
Institut für Softwaretechnologie

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Qualitätsanalyse von
Studienprojekten anhand von

Quellcode-Repositories

Benedikt Kersjes

Studiengang: Softwaretechnik

Prüfer: Prof. Stefan Wagner

Betreuer: Dr. Ivan Bogicevic,
Dr. Falko Kötter

Beginn am: 10. Mai 2017

Beendet am: 10. November 2017

CR-Nummer: D.2.9

Kurzfassung

An vielen Hochschulen werden studentische Softwareentwicklungsprojekte als Teil der aka-
demischen Ausbildung in Studiengängen wie Informatik oder Softwaretechnik durchgeführt.
Auch an der Universität Stuttgart und insbesondere am Fraunhofer IAOwerden im Bachelorstu-
diengang Softwaretechnik Studienprojekte durchgeführt. Da das Institut die Studienprojekte
als Grundlage ihrer weiteren Forschungstätigkeit verwendet, besteht ein Interesse, dass in den
Projekten qualitativ hochwertige Software entsteht.
In dieser Arbeit wurde die Qualität von sechs Studienprojekten anhand ihres Quellcodes analy-
siert, die in den letzten Jahren am Fraunhofer IAO durchgeführt wurden. Darüber hinaus wurde
eine Analyse der Repositories durchgeführt und eine Befragung der Betreuer vorgenommen,
um mögliche Einflussfaktoren auf die Qualität der Projekte zu ermitteln. Hierzu wurde ein
Werkzeug entwickelt, das die Analyse automatisiert durchführt und verwendet werden kann,
um zukünftige Projekte am Institut nach der gleichen Methodik auszuwerten.
Die Analysen ergaben, dass die gleichmäßige Verteilung der Arbeit über das Projekt, die Teil-
nehmerzahl, die Qualifikation der Betreuer und die Verwendung vonDrittanbieter-Bibliotheken
einen hohen Einfluss auf die Qualität der untersuchten Projekte hatten. Aus diesen Erkennt-
nissen wurden Handlungsempfehlungen für die Betreuung und Durchführung zukünftiger
Studienprojekte am Fraunhofer IAO abgeleitet.

3

Inhaltsverzeichnis

1. Einleitung 11
1.1. Motivation . 11
1.2. Aufgabenstellung . 12
1.3. Gliederung . 13

2. Stand der Wissenschaft und Technik 15
2.1. Verwandte Arbeiten . 15
2.2. Qualitätsmodelle . 16
2.3. Metriken . 21
2.4. Werkzeuge . 26

3. Methodik 29
3.1. Qualitätsanalyse . 30
3.2. Repository-Analyse . 32
3.3. Betreuungsanalyse . 34
3.4. Auswertung . 34

4. Implementierung 37
4.1. Anforderungen . 37
4.2. Resultat . 37
4.3. Verwendung des Werkzeugs . 41

5. Analyse und Evaluation 43
5.1. Ergebnisse der Qualitätsanalyse . 43
5.2. Ergebnisse der Repository-Analyse . 45
5.3. Ergebnisse der Betreuungsanalyse . 49
5.4. Handlungsempfehlungen . 53

6. Zusammenfassung und Ausblick 55

A. Anhang 57
A.1. Installation des Werkzeugs . 57
A.2. Fragebogen zur Betreuungsanalyse . 59
A.3. Weitere Daten der Analysen . 66

Literaturverzeichnis 71

5

Abbildungsverzeichnis

2.1. Qualitätseigenschaften nach ISO 9126 . 17
2.2. Qualitätseigenschaften nach ISO 25010 . 18
2.3. Darstellung zweier hierarchischer GQM-Modelle 20
2.4. Kategorisierung der vorgestellten Metriken . 22

3.1. Ablaufdiagramm der Analysen der Methodik 29

4.1. Ergebnisse der Qualitätsanalyse (Beispielansicht) 38
4.2. Ergebnisse der Repository-Analyse (Beispielansicht) 39
4.3. Komponentendiagramm des entstandenen Werkzeugs 40
4.4. Ablaufdiagramm des entstandenen Werkzeugs 41

5.1. Benchmark-Ergebnisse der Teilmerkmale . 44
5.2. Aufsummierte Benchmark aller Teilmerkmale 45
5.3. Verteilung der Commits von Projekt A . 46
5.4. Verteilung der Commits von Projekt F . 46
5.5. Commits nach Wochentagen von Projekt A . 48
5.6. Commits nach Wochentagen von Projekt F . 48

7

Tabellenverzeichnis

5.1. Tabellarische Darstellung der Benchmark . 44
5.2. Tabellarische Darstellung der Commits nach Kalendertagen 45
5.3. Tabellarische Darstellung der Commits nach Wochentagen 47
5.4. Tabellarische Darstellung der Commits am Wochenende 47
5.5. Tabellarische Darstellung der logischen Codezeilen 49
5.6. Tabellarische Darstellung der Selbsteinschätzung der Betreuungsqualität . . . 51
5.7. Tabellarische Darstellung zur Verwendung von Drittanbieter-Bibliotheken . . 51
5.8. Vergleich der Analyseergebnisse und Betreuereinschätzungen 52

A.1. Tabellarische Darstellung der geänderten Zeilen pro Tag 66
A.2. Tabellarische Darstellung der Commits pro Teilnehmer 66
A.3. Tabellarische Darstellung der geänderten Zeilen pro Teilnehmer 67
A.4. Tabellarische Darstellung der geänderten Zeilen pro Commit 67
A.5. Einschätzung der Komplexität durch die Betreuer 67
A.6. Einschätzung der Zusammenarbeit durch die Betreuer 68
A.7. Einschätzung der Heterogenität der Leistungen durch die Betreuer 68
A.8. Einschätzung des Ausmaßes neuer Technologien durch die Betreuer 69
A.9. Einschätzung des Erfolgs durch die Betreuer 69

9

1. Einleitung

1.1. Motivation

Studentische Softwareentwicklungsprojekte gehören international an vielen Hochschulen
in Studiengängen wie Informatik oder Softwaretechnik zum festen Bestandteil der akade-
mischen Ausbildung. Die Ziele dieser Projekte sind vielfältig: einige vermitteln allgemeine,
praktische Techniken zur systematischen Arbeit im Team [BHSV04; BKA15], andere haben
konkretere Lernziele wie den Umgang mit verteilten Projekten [BDKT00], Reverse Engineering
[CLC09] oder die Wartung bereits existierender Systeme, um die Studierenden besser auf die
Arbeitsweise in der Industrie vorzubereiten [DHZS99; GSM13].

Auch an der Universität Stuttgart gehört im Bachelor-Studiengang Softwaretechnik ein soge-
nanntes Studienprojekt zum Lehrplan. Ziel dieses Projektes ist ebenfalls die Vorbereitung auf
berufstypische Arbeitsweisen und die Vermittlung von Kompetenzen zur verantwortlichen
Teamarbeit [Fac]. Die Studienprojekte werden von verschiedenen Instituten der Universität be-
treut. Auch das Fraunhofer-Institut IAO, das diese Arbeit in Zusammenarbeit mit der Abteilung
SE der Universität betreut, führt regelmäßig Studienprojekte durch.

In einem Studienprojekt entwickelt ein Team von 8 bis 15 Studierenden über zwei Semester
eine Software. Studierende, die ein Studienprojekt beginnen, sind meist mindestens im vierten
Semester. Daher sind die theoretischen Grundlagen und auch erste praktische Erfahrungen
aus Projekten in niedrigeren Semestern bei den meisten Teilnehmern vorhanden. Das Projekt
ist auf eine Arbeitszeit von etwa zehn Stunden pro Woche und Teilnehmer ausgelegt.
Am Fraunhofer IAO wird als Vorgehensmodell durchgängig eine abgewandelte Form von
Scrum eingesetzt. Vor und nach jedem Sprint werden verpflichtende Termine ausgemacht, an
denen die Ergebnisse des letzten Sprints präsentiert werden und die Aufgaben für den nächsten
Sprint besprochen werden. Eine Vorgabe für die meisten Projekte ist außerdem, dass sich die
Studierenden mindestens einen Tag pro Woche in einem reservierten Raum am Fraunhofer
IAO treffen, um gemeinsam am Projekt zu arbeiten.

Neben den Studierenden, die sich von einem erfolgreichen Projekt einen hohen Wissenszu-
wachs und eine gute Note erhoffen, hat auch das Fraunhofer IAO ein Interesse an qualitativ
hochwertigen Projekten. Das Institut führt diese Projekte häufig im Rahmen seiner Forschungs-
tätigkeit durch und möchte die gewonnenen Erkenntnisse für die weitere Forschung nutzen.
Beide Seiten profitieren also von einer hohen Qualität der entstehenden Software.

11

1. Einleitung

Da die Qualität der entstehenden Software, über die Art und den Umfang der Betreuung, die
Themenauswahl und die Teamzusammensetzung maßgeblich vom Institut beeinflusst wird,
entsteht das Bedürfnis, diese Einflussfaktoren zu analysieren und zu verbessern, um damit
beste Voraussetzungen für erfolgreiche Studienprojekte zu schaffen.

1.2. Aufgabenstellung

Aus dem Ziel heraus, die Betreuung der am Fraunhofer IAO durchgeführten Studienprojekte
zu evaluieren, entstand die Idee für diese Arbeit und leitet sich deren Aufgabenstellung ab.
Zunächst soll die Arbeit einen Überblick über die Qualität der Studienprojekte geben, die in
den vergangenen Jahren am Fraunhofer IAO durchgeführt wurden. Dazu wird eine Analyse
des Quellcodes der betreffenden Projekte durchgeführt. Diese Analyse soll möglichst automati-
siert, mithilfe eines Werkzeugs, das hierzu entwickelt wird, durchgeführt werden und wenige
manuelle Schritte erfordern. Dadurch ist gewährleistet, dass auch in den nächsten Jahren neue
Projekte nach der gleichen Methodik analysiert werden können und eine Entwicklung in der
Qualität der Projekte erkennbar wird.

Nach Conway’s Law [Con68] ist die Struktur eines Software-Systems durch die Kommu-
nikationsstrukturen der Entwicklungsorganisation vorbestimmt. Dies legt nahe, dass auch
der Entstehungsprozess der Studienprojekte Einfluss auf die Struktur und die Qualität des
Quellcodes hat. Daher wird in dieser Arbeit auch der Einfluss des Entstehungsprozesses auf
die Qualität der Projekte untersucht. Hierzu werden die Quellcode-Repositories der Projekte
analysiert, da diese durch den Versionsverlauf Rückschlüsse auf die Entstehung der Projekte
zulassen.

Eine dritte Untersuchung soll Eigenschaften der Betreuung der Projekte erheben. Dazu wird
eine Umfrage unter den Betreuern der untersuchten Projekte durchgeführt, bei der zum einen
die Rahmenbedingungen der Projekte erhoben werden als auch eine Einschätzung der Qualität
und der Betreuung erbeten wird.

Diese Arbeit basiert auf der Annahme, dass sowohl der Entstehungsprozess als auch der
Betreuungsprozess einen Einfluss auf die Qualität der entstehenden Software haben. Um
aus den Erkenntnissen dieser Arbeit zu lernen, werden aus den ermittelten Einflussfaktoren
Handlungsempfehlungen abgeleitet, die die Betreuer der Studienprojekte am Fraunhofer IAO
bei der Durchführung zukünftiger Studienprojekte unterstützen sollen.

Bei der vorliegenden Arbeit handelt es sich um eine explorative Untersuchung, da die unter-
suchten Projekte sehr unterschiedlich sind und insgesamt nur wenige Projekte untersucht
wurden. Eine Vergleichbarkeit und Allgemeingültigkeit ist daher nur bedingt gewährleistet. Die
Erkenntnisse liefern aber Anhaltspunkte, um mit kontinuierlicher Anwendung des Werkzeugs
die Prozesse nachhaltig zu verbessern.

12

1.3. Gliederung

1.3. Gliederung

Die vorliegende Arbeit ist in folgender Weise gegliedert:

Kapitel 1 - Einleitung Dieses Kapitel legt die Motivation und Aufgabenstellung dieser Arbeit
dar.

Kapitel 2 - Stand der Wissenschaft und Technik Der wissenschaftliche Kontext der Ar-
beit wird untersucht, um die Arbeit einordnen zu können.

Kapitel 3 - Methodik Die Methodik zur Analyse der Projekte wird erarbeitet. Es werden die
drei Analysen Qualitätsanalyse, Repository-Analyse und Betreuungsanalyse vorgestellt.

Kapitel 4 - Implementierung Die Implementierung der Qualitäts- und der Repository-
Analyse wird vorgestellt. Die Implementierung wurde zur Auswertung der Projekte
verwendet.

Kapitel 5 - Analyse und Evaluation Die Ergebnisse der drei Analysen werden präsentiert
und es werden Empfehlungen zur Verbesserung der Betreuung und Durchführung
zukünftiger Projekte abgeleitet.

Kapitel 6 - Zusammenfassung und Ausblick Dieses Kapitel fasst die Ergebnisse zusam-
men und liefert Anregungen für weitere Untersuchungen.

13

2. Stand der Wissenschaft und Technik

Dieses Kapitel beschäftigt sich mit verwandten wissenschaftlichen Arbeiten und allgemeinen
Qualitätsmodellen, Metriken undWerkzeugen, um diese Arbeit inhaltlich einzuordnen und eine
Grundlage zu bieten, um eine eigene Methodik zur Lösung der Problemstellung abzuleiten. Die
Auswahl der Arbeiten wurde mithilfe einer ausführlichen Literaturrecherche zu den Themen
dieser Arbeit getroffen. Der Fokus wurde auf verbreitete und populäre Beiträge gelegt, die eine
hohe Relevanz für diese Arbeit haben.

2.1. Verwandte Arbeiten

Im Jahr 2006 führte Hampp [Ham06] bereits eine Analyse von Studienprojekten an der Uni-
versität Stuttgart durch. Obwohl es sich um eine quantitative Analyse vergangener Projekte
handelte, nicht um eine qualitative Analyse wie in dieser Arbeit, können einige Parallelen
zu dieser Arbeit gezogen werden. Die Arbeit hatte unter anderem das Ziel, die Studierenden
der nachfolgenden Projekte bei der Aufwandsschätzung zu unterstützen und ihnen einen
Vergleich mit Durchschnittswerten aus den Projekten der letzten Jahre zu ermöglichen. Auch
diese Arbeit hat zum Ziel, neben der Verbesserung der Qualität der Studienprojekte, auch die
Rahmenbedingungen für Studierende zu verbessern. Der Fokus dieser Arbeit liegt dabei jedoch
auf der Verbesserung der Betreuung. Hampp fand heraus, dass Umfang und Aufwand von
Studienprojekten mit denen von Industrieprojekten vergleichbar sind. Daten zur Qualität der
Projekte wurden jedoch nicht erhoben, daher ist nicht klar, ob diese hohe Produktivität auf
Kosten der Produktqualität erreicht wird. Insgesamt hält Hampp seine Arbeit geeignet zur
Verbesserung der Kostenschätzung von Studienprojekten, jedoch zeigt er auch Probleme auf:
zum Beispiel wurden bei der Aufwandserfassung keine einheitlichen Kategorien verwendet,
was die Vergleichbarkeit einzelner Projekte verringert.

Auch an der finnischen Tampere University of Technology wurden über mehrere Jahre hinweg
während der Durchführung von Studentenprojekten Daten gesammelt, von denen die nachfol-
genden Jahrgänge lernen konnten [Aht03]. Die gesammelten Daten beinhalteten aufgetretene
Schwierigkeiten und Risiken, Probleme oder Empfehlungen bezüglich Werkzeugen oder Pro-
jektmanagement, allgemeine Statistiken sowie Kommentare zu sonstigen erwähnenswerten
Themen. Darüber hinaus können die Studierenden ihre aufgewendeten Stunden in den einzel-
nen Phasen des Projekts mit denen anderer Gruppen vergleichen. Der Autor folgert, dass die
Verfügbarkeit der Daten einer der Hauptgründe sei, warum der Kurs als so erfolgreich und

15

2. Stand der Wissenschaft und Technik

nützlich angesehen werde. Er beschreibt aber auch den hohen Zeitaufwand zur Durchführung
dieses Kurses und bringt an, dass der Kurs mit weiterer Klassifikation und Optimierung der
gesammelten Daten noch weiter verbessert werden könnte. Auch hier liegt der Fokus wieder
auf der direkten Unterstützung der Studierenden bei der Durchführung ihrer Projekte.

An der Eindhoven University of Technology werden ebenfalls seit vielen Jahren Studienpro-
jekte durchgeführt. Poncin, Serebrenik und van den Brand [PSB11] untersuchten im Jahr
2011, wie man aus den Quellcode-Repositories und anderen Datenquellen, wie Issue-Trackern
und Mailing-Listen Daten zum Entstehungsprozess der Projekte sammeln kann. Ziel war es
Antworten auf einige Fragen, wie die Wiederverwendung der Prototypen oder die Arbeitsver-
teilung der Studierenden, zu finden. Dies gelang ihnen und sie konnten zeigen, dass sie bei
einigen vergangenen Projekten Verstöße gegen Vorgaben früher hätten entdecken können.
Zur Analyse der Datenquellen verwendeten Poncin, Serebrenik und van den Brand FRASR
und ProM. FRASR [PSV11] ist ein Werkzeug zur Extraktion von event logs aus verschiedenen
Datenquellen. ProM [VMV+05] kann diese event logs mit data mining-Methoden analysieren.
Das Werkzeug ist ein Vertreter der process mining-Werkzeuge.

2.2. Qualitätsmodelle

Qualitätsmodelle bieten die Möglichkeit, Qualitätsanforderungen zu modellieren, die Qualität
eines Systems zu analysieren und zu überwachen und passende Metriken dafür zu finden
[DJLW09]. Einige Qualitätsmodelle konzentrieren sich vorwiegend auf die Beschreibung von
Qualitätseigenschaften, andere bieten zusätzlich eine Methodik, um die Qualität messbar zu
machen und Projekte zu vergleichen oder Entwicklungen zu erkennen. Dieser Abschnitt soll
einen Einblick in verbreitete Qualitätsmodelle liefern.

2.2.1. ISO 9126

Die ISO 9126 [ISO01] ist ein beschreibendes Qualitätsmodell. Die Norm klassifiziert Qualitäts-
eigenschaften von Software-Systemen. Auf oberster Ebene definiert sie die sechs Merkmale
Wartbarkeit, Effizienz, Portabilität, Zuverlässigkeit, Funktionalität und Benutzbarkeit, die durch
28 Teilmerkmale weiter konkretisiert werden (siehe Abbildung 2.1). Eine Quantifizierung der
Eigenschaften umfasst die Norm nicht.

2.2.2. ISO 25010

Die ISO 25010 [ISO11] ist ebenfalls ein beschreibendes Qualitätsmodell. Sie ersetzt die ISO
9126 und unterteilt die Software-Qualität in die acht Merkmale Kompatibilität, Portabilität,
Funktionalität, Zuverlässigkeit, Gebrauchstauglichkeit, Sicherheit, Effizienz und Wartbarkeit.
Jedem dieser Merkmale sind zwei bis sechs Qualitätseigenschaften zugeordnet. Insgesamt

16

2.2. Qualitätsmodelle

Software Product
Quality

Functionality

• Suitability
• Accuracy
• Interoperability
• Security
• Functionality

compliance

Reliability

• Maturiy
• Fault tolerance
• Recoverability
• Reliability

compliance

Usability

• Understandability
• Learnability
• Operability
• Attractiveness
• Usability

compliance

Efficiency

• Time behaviour
• Resource

utilization
• Efficiency

compliance

Maintainability

• Analyzability
• Changeability
• Stability
• Testability
• Maintainability

compliance

Portability

• Adaptability
• Installability
• Co-existence
• Replaceability
• Portability

compliance

Abbildung 2.1.: Qualitätseigenschaften nach ISO 9126 (eigene Darstellung)

umfasst die Norm 31 Qualitätseigenschaften (siehe Abbildung 2.2). Wie die ISO 9126 umfasst
auch diese Norm keine Quantifizierung der Eigenschaften.

2.2.3. Factors-Criteria-Metrics-Methode

Die Factors-Criteria-Metrics-Methode kann zur Erstellung von Qualitätsmodellen verwendet
werden. Die Methode wurde 1977 von McCall erstmals vorgestellt [CMRW77]. Zur Anwen-
dung der Methode definiert man für den abstrakten Qualitätsbegriff einige Merkmale (engl.
„factors“), die einen Aspekt der Qualität genauer beschreiben. Dann werden Teilmerkmale (engl.
„criteria“) identifiziert, die die Merkmale genauer definieren. Schließlich werden Metriken
(engl. „metrics“) festgelegt, die die Messbarkeit der definierten Teilmerkmale ermöglichen. Ein

17

2. Stand der Wissenschaft und Technik

Software Product
Quality

Functional Suitability

• Functional
Completeness

• Functional
Correctness

• Functional
Appropiateness

Performance
Efficiency

• Time Behaviour
• Resource

Utilization
• Capacity

Compatibility

• Co-existence
• Interoperability

Usability

• Appropiateness
Recognizability

• Learnability
• Operability
• User Error

Protection
• User Interface

Aeshetics
• Accessibility

Reliability

• Maturiy
• Availability
• Fault Tolerance
• Recoverability

Security

• Confidentiality
• Integrity
• Non-repudiation
• Authenticity
• Accountability

Maintainablity

• Modularity
• Reusability
• Analysability
• Modifiability
• Testability

Portability

• Adaptability
• Installability
• Replaceability

Abbildung 2.2.: Qualitätseigenschaften nach ISO 25010 (eigene Darstellung)

Beispiel für einen solchen Zusammenhang ist das Merkmal Zuverlässigkeit, das unter anderem
durch das Teilmerkmal Wiederherstellbarkeit genauer definiert wird. Eine Metrik zur Messung
der Wiederherstellbarkeit ist die Mean Time to Repair (MTTR). McCall hat in seiner Arbeit
[CMRW77] ein Beispielmodell erarbeitet, für das er elf wichtige Merkmale ermittelte, die von
23 Teilmerkmalen konkretisiert werden. Zur Messung umfasst sein Modell 300 Metriken.

2.2.4. Squale-Modell

Das Squale-Modell [MBD+09] basiert auf dem Factors-Criteria-Metrics-Modell von McCall.
Der Hauptunterschied besteht in der Einführung einer neuen Ebene der Practices zwischen
den Ebenen Criteria und Metrics. Die Practices schließen die Abstraktionslücke zwischen
diesen Ebenen und ermöglichen dem Betrachter zu erkennen, warum ein Teilmerkmal nicht
erfüllt ist und welche Komponenten (Pakete, Klassen, Methoden, . . .) dafür verantwortlich
sind. Beim FCM-Modell nach McCall würde ein schlechter Wert in der Metrik Mean Time to
Repair zwar auf eine ungenügendeWiederherstellbarkeit hinweisen, welche Komponenten nun
aber verbessert werden müssen geht daraus nicht hervor. In Squale würde man beispielsweise

18

2.2. Qualitätsmodelle

für jede Klasse die Häufigkeit von Fehlern und die geänderten Zeilen zur Fehlerbehebung
ermitteln und diesen Wert als Practice für die Wiederherstellbarkeit verwenden.

Squale führt auch ein Konzept zur Berechnung aggregierter Werte aus den einzelnen Messwer-
ten der Metriken ein. In Squale erhält jedes Messobjekt einer Practice eine individuelle Note.
Diese Note kann über eine diskrete oder stetige Formel berechnet werden. Außerdem erhält
jede Practice eine systemweite Gesamtnote. Diese wird als gewichteter Durchschnitt aller
Individualnoten errechnet. Die Berechnungsformel ist so konstruiert, dass über frei wählbare
Konstanten der Einfluss von Ausreißern auf die Gesamtnote bestimmt werden kann. So kann
man beispielsweise eine Formel konstruieren, die bereits bei wenigen schlechten Messwerten
einen stark negativen Einfluss auf die Gesamtnote hat.

2.2.5. Goal-Question-Metric-Methode

Goal Question Metric (GQM) [CR94] ist eine allgemeine Methode zur Erstellung von Qualitäts-
modellen für Software-Systeme. Die GQM-Methode nimmt an, dass man nur in sinnvoller
Weise messen kann, wenn man vorher Ziele für seine Organisation oder Projekte definiert hat.
Aus diesen Zielen können Metriken und deren Interpretation abgeleitet werden, um das Ziel
messbar und vergleichbar zu machen.

Zu diesem Zweck definiert die GQM-Methode drei Ebenen: die konzeptuelle Ebene (Goal),
die operationale Ebene (Question) und die quantitative Ebene (Metric). Ein Ziel (engl. „Goal“)
bezieht sich immer auf ein Objekt (z. B. Prozess, Produkt, Projekt), hat einen Zweck (z. B.
Verbesserung, Überwachung, Vorhersage), setzt einen Qualitätsfokus (z. B. auf eins der ISO
25010Merkmale), legt den Blickwinkel fest (z. B. Kunde, Entwickler, Projektleiter) und hat einen
Kontext (z. B. Projekt, Abteilung, Zeitraum). Zu jedem Ziel werden eine oder mehrere Fragen
(engl. „Questions“) definiert, die das untersuchte Objekt charakterisieren und ein spezielles
Qualitätsattribut definieren. Zu jeder Frage wird eine Menge an Metriken (engl. „Metrics“)
definiert, die die Frage quantifiziert beantworten. Diese Metriken können objektiv sein, d. h.
unabhängig vom Blickwinkel und nur abhängig vom untersuchten Objekt oder subjektiv, d. h.
abhängig vom Blickwinkel und dem untersuchten Objekt.

Ein GQM-Modell hat eine hierarchische Struktur. An der Spitze steht ein Ziel, das in mehreren
Fragen charakterisiert wird. Jede Frage wird wiederum von mehreren Metriken quantifiziert.
Eine Metrik kann verwendet werden, ummehrere Fragen zu quantifizieren. Es ist auch möglich,
eine Metrik in verschiedenen GQM-Modellen zu verwenden, dann muss jedoch darauf geachtet
werden, dass die Daten möglicherweise mehrfach erhoben werden müssen, falls es sich um
eine subjektive Metrik handelt.

19

2. Stand der Wissenschaft und Technik

Goal 1 Goal 2

Question Question Question Question Question

Metric Metric Metric Metric Metric

Abbildung 2.3.: Darstellung zweier hierarchischer GQM-Modelle (eigene Darstellung nach
[CR94])

2.2.6. Quamoco

Ein weiteres Verfahren zur Modellierung und Bewertung von Software-Qualität ist der Qua-
moco-Ansatz [WLH+12]. Quamoco verfolgt, ähnlich wie Squale, das Ziel, die Bewertung nach
einem Qualitätsmodell direkt in das Modell zu integrieren. Dazu wurde ein Meta-Modell ent-
wickelt, aus dem hierarchische Modelle erzeugt werden können. Das Meta-Modell basiert
hauptsächlich auf dem Konzept der factors. Es gibt zwei Arten von factors, quality aspects und
product factors. Die quality aspects repräsentieren abstrakte Qualitätseigenschaften, vergleich-
bar mit den Eigenschaften aus ISO 9126 oder ISO 25010. Die product factors sind messbare
Eigenschaften von Komponenten des Systems. Sie können daher immer über eine Metrik
berechnet werden. Sowohl quality aspects als auch product factors können über sub-aspects
bzw. sub-factors konkretisiert werden. Quality factors können außerdem von product factors
beeinflusst werden.

Quamoco definiert darüber hinaus ein Basismodell, das eine Instanz des Meta-Modells ist und
auch das Konzept der Module nutzt, das Quamoco ebenfalls einführt. Das Basismodell besteht
aus drei Modulen: dem objektorientierten Modul und den Modulen für Java und C#, die jeweils
vom objektorientierten Modul abgeleitet sind. Für das Basismodell wurde auch eine Bewer-
tungsmethode erarbeitet, die die Aggregation von den Metriken der product factors bis zu den
quality factors erlaubt. Außerdem werden Interpretationsmodelle definiert, die es ermöglichen,
die Qualität für Nicht-Entwickler in Schulnoten oder Ampelfarben auszudrücken.

2.2.7. Fazit

Die vorgestellten Qualitätsmodelle unterscheiden sich in ihrer Komplexität und ihren An-
wendungsgebieten. Während es sich bei den Normen ISO 9126 und ISO 25010 um einfache

20

2.3. Metriken

Taxonomien handelt, die nicht direkt auf ein System angewendet werden können, sind die
anderen Modelle (Factors-Criteria-Metrics, Squale, Goal-Question-Metric und Quamoco) deutlich
ausgereifter und können zur Qualitätsbewertung eines Software-Systems verwendet werden.
Die Modelle Quamoco und Squale bieten darüber hinaus Bewertungsmethoden, mit denen
die Messwerte der Metriken zu einer systemweiten Gesamtbewertung aggregiert werden
können.

2.3. Metriken

Software-Metriken bieten die Möglichkeit, abstrakte Qualitätsmerkmale von Software-
Systemen systematisch und quantitativ zu erfassen. Die daraus abgeleiteten Erkenntnisse
über die untersuchte Software können dann auf einer objektiven Ebene mit denen anderer
Systeme verglichen werden [Hof13].

Ob sich die Erhebung einer Software-Metrik für ein Unternehmen oder eine Organisation
lohnt, steht in enger Verbindung mit der Qualität einer Software-Metrik. Hoffmann [Hof13]
nennt daher sechs Gütekriterien für Software-Metriken:
Objektivität Die Messung der Metrik ist frei von subjektiven Einflüssen
Robustheit Eine wiederholte Messung der gleichen Metrik liefert das gleiche

Ergebnis
Vergleichbarkeit Die Messungen der gleichen Metrik an verschiedenen Produkten

sind vergleichbar
Ökonomie Die Messung einer Metrik kann mit geringen Kosten erfolgen
Korrelation Die Messerergebnisse einer Metrik lassen Rückschlüsse auf das

überwachte Qualitätsmerkmal zu
Verwertbarkeit Unterschiedliche Messergebnisse haben unterschiedlichen Ein-

fluss auf das zukünftige Handeln

Ludewig und Lichter [LL13] nennen in ihrem Buch Software Engineering sieben Eigenschaften
für gute Software-Metriken. Diese sind bis auf eine weitere äquivalent zu denen Hoffmanns:

Verfügbarkeit Die Bewertung muss dann vorliegen, wenn auf ihrer Grundlage
Entscheidungen getroffen werden sollen und nicht erst danach

Im Folgenden wird eine Auswahl wichtiger, verbreiteter und vornehmlich objektorientierter
Metriken beschrieben. In Abbildung 2.4 ist eine Einteilung der Metriken in die Kategorien
Umfangs-, Kopplungs-, Komplexitäts-, Vererbungs-, Kohäsions- und Dokumentationsmetriken
dargestellt, nach denen die Auflistung gruppiert ist. Zusätzlich zu dieser Gliederung können
die Metriken auch nach Zugehörigkeit zu einer metrics suites (MOOD metrics suite oder ck
metrics suite) klassifiziert werden.

21

2. Stand der Wissenschaft und Technik

Kopplungsmetriken

Komplexitätsmetriken

Umfangsmetriken

RFC

WMC

NOF

NOMNPM

McCabe

MHF

AHF

DAC

CF

MPC

CBO

Kohäsionsmetriken

LCOM

Vererbungsmetriken

POF
NOC

AIF

MIF

DIT

Dokumentationsmetriken

CD
DPA

Abbildung 2.4.: Einteilung der vorgestellten Metriken in die Kategorien Umfangsmetriken,
Kopplungsmetriken, Komplexitätsmetriken, Vererbungsmetriken, Kohäsions-
metriken und Dokumentationsmetriken

2.3.1. Umfangsmetriken

Umfangsmetriken geben Aufschluss darüber, wie umfangreich der Quelltext eines Systems oder
einzelne Komponenten eines Systems sind. Tendenziell kann man sagen, dass die Wartbarkeit
von Quelltext abnimmt, je umfangreicher dieser ist.

Number of Fields (NOF) Die Metrik [BV04] zählt die Attribute einer Klasse (sowohl dekla-
rierte, als auch geerbte).

Number of Methods (NOM) Die Metrik [BV04] zählt die Methoden einer Klasse (sowohl
deklarierte, als auch geerbte).

Number of Public Methods (NPM) Die Metrik [EHD01] zählt die öffentlichen Methoden
einer Klasse (sowohl deklarierte, als auch geerbte).

2.3.2. Kopplungsmetriken

Kopplungsmetriken geben an, wie eng einzelne Komponenten eines Systems miteinander
verbunden sind. Viele Methodenaufrufe und referenzierte Klassen sind ein Zeichen für eine
hohe Kopplung. Generell sind Systeme, deren Kopplung gering ist, einfacher zu warten, da

22

2.3. Metriken

bei einer Änderung an einer Stelle nur wenige andere Codestellen berücksichtigt werden
müssen.

Method Hiding Factor (MHF) Mithilfe der Kopplungsmetrik [AC94] kann eine Aussage über
die Sichtbarkeit von Methoden einer Klasse gemacht werden. Ein Programm mit vielen
privaten Methoden hat einen hohen Method Hiding Factor. Die Kopplung eines solchen
Programms ist geringer als die eines Programms mit weniger privaten Methoden bei
ansonsten gleicher Methodenanzahl. Dadurch reduziert sich der Wartungsaufwand des
Systems, da viele Codestellen verändert werden können, ohne dass dadurch andere Teile
des Systems beeinflusst werden. Die Metrik ist Teil der MOOD metrics suite.

Attribute Hiding Factor (AHF) Die Metrik [AC94] gehört zu den Kopplungsmetriken und
ermöglicht Aussagen über die Sichtbarkeit von Attributen in einem Programm. Berech-
nung und Interpretation sind analog zur Metrik Method Hiding Factor und die Metrik ist
ebenfalls Teil der MOOD metrics suite.

Data Abstraction Coupling (DAC) Die Metrik [LH93] misst die Kopplung des Systems auf
Datenebene. Sie zählt die Anzahl an verwendeten Abstract Data Types (ADT) in einer
Klasse. In einer objektorientierten Programmiersprache stellen die Klassen die ADTs
eines Programms dar. Es werden also die verschiedenen Typen von Attributen und
Variablen in einer Klasse gezählt. Auch hier ist eine Klasse mit einem hohen DAC-Wert
anfälliger für Änderungen an anderen Klassen. Der Wartungsaufwand steigt.

Coupling Between Objects (CBO) Die Kopplungsmetrik [CK94] zählt für jede Klasse die
weiteren Klassen, die sie referenziert. Gezählt werden alle Beziehungen über Vererbung,
Methodenaufrufe, Typreferenzen oder Attributreferenzen. Die Metrik ist Teil der ck
metrics suite.

Message Passing Coupling (MPC) Die Metrik [LH93] zählt die Methoden anderer Klassen,
die von den Methoden einer Klasse oder während der Initialisierung der Attribute einer
Klasse aufgerufen werden. Eine Methode wird nur einmal gezählt, auch wenn sie öfter
aufgerufen wird.

Coupling Factor (CF) Die Metrik [AC94] wird auf Systemebene berechnet und gibt die
tatsächliche Anzahl der Beziehungen zwischen Klassen im Verhältnis zur maximal mögli-
chen Anzahl an Beziehungen (jede Klasse nutzt jede andere Klasse) an. Die Beziehungen
jeder Klasse werden mithilfe der Metrik Coupling Between Objects berechnet. Auch diese
Metrik ist Teil der MOOD metrics suite.

2.3.3. Komplexitätsmetriken

Komplexitätsmetriken machen eine Aussage über die Struktur von Quellcode. Je höher die
Komplexität eines Codeabschnittes, desto schwieriger dessen Wartbarkeit.

23

2. Stand der Wissenschaft und Technik

McCabe-Metrik Die McCabe-Metrik [McC76], auch zyklomatische Zahl, gibt die Anzahl der
Elementarpfade durch ein Programm an. Die zyklomatische Zahl stammt ursprünglich
aus der Graphentheorie, wird jedoch meist nicht aus dem Kontrollflussgraphen bestimmt,
sondern aus der Anzahl der Verzweigungen im Programm-Code errechnet. Sie ist stets
um eins größer, als die Zahl der Verzweigungen im untersuchten Code-Ausschnitt.

2.3.4. Vererbungsmetriken

Vererbungsmetriken geben an, wie stark Konzepte der objektorientierten Vererbung in einem
System verwendet werden.

Polymorphism Factor (POF) Die Metrik [AC94] ist in der MOOD metrics suite enthalten
und gibt die Anzahl der überschriebenen Methoden im Verhältnis zur möglichen Anzahl
überschreibbarer Methoden an.

Depth of Inheritance Tree (DIT) Die Metrik [CK94] gibt die Länge des Pfades von einer
Klasse bis zu ihrem am weitesten entfernten Vorfahren in der Vererbungshierarchie an.
Die Metrik ist Teil der ck metrics suite.

Number of Children (NOC) Die Vererbungsmetrik [CK94], die Teil der ck metrics suite ist,
gibt die Anzahl der Klassen an, die direkt von einer Klasse abgeleitet sind.

Method Inheritance Factor (MIF) Die Metrik [AC94] gibt den Anteil der geerbtenMethoden
einer Klasse an der Gesamtzahl der Methoden (lokal definierte + geerbte) einer Klasse
an. Die Metrik ist Teil der MOOD metrics suite.

Attribute Inheritance Factor (AIF) Die Metrik Attribute Inheritance Factor [AC94] wird ana-
log zur MetrikMethod Inheritance Factor berechnet. Die Metrik ist ebenfalls in derMOOD
metrics suite enthalten.

2.3.5. Kohäsionsmetriken

Kohäsion gibt an, wie gut eine Klasse oder Komponente eine Einheit bildet, die für eine logische
Aufgabe zuständig ist. Starke Kohäsion führt zu verbessertet Wartbarkeit und reduzierte
Duplizierung von Quellcode.

Lack of Cohesion in Methods (LCOM) Die Kohäsionsmetrik [CK94] gibt an, in wie viele
separate Klassen man eine Klasse aufteilen könnte. Zur Berechnung wird ein unge-
richteter Graph verwendet. Jeder Knoten repräsentiert eine Methode und zwei Knoten
werden verbunden, genau dann, wenn beide ein Attribut der Klasse verwenden, beide
eine abstrakte Methode der Klasse verwenden oder die eine Methode die andere Methode
aufruft. Ist die Anzahl der unverbundenen Teilgraphen größer als eins, dann sollte diese
Klasse in mehrere Klassen aufgeteilt werden. Der Wert der Metrik, die Teil der ck metrics
suite ist, entspricht der Zahl der Teilgraphen.

24

2.3. Metriken

2.3.6. Dokumentationsmetriken

Dokumentationsmetriken beschreiben die Menge an Kommentaren und anderer Dokumentati-
on eines Systems. Mangelnde Dokumentation führt zu verringerter Wartbarkeit.

Comment Density (CD) Die Metrik [EHD01] gibt den Anteil der Kommentarzeilen einer
Klasse an ihrem Gesamtumfang an.

Documented Public API (DPA) Die Metrik [EHD01] gibt den Anteil der öffentlichen Me-
thoden mit Methodenkommentar an der Gesamtzahl der öffentlichen Methoden einer
Klasse an.

2.3.7. Metriken mit mehreren Kategorien

Einige Metriken lassen sich nicht eindeutig in eine Kategorie einordnen, sondern beschreiben
verschiedene Aspekte eines Systems.

Weighted Methods per Class (WMC) Die Metrik [CK94] summiert die Komplexitäten der
Methoden einer Klasse auf. Zur Ermittlung der Komplexität wird die McCabe-Metrik
verwendet. Damit macht die Metrik, die Teil der ck metrics suite ist, eine Aussage über
Umfang und Komplexität einer Klasse.

Response For a Class (RFC) Die Metrik [CK94] gibt an, wie viele weitere Methoden po-
tenziell aufgerufen werden können, wenn eine Methode dieser Klasse aufgerufen wird.
Sie wird gebildet, indem zur Anzahl der Methoden der Klasse die Anzahl der Methoden
anderer Klassen addiert wird, die in dieser Klasse aufgerufen werden. Die Metrik ist
Teil der ck metrics suite und erlaubt Aussagen über den Umfang, die Kopplung und die
Komplexität eines Programms.

2.3.8. Fazit

Es gibt sehr viele Metriken, die man für objektorientierten Quellcode berechnen kann und noch
sehr viele weitere für andere Programmierparadigmen. Eine Metrik erlaubt häufig verschiedene
Interpretationen. Aus den in Abschnitt 2.2 vorgestellten Qualitätsmodellen geht hervor, welche
Metriken man zur Messung eines Systems verwenden sollte und wie diese interpretiert werden
kann. Ein reines Berechnen von Metriken ohne dazugehöriges Qualitätsmodell ist daher nicht
sinnvoll.

25

2. Stand der Wissenschaft und Technik

2.4. Werkzeuge

Zur Erhebung von Metriken und anderen Daten der statischen Codeanalyse gibt es eine
Vielzahl an kommerziellen und frei verfügbaren Werkzeugen. Die Werkzeuge unterscheiden
sich teilweise deutlich in ihrer Funktionalität und potenziellen Anwendungsbereichen. Der
folgende Abschnitt liefert eine Klassifikation der Werkzeuge in die Kategorien freie Werkzeu-
ge, IDE-Plugins, kommerzielle Werkzeuge und Werkzeuge zur statischen Codeanalyse. Zu
jeder Kategorie werden einige Vertreter genauer beschrieben. Die Auswahl der Werkzeuge
beschränkt sich auf solche, mit denen Java-Programme analysiert werden können, da die für
diese Arbeit untersuchten Projekte durchgängig in Java entwickelt sind.

2.4.1. Freie Werkzeuge

Hier sind mit freie Werkzeuge alle kostenlosen Werkzeuge gemeint, die nicht als Erweiterung
in ein anderes Programm integriert werden und zur Metrikberechnung verwendet werden
können. Bei freien Werkzeugen handelt es sich meist um Open-Source-Programme, die von
einer Entwicklergruppe oder Organisation entwickelt werden oder um die kostenfreie Version
eines ansonsten kostenpflichtigen, kommerziellen Tools.

SonarQube [Son] ist ein Open-Source-Werkzeug. SonarQube wird von SonarSource entwickelt
und ist unter der LGPL-Lizenz veröffentlicht. Das Werkzeug bietet eine Plattform zur statischen
Codeanalyse für die Programmiersprachen Java, Groovy, Flex, PHP, PL/SQL, C#, Cobol, .NET
und Visual Basic 6. Der Fokus von SonarQube liegt auf der regelbasierten Ermittlung von
potenziellen Fehlern und Schwachstellen, aber auch duplizierter Code und Verstöße gegen
Kodierrichtlinien werden gefunden. Metriken berechnet SonarQube hauptsächlich im Bereich
Komplexität und Dokumentation. Da die Plattform allerdings über einen Plugin-Mechanismus
verfügt, ist es möglich, Erweiterungen einzubinden, die zusätzliche Metriken berechnen oder
andere Werkzeuge zur Berechnung integrieren.

SourceMeter ist ein kommerzielles Werkzeug, von dem eine umfangreiche kostenlose Variante
erhältlich ist. SourceMeter [Fro] kann zur statischen Codeanalyse für die Programmiersprachen
C/C++, Java, C#, Python und RPG verwendet werden. Die Java-Version des Werkzeugs berech-
net eine Reihe von Codemetriken auf unterschiedlichen Ebenen (Paket, Klasse oder Methode),
weist auf Sicherheitslücken und Programmierfehler hin, findet duplizierten Code und bietet
die Möglichkeit der Integration der bekannten Analysewerkzeuge FindBugs und PMD. Die
meisten der Funktionen sind in der freien Version des Werkzeugs enthalten, für einige muss
jedoch eine Lizenz für die kostenpflichtigen Basic oder Pro Versionen erworben werden.

26

2.4. Werkzeuge

2.4.2. Kommerzielle Werkzeuge

Gerade im Bereich der Java-Entwicklung gibt es viele kommerzielleWerkzeuge zur Berechnung
von Metriken. Aus Kostengründen können diese Programme in dieser Arbeit nicht für die
Analyse verwendet werden, nichtsdestotrotz können sie für andere Projekte von Relevanz
sein.

Mit Resource Standard Metrics [M S] können Metriken eines Programm berechnet werden.
Außerdem ermittelt das Werkzeug potenzielle Fehler im Code.

JHawk [Vir] kann 106 Metriken auf Java-Programmen berechnen. Die Analyse kann über die
Kommandozeile gestartet werden und es stehen viele verschiedene Möglichkeiten zum Export
der Ergebnisse zur Verfügung.

Imagix 4D [Ima] ist ein Werkzeug, das beim Verstehen und Analysieren eines fremden Pro-
gramms hilft. Eher als Nebenprodukt berechnet das Tool auch Metriken des untersuchten
Systems.

Mit Essential Metrics [Pow] können Softwaremetriken von C/C++ und Java-Programmen
ermittelt werden. Das Programm kann über die Kommandozeile ausgeführt werden, wird
allerdings seit zwei Jahren nicht mehr gewartet.

Java Source Code Metrics [Sem] berechnet einige wenige Metriken von Java-Programmen.
Selbst einige freie Werkzeuge unterstützen mehr Metriken.

2.4.3. IDE-Plugins

Ähnlich zum Plugin-Mechanismus von SonarQube ist es möglich mithilfe von Plugins den
Funktionsumfang moderner Entwicklungsumgebungen zu erweitern. Zu den Funktionen zäh-
len neben der Unterstützung weitere Programmiersprachen oder Dateiformate auch Plugins
zur statischen Codeanalyse. Für die Entwicklungsumgebungen IntelliJ IDEA und Eclipse sind
Erweiterungen verfügbar, mit denenMetriken des aktuellen Projekts berechnet werden können.
IntelliJ IDEA kann um das Plugin MetricsReloaded [Bas] ergänzt werden. Für Eclipse gibt es
mit Metrics [sau] und Eclipse Metrics Plugin [Wal] gleich zwei Erweiterungen zur Berech-
nung von Codemetriken. Die Plugins Metrics und MetricsReloaded lassen sich zudem über die
Kommandozeile ausführen, ohne die ohne die Entwicklungsumgebung starten zu müssen.

2.4.4. Werkzeuge zur statischen Codeanalyse

Neben Werkzeugen, die auf die Berechnung von Codemetriken spezialisiert sind, gibt es im
Java-Umfeld einige sehr bekannte Werkzeuge zur statischen Codeanalyse. Teilweise können
die Ergebnisse dieser Werkzeuge auch als Metriken verwendet werden, zum Beispiel kann die
Anzahl der leeren Catch-Blöcke als Metrik zur Bestimmung der Resilienz angesehen werden.

27

2. Stand der Wissenschaft und Technik

FindBugs [Fin] ist ein freies Werkzeug, das im Java-Bytecode nach Fehlermustern sucht, die
häufig Anzeichen für wirkliche Fehler sind. Das Tool wird von der University of Maryland
entwickelt und ist unter der LGPL-Lizenz verfügbar. FindBugs kann über eine eigene Benut-
zeroberfläche, die Kommandozeile oder als Plugin in anderen Systemen (z. B. gibt es auch ein
FindBugs-Plugin für SonarQube) verwendet werden.

PMD [PMD] ist ein freies Analysetool, das vor allem Bad Practices im Quellcode aufspürt,
die nicht direkt zu einem Fehler führen, sondern einen anderen negativen Einfluss auf den
Quelltext haben, zum Beispiel eine verschlechterte Lesbarkeit. PMD kann als Plugin in viele
IDEs und Build-Tools integriert und genutzt werden.

Checkstyle [che] ist ein freies Werkzeug, das die Einhaltung von Kodierrichtlinien überprüft
und entsprechende Verstöße anzeigt. Das Tool kann als eigenes Java-Programm oder mithilfe
eines der vielen Plugins für IDEs und Build-Tools ausgeführt werden.

2.4.5. Fazit

Im Java-Umfeld gibt es sehr viele Werkzeuge zur statischen Codeanalyse und Berechnung von
Metriken. Die Tools unterscheiden sich in ihrem Einsatzgebiet: Es gibt Tools zur Unterstützung
der Entwickler (z. B. IDE-Plugins), zur grafischen Darstellung von Messungen, zum Beispiel für
die Projektleitung (z. B. SonarQube) und zur Berechnung vonMetriken und anderen Kennzahlen
(z. B. SourceMeter). Je nach Verwendungszweckmuss daher ein passendesWerkzeug ausgewählt
werden oder es müssen mehrere Werkzeuge kombiniert werden.

28

3. Methodik

Im Rahmen der vorliegenden Arbeit werden die Studienprojekte anhand von drei Analysen
untersucht. Die Ziele und Vorgehensweisen dieser drei Analysen werden in diesem Kapitel
dargelegt. Die Analysen dienen der Erhebung von Daten zur Ableitung von Handlungsemp-
fehlungen, welche die Betreuung und die Qualität der Studienprojekte nachhaltig verbessern
sollen. In Abbildung 3.1 ist der Ablauf der drei Analysen grafisch dargestellt. In Kapitel 4 wird
eine Implementierung zur Durchführung der beiden ersten Analysen vorgestellt. Die dritte
Analyse wird manuell durchgeführt. Die Ergebnisse aller drei Analysen werden in Kapitel 5
behandelt.

Abbildung 3.1.: Ablaufdiagramm der Analysen der Methodik

29

3. Methodik

3.1. Qualitätsanalyse

3.1.1. Ziel der Analyse

Ziel der Qualitätsanalyse ist es, die Studienprojekte der vergangenen Jahre auf eine objek-
tive Weise miteinander vergleichen zu können. Es soll eine Benchmark geschaffen werden,
auf deren Skala die vergangenen und möglichen zukünftigen Projekte eingeordnet werden
können. Die Analyse muss daher die Qualität der Projekte auf einen einzelnen skalaren Wert
reduzieren. Daraufhin wird mithilfe der zwei weiteren Analysen untersucht, was potenzielle
Einflussfaktoren auf die entstandene Benchmark sind und wie man daraus für die Zukunft
lernen kann.

3.1.2. Durchführung der Analyse

Die Qualitätsanalyse wird mittels der GQM-Methode (siehe Abschnitt 2.2.5) durchgeführt, da es
sich bei dieser Methode um einen universellen und einfach umzusetzenden Ansatz handelt. Die
Definition von Zielen hilft, strukturiert vorzugehen und sich auf die grundlegenden Aspekte
zu konzentrieren. Die Qualitätsmodelle Quamoco und Squale (siehe Abschnitte 2.2.6 und 2.2.4)
könnten ebenfalls für diese Analyse verwendet werden. Da es sich bei dieser Arbeit um eine
explorative Studie mit einer geringen Anzahl an untersuchten Projekten handelt und daher
keine Allgemeingültigkeit der Ergebnisse erwartet werden kann, wurde für diese Analyse die
GQM-Methode als pragmatischer Ansatz ausgewählt.

Formulierung des GQM-Modells

Die vorgestellte Methodik orientiert sich am Qualitätsbegriff der ISO 25010 (siehe Abschnitt
2.2.2). Im Rahmen der vorliegenden Arbeit soll eines der Merkmale der Norm analysiert werden.
Ausgewählt wird das MerkmalWartbarkeit, da dies mit typischen Code-Metriken am besten
zu quantifizieren ist und da für die weitere Nutzung der Projekte durch das Fraunhofer IAO
vor allem die Teilmerkmale der Wartbarkeit von Bedeutung sind.
Das Ziel des GQM-Modells ist daher die Analyse der Wartbarkeit. Die Fragen zur Charakteri-
sierung des Ziels orientieren sich an den fünf Teilmerkmalen1 des Merkmals Wartbarkeit der
ISO 25010 und lauten:

• Wie stark ist der Quelltext modularisiert?

• Wie gut kann der Quelltext wiederverwendet werden?

• Wie gut ist der Quelltext analysierbar?

1Modularisierung, Wiederverwendbarkeit, Analysierbarkeit, Modifizierbarkeit, Testbarkeit

30

3.1. Qualitätsanalyse

• Wie gut ist der Quelltext modifizierbar?

• Wie gut kann der Quelltext getestet werden?

Ostberg und Wagner [OW14] führen an, dass viele ihrer Industriepartner und Studierenden
Metriken zur Quantifizierung von Wartbarkeit verwenden, die veraltet sind oder deren Zusam-
menhang zur Wartbarkeit unklar ist. Bei der Auswahl der quantifizierenden Metriken ist es
daher wichtig, nur solche Metriken auszuwählen, deren Zusammenhang mit dem quantifizier-
ten Qualitätsmerkmal empirisch oder wissenschaftlich argumentierend belegt ist. Die folgende
Auflistung verzeichnet zu jedem Teilmerkmal diejenigen Metriken, zu denen wissenschaftliche
Arbeiten eine solche Korrelation belegen.

Modularisierung Response for Class [BDW99],
Coupling between Objects [BDW99],
Message Passing Coupling [BDW99],
Data Abstraction Coupling [BDW99],
Coupling Factor [BDW99]

Wiederverwendbarkeit Weighted Methods per Class [EHD01],
Lack of Cohesion of Methods [EHD01],
Number of Public Methods [EHD01],
Comment Density [EHD01],
Documented Public API [EHD01]

Analysierbarkeit Weighted Methods per Class [Zus93],
Depth of Inheritance Tree [HCN00],
Coupling Factor [Mey88]

Modifizierbarkeit Number of Methods [LH93],
Weighted Methods per Class [LH93],
Response for Class [LH93],
Coupling between Objects [CDK98],
Lack of Cohesion of Methods [BV04; CDK98],
Depth of Inheritance Tree [CDK98; HCN00],
Number of Children [BV04],
Message Passing Coupling [BV04],
Data Abstraction Coupling [BV04],
Methods Inheritance Factor [AM96],
Attributes Inheritance Factor [AM96],
Polymorphism Factor [AM96],
Coupling Factor [AM96]

Testbarkeit Number of Fields [BV04],
Number of Methods [BV04],
Weighted Methods per Class [BV04],
Response for Class [BV04]

31

3. Methodik

Berechnung der Benchmark

Die Qualitätsmodelle Quamoco und Squale (siehe Abschnitte 2.2.6 und 2.2.4) enthalten spezielle
Ansätze zur Aggregation von Metrikwerten, um die Gesamtbewertung eines Projekts vorneh-
men zu können. Die GQM-Methode enthält kein solches Verfahren. Daher ist die Erstellung
eines individuellen Vorgehens nötig. Alternativ könnten die Methoden der Modelle Quamoco
und Squale für das GQM-Modell angepasst werden. Aus denselben Gründen wie in Abschnitt
3.1.2 wird für diese Arbeit aber ein eigenes, pragmatisches und unkompliziertes Verfahren
entwickelt. Das in dieser Arbeit verwendete Vorgehen erfolgt in vier Schritten:

1. Für jedes Projekt werden die Metriken des GQM-Modells berechnet.

2. Für jede Metrik wird das Projekt mit dem besten Wert bestimmt. Alle Projekte erhalten
als Note für eine Metrik den Quotienten aus ihrem Metrikwert und dem Metrikwert des
besten Projekts. Dadurch erhält jedes Projekt eine Note zwischen 0 und 1.

3. Die Noten eines Projekts werden für jede Frage des GQM-Modells aufsummiert. Nun
wird wieder das Projekt mit der besten Bewertung ermittelt und die anderen Projekte
werden dazu in Relation gesetzt. Daher liegt auch die Note einer Frage immer zwischen
0 und 1.

4. Die Gesamtnote für das Ziel des GQM-Modells (Wartbarkeit) errechnet sich als Summe
der Noten für die einzelnen Fragen. Da das GQM-Modell aus fünf Fragen besteht, liegt
die Gesamtnote für jedes Projekt zwischen 0 und 5.

3.2. Repository-Analyse

3.2.1. Ziel der Analyse

Diese Arbeit basiert auf der Annahme, dass der Entstehungsprozess der Studienprojekte einen
Einfluss auf die Ergebnisse und die Qualität der Projekte hat. Um dies zu untersuchen, werden
Daten zum Entstehungsprozess aus den Quellcode-Repositories der betrachteten Projekte
ermittelt. Diese Informationen können anschließend den Ergebnissen der Qualitätsanalyse
gegenübergestellt werden, um mögliche Zusammenhänge festzustellen.

3.2.2. Durchführung der Analyse

Neben dem eigentlichen Versionsverlauf mit Commits und geänderten Dateien und Zeilen
können aus den Quellcode-Repositories weitere Metadaten zu jeder Version erhoben werden.
Daten wie der Autor, der Zeitpunkt des Commits, die Commit-Nachricht und die geänderten
Zeilen können zusammen mit den Commits abgerufen werden. Diese Metadaten werden in

32

3.2. Repository-Analyse

der Repository-Analyse erhoben, um daraus Metriken zum Vergleich der Projekte zu entwi-
ckeln. Zur Ableitung der Metriken können die Daten gruppiert oder summiert werden und
Durchschnitte gebildet werden.

Für diese Arbeit wurden die folgenden Fragen anhand von Analysen der Quellcode-Repositories
beantwortet:

• Sind die Commits gleichmäßig auf alle Tage verteilt oder gibt es Tage, die deutlich vom
Durchschnitt abweichen?

• Sind die geänderten Zeilen gleichmäßig auf alle Tage verteilt oder gibt es Tage, die
deutlich vom Durchschnitt abweichen?

• Sind die geänderten Zeilen gleichmäßig auf alle Teilnehmer verteilt oder gibt es Studie-
rende, deren Arbeitsanteil deutlich vom Durchschnitt abweicht?

• Sind die Commits gleichmäßig auf alle Wochentage verteilt oder gibt es Wochentage,
die deutlich vom Durchschnitt abweichen?

• Wie hoch ist der Anteil der Commits, die am Wochenende gemacht wurden?

• Sind die Commits gleichmäßig auf alle Studierenden verteilt oder gibt es Studierende,
deren Arbeitsanteil deutlich vom Durchschnitt abweicht?

• Werden pro Commit in etwa gleich viele Zeilen geändert oder gibt es Commits, die
deutlich vom Durchschnitt abweichen?

Die Fragen sind teilweise aus den charakteristischen Eigenschaften der Studienprojekte ab-
geleitet, die in Abschnitt 1.1 erwähnt werden. Die Fragen zur Verteilung der Commits nach
Kalendertagen und Wochentagen unterstellen, dass es Projekte gibt, die den Hauptteil der Ar-
beit kurz vor den vereinbarten Präsentationsterminen erledigen bzw. nur an den vereinbarten
Arbeitstagen vor Ort arbeiten.

Um die Gleichmäßigkeit der Verteilungen bzw. die Abweichungen der Messwerte vom Durch-
schnitt zu berechnen, kann die Standardabweichung verwendet werden. Da sich dieMittelwerte
der Verteilungen stark unterscheiden können und daher damit zu rechnen ist, dass die Stan-
dardabweichungen ebenfalls stark schwanken (eine Verteilung mit einem hohen Mittelwert
hat häufig auch eine höhere Standardabweichung und umgekehrt), wird statt der Standardab-
weichung der Variationskoeffizient verwendet, der als Quotient aus Standardabweichung und
Mittelwert definiert ist.

Um ein einheitliches Vorgehen für alle Repositories zu gewährleisten, wird im Kontext dieser
Arbeit vorausgesetzt, dass es sich bei den untersuchten Repositories umGit-Repositories handelt.
Da es sich bei den meisten der untersuchten Repositories um SVN-Repositories handelt, wird im
Zuge der Analyse als erster Schritt eine Konvertierung zu Git mithilfe des Werkzeugs git-svn
[Git] durchgeführt.

33

3. Methodik

3.3. Betreuungsanalyse

3.3.1. Ziel der Analyse

Die Betreuungsanalyse verfolgt zwei Ziele: Zum einen soll sie Informationen über die Betreu-
ung der Studienprojekte erheben, die potenziell einen Einfluss auf die Qualität der Projekte
haben, zum anderen sollen Daten erhoben werden, die zur Validierung der Qualitätsanaly-
se aus Abschnitt 3.1 verwendet werden können. Die Informationen zur Betreuung können
anschließend auf Zusammenhänge mit den Ergebnissen der Qualitätsanalyse hin geprüft
werden.

3.3.2. Durchführung der Analyse

Zur Erreichung der Ziele wurde eine Befragung der Betreuer der untersuchten Projekte durch-
geführt. Der Fragebogen enthält allgemeine Fragen zum Projekt, Fragen zur Qualität, zur
Betreuung und zur Umsetzung. Die allgemeinen Fragen dienen hauptsächlich dazu, einen
besseren Einblick in die untersuchten Projekte zu erhalten. Zum Beispiel soll eine Einschätzung
des subjektiven Erfolgs des Projekts abgegeben werden oder die Komplexität des technischen
und fachlichen Hintergrunds beurteilt werden. Die Fragen zur Qualität haben zum Ziel, die
Qualitätsanalyse aus Abschnitt 3.1 zu validieren, indem die Einschätzung der Betreuer mit den
Ergebnissen der Analyse verglichen wird. Aus den Fragen zur Betreuung und der Umsetzung
sollten Rückschlüsse auf den Betreuungsprozess gezogen werden, die wiederum zu den Er-
gebnissen der Qualitätsanalyse in Relation gesetzt werden können. Dadurch kann ermittelt
werden, welchen Einfluss die Betreuung und der Betreuungsprozess auf die Qualität eines
Studienprojekts hat.

Der Fragebogen wurde als Word-Dokument per E-Mail mit einem persönlichen Anschreiben
verschickt. Auf ein Online-Umfrage-Tool wurde aufgrund der geringen Teilnehmerzahl und der
weniger persönlichen Ansprache verzichtet. Im Anhang A.2 ist der vollständige Fragebogen
abgebildet, wie er an die Betreuer der untersuchten Projekte verschickt wurde.

3.4. Auswertung

Zur Auswertung der Ergebnisse wird ermittelt, ob die Ergebnisse der Repository-Analyse und
der Betreuungsanalyse einen messbaren Einfluss auf die Benchmark aus der Qualitätsanalyse
haben. Dazu werden Korrelationen mit der Benchmark mithilfe des Korrelationskoeffizienten
nach Pearson [Pea95] berechnet. Je höher dieser Koeffizient r ist, desto stärker ist der lineare
Zusammenhang zwischen den untersuchten Aspekten.

34

3.4. Auswertung

Um eine Korrelation berechnen zu können, muss für jedes Studienprojekt genau ein Bench-
markwert und genau ein Wert für jeden untersuchten Aspekt vorliegen. Um die Korrelationen
der Benchmark mit den Verteilungen aus der Repository-Analyse zu berechnen, wird der Varia-
tionskoeffizient verwendet. Die am Wochenende erstellten Commits werden einfach als Anteil
der gesamten Commits berechnet. Dieser Quotient kann dann zur Korrelationsberechnung
verwendet werden.
Zur Berechnung der Korrelationen der Betreuungsanalyse werden die Antwortmöglichkeiten
der Ordinalskalen von eins bis vier nummeriert. Da der Durchschnitt auf Ordinalskalen nicht
angewendet werden kann, wird der Median als Grundlage der Berechnung des Korrelationsko-
effizienten verwendet.

35

4. Implementierung

4.1. Anforderungen

Zur Durchführung der in Kapitel 3 beschriebenen Methodik wurde ein Werkzeug entwickelt,
mit dem die Qualitätsanalyse (Berechnung der Metriken, Aggregation und Berechnung der
Benchmark) und die Analyse der Quellcode-Repositories (Extraktion der Daten aus den Com-
mits) durchgeführt werden können. Dabei wurden die folgenden Anforderungen berücksichtigt,
die sich aus der Ausschreibung und Aufgabenstellung dieser Arbeit ableiten:

• Die Analyse soll möglichst automatisiert durchgeführt werden können. Manuelle Schritte
sind möglich, wenn es einen pragmatischen Grund hierfür gibt.

• Zur Berechnung der Metriken sollen bestehende Werkzeuge verwendet werden, da es
hierfür bereits geeignete Werkzeuge gibt (vgl. Abschnitt 2.4).

• Die Ergebnisse der Analyse sollen mittels Web-Frontend zusammengeführt und präsen-
tiert werden.

• Aus dem Web-Frontend soll erkennbar sein, wie gut ein Projekt im Vergleich zu allen
anderen untersuchten Projekten abschneidet.

• Das Web-Frontend soll für jedes Projekt erstellt werden können, um den Teilnehmern
von laufenden Projekten einen Vergleich mit anderen Projekten zu ermöglichen.

4.2. Resultat

Das Werkzeug wird in zwei unabhängigen Teilen entwickelt: dem Analysewerkzeug und
dem Web-Frontend. Das Analysewerkzeug berechnet Metriken der untersuchten Projekte
mithilfe des Werkzeugs SourceMeter (siehe Abschnitt 2.4.1). Das Tool berechnet eine große
Anzahl an Metriken auf verschiedenen Abstraktionsebenen (Paket, Klasse oder Methode).
Außerdem lässt sich das Werkzeug über die Kommandozeile ausführen und kann daher leicht
in eigene Programme integriert werden. Die Einschränkungen der freien Version im Vergleich
zur kostenpflichtigen Basic- oder Pro-Version sind im Kontext dieser Arbeit nicht relevant, da
alle benötigten Funktionen ebenfalls in der freien Version enthalten sind.
Darüber hinaus aggregiert das Analysewerkzeug die Metriken anhand des GQM-Modells (siehe

37

4. Implementierung

Abschnitt 3.1) und berechnet die Benchmark. Der Export der generierten Daten erfolgt in
.csv-Dateien, die vom Web-Frontend eingelesen werden.
Die Repository-Analyse wird ebenfalls vom Analysewerkzeug durchgeführt. Dafür wird eine
Repräsentation des Projekts als Git-Repository vorausgesetzt. Die Konvertierung von SVN-
Repositories erfolgte mit dem Werkzeug git-svn [Git]. Die Ergebnisse der Analyse werden
ebenfalls im .csv-Format exportiert und vom Web-Frontend eingelesen.

Das Analysewerkzeugwird in der Programmiersprache Python entwickelt. Python ist eine leicht-
gewichtige Skriptsprache und unterstützt mehrere Programmierparadigmen. Das entstandene
Werkzeug wurde hauptsächlich im objektorientierten Programmierparadigma implementiert.
Für Python spricht, dass viele Standardbibliotheken enthalten sind und weitere Bibliotheken
mit geringem Aufwand nachinstalliert werden können. Außerdem können die entstehenden
Programme bis zu einer gewissen Größe schnell entwickelt werden und Änderungen am
Programm können leicht vorgenommen werden. Dies unterstützt die iterative Entwicklung
der Methodik der vorliegenden Arbeit.

Für jedes untersuchte Projekt wird ein separates Web-Frontend erstellt, das aus zwei Seiten
besteht. Auf der einen Seite kann sich der Nutzer die Ergebnisse der Qualitätsanalyse für das
untersuchte Projekt ansehen (siehe Abbildung 4.1). Dort werden die Werte der Benchmark, der
Teilmerkmale und der einzelnen Metriken angezeigt. Ein farbiger Punkt in der Ecke gibt an,
ob sich das Projekt damit im oberen, mittleren oder unteren Drittel der untersuchten Projekte
befindet. Über einen Klick auf eine der Boxen öffnet sich ein Dialog, der weitere Informationen,
wie den vollständigen Namen der Metrik anzeigt.

Abbildung 4.1.: Ergebnisse der Qualitätsanalyse (Beispielansicht)

38

4.2. Resultat

Die zweite Seite zeigt drei Diagramme der Repository-Analyse (siehe Abbildung 4.2). Die Dia-
gramme visualisieren die Daten der Analyse, für die ein Zusammenhang mit den Ergebnissen
der Benchmark ermittelt werden konnte (siehe Abschnitt 5.2).

Abbildung 4.2.: Ergebnisse der Repository-Analyse (Beispielansicht)

Das Web-Frontend wird mit dem Web-Framework Angular in der Programmiersprache
TypeScript umgesetzt. Die Architektur einer Angular-Anwendung besteht aus hierarchi-
schen Komponenten. Angular bietet Dependency Injection, Routing und es existieren viele
Drittanbieter-Bibliotheken. TypeScript ist eine Obermenge der Programmiersprache JavaScript
und wird von Microsoft entwickelt. Die Sprache unterstützt objektorientierte Klassen und
Vererbung und ermöglicht im Gegensatz zu JavaScript die Typisierung von Variablen und
Methoden.

Web-Frontend und Analysewerkzeug bilden jeweils eine Komponente (siehe Komponentendia-
gramm in Abbildung 4.3). Das Web-Frontend besteht aus vier Angular-Komponenten: eine
Basiskomponente, je eine Komponente für die beiden Webseiten und eine Komponente, um die
Detailinformationen in einem modalen Dialog anzuzeigen. Außerdem enthält es zwei Services
zum Einlesen und Aufbereiten der Daten.
Das Analysewerkzeug besteht aus sieben Python-Klassen, von denen fünf jeweils einen Schritt

39

4. Implementierung

Abbildung 4.3.: Komponentendiagramm des entstandenen Werkzeugs

der Analyse durchführen. Außerdem gibt es eine Klasse für allgemeine Funktionalitäten und ei-
ne für die Konfiguration. Die Qualitätsanalyse und die Repository-Analyse werden unabhängig
voneinander durchgeführt (siehe Ablaufdiagramm in Abbildung 4.4). Aus den Ergebnissen der
Analyse wird anschließend eine lauffähige Version des Web-Frontends für jedes Projekt gene-
riert, das nur die Daten dieses einen Projekts enthält und daher auch an Dritte weitergegeben
werden kann.

40

4.3. Verwendung des Werkzeugs

Abbildung 4.4.: Ablaufdiagramm des entstandenen Werkzeugs

4.3. Verwendung des Werkzeugs

Das Web-Frontend gibt dem Nutzer des Werkzeugs einen Überblick über den Leistungsstand
des betrachteten Projekts im Vergleich zu allen untersuchten Projekten. Außer zur besseren
Visualisierung wurde das Web-Frontend für die Analysen dieser Arbeit nicht verwendet. Zur
Durchführung der Analysen wurden jedoch auch die Ausgabedateien des Analysewerkzeugs
verwendet. Die Dateien wurden in Excel übertragen, um die Korrelationen mit der Benchmark
zu berechnen. Eine Anpassung für Web-Frontend oder Analyse war nicht erforderlich.

41

5. Analyse und Evaluation

In Kapitel 3 wurde die Methodik der drei Analysen vorgestellt, die im Kontext der vorliegenden
Arbeit durchgeführt wurden. Dieses Kapitel präsentiert die Ergebnisse der Analysen und stellt
die abgeleiteten Handlungsempfehlungen für zukünftige Projekte dar.
Um Anonymität für die Betreuer und Teilnehmer der untersuchten Projekte zu gewährleisten,
werden die Projekte in diesem Kapitel mit Buchstaben von A bis F bezeichnet. Ein Projekt
entspricht immer dem gleichen Buchstaben und auch die zugeordnete Farbe ist über das ganze
Kapitel hinweg dieselbe.

5.1. Ergebnisse der Qualitätsanalyse

Ziel der Qualitätsanalyse war es, eine vergleichende Benchmark aller untersuchten Projekte zu
erstellen. Die Projekte wurden dazu nach der in Abschnitt 3.1 vorgestellten Methodik nach den
Teilmerkmalen Modularisierung, Wiederverwendbarkeit, Analysierbarkeit, Modifizierbarkeit
und Testbarkeit analysiert. Die Benchmark ergibt sich aus der Summe der Bewertungen der
Teilmerkmale.

Projekt A erreichte in drei der fünf Teilmerkmale die beste Bewertung. Insgesamt hat Projekt
A mit einer Qualitätsnote von 4,905 auch die beste Gesamtbewertung. Die Projekte B und C
erreichten jeweils in einem Teilmerkmal die beste Bewertung und belegten damit Platz zwei
und drei in der Gesamtwertung. Projekt F erhielt in drei der fünf Teilmerkmale die schlechteste
Bewertung und schnitt damit in der Gesamtbewertung ebenfalls am schlechtesten ab. Die
Projekte können daher in eher gute und eher schlechte Projekte eingeordnet werden. Das
Abschneiden der Projekte scheint also nicht nur vom Zufall bestimmt zu sein (siehe Tabelle 5.1
und Abbildung 5.1).
In vier der fünf Teilmerkmale schnitt das schlechteste Projekt mit einer Bewertung kleiner
0,7 ab; in einem Fall sogar nur knapp über 0,5. Das beste Projekt schneidet demnach in allen
Teilmerkmalen mindestens 1,4 mal besser ab als das Projekt mit der schlechtesten Bewertung.
Auch in der Gesamtbewertung beträgt der Faktor zwischen dem schlechtesten und besten
Projekt in etwa 1,4 (siehe Abbildungen 5.1 und 5.2).

43

5. Analyse und Evaluation

Projekt

Bench-

mark

Modulari-

sierung

Wieder-

verwend-

barkeit

Analysier-

barkeit

Modifizier-

barkeit

Testbar-

keit

Projekt A 4,905 0,978 0,928 1,000 1,000 1,000

Projekt B 4,475 1,000 0,960 0,534 0,998 0,984

Projekt C 4,069 0,738 1,000 0,729 0,777 0,825

Projekt D 4,030 0,696 0,752 0,768 0,916 0,899

Projekt E 3,916 0,797 0,745 0,714 0,901 0,758

Projekt F 3,389 0,646 0,684 0,588 0,800 0,671

Tabelle 5.1.: Tabellarische Darstellung der Benchmark

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Testbarkeit

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Modifizierbarkeit

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Analysierbarkeit

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Wiederverwendbarkeit

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Modularisierung

Abbildung 5.1.: Benchmark-Ergebnisse der Teilmerkmale

44

5.2. Ergebnisse der Repository-Analyse

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Benchmark

Abbildung 5.2.: Aufsummierte Benchmark aller Teilmerkmale

5.2. Ergebnisse der Repository-Analyse

In diesem Abschnitt werden die Ergebnisse der Repository-Analyse, die in Abschnitt 3.3
beschrieben wurde, dargelegt. Die Ziele der Analyse waren die Erfassung von Faktoren, die die
Benchmark der Qualität beeinflussen, und die Validierung der Methodik der Qualitätsanalyse.

Commits nach Kalendertagen

Ob die Studierenden kontinuierlich oder kurz vor den Abgaben sehr viel am Projekt arbeiten,
schlägt sich auch in der Qualität der entstehenden Software nieder. Der Variationskoeffizient
der Verteilung der Commits nach Kalendertagen weist mit einem Korrelationskoeffizienten
von r=-0,506882237 eine mittlere lineare Korrelation mit der Benchmark auf (siehe Tabelle
5.2). Arbeiten die Studierenden hauptsächlich kurz vor den Abgaben und unter Zeitdruck, so
scheinen darunter die Qualität und die Wartbarkeit zu leiden.

Projekt Mittelwert Standardabweichung Variationskoeffizient

Projekt A 3,420 4,727 1,382

Projekt B 1,609 3,050 1,896

Projekt C 4,477 9,595 2,143

Projekt D 12,085 17,139 1,418

Projekt E 2,480 6,610 2,666

Projekt F 3,175 6,440 2,028

Tabelle 5.2.: Tabellarische Darstellung der Commits nach Kalendertagen

In Abbildung 5.3 und Abbildung 5.4 sind die Commits von Projekt A und Projekt F tageweise
in ein Balkendiagramm aufgetragen. Bei Projekt F wechseln sich Tage mit sehr vielen Commits
ab mit Tagen, an denen gar nicht bzw. fast gar nicht gearbeitet wurde. Bei Projekt A sind die
Unterschiede erkennbar geringer.

45

5. Analyse und Evaluation

0

5

10

15

20

25

30

35

40

45

Ta
g

1

Ta
g

1
0

Ta
g

1
9

Ta
g

2
8

Ta
g

3
7

Ta
g

4
6

Ta
g

5
5

Ta
g

6
4

Ta
g

7
3

Ta
g

8
2

Ta
g

9
1

Ta
g

1
0

0

Ta
g

1
0

9

Ta
g

1
1

8

Ta
g

1
2

7

Ta
g

1
3

6

Ta
g

1
4

5

Ta
g

1
5

4

Ta
g

1
6

3

Ta
g

1
7

2

Ta
g

1
8

1

Ta
g

1
9

0

Ta
g

1
9

9

Ta
g

2
0

8

Ta
g

2
1

7

Ta
g

2
2

6

Ta
g

2
3

5

Ta
g

2
4

4

Ta
g

2
5

3

Ta
g

2
6

2

Ta
g

2
7

1

Ta
g

2
8

0

Ta
g

2
8

9

Ta
g

2
9

8

Ta
g

3
0

7

Ta
g

3
1

6

Ta
g

3
2

5

Projekt A

Abbildung 5.3.: Verteilung der Commits von Projekt A

0

5

10

15

20

25

30

35

40

45

Ta
g

1

Ta
g

1
2

Ta
g

2
3

Ta
g

3
4

Ta
g

4
5

Ta
g

5
6

Ta
g

6
7

Ta
g

7
8

Ta
g

8
9

Ta
g

1
0

0

Ta
g

1
1

1

Ta
g

1
2

2

Ta
g

1
3

3

Ta
g

1
4

4

Ta
g

1
5

5

Ta
g

1
6

6

Ta
g

1
7

7

Ta
g

1
8

8

Ta
g

1
9

9

Ta
g

2
1

0

Ta
g

2
2

1

Ta
g

2
3

2

Ta
g

2
4

3

Ta
g

2
5

4

Ta
g

2
6

5

Ta
g

2
7

6

Ta
g

2
8

7

Ta
g

2
9

8

Ta
g

3
0

9

Ta
g

3
2

0

Ta
g

3
3

1

Ta
g

3
4

2

Ta
g

3
5

3

Ta
g

3
6

4

Projekt F

Abbildung 5.4.: Verteilung der Commits von Projekt F

46

5.2. Ergebnisse der Repository-Analyse

Commits nach Wochentagen

Wie viele Commits an welchem Wochentag erzeugt wurden, weist eine starke lineare Korrela-
tion mit der Benchmark auf. Sowohl der Variationskoeffizient dieser Verteilung als auch der
Anteil der am Wochenende erzeugten Commits weisen einen hohen Korrelationskoeffizien-
ten auf (r=-0,797959047 bzw. r=0,787112788). Es ist für die Qualität der Projekte von Vorteil,
wenn die Teilnehmer auch außerhalb der wöchentlichen Arbeitstreffen und am Wochenende
am Projekt arbeiten. Möglicherweise können sie sich zu Hause besser konzentrieren (siehe
Tabellen 5.3 und 5.4).

Projekt Mittelwert Standardabweichung Variationskoeffizient

Projekt A 159,286 74,674 0,469

Projekt B 89,857 51,745 0,576

Projekt C 492,429 334,782 0,680

Projekt D 630,143 524,474 0,832

Projekt E 263,571 133,200 0,505

Projekt F 168,714 197,239 1,169

Tabelle 5.3.: Tabellarische Darstellung der Commits nach Wochentagen

Projekt

Commits an

Werktagen

Commits am

Wochenende

Anteil der Commits

am Wochenende

Projekt A 973 142 12,7%

Projekt B 549 80 12,7%

Projekt C 3012 435 12,6%

Projekt D 3852 559 12,7%

Projekt E 1680 165 8,9%

Projekt F 1161 20 1,7%

Tabelle 5.4.: Tabellarische Darstellung der Commits am Wochenende

In Abbildung 5.5 und Abbildung 5.6 kann die Anzahl der Commits für jeden Wochentag von
Projekt A und Projekt F abgelesen werden. Während die Teilnehmer von Projekt F an manchen
Tagen nahezu überhaupt nicht gearbeitet haben, sind die Schwankungen bei Projekt A deutlich
geringer. Doch auch hier kann man erkennen, dass sich das Team vermutlich montags getroffen
hat, um gemeinsam am Projekt zu arbeiten.

47

5. Analyse und Evaluation

0

100

200

300

400

500

600

Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

Projekt A

Abbildung 5.5.: Commits nach Wochentagen von Projekt A

0

100

200

300

400

500

600

Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

Projekt F

Abbildung 5.6.: Commits nach Wochentagen von Projekt F

48

5.3. Ergebnisse der Betreuungsanalyse

Anzahl logischer Codezeilen

Die Anzahl der logischen Codezeilen weist eine mittlere lineare Korrelation (r=-0,636011674)
mit der Benchmark auf (siehe Tabelle 5.5). Der Korrelationskoeffizient ist negativ, die untersuch-
ten Projekte schnitten also besser ab, je geringer die Anzahl der logischen Codezeilen war. Das
ist ein zu erwartendes Ergebnis, da die Qualität von großen Systemen häufig durch Software-
Erosion abnimmt. Eine mögliche Verzerrung dieser Analyse könnte die Beschränkung auf
Java-Code darstellen. Da während der Qualitätsanalyse nur Code untersucht wurde, der in Java
geschrieben ist, umfassen die gemessenen Codezeilen auch nur den Code in Java-Klassen.

Projekt Anzahl logischer Codezeilen

Projekt A 13969

Projekt B 10267

Projekt C 27020

Projekt D 24031

Projekt E 26756

Projekt F 21489

Tabelle 5.5.: Tabellarische Darstellung der logischen Codezeilen

Weitere Ergebnisse

Keine Korrelation mit der Benchmark konnte für die untersuchten Aspekte Verteilung der
geänderten Zeilen pro Tag, Verteilung der Commits pro Teilnehmer, Verteilung der geänderten
Zeilen pro Teilnehmer und die Verteilung der geänderten Zeilen pro Commit festgestellt werden
(Daten siehe Anhang A.3). Diese scheinen die Benchmark nicht spürbar zu beeinflussen und
es müssen daher keine Maßnahmen in diesen Bereichen ergriffen werden.

5.3. Ergebnisse der Betreuungsanalyse

Der Fragebogen zur Betreuungsanalyse wurde 11 mal ausgefüllt und zurückgeschickt. Insge-
samt haben sechs Betreuer ihre Meinung abgegeben, einige von ihnen für mehrere Projekte. Zu
zwei Projekten gab es je drei Rückmeldungen, ein Projekt wurde von zwei Betreuern evaluiert
und bei drei Projekten hat je ein Betreuer den Fragebogen ausgefüllt und zurückgeschickt.

49

5. Analyse und Evaluation

Wenn es mehrere Rückmeldungen zu einem Projekt gab, unterschieden sich diese teilweise
deutlich in den Einschätzungen der Komplexität des fachlichen Hintergrunds und der tech-
nischen Umsetzung, der Qualität, der Betreuungsqualität, der technischen Kenntnisse der
Betreuer und der Verteilung der Leistungen unter den Studierenden. Außerdem gab es bei
einem Projekt Abweichungen in den Fragen, ob Refactoring-Sprints durchgeführt wurden und
ob sich die Studierenden regelmäßig trafen, um zusammen am Projekt zu arbeiten. Erklären
kann man dies möglicherweise mit der langen Zeit zwischen Durchführung der Projekte
und Ausfüllen des Fragebogens. Außerdem können auch subjektive Einschätzungen oder der
Vergleich mit anderen Projekten Ursachen für diese Abweichungen sein.

Teilnehmerzahl

Die Teilnehmerzahlen der untersuchten Projekte liegen zwischen sechs und 15 Teilnehmern.
Der Median liegt bei 10,5 Teilnehmern und der Durchschnitt bei 10,66 Teilnehmern. Da aus den
Teilnehmerzahlen ein Rückschluss auf die Projekte möglich ist und daher keine Anonymität
von Betreuern und Teilnehmern gewährleistet werden kann, erfolgt an dieser Stelle keine
Zuordnung der Teilnehmerzahlen.
Gleichwohl korreliert die Teilnehmerzahl stark linear (r=-0,866856596) mit der errechneten
Benchmark. Eine besonders starke Korrelation kann für das Teilmerkmal Modularisierung
(r=-0,931723232) nachgewiesen werden. Eine geringe Anzahl an Teilnehmern führt zu einer
besseren Qualität der entstehenden Software. Projekte mit vielen Teilnehmern haben mög-
licherweise Probleme mit der Kommunikation und Koordination. Wenn Schnittstellen nicht
abgesprochen werden und sich häufig ändern, dann führt das zu verstärkter Erosion der
Software und damit zu einer abnehmenden Qualität und Wartbarkeit.

Qualifikation der Betreuer

Die Qualifikation der Betreuer von Studienprojekten zeichnet sich durch die fachlichen und
technischen Kenntnissen aus. Die fachlichen Kenntnisse der Betreuer bei Studienprojekten
beziehen sich auf Kenntnisse im Zusammenhangmit dem Thema eines Studienprojekts und den
Geschäftsprozessen, welche die Software unterstützen soll. Die technischen Kenntnisse zeigen
sich in Kenntnissen der verwendeten Technologien, Bibliotheken und Software-Architektur.
Mit einem Korrelationskoeffizienten von r=0,787596217 bzw. r=0,748935423 kann eine stark
lineare Korrelation zwischen den fachlichen und technischen Kenntnissen der Betreuer und
der Benchmark beobachtet werden. Darüber hinaus korrelieren die technischen Kenntnisse
der Betreuer sehr stark mit dem TeilmerkmalWiederverwendbarkeit (r=0,968599707). Diese
Erkenntnisse legen nahe, dass die Betreuungsqualität bei diesen Projekten hoch zu sein scheint,
da die Studierenden von der Qualifikation der Betreuer profitieren. Daher verwundert es auch
nicht, dass die Betreuungsqualität mit einem Korrelationskoeffizienten von r=0,640029258
ebenfalls einen mittleren linearen Zusammenhang mit der Benchmark aufweist.

50

5.3. Ergebnisse der Betreuungsanalyse

Projekt

Fachliche

Kenntnisse

Technische

Kenntnisse Betreuungsqualität

Projekt A 4 4 4

Projekt B 4 4 4

Projekt C 4 4 3

Projekt D 4 2 3

Projekt E 3 2 4

Projekt F 2 2 3

Tabelle 5.6.: Tabellarische Darstellung der Selbsteinschätzung der Betreuungsqualität (auf
einer Skala von 1 bis 4)

Verwendung von Bibliotheken

Mit einem Korrelationskoeffizienten von r=0,789104736 schnitten solche Projekte besser ab,
die viele Drittanbieter-Bibliotheken verwendeten. Besonders hoch war die Korrelation mit
dem Teilmerkmal Testbarkeit (r=0,904201062). Denkbar wäre, dass es zu verbreiteten Biblio-
theken hochwertige Referenzimplementierungen gibt, an denen sich die Teilnehmer bei der
Verwendung der Bibliotheken orientieren konnten. Auch geben einige Bibliotheken Archi-
tekturentscheidungen vor, die sich positiv auf die Qualität und die Wartbarkeit der Projekte
ausgewirkt haben könnten.

Projekt

Grad der Verwendung von

Drittanbieter-Bibliotheken

Projekt A 4

Projekt B 4

Projekt C 2,5

Projekt D 4

Projekt E 3

Projekt F 2

Tabelle 5.7.: Tabellarische Darstellung zur Verwendung von Drittanbieter-Bibliotheken (auf
einer Skala von 1 bis 4)

51

5. Analyse und Evaluation

Validitätsprüfungen

Neben der Identifizierung von Faktoren, die die Benchmark beeinflussen, war ein weiteres Ziel
der Betreuungsanalyse die Validierung der Qualitätsanalyse. Dazu wurden die Betreuer gebeten,
ihre subjektive Einschätzung der Qualität und der Wartbarkeit des Quelltextes abzugeben.
Mit einem Korrelationskoeffizienten von r=0,561089514 weist die Qualitätseinschätzung der
Betreuer nur eine mittlere lineare Korrelation mit den Ergebnissen der Qualitätsanalyse auf.
Die Korrelation der Wartbarkeitseinschätzung liegt mit r=0,134473309 sogar noch deutlich
darunter.
Die Ursachen für die geringe Übereinstimmung mit der Benchmark müssen nicht in der
Ermittlung der Benchmark liegen. Die geringe Anzahl untersuchter Projekte, eine andere
Interpretation der BegriffeWartbarkeit und Qualität durch die Betreuer oder der lange Zeitraum
zwischen Abschluss der Projekte und Durchführung der Umfrage können Gründe für diese
Abweichung sein. Die ältesten Projekte wurden bereits im Jahr 2010 durchgeführt, daher liegt
es nahe, dass die Betreuer sich nicht mehr an Details der Projekte erinnern, die eventuell
Einfluss auf die Bewertung gehabt haben könnten. Dafür spricht auch, dass die Einschätzung
der Betreuer zur Arbeitsverteilung der Teilnehmer nur eine mittlere Korrelation (r=0,380005319)
mit der Verteilung der Commits auf die Teilnehmer aufweist (siehe Tabelle 5.8).

Projekt

Variationskoeffizient der

Commits pro Teilnehmer

Einschätzung der Heterogenität

der Leistungen

Projekt A 0,774 2

Projekt B 1,119 4

Projekt C 1,151 3

Projekt D 0,806 4

Projekt E 0,690 2

Projekt F 0,793 4

Tabelle 5.8.: Vergleich der realen Verteilung der Commits auf die Studierenden und der Ein-
schätzung der Betreuer zur Arbeitsverteilung (auf einer Skala von 1 bis 4)

Weitere Ergebnisse

Keinen Einfluss auf die Qualität der untersuchten Projekte hatten die fachliche und technische
Komplexität der Projekte, der Grad der Zusammenarbeit der Studierenden, die Heterogenität
der Leistungen der Teilnehmer und das Ausmaß an neuen Technologien, die zur Umsetzung
verwendet wurden. Auch der von den Betreuern eingeschätzte Erfolg der Projekte korrelierte
nicht mit der Benchmark (Daten siehe Anhang A.3). Vermutlich spielen in der Bewertung
der Studienprojekte viele andere Aspekte eine Rolle und verringern damit den Einfluss der

52

5.4. Handlungsempfehlungen

Wartbarkeit. In den Aspekten Vorgehensmodell, Refactoring-Sprints, regelmäßige Arbeitstref-
fen und ob die Betreuer am Projekt weiterforschten und -entwickelten unterschieden sich die
Projekte nicht oder nur minimal, sodass kein Einfluss auf die Benchmark berechnet werden
konnte. In diesen Punkten gibt es daher keinen Anlass zur Veränderung und die Betreuer
können diese Bereiche gestalten, wie sie es für richtig halten.

5.4. Handlungsempfehlungen

Kernziel der vorliegenden Arbeit war es, aus den Erkenntnissen dieser Arbeit Empfehlungen
für die zukünftige Betreuung und Durchführung von Studienprojekten am Fraunhofer IAO
abzuleiten. Nachfolgendwerden vier Empfehlungen vorgestellt, die neueAnsätze zur Betreuung
und Durchführung liefern.

Gleichmäßige Arbeitsverteilung anstreben

Die Repository-Analyse ergab, dass die Ergebnisse der Projekte besser waren, wenn sich die
Commits gleichmäßig auf alle Wochentage verteilten. Die Betreuer sollten die Teilnehmer
daher motivieren, auch außerhalb der vorgeschriebenen Projekttreffen am Projekt zu arbeiten.
Auch die gleichmäßige Verteilung der Commits nach Kalendertagen führt zu besseren
Benchmark-Ergebnissen. Den Teilnehmern sollte daher klargemacht werden, dass die Er-
gebnisse ihres Projekts – und damit auch ihre Note – besser ausfallen, wenn sie mit der
Bearbeitung ihrer Aufgaben nicht erst kurz vor der Abgabe beginnen.
Darüber hinaus können die Betreuer die Zeiträume zwischen den Review-Terminen verkürzen
und die Studierenden damit zwingen, regelmäßig am Projekt zu arbeiten. Die Freude am Projekt
wird man bei den Studierenden damit allerdings nicht unbedingt steigern. Eine andere Idee
wäre es daher eine intrinsische Motivation zu schaffen, sodass die Studierenden von ihrem
Projekt profitieren und nicht nur an einer guten Note interessiert sind.

Geringe Teilnehmerzahl anstreben

Nach der Analyse zur Teilnehmerzahl der untersuchten Projekte erreichen Projekte mit weniger
Teilnehmern einen besseren Platz in der Benchmark. Ziel des Fraunhofer IAO sollte es daher
sein, neue Projekte mit einem möglichst kleinen Team durchzuführen. Da die Teilnehmer aber
gleichmäßig auf alle angebotenen Projekte verteilt werden, ist nur eine geringe Einflussnahme
möglich. Möglicherweise wäre es daher eine Option, große Teams in kleine Untergruppen zu
unterteilen, die möglichst autark an einem Teil des Systems arbeiten. Die Schnittstellen sollten
dann von den Betreuern geprüft werden, um Probleme zu vermeiden.

53

5. Analyse und Evaluation

Hohe Qualifikation der Betreuer beibehalten

Die Ergebnisse der Betreuungsanalyse haben gezeigt, dass Projekte in der Benchmark besser
abschneiden, wenn die Betreuer eine hohe fachliche und technische Qualifikation aufweisen.
Aus eigener Erfahrung ist die Qualifikation der Betreuer der Studienprojekte des Fraunhofer
IAO bereits sehr hoch. Eine Beibehaltung der hohen Qualifikation ist daher erstrebenswert.
Eine mögliche Maßnahme wäre, vornehmlich solche Projekte anzubieten, deren Ergebnisse die
Betreuer bei ihrer Arbeit unterstützen. Damit kann die Qualifikation der Betreuer sichergestellt
werden. Hinzu kommt, dass diese Maßnahme auch einen positiven Einfluss auf die Motivation
der Betreuer ausübt.

Verwendung von Bibliotheken fördern

Die Betreuungsanalyse ergab, dass Projekte, die viele Drittanbieter-Bibliotheken verwenden
einen besseren Platz in der Benchmark erreichen. Die Betreuer sollten daher die Studierenden
ermutigen, vorhandene Funktionen aus Bibliotheken zu verwenden und sich dabei an Bei-
spielimplementierungen zu orientieren. Durch Updates der verwendeten Bibliotheken können
die Betreuer im Vergleich zur Eigenimplementierung durch die Studierenden zusätzlich ihren
Wartungsaufwand reduzieren.

54

6. Zusammenfassung und Ausblick

In dieser Arbeit wurde die Qualität von sechs Studienprojekten untersucht, die in den letzten
Jahren am Fraunhofer IAO in Kooperation mit der Universität Stuttgart durchgeführt wurden.
Darüber hinaus wurden zwei weitere Analysen durchgeführt, die mögliche Einflussfaktoren
auf die Qualität der Projekte ermitteln sollten.
Die Qualitätsanalyse dieser Arbeit ist in etwa vergleichbar mit Qualitätsanalysen im kommer-
ziellen Projektumfeld. Auch bei diesen Analysen kommen die in Abschnitt 2.2 vorgestellten
Methoden zum Einsatz und auch Automatisierung ist dort von hoher Bedeutung, da die Analy-
sen meist zur Überwachung der Qualität von Projekten eingesetzt werden. Die Zielsetzung
ist jedoch eine andere: während es bei der Qualitätsanalyse der vorliegenden Arbeit um eine
Einschätzung der Gesamtqualität der untersuchten Software ging, ist es im industriellen Um-
feld von großer Bedeutung, von einer ungenügenden Gesamtqualität auf die mangelhaften
Komponenten schließen zu können, um Korrekturen vorzunehmen und Verbesserung der
Qualität zu erreichen.
Zur Analyse der Qualität wurde eine Benchmark entwickelt, auf der die untersuchten Projekte
hinsichtlich ihrer Wartbarkeit eingeordnet wurden. Diese Benchmark legte offen, dass die
Projekte sich teilweise deutlich in ihrer Qualität unterscheiden. Zwischen dem schlechtesten
und dem besten Projekt lag der Faktor 1,4. Bei der Analyse der Teilmerkmale bot sich ein
ähnliches Bild. Teilweise war hier die Streuung der Projekte sogar noch größer.
Die Analyse der Quellcode-Repositories der untersuchten Projekte ergab, dass die Verteilung
der Arbeit nach Wochentagen und über den gesamten Projektverlauf die Qualität der entste-
henden Software maßgeblich beeinflusst. Daraus leitet sich die Empfehlung ab, die Teilnehmer
zu animieren, sich ihre Arbeit gleichmäßig einzuteilen und nicht nur einen Tag in der Woche
oder kurz vor den Abgaben am Projekt zu arbeiten.
Die Betreuungsanalyse zeigte auf, dass die Teilnehmerzahl, die Qualifikation der Betreuer und
die Verwendung von Drittanbieter-Bibliotheken ebenfalls deutlichen Einfluss auf die Qualität
des Quellcodes nehmen. Auch hier wurden Empfehlungen zur Verbesserung der Betreuung
und Durchführung von zukünftigen Studienprojekten am Fraunhofer IAO abgeleitet.

55

6. Zusammenfassung und Ausblick

Ausblick

Die Analysen dieser Arbeit können auf zukünftige Studienprojekte am Fraunhofer IAO oder
anderen Instituten angewendet werden. Durch die Verwendung der Benchmark kann so sehr
einfach festgestellt werden, ob sich die Qualität der Projekte verändert. Auch die Repository-
Analyse kann größtenteils automatisiert angewendet werden. Einzig die Betreuungsanalyse
würde einen etwas höheren Aufwand erfordern, da diese manuell durchzuführen ist.

Anknüpfend an diese Arbeit könnten die automatisierten Analysen auch auf das Software-
praktikum angewendet werden, das ebenfalls an der Universität Stuttgart durchgeführt wird.
Beim Softwarepraktikum arbeitet ein ganzer Jahrgang des Studiengangs Softwaretechnik in
Dreier-Teams über ein Semester lang an der gleichen Aufgabenstellung. Die Ergebnisse der
Teams haben daher eine viel höhere Vergleichbarkeit, als die in dieser Arbeit untersuchten
Studienprojekte. Außerdem hätte man so direkt eine viel größere Anzahl an Datenpunkten, da
das Softwarepraktikum typischerweise jedes Jahr mit mehr als 20 Gruppen durchgeführt wird.
Aufgrund der höheren Vergleichbarkeit könnte eine Analyse der Projekte auch während des
Projekts zu bestimmten Meilensteinen durchgeführt werden, um einen Eindruck vom Verlauf
der Projekte zu bekommen.

56

A. Anhang

A.1. Installation des Werkzeugs

Im Folgenden wird die Installation des entstandenenWerkzeugs beschrieben. Dabei wird davon
ausgegangen, dass ein Windows-System verwendet wird. Grundsätzlich sollte die Verwendung
des Werkzeugs auch auf Linux funktionieren.

Installation von Python

Die aktuelle Version von Python kann unter https://www.python.org/downloads/ herunterge-
laden werden. Installieren Sie Python mithilfe des Installers.

Installation von Git

Installieren Sie die aktuelle Version von Git unter https://git-scm.com/download. Es sind keine
besonderen Konfigurationen notwendig.

Installation der Python-Bibliotheken

Öffnen Sie eine Eingabeaufforderung und führen Sie nacheinander die Befehle pip install
gitpython, pip install pyyaml, pip install numpy und pip install python-dateutil aus.

Installation von Node.js und npm

Die aktuelle Version von Node.js und npm finden Sie unter https://nodejs.org/en/download/.
Laden Sie den Installer herunter und folgen Sie den Anweisungen zur Installation.

57

https://www.python.org/downloads/
https://git-scm.com/download
https://nodejs.org/en/download/

A. Anhang

Installation von http-server

Öffnen Sie eine Eingabeaufforderung und führen Sie den Befehl npm install http-server -g aus,
um den http-server als globales Modul auf ihrem System zu installieren.

Installation von SourceMeter

Unter https://www.sourcemeter.com/download/ können Sie die aktuelle Version von SourceMe-
ter beantragen. Sie erhalten den Download-Link an die von Ihnen angegebene E-Mail-Adresse.
Laden Sie das Archiv herunter, entpacken Sie es und legen Sie die Dateien in einem Verzeichnis
ihrer Wahl ab.

Installation von Java

Laden Sie unter https://java.com/de/download/ die aktuelle Java-Version herunter und instal-
lieren Sie diese mittels des Installers.

Konfiguration des Werkzeugs

Das Werkzeug kann über eine yaml-Konfigurationsdatei konfiguriert werden. In diese Datei
trägt der Nutzer folgende Daten ein:

• Die Projekte mit ihrem Verzeichnis, ihrem Namen und dem Versionsstand auf dem die
Analyse durchgeführt werden soll

• Den Pfad zur SourceMeter-Anwendung und eine Filterdatei, um einzelne Verzeichnisse
aus der Analyse auszuschließen

• Den Pfad zum Quellcode des Web-Frontends, um für jedes Projekt ein eigenes Web-
Frontend erstellen zu können

• Ein Ausgabeverzeichnis, in das die Ergebnisdateien abgelegt werden sollen

Verwendung des Werkzeugs

Öffnen Sie die Datei config.yaml und konfigurieren Sie das Werkzeug. Tragen Sie hierzu die zu
untersuchenden Projekte, das Ausgabeverzeichnis, den Pfad zur SourceMeter-Installation und
den Pfad zum dist-Verzeichnis des Web-Frontends ein.

58

https://www.sourcemeter.com/download/
https://java.com/de/download/

A.2. Fragebogen zur Betreuungsanalyse

Führen Sie die Datei calculate_benchmark.py aus und warten Sie bis die Analyse abgeschlossen
ist. In dem von Ihnen ausgewählten Ausgabeverzeichnis wurden nun für jedes Projekt die
Ergebnisdateien und das fertige Web-Frontend angelegt.

Um das Web-Frontend auszuführen, öffnen Sie eine Eingabeaufforderung, navigieren Sie in
das Verzeichnis des Web-Frontends und führen Sie den Befehl http-server aus. Nun können Sie
das Web-Frontend im Browser unter http://localhost:8080 erreichen.

A.2. Fragebogen zur Betreuungsanalyse

Zur Durchführung der Betreuungsanalyse aus Abschnitt 3.3 wurde den Betreuern ein Fragebo-
gen per E-Mail zugeschickt. Nachfolgend ist dieser Fragebogen abgebildet.

59

http://localhost:8080

Fragebogen zur Ermittlung der Qualität und Betreuung von

Studienprojekten

Im Rahmen meiner Bachelorarbeit führe ich eine Untersuchung der Qualität von Studienprojekten

anhand der Quellcode-Repositories durch, die in den letzten Jahren am Fraunhofer IAO durchgeführt

wurden. Um ein wenig Kontext für die Projekte zu haben, würde ich Sie als Betreuer bitten, mir bei

meiner Studie zu helfen und den nachfolgenden Fragebogen auszufüllen und per Mail an mich

zurückzuschicken.

Falls Sie mehrere Projekte betreut haben, füllen Sie bitte für jedes Projekt eine separate Kopie dieses

Fragebogens aus. Die Ergebnisse werden selbstverständlich vertraulich behandelt.

Falls Sie Fragen oder Anmerkungen zum Fragebogen haben, können Sie sich gerne per Mail an mich

oder meinen Betreuer wenden.

Vielen Dank für Ihre Mithilfe,

Benedikt Kersjes

Allgemeine Fragen

Welches Projekt haben Sie betreut?

Klicken oder tippen Sie hier, um Text einzugeben.

Wie kompliziert war der fachliche Hintergrund aus Ihrer Sicht?

Sehr einfach Sehr kompliziert

 ☐ ☐ ☐ ☐

Wie kompliziert war die technische Umsetzung aus Ihrer Sicht?

Sehr einfach Sehr kompliziert

☐ ☐ ☐ ☐

In welchem Ausmaß wurde der erwartete Funktionsumfang umgesetzt?

Kaum umgesetzt Nahezu vollständig umgesetzt

 ☐ ☐ ☐ ☐

Wie schätzen Sie subjektiv den Erfolg des Projekts ein?

 Kaum erfolgreich Sehr erfolgreich

☐ ☐ ☐ ☐

Fragen zur Qualität

Wie hoch schätzen Sie die Qualität des Quellcodes insgesamt ein?

Sehr gering Sehr hoch

☐ ☐ ☐ ☐

Wie hoch schätzen Sie die Wartbarkeit des Quellcodes insgesamt ein?

Sehr gering Sehr hoch

☐ ☐ ☐ ☐

Haben Sie das Projekt als Grundlage für Ihre weitere Forschung verwendet?

☐ Ja ☐ Nein ☐ Weiß ich nicht

Haben Sie am Quellcode des Projekts weiterentwickelt?

☐ Ja ☐ Nein ☐ Weiß ich nicht

Fragen zur Betreuung

Wie hoch schätzen Sie die Betreuungsqualität ein?

Sehr gering Sehr hoch

☐ ☐ ☐ ☐

Haben Sie sich die Verantwortlichkeiten untereinander aufgeteilt (z.B.

fachlicher/technischer/organisatorischer Ansprechpartner)?

☐ Ja, wir haben uns aufgeteilt

☐ Nein, jeder war Ansprechpartner für alles

☐ Weiß ich nicht

Wie hoch war die Kenntnis der Betreuer über die fachlichen Themen des Studienprojekts?

Sehr gering Sehr hoch

☐ ☐ ☐ ☐

Wie hoch war die Kenntnis der Betreuer über die technischen Themen des Studienprojekts?

Sehr gering Sehr hoch

☐ ☐ ☐ ☐

Fragen zur Umsetzung

Welches Vorgehensmodell haben die Studierenden verwendet?

Klicken oder tippen Sie hier, um Text einzugeben.

War das Vorgehensmodell vorgegeben?

☐ Ja ☐ Nein ☐ Weiß ich nicht

Falls das Vorgehensmodell Scrum war: Wurden Refactoring-Sprints durchgeführt?

☐ Ja ☐ Nein ☐ Weiß ich nicht

Haben sich die Studierenden regelmäßig getroffen, um am Projekt zu arbeiten?

☐ Ja ☐ Nein ☐ Weiß ich nicht

Wie gut war die Zusammenarbeit der Studierenden aus Ihrer Sicht?

Sehr schlecht Sehr gut

☐ ☐ ☐ ☐

Haben die Studierenden eher gleiche Leistungen erbracht oder waren die Leistungen der

Studierenden heterogen?

Eher gleich Eher ungleich

☐ ☐ ☐ ☐

Wurden eher wenige oder eher viele Drittanbieter-Bibliotheken verwendet?

Eher wenige Eher viele

☐ ☐ ☐ ☐

Wurden bewährte Technologien verwendet oder neue Technologien erprobt?

Viele bewährte Technologien Viele neue Technologien

☐ ☐ ☐ ☐

A. Anhang

A.3. Weitere Daten der Analysen

In diesemKapitel sind die ermittelten Daten der Repository-Analyse und der Betreuungsanalyse
aufgeführt, für die kein Zusammenhang mit der Benchmark ermittelt werden konnte.

Projekt Mittelwert Standardabweichung Variationskoeffizient

Projekt A 1272,310 3857,993 3,032

Projekt B 8752,997 94241,504 10,767

Projekt C 4378,547 35212,817 8,042

Projekt D 2274,838 6829,125 3,002

Projekt E 1899,629 8261,468 4,349

Projekt F 1399,790 8524,505 6,090

Tabelle A.1.: Tabellarische Darstellung der geänderten Zeilen pro Tag

Projekt Mittelwert Standardabweichung Variationskoeffizient

Projekt A 159,286 123,351 0,774

Projekt B 78,625 87,977 1,119

Projekt C 172,350 198,368 1,151

Projekt D 245,056 197,624 0,806

Projekt E 131,786 90,985 0,690

Projekt F 73,813 58,511 0,793

Tabelle A.2.: Tabellarische Darstellung der Commits pro Teilnehmer

66

A.3. Weitere Daten der Analysen

Projekt Mittelwert Standardabweichung Variationskoeffizient

Projekt A 51761,857 38697,254 0,748

Projekt B 427802,750 1010418,701 2,362

Projekt C 168574,050 252871,137 1,500

Projekt D 46128,667 39319,690 0,852

Projekt E 100951,714 84900,076 0,841

Projekt F 32545,125 43821,516 1,346

Tabelle A.3.: Tabellarische Darstellung der geänderten Zeilen pro Teilnehmer

Projekt Mittelwert Standardabweichung Variationskoeffizient

Projekt A 324,962 1500,003 4,616

Projekt B 5441,052 52128,408 9,581

Projekt C 978,091 15160,940 15,501

Projekt D 188,238 1344,150 7,141

Projekt E 766,029 3531,816 4,611

Projekt F 440,916 4540,663 10,298

Tabelle A.4.: Tabellarische Darstellung der geänderten Zeilen pro Commit

Projekt Fachliche Komplexität Technische Komplexität

Projekt A 3 3

Projekt B 3 2

Projekt C 4 4

Projekt D 2 4

Projekt E 2 3

Projekt F 3 3

Tabelle A.5.: Einschätzung der Komplexität durch die Betreuer (auf einer Skala von 1 bis 4)

67

A. Anhang

Projekt Zusammenarbeit

Projekt A 4

Projekt B 2

Projekt C 2

Projekt D 2

Projekt E 4

Projekt F 3

Tabelle A.6.: Einschätzung der Zusammenarbeit durch die Betreuer (auf einer Skala von 1 bis
4)

Projekt Heterogenität der Leistungen

Projekt A 2

Projekt B 4

Projekt C 3

Projekt D 4

Projekt E 2

Projekt F 4

Tabelle A.7.: Einschätzung der Heterogenität der Leistungen durch die Betreuer (auf einer
Skala von 1 bis 4)

68

A.3. Weitere Daten der Analysen

Projekt Menge an neuen Technologien

Projekt A 2

Projekt B 1

Projekt C 1,5

Projekt D 4

Projekt E 1

Projekt F 2

Tabelle A.8.: Einschätzung des Ausmaßes neuer Technologien durch die Betreuer (auf einer
Skala von 1 bis 4)

Projekt Erfolg

Projekt A 4

Projekt B 3

Projekt C 4

Projekt D 2

Projekt E 3

Projekt F 4

Tabelle A.9.: Einschätzung des Erfolgs durch die Betreuer (auf einer Skala von 1 bis 4)

69

Literaturverzeichnis

[AC94] F. B. Abreu, R. Carapuça. „Object-oriented software engineering: Measuring and
controlling the development process“. In: Proceedings of the 4th international
conference on software quality. Bd. 186. 1994, S. 1–8 (zitiert auf S. 23, 24).

[Aht03] T. Ahtee. „Inspections and historical data in teaching software engineering
project course“. In: Software Engineering Education and Training, 2003.(CSEE&T
2003). Proceedings. 16th Conference on. IEEE. 2003, S. 288–297 (zitiert auf S. 15).

[AM96] F. B. e Abreu, W. Melo. „Evaluating the impact of object-oriented design on
software quality“. In: Software Metrics Symposium, 1996., Proceedings of the 3rd
International. IEEE. 1996, S. 90–99 (zitiert auf S. 31).

[Bas] BasLeijdekkers. BasLeijdekkers/MetricsReloaded: Automated code metrics plugin
for IntelliJ IDEA. https://github.com/BasLeijdekkers/MetricsReloaded. [Online;
abgerufen am 14.07.2017] (zitiert auf S. 27).

[BDKT00] B. Bruegge, A. H. Dutoit, R. Kobylinski, G. Teubner. „Transatlantic project courses
in a university environment“. In: Software Engineering Conference, 2000. APSEC
2000. Proceedings. Seventh Asia-Pacific. IEEE. 2000, S. 30–37 (zitiert auf S. 11).

[BDW99] L. C. Briand, J.W. Daly, J. K. Wust. „A unified framework for coupling measu-
rement in object-oriented systems“. In: IEEE Transactions on software Engineering
25.1 (1999), S. 91–121 (zitiert auf S. 31).

[BHSV04] L. Bischofs, W. Hasselbring, J. Sauer, O. Vornberger. „Das Virtuelle Softwarepro-
jekt“. In: (2004) (zitiert auf S. 11).

[BKA15] B. Bruegge, S. Krusche, L. Alperowitz. „Software engineering project courses
with industrial clients“. In: ACM Transactions on Computing Education (TOCE)
15.4 (2015), S. 17 (zitiert auf S. 11).

[BV04] M. Bruntink, A. Van Deursen. „Predicting class testability using object-oriented
metrics“. In: Source Code Analysis and Manipulation, 2004. Fourth IEEE Internatio-
nal Workshop on. IEEE. 2004, S. 136–145 (zitiert auf S. 22, 31).

[CDK98] S. R. Chidamber, D. P. Darcy, C. F. Kemerer. „Managerial use of metrics for object-
oriented software: An exploratory analysis“. In: IEEE Transactions on software
Engineering 24.8 (1998), S. 629–639 (zitiert auf S. 31).

[che] checkstyle. checkstyle - Checkstyle 8.0. http://checkstyle.sourceforge.net/. [Online;
abgerufen am 14.07.2017] (zitiert auf S. 28).

71

https://github.com/BasLeijdekkers/MetricsReloaded
http://checkstyle.sourceforge.net/

Literaturverzeichnis

[CK94] S. R. Chidamber, C. F. Kemerer. „A metrics suite for object oriented design“. In:
IEEE Transactions on software engineering 20.6 (1994), S. 476–493 (zitiert auf
S. 23–25).

[CLC09] C. Costa-Soria, M. Llavador, M. del Carmen Penades. „An approach for tea-
ching software engineering through reverse engineering“. In: EAEEIE Annual
Conference, 2009. IEEE. 2009, S. 1–6 (zitiert auf S. 11).

[CMRW77] G. E. Company, J. A. McCall, P. K. Richards, G. F. Walters. Factors in software
quality. Information Systems Programs, General Electric Company, 1977 (zitiert
auf S. 17, 18).

[Con68] M. E. Conway. „How do committees invent“. In: Datamation 14.4 (1968), S. 28–31
(zitiert auf S. 12).

[CR94] V. Caldiera, H. D. Rombach. „The goal questionmetric approach“. In: Encyclopedia
of software engineering 2.1994 (1994), S. 528–532 (zitiert auf S. 19, 20).

[DHZS99] B. Demuth, H. Hußmann, S. Zschaler, L. Schmitz. „Erfahrungen mit einem frame-
workbasierten Softwarepraktikum“. In: Software Engineering im Unterricht der
Hochschulen SEUH 99 (1999), S. 21–30 (zitiert auf S. 11).

[DJLW09] F. Deissenboeck, E. Juergens, K. Lochmann, S. Wagner. „Software quality models:
Purposes, usage scenarios and requirements“. In: Software Quality, 2009.WOSQ’09.
ICSE Workshop on. IEEE. 2009, S. 9–14 (zitiert auf S. 16).

[EHD01] L. H. Etzkorn, W. E. Hughes, C. G. Davis. „Automated reusability quality analysis
of OO legacy software“. In: Information and Software Technology 43.5 (2001),
S. 295–308 (zitiert auf S. 22, 25, 31).

[Fac] Fachbereich Informatik, Universität Stuttgart. Studienprojekte: Informationen
für Studierende | Der Fachbereich Informatik | Universität Stuttgart. https : / /
www.informatik.uni-stuttgart.de/studium/studierende/bsc-studiengaenge/
softwaretechnik/studienprojekte/studi-infos-index.html. [Online; abgerufen am
12.07.2017] (zitiert auf S. 11).

[Fin] FindBugs. FindBugs™- Find Bugs in Java Programs. http://findbugs.sourceforge.
net/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 28).

[Fro] FrontEndART Ltd. SourceMeter - Free-to-use, Advanced Source Code Analysis Suite.
https://www.sourcemeter.com/. [Online; abgerufen am 14.07.2017] (zitiert auf
S. 26).

[Git] Git. Git - git-svn Documentation. https://git-scm.com/docs/git-svn. [Online;
abgerufen am 13.08.2017] (zitiert auf S. 33, 38).

[GSM13] S. Gokhale, T. Smith, R. McCartney. „Teaching software maintenance with open
source software: Experiences and lessons“. In: 2013 IEEE Frontiers in Education
Conference (FIE). IEEE. 2013, S. 1664–1670 (zitiert auf S. 11).

[Ham06] T. Hampp. „Quantitative Analyse studentischer Projekte“. In: Softwaretechnik-
Trends 26.1 (2006) (zitiert auf S. 15).

72

https://www.informatik.uni-stuttgart.de/studium/studierende/bsc-studiengaenge/softwaretechnik/studienprojekte/studi-infos-index.html
https://www.informatik.uni-stuttgart.de/studium/studierende/bsc-studiengaenge/softwaretechnik/studienprojekte/studi-infos-index.html
https://www.informatik.uni-stuttgart.de/studium/studierende/bsc-studiengaenge/softwaretechnik/studienprojekte/studi-infos-index.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://www.sourcemeter.com/
https://git-scm.com/docs/git-svn

Literaturverzeichnis

[HCN00] R. Harrison, S. Counsell, R. Nithi. „Experimental assessment of the effect of
inheritance on the maintainability of object-oriented systems“. In: Journal of
Systems and Software 52.2 (2000), S. 173–179 (zitiert auf S. 31).

[Hof13] D.W. Hoffmann. Software-Qualität. Springer-Verlag, 2013 (zitiert auf S. 21).
[Ima] Imagix. Static Analysis, Software Metrics and Test - Imagix. https://www.imagix.

com / products / static - analysis - and - metrics . html. [Online; abgerufen am
14.07.2017] (zitiert auf S. 27).

[ISO01] ISO 9126. Software engineering – Product quality – Part 1: Quality model. Norm
ISO/IEC 9126-1:2001. Genf, CH: International Organization for Standardization,
Juni 2001 (zitiert auf S. 16).

[ISO11] ISO 25010. Systems and software engineering – Systems and software Quality Re-
quirements and Evaluation (SQuaRE) – System and software quality models. Norm
ISO/IEC 25010:2011. Genf, CH: International Organization for Standardization,
März 2011 (zitiert auf S. 16).

[LH93] W. Li, S. Henry. „Object-oriented metrics that predict maintainability“. In: Journal
of systems and software 23.2 (1993), S. 111–122 (zitiert auf S. 23, 31).

[LL13] J. Ludewig, H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. dpunkt. verlag, 2013 (zitiert auf S. 21).

[M S] M Squared Technologies. Resource Standard Software Source Code Metrics For C,
C++, C# and Java. http://msquaredtechnologies.com/m2rsm/index.htm. [Online;
abgerufen am 14.07.2017] (zitiert auf S. 27).

[MBD+09] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H.Wertz, J. Laval, F. Bellingard,
P. Vaillergues. „The squale model—A practice-based industrial quality model“. In:
Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. IEEE.
2009, S. 531–534 (zitiert auf S. 18).

[McC76] T. J. McCabe. „A complexity measure“. In: IEEE Transactions on software Enginee-
ring 4 (1976), S. 308–320 (zitiert auf S. 24).

[Mey88] B. Meyer. Object-oriented software construction. Bd. 2. Prentice hall New York,
1988 (zitiert auf S. 31).

[OW14] J.-P. Ostberg, S. Wagner. „On Automatically Collectable Metrics for Software
Maintainability Evaluation“. In: Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM-MENSURA),
2014 Joint Conference of the International Workshop on. IEEE. 2014, S. 32–37
(zitiert auf S. 31).

[Pea95] K. Pearson. „Note on regression and inheritance in the case of two parents“. In:
Proceedings of the Royal Society of London 58 (1895), S. 240–242 (zitiert auf S. 34).

[PMD] PMD. PMD. https://pmd.github.io/. [Online; abgerufen am 14.07.2017] (zitiert
auf S. 28).

73

https://www.imagix.com/products/static-analysis-and-metrics.html
https://www.imagix.com/products/static-analysis-and-metrics.html
http://msquaredtechnologies.com/m2rsm/index.htm
https://pmd.github.io/

[Pow] Power Software. Power Software - Products - Essential Metrics. http : / /www.
powersoftware.com/em/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 27).

[PSB11] W. Poncin, A. Serebrenik, M. van den Brand. „Mining student capstone projects
with FRASR and ProM“. In: Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications
companion. ACM. 2011, S. 87–96 (zitiert auf S. 16).

[PSV11] W. Poncin, A. Serebrenik, M. Van Den Brand. „Process mining software reposito-
ries“. In: Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on. IEEE. 2011, S. 5–14 (zitiert auf S. 16).

[sau] sauerf. Metrics 1.3.6. http://metrics.sourceforge.net/. [Online; abgerufen am
14.07.2017] (zitiert auf S. 27).

[Sem] Semantic Designs. Semantic Designs: Java Source Code Metrics. http : / /www.
semanticdesigns.com/Products/Metrics/JavaMetrics.html. [Online; abgerufen
am 14.07.2017] (zitiert auf S. 27).

[Son] SonarSource S.A. Continuous Code Quality | SonarQube. https://www.sonarqube.
org/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 26).

[Vir] Virtual Machinery. JHawk - the Java metrics tool - Product Overview. http://www.
virtualmachinery.com/jhawkprod.htm. [Online; abgerufen am 14.07.2017] (zitiert
auf S. 27).

[VMV+05] B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, W.M. Van Der
Aalst. „The prom framework: A new era in process mining tool support.“ In:
ICATPN. Bd. 3536. Springer. 2005, S. 444–454 (zitiert auf S. 16).

[Wal] L. Walton. Eclipse Metrics Plugin - State Of Flow. http : / / eclipse - metrics .
sourceforge.net/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 27).

[WLH+12] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch,
A. Seidl, A. Goeb, J. Streit. „The quamoco product quality modelling and assess-
ment approach“. In: Proceedings of the 34th international conference on software
engineering. IEEE Press. 2012, S. 1133–1142 (zitiert auf S. 20).

[Zus93] H. Zuse. „Criteria for program comprehension derived from software complexity
metrics“. In: Program Comprehension, 1993. Proceedings., IEEE Second Workshop
on. IEEE. 1993, S. 8–16 (zitiert auf S. 31).

Alle URLs wurden zuletzt am 26. 09. 2017 geprüft.

http://www.powersoftware.com/em/
http://www.powersoftware.com/em/
http://metrics.sourceforge.net/
http://www.semanticdesigns.com/Products/Metrics/JavaMetrics.html
http://www.semanticdesigns.com/Products/Metrics/JavaMetrics.html
https://www.sonarqube.org/
https://www.sonarqube.org/
http://www.virtualmachinery.com/jhawkprod.htm
http://www.virtualmachinery.com/jhawkprod.htm
http://eclipse-metrics.sourceforge.net/
http://eclipse-metrics.sourceforge.net/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Gliederung

	2 Stand der Wissenschaft und Technik
	2.1 Verwandte Arbeiten
	2.2 Qualitätsmodelle
	2.3 Metriken
	2.4 Werkzeuge

	3 Methodik
	3.1 Qualitätsanalyse
	3.2 Repository-Analyse
	3.3 Betreuungsanalyse
	3.4 Auswertung

	4 Implementierung
	4.1 Anforderungen
	4.2 Resultat
	4.3 Verwendung des Werkzeugs

	5 Analyse und Evaluation
	5.1 Ergebnisse der Qualitätsanalyse
	5.2 Ergebnisse der Repository-Analyse
	5.3 Ergebnisse der Betreuungsanalyse
	5.4 Handlungsempfehlungen

	6 Zusammenfassung und Ausblick
	A Anhang
	A.1 Installation des Werkzeugs
	A.2 Fragebogen zur Betreuungsanalyse
	A.3 Weitere Daten der Analysen

	Literaturverzeichnis

