Institut fiir Softwaretechnologie
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit

Qualitatsanalyse von
Studienprojekten anhand von
Quellcode-Repositories

Benedikt Kersjes

Studiengang: Softwaretechnik
Priifer: Prof. Stefan Wagner
Betreuer: Dr. Ivan Bogicevic,

Dr. Falko Kotter

Beginn am: 10. Mai 2017

Beendet am: 10. November 2017

CR-Nummer: D.2.9

Kurzfassung

An vielen Hochschulen werden studentische Softwareentwicklungsprojekte als Teil der aka-
demischen Ausbildung in Studiengéngen wie Informatik oder Softwaretechnik durchgefiihrt.
Auch an der Universitat Stuttgart und insbesondere am Fraunhofer IAO werden im Bachelorstu-
diengang Softwaretechnik Studienprojekte durchgefiihrt. Da das Institut die Studienprojekte
als Grundlage ihrer weiteren Forschungstatigkeit verwendet, besteht ein Interesse, dass in den
Projekten qualitativ hochwertige Software entsteht.

In dieser Arbeit wurde die Qualitit von sechs Studienprojekten anhand ihres Quellcodes analy-
siert, die in den letzten Jahren am Fraunhofer IAO durchgefiihrt wurden. Dariiber hinaus wurde
eine Analyse der Repositories durchgefiihrt und eine Befragung der Betreuer vorgenommen,
um mogliche Einflussfaktoren auf die Qualitat der Projekte zu ermitteln. Hierzu wurde ein
Werkzeug entwickelt, das die Analyse automatisiert durchfithrt und verwendet werden kann,
um zukiinftige Projekte am Institut nach der gleichen Methodik auszuwerten.

Die Analysen ergaben, dass die gleichméaflige Verteilung der Arbeit iiber das Projekt, die Teil-
nehmerzahl, die Qualifikation der Betreuer und die Verwendung von Drittanbieter-Bibliotheken
einen hohen Einfluss auf die Qualitat der untersuchten Projekte hatten. Aus diesen Erkennt-
nissen wurden Handlungsempfehlungen fiir die Betreuung und Durchfithrung zukiinftiger
Studienprojekte am Fraunhofer IAO abgeleitet.

Inhaltsverzeichnis

1. Einleitung

1.1. Motivation,
1.2. Aufgabenstellung
1.3. Gliederung

2. Stand der Wissenschaft und Technik

2.1. Verwandte Arbeiten
2.2. Qualitatsmodelle
23. Metriken
24. Werkzeuge

3. Methodik

3.1. Qualitatsanalyse
3.2. Repository-Analyse
3.3. Betreuungsanalyse
3.4. Auswertung

4. Implementierung

4.1. Anforderungen
42. Resultat.
4.3. Verwendung des Werkzeugs

5. Analyse und Evaluation

5.1. Ergebnisse der Qualitatsanalyse . .

5.2. Ergebnisse der Repository-Analyse
5.3. Ergebnisse der Betreuungsanalyse

5.4. Handlungsempfehlungen

6. Zusammenfassung und Ausblick

A. Anhang

A.l. Installation des Werkzeugs

A.2. Fragebogen zur Betreuungsanalyse

A.3. Weitere Daten der Analysen

Literaturverzeichnis

11
11
12
13

15
15
16
21
26

29
30
32
34
34

37
37
37
41

43
43
45
49
53

55

57
57
59
66

7

Abbildungsverzeichnis

2.1.
2.2.
2.3.
2.4.

3.1.

4.1.
4.2.
4.3.
4.4.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Qualitatseigenschaften nach ISO 9126 17
Qualitatseigenschaften nach ISO 25010 18
Darstellung zweier hierarchischer GQM-Modelle 20
Kategorisierung der vorgestellten Metriken 22
Ablaufdiagramm der Analysen der Methodik 29
Ergebnisse der Qualititsanalyse (Beispielansicht) 38
Ergebnisse der Repository-Analyse (Beispielansicht) 39
Komponentendiagramm des entstandenen Werkzeugs 40
Ablaufdiagramm des entstandenen Werkzeugs 41
Benchmark-Ergebnisse der Teilmerkmale 44
Aufsummierte Benchmark aller Teilmerkmale 45
Verteilung der Commits von Projekt A 46
Verteilung der Commits von Projekt F 46
Commits nach Wochentagen von Projekt A 48
Commits nach Wochentagen von ProjektF 48

Tabellenverzeichnis

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.

Al
A2
A3.
A4
A.S.
A.6.
A7
A.S8.
A09.

Tabellarische Darstellung der Benchmark 44
Tabellarische Darstellung der Commits nach Kalendertagen 45
Tabellarische Darstellung der Commits nach Wochentagen 47
Tabellarische Darstellung der Commits am Wochenende 47
Tabellarische Darstellung der logischen Codezeilen 49
Tabellarische Darstellung der Selbsteinschatzung der Betreuungsqualitat . . . 51
Tabellarische Darstellung zur Verwendung von Drittanbieter-Bibliotheken . . 51
Vergleich der Analyseergebnisse und Betreuereinschatzungen 52
Tabellarische Darstellung der gednderten Zeilen proTag 66
Tabellarische Darstellung der Commits pro Teilnehmer 66
Tabellarische Darstellung der geanderten Zeilen pro Teilnehmer 67
Tabellarische Darstellung der geanderten Zeilen pro Commit 67
Einschatzung der Komplexitat durch die Betreuer 67
Einschiatzung der Zusammenarbeit durch die Betreuer 68
Einschétzung der Heterogenitét der Leistungen durch die Betreuer 68
Einschatzung des Ausmafes neuer Technologien durch die Betreuer 69
Einschatzung des Erfolgs durch die Betreuer 69

1. Einleitung

1.1. Motivation

Studentische Softwareentwicklungsprojekte gehoren international an vielen Hochschulen
in Studiengéngen wie Informatik oder Softwaretechnik zum festen Bestandteil der akade-
mischen Ausbildung. Die Ziele dieser Projekte sind vielfiltig: einige vermitteln allgemeine,
praktische Techniken zur systematischen Arbeit im Team [BHSV04; BKA15], andere haben
konkretere Lernziele wie den Umgang mit verteilten Projekten [BDKTO00], Reverse Engineering
[CLCO09] oder die Wartung bereits existierender Systeme, um die Studierenden besser auf die
Arbeitsweise in der Industrie vorzubereiten [DHZS99; GSM13].

Auch an der Universitat Stuttgart gehort im Bachelor-Studiengang Softwaretechnik ein soge-
nanntes Studienprojekt zum Lehrplan. Ziel dieses Projektes ist ebenfalls die Vorbereitung auf
berufstypische Arbeitsweisen und die Vermittlung von Kompetenzen zur verantwortlichen
Teamarbeit [Fac]. Die Studienprojekte werden von verschiedenen Instituten der Universitét be-
treut. Auch das Fraunhofer-Institut IAO, das diese Arbeit in Zusammenarbeit mit der Abteilung
SE der Universitat betreut, fithrt regelmaflig Studienprojekte durch.

In einem Studienprojekt entwickelt ein Team von 8 bis 15 Studierenden tiber zwei Semester
eine Software. Studierende, die ein Studienprojekt beginnen, sind meist mindestens im vierten
Semester. Daher sind die theoretischen Grundlagen und auch erste praktische Erfahrungen
aus Projekten in niedrigeren Semestern bei den meisten Teilnehmern vorhanden. Das Projekt
ist auf eine Arbeitszeit von etwa zehn Stunden pro Woche und Teilnehmer ausgelegt.

Am Fraunhofer IAO wird als Vorgehensmodell durchgiangig eine abgewandelte Form von
Scrum eingesetzt. Vor und nach jedem Sprint werden verpflichtende Termine ausgemacht, an
denen die Ergebnisse des letzten Sprints prasentiert werden und die Aufgaben fiir den néchsten
Sprint besprochen werden. Eine Vorgabe fiir die meisten Projekte ist auBerdem, dass sich die
Studierenden mindestens einen Tag pro Woche in einem reservierten Raum am Fraunhofer
IAO treffen, um gemeinsam am Projekt zu arbeiten.

Neben den Studierenden, die sich von einem erfolgreichen Projekt einen hohen Wissenszu-
wachs und eine gute Note erhoffen, hat auch das Fraunhofer IAO ein Interesse an qualitativ
hochwertigen Projekten. Das Institut fithrt diese Projekte hiufig im Rahmen seiner Forschungs-
tatigkeit durch und mochte die gewonnenen Erkenntnisse fiir die weitere Forschung nutzen.
Beide Seiten profitieren also von einer hohen Qualitat der entstehenden Software.

11

1. Einleitung

Da die Qualitat der entstehenden Software, iber die Art und den Umfang der Betreuung, die
Themenauswahl und die Teamzusammensetzung maf3geblich vom Institut beeinflusst wird,
entsteht das Bediirfnis, diese Einflussfaktoren zu analysieren und zu verbessern, um damit
beste Voraussetzungen fiir erfolgreiche Studienprojekte zu schaffen.

1.2. Aufgabenstellung

Aus dem Ziel heraus, die Betreuung der am Fraunhofer IAO durchgefiihrten Studienprojekte
zu evaluieren, entstand die Idee fiir diese Arbeit und leitet sich deren Aufgabenstellung ab.
Zunichst soll die Arbeit einen Uberblick iiber die Qualitit der Studienprojekte geben, die in
den vergangenen Jahren am Fraunhofer IAO durchgetfithrt wurden. Dazu wird eine Analyse
des Quellcodes der betreffenden Projekte durchgefiihrt. Diese Analyse soll méglichst automati-
siert, mithilfe eines Werkzeugs, das hierzu entwickelt wird, durchgefithrt werden und wenige
manuelle Schritte erfordern. Dadurch ist gewahrleistet, dass auch in den néachsten Jahren neue
Projekte nach der gleichen Methodik analysiert werden konnen und eine Entwicklung in der
Qualitét der Projekte erkennbar wird.

Nach Conway’s Law [Con68] ist die Struktur eines Software-Systems durch die Kommu-
nikationsstrukturen der Entwicklungsorganisation vorbestimmt. Dies legt nahe, dass auch
der Entstehungsprozess der Studienprojekte Einfluss auf die Struktur und die Qualitat des
Quellcodes hat. Daher wird in dieser Arbeit auch der Einfluss des Entstehungsprozesses auf
die Qualitat der Projekte untersucht. Hierzu werden die Quellcode-Repositories der Projekte
analysiert, da diese durch den Versionsverlauf Riickschliisse auf die Entstehung der Projekte
zulassen.

Eine dritte Untersuchung soll Eigenschaften der Betreuung der Projekte erheben. Dazu wird
eine Umfrage unter den Betreuern der untersuchten Projekte durchgefiihrt, bei der zum einen
die Rahmenbedingungen der Projekte erhoben werden als auch eine Einschédtzung der Qualitéat
und der Betreuung erbeten wird.

Diese Arbeit basiert auf der Annahme, dass sowohl der Entstehungsprozess als auch der
Betreuungsprozess einen Einfluss auf die Qualitdt der entstehenden Software haben. Um
aus den Erkenntnissen dieser Arbeit zu lernen, werden aus den ermittelten Einflussfaktoren
Handlungsempfehlungen abgeleitet, die die Betreuer der Studienprojekte am Fraunhofer IAO
bei der Durchfithrung zukinftiger Studienprojekte unterstiitzen sollen.

Bei der vorliegenden Arbeit handelt es sich um eine explorative Untersuchung, da die unter-
suchten Projekte sehr unterschiedlich sind und insgesamt nur wenige Projekte untersucht
wurden. Eine Vergleichbarkeit und Allgemeingiiltigkeit ist daher nur bedingt gewéhrleistet. Die
Erkenntnisse liefern aber Anhaltspunkte, um mit kontinuierlicher Anwendung des Werkzeugs
die Prozesse nachhaltig zu verbessern.

12

1.3. Gliederung

1.3. Gliederung

Die vorliegende Arbeit ist in folgender Weise gegliedert:

Kapitel 1 - Einleitung Dieses Kapitel legt die Motivation und Aufgabenstellung dieser Arbeit
dar.

Kapitel 2 - Stand der Wissenschaft und Technik Der wissenschaftliche Kontext der Ar-
beit wird untersucht, um die Arbeit einordnen zu konnen.

Kapitel 3 - Methodik Die Methodik zur Analyse der Projekte wird erarbeitet. Es werden die
drei Analysen Qualitatsanalyse, Repository-Analyse und Betreuungsanalyse vorgestellt.

Kapitel 4 - Implementierung Die Implementierung der Qualitdts- und der Repository-
Analyse wird vorgestellt. Die Implementierung wurde zur Auswertung der Projekte
verwendet.

Kapitel 5 - Analyse und Evaluation Die Ergebnisse der drei Analysen werden prasentiert
und es werden Empfehlungen zur Verbesserung der Betreuung und Durchfithrung
zukiinftiger Projekte abgeleitet.

Kapitel 6 - Zusammenfassung und Ausblick Dieses Kapitel fasst die Ergebnisse zusam-
men und liefert Anregungen fiir weitere Untersuchungen.

13

2. Stand der Wissenschaft und Technik

Dieses Kapitel beschaftigt sich mit verwandten wissenschaftlichen Arbeiten und allgemeinen
Qualitdtsmodellen, Metriken und Werkzeugen, um diese Arbeit inhaltlich einzuordnen und eine
Grundlage zu bieten, um eine eigene Methodik zur Losung der Problemstellung abzuleiten. Die
Auswahl der Arbeiten wurde mithilfe einer ausfithrlichen Literaturrecherche zu den Themen
dieser Arbeit getroffen. Der Fokus wurde auf verbreitete und populére Beitrage gelegt, die eine
hohe Relevanz fiir diese Arbeit haben.

2.1. Verwandte Arbeiten

Im Jahr 2006 fithrte Hampp [Ham06] bereits eine Analyse von Studienprojekten an der Uni-
versitat Stuttgart durch. Obwohl es sich um eine quantitative Analyse vergangener Projekte
handelte, nicht um eine qualitative Analyse wie in dieser Arbeit, konnen einige Parallelen
zu dieser Arbeit gezogen werden. Die Arbeit hatte unter anderem das Ziel, die Studierenden
der nachfolgenden Projekte bei der Aufwandsschatzung zu unterstiitzen und ihnen einen
Vergleich mit Durchschnittswerten aus den Projekten der letzten Jahre zu ermdglichen. Auch
diese Arbeit hat zum Ziel, neben der Verbesserung der Qualitat der Studienprojekte, auch die
Rahmenbedingungen fiir Studierende zu verbessern. Der Fokus dieser Arbeit liegt dabei jedoch
auf der Verbesserung der Betreuung. Hampp fand heraus, dass Umfang und Aufwand von
Studienprojekten mit denen von Industrieprojekten vergleichbar sind. Daten zur Qualitat der
Projekte wurden jedoch nicht erhoben, daher ist nicht klar, ob diese hohe Produktivitat auf
Kosten der Produktqualitét erreicht wird. Insgesamt halt Hampp seine Arbeit geeignet zur
Verbesserung der Kostenschétzung von Studienprojekten, jedoch zeigt er auch Probleme auf:
zum Beispiel wurden bei der Aufwandserfassung keine einheitlichen Kategorien verwendet,
was die Vergleichbarkeit einzelner Projekte verringert.

Auch an der finnischen Tampere University of Technology wurden iiber mehrere Jahre hinweg
wihrend der Durchfithrung von Studentenprojekten Daten gesammelt, von denen die nachfol-
genden Jahrgange lernen konnten [Aht03]. Die gesammelten Daten beinhalteten aufgetretene
Schwierigkeiten und Risiken, Probleme oder Empfehlungen beziiglich Werkzeugen oder Pro-
jektmanagement, allgemeine Statistiken sowie Kommentare zu sonstigen erwahnenswerten
Themen. Dartiber hinaus konnen die Studierenden ihre aufgewendeten Stunden in den einzel-
nen Phasen des Projekts mit denen anderer Gruppen vergleichen. Der Autor folgert, dass die
Verfiigbarkeit der Daten einer der Hauptgriinde sei, warum der Kurs als so erfolgreich und

15

2. Stand der Wissenschaft und Technik

niitzlich angesehen werde. Er beschreibt aber auch den hohen Zeitaufwand zur Durchfithrung
dieses Kurses und bringt an, dass der Kurs mit weiterer Klassifikation und Optimierung der
gesammelten Daten noch weiter verbessert werden konnte. Auch hier liegt der Fokus wieder
auf der direkten Unterstiitzung der Studierenden bei der Durchfithrung ihrer Projekte.

An der Eindhoven University of Technology werden ebenfalls seit vielen Jahren Studienpro-
jekte durchgefiihrt. Poncin, Serebrenik und van den Brand [PSB11] untersuchten im Jahr
2011, wie man aus den Quellcode-Repositories und anderen Datenquellen, wie Issue-Trackern
und Mailing-Listen Daten zum Entstehungsprozess der Projekte sammeln kann. Ziel war es
Antworten auf einige Fragen, wie die Wiederverwendung der Prototypen oder die Arbeitsver-
teilung der Studierenden, zu finden. Dies gelang ihnen und sie konnten zeigen, dass sie bei
einigen vergangenen Projekten Verstofie gegen Vorgaben frither hiatten entdecken konnen.
Zur Analyse der Datenquellen verwendeten Poncin, Serebrenik und van den Brand FRASR
und ProM. FRASR [PSV11] ist ein Werkzeug zur Extraktion von event logs aus verschiedenen
Datenquellen. ProM [VMV+05] kann diese event logs mit data mining-Methoden analysieren.
Das Werkzeug ist ein Vertreter der process mining-Werkzeuge.

2.2. Qualitatsmodelle

Qualitatsmodelle bieten die Moglichkeit, Qualitatsanforderungen zu modellieren, die Qualitat
eines Systems zu analysieren und zu iiberwachen und passende Metriken dafiir zu finden
[DJLWO09]. Einige Qualitdtsmodelle konzentrieren sich vorwiegend auf die Beschreibung von
Qualitatseigenschaften, andere bieten zusitzlich eine Methodik, um die Qualitat messbar zu
machen und Projekte zu vergleichen oder Entwicklungen zu erkennen. Dieser Abschnitt soll
einen Einblick in verbreitete Qualitaitsmodelle liefern.

2.2.1. 1ISO 9126

Die ISO 9126 [ISO01] ist ein beschreibendes Qualitdtsmodell. Die Norm klassifiziert Qualitéts-
eigenschaften von Software-Systemen. Auf oberster Ebene definiert sie die sechs Merkmale
Wartbarkeit, Effizienz, Portabilitit, Zuverlassigkeit, Funktionalitiat und Benutzbarkeit, die durch
28 Teilmerkmale weiter konkretisiert werden (siehe Abbildung 2.1). Eine Quantifizierung der
Eigenschaften umfasst die Norm nicht.

2.2.2. I1ISO 25010

Die ISO 25010 [ISO11] ist ebenfalls ein beschreibendes Qualitatsmodell. Sie ersetzt die ISO
9126 und unterteilt die Software-Qualitit in die acht Merkmale Kompatibilitit, Portabilitit,
Funktionalitét, Zuverlassigkeit, Gebrauchstauglichkeit, Sicherheit, Effizienz und Wartbarkeit.
Jedem dieser Merkmale sind zwei bis sechs Qualitatseigenschaften zugeordnet. Insgesamt

16

2.2. Qualitatsmodelle

~
Software Product
Quality
J
/ Functionality \ / Reliability \ / Usability \
* Suitability * Maturiy * Understandability
* Accuracy * Fault tolerance * Learnability
* Interoperability * Recoverability * Operability
* Security * Reliability * Attractiveness
* Functionality compliance e Usability
compliance compliance
/ Efficiency \ / Maintainability \ / Portability \
* Time behaviour * Analyzability * Adaptability
* Resource e Changeability * Installability
utilization e Stability * Co-existence
* Efficiency * Testability * Replaceability
compliance * Maintainability * Portability
compliance compliance

o N\ AN /

Abbildung 2.1.: Qualititseigenschaften nach ISO 9126 (eigene Darstellung)

umfasst die Norm 31 Qualitatseigenschaften (siehe Abbildung 2.2). Wie die ISO 9126 umfasst
auch diese Norm keine Quantifizierung der Eigenschaften.

2.2.3. Factors-Criteria-Metrics-Methode

Die Factors-Criteria-Metrics-Methode kann zur Erstellung von Qualitatsmodellen verwendet
werden. Die Methode wurde 1977 von McCall erstmals vorgestellt [CMRW?77]. Zur Anwen-
dung der Methode definiert man fiir den abstrakten Qualitatsbegriff einige Merkmale (engl.
Lfactors®), die einen Aspekt der Qualitat genauer beschreiben. Dann werden Teilmerkmale (engl.
scriteria”) identifiziert, die die Merkmale genauer definieren. Schliellich werden Metriken
(engl. ,metrics”) festgelegt, die die Messbarkeit der definierten Teilmerkmale ermoglichen. Ein

17

2. Stand der Wissenschaft und Technik

[Functional Suitability

¢ Functional
Completeness

Software Product
Quality

/ Performance \

Efficiency

¢ Time Behaviour

/ Compatibility \

* Co-existence

(Usability \

* Appropiateness

¢ Functional ¢ Resource ¢ Interoperability Recognizability
Correctness Utilization e Learnability
¢ Functional ¢ Capacity * Operability
Appropiateness e User Error
Protection
* User Interface

Aeshetics

\ * Accessibility /
(Portability \

-/
(Reliability)

/
\

N
N

Security Maintainablity \

e Maturiy ¢ Confidentiality ¢ Modularity e Adaptability
¢ Availability * Integrity ¢ Reusability * Installability
¢ Fault Tolerance * Non-repudiation ¢ Analysability * Replaceability
* Recoverability ¢ Authenticity ¢ Modifiability
¢ Accountability ¢ Testability

NN AN N

Abbildung 2.2.: Qualitdtseigenschaften nach ISO 25010 (eigene Darstellung)

Beispiel fiir einen solchen Zusammenhang ist das Merkmal Zuverldssigkeit, das unter anderem
durch das Teilmerkmal Wiederherstellbarkeit genauer definiert wird. Eine Metrik zur Messung
der Wiederherstellbarkeit ist die Mean Time to Repair (MTTR). McCall hat in seiner Arbeit
[CMRW?77] ein Beispielmodell erarbeitet, fiir das er elf wichtige Merkmale ermittelte, die von
23 Teilmerkmalen konkretisiert werden. Zur Messung umfasst sein Modell 300 Metriken.

2.2.4. Squale-Modell

Das Squale-Modell [MBD+09] basiert auf dem Factors-Criteria-Metrics-Modell von McCall.
Der Hauptunterschied besteht in der Einfithrung einer neuen Ebene der Practices zwischen
den Ebenen Criteria und Metrics. Die Practices schlieflen die Abstraktionsliicke zwischen
diesen Ebenen und ermdglichen dem Betrachter zu erkennen, warum ein Teilmerkmal nicht
erfillt ist und welche Komponenten (Pakete, Klassen, Methoden, ...) dafiir verantwortlich
sind. Beim FCM-Modell nach McCall wiirde ein schlechter Wert in der Metrik Mean Time to
Repair zwar auf eine ungentigende Wiederherstellbarkeit hinweisen, welche Komponenten nun
aber verbessert werden miissen geht daraus nicht hervor. In Squale wiirde man beispielsweise

18

2.2. Qualitatsmodelle

fir jede Klasse die Haufigkeit von Fehlern und die gednderten Zeilen zur Fehlerbehebung
ermitteln und diesen Wert als Practice fiir die Wiederherstellbarkeit verwenden.

Squale fithrt auch ein Konzept zur Berechnung aggregierter Werte aus den einzelnen Messwer-
ten der Metriken ein. In Squale erhalt jedes Messobjekt einer Practice eine individuelle Note.
Diese Note kann iiber eine diskrete oder stetige Formel berechnet werden. Aulerdem erhalt
jede Practice eine systemweite Gesamtnote. Diese wird als gewichteter Durchschnitt aller
Individualnoten errechnet. Die Berechnungsformel ist so konstruiert, dass iiber frei wahlbare
Konstanten der Einfluss von Ausreiflern auf die Gesamtnote bestimmt werden kann. So kann
man beispielsweise eine Formel konstruieren, die bereits bei wenigen schlechten Messwerten
einen stark negativen Einfluss auf die Gesamtnote hat.

2.2.5. Goal-Question-Metric-Methode

Goal Question Metric (GQM) [CR94] ist eine allgemeine Methode zur Erstellung von Qualitéts-
modellen fiir Software-Systeme. Die GQM-Methode nimmt an, dass man nur in sinnvoller
Weise messen kann, wenn man vorher Ziele fiir seine Organisation oder Projekte definiert hat.
Aus diesen Zielen konnen Metriken und deren Interpretation abgeleitet werden, um das Ziel
messbar und vergleichbar zu machen.

Zu diesem Zweck definiert die GQM-Methode drei Ebenen: die konzeptuelle Ebene (Goal),
die operationale Ebene (Question) und die quantitative Ebene (Metric). Ein Ziel (engl. ,Goal®)
bezieht sich immer auf ein Objekt (z.B. Prozess, Produkt, Projekt), hat einen Zweck (z. B.
Verbesserung, Uberwachung, Vorhersage), setzt einen Qualititsfokus (z. B. auf eins der ISO
25010 Merkmale), legt den Blickwinkel fest (z. B. Kunde, Entwickler, Projektleiter) und hat einen
Kontext (z.B. Projekt, Abteilung, Zeitraum). Zu jedem Ziel werden eine oder mehrere Fragen
(engl. ,Questions®) definiert, die das untersuchte Objekt charakterisieren und ein spezielles
Qualitétsattribut definieren. Zu jeder Frage wird eine Menge an Metriken (engl. ,Metrics®)
definiert, die die Frage quantifiziert beantworten. Diese Metriken konnen objektiv sein, d. h.
unabhingig vom Blickwinkel und nur abhangig vom untersuchten Objekt oder subjektiv, d. h.
abhéingig vom Blickwinkel und dem untersuchten Objekt.

Ein GQM-Modell hat eine hierarchische Struktur. An der Spitze steht ein Ziel, das in mehreren
Fragen charakterisiert wird. Jede Frage wird wiederum von mehreren Metriken quantifiziert.
Eine Metrik kann verwendet werden, um mehrere Fragen zu quantifizieren. Es ist auch méoglich,
eine Metrik in verschiedenen GQM-Modellen zu verwenden, dann muss jedoch darauf geachtet
werden, dass die Daten moglicherweise mehrfach erhoben werden miissen, falls es sich um
eine subjektive Metrik handelt.

19

2. Stand der Wissenschaft und Technik

Goal 1 Goal 2
‘ Question J ‘ Question J ‘ Question] ‘ Question] ‘ Question]
‘ Metric J ‘ Metric J ‘ Metric] ‘ Metric] ‘ Metric]

Abbildung 2.3.: Darstellung zweier hierarchischer GQM-Modelle (eigene Darstellung nach
[CR94])

2.2.6. Quamoco

Ein weiteres Verfahren zur Modellierung und Bewertung von Software-Qualitat ist der Qua-
moco-Ansatz [WLH+12]. Quamoco verfolgt, ahnlich wie Squale, das Ziel, die Bewertung nach
einem Qualitdtsmodell direkt in das Modell zu integrieren. Dazu wurde ein Meta-Modell ent-
wickelt, aus dem hierarchische Modelle erzeugt werden konnen. Das Meta-Modell basiert
hauptsichlich auf dem Konzept der factors. Es gibt zwei Arten von factors, quality aspects und
product factors. Die quality aspects reprasentieren abstrakte Qualitdtseigenschaften, vergleich-
bar mit den Eigenschaften aus ISO 9126 oder ISO 25010. Die product factors sind messbare
Eigenschaften von Komponenten des Systems. Sie konnen daher immer tiber eine Metrik
berechnet werden. Sowohl quality aspects als auch product factors konnen iiber sub-aspects
bzw. sub-factors konkretisiert werden. Quality factors konnen auflerdem von product factors
beeinflusst werden.

Quamoco definiert dariiber hinaus ein Basismodell, das eine Instanz des Meta-Modells ist und
auch das Konzept der Module nutzt, das Quamoco ebenfalls einfithrt. Das Basismodell besteht
aus drei Modulen: dem objektorientierten Modul und den Modulen fiir Java und C#, die jeweils
vom objektorientierten Modul abgeleitet sind. Fiir das Basismodell wurde auch eine Bewer-
tungsmethode erarbeitet, die die Aggregation von den Metriken der product factors bis zu den
quality factors erlaubt. Auflerdem werden Interpretationsmodelle definiert, die es ermdglichen,
die Qualitat fiir Nicht-Entwickler in Schulnoten oder Ampelfarben auszudriicken.

2.2.7. Fazit

Die vorgestellten Qualitdtsmodelle unterscheiden sich in ihrer Komplexitat und ihren An-
wendungsgebieten. Wahrend es sich bei den Normen ISO 9126 und ISO 25010 um einfache

20

2.3. Metriken

Taxonomien handelt, die nicht direkt auf ein System angewendet werden konnen, sind die
anderen Modelle (Factors-Criteria-Metrics, Squale, Goal-Question-Metric und Quamoco) deutlich
ausgereifter und konnen zur Qualitatsbewertung eines Software-Systems verwendet werden.
Die Modelle Quamoco und Squale bieten dariiber hinaus Bewertungsmethoden, mit denen
die Messwerte der Metriken zu einer systemweiten Gesamtbewertung aggregiert werden
konnen.

2.3. Metriken

Software-Metriken bieten die Moglichkeit, abstrakte Qualitaitsmerkmale von Software-
Systemen systematisch und quantitativ zu erfassen. Die daraus abgeleiteten Erkenntnisse
iiber die untersuchte Software konnen dann auf einer objektiven Ebene mit denen anderer
Systeme verglichen werden [Hof13].

Ob sich die Erhebung einer Software-Metrik fiir ein Unternehmen oder eine Organisation
lohnt, steht in enger Verbindung mit der Qualitét einer Software-Metrik. Hoffmann [Hof13]
nennt daher sechs Giitekriterien fiir Software-Metriken:

Objektivitat Die Messung der Metrik ist frei von subjektiven Einflissen
Robustheit Eine wiederholte Messung der gleichen Metrik liefert das gleiche
Ergebnis

Vergleichbarkeit = Die Messungen der gleichen Metrik an verschiedenen Produkten
sind vergleichbar

Okonomie Die Messung einer Metrik kann mit geringen Kosten erfolgen

Korrelation Die Messerergebnisse einer Metrik lassen Riickschliisse auf das
iiberwachte Qualitatsmerkmal zu

Verwertbarkeit Unterschiedliche Messergebnisse haben unterschiedlichen Ein-

fluss auf das zukiinftige Handeln

Ludewig und Lichter [LL13] nennen in ihrem Buch Software Engineering sieben Eigenschaften
fir gute Software-Metriken. Diese sind bis auf eine weitere dquivalent zu denen Hoffmanns:

Verfiigbarkeit Die Bewertung muss dann vorliegen, wenn auf ihrer Grundlage
Entscheidungen getroffen werden sollen und nicht erst danach

Im Folgenden wird eine Auswahl wichtiger, verbreiteter und vornehmlich objektorientierter
Metriken beschrieben. In Abbildung 2.4 ist eine Einteilung der Metriken in die Kategorien
Umfangs-, Kopplungs-, Komplexitats-, Vererbungs-, Kohésions- und Dokumentationsmetriken
dargestellt, nach denen die Auflistung gruppiert ist. Zusatzlich zu dieser Gliederung kénnen
die Metriken auch nach Zugehorigkeit zu einer metrics suites (MOOD metrics suite oder ck
metrics suite) klassifiziert werden.

21

2. Stand der Wissenschaft und Technik

Kopplungsmetriken Vererbungsmetriken

Komplexitdatsmetriken

McCabe

Dokumentationsmetriken
Kohdsionsmetriken

NPM NOM

Umfangsmetriken

Abbildung 2.4.: Einteilung der vorgestellten Metriken in die Kategorien Umfangsmetriken,
Kopplungsmetriken, Komplexitatsmetriken, Vererbungsmetriken, Kohésions-
metriken und Dokumentationsmetriken

2.3.1. Umfangsmetriken

Umfangsmetriken geben Aufschluss dariiber, wie umfangreich der Quelltext eines Systems oder
einzelne Komponenten eines Systems sind. Tendenziell kann man sagen, dass die Wartbarkeit
von Quelltext abnimmt, je umfangreicher dieser ist.

Number of Fields (NOF) Die Metrik [BV04] zihlt die Attribute einer Klasse (sowohl dekla-
rierte, als auch geerbte).

Number of Methods (NOM) Die Metrik [BV04] zahlt die Methoden einer Klasse (sowohl
deklarierte, als auch geerbte).

Number of Public Methods (NPM) Die Metrik [EHDO1] z&hlt die 6ffentlichen Methoden
einer Klasse (sowohl deklarierte, als auch geerbte).

2.3.2. Kopplungsmetriken

Kopplungsmetriken geben an, wie eng einzelne Komponenten eines Systems miteinander
verbunden sind. Viele Methodenaufrufe und referenzierte Klassen sind ein Zeichen fiir eine
hohe Kopplung. Generell sind Systeme, deren Kopplung gering ist, einfacher zu warten, da

22

2.3. Metriken

bei einer Anderung an einer Stelle nur wenige andere Codestellen beriicksichtigt werden
miussen.

Method Hiding Factor (MHF) Mithilfe der Kopplungsmetrik [AC94] kann eine Aussage iiber
die Sichtbarkeit von Methoden einer Klasse gemacht werden. Ein Programm mit vielen
privaten Methoden hat einen hohen Method Hiding Factor. Die Kopplung eines solchen
Programms ist geringer als die eines Programms mit weniger privaten Methoden bei
ansonsten gleicher Methodenanzahl. Dadurch reduziert sich der Wartungsaufwand des
Systems, da viele Codestellen verandert werden konnen, ohne dass dadurch andere Teile
des Systems beeinflusst werden. Die Metrik ist Teil der MOOD metrics suite.

Attribute Hiding Factor (AHF) Die Metrik [AC94] gehort zu den Kopplungsmetriken und
ermoglicht Aussagen tiber die Sichtbarkeit von Attributen in einem Programm. Berech-
nung und Interpretation sind analog zur Metrik Method Hiding Factor und die Metrik ist
ebenfalls Teil der MOOD metrics suite.

Data Abstraction Coupling (DAC) Die Metrik [LH93] misst die Kopplung des Systems auf
Datenebene. Sie zdhlt die Anzahl an verwendeten Abstract Data Types (ADT) in einer
Klasse. In einer objektorientierten Programmiersprache stellen die Klassen die ADTs
eines Programms dar. Es werden also die verschiedenen Typen von Attributen und
Variablen in einer Klasse gezahlt. Auch hier ist eine Klasse mit einem hohen DAC-Wert
anfilliger fir Anderungen an anderen Klassen. Der Wartungsaufwand steigt.

Coupling Between Objects (CBO) Die Kopplungsmetrik [CK94] zahlt fiir jede Klasse die
weiteren Klassen, die sie referenziert. Gezahlt werden alle Beziehungen tiber Vererbung,
Methodenaufrufe, Typreferenzen oder Attributreferenzen. Die Metrik ist Teil der ck
metrics suite.

Message Passing Coupling (MPC) Die Metrik [LH93] z&hlt die Methoden anderer Klassen,
die von den Methoden einer Klasse oder wahrend der Initialisierung der Attribute einer
Klasse aufgerufen werden. Eine Methode wird nur einmal gez&hlt, auch wenn sie 6fter
aufgerufen wird.

Coupling Factor (CF) Die Metrik [AC94] wird auf Systemebene berechnet und gibt die
tatsachliche Anzahl der Beziehungen zwischen Klassen im Verhaltnis zur maximal mogli-
chen Anzahl an Beziehungen (jede Klasse nutzt jede andere Klasse) an. Die Beziehungen
jeder Klasse werden mithilfe der Metrik Coupling Between Objects berechnet. Auch diese
Metrik ist Teil der MOOD metrics suite.

2.3.3. Komplexitatsmetriken

Komplexitatsmetriken machen eine Aussage iiber die Struktur von Quellcode. Je hoher die
Komplexitat eines Codeabschnittes, desto schwieriger dessen Wartbarkeit.

23

2. Stand der Wissenschaft und Technik

McCabe-Metrik Die McCabe-Metrik [McC76], auch zyklomatische Zahl, gibt die Anzahl der
Elementarpfade durch ein Programm an. Die zyklomatische Zahl stammt urspringlich
aus der Graphentheorie, wird jedoch meist nicht aus dem Kontrollflussgraphen bestimmt,
sondern aus der Anzahl der Verzweigungen im Programm-Code errechnet. Sie ist stets
um eins grofier, als die Zahl der Verzweigungen im untersuchten Code-Ausschnitt.

2.3.4. Vererbungsmetriken

Vererbungsmetriken geben an, wie stark Konzepte der objektorientierten Vererbung in einem
System verwendet werden.

Polymorphism Factor (POF) Die Metrik [AC94] ist in der MOOD metrics suite enthalten
und gibt die Anzahl der iiberschriebenen Methoden im Verhiltnis zur méglichen Anzahl
iiberschreibbarer Methoden an.

Depth of Inheritance Tree (DIT) Die Metrik [CK94] gibt die Lange des Pfades von einer
Klasse bis zu ihrem am weitesten entfernten Vorfahren in der Vererbungshierarchie an.
Die Metrik ist Teil der ck metrics suite.

Number of Children (NOC) Die Vererbungsmetrik [CK94], die Teil der ck metrics suite ist,
gibt die Anzahl der Klassen an, die direkt von einer Klasse abgeleitet sind.

Method Inheritance Factor (MIF) Die Metrik [AC94] gibt den Anteil der geerbten Methoden
einer Klasse an der Gesamtzahl der Methoden (lokal definierte + geerbte) einer Klasse
an. Die Metrik ist Teil der MOOD metrics suite.

Attribute Inheritance Factor (AIF) Die Metrik Attribute Inheritance Factor [AC94] wird ana-
log zur Metrik Method Inheritance Factor berechnet. Die Metrik ist ebenfalls in der MOOD
metrics suite enthalten.

2.3.5. Kohasionsmetriken

Kohasion gibt an, wie gut eine Klasse oder Komponente eine Einheit bildet, die fiir eine logische
Aufgabe zustdndig ist. Starke Kohasion fithrt zu verbessertet Wartbarkeit und reduzierte
Duplizierung von Quellcode.

Lack of Cohesion in Methods (LCOM) Die Kohéasionsmetrik [CK94] gibt an, in wie viele
separate Klassen man eine Klasse aufteilen konnte. Zur Berechnung wird ein unge-
richteter Graph verwendet. Jeder Knoten reprasentiert eine Methode und zwei Knoten
werden verbunden, genau dann, wenn beide ein Attribut der Klasse verwenden, beide
eine abstrakte Methode der Klasse verwenden oder die eine Methode die andere Methode
aufruft. Ist die Anzahl der unverbundenen Teilgraphen grofler als eins, dann sollte diese
Klasse in mehrere Klassen aufgeteilt werden. Der Wert der Metrik, die Teil der ck metrics
suite ist, entspricht der Zahl der Teilgraphen.

24

2.3. Metriken

2.3.6. Dokumentationsmetriken

Dokumentationsmetriken beschreiben die Menge an Kommentaren und anderer Dokumentati-
on eines Systems. Mangelnde Dokumentation fiihrt zu verringerter Wartbarkeit.

Comment Density (CD) Die Metrik [EHDO01] gibt den Anteil der Kommentarzeilen einer
Klasse an ihrem Gesamtumfang an.

Documented Public APl (DPA) Die Metrik [EHDO01] gibt den Anteil der 6ffentlichen Me-
thoden mit Methodenkommentar an der Gesamtzahl der o6ffentlichen Methoden einer
Klasse an.

2.3.7. Metriken mit mehreren Kategorien

Einige Metriken lassen sich nicht eindeutig in eine Kategorie einordnen, sondern beschreiben
verschiedene Aspekte eines Systems.

Weighted Methods per Class (WMC) Die Metrik [CK94] summiert die Komplexitdten der
Methoden einer Klasse auf. Zur Ermittlung der Komplexitit wird die McCabe-Metrik
verwendet. Damit macht die Metrik, die Teil der ck metrics suite ist, eine Aussage iiber
Umfang und Komplexitit einer Klasse.

Response For a Class (RFC) Die Metrik [CK94] gibt an, wie viele weitere Methoden po-
tenziell aufgerufen werden konnen, wenn eine Methode dieser Klasse aufgerufen wird.
Sie wird gebildet, indem zur Anzahl der Methoden der Klasse die Anzahl der Methoden
anderer Klassen addiert wird, die in dieser Klasse aufgerufen werden. Die Metrik ist
Teil der ck metrics suite und erlaubt Aussagen tiber den Umfang, die Kopplung und die
Komplexitat eines Programms.

2.3.8. Fazit

Es gibt sehr viele Metriken, die man fiir objektorientierten Quellcode berechnen kann und noch
sehr viele weitere fiir andere Programmierparadigmen. Eine Metrik erlaubt haufig verschiedene
Interpretationen. Aus den in Abschnitt 2.2 vorgestellten Qualitaitsmodellen geht hervor, welche
Metriken man zur Messung eines Systems verwenden sollte und wie diese interpretiert werden
kann. Ein reines Berechnen von Metriken ohne dazugehériges Qualitatsmodell ist daher nicht
sinnvoll.

25

2. Stand der Wissenschaft und Technik

2.4. Werkzeuge

Zur Erhebung von Metriken und anderen Daten der statischen Codeanalyse gibt es eine
Vielzahl an kommerziellen und frei verfiiggbaren Werkzeugen. Die Werkzeuge unterscheiden
sich teilweise deutlich in ihrer Funktionalitat und potenziellen Anwendungsbereichen. Der
folgende Abschnitt liefert eine Klassifikation der Werkzeuge in die Kategorien freie Werkzeu-
ge, IDE-Plugins, kommerzielle Werkzeuge und Werkzeuge zur statischen Codeanalyse. Zu
jeder Kategorie werden einige Vertreter genauer beschrieben. Die Auswahl der Werkzeuge
beschréankt sich auf solche, mit denen Java-Programme analysiert werden konnen, da die fiir
diese Arbeit untersuchten Projekte durchgingig in Java entwickelt sind.

2.4.1. Freie Werkzeuge

Hier sind mit freie Werkzeuge alle kostenlosen Werkzeuge gemeint, die nicht als Erweiterung
in ein anderes Programm integriert werden und zur Metrikberechnung verwendet werden
konnen. Bei freien Werkzeugen handelt es sich meist um Open-Source-Programme, die von
einer Entwicklergruppe oder Organisation entwickelt werden oder um die kostenfreie Version
eines ansonsten kostenpflichtigen, kommerziellen Tools.

SonarQube [Son] ist ein Open-Source-Werkzeug. SonarQube wird von SonarSource entwickelt
und ist unter der LGPL-Lizenz veroffentlicht. Das Werkzeug bietet eine Plattform zur statischen
Codeanalyse fiir die Programmiersprachen Java, Groovy, Flex, PHP, PL/SQL, C#, Cobol, NET
und Visual Basic 6. Der Fokus von SonarQube liegt auf der regelbasierten Ermittlung von
potenziellen Fehlern und Schwachstellen, aber auch duplizierter Code und Verstofie gegen
Kodierrichtlinien werden gefunden. Metriken berechnet SonarQube hauptsachlich im Bereich
Komplexitat und Dokumentation. Da die Plattform allerdings iiber einen Plugin-Mechanismus
verfligt, ist es moglich, Erweiterungen einzubinden, die zusatzliche Metriken berechnen oder
andere Werkzeuge zur Berechnung integrieren.

SourceMeter ist ein kommerzielles Werkzeug, von dem eine umfangreiche kostenlose Variante
erhaltlich ist. SourceMeter [Fro] kann zur statischen Codeanalyse fiir die Programmiersprachen
C/C++, Java, C#, Python und RPG verwendet werden. Die Java-Version des Werkzeugs berech-
net eine Reihe von Codemetriken auf unterschiedlichen Ebenen (Paket, Klasse oder Methode),
weist auf Sicherheitsliicken und Programmierfehler hin, findet duplizierten Code und bietet
die Moglichkeit der Integration der bekannten Analysewerkzeuge FindBugs und PMD. Die
meisten der Funktionen sind in der freien Version des Werkzeugs enthalten, fiir einige muss
jedoch eine Lizenz fiir die kostenpflichtigen Basic oder Pro Versionen erworben werden.

26

2.4. Werkzeuge

2.4.2. Kommerzielle Werkzeuge

Gerade im Bereich der Java-Entwicklung gibt es viele kommerzielle Werkzeuge zur Berechnung
von Metriken. Aus Kostengriinden konnen diese Programme in dieser Arbeit nicht fiir die
Analyse verwendet werden, nichtsdestotrotz konnen sie fiir andere Projekte von Relevanz
sein.

Mit Resource Standard Metrics [M S] konnen Metriken eines Programm berechnet werden.
Auflerdem ermittelt das Werkzeug potenzielle Fehler im Code.

JHawk [Vir] kann 106 Metriken auf Java-Programmen berechnen. Die Analyse kann iiber die
Kommandozeile gestartet werden und es stehen viele verschiedene Moglichkeiten zum Export
der Ergebnisse zur Verfiigung.

Imagix 4D [Ima] ist ein Werkzeug, das beim Verstehen und Analysieren eines fremden Pro-
gramms hilft. Eher als Nebenprodukt berechnet das Tool auch Metriken des untersuchten
Systems.

Mit Essential Metrics [Pow] konnen Softwaremetriken von C/C++ und Java-Programmen
ermittelt werden. Das Programm kann tiber die Kommandozeile ausgefithrt werden, wird
allerdings seit zwei Jahren nicht mehr gewartet.

Java Source Code Metrics [Sem] berechnet einige wenige Metriken von Java-Programmen.
Selbst einige freie Werkzeuge unterstiitzen mehr Metriken.

2.4.3. IDE-Plugins

Ahnlich zum Plugin-Mechanismus von SonarQube ist es moglich mithilfe von Plugins den
Funktionsumfang moderner Entwicklungsumgebungen zu erweitern. Zu den Funktionen zah-
len neben der Unterstiitzung weitere Programmiersprachen oder Dateiformate auch Plugins
zur statischen Codeanalyse. Fiir die Entwicklungsumgebungen IntelliJ IDEA und Eclipse sind
Erweiterungen verfiigbar, mit denen Metriken des aktuellen Projekts berechnet werden konnen.
Intelli} IDEA kann um das Plugin MetricsReloaded [Bas] erganzt werden. Fir Eclipse gibt es
mit Metrics [sau] und Eclipse Metrics Plugin [Wal] gleich zwei Erweiterungen zur Berech-
nung von Codemetriken. Die Plugins Metrics und MetricsReloaded lassen sich zudem iiber die
Kommandozeile ausfiihren, ohne die ohne die Entwicklungsumgebung starten zu missen.

2.4.4. Werkzeuge zur statischen Codeanalyse

Neben Werkzeugen, die auf die Berechnung von Codemetriken spezialisiert sind, gibt es im
Java-Umfeld einige sehr bekannte Werkzeuge zur statischen Codeanalyse. Teilweise konnen
die Ergebnisse dieser Werkzeuge auch als Metriken verwendet werden, zum Beispiel kann die
Anzahl der leeren Catch-Blocke als Metrik zur Bestimmung der Resilienz angesehen werden.

27

2. Stand der Wissenschaft und Technik

FindBugs [Fin] ist ein freies Werkzeug, das im Java-Bytecode nach Fehlermustern sucht, die
haufig Anzeichen fiir wirkliche Fehler sind. Das Tool wird von der University of Maryland
entwickelt und ist unter der LGPL-Lizenz verfiigbar. FindBugs kann liber eine eigene Benut-
zeroberflache, die Kommandozeile oder als Plugin in anderen Systemen (z. B. gibt es auch ein
FindBugs-Plugin fiir SonarQube) verwendet werden.

PMD [PMD)] ist ein freies Analysetool, das vor allem Bad Practices im Quellcode aufspirt,
die nicht direkt zu einem Fehler fithren, sondern einen anderen negativen Einfluss auf den
Quelltext haben, zum Beispiel eine verschlechterte Lesbarkeit. PMD kann als Plugin in viele
IDEs und Build-Tools integriert und genutzt werden.

Checkstyle [che] ist ein freies Werkzeug, das die Einhaltung von Kodierrichtlinien iiberpriift
und entsprechende Verstofe anzeigt. Das Tool kann als eigenes Java-Programm oder mithilfe
eines der vielen Plugins fiir IDEs und Build-Tools ausgefithrt werden.

2.4.5. Fazit

Im Java-Umfeld gibt es sehr viele Werkzeuge zur statischen Codeanalyse und Berechnung von
Metriken. Die Tools unterscheiden sich in ihrem Einsatzgebiet: Es gibt Tools zur Unterstiitzung
der Entwickler (z. B. IDE-Plugins), zur grafischen Darstellung von Messungen, zum Beispiel fiir
die Projektleitung (z. B. SonarQube) und zur Berechnung von Metriken und anderen Kennzahlen
(z. B. SourceMeter). Je nach Verwendungszweck muss daher ein passendes Werkzeug ausgewahlt
werden oder es miissen mehrere Werkzeuge kombiniert werden.

28

3. Methodik

Im Rahmen der vorliegenden Arbeit werden die Studienprojekte anhand von drei Analysen
untersucht. Die Ziele und Vorgehensweisen dieser drei Analysen werden in diesem Kapitel
dargelegt. Die Analysen dienen der Erhebung von Daten zur Ableitung von Handlungsemp-
fehlungen, welche die Betreuung und die Qualitat der Studienprojekte nachhaltig verbessern
sollen. In Abbildung 3.1 ist der Ablauf der drei Analysen grafisch dargestellt. In Kapitel 4 wird
eine Implementierung zur Durchfithrung der beiden ersten Analysen vorgestellt. Die dritte
Analyse wird manuell durchgefiihrt. Die Ergebnisse aller drei Analysen werden in Kapitel 5

behandelt.

Quellcode Qualitatsanalyse 1 ~N
J Legende
Prozessschritt

(j Datenquelle
Repository-AnaIyse}ﬁ
Y
N
)—)[Auswertung 4)[
J
Betreuungsanalyse}—/

Abbildung 3.1.: Ablaufdiagramm der Analysen der Methodik

Ableiten von
Handlungsempfehlungen

29

3. Methodik

3.1. Qualitatsanalyse

3.1.1. Ziel der Analyse

Ziel der Qualitatsanalyse ist es, die Studienprojekte der vergangenen Jahre auf eine objek-
tive Weise miteinander vergleichen zu kénnen. Es soll eine Benchmark geschaffen werden,
auf deren Skala die vergangenen und mdglichen zukiinftigen Projekte eingeordnet werden
konnen. Die Analyse muss daher die Qualitat der Projekte auf einen einzelnen skalaren Wert
reduzieren. Daraufhin wird mithilfe der zwei weiteren Analysen untersucht, was potenzielle
Einflussfaktoren auf die entstandene Benchmark sind und wie man daraus fiir die Zukunft
lernen kann.

3.1.2. Durchfihrung der Analyse

Die Qualitdtsanalyse wird mittels der GQM-Methode (siehe Abschnitt 2.2.5) durchgefiihrt, da es
sich bei dieser Methode um einen universellen und einfach umzusetzenden Ansatz handelt. Die
Definition von Zielen hilft, strukturiert vorzugehen und sich auf die grundlegenden Aspekte
zu konzentrieren. Die Qualitdtsmodelle Quamoco und Squale (siehe Abschnitte 2.2.6 und 2.2.4)
konnten ebenfalls fiir diese Analyse verwendet werden. Da es sich bei dieser Arbeit um eine
explorative Studie mit einer geringen Anzahl an untersuchten Projekten handelt und daher
keine Allgemeingiltigkeit der Ergebnisse erwartet werden kann, wurde fiir diese Analyse die
GQM-Methode als pragmatischer Ansatz ausgewahlt.

Formulierung des GQM-Modells

Die vorgestellte Methodik orientiert sich am Qualitatsbegriff der ISO 25010 (siehe Abschnitt
2.2.2). Im Rahmen der vorliegenden Arbeit soll eines der Merkmale der Norm analysiert werden.
Ausgewahlt wird das Merkmal Wartbarkeit, da dies mit typischen Code-Metriken am besten
zu quantifizieren ist und da fiir die weitere Nutzung der Projekte durch das Fraunhofer IAO
vor allem die Teilmerkmale der Wartbarkeit von Bedeutung sind.

Das Ziel des GQM-Modells ist daher die Analyse der Wartbarkeit. Die Fragen zur Charakteri-
sierung des Ziels orientieren sich an den fiinf Teilmerkmalen' des Merkmals Wartbarkeit der
ISO 25010 und lauten:

« Wie stark ist der Quelltext modularisiert?
« Wie gut kann der Quelltext wiederverwendet werden?

« Wie gut ist der Quelltext analysierbar?

'"Modularisierung, Wiederverwendbarkeit, Analysierbarkeit, Modifizierbarkeit, Testbarkeit

30

3.1. Qualitatsanalyse

« Wie gut ist der Quelltext modifizierbar?

« Wie gut kann der Quelltext getestet werden?

Ostberg und Wagner [OW14] fithren an, dass viele ihrer Industriepartner und Studierenden
Metriken zur Quantifizierung von Wartbarkeit verwenden, die veraltet sind oder deren Zusam-
menhang zur Wartbarkeit unklar ist. Bei der Auswahl der quantifizierenden Metriken ist es
daher wichtig, nur solche Metriken auszuwahlen, deren Zusammenhang mit dem quantifizier-
ten Qualitdtsmerkmal empirisch oder wissenschaftlich argumentierend belegt ist. Die folgende
Auflistung verzeichnet zu jedem Teilmerkmal diejenigen Metriken, zu denen wissenschaftliche
Arbeiten eine solche Korrelation belegen.

Modularisierung Response for Class [BDW99],
Coupling between Objects [BDW99],
Message Passing Coupling [BDW99],
Data Abstraction Coupling [BDW99],
Coupling Factor [BDW99]
Wiederverwendbarkeit Weighted Methods per Class [EHDO01],
Lack of Cohesion of Methods [EHDO01],
Number of Public Methods [EHDO01],
Comment Density [EHDO01],
Documented Public API [EHDO1]
Analysierbarkeit Weighted Methods per Class [Zus93],
Depth of Inheritance Tree [HCNO00],
Coupling Factor [Mey88]
Modifizierbarkeit Number of Methods [LH93],
Weighted Methods per Class [LH93],
Response for Class [LH93],
Coupling between Objects [CDK98],
Lack of Cohesion of Methods [BV04; CDK98],
Depth of Inheritance Tree [CDK98; HCN00],
Number of Children [BV04],
Message Passing Coupling [BV04],
Data Abstraction Coupling [BV04],
Methods Inheritance Factor [AM96],
Attributes Inheritance Factor [AM96],
Polymorphism Factor [AM96],
Coupling Factor [AM96]
Testbarkeit Number of Fields [BV04],
Number of Methods [BV04],
Weighted Methods per Class [BV04],
Response for Class [BV04]

31

3. Methodik

Berechnung der Benchmark

Die Qualitdtsmodelle Quamoco und Squale (siehe Abschnitte 2.2.6 und 2.2.4) enthalten spezielle
Ansatze zur Aggregation von Metrikwerten, um die Gesamtbewertung eines Projekts vorneh-
men zu konnen. Die GOM-Methode enthalt kein solches Verfahren. Daher ist die Erstellung
eines individuellen Vorgehens notig. Alternativ konnten die Methoden der Modelle Quamoco
und Squale fur das GOM-Modell angepasst werden. Aus denselben Griinden wie in Abschnitt
3.1.2 wird fiir diese Arbeit aber ein eigenes, pragmatisches und unkompliziertes Verfahren
entwickelt. Das in dieser Arbeit verwendete Vorgehen erfolgt in vier Schritten:

1. Fir jedes Projekt werden die Metriken des GQM-Modells berechnet.

2. Fiir jede Metrik wird das Projekt mit dem besten Wert bestimmt. Alle Projekte erhalten
als Note fiir eine Metrik den Quotienten aus ihrem Metrikwert und dem Metrikwert des
besten Projekts. Dadurch erhilt jedes Projekt eine Note zwischen 0 und 1.

3. Die Noten eines Projekts werden fiir jede Frage des GQM-Modells aufsummiert. Nun
wird wieder das Projekt mit der besten Bewertung ermittelt und die anderen Projekte
werden dazu in Relation gesetzt. Daher liegt auch die Note einer Frage immer zwischen
0 und 1.

4. Die Gesamtnote fiir das Ziel des GQM-Modells (Wartbarkeit) errechnet sich als Summe
der Noten fiir die einzelnen Fragen. Da das GQM-Modell aus fiinf Fragen besteht, liegt
die Gesamtnote fiir jedes Projekt zwischen 0 und 5.

3.2. Repository-Analyse

3.2.1. Ziel der Analyse

Diese Arbeit basiert auf der Annahme, dass der Entstehungsprozess der Studienprojekte einen
Einfluss auf die Ergebnisse und die Qualitat der Projekte hat. Um dies zu untersuchen, werden
Daten zum Entstehungsprozess aus den Quellcode-Repositories der betrachteten Projekte
ermittelt. Diese Informationen konnen anschlieffend den Ergebnissen der Qualitdtsanalyse
gegeniibergestellt werden, um mogliche Zusammenhénge festzustellen.

3.2.2. Durchfiihrung der Analyse

Neben dem eigentlichen Versionsverlauf mit Commits und geénderten Dateien und Zeilen
konnen aus den Quellcode-Repositories weitere Metadaten zu jeder Version erhoben werden.
Daten wie der Autor, der Zeitpunkt des Commits, die Commit-Nachricht und die geanderten
Zeilen konnen zusammen mit den Commits abgerufen werden. Diese Metadaten werden in

32

3.2. Repository-Analyse

der Repository-Analyse erhoben, um daraus Metriken zum Vergleich der Projekte zu entwi-
ckeln. Zur Ableitung der Metriken konnen die Daten gruppiert oder summiert werden und
Durchschnitte gebildet werden.

Fiir diese Arbeit wurden die folgenden Fragen anhand von Analysen der Quellcode-Repositories
beantwortet:

« Sind die Commits gleichméaflig auf alle Tage verteilt oder gibt es Tage, die deutlich vom
Durchschnitt abweichen?

« Sind die gednderten Zeilen gleichmaflig auf alle Tage verteilt oder gibt es Tage, die
deutlich vom Durchschnitt abweichen?

« Sind die gednderten Zeilen gleichmaflig auf alle Teilnehmer verteilt oder gibt es Studie-
rende, deren Arbeitsanteil deutlich vom Durchschnitt abweicht?

« Sind die Commits gleichméflig auf alle Wochentage verteilt oder gibt es Wochentage,
die deutlich vom Durchschnitt abweichen?

« Wie hoch ist der Anteil der Commits, die am Wochenende gemacht wurden?

« Sind die Commits gleichmaf3ig auf alle Studierenden verteilt oder gibt es Studierende,
deren Arbeitsanteil deutlich vom Durchschnitt abweicht?

« Werden pro Commit in etwa gleich viele Zeilen gedndert oder gibt es Commits, die
deutlich vom Durchschnitt abweichen?

Die Fragen sind teilweise aus den charakteristischen Eigenschaften der Studienprojekte ab-
geleitet, die in Abschnitt 1.1 erwahnt werden. Die Fragen zur Verteilung der Commits nach
Kalendertagen und Wochentagen unterstellen, dass es Projekte gibt, die den Hauptteil der Ar-
beit kurz vor den vereinbarten Présentationsterminen erledigen bzw. nur an den vereinbarten
Arbeitstagen vor Ort arbeiten.

Um die Gleichméafligkeit der Verteilungen bzw. die Abweichungen der Messwerte vom Durch-
schnitt zu berechnen, kann die Standardabweichung verwendet werden. Da sich die Mittelwerte
der Verteilungen stark unterscheiden kénnen und daher damit zu rechnen ist, dass die Stan-
dardabweichungen ebenfalls stark schwanken (eine Verteilung mit einem hohen Mittelwert
hat haufig auch eine hohere Standardabweichung und umgekehrt), wird statt der Standardab-
weichung der Variationskoeffizient verwendet, der als Quotient aus Standardabweichung und
Mittelwert definiert ist.

Um ein einheitliches Vorgehen fiir alle Repositories zu gewahrleisten, wird im Kontext dieser
Arbeit vorausgesetzt, dass es sich bei den untersuchten Repositories um Git-Repositories handelt.
Da es sich bei den meisten der untersuchten Repositories um SVN-Repositories handelt, wird im
Zuge der Analyse als erster Schritt eine Konvertierung zu Git mithilfe des Werkzeugs git-svn
[Git] durchgefiihrt.

33

3. Methodik

3.3. Betreuungsanalyse

3.3.1. Ziel der Analyse

Die Betreuungsanalyse verfolgt zwei Ziele: Zum einen soll sie Informationen iiber die Betreu-
ung der Studienprojekte erheben, die potenziell einen Einfluss auf die Qualitat der Projekte
haben, zum anderen sollen Daten erhoben werden, die zur Validierung der Qualitatsanaly-
se aus Abschnitt 3.1 verwendet werden kénnen. Die Informationen zur Betreuung kénnen
anschlieflend auf Zusammenhénge mit den Ergebnissen der Qualitatsanalyse hin gepriift
werden.

3.3.2. Durchfiihrung der Analyse

Zur Erreichung der Ziele wurde eine Befragung der Betreuer der untersuchten Projekte durch-
gefithrt. Der Fragebogen enthalt allgemeine Fragen zum Projekt, Fragen zur Qualitét, zur
Betreuung und zur Umsetzung. Die allgemeinen Fragen dienen hauptsachlich dazu, einen
besseren Einblick in die untersuchten Projekte zu erhalten. Zum Beispiel soll eine Einschiatzung
des subjektiven Erfolgs des Projekts abgegeben werden oder die Komplexitat des technischen
und fachlichen Hintergrunds beurteilt werden. Die Fragen zur Qualitat haben zum Ziel, die
Qualitatsanalyse aus Abschnitt 3.1 zu validieren, indem die Einschatzung der Betreuer mit den
Ergebnissen der Analyse verglichen wird. Aus den Fragen zur Betreuung und der Umsetzung
sollten Riickschliisse auf den Betreuungsprozess gezogen werden, die wiederum zu den Er-
gebnissen der Qualititsanalyse in Relation gesetzt werden konnen. Dadurch kann ermittelt
werden, welchen Einfluss die Betreuung und der Betreuungsprozess auf die Qualitét eines
Studienprojekts hat.

Der Fragebogen wurde als Word-Dokument per E-Mail mit einem personlichen Anschreiben
verschickt. Auf ein Online-Umfrage-Tool wurde aufgrund der geringen Teilnehmerzahl und der
weniger personlichen Ansprache verzichtet. Im Anhang A.2 ist der vollstandige Fragebogen
abgebildet, wie er an die Betreuer der untersuchten Projekte verschickt wurde.

3.4. Auswertung

Zur Auswertung der Ergebnisse wird ermittelt, ob die Ergebnisse der Repository-Analyse und
der Betreuungsanalyse einen messbaren Einfluss auf die Benchmark aus der Qualitdtsanalyse
haben. Dazu werden Korrelationen mit der Benchmark mithilfe des Korrelationskoeffizienten
nach Pearson [Pea95] berechnet. Je hoher dieser Koeffizient r ist, desto starker ist der lineare
Zusammenhang zwischen den untersuchten Aspekten.

34

3.4. Auswertung

Um eine Korrelation berechnen zu kénnen, muss fiir jedes Studienprojekt genau ein Bench-
markwert und genau ein Wert fiir jeden untersuchten Aspekt vorliegen. Um die Korrelationen
der Benchmark mit den Verteilungen aus der Repository-Analyse zu berechnen, wird der Varia-
tionskoeffizient verwendet. Die am Wochenende erstellten Commits werden einfach als Anteil
der gesamten Commits berechnet. Dieser Quotient kann dann zur Korrelationsberechnung
verwendet werden.

Zur Berechnung der Korrelationen der Betreuungsanalyse werden die Antwortmoglichkeiten
der Ordinalskalen von eins bis vier nummeriert. Da der Durchschnitt auf Ordinalskalen nicht
angewendet werden kann, wird der Median als Grundlage der Berechnung des Korrelationsko-
effizienten verwendet.

35

4. Implementierung

4.1. Anforderungen

Zur Durchfithrung der in Kapitel 3 beschriebenen Methodik wurde ein Werkzeug entwickelt,
mit dem die Qualitdtsanalyse (Berechnung der Metriken, Aggregation und Berechnung der
Benchmark) und die Analyse der Quellcode-Repositories (Extraktion der Daten aus den Com-
mits) durchgefithrt werden kénnen. Dabei wurden die folgenden Anforderungen beriicksichtigt,
die sich aus der Ausschreibung und Aufgabenstellung dieser Arbeit ableiten:

« Die Analyse soll moglichst automatisiert durchgefithrt werden konnen. Manuelle Schritte
sind moglich, wenn es einen pragmatischen Grund hierfiir gibt.

« Zur Berechnung der Metriken sollen bestehende Werkzeuge verwendet werden, da es
hierfiir bereits geeignete Werkzeuge gibt (vgl. Abschnitt 2.4).

« Die Ergebnisse der Analyse sollen mittels Web-Frontend zusammengefiithrt und prasen-
tiert werden.

« Aus dem Web-Frontend soll erkennbar sein, wie gut ein Projekt im Vergleich zu allen
anderen untersuchten Projekten abschneidet.

« Das Web-Frontend soll fiir jedes Projekt erstellt werden kénnen, um den Teilnehmern
von laufenden Projekten einen Vergleich mit anderen Projekten zu erméglichen.

4.2. Resultat

Das Werkzeug wird in zwei unabhangigen Teilen entwickelt: dem Analysewerkzeug und
dem Web-Frontend. Das Analysewerkzeug berechnet Metriken der untersuchten Projekte
mithilfe des Werkzeugs SourceMeter (siehe Abschnitt 2.4.1). Das Tool berechnet eine grofle
Anzahl an Metriken auf verschiedenen Abstraktionsebenen (Paket, Klasse oder Methode).
Auferdem lasst sich das Werkzeug tiber die Kommandozeile ausfithren und kann daher leicht
in eigene Programme integriert werden. Die Einschrankungen der freien Version im Vergleich
zur kostenpflichtigen Basic- oder Pro-Version sind im Kontext dieser Arbeit nicht relevant, da
alle benotigten Funktionen ebenfalls in der freien Version enthalten sind.

Dariiber hinaus aggregiert das Analysewerkzeug die Metriken anhand des GQM-Modells (siehe

37

4. Implementierung

Abschnitt 3.1) und berechnet die Benchmark. Der Export der generierten Daten erfolgt in
.csv-Dateien, die vom Web-Frontend eingelesen werden.

Die Repository-Analyse wird ebenfalls vom Analysewerkzeug durchgefithrt. Dafiir wird eine
Représentation des Projekts als Git-Repository vorausgesetzt. Die Konvertierung von SVN-
Repositories erfolgte mit dem Werkzeug git-svn [Git]. Die Ergebnisse der Analyse werden
ebenfalls im .csv-Format exportiert und vom Web-Frontend eingelesen.

Das Analysewerkzeug wird in der Programmiersprache Python entwickelt. Pythonist eine leicht-
gewichtige Skriptsprache und unterstiitzt mehrere Programmierparadigmen. Das entstandene
Werkzeug wurde hauptsachlich im objektorientierten Programmierparadigma implementiert.
Fir Python spricht, dass viele Standardbibliotheken enthalten sind und weitere Bibliotheken
mit geringem Aufwand nachinstalliert werden kénnen. Auflerdem kénnen die entstehenden
Programme bis zu einer gewissen Grofie schnell entwickelt werden und Anderungen am
Programm konnen leicht vorgenommen werden. Dies unterstiitzt die iterative Entwicklung
der Methodik der vorliegenden Arbeit.

Fir jedes untersuchte Projekt wird ein separates Web-Frontend erstellt, das aus zwei Seiten
besteht. Auf der einen Seite kann sich der Nutzer die Ergebnisse der Qualitdtsanalyse fiir das
untersuchte Projekt ansehen (siehe Abbildung 4.1). Dort werden die Werte der Benchmark, der
Teilmerkmale und der einzelnen Metriken angezeigt. Ein farbiger Punkt in der Ecke gibt an,
ob sich das Projekt damit im oberen, mittleren oder unteren Drittel der untersuchten Projekte
befindet. Uber einen Klick auf eine der Boxen offnet sich ein Dialog, der weitere Informationen,
wie den vollstandigen Namen der Metrik anzeigt.

Benchmark Repository

Benchmark
RK 4,030/5
Teilmerkmale
[]
0,696/1 , 0,916/1 STBARKEIT 0,899/1 DERVERWENDBARKEIT 0,752/1
[}
CEIT 0,768/1
Metriken
[} [} [} [) [) [)
M 0,092 coms 1,061 NA 3,511 NOI 5,922 rC 12,160 NoC 0,329 B0 4,306 \IF 0,153
[] [] [] [] [] [] [)
M 8,325 0,009 M 9,065 1,036 C 8,745 1F 0,312 D 0,084

Abbildung 4.1.: Ergebnisse der Qualitatsanalyse (Beispielansicht)

38

4.2. Resultat

Die zweite Seite zeigt drei Diagramme der Repository-Analyse (sieche Abbildung 4.2). Die Dia-
gramme visualisieren die Daten der Analyse, fiir die ein Zusammenhang mit den Ergebnissen
der Benchmark ermittelt werden konnte (siehe Abschnitt 5.2).

Benchmark Repository

1600 W Commits nach Wochentag 4000 W Commits am Wochenende

1400 3500
1200 3000
1000 2500
800 2000
600 1500
1000

& Mo Di Mi Do Fr Sa So S

Werktag Wochenende

M Comnits pro Tag

|| "g}lll I !; Il bl
P S
& & F
LS
(N) N
Vv v

®
&

.|| I
o
K

S ¢ ¢ &
SR
P S S P

I
S

v
N

:{\«

"Jl il
S S & @w :§°’°

g & & & & & & &
SRS S A A A
L S S R S)

||%|
v
& @“«9\ &

||.|. I Al
D

" |.||.| ‘| | || | | ‘ |
o O N D

o N v & v N
K S NS NS N4

h
&
v

I ||‘I I
S

! Il_'l I ||U|I||..
S

&

|| |.|‘|
q{@
N

dn |‘ |
&
S

2
2
2
2y
2
2y
2y
2
2,
eol)\
%,

Abbildung 4.2.: Ergebnisse der Repository-Analyse (Beispielansicht)

Das Web-Frontend wird mit dem Web-Framework Angular in der Programmiersprache
TypeScript umgesetzt. Die Architektur einer Angular-Anwendung besteht aus hierarchi-
schen Komponenten. Angular bietet Dependency Injection, Routing und es existieren viele
Drittanbieter-Bibliotheken. TypeScript ist eine Obermenge der Programmiersprache JavaScript
und wird von Microsoft entwickelt. Die Sprache unterstiitzt objektorientierte Klassen und
Vererbung und ermoglicht im Gegensatz zu javaScript die Typisierung von Variablen und
Methoden.

Web-Frontend und Analysewerkzeug bilden jeweils eine Komponente (siche Komponentendia-
gramm in Abbildung 4.3). Das Web-Frontend besteht aus vier Angular-Komponenten: eine
Basiskomponente, je eine Komponente fiir die beiden Webseiten und eine Komponente, um die
Detailinformationen in einem modalen Dialog anzuzeigen. Auflerdem enthélt es zwei Services
zum Einlesen und Aufbereiten der Daten.

Das Analysewerkzeug besteht aus sieben Python-Klassen, von denen fiinf jeweils einen Schritt

39

4. Implementierung

Python Analysis
Main
[—
RepositoryAnalyser BenchmarkCalculator SourceMeterExecuter MetricCalculator CommitExtractor

[utils Config

Web Frontend

AppComponent
| — W—l _\y
MetricsComponent RepositoryComponent
. v v !
NameMapperService CsvReaderService OverlayDialogComponent

Abbildung 4.3.: Komponentendiagramm des entstandenen Werkzeugs

der Analyse durchfithren. Auflerdem gibt es eine Klasse fiir allgemeine Funktionalitdten und ei-
ne fiir die Konfiguration. Die Qualitatsanalyse und die Repository-Analyse werden unabhéngig
voneinander durchgefiihrt (siehe Ablaufdiagramm in Abbildung 4.4). Aus den Ergebnissen der
Analyse wird anschlieflend eine lauffdhige Version des Web-Frontends fiir jedes Projekt gene-
riert, das nur die Daten dieses einen Projekts enthalt und daher auch an Dritte weitergegeben
werden kann.

40

4.3. Verwendung des Werkzeugs

Qualitatsanalyse

SourceMeter . Benchmark
Quellcode —)[ausfiihren]—)[Metnken berechnen]—)[berechnen]‘—\
Web-Frontend
erstellen
Repository-Analyse
Repositories » Commits auslesen —

Abbildung 4.4.: Ablaufdiagramm des entstandenen Werkzeugs

10

4.3. Verwendung des Werkzeugs

Das Web-Frontend gibt dem Nutzer des Werkzeugs einen Uberblick iiber den Leistungsstand
des betrachteten Projekts im Vergleich zu allen untersuchten Projekten. Aufler zur besseren
Visualisierung wurde das Web-Frontend fiir die Analysen dieser Arbeit nicht verwendet. Zur
Durchfithrung der Analysen wurden jedoch auch die Ausgabedateien des Analysewerkzeugs
verwendet. Die Dateien wurden in Excel iibertragen, um die Korrelationen mit der Benchmark
zu berechnen. Eine Anpassung fiir Web-Frontend oder Analyse war nicht erforderlich.

41

5. Analyse und Evaluation

In Kapitel 3 wurde die Methodik der drei Analysen vorgestellt, die im Kontext der vorliegenden
Arbeit durchgefiithrt wurden. Dieses Kapitel prasentiert die Ergebnisse der Analysen und stellt
die abgeleiteten Handlungsempfehlungen fiir zukiinftige Projekte dar.

Um Anonymitat fiir die Betreuer und Teilnehmer der untersuchten Projekte zu gewéhrleisten,
werden die Projekte in diesem Kapitel mit Buchstaben von A bis F bezeichnet. Ein Projekt
entspricht immer dem gleichen Buchstaben und auch die zugeordnete Farbe ist iiber das ganze
Kapitel hinweg dieselbe.

5.1. Ergebnisse der Qualitatsanalyse

Ziel der Qualitatsanalyse war es, eine vergleichende Benchmark aller untersuchten Projekte zu
erstellen. Die Projekte wurden dazu nach der in Abschnitt 3.1 vorgestellten Methodik nach den
Teilmerkmalen Modularisierung, Wiederverwendbarkeit, Analysierbarkeit, Modifizierbarkeit
und Testbarkeit analysiert. Die Benchmark ergibt sich aus der Summe der Bewertungen der
Teilmerkmale.

Projekt A erreichte in drei der fiinf Teilmerkmale die beste Bewertung. Insgesamt hat Projekt
A mit einer Qualitatsnote von 4,905 auch die beste Gesamtbewertung. Die Projekte B und C
erreichten jeweils in einem Teilmerkmal die beste Bewertung und belegten damit Platz zwei
und drei in der Gesamtwertung. Projekt F erhielt in drei der fiinf Teilmerkmale die schlechteste
Bewertung und schnitt damit in der Gesamtbewertung ebenfalls am schlechtesten ab. Die
Projekte konnen daher in eher gute und eher schlechte Projekte eingeordnet werden. Das
Abschneiden der Projekte scheint also nicht nur vom Zufall bestimmt zu sein (siehe Tabelle 5.1
und Abbildung 5.1).

In vier der fiinf Teilmerkmale schnitt das schlechteste Projekt mit einer Bewertung kleiner
0,7 ab; in einem Fall sogar nur knapp uiber 0,5. Das beste Projekt schneidet demnach in allen
Teilmerkmalen mindestens 1,4 mal besser ab als das Projekt mit der schlechtesten Bewertung.
Auch in der Gesamtbewertung betragt der Faktor zwischen dem schlechtesten und besten
Projekt in etwa 1,4 (siehe Abbildungen 5.1 und 5.2).

43

5. Analyse und Evaluation

Wieder-
Bench- Modulari- verwend- Analysier- Modifizier- Testbar-
Projekt mark sierung barkeit barkeit barkeit keit
Projekt A 4,905 0,978 0,928 1,000 1,000 1,000
Projekt B 4,475 1,000 0,960 0,534 0,998 0,984
4,069 0,738 1,000 0,729 0,777 0,825
4,030 0,696 0,752 0,768 0,916 0,899
Projekt E 3,916 0,797 0,745 0,714 0,901 0,758
Projekt F 3,389 0,646 0,684 0,588 0,800 0,671
Tabelle 5.1.: Tabellarische Darstellung der Benchmark
Modularisierung
® o] ‘X
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Wiederverwendbarkeit
e o o0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Analysierbarkeit
o o ° °
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Testbarkeit
'Y 'Y oo
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Modifizierbarkeit
! o)
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

44

Abbildung 5.1.: Benchmark-Ergebnisse der Teilmerkmale

5.2. Ergebnisse der Repository-Analyse

Benchmark

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Abbildung 5.2.: Aufsummierte Benchmark aller Teilmerkmale

5.2. Ergebnisse der Repository-Analyse

In diesem Abschnitt werden die Ergebnisse der Repository-Analyse, die in Abschnitt 3.3
beschrieben wurde, dargelegt. Die Ziele der Analyse waren die Erfassung von Faktoren, die die
Benchmark der Qualitit beeinflussen, und die Validierung der Methodik der Qualitatsanalyse.

Commits nach Kalendertagen

Ob die Studierenden kontinuierlich oder kurz vor den Abgaben sehr viel am Projekt arbeiten,
schlagt sich auch in der Qualitat der entstehenden Software nieder. Der Variationskoeffizient
der Verteilung der Commits nach Kalendertagen weist mit einem Korrelationskoeffizienten
von r=-0,506882237 eine mittlere lineare Korrelation mit der Benchmark auf (siehe Tabelle
5.2). Arbeiten die Studierenden hauptsichlich kurz vor den Abgaben und unter Zeitdruck, so
scheinen darunter die Qualitdt und die Wartbarkeit zu leiden.

Projekt Mittelwert Standardabweichung Variationskoeffizient
Projekt A 3,420 4,727 1,382
1,609 3,050 1,896

4,477 9,595 2,143

12,085 17,139 1,418

2,480 6,610 2,666

3,175 6,440 2,028

Tabelle 5.2.: Tabellarische Darstellung der Commits nach Kalendertagen

In Abbildung 5.3 und Abbildung 5.4 sind die Commits von Projekt A und Projekt F tageweise
in ein Balkendiagramm aufgetragen. Bei Projekt F wechseln sich Tage mit sehr vielen Commits
ab mit Tagen, an denen gar nicht bzw. fast gar nicht gearbeitet wurde. Bei Projekt A sind die
Unterschiede erkennbar geringer.

45

46

5. Analyse und Evaluation

45

40
35
30
25
20
15
10

o un

45

40
35
30
25
20
15
10

o un
Tagl -
Tag 10

Tag 1l

Tag12

Tag 23
Tag 34

Tag 19

Tag 28

Tag 45

Projekt A

il ‘| L, l\’[

Ly H’

H‘H‘”‘ ”II‘.IM‘ |‘ ‘|.| H bl .I‘

Tag 271

Tag 280

N O N on Ao o O) 0 wn m N O n s om
N <N O ™N0OoOYO O N m < (el I\ 00 Ch - N M LN KD
0 b0 Lo bo o bo b o A A H AN NN NN NN
M (M (C (C (T (M ([bd o O b0 O o o o b0 o o o o b0 o o by bo o
FFHRFFFRFRF ©©®©O©© © © © O © C © O© © O O © O ©
FFFFFRFRFRFFRFFRFRFRFRRFRRRRRRF
Abbildung 5.3.: Verteilung der Commits von Projekt A
Projekt F

! ‘ ‘ | ‘ \ H .m‘Hm ‘ ’ il ’ l h’ | H ” H‘ ‘\HH | \M
O ™00 O O "d N MM I 1n O (o8] M < n O o]
n O™~V O Hd AN MM I 1N O l\ (o] cn \—| N < 1N O~ O\ o
0 o bo bo o AN AN AN AN AN NN AN ANm
MM (@ ([([T b0 b0 o O O b0 b0 by Lo o b0 b0 Lo o o b0 b0 by o oo
HFHH—HF © ®©@ ®©® © © ©C C ((O @O (C C (M O @© C @O© @O @© @©
(e e e T e T e e e e e e ey S S

Abbildung 5.4.: Verteilung der Commits von Projekt F

Tag 320

Tag 331

nH Il \M I \

Tag 289

1l

Tag 342

Tag 298

Tag 353

Tag 307

Tag 364

J

Tag 316

Tag 325

5.2. Ergebnisse der Repository-Analyse

Commits nach Wochentagen

Wie viele Commits an welchem Wochentag erzeugt wurden, weist eine starke lineare Korrela-
tion mit der Benchmark auf. Sowohl der Variationskoeffizient dieser Verteilung als auch der
Anteil der am Wochenende erzeugten Commits weisen einen hohen Korrelationskoeffizien-
ten auf (r=-0,797959047 bzw. r=0,787112788). Es ist fiir die Qualitit der Projekte von Vorteil,
wenn die Teilnehmer auch auflerhalb der wochentlichen Arbeitstreffen und am Wochenende
am Projekt arbeiten. Moglicherweise konnen sie sich zu Hause besser konzentrieren (siehe
Tabellen 5.3 und 5.4).

Projekt Mittelwert Standardabweichung Variationskoeffizient
Projekt A 159,286 74,674 0,469
89,857 51,745 0,576

492,429 334,782 0,680

630,143 524,474 0,832

263,571 133,200 0,505

168,714 197,239 1,169

Tabelle 5.3.: Tabellarische Darstellung der Commits nach Wochentagen

Commits an Commits am Anteil der Commits
Projekt Werktagen Wochenende am Wochenende
Projekt A 973 142 12,7%
549 80 12,7%
3012 435 12,6%
3852 559 12,7%
1680 165 8,9%
1161 20 1,7%

Tabelle 5.4.: Tabellarische Darstellung der Commits am Wochenende

In Abbildung 5.5 und Abbildung 5.6 kann die Anzahl der Commits fiir jeden Wochentag von
Projekt A und Projekt F abgelesen werden. Wahrend die Teilnehmer von Projekt F an manchen
Tagen nahezu Giberhaupt nicht gearbeitet haben, sind die Schwankungen bei Projekt A deutlich
geringer. Doch auch hier kann man erkennen, dass sich das Team vermutlich montags getroffen
hat, um gemeinsam am Projekt zu arbeiten.

47

5. Analyse und Evaluation

48

600

500

400

300

200

100

600

500

400

300

200

100

Projekt A

Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

Abbildung 5.5.: Commits nach Wochentagen von Projekt A

Projekt F

Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

Abbildung 5.6.: Commits nach Wochentagen von Projekt F

5.3. Ergebnisse der Betreuungsanalyse

Anzahl logischer Codezeilen

Die Anzahl der logischen Codezeilen weist eine mittlere lineare Korrelation (r=-0,636011674)
mit der Benchmark auf (siehe Tabelle 5.5). Der Korrelationskoeffizient ist negativ, die untersuch-
ten Projekte schnitten also besser ab, je geringer die Anzahl der logischen Codezeilen war. Das
ist ein zu erwartendes Ergebnis, da die Qualitdt von grof3en Systemen haufig durch Software-
Erosion abnimmt. Eine mogliche Verzerrung dieser Analyse konnte die Beschrankung auf
Java-Code darstellen. Da wiahrend der Qualitatsanalyse nur Code untersucht wurde, der in Java
geschrieben ist, umfassen die gemessenen Codezeilen auch nur den Code in Java-Klassen.

Projekt Anzahl logischer Codezeilen
Projekt A 13969
10267
27020
24031
26756
21489

Tabelle 5.5.: Tabellarische Darstellung der logischen Codezeilen

Weitere Ergebnisse

Keine Korrelation mit der Benchmark konnte fiir die untersuchten Aspekte Verteilung der
geanderten Zeilen pro Tag, Verteilung der Commits pro Teilnehmer, Verteilung der gednderten
Zeilen pro Teilnehmer und die Verteilung der geédnderten Zeilen pro Commit festgestellt werden
(Daten siehe Anhang A.3). Diese scheinen die Benchmark nicht spiirbar zu beeinflussen und
es miissen daher keine Mafinahmen in diesen Bereichen ergriffen werden.

5.3. Ergebnisse der Betreuungsanalyse

Der Fragebogen zur Betreuungsanalyse wurde 11 mal ausgefillt und zuriickgeschickt. Insge-
samt haben sechs Betreuer ihre Meinung abgegeben, einige von ihnen fiir mehrere Projekte. Zu
zwei Projekten gab es je drei Riickmeldungen, ein Projekt wurde von zwei Betreuern evaluiert
und bei drei Projekten hat je ein Betreuer den Fragebogen ausgefiillt und zuriickgeschickt.

49

5. Analyse und Evaluation

Wenn es mehrere Riickmeldungen zu einem Projekt gab, unterschieden sich diese teilweise
deutlich in den Einschétzungen der Komplexitiat des fachlichen Hintergrunds und der tech-
nischen Umsetzung, der Qualitit, der Betreuungsqualitit, der technischen Kenntnisse der
Betreuer und der Verteilung der Leistungen unter den Studierenden. Auflerdem gab es bei
einem Projekt Abweichungen in den Fragen, ob Refactoring-Sprints durchgefiihrt wurden und
ob sich die Studierenden regelmaflig trafen, um zusammen am Projekt zu arbeiten. Erklaren
kann man dies moglicherweise mit der langen Zeit zwischen Durchfithrung der Projekte
und Ausfiillen des Fragebogens. Aulerdem konnen auch subjektive Einschatzungen oder der
Vergleich mit anderen Projekten Ursachen fiir diese Abweichungen sein.

Teilnehmerzahl

Die Teilnehmerzahlen der untersuchten Projekte liegen zwischen sechs und 15 Teilnehmern.
Der Median liegt bei 10,5 Teilnehmern und der Durchschnitt bei 10,66 Teilnehmern. Da aus den
Teilnehmerzahlen ein Riickschluss auf die Projekte moglich ist und daher keine Anonymitat
von Betreuern und Teilnehmern gewéhrleistet werden kann, erfolgt an dieser Stelle keine
Zuordnung der Teilnehmerzahlen.

Gleichwohl korreliert die Teilnehmerzahl stark linear (r=-0,866856596) mit der errechneten
Benchmark. Eine besonders starke Korrelation kann fiir das Teilmerkmal Modularisierung
(r=-0,931723232) nachgewiesen werden. Eine geringe Anzahl an Teilnehmern fithrt zu einer
besseren Qualitdt der entstehenden Software. Projekte mit vielen Teilnehmern haben mog-
licherweise Probleme mit der Kommunikation und Koordination. Wenn Schnittstellen nicht
abgesprochen werden und sich haufig dndern, dann fithrt das zu verstarkter Erosion der
Software und damit zu einer abnehmenden Qualitat und Wartbarkeit.

Qualifikation der Betreuer

Die Qualifikation der Betreuer von Studienprojekten zeichnet sich durch die fachlichen und
technischen Kenntnissen aus. Die fachlichen Kenntnisse der Betreuer bei Studienprojekten
beziehen sich auf Kenntnisse im Zusammenhang mit dem Thema eines Studienprojekts und den
Geschaftsprozessen, welche die Software unterstiitzen soll. Die technischen Kenntnisse zeigen
sich in Kenntnissen der verwendeten Technologien, Bibliotheken und Software-Architektur.
Mit einem Korrelationskoeflizienten von r=0,787596217 bzw. r=0,748935423 kann eine stark
lineare Korrelation zwischen den fachlichen und technischen Kenntnissen der Betreuer und
der Benchmark beobachtet werden. Dariiber hinaus korrelieren die technischen Kenntnisse
der Betreuer sehr stark mit dem Teilmerkmal Wiederverwendbarkeit (r=0,968599707). Diese
Erkenntnisse legen nahe, dass die Betreuungsqualitét bei diesen Projekten hoch zu sein scheint,
da die Studierenden von der Qualifikation der Betreuer profitieren. Daher verwundert es auch
nicht, dass die Betreuungsqualitat mit einem Korrelationskoeffizienten von r=0,640029258
ebenfalls einen mittleren linearen Zusammenhang mit der Benchmark aufweist.

50

5.3. Ergebnisse der Betreuungsanalyse

Fachliche Technische
Projekt Kenntnisse Kenntnisse Betreuungsqualitat
Projekt A 4 4 4
4 4 4
4 4 3
4 2 3
3 2 4
2 2 3

Tabelle 5.6.: Tabellarische Darstellung der Selbsteinschiatzung der Betreuungsqualitat (auf
einer Skala von 1 bis 4)

Verwendung von Bibliotheken

Mit einem Korrelationskoeffizienten von r=0,789104736 schnitten solche Projekte besser ab,
die viele Drittanbieter-Bibliotheken verwendeten. Besonders hoch war die Korrelation mit
dem Teilmerkmal Testbarkeit (r=0,904201062). Denkbar wire, dass es zu verbreiteten Biblio-
theken hochwertige Referenzimplementierungen gibt, an denen sich die Teilnehmer bei der
Verwendung der Bibliotheken orientieren konnten. Auch geben einige Bibliotheken Archi-
tekturentscheidungen vor, die sich positiv auf die Qualitidt und die Wartbarkeit der Projekte
ausgewirkt haben konnten.

Grad der Verwendung von
Projekt Drittanbieter-Bibliotheken
Projekt A 4

Tabelle 5.7.: Tabellarische Darstellung zur Verwendung von Drittanbieter-Bibliotheken (auf
einer Skala von 1 bis 4)

51

5. Analyse und Evaluation

Validitatsprufungen

Neben der Identifizierung von Faktoren, die die Benchmark beeinflussen, war ein weiteres Ziel
der Betreuungsanalyse die Validierung der Qualitdtsanalyse. Dazu wurden die Betreuer gebeten,
ihre subjektive Einschatzung der Qualitat und der Wartbarkeit des Quelltextes abzugeben.
Mit einem Korrelationskoeffizienten von r=0,561089514 weist die Qualitdtseinschatzung der
Betreuer nur eine mittlere lineare Korrelation mit den Ergebnissen der Qualitatsanalyse auf.
Die Korrelation der Wartbarkeitseinschatzung liegt mit r=0,134473309 sogar noch deutlich
darunter.

Die Ursachen fiir die geringe Ubereinstimmung mit der Benchmark miissen nicht in der
Ermittlung der Benchmark liegen. Die geringe Anzahl untersuchter Projekte, eine andere
Interpretation der Begriffe Wartbarkeit und Qualitéat durch die Betreuer oder der lange Zeitraum
zwischen Abschluss der Projekte und Durchfithrung der Umfrage konnen Grinde fir diese
Abweichung sein. Die altesten Projekte wurden bereits im Jahr 2010 durchgefiihrt, daher liegt
es nahe, dass die Betreuer sich nicht mehr an Details der Projekte erinnern, die eventuell
Einfluss auf die Bewertung gehabt haben konnten. Dafiir spricht auch, dass die Einschéatzung
der Betreuer zur Arbeitsverteilung der Teilnehmer nur eine mittlere Korrelation (r=0,380005319)
mit der Verteilung der Commits auf die Teilnehmer aufweist (siehe Tabelle 5.8).

Variationskoeffizient der Einschatzung der Heterogenitat
Projekt Commits pro Teilnehmer der Leistungen
Projekt A 0,774
1,119
1,151
0,806
0,690
0,793

AN P W AN

Tabelle 5.8.: Vergleich der realen Verteilung der Commits auf die Studierenden und der Ein-
schatzung der Betreuer zur Arbeitsverteilung (auf einer Skala von 1 bis 4)

Weitere Ergebnisse

Keinen Einfluss auf die Qualitat der untersuchten Projekte hatten die fachliche und technische
Komplexitat der Projekte, der Grad der Zusammenarbeit der Studierenden, die Heterogenitat
der Leistungen der Teilnehmer und das Ausmafl an neuen Technologien, die zur Umsetzung
verwendet wurden. Auch der von den Betreuern eingeschétzte Erfolg der Projekte korrelierte
nicht mit der Benchmark (Daten siehe Anhang A.3). Vermutlich spielen in der Bewertung
der Studienprojekte viele andere Aspekte eine Rolle und verringern damit den Einfluss der

52

5.4. Handlungsempfehlungen

Wartbarkeit. In den Aspekten Vorgehensmodell, Refactoring-Sprints, regelméafiige Arbeitstref-
fen und ob die Betreuer am Projekt weiterforschten und -entwickelten unterschieden sich die
Projekte nicht oder nur minimal, sodass kein Einfluss auf die Benchmark berechnet werden
konnte. In diesen Punkten gibt es daher keinen Anlass zur Verdnderung und die Betreuer
konnen diese Bereiche gestalten, wie sie es fiir richtig halten.

5.4. Handlungsempfehlungen

Kernziel der vorliegenden Arbeit war es, aus den Erkenntnissen dieser Arbeit Empfehlungen
fir die zukiinftige Betreuung und Durchfithrung von Studienprojekten am Fraunhofer IAO
abzuleiten. Nachfolgend werden vier Empfehlungen vorgestellt, die neue Ansétze zur Betreuung
und Durchfithrung liefern.

GleichmaBige Arbeitsverteilung anstreben

Die Repository-Analyse ergab, dass die Ergebnisse der Projekte besser waren, wenn sich die
Commits gleichmaflig auf alle Wochentage verteilten. Die Betreuer sollten die Teilnehmer
daher motivieren, auch auflerhalb der vorgeschriebenen Projekttreffen am Projekt zu arbeiten.
Auch die gleichmafige Verteilung der Commits nach Kalendertagen fithrt zu besseren
Benchmark-Ergebnissen. Den Teilnehmern sollte daher klargemacht werden, dass die Er-
gebnisse ihres Projekts — und damit auch ihre Note — besser ausfallen, wenn sie mit der
Bearbeitung ihrer Aufgaben nicht erst kurz vor der Abgabe beginnen.

Dariiber hinaus konnen die Betreuer die Zeitraume zwischen den Review-Terminen verkiirzen
und die Studierenden damit zwingen, regelmaflig am Projekt zu arbeiten. Die Freude am Projekt
wird man bei den Studierenden damit allerdings nicht unbedingt steigern. Eine andere Idee
ware es daher eine intrinsische Motivation zu schaffen, sodass die Studierenden von ihrem
Projekt profitieren und nicht nur an einer guten Note interessiert sind.

Geringe Teilnehmerzahl anstreben

Nach der Analyse zur Teilnehmerzahl der untersuchten Projekte erreichen Projekte mit weniger
Teilnehmern einen besseren Platz in der Benchmark. Ziel des Fraunhofer IAO sollte es daher
sein, neue Projekte mit einem moglichst kleinen Team durchzufithren. Da die Teilnehmer aber
gleichméaflig auf alle angebotenen Projekte verteilt werden, ist nur eine geringe Einflussnahme
moglich. Moglicherweise wire es daher eine Option, grofie Teams in kleine Untergruppen zu
unterteilen, die moglichst autark an einem Teil des Systems arbeiten. Die Schnittstellen sollten
dann von den Betreuern gepriift werden, um Probleme zu vermeiden.

53

5. Analyse und Evaluation

Hohe Qualifikation der Betreuer beibehalten

Die Ergebnisse der Betreuungsanalyse haben gezeigt, dass Projekte in der Benchmark besser
abschneiden, wenn die Betreuer eine hohe fachliche und technische Qualifikation aufweisen.
Aus eigener Erfahrung ist die Qualifikation der Betreuer der Studienprojekte des Fraunhofer
IAO bereits sehr hoch. Eine Beibehaltung der hohen Qualifikation ist daher erstrebenswert.
Eine mogliche Mafinahme wire, vornehmlich solche Projekte anzubieten, deren Ergebnisse die
Betreuer bei ihrer Arbeit unterstiitzen. Damit kann die Qualifikation der Betreuer sichergestellt
werden. Hinzu kommt, dass diese Maf3inahme auch einen positiven Einfluss auf die Motivation
der Betreuer ausiibt.

Verwendung von Bibliotheken fordern

Die Betreuungsanalyse ergab, dass Projekte, die viele Drittanbieter-Bibliotheken verwenden
einen besseren Platz in der Benchmark erreichen. Die Betreuer sollten daher die Studierenden
ermutigen, vorhandene Funktionen aus Bibliotheken zu verwenden und sich dabei an Bei-
spielimplementierungen zu orientieren. Durch Updates der verwendeten Bibliotheken kdnnen
die Betreuer im Vergleich zur Eigenimplementierung durch die Studierenden zusatzlich ihren
Wartungsaufwand reduzieren.

54

6. Zusammenfassung und Ausblick

In dieser Arbeit wurde die Qualitat von sechs Studienprojekten untersucht, die in den letzten
Jahren am Fraunhofer IAO in Kooperation mit der Universitat Stuttgart durchgefithrt wurden.
Dartiber hinaus wurden zwei weitere Analysen durchgefiihrt, die mogliche Einflussfaktoren
auf die Qualitdt der Projekte ermitteln sollten.

Die Qualitdtsanalyse dieser Arbeit ist in etwa vergleichbar mit Qualitatsanalysen im kommer-
ziellen Projektumfeld. Auch bei diesen Analysen kommen die in Abschnitt 2.2 vorgestellten
Methoden zum Einsatz und auch Automatisierung ist dort von hoher Bedeutung, da die Analy-
sen meist zur Uberwachung der Qualitit von Projekten eingesetzt werden. Die Zielsetzung
ist jedoch eine andere: wéhrend es bei der Qualitatsanalyse der vorliegenden Arbeit um eine
Einschatzung der Gesamtqualitat der untersuchten Software ging, ist es im industriellen Um-
feld von grofler Bedeutung, von einer ungeniigenden Gesamtqualitat auf die mangelhaften
Komponenten schlieflen zu konnen, um Korrekturen vorzunehmen und Verbesserung der
Qualitat zu erreichen.

Zur Analyse der Qualitat wurde eine Benchmark entwickelt, auf der die untersuchten Projekte
hinsichtlich ihrer Wartbarkeit eingeordnet wurden. Diese Benchmark legte offen, dass die
Projekte sich teilweise deutlich in ihrer Qualitat unterscheiden. Zwischen dem schlechtesten
und dem besten Projekt lag der Faktor 1,4. Bei der Analyse der Teilmerkmale bot sich ein
ahnliches Bild. Teilweise war hier die Streuung der Projekte sogar noch grof3er.

Die Analyse der Quellcode-Repositories der untersuchten Projekte ergab, dass die Verteilung
der Arbeit nach Wochentagen und iiber den gesamten Projektverlauf die Qualitat der entste-
henden Software mafigeblich beeinflusst. Daraus leitet sich die Empfehlung ab, die Teilnehmer
zu animieren, sich ihre Arbeit gleichméflig einzuteilen und nicht nur einen Tag in der Woche
oder kurz vor den Abgaben am Projekt zu arbeiten.

Die Betreuungsanalyse zeigte auf, dass die Teilnehmerzahl, die Qualifikation der Betreuer und
die Verwendung von Drittanbieter-Bibliotheken ebenfalls deutlichen Einfluss auf die Qualitét
des Quellcodes nehmen. Auch hier wurden Empfehlungen zur Verbesserung der Betreuung
und Durchfithrung von zukiinftigen Studienprojekten am Fraunhofer IAO abgeleitet.

55

6. Zusammenfassung und Ausblick

Ausblick

Die Analysen dieser Arbeit konnen auf zukiinftige Studienprojekte am Fraunhofer IAO oder
anderen Instituten angewendet werden. Durch die Verwendung der Benchmark kann so sehr
einfach festgestellt werden, ob sich die Qualitat der Projekte verandert. Auch die Repository-
Analyse kann grof3tenteils automatisiert angewendet werden. Einzig die Betreuungsanalyse
wiurde einen etwas hoheren Aufwand erfordern, da diese manuell durchzufiihren ist.

Ankniipfend an diese Arbeit konnten die automatisierten Analysen auch auf das Software-
praktikum angewendet werden, das ebenfalls an der Universitat Stuttgart durchgefiithrt wird.
Beim Softwarepraktikum arbeitet ein ganzer Jahrgang des Studiengangs Softwaretechnik in
Dreier-Teams tiber ein Semester lang an der gleichen Aufgabenstellung. Die Ergebnisse der
Teams haben daher eine viel hohere Vergleichbarkeit, als die in dieser Arbeit untersuchten
Studienprojekte. Aulerdem hétte man so direkt eine viel groflere Anzahl an Datenpunkten, da
das Softwarepraktikum typischerweise jedes Jahr mit mehr als 20 Gruppen durchgefiihrt wird.
Aufgrund der héheren Vergleichbarkeit konnte eine Analyse der Projekte auch wahrend des
Projekts zu bestimmten Meilensteinen durchgefithrt werden, um einen Eindruck vom Verlauf
der Projekte zu bekommen.

56

A. Anhang

A.1. Installation des Werkzeugs

Im Folgenden wird die Installation des entstandenen Werkzeugs beschrieben. Dabei wird davon
ausgegangen, dass ein Windows-System verwendet wird. Grundsétzlich sollte die Verwendung
des Werkzeugs auch auf Linux funktionieren.

Installation von Python

Die aktuelle Version von Python kann unter https://www.python.org/downloads/ herunterge-
laden werden. Installieren Sie Python mithilfe des Installers.

Installation von Git

Installieren Sie die aktuelle Version von Git unter https://git-scm.com/download. Es sind keine
besonderen Konfigurationen notwendig.

Installation der Python-Bibliotheken

Offnen Sie eine Eingabeaufforderung und fithren Sie nacheinander die Befehle pip install
gitpython, pip install pyyaml, pip install numpy und pip install python-dateutil aus.

Installation von Node.js und hpm

Die aktuelle Version von Node.js und npm finden Sie unter https://nodejs.org/en/download/.
Laden Sie den Installer herunter und folgen Sie den Anweisungen zur Installation.

57

https://www.python.org/downloads/
https://git-scm.com/download
https://nodejs.org/en/download/

A. Anhang

Installation von http-server

Offnen Sie eine Eingabeaufforderung und fithren Sie den Befehl npm install http-server -g aus,
um den http-server als globales Modul auf ihrem System zu installieren.

Installation von SourceMeter

Unter https://www.sourcemeter.com/download/ kénnen Sie die aktuelle Version von SourceMe-
ter beantragen. Sie erhalten den Download-Link an die von Thnen angegebene E-Mail-Adresse.
Laden Sie das Archiv herunter, entpacken Sie es und legen Sie die Dateien in einem Verzeichnis
ihrer Wahl ab.

Installation von Java

Laden Sie unter https://java.com/de/download/ die aktuelle Java-Version herunter und instal-
lieren Sie diese mittels des Installers.

Konfiguration des Werkzeugs
Das Werkzeug kann uiber eine yaml-Konfigurationsdatei konfiguriert werden. In diese Datei
tragt der Nutzer folgende Daten ein:

« Die Projekte mit ihrem Verzeichnis, ihrem Namen und dem Versionsstand auf dem die
Analyse durchgefithrt werden soll

 Den Pfad zur SourceMeter-Anwendung und eine Filterdatei, um einzelne Verzeichnisse
aus der Analyse auszuschlieflen

« Den Pfad zum Quellcode des Web-Frontends, um fiir jedes Projekt ein eigenes Web-
Frontend erstellen zu kénnen

« Ein Ausgabeverzeichnis, in das die Ergebnisdateien abgelegt werden sollen

Verwendung des Werkzeugs
Offnen Sie die Datei config.yaml und konfigurieren Sie das Werkzeug. Tragen Sie hierzu die zu

untersuchenden Projekte, das Ausgabeverzeichnis, den Pfad zur SourceMeter-Installation und
den Pfad zum dist-Verzeichnis des Web-Frontends ein.

58

https://www.sourcemeter.com/download/
https://java.com/de/download/

A.2. Fragebogen zur Betreuungsanalyse

Fithren Sie die Datei calculate_benchmark.py aus und warten Sie bis die Analyse abgeschlossen
ist. In dem von Thnen ausgewéhlten Ausgabeverzeichnis wurden nun fiir jedes Projekt die
Ergebnisdateien und das fertige Web-Frontend angelegt.

Um das Web-Frontend auszufithren, 6ffnen Sie eine Eingabeaufforderung, navigieren Sie in
das Verzeichnis des Web-Frontends und fithren Sie den Befehl http-server aus. Nun kénnen Sie
das Web-Frontend im Browser unter http://localhost:8080 erreichen.

A.2. Fragebogen zur Betreuungsanalyse

Zur Durchfithrung der Betreuungsanalyse aus Abschnitt 3.3 wurde den Betreuern ein Fragebo-
gen per E-Mail zugeschickt. Nachfolgend ist dieser Fragebogen abgebildet.

59

http://localhost:8080

Fragebogen zur Ermittlung der Qualitat und Betreuung von
Studienprojekten

Im Rahmen meiner Bachelorarbeit fiihre ich eine Untersuchung der Qualitdt von Studienprojekten
anhand der Quellcode-Repositories durch, die in den letzten Jahren am Fraunhofer IAO durchgefiihrt
wurden. Um ein wenig Kontext flir die Projekte zu haben, wiirde ich Sie als Betreuer bitten, mir bei
meiner Studie zu helfen und den nachfolgenden Fragebogen auszufillen und per Mail an mich
zuriickzuschicken.

Falls Sie mehrere Projekte betreut haben, fillen Sie bitte fiir jedes Projekt eine separate Kopie dieses
Fragebogens aus. Die Ergebnisse werden selbstverstandlich vertraulich behandelt.

Falls Sie Fragen oder Anmerkungen zum Fragebogen haben, kdnnen Sie sich gerne per Mail an mich
oder meinen Betreuer wenden.

Vielen Dank fir lhre Mithilfe,

Benedikt Kersjes

Allgemeine Fragen

Welches Projekt haben Sie betreut?

Klicken oder tippen Sie hier, um Text einzugeben.

Wie kompliziert war der fachliche Hintergrund aus lhrer Sicht?
Sehr einfach Sehr kompliziert

0 0 0 U

Wie kompliziert war die technische Umsetzung aus lhrer Sicht?
Sehr einfach Sehr kompliziert

[0 0 O

In welchem AusmaRB wurde der erwartete Funktionsumfang umgesetzt?
Kaum umgesetzt Nahezu vollstandig umgesetzt

U U L] L

Wie schétzen Sie subjektiv den Erfolg des Projekts ein?
Kaum erfolgreich Sehr erfolgreich

[0 0 0

Fragen zur Qualitat

Wie hoch schitzen Sie die Qualitat des Quellcodes insgesamt ein?
Sehr gering Sehr hoch
Ol Ul Ul Ul

Wie hoch schitzen Sie die Wartbarkeit des Quellcodes insgesamt ein?
Sehr gering Sehr hoch
O O O O

Haben Sie das Projekt als Grundlage fiir Ihre weitere Forschung verwendet?

] Ja] Nein L1 WeiR ich nicht

Haben Sie am Quellcode des Projekts weiterentwickelt?

JJa L] Nein] WeiR ich nicht

Fragen zur Betreuung

Wie hoch schitzen Sie die Betreuungsqualitat ein?
Sehr gering Sehr hoch
Ol Ul Ul Ul

Haben Sie sich die Verantwortlichkeiten untereinander aufgeteilt (z.B.
fachlicher/technischer/organisatorischer Ansprechpartner)?

] Ja, wir haben uns aufgeteilt
O] Nein, jeder war Ansprechpartner fir alles

] WeiR ich nicht

Wie hoch war die Kenntnis der Betreuer liber die fachlichen Themen des Studienprojekts?
Sehr gering Sehr hoch
O O O O

Wie hoch war die Kenntnis der Betreuer iiber die technischen Themen des Studienprojekts?
Sehr gering Sehr hoch
Ol Ul Ul l

Fragen zur Umsetzung

Welches Vorgehensmodell haben die Studierenden verwendet?

Klicken oder tippen Sie hier, um Text einzugeben.

War das Vorgehensmodell vorgegeben?

O Ja] Nein] WeiR ich nicht

Falls das Vorgehensmodell Scrum war: Wurden Refactoring-Sprints durchgefiihrt?

] Ja] Nein L1 WeiR ich nicht

Haben sich die Studierenden regelmaRig getroffen, um am Projekt zu arbeiten?

O Ja [Nein] WeiR ich nicht

Wie gut war die Zusammenarbeit der Studierenden aus lhrer Sicht?
Sehr schlecht Sehr gut
Ol Ul Ul l

Haben die Studierenden eher gleiche Leistungen erbracht oder waren die Leistungen der
Studierenden heterogen?

Eher gleich Eher ungleich
] Ll Ul Ll

Wurden eher wenige oder eher viele Drittanbieter-Bibliotheken verwendet?
Eher wenige Eher viele

[0 0 0

Wurden bewahrte Technologien verwendet oder neue Technologien erprobt?
Viele bewdhrte Technologien Viele neue Technologien

[0 0 U

A. Anhang

A.3. Weitere Daten der Analysen

In diesem Kapitel sind die ermittelten Daten der Repository-Analyse und der Betreuungsanalyse
aufgefiihrt, fiir die kein Zusammenhang mit der Benchmark ermittelt werden konnte.

Projekt Mittelwert Standardabweichung Variationskoeffizient
Projekt A 1272,310 3857,993 3,032
8752,997 94241,504 10,767
4378,547 35212,817 8,042
2274,838 6829,125 3,002
1899,629 8261,468 4,349
1399,790 8524,505 6,090

Tabelle A.1.: Tabellarische Darstellung der gednderten Zeilen pro Tag

Projekt Mittelwert Standardabweichung Variationskoeffizient
Projekt A 159,286 123,351 0,774
78,625 87,977 1,119

172,350 198,368 1,151

245,056 197,624 0,806

131,786 90,985 0,690

73,813 58,511 0,793

Tabelle A.2.: Tabellarische Darstellung der Commits pro Teilnehmer

66

A.3. Weitere Daten der Analysen

Projekt Mittelwert Standardabweichung Variationskoeffizient
Projekt A 51761,857 38697,254 0,748
427802,750 1010418,701 2,362

168574,050 252871,137 1,500

46128,667 39319,690 0,852

100951,714 84900,076 0,841

32545,125 43821,516 1,346

Tabelle A.3.: Tabellarische Darstellung der geanderten Zeilen pro Teilnehmer

Projekt Mittelwert Standardabweichung Variationskoeffizient
Projekt A 324,962 1500,003 4,616
5441,052 52128,408 9,581

978,091 15160,940 15,501

188,238 1344,150 7,141

766,029 3531,816 4,611

440,916 4540,663 10,298

Tabelle A.4.: Tabellarische Darstellung der gednderten Zeilen pro Commit

Projekt Fachliche Komplexitat Technische Komplexitat
Projekt A 3 3
3 2
4 4
2 4
2 3
3 3

Tabelle A.5.: Einschatzung der Komplexitat durch die Betreuer (auf einer Skala von 1 bis 4)

67

A. Anhang

Projekt Zusammenarbeit
Projekt A 4
2
2
2
4
3
Tabelle A.6.: Einschiatzung der Zusammenarbeit durch die Betreuer (auf einer Skala von 1 bis
4)
Projekt Heterogenitat der Leistungen
Projekt A

AN PP O BN

Tabelle A.7.: Einschédtzung der Heterogenitét der Leistungen durch die Betreuer (auf einer
Skala von 1 bis 4)

68

A.3. Weitere Daten der Analysen

Projekt Menge an neuen Technologien
Projekt A 2
1

1,5

4

Projekt E 1
Projekt F 2

Tabelle A.8.: Einschiatzung des Ausmafies neuer Technologien durch die Betreuer (auf einer
Skala von 1 bis 4)

Projekt Erfolg
Projekt A 4
3
4
2
Projekt E 3
Projekt F 4

Tabelle A.9.: Einschatzung des Erfolgs durch die Betreuer (auf einer Skala von 1 bis 4)

69

Literaturverzeichnis

[AC94]

[Aht03]

[AM96]

[Bas]

[BDKT00]

[BDW99]

[BHSV04]

[BKA15]

[BV04]

[CDK98]

[che]

F.B. Abreu, R. Carapuca. ,Object-oriented software engineering: Measuring and
controlling the development process®. In: Proceedings of the 4th international
conference on software quality. Bd. 186. 1994, S. 1-8 (zitiert auf S. 23, 24).

T. Ahtee. ,Inspections and historical data in teaching software engineering
project course®. In: Software Engineering Education and Training, 2003.(CSEE&T
2003). Proceedings. 16th Conference on. IEEE. 2003, S. 288-297 (zitiert auf S. 15).

F.B. e Abreu, W. Melo. ,Evaluating the impact of object-oriented design on
software quality”. In: Software Metrics Symposium, 1996., Proceedings of the 3rd
International. IEEE. 1996, S. 90-99 (zitiert auf S. 31).

BasLeijdekkers. BasLeijdekkers/MetricsReloaded: Automated code metrics plugin
for Intelli] IDEA. https://github.com/BasLeijdekkers/MetricsReloaded. [Online;
abgerufen am 14.07.2017] (zitiert auf S. 27).

B. Bruegge, A. H. Dutoit, R. Kobylinski, G. Teubner. , Transatlantic project courses
in a university environment®. In: Software Engineering Conference, 2000. APSEC
2000. Proceedings. Seventh Asia-Pacific. IEEE. 2000, S. 30-37 (zitiert auf S. 11).

L.C. Briand, J. W. Daly, J. K. Wust. ,A unified framework for coupling measu-
rement in object-oriented systems®. In: IEEE Transactions on software Engineering
25.1(1999), S. 91-121 (zitiert auf S. 31).

L. Bischofs, W. Hasselbring, J. Sauer, O. Vornberger. ,Das Virtuelle Softwarepro-
jekt®. In: (2004) (zitiert auf S. 11).

B. Bruegge, S. Krusche, L. Alperowitz. ,Software engineering project courses
with industrial clients®. In: ACM Transactions on Computing Education (TOCE)
15.4 (2015), S. 17 (zitiert auf S. 11).

M. Bruntink, A. Van Deursen. ,Predicting class testability using object-oriented
metrics®. In: Source Code Analysis and Manipulation, 2004. Fourth IEEE Internatio-
nal Workshop on. IEEE. 2004, S. 136145 (zitiert auf S. 22, 31).

S.R. Chidamber, D. P. Darcy, C. F. Kemerer. ,Managerial use of metrics for object-
oriented software: An exploratory analysis®“. In: IEEE Transactions on software
Engineering 24.8 (1998), S. 629-639 (zitiert auf S. 31).

checkstyle. checkstyle - Checkstyle 8.0. http://checkstyle.sourceforge.net/. [Online;
abgerufen am 14.07.2017] (zitiert auf S. 28).

71

https://github.com/BasLeijdekkers/MetricsReloaded
http://checkstyle.sourceforge.net/

Literaturverzeichnis

[CK94]

[CLC09]

[CMRW77]

[Coné68]

[CR94]

[DHZS99]

[DJLW09]

[EHDO1]

[Fac]

[Fin]

[Fro]

[Git]

[GSM13]

[Hamo06]

72

S.R. Chidamber, C.F. Kemerer. ,A metrics suite for object oriented design®. In:
IEEE Transactions on software engineering 20.6 (1994), S. 476-493 (zitiert auf
S. 23-25).

C. Costa-Soria, M. Llavador, M. del Carmen Penades. ,,An approach for tea-
ching software engineering through reverse engineering”. In: EAEEIE Annual
Conference, 2009. IEEE. 2009, S. 1-6 (zitiert auf S. 11).

G.E. Company, J. A. McCall, P.K. Richards, G.F. Walters. Factors in software
quality. Information Systems Programs, General Electric Company, 1977 (zitiert
auf S. 17, 18).

M.E. Conway. ,How do committees invent®. In: Datamation 14.4 (1968), S. 28-31
(zitiert auf S. 12).

V. Caldiera, H. D. Rombach. ,, The goal question metric approach®. In: Encyclopedia
of software engineering 2.1994 (1994), S. 528—-532 (zitiert auf S. 19, 20).

B. Demuth, H. HuBmann, S. Zschaler, L. Schmitz. ,Erfahrungen mit einem frame-
workbasierten Softwarepraktikum®. In: Software Engineering im Unterricht der
Hochschulen SEUH 99 (1999), S. 21-30 (zitiert auf S. 11).

F. Deissenboeck, E. Juergens, K. Lochmann, S. Wagner. ,Software quality models:
Purposes, usage scenarios and requirements”. In: Software Quality, 2009. WOSQ’09.
ICSE Workshop on. IEEE. 2009, S. 9-14 (zitiert auf S. 16).

L. H. Etzkorn, W. E. Hughes, C. G. Davis. ,Automated reusability quality analysis
of OO legacy software®. In: Information and Software Technology 43.5 (2001),
S. 295-308 (zitiert auf S. 22, 25, 31).

Fachbereich Informatik, Universitit Stuttgart. Studienprojekte: Informationen
fiir Studierende | Der Fachbereich Informatik | Universitdt Stuttgart. https://
www.informatik.uni- stuttgart.de/studium/studierende/bsc- studiengaenge/
softwaretechnik/studienprojekte/studi-infos-index.html. [Online; abgerufen am
12.07.2017] (zitiert auf S. 11).

FindBugs. FindBugs™- Find Bugs in Java Programs. http://findbugs.sourceforge.
net/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 28).

FrontEndART Ltd. SourceMeter - Free-to-use, Advanced Source Code Analysis Suite.
https://www.sourcemeter.com/. [Online; abgerufen am 14.07.2017] (zitiert auf
S. 26).

Git. Git - git-svn Documentation. https://git-scm.com/docs/git-svn. [Online;
abgerufen am 13.08.2017] (zitiert auf S. 33, 38).

S. Gokhale, T. Smith, R. McCartney. ,Teaching software maintenance with open
source software: Experiences and lessons®. In: 2013 IEEE Frontiers in Education
Conference (FIE). IEEE. 2013, S. 1664-1670 (zitiert auf S. 11).

T. Hampp. ,Quantitative Analyse studentischer Projekte”. In: Softwaretechnik-
Trends 26.1 (2006) (zitiert auf S. 15).

https://www.informatik.uni-stuttgart.de/studium/studierende/bsc-studiengaenge/softwaretechnik/studienprojekte/studi-infos-index.html
https://www.informatik.uni-stuttgart.de/studium/studierende/bsc-studiengaenge/softwaretechnik/studienprojekte/studi-infos-index.html
https://www.informatik.uni-stuttgart.de/studium/studierende/bsc-studiengaenge/softwaretechnik/studienprojekte/studi-infos-index.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://www.sourcemeter.com/
https://git-scm.com/docs/git-svn

Literaturverzeichnis

[HCNOO]

[Hof13]
[Ima]

[1S001]

[1SO11]

[LH93]

[LL13]

[MS]

[MBD+09]

[McC76]

[Mey88]

[OW14]

[Pea95]

[PMD]

R. Harrison, S. Counsell, R. Nithi. ,Experimental assessment of the effect of
inheritance on the maintainability of object-oriented systems®. In: Journal of
Systems and Software 52.2 (2000), S. 173-179 (zitiert auf S. 31).

D. W. Hoffmann. Software-Qualitdt. Springer-Verlag, 2013 (zitiert auf S. 21).

Imagix. Static Analysis, Software Metrics and Test - Imagix. https://www.imagix.
com / products / static - analysis - and - metrics . html. [Online; abgerufen am
14.07.2017] (zitiert auf S. 27).

ISO 9126. Software engineering — Product quality — Part 1: Quality model. Norm
ISO/IEC 9126-1:2001. Genf, CH: International Organization for Standardization,
Juni 2001 (zitiert auf S. 16).

ISO 25010. Systems and software engineering — Systems and software Quality Re-
quirements and Evaluation (SQuaRE) — System and software quality models. Norm
ISO/IEC 25010:2011. Genf, CH: International Organization for Standardization,
Marz 2011 (zitiert auf S. 16).

W. Li, S. Henry. ,,Object-oriented metrics that predict maintainability®. In: Journal
of systems and software 23.2 (1993), S. 111-122 (zitiert auf S. 23, 31).

J. Ludewig, H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. dpunkt. verlag, 2013 (zitiert auf S. 21).

M Squared Technologies. Resource Standard Software Source Code Metrics For C,
C++, C# and Java. http://msquaredtechnologies.com/m2rsm/index.htm. [Online;
abgerufen am 14.07.2017] (zitiert auf S. 27).

K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval, F. Bellingard,
P. Vaillergues. ,,The squale model—A practice-based industrial quality model®. In:
Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. IEEE.
2009, S. 531-534 (zitiert auf S. 18).

T.J. McCabe. , A complexity measure®. In: I[EEE Transactions on software Enginee-
ring 4 (1976), S. 308-320 (zitiert auf S. 24).

B. Meyer. Object-oriented software construction. Bd. 2. Prentice hall New York,
1988 (zitiert auf S. 31).

J.-P. Ostberg, S. Wagner. ,,On Automatically Collectable Metrics for Software
Maintainability Evaluation®. In: Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM-MENSURA),
2014 Joint Conference of the International Workshop on. IEEE. 2014, S. 32-37
(zitiert auf S. 31).

K. Pearson. ,Note on regression and inheritance in the case of two parents®. In:
Proceedings of the Royal Society of London 58 (1895), S. 240—-242 (zitiert auf S. 34).

PMD. PMD. https://pmd.github.io/. [Online; abgerufen am 14.07.2017] (zitiert
auf S. 28).

73

https://www.imagix.com/products/static-analysis-and-metrics.html
https://www.imagix.com/products/static-analysis-and-metrics.html
http://msquaredtechnologies.com/m2rsm/index.htm
https://pmd.github.io/

[Pow]

[PSB11]

[PSV11]

[sau]

[Sem]

[Son]

[Vir]

[VMV+05]

[Wal]

[WLH+12]

[Zus93]

Power Software. Power Software - Products - Essential Metrics. http://www.
powersoftware.com/em/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 27).

W. Poncin, A. Serebrenik, M. van den Brand. ,Mining student capstone projects
with FRASR and ProM®. In: Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications
companion. ACM. 2011, S. 87-96 (zitiert auf S. 16).

W. Poncin, A. Serebrenik, M. Van Den Brand. ,Process mining software reposito-
ries”. In: Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on. IEEE. 2011, S. 5-14 (zitiert auf S. 16).

sauerf. Metrics 1.3.6. http://metrics.sourceforge.net/. [Online; abgerufen am
14.07.2017] (zitiert auf S. 27).

Semantic Designs. Semantic Designs: Java Source Code Metrics. http://www.
semanticdesigns.com/Products/Metrics/JavaMetrics.html. [Online; abgerufen
am 14.07.2017] (zitiert auf S. 27).

SonarSource S.A. Continuous Code Quality | SonarQube. https://www.sonarqube.
org/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 26).

Virtual Machinery. JHawk - the Java metrics tool - Product Overview. http://www.
virtualmachinery.com/jhawkprod.htm. [Online; abgerufen am 14.07.2017] (zitiert
auf S. 27).

B.F. Van Dongen, A.K. A. de Medeiros, H. Verbeek, A. Weijters, W. M. Van Der
Aalst. ,The prom framework: A new era in process mining tool support.” In:
ICATPN. Bd. 3536. Springer. 2005, S. 444-454 (zitiert auf S. 16).

L. Walton. Eclipse Metrics Plugin - State Of Flow. http : / / eclipse - metrics .
sourceforge.net/. [Online; abgerufen am 14.07.2017] (zitiert auf S. 27).

S. Wagner, K. Lochmann, L. Heinemann, M. Klas, A. Trendowicz, R. Plosch,
A. Seidl, A. Goeb, J. Streit. ,The quamoco product quality modelling and assess-
ment approach®. In: Proceedings of the 34th international conference on software
engineering. IEEE Press. 2012, S. 1133-1142 (zitiert auf S. 20).

H. Zuse. ,Criteria for program comprehension derived from software complexity
metrics®. In: Program Comprehension, 1993. Proceedings., IEEE Second Workshop
on. IEEE. 1993, S. 8-16 (zitiert auf S. 31).

Alle URLs wurden zuletzt am 26. 09. 2017 gepriift.

http://www.powersoftware.com/em/
http://www.powersoftware.com/em/
http://metrics.sourceforge.net/
http://www.semanticdesigns.com/Products/Metrics/JavaMetrics.html
http://www.semanticdesigns.com/Products/Metrics/JavaMetrics.html
https://www.sonarqube.org/
https://www.sonarqube.org/
http://www.virtualmachinery.com/jhawkprod.htm
http://www.virtualmachinery.com/jhawkprod.htm
http://eclipse-metrics.sourceforge.net/
http://eclipse-metrics.sourceforge.net/

Erklirung

Ich versichere, diese Arbeit selbststandig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngemaf3 aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priiffungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Gliederung

	2 Stand der Wissenschaft und Technik
	2.1 Verwandte Arbeiten
	2.2 Qualitätsmodelle
	2.3 Metriken
	2.4 Werkzeuge

	3 Methodik
	3.1 Qualitätsanalyse
	3.2 Repository-Analyse
	3.3 Betreuungsanalyse
	3.4 Auswertung

	4 Implementierung
	4.1 Anforderungen
	4.2 Resultat
	4.3 Verwendung des Werkzeugs

	5 Analyse und Evaluation
	5.1 Ergebnisse der Qualitätsanalyse
	5.2 Ergebnisse der Repository-Analyse
	5.3 Ergebnisse der Betreuungsanalyse
	5.4 Handlungsempfehlungen

	6 Zusammenfassung und Ausblick
	A Anhang
	A.1 Installation des Werkzeugs
	A.2 Fragebogen zur Betreuungsanalyse
	A.3 Weitere Daten der Analysen

	Literaturverzeichnis

