
Institut für Parallele und Verteilte Systeme

Universität Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Ein Testwerkzeug für das
Internet der Dinge

Daniel Krüger

Studiengang: Informatik

Prüfer/in: PD Dr. rer. nat. habil. Holger Schwarz

Betreuer/in: Dipl.-Inf. Pascal Hirmer,

Ana Cristina Franco da Silva, M.Sc.

Beginn am: 8. Mai 2017

Beendet am: 8. November 2017

CR-Nummer: C.3, C.4, D.1.3, D.2.3, D.3.3, D.4.1, D.4.7,

H.5.2, H.5.3

Kurzfassung

Wegen der stetig fallenden Preise für Hardware sind in der heutigen Zeit immer mehr

Geräte miteinander vernetzt. Dabei kommunizieren Sensoren, Aktoren und Steuergeräte

miteinander. Diesen Wandel nennt man das Internet der Dinge (IoT). Ein Ziel des Internet

der Dinge ist es, Situationen automatisch zu erkennen und zu steuern. Dies kann durch

sogenannte Complex Event Processing (CEP)-Systemen ermöglicht werden. Diese lesen

Datenströme ein und erkennen vorher definierte Muster, die Situationen.

Das Testen von IoT-Umgebungen ist jedoch teuer, da Hardware beschafft werden muss.

Deswegen ist die Simulation von IoT-Umgebungen erstrebenswert. In dieser Arbeit wird

ein web-basiertes Werkzeug vorgestellt, welches die Simulation von Sensoren ermöglicht.

Es ist möglich, mehrere Sensoren mit unterschiedlichen Datentypen, Startwerten und

Abweichungen zu simulieren.

Ein weiteres, im Rahmen dieser Arbeit behandeltes, Problem ist, dass noch keine Bench-

marks für CEP-Systeme existieren. Für darauf aufbauende Arbeiten wird hier untersucht,

wie eine Datengenerierung für solche Benchmarks umgesetzt werden kann und welche

Anforderungen an die Benchmarks gestellt werden.

3

Inhaltsverzeichnis

1 Motivation 13

2 Grundlagen 15
2.1 Internet der Dinge . 15

2.2 Echtzeitprogrammierung . 16

2.3 Benchmarking . 16

3 Verwandte Arbeiten 17
3.1 Telit IoT Random Number Generator Action Block 17

3.2 IOTSim: A simulator for analysing IoT applications 17

3.3 SimpleIoTSimulator . 18

3.4 DPWSim . 19

3.5 icclab IoT Simulator . 19

3.6 Netzwerksimulatoren . 19

3.7 Streaming Engines . 21

4 Datengenerierung für Simulation 23
4.1 Systemübersicht und Implementierung 23

4.2 Benutzerschnittstelle . 24

4.3 Backend . 27

5 Datengenerierung zum Benchmarking von CEP-Systemen 31
5.1 Erste Implementierung in Java . 31

5.2 Implementierungen in C . 32

5.3 Timer, Monitor und Threads in Java . 35

5.4 Esper und Java . 37

5.5 Timer, Monitor und Threads in Echtzeit-Java 37

5.6 Threads mit integrierten Timern in Echtzeit-Java 38

6 Evaluation 39
6.1 Implementierung in C . 39

6.2 Timer, Monitor und Threads in Java . 41

6.3 Esper und Java . 45

6.4 Timer, Monitor und Threads in Echtzeit-Java 49

6.5 Threads mit integrierten Timern in Echtzeit-Java 50

6.6 Diskussion . 52

5

7 Zusammenfassung und Ausblick 55

Literaturverzeichnis 57

6

Abbildungsverzeichnis

4.1 Zustandsdiagramm des Simulationswerkzeuges 24

4.2 Frontend des Simulationswerkzeuges . 26

4.3 Aktivitätsdiagramm des Simulationswerkzeuges 28

5.1 Aktivitätsdiagramm zum Unterkapitel 5.3 36

6.1 Kumulative Standardabweichung der Latenzen der C-Implementierung . 40

6.2 Median der Latenzen der C-Implementierung bei 1 Millisekunde Intervall 40

6.3 Kumulative Latenzen der Timer-Monitor-Implementierung in Java 41

6.4 Kumulative Standardabweichungen der Timer-Monitor-Implementierung

in Java . 42

6.5 Medianlatenzen der Timer-Monitor-Implementierung in Java bei Intervall

von 100 Millisekunden . 42

6.6 kumulierte Latenzen der Timer-Monitor-Implementierung in Java auf

Echtzeit-Betriebssystemkern . 44

6.7 kumulierte Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Java auf Echtzeit-Betriebssystemkern 44

6.8 Medianlatenzen der Timer-Monitor-Implementierung in Java auf

Echtzeit-Betriebssystemkern bei 50 Millisekunden Intervall 45

6.9 Kumulative Latenzen der Java-Esper-Implementierung 46

6.10 Kumulative Standardabweichungen der Latenzen der Java-Esper-

Implementierung . 46

6.11 Medianlatenzen der Java-Esper-Implementierung bei Intervall von 10

Millisekunden . 47

6.12 Kumulative Latenzen der Timer-Monitor-Implementierung in Echtzeit-Java 48

6.13 Kumulative Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Echtzeit-Java . 48

6.14 Medianlatenzen der Timer-Monitor-Implementierung in Echtzeit-Java

bei Intervall von 25 Millisekunden . 49

6.15 Kumulative Latenzen der Threads mit integrierten Timern in Echtzeit-Java 50

6.16 Kumulative Standardabweichungen der Latenzen der Threads mit inte-

grierten Timern in Echtzeit-Java . 51

6.17 Medianlatenzen der Threads mit integrierten Timern in Echtzeit-Java bei

Intervall von 1 Millisekunden . 51

7

Tabellenverzeichnis

6.1 Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Java . 41

6.2 Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Java auf Echtzeit-Betriebssystemkern 43

6.3 Mediane der Standardabweichungen der Latenzen der Java-Esper-

Implementierung . 46

6.4 Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Echtzeit-Java . 48

6.5 Mediane aller Standardabweichungen der Threads mit integrierten

Timern in Echtzeit-Java für die verschiedenen Intervalle 50

9

Abkürzungsverzeichnis

ACA Autonomous Component Architecture. 20

CEP Complex Event Processing. 3

CoAP Constrained Application Protocol. 18

DPWS Devices Profile for Web Services. 18

GUI Graphical User Interface. 20

HDFS Hadoop Distributed File System. 17

HTTP Hypertext Transfer Protocol. 18

IoT Internet der Dinge. 3

JNI Java Native Interface. 32

MQTT Message Queue Telemetry Transport. 15

MQTT-SN MQTT for Sensor Networks. 18

MVC Model-View-Controller. 24

NS2 Network Simulator. 20

OTcl Object-Oriented Tool Command Language. 20

SOAP Simple Object Access Protocol. 18

TCP Transmission Control Protocol. 18

UDP User Datagram Protocol. 34

WSDL Web Service Description Language. 18

11

1 Motivation

In den letzten Jahren sind die Preise für Hardware, wie zum Beispiel Netzwerkkompo-

nenten und Prozessoren, stetig gefallen [15]. Wegen diesen Preistrends gibt es immer

mehr mit dem Internet verbundene Geräte. Die Verbindung dieser Geräte bezeichnet

man als IoT. Im IoT kommunizieren die Geräte meist selbstständig, d.h. ohne menschli-

ches Zutun [SBH+17]. In den letzten Jahren hat sich die Forschung rund um IoT stark

beschleunigt. Firmen wie Bosch [17c], Nest [17a] und andere bieten bereits Geräte an,

welche IoT-Technologien benutzen. Zum Beispiel Feuermelder von Bosch [17b] und Über-

wachungskameras von Nest [17d], welche an das Internet angeschloßen sind. Zusätzlich

ist ein Trend hin zur Automatisierung in vielen Bereichen des Alltags zu beobachten. Dies

betrifft unter anderem Wohnumgebungen (Smart Home), industrielle Produktionsabläufe

(Smart Factory) oder selbst fahrende Autos (Smart Cars). Ein Beispiel für diese Art der

Automatisierung könnte ein Haus sein, welches an einem sonnigen Tag die Jalousien

schließt, sobald die Helligkeit im Raum einen gewissen Wert überschreitet. Ein anderes

Beispiel wäre eine Fertigungsmaschine in einer Fabrik, welche automatisch neue Teile

bestellt, sobald sie feststellt, dass der Bestand unter einen gewissenWert sinkt. Bei der Ent-

wicklung von IoT-Anwendungen gibt es viele Plattformen, Sprachen und Systeme. Diese

bilden eine komplexe Umgebung, in der Fehler teuer sind, da sie zu Produktionsausfällen

oder gefährlichen Situationen führen.

Die Erkennung derartiger Situationen kann mit sogenannten CEP-Systemen ermöglicht

werden [SHWM16]. Diese konsumieren Datenströme basierend auf einzelnen Events

und sind in der Lage vordefinierte Muster echtzeitnah zu erkennen [SHB+17]. Dabei

können mit ihnen Informationen gewonnen werden, die keiner Einzelkomponente zur

Verfügung stehen. Außerdem bieten diese Systeme Anfragesprachen ähnlich zu SQL an,

um die Situationen zu definieren.

Auch um derartige CEP-Systeme testen bzw. vermessen zu können sind realitätsnahe Test-

daten notwendig. Aufgrund der Dynamik und Flexibilität realer Daten – besonders von

Sensordatenströmen – stellt dies eine große Herausforderung dar [HBS+16] [HWBM16].

Werte können zum Beispiel stark variieren, d.h., es kann Ausreißer geben, sie können

ungenau sein oder sogar falsch-positiv. Da Realdaten nur basierend auf kostspieligen,

echten Szenarien (bspw. im Fabrikumfeld) erzeugt werden können, müssen diese aus

Zeit- und Kostengründen für die Validierung von Anwendungen möglichst realitätsnah

simuliert werden.

Auch gibt es noch keine Benchmarks für CEP-Systeme, um diese vergleichen zu können.

Für CEP-Systeme gibt es bislang noch keine Benchmarks. Es ist somit bisher noch nicht

13

1 Motivation

möglich, diese detailliert miteinander zu vergleichen. Eines der Ziele dieser Arbeit war es

daher, eine Datengenerierung für Benchmarks zu entwickeln. Zusätzlich wurde unter-

sucht, wie viele Threads synchron Daten erzeugen können und wie groß die maximale

zeitliche Abweichung bei asynchronen Threads ist.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 1 – Motivation: motiviert die Ziele der Arbeit.

Kapitel 2 – Grundlagen: beschreibt die Grundlagen dieser Arbeit.

Kapitel 3 – Verwandte Arbeiten: stellt verwandte Arbeiten vor.

Kapitel 4 – Datengenerierung für Simulation: erläutert, wie das Simulationswerk-

zeug implementiert wurde.

Kapitel 5 – Datengenerierung zum Benchmarking von CEP-Systemen: erläutert,

wie Wertegenerierung für Benchmarks implementiert wurde.

Kapitel 6 – Evaluation: beschreibt die Evaluation dieser Arbeit.

Kapitel 7 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusam-

men und stellt Anknüpfungspunkte vor.

14

2 Grundlagen

In diesem Kapitel werden wesentliche Grundlagen dieser Arbeit beschrieben.

2.1 Internet der Dinge

Das IoT bezeichnet die Verbindung von Alltagsgeräten mittels einem Netzwerk. Durch

das Ermöglichen von Interaktion mit eingebetteten Systemen wird sich die Allgegen-

wärtigkeit des Internets noch weiter erhöhen, was zu einem hoch verteilten Netzwerk

von Geräten führt. Diese Geräte können dabei sowohl mit Menschen als auch mit an-

deren Geräten kommunizieren. Xia et al. [XYWV12] beschreiben die Konzepte des IoT

ausführlich.

Zum besseren Steuern und Reagieren auf Situationen in einer IoT-Umgebung bedient

man sich der Verarbeitung von komplexen Ereignissen (Englisch: Complex Event Pro-

cessing) [Rob10]. Dabei wird ein Ereignis (Englisch: event) als ein Objekt bezeichnet,

welches eine Aufzeichnung einer Aktivität ist. Ereignisse stehen zeitlich, kausal und

strukturell miteinander in Verbindung. Zeit ist dabei eine Eigenschaft eines Ereignis in

Form von einem Zeitstempel. Ein höherwertiges Ereignis A kann aus einer Menge von

Ereignissen {Bi} erstellt werden und repräsentiert ein komplexes Ereignis, welches aus

allen Aktivitäten besteht, die die aggregierten Ereignisse widerspiegeln. Es können sich

daraus komplexe Hierarchien von Ereignissen ergeben, wobei diese weiter zu immer

abstrakteren Ereignissen aggregiert werden können. So entstehen Ereignisse, welche

näher an Geschäftsprozessen liegen und weiter von der primitiven technologischen Ebene

entfernt sind [JMM11]. Ein primitives Ereignis ist zum Beispiel ein Wert, erzeugt durch

einen Temperatursensor. Die Verarbeitung von komplexen Ereignissen involviert Regeln

zum Aggregieren, Filtern und Abgleichen von primitiven Ereignissen, gekoppelt mit

Aktionen um neue abstraktere Ereignisse daraus zu erzeugen. Diese Regeln werden meist

mit speziellen Query-Sprachen der CEP-Systeme definiert.

Message Queue Telemetry Transport (MQTT) [Loc10] ist ein Netzwerkprotokoll, wel-

ches das „Publish-Subscribe“-Muster implementiert [Loc10] und bestimmte „Quality

Of Service“-Levels garantiert [Loc10]. Clients verbinden sich zum Broker (welcher als

MQTT-Server fungiert) und veröffentlichen Nachrichten auf einen bestimmten Kanal

(Englisch: Topic). Außerdem ist es möglich einen Kanal zu abonnieren. Dadurch wird der

Abonnent beim Eintreffen einer Nachricht benachrichtigt.

15

2 Grundlagen

2.2 Echtzeitprogrammierung

Ein Echtzeitsystem wird als ein System definiert, welches auf einen extern generierten

Eingabestimulus innerhalb einer endlichen, vorher festgelegten Zeitperiode antworten

muss. Die Korrektheit eines solchen Systems hängt nicht nur vom logischen Resultat ab,

sondern auch von der Zeit, zu der es geliefert worden ist. Die Unfähigkeit zu antworten ist

dabei genauso schlimm, wie eine falsche Antwort. Der Computer ist dabei oft Teil eines

größeren Systems; er ist ein eingebettetes System. Als hartes Echtzeitsystem wird ein

System definiert, welches beim Verpassen einer Deadline in einen abnormalen Zustand

gerät (z.B. ein Flugzeug). Als weiches (Englisch: soft) Echtzeitsystem wird ein System

definiert, bei dem Deadlines wichtig sind, welches jedoch trotzdem noch funktioniert,

falls Deadlines verpasst werden (z.B. Software zur Datenakquise). Weitere Informationen

zur Echtzeitprogrammierung werden von Burns et al. [BW01] beschrieben.

2.3 Benchmarking

Ein Benchmark [DM02] ist ein Versuchsaufbau, welcher es ermöglicht, empirische Mes-

sungen über ein System durchzuführen. Diese Messungen sollen es erlauben, die Leis-

tungsfähigkeit verschiedener Systeme anhand bestimmer Metriken miteinander zu ver-

gleichen. Meistens sind Benchmarks Tabellen, welche die Performanz eines jeden Lösungs-

ansatzes für bestimmte Metriken, wie CPU-Zeit, Anzahl der Funktionsauswertungen

oder ähnliches, zeigen. Ein Problem bei Benchmarks ist die Interpretation der Ergeb-

nisse aus diesen Tabellen, da diese unterschiedlich ausfallen kann. Deswegen sind die

Werkzeuge zum Analysieren dieser Daten wichtig. In [DM02] wird deswegen empfohlen,

den Durchschnitt oder das Kumulative der Performanz für eine bestimmte Metrik zu

benutzen. Da hier jedoch Durchläufe nicht beachtet werden, in denen der Lösungsansatz

fehlschlägt, werden damit robustere Lösungsansätze bevorzugt und es kommt somit zu

einer Befangenheit (Englisch: bias) in den Ergebnissen. Um dies zu verhindern, kann eine

Strafe für jeden fehlgeschlagenen Durchlauf berechnet werden. In einer späteren Arbeit

sollen Benchmarks für CEP-Systeme erstellt werden, damit diese miteinander verglichen

werden können.

16

3 Verwandte Arbeiten

In diesem Kapitel werden verwandte Arbeiten vorgestellt. Es wird außerdem erläutert,

warum diese nicht vollständig zur Problemstellung dieser Arbeit passen.

3.1 Telit IoT Random Number Generator Action Block

Diese Anwendung [Tel17] kann verwendet werden, um einen Sensor, bzw. dessen Werte,

zu simulieren. Damit kann zum Beispiel ein Trigger getestet werden. Bei der Simulation

kann der Datentyp ausgewählt werden (INT4, UINT4, BINARY, STRING) sowie die An-

zahl der generierten Werte. Darüber hinaus erlaubt die Anwendung die Definition von

Minimum- und Maximumwerten. Die Zahlen werden in Variablen gespeichert. Dieses

Werkzeug ist Teil des Telit IoT Portal [Tel17], welches ein cloud-basierter Subscription-

Service ist, bei dem Kunden ihre IoT Umgebung modellieren, steuern und überwachen

können. Der Telit IoT Random Number Generator Action Block ist nicht als einzelnes

Modul erhältlich. Zwar ermöglicht der Random Number Generator von Telit IoT die

Generierung von Werten zur Simulation von Sensoren, jedoch erfüllt dieser nicht die

Echtzeitanforderungen, die für die CEP Benchmarks benötigt werden, da es nicht möglich

ist, dass mehrere Generatoren synchron Werte erzeugen.

3.2 IOTSim: A simulator for analysing IoT applications

IoTSim [ZGS+17], welches aufCloudSim basiert, ist einWerkzeug zur Simulation der Verar-

beitung von IoT-Applikationen erzeugten Daten in Cloud-Umgebungen, zur Modellierung

und Simulation der parallelen Ausführung von mehreren, großen IoT-Applikationen

in einer geteilten Cloud-Umgebung, sowie zur Evaluation der Performanz von IoT-

Applikationen in Cloud-Umgebungen. CloudSim ist ein Simulationswerkzeug, welches

die Modellierung, Simulation und Evaluation von Cloud-Umgebungen, ihrer Policies

und ihrer Workload-Modelle erlaubt. IoTSim besteht aus den folgenden Ebenen: dem

Cloudsim Core Simulation Engine Layer, dem Cloudsim Simulation Layer, dem Storage
Layer, dem Big Data Processing Layer und dem User Code Layer. Das Cloudsim Core

Simulation Engine Layer ist die unterste Ebene, welche Ereignisse der Cloud-Umgebung

(Englisch: Events) einreiht und verarbeit , Cloud-Entitäten erstellen (Services, Hosts, Re-

chenzentren, Broker und virtuelle Maschinen), zwischen Komponenten kommunizieren

17

3 Verwandte Arbeiten

und die Simulations-Clock steuern kann. Darüber gibt es das Cloudsim Simulation Layer,

welches die Modellierung und Simulation von virtualisierten Rechenzentren unterstützt.

Dies beinhaltet dedizierte Steuerschnittstellen für virtuelle Maschinen, Arbeitsspeicher,

persistenter Speicher und Bandbreite. Diese Ebene simuliert folgendes Verhalten: Provi-

sionierung von Hosts auf VMs, das Steuern der Ausführung und das Überwachen des

Systemzustands. Das Cloudsim Simulation Layer besteht auch noch aus mehreren Unter-

ebenen, welche Kernelemente der Cloud modellieren. Die untersten dieser Unterebenen

steuern Netzwerktopologie, Datenzentren und Cloud-Koordinatoren. Das Storage Layer

modelliert die Speicherung durch Amazon S3, Azure Blob Storage oder Hadoop Distributed
File System (HDFS). IoT-Applikationen können mit dem Storage Layer interagieren wie

gewohnt: sie schreiben und lesen Daten. Wie in der Realität, gibt es eine messbare Verzö-

gerung durch diese Ebene. Das Big Data Processing Layer übernimmt die Verarbeitung

der aus IoT-Applikationen entstehenden Daten. Es besteht aus zwei Unterebenen. Die

MapReduce-Unterebene [DG08] unterstützt Applikationen mit einem batch-orientierten

Datenverarbeitungsparadigma. Die Streaming-Computing-Unterebene unterstützt Ap-

plikationen, welche Echtzeitanforderungen haben. Das User Code Layer ist die oberste

Ebene. Auf ihr werden Entitäten der Hosts (Anzahl der Maschinen, deren Spezifikation),

die Konfigurationen von IoT-Applikationen, VMs, Anzahl von Benutzern und deren

Applikationstypen zur Verfügung gestellt. Diese Ebene hilft Benutzern, ihre eigenen Si-

mulationsszenarien festzulegen beziehungsweise zu konfigurieren, um ihre Algorithmen

zu validieren. IotSim ermöglicht somit nur die Simulation der Cloud-Umgebung; das

Simulieren des Verhalten von Teilen einer IoT-Applikation, ein Ziel dieser Arbeit, wird

aber nicht von IotSim übernommen.

3.3 SimpleIoTSimulator

SimpleIoTSimulator [Sim17] ist ein Werkzeug zur Netzwerksimulation. Damit kann der

Paketfluss zwischen Sensoren und Gateways aufgenommen werden. Diese gelernten

Daten können dann als Template benutzt werden, um Testumgebungen mit tausenden

von Sensoren zu generieren. Darin können dann Skripte ausgeführt werden, um Feh-

lerszenarien und Notifikationen zu erzeugen. Die Eigenschaften dieser Skripte können

dynamisch geändert werden. Bei den erstellten Sensoren kann auch noch eingestellt wer-

den, dass diese Zufallswerte senden. Dabei wird eine Reihe vonWerten sowie ein Intervall

in Sekunden angegeben und nach jedem Intervall wird einer dieser Werte ausgegeben.

Unterstützte Protokolle zur Kommunikation sind Modbus über Transmission Control

Protocol (TCP), MQTT, MQTT for Sensor Networks (MQTT-SN), Constrained Appli-

cation Protocol (CoAP) und Hypertext Transfer Protocol (HTTP). Da die Generierung

von Zufallswerten sehr begrenzt ist, die Werteausgabe nicht im sub-Sekunden-Bereich

möglich ist und es auch nicht möglich ist, die Sensoren miteinander zu synchronisieren,

ist der SimpleIoTSimulator nicht passend für diese Arbeit.

18

3.4 DPWSim

3.4 DPWSim

DPWSim [HLC+14] basiert auf dem Devices Profile for Web Services (DPWS)-Standard,

der vonMicrosoft entwickelt wurde. In DPWSim können DPWS-Geräte simuliert werden,

welche im Netzwerk entdeckt werden können und welche mit anderen Geräten oder

Clients über das DPWS-Protokoll kommunizieren können. Zusätzlich kann DPWSim

die Umgebung, in der sich die Geräte befinden, simulieren und ermöglicht es Benutzern,

Simulationen mit hoher Flexibilität zu erstellen, zu speichern und zu laden. In DPWSim

gibt es vier Komponenten: Räume, Geräte, Operationen und Ereignisse. Ein Raum be-

sitzt Geräte und für jedes Gerät können Operationen und Ereignisse definiert werden.

Operationen sind Funktionen des Geräts, wie zum Beispiel das Einschalten oder das

Ausschalten. Die Operationen werden in Web Service Description Language (WSDL)

[CCM+01] beschrieben und können durch Service-Endpunkte unter Benutzung von

Simple Object Access Protocol (SOAP) [MPD+02] durchgeführt werden. Das Ergebnis

einer Operation wird in der grafischen Benutzeroberfläche angezeigt. Ereignisse sind

Veränderungen des Gerätezustands. Wenn sich der Gerätezustand ändert, werden die

Klientenanwendugen des Geräts benachrichtigt. Ein Ereignis kann periodisch auftreten,

zum Beispiel jede Millisekunde. Geräte werden dadurch simuliert, indem sie auf Basis

von Sensordaten operieren. Diese Daten müssen vom User oder anderen Clients erzeugt

werden. Insofern scheidet diese Arbeit aus, da DPWSim nicht selbst Werte generieren

kann.

3.5 icclab IoT Simulator

Der IoT Simulator von icclab [icc17] simuliert Sensoren in einer Umgebung. Diese gene-

rieren Zufallszahlen vom Typ Integer und geben ihren Ladestand sowie die verbrauchte

Leistung an. Dies passiert periodisch. Zusätzlich wird zufällig entschieden, ob eine Nach-

richt erfolgreich versendet wurde. Die Nachricht wird an einen RabbitMQ-Broker [VW12]

geschickt. RabbitMQ ist ein Open-Source Message Broker. Mit dem icclab IoT Simulator

kann eine ähnliche Funktionalität erreicht werden, wie in dieser Arbeit angestrebt. Je-

doch kann der Benutzer nicht die Parameter der Simulation wählen. Des Weiteren ist

keine Benchmarkgenerierung möglich, da Simulationen nicht wiederholbar sind und die

Werteausgabe nicht synchron erfolgt.

3.6 Netzwerksimulatoren

NS2 [IH11], J-SIM [SHK+06], OMNet++ [VH08], Cooja [ODE+06] und TOSSIM [LLWC03]

sind Simulatoren für Rechnernetze. Sie sind dazu gedacht, den Paketfluss in einem Netz-

werk zu simulieren und sorgen so für eine bessere Implementierung von Rechnernetzen.

Dabei gibt es Szenarien, in denen Hosts dazu kommen und wegfallen. Sie werden auch

19

3 Verwandte Arbeiten

zum Simulieren von Sensornetzwerken benutzt. Sie sind nicht dazu gedacht, Sensoren zu

simulieren und deswegen unbrauchbar für uns.

Der Network Simulator (NS2) [IH11] ist ein event-basiertes Werkzeug zur Simulation von

dynamischen Rechnernetzen gedacht. Mit NS2 können zumBeispiel Routing-Algorithmen

und verschiedene Protokolle simuliert werden. NS2 liefert ein ausführbares Kommando:

„ns“, welches eine Object-Oriented Tool Command Language (OTcl) Datei als Eingabe-

argument annimmt. NS2 besteht aus zwei Sprachen: C++ und der OTcl. C++ definiert

die internen Mechanismen (das Backend) der Simulation, während OTcl die Simulation

aufsetzt, indem es Objekte assembliert und konfiguriert, sowie diskrete Ereignisse sche-

duled. Variablen in der OTcl-Domäne können auf C++-Objekte abgebildet werden. Diese

Variablen werden „Handles“ genannt. Die Funktionalität ist definiert im C++-Objekt. Der

Handle agiert als ein „Frontend“, welches mit Benutzern und anderen OTcl-Objekten

interagiert. Ein Handle kann seine eigenen Prozeduren und Variablen definieren um diese

Interaktion zu vereinfachen. Simulationen werden durch den Aufruf „ns [<file>] [<args>]“

gestartet. Als erste Phase der Simulation wird die Simulation entworfen. Hier entscheidet

der Benutzer, welchem Zweck die Simulation dienen soll, die Netzwerkkonfiguration

aussieht, welche Annahmen gelten sollen, wie Performanzkriterien aussehen und wie

die erwarteten Ergebnisse aussehen. In der zweiten Phase wird das zu simulierende

Netzwerk konfiguriert und in der dritten Phase wird die Simulation durchgeführt. Nach

der Simulation können die Ergebnisse noch weiter verarbeitet werden.

J-SIM [SHK+06] ist ähnlich zu NS2, es ermöglicht ebenfalls das Modellieren, Simulieren

und Emulieren von Netzwerken und ist ebenfalls quelloffen. Es baut auf einer kompo-

nentenweisen Architektur namens Autonomous Component Architecture (ACA) auf.

Die ACA schliesst die Lücke zwischen Hardware- und Software-ICs und erlaubt somit,

dass neue Komponenten via plug-and-play in J-Sim integriert werden können. Ausser-

dem wurde aufbauend auf ACA ein generalisierendes Paketaustausch-Internetworking-

Framework namens INET gebaut, welches zahlreiche gemeinsame Eigenschaften des

Protokoll-Stacks implementiert. ACA und INET wurden beide in Java implementiert. Zu-

sammen mit einem Scripting-Framework und einer Graphical User Interface (GUI) bilden

sie J-Sim. Die grundlegenen Entitäten sind Komponenten, welche miteinander kommuni-

zieren durch das Senden beziehungsweise Empfangen von Daten via ihrer Ports. Wie

Komponenten auf Daten reagieren und diese handhaben wird während der Design-Phase

des Systems in Verträgen (Englisch: Contracts) festgelegt. Das Binding findet jedoch

erst in der Systemintegration-Phase statt. Diese Trennung des Vertrag-Binding und des

Komponenten-binding erlaubt J-Sim Loose-Coupling-Eigenschaften zu besitzen, das

heisst Komponenten können individuell entworfen, implementiert und getestet werden,

ohne Annahmen voneinander zu machen. Die Tatsache, dass J-Sim in Java implementiert

ist, zusammen mit ACA, macht es zu einer platformunabhängigen, erweiterbaren und

hoch wiederverwendbaren Umgebung. J-Sim bietet eine Scripting-Schnittstelle, welche

Scripting in Sprachen wie Perl und Python unterstützt.

OMNet++ ist in C++ geschrieben, basiert auf dem INET-Framework und bietet mehr

Infrastruktur als NS2. Die Simulation muss aber auch noch selbst geschrieben werden.

20

3.7 Streaming Engines

Experimente in Omnet++ sind wie folgt aufgebaut: es gibt das Model (das zu testende

Objekt, welches bestimmte Parameter hat), die Study (eine Reihe von Experimenten auf

einem oder mehreren Modellen), das Experiment (Durchsuchen des Parameterraum des

Modells), das Measurement (Seed für das Experiment). Experimente sind reproduzierbar

(gleicher Seed). Es gibt außerdem eine Resultatsanalyse, wobei Daten mit Resultaten

produziert werden. Diese können mit Regeln oder Mustererkennung noch feiner gefiltert

werden, was die Analyse vereinfacht und zu besseren Einsichten führen kann.

Cooja [ODE+06] ist ein Netzwerksimulator zur Simulation von Sensoren, welche das Con-

tiki IoT-Betriebssystem benutzen. Sensoren können nicht nur unterschiedliche Software

besitzen, sie können auch auf unterschiedlichen Ebenen simuliert werden: Netzwerk-,

Betriebs- und Maschinensystemebene sind möglich. Ein Sensor besitzt drei grundlegende

Eigenschaften: einen Arbeitsspeicher, einen Knotentypen und seine Hardwareperipherie.

Sensoren vom selben Typ werden mit dem selben Arbeitsspeicher initialisiert und lassen

auch den selben Code laufen. Ihre Arbeitsspeicher können sich später jedoch unter-

scheiden, da sie eventuell unterschiedliche Eingaben durch ihre Hardwareperipherie

empfangen. Viele Teile des Simulators können einfach ausgetauscht oder mit weiterer

Funktionalität ausgestattet werden. Sensoren in einer COOJA-Simulation können auf

den verschiedenen simulierten Ebenen existieren und miteinander interagieren. COOJA

besitzt auch ein Modell, welches die Verbreitung von Radiowellen simuliert um auch

diesen Aspekt in kabellosen Sensornetzwerken darzustellen. Dieses Modell kann auch

selbst noch erweitert werden.

Alle hier vorgestellten Netzwerksimulatoren eignen sich für die Simulation des Verhalten

von Sensornetzwerken, die Simulation des Verhalten der Sensoren selbst ist jedoch nicht

möglich, was diese Anwendungen unbrauchbar für die Ziele dieser Arbeit macht.

3.7 Streaming Engines

Neben den vorgestellten Simulatoren wurden Streaming Engines untersucht, um zu

überprüfen, ob diese die Generierung von Werten unterstützen.

Zuerst wurde Apache Kafka [Gar13] untersucht. Apache Kafka ist ein verteilter Message-

Broker und wird eher als Schnittstelle oder als verteilte Datenpipeline benutzt. Zum

Beispiel kann eine Datei mit Datenwerten an ein Eingabe-Topic gesendet werden, worauf-

hin Kafka diesen einliest und verarbeitet. Danach wird der Stream an ein Ausgabe-Topic

ausgegeben. Unser Ziel ist es jedoch, dass man die zu generierenden Werte als Datei

eingibt, auf dessen Basis ein reproduzierbarer Stream erzeugt ein. Diese Funktionalität

müsste mit Kafka selbst implementiert werden.

Apache Storm [IS15] ist eine verteilte Echtzeit-Berechnungsplattform. Daten werden

aus einer Datei eingelesen, eine Quelle („Spout“) erzeugt daraus einen Stream, welcher

an Verarbeitungseinheiten (Bolts) weitergeleitet wird. Die benutzte Datenstruktur sind

Tupel (geordnete Liste von Elementen). Die Berechnung läuft verteilt in einem Cluster.

21

3 Verwandte Arbeiten

Dabei gibt es einen Master-Knoten und mehrere Worker-Knoten. Storm hat jedoch eine

Mindeslatenz im Bereich von 10 ms (Kosten für Transfer von Daten zwischen Bolts,

Garbage Collection), was für die Benchmarkgenerierung inakzeptabel ist.

Apache Flink [CKE+15] dient ebenfalls dem Verarbeiten von Streams. Es bietet jedoch

mehr High-Level-Funktionalität, welche man in Storm von Hand implementieren müsste.

Flink ist für zyklische, iterative Transformationen auf Collections optimiert. Außerdem

bietet es Batch-Processing.

Apache Spark [SS15] ist ähnlich. Es ist ein Batch-Processing Framework, welches Streams

verarbeiten kann. Spark ist optimiert auf das Verarbeiten von verteilten Datensätzen

(resilient distributed datasets).

Zusammenfassend bieten Flink und Spark also nur die Verarbeitung von Streams an.

Storm bietet von allen Frameworks die beste Realtime-Performanz, welche jedoch für die

Ziele dieser Arbeit nicht ausreicht. Dadurch ist klar, dass sich die anderen Frameworks

sich nicht für die Benchmarkgenerierung eignen.

22

4 Datengenerierung für Simulation

Eines der wesentlichen Ziele dieser Arbeit ist die Simulation von Sensoren. Das Simu-

lationswerkzeug soll dabei an ein Überwachungswerkzeug oder an ein CEP-System

angeschlossen werden. Es soll außerdem möglich sein, Live-Änderungen der Simulations-

parameter vorzunehmen, wobei diese sofort in der Simulation reflektiert werden sollen.

Durch das veränderte Verhalten der Umgebung zu beobachten in den angeschlossenen

Werkzeugen können dann eventuell neue Schlüsse gezogen werden. Als Parameter für

die Simulation wurden festgelegt:

• Name - der Name des Sensors

• Datentyp - der Datentyp (Integer, Float, Boolean) der zu generierenden Werte

• Startwert - der Wert, mit dem die Simulation beginnt

• Ausreißerwahrscheinlichkeit - Wahrscheinlichkeit für Anomalien, Float-Wert zwi-

schen 0.0 % und 100.0 %

• Änderungsrate - gibt die Änderung pro Zeitschritt an

Falls der Datentyp als Boolean festgelegt wird, werden Startwert, minimale und maxi-

male Abweichung, Ausreißerwahrscheinlichkeit und die normale Änderungsrate nicht

benötigt. Außerdem soll das Werkzeug mit einer Wahrscheinlichkeit, die dem Quadrat

der Ausreißerwahrscheinlichkeit entspricht, Werte erzeugen, die nicht dem Datentyp ent-

sprechen. Jeder neu erzeugte zu simulierende Sensor soll in einem eigenen Thread Werte

mittels Publish-Subscribe (bspw. realisiert durch MQTT) schicken, wobei der Topic-Name

dem Sensornamen entspricht.

4.1 Systemübersicht und Implementierung

Zu Beginn der Simulation wurden noch keine Sensoren angelegt. Um dies zu tun, passt

der Benutzer die Simulationsparameter nach seinen Bedürfnissen an und erstellt dadurch

die Simulation eines Sensors. Die erstellte Simulation kann anschließend in einer Liste

ausgewählt werden. Sobald diese ausgewählt ist, werden die generierten Werte in einer

MQTT-Konsole angezeigt. Dies ist möglich, da in der Anwendung ein MQTT-Client

benutzt wird, welcher die simulierten Werte empfängt und anzeigt. Währen der Simula-

tion können die Parameter der ausgewählten Simulation dynamisch geändert werden.

Nach dem Übernehmen dieser Änderungen wird die Simulation „live“ angepasst, d.h.,

23

4 Datengenerierung für Simulation

n Simulationen,
1 Simulation ausgewählt

n Simulationen,
keine Simulation ausgewählt0 Sensoren

[n > 1,
simulationId == selectedSimulation]

Simulation auswählen

Programm schließen

[n > 1,
simulationId != selectedSimulation]

 [n == 1]

Simulation löschen

[n > 1] [n == 1]

Simulation löschen

Simulation auswählen

Simulation erstellen
Simulation ändern

Programm schließen
Programm schließen

Simulation erstellenStart

Abbildung 4.1: Zustandsdiagramm des Simulationswerkzeuges

die Änderungen sind sofort sichtbar. Wird die Simulation nicht mehr benötigt, kann

diese angehalten und entfernt werden. Die Simulation mehrerer Sensoren parallel ist

möglich.

Um die vorgestellte Funktionalität zu realisieren, wurde ein Prototyp erstellt. In der ersten

Version dieses Prototyps war es lediglich möglich, eine feste vorgegebene Anzahl an

Simulationen zu erstellen. Dies wurde in der Weiterentwicklung, zusammen mit den

weiteren oben beschriebenen Funktionen, ermöglicht. Basierend auf diesem Prototypen,

sollte die Benchmarkgenerierung integriert werden.

Bei derWeiterentwicklung des Prototyps fiel jedoch auf, dass die Benchmark-Generierung

gesondert betrachtet werden muss. Daher ist diese Teil eines separaten Prototyps.

4.2 Benutzerschnittstelle

Die Benutzerschnittstelle wurdemittels dem ReactJS-Framework
1
umgesetzt. React ist ein

Framework, welches 2011 von Facebook entwickelt wurde. Es wurde 2013 Open Source

freigegeben [Fac17b], 2017 unter der MIT-Lizenz lizensiert [Fac17a] und seitdem von

namhaften browserbasierten Applikationen Webseiten / Web-Apps (Facebook, Instagram,

Paypal, Netflix, Walmart) verwendet. In der Model-View-Controller (MVC)-Architektur

bietet React lediglich die Realisierung des Views beziehungsweise der Ansicht an. Durch

Hinzunahme von Frameworks wie Flux, Redux oder MobX kann jedoch eine vollständige

1
https://reactjs.org/

24

4.2 Benutzerschnittstelle

MVC-Architektur realisiert werden. Der Code in React ist in Komponenten eingeteilt,

welche logische beziehungsweise funktionale Einheiten der Benutzeroberfläche repräsen-

tieren. Zum Beispiel kann eine derartige Komponente eine Liste oder ein Auswahlknopf

sein.

Die Einteilung der View in Komponenten erleichtert die Entwicklung der Benutzeroberflä-

che, beispielsweise durch vereinfachtes Debugging. Komponenten in React besitzen Props,
welche ähnlich zu den Parametern einer Funktion funktionieren und für die Komponente

unveränderlich sind. Es können darüber hinaus Callback-Funktionen übergeben werden.

Dies folgt dem Prinzip „properties flow down, actions flow up“. Der unidirektionale Fluss

von Daten erleichtert die Fehlersuche. Komponenten besitzen neben Props auch einen

Zustand, state genannt. Außerdem besitzt React ein Virtuelles Document Object Model

(Virtual DOM). Sobald sich bei Komponenten der Zustand verändert, unterscheidet sich

das Virtual Dom vom „echten Dom“, d.h. der visualisierten Benutzeroberfläche. Daraufhin

werden lediglich die Komponenten neu gerendert, bei denen sich der Zustand geändert

hat. Dies gibt React eine bessere Performance als manch andere Frameworks
2
. Außerdem

muss der Programmierer sich nicht darum kümmern, Änderungen des Zustands auf DOM

zu übertragen. Dies wird automatisch von React übernommen. React bietet eine Synta-

xerweiterung von Javascript namens JSX an, mit der man Markup in Javascript schreiben

kann. Dies erleichtert die Lesbarkeit des Codes und verhindert XSS-Schwachstellen.

Durch das Benutzen von Source-Maps beim Build-Prozess mit Webpack und Babel lässt

sich der Code auf Komponenten-Ebene in den Chrome Entwicklerwerkzeugen betrach-

ten. Source-Maps bilden den kompilierten und minimierten Javascript-Code auf die

Ursprungsdateien ab und erleichtern somit das Debuggen
3
. Außerdem lassen sich dort

Haltepunkte setzen und der aktuelle Wert von Variablen beziehungsweise Attributen

auslesen. Zusätzlich gibt es Entwicklungswerkzeuge speziell für React, welche man für

die Webbrowser Chrome und Firefox herunterladen kann. Mit ihnen können der Zustand

und die Parameter der React-Komponenten verfolgt werden.

Neben React wurde bei der Frontend-Entwicklung Flow eingesetzt. Flow erlaubt die stati-

sche Code-Analyse von Javascript-Programmen. Flow wurde von Facebook entwickelt

und wird unter der MIT-Lizenz lizensiert. Flow erlaubt auch die Erstellung von Alterna-

tivnamen für Typen, um auftretende Fehler aussagekräftiger zu machen. Das Benutzen

von Flow erhöht die Robustheit des Codes der Benutzeroberfläche. Dies wird durch eine

hohe Typ-Abdeckung erreicht. Typ-Abdeckung bezeichnet den Prozentsatz des Codes,

für den der Typ einer Operation bekannt ist. Webpack kompiliert die Flow-annotierten

Dateien zu validem Javascript-Code. Gao et al. [GBB17] haben gezeigt, dass der Einsatz

von Flow oder Typescript ungefähr 15 Prozent der Bugs in öffentlichen Github-Projekten

verhindern könnten. In ihrer Arbeit wurde auch gezeigt, dass Fehler in Flow mit gerin-

gerem Zeichen- und Zeitaufwand erkennbar sind, als bei Typescript [GBB17]. Dies ist

dadurch erklärbar, dass Flow schon einige Typen selbst inferiert. Bei Typescript müssen

2
https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts/table.html

3
https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

25

4 Datengenerierung für Simulation

Abbildung 4.2: Frontend des Simulationswerkzeuges

diese meist vom Programmierer selbst annotiert werden. Diese Gründe haben dazu ge-

führt, Flow für das Frontend zu benutzen. Darüber hinaus hatte ich in einem früheren

Projekt die Erfahrung gemacht, dass die Entwicklung mit „reinem“ Javascript zu vielen

vermeidbaren Laufzeitfehlern führt.

Bei dieser Arbeit wurde kein Werkzeug zum Handhaben des Zustands, wie zum Beispiel

Flux oder Redux benutzt, da dies die Benutzeroberfläche unnötig kompliziert gemacht

hätte. Der Zustand wird im Backend verwaltet und die Sensorenliste für die Benutzer-

oberfläche wird in der App-Komponente gespeichert und ihren Unterkomponenten als

Argument übergeben.

Die Benutzeroberfläche ist in folgende Komponenten aufgeteilt: App, SensorList, Input-

Form, MqttConsole. App ist die Hauptkomponente, welche die restlichen Komponenten

darstellt. In ihrem Zustand werden die vom Backend erhaltene Liste der Sensorsimulatio-

nen und der derzeit ausgewählte, zu simulierende Sensor gespeichert. App besitzt zwei

Handler-Funktionen; eine, welche die Sensorliste aktualisiert und eine andere, welche

den derzeit selektierten Sensor aktualisiert. Anstatt ein Werkzeug zum Handhaben des

Zustands zu benutzen habe ich mich entschieden, Zustandsänderungen durch asynchrone

Callbacks zu bewerkstelligen. Callbacks werden Funktionen genannt, welche anderen

Funktionen als Argument übergeben werden und somit zu einem späteren Zeitpunkt aus-

geführt werden können, meist umWerte in der aufrufenden Funktion zu verändern. Dazu

bekommen Kindkomponenten diese Handler übergeben, um somit den rückfließenden

Datenfluss zu ermöglichen.

26

4.3 Backend

SensorList (siehe Nummer 1 in Abbildung 4.2) zeichnet die Liste der aktuell existierenden

Sensoren. SensorList verfügt selbst über keinen Zustand sondern bekommt die Liste

der zu simulierenden Sensoren von App übergeben. SensorList besitzt zwei Handler-

Funktionen. Eine zum Auswählen von Sensoren und eine zum Löschen von Sensoren.

Falls ein Sensorsimulation zum Löschen markiert wird, wird eine GET-Anfrage an das

Backend durchgeführt, um diese zu löschen. Sobald das Löschen erfolgreich durchgeführt

wurde, wird die als Callback übergebene Funktion zur Aktualisierung der Sensorliste

aufgerufen und bekommt die neu erhaltene Sensorliste übergeben.

InputForm (siehe Nummer 2 in Abbildung 4.2) stellt das Formular zum Eintragen der

Simulationsparameter dar. Falls der ausgewählte Datentyp Boolean ist, werden bestimmte

Eingabefelder wie Startwert, maximale und minimale Abweichung, Ausreißerwahrschein-

lichkeit und Änderungsrate nicht dargestellt. Die Komponente InputForm besitzt die

Werte der Eingabefelder der Simulationsparameter als Zustand und wird mit Beispiels-

werten initialisiert. Es verfügt über Handler-Funktionen zum Starten beziehungsweise

Ändern der Simulation und zum Ändern der angezeigten Parameterwerte. Falls eine

Sensorsimulation gerade selektiert ist, führt das Ändern der Werte und Auswählen von

„Change Simulation“ zum sofortigen Ändern des Simulationsverhaltens.

MqttConsole (Nummer 3 in Abbildung 4.2) stellt die Konsole zum Anzeigen der gene-

rierten Zufallszahlen dar. Die Komponente speichert die ausgewählte Sensorsimulation

sowie die letzten erhaltenen Nachrichten. Außerdem besitzt sie über einen eingebauten

MQTT-Client. Falls ein Sensor ausgewählt wird, registriert der Client sich zu dem Topic

mit dem selbigen Namen. Falls eine neue Simulation ausgewählt wird, registriert der

Client sich zu einem neuen Topic. Sobald der Client Nachrichten empfängt, werden

diese in das Nachrichten-Array des Zustands aufgenommen. Schlussendlich werden die

Array-Elemente als Listenelemente gezeichnet.

4.3 Backend

Das Backend wurde mittels Spring realisiert [JHD+04]. Spring Boot ist eine Variante

des Spring Frameworks, welche das „Convention-Over-Configuration“ Entwurfsmuster

implementiert. „Convention-Over-Configuration“ bezeichnet dabei, dass der Benutzer

eines Frameworks nur die Implementierungen konfigurieren muss, welche von den Kon-

ventionen abweichen. Spring Boot erlaubt es „stand-alone“ Spring-Anwendungen zu

erstellen, welche einen eingebetteten Tomcat Webserver benutzen. Außerdem können

Spring-Boot-Andwendungen einfach mit Maven [Sma+05] gebaut werden und durch

Aufrufen von „java -jar <spring-boot-application>.jar“ ausgeführt werden, es muss al-

so keine war-Datei in einem Tomcat-Server bereitgestellt werden. Zusätzlich werden

vorgefertigte Project Object Models angeboten, um die Konfiguration zu vereinfachen.

Ich hatte mich für Spring Boot entschieden, da ich schon aus einem vorherigen Projekt

gute Erfahrungen gemacht hatte und den niedrigen Konfigurationsaufwand und die

27

4 Datengenerierung für Simulation

Sensor-Thread
aus Sensorliste

entfernen

Sensor-Thread
stoppen

Sensor-Thread
zur Sensorenliste

hinzufügen

Sensor-Thread
starten

Sensor-Thread
erstellen

Sensor
erstellen

Sensor
löschen

Sensorsimulation
erstellen

Sensorsimulation
ändern

Sensorsimulation
löschen

neue Sensorliste
schicken

neue Sensorliste
schicken

neue Sensorliste
schicken

index.html
anzeigen

Anfrage

Warten auf
Anfragen

Backend

[url == "/deleteSensor"]
[url == "/updateSensor"][url == "/createSensor"]

[url == "/"]

Abbildung 4.3: Aktivitätsdiagramm des Simulationswerkzeuges

einfache Aufstellung von Spring-Boot-Anwendungen als großen Vorteil sehe, was zu

einem schnelleren Entwicklungszyklus führen kann.

Das Backend ist aus folgenden Klassen aufgebaut: Application, SimulatorController,

ThreadManager und SensorSimulatorThread. Die Klasse Application ist Einstiegspunkt

sowie Hauptklasse des Simulationswerkzeugs und startet die gesamte Spring-Boot-

Anwendung.

Die Klasse SimulatorController bildet Anfragen auf Methoden ab. Anfragen an /create-
Sensor führen dazu, dass eine neue Sensorsimulation mit den übermittelten Parametern

erstellt wird und dass die neue Liste von Simulationen dem Benutzerschnittstelle übermit-

telt wird. Anfragen an /updateSensor führen dazu, dass ein neuer Sensor seine Simulation

anhand der übermittelten Parameter ändert und dass die neue Liste von Sensorsimulatio-

nen dem Benutzerschnittstelle übermittelt wird. Anfragen an /deleteSensor führen dazu,

dass eine Sensorsimulation aus der Simulationsliste gelöscht wird und dass die neue Liste

28

4.3 Backend

von Simulationen dem Benutzerschnittstelle übermittelt wird. Anfragen an /setBroker
führen dazu, dass der zu verwendende MQTT-Broker geändert wird.

Die Klasse ThreadManager verwaltet die Liste von SensorSimulatorThreads, welche die

Simulationsliste darstellt. Sie besitzt die Methoden: createSensor, welche einen neuen

SensorSimulatorThread erzeugt und zur Sensorliste hinzufügt, updateSensor, welche „de-
leteSensor“ für den alten Sensor und createSensor mit den erhaltenen Parametern aufruft,

deleteSensor, welches den per Sensor-Id gesuchten Sensor-Thread findet, ihn stoppt und

ihn aus der Sensorenliste löscht und•sensorsToJSONArray, welche die Sensorliste zu
einem JSONArray umwandelt, um diese der Benutzerschnittstelle zu schicken.

Die Klasse SensorSimulatorThread besitzt die Parameter der Simulation als Attribute.

Die Klasse besitzt die folgenden Methoden: „toJSON“, welche ein JSON-Objekt aus dem

Sensor erzeugt. Diese Methode wird von der Methode „sensorsToJSONArray“ der Klasse

ThreadManager benutzt. „generateInt“ erzeugt eine Integer-Zufallszahl basierend auf den

Simulationsparametern. „generateFloat“ erzeugt eine Float-Zufallszahl basierend auf den

Simulationsparametern. „generateBoolean“ erzeugt einen Boolean-Zufallswert basierend

auf den Simulationsparametern. Die Methode „run“ generiert einen Wert mithilfe einer

der obigen Methoden, packt diesen zusammen mit einem Zeitstempel in ein JSON-Objekt

und schickt anschließend das JSON-Objekt als String an den MQTT-Broker.

29

5 Datengenerierung zum
Benchmarking von CEP-Systemen

Ein weiteres Ziel dieser Arbeit ist die Generierung von Daten, welche zur Erstellung

von Benchmarks für CEP-Systeme benutzt werden können. Die Aufgabe ist wie folgt

definiert: als Eingabe soll eine Datei mit Simulationswerten und Zeitstempeln dienen. Der

Benutzer soll dann die Anzahl der Threads für die Werteausgabe angeben können. Dar-

aufhin sollten alle Threads synchron (das heisst auf die Millisekunde gleiche Zeitstempel)

ausgeührt werden. Als maximale Werte, welche von der Datengenerierung unterstützt

werden sollen, wurden 1000 Threads mit 1 Millisekunde Intervalllänge angegeben. Da-

bei sollte die Reproduzierbarkeit der Wertegenerierung nicht verloren gehen. Um diese

Performanz zu erreichen, wurden bei allen außer dem ersten Versuch Effizienzoptimie-

rungen vorgenommen. Es wurde, zum Beispiel, kein Frontend verwendet und statt MQTT

wurden die Daten direkt in Dateien oder Arrays geschrieben oder an das CEP-System

weitergegeben.

5.1 Erste Implementierung in Java

Zuerst wurde versucht, die Wertegenerierung für die Benchmarks durch das Simulations-

werkzeug zu realisieren. In dem Werkzeug generieren die Threads der Sensorsimulation

ihre Zufallswerte zusammen mit dem momentanen Zeitstempel in die Ausgabe und

warten dann, durch Benutzen von „Thread.sleep“, so viele Millisekunden, wie in der

Eingabedatei angegeben. Die Ausgabe wurde per MQTT verschickt. Ein Abwandlung

davon ist, dass die Threads sich durch Busy Waiting synchronisieren. Dies geschieht,

indem der Thread Manager allen Threads der Sensorsimulation eine Startzeit, welche

von der Anzahl der Threads abhängt, vorgibt. Alle Threads führen dann Busy Waiting

durch via Überprüfung von „System.nanoTime“ bis die Startzeit erreicht ist. Sobald dies

der Fall ist, generieren sie die Ausgabe und erhöhen die nächste Startzeit um die in der

Eingabedatei definierte Intervalllänge. Anschließend wird erneut Busy Waiting durchge-

führt. Hier gab es aber schon bei geringen Threadanzahlen, Verzögerungen von mehreren

Millisekunden.

31

5 Datengenerierung zum Benchmarking von CEP-Systemen

5.2 Implementierungen in C

Als nächstes wurde untersucht, wie die Referenzimplementierung in performanteren

C-Code umgewandelt werden kann. Das C-Programm besteht im Wesentlichen aus zwei

den Funktionen: „main“ und „wait“. Bei der Simulationsausführung werden die Threads

erstellt und diese führen dann die Funktion „wait“ aus. Bei wait setzen sich die Threads

eine Startzeit, welche von der Anzahl der Threads abhängt. Danach wird, wie oben

beschrieben, bis zum Startzeitpunkt gewartet. Sobald die Startzeit erreicht ist, werden die

aktuellen Millisekunden ausgegeben. Beim Messen der Zeiten wurde das „time value“-

Struct von C benutzt, zusammen mit der Funktion „gettimeofday“. Beim Warten auf die

nächste Ausgabezeit wurden verschiedene Ansätze versucht. Als erste Funktion zum

Warten auf den nächsten Durchlauf wurde usleep benutzt mit verschiedenen Zeitwerten.

Usleep erlaubt es, den Thread die angegebene Zahl an Mikrosekunden ruhen zu lassen.

AlsWerte wurden untersucht: 1 Mikrosekunde, 10Mikrosekunden und 50Mikrosekunden.

Als zweite Funktion zum Warten auf den nächsten Durchlauf wurde Nanosleep benutzt

mit verschiedenen Zeitwerten. Nanosleep erlaubt es, die Ausführung vom Thread eine

angegebene Zahl an Nanosekunden ruhen zu lassen. Als Werte wurden untersucht:

1 Nanosekunde, 10 Nanosekunden und 100 Nanosekunden. Als letzter Ansatz wurde

Busy-Waiting untersucht. Das Benutzen der Funktion usleep zum Warten von einer

Mikrosekunde als Argument lieferte dabei die beste Performanz.

Bei der vorherigen Implementierung wurden die Zeitwerte durch das „printf“-Kommando

ausgegeben. Somit war es nicht möglich, die Zeitstempel der einzelnen Threads miteinan-

der zu vergleichen. Deswegen wurde eine weitere Implementierung angefertigt, bei der

das C-Programm via Java Native Interface (JNI) aufgerufen wurde. Dann wurden in den

Durchläufen Dateien mit den Zeitwerten erstellt und die Dateien wurden miteinander

verglichen. Um C-Programme über JNI aufzurufen, müssen folgende Schritte durchge-

führt werden. Zuerst muss aus dem Java-Programm eine Header-Datei erstellt werden,

welche im C-Programm eingebunden wird. Anschließend muss das C-Programm als

Shared Library kompiliert werden. Danach kann die Shared Library im Java-Programm

importiert werden und dessen Funktionen aufgerufen werden. Das C-Programm wurde

so abgeändert, dass in dieser Implementierung die Zeitstempel der Threads in Dateien

geschrieben werden. Jeder Thread erstellt dabei seine eigene Datei und schreibt in diese,

um Probleme beim Zugriff von gemeinsamen Ressourcen zu vermeiden und den Auslese-

prozess zu vereinfachen. Nach Ausführung des C-Programms werden die Dateien vom

Java-Programm ausgelesen und die Zeitstempel der jeweiligen Schleifendurchläufe aller

Threads mit den Zeitstempeln des ersten Threads verglichen. Falls es Abweichungen gibt,

werden die ID des Threads und die Schleifennummer, in der es zu einer Abweichung

gekommen ist, ausgegeben. Hier war es möglich, Werte zu generieren mit bis zu 35

synchronen Threads.

Bei den vorherigen Implementierungen von synchronen Threads in C wurden noch keine

Optimierungen beim Scheduling angewandt. Alle Threads liefen mit normaler Priorität.

Zusätzlich lief die Implementierung auf einem normalen Ubuntu Linux-System und nicht

32

5.2 Implementierungen in C

auf einem richtigen Echtzeit-Betriebssystem. Diese Punkte wurden als Verbesserungspo-

tentiale gesehen. In der main-Methode der Implementierung wird zuerst die Verwendung

von Arbeitsspeicher überprüft, da es leicht möglich ist, zu viel Arbeitsspeicher zu bean-

spruchen. Zuerst wird überprüft, wieviele Seitenfehler es gibt. Seitenfehler treten auf,

falls ein Programm versucht auf eine Speicherseite zuzugreifen, wofür es keine Abbildung

in der Memory Management Unit in dem virtuellen Speicher des Prozesses gibt. Die

Speicherseite muss dann von der Festplatte geladen werden, was deutlich länger dauert

als ein Zugriff auf den Arbeitsspeicher. Anschließend wird das Verhalten der dynamischen

Speicherverwaltung konfiguriert. Auf den Speicherbereich des Prozesses wird mlockall
angewandt, damit dieser nicht ausgelagert werden kann, was Zugriffszeiten erhöhen

würde. Außerdem wird angegeben, dass der Prozess keinen Speicher freigibt, da dies die

Ausführung des Prozesses verlangsamt. Danach wird wieder die Anzahl der Seitenfehler

überprüft. Als nächstes werden der vom Prozess benötigte Speicher reserviert und es

wird überprüft, ob die Anzahl der Seitenfehler 0 beträgt. Anschließend werden mehrere

Variablen definiert zur Verwaltung der Simulation, wie zum Beispiel Anzahl der Threads,

Anzahl der Schleifendurchläufe, Länge des Intervalls in Millisekunden sowie die anfäng-

liche Verzögerung in Mikrosekunden. Zusätzlich werden 2 Strukturen erzeugt: eine für

Zeitwerte und eine andere für die Argumente der Threads. Auch wird ein Array vom Typ

pthread erzeugt, um die Zeiger auf die Threads abzuspeichern. Der Typ pthread bezieht

sich auf POSIX Threads. POSIX Threads ist ein sprachenunabhängiger IEEE Standard,

welcher eine API für die Erstellung von Threads in C definiert. Danach wird geprüft,

ob die Anzahl der vergangenen Mikrosekunden seit der letzten Millisekunde kleiner als

500 sind. Andernfalls wird per Busy Waiting gewartet, bis das der Fall ist. Dies wird

getan, um zu vermeiden, dass ein Thread mit seiner Ausgabe in die nächste Millisekunde

schreitet, da „usleep“ eine gemessene Mindestlatenz von 500 Mikrosekunden hat, da

hierbei auch Systemaufrufe erledigt werden müssen, zum Beispiel beim Auslesen der

Uhrzeit des Systems. Als nächstes wird die Startzeit festgelegt, indem zwei long-Werte

erstellt werden (einer für die Sekunden, einer für die Mikrosekunden) welche schliesslich

inkrementiert werden abhängig davon wie groß die Verzögerung ist. Danach werden

die Argumente für die Threads vorbereitet. Zu den Argumenten für die Threads zählen:

die Thread-ID, die Startzeit in Sekunden, die Startzeit in Mikrosekunden, die Länge des

Intervalls in Mikrosekunden und die Schleifenanzahl. Anschließend werden die Threads

gestartet und sie führen die Funktion „rundeadline“ aus. Am Anfang der Funktion wer-

den die Argumente entpackt und in lokale Variablen gespeichert. Außerdem werden

eine Struktur für das Erfassen der Zeit angelegt und eine Datei zur Persistierung der

Zeitstempel des Threads. Danach werden die Variablen initialisiert und die Scheduling-

Policy des Threads wird festgelegt. Wie vorher erwähnt, wurde hier auch versucht, ein

Echtzeit-Betriebssystem zu nutzen. Deswegen wurde auf dem Testsystem ein Echtzeit-

Betriebssystemkern zu den verfügbaren Betriebssystemkernen hinzugefügt. Mit dem

einem Echtzeit-Betriebssystemkern ist es möglich, Zugang zu Echtzeit-Schedulern zu

bekommen. Ein Scheduler entscheidet, in welche Reihenfolge Prozesse und Threads auf

dem Prozessor ausgeführt werden. Jeder Thread besitzt eine Policy und eine Priorität. Der

Scheduler entscheidet aufgrund der Policy und der Priorität, welcher Thread als nächstes

ausgeführt wird. Standardmäßig wird bei Linux der „Completely Fair Scheduler“ benutzt.

33

5 Datengenerierung zum Benchmarking von CEP-Systemen

Die normalen Scheduling-Policies sind: SCHED_OTHER, SCHED_IDLE und SCHED_BATCH.

Mit dem Echtzeit-Betriebssystemkern hat man Zugriff auf weitere Scheduling-Policies:

First-In-First-Out, Round-Robin und dem Deadline-Scheduler. Bei First-In-First-Out wird,

wie der Name schon sagt, der erste Thread in der Warteschlange als nächstes ausgeführt.

Beim FIFO-Scheduling lagen die Verzögerungen im Bereich von 30 Millisekunden, was

sich durch Unterbrechungen von anderen Threads erklären lässt. Bei Round-Robin be-

kommt jeder Thread ein Zeitquantum zugeteilt, wovon seine Ausführungsdauer abhängt.

Bei Round-Robin-Policy ist es nicht möglich, das Zeitquantum festzulegen. Das vorge-

gebene Zeitquantum ist beim Testsystem 25 Millisekunden, was es unmöglich macht,

alle Threads auf die Millisekunde genau zu synchronisieren. Bei der Deadline-Policy

bekommt jeder Thread eine Periode und eine Laufzeit zugeteilt. Der Scheduler lässt

jeden Thread dann jede Periode so lange laufen, wie in der Laufzeit angegeben ist. Bei

dieser Implementierung wurde eine Deadline-Scheduling-Policy mit einer Laufzeit von

50 Mikrosekunden und einer Periode von 1 Millisekunde gewählt, damit jeder Thread

möglichst genau einmal pro Millisekunde eine Ausgabe tätigt. Nach der Festlegung der

Scheduling-Policy für den Thread läuft die Zeitmessung. Jeder Thread wartet, bis die

Startzeit beginnt, indem er usleep(1); aufruft und dann den jetzigen Zeitwert erfasst.

Sobald die Startzeit erreicht ist, schreibt er seine ID, die jetzige Schleifennummer und

seinen jetzigen Zeitstempel in eine Datei. Danach erhöht er die nächste Startzeit um die

Intervalllänge und inkrementiert die Schleifennummer. Falls er die maximale Anzahl

von Durchläufen erreicht hat, bricht die Ausführung ab. Nach der Ausführung werden

die Zeitstempeln in den Dateien miteinander verglichen und es wird überprüft, ob alle

Threads den gleichen Zeitstempel in jedem Schleifendurchlauf haben.

Bei der reinen C-Implementierung mit verbessertem Scheduling ließen sich schon bessere

Ergebnisse erzielen. Die Ein- und Ausgabe von Dateien ist jedoch mit einem hohen

Zeitaufwand verbunden, da hier in persistentem Speicher während der Ausführung ge-

schrieben wird. Deswegen wurde eine weitere Implementierung vorgenommen, wobei

die Ein- und Ausgabe vermieden wurde, indem man die Zeitstempel stattdessen via TCP

verschickt und per Serversocket in Java einliest. Zusätzlich werden die empfangenen

Zeitwerte in ein CEP-System eingegeben. In diesem Fall wurde Esper verwendet. Die

Implementierung auf C-Seite ist hier nahezu identisch. Der Ablauf der Simulation ist hier

wie folgt. Zuerst werden Werte wie die Thread- und Schleifenanzahl sowie die Startzeit

initialisiert. Danach werden Threads erstellt, welche Server-Sockets aufbauen und auf

ankommende Verbindungen warten. Es gibt dabei eine 1:1 Beziehung zwischen Threads

auf C- und Java-Seite. Sobald eine Verbindung aufgebaut wird, wird ein Socket erstellt

und die empfangenen Werte in Ereignisse verpackt und an die Esper-Engine geschickt.

Ein Ereignis besteht aus einer Thread-ID, einer Schleifendurchlaufsnummer und einem

Integer-Wert. Während die Threads auf Java-Seite auf ankommende Verbindungen war-

ten, wird die C-Seite via JNI gestartet. Jeder Thread auf C-Seite generiert einen Wert

und schickt diesen per TCP an die Java-Seite. Es wurde TCP genommen, da der teure

Verbindungsaufbau nur einmal beim Start des Threads passiert und somit keine Nachteile

gegenüber anderen Protokollen, wie zum Beispiel dem User Datagram Protocol (UDP),

entstehen. Als nächstes wird eine simple Anfrage an die Esper CEP-Engine gestellt,

34

5.3 Timer, Monitor und Threads in Java

welche alle empfangenen Ereignisse auswählt. Außerdem wird ein Listener hinzugefügt,

welcher die empfangenen Zeitstempel in ein zweidimensionales Array schreibt, wobei der

Zeilenindex gleich der Threadnummer und der Spaltenindex gleich der Schleifennummer

ist. Am Ende der Ausführung werden die Zeitstempel des Array verglichen und die

maximale Verzögerung zwischen zwei Threads ausgegeben.

Bei der gemischten Implementierung von C und Java geht jedoch die Echtzeit verloren, da

auf Java-Seite Just-In-Time-Kompilierung vorgenommenwird und die Garbage-Collection

zu beliebigen Zeitpunkten aktiv werden kann laufen kann, wann sie will. Deswegen

wurde auch noch eine reine Implementierung der Zeitmessung in C vorgenommen. Diese

ist nahezu identisch zu der C-Implementierung mit Echtzeit-Schedulern, nur dass die

Zeitwerte in ein Array geschrieben werden und dass am Schluss der main-Funktion

die Zeitwerte verglichen werden und die maximale zeitliche Verzögerung zwischen den

Threads gemessen wird.

5.3 Timer, Monitor und Threads in Java

Da nach den anfänglichen Versuchen klar war, dass harte Echtzeit mit „normalem“ Java

nicht möglich ist, wurde die Zielsetzung aufgelockert. Diese Umstellung ist möglich, da

Esper es erlaubt, dass man ein Zeitfenster definiert, in dem Werte berücksichtigt werden.

Die folgenden Implementierungen wurden vorgenommen, um zu untersuchen, wie groß

die maximale Verzögerung zwischen den Threads bei der Wertegenerierung ist.

Bei dieser Implementierung läuft die Simulation wie folgt ab. Zuerst werden mehrere Va-

riablen deklariert, darunter: die Anzahl der Threads, die Anzahl der Schleifendurchläufe,

die Länge des Intervalls und die Startzeit. Anschließend wird ein Timer erstellt mit der

Startzeit, dem Intervall und einem Monitor als Argumenten. Jedes Mal wenn der Timer

dann feuert, benachrichtigt der Monitor alle Objekte, die auf ihn warten. Außerdem

werden Threads gestartet, welche die Schleifenanzahl und den Monitor als Argumente

haben. Die Threads warten auf den Monitor. Sobald sie von ihm benachrichtigt wer-

den, schreiben sie einen Zeitstempel in ein eindimensionales Array mit der aktuellen

Schleifendurchlaufnummer als Index und warten dann auf die nächste Benachrichtigung

vom Monitor. Dies wird solange durchgeführt, wie in der Schleifenanzahl angegeben.

Nachdem alle Threads beendet sind, werden ihre Arrays zu einem zweidimensionalem Ar-

ray fusioniert, nach Thread-ID und Schleifendurchlaufnummer als Indizes. Zum Schluss

werden die minimalen und maximalen Thread-Zeiten von jedem Schleifendurchlauf

aufgenommen und deren Differenz berechnet. Das Maximum dieser Differenzen wird

berechnet und dann als die maximale zeitliche Verzögerung zwischen zwei Threads in

allen Schleifendurchläufen ausgegeben.

35

5 Datengenerierung zum Benchmarking von CEP-Systemen

notifyAll()

MyMonitor

cancel() Aufruf

MyTimer

Zeitstempel in
threadTimes-Array schreiben

Auf Monitor warten

MyThread

Maximale zeitliche Differenz ausgeben

Differenzen berechnen

Minimale und maximale Zeitwerte aller Schleifendurchläufe ermitteln

Auf Beendigung aller Threads warten

Threads initialisieren, starten und zur Threadliste hinzufügen

TimerMonitorDelayCalculator

[nächste Periode
noch nicht erreicht]

[nächste Periode erreicht]

[Startzeit erreicht]

[Startzeit noch nicht erreicht]

[i != numberOfThreads]

[j != numberOfLoops]

[j == numberOfLoops]

[i == numberOfThreads]

Abbildung 5.1: Aktivitätsdiagramm zum Unterkapitel 5.3

36

5.4 Esper und Java

5.4 Esper und Java

Hier läuft die Simulation sehr analog zur vorherigen Implementierung ab. Es werden

am Anfang wieder mehrere Variablen deklariert, darunter: die Anzahl der Threads, die

Anzahl der Schleifendurchläufe, die Länge des Intervalls und die Startzeit. Anschließend

wird ein Timer erstellt mit der Startzeit, dem Intervall und einemMonitor als Argumenten.

Jedes Mal wenn der Timer dann feuert, benachrichtigt der Monitor alle Objekte, die auf

ihn warten. Es werden auch wieder Threads gestartet, welche die Schleifenanzahl und den

Monitor als Argumente haben. Die Threads warten auf den Monitor. Sobald sie von ihm

benachrichtigt werden, schreiben sie einen Zeitstempel in ein eindimensionales Array

mit der aktuellen Schleifendurchlaufnummer als Index und warten dann auf die nächste

Benachrichtigung vom Monitor. Einer der wenigen Unterschiede ist, dass die Threads

ihre Zeitstempel dieses Mal nicht in ein Array schreiben, sondern ein Ereignis erstellen

und dieses an das CEP-System schicken. Dabei besteht ein Ereignis aus einer Thread-

ID, einer Schleifendurchlaufsnummer und einem Integer-Wert. Der Thread führt diese

Aktion so oft aus, wie in der Schleifenanzahl angegeben. Als nächstes wird eine simple

Anfrage an die Esper Cep-Engine gestellt, welche alle empfangenen Ereignisse auswählt.

Außerdem wird ein Listener hinzugefügt, welcher die empfangenen Zeitstempel in ein

zweidimensionales Array schreibt, wobei der Zeilenindex gleich der Threadnummer und

der Spaltenindex gleich der Schleifennummer ist. Am Ende der Ausführung werden die

Zeitstempel des Array verglichen und die maximale Verzögerung zwischen zwei Threads

ausgegeben.

5.5 Timer, Monitor und Threads in Echtzeit-Java

Nachdem bei der endgültigen C-Implementierung mit der Benutzung eines Echtzeit-

Betriebssystemkerns deutliche Performanzgewinne zu sehen waren, wurde untersucht,

ob es nicht auch Echtzeitalternativen zur Java Virtual Machine (JVM) gibt. Eine davon ist

die JamaicaVM, welche eine deterministische Garbage Collection, Ahead-Of-Time Kom-

pilierung und harte Echtzeit verspricht. Bei der normalen JVM sorgen die willkürliche

Garbage Collection und die Just-In-Time (JIT) Kompilierung dazu, dass Echtzeitgarantien

schwer einzuhalten sind. JamaicaVM implementiert die „Realtime specification for Java“

(RTSJ). Es werden außerdem Echtzeit-Threads angeboten, welche strikt priorisiert werden

können und welche auch, ähnlich zum Deadline Scheduling, Perioden und Laufzeiten

zugewiesen bekommen können. Bei dieser Implementierung läuft die Simulation wie folgt

ab. Zuerst wird ein Objekt zum Halten der Daten instanziiert, die Daten die es hält sind

unter anderem: die Anzahl der Threads, die Anzahl der Schleifendurchläufe, die Länge

des Intervalls und die Startzeit. Anschließend wird ein Echtzeit-Timer erstellt mit der

Startzeit, dem Intervall und einem Monitor als Argumenten. Das Echtzeit-Timer beginnt

ab der deklarierten Startzeit an, Ereignisse zu feuern und dies wird in Intervallen wieder-

holt, wobei die Dauer zwischen zwei Ereignissen durch die Intervalllänge festgelegt ist.

Jedes Mal wenn der Echtzeit-Timer ein Ereignis feuert, benachrichtigt der Monitor alle

37

5 Datengenerierung zum Benchmarking von CEP-Systemen

Objekte, die auf ihn warten. Außerdem werden Echtzeit-Threads gestartet, welche die

Schleifenanzahl, den Monitor, eine Priorität und eine Periode als Argumente haben. Als

Priorität wird die maximal mögliche Priorität für Echtzeit-Threads benutzt. Es wird eine

Periode von 1 Mikrosekunde benutzt. Die Threads warten auf den Monitor. Sobald die

Threads vom Monitor die Freigabe zum Fortfahren erhalten, wird die jetzige Uhrzeit von

ihnen mittels Clock.getRealtimeClock().getTime() in das Zeitstempel-Array geschrieben

und warten dann auf die nächste Benachrichtigung vom Monitor. Dies wird solange

durchgeführt, wie in der Schleifenanzahl angegeben. Nachdem alle Threads beendet sind,

werden ihre Arrays zu einem zweidimensionalem Array fusioniert, nach Thread-ID und

Schleifendurchlaufnummer als Indizes. Zum Schluss werden die minimalen und maxi-

malen Thread-Zeiten von jedem Schleifendurchlauf aufgenommen und deren Differenz

berechnet. Das Maximum dieser Differenzen wird berechnet und dann als die maximale

zeitliche Verzögerung zwischen zwei Threads in allen Schleifendurchläufen ausgege-

ben. Die RealtimeThread-Objekte kümmert sich um die Aufnahme der Zeitwerte. Sie

besitzt die Anzahl der Schleifendurchläufe, das myMonitor-Objekt und ein Array namens

threadTimes für die Zeitwerte als Attribute. In ihrer Run-Methode wird eine for-Schleife

aufgerufen, welche so oft durchlaufen wird, wie in der Anzahl der Schleifendurchläufe

angegeben. In der for-Schleife wird auf das MyRTMonitor-Objekt gewartet und dann die

jetzige Zeit in das Array threadTimes geschrieben mit der Schleifenanzahl als Index.

5.6 Threads mit integrierten Timern in Echtzeit-Java

Es wurde auch noch eine zweite Implementierung in Echtzeit-Java entwickelt, um zu

untersuchen, ob sich eine bessere Performanz erreichen lässt, falls nicht alle Threads nur

durch einen Timer und Monitor synchronisiert werden, sondern dass alle Threads ihre

eigenen Timer besitzen. Die Simulation ist wie folgt aufgebaut. Zuerst werden mehrere

Variablen deklariert, unter anderem: die Anzahl der Threads, die Anzahl der Schleifen-

durchläufe, die Länge des Intervalls und die Startzeit. Im Hauptprogrammwird dieses Mal

kein Echtzeit-Timer erstellt. Es werden, wie in der vorherigen Implementierung, Echtzeit-

Threads gestartet, welche die Schleifenanzahl, denMonitor, eine Priorität und eine Periode

als Argumente haben. Jeder Thread bekommt jeweils genau einen Timer-Objekt zuge-

wiesen. Das Timer-Objekt beinhaltet einen Echzeit-Timer. Jeder Thread wartet auf sein

Timer-Objekt. Sobald die Threads von ihren Timer-Objekten die Freigabe zum Fortfahren

erhalten, wird die jetzige Uhrzeit von ihnen mittels Clock.getRealtimeClock().getTime() in
das Zeitstempel-Array geschrieben und warten dann auf die nächste Benachrichtigung

vom Monitor. Dies wird solange durchgeführt, wie in der Schleifenanzahl angegeben.

Nachdem alle Threads beendet sind, werden ihre Arrays zu einem zweidimensionalem Ar-

ray fusioniert, nach Thread-ID und Schleifendurchlaufnummer als Indizes. Zum Schluss

werden die minimalen und maximalen Thread-Zeiten von jedem Schleifendurchlauf

aufgenommen und deren Differenz berechnet. Das Maximum dieser Differenzen wird

berechnet und dann als die maximale zeitliche Verzögerung zwischen zwei Threads in

allen Schleifendurchläufen ausgegeben.

38

6 Evaluation

In diesem Kapitel werden die Implementierungen mittels Messergebnissen evaluiert. Die

Evaluationwurde auf einemRechner vomModell Lenovo ideapad 100S-14IBR durchgeführt.

Der Rechner besitzt einen Intel Pentium CPU N3710 Prozessor, welcher auf 1.6 GHz

getaktet ist und 4 Kerne sowie eine Wortlänge von 64 bit besitzt. Zusätzlich enthält

der Prozessor einen L1 Cache mit 32 KB Größe und einen L2 Cache mit 1 MB Größe.

Außerdem verfügt der Rechner über insgesamt 4 GB Arbeitsspeicher, welcher aus zwei

Einheiten vom Typ Samsung SODIMM DDR3 Synchronous besteht, welche jeweils 2 GB
Speicher besitzen und auf 1600 MHz getaktet sind. Das Motherboard ist vom Typ Aristotle
14. Die Festplatte des Rechners ist vom Typ Samsung MZNTY256 und besitzt 238 GiB

Speicher. Das installierte Betriebssystem ist Ubuntu 16.04.3 LTS. Die installierten Kernel

sind Linux 4.10.0-37-generic x86_64 und Linux 4.9.40-rt30 x86_64.

Die Evaluation ist wie folgt gegliedert: zuerst wird die C-Implementierung besprochen,

dann die Java-Implementierung, danach eine Java-Implementierung mit Anschluss an

Esper, dann noch zwei Implementierung in Echtzeit-Java und am Schluss werden die

Ergebnisse diskutiert.

6.1 Implementierung in C

Diese Implementierung wurde mit dem Befehl gcc -O3 -lrt -pthread <Eingabedatei> -o
<Ausgabedatei> kompiliert. Das -lrt-Flag sagt aus, dass die Ausgabedatei mit der Bibliothek

rt statisch gelinkt sein sollte. Da dies zur Kompilierzeit geschieht, weiß der Compiler,

welche Funktionen benötigt werden und kann eventuell Optimierungen vornehmen. Beim

dynamischen Linken der Bibliothek, also das Linken zur Laufzeit, wäre das nicht möglich.

Das -O3-Flag sagt aus, dass der Maschinencode soweit wie möglich auf Performanz

optimiert werden soll und ist die höchste Optimierungsstufe, welche vomGNUCCompiler

angeboten wird. Dies spiegelt sich in einer höheren Kompilierzeit wider, was jedoch

wegen der geringen Größe des Programms vernachlässigbar ist. Es wurden 50 Tests mit

jeweils 10 Schleifendurchläufen durchgeführt. Es wurde mit folgenden Threadanzahlen

getestet: 10, 50, 100, 175, 250, 375, 500 und 1000. Jede Threadanzahl wurde mit folgenden

Intervallen (in Millisekunden) getestet: 1, 10, 25, 50 und 100.

Die Evaluation dieser Implementierung wurde auf dem Echtzeit-Kernel ausgeführt. Ab-

bildung 6.2 zeigt, wie performant das Programm ist. Die Median-Latenzen lagen bei 0

für alle Anzahlen von Threads. In C lässt sich somit Wertegenerierung mit 1000 Threads

39

6 Evaluation

0

50

100

150

200

250

300

350

400

1 10 25 50 100

St
an

d
ar

d
ab

w
ei

ch
u

n
g

(i
n

 m
s)

Intervall (in ms)

1000 Threads

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.1: Kumulative Standardabweichung der Latenzen der C-Implementierung

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

M
ed

ia
n

 d
er

 L
at

en
z

zw
is

ch
en

 T
h

re
ad

s
(i

n
 m

s)

Anzahl der Threads

Abbildung 6.2: Median der Latenzen der C-Implementierung bei 1Millisekunde Intervall

40

6.2 Timer, Monitor und Threads in Java

0

50

100

150

200

250

300

1 10 25 50 100

M
ed

ia
n

e
d

er
 L

at
en

ze
n

 z
w

is
ch

en

Th
re

ad
s

(i
n

 m
s)

Intervalle (in ms)

1000 Threads

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.3: Kumulative Latenzen der Timer-Monitor-Implementierung in Java

Intervall 1 ms 10 ms 25 ms 50 ms 100 ms

Median 7.95 11.6 ms 5.47 ms 3.41 ms 3.24 ms

Tabelle 6.1:Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Java

auf die Millisekunde synchron betreiben. Jedoch zeigt Abbildung 6.1, dass es bei 500

und 1000 Threads auch Abweichungen der Latenzen gab, welche im dreistelligen Millise-

kundenbereich liegen und damit sehr groß sind. Bis einschließlich 375 Threads waren

die Standardabweichungen der Latenzen für alle Intervalle 0. Dies lässt vermuten, dass

mit dem Vierfachen an Prozessorkernen es möglich ist, bei der Simulation von 1000

Threads eine Median-Latenz von 0 Millisekunden und eine Standardabweichung der

Latenzen von 0 Millisekunden möglich ist. Außerdem besitzt die Implementierung noch

Optimierungspotenzial. Die derzeitige Implementierung ist Busy-Waiting. Jeder Thread

prüft, ob er die Uhrzeit ausgeben soll.

6.2 Timer, Monitor und Threads in Java

Diese Implementierung wurde als Java Archive (JAR) verpackt und dann in der Konsole

ausgeführt. Es wurden 100 Tests mit jeweils 10 Schleifendurchläufen durchgeführt. Es

wurde mit folgenden Threadanzahlen getestet: 10, 50, 100, 175, 250, 375, 500 und 1000.

Jede Threadanzahl wurde mit folgenden Intervallen (in Millisekunden) getestet: 1, 10,

41

6 Evaluation

0

10

20

30

40

50

60

70

80

1 10 25 50 100

St
an

d
ar

d
ab

w
ei

ch
u

n
g

(i
n

 m
s)

Intervall (in ms)

1000 Threads

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.4: Kumulative Standardabweichungen der Timer-Monitor-

Implementierung in Java

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

M
ed

ia
n

 d
er

 L
at

en
z

zw
is

ch
en

 T
h

re
ad

s
(i

n
 m

s)

Anzahl der Threads

Abbildung 6.5:Medianlatenzen der Timer-Monitor-Implementierung in Java bei Inter-

vall von 100 Millisekunden

42

6.2 Timer, Monitor und Threads in Java

Intervall 1 ms 10 ms 25 ms 50 ms 100 ms

Median 2.99 ms 3.18 ms 3.07 ms 2.26 ms 2.35 ms

Tabelle 6.2:Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Java auf Echtzeit-Betriebssystemkern

25, 50 und 100. Die Evaluation dieser Implementierung wurde auf dem Standard-Kernel

ausgeführt.

In Abbildung 6.3 sind die aufsummierten Mediane der Worst-Case-Latenzen zwischen

Threads zu sehen. Hier ist das Intervall von 100 Millisekunden am besten, wobei das

Intervall von 50 Millisekunden nah dran ist. Weiterhin sind in Abbildung 6.4 die aufsum-

mierten Standardabweichungen der Latenzen zwischen Threads zu sehen. Das Intervall

von 100 Millisekunden schneidet dabei am besten ab. Zusätzlich wurde der Median aller

Standardabweichungen der verschiedenen Intervalle berechnet. Die Ergebnisse sind in

Tabelle 6.1 zu sehen.

Da das Intervall von 100 Millisekunden mit 3.24 Millisekunden den niedrigsten Median

aller Standardabweichungen hat, wird es als „bestes“ Intervall zur Wertegenerierung

gesehen, da die aufgenommenen Werte am robustesten und somit am aussagekräftigsten

sein sollten. Es macht auch Sinn, dass die Performanz bei einem Intervall von 100 Millise-

kunden besser ist, da die Threads nicht so oft laufen und CPU-Last beanspruchen. Bei

den kurzen Intervallen kommt es zu einem ähnlichen Verhalten wie bei Busy-Waiting. In
Abbildung 6.5 wird das Wachstum der Latenzen für verschiedene Threadzahlen gezeigt.

Für 1000 Threads beträgt der Median der Latenzen zwischen Threads 60 Millisekunden

und für 500 Threads beträgt er 36 Millisekunden. Die Messungen lassen einen linearen

Trend vermuten. Mithilfe von linearer Regression lässt sich die Latenz Y zwischen Threads

basierend auf X Threads angeben als: Y = 0.056∗X +6.04. Für ein angeschlossenes CEP-

System wie Esper könnte man für 1000 Threads ein Zeitfenster von 92.4 Millisekunden

(60 + 10 * 3.24) wählen. Zu der gemessenen Latenz für 1000 Threads wird das zehnfache

der Standardabweichung aufaddiert. Diese große Sicherheitsmarge sollte garantieren,

dass die erzeugten Werte von Esper in jedem Schleifendurchlauf angenommen werden.

Außerdem wurde dieselbe Implementierung auch noch auf dem Echtzeit-Betriebssystem-

kern getestet. Es wurden wieder 100 Tests mit jeweils 10 Schleifendurchläufen durchge-

führt. Auch wurde wieder mit folgenden Threadanzahlen getestet: 10, 50, 100, 175, 250,

375, 500 und 1000. Die getesteten Intervalle (in Millisekunden) blieben auch gleich: 1, 10,

25, 50 und 100.

In Abbildung 6.6 sind die aufsummierten Mediane der Worst-Case-Latenzen zwischen

Threads zu sehen. Hier ist das Intervall von 25 Millisekunden am besten, wobei das

Intervall von 50 Millisekunden nah dran ist. Weiterhin sind in Abbildung 6.7 die aufsum-

mierten Standardabweichungen der Latenzen zwischen Threads zu sehen. Das Intervall

von 100 Millisekunden schneidet dabei am besten ab. Zusätzlich wurde der Median aller

43

6 Evaluation

0

20

40

60

80

100

120

140

160

180

1 10 25 50 100

M
ed

ia
n

e
d

er
 L

at
en

ze
n

 z
w

is
ch

en

Th
re

ad
s

(i
n

 m
s)

Intervalle (in ms)

1000 Threads

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.6: kumulierte Latenzen der Timer-Monitor-Implementierung in Java auf

Echtzeit-Betriebssystemkern

0

5

10

15

20

25

30

35

1 10 25 50 100

St
an

d
ar

d
ab

w
ei

ch
u

n
g

(i
n

 m
s)

Intervall (in ms)

1000 Threads

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.7: kumulierte Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Java auf Echtzeit-Betriebssystemkern

44

6.3 Esper und Java

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200

M
ed

ia
n

 d
er

 L
at

en
z

zw
is

ch
en

 T
h

re
ad

s
(i

n
 m

s)

Anzahl der Threads

Abbildung 6.8:Medianlatenzen der Timer-Monitor-Implementierung in Java auf

Echtzeit-Betriebssystemkern bei 50 Millisekunden Intervall

Standardabweichungen der verschiedenen Intervalle berechnet. Die Ergebnisse sind in

Tabelle 6.2 zu sehen.

Da das Intervall von 50 Millisekunden mit 2.26 Millisekunden den niedrigsten Median

aller Standardabweichungen hat, wird es als „bestes“ Intervall zur Wertegenerierung

gesehen, da die aufgenommenen Werte am robustesten und somit am aussagekräftigsten

sein sollten. In Abbildung 6.8 wird das Wachstum der Latenzen für verschiedene Thread-

zahlen bei einem Intervall von 50 Millisekunden gezeigt. Für 1000 Threads beträgt der

Median der Latenzen zwischen Threads 44 Millisekunden und für 500 Threads beträgt er

26 Millisekunden. Die Messungen lassen einen linearen Trend vermuten. Mithilfe von

linearer Regression lässt sich die Latenz Y zwischen Threads basierend auf X Threads an-

geben als: Y = 0.039 ∗ X + 6.17. Für ein angeschlossenes CEP-System wie Esper könnte

man für 1000 Threads ein Zeitfenster von 66.6 Millisekunden (44 + 10 * 2.26) wählen. Zu

der gemessenen Latenz für 1000 Threads wird das Zehnfache der Standardabweichung

aufaddiert. Diese große Sicherheitsmarge sollte garantieren, dass die erzeugten Werte

von Esper in jedem Schleifendurchlauf angenommen werden.

6.3 Esper und Java

Diese Implementierung wurde als JAR verpackt und dann in der Konsole ausgeführt. Es

wurden 10 Tests mit jeweils 10 Schleifendurchläufen durchgeführt. Es wurde mit folgen-

den Threadanzahlen getestet: 10, 50, 100, 175, 250, 375, 500 und 1000. Jede Threadanzahl

wurde mit folgenden Intervallen (in Millisekunden) getestet: 1, 10, 25, 50 und 100. Bei

45

6 Evaluation

0

500

1000

1500

2000

2500

3000

1 10 25 50 100

M
ed

ia
n

e
d

er
 L

at
en

ze
n

 z
w

is
ch

en

Th
re

ad
s

(i
n

 m
s)

Intervalle (in ms)

1000 Threads

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.9: Kumulative Latenzen der Java-Esper-Implementierung

0

50

100

150

200

250

300

350

400

1 10 25 50 100

St
an

d
ar

d
ab

w
ei

ch
u

n
g

(i
n

 m
s)

Intervall (in ms)

1000 Threads

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.10: Kumulative Standardabweichungen der Latenzen der Java-Esper-

Implementierung

Intervall 1 ms 10 ms 25 ms 50 ms 100 ms

Median 35.63 ms 12.87 ms 22.2 ms 30.25 ms 21.38 ms

Tabelle 6.3:Mediane der Standardabweichungen der Latenzen der Java-Esper-

Implementierung

46

6.4 Timer, Monitor und Threads in Echtzeit-Java

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

M
ed

ia
n

 d
er

 L
at

en
z

zw
is

ch
en

 T
h

re
ad

s
(i

n
 m

s)

Anzahl der Threads

Abbildung 6.11:Medianlatenzen der Java-Esper-Implementierung bei Intervall von 10

Millisekunden

dieser Implementierung waren die Laufzeiten so hoch, dass mehr Testdurchläufe zeitlich

nicht realisierbar gewesen wären. Die Evaluation dieser Implementierung wurde auf dem

Standard-Kernel ausgeführt.

In Abbildung 6.9 sind die aufsummierten Mediane der Worst-Case-Latenzen zwischen

Threads zu sehen. Das Intervall von 100 Millisekunden schneidet dabei am besten ab.

Weiterhin sind in Abbildung 6.10 die aufsummierten Standardabweichungen der Latenzen

zwischen Threads zu sehen. Auch hier ist das Intervall von 100 Millisekunden am besten.

Zusätzlich wurde der Median aller Standardabweichungen der verschiedenen Intervalle

genommen. Die Ergebnisse sind in Tabelle 6.3 zu sehen.

Da das Intervall von 10 Millisekunden mit 12.87 Millisekunden den niedrigsten Median

aller Standardabweichungen hat, wird es als „bestes“ Intervall zur Wertegenerierung

gesehen, da die aufgenommenen Werte am aussagekräftigsten sein sollten. In Abbildung

6.11 wird das Wachstum der Latenzen für verschiedene Threadzahlen gezeigt. Für 1000

Threads beträgt der Median der Latenzen zwischen Threads 1958 Millisekunden. Die

Messungen lassen einen linearen Trend vermuten. Mithilfe von linearer Regression

lässt sich die Latenz Y zwischen Threads basierend auf X Threads angeben als: Y =
1.99 ∗ X − 53.03.

47

6 Evaluation

0

50

100

150

200

250

300

350

400

450

1 10 25 50 100

M
ed

ia
n

e
d

er
 L

at
en

ze
n

 z
w

is
ch

en

Th
re

ad
s

(i
n

 m
s)

Intervalle (in ms)

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.12: Kumulative Latenzen der Timer-Monitor-Implementierung in Echtzeit-

Java

0

10

20

30

40

50

60

70

80

90

100

1 10 25 50 100

St
an

d
ar

d
ab

w
ei

ch
u

n
g

(i
n

 m
s)

Intervall (in ms)

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.13: Kumulative Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Echtzeit-Java

Intervall 1 ms 10 ms 25 ms 50 ms 100 ms

Median 13.14 7.14 ms 5.98 ms 6.46 ms 7.51 ms

Tabelle 6.4:Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-

Implementierung in Echtzeit-Java

48

6.4 Timer, Monitor und Threads in Echtzeit-Java

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

M
ed

ia
n

 d
er

 L
at

en
z

zw
is

ch
en

 T
h

re
ad

s
(i

n
 m

s)

Anzahl der Threads

Abbildung 6.14: Medianlatenzen der Timer-Monitor-Implementierung in Echtzeit-Java

bei Intervall von 25 Millisekunden

6.4 Timer, Monitor und Threads in Echtzeit-Java

Die Timer-Monitor-Implementierung in Echtzeit-Java wurde mit dem Jamaica Builder zu
einer ausführbaren Datei kompiliert. Es wurden 100 Tests mit jeweils 10 Schleifendurch-

läufen durchgeführt. Es wurde mit folgenden Threadanzahlen getestet: 10, 50, 100, 175,

250, 375, 500 und 1000. Jede Threadanzahl wurde mit folgenden Intervallen (in Millise-

kunden) getestet: 1, 10, 25, 50 und 100. Die Evaluation dieser Implementierung wurde auf

dem Echtzeit-Kernel ausgeführt. Es war nicht möglich, mit 1000 Threads zu testen, da der

Jamaica Builder dies in der Standardkonfiguration nicht zulässt. In Abbildung 6.12 sind

die aufsummierten Mediane der Worst-Case-Latenzen zwischen Threads zu sehen. Das

Intervall von 25 Millisekunden hat dabei die niedrigste kumulative Latenz, dicht gefolgt

vom Intervall mit 10 Millisekunden. Weiterhin sind in Abbildung 6.13 die aufsummierten

Standardabweichungen der Latenzen zwischen Threads zu sehen. Das Intervall von 100

Millisekunden schneidet hier am besten ab. Zusätzlich wurde der Median aller Standard-

abweichungen der verschiedenen Intervalle genommen. Die Ergebnisse sind in Tabelle

6.4 zu sehen.

Da das Intervall von 25Millisekundenmit 5.98Millisekunden den niedrigstenMedian aller

Standardabweichungen hat, wird es als „bestes“ Intervall zur Wertegenerierung gesehen,

da die aufgenommenen Werte am aussagekräftigsten sein sollten. In Abbildung 6.14 wird

das Wachstum der Latenzen für verschiedene Threadzahlen gezeigt. Für 500 Threads

beträgt der Median der Latenzen zwischen Threads 90.5 Millisekunden. Die Messungen

lassen einen linearen Trend vermuten. Mithilfe von linearer Regression lässt sich die

Latenz Y zwischen Threads basierend auf X Threads angeben als: Y = 0.15 ∗ X + 11.64.

49

6 Evaluation

0

100

200

300

400

500

600

700

800

900

1000

1 10 25 50 100

M
ed

ia
n

e
d

er
 L

at
en

ze
n

 z
w

is
ch

en

Th
re

ad
s

(i
n

 m
s)

Intervalle (in ms)

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.15: Kumulative Latenzen der Threads mit integrierten Timern in Echtzeit-

Java

Intervall 1 ms 10 ms 25 ms 50 ms 100 ms

Median 25.2 ms 36.89 ms 40.64 ms 47.95 ms 26.73 ms

Tabelle 6.5: Mediane aller Standardabweichungen der Threads mit integrierten Timern

in Echtzeit-Java für die verschiedenen Intervalle

Unter Benutzung dieser Formel liegt die geschätzte Latenz für 1000 Threads bei 162

Millisekunden.

6.5 Threads mit integrierten Timern in Echtzeit-Java

Die Implementierung der Threads mit integrierten Timern in Realtime Java wurde mit

dem Jamaica Builder zu einer ausführbaren Datei kompiliert. Es wurden 100 Tests mit

jeweils 10 Schleifendurchläufen durchgeführt. Es wurde mit folgenden Threadanzahlen

getestet: 10, 50, 100, 175, 250, 375, 500 und 1000. Jede Threadanzahl wurde mit folgenden

Intervallen (in Millisekunden) getestet: 1, 10, 25, 50 und 100. Die Evaluation dieser Im-

plementierung wurde auf dem Echtzeit-Kernel ausgeführt. Wie im vorherigen Kapitel

erwähnt, war es nicht möglich, mit 1000 Threads zu testen. In Abbildung 6.15 sind die

aufsummierten Mediane der Latenzen zwischen Threads zu sehen. Das Intervall von 1

Millisekunde hat dabei die niedrigste kumulative Latenz. Weiterhin sind in Abbildung

6.16 die aufsummierten Standardabweichungen der Latenzen zwischen Threads zu sehen.

Das Intervall von 100 Millisekunden schneidet hier am besten ab, wobei das Intervall von

50

6.5 Threads mit integrierten Timern in Echtzeit-Java

0

50

100

150

200

250

300

350

400

450

1 10 25 50 100

St
an

d
ar

d
ab

w
ei

ch
u

n
g

(i
n

 m
s)

Intervall (in ms)

500 Threads

375 Threads

250 Threads

175 Threads

100 Threads

50 Threads

10 Threads

Abbildung 6.16: Kumulative Standardabweichungen der Latenzen der Threads mit inte-

grierten Timern in Echtzeit-Java

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

M
ed

ia
n

 d
er

 L
at

en
z

zw
is

ch
en

 T
h

re
ad

s
(i

n
 m

s)

Anzahl der Threads

Abbildung 6.17:Medianlatenzen der Threads mit integrierten Timern in Echtzeit-Java

bei Intervall von 1 Millisekunden

51

6 Evaluation

1 Millisekunde ziemlich nah dran ist. Zusätzlich wurde der Median aller Standardabwei-

chungen der verschiedenen Intervalle genommen. Die Ergebnisse sind in Tabelle 6.5 zu

sehen.

Da das Intervall von 1 Millisekunde mit 25.2 Millisekunden den niedrigsten Median aller

Standardabweichungen hat, wird es als „bestes“ Intervall zur Wertegenerierung gesehen,

da die aufgenommenen Werte am aussagekräftigsten sein sollten. In Abbildung 6.17 wird

das Wachstum der Latenzen für verschiedenen Threadzahlen gezeigt. Für 500 Threads

beträgt der Median der Latenzen zwischen Threads 372.5 Millisekunden. Der Graph lässt

einen linearen Trend erkennen. Mithilfe von linearer Regression lässt sich die Latenz Y

zwischen Threads basierend auf X Threads angeben als: Y = 0.72 ∗ X − 22.14. Für 1000
Threads liegt die geschätzte Latenz bei 697.86 Millisekunden.

6.6 Diskussion

Bei fast allen Implementierungen ist eine Korrelation zwischen aufsteigendem Intervall

und absteigender kumulativer Latenz zu beobachten. Zusätzlich zeigen fast alle Implemen-

tierungen einen Ausreißer bei den Standardabweichungen der Latenzen beim Intervall mit

50 Millisekunden Länge ab einer Threadanzahl von 500 oder 1000. Es ist nicht klar, warum

es dieses lokale Maximum bei 50 Millisekunden gibt. Bei der C-Implementierung und den

Threads mit integrierten Timern in Echtzeit-Java, zwei Implementierungen bei denen die

Threads sich selbst synchronisieren, ist bei 1 Millisekunde der Median der Standardab-

weichungen der Latenzen am niedrigsten. Bei den Timer-Monitor-Implementierungen

verbessert sich der Median der Standardabweichungen der Latenzen erst bei höheren

Intervallen. Hier gab es keine Gemeinsamkeiten. Außerdem deuten fast alle Implementie-

rungen auf einen linearen Zusammenhang zwischen Threadanzahl und Latenz zwischen

Threads. Einzige Ausnahme ist die C-Implementierung, die sehr performant ist. Es ist

jedoch zu vermuten, dass sich das C-Programm ab einer bestimmten Anzahl von Threads

analog verhält.

Verglichen zur Timer-Monitor-Implementierung auf dem Echtzeit-Betriebssystemkern

gibt es bei der Implementierung auf dem normalen Linux-Betriebssystemkern ein Plus

von 36 Prozent bei der besten Median-Latenz für 1000 Threads und ein Plus von 43

Prozent bei der besten Median-Standardabweichung der Latenzen. Dies macht Sinn, da

auf dem Echtzeit-Betriebssystemkern hoch priorisierte Ausführungen gar nicht oder

nicht so oft von unwichtigen Prozessen unterbrochen werden.

Im Vergleich der Timer-Monitor-Implementierung auf dem normalen Betriebssystemkern

und der Java-Esper-Implementierung gibt es bei dieser ein Plus von 3163 Prozent bei der

besten Median-Latenz für 1000 Threads. Der kleinste Median der Standardabweichung

der Latenzen ist im Vergleich zur reinen Java-Implementierung um 297 Prozent gestiegen.

Dieser Anstieg ist nicht überraschend wenn man bedenkt, dass nach der Werteerzeugung

noch die Verarbeitung in Esper ablaufen muss.

52

6.6 Diskussion

Verglichen zur Timer-Monitor-Implementierung in Java auf dem Echtzeit-Betriebs-

systemkern gibt es bei der Timer-Monitor-Implementierung in Echtzeit-Java ein Plus

von 248 Prozent bei der besten Median-Latenz bei 500 Threads und einem Plus von 164

Prozent bei der besten Median-Standardabweichung der Latenzen. Dies ist überraschend,

da die Echtzeitversion von Java strengere Garantien geben müsste und die Kompilie-

rung auch noch Performanzgewinne liefern sollte. Es kann jedoch daran liegen, dass

nur die Standardkonfiguration der aicas-Werkzeuge benutzt wurde und auch kein Profil

der Ausführung erstellt wurde, welches die Performanz noch weiter optimieren soll.

Trotzdem kann es sich lohnen, diese Echtzeit-Implementierung zu benutzen, da durch

die JamaicaVM mehr Echtzeit-Garantien geboten werden und somit eine verlässlichere,

auf einem höheren Niveau reproduzierbare, Ausführung versprochen wird.

Verglichen zu der Timer-Monitor-Implementierung in Echtzeit-Java gibt es bei den

Threads mit integrierten Timern beim besten Median der Latenz ein Plus von 311 Prozent

und beim besten Median der Standardabweichung der Latenzen ein Plus von 321 Prozent.

Anhand von diesen Werten lässt sich zeigen, dass die Threads mit integrierten Timern

wesentlich ineffizienter sind. Dies ist nicht überraschend, da die Threads sich um ihre

Zeitwerte kümmern und die gemeinsame Ressource Timer von diesen mehreren Threads

angefragt wird und es somit zu größeren Verzögerungen kommt.

Den Vergleichen nach, scheint die Timer-Monitor-Implementierung in „normalem“ Java

auf einem Echtzeit-Betriebssystemkern die performanteste zu sein und sich am besten

für die Wertegenerierung für CEP-Systeme zu eignen.

53

7 Zusammenfassung und Ausblick

Immer mehr Haushaltsgeräte undMaschinen werden mit dem Internet verbunden. Diesen

Trend nennt man das Internet der Dinge (Englisch: Internet Of Things, kurz: IoT). Ein

zentrales Problem dabei ist die Simulation von IoT-Umgebungen. Diese ist sehr teuer, da

man für jede Simulation Hardware bereitstellen muss. Daher ist eine Software-basierte

Simulation erstrebenswert. Ein weiteres Problem im Internet der Dinge ist die auto-

matische Überwachung von IoT-Umgebungen und das Reagieren auf Situationen. Dies

geschieht meist mithilfe von Complex-Event-Processing-Systemen (kurz: CEP-Systeme).

Diese bekommen einen Strom an Ereignissen, lesen diesen ein und treffen, basierend

auf den Ereignisdaten, Entscheidungen. Für CEP-Systeme gibt es bislang noch keine

Benchmarks. Dieses Problem soll durch andere Arbeiten gelöst werden. In dieser Arbeit

wurde deswegen auch versucht, eine Datengenerierung für Benchmarks zu entwickeln.

Zusätzlich wurde erforscht, wie viele Threads synchron Daten erzeugen können und wie

groß die maximale zeitliche Abweichung bei asynchronen Threads ist.

Das Simulationswerkzeug besteht aus einem React Frontend und einem Spring Boot

Backend. Es erlaubt die Angabe von: Datentyp, Startwert, Änderungsrate, Ausreißerwahr-

scheinlichkeit, Intervalllänge und der maximalen positivn und negativen Abweichung.

Es können beliebig viele Sensorsimuationen erstellt werden mit unterschiedlichen Pa-

rametern. Bei der Simulation werden Werte über MQTT ausgegeben und an Topics

mit dem Sensornamen verschickt. Im Frontend wird eine Liste der Sensorsimulationen

und eine Konsole mit den derzeit generierten Werten angezeigt. Das Backend verarbei-

tet die HTTP-Anfragen des Frontend und verwaltet die Sensorsimulationen und deren

Wertegenerierung, sowie die Erzeugung der MQTT-Nachrichten.

Es wurden verschiedene Implementierungen vorgestellt. Die erste Implementierung ist

eine Abwandlung des Simulationswerkzeuges, wobei die Threads sich zusammen durch

Busy Waiting synchronisieren. Als nächstes wurde ein analoges Programm in C vor-

gestellt, welches über das Java Native Interface aufgerufen wird. Bei dem C-Programm

wurden auch unterschiedliche Scheduling-Verfahren ausprobiert, unter anderemDeadline-

Scheduling, welches die besten Resultate liefert. Beim Deadline-Scheduling wird jedem

Thread pro Periode eine bestimmte, maximale Laufzeit zugewiesen. Der Vergleich der

Zeiten lief über das Vergleichen von Dateien mit den Zeitwerten. Das Arbeiten mit Da-

teien hat jedoch einen großen Zusatzaufwand, weshalb als nächstes untersucht wurde,

ob sich mit Kommunikation über TCP eine bessere Performanz erreichen lässt. Nach

diesen Tests hatte es sich gezeigt, dass es mit Java auf der gegebenen Hardware nicht

möglich ist, 1000 Threads mit einem Minimalintervall von 1 Millisekunde zu synchroni-

sieren. Deswegen wurde eine weitere reine C-Implementierung vorgenommen, bei der

55

7 Zusammenfassung und Ausblick

die Zeitwerte in Arrays geschrieben und am Ende miteinander verglichen werden. Für die

Java-Implementierungen wurde die Zielsetzung aufgelockert und es wurde stattdessen

untersucht, wie groß die maximale zeitliche Abweichung zwischen zwei Threads ist.

Diese Umstellung war möglich, da Esper es erlaubt, dass man ein Zeitfenster definiert,

in dem Werte berücksichtigt werden. Als nächstes wurde eine Implementierung in Java

vorgestellt, welche einen Monitor mit Timer beinhaltet, welcher Threads synchronisiert.

Außerdem wurde mit JamaicaVM, einer virtuellen Maschine welche die Echtzeitspezifi-

kation von Java implementiert, experimentiert. Hier war es möglich, Echtzeit-Threads

und Ahead-Of-Time-Kompilierung zu benutzen.

Zum Abschluss, wurden die verschiedenen Implementierungen evaluiert. Die C-

Implementierung wurde als Maßstab genommen, da sie die untere Schranke für die

Performanz ist. Hier war es möglich, 1000 Threads synchron laufen zu lassen. Bei den

Java-Implementierungen war die Timer-Monitor-Implementierung auf dem Echtzeit-

Betriebssystemkern die beste mit einer Medianlatenz von 44 Millisekunden bei 1000

Threads. Verglichen dazu hat die Timer-Monitor-Implementierung in Echtzeit-Java ein

Plus von 248 Prozent bei der besten Median-Latenz bei 500 Threads und einem Plus

von 164 Prozent bei der besten Median-Standardabweichung der Latenzen. Dies ist über-

raschend, da die Echtzeitversion von Java strengere Garantien geben müsste und die

Ahead-Of-Time-Kompilierung auch noch Performanzgewinne liefern sollte.

Basierend auf dieser Arbeit ist es möglich, Sensoren zu simulieren und die simulier-

ten Sensoren an Monitoring-Tools oder CEP-Systeme anzuschließen. Außerdem wird

geschätzt, dass bei der Wertegenerierung in Java für CEP-Systeme die maximale Verzöge-

rung für 1000 Threads bei 44 Millisekunden liegt. Mit dem Zehnfachen des Median der

Standardabweichung addiert, sollte es für Benchmarks ausreichend sein, das Zeitfenster

in Esper auf 66.6 Millisekunden festzulegen.

Ausblick

Die Simulation ist noch sehr simpel. In Zukunft könnten noch komplexere Simulations-

modelle benutzt werden. Zum Beispiel, zur Simulation von Temperatursensoren gibt

es bessere Modelle, die auf Thermodynamik beruhen und realistischere Simulationen

ermöglichen. Das gilt analog für Geräusch- und Lichtsensoren. Man könnte spezialisierte

Unterklassen der Sensorsimulation erstellen, die besser angepasst sind an die Art der

Sensoren, die man simulieren möchte.

Bei der Wertegenerierung für CEP-Systeme gibt es noch folgende Herausforderungen

für zukünftige Arbeiten. Das Werkzeug muss in die Benchmarking-Systeme integriert

werden. Zukünftig sollen verschiedene CEP-Systeme unterstütz werden. Weiterhin müs-

sen Adapter implementiert werden und es muss sichergestellt werden, dass es keine

Zeitverluste bei den verschiedenen Verarbeitungsschritten gibt.

56

Literaturverzeichnis

[15] Trends in the cost of computing. https://aiimpacts.org/trends-in-the-cost-

of-computing/. 2015 (zitiert auf S. 13).

[17a] https://nest.com/. 2017 (zitiert auf S. 13).

[17b] Bosch Feuermelder. https://www.bosch-smarthome.com/de/de/produkte/

smart-system-solutions/rauchmelder?WT.mc_id=iot_hub. 2017 (zitiert auf

S. 13).

[17c] Bosch IoT Suite. https : / /www.bosch- si . com/ iot - platform/bosch- iot -

suite/homepage-bosch-iot-suite.html. 2017 (zitiert auf S. 13).

[17d] Nest Cam IQ Outdoor. https://nest.com/cameras/nest-cam-iq-outdoor/

overview/. 2017 (zitiert auf S. 13).

[BW01] A. Burns, A. J. Wellings. Real-time systems and programming languages: Ada
95, real-time Java, and real-time POSIX. Pearson Education, 2001 (zitiert

auf S. 16).

[CCM+01] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana et al.Web services
description language (WSDL) 1.1. 2001 (zitiert auf S. 19).

[CKE+15] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas.

„Apache flink: Stream and batch processing in a single engine“. In: Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering 36.4

(2015) (zitiert auf S. 22).

[DG08] J. Dean, S. Ghemawat. „MapReduce: simplified data processing on large

clusters“. In: Communications of the ACM 51.1 (2008), S. 107–113 (zitiert

auf S. 18).

[DM02] E. D. Dolan, J. J. Moré. „Benchmarking optimization software with perfor-

mance profiles“. In: Mathematical programming 91.2 (2002), S. 201–213

(zitiert auf S. 16).

[Fac17a] Facebook. React License. https://github.com/facebook/react/blob/master/

LICENSE. Okt. 2017 (zitiert auf S. 24).

[Fac17b] Facebook. React Open Source. https://github.com/facebook/react. Okt. 2017

(zitiert auf S. 24).

[Gar13] N. Garg. Apache Kafka. Packt Publishing Ltd, 2013 (zitiert auf S. 21).

57

https://aiimpacts.org/trends-in-the-cost-of-computing/
https://aiimpacts.org/trends-in-the-cost-of-computing/
https://nest.com/
https://www.bosch-smarthome.com/de/de/produkte/smart-system-solutions/rauchmelder?WT.mc_id=iot_hub
https://www.bosch-smarthome.com/de/de/produkte/smart-system-solutions/rauchmelder?WT.mc_id=iot_hub
https://www.bosch-si.com/iot-platform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://www.bosch-si.com/iot-platform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://nest.com/cameras/nest-cam-iq-outdoor/overview/
https://nest.com/cameras/nest-cam-iq-outdoor/overview/
https://github.com/facebook/react/blob/master/LICENSE
https://github.com/facebook/react/blob/master/LICENSE
https://github.com/facebook/react

Literaturverzeichnis

[GBB17] Z. Gao, C. Bird, E. T. Barr. „To type or not to type: quantifying detectable

bugs in JavaScript“. In: Proceedings of the 39th International Conference on
Software Engineering. IEEE Press. 2017, S. 758–769 (zitiert auf S. 25).

[HBS+16] P. Hirmer, U. Breitenbücher, A. C. F. da Silva, K. Képes, B.Mitschang,M.Wie-

land. „Automating the Provisioning and Configuration of Devices in the

Internet of Things“. Englisch. In: Complex Systems Informatics and Modeling
Quarterly 9 (Dez. 2016), S. 28–43. issn: 2255 - 9922. doi: 10.7250/csimq.2016-

9.02. url: http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/

NCSTRL_view.pl?id=ART-2016-23&engl=0 (zitiert auf S. 13).

[HLC+14] S. N. Han, G.M. Lee, N. Crespi, N. Van Luong, K. Heo, M. Brut, P. Gatellier.

„DPWSim: A simulation toolkit for IoT applications using devices profile

for web services“. In: Internet of Things (WF-IoT), 2014 IEEE World Forum
on. IEEE. 2014, S. 544–547 (zitiert auf S. 19).

[HWBM16] P. Hirmer, M.Wieland, U. Breitenbücher, B. Mitschang. „Dynamic Ontology-

based Sensor Binding“. Englisch. In: Advances in Databases and Information
Systems. 20th East European Conference, ADBIS 2016, Prague, Czech Republic,
August 28-31, 2016, Proceedings. Bd. 9809. Information Systems and App-

lications, incl. Internet/Web, and HCI. Prague, Czech Republic: Springer

International Publishing, Aug. 2016, S. 323–337. isbn: 978-3-319-44039-2.

doi: 10 .1007/978- 3- 319- 44039- 2. url: http: / /www2.informatik .uni-

stuttgart . de /cgi - bin /NCSTRL/NCSTRL_view.pl ? id= INPROC- 2016 -

25&engl=0 (zitiert auf S. 13).

[icc17] icclab. Iot Simulator. http://icclab.github.io/iot-simulator/. Okt. 2017 (zitiert

auf S. 19).

[IH11] T. Issariyakul, E. Hossain. Introduction to network simulator NS2. Springer
Science & Business Media, 2011 (zitiert auf S. 19, 20).

[IS15] M.H. Iqbal, T. R. Soomro. „Big data analysis: Apache storm perspective“.

In: International journal of computer trends and technology (2015), S. 9–14

(zitiert auf S. 21).

[JHD+04] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg,

A. Arendsen, D. Davison, D. Kopylenko, M. Pollack et al. „The spring

framework–reference documentation“. In: Interface 21 (2004) (zitiert auf
S. 27).

[JMM11] C. Janiesch, M. Matzner, O. Müller. „A blueprint for event-driven busi-

ness activity management“. In: International Conference on Business Process
Management. Springer. 2011, S. 17–28 (zitiert auf S. 15).

[LLWC03] P. Levis, N. Lee, M. Welsh, D. Culler. „TOSSIM: Accurate and scalable simu-

lation of entire TinyOS applications“. In: Proceedings of the 1st international
conference on Embedded networked sensor systems. ACM. 2003, S. 126–137

(zitiert auf S. 19).

58

https://doi.org/10.7250/csimq.2016-9.02
https://doi.org/10.7250/csimq.2016-9.02
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&engl=0
https://doi.org/10.1007/978-3-319-44039-2
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://icclab.github.io/iot-simulator/

Literaturverzeichnis

[Loc10] D. Locke. „Mq telemetry transport (mqtt) v3. 1 protocol specification“. In:

IBM developerWorks Technical Library (2010) (zitiert auf S. 15).

[MPD+02] G. Mein, S. Pal, G. Dhondu, T. K. Anand, A. Stojanovic, M. Al-Ghosein,

P.M. Oeuvray. Simple object access protocol. US Patent 6,457,066. Sep. 2002
(zitiert auf S. 19).

[ODE+06] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt. „Cross-level sensor

network simulation with cooja“. In: Local computer networks, proceedings
2006 31st IEEE conference on. IEEE. 2006, S. 641–648 (zitiert auf S. 19, 21).

[Rob10] D. Robins. „Complex event processing“. In: Second International Workshop
on Education Technology and Computer Science. Wuhan. Citeseer. 2010, S. 1–
10 (zitiert auf S. 15).

[SBH+17] A. C. F. da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp, F. Ley-

mann, B. Mitschang, R. Steinke. „Internet of Things Out of the Box: Using

TOSCA for Automating the Deployment of IoT Environments“. Englisch.

In: Proceedings of the 7th International Conference on Cloud Computing and
Services Science (CLOSER). Hrsg. von D. Ferguson, V.M. Muñoz, J. Cardoso,

M. Helfert, C. Pahl. Bd. 1. ScitePress. SciTePress Digital Library, Juni 2017,

S. 358–367. isbn: 978-989-758-243-1. doi: 10.5220/0006243303580367. url:

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=INPROC-2017-28&engl=0 (zitiert auf S. 13).

[SHB+17] A. C. F. da Silva, P. Hirmer, U. Breitenbücher, O. Kopp, B. Mitschang. „Custo-

mization and provisioning of complex event processing using TOSCA“.

Englisch. In: Computer Science - Research and Development (Sep. 2017), S. 1–
11. issn: 1865-2042. doi: 10.1007/s00450-017-0386-z. url: http://www2.

informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-

2017-10&engl=0 (zitiert auf S. 13).

[SHK+06] A. Sobeih, J. C. Hou, L.-C. Kung, N. Li, H. Zhang, W.-P. Chen, H.-Y. Tyan,

H. Lim. „J-Sim: a simulation and emulation environment for wireless sensor

networks“. In: IEEE Wireless Communications 13.4 (2006), S. 104–119 (zitiert
auf S. 19, 20).

[SHWM16] A. C. F. da Silva, P. Hirmer, M. Wieland, B. Mitschang. „SitRS XT – Towards

Near Real Time Situation Recognition“. Englisch. In: Journal of Information
and DataManagement 7.1 (Apr. 2016), S. 4–17. url: http://www2.informatik.

uni- stuttgart .de/cgi - bin/NCSTRL/NCSTRL_view.pl? id=ART- 2016-

14&engl=0 (zitiert auf S. 13).

[Sim17] Simplesoft. SimpleIoTSimulator. http://www.smplsft.com/SimpleIoTSimulator.

html. Okt. 2017 (zitiert auf S. 18).

[Sma+05] J. F. Smart et al. „An introduction to Maven 2“. In: JavaWorld Magazi-
ne. Available at: http://www. javaworld. com/javaworld/jw-12-2005/jw-1205-
maven. html (2005) (zitiert auf S. 27).

59

https://doi.org/10.5220/0006243303580367
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-28&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-28&engl=0
https://doi.org/10.1007/s00450-017-0386-z
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2017-10&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2017-10&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2017-10&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-14&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-14&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-14&engl=0
http://www.smplsft.com/SimpleIoTSimulator.html
http://www.smplsft.com/SimpleIoTSimulator.html

[SS15] A. G. Shoro, T. R. Soomro. „Big data analysis: Apache spark perspective“.

In: Global Journal of Computer Science and Technology 15.1 (2015) (zitiert

auf S. 22).

[Tel17] Telit. Telit Iot Portal. https://www.telit.com/products/iot-platforms/telit-

iot-portal/. Online; accessed 05-October-2017. 2017 (zitiert auf S. 17).

[VH08] A. Varga, R. Hornig. „An overview of the OMNeT++ simulation environ-

ment“. In: Proceedings of the 1st international conference on Simulation tools
and techniques for communications, networks and systems & workshops. ICST
(Institute for Computer Sciences, Social-Informatics und Telecommunicati-

ons Engineering). 2008, S. 60 (zitiert auf S. 19).

[VW12] A. Videla, J. J. Williams. RabbitMQ in action: distributed messaging for ever-
yone. Manning, 2012 (zitiert auf S. 19).

[XYWV12] F. Xia, L. T. Yang, L. Wang, A. Vinel. „Internet of things“. In: International
Journal of Communication Systems 25.9 (2012), S. 1101 (zitiert auf S. 15).

[ZGS+17] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, R. Ran-

jan. „Iotsim: A simulator for analysing iot applications“. In: Journal of
Systems Architecture 72 (2017), S. 93–107 (zitiert auf S. 17).

Alle URLs wurden zuletzt am 06. 10. 2017 geprüft.

https://www.telit.com/products/iot-platforms/telit-iot-portal/
https://www.telit.com/products/iot-platforms/telit-iot-portal/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-

ben. Ich habe keine anderen als die angegebenen Quellen

benutzt und alle wörtlich oder sinngemäß aus anderen Wer-

ken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren

bisher Gegenstand eines anderen Prüfungsverfahrens. Ich

habe diese Arbeit bisher weder teilweise noch vollständig

veröffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Motivation
	2 Grundlagen
	2.1 Internet der Dinge
	2.2 Echtzeitprogrammierung
	2.3 Benchmarking

	3 Verwandte Arbeiten
	3.1 Telit IoT Random Number Generator Action Block
	3.2 IOTSim: A simulator for analysing IoT applications
	3.3 SimpleIoTSimulator
	3.4 DPWSim
	3.5 icclab IoT Simulator
	3.6 Netzwerksimulatoren
	3.7 Streaming Engines

	4 Datengenerierung für Simulation
	4.1 Systemübersicht und Implementierung
	4.2 Benutzerschnittstelle
	4.3 Backend

	5 Datengenerierung zum Benchmarking von CEP-Systemen
	5.1 Erste Implementierung in Java
	5.2 Implementierungen in C
	5.3 Timer, Monitor und Threads in Java
	5.4 Esper und Java
	5.5 Timer, Monitor und Threads in Echtzeit-Java
	5.6 Threads mit integrierten Timern in Echtzeit-Java

	6 Evaluation
	6.1 Implementierung in C
	6.2 Timer, Monitor und Threads in Java
	6.3 Esper und Java
	6.4 Timer, Monitor und Threads in Echtzeit-Java
	6.5 Threads mit integrierten Timern in Echtzeit-Java
	6.6 Diskussion

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

