButton.click();
wait(4);
return new LoginFailedPage();

Abbildung 5.2.: Automat des Login Dialogs

Es soll nun zusätzlich das Verhalten des Prüflings bei nicht erreichbarem Server getestet

werden, wie es in Abbildung 5.3 abgebildet ist. Es muss sich also der Zustand des Servers

ändern. In der loginWhenBackendUnavailable() Methode geschieht dies über den Aufruf

der server.setUnavailable() Methode. Listing 5.2 zeigt die entsprechende Methode.

Der zum Testen verwendete Server oder Server-Simulator muss eine Programmierschnittstelle

oder Application programming interface (API) anbieten, die solche Zustandsänderungen

programmatisch erlaubt und diese Methode implementiert. Der Zustand in den das Programm

gerät, wenn ein Login aufgrund eines inaktiven Servers fehlschlägt, repräsentiert ebenfalls das

Page-Object loginFailedScreen. Die Aktion muss wieder in einer Methode implementiert

sein, die dieses Page-Object erzeugt [sel17].

Wenn eine Methode einen bestimmten Zustand des Backend-Servers erwartet, muss sie über

die API sicherstellen, dass dieser auch der aktuelle Zustand des Servers ist. Erwähnenswert für

die Implementierung dieser zusätzlichen Methoden ist, dass ein Ausgangszustand spezifiziert

sein sollte. In diesen Zustand müssen externe Komponenten vor jedem Testdurchlauf versetzt

werden, um sicherzustellen, dass Tests nicht aufgrund vorheriger Testausführungen und

API Aufrufe fehlschlagen. Zusätzlich sollte jede Methode, die einen bestimmten Zustand

von externen Komponenten erwartet, diesen durch einen API Aufruf sicher stellen. Für die

Methoden in Abschnitt 5.2.1 bedeutet dies ein Aufruf einer server.setAvailable() Methode.

Über eine Simulatoren API, lässt sich auch der Fall realisieren, in dem Anfragen von einem

Server aus an den Prüfling gehen, ohne dass der Prüfling diese ausgelöst hat. Dieses Szenario

kann beispielsweise im Zusammenhang mit Datenbankanwendungen relevant werden, wenn
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5.2. Erzeugung eines Zustandsgraphen aus Page-Objects

Abbildung 5.3.: Automat eines Login Dialogs mit Backend-Server Manipulation

die Datenbank eine „Push-Connection“
3
zum Prüfling aufbaut. Wenn vom Prüfling eine be-

stimmte Reaktion erwartet wird, muss nur in der Methode, die das neue Page-Object erzeugt,

die entsprechende API Methode aufgerufen werden, um das „push event“ der Datenbank

auszulösen.

Es zeichnet sich ab, dass dieses Verfahren einen Mehraufwand beim Schreiben der Page-Objects

erfordert. Zudem steigt die Komplexität der Tätigkeit deutlich an. Die Entwickler müssen

für jedes Page-Object die möglichen Vorbedingungen in Betracht ziehen und abschätzen

können, ob diese sich in unterschiedlichen Zuständen äußern. Durch die steigende Komplexität,

steigt vermutlich auch die Fehleranfälligkeit. Daher auch die Menge der falsch-positiven

Testergebnisse und damit die Kosten für das Testverfahren.

Validität

Die Validität des erzeugten Zustandsgraphen, hängt von der Korrektheit der geschriebenen

Page-Objects ab. Wenn sich die Entwickler an das Page-Object Entwurfsmuster halten, ist der

entstehende Graph auch ein Zustandsgraph der Oberfläche des Prüflings, dessen angebotene

Funktionalität, mit der eines nach [Cho78] erzeugten Zustandsgraphen übereinstimmt. Um

zu zeigen, dass diese Aussage wahr ist, muss die Repräsentanten der Knoten und Kanten

3
https://en.wikipedia.org/wiki/Push_technology
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des Zustandsgraphen betrachtet werden. Die Knoten repräsentieren den aktuellen Zustand.

Dieser zeichnet sich durch die ausgehenden Übergänge, also die Operationen und Stimuli,

die an ihm ausgeführt werden können, aus [Cho78]. Die aus den Page-Objects abgeleiteten

Zustände bieten ihrerseits alle im aktuellen Zustand verfügbaren Funktionen an. Die Stimuli

werden in den Methoden des Page-Objects durch die API ausgelöst. Sie sind also in Page-

Object erzeugenden Methoden versteckt, die im Zustandsgraph, wie auch die Stimuli in

einem nach [Cho78] erstellten Graph, als Kanten repräsentiert werden. Die Kanten des hier

erzeugten Zustandsgraph, sind jedoch potentiell eine Kombination aus mehreren Operationen

und Stimuli. Eine Methode die einen Text eingibt, den Zustand eines Servers ändert und dann

auf einen Button klickt, wird als eine Kante zum resultierenden Page-Object dargestellt, obwohl

sie eigentlich zwei Operationen und einen externen Stimulus ausführt. Diese vermeintliche

Minimierung, sorgt jedoch eventuell für einen deutlich größeren Graph. Damit die Menge

der repräsentierten Operationen und Stimuli gleich bleibt, muss für jede Kombination aus

Operationen und Stimuli an einem Knoten eine Methode und ein resultierendes Page-Object

geschrieben werden. Auch wenn der Entwickler, der die Page-Objects implementiert, eventuell

irrelevante Kombinationen erkennen und eliminieren kann, bedeutet dies doch einen deutlichen

Mehraufwand bei der Implementierung und einen größeren Zustandsgraph.

5.3. Auswahl der Testfälle

Nachdem der Zustandsgraph aus den Page-Objects generiert wurde, müssen die Testfälle aus-

gewählt werden. Diese sollen qualitativ anhand eines Überdeckungskriteriums bewertbar sein

und Eingabesequenzen verwenden, die nahe an den Eingaben echter Nutzer liegen. Simplere

Kriterien, wie eine „Branch cover“, „Switch cover“ oder eine „Boundary-interior cover“ erfüllen

die

5.3.1. Chow’s Methode

In Kapitel 3 wird Chows Methode aus [Cho78] vorgestellt. Die Methode verspricht alle Fehler-

typen des Zustandsgraphen zu entdecken und findet unter bestimmten Bedingungen garantiert

alle diese Fehler [Cho78]. Eine dieser Bedingungen ist jedoch, dass der Tester die Anzahl der

Zustände im korrekten Graphen richtig schätzt. Eine menschliche Schätzung ist in einem

automatisierten Verfahren natürlich fehl am Platz. Durch die Erzeugung des Zustandsgraphen

aus den Page-Objects, existiert jedoch ein Graph der im Idealfall genau die richtige Anzahl

Zustände hat. Die Page-Objects werden schließlich aus der Spezifikation abgeleitet und bilden,

wenn sie vollständig und korrekt implementiert wurden, den spezifizierten Kontrollfluss ab.

Garantiert, ist die Korrektheit in der Praxis jedoch genauso wenig, wie bei Chows herkömm-

licher Methode. Statt eine Abhängigkeit von einer Menschlichen Schätzung
4
, besteht eine

4
siehe Kapitel 3 und [Cho78]
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5.3. Auswahl der Testfälle

Abhängigkeit von der Implementierung der Page-Objects. Diese werden von Menschenhand

geschrieben und Menschen machen Fehler. Wenn die Page-Objects für ein Erzeugerprogramm

wie in Abschnitt 5.2 geschrieben werden, also auch die Vorbedingungen beachtet werden

müssen und durch diese zusätzliche Page-Objects entstehen, steigt die Komplexität der Im-

plementierung stark an. Gerade die für Chows Methode benötigte Anzahl der Zustände ist

davon betroffen. Zudem kann keine allgemeine Aussage darüber getroffen werden, wie hoch

die Schnittmenge der getesteten Eingabesequenzen mit jenen ist, die ein Nutzer tätigt. Es ist

hier keine Frage der Wahrscheinlichkeit oder der Ausführungsdauer, wie es bei stochastischen

Methoden wie „Smart Monkeys“ der Falls ist, sondern kommt auf den Prüfling individuell an.

Es kommt darauf an, wie häufig bei der Anwendung Schleifen im Kontrollfluss genommen

werden. Am Beispiel in Abbildung 3.1 und einem Besipeil in [Cho78][Fig. 3] erkennt man, dass

die Methode Schleifen häufig nur ein mal durchläuft. In der Praxis, kann sich ein Programm

nach einem Schleifendurchlauf jedoch anders verhalten als zuvor. Trotz alledem ist Chows

Methode auch für den automatisch generierten Zustandsgraphen eine legitime Methode, die

für den Test eines Prüflings gut geeignet sein kann.

5.3.2. Randomisiert

Die Testfallauswahl beginnt am Startzustand des Zustandsgraphen, wählt eine zufällige Kante

am Startzustand aus und führt die Eingabe dieser Kante aus. Ist der kommende Zustand der er-

wartete Zustand, wird wieder eine Kante gewählt. Kommt ein nicht erwarteter Zustand, bricht

der Test als fehlgeschlagen ab und gibt die getätigten Eingaben als ausgeführten Testfall aus.

Eine solche vollständig randomisierte Testfallauswahl bedeutet, dass Theoretisch jeder Testfall

ausgeführt werden kann, im Voraus jedoch keine Aussage getroffen werden kann, welche Fälle

abgedeckt werden. Die Testausführung kann so auch ewig dauern und die Eingabesequenz,

die zum aufgetretenen Fehler geführt hat, ist lang und schwer nach zu vollziehen. Ein großer

Vorteil sind die geringen Kosten, da außer dem Zustandsgraph keine Vorbereitung nötig ist

und mit einer gewissen Wahrscheinlichkeit Nutzerszenarios ausgeführt werden, die sonst nie

getestet würden. Ein Nachteil ist, dass eine Vielzahl irrelevanter Tests ausgeführt werden. Auch

kann keine Aussage zur Überdeckung getroffen werden, weshalb ein solcher Ansatz höchstens

als zusätzlicher Test der Zuverlässigkeit ausgeführt werden kann [Joc13][S.523]. Ein anderer

Ansatz ist die Eingabesequenzen zuvor zu bestimmen. So kann im Voraus eine Aussage zur

Überdeckung getroffen und nach einem Spezifizierten Kriterium eine neue Sequenz gewählt

werden. Es empfiehlt sich hier ein schwaches Überdeckungskriterium, wie Zustandsüberde-

ckung zu wählen, da sonst die Vorteile des zufälligen Tests (nicht bedachte Eingabesequenzen)

zunichte gemacht werden. Um die Eingabesequenzen nachvollziehbarer zu machen, sollte bei

der Testfallauswahl bei jeder Kante eine geringe Wahrscheinlichkeit bestehen, dass der Test

beendet wird oder die Länge der Testpfade begrenzt sein. Zustandsgraph und Prüfling werden

dann in den Anfangszustand versetzt. Je größer der Zustandsgraph, desto geringer muss die

Wahrscheinlichkeit sein, da sonst weit verzweigte Bereiche des Graphen nicht ausreichend

überdeckt werden.
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Überdeckung

Sollen randomisierte Tests als systematische Tests eingesetzt werden, müssen "die Eingaben

systematisch ausgewählt"werden [Joc13][S.480]. Das dies bei stochastischen Tests natürlich

nicht geschieht, liegt auf der Hand. Jedoch lässt sich anhand der Wahrscheinlichkeit erahnen,

ob die sonst systematisch gewählten Testfälle ausgeführt wurden oder nicht. Die Tests werden

auf einem Testgraph ausgeführt. Im folgenden wird gezeigt, wie die Wahrscheinlichkeit einer

Kantenüberdeckung errechnet werden kann. Dabei wird klar, von welchen Faktoren die Aus-

sagekraft eines randomisierten Tests abhängt. Sei K die Menge aller Kanten in einem Pfad zu

einer Kante kn. Die Wahrscheinlichkeit P (kn), dass kn durch einen Testfall ausgewählt wird,

ist die Wahrscheinlichkeit der vorhergehenden Kante multipliziert mit der Wahrscheinlichkeit,

dass am Knoten N von dem kn ausgeht, mit der Menge ausgehender Kanten AN , die Kante kn

ausgewählt wird:

P (kn) = P (kn−1) ∗ 1
AN

(5.1)

Durch die Abhängigkeit von AN , erkennt man, dass die Wahrscheinlichkeit einer Kanten-

überdeckung stark von der Komplexität des Graphen Abhängt. Je mehr Kanten aus N gehen,

desto geringer ist die Wahrscheinlichkeit, dass kn ausgewählt wird. Für jede Vorgängerkante

potenziert sich die Komplexität. Für eine durchschnittliche Komplexität von zwei Kanten je

Knoten, ergibt sich eine Wahrscheinlichkeit P (knicht), eine Kante in x Versuchen nicht ab zu

decken wie in Gleichung (5.2):

P (knicht) = (1 − P (kn))x = (1 − (1
2)l)x

(5.2)

Wobei l die Länge des Pfades zu kn ist. Bei einer so geringen Komplexität und einer geringen

Pfadtiefe, strebt die Wahrscheinlichkeit den Pfad nicht abgedeckt zu haben sehr schnell gegen

null. Bei einer Pfadtiefe von l = 3, ist die Wahrscheinlichkeit Beispielsweise bereits nach

zehn Durchgängen bei etwa 75%. Sieht man sich jedoch die in Abbildung 5.4 abgebildete

Menüleiste einer Open-Source Software
5
für Endnutzer an, wird klar, dass eine solch geringe

Komplexität nur selten existiert. Bei einer Tiefe von eins, also bereits im Hauptfenster der

Anwendung, hat allein die Menüleiste eine Komplexität von 37. Das bedeutet, um nur alle

Optionen der Menüleiste mit einer Wahrscheinlichkeit von 75% abzudecken, benötigt man

etwa 50 Durchgänge ( siehe Gleichung (5.3)).

(1 − 1
36)50 ≈ 0, 244 (5.3)

Um komplexere Szenarios auszuführen, sollte die Pfadlänge einiges länger sein als die der

manuell geschriebenen Tests. Führt ein manueller Test eine Funktion aus, sollte der rando-

misierte mindestens doppelt so lang sein, um mehrere Funktionen ausführen zu können. Die

5
http://www.jabref.org
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5.3. Auswahl der Testfälle

Abbildung 5.4.: Menüleiste der Open-Source Software Jabref

Überdeckungswahrscheinlichkeit je Testfall steigt dann im Vergleich zu der obigen Gleichung

ein wenig an, da durch rückwärtige Pfade mehrere ausgehende Kanten eines Knoten ausgeführt

werden können. Die Ausführungszeit steigt jedoch auch, weshalb die Überdeckung je Zeit, bzw.

die Überdeckung je Aufwand etwa gleich bleiben sollte. Im Anhang A.1.1 sind Eckdaten eines

echten Software Projekts zu finden. Dort dauert ein automatisierter Testfall im Schnitt etwa

40 Sekunden. Ein Testlauf mit den wie oben genannten 50 Durchgängen und einer doppelten

Pfadlänge, also 80 Sekunden, dauert dann etwas mehr als eine Stunde. Die Wahrscheinlichkeit

noch nicht einmal die Hauptfunktionalität der Menüleiste ausgeführt zu haben, ist dann immer

noch bei etwa 25%.

Folgerung

Es zeigt sich also, dass ein großer Aufwand nötig ist, um eine hohe Überdeckung mit ak-

zeptabler Wahrscheinlichkeit zu erreichen. Auch wenn die Wahrscheinlichkeit sagt, dass die

Menge der nicht überdeckten Kanten bei einer hohen Zahl an Durchgängen gegen null strebt,

bleibt immer noch eine Restwahrscheinlichkeit, dass Kanten nicht überdeckt bleiben. Diese

Restwahrscheinlichkeit gilt es weiter zu minimieren, ohne den Aufwand weiter in die Höhe

zu treiben. Ein möglicher Ansatz hierfür sind Lernalgorithmen. Anhand eines Algorithmus,

der die zunächst zufälligen Entscheidungen betrachtet, kann eine Gewichtung vorgenommen

werden, um die Wahrscheinlichkeit, nicht überdeckte Kanten auszuführen, zu erhöhen. Wie

ein solcher Algorithmus ausgeprägt sein könnte, ist in Kapitel 6 ausgeführt.
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6. Lernfähigkeit

In diesem Kapitel geht es darum, die kostengünstigen vollständig randomisierten Tests präziser

einzusetzen. Schleifendurchläufe und Verzweigungen, die ein manueller Test vermutlich nicht

ausführen würde, werden trotz höherer Präzision ausgeführt und die Testfälle nach einem

Überdeckungskriterium bewertet. Der Lernprozess und der entsprechende Algorithmus werden

vorgestellt.

6.1. Lernvorgang

Der Lernvorgang soll die Redundanz der Testfallauswahl verringern. Er soll also dafür sorgen,

dass die Testpfade sich besser über den Zustandsgraph des Prüflings verteilen und verhindern,

dass der Algorithmus zu häufig in den selben Schleifen hängen bleibt. Bei vollständig ran-

domisierter Auswahl kann dies geschehen. Die erzeugten Testpfade sind zudem durch vom

Tester bestimmte Werte begrenzt. Für jeden Testdurchgang, ist die Anzahl der generierten

Testfälle, sowie die Pfadtiefe vorgegeben, um die Lesbarkeit der Testergebnisse im Vergleich

zu herkömmlichen „Monkey Tests“ zu erhöhen (siehe Abschnitt 5.3.2). Zu komplexe Testpfade,

ergeben schlecht nachvollziehbare Testresultate, sollte ein Fehler gefunden werden [CMM+12].

Der hier vorgestellte Algorithmus, soll weiterhin eine stochastische Natur haben, um die in

Abschnitt 5.3.2 und Kapitel 4 vorgestellten Vorteile dieser Algorithmen zu bewahren. Um

seine Präzision zu erhöhen, soll sich die Wahrscheinlichkeit, mit der ein bestimmter Pfad

ausgewählt wird jedoch anpassen. Der Algorithmus geht vom Startknoten aus durch den

Graph. An jedem Knoten wird zunächst mit gleich verteilter Wahrscheinlichkeit eine Kante

ausgewählt. Bei einem Knoten N mit drei ausgehenden Kanten ist die Wahrscheinlichkeit für

jede Kante 1/3. Diese Wahrscheinlichkeit, wird nun durch eine gewichtete Wahrscheinlichkeit

abgelöst, welche für eine Kante E mit der Gewichtung WE durch die Gleichung (6.1) bestimmt

wird. Wobei Wgesamt die Summe aller Kantengewichte der ausgehenden Kanten an N ist.

P (E) = WE

Wgesamt
(6.1)

Damit der Algorithmus seltener redundante Eingabesequenzen ausgibt kann, muss der er

speichern, wie häufig er bereits welche Kante besucht hat. Dafür merken sich die Kanten im

Graph die Anzahl der Besuche VE . So sinkt die Wahrscheinlichkeit, dass der Algorithmus

in die selbe Schleife läuft, die er bereits besucht hat. Da jedoch eine ausreichende Restwahr-

scheinlichkeit für solche Schleifendurchläufe bleiben soll, da auch ein Nutzer eine derartige
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Sequenz ausführen kann, wird die Anzahl der Besuche erst am Ende eines jeden Durchgangs

inkrementiert. Zudem sollen, auch wenn eine Schleife in einer Testsequenz sehr häufig durch-

laufen wurde, in folgenden Tests Kombinationen mit dieser Schleife getestet werden. Um die

Wahrscheinlichkeit, dass die Schleife wieder aufgerufen wird, groß genug zu halten, wird nicht

die Anzahl der Aufrufe einer Kante gespeichert, sondern die Anzahl der Testsequenzen, in

denen die Kante aufgerufen wurde.

Die Besuchszahl VE soll abhängig von der Menge der generierten Testfälle bisher sein. Bei

einer hohen Zahl an Durchgängen, werden zu Beginn häufig besuchte Kanten wieder relevant,

wenn die restlichen Kanten abgedeckt wurden und Kombinationen der Verzweigungen und

Schleifen getestet werden können. Die Wahrscheinlichkeit für bereits besuchte Kanten muss

also wieder steigen, wenn viele Testsequenzen ausgeführt wurden, ohne diese zu besuchen.

Nur so erhält sich der Vorteil der stochastischen Tests, dass komplexe Szenarien, die relevant

aber nicht manuell getestet sind, ausgeführt werden [Nym00].

Wie der randomisierte Algorithmus, soll der lernfähige zunächst vollständig zufällig, mit gleich

verteilter Wahrscheinlichkeit Kanten auswählen. Daher ist der Startwert des Gewichts einer

Kante VE die Anzahl der ausgehenden Kanten. Im ersten Testdurchgang ergibt sich dann für

den Knoten N mit drei Ausgehenden Kanten wie oben eine Wahrscheinlichkeit von 1/3 je

Kante, da die Gleichung (6.2) gilt.

P (E) = WE

Wgesamt
= 3

9 = 1
3 (6.2)

Bei komplexeren Graphen, ergibt sich durch diese Gewichtung jedoch das Problem, dass

Teilgraphen, die an Knoten beginnen, die Teil einer Schleife sind oder viele Pfade zu ihren

eingehenden Kanten haben, mit hoher Wahrscheinlichkeit nicht oder nur sehr selten besucht

werden. Grund dafür ist, dass die vorherigen Kanten mit hoher Wahrscheinlichkeit häufig

besucht werden und deren Gewichtung dann verringert wird. Jedes mal, wenn eine Testsequenz

in einen Teilgraph führt, sinkt die Wahrscheinlichkeit, dass dieser noch einmal besucht wird.

Dies geschieht unabhängig davon, wie gut der Teilgraph abgedeckt ist. Um eine minimale

Abdeckung wahrscheinlicher zu machen, soll die Dekrementierung des Kantengewichts nur

dann statt finden, wenn keine neue Kante auf dem Pfad lag. Führt ein Pfad das erste mal in den

Teilgraph, wird der Weg dort hin nicht unwahrscheinlicher. Führt der Pfad erneut hinein, steigt

jedes mal die Wahrscheinlichkeit, eine der nicht besuchten Kanten im Teilgraph zu besuchen,

da andernfalls die bereits besuchten Kanten an Gewicht verlieren. Solange regelmäßig neue

Kanten entdeckt werden, steigt die Wahrscheinlichkeit diesen Teilgraph zu besuchen, im

Vergleich zu bereits vollständig abgedeckten Teilgraphen. Wird also eine neue Kante mit

VE = 0 besucht, ist das Gewicht aller Kanten die in diesem Testlauf besucht wurden Wk = Wk.

Wenn nicht, wird das Gewicht verringert um den Faktor der Besuche im Verhältnis zur Zahl

der Durchgänge bisher. Die Gewichtung einer Kante WE , wenn keine neue Kante besucht

wurde, errechnet sich also wie in Gleichung (6.3), wobei D die Anzahl der Testdurchläufe

bisher ist. Das Gewicht muss nach jedem Testdurchlauf neu berechnet werden.

WE = WE ∗ VE

D
(6.3)
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In Abschnitt 6.2 wird der lernfähige Algorithmus mit dem rein zufälligen Vorgehen verglichen

und auf die erhofften Vorteilen untersucht.

6.2. Vergleich der Algorithmen

Im Folgenden ist meine Untersuchung des Algorithmus erläutert. Zunächst der Versuchsaufbau,

dann die Variationen der Durchführung und im Anschluss die Folgerungen, die aus den

Ergebnissen gewonnen werden können.

6.2.1. Versuchsaufbau

Der Versuch wurde anhand eines Graphen und zweier Algorithmen in Java ausgeführt. Die

Algorithmen sind ein zufälliger und ein lernfähiger Algorithmus. Der Graph ist ein gerichteter

Graph mit Schleifen, wie er als Kontrollfluss eines Prüflings vorkommen könnte. Die Implemen-

tierung des Graphen besteht aus zwei unterschiedlichen Klassen. Die „Edge“ Klasse und die

„Node“ Klasse. Um die Auswertung der Ergebnisse einfacher zu gestalten, wurden extra Objekte

für die Kanten verwendet, statt sie wie häufig implizit durch die Verknüpfung der Knoten

darzustellen. Die Kanten wissen von welchem Knoten sie ausgehen und in welchem Knoten

sie enden. Sie speichern die Anzahl der Besuche und ihre Gewichtung in einer „visits“ und

einer „heat“ Variable. Beide Klassen sind in Anhang A.2 zu finden. Nach jedem Testdurchlauf

mit Gewichtung wird die „visits“ Variable aller besuchter Knoten inkrementiert. Danach wird

die Gewichtung jedes Knotens neu berechnet. Wenn keine neue Kante besucht wurde und

die boolesche Variable „newEdgeVisited“ den Wert false hat, wird die Gewichtung wie in

Gleichung (6.3) errechnet. Der Versuchsaufbau führt folglich den lernfähigen Algorithmus wie

in Abschnitt 6.1 beschrieben aus.

Es wurden drei Komplexitätsstufen des Graphen verwendet, um die Auswirkungen der Kom-

plexität auf die Ergebnisse der Algorithmen zu untersuchen. Abbildung 6.1 zeigt eine Visuali-

sierung der Datenstruktur. In Komplexitätsstufe zwei, kamen die grünen Knoten und Kanten

hinzu. In der dritten Komplexitätsstufe die gestrichelten Kanten. Der Wurzelknoten ist der mit

„r“ beschriftete Knoten. In jeder Komplexitätsstufe wurden vier Versuche ausgeführt. Beide

Algorithmen wurden mit jeweils 20 und 50 Testdurchläufen ausgeführt. Das erste mal mit einer

Pfadtiefe von 20 und das zweite mal mit einer Pfadtiefe von 25. Die Pfadtiefe bestimmt, nach wie

vielen besuchten Kanten ein Testdurchlauf zu Ende ist. 20 und 25 wurden gewählt, da die Pfade

dann länger als der kürzeste direkte Pfad zum am weitesten von der Wurzel entfernten Knoten

1
sind und trotzdem eine möglichst geringe Länge haben. Das Ziel sind schließlich für einen

1
Von der Wurzel bis zu Knoten 17 ist die Pfadlänge zehn. Bei zehn Schritten ist die Wahrscheinlichkeit den

direkten Pfad zu gehen

1
3 ∗ 1

2 ∗ 1
2 ∗ 1

4 ∗ 1
2 ∗ 1

2 ∗ 1
2 ∗ 1

3 ∗ 1
3 = 1

1728 . Das Ereignis, dass ein Pfad mit Länge ≤ 20
zu 17 führt ausgewählt wird, hat eine deutlich höhere Wahrscheinlichkeit.
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Abbildung 6.1.: Gerichteter Graph mit Schleifen
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Menschen interpretierbare Ergebnisse. Auch die Anzahl Testdurchläufe ist so gewählt, dass

bei einer Ausführungsdauer von 40 Sekunden je Testsequenz, der Testdurchlauf maximal etwa

eine halbe Stunde dauert. Der lernfähige Algorithmus führt die Gewichtung 20 bzw. 50 mal,

also für jeden Testdurchlauf aus. Nach 20 bzw. 50 Testdurchläufen wird die Gewichtung des

Graphen wieder zurück gesetzt, so dass der Versuch unabhängig wiederholt werden kann.

Am Ende jedes Testfalls wurde ausgegeben, wie viele Kanten noch nicht besucht wurden. Die

Verteilung der Testsequenzen auf den Graphen, wird also anhand einer Kantenüberdeckung

gemessen. Trotz einer gewünschten Varianz der Testfälle, soll in ökonomisch sinnvoller Zeit,

eine sonst systematisch angestrebte Überdeckung erreicht werden. Die Kantenüberdeckung

ist ein gutes Indiz dafür, ob die Pfade den Graphen gut verteilt überdeckt oder ob sie sich

auf einzelne Teilgraphen und Schleifen beschränkt haben. Die Ergebnisse der Tests liegen

gezielt in einem Grenzbereich. Sprich aufgrund der Komplexität des Graphen, der gewählten

Pfadtiefe und der Anzahl Testdurchläufe, ist die Wahrscheinlichkeit hoch, dass Kanten nicht

besucht werden. Die Ergebnisse ungleich null lassen sich dann quantitativ leichter bewerten,

als jeden einzelnen Pfad zu vergleichen. Der gewählte Versuchsaufbau führte im ersten Test,

zu Ergebnissen zwischen null und maximal zwölf nicht überdeckten Kanten.

6.2.2. Ergebnisse

Versuch 1

Jedes Experiment wurde 30 mal wiederholt und Anschließend Mittelwert und Median ausge-

rechnet. Die Ergebnisse der Versuchsreihen sind in Abschnitt 6.2.2, Abschnitt 6.2.2, Tabelle 6.3

aufgeführt. Die Tabellen sind zweigeteilt. Die oberen drei Zeilen, sind jeweils die Ergebnisse

des lernfähigen Algorithmus. Die Zeilen vier bis sechs sind die des zufälligen. Die Spalten

beinhalten zuerst die Experimente mit 20 Testdurchläufen jeweils. Zunächst mit der Pfadtiefe

20 dannmit 25 Kanten tiefen Pfaden. Die letzten beiden Spalten sind die selben Experimente mit

jeweils 50 Testdurchläufen. Angegeben sind jeweils Mittelwert und Median um eine etwaige

Rolle von Ausreißern erkenntlich zu machen.

Aus den Tabellen ist klar ersichtlich, dass der lernfähige Algorithmus in den ausgeführten

Versuchen deutlich besser bei der Kantenabdeckung abschneidet. Beide Algorithmen decken

in Komplexitätsstufe eins recht zuverlässig den Graphen ab. Bei 50 Testdurchläufen, bleibt

beim lernfähigen Algorithmus im Schnitt keine Kante übrig. Selbst bei nur 20 Durchläufen,

ist das Ergebnis mit 0,133 und 0,033 deutlich besser als das des zufälligen Algorithmus. Der

lernfähige Algorithmus ist hier sogar etwa um den Faktor neun besser als der Zufällige.

Jedoch fällt auf, dass der Faktor, um den der lernfähige Algorithmus besser ist sinkt, je mehr

Durchgänge und je höher die Pfadtiefe. Dies hängt jedoch damit zusammen, dass für beide

Algorithmen der Wert gegen null strebt. Dies ist zu erwarten, denn je mehr Ausführungen,

desto höher ist die Wahrscheinlichkeit, dass alle Kanten besucht werden (siehe Theorem 2). Es

lässt sich jedoch bereits Ableiten, dass zumindest bei niedriger Anzahl Durchläufe eine bessere

Kantenüberdeckung durch den lernfähigen Algorithmus erreicht wurde.
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Lernend 20 / 20 20 / 25 50 / 20 50 / 25

Mittelwert 0,133 0,033 0 0

Median 0 0 0 0

Zufällig 20 / 20 20 / 25 50 / 20 50 / 25

Mittelwert 1,100 0,300 0,200 0,100

Median 1 0 0 0

Tabelle 6.1.: Versuch auf der Komplexitätsstufe eins

Lernend 20 / 20 20 / 25 50 / 20 50 / 25

Mittelwert 2,967 0,933 0,333 0,367

Median 3 0,5 0 0

Zufällig 20 / 20 20 / 25 50 / 20 50 / 25

Mittelwert 5 4,5 3,033 1,8

Median 4,5 4 2,5 1

Tabelle 6.2.: Versuch auf der Komplexitätsstufe zwei

Versuch 2

In Versuch zwei wurden die Experimente aus Versuch eins, mit Pfadtiefe 25 wiederholt. In

jedem Experiment wurde die Menge der Durchläufe um 30 erhöht. Die Experimente wurden

jeweils 100 mal wiederholt und der Mittelwert errechnet. Graphen zeigen für Komplexität

zwei und drei, bis zu welchem Punkt der lernfähige Algorithmus Vorteile bietet. In Abbil-

dung 6.2 ist erkenntlich, dass für Komplexitätsstufe drei, bereits nach etwa 110 Durchläufen

die Wahrscheinlichkeit eine Kantenüberdeckung erreicht zu haben gleich ist, da sich die

Durchschnittswerte dort schneiden. In Komplexitätsstufe zwei, trifft das erst nach etwa 180

Durchläufen zu. Die Unterschiede können hier durchaus der stochastischen Natur der Algo-

rithmen zugerechnet werden und sind vernachlässigbar. Die gesamt Wahrscheinlichkeit ist bei

so geringen Unterschieden, wie sie ab 180 Durchläufen zu vermerken sind, gleichwertig.

Lernend 20 / 20 20 / 25 50 / 20 50 / 25

Mittelwert 5,133 3,067 1,133 0,700

Median 5 2 0 0

Zufällig 20 / 20 20 / 25 50 / 20 50 / 25

Mittelwert 6,633 5,333 3,7 1,933

Median 7 5 3 2

Tabelle 6.3.: Versuch auf der Komplexitätsstufe drei
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Abbildung 6.2.: Durchschnittlich übrige Kanten bei Pfadtiefe 25

Versuch 3

In einer weiteren Versuchsreihe, sollte die Verteilung der Kanten in einzelnen Durchläufen

ermittelt werden. Hierfür wurde die durchschnittliche Anzahl unterschiedlicher besuchter

Kanten je Durchlauf gemessen. Das Experiment wurde bei einer Pfadtiefe von 25 auf Kom-

plexitätsstufe zwei ausgeführt. Die Ergebnisse sind in Abschnitt 6.2.2 aufgeführt. Hier zeigt

sich, dass nahezu kein Unterschied existiert. Beide Algorithmen besuchen je Testlauf also etwa

gleich viele unterschiedliche Kanten. Der zufällige Algorithmus, schneidet sogar etwas besser

ab als der lernfähige.

Versuch 4

Der letzte Versuch, zielte darauf ab, die Überdeckung weit vom Startknoten entfernter Pfade

zu betrachten. Hierfür wurde die Kante „17-13“ betrachtet und die durchschnittliche Anzahl

der Besuche der Kante je Testdurchlauf gemessen. Die in Abbildung 6.3 abgebildeten Werte

sind der Durchschnitt der Ergebnisse aus 100 Ausführungen des Versuchs. Die betrachtete

Kante ist die am weitesten vom Wurzelknoten entfernte Kante. Auf Komplexitätsstufe zwei ist

die Wahrscheinlichkeit des direkten Pfades der Länge 11, beim zufälligen Algorithmus

1
1944 ,

auf Stufe drei ist sie

1
3888 . Entsprechend schneidet der zufällige Algorithmus ab. Die Aufrufe
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Durchläufe Lernender Algorithmus Zufälliger Algorithmus

20 13.81 13.88

40 13.14 13.22

60 12.51 12.52

80 11.90 11.89

100 11.45 11.64

120 11.10 11.16

140 10.68 11.3

160 10.84 11.15

180 10.36 10.72

200 10.50 10.98

220 10.20 10.19

Tabelle 6.4.: Besuchte unterschiedliche Kanten je Durchlauf

der Kante steigen mit zunehmenden Durchläufen für den lernfähigen Algorithmus annähernd

exponentiell an. Für den zufälligen Algorithmus, ist ein schwacher, linearer Zuwachs zu

verzeichnen.

6.2.3. Folgerung

Die Untersuchungen des lernfähigen Algorithmus, zeigen welche Faktoren für die Präzision

der Testfälle ausschlaggebend sind.

Komplexität des Graphen

Menge der Testdurchläufe

Tiefe der Pfade

In Versuch ein und zwei zeigt sich dass beide Algorithmen schneller eine Kantenüberdeckung

erreichen, wenn die Komplexität minimal, Pfadtiefe und Durchläufe maximal sind. In der Praxis

liegt die Komplexität des Graphen und die Pfadtiefe, gar nicht oder nur bedingt in der Hand der

Tester. Die Komplexität liegt allein an der Beschaffenheit des Prüflings, die Testfalltiefe sollte

begrenzt sein, damit die Testergebnisse nachvollziehbar und Fehlersituationen reproduzierbar

bleiben.

Im Vergleich schneidet der lernfähige Algorithmus, besonders bei geringem Aufwand, besser

ab als der Zufällige. Der Aufwand ergibt sich aus Ausführungsdauer und Komplexität. In

Abbildung 6.2 ist auch zu erkennen, dass die Anfangswerte der Kurven des lernenden Algo-

rithmus weiter auseinander liegen als die des zufälligen. Die Komplexität hat also auf den

Lernenden einen stärkeren negativen Effekt als auf den zufälligen. Es lässt sich vermuten, dass

56



6.2. Vergleich der Algorithmen

Abbildung 6.3.: Besuche einer weit entfernten Kante

der anfängliche Vorteil des lernenden Algorithmus ab einer gewissen Komplexität nicht mehr

existiert.

Im dritten Versuch, wurde festgestellt, dass die Anzahl unterschiedlicher Kanten in einem

erzeugten Testpfad, bei beiden Algorithmen etwa gleich ist. Dies deutet darauf hin, dass beide

etwa gleich häufig Schleifen ausführen. Würde ein Algorithmus häufiger Schleifen durchlaufen

als der andere, würde er weniger unterschiedliche Kanten je Pfad besuchen. Die Algorithmen

verhalten sich bezüglich Schleifen also gleich.

Versuch vier widmete sich der wohl wichtigsten Eigenschaft der Algorithmen. Ideal ist ein

Algorithmus der bei einem bestimmten Aufwand möglichst alle Teile des Programms gleich

testet, also die Testfälle über den gesamten Graphen verteilt. Dazu wurde die am weitesten von

der Wurzel entfernteste Kante betrachtet. In ?? zeigt sich eindeutig, dass der lernende Algorith-

mus deutlich häufiger weit entfernte Kanten besucht. Das zeugt davon, dass der Algorithmus

die gewählten Pfade weiter streut als der zufällige Algorithmus. Der zufällige Algorithmus hat

also eine höhere Wahrscheinlichkeit, weit verzweigte Teilbäume nur unzureichend zu testen,

während der lernende Algorithmus bei erneuter Ausführung deutlich wahrscheinlicher weit

entfernte Kanten besucht. Die Zuname an Besuchen ist sogar annähernd exponentiell, während

die des zufälligen Algorithmus nur leicht linear steigt. Jedoch zeigt sich auch hier, dass die

Komplexität des Graphen eine große Rolle für die Verteilung des lernfähigen Algorithmus ist.

Wie der Algorithmus bei einem umfangreichen Kontrollflussgraph eines komplexen Prüflings
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6. Lernfähigkeit

abschneiden würde, gilt es noch zu prüfen. Durch die exponentielle Zunahme, sollte er jedoch

selbst dann besser abschneiden als der zufällige Algorithmus.
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Das in dieser Ausarbeitung vorgestellte Verfahren lässt sich in zwei Abschnitte teilen. Die

Erzeugung eines Zustandsgraphen anhand modifizierter Page-Objects und die automatisierte

Testfallgenerierung mithilfe eines lernfähigen Algorithmus. Das Ergebnis sollen, mit manu-

ell geschriebenen Systemtests vergleichbare, automatisch generierte Systemtests sein. Die

Bewertungen dieses Kapitels werden für beide Abschnitte getrennt vorgenommen.

7.1. Laufzeit und Arbeitsaufwand

7.1.1. Erzeugung des Zustandsgraphen

Die für die Erzeugung des Zustandsgraphen notwendige Laufzeit, ist abhängig von der Menge

der Page-Objects. Für jedes Page-Object, müssen die ausgehenden Kanten gefunden werden.

Eine Untersuchung der Page-Objects eines echten Softwareprojekts (siehe Anhang A.1.1)

ergab, dass für die betrachteten 30 Tests, 45 neue Page-Objects nötig wären, um alle im Test

erzeugten Zustände zu implementieren. Für dieses Projekt würde das, hoch gerechnet auf 370

Systemtestfälle, 555 neue Page-Objects bedeuten. Für die Laufzeit des Erzeugerprogramms ist

das mit moderner Hardware unbedenklich. Wenn jedes Page-Object mit jedem Page-Object

verbunden ist bedeutet das einenWorst-case in quadratischer Laufzeit, was bei einigen hundert

Elementen jedoch kein Problem darstellt. Selbst wenn die Berechnung wenige Minuten dauern

sollte, so wird sie doch nur ein mal vor dem Systemtest ausgeführt und nur wenn Änderungen

am Kontrollfluss vorgenommen wurden
1
. Bedenklicher sind die neuen Page-Objects für den

Arbeitsaufwand. Es fällt ein mehr als doppelt so hoher Aufwand für das schreiben der Page-

Objects an. Dieser Mehraufwand sollte mit den Vorteilen der zufälligen Testfallauswahl im

Verhältnis stehen.

7.1.2. Auswahl der Testfälle

Die Auswahl mit Hilfe eines lernfähigen Algorithmus wie er in Kapitel 6 beschrieben wird,

erfordert keinen bis minimalen Aufwand für die Durchführung, da diese vollautomatisch

1
Z.B durch neue Funktionalität. Bei Regressionstests, fällt der Aufwand nicht mehr an.
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abläuft. Die Auswertung der Testergebnisse wiederum, kann einiges an Aufwand hervorrufen.

„Smart Monkeys“ erzeugen eine sehr lange Eingabesequenz, die es nachzuvollziehen gilt,

sollte ein Fehler gefunden werden [Nym00]. Die vorgestellte Methode kürzt diese Sequenzen

auf eine für Menschen leicht nachvollziehbare Länge, die abhängig von der Pfadtiefe des

Prüflings festgelegt werden muss. Zudem streut der Algorithmus die Testpfade weiter über

den verwendeten Zustandsgraphen. So lassen sich relevante Testfälle und Ergebnisse erhoffen,

da Sequenzen in die Tiefe in der Regel eher echten Anwendungsfällen entsprechen.

Die Laufzeit des Algorithmus ist vom Tester selbst fest zu legen. Der Algorithmus kann Tage

aber auch nur Minuten ausgeführt werden. Zu bedenken ist jedoch der entstehende Aufwand

durch (hoffentlich relevante) Testergebnisse. Auch hängt die Überdeckung des Graphen von

der Ausführungsdauer ab.

7.2. Aussagekraft und Überdeckung

Soll das Verfahren mit anderen Testverfahren verglichen werden, kann die Aussagekraft der

Testergebnisse und die mögliche Überdeckung des Prüflings untersucht werden.

7.2.1. Erzeugung des Zustandsgraphen

Die Qualität der Page-Objects, hat einen großen Einfluss auf die Aussagekraft der auf ihnen

ausgeführten Tests. Sollen die Page-Objects nicht nur die Nutzeroberfläche, sondern auch den

Zustand des Prüflings repräsentieren, nimmt die Komplexität der Implementierung zu. Die Ent-

wickler müssen für jedes Page-Object die Vor- und Nachbedingungen kennen, um Übergänge

in jeden möglichen Zustand erzeugen zu können. Ein übersehener Zustand führt zu einem

nicht getesteten, jedoch spezifizierten Anwendungsfall. Gerade für sicherheitskritische Anwen-

dungen ist dies ein hohes Risiko. Wenn die Page-Objects anhand der Spezifikation, korrekt und

vollständig implementiert werden können, stellen sie einen vollständigen Zustandsgraphen

für die Software dar, auf dem ein konventioneller, Zustand basierter Test (siehe Kapitel 3)

ausgeführt werden kann. Das Verfahren hat dann die selbe Aussagekraft wie dieser.

7.2.2. Auswahl der Testfälle

Die Aussagekraft der Tests, hängt stark von der Überdeckung des Zustandsgraphen ab. Selbst

wenn ein korrekter Graph existiert, kann auf den Grad der Korrektheit der Software nur

vertraut werden, wenn der Graph auch ausreichend überdeckt ist. Zufällige Tests versprechen

bei genügend langer Ausführungsdauer eine hoheWahrscheinlichkeit alle relevanten Szenarios

auf demGraphen auszuführen. Diese Aussage lässt sich vom „infinitemonkey theorem“ ableiten

[Wik17c]. Erste Versuche mit dem lernfähigen Algorithmus in Abschnitt 6.2 haben gezeigt,

dass durch dynamische Gewichtung der Kanten eine Streuung der Überdeckung erreicht
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werden kann. Die Aussagekraft der Tests, ist der Wahrscheinlichkeit entsprechend hoch.

Jedoch kann es aufgrund der stochastischen Natur der Tests immer noch passieren, dass

wichtige Szenarios nicht ausgeführt werden. Zudem wurde das Verfahren auf einem Graphen

mit geringer Komplexität ausgeführt. Um eine aussagekräftige Überdeckung von komplexeren

Graphen zu erreichen, muss die Laufzeit entsprechend hoch sein.

7.3. Skalierbarkeit

Die Aussagekraft des Verfahrens als vollwertiger Systemtest ist fragwürdig. Jedoch lässt es

sich problemlos zu Oberflächentests oder Zuverlässigkeitstests herunter skalieren. Wenn die

Page-Objects nach dem herkömmlichen Entwurfsmuster geschrieben sind, repräsentieren

sie die Nutzeroberfläche des Prüflings [sel17]. Aus diesen Page-Objects lässt sich genauso

ein Graph erzeugen, wie aus Page-Ojects die den Zustand des Programms beinhalten. Die

Aussagekraft der Tests ist dann natürlich nicht mehr mit der eines Systemtests vergleichbar.

Die Oberfläche kann trotzdem kostengünstig anhand zufälliger Tests auf ihre Funktionalität

getestet werden. Lediglich Tests die externe Stimuli benötigen, können nicht automatisch

ausgeführt werden. Sollte die Komplexität des Prüflings zu hoch sein, als das der lernfähige

Algorithmus eine gute Überdeckung erreichen kann, dienen seine Ergebnisse dennoch als

zusätzliche Zuverlässigkeitstests.
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Das vorgestellte Verfahren ist ein zweigeteiltes skalierbares Verfahren zur Automatisierung von

Systemtests. Es verwendet Page-Objects die nach dem Page-Object Entwurfsmuster implemen-

tiert wurden [sel17]. Um einen Zustand basierten Test auf dem Prüfling ausführen zu können,

wird aus den Page-Objects ein Zustandsgraph generiert. Dazu muss das Entwurfsmuster erwei-

tert werden und ein Page-Object für jeden Zustand implementiert sein. Das Verfahren macht

sich dann zu nutze, dass eine stochastische Testfallauswahl sehr komplexe und doch relevante

Eingabesequenzen erzeugt, die bei manuellen Tests nicht ausgeführt werden [Nym00], um die

Testüberdeckung des Prüflings zu erhöhen. Die zufällig generierten Tests orientieren sich an

den „Monkey Tests“ [Nym00]. Um die Menge der ausgeführten Tests möglichst nahe an die

Menge der von Nutzern ausgeführten Szenarios zu bringen, wird ein lernfähiger Algorithmus

eingesetzt, der die Eingabesequenzen besser auf dem gesamten Zustandsgraphen zu verteilt.

Die Tests selbst müssen nicht geschrieben werden und erzeugen keinen Aufwand. Durch den

lernfähigen Algorithmus werden vermeintlich relevante und auch lesbare Testergebnisse er-

zeugt. Das Verfahren erfordert jedoch einen hohen Aufwand beim Schreiben der Page-Objects.

Auch die Überdeckung des Graphen ist nur bei häufiger Ausführung der Tests wahrscheinlich.

Wie das Verfahren an einer echten Software abschneidet, ist noch nicht erprobt. Es lässt sich

aber erahnen, dass aufgrund des hohen Aufwands für die Implementierung der Page-Objects,

eine vollständige Umsetzung des Zustandsgraphen nicht ökonomisch sinnvoll ist. Eine mögli-

che Anwendungsweise könnte jedoch eine teilweise Umsetzung des Zustandsgraphen sein.

Vollautomatisch getestet wird dann nur ein Teilgraph, der sich leicht in Page-Objects abbilden

lässt. Die Methode scheint eher zusätzlich zu manuell geschriebenen Systemtests einsetzbar zu

sein, als diese ersetzen zu können.

Ausblick

Um den Einsatz des Verfahrens weiter zu evaluieren, sollte es an einem echten Prüfling ange-

wendet werden. Geeignet ist eine Software, für die bereits Page-Objects nach dem korrekten

Entwurfsmuster und manuell geschriebene Systemtests existieren. Für diese sollten dann,

den Zustand repräsentierende, Page-Objects komplett neu geschrieben werden. Gleichzeitig

müssen die bereits existierenden an die Anforderungen des Verfahrens angepasst werden.

So kann der Aufwand für die neuen Page-Objects und für eine Anpassung ermittelt werden.

Anschließend können die zufällig generierten Tests mit den bereits geschriebene im Einsatz
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verglichen werden. Dabei sollte die Schwere der gefundenen Fehler, die Rate in der Fehler

gefunden werden und die ausgeführten Testpfade betrachtet werden.

Ein Ansatz zur weiteren Verbesserung der Testfallauswahl ist die Verwendung eines neuronalen

Netzwerks. Ein solches Netz könnte die Gewichtung der Kanten des Zustandsgraphen anhand

von gemessenen Überdeckungskriterien durchführen. So könnte der Algorithmus mit der Zeit

lernen, wie er den Prüfling am besten überdeckt. Auch die Relevanz und Menge der gefundenen

Fehler könnte das Netzwerk auswerten. So wäre es möglich, Teilgraphen in denen häufig Fehler

auftreten intensiver zu testen als solche, die selten Fehler beinhalten. Ein solches Netzwerk

könnte unabhängig davon angewandt werden, ob der Zustandsgraph automatisch generiert

oder aus der Spezifikation abgeleitet wurde.
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A. Anhang

A.1. Untersuchtes Projekt

A.1.1. Eckdaten

Das untersuchte Beispielprojekt ist eine native Android Endnutzeranwendung eines deutschen

Softwarehauses. Es dient lediglich dazu Größenordnungen und Aufwand abschätzen zu kön-

nen. Die verwendeten Daten sind lediglich aus einer Anwendung erhoben, sind also nicht

repräsentativ. Dennoch erlauben sie eine grobe Schätzungen.

LOC Projekt ohne Tests 203.000

Anzahl Systemtestfälle 370

Anzahl Page-Objects ≈ 70

Dauer automatisierter Tests ≈ 4h

Dauer je Testfall ≈ 40s

A.1.2. Daten exemplarischer Testfall

Eine Sektion der Testfälle, die den selben Simulator und einen Server verwendet.

19 Tests

675 LOC in den Tests

1 Simulator

1 Server
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A.2. Code des Versuchs

A.2.1. Node
public class Node {

private List<Edge> in;
private List<Edge> out;

public Node() {

in = new ArrayList<>();
out = new ArrayList<>();

}

public int getNumberOfOutgoingEdges() {
return out.size();

}

public List<Edge> getOut() {
return out;

}
public void addToOut(Edge edge) {

this.out.add(edge);
}
public void addToIn(Edge edge) {

this.in.add(edge);
}

}

A.2.2. Edge

public class Edge {

private Node from;
private Node to;

private int visits = 0;
private double heat = 0;

private String name;

public Edge(Node from, Node to, String name) {
this.from = from;
this.to = to;
this.name = name;
from.addToOut(this);
to.addToIn(this);

}

public Node getFrom() {
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return from;
}

public Node getTo() {
return to;

}

public int getVisits() {
return visits;

}

public void setVisits(int visits) {
this.visits = visits;

}

public double getHeat() {
return heat;

}

public void setHeat(double heat) {
this.heat = heat;

}

public String getName() {
return name;

}
}
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