Institut fir Parallele und Verteilte Systeme

Universitat Stuttgart
Universitétsstrafie 38
D-70569 Stuttgart

Bachelorarbeit

Ein Testwerkzeug fiir das
Internet der Dinge

Daniel Kriiger

Studiengang;: Informatik
Priifer/in: PD Dr. rer. nat. habil. Holger Schwarz
Betreuer/in: Dipl.-Inf. Pascal Hirmer,

Ana Cristina Franco da Silva, M.Sc.

Beginn am: 8. Mai 2017
Beendet am: 8. November 2017
CR-Nummer: C3,C4,D.1.3, D.2.3, D.3.3, D4.1, D.4.7,

H.5.2,H53

Kurzfassung

Wegen der stetig fallenden Preise fiir Hardware sind in der heutigen Zeit immer mehr
Gerate miteinander vernetzt. Dabei kommunizieren Sensoren, Aktoren und Steuergeréte
miteinander. Diesen Wandel nennt man das Internet der Dinge (IoT). Ein Ziel des Internet
der Dinge ist es, Situationen automatisch zu erkennen und zu steuern. Dies kann durch
sogenannte Complex Event Processing (CEP)-Systemen ermoglicht werden. Diese lesen
Datenstrome ein und erkennen vorher definierte Muster, die Situationen.

Das Testen von IoT-Umgebungen ist jedoch teuer, da Hardware beschafft werden muss.
Deswegen ist die Simulation von IoT-Umgebungen erstrebenswert. In dieser Arbeit wird
ein web-basiertes Werkzeug vorgestellt, welches die Simulation von Sensoren erméglicht.
Es ist moglich, mehrere Sensoren mit unterschiedlichen Datentypen, Startwerten und
Abweichungen zu simulieren.

Ein weiteres, im Rahmen dieser Arbeit behandeltes, Problem ist, dass noch keine Bench-
marks fiir CEP-Systeme existieren. Fiir darauf aufbauende Arbeiten wird hier untersucht,
wie eine Datengenerierung fiir solche Benchmarks umgesetzt werden kann und welche
Anforderungen an die Benchmarks gestellt werden.

Inhaltsverzeichnis

1 Motivation

2 Grundlagen
2.1 InternetderDinge
2.2 Echtzeitprogrammierung
23 Benchmarking

3 Verwandte Arbeiten
3.1 Telit IoT Random Number Generator ActionBlock
3.2 IOTSim: A simulator for analysing IoT applications
3.3 SimpleloTSimulator
34 DPWSIM
3.5 cclablIoT Simulator
3.6 Netzwerksimulatoren
3.7 Streaming Engineso Lo Lo

4 Datengenerierung fur Simulation
4.1 Systemibersicht und Implementierung

4.2 Benutzerschnittstelle
43 Backend,

5 Datengenerierung zum Benchmarking von CEP-Systemen
5.1 Erste ImplementierunginjJava
5.2 ImplementierungeninC
5.3 Timer, Monitor und ThreadsinJava
54 EsperundJava
5.5 Timer, Monitor und Threads in Echtzeit-Java
5.6 Threads mit integrierten Timern in Echtzeit-Java

6 Evaluation
6.1 ImplementierunginC
6.2 Timer, Monitor und ThreadsinJava
63 EsperundjJava
6.4 Timer, Monitor und Threads in Echtzeit-Java
6.5 Threads mit integrierten Timern in Echtzeit-Java
6.6 Diskussion e

13

15
15
16
16

17
17
17
18
19
19
19
21

23
23
24
27

31
31
32
35
37
37
38

39
39
41
45
49
50
52

7 Zusammenfassung und Ausblick

Literaturverzeichnis

55

57

Abbildungsverzeichnis

4.1
4.2
4.3

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9
6.10

6.11

6.12
6.13

6.14

6.15
6.16

6.17

Zustandsdiagramm des Simulationswerkzeuges 24
Frontend des Simulationswerkzeuges 26
Aktivitatsdiagramm des Simulationswerkzeuges 28
Aktivitatsdiagramm zum Unterkapitel 5.3 36
Kumulative Standardabweichung der Latenzen der C-Implementierung . 40

Median der Latenzen der C-Implementierung bei 1 Millisekunde Intervall 40
Kumulative Latenzen der Timer-Monitor-Implementierung in Java. . . . 41
Kumulative Standardabweichungen der Timer-Monitor-Implementierung
njava e e e e e 42
Medianlatenzen der Timer-Monitor-Implementierung in Java bei Intervall
von 100 Millisekunden L Lo 42
kumulierte Latenzen der Timer-Monitor-Implementierung in Java auf
Echtzeit-Betriebssystemkern L. 44
kumulierte Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Java auf Echtzeit-Betriebssystemkern 44
Medianlatenzen der Timer-Monitor-Implementierung in Java auf
Echtzeit-Betriebssystemkern bei 50 Millisekunden Intervall 45
Kumulative Latenzen der Java-Esper-Implementierung 46
Kumulative Standardabweichungen der Latenzen der Java-Esper-
Implementierung 46
Medianlatenzen der Java-Esper-Implementierung bei Intervall von 10
Millisekunden o Lo 47
Kumulative Latenzen der Timer-Monitor-Implementierung in Echtzeit-Java 48
Kumulative Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Echtzeit-Java 48
Medianlatenzen der Timer-Monitor-Implementierung in Echtzeit-Java
bei Intervall von 25 Millisekunden L. 49
Kumulative Latenzen der Threads mit integrierten Timern in Echtzeit-Java 50
Kumulative Standardabweichungen der Latenzen der Threads mit inte-
grierten Timern in Echtzeit-Java 51
Medianlatenzen der Threads mit integrierten Timern in Echtzeit-Java bei
Intervall von 1 Millisekunden 51

Tabellenverzeichnis

6.1

6.2

6.3

6.4

6.5

Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-
Implementierungin Java
Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Java auf Echtzeit-Betriebssystemkern
Mediane der Standardabweichungen der Latenzen der Java-Esper-
Implementierung
Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Echtzeit-Java
Mediane aller Standardabweichungen der Threads mit integrierten
Timern in Echtzeit-Java fir die verschiedenen Intervalle

Abkurzungsverzeichnis

ACA Autonomous Component Architecture. 20
CEP Complex Event Processing. 3

CoAP Constrained Application Protocol. 18
DPWS Devices Profile for Web Services. 18
GUI Graphical User Interface. 20

HDFS Hadoop Distributed File System. 17
HTTP Hypertext Transfer Protocol. 18

loT Internet der Dinge. 3

JNI Java Native Interface. 32

MQTT Message Queue Telemetry Transport. 15
MQTT-SN MQTT for Sensor Networks. 18
MVC Model-View-Controller. 24

NS2 Network Simulator. 20

OTcl Object-Oriented Tool Command Language. 20
SOAP Simple Object Access Protocol. 18

TCP Transmission Control Protocol. 18

UDP User Datagram Protocol. 34

WSDL Web Service Description Language. 18

11

1 Motivation

In den letzten Jahren sind die Preise fiir Hardware, wie zum Beispiel Netzwerkkompo-
nenten und Prozessoren, stetig gefallen [15]. Wegen diesen Preistrends gibt es immer
mehr mit dem Internet verbundene Gerite. Die Verbindung dieser Gerite bezeichnet
man als [oT. Im IoT kommunizieren die Gerate meist selbststandig, d.h. ohne menschli-
ches Zutun [SBH+17]. In den letzten Jahren hat sich die Forschung rund um IoT stark
beschleunigt. Firmen wie Bosch [17c], Nest [17a] und andere bieten bereits Gerite an,
welche IoT-Technologien benutzen. Zum Beispiel Feuermelder von Bosch [17b] und Uber-
wachungskameras von Nest [17d], welche an das Internet angeschloflen sind. Zusétzlich
ist ein Trend hin zur Automatisierung in vielen Bereichen des Alltags zu beobachten. Dies
betrifft unter anderem Wohnumgebungen (Smart Home), industrielle Produktionsablaufe
(Smart Factory) oder selbst fahrende Autos (Smart Cars). Ein Beispiel fiir diese Art der
Automatisierung konnte ein Haus sein, welches an einem sonnigen Tag die Jalousien
schlie3t, sobald die Helligkeit im Raum einen gewissen Wert tiberschreitet. Ein anderes
Beispiel wire eine Fertigungsmaschine in einer Fabrik, welche automatisch neue Teile
bestellt, sobald sie feststellt, dass der Bestand unter einen gewissen Wert sinkt. Bei der Ent-
wicklung von IoT-Anwendungen gibt es viele Plattformen, Sprachen und Systeme. Diese
bilden eine komplexe Umgebung, in der Fehler teuer sind, da sie zu Produktionsausfallen
oder gefahrlichen Situationen fiihren.

Die Erkennung derartiger Situationen kann mit sogenannten CEP-Systemen ermoglicht
werden [SHWM16]. Diese konsumieren Datenstrome basierend auf einzelnen Events
und sind in der Lage vordefinierte Muster echtzeitnah zu erkennen [SHB+17]. Dabei
konnen mit ihnen Informationen gewonnen werden, die keiner Einzelkomponente zur
Verfigung stehen. Auflerdem bieten diese Systeme Anfragesprachen dhnlich zu SQL an,
um die Situationen zu definieren.

Auch um derartige CEP-Systeme testen bzw. vermessen zu konnen sind realitatsnahe Test-
daten notwendig. Aufgrund der Dynamik und Flexibilitat realer Daten — besonders von
Sensordatenstromen - stellt dies eine grof3e Herausforderung dar [HBS+16] [HWBM16].
Werte konnen zum Beispiel stark variieren, d.h., es kann Ausreifler geben, sie konnen
ungenau sein oder sogar falsch-positiv. Da Realdaten nur basierend auf kostspieligen,
echten Szenarien (bspw. im Fabrikumfeld) erzeugt werden kénnen, miissen diese aus
Zeit- und Kostengriinden fiir die Validierung von Anwendungen moglichst realitatsnah
simuliert werden.

Auch gibt es noch keine Benchmarks fiir CEP-Systeme, um diese vergleichen zu kénnen.
Fir CEP-Systeme gibt es bislang noch keine Benchmarks. Es ist somit bisher noch nicht

13

1 Motivation

moglich, diese detailliert miteinander zu vergleichen. Eines der Ziele dieser Arbeit war es
daher, eine Datengenerierung fiir Benchmarks zu entwickeln. Zusatzlich wurde unter-
sucht, wie viele Threads synchron Daten erzeugen konnen und wie grofy die maximale
zeitliche Abweichung bei asynchronen Threads ist.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 1 — Motivation: motiviert die Ziele der Arbeit.

Kapitel 2 — Grundlagen: beschreibt die Grundlagen dieser Arbeit.
Kapitel 3 — Verwandte Arbeiten: stellt verwandte Arbeiten vor.

Kapitel 4 — Datengenerierung fiir Simulation: erliutert, wie das Simulationswerk-
zeug implementiert wurde.

Kapitel 5 — Datengenerierung zum Benchmarking von CEP-Systemen: erlautert,
wie Wertegenerierung fiir Benchmarks implementiert wurde.

Kapitel 6 — Evaluation: beschreibt die Evaluation dieser Arbeit.

Kapitel 7 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusam-
men und stellt Ankniipfungspunkte vor.

14

2 Grundlagen

In diesem Kapitel werden wesentliche Grundlagen dieser Arbeit beschrieben.

2.1 Internet der Dinge

Das IoT bezeichnet die Verbindung von Alltagsgeraten mittels einem Netzwerk. Durch
das Ermoglichen von Interaktion mit eingebetteten Systemen wird sich die Allgegen-
wartigkeit des Internets noch weiter erh6hen, was zu einem hoch verteilten Netzwerk
von Geréten fithrt. Diese Gerite konnen dabei sowohl mit Menschen als auch mit an-
deren Geridten kommunizieren. Xia et al. [XYWV12] beschreiben die Konzepte des IoT
ausfihrlich.

Zum besseren Steuern und Reagieren auf Situationen in einer IoT-Umgebung bedient
man sich der Verarbeitung von komplexen Ereignissen (Englisch: Complex Event Pro-
cessing) [Rob10]. Dabei wird ein Ereignis (Englisch: event) als ein Objekt bezeichnet,
welches eine Aufzeichnung einer Aktivitat ist. Ereignisse stehen zeitlich, kausal und
strukturell miteinander in Verbindung. Zeit ist dabei eine Eigenschaft eines Ereignis in
Form von einem Zeitstempel. Ein hoherwertiges Ereignis A kann aus einer Menge von
Ereignissen { B;} erstellt werden und représentiert ein komplexes Ereignis, welches aus
allen Aktivitaten besteht, die die aggregierten Ereignisse widerspiegeln. Es konnen sich
daraus komplexe Hierarchien von Ereignissen ergeben, wobei diese weiter zu immer
abstrakteren Ereignissen aggregiert werden konnen. So entstehen Ereignisse, welche
naher an Geschéftsprozessen liegen und weiter von der primitiven technologischen Ebene
entfernt sind [JMM11]. Ein primitives Ereignis ist zum Beispiel ein Wert, erzeugt durch
einen Temperatursensor. Die Verarbeitung von komplexen Ereignissen involviert Regeln
zum Aggregieren, Filtern und Abgleichen von primitiven Ereignissen, gekoppelt mit
Aktionen um neue abstraktere Ereignisse daraus zu erzeugen. Diese Regeln werden meist
mit speziellen Query-Sprachen der CEP-Systeme definiert.

Message Queue Telemetry Transport (MQTT) [Loc10] ist ein Netzwerkprotokoll, wel-
ches das ,Publish-Subscribe“-Muster implementiert [Loc10] und bestimmte ,Quality
Of Service“-Levels garantiert [Loc10]. Clients verbinden sich zum Broker (welcher als
MQTT-Server fungiert) und veréffentlichen Nachrichten auf einen bestimmten Kanal
(Englisch: Topic). Aulerdem ist es moglich einen Kanal zu abonnieren. Dadurch wird der
Abonnent beim Eintreffen einer Nachricht benachrichtigt.

15

2 Grundlagen

2.2 Echtzeitprogrammierung

Ein Echtzeitsystem wird als ein System definiert, welches auf einen extern generierten
Eingabestimulus innerhalb einer endlichen, vorher festgelegten Zeitperiode antworten
muss. Die Korrektheit eines solchen Systems hangt nicht nur vom logischen Resultat ab,
sondern auch von der Zeit, zu der es geliefert worden ist. Die Unfahigkeit zu antworten ist
dabei genauso schlimm, wie eine falsche Antwort. Der Computer ist dabei oft Teil eines
grofleren Systems; er ist ein eingebettetes System. Als hartes Echtzeitsystem wird ein
System definiert, welches beim Verpassen einer Deadline in einen abnormalen Zustand
gerit (z.B. ein Flugzeug). Als weiches (Englisch: soft) Echtzeitsystem wird ein System
definiert, bei dem Deadlines wichtig sind, welches jedoch trotzdem noch funktioniert,
falls Deadlines verpasst werden (z.B. Software zur Datenakquise). Weitere Informationen
zur Echtzeitprogrammierung werden von Burns et al. [BW01] beschrieben.

2.3 Benchmarking

Ein Benchmark [DM02] ist ein Versuchsaufbau, welcher es ermoglicht, empirische Mes-
sungen iiber ein System durchzufiihren. Diese Messungen sollen es erlauben, die Leis-
tungsfahigkeit verschiedener Systeme anhand bestimmer Metriken miteinander zu ver-
gleichen. Meistens sind Benchmarks Tabellen, welche die Performanz eines jeden Losungs-
ansatzes fir bestimmte Metriken, wie CPU-Zeit, Anzahl der Funktionsauswertungen
oder dhnliches, zeigen. Ein Problem bei Benchmarks ist die Interpretation der Ergeb-
nisse aus diesen Tabellen, da diese unterschiedlich ausfallen kann. Deswegen sind die
Werkzeuge zum Analysieren dieser Daten wichtig. In [DM02] wird deswegen empfohlen,
den Durchschnitt oder das Kumulative der Performanz fiir eine bestimmte Metrik zu
benutzen. Da hier jedoch Durchlaufe nicht beachtet werden, in denen der Losungsansatz
fehlschlagt, werden damit robustere Losungsansatze bevorzugt und es kommt somit zu
einer Befangenheit (Englisch: bias) in den Ergebnissen. Um dies zu verhindern, kann eine
Strafe fiir jeden fehlgeschlagenen Durchlauf berechnet werden. In einer spateren Arbeit
sollen Benchmarks fiir CEP-Systeme erstellt werden, damit diese miteinander verglichen
werden konnen.

16

3 Verwandte Arbeiten

In diesem Kapitel werden verwandte Arbeiten vorgestellt. Es wird aulerdem erldutert,
warum diese nicht vollstdndig zur Problemstellung dieser Arbeit passen.

3.1 Telit loT Random Number Generator Action Block

Diese Anwendung [Tel17] kann verwendet werden, um einen Sensor, bzw. dessen Werte,
zu simulieren. Damit kann zum Beispiel ein Trigger getestet werden. Bei der Simulation
kann der Datentyp ausgewahlt werden (INT4, UINT4, BINARY, STRING) sowie die An-
zahl der generierten Werte. Dariiber hinaus erlaubt die Anwendung die Definition von
Minimum- und Maximumwerten. Die Zahlen werden in Variablen gespeichert. Dieses
Werkzeug ist Teil des Telit IoT Portal [Tel17], welches ein cloud-basierter Subscription-
Service ist, bei dem Kunden ihre IoT Umgebung modellieren, steuern und iiberwachen
konnen. Der Telit IoT Random Number Generator Action Block ist nicht als einzelnes
Modul erhiltlich. Zwar ermoglicht der Random Number Generator von Telit IoT die
Generierung von Werten zur Simulation von Sensoren, jedoch erfiillt dieser nicht die
Echtzeitanforderungen, die fiir die CEP Benchmarks benétigt werden, da es nicht moglich
ist, dass mehrere Generatoren synchron Werte erzeugen.

3.2 I0TSim: A simulator for analysing loT applications

IoTSim [ZGS+17], welches auf CloudSim basiert, ist ein Werkzeug zur Simulation der Verar-
beitung von IoT-Applikationen erzeugten Daten in Cloud-Umgebungen, zur Modellierung
und Simulation der parallelen Ausfithrung von mehreren, grofien IoT-Applikationen
in einer geteilten Cloud-Umgebung, sowie zur Evaluation der Performanz von IoT-
Applikationen in Cloud-Umgebungen. CloudSim ist ein Simulationswerkzeug, welches
die Modellierung, Simulation und Evaluation von Cloud-Umgebungen, ihrer Policies
und ihrer Workload-Modelle erlaubt. IoTSim besteht aus den folgenden Ebenen: dem
Cloudsim Core Simulation Engine Layer, dem Cloudsim Simulation Layer, dem Storage
Layer, dem Big Data Processing Layer und dem User Code Layer. Das Cloudsim Core
Simulation Engine Layer ist die unterste Ebene, welche Ereignisse der Cloud-Umgebung
(Englisch: Events) einreiht und verarbeit , Cloud-Entitaten erstellen (Services, Hosts, Re-
chenzentren, Broker und virtuelle Maschinen), zwischen Komponenten kommunizieren

17

3 Verwandte Arbeiten

und die Simulations-Clock steuern kann. Dariiber gibt es das Cloudsim Simulation Layer,
welches die Modellierung und Simulation von virtualisierten Rechenzentren unterstiitzt.
Dies beinhaltet dedizierte Steuerschnittstellen fiir virtuelle Maschinen, Arbeitsspeicher,
persistenter Speicher und Bandbreite. Diese Ebene simuliert folgendes Verhalten: Provi-
sionierung von Hosts auf VMs, das Steuern der Ausfithrung und das Uberwachen des
Systemzustands. Das Cloudsim Simulation Layer besteht auch noch aus mehreren Unter-
ebenen, welche Kernelemente der Cloud modellieren. Die untersten dieser Unterebenen
steuern Netzwerktopologie, Datenzentren und Cloud-Koordinatoren. Das Storage Layer
modelliert die Speicherung durch Amazon S3, Azure Blob Storage oder Hadoop Distributed
File System (HDEFS). IoT-Applikationen konnen mit dem Storage Layer interagieren wie
gewohnt: sie schreiben und lesen Daten. Wie in der Realitét, gibt es eine messbare Verzo-
gerung durch diese Ebene. Das Big Data Processing Layer ibernimmt die Verarbeitung
der aus IoT-Applikationen entstehenden Daten. Es besteht aus zwei Unterebenen. Die
MapReduce-Unterebene [DG08] unterstiitzt Applikationen mit einem batch-orientierten
Datenverarbeitungsparadigma. Die Streaming-Computing-Unterebene unterstiitzt Ap-
plikationen, welche Echtzeitanforderungen haben. Das User Code Layer ist die oberste
Ebene. Auf ihr werden Entitdten der Hosts (Anzahl der Maschinen, deren Spezifikation),
die Konfigurationen von IoT-Applikationen, VMs, Anzahl von Benutzern und deren
Applikationstypen zur Verfiigung gestellt. Diese Ebene hilft Benutzern, ihre eigenen Si-
mulationsszenarien festzulegen beziehungsweise zu konfigurieren, um ihre Algorithmen
zu validieren. IotSim ermoglicht somit nur die Simulation der Cloud-Umgebung; das
Simulieren des Verhalten von Teilen einer IoT-Applikation, ein Ziel dieser Arbeit, wird
aber nicht von IotSim iibernommen.

3.3 SimpleloTSimulator

SimpleloTSimulator [Sim17] ist ein Werkzeug zur Netzwerksimulation. Damit kann der
Paketfluss zwischen Sensoren und Gateways aufgenommen werden. Diese gelernten
Daten konnen dann als Template benutzt werden, um Testumgebungen mit tausenden
von Sensoren zu generieren. Darin konnen dann Skripte ausgefithrt werden, um Feh-
lerszenarien und Notifikationen zu erzeugen. Die Eigenschaften dieser Skripte konnen
dynamisch geandert werden. Bei den erstellten Sensoren kann auch noch eingestellt wer-
den, dass diese Zufallswerte senden. Dabei wird eine Reihe von Werten sowie ein Intervall
in Sekunden angegeben und nach jedem Intervall wird einer dieser Werte ausgegeben.
Unterstiitzte Protokolle zur Kommunikation sind Modbus tiber Transmission Control
Protocol (TCP), MQTT, MQTT for Sensor Networks (MQTT-SN), Constrained Appli-
cation Protocol (CoAP) und Hypertext Transfer Protocol (HTTP). Da die Generierung
von Zufallswerten sehr begrenzt ist, die Werteausgabe nicht im sub-Sekunden-Bereich
moglich ist und es auch nicht moéglich ist, die Sensoren miteinander zu synchronisieren,
ist der SimpleloTSimulator nicht passend fir diese Arbeit.

18

3.4 DPWSIim

3.4 DPWSim

DPWSim [HLC+14] basiert auf dem Devices Profile for Web Services (DPWS)-Standard,
der von Microsoft entwickelt wurde. In DPWSim kénnen DPWS-Gerite simuliert werden,
welche im Netzwerk entdeckt werden kénnen und welche mit anderen Geriten oder
Clients Giber das DPWS-Protokoll kommunizieren kénnen. Zuséatzlich kann DPWSim
die Umgebung, in der sich die Gerate befinden, simulieren und erméglicht es Benutzern,
Simulationen mit hoher Flexibilitat zu erstellen, zu speichern und zu laden. In DPWSim
gibt es vier Komponenten: Rdume, Gerate, Operationen und Ereignisse. Ein Raum be-
sitzt Geréate und fiir jedes Geréat konnen Operationen und Ereignisse definiert werden.
Operationen sind Funktionen des Gerits, wie zum Beispiel das Einschalten oder das
Ausschalten. Die Operationen werden in Web Service Description Language (WSDL)
[CCM+01] beschrieben und kénnen durch Service-Endpunkte unter Benutzung von
Simple Object Access Protocol (SOAP) [MPD+02] durchgefithrt werden. Das Ergebnis
einer Operation wird in der grafischen Benutzeroberfliche angezeigt. Ereignisse sind
Veranderungen des Geratezustands. Wenn sich der Gerétezustand dndert, werden die
Klientenanwendugen des Gerits benachrichtigt. Ein Ereignis kann periodisch auftreten,
zum Beispiel jede Millisekunde. Geriate werden dadurch simuliert, indem sie auf Basis
von Sensordaten operieren. Diese Daten miissen vom User oder anderen Clients erzeugt
werden. Insofern scheidet diese Arbeit aus, da DPWSim nicht selbst Werte generieren
kann.

3.5 icclab IoT Simulator

Der IoT Simulator von icclab [icc17] simuliert Sensoren in einer Umgebung. Diese gene-
rieren Zufallszahlen vom Typ Integer und geben ihren Ladestand sowie die verbrauchte
Leistung an. Dies passiert periodisch. Zusétzlich wird zufallig entschieden, ob eine Nach-
richt erfolgreich versendet wurde. Die Nachricht wird an einen RabbitMQ-Broker [VW12]
geschickt. RabbitMQ ist ein Open-Source Message Broker. Mit dem icclab IoT Simulator
kann eine dhnliche Funktionalitat erreicht werden, wie in dieser Arbeit angestrebt. Je-
doch kann der Benutzer nicht die Parameter der Simulation wéhlen. Des Weiteren ist
keine Benchmarkgenerierung moglich, da Simulationen nicht wiederholbar sind und die
Werteausgabe nicht synchron erfolgt.

3.6 Netzwerksimulatoren

NS2 [IH11], J-SIM [SHK+06], OMNet++ [VH08], Cooja [ODE+06] und TOSSIM [LLWC03]
sind Simulatoren fiir Rechnernetze. Sie sind dazu gedacht, den Paketfluss in einem Netz-
werk zu simulieren und sorgen so fiir eine bessere Implementierung von Rechnernetzen.
Dabei gibt es Szenarien, in denen Hosts dazu kommen und wegfallen. Sie werden auch

19

3 Verwandte Arbeiten

zum Simulieren von Sensornetzwerken benutzt. Sie sind nicht dazu gedacht, Sensoren zu
simulieren und deswegen unbrauchbar fiir uns.

Der Network Simulator (NS2) [IH11] ist ein event-basiertes Werkzeug zur Simulation von
dynamischen Rechnernetzen gedacht. Mit NS2 kénnen zum Beispiel Routing-Algorithmen
und verschiedene Protokolle simuliert werden. NS2 liefert ein ausfithrbares Kommando:
,ns", welches eine Object-Oriented Tool Command Language (OTcl) Datei als Eingabe-
argument annimmt. NS2 besteht aus zwei Sprachen: C++ und der OTcl. C++ definiert
die internen Mechanismen (das Backend) der Simulation, wiahrend OTcl die Simulation
aufsetzt, indem es Objekte assembliert und konfiguriert, sowie diskrete Ereignisse sche-
duled. Variablen in der OTcl-Doméne konnen auf C++-Objekte abgebildet werden. Diese
Variablen werden ,Handles® genannt. Die Funktionalitat ist definiert im C++-Objekt. Der
Handle agiert als ein ,Frontend®, welches mit Benutzern und anderen OTcl-Objekten
interagiert. Ein Handle kann seine eigenen Prozeduren und Variablen definieren um diese
Interaktion zu vereinfachen. Simulationen werden durch den Aufruf ,ns [<file>] [<args>]"
gestartet. Als erste Phase der Simulation wird die Simulation entworfen. Hier entscheidet
der Benutzer, welchem Zweck die Simulation dienen soll, die Netzwerkkonfiguration
aussieht, welche Annahmen gelten sollen, wie Performanzkriterien aussehen und wie
die erwarteten Ergebnisse aussehen. In der zweiten Phase wird das zu simulierende
Netzwerk konfiguriert und in der dritten Phase wird die Simulation durchgefithrt. Nach
der Simulation konnen die Ergebnisse noch weiter verarbeitet werden.

J-SIM [SHK+06] ist ahnlich zu NS2, es ermoglicht ebenfalls das Modellieren, Simulieren
und Emulieren von Netzwerken und ist ebenfalls quelloffen. Es baut auf einer kompo-
nentenweisen Architektur namens Autonomous Component Architecture (ACA) auf.
Die ACA schliesst die Liicke zwischen Hardware- und Software-ICs und erlaubt somit,
dass neue Komponenten via plug-and-play in J-Sim integriert werden konnen. Ausser-
dem wurde aufbauend auf ACA ein generalisierendes Paketaustausch-Internetworking-
Framework namens INET gebaut, welches zahlreiche gemeinsame Eigenschaften des
Protokoll-Stacks implementiert. ACA und INET wurden beide in Java implementiert. Zu-
sammen mit einem Scripting-Framework und einer Graphical User Interface (GUI) bilden
sie J-Sim. Die grundlegenen Entitaten sind Komponenten, welche miteinander kommuni-
zieren durch das Senden beziehungsweise Empfangen von Daten via ihrer Ports. Wie
Komponenten auf Daten reagieren und diese handhaben wird wahrend der Design-Phase
des Systems in Vertragen (Englisch: Contracts) festgelegt. Das Binding findet jedoch
erst in der Systemintegration-Phase statt. Diese Trennung des Vertrag-Binding und des
Komponenten-binding erlaubt J-Sim Loose-Coupling-Eigenschaften zu besitzen, das
heisst Komponenten kénnen individuell entworfen, implementiert und getestet werden,
ohne Annahmen voneinander zu machen. Die Tatsache, dass J-Sim in Java implementiert
ist, zusammen mit ACA, macht es zu einer platformunabhingigen, erweiterbaren und
hoch wiederverwendbaren Umgebung. J-Sim bietet eine Scripting-Schnittstelle, welche
Scripting in Sprachen wie Perl und Python unterstiitzt.

OMNet++ ist in C++ geschrieben, basiert auf dem INET-Framework und bietet mehr
Infrastruktur als NS2. Die Simulation muss aber auch noch selbst geschrieben werden.

20

3.7 Streaming Engines

Experimente in Omnet++ sind wie folgt aufgebaut: es gibt das Model (das zu testende
Objekt, welches bestimmte Parameter hat), die Study (eine Reihe von Experimenten auf
einem oder mehreren Modellen), das Experiment (Durchsuchen des Parameterraum des
Modells), das Measurement (Seed fiir das Experiment). Experimente sind reproduzierbar
(gleicher Seed). Es gibt aulerdem eine Resultatsanalyse, wobei Daten mit Resultaten
produziert werden. Diese konnen mit Regeln oder Mustererkennung noch feiner gefiltert
werden, was die Analyse vereinfacht und zu besseren Einsichten fithren kann.

Cooja [ODE+06] ist ein Netzwerksimulator zur Simulation von Sensoren, welche das Con-
tiki IoT-Betriebssystem benutzen. Sensoren kénnen nicht nur unterschiedliche Software
besitzen, sie konnen auch auf unterschiedlichen Ebenen simuliert werden: Netzwerk-,
Betriebs- und Maschinensystemebene sind moglich. Ein Sensor besitzt drei grundlegende
Eigenschaften: einen Arbeitsspeicher, einen Knotentypen und seine Hardwareperipherie.
Sensoren vom selben Typ werden mit dem selben Arbeitsspeicher initialisiert und lassen
auch den selben Code laufen. Thre Arbeitsspeicher konnen sich spater jedoch unter-
scheiden, da sie eventuell unterschiedliche Eingaben durch ihre Hardwareperipherie
empfangen. Viele Teile des Simulators konnen einfach ausgetauscht oder mit weiterer
Funktionalitat ausgestattet werden. Sensoren in einer COOJA-Simulation kénnen auf
den verschiedenen simulierten Ebenen existieren und miteinander interagieren. COOJA
besitzt auch ein Modell, welches die Verbreitung von Radiowellen simuliert um auch
diesen Aspekt in kabellosen Sensornetzwerken darzustellen. Dieses Modell kann auch
selbst noch erweitert werden.

Alle hier vorgestellten Netzwerksimulatoren eignen sich fiir die Simulation des Verhalten
von Sensornetzwerken, die Simulation des Verhalten der Sensoren selbst ist jedoch nicht
moglich, was diese Anwendungen unbrauchbar fiir die Ziele dieser Arbeit macht.

3.7 Streaming Engines

Neben den vorgestellten Simulatoren wurden Streaming Engines untersucht, um zu
iiberpriifen, ob diese die Generierung von Werten unterstiitzen.

Zuerst wurde Apache Kafka [Gar13] untersucht. Apache Kafka ist ein verteilter Message-
Broker und wird eher als Schnittstelle oder als verteilte Datenpipeline benutzt. Zum
Beispiel kann eine Datei mit Datenwerten an ein Eingabe-Topic gesendet werden, worauf-
hin Kafka diesen einliest und verarbeitet. Danach wird der Stream an ein Ausgabe-Topic
ausgegeben. Unser Ziel ist es jedoch, dass man die zu generierenden Werte als Datei
eingibt, auf dessen Basis ein reproduzierbarer Stream erzeugt ein. Diese Funktionalitat
misste mit Kafka selbst implementiert werden.

Apache Storm [IS15] ist eine verteilte Echtzeit-Berechnungsplattform. Daten werden
aus einer Datei eingelesen, eine Quelle (,Spout”) erzeugt daraus einen Stream, welcher
an Verarbeitungseinheiten (Bolts) weitergeleitet wird. Die benutzte Datenstruktur sind
Tupel (geordnete Liste von Elementen). Die Berechnung lauft verteilt in einem Cluster.

21

3 Verwandte Arbeiten

Dabei gibt es einen Master-Knoten und mehrere Worker-Knoten. Storm hat jedoch eine
Mindeslatenz im Bereich von 10 ms (Kosten fiir Transfer von Daten zwischen Bolts,
Garbage Collection), was fiir die Benchmarkgenerierung inakzeptabel ist.

Apache Flink [CKE+15] dient ebenfalls dem Verarbeiten von Streams. Es bietet jedoch
mehr High-Level-Funktionalitat, welche man in Storm von Hand implementieren miisste.
Flink ist fiir zyklische, iterative Transformationen auf Collections optimiert. Auflerdem
bietet es Batch-Processing.

Apache Spark [SS15] ist dhnlich. Es ist ein Batch-Processing Framework, welches Streams
verarbeiten kann. Spark ist optimiert auf das Verarbeiten von verteilten Datensatzen
(resilient distributed datasets).

Zusammenfassend bieten Flink und Spark also nur die Verarbeitung von Streams an.
Storm bietet von allen Frameworks die beste Realtime-Performanz, welche jedoch fiir die
Ziele dieser Arbeit nicht ausreicht. Dadurch ist klar, dass sich die anderen Frameworks
sich nicht fiir die Benchmarkgenerierung eignen.

22

4 Datengenerierung fur Simulation

Eines der wesentlichen Ziele dieser Arbeit ist die Simulation von Sensoren. Das Simu-
lationswerkzeug soll dabei an ein Uberwachungswerkzeug oder an ein CEP-System
angeschlossen werden. Es soll aulerdem moglich sein, Live-Anderungen der Simulations-
parameter vorzunehmen, wobei diese sofort in der Simulation reflektiert werden sollen.
Durch das veranderte Verhalten der Umgebung zu beobachten in den angeschlossenen
Werkzeugen konnen dann eventuell neue Schliisse gezogen werden. Als Parameter fiir
die Simulation wurden festgelegt:

« Name - der Name des Sensors

Datentyp - der Datentyp (Integer, Float, Boolean) der zu generierenden Werte

Startwert - der Wert, mit dem die Simulation beginnt

« Ausreiflerwahrscheinlichkeit - Wahrscheinlichkeit fiir Anomalien, Float-Wert zwi-
schen 0.0 % und 100.0 %

« Anderungsrate - gibt die Anderung pro Zeitschritt an

Falls der Datentyp als Boolean festgelegt wird, werden Startwert, minimale und maxi-
male Abweichung, Ausreiflerwahrscheinlichkeit und die normale Anderungsrate nicht
benotigt. Auflerdem soll das Werkzeug mit einer Wahrscheinlichkeit, die dem Quadrat
der Ausreiflerwahrscheinlichkeit entspricht, Werte erzeugen, die nicht dem Datentyp ent-
sprechen. Jeder neu erzeugte zu simulierende Sensor soll in einem eigenen Thread Werte
mittels Publish-Subscribe (bspw. realisiert durch MQTT) schicken, wobei der Topic-Name
dem Sensornamen entspricht.

4.1 Systemubersicht und Implementierung

Zu Beginn der Simulation wurden noch keine Sensoren angelegt. Um dies zu tun, passt
der Benutzer die Simulationsparameter nach seinen Bediirfnissen an und erstellt dadurch
die Simulation eines Sensors. Die erstellte Simulation kann anschlielend in einer Liste
ausgewahlt werden. Sobald diese ausgewéhlt ist, werden die generierten Werte in einer
MQTT-Konsole angezeigt. Dies ist moglich, da in der Anwendung ein MQTT-Client
benutzt wird, welcher die simulierten Werte empfangt und anzeigt. Wéahren der Simula-
tion konnen die Parameter der ausgewahlten Simulation dynamisch geandert werden.
Nach dem Ubernehmen dieser Anderungen wird die Simulation ,live“ angepasst, d.h.,

23

4 Datengenerierung flr Simulation

[n==1] [n>1]

Simulation|léschen
. Start 0 Sensoren Simulation erstellen \(n Simulationen, Simulation erstellen
“|_keine Simulation ausgewahlt Simulation andern

Progra schlieBen
Progra

schlieBen

Simulation|auswahlen
Simulation guswahlen

Programm lieBen

n Simulationen, W
1 Simulation ausgewéhlt |

[n>1,

Simulation 16schen simulationld != selectedSimulation]

[n>1,
simulationld == selectedSimulation]

Abbildung 4.1: Zustandsdiagramm des Simulationswerkzeuges

die Anderungen sind sofort sichtbar. Wird die Simulation nicht mehr benétigt, kann
diese angehalten und entfernt werden. Die Simulation mehrerer Sensoren parallel ist
moglich.

Um die vorgestellte Funktionalitit zu realisieren, wurde ein Prototyp erstellt. In der ersten
Version dieses Prototyps war es lediglich moglich, eine feste vorgegebene Anzahl an
Simulationen zu erstellen. Dies wurde in der Weiterentwicklung, zusammen mit den
weiteren oben beschriebenen Funktionen, erméglicht. Basierend auf diesem Prototypen,
sollte die Benchmarkgenerierung integriert werden.

Bei der Weiterentwicklung des Prototyps fiel jedoch auf, dass die Benchmark-Generierung
gesondert betrachtet werden muss. Daher ist diese Teil eines separaten Prototyps.

4.2 Benutzerschnittstelle

Die Benutzerschnittstelle wurde mittels dem React]S-Framework ! umgesetzt. React ist ein
Framework, welches 2011 von Facebook entwickelt wurde. Es wurde 2013 Open Source
freigegeben [Fac17b], 2017 unter der MIT-Lizenz lizensiert [Fac17a] und seitdem von
namhaften browserbasierten Applikationen Webseiten / Web-Apps (Facebook, Instagram,
Paypal, Netflix, Walmart) verwendet. In der Model-View-Controller (MVC)-Architektur
bietet React lediglich die Realisierung des Views beziehungsweise der Ansicht an. Durch
Hinzunahme von Frameworks wie Flux, Redux oder MobX kann jedoch eine vollstdndige

'https://reactjs.org/

24

4.2 Benutzerschnittstelle

MVC-Architektur realisiert werden. Der Code in React ist in Komponenten eingeteilt,
welche logische beziehungsweise funktionale Einheiten der Benutzeroberfliache reprasen-
tieren. Zum Beispiel kann eine derartige Komponente eine Liste oder ein Auswahlknopf
sein.

Die Einteilung der View in Komponenten erleichtert die Entwicklung der Benutzeroberfla-
che, beispielsweise durch vereinfachtes Debugging. Komponenten in React besitzen Props,
welche dhnlich zu den Parametern einer Funktion funktionieren und fiir die Komponente
unveranderlich sind. Es konnen dariiber hinaus Callback-Funktionen iibergeben werden.
Dies folgt dem Prinzip ,properties flow down, actions flow up®. Der unidirektionale Fluss
von Daten erleichtert die Fehlersuche. Komponenten besitzen neben Props auch einen
Zustand, state genannt. Aulerdem besitzt React ein Virtuelles Document Object Model
(Virtual DOM). Sobald sich bei Komponenten der Zustand verandert, unterscheidet sich
das Virtual Dom vom ,echten Dom®, d.h. der visualisierten Benutzeroberfliche. Daraufhin
werden lediglich die Komponenten neu gerendert, bei denen sich der Zustand geéndert
hat. Dies gibt React eine bessere Performance als manch andere Frameworks ?. Auflerdem
muss der Programmierer sich nicht darum kiimmern, Anderungen des Zustands auf DOM
zu Ubertragen. Dies wird automatisch von React iibernommen. React bietet eine Synta-
xerweiterung von Javascript namens JSX an, mit der man Markup in Javascript schreiben
kann. Dies erleichtert die Lesbarkeit des Codes und verhindert XSS-Schwachstellen.
Durch das Benutzen von Source-Maps beim Build-Prozess mit Webpack und Babel lasst
sich der Code auf Komponenten-Ebene in den Chrome Entwicklerwerkzeugen betrach-
ten. Source-Maps bilden den kompilierten und minimierten Javascript-Code auf die
Ursprungsdateien ab und erleichtern somit das Debuggen *. Auf3erdem lassen sich dort
Haltepunkte setzen und der aktuelle Wert von Variablen beziehungsweise Attributen
auslesen. Zusitzlich gibt es Entwicklungswerkzeuge speziell fiir React, welche man fir
die Webbrowser Chrome und Firefox herunterladen kann. Mit ihnen kénnen der Zustand
und die Parameter der React-Komponenten verfolgt werden.

Neben React wurde bei der Frontend-Entwicklung Flow eingesetzt. Flow erlaubt die stati-
sche Code-Analyse von Javascript-Programmen. Flow wurde von Facebook entwickelt
und wird unter der MIT-Lizenz lizensiert. Flow erlaubt auch die Erstellung von Alterna-
tivnamen fiir Typen, um auftretende Fehler aussagekréftiger zu machen. Das Benutzen
von Flow erhoht die Robustheit des Codes der Benutzeroberflache. Dies wird durch eine
hohe Typ-Abdeckung erreicht. Typ-Abdeckung bezeichnet den Prozentsatz des Codes,
fir den der Typ einer Operation bekannt ist. Webpack kompiliert die Flow-annotierten
Dateien zu validem Javascript-Code. Gao et al. [GBB17] haben gezeigt, dass der Einsatz
von Flow oder Typescript ungefahr 15 Prozent der Bugs in 6ffentlichen Github-Projekten
verhindern konnten. In ihrer Arbeit wurde auch gezeigt, dass Fehler in Flow mit gerin-
gerem Zeichen- und Zeitaufwand erkennbar sind, als bei Typescript [GBB17]. Dies ist
dadurch erklarbar, dass Flow schon einige Typen selbst inferiert. Bei Typescript miissen

2https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts/table html
*https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

25

4 Datengenerierung flr Simulation

Testing Tool For loT Environments

Input Datatype:
_ i fHmeIspesacTsT I velue 28]
Start Value

button X 24 {"time"1508432677389, value':24}
Maximum Negative Spike:

50 {"time"1508432678401, value" 23} 9
Maximum Positive Spike:

80

Interval change

1

Anomaly Probability:
10

Interval (ms):

1000

Sensor-ID:

button
UPDATE SENSOR 8

Abbildung 4.2: Frontend des Simulationswerkzeuges

diese meist vom Programmierer selbst annotiert werden. Diese Griinde haben dazu ge-
fihrt, Flow fiir das Frontend zu benutzen. Dariiber hinaus hatte ich in einem fritheren
Projekt die Erfahrung gemacht, dass die Entwicklung mit ,reinem” Javascript zu vielen
vermeidbaren Laufzeitfehlern fiihrt.

Bei dieser Arbeit wurde kein Werkzeug zum Handhaben des Zustands, wie zum Beispiel
Flux oder Redux benutzt, da dies die Benutzeroberflache unnétig kompliziert gemacht
hatte. Der Zustand wird im Backend verwaltet und die Sensorenliste fiir die Benutzer-
oberflache wird in der App-Komponente gespeichert und ihren Unterkomponenten als
Argument iibergeben.

Die Benutzeroberflache ist in folgende Komponenten aufgeteilt: App, SensorList, Input-
Form, MqttConsole. App ist die Hauptkomponente, welche die restlichen Komponenten
darstellt. In ihrem Zustand werden die vom Backend erhaltene Liste der Sensorsimulatio-
nen und der derzeit ausgewahlte, zu simulierende Sensor gespeichert. App besitzt zwei
Handler-Funktionen; eine, welche die Sensorliste aktualisiert und eine andere, welche
den derzeit selektierten Sensor aktualisiert. Anstatt ein Werkzeug zum Handhaben des
Zustands zu benutzen habe ich mich entschieden, Zustandsénderungen durch asynchrone
Callbacks zu bewerkstelligen. Callbacks werden Funktionen genannt, welche anderen
Funktionen als Argument iibergeben werden und somit zu einem spéteren Zeitpunkt aus-
gefithrt werden konnen, meist um Werte in der aufrufenden Funktion zu verandern. Dazu
bekommen Kindkomponenten diese Handler iibergeben, um somit den riickflieBenden
Datenfluss zu ermoglichen.

26

4.3 Backend

SensorList (siehe Nummer 1 in Abbildung 4.2) zeichnet die Liste der aktuell existierenden
Sensoren. SensorList verfiigt selbst iber keinen Zustand sondern bekommt die Liste
der zu simulierenden Sensoren von App uibergeben. SensorList besitzt zwei Handler-
Funktionen. Eine zum Auswihlen von Sensoren und eine zum Loschen von Sensoren.
Falls ein Sensorsimulation zum Loschen markiert wird, wird eine GET-Anfrage an das
Backend durchgefiihrt, um diese zu l6schen. Sobald das Loschen erfolgreich durchgefiihrt
wurde, wird die als Callback tibergebene Funktion zur Aktualisierung der Sensorliste
aufgerufen und bekommt die neu erhaltene Sensorliste tibergeben.

InputForm (siehe Nummer 2 in Abbildung 4.2) stellt das Formular zum Eintragen der
Simulationsparameter dar. Falls der ausgewahlte Datentyp Boolean ist, werden bestimmte
Eingabefelder wie Startwert, maximale und minimale Abweichung, Ausreiflerwahrschein-
lichkeit und Anderungsrate nicht dargestellt. Die Komponente InputForm besitzt die
Werte der Eingabefelder der Simulationsparameter als Zustand und wird mit Beispiels-
werten initialisiert. Es verfiigt iber Handler-Funktionen zum Starten beziehungsweise
Andern der Simulation und zum Andern der angezeigten Parameterwerte. Falls eine
Sensorsimulation gerade selektiert ist, fithrt das Andern der Werte und Auswihlen von
»,Change Simulation“ zum sofortigen Andern des Simulationsverhaltens.

MgttConsole (Nummer 3 in Abbildung 4.2) stellt die Konsole zum Anzeigen der gene-
rierten Zufallszahlen dar. Die Komponente speichert die ausgewahlte Sensorsimulation
sowie die letzten erhaltenen Nachrichten. Auflerdem besitzt sie iiber einen eingebauten
MQTT-Client. Falls ein Sensor ausgew#hlt wird, registriert der Client sich zu dem Topic
mit dem selbigen Namen. Falls eine neue Simulation ausgewahlt wird, registriert der
Client sich zu einem neuen Topic. Sobald der Client Nachrichten empfangt, werden
diese in das Nachrichten-Array des Zustands aufgenommen. Schlussendlich werden die
Array-Elemente als Listenelemente gezeichnet.

4.3 Backend

Das Backend wurde mittels Spring realisiert [JHD+04]. Spring Boot ist eine Variante
des Spring Frameworks, welche das ,Convention-Over-Configuration“ Entwurfsmuster
implementiert. ,Convention-Over-Configuration® bezeichnet dabei, dass der Benutzer
eines Frameworks nur die Implementierungen konfigurieren muss, welche von den Kon-
ventionen abweichen. Spring Boot erlaubt es ,stand-alone” Spring-Anwendungen zu
erstellen, welche einen eingebetteten Tomcat Webserver benutzen. Aulerdem kénnen
Spring-Boot-Andwendungen einfach mit Maven [Sma+05] gebaut werden und durch
Aufrufen von ,java -jar <spring-boot-application>.jar* ausgefithrt werden, es muss al-
so keine war-Datei in einem Tomcat-Server bereitgestellt werden. Zusétzlich werden
vorgefertigte Project Object Models angeboten, um die Konfiguration zu vereinfachen.
Ich hatte mich fiir Spring Boot entschieden, da ich schon aus einem vorherigen Projekt
gute Erfahrungen gemacht hatte und den niedrigen Konfigurationsaufwand und die

27

4 Datengenerierung flr Simulation

Backend

: Warten auf

Anfragen

url == "/ url == "/delete$ensor"
L I [url == "/createSensor"] [url == "/updateSensor"] L / !
4 index.html Sensorsimulation Sensorsimulation Sensorsimulation
" erstellen andern I6schen
anzeigen . . .

Sensor-Thread
erstellen
Sensor Sensor-Thread
Sensor-Thread 16schen stoppen
starten

Sensor-Thread Sensor Sensor-Thread
zur Sensorenlistg erstellen auser?tigfr?gr?te

hinzufligen

neue Sensorliste neue Sensorliste neue Sensorliste
schicken schicken schicken

Abbildung 4.3: Aktivitdtsdiagramm des Simulationswerkzeuges

einfache Aufstellung von Spring-Boot-Anwendungen als grofien Vorteil sehe, was zu
einem schnelleren Entwicklungszyklus fithren kann.

Das Backend ist aus folgenden Klassen aufgebaut: Application, SimulatorController,
ThreadManager und SensorSimulatorThread. Die Klasse Application ist Einstiegspunkt
sowie Hauptklasse des Simulationswerkzeugs und startet die gesamte Spring-Boot-
Anwendung.

Die Klasse SimulatorController bildet Anfragen auf Methoden ab. Anfragen an /create-
Sensor fuhren dazu, dass eine neue Sensorsimulation mit den ubermittelten Parametern
erstellt wird und dass die neue Liste von Simulationen dem Benutzerschnittstelle ibermit-
telt wird. Anfragen an /updateSensor fithren dazu, dass ein neuer Sensor seine Simulation
anhand der Uibermittelten Parameter dndert und dass die neue Liste von Sensorsimulatio-
nen dem Benutzerschnittstelle iibermittelt wird. Anfragen an /deleteSensor fithren dazu,
dass eine Sensorsimulation aus der Simulationsliste geloscht wird und dass die neue Liste

28

4.3 Backend

von Simulationen dem Benutzerschnittstelle tibermittelt wird. Anfragen an /setBroker
fihren dazu, dass der zu verwendende MQTT-Broker geéndert wird.

Die Klasse ThreadManager verwaltet die Liste von SensorSimulatorThreads, welche die
Simulationsliste darstellt. Sie besitzt die Methoden: createSensor, welche einen neuen
SensorSimulatorThread erzeugt und zur Sensorliste hinzufiigt, updateSensor, welche ,de-
leteSensor” fiir den alten Sensor und createSensor mit den erhaltenen Parametern aufruft,
deleteSensor, welches den per Sensor-Id gesuchten Sensor-Thread findet, ihn stoppt und
ihn aus der Sensorenliste 16scht undesensorsToJSONArray, welche die Sensorliste zu
einem JSONArray umwandelt, um diese der Benutzerschnittstelle zu schicken.

Die Klasse SensorSimulatorThread besitzt die Parameter der Simulation als Attribute.
Die Klasse besitzt die folgenden Methoden: ,,toJSON®, welche ein JSON-Objekt aus dem
Sensor erzeugt. Diese Methode wird von der Methode ,sensorsToJSONArray” der Klasse
ThreadManager benutzt. ,generatelnt” erzeugt eine Integer-Zufallszahl basierend auf den
Simulationsparametern. ,generateFloat” erzeugt eine Float-Zufallszahl basierend auf den
Simulationsparametern. ,generateBoolean® erzeugt einen Boolean-Zufallswert basierend
auf den Simulationsparametern. Die Methode ,run”“ generiert einen Wert mithilfe einer
der obigen Methoden, packt diesen zusammen mit einem Zeitstempel in ein JSON-Objekt
und schickt anschlieffend das JSON-Objekt als String an den MQTT-Broker.

29

5 Datengenerierung zum
Benchmarking von CEP-Systemen

Ein weiteres Ziel dieser Arbeit ist die Generierung von Daten, welche zur Erstellung
von Benchmarks fiir CEP-Systeme benutzt werden kénnen. Die Aufgabe ist wie folgt
definiert: als Eingabe soll eine Datei mit Simulationswerten und Zeitstempeln dienen. Der
Benutzer soll dann die Anzahl der Threads fiir die Werteausgabe angeben kénnen. Dar-
aufhin sollten alle Threads synchron (das heisst auf die Millisekunde gleiche Zeitstempel)
ausgeithrt werden. Als maximale Werte, welche von der Datengenerierung unterstiitzt
werden sollen, wurden 1000 Threads mit 1 Millisekunde Intervalllinge angegeben. Da-
bei sollte die Reproduzierbarkeit der Wertegenerierung nicht verloren gehen. Um diese
Performanz zu erreichen, wurden bei allen aufier dem ersten Versuch Effizienzoptimie-
rungen vorgenommen. Es wurde, zum Beispiel, kein Frontend verwendet und statt MQTT
wurden die Daten direkt in Dateien oder Arrays geschrieben oder an das CEP-System
weitergegeben.

5.1 Erste Implementierung in Java

Zuerst wurde versucht, die Wertegenerierung fiir die Benchmarks durch das Simulations-
werkzeug zu realisieren. In dem Werkzeug generieren die Threads der Sensorsimulation
ihre Zufallswerte zusammen mit dem momentanen Zeitstempel in die Ausgabe und
warten dann, durch Benutzen von ,Thread.sleep®, so viele Millisekunden, wie in der
Eingabedatei angegeben. Die Ausgabe wurde per MQTT verschickt. Ein Abwandlung
davon ist, dass die Threads sich durch Busy Waiting synchronisieren. Dies geschieht,
indem der Thread Manager allen Threads der Sensorsimulation eine Startzeit, welche
von der Anzahl der Threads abhangt, vorgibt. Alle Threads fithren dann Busy Waiting
durch via Uberpriifung von ,System.nanoTime" bis die Startzeit erreicht ist. Sobald dies
der Fall ist, generieren sie die Ausgabe und erhohen die nachste Startzeit um die in der
Eingabedatei definierte Intervalllinge. Anschlieend wird erneut Busy Waiting durchge-
fithrt. Hier gab es aber schon bei geringen Threadanzahlen, Verzégerungen von mehreren
Millisekunden.

31

5 Datengenerierung zum Benchmarking von CEP-Systemen

5.2 Implementierungen in C

Als nichstes wurde untersucht, wie die Referenzimplementierung in performanteren
C-Code umgewandelt werden kann. Das C-Programm besteht im Wesentlichen aus zwei
den Funktionen: ,main“ und ,wait“. Bei der Simulationsausfithrung werden die Threads
erstellt und diese fithren dann die Funktion ,wait” aus. Bei wait setzen sich die Threads
eine Startzeit, welche von der Anzahl der Threads abhéngt. Danach wird, wie oben
beschrieben, bis zum Startzeitpunkt gewartet. Sobald die Startzeit erreicht ist, werden die
aktuellen Millisekunden ausgegeben. Beim Messen der Zeiten wurde das ,time value®-
Struct von C benutzt, zusammen mit der Funktion ,gettimeofday®. Beim Warten auf die
nachste Ausgabezeit wurden verschiedene Ansatze versucht. Als erste Funktion zum
Warten auf den nachsten Durchlauf wurde usleep benutzt mit verschiedenen Zeitwerten.
Usleep erlaubt es, den Thread die angegebene Zahl an Mikrosekunden ruhen zu lassen.
Als Werte wurden untersucht: 1 Mikrosekunde, 10 Mikrosekunden und 50 Mikrosekunden.
Als zweite Funktion zum Warten auf den nachsten Durchlauf wurde Nanosleep benutzt
mit verschiedenen Zeitwerten. Nanosleep erlaubt es, die Ausfithrung vom Thread eine
angegebene Zahl an Nanosekunden ruhen zu lassen. Als Werte wurden untersucht:
1 Nanosekunde, 10 Nanosekunden und 100 Nanosekunden. Als letzter Ansatz wurde
Busy-Waiting untersucht. Das Benutzen der Funktion usleep zum Warten von einer
Mikrosekunde als Argument lieferte dabei die beste Performanz.

Bei der vorherigen Implementierung wurden die Zeitwerte durch das ,printf“-Kommando
ausgegeben. Somit war es nicht moglich, die Zeitstempel der einzelnen Threads miteinan-
der zu vergleichen. Deswegen wurde eine weitere Implementierung angefertigt, bei der
das C-Programm via Java Native Interface (JNI) aufgerufen wurde. Dann wurden in den
Durchldufen Dateien mit den Zeitwerten erstellt und die Dateien wurden miteinander
verglichen. Um C-Programme iiber JNI aufzurufen, miissen folgende Schritte durchge-
fihrt werden. Zuerst muss aus dem Java-Programm eine Header-Datei erstellt werden,
welche im C-Programm eingebunden wird. Anschlieflend muss das C-Programm als
Shared Library kompiliert werden. Danach kann die Shared Library im Java-Programm
importiert werden und dessen Funktionen aufgerufen werden. Das C-Programm wurde
so abgedndert, dass in dieser Implementierung die Zeitstempel der Threads in Dateien
geschrieben werden. Jeder Thread erstellt dabei seine eigene Datei und schreibt in diese,
um Probleme beim Zugriff von gemeinsamen Ressourcen zu vermeiden und den Auslese-
prozess zu vereinfachen. Nach Ausfithrung des C-Programms werden die Dateien vom
Java-Programm ausgelesen und die Zeitstempel der jeweiligen Schleifendurchlaufe aller
Threads mit den Zeitstempeln des ersten Threads verglichen. Falls es Abweichungen gibt,
werden die ID des Threads und die Schleifennummer, in der es zu einer Abweichung
gekommen ist, ausgegeben. Hier war es moglich, Werte zu generieren mit bis zu 35
synchronen Threads.

Bei den vorherigen Implementierungen von synchronen Threads in C wurden noch keine
Optimierungen beim Scheduling angewandt. Alle Threads liefen mit normaler Prioritét.
Zusatzlich lief die Implementierung auf einem normalen Ubuntu Linux-System und nicht

32

5.2 Implementierungen in C

auf einem richtigen Echtzeit-Betriebssystem. Diese Punkte wurden als Verbesserungspo-
tentiale gesehen. In der main-Methode der Implementierung wird zuerst die Verwendung
von Arbeitsspeicher Giberpriift, da es leicht moglich ist, zu viel Arbeitsspeicher zu bean-
spruchen. Zuerst wird Giberpriift, wieviele Seitenfehler es gibt. Seitenfehler treten auf,
falls ein Programm versucht auf eine Speicherseite zuzugreifen, wofiir es keine Abbildung
in der Memory Management Unit in dem virtuellen Speicher des Prozesses gibt. Die
Speicherseite muss dann von der Festplatte geladen werden, was deutlich langer dauert
als ein Zugriff auf den Arbeitsspeicher. Anschlieffend wird das Verhalten der dynamischen
Speicherverwaltung konfiguriert. Auf den Speicherbereich des Prozesses wird mlockall
angewandt, damit dieser nicht ausgelagert werden kann, was Zugriffszeiten erhéhen
wiirde. Auflerdem wird angegeben, dass der Prozess keinen Speicher freigibt, da dies die
Ausfithrung des Prozesses verlangsamt. Danach wird wieder die Anzahl der Seitenfehler
iberpriift. Als nachstes werden der vom Prozess benoétigte Speicher reserviert und es
wird Uberprift, ob die Anzahl der Seitenfehler 0 betragt. AnschlieBend werden mehrere
Variablen definiert zur Verwaltung der Simulation, wie zum Beispiel Anzahl der Threads,
Anzahl der Schleifendurchlaufe, Lange des Intervalls in Millisekunden sowie die anfiang-
liche Verzogerung in Mikrosekunden. Zusatzlich werden 2 Strukturen erzeugt: eine fir
Zeitwerte und eine andere fiir die Argumente der Threads. Auch wird ein Array vom Typ
pthread erzeugt, um die Zeiger auf die Threads abzuspeichern. Der Typ pthread bezieht
sich auf POSIX Threads. POSIX Threads ist ein sprachenunabhéngiger IEEE Standard,
welcher eine API fiir die Erstellung von Threads in C definiert. Danach wird gepriift,
ob die Anzahl der vergangenen Mikrosekunden seit der letzten Millisekunde kleiner als
500 sind. Andernfalls wird per Busy Waiting gewartet, bis das der Fall ist. Dies wird
getan, um zu vermeiden, dass ein Thread mit seiner Ausgabe in die nichste Millisekunde
schreitet, da ,usleep” eine gemessene Mindestlatenz von 500 Mikrosekunden hat, da
hierbei auch Systemaufrufe erledigt werden miissen, zum Beispiel beim Auslesen der
Uhrzeit des Systems. Als nachstes wird die Startzeit festgelegt, indem zwei long-Werte
erstellt werden (einer fiir die Sekunden, einer fir die Mikrosekunden) welche schliesslich
inkrementiert werden abhingig davon wie grofl die Verzogerung ist. Danach werden
die Argumente fiir die Threads vorbereitet. Zu den Argumenten fiir die Threads zédhlen:
die Thread-ID, die Startzeit in Sekunden, die Startzeit in Mikrosekunden, die Lange des
Intervalls in Mikrosekunden und die Schleifenanzahl. Anschlieflend werden die Threads
gestartet und sie fithren die Funktion ,rundeadline” aus. Am Anfang der Funktion wer-
den die Argumente entpackt und in lokale Variablen gespeichert. Auflerdem werden
eine Struktur fiir das Erfassen der Zeit angelegt und eine Datei zur Persistierung der
Zeitstempel des Threads. Danach werden die Variablen initialisiert und die Scheduling-
Policy des Threads wird festgelegt. Wie vorher erwahnt, wurde hier auch versucht, ein
Echtzeit-Betriebssystem zu nutzen. Deswegen wurde auf dem Testsystem ein Echtzeit-
Betriebssystemkern zu den verfiigbaren Betriebssystemkernen hinzugefiigt. Mit dem
einem Echtzeit-Betriebssystemkern ist es moglich, Zugang zu Echtzeit-Schedulern zu
bekommen. Ein Scheduler entscheidet, in welche Reihenfolge Prozesse und Threads auf
dem Prozessor ausgefithrt werden. Jeder Thread besitzt eine Policy und eine Prioritét. Der
Scheduler entscheidet aufgrund der Policy und der Prioritét, welcher Thread als nachstes
ausgefithrt wird. Standardméflig wird bei Linux der ,Completely Fair Scheduler” benutzt.

33

5 Datengenerierung zum Benchmarking von CEP-Systemen

Die normalen Scheduling-Policies sind: SCHED_OTHER, SCHED_IDLE und SCHED_BATCH.
Mit dem Echtzeit-Betriebssystemkern hat man Zugriff auf weitere Scheduling-Policies:
First-In-First-Out, Round-Robin und dem Deadline-Scheduler. Bei First-In-First-Out wird,
wie der Name schon sagt, der erste Thread in der Warteschlange als néachstes ausgefiihrt.
Beim FIFO-Scheduling lagen die Verzégerungen im Bereich von 30 Millisekunden, was
sich durch Unterbrechungen von anderen Threads erklaren lasst. Bei Round-Robin be-
kommt jeder Thread ein Zeitquantum zugeteilt, wovon seine Ausfithrungsdauer abhangt.
Bei Round-Robin-Policy ist es nicht mdglich, das Zeitquantum festzulegen. Das vorge-
gebene Zeitquantum ist beim Testsystem 25 Millisekunden, was es unmdglich macht,
alle Threads auf die Millisekunde genau zu synchronisieren. Bei der Deadline-Policy
bekommt jeder Thread eine Periode und eine Laufzeit zugeteilt. Der Scheduler lasst
jeden Thread dann jede Periode so lange laufen, wie in der Laufzeit angegeben ist. Bei
dieser Implementierung wurde eine Deadline-Scheduling-Policy mit einer Laufzeit von
50 Mikrosekunden und einer Periode von 1 Millisekunde gew&hlt, damit jeder Thread
moglichst genau einmal pro Millisekunde eine Ausgabe tatigt. Nach der Festlegung der
Scheduling-Policy fiir den Thread lduft die Zeitmessung. Jeder Thread wartet, bis die
Startzeit beginnt, indem er usleep(1); aufruft und dann den jetzigen Zeitwert erfasst.
Sobald die Startzeit erreicht ist, schreibt er seine ID, die jetzige Schleifennummer und
seinen jetzigen Zeitstempel in eine Datei. Danach erhoht er die nachste Startzeit um die
Intervalllinge und inkrementiert die Schleifennummer. Falls er die maximale Anzahl
von Durchlaufen erreicht hat, bricht die Ausfithrung ab. Nach der Ausfithrung werden
die Zeitstempeln in den Dateien miteinander verglichen und es wird tiberpriift, ob alle
Threads den gleichen Zeitstempel in jedem Schleifendurchlauf haben.

Bei der reinen C-Implementierung mit verbessertem Scheduling lieffen sich schon bessere
Ergebnisse erzielen. Die Ein- und Ausgabe von Dateien ist jedoch mit einem hohen
Zeitaufwand verbunden, da hier in persistentem Speicher wahrend der Ausfithrung ge-
schrieben wird. Deswegen wurde eine weitere Implementierung vorgenommen, wobei
die Ein- und Ausgabe vermieden wurde, indem man die Zeitstempel stattdessen via TCP
verschickt und per Serversocket in Java einliest. Zusatzlich werden die empfangenen
Zeitwerte in ein CEP-System eingegeben. In diesem Fall wurde Esper verwendet. Die
Implementierung auf C-Seite ist hier nahezu identisch. Der Ablauf der Simulation ist hier
wie folgt. Zuerst werden Werte wie die Thread- und Schleifenanzahl sowie die Startzeit
initialisiert. Danach werden Threads erstellt, welche Server-Sockets aufbauen und auf
ankommende Verbindungen warten. Es gibt dabei eine 1:1 Beziehung zwischen Threads
auf C- und Java-Seite. Sobald eine Verbindung aufgebaut wird, wird ein Socket erstellt
und die empfangenen Werte in Ereignisse verpackt und an die Esper-Engine geschickt.
Ein Ereignis besteht aus einer Thread-ID, einer Schleifendurchlaufsnummer und einem
Integer-Wert. Wahrend die Threads auf Java-Seite auf ankommende Verbindungen war-
ten, wird die C-Seite via JNI gestartet. Jeder Thread auf C-Seite generiert einen Wert
und schickt diesen per TCP an die Java-Seite. Es wurde TCP genommen, da der teure
Verbindungsaufbau nur einmal beim Start des Threads passiert und somit keine Nachteile
gegeniiber anderen Protokollen, wie zum Beispiel dem User Datagram Protocol (UDP),
entstehen. Als nichstes wird eine simple Anfrage an die Esper CEP-Engine gestellt,

34

5.3 Timer, Monitor und Threads in Java

welche alle empfangenen Ereignisse auswéhlt. Aulerdem wird ein Listener hinzugefiigt,
welcher die empfangenen Zeitstempel in ein zweidimensionales Array schreibt, wobei der
Zeilenindex gleich der Threadnummer und der Spaltenindex gleich der Schleifennummer
ist. Am Ende der Ausfithrung werden die Zeitstempel des Array verglichen und die
maximale Verzégerung zwischen zwei Threads ausgegeben.

Bei der gemischten Implementierung von C und Java geht jedoch die Echtzeit verloren, da
auf Java-Seite Just-In-Time-Kompilierung vorgenommen wird und die Garbage-Collection
zu beliebigen Zeitpunkten aktiv werden kann laufen kann, wann sie will. Deswegen
wurde auch noch eine reine Implementierung der Zeitmessung in C vorgenommen. Diese
ist nahezu identisch zu der C-Implementierung mit Echtzeit-Schedulern, nur dass die
Zeitwerte in ein Array geschrieben werden und dass am Schluss der main-Funktion
die Zeitwerte verglichen werden und die maximale zeitliche Verzégerung zwischen den
Threads gemessen wird.

5.3 Timer, Monitor und Threads in Java

Da nach den anfanglichen Versuchen klar war, dass harte Echtzeit mit ,normalem” Java
nicht moglich ist, wurde die Zielsetzung aufgelockert. Diese Umstellung ist moglich, da
Esper es erlaubt, dass man ein Zeitfenster definiert, in dem Werte beriicksichtigt werden.
Die folgenden Implementierungen wurden vorgenommen, um zu untersuchen, wie grof3
die maximale Verzogerung zwischen den Threads bei der Wertegenerierung ist.

Bei dieser Implementierung lauft die Simulation wie folgt ab. Zuerst werden mehrere Va-
riablen deklariert, darunter: die Anzahl der Threads, die Anzahl der Schleifendurchlaufe,
die Lange des Intervalls und die Startzeit. Anschlieflend wird ein Timer erstellt mit der
Startzeit, dem Intervall und einem Monitor als Argumenten. Jedes Mal wenn der Timer
dann feuert, benachrichtigt der Monitor alle Objekte, die auf ihn warten. Auflerdem
werden Threads gestartet, welche die Schleifenanzahl und den Monitor als Argumente
haben. Die Threads warten auf den Monitor. Sobald sie von ihm benachrichtigt wer-
den, schreiben sie einen Zeitstempel in ein eindimensionales Array mit der aktuellen
Schleifendurchlaufnummer als Index und warten dann auf die niachste Benachrichtigung
vom Monitor. Dies wird solange durchgefiihrt, wie in der Schleifenanzahl angegeben.
Nachdem alle Threads beendet sind, werden ihre Arrays zu einem zweidimensionalem Ar-
ray fusioniert, nach Thread-ID und Schleifendurchlaufnummer als Indizes. Zum Schluss
werden die minimalen und maximalen Thread-Zeiten von jedem Schleifendurchlauf
aufgenommen und deren Differenz berechnet. Das Maximum dieser Differenzen wird
berechnet und dann als die maximale zeitliche Verzogerung zwischen zwei Threads in
allen Schleifendurchldufen ausgegeben.

35

5 Datengenerierung zum Benchmarking von CEP-Systemen

TimerMonitorDelayCalculator

V [i '= numberOfThreads]

ﬁ'hreads initialisieren, starten und zur Threadliste hinzufijgen]

\}i == numberOfThreads]

! !

MyTimer MyThread

[j '= numberOfLoops]
[Stantzeit noch nicht erreicht]

tartzeit erreicht]
[nachste Periode

[Auf Monitor warten]

b noch nicht erreicht] Zeitst li
- . . eitstempel in
nachste Periode erreicht] [threadTimes-Array schreiben]
MyMonitor
notifyAll() j == numberOfLoops]
% O
cancel() Aufruf

.

V!

\

[Auf Beendigung aller Threads warten]

Y

[Minimale und maximale Zeitwerte aller Schleifendurchlaufe ermitteln]

J

[Differenzen berechnen]

y

[Maximale zeitliche Differenz ausgeben]

6

Abbildung 5.1: Aktivitdtsdiagramm zum Unterkapitel 5.3

36

5.4 Esper und Java

5.4 Esper und Java

Hier lauft die Simulation sehr analog zur vorherigen Implementierung ab. Es werden
am Anfang wieder mehrere Variablen deklariert, darunter: die Anzahl der Threads, die
Anzahl der Schleifendurchldufe, die Lange des Intervalls und die Startzeit. Anschlieflend
wird ein Timer erstellt mit der Startzeit, dem Intervall und einem Monitor als Argumenten.
Jedes Mal wenn der Timer dann feuert, benachrichtigt der Monitor alle Objekte, die auf
ihn warten. Es werden auch wieder Threads gestartet, welche die Schleifenanzahl und den
Monitor als Argumente haben. Die Threads warten auf den Monitor. Sobald sie von ihm
benachrichtigt werden, schreiben sie einen Zeitstempel in ein eindimensionales Array
mit der aktuellen Schleifendurchlaufnummer als Index und warten dann auf die néachste
Benachrichtigung vom Monitor. Einer der wenigen Unterschiede ist, dass die Threads
ihre Zeitstempel dieses Mal nicht in ein Array schreiben, sondern ein Ereignis erstellen
und dieses an das CEP-System schicken. Dabei besteht ein Ereignis aus einer Thread-
ID, einer Schleifendurchlaufsnummer und einem Integer-Wert. Der Thread fiithrt diese
Aktion so oft aus, wie in der Schleifenanzahl angegeben. Als nachstes wird eine simple
Anfrage an die Esper Cep-Engine gestellt, welche alle empfangenen Ereignisse auswahlt.
Auflerdem wird ein Listener hinzugefiigt, welcher die empfangenen Zeitstempel in ein
zweidimensionales Array schreibt, wobei der Zeilenindex gleich der Threadnummer und
der Spaltenindex gleich der Schleifennummer ist. Am Ende der Ausfiihrung werden die
Zeitstempel des Array verglichen und die maximale Verzégerung zwischen zwei Threads
ausgegeben.

5.5 Timer, Monitor und Threads in Echtzeit-Java

Nachdem bei der endgiiltigen C-Implementierung mit der Benutzung eines Echtzeit-
Betriebssystemkerns deutliche Performanzgewinne zu sehen waren, wurde untersucht,
ob es nicht auch Echtzeitalternativen zur Java Virtual Machine (JVM) gibt. Eine davon ist
die JamaicaVM, welche eine deterministische Garbage Collection, Ahead-Of-Time Kom-
pilierung und harte Echtzeit verspricht. Bei der normalen JVM sorgen die willkiirliche
Garbage Collection und die Just-In-Time (JIT) Kompilierung dazu, dass Echtzeitgarantien
schwer einzuhalten sind. JamaicaVM implementiert die ,Realtime specification for Java“
(RTS)). Es werden aulerdem Echtzeit-Threads angeboten, welche strikt priorisiert werden
konnen und welche auch, dhnlich zum Deadline Scheduling, Perioden und Laufzeiten
zugewiesen bekommen konnen. Bei dieser Implementierung lauft die Simulation wie folgt
ab. Zuerst wird ein Objekt zum Halten der Daten instanziiert, die Daten die es hélt sind
unter anderem: die Anzahl der Threads, die Anzahl der Schleifendurchlédufe, die Lange
des Intervalls und die Startzeit. AnschlieBend wird ein Echtzeit-Timer erstellt mit der
Startzeit, dem Intervall und einem Monitor als Argumenten. Das Echtzeit-Timer beginnt
ab der deklarierten Startzeit an, Ereignisse zu feuern und dies wird in Intervallen wieder-
holt, wobei die Dauer zwischen zwei Ereignissen durch die Intervalllange festgelegt ist.
Jedes Mal wenn der Echtzeit-Timer ein Ereignis feuert, benachrichtigt der Monitor alle

37

5 Datengenerierung zum Benchmarking von CEP-Systemen

Objekte, die auf ihn warten. Auflerdem werden Echtzeit-Threads gestartet, welche die
Schleifenanzahl, den Monitor, eine Prioritat und eine Periode als Argumente haben. Als
Prioritat wird die maximal mogliche Prioritét fir Echtzeit-Threads benutzt. Es wird eine
Periode von 1 Mikrosekunde benutzt. Die Threads warten auf den Monitor. Sobald die
Threads vom Monitor die Freigabe zum Fortfahren erhalten, wird die jetzige Uhrzeit von
ihnen mittels Clock.getRealtimeClock().getTime() in das Zeitstempel-Array geschrieben
und warten dann auf die nachste Benachrichtigung vom Monitor. Dies wird solange
durchgefiihrt, wie in der Schleifenanzahl angegeben. Nachdem alle Threads beendet sind,
werden ihre Arrays zu einem zweidimensionalem Array fusioniert, nach Thread-ID und
Schleifendurchlaufnummer als Indizes. Zum Schluss werden die minimalen und maxi-
malen Thread-Zeiten von jedem Schleifendurchlauf aufgenommen und deren Differenz
berechnet. Das Maximum dieser Differenzen wird berechnet und dann als die maximale
zeitliche Verzogerung zwischen zwei Threads in allen Schleifendurchlaufen ausgege-
ben. Die RealtimeThread-Objekte kiimmert sich um die Aufnahme der Zeitwerte. Sie
besitzt die Anzahl der Schleifendurchldufe, das myMonitor-Objekt und ein Array namens
threadTimes fiir die Zeitwerte als Attribute. In ihrer Run-Methode wird eine for-Schleife
aufgerufen, welche so oft durchlaufen wird, wie in der Anzahl der Schleifendurchlaufe
angegeben. In der for-Schleife wird auf das MyRTMonitor-Objekt gewartet und dann die
jetzige Zeit in das Array threadTimes geschrieben mit der Schleifenanzahl als Index.

5.6 Threads mit integrierten Timern in Echtzeit-Java

Es wurde auch noch eine zweite Implementierung in Echtzeit-Java entwickelt, um zu
untersuchen, ob sich eine bessere Performanz erreichen lasst, falls nicht alle Threads nur
durch einen Timer und Monitor synchronisiert werden, sondern dass alle Threads ihre
eigenen Timer besitzen. Die Simulation ist wie folgt aufgebaut. Zuerst werden mehrere
Variablen deklariert, unter anderem: die Anzahl der Threads, die Anzahl der Schleifen-
durchlaufe, die Lange des Intervalls und die Startzeit. Im Hauptprogramm wird dieses Mal
kein Echtzeit-Timer erstellt. Es werden, wie in der vorherigen Implementierung, Echtzeit-
Threads gestartet, welche die Schleifenanzahl, den Monitor, eine Prioritat und eine Periode
als Argumente haben. Jeder Thread bekommt jeweils genau einen Timer-Objekt zuge-
wiesen. Das Timer-Objekt beinhaltet einen Echzeit-Timer. Jeder Thread wartet auf sein
Timer-Objekt. Sobald die Threads von ihren Timer-Objekten die Freigabe zum Fortfahren
erhalten, wird die jetzige Uhrzeit von ihnen mittels Clock.getRealtimeClock().getTime() in
das Zeitstempel-Array geschrieben und warten dann auf die niachste Benachrichtigung
vom Monitor. Dies wird solange durchgefiihrt, wie in der Schleifenanzahl angegeben.
Nachdem alle Threads beendet sind, werden ihre Arrays zu einem zweidimensionalem Ar-
ray fusioniert, nach Thread-ID und Schleifendurchlaufnummer als Indizes. Zum Schluss
werden die minimalen und maximalen Thread-Zeiten von jedem Schleifendurchlauf
aufgenommen und deren Differenz berechnet. Das Maximum dieser Differenzen wird
berechnet und dann als die maximale zeitliche Verzogerung zwischen zwei Threads in
allen Schleifendurchlédufen ausgegeben.

38

6 Evaluation

In diesem Kapitel werden die Implementierungen mittels Messergebnissen evaluiert. Die
Evaluation wurde auf einem Rechner vom Modell Lenovo ideapad 100S-14IBR durchgefiihrt.
Der Rechner besitzt einen Intel Pentium CPU N3710 Prozessor, welcher auf 1.6 GHz
getaktet ist und 4 Kerne sowie eine Wortldnge von 64 bit besitzt. Zusatzlich enthalt
der Prozessor einen L1 Cache mit 32 KB Gréf3e und einen L2 Cache mit 1 MB Grofle.
Auflerdem verfiigt der Rechner tiber insgesamt 4 GB Arbeitsspeicher, welcher aus zwei
Einheiten vom Typ Samsung SODIMM DDR3 Synchronous besteht, welche jeweils 2 GB
Speicher besitzen und auf 1600 MHz getaktet sind. Das Motherboard ist vom Typ Aristotle
14. Die Festplatte des Rechners ist vom Typ Samsung MZNTY256 und besitzt 238 GiB
Speicher. Das installierte Betriebssystem ist Ubuntu 16.04.3 LTS. Die installierten Kernel
sind Linux 4.10.0-37-generic x86_64 und Linux 4.9.40-rt30 x86_64.

Die Evaluation ist wie folgt gegliedert: zuerst wird die C-Implementierung besprochen,
dann die Java-Implementierung, danach eine Java-Implementierung mit Anschluss an
Esper, dann noch zwei Implementierung in Echtzeit-Java und am Schluss werden die
Ergebnisse diskutiert.

6.1 Implementierung in C

Diese Implementierung wurde mit dem Befehl gcc -O3 -Irt -pthread <Eingabedatei> -o
<Ausgabedatei>kompiliert. Das -Irt-Flag sagt aus, dass die Ausgabedatei mit der Bibliothek
rt statisch gelinkt sein sollte. Da dies zur Kompilierzeit geschieht, weif3 der Compiler,
welche Funktionen benétigt werden und kann eventuell Optimierungen vornehmen. Beim
dynamischen Linken der Bibliothek, also das Linken zur Laufzeit, wére das nicht moglich.
Das -O3-Flag sagt aus, dass der Maschinencode soweit wie mdglich auf Performanz
optimiert werden soll und ist die hochste Optimierungsstufe, welche vom GNU C Compiler
angeboten wird. Dies spiegelt sich in einer hoheren Kompilierzeit wider, was jedoch
wegen der geringen Grof3e des Programms vernachlassigbar ist. Es wurden 50 Tests mit
jeweils 10 Schleifendurchldufen durchgefiihrt. Es wurde mit folgenden Threadanzahlen
getestet: 10, 50, 100, 175, 250, 375, 500 und 1000. Jede Threadanzahl wurde mit folgenden
Intervallen (in Millisekunden) getestet: 1, 10, 25, 50 und 100.

Die Evaluation dieser Implementierung wurde auf dem Echtzeit-Kernel ausgefiihrt. Ab-
bildung 6.2 zeigt, wie performant das Programm ist. Die Median-Latenzen lagen bei 0
fir alle Anzahlen von Threads. In C lésst sich somit Wertegenerierung mit 1000 Threads

39

6 Evaluation

400

350

300 W 1000 Threads

W 500 Threads
250

m 375 Threads
200
W 250 Threads
150 175 Threads
100 m 100 Threads
M 50 Threads
0 m 10 Threads
1 10 25 50 100

Intervall (in ms)

Standardabweichung (in ms)

wn
o

Abbildung 6.1: Kumulative Standardabweichung der Latenzen der C-Implementierung

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 o—o——o—o ® @ ®
0 200 400 600 800 1000 1200

Anzahl der Threads

Median der Latenz zwischen Threads
(in ms)

Abbildung 6.2: Median der Latenzen der C-Implementierung bei 1 Millisekunde Intervall

40

6.2 Timer, Monitor und Threads in Java

300
250
W 1000 Threads
’g 200 ® 500 Threads
= M 375 Threads

W 250 Threads

S
(9]
o
£ 100 175 Threads
100 Threads
50
- M 50 Threads

M 10 Threads

Mediane der Latenzen zwischen

1 10 25 50 100
Intervalle (in ms)

Abbildung 6.3: Kumulative Latenzen der Timer-Monitor-Implementierung in Java

Intervall | 1ms | 10 ms 25 ms 50 ms | 100 ms
Median 795 | 11.6 ms | 547 ms | 3.41 ms | 3.24 ms

Tabelle 6.1: Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Java

auf die Millisekunde synchron betreiben. Jedoch zeigt Abbildung 6.1, dass es bei 500
und 1000 Threads auch Abweichungen der Latenzen gab, welche im dreistelligen Millise-
kundenbereich liegen und damit sehr grof} sind. Bis einschlie3lich 375 Threads waren
die Standardabweichungen der Latenzen fiir alle Intervalle 0. Dies lasst vermuten, dass
mit dem Vierfachen an Prozessorkernen es moglich ist, bei der Simulation von 1000
Threads eine Median-Latenz von 0 Millisekunden und eine Standardabweichung der
Latenzen von 0 Millisekunden méglich ist. Auflerdem besitzt die Implementierung noch
Optimierungspotenzial. Die derzeitige Implementierung ist Busy-Waiting. Jeder Thread
priift, ob er die Uhrzeit ausgeben soll.

6.2 Timer, Monitor und Threads in Java

Diese Implementierung wurde als Java Archive (JAR) verpackt und dann in der Konsole
ausgefiihrt. Es wurden 100 Tests mit jeweils 10 Schleifendurchlédufen durchgefiihrt. Es
wurde mit folgenden Threadanzahlen getestet: 10, 50, 100, 175, 250, 375, 500 und 1000.
Jede Threadanzahl wurde mit folgenden Intervallen (in Millisekunden) getestet: 1, 10,

41

6 Evaluation

80
— 70
wv
g % m 1000 Threads
o0 W 500 Threads
§ 50
< m 375 Threads
‘o 40
E W 250 Threads
é“ 30 175 Threads
(T
-,% 20 m 100 Threads
-+
v 10 M 50 Threads

0 —- — — — —— ®m 10 Threads
1 10 25 50 100

Intervall (in ms)

Abbildung 6.4: Kumulative Standardabweichungen der Timer-Monitor-
Implementierung in Java

70
60
50

- 40

m

30

(in

20

10

Median der Latenz zwischen Threads

0 200 400 600 800 1000 1200
Anzahl der Threads

Abbildung 6.5: Medianlatenzen der Timer-Monitor-Implementierung in Java bei Inter-
vall von 100 Millisekunden

42

6.2 Timer, Monitor und Threads in Java

Intervall

1 ms

10 ms

25 ms

50 ms

100 ms

Median

2.99 ms

3.18 ms

3.07 ms

2.26 ms

2.35 ms

Tabelle 6.2: Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Java auf Echtzeit-Betriebssystemkern

25, 50 und 100. Die Evaluation dieser Implementierung wurde auf dem Standard-Kernel
ausgefiihrt.

In Abbildung 6.3 sind die aufsummierten Mediane der Worst-Case-Latenzen zwischen
Threads zu sehen. Hier ist das Intervall von 100 Millisekunden am besten, wobei das
Intervall von 50 Millisekunden nah dran ist. Weiterhin sind in Abbildung 6.4 die aufsum-
mierten Standardabweichungen der Latenzen zwischen Threads zu sehen. Das Intervall
von 100 Millisekunden schneidet dabei am besten ab. Zusatzlich wurde der Median aller
Standardabweichungen der verschiedenen Intervalle berechnet. Die Ergebnisse sind in
Tabelle 6.1 zu sehen.

Da das Intervall von 100 Millisekunden mit 3.24 Millisekunden den niedrigsten Median
aller Standardabweichungen hat, wird es als ,bestes” Intervall zur Wertegenerierung
gesehen, da die aufgenommenen Werte am robustesten und somit am aussagekréftigsten
sein sollten. Es macht auch Sinn, dass die Performanz bei einem Intervall von 100 Millise-
kunden besser ist, da die Threads nicht so oft laufen und CPU-Last beanspruchen. Bei
den kurzen Intervallen kommt es zu einem &hnlichen Verhalten wie bei Busy-Waiting. In
Abbildung 6.5 wird das Wachstum der Latenzen fiir verschiedene Threadzahlen gezeigt.
Fiir 1000 Threads betriagt der Median der Latenzen zwischen Threads 60 Millisekunden
und fiir 500 Threads betragt er 36 Millisekunden. Die Messungen lassen einen linearen
Trend vermuten. Mithilfe von linearer Regression lasst sich die Latenz Y zwischen Threads
basierend auf X Threads angeben als: Y = 0.056 x X +6.04. Fiir ein angeschlossenes CEP-
System wie Esper konnte man fiir 1000 Threads ein Zeitfenster von 92.4 Millisekunden
(60 + 10 * 3.24) wahlen. Zu der gemessenen Latenz fiir 1000 Threads wird das zehnfache
der Standardabweichung aufaddiert. Diese grof3e Sicherheitsmarge sollte garantieren,
dass die erzeugten Werte von Esper in jedem Schleifendurchlauf angenommen werden.

Auflerdem wurde dieselbe Implementierung auch noch auf dem Echtzeit-Betriebssystem-
kern getestet. Es wurden wieder 100 Tests mit jeweils 10 Schleifendurchldufen durchge-
fihrt. Auch wurde wieder mit folgenden Threadanzahlen getestet: 10, 50, 100, 175, 250,
375, 500 und 1000. Die getesteten Intervalle (in Millisekunden) blieben auch gleich: 1, 10,
25, 50 und 100.

In Abbildung 6.6 sind die aufsummierten Mediane der Worst-Case-Latenzen zwischen
Threads zu sehen. Hier ist das Intervall von 25 Millisekunden am besten, wobei das
Intervall von 50 Millisekunden nah dran ist. Weiterhin sind in Abbildung 6.7 die aufsum-
mierten Standardabweichungen der Latenzen zwischen Threads zu sehen. Das Intervall
von 100 Millisekunden schneidet dabei am besten ab. Zusatzlich wurde der Median aller

43

6 Evaluation

180
S 160
S
RY] 140
R
@ 120
§ =
c .£ 100
o=
+= n
83T 8o
g 2
T £ 60
@ =
& 40
3
S 20
0

1

[EEN
o

_—
25

Intervalle (in ms)

wu

100

B 1000 Threads
B 500 Threads
B 375 Threads
B 250 Threads

175 Threads
B 100 Threads
B 50 Threads

® 10 Threads

Abbildung 6.6: kumulierte Latenzen der Timer-Monitor-Implementierung in Java auf
Echtzeit-Betriebssystemkern

35

30

25

20

15

10

Standardabweichung (in ms)

— [
10 25

Intervall (in ms)

50

[
100

M 1000 Threads
M 500 Threads
m 375 Threads
M 250 Threads
175 Threads
m 100 Threads
M 50 Threads
H 10 Threads

Abbildung 6.7: kumulierte Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Java auf Echtzeit-Betriebssystemkern

44

6.3 Esper und Java

50

45
40
35

30

25

20

15 Pes

10 “

Median der Latenz zwischen Threads
(in ms)

0 200 400 600 800 1000 1200
Anzahl der Threads

Abbildung 6.8: Medianlatenzen der Timer-Monitor-Implementierung in Java auf
Echtzeit-Betriebssystemkern bei 50 Millisekunden Intervall

Standardabweichungen der verschiedenen Intervalle berechnet. Die Ergebnisse sind in
Tabelle 6.2 zu sehen.

Da das Intervall von 50 Millisekunden mit 2.26 Millisekunden den niedrigsten Median
aller Standardabweichungen hat, wird es als ,bestes” Intervall zur Wertegenerierung
gesehen, da die aufgenommenen Werte am robustesten und somit am aussagekréftigsten
sein sollten. In Abbildung 6.8 wird das Wachstum der Latenzen fiir verschiedene Thread-
zahlen bei einem Intervall von 50 Millisekunden gezeigt. Fiir 1000 Threads betragt der
Median der Latenzen zwischen Threads 44 Millisekunden und fiir 500 Threads betragt er
26 Millisekunden. Die Messungen lassen einen linearen Trend vermuten. Mithilfe von
linearer Regression lasst sich die Latenz Y zwischen Threads basierend auf X Threads an-
geben als: Y = 0.039 * X + 6.17. Fiir ein angeschlossenes CEP-System wie Esper konnte
man fiir 1000 Threads ein Zeitfenster von 66.6 Millisekunden (44 + 10 * 2.26) wihlen. Zu
der gemessenen Latenz fiir 1000 Threads wird das Zehnfache der Standardabweichung
aufaddiert. Diese grofle Sicherheitsmarge sollte garantieren, dass die erzeugten Werte
von Esper in jedem Schleifendurchlauf angenommen werden.

6.3 Esper und Java

Diese Implementierung wurde als JAR verpackt und dann in der Konsole ausgefiihrt. Es
wurden 10 Tests mit jeweils 10 Schleifendurchldufen durchgefiihrt. Es wurde mit folgen-
den Threadanzahlen getestet: 10, 50, 100, 175, 250, 375, 500 und 1000. Jede Threadanzahl
wurde mit folgenden Intervallen (in Millisekunden) getestet: 1, 10, 25, 50 und 100. Bei

45

6 Evaluation

3000
5
E 2500
S
@ 2000
§ £
£
875 1500
37
5 9
S £ 1000
o -
C
.S
S 500
>
0

1

10

25

50

Intervalle (in ms)

100

B 1000 Threads
B 500 Threads
B 375 Threads
B 250 Threads

175 Threads
B 100 Threads
B 50 Threads

® 10 Threads

Abbildung 6.9: Kumulative Latenzen der Java-Esper-Implementierung

400

350

300

250

200

150

100

Standardabweichung (in ms)

50

1

—
10

(O]

50

Intervall (in ms)

100

B 1000 Threads
® 500 Threads
m 375 Threads
M 250 Threads

175 Threads
M 100 Threads
B 50 Threads

® 10 Threads

Abbildung 6.10: Kumulative Standardabweichungen der Latenzen der Java-Esper-

Implementierung
Intervall 1 ms 10 ms 25 ms 50 ms 100 ms
Median | 35.63ms | 12.87 ms | 22.2ms | 30.25ms | 21.38 ms

Tabelle 6.3: Mediane der Standardabweichungen der Latenzen der Java-Esper-
Implementierung

46

6.4 Timer, Monitor und Threads in Echtzeit-dava

2500
[%2]

©

(98

o

£ 2000
C

(]

e

2 1500
25

N g

c c

8 = 1000
S

0]

©

c 500
K

©

(]

= 0

0 200 400 600 800 1000 1200
Anzahl der Threads

Abbildung 6.11: Medianlatenzen der Java-Esper-Implementierung bei Intervall von 10
Millisekunden

dieser Implementierung waren die Laufzeiten so hoch, dass mehr Testdurchlaufe zeitlich
nicht realisierbar gewesen waren. Die Evaluation dieser Implementierung wurde auf dem
Standard-Kernel ausgefiihrt.

In Abbildung 6.9 sind die aufsummierten Mediane der Worst-Case-Latenzen zwischen
Threads zu sehen. Das Intervall von 100 Millisekunden schneidet dabei am besten ab.
Weiterhin sind in Abbildung 6.10 die aufsummierten Standardabweichungen der Latenzen
zwischen Threads zu sehen. Auch hier ist das Intervall von 100 Millisekunden am besten.
Zusétzlich wurde der Median aller Standardabweichungen der verschiedenen Intervalle
genommen. Die Ergebnisse sind in Tabelle 6.3 zu sehen.

Da das Intervall von 10 Millisekunden mit 12.87 Millisekunden den niedrigsten Median
aller Standardabweichungen hat, wird es als ,bestes” Intervall zur Wertegenerierung
gesehen, da die aufgenommenen Werte am aussagekraftigsten sein sollten. In Abbildung
6.11 wird das Wachstum der Latenzen fiir verschiedene Threadzahlen gezeigt. Fiir 1000
Threads betragt der Median der Latenzen zwischen Threads 1958 Millisekunden. Die
Messungen lassen einen linearen Trend vermuten. Mithilfe von linearer Regression
lasst sich die Latenz Y zwischen Threads basierend auf X Threads angeben als: Y =
1.99 x X — 53.03.

47

6 Evaluation

450
400

350
W 500 Threads

300
MW 375 Threads
250
m 250 Threads
200
W 175 Threads
100 Threads
M 50 Threads
m = B B
10 25 50 100

150

Threads (in ms)

100

Mediane der Latenzen zwischen

50
W 10 Threads

Intervalle (in ms)

Abbildung 6.12: Kumulative Latenzen der Timer-Monitor-Implementierung in Echtzeit-

Java
100
90
")
g€ 80
£ 70 W 500 Threads
oo
S 60 W 375 Threads
c
§ 50 m 250 Threads
2 40 175 Threads
©
i 30 m 100 Threads
S 20
g m 50 Threads
M N N -
W 10 Threads
o -
1 10 25 50 100

Intervall (in ms)

Abbildung 6.13: Kumulative Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Echtzeit-Java

Intervall | 1ms | 10 ms 25 ms 50 ms 100 ms
Median 13.14 | 7.14 ms | 598 ms | 6.46 ms | 7.51 ms

Tabelle 6.4: Mediane aller Standardabweichungen der Latenzen der Timer-Monitor-
Implementierung in Echtzeit-Java

48

6.4 Timer, Monitor und Threads in Echtzeit-dava

100
90
80 :
70 y
60 .
50
40
30
20
10

Median der Latenz zwischen Threads
(in ms)

0 100 200 300 400 500 600
Anzahl der Threads

Abbildung 6.14: Medianlatenzen der Timer-Monitor-Implementierung in Echtzeit-Java
bei Intervall von 25 Millisekunden

6.4 Timer, Monitor und Threads in Echtzeit-Java

Die Timer-Monitor-Implementierung in Echtzeit-Java wurde mit dem Jamaica Builder zu
einer ausfithrbaren Datei kompiliert. Es wurden 100 Tests mit jeweils 10 Schleifendurch-
laufen durchgefiihrt. Es wurde mit folgenden Threadanzahlen getestet: 10, 50, 100, 175,
250, 375, 500 und 1000. Jede Threadanzahl wurde mit folgenden Intervallen (in Millise-
kunden) getestet: 1, 10, 25, 50 und 100. Die Evaluation dieser Implementierung wurde auf
dem Echtzeit-Kernel ausgefiihrt. Es war nicht moglich, mit 1000 Threads zu testen, da der
Jamaica Builder dies in der Standardkonfiguration nicht zulésst. In Abbildung 6.12 sind
die aufsummierten Mediane der Worst-Case-Latenzen zwischen Threads zu sehen. Das
Intervall von 25 Millisekunden hat dabei die niedrigste kumulative Latenz, dicht gefolgt
vom Intervall mit 10 Millisekunden. Weiterhin sind in Abbildung 6.13 die aufsummierten
Standardabweichungen der Latenzen zwischen Threads zu sehen. Das Intervall von 100
Millisekunden schneidet hier am besten ab. Zusatzlich wurde der Median aller Standard-
abweichungen der verschiedenen Intervalle genommen. Die Ergebnisse sind in Tabelle
6.4 zu sehen.

Da das Intervall von 25 Millisekunden mit 5.98 Millisekunden den niedrigsten Median aller
Standardabweichungen hat, wird es als ,bestes” Intervall zur Wertegenerierung gesehen,
da die aufgenommenen Werte am aussagekraftigsten sein sollten. In Abbildung 6.14 wird
das Wachstum der Latenzen fiir verschiedene Threadzahlen gezeigt. Fiir 500 Threads
betrdgt der Median der Latenzen zwischen Threads 90.5 Millisekunden. Die Messungen
lassen einen linearen Trend vermuten. Mithilfe von linearer Regression lasst sich die
Latenz Y zwischen Threads basierend auf X Threads angeben als: Y = 0.15 « X + 11.64.

49

6 Evaluation

1000
c 900
2
Q 800
E — 700 m 500 Threads
§ E 600 B 375 Threads
cC .=
L5 500 m 250 Threads
37
5 0 400 W 175 Threads
o
o 7~ 300 100 Threads
(9]
S 200 - 50 Threads
> 100

M 10 Threads

1 10 25 50 100

Intervalle (in ms)

Abbildung 6.15: Kumulative Latenzen der Threads mit integrierten Timern in Echtzeit-
Java

Intervall 1 ms 10 ms 25 ms 50 ms 100 ms
Median | 25.2ms | 36.89 ms | 40.64 ms | 47.95 ms | 26.73 ms

Tabelle 6.5: Mediane aller Standardabweichungen der Threads mit integrierten Timern
in Echtzeit-Java fiir die verschiedenen Intervalle

Unter Benutzung dieser Formel liegt die geschatzte Latenz fiir 1000 Threads bei 162
Millisekunden.

6.5 Threads mit integrierten Timern in Echtzeit-Java

Die Implementierung der Threads mit integrierten Timern in Realtime Java wurde mit
dem Jamaica Builder zu einer ausfithrbaren Datei kompiliert. Es wurden 100 Tests mit
jeweils 10 Schleifendurchlaufen durchgefiihrt. Es wurde mit folgenden Threadanzahlen
getestet: 10, 50, 100, 175, 250, 375, 500 und 1000. Jede Threadanzahl wurde mit folgenden
Intervallen (in Millisekunden) getestet: 1, 10, 25, 50 und 100. Die Evaluation dieser Im-
plementierung wurde auf dem Echtzeit-Kernel ausgefithrt. Wie im vorherigen Kapitel
erwahnt, war es nicht moglich, mit 1000 Threads zu testen. In Abbildung 6.15 sind die
aufsummierten Mediane der Latenzen zwischen Threads zu sehen. Das Intervall von 1
Millisekunde hat dabei die niedrigste kumulative Latenz. Weiterhin sind in Abbildung
6.16 die aufsummierten Standardabweichungen der Latenzen zwischen Threads zu sehen.
Das Intervall von 100 Millisekunden schneidet hier am besten ab, wobei das Intervall von

50

6.5 Threads mit integrierten Timern in Echtzeit-Java

450
400
wv
E 350
£ W 500 Threads
oo 300
S m 375 Threads
< 250
'q—;, W 250 Threads

200
2 W 175 Threads
T 150
i 100 Threads
c 100
5 m 50 Threads
9 50

W 10 Threads
0 —— || — — —

1 10 25 50 100

Intervall (in ms)

Abbildung 6.16: Kumulative Standardabweichungen der Latenzen der Threads mit inte-
grierten Timern in Echtzeit-Java

Median der Latenz zwischen Threads
(in ms)
N
o
o

0 100 200 300 400 500 600
Anzahl der Threads

Abbildung 6.17: Medianlatenzen der Threads mit integrierten Timern in Echtzeit-Java
bei Intervall von 1 Millisekunden

51

6 Evaluation

1 Millisekunde ziemlich nah dran ist. Zusatzlich wurde der Median aller Standardabwei-
chungen der verschiedenen Intervalle genommen. Die Ergebnisse sind in Tabelle 6.5 zu
sehen.

Da das Intervall von 1 Millisekunde mit 25.2 Millisekunden den niedrigsten Median aller
Standardabweichungen hat, wird es als ,bestes” Intervall zur Wertegenerierung gesehen,
da die aufgenommenen Werte am aussagekraftigsten sein sollten. In Abbildung 6.17 wird
das Wachstum der Latenzen fiir verschiedenen Threadzahlen gezeigt. Fiir 500 Threads
betragt der Median der Latenzen zwischen Threads 372.5 Millisekunden. Der Graph lasst
einen linearen Trend erkennen. Mithilfe von linearer Regression lasst sich die Latenz Y
zwischen Threads basierend auf X Threads angeben als: Y = 0.72 %« X — 22.14. Fiir 1000
Threads liegt die geschétzte Latenz bei 697.86 Millisekunden.

6.6 Diskussion

Bei fast allen Implementierungen ist eine Korrelation zwischen aufsteigendem Intervall
und absteigender kumulativer Latenz zu beobachten. Zusétzlich zeigen fast alle Implemen-
tierungen einen Ausreifler bei den Standardabweichungen der Latenzen beim Intervall mit
50 Millisekunden Lénge ab einer Threadanzahl von 500 oder 1000. Es ist nicht klar, warum
es dieses lokale Maximum bei 50 Millisekunden gibt. Bei der C-Implementierung und den
Threads mit integrierten Timern in Echtzeit-Java, zwei Implementierungen bei denen die
Threads sich selbst synchronisieren, ist bei 1 Millisekunde der Median der Standardab-
weichungen der Latenzen am niedrigsten. Bei den Timer-Monitor-Implementierungen
verbessert sich der Median der Standardabweichungen der Latenzen erst bei hoheren
Intervallen. Hier gab es keine Gemeinsamkeiten. Aulerdem deuten fast alle Implementie-
rungen auf einen linearen Zusammenhang zwischen Threadanzahl und Latenz zwischen
Threads. Einzige Ausnahme ist die C-Implementierung, die sehr performant ist. Es ist
jedoch zu vermuten, dass sich das C-Programm ab einer bestimmten Anzahl von Threads
analog verhalt.

Verglichen zur Timer-Monitor-Implementierung auf dem Echtzeit-Betriebssystemkern
gibt es bei der Implementierung auf dem normalen Linux-Betriebssystemkern ein Plus
von 36 Prozent bei der besten Median-Latenz fiir 1000 Threads und ein Plus von 43
Prozent bei der besten Median-Standardabweichung der Latenzen. Dies macht Sinn, da
auf dem Echtzeit-Betriebssystemkern hoch priorisierte Ausfithrungen gar nicht oder
nicht so oft von unwichtigen Prozessen unterbrochen werden.

Im Vergleich der Timer-Monitor-Implementierung auf dem normalen Betriebssystemkern
und der Java-Esper-Implementierung gibt es bei dieser ein Plus von 3163 Prozent bei der
besten Median-Latenz fiir 1000 Threads. Der kleinste Median der Standardabweichung
der Latenzen ist im Vergleich zur reinen Java-Implementierung um 297 Prozent gestiegen.
Dieser Anstieg ist nicht iiberraschend wenn man bedenkt, dass nach der Werteerzeugung
noch die Verarbeitung in Esper ablaufen muss.

52

6.6 Diskussion

Verglichen zur Timer-Monitor-Implementierung in Java auf dem Echtzeit-Betriebs-
systemkern gibt es bei der Timer-Monitor-Implementierung in Echtzeit-Java ein Plus
von 248 Prozent bei der besten Median-Latenz bei 500 Threads und einem Plus von 164
Prozent bei der besten Median-Standardabweichung der Latenzen. Dies ist iberraschend,
da die Echtzeitversion von Java strengere Garantien geben miisste und die Kompilie-
rung auch noch Performanzgewinne liefern sollte. Es kann jedoch daran liegen, dass
nur die Standardkonfiguration der aicas-Werkzeuge benutzt wurde und auch kein Profil
der Ausfithrung erstellt wurde, welches die Performanz noch weiter optimieren soll.
Trotzdem kann es sich lohnen, diese Echtzeit-Implementierung zu benutzen, da durch
die JamaicaVM mehr Echtzeit-Garantien geboten werden und somit eine verlésslichere,
auf einem hoheren Niveau reproduzierbare, Ausfithrung versprochen wird.

Verglichen zu der Timer-Monitor-Implementierung in Echtzeit-Java gibt es bei den
Threads mit integrierten Timern beim besten Median der Latenz ein Plus von 311 Prozent
und beim besten Median der Standardabweichung der Latenzen ein Plus von 321 Prozent.
Anhand von diesen Werten lésst sich zeigen, dass die Threads mit integrierten Timern
wesentlich ineffizienter sind. Dies ist nicht tiberraschend, da die Threads sich um ihre
Zeitwerte kiilmmern und die gemeinsame Ressource Timer von diesen mehreren Threads
angefragt wird und es somit zu grofieren Verzogerungen kommt.

Den Vergleichen nach, scheint die Timer-Monitor-Implementierung in ,normalem® Java
auf einem Echtzeit-Betriebssystemkern die performanteste zu sein und sich am besten
fiir die Wertegenerierung fiir CEP-Systeme zu eignen.

53

7 Zusammenfassung und Ausblick

Immer mehr Haushaltsgerdte und Maschinen werden mit dem Internet verbunden. Diesen
Trend nennt man das Internet der Dinge (Englisch: Internet Of Things, kurz: 1oT). Ein
zentrales Problem dabei ist die Simulation von IoT-Umgebungen. Diese ist sehr teuer, da
man fiir jede Simulation Hardware bereitstellen muss. Daher ist eine Software-basierte
Simulation erstrebenswert. Ein weiteres Problem im Internet der Dinge ist die auto-
matische Uberwachung von IoT-Umgebungen und das Reagieren auf Situationen. Dies
geschieht meist mithilfe von Complex-Event-Processing-Systemen (kurz: CEP-Systeme).
Diese bekommen einen Strom an Ereignissen, lesen diesen ein und treffen, basierend
auf den Ereignisdaten, Entscheidungen. Fiir CEP-Systeme gibt es bislang noch keine
Benchmarks. Dieses Problem soll durch andere Arbeiten gelost werden. In dieser Arbeit
wurde deswegen auch versucht, eine Datengenerierung fiir Benchmarks zu entwickeln.
Zusétzlich wurde erforscht, wie viele Threads synchron Daten erzeugen kénnen und wie
grof3 die maximale zeitliche Abweichung bei asynchronen Threads ist.

Das Simulationswerkzeug besteht aus einem React Frontend und einem Spring Boot
Backend. Es erlaubt die Angabe von: Datentyp, Startwert, Anderungsrate, Ausreiflerwahr-
scheinlichkeit, Intervalllinge und der maximalen positivn und negativen Abweichung.
Es konnen beliebig viele Sensorsimuationen erstellt werden mit unterschiedlichen Pa-
rametern. Bei der Simulation werden Werte iiber MQTT ausgegeben und an Topics
mit dem Sensornamen verschickt. Im Frontend wird eine Liste der Sensorsimulationen
und eine Konsole mit den derzeit generierten Werten angezeigt. Das Backend verarbei-
tet die HTTP-Anfragen des Frontend und verwaltet die Sensorsimulationen und deren
Wertegenerierung, sowie die Erzeugung der MQTT-Nachrichten.

Es wurden verschiedene Implementierungen vorgestellt. Die erste Implementierung ist
eine Abwandlung des Simulationswerkzeuges, wobei die Threads sich zusammen durch
Busy Waiting synchronisieren. Als niachstes wurde ein analoges Programm in C vor-
gestellt, welches iiber das Java Native Interface aufgerufen wird. Bei dem C-Programm
wurden auch unterschiedliche Scheduling-Verfahren ausprobiert, unter anderem Deadline-
Scheduling, welches die besten Resultate liefert. Beim Deadline-Scheduling wird jedem
Thread pro Periode eine bestimmte, maximale Laufzeit zugewiesen. Der Vergleich der
Zeiten lief iiber das Vergleichen von Dateien mit den Zeitwerten. Das Arbeiten mit Da-
teien hat jedoch einen grofien Zusatzaufwand, weshalb als nichstes untersucht wurde,
ob sich mit Kommunikation tiber TCP eine bessere Performanz erreichen lasst. Nach
diesen Tests hatte es sich gezeigt, dass es mit Java auf der gegebenen Hardware nicht
moglich ist, 1000 Threads mit einem Minimalintervall von 1 Millisekunde zu synchroni-
sieren. Deswegen wurde eine weitere reine C-Implementierung vorgenommen, bei der

55

7 Zusammenfassung und Ausblick

die Zeitwerte in Arrays geschrieben und am Ende miteinander verglichen werden. Fiir die
Java-Implementierungen wurde die Zielsetzung aufgelockert und es wurde stattdessen
untersucht, wie grofl die maximale zeitliche Abweichung zwischen zwei Threads ist.
Diese Umstellung war moglich, da Esper es erlaubt, dass man ein Zeitfenster definiert,
in dem Werte beriicksichtigt werden. Als nachstes wurde eine Implementierung in Java
vorgestellt, welche einen Monitor mit Timer beinhaltet, welcher Threads synchronisiert.
Auflerdem wurde mit JamaicaVM, einer virtuellen Maschine welche die Echtzeitspezifi-
kation von Java implementiert, experimentiert. Hier war es moglich, Echtzeit-Threads
und Ahead-Of-Time-Kompilierung zu benutzen.

Zum Abschluss, wurden die verschiedenen Implementierungen evaluiert. Die C-
Implementierung wurde als Maf3stab genommen, da sie die untere Schranke fiir die
Performanz ist. Hier war es moglich, 1000 Threads synchron laufen zu lassen. Bei den
Java-Implementierungen war die Timer-Monitor-Implementierung auf dem Echtzeit-
Betriebssystemkern die beste mit einer Medianlatenz von 44 Millisekunden bei 1000
Threads. Verglichen dazu hat die Timer-Monitor-Implementierung in Echtzeit-Java ein
Plus von 248 Prozent bei der besten Median-Latenz bei 500 Threads und einem Plus
von 164 Prozent bei der besten Median-Standardabweichung der Latenzen. Dies ist tiber-
raschend, da die Echtzeitversion von Java strengere Garantien geben miisste und die
Ahead-Of-Time-Kompilierung auch noch Performanzgewinne liefern sollte.

Basierend auf dieser Arbeit ist es moglich, Sensoren zu simulieren und die simulier-
ten Sensoren an Monitoring-Tools oder CEP-Systeme anzuschlieflen. Aulerdem wird
geschitzt, dass bei der Wertegenerierung in Java fiir CEP-Systeme die maximale Verzoge-
rung fiir 1000 Threads bei 44 Millisekunden liegt. Mit dem Zehnfachen des Median der
Standardabweichung addiert, sollte es fiir Benchmarks ausreichend sein, das Zeitfenster
in Esper auf 66.6 Millisekunden festzulegen.

Ausblick

Die Simulation ist noch sehr simpel. In Zukunft konnten noch komplexere Simulations-
modelle benutzt werden. Zum Beispiel, zur Simulation von Temperatursensoren gibt
es bessere Modelle, die auf Thermodynamik beruhen und realistischere Simulationen
ermoglichen. Das gilt analog fiir Gerdusch- und Lichtsensoren. Man kénnte spezialisierte
Unterklassen der Sensorsimulation erstellen, die besser angepasst sind an die Art der
Sensoren, die man simulieren mochte.

Bei der Wertegenerierung fiir CEP-Systeme gibt es noch folgende Herausforderungen
fur zukinftige Arbeiten. Das Werkzeug muss in die Benchmarking-Systeme integriert
werden. Zukiinftig sollen verschiedene CEP-Systeme unterstiitz werden. Weiterhin miis-
sen Adapter implementiert werden und es muss sichergestellt werden, dass es keine
Zeitverluste bei den verschiedenen Verarbeitungsschritten gibt.

56

Literaturverzeichnis

[15]

[17a]

[17b]

[17c]

[17d]

[BWO1]

[CCM+01]

[CKE+15]

[DGO8]

[DM02]

[Fac17a]

[Fac17b]

[Gar13]

Trends in the cost of computing. https://aiimpacts.org/trends-in-the-cost-
of-computing/. 2015 (zitiert auf S. 13).

https://nest.com/. 2017 (zitiert auf S. 13).

Bosch Feuermelder. https://www.bosch-smarthome.com/de/de/produkte/
smart-system-solutions/rauchmelder?WT.mc_id=iot_hub. 2017 (zitiert auf
S. 13).

Bosch IoT Suite. https://www.bosch-si.com/iot- platform/bosch-iot-
suite/homepage-bosch-iot-suite.html. 2017 (zitiert auf S. 13).

Nest Cam IQ Outdoor. https://nest.com/cameras/nest-cam-iq-outdoor/
overview/. 2017 (zitiert auf S. 13).

A.Burns, A.]. Wellings. Real-time systems and programming languages: Ada
95, real-time Java, and real-time POSIX. Pearson Education, 2001 (zitiert
auf S. 16).

E. Christensen, F. Curbera, G. Meredith, S. Weerawarana et al. Web services
description language (WSDL) 1.1. 2001 (zitiert auf S. 19).

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas.
»2Apache flink: Stream and batch processing in a single engine®. In: Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering 36.4
(2015) (zitiert auf S. 22).

J. Dean, S. Ghemawat. ,MapReduce: simplified data processing on large
clusters®. In: Communications of the ACM 51.1 (2008), S. 107-113 (zitiert
auf S. 18).

E.D. Dolan, J.J. Moré. ,Benchmarking optimization software with perfor-
mance profiles®. In: Mathematical programming 91.2 (2002), S. 201-213
(zitiert auf S. 16).

Facebook. React License. https://github.com/facebook/react/blob/master/
LICENSE. Okt. 2017 (zitiert auf S. 24).

Facebook. React Open Source. https://github.com/facebook/react. Okt. 2017
(zitiert auf S. 24).

N. Garg. Apache Kafka. Packt Publishing Ltd, 2013 (zitiert auf S. 21).

57

https://aiimpacts.org/trends-in-the-cost-of-computing/
https://aiimpacts.org/trends-in-the-cost-of-computing/
https://nest.com/
https://www.bosch-smarthome.com/de/de/produkte/smart-system-solutions/rauchmelder?WT.mc_id=iot_hub
https://www.bosch-smarthome.com/de/de/produkte/smart-system-solutions/rauchmelder?WT.mc_id=iot_hub
https://www.bosch-si.com/iot-platform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://www.bosch-si.com/iot-platform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://nest.com/cameras/nest-cam-iq-outdoor/overview/
https://nest.com/cameras/nest-cam-iq-outdoor/overview/
https://github.com/facebook/react/blob/master/LICENSE
https://github.com/facebook/react/blob/master/LICENSE
https://github.com/facebook/react

Literaturverzeichnis

[GBB17]

[HBS+16]

[HLC+14]

[HWBM16]

[icc17]

[IH11]

[1S15]

[JHD+04]

[JMM11]

[LLWC03]

58

Z. Gao, C. Bird, E. T. Barr. , To type or not to type: quantifying detectable
bugs in JavaScript®“. In: Proceedings of the 39th International Conference on
Software Engineering. IEEE Press. 2017, S. 758-769 (zitiert auf S. 25).

P.Hirmer, U. Breitenbiicher, A. C.F. da Silva, K. Képes, B. Mitschang, M. Wie-
land. ,,Automating the Provisioning and Configuration of Devices in the
Internet of Things®. Englisch. In: Complex Systems Informatics and Modeling
Quarterly 9 (Dez. 2016), S. 28—-43. 1SSN: 2255 - 9922. DOI: 10.7250/csimq.2016-
9.02. URL: http://www2.informatik.uni- stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=ART-2016-23&engl=0 (zitiert auf S. 13).

S.N. Han, G. M. Lee, N. Crespi, N. Van Luong, K. Heo, M. Brut, P. Gatellier.
,DPWSim: A simulation toolkit for IoT applications using devices profile
for web services®. In: Internet of Things (WF-IoT), 2014 IEEE World Forum
on. IEEE. 2014, S. 544-547 (zitiert auf S. 19).

P. Hirmer, M. Wieland, U. Breitenbiicher, B. Mitschang. ,Dynamic Ontology-
based Sensor Binding®. Englisch. In: Advances in Databases and Information
Systems. 20th East European Conference, ADBIS 2016, Prague, Czech Republic,
August 28-31, 2016, Proceedings. Bd. 9809. Information Systems and App-
lications, incl. Internet/Web, and HCI. Prague, Czech Republic: Springer
International Publishing, Aug. 2016, S. 323-337. 1SBN: 978-3-319-44039-2.
por: 10.1007/978-3-319-44039- 2. UrL: http://www2.informatik.uni-
stuttgart.de/cgi-bin/NCSTRL/NCSTRL _ view.pl?id =INPROC - 2016 -
25&engl=0 (zitiert auf S. 13).

icclab. Iot Simulator. http://icclab.github.io/iot-simulator/. Okt. 2017 (zitiert
auf S. 19).

T. Issariyakul, E. Hossain. Introduction to network simulator NS2. Springer
Science & Business Media, 2011 (zitiert auf S. 19, 20).

M. H. Igbal, T.R. Soomro. ,Big data analysis: Apache storm perspective®.
In: International journal of computer trends and technology (2015), S. 9-14
(zitiert auf S. 21).

R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg,
A. Arendsen, D. Davison, D. Kopylenko, M. Pollack et al. ,The spring
framework-reference documentation®. In: Interface 21 (2004) (zitiert auf
S. 27).

C. Janiesch, M. Matzner, O. Miiller. ,A blueprint for event-driven busi-
ness activity management®. In: International Conference on Business Process
Management. Springer. 2011, S. 17-28 (zitiert auf S. 15).

P. Levis, N. Lee, M. Welsh, D. Culler. ,TOSSIM: Accurate and scalable simu-
lation of entire TinyOS applications®. In: Proceedings of the 1st international
conference on Embedded networked sensor systems. ACM. 2003, S. 126—137
(zitiert auf S. 19).

https://doi.org/10.7250/csimq.2016-9.02
https://doi.org/10.7250/csimq.2016-9.02
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&engl=0
https://doi.org/10.1007/978-3-319-44039-2
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://icclab.github.io/iot-simulator/

Literaturverzeichnis

[Loc10] D. Locke. ,Mq telemetry transport (mqtt) v3. 1 protocol specification®. In:
IBM developerWorks Technical Library (2010) (zitiert auf S. 15).

[MPD+02] G. Mein, S. Pal, G. Dhondu, T.K. Anand, A. Stojanovic, M. Al-Ghosein,
P. M. Oeuvray. Simple object access protocol. US Patent 6,457,066. Sep. 2002
(zitiert auf S. 19).

[ODE+06] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt. ,Cross-level sensor
network simulation with cooja“. In: Local computer networks, proceedings
2006 31st IEEE conference on. IEEE. 2006, S. 641-648 (zitiert auf S. 19, 21).

[Rob10] D. Robins. ,Complex event processing”. In: Second International Workshop
on Education Technology and Computer Science. Wuhan. Citeseer. 2010, S. 1-
10 (zitiert auf S. 15).

[SBH+17] A.C.F. da Silva, U. Breitenbiicher, P. Hirmer, K. Képes, O. Kopp, F. Ley-
mann, B. Mitschang, R. Steinke. ,Internet of Things Out of the Box: Using
TOSCA for Automating the Deployment of IoT Environments®. Englisch.
In: Proceedings of the 7th International Conference on Cloud Computing and
Services Science (CLOSER). Hrsg. von D. Ferguson, V. M. Muifioz, J. Cardoso,
M. Helfert, C. Pahl. Bd. 1. ScitePress. SciTePress Digital Library, Juni 2017,
S. 358-367. 1SBN: 978-989-758-243-1. por: 10.5220/0006243303580367. URL:
http://www2.informatik.uni- stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2017-28&engl=0 (zitiert auf S. 13).

[SHB+17] A.C.F. daSilva, P. Hirmer, U. Breitenbiicher, O. Kopp, B. Mitschang. ,,Custo-
mization and provisioning of complex event processing using TOSCA®.
Englisch. In: Computer Science - Research and Development (Sep. 2017), S. 1-
11. 1sSN: 1865-2042. poI: 10.1007/s00450-017-0386-z. URL: http://www2.
informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-
2017-10&engl=0 (zitiert auf S. 13).

[SHK+06] A. Sobeih, J.C. Hou, L.-C. Kung, N. Li, H. Zhang, W.-P. Chen, H.-Y. Tyan,
H. Lim. ,J-Sim: a simulation and emulation environment for wireless sensor
networks®. In: IEEE Wireless Communications 13.4 (2006), S. 104-119 (zitiert
auf S. 19, 20).

[SHWM16] A.C.F.daSilva, P. Hirmer, M. Wieland, B. Mitschang. ,SitRS XT - Towards
Near Real Time Situation Recognition®. Englisch. In: Journal of Information
and Data Management 7.1 (Apr. 2016), S. 4-17. URL: http://www2.informatik.
uni - stuttgart.de/cgi-bin/NCSTRL/NCSTRL _view.pl?id=ART-2016-
14&engl=0 (zitiert auf S. 13).

[Sim17] Simplesoft. SimpleloTSimulator. http://www.smplsft.com/SimpleloTSimulator.
html. Okt. 2017 (zitiert auf S. 18).

[Sma+05] J.F. Smart et al. ,An introduction to Maven 2. In: JavaWorld Magazi-
ne. Available at: http://www. javaworld. com/javaworld/jw-12-2005/jw-1205-
maven. html (2005) (zitiert auf S. 27).

59

https://doi.org/10.5220/0006243303580367
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-28&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-28&engl=0
https://doi.org/10.1007/s00450-017-0386-z
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2017-10&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2017-10&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2017-10&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-14&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-14&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-14&engl=0
http://www.smplsft.com/SimpleIoTSimulator.html
http://www.smplsft.com/SimpleIoTSimulator.html

[SS15] A.G. Shoro, T.R. Soomro. ,Big data analysis: Apache spark perspective®.
In: Global Journal of Computer Science and Technology 15.1 (2015) (zitiert
auf S. 22).

[Tel17] Telit. Telit Iot Portal. https://www.telit.com/products/iot-platforms/telit-
iot-portal/. Online; accessed 05-October-2017. 2017 (zitiert auf S. 17).

[VHO03] A. Varga, R. Hornig. ,An overview of the OMNeT++ simulation environ-
ment®. In: Proceedings of the 1st international conference on Simulation tools
and techniques for communications, networks and systems & workshops. ICST
(Institute for Computer Sciences, Social-Informatics und Telecommunicati-
ons Engineering). 2008, S. 60 (zitiert auf S. 19).

[VW12] A. Videla, J.J. Williams. RabbitMQ in action: distributed messaging for ever-
yone. Manning, 2012 (zitiert auf S. 19).

[XYWV12] F. Xia, L.T. Yang, L. Wang, A. Vinel. ,Internet of things®. In: International
Journal of Communication Systems 25.9 (2012), S. 1101 (zitiert auf S. 15).

[ZGS+17] X.Zeng, S.K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, R. Ran-
jan. ,Jotsim: A simulator for analysing iot applications®. In: Journal of
Systems Architecture 72 (2017), S. 93-107 (zitiert auf S. 17).

Alle URLs wurden zuletzt am 06. 10. 2017 gepriift.

https://www.telit.com/products/iot-platforms/telit-iot-portal/
https://www.telit.com/products/iot-platforms/telit-iot-portal/

Erklirung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngemaf} aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
veroffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren iiberein.

Ort, Datum, Unterschrift

	1 Motivation
	2 Grundlagen
	2.1 Internet der Dinge
	2.2 Echtzeitprogrammierung
	2.3 Benchmarking

	3 Verwandte Arbeiten
	3.1 Telit IoT Random Number Generator Action Block
	3.2 IOTSim: A simulator for analysing IoT applications
	3.3 SimpleIoTSimulator
	3.4 DPWSim
	3.5 icclab IoT Simulator
	3.6 Netzwerksimulatoren
	3.7 Streaming Engines

	4 Datengenerierung für Simulation
	4.1 Systemübersicht und Implementierung
	4.2 Benutzerschnittstelle
	4.3 Backend

	5 Datengenerierung zum Benchmarking von CEP-Systemen
	5.1 Erste Implementierung in Java
	5.2 Implementierungen in C
	5.3 Timer, Monitor und Threads in Java
	5.4 Esper und Java
	5.5 Timer, Monitor und Threads in Echtzeit-Java
	5.6 Threads mit integrierten Timern in Echtzeit-Java

	6 Evaluation
	6.1 Implementierung in C
	6.2 Timer, Monitor und Threads in Java
	6.3 Esper und Java
	6.4 Timer, Monitor und Threads in Echtzeit-Java
	6.5 Threads mit integrierten Timern in Echtzeit-Java
	6.6 Diskussion

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

