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Kurzfassung

Bei der Slit-Scan-Technik werden einzelne Streifen eines visuellen Stimulus ausgeschnitten
und entlang einer Zeitachse aneinander gefiigt. Das Resultat ist eine kompakte und leicht
interpretierbare Darstellung des Blickverhaltens eines Menschen. Gegenstand dieser Arbeit
ist die Erweiterung der Slit-Scan-Technik, um die Moglichkeit Ahnlichkeiten zwischen den
Probanden berechnen zu kénnen und diese anhand der Slit-Scans zu interpretieren. In die-
sem Zusammenhang werden Ahnlichkeitsmafie basierend auf Scanpath-, Trajektorie, und
Bildahnlichkeiten betrachtet. Im Rahmen einer Evaluation soll mit dem entwickelten Prototy-
pen untersucht werden, inwiefern sich die Ergebnisse der Ahnlichkeitsmafle mit denen der
visuellen Interpretation vertragen.

Abstract

In the slit scan technique, individual strips of a visual stimulus are cut out and joined together
along a timeline. The result is a compact and easily interpretable representation of the gaze
behavior of a person. The objective of this thesis is the extension of the slit-scan technique,
to be able to calculate the similarities between subjects and interpret those in the context
of slit-scans. In this respect, similarity measures based on scanpath-, trajectory and image
similarity are considered. Within the context of an evaluation, the developed prototype will
investigate to what extent the results of the similarity measures are compatible with those of
the visual interpretation.
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1 Einleitung

Abbildung 1.1: Ausschnitt aus dem Experiment von Alfred L. Yarbus (1967). Die Aufgabe
des Versuchs ist das einfache (freie) Betrachten eines Bildes, welches links

zu sehen ist. Das Blickverhalten eines Probanden ist dabei rechts zu sehen.
Abbildung aus [Yar67].

In seinem berithmten Experiment [Yar67] fand der Psychologe Alfred L. Yarbus ' heraus,
dass das Blickverhalten von Menschen insbesondere von der gestellten Aufgabe abhéngt. In
diesem Experiment verwendete er eine Apparatur, die es ihm erméglichte, dass Blickverhalten
von Menschen relativ genau aufzuzeichnen. In Abbildung 1.1 ist eine Beispielaufnahme eines
Probanden zu sehen, welche mittels dieser Apparatur aufgenommen wurde. Seitdem hat sich das
Eye-Tracking zunehmend als die Methode zur Erfassung des Blickverhaltens etabliert. Neben
den technische Errungenschaften, welche fiir die steigende Prazision der Eye-Tracking-Systeme
verantwortlich waren, wurden iiber die Jahre viele Analysemethoden des Blickverhaltens
entwickelt. Neben der klassischen statistischen Analyse sind hier Visualisierungstechniken
zu nennen, welche die explorative und qualitative Analyse des Blickverhaltens ermoglichen
[BKR+17]. Einige dieser Visualisierungstechniken haben jedoch bedeutende Nachteile. So
besteht bei vielen die Notwendigkeit, sogenannte Areas-Of-Interests * im Vorfeld zu definieren.
Dies erweist sich in der Regel jedoch als eine aufwandige und mithselige Aufgabe. Andere
Visualisierungstechniken vernachlédssigen hingegen die zeitliche Dimension der Blickdaten
oder konnen den visuellen Stimulus (hier handelt es sich um Videos oder einfache Bilder)
nur unzureichend in die Visualisierung integrieren. Es gibt jedoch auch Ansatze, die mit der

!https://en.wikipedia.org/wiki/Alfred_L._Yarbus (Zuletzt iiberpriift am 29.10.2017)
Unterteilungen des visuellen Stimulus in Bereiche von Interesse.


https://en.wikipedia.org/wiki/Alfred_L._Yarbus

1 Einleitung

Motivation entwickelt wurden, viele dieser Probleme zu adressieren. Als Beispiel sei hier
die Slitscan-Visualisierungstechnik von Kurzhals et al. [KW16] genannt. Bei dieser Technik
werden einzelne Streifen eines visuellen Stimulus ausgeschnitten und entlang einer Zeitachse
aneinander gefiigt. Das Resultat ist eine kompakte und leicht interpretierbare Darstellung des
Blickverhaltens eines Menschen.

Dennoch stellen Visualisierungstechniken, wie die Slitscan-Visualisierung, nicht die einzige
Maoglichkeit dar, das Blickverhalten zu analysieren. Ein weiterer Ansatz sind algorithmische
Vergleichsmethoden, mit denen das Blickverhalten von Menschen auf Ahnlichkeiten untersucht
werden kann. Eines der ersten Ahnlichkeitsmafle in diesem Zusammenhang wurde von Brandt
und Stark im Jahre 1997 auf Grundlage der Levenshtein-Distanz vorgestellt [BS97]. Seitdem
hat sich das Feld der sogenannten Scanpath-Vergleichsmafie rasant weiterentwickelt.

Oft ist man jedoch daran interessiert, die beiden genannten Analysekonzepte in einem gemein-
samen Kontext zu verwenden. In diesem Zusammenhang stellt sich die Frage, ob die Ergebnisse
der beiden Analysekonzepte in Einklang zueinander stehen, oder sogar widerspriichlich sind.
Stimmen die Ergebnisse der visuellen Analyse mit den Resultaten eines Ahnlichkeitsmafles
iberein, so kann von einer guten Eignung dieser Methode im Kontext der verwendeten Visua-
lisierung gesprochen werden.

Eine wichtige Aufgabe dieser Arbeit ist es, diese Frage im Rahmen der Slit-Scan-Visualisierung
zu beantworten. Neben den klassischen Scanpath-Maflen werden jedoch aulerdem Ahnlich-
keitsmaf3e basierend auf Trajektorie- sowie Bilddhnlichkeiten betrachtet. So soll es moglich
sein die Ahnlichkeiten zwischen den Probanden berechnen zu kénnen und diese anhand der
Slit-Scans zu interpretieren. Hierfiir wird in dieser Arbeit ein Prototyp entwickelt, welcher
diesen Anforderungen gerecht wird.



Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: Das Grundlagenkapitel beinhaltet die inhaltlichen Voraussetzun-
gen dieser Arbeit. Dabei werden grundsatzliche Begriffe des Eye-Trackings geklart
sowie Richtlinien fiir das Gebiet der Informationsvisualisierung vorgestellt. Ein weiterer
wichtiger Bestandteil der Grundlagen sind verschiedene Taxonomien zur Einordnung
der Ahnlichkeitsmafle. Das Kapitel schlieft mit den Grundlagen der hierarchischen
Clusteranalyse ab. Ein Analyseverfahren, welches breite Verwendung in dieser Arbeit

findet.

Kapitel 3 — Verwandte Arbeiten: In diesem Kapitel werden Arbeiten vorgestellt, deren Ziel-
setzung eng verwandt mit der Zielsetzung dieser Arbeit ist. Die betrachteten Arbeiten
betreffen dabei Ansitze, basierend auf punkt-basierten Visualisierungen, wie auch AOI-
basierten Visualisierungen.

Kapitel 4 — Aufgabenstellung und Konzept: Dieses Kapitel befasst sich mit der Aufgaben-
stellung dieser Arbeit sowie dem Losungskonzept. Es wird dabei auf die Auswahl der Ahn-
lichkeitsmafe eingegangen, wie auch Erweiterungen der Slitscan-Visualisierungstechnik
prasentiert. Auflerdem wird die konzeptionelle Darstellung der interaktiven Visualisie-
rung auf Grundlage der Visual-Analytics erortert.

Kapitel 5 — Implementierung: Die Umsetzung des Konzept, findet sich im Kapitel der Im-
plementierung wieder. Dabei werden die einzelnen Bedienelemente des entwickelten
Prototypen vorgestellt.

Kapitel 6 — Demonstration und Evaluation: Mithilfe des verwendeten Prototypen werden
die implementierten Ahnlichkeitsmafie evaluiert. Dabei wird ihre Eignung in Bezug auf
die visuelle Interpretation (im Kontext der Slitscan-Visualisierungstechnik) untersucht.

Kapitel 7 — Zusammenfassung und Ausblick Das letzte Kapitel schliefit mit einer Zusam-
menfassung tber die erbrachten Leistungen dieser Arbeit ab. Der Ausblick umfasst
Ansatze zur Verbesserung der Evaluation, sowie Ideen zur Weiterentwicklung von er-
dachten Konzepten.






2 Grundlagen

In diesem Kapitel werden die Grundlagen vorgestellt, welche fiir die Konzepte dieser Arbeit
relevant sind. Darunter die Grundlagen des Eye-Trackings sowie eine allgemeine Betrachtung
existierender Visualisierungstechniken. Ein weiterer wichtiger Bestandteil ist die Vorstellung
der verschiedenen Kategorien von Vergleichsmafien, die in dieser Arbeit Verwendung finden.
Ein weiterer Bestandteil stellen die Grundlagen der Informationsvisualisierung dar. Die dort
besprochenen Prinzipien finden Verwendung in der Erstellung des in dieser Arbeit entwi-
ckelten Prototypen. Das Ende dieses Kapitels schliefit mit dem Konzept der hierarchischen
Clusteranalyse ab.

2.1 Grundbegriffe des Eye-Trackings

Eye-Tracking-Systeme werden heutzutage vielféltig dazu verwendet, das Blickverhalten von
Menschen aufzuzeichnen. Dieses Blickverhalten ist in der Regel durch Ereignisse charakterisiert
[Hol15], die in diesem Kapitel erlautert werden.

2.1.1 Ereignisse bei Augenbewegungen

Im Folgenden werden einige Ereignisse genannt und erlautert, die bei Augenbewegungen
auftreten konnen. In der Regel sind Eye-Tracker in der Lage nur einige von diesen Ereignissen
aufzuzeichnen [Hol15].

Fixation Ist eine Ansammlung von Blickpunkten innerhalb eines bestimmten Zeitraums
und einer bestimmten Flache. Dieser Zeitraum betrdgt meist zwischen 200 und 300
Millisekunden.

Sakkade Stellt eine schnelle Augenbewegung (in der Regel 30-80 Millisekunden) von einer
Fixation, zu einer anderen Fixation dar. Es gibt sichere Hinweise darauf, dass ein Mensch
wihrend der Ausfithrung einer Sakkade grof3tenteils blind ist.

Auflerdem gibt es die Ereignisse : Smooth Pursuit, Glissade, Mikrosakkade, Tremor sowie den
Drift. Eine genau Beschreibung aller Ereignisse ist in [Hol15] zu finden.



2 Grundlagen

2.1.2 Scanpath

Eine Sequenz von abwechselnden Fixationen und ihren dazugehorigen Sakkaden nennt man
Scanpath, oder Fixationssequenz. Ein Scanpath kann Aufschluss iber das (Blick) Suchverhalten
einer Person geben. [BKR+17]. Scanpaths stellen auch die Grundlage fiir den Vergleich von
Blickverhalten zwischen Probanden dar. In diesem Kapitel werden spéter Vergleichsverfahren
auf Scanpaths vorgestellt.

2.2 Areas-Of-Interests

Sogenannte Areas-Of-Interests (kurz AOIs) erlauben eine detaillierte Analyse der Augenbewe-
gung eines Probanden. AQOIs definieren die Bereiche des Stimulus, die fiir den Forscher von
Interesse sind und von denen er Informationen erhalten will. [Hol15] Hierbei muss zwischen
statischen Stimuli und dynamischen Stimuli unterschieden werden. Fiir dynamische Stimuli
(wie Videos) miissen auch die AOIs entsprechend dynamisch definiert werden. [BKR+17]
AOIs missen in der Regel manuell aus dem vorliegenden Stimulus erzeugt werden, wobei es
mittlerweile auch Ansétze zur automatischen Bestimmung von AOIs gibt [PS00].

2.3 Visualisierungstechniken von Eye-Tracking

Um das Blickverhalten zu untersuchen gibt es neben der Verwendung von statistischen Me-
thoden, die Moglichkeit Visualisierungen zu verwenden. Wéhrend statistische Methoden eine
quantitative Analyse von Blickverhalten ermdglichen, kann eine geeignete Visualisierung hel-
fen, die Daten in einer explorativen und qualitativen Art und Weise zu untersuchen. [BKR+17].
Mittlerweile existieren viele unterschiedliche Ansatze zur Visualisierung von Augendaten. Um
einen Uberblick iiber die aktuellen Visualisierungstechniken zu geben, orientiert sich diese
Arbeit an der Taxonomie von Visualisierungstechniken (2017) nach Blascheck et al. [BKR+17]
Entsprechend dieser Taxonomie konnen Visualisierungstechniken in folgende Kategorien
unterteilt werden:

Punkt-basierte Methoden Réumlich -und temporale Informationen der aufgezeichnete Da-
tenpunkte werden zur Visualisierung verwendet. Eine weit verbreitete punkt-basierte
Methode ist die sogenannte Heatmap (siehe Abbildung 2.1). Sie wird verwendet, um iiber
die Verteilung der Blickdaten Aufschluss zu geben. Die zeitliche Dimension der Blickda-
ten wird dabei vernachlassigt. Eine weitere punkt-basierte Visualisierungstechnik, ist
die Slit-Scan Technik. Sie stellt die Grundlage fiir diese Arbeit dar.

AOIl-basierte Methoden Anders als bei punkt-basierten Methoden verlangen AOI-basierte
Methoden vordefinierte Areas-Of-Interests. Ein Vertreter von AOI-basierten Methoden
ist beispielsweise rechts in Abbildung 2.1 zu finden. Diese Visualisierung nennt sich



2.4 Vergleichsverfahren

AOI'1 AOI 2 AOI 3 AOl 4

(b)

Abbildung 2.1: (a) Eine Heatmap als Beispiel fiir eine punkt-basierte Visualisierung. Rote
Bereiche deuten auf eine hohe visuelle Aufmerksamkeit hin, wihrend blaue
Bereiche nur geringe visuelle Aufmerksamkeit bedeuten. (b) Die sogenannte
Parallel-Scanpath-Visualisierung stellt den zeitlichen Verlauf der betrachteten
AOQIs als vertikale Linie dar. Dies ist ein Beispiel fiir einen AOI-basierten
Ansatz. Abbildungen aus [BKR+17].

Parallel-Scanpath-Visualisierung. Sie stellt den zeitlichen Verlauf der betrachten AOIs
eines Probanden dar.

Auflerdem existieren noch Visualisierungstechniken, die sich sowohl in punkt-basierte Metho-
den als auch in AOI-basierte Methoden einordnen lassen [BKR+17].

2.4 Vergleichsverfahren

Ein Ansatz zur Vergleichsanalyse von Blickverhalten ist die Verwendung von Ahnlichkeitsma-
Ben auf Scanpaths [AAKB15]. In dieser Arbeit werden neben diesen, Ahnlichkeitsmaf3e auf
Trajektorien sowie Ahnlichkeitsmafle basierend auf Bilddhnlichkeiten betrachtet, da sich diese
im Rahmen der gegebenen Daten, ebenfalls anbieten. Dieses Kapitel stellt die verschiedenen
Kategorien von Ahnlichkeitsmaflen vor, klart deren zugrundeliegende Reprisentation und
prasentiert Taxonomien zur Einordnung der verschiedenen Verfahren.

2.4.1 AhnlichkeitsmaBe auf Scanpaths

In Kapitel 2.1.2 wurde bereits der Begriff des Scanpaths eingefiihrt. Auf Basis dieser Reprasenta-
tion von Augendaten, wurden im Laufe der Zeit viele Vergleichsmethoden entwickelt, mit dem
Ziel, objektiv Unterschiede bzw. Ahnlichkeiten zwischen Probanden ausmachen zu kénnen.
Grund dafiir ist neben der zunehmenden Beliebtheit des Eye-Trackings, die Tatsache, dass je
nach Einsatzzweck unterschiedliche Anforderungen an ein Vergleichsmaf} gestellt werden
[EYH15]. Um einen Uberblick iiber die verschiedenen Arten von Vergleichsmethoden zu geben,



2 Grundlagen

abcc

(a) (b)

Abbildung 2.2: (a) Der Vektor-basierte Ansatz erlaubt das Vergleichen von Scanpaths auf Basis
von geometrischen Groflen wie Winkeln zwischen zwei Sakkaden. Somit ist
ein Match beispielsweise auch zwischen zeitversetzten Scanpaths moglich. (b)
Eine String-Reprasentation erlaubt ebenso eine Ausrichtung zweier Strings
trotz zeitlicher Versetzung.

orientiert sich diese Arbeit an der Taxonomie nach Kibler et al. [KEK15]. Demnach kénnen
Vergleichsmafe auf Scanpaths in folgende Kategorien unterteilt werden:

Heatmaps auf Fixationen Mittels statistischer Methoden, wie Korrelation, oder der
Kullback-Leibler-Divergenz lassen sich zwei Heatmaps miteinander vergleichen [LB13].

String-basierte Reprasentationen Scanpaths werden als AOI-Strings ' reprisentiert. Damit
reduziert sich das Vergleichen zweier Scanpaths auf das Problem des String-Alignments.

Vektor-basierte Reprasentationen Fixationen als auch die Sakkaden eines Scanpaths wer-
den mathematisch als Vektoren dargestellt. Vektor-basierte Methoden erlauben meist die
Berechnung von Ahnlichkeiten auf Grundlage von verschiedenen Gréf3en, wie : Vektor-
Differenz, Sakkaden-Léngendifferenz oder euklidischer Distanz zwischen Fixationen.

Probalistische Methoden Stochastisches Modelle von Scanpaths werden generiert und als
Grundlage zum Vergleich von diesen verwendet. Wesentlich ist hierbei die Moglich-
keit, einfach aus den vorhandenen Daten die notigen Parameter fiir diese Modelle zu
extrahieren [CHC17].

Andere Methoden Es gibt Verfahren, die nicht in die genannten Kategorien fallen. Zu erwah-
nen ist hier zum Beispiel das Verfahren iComp, welches automatisch Areas-Of-Interests
mittels automatisierten Clusterings ermittelt.

1dt. : Zeichenkette.



2.4 Vergleichsverfahren

[KEK15] Die Abbildung 2.2 zeigt wie ein Matching von zwei exemplarischen Scanpaths in
verschiedenen, bereits vorgestellten Reprasentationen, aussehen kann. Dies kann beispiels-
weise iiber die Winkel zwischen den Sakkaden stattfinden, oder iiber die Ausrichtung zweier
Strings.

2.4.2 AhnlichkeitsmaBe basierend auf Bilddhnlichkeiten

Wie bereits genannt, werden neben den Ahnlichkeitsmaflen auf Scanpaths, auch Ahnlichkeits-
mafle basierend auf Trajektorien sowie Bilddhnlichkeiten in dieser Arbeit betrachtet. In diesem
Abschnitt wird erlautert, wie auf Grundlage von Histogrammen und Bildsequenzen, Bilddaten
miteinander verglichen werden kénnen.

AhnlichkeitsmaBe auf Histogrammen

Anzahl A
H B
3 3

A

Nl
03023

0 1 2 3 Grauwert

Abbildung 2.3: Links ein eindimensionales Bild A = {ay, as, as, a4, as, ag} mit sechs Elemen-
ten. Die Menge der Grauwerte ist bestimmt durch X = {0, 1,2, 3}. Rechts
das dazugehorige Histogramm H (A) = [2,0, 1, 3].

Das Histogramm Ein Histogramm stellt die Moglichkeit dar, beispielsweise die Verteilung
der Grauwerte in einem Bild zu modellieren. Wir betrachten im Folgenden eindimensionale
Graustufenbilder von der Form A = {aq, as, ..., a,}, wobei n die Anzahl der Pixel ist. Ein
Element a; € X ist das i-te Element des Bildes A, wobei X = {z¢, xs,...,2,_1} die Men-
ge von b Graustufenwerten ist. Ein Histogramm H(A) ist ein geordneter b-dimensionaler
Vektor, bestehend aus der Anzahl der Vorkommen eines jeden Grauwerts (Klasse) x; im
Bild A. Wird H;(A) als die Anzahl der Vorkommen des Grauwerts x; angenommen, so ist
H(A) =[Ho(A), Hi(a),...,Hy_1(a)] die vollstandige Spezifikation des Histogramms von A
[CS02]. Die Abbildung 2.3 zeigt ein Beispielbild mit sechs Elementen und dem dazugehérigen
Histogramm.
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Histogramm-Vergleich Um zu entscheiden, ob zwei gegebene Histogramme dhnlich zu-
einander sind, muss zunachst der Distanzbegriftf auf Histogrammen geklart werden. Dabei
kann zwischen zwei unterschiedlichen Herangehensweisen unterschieden werden [VLS+15]
(siehe Abbildung 2.4). Beim wahrscheinlichkeits-basierten Ansatz wird ein Histogramm als
Wahrscheinlichkeitsverteilung aufgefasst. Diese kann einfach erzeugt werden, indem jede
Klasse durch die Anzahl der Elemente n geteilt wird. Eine Wahrscheinlichkeitsverteilung
fiir ein Histogramm H (A) ist somit gegeben durch P = H(A)/n [Cha07]. Diese gibt somit
an wie wahrscheinlich es ist, dass ein Intensitatswert x; sich in der Sequenz A befindet. In
Anlehnung an Abbildung 2.3 wire somit beispielsweise P = (2/6,0,1/6,3/6). Im Gegensatz
zum wahrscheinlichkeits-basierten Ansatz, stellt der vektor-basierte Ansatz ein Histogramm
als Vektor einer festen Grof3e dar. Die Dimensionen entsprechen dabei den Klassen und die
Eintrage des Vektors reprasentieren die dazugehorigen Haufigkeiten. Bei dem vektor-basierten
Ansatz gilt es zudem zwischen bin-by-bin und cross-bin Distanzmaflen zu unterscheiden.

Vektor-basiert Wahrscheinlichkeits-basiert
| |
Bin-by-Bin Cross-Bin
Intersection Earth Mover's Distance Bhattacharyya
Chi-Square Quadratic Form Distance Kullback-Leibler Divergence

Abbildung 2.4: Taxonomie von einigen bekannten Distanzmafien auf Histogrammen nach
[VLS+15].

1. Die sogenannten bin-by-bin-Distanzmafle. Hier kénnen nur dieselben Klassen miteinan-
der verglichen werden. Die Distanz auf zwei Histogrammen ist dann definiert iiber die
Kombination aller paarweisen Klassen-Vergleiche. Vergleiche zwischen unterschiedli-
chen Klassen sind nicht moglich.

2. Die sogenannten cross-bin-Distanzmafle. Hier konnen verschiedene Klassen miteinander
verglichen werden. Beispielsweise ist es moglich mittels einer Ahnlichkeitsmatrix die
Ahnlichkeit zwischen verschiedenen Klassen in das Distanzmaf} einzubauen.

AhnlichkeitsmaBe auf Bildsequenzen

Es wurde bereits eine Moglichkeit eingefiihrt, wie zwei gegebene Sequenzen X = {z1,...,x,}
und Y = {y,...,y,} auf Grundlage von Histogrammen miteinander verglichen werden
konnen. Handelt es sich dabei um zwei-dimensionale Bilder, so kann daraus einfach eine
Sequenz gebildet werden, indem die Pixel des Bildes nacheinander aufgezdhlt werden. Im
Falle von Ahnlichkeitsmaflen auf Bildsequenzen betrachten wir jedoch nicht die Verteilung
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2.4 Vergleichsverfahren

der Grauwerte, sondern die Sequenzen der Intensitatswerte an sich. Die Aufgabe besteht nun
darin auf Grundlage zweier Sequenzen ein Maf} zu finden, welches angibt, wie abhangig (oder
unabhangig) diese zueinander sind [Gos12].

Ein wichtige Anwendung des Bildervergleichs findet sich im Template Matching * und im
Content-based image retrieval *. Ein bekanntes Maf} in diesem Zusammenhang ist die soge-
nannte Cross-Correlation. Betrachtet wird dabei ein zwei-dimensionales Bild f. Diese gibt die
Distanz zwischen dem um (u, v) verschobenen Musterbild ¢ und dem Bild f an. Mathematisch
ist dies definiert als:

d?t(u, ’U) == Z[f(xv y) - t('T —u,y — U)]Q

[Lew94] und lasst sich schnell im Frequenzraum mittels der Schnellen-Fourier-Transformation
losen. Neben der Cross-Correlation existieren viele weitere Mafle, wie zum Beispiel:

« Pearson correlation coefficient
« Tanimoto measure

« L norm, square Ly norm

Intensity ratio variance

Fiir eine vollstindige Auflistung und Beschreibung von weiteren Mafien wird auf Goshtasby et
al. [Gos12] verwiesen.

2.4.3 AhnlichkeitsmaBe auf Trajektorien

Mittels GPS ist es moglich sich im Raum bewegende Objekte (wie Autos die ihre Position iiber
die Zeit dndern) digital aufzuzeichnen. Eine Trajektorie eines sich bewegenden Objekts ist eine
Sequenz von Punkten in Zeit und Raum. Sie kann als (kontinuierliche) Historie der Bewegung
eines Objekts aufgefasst werden. Aufgezeichnete Daten (wie zum Beispiel mittels GPS, oder
Eye-Trackern) sind aber meist zeit-diskret von der Form 7" = [(v1, 1), . .. (vn, t,)] wobei v; die
Position des Objekts zum Zeitpunkt ¢; ist. Die Distanzmafle auf Trajektorien konnen in zwei
Kategorien untergliedert werden [MSME15]:

o rdumliche Ahnlichkeit, die lediglich die geometrische Form der Trajektorie miteinbezieht,
jedoch die temporale Dimension vernachlassigt.

« zeitlich-raumliche Ahnlichkeit, die sowohl die geometrische Form als auch die zeitliche
Dimension der Trajektorie miteinbeziehen.

?Ist eine Technik, um kleine Bildbereiche zu finden, die zu einem Musterbild passen.
3Das Problem des Auffinden von Bildern in groffen Datenbanken.
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Réaumlich-
Zeitliche
Ahnlichkeit

Zeitsequenz Bewegungs-
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|
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distance
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Geometrisch
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Abbildung 2.5: Klassifizierung von Ahnlichkeitsmaflen auf Trajektorien nach Magdy et al.
[MSME15]

Die Abbildung 2.5 zeigt eine Zuordnung verschiedener Trajektoriemafle in die zuvor genannte
Klassifikation. Innerhalb dieser Klassen gibt es eine weitere Untergliederung der Maf3e, die im
Folgenden erklart werden soll [MSME15]:

Bewegungsgeschwindigkeits-basiert Zeitliche und raumliche Dimension werden vonein-
ander getrennt und als eigenstdndige Kurven betrachtet. Somit konnen beide Groflen
unabhingig voneinander analysiert werden.

Zeitreihen-basiert Eine Trajektorie wird als Zeitreihe betrachtet. Die Normalisierung dieser
erlaubt Invarianz gegeniiber zeitlicher Versetzung und Skalierung. Die Verfahren basieren
auf der optimalen Ausrichtung der Trajektorien, weshalb die Zeitreihen zeitversetzt und
von unterschiedlicher Lange sein konnen.

Geometrisch (Form) - basiert Ermitteln die Ahnlichkeit zwischen zwei Trajektorien auf
Grundlage ihrer Form und nicht der Position ihrer Punkte.

Richtungs-basiert Aus den Trajektorien werden Richtungsprofile erstellt, welche als Grund-
lage zum Vergleich dienen. Diese Verfahren sind i.A robust gegeniiber Rauschen.
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2.5 Informationsvisualisierung

2.5 Informationsvisualisierung

Nach der Definition von de Oliveira et.al [OL03] erstellt die Informationsvisualisierung gra-
fische Modelle und visuelle Darstellungen, die eine Benutzerinteraktion zum Erfassen von
Informationen erlauben, die sich in den darunterliegenden Daten befinden. Um den Anspruch
dieser Definition gerecht zu werden, gibt es mittlerweile einige Richtlinien zur Erstellung von
Informationsvisualisierungen.

2.5.1 Das Visual Information Seeking Mantra

Eine Richtlinie zur Erstellung von Informationvisualisierungen ist das sogenannte Visual Infor-
mation Seeking Mantra : ,Overview first, zoom/filter, details on demand “von Ben Shneiderman
[Shn96]. Shneiderman begriindet weshalb ein systematisches Vorgehen bei der Erstellung von
Visualisierungen notwendig ist. Er motiviert dies mit dem folgenden Zitat:

Everything points to the conclusion that the phrase "the language of art’ is more
than a loose metaphor, that even to describe the visible world in images we need a
developed system of schemata.

aus E. H. Gombrich Art and Illusion, 1959 (p. 76) [Gom00]. Seine Richtlinie l4sst sich in Form
von folgenden sieben Aufgaben beschreiben:

Overview Erhalte einen gesamten Uberblick iiber die verfiigbaren Daten, zum Beispiel mittels
Zooming, oder Field-Of-View Boxes.

Filter Benutzer konnen uninteressante Inhalte herausfiltern, um den Fokus auf interessante
Elemente zu erhalten.

Details-on-demand Stelle nach Bedarf detaillierte Informationen von interessanten Elemen-
ten dar.

Relate Stelle Beziehungen zwischen den dargestellten Elementen dar.

History Lege ein Historie von Benutzeraktionen an, um diese nach Bedarf riickgangig zu
machen, oder neu auszufithren.

Extract Ermogliche eine Extraktion von ausgewahlten Elementen, um diese in anderen Zu-
sammenhangen wiederverwenden zu kénnen. [Shn96]
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2 Grundlagen

2.5.2 Visual Analytics

Oft ist man daran interessiert eine grofle Anzahl von Daten zu visualisieren. In diesem Fall
ist es schwer eine Ubersicht der Daten zu erhalten, ohne wesentliche Muster in diesen zu
verlieren. Das Visual Analytics versucht dieses Problem zu umgehen, indem die automatisierte
und visuelle Analyse geeignet zusammengefithrt werden. Das Seeking-Mantra von Sheiderman
kann damit zu : ,Analyse first, show the important, zoom/filter, analyse further, details on
demand “erweitert werden [KKEM10; KMSZ06]. Der Visual Analytics Prozess wird Gegenstand,
der in dieser Arbeit vorgestellten interaktiven Visualisierung sein.

Visual Data Exploration

0 User interaction

V’suallsatlon
Mapping
Transformatmn

M odel
visualisation

Model Knowledge
bunldlng

— Data

Data
mining

Models
Parameter
% refinement

Automated Data Analysis

Feedback loop

Abbildung 2.6: Der Visual Analytics Prozess - Wesentliches Merkmal des Visual Analytics
Prozess ist der Wechsel zwischen automatisierter und visueller Analyse. Ab-
bildung aus [KKEM10].

In Anlehnung an Abbildung 2.6 kann der Ansatz des Visual Analytics als iterativer Analyse-
Prozess angesehen werden. Der erste Schritt ist das Vorbereiten und Transformieren der Daten
(Data), damit diese zur Analyse verwendet werden konnen. Nach der Transformation kann
der Benutzer entweder eine visuelle oder automatisierte Analyse durchfithren. Im Falle der
automatisierten Analyse werden Data-Mining-Techniken auf den Daten verwendet, um ein
Modell (Models) der originalen Daten zu erstellen. Danach kann der Benutzer das Modell zur
Evaluation benutzen, oder es verfeinern (Parameter Refinement). Visualisierungen (Visualisati-
on) erlauben einerseits die Evaluation des genierten Modells und andererseits die Anpassung
der Parameter und Methoden zur automatisierten Datenanalyse [KKEM10].

2.6 Hierarchisches Clustering

Die Cluster-Analyse beschaftigt sich mit der Frage, wie eine Menge von Objekten geeignet
in Cluster (Gruppen) zerlegt werden konnen. Dabei sollen die Objekte innerhalb eines Clus-
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2.6 Hierarchisches Clustering

ters zueinander in engerer Beziehung stehen, als zu Elementen eines anderen Clusters. Das
hierarchische Clustering produziert Cluster, die eine hierarchische Reprasentation erzeugen.
Konzeptionell bieten sich zwei mogliche Herangehensweisen zur Erzeugung eines hierarchi-
schen Clusterings an.

Agglomerative Alle Elemente sind zunachst als einelementige Cluster definiert. Zwei Cluster
aus einer Ebene werden zusammenfuhrt, um ein Cluster in der nachst hoheren Ebene zu
bilden. Dies geschieht rekursiv. (Bottom-Up)

Divisive Alle Elemente sind zunichst in einem grofien Cluster zusammengefasst. In jedem
Schritt wird ein Cluster aus der Ebene zerteilt, sodass zwei neue Cluster in der darunter
liegenden Ebene erzeugt werden. Dies geschieht rekursiv. (Top-Down)

Um ein Clustering entsprechend der obigen Herangehensweisen zu erhalten, muss ein Ahn-
lichkeitsmaf} (bzw. Distanzmaf}) auf den betrachteten Objekten vorgeben werden. Danach
werden die paarweisen Distanzen zwischen den Elementen berechnet. In dieser Arbeit wird
das agglomerative Clustering verwendet, um ein Modell aus den berechneten Ahnlichkeiten zu
produzieren. Es wird deshalb auf diese Herangehensweise im Folgenden néher eingegangen.

2.6.1 Agglomerative Clustering

A o
o
P1 P2 P3 P4
p, 0 °
» Py 2 0 ,
% p; 6 8 0 2 | |
p., 7 9 3 0 I I
> P1 P2 o5} Pa

(a) (b) (c)

Abbildung 2.7: (a) Beispieldatensatz mit vier Elementen. Die beiden Gruppen lassen sich
visuell leicht erkennen. (b) Die Distanzmatrix zwischen den vier Elementen
gibt die paarweisen Distanzen zwischen den ihnen an. (c) Visuelle Darstellung
eines hierarchischen Clusterings mittels eines Dendrogramms auf Grundlage
der Distanzmatrix. Die markierten Eintrdge in der Distanzmatrix geben die
Distanzen zwischen den erzeugten Gruppierungen an. Als Clusteringmethode
wurde Single-Linkage verwendet.

Das aggolomerative Clustering erfordert die Definition der Distanz zwischen zwei Clustern G
und H. Dabei bieten sich folgende Méglichkeiten zur Definition dieser Distanz an [HTF17]:
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2 Grundlagen

Single-Linkage Die Distanz der beiden niachsten Nachbarn zwischen G und H definiert die
Distanz.

Complete-Linkage Die Distanz der beiden am weitesten entfernten Nachbarn zwischen G
und H definiert die Distanz.

Average-Linkage Der Durchschnitt aller paarweisen Distanzen zwischen den Elementen aus
GG und H definiert die Distanz.

Die Abbildung 2.7 zeigt das Resultat des hierarchischen Clusterings mit der Single-Linkage-
Methode.

2.6.2 Visualisierungstechniken

Im Folgenden werden zwei Moglichkeiten vorgestellt, wie die Ergebnisse eines hierarchischen
Clusterings visuell dargestellt werden konnen. Beide der folgenden Visualisierungen werden
(wenn auch in verdnderter Form) sich in dem entwickelten Prototypen wiederfinden.

Dendrogramm

Dendrogramme erméglichen die grafische Darstellung eines hierarchischen Clusterings mittels
eines bindren Baums. Die Hohe eines Knoten ist dabei proportional zu der Distanz zwischen
zwischen den Kindknoten. Die Blatter des Baums repriasentieren die einzelnen Elemente
[HTF17]. Die Abbildung 2.7 zeigt ein Beispiel fiir ein Dendrogramm.

Heatmap-Visualisierung

Abbildung 2.8: Heatmap-Visualisierung fiir das Beispiel-Clustering aus Abbildung 2.7. Ein
heller Rotton représentiert kleinere Werte, wahrend ein dunklerer Rotton
groflere Werte darstellt.
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2.6 Hierarchisches Clustering

Eine weitere Moglichkeit zur Visualisierung eines hierarchischen Clusterings [ESBB98] ist in
Abbildung 2.8 zu sehen. Die Idee ist, die Eintrage in einer tabellarischen Form darzustellen und
diese entsprechend dem reprasentierten Distanzwert einzufarben. Jedes Quadrat reprasentiert
somit die Distanz zwischen jeweils zwei Elementen. Die Bezeichner der Elemente sind dabei
horizontal sowie vertikal angebracht, sodass eine eindeutige Zuordnung der Quadrate, zu ein
Paar von Elementen moglich ist. Diese Einfarbung kann auch als Heatmap bezeichnet werden,
da Bereiche hoherer Distanz einen dunkleren Rotton aufweisen, als kleinere Distanzwerte.
Da die Distanzmatrix symmetrisch ist, sind die Eintrage der dargestellten ebenfalls symme-
trisch. Auf den Diagonalen sind die Eintrdge alle null (daher kein Rotanteil). Auferdem ist
zu sehen, dass eine Dendrogramm-Darstellung in die Heatmap-Visualisierung integriert ist.
Aus Symmetrie-Griinden ist das Dendrogramm sowohl horizontal als auch vertikal dargestellt.
Beide reprasentieren jedoch dasselbe hierarchische Clustering.

2.6.3 Vergleichsanalyse von hierarchischen Clusterings

A B C A B C

L]

A B C A B C
A x A x
B 3 x B 1 x
C 1 1 x C 1 2 x

Abbildung 2.9: Beispiel wie aus zwei gegebenen Dendrogrammen die cophentischen Werte
ermittelt werden. Die cophentischen Werte geben dabei die Ahnlichkeit zwi-
schen den (Teil-) Clusterings an. Abbildung angelehnt an Sokal et al. [SR62].

Eine Fragestellung, die sich in dem Konzept dieser Arbeit wiederfinden wird, betrifft den
Vergleich von zwei Clustering-Ergebnissen. Diese sind beispielsweise unter Verwendung ver-
schiedener Distanzmafle erzeugt worden. Konkret geht es um die Frage, wie zwei hierarchische
Clusterings miteinander verglichen werden konnen. Hierfiir gibt es unterschiedliche Ansatze,
wie der Rand-Index oder Verfahren, welche auf dem Gamma-Koeffizienten von Goodman-
Kruskal basieren [SDD13]. Eine andere Moglichkeit basiert auf den Vergleich von Dendro-
grammen, welche sich aus den hierarchischen Clusterings ergeben. Die Grundlage fiir diesen
Vergleich stellt die sogenannte cophentische Korrelation [SR62] dar. Hierfiir werden fiir jedes
Dendrogramm zunichst die cophentischen Werte berechnet. Ein Beispiel ist in Abbildung 2.9
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2 Grundlagen

zu sehen. Auf der horizontalen Achse sind dabei die Bezeichner der betrachteten Elemente auf-
getragen. Die zwei Dendrogramme stellen zwei unterschiedliche hierarchische Clusterings dar.
Auf der vertikalen Achse ist der cophentische Wertebereich aufgetragen. Die cophentischen
Werte, welche in den Tabellen unterhalb zu sehen sind, ergeben sich hierbei immer paarweise.
Fiir die Bezeichner B und C ist beispielsweise im ersten Dendrogramm der cophentische Wert
eins in die Tabelle einzutragen. Der Grund dafiir ist, dass sie auf dieser Ebene im Clustering
zusammengefiihrt wurden. Beim rechten Dendrogramm findet diese Zusammenfiihrung schon
beim Wert zwei statt. Entsprechend ist der cophentische Werte zwei in die Tabelle einzutragen.
Wurden alle cophentischen Werte ermittelt, so kann der eigentliche Vergleich stattfinden. Dies
geschieht, indem beide Tabellen als Sequenzen geschrieben werden. Bezogen auf das Beispiel
in Abbildung 2.9 wiren dies X = [3, 1, 1] (fir das linke Dendrogramm) sowie Y = [1, 1, 2] (fur
das rechte Dendrogramm). Der cophentische Korrelationskoeffizient berechnet sich, indem der
Korrelationskoeffizient nach Pearson : pxy = %);Y) [Hen11] zwischen beiden Sequenzen
X, Y bestimmt wird. Um diesen als (normierten) Ahnlichkeitswert verwenden zu konnen,
wird dieser auf den Bereich von [0, 1] abgebildet.
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Ein entscheidender Bestandteil dieser Arbeit ist die Slitscan-Visualisierungstechnik, um die
Moglichkeit des automatisierten Vergleichs von Blickverhalten zu erweitern. In diesem Zusam-
menhang sind vor allem zwei weitere Arbeiten zu erwahnen, die dieselbe Zielsetzung, unter
Verwendung unterschiedlicher Visualisierungstechniken verfolgen. Darunter die Veroffentli-
chungen : A Visual Approach for Scanpath Comparison von Raschke et al. [RHB+14] sowie
ISeeCube : Visual Analysis of Gaze Data for Video [KHW14]. Beide Arbeiten haben gemeinsam,
dass sie eine bestehende Visualisierungstechnik (Parallel-Scanpath und Space-Time-Cube), um
die Moglichkeit des Scanpath-Vergleichs und interaktiver Aktionsmoglichkeiten erweitern.
Das Ziel ist es dabei, die Vorteile der visuellen Analyse (mithilfe der zugrundeliegenden Visua-
lisierungstechnik) mit den Vorziigen der automatisierten Vergleichsanalyse (beispielsweise der
Cluster-Analyse) zu kombinieren. Die Zielsetzung besteht dabei darin, ein besseres Werkzeug
fir die Vergleichsanalyse von Scanpaths zu erschaffen. Neben diesen beiden Arbeiten wird
auflerdem eine Visualisierungstechnik namens Gaze-Stripes von Kurzhals et al. [KHH+16b]
vorgestellt. Sie ist konzeptionell sehr dhnlich zu den beiden vorher erwdhnten Arbeiten. Au-
Berdem weist sie einige Gemeinsamkeiten mit der Slitscan-Visualisierungstechnik [KW16] auf.
So handelt es sich bei beiden um punkt-basierte Visualisierungstechniken.

3.1 Arbeiten mit AOIl-basierten Visualisierungstechniken

Die im folgenden Abschnitt erlduterten Arbeiten haben gemeinsam, dass sie auf sogenann-
ten AOI-basierten Visualisierungstechniken beruhen. Es folgt zunachst eine Vorstellung der
(zeitlich) fritherer Ansatze, bevor auf die beiden Arbeiten A Visual Approach for Scanpath
Comparison sowie ISeeCube : Visual Analysis of Gaze Data for Video naher eingegangen wird.

3.1.1 Friuhe Arbeiten

Als frithe AOI-basierte Arbeiten in dem Bereich des Scanpaths-Vergleichs zahlt u.a die Software
EyePatterns von West et al. [WHRKO06]. EyePatterns erlaubt dabei die Analyse von Scanpaths
auf Basis von String-Reprasentationen. Die Autoren stellen heraus, dass die visuelle Analyse
zur Bestimmung von Ahnlichkeiten zwischen Scanpaths, anfallig fir Fehler ist. Zwar gebe es
Werkzeuge, die eine Analyse mit Ahnlichkeitsmaflen, wie die Levenshtein-Distanz ermdglichen,
jedoch sind deren Resultate fiir den Menschen meist nur schwer interpretierbar. Deshalb
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schlagen die Autoren die Verwendung von Data-Mining Methoden zur Vergleichsanalyse
von Scanpaths vor. In ihrer Software implementieren sie das hierarchische Clustering. Das
Resultat dieses Clusterings wird mit einer Baumansicht visualisiert, was die Vergleichsanalyse
vereinfachen soll. Ein weiteres Werkzeug welches in diesem Zusammenhang zu erwéhnen ist,
nennt sich IComb : A Tool for Scanpath Visualization and Comparision [HD06]. Im Vergleich zu
EyePatterns erlaubt dieses Werkzeug die automatische Bestimmung von AOIs mittels des Mean-
Shift-Clustering-Algorithmus von Santella und DeCarlo [SD04]. Beide Ansatze haben jedoch
auch gemeinsam, dass sie die Scanpaths nur unzureichend visualisieren. Die folgenden Arbeiten
konnen als Erweiterung dieser beiden Ansitze, um eine verbesserte Scanpath-Visualisierung,
angesehen werden.

3.1.2 A visual approach for scan path comparison

a) [— —_—

b) =1 x| l .............. [ s

Abbildung 3.1: Die wesentlichen Komponenten der erweiterten PSP-Visualisierung. a) Haupt-
ansicht mit den drei interaktiven Komponenten : PSP-Visualisierung, AOI-
Management sowie Szenen-Selektion. b) Optionsdialog der die Einstellung
der Clustering-spezifischen Parameter erlaubt. c) Ausgaben der Ergebnisse
des Clusterings. Abbildung aus [RHB+14].

Die Arbeit A Visual approach for scan path comparison [RHB+14] sieht sich als Erweiterung
der Parallel-Scanpath Visualisierungstechnik (kurz : PSP-Visualisierung), um die Moglichkeit
Scanpaths miteinander zu vergleichen. Die PSP-Visualisierung gehort zu den AOI-basierten
Visualisierungen. Dabei sind die AOIs auf der x-Achse angeordnet, wahrend die Zeit auf der
y-Achse abgebildet wird. Die urspriingliche PSP-Visualisierung hatte jedoch das Problem,
dass sie schlecht nach der Anzahl der Probanden skaliert. Somit erweist sich die Darstellung
mehrerer Probanden in der Visualisierung als schwierig. Die Integration von interaktiven
Aktionsmoglichkeiten in die bestehende PSP- Visualisierung soll dieses Problem adressieren.
Das Resultat ist in Abbildung 3.1 zu sehen.
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Ein besonderes Merkmal der Arbeit von Raschke et al. stellt die Vereinigung von automatisierter
Vergleichsanalyse mit einer Scanpath-Visualisierung dar. Dieselbe Zielsetzung wird in dieser
Arbeit verfolgt, jedoch unter Verwendung einer anderen Visualisierungstechnik. Dennoch weist
dieser Ansatz auch einige Nachteile auf. So neigt die Visualisierung trotz der verbesserten
Skalierungsmoglichkeit, zu visueller Uniibersichtlichkeit. Die in dieser Arbeit entwickelte
Visualisierung ist hier von Vorteil, da sie besser iiber die Anzahl der Probanden sowie der
Datensatzlange skaliert. Auflerdem ist anzumerken, dass der Bezug zum Stimulus génzlich
fehlt. Dieses Problem tritt in dem Losungsansatz dieser Arbeit auch nicht auf, da Stimulus und
Gaze-Daten kompakt gemeinsam darstellt werden.

3.1.3 ISeeCube : Visual Analysis of Gaze Data For Video

Abbildung 3.2: Die wesentlichen Komponenten von ISeeCube. a) Einstellung der STC-
spezifischen Parameter b) Die eigentliche STC-Visualisierung. Die Video-
ansicht befindet sich oben links. c) Weitere STC-spezifischen Parameter. d)
Videokontrollelemente e) Die AOIs werden in der AOI-Timeline dargestellt.
Unterhalb der AOI-Timenline sind die Scarf-Plots der einzelnen Probanden
zu sehen. Abbildung aus [KHW14].

Die Arbeit ISeeCube : Visual Analysis of Gaze Data For Video [KHW14] ist konzeptionell sehr
ahnlich zum vorher beschriebenen Ansatz. Ebenso wird eine bestehende Visualisierungstechnik
um die Méglichkeit des Scanpath-Vergleich erweitert. In der hier betrachteten Visualisierungs-
technik handelt es sich jedoch um die sogenannte Space-Time-Cube- Visualisierung (kurz
: STC-Visualisierung) . Die STC-Visualisierung (siehe Abbildung 3.2 ) erlaubt die raumliche
Verteilung der zwei-dimensionalen Gaze-Punkte tiber die Zeit zu betrachten. Somit stellt die
STC-Visualisierung die Gaze-Punkte in einem drei-dimensionalen Raum dar (zwei Raumdi-
mensionen + eine zeitliche Dimension). Um das Blickverhalten einzelner Probanden besser
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visualisieren zu konnen, wird die sogenannte Scarf-Plot-Visualisierung verwendet. Ein Scarf-
Plot gibt zu jedem Zeitpunkt an, auf welches AOI der Proband gerade seine Aufmerksamkeit
gerichtet hat. Die Notwendigkeit von zwei Visualisierungstechniken macht deutlich, dass beide
isoliert betrachtet, Schwachen aufweisen. Die in dieser Arbeit entwickelten Visualisierung ist
hier im Vorteil. Sie erlaubt das Blickverhalten mehrerer Probanden gemeinsam darzustellen und
gleichzeitig ermdglicht sie eine explorative Analyse des Blickverhaltens, um (Blick)-Bereiche
von Interesse zu finden.

Um die Scanpaths in ISeeCube auf Ahnlichkeiten zu untersuchen, kann auf Grundlage des
ausgewdhlten Zeitbereichs, ein hierarchisches Clustering vorgenommen werden. Dabei werden
dem Anwender verschiedene Ahnlichkeitsmafle zur Verfiigung gestellt. Das Ergebnis des
Clusterings wird als Dendrogramm visualisiert. In dieser Arbeit wird ein ganz dhnlicher
Ansatz verwendet. Auch hier ist die Auswahl eines bestimmten Datenbereichs moglich, um
darauf eine hierarchische Clusteranalyse durchzufiihren. In ISeeCube ist jedoch die Auswahl
der Ahnlichkeitsmafle auf Scanpath-Mafle beschrinkt. In dieser Arbeit werden hingegen
auch Trajektorie- und Bildmafie betrachtet. Auflerdem ist zu sehen, dass die Ergebnisse des
Clustering in ISeeCube nicht miteinander verglichen werden konnen. Es wird stets nur das
Dendrogramm zum zuletzt berechneten Clustering angezeigt. In dieser Arbeit wird eine
Moglichkeit vorgestellt, wie die erzeugten Clusterings in Kontext zueinander gesetzt werden
konnen. Dies wird sich insbesondere beim Vergleich von unterschiedlichen Ahnlichkeitsmaflen
als hilfreich erweisen.

3.2 Arbeiten mit punkt-basierten
Visualisierungstechniken

Das Problem der AOI-basierten Ansitze, ist die Notwendigkeit diese vorher definieren zu
missen. Dies kann einen nicht zu vernachlassigbaren Aufwand darstellen. Aus diesem Grund
ist es sinnvoll Arbeiten zu betrachten, welche auf punkt-basierten Visualisierungstechni-
ken beruhen. Davon werden zwei im Folgenden vorgestellt. Eine davon ist die Slit-Scan-
Visualisierungstechnik, auf welcher diese Arbeit beruht.

3.2.1 Gaze Stripes: Image-Based Visualization of Eye Tracking Data

Die Gaze Stripes Visualisierung [KHH+16b] ist eine horizontale Aneinanderreihung von Bild-
daten, welche um die Gaze-Punkte herum angeordnet sind (siehe Abbildung 3.3). Unter Ver-
wendung von sogenannten Thumbnails ' kénnen die verwendeten Bilddaten in geringer Grof3e
dargestellt werden, was die Skalierbarkeit beziiglich der Datensatzldnge verbessert. Problem der

'Minibild, oder auch Miniaturbild genannt.
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3.2 Arbeiten mit punkt-basierten Visualisierungstechniken

a)

Abbildung 3.3: Die wesentlichen Komponenten der Gaze-Stripes-Visualisierung. a) Gaze-
Stripes von mehreren Probanden. b) Interpretationshilfe fiir einen ausgewéhl-
ten Zeitbereich. c) Visualisierung eines hierarchischen Clusterings mittels
eine Dendrogramms. d) Videoansicht des dynamischen Stimulus. Abbildung
aus [KHH+16b].

Gaze-Stripes ist jedoch die mangelnde Méglichkeit die Blickpunkte im Kontext des gesamten
Stimulus zu interpretieren. Dasselbe Problem tritt auch im Zusammenhang dieser Arbeit auf.
In Gaze-Stripes wird dieses gelost, indem eine Videoansicht in die interaktive Visualisierung
integriert wird. Ein dhnlicher Losungsansatz, auf Grundlage der Bee-Swarm-Visualisierung,
wird in dem Konzept dieser Arbeit vorgestellt. Aulerdem ist an dem Ansatz der Gaze-Stripes-
Visualisierung anzumerken, dass er die auf Grundlage von Bildédhnlichkeiten (zwischen den
Thumbnails der Gaze-Stripes), Scanpaths miteinander vergleicht. Damit ist die Definition von
AOQIs an keiner Stelle dieser Visualisierung notwendig. Ein dhnlicher Ansatz wird in dieser Ar-
beit verfolgt. Neben Bildahnlichkeiten werden jedoch au3erdem Trajektorie-Mafle betrachtet,
da sie ebenso keine AOIs erfordern.

Die weiteren Vorteile der Gaze-Stripes-Visualisierung liegen in (a) Der direkten Reprasentation
der Zeit: Jeder Blickpunkt wird in einer Zeitlinie nacheinander dargestellt - (b) Der direkten
Reprisentation des Kontext : Die Thumbnails erlauben den direkten Bezug zum Stimulus, iber
Thumbnails - sowie (c) Der direkten Reprasentation von individuellen Probanden : Fiir jeden
Probanden wird ein eigenstdndiger Gaze-Stripe erzeugt. Es ist klar zu sehen, dass das Kriterium
b) von der PSP-Visualisierung nicht erfiillt wird. Betrachten wir die STC-Visualisierung, so
erfiillt diese nicht das Kriterium c). Um dieses Problem in ISeeCube zu 16sen, mussten zusatzliche
Visualisierungen eingefithrt werden. Im Beispiel von Gaze-Stripes kann man jedoch sehen,
dass eine Visualisierung ausreicht, um diese Probleme addquat zu adressieren.

Ein Problem der Gaze-Stripes-Visualisierung ist, dass sie sehr lang werden konnen, sodass
nur kleine Zeitbereiche betrachtet iiberblickbar sind, oder hohe Zoomraten benétigt werden.
Auflerdem erschweren gleich aussehende Elemente in den Gaze-Stripes die visuelle Analyse,
was zusatzliche Interpretationshilfen notwendig macht.
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3.2.2 Visualizing eye tracking data with Gaze-Guided Slit-Scans

Der Ansatz Slit-Scans aus Videos zu erzeugen wird u.a von Nunes et al. [NGCG06] beschrie-
ben. Hierbei wird ein Ausschnitt des Videos zu jedem Zeitpunkt (aus dem aktuellen Frame)
ausgeschnitten und nacheinander aneinandergereiht. Das Resultat ist eine kompakte Bild-
Représentation eines bestimmten Teils aus einem Video. Die Slit-Scan-Visualisierungstechnik
von Kurzhals et al. die Darstellung eines Slit-Scans, um ein Profil des Blickverhaltens eines
Probanden zu erzeugen. In vielerlei Hinsicht ist die Slit-Scan-Visualisierung [KW16] mit der
Gaze-Stripes-Visualisierung vergleichbar. So erlauben beiden Profile des Blickverhaltens von
Probanden zu erstellen. Dabei werden der Stimulus gemeinsam mit den Gaze-Daten der Pro-
banden in zusammengefiihrter Form dargestellt. Bei der Slit-Scans fallt dies aber weitaus
kompakter aus, da hier nur einzelnen Streifen des Stimulus aneinandergereiht werden. Dies
ermoglicht eine bessere Skalierung, insbesondere bei zeitlich langen dynamischen Stimuli.

Dennoch ist die Slitscan-Visualisierung auch mit einigen Problemen verbunden. So ist es bisher
nicht moéglich das Blickverhalten mehrerer Probanden gleichzeitig zu analysieren. Auf3er-
dem fehlt die Integration von Ahnlichkeitsmaflen, die eine automatisierte Vergleichsanalyse
von Scanpaths erlauben. Insbesondere bei der Slit-Scan-Visualisierungstechnik erweist sich
diese Problemstellung jedoch als besonders interessant, da Slit-Scans eine direkte visuelle
Repriasentation eines Scanpaths ermoglichen. Damit ist ein Vergleich auf Basis der Slit-Scans
mittels Ahnlichkeitsmaflen basierend auf Bildahnlichkeiten denkbar. Da die Visualisierung
zudem nicht auf AOIs basiert, kann die Eignung von Trajektorie-basierten Ahnlichkeitsmaflen
angenommen werden.

Das Ziel dieser Arbeit ist deshalb die Slit-Scan-Visualisierungstechnik um die genannten
Punkte zu erweitern. Dies soll, wie in den behandelten verwandten Arbeiten, in Form einer
interaktiven Visualisierung geschehen. Die dort verwendeten Konzepte, wie die hierarchische
Clusteranalyse, werden sich deshalb ebenso im Konzept dieser Arbeit wiederfinden.
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In diesem Kapitel werden die wesentlichen Aspekte des entwickelten Konzepts vorgestellt.
Die Aufgabenstellung (Abschnitt 4.1) soll dabei zunéchst aufzeigen, welche Anforderungen an
das Konzept gestellt werden. Danach folgt der eigentliche Konzeptteil, welcher sich in drei
Abschnitte untergliedern lasst.

1. Das Grund-Konzept (Abschnitt 4.2) stellt die Slit-Scan-Visualisierungstechnik in dieser
Arbeit dar. In diesem Zusammenhang werden Problemstellungen erortert, die bei der
Verwendung dieser Visualisierungstechnik auftreten konnen. Um die erkannten Pro-
bleme zu bewaltigen, werden zusatzliche Losungsansitze prasentiert. Dies umfassen
u.a Interpretationshilfen, welches sich im spater vorgestellten Prototypen wiederfinden
werden.

2. Der zweite Teil des Konzeptteils umfasst die Erweiterung der Slit-Scan-Visualisierungstechnik
um die Moglichkeit der Ahnlichkeitsbestimmung. Hierfiir werden wesentliche Fragestel-
lungen geklart, zum Beispiel welche Ahnlichkeitsmafle (Abschnitt 4.4) fiir diese Aufgabe
in Frage kommen. Aulerdem wird geklart, wie die Ergebnisse der Ahnlichkeitsmaf3e
geeignet dargestellt und visualisiert werden konnen (Abschnitt 4.5).

3. Der Abschnitt 4.6 vereint die beiden vorher genannten Teil-Konzepte zu einem Gesamt-
Konzept, welches als Spezifikation fiir eine interaktive Visualisierung dient. Diese wird
in Form eines Prototypen im Implementierungskapitel 5 vorgestellt.

4.1 Die Aufgabenstellung

Das Ziel dieser Bachelorarbeit ist die Erweiterung der Slit-Scan-Visualisierungstechnik, um
die Moglichkeit das Blickverhalten mehrerer Probanden miteinander vergleichen zu kon-
nen. Hierfiir werden Ahnlichkeitsmafie aus den Kategorien Trajektorien-, Scanpath- sowie
Bildahnlichkeiten ausgewéhlt. Hierbei muss zum einen untersucht werden, welche Ahnlich-
keitsmafle fiir diese Aufgabe in Frage kommen und wie diese kohédrent mit der Slit-Scan-
Visualisierungstechnik vereint werden konnen. Dafiir wird im Rahmen dieser Bachelorarbeit
ein Gesamt-Konzept ausgearbeitet, welches als Spezifikation fiir eine interaktive Visualisierung
dient. Mit der interaktiven Visualisierung soll am Ende die untersucht werden, inwiefern die
Resultate der Ahnlichkeitsmafle mit der visuellen Interpretation (iiber die Slit-Scans) zusam-
menpassen.
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4.2 Die Slit-Scan Visualisierung

Die Slit-Scan-Visualisierung [KW16] hat gegentiber anderen Visualisierungstechniken einige
Vorteile, die sie insbesondere bei der Vergleichsanalyse von Blickverhalten interessant macht.
Im Kapitel 3 kamen diese, bei der Gegeniiberstellung zu den Visualisierungstechniken der
verwandten Arbeiten, zur Ansprache. Im Folgenden werden sie nochmal erlautert.

+ Die Slit-Scans erlauben eine kompakte Darstellung von Stimulus und Augendaten. Dies
erweist sich insbesondere bei der Verwendung von dynamischen Stimuli von Vorteil.

« Es werden keine Areas-Of-Interests vorausgesetzt, da es sich um eine punkt-basierte
Visualisierungstechnik handelt.

« Die Untersuchung des Blickverhaltens ist verhéltnismafig einfach, da die Slit-Scans das
Blickverhalten von Probanden im Kontext des Stimulus direkt wiedergeben.

Aus diesem Grund ist die Integration dieser Visualisierungstechnik in das Konzept dieser Arbeit
sinnvoll. Bevor diese Integration jedoch stattfinden kann, werden zuniachst die technischen
Details zur Erzeugung von Slit-Scans geklart. Diese wurden von Kurzhals et al. [KW16] tiber-
nommen. Danach werden Probleme und Herausforderungen erlautert, die im Zusammenhang
mit der Slit-Scan-Visualisierung auftreten.

VC1

VC2 §

VC3

Finale Visualisierung

Abbildung 4.1: Die drei visuellen Komponenten der Slit-Scan-Visualisierungstechnik : Spek-
trogramm (VC1), Slit-Scan (VC2) sowie der Fokus-Map (VC3).

4.2.1 Technische Details

Die Visualisierung basiert auf zwei Datenquellen, einerseits dem Stimulus S(x;, ys, t) sowie
einer Menge von Blickpunkten G(z, y,) mit (5, ys), (24, y4) € n X m, der rdumlichen Dimen-
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sion des Stimulus. Im Wesentlichen besteht die Visualisierung aus drei visuellen Komponenten,
die im Folgenden erklart werden.

Spektrogramm Die absolute x-Koordinate x,(t) des Blickpunkts zum Zeitpunkt ¢ wird als
horizontaler Farbstreifen dargestellt. Die ermittelten Farbstreifen werden horizontal
aneinander angefiigt, was das Spektrogramm (VC1) ergibt.

Slit-Scan Eine Scanline gibt an, welcher Ausschnitt des Stimulus entnommen werden soll.
Die horizontale Position der Scanline ist durch die x-Koordinate x,(¢) des Blickpunkts
zum Zeitpunkt ¢ bestimmt. Die extrahierten Ausschnitte werden horizontal aneinander
angefigt, was letztlich den Slit-Scan (VC2) erzeugt.

Fokus-Map Um die y-Koordinate y,(t) des Blickpunkts zum Zeitpunkt ¢ wird ein allmahlich
abfallender heller Bereich erzeugt. Die Breite des Bereichs ist dabei auf 300 Pixel festge-
legt. Bei dieser Breite sind, die vom Probanden fokussierten Objekte, im Stimulus gut
identifizierbar. Dieser Wert wurde experimentell ermittelt.

Die Abbildung 4.1 zeigt, wie aus den beschriebenen visuellen Komponenten die finale Visuali-
sierung entsteht. Das Beispiel visualisiert dabei den Blickverlauf einer Person, die ein Video
eines fahrenden Autos betrachtet. Es ist deutlich am Slit-Scan (VC2) zu sehen, dass die Person
iiber den gesamten Zeitraum des Videos das fahrende rote Auto betrachtet. Der Slit-Scan
vermittelt jedoch nur den Bildinhalt an der x-Position. Um die y-Koordinate ebenso in die
Visualisierung miteinzubeziehen, wird die Scanline vertikal um den Blickpunkt allméhlich
ausgeblendet. Die Fokus-Map (VC3) ist dabei die visuelle Komponente, die diesen Ausblen-
dungseffekt, beispielsweise mit einer Anpassung des Alpha-Kanals erzeugt. Das Spektrogramm
(VC1) ist insofern hilfreich, da dariiber die absolute Position der x-Koordinate visuell vermittelt
werden kann. Diese visuelle Komponente erleichtert zudem die Feststellung von Ahnlichkeiten,
bzw. Unterschieden im Blickverhalten zwischen Probanden.

4.2.2 Probleme und Herausforderungen

Trotz der vielen Vorteile der Slit-Scan-Visualisierungstechnik, weif3t auch sie einige Schwichen
auf, welche die Betrachtung einiger Problemstellungen notwendig macht. Damit die Integration
der Slit-Scan-Visualisierungstechnik in ein Gesamtkonzept gelingen kann, werden zusatzlich
Loésungsansitze fiir die genannten Problemstellungen présentiert.

Skalierung nach Datensatzlange

Die Slit-Scan-Visualsierung extrahiert fiir jeden Gaze-Punkt in Regel aus dem Stimulus einen
ein-Pixel breiten Streifen und fiigt diese (horizontal) zu einem Bild zusammen. Bei einer kleinen
Menge von 2000 Gaze-Punkten (was bei einer Sampling-Rate von 50 Hz, etwa ein Video von
40 Sekunden entspricht), kann der dazugehorige Slit-Scan bereits nicht mehr vollstandig
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auf einem Full-HD-Bildschirm (1920 x 1080) angezeigt werden. Hierbei bieten sich folgende
Losungsansatze an.

Slit-Scan - A

Slit-Scan - B

Slit-Scan - C

A

Field-Of-View Box

Abbildung 4.2: Die Field-Of-View-Box ist frei beweglich auf der horizontalen wie auch verti-
kalen Achse. Dies ermoglicht dem Benutzer beliebige Bereiche der Slit-Scans
zu betrachten.

+ Ein Ansatz wird in [KHH+16a] im Zusammenhang mit der Gaze-Stripes Visualisierung
genannt. Die Autoren geben an, dass aufeinander folgende Bild-Elemente, die ahnlich
zueinander sind, zusammengefasst werden konnen. Ubertragen auf die Slit-Scans, konn-
ten dhnlich aussehende Slits ebenso zusammengefasst werden. Dadurch wiirden die
Slit-Scans kiirzer werden. Jedoch wird auch genannt, dass damit die Informationen iiber
die Dauer verloren gehen. Dies wiirde den Vergleich von mehreren Probanden unter
Verwendung der Slit-Scans erschweren.

« Ein géngiger, wenn auch nicht perfekter Losungsansatz ist die Verwendung einer Field-
Of-View-Box , welche erlaubt immer einen bestimmten Ausschnitt des Slit-Scans zu
sehen (siehe Abbildung 4.2). Mithilfe einer Scroll-Leiste [MSI13] als Bedienelement, kann
die dabei Position der Field-Of-View-Box dynamisch vom Benutzer angepasst werden.

Skalierung nach Probanden

Die Slit-Scan-Visualisierung ist eine Technik, die fiir jeden Probanden ein eigenes visuelles
Element, den Slit-Scan, erzeugt. Um mehrere Probanden mit der Slit-Scan-Visualisierung auf
ahnliches Blickverhalten untersuchen zu kdnnen, muss eine Moglichkeit gefunden werden,
mehrere Slit-Scans gleichzeitig darzustellen. Da bereits aus dem vorherigen Problem eine
horizontale Field-of-View Box (Abbildung 4.2) vorgeschlagen wurde, ist eine Erweiterung
dieser, um die vertikale Dimension sinnvoll. Somit kann der Benutzer mittels einer vertikalen
Scrollbar die Slit-Scans mehrerer Probanden untersuchen und mit der horizontalen Scrollbar
die verschiedenen Bereiche der Slit-Scans betrachten.
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Overview der Slit-Scans

Die Field-Of-View Box behebt das Problem, den gesamten Slit-Scan-Bereich tiberblicken zu
konnen. Bevor man bestimmte Bereiche mit der Field-Of-View-Box analysiert, ist man davor
meist daran interessiert einen gesamten Uberblick tiber die Slit-Scans zu bekommen. Dabei
bieten sich folgende Ansétze als Losungsmoglichkeiten an.

Mini-Map Die Slit-Scans der Probanden konnen in einer vereinfachten Ansicht dargestellt
werden. Denkbar ist beispielsweise die Spektrogramme in einer kompakten Form darzu-
stellen, sodass mithilfe dieser ein erster Uberblick gewonnen werden kann.

Zooming Ein klassischer Ansatz ist es, den Zoom-Faktor der Slit-Scan-Ansicht anzupassen,
sodass ein gesamter Uberblick gewonnen werden kann (iiber die Senkung des Zoom-
Faktors). Auflerdem besteht tiber die Erh6hung des Zoom-Faktors zudem die Moglichkeit
Details in der Slit-Scans zu betrachten.

Der Ansatz der Mini-Map ist vielversprechend, wird aber in dieser Arbeit nicht ndher behandelt.
Eine Umsetzung dieses Ansatzes wird Gegenstand zukiinftiger Arbeit sein. Aus diesem Grund
wird der klassische "Zooming’-Ansatz verwendet, da er auch einfacher umzusetzen ist.

Rickkopplung zum Stimulus

Slit-Scan B .

T

Abbildung 4.3: Zeitliche Synchronisierung zwischen der Slit-Scan-Visualisierung und der
Bee-Swarm-Visualisierung mittels einer Timeline.

Synchronisiert

In Abbildung 4.1 kann aus der Slit-Scan-Visualisierung gut abgelesen werden, dass es sich dem
betrachteten Objekt um ein rotes Auto handeln muss. Dies ist jedoch nicht immer der Fall,
insbesondere wenn das Blickverhalten einer Person zeitlich stark variiert. Somit ist nicht immer
gewihrleistet, dass die visuellen Elemente des Stimulus in den Slit-Scans einwandfrei wieder er-
kennbar sind. Eine globale Einordnung des gesehenen, in dem Kontext des Stimulus, ist zudem
nicht moglich. Es handelt sich hier offenbar um eine Schwéche der Slit-Scan-Visualisierung.
Ein naheliegender Ansatz zur Losung dieses Problems, ist der Einsatz einer weiteren Visua-
lisierungstechnik. Im Folgenden werden einige von diesen nach Blascheck et. al [BKR+17]
beschrieben.
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Heatmap Eine Heatmap-Visualisierung erlaubt die raumliche Verteilung der Blickpunkte aller
Probanden zu visualisieren. Die zeitliche Dimension der Scanpaths geht jedoch verloren.

Gaze-Plot Der Gaze-Plot erlaubt die Scanpaths der Probanden relativ direkt visuell darzu-
stellen. Die Gaze-Punkte werden als Kreise visualisiert und die Sakkaden als Linien
zwischen diesen. Vor allem bei dynamischen Stimuli wird diese Form der Darstellung
aber schnell uniibersichtlich.

Bee-Swarm Anders als beim Gaze-Plot, stellt die Bee-Swarm Visualisierung nur die Gaze-
Punkte der Probanden als Kreise dar. Aulerdem eignet sie sich vor allem fiir dynamische
Stimuli, da zur jedem Bild (des Videos) nur die relevanten Gaze-Punkte angezeigt werden.

Die eben genannten Visualisierungen konnen dabei einfach mit dem Stimulus kombiniert
werden. Hinsichtlich der Verwendung von dynamischen Stimuli erweist sich die Bee-Swarm-
Visualisierung als besonders geeignet, da sie eine wesentlich tibersichtlichere Visualisierung
der Gaze-Punkte ermdglicht.

4.3 Daten und Reprasentationen

Nachdem die notwendigen Erweiterungen der Slit-Scan Visualisierung erdrtert wurden, folgen
nun die Konzepte zur Ahnlichkeitsbestimmung. In den Anforderungen wurde bereits genannt,
dass Trajektorie- Scanpath sowie Bildmafle zum Einsatz kommen, um das Blickverhalten
zwischen Probanden zu analysieren. In diesem Zusammenhang stellt sich die Frage, in welcher
Form die Eye-Tracking-Daten reprasentiert werden miissen, sodass der Einsatz dieser Maf3e
moglich ist. Sie konnen auflerdem einen nicht zu vernachlassigenden Einfluss auf das Ergebnis
dieser darstellen. Deshalb wird im Folgenden, auf Basis der verfiigbaren Daten (Fixationen,
Gaze-Punkte sowie Fixationsdauern) geklart, wie sie in dieser Arbeit definiert sind.

Scanpath In dieser Arbeit wird die String-basierte Reprasentation eines Scanpaths verwendet.
Ein AOI-String wird zusammen mit den AOI-Definitionen aus den Fixationen erzeugt.
Hierfiir wird jede Fixation mittels der AOI-Definitionen in ein Zeichen aus dem Alphabet
3] konvertiert. Eine wichtige Frage in diesem Zusammenhang ist, ob Fixationsdauern
ignoriert werden konnen. Sollen sie miteinbezogen werden, so ist es notwendig die
einzelnen Zeichen in dem AOI-String entsprechend der Fixationsdauern zu replizieren
(Temporal-Binning) [CMTG10]. In dieser Arbeiten werden beide Varianten betrachtet.

Trajektorie Ist die Trajektorie-basierte Reprasentation des Blickverhaltens. Hier stellt sich
die Frage, ob Trajektorien aus Gaze-Punkten, oder Fixationen bestehen sollen. Da im
Vorfeld nur wage Vermutungen iiber die Unterschiede angestellt werden konnen, ist ein
Betrachtung beider Varianten auch hier sinnvoll.

Bildebene Die Slit-Scan Visualisierung (Abschnitt 4.2) eignet sich gut um das Blickverhalten
von Probanden zu untersuchen. Dieser erlaubt auf visueller Basis genau und kompakt
den Scanpath eines Probanden abzubilden. Aus diesem Grund werden die Slit-Scans
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nicht nur zur visuellen Darstellung des Blickverhaltens verwendet, sondern auch zum
Ahnlichkeitsvergleichs auf Bildebene. Dafiir werden im Rahmen dieser Arbeit sowohl
Histogramm-basierte Verfahren, wie auch Bildsequenz-Verfahren betrachtet.

4.4 Die Auswahl von AhnlichkeitsmaBen

Auflistung der Distanzmaf3e

Name Kategorie Reprasentation
Levenshtein-Distanz Scanpath ~ AOI-String (+ TB.)
Needleman-Wunsch-Algorithmus  Scanpath ~ AOI-String (+ TB.)
Dynamic-Time-Warping Trajektorie Gaze und Fixation
Frechet-Distanz Trajektorie = Gaze und Fixation
Chi-Quadrat-Methode Bildebene Histogramm
Bhattacharyya-Distanz Bildebene Histogramm
Earth-Mover’s-Distance Bildebene Histogramm
Squared-Differences Bildebene Bildsequenz
Kosinus-Maf} Bildebene Bildsequenz
Korrelations-Maf3 Bildebene Bildsequenz

Tabelle 4.1: Auflistung aller in dieser Arbeit verwendeten Distanzmafle mit deren zugrun-
deliegenden Reprasentation. + TB. steht fiir zwei Varianten : Mit und ohne
Temporal-Binning.

Nachdem die unterschiedlichen Repréasentationen vorgestellt wurden, wird nun Untersucht
welche Ahnlichkeitsmafe auf diesen in Frage kommen. In jeder der betrachteten Kategorien :
Scanpath, Trajektorie und Bildebene gibt es jedoch eine Vielzahl an unterschiedlichen Ver-
fahren, die verschiedene Starken und Schwichen in Bezug auf bestimmte Anwendungsfille
aufweisen. Ein Verwendung aller Distanzmaf3e ist aufgrund der grofien Anzahl nicht méglich,
weshalb ein Kriterium zur Auswahl der Distanzmafle getroffen werden muss. Ein fiir diese
Arbeit als sinnvoll empfundenes Kriterium, ist ein moglichst breites Spektrum an verfiigbaren
Maflen abzudecken. Die im Grundlagenkapitel vorgestellten Taxonomien bieten dafiir eine gute
Grundlage, da diese eine Unterteilung von Ahnlichkeitsmaflen, beziiglich unterschiedlicher
Merkmale erméglichen. In Tabelle 4.1 ist eine Auflistung aller in dieser Arbeit verwendeten
Distanzmaf3e zu finden. Im Folgenden wird diese Wahl begriindet.

Auswahl von Scanpath-MaBen

In Kapitel 2 wurden bereits die verschiedenen Kategorien von Scanpath-Maf3en eingefiihrt.
Es wurde dabei ersichtlich, dass es unterschiedliche Moglichkeiten zur Reprasentation von
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4 Aufgabenstellung und Konzept

Scanpaths gibt. Die wohl bekannteste ist die String-Représentation. Die popularste Methode
unter diesen ist die Levenshtein-Distanz. Brandt und Stark stellten 1997 erstmals die Moglich-
keit vor, Scanpaths auf Grundlage der bekannten Levenshtein-Distanz [Lev66] miteinander zu
vergleichen [BS97]. Seitdem wurde sie in einer Vielzahl von Experimenten bereits erfolgreich
als Distanzmafl zwischen Scanpaths verwendet [HB10]. Der grof3e Vorteil diese Methode ist,
dass sie sehr gut die intuitive Vorstellung einer Scanpath-Distanz abbildet [AAKB15]. Die
Schwichen der Levenshtein-Distanz wurde jedoch uiber die Jahre auch deutlich. So ist es
nicht méglich, Ahnlichkeiten zwischen AQOIs in das Ahnlichkeitsmaf} einflieSen zu lassen. Der
Needleman-Wunsch-Algorithmus [CMTG10] versucht diese Probleme mittels der individuellen
Anpassung der Editierkosten zu umgehen. Im Bereich des Scanpath-Vergleichs hat sie deshalb
ebenso an Popularitat erlangt.

Auswahl von Trajektorie-MaBen

In Kapitel 2 wurde auch eine Taxonomie zur Einordnung verschiedener Trajektorie-Mafle
vorgestellt. Dabei wurde zwischen raumlich-zeitlichen Ahnlichkeitsmaflen sowie raumlichen
Ahnlichkeitsmafien unterschieden. Um ein méglichst grofies Spektrum an unterschiedlichen
Maflen abzudecken, wird jeweils ein Maf} aus diesen Kategorien ausgewahlt.

+ Unter den zeitlich-raumlichen Maflen sind die Mafe : Longest-Common-Subsequence
(LCSS), Dynamic-Time-Warping (DTW), Edit-Distance-On-Real-Sequences (EDR) sowie
Edit-Distance-With-Real-Penalty (ERP) denkbar [MSME15]. Bei allen handelt es sich um
zeitreihen-basierte Vergleichsverfahren auf Trajektorien. Die Verfahren LCSS und EDR
erweisen sich aus einem bestimmten Grund jedoch als nicht geeignet. So sind bei beiden
bestimmte Parameter ! im Vorfeld zu bestimmen. Um gute Ergebnisse zu erzielen, ist
dabei die korrekte Wahl dieser Parameter wesentlich. Da die Bestimmung der korrekten
Parameter sehr aufwéndig sein kann und zudem doménenspezifisches Wissen erfordert
(welches im Rahmen des Scanpaths-Vergleichs bisher nicht existiert), werden daher
diese Maf3e in dieser Arbeit nicht weiter behandelt. Im direkten Vergleich zwischen
DTW sowie ERP ergeben sich beziiglich der Eigenschaften keine grofien Unterschiede.
Aufgrund der grof3eren Popularitat des DTW-Verfahrens wird dieses aber gegeniiber
dem ERP-Verfahren vorgezogen.

« Unter den raumlichen Mafien ziahlen die Euklidische-Distanz, die Hausdorf-Distanz sowie
die Frechet-Distanz zu den drei bekanntesten. Eine direkte Gegeniiberstellung dieser
Methoden im Rahmen des Vergleichs von Trajektorien konnte jedoch nicht gefunden
werden. Es ist jedoch bekannt, dass die Frechet-Distanz in bestimmten Anwendungsféllen
besser Ergebnisse liefert, als andere etablierte Verfahren [SAW15].

'Es handelt sich hier um einen Schwellenwert-Parameter (engl. Threshold-Parameter)
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Auswahl von Bild-MaBen

Aus dem Grundlagenkapitel (Kapitel 2) wurden zwei unterschiedliche Moglichkeiten zur
Reprasentation von Bilddaten vorgestellt. Einerseits der Histogramm-basierte Ansatz, welcher
Bilder als Histogramme dargestellt und andererseits der Ansatz, Bilder als Sequenzen aus
Pixeln darzustellen. In dieser Arbeit werden Methoden beider Ansatze ausgewéahlt. Grund
dafiir ist, dass beide Reprasentationen durchaus unterschiedliche Eigenschaften vorweisen. Im
Folgenden werden beide Ansétze kurz gegentibergestellt, um deren Unterschiede sowie daraus
resultierenden Vor-und Nachteilen zu erlautern [Soel5].

« Histogramme vernachléssigen, im Gegensatz zu Bildsequenzen, die Position der einzelnen
Bildpunkte. Es wird lediglich die Verteilung der Grauwerte/Farbwerte modelliert. Somit
konnen falschlicherweise zwei unterschiedlich aussehende Bilder als dhnlich erkannt
werden. Diese Eigenschaft ist jedoch nicht nur von Nachteil. Aufgrund dessen sind
Histogramme invariant gegeniiber bestimmten Bildtransformationen, wie Rotation oder
Spiegelung.

« Bildsequenz-Maf3e sind in der Regel nicht robust gegentiber kleinen Anderungen. Insbe-
sondere Bildtransformationen kénnen das Ergebnis negativ beeinflussen.

Aus den eben genannten Griinden ist es sinnvoll, sowohl Histogramm-basierte Maf}e zu
verwenden, als auch Maf3e auf Bildsequenzen.

Auswahl von Histogramm-MaBen

Wie bereits im Grundlagenkapitel (Kapitel 2) erwahnt, lassen sich Distanzmaf3e auf Histogram-
men in wahrscheinlichkeits-basierte und vektor-basierte Kategorien untergliedern. Aus jeder
der genannten Kategorien wird im Folgenden ein Distanzmafl ausgew4hlt.

+ Im Kontext des Bildvergleichs weisen Cross-Bin-Verfahren, wie beispielsweise die Earths-
Movers-Distance, einige vorteilhafte Eigenschaften gegeniiber Bin-By-Bin Maflen auf
[RTGO0]. Dies ist damit begriindet, dass sie keine Annahmen tiber die Menge der Klassen
machen und somit in der Regel robuster als Bin-By-Bin Mafle sind [PW10]. Da die
Earth-Mover’s-Distance ein klassischer Vertreter der Cross-Bin-Verfahren ist, wird sie in
dieser Arbeit verwendet.

« Unter den Bin-To-Bin-Maflen sowie den wahrscheinlichkeits-basierten Distanzmaf3en die
erweist sich die Auswahl weitaus untbersichtlicher. In [Cha08] sind tiber 50 verschiedene
Mafle definiert, die diesen Kategorien angehéren. In [ZL03] wird u.a die Uberlegenheit
von x? Statistik basierten Maf3en festgestellt, weshalb eine Verwendung dieses Mafes
im Rahmen dieser Arbeit sinnvoll ist.
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+ Unter den wahrscheinlichkeits-basierten Distanzmaf3en erweist sich beispielsweise die
KL-Divergenz [Cha08] als Vergleichsmaf} eher ungeeignet, da sie nicht symmetrisch
ist. Dies bedeutet, dass die Distanz zwischen A und B im Allgemeinen nicht dieselbe
Distanz wie zwischen B und A ist. Aus diesem Grund ist beispielsweise die Wahl
der Bhattacharyya-Distanz [Soel5] sinnvoller. Auflerdem ist bekannt, dass die sie im
Zusammenhang des Bildvergleichs vielversprechende Ergebnisse liefert [Soe15].

Auswahl von Bildsequenz-MaBen

Die Autoren Goshtasby et al. [Gos12] beschreiben viele Mafle, die ein Vergleich auf Bildse-
quenzen ermdglichen. Eine Taxonomie zu diesen Maflen scheint nicht zu existieren, sodass
keine klare Unterscheidung zwischen diesen, nach unterschiedlichen Merkmalen moglich
ist. Aus diesem Grund werden in dieser Arbeit Verfahren verwendet, die in diesem Zusam-
menhang weit verbreitet sind. Darunter die Squared-Difference’ Methode [Gos12], welche
erlaubt die einzelnen (quadratischen) Differenzen zwischen gleichen Bildpunkten zu untersu-
chen. Sie ist definiert als 3>, (z; — y;)% wobei z;, y; die einzelnen Bildpunkte der Sequenzen
X = (z1,...,2,)und Y = (y1,...,y,) sind. Eine anderen naheliegende, zudem weit verbrei-
tete Moglichkeit ist die lineare Abhéngigkeit zwischen den Sequenzen X und Y zu untersuchen.
Dafiir eignet sich der (Pearson) Korrelationskoeffizient px y = % [Hen11]. Eine weitere
gut funktionierende Methode, die zudem sehr dhnlich zur Korrelation ist, betrachtet die beiden
Sequenzen X und Y als Vektoren. Der Winkel zwischen den beiden Sequenzen (welcher mit der

Kosinus-Funktion berechnet wird) gibt dabei die Ahnlichkeit zwischen diesen an [FHS+05].

4.5 Visualisierungen und Analysekonzepte

Ein wichtiger Bestandteil dieser Arbeit ist die Resultate der Ahnlichkeitsmafle in Kontext
der Slit-Scan Visualisierung zu setzen. Eine Herausforderung dabei ist, die Resultate der
Ahnlichkeitsmafle visuell geeignet darzustellen. Ein moglicher Ansatz zur Darstellung von
Ahnlichkeitswerten ist, diese als Liste von Werte dem Benutzer zu prisentieren. Bei einer
kleinen Anzahl von untersuchten Elementen, kann diese Darstellung durchaus sinnvoll sein.
Mit zunehmender Anzahl an Elementen, wird diese aber schnell uniibersichtlich. Auflerdem
kann aus einer solchen Darstellung meist nur sehr wenig abgelesen werden und ist deshalb
fir einen Menschen nur schwer interpretierbar. Es werden also andere, geeignetere Ansatze,
zur Darstellung von Ahnlichkeitswerten benotigt.

Eine haufig verwendete Data-Mining-Technik ist die hierarchische Clusteranalyse (Hierarchical
agglomerative clustering analysis, kurz HAC-Analyse). Die Software EyePatterns [WHRKO06]
hat gezeigt, dass die HAC-Analyse im Rahmen der Scanpath-Vergleichsanalyse ein vielverspre-
chender Ansatz ist. Einer der Griinde dafiir ist, dass sie ein sehr anschauliches Daten-Modell fiir
die Ahnlichkeiten zwischen den untersuchten Sequenzen liefern kann. Im Grundlagenkapitel
wurde bereits erwahnt, wie das Ergebnis eines hierarchischen Clusterings, in Form eines
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Dendrogramms, oder einer Heatmap (Abschnitt 2.6.2) visualisiert werden kann. Fiir die visuelle
Darstellung eines einzelnen Clusterings wird diese Visualisierung immer noch verwendet.

Betrachtet man jedoch mehrere Ahnlichkeitsmafle, wie es in dieser Arbeit der Fall ist, so stellt
sich die Frage, wie die Ergebnisse unterschiedlicher HACs miteinander geeignet verglichen
werden konnen. Eine klassische Idee wire einfach mehrere Dendrogramme, oder mehrere
Heatmaps nebeneinander dem Benutzer zu préasentieren. Nachteil davon ist jedoch, dass somit
die Aufgabe der Vergleichsanalyse fiir den Benutzer erschwert wird. Damit der Benutzer von
dieser Aufgabe befreit wird, werden in diesem Zusammenhang zwei Konzepte vorgestellt, die
in dieser Arbeit entwickelt wurden.

Multi-Dendrogramm Analyse

0.8

Abbildung 4.4: Schematische Darstellung der Multi-Dendrogramm Analyse. Die Abbildung
zeigt die Ahnlichkeiten zwischen den Clusterings. Dies konnen beispielsweise
mit der cophentischen Korrelation berechnet werden (Abschnitt 2.6.3).

Ein wesentliches Grundkonzept zur Vergleichsanalyse von hierarchischen Clusterings ist die
Definition eines Distanzmafles zwischen diesen. Das Distanzmaf} soll dabei angeben, wie
unterschiedlich zwei Clustering-Ergebnisse zueinander sind. Als Distanzmafie ist beispiels-
weise die cophentische Korrelation aus dem Grundlagenteil (Abschnitt 2.6.3) denkbar. Dabei
ist es moglich auf Grundlage dieses Distanzmafles Visualisierungen zu entwickeln, die den
Vergleich von Clusterings vereinfachen. Ein Beispiel ist hier das Force-Directed-Layout, oder
die hierarchische Clusteringanalyse von Clusterings [LKS+15]. Ein Grund weshalb einer dieser
Ansitze nicht néher verfolgt wird, ist die Tatsache eine Integration dieser Techniken im Rah-
men dieser Arbeit zu aufwandig ist. Daher wird auf Grundlage der cophenetischen Korrelation
ein eigenstandiges Konzept zur Vergleichsanalyse von hierarchischen Clusterings entwickelt.
Der Ansatz dazu ist schematisch in Abbildung 4.4 dargestellt. Die Ansicht besteht dabei aus
Dendrogrammen, welche die entsprechenden Clusterings reprasentieren. Die Pfeile stellen die
Ahnlichkeiten zwischen den beteiligten Clusterings dar. Sie sind mit Werten zwischen null
(fur stark verschiedene Clusterings) und eins (fiir identische Clusterings) annotiert.
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Multi-Heatmap Visualisierung

d; d,
a

d d
b 3 4
C

Abbildung 4.5: Schematische Darstellung einer (Multi)-Heatmap, die vier Distanzmatrizen
gleichzeitig visualisiert. Das dargestellte Dendrogramm gehort zum Distanz-

maf} ds.

Die Multi-Dendrogramm Analyse hat einen bedeutenden Nachteil. Sie erlaubt keinen direkten
Einblick in die Ahnlichkeitswerte. Eine mogliche Losung ist die Heatmap-Visualisierung (siehe
Abschnitt 2.6.2 im Grundlagenkapitel), welche die Darstellung der Ahnlichkeitswerten auf
direkter Ebene erlaubt. Sie ist jedoch nur fiir die Darstellung einer Distanzmatrix gedacht,
weshalb in dieser Arbeit das Konzept der Heatmap, um die Moglichkeit zur Darstellung
von mehreren Distanzmatrizen, erweitert wird. Das Resultat dieser Heatmap-Erweiterung in
Abbildung 4.5 zu sehen. In diesem Fall werden vier Distanzmatrizen 2, von den Maflen d, ds,
d3 sowie d, gleichzeitig dargestellt. Fiir jedes Paar von Elementen (x, y) werden die Werte
di(x,y), do(z,y), d3(x,y) sowie dy(x,y) zusammen als Block dargestellt. Das Dendrogramm
wurde aus der Distanzmatrix zum Distanzmaf} ds erzeugt. Die entsprechende Distanzwerte
von d3 werden schwarz umrandet hervorgehoben, sodass deutlich ist welche Distanzwerte an
der Erzeugung des Clusterings (und somit des Dendrogramms) beteiligt sind.

4.6 Gesamtkonzept

Die bereits erorterten Konzepte zur Vergleichsanalyse von Distanzwerten (Abschnitt 4.5) die-
nen in diesem Kapitel zum Entwurf eines Gesamtkonzepts. Das Ziel ist die bereits vorgestellten
Konzepte koharent mit der Slit-Scan-Visualisierungstechnik (Abschnitt 4.2) zu vereinigen,

’Die Multi-Heatmap Visualisierung ist nicht auf die Darstellung von vier Distanzmatrizen beschrinkt.
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sodass eine Vergleichsanalyse des Blickverhaltens, auf Basis der ausgewihlten Ahnlichkeits-
mafle (Abschnitt 4.4), moglich wird. Dafiir wir eine interaktive Visualisierung benétigt, damit
untersucht und ermittelt werden kann, ob die Ergebnisse der Ahnlichkeitsmafie mit den Hy-
pothesen, welche iiber die Visualisierung gewonnen wurden, iibereinstimmen. Letztlich soll
damit die Eignung der ausgewéhlten Ahnlichkeitsmafle beziiglich der visuellen Interpretation
mit der Slit-Scan-Visualisierungstechnik festgestellt werden. Im Folgenden wird deshalb ein
Gesamtkonzept auf Grundlage der Visual Analytics vorgestellt, welche als Spezifikation fiir die
Implementierung einer interaktiven Visualisierung (sie wird im Kapitel 5 vorgestellt) dient.

1. Slit-Scans

Hypothesengewinnung

Bestimmt

R

Bestimmt

DistanzmaR

Abhangig von

5 . Feedback-Loop

Benutzerdefinierte Daten
HAC- Daten

Visualisierungen + Analysekonzepte

Gaze-Datenbereich

Abhéngig von

HAC 2.

Verwalte in

A

Historie

Distanzmatrix + HAC

Distanzmatrix + HAC 3

Distanzmatrix + HAC

l Grundlage fir

- Multi-Heatmap 4
- Multi-Dendrogram '

Abbildung 4.6: Illustration des Gesamtkonzepts dieser Arbeit angelehnt an dem Ansatz der
Visual-Analytics. Die Historie stellt die Grundlage dafiir dar, die erzeugten
hierarchischen Clusterings miteinander vergleichen zu kénnen.
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. Auf Grundlage des Slit-Scans der einzelnen Probanden, kann der Benutzer Datenbereiche

von Interesse finden, deren Vergleichsanalyse beispielsweise eine bestimmte, vorher
festgelegte Hypothese, bestatigen sollen. Dies Hypothesen kann der Benutzer mit einer
explorativen Analyse auf den Slit-Scans finden. Die entwickelten Konzepte des Zoomings,
der anpassbaren Field-Of-View-Box sowie sowie der Bee-Swarm-Visualisierung sollen
den Benutzer bei dieser Aufgabe unterstiitzen.

. Auf Grundlage des Gaze-Datenbereichs sowie dem ausgewahlten Distanzmafd wird die

Distanzmatrix berechnet, welche alle paar-weisen Distanzen enthilt. Zuvor miissen die
geeigneten Daten-Représentation aus den Gaze-Datenbereich erzeugt werden (Abschnitt
4.3). Aus der Distanzmatrix wird mit der HAC-Analyse ein hierarchisches Clustering
erzeugt. Eine Beschreibung dieses Vorgangs ist im Grundlagenkapitel (Abschnitt 2.6) zu
finden.

. Ein Historie verwaltet die erzeugten HACs und Distanzmatrizen. Hat der Benutzer die

HAC-Analyse fiir eine bestimmte Konfiguration (Distanzmafl und Gaze-Datenbereich)
durchgefiihrt, so ist der daran interessiert weitere Ergebnisse zu erzeugen. Aus diesem
Grund miussen das Ergebnis (Distanzmatrix und HAC) in einer Historie abgelegt werden,
sodass dieses fiir den Benutzer weiterer hin zugreifbar ist.

. In Abschnitt 4.5 wurde geklart, welche Ansétze zum Vergleich von mehreren hierar-

chischen Clusterings und deren zugrundeliegenden Distanzmatrizen existieren. Die
Multi-Dendrogramm Analyse erlaubt die erzeugten HACs aus der Historie miteinander
zu vergleichen. Die Multi-Heatmap Visualisierung erméglicht hingegen dem Benutzer,
die Ahnlichkeitswerte auf direkter Ebene zu betrachten (dafiir werden die Distanzmatri-
zen aus der Historie verwendet).

. Ein wesentliches Konzept der Visual-Analytics ist die sogenannte Feedback-Loop, die

ebenfalls in Abbildung 4.6 angedeutet ist. Mittels der eben genannten Visualisierungen
und Analysekonzepte, kann der Benutzer klaren, wie gut die festgestellten Unterschiede,
welche visuell mit der Slit-Scan Visualisierung erkannt wurden, mit den der Ergebnissen
der Distanzmafle zusammen passen. Damit kann der Benutzer Erkenntnisse und Wissen
erlangen, die im dabei helfen die Eignung von Distanzmaflen zur Slit-Scan Visualisierung
festzustellen. Auf Grundlage dieses Wissens, kann er weitere Hypothesen aufstellen und
damit zusammenhéngende Fragestellungen beantworten, um nun eine zielgerichtete
Analyse durchzufithren.



5 Implementierung

In dem folgenden Kapitel wird das in dieser Arbeit entwickelte Konzept, in Form eines Prototy-
pen umgesetzt. Fir die Entwicklung der grafischen Oberfliche kam das Software-Development-
Framwork Qt ! zum Einsatz. Des weiteren wurde die Open Source Computer Vision Libra-
ry (OpenCV) ? zur Erzeugung der Slit-Scans verwendet. Diese Programmbibliothek wurde
ebenfalls fiir die Implementierung der Histogramm- sowie Bildsequenz-Mafe eingesetzt. Die
Scanpath- und Trajektorie-Mafle wurden anhand der Publikationen selbst nach-implementiert.
Die gesamte Applikation ist in der Programmiersprache C++ (Standard : C++11) entwickelt
worden.

5.1 Gesamtubersicht der grafischen Bedienelemente

Die zwei Hauptansichten des implementierten Prototypen sind in Abbildung 5.1 zu sehen. Die
darin enthaltenen grafischen Bedienelemente sind dabei mit den Bezeichnern A-G versehen.
Wie auflerdem zu sehen ist, existieren zwei unterschiedliche Ansichten. Diese werden im
Folgenden kurz umrissen. Eine nahere Erlduterung dieser grafischen Bedienelemente ist in
den folgenden Abschnitten zu finden.

Haupt-Ansicht Sie enthalt die Slit-Scan Visualisierung (A) mit zusétzlichen grafischen Bedien-
und Anzeigeelemente, welche unterhalb der Slit-Scans angeordnet sind. Die Bee-Swarm
Visualisierung mit Abspielfunktionalitat (Play/Pause - Button) ist in (B) zu sehen. Auf
der linken Seite des Fensters ist die Liste aller hinzufiigten Ahnlichkeitsmafie (C) zu
sehen und unter dieser die Liste der importierten Probanden (D).

Detail-Ansicht Die Detail-Ansicht enthélt im Wesentlichen die Multi-Heatmap-Visualisierung
(F) sowie zusétzlich eine Anzeigeflache (G), die tiber dieser platziert ist.

Bei beiden Ansichten ist die Liste der erzeugten hierarchischen Clusterings (E) vorzufinden.
Um zwischen den beiden Ansichten wechseln zu konnen, sind diese als Reiter in die grafische
Oberflache eingebunden. Die Reiter-Auswahl befindet sich dabei an der linken Seite des
Fensters, direkt neben der Liste der hinzuftigten Ahnlichkeitsmaf3e (C).

'https://www.qt.io. (Zuletzt iiberpriift am 28.10.2017.)
*https://opencv.org. (Zuletzt iiberpriift am 28.10.2017.)
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Abbildung 5.1: Gesamtiibersicht der grafischen Bedienelemente aus der Haupt-Ansicht (oben)
sowie der Detail-Ansicht (unten).

40



5.2 Einbindung der Daten

5.2 Einbindung der Daten

Einbindung von Probanden

Bevor das Blickdaten von Probanden auf Ahnlichkeiten analysiert werden kann, miissen diese
zunéchst in die Applikation eingebunden werden. Die Blickdaten der Probanden sind dabei
als Tab-separated values (TSV) in Tabellenform (separat pro Proband) abgespeichert. Jeder
Eintrag der Tabelle steht fiir einen Aufzeichnungszeitpunkt des Eye-Tracking-Geréts. Ein
solcher Eintrag beinhaltet dabei beispielsweise die Attribute der X- und Y-Koordinaten der
Fixations- sowie Gazepunkte *. In einer solchen Datei sind meist mehrere tausend Eintrige mit
den dazugehorigen Werten abgespeichert. Wie in Abbildung 5.2 zu sehen ist, wird fiir jeden
importierten Probanden ein eigener Listeneintrag erstellt.

Viewers
(] P2B-07-kite
] P7A-07-kite
B B P11A-07-kite
#@ W P13A-07-kite
B W PoB-07-kite

5 of 5 viewers

Select all Deselect all
selected

Abbildung 5.2: Liste der importierten Probanden (links). Mit den Checkboxes kénnen die Slit-
Scans der einzelnen Probanden aus der Haupt-Ansicht ein- oder ausgeblendet
werden. Ein Grund dafiir kann die Datenqualitit (rechts) eines Probanden
sein. Die sichtbaren weiflen Bereiche in dem Slitscan zeigen fehlerhafte Eye-
Tracking-Daten.

Die Checkboxen neben den Eintragen der Probanden, erlauben diese zu selektieren bzw.
deselektieren. Dies ermoglicht die Slit-Scans der Probanden in der Hauptansicht ein- bzw.
auszublenden. Hiermit erhalt der Benutzer die Moglichkeit, Probanden die fiir ihn als uninter-
essant gelten, auszublenden. Ein weiterer Anwendungsfall hat mit der Datenqualitit zu tun.

*Nihere Informationen dazu sind in den User-Manuals der Eye-Tracking-Gerite von Tobii Technology auf :
http://www.tobiipro.com (Zuletzt iberpriift am 28.10.2017.) zu finden.
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Eye-Tracking-Gerate konnen nicht zu jedem Zeitpunkt die Augen des Probanden erfassen, so-
dass in diesen Fallen fehlerhafte Eintrdge aufgenommen werden. In den Slit-Scans werden diese
als weifle Bereiche (siehe Abbildung 5.2) sichtbar. Gibt es zu viele solcher fehlerhaften-Bereiche,
kann es sinnvoll sein, den Probanden in der Analyse nicht weiter zu betrachten.

Unterhalb der Liste der importierten Probanden sind auf3erdem noch Bedienelemente zum
Selektieren, bzw. Deselektieren aller Eintriage angebracht. Diese Bedienelemente kénnen
insbesondere bei der Analyse einzelner Probanden hilfreich sein.

Einbindung des Stimulus und der AOI-Daten

Ebenso wie die Blickdaten der Probanden, kann die Definition der Areas-Of-Interests (AOIs)
sowie der Stimulus in die Applikation eingebunden werden. Die Definition der Areas-Of-
Interests wird dabei fiir die Levenshtein-Distanz und den Needleman-Wunsch-Algorithmus
benotigt. Diese Definition muss dabei als XML-Datei im Video Performance Evaluation Re-
source (ViPER) - Format * vorliegen. Der Stimulus selbst wird einerseits zur Generierung
der Slit-Scan Visualisierung benétigt und anderseits fiir die Bee-Swarm-Visualisierung. Der
Prototyp unterstiitzt bisher nur die Einbindung von dynamischen Stimuli. Dieser muss deshalb
in Form einer Video-Datei vorliegen.

Einbindung von AhnlichkeitsmaBen

Ein wichtiger Bestandteil des Prototypen ist die Mdglichkeit, die Ahnlichkeiten zwischen den
Blickverhalten der Probanden zu berechnen. Hierfiir wurden Ahnlichkeitsmaf3e bestimmt (Ab-
schnitt 4.4 im Konzeptkapitel), die sich fiir diese Aufgabe als geeignet erweisen. Die Abbildung
5.3 zeigt, wie ein Ahnlichkeitsmaf} hinzugefiigt werden kann. Alle hinzufiigten Ahnlichkeits-
mafle werden in einer Liste mit ihrem Namen als Eintrag verwaltet. Neben ihrer Bezeichnung
sind weitere Eigenschaften und relevante Parameter in dieser Ubersicht aufgelistet. Diese
konnen beim Hinzufiigen eines Mafles vom Benutzer ausgewahlt werden. Es handelt sich
hierbei um folgende Parameter:

« Fir die Histogramm-Maf3e ist einer der Farbraume : LAB, HSV, oder RGB vom Benutzer
auszuwahlen.

« Fiir die Trajektorie-Maf3e kann ausgewahlt werden, ob Fixationen oder Gaze-Punkte als
Grundlage fiir die Trajektorien verwendet werden sollen.

+ Im Falle von Scanpath-Mafien, hat der Benutzer die Wahl, ob Temporal Binning fiir die
Erzeugung des AOI-Strings verwendet werden soll.

*http://viper-toolkit.sourceforge.net (Zuletzt iiberpriift am 28.10.2017.)
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5.3 Die Slit-Scan Ansicht
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Abbildung 5.3: Mit der Optionsleiste (oben) konnen die Mafle zur der Liste (rechts) hinzuge-
fiigt werden. Das Maf fiir die HAC-Analyse wird mit der Auswahlbox (unten)
festgelegt.

Jenes Ahnlichkeitsmaf3, welches fiir die hierarchische Cluster-Analyse verwendet werden soll,
wird tiber eine Auswahlbox, unterhalb der Liste vom Benutzer ausgewahlt.

5.3 Die Slit-Scan Ansicht

Aus den Daten der importierten Probanden sowie dem Stimulus werden schlie3lich die Slit-
Scans erzeugt. In Abbildung 5.4) sind dabei die Slit-Scans der finf importierten Probanden zu
sehen. Wie bereits in Abschnitt 4.2.2 erlautert, werden die einzelnen Slit-Scans der Probanden
untereinander vertikal angeordnet. Mithilfe von Scroll-Leisten auf beiden Achsen, kann die
Position der Field-Of-View-Box (4.2.2) durch den Benutzer angepasst werden. Wie auflerdem
in Abbildung 5.4) zu sehen ist, hat er die Moglichkeit zwischen zwei Modi auszuwéhlen. Diese
werden im Folgenden erldutert und motiviert.

5.3.1 Ubersichts- und Auswahimodus

Auswahl-Modus Um die Bereiche von Interesse mittels der Ahnlichkeitsmafie analysieren zu
konnen, ist eine Auswahl dieser durch den Benutzer notwendig. Eine Szenenauswahl soll
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Einstellung des Datenbereichs

Ausgewahlter Datenbereich

Auswahl-Modus v

[ Ube-rsichts-Modus v]

Abbildung 5.4: Der Auswahl-Modus (a) ermdglicht die Festlegung des Datenbereichs sowie
die Betrachtung des Dendrogramms. Der Ubersichts-Modus (b) erlaubt den
Zoom-Faktor einzustellen.

dies ermoglichen. Die Szenenauswahl erlaubt dem Benutzer dabei das Selektieren eines
Datenbereichs. Diese Selektion findet mit zwei beweglichen Kontrollelementen statt.
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5.3 Die Slit-Scan Ansicht

Der nicht-selektierte Bereich wird dabei (grau) ausgeblendet, um eine Unterscheidung
des selektierten und nicht-selektierte Bereichs zu erméglichen. Die Skala oberhalb der
Slit-Scan-Ansicht ermdglicht dem Benutzer einzuordnen, welcher Indexbereich der Gaze-
Daten gerade ausgewahlt ist. Im Falle der Abbildung 5.4 wurde beispielsweise ein der
Datenbereich zwischen den Indizes 220 und 550 der Gaze-Punkte ausgewahlt.

Ubersichts-Modus Wie gut in Abbildung 5.4 zu sehen ist, kann immer nur ein kleiner Bereich
der Slit-Scans im Auswahl-Modus gleichzeitig betrachtet werden. Dieses Problem wurde
bereits in 4.2.2 erlautert. Der Losungsvorschlag wurde unter dem Begriff des *Zoomings’
vorgestellt. Die Datenbereichsauswahl sowie das Dendrogramm werden in diesem Modus
ausgeblendet, damit eine eine bessere Ubersicht gewonnen werden kann. Aulerdem
kann der Benutzer den Zoom-Faktor der Slit-Scan-Ansicht anpassen. Die Abbildung 5.4
zeigt, wie ein geringer Zoom-Faktor es ermoglicht, einen grofieren Bereich der Slit-Scans
zu betrachten.

5.3.2 Ruckkopplung zum Stimulus

00:08:00

Synchronisiert

Abbildung 5.5: Die Bee-Swarm Visualisierung ist mit der Slit-Scan Visualisierung mittels
einer frei bewegbaren Timeline zeitlich synchronisiert. Die Kreise stellen die
Gaze-Punkte der Probanden dar.

Ein Problem, welches im Zusammenhang mit der Slit-Scan-Visualisierung auftritt, ist der
mangelnde Bezug zum Stimulus (siehe Abschnitt 4.2.2 im Konzeptkapitel). Aus diesem Grund
ist die Bee-Swarm Visualsierung im Prototypen, als Riickkopplung zum Stimulus, integriert.
Die Slit-Scan Ansicht ist dabei mit der Bee-Swarm Visualsierung in folgender Art und Weise
zeitlich synchronisiert.

« Wird die Position der Time-Line in der Slit-Scan-Ansicht angepasst, so wird zum ent-
sprechenden Frame in der Videoansicht gesprungen.

« Wird die Abspielfunktion der Videoansicht (mit dem Play-Button) aktiviert, so wird das
Video abgespielt und wihrenddessen die Position der Time-Line stetig angepasst.
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Die Gaze-Punkte der einzelnen Probanden in dem aktuellen (Video-) Frame werden dabei
als Kreise eingezeichnet (Fur jeden Probanden ein Kreis). Dadurch wird ersichtlich, wo im
Stimulus die Probanden gerade hinschauen. Jedem Punkt ist dabei eine Farbe zugeordnet. Die
eingefarbten Quadrate (neben den Bezeichnern der Probanden) in der Liste der importierten
Probanden (sieche Abbildung 5.2) ermdglichen die Zuordnung von Farbe zu Proband.

5.4 Hierarchische Clusteranalyse

Abbildung 5.6: Das Ergebnis des hierarchischen Clustering wird mit einem Dendrogramm
(links) visualisiert. Die Slit-Scans (rechts) werden entsprechend dem Cluste-
ring vertikal umsortiert.

In dieser Arbeit stellt die hierarchische Clusteringanalyse das Grundkonzept zum Vergleich
von Blickverhalten dar. Sie findet sich deshalb auch im vorgestellten Prototypen wieder. Im
Folgenden wird davon ausgegangen, dass Benutzer folgende Schritte bereits durchgefiihrt
hat.

1. Die Gaze-Daten der Probanden, der Stimulus sowie die AOI-Definition wurden in die
Applikation eingebunden.

2. Es wurde ein Dateibereich von Interesse in den Slit-Scans gefunden und ausgew4hlt,
welcher analysiert werden soll.

3. Es wurde ein Maf} aus der Liste der hinzugefiigten Ahnlichkeitsmafie ausgewihlt, welches
fir die hierarchische Clusteranalyse eingesetzt werden soll.

Danach kann die eigentliche hierarchische Clusteranalyse stattfinden. Als Link-Methode wird
dabei Group-Average-Link verwendet. Das Resultat der HAC-Analyse wird, wie in Abbildung
5.6 zu sehen, als Dendrogramm neben der Slit-Scan Ansicht dargestellt. Die Slit-Scans werden
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5.5 Historie der erzeugten Clusterergebnisse

entsprechend dem Clustering vertikal neu angeordnet. Dies ermoglicht dem Benutzer, die
ermittelten Gruppierungen direkt auf der Ebene der Slit-Scans zu betrachten.

5.5 Historie der erzeugten Clusterergebnisse

Historie

| Distanzmatrix + HAC |

________ > | Distanzmatrix + HAC |
Reprasentiert

| Distanzmatrix + HAC |

Abbildung 5.7: Die Liste der HACs (links) reprasentiert das Konzept der Historie (rechts).

Im 4.6 wurde bereits verdeutlicht, dass die Historie der erzeugten Clusterergebnisse die Grund-
lage fiir Visualisierungen und Analysekonzepte darstellt. Die Historie ist auch im entwickelten
Prototyp ein wichtiger Bestandteil. Wie in Abbildung 5.7 angedeutet ist, stellt die Historie
nicht nur eine interne Programm Struktur dar, sondern wird auch als Form einer Listenansicht
dem Benutzter prasentiert. Jedes erzeugte Clustering wird als Form eines Listeneintrags in
dieser Historie vermerkt. Jeder Eintrag enthélt dabei die folgenden Kenngrof3en:

« Dendrogramm zum Clustering.
« Name des Ahnlichkeitsmafi.

« Datenbereich auf dem das Clustering stattfand.

5.5.1 Umsetzung der Multi-Dendrogramm Analyse

In Kapitel 4 wurden zwei Moglichkeiten vorgestellt, wie hierarchische Clusterings miteinander
verglichen werden konnen. Die Grundlage dafiir ist die Historie der erzeugten Clusterings. Eines
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Aktualisiere Dendrogramm

Abbildung 5.8: Die Auswahl eines Dendrogramm-Eintrags zeigt die Ahnlichkeitswerte zu
den anderen Dendrogrammen an. Auflerdem findet eine Aktualisierung der
beiden Ansichten auf Grundlage des ausgewahlten Clusterings statt.

dieser Konzepte ist die Multi-Dendrogramm Analyse (Abschnitt 4.5 im Konzeptkapitel). Diese
soll den Vergleich unterschiedlicher Clusterings auf Ebene der Dendrogramme ermoglichen.
Der vorgestellte Prototyp erlaubt dabei die Ahnlichkeiten zwischen den Clusterings interaktiv
darzustellen. Wie in Abbildung 5.8 links zu sehen ist, kann der Benutzer einen beliebigen
Eintrag der Historie mit der Maus auswihlen. Dies hat zur Folge, dass die Ahnlichkeiten
zwischen dem ausgewdhlten Clustering und den anderen Clusterings berechnet und als Zahlen
zwischen Null und Eins angezeigt werden. Beispielsweise ist das in Abbildung 5.8 ausgewahlte
Clustering sehr dhnlich zum obersten Clustering (Ahnlichkeit : 0.9). Die Ahnlichkeit zwischen
den Clusterings wird bestimmt, in dem die cophenetische Korrelation (Abschnitt 2.6.3 im
Grundlagenkapitel) zwischen den entsprechenden Dendrogrammen berechnet wird.

Neben der Darstellung der Ahnlichkeitswerte, hat das Selektieren eines Eintrags noch etwas
zur Folge. Wie in Abbildung 5.8 rechts dargestellt, handelt es sich hierbei um einen Aktualisie-
rungsvorgang auf die Haupt-, als auch auf die Detail-Ansicht. Entsprechend dem ausgewéhlten
Eintrag, werden die Dendrogramme in beiden Ansichten auf dessen Zustand zuriickgesetzt.
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5.5 Historie der erzeugten Clusterergebnisse

Somit lassen sich bereits erzeugte Clustering zu einem spateren Zeitpunkt, im Kontext der
beiden Ansichten, betrachten und analysieren.

5.5.2 Umsetzung der Multi-Heatmap Visualsierung

Das zweite Konzept welches zur Vergleichsanalyse von mehreren Clusterings vorgestellt
wurde, nennt sich Multi-Heatmap Visualisierung (Abschnitt 4.5 im Konzeptkapitel). Diese
basiert, wie auch die Multi-Dendrogramm Analyse, auf den Eintrdgen der Historie. In die
Visualisierung fliefen dabei die Distanzmatrizen aller Eintrage aus der Historie ein. Im Falle
von Abbildung 5.9 werden die Werte von vier Distanzmatrizen dargestellt. Jeder Box in der
Heatmap-Visualisierung steht fiir einen berechneten Distanzwert zwischen zwei Probanden.
Die Bezeichner der Probanden sind horizontal und vertikal angebracht. Sie erlauben dabei
festzustellen, um welche beiden Probanden es sich handelt. Entsprechend dem Distanzwert,
wird die Farbe der Box bestimmt. Liegt ein hoher Distanzwert vor, so ist der Rotton dunkler
(Ahnlichkeit geringer), als bei einem kleinen Distanzwert (Ahnlichkeit hoher). Das Dendro-
gramm welches ebenfalls in die Heatmap-Visualisierung eingebaut ist, bezieht sich auf eine
der dargestellten Distanzmatrizen. Die Eintrage dieser Distanzmatrix werden deshalb hell
umrandet.

Jede Box kann vom Benutzer mit der Maus selektiert werden. Entsprechend der Selektion wird
der Name des Distanzmafies, der Distanzwert sowie deren beteiligte Probanden angezeigt. Diese
Elemente sind in Abbildung 5.9 oberhalb der Multi-Heatmap angeordnet. Wie ebenfalls zu sehen
ist, werden sogenannte Small-Multiples [Tuf90] der Slit-Scans angezeigt. Es werden aber nicht
die gesamten Slit-Scans angezeigt, sondern nur der Teilbereich, welcher fiir das entsprechende
Clustering ausgewdhlt wurde. Diese Small-Multiples ermoglichen den Rickbezug zur Slit-
Scan Ansicht, da die angezeigten Distanzwerte in den Kontext der Slit-Scan Visualisierung
gesetzt werden konnen. Man kann dies als Kopplung zwischen der Haupt- und Detail-Ansicht
ansehen.
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Abbildung 5.9: Die Multi-Heatmap Visualisierung dargestellt mit vier Distanzmatrizen (un-
ten) mit anklickbaren Box-Elementen. Entsprechend der ausgewéhlten Box,
werden Small-Multiples der Slit-Scans, Name des Distanzmafles sowie der
Distanzwert angezeigt (oben).
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5.6 Weitere Funktionen

Im entwickelten Prototypen wurden noch weitere Funktionalititen integriert, die in den
vorherigen Abschnitten nicht zur Sprache kamen. Grund dafiir ist, dass es sich dabei lediglich
um Hilfs-Funktionalitaten handelt. Zur Vollstandigkeit, werden diese im Folgenden jedoch
kurz erwahnt.

« Alle Eintrage der Historie konnen mit einer ’Clear’-Funktionalitdt aus der Liste entfernt
werden. Dies ist insbesondere hilfreich, wenn der Benutzer einen anderen Datenbereich
analysieren mochte.

« Der Prototyp erlaubt Screenshots der beiden Ansichten zu erstellen, sodass die ermittelten
Ergebnisse in einem anderen Zusammenhang wiederverwendet werden konnen.

« Neben der Erzeugung von Screenshots, konnen die berechneten Distanzmatrizen aus
der Historie exportiert werden. Die Exportdatei liegt im Comma-Seperated-Values (CSV)
- Format vor. Dies ermoglicht beispielsweise eine weitere statistische Analyse der Dis-
tanzwerte mit der Programmiersprache R °.

Shttps://www.r-project.org (Zuletzt iiberpriift am 28.10.2017.)
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6 Demonstration und Evaluation

In dem Folgenden Kapitel wird der entwickelte Prototyp (Kapitel 5) zur Evaluation der Distanz-
mafle verwendet. Als Datensatz kommt der frei verfiigbare Eye-Tracking Benchmark-Datensatz
von Kurzhals et al. [KBB+14] zum Einsatz. Das Ziel der Evaluation ist es herauszufinden, in-
wiefern die Ergebnisse der implementierten Mafle, in Einklang zu der Slit-Scan-Visualisierung
stehen. Hierbei stellen sich zwei wesentliche Fragen. Einerseits wie dhnlich die Mafle innerhalb
einer Kategorie sind. Andererseits wie es sich bei den Mafien unterschiedlicher Kategorien
verhilt. Die Abschnitte 6.2 und 6.3 sollen diese Fragen beantworten. Die Diskussion und Inter-
pretation (Abschnitt 6.4) der ermittelten Ergebnisse, schlie3t dieses Kapitel ab. Bevor jedoch
auf all die genannten Punkte nidher eingegangen wird, folgen zunéchst Vorbereitungen zur
Vergleichsanalyse .

6.1 Vorbereitungen zur Vergleichsanalyse

Im Folgenden Abschnitt wird schematisch erlautert, wie die einzelnen Schritte der Evaluation
aussehen. In den spateren Abschnitten 6.2 und 6.3 werden diese Einzelschritte nicht mehr
im ndheren erldutert. Auf Grundlage des entwickelten Prototypen, soll die Evaluation um
Methoden der statischen Inferenzanalyse erweitert werden. Es wird im Folgenden erlautert,
wie das auf Basis der Cluster-Ergebnisse sowie der Distanzwerte geschehen soll.

1. Der erste Schritt vor der eigentlichen Vergleichsanalyse, ist das Auffinden von Datenbe-
reichen im Datensatz. Hierfiir kann einer der zu Verfiigung stehenden Stimuli aus dem
Datensatz ausgewahlt werden, um diesen zusammen mit den Eye-Tracking-Daten der
Probanden zu importieren (siehe Abschnitt 5.2 im Implementierungskapitel). Danach
kann die eigentliche Exploration nach geeigneten Datenbereichen stattfinden. Mithilfe
des Ubersichts-Modus, welcher in Abschnitt 5.3.1 im Implementierungskapitel vorgestellt
wurde, kann beispielsweise ein solcher Datenbereich gefunden werden. Die Abbildung
6.1 zeigt den Prototypen im Ubersichts-Modus. Der Zoom-Faktor wurde entsprechend
angepasst, um die gesamten Slit-Scans tiberblicken zu konnen.

2. Somit kann beispielsweise der in griine markierte Datenbereich gefunden werden, wel-
cher dann im Auswahl-Modus mit den entsprechenden Bedienelementen ausgew#hlt
wird (Abbildung 6.1 unten). Wurde der Datenbereich von Interesse ausgewahlt, so kann
dieser mit der Bee-Swarm-Visualisierung (Abschnitt 5.3.2) direkt auf Ebene der Gaze-
Punkte naher analysiert werden.
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- (3) Berechnung der HACs
- fur alle DistanzmaRe

Datenbereich von Interesse gefunden Multi-Dendrogramm-Analyse

Paarweise (cophentische) Korrelationswerte der HACs

Abbildung 6.1: Die zwei wesentlichen Schritte der Evaluation. Einerseits die visuelle ex-
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plorative Analyse und andererseits die statistische-Analyse, welche auf den
Cluster-Ergebnissen sowie den Distanzwerten beruht.

3. Nachdem der Datenerbreich von Interesse gefunden wurde, kann die hierarchische

Cluster-Analyse stattfinden. Hierfiir werden zunéchst die Distanzmafle ausgew4hlt,
welche zur Vergleichsanalyse herangezogen werden sollen. Danach wird jedes dieser
Distanzmaf3e eine hierarchische Cluster-Analyse auf dem ausgewahlten Datenbereich
durchgefiihrt. Die ermittelten Cluster-Ergebnisse werden in der Historie als Eintrage
vermerkt (siehe Abschnitt 5.5 im Implementierungskapitel).

. Wurden alle Cluster-Ergebnisse erzeugt, so erfolgt eine statistische Analyse zwischen

diesen. Die Multi-Dendrogramm-Analyse (Abschnitt 5.5.1 im Implementierungskapitel)
wird in diesem Fall genutzt, um alle paarweisen (cophentischen) Korrelationswerte
zwischen den HACs zu bestimmen. Diese konnen dann kompakt in einer Matrixform
dargestellt werden. In den folgenden Abschnitten wird diese Matrix als "Korrelation der
HACSs’ bezeichnet.

Um die Distanzwerte in die Analyse miteinzubeziehen, wire die Verwendung der Multi-
Heatmap-Visualisierung (Abschnitt 5.5.2) denkbar. In den meisten Fallen der Evaluation
hat sie sich jedoch als zu wenig kompakt erwiesen, sodass ihre Darstellung im Rahmen
einer Evaluation zu umstandlich ist. Um die Distanzwerte dennoch in die Evaluation
miteinzubeziehen, werden neben der HAC-Korrelationsmatrix, aufierdem die Korrelatio-
nen zwischen den Distanzwerten ermittelt. Fiir jedes ermittelte Cluster-Ergebnis werden
deshalb die entsprechenden Distanzwerte in einer CSV-Datei zusammengefithrt und
anschlieflend auf diesen eine Korrelationsanalyse durchgefiihrt. Dies geschieht mittels
eines R-Skripts, unter Verwendung des Rangkorrelationskoeffizienten nach Spearman
[Hen11].



6.2 Evaluation innerhalb der Kategorien

6.2 Evaluation innerhalb der Kategorien

In diesem Abschnitt werden zunéchst die Mafle innerhalb ihrer Kategorie (Scanpath, Trajekto-
rie, Bilddhnlichkeiten) verglichen. Das Ziel dieser Evaluation ist festzustellen, wie sich die Maf3e
untereinander Verhalten. Hierbei wird bewusst noch kein Bezug zur Slit-Scan-Visualisierung
hergestellt. Es soll also nur das grundsatzliche Verhalten auf Ebene der Distanzwerte sowie
der Cluster-Ergebnisse untersucht werden. Die folgenden Resultate wurden mit drei Stimuli :
Car Pursuit (S1), Turning Car (52) sowie Dialog (S3) aus dem Benchmark-Datensatz erzeugt.
Hierbei wurde stets tiber die gesamte Lange eine hierarchische Clusteringanalyse durchgefiihrt
(fiar S1 : 0:25 min, S2 : 0:28 min, S3 : 0:19 min). Somit entfallt der Schritt der visuellen explora-
tiven Analyse (Abschnitt 6.1). Es wurden jeweils die Eye-Tracking-Daten aller verfiigbaren
Probanden (n = 25) in die Vergleichsanalyse miteinbezogen ! Die Korrelationswerte zwischen
den einzelnen Maflen wurden dabei tiber die drei Datensétze gemittelt.

6.2.1 Evaluation zwischen Scanpath-MaBen

Unter den Scanpath-Maflen werden die Levenshtein-Distanz sowie der Needleman-Wunsch-
Algorithmus miteinander verglichen. Bei beiden Methoden wird zudem untersucht, inwiefern
die Integration der Fixationsdauern einen Einfluss auf das Ergebnis hat. Deshalb werden die
Zeichen der AQI-Strings entsprechend der Fixationsdauern repliziert (Temporal Binning). Die
Bin-Size wurde dabei anhand der Sampling-Frequenz des Eye-Trackers (etwa 60 Hz), auf 17
Millisekunden festgelegt.

Die Abbildung 6.2 zeigt die gemittelten Korrelationswerte zwischen den Distanzwerten, als
auch zwischen den HACs. Bei beiden ist zu sehen, dass das Temporal-Binning einen grofien
Einfluss auf das Ergebnis hat. Die HAC-Korrelationen zwischen Needleman-Wunsch mit
Temporal-Binning und der Variante ohne Temporal-Binning sind vergleichsweise gering (auf
HACs : 0.577 , auf Distanzwerten : 0.31). Auflerdem ist anzumerken, dass selbst unter den
Maflen, die nicht die Fixationsdauern miteinbeziehen, die Korrelation eher gering ausfallen.
Anders sieht dies bei den Maflen aus, die Temporal-Binning verwenden. Hier deuten die hohen
Korrelationswerte darauf hin, dass die Clustering-Ergebnisse nahezu identisch sind.

6.2.2 Evaluation zwischen Trajektorie-MaBen

Die in dieser Arbeit betrachteten Trajektorie-Mafle sind einerseits Dynamic-Time-Warping
und anderseits die Frechet-Distanz. Fiir jedes dieser Mafle wird zusétzlich betrachtet, welche
Unterschiede sich beziiglich der Wahl der Trajektorie-Reprasentation (Gaze-Punkte oder
Fixationen) ergeben.

'Der Grund weshalb diese drei Stimuli ausgewihlt wurden, ist deren vergleichsweise kurze Linge. Bei Stimuli
iber eine Minute ist der Zeitaufwand zur Ermittlung der Ergebnisse zu hoch geworden.
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Korrelation der Distanzwerte Korrelation der HACs
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Abbildung 6.2: Gemittelte Korrelationswerte fiir Scanpath-Mafle. Links die HAC-
Korrelationen. Rechts die HAC-Korrelationen. TB steht fiir Temporal-Binning.
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Abbildung 6.3: Gemittelte Korrelationswerte fiir Trajektorie-Mafle. Links die Korrelationen
zwischen den Distanzwerten. Rechts die HAC-Korrelationen.

Die Abbildung 6.3 zeigt um Grunde, dass sich die Ergebnisse der Dynamic-Time-Warping
und der Frechet-Distanz nicht decken. Dies ist sowohl auf HAC- als auch auf Ebene der
Distanzwerte gut zu sehen. Vergleicht man dieselben Mafle miteinander, so ergeben sich
teilweise auch Unterschiede, die auf die Auswahl der Représentation zuriickzufithren sind. Dies
ist insbesondere bei der Frechet-Distanz zu beobachten, wo die Korrelationen zwischen den
HAC: bei etwa (.8 liegen. Hier erweist sich das Dynamic-Time-Warping Verfahren in gewisser
Weise robuster, da hier HAC-Korrelationen héher ausfallen (etwa bei 0.9). Noch deutlicher
jedoch der Unterschied bei den Distanzwerten zu beobachten.
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6.2.3 Evaluation zwischen Bild-MaBen
Evaluation zwischen Histogramm-MaBen

Im folgenden werden die Ergebnisse der Bhattacharyya-Distanz sowie der Chi-Square Methode
miteinander verglichen. Die Earth-Mover’s-Distanz musste aus der Evaluation ausgegliedert
werden, da unverhaltnismaflig hohe Berechnungszeiten auftraten. Auflerdem werden beide
Maf3e in drei unterschiedlichen Farbraumen : RGB, HSV sowie LAB getestet. Die Anzahl der
Intensitatsklassen fiir jeden Kanal wurde auf 30 festgelegt. Im Falle von HSV werden nur der
Farbton-Kanal (H) sowie der Sattigungskanal (S) in die Berechnung miteinbezogen. Im Falle
des LAB-Farbraums nur die Kanile A und B.
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Abbildung 6.4: Gemittelte Korrelationswerte fiir Histogramm-Mafle. Links die Korrelationen
zwischen den Distanzwerten. Rechts die HAC-Korrelationen.

Die Abbildung 6.4 zeigt die gemittelten Korrelationswerte fiir die HACs als auch fiir Dis-
tanzwerte. Betrachtet man die Korrelationswerte zwischen den HACs, so sind sie fast alle im
Bereich zwischen 0.76 und 0.86, was eine hohe Ahnlichkeit zwischen den erzeugten Clustering-
Ergebnissen andeutet. Eine Ausnahme bildet hier die Chi-Square Methode, unter Verwendung
des RGB-Farbraums. Hier sind die Korrelationswerte zu den anderen HACs geringer (alle etwa
bei 0.65). Dies ist ebenso auf Ebene der Distanzwerte zu sehen (auch etwa bei 0.65). Betrachtet
man die Mafle die denselben Farbraum verwenden, so sind die hochsten Korrelationen unter
den Maflen zu beobachten, die den LAB-Farbraum verwenden. Mehr Varianzen sind hingegen
beim RGB-Farbraum zu beobachten, wo die HAC-Korrelationen nur bei circa 0.75 liegen.

57



6 Demonstration und Evaluation

Evaluation zwischen Bildsequenz-MaBen

Unter den Bildsequenz-Maflen wurden die Squared-Differences Methode, das Korrelations-Maf3
sowie das Kosinus-Maf} vorgestellt.

Korrelation der Distanzwerte Korrelation der HACs
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Abbildung 6.5: Gemittelte Korrelationswerte fiir Bildsequenz-Maf3e. Links die Korrelationen
zwischen den Distanzwerten. Rechts die HAC-Korrelationen.

Bei den Bildsequenz-Maflen fallen die Ergebnisse weit homogener aus, wie an Abbildung 6.5
gut zu erkennen ist. Betrachtet man die Korrelationen zwischen den Distanzwerten, so deuten
sich hier perfekte Ubereinstimmungen an. Dasselbe lasst sich bei den Korrelationen zwischen
den HACs beobachten.
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6.3 Evaluation zwischen Kategorien

6.3 Evaluation zwischen Kategorien

Referenz-Gruppierung ? HACs aus MaRen
nach Slit-Scans = verschiedener Kategorien

Abbildung 6.6: Veranschaulichung zur Herangehensweise, wie die Eignung der Mafle in
Bezug auf die Slit-Scan-Visualisierung festgestellt werden kann.

Nachdem die Maf3e untereinander in ihrer jeweiligen Kategorie miteinander verglichen wurden,
folgt nun eine Evaluation zwischen Maflen unterschiedlicher Art. In diesem Zusammenhang
ist ein Vergleich zwischen allen Maflen jedoch nicht sinnvoll. Grund dafiir ist der hohe Evalua-
tionsaufwand, welcher damit verbunden wére. Aus diesem Grund wird aus jeder Kategorie nur
ein Maf fiir die nachfolgenden Evaluation betrachtet. Eine Ausnahme bilden hier die Bild-Maf3e.
In diesem Fall wird jeweils ein Bildsequenz-Maf} sowie ein Histogramm-Maf ausgewahlt. Die
betrachteten vier Mafle sind im Folgenden aufgefiihrt.

« Levenshtein-Distanz mit Temporal-Binning.
+ Dynamic-Time-Warping auf Gaze-Punkten.
« Bhattacharyya-Distanz auf dem HSV-Farbraum (quantisiert in 30 Intensitdtsklassen).

« Korrelationsmaf} auf Bildsequenzen.

Diese haben sich experimentell als besonders vielversprechend, beziiglich der visuellen Interpre-
tation erwiesen. In diesem Abschnitt werden zudem die Ergebnisse der beteiligten Distanzmafle
in den Kontext der Slit-Scan-Visualisierung gesetzt. Dies geschieht an vier unterschiedlichen
Szenarien, die aus den Benchmark-Datensétzen ausgewahlt wurden. Die Herangehensweise
fir diese Aufgabe ist in Abbildung 6.6 dargestellt. Fiir jedes dieser Szenarien wird eine Refe-
renzgruppierung prasentiert, die iiber die Slit-Scan-Visualisierung ermittelt wurde. Danach
wird uberpriift, wie gut die Mafle diese Gruppierung nachbilden kdnnen. Damit soll letztlich
die Frage beantwortet werden, inwiefern sich die Ergebnisse der Maf3e, mit der visuellen
Interpretation, welche iiber die Slit-Scans gewonnen wurde, decken.

6.3.1 Beschreibung der Szenarien

Eine géngige Herangehensweise bei dem Vergleich von Blickverhalten ist, die Blicksequenzen
der Probanden tiber den gesamten Zeitraum (des Stimulus) auf Ahnlichkeiten zu analysieren.
Somit kann ermittelt werden, ob insgesamt Ahnlichkeiten, bzw. Unterschiede im Blickverhalten
vorhanden sind. Das Szenario 1 soll sich genau dieser Aufgabe widmen.
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6 Demonstration und Evaluation

Berechnet man die Ahnlichkeit iiber den gesamten Zeitraum, so ergibt sich daraus genau
ein finaler Wert. Die Aussagekraft dieses Wertes lasst sich jedoch anzweifeln, da damit nicht
feststellbar ist, wo die tatsichlichen Unterschiede (bzw. Ahnlichkeiten) zwischen den Blickver-
halten existieren. Eine wichtige Aufgabe einer Visualisierung ist es, genau solche Bereiche zu
identifizieren [KW16]. Die Slit-Scan-Visualisierung eignet sich fiir diese Aufgabe besonders gut.
Eine Ermittlung dieser Sequenzen ist mittels der explorativen Analyse besonders einfach (siehe
Abschnitt 6.1). Insofern ist es interessant, auch solche ausgew#hlten Bereiche in der Evaluation
zu betrachten. Die Szenarien zwei bis vier sollen deshalb die Frage beantworten, inwiefern sich
die visuell ermittelten Ahnlichkeiten, iiber die Resultate der Distanzmaf3e bestatigen lassen.
Im Folgenden wird die Auswahl dieser Bereiche néher begriindet.

Szenario 2 betrachtet ein Bereich, wo in den Slit-Scans deutlich zwei Gruppen von unter-
schiedlichen Blickverhalten identifiziert werden konnen. Hierbei ist es interessant fest-
zustellen, ob sich das offensichtlich verschiedene Blickverhalten auch mittels der Ahn-
lichkeitsmafie bestétigen lasst.

Szenario 3 betrachtet ein Bereich, indem zwei Objekte im Stimulus fokussiert werden, die
sehr dhnlich zueinander aussehen. Hier soll untersucht werden, ob auch Bildmaf3e die
geringfiigigen visuellen Unterschiede ermitteln kénnen.

Szenario 4 betrachtet ein Bereich, indem sich das Blickverhalten der Probanden innerhalb
eines Areas-Of-Interest abspielt. Als punkt-basierte Visualisierungstechnik, konnen
die Slit-Scans jedoch diese Unterschiede gut erfassen. Es wird deshalb untersucht, ob
bestimmte Mafle in diesem Zusammenhang, keine gute Eignung beziiglich der visuellen
Interpretation aufweisen.
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6.3 Evaluation zwischen Kategorien

6.3.2 Szenario 1

In diesem Szenario verfolgen die Probanden die Fahrt eines roten Autos, welches auf einem
Parkplatz eine Wendung durchfiihrt. Das Szenario basiert auf dem Stimulus Turning-Car (S2)
des Benchmark-Datensatzes. Es wird dabei der gesamte Datenbereich betrachtet. In diesem
Stimulus gibt es nur ein Area-Of-Interest, namlich das rote Auto (siehe Abbildung 6.7). In diesem
Zusammenhang ist es von Interesse, iiber welchen Zeitraum die Probanden das rote Auto
fokussieren. Tatséachlich lassen sich zwei Gruppen vom Probanden ausmachen, deren Slit-Scans
in Abbildung 6.7 zu sehen sind. Diese Gruppen werden im Folgenden néher beschrieben.

Gruppe 1 Gruppe 2

Abbildung 6.7: Szenario 1 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit
eingezeichnetem AOL

Gruppe 1 Besteht aus den Probanden P4, P18, P14, P19 sowie P17. Sie fokussieren kontinu-
ierlich das fahrende rote Auto. Es gibt insgesamt nur sehr wenige Zeitpunkte, wo der
Fokus auf das Auto verloren geht.

Gruppe 2 Besteht aus den Probanden P3, P25 und P8. Sie Schauen im Vergleich zur Gruppe
1 weitaus weniger kontinuierlich auf das rote Auto. Dies ist in den Slit-Scans relativ
gut an den unregelmafig auftretenden graulichen Bereichen zu sehen. Hier schauen die
Probanden offenbar auf den Asphalt und nicht auf das Auto.
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6 Demonstration und Evaluation
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Abbildung 6.8: Szenario 1 - Dendrogramme zu den erzeugten HACs erstellt mit dem Prototy-

pen.

Ergebnisse

Die Abbildung 6.8 zeigt die Ergebnisse der Clusterings unter Verwendung der vier Distanzmafle.
Es ist deutlich zu sehen, dass Dynamic-Time-Warping, die Bhattacharyya-Distanz sowie die
Levenshtein-Distanz die Referenz-Gruppierungen einwandfrei ermitteln konnen. Zudem sind
die erzeugten Clusterings sehr ahnlich zueinander, wie die Korrelationen zwischen den HACs
zeigen (siehe Abbildung 6.9). Sie liegen fiir diese drei Mafe im Bereich zwischen 0.89 und
0.94. Betrachtet man jedoch die Korrelationswerte zwischen den Distanzwerten, so zeigt
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6.3 Evaluation zwischen Kategorien
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Abbildung 6.9: Szenario 1 - Links die Korrelationen zwischen den Distanzwerten. Rechts die
HAC-Korrelationen.

sich etwas anderes. Es sind lediglich hohe Korrelationen (0.77) zwischen der Dynamic-Time-
Warping Methode und der Levenshtein-Distanz zu erkennen. Die anderen Korrelationswerte
sind hier deutlich geringer (zum Beispiel nur 0.34 zwischen dem Korrelations-Maf; und der
Levenshtein-Distanz).

6.3.3 Szenario 2

Dieses Szenario basiert auf dem Stimulus Dialog (S3) vom Benchmark-Datensatz, in welchem
zwei Personen einen Dialog fithren. Der verwendete Datenbereich liegt zwischen den Gaze-
Punkten 800 und 1011. Die Probanden fokussieren in der Regel jene Person, die gerade am
Sprechen ist. Da die beiden Gesichter in den Slit-Scans schwer zu unterscheiden sind, ist in
diesem Fall das Spektrogramm sehr hilfreich. Es erlaubt festzustellen, ob der Proband gerade
die linke Person betrachtet (Spektrogramm ist rot), oder die rechte Person (Spektrogramm
ist blau). In Abbildung 6.10 ist ein einzelnes Bild des Stimulus zu sehen, in dem die AOIs als
griine Umrandungen angedeutet sind. Links in Abbildung 6.7 ist die Referenz-Gruppierung
angegeben, welche tiber die Slit-Scan-Visualisierung ermittelt wurde. Diese Gruppierung wird
im folgenden néaher beschrieben.

Gruppe 1 Besteht aus P4, P12, P8, P11 und P5. Diese schauen auf die linke Person und danach
auf die rechte Person. Bei der rechten Person schauen die Probanden aber vorwiegend
auf den Aufdruck des T-Shirts, was in den Slit-Scans auch gut zu sehen ist. Der Proband

P5 kann innerhalb diese Gruppe als Ausreifler angesehen werden, da er frither auf den
Aufdruck des T-Shirts schaut.

Gruppe 2 Besteht aus P2, P18, P14 und P23. Sie schauen zunéchst auf die linke Person, dann
auf die rechte Person und schliefilich wieder auf die linke Person. Das Spektrogramm
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6 Demonstration und Evaluation

Gruppe 1 Gruppe 2 Stimulus - Dialog

Abbildung 6.10: Szenario 2 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit
eingezeichneten AOIs.

zeigt diesen Verlauf deutlich. Auch in dieser Gruppe kann ein Proband als Ausreif3er
gesehen werden. In diesem Fall handelt es sich um P2. Dieser schaut vorwiegend auf die
rechte Person, wie sich anhand des Spektrogramms leicht erkennen lésst.

Ergebnisse

Die Ergebnisse der ermittelten HACs sind in Abbildung 6.11 fiir alle vier Mafle zu sehen. Alle
erzeugten Clusterings zeigen eine relativ gute Ubereinstimmung zur erwarteten Referenz-
Gruppierung. Einzig die Dynamic-Time-Warping Methode zeigt einige fehlerhafte Zuordnun-
gen. So werden P5 und P11 in Gruppe 2 eingeordnet. Wie gut zu sehen ist, sind das Clustering
zwischen der Levenshtein-Distanz und dem Korrelationsmaf} sehr dhnlich. Dies lasst sich auch
aus den Korrelation der HACs in Abbildung 6.12 gut ablesen. Sie betragt zwischen diesen
beiden Maf3en etwa 0.92. Bei den Distanzwerten ist dies jedoch nicht zu beobachten. Hier
sind beispielsweise die Korrelationen zwischen der Dynamic-Time-Warping Methode und dem
Korrelations-Maf3 hoher. Beide haben jedoch gemeinsam, dass der Proband P5 falschlicherwei-
se in Gruppe 2 eingeordnet wird. Dies konnte auch bereits bei der Dynamic-Time-Warping
Methode beobachtet werden. Bei der Bhattacharyya-Distanz wird hingegen Proband P18 falsch
in Gruppe 1 eingeordnet. Die Ausreifler P2 und P5 werden hingegen der korrekten Gruppe
zugeordnet. Aufgrund dieser Unterschiede in den Clusterings, sind die HAC-Korrelation zwi-

schen der Bhattacharyya-Distanz und den anderen drei Mafien nur im Bereich zwischen 0.45
und 0.6.
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Abbildung 6.11: Szenario 2 - Dendrogramme zu den erzeugten HACs erstellt mit dem Proto-
typen.
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6 Demonstration und Evaluation

Korrelation der Distanzwerte Korrelation der HACs
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Abbildung 6.12: Szenario 2 - Links die Korrelationen zwischen den Distanzwerten. Rechts
die HAC-Korrelationen.

6.3.4 Szenario 3

Dieses Szenario zeigt, wie zwei Akteure das Kartenspiel 'Memory’ spielen. Es basiert auf
dem Stimulus Memory (S5) des Benchmark-Datensatzes. Die verwendete Datenbereich liegt
zwischen den Gaze-Punkten 2003 und 2231. Bei diesem Stimulus stellt sich die Frage, welche
Karten die Probanden fokussieren. Aus diesem Grund ist jede der 16 Karten als ein eigenstandi-
ges Area-Of-Interest definiert. In Abbildung 6.13 sind zur Einfachheit halber nur die ersten vier
AOIs als griine Umrandungen annotiert. Links in Abbildung 6.10 ist die Referenz-Gruppierung
angegeben, die iiber die Slit-Scan-Visualisierung ermittelt wurde. Diese Gruppierung wird im
folgenden naher beschrieben.

Gruppe 1 Besteht aus den Probanden P5, P23, P19, P8 und P25. Diese schauen auf die eine
aufdeckte Karte (A) und das relativ kontinuierlich, ohne auf eine anderen Karte zu
schauen.

Gruppe 2 Besteht aus den Probanden P22, P14 und P24. Sie schauen zum Teil auch auf die
aufgedeckte Karte A. Zwischendurch fokussieren sie jedoch auch die andere aufgedeckte
Karte (B), welche genauso aussieht wie die Karte (A). Dieser Blickverlauf ist in den
Slit-Scans gut als Spriinge zwischen den beiden Karten A und B zu sehen.

Ergebnisse

Wie in Abbildung 6.14 zu sehen ist, konnen die Levenshtein-Distanz, Dynamic-Time-Warping
als auch das Korrelationsmaf klar die Referenz-Gruppen als solche identifizieren. Hier gibt es
beziiglich der Clusterings nur geringfiigige Unterschiede. Die Korrelationswerte (sowohl bei
den Distanzwerten, als auch auf den HACs) in Abbildung 6.15 bestitigen dies. Diese liegen alle
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6.3 Evaluation zwischen Kategorien

Gruppe 1 Gruppe 2 Stimulus - Memory
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P8

P19
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Abbildung 6.13: Szenario 3 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit
eingezeichneten AOIs.

im Bereich von 0.8, was als hoch angesehen werden kann. Vor allem zwischen dem Korrelations-
Maf und der Levenshtein-Distanz ist eine hohe Ahnlichkeit in den Distanzwerte zu beobachten.
Anders sieht es jedoch bei der Bhattacharyya-Distanz aus, wo das Clustering die beiden
Gruppen nicht identifizieren kann. Die Probanden P14 und P24 werden zwar korrekterweise
zusammengefiihrt, jedoch wird auch falschlicherweise P22 mit P23 zusammengefiihrt. Die
Korrelationswerte zwischen den HACS (etwa alle bei 0, 4) machen die Unterschiede ebenfalls
nochmal deutlich. Auf Ebene der Distanzwerte wird der Unterschied noch deutlicher. Hier
sind die entsprechenden Korrelationswerte teilweise kleiner als 0.1.
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Abbildung 6.14: Szenario 3 - Dendrogramme zu den erzeugten HACs erstellt mit dem Proto-
typen.

68
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Korrelation der Distanzwerte Korrelation der HACs
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Abbildung 6.15: Szenario 3 - Links die Korrelationen zwischen den Distanzwerten. Rechts
die HAC-Korrelationen.

6.3.5 Szenario 4

In diesem Szenario spielen zwei Akteure das Kartenspiel 'UNO’. Es basiert ebenfalls auf dem
Benchmark-Datensatz. Hier wurde jedoch der Stimulus Uno (S6) auf den Gaze-Punkten zwi-
schen 2102 bis 2392 verwendet. Dabei existieren verschiedene Fokuspunkte, die als Areas-Of-
Interests im Stimulus markiert sind. Darunter die Karten-Blatter der beiden Spieler. Aulerdem
die beiden mittleren Kartenstapel. Links in Abbildung 6.16 ist die Referenz-Gruppierung ange-
geben, welche iiber die Slit-Scan-Visualisierung ermittelt wurde. Besonders an den Probanden
aller Gruppen ist, dass sie alle auf das Kartenblatt vom rechten Spieler schauen. Die entspre-
chenden Spektrogramme zeigen dies deutlich (da sie alle weitgehend blau sind). Dennoch gibt
es zwischen diesen Probanden auch Unterschiede, die sich ebenfalls aus den Slit-Scans gut
ablesen lassen. Die folgende Beschreibung der Referenz-Gruppierung soll dies verdeutlichen.

Gruppe 1 Gruppe 2 Gruppe 3 Stimulus - UNO

= P25

Abbildung 6.16: Szenario 4 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit
eingezeichneten AOIs.
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6 Demonstration und Evaluation

Gruppe 1 Bestehend aus den Probanden P3, P22 und P19. Diese schauen durchgehend auf die
blaue Karte vom Spieler rechts. Die entsprechenden Slit-Scans in Abbildung 6.16 zeigen
dies deutlich.

Gruppe 2 Bestehend aus den Probanden P12 und P14. Sie schauen vorwiegend auf die griine
Karte vom Spieler rechts.

Gruppe 3 Bestehend aus den Probanden P25, P15 und P8. Sie schauen auf mehrere verschie-
dene Karten des rechten Spieler. Der Proband P8 kann als Ausreifier gesehen werden, da
er vor allem auf die gelbe Karte fokussiert ist.

Ergebnisse

Die Abbildung 6.17 zeigt die Clustering-Ergebnisse der beteiligten Maf3e. Die Bhattacharyya-
Distanz, Dynamic-Time-Warping sowie das Korrelation-Mafy kénnen die drei Referenz-
Gruppen gut erkennen. Die Clustering-Ergebnisse sind auch sehr dhnlich zueinander. Die
Korrelationswerte zwischen den dazugehorigen HACs, wie in Abbildung 6.17 gut zu sehen ist,
sind entsprechend hoch und liegen im Bereich von 0.9 und 1.0. Ahnliches ist auf der Ebene
der Distanzwerte zu beobachten. Auflerdem wird in diesem Clustering die Abgrenzung von
Gruppe 1 (Probanden die auf die blaue Karte schauen) zu den beiden anderen Gruppen 2 und 3
deutlich. Die Gruppen 2 und 3 werden hier zunédchst zusammengefiihrt, bevor sie mit Gruppe 1
zusammengefithrt werden. Dennoch gibt es auch Probleme bei der Zuordnung der Probanden
zu den Referenz-Gruppen. So gelingt es beispielsweise der Dynamic-Time-Warping Methode
nicht, die Ahnlichkeit P14 und P12 korrekt zu erkennen. Dasselbe ist bei dem Korrelation-Maf}
zu beobachten. Die Probanden P15 und P25 der Gruppe 3 werden hingegen korrekt zugeord-
net. Abzugrenzen von diesen drei Clusterings ist das Resultat der Levenshtein-Distanz. Sie
verhalt sich, wie man an den Korrelationswerten gut erkennen kann, in diesem Szenario ganz
anders. Betrachtet man das Clustering, so fallt auf, das die Gruppen 2 und 3 nicht eindeutig
identifiziert werden kénnen. Auflerdem zeigt das Clustering keine klare Abgrenzung zwischen
den Probanden der Gruppe 1 (P22, P3, P19) und den anderen Probanden.
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Abbildung 6.17: Szenario 4 - Dendrogramme zu den erzeugten HACs erstellt mit dem Proto-
typen.
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Abbildung 6.18: Szenario 4 - Links die Korrelationen zwischen den Distanzwerten. Rechts
die HAC-Korrelationen.

6.4 Diskussion und Interpretation der Ergebnisse

Betrachtet man die Ergebnisse aus Abschnitt 6.3, so ist zunédchst zu erwéhnen, dass reprasen-
tative Aussagen anhand von nur vier Szenarien schwer getroffen werden kénnen. Dennoch
lassen sich auf Grundlage der ermittelten Ergebnisse, Tendenzen ziehen. Betrachtet man die
Szenarien 1, 2 und 3 so kann deutlich beobachtet werden, dass die Ergebnisse zwischen der
Levenshtein-Distanz und den Trajektorie- und Bildmafien oft in guter Ubereinstimmung zur
visuellen Interpretation stehen. Insofern ist zu anzumerken, dass anhand der vorliegenden
Realbeispiele eine gute Eignung dieser Mafle im Kontext der Slit-Scan-Visualisierung anzuneh-
men ist. Vor allem sind dabei die Levenshtein-Distanz sowie die Bhattacharyya-Distanz zu
erwahnen, da sie die Referenzgruppierungen oft korrekt wiedergeben konnten. Insbesondere
bei den ersten beiden Szenarien wurde dies beobachtet. Aber auch sie haben Schwichen,
die sich im Rahmen der Evaluation angedeutet haben. So konnte in Szenario 3 beobachtet
werden, dass die Bhattacharyya-Distanz offenbar Schwierigkeiten bei der Unterscheidung
von dhnlich aussehenden Elementen im Stimulus hatte. Es konnte jedoch auch beobachtet
werden, dass im selben Szenario das Bildsequenz-Maf} (Correlation) hier offenbar weniger
Probleme hatte. So lasst sich daraus nicht automatisch folgern, dass Bildmafie in einem solchen
Szenario schlechter abschneiden miissen. Es ist jedoch zu vermuten, dass Histogramm und
Mafle auf Bildsequenzen durchaus unterschiedliches Verhalten aufweisen. Betrachtet man
Szenario 4, so konnte beobachtet werden, dass die Levenshtein-Distanz Probleme hatte, die
Referenzgruppierungen korrekt wiederzugeben. Die Vermutung ist, dass Scanpath-Mafle unter
bestimmten Umstidnden, keine besonders gute Eignung in Bezug auf die visuelle Interpre-
tation aufweisen. Dies ist insbesondere bei punkt-basierten Visualisierungstechniken (wie
der Slitscan-Visualisierung) anzunehmen, vor allem wenn die Unterteilung des Stimulus in
Areas-Of-Interests zu grobgranular ausfillt. In solchen Fillen werden zwar Varianzen im
Blickverhalten durch die punkt-basierte Visualisierungstechnik visuell wiedergegeben, aber
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nicht von AOI-basierten Scanpath-Maflen erkannt. Hier konnen nicht-AOI-basierte Verfahren,
wie die Bhattacharyya-Distanz, das Korrelations-Maf3, oder Dynamic-Time-Warping deutlich
bessere Ergebnisse liefern.

Es stellt sich natiirlich die Frage, wie gut die Eignung jener Mafle zur visuellen Interpretation
ist, die nicht ndher im Abschnitt 6.3 untersucht wurden. Auf Grundlage der Resultate aus
dem Abschnitt 6.2 konnen zumindest einige Vermutungen angestellt werden. So ist davon
auszugehen, dass der Needleman-Wunsch-Algorithmus mit Temporal-Binning die dhnlichen
Ergebnisse liefern wird, wie die Levenshtein-Distanz mit Temporal-Binning. Anders ist dies
unter der Missachtung der Fixationsdauern (als ohne Temporal-Binning) zu erwarten. Die
Korrelationswerte haben deutlich ergeben, dass die Fixationsdauern einen grofien Einfluss auf
die Cluster-Ergebnisse haben. Insofern stellt sich die Frage, ob ohne Temporal-Binning, von
einer schlechteren Eignung beziiglich der visuellen Interpretation auszugehen ist. Betrachtet
man die Histogramm-Mafle, so ist davon auszugehen, dass keine grofien Unterschiede zwi-
schen der Bhattacharyya-Distanz und der Chi-Square Methode existieren. Bei der Wahl des
Farbraums sind zwar dhnliche Ergebnisse beobachtet worden, jedoch waren sie nicht immer
in vollstandiger Ubereinstimmung zueinander. Die Farbraumauswahl hat offenbar einen nicht
zu vernachlédssigenden Einfluss auf die Resultate des Clusterings. Diese Tatsache scheint im
Kontext des Histogramm-Vergleichs nicht ungewohnlich zu sein. So haben beispielsweise
Chiang et al. [CTHO06] dies ebenso zwischen den Farbraumen HSV, RGB und YUYV feststellen
konnen. Insbesondere bei den Bildsequenz-Maflen konnte gezeigt werden, dass hier die Wahl
des Mafles keine besondere Auswirkung auf das Ergebnis hat. Somit ist davon auszugehen,
dass die Squared-Difference-Methode und das Kosinus-Maf} sich in den vier vorgestellten
Szenarien, dhnlich wie das Korrelations-Maf} verhalten werden. Bei den Trajektorie-Maf3en
(Dynamic-Time-Warping und Frechet-Distanz) kann am ehesten davon ausgegangen werden,
dass sehr unterschiedliche Ergebnisse zu erwarten sind. Selbst bei der Wahl der Reprasenta-
tion (Fixationen oder Gaze-Punkte), wurden unterschiedliche Ergebnisse festgestellt. Bei all
den erkannten Unterschieden, ist es letztlich jedoch schwer, die genauen Griinde fiir diese
Umstédnde ausfindig zu machen. Hierfiir wére eine tiefere gehende Analyse notwendig.
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7 Zusammenfassung und Ausblick

Dieses Kapitel fasst die in dieser Arbeit behandelten Inhalte kurz zusammen. Danach wird
ein Ausblick gegeben, wie verschiedene Aspekte des Konzepts sowie der Evaluation sinnvoll
erweitert werden konnen.

Zusammenfassung

Das Ziel dieser Bachelorarbeit bestand in der Erweiterung der Slit-Scan-Visualisierungstechnik,
um die Moglichkeit das Blickverhalten mehrerer Probanden berechnen und analysieren zu
koénnen. Hierfiir wurden Ahnlichkeitsmaf3e basierend auf Trajektorien-, Scanpaths- und Bild-
ahnlichkeiten implementiert, die eine objektive Analyse des Blickverhaltens zwischen unter-
schiedlichen Probanden erméglichen. Das in dieser Arbeit entwickelte Konzept erlaubt die
berechneten Ahnlichkeiten zwischen den Probanden in den Kontext der Visualisierung zu
setzen und die Ergebnisse unterschiedlicher Ahnlichkeitsmafle miteinander zu vergleichen.
Hierfiir wurden zwei visuelle Erweiterungen: die Multi-Dendrogramm-Analyse sowie die
Multi-Heatmap-Visualisierung vorgestellt, die dies auf interaktiver Ebene ermdglichen. Das
Konzept der hierarchischen Clusteranalyse stellt dabei die Grundlage dieser Techniken dar.
Die Implementierung der genannten Konzepte wurde in Form eines Prototypen umgesetzt,
welcher fiir die Evaluation der implementierten Ahnlichkeitsmafie verwendet wurde. Diese
wurden dabei auf zwei Arten miteinander verglichen. Zunéchst fand eine Untersuchung unter
den Ahnlichkeitsmaf3en derselben Kategorie (Trajektorie, Scanpath- und Bildahnlichkeiten)
statt. Danach wurde ein Ahnlichkeitsmaf3 pro Kategorie ausgewihlt, um diese untereinander,
im Kontext der Slit-Visualisierung, auf ihre Eignung beziiglich der visuellen Interpretation zu
testen. Zum Schluss folgte eine Diskussion sowie Interpretation der ermittelten Ergebnisse.

Die Ergebnisse zeigen, dass sich die Resultate der betrachteten Ahnlichkeitsmafle in vielen
Féllen mit der visuellen Interpretation vertragen. Die betrachteten Szenarien deuten jedoch
auch auf potenzielle Schwichen einiger Ahnlichkeitsmafle hin. Aulerdem sind mit nicht zu
vernachlissigenden Varianzen in den Resultaten der Ahnlichkeitsmafle zu rechnen, welche
auf die Auswahl der Reprasentationen zuriickzufiihren sind.
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Ausblick

Im Folgenden wird erldutert, an welchen Punkten dieser Arbeit, Verbesserungen sowie Erwei-
terungen denkbar sind.

Ausweitung der Evaluation

Das Evaluationskapitel hat die Eignung der verschiedenen Ahnlichkeitsmafie in Bezug auf die
visuelle Interpretation getestet. Dies geschah jedoch nur anhand vier ausgewéhlten (Real-)
Szenarien. An dieser Stelle ist es sinnvoll die Evaluation auf mehr Szenarien auszuweiten, um
reprasentative und sichere Ergebnisse liefern zu konnen. Hierfiir ware es sinnvoll, fiir diese
Aufgabe zugeschnittene Eye-Tracking-Daten aufzunehmen.

Erweiterung der Slit-Scan Visualisierung

Um das Problem des Uberblicks zu bewiltigen, wurde der klassische Ansatz des "Zoomings’
verwendet (Abschnitt 4.2.2 im Konzeptkapitel). In vielen Fallen erweist sich dieser als sehr
hilfreich, jedoch ist der Detail-Verlust mitunter sehr hoch. In diesem Zusammenhang wére
es interessant, ob der ebenfalls betrachtete Ansatz der Mini-Map, einen besseren Uberblick
erlaubt.

Es wurde auch ein anderer Ansatz zur besseren Skalierung nach der Datensatzldnge, auf
Grundlage von Bilddahnlichkeiten vorgestellt (Abschnitt 4.2.2 im Konzeptkapitel). Hier stellt
sich die Frage, wie trotz der Zusammenfithrung dhnlicher Slits, die Information der Dauer
erhalten bleiben kann. Unter der Voraussetzung, dass dieses Problem gelost wird, wire die
Umsetzung dieses Ansatzes ebenfalls vielversprechend.

Erweiterung des Prototypen um die statistische Analyse

Im Rahmen der Evaluation wurden neben dem entwickelten Prototypen, aulerdem statistische
Methoden (wie die Korrelationsanalyse) verwendet. Diese wurde aber extern mithilfe eines R-
Skripts durchgefiihrt . Hier wire es sinnvoller, statistische Methoden direkt in den Prototypen
zu integrieren, sodass die Anwendung fiir diese Aufgabe nicht verlassen werden muss.
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Erweiterung der Multi-Heatmap-Visualisierung

Die Multi-Heatmap-Visualisierung ist vor allem fiir die Darstellung von mehreren Distanzma-
trizen geeignet. Jedoch skaliert sie nur unzureichend tiber die Anzahl der Elemente, was die
direkte Analyse der Distanzwerte erschwert. Somit hat sie sich als nur eingeschrankt niitzlich
erwiesen. An dieser Stelle wire es denkbar, Filterkonzepte in diese Visualisierung zu integrie-
ren, sodass weniger Distanzwerte gleichzeitig darstellt werden miissen. Beispielsweise konnten
nur jene Werte angezeigt werden, welche einen vom Benutzer festgelegten Schwellenwert
tiber- oder unterschreiten.
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