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Kurzfassung

Automatisierte Systemtests sind die wohl giangigste Methode sinnvoll den Aufwand des Sys-
temtests zu verringern. Die Tests zu schreiben, ist jedoch noch immer mit Aufwand verbunden
und die Tests decken in der Regel nur eine Teilmenge der von Nutzern ausgeldsten Szenarien
ab. Fuzz-Tests sind Tests auf Basis zufillig generierter Eingaben. Sie versprechen bei langer
Ausfihrungszeit mehr Nutzerszenarien bei geringerem Aufwand abzudecken. Um die Aus-
fihrungszeit zu verkiirzen wird ein lernfahiger Algorithmus evaluiert und mit einem rein
zufalligen Algorithmus verglichen. Die Evaluation zeigt, dass in der Theorie ein lernfahiger
Algorithmus in der Lage ist, eine hohe Uberdeckung der Szenarien zu erreichen.
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1. Einleitung

Diese Ausarbeitung befasst sich mit Systemtests und deren Automatisierung. Der System-
test ist der einzige Test im Softwarezyklus, der Funktionalitat des Priiflings vollstindig tes-
ten kann[Joc13][S.491]. Er kann als Integrationstest auf hochster Ebene verstanden wer-
den[Joc13][S.491]. Ein Integrationstest testet ob Programmteile richtig miteinander agieren
[Joc13][S.491]. Beim Systemtest, sind diese Programmteile der Priifling, andere Komponenten
des Systems und vor allem anderen der Nutzer. Der Systemtest ist notwendig, richtig aus-
gefithrt jedoch mit einem sehr hohen Aufwand verbunden [Joc13][S.62]. Selbst die bereits
verwendeten Automatisierungstechniken, erfordern einiges an Implementierungsaufwand.
Deshalb befasst sich diese Arbeit mit der automatischen Generierung der Testskripte, anhand
der bereits eingesetzten Technologie und durch Fuzz-Tests. Fuzz-Tests sind Tests mit zufillig
generierten Eingabewerten. Bei Black-Box Fuzz-Tests, die Nutzereingaben simulieren, spricht
man héufig von ,Monkey Tests“ Kapitel 4. Die zufalligen Eingaben, erzeugen viele Szenarien,
die ein menschlicher Tester nicht testen wiirde [NymO00], jedoch auch viele redundante Sze-
narien. Deshalb wird evaluiert, ob durch einen lernfdhigen randomisiserten Algorithmus die
erzeugten Szenarien weniger redundant und vielfaltiger werden. Die verwendete existierende
Technologie sind die so genannten Page-Objects [sel17]. Sie erlauben es die Oberflache des
Priflings zu automatisieren. Durch das ihnen zugrunde liegende Entwurfsmuster, bilden sie
den moglichen Weg des Nutzers durch den Priifling ab [sel17]. Diese Eigenschaft kann genutzt
werden, um automatisch einen Zustandsgraphen zu erzeugen, auf dem die zufalligen Tests
auflerst prazise ausgefithrt werden konnen. Der Aufwand fiir die Vorbereitung des Verfahrens
wurde ermittelt und ein geeigneter Algorithmus gefunden. Die Eigenschaften des Algorithmus
wurden in einem Experiment geprift Kapitel 6.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Automatische Systemtests: Hier werden die Anforderungen an Systemtest
und ihre Automatisierung vorgestellt und der Aufwand erortert.

Kapitel 3 — Zustand basiertes Testen: bietet eine Einfithrung in Zustandsbasiertes Testen
und stellt eine Testbaum basierte Methode vor.

Kapitel 4 — Monkey-Tests: befasst sich mit den Monkey-Tests und stellt zwei unterschiedli-
che Ansitze.
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1. Einleitung

Kapitel 5 — Das Verfahren: stellt die Problemdefinition. Die automatisierte Generierung des
Zustandsgraphen und der Testfélle wird hier beschrieben.

Kapitel 6 — Lernfahigkeit: betrachtet wie der Algorithmus zur Testfallauswahl, durch Lernfa-
higkeit verbessert werden kann und beinhaltet einen Vergleich mit einem herkémmlichen
Algorithmus.

Kapitel 7 — Bewertung: Hier wird das Verfahren nach einigen Kriterien bewertet. So soll
eine Einschatzung der Eignung des Verfahrens erméglicht werden.

Kapitel 8 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen
und stellt Ankniipfungspunkte vor.
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2. Automatische Systemtests

2.1. Anforderungen an Systemtests

Um zu klédren, inwiefern automatisch generierte Systemtests, manuelle Tests ersetzen oder
erganzen konnen, ist es wichtig die allgemeinen Anforderungen an Systemtests zu spezi-
fizieren. Zudem spielt die Einordnung der Tests in den Software-Prozess eine Rolle, wenn
der Aufwand an Zeit und Ressourcen der Vorgehensweisen verglichen werden soll. Nach
der Fertigung einer Spezifikation und der darin enthaltenen Anwendungsfille, liegen alle
grundlegenden, bendtigten Informationen vor, um mit der Vorbereitung der Systemtests zu
beginnen [Joc13, S.505]. Dadurch sind die Tests schon friih verfiigbar, was gerade bei einem
agilen Entwicklungsprozess entscheidend sein kann, da hier nach jeder Iteration und vor
jedem Release! die relevanten Systemtests ausgefithrt werden sollten. Ein weiterer Vorteil
der entsteht, wenn die Testfalle erarbeitet werden sobald die Spezifikation vorliegt, ist die
Uberpriifung des Dokuments [And12][505].

Systemtests sind Black-Box-Tests und ziehen nur den Funktionsumfang des Priiflings in Be-
tracht, nicht jedoch die Implementierung. Die Sicht des Testers auf den Priifling ist hier also die
Sicht des Nutzers oder des Kunden [And12][S.58]. Die Systemtests sollten diese Sicht wider-
spiegeln. Um die Systemtests in einem ,systematischen Test” verwenden zu kénnen, miissen
die Ergebnisse des Tests dokumentiert werden [Joc13][S.480]. Folglich miissen die Ergebnisse
auch in einer von Menschen interpretier- und beurteilbaren Form vorliegen. Der Test soll
zeigen, wie gut der Prifling die funktionalen Anforderungen erfillt [And12][S.59]. Dies ist fiir
den Tester gerade dann einfach zu bewerten, wenn die Testergebnisse die Nutzersicht umset-
zen und erkenntlich wird, was der Nutzer (im Test der simulierte Nutzer) getan hat, um das
Fehlverhalten auszuldsen. Wenn moglich, muss vor dem Test bereits ein Soll-Resultat definiert
sein, gegen das die Testergebnisse validiert werden kénnen [Joc13][S.482]. Die Spezifikation
dient bei der Testvorbereitung als Anleitung fiir den Tester, welche Funktionen und Ablaufe
auszufuhren sind. Sie stellt zudem auch das Soll-Resultat, anhand dessen der Tester erkennt,
ob das Programm korrekt auf die Eingaben des Testfalls reagiert hat. Bei der Vorbereitung der
Tests muss der Tester die Spezifikation also ausfiithrlich studieren und kann Inkonsistenzen
oder Unklarheiten entdecken [Joc13, S.504].

! Auslieferung an einen Kunden oder Verdffentlichung auf einem freien Markt.
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2. Automatische Systemtests

Ahnlich wie bei Glass-Box oder Unit-Tests, konnen die ausgefithrten Tests anhand einer
Uberdeckungsmetrik qualifiziert werden [Joc13, S.514ff].

Aus der Spezifikation direkt ergibt sich die Funktionsiiberdeckung. Eine vollstandige Funk-
tionsiiberdeckung ist erreicht, wenn alle in der Spezifikation definierten Funktionen
ausgefithrt werden. Bendtigt wird fiir die Funktionsiiberdeckung die Liste aller Funktio-
nen und zugehorig eine Eingabegrofle und eine erwartete Ausgabegrofle, bzw. Reaktion
des Priiflings [Joc13][S.506].

Die Eingabeiiberdeckung ist deutlich komplexer, da sie fiir jede Funktion eine Ausfiih-
rung mit jeder moglichen Eingabe bedeutet. Fiir Programme mit einer nicht trivialen
Komplexitat ist dies natiirlich unméglich. Daher verwendet man fiir die Eingaben Aqui-
valenzklassen [Joc13][S.506], wie sie auch im White-Box-Test gebrduchlich sind. Grob
werden hier Eingaben, deren Auswirkungen auf die Funktion des Programms gleich sein
sollen, in Aquivalenzklassen zusammengefasst. Es geniigt nun eine Eingabe je Klasse
auszufithren, um alle in der Aquivalenzklasse enthaltenen Werte abzudecken[And12,
S.110]. Der Uberdeckungsgrad kann dann anhand der abgedeckten Aquivalenzklassen,
wie in Gleichung (2.1) ermittelt werden [And12][S.119].

Anzahl getestete Aquivalenzklassen

Uberdeckung = (2.1)

Aquivalenzklassen

Die Ausgabeiiberdeckung kann dhnlich wie die Eingabeiiberdeckung durch Aquivalenz-
klassen erreicht werden. Wie der Name erahnen lasst, sind die Aquivalenzklassen jedoch
bezogen auf die Ausgaben des Programms.

Neben diesen rein funktionalen Tests, bieten Systemtests noch die Moglichkeit, nicht funktio-
nale Tests durchzufithren [And12][S.72]. Leistungsgrenzen z.B. die Anzahl an Aktionen auf
der Nutzeroberflache oder Mengengrenzen, wie besonders grofie Datenmengen als Eingabe,
konnen getestet werden.

2.2. Aufwand in der Praxis und Motivation

2.2.1. Motivation

Um den Anforderungen an einen Systemtest gerecht zu werden, ist ein enormer Aufwand
noétig. Die Vorbereitung der Tests anhand der Spezifikation, die Ausfithrung und die Analyse
der Ergebnisse, kann grofle Teile der Ressourcen eines Projekts verschlingen. Der Systemtest
ist jedoch der einzige Test, der die Funktionalitat des gesamten Systems testet [Joc13][S.504].
Mit anderen Worten, ob das Projekt iiberhaupt seinen Zweck erfiillt. Ein Projekt, dass nicht
die geforderte Funktionalitit entwickelt, ist voraussichtlich zum Scheitern verurteilt. Der
Systemtest ist somit der wohl wichtigste Test und alle anderen Tests, konnen als Ergéanzung
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2.2. Aufwand in der Praxis und Motivation

des Systemtests® betrachtet werden [Joc13][S.504]. Die Kosten fiir Integration und Test konnen,
wenn die Wartungskosten auflen vor gelassen werden, etwa ein Viertel der Entwicklungs-
kosten betragen [Joc13][S.62]. In einem iterativen Prozess, handelt es sich am Ende einer
jeden Iteration um eine Integration der neu entwickelten Funktionalitat. Diese muss selbst-
verstandlich getestet werden. Da die Entwicklung in einem iterativen Projekt haufig mit dem
ersten Release nicht abgeschlossen ist, sondern geplant vor Fertigstellung der vollstandigen
Funktionalitit verdffentlicht wird, ist der Ubergang von Erstentwicklung zur Wartung flielend.
Die Tétigkeiten der Wartung sind ,Korrektur, Anpassung und Erweiterung” [Joc13][S.62].
Nach jeder dieser Tétigkeiten, muss ein System-, bzw. Regressionstest durchgefithrt werden
[And12][S.74]. Es miissen also nicht nur die Kosten des Systemtests in der Erstentwicklung,
sondern zusatzlich die Wartungskosten beachtet werden. In diesem Fall liegen die Kosten fiir
Wartung inklusive Integration und Test bereits bei etwa zwei Dritteln der Gesamtkosten des
Projekts [Joc13][S.72]. Ein Teil dieser Kosten, entsteht durch den Systemtest. Abhangig davon
wie grof3 der Funktionsumfang und wie kompliziert die Ausfithrung der Funktionalitat, konnen
manuelle Systemtests viele Entwicklerstunden benétigen.

Um den Aufwand zu verdeutlichen, ist hier ein Beispiel aus [And12][S.14] aufgefiihrt. Der Graph
in Abbildung 2.1 zeigt den Kontrollflussgraph einer Anwendung mit vier Verzweigungen und
einer Schleife um diese Verzweigungen herum. Die Schleife ergibt sich durch den Ubergang von
B zuriick nach A. Um jeden Pfad durch die Verzweigungen einmal ausgefiihrt zu haben, benétigt
man 5' Testfille. Die Menge aller Kombinationen in einer Schleife ist natiirlich unendlich,
da die Schleife unendlich oft wiederholt werden kann. Begrenzt man nun die Anzahl der
Schleifendurchliufe auf 20, ergibt sich noch immer 5%° + 5 + . . . 4 5! Testfille [And12][S.14].
Bei einer Ausfithrungsdauer von fiinf Minuten je Testfall, dauert eine manuelle Ausfithrung
etwa 1.000.000.000 Jahre [And12][S.14]. Sind die Tests automatisiert, dauert die Ausfithrung
nur noch 19 Jahre, da im Beispiel von einer Laufzeit von fiinf Mikrosekunden ausgegangen
wird [And12][S.14]. Stellt jeder Pfad des Graphen eine Funktion des Programms dar, benétigt
selbst eine einfache Funktionsiiberdeckung des Priiflings 25 Minuten, da 5! Testfalle mit je fiinf
Minuten Dauer ausgefithrt werden miissen. Eine automatisierte Funktionsiiberdeckung ist in
verschwindend geringer Zeit ausgefiihrt. Abgesehen davon, dass es in der Praxis unmoglich
ist ,vollstindig zu testen® [And12][S.15], zeigt es auch grob, wie viel Aufwand automatisierte
Systemtests einsparen konnen.

Besonders fiir iterative Prozesse und in Anbetracht der Tatsache, dass der Aufwandsunterschied
bei Regressionstests erneut ins Gewicht fallt, ist es lohnenswert die Ausfithrung der Systemtests
weitestgehend zu automatisieren, solange dies unter Einhaltung der in Abschnitt 2.1 genannten
Anforderungen an Systemtests moglich ist.

?In [Joc13] wird hier von ,Black-Box-Test“ anstelle des Systemtests gesprochen. Die Aussage trifft jedoch auf
den Systemtest, der durch Black-Box-Techniken ausgefiihrt wird, zu.
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2. Automatische Systemtests
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Abbildung 2.1.: Kontrollflussgraph einer Anwendung mit vier Verzweigungen [And12][S.14]

2.2.2. Aufwand der automatisierten Tests

Es existieren unterschiedliche Ansatze zur Automatisierung von Systemtests.

Capture-and-Replay Ein Test-Tool zeichnet die Eingaben an der Nutzeroberfliche, also Maus-
klicks und Tastatureingaben auf und speichert sie in einem Testskript ab [And12][S.210].
Diese Tools verfiigen zwar tiber eine gewisse Robustheit gegen Anderungen der Nut-
zeroberfliche, bediirfen jedoch oftmals Nachbearbeitung bei Anderungen. Auch dufiere
Einfliisse von Simulatoren oder Netzwerkkomponenten im System miissen in die Skripts
eingefiigt werden, wenn sie nicht innerhalb des Programms gesteuert werden.

Oberflachenautomatisierung Es existieren zahlreiche Tools, welche die Automatisierung
der Oberflache rein programmatisch verwalten [Wik17b]. Sie nutzen Dienste der Be-
triebssysteme, um Objekte der Nutzeroberfliche zu erkennen [1dt17]. Im Gegensatz
zu Capture-and-Replay Tools, miissen die Testskripts jedoch von Hand geschrieben
werden. Die Objekt Reprasentanten konnen in einer objektorientierten Art und Weise in
sogenannten ,Page-Objects” implementiert werden (sieche Abschnitt 2.3).
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2.2. Aufwand in der Praxis und Motivation

In dieser Ausarbeitung, wird lediglich die Oberflichenautomatisierung weiter behandelt. Trotz
der hiandischen Erzeugung der Page-Objects, hat das Verfahren einige Vorteile. Einer davon ist
die Objektorientierung der Page-Objects und somit die hohe Wiederverwendbarkeit und die
vermeintlich gute Wartbarkeit. Zudem kann mit einem Capture-and-Replay (Car) Tool nur
genau die Funktionalitat aufgezeichnet werden, die bereits vorhanden ist und vor allem auch
korrekt funktioniert, da der Testfall ja bei der manuellen Ausfithrung aufgezeichnet wird. Diese
Methode kann also ausschliefllich zur Regression eines manuellen Tests zum Einsatz kommen
oder erzeugt einen hohen Mehraufwand bei der hidndischen Bearbeitung der Testskripts
[And12][S.211]. Eine automatisierte Oberfliche hingegen kann anhand der Spezifikation,
noch bevor die Funktionalitdt umgesetzt ist, implementiert werden. Die Implementierung
der Page-Objects lasst sich dadurch ideal in den Software-Prozess eingliedern und sofort
nach Spezifizierung der Anforderungen durchfithren [Joc13][S.504f]. Zudem lasst sich so
der ,Test-first* Ansatz® aus dem Komponententest auf Systemtests anwenden. Auch eine
bessere Lesbarkeit der Tests ist gegeniiber den Car Tests zu erwarten. Die Testskripts der Car
Tools beinhalten in der Regel die Bezeichner der Oberflichenkomponenten, anhand derer sie
diese erkannt haben. Wenn keine Komponente erkannt wurde sogar Koordinaten. Die Page-
Objects verstecken diesen Bezeichner Code vor den Tests und bieten eine von Menschenhand
geschriebene Schnittstelle zur Nutzeroberfliche an Abschnitt 2.3.

Die Automatisierung der Systemtests, ermdglicht es, den Aufwand der Tests deutlich zu verrin-
gern. Tests die bei manueller Ausfithrung Minuten dauern, kénnen innerhalb von Sekunden
ausgefiihrt werden. Jedoch ist die Oberflichenautomatisierung selbst mit einigem Aufwand
verbunden. Die Tests miissen vorbereitet und die Ergebnisse analysiert und verifiziert wer-
den. Vorbereitend muss die Spezifikation gelesen und verstanden werden [Joc13][S.504f]. Die
relevanten Testfalle werden anhand der spezifizierten Funktionalitdt und dem gewiinschten
Uberdeckungskriterium ausgewahlt [Joc13][S.504ff]. Noch wihrend der Entwicklung sind die
Page-Objects zu schreiben. Da ein System nur selten in seiner eigentlichen Einsatzumgebung
getestet wird, werden etwaige Simulatoren benétigt, die diese Umgebung simulieren. Sobald die
Page-Objects implementiert sind, miissen die Testskripts geschrieben werden. Nach deren Aus-
fithrung, konnen die Testergebnisse verifiziert werden. Moglicherweise gab es falsch-positive
Testergebnisse, die von einem Fehler bei der Automatisierung oder einem inkorrekt geschrie-
benen Testfall ausgelost wurden. Anschlieffend steht die Korrektur der Fehler an, nach der die
Testausfithrung wiederholt wird, um sicherzustellen, dass die gefundenen behoben und keine
neuen Fehler eingebaut wurden [Joc13][S.484f]. Dieser erneute Test ist der Regressionstest
[Joc13][S.484f].

3Kurze Erlauterung in [And12][S.49].
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2. Automatische Systemtests

2.3. Page-Objects

2.3.1. Funktionsweise

Um die Automatisierung von Systemtests zu realisieren, muss die Nutzeroberflache des Priif-
lings programmatisch bedient werden konnen. Es existieren etliche Testframeworks, die das
ermoglichen [Wik17b]. Sie bieten die Funktionalitat, Oberflaichenobjekte wie Fenster, Buttons
oder Textfelder zu finden und zu bedienen. Die folgenden Frameworks sind Open-Source und
fir unterschiedliche Betriebssysteme geeignet. Sie stehen reprasentativ fiir eine Vielzahl an
proprietaren und Open-Source Losungen, die Nutzeroberflachen automatisieren konnen.

Idtp *
Testet Windows, Gnome und Java Applications
Lizenziert unter GNU LGPL

Selenium °
Testet Web-Applikationen
Webdriver basiert
Unterstitzt verteiltes Testen auf SeleniumGrid
Lizenziert unter Apache License 2.0

Appium °©
Testet Web- und native Applikationen auf iOS und Android
Nutzt Selenium Webdriver Protokoll
Lizenziert unter Apache License 2.0

Weitere Android alternativen fiir Appium sind Espresso 7 und Robotium ®. Es kann also davon
ausgegangen werden, dass fiir alle gdngigen Systeme, die zur Oberflichenautomatisierung
benotigte Technologie zur Verfiiggung steht. Die Frameworks haben alle eine sehr dhnliche
Funktionsweise. Sie erkennen Oberflichenelemente anhand von Bezeichnern oder vorkom-
menden Strings. Das Linux Desktop Testing Project (Ldtp) verwendet beispielsweise die AT-SPI
Layer, iiber die das Betriebssystem Desktop Dienste anbietet [1dt17]. Dadurch hat das Ldtp
Zugrift auf die Bezeichner der angezeigten Oberflichenelemente wie der angezeigten Fenster
oder Buttons.

*https://1dtp.freedesktop.org/wiki/

>http://www.seleniumhq.org/

Shttp://appium.io/

"https://google.github.io/android- testing-support-library/docs/espresso/
8https://github.com/RobotiumTech/robotium/wiki
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2.3. Page-Objects

Um Testcode wiederverwendbar und lesbar zu machen, lohnt es sich den Framework-Code in
eigene Page-Objects zu verpacken. Fiir Ldtp gibt es bereits einen Ansatz’, der eine objektorien-
tierte Programmierweise mit Ldtp erleichtern soll.

2.3.2. Page-Object Entwurfsmuster

Ausfiihrlichere Informationen, wie objektorientierte Page-Objects implementiert werden kon-
nen, finden sich auf der Selenium Website!?. Die in dieser Ausarbeitung beschriebenen Page-
Objects beruhen hauptséchlich auf dem dort aufgefithrten Entwurfsmuster. Der Begriff Page,
auf Deutsch Ubersetzt ,Seite” passt bei Seleniums Web Applikationen, bei denen es sich tat-
sachlich um Webseiten handelt gut. Aus Konsistenzgriinden, werden im Folgenden auch
Fenster einer Desktop Anwendung mit Seite bezeichnet. Bei der Erlauterung des Page-Object
Entwurfsmusters, dirfte klar werden, dass die Implementierung von Seiten und Fenstern
weitestgehend gleich sind. Jede Seite des Pruflings benétigt ein eigenes Page-Object [sel17].
Jedoch koénnen auch einzelne Sektionen einer Seite, die haufig wiederverwendet werden eige-
ne Page-Object Implementierungen haben [sel17]. Alle Methoden eines Page-Objects geben
wiederum ein Page-Object zuriick. Eine Ausnahme davon sind Methoden, die den Zustand der
Seite iiberpriifen lassen. Beispielsweise kann ein Page-Object ein Textfeld anzeigen und eine 6f-
fentliche'' showTextField() Methode implementieren, die es erlaubt im Testfall Assertions'?
zu schreiben um zu tberpriifen, ob die Seite den richtigen Wert anzeigt[sel17]. Die sonstigen
offentlichen Methoden reprasentieren hier die Eingabemoglichkeiten, welche die Seite dem
Nutzer anbietet. Wichtig hierbei ist, dass das Page-Object low-level code des Testframeworks
und die interne Funktionalitét der Seite versteckt[sel17]. Bietet ein Dialog beispielsweise die
Moglichkeit einen ,Cancel” und einen ,,Ok” Button zu driicken, so findet das Testframework
die beiden Nutzeroberflichenobjekte iiber ihre internen Bezeichner und erkennt, dass es sich
um Buttons handelt, bietet also eine ,click” Methode an. Im entsprechenden Page-Object, sollte
die Suche nach den Buttons und das Klicken in entsprechenden Methoden ,,pressCancel” und
,pressOK” versteckt sein, die wiederum die folgenden Page-Objects zuriick geben. So versteckt
das Page-Object den Framework-Code und bietet nur die Bedienung des Page-Objects an.
Durch den Aufruf der Methoden wird so der Weg des Nutzers durch das Programm modelliert
[sel17]. Existieren Vorbedingungen, die bei gleichem Input zu unterschiedlichen Ergebnissen
fithren, miissen diese in unterschiedlichen Methoden implementiert werden [sel17]. Wichtig ist
es auf das Timing zu achten und Funktionen einzubauen, die den Framework-Code auf etwaige
Verzogerungen beim Aufbau der Nutzeroberfliche warten lassen. Auch bei Netzwerkkommuni-
kation kann es zu Verzogerungen kommen wie eine Anfrage auf einen Backend-Server. Damit
der Test auf diesem Page-Object nicht fehlschlagt und das nachfolgende Objekt gefunden

*https://ldtp.freedesktop.org/wiki/Object-Oriented LDTP
https://github.com/SeleniumHQ/selenium/wiki/PageObjects

0ffentlich im Sinne der Datenkapselung,.
2https://en.wikipedia.org/w/index.php?title=Assertion_(software_development)&oldid=779561246
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2. Automatische Systemtests

werden kann, muss die in der Spezifikation des Priiflings angegebene Reaktionszeit des Servers
gewartet werden.
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3. Zustand basiertes Testen

3.1. Einfuhrung in Zustand basiertes Testen

In diesem Kapitel wird ein zustandsbasiertes Verfahren zum Test einer Software beschrieben,
wie es in [Cho78] vorgestellt wird. Der Test stellt eine Evaluation gegen die Spezifikation dar
[Cho78]. Die Methode impliziert Nutzereingaben und Reaktionen des Priiflings, daher lassen
sich mit diesem Test die funktionalen Anforderungen iiberpriifen. Das Verfahren kann also
im Systemtest eingesetzt werden, da dieser eben diese Anforderungen testet [And12][S.58].
Verwendet wird ein endlicher Automat dessen Knoten die Zustiande des Programmes repré-
sentieren und dessen Kanten entweder Stimuli oder Operationen sind [Cho78]. Stimuli sind
Impulse von auflerhalb der Priiflings, also beispielsweise Nutzereingaben. Operationen sind
Aktionen innerhalb des Systems, die von Stimuli ausgelost werden [Cho78]. Es konnen jedoch
nicht alle Softwaresysteme auf diese Art dargestellt und getestet werden [Cho78]. Nicht ein-
gebettete Software mit einer umfangreichen Nutzeroberflache oder Command line interface
(CLI), sollten jedoch einfach in Operationen und Stimuli darstellbar sein. Dies ist im Einzelfall
zu priifen.

Fir den verwendeten Automaten werden folgende Annahmen getroffen[Cho78]:
Der Automat ist vollstandig spezifiziert.

Der Automat ist minimal.

Der Automat hat einen Startzustand.

Der Automat hat nur erreichbare Zusténde.

Vollstandig spezifiziert, bezieht sich hier auf den Begriff der Automatentheorie. Es bedeutet,
dass fiir alle Zustande Z und alle Eingabezeichen X die Zustandsiibergangsfunktion ¢ und die
Ausgabefunktion A\ definiert sind [Stu17]. Es bedeutet insbesondere nicht, dass der Automat den
vollstandigen Funktionsumfang des Priiflings beinhaltet. Wird die ,fertige” Software getestet,
muss diese Bedingung natiirlich erfiillt sein. In einem iterativen oder agilen Prozess, sollte
der Graph jedoch nur soweit die Spezifikation wiedergeben, wie der Prifling im aktuellen
Iterationsschritt implementiert sein soll. Ein Automat welcher die Zustdnde des Priflings
reprasentiert, muss ein deterministischer endlicher Automat sein. Ein Programm muss in
einem Zustand immer gleich auf eine Nutzereingabe reagieren. Es ist klar, dass ein System das
sich nicht deterministisch verhalt nicht testbar ist, da es unmdglich ist die Soll-Resultate zu
definieren. Auch beginnt der Automat immer in einem bestimmten Startzustand und hat eine

25



3. Zustand basiertes Testen

Menge von Endzustianden, die das getestete Programm beenden [Cho78]. Er lasst sich also
wie ein deterministischer endlicher Automat iiber ein Tupel wie in folgender Gleichung (3.1)
definieren [Sch92]:

Z ist die Menge der Zustdnde
3} ist das Eingabealphabet

d ist die Ubergangsfunktion
zo ist der Startzustand

E ist die Menge der Endzustdinde

M = (2,%,6,z,E) (3.1)

Um den Prifling zu testen werden diese Schritte auf dem Automaten ausgefithrt [Cho78]:
1. Schétze maximale Anzahl der Zustande im korrekten Automaten
2. Erstelle Durchlaufe durch den Automaten
3. Verifiziere Zustand gegen Schritt 2

Die Schatzung der maximalen Anzahl Zustdnde des korrekten Automaten ist von Menschen
gemacht [Cho78]. Im Verlauf der Erlduterung wird klar werden, dass dies einen gewissen
Einfluss auf die Zuverlassigkeit des Verfahrens hat.

Testdurchlaufe

Die Testdurchlaufe werden anhand eines Testbaumes und einer Testsequenz erstellt [Cho78].
Die Testdurchlaufe sind eine Konkatenation von P und Z. P ist eine Menge von Einga-
besequenzen. Fiir jeden Ubergang von einem Zustand A; zu einem Zustand A; existieren
Eingabesequenzen p und px in P, sodass der Automat von seinem Initialzustand A, in den
Zustand A; gebracht wird. pz ist die Eingabesequenz p gefolgt von einer weiteren Eingabe x
[Cho78].

P kann auch als ein Testbaum dargestellt werden, der sich aus dem Automaten erzeugen lasst.
Jeder von der Wurzel des Baumes ausgehende Pfad ist ein p € P [Cho78]. Erzeugung des
Testbaumes:

1. Die Wurzel des Baumes wird ein Knoten, der den Startzustand des Zustandsautomaten
reprasentiert. Er wird mit dem Initialzustand A, gelabelt.

2. Erzeuge die Tiefenebenen des Baumes wie folgt:
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3.1. Einflhrung in Zustand basiertes Testen

a) Gehe die Eingabesymbole des vom Wurzelknote repréasentierten Zustandes durch.
Hat der Zustand einen Ubergang fiir ein Eingabesymbol, dann fiige einen Kindkno-
ten zum Baum hinzu, dessen Label der Folgezustand A; ist. Der Ast im Baum wird
mit dem Eingabesymbol gelabelt.

b) Wiederhole dies mit den Knoten in der nichsten Tiefenebene von links nach rechts.
Existiert ein Knoten mit dem selben Label bereits in einer hoheren Ebene, wird der
Knoten ein Blatt. Sonst gehe vor wie beim Wurzelknoten.

Abbildung 3.1 zeigt einen Automaten und einen Baum der aus diesem erzeugt wurden. Zustand
1 ist der Startzustand und Zustand 3 ein Endzustand. In diesem Beispiel ist zu erkennen, dass der
Testbaum endliche Pfade fiir den Zyklus des Automaten enthalt. Der Pfad ,a, a, a“ terminiert
nicht im Knoten 1 in Ebene 3, obwohl dieser Knoten bereits im Testbaum ist, da der Knoten mit
»a" beschriftet ist. Entscheidend ist, dass es einen Pfad zu 1 gibt, der andere Eingabesymbole
verwendet als der bereits im Testbaum vorhandene Pfad, weshalb der Knoten 1 noch einmal
behandelt werden muss. Im aufgezeichneten Beispiel ist eindeutig, dass neue Eingabesymbole
verwendet wurden, da 1 bisher nur als Startzustand im Baum aufgenommen wurde und keine
Eingabe getatigt wurde. AnschliefSend terminiert der Pfad jedoch, da der Knoten 2 bereits mit
dem Label ,a" vorhanden ist. Abhangig davon in welcher Reihenfolge die Eingabesymbole
durch gegangen werden, ergibt sich eventuell ein anderer Baum. Z ist eine Menge die wie
in Gleichung (3.2) angegeben definiert wird [Cho78]. W wird als das ,Characterization-Set”
bezeichnet [Cho78]. Es ist eine Verkniipfung aus Zustand, Eingabesymbol und Reaktion eines
jeden Zustands im Automaten. X ist das Eingabealphabet. Da fiir die geschétzte maximale
Anzahl Zustande im korrekten Automaten m und die Anzahl Zustande im Automaten des
Priiflings n gilt: m > n, ist X" eine Menge von Eingaben grofier oder gleich Null.

Z=WUX -W-. UX"". W (3.2)

Das ,Characterization-Set” des Automaten in Abbildung 3.1 ist tabellarisch in Abschnitt 3.1
dargestellt. Die linke Spalte zeigt die Zustande des Automaten. Die Spalten rechts davon, zeigen
die Operationen, welche ausgefithrt werden, wenn im Zustand der Reihe das Eingabesymbol der
Spalte (hier a oder b) eingegeben wird. Um das Beispiel einfach zu halten, sind die Operationen
nur Platzhalter die nach dem Fortschritt des Ubergangs durch den Automaten benannt sind.
Die Menge der Testdurchlaufe P o Z zu diesem Automaten ist dann:

* {a, b}

. ao{a,b}
« bo{a, b}
«aaof{a,b}
abo{a, b}

aaao{a,b}

aabo{a,b}
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3. Zustand basiertes Testen

Ebene 1

Ebene 2

Ebene 3

Ebene 4

Abbildung 3.1.: Ein Automat und darunter der daraus erzeugte Testbaum.

Eingabesymbole a b
Zustande

fortfahren halt
zuruck fortfahren
Ende Ende

Tabelle 3.1.: ,Characterization-Set“ des in Abbildung 3.1 aufgezeichneten Automaten.
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3.2. Verifikation

3.2. Verifikation

Um den aktuellen Priifling zu verifizieren, gibt es zwei Moglichkeiten.

Test-Mode Zunichst werden die korrekten Ablaufe anhand der Spezifikation erstellt. Diese
geben das Verhalten des Systems bei einer bestimmten Sequenz von Eingaben wieder
[Cho78]. Anschlieflend werden die Reaktionen des Systems damit verglichen.

Walk-Through Mode Es werden ,Pfad-Programme” geschrieben, die Eingabesequenzen und
die erwarteten Reaktionen beinhalten und die Testdurchldufe ausfithren. Die Korrektheit
dieser Programme muss anhand der Spezifikation sichergestellt werden [Cho78].

3.3. Zuverlassigkeit und Uberdeckung

Das Verfahren des zustandsbasierten Tests, kommt nur dann fiir die Anwendung in einem
automatisierten Systemtest in Frage, wenn die Aussagekraft und Zuverlassigkeit der Test-
ergebnisse den Anforderungen geniigen. Die Verifikation des Priiflings, wie sie nach dem in
[Cho78] vorgestellten Verfahren durchgefiihrt wird, kann ausgedriickt werden, als die Frage,
ob der Automat des Priiflings und der aus der Spezifikation abgeleitete Vergleichsautomat P - Z
aquivalent sind [Cho78]. Also ob sich die Automaten bei Eingabe der Sequenzen aus der Menge
P - Z gleich verhalten. Das Theorem 1 driickt die Voraussetzungen fiir einen nachgewiesen
korrekten Prifling in bezug auf die im vorgestellten Verfahren auffindbaren Fehler aus. In
[Cho78] ist das Theorem und dessen Beweis aufgefiihrt.

Theorem 1
Der Priifling ist fehlerfrei genau dann, wenn der Automat des Priiflings und der korrekte Automat
P - Z dquivalent sind und folgende Bedingungen gelten:

1. Beide Automaten haben das selbe Eingabealphabet

2. Die Schatzung der maximalen Anzahl an Zustdnden(m) ist korrekt

Um das Verfahren vergleichen zu konnen, ist in der Abschnitt 3.3 eine aus [Cho78] abgeleitete
Vergleichsmatrix abgebildet. ,x“ bedeutet, dass alle Fehler dieses Typs gefunden werden, ,,/“
dass micht alle Fehler dieses Typs gefunden werden und ,-“ bedeutet, dass dieser Fehlertyp
nicht gefunden wird.

Operation Error Ein Automat fiihrt bei einer Eingabe die falsche Operation aus. Zustand und
Folgezustand sind jedoch richtig.

Transfer Error Ein Automat hat einen Ubergang, der bei einer korrekten Eingabe zum fal-
schen Folgezustand iibergeht.
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3. Zustand basiertes Testen

. Fehlertyp Operation Error | Transfer Error | Extra States | Missing States
Uberdeckung
Branch Cover X - -
Switch Cover X / - -
Boundary-Interior X / - -
n-switch cover X X X -

Tabelle 3.2.: Vergleichsmatrix Testiiberdeckungstechniken

Extra States / Missing States Die Anzahl der Zustande der Automaten stimmt nicht tiber
ein. Dies bedeutet immer einen Fehler, da das Verfahren von minimalen Zustianden aus-
geht, deren Anzahl Zustinde also gleich sein miissen, um dquivalent zu sein [Sch92][S.37].

Die Arten der Uberdeckung hier im Vergleich sind Kontrollfluss orientiert und kénnen deshalb
mit dem hier vorgestellten Verfahren verglichen werden [Cho78]. Die Uberdeckungen werden
folgendermafien erreicht [Cho78]:

Branch cover Eingabesequenzen bestehen aus Eingaben, die jeden Ubergang des Automaten
mindestens einmal durchlaufen.

Switch cover Eine Erweiterung der Branch cover. Die ,Switches® bestehen aus Ubergangs-
paaren. Die ,Switches” fiir den Automaten in Abbildung 3.1 sind {12, 21, 23 } wobei 12
den Ubergang von Zustand 1 zu Zustand 2 benennt.

Boundary-interior cover Eine Branch cover, jedoch wird zusétzlich jede Schleife des Auto-
maten betreten und ein mal iteriert. Fiir den Automaten in Abbildung 3.1 geniigt die
Eingabesequenz {a, a, a, a, b} um die Uberdeckung zu erreichen.

Das vorgestellte Verfahren findet im Gegensatz zu den anderen Uberdeckungsstrategien alle
Fehlertypen [Cho78]. Sind die Bedingungen in Theorem 1 erfiillt, werden sogar alle vorhande-
nen Fehler dieser Fehlertypen entdeckt. Das Verfahren ist also zuverléssig und valide [Cho78].
Bei der Vorbereitung und Ausfithrung von Tests, auch in Bezug zur Automatisierung, ist
jedoch nicht nur die Zuverlassigkeit entscheidend. Oft stehen zum Test nur begrenzt Zeit
und Ressourcen zur Verfiigung, weshalb die Dauer und Kosten des Verfahrens eine Rolle
spielen [And12][S.15ff]. Bei einem algorithmischen Verfahren wie dem hier vorgestellten, ist
die Komplexitat der Algorithmen eine Orientierungshilfe, anhand derer sich der Aufwand
bewerten lasst.

3.4. Komplexitat

Die Aufwéndigen Schritte des Verfahrens sind die Konstruktion der Menge P und des
~Characterization-set” . Um P zu bestimmen erzeugt man einen Testbaum aus dem Au-
tomaten und benennt alle Pfade des Baumes wie in Abschnitt 3.1 beschrieben. Dies geschieht
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3.4. Komplexitat

fiir alle Zweige die aus dem Automaten abgeleitet werden. Das sind etwa n X k wobei n die
Anzahl der Zustande und k die Menge der Eingabesymbole ist [Cho78]. W lasst sich tiber P
Tabellen erzeugen [Cho78], die alle Kombinationen von Eingaben darstellen. Ein minimaler
Automat hat n — 1 solcher P, Tabellen, die jeweils etwa n x k Schritte benétigen. Der nétige
Aufwand um W zu erzeugen ist also etwa (n — 1) x n x k also grob n? x k [Cho78]. Qua-
dratische Laufzeit ist im Allgemeinen bei einem Algorithmus nicht wiinschenswert. Jedoch
wird nur vor Beginn der Systemtests und fiir den Regressionstest’ der Baum aufgebaut und
Eingabesequenzen bestimmt. Fiir den Regressionstest gilt dies auch nur, wenn ein vollstandiger
Systemtest erneut ausgefithrt wird, was in der Praxis haufig aufgrund mangelnder Resourcen
vernachlassigt wird [And12][S.75]. In jedem Fall, miissen die Fehler verursachenden Eingaben
aus der urspriinglichen Testreihe ausgefithrt werden. Bei einem vollstindigen Regressionstest,
miissen neue Sequenzen aus P - Z generiert werden. In einem iterativen Prozess, bedeutet dies
zweimal eine Komplexitit von n? x k und n x k je Iteration.

'Wird in einem Test ein Fehler gefunden, muss nach der Korrektur des Fehlers ein gleichwertiger Test erneut
ausgefithrt werden, um zu iberpriifen, dass der Fehler behoben und keine neuen Fehler eingebaut wurden.
Dieser Test wird Regressionstest genannt [And12][S.74f]
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4. Monkey-Tests

4.1. Infinite Monkey Theorem

In diesem Abschnitt sollen stochastische Test Methoden behandelt werden. Dies sind Methoden,
die zufallige Eingaben verwenden um den Priifling zu testen. Genauer geht es um so genannte
Monkey-Tests. Diese sollen vorgestellt werden. Das Prinzip der Monkey-Tests, geht auf das
LInfinite Monkey Theorem" zuriick, dass Theorem 2 ist eine Ubersetzung des Theorems. Der
Affe ist eine Metapher fiir eine Maschine, die zuféllige Eingaben tatigt [Wik17c].

Theorem 2

Ein Affe der fiir eine unendliche Zeit zufillige Tasten auf einer Schreibmaschine tippt, wird
mit hoher Wahrscheinlichkeit einen Text, wie die gesammelten Werke von William Shakespeare
hintereinander abtippen [Wik17c].

Dieses Theorem lasst sich auch auf Software Tests tibertragen. Ein Affe, der unendlich lange
Eingaben in ein Programm tatigt, fithrt mit hoher Wahrscheinlichkeit alle Testf#lle aus, die
auch ein menschlicher Tester ausfithren wirde. Mehr noch, ein Affe fuhrt alle relevanten
Testfille aus, also nicht nur die von einem Tester ausgewéhlten, sondern auch all jene die
von einem Nutzer in der Produktivumgebung ausgefiithrt werden. Natiirlich ist es fiir einen
Softwaretest in der Praxis unmdglich eine unendliche Zeit zu Testen. Jedoch selbst fiir grofle
endliche Zeitraume ist die Wahrscheinlichkeit relevante Testfalle auszufithren sehr gering.
Dem Affen des Theorems entsprechen die so genannten ,Dumb Monkeys“ [Nymo00]. Diese
ignorieren wie ein Mensch die Software bedienen wiirde und wiahlen ihre Eingaben zufillig und
ohne den Zustand des Priiflings zu kennen aus [Nymo00]. Diese Tests konnen kostengiinstig
und sobald ein lauffahiger Prifling existiert ausgefithrt werden [NymoOO0]. Sie eignen sich fiir
Belastungstests und finden ,memory leaks® [Nym00]. Zudem fithren die ,Dumb Monkeys"
komplexe Eingabesequenzen aus die ein Tester sich nicht ausdenken wiirde. Nyman schreibt
dazu in [NymO00], dass ,Dumb Monkeys nicht viele Fehler finden werden, jene die sie finden
jedoch Abstiirze und Aufhénger sind®, denn haufig treten diese Fehler nur bei komplexen
und verketteten Eingaben auf. Fiir einen Systemtest und besonders einen systematischen Test,
sind die ,Dumb Monkeys" jedoch nicht geeignet, da es ihnen an Struktur und Dokumentation
fehlt. Auch fiihren sie eine Vielzahl an Eingabesequenzen aus, die keine Rolle beim Erreichen
gewlinschter Uberdeckungskriterien spielen. Ein ,Dumb Monkey® erreicht eventuell erst nach
einem Tag eine einfache Funktionsiiberdeckung, die durch einen Menschen in Minuten oder
wenigen Stunden erreicht werden kann.
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4.2. Smart Monkeys

Um die Prézision des Affen zu erhohen, konnen ,,Smart Monkeys® verwendet werden [Nymo00].
Diese verwenden ein Zustandsmodell des Priiflings und kennen die Funktionalitat auf einfacher
Ebene [Nymo00]. In [Nym00] wird als Zustandsmodell eine Zustandstabelle genannt, diese sind
jedoch dquivalent mit einem Zustandsgraphen wie im Zustand basierten Test aus Kapitel 3,
da die Tabellen Zustinde, Ubergiange und Eingabesymbole enthalten. Durch die Kenntnis der
Zustande, werden nur noch dem Zustandsmodell entsprechende Eingaben ausgefiihrt. Trotz-
dem erzeugen die ,Smart Monkeys“ noch immer Eingabesequenzen, an die ein menschlicher
Tester nicht denken wird, die trotz allem von Nutzern ausgefiihrt werden [Nymo00]. Ein Grund
dafiir, dass ,Smart Monkeys" niher an den Eingaben eines echten Nutzers liegen als manuell
geschriebene Tests ist, dass die manuellen Tests zwischen jedem Testfall zu einen bekannten
Standartzustand zuriickkehren [Nym00]. Damit 16schen sie die Historie der Ausfithrung. In
der Praxis ist es jedoch eher unwahrscheinlich, dass ein Nutzer den Priifling startet, genau
eine Funktion ausfiihrt und das Programm dann, moglicherweise sogar durch einen Neustart,
in eine Ausgangssituation zuriick versetzt. Die ,Smart Monkeys" fithren deutlich komplexere
Sequenzen aus [Nymo00] und kénnen so vom Nutzer hervorgerufene Situationen simulieren
und entdecken auch Fehlerkaskaden. In Abbildung 4.1 sind drei Mengen abgebildet, die den
zu erwartenden Uberdeckungsgrad, der durch die jeweiligen Verfahren erreicht werden wird,
zeigen. Giiltig ist dies jedoch nur, wenn die stochastischen Tests, also die ,Smart Monkeys®
und die ,Dumb Monkeys" eine sehr lange Zeit ausgefithrt werden. Die gestrichelt dargestellte
Menge, stellt die voraussichtlich relevanten Testfalle dar. Das sind jene Testfille, bei denen der
Aufwand fiir das Finden in 6konomischer Relation zur Eintrittswahrscheinlichkeit und dem
verursachten Schaden steht.

Der grofie Nachteil sind die hohen Kosten, die beim Erstellen des Zustandsmodells entstehen.
N. Nyman schreibt in [Nym00], dass bei einem ,Projekt mit moderater Komplexitat® ein
Zustandsmodell mit 50000 Knoten benétigt wird. In einem iterativen Prozess, steigt die Zahl
der Zustinde konstant an, da neue Funktionalitit und Anderungen iibernommen werden
missen [Nymo00]. Der Aufwand ist also nicht nur initial zu bewaltigen, sondern zieht sich
durch das gesamte Projekt. Die Kosten fiir die Vorbereitung und Ausfithrung der Tests, sollte die
Kosten, die entstehen wenn ein Fehler auftritt, nicht tibersteigen [And12][S.15]. Andernfalls
ist der Test nicht ,6konomisch sinnvoll” [And12][S.15]. Eben dies kann geschehen, wenn der
Aufwand das Zustandsmodell zu erstellen und zu warten zu hoch ist [Nym00].

Ein weiterer Kostenfaktor sind die Testergebnisse. Die erwarteten Kosten eines Fehlers, ergeben
sich aus dem finanziellen Schaden den er anrichtet und seiner Eintrittswahrscheinlichkeit
[And12][S.15, S.178f]. Ein ,Smart Monkey" kann theoretisch hundert mal einen Dialog 6ffnen
und wieder schlieflen. Anschlieflend, wird der Dialog fehlerhaft angezeigt. Die Kosten eines
solchen Fehlers sind in den meisten Féllen verschwindend gering, da ein Nutzer kein derartiges
Verhalten zeigt und der Fehler im Feld wohl nie eintreten wird. Trotzdem findet der Test den
Fehler und einem Tester wird das Ergebnis vorliegen. Der Tester muss dann die Eingabesequenz
nachvollziehen, den Test idealerweise wiederholen um die Reproduzierbarkeit zu verifizieren,

34



4.2. Smart Monkeys

Dumb Monkeys

Abbildung 4.1.: Wahrscheinliche Testfalliiberdeckung nach sehr langer Ausfithrungsdauer.

den Fehler dokumentieren und erst dann kann ein Verantwortlicher den Fehler priorisieren. Die
Wirtschaftlichkeit des Aufwands, fiir das Bearbeiten der Testergebnisse eines ,Smart Monkey*
Tests insgesamt, ist von folgenden Faktoren abhingig:

1. Lesbarkeit und Nachvollziehbarkeit der Testergebnisse
2. Anzahl der ,irrelevanten“! Fehler
3. Anzahl der falsch-positiven Testergebnisse

Letzteres hangt stark vom Prifling und seiner Komplexitat ab. Das Timing ist erfahrungs-
gemafl immer eine hdufige Fehlerursache, selbst bei manuell geschriebenen Tests. Ein weit
verteiltes System mit viel Netzwerkkommunikation, lauft haufig Gefahr aufgrund von Verzo-
gerungen Fehler zu erzeugen, die in Wirklichkeit keine Fehler des Systems selbst, sondern der
Testinfrastruktur bedeuten.

Die Anzahl der irrelevanten® Fehler die gefunden werden, hangt von der Auswahl der Testfalle
ab. Ein ,Smart Monkey*, der 1000 mal die selbe Aktion ausfiihrt, ist hochstwahrscheinlich
weit weg vom Verhalten eines echten Nutzers. Fithrt er jedoch 10 bis 50 mal eine Aktion aus,
simuliert er vermutlich Situationen, die ein Nutzer herbeifithren wird. Welches Nutzerprofil
relevant ist, kommt auf den Priifling und seine spatere Anwendung an.

Natiirlich sollte das Ziel sein méglichst alle Fehler des Systems zu beheben. Wie bereits erwihnt, existieren
jedoch Fehler, bei denen der Aufwand fiir die Fehlerfindung und Korrektur nicht im Verhaltnis zu den
Fehlerkosten steht. Diese Fehler sind hier unter ,irrelevanten“ Fehlern zu verstehen.
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Die Lesbarkeit der Testergebnisse ist wohl der schwerwiegendste Faktor fiir die Kosten eines
LSmart Monkeys®, zumal er die Auswirkungen der anderen Hauptfaktoren mindern kann. Dies
liegt trivialer Weise daran, dass falsch-positive und irrelevante Testergebnisse schneller erkannt
werden, wenn der Tester die Ergebnisse gut nachvollziehen kann. Die Studie in [CMM+12]
beschiftigt sich mit der Lesbarkeit von zufillig generierten Tests im Vergleich zu manuell
geschriebenen. Jedoch handelt es sich um Unit-Tests und nicht um Systemtests. Verglichen
wurde die Genauigkeit und Effizienz zweier Gruppen mit vergleichbaren Fahigkeiten, also die
Anzahl der korrigierten Fehler und die Anzahl der korrigierten Fehler pro Minute [CMM+12].
Eine Gruppe verwendete die zufallig erzeugten Tests, die andere die von Menschen geschriebe-
nen. Der Hauptunterschied der manuellen Tests zu den randomisierten bestand darin, dass die
randomisierten Tests automatisch generierte, nichtssagende Bezeichner verwendeten, jedoch
weniger komplex waren. Da die randomisierten Tests in allen Versuchen besser abschnitten,
schlieffen die Autoren der Studie, dass die Komplexitat bei der Analyse der Testfille der grofite
Faktor fur die Nachvollziebarkeit der Tests war [CMM+12]. Um diese Studie auf die ,Smart
Monkeys® zu Gibertragen, muss jedoch beachtet werden, dass es sich hier um Black-Box-Tests
handelt. Der Tester hat also keine Einsicht, was mit den Objekten, die hinter den Bezeichnern
stehen geschieht. Alles was der Tester beim Systemtest weif3, ist was auf der Oberflache passiert.
Zur Nachvollziehbarkeit der Tests, ist zusitzlich zur Komplexitat vermutlich wichtig, dass
er die Bezeichner aus den Testergebnissen Objekten der Nutzeroberflache zuordnen kann.
Der Schluss, der sich aus der Studie fiir Systemtests schlielen lasst, ist trotz der grofleren
Rolle der Bezeichner, dass die Komplexitét der Testfélle die Nachvollziehbarkeit entscheidend
beeinflusst.

Mit ,Smart Monkeys® lassen sich also viele Situationen testen, die ein Nutzer herbeifiihrt, in
manuellen Tests jedoch nicht ausgefiihrt werden. Gerade in komplexen Systemumgebungen
kommt dieser Vorteil zum tragen [Nym00]. Die Kosten fiir das Erstellen des Zustandsmodells
sind jedoch sehr hoch und auch die Auswertung der Testergebnisse kann, vor allem aufgrund
der hohen Komplexitit der Eingabesequenzen, die ,Smart Monkeys“ unékonomisch werden
lassen. Sie eigenen sich also nur fir leicht automatisierbare Priiflinge [Nymo00].
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5.1. Problemdefinition

Um Ressourcen in der Software Entwicklung zu sparen, sollen Zustand basierte Systemtests
automatisch generiert werden. Im Idealfall erzielen die automatisch generierten Tests eine an-
dere, mindestens genauso grofie Uberdeckung wie manuell ausgefiihrte oder manuell erzeugte
automatisierte Tests und erfiillen die in Kapitel 3 genannten Anforderungen. Dafiir in Frage
kommen automatisierte stochastische Tests, die ,Smart Monkeys“ verwenden, um anhand
eines Zustandsmodells randomisierte Tests auf dem Priifling auszufiithren. Diese Testmethode
hat zwei grofie Einschrankungen.

1. Die Kosten der ,Smart Monkeys®.
2. Das implizite Soll-Resultat.

Die Kosten der ,Smart Monkeys®, insbesondere die fiir den Aufbau des Zustandsgraphen,
sind in Kapitel 4 niaher erlautert. Da die Testscripts nicht von Hand geschrieben werden,
kennen die Tests keine explizit angefiihrten Soll-Resultate. Ein von Hand geschriebener Test,
enthilt implizit die Abldufe und erwarteten Page-Objects und explizit Assertions [Wik17a],
mit denen der Tester die erwarteten Reaktionen weiter spezifizieren kann. Auto generierte
Tests haben lediglich die Informationen, die im Zustandsmodell enthalten sind [Nymo00]. In
herkémmlichen Zustandsgraphen, wie sie von T. S. Chow in [Cho78] verwendet werden, sind
Kontrollflussinformationen enthalten. Das Soll-Resultat ist in diesen Graphen sehr umfangreich.
Der Aufbau eines solchen Zustandsgraphen bedarf jedoch eines hohen Aufwands' [Cho78].

Gesucht ist also ein Verfahren, dass den Aufwand der Testvorbereitung minimiert, den Umfang
des impliziten Soll-Resultats maximiert und ein Testauswahlverfahren verwendet, das moglichst
nahe an echtem Nutzerverhalten ist und trotzdem Aussagen zum Uberdeckungsgrad zulésst.
Zudem sollen die Testergebnisse moglichst relevante Fehler erkennen. Fiir die letzte Eigenschaft
soll in Kapitel 6 untersucht werden, wie effektiv Lernalgorithmen eingesetzt werden kénnen,
um irrelevante Pfade durch den Testgraphen zu eliminieren.

! Algorithmus in quadratischer Laufzeit und das manuelle Erzeugen des Zustandsautomaten aus der Spezifikation.
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5.2. Erzeugung eines Zustandsgraphen aus Page-Objects

Im Kapitel 3 wird der Systemtest basierend auf dem Zustandsgraph des Priiflings behandelt.
Von der Validitiat und Korrektheit des Verfahrens, wird in diesem Abschnitt ausgegangen.
Um den Aufwand, der durch die Vorbereitung des Verfahrens entsteht zu minimieren, sollen
die in Kapitel 2 vorgestellten Page-Objects verwendet werden, um den Zustandsgraph des
Programms automatisch zu generieren. Erhoffen lassen sich dadurch geringere Kosten und ein
reduzierter Aufwand fiir den Systemtest. Ausgangspunkt des Verfahrens ist ein Programm mit
einer Nutzeroberflache, dass den Priifling darstellt. Es liegt die Spezifikation des Priiflings vor,
eventuell sogar bereits eine Implementierung.

Aus der Spezifikation abgeleitet, hat ein Softwareentwickler bereits Page-Objects geschrieben,
anhand derer der gewiinschte Programmablauf in Form von Eingaben und den Reaktionen
des Programms simuliert werden kann. Diese Page-Objects zu implementieren ist bereits mit
hohem Aufwand verbunden. Man beachte jedoch, dass die Page-Objects auch fiir manuell ge-
schriebene automatisierte Tests benotigt werden, die Oberflichenautomatisierung? verwenden.
Es entsteht dadurch also zunachst kein Mehraufwand im Vergleich zur konventionellen Testau-
tomatisierung. Das Page-Object Entwurfsmuster, induziert durch die Page-Object erzeugenden
Methoden, den Kontrollfluss der Nutzeroberfliache in die Page-Object Klassen. Eine Aktion
auf Objekt A, fithrt zu Objekt B als Reaktion. Um sich diesen Umstand zu Nutze zu machen,
soll nun anhand des Quellcodes dieser Page-Objects ein Zustandsautomat abgeleitet werden.
Dazu muss ein Programm existieren, das im Folgenden als Erzeugerprogramm bezeichnet
wird. In diesem Zustandsautomaten stellen die Page-Objects die Knoten und die Methoden der
Page-Objects die Uberginge dar. Dem Erzeugerprogramm muss eine (abstrakte) Page-Object
Klasse, hier Abstract PageObject vorliegen, welche die Superklasse aller Page-Objects dar-
stellt. Es werden dann nur Klassen beachtet, die Subklassen dieser Klasse sind. Zudem muss ein
Page-Object als ,Root” Knoten angegeben werden. Dieses muss das erste bei Programmstart
angezeigte Page-Object reprasentieren, damit der Ablauf der Tests der echten Programmaus-
fithrung entspricht. Zu beachten ist, dass sich die Ubergange und Knoten leicht von denen in
[Cho78] vorgestellten unterscheiden. Dort sind die Knoten die Zustinde und Ubergiange sind
Operationen oder Stimuli [Cho78]. Da die Page-Objects keinen Einblick in die Implementierung
des Programmcodes gewahren, konnen aus ihnen nicht ohne weiteres Operationen abgeleitet
werden. Ohnehin sollen die erzeugten Tests Black-Box Tests und ohne Kenntnis von den
Ablaufen im Programmcode, sein [Joc13]. Die Zustinde werden statt vom internen Zustand
des Programms, von der dem Nutzer angebotenen Funktionalitit abgeleitet. Operationen sind
Eingaben des Nutzers und Stimuli sind externe Einfliisse wie Interaktionen mit Simulatoren
oder Datenbankzugriffe. Der Zustandsgraph, der aus den Page-Objects erzeugt wird, setzt also
eine Abstraktionsebene hoher an, da der Nutzer als intern und Netzwerkeinflisse als extern be-
trachtet werden, anstatt die Operationen im Programm als intern und die Eingaben des Nutzers
als externe Stimuli zu betrachten [Cho78]. Die Uberpriifung der Programmfunktionalitit lauft

2siehe Abschnitt 2.2.2
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auf beiden Automaten gleich ab. Eine Eingabe wird getatigt, die Nutzeroberflache ist in einem
neuen Zustand, dieser Zustand wird verifiziert. Wichtig beim Schreiben der Page-Objects fiir
das Erzeugerprogramm ist, dass jede Eingabe, die fiir den Zustand des Programms relevant ist,
in einer Methode stattfindet, die die erwartete Reaktion kennt und tiber das zuriickgegebene
Page-Object reprasentiert. Nur so erkennt das Erzeugerprogramm, dass der Prifling iiber die
Eingabe in einen neuen Zustand tibergeht.

5.2.1. Analyse der Page-Object Klassen

Das Page-Object Entwurfsmuster erlaubt nur offentliche Methoden, deren Riickgabewert
erneut ein Page-Object sind, aufler sie dienen der Kontrolle der angebotenen Dienste auf
dieser Seite [sel17]. Fur die Erzeugung des Zustandsautomaten, sind zunachst jedoch nur
die Page-Object erzeugenden Methoden relevant. Sei der Knoten K nun der ,Root” Knoten
also das gegebene erste Page-Object. Das Erzeugerprogramm betrachtet nun alle Methoden
dieses Page-Objects und erzeugt von K; ausgehende Kanten fiir jede, die ein Objekt das
von Abstract PageObject erbt, als Rickgabewert hat. Die Kanten miinden dann in Knoten
Ks.. K, welche die jeweils von der Methode erzeugten Page-Objects repréasentieren. Das
Erzeugerprogramm wiederholt dies dann rekursiv in den Page-Objects der Knoten K,...K,
und deren Kindknoten. Ausgehend von K geht es so durch alle Page-Objects, bis fiir alle
Methoden in allen Page-Objects Kanten existieren. Fiihrt eine Kante zu einer Page-Object-
Klasse, die bereits untersucht wurde, entstehen Zyklen. Ein zuséatzlicher Fall, sind Methoden,
die das Programm beenden sollen. Diese haben alle eine Kante auf denselben Endknoten, der
kein Page-Object reprasentiert.

Externe Stimuli

Bei einer Programmausfithrung, konnen externe Stimuli das Programm beeinflussen. Dies
geschieht entweder automatisch, also ein Server oder Simulator sendet eine Anfrage an das
Programm, welches dann darauf reagiert oder der Nutzer setzt aktiv eine Anfrage ab, die
meist auch eine Reaktion des Angesprochenen Simulators hervorruft. Wird beispielsweise eine
Nachricht an den Prifling gesendet und dieser soll einen Dialog als Reaktion darauf 6ffnen,
muss der externe Stimuli in einer Methode des Page-Objects verpackt sein. Diese erzeugt das
Page-Object des Dialogs, da der Aufruf neuer Page-Objects durch die 6ffentlichen Methoden
ausgelost wird [sel17]. Werden die Tests manuell geschrieben, 16st ein Tester im Test aktiv die
Anfrage des Simulators aus. Da die Tests jedoch nicht geschrieben werden, muss die Interaktion
mit dem Simulator in den Page-Object Methoden geschehen, damit das Erzeugerprogramm sie
in den Kontrollfluss aufnimmt.

Abbildung 5.1 zeigt ein Beispiel eines Login Dialogs. Zuerst wird ein Login Fenster angezeigt
(1) in dem der Nutzer Nutzername und Passwort eingeben muss. Bei einem klick auf Login
werden die Login Daten an einen Server weiter geleitet. Sind die Nutzerdaten valide, 6ffnet
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(1) Login Beispiel ‘

| Nutzername eingeben |

| Passwort eingeben |

| Login |

(2) Login Beispiel ‘

MainPage

(3) Login Beispiel

Login fehlgeschlagen!
Bitte versuchen sie es erneut.

Ok

Abbildung 5.1.: Beispiel eines Login Dialogs

sich die MainPage (2). Sind die Nutzerdaten falsch, 6ffnet sich der Login fehlgeschlagen
Dialog (3).

Abbildung 5.2 zeigt einen Automaten, der den aus den Page-Objects gewonnenen Kontrollfluss
zeigt, wenn keine Methoden fiir unterschiedliche Reaktionen der Simulatoren geschrieben
wurden. Das Login Fenster Page-Object hat lediglich eine Methode zum Login mit den gegebe-
nen Daten. Im Tests selbst, wird dann bestimmt, welche Nutzerdaten eingegeben werden und
welche Reaktion erwartet wird. Auch wenn unterschiedliche Zustande des Servers getestet
werden sollen, muss dies dann im Test geschehen. Der Server muss dort aktiv beeinflusst
werden, wenn etwa getestet werden soll, wie sich der Priifling verhélt, wenn der Server nicht
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Listing 5.1 Login Methoden die unterschiedliche Reaktionen hervorrufen.

public MainPage loginWithCorrectCredentials() {
userNameField.enter("EchterNutzer");
passwordField.enter("EchtesPasswort");
loginButton.click();
wait(4);
return new MainPage();

}

public LoginFailedPage loginWithIncorrectCredentials() {
userNameField.enter("FalscherNutzer");
passwordField.enter("FalschesPasswort");
loginButton.click();
wait(4);
return new LoginFailedPage();

erreicht werden kann. Der Graph aus Abbildung 5.2 eignet sich also nicht fir einen vollstandi-
gen automatisierten Test, da in der Regel mehr Szenarios als nur ein korrekter Login getestet
werden sollen [Joc13][S.505].

Abbildung 5.3 zeigt einen Automaten, dessen Page-Objects die fiir alternative Testfalle no-
tigen Methoden implementieren. Der LoginScreen bietet eine Methode fiir korrekte und
eine Methode fiir falsche Login Daten an. Eine Methode fihrt zur MainPage, eine andere
zur Login fehlgeschlagen Seite. Zudem gibt es eine Methode die Nutzerdaten eingibt und
versucht sich einzuloggen, wenn der Server nicht erreichbar ist. Dieser landet ebenfalls auf der
Login fehlgeschlagen Seite. Von dort fithrt eine Methode fir den Klick auf Ok wieder zuriick
zur Login Seite.

In Listing 5.1 sind die beiden zusatzlichen Methoden des LoginScreen Page-Objects skizziert,
die fiir unterschiedliche Login Daten nétig sind. Die erwartete Reaktion auf einen erfolgrei-
chen Login, ist das Erscheinen der MainPage. Daher gibt die loginWithCorrectCredentials()
Methode ein M ainPage Objekt zuriick. Die Nutzerdaten werden tiber das verwendete Frame-
work zur Automatisierung in die Textfelder eingegeben und anschlieend auf den Login
Knopf geklickt. Eine wait(s) Funktion zeigt dem Testframework an, dass eine Zeit s gewartet
werden soll, bis das korrekte Erscheinen des Page-Objects iiberpriift wird. Sollte die Reakti-
onszeit des Programms oder des Servers grofier als s sein, wird der Test fehlschlagen. Die
loginWithIncorrectCredentials() Methode geht gleich vor, gibt aber falsche Nutzerdaten
ein und gibt deshalb eine LoginFailed Page zuriick.

Die Methoden die auf den von den Zugrunde liegenden Testframeworks basieren, wie die
enter(Strings) Methode oder click(), sind hier exemplarisch zu betrachten. Die Signatur
und auch die Funktionalitét, hangt im Einzelfall vom verwendeten Testframework ab. Das
Testframework sucht in den Konstruktoren der Page-Objects immer nach dem entsprechenden
Oberflachenelement. Wird es nicht gefunden, verhalt sich der Priifling offenbar falsch und der
Test schlagt fehl.
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Listing 5.2 Server nicht erreichbar Methode

public loginFailedScreen loginWhenBackendUnavailable() {
userNameField.enter("EchterNutzer");
passwordField.enter("EchtesPasswort");
server.setUnavailable();
loginButton.click();
wait(4);
return new LoginFailedPage();

loginWithCredentials()

LoginScreen > MainPage

Abbildung 5.2.: Automat des Login Dialogs

Es soll nun zusitzlich das Verhalten des Priiflings bei nicht erreichbarem Server getestet
werden, wie es in Abbildung 5.3 abgebildet ist. Es muss sich also der Zustand des Servers
andern. In der loginW hen BackendUnavailable() Methode geschieht dies tiber den Aufruf
der server.setUnavailable() Methode. Listing 5.2 zeigt die entsprechende Methode.

Der zum Testen verwendete Server oder Server-Simulator muss eine Programmierschnittstelle
oder Application programming interface (API) anbieten, die solche Zustandsianderungen
programmatisch erlaubt und diese Methode implementiert. Der Zustand in den das Programm
gerit, wenn ein Login aufgrund eines inaktiven Servers fehlschldgt, reprasentiert ebenfalls das
Page-Object loginFailedScreen. Die Aktion muss wieder in einer Methode implementiert
sein, die dieses Page-Object erzeugt [sel17].

Wenn eine Methode einen bestimmten Zustand des Backend-Servers erwartet, muss sie iiber
die API sicherstellen, dass dieser auch der aktuelle Zustand des Servers ist. Erwahnenswert fiir
die Implementierung dieser zusatzlichen Methoden ist, dass ein Ausgangszustand spezifiziert
sein sollte. In diesen Zustand miissen externe Komponenten vor jedem Testdurchlauf versetzt
werden, um sicherzustellen, dass Tests nicht aufgrund vorheriger Testausfithrungen und
API Aufrufe fehlschlagen. Zusatzlich sollte jede Methode, die einen bestimmten Zustand
von externen Komponenten erwartet, diesen durch einen API Aufruf sicher stellen. Fir die
Methoden in Abschnitt 5.2.1 bedeutet dies ein Aufruf einer server.set Available() Methode.

Uber eine Simulatoren API, lisst sich auch der Fall realisieren, in dem Anfragen von einem
Server aus an den Priifling gehen, ohne dass der Priifling diese ausgelost hat. Dieses Szenario
kann beispielsweise im Zusammenhang mit Datenbankanwendungen relevant werden, wenn
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loginWithCorrect

. Credentials() .
LoginScreen / MainPage

s T
g | ¢
§=| 8 =
8T 8%
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LoginFailed
Screen

Abbildung 5.3.: Automat eines Login Dialogs mit Backend-Server Manipulation

die Datenbank eine ,,Push-Connection zum Priifling aufbaut. Wenn vom Priifling eine be-
stimmte Reaktion erwartet wird, muss nur in der Methode, die das neue Page-Object erzeugt,
die entsprechende API Methode aufgerufen werden, um das ,push event® der Datenbank
auszulosen.

Es zeichnet sich ab, dass dieses Verfahren einen Mehraufwand beim Schreiben der Page-Objects
erfordert. Zudem steigt die Komplexitat der Tatigkeit deutlich an. Die Entwickler miissen
fir jedes Page-Object die moglichen Vorbedingungen in Betracht ziehen und abschitzen
konnen, ob diese sich in unterschiedlichen Zustdnden aulern. Durch die steigende Komplexitit,
steigt vermutlich auch die Fehleranfilligkeit. Daher auch die Menge der falsch-positiven
Testergebnisse und damit die Kosten fiir das Testverfahren.

Validitat

Die Validitat des erzeugten Zustandsgraphen, hangt von der Korrektheit der geschriebenen
Page-Objects ab. Wenn sich die Entwickler an das Page-Object Entwurfsmuster halten, ist der
entstehende Graph auch ein Zustandsgraph der Oberfldche des Priiflings, dessen angebotene
Funktionalitat, mit der eines nach [Cho78] erzeugten Zustandsgraphen iibereinstimmt. Um
zu zeigen, dass diese Aussage wahr ist, muss die Reprasentanten der Knoten und Kanten

Shttps://en.wikipedia.org/wiki/Push_technology
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des Zustandsgraphen betrachtet werden. Die Knoten reprasentieren den aktuellen Zustand.
Dieser zeichnet sich durch die ausgehenden Uberginge, also die Operationen und Stimuli,
die an ihm ausgefiithrt werden kénnen, aus [Cho78]. Die aus den Page-Objects abgeleiteten
Zustande bieten ihrerseits alle im aktuellen Zustand verfiigbaren Funktionen an. Die Stimuli
werden in den Methoden des Page-Objects durch die API ausgelost. Sie sind also in Page-
Object erzeugenden Methoden versteckt, die im Zustandsgraph, wie auch die Stimuli in
einem nach [Cho78] erstellten Graph, als Kanten reprasentiert werden. Die Kanten des hier
erzeugten Zustandsgraph, sind jedoch potentiell eine Kombination aus mehreren Operationen
und Stimuli. Eine Methode die einen Text eingibt, den Zustand eines Servers andert und dann
auf einen Button klickt, wird als eine Kante zum resultierenden Page-Object dargestellt, obwohl
sie eigentlich zwei Operationen und einen externen Stimulus ausfiihrt. Diese vermeintliche
Minimierung, sorgt jedoch eventuell fiir einen deutlich gréfleren Graph. Damit die Menge
der repréasentierten Operationen und Stimuli gleich bleibt, muss fiir jede Kombination aus
Operationen und Stimuli an einem Knoten eine Methode und ein resultierendes Page-Object
geschrieben werden. Auch wenn der Entwickler, der die Page-Objects implementiert, eventuell
irrelevante Kombinationen erkennen und eliminieren kann, bedeutet dies doch einen deutlichen
Mehraufwand bei der Implementierung und einen grofieren Zustandsgraph.

5.3. Auswahl der Testfalle

Nachdem der Zustandsgraph aus den Page-Objects generiert wurde, miissen die Testfalle aus-
gewahlt werden. Diese sollen qualitativ anhand eines Uberdeckungskriteriums bewertbar sein
und Eingabesequenzen verwenden, die nahe an den Eingaben echter Nutzer liegen. Simplere
Kriterien, wie eine ,Branch cover”, ,Switch cover® oder eine ,Boundary-interior cover” erfiillen

die

5.3.1. Chow’s Methode

In Kapitel 3 wird Chows Methode aus [Cho78] vorgestellt. Die Methode verspricht alle Fehler-
typen des Zustandsgraphen zu entdecken und findet unter bestimmten Bedingungen garantiert
alle diese Fehler [Cho78]. Eine dieser Bedingungen ist jedoch, dass der Tester die Anzahl der
Zustande im korrekten Graphen richtig schatzt. Eine menschliche Schatzung ist in einem
automatisierten Verfahren natiirlich fehl am Platz. Durch die Erzeugung des Zustandsgraphen
aus den Page-Objects, existiert jedoch ein Graph der im Idealfall genau die richtige Anzahl
Zustande hat. Die Page-Objects werden schlie8lich aus der Spezifikation abgeleitet und bilden,
wenn sie vollstandig und korrekt implementiert wurden, den spezifizierten Kontrollfluss ab.
Garantiert, ist die Korrektheit in der Praxis jedoch genauso wenig, wie bei Chows herkémm-
licher Methode. Statt eine Abhingigkeit von einer Menschlichen Schitzung?, besteht eine

*siehe Kapitel 3 und [Cho78]
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Abhangigkeit von der Implementierung der Page-Objects. Diese werden von Menschenhand
geschrieben und Menschen machen Fehler. Wenn die Page-Objects fiir ein Erzeugerprogramm
wie in Abschnitt 5.2 geschrieben werden, also auch die Vorbedingungen beachtet werden
miissen und durch diese zusétzliche Page-Objects entstehen, steigt die Komplexitédt der Im-
plementierung stark an. Gerade die fiir Chows Methode benétigte Anzahl der Zusténde ist
davon betroffen. Zudem kann keine allgemeine Aussage dariiber getroffen werden, wie hoch
die Schnittmenge der getesteten Eingabesequenzen mit jenen ist, die ein Nutzer tatigt. Es ist
hier keine Frage der Wahrscheinlichkeit oder der Ausfithrungsdauer, wie es bei stochastischen
Methoden wie ,Smart Monkeys® der Falls ist, sondern kommt auf den Prifling individuell an.
Es kommt darauf an, wie haufig bei der Anwendung Schleifen im Kontrollfluss genommen
werden. Am Beispiel in Abbildung 3.1 und einem Besipeil in [Cho78][Fig. 3] erkennt man, dass
die Methode Schleifen haufig nur ein mal durchlauft. In der Praxis, kann sich ein Programm
nach einem Schleifendurchlauf jedoch anders verhalten als zuvor. Trotz alledem ist Chows
Methode auch fiir den automatisch generierten Zustandsgraphen eine legitime Methode, die
fiir den Test eines Priiflings gut geeignet sein kann.

5.3.2. Randomisiert

Die Testfallauswahl beginnt am Startzustand des Zustandsgraphen, wahlt eine zufillige Kante
am Startzustand aus und fiithrt die Eingabe dieser Kante aus. Ist der kommende Zustand der er-
wartete Zustand, wird wieder eine Kante gew#hlt. Kommt ein nicht erwarteter Zustand, bricht
der Test als fehlgeschlagen ab und gibt die getatigten Eingaben als ausgefithrten Testfall aus.
Eine solche vollstandig randomisierte Testfallauswahl bedeutet, dass Theoretisch jeder Testfall
ausgefiithrt werden kann, im Voraus jedoch keine Aussage getroffen werden kann, welche Félle
abgedeckt werden. Die Testausfithrung kann so auch ewig dauern und die Eingabesequenz,
die zum aufgetretenen Fehler gefiihrt hat, ist lang und schwer nach zu vollziehen. Ein grof3er
Vorteil sind die geringen Kosten, da auler dem Zustandsgraph keine Vorbereitung nétig ist
und mit einer gewissen Wahrscheinlichkeit Nutzerszenarios ausgefiithrt werden, die sonst nie
getestet wiirden. Ein Nachteil ist, dass eine Vielzahl irrelevanter Tests ausgefithrt werden. Auch
kann keine Aussage zur Uberdeckung getroffen werden, weshalb ein solcher Ansatz héchstens
als zusétzlicher Test der Zuverlassigkeit ausgefithrt werden kann [Joc13][S.523]. Ein anderer
Ansatz ist die Eingabesequenzen zuvor zu bestimmen. So kann im Voraus eine Aussage zur
Uberdeckung getroffen und nach einem Spezifizierten Kriterium eine neue Sequenz gewéihlt
werden. Es empfiehlt sich hier ein schwaches Uberdeckungskriterium, wie Zustandsiiberde-
ckung zu wihlen, da sonst die Vorteile des zufélligen Tests (nicht bedachte Eingabesequenzen)
zunichte gemacht werden. Um die Eingabesequenzen nachvollziehbarer zu machen, sollte bei
der Testfallauswahl bei jeder Kante eine geringe Wahrscheinlichkeit bestehen, dass der Test
beendet wird oder die Lange der Testpfade begrenzt sein. Zustandsgraph und Priifling werden
dann in den Anfangszustand versetzt. Je grofler der Zustandsgraph, desto geringer muss die
Wahrscheinlichkeit sein, da sonst weit verzweigte Bereiche des Graphen nicht ausreichend
tiberdeckt werden.
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Uberdeckung

Sollen randomisierte Tests als systematische Tests eingesetzt werden, miissen "die Eingaben
systematisch ausgewahlt"werden [Joc13][S.480]. Das dies bei stochastischen Tests natiirlich
nicht geschieht, liegt auf der Hand. Jedoch lasst sich anhand der Wahrscheinlichkeit erahnen,
ob die sonst systematisch gewahlten Testfalle ausgefithrt wurden oder nicht. Die Tests werden
auf einem Testgraph ausgefiithrt. Im folgenden wird gezeigt, wie die Wahrscheinlichkeit einer
Kanteniiberdeckung errechnet werden kann. Dabei wird klar, von welchen Faktoren die Aus-
sagekraft eines randomisierten Tests abhangt. Sei K die Menge aller Kanten in einem Pfad zu
einer Kante k,,. Die Wahrscheinlichkeit P(k,), dass k,, durch einen Testfall ausgewahlt wird,
ist die Wahrscheinlichkeit der vorhergehenden Kante multipliziert mit der Wahrscheinlichkeit,
dass am Knoten N von dem k,, ausgeht, mit der Menge ausgehender Kanten Ay, die Kante &,

ausgewahlt wird:
1

* e
Durch die Abhangigkeit von Ay, erkennt man, dass die Wahrscheinlichkeit einer Kanten-
iiberdeckung stark von der Komplexitit des Graphen Abhangt. Je mehr Kanten aus /N gehen,
desto geringer ist die Wahrscheinlichkeit, dass k,, ausgew&hlt wird. Fiir jede Vorgangerkante
potenziert sich die Komplexitét. Fiir eine durchschnittliche Komplexitit von zwei Kanten je
Knoten, ergibt sich eine Wahrscheinlichkeit P(k,icht), eine Kante in x Versuchen nicht ab zu
decken wie in Gleichung (5.2):

P(ky) = P (k1) (5.1)

Plbyian) = (1 = Pl = (1= () 62)

Wobei [ die Lange des Pfades zu k,, ist. Bei einer so geringen Komplexitat und einer geringen
Pfadtiefe, strebt die Wahrscheinlichkeit den Pfad nicht abgedeckt zu haben sehr schnell gegen
null. Bei einer Pfadtiefe von | = 3, ist die Wahrscheinlichkeit Beispielsweise bereits nach
zehn Durchgingen bei etwa 75%. Sieht man sich jedoch die in Abbildung 5.4 abgebildete
Meniileiste einer Open-Source Software® fiir Endnutzer an, wird klar, dass eine solch geringe
Komplexitat nur selten existiert. Bei einer Tiefe von eins, also bereits im Hauptfenster der
Anwendung, hat allein die Meniileiste eine Komplexitat von 37. Das bedeutet, um nur alle
Optionen der Meniileiste mit einer Wahrscheinlichkeit von 75% abzudecken, benétigt man
etwa 50 Durchginge ( siehe Gleichung (5.3)).

1
(1— %)50 ~ 0,244 (5.3)

Um komplexere Szenarios auszufiihren, sollte die Pfadldnge einiges langer sein als die der
manuell geschriebenen Tests. Fithrt ein manueller Test eine Funktion aus, sollte der rando-
misierte mindestens doppelt so lang sein, um mehrere Funktionen ausfithren zu kdnnen. Die

Shttp://www.jabref.org
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Abbildung 5.4.: Meniileiste der Open-Source Software Jabref

Uberdeckungswahrscheinlichkeit je Testfall steigt dann im Vergleich zu der obigen Gleichung
ein wenig an, da durch riickwartige Pfade mehrere ausgehende Kanten eines Knoten ausgefiihrt
werden kénnen. Die Ausfithrungszeit steigt jedoch auch, weshalb die Uberdeckung je Zeit, bzw.
die Uberdeckung je Aufwand etwa gleich bleiben sollte. Im Anhang A.1.1 sind Eckdaten eines
echten Software Projekts zu finden. Dort dauert ein automatisierter Testfall im Schnitt etwa
40 Sekunden. Ein Testlauf mit den wie oben genannten 50 Durchgéngen und einer doppelten
Pfadlange, also 80 Sekunden, dauert dann etwas mehr als eine Stunde. Die Wahrscheinlichkeit
noch nicht einmal die Hauptfunktionalitit der Meniileiste ausgefiithrt zu haben, ist dann immer
noch bei etwa 25%.

Folgerung

Es zeigt sich also, dass ein grofier Aufwand nétig ist, um eine hohe Uberdeckung mit ak-
zeptabler Wahrscheinlichkeit zu erreichen. Auch wenn die Wahrscheinlichkeit sagt, dass die
Menge der nicht iiberdeckten Kanten bei einer hohen Zahl an Durchgiangen gegen null strebt,
bleibt immer noch eine Restwahrscheinlichkeit, dass Kanten nicht iiberdeckt bleiben. Diese
Restwahrscheinlichkeit gilt es weiter zu minimieren, ohne den Aufwand weiter in die Héhe
zu treiben. Ein moglicher Ansatz hierfiir sind Lernalgorithmen. Anhand eines Algorithmus,
der die zunachst zufalligen Entscheidungen betrachtet, kann eine Gewichtung vorgenommen
werden, um die Wahrscheinlichkeit, nicht iiberdeckte Kanten auszufithren, zu erhohen. Wie
ein solcher Algorithmus ausgepragt sein konnte, ist in Kapitel 6 ausgefiihrt.
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6. Lernfahigkeit

In diesem Kapitel geht es darum, die kostengiinstigen vollstandig randomisierten Tests praziser
einzusetzen. Schleifendurchldaufe und Verzweigungen, die ein manueller Test vermutlich nicht
ausfiihren wiirde, werden trotz hoherer Prazision ausgefithrt und die Testfalle nach einem
Uberdeckungskriterium bewertet. Der Lernprozess und der entsprechende Algorithmus werden
vorgestellt.

6.1. Lernvorgang

Der Lernvorgang soll die Redundanz der Testfallauswahl verringern. Er soll also dafiir sorgen,
dass die Testpfade sich besser iiber den Zustandsgraph des Priiflings verteilen und verhindern,
dass der Algorithmus zu haufig in den selben Schleifen hangen bleibt. Bei vollstindig ran-
domisierter Auswahl kann dies geschehen. Die erzeugten Testpfade sind zudem durch vom
Tester bestimmte Werte begrenzt. Fiir jeden Testdurchgang, ist die Anzahl der generierten
Testfalle, sowie die Pfadtiefe vorgegeben, um die Lesbarkeit der Testergebnisse im Vergleich
zu herkémmlichen ,Monkey Tests“ zu erh6hen (siehe Abschnitt 5.3.2). Zu komplexe Testpfade,
ergeben schlecht nachvollziehbare Testresultate, sollte ein Fehler gefunden werden [CMM+12].
Der hier vorgestellte Algorithmus, soll weiterhin eine stochastische Natur haben, um die in
Abschnitt 5.3.2 und Kapitel 4 vorgestellten Vorteile dieser Algorithmen zu bewahren. Um
seine Prizision zu erhohen, soll sich die Wahrscheinlichkeit, mit der ein bestimmter Pfad
ausgewahlt wird jedoch anpassen. Der Algorithmus geht vom Startknoten aus durch den
Graph. An jedem Knoten wird zunéchst mit gleich verteilter Wahrscheinlichkeit eine Kante
ausgewahlt. Bei einem Knoten /N mit drei ausgehenden Kanten ist die Wahrscheinlichkeit fiir
jede Kante 1/3. Diese Wahrscheinlichkeit, wird nun durch eine gewichtete Wahrscheinlichkeit
abgelost, welche fiir eine Kante £ mit der Gewichtung Wy durch die Gleichung (6.1) bestimmt
wird. Wobei Wyesqm: die Summe aller Kantengewichte der ausgehenden Kanten an [V ist.
Wg

P(E) = 37— (6.1)

Damit der Algorithmus seltener redundante Eingabesequenzen ausgibt kann, muss der er
speichern, wie haufig er bereits welche Kante besucht hat. Dafiir merken sich die Kanten im
Graph die Anzahl der Besuche V. So sinkt die Wahrscheinlichkeit, dass der Algorithmus
in die selbe Schleife lauft, die er bereits besucht hat. Da jedoch eine ausreichende Restwahr-
scheinlichkeit fiir solche Schleifendurchlaufe bleiben soll, da auch ein Nutzer eine derartige
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Sequenz ausfithren kann, wird die Anzahl der Besuche erst am Ende eines jeden Durchgangs
inkrementiert. Zudem sollen, auch wenn eine Schleife in einer Testsequenz sehr haufig durch-
laufen wurde, in folgenden Tests Kombinationen mit dieser Schleife getestet werden. Um die
Wahrscheinlichkeit, dass die Schleife wieder aufgerufen wird, grofl genug zu halten, wird nicht
die Anzahl der Aufrufe einer Kante gespeichert, sondern die Anzahl der Testsequenzen, in
denen die Kante aufgerufen wurde.

Die Besuchszahl Vg soll abhdangig von der Menge der generierten Testfalle bisher sein. Bei
einer hohen Zahl an Durchgédngen, werden zu Beginn haufig besuchte Kanten wieder relevant,
wenn die restlichen Kanten abgedeckt wurden und Kombinationen der Verzweigungen und
Schleifen getestet werden kénnen. Die Wahrscheinlichkeit fiir bereits besuchte Kanten muss
also wieder steigen, wenn viele Testsequenzen ausgefithrt wurden, ohne diese zu besuchen.
Nur so erhilt sich der Vorteil der stochastischen Tests, dass komplexe Szenarien, die relevant
aber nicht manuell getestet sind, ausgefithrt werden [Nymo00].

Wie der randomisierte Algorithmus, soll der lernfahige zunachst vollstandig zufillig, mit gleich
verteilter Wahrscheinlichkeit Kanten auswahlen. Daher ist der Startwert des Gewichts einer
Kante Vg die Anzahl der ausgehenden Kanten. Im ersten Testdurchgang ergibt sich dann fiir
den Knoten N mit drei Ausgehenden Kanten wie oben eine Wahrscheinlichkeit von 1/3 je
Kante, da die Gleichung (6.2) gilt.

Wg 3 1

P(E) = ===z 6.2
( ) Wgesamt 9 3 ( )

Bei komplexeren Graphen, ergibt sich durch diese Gewichtung jedoch das Problem, dass
Teilgraphen, die an Knoten beginnen, die Teil einer Schleife sind oder viele Pfade zu ihren
eingehenden Kanten haben, mit hoher Wahrscheinlichkeit nicht oder nur sehr selten besucht
werden. Grund dafiir ist, dass die vorherigen Kanten mit hoher Wahrscheinlichkeit haufig
besucht werden und deren Gewichtung dann verringert wird. Jedes mal, wenn eine Testsequenz
in einen Teilgraph fiithrt, sinkt die Wahrscheinlichkeit, dass dieser noch einmal besucht wird.
Dies geschieht unabhiangig davon, wie gut der Teilgraph abgedeckt ist. Um eine minimale
Abdeckung wahrscheinlicher zu machen, soll die Dekrementierung des Kantengewichts nur
dann statt finden, wenn keine neue Kante auf dem Pfad lag. Fiihrt ein Pfad das erste mal in den
Teilgraph, wird der Weg dort hin nicht unwahrscheinlicher. Fiihrt der Pfad erneut hinein, steigt
jedes mal die Wahrscheinlichkeit, eine der nicht besuchten Kanten im Teilgraph zu besuchen,
da andernfalls die bereits besuchten Kanten an Gewicht verlieren. Solange regelméflig neue
Kanten entdeckt werden, steigt die Wahrscheinlichkeit diesen Teilgraph zu besuchen, im
Vergleich zu bereits vollstandig abgedeckten Teilgraphen. Wird also eine neue Kante mit
Ve = 0 besucht, ist das Gewicht aller Kanten die in diesem Testlauf besucht wurden W, = W,.
Wenn nicht, wird das Gewicht verringert um den Faktor der Besuche im Verhaltnis zur Zahl
der Durchgéange bisher. Die Gewichtung einer Kante Wy, wenn keine neue Kante besucht
wurde, errechnet sich also wie in Gleichung (6.3), wobei D die Anzahl der Testdurchlaufe
bisher ist. Das Gewicht muss nach jedem Testdurchlauf neu berechnet werden.

v
Wg = Wg * 5E (6.3)
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6.2. Vergleich der Algorithmen

In Abschnitt 6.2 wird der lernfahige Algorithmus mit dem rein zufilligen Vorgehen verglichen
und auf die erhofften Vorteilen untersucht.

6.2. Vergleich der Algorithmen

Im Folgenden ist meine Untersuchung des Algorithmus erlautert. Zunéchst der Versuchsaufbau,
dann die Variationen der Durchfithrung und im Anschluss die Folgerungen, die aus den
Ergebnissen gewonnen werden konnen.

6.2.1. Versuchsaufbau

Der Versuch wurde anhand eines Graphen und zweier Algorithmen in Java ausgefiihrt. Die
Algorithmen sind ein zufalliger und ein lernfahiger Algorithmus. Der Graph ist ein gerichteter
Graph mit Schleifen, wie er als Kontrollfluss eines Priiflings vorkommen konnte. Die Implemen-
tierung des Graphen besteht aus zwei unterschiedlichen Klassen. Die ,Edge” Klasse und die
,Node"“ Klasse. Um die Auswertung der Ergebnisse einfacher zu gestalten, wurden extra Objekte
fiir die Kanten verwendet, statt sie wie haufig implizit durch die Verkniipfung der Knoten
darzustellen. Die Kanten wissen von welchem Knoten sie ausgehen und in welchem Knoten
sie enden. Sie speichern die Anzahl der Besuche und ihre Gewichtung in einer ,visits“ und
einer ,heat” Variable. Beide Klassen sind in Anhang A.2 zu finden. Nach jedem Testdurchlauf
mit Gewichtung wird die ,visits“ Variable aller besuchter Knoten inkrementiert. Danach wird
die Gewichtung jedes Knotens neu berechnet. Wenn keine neue Kante besucht wurde und
die boolesche Variable ,newEdgeVisited” den Wert false hat, wird die Gewichtung wie in
Gleichung (6.3) errechnet. Der Versuchsaufbau fiihrt folglich den lernfdhigen Algorithmus wie
in Abschnitt 6.1 beschrieben aus.

Es wurden drei Komplexitatsstufen des Graphen verwendet, um die Auswirkungen der Kom-
plexitét auf die Ergebnisse der Algorithmen zu untersuchen. Abbildung 6.1 zeigt eine Visuali-
sierung der Datenstruktur. In Komplexitatsstufe zwei, kamen die griinen Knoten und Kanten
hinzu. In der dritten Komplexitatsstufe die gestrichelten Kanten. Der Wurzelknoten ist der mit
oI beschriftete Knoten. In jeder Komplexitatsstufe wurden vier Versuche ausgefiihrt. Beide
Algorithmen wurden mit jeweils 20 und 50 Testdurchlaufen ausgefiihrt. Das erste mal mit einer
Pfadtiefe von 20 und das zweite mal mit einer Pfadtiefe von 25. Die Pfadtiefe bestimmt, nach wie
vielen besuchten Kanten ein Testdurchlauf zu Ende ist. 20 und 25 wurden gewahlt, da die Pfade
dann langer als der kiirzeste direkte Pfad zum am weitesten von der Wurzel entfernten Knoten
! sind und trotzdem eine moglichst geringe Lange haben. Das Ziel sind schlief3lich fiir einen

'Von der Wurzel bis zu Knoten 17 ist die Pfadlénge zehn. Bei zehn Schritten ist die Wahrscheinlichkeit den

111111111 1
direkten Pfad zu gehen - * 3*3*1*3*5%5%3%3 = o Das Ereignis, dass ein Pfad mit Lange < 20
zu 17 fithrt ausgewahlt wird, hat eine deutlich héhere Wahrscheinlichkeit.
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Abbildung 6.1.: Gerichteter Graph mit Schleifen
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Menschen interpretierbare Ergebnisse. Auch die Anzahl Testdurchldufe ist so gewahlt, dass
bei einer Ausfithrungsdauer von 40 Sekunden je Testsequenz, der Testdurchlauf maximal etwa
eine halbe Stunde dauert. Der lernfiahige Algorithmus fithrt die Gewichtung 20 bzw. 50 mal,
also fiir jeden Testdurchlauf aus. Nach 20 bzw. 50 Testdurchldufen wird die Gewichtung des
Graphen wieder zuriick gesetzt, so dass der Versuch unabhéngig wiederholt werden kann.

Am Ende jedes Testfalls wurde ausgegeben, wie viele Kanten noch nicht besucht wurden. Die
Verteilung der Testsequenzen auf den Graphen, wird also anhand einer Kanteniiberdeckung
gemessen. Trotz einer gewiinschten Varianz der Testfille, soll in konomisch sinnvoller Zeit,
eine sonst systematisch angestrebte Uberdeckung erreicht werden. Die Kanteniiberdeckung
ist ein gutes Indiz dafiir, ob die Pfade den Graphen gut verteilt iiberdeckt oder ob sie sich
auf einzelne Teilgraphen und Schleifen beschrankt haben. Die Ergebnisse der Tests liegen
gezielt in einem Grenzbereich. Sprich aufgrund der Komplexitat des Graphen, der gewahlten
Pfadtiefe und der Anzahl Testdurchlaufe, ist die Wahrscheinlichkeit hoch, dass Kanten nicht
besucht werden. Die Ergebnisse ungleich null lassen sich dann quantitativ leichter bewerten,
als jeden einzelnen Pfad zu vergleichen. Der gewahlte Versuchsaufbau fiihrte im ersten Test,
zu Ergebnissen zwischen null und maximal zwolf nicht tiberdeckten Kanten.

6.2.2. Ergebnisse
Versuch 1

Jedes Experiment wurde 30 mal wiederholt und Anschlielend Mittelwert und Median ausge-
rechnet. Die Ergebnisse der Versuchsreihen sind in Abschnitt 6.2.2, Abschnitt 6.2.2, Tabelle 6.3
aufgefiihrt. Die Tabellen sind zweigeteilt. Die oberen drei Zeilen, sind jeweils die Ergebnisse
des lernfdhigen Algorithmus. Die Zeilen vier bis sechs sind die des zufalligen. Die Spalten
beinhalten zuerst die Experimente mit 20 Testdurchldufen jeweils. Zunédchst mit der Pfadtiefe
20 dann mit 25 Kanten tiefen Pfaden. Die letzten beiden Spalten sind die selben Experimente mit
jeweils 50 Testdurchlaufen. Angegeben sind jeweils Mittelwert und Median um eine etwaige
Rolle von Ausreiflern erkenntlich zu machen.

Aus den Tabellen ist klar ersichtlich, dass der lernfahige Algorithmus in den ausgefiihrten
Versuchen deutlich besser bei der Kantenabdeckung abschneidet. Beide Algorithmen decken
in Komplexitatsstufe eins recht zuverlassig den Graphen ab. Bei 50 Testdurchlaufen, bleibt
beim lernfahigen Algorithmus im Schnitt keine Kante tibrig. Selbst bei nur 20 Durchlédufen,
ist das Ergebnis mit 0,133 und 0,033 deutlich besser als das des zufalligen Algorithmus. Der
lernfidhige Algorithmus ist hier sogar etwa um den Faktor neun besser als der Zufillige.
Jedoch fillt auf, dass der Faktor, um den der lernfidhige Algorithmus besser ist sinkt, je mehr
Durchgénge und je hoher die Pfadtiefe. Dies hangt jedoch damit zusammen, dass fiir beide
Algorithmen der Wert gegen null strebt. Dies ist zu erwarten, denn je mehr Ausfithrungen,
desto hoher ist die Wahrscheinlichkeit, dass alle Kanten besucht werden (siehe Theorem 2). Es
lasst sich jedoch bereits Ableiten, dass zumindest bei niedriger Anzahl Durchlaufe eine bessere
Kantentiberdeckung durch den lernfahigen Algorithmus erreicht wurde.
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| Lernend || 20/20 | 20/25]50/20|50/25 |

Mittelwert 0,133 0,033 0 0
Median 0 0 0 0

| Zufallig || 20/20 | 20/25]50/20 | 50/ 25 ||

Mittelwert 1,100 0,300 0,200 0,100
Median 1 0 0 0

Tabelle 6.1.: Versuch auf der Komplexitatsstufe eins

| Lernend || 20/20 | 20/25 | 50/20 | 50/25 ||

Mittelwert || 2,967 | 0,933 | 0,333 | 0,367
Median 3 0,5 0 0
| Zufallig || 20/20 | 20/25]50/20 | 50/25 ||
Mittelwert | 5 45 | 303 | 18
Median 4,5 4 2,5 1

Tabelle 6.2.: Versuch auf der Komplexitatsstufe zwei

Versuch 2

In Versuch zwei wurden die Experimente aus Versuch eins, mit Pfadtiefe 25 wiederholt. In
jedem Experiment wurde die Menge der Durchlaufe um 30 erhoht. Die Experimente wurden
jeweils 100 mal wiederholt und der Mittelwert errechnet. Graphen zeigen fiir Komplexitit
zwei und drei, bis zu welchem Punkt der lernfdhige Algorithmus Vorteile bietet. In Abbil-
dung 6.2 ist erkenntlich, dass fiir Komplexitatsstufe drei, bereits nach etwa 110 Durchlaufen
die Wahrscheinlichkeit eine Kanteniiberdeckung erreicht zu haben gleich ist, da sich die
Durchschnittswerte dort schneiden. In Komplexitatsstufe zwei, trifft das erst nach etwa 180
Durchléaufen zu. Die Unterschiede konnen hier durchaus der stochastischen Natur der Algo-
rithmen zugerechnet werden und sind vernachlassigbar. Die gesamt Wahrscheinlichkeit ist bei
so geringen Unterschieden, wie sie ab 180 Durchlaufen zu vermerken sind, gleichwertig.

| Lernend || 20/20|20/25]50/20|50/25 |

Mittelwert || 5,133 | 3,067 [ 1,133 [ 0,700
Median 5 2 0 0

| Zufallig || 20/20 | 20/25]50/20 | 50/25 ||

Mittelwert 6,633 5,333 3,7 1,933
Median 7 5 3 2

Tabelle 6.3.: Versuch auf der Komplexitatsstufe drei
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Abbildung 6.2.: Durchschnittlich iibrige Kanten bei Pfadtiefe 25

Versuch 3

In einer weiteren Versuchsreihe, sollte die Verteilung der Kanten in einzelnen Durchldufen
ermittelt werden. Hierfiir wurde die durchschnittliche Anzahl unterschiedlicher besuchter
Kanten je Durchlauf gemessen. Das Experiment wurde bei einer Pfadtiefe von 25 auf Kom-
plexitatsstufe zwei ausgefiihrt. Die Ergebnisse sind in Abschnitt 6.2.2 aufgefiihrt. Hier zeigt
sich, dass nahezu kein Unterschied existiert. Beide Algorithmen besuchen je Testlauf also etwa
gleich viele unterschiedliche Kanten. Der zufillige Algorithmus, schneidet sogar etwas besser
ab als der lernfahige.

Versuch 4

Der letzte Versuch, zielte darauf ab, die Uberdeckung weit vom Startknoten entfernter Pfade
zu betrachten. Hierfiir wurde die Kante ,,17-13“ betrachtet und die durchschnittliche Anzahl
der Besuche der Kante je Testdurchlauf gemessen. Die in Abbildung 6.3 abgebildeten Werte
sind der Durchschnitt der Ergebnisse aus 100 Ausfithrungen des Versuchs. Die betrachtete
Kante ist die am weitesten vom Wurzelknoten entfernte Kante. Auf Komplexitatsstufe zwei ist

1
die Wahrscheinlichkeit des direkten Pfades der Lange 11, beim zufélligen Algorithmus Toad’

. Entsprechend schneidet der zufillige Algorithmus ab. Die Aufrufe

1
888

auf Stufe drei ist sie
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Durchlaufe || Lernender Algorithmus | Zufalliger Algorithmus
20 13.81 13.88
40 13.14 13.22
60 12.51 12.52
80 11.90 11.89
100 11.45 11.64
120 11.10 11.16
140 10.68 11.3
160 10.84 11.15
180 10.36 10.72
200 10.50 10.98
220 10.20 10.19

Tabelle 6.4.: Besuchte unterschiedliche Kanten je Durchlauf

der Kante steigen mit zunehmenden Durchlaufen fiir den lernfahigen Algorithmus annidhernd
exponentiell an. Fir den zufilligen Algorithmus, ist ein schwacher, linearer Zuwachs zu
verzeichnen.

6.2.3. Folgerung

Die Untersuchungen des lernfahigen Algorithmus, zeigen welche Faktoren fiir die Prazision
der Testfalle ausschlaggebend sind.

Komplexitat des Graphen
Menge der Testdurchlaufe
Tiefe der Pfade

In Versuch ein und zwei zeigt sich dass beide Algorithmen schneller eine Kanteniiberdeckung
erreichen, wenn die Komplexitat minimal, Pfadtiefe und Durchldufe maximal sind. In der Praxis
liegt die Komplexitat des Graphen und die Pfadtiefe, gar nicht oder nur bedingt in der Hand der
Tester. Die Komplexitat liegt allein an der Beschaffenheit des Priflings, die Testfalltiefe sollte
begrenzt sein, damit die Testergebnisse nachvollziehbar und Fehlersituationen reproduzierbar

bleiben.

Im Vergleich schneidet der lernfahige Algorithmus, besonders bei geringem Aufwand, besser
ab als der Zufillige. Der Aufwand ergibt sich aus Ausfithrungsdauer und Komplexitat. In
Abbildung 6.2 ist auch zu erkennen, dass die Anfangswerte der Kurven des lernenden Algo-
rithmus weiter auseinander liegen als die des zufilligen. Die Komplexitat hat also auf den
Lernenden einen starkeren negativen Effekt als auf den zufilligen. Es lasst sich vermuten, dass
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» der Kante 17-13 bei Pfadtiefe 25

Testdruchlédufe

Abbildung 6.3.: Besuche einer weit entfernten Kante

der anfingliche Vorteil des lernenden Algorithmus ab einer gewissen Komplexitat nicht mehr
existiert.

Im dritten Versuch, wurde festgestellt, dass die Anzahl unterschiedlicher Kanten in einem
erzeugten Testpfad, bei beiden Algorithmen etwa gleich ist. Dies deutet darauf hin, dass beide
etwa gleich haufig Schleifen ausfithren. Wiirde ein Algorithmus haufiger Schleifen durchlaufen
als der andere, wiirde er weniger unterschiedliche Kanten je Pfad besuchen. Die Algorithmen
verhalten sich beziiglich Schleifen also gleich.

Versuch vier widmete sich der wohl wichtigsten Eigenschaft der Algorithmen. Ideal ist ein
Algorithmus der bei einem bestimmten Aufwand moglichst alle Teile des Programms gleich
testet, also die Testfalle iiber den gesamten Graphen verteilt. Dazu wurde die am weitesten von
der Wurzel entfernteste Kante betrachtet. In ?? zeigt sich eindeutig, dass der lernende Algorith-
mus deutlich haufiger weit entfernte Kanten besucht. Das zeugt davon, dass der Algorithmus
die gewahlten Pfade weiter streut als der zufillige Algorithmus. Der zuféllige Algorithmus hat
also eine hohere Wahrscheinlichkeit, weit verzweigte TeilbAume nur unzureichend zu testen,
wahrend der lernende Algorithmus bei erneuter Ausfithrung deutlich wahrscheinlicher weit
entfernte Kanten besucht. Die Zuname an Besuchen ist sogar annidhernd exponentiell, wahrend
die des zufilligen Algorithmus nur leicht linear steigt. Jedoch zeigt sich auch hier, dass die
Komplexitat des Graphen eine grofie Rolle fiir die Verteilung des lernfahigen Algorithmus ist.
Wie der Algorithmus bei einem umfangreichen Kontrollflussgraph eines komplexen Priiflings
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abschneiden wiirde, gilt es noch zu priifen. Durch die exponentielle Zunahme, sollte er jedoch
selbst dann besser abschneiden als der zufallige Algorithmus.
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7. Bewertung

Das in dieser Ausarbeitung vorgestellte Verfahren lasst sich in zwei Abschnitte teilen. Die
Erzeugung eines Zustandsgraphen anhand modifizierter Page-Objects und die automatisierte
Testfallgenerierung mithilfe eines lernfdhigen Algorithmus. Das Ergebnis sollen, mit manu-
ell geschriebenen Systemtests vergleichbare, automatisch generierte Systemtests sein. Die
Bewertungen dieses Kapitels werden fiir beide Abschnitte getrennt vorgenommen.

7.1. Laufzeit und Arbeitsaufwand

7.1.1. Erzeugung des Zustandsgraphen

Die fiir die Erzeugung des Zustandsgraphen notwendige Laufzeit, ist abhangig von der Menge
der Page-Objects. Fiir jedes Page-Object, miissen die ausgehenden Kanten gefunden werden.
Eine Untersuchung der Page-Objects eines echten Softwareprojekts (sieche Anhang A.1.1)
ergab, dass fiir die betrachteten 30 Tests, 45 neue Page-Objects notig wiren, um alle im Test
erzeugten Zustiande zu implementieren. Fiir dieses Projekt wiirde das, hoch gerechnet auf 370
Systemtestfalle, 555 neue Page-Objects bedeuten. Fiir die Laufzeit des Erzeugerprogramms ist
das mit moderner Hardware unbedenklich. Wenn jedes Page-Object mit jedem Page-Object
verbunden ist bedeutet das einen Worst-case in quadratischer Laufzeit, was bei einigen hundert
Elementen jedoch kein Problem darstellt. Selbst wenn die Berechnung wenige Minuten dauern
sollte, so wird sie doch nur ein mal vor dem Systemtest ausgefithrt und nur wenn Anderungen
am Kontrollfluss vorgenommen wurden '. Bedenklicher sind die neuen Page-Objects fiir den
Arbeitsaufwand. Es fallt ein mehr als doppelt so hoher Aufwand fiir das schreiben der Page-
Objects an. Dieser Mehraufwand sollte mit den Vorteilen der zufélligen Testfallauswahl im
Verhaltnis stehen.

7.1.2. Auswahl der Testfalle

Die Auswahl mit Hilfe eines lernfahigen Algorithmus wie er in Kapitel 6 beschrieben wird,
erfordert keinen bis minimalen Aufwand fiir die Durchfiihrung, da diese vollautomatisch

1Z.B durch neue Funktionalitit. Bei Regressionstests, fallt der Aufwand nicht mehr an.
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ablauft. Die Auswertung der Testergebnisse wiederum, kann einiges an Aufwand hervorrufen.
~Smart Monkeys“ erzeugen eine sehr lange Eingabesequenz, die es nachzuvollziehen gilt,
sollte ein Fehler gefunden werden [Nymo00]. Die vorgestellte Methode kiirzt diese Sequenzen
auf eine fiir Menschen leicht nachvollziehbare Lange, die abhingig von der Pfadtiefe des
Priiflings festgelegt werden muss. Zudem streut der Algorithmus die Testpfade weiter iiber
den verwendeten Zustandsgraphen. So lassen sich relevante Testfille und Ergebnisse erhoffen,
da Sequenzen in die Tiefe in der Regel eher echten Anwendungsfallen entsprechen.

Die Laufzeit des Algorithmus ist vom Tester selbst fest zu legen. Der Algorithmus kann Tage
aber auch nur Minuten ausgefithrt werden. Zu bedenken ist jedoch der entstehende Aufwand
durch (hoffentlich relevante) Testergebnisse. Auch hingt die Uberdeckung des Graphen von
der Ausfithrungsdauer ab.

7.2. Aussagekraft und Uberdeckung

Soll das Verfahren mit anderen Testverfahren verglichen werden, kann die Aussagekraft der
Testergebnisse und die mogliche Uberdeckung des Priiflings untersucht werden.

7.2.1. Erzeugung des Zustandsgraphen

Die Qualitdt der Page-Objects, hat einen groflen Einfluss auf die Aussagekraft der auf ihnen
ausgefithrten Tests. Sollen die Page-Objects nicht nur die Nutzeroberfliache, sondern auch den
Zustand des Priiflings reprasentieren, nimmt die Komplexitat der Implementierung zu. Die Ent-
wickler miissen fiir jedes Page-Object die Vor- und Nachbedingungen kennen, um Ubergiange
in jeden moglichen Zustand erzeugen zu konnen. Ein iibersehener Zustand fithrt zu einem
nicht getesteten, jedoch spezifizierten Anwendungsfall. Gerade fiir sicherheitskritische Anwen-
dungen ist dies ein hohes Risiko. Wenn die Page-Objects anhand der Spezifikation, korrekt und
vollstandig implementiert werden kénnen, stellen sie einen vollstdndigen Zustandsgraphen
fur die Software dar, auf dem ein konventioneller, Zustand basierter Test (siehe Kapitel 3)
ausgefiithrt werden kann. Das Verfahren hat dann die selbe Aussagekraft wie dieser.

7.2.2. Auswahl der Testfalle

Die Aussagekraft der Tests, hiangt stark von der Uberdeckung des Zustandsgraphen ab. Selbst
wenn ein korrekter Graph existiert, kann auf den Grad der Korrektheit der Software nur
vertraut werden, wenn der Graph auch ausreichend tiberdeckt ist. Zufallige Tests versprechen
bei genligend langer Ausfithrungsdauer eine hohe Wahrscheinlichkeit alle relevanten Szenarios
auf dem Graphen auszufiithren. Diese Aussage lasst sich vom ,infinite monkey theorem® ableiten
[Wik17c]. Erste Versuche mit dem lernfahigen Algorithmus in Abschnitt 6.2 haben gezeigt,
dass durch dynamische Gewichtung der Kanten eine Streuung der Uberdeckung erreicht
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werden kann. Die Aussagekraft der Tests, ist der Wahrscheinlichkeit entsprechend hoch.
Jedoch kann es aufgrund der stochastischen Natur der Tests immer noch passieren, dass
wichtige Szenarios nicht ausgefithrt werden. Zudem wurde das Verfahren auf einem Graphen
mit geringer Komplexitit ausgefithrt. Um eine aussagekriftige Uberdeckung von komplexeren
Graphen zu erreichen, muss die Laufzeit entsprechend hoch sein.

7.3. Skalierbarkeit

Die Aussagekraft des Verfahrens als vollwertiger Systemtest ist fragwiirdig. Jedoch lasst es
sich problemlos zu Oberflachentests oder Zuverlassigkeitstests herunter skalieren. Wenn die
Page-Objects nach dem herkommlichen Entwurfsmuster geschrieben sind, reprasentieren
sie die Nutzeroberflache des Priflings [sel17]. Aus diesen Page-Objects lasst sich genauso
ein Graph erzeugen, wie aus Page-Ojects die den Zustand des Programms beinhalten. Die
Aussagekraft der Tests ist dann natiirlich nicht mehr mit der eines Systemtests vergleichbar.
Die Oberflache kann trotzdem kostengiinstig anhand zufilliger Tests auf ihre Funktionalitat
getestet werden. Lediglich Tests die externe Stimuli bendtigen, kénnen nicht automatisch
ausgefithrt werden. Sollte die Komplexitat des Priiflings zu hoch sein, als das der lernfahige
Algorithmus eine gute Uberdeckung erreichen kann, dienen seine Ergebnisse dennoch als
zusatzliche Zuverlassigkeitstests.
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8. Zusammenfassung und Ausblick

Das vorgestellte Verfahren ist ein zweigeteiltes skalierbares Verfahren zur Automatisierung von
Systemtests. Es verwendet Page-Objects die nach dem Page-Object Entwurfsmuster implemen-
tiert wurden [sel17]. Um einen Zustand basierten Test auf dem Priifling ausfithren zu kénnen,
wird aus den Page-Objects ein Zustandsgraph generiert. Dazu muss das Entwurfsmuster erwei-
tert werden und ein Page-Object fiir jeden Zustand implementiert sein. Das Verfahren macht
sich dann zu nutze, dass eine stochastische Testfallauswahl sehr komplexe und doch relevante
Eingabesequenzen erzeugt, die bei manuellen Tests nicht ausgefithrt werden [Nymo00], um die
Testiiberdeckung des Priiflings zu erhohen. Die zufillig generierten Tests orientieren sich an
den ,Monkey Tests“ [Nym00]. Um die Menge der ausgefithrten Tests moglichst nahe an die
Menge der von Nutzern ausgefiihrten Szenarios zu bringen, wird ein lernfihiger Algorithmus
eingesetzt, der die Eingabesequenzen besser auf dem gesamten Zustandsgraphen zu verteilt.
Die Tests selbst miissen nicht geschrieben werden und erzeugen keinen Aufwand. Durch den
lernfahigen Algorithmus werden vermeintlich relevante und auch lesbare Testergebnisse er-
zeugt. Das Verfahren erfordert jedoch einen hohen Aufwand beim Schreiben der Page-Objects.
Auch die Uberdeckung des Graphen ist nur bei haufiger Ausfithrung der Tests wahrscheinlich.
Wie das Verfahren an einer echten Software abschneidet, ist noch nicht erprobt. Es lasst sich
aber erahnen, dass aufgrund des hohen Aufwands fiir die Implementierung der Page-Objects,
eine vollstindige Umsetzung des Zustandsgraphen nicht 6konomisch sinnvoll ist. Eine mogli-
che Anwendungsweise konnte jedoch eine teilweise Umsetzung des Zustandsgraphen sein.
Vollautomatisch getestet wird dann nur ein Teilgraph, der sich leicht in Page-Objects abbilden
lasst. Die Methode scheint eher zusatzlich zu manuell geschriebenen Systemtests einsetzbar zu
sein, als diese ersetzen zu konnen.

Ausblick

Um den Einsatz des Verfahrens weiter zu evaluieren, sollte es an einem echten Priifling ange-
wendet werden. Geeignet ist eine Software, fiir die bereits Page-Objects nach dem korrekten
Entwurfsmuster und manuell geschriebene Systemtests existieren. Fiir diese sollten dann,
den Zustand reprisentierende, Page-Objects komplett neu geschrieben werden. Gleichzeitig
miissen die bereits existierenden an die Anforderungen des Verfahrens angepasst werden.
So kann der Aufwand fiir die neuen Page-Objects und fiir eine Anpassung ermittelt werden.
Anschlieflend konnen die zufallig generierten Tests mit den bereits geschriebene im Einsatz
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verglichen werden. Dabei sollte die Schwere der gefundenen Fehler, die Rate in der Fehler
gefunden werden und die ausgefithrten Testpfade betrachtet werden.

Ein Ansatz zur weiteren Verbesserung der Testfallauswahl ist die Verwendung eines neuronalen
Netzwerks. Ein solches Netz konnte die Gewichtung der Kanten des Zustandsgraphen anhand
von gemessenen Uberdeckungskriterien durchfiithren. So kénnte der Algorithmus mit der Zeit
lernen, wie er den Priifling am besten tiberdeckt. Auch die Relevanz und Menge der gefundenen
Fehler konnte das Netzwerk auswerten. So wire es moglich, Teilgraphen in denen héufig Fehler
auftreten intensiver zu testen als solche, die selten Fehler beinhalten. Ein solches Netzwerk
konnte unabhéngig davon angewandt werden, ob der Zustandsgraph automatisch generiert
oder aus der Spezifikation abgeleitet wurde.
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A. Anhang

A.1. Untersuchtes Projekt

A.1.1. Eckdaten

Das untersuchte Beispielprojekt ist eine native Android Endnutzeranwendung eines deutschen
Softwarehauses. Es dient lediglich dazu Gréflenordnungen und Aufwand abschétzen zu kon-
nen. Die verwendeten Daten sind lediglich aus einer Anwendung erhoben, sind also nicht
reprasentativ. Dennoch erlauben sie eine grobe Schiatzungen.

LOC Projekt ohne Tests 203.000
Anzahl Systemtestfalle 370
Anzahl Page-Objects ~ 70

Dauer automatisierter Tests ~ 4h

Dauer je Testfall ~ 40s

A.1.2. Daten exemplarischer Testfall

Eine Sektion der Testfalle, die den selben Simulator und einen Server verwendet.
19 Tests
675 LOC in den Tests
1 Simulator

1 Server
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A. Anhang

A.2. Code des Versuchs

A.2.1. Node

public class Node {
private List<Edge> in;
private List<Edge> out;

public Node() {

in = new ArraylList<>();
out = new ArraylList<>();

}

public int getNumberOfOutgoingEdges() {
return out.size();

}

public List<Edge> getOut() {
return out;

}

public void addToOut(Edge edge) {
this.out.add(edge);

}

public void addToIn(Edge edge) {
this.in.add(edge);

}

h

A.2.2. Edge

public class Edge {

private Node from;
private Node to;

private int visits = 0;
private double heat = 0;

private String name;

public Edge(Node from, Node to, String name)
this.from = from;
this.to = to;
this.name = name;
from.addToOut (this);
to.addToIn(this);
}

public Node getFrom() {

66



A.2. Code des Versuchs

return from;

}

public Node getTo() {
return to;

}

public int getVisits() {
return visits;

}

public void setVisits(int visits) {
this.visits = visits;

}

public double getHeat() {
return heat;

}

public void setHeat(double heat) {
this.heat = heat;

}

public String getName() {
return name;

}
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