Institut fiir Softwaretechnologie

Universitédt Stuttgart
Universitétsstralde 38
D-70569 Stuttgart

Bachelorarbeit

Einsatz von
Machine-Learning-Methoden zur
adaptiven Darstellung von
Software-Metriken

Matthias Hermann

Studiengang: Informatik
Priifer/in: Prof. Dr. rer. nat. Stefan Wagner
Betreuer/in: Dr. Michael Gebhart

Jasmin Ramadani, M.Sc.

Beginn am: 02.11.2016

Beendet am: 02.05.2017

CR-Nummer: D.2.8,D.2.10,G.1.6,1.2.6

Kurzfassung

Auf manchen SonarQube-Instanzen wird die verfiigbare Flache der Webseite nicht ef-
fizient genutzt und groRe Teile der Seite enthalten Leerflichen. Damit diese Flachen
genutzt werden konnen, um genau die Informationen darzustellen, weswegen der Be-
nutzer die Webseite aufgerufen hat, wurde im Rahmen dieser Arbeit mit DeepSonar
eine adaptive Benutzeroberflache fiir die Codeanalyse-Plattform SonarQube entwickelt.
Diese erlernt mittels Machine-Learning die fiir den aktuellen Benutzer und Nutzungs-
kontext relevantesten Informationen, d.h. die aus einer Programmcodeanalyse resul-
tierenden Software-Metriken. Anhand der Ergebnisse des Machine-Learnings wird die
Weboberflache von SonarQube angepasst, sodass diese Metriken in der davor ungenutz-
ten Flache auf der Startseite angezeigt werden.

Inhaltsverzeichnis

1 Einleitung 7
1.1 Problemstellung. e 8
1.2 Beitrdge dieser Bachelorarbeit 9
1.3 Beschreibung des Demonstrators 11
1.4 Gliederung der Arbeit 14

2 Grundlagen 15
2.1 Machine-Learning e 15
2.2 Allgemeine Optimierungsprobleme 16
2.3 Webtechnologien 16

3 Verwandte Arbeiten 17
3.1 Anforderungen 17
3.2 Bewertung verwandter Arbeiten L L. 18

3.2.1 Learning Styles Diagnosis Based on User Interface Behaviors for
the Customization of Learning Interfaces in an Intelligent Tuto-

ring System e e e e e e e e 19

3.2.2 Design for Adaptive User Interface for Modeling Students’ Lear-
ning Styles e 21
3.2.3 Machine learning techniques to make computers easier to use . . 22
3.2.4 A Personal Learning Apprentice 25

3.2.5 TFMAP: Optimizing MAP for Top-N Context-aware

Recommendation 27
3.3 Zusammenfassung und Handlungsbedarf 29
4 Kontextfaktoren 31
4.1 Bewertungskriterien L. e 31
4.2 Identifikation von Kontextfaktoren 33

3

4.2.1 Softwarebezogene Kontextfaktoren
4.2.2 Benutzerbezogene Kontextfaktoren
4.2.3 Projektbezogene Kontextfaktoren
4.2.4 Umgebungsbezogene Kontextfaktoren
4.2.5 Ergebnisse.
4.3 Einordnung der Faktoren in eine Kontextdefinition
4.4 Erfassung und SpeicherungderDaten
4.4.1 Erfassung der Kontextinformationen
4.4.2 Struktur der Datensdtze

Lernen der relevanten Software-Metriken

5.1 Datenstrukturen
5.1.1 Implizites Feedback.
5.1.2 Latente Benutzer-, Metrik- und Kontextmodelle

5.2 Die Zielfunktion.
5.2.1 Mean Average Precision
5.2.2 Geglattete MAP e e

53 Lernenmit TFMAP it it e e
5.3.1 Optimierung durch das Gradientenverfahren
5.3.2 Parameter e e e e e e e e e e e e
5.3.3 BedeutungderDaten.

6 Adaptive Darstellung von Software-Metriken

6.1 Verwertung der Ergebnisse des TFMAP-Algorithmus
6.2 Designiiberlegungen L oo oo
6.3 Manipulation der Weboberflache

Demonstration

7.1 Komponenten & Funktionsweise von DeepSonar
7.1.1 Grundlegender Aufbau

7.2 Veranschaulichung der Funktion
7.2.1 Nutzerszenarien
7.2.2 Adaptiondes Systemso
7.2.3 Parameter der Mean Average Precision

4

51
51
51
53
54
55
57
58
58
62
64

65
65
66
69

7.3 Erfillung der Anforderungen, 83
7.3.1 Unbemerktes Erfassen des Benutzerverhaltens und Nutzungskon-

7.3.2 Lernen anhand der Daten zu Benutzerverhalten und

Nutzungskontexts 84

7.3.3 Anpassung der Benutzeroberfliche an den Benutzer 84

7.3.4 Erhalten des Seitendesigns 84

7.3.5 Lernen & Adaption wahrend des laufenden Betriebs. 85

8 Zusammenfassung & Ausblick 87

1 Einleitung

In der Softwareentwicklung kommt ein Entwickler heutzutage mit vielen Tools, die ihn
bei der Arbeit unterstiitzen sollen, und deren Weboberflachen in Kontakt. Ziel dieser
Anwendungen ist es, dem Entwickler die Informationen, welche er im Moment braucht
— z.B. verschiedene Software-Metriken — und weswegen er die jeweilige Anwendung
aufgerufen hat, schnell und {bersichtlich zu vermitteln. Eine weitere Gemeinsamkeit
ist, abgesehen von der Informationsvermittlung, dass auf den Startseiten dieser An-
wendungen nur sehr allgemeine Informationen zu finden sind. Benotigt ein Benutzer
detailliertere Informationen, muss er erst durch einige Seiten navigieren, denn erst auf
den von den Startseiten aus erreichbaren Seiten findet ein Entwickler die fiir ihn im
Moment wichtigen Informationen, die er auch sucht. Dabei bedeutet das Navigieren zu
der gesuchten Seite jedoch einen Mehraufwand, welcher vor allem bei kleinen Men-
gen an Informationen, unverhiltnismél3ig erscheint. Aus diesem Grund bietet es sich
fiir einen Entwickler an, wichtige Informationen zusatzlich schon auf der Startseite an-
zuzeigen, um das Navigieren durch eine Weboberfliche zu minimieren. Dennoch waére
eine derartige Anpassung der Oberfliche, selbst wenn die Einstellungsmoglichkeiten
dafiir gegeben wéren, ein zusatzlicher Arbeitsaufwand. Dadurch ergibt sich der Wunsch
ein Programm einzusetzen, welches erlernt auf welche Informationen haufig zugegrif-
fen wird und diese Anpassung von selbst durchfiihrt.

Die Lernfahigkeit ist von noch grof3erer Bedeutung unter dem Gesichtspunkt, dass
jedes Projekt und jeder Benutzer unterschiedlich sind. Deswegen kann bei der Betrach-
tung der Relevanz bestimmter Informationen nicht immer der gleiche Mal3stab angelegt
und auch keine allgemeingiiltige Losung produziert werden. Zusatzlich ist das Bestim-
men der momentanen Relevanz von Informationen ein sehr dynamisches Problem, da
sich der Zustand eines Projektes andauernd dndern kann und die Krisenherde, die der
Benutzer mithilfe des Tools finden mochte, wechseln konnen. Je nachdem wo die Kri-
senherde aktuell liegen sind andere Software-Metriken von Bedeutung. Samtliche In-
formationen bereits auf einer Startseite anzuzeigen ist dabei auch keine Losung, denn

7

werden zu viele Informationen auf einer Seite angezeigt, ist es schwer die Ubersicht zu
behalten und die wirklich Wichtigen zu finden.

Wenn, wie oben beschrieben, auf den Startseiten einer Webanwendung nur sehr
allgemeine Informationen mit relativ niedriger Relevanz fiir den Benutzer angezeigt
werden und leerer Platz vorhanden ist, bietet es sich ohnehin an, diesen Platz fiir be-
sonders relevante Informationen zu nutzen. Damit zeigt sich, dass nicht nur um den
Navigationsaufwand zu senken, sondern auch um eine effizientere Nutzung des Platzes
auf der Startseite zu ermoglichen, versucht werden sollte Informationen von verlinkten
Seiten zusatzlich auf der Startseite anzuzeigen, um diese frither verfiigbar zu machen.
Falls den Benutzer im Moment ohnehin nur etwas Spezielles interessiert, wiirde er sich
dadurch einen weiteren Seitenaufruf sparen.

Fiir solche Anpassungen ist es jedoch notig Arbeitszeit aufzuwenden. In Projekten
herrscht jedoch immer Zeitmangel, wodurch eine Hiirde fiir solche Anpassungen exis-
tiert. Selbst wenn ein Anwender sich die Mithe gemacht hat seine Startseite einmal fiir
sich einzurichten, kann sich die Relevanz der einzelnen Informationen durch die Wei-
terarbeit am Projekt, wie oben bereits beschrieben, verandern. Um diesen wiederkeh-
renden, manuellen Arbeitsaufwand zu vermeiden, wird eine im Hintergrund, automa-
tisch ablaufende, lernende Softwarelosung, die eine Anpassungen der Weboberflache
selbststandig durchfiihrt, benotigt.

1.1 Problemstellung

An dieser Stelle sollen die angedeuteten Probleme eindeutig definiert werden, um dar-
aus Ziele und Anforderungen fiir die Beitrdage dieser Arbeit ableiten zu konnen.

PS1 Beeinflussende Kontextfaktoren bzgl. der Relevanz von Software-Metriken

Es ist unklar, durch welche Kontextfaktoren die Relevanz einer Software-Metrik
fiir einen Softwareentwickler bestimmt wird. Die Relevanz entscheidet jedoch
dariiber, ob das Widget einer Metrik bereits auf der Startseite angezeigt wer-
den soll oder nicht. Die Vermutung ist, dass es verschiedene Gruppen von Fak-
toren gibt, welche teilweise abhingig, teilweise unabhidngig voneinander sind.
Um eine zufriedenstellende Anpassung an einen Benutzer und effektives Lernen
durchfiihren zu konnen, ist ein grundlegendes Verstiandnis der zugrunde liegen-

8

den Einfliisse notig. Dazu zahlen die Anzahl der Kontextfaktoren, die spezifischen
Einfliisse selber sowie ihre Bedeutung.

Dabei muss jedoch auch die Verwendbarkeit beriicksichtigt werden, denn nicht al-
le Faktoren lassen sich auf triviale Weise erfassen oder sind fiir eine Anwendung in
einem Kontext mit fehlenden Sensoren sogar schlichtweg unmoéglich zu erfassen.

PS2 Methoden des Machine Learning

Die Auswahl eines Machine-Learning-Algorithmus hat abhéngig von der Struktur
des zugrunde liegenden Problems erheblichen Einfluss auf die Qualitat der Ergeb-
nisse. Die Vorgehensweise des Algorithmus muss daher auch zu der Struktur des
Problems und den verfiigbaren Eingaben passen.

Feature Selection und Preprocessing sind weitere Punkte, die es im Zusammen-
hang mit der Methodik des Machine Learnings zu beachten gilt. Irrelevante Merk-
male der zu klassifizierenden Objekte stellen Storeinfliisse dar und verschlechtern
die Performanz des Algorithmus. Daher kann es notig sein diesem Effekt durch
Preprocessing und Feature Selection entgegenzuwirken.

PS3 Anpassung einer Benutzeroberflache

Eine Anpassung einer Benutzeroberflache hat einen Einfluss auf die Benutzbarkeit
fiir einen Anwender. Um diese Anpassung angemessen und vorteilhaft zu gestal-
ten, muss ein Konzept ausgearbeitet werden, damit Anderungen keine negativen
Auswirkungen auf die Benutzbarkeit haben sowie die Erkenntnisse des Machine
Learning widerspiegeln und auch effektiv ausnutzen. Aufderdem sollen Anpassun-
gen vom Benutzer nicht als optisch storend wahrgenommen werden.

1.2 Beitrage dieser Bachelorarbeit

Ziel dieser Arbeit ist es, eine wie zu Beginn des Kapitels beschriebene adaptive Benutze-
roberflache zu entwickeln, welche die soeben definierten Problemstellungen 16st. Diese
soll aus einer Menge zur Verfiigung stehender Software-Metriken die fiir den Benutzer
relevantesten auswéhlen und die entsprechenden Widgets bereits auf der Startseite der
Anwendung anzeigen. Daraus ergeben sich die folgenden Beitrage, welche diese Arbeit
leisten:

B1 Bestimmung der Kontextfaktoren

Um im Regelfall der alltdglichen Arbeit die normalerweise niitzlichsten Informa-
tionen anzeigen zu konnen, muss der Nutzungskontext inkl. Benutzerverhalten bei
der Interaktion mit der Weboberflache des Tools beobachtet und analysiert wer-
den. Dafiir muss ergriindet werden, welche Benutzerdaten dafiir von Bedeutung

sind und wie diese erfasst werden konnen.

Auf die Wichtigkeit einer Information haben woméglich auch noch weitere Fakto-
ren einen Einfluss. Beispielsweise konnte das Alter der Information, wie auch ex-
terne Faktoren, wie z. B. das aktuelle Datum oder die Tageszeit eine Rolle spielen.
Daher miissen auch diese nicht-benutzerbezogenen Kontextfaktoren in Erfahrung
gebracht werden.

B2 Machine-Learning-Konzept zur Verarbeitung der Daten

Es muss ein Konzept ausgearbeitet werden, wie durch Machine-Learning die von
einem Benutzer gewonnenen Daten sowie Daten zu nicht-benutzerbezogenen Kon-
textfaktoren verarbeitet und daraus fiir den aktuellen Kontext Bewertungen fiir
die verschiedenen Software-Metriken abgeleitet werden konnen.

B3 Implementierung des Demonstrators

Das Lernen von Benutzerpraferenzen und Einfliissen der Kontextfaktoren soll in
einem lauffihigen Programm implementiert werden. Das Programm soll die da-
zu benotigten Daten einlesen, mit dem dafiir entwickelten Machine-Learning-
Konzept verarbeiten und fiir die verfiigbaren Metriken Bewertungen fiir deren
Relevanz ausgeben.

Die durch das Machine-Learning erhaltenen Ergebnisse sollen im letzten Schritt
dazu verwendet werden anhand dieser Bewertungen die Weboberfliche der An-
wendung so anzupassen, dass die wichtigsten Informationen bereits auf der Start-
seite angezeigt werden. Dabei sollen nicht ausreichend wichtige Informationen
tiberhaupt nicht auf der Startseite angezeigt werden, um die Seite iibersichtlich
gestalten zu konnen.

Der Fokus dieser Arbeit liegt darauf, anhand der voreingestellt in ihren Widgets an-
gezeigten Metriken zu entscheiden, welche davon fiir den Benutzer im Moment am

10

Abbildung 1.1: SonarQube Startseite der Apache Software Foundation

relevantesten zu sein scheinen. Dabei ist es ausdriicklich nicht das Ziel auch Widgets zu
beachten, welche zwar durch das Andern von Einstellungen angezeigt werden kénnten,
aber ansonsten nicht angezeigt werden. Da diese fiir den alltdglichen Gebrauch nicht
zwangslaufig wichtig sein miissen und es auch das Ziel ist nur die wichtigsten Daten,
aber dafiir iibersichtlich, darzustellen, wiirde das Ausprobieren von ungenutzten Wid-
gets, welche erst nach einer Anderung der Einstellungen angezeigt wiirden, dem entge-
genwirken und die angezeigte Seite uniibersichtlicher werden lassen.

1.3 Beschreibung des Demonstrators

Fiir die Zwecke dieser Arbeit dient SonarQube [3] als Beispielanwendung. Die Open-
Source Software-Plattform SonarQube vereint mehrere Werkzeuge zur statischen Code-
analyse, um dabei zu helfen die technische Qualitdat von Programmcode auf Grundlage
von Software-Metriken zu verbessern und die sog. technische Schuld zu minimieren.
Der Quellcode wird dazu auf einem Server analysiert und die aus der Analyse ge-
wonnenen Daten werden optisch aufbereitet und wie in Abbildung 1.3 auf einer Websei-
te dargestellt. Diese enthalt zahlreiche Widgets, wie in Abbildung 1.2 zu sehen, welche
die einzelnen Software-Metriken, thematisch gruppiert, beinhalten. Auf diesem soge-
nannten ,Projekt-Dashboard“ konnen die einzelnen Metriken ausgewahlt und dadurch

11

Lines Of Code Files Functions

570 22 54
Java D es Lines Classes Statements Accessors
1 970 18 119 9
Debt ssues O Blocker 0
1d 3h 44 O critical 1
@ Major 16

Minor 22

Info 5
Documentation Comments

52,8% 16,3%

c APl Pub. Undoc. AP Comment Lines

Abbildung 1.2: Drei Widgets von einem Projekt-Dashboard. Die dargestellten Widgets
enthalten u.a. die Metriken ,Lines of Code“, ,,Debt* und ,Documentation

detailliertere Informationen und Erklarungen angezeigt werden. Ein solches Dashboard
ist in Abbildung 1.3 zu sehen. Das erklarte Ziel von SonarQube ist es dabei, seinen Be-
nutzern mit diesen Hilfsmitteln zu ermoglichen die Softwarequalitit in ihren Projekten
zu verbessern.

Auf der Startseite der Weboberflache werden, wie bereits erwahnt, typischerweise
allgemeine Informationen prasentiert. Viele offentlich einsehbare Instanzen von Open-
Source-Projekten und -Organisationen [1] zeigen z.B. nur eine Liste der verfiigbaren
Projekte bzw. Module und teilweise noch eine Ubersichtsgrafik iiber den allgemeinen
Zustand des Programmcodes der einzelnen Projekte und Module. Am Beispiel der
SonarQube-Instanz der Apache Software Foundation in Abbildung 1.1 ist das sehr gut
zu sehen, da hier die gesamte Startseite aus einer Auflistung der Projekte besteht.

Das Dashboard der einzelnen Projekte enthélt typischerweise mehrere unterschied-
liche, voneinander getrennte Widgets. Da auf einem solchen Dashboard einige solcher
Widgets vorzufinden sind und sich somit eine ausgepriagte Modularitit ergibt, konnen
dadurch sinnvoll feingranulare Anpassungen an der Benutzeroberfliche vorgenommen
werden. Diese Flexibilitdt macht es daher zu einem guten Anschauungsobjekt fiir diese
Arbeit. Die grundlegenden Konzepte dieser Arbeit sind jedoch auch auf andere Anwen-
dungen tiibertragbar.

Zur Demonstration der in dieser Arbeit beschriebenen Konzepte, werden diese auf
die Software-Plattform SonarQube angewandt. Dafiir werden Einflussfaktoren fiir die
Relevanz einzelner Widgets eines Projekt-Dashboards analysiert. Die Machine-Learning-

12

Abbildung 1.3: Ubersicht von Widgets mit Software-Metriken des Programmoduls
seclipse.jdt.ui“ des Eclipse-Projektes in SonarQube.

Komponente lernt anhand des gewonnenen Wissens iiber die Einflussfaktoren die ak-
tuelle Relevanz der einzelnen Metriken bzw. Widgets. Die erlernte Relevanz wird im
nachsten Schritt dafiir verwendet die Startseite der Webanwendung so anzupassen, dass
die Widgets der relevantesten Metriken — zusatzlich zum Projekt-Dashboard — bereits
auf der Startseite angezeigt werden.

In Abbildung 1.4 sind diese Anpassungen beispielhaft manuell durchgefiihrt worden.
Der urspriingliche Inhalt, die Liste an Projekten, wurde auf eine Spalte verschmalert, um
Platz fiir Softwaremetriken zu schaffen. In diesem Beispiel wird angenommen, dass der
Benutzer durch sein Verhalten hat darauf schliefen lassen, dass die dargestellten Me-
triken im aktuellen Kontext am relevantesten fiir ihn sind. Die Grundlage fiir diese An-
nahmen werden die in Kapitel 4 beschriebenen Kontextfaktoren und das in Kapitel 5.1.1
beschriebene implizite Feedback sein, anhand derer ein Machine-Learning-Algorithmus
erlernt, welche Software-Metriken den Benutzer am meisten interessieren konnten. Ba-
sierend auf dessen Auswahl an Metriken, werden die entsprechenden Widgets wie in
Abbildung 1.4 auf der Startseite angezeigt. Wie in der Abbildung ebenfalls zu sehen
ist, fiigen sich die eingefiigten Metriken nahtlos in das Erscheinungsbild der Seite ein.
AufBerdem ist zu beachten, dass die Hyperlinks in den einzelnen Widgets, wie auf dem
Projekt-Dashboard, zu weiteren, detaillierteren Ansichten fithren und somit keine Funk-
tionalitat verloren geht.

13

Abbildung 1.4: SonarQube Startseite der Apache Software Foundation mit eingefiigten
Widgets aus dem Projekt Apache Archiva.

1.4 Gliederung der Arbeit

Der folgende Abschnitt gibt einen kurzen Uberblick iiber diese Arbeit. Kapitel 2 erklirt
einige Grundlagen, welche fiir das Verstandnis dieser Arbeit hilfreich sind. Kapitel 3
enthilt einen Uberblick iiber bisherige Forschungsarbeiten zum Thema adaptive Benut-
zeroberflachen, Anforderungen an das Ergebnis dieser Arbeit und inwiefern die bis-
herige Forschung diesen Anforderungen entspricht. In Kapitel 4 wird ein Konzept zur
Erfassung der Benutzerpriaferenzen und des Nutzungskontexts erarbeitet. Kapitel 5 be-
handelt das Machine-Learning-Modul, welches die Daten zum Benutzerverhalten sowie
den Nutzungskontext als Eingabe nimmt, und daraus eine nach Relevanz sortierte Liste
von Widgets ausgibt. In Kapitel 6 wird die Anpassung der Weboberflache auf Basis sol-
cher Listen beschrieben. In Kapitel 7 wird demonstriert, dass die in den vorherigen Kapi-
teln erarbeiteten Konzepte auch tatsichlich so in der Praxis umgesetzt werden konnen
und effektiv funktionieren. Mit Kapitel 8 folgt eine Zusammenfassung der Arbeit und
ein Ausblick auf Ansatzpunkte fiir weitere Forschungsarbeiten.

14

2 Grundlagen

Die zentralen Themen dieser Arbeit sind Machine-Learning und die Adaption einer Be-
nutzeroberflache, genauer gesagt einer Weboberflache. Auch das Konzept allgemeiner
Optimierungsprobleme wird in dieser Arbeit benétigt. Damit die in den nédchsten Kapi-
teln verwendeten Konzepte leichter verstandlich sind, bieten die folgenden Abschnitte
grundlegende Erklarungen zu diesen Themen, denn sie werden dazu verwendet, um
die Weboberflache von SonarQube, wie in Kapitel 1 beschrieben, an den Benutzer an-
zupassen.

2.1 Machine-Learning

Ein Machine-Learning-Algorithmus approximiert eine Funktion y(x), welche versucht
Eingabedaten entsprechend ihrer Attribute in Klassen einzuteilen. Die konkrete Zuord-
nung von Werten x und der Klassifikation der Werte y(z) wird durch den Lernprozess be-
stimmt. Hierbei ist zwischen iiberwachtem und uniiberwachtem Lernen zu unterschei-
den [13]. Um diese Klassifikatorfunktion y(x) zu erlernen, wird bei einem tiberwachten
Lernprozess eine kleine Teilmenge der moglichen Eingabedaten, deren korrekte Klas-
sifikation bekannt ist, das sog. Trainingsset, verwendet. Dabei werden Parameter der
Funktion variiert, um die fiir das Trainingsset erreichte Rate an korrekten Klassifika-
tionen zu maximieren. Bei einem uniiberwachten Lernprozess ist das Ziel vielmehr das
Finden von davor unbekannten Gemeinsamkeiten in den Daten, als das Einteilen in
vorgegebene Klassen. Daher enthalten die Trainingsdaten bei dieser Art von Machine-
Learning-Verfahren auch keine vorgegebenen Zielklassen [13].

15

2.2 Allgemeine Optimierungsprobleme

Als allgemeines Optimierungsproblem — auch nichtlineares Optimierungsproblem — wird

das Finden bzw. Approximieren eines Minimums einer reellwertigen Funktion

flzy, 29, ... 2y)

bezeichnet, wobei optionale Nebenbedingungen den Losungsraum einschranken konnen
[47]. Hierbei ist zwischen lokalen und globalen Minima zu unterscheiden, denn in
Abhangigkeit der optionalen Nebenbedingungen kann ein globales Minimum der
Funktion f diese Nebenbedingungen eventuell nicht erfiillen, aber ein lokales Mini-
mum ist unter Umstdnden schlechter als das globale Minimum [47]. Durch Umkehren
der Vorzeichen der Funktion f kann das Optimierungsproblem auch als Maximierungs-
statt Minimierungsproblem definiert werden.

2.3 Webtechnologien

Die Ergebnisse des Machine-Learnings sollen schlief3lich dafiir verwendet werden die
Weboberflache von SonarQube anzupassen. Eine Weboberflache besteht heutzutage oft-
mals aus HTML-, CSS- und Javascript-Anteilen. HTML steht fiir Hypertext Markup Lan-
guage. Die HTML-Dokumente einer Webseite kodieren die logische Struktur und den
Aufbau der Seite, das sogenannte Document Object Model (DOM). Sie bestimmen wel-
che Komponenten auf der Seite existieren und legen auch fest wie diese relativ zueinan-
der positioniert sind. Weitere Anpassungen des Stylings der Seite konnen mithilfe von
Cascading Style Sheets (CSS) vorgenommen werden. Diese CSS-Dateien enthalten ge-
nauere Vorgaben dazu, wie gewisse Elemente auszusehen haben. Dazu zdhlen beispiels-
weise die Farbe oder Grof3e von Elementen, Schriftarten und -gro3en sowie Abstdnde
zwischen Elementen [27]. Client-seitiges Javascript ermoglicht andernfalls statischen
Webseiten, auf Aktionen des Benutzers zu reagieren und Inhalte der Seite dynamisch

nachzuladen oder zu verandern [26].

16

3

Verwandte Arbeiten

3.1 Anforderungen

Das Ergebnis dieser Arbeit soll eine adaptive Benutzeroberflache sein, die aus dem Be-

nutzerverhalten und moglichen weiteren Kontextfaktoren lernt, welche Informationen

— konkret sind das die Software-Metriken aus SonarQube — fiir den Benutzer von Be-

deutung sind. Die folgenden Anforderungen spezifizieren Bewertungsmal3stabe anhand

derer andere Forschungsarbeiten zu diesem Thema bewertet werden. Tabelle 3.1 fasst

diese Anforderungen in einem Anforderungskatalog zusammen.

Al

A2

A3

Unbemerktes Erfassen des Benutzerverhaltens und -kontexts

Daten iiber das Benutzerverhalten sowie den Nutzungskontext werden ohne Zu-
tun des Benutzers und ohne dass dieser etwas davon merkt gesammelt. Daher
geschieht das Erfassen des Benutzerverhaltens sowie anderer Kontextfaktoren im
Hintergrund ohne dabei Einbriiche der Performanz zu verursachen, um den ent-
sprechenden Punkt in Problemstellung PS1 zu erfiillen.

Lernen anhand der Daten zu Benutzerverhalten und Nutzungskontext

Die Relevanz der Informationen wird nur anhand des Benutzerverhaltens und
-kontextes erlernt werden. Diese Einschrankung ist notig, um nur moglichst re-
levante und auch erfassbare Daten entsprechend Problemstellung PS1 zu sam-
meln. Die zum Lernen verwendete Machine-Learning-Methode soll dabei die in
Problemstellung PS2 genannten Kriterien erfiillen.

Anpassung der Benutzeroberfliche an den Benutzer

Die Weboberflache wird auf Basis der vom Machine-Learning-Modul gelieferten
Ergebnisse an den spezifischen Benutzer angepasst, um dessen Interaktion mit
der Anwendung, wie in Problemstellung PS3 erwahnt, effektiver zu gestalten.

17

A4 Erhalten des Seitendesigns

Bei Anpassungen der Benutzeroberfliche wird das bisherige Design erhalten und
es werden keine Briiche eingefiigt. Anderungen fiigen sich nahtlos in den Rest der
Benutzeroberflache ein, sodass der Benutzer sie nicht als storend wahrnimmt, um
Problemstellung PS3 gerecht zu werden.

A5 Lernen & Adaption wihrend des laufenden Betriebs

Die Anpassung der Benutzeroberflaiche geschieht im laufenden Betrieb und in
Echtzeit, um schnell agieren zu konnen. Das Lernen der Benutzerpréaferenzen
findet auch wahrend des laufenden Betriebs statt und muss nicht aufgrund von
Rechenleistungsintensitit zu einem anderen Zeitpunkt, in dem die eigentliche An-
wendung nicht verwendet werden kann, durchgefiihrt werden. Dabei soll die Per-
formanz der Anwendung selbst dauerhaft erhalten bleiben und darf nicht merklich

abnehmen.

Name | Beschreibung

Al | Unbemerktes Erfassen des Benutzerverhaltens und Nutzungskontexts

A2 | Lernen anhand der Daten zu Benutzerverhalten und Nutzungskontext

A3 | Anpassung der Benutzeroberfliche an den Benutzer

A4 | Erhalten des Seitendesigns

A5 | Lernen & Adaption wahrend des laufenden Betriebs

Tabelle 3.1: Anforderungskatalog zur Bewertung existierender Forschungsarbeiten zu
adaptiven Benutzeroberflachen

3.2 Bewertung verwandter Arbeiten

Dieses Unterkapitel widmet sich dem Vergleich bisheriger Arbeiten im Bereich adaptiver
Benutzeroberflachen. Als Bewertungsmalsstab werden die in Kapitel 3.1 beschriebenen

18

Anforderungen verwendet, um festzustellen inwieweit die vorgestellten Arbeiten und
Teile davon der Zielformulierung dieser Arbeit entsprechen.

3.2.1 Learning Styles Diagnosis Based on User Interface Behaviors
for the Customization of Learning Interfaces in an Intelligent
Tutoring System

Der Kontext der Arbeit von Cha et al. [16] ist die Entwicklung einer intelligenten
Benutzeroberflache fiir eine Lernumgebung. Die Grundlage dafiir, wie die Oberflache
angepasst wird, ist das Index of Learning Style-Modell (ILS) nach Felder & Silverman
[25]. Dieses Modell beschreibt verschiedene Lerntypen mit unterschiedlichen Lernwei-
sen. Durch eine adaptive Benutzeroberfliche und die Anpassung an die individuellen
Lernweisen wird ein effizienterer Lernprozess fiir den Lernenden erwartet.

Das ILS besteht aus insgesamt vier Dimensionen [16]:

Global (G) versus sequentiell (Q) in Bezug auf den Verstehensprozess von Infor-
mationen

Visuell (V) versus auditiv (A) in Bezug auf die Aufnahme von Informationen

Sensorisch (S) versus intuitiv (N) In Bezug auf die Wahrnehmung von Informatio-
nen

Aktiv (C) versus reflexiv (R) in Bezug auf die Verarbeitung von Informationen

Demnach sind ,,globale“ Lerner an einer Ubersicht iiber alle Themen interessiert, wohin-
gegen ,sequentielle“ Lerner sich an die Reihenfolge der Lektionen halten und dadurch
andere Navigationsmoglichkeiten bevorzugen. Ahnliche Unterschiede gibt es auch in
der Dimension von ,visuellen“ und ,auditiven“ Lernern, wobei erstere Bilder und De-
monstrationen und letztere Texte oder Erklarungen bevorzugen. In der dritten Dimen-
sion unterscheidet sich ein ,sensorischer Lerner durch ein hoheres Interesse an Details
und ein griindlicheres, aber dafiir langsameres, Vorgehen vom ,jintuitiven“ Typ. Zu guter
Letzt zeichnet sich ein ,aktiver* Lerner durch eine Vorliebe fiir Experimente und Diskus-
sionen aus, wihrend ein ,reflektiver Lerner es bevorzugt fiir sich Meinungen anderer
Lerner oder Experten zu reflektieren.

19

Um festzustellen in welche Kategorien ein Lerner fallt, werden die Art der Inter-
aktion, also z.B. welche Navigationswege oder Typen von Lernressourcen verwendet
werden, als Eingabesequenz bzw. als quantitativer Wert, wie z. B. die Klickfrequenz auf
ein bestimmtes GUI-Element, erfasst und in einer XML-Datei gespeichert. Fiir die initia-
le Menge an Trainingsdaten wird der Fragebogen des ILS-Modells verwendet, um fiir
die erhaltenen Daten eine Klassifikation zu erméglichen.

Die quantitativen Daten sind dabei besser dazu geeignet anhand eines Entschei-
dungsbaums (engl.: Decision Tree, kurz DT) klassifiziert zu werden, wahrend die se-
quentiellen Daten pradestiniert dafiir sind von einem Hidden-Markow-Modell (HMM)
klassifiziert zu werden. Fiir die Analyse wurden dennoch beide Methoden in allen Di-
mensionen getestet und dann tiberpriift welche Methode in welchen Dimensionen zu-
verlassiger ist. Demnach sind HMMs besser fiir die ,,G vs. Q“-Dimension, wahrend DTs
besser fiir die ,,V vs. A“-Dimension geeignet sind. In der ,,S vs. N“-Dimension hangt die
Entscheidung hingegen von den Werten des zu klassifizierenden Lerners ab und in der
»C vs. R“-Dimension ist eine Einordnung aufgrund von zu wenig Trainingsdaten sehr
schwer.

Bewertung der Arbeit Cha et al. [16] erfassen die Aktionen des Benutzers dadurch,
dass automatisch softwareseitig die Benutzereingaben verfolgt werden. Das Sammeln
der Daten geschieht dabei vollkommen transparent und unbemerkt, womit die Anfor-
derung A1 erfiillt ist. Das Machine-Learning arbeitet jedoch nur auf dem Benutzerver-
halten und lasst den Kontext, in dem sich der Benutzer befindet, aul3er Acht. Weiterhin
werden auch noch Vergleichsdaten durch den ILS-Fragebogen benotigt, um die Benut-
zerdaten klassifizieren zu konnen, weshalb es sich um ein iiberwachtes Lernen handelt.
Daher wird Anforderung A2 nicht erfiillt. Der Fokus der Arbeit lag auf der Diagnose der
Lerntypen, weshalb die Anpassung der Benutzeroberflaiche (A3 & A4) nicht beurteilt
werden kann. Ein Prototyp des verwendeten Systems wird jedoch in [31] vorgestellt.
Aullerdem ist nicht klar, ob die Klassifizierung eines Benutzers wahrend des laufenden
Betriebs (A5) oder erst danach stattfindet.

20

3.2.2 Design for Adaptive User Interface for Modeling Students’
Learning Styles

Mbiliny et al. [34] beschreibt eine adaptive Benutzeroberfliche, um damit das Finden
von Navigationspfaden in e-Learning-Systemen zu erleichtern und nicht um den Inhalt
auf den Benutzer zuzuschneiden. Dafiir wird der Lerntyp des Benutzers gelernt und
dadurch die Reihenfolge bestimmt, in der Lernmodule angezeigt werden. Dabei fokus-
sierten sie sich auf die Fragen, welche Daten der Benutzerinteraktion zum Erkennen des
Verhaltensmusters und damit des Lerntyps benotigt werden, sowie welche Eigenschaf-
ten des Benutzerinterfaces diese Lerntypen besser adaptieren kann.

Als Modell fiir die Lerntypen der Benutzer wird das Modell von Kolb [51] verwendet.
Es kennt im Gegensatz zum Modell aus [16] nur zwei Dimensionen und somit vier
Lerntypen. Aulerdem basiert es auf der Idee, dass Menschen mit ihrer Erfahrung lernen
und sich Lerntypen daher auch mit der Zeit &ndern konnen.

In der Lernumgebung soll anhand mehrerer Module zum Thema Statistik auf Grund-
schulniveau gelernt werden. Die Inhalte werden immer in vier Module - Beispiele,
Theorie, Ubungen und Problemlésungsaufgaben - aufgeteilt, wobei jedes Modul ein
vollstindiges Verstehen des jeweiligen Themas ermoglichen soll. Somit bieten diese je-
weils vollstandige Alternativen zueinander. Auf einem Auswahlbildschirm werden die
Module entsprechend des Lerntyps sortiert und in verschiedenen Grof3en angezeigt,
wobei das am besten passende Modul am grof3ten und oben dargestellt wird.

Bei der erstmaligen Verwendung wird fiir den Benutzer ein Profil erstellt, in dem
alle nutzerbezogenen Daten gespeichert werden. Die initialen Informationen sind dabei
die Antworten auf einen Fragebogen fiir das Modell von Kolb, durch die der Benutzer
einem Lerntyp zugewiesen wird. Durch weiteres Benutzen der Anwendung wird dieses
Profil mit den wahrend der Nutzung gesammelten Verhaltensmustern erweitert. Damit
hat die Anwendung immer einen Grundstock an Informationen iiber den Benutzer.

Das Vorgehen zum Erfassen der Verhaltensmuster sieht dabei wie folgt aus: Wer-
den das erste Mal alle Module zu einem Thema angezeigt, wird das Modul, welches
als erstes ausgewahlt wird, unabhéingig von der Reihenfolge, in der es angezeigt wird,
als das vom Benutzer bevorzugte interpretiert. Weiterhin wird erfasst wie viel Zeit in
den jeweiligen Modulen in Relation zu den anderen verbracht wird. Dabei wird ange-
nommen, dass ein Modul mehr geféllt, je langer der Benutzer darauf verweilt. Zum

21

Schluss gibt es einen Test, bei dem immer wieder zu den Modulen zuriickgesprungen
werden kann, um Informationen nachzuschlagen. Es wird angenommen, dass je ofter
zu einem bestimmten Modul zuriickgesprungen wird, desto mehr hat ebenjenes Modul
zum Verstandnis des Themas beim Benutzer beigetragen.

Bewertung der Arbeit Wie auch schon Cha et al. [16] verwenden Mbilinyi et al. [34]
einen hybriden Ansatz zur Erfassung des Benutzerverhaltens (Al). Es wird zwar im Ex-
periment gefordert einen Fragebogen zu beantworten, jedoch sind die daraus gewon-
nenen Informationen nur anfangs von Bedeutung, wenn noch keine Verhaltensmuster
bekannt sind. Letztere werden tatsdachlich unbemerkt vom Benutzer erfasst. Da anhand
der Verhaltensmuster die Reihenfolge der Module an den Benutzer angepasst wird ist
Anforderung A3 erfiillt, nicht jedoch A2, da nicht wirklich Machine-Learning betrieben
wird, sondern die Module lediglich anhand der Klickfrequenz und Verweildauer sortiert
werden. Das Seitendesign bleibt durch die Anpassungen in sich stimmig (A4), da le-
diglich die Sortierung und die Grof3e der Links zu den Modulen verdndert wird. Auch
wenn kein wirkliches Lernen stattfindet, wird zumindest die Anpassung der Benutzero-
berflache (A5) im laufenden Betrieb vorgenommen, was diese Anforderung zumindest
teilweise erfillt.

3.2.3 Machine learning techniques to make computers easier to use

Motoda et al. [35] beschéftigten sich weniger mit adaptiven Benutzeroberfldchen, als
mit der Vorhersage des Benutzerverhaltens. Das Forschungsobjekt ClipBoard ist eine
UNIX Shell mit graphischer Benutzeroberflache, die um die verschiedene Funktiona-
lititen erweitert wurde. In einer Multitasking-Umgebung versucht sie den nachsten Be-
fehl vorherzusagen, aus haufigen Befehlssequenzen Skripte zu erstellen und benotigte
Dateien vorzuladen, bevor sie ben6tigt werden. Dafiir zeichnet ClipBoard benutzerbezo-
gene Daten auf und erstellt daraus einen gerichteten Graphen, aus dem oft auftretende
Muster fiir Vorhersagen extrahiert werden. Die Anzeige des vorgeschlagenen Befehls
geschieht durch die Einblendung eines zum Befehl gehorigen Icons.

Fiir jeden Befehl werden neben dem vorhergehenden Befehl auch die E/A-Opera-
tionen gespeichert, d. h. welche Dateien als Eingabe bzw. Ausgabe benutzt werden, da
die Befehlsreihenfolge alleine nicht ausreicht, um zuverldssige Vorhersagen zu treffen.

22

Die gesammelten Daten mit relationalen Informationen zwischen Befehlen untereinan-
der sowie mit Eingabe-/Ausgabedateien werden in einem Graphen zusammengefasst,
indem alle Befehle und Dateien als Knoten interpretiert werden. Fiir aufeinanderfolgen-
de Befehle wird eine gerichtete Kante vom vorhergehenden zum nachfolgenden Befehl
eingefiigt. Ebenso werden Kanten von Eingabedateien zum zugeordneten Befehl und
von Befehlen zu den jeweiligen Ausgabedateien eingefiigt. Fiir jeden Befehl im Verlauf
wird dafiir so ein Graph mit begrenzter Tiefe, welche der Lange der Befehlssequenz ent-
spricht, und begrenztem Verzweigungsgrad erstellt. Dabei entspricht der Wurzel-Knoten
dem Befehl selber und die restlichen Knoten werden als verschachtelte Attribute ange-
sehen. Jeder dieser Graphen stellt dabei ein Trainingsbeispiel dar. Der von Motoda et
al. [35] verwendete Algorithmus kann dabei sowohl iiberwacht, als auch uniiberwacht
lernen.

Sind die Daten in dieser Graphstruktur konnen im nachsten Schritt, der Graph-based
Induction (GBI), hdufig vorkommende Muster aus den Graphen extrahiert werden. GBI
benutzt nur eine Heuristik: ,Alles, was haufig auftaucht, verdient Aufmerksamkeit*
[35]. Wenn sich ein kleiner Subgraph in den Daten oft wiederholt, erkennt die GBI
dieses Muster und ersetzt es durch einen neuen Knoten, welcher die zugehorigen Be-
fehle und E/A-Operationen abstrahiert. Auf diese Weise wird der Graph immer weiter
minimiert bis nur noch ein einziger Knoten tibrig ist. Die Ausgabe des Algorithmus ist in
dem Fall eine Menge an Mustern, die, wenn sie im Graphen zusammengefasst werden,
diesen Graphen minimieren.

Die Auswahl, mit welchem anderen Knoten ein Knoten zusammengefasst werden
soll, hangt dabei von der Definition der ,Grofse“ des Graphen ab und lésst sich nur
empirisch bestimmen [35], wobei sie so gewahlt werden sollte, dass damit gleichzeitig
die pradiktive Fehlerrate minimiert wird. Motoda et al. [35] wahlten als Kriterium die
Jnformationszunahme“, welche anhand der Haufigkeiten der einzelnen Knoten und
Verbindungen berechnet wird. Damit nicht direkt im ersten Schritt der gesamte Graph
zusammengefasst wird, bedarf es aulserdem auch einer Terminierungsbedingung fiir die
Clusterbildung z. B. die Anzahl der Iterationen, GroRe des Musters oder Anderungsrate
des Selektionskriteriums.

Testergebnisse zeigten, dass die E/A-Operationen eine wichtige Informationsquel-
le zur Vorhersage des nachsten verwendeten Befehls darstellt. Fehlt diese Informa-
tion fiir den Wurzelknoten, also fiir den aktuellen Befehl, dann betrdgt die Vorher-

23

sagegenauigkeit abhidngig vom Rauschen, wie z. B. unzusammenhéngenden Befehlen,
zwischen 47.2 — 52.1%. Sind diese Informationen, also die Eingabeparameter des Be-
fehls, bekannt, dann steigt die Vorhersagegenauigkeit auf 72.1 — 73.7% [35]. Aulderdem
zeigten sich Erkenntnisse der Informationstheorie als sehr bedeutsam bei der Auswahl
der zu zusammenfassenden Knoten. Als weitere mogliche Einflussfaktoren werden der
Riickgabestatus des Programms oder die Tageszeit vermutet. Ersterer kann beispiels-
weise Aufschluss dariiber geben, ob eine Datei fehlerhaft ist und neu bearbeitet werden
muss oder schon weiterverarbeitet werden kann, wahrend beispielsweise die Tageszeit
Riickschliisse auf Gewohnheiten zulésst.

Versuche die Graphminimierung mit Pradikatenlogik durchzufiihren erwiesen sich
als ineffizient, da die Laufzeit mehrere Stunden betrug. Deshalb konnte der Ansatz nicht
weiterverfolgt werden. Die Aussagekraft der Ergebnisse der GBI sind im Vergleich zur
Pradikatenlogik als schwécher einzuordnen. Als eine eingeschréankte Form der Aussa-
genlogik ist das Lernpotential zwar auch viel schwicher als das der Pradikatenlogik,
aber starker als in der Prasentation als Attribut-Wert-Paare und dabei trotzdem so effi-
zient [35].

Bewertung der Arbeit ClipBoard erfasst die Aktionen des Benutzers automatisch oh-
ne dessen Zutun (Al). Durch die Graph-based Induction werden die relationalen Da-
ten abstrahiert und wiederkehrende, strukturelle Muster erlernt (A2). Anpassungen der
Benutzeroberfliche (A3) finden jedoch kaum statt. Die einzigen Anderungen sind die
neben Dateien angezeigten Icons, welche andeuten welcher Befehl dafiir vorgesehen
ist und somit nicht die Adaption der Oberflache an den Benutzer zur Verbesserung der
Bedienung in den Fokus stellen. Bedingt dadurch wird Anforderung A4 erfiillt, da das
Seitendesign bei kleinen Anderungen leicht erhalten bleibt. Motoda et al. [35] schrei-
ben explizit, dass das Lernen in Echtzeit geschieht (A5) und keine handgeschriebene
Wissensbasis benotigt wird (A2). Ein weiterer bedeutsamer Punkt, der nicht in den An-
forderungen gefasst ist, ist die Tatsache, dass der Benutzer bei allem in Kontrolle ist und
kein Zwang besteht den vom Programm geédulserten Empfehlungen zu folgen.

24

3.2.4 A Personal Learning Apprentice

CAP ist ein sog. Learning Apprentice-System, welches einen selbstlernenden Kalender-
Manager implementiert. Der Begriff Learning Apprentice ist dabei als ein personlicher
Assistent zu verstehen, der dem Benutzer bei alltidglichen Aufgaben hilft. Dieser soll die
Gewohnheiten des Benutzers bei der Kalenderverwaltung lernen und darauf basierend
Vorschldge beim Erstellen, Verschieben, Kopieren oder Loschen von Meetings bereithal-
ten. Beispiele fiir solche Vorschlage waren Zeit und Ort des Meetings oder ob Erinnerun-
gen via E-Mail an die Teilnehmer verschickt werden sollen. Ein anderer Anwendungsfall
ist das Versenden von automatischen Antworten bei Meeting-Anfragen.
Filir die Entwicklung von CAP stellten sich Dent et al. [20] folgende Fragen:

e Kann ein solcher Assistent, selbst wenn er anfangs uninformiert ist, ausreichend
niitzlich sein, um einen Benutzer zur Nutzung zu tiberzeugen und somit iberhaupt
erst Trainingsdaten zu sammeln?

e Gibt es ausreichend méchtige Methoden zur Generalisierung, um automatisch ge-
nerelle Entscheidungsstrategien aus den Trainingsdaten zu erlernen?

e Ist die Menge der gewahlten Attribute der Trainingsdaten stabil oder dndert es
sich mit der Zeit?

Anhand dieser Fragen zeigen sie, dass Learning-Apprentice-Systeme die praktische Ent-
wicklung von personlichen Software-Assistenten ermoglichen konnen, welche bis dahin
zu teuer in Entwicklung und Wartung waren.

Der Kalender-Manager CAP bringt auch ohne eine erlernte Wissensbasis bereits die
grundlegenden Funktionen zur Verwaltung eines Kalenders, wie das Hinzufiigen und
Loschen von Terminen, und ein E-Mail-Interface zum Versenden von Erinnerungen mit.
Die aus der Benutzung gesammelten Daten enthalten den aktuellen Zustand des Kalen-
ders, Informationen zu 250 Personen (inkl. Abteilung, Biiro und E-Mail-Adresse), eine
sich weiterentwickelnde Menge an Entscheidungsregeln und Kiinstlichen Neuronalen
Netzen fiir Empfehlungen an den Benutzer, sowie Beschreibungen der letzten Befehle
des Benutzers, welche die Trainingsdaten zum Lernen darstellen. Diese Trainingsda-
ten konnen jedoch auch ein gewisses Rauschen enthalten, welches durch Eingabefehler
oder verwendete Synonyme (z. B. zwei Bezeichnungen fiir denselben Raum) verursacht
wird.

25

Die Trainingsdaten werden von CAP im laufenden Betrieb gesammelt, wenn z.B.
Termine erstellt werden, jedoch wird das Machine-Learning ,offline“ betrieben, um
Verzogerungen bei der Nutzung zu vermeiden. Fiir das Lernen werden dabei eine Ent-
scheidungsbaum-Methode dhnlich wie ID3 [44, 45], aus der eine Menge an Regeln
extrahiert werden, sowie ein Kiinstliches Neuronales Netz im Wettbewerb zueinander
verwendet. Auferdem wird jedes Attribut des Datensatzes, wie z.B. der Ort oder die
Zeit eines Meetings, als seperates Lernproblem betrachtet, wodurch Korrelationen zwi-
schen diesen Attributen nicht beachtet werden.

In Tests zeigte sich, dass CAP nach durchschnittlich 1-2 Monaten Training im alltag-
lichen Betrieb niitzliche Vorschlidge liefern kann. Die Akzeptanzrate der Benutzer fiir
diese Vorschlédge variierte dabei von 45% bis 70% bei Vorschldgen zu Ort und Zeit ei-
nes Meetings. Diese Zahlen konnen jedoch verbessert werden, wenn nur Vorschlage
gemacht werden, bei denen CAP sich sicher ist und zuverléssigere Regeln, fiir die mehr
Trainingsbeispiele zur Verfiigung stehen, verwendet. Dabei muss jedoch ein Kompro-
miss zwischen Genauigkeit und Abdeckung der Trainingsbeispiele geschlossen werden.
Die Qualitat der erlernten Regeln entspricht in etwa der von manuell festgelegten Re-
geln, wodurch Grund zur Annahme besteht, dass CAP die Aufgabe der Bestimmung

dieser Entscheidungsregeln zuverlassig iibernehmen kann.

Dent et al. [20] sehen somit in CAP einen erfolgreichen Kalender-Manager, der dem
Anspruch geniigt niitzlich zu sein, auch wenn noch kein Wissen iiber den Benutzer
erlernt werden konnte. Sie kamen auferdem zu dem Schluss, dass die Auswahl der
zu analysierenden Attribute eines Meetings sehr wichtig ist, solange die verwende-
ten Machine-Learning-Methoden nicht mit einer zu grol3en Menge Attribute umgehen
konnen. Dennoch werden die manuell ausgewdahlten Attribute als ausreichend stabil
angesehen, um auch auf langere Zeit und mit verschiedenen Benutzern gute Ergebnisse
zu erzielen. Ein weiterer Punkt, auf den sie hinweisen sind mogliche Kontextfaktoren,
die (noch) nicht von CAP beobachtet werden konnen, aber dennoch von Bedeutung
sind z.B. die Kalender anderer Personen oder Raumbelegungen. Eine wichtige Bedin-
gung fiir die erfolgreiche Anwendung des Kalender-Managers sei au3erdem, dass dieser
Anderungen in der Welt schneller lernt, als sie geschehen, d. h. er muss sich an die Ge-
gebenheiten anpassen, bevor sie sich erneut dndern.

26

Bewertung der Arbeit Die Arbeit von Dent et al. [20] enthilt neben der offensicht-
lichen Beschreibung ihres Prototyps ebenso viele wichtige Faktoren, die es allgemein
bei der Entwicklung eines lernenden Systems zu beachten gibt. Einer davon ist die Tat-
sache, dass ein Benutzer sich nur dann mit der Anwendung auseinandersetzt, wenn
diese auch ohne erlerntes Wissen einen gewissen Mehrwert hat und fiir den Benutzer
beim Erfassen der Benutzerdaten keine signifikante Belastung bedeutet, was CAP auch
gelingt (A1). Wie auch Motoda et al. [35] in ihren Tests, haben Dent et al. [20] auf
Storeinfliisse in den Eingabedaten z.B. durch Schreibfehler beim Tippen hingewiesen,
welche nach Moglichkeit erkannt und bereinigt werden sollten.

Das Ziel des Kalender-Managers CAP war nicht die Verbesserung der Bedienung
durch eine Anpassung der Benutzeroberfliche, sondern durch das Prédsentieren von
niitzlichen Vorschldgen, weshalb Anforderung A3 nicht erfiillt wird und Anforderung
A4 hier nicht anwendbar ist. Mit dem Lernen durch Entscheidungsbaum-Methoden so-
wie Kiinstlichen Neuronalen Netzen anhand der vom Benutzer eingetragenen Termine
erfiillt CAP jedoch die Anforderung A2. Da der Lernvorgang aber offline durchgefiihrt
wird und dadurch auch keine Anpassung des Verhaltens im laufenden Betrieb erfolgt,
ist Anforderung A5 nicht erfillt.

3.2.5 TFMAP: Optimizing MAP for Top-N Context-aware

Recommendation

Im Bereich des kollaborativen Filterns und der kontextsensitiven Empfehlungen haben
Shi et al. [49] mit TFMAP einen Ranking-Algorithmus entwickelt, welcher unter Ein-
bezug von implizitem Feedback die besten n Elemente fiir einen Benutzer in einem
gegebenen Kontext — nach einem erlernten Ranking sortiert — ausgibt. Bei diesem Al-
gorithmus wird ein latentes Modell der Benutzer, Items und verschiedenen Kontexte
gelernt, indem im Gradientenverfahren die sog. Mean Average Precision (MAP), die sich
direkt aus diesen Modellen ergibt, optimiert wird.

Das implizite Feedback des Benutzers wird in einem bindren Tensor gespeichert,
was in [49] einer dreidimensionalen Matrix entspricht. Frithere Arbeiten verwendeten
eine einfache Matrix, um Verbindungen zwischen Benutzern und zu bewertenden Items
darzustellen. Um Kontextinformationen miteinzubeziehen wird diese Matrix um eine
Dimension erweitert. Fiir jede Kombination aus Benutzer, Item und Kontext ist hierbei

27

auch nur gespeichert, ob eine Interaktion zwischen diesem Benutzer und diesem Item in
dem spezifizierten Kontext stattfand oder nicht. Daher ist der verwendete Tensor auch
nur binar.

Die latenten Modelle der Benutzer, Items und Kontexte werden respektive als die
zweidimensionalen Matrizen U € RMXP vV ¢ RMXD und C € REXP mit zufalligen
Werten initialisiert. M, N und K stehen hierbei fiir die Anzahlen von Benutzern, Items
und Kontexten. Die jeweiligen Matrizen speichern fiir jedes Objekt eine feste Anzahl D
an latenten Eigenschaften. Die Eigenschaftsvektoren einer Kombination aus Benutzer,
Item und Kontext werden faktorisiert und auf Grundlage aller moglichen Faktorisierun-
gen wird der MAP-Wert errechnet.

Die Mean Average Precision ist dabei als die ,Qualitét tiber alle Empfindlichkeitsle-
vel“ bzw. als durchschnittliche Flache unter der precision-recall-Kurve zu verstehen. Sie
gibt Auskunft dariiber wie gut ein Ranking ist, mit der Besonderheit, dass Items, die
falschlicherweise weit oben im Ranking stehen, starker bestraft werden, als Items, die
falschlicherweise zu weit unten im Ranking stehen. Dadurch sollen keine schlechten
Items auf guten Platzen im Ranking stehen und es ist nur zweitrangig, dass gute Items
auch auf guten Platzen stehen.

Es zeigt sich, dass bereits ohne Verwendung des Kontexts der TFMAP Algorithmus
signifikant besser ist, als andere Algorithmen auf dem Stand der Forschung [49]. Durch
Miteinbezug des Kontextes konnte das Ergebnis noch weiter um 5% des MAP-Wertes
verbessert werden [49]. Somit kann TFMAP trotz nur allgemeiner, impliziter Feedback-
Daten gute Ergebnisse erzielen.

Bewertung der Arbeit Der Ansatz des kollaborativen Filterns ist eine Methode aus
dem Bereich des Data Mining, die typischerweise darauf ausgerichtet ist, Daten von vie-
len Benutzern zu analysieren, um daraus Informationen iiber einen konkreten Benut-
zer abzuleiten. Daher bleibt offen wie gut der von Shi et al. [49] entwickelte TFMAP-
Algorithmus bei einem oder nur wenigen Benutzern funktioniert.

TFMAP ist bei den benétigten Eingabedaten vergleichweise gentigsam, da keine
nadhere Information {iber die Interaktion eines Benutzers mit einem Element im jewei-
ligen Kontext benotigt wird, sondern nur ob diese stattfand oder nicht. Dadurch, dass
nur solches implizites und kein explizites Feedback gesammelt wird, ist Anforderung
Al erfiillt. Anhand dieser Daten erfolgt durch die Optimierung der Benutzer-, Item-

28

und Kontextmodelle eine Form des Lernens (A2), die die gesammelten Daten in Eigen-
schaftswerte {ibersetzt.

Der Fokus von [49] lag darauf einen Ranking-Algorithmus zu entwerfen und nimmt
daher keinen Bezug auf Anpassung einer graphischen Benutzeroberfliche. Dadurch
werden Anforderungen A3 und A4 nicht erfiillt. Lernen & Adaption wahrend des lau-
fenden Betriebs (A5) ist hingegen moglich, obwohl fiir jede Iteration im Gradientenver-
fahren laut [49] mehrere Sekunden benoétigt werden, indem Lernen und Adaption der
Oberflache entkoppelt voneinander ablaufen. Somit ware eine Adaption der Benutzero-
berflache auch in Echtzeit moglich.

3.3 Zusammenfassung und Handlungsbedarf

Im vorhergehenden Abschnitt wurden verschiedene Arbeiten vorgestellt, die sich mit
dem Thema Nutzungskontext und Adaption an den Benutzer auseinandersetzen. Die
Arbeiten von Cha et al. [16] und Mbilinyi et al. [34] haben erste Anséatze bereitgestellt,
um Oberflachen von Lernplattformen an verschiedene Typen von Benutzern, entspre-
chend eines festen Benutzermodells, anzupassen. Jedoch war es bei beiden Arbeiten
notwendig die Benutzer einen Fragebogen ausfiillen zu lassen.

In der Arbeit von Motoda und Yoshida [35] wurde ein auf einem Graphenmodell
beruhender Ansatz verfolgt. Dabei wird des Verhalten des Benutzers als Graph, in dem
Aktionen und die daran gekoppelten Ressourcen voneinander abhdngen, interpretiert.
Anhand dieser strukturierten Wissensbasis wird versucht, Wissen iiber den Benutzer in
einem bestimmten Kontext, der Verhaltenshistorie, abzuleiten.

Das Konzept eines Learning Apprentice, wie der von Dent et al. [20], zeigt wichtige
Punkte auf, die es beim Design von adaptiven Systemen zu beachten gilt. Da CAP jedoch
auf Basis von Kalendereintrdgen als Datensdtze arbeitet und damit Empfehlungen bei
neuen Eintragen liefert, ist das geloste Problem ein anderes. Im Gegensatz dazu ver-
sucht diese Arbeit aus einer gegebenen Menge von Widgets die relevantesten davon zu
finden.

Shi et al. [49] widmen sich genau der Problematik eines Top-n-Rankings und ver-
wenden dazu nur implizites Wissen iiber das Benutzerverhalten. Einziger Nachteil ist
der hohe Rechenaufwand, der Lernen & Adaption im laufenden Betrieb schwer macht.

29

R
N |
i \5 5@@ 5’7& &
Al Ve v v v Ve
A2 X X v v Ve
A3 <> v < X X
A4 <& v < X X
A5 < o v X Ve

Tabelle 3.2: Ubersicht iiber die Bewertung der untersuchten Arbeiten. Ein ,v/“ steht
dabei fiir eine erfiillte Anforderung, ein ,X“ fiir eine nicht erfiillte Anforderung und ein
% steht fiir eine teilweise erfiillte Anforderung.

Wie Tabelle 3.2 zeigt, konnte keine der untersuchten Arbeiten alle Anforderungen
erflillen. Daher besteht der Handlungsbedarf eine neue Losung zu entwickeln, die die
oben genannten Anforderungen erfiillt. Dabei ist der Ansatz von Shi et al. [49] beson-
ders vielversprechend, da die Problemstellung, aus einer Menge Elemente die fiir einen
Benutzer besten n Elemente anhand des Kontextes zu bestimmen, mit der in Kapitel 1
beschriebenen eng verwandt ist. Aus diesem Grund wird sich diese Arbeit den von Shi et
al. [49] beschriebenen TFMAP-Algorithmus als Vorbild nehmen und an das vorliegende

Problem anpassen.

30

4 Kontextfaktoren

Als erster Schritt auf dem Weg zur Anwendung eines Machine-Learning-Algorithmus
und der Implementierung einer adaptiven Benutzeroberflache miissen zuerst die zu
verarbeitenden Kontextinformationen, welche Riickschliisse auf die Relevanz der ver-
schiedenen Software-Metriken in den einzelnen Widgets zulassen, erfasst werden. Die
wichtigste Frage dabei ist es, welche Kontextfaktoren iiberhaupt existieren und relevant
sind. Hierfiir werden in Kapitel 4.2 nacheinander Gruppen dieser Faktoren abgehandelt,
um dem Problem mit einem Top-down-Ansatz zu begegnen.

Die gewonnenen Erkenntnisse werden bzgl. ihres moglichen Einflusses bewertet.
Auflerdem muss analysiert werden, wie gut diese in einem realen Einsatzszenario er-
fasst werden konnen. Da es sich beim Demonstrator um eine Webanwendung handelt,
stehen Sensoren wie z. B. Eyetracker, Kameras oder Mikrofone im Normalfall nicht zur
Verfiigung. Deshalb konnen manche erwahnten Einfliisse, wie beispielsweise die Stim-
mung des Benutzers, nicht auf diese Weise erfasst werden, sondern miissten indirekt
z.B. iiber den Zustand der Programmqualitét inferiert werden.

Zum Schluss wird ein Konzept vorgestellt, wie die in diesem Kapitel erlangten Er-
kenntnisse in der zu entwickelnden adaptiven Benutzeroberfliche verwendet werden.
Es wird dargestellt welche Kontextinformationen mit welcher Begriindung verwendet
werden, aus welchen direkt verfiigbaren Informationen diese inferiert werden und aus
welchen Quellen diese Informationen stammen.

4.1 Bewertungskriterien

Wie bereits in Kapitel 3 geschehen, muss auch fiir die auszuwdhlenden Kontextfakto-
ren definiert werden, nach welchen Kriterien diese bewertet und ausgewahlt werden.
Ein wichtiger Anspruch an einen Faktor ist es dabei ein einfaches Erfassen der entspre-
chenden Werte des Faktors zu ermoglichen, da dieser andernfalls keinen Nutzen mit
sich bringt, wenn es zu schwer ist die entsprechenden Werte zu bestimmen. Ein wei-

31

Name | Beschreibung

K1 Einfaches Erfassen der Daten

K2 | Relevante Erklarung von Varianz

K3 | Kontexteigenschaft

Tabelle 4.1: Anforderungskatalog zur Bewertung potentieller Kontextfaktoren

terer Anspruch ist es, dass ein Kontextfaktor auch dazu beitragen soll Vorhersagen zu

verbessern.

Die folgende Aufzdhlung beschreibt all die Anforderungskriterien, anhand derer die

potentiellen Kontextfaktoren bewertet und ausgewahlt werden:

K1

K2

K3

Einfaches Erfassen der Daten

Die Werte eines potentiellen Kontextfaktors miissen in einfacher Weise von der
Anwendung bestimmt und verwendet werden konnen. Dazu darf kein erheblicher
Aufwand fiir den Benutzer entstehen, da dieser moglichst wenig beeintrachtigt
werden soll. Dariiber hinaus konnen zusatzliche Geridte und Sensoren zum Er-
fassen von Kontextfaktoren, welche nicht zur standardméaldigen Peripherie eines
Arbeitscomputers gehoren, nicht vorausgesetzt werden.

Relevante Erkldrung von Varianz

Irrelevante Kontextfaktoren, welche keinen signifikanten Anteil der Varianz in
den Eingabedaten — dem impliziten Feedback des Benutzers — erkldren konnen,
konnten die Vorhersagen des Algorithmus verschlechtern, da sie als Rauschen wir-
ken konnen [38]. Daher sind vor allem Faktoren, die in allen Situationen gleiche
Werte haben, wie z.B. das Geschlecht bei ein und demselben Benutzer, nicht in
der Lage Varianz in den Eingabedaten zu erklaren.

Kontexteigenschaft

Ein Kontextfaktor muss die Situation einer Interaktion zwischen Benutzer und
Software-Metrik ndher beschreiben. Daher muss auch ein Bezug zu dieser Inter-
aktion bestehen, um Korrelationen zwischen Kontextfaktor sowie Benutzern und
Metriken plausibel zu erklaren.

32

4.2 Identifikation von Kontextfaktoren

Das folgende Zitat soll einleitend ein erstes Verstdndnis dariiber geben, was unter dem
Begriff ,Kontext“ zu verstehen ist:

We define context as any information that can be used to characterize the
situation of an entity, where an entity can be a person, place, or physical or
computational object.

— Gregory D. Abowd [6]

G. Adomavicius und A. Tuzhilin kategorisieren Kontextfaktoren in [7] und betrachten
zur Einteilung von Kontextfaktoren, was ein Recommender System iiber die Faktoren
weifd und wie sich die Informationen mit der Zeit 4ndern [54]. Durch diese Einteilung
konnen bereits manche Faktoren aussortiert werden, denn es konnen in dieser Arbeit
nur Kontextfaktoren verwendet werden, die auch beobachtbar und deren Werte fest-
stellbar sind [55].

Fiir die Auswahl der Kontextfaktoren ist es notig noch weitere Punkte zu beachten.
Einer davon ist es deren Anzahl zu begrenzen. Das ist zum einen deshalb notwendig, da
durch eine steigende Anzahl von Kontextfaktoren auch die Komplexitat der Berechnung
und die Menge der zu erfassenden Daten steigt; zum andern kann darunter die Qua-
litdt der Ergebnisse leiden [53]. Irrelevante Kontextfaktoren, d.h. Faktoren, die kaum
Varianz in den Daten erklaren konnen, konnen die Vorhersagen verschlechtern, da sie
in dem Fall als Rauschen in den Daten wirken [9, 38].

Ein weiterer Punkt sind Eigenschaften, die einen relevanten Kontextfaktor ausma-
chen. Gewissermalden eignen sich Attribute der beteiligten Benutzer und Software-
Metriken als Kontext, aber nur unter der Bedingung, dass sie sich zwischen zwei In-
teraktionen verandern, was auch auch dem Trend bei Recommender Systems entspricht
[54]. Dies schliel3t Faktoren wie z.B. das Alter oder das Geschlecht aus, da diese zwi-
schen zwei Interaktionen im Normalfall als konstant angenommen werden konnen.

Die folgende Gruppierung der Kontextfaktoren richtet sich nach der jeweiligen Quel-
le der Informationen und wurde nur beispielhaft gewahlt, um diese Faktoren iibersicht-
lich und thematisch zu gruppieren. Dabei sind unter softwarebezogenen Faktoren die-
jenigen zu verstehen, die aus der Software direkt stammen. Dazu zahlen v. a. Software-
Metriken, da sie im Kontext dieser Arbeit die Hauptinformationsquellen bzgl. des Zu-

33

stands der vom Benutzer zu entwickelnden Software sind. Ahnlich verhilt es sich mit
benutzer-, projekt- und umgebungsbezogenen Kontextfaktoren, die jeweils respektive
durch Benutzer, das Projekt bzw. die Umgebung bedingt werden.

Durch diese Gruppierung wird bereits eine Unterscheidung der verschiedenen Qua-
lititen vorgenommen. Das bedeutet, dass verschiedene Typen von Kontextfaktoren ver-
schiedene Arten von Aussagen treffen konnen. Es kann also beispielsweise nicht vom
aktuellen Wetter auf die Qualitat des Quelltextes geschlossen werden.

Da die konkrete Auswahl von Kontextfaktoren in Recommender Systemen immer
auch vom konkreten System abhangt [39], ist es nicht moglich eine allgemeingiiltige
Liste relevanter Faktoren aus der Literatur zu gewinnen, auch wenn sie Vorschlége fiir
ein paar haufig verwendete Faktoren liefert. Eine Befragung der Benutzer ist auferdem
keine zuverlassige Methode Kontextfaktoren zu finden, da diese die Relevanz im Allge-
meinen schlecht einschitzen kénnen [40]. Aus diesen Griinden wird in den folgenden
Kapiteln versucht zu ergriinden, welche potentiellen Kontextfaktoren tiberhaupt exis-
tieren. Inwieweit diese geeignet und relevant sind, wird anhand der Erfassbarkeit der
entsprechenden Kontextinformationen und der von Odic¢ et al. in [39] gewonnenen Er-
kenntnisse bewertet. Diese sagen aus, dass sich ein interessanter Kontextfaktor durch
Variationen seines Zustands zwischen zwei Benutzer-Metrik-Interaktionen auszeichnet,
anhand derer eine variierende Relevanz der entsprechenden Software-Metriken erklart
werden kann.

4.2.1 Softwarebezogene Kontextfaktoren

Bei der téaglichen Arbeit muss ein Entwickler iiber den Zustand der Software im Bil-
de sein, um angemessen reagieren zu konnen. Wie bereits erwahnt, sind Software-
Metriken ein bedeutendes Werkzeug, um dieses Ziel zu erreichen. Sie werden direkt
aus dem Quelltext abgeleitet und beschreiben bestimmte Attribute der Software [5].
Aus diesem Grund sind die Eigenschaften der konkreten Software auch wichtige Ein-
flussgroRen fiir diese Metriken. Durch diese enge Bindung lassen sich daher aus den
Metriken selbst auf direktem Wege Informationen iiber die Software - und damit auch
iiber die Relevanz der einzelnen Metriken - gewinnen.

Bei der Betrachtung einer Software-Metrik sind vor allem die folgenden Typen von
Informationen naheliegend:

34

e Welchen Wert hat eine bestimmte Metrik?
e Wie ist die Wertednderung einer bestimmten Metrik?
e Wie lange stagniert der Wert einer bestimmten Metrik?

Diese verdndern sich typischerweise im Verlauf der Weiterentwicklung einer Software
und sind deswegen bei einem Aufruf als potentiell relevante Kontextfaktoren zu be-
trachten [38].

Durch den Wert selber erhédlt man die direkte Information iiber den Zustand ei-
ner Software. Wird dieser Wert in Relation zu anderen Projekten gesetzt — falls solche
Vergleiche sinnvoll sind, wie in sehr dhnlichen Projekten, oder anderen Modulen im
gleichen Projekt, aber auch durch blof3e Erfahrung — kann daraus bestimmt werden,
wie kritisch der Zustand ist und ob Handlungsbedarf besteht. Je schlechter der Zustand
ist und je mehr Handlungsbedarf besteht, desto wichtiger ist es, dies den Entwickler
wissen zu lassen, damit dieser darauf reagieren kann. Falls alles in Ordnung ist, muss
der Entwickler nicht damit abgelenkt werden.

Aus dem Werteverlauf lassen sich auf dhnliche Weise Indizien beziiglich der Rele-
vanz einer Metrik ableiten. Ahnlich wie beim Vergleich aktueller Absolutwerte, kann
der Verlauf eines Wertes ebenfalls auf den Handlungsbedarf an der jeweiligen Stel-
le hinweisen. Der Vorteil dabei liegt an der Eigenschaft, dass vielmehr das Ausmal}
der Wertedanderung, als der Wert selbst zur Aussagekraft beitragt, d.h. ein Vergleich
mit anderen Projekten oder Modulen ist weniger von Bedeutung. Dennoch geniigt es
moglicherweise nicht, nur die Wertednderung zu betrachten, da ein steigender Wert
in einem kritischen Wertebereich nicht zwangslaufig eine Entwarnung bedeutet. Auf
der anderen Seite kann analog eine sich verschlechternde Software-Metrik bereits ei-
ne frithzeitige Warnung ermoglichen, selbst wenn der Wert selbst noch in einem ver-
tretbaren Bereich ist. Bei der Betrachtung der Werteverlaufe konnte aulderdem kleinen
Fluktuationen weniger Beachtung geschenkt werden, als langer anhaltenden Trends,
da ansonsten auf Veranderungen, die an und fiir sich unerheblich sind, reagiert werden
miusste.

In Bezug auf die Software-Metriken konnen auch noch dauerhaft stagnierende Me-
triken eine Rolle spielen, da sie einen Hinweis auf Stillstand sind. Hierbei ist jedoch
mit Vorsicht zu walten, denn selbst eine Metrik mit dauerhaft schlechten Werten kann

35

auf zweierlei Weisen gedeutet werden. Einerseits kann dies bedeuten, dass dieser Zu-
stand zu einem blinden Fleck geworden und aus dem Fokus der Entwickler gewandert
ist, aber andererseits kann es auch bedeuten, dass diese Metrik lediglich eine geringe
Prioritdt hat und andere Aspekte mehr Aufmerksamkeit verdienen.

Bewertung

Sollen die absoluten Werte von Software-Metriken verwendet werden, sind zusétzlich
Vergleichswerte notwendig, da aus einem blof3en Wert im Allgemeinen deutlich we-
niger Informationen herausgezogen werden kann. Welche Werte fiir welches Projekt
akzeptabel sind, ist u.a. deshalb schwer zu berechnen, weil bei jedem Projekt andere
Anforderungen gestellt werden, andere Personen mitarbeiten und eventuell auch eine
andere Architektur vorliegt. Daher ist eine Einschitzung und Bewertung eines konkre-
ten Wertes schwer, sodass die Einordnung konkreter Werte in eine auf andere Projekte
ibertragbare Kontextdefinition ebenfalls schwer moglich ist und wird aus diesem Grund
in dieser Arbeit auch nicht versucht. Die entsprechenden Daten konnen zwar einfach er-
fasst werden, aber die sinnvolle Verwendung ist zu aufwendig.

Stagnierende Werte haben ein dhnliches Problem, denn es wéare zwar als Entwickler
interessant zu wissen, welche Metriken bei verhaltnisméaf3ig schlechten Wertebereichen
stagnieren. Im umgekehrten Fall, wenn sie in guten Wertebereichen stagnieren, ist dies
jedoch vergleichsweise uninteressant und ohne Relativierung des Wertes ist diese Ein-
teilung ebenso schwer zu vollziehen.

Ein geeigneterer Ansatz ist es lediglich das Vorzeichen der letzten Verdnderung einer
Metrik zu betrachten. Auch wenn dadurch weniger spezifische Erkenntnisse transpor-
tiert werden, wird dennoch die grundlegende Information iiber den Verdnderungstrend
iibermittelt. Diese Information kann auch ein in Hinsicht auf Software-Metriken uner-
fahrener Benutzer nutzen, da keine Erfahrung iiber die Bedeutung der konkreten Ab-
solutwerte notig ist. Daran lasst sich zwar noch nicht erkennen, ob der Zustand der
jeweiligen Metrik ,gut* oder ,schlecht” ist, jedoch geniigt es fiir die Anwendung dieser
Arbeit zu wissen, ob sich der Zustand verbessert oder verschlechtert hat.

Somit bleibt von den softwarebezogenen Kontextfaktoren die Richtung der Werte-
veranderung als vielversprechender und vergleichsweise leicht zu extrahierender Faktor
iibrig und wird im Rahmen der Kontextdefinition in Kapitel 4.3 verwendet.

36

& S
< % &

(9 . &

S N &
S & &

W F S

K1 v/ v v
K2 <+ v <
K3 v v v

Tabelle 4.2: Ubersicht iiber die Bewertung der softwarebezogenen Kontextfaktoren. Ein
WV steht dabei fiir ein erfiilltes Kriterium, ein ,X“ fiir ein nicht erfiilltes Kriterium und

ein ,“ steht fiir ein teilweise erfiilltes Kriterium.

4.2.2 Benutzerbezogene Kontextfaktoren

Der Benutzer stellt in dieser Arbeit den Bewertungsmaf3stab und damit auch nach An-
sicht von Zheng et al. [55] einen relevanten Kontextfaktor dar. Gleichermal3en ist es
schwer, lediglich durch implizites Feedback wie in der Arbeit von Shi et al. [49] bei der
Interaktion mit einer Anwendung Informationen {iber ihn zu erhalten.

Die Stimmung, Wachsamkeit und Konzentrationsfahigkeit des Benutzers konnen ei-
ne grolde Wirkung auf dessen Verhalten, die Informationen, welche ihn interessieren,
und auch wie diese aufgenommen werden kénnen haben. Ein erschopfter Entwickler
wird potentiell ein anderes Verhalten an den Tag legen, als jemand, der wach und kon-
zentriert ist. Aulerdem sind Emotionen auch bei vielen kognitiven Prozessen, wie z. B.
kausalen Argumentationen, Nachdenken, Abschéatzungen oder Planaufgaben, beteiligt,
weshalb davon ausgegangen werden kann, dass Anwendungen, die Emotionen beach-
ten, besser nutzbar sind [21].

Im Gegensatz dazu lasst sich das Verhalten bei der Interaktion mit der Anwendung
im Rahmen der Peripherie des Computers problemlos erfassen. Es muss z. B. lediglich
gespeichert werden, auf welche Widgets wie oft geklickt wurde oder wie lange ein Be-
nutzer danach auf einer Seite verweilt. Daraus lassen sich dann das Interesse und poten-
tiell auch Gewohnheiten des Benutzers ableiten [34]. Dabei ist nicht zu vergessen, dass

37

ebenjene fiir den Benutzer subjektiv interessanten Metriken nicht zwangslaufig auch
gemal der in Kapitel 4.2.1 genannten Kriterien relevant sein miissen.

Die Stellung bzw. die Aufgabe des Entwicklers kann weitere Informationen dartiiber
liefern, was fiir ihn relevant sein kann, denn davon ist abhdngig welche Metriken im
Moment iiberhaupt von Bedeutung sind und einen Mehrwert mit sich bringen. Wahrend
ein Tester an der Testliiberdeckung des Quelltextes interessiert ist, interessiert sich ein
Entwickler in der Qualitatssicherung womoglich eher fiir die Komplexitat der einzelnen
Funktionen und Methoden, um zu versuchen diese zu reduzieren.

Bewertung

Das Befinden eines Benutzers zu erfassen gestaltet sich allein schon aufgrund der dafir
fehlenden Sensorik als nicht praktisch realisierbar. Diese Einfliisse sind schwer zu ana-
lysieren, wenn kein erheblicher, zusatzlicher Aufwand betrieben wird, um physiologi-
sche Merkmale des Benutzers zu erfassen und zu analysieren, wobei diese selbst dann
nicht zuverlassig erkannt und gedeutet werden konnen, da solche Daten typischerwei-
se starkes Rauschen und keine klaren Grenzen besitzen [18, 21]. Im Falle von Sonar-
Qube findet zwischen Benutzer und Anwendung aul3erdem kaum Interaktion statt, aus
der auf z.B Stimmung, Wachsamkeit oder Konzentrationsfahigkeit geschlossen werden
kann, denn der Grof3teil der Navigation findet typischerweise nur mit der Maus oder
Tastaturkiirzeln statt. Mochte man jedoch beispielsweise Ermiidung des Benutzers zu-
verlassig erkennen, waren z.B. EEG-Diagramme, Kameras oder Mikrofone notwendig
[15, 21], was fiir die alltdgliche Nutzung nicht zumutbar ist.

Der Ansatz auf die Aufgabe des Entwicklers zu schlie3en konnte Aufschluss dariiber
geben, welche Teile des Programmcodes interessant sind, aber diese Schlussfolgerung
zu machen ist ebenfalls schwer. Da sich die Rolle eines Entwicklers schnell &ndern kann
und Entwickler manchmal auch gleichzeitig Tester sind, ist eine solche Einteilung nicht
zuverldssig machbar. Selbst wenn versucht werden soll eine andere Aufgabenaufteilung
als Grundlage zu verwenden, ist es nicht trivial die charakteristischen Verhaltensindi-
katoren zu identifizieren. Angenommen Entwickler- und Tester-Rollen waren in der Tat
strikt getrennt, wiirde es nicht ausreichen Zugriffe auf Test-Coverage einzelner Klassen
zu beobachten, denn ein Entwickler kann genauso daran interessiert sein zu wissen,

38

welche Funktionalitdten bereits ausreichend getestet sind, wenn er diese Funktiona-
litdten in seinem Code verwenden mochte.

Das Interesse an bestimmten Metriken lasst sich jedoch indirekt {iber das Verhal-
ten des Benutzers erfassen. Interessiert sich ein Benutzer fiir spezielle Metriken, wird
er haufiger auf die entsprechenden Links klicken, um sich weitere Details anzeigen zu
lassen [16]. Die Frequenz, mit der eine Metrik im Vergleich zu anderen Metriken aus-
gewahlt wird, kann ein erster Indikator sein, ist aber noch nicht ausreichend, denn der
Benutzer kann auch nur aus Versehen darauf geklickt haben. Um solche Versehen aus-
schliefen zu konnen wiirde zusatzlich noch die Verweildauer auf der Seite benétigt,
denn wenn ein Benutzer nach dem Klicken auf eine Metrik auf der Seite bleibt, ist da-
von auszugehen, dass er an den Informationen wirklich interessiert ist [34]. Die Klick-
frequenz bietet damit die Moglichkeit direkt das Interesse des Benutzers zu erfassen und
ist deshalb weniger eine Form von Kontext, als eine feingranularere Form von implizi-
tem Feedback. Wird das binare implizite Feedback, welches nur angibt, ob ein Benutzer
eine bestimmte Metrik angeklickt hat oder nicht, zusétzlich mit der relativen Klickfre-
quenz im Vergleich zu anderen Metriken gewichtet, konnte somit die personliche Be-
vorzugung verschiedener Metriken noch starker in das implizite Feedback eingebracht
werden.

Da Klickfrequenz und Verweildauer des Benutzers auch in der Literatur [16, 34]
die verbreitetsten Messgrofden sind, werden sie zwar zur Verfeinerung des impliziten
Feedbacks verwendet, nicht jedoch als Kontextfaktor. Dies ist darin begriindet, dass sie
semantisch mehr dem Feedback entsprechen und weniger einen diskreten Kontext fiir
eine einzige Interaktion beschreiben, sondern das Verhalten iiber eine langere Zeit hin-
weg, wodurch die Kontexteigenschaft nicht erfiillt ist.

4.2.3 Projektbezogene Kontextfaktoren

Bei der Betrachtung des Projektkontextes ist neben den einzelnen Teilen des Projek-
tes, wie z. B. Planungen, Aufgaben und die daran beteiligten Personen, auch das grof3e
Ganze, das Projekt selber, als Kontext relevant. Die grobste Einteilung von Software-
Metriken in SonarQube besteht in der Einteilung nach Projekten, wobei jedes Projekt
einen separaten Einzelkontext darstellt. Beziiglich der Relevanz verschiedener Metriken
fiir einen Entwickler spielt das insofern eine Rolle, dass ein Entwickler sich im Regelfall

39

S \‘»‘é}&
0@6&0 @5& > @C\’& &@Q &Qg’o i
S « & v
K1 X X v X
K2 4 4 4 v
K3 4 4 X v

Tabelle 4.3: Ubersicht iiber die Bewertung der benutzerbezogenen Kontextfaktoren. Ein
WV steht dabei fiir ein erfiilltes Kriterium, ein ,X“ fiir ein nicht erfiilltes Kriterium und
ein ,,“ steht fiir ein teilweise erfiilltes Kriterium.

hauptsachlich fiir die Metriken der Projekte, an denen er auch zur Zeit arbeitet, inter-
essiert. Dadurch ermoglicht der Einbezug des Projekts, an dem der Entwickler aktuell
arbeitet, bereits ein ausgiebiges Herausfiltern von wahrscheinlich irrelevanten Metriken
aus anderen Projekten.

Eine weitere, erhebliche und auch unnachgiebige Einflussgrof3e in Projekten ist die
Zeit. Daher hat auch der zeitliche Kontext, relativ zu Deadlines oder Projektterminen ge-
sehen, das Potential Prioritdten zu verschieben. Dies geschieht vor allem dadurch, dass
im Verlauf der Zeit die Ziele und Erwartungen an den aktuellen Ist-Stand sowie die noch
verfiigbare Zeit angepasst werden miissen. Nimmt man einen agilen Softwareentwick-
lungsprozess als Beispiel, wiirde sich beispielhaft am Anfang eines Sprints ein Ziel zum
Abbau der technischen Schuld, wie ,Alle grof3eren Fehler beseitigen“, vorgenommen.
Vergeht etwas Zeit und der Sprint neigt sich dem Ende zu, wird jedoch moéglicherweise
klar, dass stattdessen noch mehr Arbeit in die neue, geforderte Funktionalitiat gesteckt
werden muss und deswegen die Testiiberdeckung fiir diese neuen Funktionen hochge-
halten werden sollte, damit diese moglichst fehlerfrei funktionieren. Im Umkehrschluss
konnen sich Priorititen dann auch genauso verdndern, wenn vor einer Deadline mehr
Zeit librig ist, als es erwartet wurde. Damit derartige Kausalititen in Bezug auf wichtige
Projekttermine beachtet werden konnen, bietet es sich an wichtige Termine, wie Relea-
setermine, Meilensteine oder Priasentationstermine in den Kontext miteinzubeziehen.

40

Unabhéangig von Terminen ist es jedoch allgemein wiinschenswert Mehrwert schaf-
fende Funktionalitidten an den Kunden auszuliefern [11]. Gibt es unter den zu liefern-
den Funktionalititen welche, die verhéaltnismaf3ig schlechte Werte in den Software-
Metriken erhalten, wére dies daher ein weiterer Faktor, der die Relevanz ebenjener
Metriken beeinflusst. Im Unterschied zur dhnlichen Situation aus Kapitel 4.2.1, in der
lediglich der schlechte Wert der Metrik ausschlaggebend ist, liegt hier der Fokus darauf
eine auszuliefernde, noch fehlerbehaftete Funktionalitdt zu entdecken, sodass Metri-
ken, welche zwar einen schlechten Wert haben, fiir die ndchste Deadline aber nur eine
untergeordnete Rolle spielen, dadurch vorerst nicht an Relevanz gewinnen.

Bewertung

Das aktuelle Projekt aus Anwendungssicht zu erfassen, gestaltet sich als sehr leicht, da
SonarQube standardmal3ig die Moglichkeit bietet jedes Projekt eindeutig iiber eine ID
zu identifizieren. Dafiir geniigt es bereits diese ID aus der URL des Projekt-Dashboards
auszulesen und abzuspeichern. Auf diese Weise kann sehr einfach festgestellt werden
in welchem Projektkontext ein Entwickler arbeitet. Aus diesem Grund bietet sich die
Projekt-ID als relevanter und einfach zu erfassender Kontextfaktor an.

Den feingranulareren Projektkontext aus Anwendungssicht zu erfassen, ist dafiir
deutlich schwieriger, weil es in SonarQube tiblicherweise ohne Plugins nicht moglich ist
zusatzlich zum Programmcode auch Projektdaten, wie z. B. zukiinftige Deadlines, Mei-
lensteine oder dergleichen, einzupflegen. Somit stiinden abgesehen von der Projekt-ID
noch weniger Informationen zur Verfiigung, als bei den benutzerbezogenen Kontext-
faktoren. Selbst wenn diese Funktionalitit fiir SonarQube nachgeriistet wird, ist es ein
signifikanter Aufwand die Projektdaten auch einzupflegen und aktuell zu halten.

Dass es wiinschenswert ware beispielsweise Deadlines zur Verfiigung zu haben, sieht
man an der dadurch ermoglichten Fahigkeit zur Planung, denn wenn aktueller Zustand,
Fortschritt und zu erreichendes Ziel verglichen werden konnen, kann die Planung an die
Realitat angepasst werden [11]. Die verfiigbare Zeit kann so beeinflussen, welche Metri-
ken priorisiert werden miissen, wenn wenig oder viel Zeit fiir bestimmte Aufgaben zur
Verfiigung stehen. Wenn kurz vor einer Deadline beispielsweise noch ein paar groldere
Probleme und damit potentielle Programmfehler vorhanden sind, sollten Metriken, die

41

darauf hinweisen, gegeniiber nicht funktional orientierten Metriken, wie z. B. ,Lines of
Code" oder Code-Duplikate, priorisiert werden.

Ein dhnliches Problem wie bei der Einpflegung von Projektterminen ergibt sich auch
wenn beachtet werden soll, welche Funktionalitat als nichstes Ziel gesetzt wird. Das
und der Zusammenhang zwischen einer Funktionalitdt und der dafiir relevanten Me-
triken, die den Zustand der Funktion darstellen sollen, miissten ebenso manuell einge-
pflegt werden, denn die Wahl der zu beachtenden Metriken hiangt von der ,,quantifizier-
baren Frage“ ab und unterscheidet sich von Projekt zu Projekt [10]. Da hierfiir ebenfalls
ein signifikanter Aufwand notig wére, eignen sich die auszuliefernden Funktionalitdten
dhnlich wie Projekttermine ebenfalls nicht als Kontextfaktor.

Aus denen in diesem Kapitel erwdhnten Kandidaten haben sich aufgrund der Eigen-
schaften der Kontextfaktoren und der Schwierigkeiten bei der Erfassung zwar niitzliche
Erkenntnisse ergeben, aber nur die Projekt-ID eignet sich auch, um als Kontextfaktor
verwendet zu werden.

e &
. &QJ% ,\:\/Q b@&\' Q‘b\'i&
‘b& '\Q\}w &0& ¥
¥ o A
<

K1 X Ve
K2 v Ve
K3 v Ve Ve

Tabelle 4.4: Ubersicht iiber die Bewertung der projektbezogenen Kontextfaktoren. Ein
v steht dabei fiir ein erfiilltes Kriterium, ein ,X“ fiir ein nicht erfiilltes Kriterium und
ein ,“ steht fir ein teilweise erfiilltes Kriterium.

4.2.4 Umgebungsbezogene Kontextfaktoren

In diesem Kapitel werden zuletzt noch all die Faktoren erwéihnt, die von der physischen
Arbeitsumgebung bedingt werden. Ein potentieller Kandidat dafiir ist die Tageszeit, mit
der sich auch Baltrunas et al. [8] auseinandergesetzt haben. So kann ein Anwender

42

abhéngig von der Tageszeit verschiedene Verhaltensweisen zeigen. Im Falle eines Ent-
wicklers kann das bedeuten, dass dieser sich abhdngig von der Tageszeit anderen Auf-
gaben widmet, sei es wegen des Larmpegels im Biiro, der spiat am Abend ein anderer
als am Vormittag ist, oder aufgrund von Terminen. Die aktuelle Zeit ist daher potentiell
relevant, um zeitbedingte Varianz in den personlichen Praferenzen zu erklaren.

Informationen iiber die Umgebung konnen auch Anhand des Ortes, an dem der Be-
nutzer sich befindet, inferiert werden. Anhand des Ortes kann beispielsweise in ver-
teilten Projekten, bei denen beteiligte Personen an unterschiedlichen Standorten auch
unterschiedliche Rollen wahrnehmen, auf die Zugehorigkeit zu einer bestimmten Grup-
pe geschlossen werden. Tatsachlich konnen auf Basis von Raumdaten noch detailliertere
Informationen iiber einen Benutzer erschlossen werden, wie z. B. politische Einstellun-
gen, der Gesundheitszustand oder personliche Vorlieben [23]. Da verschiedene Rollen
mit verschiedenen Aufgaben in Projekten auch verschiedene Bediirfnisse an Informa-
tionen haben, kann der Aufenthaltsort des Benutzers in gleicher Weise ein relevanter
Kontextfaktor sein.

Die Internetverbindung kann eine Rolle in der Darstellung von Software-Metriken
spielen, wenn grof3ere Datenmengen iibertragen werden oder der Empfang schlecht ist.
Zwar konnen bestimmte Informationen wichtig sein, wenn sie jedoch z. B. Grafiken sind
und eine Ubertragung der Daten eine lange Zeit in Anspruch nihme, sodass der Benut-
zer seinen Versuch wahrscheinlich abbricht bevor die Ubertragung erfolgreich vollendet
wurde, kann es sinnvoller sein, anderen Informationen den Vortritt zu gewahren, um
die verfiigbare Bandbreite besser zu nutzen.

Bewertung

Erfahrungsgemal3 lasst sich der Aufenthaltsort eines Benutzers iiber eine Webschnitt-
stelle nur sehr ungenau bestimmen, solange kein Zugriff auf GPS-Daten, welche zumin-
dest bei heutigen Smartphones verfiigbar sind, besteht. Die Spezifikation der Geoloca-
tion API des W3C [4] sieht namlich keine vorgeschriebene Genauigkeit vor und kann
bei Desktop-PCs je nach Browser-Implementierung nach eigener Erfahrung mehrere Ki-
lometer betragen. Daher ist davon auszugehen, dass in vielen Féllen eine Einteilung in
z.B. Kunde und Dienstleister aufgrund ungenauer Daten nicht in die Realitdt umgesetzt
werden kann. Auch wenn bei allen Geraten genaue Daten vorhanden waren, miissten

43

die Rohdaten vorverarbeitet werden, da sie sonst als Rauschen wirken und damit die
Qualitat der Empfehlungen reduzieren konnen [38].

Mochte man die Geschwindigkeit der Internetverbindung wissen, bleibt nach eige-
nem, gegenwartigem Kenntnisstand nichts anderes iibrig, als einen Download zu star-
ten und zu messen wie lange dieser andauert. Dieses Verfahren kann jedoch nur eine
grobe Abschitzung geben, da viele Faktoren, wie z.B. der Netzzustand oder andere
Downloads, die Bandbreite zu einem Zeitpunkt bestimmen, weshalb die Verbindungs-
geschwindigkeit von Messung zu Messung variieren kann. Eine Besonderheit von So-
narQube ist es aullerdem, dass bevor etwas von der Webseite angezeigt wird erst die
benotigten Stylesheets und Browserskripte en bloc heruntergeladen werden. Erst da-
nach wird mit dem Rendern der Seite begonnen, wovon das meiste ohne Internetver-
bindung ablduft. Daher ist es gleich aus zwei Griinden nicht praktikabel die Verbin-
dungsgeschwindigkeit zu messen:

1) Dadurch, dass erst ein Download (z.B. eines Bildes) benotigt wird, um die Ge-
schwindigkeit zu erfassen, wiirde sich der Seitenaufruf verzogern oder es bliebe
keine Zeit entsprechend auf die Geschwindigkeitsmessung zu reagieren.

2) Im Fall von SonarQube liegt eine Alles-oder-Nichts-Situation vor. Die in Kapitel
4.2.4 erwahnten Repriorisierungen wiirden selbst bei schlechten Internetverbin-
dungen keinen grof3en Einfluss auf den Darstellungszeitpunkt einer bestimmten
Metrik haben, da das Rendern einer Metrik erst nach dem Herunterladen aller
benotigten Ressourcen geschieht und das vergleichsweise wenig Zeit in Anspruch

nimmt.

Daher ist es nicht nur schwer einen zuverldssigen Wert fiir die aktuelle Verbindungssi-
tuation zu erlangen, sondern bringt auch keinen grof3en Mehrwert mit sich.

Aus den in diesem Kapitel genannten Griinden eignet sich daher nur die aktuelle
Tageszeit als Faktor zur sinnvollen Erweiterung der Kontextinformationen, da sie durch
den Einfluss von Verhaltensmustern oder wiederkehrenden Terminen geeignet, ist zeit-
liche Regelmaf3igkeiten erkennbar zu machen. Deswegen fliel3t sie auch in die folgende
Kontextdefinition mit ein.

44

& g
Q}Q 6\}
& A |
A | VS
K1 | < v <
K2 | % v X
K3| v/ v v

Tabelle 4.5: Ubersicht iiber die Bewertung der umgebungsbezogenen Kontextfaktoren.
Ein ,v*“ steht dabei fiir ein erfiilltes Kriterium, ein ,X“ fiir ein nicht erfiilltes Kriterium
und ein ,,%“ steht fiir ein teilweise erfiilltes Kriterium.

4.2.5 Ergebnisse

In diesem Kapitel wurde eine Vielzahl von moglichen Kandidaten fiir Kontextfaktoren
besprochen. Die Wahl fallt dafiir auf die Wertednderung der jeweiligen Metrik, die
Projekt-ID und die Tageszeit. Aus den Uberlegungen in diesem Kapitel ergeben sich
aber auch abgesehen von der Auswahl der konkreten Faktoren einige interessante Er-
kenntnisse. Zum einen scheitert eine Verwendung als Kontextfaktor bei den meisten hier
vorgestellten Kandidaten, weil die entsprechenden Daten schwer in einer praktisch an-
wendbaren Art und Weise erfasst werden konnen. Eine andere Erkenntnis ist, dass Kon-
textfaktoren sich von Interaktion zu Interaktion verdandern miissen, um Veranderungen
im Verhalten erklaren und damit einen Mehrwert erzielen zu konnen [39].

4.3 Einordnung der Faktoren in eine Kontextdefinition

Aus den bisher erlangten Erkenntnissen dariiber, welche Kontextfaktoren verwendet
werden, soll an dieser Stelle der Begriff des ,Kontexts“ auch formal definiert werden.
Fiir das von Shi et al. [49] beschriebene Verfahren ist es nicht moglich tatsachliche Zah-
lenwerte zu verwenden. Stattdessen miissen diese Werte zuerst in je eine Ordinalskala
pro Faktor eingeordnet werden, um dann jede mogliche Kombination dieser Ordinal-
Werte mit einer natiirlichen Zahl, die diese spezifische Kontextsituation identifiziert, zu
kodieren. Bei der Qualitidt der Werteinderung ergibt sich diese Eigenschaft von selbst,

45

da es bereits seitens SonarQube lediglich die Einteilung in ,steigend”, ,konstant* und
Jfallend“ gibt, wiahrend bei anderen Faktoren erst die entsprechenden Werte umgeformt
werden miissen.

Jeder Kontextfaktor f wird als eine Dimension D des Kontextes C' aufgefasst. Aus
Kapiteln 4.2.1 bis 4.2.4 ergeben sich damit die folgenden Dimensionen:

1) Projekt-ID
2) Werteanderung

3) Zeit

Damit alle daraus resultierenden Kontextbeschreibungen eindeutig durch eine natiir-
liche Zahl k identifiziert werden konnen, darf es keine zwei Interpretationen fiir & ge-
ben. Diese Anforderung ist dadurch sichergestellt, dass die Anzahl der moglichen Di-
mensionswerte np fiir die Dimensionen der Zeit und der Wertednderung konstant ist,
wodurch immer dieselben Bit-Stellen von £ fiir die Kodierung dieser zwei Dimensionen
verwendet werden konnen. Werden zusatzliche Bits benotigt, um zuséatzliche Projekt-
IDs kodieren zu konnen, konnen grollere Zahlen & verwendet werden ohne Mehrdeu-
tigkeiten einzufiihren.

Die Kodierung soll, um ein selektives Auslesen der Kontextinformationen zu ermog-
lichen, bitweise erfolgen. Jeder Dimension D stehen dafiir entsprechend ihrer Grof3e np
die folgende Anzahl an Bits zur Verfiigung:

[logz(np)]

Die Zahl k zur Identifizierung einer Kontextbeschreibung ergibt sich aus der Konkate-
nation der einzelnen kodierenden Bitstrings jeder Dimension, entsprechend der obigen
Sortierung der Dimensionen.

Die Dimension der Werteanderung D,, soll, wie oben bereits erwahnt, die moglichen
Werte steigend, konstant und fallend besitzen. Zur Kodierung der drei Zustande werden
zwei Bit benotigt. Fiir die Zeit wird eine grobe Unterteilung in acht Blocke a drei Stun-
den vorgenommen. Dementsprechend werden zur Kodierung der Dimension der Zeit D,
drei Bit benotigt. Die restlichen Bits konnen zur Kodierung der Projekt-IDs verwendet
werden. Dafiir lasst sich keine feste Zahl nennen, da mit der Zeit auch neue Projekte zu
einer SonarQube-Instanz hinzugefiigt werden konnen.

46

Projekt-ID DeepMind YouTube GMail Fibre
00 01 10 11
Wertednderung fallend konstant steigend
00 01 10
Morgen Vormittag Mittag Nachmittag
Zeit 000 001 010 011
Abend | spéter Abend | Nacht | frither Morgen
100 101 110 111

Tabelle 4.6: Kodierungen der Werte in den jeweiligen Dimensionen.

Anhand dieser Definitionen lasst sich ein Kontext C' mit dem Identifikator %k als 3-
Tupel C}, mit folgenden Eigenschaften schreiben:

Cp €e{(p,w,2) | pe Dy, we Dy,, z€D,}

Um die beschriebene Kodierungsmethode zu veranschaulichen folgt nun ein Beispiel:
Das Tupel C, = (DeepMind, steigend, Abend) ist ein moglicher Kontext. Aus Tabelle 4.6

kann nun die Kodierung des Tupels abgelesen werden und es gilt fiir dieses Beispieltupel
CbI
b = (0010100), = (20)10

Damit kann das Beispieltupel C, mit der Zahl 20 identifiziert werden und es gilt

Cy = Cy = (DeepMind, steigend, Abend)

47

4.4 Erfassung und Speicherung der Daten

In den vorhergehenden Kapiteln lag der Fokus auf den Kontextfaktoren und den Grund-
lagen, wie die erfassten Daten strukturiert werden sollen. Dieses Kapitel beschéftigt
sich mit der Datenerfassung und -speicherung. Bisher wurde zwar beriicksichtigt, ob es
grundsatzlich moglich ist bestimmte Daten zu erfassen, jedoch wurde dies nicht detail-
liert betrachtet. Daher soll das folgende Kapitel 4.4.1 detaillierteren Aufschluss iiber das
genaue Vorgehen bringen und dazu nacheinander Ansitze zum Erfassen der einzelnen
Kontextfaktoren liefern. In Kapitel 4.4.2 wird danach beschrieben wie die gesammelten
Daten abgespeichert werden.

4.4.1 Erfassung der Kontextinformationen

Fiir die in einer SonarQube-Instanz verfiigbaren Projekte wird jedem Projekt eine Zahl
— beginnend mit O — zugewiesen. Die konkrete Zuordnung ergibt sich durch die lexiko-
graphische Ordnung der Projektnamen. Das Projekt, welches in einer alphabetisch sor-
tierten Liste, an oberster Stelle steht erhilt somit die ID 0, das Projekt an zweiter Stelle
erhélt die 1 usw. Wird im Laufe der Zeit ein weiteres Projekt der SonarQube-Instanz
hinzugefiigt muss lediglich darauf geachtet werden die IDs der Projekte zu aktualisie-
ren.

Eine Werteanderung, wie im letzten Kapitel beschrieben, kann drei mogliche Zu-
stande haben. Dies spiegelt sich auch in SonarQube wieder. Dort wird eine Veranderung
durch Pfeile ausgedriickt. Bei quantitativen Metriken, also solche die nicht die Qualitat
des Codes widerspiegeln, werden schwarze Pfeile benutzt; bei qualitativen Metriken, die
sehr wohl die Qualitat des Codes widerspiegeln, sind das griine Pfeile fiir positive und
rote Pfeile fiir negative Entwicklungen. Fand keine Verdnderung statt, wird auch kein
Pfeil angezeigt [2]. Welcher Pfeil angezeigt wird, kann aus dem HTML-Quellcode der
Dashboard-Seite ausgelesen werden. Wird ein griiner bzw. nach oben gerichteter Pfeil
ausgelesen, dann wird fiir die Wertednderung des aktuellen Kontextes der Wert steigend
gesetzt. Wird hingegen ein roter bzw. nach unten gerichteter Pfeil ausgelesen, dann
wird der Wert fallend gesetzt. Kann kein Pfeil gefunden werden, muss angenommen
werden, dass es keine Anderung gab und es wird der Wert konstant gesetzt.

48

Die Uhrzeit, zu der eine Interaktion stattfand, kann ebenfalls viel mehr verschie-
dene Werte annehmen, als hier unterschieden werden sollen. Da eine minutengenaue
Auflosung dariiberhinaus wenig sinnvoll ist, wird eine grobere Einteilung, dhnlich zu
[50], in acht gleich grof3e Blocke vorgenommen: Morgen, Vormittag, Mittag, Nachmit-
tag, Abend, spdter Abend, Nacht, frither Morgen. Jeder Block umfasst dabei drei Stunden
des Tages.

Die zu den entsprechenden Blocken zugeordneten Zeiten sind die folgenden:

e Morgen: 6 Uhr - 9 Uhr

Vormittag: 9 Uhr - 12 Uhr

Mittag: 12 Uhr - 15 Uhr

Nachmittag: 15 Uhr - 18 Uhr

Abend: 18 Uhr - 21 Uhr

Spdter Abend: 21 Uhr - 24 Uhr

Nacht: 0 Uhr - 3 Uhr

e Friiher Morgen: 3 Uhr - 6 Uhr

Bei einer Interaktion wird der zur Tageszeit, zu der die Interaktion stattfindet, passende
Wert fiir die Dimension der Zeit, entsprechend der hier definierten Blocke, eingetragen.

4.4.2 Struktur der Datensatze

Die auf diese Art gesammelten Kontextinformationen bilden zwar angemessen den Kon-
text, in der eine Interaktion zwischen Benutzer und Software-Metrik stattfindet, ab,
jedoch miissen fiir wirklich aussagekriftige Datensitze diese Informationen mit einer
Identifikation des Benutzers und der entsprechenden Metrik zusammengebracht wer-
den.

Ein Datensatz, wie er auch in der Arbeit von Shi et al. [49] verwendet wird, der
dem impliziten Feedback einer gemessenen Interaktion zwischen einem Benutzer und
einer Metrik in einem Kontext entspricht, muss diese drei daran beteiligten Identitdten

49

interagiert
mit »

Benutzer Metrik

Abbildung 4.1: ER-Diagramm zur Modellierung der Interaktion zwischen Benutzern und
Metriken

enthalten. Daher wird ein solcher Datensatz D ein 3-Tupel, das folgendermalen struk-
turiert ist, darstellen:
D = (UID, MID, CID)

wobei U1 D fiir eine eindeutige Benutzerkennung (User-ID), M D fiir eine eindeutige
Metrikkennung (Metric-ID) und C'ID (Context-ID) fiir die eindeutige Kodierung eines
Kontextes, wie in Kapitel 4.3 beschrieben, steht [49]. Ein solcher Datensatz entspricht
dabei der ,Interagiert mit“-Relation in Abbildung 4.1.

50

5 Lernen der relevanten Software-Metriken

Nachdem in den letzten Kapiteln die formalen Grundlagen gelegt wurden, widmet sich
dieses Kapitel dem Kern dieser Arbeit: Machine-Learning mittels des TFMAP-Algorith-
mus. Bereits in Kapitel 3.2.5 wurde ein kurzer Uberblick iiber die Arbeit von Shi et al.
[49] geboten. Die dort erwdhnten Konzepte werden in diesem Kapitel nun detaillierter
behandelt und erklart. Daraus wird schlie8lich ein umfassendes Konzept ausgearbei-
tet, welches beschreibt wie aus den in Kapitel 4 charakterisierten Kontextfaktoren die
Relevanz der einzelnen Software-Metriken erlernt werden kann. Die in diesem Kapitel

verwendeten Formeln, Notationen und Kurzschreibweisen stammen dabei alle aus [49].

5.1 Datenstrukturen

Fiir den TFMAP-Algorithmus sind zwei Datenstrukturen essentiell. Zum einen ist dies
das implizite Feedback, welches die Eingabedaten der Benutzer darstellt. Es ist die
grundlegende Informationsquelle fiir den Lernprozess und liefert die Daten anhand de-
rer gelernt wird.

Zum anderen sind dies die sogenannten latenten Modelle. Diese Modelle sind Ma-
trizen, welche versuchen die Eigenschaften von Benutzern, Metriken und Kontexten zu
beschreiben. Sie sollen durch den Lernprozess so angepasst werden, dass sie das im-
plizite Feedback moglichst optimal erklaren und dementsprechend gute Vorhersagen
fiir Metriken machen konnen. Somit sind die latenten Modelle die Datenstrukturen, die
beim Lernen angepasst werden und das erlernte Wissen speichern.

Diese beiden Datenstrukturen werden in den folgenden beiden Kapiteln naher vor-
gestellt und erlautert.

5.1.1 Implizites Feedback

Wird das Thema Benutzerfeedback behandelt, dann ist damit oft explizites Feedback
gemeint. Ein Beispiel dafiir sind Kduferbewertungen, die ein Kunde in einem Online-

51

Shop abgeben kann, um ein gekauftes Produkt fiir andere Kunden zu bewerten. Dabei
muss ein Kunde immer selbst aktiv werden und iiberlegen, wie er das Produkt bewerten
mochte. Der Aufwand kann dabei nur eine Bewertung mit Sternen sein oder auch ein
geschriebener Kommentar. Dies bedeutet fiir den Benutzer jedoch in allen Fallen einen
Mehraufwand wahrend seinem Aufenthalt im Online-Shop. Da dieser Mehraufwand ein
Hindernis darstellen kann, gibt der Kunde fiir ein Produkt moéglicherweise tiberhaupt
keine Bewertung ab.

Daher kann es erwiinscht sein, stattdessen nur implizites Feedback zu sammeln. Im
Gegensatz zu explizitem Feedback wird dabei die regulare Interaktion zwischen Benut-
zer und Anwendung beobachtet, weshalb kein zusatzlicher Aufwand fiir den Benutzer
verursacht wird. Hierbei wird z. B. erfasst auf welche Elemente in der Benutzerober-
fliche geklickt wurde oder wie der Benutzer auf der Seite navigiert. Aus diesen Be-
obachtungen werden Schliisse gezogen, die als Feedback interpretiert werden. Im Bei-
spiel des Online-Shops konnte das Klicken auf ein Produkt, um genauere Informationen
dariiber zu erhalten, als Interesse interpretiert werden. Zwar stellt der Vorgang des
Klickens einen Aufwand dar, jedoch geschieht dies im Rahmen der regulédren Interakti-
on, da davon ausgegangen werden kann, dass das Aussuchen und Kaufen interessanter
Produkte das beabsichtigte Ziel des Benutzers ist. Nach dem Kauf eine Bewertung ab-
zugeben ist hingegen zusatzlicher Aufwand, welcher den Kunden seinem Ziel, die von
ihm gewiinschten Produkte zu finden und zu kaufen, nicht néher bringt.

Bei der Verwendung von SonarQube ist das primére Ziel des Benutzers die Ergeb-
nisse der Code-Analyse zu tiberpriifen. Er soll dabei nicht zusatzlich angeben miissen,
welche Informationen dabei am hilfreichsten fiir ihn sind, da dies eine Ablenkung dar-
stellen wiirde. Stattdessen soll, genauso wie im Beispiel des Online-Shops, implizites
Feedback dariiber, was fiir den Benutzer relevant ist, gesammelt werden. Dafiir werden
Interaktionen mit Software-Metriken — genauer gesagt: auf welche Metrik der Benutzer
klickt — analysiert und dabei Kontextinformationen, wie es in Kapitel 4 beschrieben ist,
erfasst. Jede Interaktion in Form von Anklicken einer Metrik, um detailliertere Informa-
tionen davon zu erhalten, kann dabei als potentielles Interesse gewertet werden.

Dieses implizite Feedback, wie auch schon von Shi et al. in [49] verwendet, ist es,
das in den weiteren Schritten benoétigt wird, um entsprechend der latenten Benutzer-
praferenzen die zur Verfiigung stehenden Software-Metriken nach ihrer Relevanz fiir
den Benutzer bewerten zu konnen. Gespeichert wird dieses implizite Feedback in ei-

52

nem bindren Tensor Y. Die Elemente von Y werden mit y,,;. bezeichnet, wobei m einen
Benutzer, i ein Item, was im Kontext dieser Arbeit einer Metrik entspricht, und & einen
Kontext identifiziert. Es gilt: y,,, = 1 genau dann, wenn fiir einen Benutzer m eine
Interaktion mit einem Item 7 im Kontext k stattfand; andernfalls ist ,,;;, = 0. Ein Vektor
Y, bezeichnet das implizite Feedback eines Benutzers m im Kontext k fiir alle Items.

5.1.2 Latente Benutzer-, Metrik- und Kontextmodelle

Die latenten Modellen fiir Benutzer, Metriken und Kontexte versuchen jene Entititen
bestmoglich zu beschreiben, um damit Vorhersagen beziiglich der Relevanz einer Kom-
bination von Benutzer, Metrik und Kontext treffen zu konnen. Jede dieser Entitdten
bekommt dafiir einen Eigenschaftsvektor fester Grof3e zugewiesen, dessen Werte initi-
al zufallig gewahlt werden, da anfangs kein Wissen iiber diese latenten Eigenschaften
verfiigbar ist. Diese Eigenschaftsvektoren werden fiir jeweils alle Benutzer, Metriken
und Kontexte zu Matrizen, den latenten Modellen, zusammengefasst.

Diese latenten Eigenschaften sind, wie der Name schon sagt, jedoch nicht offensicht-
lich und miissen erst aus vorhandenen Daten, hier dem impliziten Feedback des Benut-
zers, erlernt werden. Ferner sind dies oft auch keine direkt messbaren Grof3en, wie z. B.
Korpergrof3e eines Benutzers, Preis eines Gegenstandes oder die Tageszeit in einem Kon-
text; sie sind eher mit personlichen, womoglich unterbewussten, Vorlieben eines Men-
schen oder beispielsweise der empfundenen Stimmung eines Liedes zu vergleichen und
werden deshalb auch als latent bezeichnet. Matrix-Faktorisierungs-Verfahren haben den
Vorteil latente Eigenschaften der darin modellierten Benutzer und Items zu offenbaren,
was Shi et al. [49] durch die Erweiterung auf Tensoren auch gleichzeitig fiir Kontext-
informationen ermoglichen. Aus diesem Grund wird mit der Tensor-Faktorisierung ein
mit der Matrix-Faktorisierung verwandtes Verfahren verwendet, um die latenten Model-
le erlernen zu kénnen.

Da diese verborgenen Eigenschaften nicht benannt werden konnen, d. h. es ist nicht
klar, was sie konkret bedeuten, konnen sie auch nicht einfach gemessen werden. Statt-
dessen wird eine gewisse Anzahl latenter Eigenschaften vermutet und durch Machine
Learning werden deren Werte approximiert. Diese vermuteten Eigenschaften beschrei-
ben damit Entitdten, wie z. B. Benutzer. Zwar kann im Allgemeinen nicht mit Sicherheit
gesagt werden, welche Bedeutung diese latenten Eigenschaften haben, aber das ist auch

53

nicht notig, denn sie miissen nur erlernt und in Vorhersagen verwendet werden konnen;
sie zu interpretieren ist nicht erforderlich. Es gentigt vollkommen zu wissen, dass die
Modelle tatsachlich eine Aussagekraft haben. Dieses Wissen wird durch den Lernprozess
gewonnen, indem die Werte der latenten Modelle angepasst werden, um das beobach-
tete implizite Feedback, was der Interaktion des Benutzers mit der Benutzeroberflache
entspricht, moglichst gut erklaren zu konnen. [49]

Nach dem Lernprozess konnen diese latenten Modelle dazu verwendet werden Emp-
fehlungslisten zu generieren. Das sind nach Relevanz sortierte Listen von Metriken,
welche fiir eine Kombination aus Benutzer und Kontext angeben, welche Metriken am
relevantesten sind. Die Relevanz einer Metrik fiir einen Benutzer in einem bestimm-
ten Kontext ergibt sich aus dem Predicted Relevance Score aus Formel (5.2), welche im
ndchsten Abschnitt genauer beschrieben wird. Anhand der so erlernten Modelle kénnen
nach dem Lernprozess auf Basis der Erfahrungen bzw. Trainingsdaten des impliziten
Feedbacks Vorhersagen fiir einen Benutzer gemacht werden. Damit erfiillen die laten-
ten Modelle den Zweck, ein abstraktes Verstandnis iiber die beteiligten Entititen zu
erlangen und diese in einer fiir Vorhersagen verwendbaren Art und Weise zu beschrei-
ben.

In dieser Arbeit wird der Notation von [49] entsprochen. Das bedeutet, dass
UeRM*P vV e RV*P und C € RE*P Matrizen sind, die den eben beschriebenen la-
tenten Modellen fiir Benutzer, Items bzw. Metriken sowie Kontexte entsprechen. Hier-
bei ist D die Anzahl der vermuteten Eigenschaften einer Entitédt. Diese Modellmatrizen
bestehen aus einzelnen, D-dimensionalen Eigenschaftsvektoren U,, € R”, V; € R bzw.
C), € RP, welche die latenten Eigenschaften fiir einzelne Benutzer m, Items i oder Kon-
texte k reprasentieren.

5.2 Die Zielfunktion

Fiir die Optimierung der latenten Modelle wird eine Zielfunktion benoétigt, welche ein
direktes Mal} dafiir ist, wie gut diese Modelle und die durch sie generierten Empfeh-
lungslisten sind. Gelernt wird, indem der Wert der Zielfunktion optimiert wird. Kapitel
5.2.1 beschreibt die in [49] gewéhlte Zielfunktion Mean Average Precision. Danach wird
in Kapitel 5.2.2 darauf eingegangen, warum eine ,geglattete”, stetige Version dieser
Funktion fiir die Optimierung benotigt wird.

54

5.2.1 Mean Average Precision

Die Mean Average Precision (MAP) ist in ihrer Essenz ein Maldstab zur Bewertung von
Listen von Dokumenten [33] bzw. in dem hier vorliegenden Fall von Metriken. Bei-
spiele fiir solche Listen stellen Ergebnisse einer Suchmaschinenanfrage dar. Bei deren
Qualitéat ist vor allem die Relevanz der einzelnen Eintrdge, aber auch die Sortierung in
welcher sie in der Liste auftreten, von Bedeutung. Bei einer Suchmaschine sind diese
Anforderungen notig, da oft viele tausend Ergebnisse zuriickgeliefert werden, welche
ein Benutzer nicht alle iberpriifen mochte. Stattdessen sollen die relevanten Ergebnis-
se am Anfang der Liste stehen. Dieses Verhalten ist immer dann gewollt, wenn es nicht
wiinschenswert ist alle Elemente einer solchen ,Empfehlung® zu verwenden oder zu
tiberpriifen, was auch in dieser Arbeit bei der Bestimmung der Menge der relevantesten
Software-Metriken der Fall ist. Die Average Precision (AP) ist ein MaR fiir Empfehlungs-
listen, mit der Eigenschaft irrelevante Elemente auf guten Listenpositionen stiarker zu
bestrafen als auf schlechten Listenpositionen [32, 49], und ist definiert als die Flache
unter dem Precision-Recall-Diagramm fiir eine einzelne Empfehlungsliste. Dieses PR-
Diagramm ist wiederum ein Mal? fiir die bei verschiedenen Trefferquoten erzielte Ge-
nauigkeit [33], also der prozentuale Anteil relevanter Ergebnisse bei der Betrachtung
von verschieden grof3en Teilen der Liste. So werden beim AP-Mal} relevante Elemente
auf guten Listenpositionen auch automatisch belohnt, da irrelevante Elemente dadurch
automatisch weiter hinten platziert sein miissen. Fiir den TFMAP-Algorithmus wird der
AP-Wert dafiir wie folgt berechnet:

1 N N

Ymik
A-Pmk = N § § ymjkﬂ(rmjk < rmik) (51)
Zi:l Ymik =y "mik =1

Hierbei bezeichnen die Indizes m, ¢ und k jeweils einen Benutzer, eine Metrik bzw. einen

PMXNAE Swwelcher dem

Kontext. Hier ist y,,;; ein Wert aus dem binéren Tensor Y € {0, 1
in Kapitel 5.1.1 beschriebenen impliziten Feedback entspricht, und gibt dementspre-
chend an, ob eine Interaktion zwischen einem Benutzer m und einer Metrik 7 in einem
Kontext k stattfand. Die Indikatorfunktion I(-) hat den Wert 1, wenn ihre Bedingung
wahr ist und ansonsten den Wert 0. r,,;;, entspricht dem Ranking einer Metrik i in ei-
ner Empfehlungsliste fiir einen festgelegten Kontext k£ und Benutzer m. Dieses Ranking

ergibt sich durch eine Sortierung der Software-Metriken gemaf3 dem Predicted Relevan-

55

ce Score f, welcher durch das Skalarprodukt der Eigenschaftsvektoren von Benutzer,
Metrik und Kontext in Formel (5.2) beschrieben ist.

D
Jmit = (Unm, Vi, Cy) = Z UpmaViaCra (5.2)

d=1

In dieser Formel bezeichnen U, V und C die in Kapitel 5.1.2 beschriebenen latenten
Modelle. U,,, V; und C}, sind die jeweiligen Eigenschaftsvektoren der konkreten Benut-
zer, Metriken und Kontexte. Der Predicted Relevance Score ist ein Mal$ dafiir, wie relevant
eine Metrik ; fiir einen Benutzer m im Kontext & ist [49].

Bei der Average Precision bezieht sich ein Wert auf genau eine Empfehlungsliste, was
in dieser Arbeit einer sortierte Liste an Software-Metriken fiir einen festen Benutzer in
einem spezifischen Kontext entspricht. Da fiir die benotigte Zielfunktion jedoch eine
Aussage tiiber alle Benutzer und alle méglichen Kontextsituationen notwendig ist, damit
die optimierten latenten Modelle auch eine externe Validitat besitzen, muss das AP-
Mal} weiter zur Mean Average Precision verallgemeinert werden. Wie der Name bereits
verrdt, wird dazu der arithmetische Mittelwert der AP-Werte iiber alle Kombinationen
aus Benutzer und Kontext gebildet [49]. Dadurch ergibt sich die Formel fiir MAP direkt
aus Formel (5.1) mit:

| MK
MAP = - ;]; AP, (5.3)
Aufgrund dieses Zusammenhangs zwischen AP- und MAP-Wert kann MAP als die durch-
schnittliche Flache unter den Precision-Recall-Diagrammen aller Empfehlungslisten ver-
standen werden [33].

Damit wird der Name ,,TFMAP* auch etwas klarer, denn das Skalarprodukt aus For-
mel (5.2) wird auch als Tensorfaktorisierung bezeichnet, was der Ursprung der ersten
beiden Buchstaben ist, wodurch sich der Name TFMAP aus ,tensor factorization for
MAP“ ergibt.

Abschliefend soll noch auf den Zusammenhang zwischen den latenten Modellen
und dem daraus resultierenden MAP-Wert hingewiesen werden, da dieser Zusammen-
hang das bestimmende Kriterium ist, warum sich die Mean Average Precision als Ziel-
funktion eignet. Die Tensorfaktorisierung in Formel (5.2), welche die Kernoperation
des TFMAP-Algorithmus darstellt, zeigt, dass der Predicted Relevance Score direkt und

56

ausschlieflich von den latenten Modellen abhangt. Auf3erdem ist er eine direkte Bewer-
tung fiir die Relevanz einer Kombination aus Benutzer, Item und Kontext. Dieser Wert
ist das einzige Kriterium, das die Itemrankings r,,;. fiir einen festgelegten Benutzer m
und Kontext k£ bestimmt. Da MAP ein direktes Bewertungsmal fiir die Qualitat aller
Empfehlungslisten ist, wird damit auch die Qualitat der latenten Modelle gemessen, da
die Empfehlungslisten bzw. die Item-Rankings direkt von den Modellen abhingen.

5.2.2 Geglattete MAP

Aus der Formel fiir die Average Precision geht hervor, dass diese Funktion nicht stetig
ist, denn die Rankings r,,;; einzelner Metriken dndern sich in nicht-stetiger Weise, da
sie nur ganzzahlige Werte annehmen konnen. Aufgrund dieser Eigenschaft lassen sich
in der Form keine Standartoptimierungsalgorithmen, wie das Gradientenverfahren, an-
wenden, da diese eine stetige Zielfunktion benotigen [49, 19]. Um diesem Problem zu
begegnen, miissen die nicht-stetigen Anteile der AP-Funktion mit einer stetigen Funkti-
on approximiert werden. Konkret bedeutet das, dass die Rankings r,,;,, sowie die Indi-
katorfunktion I(-) angendhert werden miissen. Nach Chapelle et al. [17] bietet sich fiir
diese Approximation die stetige und aulserdem streng monoton steigende logistische

Funktion (5.4) an. .

- 1+ e 2

g9() (5.4)

Diese ist eine Sigmoidfunktion, die wegen ihrer Form besonders dafiir geeignet ist die
Indikatorfunktion I(-) anzundhern. Dahinter steht die Annahme, dass je hoher der Pre-
dicted Relevance Score einer Metrik i in Relation zu einer anderen Metrik j ist, desto bes-
ser sollte diese Metrik i platziert werden. Dabei werden Metriken jedoch nie umsortiert,
da die logistische Funktion streng monoton ist. Die Approximation der Indikatorfunkti-
on sieht damit folgendermalen aus [49]:

I(rmje < rmic) = 9(famje — fmie) = (U, V; = Vi, C)) (5.5)

Die zweite Substitution, die vorgenommen werden muss betrifft das Ranking r,,;;. Es
gibt zwar eine durchdachte Approximation dafiir, diese wird jedoch nicht benétigt, da

57

1
Tmik

selben logistischen Funktion auf folgende Weise approximiert werden:

nur der Kehrwert

verwendet wird [17, 49]. Deswegen soll ﬁ ebenfalls mit der-

1

T'mik

~ (fmir) = 9((Um, Vi, C)) (5.6)

Durch die Verwendung der logistischen Funktion werden die Abstdnde zwischen den
einzelnen Rankingplidtzen zwar verzerrt, aufgrund der Monotonie werden diese aber
nie umgeordnet, was bei der Approximation der Ranking-Pldtze besonders wichtig ist.
Davon abgesehen fiithren grolde Werte fiir f,,;x zu Werten nahe 1 fiir die darauf an-
gewandte logistische Funktion, was einen kleinen und damit guten Ranking-Wert r,,,;.
bedeutet. Umgekehrt fiihren kleine Werte fiir f,,;x zu groen und damit schlechteren
Ranking-Werten r,,;, [49].

Flihrt man die in diesem Kapitel beschriebenen Substitutionen in der AP-Funktion
durch, erhidlt man die folgende, geglattete und stetige Version der Average Precision-
Funktion [49]:

1 N N

APy, = —
Zi:l Ymik i=1 j=1

5.3 Lernen mit TFMAP

Die vorherigen Kapitel haben die letzten Vorbereitungen behandelt, die benotigt wer-
den, um den Lernprozess mithilfe des TFMAP-Algorithmus zu beschreiben. Das folgende
Kapitel hat die Optimierung der latenten Modelle durch die stetige MAP-Funktion mit-
hilfe des Gradientenverfahrens zum Inhalt. Es wird beschrieben wie dieses Verfahren
funktioniert und wie die bisherigen Erkenntnisse genutzt werden konnen, um es auf

das vorliegende Problem anzuwenden.

5.3.1 Optimierung durch das Gradientenverfahren

Zum Losen allgemeiner Optimierungsprobleme gehort das Gradientenverfahren (Engl.:
method of steepest decent) zu den einfachen Standardansiatzen [52]. Es kann bei reell-
wertigen, differenzierbaren Funktionen verwendet werden, um Extremstellen zu fin-

58

den. Diese sog. Zielfunktion muss differenzierbar sein, damit fiir den zu untersuchen-
den Definitionsbereich der Funktion auch die benotigten Gradienten berechnet werden
konnen [19]. Beim Gradientenverfahren wird in jedem Schritt der Gradient der Funk-
tion an einer Stelle x berechnet. Der Gradient gibt die ,Richtung“ an, in der der Wert
der Zielfunktion am stirksten steigt, also dem Optimum nidherkommt. Die Variable x
wird daraufhin entsprechend dem Gradienten verdndert, sodass im nachsten Schritt ei-
ne Stelle z’ betrachtet wird, an der der Wert der Zielfunktion ndher am Optimum ist
als an der Stelle z. Diese Schritte werden wiederholt, bis sich der Wert der Zielfunktion
nicht mehr verbessern lasst, woraufhin angenommen wird, dass das Optimum erreicht
wurde.

Das Verfahren lasst sich mit der Metapher eines Bergsteigers an einem Berg gut
veranschaulichen. Es sei angenommen die Positionskoordinaten des Bergsteigers, bei-
spielsweise als Langen- und Breitengrad angegeben, sind die Variablen einer Funktion,
die die Hohe eines Ortes tiber dem Meeresspiegel beschreibt. Der Graph dieser Funktion
ist die Oberflache des Berges, auf dem sich der Bergsteiger bewegen kann. Eine Beispiel-
funktion zur Veranschaulichung kann Abbildung 5.1 entnommen werden. Das Ziel des
Bergsteigers ist es nun vom Gipfel des Berges zuriick ins Tal zu finden. Er hat jedoch
die Orientierung verloren und kann nicht sehr weit sehen, weshalb er beschlie3t immer
in die Richtung zu gehen, in der es am steilsten bergab geht. Auf diese Weise wird er
immer tiefer gelangen, bis er ein Plateau, was einem lokalen Optimum entspricht, oder
das Tal, das globale Optimum, erreicht.

Wie durch die Metapher erkennbar ist, besitzt dieses Verfahren keine Weitsicht, da
es nur den Gradienten der aktuellen Position betrachtet und damit anfallig fiir lokale
Optima ist. Das muss jedoch nicht zwangsweise ein Problem darstellen, da das Ver-
halten der Funktion von der Struktur des Problems abhangt. Im betrachteten Definiti-
onsbereich kénnen auch schlichtweg keine lokalen Optima, in denen der Algorithmus
vorzeitig terminieren konnte, vorhanden sein.

Das Gradientenverfahren wurde auch von Shi et al. in [49] fiir das Erlernen der
latenten Modelle verwendet. Da es sich dabei als effektiv bewéahrt hat, wird es auch
im Rahmen dieser Arbeit fiir die Optimierungsphase verwendet. Die dabei verwende-
te Zielfunktion ist im Grunde die durch Kapitel 5.2.2 erhaltene geglittete Version der
MAP-Funktion. Fiir den Einsatz als Zielfunktion haben Shi et al. [49] eine kleine An-
passung vorgenommen und zwar wird zur Regularisierung die Frobenius-Norm der la-

59

Abbildung 5.1: Rosenbrock-Funktion visualisiert von Morn the Gorn (eigenes Werk)
[Public domain], via Wikimedia Commons. Die Rosenbrock-Funktion ist eine gangige
Benchmark-Funktion fiir Optimierungsalgorithmen.

60

tenten Modelle, multipliziert mit einem Gewichtungsfaktor —\, hinzuaddiert. Dies ist
notig, um eine Uberanpassung der Modelle zu verhindern, da Vorhersagen mit Real-
daten andernfalls fehleranfilliger wéren [48, 49]. Daraus ergibt sich die folgende, auf
MAP basierende Zielfunktion:

=2

N
Z [ymik:g«Uma Vi, Ck: Zymjk’g Urrw V Vka)) (>-8)

ﬁ
Il
—

U1+ [VIZ +)

Die fiir das Gradientenverfahren benotigten Ableitungen sind in den Formeln (5.10),
(5.11) und (5.12) [49] zu sehen. Um die Notation der Ableitungen tibersichtlicher zu
gestalten, wurden auch folgende Kurzschreibweisen aus [49] iibernommen:

fmik = <Um7 ‘/;7 Ck>
fm(j—i)k = <Um7 Vg - Vi Ck>
8 = g (fmir) 2 Ymied FinGi—ivk — 9(Frmit) Sy Ymind (frm(—ipk)

Dabei bezeichnet ¢’(x) hier und in den folgenden Formeln die Ableitung der logistischen
Funktion g(x) (5.4) und es gilt:

Dartiber hinaus wird mit dem Symbol ® die elementweise Multiplikation bezeichnet.

K N

oL 1

k=1 2ui=1Ymik ;=1

N
95 (Vi © Co) + g fin) D Ymitd (i) (Vy © Ci)| = AU

Jj=1

(5.10)

61

M

oL 1 &

m=l = N (5.11)
(6% (U © V2) + g foi) D Ymstd (s —0) (U © V3)| = ACi
j=1
oL . M E ymzk(Um © Ck) al
=0 N D Umik
i AT S et Ymik =1 (5.12)

[gl(fmik)g(fm(j—i)k) + <g<fmjk> - g(fmik))Q/(fm(j—i)k)] —\V;

Eine detaillierte Beschreibung der Ableitung g—é kann dem Anhang von [49] entnom-
men werden, da sich die Ableitung aufgrund der Abhingigkeiten zu anderen latenten
Eigenschaftsvektoren schwieriger als bei den anderen beiden Gradienten gestaltet.

An dieser Stelle soll auch auf die hohere Berechnungskomplexitét der Ableitung g—é
hingewiesen werden. Unter der Annahme, dass die Anzahl der Benutzer-Item-Inter-
aktionen |Y| deutlich groRer als die Anzahl der Items bzw. Metriken selbst ist, ist die
Komplexitat mit O(DN|Y'|) mehr als quadratische beziiglich der Anzahl an Items. Fiir
dieses Problem ist eine Fast Learning-Version des Algorithmus, der die Komplexitat auf
O(D|Y]) reduziert, in der Arbeit von Shi et al. [49] beschrieben. Da die erwartete An-
zahl der zu bewertenden Metriken im Rahmen von SonarQube jedoch als weitgehend
konstant und klein betrachtet werden kann, wird aufgrund des Overheads beim Fast
Learning TFMAP-Algorithmus in dieser Arbeit auf diese Optimierung verzichtet. Fiir an-
dere Szenarien, in denen die Anzahl der zu bewertenden Items wesentlich groRer ist,
ist es ausdriicklich empfohlen aufgrund der niedrigeren Komplexitat die Fast Learning-
Optimierung zu verwenden.

5.3.2 Parameter

Aus den Formeln und Definitionen zu TFMAP sind noch zwei Variablen nicht behandelt
worden. Dies ist zum einen die Dimensionalitdt der Eigenschaftsvektoren D und zum
anderen ist das der Regularisierungsfaktor \. Fiir die Anwendung des Gradientenver-

62

fahrens ist auch noch der Lernfaktor «y, der noch nicht erwdahnt wurde, von Bedeutung.
Durch ihn werden die Gradienten bei der Berechnung eines Schrittes des Verfahrens
gewichtet. Er reguliert damit wie stark sich die Werte der Modelle zwischen zwei Ver-
fahrensschritten verdndern konnen. Davon hingt ab, ob die Verdnderungen klein genug
sind, damit ein Optimum auch gefunden werden kann oder zu grof$ sind, sodass der Al-
gorithmus das Optimum verfehlt und um das Optimum oszilliert.

Der Regularisierungsfaktor A kontrolliert hingegen wie stark sich die latenten Model-
le an den Trainingsdaten orientieren, indem es als Gewicht fiir die Frobeniusnormen in
der Zielfunktion aus Formel (5.8) fungiert. Damit wird die Tendenz zur Uberanpassung
der erlernten, latenten Modelle reguliert [48], was die externe Validitdt und Qualitat
der produzierten Rankings bei der Verwendung von Realdaten nach der Lernphase ver-
bessert.

Die Dimensionalitdt der Eigenschaftsvektoren - und damit auch der Modelle - be-
schreibt in grober Weise die Ausdruckskraft derselbigen, indem es die Granularitat der
zuweisbaren Eigenschaften bestimmt. Dementsprechend sind die resultierenden Model-
le komplexer und konnen auch feingranulare, zugrundeliegende Einfliisse im Lernpro-
zess aufgreifen oder sind simpel und lassen sich mit weniger Trainingsdaten dennoch
angemessen erlernen. Wie anhand der vorherigen Abschnitte auch zu sehen ist, be-
einflusst die Dimensionalitdt D auch direkt die Berechnungs-Komplexitat des TFMAP-
Algorithmus, da die Anzahl der notwendigen Multiplikationen proportional zur Grole
der Modelle ist.

Fiir die eben beschriebenen Parameter konnen i. Allg. keine optimalen Werte ange-
geben werden. Stattdessen miissen diese empirisch ermittelt werden, da sie auch stark
vom zugrundeliegenden Problem abhédngen. Als Referenz geben Shi et al. [49] die Wer-
te A = 0.001 und v = 0.001 an. Fiir die Dimensionalitdt wurde ein Wert von D = 10
veranschlagt. Abhdngig von der Komplexitdt der zu erfassenden latenten Eigenschaf-
ten ist es dabei womoglich wiinschenswert diese Zahl zu erhohen, steht hingegen die
Berechnungskomplexitdt im Vordergrund kann D auch kleiner gewéhlt werden, wo-
bei jedoch moglicherweise Abstriche in der Qualitat der Ergebnisse in Kauf genommen
werden miissen.

63

5.3.3 Bedeutung der Daten

Die aus der Weboberflache von SonarQube gewonnenen Trainingsdaten sind die be-
stimmenden Einfliisse in Bezug auf die Ergebnisse des Algorithmus. Deren Qualitit und
Quantitat beeinflussen direkt die Qualitat der produzierten Voraussagen. Je mehr aus-
sagekraftige Datensatze vorhanden sind, desto genauer und vollstandiger konnen alle
moglichen Interaktionsszenarien erfasst und miteinbezogen werden, was ein umfassen-
deres Gesamtbild ermoglicht. Des Weiteren wird durch eine grof3e Informationsbasis,
welche auf einem Trainingsdatensatz basiert, der alle Eventualitaten ausschopft, die ex-
terne Validitat des Rankings von Software-Metriken gesteigert und damit die Ergebnisse
fiir unbekannte, reale Daten bzgl. des impliziten Feedbacks verbessert.

Die Grollen der in anderen Arbeiten verwendeten Datensitze unterscheiden sich
teilweise beachtlich. Der Appazaar-Datensatz enthélt Beispielsweise 300.469 wie in Ka-
pitel 4.4.2 beschriebene 3-Tupel mit 1.767 Benutzern, 7.701 Items und 9 verschiede-
nen Kontextsituationen [14, 49]. Weitaus bekannter und noch wesentlich grofder ist
der Netflix Prize-Datensatz [12], welcher aus dem gleichnamigen Wettbewerb stammt.
Er enthalt 100.480.507 Eintrdge von ungefdhr 480.000 Benutzern und 17.770 Items
[22, 36]. Dabei ist jedoch anzumerken, dass dem Netflix Prize-Datensatz die Kontex-
tinformationen fehlen. Der TFMAP-Algorithmus wurde in [49] daher nur anhand des
Appazaar-Datensatz getestet. In dem hier behandelten Anwendungsszenario mit Sonar-
Qube ist die zu erwartende Grol3e der Benutzerbasis in einem Anwendungskontext,
welcher im Extremfall aus nur einer einzigen Instanz bestehen kann, jedoch um mehre-
re Grollenordnungen kleiner abzuschatzen.

Bei der Verwendung von Datenséatzen vieler verschiedener Benutzer ergibt sich noch
ein weiterer Vorteil. Durch die Moglichkeit eine grofe Anzahl an Benutzern in einem
Datensatz zu analysieren, konnen Verallgemeinerungen gefunden werden, die eine Be-
deutung fiir alle Benutzer haben. Die Eigenschaften der Interaktionen kénnen dadurch,
dass sie unabhingig von einzelnen Benutzern sind, als Eigenschaften der jeweiligen Me-
triken bzw. Kontexte interpretiert werden. Auch um diese Zusatzinformationen durch
Verallgemeinerungen nutzen zu konnen, ist es vorteilhaft eine moglichst grof3e Be-
nutzerzahl in einem Datensatz vertreten zu haben.

64

6 Adaptive Darstellung von Software-Metriken

Der Fokus dieser Arbeit lag bisher darauf die Ergebnisse von Shi et al. [49] auf den
Anwendungsfall mit SonarQube anzupassen und die notwendigen Definitionen klar-
zustellen. Dieses Kapitel widmet sich nun dem letzten Schritt hin zur fertigen adapti-
ven Benutzeroberflache. Es wird zuerst die Verwertung der im letzten Kapitel erlangten
Ergebnisse fiir die Verwendung bei der letztendlichen Anpassung der Weboberflache
besprochen. Im darauffolgenden Kapitel werden Designiiberlegungen behandelt, die
einen Rahmen fiir die vorzunehmenden Anpassungen abstecken und Vorgehensweisen
fiir deren Umsetzung vorschlagen. Das letzte Kapitel hat schlieRlich die Manipulation
der Weboberflache zum Thema und dient auch als Erklarung fiir manche der verwen-
deten Methoden.

6.1 Verwertung der Ergebnisse des TFMAP-Algorithmus

Die Ausgabe des TFMAP-Algorithmus sind die optimierten und damit erlernten Modelle
fiir Benutzer, Metriken sowie Kontexte. Sie enthalten alle Informationen, die durch den
Lernprozess aus dem impliziten Feedback extrahiert werden konnten. Werden die drei
Modelle in einer Tensorfaktorisierung miteinander kombiniert, konnen damit die durch
Formel (5.2) definierten Predicted Relevance Scores f berechnet werden. Wie der Name
bereits verrat, handelt es sich dabei um Vorhersagen zur Relevanz einer Metrik fiir einen
Benutzer in einem gegebenen Kontext.

Ein reales Einsatzszenario sieht somit nun folgendermalsen aus: Ein Benutzer m ruft
die SonarQube Weboberflache auf. SonarQube bestimmt die gegebene Kontextsituation
k liber die ihm gegebenen Erfassungsmoglichkeiten. Moglichst schnell, optimalerwei-
se wiahrend dem Ladevorgang, sollen die fiir den aktuellen Benutzer m und Kontext k
relevantesten Software-Metriken bestimmt und nachgeladen werden, um diese Infor-
mationen so schnell wie moglich prasentieren zu konnen. Es wird angenommen, dass
der Lernprozess zu diesem Zeitpunkt bereits abgeschlossen ist, da der Aufbau der Seite
so schnell wie moglich abgeschlossen sein soll, um das Benutzererlebnis zu optimieren.

65

sures Rules Quality Profies Qu

Abbildung 6.1: SonarQube Startseite der Apache Software Foundation mit eingefiigten
Beispielmetriken aus dem Projekt Apache Archiva.

Damit die relevantesten Software-Metriken bestimmt werden konnen, werden die Pre-
dicted Relevance Scores aller Items fiir den Benutzer m im Kontext & berechnet und die
resultierende Liste nach diesen Werten sortiert. Das Resultat enthélt die als am relevan-
testen vermuteten Software-Metriken am oberen Ende der Liste.

6.2 Designiiberlegungen

Bei der Manipulation der Weboberflache stellt der Umgang mit den restlichen Inhalten
der Startseite ein Problem dar. Ein riicksichtsloses Entfernen wiirde fiir den Benutzer
ein ernstzunehmendes Argernis darstellen und wiirde ihn sehr einschrinken, wenn z. B.
die Projektliste zur Navigation unvorhergesehen entfernt werden wiirde.

Es ist daher leicht zu sehen, dass es unerwiinscht ist Inhalte von der Startseite zu-
gunsten von Widgets fiir Software-Metriken zu entfernen. Jedoch kann es bereits ge-
nauso unerwiinscht sein diese Inhalte lediglich zu verdréngen, sodass sie nicht mehr
auf den ersten Blick zu sehen sind. Die voreingestellten Oberflaichen-Elemente haben
immer Vorrang, denn sie wurden vom Benutzer eventuell bewusst so eingestellt und

66

haben dadurch eine — aus Sicht der adaptiven Benutzeroberfliche — unbestreitbare Re-
levanz.

Aus dieser Situation heraus ergibt sich die Herausforderung den zur Anzeige not-
wendigen Platz auf andere Weise zu beanspruchen, um zumindest einen guten Kompro-
miss zu finden und sowohl voreingestellte Anzeigen, als auch neue Zusatzinformationen
in Form von Metriken anzeigen zu konnen. Das Verschmalern der urspriinglichen Start-
seite durch das Verwenden mehrerer Spalten erscheint dafiir die natiirlichste Losung
zu sein, da somit keine Informationen entfernt oder aus dem initial sichtbaren Bereich
verdrangt werden miissen.

Der néachste, daraus resultierende Punkt ware damit die Dimensionierung des Spal-
tendesigns. Sowohl Spaltenanzahl, als auch Gro8enverhéltnisse zwischen den Spalten
spielen dabei eine Rolle. Mogliche Varianten sind das regulédre Design der Startseite mit
einer einzigen Spalte, wie es bei vielen SonarQube Instanzen iblich ist, ein Design mit
zwei Spalten, wie es in jedem Projekt-Dashboard zu finden ist und ein Design mit drei
Spalten. Dies sind jedoch nicht die einzigen Moglichkeiten, da sich mithilfe von Web-
technologien auch noch viele andere Designs implementieren lassen. Diese werden hier
jedoch nicht behandelt, da Designoptimierungen nicht der Schwerpunkt dieser Arbeit
sind.

Die Verwendung von zwei Spalten zeigt bereits in Abbildung 6.1, dass durch die
Komprimierung der urspriinglichen Seite keine Informationen verloren gehen. Der Platz-
verbrauch durch iberméal3ig breite Zeilen ist vor der Anpassung unnotig hoch und der
dadurch eingesparte, leere Platz kann dadurch besser genutzt werden. In diesem Fall,
bei dem lediglich eine Projektliste komprimiert werden muss, ist das noch ein einfa-
ches Unterfangen, doch in anderen Situationen miissen eventuell ungewollte Zeilenum-
briiche oder gestauchte Elemente in Kauf genommen werden.

Wie diese Effekte aussehen, kann man gut in Abbildung 6.2 beim Design mit drei
Spalten sehen. Die Spalten sind dabei zu klein zur Darstellung der Software-Metriken.
Dadurch kommt es zu ungewollten Stauchungen und Verschiebungen, die die Darstel-
lung unésthetisch aussehen lassen. Dies ist bei den Metriken darin begriindet, dass ihr
Design und ihre Ausmalse auf das zweispaltige Design des Projekt-Dashboards ausgelegt
sind und nicht ohne Weiteres in ein dreispaltiges Design {ibernommen werden konnen.

Anhand dieser Uberlegungen bildet sich ab, dass ein zweispaltiges Design, mit po-
tentiell dynamisch verdnderbaren Spaltenbreiten, die vielversprechendste Designalter-

67

Projects~ Measures Issues Rules Quality Profiles Quality Gates Log in

PROJECTS Lines Of Files Functions Technical ssues © Blocker
Code Py Ao Debt - = .
QG NAME VERSION 3247 a 43088 a S n 70.050 a @critical 796
o i 2,723d ©@Major 56442 A NN
{9 Kitalpha 1.20 14¢ a Minor 11324 A W
(3 Capella Studio master £ Info 1486 |
() EGerrit Parent 1.40-SNAPSHOT 1€ »
Dynamic Language Toolkit (DLTK) 5.7.2-SNAPSHOT 64¢
B0y duag Directory Tangle Dependencies To
() org eclipse.recommenders 2.5.0-SNAPSHOT 6C ndex cut
(5 PHP Development Tools (PDT) 5.0.0-SNAPSHOT 264 31 2% =
& capella 1.20-SNAPSHOT 662 Documentation Comments

{5) Eclipse Linux Tools Parent 6.0.0-5NaPSHOT 131 2]

12,

{5 Trace Compass Parent 3.0.0-SNAPSHOT 168

() eclipse.platform.text 47.0-SNAPSHOT 134 2947

A kura 3.0.0-SNAPSHOT 10% Unit Tests Coverage Unit Test Success
() m2m.atl-parent 3.8.0-SNAPSHOT 15¢ 56,6% 100,0%

() kapua 0.20-SNAPSHOT 8C ge Fallures - Errors

(5 Capella Subsystem Transition 110 v

{8 org.eclipse tmae 01.0SNAPSHOT 7]
() eclipse platform.ui 4.7.0-SNAPSHOT 602 e
) eclipse jdt.u 4.7.0-SNAPSHOT 53¢ A 65
{8 eclipse pde build 47.0-SNAPSHOT 2€
() eclipse,dt.debug ATOSNAPSHOT 205 (o 2000 SQALE Rating
() eclipse.pde.si 47.0SNAPSHOT 333 20000
2,9 stunction A
esuits | Previous 123 4 Next L0000
273
27,3 ctass '
, . =
Toras s Technical Debt Pyramid M Technical Debt Total
) 38,9 Iile ® Functions © Files
PROJECTS Reusability 0 2723d
196 16
Toa: 126.167 & Portability | 14d 27230 he

Abbildung 6.2: Seitenlayout mit drei Spalten am Beispiel der 6ffentlichen SonarQube-
Instanz des Eclipse-Projekts. Die Spalten sind zu eng fiir den darzustellenden Inhalt,
weshalb dieser umstrukturiert und teilweise abgeschnitten wird.

native ist, da viele Teile der Benutzeroberfliche ohnehin schon auf ein zweispaltiges
Design ausgelegt ist. Dadurch sind, wenn iiberhaupt, auch nur kleinere, dynamische
Anpassungen notig.

Es ist noch anzumerken, dass in der Realitdt jede SonarQube Instanz aufgrund der
Einstellungsmoglichkeiten unterschiedlich viel Platz auf der Startseite verwendet. Des-
wegen muss es nicht zwangslaufig so sein, dass lediglich eine Projektliste mit viel Poten-
tial zur Platzeinsparung vorhanden ist. Im Gegenteil, der Administrator der Instanz hat
zahlreiche Moglichkeiten den Platz der Startseite selber einzuteilen und dessen Nut-
zung zu bestimmen. In diesen Fillen soll ebenfalls der oben beschriebene Grundsatz
gelten, dass Voreinstellungen des Benutzers absoluten Vorrang haben. Ist also beispiels-
weise bereits samtlicher Platz auf der Startseite im initial sichtbaren Bereich vergeben
und kann nicht ohne Verlust von Information oder der Asthetik freigerdiumt werden,
dann soll der nicht-initial sichtbare Bereich der Seite, der nur durch Verschieben des
Bildschirminhalts erreichbar ist, verwendet werden. Mit diesem Kompromiss erhilt der
Benutzer weiterhin alle von ihm explizit eingestellten Informationen, kann aber trotz-

68

dem schnell auf Zusatzinformationen in Form der eingefiigten Metriken zugreifen, ohne
einen weiteren Seitenaufruf starten zu miissen.

Eine letzte Designiiberlegung ist die Anzahl einzufiigender Metriken. Wie bereits in
Kapitel 1.2 zur Implementierung des Demonstrators erwahnt wurde, sollen nicht ein-
fach alle verfiigbaren Metriken - lediglich nach Relevanz sortiert wie bei einer Such-
maschine - auch tatsachlich auf der Startseite angezeigt werden. Zuséatzlich muss eine
Auswahl getroffen werden, um die Weboberflache iibersichtlich zu halten. Dafiir kann
u.a. beachtet werden, wie viel Platz zur Verfligung steht und wie viele Metriken darin
untergebracht werden konnen, um ein andernfalls notwendiges Scrollen zu verhindern.
Dies konnte entweder iiber die direkte Berechnung des noch verfiigbaren Platzes ge-
schehen oder durch Ausnutzen einer Faustregel. Eine andere Moglichkeit ist es, nur die
Metriken mit den hochsten Predicted Relevance Scores anzuzeigen.

6.3 Manipulation der Weboberflache

Da in den bisherigen Abschnitten dargelegt wurde, wie die zu verwendenden Software-
Metriken ausgesucht und dargestellt werden sollen, behandelt dieses Kapitel den noch
fehlenden Teil: die Anpassung in der Weboberflache.

Zur Manipulation der Weboberfldche sind nur einfache Manipulationen des Docu-
ment Object Model (DOM) — der logischen, baumartigen Struktur eines HTML-Doku-
mentes, auf dem die Webseite basiert — notig. In einem ersten Schritt wird auf der Start-
seite eine Flache reserviert, in der die einzufiigenden Widgets platziert werden konnen.
Wie in Kapitel 6.2 erwdhnt, wird dazu bei Bedarf entweder eine zweite Spalte erstellt
und der restliche Seiteninhalt in die erste Spalte komprimiert oder die Widgets wer-
den in den bestehenden Spalten unten angehangt. Um dieses Ziel zu erreichen, werden
die DOM-Elemente, welche die Widgets auf der Projekt-Dashboard Seite darstellen, in
diesen reservierten Bereich kopiert. Sobald das DOM des HTML-Dokumentes verandert
wurde, werden die eingefiigten Elemente automatisch vom Webbrowser gerendert. Da-
durch fallt es fiir den Benutzer kaum auf, dass diese Inhalte keine native Funktionalitat
von SonarQube sind.

Damit die Software-Metriken beim Aufrufen der Startseite von einem Projekt-Dash-
board iibernommen werden koénnen, ist es davor notwendig die benétigten Informa-
tionen von SonarQube abzufragen. Die Widgets miissen dafiir, wahrend die Startseite

69

aufgebaut wird, parallel mittels des AJAX-Konzeptes geladen werden. AJAX steht fir
Asynchronous JavaScript And XML und bezeichnet ein Programmierkonzept zum asyn-
chronen Versenden und Verarbeiten von HTTP-Anfragen, um somit ein Nachladen von
Inhalten, ohne ein Neuladen der kompletten Seite, zu ermoglichen [24, 26]. Wahrend
die SonarQube-Startseite geladen und aufgebaut wird, wird eine solche AJAX-Anfrage
mit dem Ziel eines Projekt-Dashboards abgesendet. Die Antwort des Servers enthalt das
komplette HTML-Dokument des Dashboards, aus dem die zugehoérigen DOM-Elemente
der Widgets von Software-Metriken extrahiert und per JavaScript in der Startseite ein-
gefiigt werden konnen.

In den Anforderungen dieser Arbeit aus Kapitel 3.1 wurde mit Anforderung A4 das
Erhalten des Seitendesigns verlangt. Dieses Kriterium wird von der hier verwendeten
Methode automatisch erfiillt, denn durch das direkte Kopieren vom Projekt-Dashboard
werden die Informationen bzgl. des Stylings ebenfalls iibernommen. Die verwendeten
Stylesheets der Dashboard-Seite gleichen denen auf der Startseite, weshalb die Widgets
nach dem Einfligen automatisch richtig dargestellt werden. Die Voraussetzung dafiir ist
jedoch, dass wie auf dem Projekt-Dashboard ein Layout mit zwei Spalten verwendet
wird, denn andernfalls wirken die Widgets stark gestreckt bzw. gestaucht. Auf3erdem ist
es fiir den Benutzer auf den ersten Blick unklar, aus welchem Projekt die eingefiigten
Widgets stammen, wodurch es notig wird auch das zugehorige Projekt anzugeben. Das
ist jedoch die einzige Anpassung, die vorgenommen werden muss.

Eine alternative Moglichkeit die entsprechenden Daten von SonarQube zu erlangen
ware die SonarQube-API zu verwenden. Die davon zuriickgelieferten Daten sind jedoch
nicht im HTML-Format, weshalb zusatzlicher Aufwand notig wére, um diese Daten op-
tisch ansprechend darzustellen. Diese Methode ist dann zu bevorzugen, wenn ohnehin
ein anderes Styling zu verwenden ware.

70

7 Demonstration

Die in den letzten Kapiteln vorgestellten Erkenntnisse und Konzepte miissen nun auch
zeigen, dass sie nicht nur theoretisch vielversprechend sind, sondern auch in der Pra-
xis beweisen konnen, dass sie wie vorgestellt auch realisierbar sind und dabei einen
Mehrwert liefern. Dafiir widmet sich der erste Teil dieses Kapitels der Umsetzung des
Machine-Learning-Konzepts sowie der adaptiven Benutzeroberfliche im Zusammen-
spiel mit SonarQube und zeigt dartiber hinaus am Beispiel verschiedener Benutzungs-
szenarien wie sich die Benutzeroberfliche an den Benutzer anpasst. Das aus diesen
Komponenten bestehende System wird fiir die Zwecke dieser Arbeit DeepSonar genannt.
Im zweiten Teil des Kapitels wird darauf eingegangen inwiefern die Anforderungen aus
Kapitel 3 von den in dieser Arbeit prasentierten Ergebnissen erfiillt werden.

7.1 Komponenten & Funktionsweise von DeepSonar

Um zuerst einen Einblick in die Funktionsweise des entwickelten Systems mit Machine-
Learning-Modul und dem Modul zur Anpassung der Oberflache — im Folgenden ,,Adap-
ter genannt — werden im Folgenden die verwendeten Komponenten beschrieben und
ihr Zusammenwirken sowie ihre Arbeitsweise erklirt. Dadurch soll ein Uberblick iiber
das DeepSonar-System gegeben werden, welches in Abbildung 7.3 auch bildlich darge-
stellt ist.

7.1.1 Grundlegender Aufbau

Die Basis, auf der der Adapter aufbaut, ist SonarQube, genauer gesagt dessen Webober-
flache. Diese ist fiir die Zwecke dieser Arbeit zwei Bereiche aufgeteilt: Zum einen das
Home-Dashboard und zum andern die verschiedenen Projekt-Dashboards.

Auf dem Home-Dashboard (s. Abbildung 7.1), welches die Startseite von Sonar-
Qube darstellt, wird meistens eine Liste der zur Verfiigung stehenden Projekte und je
nach Konfiguration noch weitere Widgets angezeigt, welche beispielsweise einen kurzen

71

sonarqube | Dashboards~ Issues Mea

Home
PROJECTS PROJECTS
QG NAMEa 'VERSION Loc BLOCKER ISSUES CRITICAL ISSUES OVERALL COVERAGE DUP. LINES(%) SQALE RATING LAST ANALYSIS Size: Unit tests Color: Overall coverage
XFE -Parent POM oazsnAPSHOT 1234 3 9 739% a1 [} 19.Nov 2015

BA4SNAPSHOT 53631 21 18 78 649% 12% 00:55

sasNAPSHOT 2363427 1 a2 ass% ran B o304

84SNAPSHOT 37.490 1 13 723% 13% 01:09

Quality More

XWiki Platform - Parent POM 236626 N
s - Parent POM 53631 N
XWiki Rendering - Parent POM 7450 W

XWIKI

Highest SQALE technical debt | All characteristics + More

11200 I
1800 W

1330 W

) Is powered by SonarSource SA
a

Version 5.1.1-LGPLV3 tation - Get Support - Plugins - Web Service API

Abbildung 7.1: SonarQube Startseite des XWiki-Projekts

Uberblick iiber die technische Qualitit der Projekte bietet. Da diese Seite, wie in Kapitel
1 beschrieben, in vielen Féllen den zur Verfiigung stehenden Platz nicht effizient nutzt,
soll diese Seite fiir die Demonstration dieser Arbeit auf die Bediirfnisse des Benutzers
angepasst werden, indem Widgets mit Software-Metriken darauf angezeigt werden.

Die Widgets mit Metriken dafiir sollen aus dem Projekt-Dashboard (s. Abbildung
7.2) stammen, welches fiir den Nutzer am relevantesten ist. Diese Projekt-Dashboards
enthalten typischerweise viele verschiedene Widgets mit unterschiedlichen Metriken,
um einen umfassenderen Uberblick iiber ein einzelnes Projekt und die Entwicklung
dessen technischer Qualitit zu bieten. Auf dieser Seite werden daher die Informationen
dargestellt, weswegen der Benutzer SonarQube aufgerufen hat.

Der Adapter ist als Erweiterung der reguldaren Weboberflache von SonarQube zu
sehen, da er sich als Browserskript nahtlos darin integriert und diese entsprechend des
Nutzerverhaltens verdandert, welches ebenfalls von ihm erfasst wird. Das bedeutet, dass
der Adapter als Mittelsmann zwischen SonarQube, Benutzer und Machine-Learning-
Modul fungiert, was auch in Abbildung 7.3 dargestellt ist.

72

p— Lines Of Code Files Functions Technical Debt Issues © Blocker 2

Time Machine 592.556 a 3230a 2,752d A 69.906 » © critical 80 |
© Major 56320 A I
TooLs r o
Component: 5 a Minor N2 A W
Issues Drilldown Info rasa |
. Documentation Comments
pranes o Directory Tangle Index Dependencies To Cut
e 21,8% 12,0% ry Tang P
29.4% Between Directories ~ Between Files
sonarqube c " 3642 16512

Duplications Unit Test Success
13,5% 100,0%
oss s Tan, Faires Erors Tests

5.965 13941 0 0
Complexity SQALE Rating Technical Debt Ratio
2.9 ucion 74%
27,3 s -

- Technical Debt Pyramid M Technical Debt ~ Total

39,0 smie @ Functions O Files

0 27520
ol 125.823 &

154 27520
530d 2737d

Events an 30d 2207d
0 21774
23 ok 2016 Version 47.0-SNAPSHOT
3aa 2177a
29.Mai 2016 Version 4.6.0-SNAPSHOT
16374 21424
29, Nov 2015 Quality Profile Changes in"Sonar way with Findbugs' (Java)

4220 5040
30.Jun 2015 Version 45.0-SNAPSHOT -
30, Jun 2015 Quality Profile Use s ith Findbugs’ (Java)

30. Jun 2015 Quality Profile Stop using"Sonar way (Java)
B eclipsejdtui ecipsejotuiecipsejdt
Profiles: Sonar way with Findbugs (Jeve

SonarQube™ technology is powered by SonarSource SA

Abbildung 7.2: Ubersicht von Widgets mit Software-Metriken eines Programmoduls in
SonarQube. Die hier gezeigten Widgets stammen aus dem Modul ,eclipse.jdt.ui“ des
Eclipse Projekts.

Das Skript des Adapters wird beim Aufruf der SonarQube Webseite mitgeladen und
erkennt selbststandig, ob es sich dabei um das Home- oder ein Projekt-Dashboard han-
delt. Daraufhin fiihrt es die notwendigen Aktionen sofort aus. Im Fall eines Home-
Dashboards bedeutet das, dass die HTML-Struktur der Seite gedndert wird, um frei-
en Platz zu schaffen, in den Widgets geladen werden. Die Information welche Widgets
geladen werden sollen erhilt der Adapter dafiir vom Machine-Learning-Modul. Auf ei-
nem Projekt-Dashboard wird hingegen fiir jedes Widget erfasst, ob der Benutzer darauf
klickt und im Falle einer solchen Interaktion wird die gegenwértige Kontextsituation,
wie in Kapitel 4 definiert, erfasst und in Verbindung mit dem Widget und dem aktuellen
Benutzer abgespeichert. Diese Daten stellen das implizite Feedback des Benutzers dar,
so wie es von dem TFMAP-Algorithmus von Shi et al.[49] erwartet wird.

Das Machine-Learning-Modul verwendet das gespeicherte Feedback, um wie in Ka-
pitel 5 beschrieben die latenten Modelle der Benutzer, Metriken und Kontexte zu erler-
nen. Diese Daten macht der Adapter fiir das Machine-Learning-Modul verfiigbar. Da-

73

Benutzer

h
Ca

A

Nutzerverhalten / Implizites Feedback

Injiziert in Webseite

A

]

HTML-Seite

|Latente Modelle| |Implizites Feedback|

SonarQube Vlachine-Learning-Modul

Abbildung 7.3: Ubersicht iiber das beschriebene System

durch kann der Lernprozess, abgesehen vom Verfiigbharmachen der Daten, unabhingig
und entkoppelt vom Adapter die latenten Modelle erlernen. Dies ist notwendig, da das
Lernen ein lange andauernder Prozess ist und andernfalls vom Benutzer unterbrochen
werden konnte, wenn er die Webseite von SonarQube verlasst.

Wenn der Adapter nun zur Anpassung des Home-Dashboards wissen muss, welche
Metriken fiir den aktuellen Benutzer im derzeitigen Kontext relevant ist, fordert er die
erlernten latenten Modelle beim Machine-Learning-Modul an. Mithilfe der Formel des
Predicted Relevance Score (5.2) konnen die verfiigbaren Metriken beziiglich ihrer Rele-
vanz zur Laufzeit der SonarQube-Webandwendung bewertet werden.

7.2 Veranschaulichung der Funktion

Um ersichtlich zu machen, wie sich DeepSonar an verschiedene Nutzer anpasst, be-
schreiben die nachsten Abschnitte verschiedene Szenarien wie sich Beispielbenutzer
verhalten konnten und welche Anpassungen von DeepSonar die unterschiedlichen In-
teraktionen mit der Weboberflache bewirken.

74

7.2.1 Nutzerszenarien

Die folgenden Szenarien sollen beschreiben, wie Verhaltensmuster von Benutzern aus-
sehen konnen. Das Augenmerk liegt dabei auf der Erlauterung welche Merkmale beim
Benutzerverhalten eine Rolle spielen. Die hier beschriebenen Szenarien miissen dabei
nicht zwangsweise reprasentativ fiir die Realitét sein, sondern sollen die Eigenschaften
der Anpassungen hervorheben.

Situation A Das simpelste Verhaltensmuster ergibt sich dadurch, dass ein einziger Be-
nutzer A existiert, welcher nur eine Metrik o und das auch ausschlief3lich in einem Kon-
text x aufruft. Der Tensor aus implizitem Feedback hat demnach nur einen einzelnen
Eintrag ungleich null, und zwar den fiir Benutzer A und Metrik o im Kontext k.

In dieser Konstellation wird erwartet, dass der Benutzer A, wenn er die Webober-
flaiche von SonarQube aufruft und sich dabei im Kontext x befindet, die Metrik « auf
der Startseite angezeigt bekommt. Ist das der Fall, dann werden tatsachlich auch vor
allem relevante Metriken angezeigt.

Situation B Fiir den nichsten Fall soll Situation A erweitert werden. Benutzer A ver-
halt sich wie in Situation A, ruft wenn er sich in einem anderen Kontext \ befindet,
jedoch eine Metrik § auf. Der Tensor aus implizitem Feedback hat nun zwei Eintrége
ungleich null fiir zwei verschiedene Kontextsituationen.

Wenn die von TFMAP empfohlenen Metriken, die auf der SonarQube-Startseite an-
gezeigt werden, von der aktuellen Kontextsituation abhdngen, dann muss im Kontext s
die Metrik o und im Kontext A die Metrik $ angezeigt werden.

Situation C Auch fiir Situation C sei die gleiche Ausgangssituation A angenommen.
Der Benutzer A ruft nun zuséatzlich im Kontext x auch die Metrik v auf. Dadurch erhalt
der Tensor aus implizitem Feedback einen zweiten Eintrag mit dem Wert eins fiir den
Benutzer A und den Kontext s

Das erwartete Verhalten fiir diese Situation ist, dass der Benutzer A im Kontext
nun beide Metriken — « und ~ — angezeigt bekommt. Das wiirde bedeuten, dass Deep-
Sonar auch fortlaufend neue Informationen iiber den Benutzer miteinbezieht und seine
Empfehlungen darauf anpasst.

75

Situation D Da es sich bei TFMAP um einen Algorithmus aus dem Bereich des kolla-
borativen Filterns handelt, behandelt Situation D Mehrbenutzersysteme. Es existieren
nun Benutzer A, B und C. Benutzer A ruft wie bisher im Kontext x die Metrik « auf.
Benutzer B verhalt sich dhnlich und ruft die gleiche Metrik «, jedoch im Kontext A auf.
Benutzer C ist ein neuer Benutzer, zu dem noch kein Benutzerverhalten erfasst werden
konnte.

Es wird hierfiir erwartet, dass das Verhalten der Benutzer auch Auswirkungen fiir
andere oder neue Benutzer hat, wenn der Lernprozess Daten aller Benutzer verarbeitet.
Da Metrik o sowohl fiir Benutzer A, als auch Benutzer B von Interesse zu sein scheinen,
kann die Annahme getroffen werden, dass die Metrik « auch fiir den neuen Benutzer
C moglicherweise von Interesse ist [41]. Daher sollte diese Metrik auch bei Benutzer C
auf der Startseite angezeigt werden.

7.2.2 Adaption des Systems

Anhand der soeben beschriebenen Nutzerszenarien, soll nun in diesem Abschnitt illus-
triert werden, welche Auswirkungen unterschiedliche Verhaltensmuster in der Anpas-
sung der Weboberfldche von SonarQube durch DeepSonar nach sich ziehen.

Die Tests wurden dafiir auf einer lokalen, nicht-6ffentlichen SonarQube-Instanz in
Version 5.1.2 durchgefiihrt. In Abbildung 7.4 ist die unverdnderte Startseite zu sehen,
welche im Folgenden als Referenz dient. Zu sehen ist lediglich eine Projektliste, in der
ein grof3er Teil der Flache nicht genutzt wird.

Fiir jede der in Kapitel 7.2.1 beschriebenen Situationen wird jeweils die durch An-
passung resultierende Seite dargestellt. Der Lernprozess wurde fiir die Situationen A bis
D mit den in [49] gewahlten Parametern D = 10, v = 0.001 und A = 0.001 durchgefiihrt,
wobei D der Anzahl der Eigenschaften, v dem Lernfaktor und A dem Regularisierungs-
faktor entspricht.

Situation A Im einfachsten Beispiel wurde davon ausgegangen, dass der aktuelle Be-
nutzer in der Vergangenheit ausschliel$lich das Widget der Metrik ,Lines of Code” im
Projekt Apache Tomcat angesehen hat, wahrend es Morgen und der Wert der Metrik
,steigend war. Daraus ergibt sich die Kontextsituation x = (,Apache Tomcat“, ,stei-
gend“, ,Morgen”).

76

PROJECTS

QG NAME=~
() Apache Ant
() Apache Commons Compress
{1 Apache Commons RNG
{5 Apache Flex - Blaze DS
(5 Apache Flex - FlexJS: Compiler: Parent
{51 Apache Flex - FlexJs: Framework: Parent
() Apache Flex - FlexJ5: TypeDefs: Parent
(51 Apache Flex - SDK Converter
) Apache JSPWiki
(51 Apache PDFBox
{5 Apache POI - the Java API for Microsoft Documents
(=) Apache RocketMQ
() Apache Tobago
© [Apache Tomcat
1 IMeter
& Olingo-OData
5 olingo-odata2-parent
S Struts 2

18 results

PROJECTS

Size: Lines of code

Color: Coverage

sonarqube shboards »

Home
PROJECTS

a6 NAME~
) Apache Ant
(51 Apache Commans Compress
{5 Apache Commons RNG
(=) Apache Flex - Blaze DS
{51 Apache Flex - FlexJS: Compiler: Parent
(5 Apache Flex - FlexJS: Framework: Parent
() Apache Flex - FlexJs: TypeDefs: Parent
() Apache Flex - SDK Converter
{51 Apache JSPWiki
{5 Apache PDFBox
(53 Apache POI - the Java API for Microsoft Documents
{5 Apache RocketMQ
(53 Apache Tobago
© 5 Apache Tomeat
) IMeter
(5 Olingo-OData
5 olingo-odata2-parent
S struts 2

18 results

PROJECTS

Size: Lines of code Color: Coverage

> ______°

Quality Pro

VERSION

1.0.0-SNAPSHOT
200
1.0.1-SNAPSHOT
1.3.2.SNAPSHOT
1.3.0-SNAPSHOT
1.3.0-SNAPSHOT
1010

1010
1.2.0-SNAPSHOT
1010
1.0.6-SNAPSHOT
7.0.1-SNAPSHOT
1.1.5-SNAPSHOT
1.7.1-SNAPSHOT
1.0.0-SNAPSHOT
1.0.2-SNAPSHOT
7.0.2-SNAPSHOT

5.0.1-SNAPSHOT

More v

LOC TECHNICALDEBT LAST ANALYSIS

570 1d3h 15. Feb 2017
11.207 92d 19. Dez 2016
32179 A 38dw 15 Feb2017

6554 7 9d3ny 15 Feb2017
4076 2 1d7h A 15 Feb2017
9667 A 15d A 15.Feb2017
0 15. Feb 2017

0 15. Feb 2017

0 15. Feb 2017

385 1dsh 18. Nov 2016
1.078 4d 09. Jan 2017
1497y 6h4lminw 15 Feb2017

511 1d4n 15. Feb 2017

143703 A 66y 15 Feb2017
547 2d 6h 15. Feb 2017
1175 1d3n 15. Feb 2017
0 15. Feb 2017

1015 2 12d A 15.Feb2017

VERSION Loc TECHNICAL DEBT

1.0.0-SNAPSHOT 570 1d3n 15,
200 11.207 92d 19
1.0.1-SNAPSHOT 32179 2 38dy 15.
1.3.2-SNAPSHOT 6554 A 9d3h y 15
1.3.0-SNAPSHOT 4076 A Wd7h A 15.
1.3.0-SNAPSHOT 9667 A 150 A 15
1010 0 15.

1010 0 15.
1.2.0-SNAPSHOT 0 15.
1010 385 1d5h 18,
1.0.6-SNAPSHOT 1078 4d 09
7.0.1-SNAPSHOT 1497y 6h 41min y 15,
1.1.5-SNAPSHOT 511 1d4n 15.
1.7.1-SNAPSHOT 143703 A 66d w 15
1.0.0-SNAPSHOT 547 2d6n 15.
1.0.2-SNAPSHOT 1175 1d3h 15.
7.0.2SNAPSHOT 0 15.
5.0.1-SNAPSHOT 110152 12d A 15

Login

Apache Tomcat

Lines Of Code Files Functions
143703 A 1.983 12565
java Lines

236.193 &

LAST ANALYSIS

Feb 2017
Dez 2016
Feb 2017
Feb 2017
Feb 2017
Feb 2017
Feb 2017
Feb 2017
Feb 2017
Nov 2016
Jan 2017
Feb 2017
Feb 2017
Feb 2017
Feb 2017
Feb 2017
Feb 2017

Feb 2017

Q- @

Abbildung 7.5: Fiir Situation A angepasste Startseite der lokalen SonarQube-Instanz

77

sonarqube Dashboards~ Issues Measures Rules Quality Profiles Quality Gates More ~ wgin A~ @

Home
PROJECTS Apache Tomeat
Q6 NAME~ VERSION LOC TECHNICALDEBT LASTANALYSIS
Complexity
£ Apache Ant 1.0.0SNAPSHOT 570 1d3h 15. Feb 2017 -
= 21804 A s000
=) Apache Commons Compress 200 11.207 92d 19. Dez 2016
. _ . Function /Class /File o
Commons ANG 1.0.1-SNAPSHOT 32179 20 380 1sFep2o7 oe 110 P T
5 Apache Flex - Blaze DS 1.32-5NAPSHOT 6.554 70 ad3h 15. Feb 2017 ' . ’ ® Functions O Files
ne Flex - FlexJs: Compiler. Parent 1.2.0-SNAPSHOT 4.076 2 1WA 15 Fen2017
he Flex - FlexJS: Framework: Parent 1.3.0-SNAPSHOT 9.667 7 157 15.Feb2017 Lines Of Code
he Flex - FlexJS: TypeDefs: Parent 1.010 0 15. Feb 2017 143703 a
he Flex - SDK Converter 1010 0 15. Feb 2017
java
he JSPWiki 1.2.0-SNAPSHOT o 15. Feb 2017
ne PDFBOX 1010 385 195h 18. Nov 2016

he POI -the Java AP! for Microsoft Documents 1.0.6-SNAPSHOT ~ 1.078 ad

9. Jan 2017 Directory Tangle Index

/) Apache RocketMQ 7.0.1-SNAPSHOT ~ 1.497 9 &h 41min 15. Feb 2017 7.2%
he Tobago 11.5SNAPSHOT 511 1d4h 15.Feb 2017 oo
5 Apache Tomeat 1.7.1-SNAPSHOT 143.703 2 660 15. Feb 2017 > 567
T.O.0SNAPSHOT 547 2d6h 15. Feb 2017
5 olingo-0Data 1.0.2SNAPSHOT 1.175 1d3n 15. Feb 2017
5 olingo-odata2-parent 7.0.2-SNAPSHOT 0 15. Feb 2017
& Struts 2 5.0.1-SNAPSHOT 11.015 2 1244 15.Feb2017
181
PROJECTS
Size: Lines of code Color: Coverage

Abbildung 7.6: Fiir Situation B angepasste Startseite der lokalen SonarQube-Instanz

Ruft der Benutzer, wiahrend er sich im gleichen Kontext befindet, die Startseite von
SonarQube nach Abschluss des Lernprozesses auf, bekommt er die Webseite, wie sie
in Abbildung 7.5 dargestellt ist, zu sehen. Dafiir muss er als letztes das Projekt Apa-
che Tomcat betrachtet haben, der Wert der Metrik ,Lines of Code“ muss immer noch
ysteigend“ sein und die Tageszeit muss ,Morgen® sein.

Zu sehen ist, dass der bisherige Inhalt der Seite verkleinert wurde und sich in der
linken Spalte befindet. Die rechte Spalte ist neu hinzugekommen und enthilt als erstes
Element den Namen des Projekts, aus dem das angezeigte Widget stammt. Als nachstes
werden die vom TFMAP-Algorithmus als wichtig erachtenden Widgets angezeigt. In die-
sem Fall ist das nur das Widget der Metrik ,Lines of Code“, da das das einzige Widget
ist, das der Benutzer je angeklickt hat und damit als relevant erachtet werden kann.

Situation B Das Beispiel von Situation B soll zeigen, dass die vom TFMAP-Algorithmus
vorgeschlagenen Widgets auch aufgrund der jeweils vorliegenden Kontextsituation aus-
gesucht werden. Dafiir hat der Benutzer in dieser Situation zusétzlich in einem Kontext
A = (,Apache Tomcat®, ,steigend”, ,,Abend”) die Metrik ,,Complexity* angeklickt.
Befindet sich der Benutzer wie in Situation A im Kontext x, wird auch die SonarQube-
Startseite wie in Abbildung 7.5 angezeigt. Befindet sich der Benutzer jedoch im Kontext

78

sonarqube Dashboards~ Issues Measures Rules Quality Profiles Quality Gates More~

Home
PROJECTS Apache Tomcat
as r.:\mz N VERSION LOC TECHNICALDEBT LAST ANALYSIS SOALE Reting Technical Debt Batio
{5 Apache Ant 1.0.0SNAPSHOT 570 1d3h 15. Feb 2017 07%
(= Apache Commons Compress 200 11.207 92d 19. Dez 2016 e
{51 Apache Commans RNG 1.0.1-SNAPSHOT 32179 A 3sd 15. Feb 2017 . ~
5 Apache Flex - Blaze DS 1.3.2SNAPSHOT ~ 6.554 7 8d 3h 15. Feb 2017 L re’s of uide 7”;75 . FL.rc;:irs
e Flex - FlexJS: Compiler. Parent 1.3.0-SNAPSHOT ~ 4.076 A 147n A 15.Feb 2017 143703 1983 12,565
he Flex - FlexJS: Framework: Parent 13.0-SNAPSHOT 9667 A 15d.A 15 Feb2017 Java Drrectories Lnes Cle=
e Flex - FlexJS: TypeDefs: Parent 1010 0 15. Feb 2017 169 2361952 2261
he Flex - SDK Converter 1010 0 15. Feb 2017
he JSPWiki 1.2.0-SNAPSHOT o 15. Feb 2017
he PDFBox 1010 385 1dsh 18. Nov 2016
he POI - the Java AP for Microsoft Documents 1.0.6-SNAPSHOT ~ 1.078 4d 09. Jan 2017
pache RockelMQ 7.0.1-SNAPSHOT 1.497 'y 6h 41min 15. Feb 2017
he Tobago 1.1.5SNAPSHOT 511 1d4h 15. Feb 2017
he Tomcat 1.7.1-SNAPSHOT 143703 A 66d 15. Feb 2017
1.0.0SNAPSHOT 547 2d 6h 15. Feb 2017
5 Olingo-OData 1.0.2-SNAPSHOT 1175 1d 3n 15. Feb 2017
5 olingo-odataz-parent 7.0.2-SNAPSHOT 0 15. Feb 2017
& Struts 2 5.0.1-SNAPSHOT 11.015 2 12d A 15 Feb2017

PROJECTS

Size: Lines of code Color: Coverage

, .

Abbildung 7.7: Fiir Situation C angepasste Startseite der lokalen SonarQube-Instanz

A, wird die Startseite dhnlich wie in Situation A verdndert, mit dem Unterschied, dass
zuséatzlich zu dem Widget fiir die Metrik ,Lines of Code“, das Widget fiir die Metrik
»,Complexity“ angezeigt wird. Dadurch wird ersichtlich, dass die nach dem Lernprozess
angezeigten Metriken auch vom Kontext des Benutzers abhangen.

Tatsachlich wird in Abbildung 7.6 das entsprechende Widget der Metrik ,,Complexi-
ty* neben zwei weiteren Widgets angezeigt, welche jedoch niedrigere Predicted Relevan-
ce Scores haben.

Situation C Wenn mehrere Metriken fiir einen Benutzer relevant sind sollen diese
auch alle angezeigt werden. In dieser Situation hat der Benutzer im Kontext x zusétzlich
zum Widget der Metrik ,Lines of Code* auch das Widget ,Debt Overview* angeklickt,
welches das sog. SQALE-Rating und den Prozentsatz der technischen Schuld des Pro-
jektes anzeigt.

Ruft der Benutzer wie in Situation A die SonarQube-Startseite nach Abschluss des
Lernprozesses auf, wird ihm die Startseite wie in Abbildung 7.7 angezeigt. Diese sieht
ahnlich aus, wie die Version aus Situation A, nur dass nun zuséatzlich das Widget ,Debt
Overview" angezeigt wird.

79

sonarqube Dashboards~ Issues Measures Rules Quality Profiles Quality Gates More ~ wgin A~ @

Home

PROJECTS Apache Tomeat

a6 r,:\mz- VERSION LOC TECHNICALDEBT ~LAST ANALYSIS Directory Tangle Index Dependencies To Cut
{5 Apache Ant 1.0.0SNAPSHOT 570 1d3h 15. Feb 2017 o
(5 Apache Commons Compress 200 11.207 92d 19. Dez 2016 72%

Commons RNG 1.0.1-SNAPSHOT 32179 3sd 15 Fep2o7 | ¥E
(5 Apache Flex - Blaze DS 1.3.2-5NAPSHOT 6.554 24 od 3h 15. Feb 2017
{5 Apache Flex - FlexJS: Compiler. Parent 1.3.0-SNAPSHOT ~ 4.076 A 1Wd7hA 15 Feb2017 o
SQALE Rating Technical Debt Ratio

(5 Apache Flex - FlexJ5: Framework: Parent 1.3.0-SNAPSHOT 9.667 2 15d A 15 Feb2017 07%
(5 Apache Flex - FlexJs: TypeDefs: Parent 1.010 0 15. Feb 2017 .
{5 Apache Flex - SDK Converter 1010 0 15. Feb 2017
) Apache JSPWiki 1.2.0-SNAPSHOT o 15. Feb 2017
{5 Apache PDFBox 1010 385 1dsh 18. Nov 2016
(5 Apache POI -the Java APl for Microsoft Documents 1.0.6-SNAPSHOT ~ 1.078 4d 09. Jan 2017
(5 Apache RocketMQ T.0.1-SNAPSHOT 1.497 'y 60 41min 15. Fen 2017
(5 Apache Tobago T15SNAPSHOT 511 1d4h 15. Feb 2017

© = Apache Tomeat 1.7.1-SNAPSHOT 143.703 A 66d 15. Feb 2017
5 IMeter 1.0.0-SNAPSHOT 547 2d 6h 15. Feb 2017
5 olingo-oData 1.0.2.SNAPSHOT 1.175 1d3n 15. Feb 2017
{5 olingo-odata2-parent 7.0.2-SNAPSHOT 0 15. Feb 2017
5 Struts 2 5.0.1-SNAPSHOT 11.015 2 12d A 15 Feb 2017

181

PROJECTS

Size: Lines of code Color: Coverage

Abbildung 7.8: Fiir Situation D angepasste Startseite der lokalen SonarQube-Instanz

Wie viele Widgets angezeigt werden, hangt vom jeweiligen Predicted Relevance Score
der Kombination aus Benutzer, Metrik und Kontext ab. Die Metriken, welche als relevant
angenommen werden konnen, werden jedoch alle angezeigt.

Situation D Diese Situation soll die externe Validitdt der gefundenen Modelle nach-
weisen. Fiir diese Situation haben zwei Benutzer A und B in zwei unterschiedlichen
Kontextfaktoren das gleiche Widget ,Lines of Code“ angeklickt. Der Tensor mit implizi-
tem Feedback enthélt daher zwei Eintrage ungleich null. Beide Eintrdge beziehen sich
auf dasselbe Widget, aber sowohl auf unterschiedliche Benutzer, als auch auf verschie-
dene Kontextsituationen.

Wenn nun ein neuer Benutzer C die SonarQube-Startseite das erste Mal, also bevor
DeepSonar die Moglichkeit hat implizites Feedback vom Benutzer zu erfassen, in einer
beliebigen Kontextsituation aufruft, dann wird erwartet, dass die Machine-Learning-
Komponente erlernt hat das Widget ,Lines of Code“ als relevant einzustufen, da es von
den anderen Nutzern des Systems unabhingig vom Kontext angeklickt wurde. Wie in
Abbildung 7.8 zu sehen ist, ist das jedoch leider nicht der Fall. Eine mogliche Ursache
dafiir kann eine zu kleine Menge an implizitem Feedback sein, sodass die Benutzer-

80

sonarqube Dashboards~ Issues Measures Rules Quality Profiles Quality Gates More~

Home
PROJECTS Apache Tomcat
QG NAME~ VERSION LOC TECHNICALDEBT LAST ANALYSIS
Debt ssues © Blacker]
) Apache Ant 1.0.0-SNAPSHOT 570 1d3h 15. Feb 2017 _ -
o 66d 771 O critical 5]
5] Apache Commons Compress 200 11.207 92d 19. Dez 2016 ® Major
() Apache Commons RNG 1.0.1-SNAPSHOT 32179 3sd 15. Feb 2017 Minor 184
&) Apache Flex - Blaze DS 1.3.2-5NAPSHOT 6.554 24 9d3h 15. Feb 2017 Info
he Flex - FlexJS: Compiler. Parent 1.3.0-SNAPSHOT ~ 4.076 A 147n A 15.Feb 2017
he Flex - FlexJS: Framework: Parent 1.3.0-SNAPSHOT 9.667 2 15 A 15.Feb2017 Lines Of Code Files Functions
he Flex - FlexJS: TypeDefs: Parent 1000 0 15. Feb 2017 143703 A 1.983 12565 a
he Flex - SDK Converter 1010 0 15. Feb 2017 - -
java Drectories Lines ses Statement
he JSPWiki 1.2.0-SNAPSHOT 0 15 Feb 2017 165 236.193 A
he PDFBox 1010 385 1d5h 18. Nov 2016
he POI - the Java API for Microsoft Documents 1.0.6-SNAPSHOT ~ 1.078 4d 09.Jan2017 Complexity
pache RocketMQ T.0.1-SNAPSHOT 1.497 N 6h 41min 15. Feb 2017 21804 a 5000
he Tobago 115SNAPSHOT 511 1d4n 15. Feb 2017 - - -
Function /Class /File o
he Tomcat 1.7.1-SNAPSHOT 143.703 A4 66d 15. Feb 2017 17 9,6 11.0 1204 5 81012
® Functions © Files
1.0.0-SNAPSHOT 547 2d 6h 15. Feb 2017
5 Olingo-OData 1.0.2-SNAPSHOT 1175 1d 3n 15. Feb 2017
{5 olingo-odata2-parent 7.0.2-SNAPSHOT 0 15. Feb 2017
& Struts 2 5.0.1-SNAPSHOT 11.015 2 12d A 15 Feb2017
181
PROJECTS
Size: Lines of code Color: Coverage

Abbildung 7.9: Angepasste Startseite der lokalen SonarQube-Instanz in einem weiteren
Test dhnlich zu Situation D. Das dafiir verwendete implizite Feedback enthalt sieben
statt zwei Benutzer, welche in verschiedenen Kontexten die Metrik ,Lines of Code“ an-
geklickt haben.

praferenzen vom Rauschen bei der pseudozufilligen Initialisierung der latenten Model-
le iiberdeckt werden und der Algorithmus in einem lokalen Optimum terminiert.

Ein weiterer Test, in dem sieben Benutzer A bis G die Metrik ,Lines of Code“ in
verschiedenen Kontexten ausgewdahlt haben, zeigt in Abbildung 7.9, dass fiir einen neu-
en Benutzer H unter anderem auch die Metrik ,Lines of Code* angezeigt wird. Daher
ist davon auszugehen, dass das Machine-Learning-Modul tatsichlich durch das implizi-
te Feedback der zusitzlichen Benutzer die Relevanz der Metrik ,Lines of Code“ besser
erlernen konnte.

7.2.3 Parameter der Mean Average Precision

Abbildung 7.10 zeigt am Beispiel von Situation D mit sieben Benutzern wie die MAP-
Werte bei der Wahl verschiedener Parameter ausfallen. Jedes Diagramm steht dabei fiir
eine unterschiedliche Anzahl an vermuteten Features fiir die latenten Modelle. Auf der
x-Achse ist jeweils der verwendete Regularisierungsfaktor und auf der y-Achse der Lern-
faktor abgebildet. Die Farbe gibt den zugehorigen MAP-Wert fiir die Kombination der

81

(a) 1 Feature (b) 2 Features (c) 5 Features
(d) 10 Features (e) 15 Features (f) 20 Features

Abbildung 7.10: Mean Average Precision-Werte fiir das implizite Feedback von sieben
Benutzern gemal Situation D fiir unterschiedliche Zahlen an Features D, Lernfaktoren
v € (0; 1] und Regularisierungsfaktoren \ € (0; 1]. Die Regularisierungsfaktoren sind auf
der x-Achse und die Lernfaktoren auf der y-Achse geplottet.

Parameter an, wobei rot einen hohen und blau einen niedrigen, meist sogar negativen
Wert, Wert bedeutet.

Die groRte Gemeinsamkeit zwischen allen Féllen ist, dass ein hoher Wert des Regu-
larisierungsfaktors A (A > 0.1) zu einem raschen und starken Abfall des MAP-Wertes
fihrt, wahrend eine Variation des Lernfaktors zu kaum einem Unterschied fiihrt. Eine
weitere Gemeinsamkeit ist der Werteverlauf der Diagramme, welcher fiir verschiede-
ne Anzahlen an verwendeten Features relativ dhnlich ist. Die Diagramme 7.10d, 7.10e
und 7.10f enthalten zwar weniger sichtbares rauschen, das liegt jedoch daran, dass die
Bereiche rechts, mit hohen Werten fiir), viel starker in den negativen Bereich hinein-
reichen und die Fluktuationen in Relation zu den absoluten MAP-Werten viel weniger
ins Gewicht fallen.

Da der Lernfaktor v die Qualitat der resultierenden latenten Modelle — gemessen an
den berechneten MAP-Werten — kaum beeinflusst, bietet es sich an, diesen aus Effizienz-
griinden moglichst grof3 zu wahlen. Grund dafiir ist, dass der Lernfaktor + gewichtet,
wie stark sich die latenten Modelle pro Iteration des TFMAP-Algorithmus verdndern
konnen. Bei kleinen Werten fiir v sind daher mehr Iterationen notig, um das gleiche

82

Optimum zu finden. Durch Variation des Lernfaktors v kann somit die Laufzeit, um ein
Vielfaches reduziert werden, ohne dass die Ergebnisse des Algorithmus darunter leiden.

7.3 Erfiillung der Anforderungen

Nachdem die Funktionalitdt der adaptiven Benutzeroberfliche DeepSonar erklart wur-
de, besteht das Ziel der nachsten Abschnitte darin niederzulegen, wie diese die in Kapi-
tel 3 bestimmten Anforderungen erfiillen.

Zusammengefasst, lauten die Anforderungen, dass die adaptive Benutzeroberflache
die fiir den Lernprozess benotigten Daten vom Benutzer unbemerkt erfasst, um ihn
nicht zu storen, und ausschliefflich anhand dieser Daten lernt. Des Weiteren soll die
Benutzeroberflaiche von SonarQube anhand der Ergebnisse des Lernprozesses ange-
passt werden, wobei das Design der Oberflache erhalten bleiben soll. Dariiber hinaus
muss wahrend des Lernprozesses die Weboberfliche von SonarQube auch weiterhin
verfiigbar sein.

7.3.1 Unbemerktes Erfassen des Benutzerverhaltens und Nutzungs-

kontexts

Durch Verwendung des Observer-Patterns [42] und sog. Event-Listener, welche eine vor-
her festgelegte Aktion durchfiihren, sobald ein bestimmtes Ereignis stattfindet, wird
bei der Erfassung des Benutzerverhaltens fiir jedes Widget festgestellt, wenn darauf
geklickt wurde. Daraufhin wird die aktuelle Kontextsituation, in der die Interaktion
stattgefunden hat, erfasst, wobei keine zusatzlichen Eingaben des Benutzers, die {iber
die standardmaf3ige Verwendung der Weboberflache hinausgehen, benotigt werden. Da-
her geschieht die Erfassung des Benutzerverhaltens und des aktuellen Benutzerkontexts
unbemerkt, sodass der Benutzer davon nichts mitbekommt.

83

7.3.2 Lernen anhand der Daten zu Benutzerverhalten und

Nutzungskontexts

Als Eingabe erhalt der zum Machine-Learning verwendete TFMAP-Algorithmus, wie in
Abbildung 7.3 dargestellt, lediglich das vom Benutzer gesammelte implizite Feedback,
welches das Stattfinden von Interaktionen zwischen Benutzern und Software-Metriken
in bestimmten Kontexten beschreibt. Dieses implizite Feedback enthélt nur die Infor-
mationen welche Benutzer welche Software-Metriken aufgerufen haben und in wel-
cher Kontextsituation sie sich dabei befanden. Aus diesem Grund wird die Relevanz der
Software-Metriken ausschlief3lich anhand des Benutzerverhaltens und -kontexts erlernt.

7.3.3 Anpassung der Benutzeroberflache an den Benutzer

Das Kapitel 7.2.2 zeigt, dass sich das DeepSonar-System dynamisch an den Benutzer
anpasst, abhangig davon in welchen Kontextsituationen er welche Software-Metriken
aufgerufen hat. Die dafiir benoétigten, erlernten latenten Modelle werden vom Machine-
Learning-Modul auf Basis des vom Adapter gesammelten impliziten Feedback erlernt.
Durch den Lernprozess wird sichergestellt, dass die angezeigten Metriken auch relevant
fiir den Benutzer sind und die Benutzeroberfldache somit auch wirklich an den Benutzer
angepasst wird.

7.3.4 Erhalten des Seitendesigns

Bei Verdnderungen der Weboberfliche verwendet der Adapter ausschliel3lich Gestal-
tungsmafdnahmen, die auf der urspriinglichen Webseite bereits verwendet werden, um
sicherzustellen, dass der Gesamteindruck stimmig ist. Es wird auch darauf geachtet,
dass selbst kleine Details und Feinheiten {ibernommen werden. Ein Beispiel fiir ein sol-
ches Detail ist die Verwendung eines Randes von —1 Pixeln fiir Spalten in einem mehr-
spaltigen Layout [1]. Durch Einbezug auch solcher Details soll es so schwer wie moglich
sein Unstimmigkeiten im Design der Webseite zu finden.

Flir die Anpassung der Platzverhéltnisse auf der Startseite wird darauf geachtet,
dass das Hinzufiigen einer neuen Spalte genauso aussieht, als wenn der Benutzer die
Startseite selber mit den Bordmitteln von SonarQube angepasst hitte. Das bedeutet vor

84

allem, dass kein Widget zu stark verkleinert wird und die darin enthaltenen Informatio-
nen immer lesbar bleiben.

Der vermutlich wichtigste Grund, warum das Design durch die vom Adapter vor-
genommenen Anpassungen nicht zerstort wird, ist jedoch die Verwendung der origi-
nalen Styling-Attribute. Das wird erreicht, indem die angezeigten Metriken als HTML-
Elemente inkl. Styling-Attribute von dem jeweiligen Projekt-Dashboard geladen und oh-
ne Verdnderung auf der Startseite in die HTML-Struktur der Webseite eingebaut werden.
Dadurch werden dieselben Styling-Informationen verwendet, da sowohl die Startseite,
als auch die Projekt-Dashboards die gleichen Stylesheets verwenden.

Das Ergebnis sieht deswegen wie eine native Funktion von SonarQube aus und es ist
nicht direkt ersichtlich, dass sie erst nachtraglich eingebaut wurde.

7.3.5 Lernen & Adaption wahrend des laufenden Betriebs

Das Machine-Learning-Modul kann unabhangig vom Adapter, der die Anpassungen an
der SonarQube-Weboberfliche vornimmt und das Benutzerverhalten erfasst, arbeiten,
da es funktional nur schwach an den Adapter gekoppelt ist. Die einzige Kommunikation
zwischen den beiden Modulen besteht in dem Austausch von implizitem Feedback und
erlernten latenten Modellen. Somit kann das Machine-Learning-Modul unabhangig vom
Adapter arbeiten, sobald es das implizite Feedback erhalten hat und blockiert nicht den
Adapter wahrend des Lernprozesses.

Der asynchrone Ablauf des Lernprozesses ist sehr wichtig, da dieser abhingig davon
wie nah das tatsdchliche Optimum der Mean Average Precision-Funktion erreicht werden
soll und wie viele Benutzer, Metriken oder Kontextsituationen betrachtet werden sollen
auf einem einzelnen, handelsiiblichen Computer durchaus mehrere Stunden benotigen
kann.

Durch diese schwache Kopplung ist garantiert, dass die SonarQube-Webanwendung
ungehindert funktioniert, wiahrend im Hintergrund die latenten Modelle vom Machine-
Learning-Modul gelernt werden, sodass dieser Lernprozess den laufenden Betrieb und
den Benutzer bei der Verwendung von SonarQube nicht stort.

85

86

8 Zusammenfassung & Ausblick

Ziel dieser Arbeit war es eine adaptive Benutzeroberflache fiir die Softwareanalyse-
Plattform SonarQube unter Zuhilfenahme von Machine-Learning-Methoden zu entwi-
ckeln. Adaptiv bedeutet dabei, dass die Benutzeroberflache sich in Abhédngigkeit vom
Benutzerverhalten an einen Benutzer personlich anpasst, indem sie die Widgets von
Software-Metriken, die fiir den aktuellen Benutzer im gegenwértigen Nutzungskontext
am relevantesten sind, bereits auf der Startseite der Anwendung anzeigt. Zusatzlich
sollten die Anforderungen aus Kapitel 3.1 erfiillt werden.

Das Ergebnis dieser Arbeit ist DeepSonar, eine selbstlernende, adaptive Benutzero-
berflache, welche aus zwei Komponenten besteht: dem sog. Adapter und dem Machine-
Learning-Modul. Der Adapter wird in die Weboberfliche von SonarQube intergriert
und nimmt an ihr Verdnderungen vor, um das Erfassen des Benutzerverhaltens und
des Nutzungskontextes sowie das Anzeigen relevanter Widgets von Software-Metriken
zu ermoglichen. Dabei wird auch nur erfasst, ob ein Benutzer das Widget einer be-
stimmten Metrik in einer Kontextsituation angeklickt hat oder nicht. Das Machine-
Learning-Modul hingegen erlernt auf Basis des Benutzerverhaltens mittels des TFMAP-
Algorithmus von Shi et al. [49] welche Software-Metriken fiir den Benutzer in einem
bestimmten Kontext relevant sind.

DeepSonar erfiillt alle der in Kapitel 3.1 erwahnten Anforderungen, da es zum einen
die fiir den Lernprozess benotigten Daten zum Benutzerverhalten und Nutzungskon-
text vom Benutzer unbemerkt erfasst und ihn somit nicht in seiner Arbeit stort und
zum anderen auch ausschliel3lich anhand dieser Daten die Relevanz der verschiede-
nen Software-Metriken fiir verschiedene Benutzer und Kontexte erlernt. Darauf auf-
bauend passt DeepSonar die Weboberfliche von SonarQube an den jeweiligen Benut-
zer an, indem die fiir den Nutzer im gegenwartigen Kontext relevanten Widgets von
Metriken auf der Startseite angezeigt werden. Bei dieser Anpassung wird auferdem
das Design der Seite iibernommen, sodass diese wie eine native Funktionalitdt von So-
narQube erscheint. Auch die letzte Anforderung wird erfiillt, da der Lernprozess na-
hezu vollstindig vom SonarQube-Prozess entkoppelt ist und SonarQube somit auch

87

wahrend der Ausfiihrung des TFMAP-Algorithmus ohne Einschrankungen verwendet
werden kann.

Um diese Ziele zu erreichen, wurde in dieser Arbeit zuerst eine Ubersicht {iber ver-
wandte Arbeiten gegeben. Diese behandelten bestehende Losungsansatze fiir den Ent-
wurf sowie die Umsetzung einer adaptiven Benutzeroberflache, aber auch Machine-
Learning-Methoden, welche Kontextinformationen ausnutzen, um bessere Ergebnisse
zu erzielen. Hierbei eignete sich vor allem die Arbeit von Shi et al. [49] als Grundlage
fiir die Machine-Learning-Komponente.

Im néchsten Schritt wurden Abwégungen getroffen, wie der Kontext einer Interak-
tion mit der Weboberflache von SonarQube definiert werden kann, welche Kontextfak-
toren existieren und wie diese im normalen Gebrauch der Anwendung ohne grof3en
Ressourceneinsatz erfasst werden kdnnen.

Darauf aufbauend wurde ein Konzept zur adaptiven Darstellung der Software-
Metriken erarbeitet, welches die Ergebnisse des TFMAP-Algorithmus verwertet. Dabei
flossen auch Designiiberlegungen mit ein, um die Anpassungen an der Weboberflache
in einer nicht negativ auffallenden Weise zu gestalten.

In den vorhergehenden Kapiteln wurde schlieBlich beschrieben, wie das DeepSonar-
System aufgebaut ist und anhand konkreter Nutzerszenarien demonstriert, dass die
Konzepte dieser Arbeit realisierbar sind.

Obwohl der in dieser Arbeit behandelte Ansatz sehr gute Ergebnisse liefert, blei-
ben dennoch Ansatzpunkte fiir weitere Forschungen auf diesem Gebiet vorhanden. Das
zur Optimierung der Mean Average Precision-Funktion verwendete Gradientenverfahren
konvergiert unter Umstdnden sehr langsam [52]. Aulerdem ist es dafiir notwendig, ei-
ne Approximation der MAP mithilfe der logistischen Funktion durchzufiihren. Andere
Optimierungsverfahren konnen hier moglicherweise schneller gute Ergebnisse liefern,
lokale Optima besser vermeiden und auch auf nicht-stetischen Funktionen angewen-
det werden, wodurch die eben erwahnte Approximation nicht mehr benétigt wiirde.
Mogliche Kandidaten solcher Optimierungsalgorithmen wéren z. B. der Artificial Bee Co-
lony-Algorithmus [28], der Gravitational Search Algorithm [46] oder die Particle Swarm
Optimization [43, 30].

Ein weiterer Ansatzpunkt fiir mogliche Verbesserungen sind die verwendeten Ein-
gaben in Form des impliziten Feedbacks, da diese nur erfassen, ob eine Interaktion
zwischen Benutzer und Metrik fiir einen Kontext stattgefunden hat oder nicht. Es ist

88

denkbar, dass zusatzlich auch erfasst werden kann, wie oft Interaktionen fiir die jeweili-
gen Kombinationen aus Benutzer, Metrik und Kontext stattgefunden haben (vgl. Kapitel
4.2.2). Vergleiche auf Basis dieser Haufigkeiten ergeben feinere Abstufungen des impli-
ziten Feedbacks und somit potentiell die Moglichkeit aussagekraftigere Informationen
{iber den Benutzer zu sammeln. Eine Ubersicht {iber weitere Moglichkeiten implizites
Feedback zu sammeln kann aus den Arbeiten von Oard et al. [37] und Kelly et al. [29]
entnommen werden.

Eine Verbesserung der von DeepSonar produzierten Empfehlungslisten konnte auch
durch weitere Forschungsarbeit fiir die Ableitung der benutzerspezifischen Relevanz
der dargestellten Software-Metriken in Abhéngigkeit von den gewéhlten Kontextfak-
toren erreicht werden. Zwar haben sich Odic et al. [38, 39] bereits mit der Auswahl
von relevanten Kontextfaktoren beschaftigt, jedoch schieden viele dieser Moglichkeiten
aufgrund von Schwierigkeiten bei der Erfassung in einer Webanwendung aus. Im Ge-
gensatz zu modernen Smartphones haben klassische Desktop-PCs iiblicherweise keine
vergleichbare Sensorik eingebaut, auf die sich verlassen werden kann, um den Nut-
zungskontext zu erfassen.

89

90

Literaturverzeichnis

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Public sonarqube instances. http://www.sonarqube.org/resources/
public-sonarqube-instances/. Zugriff: 25.10.2016.

Sonarqube blog post about tendencies in metrics. http://www.sonarqube.org/
tendencies-in-sonar/. Zugriff: 19.12.2016.

SonarQube project homepage. http://www.sonarqube.org/. Zugriff:
25.10.2016.
W3c draft on geolocation api. https://dev.w3.org/geo/api/spec-source.html.

Zugriff: 19.12.2016.

Ieee standard for a software quality metrics methodology. IEEE Std 1061-1998,
pages i—, Dec 1998.

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a Better Understanding of Context and Context-Awareness,
pages 304-307. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

Gediminas Adomavicius and Alexander Tuzhilin. Context-Aware Recommender Sys-
tems, pages 191-226. Springer US, Boston, MA, 2015.

Linas Baltrunas and Xavier Amatriain. Towards time-dependant recommendation
based on implicit feedback. In Workshop on context-aware recommender systems
(CARS’09), 2009.

Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. Matrix factorization techni-
ques for context aware recommendation. In Proceedings of the Fifth ACM Confe-
rence on Recommender Systems, RecSys ’11, pages 301-304, New York, NY, USA,
2011. ACM.

Victor R Basili. Software modeling and measurement: the goal/question/metric
paradigm. Technical report, 1992.

91

http://www.sonarqube.org/resources/public-sonarqube-instances/
http://www.sonarqube.org/resources/public-sonarqube-instances/
http://www.sonarqube.org/tendencies-in-sonar/
http://www.sonarqube.org/tendencies-in-sonar/
http://www.sonarqube.org/
https://dev.w3.org/geo/api/spec-source.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. Manifesto for agile software development. 2001.

James Bennett and Stan Lanning. The netflix prizes. Categories and Subject
Descriptors 1.2.6 [Machine Learning]: Engineering applications -applications of
techniques. General Terms Experimentation, Algorithms.

Christopher M Bishop. Pattern recognition. Machine Learning, 128:1-58, 2006.

Matthias Bohmer, Brent Hecht, Johannes Schoning, Antonio Kriiger, and Gernot
Bauer. Falling asleep with angry birds, facebook and kindle: A large scale study
on mobile application usage. In Proceedings of the 13th International Conference
on Human Computer Interaction with Mobile Devices and Services, MobileHCI '11,
pages 47-56, New York, NY, USA, 2011. ACM.

Gianluca Borghini, Laura Astolfi, Giovanni Vecchiato, Donatella Mattia, and Fabio
Babiloni. Measuring neurophysiological signals in aircraft pilots and car drivers
for the assessment of mental workload, fatigue and drowsiness. Neuroscience &
Biobehavioral Reviews, 44:58 — 75, 2014. Applied Neuroscience: Models, methods,
theories, reviews. A Society of Applied Neuroscience (SAN) special issue.

Hyun Jin Cha, Yong Se Kim, Seon Hee Park, Tae Bok Yoon, Young Mo Jung, and
Jee-Hyong Lee. Learning Styles Diagnosis Based on User Interface Behaviors for the
Customization of Learning Interfaces in an Intelligent Tutoring System, pages 513—
524. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Olivier Chapelle and Mingrui Wu. Gradient descent optimization of smoothed
information retrieval metrics. Information Retrieval, 13(3):216-235, 2010.

Cristina Conati and Samad Kardan. Student modeling: Supporting personalized
instruction, from problem solving to exploratory open ended activities. Al Maga-
zine, 34(3):13-26, 2013.

HASKELL B. CURRY. The method of steepest descent for non-linear minimization
problems. Quarterly of Applied Mathematics, 2(3):258-261, 1944.

92

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Lisa Dent, Jesus Boticario, John Mcdermott, Tom Mitchell, and David Zabowski.
A personal learning apprentice. pages 96-103. AAAI Press, 1992.

Sidney K. D’Mello and Arthur Graesser. Multimodal semi-automated affect de-
tection from conversational cues, gross body language, and facial features. User
Modeling and User-Adapted Interaction, 20(2):147-187, 2010.

Takdcs Gabor; Pildszy Istvdn; Németh Bottydn; Tikk Domonkos. [acm press the
2008 acm conference - lausanne, switzerland (2008.10.23-2008.10.25)] procee-
dings of the 2008 acm conference on recommender systems - recsys 08 - matrix
factorization and neighbor based algorithms for the netflix prize problem. 2008.

Matt Duckham and Lars Kulik. A Formal Model of Obfuscation and Negotiation for
Location Privacy, pages 152-170. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

Hassan El Moussaoui and Prof. Dr. Klaus Zeppenfeld. AJAX: Geschichte, Technolo-
gie, Zukunft. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

Richard M Felder and Linda K Silverman. Learning and teaching styles in engi-
neering education. Engineering education, 78(7):674-681, 1988.

David Flanagan. JavaScript: the definitive guide. O'Reilly Media, Inc.”, 2006.

Michael Jendryschik. Einfiihrung in xhtml, css und webdesign. Standardkonforme,
moderne und barrierefreie Websiten erstellen, 2, 2009.

D. Karaboga and B. Basturk. On the performance of artificial bee colony (abc)
algorithm. Applied Soft Computing, 8(1):687 — 697, 2008.

Diane Kelly and Jaime Teevan. Implicit feedback for inferring user preference: A
bibliography. SIGIR Forum, 37(2):18-28, September 2003.

James Kennedy. Particle swarm optimization. In Claude Sammut and Geoffreyl.
Webb, editors, Encyclopedia of Machine Learning, pages 760-766. Springer US,
2010.

93

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Yong Se Kim, Sungah Kim, Yun Jung Cho, and Sun Hee Park. Adaptive customizati-
on of user interface design based on learning styles and behaviors: A case study of
a heritage alive learning system. In ASME 2005 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
pages 555-559. American Society of Mechanical Engineers, 2005.

Kazuaki Kishida. Property of average precision and its generalization: An examina-
tion of evaluation indicator for information retrieval experiments. National Institute
of Informatics Tokyo, Japan, 2005.

Christopher D Manning, Prabhakar Raghavan, Hinrich Schiitze, et al. Introduction
to information retrieval, volume 1. Cambridge university press Cambridge, 2008.

Ashery Mbilinyi, Shinobu Hasegawa, and Akihiro Kashihara. Design for Adaptive
User Interface for Modeling Students’ Learning Styles, pages 168-177. Springer
International Publishing, Cham, 2016.

Hiroshi Motoda and Kenichi Yoshida. Machine learning techniques to make com-
puters easier to use. Artificial Intelligence, 103(1):295 — 321, 1998.

Netflix. Netflix prize data set. 2009.

Douglas W Oard, Jinmook Kim, et al. Implicit feedback for recommender systems.
In Proceedings of the AAAI workshop on recommender systems, pages 81-83, 1998.

Ante Odi¢. Detecting, Acquiring and Exploiting Contextual Information in Perso-
nalized Services, pages 374-377. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

Ante Odi¢, Marko Tkalci¢, Jurij F Tasi¢, and Andrej KoSir. Predicting and detecting
the relevant contextual information in a movie-recommender system. Interacting
with Computers, 25(1):74-90, 2013.

Chihiro Ono, Yasuhiro Takishima, Yoichi Motomura, and Hideki Asoh. Context-
Aware Preference Model Based on a Study of Difference between Real and Supposed
Situation Data, pages 102-113. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

94

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

David M Pennock, Eric Horvitz, C Lee Giles, et al. Social choice theory and recom-
mender systems: Analysis of the axiomatic foundations of collaborative filtering.
In AAAI/IAAI pages 729-734, 2000.

Eduardo Kessler Piveta and Luiz Carlos Zancanella. Observer pattern using aspect-
oriented programming. Scientific Literature Digital Library, 2003.

Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization.
Swarm Intelligence, 1(1):33-57, 2007.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81-106, 1986.

J Ross Quinlan. Generating production rules from decision trees. In IJCAI, volu-
me 87, pages 304-307. Citeseer, 1987.

Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi. Gsa: A gravitatio-
nal search algorithm. Information Sciences, 179(13):2232 — 2248, 2009. Special
Section on High Order Fuzzy Sets.

Dietmar Ratz. Automatische Ergebnisveri kation bei globalen Optimierungsproble-
men. PhD thesis, Dissertation, Universit at Karlsruhe, 1992.

Luis Rodriguez-Lujan, Pedro Larrafiaga, and Concha Bielza. Frobenius norm re-
gularization for the multivariate von mises distribution. International Journal of
Intelligent Systems, 32(2):153-176, 2017.

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan Hanjalic,
and Nuria Oliver. Tfmap: Optimizing map for top-n context-aware recommenda-
tion. In Proceedings of the 35th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’12, pages 155-164, New York,
NY, USA, 2012. ACM.

J. H. Su, H. H. Yeh, P. S. Yu, and V. S. Tseng. Music recommendation using content
and context information mining. IEEE Intelligent Systems, 25(1):16-26, Jan 2010.

Leonie Sugarman. Experiential learning: Experience as the source of learning and
development, david a. kolb, prentice-hall international, hemel hempstead, herts.,

95

1984. no. of pages: xiii+ 256. Journal of Organizational Behavior, 8(4):359-360,
1987.

[52] Julian Valentin. Hierarchische Optimierung mit Gradientenverfahren auf
Diinngitterfunktionen. Master’s thesis, Universitat Stuttgart, Germany, 2014.

[53] Z. Yujie and W. Licai. Some challenges for context-aware recommender systems.
In 2010 5th International Conference on Computer Science Education, pages 362—
365, Aug 2010.

[54] Yong Zheng. A revisit to the identification of contexts in recommender systems.
In Proceedings of the 20th International Conference on Intelligent User Interfaces
Companion, IUI Companion '15, pages 133-136, New York, NY, USA, 2015. ACM.

[55] Yong Zheng, Robin Burke, and Bamshad Mobasher. Differential Context Relaxation
for Context-Aware Travel Recommendation, pages 88-99. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

96

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu
haben. Ich habe keine anderen als die angegebenen
Quellen benutzt und alle wortlich oder sinngemal} aus
anderen Werken {ibernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen
Priifungsverfahrens. Ich habe diese Arbeit bisher we-
der teilweise noch vollstandig veroffentlicht. Das elek-
tronische Exemplar stimmt mit allen eingereichten Ex-

emplaren iiberein.

Ort, Datum, Unterschrift

97

	Einleitung
	Problemstellung
	Beiträge dieser Bachelorarbeit
	Beschreibung des Demonstrators
	Gliederung der Arbeit

	Grundlagen
	Machine-Learning
	Allgemeine Optimierungsprobleme
	Webtechnologien

	Verwandte Arbeiten
	Anforderungen
	Bewertung verwandter Arbeiten
	Learning Styles Diagnosis Based on User Interface Behaviors for the Customization of Learning Interfaces in an Intelligent Tutoring System
	Design for Adaptive User Interface for Modeling Students’ Learning Styles
	Machine learning techniques to make computers easier to use
	A Personal Learning Apprentice
	TFMAP: Optimizing MAP for Top-N Context-aware Recommendation

	Zusammenfassung und Handlungsbedarf

	Kontextfaktoren
	Bewertungskriterien
	Identifikation von Kontextfaktoren
	Softwarebezogene Kontextfaktoren
	Benutzerbezogene Kontextfaktoren
	Projektbezogene Kontextfaktoren
	Umgebungsbezogene Kontextfaktoren
	Ergebnisse

	Einordnung der Faktoren in eine Kontextdefinition
	Erfassung und Speicherung der Daten
	Erfassung der Kontextinformationen
	Struktur der Datensätze

	Lernen der relevanten Software-Metriken
	Datenstrukturen
	Implizites Feedback
	Latente Benutzer-, Metrik- und Kontextmodelle

	Die Zielfunktion
	Mean Average Precision
	Geglättete MAP

	Lernen mit TFMAP
	Optimierung durch das Gradientenverfahren
	Parameter
	Bedeutung der Daten

	Adaptive Darstellung von Software-Metriken
	Verwertung der Ergebnisse des TFMAP-Algorithmus
	Designüberlegungen
	Manipulation der Weboberfläche

	Demonstration
	Komponenten & Funktionsweise von DeepSonar
	Grundlegender Aufbau

	Veranschaulichung der Funktion
	Nutzerszenarien
	Adaption des Systems
	Parameter der Mean Average Precision

	Erfüllung der Anforderungen
	Unbemerktes Erfassen des Benutzerverhaltens und Nutzungskontexts
	Lernen anhand der Daten zu Benutzerverhalten und Nutzungskontexts
	Anpassung der Benutzeroberfläche an den Benutzer
	Erhalten des Seitendesigns
	Lernen & Adaption während des laufenden Betriebs

	Zusammenfassung & Ausblick

