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Kurzfassung

Bei der Slit-Scan-Technik werden einzelne Streifen eines visuellen Stimulus ausgeschnitten

und entlang einer Zeitachse aneinander gefügt. Das Resultat ist eine kompakte und leicht

interpretierbare Darstellung des Blickverhaltens eines Menschen. Gegenstand dieser Arbeit

ist die Erweiterung der Slit-Scan-Technik, um die Möglichkeit Ähnlichkeiten zwischen den

Probanden berechnen zu können und diese anhand der Slit-Scans zu interpretieren. In die-

sem Zusammenhang werden Ähnlichkeitsmaße basierend auf Scanpath-, Trajektorie, und

Bildähnlichkeiten betrachtet. Im Rahmen einer Evaluation soll mit dem entwickelten Prototy-

pen untersucht werden, inwiefern sich die Ergebnisse der Ähnlichkeitsmaße mit denen der

visuellen Interpretation vertragen.

Abstract

In the slit scan technique, individual strips of a visual stimulus are cut out and joined together

along a timeline. The result is a compact and easily interpretable representation of the gaze

behavior of a person. The objective of this thesis is the extension of the slit-scan technique,

to be able to calculate the similarities between subjects and interpret those in the context

of slit-scans. In this respect, similarity measures based on scanpath-, trajectory and image

similarity are considered. Within the context of an evaluation, the developed prototype will

investigate to what extent the results of the similarity measures are compatible with those of

the visual interpretation.

iii





Inhaltsverzeichnis

1 Einleitung 1

2 Grundlagen 5
2.1 Grundbegriffe des Eye-Trackings . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Areas-Of-Interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Visualisierungstechniken von Eye-Tracking . . . . . . . . . . . . . . . . . . . 6

2.4 Vergleichsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Informationsvisualisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Hierarchisches Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Verwandte Arbeiten 19
3.1 Arbeiten mit AOI-basierten Visualisierungstechniken . . . . . . . . . . . . . . 19

3.2 Arbeiten mit punkt-basierten Visualisierungstechniken . . . . . . . . . . . . . 22

4 Aufgabenstellung und Konzept 25
4.1 Die Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Die Slit-Scan Visualisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Daten und Repräsentationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Die Auswahl von Ähnlichkeitsmaßen . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Visualisierungen und Analysekonzepte . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Gesamtkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Implementierung 39
5.1 Gesamtübersicht der grafischen Bedienelemente . . . . . . . . . . . . . . . . . 39

5.2 Einbindung der Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Die Slit-Scan Ansicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Hierarchische Clusteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Historie der erzeugten Clusterergebnisse . . . . . . . . . . . . . . . . . . . . . 47

5.6 Weitere Funktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Demonstration und Evaluation 53
6.1 Vorbereitungen zur Vergleichsanalyse . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Evaluation innerhalb der Kategorien . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Evaluation zwischen Kategorien . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Diskussion und Interpretation der Ergebnisse . . . . . . . . . . . . . . . . . . 72

v



7 Zusammenfassung und Ausblick 75

Literaturverzeichnis 79

vi



Abbildungsverzeichnis

1.1 Ausschnitt aus dem Experiment von Alfred L. Yarbus (1967). . . . . . . . . . . 1

2.1 Punkt-basierte und AOI-basierte Visualisierungstechniken. . . . . . . . . . . . 7

2.2 Beispiel für Scanpath-Repräsentationen. . . . . . . . . . . . . . . . . . . . . . 8

2.3 Beispiel für die Erzeugung eines Histogramms aus einem Graustufenbild. . . . 9

2.4 Taxonomie von Distanzmaßen auf Histogrammen. . . . . . . . . . . . . . . . . 10

2.5 Taxonomie von Trajektorie-Maßen. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Der Visual Analytics Prozess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Beispiel für die Erzeugung eines hierarchischen Clusterings. . . . . . . . . . . 15

2.8 Beispiel einer Heatmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Beispiel der cophentischen Korrelation. . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Screenshot der erweiterten PSP-Visualisierung. . . . . . . . . . . . . . . . . . . 20

3.2 Screenshot von ISeeCube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Screenshot von Gaze-Stripes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Visuelle Komponenten der Slitscan-Visualisierungstechnik. . . . . . . . . . . . 26

4.2 Schemantische Darstellung einer Field-Of-View-Box. . . . . . . . . . . . . . . 28

4.3 Schematische Darstellung der Bee-Swarm-Visualisierung. . . . . . . . . . . . . 29

4.4 Schematische Darstellung der Multi-Dendrogramm Analyse. . . . . . . . . . . 35

4.5 Schematische Darstellung der (Multi)-Heatmap. . . . . . . . . . . . . . . . . . 36

4.6 Illustration des Gesamtkonzepts. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Gesamtübersicht der grafischen Bedienelemente. . . . . . . . . . . . . . . . . . 40

5.2 Liste der importierten Probanden. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Hinzufügen von Distanzmaßen im Prototypen. . . . . . . . . . . . . . . . . . . 43

5.4 Verfügbare Modi im Prototypen. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Umsetzung der Bee-Swarm Visualisierung. . . . . . . . . . . . . . . . . . . . . 45

5.6 Darstellung des hierarchischen Clusterings im Protoypen. . . . . . . . . . . . 46

5.7 Die Liste der HACs repräsentiert das Konzept der Historie. . . . . . . . . . . . 47

5.8 Umsetzung der Multi-Dendrogramm Analyse. . . . . . . . . . . . . . . . . . . 48

5.9 Umsetzung der Multi-Heatmap Visualsierung. . . . . . . . . . . . . . . . . . . 50

6.1 Die zwei wesentlichen Schritte der Evaluation. . . . . . . . . . . . . . . . . . . 54

6.2 Gemittelte Korrelationswerte für Scanpath-Maße. Links dieHAC-Korrelationen.

Rechts die HAC-Korrelationen. TB steht für Temporal-Binning. . . . . . . . . 56

vii



6.3 Gemittelte Korrelationswerte für Trajektorie-Maße . . . . . . . . . . . . . . . 56

6.4 Gemittelte Korrelationswerte für Histogramm-Maße. . . . . . . . . . . . . . . 57

6.5 Gemittelte Korrelationswerte für Bildsequenz-Maße. . . . . . . . . . . . . . . . 58

6.6 Veranschaulichung zur Herangehensweise an die Evaluation. . . . . . . . . . . 59

6.7 Szenario 1 - Referenzgruppierung. . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.8 Szenario 1 - Dendrogramme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.9 Szenario 1 - Korrelationen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.10 Szenario 2 - Referenzgruppierung. . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.11 Szenario 2 - Dendrogramme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.12 Szenario 2 - Korrelationen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.13 Szenario 3 - Referenzgruppierung. . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.14 Szenario 3 - Dendrogramme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.15 Szenario 3 - Korrelationen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.16 Szenario 4 - Referenzgruppierung. . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.17 Szenario 4 - Dendrogramme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.18 Szenario 4 - Korrelationen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



Tabellenverzeichnis

4.1 Auflistung aller in dieser Arbeit verwendeten Distanzmaße. . . . . . . . . . . 31

ix





1 Einleitung

Abbildung 1.1: Ausschnitt aus dem Experiment von Alfred L. Yarbus (1967). Die Aufgabe

des Versuchs ist das einfache (freie) Betrachten eines Bildes, welches links

zu sehen ist. Das Blickverhalten eines Probanden ist dabei rechts zu sehen.

Abbildung aus [Yar67].

In seinem berühmten Experiment [Yar67] fand der Psychologe Alfred L. Yarbus
1
heraus,

dass das Blickverhalten von Menschen insbesondere von der gestellten Aufgabe abhängt. In

diesem Experiment verwendete er eine Apparatur, die es ihm ermöglichte, dass Blickverhalten

von Menschen relativ genau aufzuzeichnen. In Abbildung 1.1 ist eine Beispielaufnahme eines

Probanden zu sehen, welchemittels dieser Apparatur aufgenommenwurde. Seitdemhat sich das

Eye-Tracking zunehmend als die Methode zur Erfassung des Blickverhaltens etabliert. Neben

den technische Errungenschaften, welche für die steigende Präzision der Eye-Tracking-Systeme

verantwortlich waren, wurden über die Jahre viele Analysemethoden des Blickverhaltens

entwickelt. Neben der klassischen statistischen Analyse sind hier Visualisierungstechniken

zu nennen, welche die explorative und qualitative Analyse des Blickverhaltens ermöglichen

[BKR+17]. Einige dieser Visualisierungstechniken haben jedoch bedeutende Nachteile. So

besteht bei vielen die Notwendigkeit, sogenannte Areas-Of-Interests 2
im Vorfeld zu definieren.

Dies erweist sich in der Regel jedoch als eine aufwändige und mühselige Aufgabe. Andere

Visualisierungstechniken vernachlässigen hingegen die zeitliche Dimension der Blickdaten

oder können den visuellen Stimulus (hier handelt es sich um Videos oder einfache Bilder)

nur unzureichend in die Visualisierung integrieren. Es gibt jedoch auch Ansätze, die mit der

1
https://en.wikipedia.org/wiki/Alfred_L._Yarbus (Zuletzt überprüft am 29.10.2017)

2
Unterteilungen des visuellen Stimulus in Bereiche von Interesse.

1

https://en.wikipedia.org/wiki/Alfred_L._Yarbus


1 Einleitung

Motivation entwickelt wurden, viele dieser Probleme zu adressieren. Als Beispiel sei hier

die Slitscan-Visualisierungstechnik von Kurzhals et al. [KW16] genannt. Bei dieser Technik

werden einzelne Streifen eines visuellen Stimulus ausgeschnitten und entlang einer Zeitachse

aneinander gefügt. Das Resultat ist eine kompakte und leicht interpretierbare Darstellung des

Blickverhaltens eines Menschen.

Dennoch stellen Visualisierungstechniken, wie die Slitscan-Visualisierung, nicht die einzige

Möglichkeit dar, das Blickverhalten zu analysieren. Ein weiterer Ansatz sind algorithmische

Vergleichsmethoden, mit denen das Blickverhalten vonMenschen auf Ähnlichkeiten untersucht

werden kann. Eines der ersten Ähnlichkeitsmaße in diesem Zusammenhang wurde von Brandt

und Stark im Jahre 1997 auf Grundlage der Levenshtein-Distanz vorgestellt [BS97]. Seitdem

hat sich das Feld der sogenannten Scanpath-Vergleichsmaße rasant weiterentwickelt.

Oft ist man jedoch daran interessiert, die beiden genannten Analysekonzepte in einem gemein-

samen Kontext zu verwenden. In diesem Zusammenhang stellt sich die Frage, ob die Ergebnisse

der beiden Analysekonzepte in Einklang zueinander stehen, oder sogar widersprüchlich sind.

Stimmen die Ergebnisse der visuellen Analyse mit den Resultaten eines Ähnlichkeitsmaßes

überein, so kann von einer guten Eignung dieser Methode im Kontext der verwendeten Visua-

lisierung gesprochen werden.

Eine wichtige Aufgabe dieser Arbeit ist es, diese Frage im Rahmen der Slit-Scan-Visualisierung

zu beantworten. Neben den klassischen Scanpath-Maßen werden jedoch außerdem Ähnlich-

keitsmaße basierend auf Trajektorie- sowie Bildähnlichkeiten betrachtet. So soll es möglich

sein die Ähnlichkeiten zwischen den Probanden berechnen zu können und diese anhand der

Slit-Scans zu interpretieren. Hierfür wird in dieser Arbeit ein Prototyp entwickelt, welcher

diesen Anforderungen gerecht wird.

2



Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Das Grundlagenkapitel beinhaltet die inhaltlichen Voraussetzun-

gen dieser Arbeit. Dabei werden grundsätzliche Begriffe des Eye-Trackings geklärt

sowie Richtlinien für das Gebiet der Informationsvisualisierung vorgestellt. Ein weiterer

wichtiger Bestandteil der Grundlagen sind verschiedene Taxonomien zur Einordnung

der Ähnlichkeitsmaße. Das Kapitel schließt mit den Grundlagen der hierarchischen

Clusteranalyse ab. Ein Analyseverfahren, welches breite Verwendung in dieser Arbeit

findet.

Kapitel 3 – Verwandte Arbeiten: In diesem Kapitel werden Arbeiten vorgestellt, deren Ziel-

setzung eng verwandt mit der Zielsetzung dieser Arbeit ist. Die betrachteten Arbeiten

betreffen dabei Ansätze, basierend auf punkt-basierten Visualisierungen, wie auch AOI-

basierten Visualisierungen.

Kapitel 4 – Aufgabenstellung und Konzept: Dieses Kapitel befasst sich mit der Aufgaben-

stellung dieser Arbeit sowie dem Lösungskonzept. Es wird dabei auf die Auswahl der Ähn-

lichkeitsmaße eingegangen, wie auch Erweiterungen der Slitscan-Visualisierungstechnik

präsentiert. Außerdem wird die konzeptionelle Darstellung der interaktiven Visualisie-

rung auf Grundlage der Visual-Analytics erörtert.

Kapitel 5 – Implementierung: Die Umsetzung des Konzept, findet sich im Kapitel der Im-

plementierung wieder. Dabei werden die einzelnen Bedienelemente des entwickelten

Prototypen vorgestellt.

Kapitel 6 – Demonstration und Evaluation: Mithilfe des verwendeten Prototypen werden

die implementierten Ähnlichkeitsmaße evaluiert. Dabei wird ihre Eignung in Bezug auf

die visuelle Interpretation (im Kontext der Slitscan-Visualisierungstechnik) untersucht.

Kapitel 7 – Zusammenfassung und Ausblick Das letzte Kapitel schließt mit einer Zusam-

menfassung über die erbrachten Leistungen dieser Arbeit ab. Der Ausblick umfasst

Ansätze zur Verbesserung der Evaluation, sowie Ideen zur Weiterentwicklung von er-

dachten Konzepten.
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2 Grundlagen

In diesem Kapitel werden die Grundlagen vorgestellt, welche für die Konzepte dieser Arbeit

relevant sind. Darunter die Grundlagen des Eye-Trackings sowie eine allgemeine Betrachtung

existierender Visualisierungstechniken. Ein weiterer wichtiger Bestandteil ist die Vorstellung

der verschiedenen Kategorien von Vergleichsmaßen, die in dieser Arbeit Verwendung finden.

Ein weiterer Bestandteil stellen die Grundlagen der Informationsvisualisierung dar. Die dort

besprochenen Prinzipien finden Verwendung in der Erstellung des in dieser Arbeit entwi-

ckelten Prototypen. Das Ende dieses Kapitels schließt mit dem Konzept der hierarchischen

Clusteranalyse ab.

2.1 Grundbegriffe des Eye-Trackings

Eye-Tracking-Systeme werden heutzutage vielfältig dazu verwendet, das Blickverhalten von

Menschen aufzuzeichnen. Dieses Blickverhalten ist in der Regel durch Ereignisse charakterisiert

[Hol15], die in diesem Kapitel erläutert werden.

2.1.1 Ereignisse bei Augenbewegungen

Im Folgenden werden einige Ereignisse genannt und erläutert, die bei Augenbewegungen

auftreten können. In der Regel sind Eye-Tracker in der Lage nur einige von diesen Ereignissen

aufzuzeichnen [Hol15].

Fixation Ist eine Ansammlung von Blickpunkten innerhalb eines bestimmten Zeitraums

und einer bestimmten Fläche. Dieser Zeitraum beträgt meist zwischen 200 und 300

Millisekunden.

Sakkade Stellt eine schnelle Augenbewegung (in der Regel 30-80 Millisekunden) von einer

Fixation, zu einer anderen Fixation dar. Es gibt sichere Hinweise darauf, dass ein Mensch

während der Ausführung einer Sakkade größtenteils blind ist.

Außerdem gibt es die Ereignisse : Smooth Pursuit, Glissade, Mikrosakkade, Tremor sowie den
Drift. Eine genau Beschreibung aller Ereignisse ist in [Hol15] zu finden.

5



2 Grundlagen

2.1.2 Scanpath

Eine Sequenz von abwechselnden Fixationen und ihren dazugehörigen Sakkaden nennt man

Scanpath, oder Fixationssequenz. Ein Scanpath kann Aufschluss über das (Blick) Suchverhalten

einer Person geben. [BKR+17]. Scanpaths stellen auch die Grundlage für den Vergleich von

Blickverhalten zwischen Probanden dar. In diesem Kapitel werden später Vergleichsverfahren

auf Scanpaths vorgestellt.

2.2 Areas-Of-Interests

Sogenannte Areas-Of-Interests (kurz AOIs) erlauben eine detaillierte Analyse der Augenbewe-

gung eines Probanden. AOIs definieren die Bereiche des Stimulus, die für den Forscher von

Interesse sind und von denen er Informationen erhalten will. [Hol15] Hierbei muss zwischen

statischen Stimuli und dynamischen Stimuli unterschieden werden. Für dynamische Stimuli

(wie Videos) müssen auch die AOIs entsprechend dynamisch definiert werden. [BKR+17]

AOIs müssen in der Regel manuell aus dem vorliegenden Stimulus erzeugt werden, wobei es

mittlerweile auch Ansätze zur automatischen Bestimmung von AOIs gibt [PS00].

2.3 Visualisierungstechniken von Eye-Tracking

Um das Blickverhalten zu untersuchen gibt es neben der Verwendung von statistischen Me-

thoden, die Möglichkeit Visualisierungen zu verwenden. Während statistische Methoden eine

quantitative Analyse von Blickverhalten ermöglichen, kann eine geeignete Visualisierung hel-

fen, die Daten in einer explorativen und qualitativen Art und Weise zu untersuchen. [BKR+17].

Mittlerweile existieren viele unterschiedliche Ansätze zur Visualisierung von Augendaten. Um

einen Überblick über die aktuellen Visualisierungstechniken zu geben, orientiert sich diese

Arbeit an der Taxonomie von Visualisierungstechniken (2017) nach Blascheck et al. [BKR+17]

Entsprechend dieser Taxonomie können Visualisierungstechniken in folgende Kategorien

unterteilt werden:

Punkt-basierte Methoden Räumlich -und temporale Informationen der aufgezeichnete Da-

tenpunkte werden zur Visualisierung verwendet. Eine weit verbreitete punkt-basierte

Methode ist die sogenannte Heatmap (siehe Abbildung 2.1). Sie wird verwendet, um über

die Verteilung der Blickdaten Aufschluss zu geben. Die zeitliche Dimension der Blickda-

ten wird dabei vernachlässigt. Eine weitere punkt-basierte Visualisierungstechnik, ist

die Slit-Scan Technik. Sie stellt die Grundlage für diese Arbeit dar.

AOI-basierte Methoden Anders als bei punkt-basierten Methoden verlangen AOI-basierte

Methoden vordefinierte Areas-Of-Interests. Ein Vertreter von AOI-basierten Methoden

ist beispielsweise rechts in Abbildung 2.1 zu finden. Diese Visualisierung nennt sich

6



2.4 Vergleichsverfahren

(a) (b)

Abbildung 2.1: (a) Eine Heatmap als Beispiel für eine punkt-basierte Visualisierung. Rote

Bereiche deuten auf eine hohe visuelle Aufmerksamkeit hin, während blaue

Bereiche nur geringe visuelle Aufmerksamkeit bedeuten. (b) Die sogenannte

Parallel-Scanpath-Visualisierung stellt den zeitlichen Verlauf der betrachteten

AOIs als vertikale Linie dar. Dies ist ein Beispiel für einen AOI-basierten

Ansatz. Abbildungen aus [BKR+17].

Parallel-Scanpath-Visualisierung. Sie stellt den zeitlichen Verlauf der betrachten AOIs

eines Probanden dar.

Außerdem existieren noch Visualisierungstechniken, die sich sowohl in punkt-basierte Metho-

den als auch in AOI-basierte Methoden einordnen lassen [BKR+17].

2.4 Vergleichsverfahren

Ein Ansatz zur Vergleichsanalyse von Blickverhalten ist die Verwendung von Ähnlichkeitsma-

ßen auf Scanpaths [AAKB15]. In dieser Arbeit werden neben diesen, Ähnlichkeitsmaße auf

Trajektorien sowie Ähnlichkeitsmaße basierend auf Bildähnlichkeiten betrachtet, da sich diese

im Rahmen der gegebenen Daten, ebenfalls anbieten. Dieses Kapitel stellt die verschiedenen

Kategorien von Ähnlichkeitsmaßen vor, klärt deren zugrundeliegende Repräsentation und

präsentiert Taxonomien zur Einordnung der verschiedenen Verfahren.

2.4.1 Ähnlichkeitsmaße auf Scanpaths

In Kapitel 2.1.2 wurde bereits der Begriff des Scanpaths eingeführt. Auf Basis dieser Repräsenta-

tion von Augendaten, wurden im Laufe der Zeit viele Vergleichsmethoden entwickelt, mit dem

Ziel, objektiv Unterschiede bzw. Ähnlichkeiten zwischen Probanden ausmachen zu können.

Grund dafür ist neben der zunehmenden Beliebtheit des Eye-Trackings, die Tatsache, dass je

nach Einsatzzweck unterschiedliche Anforderungen an ein Vergleichsmaß gestellt werden

[EYH15]. Um einen Überblick über die verschiedenen Arten von Vergleichsmethoden zu geben,

7



2 Grundlagen

a  a  b  c  c

 a  b  c  c

(a) (b)
Abbildung 2.2: (a) Der Vektor-basierte Ansatz erlaubt das Vergleichen von Scanpaths auf Basis

von geometrischen Größen wie Winkeln zwischen zwei Sakkaden. Somit ist

ein Match beispielsweise auch zwischen zeitversetzten Scanpaths möglich. (b)

Eine String-Repräsentation erlaubt ebenso eine Ausrichtung zweier Strings

trotz zeitlicher Versetzung.

orientiert sich diese Arbeit an der Taxonomie nach Kübler et al. [KEK15]. Demnach können

Vergleichsmaße auf Scanpaths in folgende Kategorien unterteilt werden:

Heatmaps auf Fixationen Mittels statistischer Methoden, wie Korrelation, oder der

Kullback-Leibler-Divergenz lassen sich zwei Heatmaps miteinander vergleichen [LB13].

String-basierte Repräsentationen Scanpaths werden als AOI-Strings
1
repräsentiert. Damit

reduziert sich das Vergleichen zweier Scanpaths auf das Problem des String-Alignments.

Vektor-basierte Repräsentationen Fixationen als auch die Sakkaden eines Scanpaths wer-

den mathematisch als Vektoren dargestellt. Vektor-basierte Methoden erlauben meist die

Berechnung von Ähnlichkeiten auf Grundlage von verschiedenen Größen, wie : Vektor-

Differenz, Sakkaden-Längendifferenz oder euklidischer Distanz zwischen Fixationen.

Probalistische Methoden Stochastisches Modelle von Scanpaths werden generiert und als

Grundlage zum Vergleich von diesen verwendet. Wesentlich ist hierbei die Möglich-

keit, einfach aus den vorhandenen Daten die nötigen Parameter für diese Modelle zu

extrahieren [CHC17].

Andere Methoden Es gibt Verfahren, die nicht in die genannten Kategorien fallen. Zu erwäh-

nen ist hier zum Beispiel das Verfahren iComp, welches automatisch Areas-Of-Interests

mittels automatisierten Clusterings ermittelt.

1
dt. : Zeichenkette.
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2.4 Vergleichsverfahren

[KEK15] Die Abbildung 2.2 zeigt wie ein Matching von zwei exemplarischen Scanpaths in

verschiedenen, bereits vorgestellten Repräsentationen, aussehen kann. Dies kann beispiels-

weise über die Winkel zwischen den Sakkaden stattfinden, oder über die Ausrichtung zweier

Strings.

2.4.2 Ähnlichkeitsmaße basierend auf Bildähnlichkeiten

Wie bereits genannt, werden neben den Ähnlichkeitsmaßen auf Scanpaths, auch Ähnlichkeits-

maße basierend auf Trajektorien sowie Bildähnlichkeiten in dieser Arbeit betrachtet. In diesem

Abschnitt wird erläutert, wie auf Grundlage von Histogrammen und Bildsequenzen, Bilddaten

miteinander verglichen werden können.

Ähnlichkeitsmaße auf Histogrammen

0 1 2 3

Anzahl

Grauwert

3 30 03 2

Abbildung 2.3: Links ein eindimensionales Bild A = {a1, a2, a3, a4, a5, a6} mit sechs Elemen-

ten. Die Menge der Grauwerte ist bestimmt durch X = {0, 1, 2, 3}. Rechts
das dazugehörige Histogramm H(A) = [2, 0, 1, 3].

Das Histogramm Ein Histogramm stellt die Möglichkeit dar, beispielsweise die Verteilung

der Grauwerte in einem Bild zu modellieren. Wir betrachten im Folgenden eindimensionale

Graustufenbilder von der Form A = {a1, a2, . . . , an}, wobei n die Anzahl der Pixel ist. Ein

Element ai ∈ X ist das i-te Element des Bildes A, wobei X = {x0, x2, . . . , xb−1} die Men-

ge von b Graustufenwerten ist. Ein Histogramm H(A) ist ein geordneter b-dimensionaler

Vektor, bestehend aus der Anzahl der Vorkommen eines jeden Grauwerts (Klasse) xi im

Bild A. Wird Hi(A) als die Anzahl der Vorkommen des Grauwerts xi angenommen, so ist

H(A) = [H0(A), H1(a), . . . , Hb−1(a)] die vollständige Spezifikation des Histogramms von A
[CS02]. Die Abbildung 2.3 zeigt ein Beispielbild mit sechs Elementen und dem dazugehörigen

Histogramm.
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2 Grundlagen

Histogramm-Vergleich Um zu entscheiden, ob zwei gegebene Histogramme ähnlich zu-

einander sind, muss zunächst der Distanzbegriff auf Histogrammen geklärt werden. Dabei

kann zwischen zwei unterschiedlichen Herangehensweisen unterschieden werden [VLS+15]

(siehe Abbildung 2.4). Beim wahrscheinlichkeits-basierten Ansatz wird ein Histogramm als

Wahrscheinlichkeitsverteilung aufgefasst. Diese kann einfach erzeugt werden, indem jede

Klasse durch die Anzahl der Elemente n geteilt wird. Eine Wahrscheinlichkeitsverteilung

für ein Histogramm H(A) ist somit gegeben durch P = H(A)/n [Cha07]. Diese gibt somit

an wie wahrscheinlich es ist, dass ein Intensitätswert xi sich in der Sequenz A befindet. In

Anlehnung an Abbildung 2.3 wäre somit beispielsweise P = (2/6, 0, 1/6, 3/6). Im Gegensatz

zum wahrscheinlichkeits-basierten Ansatz, stellt der vektor-basierte Ansatz ein Histogramm

als Vektor einer festen Größe dar. Die Dimensionen entsprechen dabei den Klassen und die

Einträge des Vektors repräsentieren die dazugehörigen Häufigkeiten. Bei dem vektor-basierten

Ansatz gilt es zudem zwischen bin-by-bin und cross-bin Distanzmaßen zu unterscheiden.

Vektor-basiert Wahrscheinlichkeits-basiert

Bin-by-Bin Cross-Bin

Chi-Square
Intersection Earth Mover's Distance

Quadratic Form Distance
Bhattacharyya
Kullback-Leibler Divergence

Abbildung 2.4: Taxonomie von einigen bekannten Distanzmaßen auf Histogrammen nach

[VLS+15].

1. Die sogenannten bin-by-bin-Distanzmaße. Hier können nur dieselben Klassen miteinan-

der verglichen werden. Die Distanz auf zwei Histogrammen ist dann definiert über die

Kombination aller paarweisen Klassen-Vergleiche. Vergleiche zwischen unterschiedli-

chen Klassen sind nicht möglich.

2. Die sogenannten cross-bin-Distanzmaße. Hier können verschiedene Klassen miteinander

verglichen werden. Beispielsweise ist es möglich mittels einer Ähnlichkeitsmatrix die

Ähnlichkeit zwischen verschiedenen Klassen in das Distanzmaß einzubauen.

Ähnlichkeitsmaße auf Bildsequenzen

Es wurde bereits eine Möglichkeit eingeführt, wie zwei gegebene Sequenzen X = {x1, . . . , xn}
und Y = {y1, . . . , yn} auf Grundlage von Histogrammen miteinander verglichen werden

können. Handelt es sich dabei um zwei-dimensionale Bilder, so kann daraus einfach eine

Sequenz gebildet werden, indem die Pixel des Bildes nacheinander aufgezählt werden. Im

Falle von Ähnlichkeitsmaßen auf Bildsequenzen betrachten wir jedoch nicht die Verteilung
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2.4 Vergleichsverfahren

der Grauwerte, sondern die Sequenzen der Intensitätswerte an sich. Die Aufgabe besteht nun

darin auf Grundlage zweier Sequenzen ein Maß zu finden, welches angibt, wie abhängig (oder

unabhängig) diese zueinander sind [Gos12].

Ein wichtige Anwendung des Bildervergleichs findet sich im Template Matching 2
und im

Content-based image retrieval 3
. Ein bekanntes Maß in diesem Zusammenhang ist die soge-

nannte Cross-Correlation. Betrachtet wird dabei ein zwei-dimensionales Bild f . Diese gibt die
Distanz zwischen dem um (u, v) verschobenen Musterbild t und dem Bild f an. Mathematisch

ist dies definiert als:

d2
f,t(u, v) =

∑
x,y

[f(x, y) − t(x − u, y − v)]2

[Lew94] und lässt sich schnell im Frequenzraum mittels der Schnellen-Fourier-Transformation
lösen. Neben der Cross-Correlation existieren viele weitere Maße, wie zum Beispiel:

• Pearson correlation coefficient

• Tanimoto measure

• L1 norm, square L2 norm

• Intensity ratio variance

Für eine vollständige Auflistung und Beschreibung von weiteren Maßen wird auf Goshtasby et

al. [Gos12] verwiesen.

2.4.3 Ähnlichkeitsmaße auf Trajektorien

Mittels GPS ist es möglich sich im Raum bewegende Objekte (wie Autos die ihre Position über

die Zeit ändern) digital aufzuzeichnen. Eine Trajektorie eines sich bewegenden Objekts ist eine

Sequenz von Punkten in Zeit und Raum. Sie kann als (kontinuierliche) Historie der Bewegung

eines Objekts aufgefasst werden. Aufgezeichnete Daten (wie zum Beispiel mittels GPS, oder

Eye-Trackern) sind aber meist zeit-diskret von der Form T = [(v1, t1), . . . (vn, tn)] wobei vi die

Position des Objekts zum Zeitpunkt ti ist. Die Distanzmaße auf Trajektorien können in zwei

Kategorien untergliedert werden [MSME15]:

• räumliche Ähnlichkeit, die lediglich die geometrische Form der Trajektorie miteinbezieht,

jedoch die temporale Dimension vernachlässigt.

• zeitlich-räumliche Ähnlichkeit, die sowohl die geometrische Form als auch die zeitliche

Dimension der Trajektorie miteinbeziehen.

2
Ist eine Technik, um kleine Bildbereiche zu finden, die zu einem Musterbild passen.

3
Das Problem des Auffinden von Bildern in großen Datenbanken.
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Räumlich-
Zeitliche
Ähnlichkeit

Räumliche
Ähnlichkeit

Zeitsequenz

Time Warp edit
distance

Edit Distance
with Real Penalty

Dynamic Time
Warping

Edit Distance on
Real sequences

Longest Common
subsequence Based
Approaches

Bewegungs-
geschwindigkeit

DTW Based
Approach

Räumlich

Euclidean Distance

Richtungs-basiert

Spatial Assembling
Distance

Hausdorff and 
Fréchet distance

Angular Metric 
Shape Similarity

Geometrisch 

Trajectory Match
Algorithm

Edit Distance on
movement Pattern
Strings

Abbildung 2.5: Klassifizierung von Ähnlichkeitsmaßen auf Trajektorien nach Magdy et al.

[MSME15]

Die Abbildung 2.5 zeigt eine Zuordnung verschiedener Trajektoriemaße in die zuvor genannte

Klassifikation. Innerhalb dieser Klassen gibt es eine weitere Untergliederung der Maße, die im

Folgenden erklärt werden soll [MSME15]:

Bewegungsgeschwindigkeits-basiert Zeitliche und räumliche Dimension werden vonein-

ander getrennt und als eigenständige Kurven betrachtet. Somit können beide Größen

unabhängig voneinander analysiert werden.

Zeitreihen-basiert Eine Trajektorie wird als Zeitreihe betrachtet. Die Normalisierung dieser

erlaubt Invarianz gegenüber zeitlicher Versetzung und Skalierung. Die Verfahren basieren

auf der optimalen Ausrichtung der Trajektorien, weshalb die Zeitreihen zeitversetzt und

von unterschiedlicher Länge sein können.

Geometrisch (Form) - basiert Ermitteln die Ähnlichkeit zwischen zwei Trajektorien auf

Grundlage ihrer Form und nicht der Position ihrer Punkte.

Richtungs-basiert Aus den Trajektorien werden Richtungsprofile erstellt, welche als Grund-

lage zum Vergleich dienen. Diese Verfahren sind i.A robust gegenüber Rauschen.
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2.5 Informationsvisualisierung

2.5 Informationsvisualisierung

Nach der Definition von de Oliveira et.al [OL03] erstellt die Informationsvisualisierung gra-

fische Modelle und visuelle Darstellungen, die eine Benutzerinteraktion zum Erfassen von

Informationen erlauben, die sich in den darunterliegenden Daten befinden. Um den Anspruch

dieser Definition gerecht zu werden, gibt es mittlerweile einige Richtlinien zur Erstellung von

Informationsvisualisierungen.

2.5.1 Das Visual Information Seeking Mantra

Eine Richtlinie zur Erstellung von Informationvisualisierungen ist das sogenannte Visual Infor-
mation Seeking Mantra : „Overview first, zoom/filter, details on demand “von Ben Shneiderman

[Shn96]. Shneiderman begründet weshalb ein systematisches Vorgehen bei der Erstellung von

Visualisierungen notwendig ist. Er motiviert dies mit dem folgenden Zitat:

Everything points to the conclusion that the phrase ’the language of art’ is more

than a loose metaphor, that even to describe the visible world in images we need a

developed system of schemata.

aus E. H. Gombrich Art and Illusion, 1959 (p. 76) [Gom00]. Seine Richtlinie lässt sich in Form

von folgenden sieben Aufgaben beschreiben:

Overview Erhalte einen gesamten Überblick über die verfügbaren Daten, zum Beispiel mittels

Zooming, oder Field-Of-View Boxes.

Filter Benutzer können uninteressante Inhalte herausfiltern, um den Fokus auf interessante

Elemente zu erhalten.

Details-on-demand Stelle nach Bedarf detaillierte Informationen von interessanten Elemen-

ten dar.

Relate Stelle Beziehungen zwischen den dargestellten Elementen dar.

History Lege ein Historie von Benutzeraktionen an, um diese nach Bedarf rückgängig zu

machen, oder neu auszuführen.

Extract Ermögliche eine Extraktion von ausgewählten Elementen, um diese in anderen Zu-

sammenhängen wiederverwenden zu können. [Shn96]

13



2 Grundlagen

2.5.2 Visual Analytics

Oft ist man daran interessiert eine große Anzahl von Daten zu visualisieren. In diesem Fall

ist es schwer eine Übersicht der Daten zu erhalten, ohne wesentliche Muster in diesen zu

verlieren. Das Visual Analytics versucht dieses Problem zu umgehen, indem die automatisierte

und visuelle Analyse geeignet zusammengeführt werden. Das Seeking-Mantra von Sheiderman

kann damit zu : „Analyse first, show the important, zoom/filter, analyse further, details on

demand “erweitert werden [KKEM10; KMSZ06]. Der Visual Analytics Prozess wird Gegenstand,

der in dieser Arbeit vorgestellten interaktiven Visualisierung sein.

Abbildung 2.6: Der Visual Analytics Prozess - Wesentliches Merkmal des Visual Analytics

Prozess ist der Wechsel zwischen automatisierter und visueller Analyse. Ab-

bildung aus [KKEM10].

In Anlehnung an Abbildung 2.6 kann der Ansatz des Visual Analytics als iterativer Analyse-

Prozess angesehen werden. Der erste Schritt ist das Vorbereiten und Transformieren der Daten

(Data), damit diese zur Analyse verwendet werden können. Nach der Transformation kann

der Benutzer entweder eine visuelle oder automatisierte Analyse durchführen. Im Falle der

automatisierten Analyse werden Data-Mining-Techniken auf den Daten verwendet, um ein

Modell (Models) der originalen Daten zu erstellen. Danach kann der Benutzer das Modell zur

Evaluation benutzen, oder es verfeinern (Parameter Refinement). Visualisierungen (Visualisati-

on) erlauben einerseits die Evaluation des genierten Modells und andererseits die Anpassung

der Parameter und Methoden zur automatisierten Datenanalyse [KKEM10].

2.6 Hierarchisches Clustering

Die Cluster-Analyse beschäftigt sich mit der Frage, wie eine Menge von Objekten geeignet

in Cluster (Gruppen) zerlegt werden können. Dabei sollen die Objekte innerhalb eines Clus-
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2.6 Hierarchisches Clustering

ters zueinander in engerer Beziehung stehen, als zu Elementen eines anderen Clusters. Das

hierarchische Clustering produziert Cluster, die eine hierarchische Repräsentation erzeugen.

Konzeptionell bieten sich zwei mögliche Herangehensweisen zur Erzeugung eines hierarchi-

schen Clusterings an.

Agglomerative Alle Elemente sind zunächst als einelementige Cluster definiert. Zwei Cluster

aus einer Ebene werden zusammenführt, um ein Cluster in der nächst höheren Ebene zu

bilden. Dies geschieht rekursiv. (Bottom-Up)

Divisive Alle Elemente sind zunächst in einem großen Cluster zusammengefasst. In jedem

Schritt wird ein Cluster aus der Ebene zerteilt, sodass zwei neue Cluster in der darunter

liegenden Ebene erzeugt werden. Dies geschieht rekursiv. (Top-Down)

Um ein Clustering entsprechend der obigen Herangehensweisen zu erhalten, muss ein Ähn-

lichkeitsmaß (bzw. Distanzmaß) auf den betrachteten Objekten vorgeben werden. Danach

werden die paarweisen Distanzen zwischen den Elementen berechnet. In dieser Arbeit wird

das agglomerative Clustering verwendet, um ein Modell aus den berechneten Ähnlichkeiten zu

produzieren. Es wird deshalb auf diese Herangehensweise im Folgenden näher eingegangen.

2.6.1 Agglomerative Clustering

p1
p2

p3
p4     p1  p2  p3  p4

p1 0
p2  2   0      
p3  6   8   0   
p4  7   9   3   0

p1 p2 p3 p4

2

3

6

(a) (b) (c)

Abbildung 2.7: (a) Beispieldatensatz mit vier Elementen. Die beiden Gruppen lassen sich

visuell leicht erkennen. (b) Die Distanzmatrix zwischen den vier Elementen

gibt die paarweisen Distanzen zwischen den ihnen an. (c) Visuelle Darstellung

eines hierarchischen Clusterings mittels eines Dendrogramms auf Grundlage

der Distanzmatrix. Die markierten Einträge in der Distanzmatrix geben die

Distanzen zwischen den erzeugten Gruppierungen an. Als Clusteringmethode

wurde Single-Linkage verwendet.

Das aggolomerative Clustering erfordert die Definition der Distanz zwischen zwei Clustern G
und H . Dabei bieten sich folgende Möglichkeiten zur Definition dieser Distanz an [HTF17]:
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Single-Linkage Die Distanz der beiden nächsten Nachbarn zwischen G und H definiert die

Distanz.

Complete-Linkage Die Distanz der beiden am weitesten entfernten Nachbarn zwischen G
und H definiert die Distanz.

Average-Linkage Der Durchschnitt aller paarweisen Distanzen zwischen den Elementen aus

G und H definiert die Distanz.

Die Abbildung 2.7 zeigt das Resultat des hierarchischen Clusterings mit der Single-Linkage-

Methode.

2.6.2 Visualisierungstechniken

Im Folgenden werden zwei Möglichkeiten vorgestellt, wie die Ergebnisse eines hierarchischen

Clusterings visuell dargestellt werden können. Beide der folgenden Visualisierungen werden

(wenn auch in veränderter Form) sich in dem entwickelten Prototypen wiederfinden.

Dendrogramm

Dendrogramme ermöglichen die grafische Darstellung eines hierarchischen Clusterings mittels

eines binären Baums. Die Höhe eines Knoten ist dabei proportional zu der Distanz zwischen

zwischen den Kindknoten. Die Blätter des Baums repräsentieren die einzelnen Elemente

[HTF17]. Die Abbildung 2.7 zeigt ein Beispiel für ein Dendrogramm.

Heatmap-Visualisierung

p1 p2 p3 p4

p1

p2

p3

p4

Abbildung 2.8: Heatmap-Visualisierung für das Beispiel-Clustering aus Abbildung 2.7. Ein

heller Rotton repräsentiert kleinere Werte, während ein dunklerer Rotton

größere Werte darstellt.
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2.6 Hierarchisches Clustering

Eine weitere Möglichkeit zur Visualisierung eines hierarchischen Clusterings [ESBB98] ist in

Abbildung 2.8 zu sehen. Die Idee ist, die Einträge in einer tabellarischen Form darzustellen und

diese entsprechend dem repräsentierten Distanzwert einzufärben. Jedes Quadrat repräsentiert

somit die Distanz zwischen jeweils zwei Elementen. Die Bezeichner der Elemente sind dabei

horizontal sowie vertikal angebracht, sodass eine eindeutige Zuordnung der Quadrate, zu ein

Paar von Elementen möglich ist. Diese Einfärbung kann auch als Heatmap bezeichnet werden,

da Bereiche höherer Distanz einen dunkleren Rotton aufweisen, als kleinere Distanzwerte.

Da die Distanzmatrix symmetrisch ist, sind die Einträge der dargestellten ebenfalls symme-

trisch. Auf den Diagonalen sind die Einträge alle null (daher kein Rotanteil). Außerdem ist

zu sehen, dass eine Dendrogramm-Darstellung in die Heatmap-Visualisierung integriert ist.

Aus Symmetrie-Gründen ist das Dendrogramm sowohl horizontal als auch vertikal dargestellt.

Beide repräsentieren jedoch dasselbe hierarchische Clustering.

2.6.3 Vergleichsanalyse von hierarchischen Clusterings
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Abbildung 2.9: Beispiel wie aus zwei gegebenen Dendrogrammen die cophentischen Werte

ermittelt werden. Die cophentischen Werte geben dabei die Ähnlichkeit zwi-

schen den (Teil-) Clusterings an. Abbildung angelehnt an Sokal et al. [SR62].

Eine Fragestellung, die sich in dem Konzept dieser Arbeit wiederfinden wird, betrifft den

Vergleich von zwei Clustering-Ergebnissen. Diese sind beispielsweise unter Verwendung ver-

schiedener Distanzmaße erzeugt worden. Konkret geht es um die Frage, wie zwei hierarchische

Clusterings miteinander verglichen werden können. Hierfür gibt es unterschiedliche Ansätze,

wie der Rand-Index oder Verfahren, welche auf dem Gamma-Koeffizienten von Goodman-

Kruskal basieren [SDD13]. Eine andere Möglichkeit basiert auf den Vergleich von Dendro-

grammen, welche sich aus den hierarchischen Clusterings ergeben. Die Grundlage für diesen

Vergleich stellt die sogenannte cophentische Korrelation [SR62] dar. Hierfür werden für jedes

Dendrogramm zunächst die cophentischen Werte berechnet. Ein Beispiel ist in Abbildung 2.9
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zu sehen. Auf der horizontalen Achse sind dabei die Bezeichner der betrachteten Elemente auf-

getragen. Die zwei Dendrogramme stellen zwei unterschiedliche hierarchische Clusterings dar.

Auf der vertikalen Achse ist der cophentische Wertebereich aufgetragen. Die cophentischen

Werte, welche in den Tabellen unterhalb zu sehen sind, ergeben sich hierbei immer paarweise.

Für die Bezeichner B und C ist beispielsweise im ersten Dendrogramm der cophentische Wert

eins in die Tabelle einzutragen. Der Grund dafür ist, dass sie auf dieser Ebene im Clustering

zusammengeführt wurden. Beim rechten Dendrogramm findet diese Zusammenführung schon

beim Wert zwei statt. Entsprechend ist der cophentische Werte zwei in die Tabelle einzutragen.

Wurden alle cophentischen Werte ermittelt, so kann der eigentliche Vergleich stattfinden. Dies

geschieht, indem beide Tabellen als Sequenzen geschrieben werden. Bezogen auf das Beispiel

in Abbildung 2.9 wären dies X = [3, 1, 1] (für das linke Dendrogramm) sowie Y = [1, 1, 2] (für
das rechte Dendrogramm). Der cophentische Korrelationskoeffizient berechnet sich, indem der

Korrelationskoeffizient nach Pearson : ρX,Y = cov(X,Y )
σxσy

[Hen11] zwischen beiden Sequenzen

X, Y bestimmt wird. Um diesen als (normierten) Ähnlichkeitswert verwenden zu können,

wird dieser auf den Bereich von [0, 1] abgebildet.
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Ein entscheidender Bestandteil dieser Arbeit ist die Slitscan-Visualisierungstechnik, um die

Möglichkeit des automatisierten Vergleichs von Blickverhalten zu erweitern. In diesem Zusam-

menhang sind vor allem zwei weitere Arbeiten zu erwähnen, die dieselbe Zielsetzung, unter

Verwendung unterschiedlicher Visualisierungstechniken verfolgen. Darunter die Veröffentli-

chungen : A Visual Approach for Scanpath Comparison von Raschke et al. [RHB+14] sowie

ISeeCube : Visual Analysis of Gaze Data for Video [KHW14]. Beide Arbeiten haben gemeinsam,

dass sie eine bestehende Visualisierungstechnik (Parallel-Scanpath und Space-Time-Cube), um

die Möglichkeit des Scanpath-Vergleichs und interaktiver Aktionsmöglichkeiten erweitern.

Das Ziel ist es dabei, die Vorteile der visuellen Analyse (mithilfe der zugrundeliegenden Visua-

lisierungstechnik) mit den Vorzügen der automatisierten Vergleichsanalyse (beispielsweise der

Cluster-Analyse) zu kombinieren. Die Zielsetzung besteht dabei darin, ein besseres Werkzeug

für die Vergleichsanalyse von Scanpaths zu erschaffen. Neben diesen beiden Arbeiten wird

außerdem eine Visualisierungstechnik namens Gaze-Stripes von Kurzhals et al. [KHH+16b]

vorgestellt. Sie ist konzeptionell sehr ähnlich zu den beiden vorher erwähnten Arbeiten. Au-

ßerdem weist sie einige Gemeinsamkeiten mit der Slitscan-Visualisierungstechnik [KW16] auf.

So handelt es sich bei beiden um punkt-basierte Visualisierungstechniken.

3.1 Arbeiten mit AOI-basierten Visualisierungstechniken

Die im folgenden Abschnitt erläuterten Arbeiten haben gemeinsam, dass sie auf sogenann-

ten AOI-basierten Visualisierungstechniken beruhen. Es folgt zunächst eine Vorstellung der

(zeitlich) früherer Ansätze, bevor auf die beiden Arbeiten A Visual Approach for Scanpath
Comparison sowie ISeeCube : Visual Analysis of Gaze Data for Video näher eingegangen wird.

3.1.1 Frühe Arbeiten

Als frühe AOI-basierte Arbeiten in dem Bereich des Scanpaths-Vergleichs zählt u.a die Software

EyePatterns von West et al. [WHRK06]. EyePatterns erlaubt dabei die Analyse von Scanpaths

auf Basis von String-Repräsentationen. Die Autoren stellen heraus, dass die visuelle Analyse

zur Bestimmung von Ähnlichkeiten zwischen Scanpaths, anfällig für Fehler ist. Zwar gebe es

Werkzeuge, die eine Analyse mit Ähnlichkeitsmaßen, wie die Levenshtein-Distanz ermöglichen,

jedoch sind deren Resultate für den Menschen meist nur schwer interpretierbar. Deshalb
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schlagen die Autoren die Verwendung von Data-Mining Methoden zur Vergleichsanalyse

von Scanpaths vor. In ihrer Software implementieren sie das hierarchische Clustering. Das

Resultat dieses Clusterings wird mit einer Baumansicht visualisiert, was die Vergleichsanalyse

vereinfachen soll. Ein weiteres Werkzeug welches in diesem Zusammenhang zu erwähnen ist,

nennt sich IComb : A Tool for Scanpath Visualization and Comparision [HD06]. Im Vergleich zu

EyePatterns erlaubt dieses Werkzeug die automatische Bestimmung von AOIs mittels des Mean-

Shift-Clustering-Algorithmus von Santella und DeCarlo [SD04]. Beide Ansätze haben jedoch

auch gemeinsam, dass sie die Scanpaths nur unzureichend visualisieren. Die folgenden Arbeiten

können als Erweiterung dieser beiden Ansätze, um eine verbesserte Scanpath-Visualisierung,

angesehen werden.

3.1.2 A visual approach for scan path comparison

Abbildung 3.1: Die wesentlichen Komponenten der erweiterten PSP-Visualisierung. a) Haupt-

ansicht mit den drei interaktiven Komponenten : PSP-Visualisierung, AOI-

Management sowie Szenen-Selektion. b) Optionsdialog der die Einstellung

der Clustering-spezifischen Parameter erlaubt. c) Ausgaben der Ergebnisse

des Clusterings. Abbildung aus [RHB+14].

Die Arbeit A Visual approach for scan path comparison [RHB+14] sieht sich als Erweiterung

der Parallel-Scanpath Visualisierungstechnik (kurz : PSP-Visualisierung), um die Möglichkeit

Scanpaths miteinander zu vergleichen. Die PSP-Visualisierung gehört zu den AOI-basierten

Visualisierungen. Dabei sind die AOIs auf der x-Achse angeordnet, während die Zeit auf der

y-Achse abgebildet wird. Die ursprüngliche PSP-Visualisierung hatte jedoch das Problem,

dass sie schlecht nach der Anzahl der Probanden skaliert. Somit erweist sich die Darstellung

mehrerer Probanden in der Visualisierung als schwierig. Die Integration von interaktiven

Aktionsmöglichkeiten in die bestehende PSP- Visualisierung soll dieses Problem adressieren.

Das Resultat ist in Abbildung 3.1 zu sehen.
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Ein besonderesMerkmal der Arbeit von Raschke et al. stellt die Vereinigung von automatisierter

Vergleichsanalyse mit einer Scanpath-Visualisierung dar. Dieselbe Zielsetzung wird in dieser

Arbeit verfolgt, jedoch unter Verwendung einer anderen Visualisierungstechnik. Dennochweist

dieser Ansatz auch einige Nachteile auf. So neigt die Visualisierung trotz der verbesserten

Skalierungsmöglichkeit, zu visueller Unübersichtlichkeit. Die in dieser Arbeit entwickelte

Visualisierung ist hier von Vorteil, da sie besser über die Anzahl der Probanden sowie der

Datensatzlänge skaliert. Außerdem ist anzumerken, dass der Bezug zum Stimulus gänzlich

fehlt. Dieses Problem tritt in dem Lösungsansatz dieser Arbeit auch nicht auf, da Stimulus und

Gaze-Daten kompakt gemeinsam darstellt werden.

3.1.3 ISeeCube : Visual Analysis of Gaze Data For Video

Abbildung 3.2: Die wesentlichen Komponenten von ISeeCube. a) Einstellung der STC-

spezifischen Parameter b) Die eigentliche STC-Visualisierung. Die Video-

ansicht befindet sich oben links. c) Weitere STC-spezifischen Parameter. d)

Videokontrollelemente e) Die AOIs werden in der AOI-Timeline dargestellt.

Unterhalb der AOI-Timenline sind die Scarf-Plots der einzelnen Probanden

zu sehen. Abbildung aus [KHW14].

Die Arbeit ISeeCube : Visual Analysis of Gaze Data For Video [KHW14] ist konzeptionell sehr

ähnlich zum vorher beschriebenen Ansatz. Ebenso wird eine bestehende Visualisierungstechnik

um die Möglichkeit des Scanpath-Vergleich erweitert. In der hier betrachteten Visualisierungs-

technik handelt es sich jedoch um die sogenannte Space-Time-Cube- Visualisierung (kurz

: STC-Visualisierung) . Die STC-Visualisierung (siehe Abbildung 3.2 ) erlaubt die räumliche

Verteilung der zwei-dimensionalen Gaze-Punkte über die Zeit zu betrachten. Somit stellt die

STC-Visualisierung die Gaze-Punkte in einem drei-dimensionalen Raum dar (zwei Raumdi-

mensionen + eine zeitliche Dimension). Um das Blickverhalten einzelner Probanden besser
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visualisieren zu können, wird die sogenannte Scarf-Plot-Visualisierung verwendet. Ein Scarf-

Plot gibt zu jedem Zeitpunkt an, auf welches AOI der Proband gerade seine Aufmerksamkeit

gerichtet hat. Die Notwendigkeit von zwei Visualisierungstechniken macht deutlich, dass beide

isoliert betrachtet, Schwächen aufweisen. Die in dieser Arbeit entwickelten Visualisierung ist

hier im Vorteil. Sie erlaubt das Blickverhalten mehrerer Probanden gemeinsam darzustellen und

gleichzeitig ermöglicht sie eine explorative Analyse des Blickverhaltens, um (Blick)-Bereiche

von Interesse zu finden.

Um die Scanpaths in ISeeCube auf Ähnlichkeiten zu untersuchen, kann auf Grundlage des

ausgewählten Zeitbereichs, ein hierarchisches Clustering vorgenommen werden. Dabei werden

dem Anwender verschiedene Ähnlichkeitsmaße zur Verfügung gestellt. Das Ergebnis des

Clusterings wird als Dendrogramm visualisiert. In dieser Arbeit wird ein ganz ähnlicher

Ansatz verwendet. Auch hier ist die Auswahl eines bestimmten Datenbereichs möglich, um

darauf eine hierarchische Clusteranalyse durchzuführen. In ISeeCube ist jedoch die Auswahl

der Ähnlichkeitsmaße auf Scanpath-Maße beschränkt. In dieser Arbeit werden hingegen

auch Trajektorie- und Bildmaße betrachtet. Außerdem ist zu sehen, dass die Ergebnisse des

Clustering in ISeeCube nicht miteinander verglichen werden können. Es wird stets nur das

Dendrogramm zum zuletzt berechneten Clustering angezeigt. In dieser Arbeit wird eine

Möglichkeit vorgestellt, wie die erzeugten Clusterings in Kontext zueinander gesetzt werden

können. Dies wird sich insbesondere beim Vergleich von unterschiedlichen Ähnlichkeitsmaßen

als hilfreich erweisen.

3.2 Arbeiten mit punkt-basierten
Visualisierungstechniken

Das Problem der AOI-basierten Ansätze, ist die Notwendigkeit diese vorher definieren zu

müssen. Dies kann einen nicht zu vernachlässigbaren Aufwand darstellen. Aus diesem Grund

ist es sinnvoll Arbeiten zu betrachten, welche auf punkt-basierten Visualisierungstechni-

ken beruhen. Davon werden zwei im Folgenden vorgestellt. Eine davon ist die Slit-Scan-

Visualisierungstechnik, auf welcher diese Arbeit beruht.

3.2.1 Gaze Stripes: Image-Based Visualization of Eye Tracking Data

Die Gaze Stripes Visualisierung [KHH+16b] ist eine horizontale Aneinanderreihung von Bild-

daten, welche um die Gaze-Punkte herum angeordnet sind (siehe Abbildung 3.3). Unter Ver-

wendung von sogenannten Thumbnails 1
können die verwendeten Bilddaten in geringer Größe

dargestellt werden, was die Skalierbarkeit bezüglich der Datensatzlänge verbessert. Problem der

1
Minibild, oder auch Miniaturbild genannt.
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Abbildung 3.3: Die wesentlichen Komponenten der Gaze-Stripes-Visualisierung. a) Gaze-

Stripes von mehreren Probanden. b) Interpretationshilfe für einen ausgewähl-

ten Zeitbereich. c) Visualisierung eines hierarchischen Clusterings mittels

eine Dendrogramms. d) Videoansicht des dynamischen Stimulus. Abbildung

aus [KHH+16b].

Gaze-Stripes ist jedoch die mangelnde Möglichkeit die Blickpunkte im Kontext des gesamten

Stimulus zu interpretieren. Dasselbe Problem tritt auch im Zusammenhang dieser Arbeit auf.

In Gaze-Stripes wird dieses gelöst, indem eine Videoansicht in die interaktive Visualisierung

integriert wird. Ein ähnlicher Lösungsansatz, auf Grundlage der Bee-Swarm-Visualisierung,

wird in dem Konzept dieser Arbeit vorgestellt. Außerdem ist an dem Ansatz der Gaze-Stripes-

Visualisierung anzumerken, dass er die auf Grundlage von Bildähnlichkeiten (zwischen den

Thumbnails der Gaze-Stripes), Scanpaths miteinander vergleicht. Damit ist die Definition von

AOIs an keiner Stelle dieser Visualisierung notwendig. Ein ähnlicher Ansatz wird in dieser Ar-

beit verfolgt. Neben Bildähnlichkeiten werden jedoch außerdem Trajektorie-Maße betrachtet,

da sie ebenso keine AOIs erfordern.

Die weiteren Vorteile der Gaze-Stripes-Visualisierung liegen in (a) Der direkten Repräsentation

der Zeit: Jeder Blickpunkt wird in einer Zeitlinie nacheinander dargestellt - (b) Der direkten

Repräsentation des Kontext : Die Thumbnails erlauben den direkten Bezug zum Stimulus, über

Thumbnails - sowie (c) Der direkten Repräsentation von individuellen Probanden : Für jeden

Probanden wird ein eigenständiger Gaze-Stripe erzeugt. Es ist klar zu sehen, dass das Kriterium

b) von der PSP-Visualisierung nicht erfüllt wird. Betrachten wir die STC-Visualisierung, so

erfüllt diese nicht das Kriterium c). Um dieses Problem in ISeeCube zu lösen, mussten zusätzliche

Visualisierungen eingeführt werden. Im Beispiel von Gaze-Stripes kann man jedoch sehen,

dass eine Visualisierung ausreicht, um diese Probleme adäquat zu adressieren.

Ein Problem der Gaze-Stripes-Visualisierung ist, dass sie sehr lang werden können, sodass

nur kleine Zeitbereiche betrachtet überblickbar sind, oder hohe Zoomraten benötigt werden.

Außerdem erschweren gleich aussehende Elemente in den Gaze-Stripes die visuelle Analyse,

was zusätzliche Interpretationshilfen notwendig macht.
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3.2.2 Visualizing eye tracking data with Gaze-Guided Slit-Scans

Der Ansatz Slit-Scans aus Videos zu erzeugen wird u.a von Nunes et al. [NGCG06] beschrie-

ben. Hierbei wird ein Ausschnitt des Videos zu jedem Zeitpunkt (aus dem aktuellen Frame)

ausgeschnitten und nacheinander aneinandergereiht. Das Resultat ist eine kompakte Bild-

Repräsentation eines bestimmten Teils aus einem Video. Die Slit-Scan-Visualisierungstechnik

von Kurzhals et al. die Darstellung eines Slit-Scans, um ein Profil des Blickverhaltens eines

Probanden zu erzeugen. In vielerlei Hinsicht ist die Slit-Scan-Visualisierung [KW16] mit der

Gaze-Stripes-Visualisierung vergleichbar. So erlauben beiden Profile des Blickverhaltens von

Probanden zu erstellen. Dabei werden der Stimulus gemeinsam mit den Gaze-Daten der Pro-

banden in zusammengeführter Form dargestellt. Bei der Slit-Scans fällt dies aber weitaus

kompakter aus, da hier nur einzelnen Streifen des Stimulus aneinandergereiht werden. Dies

ermöglicht eine bessere Skalierung, insbesondere bei zeitlich langen dynamischen Stimuli.

Dennoch ist die Slitscan-Visualisierung auch mit einigen Problemen verbunden. So ist es bisher

nicht möglich das Blickverhalten mehrerer Probanden gleichzeitig zu analysieren. Außer-

dem fehlt die Integration von Ähnlichkeitsmaßen, die eine automatisierte Vergleichsanalyse

von Scanpaths erlauben. Insbesondere bei der Slit-Scan-Visualisierungstechnik erweist sich

diese Problemstellung jedoch als besonders interessant, da Slit-Scans eine direkte visuelle

Repräsentation eines Scanpaths ermöglichen. Damit ist ein Vergleich auf Basis der Slit-Scans

mittels Ähnlichkeitsmaßen basierend auf Bildähnlichkeiten denkbar. Da die Visualisierung

zudem nicht auf AOIs basiert, kann die Eignung von Trajektorie-basierten Ähnlichkeitsmaßen

angenommen werden.

Das Ziel dieser Arbeit ist deshalb die Slit-Scan-Visualisierungstechnik um die genannten

Punkte zu erweitern. Dies soll, wie in den behandelten verwandten Arbeiten, in Form einer

interaktiven Visualisierung geschehen. Die dort verwendeten Konzepte, wie die hierarchische

Clusteranalyse, werden sich deshalb ebenso im Konzept dieser Arbeit wiederfinden.
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In diesem Kapitel werden die wesentlichen Aspekte des entwickelten Konzepts vorgestellt.

Die Aufgabenstellung (Abschnitt 4.1) soll dabei zunächst aufzeigen, welche Anforderungen an

das Konzept gestellt werden. Danach folgt der eigentliche Konzeptteil, welcher sich in drei

Abschnitte untergliedern lässt.

1. Das Grund-Konzept (Abschnitt 4.2) stellt die Slit-Scan-Visualisierungstechnik in dieser

Arbeit dar. In diesem Zusammenhang werden Problemstellungen erörtert, die bei der

Verwendung dieser Visualisierungstechnik auftreten können. Um die erkannten Pro-

bleme zu bewältigen, werden zusätzliche Lösungsansätze präsentiert. Dies umfassen

u.a Interpretationshilfen, welches sich im später vorgestellten Prototypen wiederfinden

werden.

2. Der zweite Teil des Konzeptteils umfasst die Erweiterung der Slit-Scan-Visualisierungstechnik

um die Möglichkeit der Ähnlichkeitsbestimmung. Hierfür werden wesentliche Fragestel-

lungen geklärt, zum Beispiel welche Ähnlichkeitsmaße (Abschnitt 4.4) für diese Aufgabe

in Frage kommen. Außerdem wird geklärt, wie die Ergebnisse der Ähnlichkeitsmaße

geeignet dargestellt und visualisiert werden können (Abschnitt 4.5).

3. Der Abschnitt 4.6 vereint die beiden vorher genannten Teil-Konzepte zu einem Gesamt-

Konzept, welches als Spezifikation für eine interaktive Visualisierung dient. Diese wird

in Form eines Prototypen im Implementierungskapitel 5 vorgestellt.

4.1 Die Aufgabenstellung

Das Ziel dieser Bachelorarbeit ist die Erweiterung der Slit-Scan-Visualisierungstechnik, um

die Möglichkeit das Blickverhalten mehrerer Probanden miteinander vergleichen zu kön-

nen. Hierfür werden Ähnlichkeitsmaße aus den Kategorien Trajektorien-, Scanpath- sowie

Bildähnlichkeiten ausgewählt. Hierbei muss zum einen untersucht werden, welche Ähnlich-

keitsmaße für diese Aufgabe in Frage kommen und wie diese kohärent mit der Slit-Scan-

Visualisierungstechnik vereint werden können. Dafür wird im Rahmen dieser Bachelorarbeit

ein Gesamt-Konzept ausgearbeitet, welches als Spezifikation für eine interaktive Visualisierung

dient. Mit der interaktiven Visualisierung soll am Ende die untersucht werden, inwiefern die

Resultate der Ähnlichkeitsmaße mit der visuellen Interpretation (über die Slit-Scans) zusam-

menpassen.
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4.2 Die Slit-Scan Visualisierung

Die Slit-Scan-Visualisierung [KW16] hat gegenüber anderen Visualisierungstechniken einige

Vorteile, die sie insbesondere bei der Vergleichsanalyse von Blickverhalten interessant macht.

Im Kapitel 3 kamen diese, bei der Gegenüberstellung zu den Visualisierungstechniken der

verwandten Arbeiten, zur Ansprache. Im Folgenden werden sie nochmal erläutert.

• Die Slit-Scans erlauben eine kompakte Darstellung von Stimulus und Augendaten. Dies

erweist sich insbesondere bei der Verwendung von dynamischen Stimuli von Vorteil.

• Es werden keine Areas-Of-Interests vorausgesetzt, da es sich um eine punkt-basierte

Visualisierungstechnik handelt.

• Die Untersuchung des Blickverhaltens ist verhältnismäßig einfach, da die Slit-Scans das

Blickverhalten von Probanden im Kontext des Stimulus direkt wiedergeben.

Aus diesem Grund ist die Integration dieser Visualisierungstechnik in das Konzept dieser Arbeit

sinnvoll. Bevor diese Integration jedoch stattfinden kann, werden zunächst die technischen

Details zur Erzeugung von Slit-Scans geklärt. Diese wurden von Kurzhals et al. [KW16] über-

nommen. Danach werden Probleme und Herausforderungen erläutert, die im Zusammenhang

mit der Slit-Scan-Visualisierung auftreten.

VC1

VC3

VC2

Finale Visualisierung

Abbildung 4.1: Die drei visuellen Komponenten der Slit-Scan-Visualisierungstechnik : Spek-

trogramm (VC1), Slit-Scan (VC2) sowie der Fokus-Map (VC3).

4.2.1 Technische Details

Die Visualisierung basiert auf zwei Datenquellen, einerseits dem Stimulus S(xs, ys, t) sowie
einer Menge von Blickpunkten G(xg, yg) mit (xs, ys), (xg, yg) ∈ n×m, der räumlichen Dimen-
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sion des Stimulus. Im Wesentlichen besteht die Visualisierung aus drei visuellen Komponenten,

die im Folgenden erklärt werden.

Spektrogramm Die absolute x-Koordinate xg(t) des Blickpunkts zum Zeitpunkt t wird als

horizontaler Farbstreifen dargestellt. Die ermittelten Farbstreifen werden horizontal

aneinander angefügt, was das Spektrogramm (VC1) ergibt.

Slit-Scan Eine Scanline gibt an, welcher Ausschnitt des Stimulus entnommen werden soll.

Die horizontale Position der Scanline ist durch die x-Koordinate xg(t) des Blickpunkts
zum Zeitpunkt t bestimmt. Die extrahierten Ausschnitte werden horizontal aneinander

angefügt, was letztlich den Slit-Scan (VC2) erzeugt.

Fokus-Map Um die y-Koordinate yg(t) des Blickpunkts zum Zeitpunkt t wird ein allmählich

abfallender heller Bereich erzeugt. Die Breite des Bereichs ist dabei auf 300 Pixel festge-

legt. Bei dieser Breite sind, die vom Probanden fokussierten Objekte, im Stimulus gut

identifizierbar. Dieser Wert wurde experimentell ermittelt.

Die Abbildung 4.1 zeigt, wie aus den beschriebenen visuellen Komponenten die finale Visuali-

sierung entsteht. Das Beispiel visualisiert dabei den Blickverlauf einer Person, die ein Video

eines fahrenden Autos betrachtet. Es ist deutlich am Slit-Scan (VC2) zu sehen, dass die Person

über den gesamten Zeitraum des Videos das fahrende rote Auto betrachtet. Der Slit-Scan

vermittelt jedoch nur den Bildinhalt an der x-Position. Um die y-Koordinate ebenso in die

Visualisierung miteinzubeziehen, wird die Scanline vertikal um den Blickpunkt allmählich

ausgeblendet. Die Fokus-Map (VC3) ist dabei die visuelle Komponente, die diesen Ausblen-

dungseffekt, beispielsweise mit einer Anpassung des Alpha-Kanals erzeugt. Das Spektrogramm

(VC1) ist insofern hilfreich, da darüber die absolute Position der x-Koordinate visuell vermittelt

werden kann. Diese visuelle Komponente erleichtert zudem die Feststellung von Ähnlichkeiten,

bzw. Unterschieden im Blickverhalten zwischen Probanden.

4.2.2 Probleme und Herausforderungen

Trotz der vielen Vorteile der Slit-Scan-Visualisierungstechnik, weißt auch sie einige Schwächen

auf, welche die Betrachtung einiger Problemstellungen notwendig macht. Damit die Integration

der Slit-Scan-Visualisierungstechnik in ein Gesamtkonzept gelingen kann, werden zusätzlich

Lösungsansätze für die genannten Problemstellungen präsentiert.

Skalierung nach Datensatzlänge

Die Slit-Scan-Visualsierung extrahiert für jeden Gaze-Punkt in Regel aus dem Stimulus einen

ein-Pixel breiten Streifen und fügt diese (horizontal) zu einem Bild zusammen. Bei einer kleinen

Menge von 2000 Gaze-Punkten (was bei einer Sampling-Rate von 50 Hz, etwa ein Video von

40 Sekunden entspricht), kann der dazugehörige Slit-Scan bereits nicht mehr vollständig
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auf einem Full-HD-Bildschirm (1920 x 1080) angezeigt werden. Hierbei bieten sich folgende

Lösungsansätze an.

Slit-Scan - A

Slit-Scan - B

Slit-Scan - C

Field-Of-View Box

Abbildung 4.2: Die Field-Of-View-Box ist frei beweglich auf der horizontalen wie auch verti-

kalen Achse. Dies ermöglicht dem Benutzer beliebige Bereiche der Slit-Scans

zu betrachten.

• Ein Ansatz wird in [KHH+16a] im Zusammenhang mit der Gaze-Stripes Visualisierung

genannt. Die Autoren geben an, dass aufeinander folgende Bild-Elemente, die ähnlich

zueinander sind, zusammengefasst werden können. Übertragen auf die Slit-Scans, könn-

ten ähnlich aussehende Slits ebenso zusammengefasst werden. Dadurch würden die

Slit-Scans kürzer werden. Jedoch wird auch genannt, dass damit die Informationen über

die Dauer verloren gehen. Dies würde den Vergleich von mehreren Probanden unter

Verwendung der Slit-Scans erschweren.

• Ein gängiger, wenn auch nicht perfekter Lösungsansatz ist die Verwendung einer Field-

Of-View-Box , welche erlaubt immer einen bestimmten Ausschnitt des Slit-Scans zu

sehen (siehe Abbildung 4.2). Mithilfe einer Scroll-Leiste [MSI13] als Bedienelement, kann

die dabei Position der Field-Of-View-Box dynamisch vom Benutzer angepasst werden.

Skalierung nach Probanden

Die Slit-Scan-Visualisierung ist eine Technik, die für jeden Probanden ein eigenes visuelles

Element, den Slit-Scan, erzeugt. Um mehrere Probanden mit der Slit-Scan-Visualisierung auf

ähnliches Blickverhalten untersuchen zu können, muss eine Möglichkeit gefunden werden,

mehrere Slit-Scans gleichzeitig darzustellen. Da bereits aus dem vorherigen Problem eine

horizontale Field-of-View Box (Abbildung 4.2) vorgeschlagen wurde, ist eine Erweiterung

dieser, um die vertikale Dimension sinnvoll. Somit kann der Benutzer mittels einer vertikalen

Scrollbar die Slit-Scans mehrerer Probanden untersuchen und mit der horizontalen Scrollbar

die verschiedenen Bereiche der Slit-Scans betrachten.
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Overview der Slit-Scans

Die Field-Of-View Box behebt das Problem, den gesamten Slit-Scan-Bereich überblicken zu

können. Bevor man bestimmte Bereiche mit der Field-Of-View-Box analysiert, ist man davor

meist daran interessiert einen gesamten Überblick über die Slit-Scans zu bekommen. Dabei

bieten sich folgende Ansätze als Lösungsmöglichkeiten an.

Mini-Map Die Slit-Scans der Probanden können in einer vereinfachten Ansicht dargestellt

werden. Denkbar ist beispielsweise die Spektrogramme in einer kompakten Form darzu-

stellen, sodass mithilfe dieser ein erster Überblick gewonnen werden kann.

Zooming Ein klassischer Ansatz ist es, den Zoom-Faktor der Slit-Scan-Ansicht anzupassen,

sodass ein gesamter Überblick gewonnen werden kann (über die Senkung des Zoom-

Faktors). Außerdem besteht über die Erhöhung des Zoom-Faktors zudem die Möglichkeit

Details in der Slit-Scans zu betrachten.

Der Ansatz der Mini-Map ist vielversprechend, wird aber in dieser Arbeit nicht näher behandelt.

Eine Umsetzung dieses Ansatzes wird Gegenstand zukünftiger Arbeit sein. Aus diesem Grund

wird der klassische ’Zooming’-Ansatz verwendet, da er auch einfacher umzusetzen ist.

Rückkopplung zum Stimulus

Slit-Scan A

Slit-Scan B

Slit-Scan C

Synchronisiert

Abbildung 4.3: Zeitliche Synchronisierung zwischen der Slit-Scan-Visualisierung und der

Bee-Swarm-Visualisierung mittels einer Timeline.

In Abbildung 4.1 kann aus der Slit-Scan-Visualisierung gut abgelesen werden, dass es sich dem

betrachteten Objekt um ein rotes Auto handeln muss. Dies ist jedoch nicht immer der Fall,

insbesondere wenn das Blickverhalten einer Person zeitlich stark variiert. Somit ist nicht immer

gewährleistet, dass die visuellen Elemente des Stimulus in den Slit-Scans einwandfrei wieder er-

kennbar sind. Eine globale Einordnung des gesehenen, in dem Kontext des Stimulus, ist zudem

nicht möglich. Es handelt sich hier offenbar um eine Schwäche der Slit-Scan-Visualisierung.

Ein naheliegender Ansatz zur Lösung dieses Problems, ist der Einsatz einer weiteren Visua-

lisierungstechnik. Im Folgenden werden einige von diesen nach Blascheck et. al [BKR+17]

beschrieben.
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Heatmap Eine Heatmap-Visualisierung erlaubt die räumliche Verteilung der Blickpunkte aller

Probanden zu visualisieren. Die zeitliche Dimension der Scanpaths geht jedoch verloren.

Gaze-Plot Der Gaze-Plot erlaubt die Scanpaths der Probanden relativ direkt visuell darzu-

stellen. Die Gaze-Punkte werden als Kreise visualisiert und die Sakkaden als Linien

zwischen diesen. Vor allem bei dynamischen Stimuli wird diese Form der Darstellung

aber schnell unübersichtlich.

Bee-Swarm Anders als beim Gaze-Plot, stellt die Bee-Swarm Visualisierung nur die Gaze-

Punkte der Probanden als Kreise dar. Außerdem eignet sie sich vor allem für dynamische

Stimuli, da zur jedem Bild (des Videos) nur die relevanten Gaze-Punkte angezeigt werden.

Die eben genannten Visualisierungen können dabei einfach mit dem Stimulus kombiniert

werden. Hinsichtlich der Verwendung von dynamischen Stimuli erweist sich die Bee-Swarm-

Visualisierung als besonders geeignet, da sie eine wesentlich übersichtlichere Visualisierung

der Gaze-Punkte ermöglicht.

4.3 Daten und Repräsentationen

Nachdem die notwendigen Erweiterungen der Slit-Scan Visualisierung erörtert wurden, folgen

nun die Konzepte zur Ähnlichkeitsbestimmung. In den Anforderungen wurde bereits genannt,

dass Trajektorie- Scanpath sowie Bildmaße zum Einsatz kommen, um das Blickverhalten

zwischen Probanden zu analysieren. In diesem Zusammenhang stellt sich die Frage, in welcher

Form die Eye-Tracking-Daten repräsentiert werden müssen, sodass der Einsatz dieser Maße

möglich ist. Sie können außerdem einen nicht zu vernachlässigenden Einfluss auf das Ergebnis

dieser darstellen. Deshalb wird im Folgenden, auf Basis der verfügbaren Daten (Fixationen,

Gaze-Punkte sowie Fixationsdauern) geklärt, wie sie in dieser Arbeit definiert sind.

Scanpath In dieser Arbeit wird die String-basierte Repräsentation eines Scanpaths verwendet.

Ein AOI-String wird zusammen mit den AOI-Definitionen aus den Fixationen erzeugt.

Hierfür wird jede Fixation mittels der AOI-Definitionen in ein Zeichen aus dem Alphabet

Σ konvertiert. Eine wichtige Frage in diesem Zusammenhang ist, ob Fixationsdauern

ignoriert werden können. Sollen sie miteinbezogen werden, so ist es notwendig die

einzelnen Zeichen in dem AOI-String entsprechend der Fixationsdauern zu replizieren

(Temporal-Binning) [CMTG10]. In dieser Arbeiten werden beide Varianten betrachtet.

Trajektorie Ist die Trajektorie-basierte Repräsentation des Blickverhaltens. Hier stellt sich

die Frage, ob Trajektorien aus Gaze-Punkten, oder Fixationen bestehen sollen. Da im

Vorfeld nur wage Vermutungen über die Unterschiede angestellt werden können, ist ein

Betrachtung beider Varianten auch hier sinnvoll.

Bildebene Die Slit-Scan Visualisierung (Abschnitt 4.2) eignet sich gut um das Blickverhalten

von Probanden zu untersuchen. Dieser erlaubt auf visueller Basis genau und kompakt

den Scanpath eines Probanden abzubilden. Aus diesem Grund werden die Slit-Scans
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4.4 Die Auswahl von Ähnlichkeitsmaßen

nicht nur zur visuellen Darstellung des Blickverhaltens verwendet, sondern auch zum

Ähnlichkeitsvergleichs auf Bildebene. Dafür werden im Rahmen dieser Arbeit sowohl

Histogramm-basierte Verfahren, wie auch Bildsequenz-Verfahren betrachtet.

4.4 Die Auswahl von Ähnlichkeitsmaßen

Auflistung der Distanzmaße

Name Kategorie Repräsentation

Levenshtein-Distanz Scanpath AOI-String (± TB.)

Needleman-Wunsch-Algorithmus Scanpath AOI-String (± TB.)

Dynamic-Time-Warping Trajektorie Gaze und Fixation

Frechet-Distanz Trajektorie Gaze und Fixation

Chi-Quadrat-Methode Bildebene Histogramm

Bhattacharyya-Distanz Bildebene Histogramm

Earth-Mover’s-Distance Bildebene Histogramm

Squared-Differences Bildebene Bildsequenz

Kosinus-Maß Bildebene Bildsequenz

Korrelations-Maß Bildebene Bildsequenz

Tabelle 4.1: Auflistung aller in dieser Arbeit verwendeten Distanzmaße mit deren zugrun-

deliegenden Repräsentation. ± TB. steht für zwei Varianten : Mit und ohne

Temporal-Binning.

Nachdem die unterschiedlichen Repräsentationen vorgestellt wurden, wird nun Untersucht

welche Ähnlichkeitsmaße auf diesen in Frage kommen. In jeder der betrachteten Kategorien :

Scanpath, Trajektorie und Bildebene gibt es jedoch eine Vielzahl an unterschiedlichen Ver-

fahren, die verschiedene Stärken und Schwächen in Bezug auf bestimmte Anwendungsfälle

aufweisen. Ein Verwendung aller Distanzmaße ist aufgrund der großen Anzahl nicht möglich,

weshalb ein Kriterium zur Auswahl der Distanzmaße getroffen werden muss. Ein für diese

Arbeit als sinnvoll empfundenes Kriterium, ist ein möglichst breites Spektrum an verfügbaren

Maßen abzudecken. Die im Grundlagenkapitel vorgestellten Taxonomien bieten dafür eine gute

Grundlage, da diese eine Unterteilung von Ähnlichkeitsmaßen, bezüglich unterschiedlicher

Merkmale ermöglichen. In Tabelle 4.1 ist eine Auflistung aller in dieser Arbeit verwendeten

Distanzmaße zu finden. Im Folgenden wird diese Wahl begründet.

Auswahl von Scanpath-Maßen

In Kapitel 2 wurden bereits die verschiedenen Kategorien von Scanpath-Maßen eingeführt.

Es wurde dabei ersichtlich, dass es unterschiedliche Möglichkeiten zur Repräsentation von
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4 Aufgabenstellung und Konzept

Scanpaths gibt. Die wohl bekannteste ist die String-Repräsentation. Die populärste Methode

unter diesen ist die Levenshtein-Distanz. Brandt und Stark stellten 1997 erstmals die Möglich-

keit vor, Scanpaths auf Grundlage der bekannten Levenshtein-Distanz [Lev66] miteinander zu

vergleichen [BS97]. Seitdem wurde sie in einer Vielzahl von Experimenten bereits erfolgreich

als Distanzmaß zwischen Scanpaths verwendet [HB10]. Der große Vorteil diese Methode ist,

dass sie sehr gut die intuitive Vorstellung einer Scanpath-Distanz abbildet [AAKB15]. Die

Schwächen der Levenshtein-Distanz wurde jedoch über die Jahre auch deutlich. So ist es

nicht möglich, Ähnlichkeiten zwischen AOIs in das Ähnlichkeitsmaß einfließen zu lassen. Der

Needleman-Wunsch-Algorithmus [CMTG10] versucht diese Probleme mittels der individuellen

Anpassung der Editierkosten zu umgehen. Im Bereich des Scanpath-Vergleichs hat sie deshalb

ebenso an Popularität erlangt.

Auswahl von Trajektorie-Maßen

In Kapitel 2 wurde auch eine Taxonomie zur Einordnung verschiedener Trajektorie-Maße

vorgestellt. Dabei wurde zwischen räumlich-zeitlichen Ähnlichkeitsmaßen sowie räumlichen

Ähnlichkeitsmaßen unterschieden. Um ein möglichst großes Spektrum an unterschiedlichen

Maßen abzudecken, wird jeweils ein Maß aus diesen Kategorien ausgewählt.

• Unter den zeitlich-räumlichen Maßen sind die Maße : Longest-Common-Subsequence

(LCSS), Dynamic-Time-Warping (DTW), Edit-Distance-On-Real-Sequences (EDR) sowie

Edit-Distance-With-Real-Penalty (ERP) denkbar [MSME15]. Bei allen handelt es sich um

zeitreihen-basierte Vergleichsverfahren auf Trajektorien. Die Verfahren LCSS und EDR

erweisen sich aus einem bestimmten Grund jedoch als nicht geeignet. So sind bei beiden

bestimmte Parameter
1
im Vorfeld zu bestimmen. Um gute Ergebnisse zu erzielen, ist

dabei die korrekte Wahl dieser Parameter wesentlich. Da die Bestimmung der korrekten

Parameter sehr aufwändig sein kann und zudem domänenspezifisches Wissen erfordert

(welches im Rahmen des Scanpaths-Vergleichs bisher nicht existiert), werden daher

diese Maße in dieser Arbeit nicht weiter behandelt. Im direkten Vergleich zwischen

DTW sowie ERP ergeben sich bezüglich der Eigenschaften keine großen Unterschiede.

Aufgrund der größeren Popularität des DTW-Verfahrens wird dieses aber gegenüber

dem ERP-Verfahren vorgezogen.

• Unter den räumlichenMaßen zählen die Euklidische-Distanz, die Hausdorf-Distanz sowie

die Frechet-Distanz zu den drei bekanntesten. Eine direkte Gegenüberstellung dieser

Methoden im Rahmen des Vergleichs von Trajektorien konnte jedoch nicht gefunden

werden. Es ist jedoch bekannt, dass die Frechet-Distanz in bestimmten Anwendungsfällen

besser Ergebnisse liefert, als andere etablierte Verfahren [SAW15].

1
Es handelt sich hier um einen Schwellenwert-Parameter (engl. Threshold-Parameter)
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4.4 Die Auswahl von Ähnlichkeitsmaßen

Auswahl von Bild-Maßen

Aus dem Grundlagenkapitel (Kapitel 2) wurden zwei unterschiedliche Möglichkeiten zur

Repräsentation von Bilddaten vorgestellt. Einerseits der Histogramm-basierte Ansatz, welcher

Bilder als Histogramme dargestellt und andererseits der Ansatz, Bilder als Sequenzen aus

Pixeln darzustellen. In dieser Arbeit werden Methoden beider Ansätze ausgewählt. Grund

dafür ist, dass beide Repräsentationen durchaus unterschiedliche Eigenschaften vorweisen. Im

Folgenden werden beide Ansätze kurz gegenübergestellt, um deren Unterschiede sowie daraus

resultierenden Vor-und Nachteilen zu erläutern [Soe15].

• Histogramme vernachlässigen, imGegensatz zu Bildsequenzen, die Position der einzelnen

Bildpunkte. Es wird lediglich die Verteilung der Grauwerte/Farbwerte modelliert. Somit

können fälschlicherweise zwei unterschiedlich aussehende Bilder als ähnlich erkannt

werden. Diese Eigenschaft ist jedoch nicht nur von Nachteil. Aufgrund dessen sind

Histogramme invariant gegenüber bestimmten Bildtransformationen, wie Rotation oder

Spiegelung.

• Bildsequenz-Maße sind in der Regel nicht robust gegenüber kleinen Änderungen. Insbe-

sondere Bildtransformationen können das Ergebnis negativ beeinflussen.

Aus den eben genannten Gründen ist es sinnvoll, sowohl Histogramm-basierte Maße zu

verwenden, als auch Maße auf Bildsequenzen.

Auswahl von Histogramm-Maßen

Wie bereits im Grundlagenkapitel (Kapitel 2) erwähnt, lassen sich Distanzmaße auf Histogram-

men in wahrscheinlichkeits-basierte und vektor-basierte Kategorien untergliedern. Aus jeder

der genannten Kategorien wird im Folgenden ein Distanzmaß ausgewählt.

• Im Kontext des Bildvergleichs weisen Cross-Bin-Verfahren, wie beispielsweise die Earths-

Movers-Distance, einige vorteilhafte Eigenschaften gegenüber Bin-By-Bin Maßen auf

[RTG00]. Dies ist damit begründet, dass sie keine Annahmen über die Menge der Klassen

machen und somit in der Regel robuster als Bin-By-Bin Maße sind [PW10]. Da die

Earth-Mover’s-Distance ein klassischer Vertreter der Cross-Bin-Verfahren ist, wird sie in

dieser Arbeit verwendet.

• Unter den Bin-To-Bin-Maßen sowie den wahrscheinlichkeits-basierten Distanzmaßen die

erweist sich die Auswahl weitaus unübersichtlicher. In [Cha08] sind über 50 verschiedene

Maße definiert, die diesen Kategorien angehören. In [ZL03] wird u.a die Überlegenheit

von χ2
Statistik basierten Maßen festgestellt, weshalb eine Verwendung dieses Maßes

im Rahmen dieser Arbeit sinnvoll ist.
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4 Aufgabenstellung und Konzept

• Unter den wahrscheinlichkeits-basierten Distanzmaßen erweist sich beispielsweise die

KL-Divergenz [Cha08] als Vergleichsmaß eher ungeeignet, da sie nicht symmetrisch

ist. Dies bedeutet, dass die Distanz zwischen A und B im Allgemeinen nicht dieselbe

Distanz wie zwischen B und A ist. Aus diesem Grund ist beispielsweise die Wahl

der Bhattacharyya-Distanz [Soe15] sinnvoller. Außerdem ist bekannt, dass die sie im

Zusammenhang des Bildvergleichs vielversprechende Ergebnisse liefert [Soe15].

Auswahl von Bildsequenz-Maßen

Die Autoren Goshtasby et al. [Gos12] beschreiben viele Maße, die ein Vergleich auf Bildse-

quenzen ermöglichen. Eine Taxonomie zu diesen Maßen scheint nicht zu existieren, sodass

keine klare Unterscheidung zwischen diesen, nach unterschiedlichen Merkmalen möglich

ist. Aus diesem Grund werden in dieser Arbeit Verfahren verwendet, die in diesem Zusam-

menhang weit verbreitet sind. Darunter die ’Squared-Difference’ Methode [Gos12], welche

erlaubt die einzelnen (quadratischen) Differenzen zwischen gleichen Bildpunkten zu untersu-

chen. Sie ist definiert als

∑n
i=1(xi − yi)2

, wobei xi, yi die einzelnen Bildpunkte der Sequenzen

X = (x1, . . . , xn) und Y = (y1, . . . , yn) sind. Eine anderen naheliegende, zudem weit verbrei-

tete Möglichkeit ist die lineare Abhängigkeit zwischen den SequenzenX und Y zu untersuchen.

Dafür eignet sich der (Pearson) Korrelationskoeffizient ρX,Y = cov(X,Y )
σXσY

[Hen11]. Eine weitere

gut funktionierende Methode, die zudem sehr ähnlich zur Korrelation ist, betrachtet die beiden

SequenzenX und Y als Vektoren. DerWinkel zwischen den beiden Sequenzen (welcher mit der

Kosinus-Funktion berechnet wird) gibt dabei die Ähnlichkeit zwischen diesen an [FHS+05].

4.5 Visualisierungen und Analysekonzepte

Ein wichtiger Bestandteil dieser Arbeit ist die Resultate der Ähnlichkeitsmaße in Kontext

der Slit-Scan Visualisierung zu setzen. Eine Herausforderung dabei ist, die Resultate der

Ähnlichkeitsmaße visuell geeignet darzustellen. Ein möglicher Ansatz zur Darstellung von

Ähnlichkeitswerten ist, diese als Liste von Werte dem Benutzer zu präsentieren. Bei einer

kleinen Anzahl von untersuchten Elementen, kann diese Darstellung durchaus sinnvoll sein.

Mit zunehmender Anzahl an Elementen, wird diese aber schnell unübersichtlich. Außerdem

kann aus einer solchen Darstellung meist nur sehr wenig abgelesen werden und ist deshalb

für einen Menschen nur schwer interpretierbar. Es werden also andere, geeignetere Ansätze,

zur Darstellung von Ähnlichkeitswerten benötigt.

Eine häufig verwendete Data-Mining-Technik ist die hierarchische Clusteranalyse (Hierarchical

agglomerative clustering analysis, kurz HAC-Analyse). Die Software EyePatterns [WHRK06]

hat gezeigt, dass die HAC-Analyse im Rahmen der Scanpath-Vergleichsanalyse ein vielverspre-

chender Ansatz ist. Einer der Gründe dafür ist, dass sie ein sehr anschauliches Daten-Modell für

die Ähnlichkeiten zwischen den untersuchten Sequenzen liefern kann. Im Grundlagenkapitel

wurde bereits erwähnt, wie das Ergebnis eines hierarchischen Clusterings, in Form eines

34
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Dendrogramms, oder einer Heatmap (Abschnitt 2.6.2) visualisiert werden kann. Für die visuelle

Darstellung eines einzelnen Clusterings wird diese Visualisierung immer noch verwendet.

Betrachtet man jedoch mehrere Ähnlichkeitsmaße, wie es in dieser Arbeit der Fall ist, so stellt

sich die Frage, wie die Ergebnisse unterschiedlicher HACs miteinander geeignet verglichen

werden können. Eine klassische Idee wäre einfach mehrere Dendrogramme, oder mehrere

Heatmaps nebeneinander dem Benutzer zu präsentieren. Nachteil davon ist jedoch, dass somit

die Aufgabe der Vergleichsanalyse für den Benutzer erschwert wird. Damit der Benutzer von

dieser Aufgabe befreit wird, werden in diesem Zusammenhang zwei Konzepte vorgestellt, die

in dieser Arbeit entwickelt wurden.

Multi-Dendrogramm Analyse

0.2

0.8

0.4

Abbildung 4.4: Schematische Darstellung der Multi-Dendrogramm Analyse. Die Abbildung

zeigt die Ähnlichkeiten zwischen den Clusterings. Dies können beispielsweise

mit der cophentischen Korrelation berechnet werden (Abschnitt 2.6.3).

Ein wesentliches Grundkonzept zur Vergleichsanalyse von hierarchischen Clusterings ist die

Definition eines Distanzmaßes zwischen diesen. Das Distanzmaß soll dabei angeben, wie

unterschiedlich zwei Clustering-Ergebnisse zueinander sind. Als Distanzmaße ist beispiels-

weise die cophentische Korrelation aus dem Grundlagenteil (Abschnitt 2.6.3) denkbar. Dabei

ist es möglich auf Grundlage dieses Distanzmaßes Visualisierungen zu entwickeln, die den

Vergleich von Clusterings vereinfachen. Ein Beispiel ist hier das Force-Directed-Layout, oder

die hierarchische Clusteringanalyse von Clusterings [LKS+15]. Ein Grund weshalb einer dieser

Ansätze nicht näher verfolgt wird, ist die Tatsache eine Integration dieser Techniken im Rah-

men dieser Arbeit zu aufwändig ist. Daher wird auf Grundlage der cophenetischen Korrelation

ein eigenständiges Konzept zur Vergleichsanalyse von hierarchischen Clusterings entwickelt.

Der Ansatz dazu ist schematisch in Abbildung 4.4 dargestellt. Die Ansicht besteht dabei aus

Dendrogrammen, welche die entsprechenden Clusterings repräsentieren. Die Pfeile stellen die

Ähnlichkeiten zwischen den beteiligten Clusterings dar. Sie sind mit Werten zwischen null

(für stark verschiedene Clusterings) und eins (für identische Clusterings) annotiert.
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Multi-Heatmap Visualisierung

a b c

a

b

c

d1 d2

d3 d4

Abbildung 4.5: Schematische Darstellung einer (Multi)-Heatmap, die vier Distanzmatrizen

gleichzeitig visualisiert. Das dargestellte Dendrogramm gehört zum Distanz-

maß d3.

Die Multi-Dendrogramm Analyse hat einen bedeutenden Nachteil. Sie erlaubt keinen direkten

Einblick in die Ähnlichkeitswerte. Eine mögliche Lösung ist die Heatmap-Visualisierung (siehe

Abschnitt 2.6.2 im Grundlagenkapitel), welche die Darstellung der Ähnlichkeitswerten auf

direkter Ebene erlaubt. Sie ist jedoch nur für die Darstellung einer Distanzmatrix gedacht,

weshalb in dieser Arbeit das Konzept der Heatmap, um die Möglichkeit zur Darstellung

von mehreren Distanzmatrizen, erweitert wird. Das Resultat dieser Heatmap-Erweiterung in

Abbildung 4.5 zu sehen. In diesem Fall werden vier Distanzmatrizen
2
, von den Maßen d1, d2,

d3 sowie d4 gleichzeitig dargestellt. Für jedes Paar von Elementen (x, y) werden die Werte

d1(x, y), d2(x, y), d3(x, y) sowie d4(x, y) zusammen als Block dargestellt. Das Dendrogramm

wurde aus der Distanzmatrix zum Distanzmaß d3 erzeugt. Die entsprechende Distanzwerte

von d3 werden schwarz umrandet hervorgehoben, sodass deutlich ist welche Distanzwerte an

der Erzeugung des Clusterings (und somit des Dendrogramms) beteiligt sind.

4.6 Gesamtkonzept

Die bereits erörterten Konzepte zur Vergleichsanalyse von Distanzwerten (Abschnitt 4.5) die-

nen in diesem Kapitel zum Entwurf eines Gesamtkonzepts. Das Ziel ist die bereits vorgestellten

Konzepte kohärent mit der Slit-Scan-Visualisierungstechnik (Abschnitt 4.2) zu vereinigen,

2
Die Multi-Heatmap Visualisierung ist nicht auf die Darstellung von vier Distanzmatrizen beschränkt.
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sodass eine Vergleichsanalyse des Blickverhaltens, auf Basis der ausgewählten Ähnlichkeits-

maße (Abschnitt 4.4), möglich wird. Dafür wir eine interaktive Visualisierung benötigt, damit

untersucht und ermittelt werden kann, ob die Ergebnisse der Ähnlichkeitsmaße mit den Hy-

pothesen, welche über die Visualisierung gewonnen wurden, übereinstimmen. Letztlich soll

damit die Eignung der ausgewählten Ähnlichkeitsmaße bezüglich der visuellen Interpretation

mit der Slit-Scan-Visualisierungstechnik festgestellt werden. Im Folgenden wird deshalb ein

Gesamtkonzept auf Grundlage der Visual Analytics vorgestellt, welche als Spezifikation für die

Implementierung einer interaktiven Visualisierung (sie wird im Kapitel 5 vorgestellt) dient.

Benutzerdefinierte Daten

HAC- Daten

Visualisierungen + Analysekonzepte

- Multi-Heatmap

- Multi-Dendrogram

Verwalte in

Gaze-Datenbereich

Abhängig von

HAC

Bestimmt

Grundlage für

Feedback-Loop

Slit-Scans

Hypothesengewinnung

Distanzmatrix + HAC

Distanzmatrix + HAC

Distanzmatrix + HAC

Historie

Bestimmt

Distanzmaß

Abhängig von

1.

2.

3.

4.

5.

Abbildung 4.6: Illustration des Gesamtkonzepts dieser Arbeit angelehnt an dem Ansatz der

Visual-Analytics. Die Historie stellt die Grundlage dafür dar, die erzeugten

hierarchischen Clusterings miteinander vergleichen zu können.
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1. Auf Grundlage des Slit-Scans der einzelnen Probanden, kann der Benutzer Datenbereiche

von Interesse finden, deren Vergleichsanalyse beispielsweise eine bestimmte, vorher

festgelegte Hypothese, bestätigen sollen. Dies Hypothesen kann der Benutzer mit einer

explorativen Analyse auf den Slit-Scans finden. Die entwickelten Konzepte des Zoomings,

der anpassbaren Field-Of-View-Box sowie sowie der Bee-Swarm-Visualisierung sollen

den Benutzer bei dieser Aufgabe unterstützen.

2. Auf Grundlage des Gaze-Datenbereichs sowie dem ausgewählten Distanzmaß wird die

Distanzmatrix berechnet, welche alle paar-weisen Distanzen enthält. Zuvor müssen die

geeigneten Daten-Repräsentation aus den Gaze-Datenbereich erzeugt werden (Abschnitt

4.3). Aus der Distanzmatrix wird mit der HAC-Analyse ein hierarchisches Clustering

erzeugt. Eine Beschreibung dieses Vorgangs ist im Grundlagenkapitel (Abschnitt 2.6) zu

finden.

3. Ein Historie verwaltet die erzeugten HACs und Distanzmatrizen. Hat der Benutzer die

HAC-Analyse für eine bestimmte Konfiguration (Distanzmaß und Gaze-Datenbereich)

durchgeführt, so ist der daran interessiert weitere Ergebnisse zu erzeugen. Aus diesem

Grund müssen das Ergebnis (Distanzmatrix und HAC) in einer Historie abgelegt werden,

sodass dieses für den Benutzer weiterer hin zugreifbar ist.

4. In Abschnitt 4.5 wurde geklärt, welche Ansätze zum Vergleich von mehreren hierar-

chischen Clusterings und deren zugrundeliegenden Distanzmatrizen existieren. Die

Multi-Dendrogramm Analyse erlaubt die erzeugten HACs aus der Historie miteinander

zu vergleichen. Die Multi-Heatmap Visualisierung ermöglicht hingegen dem Benutzer,

die Ähnlichkeitswerte auf direkter Ebene zu betrachten (dafür werden die Distanzmatri-

zen aus der Historie verwendet).

5. Ein wesentliches Konzept der Visual-Analytics ist die sogenannte Feedback-Loop, die

ebenfalls in Abbildung 4.6 angedeutet ist. Mittels der eben genannten Visualisierungen

und Analysekonzepte, kann der Benutzer klären, wie gut die festgestellten Unterschiede,

welche visuell mit der Slit-Scan Visualisierung erkannt wurden, mit den der Ergebnissen

der Distanzmaße zusammen passen. Damit kann der Benutzer Erkenntnisse und Wissen

erlangen, die im dabei helfen die Eignung von Distanzmaßen zur Slit-Scan Visualisierung

festzustellen. Auf Grundlage dieses Wissens, kann er weitere Hypothesen aufstellen und

damit zusammenhängende Fragestellungen beantworten, um nun eine zielgerichtete

Analyse durchzuführen.
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In dem folgenden Kapitel wird das in dieser Arbeit entwickelte Konzept, in Form eines Prototy-

pen umgesetzt. Für die Entwicklung der grafischen Oberfläche kam das Software-Development-

Framwork Qt
1
zum Einsatz. Des weiteren wurde die Open Source Computer Vision Libra-

ry (OpenCV)
2
zur Erzeugung der Slit-Scans verwendet. Diese Programmbibliothek wurde

ebenfalls für die Implementierung der Histogramm- sowie Bildsequenz-Maße eingesetzt. Die

Scanpath- und Trajektorie-Maße wurden anhand der Publikationen selbst nach-implementiert.

Die gesamte Applikation ist in der Programmiersprache C++ (Standard : C++11) entwickelt

worden.

5.1 Gesamtübersicht der grafischen Bedienelemente

Die zwei Hauptansichten des implementierten Prototypen sind in Abbildung 5.1 zu sehen. Die

darin enthaltenen grafischen Bedienelemente sind dabei mit den Bezeichnern A-G versehen.

Wie außerdem zu sehen ist, existieren zwei unterschiedliche Ansichten. Diese werden im

Folgenden kurz umrissen. Eine nähere Erläuterung dieser grafischen Bedienelemente ist in

den folgenden Abschnitten zu finden.

Haupt-Ansicht Sie enthält die Slit-Scan Visualisierung (A) mit zusätzlichen grafischen Bedien-

und Anzeigeelemente, welche unterhalb der Slit-Scans angeordnet sind. Die Bee-Swarm

Visualisierung mit Abspielfunktionalität (Play/Pause - Button) ist in (B) zu sehen. Auf

der linken Seite des Fensters ist die Liste aller hinzufügten Ähnlichkeitsmaße (C) zu

sehen und unter dieser die Liste der importierten Probanden (D).

Detail-Ansicht DieDetail-Ansicht enthält imWesentlichen dieMulti-Heatmap-Visualisierung

(F) sowie zusätzlich eine Anzeigefläche (G), die über dieser platziert ist.

Bei beiden Ansichten ist die Liste der erzeugten hierarchischen Clusterings (E) vorzufinden.

Um zwischen den beiden Ansichten wechseln zu können, sind diese als Reiter in die grafische

Oberfläche eingebunden. Die Reiter-Auswahl befindet sich dabei an der linken Seite des

Fensters, direkt neben der Liste der hinzufügten Ähnlichkeitsmaße (C).

1
https://www.qt.io. (Zuletzt überprüft am 28.10.2017.)

2
https://opencv.org. (Zuletzt überprüft am 28.10.2017.)
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Haupt - Ansicht

Detail - Ansicht

A

B

C

D E

F

G

E

Abbildung 5.1: Gesamtübersicht der grafischen Bedienelemente aus der Haupt-Ansicht (oben)

sowie der Detail-Ansicht (unten).
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5.2 Einbindung der Daten

Einbindung von Probanden

Bevor das Blickdaten von Probanden auf Ähnlichkeiten analysiert werden kann, müssen diese

zunächst in die Applikation eingebunden werden. Die Blickdaten der Probanden sind dabei

als Tab-separated values (TSV) in Tabellenform (separat pro Proband) abgespeichert. Jeder

Eintrag der Tabelle steht für einen Aufzeichnungszeitpunkt des Eye-Tracking-Geräts. Ein

solcher Eintrag beinhaltet dabei beispielsweise die Attribute der X- und Y-Koordinaten der

Fixations- sowie Gazepunkte
3
. In einer solchen Datei sind meist mehrere tausend Einträge mit

den dazugehörigen Werten abgespeichert. Wie in Abbildung 5.2 zu sehen ist, wird für jeden

importierten Probanden ein eigener Listeneintrag erstellt.

Abbildung 5.2: Liste der importierten Probanden (links). Mit den Checkboxes können die Slit-

Scans der einzelnen Probanden aus der Haupt-Ansicht ein- oder ausgeblendet

werden. Ein Grund dafür kann die Datenqualität (rechts) eines Probanden

sein. Die sichtbaren weißen Bereiche in dem Slitscan zeigen fehlerhafte Eye-

Tracking-Daten.

Die Checkboxen neben den Einträgen der Probanden, erlauben diese zu selektieren bzw.

deselektieren. Dies ermöglicht die Slit-Scans der Probanden in der Hauptansicht ein- bzw.

auszublenden. Hiermit erhält der Benutzer die Möglichkeit, Probanden die für ihn als uninter-

essant gelten, auszublenden. Ein weiterer Anwendungsfall hat mit der Datenqualität zu tun.

3
Nähere Informationen dazu sind in den User-Manuals der Eye-Tracking-Geräte von Tobii Technology auf :

http://www.tobiipro.com (Zuletzt überprüft am 28.10.2017.) zu finden.
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Eye-Tracking-Geräte können nicht zu jedem Zeitpunkt die Augen des Probanden erfassen, so-

dass in diesen Fällen fehlerhafte Einträge aufgenommen werden. In den Slit-Scans werden diese

als weiße Bereiche (siehe Abbildung 5.2) sichtbar. Gibt es zu viele solcher fehlerhaften-Bereiche,

kann es sinnvoll sein, den Probanden in der Analyse nicht weiter zu betrachten.

Unterhalb der Liste der importierten Probanden sind außerdem noch Bedienelemente zum

Selektieren, bzw. Deselektieren aller Einträge angebracht. Diese Bedienelemente können

insbesondere bei der Analyse einzelner Probanden hilfreich sein.

Einbindung des Stimulus und der AOI-Daten

Ebenso wie die Blickdaten der Probanden, kann die Definition der Areas-Of-Interests (AOIs)

sowie der Stimulus in die Applikation eingebunden werden. Die Definition der Areas-Of-

Interests wird dabei für die Levenshtein-Distanz und den Needleman-Wunsch-Algorithmus

benötigt. Diese Definition muss dabei als XML-Datei im Video Performance Evaluation Re-

source (ViPER) - Format
4
vorliegen. Der Stimulus selbst wird einerseits zur Generierung

der Slit-Scan Visualisierung benötigt und anderseits für die Bee-Swarm-Visualisierung. Der

Prototyp unterstützt bisher nur die Einbindung von dynamischen Stimuli. Dieser muss deshalb

in Form einer Video-Datei vorliegen.

Einbindung von Ähnlichkeitsmaßen

Ein wichtiger Bestandteil des Prototypen ist die Möglichkeit, die Ähnlichkeiten zwischen den

Blickverhalten der Probanden zu berechnen. Hierfür wurden Ähnlichkeitsmaße bestimmt (Ab-

schnitt 4.4 im Konzeptkapitel), die sich für diese Aufgabe als geeignet erweisen. Die Abbildung

5.3 zeigt, wie ein Ähnlichkeitsmaß hinzugefügt werden kann. Alle hinzufügten Ähnlichkeits-

maße werden in einer Liste mit ihrem Namen als Eintrag verwaltet. Neben ihrer Bezeichnung

sind weitere Eigenschaften und relevante Parameter in dieser Übersicht aufgelistet. Diese

können beim Hinzufügen eines Maßes vom Benutzer ausgewählt werden. Es handelt sich

hierbei um folgende Parameter:

• Für die Histogramm-Maße ist einer der Farbräume : LAB, HSV, oder RGB vom Benutzer

auszuwählen.

• Für die Trajektorie-Maße kann ausgewählt werden, ob Fixationen oder Gaze-Punkte als

Grundlage für die Trajektorien verwendet werden sollen.

• Im Falle von Scanpath-Maßen, hat der Benutzer die Wahl, ob Temporal Binning für die

Erzeugung des AOI-Strings verwendet werden soll.

4
http://viper-toolkit.sourceforge.net (Zuletzt überprüft am 28.10.2017.)

42

http://viper-toolkit.sourceforge.net/
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Füge hinzu

Wähle

Abbildung 5.3: Mit der Optionsleiste (oben) können die Maße zur der Liste (rechts) hinzuge-

fügt werden. Das Maß für die HAC-Analyse wird mit der Auswahlbox (unten)

festgelegt.

Jenes Ähnlichkeitsmaß, welches für die hierarchische Cluster-Analyse verwendet werden soll,

wird über eine Auswahlbox, unterhalb der Liste vom Benutzer ausgewählt.

5.3 Die Slit-Scan Ansicht

Aus den Daten der importierten Probanden sowie dem Stimulus werden schließlich die Slit-

Scans erzeugt. In Abbildung 5.4) sind dabei die Slit-Scans der fünf importierten Probanden zu

sehen. Wie bereits in Abschnitt 4.2.2 erläutert, werden die einzelnen Slit-Scans der Probanden

untereinander vertikal angeordnet. Mithilfe von Scroll-Leisten auf beiden Achsen, kann die

Position der Field-Of-View-Box (4.2.2) durch den Benutzer angepasst werden. Wie außerdem

in Abbildung 5.4) zu sehen ist, hat er die Möglichkeit zwischen zwei Modi auszuwählen. Diese

werden im Folgenden erläutert und motiviert.

5.3.1 Übersichts- und Auswahlmodus

Auswahl-Modus Um die Bereiche von Interesse mittels der Ähnlichkeitsmaße analysieren zu

können, ist eine Auswahl dieser durch den Benutzer notwendig. Eine Szenenauswahl soll
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Auswahl-Modus

Ausgewählter Datenbereich

Einstellung des Datenbereichs

Übersichts-Modus

+ -

(a)

(b)

Abbildung 5.4: Der Auswahl-Modus (a) ermöglicht die Festlegung des Datenbereichs sowie

die Betrachtung des Dendrogramms. Der Übersichts-Modus (b) erlaubt den

Zoom-Faktor einzustellen.

dies ermöglichen. Die Szenenauswahl erlaubt dem Benutzer dabei das Selektieren eines

Datenbereichs. Diese Selektion findet mit zwei beweglichen Kontrollelementen statt.
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Der nicht-selektierte Bereich wird dabei (grau) ausgeblendet, um eine Unterscheidung

des selektierten und nicht-selektierte Bereichs zu ermöglichen. Die Skala oberhalb der

Slit-Scan-Ansicht ermöglicht dem Benutzer einzuordnen, welcher Indexbereich der Gaze-

Daten gerade ausgewählt ist. Im Falle der Abbildung 5.4 wurde beispielsweise ein der

Datenbereich zwischen den Indizes 220 und 550 der Gaze-Punkte ausgewählt.

Übersichts-Modus Wie gut in Abbildung 5.4 zu sehen ist, kann immer nur ein kleiner Bereich

der Slit-Scans im Auswahl-Modus gleichzeitig betrachtet werden. Dieses Problem wurde

bereits in 4.2.2 erläutert. Der Lösungsvorschlag wurde unter dem Begriff des ’Zoomings’

vorgestellt. Die Datenbereichsauswahl sowie das Dendrogrammwerden in diesemModus

ausgeblendet, damit eine eine bessere Übersicht gewonnen werden kann. Außerdem

kann der Benutzer den Zoom-Faktor der Slit-Scan-Ansicht anpassen. Die Abbildung 5.4

zeigt, wie ein geringer Zoom-Faktor es ermöglicht, einen größeren Bereich der Slit-Scans

zu betrachten.

5.3.2 Rückkopplung zum Stimulus

Play 00:08:00

Synchronisiert

Abbildung 5.5: Die Bee-Swarm Visualisierung ist mit der Slit-Scan Visualisierung mittels

einer frei bewegbaren Timeline zeitlich synchronisiert. Die Kreise stellen die

Gaze-Punkte der Probanden dar.

Ein Problem, welches im Zusammenhang mit der Slit-Scan-Visualisierung auftritt, ist der

mangelnde Bezug zum Stimulus (siehe Abschnitt 4.2.2 im Konzeptkapitel). Aus diesem Grund

ist die Bee-Swarm Visualsierung im Prototypen, als Rückkopplung zum Stimulus, integriert.

Die Slit-Scan Ansicht ist dabei mit der Bee-Swarm Visualsierung in folgender Art und Weise

zeitlich synchronisiert.

• Wird die Position der Time-Line in der Slit-Scan-Ansicht angepasst, so wird zum ent-

sprechenden Frame in der Videoansicht gesprungen.

• Wird die Abspielfunktion der Videoansicht (mit dem Play-Button) aktiviert, so wird das

Video abgespielt und währenddessen die Position der Time-Line stetig angepasst.
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Die Gaze-Punkte der einzelnen Probanden in dem aktuellen (Video-) Frame werden dabei

als Kreise eingezeichnet (Für jeden Probanden ein Kreis). Dadurch wird ersichtlich, wo im

Stimulus die Probanden gerade hinschauen. Jedem Punkt ist dabei eine Farbe zugeordnet. Die

eingefärbten Quadrate (neben den Bezeichnern der Probanden) in der Liste der importierten

Probanden (siehe Abbildung 5.2) ermöglichen die Zuordnung von Farbe zu Proband.

5.4 Hierarchische Clusteranalyse

Abbildung 5.6: Das Ergebnis des hierarchischen Clustering wird mit einem Dendrogramm

(links) visualisiert. Die Slit-Scans (rechts) werden entsprechend dem Cluste-

ring vertikal umsortiert.

In dieser Arbeit stellt die hierarchische Clusteringanalyse das Grundkonzept zum Vergleich

von Blickverhalten dar. Sie findet sich deshalb auch im vorgestellten Prototypen wieder. Im

Folgenden wird davon ausgegangen, dass Benutzer folgende Schritte bereits durchgeführt

hat.

1. Die Gaze-Daten der Probanden, der Stimulus sowie die AOI-Definition wurden in die

Applikation eingebunden.

2. Es wurde ein Dateibereich von Interesse in den Slit-Scans gefunden und ausgewählt,

welcher analysiert werden soll.

3. Es wurde einMaß aus der Liste der hinzugefügten Ähnlichkeitsmaße ausgewählt, welches

für die hierarchische Clusteranalyse eingesetzt werden soll.

Danach kann die eigentliche hierarchische Clusteranalyse stattfinden. Als Link-Methode wird

dabei Group-Average-Link verwendet. Das Resultat der HAC-Analyse wird, wie in Abbildung

5.6 zu sehen, als Dendrogramm neben der Slit-Scan Ansicht dargestellt. Die Slit-Scans werden
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entsprechend dem Clustering vertikal neu angeordnet. Dies ermöglicht dem Benutzer, die

ermittelten Gruppierungen direkt auf der Ebene der Slit-Scans zu betrachten.

5.5 Historie der erzeugten Clusterergebnisse

Distanzmatrix + HAC

Distanzmatrix + HAC

Distanzmatrix + HAC

Historie

Repräsentiert

Abbildung 5.7: Die Liste der HACs (links) repräsentiert das Konzept der Historie (rechts).

Im 4.6 wurde bereits verdeutlicht, dass die Historie der erzeugten Clusterergebnisse die Grund-

lage für Visualisierungen und Analysekonzepte darstellt. Die Historie ist auch im entwickelten

Prototyp ein wichtiger Bestandteil. Wie in Abbildung 5.7 angedeutet ist, stellt die Historie

nicht nur eine interne Programm Struktur dar, sondern wird auch als Form einer Listenansicht

dem Benutzter präsentiert. Jedes erzeugte Clustering wird als Form eines Listeneintrags in

dieser Historie vermerkt. Jeder Eintrag enthält dabei die folgenden Kenngrößen:

• Dendrogramm zum Clustering.

• Name des Ähnlichkeitsmaß.

• Datenbereich auf dem das Clustering stattfand.

5.5.1 Umsetzung der Multi-Dendrogramm Analyse

In Kapitel 4 wurden zwei Möglichkeiten vorgestellt, wie hierarchische Clusterings miteinander

verglichenwerden können. Die Grundlage dafür ist die Historie der erzeugten Clusterings. Eines
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Abbildung 5.8: Die Auswahl eines Dendrogramm-Eintrags zeigt die Ähnlichkeitswerte zu

den anderen Dendrogrammen an. Außerdem findet eine Aktualisierung der

beiden Ansichten auf Grundlage des ausgewählten Clusterings statt.

dieser Konzepte ist die Multi-Dendrogramm Analyse (Abschnitt 4.5 im Konzeptkapitel). Diese

soll den Vergleich unterschiedlicher Clusterings auf Ebene der Dendrogramme ermöglichen.

Der vorgestellte Prototyp erlaubt dabei die Ähnlichkeiten zwischen den Clusterings interaktiv

darzustellen. Wie in Abbildung 5.8 links zu sehen ist, kann der Benutzer einen beliebigen

Eintrag der Historie mit der Maus auswählen. Dies hat zur Folge, dass die Ähnlichkeiten

zwischen dem ausgewählten Clustering und den anderen Clusterings berechnet und als Zahlen

zwischen Null und Eins angezeigt werden. Beispielsweise ist das in Abbildung 5.8 ausgewählte

Clustering sehr ähnlich zum obersten Clustering (Ähnlichkeit : 0.9). Die Ähnlichkeit zwischen

den Clusterings wird bestimmt, in dem die cophenetische Korrelation (Abschnitt 2.6.3 im

Grundlagenkapitel) zwischen den entsprechenden Dendrogrammen berechnet wird.

Neben der Darstellung der Ähnlichkeitswerte, hat das Selektieren eines Eintrags noch etwas

zur Folge. Wie in Abbildung 5.8 rechts dargestellt, handelt es sich hierbei um einen Aktualisie-

rungsvorgang auf die Haupt-, als auch auf die Detail-Ansicht. Entsprechend dem ausgewählten

Eintrag, werden die Dendrogramme in beiden Ansichten auf dessen Zustand zurückgesetzt.
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Somit lassen sich bereits erzeugte Clustering zu einem späteren Zeitpunkt, im Kontext der

beiden Ansichten, betrachten und analysieren.

5.5.2 Umsetzung der Multi-Heatmap Visualsierung

Das zweite Konzept welches zur Vergleichsanalyse von mehreren Clusterings vorgestellt

wurde, nennt sich Multi-Heatmap Visualisierung (Abschnitt 4.5 im Konzeptkapitel). Diese

basiert, wie auch die Multi-Dendrogramm Analyse, auf den Einträgen der Historie. In die

Visualisierung fließen dabei die Distanzmatrizen aller Einträge aus der Historie ein. Im Falle

von Abbildung 5.9 werden die Werte von vier Distanzmatrizen dargestellt. Jeder Box in der

Heatmap-Visualisierung steht für einen berechneten Distanzwert zwischen zwei Probanden.

Die Bezeichner der Probanden sind horizontal und vertikal angebracht. Sie erlauben dabei

festzustellen, um welche beiden Probanden es sich handelt. Entsprechend dem Distanzwert,

wird die Farbe der Box bestimmt. Liegt ein hoher Distanzwert vor, so ist der Rotton dunkler

(Ähnlichkeit geringer), als bei einem kleinen Distanzwert (Ähnlichkeit höher). Das Dendro-

gramm welches ebenfalls in die Heatmap-Visualisierung eingebaut ist, bezieht sich auf eine

der dargestellten Distanzmatrizen. Die Einträge dieser Distanzmatrix werden deshalb hell

umrandet.

Jede Box kann vom Benutzer mit der Maus selektiert werden. Entsprechend der Selektion wird

der Name des Distanzmaßes, der Distanzwert sowie deren beteiligte Probanden angezeigt. Diese

Elemente sind in Abbildung 5.9 oberhalb derMulti-Heatmap angeordnet.Wie ebenfalls zu sehen

ist, werden sogenannte Small-Multiples [Tuf90] der Slit-Scans angezeigt. Es werden aber nicht

die gesamten Slit-Scans angezeigt, sondern nur der Teilbereich, welcher für das entsprechende

Clustering ausgewählt wurde. Diese Small-Multiples ermöglichen den Rückbezug zur Slit-

Scan Ansicht, da die angezeigten Distanzwerte in den Kontext der Slit-Scan Visualisierung

gesetzt werden können. Man kann dies als Kopplung zwischen der Haupt- und Detail-Ansicht

ansehen.

49



5 Implementierung

Dynamic-Time-Warping

0.8

P9 P7

Abbildung 5.9: Die Multi-Heatmap Visualisierung dargestellt mit vier Distanzmatrizen (un-

ten) mit anklickbaren Box-Elementen. Entsprechend der ausgewählten Box,

werden Small-Multiples der Slit-Scans, Name des Distanzmaßes sowie der

Distanzwert angezeigt (oben).
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5.6 Weitere Funktionen

Im entwickelten Prototypen wurden noch weitere Funktionalitäten integriert, die in den

vorherigen Abschnitten nicht zur Sprache kamen. Grund dafür ist, dass es sich dabei lediglich

um Hilfs-Funktionalitäten handelt. Zur Vollständigkeit, werden diese im Folgenden jedoch

kurz erwähnt.

• Alle Einträge der Historie können mit einer ’Clear’-Funktionalität aus der Liste entfernt

werden. Dies ist insbesondere hilfreich, wenn der Benutzer einen anderen Datenbereich

analysieren möchte.

• Der Prototyp erlaubt Screenshots der beidenAnsichten zu erstellen, sodass die ermittelten

Ergebnisse in einem anderen Zusammenhang wiederverwendet werden können.

• Neben der Erzeugung von Screenshots, können die berechneten Distanzmatrizen aus

der Historie exportiert werden. Die Exportdatei liegt im Comma-Seperated-Values (CSV)

- Format vor. Dies ermöglicht beispielsweise eine weitere statistische Analyse der Dis-

tanzwerte mit der Programmiersprache R
5
.

5
https://www.r-project.org (Zuletzt überprüft am 28.10.2017.)
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6 Demonstration und Evaluation

In dem Folgenden Kapitel wird der entwickelte Prototyp (Kapitel 5) zur Evaluation der Distanz-

maße verwendet. Als Datensatz kommt der frei verfügbare Eye-Tracking Benchmark-Datensatz

von Kurzhals et al. [KBB+14] zum Einsatz. Das Ziel der Evaluation ist es herauszufinden, in-

wiefern die Ergebnisse der implementierten Maße, in Einklang zu der Slit-Scan-Visualisierung

stehen. Hierbei stellen sich zwei wesentliche Fragen. Einerseits wie ähnlich die Maße innerhalb

einer Kategorie sind. Andererseits wie es sich bei den Maßen unterschiedlicher Kategorien

verhält. Die Abschnitte 6.2 und 6.3 sollen diese Fragen beantworten. Die Diskussion und Inter-

pretation (Abschnitt 6.4) der ermittelten Ergebnisse, schließt dieses Kapitel ab. Bevor jedoch

auf all die genannten Punkte näher eingegangen wird, folgen zunächst Vorbereitungen zur

Vergleichsanalyse .

6.1 Vorbereitungen zur Vergleichsanalyse

Im Folgenden Abschnitt wird schematisch erläutert, wie die einzelnen Schritte der Evaluation

aussehen. In den späteren Abschnitten 6.2 und 6.3 werden diese Einzelschritte nicht mehr

im näheren erläutert. Auf Grundlage des entwickelten Prototypen, soll die Evaluation um

Methoden der statischen Inferenzanalyse erweitert werden. Es wird im Folgenden erläutert,

wie das auf Basis der Cluster-Ergebnisse sowie der Distanzwerte geschehen soll.

1. Der erste Schritt vor der eigentlichen Vergleichsanalyse, ist das Auffinden von Datenbe-

reichen im Datensatz. Hierfür kann einer der zu Verfügung stehenden Stimuli aus dem

Datensatz ausgewählt werden, um diesen zusammen mit den Eye-Tracking-Daten der

Probanden zu importieren (siehe Abschnitt 5.2 im Implementierungskapitel). Danach

kann die eigentliche Exploration nach geeigneten Datenbereichen stattfinden. Mithilfe

des Übersichts-Modus, welcher in Abschnitt 5.3.1 im Implementierungskapitel vorgestellt

wurde, kann beispielsweise ein solcher Datenbereich gefunden werden. Die Abbildung

6.1 zeigt den Prototypen im Übersichts-Modus. Der Zoom-Faktor wurde entsprechend

angepasst, um die gesamten Slit-Scans überblicken zu können.

2. Somit kann beispielsweise der in grüne markierte Datenbereich gefunden werden, wel-

cher dann im Auswahl-Modus mit den entsprechenden Bedienelementen ausgewählt

wird (Abbildung 6.1 unten). Wurde der Datenbereich von Interesse ausgewählt, so kann

dieser mit der Bee-Swarm-Visualisierung (Abschnitt 5.3.2) direkt auf Ebene der Gaze-

Punkte näher analysiert werden.
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Visuelle explorative Analyse

Datenbereich von Interesse gefunden

(1)

(2)

Berechnung der HACs
für alle Distanzmaße

(3)

Paarweise (cophentische) Korrelationswerte der HACs

(4)

Multi-Dendrogramm-Analyse

Statistische Analyse

Abbildung 6.1: Die zwei wesentlichen Schritte der Evaluation. Einerseits die visuelle ex-

plorative Analyse und andererseits die statistische-Analyse, welche auf den

Cluster-Ergebnissen sowie den Distanzwerten beruht.

3. Nachdem der Datenerbreich von Interesse gefunden wurde, kann die hierarchische

Cluster-Analyse stattfinden. Hierfür werden zunächst die Distanzmaße ausgewählt,

welche zur Vergleichsanalyse herangezogen werden sollen. Danach wird jedes dieser

Distanzmaße eine hierarchische Cluster-Analyse auf dem ausgewählten Datenbereich

durchgeführt. Die ermittelten Cluster-Ergebnisse werden in der Historie als Einträge

vermerkt (siehe Abschnitt 5.5 im Implementierungskapitel).

4. Wurden alle Cluster-Ergebnisse erzeugt, so erfolgt eine statistische Analyse zwischen

diesen. Die Multi-Dendrogramm-Analyse (Abschnitt 5.5.1 im Implementierungskapitel)

wird in diesem Fall genutzt, um alle paarweisen (cophentischen) Korrelationswerte

zwischen den HACs zu bestimmen. Diese können dann kompakt in einer Matrixform

dargestellt werden. In den folgenden Abschnitten wird diese Matrix als ’Korrelation der

HACs’ bezeichnet.

Um die Distanzwerte in die Analyse miteinzubeziehen, wäre die Verwendung der Multi-

Heatmap-Visualisierung (Abschnitt 5.5.2) denkbar. In den meisten Fällen der Evaluation

hat sie sich jedoch als zu wenig kompakt erwiesen, sodass ihre Darstellung im Rahmen

einer Evaluation zu umständlich ist. Um die Distanzwerte dennoch in die Evaluation

miteinzubeziehen, werden neben der HAC-Korrelationsmatrix, außerdem die Korrelatio-

nen zwischen den Distanzwerten ermittelt. Für jedes ermittelte Cluster-Ergebnis werden

deshalb die entsprechenden Distanzwerte in einer CSV-Datei zusammengeführt und

anschließend auf diesen eine Korrelationsanalyse durchgeführt. Dies geschieht mittels

eines R-Skripts, unter Verwendung des Rangkorrelationskoeffizienten nach Spearman

[Hen11].
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6.2 Evaluation innerhalb der Kategorien

In diesem Abschnitt werden zunächst die Maße innerhalb ihrer Kategorie (Scanpath, Trajekto-

rie, Bildähnlichkeiten) verglichen. Das Ziel dieser Evaluation ist festzustellen, wie sich die Maße

untereinander Verhalten. Hierbei wird bewusst noch kein Bezug zur Slit-Scan-Visualisierung

hergestellt. Es soll also nur das grundsätzliche Verhalten auf Ebene der Distanzwerte sowie

der Cluster-Ergebnisse untersucht werden. Die folgenden Resultate wurden mit drei Stimuli :

Car Pursuit (S1), Turning Car (S2) sowie Dialog (S3) aus dem Benchmark-Datensatz erzeugt.

Hierbei wurde stets über die gesamte Länge eine hierarchische Clusteringanalyse durchgeführt

(für S1 : 0:25 min, S2 : 0:28 min, S3 : 0:19 min). Somit entfällt der Schritt der visuellen explora-

tiven Analyse (Abschnitt 6.1). Es wurden jeweils die Eye-Tracking-Daten aller verfügbaren

Probanden (n = 25) in die Vergleichsanalyse miteinbezogen
1
Die Korrelationswerte zwischen

den einzelnen Maßen wurden dabei über die drei Datensätze gemittelt.

6.2.1 Evaluation zwischen Scanpath-Maßen

Unter den Scanpath-Maßen werden die Levenshtein-Distanz sowie der Needleman-Wunsch-

Algorithmus miteinander verglichen. Bei beiden Methoden wird zudem untersucht, inwiefern

die Integration der Fixationsdauern einen Einfluss auf das Ergebnis hat. Deshalb werden die

Zeichen der AOI-Strings entsprechend der Fixationsdauern repliziert (Temporal Binning). Die

Bin-Size wurde dabei anhand der Sampling-Frequenz des Eye-Trackers (etwa 60 Hz), auf 17

Millisekunden festgelegt.

Die Abbildung 6.2 zeigt die gemittelten Korrelationswerte zwischen den Distanzwerten, als

auch zwischen den HACs. Bei beiden ist zu sehen, dass das Temporal-Binning einen großen

Einfluss auf das Ergebnis hat. Die HAC-Korrelationen zwischen Needleman-Wunsch mit

Temporal-Binning und der Variante ohne Temporal-Binning sind vergleichsweise gering (auf

HACs : 0.577 , auf Distanzwerten : 0.31). Außerdem ist anzumerken, dass selbst unter den

Maßen, die nicht die Fixationsdauern miteinbeziehen, die Korrelation eher gering ausfallen.

Anders sieht dies bei den Maßen aus, die Temporal-Binning verwenden. Hier deuten die hohen

Korrelationswerte darauf hin, dass die Clustering-Ergebnisse nahezu identisch sind.

6.2.2 Evaluation zwischen Trajektorie-Maßen

Die in dieser Arbeit betrachteten Trajektorie-Maße sind einerseits Dynamic-Time-Warping

und anderseits die Frechet-Distanz. Für jedes dieser Maße wird zusätzlich betrachtet, welche

Unterschiede sich bezüglich der Wahl der Trajektorie-Repräsentation (Gaze-Punkte oder

Fixationen) ergeben.

1
Der Grund weshalb diese drei Stimuli ausgewählt wurden, ist deren vergleichsweise kurze Länge. Bei Stimuli

über eine Minute ist der Zeitaufwand zur Ermittlung der Ergebnisse zu hoch geworden.
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Abbildung 6.2: Gemittelte Korrelationswerte für Scanpath-Maße. Links die HAC-

Korrelationen. Rechts die HAC-Korrelationen. TB steht für Temporal-Binning.
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Abbildung 6.3: Gemittelte Korrelationswerte für Trajektorie-Maße. Links die Korrelationen

zwischen den Distanzwerten. Rechts die HAC-Korrelationen.

Die Abbildung 6.3 zeigt um Grunde, dass sich die Ergebnisse der Dynamic-Time-Warping

und der Frechet-Distanz nicht decken. Dies ist sowohl auf HAC- als auch auf Ebene der

Distanzwerte gut zu sehen. Vergleicht man dieselben Maße miteinander, so ergeben sich

teilweise auch Unterschiede, die auf die Auswahl der Repräsentation zurückzuführen sind. Dies

ist insbesondere bei der Frechet-Distanz zu beobachten, wo die Korrelationen zwischen den

HACs bei etwa 0.8 liegen. Hier erweist sich das Dynamic-Time-Warping Verfahren in gewisser

Weise robuster, da hier HAC-Korrelationen höher ausfallen (etwa bei 0.9). Noch deutlicher

jedoch der Unterschied bei den Distanzwerten zu beobachten.
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6.2.3 Evaluation zwischen Bild-Maßen

Evaluation zwischen Histogramm-Maßen

Im folgenden werden die Ergebnisse der Bhattacharyya-Distanz sowie der Chi-Square Methode

miteinander verglichen. Die Earth-Mover’s-Distanz musste aus der Evaluation ausgegliedert

werden, da unverhältnismäßig hohe Berechnungszeiten auftraten. Außerdem werden beide

Maße in drei unterschiedlichen Farbräumen : RGB, HSV sowie LAB getestet. Die Anzahl der

Intensitätsklassen für jeden Kanal wurde auf 30 festgelegt. Im Falle von HSV werden nur der

Farbton-Kanal (H) sowie der Sättigungskanal (S) in die Berechnung miteinbezogen. Im Falle

des LAB-Farbraums nur die Kanäle A und B.
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Abbildung 6.4: Gemittelte Korrelationswerte für Histogramm-Maße. Links die Korrelationen

zwischen den Distanzwerten. Rechts die HAC-Korrelationen.

Die Abbildung 6.4 zeigt die gemittelten Korrelationswerte für die HACs als auch für Dis-

tanzwerte. Betrachtet man die Korrelationswerte zwischen den HACs, so sind sie fast alle im

Bereich zwischen 0.76 und 0.86, was eine hohe Ähnlichkeit zwischen den erzeugten Clustering-
Ergebnissen andeutet. Eine Ausnahme bildet hier die Chi-Square Methode, unter Verwendung

des RGB-Farbraums. Hier sind die Korrelationswerte zu den anderen HACs geringer (alle etwa

bei 0.65). Dies ist ebenso auf Ebene der Distanzwerte zu sehen (auch etwa bei 0.65). Betrachtet
man die Maße die denselben Farbraum verwenden, so sind die höchsten Korrelationen unter

den Maßen zu beobachten, die den LAB-Farbraum verwenden. Mehr Varianzen sind hingegen

beim RGB-Farbraum zu beobachten, wo die HAC-Korrelationen nur bei circa 0.75 liegen.
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6 Demonstration und Evaluation

Evaluation zwischen Bildsequenz-Maßen

Unter den Bildsequenz-Maßen wurden die Squared-Differences Methode, das Korrelations-Maß

sowie das Kosinus-Maß vorgestellt.
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Abbildung 6.5: Gemittelte Korrelationswerte für Bildsequenz-Maße. Links die Korrelationen

zwischen den Distanzwerten. Rechts die HAC-Korrelationen.

Bei den Bildsequenz-Maßen fallen die Ergebnisse weit homogener aus, wie an Abbildung 6.5

gut zu erkennen ist. Betrachtet man die Korrelationen zwischen den Distanzwerten, so deuten

sich hier perfekte Übereinstimmungen an. Dasselbe lässt sich bei den Korrelationen zwischen

den HACs beobachten.
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6.3 Evaluation zwischen Kategorien

Referenz-Gruppierung
nach Slit-Scans

HACs aus Maßen 
verschiedener Kategorien=

?

ISTSOLL

Abbildung 6.6: Veranschaulichung zur Herangehensweise, wie die Eignung der Maße in

Bezug auf die Slit-Scan-Visualisierung festgestellt werden kann.

Nachdem die Maße untereinander in ihrer jeweiligen Kategorie miteinander verglichen wurden,

folgt nun eine Evaluation zwischen Maßen unterschiedlicher Art. In diesem Zusammenhang

ist ein Vergleich zwischen allen Maßen jedoch nicht sinnvoll. Grund dafür ist der hohe Evalua-

tionsaufwand, welcher damit verbunden wäre. Aus diesem Grund wird aus jeder Kategorie nur

ein Maß für die nachfolgenden Evaluation betrachtet. Eine Ausnahme bilden hier die Bild-Maße.

In diesem Fall wird jeweils ein Bildsequenz-Maß sowie ein Histogramm-Maß ausgewählt. Die

betrachteten vier Maße sind im Folgenden aufgeführt.

• Levenshtein-Distanz mit Temporal-Binning.

• Dynamic-Time-Warping auf Gaze-Punkten.

• Bhattacharyya-Distanz auf dem HSV-Farbraum (quantisiert in 30 Intensitätsklassen).

• Korrelationsmaß auf Bildsequenzen.

Diese haben sich experimentell als besonders vielversprechend, bezüglich der visuellen Interpre-

tation erwiesen. In diesem Abschnitt werden zudem die Ergebnisse der beteiligten Distanzmaße

in den Kontext der Slit-Scan-Visualisierung gesetzt. Dies geschieht an vier unterschiedlichen

Szenarien, die aus den Benchmark-Datensätzen ausgewählt wurden. Die Herangehensweise

für diese Aufgabe ist in Abbildung 6.6 dargestellt. Für jedes dieser Szenarien wird eine Refe-

renzgruppierung präsentiert, die über die Slit-Scan-Visualisierung ermittelt wurde. Danach

wird überprüft, wie gut die Maße diese Gruppierung nachbilden können. Damit soll letztlich

die Frage beantwortet werden, inwiefern sich die Ergebnisse der Maße, mit der visuellen

Interpretation, welche über die Slit-Scans gewonnen wurde, decken.

6.3.1 Beschreibung der Szenarien

Eine gängige Herangehensweise bei dem Vergleich von Blickverhalten ist, die Blicksequenzen

der Probanden über den gesamten Zeitraum (des Stimulus) auf Ähnlichkeiten zu analysieren.

Somit kann ermittelt werden, ob insgesamt Ähnlichkeiten, bzw. Unterschiede im Blickverhalten

vorhanden sind. Das Szenario 1 soll sich genau dieser Aufgabe widmen.
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6 Demonstration und Evaluation

Berechnet man die Ähnlichkeit über den gesamten Zeitraum, so ergibt sich daraus genau

ein finaler Wert. Die Aussagekraft dieses Wertes lässt sich jedoch anzweifeln, da damit nicht

feststellbar ist, wo die tatsächlichen Unterschiede (bzw. Ähnlichkeiten) zwischen den Blickver-

halten existieren. Eine wichtige Aufgabe einer Visualisierung ist es, genau solche Bereiche zu

identifizieren [KW16]. Die Slit-Scan-Visualisierung eignet sich für diese Aufgabe besonders gut.

Eine Ermittlung dieser Sequenzen ist mittels der explorativen Analyse besonders einfach (siehe

Abschnitt 6.1). Insofern ist es interessant, auch solche ausgewählten Bereiche in der Evaluation

zu betrachten. Die Szenarien zwei bis vier sollen deshalb die Frage beantworten, inwiefern sich

die visuell ermittelten Ähnlichkeiten, über die Resultate der Distanzmaße bestätigen lassen.

Im Folgenden wird die Auswahl dieser Bereiche näher begründet.

Szenario 2 betrachtet ein Bereich, wo in den Slit-Scans deutlich zwei Gruppen von unter-

schiedlichen Blickverhalten identifiziert werden können. Hierbei ist es interessant fest-

zustellen, ob sich das offensichtlich verschiedene Blickverhalten auch mittels der Ähn-

lichkeitsmaße bestätigen lässt.

Szenario 3 betrachtet ein Bereich, indem zwei Objekte im Stimulus fokussiert werden, die

sehr ähnlich zueinander aussehen. Hier soll untersucht werden, ob auch Bildmaße die

geringfügigen visuellen Unterschiede ermitteln können.

Szenario 4 betrachtet ein Bereich, indem sich das Blickverhalten der Probanden innerhalb

eines Areas-Of-Interest abspielt. Als punkt-basierte Visualisierungstechnik, können

die Slit-Scans jedoch diese Unterschiede gut erfassen. Es wird deshalb untersucht, ob

bestimmte Maße in diesem Zusammenhang, keine gute Eignung bezüglich der visuellen

Interpretation aufweisen.
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6.3.2 Szenario 1

In diesem Szenario verfolgen die Probanden die Fahrt eines roten Autos, welches auf einem

Parkplatz eine Wendung durchführt. Das Szenario basiert auf dem Stimulus Turning-Car (S2)

des Benchmark-Datensatzes. Es wird dabei der gesamte Datenbereich betrachtet. In diesem

Stimulus gibt es nur ein Area-Of-Interest, nämlich das rote Auto (siehe Abbildung 6.7). In diesem

Zusammenhang ist es von Interesse, über welchen Zeitraum die Probanden das rote Auto

fokussieren. Tatsächlich lassen sich zwei Gruppen vom Probanden ausmachen, deren Slit-Scans

in Abbildung 6.7 zu sehen sind. Diese Gruppen werden im Folgenden näher beschrieben.

P18

P14

P19

P4

Gruppe 1 Gruppe 2

P3

P25

P17

P8

Stimulus - Turning-Car

Abbildung 6.7: Szenario 1 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit

eingezeichnetem AOI.

Gruppe 1 Besteht aus den Probanden P4, P18, P14, P19 sowie P17. Sie fokussieren kontinu-

ierlich das fahrende rote Auto. Es gibt insgesamt nur sehr wenige Zeitpunkte, wo der

Fokus auf das Auto verloren geht.

Gruppe 2 Besteht aus den Probanden P3, P25 und P8. Sie Schauen im Vergleich zur Gruppe

1 weitaus weniger kontinuierlich auf das rote Auto. Dies ist in den Slit-Scans relativ

gut an den unregelmäßig auftretenden gräulichen Bereichen zu sehen. Hier schauen die

Probanden offenbar auf den Asphalt und nicht auf das Auto.
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Abbildung 6.8: Szenario 1 - Dendrogramme zu den erzeugten HACs erstellt mit dem Prototy-

pen.

Ergebnisse

Die Abbildung 6.8 zeigt die Ergebnisse der Clusterings unter Verwendung der vier Distanzmaße.

Es ist deutlich zu sehen, dass Dynamic-Time-Warping, die Bhattacharyya-Distanz sowie die

Levenshtein-Distanz die Referenz-Gruppierungen einwandfrei ermitteln können. Zudem sind

die erzeugten Clusterings sehr ähnlich zueinander, wie die Korrelationen zwischen den HACs

zeigen (siehe Abbildung 6.9). Sie liegen für diese drei Maße im Bereich zwischen 0.89 und

0.94. Betrachtet man jedoch die Korrelationswerte zwischen den Distanzwerten, so zeigt
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Abbildung 6.9: Szenario 1 - Links die Korrelationen zwischen den Distanzwerten. Rechts die

HAC-Korrelationen.

sich etwas anderes. Es sind lediglich hohe Korrelationen (0.77) zwischen der Dynamic-Time-

Warping Methode und der Levenshtein-Distanz zu erkennen. Die anderen Korrelationswerte

sind hier deutlich geringer (zum Beispiel nur 0.34 zwischen dem Korrelations-Maß und der

Levenshtein-Distanz).

6.3.3 Szenario 2

Dieses Szenario basiert auf dem Stimulus Dialog (S3) vom Benchmark-Datensatz, in welchem

zwei Personen einen Dialog führen. Der verwendete Datenbereich liegt zwischen den Gaze-

Punkten 800 und 1011. Die Probanden fokussieren in der Regel jene Person, die gerade am

Sprechen ist. Da die beiden Gesichter in den Slit-Scans schwer zu unterscheiden sind, ist in

diesem Fall das Spektrogramm sehr hilfreich. Es erlaubt festzustellen, ob der Proband gerade

die linke Person betrachtet (Spektrogramm ist rot), oder die rechte Person (Spektrogramm

ist blau). In Abbildung 6.10 ist ein einzelnes Bild des Stimulus zu sehen, in dem die AOIs als

grüne Umrandungen angedeutet sind. Links in Abbildung 6.7 ist die Referenz-Gruppierung

angegeben, welche über die Slit-Scan-Visualisierung ermittelt wurde. Diese Gruppierung wird

im folgenden näher beschrieben.

Gruppe 1 Besteht aus P4, P12, P8, P11 und P5. Diese schauen auf die linke Person und danach

auf die rechte Person. Bei der rechten Person schauen die Probanden aber vorwiegend

auf den Aufdruck des T-Shirts, was in den Slit-Scans auch gut zu sehen ist. Der Proband

P5 kann innerhalb diese Gruppe als Ausreißer angesehen werden, da er früher auf den

Aufdruck des T-Shirts schaut.

Gruppe 2 Besteht aus P2, P18, P14 und P23. Sie schauen zunächst auf die linke Person, dann

auf die rechte Person und schließlich wieder auf die linke Person. Das Spektrogramm

63



6 Demonstration und Evaluation

P2

P14

P18

P23

Gruppe 2 Stimulus - Dialog

P4

P8

P12

P11

Gruppe 1

P5

Abbildung 6.10: Szenario 2 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit

eingezeichneten AOIs.

zeigt diesen Verlauf deutlich. Auch in dieser Gruppe kann ein Proband als Ausreißer

gesehen werden. In diesem Fall handelt es sich um P2. Dieser schaut vorwiegend auf die

rechte Person, wie sich anhand des Spektrogramms leicht erkennen lässt.

Ergebnisse

Die Ergebnisse der ermittelten HACs sind in Abbildung 6.11 für alle vier Maße zu sehen. Alle

erzeugten Clusterings zeigen eine relativ gute Übereinstimmung zur erwarteten Referenz-

Gruppierung. Einzig die Dynamic-Time-Warping Methode zeigt einige fehlerhafte Zuordnun-

gen. So werden P5 und P11 in Gruppe 2 eingeordnet. Wie gut zu sehen ist, sind das Clustering

zwischen der Levenshtein-Distanz und dem Korrelationsmaß sehr ähnlich. Dies lässt sich auch

aus den Korrelation der HACs in Abbildung 6.12 gut ablesen. Sie beträgt zwischen diesen

beiden Maßen etwa 0.92. Bei den Distanzwerten ist dies jedoch nicht zu beobachten. Hier

sind beispielsweise die Korrelationen zwischen der Dynamic-Time-Warping Methode und dem

Korrelations-Maß höher. Beide haben jedoch gemeinsam, dass der Proband P5 fälschlicherwei-

se in Gruppe 2 eingeordnet wird. Dies konnte auch bereits bei der Dynamic-Time-Warping

Methode beobachtet werden. Bei der Bhattacharyya-Distanz wird hingegen Proband P18 falsch

in Gruppe 1 eingeordnet. Die Ausreißer P2 und P5 werden hingegen der korrekten Gruppe

zugeordnet. Aufgrund dieser Unterschiede in den Clusterings, sind die HAC-Korrelation zwi-

schen der Bhattacharyya-Distanz und den anderen drei Maßen nur im Bereich zwischen 0.45
und 0.6.
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Abbildung 6.11: Szenario 2 - Dendrogramme zu den erzeugten HACs erstellt mit dem Proto-

typen.
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Abbildung 6.12: Szenario 2 - Links die Korrelationen zwischen den Distanzwerten. Rechts

die HAC-Korrelationen.

6.3.4 Szenario 3

Dieses Szenario zeigt, wie zwei Akteure das Kartenspiel ’Memory’ spielen. Es basiert auf

dem Stimulus Memory (S5) des Benchmark-Datensatzes. Die verwendete Datenbereich liegt

zwischen den Gaze-Punkten 2003 und 2231. Bei diesem Stimulus stellt sich die Frage, welche

Karten die Probanden fokussieren. Aus diesem Grund ist jede der 16 Karten als ein eigenständi-

ges Area-Of-Interest definiert. In Abbildung 6.13 sind zur Einfachheit halber nur die ersten vier

AOIs als grüne Umrandungen annotiert. Links in Abbildung 6.10 ist die Referenz-Gruppierung

angegeben, die über die Slit-Scan-Visualisierung ermittelt wurde. Diese Gruppierung wird im

folgenden näher beschrieben.

Gruppe 1 Besteht aus den Probanden P5, P23, P19, P8 und P25. Diese schauen auf die eine

aufdeckte Karte (A) und das relativ kontinuierlich, ohne auf eine anderen Karte zu

schauen.

Gruppe 2 Besteht aus den Probanden P22, P14 und P24. Sie schauen zum Teil auch auf die

aufgedeckte Karte A. Zwischendurch fokussieren sie jedoch auch die andere aufgedeckte

Karte (B), welche genauso aussieht wie die Karte (A). Dieser Blickverlauf ist in den

Slit-Scans gut als Sprünge zwischen den beiden Karten A und B zu sehen.

Ergebnisse

Wie in Abbildung 6.14 zu sehen ist, können die Levenshtein-Distanz, Dynamic-Time-Warping

als auch das Korrelationsmaß klar die Referenz-Gruppen als solche identifizieren. Hier gibt es

bezüglich der Clusterings nur geringfügige Unterschiede. Die Korrelationswerte (sowohl bei

den Distanzwerten, als auch auf den HACs) in Abbildung 6.15 bestätigen dies. Diese liegen alle
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6.3 Evaluation zwischen Kategorien
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Gruppe 1 Stimulus - Memory

Abbildung 6.13: Szenario 3 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit

eingezeichneten AOIs.

im Bereich von 0.8, was als hoch angesehenwerden kann. Vor allem zwischen demKorrelations-

Maß und der Levenshtein-Distanz ist eine hohe Ähnlichkeit in den Distanzwerte zu beobachten.

Anders sieht es jedoch bei der Bhattacharyya-Distanz aus, wo das Clustering die beiden

Gruppen nicht identifizieren kann. Die Probanden P14 und P24 werden zwar korrekterweise

zusammengeführt, jedoch wird auch fälschlicherweise P22 mit P23 zusammengeführt. Die

Korrelationswerte zwischen den HACS (etwa alle bei 0, 4) machen die Unterschiede ebenfalls

nochmal deutlich. Auf Ebene der Distanzwerte wird der Unterschied noch deutlicher. Hier

sind die entsprechenden Korrelationswerte teilweise kleiner als 0.1.
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Correlation

P19

P5

P23

P8

P25

P22

P14

P24

Bhatt. [HSV]

P25

P5

P8

P19

P14

P24

P22

P23

DTW [Gaze]

P24

P14

P22

P5

P25

P8

P19

P23

Levenshtein

P8

P25

P19

P5

P23

P22

P14

P24

Abbildung 6.14: Szenario 3 - Dendrogramme zu den erzeugten HACs erstellt mit dem Proto-

typen.
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Abbildung 6.15: Szenario 3 - Links die Korrelationen zwischen den Distanzwerten. Rechts

die HAC-Korrelationen.

6.3.5 Szenario 4

In diesem Szenario spielen zwei Akteure das Kartenspiel ’UNO’. Es basiert ebenfalls auf dem

Benchmark-Datensatz. Hier wurde jedoch der Stimulus Uno (S6) auf den Gaze-Punkten zwi-

schen 2102 bis 2392 verwendet. Dabei existieren verschiedene Fokuspunkte, die als Areas-Of-

Interests im Stimulus markiert sind. Darunter die Karten-Blätter der beiden Spieler. Außerdem

die beiden mittleren Kartenstapel. Links in Abbildung 6.16 ist die Referenz-Gruppierung ange-

geben, welche über die Slit-Scan-Visualisierung ermittelt wurde. Besonders an den Probanden

aller Gruppen ist, dass sie alle auf das Kartenblatt vom rechten Spieler schauen. Die entspre-

chenden Spektrogramme zeigen dies deutlich (da sie alle weitgehend blau sind). Dennoch gibt

es zwischen diesen Probanden auch Unterschiede, die sich ebenfalls aus den Slit-Scans gut

ablesen lassen. Die folgende Beschreibung der Referenz-Gruppierung soll dies verdeutlichen.

P8

P12

P14

P3

P19

P22

Gruppe 1 Gruppe 2

P15

P25

Gruppe 3 Stimulus - UNO

Abbildung 6.16: Szenario 4 - Referenzgruppierung und zeitlicher Ausschnitt des Stimulus mit

eingezeichneten AOIs.
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6 Demonstration und Evaluation

Gruppe 1 Bestehend aus den Probanden P3, P22 und P19. Diese schauen durchgehend auf die

blaue Karte vom Spieler rechts. Die entsprechenden Slit-Scans in Abbildung 6.16 zeigen

dies deutlich.

Gruppe 2 Bestehend aus den Probanden P12 und P14. Sie schauen vorwiegend auf die grüne

Karte vom Spieler rechts.

Gruppe 3 Bestehend aus den Probanden P25, P15 und P8. Sie schauen auf mehrere verschie-

dene Karten des rechten Spieler. Der Proband P8 kann als Ausreißer gesehen werden, da

er vor allem auf die gelbe Karte fokussiert ist.

Ergebnisse

Die Abbildung 6.17 zeigt die Clustering-Ergebnisse der beteiligten Maße. Die Bhattacharyya-

Distanz, Dynamic-Time-Warping sowie das Korrelation-Maß können die drei Referenz-

Gruppen gut erkennen. Die Clustering-Ergebnisse sind auch sehr ähnlich zueinander. Die

Korrelationswerte zwischen den dazugehörigen HACs, wie in Abbildung 6.17 gut zu sehen ist,

sind entsprechend hoch und liegen im Bereich von 0.9 und 1.0. Ähnliches ist auf der Ebene
der Distanzwerte zu beobachten. Außerdem wird in diesem Clustering die Abgrenzung von

Gruppe 1 (Probanden die auf die blaue Karte schauen) zu den beiden anderen Gruppen 2 und 3

deutlich. Die Gruppen 2 und 3 werden hier zunächst zusammengeführt, bevor sie mit Gruppe 1

zusammengeführt werden. Dennoch gibt es auch Probleme bei der Zuordnung der Probanden

zu den Referenz-Gruppen. So gelingt es beispielsweise der Dynamic-Time-Warping Methode

nicht, die Ähnlichkeit P14 und P12 korrekt zu erkennen. Dasselbe ist bei dem Korrelation-Maß

zu beobachten. Die Probanden P15 und P25 der Gruppe 3 werden hingegen korrekt zugeord-

net. Abzugrenzen von diesen drei Clusterings ist das Resultat der Levenshtein-Distanz. Sie

verhält sich, wie man an den Korrelationswerten gut erkennen kann, in diesem Szenario ganz

anders. Betrachtet man das Clustering, so fällt auf, das die Gruppen 2 und 3 nicht eindeutig

identifiziert werden können. Außerdem zeigt das Clustering keine klare Abgrenzung zwischen

den Probanden der Gruppe 1 (P22, P3, P19) und den anderen Probanden.
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Abbildung 6.17: Szenario 4 - Dendrogramme zu den erzeugten HACs erstellt mit dem Proto-

typen.
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Abbildung 6.18: Szenario 4 - Links die Korrelationen zwischen den Distanzwerten. Rechts

die HAC-Korrelationen.

6.4 Diskussion und Interpretation der Ergebnisse

Betrachtet man die Ergebnisse aus Abschnitt 6.3, so ist zunächst zu erwähnen, dass repräsen-

tative Aussagen anhand von nur vier Szenarien schwer getroffen werden können. Dennoch

lassen sich auf Grundlage der ermittelten Ergebnisse, Tendenzen ziehen. Betrachtet man die

Szenarien 1, 2 und 3 so kann deutlich beobachtet werden, dass die Ergebnisse zwischen der

Levenshtein-Distanz und den Trajektorie- und Bildmaßen oft in guter Übereinstimmung zur

visuellen Interpretation stehen. Insofern ist zu anzumerken, dass anhand der vorliegenden

Realbeispiele eine gute Eignung dieser Maße im Kontext der Slit-Scan-Visualisierung anzuneh-

men ist. Vor allem sind dabei die Levenshtein-Distanz sowie die Bhattacharyya-Distanz zu

erwähnen, da sie die Referenzgruppierungen oft korrekt wiedergeben konnten. Insbesondere

bei den ersten beiden Szenarien wurde dies beobachtet. Aber auch sie haben Schwächen,

die sich im Rahmen der Evaluation angedeutet haben. So konnte in Szenario 3 beobachtet

werden, dass die Bhattacharyya-Distanz offenbar Schwierigkeiten bei der Unterscheidung

von ähnlich aussehenden Elementen im Stimulus hatte. Es konnte jedoch auch beobachtet

werden, dass im selben Szenario das Bildsequenz-Maß (Correlation) hier offenbar weniger

Probleme hatte. So lässt sich daraus nicht automatisch folgern, dass Bildmaße in einem solchen

Szenario schlechter abschneiden müssen. Es ist jedoch zu vermuten, dass Histogramm und

Maße auf Bildsequenzen durchaus unterschiedliches Verhalten aufweisen. Betrachtet man

Szenario 4, so konnte beobachtet werden, dass die Levenshtein-Distanz Probleme hatte, die

Referenzgruppierungen korrekt wiederzugeben. Die Vermutung ist, dass Scanpath-Maße unter

bestimmten Umständen, keine besonders gute Eignung in Bezug auf die visuelle Interpre-

tation aufweisen. Dies ist insbesondere bei punkt-basierten Visualisierungstechniken (wie

der Slitscan-Visualisierung) anzunehmen, vor allem wenn die Unterteilung des Stimulus in

Areas-Of-Interests zu grobgranular ausfällt. In solchen Fällen werden zwar Varianzen im

Blickverhalten durch die punkt-basierte Visualisierungstechnik visuell wiedergegeben, aber
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6.4 Diskussion und Interpretation der Ergebnisse

nicht von AOI-basierten Scanpath-Maßen erkannt. Hier können nicht-AOI-basierte Verfahren,

wie die Bhattacharyya-Distanz, das Korrelations-Maß, oder Dynamic-Time-Warping deutlich

bessere Ergebnisse liefern.

Es stellt sich natürlich die Frage, wie gut die Eignung jener Maße zur visuellen Interpretation

ist, die nicht näher im Abschnitt 6.3 untersucht wurden. Auf Grundlage der Resultate aus

dem Abschnitt 6.2 können zumindest einige Vermutungen angestellt werden. So ist davon

auszugehen, dass der Needleman-Wunsch-Algorithmus mit Temporal-Binning die ähnlichen

Ergebnisse liefern wird, wie die Levenshtein-Distanz mit Temporal-Binning. Anders ist dies

unter der Missachtung der Fixationsdauern (als ohne Temporal-Binning) zu erwarten. Die

Korrelationswerte haben deutlich ergeben, dass die Fixationsdauern einen großen Einfluss auf

die Cluster-Ergebnisse haben. Insofern stellt sich die Frage, ob ohne Temporal-Binning, von

einer schlechteren Eignung bezüglich der visuellen Interpretation auszugehen ist. Betrachtet

man die Histogramm-Maße, so ist davon auszugehen, dass keine großen Unterschiede zwi-

schen der Bhattacharyya-Distanz und der Chi-Square Methode existieren. Bei der Wahl des

Farbraums sind zwar ähnliche Ergebnisse beobachtet worden, jedoch waren sie nicht immer

in vollständiger Übereinstimmung zueinander. Die Farbraumauswahl hat offenbar einen nicht

zu vernachlässigenden Einfluss auf die Resultate des Clusterings. Diese Tatsache scheint im

Kontext des Histogramm-Vergleichs nicht ungewöhnlich zu sein. So haben beispielsweise

Chiang et al. [CTH06] dies ebenso zwischen den Farbräumen HSV, RGB und YUV feststellen

können. Insbesondere bei den Bildsequenz-Maßen konnte gezeigt werden, dass hier die Wahl

des Maßes keine besondere Auswirkung auf das Ergebnis hat. Somit ist davon auszugehen,

dass die Squared-Difference-Methode und das Kosinus-Maß sich in den vier vorgestellten

Szenarien, ähnlich wie das Korrelations-Maß verhalten werden. Bei den Trajektorie-Maßen

(Dynamic-Time-Warping und Frechet-Distanz) kann am ehesten davon ausgegangen werden,

dass sehr unterschiedliche Ergebnisse zu erwarten sind. Selbst bei der Wahl der Repräsenta-

tion (Fixationen oder Gaze-Punkte), wurden unterschiedliche Ergebnisse festgestellt. Bei all

den erkannten Unterschieden, ist es letztlich jedoch schwer, die genauen Gründe für diese

Umstände ausfindig zu machen. Hierfür wäre eine tiefere gehende Analyse notwendig.
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7 Zusammenfassung und Ausblick

Dieses Kapitel fasst die in dieser Arbeit behandelten Inhalte kurz zusammen. Danach wird

ein Ausblick gegeben, wie verschiedene Aspekte des Konzepts sowie der Evaluation sinnvoll

erweitert werden können.

Zusammenfassung

Das Ziel dieser Bachelorarbeit bestand in der Erweiterung der Slit-Scan-Visualisierungstechnik,

um die Möglichkeit das Blickverhalten mehrerer Probanden berechnen und analysieren zu

können. Hierfür wurden Ähnlichkeitsmaße basierend auf Trajektorien-, Scanpaths- und Bild-

ähnlichkeiten implementiert, die eine objektive Analyse des Blickverhaltens zwischen unter-

schiedlichen Probanden ermöglichen. Das in dieser Arbeit entwickelte Konzept erlaubt die

berechneten Ähnlichkeiten zwischen den Probanden in den Kontext der Visualisierung zu

setzen und die Ergebnisse unterschiedlicher Ähnlichkeitsmaße miteinander zu vergleichen.

Hierfür wurden zwei visuelle Erweiterungen: die Multi-Dendrogramm-Analyse sowie die

Multi-Heatmap-Visualisierung vorgestellt, die dies auf interaktiver Ebene ermöglichen. Das

Konzept der hierarchischen Clusteranalyse stellt dabei die Grundlage dieser Techniken dar.

Die Implementierung der genannten Konzepte wurde in Form eines Prototypen umgesetzt,

welcher für die Evaluation der implementierten Ähnlichkeitsmaße verwendet wurde. Diese

wurden dabei auf zwei Arten miteinander verglichen. Zunächst fand eine Untersuchung unter

den Ähnlichkeitsmaßen derselben Kategorie (Trajektorie, Scanpath- und Bildähnlichkeiten)

statt. Danach wurde ein Ähnlichkeitsmaß pro Kategorie ausgewählt, um diese untereinander,

im Kontext der Slit-Visualisierung, auf ihre Eignung bezüglich der visuellen Interpretation zu

testen. Zum Schluss folgte eine Diskussion sowie Interpretation der ermittelten Ergebnisse.

Die Ergebnisse zeigen, dass sich die Resultate der betrachteten Ähnlichkeitsmaße in vielen

Fällen mit der visuellen Interpretation vertragen. Die betrachteten Szenarien deuten jedoch

auch auf potenzielle Schwächen einiger Ähnlichkeitsmaße hin. Außerdem sind mit nicht zu

vernachlässigenden Varianzen in den Resultaten der Ähnlichkeitsmaße zu rechnen, welche

auf die Auswahl der Repräsentationen zurückzuführen sind.
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7 Zusammenfassung und Ausblick

Ausblick

Im Folgenden wird erläutert, an welchen Punkten dieser Arbeit, Verbesserungen sowie Erwei-

terungen denkbar sind.

Ausweitung der Evaluation

Das Evaluationskapitel hat die Eignung der verschiedenen Ähnlichkeitsmaße in Bezug auf die

visuelle Interpretation getestet. Dies geschah jedoch nur anhand vier ausgewählten (Real-)

Szenarien. An dieser Stelle ist es sinnvoll die Evaluation auf mehr Szenarien auszuweiten, um

repräsentative und sichere Ergebnisse liefern zu können. Hierfür wäre es sinnvoll, für diese

Aufgabe zugeschnittene Eye-Tracking-Daten aufzunehmen.

Erweiterung der Slit-Scan Visualisierung

Um das Problem des Überblicks zu bewältigen, wurde der klassische Ansatz des ’Zoomings’

verwendet (Abschnitt 4.2.2 im Konzeptkapitel). In vielen Fällen erweist sich dieser als sehr

hilfreich, jedoch ist der Detail-Verlust mitunter sehr hoch. In diesem Zusammenhang wäre

es interessant, ob der ebenfalls betrachtete Ansatz der Mini-Map, einen besseren Überblick

erlaubt.

Es wurde auch ein anderer Ansatz zur besseren Skalierung nach der Datensatzlänge, auf

Grundlage von Bildähnlichkeiten vorgestellt (Abschnitt 4.2.2 im Konzeptkapitel). Hier stellt

sich die Frage, wie trotz der Zusammenführung ähnlicher Slits, die Information der Dauer

erhalten bleiben kann. Unter der Voraussetzung, dass dieses Problem gelöst wird, wäre die

Umsetzung dieses Ansatzes ebenfalls vielversprechend.

Erweiterung des Prototypen um die statistische Analyse

Im Rahmen der Evaluation wurden neben dem entwickelten Prototypen, außerdem statistische

Methoden (wie die Korrelationsanalyse) verwendet. Diese wurde aber extern mithilfe eines R-

Skripts durchgeführt . Hier wäre es sinnvoller, statistische Methoden direkt in den Prototypen

zu integrieren, sodass die Anwendung für diese Aufgabe nicht verlassen werden muss.
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Erweiterung der Multi-Heatmap-Visualisierung

Die Multi-Heatmap-Visualisierung ist vor allem für die Darstellung von mehreren Distanzma-

trizen geeignet. Jedoch skaliert sie nur unzureichend über die Anzahl der Elemente, was die

direkte Analyse der Distanzwerte erschwert. Somit hat sie sich als nur eingeschränkt nützlich

erwiesen. An dieser Stelle wäre es denkbar, Filterkonzepte in diese Visualisierung zu integrie-

ren, sodass weniger Distanzwerte gleichzeitig darstellt werden müssen. Beispielsweise könnten

nur jene Werte angezeigt werden, welche einen vom Benutzer festgelegten Schwellenwert

über- oder unterschreiten.
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