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Kurzfassung

Auf manchen SonarQube-Instanzen wird die verfügbare Fläche der Webseite nicht ef-

fizient genutzt und große Teile der Seite enthalten Leerflächen. Damit diese Flächen

genutzt werden können, um genau die Informationen darzustellen, weswegen der Be-

nutzer die Webseite aufgerufen hat, wurde im Rahmen dieser Arbeit mit DeepSonar
eine adaptive Benutzeroberfläche für die Codeanalyse-Plattform SonarQube entwickelt.

Diese erlernt mittels Machine-Learning die für den aktuellen Benutzer und Nutzungs-

kontext relevantesten Informationen, d. h. die aus einer Programmcodeanalyse resul-

tierenden Software-Metriken. Anhand der Ergebnisse des Machine-Learnings wird die

Weboberfläche von SonarQube angepasst, sodass diese Metriken in der davor ungenutz-

ten Fläche auf der Startseite angezeigt werden.
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1 Einleitung

In der Softwareentwicklung kommt ein Entwickler heutzutage mit vielen Tools, die ihn

bei der Arbeit unterstützen sollen, und deren Weboberflächen in Kontakt. Ziel dieser

Anwendungen ist es, dem Entwickler die Informationen, welche er im Moment braucht

– z. B. verschiedene Software-Metriken – und weswegen er die jeweilige Anwendung

aufgerufen hat, schnell und übersichtlich zu vermitteln. Eine weitere Gemeinsamkeit

ist, abgesehen von der Informationsvermittlung, dass auf den Startseiten dieser An-

wendungen nur sehr allgemeine Informationen zu finden sind. Benötigt ein Benutzer

detailliertere Informationen, muss er erst durch einige Seiten navigieren, denn erst auf

den von den Startseiten aus erreichbaren Seiten findet ein Entwickler die für ihn im

Moment wichtigen Informationen, die er auch sucht. Dabei bedeutet das Navigieren zu

der gesuchten Seite jedoch einen Mehraufwand, welcher vor allem bei kleinen Men-

gen an Informationen, unverhältnismäßig erscheint. Aus diesem Grund bietet es sich

für einen Entwickler an, wichtige Informationen zusätzlich schon auf der Startseite an-

zuzeigen, um das Navigieren durch eine Weboberfläche zu minimieren. Dennoch wäre

eine derartige Anpassung der Oberfläche, selbst wenn die Einstellungsmöglichkeiten

dafür gegeben wären, ein zusätzlicher Arbeitsaufwand. Dadurch ergibt sich der Wunsch

ein Programm einzusetzen, welches erlernt auf welche Informationen häufig zugegrif-

fen wird und diese Anpassung von selbst durchführt.

Die Lernfähigkeit ist von noch größerer Bedeutung unter dem Gesichtspunkt, dass

jedes Projekt und jeder Benutzer unterschiedlich sind. Deswegen kann bei der Betrach-

tung der Relevanz bestimmter Informationen nicht immer der gleiche Maßstab angelegt

und auch keine allgemeingültige Lösung produziert werden. Zusätzlich ist das Bestim-

men der momentanen Relevanz von Informationen ein sehr dynamisches Problem, da

sich der Zustand eines Projektes andauernd ändern kann und die Krisenherde, die der

Benutzer mithilfe des Tools finden möchte, wechseln können. Je nachdem wo die Kri-

senherde aktuell liegen sind andere Software-Metriken von Bedeutung. Sämtliche In-

formationen bereits auf einer Startseite anzuzeigen ist dabei auch keine Lösung, denn
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werden zu viele Informationen auf einer Seite angezeigt, ist es schwer die Übersicht zu

behalten und die wirklich Wichtigen zu finden.

Wenn, wie oben beschrieben, auf den Startseiten einer Webanwendung nur sehr

allgemeine Informationen mit relativ niedriger Relevanz für den Benutzer angezeigt

werden und leerer Platz vorhanden ist, bietet es sich ohnehin an, diesen Platz für be-

sonders relevante Informationen zu nutzen. Damit zeigt sich, dass nicht nur um den

Navigationsaufwand zu senken, sondern auch um eine effizientere Nutzung des Platzes

auf der Startseite zu ermöglichen, versucht werden sollte Informationen von verlinkten

Seiten zusätzlich auf der Startseite anzuzeigen, um diese früher verfügbar zu machen.

Falls den Benutzer im Moment ohnehin nur etwas Spezielles interessiert, würde er sich

dadurch einen weiteren Seitenaufruf sparen.

Für solche Anpassungen ist es jedoch nötig Arbeitszeit aufzuwenden. In Projekten

herrscht jedoch immer Zeitmangel, wodurch eine Hürde für solche Anpassungen exis-

tiert. Selbst wenn ein Anwender sich die Mühe gemacht hat seine Startseite einmal für

sich einzurichten, kann sich die Relevanz der einzelnen Informationen durch die Wei-

terarbeit am Projekt, wie oben bereits beschrieben, verändern. Um diesen wiederkeh-

renden, manuellen Arbeitsaufwand zu vermeiden, wird eine im Hintergrund, automa-

tisch ablaufende, lernende Softwarelösung, die eine Anpassungen der Weboberfläche

selbstständig durchführt, benötigt.

1.1 Problemstellung

An dieser Stelle sollen die angedeuteten Probleme eindeutig definiert werden, um dar-

aus Ziele und Anforderungen für die Beiträge dieser Arbeit ableiten zu können.

PS1 Beeinflussende Kontextfaktoren bzgl. der Relevanz von Software-Metriken

Es ist unklar, durch welche Kontextfaktoren die Relevanz einer Software-Metrik

für einen Softwareentwickler bestimmt wird. Die Relevanz entscheidet jedoch

darüber, ob das Widget einer Metrik bereits auf der Startseite angezeigt wer-

den soll oder nicht. Die Vermutung ist, dass es verschiedene Gruppen von Fak-

toren gibt, welche teilweise abhängig, teilweise unabhängig voneinander sind.

Um eine zufriedenstellende Anpassung an einen Benutzer und effektives Lernen

durchführen zu können, ist ein grundlegendes Verständnis der zugrunde liegen-

8



den Einflüsse nötig. Dazu zählen die Anzahl der Kontextfaktoren, die spezifischen

Einflüsse selber sowie ihre Bedeutung.

Dabei muss jedoch auch die Verwendbarkeit berücksichtigt werden, denn nicht al-

le Faktoren lassen sich auf triviale Weise erfassen oder sind für eine Anwendung in

einem Kontext mit fehlenden Sensoren sogar schlichtweg unmöglich zu erfassen.

PS2 Methoden des Machine Learning

Die Auswahl eines Machine-Learning-Algorithmus hat abhängig von der Struktur

des zugrunde liegenden Problems erheblichen Einfluss auf die Qualität der Ergeb-

nisse. Die Vorgehensweise des Algorithmus muss daher auch zu der Struktur des

Problems und den verfügbaren Eingaben passen.

Feature Selection und Preprocessing sind weitere Punkte, die es im Zusammen-

hang mit der Methodik des Machine Learnings zu beachten gilt. Irrelevante Merk-

male der zu klassifizierenden Objekte stellen Störeinflüsse dar und verschlechtern

die Performanz des Algorithmus. Daher kann es nötig sein diesem Effekt durch

Preprocessing und Feature Selection entgegenzuwirken.

PS3 Anpassung einer Benutzeroberfläche

Eine Anpassung einer Benutzeroberfläche hat einen Einfluss auf die Benutzbarkeit

für einen Anwender. Um diese Anpassung angemessen und vorteilhaft zu gestal-

ten, muss ein Konzept ausgearbeitet werden, damit Änderungen keine negativen

Auswirkungen auf die Benutzbarkeit haben sowie die Erkenntnisse des Machine

Learning widerspiegeln und auch effektiv ausnutzen. Außerdem sollen Anpassun-

gen vom Benutzer nicht als optisch störend wahrgenommen werden.

1.2 Beiträge dieser Bachelorarbeit

Ziel dieser Arbeit ist es, eine wie zu Beginn des Kapitels beschriebene adaptive Benutze-

roberfläche zu entwickeln, welche die soeben definierten Problemstellungen löst. Diese

soll aus einer Menge zur Verfügung stehender Software-Metriken die für den Benutzer

relevantesten auswählen und die entsprechenden Widgets bereits auf der Startseite der

Anwendung anzeigen. Daraus ergeben sich die folgenden Beiträge, welche diese Arbeit

leisten:
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B1 Bestimmung der Kontextfaktoren

Um im Regelfall der alltäglichen Arbeit die normalerweise nützlichsten Informa-

tionen anzeigen zu können, muss der Nutzungskontext inkl. Benutzerverhalten bei

der Interaktion mit der Weboberfläche des Tools beobachtet und analysiert wer-

den. Dafür muss ergründet werden, welche Benutzerdaten dafür von Bedeutung

sind und wie diese erfasst werden können.

Auf die Wichtigkeit einer Information haben womöglich auch noch weitere Fakto-

ren einen Einfluss. Beispielsweise könnte das Alter der Information, wie auch ex-

terne Faktoren, wie z. B. das aktuelle Datum oder die Tageszeit eine Rolle spielen.

Daher müssen auch diese nicht-benutzerbezogenen Kontextfaktoren in Erfahrung

gebracht werden.

B2 Machine-Learning-Konzept zur Verarbeitung der Daten

Es muss ein Konzept ausgearbeitet werden, wie durch Machine-Learning die von

einem Benutzer gewonnenen Daten sowie Daten zu nicht-benutzerbezogenen Kon-

textfaktoren verarbeitet und daraus für den aktuellen Kontext Bewertungen für

die verschiedenen Software-Metriken abgeleitet werden können.

B3 Implementierung des Demonstrators

Das Lernen von Benutzerpräferenzen und Einflüssen der Kontextfaktoren soll in

einem lauffähigen Programm implementiert werden. Das Programm soll die da-

zu benötigten Daten einlesen, mit dem dafür entwickelten Machine-Learning-

Konzept verarbeiten und für die verfügbaren Metriken Bewertungen für deren

Relevanz ausgeben.

Die durch das Machine-Learning erhaltenen Ergebnisse sollen im letzten Schritt

dazu verwendet werden anhand dieser Bewertungen die Weboberfläche der An-

wendung so anzupassen, dass die wichtigsten Informationen bereits auf der Start-

seite angezeigt werden. Dabei sollen nicht ausreichend wichtige Informationen

überhaupt nicht auf der Startseite angezeigt werden, um die Seite übersichtlich

gestalten zu können.

Der Fokus dieser Arbeit liegt darauf, anhand der voreingestellt in ihren Widgets an-

gezeigten Metriken zu entscheiden, welche davon für den Benutzer im Moment am
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Abbildung 1.1: SonarQube Startseite der Apache Software Foundation

relevantesten zu sein scheinen. Dabei ist es ausdrücklich nicht das Ziel auch Widgets zu

beachten, welche zwar durch das Ändern von Einstellungen angezeigt werden könnten,

aber ansonsten nicht angezeigt werden. Da diese für den alltäglichen Gebrauch nicht

zwangsläufig wichtig sein müssen und es auch das Ziel ist nur die wichtigsten Daten,

aber dafür übersichtlich, darzustellen, würde das Ausprobieren von ungenutzten Wid-

gets, welche erst nach einer Änderung der Einstellungen angezeigt würden, dem entge-

genwirken und die angezeigte Seite unübersichtlicher werden lassen.

1.3 Beschreibung des Demonstrators

Für die Zwecke dieser Arbeit dient SonarQube [3] als Beispielanwendung. Die Open-

Source Software-Plattform SonarQube vereint mehrere Werkzeuge zur statischen Code-

analyse, um dabei zu helfen die technische Qualität von Programmcode auf Grundlage

von Software-Metriken zu verbessern und die sog. technische Schuld zu minimieren.

Der Quellcode wird dazu auf einem Server analysiert und die aus der Analyse ge-

wonnenen Daten werden optisch aufbereitet und wie in Abbildung 1.3 auf einer Websei-

te dargestellt. Diese enthält zahlreiche Widgets, wie in Abbildung 1.2 zu sehen, welche

die einzelnen Software-Metriken, thematisch gruppiert, beinhalten. Auf diesem soge-

nannten
”
Projekt-Dashboard“ können die einzelnen Metriken ausgewählt und dadurch
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Abbildung 1.2: Drei Widgets von einem Projekt-Dashboard. Die dargestellten Widgets
enthalten u.a. die Metriken

”
Lines of Code“,

”
Debt“ und

”
Documentation“

detailliertere Informationen und Erklärungen angezeigt werden. Ein solches Dashboard

ist in Abbildung 1.3 zu sehen. Das erklärte Ziel von SonarQube ist es dabei, seinen Be-

nutzern mit diesen Hilfsmitteln zu ermöglichen die Softwarequalität in ihren Projekten

zu verbessern.

Auf der Startseite der Weboberfläche werden, wie bereits erwähnt, typischerweise

allgemeine Informationen präsentiert. Viele öffentlich einsehbare Instanzen von Open-

Source-Projekten und -Organisationen [1] zeigen z. B. nur eine Liste der verfügbaren

Projekte bzw. Module und teilweise noch eine Übersichtsgrafik über den allgemeinen

Zustand des Programmcodes der einzelnen Projekte und Module. Am Beispiel der

SonarQube-Instanz der Apache Software Foundation in Abbildung 1.1 ist das sehr gut

zu sehen, da hier die gesamte Startseite aus einer Auflistung der Projekte besteht.

Das Dashboard der einzelnen Projekte enthält typischerweise mehrere unterschied-

liche, voneinander getrennte Widgets. Da auf einem solchen Dashboard einige solcher

Widgets vorzufinden sind und sich somit eine ausgeprägte Modularität ergibt, können

dadurch sinnvoll feingranulare Anpassungen an der Benutzeroberfläche vorgenommen

werden. Diese Flexibilität macht es daher zu einem guten Anschauungsobjekt für diese

Arbeit. Die grundlegenden Konzepte dieser Arbeit sind jedoch auch auf andere Anwen-

dungen übertragbar.

Zur Demonstration der in dieser Arbeit beschriebenen Konzepte, werden diese auf

die Software-Plattform SonarQube angewandt. Dafür werden Einflussfaktoren für die

Relevanz einzelner Widgets eines Projekt-Dashboards analysiert. Die Machine-Learning-
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Abbildung 1.3: Übersicht von Widgets mit Software-Metriken des Programmoduls

”
eclipse.jdt.ui“ des Eclipse-Projektes in SonarQube.

Komponente lernt anhand des gewonnenen Wissens über die Einflussfaktoren die ak-

tuelle Relevanz der einzelnen Metriken bzw. Widgets. Die erlernte Relevanz wird im

nächsten Schritt dafür verwendet die Startseite der Webanwendung so anzupassen, dass

die Widgets der relevantesten Metriken – zusätzlich zum Projekt-Dashboard – bereits

auf der Startseite angezeigt werden.

In Abbildung 1.4 sind diese Anpassungen beispielhaft manuell durchgeführt worden.

Der ursprüngliche Inhalt, die Liste an Projekten, wurde auf eine Spalte verschmälert, um

Platz für Softwaremetriken zu schaffen. In diesem Beispiel wird angenommen, dass der

Benutzer durch sein Verhalten hat darauf schließen lassen, dass die dargestellten Me-

triken im aktuellen Kontext am relevantesten für ihn sind. Die Grundlage für diese An-

nahmen werden die in Kapitel 4 beschriebenen Kontextfaktoren und das in Kapitel 5.1.1

beschriebene implizite Feedback sein, anhand derer ein Machine-Learning-Algorithmus

erlernt, welche Software-Metriken den Benutzer am meisten interessieren könnten. Ba-

sierend auf dessen Auswahl an Metriken, werden die entsprechenden Widgets wie in

Abbildung 1.4 auf der Startseite angezeigt. Wie in der Abbildung ebenfalls zu sehen

ist, fügen sich die eingefügten Metriken nahtlos in das Erscheinungsbild der Seite ein.

Außerdem ist zu beachten, dass die Hyperlinks in den einzelnen Widgets, wie auf dem

Projekt-Dashboard, zu weiteren, detaillierteren Ansichten führen und somit keine Funk-

tionalität verloren geht.
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Abbildung 1.4: SonarQube Startseite der Apache Software Foundation mit eingefügten
Widgets aus dem Projekt Apache Archiva.

1.4 Gliederung der Arbeit

Der folgende Abschnitt gibt einen kurzen Überblick über diese Arbeit. Kapitel 2 erklärt

einige Grundlagen, welche für das Verständnis dieser Arbeit hilfreich sind. Kapitel 3

enthält einen Überblick über bisherige Forschungsarbeiten zum Thema adaptive Benut-

zeroberflächen, Anforderungen an das Ergebnis dieser Arbeit und inwiefern die bis-

herige Forschung diesen Anforderungen entspricht. In Kapitel 4 wird ein Konzept zur

Erfassung der Benutzerpräferenzen und des Nutzungskontexts erarbeitet. Kapitel 5 be-

handelt das Machine-Learning-Modul, welches die Daten zum Benutzerverhalten sowie

den Nutzungskontext als Eingabe nimmt, und daraus eine nach Relevanz sortierte Liste

von Widgets ausgibt. In Kapitel 6 wird die Anpassung der Weboberfläche auf Basis sol-

cher Listen beschrieben. In Kapitel 7 wird demonstriert, dass die in den vorherigen Kapi-

teln erarbeiteten Konzepte auch tatsächlich so in der Praxis umgesetzt werden können

und effektiv funktionieren. Mit Kapitel 8 folgt eine Zusammenfassung der Arbeit und

ein Ausblick auf Ansatzpunkte für weitere Forschungsarbeiten.
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2 Grundlagen

Die zentralen Themen dieser Arbeit sind Machine-Learning und die Adaption einer Be-

nutzeroberfläche, genauer gesagt einer Weboberfläche. Auch das Konzept allgemeiner

Optimierungsprobleme wird in dieser Arbeit benötigt. Damit die in den nächsten Kapi-

teln verwendeten Konzepte leichter verständlich sind, bieten die folgenden Abschnitte

grundlegende Erklärungen zu diesen Themen, denn sie werden dazu verwendet, um

die Weboberfläche von SonarQube, wie in Kapitel 1 beschrieben, an den Benutzer an-

zupassen.

2.1 Machine-Learning

Ein Machine-Learning-Algorithmus approximiert eine Funktion y(x), welche versucht

Eingabedaten entsprechend ihrer Attribute in Klassen einzuteilen. Die konkrete Zuord-

nung von Werten x und der Klassifikation der Werte y(x) wird durch den Lernprozess be-

stimmt. Hierbei ist zwischen überwachtem und unüberwachtem Lernen zu unterschei-

den [13]. Um diese Klassifikatorfunktion y(x) zu erlernen, wird bei einem überwachten

Lernprozess eine kleine Teilmenge der möglichen Eingabedaten, deren korrekte Klas-

sifikation bekannt ist, das sog. Trainingsset, verwendet. Dabei werden Parameter der

Funktion variiert, um die für das Trainingsset erreichte Rate an korrekten Klassifika-

tionen zu maximieren. Bei einem unüberwachten Lernprozess ist das Ziel vielmehr das

Finden von davor unbekannten Gemeinsamkeiten in den Daten, als das Einteilen in

vorgegebene Klassen. Daher enthalten die Trainingsdaten bei dieser Art von Machine-

Learning-Verfahren auch keine vorgegebenen Zielklassen [13].
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2.2 Allgemeine Optimierungsprobleme

Als allgemeines Optimierungsproblem – auch nichtlineares Optimierungsproblem – wird

das Finden bzw. Approximieren eines Minimums einer reellwertigen Funktion

f(x1, x2, . . . , xn)

bezeichnet, wobei optionale Nebenbedingungen den Lösungsraum einschränken können

[47]. Hierbei ist zwischen lokalen und globalen Minima zu unterscheiden, denn in

Abhängigkeit der optionalen Nebenbedingungen kann ein globales Minimum der

Funktion f diese Nebenbedingungen eventuell nicht erfüllen, aber ein lokales Mini-

mum ist unter Umständen schlechter als das globale Minimum [47]. Durch Umkehren

der Vorzeichen der Funktion f kann das Optimierungsproblem auch als Maximierungs-

statt Minimierungsproblem definiert werden.

2.3 Webtechnologien

Die Ergebnisse des Machine-Learnings sollen schließlich dafür verwendet werden die

Weboberfläche von SonarQube anzupassen. Eine Weboberfläche besteht heutzutage oft-

mals aus HTML-, CSS- und Javascript-Anteilen. HTML steht für Hypertext Markup Lan-
guage. Die HTML-Dokumente einer Webseite kodieren die logische Struktur und den

Aufbau der Seite, das sogenannte Document Object Model (DOM). Sie bestimmen wel-

che Komponenten auf der Seite existieren und legen auch fest wie diese relativ zueinan-

der positioniert sind. Weitere Anpassungen des Stylings der Seite können mithilfe von

Cascading Style Sheets (CSS) vorgenommen werden. Diese CSS-Dateien enthalten ge-

nauere Vorgaben dazu, wie gewisse Elemente auszusehen haben. Dazu zählen beispiels-

weise die Farbe oder Größe von Elementen, Schriftarten und -größen sowie Abstände

zwischen Elementen [27]. Client-seitiges Javascript ermöglicht andernfalls statischen

Webseiten, auf Aktionen des Benutzers zu reagieren und Inhalte der Seite dynamisch

nachzuladen oder zu verändern [26].

16



3 Verwandte Arbeiten

3.1 Anforderungen

Das Ergebnis dieser Arbeit soll eine adaptive Benutzeroberfläche sein, die aus dem Be-

nutzerverhalten und möglichen weiteren Kontextfaktoren lernt, welche Informationen

– konkret sind das die Software-Metriken aus SonarQube – für den Benutzer von Be-

deutung sind. Die folgenden Anforderungen spezifizieren Bewertungsmaßstäbe anhand

derer andere Forschungsarbeiten zu diesem Thema bewertet werden. Tabelle 3.1 fasst

diese Anforderungen in einem Anforderungskatalog zusammen.

A1 Unbemerktes Erfassen des Benutzerverhaltens und -kontexts

Daten über das Benutzerverhalten sowie den Nutzungskontext werden ohne Zu-

tun des Benutzers und ohne dass dieser etwas davon merkt gesammelt. Daher

geschieht das Erfassen des Benutzerverhaltens sowie anderer Kontextfaktoren im

Hintergrund ohne dabei Einbrüche der Performanz zu verursachen, um den ent-

sprechenden Punkt in Problemstellung PS1 zu erfüllen.

A2 Lernen anhand der Daten zu Benutzerverhalten und Nutzungskontext

Die Relevanz der Informationen wird nur anhand des Benutzerverhaltens und

-kontextes erlernt werden. Diese Einschränkung ist nötig, um nur möglichst re-

levante und auch erfassbare Daten entsprechend Problemstellung PS1 zu sam-

meln. Die zum Lernen verwendete Machine-Learning-Methode soll dabei die in

Problemstellung PS2 genannten Kriterien erfüllen.

A3 Anpassung der Benutzeroberfläche an den Benutzer

Die Weboberfläche wird auf Basis der vom Machine-Learning-Modul gelieferten

Ergebnisse an den spezifischen Benutzer angepasst, um dessen Interaktion mit

der Anwendung, wie in Problemstellung PS3 erwähnt, effektiver zu gestalten.
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A4 Erhalten des Seitendesigns

Bei Anpassungen der Benutzeroberfläche wird das bisherige Design erhalten und

es werden keine Brüche eingefügt. Änderungen fügen sich nahtlos in den Rest der

Benutzeroberfläche ein, sodass der Benutzer sie nicht als störend wahrnimmt, um

Problemstellung PS3 gerecht zu werden.

A5 Lernen & Adaption während des laufenden Betriebs

Die Anpassung der Benutzeroberfläche geschieht im laufenden Betrieb und in

Echtzeit, um schnell agieren zu können. Das Lernen der Benutzerpräferenzen

findet auch während des laufenden Betriebs statt und muss nicht aufgrund von

Rechenleistungsintensität zu einem anderen Zeitpunkt, in dem die eigentliche An-

wendung nicht verwendet werden kann, durchgeführt werden. Dabei soll die Per-

formanz der Anwendung selbst dauerhaft erhalten bleiben und darf nicht merklich

abnehmen.

Name Beschreibung

A1 Unbemerktes Erfassen des Benutzerverhaltens und Nutzungskontexts

A2 Lernen anhand der Daten zu Benutzerverhalten und Nutzungskontext

A3 Anpassung der Benutzeroberfläche an den Benutzer

A4 Erhalten des Seitendesigns

A5 Lernen & Adaption während des laufenden Betriebs

Tabelle 3.1: Anforderungskatalog zur Bewertung existierender Forschungsarbeiten zu
adaptiven Benutzeroberflächen

3.2 Bewertung verwandter Arbeiten

Dieses Unterkapitel widmet sich dem Vergleich bisheriger Arbeiten im Bereich adaptiver

Benutzeroberflächen. Als Bewertungsmaßstab werden die in Kapitel 3.1 beschriebenen
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Anforderungen verwendet, um festzustellen inwieweit die vorgestellten Arbeiten und

Teile davon der Zielformulierung dieser Arbeit entsprechen.

3.2.1 Learning Styles Diagnosis Based on User Interface Behaviors

for the Customization of Learning Interfaces in an Intelligent

Tutoring System

Der Kontext der Arbeit von Cha et al. [16] ist die Entwicklung einer intelligenten

Benutzeroberfläche für eine Lernumgebung. Die Grundlage dafür, wie die Oberfläche

angepasst wird, ist das Index of Learning Style-Modell (ILS) nach Felder & Silverman

[25]. Dieses Modell beschreibt verschiedene Lerntypen mit unterschiedlichen Lernwei-

sen. Durch eine adaptive Benutzeroberfläche und die Anpassung an die individuellen

Lernweisen wird ein effizienterer Lernprozess für den Lernenden erwartet.

Das ILS besteht aus insgesamt vier Dimensionen [16]:

• Global (G) versus sequentiell (Q) in Bezug auf den Verstehensprozess von Infor-

mationen

• Visuell (V) versus auditiv (A) in Bezug auf die Aufnahme von Informationen

• Sensorisch (S) versus intuitiv (N) In Bezug auf die Wahrnehmung von Informatio-

nen

• Aktiv (C) versus reflexiv (R) in Bezug auf die Verarbeitung von Informationen

Demnach sind
”
globale“ Lerner an einer Übersicht über alle Themen interessiert, wohin-

gegen
”
sequentielle“ Lerner sich an die Reihenfolge der Lektionen halten und dadurch

andere Navigationsmöglichkeiten bevorzugen. Ähnliche Unterschiede gibt es auch in

der Dimension von
”
visuellen“ und

”
auditiven“ Lernern, wobei erstere Bilder und De-

monstrationen und letztere Texte oder Erklärungen bevorzugen. In der dritten Dimen-

sion unterscheidet sich ein
”
sensorischer“ Lerner durch ein höheres Interesse an Details

und ein gründlicheres, aber dafür langsameres, Vorgehen vom
”
intuitiven“ Typ. Zu guter

Letzt zeichnet sich ein
”
aktiver“ Lerner durch eine Vorliebe für Experimente und Diskus-

sionen aus, während ein
”
reflektiver“ Lerner es bevorzugt für sich Meinungen anderer

Lerner oder Experten zu reflektieren.
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Um festzustellen in welche Kategorien ein Lerner fällt, werden die Art der Inter-

aktion, also z. B. welche Navigationswege oder Typen von Lernressourcen verwendet

werden, als Eingabesequenz bzw. als quantitativer Wert, wie z. B. die Klickfrequenz auf

ein bestimmtes GUI-Element, erfasst und in einer XML-Datei gespeichert. Für die initia-

le Menge an Trainingsdaten wird der Fragebogen des ILS-Modells verwendet, um für

die erhaltenen Daten eine Klassifikation zu ermöglichen.

Die quantitativen Daten sind dabei besser dazu geeignet anhand eines Entschei-

dungsbaums (engl.: Decision Tree, kurz DT) klassifiziert zu werden, während die se-

quentiellen Daten prädestiniert dafür sind von einem Hidden-Markow-Modell (HMM)

klassifiziert zu werden. Für die Analyse wurden dennoch beide Methoden in allen Di-

mensionen getestet und dann überprüft welche Methode in welchen Dimensionen zu-

verlässiger ist. Demnach sind HMMs besser für die
”
G vs. Q“-Dimension, während DTs

besser für die
”
V vs. A“-Dimension geeignet sind. In der

”
S vs. N“-Dimension hängt die

Entscheidung hingegen von den Werten des zu klassifizierenden Lerners ab und in der

”
C vs. R“-Dimension ist eine Einordnung aufgrund von zu wenig Trainingsdaten sehr

schwer.

Bewertung der Arbeit Cha et al. [16] erfassen die Aktionen des Benutzers dadurch,

dass automatisch softwareseitig die Benutzereingaben verfolgt werden. Das Sammeln

der Daten geschieht dabei vollkommen transparent und unbemerkt, womit die Anfor-

derung A1 erfüllt ist. Das Machine-Learning arbeitet jedoch nur auf dem Benutzerver-

halten und lässt den Kontext, in dem sich der Benutzer befindet, außer Acht. Weiterhin

werden auch noch Vergleichsdaten durch den ILS-Fragebogen benötigt, um die Benut-

zerdaten klassifizieren zu können, weshalb es sich um ein überwachtes Lernen handelt.

Daher wird Anforderung A2 nicht erfüllt. Der Fokus der Arbeit lag auf der Diagnose der

Lerntypen, weshalb die Anpassung der Benutzeroberfläche (A3 & A4) nicht beurteilt

werden kann. Ein Prototyp des verwendeten Systems wird jedoch in [31] vorgestellt.

Außerdem ist nicht klar, ob die Klassifizierung eines Benutzers während des laufenden

Betriebs (A5) oder erst danach stattfindet.
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3.2.2 Design for Adaptive User Interface for Modeling Students’

Learning Styles

Mbiliny et al. [34] beschreibt eine adaptive Benutzeroberfläche, um damit das Finden

von Navigationspfaden in e-Learning-Systemen zu erleichtern und nicht um den Inhalt

auf den Benutzer zuzuschneiden. Dafür wird der Lerntyp des Benutzers gelernt und

dadurch die Reihenfolge bestimmt, in der Lernmodule angezeigt werden. Dabei fokus-

sierten sie sich auf die Fragen, welche Daten der Benutzerinteraktion zum Erkennen des

Verhaltensmusters und damit des Lerntyps benötigt werden, sowie welche Eigenschaf-

ten des Benutzerinterfaces diese Lerntypen besser adaptieren kann.

Als Modell für die Lerntypen der Benutzer wird das Modell von Kolb [51] verwendet.

Es kennt im Gegensatz zum Modell aus [16] nur zwei Dimensionen und somit vier

Lerntypen. Außerdem basiert es auf der Idee, dass Menschen mit ihrer Erfahrung lernen

und sich Lerntypen daher auch mit der Zeit ändern können.

In der Lernumgebung soll anhand mehrerer Module zum Thema Statistik auf Grund-

schulniveau gelernt werden. Die Inhalte werden immer in vier Module - Beispiele,

Theorie, Übungen und Problemlösungsaufgaben - aufgeteilt, wobei jedes Modul ein

vollständiges Verstehen des jeweiligen Themas ermöglichen soll. Somit bieten diese je-

weils vollständige Alternativen zueinander. Auf einem Auswahlbildschirm werden die

Module entsprechend des Lerntyps sortiert und in verschiedenen Größen angezeigt,

wobei das am besten passende Modul am größten und oben dargestellt wird.

Bei der erstmaligen Verwendung wird für den Benutzer ein Profil erstellt, in dem

alle nutzerbezogenen Daten gespeichert werden. Die initialen Informationen sind dabei

die Antworten auf einen Fragebogen für das Modell von Kolb, durch die der Benutzer

einem Lerntyp zugewiesen wird. Durch weiteres Benutzen der Anwendung wird dieses

Profil mit den während der Nutzung gesammelten Verhaltensmustern erweitert. Damit

hat die Anwendung immer einen Grundstock an Informationen über den Benutzer.

Das Vorgehen zum Erfassen der Verhaltensmuster sieht dabei wie folgt aus: Wer-

den das erste Mal alle Module zu einem Thema angezeigt, wird das Modul, welches

als erstes ausgewählt wird, unabhängig von der Reihenfolge, in der es angezeigt wird,

als das vom Benutzer bevorzugte interpretiert. Weiterhin wird erfasst wie viel Zeit in

den jeweiligen Modulen in Relation zu den anderen verbracht wird. Dabei wird ange-

nommen, dass ein Modul mehr gefällt, je länger der Benutzer darauf verweilt. Zum
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Schluss gibt es einen Test, bei dem immer wieder zu den Modulen zurückgesprungen

werden kann, um Informationen nachzuschlagen. Es wird angenommen, dass je öfter

zu einem bestimmten Modul zurückgesprungen wird, desto mehr hat ebenjenes Modul

zum Verständnis des Themas beim Benutzer beigetragen.

Bewertung der Arbeit Wie auch schon Cha et al. [16] verwenden Mbilinyi et al. [34]

einen hybriden Ansatz zur Erfassung des Benutzerverhaltens (A1). Es wird zwar im Ex-

periment gefordert einen Fragebogen zu beantworten, jedoch sind die daraus gewon-

nenen Informationen nur anfangs von Bedeutung, wenn noch keine Verhaltensmuster

bekannt sind. Letztere werden tatsächlich unbemerkt vom Benutzer erfasst. Da anhand

der Verhaltensmuster die Reihenfolge der Module an den Benutzer angepasst wird ist

Anforderung A3 erfüllt, nicht jedoch A2, da nicht wirklich Machine-Learning betrieben

wird, sondern die Module lediglich anhand der Klickfrequenz und Verweildauer sortiert

werden. Das Seitendesign bleibt durch die Anpassungen in sich stimmig (A4), da le-

diglich die Sortierung und die Größe der Links zu den Modulen verändert wird. Auch

wenn kein wirkliches Lernen stattfindet, wird zumindest die Anpassung der Benutzero-

berfläche (A5) im laufenden Betrieb vorgenommen, was diese Anforderung zumindest

teilweise erfüllt.

3.2.3 Machine learning techniques to make computers easier to use

Motoda et al. [35] beschäftigten sich weniger mit adaptiven Benutzeroberflächen, als

mit der Vorhersage des Benutzerverhaltens. Das Forschungsobjekt ClipBoard ist eine

UNIX Shell mit graphischer Benutzeroberfläche, die um die verschiedene Funktiona-

litäten erweitert wurde. In einer Multitasking-Umgebung versucht sie den nächsten Be-

fehl vorherzusagen, aus häufigen Befehlssequenzen Skripte zu erstellen und benötigte

Dateien vorzuladen, bevor sie benötigt werden. Dafür zeichnet ClipBoard benutzerbezo-

gene Daten auf und erstellt daraus einen gerichteten Graphen, aus dem oft auftretende

Muster für Vorhersagen extrahiert werden. Die Anzeige des vorgeschlagenen Befehls

geschieht durch die Einblendung eines zum Befehl gehörigen Icons.

Für jeden Befehl werden neben dem vorhergehenden Befehl auch die E/A-Opera-

tionen gespeichert, d. h. welche Dateien als Eingabe bzw. Ausgabe benutzt werden, da

die Befehlsreihenfolge alleine nicht ausreicht, um zuverlässige Vorhersagen zu treffen.
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Die gesammelten Daten mit relationalen Informationen zwischen Befehlen untereinan-

der sowie mit Eingabe-/Ausgabedateien werden in einem Graphen zusammengefasst,

indem alle Befehle und Dateien als Knoten interpretiert werden. Für aufeinanderfolgen-

de Befehle wird eine gerichtete Kante vom vorhergehenden zum nachfolgenden Befehl

eingefügt. Ebenso werden Kanten von Eingabedateien zum zugeordneten Befehl und

von Befehlen zu den jeweiligen Ausgabedateien eingefügt. Für jeden Befehl im Verlauf

wird dafür so ein Graph mit begrenzter Tiefe, welche der Länge der Befehlssequenz ent-

spricht, und begrenztem Verzweigungsgrad erstellt. Dabei entspricht der Wurzel-Knoten

dem Befehl selber und die restlichen Knoten werden als verschachtelte Attribute ange-

sehen. Jeder dieser Graphen stellt dabei ein Trainingsbeispiel dar. Der von Motoda et

al. [35] verwendete Algorithmus kann dabei sowohl überwacht, als auch unüberwacht

lernen.

Sind die Daten in dieser Graphstruktur können im nächsten Schritt, der Graph-based
Induction (GBI), häufig vorkommende Muster aus den Graphen extrahiert werden. GBI

benutzt nur eine Heuristik:
”
Alles, was häufig auftaucht, verdient Aufmerksamkeit“

[35]. Wenn sich ein kleiner Subgraph in den Daten oft wiederholt, erkennt die GBI

dieses Muster und ersetzt es durch einen neuen Knoten, welcher die zugehörigen Be-

fehle und E/A-Operationen abstrahiert. Auf diese Weise wird der Graph immer weiter

minimiert bis nur noch ein einziger Knoten übrig ist. Die Ausgabe des Algorithmus ist in

dem Fall eine Menge an Mustern, die, wenn sie im Graphen zusammengefasst werden,

diesen Graphen minimieren.

Die Auswahl, mit welchem anderen Knoten ein Knoten zusammengefasst werden

soll, hängt dabei von der Definition der
”
Größe“ des Graphen ab und lässt sich nur

empirisch bestimmen [35], wobei sie so gewählt werden sollte, dass damit gleichzeitig

die prädiktive Fehlerrate minimiert wird. Motoda et al. [35] wählten als Kriterium die

”
Informationszunahme“, welche anhand der Häufigkeiten der einzelnen Knoten und

Verbindungen berechnet wird. Damit nicht direkt im ersten Schritt der gesamte Graph

zusammengefasst wird, bedarf es außerdem auch einer Terminierungsbedingung für die

Clusterbildung z. B. die Anzahl der Iterationen, Größe des Musters oder Änderungsrate

des Selektionskriteriums.

Testergebnisse zeigten, dass die E/A-Operationen eine wichtige Informationsquel-

le zur Vorhersage des nächsten verwendeten Befehls darstellt. Fehlt diese Informa-

tion für den Wurzelknoten, also für den aktuellen Befehl, dann beträgt die Vorher-
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sagegenauigkeit abhängig vom Rauschen, wie z. B. unzusammenhängenden Befehlen,

zwischen 47.2 – 52.1%. Sind diese Informationen, also die Eingabeparameter des Be-

fehls, bekannt, dann steigt die Vorhersagegenauigkeit auf 72.1 – 73.7% [35]. Außerdem

zeigten sich Erkenntnisse der Informationstheorie als sehr bedeutsam bei der Auswahl

der zu zusammenfassenden Knoten. Als weitere mögliche Einflussfaktoren werden der

Rückgabestatus des Programms oder die Tageszeit vermutet. Ersterer kann beispiels-

weise Aufschluss darüber geben, ob eine Datei fehlerhaft ist und neu bearbeitet werden

muss oder schon weiterverarbeitet werden kann, während beispielsweise die Tageszeit

Rückschlüsse auf Gewohnheiten zulässt.

Versuche die Graphminimierung mit Prädikatenlogik durchzuführen erwiesen sich

als ineffizient, da die Laufzeit mehrere Stunden betrug. Deshalb konnte der Ansatz nicht

weiterverfolgt werden. Die Aussagekraft der Ergebnisse der GBI sind im Vergleich zur

Prädikatenlogik als schwächer einzuordnen. Als eine eingeschränkte Form der Aussa-

genlogik ist das Lernpotential zwar auch viel schwächer als das der Prädikatenlogik,

aber stärker als in der Präsentation als Attribut-Wert-Paare und dabei trotzdem so effi-

zient [35].

Bewertung der Arbeit ClipBoard erfasst die Aktionen des Benutzers automatisch oh-

ne dessen Zutun (A1). Durch die Graph-based Induction werden die relationalen Da-

ten abstrahiert und wiederkehrende, strukturelle Muster erlernt (A2). Anpassungen der

Benutzeroberfläche (A3) finden jedoch kaum statt. Die einzigen Änderungen sind die

neben Dateien angezeigten Icons, welche andeuten welcher Befehl dafür vorgesehen

ist und somit nicht die Adaption der Oberfläche an den Benutzer zur Verbesserung der

Bedienung in den Fokus stellen. Bedingt dadurch wird Anforderung A4 erfüllt, da das

Seitendesign bei kleinen Änderungen leicht erhalten bleibt. Motoda et al. [35] schrei-

ben explizit, dass das Lernen in Echtzeit geschieht (A5) und keine handgeschriebene

Wissensbasis benötigt wird (A2). Ein weiterer bedeutsamer Punkt, der nicht in den An-

forderungen gefasst ist, ist die Tatsache, dass der Benutzer bei allem in Kontrolle ist und

kein Zwang besteht den vom Programm geäußerten Empfehlungen zu folgen.
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3.2.4 A Personal Learning Apprentice

CAP ist ein sog. Learning Apprentice-System, welches einen selbstlernenden Kalender-

Manager implementiert. Der Begriff Learning Apprentice ist dabei als ein persönlicher

Assistent zu verstehen, der dem Benutzer bei alltäglichen Aufgaben hilft. Dieser soll die

Gewohnheiten des Benutzers bei der Kalenderverwaltung lernen und darauf basierend

Vorschläge beim Erstellen, Verschieben, Kopieren oder Löschen von Meetings bereithal-

ten. Beispiele für solche Vorschläge wären Zeit und Ort des Meetings oder ob Erinnerun-

gen via E-Mail an die Teilnehmer verschickt werden sollen. Ein anderer Anwendungsfall

ist das Versenden von automatischen Antworten bei Meeting-Anfragen.

Für die Entwicklung von CAP stellten sich Dent et al. [20] folgende Fragen:

• Kann ein solcher Assistent, selbst wenn er anfangs uninformiert ist, ausreichend

nützlich sein, um einen Benutzer zur Nutzung zu überzeugen und somit überhaupt

erst Trainingsdaten zu sammeln?

• Gibt es ausreichend mächtige Methoden zur Generalisierung, um automatisch ge-

nerelle Entscheidungsstrategien aus den Trainingsdaten zu erlernen?

• Ist die Menge der gewählten Attribute der Trainingsdaten stabil oder ändert es

sich mit der Zeit?

Anhand dieser Fragen zeigen sie, dass Learning-Apprentice-Systeme die praktische Ent-

wicklung von persönlichen Software-Assistenten ermöglichen können, welche bis dahin

zu teuer in Entwicklung und Wartung waren.

Der Kalender-Manager CAP bringt auch ohne eine erlernte Wissensbasis bereits die

grundlegenden Funktionen zur Verwaltung eines Kalenders, wie das Hinzufügen und

Löschen von Terminen, und ein E-Mail-Interface zum Versenden von Erinnerungen mit.

Die aus der Benutzung gesammelten Daten enthalten den aktuellen Zustand des Kalen-

ders, Informationen zu 250 Personen (inkl. Abteilung, Büro und E-Mail-Adresse), eine

sich weiterentwickelnde Menge an Entscheidungsregeln und Künstlichen Neuronalen

Netzen für Empfehlungen an den Benutzer, sowie Beschreibungen der letzten Befehle

des Benutzers, welche die Trainingsdaten zum Lernen darstellen. Diese Trainingsda-

ten können jedoch auch ein gewisses Rauschen enthalten, welches durch Eingabefehler

oder verwendete Synonyme (z. B. zwei Bezeichnungen für denselben Raum) verursacht

wird.
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Die Trainingsdaten werden von CAP im laufenden Betrieb gesammelt, wenn z. B.

Termine erstellt werden, jedoch wird das Machine-Learning
”
offline“ betrieben, um

Verzögerungen bei der Nutzung zu vermeiden. Für das Lernen werden dabei eine Ent-

scheidungsbaum-Methode ähnlich wie ID3 [44, 45], aus der eine Menge an Regeln

extrahiert werden, sowie ein Künstliches Neuronales Netz im Wettbewerb zueinander

verwendet. Außerdem wird jedes Attribut des Datensatzes, wie z. B. der Ort oder die

Zeit eines Meetings, als seperates Lernproblem betrachtet, wodurch Korrelationen zwi-

schen diesen Attributen nicht beachtet werden.

In Tests zeigte sich, dass CAP nach durchschnittlich 1-2 Monaten Training im alltäg-

lichen Betrieb nützliche Vorschläge liefern kann. Die Akzeptanzrate der Benutzer für

diese Vorschläge variierte dabei von 45% bis 70% bei Vorschlägen zu Ort und Zeit ei-

nes Meetings. Diese Zahlen können jedoch verbessert werden, wenn nur Vorschläge

gemacht werden, bei denen CAP sich sicher ist und zuverlässigere Regeln, für die mehr

Trainingsbeispiele zur Verfügung stehen, verwendet. Dabei muss jedoch ein Kompro-

miss zwischen Genauigkeit und Abdeckung der Trainingsbeispiele geschlossen werden.

Die Qualität der erlernten Regeln entspricht in etwa der von manuell festgelegten Re-

geln, wodurch Grund zur Annahme besteht, dass CAP die Aufgabe der Bestimmung

dieser Entscheidungsregeln zuverlässig übernehmen kann.

Dent et al. [20] sehen somit in CAP einen erfolgreichen Kalender-Manager, der dem

Anspruch genügt nützlich zu sein, auch wenn noch kein Wissen über den Benutzer

erlernt werden konnte. Sie kamen außerdem zu dem Schluss, dass die Auswahl der

zu analysierenden Attribute eines Meetings sehr wichtig ist, solange die verwende-

ten Machine-Learning-Methoden nicht mit einer zu großen Menge Attribute umgehen

können. Dennoch werden die manuell ausgewählten Attribute als ausreichend stabil

angesehen, um auch auf längere Zeit und mit verschiedenen Benutzern gute Ergebnisse

zu erzielen. Ein weiterer Punkt, auf den sie hinweisen sind mögliche Kontextfaktoren,

die (noch) nicht von CAP beobachtet werden können, aber dennoch von Bedeutung

sind z. B. die Kalender anderer Personen oder Raumbelegungen. Eine wichtige Bedin-

gung für die erfolgreiche Anwendung des Kalender-Managers sei außerdem, dass dieser

Änderungen in der Welt schneller lernt, als sie geschehen, d. h. er muss sich an die Ge-

gebenheiten anpassen, bevor sie sich erneut ändern.
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Bewertung der Arbeit Die Arbeit von Dent et al. [20] enthält neben der offensicht-

lichen Beschreibung ihres Prototyps ebenso viele wichtige Faktoren, die es allgemein

bei der Entwicklung eines lernenden Systems zu beachten gibt. Einer davon ist die Tat-

sache, dass ein Benutzer sich nur dann mit der Anwendung auseinandersetzt, wenn

diese auch ohne erlerntes Wissen einen gewissen Mehrwert hat und für den Benutzer

beim Erfassen der Benutzerdaten keine signifikante Belastung bedeutet, was CAP auch

gelingt (A1). Wie auch Motoda et al. [35] in ihren Tests, haben Dent et al. [20] auf

Störeinflüsse in den Eingabedaten z. B. durch Schreibfehler beim Tippen hingewiesen,

welche nach Möglichkeit erkannt und bereinigt werden sollten.

Das Ziel des Kalender-Managers CAP war nicht die Verbesserung der Bedienung

durch eine Anpassung der Benutzeroberfläche, sondern durch das Präsentieren von

nützlichen Vorschlägen, weshalb Anforderung A3 nicht erfüllt wird und Anforderung

A4 hier nicht anwendbar ist. Mit dem Lernen durch Entscheidungsbaum-Methoden so-

wie Künstlichen Neuronalen Netzen anhand der vom Benutzer eingetragenen Termine

erfüllt CAP jedoch die Anforderung A2. Da der Lernvorgang aber offline durchgeführt

wird und dadurch auch keine Anpassung des Verhaltens im laufenden Betrieb erfolgt,

ist Anforderung A5 nicht erfüllt.

3.2.5 TFMAP: Optimizing MAP for Top-N Context-aware

Recommendation

Im Bereich des kollaborativen Filterns und der kontextsensitiven Empfehlungen haben

Shi et al. [49] mit TFMAP einen Ranking-Algorithmus entwickelt, welcher unter Ein-

bezug von implizitem Feedback die besten n Elemente für einen Benutzer in einem

gegebenen Kontext – nach einem erlernten Ranking sortiert – ausgibt. Bei diesem Al-

gorithmus wird ein latentes Modell der Benutzer, Items und verschiedenen Kontexte

gelernt, indem im Gradientenverfahren die sog. Mean Average Precision (MAP), die sich

direkt aus diesen Modellen ergibt, optimiert wird.

Das implizite Feedback des Benutzers wird in einem binären Tensor gespeichert,

was in [49] einer dreidimensionalen Matrix entspricht. Frühere Arbeiten verwendeten

eine einfache Matrix, um Verbindungen zwischen Benutzern und zu bewertenden Items

darzustellen. Um Kontextinformationen miteinzubeziehen wird diese Matrix um eine

Dimension erweitert. Für jede Kombination aus Benutzer, Item und Kontext ist hierbei
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auch nur gespeichert, ob eine Interaktion zwischen diesem Benutzer und diesem Item in

dem spezifizierten Kontext stattfand oder nicht. Daher ist der verwendete Tensor auch

nur binär.

Die latenten Modelle der Benutzer, Items und Kontexte werden respektive als die

zweidimensionalen Matrizen U ∈ RMXD, V ∈ RNXD und C ∈ RKXD mit zufälligen

Werten initialisiert. M , N und K stehen hierbei für die Anzahlen von Benutzern, Items

und Kontexten. Die jeweiligen Matrizen speichern für jedes Objekt eine feste Anzahl D

an latenten Eigenschaften. Die Eigenschaftsvektoren einer Kombination aus Benutzer,

Item und Kontext werden faktorisiert und auf Grundlage aller möglichen Faktorisierun-

gen wird der MAP-Wert errechnet.

Die Mean Average Precision ist dabei als die
”
Qualität über alle Empfindlichkeitsle-

vel“ bzw. als durchschnittliche Fläche unter der precision-recall-Kurve zu verstehen. Sie

gibt Auskunft darüber wie gut ein Ranking ist, mit der Besonderheit, dass Items, die

fälschlicherweise weit oben im Ranking stehen, stärker bestraft werden, als Items, die

fälschlicherweise zu weit unten im Ranking stehen. Dadurch sollen keine schlechten

Items auf guten Plätzen im Ranking stehen und es ist nur zweitrangig, dass gute Items

auch auf guten Plätzen stehen.

Es zeigt sich, dass bereits ohne Verwendung des Kontexts der TFMAP Algorithmus

signifikant besser ist, als andere Algorithmen auf dem Stand der Forschung [49]. Durch

Miteinbezug des Kontextes konnte das Ergebnis noch weiter um 5% des MAP-Wertes

verbessert werden [49]. Somit kann TFMAP trotz nur allgemeiner, impliziter Feedback-

Daten gute Ergebnisse erzielen.

Bewertung der Arbeit Der Ansatz des kollaborativen Filterns ist eine Methode aus

dem Bereich des Data Mining, die typischerweise darauf ausgerichtet ist, Daten von vie-

len Benutzern zu analysieren, um daraus Informationen über einen konkreten Benut-

zer abzuleiten. Daher bleibt offen wie gut der von Shi et al. [49] entwickelte TFMAP-

Algorithmus bei einem oder nur wenigen Benutzern funktioniert.

TFMAP ist bei den benötigten Eingabedaten vergleichweise genügsam, da keine

nähere Information über die Interaktion eines Benutzers mit einem Element im jewei-

ligen Kontext benötigt wird, sondern nur ob diese stattfand oder nicht. Dadurch, dass

nur solches implizites und kein explizites Feedback gesammelt wird, ist Anforderung

A1 erfüllt. Anhand dieser Daten erfolgt durch die Optimierung der Benutzer-, Item-
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und Kontextmodelle eine Form des Lernens (A2), die die gesammelten Daten in Eigen-

schaftswerte übersetzt.

Der Fokus von [49] lag darauf einen Ranking-Algorithmus zu entwerfen und nimmt

daher keinen Bezug auf Anpassung einer graphischen Benutzeroberfläche. Dadurch

werden Anforderungen A3 und A4 nicht erfüllt. Lernen & Adaption während des lau-

fenden Betriebs (A5) ist hingegen möglich, obwohl für jede Iteration im Gradientenver-

fahren laut [49] mehrere Sekunden benötigt werden, indem Lernen und Adaption der

Oberfläche entkoppelt voneinander ablaufen. Somit wäre eine Adaption der Benutzero-

berfläche auch in Echtzeit möglich.

3.3 Zusammenfassung und Handlungsbedarf

Im vorhergehenden Abschnitt wurden verschiedene Arbeiten vorgestellt, die sich mit

dem Thema Nutzungskontext und Adaption an den Benutzer auseinandersetzen. Die

Arbeiten von Cha et al. [16] und Mbilinyi et al. [34] haben erste Ansätze bereitgestellt,

um Oberflächen von Lernplattformen an verschiedene Typen von Benutzern, entspre-

chend eines festen Benutzermodells, anzupassen. Jedoch war es bei beiden Arbeiten

notwendig die Benutzer einen Fragebogen ausfüllen zu lassen.

In der Arbeit von Motoda und Yoshida [35] wurde ein auf einem Graphenmodell

beruhender Ansatz verfolgt. Dabei wird des Verhalten des Benutzers als Graph, in dem

Aktionen und die daran gekoppelten Ressourcen voneinander abhängen, interpretiert.

Anhand dieser strukturierten Wissensbasis wird versucht, Wissen über den Benutzer in

einem bestimmten Kontext, der Verhaltenshistorie, abzuleiten.

Das Konzept eines Learning Apprentice, wie der von Dent et al. [20], zeigt wichtige

Punkte auf, die es beim Design von adaptiven Systemen zu beachten gilt. Da CAP jedoch

auf Basis von Kalendereinträgen als Datensätze arbeitet und damit Empfehlungen bei

neuen Einträgen liefert, ist das gelöste Problem ein anderes. Im Gegensatz dazu ver-

sucht diese Arbeit aus einer gegebenen Menge von Widgets die relevantesten davon zu

finden.

Shi et al. [49] widmen sich genau der Problematik eines Top-n-Rankings und ver-

wenden dazu nur implizites Wissen über das Benutzerverhalten. Einziger Nachteil ist

der hohe Rechenaufwand, der Lernen & Adaption im laufenden Betrieb schwer macht.
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A1 3 3 3 3 3

A2 7 7 3 3 3

A3 v 3 v 7 7

A4 v 3 v 7 7

A5 v v 3 7 3

Tabelle 3.2: Übersicht über die Bewertung der untersuchten Arbeiten. Ein
”
3“ steht

dabei für eine erfüllte Anforderung, ein
”
7“ für eine nicht erfüllte Anforderung und ein

”
v“ steht für eine teilweise erfüllte Anforderung.

Wie Tabelle 3.2 zeigt, konnte keine der untersuchten Arbeiten alle Anforderungen

erfüllen. Daher besteht der Handlungsbedarf eine neue Lösung zu entwickeln, die die

oben genannten Anforderungen erfüllt. Dabei ist der Ansatz von Shi et al. [49] beson-

ders vielversprechend, da die Problemstellung, aus einer Menge Elemente die für einen

Benutzer besten n Elemente anhand des Kontextes zu bestimmen, mit der in Kapitel 1

beschriebenen eng verwandt ist. Aus diesem Grund wird sich diese Arbeit den von Shi et

al. [49] beschriebenen TFMAP-Algorithmus als Vorbild nehmen und an das vorliegende

Problem anpassen.
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4 Kontextfaktoren

Als erster Schritt auf dem Weg zur Anwendung eines Machine-Learning-Algorithmus

und der Implementierung einer adaptiven Benutzeroberfläche müssen zuerst die zu

verarbeitenden Kontextinformationen, welche Rückschlüsse auf die Relevanz der ver-

schiedenen Software-Metriken in den einzelnen Widgets zulassen, erfasst werden. Die

wichtigste Frage dabei ist es, welche Kontextfaktoren überhaupt existieren und relevant

sind. Hierfür werden in Kapitel 4.2 nacheinander Gruppen dieser Faktoren abgehandelt,

um dem Problem mit einem Top-down-Ansatz zu begegnen.

Die gewonnenen Erkenntnisse werden bzgl. ihres möglichen Einflusses bewertet.

Außerdem muss analysiert werden, wie gut diese in einem realen Einsatzszenario er-

fasst werden können. Da es sich beim Demonstrator um eine Webanwendung handelt,

stehen Sensoren wie z. B. Eyetracker, Kameras oder Mikrofone im Normalfall nicht zur

Verfügung. Deshalb können manche erwähnten Einflüsse, wie beispielsweise die Stim-

mung des Benutzers, nicht auf diese Weise erfasst werden, sondern müssten indirekt

z. B. über den Zustand der Programmqualität inferiert werden.

Zum Schluss wird ein Konzept vorgestellt, wie die in diesem Kapitel erlangten Er-

kenntnisse in der zu entwickelnden adaptiven Benutzeroberfläche verwendet werden.

Es wird dargestellt welche Kontextinformationen mit welcher Begründung verwendet

werden, aus welchen direkt verfügbaren Informationen diese inferiert werden und aus

welchen Quellen diese Informationen stammen.

4.1 Bewertungskriterien

Wie bereits in Kapitel 3 geschehen, muss auch für die auszuwählenden Kontextfakto-

ren definiert werden, nach welchen Kriterien diese bewertet und ausgewählt werden.

Ein wichtiger Anspruch an einen Faktor ist es dabei ein einfaches Erfassen der entspre-

chenden Werte des Faktors zu ermöglichen, da dieser andernfalls keinen Nutzen mit

sich bringt, wenn es zu schwer ist die entsprechenden Werte zu bestimmen. Ein wei-
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Name Beschreibung

K1 Einfaches Erfassen der Daten

K2 Relevante Erklärung von Varianz

K3 Kontexteigenschaft

Tabelle 4.1: Anforderungskatalog zur Bewertung potentieller Kontextfaktoren

terer Anspruch ist es, dass ein Kontextfaktor auch dazu beitragen soll Vorhersagen zu

verbessern.

Die folgende Aufzählung beschreibt all die Anforderungskriterien, anhand derer die

potentiellen Kontextfaktoren bewertet und ausgewählt werden:

K1 Einfaches Erfassen der Daten

Die Werte eines potentiellen Kontextfaktors müssen in einfacher Weise von der

Anwendung bestimmt und verwendet werden können. Dazu darf kein erheblicher

Aufwand für den Benutzer entstehen, da dieser möglichst wenig beeinträchtigt

werden soll. Darüber hinaus können zusätzliche Geräte und Sensoren zum Er-

fassen von Kontextfaktoren, welche nicht zur standardmäßigen Peripherie eines

Arbeitscomputers gehören, nicht vorausgesetzt werden.

K2 Relevante Erklärung von Varianz

Irrelevante Kontextfaktoren, welche keinen signifikanten Anteil der Varianz in

den Eingabedaten – dem impliziten Feedback des Benutzers – erklären können,

könnten die Vorhersagen des Algorithmus verschlechtern, da sie als Rauschen wir-

ken können [38]. Daher sind vor allem Faktoren, die in allen Situationen gleiche

Werte haben, wie z. B. das Geschlecht bei ein und demselben Benutzer, nicht in

der Lage Varianz in den Eingabedaten zu erklären.

K3 Kontexteigenschaft

Ein Kontextfaktor muss die Situation einer Interaktion zwischen Benutzer und

Software-Metrik näher beschreiben. Daher muss auch ein Bezug zu dieser Inter-

aktion bestehen, um Korrelationen zwischen Kontextfaktor sowie Benutzern und

Metriken plausibel zu erklären.
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4.2 Identifikation von Kontextfaktoren

Das folgende Zitat soll einleitend ein erstes Verständnis darüber geben, was unter dem

Begriff
”
Kontext“ zu verstehen ist:

We define context as any information that can be used to characterize the

situation of an entity, where an entity can be a person, place, or physical or

computational object.

– Gregory D. Abowd [6]

G. Adomavicius und A. Tuzhilin kategorisieren Kontextfaktoren in [7] und betrachten

zur Einteilung von Kontextfaktoren, was ein Recommender System über die Faktoren

weiß und wie sich die Informationen mit der Zeit ändern [54]. Durch diese Einteilung

können bereits manche Faktoren aussortiert werden, denn es können in dieser Arbeit

nur Kontextfaktoren verwendet werden, die auch beobachtbar und deren Werte fest-

stellbar sind [55].

Für die Auswahl der Kontextfaktoren ist es nötig noch weitere Punkte zu beachten.

Einer davon ist es deren Anzahl zu begrenzen. Das ist zum einen deshalb notwendig, da

durch eine steigende Anzahl von Kontextfaktoren auch die Komplexität der Berechnung

und die Menge der zu erfassenden Daten steigt; zum andern kann darunter die Qua-

lität der Ergebnisse leiden [53]. Irrelevante Kontextfaktoren, d. h. Faktoren, die kaum

Varianz in den Daten erklären können, können die Vorhersagen verschlechtern, da sie

in dem Fall als Rauschen in den Daten wirken [9, 38].

Ein weiterer Punkt sind Eigenschaften, die einen relevanten Kontextfaktor ausma-

chen. Gewissermaßen eignen sich Attribute der beteiligten Benutzer und Software-

Metriken als Kontext, aber nur unter der Bedingung, dass sie sich zwischen zwei In-

teraktionen verändern, was auch auch dem Trend bei Recommender Systems entspricht

[54]. Dies schließt Faktoren wie z. B. das Alter oder das Geschlecht aus, da diese zwi-

schen zwei Interaktionen im Normalfall als konstant angenommen werden können.

Die folgende Gruppierung der Kontextfaktoren richtet sich nach der jeweiligen Quel-

le der Informationen und wurde nur beispielhaft gewählt, um diese Faktoren übersicht-

lich und thematisch zu gruppieren. Dabei sind unter softwarebezogenen Faktoren die-

jenigen zu verstehen, die aus der Software direkt stammen. Dazu zählen v. a. Software-

Metriken, da sie im Kontext dieser Arbeit die Hauptinformationsquellen bzgl. des Zu-
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stands der vom Benutzer zu entwickelnden Software sind. Ähnlich verhält es sich mit

benutzer-, projekt- und umgebungsbezogenen Kontextfaktoren, die jeweils respektive

durch Benutzer, das Projekt bzw. die Umgebung bedingt werden.

Durch diese Gruppierung wird bereits eine Unterscheidung der verschiedenen Qua-

litäten vorgenommen. Das bedeutet, dass verschiedene Typen von Kontextfaktoren ver-

schiedene Arten von Aussagen treffen können. Es kann also beispielsweise nicht vom

aktuellen Wetter auf die Qualität des Quelltextes geschlossen werden.

Da die konkrete Auswahl von Kontextfaktoren in Recommender Systemen immer

auch vom konkreten System abhängt [39], ist es nicht möglich eine allgemeingültige

Liste relevanter Faktoren aus der Literatur zu gewinnen, auch wenn sie Vorschläge für

ein paar häufig verwendete Faktoren liefert. Eine Befragung der Benutzer ist außerdem

keine zuverlässige Methode Kontextfaktoren zu finden, da diese die Relevanz im Allge-

meinen schlecht einschätzen können [40]. Aus diesen Gründen wird in den folgenden

Kapiteln versucht zu ergründen, welche potentiellen Kontextfaktoren überhaupt exis-

tieren. Inwieweit diese geeignet und relevant sind, wird anhand der Erfassbarkeit der

entsprechenden Kontextinformationen und der von Odić et al. in [39] gewonnenen Er-

kenntnisse bewertet. Diese sagen aus, dass sich ein interessanter Kontextfaktor durch

Variationen seines Zustands zwischen zwei Benutzer-Metrik-Interaktionen auszeichnet,

anhand derer eine variierende Relevanz der entsprechenden Software-Metriken erklärt

werden kann.

4.2.1 Softwarebezogene Kontextfaktoren

Bei der täglichen Arbeit muss ein Entwickler über den Zustand der Software im Bil-

de sein, um angemessen reagieren zu können. Wie bereits erwähnt, sind Software-

Metriken ein bedeutendes Werkzeug, um dieses Ziel zu erreichen. Sie werden direkt

aus dem Quelltext abgeleitet und beschreiben bestimmte Attribute der Software [5].

Aus diesem Grund sind die Eigenschaften der konkreten Software auch wichtige Ein-

flussgrößen für diese Metriken. Durch diese enge Bindung lassen sich daher aus den

Metriken selbst auf direktem Wege Informationen über die Software - und damit auch

über die Relevanz der einzelnen Metriken - gewinnen.

Bei der Betrachtung einer Software-Metrik sind vor allem die folgenden Typen von

Informationen naheliegend:
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• Welchen Wert hat eine bestimmte Metrik?

• Wie ist die Werteänderung einer bestimmten Metrik?

• Wie lange stagniert der Wert einer bestimmten Metrik?

Diese verändern sich typischerweise im Verlauf der Weiterentwicklung einer Software

und sind deswegen bei einem Aufruf als potentiell relevante Kontextfaktoren zu be-

trachten [38].

Durch den Wert selber erhält man die direkte Information über den Zustand ei-

ner Software. Wird dieser Wert in Relation zu anderen Projekten gesetzt – falls solche

Vergleiche sinnvoll sind, wie in sehr ähnlichen Projekten, oder anderen Modulen im

gleichen Projekt, aber auch durch bloße Erfahrung – kann daraus bestimmt werden,

wie kritisch der Zustand ist und ob Handlungsbedarf besteht. Je schlechter der Zustand

ist und je mehr Handlungsbedarf besteht, desto wichtiger ist es, dies den Entwickler

wissen zu lassen, damit dieser darauf reagieren kann. Falls alles in Ordnung ist, muss

der Entwickler nicht damit abgelenkt werden.

Aus dem Werteverlauf lassen sich auf ähnliche Weise Indizien bezüglich der Rele-

vanz einer Metrik ableiten. Ähnlich wie beim Vergleich aktueller Absolutwerte, kann

der Verlauf eines Wertes ebenfalls auf den Handlungsbedarf an der jeweiligen Stel-

le hinweisen. Der Vorteil dabei liegt an der Eigenschaft, dass vielmehr das Ausmaß

der Werteänderung, als der Wert selbst zur Aussagekraft beiträgt, d. h. ein Vergleich

mit anderen Projekten oder Modulen ist weniger von Bedeutung. Dennoch genügt es

möglicherweise nicht, nur die Werteänderung zu betrachten, da ein steigender Wert

in einem kritischen Wertebereich nicht zwangsläufig eine Entwarnung bedeutet. Auf

der anderen Seite kann analog eine sich verschlechternde Software-Metrik bereits ei-

ne frühzeitige Warnung ermöglichen, selbst wenn der Wert selbst noch in einem ver-

tretbaren Bereich ist. Bei der Betrachtung der Werteverläufe könnte außerdem kleinen

Fluktuationen weniger Beachtung geschenkt werden, als länger anhaltenden Trends,

da ansonsten auf Veränderungen, die an und für sich unerheblich sind, reagiert werden

müsste.

In Bezug auf die Software-Metriken können auch noch dauerhaft stagnierende Me-

triken eine Rolle spielen, da sie einen Hinweis auf Stillstand sind. Hierbei ist jedoch

mit Vorsicht zu walten, denn selbst eine Metrik mit dauerhaft schlechten Werten kann
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auf zweierlei Weisen gedeutet werden. Einerseits kann dies bedeuten, dass dieser Zu-

stand zu einem blinden Fleck geworden und aus dem Fokus der Entwickler gewandert

ist, aber andererseits kann es auch bedeuten, dass diese Metrik lediglich eine geringe

Priorität hat und andere Aspekte mehr Aufmerksamkeit verdienen.

Bewertung

Sollen die absoluten Werte von Software-Metriken verwendet werden, sind zusätzlich

Vergleichswerte notwendig, da aus einem bloßen Wert im Allgemeinen deutlich we-

niger Informationen herausgezogen werden kann. Welche Werte für welches Projekt

akzeptabel sind, ist u.a. deshalb schwer zu berechnen, weil bei jedem Projekt andere

Anforderungen gestellt werden, andere Personen mitarbeiten und eventuell auch eine

andere Architektur vorliegt. Daher ist eine Einschätzung und Bewertung eines konkre-

ten Wertes schwer, sodass die Einordnung konkreter Werte in eine auf andere Projekte

übertragbare Kontextdefinition ebenfalls schwer möglich ist und wird aus diesem Grund

in dieser Arbeit auch nicht versucht. Die entsprechenden Daten können zwar einfach er-

fasst werden, aber die sinnvolle Verwendung ist zu aufwendig.

Stagnierende Werte haben ein ähnliches Problem, denn es wäre zwar als Entwickler

interessant zu wissen, welche Metriken bei verhältnismäßig schlechten Wertebereichen

stagnieren. Im umgekehrten Fall, wenn sie in guten Wertebereichen stagnieren, ist dies

jedoch vergleichsweise uninteressant und ohne Relativierung des Wertes ist diese Ein-

teilung ebenso schwer zu vollziehen.

Ein geeigneterer Ansatz ist es lediglich das Vorzeichen der letzten Veränderung einer

Metrik zu betrachten. Auch wenn dadurch weniger spezifische Erkenntnisse transpor-

tiert werden, wird dennoch die grundlegende Information über den Veränderungstrend

übermittelt. Diese Information kann auch ein in Hinsicht auf Software-Metriken uner-

fahrener Benutzer nutzen, da keine Erfahrung über die Bedeutung der konkreten Ab-

solutwerte nötig ist. Daran lässt sich zwar noch nicht erkennen, ob der Zustand der

jeweiligen Metrik
”
gut“ oder

”
schlecht“ ist, jedoch genügt es für die Anwendung dieser

Arbeit zu wissen, ob sich der Zustand verbessert oder verschlechtert hat.

Somit bleibt von den softwarebezogenen Kontextfaktoren die Richtung der Werte-

veränderung als vielversprechender und vergleichsweise leicht zu extrahierender Faktor

übrig und wird im Rahmen der Kontextdefinition in Kapitel 4.3 verwendet.
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Tabelle 4.2: Übersicht über die Bewertung der softwarebezogenen Kontextfaktoren. Ein

”
3“ steht dabei für ein erfülltes Kriterium, ein

”
7“ für ein nicht erfülltes Kriterium und

ein
”
v“ steht für ein teilweise erfülltes Kriterium.

4.2.2 Benutzerbezogene Kontextfaktoren

Der Benutzer stellt in dieser Arbeit den Bewertungsmaßstab und damit auch nach An-

sicht von Zheng et al. [55] einen relevanten Kontextfaktor dar. Gleichermaßen ist es

schwer, lediglich durch implizites Feedback wie in der Arbeit von Shi et al. [49] bei der

Interaktion mit einer Anwendung Informationen über ihn zu erhalten.

Die Stimmung, Wachsamkeit und Konzentrationsfähigkeit des Benutzers können ei-

ne große Wirkung auf dessen Verhalten, die Informationen, welche ihn interessieren,

und auch wie diese aufgenommen werden können haben. Ein erschöpfter Entwickler

wird potentiell ein anderes Verhalten an den Tag legen, als jemand, der wach und kon-

zentriert ist. Außerdem sind Emotionen auch bei vielen kognitiven Prozessen, wie z. B.

kausalen Argumentationen, Nachdenken, Abschätzungen oder Planaufgaben, beteiligt,

weshalb davon ausgegangen werden kann, dass Anwendungen, die Emotionen beach-

ten, besser nutzbar sind [21].

Im Gegensatz dazu lässt sich das Verhalten bei der Interaktion mit der Anwendung

im Rahmen der Peripherie des Computers problemlos erfassen. Es muss z. B. lediglich

gespeichert werden, auf welche Widgets wie oft geklickt wurde oder wie lange ein Be-

nutzer danach auf einer Seite verweilt. Daraus lassen sich dann das Interesse und poten-

tiell auch Gewohnheiten des Benutzers ableiten [34]. Dabei ist nicht zu vergessen, dass
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ebenjene für den Benutzer subjektiv interessanten Metriken nicht zwangsläufig auch

gemäß der in Kapitel 4.2.1 genannten Kriterien relevant sein müssen.

Die Stellung bzw. die Aufgabe des Entwicklers kann weitere Informationen darüber

liefern, was für ihn relevant sein kann, denn davon ist abhängig welche Metriken im

Moment überhaupt von Bedeutung sind und einen Mehrwert mit sich bringen. Während

ein Tester an der Testüberdeckung des Quelltextes interessiert ist, interessiert sich ein

Entwickler in der Qualitätssicherung womöglich eher für die Komplexität der einzelnen

Funktionen und Methoden, um zu versuchen diese zu reduzieren.

Bewertung

Das Befinden eines Benutzers zu erfassen gestaltet sich allein schon aufgrund der dafür

fehlenden Sensorik als nicht praktisch realisierbar. Diese Einflüsse sind schwer zu ana-

lysieren, wenn kein erheblicher, zusätzlicher Aufwand betrieben wird, um physiologi-

sche Merkmale des Benutzers zu erfassen und zu analysieren, wobei diese selbst dann

nicht zuverlässig erkannt und gedeutet werden können, da solche Daten typischerwei-

se starkes Rauschen und keine klaren Grenzen besitzen [18, 21]. Im Falle von Sonar-

Qube findet zwischen Benutzer und Anwendung außerdem kaum Interaktion statt, aus

der auf z.B Stimmung, Wachsamkeit oder Konzentrationsfähigkeit geschlossen werden

kann, denn der Großteil der Navigation findet typischerweise nur mit der Maus oder

Tastaturkürzeln statt. Möchte man jedoch beispielsweise Ermüdung des Benutzers zu-

verlässig erkennen, wären z. B. EEG-Diagramme, Kameras oder Mikrofone notwendig

[15, 21], was für die alltägliche Nutzung nicht zumutbar ist.

Der Ansatz auf die Aufgabe des Entwicklers zu schließen könnte Aufschluss darüber

geben, welche Teile des Programmcodes interessant sind, aber diese Schlussfolgerung

zu machen ist ebenfalls schwer. Da sich die Rolle eines Entwicklers schnell ändern kann

und Entwickler manchmal auch gleichzeitig Tester sind, ist eine solche Einteilung nicht

zuverlässig machbar. Selbst wenn versucht werden soll eine andere Aufgabenaufteilung

als Grundlage zu verwenden, ist es nicht trivial die charakteristischen Verhaltensindi-

katoren zu identifizieren. Angenommen Entwickler- und Tester-Rollen wären in der Tat

strikt getrennt, würde es nicht ausreichen Zugriffe auf Test-Coverage einzelner Klassen

zu beobachten, denn ein Entwickler kann genauso daran interessiert sein zu wissen,
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welche Funktionalitäten bereits ausreichend getestet sind, wenn er diese Funktiona-

litäten in seinem Code verwenden möchte.

Das Interesse an bestimmten Metriken lässt sich jedoch indirekt über das Verhal-

ten des Benutzers erfassen. Interessiert sich ein Benutzer für spezielle Metriken, wird

er häufiger auf die entsprechenden Links klicken, um sich weitere Details anzeigen zu

lassen [16]. Die Frequenz, mit der eine Metrik im Vergleich zu anderen Metriken aus-

gewählt wird, kann ein erster Indikator sein, ist aber noch nicht ausreichend, denn der

Benutzer kann auch nur aus Versehen darauf geklickt haben. Um solche Versehen aus-

schließen zu können würde zusätzlich noch die Verweildauer auf der Seite benötigt,

denn wenn ein Benutzer nach dem Klicken auf eine Metrik auf der Seite bleibt, ist da-

von auszugehen, dass er an den Informationen wirklich interessiert ist [34]. Die Klick-

frequenz bietet damit die Möglichkeit direkt das Interesse des Benutzers zu erfassen und

ist deshalb weniger eine Form von Kontext, als eine feingranularere Form von implizi-

tem Feedback. Wird das binäre implizite Feedback, welches nur angibt, ob ein Benutzer

eine bestimmte Metrik angeklickt hat oder nicht, zusätzlich mit der relativen Klickfre-

quenz im Vergleich zu anderen Metriken gewichtet, könnte somit die persönliche Be-

vorzugung verschiedener Metriken noch stärker in das implizite Feedback eingebracht

werden.

Da Klickfrequenz und Verweildauer des Benutzers auch in der Literatur [16, 34]

die verbreitetsten Messgrößen sind, werden sie zwar zur Verfeinerung des impliziten

Feedbacks verwendet, nicht jedoch als Kontextfaktor. Dies ist darin begründet, dass sie

semantisch mehr dem Feedback entsprechen und weniger einen diskreten Kontext für

eine einzige Interaktion beschreiben, sondern das Verhalten über eine längere Zeit hin-

weg, wodurch die Kontexteigenschaft nicht erfüllt ist.

4.2.3 Projektbezogene Kontextfaktoren

Bei der Betrachtung des Projektkontextes ist neben den einzelnen Teilen des Projek-

tes, wie z. B. Planungen, Aufgaben und die daran beteiligten Personen, auch das große

Ganze, das Projekt selber, als Kontext relevant. Die gröbste Einteilung von Software-

Metriken in SonarQube besteht in der Einteilung nach Projekten, wobei jedes Projekt

einen separaten Einzelkontext darstellt. Bezüglich der Relevanz verschiedener Metriken

für einen Entwickler spielt das insofern eine Rolle, dass ein Entwickler sich im Regelfall
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Tabelle 4.3: Übersicht über die Bewertung der benutzerbezogenen Kontextfaktoren. Ein

”
3“ steht dabei für ein erfülltes Kriterium, ein

”
7“ für ein nicht erfülltes Kriterium und

ein
”
v“ steht für ein teilweise erfülltes Kriterium.

hauptsächlich für die Metriken der Projekte, an denen er auch zur Zeit arbeitet, inter-

essiert. Dadurch ermöglicht der Einbezug des Projekts, an dem der Entwickler aktuell

arbeitet, bereits ein ausgiebiges Herausfiltern von wahrscheinlich irrelevanten Metriken

aus anderen Projekten.

Eine weitere, erhebliche und auch unnachgiebige Einflussgröße in Projekten ist die

Zeit. Daher hat auch der zeitliche Kontext, relativ zu Deadlines oder Projektterminen ge-

sehen, das Potential Prioritäten zu verschieben. Dies geschieht vor allem dadurch, dass

im Verlauf der Zeit die Ziele und Erwartungen an den aktuellen Ist-Stand sowie die noch

verfügbare Zeit angepasst werden müssen. Nimmt man einen agilen Softwareentwick-

lungsprozess als Beispiel, würde sich beispielhaft am Anfang eines Sprints ein Ziel zum

Abbau der technischen Schuld, wie
”
Alle größeren Fehler beseitigen“, vorgenommen.

Vergeht etwas Zeit und der Sprint neigt sich dem Ende zu, wird jedoch möglicherweise

klar, dass stattdessen noch mehr Arbeit in die neue, geforderte Funktionalität gesteckt

werden muss und deswegen die Testüberdeckung für diese neuen Funktionen hochge-

halten werden sollte, damit diese möglichst fehlerfrei funktionieren. Im Umkehrschluss

können sich Prioritäten dann auch genauso verändern, wenn vor einer Deadline mehr

Zeit übrig ist, als es erwartet wurde. Damit derartige Kausalitäten in Bezug auf wichtige

Projekttermine beachtet werden können, bietet es sich an wichtige Termine, wie Relea-

setermine, Meilensteine oder Präsentationstermine in den Kontext miteinzubeziehen.
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Unabhängig von Terminen ist es jedoch allgemein wünschenswert Mehrwert schaf-

fende Funktionalitäten an den Kunden auszuliefern [11]. Gibt es unter den zu liefern-

den Funktionalitäten welche, die verhältnismäßig schlechte Werte in den Software-

Metriken erhalten, wäre dies daher ein weiterer Faktor, der die Relevanz ebenjener

Metriken beeinflusst. Im Unterschied zur ähnlichen Situation aus Kapitel 4.2.1, in der

lediglich der schlechte Wert der Metrik ausschlaggebend ist, liegt hier der Fokus darauf

eine auszuliefernde, noch fehlerbehaftete Funktionalität zu entdecken, sodass Metri-

ken, welche zwar einen schlechten Wert haben, für die nächste Deadline aber nur eine

untergeordnete Rolle spielen, dadurch vorerst nicht an Relevanz gewinnen.

Bewertung

Das aktuelle Projekt aus Anwendungssicht zu erfassen, gestaltet sich als sehr leicht, da

SonarQube standardmäßig die Möglichkeit bietet jedes Projekt eindeutig über eine ID

zu identifizieren. Dafür genügt es bereits diese ID aus der URL des Projekt-Dashboards

auszulesen und abzuspeichern. Auf diese Weise kann sehr einfach festgestellt werden

in welchem Projektkontext ein Entwickler arbeitet. Aus diesem Grund bietet sich die

Projekt-ID als relevanter und einfach zu erfassender Kontextfaktor an.

Den feingranulareren Projektkontext aus Anwendungssicht zu erfassen, ist dafür

deutlich schwieriger, weil es in SonarQube üblicherweise ohne Plugins nicht möglich ist

zusätzlich zum Programmcode auch Projektdaten, wie z. B. zukünftige Deadlines, Mei-

lensteine oder dergleichen, einzupflegen. Somit stünden abgesehen von der Projekt-ID

noch weniger Informationen zur Verfügung, als bei den benutzerbezogenen Kontext-

faktoren. Selbst wenn diese Funktionalität für SonarQube nachgerüstet wird, ist es ein

signifikanter Aufwand die Projektdaten auch einzupflegen und aktuell zu halten.

Dass es wünschenswert wäre beispielsweise Deadlines zur Verfügung zu haben, sieht

man an der dadurch ermöglichten Fähigkeit zur Planung, denn wenn aktueller Zustand,

Fortschritt und zu erreichendes Ziel verglichen werden können, kann die Planung an die

Realität angepasst werden [11]. Die verfügbare Zeit kann so beeinflussen, welche Metri-

ken priorisiert werden müssen, wenn wenig oder viel Zeit für bestimmte Aufgaben zur

Verfügung stehen. Wenn kurz vor einer Deadline beispielsweise noch ein paar größere

Probleme und damit potentielle Programmfehler vorhanden sind, sollten Metriken, die
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darauf hinweisen, gegenüber nicht funktional orientierten Metriken, wie z. B.
”
Lines of

Code“ oder Code-Duplikate, priorisiert werden.

Ein ähnliches Problem wie bei der Einpflegung von Projektterminen ergibt sich auch

wenn beachtet werden soll, welche Funktionalität als nächstes Ziel gesetzt wird. Das

und der Zusammenhang zwischen einer Funktionalität und der dafür relevanten Me-

triken, die den Zustand der Funktion darstellen sollen, müssten ebenso manuell einge-

pflegt werden, denn die Wahl der zu beachtenden Metriken hängt von der
”
quantifizier-

baren Frage“ ab und unterscheidet sich von Projekt zu Projekt [10]. Da hierfür ebenfalls

ein signifikanter Aufwand nötig wäre, eignen sich die auszuliefernden Funktionalitäten

ähnlich wie Projekttermine ebenfalls nicht als Kontextfaktor.

Aus denen in diesem Kapitel erwähnten Kandidaten haben sich aufgrund der Eigen-

schaften der Kontextfaktoren und der Schwierigkeiten bei der Erfassung zwar nützliche

Erkenntnisse ergeben, aber nur die Projekt-ID eignet sich auch, um als Kontextfaktor

verwendet zu werden.

Dea
dli

ne
s

Pr
oje

kt
-ID

ge
fo

rd
er

te

Fu
nk

tio
na

lit
äte

n

K1 7 3 7

K2 3 3 3

K3 3 3 3

Tabelle 4.4: Übersicht über die Bewertung der projektbezogenen Kontextfaktoren. Ein

”
3“ steht dabei für ein erfülltes Kriterium, ein

”
7“ für ein nicht erfülltes Kriterium und

ein
”
v“ steht für ein teilweise erfülltes Kriterium.

4.2.4 Umgebungsbezogene Kontextfaktoren

In diesem Kapitel werden zuletzt noch all die Faktoren erwähnt, die von der physischen

Arbeitsumgebung bedingt werden. Ein potentieller Kandidat dafür ist die Tageszeit, mit

der sich auch Baltrunas et al. [8] auseinandergesetzt haben. So kann ein Anwender
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abhängig von der Tageszeit verschiedene Verhaltensweisen zeigen. Im Falle eines Ent-

wicklers kann das bedeuten, dass dieser sich abhängig von der Tageszeit anderen Auf-

gaben widmet, sei es wegen des Lärmpegels im Büro, der spät am Abend ein anderer

als am Vormittag ist, oder aufgrund von Terminen. Die aktuelle Zeit ist daher potentiell

relevant, um zeitbedingte Varianz in den persönlichen Präferenzen zu erklären.

Informationen über die Umgebung können auch Anhand des Ortes, an dem der Be-

nutzer sich befindet, inferiert werden. Anhand des Ortes kann beispielsweise in ver-

teilten Projekten, bei denen beteiligte Personen an unterschiedlichen Standorten auch

unterschiedliche Rollen wahrnehmen, auf die Zugehörigkeit zu einer bestimmten Grup-

pe geschlossen werden. Tatsächlich können auf Basis von Raumdaten noch detailliertere

Informationen über einen Benutzer erschlossen werden, wie z. B. politische Einstellun-

gen, der Gesundheitszustand oder persönliche Vorlieben [23]. Da verschiedene Rollen

mit verschiedenen Aufgaben in Projekten auch verschiedene Bedürfnisse an Informa-

tionen haben, kann der Aufenthaltsort des Benutzers in gleicher Weise ein relevanter

Kontextfaktor sein.

Die Internetverbindung kann eine Rolle in der Darstellung von Software-Metriken

spielen, wenn größere Datenmengen übertragen werden oder der Empfang schlecht ist.

Zwar können bestimmte Informationen wichtig sein, wenn sie jedoch z. B. Grafiken sind

und eine Übertragung der Daten eine lange Zeit in Anspruch nähme, sodass der Benut-

zer seinen Versuch wahrscheinlich abbricht bevor die Übertragung erfolgreich vollendet

wurde, kann es sinnvoller sein, anderen Informationen den Vortritt zu gewähren, um

die verfügbare Bandbreite besser zu nutzen.

Bewertung

Erfahrungsgemäß lässt sich der Aufenthaltsort eines Benutzers über eine Webschnitt-

stelle nur sehr ungenau bestimmen, solange kein Zugriff auf GPS-Daten, welche zumin-

dest bei heutigen Smartphones verfügbar sind, besteht. Die Spezifikation der Geoloca-
tion API des W3C [4] sieht nämlich keine vorgeschriebene Genauigkeit vor und kann

bei Desktop-PCs je nach Browser-Implementierung nach eigener Erfahrung mehrere Ki-

lometer betragen. Daher ist davon auszugehen, dass in vielen Fällen eine Einteilung in

z. B. Kunde und Dienstleister aufgrund ungenauer Daten nicht in die Realität umgesetzt

werden kann. Auch wenn bei allen Geräten genaue Daten vorhanden wären, müssten
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die Rohdaten vorverarbeitet werden, da sie sonst als Rauschen wirken und damit die

Qualität der Empfehlungen reduzieren können [38].

Möchte man die Geschwindigkeit der Internetverbindung wissen, bleibt nach eige-

nem, gegenwärtigem Kenntnisstand nichts anderes übrig, als einen Download zu star-

ten und zu messen wie lange dieser andauert. Dieses Verfahren kann jedoch nur eine

grobe Abschätzung geben, da viele Faktoren, wie z. B. der Netzzustand oder andere

Downloads, die Bandbreite zu einem Zeitpunkt bestimmen, weshalb die Verbindungs-

geschwindigkeit von Messung zu Messung variieren kann. Eine Besonderheit von So-

narQube ist es außerdem, dass bevor etwas von der Webseite angezeigt wird erst die

benötigten Stylesheets und Browserskripte en bloc heruntergeladen werden. Erst da-

nach wird mit dem Rendern der Seite begonnen, wovon das meiste ohne Internetver-

bindung abläuft. Daher ist es gleich aus zwei Gründen nicht praktikabel die Verbin-

dungsgeschwindigkeit zu messen:

1) Dadurch, dass erst ein Download (z. B. eines Bildes) benötigt wird, um die Ge-

schwindigkeit zu erfassen, würde sich der Seitenaufruf verzögern oder es bliebe

keine Zeit entsprechend auf die Geschwindigkeitsmessung zu reagieren.

2) Im Fall von SonarQube liegt eine Alles-oder-Nichts-Situation vor. Die in Kapitel

4.2.4 erwähnten Repriorisierungen würden selbst bei schlechten Internetverbin-

dungen keinen großen Einfluss auf den Darstellungszeitpunkt einer bestimmten

Metrik haben, da das Rendern einer Metrik erst nach dem Herunterladen aller

benötigten Ressourcen geschieht und das vergleichsweise wenig Zeit in Anspruch

nimmt.

Daher ist es nicht nur schwer einen zuverlässigen Wert für die aktuelle Verbindungssi-

tuation zu erlangen, sondern bringt auch keinen großen Mehrwert mit sich.

Aus den in diesem Kapitel genannten Gründen eignet sich daher nur die aktuelle

Tageszeit als Faktor zur sinnvollen Erweiterung der Kontextinformationen, da sie durch

den Einfluss von Verhaltensmustern oder wiederkehrenden Terminen geeignet, ist zeit-

liche Regelmäßigkeiten erkennbar zu machen. Deswegen fließt sie auch in die folgende

Kontextdefinition mit ein.

44



Ort Ze
it In

ter
ne

t-

ve
rb

in
du

ng

K1 v 3 v

K2 v 3 7

K3 3 3 3

Tabelle 4.5: Übersicht über die Bewertung der umgebungsbezogenen Kontextfaktoren.
Ein

”
3“ steht dabei für ein erfülltes Kriterium, ein

”
7“ für ein nicht erfülltes Kriterium

und ein
”
v“ steht für ein teilweise erfülltes Kriterium.

4.2.5 Ergebnisse

In diesem Kapitel wurde eine Vielzahl von möglichen Kandidaten für Kontextfaktoren

besprochen. Die Wahl fällt dafür auf die Werteänderung der jeweiligen Metrik, die

Projekt-ID und die Tageszeit. Aus den Überlegungen in diesem Kapitel ergeben sich

aber auch abgesehen von der Auswahl der konkreten Faktoren einige interessante Er-

kenntnisse. Zum einen scheitert eine Verwendung als Kontextfaktor bei den meisten hier

vorgestellten Kandidaten, weil die entsprechenden Daten schwer in einer praktisch an-

wendbaren Art und Weise erfasst werden können. Eine andere Erkenntnis ist, dass Kon-

textfaktoren sich von Interaktion zu Interaktion verändern müssen, um Veränderungen

im Verhalten erklären und damit einen Mehrwert erzielen zu können [39].

4.3 Einordnung der Faktoren in eine Kontextdefinition

Aus den bisher erlangten Erkenntnissen darüber, welche Kontextfaktoren verwendet

werden, soll an dieser Stelle der Begriff des
”
Kontexts“ auch formal definiert werden.

Für das von Shi et al. [49] beschriebene Verfahren ist es nicht möglich tatsächliche Zah-

lenwerte zu verwenden. Stattdessen müssen diese Werte zuerst in je eine Ordinalskala

pro Faktor eingeordnet werden, um dann jede mögliche Kombination dieser Ordinal-

Werte mit einer natürlichen Zahl, die diese spezifische Kontextsituation identifiziert, zu

kodieren. Bei der Qualität der Werteänderung ergibt sich diese Eigenschaft von selbst,
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da es bereits seitens SonarQube lediglich die Einteilung in
”
steigend“,

”
konstant“ und

”
fallend“ gibt, während bei anderen Faktoren erst die entsprechenden Werte umgeformt

werden müssen.

Jeder Kontextfaktor f wird als eine Dimension D des Kontextes C aufgefasst. Aus

Kapiteln 4.2.1 bis 4.2.4 ergeben sich damit die folgenden Dimensionen:

1) Projekt-ID

2) Werteänderung

3) Zeit

Damit alle daraus resultierenden Kontextbeschreibungen eindeutig durch eine natür-

liche Zahl k identifiziert werden können, darf es keine zwei Interpretationen für k ge-

ben. Diese Anforderung ist dadurch sichergestellt, dass die Anzahl der möglichen Di-

mensionswerte nD für die Dimensionen der Zeit und der Werteänderung konstant ist,

wodurch immer dieselben Bit-Stellen von k für die Kodierung dieser zwei Dimensionen

verwendet werden können. Werden zusätzliche Bits benötigt, um zusätzliche Projekt-

IDs kodieren zu können, können größere Zahlen k verwendet werden ohne Mehrdeu-

tigkeiten einzuführen.

Die Kodierung soll, um ein selektives Auslesen der Kontextinformationen zu ermög-

lichen, bitweise erfolgen. Jeder Dimension D stehen dafür entsprechend ihrer Größe nD

die folgende Anzahl an Bits zur Verfügung:

dlog2(nD)e

Die Zahl k zur Identifizierung einer Kontextbeschreibung ergibt sich aus der Konkate-

nation der einzelnen kodierenden Bitstrings jeder Dimension, entsprechend der obigen

Sortierung der Dimensionen.

Die Dimension der Werteänderung Dw soll, wie oben bereits erwähnt, die möglichen

Werte steigend, konstant und fallend besitzen. Zur Kodierung der drei Zustände werden

zwei Bit benötigt. Für die Zeit wird eine grobe Unterteilung in acht Blöcke á drei Stun-

den vorgenommen. Dementsprechend werden zur Kodierung der Dimension der ZeitDz

drei Bit benötigt. Die restlichen Bits können zur Kodierung der Projekt-IDs verwendet

werden. Dafür lässt sich keine feste Zahl nennen, da mit der Zeit auch neue Projekte zu

einer SonarQube-Instanz hinzugefügt werden können.
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Projekt-ID
DeepMind YouTube GMail Fibre

00 01 10 11

Werteänderung
fallend konstant steigend

00 01 10

Zeit

Morgen Vormittag Mittag Nachmittag

000 001 010 011

Abend später Abend Nacht früher Morgen

100 101 110 111

Tabelle 4.6: Kodierungen der Werte in den jeweiligen Dimensionen.

Anhand dieser Definitionen lässt sich ein Kontext C mit dem Identifikator k als 3-

Tupel Ck mit folgenden Eigenschaften schreiben:

Ck ∈ {(p, w, z) | p ∈ Dp, w ∈ Dw, z ∈ Dz }

Um die beschriebene Kodierungsmethode zu veranschaulichen folgt nun ein Beispiel:

Das Tupel Cb = (DeepMind, steigend, Abend) ist ein möglicher Kontext. Aus Tabelle 4.6

kann nun die Kodierung des Tupels abgelesen werden und es gilt für dieses Beispieltupel

Cb:

b = (0010100)2 = (20)10

Damit kann das Beispieltupel Cb mit der Zahl 20 identifiziert werden und es gilt

Cb = C20 = (DeepMind, steigend, Abend)
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4.4 Erfassung und Speicherung der Daten

In den vorhergehenden Kapiteln lag der Fokus auf den Kontextfaktoren und den Grund-

lagen, wie die erfassten Daten strukturiert werden sollen. Dieses Kapitel beschäftigt

sich mit der Datenerfassung und -speicherung. Bisher wurde zwar berücksichtigt, ob es

grundsätzlich möglich ist bestimmte Daten zu erfassen, jedoch wurde dies nicht detail-

liert betrachtet. Daher soll das folgende Kapitel 4.4.1 detaillierteren Aufschluss über das

genaue Vorgehen bringen und dazu nacheinander Ansätze zum Erfassen der einzelnen

Kontextfaktoren liefern. In Kapitel 4.4.2 wird danach beschrieben wie die gesammelten

Daten abgespeichert werden.

4.4.1 Erfassung der Kontextinformationen

Für die in einer SonarQube-Instanz verfügbaren Projekte wird jedem Projekt eine Zahl

– beginnend mit 0 – zugewiesen. Die konkrete Zuordnung ergibt sich durch die lexiko-

graphische Ordnung der Projektnamen. Das Projekt, welches in einer alphabetisch sor-

tierten Liste, an oberster Stelle steht erhält somit die ID 0, das Projekt an zweiter Stelle

erhält die 1 usw. Wird im Laufe der Zeit ein weiteres Projekt der SonarQube-Instanz

hinzugefügt muss lediglich darauf geachtet werden die IDs der Projekte zu aktualisie-

ren.

Eine Werteänderung, wie im letzten Kapitel beschrieben, kann drei mögliche Zu-

stände haben. Dies spiegelt sich auch in SonarQube wieder. Dort wird eine Veränderung

durch Pfeile ausgedrückt. Bei quantitativen Metriken, also solche die nicht die Qualität

des Codes widerspiegeln, werden schwarze Pfeile benutzt; bei qualitativen Metriken, die

sehr wohl die Qualität des Codes widerspiegeln, sind das grüne Pfeile für positive und

rote Pfeile für negative Entwicklungen. Fand keine Veränderung statt, wird auch kein

Pfeil angezeigt [2]. Welcher Pfeil angezeigt wird, kann aus dem HTML-Quellcode der

Dashboard-Seite ausgelesen werden. Wird ein grüner bzw. nach oben gerichteter Pfeil

ausgelesen, dann wird für die Werteänderung des aktuellen Kontextes der Wert steigend
gesetzt. Wird hingegen ein roter bzw. nach unten gerichteter Pfeil ausgelesen, dann

wird der Wert fallend gesetzt. Kann kein Pfeil gefunden werden, muss angenommen

werden, dass es keine Änderung gab und es wird der Wert konstant gesetzt.
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Die Uhrzeit, zu der eine Interaktion stattfand, kann ebenfalls viel mehr verschie-

dene Werte annehmen, als hier unterschieden werden sollen. Da eine minutengenaue

Auflösung darüberhinaus wenig sinnvoll ist, wird eine gröbere Einteilung, ähnlich zu

[50], in acht gleich große Blöcke vorgenommen: Morgen, Vormittag, Mittag, Nachmit-
tag, Abend, später Abend, Nacht, früher Morgen. Jeder Block umfasst dabei drei Stunden

des Tages.

Die zu den entsprechenden Blöcken zugeordneten Zeiten sind die folgenden:

• Morgen: 6 Uhr - 9 Uhr

• Vormittag: 9 Uhr - 12 Uhr

• Mittag: 12 Uhr - 15 Uhr

• Nachmittag: 15 Uhr - 18 Uhr

• Abend: 18 Uhr - 21 Uhr

• Später Abend: 21 Uhr - 24 Uhr

• Nacht: 0 Uhr - 3 Uhr

• Früher Morgen: 3 Uhr - 6 Uhr

Bei einer Interaktion wird der zur Tageszeit, zu der die Interaktion stattfindet, passende

Wert für die Dimension der Zeit, entsprechend der hier definierten Blöcke, eingetragen.

4.4.2 Struktur der Datensätze

Die auf diese Art gesammelten Kontextinformationen bilden zwar angemessen den Kon-

text, in der eine Interaktion zwischen Benutzer und Software-Metrik stattfindet, ab,

jedoch müssen für wirklich aussagekräftige Datensätze diese Informationen mit einer

Identifikation des Benutzers und der entsprechenden Metrik zusammengebracht wer-

den.

Ein Datensatz, wie er auch in der Arbeit von Shi et al. [49] verwendet wird, der

dem impliziten Feedback einer gemessenen Interaktion zwischen einem Benutzer und

einer Metrik in einem Kontext entspricht, muss diese drei daran beteiligten Identitäten
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Abbildung 4.1: ER-Diagramm zur Modellierung der Interaktion zwischen Benutzern und
Metriken

enthalten. Daher wird ein solcher Datensatz D ein 3-Tupel, das folgendermaßen struk-

turiert ist, darstellen:

D = (UID, MID, CID)

wobei UID für eine eindeutige Benutzerkennung (User-ID), MID für eine eindeutige

Metrikkennung (Metric-ID) und CID (Context-ID) für die eindeutige Kodierung eines

Kontextes, wie in Kapitel 4.3 beschrieben, steht [49]. Ein solcher Datensatz entspricht

dabei der
”
Interagiert mit“-Relation in Abbildung 4.1.
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5 Lernen der relevanten Software-Metriken

Nachdem in den letzten Kapiteln die formalen Grundlagen gelegt wurden, widmet sich

dieses Kapitel dem Kern dieser Arbeit: Machine-Learning mittels des TFMAP-Algorith-

mus. Bereits in Kapitel 3.2.5 wurde ein kurzer Überblick über die Arbeit von Shi et al.

[49] geboten. Die dort erwähnten Konzepte werden in diesem Kapitel nun detaillierter

behandelt und erklärt. Daraus wird schließlich ein umfassendes Konzept ausgearbei-

tet, welches beschreibt wie aus den in Kapitel 4 charakterisierten Kontextfaktoren die

Relevanz der einzelnen Software-Metriken erlernt werden kann. Die in diesem Kapitel

verwendeten Formeln, Notationen und Kurzschreibweisen stammen dabei alle aus [49].

5.1 Datenstrukturen

Für den TFMAP-Algorithmus sind zwei Datenstrukturen essentiell. Zum einen ist dies

das implizite Feedback, welches die Eingabedaten der Benutzer darstellt. Es ist die

grundlegende Informationsquelle für den Lernprozess und liefert die Daten anhand de-

rer gelernt wird.

Zum anderen sind dies die sogenannten latenten Modelle. Diese Modelle sind Ma-

trizen, welche versuchen die Eigenschaften von Benutzern, Metriken und Kontexten zu

beschreiben. Sie sollen durch den Lernprozess so angepasst werden, dass sie das im-

plizite Feedback möglichst optimal erklären und dementsprechend gute Vorhersagen

für Metriken machen können. Somit sind die latenten Modelle die Datenstrukturen, die

beim Lernen angepasst werden und das erlernte Wissen speichern.

Diese beiden Datenstrukturen werden in den folgenden beiden Kapiteln näher vor-

gestellt und erläutert.

5.1.1 Implizites Feedback

Wird das Thema Benutzerfeedback behandelt, dann ist damit oft explizites Feedback

gemeint. Ein Beispiel dafür sind Käuferbewertungen, die ein Kunde in einem Online-
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Shop abgeben kann, um ein gekauftes Produkt für andere Kunden zu bewerten. Dabei

muss ein Kunde immer selbst aktiv werden und überlegen, wie er das Produkt bewerten

möchte. Der Aufwand kann dabei nur eine Bewertung mit Sternen sein oder auch ein

geschriebener Kommentar. Dies bedeutet für den Benutzer jedoch in allen Fällen einen

Mehraufwand während seinem Aufenthalt im Online-Shop. Da dieser Mehraufwand ein

Hindernis darstellen kann, gibt der Kunde für ein Produkt möglicherweise überhaupt

keine Bewertung ab.

Daher kann es erwünscht sein, stattdessen nur implizites Feedback zu sammeln. Im

Gegensatz zu explizitem Feedback wird dabei die reguläre Interaktion zwischen Benut-

zer und Anwendung beobachtet, weshalb kein zusätzlicher Aufwand für den Benutzer

verursacht wird. Hierbei wird z. B. erfasst auf welche Elemente in der Benutzerober-

fläche geklickt wurde oder wie der Benutzer auf der Seite navigiert. Aus diesen Be-

obachtungen werden Schlüsse gezogen, die als Feedback interpretiert werden. Im Bei-

spiel des Online-Shops könnte das Klicken auf ein Produkt, um genauere Informationen

darüber zu erhalten, als Interesse interpretiert werden. Zwar stellt der Vorgang des

Klickens einen Aufwand dar, jedoch geschieht dies im Rahmen der regulären Interakti-

on, da davon ausgegangen werden kann, dass das Aussuchen und Kaufen interessanter

Produkte das beabsichtigte Ziel des Benutzers ist. Nach dem Kauf eine Bewertung ab-

zugeben ist hingegen zusätzlicher Aufwand, welcher den Kunden seinem Ziel, die von

ihm gewünschten Produkte zu finden und zu kaufen, nicht näher bringt.

Bei der Verwendung von SonarQube ist das primäre Ziel des Benutzers die Ergeb-

nisse der Code-Analyse zu überprüfen. Er soll dabei nicht zusätzlich angeben müssen,

welche Informationen dabei am hilfreichsten für ihn sind, da dies eine Ablenkung dar-

stellen würde. Stattdessen soll, genauso wie im Beispiel des Online-Shops, implizites

Feedback darüber, was für den Benutzer relevant ist, gesammelt werden. Dafür werden

Interaktionen mit Software-Metriken – genauer gesagt: auf welche Metrik der Benutzer

klickt – analysiert und dabei Kontextinformationen, wie es in Kapitel 4 beschrieben ist,

erfasst. Jede Interaktion in Form von Anklicken einer Metrik, um detailliertere Informa-

tionen davon zu erhalten, kann dabei als potentielles Interesse gewertet werden.

Dieses implizite Feedback, wie auch schon von Shi et al. in [49] verwendet, ist es,

das in den weiteren Schritten benötigt wird, um entsprechend der latenten Benutzer-

präferenzen die zur Verfügung stehenden Software-Metriken nach ihrer Relevanz für

den Benutzer bewerten zu können. Gespeichert wird dieses implizite Feedback in ei-
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nem binären Tensor Y . Die Elemente von Y werden mit ymik bezeichnet, wobei m einen

Benutzer, i ein Item, was im Kontext dieser Arbeit einer Metrik entspricht, und k einen

Kontext identifiziert. Es gilt: ymik = 1 genau dann, wenn für einen Benutzer m eine

Interaktion mit einem Item i im Kontext k stattfand; andernfalls ist ymik = 0. Ein Vektor

Ymk bezeichnet das implizite Feedback eines Benutzers m im Kontext k für alle Items.

5.1.2 Latente Benutzer-, Metrik- und Kontextmodelle

Die latenten Modellen für Benutzer, Metriken und Kontexte versuchen jene Entitäten

bestmöglich zu beschreiben, um damit Vorhersagen bezüglich der Relevanz einer Kom-

bination von Benutzer, Metrik und Kontext treffen zu können. Jede dieser Entitäten

bekommt dafür einen Eigenschaftsvektor fester Größe zugewiesen, dessen Werte initi-

al zufällig gewählt werden, da anfangs kein Wissen über diese latenten Eigenschaften

verfügbar ist. Diese Eigenschaftsvektoren werden für jeweils alle Benutzer, Metriken

und Kontexte zu Matrizen, den latenten Modellen, zusammengefasst.

Diese latenten Eigenschaften sind, wie der Name schon sagt, jedoch nicht offensicht-

lich und müssen erst aus vorhandenen Daten, hier dem impliziten Feedback des Benut-

zers, erlernt werden. Ferner sind dies oft auch keine direkt messbaren Größen, wie z. B.

Körpergröße eines Benutzers, Preis eines Gegenstandes oder die Tageszeit in einem Kon-

text; sie sind eher mit persönlichen, womöglich unterbewussten, Vorlieben eines Men-

schen oder beispielsweise der empfundenen Stimmung eines Liedes zu vergleichen und

werden deshalb auch als latent bezeichnet. Matrix-Faktorisierungs-Verfahren haben den

Vorteil latente Eigenschaften der darin modellierten Benutzer und Items zu offenbaren,

was Shi et al. [49] durch die Erweiterung auf Tensoren auch gleichzeitig für Kontext-

informationen ermöglichen. Aus diesem Grund wird mit der Tensor-Faktorisierung ein

mit der Matrix-Faktorisierung verwandtes Verfahren verwendet, um die latenten Model-

le erlernen zu können.

Da diese verborgenen Eigenschaften nicht benannt werden können, d. h. es ist nicht

klar, was sie konkret bedeuten, können sie auch nicht einfach gemessen werden. Statt-

dessen wird eine gewisse Anzahl latenter Eigenschaften vermutet und durch Machine

Learning werden deren Werte approximiert. Diese vermuteten Eigenschaften beschrei-

ben damit Entitäten, wie z. B. Benutzer. Zwar kann im Allgemeinen nicht mit Sicherheit

gesagt werden, welche Bedeutung diese latenten Eigenschaften haben, aber das ist auch
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nicht nötig, denn sie müssen nur erlernt und in Vorhersagen verwendet werden können;

sie zu interpretieren ist nicht erforderlich. Es genügt vollkommen zu wissen, dass die

Modelle tatsächlich eine Aussagekraft haben. Dieses Wissen wird durch den Lernprozess

gewonnen, indem die Werte der latenten Modelle angepasst werden, um das beobach-

tete implizite Feedback, was der Interaktion des Benutzers mit der Benutzeroberfläche

entspricht, möglichst gut erklären zu können. [49]

Nach dem Lernprozess können diese latenten Modelle dazu verwendet werden Emp-

fehlungslisten zu generieren. Das sind nach Relevanz sortierte Listen von Metriken,

welche für eine Kombination aus Benutzer und Kontext angeben, welche Metriken am

relevantesten sind. Die Relevanz einer Metrik für einen Benutzer in einem bestimm-

ten Kontext ergibt sich aus dem Predicted Relevance Score aus Formel (5.2), welche im

nächsten Abschnitt genauer beschrieben wird. Anhand der so erlernten Modelle können

nach dem Lernprozess auf Basis der Erfahrungen bzw. Trainingsdaten des impliziten

Feedbacks Vorhersagen für einen Benutzer gemacht werden. Damit erfüllen die laten-

ten Modelle den Zweck, ein abstraktes Verständnis über die beteiligten Entitäten zu

erlangen und diese in einer für Vorhersagen verwendbaren Art und Weise zu beschrei-

ben.

In dieser Arbeit wird der Notation von [49] entsprochen. Das bedeutet, dass

U ∈ RM×D, V ∈ RN×D und C ∈ RK×D Matrizen sind, die den eben beschriebenen la-

tenten Modellen für Benutzer, Items bzw. Metriken sowie Kontexte entsprechen. Hier-

bei ist D die Anzahl der vermuteten Eigenschaften einer Entität. Diese Modellmatrizen

bestehen aus einzelnen, D-dimensionalen Eigenschaftsvektoren Um ∈ RD, Vi ∈ RD bzw.

Ck ∈ RD, welche die latenten Eigenschaften für einzelne Benutzer m, Items i oder Kon-

texte k repräsentieren.

5.2 Die Zielfunktion

Für die Optimierung der latenten Modelle wird eine Zielfunktion benötigt, welche ein

direktes Maß dafür ist, wie gut diese Modelle und die durch sie generierten Empfeh-

lungslisten sind. Gelernt wird, indem der Wert der Zielfunktion optimiert wird. Kapitel

5.2.1 beschreibt die in [49] gewählte Zielfunktion Mean Average Precision. Danach wird

in Kapitel 5.2.2 darauf eingegangen, warum eine
”
geglättete“, stetige Version dieser

Funktion für die Optimierung benötigt wird.
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5.2.1 Mean Average Precision

Die Mean Average Precision (MAP) ist in ihrer Essenz ein Maßstab zur Bewertung von

Listen von Dokumenten [33] bzw. in dem hier vorliegenden Fall von Metriken. Bei-

spiele für solche Listen stellen Ergebnisse einer Suchmaschinenanfrage dar. Bei deren

Qualität ist vor allem die Relevanz der einzelnen Einträge, aber auch die Sortierung in

welcher sie in der Liste auftreten, von Bedeutung. Bei einer Suchmaschine sind diese

Anforderungen nötig, da oft viele tausend Ergebnisse zurückgeliefert werden, welche

ein Benutzer nicht alle überprüfen möchte. Stattdessen sollen die relevanten Ergebnis-

se am Anfang der Liste stehen. Dieses Verhalten ist immer dann gewollt, wenn es nicht

wünschenswert ist alle Elemente einer solchen
”
Empfehlung“ zu verwenden oder zu

überprüfen, was auch in dieser Arbeit bei der Bestimmung der Menge der relevantesten

Software-Metriken der Fall ist. Die Average Precision (AP) ist ein Maß für Empfehlungs-

listen, mit der Eigenschaft irrelevante Elemente auf guten Listenpositionen stärker zu

bestrafen als auf schlechten Listenpositionen [32, 49], und ist definiert als die Fläche

unter dem Precision-Recall-Diagramm für eine einzelne Empfehlungsliste. Dieses PR-

Diagramm ist wiederum ein Maß für die bei verschiedenen Trefferquoten erzielte Ge-

nauigkeit [33], also der prozentuale Anteil relevanter Ergebnisse bei der Betrachtung

von verschieden großen Teilen der Liste. So werden beim AP-Maß relevante Elemente

auf guten Listenpositionen auch automatisch belohnt, da irrelevante Elemente dadurch

automatisch weiter hinten platziert sein müssen. Für den TFMAP-Algorithmus wird der

AP-Wert dafür wie folgt berechnet:

APmk =
1∑N

i=1 ymik

N∑
i=1

ymik

rmik

N∑
j=1

ymjkI(rmjk ≤ rmik) (5.1)

Hierbei bezeichnen die Indizesm, i und k jeweils einen Benutzer, eine Metrik bzw. einen

Kontext. Hier ist ymik ein Wert aus dem binären Tensor Y ∈ {0, 1}M×N×K , welcher dem

in Kapitel 5.1.1 beschriebenen impliziten Feedback entspricht, und gibt dementspre-

chend an, ob eine Interaktion zwischen einem Benutzer m und einer Metrik i in einem

Kontext k stattfand. Die Indikatorfunktion I(·) hat den Wert 1, wenn ihre Bedingung

wahr ist und ansonsten den Wert 0. rmik entspricht dem Ranking einer Metrik i in ei-

ner Empfehlungsliste für einen festgelegten Kontext k und Benutzer m. Dieses Ranking

ergibt sich durch eine Sortierung der Software-Metriken gemäß dem Predicted Relevan-
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ce Score f , welcher durch das Skalarprodukt der Eigenschaftsvektoren von Benutzer,

Metrik und Kontext in Formel (5.2) beschrieben ist.

fmik = 〈Um, Vi, Ck〉 =
D∑

d=1

UmdVidCkd (5.2)

In dieser Formel bezeichnen U , V und C die in Kapitel 5.1.2 beschriebenen latenten

Modelle. Um, Vi und Ck sind die jeweiligen Eigenschaftsvektoren der konkreten Benut-

zer, Metriken und Kontexte. Der Predicted Relevance Score ist ein Maß dafür, wie relevant

eine Metrik i für einen Benutzer m im Kontext k ist [49].

Bei der Average Precision bezieht sich ein Wert auf genau eine Empfehlungsliste, was

in dieser Arbeit einer sortierte Liste an Software-Metriken für einen festen Benutzer in

einem spezifischen Kontext entspricht. Da für die benötigte Zielfunktion jedoch eine

Aussage über alle Benutzer und alle möglichen Kontextsituationen notwendig ist, damit

die optimierten latenten Modelle auch eine externe Validität besitzen, muss das AP-

Maß weiter zur Mean Average Precision verallgemeinert werden. Wie der Name bereits

verrät, wird dazu der arithmetische Mittelwert der AP-Werte über alle Kombinationen

aus Benutzer und Kontext gebildet [49]. Dadurch ergibt sich die Formel für MAP direkt

aus Formel (5.1) mit:

MAP =
1

MK

M∑
m=1

K∑
k=1

APmk (5.3)

Aufgrund dieses Zusammenhangs zwischen AP- und MAP-Wert kann MAP als die durch-

schnittliche Fläche unter den Precision-Recall-Diagrammen aller Empfehlungslisten ver-

standen werden [33].

Damit wird der Name
”
TFMAP“ auch etwas klarer, denn das Skalarprodukt aus For-

mel (5.2) wird auch als Tensorfaktorisierung bezeichnet, was der Ursprung der ersten

beiden Buchstaben ist, wodurch sich der Name TFMAP aus
”
tensor factorization for

MAP“ ergibt.

Abschließend soll noch auf den Zusammenhang zwischen den latenten Modellen

und dem daraus resultierenden MAP-Wert hingewiesen werden, da dieser Zusammen-

hang das bestimmende Kriterium ist, warum sich die Mean Average Precision als Ziel-

funktion eignet. Die Tensorfaktorisierung in Formel (5.2), welche die Kernoperation

des TFMAP-Algorithmus darstellt, zeigt, dass der Predicted Relevance Score direkt und
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ausschließlich von den latenten Modellen abhängt. Außerdem ist er eine direkte Bewer-

tung für die Relevanz einer Kombination aus Benutzer, Item und Kontext. Dieser Wert

ist das einzige Kriterium, das die Itemrankings rmik für einen festgelegten Benutzer m

und Kontext k bestimmt. Da MAP ein direktes Bewertungsmaß für die Qualität aller

Empfehlungslisten ist, wird damit auch die Qualität der latenten Modelle gemessen, da

die Empfehlungslisten bzw. die Item-Rankings direkt von den Modellen abhängen.

5.2.2 Geglättete MAP

Aus der Formel für die Average Precision geht hervor, dass diese Funktion nicht stetig

ist, denn die Rankings rmik einzelner Metriken ändern sich in nicht-stetiger Weise, da

sie nur ganzzahlige Werte annehmen können. Aufgrund dieser Eigenschaft lassen sich

in der Form keine Standartoptimierungsalgorithmen, wie das Gradientenverfahren, an-

wenden, da diese eine stetige Zielfunktion benötigen [49, 19]. Um diesem Problem zu

begegnen, müssen die nicht-stetigen Anteile der AP-Funktion mit einer stetigen Funkti-

on approximiert werden. Konkret bedeutet das, dass die Rankings rmik, sowie die Indi-

katorfunktion I(·) angenähert werden müssen. Nach Chapelle et al. [17] bietet sich für

diese Approximation die stetige und außerdem streng monoton steigende logistische

Funktion (5.4) an.

g(x) =
1

1 + e−x
(5.4)

Diese ist eine Sigmoidfunktion, die wegen ihrer Form besonders dafür geeignet ist die

Indikatorfunktion I(·) anzunähern. Dahinter steht die Annahme, dass je höher der Pre-
dicted Relevance Score einer Metrik i in Relation zu einer anderen Metrik j ist, desto bes-

ser sollte diese Metrik i platziert werden. Dabei werden Metriken jedoch nie umsortiert,

da die logistische Funktion streng monoton ist. Die Approximation der Indikatorfunkti-

on sieht damit folgendermaßen aus [49]:

I(rmjk ≤ rmik) ≈ g(fmjk − fmik) = g(〈Um, Vj − Vi, Ck〉) (5.5)

Die zweite Substitution, die vorgenommen werden muss betrifft das Ranking rmik. Es

gibt zwar eine durchdachte Approximation dafür, diese wird jedoch nicht benötigt, da
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nur der Kehrwert 1
rmik

verwendet wird [17, 49]. Deswegen soll 1
rmik

ebenfalls mit der-

selben logistischen Funktion auf folgende Weise approximiert werden:

1

rmik

≈ g(fmik) = g(〈Um, Vi, Ck〉) (5.6)

Durch die Verwendung der logistischen Funktion werden die Abstände zwischen den

einzelnen Rankingplätzen zwar verzerrt, aufgrund der Monotonie werden diese aber

nie umgeordnet, was bei der Approximation der Ranking-Plätze besonders wichtig ist.

Davon abgesehen führen große Werte für fmik zu Werten nahe 1 für die darauf an-

gewandte logistische Funktion, was einen kleinen und damit guten Ranking-Wert rmik

bedeutet. Umgekehrt führen kleine Werte für fmik zu großen und damit schlechteren

Ranking-Werten rmik [49].

Führt man die in diesem Kapitel beschriebenen Substitutionen in der AP-Funktion

durch, erhält man die folgende, geglättete und stetige Version der Average Precision-

Funktion [49]:

APmk =
1∑N

i=1 ymik

N∑
i=1

ymikg(〈Um, Vi, Ck〉)
N∑
j=1

ymjkg(〈Um, Vj − Vi, Ck〉) (5.7)

5.3 Lernen mit TFMAP

Die vorherigen Kapitel haben die letzten Vorbereitungen behandelt, die benötigt wer-

den, um den Lernprozess mithilfe des TFMAP-Algorithmus zu beschreiben. Das folgende

Kapitel hat die Optimierung der latenten Modelle durch die stetige MAP-Funktion mit-

hilfe des Gradientenverfahrens zum Inhalt. Es wird beschrieben wie dieses Verfahren

funktioniert und wie die bisherigen Erkenntnisse genutzt werden können, um es auf

das vorliegende Problem anzuwenden.

5.3.1 Optimierung durch das Gradientenverfahren

Zum Lösen allgemeiner Optimierungsprobleme gehört das Gradientenverfahren (Engl.:

method of steepest decent) zu den einfachen Standardansätzen [52]. Es kann bei reell-

wertigen, differenzierbaren Funktionen verwendet werden, um Extremstellen zu fin-
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den. Diese sog. Zielfunktion muss differenzierbar sein, damit für den zu untersuchen-

den Definitionsbereich der Funktion auch die benötigten Gradienten berechnet werden

können [19]. Beim Gradientenverfahren wird in jedem Schritt der Gradient der Funk-

tion an einer Stelle x berechnet. Der Gradient gibt die
”
Richtung“ an, in der der Wert

der Zielfunktion am stärksten steigt, also dem Optimum näherkommt. Die Variable x

wird daraufhin entsprechend dem Gradienten verändert, sodass im nächsten Schritt ei-

ne Stelle x′ betrachtet wird, an der der Wert der Zielfunktion näher am Optimum ist

als an der Stelle x. Diese Schritte werden wiederholt, bis sich der Wert der Zielfunktion

nicht mehr verbessern lässt, woraufhin angenommen wird, dass das Optimum erreicht

wurde.

Das Verfahren lässt sich mit der Metapher eines Bergsteigers an einem Berg gut

veranschaulichen. Es sei angenommen die Positionskoordinaten des Bergsteigers, bei-

spielsweise als Längen- und Breitengrad angegeben, sind die Variablen einer Funktion,

die die Höhe eines Ortes über dem Meeresspiegel beschreibt. Der Graph dieser Funktion

ist die Oberfläche des Berges, auf dem sich der Bergsteiger bewegen kann. Eine Beispiel-

funktion zur Veranschaulichung kann Abbildung 5.1 entnommen werden. Das Ziel des

Bergsteigers ist es nun vom Gipfel des Berges zurück ins Tal zu finden. Er hat jedoch

die Orientierung verloren und kann nicht sehr weit sehen, weshalb er beschließt immer

in die Richtung zu gehen, in der es am steilsten bergab geht. Auf diese Weise wird er

immer tiefer gelangen, bis er ein Plateau, was einem lokalen Optimum entspricht, oder

das Tal, das globale Optimum, erreicht.

Wie durch die Metapher erkennbar ist, besitzt dieses Verfahren keine Weitsicht, da

es nur den Gradienten der aktuellen Position betrachtet und damit anfällig für lokale

Optima ist. Das muss jedoch nicht zwangsweise ein Problem darstellen, da das Ver-

halten der Funktion von der Struktur des Problems abhängt. Im betrachteten Definiti-

onsbereich können auch schlichtweg keine lokalen Optima, in denen der Algorithmus

vorzeitig terminieren könnte, vorhanden sein.

Das Gradientenverfahren wurde auch von Shi et al. in [49] für das Erlernen der

latenten Modelle verwendet. Da es sich dabei als effektiv bewährt hat, wird es auch

im Rahmen dieser Arbeit für die Optimierungsphase verwendet. Die dabei verwende-

te Zielfunktion ist im Grunde die durch Kapitel 5.2.2 erhaltene geglättete Version der

MAP-Funktion. Für den Einsatz als Zielfunktion haben Shi et al. [49] eine kleine An-

passung vorgenommen und zwar wird zur Regularisierung die Frobenius-Norm der la-
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Abbildung 5.1: Rosenbrock-Funktion visualisiert von Morn the Gorn (eigenes Werk)
[Public domain], via Wikimedia Commons. Die Rosenbrock-Funktion ist eine gängige
Benchmark-Funktion für Optimierungsalgorithmen.
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tenten Modelle, multipliziert mit einem Gewichtungsfaktor −λ, hinzuaddiert. Dies ist

nötig, um eine Überanpassung der Modelle zu verhindern, da Vorhersagen mit Real-

daten andernfalls fehleranfälliger wären [48, 49]. Daraus ergibt sich die folgende, auf

MAP basierende Zielfunktion:

L(U, V, C) =
M∑

m=1

K∑
k=1

1∑N
i=1 ymik

N∑
i=1

[
ymikg(〈Um, Vi, Ck〉)×

N∑
j=1

ymjkg(〈Um, Vj − Vi, Ck〉)
]

− λ

2
(‖U‖2 + ‖V ‖2 + ‖C‖2)

(5.8)

Die für das Gradientenverfahren benötigten Ableitungen sind in den Formeln (5.10),

(5.11) und (5.12) [49] zu sehen. Um die Notation der Ableitungen übersichtlicher zu

gestalten, wurden auch folgende Kurzschreibweisen aus [49] übernommen:

fmik := 〈Um, Vi, Ck〉

fm(j−i)k := 〈Um, Vj − Vi, Ck〉

δ := g′(fmik)ΣN
j=1ymjkg(fm(j−i)k − g(fmik)ΣN

j=1ymjkg
′(fm(j−i)k)

Dabei bezeichnet g′(x) hier und in den folgenden Formeln die Ableitung der logistischen

Funktion g(x) (5.4) und es gilt:

g′(x) =
ex

(ex + 1)2
(5.9)

Darüber hinaus wird mit dem Symbol � die elementweise Multiplikation bezeichnet.

∂L

∂Um

=
K∑
k=1

1∑N
i=1 ymik

N∑
i=1

ymik

[
δ ∗ (Vi � Ck) + g(fmik)

N∑
j=1

ymjkg
′(fm(j−i)k)(Vj � Ck)

]
− λUm

(5.10)
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∂L

∂Ck

=
M∑

m=1

1∑N
i=1 ymik

N∑
i=1

ymik

[
δ ∗ (Um � Vi) + g(fmik)

N∑
j=1

ymjkg
′(fm(j−i)k)(Um � Vj)

]
− λCk

(5.11)

∂L

∂Vi
=

M∑
m=1

K∑
k=1

ymik(Um � Ck)∑N
i=1 ymik

N∑
j=1

ymjk[
g′(fmik)g(fm(j−i)k) +

(
g(fmjk)− g(fmik)

)
g′(fm(j−i)k)

]
− λVi

(5.12)

Eine detaillierte Beschreibung der Ableitung ∂L
∂Vi

kann dem Anhang von [49] entnom-

men werden, da sich die Ableitung aufgrund der Abhängigkeiten zu anderen latenten

Eigenschaftsvektoren schwieriger als bei den anderen beiden Gradienten gestaltet.

An dieser Stelle soll auch auf die höhere Berechnungskomplexität der Ableitung ∂L
∂Vi

hingewiesen werden. Unter der Annahme, dass die Anzahl der Benutzer-Item-Inter-

aktionen |Y | deutlich größer als die Anzahl der Items bzw. Metriken selbst ist, ist die

Komplexität mit O(DN |Y |) mehr als quadratische bezüglich der Anzahl an Items. Für

dieses Problem ist eine Fast Learning-Version des Algorithmus, der die Komplexität auf

O(D|Y |) reduziert, in der Arbeit von Shi et al. [49] beschrieben. Da die erwartete An-

zahl der zu bewertenden Metriken im Rahmen von SonarQube jedoch als weitgehend

konstant und klein betrachtet werden kann, wird aufgrund des Overheads beim Fast
Learning TFMAP-Algorithmus in dieser Arbeit auf diese Optimierung verzichtet. Für an-

dere Szenarien, in denen die Anzahl der zu bewertenden Items wesentlich größer ist,

ist es ausdrücklich empfohlen aufgrund der niedrigeren Komplexität die Fast Learning-

Optimierung zu verwenden.

5.3.2 Parameter

Aus den Formeln und Definitionen zu TFMAP sind noch zwei Variablen nicht behandelt

worden. Dies ist zum einen die Dimensionalität der Eigenschaftsvektoren D und zum

anderen ist das der Regularisierungsfaktor λ. Für die Anwendung des Gradientenver-
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fahrens ist auch noch der Lernfaktor γ, der noch nicht erwähnt wurde, von Bedeutung.

Durch ihn werden die Gradienten bei der Berechnung eines Schrittes des Verfahrens

gewichtet. Er reguliert damit wie stark sich die Werte der Modelle zwischen zwei Ver-

fahrensschritten verändern können. Davon hängt ab, ob die Veränderungen klein genug

sind, damit ein Optimum auch gefunden werden kann oder zu groß sind, sodass der Al-

gorithmus das Optimum verfehlt und um das Optimum oszilliert.

Der Regularisierungsfaktor λ kontrolliert hingegen wie stark sich die latenten Model-

le an den Trainingsdaten orientieren, indem es als Gewicht für die Frobeniusnormen in

der Zielfunktion aus Formel (5.8) fungiert. Damit wird die Tendenz zur Überanpassung

der erlernten, latenten Modelle reguliert [48], was die externe Validität und Qualität

der produzierten Rankings bei der Verwendung von Realdaten nach der Lernphase ver-

bessert.

Die Dimensionalität der Eigenschaftsvektoren - und damit auch der Modelle - be-

schreibt in grober Weise die Ausdruckskraft derselbigen, indem es die Granularität der

zuweisbaren Eigenschaften bestimmt. Dementsprechend sind die resultierenden Model-

le komplexer und können auch feingranulare, zugrundeliegende Einflüsse im Lernpro-

zess aufgreifen oder sind simpel und lassen sich mit weniger Trainingsdaten dennoch

angemessen erlernen. Wie anhand der vorherigen Abschnitte auch zu sehen ist, be-

einflusst die Dimensionalität D auch direkt die Berechnungs-Komplexität des TFMAP-

Algorithmus, da die Anzahl der notwendigen Multiplikationen proportional zur Größe

der Modelle ist.

Für die eben beschriebenen Parameter können i. Allg. keine optimalen Werte ange-

geben werden. Stattdessen müssen diese empirisch ermittelt werden, da sie auch stark

vom zugrundeliegenden Problem abhängen. Als Referenz geben Shi et al. [49] die Wer-

te λ = 0.001 und γ = 0.001 an. Für die Dimensionalität wurde ein Wert von D = 10

veranschlagt. Abhängig von der Komplexität der zu erfassenden latenten Eigenschaf-

ten ist es dabei womöglich wünschenswert diese Zahl zu erhöhen, steht hingegen die

Berechnungskomplexität im Vordergrund kann D auch kleiner gewählt werden, wo-

bei jedoch möglicherweise Abstriche in der Qualität der Ergebnisse in Kauf genommen

werden müssen.
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5.3.3 Bedeutung der Daten

Die aus der Weboberfläche von SonarQube gewonnenen Trainingsdaten sind die be-

stimmenden Einflüsse in Bezug auf die Ergebnisse des Algorithmus. Deren Qualität und

Quantität beeinflussen direkt die Qualität der produzierten Voraussagen. Je mehr aus-

sagekräftige Datensätze vorhanden sind, desto genauer und vollständiger können alle

möglichen Interaktionsszenarien erfasst und miteinbezogen werden, was ein umfassen-

deres Gesamtbild ermöglicht. Des Weiteren wird durch eine große Informationsbasis,

welche auf einem Trainingsdatensatz basiert, der alle Eventualitäten ausschöpft, die ex-

terne Validität des Rankings von Software-Metriken gesteigert und damit die Ergebnisse

für unbekannte, reale Daten bzgl. des impliziten Feedbacks verbessert.

Die Größen der in anderen Arbeiten verwendeten Datensätze unterscheiden sich

teilweise beachtlich. Der Appazaar-Datensatz enthält Beispielsweise 300.469 wie in Ka-

pitel 4.4.2 beschriebene 3-Tupel mit 1.767 Benutzern, 7.701 Items und 9 verschiede-

nen Kontextsituationen [14, 49]. Weitaus bekannter und noch wesentlich größer ist

der Netflix Prize-Datensatz [12], welcher aus dem gleichnamigen Wettbewerb stammt.

Er enthält 100.480.507 Einträge von ungefähr 480.000 Benutzern und 17.770 Items

[22, 36]. Dabei ist jedoch anzumerken, dass dem Netflix Prize-Datensatz die Kontex-

tinformationen fehlen. Der TFMAP-Algorithmus wurde in [49] daher nur anhand des

Appazaar-Datensatz getestet. In dem hier behandelten Anwendungsszenario mit Sonar-

Qube ist die zu erwartende Größe der Benutzerbasis in einem Anwendungskontext,

welcher im Extremfall aus nur einer einzigen Instanz bestehen kann, jedoch um mehre-

re Größenordnungen kleiner abzuschätzen.

Bei der Verwendung von Datensätzen vieler verschiedener Benutzer ergibt sich noch

ein weiterer Vorteil. Durch die Möglichkeit eine große Anzahl an Benutzern in einem

Datensatz zu analysieren, können Verallgemeinerungen gefunden werden, die eine Be-

deutung für alle Benutzer haben. Die Eigenschaften der Interaktionen können dadurch,

dass sie unabhängig von einzelnen Benutzern sind, als Eigenschaften der jeweiligen Me-

triken bzw. Kontexte interpretiert werden. Auch um diese Zusatzinformationen durch

Verallgemeinerungen nutzen zu können, ist es vorteilhaft eine möglichst große Be-

nutzerzahl in einem Datensatz vertreten zu haben.
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6 Adaptive Darstellung von Software-Metriken

Der Fokus dieser Arbeit lag bisher darauf die Ergebnisse von Shi et al. [49] auf den

Anwendungsfall mit SonarQube anzupassen und die notwendigen Definitionen klar-

zustellen. Dieses Kapitel widmet sich nun dem letzten Schritt hin zur fertigen adapti-

ven Benutzeroberfläche. Es wird zuerst die Verwertung der im letzten Kapitel erlangten

Ergebnisse für die Verwendung bei der letztendlichen Anpassung der Weboberfläche

besprochen. Im darauffolgenden Kapitel werden Designüberlegungen behandelt, die

einen Rahmen für die vorzunehmenden Anpassungen abstecken und Vorgehensweisen

für deren Umsetzung vorschlagen. Das letzte Kapitel hat schließlich die Manipulation

der Weboberfläche zum Thema und dient auch als Erklärung für manche der verwen-

deten Methoden.

6.1 Verwertung der Ergebnisse des TFMAP-Algorithmus

Die Ausgabe des TFMAP-Algorithmus sind die optimierten und damit erlernten Modelle

für Benutzer, Metriken sowie Kontexte. Sie enthalten alle Informationen, die durch den

Lernprozess aus dem impliziten Feedback extrahiert werden konnten. Werden die drei

Modelle in einer Tensorfaktorisierung miteinander kombiniert, können damit die durch

Formel (5.2) definierten Predicted Relevance Scores f berechnet werden. Wie der Name

bereits verrät, handelt es sich dabei um Vorhersagen zur Relevanz einer Metrik für einen

Benutzer in einem gegebenen Kontext.

Ein reales Einsatzszenario sieht somit nun folgendermaßen aus: Ein Benutzer m ruft

die SonarQube Weboberfläche auf. SonarQube bestimmt die gegebene Kontextsituation

k über die ihm gegebenen Erfassungsmöglichkeiten. Möglichst schnell, optimalerwei-

se während dem Ladevorgang, sollen die für den aktuellen Benutzer m und Kontext k

relevantesten Software-Metriken bestimmt und nachgeladen werden, um diese Infor-

mationen so schnell wie möglich präsentieren zu können. Es wird angenommen, dass

der Lernprozess zu diesem Zeitpunkt bereits abgeschlossen ist, da der Aufbau der Seite

so schnell wie möglich abgeschlossen sein soll, um das Benutzererlebnis zu optimieren.
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Abbildung 6.1: SonarQube Startseite der Apache Software Foundation mit eingefügten
Beispielmetriken aus dem Projekt Apache Archiva.

Damit die relevantesten Software-Metriken bestimmt werden können, werden die Pre-
dicted Relevance Scores aller Items für den Benutzer m im Kontext k berechnet und die

resultierende Liste nach diesen Werten sortiert. Das Resultat enthält die als am relevan-

testen vermuteten Software-Metriken am oberen Ende der Liste.

6.2 Designüberlegungen

Bei der Manipulation der Weboberfläche stellt der Umgang mit den restlichen Inhalten

der Startseite ein Problem dar. Ein rücksichtsloses Entfernen würde für den Benutzer

ein ernstzunehmendes Ärgernis darstellen und würde ihn sehr einschränken, wenn z. B.

die Projektliste zur Navigation unvorhergesehen entfernt werden würde.

Es ist daher leicht zu sehen, dass es unerwünscht ist Inhalte von der Startseite zu-

gunsten von Widgets für Software-Metriken zu entfernen. Jedoch kann es bereits ge-

nauso unerwünscht sein diese Inhalte lediglich zu verdrängen, sodass sie nicht mehr

auf den ersten Blick zu sehen sind. Die voreingestellten Oberflächen-Elemente haben

immer Vorrang, denn sie wurden vom Benutzer eventuell bewusst so eingestellt und
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haben dadurch eine – aus Sicht der adaptiven Benutzeroberfläche – unbestreitbare Re-

levanz.

Aus dieser Situation heraus ergibt sich die Herausforderung den zur Anzeige not-

wendigen Platz auf andere Weise zu beanspruchen, um zumindest einen guten Kompro-

miss zu finden und sowohl voreingestellte Anzeigen, als auch neue Zusatzinformationen

in Form von Metriken anzeigen zu können. Das Verschmälern der ursprünglichen Start-

seite durch das Verwenden mehrerer Spalten erscheint dafür die natürlichste Lösung

zu sein, da somit keine Informationen entfernt oder aus dem initial sichtbaren Bereich

verdrängt werden müssen.

Der nächste, daraus resultierende Punkt wäre damit die Dimensionierung des Spal-

tendesigns. Sowohl Spaltenanzahl, als auch Größenverhältnisse zwischen den Spalten

spielen dabei eine Rolle. Mögliche Varianten sind das reguläre Design der Startseite mit

einer einzigen Spalte, wie es bei vielen SonarQube Instanzen üblich ist, ein Design mit

zwei Spalten, wie es in jedem Projekt-Dashboard zu finden ist und ein Design mit drei

Spalten. Dies sind jedoch nicht die einzigen Möglichkeiten, da sich mithilfe von Web-

technologien auch noch viele andere Designs implementieren lassen. Diese werden hier

jedoch nicht behandelt, da Designoptimierungen nicht der Schwerpunkt dieser Arbeit

sind.

Die Verwendung von zwei Spalten zeigt bereits in Abbildung 6.1, dass durch die

Komprimierung der ursprünglichen Seite keine Informationen verloren gehen. Der Platz-

verbrauch durch übermäßig breite Zeilen ist vor der Anpassung unnötig hoch und der

dadurch eingesparte, leere Platz kann dadurch besser genutzt werden. In diesem Fall,

bei dem lediglich eine Projektliste komprimiert werden muss, ist das noch ein einfa-

ches Unterfangen, doch in anderen Situationen müssen eventuell ungewollte Zeilenum-

brüche oder gestauchte Elemente in Kauf genommen werden.

Wie diese Effekte aussehen, kann man gut in Abbildung 6.2 beim Design mit drei

Spalten sehen. Die Spalten sind dabei zu klein zur Darstellung der Software-Metriken.

Dadurch kommt es zu ungewollten Stauchungen und Verschiebungen, die die Darstel-

lung unästhetisch aussehen lassen. Dies ist bei den Metriken darin begründet, dass ihr

Design und ihre Ausmaße auf das zweispaltige Design des Projekt-Dashboards ausgelegt

sind und nicht ohne Weiteres in ein dreispaltiges Design übernommen werden können.

Anhand dieser Überlegungen bildet sich ab, dass ein zweispaltiges Design, mit po-

tentiell dynamisch veränderbaren Spaltenbreiten, die vielversprechendste Designalter-
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Abbildung 6.2: Seitenlayout mit drei Spalten am Beispiel der öffentlichen SonarQube-
Instanz des Eclipse-Projekts. Die Spalten sind zu eng für den darzustellenden Inhalt,
weshalb dieser umstrukturiert und teilweise abgeschnitten wird.

native ist, da viele Teile der Benutzeroberfläche ohnehin schon auf ein zweispaltiges

Design ausgelegt ist. Dadurch sind, wenn überhaupt, auch nur kleinere, dynamische

Anpassungen nötig.

Es ist noch anzumerken, dass in der Realität jede SonarQube Instanz aufgrund der

Einstellungsmöglichkeiten unterschiedlich viel Platz auf der Startseite verwendet. Des-

wegen muss es nicht zwangsläufig so sein, dass lediglich eine Projektliste mit viel Poten-

tial zur Platzeinsparung vorhanden ist. Im Gegenteil, der Administrator der Instanz hat

zahlreiche Möglichkeiten den Platz der Startseite selber einzuteilen und dessen Nut-

zung zu bestimmen. In diesen Fällen soll ebenfalls der oben beschriebene Grundsatz

gelten, dass Voreinstellungen des Benutzers absoluten Vorrang haben. Ist also beispiels-

weise bereits sämtlicher Platz auf der Startseite im initial sichtbaren Bereich vergeben

und kann nicht ohne Verlust von Information oder der Ästhetik freigeräumt werden,

dann soll der nicht-initial sichtbare Bereich der Seite, der nur durch Verschieben des

Bildschirminhalts erreichbar ist, verwendet werden. Mit diesem Kompromiss erhält der

Benutzer weiterhin alle von ihm explizit eingestellten Informationen, kann aber trotz-
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dem schnell auf Zusatzinformationen in Form der eingefügten Metriken zugreifen, ohne

einen weiteren Seitenaufruf starten zu müssen.

Eine letzte Designüberlegung ist die Anzahl einzufügender Metriken. Wie bereits in

Kapitel 1.2 zur Implementierung des Demonstrators erwähnt wurde, sollen nicht ein-

fach alle verfügbaren Metriken - lediglich nach Relevanz sortiert wie bei einer Such-

maschine - auch tatsächlich auf der Startseite angezeigt werden. Zusätzlich muss eine

Auswahl getroffen werden, um die Weboberfläche übersichtlich zu halten. Dafür kann

u.a. beachtet werden, wie viel Platz zur Verfügung steht und wie viele Metriken darin

untergebracht werden können, um ein andernfalls notwendiges Scrollen zu verhindern.

Dies könnte entweder über die direkte Berechnung des noch verfügbaren Platzes ge-

schehen oder durch Ausnutzen einer Faustregel. Eine andere Möglichkeit ist es, nur die

Metriken mit den höchsten Predicted Relevance Scores anzuzeigen.

6.3 Manipulation der Weboberfläche

Da in den bisherigen Abschnitten dargelegt wurde, wie die zu verwendenden Software-

Metriken ausgesucht und dargestellt werden sollen, behandelt dieses Kapitel den noch

fehlenden Teil: die Anpassung in der Weboberfläche.

Zur Manipulation der Weboberfläche sind nur einfache Manipulationen des Docu-
ment Object Model (DOM) – der logischen, baumartigen Struktur eines HTML-Doku-

mentes, auf dem die Webseite basiert – nötig. In einem ersten Schritt wird auf der Start-

seite eine Fläche reserviert, in der die einzufügenden Widgets platziert werden können.

Wie in Kapitel 6.2 erwähnt, wird dazu bei Bedarf entweder eine zweite Spalte erstellt

und der restliche Seiteninhalt in die erste Spalte komprimiert oder die Widgets wer-

den in den bestehenden Spalten unten angehängt. Um dieses Ziel zu erreichen, werden

die DOM-Elemente, welche die Widgets auf der Projekt-Dashboard Seite darstellen, in

diesen reservierten Bereich kopiert. Sobald das DOM des HTML-Dokumentes verändert

wurde, werden die eingefügten Elemente automatisch vom Webbrowser gerendert. Da-

durch fällt es für den Benutzer kaum auf, dass diese Inhalte keine native Funktionalität

von SonarQube sind.

Damit die Software-Metriken beim Aufrufen der Startseite von einem Projekt-Dash-

board übernommen werden können, ist es davor notwendig die benötigten Informa-

tionen von SonarQube abzufragen. Die Widgets müssen dafür, während die Startseite
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aufgebaut wird, parallel mittels des AJAX-Konzeptes geladen werden. AJAX steht für

Asynchronous JavaScript And XML und bezeichnet ein Programmierkonzept zum asyn-

chronen Versenden und Verarbeiten von HTTP-Anfragen, um somit ein Nachladen von

Inhalten, ohne ein Neuladen der kompletten Seite, zu ermöglichen [24, 26]. Während

die SonarQube-Startseite geladen und aufgebaut wird, wird eine solche AJAX-Anfrage

mit dem Ziel eines Projekt-Dashboards abgesendet. Die Antwort des Servers enthält das

komplette HTML-Dokument des Dashboards, aus dem die zugehörigen DOM-Elemente

der Widgets von Software-Metriken extrahiert und per JavaScript in der Startseite ein-

gefügt werden können.

In den Anforderungen dieser Arbeit aus Kapitel 3.1 wurde mit Anforderung A4 das

Erhalten des Seitendesigns verlangt. Dieses Kriterium wird von der hier verwendeten

Methode automatisch erfüllt, denn durch das direkte Kopieren vom Projekt-Dashboard

werden die Informationen bzgl. des Stylings ebenfalls übernommen. Die verwendeten

Stylesheets der Dashboard-Seite gleichen denen auf der Startseite, weshalb die Widgets

nach dem Einfügen automatisch richtig dargestellt werden. Die Voraussetzung dafür ist

jedoch, dass wie auf dem Projekt-Dashboard ein Layout mit zwei Spalten verwendet

wird, denn andernfalls wirken die Widgets stark gestreckt bzw. gestaucht. Außerdem ist

es für den Benutzer auf den ersten Blick unklar, aus welchem Projekt die eingefügten

Widgets stammen, wodurch es nötig wird auch das zugehörige Projekt anzugeben. Das

ist jedoch die einzige Anpassung, die vorgenommen werden muss.

Eine alternative Möglichkeit die entsprechenden Daten von SonarQube zu erlangen

wäre die SonarQube-API zu verwenden. Die davon zurückgelieferten Daten sind jedoch

nicht im HTML-Format, weshalb zusätzlicher Aufwand nötig wäre, um diese Daten op-

tisch ansprechend darzustellen. Diese Methode ist dann zu bevorzugen, wenn ohnehin

ein anderes Styling zu verwenden wäre.
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7 Demonstration

Die in den letzten Kapiteln vorgestellten Erkenntnisse und Konzepte müssen nun auch

zeigen, dass sie nicht nur theoretisch vielversprechend sind, sondern auch in der Pra-

xis beweisen können, dass sie wie vorgestellt auch realisierbar sind und dabei einen

Mehrwert liefern. Dafür widmet sich der erste Teil dieses Kapitels der Umsetzung des

Machine-Learning-Konzepts sowie der adaptiven Benutzeroberfläche im Zusammen-

spiel mit SonarQube und zeigt darüber hinaus am Beispiel verschiedener Benutzungs-

szenarien wie sich die Benutzeroberfläche an den Benutzer anpasst. Das aus diesen

Komponenten bestehende System wird für die Zwecke dieser Arbeit DeepSonar genannt.

Im zweiten Teil des Kapitels wird darauf eingegangen inwiefern die Anforderungen aus

Kapitel 3 von den in dieser Arbeit präsentierten Ergebnissen erfüllt werden.

7.1 Komponenten & Funktionsweise von DeepSonar

Um zuerst einen Einblick in die Funktionsweise des entwickelten Systems mit Machine-

Learning-Modul und dem Modul zur Anpassung der Oberfläche – im Folgenden
”
Adap-

ter“ genannt – werden im Folgenden die verwendeten Komponenten beschrieben und

ihr Zusammenwirken sowie ihre Arbeitsweise erklärt. Dadurch soll ein Überblick über

das DeepSonar-System gegeben werden, welches in Abbildung 7.3 auch bildlich darge-

stellt ist.

7.1.1 Grundlegender Aufbau

Die Basis, auf der der Adapter aufbaut, ist SonarQube, genauer gesagt dessen Webober-

fläche. Diese ist für die Zwecke dieser Arbeit zwei Bereiche aufgeteilt: Zum einen das

Home-Dashboard und zum andern die verschiedenen Projekt-Dashboards.

Auf dem Home-Dashboard (s. Abbildung 7.1), welches die Startseite von Sonar-

Qube darstellt, wird meistens eine Liste der zur Verfügung stehenden Projekte und je

nach Konfiguration noch weitere Widgets angezeigt, welche beispielsweise einen kurzen
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Abbildung 7.1: SonarQube Startseite des XWiki-Projekts

Überblick über die technische Qualität der Projekte bietet. Da diese Seite, wie in Kapitel

1 beschrieben, in vielen Fällen den zur Verfügung stehenden Platz nicht effizient nutzt,

soll diese Seite für die Demonstration dieser Arbeit auf die Bedürfnisse des Benutzers

angepasst werden, indem Widgets mit Software-Metriken darauf angezeigt werden.

Die Widgets mit Metriken dafür sollen aus dem Projekt-Dashboard (s. Abbildung

7.2) stammen, welches für den Nutzer am relevantesten ist. Diese Projekt-Dashboards

enthalten typischerweise viele verschiedene Widgets mit unterschiedlichen Metriken,

um einen umfassenderen Überblick über ein einzelnes Projekt und die Entwicklung

dessen technischer Qualität zu bieten. Auf dieser Seite werden daher die Informationen

dargestellt, weswegen der Benutzer SonarQube aufgerufen hat.

Der Adapter ist als Erweiterung der regulären Weboberfläche von SonarQube zu

sehen, da er sich als Browserskript nahtlos darin integriert und diese entsprechend des

Nutzerverhaltens verändert, welches ebenfalls von ihm erfasst wird. Das bedeutet, dass

der Adapter als Mittelsmann zwischen SonarQube, Benutzer und Machine-Learning-

Modul fungiert, was auch in Abbildung 7.3 dargestellt ist.
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Abbildung 7.2: Übersicht von Widgets mit Software-Metriken eines Programmoduls in
SonarQube. Die hier gezeigten Widgets stammen aus dem Modul

”
eclipse.jdt.ui“ des

Eclipse Projekts.

Das Skript des Adapters wird beim Aufruf der SonarQube Webseite mitgeladen und

erkennt selbstständig, ob es sich dabei um das Home- oder ein Projekt-Dashboard han-

delt. Daraufhin führt es die notwendigen Aktionen sofort aus. Im Fall eines Home-

Dashboards bedeutet das, dass die HTML-Struktur der Seite geändert wird, um frei-

en Platz zu schaffen, in den Widgets geladen werden. Die Information welche Widgets

geladen werden sollen erhält der Adapter dafür vom Machine-Learning-Modul. Auf ei-

nem Projekt-Dashboard wird hingegen für jedes Widget erfasst, ob der Benutzer darauf

klickt und im Falle einer solchen Interaktion wird die gegenwärtige Kontextsituation,

wie in Kapitel 4 definiert, erfasst und in Verbindung mit dem Widget und dem aktuellen

Benutzer abgespeichert. Diese Daten stellen das implizite Feedback des Benutzers dar,

so wie es von dem TFMAP-Algorithmus von Shi et al.[49] erwartet wird.

Das Machine-Learning-Modul verwendet das gespeicherte Feedback, um wie in Ka-

pitel 5 beschrieben die latenten Modelle der Benutzer, Metriken und Kontexte zu erler-

nen. Diese Daten macht der Adapter für das Machine-Learning-Modul verfügbar. Da-
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Abbildung 7.3: Übersicht über das beschriebene System

durch kann der Lernprozess, abgesehen vom Verfügbarmachen der Daten, unabhängig

und entkoppelt vom Adapter die latenten Modelle erlernen. Dies ist notwendig, da das

Lernen ein lange andauernder Prozess ist und andernfalls vom Benutzer unterbrochen

werden könnte, wenn er die Webseite von SonarQube verlässt.

Wenn der Adapter nun zur Anpassung des Home-Dashboards wissen muss, welche

Metriken für den aktuellen Benutzer im derzeitigen Kontext relevant ist, fordert er die

erlernten latenten Modelle beim Machine-Learning-Modul an. Mithilfe der Formel des

Predicted Relevance Score (5.2) können die verfügbaren Metriken bezüglich ihrer Rele-

vanz zur Laufzeit der SonarQube-Webandwendung bewertet werden.

7.2 Veranschaulichung der Funktion

Um ersichtlich zu machen, wie sich DeepSonar an verschiedene Nutzer anpasst, be-

schreiben die nächsten Abschnitte verschiedene Szenarien wie sich Beispielbenutzer

verhalten könnten und welche Anpassungen von DeepSonar die unterschiedlichen In-

teraktionen mit der Weboberfläche bewirken.
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7.2.1 Nutzerszenarien

Die folgenden Szenarien sollen beschreiben, wie Verhaltensmuster von Benutzern aus-

sehen können. Das Augenmerk liegt dabei auf der Erläuterung welche Merkmale beim

Benutzerverhalten eine Rolle spielen. Die hier beschriebenen Szenarien müssen dabei

nicht zwangsweise repräsentativ für die Realität sein, sondern sollen die Eigenschaften

der Anpassungen hervorheben.

Situation A Das simpelste Verhaltensmuster ergibt sich dadurch, dass ein einziger Be-

nutzer A existiert, welcher nur eine Metrik α und das auch ausschließlich in einem Kon-

text κ aufruft. Der Tensor aus implizitem Feedback hat demnach nur einen einzelnen

Eintrag ungleich null, und zwar den für Benutzer A und Metrik α im Kontext κ.

In dieser Konstellation wird erwartet, dass der Benutzer A, wenn er die Webober-

fläche von SonarQube aufruft und sich dabei im Kontext κ befindet, die Metrik α auf

der Startseite angezeigt bekommt. Ist das der Fall, dann werden tatsächlich auch vor

allem relevante Metriken angezeigt.

Situation B Für den nächsten Fall soll Situation A erweitert werden. Benutzer A ver-

hält sich wie in Situation A, ruft wenn er sich in einem anderen Kontext λ befindet,

jedoch eine Metrik β auf. Der Tensor aus implizitem Feedback hat nun zwei Einträge

ungleich null für zwei verschiedene Kontextsituationen.

Wenn die von TFMAP empfohlenen Metriken, die auf der SonarQube-Startseite an-

gezeigt werden, von der aktuellen Kontextsituation abhängen, dann muss im Kontext κ

die Metrik α und im Kontext λ die Metrik β angezeigt werden.

Situation C Auch für Situation C sei die gleiche Ausgangssituation A angenommen.

Der Benutzer A ruft nun zusätzlich im Kontext κ auch die Metrik γ auf. Dadurch erhält

der Tensor aus implizitem Feedback einen zweiten Eintrag mit dem Wert eins für den

Benutzer A und den Kontext κ

Das erwartete Verhalten für diese Situation ist, dass der Benutzer A im Kontext κ

nun beide Metriken – α und γ – angezeigt bekommt. Das würde bedeuten, dass Deep-
Sonar auch fortlaufend neue Informationen über den Benutzer miteinbezieht und seine

Empfehlungen darauf anpasst.
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Situation D Da es sich bei TFMAP um einen Algorithmus aus dem Bereich des kolla-

borativen Filterns handelt, behandelt Situation D Mehrbenutzersysteme. Es existieren

nun Benutzer A, B und C. Benutzer A ruft wie bisher im Kontext κ die Metrik α auf.

Benutzer B verhält sich ähnlich und ruft die gleiche Metrik α, jedoch im Kontext λ auf.

Benutzer C ist ein neuer Benutzer, zu dem noch kein Benutzerverhalten erfasst werden

konnte.

Es wird hierfür erwartet, dass das Verhalten der Benutzer auch Auswirkungen für

andere oder neue Benutzer hat, wenn der Lernprozess Daten aller Benutzer verarbeitet.

Da Metrik α sowohl für Benutzer A, als auch Benutzer B von Interesse zu sein scheinen,

kann die Annahme getroffen werden, dass die Metrik α auch für den neuen Benutzer

C möglicherweise von Interesse ist [41]. Daher sollte diese Metrik auch bei Benutzer C

auf der Startseite angezeigt werden.

7.2.2 Adaption des Systems

Anhand der soeben beschriebenen Nutzerszenarien, soll nun in diesem Abschnitt illus-

triert werden, welche Auswirkungen unterschiedliche Verhaltensmuster in der Anpas-

sung der Weboberfläche von SonarQube durch DeepSonar nach sich ziehen.

Die Tests wurden dafür auf einer lokalen, nicht-öffentlichen SonarQube-Instanz in

Version 5.1.2 durchgeführt. In Abbildung 7.4 ist die unveränderte Startseite zu sehen,

welche im Folgenden als Referenz dient. Zu sehen ist lediglich eine Projektliste, in der

ein großer Teil der Fläche nicht genutzt wird.

Für jede der in Kapitel 7.2.1 beschriebenen Situationen wird jeweils die durch An-

passung resultierende Seite dargestellt. Der Lernprozess wurde für die Situationen A bis

D mit den in [49] gewählten ParameternD = 10, γ = 0.001 und λ = 0.001 durchgeführt,

wobei D der Anzahl der Eigenschaften, γ dem Lernfaktor und λ dem Regularisierungs-

faktor entspricht.

Situation A Im einfachsten Beispiel wurde davon ausgegangen, dass der aktuelle Be-

nutzer in der Vergangenheit ausschließlich das Widget der Metrik
”
Lines of Code“ im

Projekt Apache Tomcat angesehen hat, während es Morgen und der Wert der Metrik

”
steigend“ war. Daraus ergibt sich die Kontextsituation κ = (

”
Apache Tomcat“,

”
stei-

gend“,
”
Morgen“).
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Abbildung 7.4: Unveränderte Startseite der lokalen Testinstanz von SonarQube.

Abbildung 7.5: Für Situation A angepasste Startseite der lokalen SonarQube-Instanz
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Abbildung 7.6: Für Situation B angepasste Startseite der lokalen SonarQube-Instanz

Ruft der Benutzer, während er sich im gleichen Kontext befindet, die Startseite von

SonarQube nach Abschluss des Lernprozesses auf, bekommt er die Webseite, wie sie

in Abbildung 7.5 dargestellt ist, zu sehen. Dafür muss er als letztes das Projekt Apa-

che Tomcat betrachtet haben, der Wert der Metrik
”
Lines of Code“ muss immer noch

”
steigend“ sein und die Tageszeit muss

”
Morgen“ sein.

Zu sehen ist, dass der bisherige Inhalt der Seite verkleinert wurde und sich in der

linken Spalte befindet. Die rechte Spalte ist neu hinzugekommen und enthält als erstes

Element den Namen des Projekts, aus dem das angezeigte Widget stammt. Als nächstes

werden die vom TFMAP-Algorithmus als wichtig erachtenden Widgets angezeigt. In die-

sem Fall ist das nur das Widget der Metrik
”
Lines of Code“, da das das einzige Widget

ist, das der Benutzer je angeklickt hat und damit als relevant erachtet werden kann.

Situation B Das Beispiel von Situation B soll zeigen, dass die vom TFMAP-Algorithmus

vorgeschlagenen Widgets auch aufgrund der jeweils vorliegenden Kontextsituation aus-

gesucht werden. Dafür hat der Benutzer in dieser Situation zusätzlich in einem Kontext

λ = (
”
Apache Tomcat“,

”
steigend“,

”
Abend“) die Metrik

”
Complexity“ angeklickt.

Befindet sich der Benutzer wie in Situation A im Kontext κ, wird auch die SonarQube-

Startseite wie in Abbildung 7.5 angezeigt. Befindet sich der Benutzer jedoch im Kontext
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Abbildung 7.7: Für Situation C angepasste Startseite der lokalen SonarQube-Instanz

λ, wird die Startseite ähnlich wie in Situation A verändert, mit dem Unterschied, dass

zusätzlich zu dem Widget für die Metrik
”
Lines of Code“, das Widget für die Metrik

”
Complexity“ angezeigt wird. Dadurch wird ersichtlich, dass die nach dem Lernprozess

angezeigten Metriken auch vom Kontext des Benutzers abhängen.

Tatsächlich wird in Abbildung 7.6 das entsprechende Widget der Metrik
”
Complexi-

ty“ neben zwei weiteren Widgets angezeigt, welche jedoch niedrigere Predicted Relevan-
ce Scores haben.

Situation C Wenn mehrere Metriken für einen Benutzer relevant sind sollen diese

auch alle angezeigt werden. In dieser Situation hat der Benutzer im Kontext κ zusätzlich

zum Widget der Metrik
”
Lines of Code“ auch das Widget

”
Debt Overview“ angeklickt,

welches das sog. SQALE-Rating und den Prozentsatz der technischen Schuld des Pro-

jektes anzeigt.

Ruft der Benutzer wie in Situation A die SonarQube-Startseite nach Abschluss des

Lernprozesses auf, wird ihm die Startseite wie in Abbildung 7.7 angezeigt. Diese sieht

ähnlich aus, wie die Version aus Situation A, nur dass nun zusätzlich das Widget
”
Debt

Overview“ angezeigt wird.
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Abbildung 7.8: Für Situation D angepasste Startseite der lokalen SonarQube-Instanz

Wie viele Widgets angezeigt werden, hängt vom jeweiligen Predicted Relevance Score
der Kombination aus Benutzer, Metrik und Kontext ab. Die Metriken, welche als relevant

angenommen werden können, werden jedoch alle angezeigt.

Situation D Diese Situation soll die externe Validität der gefundenen Modelle nach-

weisen. Für diese Situation haben zwei Benutzer A und B in zwei unterschiedlichen

Kontextfaktoren das gleiche Widget
”
Lines of Code“ angeklickt. Der Tensor mit implizi-

tem Feedback enthält daher zwei Einträge ungleich null. Beide Einträge beziehen sich

auf dasselbe Widget, aber sowohl auf unterschiedliche Benutzer, als auch auf verschie-

dene Kontextsituationen.

Wenn nun ein neuer Benutzer C die SonarQube-Startseite das erste Mal, also bevor

DeepSonar die Möglichkeit hat implizites Feedback vom Benutzer zu erfassen, in einer

beliebigen Kontextsituation aufruft, dann wird erwartet, dass die Machine-Learning-

Komponente erlernt hat das Widget
”
Lines of Code“ als relevant einzustufen, da es von

den anderen Nutzern des Systems unabhängig vom Kontext angeklickt wurde. Wie in

Abbildung 7.8 zu sehen ist, ist das jedoch leider nicht der Fall. Eine mögliche Ursache

dafür kann eine zu kleine Menge an implizitem Feedback sein, sodass die Benutzer-
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Abbildung 7.9: Angepasste Startseite der lokalen SonarQube-Instanz in einem weiteren
Test ähnlich zu Situation D. Das dafür verwendete implizite Feedback enthält sieben
statt zwei Benutzer, welche in verschiedenen Kontexten die Metrik

”
Lines of Code“ an-

geklickt haben.

präferenzen vom Rauschen bei der pseudozufälligen Initialisierung der latenten Model-

le überdeckt werden und der Algorithmus in einem lokalen Optimum terminiert.

Ein weiterer Test, in dem sieben Benutzer A bis G die Metrik
”
Lines of Code“ in

verschiedenen Kontexten ausgewählt haben, zeigt in Abbildung 7.9, dass für einen neu-

en Benutzer H unter anderem auch die Metrik
”
Lines of Code“ angezeigt wird. Daher

ist davon auszugehen, dass das Machine-Learning-Modul tatsächlich durch das implizi-

te Feedback der zusätzlichen Benutzer die Relevanz der Metrik
”
Lines of Code“ besser

erlernen konnte.

7.2.3 Parameter der Mean Average Precision

Abbildung 7.10 zeigt am Beispiel von Situation D mit sieben Benutzern wie die MAP-

Werte bei der Wahl verschiedener Parameter ausfallen. Jedes Diagramm steht dabei für

eine unterschiedliche Anzahl an vermuteten Features für die latenten Modelle. Auf der

x-Achse ist jeweils der verwendete Regularisierungsfaktor und auf der y-Achse der Lern-

faktor abgebildet. Die Farbe gibt den zugehörigen MAP-Wert für die Kombination der
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(a) 1 Feature (b) 2 Features (c) 5 Features

(d) 10 Features (e) 15 Features (f) 20 Features

Abbildung 7.10: Mean Average Precision-Werte für das implizite Feedback von sieben
Benutzern gemäß Situation D für unterschiedliche Zahlen an Features D, Lernfaktoren
γ ∈ (0; 1] und Regularisierungsfaktoren λ ∈ (0; 1]. Die Regularisierungsfaktoren sind auf
der x-Achse und die Lernfaktoren auf der y-Achse geplottet.

Parameter an, wobei rot einen hohen und blau einen niedrigen, meist sogar negativen

Wert, Wert bedeutet.

Die größte Gemeinsamkeit zwischen allen Fällen ist, dass ein hoher Wert des Regu-

larisierungsfaktors λ (λ > 0.1) zu einem raschen und starken Abfall des MAP-Wertes

führt, während eine Variation des Lernfaktors zu kaum einem Unterschied führt. Eine

weitere Gemeinsamkeit ist der Werteverlauf der Diagramme, welcher für verschiede-

ne Anzahlen an verwendeten Features relativ ähnlich ist. Die Diagramme 7.10d, 7.10e

und 7.10f enthalten zwar weniger sichtbares rauschen, das liegt jedoch daran, dass die

Bereiche rechts, mit hohen Werten für λ, viel stärker in den negativen Bereich hinein-

reichen und die Fluktuationen in Relation zu den absoluten MAP-Werten viel weniger

ins Gewicht fallen.

Da der Lernfaktor γ die Qualität der resultierenden latenten Modelle – gemessen an

den berechneten MAP-Werten – kaum beeinflusst, bietet es sich an, diesen aus Effizienz-

gründen möglichst groß zu wählen. Grund dafür ist, dass der Lernfaktor γ gewichtet,

wie stark sich die latenten Modelle pro Iteration des TFMAP-Algorithmus verändern

können. Bei kleinen Werten für γ sind daher mehr Iterationen nötig, um das gleiche
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Optimum zu finden. Durch Variation des Lernfaktors γ kann somit die Laufzeit, um ein

Vielfaches reduziert werden, ohne dass die Ergebnisse des Algorithmus darunter leiden.

7.3 Erfüllung der Anforderungen

Nachdem die Funktionalität der adaptiven Benutzeroberfläche DeepSonar erklärt wur-

de, besteht das Ziel der nächsten Abschnitte darin niederzulegen, wie diese die in Kapi-

tel 3 bestimmten Anforderungen erfüllen.

Zusammengefasst, lauten die Anforderungen, dass die adaptive Benutzeroberfläche

die für den Lernprozess benötigten Daten vom Benutzer unbemerkt erfasst, um ihn

nicht zu stören, und ausschließlich anhand dieser Daten lernt. Des Weiteren soll die

Benutzeroberfläche von SonarQube anhand der Ergebnisse des Lernprozesses ange-

passt werden, wobei das Design der Oberfläche erhalten bleiben soll. Darüber hinaus

muss während des Lernprozesses die Weboberfläche von SonarQube auch weiterhin

verfügbar sein.

7.3.1 Unbemerktes Erfassen des Benutzerverhaltens und Nutzungs-

kontexts

Durch Verwendung des Observer-Patterns [42] und sog. Event-Listener, welche eine vor-

her festgelegte Aktion durchführen, sobald ein bestimmtes Ereignis stattfindet, wird

bei der Erfassung des Benutzerverhaltens für jedes Widget festgestellt, wenn darauf

geklickt wurde. Daraufhin wird die aktuelle Kontextsituation, in der die Interaktion

stattgefunden hat, erfasst, wobei keine zusätzlichen Eingaben des Benutzers, die über

die standardmäßige Verwendung der Weboberfläche hinausgehen, benötigt werden. Da-

her geschieht die Erfassung des Benutzerverhaltens und des aktuellen Benutzerkontexts

unbemerkt, sodass der Benutzer davon nichts mitbekommt.
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7.3.2 Lernen anhand der Daten zu Benutzerverhalten und

Nutzungskontexts

Als Eingabe erhält der zum Machine-Learning verwendete TFMAP-Algorithmus, wie in

Abbildung 7.3 dargestellt, lediglich das vom Benutzer gesammelte implizite Feedback,

welches das Stattfinden von Interaktionen zwischen Benutzern und Software-Metriken

in bestimmten Kontexten beschreibt. Dieses implizite Feedback enthält nur die Infor-

mationen welche Benutzer welche Software-Metriken aufgerufen haben und in wel-

cher Kontextsituation sie sich dabei befanden. Aus diesem Grund wird die Relevanz der

Software-Metriken ausschließlich anhand des Benutzerverhaltens und -kontexts erlernt.

7.3.3 Anpassung der Benutzeroberfläche an den Benutzer

Das Kapitel 7.2.2 zeigt, dass sich das DeepSonar-System dynamisch an den Benutzer

anpasst, abhängig davon in welchen Kontextsituationen er welche Software-Metriken

aufgerufen hat. Die dafür benötigten, erlernten latenten Modelle werden vom Machine-

Learning-Modul auf Basis des vom Adapter gesammelten impliziten Feedback erlernt.

Durch den Lernprozess wird sichergestellt, dass die angezeigten Metriken auch relevant

für den Benutzer sind und die Benutzeroberfläche somit auch wirklich an den Benutzer
angepasst wird.

7.3.4 Erhalten des Seitendesigns

Bei Veränderungen der Weboberfläche verwendet der Adapter ausschließlich Gestal-

tungsmaßnahmen, die auf der ursprünglichen Webseite bereits verwendet werden, um

sicherzustellen, dass der Gesamteindruck stimmig ist. Es wird auch darauf geachtet,

dass selbst kleine Details und Feinheiten übernommen werden. Ein Beispiel für ein sol-

ches Detail ist die Verwendung eines Randes von −1 Pixeln für Spalten in einem mehr-

spaltigen Layout [1]. Durch Einbezug auch solcher Details soll es so schwer wie möglich

sein Unstimmigkeiten im Design der Webseite zu finden.

Für die Anpassung der Platzverhältnisse auf der Startseite wird darauf geachtet,

dass das Hinzufügen einer neuen Spalte genauso aussieht, als wenn der Benutzer die

Startseite selber mit den Bordmitteln von SonarQube angepasst hätte. Das bedeutet vor
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allem, dass kein Widget zu stark verkleinert wird und die darin enthaltenen Informatio-

nen immer lesbar bleiben.

Der vermutlich wichtigste Grund, warum das Design durch die vom Adapter vor-

genommenen Anpassungen nicht zerstört wird, ist jedoch die Verwendung der origi-

nalen Styling-Attribute. Das wird erreicht, indem die angezeigten Metriken als HTML-

Elemente inkl. Styling-Attribute von dem jeweiligen Projekt-Dashboard geladen und oh-

ne Veränderung auf der Startseite in die HTML-Struktur der Webseite eingebaut werden.

Dadurch werden dieselben Styling-Informationen verwendet, da sowohl die Startseite,

als auch die Projekt-Dashboards die gleichen Stylesheets verwenden.

Das Ergebnis sieht deswegen wie eine native Funktion von SonarQube aus und es ist

nicht direkt ersichtlich, dass sie erst nachträglich eingebaut wurde.

7.3.5 Lernen & Adaption während des laufenden Betriebs

Das Machine-Learning-Modul kann unabhängig vom Adapter, der die Anpassungen an

der SonarQube-Weboberfläche vornimmt und das Benutzerverhalten erfasst, arbeiten,

da es funktional nur schwach an den Adapter gekoppelt ist. Die einzige Kommunikation

zwischen den beiden Modulen besteht in dem Austausch von implizitem Feedback und

erlernten latenten Modellen. Somit kann das Machine-Learning-Modul unabhängig vom

Adapter arbeiten, sobald es das implizite Feedback erhalten hat und blockiert nicht den

Adapter während des Lernprozesses.

Der asynchrone Ablauf des Lernprozesses ist sehr wichtig, da dieser abhängig davon

wie nah das tatsächliche Optimum der Mean Average Precision-Funktion erreicht werden

soll und wie viele Benutzer, Metriken oder Kontextsituationen betrachtet werden sollen

auf einem einzelnen, handelsüblichen Computer durchaus mehrere Stunden benötigen

kann.

Durch diese schwache Kopplung ist garantiert, dass die SonarQube-Webanwendung

ungehindert funktioniert, während im Hintergrund die latenten Modelle vom Machine-

Learning-Modul gelernt werden, sodass dieser Lernprozess den laufenden Betrieb und

den Benutzer bei der Verwendung von SonarQube nicht stört.

85



86



8 Zusammenfassung & Ausblick

Ziel dieser Arbeit war es eine adaptive Benutzeroberfläche für die Softwareanalyse-

Plattform SonarQube unter Zuhilfenahme von Machine-Learning-Methoden zu entwi-

ckeln. Adaptiv bedeutet dabei, dass die Benutzeroberfläche sich in Abhängigkeit vom

Benutzerverhalten an einen Benutzer persönlich anpasst, indem sie die Widgets von

Software-Metriken, die für den aktuellen Benutzer im gegenwärtigen Nutzungskontext

am relevantesten sind, bereits auf der Startseite der Anwendung anzeigt. Zusätzlich

sollten die Anforderungen aus Kapitel 3.1 erfüllt werden.

Das Ergebnis dieser Arbeit ist DeepSonar, eine selbstlernende, adaptive Benutzero-

berfläche, welche aus zwei Komponenten besteht: dem sog. Adapter und dem Machine-

Learning-Modul. Der Adapter wird in die Weboberfläche von SonarQube intergriert

und nimmt an ihr Veränderungen vor, um das Erfassen des Benutzerverhaltens und

des Nutzungskontextes sowie das Anzeigen relevanter Widgets von Software-Metriken

zu ermöglichen. Dabei wird auch nur erfasst, ob ein Benutzer das Widget einer be-

stimmten Metrik in einer Kontextsituation angeklickt hat oder nicht. Das Machine-

Learning-Modul hingegen erlernt auf Basis des Benutzerverhaltens mittels des TFMAP-

Algorithmus von Shi et al. [49] welche Software-Metriken für den Benutzer in einem

bestimmten Kontext relevant sind.

DeepSonar erfüllt alle der in Kapitel 3.1 erwähnten Anforderungen, da es zum einen

die für den Lernprozess benötigten Daten zum Benutzerverhalten und Nutzungskon-

text vom Benutzer unbemerkt erfasst und ihn somit nicht in seiner Arbeit stört und

zum anderen auch ausschließlich anhand dieser Daten die Relevanz der verschiede-

nen Software-Metriken für verschiedene Benutzer und Kontexte erlernt. Darauf auf-

bauend passt DeepSonar die Weboberfläche von SonarQube an den jeweiligen Benut-

zer an, indem die für den Nutzer im gegenwärtigen Kontext relevanten Widgets von

Metriken auf der Startseite angezeigt werden. Bei dieser Anpassung wird außerdem

das Design der Seite übernommen, sodass diese wie eine native Funktionalität von So-

narQube erscheint. Auch die letzte Anforderung wird erfüllt, da der Lernprozess na-

hezu vollständig vom SonarQube-Prozess entkoppelt ist und SonarQube somit auch
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während der Ausführung des TFMAP-Algorithmus ohne Einschränkungen verwendet

werden kann.

Um diese Ziele zu erreichen, wurde in dieser Arbeit zuerst eine Übersicht über ver-

wandte Arbeiten gegeben. Diese behandelten bestehende Lösungsansätze für den Ent-

wurf sowie die Umsetzung einer adaptiven Benutzeroberfläche, aber auch Machine-

Learning-Methoden, welche Kontextinformationen ausnutzen, um bessere Ergebnisse

zu erzielen. Hierbei eignete sich vor allem die Arbeit von Shi et al. [49] als Grundlage

für die Machine-Learning-Komponente.

Im nächsten Schritt wurden Abwägungen getroffen, wie der Kontext einer Interak-

tion mit der Weboberfläche von SonarQube definiert werden kann, welche Kontextfak-

toren existieren und wie diese im normalen Gebrauch der Anwendung ohne großen

Ressourceneinsatz erfasst werden können.

Darauf aufbauend wurde ein Konzept zur adaptiven Darstellung der Software-

Metriken erarbeitet, welches die Ergebnisse des TFMAP-Algorithmus verwertet. Dabei

flossen auch Designüberlegungen mit ein, um die Anpassungen an der Weboberfläche

in einer nicht negativ auffallenden Weise zu gestalten.

In den vorhergehenden Kapiteln wurde schließlich beschrieben, wie das DeepSonar-
System aufgebaut ist und anhand konkreter Nutzerszenarien demonstriert, dass die

Konzepte dieser Arbeit realisierbar sind.

Obwohl der in dieser Arbeit behandelte Ansatz sehr gute Ergebnisse liefert, blei-

ben dennoch Ansatzpunkte für weitere Forschungen auf diesem Gebiet vorhanden. Das

zur Optimierung der Mean Average Precision-Funktion verwendete Gradientenverfahren

konvergiert unter Umständen sehr langsam [52]. Außerdem ist es dafür notwendig, ei-

ne Approximation der MAP mithilfe der logistischen Funktion durchzuführen. Andere

Optimierungsverfahren können hier möglicherweise schneller gute Ergebnisse liefern,

lokale Optima besser vermeiden und auch auf nicht-stetischen Funktionen angewen-

det werden, wodurch die eben erwähnte Approximation nicht mehr benötigt würde.

Mögliche Kandidaten solcher Optimierungsalgorithmen wären z. B. der Artificial Bee Co-
lony-Algorithmus [28], der Gravitational Search Algorithm [46] oder die Particle Swarm
Optimization [43, 30].

Ein weiterer Ansatzpunkt für mögliche Verbesserungen sind die verwendeten Ein-

gaben in Form des impliziten Feedbacks, da diese nur erfassen, ob eine Interaktion

zwischen Benutzer und Metrik für einen Kontext stattgefunden hat oder nicht. Es ist
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denkbar, dass zusätzlich auch erfasst werden kann, wie oft Interaktionen für die jeweili-

gen Kombinationen aus Benutzer, Metrik und Kontext stattgefunden haben (vgl. Kapitel

4.2.2). Vergleiche auf Basis dieser Häufigkeiten ergeben feinere Abstufungen des impli-

ziten Feedbacks und somit potentiell die Möglichkeit aussagekräftigere Informationen

über den Benutzer zu sammeln. Eine Übersicht über weitere Möglichkeiten implizites

Feedback zu sammeln kann aus den Arbeiten von Oard et al. [37] und Kelly et al. [29]

entnommen werden.

Eine Verbesserung der von DeepSonar produzierten Empfehlungslisten könnte auch

durch weitere Forschungsarbeit für die Ableitung der benutzerspezifischen Relevanz

der dargestellten Software-Metriken in Abhängigkeit von den gewählten Kontextfak-

toren erreicht werden. Zwar haben sich Odic et al. [38, 39] bereits mit der Auswahl

von relevanten Kontextfaktoren beschäftigt, jedoch schieden viele dieser Möglichkeiten

aufgrund von Schwierigkeiten bei der Erfassung in einer Webanwendung aus. Im Ge-

gensatz zu modernen Smartphones haben klassische Desktop-PCs üblicherweise keine

vergleichbare Sensorik eingebaut, auf die sich verlassen werden kann, um den Nut-

zungskontext zu erfassen.
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tronische Exemplar stimmt mit allen eingereichten Ex-

emplaren überein.
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