
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit

Choreographiesprachen mit
Datenmodellierungsfähigkeiten –

eine Übersicht

Nico Lässig

Studiengang: Informatik

Prüfer/in: Prof. Dr. Dr. h.c. Frank Leymann

Betreuer/in: Dr. Oliver Kopp,
Dipl.-Inf. Michael Hahn

Beginn am: 14. Dezember 2016

Beendet am: 14. Juni 2017

CR-Nummer: C.2.4, D.2.2, D.2.11, H.4.1

Kurzfassung

In organisationsübergreifenden Geschäftsprozessen ist die Kommunikation zwischen den
teilhabenden Diensten von zentraler Bedeutung. Choreographiesprachen liefern eine globale
Sichtweise auf das Zusammenwirken der verschiedenen Dienste in solchen Geschäftsprozessen
und legen den Fokus eben auf diese Kommunikation.

Für die Modellierung von Choreographien existieren bereits eine Vielzahl an Sprachen, die
jedoch aufgrund der unterschiedlichen Anforderungen oft unterschiedliche Modellierungskon-
strukte und Eigenschaften haben. In dieser Arbeit sollen die existierenden Sprachen gefunden
und im Anschluss miteinander verglichen und analysiert werden. Dafür werden Kriterien
definiert, welche Choreographiesprachen erfüllen sollten. Es wird dabei besonders auf Daten-
modellierungsaspekte eingegangen, da der Austausch von Daten ein wichtiger Faktor für die
Interaktionen zwischen den verschiedenen Diensten ist.

3

Inhaltsverzeichnis

1 Einleitung 13

2 Verwandte Arbeiten 17

3 Identifikation und Sammlung von Choreographiesprachen 21
3.1 Herangehensweise der Suche . 21
3.2 Ergebnisse der Suche . 22
3.3 Möglichkeiten zur Ermittlung der Relevanz der gefundenen Sprachen 28
3.4 Berechnung der Relevanz zur Filterung der Sprachen für die Analyse 31

4 Analyse ausgewählter Sprachen 33
4.1 Vergleichskriterien . 33
4.2 Abstraktes Beispiel einer Choreographie . 35
4.3 Analyse der ausgewählten Sprachen . 37

4.3.1 Business Process Model and Notation (BPMN) 37
4.3.2 Unified Modeling Language (UML) . 42
4.3.3 Web Service Flow Language (WSFL) 51
4.3.4 Event-driven Process Chain (EPC) . 57
4.3.5 Web Services Choreography Description Language (WS-CDL) 59
4.3.6 Declarative Service Flow Language (DecSerFlow) 63
4.3.7 Global Calculus . 65
4.3.8 BPEL4Chor . 67
4.3.9 Colombo . 70
4.3.10 Interorganizational Workflow Net (IOWF-Net) 74
4.3.11 Colored Petri Nets (CPN) . 76
4.3.12 Grid Services Flow Language (GSFL) 79
4.3.13 Let’s Dance . 80
4.3.14 Open Workflow Nets (oWFN) . 81
4.3.15 Chor . 83
4.3.16 Deterministic Finite State Automata (DFA) 84
4.3.17 “Bologna“ . 86
4.3.18 Multiagent Protocols (MAP) . 88

4.4 Zusammenfassung der Analyse . 90

5 Zusammenfassung und Ausblick 93

5

Literaturverzeichnis 95

6

Abbildungsverzeichnis

1.1 Übersicht von Orchestrierungen und Choreographien 14

4.1 Abstraktes Beispiel einer Choreographie . 36
4.2 Umsetzung der Choreographie aus Abschnitt 4.2 mit einem BPMN 2.0 Kolla-

borationsdiagramm . 38
4.3 Abstraktes Beispiel von einem BPMN 2.0 Konversationsdiagramm 40
4.4 Umsetzung der Choreographie aus Abschnitt 4.2 mit einem BPMN 2.0 Choreo-

graphiediagramm . 41
4.5 Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Sequenzdia-

gramm . 43
4.6 Beispiel einer Choreographie mit einem UML Zeitdiagramm 45
4.7 Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Kommunika-

tionsdiagramm . 46
4.8 Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Aktivitäts-

diagramm . 48
4.9 Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Interaktions-

übersichtsdiagramm . 50
4.10 Umsetzung der Choreographie aus Abschnitt 4.2 mit EPC 58
4.11 Beispiel einer Choreographie in DecSerFlow aus [AP06b] 64
4.12 Übergangs-basiertes Verhalten der Teilnehmer der Choreographie aus Ab-

schnitt 4.2 . 73
4.13 Beispiel einer Choreographie in IOWF-Net aus [AW01] 75
4.14 Das Workflow-Netz des Kunden (Npart

C) aus Abbildung 4.13 [AW01] 76
4.15 Umsetzung der Choreographie aus Abschnitt 4.2 durch CPN 78
4.16 Beispiel einer Choreographie in Let’s Dance aus [DZD06] 81
4.17 Umsetzung der Choreographie aus Abschnitt 4.2 durch die Komposition der

oWFNs der einzelnen Teilnehmer: PA⊕B⊕C . 82
4.18 Umsetzung der Choreographie aus Abschnitt 4.2 in Chor 84
4.19 Umsetzung der Choreographie aus Abschnitt 4.2 mit einem DFA 85
4.20 Umsetzung der Choreographie aus Abschnitt 4.2 mit „Bologna“ 86
4.21 Wieviele Sprachen aus unserer Analyse erfüllen die jeweiligen Kriterien? . . . 92

7

Tabellenverzeichnis

3.1 Gefundene Choreographiesprachen . 27
3.2 Sprachen nach der Filterung . 32

4.1 Weltschema Instanz in Colombo . 72
4.2 Vergleich der Choreographiesprachen . 91

9

Verzeichnis der Listings

4.1 Umsetzung der Choreographie aus Abschnitt 4.2 in WSFL 52
4.2 Umsetzung der Choreographie aus Abschnitt 4.2 in WS-CDL 60
4.3 Umsetzung der Choreographie aus Abschnitt 4.2 mit dem Global Calculus . . 66
4.4 Umsetzung der Choreographie aus Abschnitt 4.2 in BPEL4Chor 68
4.5 Atomare Prozesse der Choreographie in Colombo 72
4.6 Colorsets und Variablen der Choreographie aus Abschnitt 4.2 definiert für das

CPN-Modell aus Abbildung 4.15 . 77
4.7 Umsetzung der Choreographie aus Abschnitt 4.2 mit MAP 89

11

1 Einleitung

In vielen Arbeitsprozessen sind mehrere Organisationen involviert, welche für unterschiedliche
Aufgaben zuständig sind. Diese Arbeitsprozesse nennt man auch organisationsübergreifen-
de oder unternehmensübergreifende Geschäftsprozesse. Für die Modellierung von solchen
Prozessen wird zwischen zwei Arten unterschieden, Orchestrierungen und Choreographien,
deren Konzepte in Abbildung 1.1 dargestellt sind. In Orchestrierungen gibt es eine zentrale
Leitung, welche für die Koordination zwischen den Diensten zuständig ist. Deshalb liegt der
Vordergrund bei der Modellierung von Orchestrierungen bei dem organisationsinternen Ablauf
eines Prozesses [Kop16]. Hier geht es also hauptsächlich um das „Wie werden die einzelnen
Aufgaben erfüllt?“. Orchestrierungen sind außerdem meist ausführbare Geschäftsprozesse.
Die Sicht der einzelnen Dienste ist dabei jedoch beschränkt. Choreographien hingegen sind
nicht zwingend ausführbar, aber bieten eine globale Sichtweise auf das Zusammenwirken von
Diensten in organisationsübergreifenden Geschäftsprozessen [DKB08]. Hier wird der Wert auf
die Interaktion zwischen den einzelnen Diensten gelegt, also „Wie wird zwischen den Diensten
miteinander kommuniziert?“. Hier gibt es keine zentrale Leitung [Kop16].

Dabei gibt es nochmal Unterteilungen von Choreographien für spezifische Bereiche, wie Service
Choreographien, “Business-to-Business integration“ (kurz: B2Bi) Choreographien, Konzeptionelle
Choreographien [Sch11], Prozess Choreographien [JHKK04] und Artefakt-zentrierte Choreo-
graphien [FDVV11]. Sie können auch durch die Art des Modells der Choreographiesprache
unterschieden werden (Verbindungsmodell vs. Interaktionsmodell). In dieser Bachelorarbeit
wird allerdings kein spezieller Bereich untersucht, sondern die Übermenge „Choreographie“
betrachtet.

Diese Bachelorarbeit beschäftigt sich mit Sprachen, welche zur Modellierung von Choreogra-
phien geeignet sind. Für die Modellierung von Choreographien wurden über die Jahre bereits
eine Vielzahl an Sprachen entwickelt, die jedoch oft unterschiedliche Modellierungskonstrukte
und Eigenschaften haben [Kop16]. Ein Grund dafür ist, dass jeder Entwickler solch einer
Sprache andere Anforderungen hat, was für Kriterien eine solche Sprache erfüllen soll. Es
gibt keine allgemeingültige Richtlinie dafür, welche Kritieren Choreographiesprachen erfüllen
müssen. Diese werden jeweils selbst festgelegt. Dadurch sind die verschiedenen Modellierungs-
möglichkeiten, welche diese Choreographiesprachen liefern sehr vielfältig und von Sprache
zu Sprache unterschiedlich. Außerdem gibt es einige Sprachen welche zwar nicht speziell zur
Modellierung von Choreographien entwickelt wurden, sich aber dafür dennoch eignen.

Das Ziel dieser Bachelorarbeit ist zum einen die Durchführung einer Literaturrecherche über
diese bereits große Menge an Choreographiesprachen. Es gibt zwar bereits viele Arbeiten,

13

1 Einleitung

(a) Orchestrierung (b) Choreographie

Abbildung 1.1: Übersicht von Orchestrierungen und Choreographien 1

in denen einzelne Sprachen zur Modellierung von Choreographien miteinander verglichen
oder vorgestellt wurden, jedoch gibt es bisher nicht viele Arbeiten in denen die mittlerweile
große Menge an Choreographiesprachen gesammelt und analysiert wurden. Der erste Teil
dieser Bachelorarbeit beschäftigt sich deshalb damit, eine Liste aller existierenden, potenti-
ellen Choreographiesprachen anzufertigen, um einen Überblick über diese große Menge zu
bekommen.

Da sich allerdings diese Choreographiesprachen teilweise sehr deutlich voneinander unter-
scheiden und jeweils unterschiedliche Modellierfähigkeiten bieten, kann man nur mit einer
Liste der gesammelten Sprachen noch nicht viel anfangen. Deshalb beschäftigt sich der zweite
Teil der Arbeit damit, Kriterien zu erarbeiten, welche von Choreographiesprachen erfüllt
werden sollen und basierend auf diesen Kriterien die gesammelten Choreographiesprachen
zu analysieren. Da eine Analyse über alle gefunden Sprachen den zeitlichen Rahmen einer
Bachelorarbeit sprengen würde, wird nur eine geeignete Teilmenge dieser Choreographie-
sprachen analysiert. Zur Auswahl einer geeigneten Teilmenge wird im Rahmen dieser Arbeit
die Relevanz der jeweiligen Sprachen bestimmt und miteinander verglichen. Ein besonderer
Wert wird dabei auf die Datenmodellierungsfähigkeiten der jeweiligen Choreographiesprachen
gelegt, da der Austausch von Daten zwischen den einzelnen Teilnehmern einer Choreographie
eine wichtige Rolle spielt.

Das Ergebnis dieser Bachelorarbeit ist neben der Sammlung von Choreographiesprachen, auch
noch eine Analyse einer Teilmenge dieser Sprachen. Durch die Definition von Kriterien, welche
von Choreographiesprachen erfüllt werden sollen, wird in dieser Bachelorarbeit ebenfalls
eine Richtlinie definiert, an welche sich zukünftig entwickelte Choreographiesprachen oder
Erweiterungen bereits existierender Choreographiesprachen, halten sollten.

1http://stackoverflow.com/questions/4127241/orchestration-vs-choreography

14

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2: Im Kapitel „Verwandte Arbeiten“ werden existierende Arbeiten vorgestellt, in
denen bereits Sprachen zur Modellierung von Choreographien gesammelt und/oder
miteinander verglichen wurden.

Kapitel 3: Hier wird auf die Suche nach den Sprachen bzw. Modellierungsarten von Choreo-
graphien eingegangen. Dabei wird zum einen die Durchführung der Suche erläutert und
zum anderen deren Ergebnisse präsentiert. Ebenfalls werden in diesem Kapitel verschie-
dene Ansätze für die Bestimmung der Relevanz der verschiedenen Sprachen diskutiert.
Zum Schluss wird dann nach der Auswahl der Metrik zur Bestimmung der Relevanz,
eine Teilmenge an Choreographiesprachen herausgearbeitet, welche im anschließenden
Kapitel analysiert werden.

Kapitel 4: In diesem Kapitel werden zunächst Vergleichskriterien definiert. Danach werden
die ausgewählten Sprachen, aus dem Kapitel zuvor, kurz vorgestellt und anschließend
basierend auf diesen Vergleichskriterien analysiert. Die jeweiligen Choreographiespra-
chen werden anhand von Beispielen veranschaulicht. Den Abschluss des Kapitels bildet
eine Übersicht der Ergebnisse der Analyse.

Kapitel 5: Den Abschluss der Arbeit liefert eine Zusammenfassung dieser Bachelorarbeit,
sowie einen Ausblick darauf, was in zukünftigen Arbeiten beachtet werden soll und
wie diese Ergebnisse dieser Bachelorarbeit als Ausgangspunkt für weitere Arbeiten
verwendet werden können.

15

2 Verwandte Arbeiten

Es gibt bereits einige Arbeiten, in welchen ausgewählte Sprachen zur Modellierung von
Choreographien miteinander verglichen werden. Diese Arbeiten legen ihren Wert dabei alle
auf unterschiedliche Kriterien. Der Grund dafür ist auch, dass es keine allgemeingültige Liste
von Kriterien für Choreographiesprachen gibt und somit jeder für sich selbst überlegen muss,
welche Kriterien man für wichtig empfindet, die eine solche Sprache erfüllen soll.

In der Arbeit von Decker et al. [DKLW09] werden Sprachen auf ihre Fähigkeiten zur Model-
lierung von Service Choreographien untersucht. Die Kriterien, welche dabei für die Analyse
herangezogen werden sind dabei vielfältig. Unter anderem werden hierbei Fragestellungen wie
„Was passiert wenn ein Service die Deadline nicht einhält“, „Welche Services spielen im Ge-
schäftsprozess überhaupt eine Rolle?“ oder „Ist eine Integration mit Orchestrierungssprachen
wie BPEL möglich?“ als wichtig definiert. Deshalb werden ein paar dieser Kriterien auch für
unsere Analyse übernommen. Kriterien zur Datenmodellierungsfähigkeiten werden in dieser
Arbeit allerdings nicht herangezogen.

In der Arbeit von Schönberger [Sch11] werden zunächst Choreographien noch einmal in
Service Choreographien, B2Bi Choreographien und Konzeptionelle Choreographien unterteilt und
diese Kategorien definiert. Im Anschluss werden ebenfalls Choreographiesprachen aus den drei
definierten Kategorien miteinander verglichen. Neben der Art der Modelle (Interaktions- vs.
Verbindungsmodell) und der Implementierungsunabhängigkeit, spielen auch Kriterien, wie die
Ausführbarkeit der Sprache, Möglichkeiten zur Fehlerbehandlung oder die Zerlegbarkeit der
Modelle eine Rolle. Kriterien bezüglich der Modellierung von Datenobjekten oder Datenflüssen
werden in dieser Arbeit nicht untersucht.

Schönberger, Wilms und Wirtz haben eine Liste von Anforderungen für B2Bi Prozesse erstellt
[SWW10]. Es gibt eine Choreographieebene in B2Bi, wodurch sich aus der Liste der Anforde-
rungen eine Teilmenge ableiten lässt, welche man für B2Bi Choreographien anwenden kann.
Dafür werden auch die definierten Anforderungen mit der abstrakten Ebene der verschiedenen
Modelle, unter anderem Choreographiemodell, verglichen basierend auf Übereinstimmun-
gen.

In der Arbeit von Su et al. [SBFZ08] wird hingegen hauptsächlich Wert auf den Kontrollfluss
gelegt. Hierbei ist neben der Modellierung von Aktivitäten und Nachrichten wichtig, ob man
die einzelnen Aufgaben parallel oder sequentiell ausführen kann, sowie auch je nach Bedingun-
gen auswählen/entscheiden kann, ob eine Aktivität ausgeführt wird. Ein weiteres Kriterium in
dieser Arbeit ist, ob man eine Aufgabe rekursiv aufrufen kann. Wie das Nachrichtenmodell der

17

2 Verwandte Arbeiten

einzelnen Sprachen aussieht wird ebenfalls erfasst. Da der Kontrollfluss sehr wichtig ist und
es möglich sein sollte, dass verschiedene Aktivitäten erst basierend auf den vorhergehenden
Ereignissen ausgeführt oder eben nicht ausgeführt werden, wird in dieser Arbeit das „Choice“-
Kriterium, welches den anschließenden Kontrollfluss leitet, übernommen. Im Normalfall ist
eine sequentielle Abfolge von Aktivitäten modellierbar, weshalb dieses Kriterium überflüssig
erscheint. Es ist uns ebenfalls keine Sprache bekannt, welche zwar „Choice“-Konstrukte zu-
lassen, aber keine zur parallelen Abfolge von Aktivitäten. Da diese Bachelorarbeit allerdings
großen Wert auf Datenmodellierungsfähigkeiten legt, verfeinern wir dieses Kriterium, indem
wir uns auf Daten-basierte Abfragen begrenzen, wodurch die Wahl („Choice“) des Kriteriums
automatisch durch bestimmte Daten ermittelt werden. Kriterien bezüglich der Modellierung
von Datenobjekten oder Datenflüssen gibt es in dieser Arbeit ebenfalls nicht.

Ein breiteres Spektrum an Kriterien liefert die Arbeit von Bernauer et al. [BKKR03], in welcher
Sprachen zur Modellierung von organisationsübergreifenden Workflows verglichen werden.
Die Kriterien in dieser Arbeit sind basierend auf unterschiedlichen Perspektiven definiert.
Diese sind die „Funktionale Perspektive“ (z.B. die Semantik einer Aktivität), „Operationale
Perspektive“ (wie die Aktivitäten implementiert werden), „Verhaltensperspektive“ (z.B. Zeit-
Constraints und Fehlerbehandlung), „Informationelle Perspektive“ (z.B. wiederverwendbare
Datentypen und Datenfluss), „Interaktionsperspektive“ (z.B. Interaktions-Primitive), „Organisa-
tionsperspektive“ (z.B. Rollen) und „Transaktionsperspektive“ (z.B. organisationsübergreifende
Transaktionen). Diese Arbeit ist jedoch aus dem Jahre 2003, weshalb nur ältere Sprachen
untersucht wurden. Im Laufe der Jahre sind allerdings einige neue Choreographiesprachen
hinzugekommen. Ein weiteres Problem dieser Arbeit ist, dass zwar eine große Menge an
Kriterien für Choreographiesprachen definiert wurden, aber dennoch ist die Analyse der ein-
zelnen Choreographiesprachen in dieser Arbeit lückenhaft. Es wird hier nämlich nicht bei
jeder Sprache auf jedes Kriterium eingegangen.

In [MSW11] werden von Meyer, Smirnov und Weske Daten-basierte Kriterien für Modellie-
rungssprachen für Geschäftsprozesse definiert und diese dann auch auf ein paar Sprachen
angewendet. Hier werden aber allgemein Sprachen zur Modellierung von Geschäftsprozessen
analysiert und nicht speziell Choreographiesprachen.

Eine Literaturrecherche, durchgeführt von Leite et al., findet sich in [LAN+13]. Hier wird eine
Literaturrecherche im Bereich Service Choreographie durchgeführt, in denen sie basierend
auf verschiedenen Daten Choreographiesprachen sammeln und analysieren. Die gesammelten
Sprachen werden ebenfalls basierend auf der Herangehensweise der Sprachen (Modell-basiert,
Multi Agenten, etc.) unterteilt. Die Suche verläuft hierbei größtenteils Skript-basiert, wobei im
Nachhinein die Menge an Sprachen gefiltert werden, welche bestimmte definierte Kriterien
nicht erfüllen. Da nicht manuell noch nach weiteren Sprachen gesucht wird, können Sprachen,
welche eventuell für Choreographien geeignet sind, aber nicht speziell dafür entwickelt wurden,
teilweise nicht gefunden werden. Daten-bezogene Kriterien werden in dieser Arbeit nicht
untersucht.

18

In der Doktorarbeit von Mancioppi [AM15] werden ebenfalls einige Choreographiesprachen
gesammelt und kurz vorgestellt. Eine Analyse bezüglich der Fähigkeit zur Datenmodellierung
fehlt hier jedoch.

In den meisten Arbeiten, welche sich mit Choreographiesprachen beschäftigen, wird nur ein
geringer Teil an Choreographiesprachen analysiert, wobei sich diese auch oft in den verschie-
denen Arbeiten überschneiden. Dabei wird die Analyse oft nur auf bestimmte Kategorien
von Choreographiesprachen, wie Sprachen zur Modellierung von Service Choreographien,
beschränkt. In einigen Arbeiten werden für die Analyse der Sprachen keine Daten-bezogene
Kriterien definiert. Literaturrecherchen bezüglich Choreographiesprachen wurden bisher eben-
falls nicht viele durchgeführt. Die Arbeit von Leite et al. beschränkt sich hierbei auch nur auf
Service Choreographiesprachen. Es gibt bisher keine Arbeit, welche eine Literaturrecherche
mit einer Analyse kombiniert, wobei die Sprachen auch auf Datenmodellierungsfähigkeiten
überprüft werden.

19

3 Identifikation und Sammlung von
Choreographiesprachen

In diesemKapitel geht es um die Suche nach den Choreographiesprachen. Zunächst einmal wird
die Herangehensweise der Suche erläutert. Daraufhin wird das Ergebnis der Suche präsentiert.
Zum Abschluss wird dann die Relevanz der einzelnen Sprachen ermittelt, auf Basis derer eine
ausgewählte Anzahl an Sprachen für die weitere Analyse identifiziert wird.

3.1 Herangehensweise der Suche

Die Grundlage der Suche ist eine von Schönberger et al. erarbeitete Liste [SHKW11], in welcher
bereits einige mögliche Sprachen zur Modellierung von Choreographien gesammelt werden.
Der Großteil der Sprachen wird hierbei Skript-basiert gesucht. Einige dieser Sprachen dienen
jedoch nicht zur Modellierung von Choreographien, weshalb die Menge der Sprachen in
dieser Bachelorarbeit manuell überprüft wird, ob diese Sprachen wirklich zur Modellierung
von Choreographien geeignet sind. Die Sprachen, welche in anderen Artikeln oder direkt
im Definitionspaper jedoch als Choreographiesprachen definiert werden, werden in die Liste
aufgenommen. Zusätzlich werden noch weitere Sprachen in die Liste aufgenommen, welche zur
Modellierung von Choreographien geeignet sind, basierend auf der Definition der jeweiligen
Sprache.

Es gibt drei verschiedene Wege nach weiteren Choreographiesprachen zu suchen, welche hier
angewendet werden:

• Rekursiv durch die Referenzen der Paper der bereits gefundenen Sprachen

• Ebenso durch eine Menge von Artikel, die eben diese Paper selbst referenzieren

• Durch Google Scholar1 mithilfe der Namen der verschiedenen untergeordneten Choreo-
graphiearten: „Service Choreography“, „Process Choreography“, „B2Bi Choreography“,
sowie „Conceptual Choreography“.

1https://scholar.google.de/

21

3 Identifikation und Sammlung von Choreographiesprachen

Besonders wird dabei auf kürzlich publizierte Artikel geachtet, da die ursprüngliche Liste
[SHKW11] bereits im Jahr 2011 erstellt wurde und somit bereits eine großeMenge der Sprachen
beinhaltet, welche bereits vorher erschienen sind.

3.2 Ergebnisse der Suche

Tabelle 3.1 zeigt das Ergebnis der Suche nach Choreographiesprachen. Diese Tabelle enthält
alle gefundenen, potentiellen Choreographiesprachen, jedoch wird die Anzahl der Spalten
hier auf die relevanteste Informationen beschränkt. Die ausführlichere angefertigte Tabelle
enthält noch ein paar Informationen mehr, wie z.B. der Name des Artikels oder von welchem
Verlag der Artikel veröffentlicht wurde. In Tabelle 3.1 wird neben dem Namen der Sprache
auch noch die Anzahl der Zitationen der Publikation in der die Sprache definiert wird und
der Relevanzwert der Publikation angegeben. Die Referenz von dem jeweiligen Artikel ist
hier auch angegeben. Wie der Relevanzwert errechnet wird, wird in Abschnitt 3.4 erläutert.
Zusätzlich dazu wird noch das Jahr angegeben, in welchem das Paper erschienen ist bzw. die
Sprache veröffentlicht wurde.

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
Amoeba 2009 87 10,88 [DCS09]
Abstract CDL (ACDL) 2009 27 3,38 [MBLN09]
Artifact-Centric Collaboration Mo-
del (ACC) 2011 18 3,00 [YLZ11]
BioFlow 2008 27 3,00 [JIH10]
Blindingly Simple Protocol Langua-
ge (BSPL) 2011 31 5,17 [Sin11]
„Bologna“2 2005 175 14,58 [BGG+05b]
BPEL4Chor 2007 299 29,90 [DKLW07]
BPELgold 2010 15 2,14 [KEL+11]
BPELlight 2007 63 6,30 [NLKL07]
Business ProcessModeling Notation
1.0 (BPMN 1.0) 2004 753 57,92 [Whi04]
BPMN 2.0 Choreographiediagramm 2011 171 28,50 [Mod11]
BPMN 2.0 Kollaborationsdiagramm 2011 171 28,50 [Mod11]
BPMN 2.0 Konversationsdiagramm 2011 171 28,50 [Mod11]
Business Choreography Language
(BCL) 2009 12 1,50 [MZW09]

2Die Sprache wurde im Artikel nicht benannt. In [SBFZ08] wurde sie unter dem Namen „Bologna“ referenziert,
da sie an der Universität von Bologna entwickelt wurde.

22

3.2 Ergebnisse der Suche

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
Business Process Definition Meta-
model (BPDM) 2003 3 0,21 [Koe03]
Business Transaction Net (BTx-Net) 2007 13 1,30 [SY07]
CDL 2006 84 7,64 [YZQ+06]
CDL0 2006 21 1,91 [LHPZ06]
Chor 2007 154 15,40 [QZCY07]
Chorc 2008 12 1,33 [QCP+08]
Choreographical Business Transac-
tion Net (CoBTx-Net) 2007 4 0,40 [SY08]
Choreography Calculus (CC) 2014 25 8,33 [Mon14]
Choreography Language (CL) 2005 49 4,08 [BGG+05a]
CHOReOS 2010 13 1,86 [VIG+10]
ChorTex 2015 0 0,00 [AM15]
Circulate 2009 23 2,88 [BWH09]
Colaba 2011 7 1,17 [CS11]
Collaborative Structure of MAS for
the Web Services Composition (CS-
MWC) 2007 6 0,60 [XQH+07]
Colombo 2005 330 27,50 [BCD+05]
Colored Petri Nets (CPN) 1981 786 21,83 [Jen81]
Communicating Sequential Proces-
ses (CSP) 2006 40 3,64 [Yeu06]
Community Process Definition Lan-
guage (CPDL) 2002 7 0,47 [SHK02]
Composition And Semantic Enhan-
cement of Web Services (CASheW-
S) 2005 37 3,08 [NFH05]
Compositional Choreographies 2013 43 10,75 [MY13]
Conditional Pi-calculus (Cpi-
calculus) 2009 7 0,88 [ZZ09]
Contextual Aspect-Sensitive Ser-
vices (CASS) 2005 24 2,00 [CE05a]
Contract Definition Language
(CDL) 2006 26 2,36 [Mil06]
Contract Workflow Model (CWM) 2003 1 0,07 [Kab03]
Cooperative Agentflow Process Lan-
guage (CA-PLAN) 2003 21 1,50 [YW03]
CoopFlow 2005 12 1,00 [CT05]

23

3 Identifikation und Sammlung von Choreographiesprachen

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
Data-Aware Choreography
(DAChor) 2012 25 5,00 [KPR12]
„Declarative Choreography Langua-
ge“3 2012 15 3,00 [SXS12]
DecSerFlow 2006 394 35,82 [AP06a]
Delta Distributed States Temporal
Logic (DeltaDSTL) 2006 13 1,18 [MS06]
Deterministic Finite State Automata
(DFA) 2004 193 14,85 [WFMN04]
Distributed States Logic (DSL) 2003 4 0,29 [MS03]
Distributed States Temporal Logic
(DSTL) 2003 4 0,29 [MS03]
Distributed Workflow Definition
Language (DWDL) 2010 1 0,14 [Ker10]
Documentary Petri Nets (DPN) 1995 87 3,95 [BLWW95]
Dynamic Choreographies (DY-
CHOR) 2006 86 7,82 [RWR06]
Dynamic Interaction-Oriented Cho-
reography (DIOC) 2015 15 7,50 [DGG+15]
Dynamic Process-Oriented Choreo-
graphy (DPOC) 2015 15 7,50 [DGG+15]
Dynamic Workflow Model (DWM) 2002 120 8,00 [MSLH02]
ebXML Business Process Specifica-
tion Schema (ebXML BPSS) 2001 35 2,19 [CCK+01]
ebBP-Reg 2010 6 0,86 [SW10]
Entish 2002 0 0,00 [Amb02]
EPC Markup Language (EPML) 2004 39 3,00 [MN04]
eSourcing Markup Language
(eSML) 2011 0 0,00 [Nor11]
Event-driven Process Chains (EPC) 1992 1151 46,04 [KSN92]
Executable Choreography Frame-
work (ECF) 2005 7 0,58 [CE05b]
Extended EPCs (eEPC) 2005 29 2,42 [SV05]
Federated Choreographies 2006 21 1,91 [ELT06]

3Es wurde kein expliziter Name für die Choreographiesprache in dem Artikel angegeben.

24

3.2 Ergebnisse der Suche

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
Framework for Orchestration, Com-
position and Aggregation of Ser-
vices (FOCAS) 2009 28 3,50 [PE09]
Framework for Service Choreogra-
phy (FSC) 2015 4 2,00 [BRM15]
General-Stochastic-Petri-Nets
(GSPN) 2010 1 0,14 [XOWY10]
Global Calculus 2007 304 30,40 [CHY07]
Grid Services Flow Language (GSFL) 2002 276 18,40 [KWV+02]
Grid Workflow Execution Language
(GWEL) 2006 72 6,55 [Cyb06]
Grid-Flow Description Language
(GFDL) 2006 97 8,82 [GHB+06]
High-level Message Sequence
Charts (HMSC) 1997 137 6,85 [MR97]
iBPMN 2007 91 9,10 [DB08]
Interaction Petri Nets (IPN) 2007 74 7,40 [DW07]
Interactive Behavior Model (IABM) 2009 7 0,88 [ZZ09]
Interorganizational Workflow Net
(IOWF-Net) 2001 376 23,50 [AW01]
JavaABC (jABC) 2006 22 2,00 [KNMS06]
L3 2005 0 0,00 [GHB05]
„LCC Extension 1“4 2009 1 0,13 [BB09]
„LCC Extension 2“5 2009 1 0,13 [BB09]
Let’s Dance 2006 201 18,27 [ZBDH06]
Lightweight Coordination Calculus
(LCC) 2004 112 8,62 [Rob04]
LTS-Based Choreography Model (C-
LTS) 2009 45 5,63 [MCT09]
m3pl 2006 8 0,73 [HO06]
MEMOOrganisationModelling Lan-
guage (MEMO-OrgML) 2001 4 0,25 [FJ01]
MEMO Resource Modelling Langua-
ge (MEMO-ResML) 2006 5 0,45 [Jun06]
Message Choreography Model
(MCM) 2009 15 1,88 [WRS+09]

4Es wurde eine Erweiterung von LCC angegeben, welche nicht benannt wurde.
5Es wurde eine Erweiterung von LCC angegeben, welche nicht benannt wurde.

25

3 Identifikation und Sammlung von Choreographiesprachen

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
Message Sequence Charts (MSC) 1996 215 10,24 [RGG96]
Multiagent Protocols (MAP) 2009 98 12,25 [BWR09]
Multi Metamodel Process Ontology
(m3po) 2006 30 2,73 [HOK06]
Network Coordination Policies Cal-
culus (NCP Calculus) 2010 11 1,57 [CFGS10]
Open Workflow Nets (oWFN) 2005 210 17,50 [MRS05]
OWL-P 2004 15 1,15 [DMCS04]
p-LTL 2016 0 0,00 [RS16]
Pi-Exchange-Model (piX-model) 2007 7 0,70 [STDD07]
Prioritized-timed Colored Petri Nets
(PTCPN) 2012 12 2,40 [VMP+12]
Procedure Constraint Grammar
(PCG) 1997 12 0,60 [Lee97]
Process Algebra for WS-CDL
(PA4WS) 2008 0 0,00 [LM08]
q-LTL 2016 0 0,00 [RS16]
Q4BPMN 2012 6 1,20 [BBC+12]
rBPMN 2009 5 0,63 [MGWH09]
Reo 2009 55 6,88 [AKM08]
ScriptOrc 2008 8 0,89 [BS08]
SENSORIA Reference Modelling
Language (SRML) 2006 111 10,09 [FLB06]
„Service Choreography“6 2012 1 0,2 [SZZ+12]
ServiceNet 2012 0 0,00 [LZD12]
SOAP Service Description Language
(SSDL) 2005 18 1,50 [PWW+05]
SOPHIE 2005 2 0,17 [AL05]
Subject-Oriented Business Process
Management (S-BPM) 2009 72 9,00 [Fle10]
TDWF 2006 3 0,27 [SZS06]
UML Aktivitätsdiagramm 2005 6945 578,75 [RBJ05]
UML Interaktionsübersichtsdia-
gramm 2005 6945 578,75 [RBJ05]
UML Kommunikationsdiagramm 2005 6945 578,75 [RBJ05]

6Hier wird ein formales Modell, basierend auf oWFN’s, beschrieben. Dieses wird in dem Artikel als Service
Choreography benannt.

26

3.2 Ergebnisse der Suche

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
UML Sequenzdiagramm 2005 6945 578,75 [RBJ05]
UML Zeitdiagramm 2005 6945 578,75 [RBJ05]
UML Profile for Collaborative Busi-
ness Processes based on Interaction
Protocols (UP-ColBPIP) 2004 4 0,31 [VSC04]
UN/CEFACT’S Modeling Methodo-
logy (UMM) 2006 37 3,36 [HHL+06]
Web Service Choreography Inter-
face (WSCI) 2002 449 29,93 [AAF+02]
Web Services Conversation Langua-
ge (WSCL) 2002 187 12,47 [BBB+02]
Web Services Flow Language (WS-
FL) 2001 988 61,75 [Ley+01]
Web Services Integration and Pro-
cessing Language (WSIPL) 2003 11 0,79 [CLNL03]
Workflow View Definition Langua-
ge (WfVDL) 2010 1 0,14 [Ker10]
Web Services Choreography De-
scription Language (WS-CDL) 2004 598 46,00 [BDO05]
WS-CDL+ 2007 25 2,50 [KWH07]
Web Service Modeling Ontology
(WSMO) Choreography 2006 57 5,18 [RSF+06]
Web Service Query Model 2010 24 3,43 [YRB+10]
Web Service Transition Language
(WSTL) 2004 84 6,46 [BDDM04]
XML Process Definition Language
(XPDL) 2002 65 4,33 [Int02]
XML-Nets 2001 73 4,56 [Len01]
XScufl 2004 8 0,62 [Oin04]
Yet Another Event-Driven Process
Chain (yEPC) 2005 38 3,17 [MNN05]

Tabelle 3.1: Gefundene Choreographiesprachen

Hinweis: Bei manchen Sprachen gibt es verschiedene Versionen der Sprachen (wie in BPMN
oder UML), deshalb ist es schwer dort einenArtikel als Referenz auszuwählen. Dies gilt ebenfalls
für Sprachen bei denen es zwar eine Version gibt, welche aber dennoch in unterschiedlichen
Artikeln vorgestellt werden. Im Zweifelsfall wurde der Artikel ausgewählt, welcher die meisten
Zitationen hat, jedoch gibt es eventuell auch einen Artikel bei denen ebenfalls eine Sprache

27

3 Identifikation und Sammlung von Choreographiesprachen

aus der Liste nochmals vorgestellt wird und welcher noch mehr Zitationen hat. Dieser wurde
dann lediglich nicht gefunden.

Obwohl BPMN 1.0 bereits durch BPMN 2.0 abgelöst wurde, wird es in der Tabelle aufgelistet.
Der Grund ist, dass BPMN 1.0 eine der älteren bekannten Sprachen zur Modellierung von
Choreographien ist. Es gibt Choreographiesprachen oder Erweiterungen wie iBPMN [DB08],
die direkt auf BPMN 1.0 aufbauen.

Domänen-spezifische Choreographiesprachen wie „RosettaNet“ 7, „Society for Worldwide
Interbank Financial Transfer“8 (kurz: SWIFTNet) oder Health Level Seven9 (kurz: HL7) wurden
nicht in die Tabelle aufgenommen.

Hierbei muss man auch beachten, dass aufgrund der unterschiedlichen Definitionen von Cho-
reographien viele dieser Sprachen eventuell auch eher als Orchestrierungssprachen geeignet
sind. Es wurde bei der Suche nach den Sprachen jedoch darauf geachtet, ob diese entweder
direkt als Choreographiesprachen vorgestellt werden oder deren Beschreibung zur Grundidee
einer Choreographiesprache passt. Sprachen wurden ebenfalls in die Tabelle aufgenommen,
wenn sie in anderen Publikationen als Choreographiesprachen angesehenwerden. Der Standard
für Orchestrierungssprachen „Business Process Execution Language“ (kurz: BPEL; [ACD+03])
wird auch in mehreren Artikeln genannt, um damit Choreographien zu modellieren, wobei
die Sprache selbst dafür nicht so gut geeignet ist. Deshalb wurde BPEL nicht in die Tabelle
aufgenommen, obwohl es in einigen Artikeln zur Modellierung von Choreographien verwendet
wird. Das gleiche Problem gibt es mit „XLANG“ [Tha01], einem der beiden Vorgänger von
BPEL, welches wir deshalb ebenfalls nicht in die Tabelle aufgenommen haben.

3.3 Möglichkeiten zur Ermittlung der Relevanz der
gefundenen Sprachen

Wir haben nun 130 mögliche Sprachen zur Modellierung von Choreographien gefunden. Wenn
man die Modellierungssprachen nun miteinander vergleichen will, dann muss diese Menge an
Sprachen für die weitere Analyse gefiltert werden, da die Menge zu groß ist, um eine Analyse
über alle gefundenenmöglichenChoreographiesprachen in einer Bachelorarbeit durchzuführen.
Nun stellt sich aber die Frage, welche Sprachen für die weitere Analyse ausgewählt werden
sollen?

Idee 1: Die erste Idee ist, dass man eine Formel aufstellt, um die Relevanz der Sprachen
zu ermitteln. Eine entsprechende Formel zur Berechnung der Relevanz einer Sprache kann
beispielsweise wie folgt aussehen:

7http://resources.gs1us.org/
8https://www.swift.com/
9http://www.hl7.org/

28

3.3 Möglichkeiten zur Ermittlung der Relevanz der gefundenen Sprachen

Rel(ML) = α · c(mp) + β · ∑
si∈Sall

Imp(p|si) + γ · ∑
sj∈Snew

Imp(p|sj)

Diese beinhaltet: (1) Die Anzahl der Zitationen des Artikels in dem die Sprache definiert wurde
(c(mp)), (2) Die Anzahl der Treffer, wenn man nach dem Akronym der Sprache in Google
Scholar sucht zusammen mit dem Begriff „Choreography“ und unterschiedlichen Parame-
tern, wie (2.1) zeitliche Einschränkungen und (2.2) Publisher Rating. Imp(p|si) soll hier die
Wichtigkeit des gefundenen Artikels si spiegeln, basierend auf dem Publisher p. Der Grund
hierfür ist, dass renommierte Verlage, wie Springer, IEEE, ACM oder Elsevier im Normalfall
hochwertige Artikel veröffentlichen, da die Artikel und deren Qualität vor der Veröffentlichung
von Experten begutachtet werden. Über andere Kanäle veröffentlichte Artikel sind teilweise
von der Qualität her nicht immer hochwertig, da im Endeffekt jeder etwas auf irgendeiner Platt-
form veröffentlichen kann. Deshalb ist die Idee, dass die Artikel basierend auf dem Publisher
gewichtet werden. Die Summe ∑

si∈Sall

steht dafür, dass alle gefundenen Treffer der Suchanfrage

zur Berechnung der Relevanz miteinbezogen werden. ∑
sj∈Snew

steht dabei für die Anzahl der

Treffer der letzten x Jahre. Die Treffer der letzten Jahre sollen stärker gewichtet werden, da
neuere Sprachen in der Regel noch weniger zitiert sind, als bereits etablierte Sprachen. Da bei
den Treffern in Google auch Artikel angezeigt werden, in denen die gesuchte Sprache nur kurz
erwähnt wird, macht es für die wichtigen Sprachen keinen Unterschied wann sie definiert
wurden, da eben auch die wichtigsten Sprachen von früher, welche die Grundbausteine legen,
im Normalfall immer noch in neuen Artikeln erwähnt werden. Ein weiterer Punkt die neuen
Treffer höher zu gewichten, ist die Tatsache dass so kürzlich entwickelte Sprachen eine größere
Chance haben, analysiert zu werden. Wenn eine Sprache schon lange existiert, dann wird
sie häufig auch öfters erwähnt als neuere Sprachen. Durch die Gewichtung der Zeit in der
die jeweiligen Artikel erschienen sind, in der eine solche Sprache definiert wird, wird diesem
Effekt entgegengewirkt. Wie genau Snew definiert, müsste man näher diskutieren, insofern
man sich für diesen Ansatz zur Berechnung der Relevanz einer Sprache entscheidet.

Problem:Die gleichen Abkürzungen werden teilweise mehrfach verwendet (z.B. CDL) oder sie
sind in anderen Wörtern enthalten (z.B. MAP in map, mapping, etc.), weshalb dies das Ergebnis
verfälschen würde. Man kann jedoch anstatt den Akronymen der Choreographiesprachen die
ausgeschriebene Form zur Suche verwenden. Das Problem dabei ist dass für viele Sprachen,
vor allem die geläufigeren Choreographiesprachen, in einigen Artikeln nur das Akronym der
Sprache erwähnt wird. Ein weiteres Problem ist, dass viele Artikel, welche den Suchbegriff
„Choreography“ beinhalten, sich sehr oft nicht direkt um solche Sprachen drehen. Da WS-CDL
eine sehr bekannte Sprache ist und auch das Wort „Choreography“ beinhaltet, wird diese
auch oft in Artikeln verwendet in denen es nicht direkt um Choreographiesprachen geht. Dies
würde also das Ergebnis ebenfalls beeinträchtigen.

Idee 2: Eine zweite Lösung ist, dass man nur die Anzahl der Zitationen von dem Artikel
berücksichtigt, in welchem die jeweilige Sprache definiert wird, also:

29

3 Identifikation und Sammlung von Choreographiesprachen

Rel(ML) = c(mp)

Problem: Ein generelles Problem hier ist, dass viele Artikel, in welchen diese Arbeiten referen-
ziert werden, nicht direkt etwas mit Choreographiesprachen zu tun haben. Hier werden also
nicht nur Artikel gezählt, in denen es um Choreographiesprachen geht, sondern alle Artikel
werden berücksichtigt, die die jeweilige Publikation referenziert haben. Bei manchen Sprachen
gibt es auch verschiedene Versionen der Sprachen (wie in BPMN oder UML), deshalb ist es
schwer dort ein Artikel als Definitionspaper auszuwählen. Dies gilt ebenfalls für Sprachen bei
denen es zwar nur eine Version gibt, welche aber dennoch in unterschiedlichen Arbeiten vor-
gestellt werden. Ein zusätzliches Problem besteht darin, dass neuere Choreographiesprachen
im Gesamten weniger zitiert werden, da sie eben nur in noch neueren Artikel zitiert werden
können.

Idee 3: Die dritte Idee ist, dass man die Anzahl der Zitationen vom Hauptartikel gewichtet,
sodass das letzte Problem der zweiten Idee wegfällt. Als Nenner kann man hier dann die Anzahl
der Jahre nehmen, die vergangen sind seit der ersten Publikation der jeweiligen Sprache, also:

Rel(ML) = c(mp)
2017 − Erscheinungsjahr

Problem: Hier fällt das letzte Problem aus der zweiten Idee weg. Die anderen zwei Probleme
aus der zweiten Idee bleiben jedoch bestehen. Ein Problem, welches hier hinzukommen kann,
ist dass wenn eine Sprache erst dieses Jahr veröffentlicht worden ist, die Berechnung einen
Fehler liefern würde, wegen einer 0 im Nenner. Hier muss man dann manuell als Nenner
die Zahl 1 nehmen. Allerdings haben wir bei der Suche nach Choreographiesprachen, keine
Sprachen gefunden, welche erst in diesem Jahr veröffentlicht wurden, weshalb dieser Fehler in
unserem Fall nie auftritt.

30

3.4 Berechnung der Relevanz zur Filterung der Sprachen für die Analyse

3.4 Berechnung der Relevanz zur Filterung der Sprachen
für die Analyse

Es bleibt zu erwähnen, dass es keine optimale Lösung zur Auswahl einer geeigneten Teilmenge
von Choreographiesprachen für die weitere Analyse gibt, jedoch erscheint die dritte Idee
in unserem Fall am besten zu sein. Wir wählen alle Sprachen mit einem Relevanzwert ≥
12 für die folgende Analyse aus. In Tabelle 3.2 sind die 27 übrig gebliebenen möglichen
Choreographiesprachen, sortiert nach ihrem Relevanzwert, aufgelistet.

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
UML Aktivitätsdiagramm 2005 6945 578,75 [RBJ05]
UML Interaktionsübersichtsdia-
gramm 2005 6945 578,75 [RBJ05]
UML Kommunikationsdiagramm 2005 6945 578,75 [RBJ05]
UML Sequenzdiagramm 2005 6945 578,75 [RBJ05]
UML Zeitdiagramm 2005 6945 578,75 [RBJ05]
Web Services Flow Language (WS-
FL) 2001 988 61,75 [Ley+01]
Business ProcessModeling Notation
1.0 (BPMN 1.0) 2004 753 57,92 [Whi04]
Event-driven Process Chains (EPC) 1992 1151 46,04 [KSN92]
Web Services Choreography De-
scription Language (WS-CDL) 2004 598 46 [BDO05]
DecSerFlow 2006 394 35,82 [AP06a]
Global Calculus 2007 304 30,4 [CHY07]
Web Service Choreography Inter-
face (WSCI) 2002 449 29,93 [AAF+02]
BPEL4Chor 2007 299 29,9 [DKLW07]
BPMN 2.0 Choreographiediagramm 2011 171 28,5 [Mod11]
BPMN 2.0 Kollaborationsdiagramm 2011 171 28,5 [Mod11]
BPMN 2.0 Konversationsdiagramm 2011 171 28,5 [Mod11]
Colombo 2005 330 27,5 [BCD+05]
Interorganizational Workflow Net
(IOWF-Net) 2001 376 23,5 [AW01]
Colored Petri Nets (CPN) 1981 786 21,83 [Jen81]
Grid Services Flow Language (GSFL) 2002 276 18,4 [KWV+02]
Let’s Dance 2006 201 18,27 [ZBDH06]
Open Workflow Nets (oWFN) 2005 210 17,5 [MRS05]
Chor 2007 154 15,4 [QZCY07]

31

3 Identifikation und Sammlung von Choreographiesprachen

Name der Sprache Jahr #Zitationen Relevanzwert Referenz
Deterministic Finite State Automata
(DFA) 2004 193 14,85 [WFMN04]
„Bologna“10 2005 175 14,58 [BGG+05b]
Web Services Conversation Langua-
ge (WSCL) 2002 187 12,47 [BBB+02]
Multiagent Protocols (MAP) 2009 98 12,25 [BWR09]

Tabelle 3.2: Sprachen nach der Filterung

Dies sind nun die Sprachen, welche im nächsten Kapitel genauer analysiert werden, mit drei
Ausnahmen: WSCI [AAF+02] und WSCL [BBB+02] sind beides Vorgänger der Sprache WS-
CDL [BDO05], welches eine Kombination aus beiden Sprachen mit zusätzlichen Eigenschaften
ist. Deshalb wird nur die neuere Sprache WS-CDL analysiert. Das gleiche gilt für BPMN 1.0,
welches ebenfalls nicht betrachtet wird, da es nur eine ältere Version von BPMN 2.0 Kollabora-
tionsdiagrammen ist. Also werden die restlichen 24 potentiellen Choreographiesprachen im
nächsten Kapitel untersucht.

10Die Sprache wurde im Artikel nicht benannt. In [SBFZ08] wurde sie unter dem Namen „Bologna“ referenziert,
da sie an der Universität von Bologna entwickelt wurde.

32

4 Analyse ausgewählter Sprachen

In diesem Kapitel werden zunächst die Kriterien für die Analyse vorgestellt. Anschließend
werden die ausgewählten Choreographiesprachen kurz vorgestellt und basierend auf diesen
Kriterien analysiert. Die Analyse wird dabei mithilfe von Beispielmodellierungen unterstützt.

4.1 Vergleichskriterien

Bevor man Choreographiesprachen analysieren und miteinander vergleichen kann, benötigt
man vordefinierte Kriterien, in welchen Punkten man sie miteinander vergleicht. In Kapitel 2
wurden bereits verwandte Arbeiten kurz vorgestellt. Dabei wurden ebenfalls ein paar Kriterien
für Choreographiesprachen erwähnt, welche in den jeweiligen Arbeiten definiert werden. Da
wir in dieser Bachelorarbeit eine große Mengen an Sprachen analysieren, beschränken wir
uns in der Analyse nur auf ein paar grundlegende Kriterien, wobei speziell Daten-bezogene
Kriterien herangezogen werden. Im Folgenden werden die Kriterien definiert, welche wir
für die Analyse verwenden. Die ersten drei Kriterien werden aus [DKLW09], die drei darauf
folgenden Kriterien aus [MSW11] übernommen. Manche dieser Kriterien werden auch in
anderen Arbeiten verwendet, welche in Kapitel 2 („Verwandte Arbeiten“) vorgestellt wurden.
Das letzte Kriterium wird in [HBKL17] angesprochen.

• (K1) Multilaterale Interaktionen: In den meisten unternehmensübergreifenden Geschäfts-
prozessen sindmehr als nur ein Teilnehmer involviert. Es muss deshalb möglich sein, dass
mehrere Teilnehmer in einer Choreographie miteinander kommunizieren können. Des-
halb ist das erste Kriterium, dass eine Sprache multilaterale Interaktionen unterstützen
muss.

• (K2) Teilnehmertopologie: Da in den meisten unternehmensübergreifenden Geschäftspro-
zessen mehrere Partner involviert sind, sollten Choreographiesprachen ein globale Sicht
auf alle involvierten Teilnehmer unterstützen. Dies erlaubt einen besseren Überblick
der Teilnehmer einer Choreographie und deren Interaktionen untereinander. Solch eine
Übersicht wird Teilnehmertopologie genannt.

• (K3) Zeit-Constraints: In jedem unternehmensübergreifenden Geschäftsprozess spielt die
Zeit eine ganz zentrale Rolle. Es gibt oft Fristen bis wann eine Aufgabe erfüllt sein muss
oder wie lange man auf eine Antwort von einem anderen Teilnehmer wartet. Dies ist
beispielsweise notwendig wenn ein Teilnehmer eine Anfrage an mehrere Partner sendet

33

4 Analyse ausgewählter Sprachen

und dann auf deren Antworten wartet. Hier helfen Zeit-Constraints (Constraints sind Be-
schränkungen) den Ablauf einer Choreographie zu garantieren, falls einer oder mehrere
Partner gar nicht oder nicht innerhalb eines bestimmten Zeitfensters auf die Anfrage ant-
worten. Deshalb sollten Choreographiesprachen die Modellierung von Zeit-Constraints
unterstützen. Ein Beispiel wäre hierbei: Teilnehmer 1 braucht wichtige Dokumente bis
zur Frist t. Diese können nur von Teilnehmer 2 geliefert werden. Teilnehmer 1 sendet
also eine Anfrage an Teilnehmer 2. Daraufhin wartet Teilnehmer 1 auf eine Antwort,
welche die entsprechenden angefragten Dokumente enthält bis zur Frist t. Falls er sie
bis dahin noch nicht erhalten hat, wird er einen alternativen Pfad gehen.

• (K4) Daten-basierter Kontrollfluss: In vielen Arbeitsprozessen müssen oft Entscheidungen
getroffen werden für das weitere Vorgehen, d.h. welcher Pfad mit welchen Aufgaben
als nächstes ausgeführt werden soll. Diese sind oft von bestimmten Daten abhängig.
Deshalb ist ein weiteres wichtiges Kriterium, dass man einen Kontrollfluss Daten-basiert
modellieren kann, indem man einzelne Daten abfragt. Das können Abfragen sein, ob der
Wert eines Datenobjekts größer, kleiner oder gleich der Wert eines anderen Datenob-
jekts oder als ein bestimmter Grenzwert ist. Außerdem lassen sich komplexe logische
Ausdrücke über ein oder mehrere Datenobjekte abfragen. Basierend auf dem Ergeb-
nis der Evaluierung dieser Abfrage wird der entsprechende Pfad gewählt, welcher die
Bedingungen erfüllt.

• (K5) Modellierung von Datenobjekten: In Choreographien werden durch Interaktionen
Daten ausgetauscht. Deshalb sollten die Sprachen eine explizite Modellierung von Da-
tenobjekten unterstützen, damit sich relevante Choreographiedaten modellieren lassen,
welche untereinander ausgetauscht werden können. Somit hat man eine globale Sicht
auf diese relevante Daten. Ebenfalls lassen sich dadurch wichtige Daten modellieren,
welche zwar nicht mit anderen Teilnehmern ausgetauscht werden, welche aber relevant
für einzelne Aktivitäten eines bestimmten Teilnehmers sind.

• (K6) Expliziter Datenfluss: Neben der Modellierung von Datenobjekten, sollte es auch
noch einen expliziten Datenfluss geben, mit welchem man modellieren kann, welche
Aufgaben bestimmte Daten verwenden (Input einer Aufgabe) oder welche Daten durch
diese Aufgaben erzeugt werden (Output einer Aufgabe).

• (K7) Partnerübergreifender Datenfluss: In Choreographiesprachen finden die Interaktionen
oft nur durch Nachrichtenaustausch statt, weshalb auch Daten nur per Nachrichten an
andere Teilnehmer gesendet werden können. Die Möglichkeit zur Modellierung von
explizitemDatenfluss zwischen Teilnehmern einer Choreographie ohne deren Einbettung
in Nachrichten reduziert den Modellierungsaufwand und die Komplexität der Modelle
[HBKL17]. Deshalb ist ein weiteres Kriterium, dass Daten zwischen den Teilnehmern
ausgetauscht werden können, ohne dass man diese Daten in Nachrichten einbetten und
verschicken muss. Dieses Kriterium nennen wir „Partnerübergreifender Datenfluss“.

34

4.2 Abstraktes Beispiel einer Choreographie

4.2 Abstraktes Beispiel einer Choreographie

Da eine Analyse der Sprachenmit einem dazugehörigen Beispiel besser veranschaulicht werden
können, wird hier zunächst ein abstraktes Beispiel eingeführt, welches alle Kriterien visualisiert.
Bei der Analyse der einzelnen Choreographiesprachen wird sofern möglich dieses Beispiel
mit der jeweiligen Sprache umgesetzt. Da eben nicht mit jeder Choreographiesprache jedes
Kriterium modelliert werden kann, lassen sich mit einigen Sprachen nur Teile des Beispiels
umsetzen. Außerdem muss beachtet werden, dass es nicht für jede Choreographiesprache kos-
tenlose und öffentlich zugängliche Werkzeuge zur Modellierung gibt, weshalb dieses abstrakte
Beispiel nicht für jede Choreographiesprache modelliert werden kann. In dem Fall, dass es
keine geeigneten Werkzeuge zur Modellierung einer Choreographiesprache gibt, wird dann
ein Beispiel aus der Quelle der Choreographiesprache verwendet.

Beispiel: Im Folgenden ist das Beispiel erläutert mit den dazugehörigen Kriterien, welche da-
durch erfüllt werden. In Abbildung 4.1 ist die textuelle Beschreibung der Choreographie visuell
dargestellt mittels einem erweiterteten BPMN 2.0 Kollaborationsdiagramm, da das Kriterium
„(K7) Partnerübergreifender Datenfluss“ in normalen BPMN 2.0 Kollaborationsdiagrammen
nicht unterstützt wird.

• Die Choreographie besteht aus drei Teilnehmern: A, B und C (K2).

• Teilnehmer A schickt zunächst eine Anfrage Request 1 an B. Im Anschluss daran
bekommt er ein Datenobjekt Data Object 1 von B zugesendet (K5), (K7). Anschließend
wartet A bis zur Frist Deadline, welche hier im abstrakten Beispiel nicht genauer
spezifiziert ist, auf eine Antwort von TeilnehmerB namensReply 1. Falls diese Nachricht
innerhalb der Frist ankommt, führt Teilnehmer A noch die Aktivität Activity A01 aus,
bevor er in den zweiten Endzustand End 2 gelangt. Falls die Frist überschritten wird,
gelangt A direkt in den Endzustand End 1 (K3).

• Teilnehmer B nimmt zunächst die Anfrage Request 1 entgegen. Im Anschluss sendet er
das DatenobjektData Object 1 anA. Anschließend sendet er eine Anfrage an Teilnehmer
C namens Request 2 (K1) und wartet anschließend für unbegrenzte Zeit, auf Antwort
Reply 2.1 oder Reply 2.2 von Teilnehmer C . Falls Antwort Reply 2.1 gesendet wurde,
führtB noch die AktivitätActivity B01 aus, bevor er die AntwortReply 1 an Teilnehmer
A sendet. Bekommt B die Antwort Reply 2.2, wird direkt die Antwort Reply 1 an A
geschickt.

• Teilnehmer C nimmt zunächst die Anfrage Request 2 von B entgegen. Anschlie-
ßend wird die Aktivität Activity C01 ausgeführt, welche ein Datenobjekt namens
Data Object 2 als Output hat. Danach wird eine Daten-basierte Abfrage gemacht,
welche in unserem Beispiel abfragt, ob X > Y (K4). Falls der Return-Wert der Abfrage
True ist, wird die Aktivität Send Reply 2.2 ausgeführt, welche als Input das Datenobjekt
Data Object 2 hat (K6). Bei dieser Aktivität wird eine Nachricht an B gesendet. Falls
der Return-Wert False ist, wird die Nachricht Reply 2.1 an Teilnehmer B geschickt.

35

4 Analyse ausgewählter Sprachen

CCBBAA

R
ec

ei
ve

 R
eq

ue
st

 2

A
ct

iv
it

y
C0

1

En
d

En
d

1

Se
n

d
R

eq
ue

st
 2

St
a

rt

En
d

2

Se
n

d
R

eq
ue

st
 1

Se
n

d
R

ep
ly

 2
.1

Se
n

d
R

ep
ly

 2
.2

X
 >

 Y

D
ea

d
lin

e

En
d

A
ct

iv
it

y
B

01

Se
n

d
R

ep
ly

 1

D
at

a
O

bj
ec

t
2

A
ct

iv
it

y
A

01

R
ec

ei
ve

 R
eq

ue
st

 1

Se
n

d
D

at
a

K
1

K
2

K
3

K
4

K
5

K
6

K
7

R
ec

ei
ve

 D
a

ta

D
at

a
O

bj
ec

t
1

Abbildung 4.1: Abstraktes Beispiel einer Choreographie

36

4.3 Analyse der ausgewählten Sprachen

Hinweis Falls kein partnerübergreifender Datenfluss unterstützt wird, aber dennoch Da-
ten ausgetauscht werden können per Nachrichten, so wird es dann dementsprechend auch
modelliert. Falls gar keine Daten zwischen Teilnehmern ausgetauscht werden können, so
wird hier anstelle dessen ein normaler Nachrichtenaustausch modelliert. Falls Abzweigungen
modelliert, aber keine Daten-basierte Abfragen spezifiziert werden können, so werden dennoch
die Abzweigungen modelliert, aber es wird dementsprechend erwähnt, dass die Auswahl des
Pfades nicht Daten-basiert geschehen kann. Falls in einer Choreographiesprache gar keine
Abzweigungen modelliert werden können, so wird automatisch der True-Pfad aus unserem
Beispiel modelliert. Falls das erste Kriterium zutrifft und es sich nicht schön zeigen lässt durch
mehrere Pfeile zu mulitplen Interaktionen, wird dieses Kriterium bei der ersten Interaktion
zwischen Teilnehmer B und C , Request2, markiert.

4.3 Analyse der ausgewählten Sprachen

Im Folgenden werden die ausgewählten Sprachen aus Abschnitt 3.4 analysiert und mit Beispie-
len veranschaulicht.

4.3.1 Business Process Model and Notation (BPMN)

Der Standard „Business Process Model and Notation“ (kurz: BPMN) wurde von der „Object
Management Group“ (kurz: OMG), welche von mehreren großen und bekannten Firmen
(unter anderem HP und IBM) gegründet wurde, im Jahre 2006 entwickelt. Ursprünglich wurde
der Standard „Business Process Modeling Notation“ genannt. BPMN dient zur graphischen
Modellierung von Geschäftsprozessen. Es existieren bereits mehrere Versionen des BPMN
Standards, die auch unterschiedliche Diagrammtypen bereitstellen [Whi04].

BPMN 2.0 ist eine neue Version von BPMN aus dem Jahre 2011, wobei BPMN in der 2. Version
umbenannt wurde zu „Business Process Model and Notation“. Ebenfalls wurden hier auch
weitere Diagrammtypen hinzugefügt. Die alten Versionen von BPMN werden bei der Analyse
weggelassen, da die neuste Version das breiteste Spektrum anModelliermöglichkeiten bietet. Im
Dezember 2013 wurde die neueste Version, BPMN 2.0.2, veröffentlicht, wobei die Änderungen
gegenüber Version 2.0 sehr gering sind und diese für unsere Analyse keinen Unterschied
machen.

BPMN 2.0 Kollaborationsdiagramm

Wie bereits erwähnt, gibt es in BPMN 2.0 mehrere Diagrammtypen. Das Kollaborationsdia-
gramm ist hierbei eine direkte Erweiterung der in BPMN 1.0 bis 1.2 entwickelten Diagramme
[Mod11].

37

4 Analyse ausgewählter Sprachen

CCBBAA

R
ec

ei
ve

 R
eq

ue
st

 2

A
ct

iv
it

y
C0

1

En
d

En
d

1

Se
n

d
R

eq
ue

st
 2

St
a

rt

En
d

2

Se
n

d
R

eq
ue

st
 1

Se
n

d
R

ep
ly

 2
.1

Se
n

d
R

ep
ly

 2
.2

X
 >

 Y

D
ea

d
lin

e

En
d

A
ct

iv
it

y
B

01

Se
n

d
R

ep
ly

 1

D
at

a
O

bj
ec

t
2

A
ct

iv
it

y
A

01

R
ec

ei
ve

 R
eq

ue
st

 1

Se
n

d
D

at
a

K
1

K
2

K
3

K
4

K
5

K
6

R
ec

ei
ve

 D
a

ta

D
at

a
O

bj
ec

t
1

Abbildung 4.2: Umsetzung der Choreographie aus Abschnitt 4.2 mit einem BPMN 2.0 Kolla-
borationsdiagramm

38

4.3 Analyse der ausgewählten Sprachen

Im Folgenden wird die Eignung von BPMN 2.0 Kollaborationsdiagrammen zur Choreographie-
modellierung mittels der in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.2
ist die Choreographie aus Abschnitt 4.2 mittels einem BPMN 2.0 Kollaborationsdiagramm
umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X X X X X ×

• (K1) Multilaterale Interaktionen: Ja, die Teilnehmer werden in BPMN 2.0 Kollaborations-
diagrammen über sogenannte „Pools“ definiert. Die Interaktionen zwischen diesen Pools
geschehen durch „Receive“- und „Send-Tasks“. Es gibt hierbei keine Einschränkungen
für die Anzahl der Pools und die Kommunikationen zwischen den beliebigen Pools.

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie wird durch die Pools erreicht. In
BPMN 2.0 Kollaborationsdiagrammen ist es auch möglich die minimale und maximale
Teilnehmeranzahl eines Typs über die Attribute der Pools anzugeben.

• (K3) Zeit-Constraints: Ja, durch „Timer-Events“ können Zeit-Constraints modelliert wer-
den, wobei bei den Timer-Events dann die dazu nötige Information beschrieben ist.

• (K4) Daten-basierter Kontrollfluss: Ja, es werden exklusive Gateways angeboten, bei
welchem man Daten-basierte Abfragen tätigen kann. Der Pfad welcher die angegebenen
Bedingungen erfüllt, wird schließlich ausgewählt.

• (K5) Modellierung von Datenobjekten: Ja, es können Datenobjekte explizit modelliert
werden.

• (K6) Expliziter Datenfluss: Ja, die Datenobjekte können innerhalb eines Pools durch einen
expliziten Datenfluss als Input oder Output für einzelne Aktivitäten modelliert werden.

• (K7) Partnerübergreifender Datenfluss: Nein, da die Pools untereinander Daten nur via
Nachrichten austauschen können, muss man die Datenobjekte an Nachrichten anhängen,
um sie an den anderen Pool zu übermitteln. Einen direkten partnerübergreifenden
Datenfluss gibt es somit nicht.

BPMN 2.0 Konversationsdiagramm

Ein BPMN 2.0 Konversationsdiagramm ist eine vereinfachte Form von einem Kollaborati-
onsdiagramm, welches jedoch die gleichen Möglichkeiten zur Modellierung hat [Mod11].
Deshalb sind alle Kriterien die auf Kollaborationsdiagramme zutreffen, ebenfalls zutreffend für
Konversationsdiagramme.

K1 K2 K3 K4 K5 K6 K7
X X X X X X ×

39

4 Analyse ausgewählter Sprachen

Abbildung 4.3: Abstraktes Beispiel von einem BPMN 2.0 Konversationsdiagramm

Konversationsdiagramme haben noch mit verschiedenen „Conversation Nodes“ und „Conver-
sation Links“ zusätzliche Elemente, mithilfe deren man die Konversationen zwischen den Pools
vereinfacht und übersichtlicher darstellen kann, da nicht jeder Pool ein Send- bzw. Receive-
Task benötigt. Die Prozesse der einzelnen Teilnehmer werden im Normalfall nicht modelliert,
was dazu führen würde, dass (K3) Zeit-Constraints, (K4) Daten-basierter Kontrollfluss, (K5)
Modellierung von Datenobjekten und (K6) Expliziter Datenfluss nicht erfüllt sind. Allerdings
dürfen eben auch Prozesse mit Aktivitäten, etc. modelliert werden. Da dies erlaubt ist, sind die
gleichen Kriterien erfüllt. In Abbildung 4.3 ist ein kleines abstraktes Beispiel mit den neuen
Elementen von Konversationsdiagrammen. Hier gibt es zwei Teilnehmer: Participant A und
Participant B, welche eine Konversation namens Conversation miteinander führen.

BPMN 2.0 Choreographiediagramm

Wie bereits erwähnt wurden in BPMN 2.0 zusätzliche Diagrammtypen vorgestellt. Ein BPMN
2.0 Choreographiediagramm ist ein neuer Diagrammtyp davon, welcher wie der Name schon
sagt, extra zur Modellierung von Choreographien entwickelt wurde [Mod11].

Im Folgenden wird die Eignung von BPMN 2.0 Choreographiediagrammen zur Choreographie-
modellierung mittels der in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.4
ist die Choreographie aus Abschnitt 4.2 mittels einem BPMN 2.0 Choreographiediagramm
umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X × X X × × ×

• (K1) Multilaterale Interaktionen: Ja, in BPMN 2.0 Choreographiediagrammen werden
lediglich die Interaktionen zwischen den verschiedenen Teilnehmern mittels „Choreo-
graphy Tasks“ modelliert. Hierbei werden bei jeder Interaktion die daran teilhabenden

40

4.3 Analyse der ausgewählten Sprachen

Abbildung 4.4: Umsetzung der Choreographie aus Abschnitt 4.2 mit einem BPMN 2.0 Cho-
reographiediagramm

Teilnehmer entweder als Initiator (weiß hinterlegt) oder als Empfänger (grau hinterlegt)
angegeben. Es können beliebige Teilnehmer als Initiator und Empfänger angegeben
werden. Deshalb wird dieses Kriterium unterstützt.

• (K2) Teilnehmertopologie: Nein, die Teilnehmer werden nur implizit bei den einzelnen
Choreography-Tasks angegeben. Deshalb gibt es keine Übersicht über alle Teilnehmer
in einem Prozess.

• (K3) Zeit-Constraints: Ja, BPMN 2.0 Choreographiediagramme erlauben, wie Kollaborati-
onsdiagramme, das Verwenden von „Timer-Events“.

• (K4) Daten-basierter Kontrollfluss: Ja, auch in BPMN 2.0 Choreographiediagrammen kön-
nen exklusive Gateways modelliert werden, bei denen Daten-basierte Abfragen getätigt
werden. Allerdings wird in Choreographiediagrammen der Austausch von Daten nicht
modelliert, sondern dieser kann nur implizit über die einzelnen Nachrichten geschehen.
Eine Bedingung für die Daten-basierten Abfragen ist also, dass die benötigten Daten vor
den Gateways per Nachrichten ausgetauscht worden sind, sodass jeder Teilnehmer, der

41

4 Analyse ausgewählter Sprachen

durch die Entscheidung direkt beeinflusst wird, entweder die benötigten Daten gesendet
oder empfangen hat.

• (K5) Modellierung von Datenobjekten: Nein, in Choreographiediagrammen wird die Mo-
dellierung von Datenobjekten nicht unterstützt.

• (K6) Expliziter Datenfluss: Nein, ein expliziter Datenfluss kann in BPMN 2.0 Choreogra-
phiediagrammen nicht modelliert werden.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss wird
ebenfalls nicht unterstützt.

Hinweis: Choreographiediagramme lassen sich in BPMN 2.0 in Kollaborationsdiagramme
einbinden.

4.3.2 Unified Modeling Language (UML)

Die „Unified Modeling Language“ (kurz: UML) ist eine Modellierungssprache, welche ursprüng-
lich von Booch, Jacobson und Rumbaugh entwickelt wurde [BJR+96] und später dann von der
„Object Management Group“ (kurz: OMG) aufgenommen und weiterentwickelt wurde. Es gibt
bereits einige Versionen zu UML. Die Entwicklung hatte bereits im Jahre 1994 begonnen, 1997
wurde schließlich die offizielle Version 1.0 veröffentlicht, nachdem sie mithilfe der OMG Grup-
pe standardisiert worden ist. Nach ein paar kleineren Änderungen und daraus resultierenden
Versionen 1.1 bis 1.5, wurde mit UML 2.0 im Jahre 2005 die erste große veränderte Version
veröffentlicht [RBJ05]. Im Jahre 2015 wurde die bis heute neueste Version 2.5 publiziert. Eine
Übersicht aller UML-Spezifikationen findet sich auf der Webseite der OMG1. Wie bereits in
BPMN, gibt es auch hier für UML unterschiedliche Diagramme. Im Folgenden wird für die
Analyse der verschiedenen Konzepte die neueste UML Version 2.5 verwendet.

UML Sequenzdiagramm

Eine Modellierungsart von UML ist das sogenannte Sequenzdiagramm, in welchem die ver-
schiedenen Teilnehmer per Nachrichtenaustausch interagieren [RBJ05].

Im Folgenden wird die Eignung von UML Sequenzdiagrammen zur Choreographiemodel-
lierung mittels der in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.5 ist
die Choreographie aus Abschnitt 4.2 mittels einem UML Sequenzdiagramm umgesetzt. Die
Notation dieses Sequenzdiagrammes ist die Notation aus UML 2.0, welche sich gegenüber
2.5 allerdings nicht inhaltlich unterscheidet. Allerdings wären die Balken bei den einzelnen
Lifelines in 2.5 nicht vorhanden.

1http://www.omg.org/spec/UML/

42

4.3 Analyse der ausgewählten Sprachen

Abbildung 4.5: Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Sequenzdia-
gramm

K1 K2 K3 K4 K5 K6 K7
X X X X × × ×

• (K1) Multilaterale Interaktionen: Ja, es können beliebig viele Teilnehmer modelliert wer-
den, welche untereinander interagieren. Eine Begrenzung gibt es hier nicht. Die ver-
schiedenen Teilnehmer werden in UML Sequenzdiagrammen als sogenannte „Lifelines“
repräsentiert, wobei dort zusätzlich zum Namen der Teilnehmer noch eine vertikale
Linie nach unten geht, welche eine Zeitachse darstellen soll, wobei dort dann die Inter-
aktionen zwischen den Teilnehmern modelliert sind. Diese können untereinander durch
Nachrichten miteinander interagieren.

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie wird über die Lifelines definiert.

• (K3) Zeit-Constraints: Ja, mithilfe der Konstrukte „DurationConstraint“ und „TimeCons-
traint“ lassen sich zeitliche Beschränkungen modellieren. Hierbei wird beim Senden einer
Nachricht an einen anderen Teilnehmer ein Timer gestartet. Innerhalb der vorgegebenen

43

4 Analyse ausgewählter Sprachen

Zeit wartet man dann schließlich (wobei man auch noch andere Interaktionen beiläufig
durchführen kann) auf eine Antwort des anderen Teilnehmers, da die Teilnehmer eben
nur per Nachrichtenaustausch interagieren. In unserem Beispiel haben wir 5000 s als
DurationConstraint angegeben.

• (K4) Daten-basierter Kontrollfluss: Ja, man kann durch den Konstrukt „CombinedFrag-
ment“ alternative Pfade modellieren, basierend auf Daten-abhängigen Abfragen. Man
kann auch durch das „Loop CombinedFragment“ z.B. verschiedene Aktionen wiederholt
ausführen, bis sich z.B. die abgefragte Variable ändert, wobei daraufhin die Schleife
verlassen wird.

• (K5) Modellierung von Datenobjekten: Nein, es wird keine Modellierung von Datenobjek-
ten unterstützt.

• (K6) Expliziter Datenfluss: Nein, es kann in UML Sequenzdiagrammen kein expliziter
Datenfluss modelliert werden.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss kann
nicht modelliert werden. Der Datenaustausch geschieht implizit über Nachrichten.

UML Zeitdiagramm

Ein UML Zeitdiagramm ist eine spezielle Form von UML Sequenzdiagrammen, wobei der
zeitliche Aspekt hier eine ganz zentrale Rolle spielt. Während bei Sequenzdiagrammen die
Zeitdimension implizit durch die Länge der „Lifelines“ ausgedrückt werden, gibt es hier eine
genaue Zeitachse (die x-Achse). Deshalb befinden sich die Lifelines hier nicht nebeneinander,
mit dem Teilnehmer und einer vertikalen Linie, sondern werden übereinander repräsentiert mit
einer horizontalen Linie. Ebenfalls gibt es eine „state lifeline“ oder „condition lifeline“, durch
welche z.B. verschiedene Status einer Rolle oder eines Objekts dargestellt werden können
[RBJ05].

Im Folgenden wird die Eignung von UML Zeitdiagrammen zur Choreographiemodellierungmit-
tels der in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.6 ist ein Zeitdiagramm
angegeben, wobei ein Benutzer (Web User), eine Website aufrufen möchte.

K1 K2 K3 K4 K5 K6 K7
X X X × × × ×

• Die Kriterien (K1) Multilaterale Interaktionen, (K2) Teilnehmertopologie, (K3) Zeit-
Constraints, (K5) Modellierung von Datenobjekten, (K6) Expliziter Datenfluss und (K7)
Partnerübergreifender Datenfluss unterscheiden sich nicht von den bereits vorgestellten
UML Sequenzdiagrammen. Die Umsetzungen dieser Kriterien, sofern eine Umsetzung
möglich ist, sind äquivalent.

44

4.3 Analyse der ausgewählten Sprachen

Abbildung 4.6: Beispiel einer Choreographie mit einem UML Zeitdiagramm2

• (K4) Daten-basierter Kontrollfluss: Nein, in UML Zeitdiagrammen wird das Konstrukt
„CombinedFragment“ nicht angeboten, sowie auch kein anderes Konstrukt mithilfe
dessen man dieses Konstrukt ersetzen könnte. Somit können keine Daten-basierten
Abfragen getätigt werden, welche den Kontrollfluss beeinflussen.

Wie man hier sieht ist, dass UML Zeitdiagramme basierend auf unseren Kriterien schlechter
abschneiden als UML Sequenzdiagramme. Dies liegt daran, dass ein Daten-basierter Kontroll-
fluss hier nicht möglich ist. Obwohl UML Sequenzdiagramme den zeitlichen Aspekt nicht im
Vordergrund haben, können dort dennoch Zeit-Constraints modelliert werden.

2http://www.uml-diagrams.org/website-latency-uml-timing-diagram-example.html

45

4 Analyse ausgewählter Sprachen

Abbildung 4.7: Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Kommuni-
kationsdiagramm

UML Kommunikationsdiagramm

UML Kommunikationsdiagramme sind eine weitere Form von Interaktionsdiagrammen von
UML. Kommunikationsdiagramme konzentrieren sich hier ausschließlich auf den Nachrichten-
austausch der einzelnen Teilnehmer. Sie werden als vereinfachte Sequenzdiagramme angesehen
[RBJ05].

Im Folgenden wird die Eignung von UML Kommunikationsdiagrammen zur Choreographie-
modellierung mittels der in Abschnitt Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbil-
dung 4.7 ist die Choreographie aus Abschnitt 4.2 mittels einemUMLKommunikationsdiagramm
umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X × X × × ×

• (K1) Multilaterale Interaktionen: Ja, multilaterale Interaktionen werden in UML Kommuni-
kationsdiagrammen ebenfalls unterstützt. Auch hier werden die einzelnen Teilnehmer als

46

4.3 Analyse der ausgewählten Sprachen

„Lifelines“ repräsentiert, welche untereinander beliebig viele Nachrichten austauschen
können. Die graphische Modellierung unterscheidet sich jedoch von den Repräsenta-
tionen in Sequenzdiagrammen. Hier erfolgt die Modellierung ähnlich wie bei einem
Graphen. Die zeitliche Abfolge der Interaktionen ist hier deshalb nicht auf dem ersten
Blick erkennbar. Diese erfolgt durch die Kantenbeschriftungen, in welchen durchnumme-
riert ist wann eine Nachricht gesendet wird. Nachrichten können auch parallel gesendet
werden. Um diese einzelnen Nachrichten zu unterscheiden, wird hinter der Zahl dann
noch ein zusätzlicher eigener Buchstabe angegeben.

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie wird auch hier durch die Lifelines
spezifiziert.

• (K3) Zeit-Constraints: Nein, Konstrukte zur Modellierung von Zeit-Constraints werden
hier nicht unterstützt.

• (K4) Daten-basierter Kontrollfluss: Ja, auch in UML Kommunikationsdiagrammen lassen
sich Daten-basierte Konditionen modellieren, welche erfüllt sein müssen um den entspre-
chenden Pfad zu gehen. Diese werden direkt vor der Nachricht als „Guard“ angegeben.

• (K5) Modellierung von Datenobjekten: Nein, wie bereits in den anderen Interaktionsdia-
grammen, welche UML anbietet, können auch hier Datenobjekte nicht explizit modelliert
werden.

• (K6) Expliziter Datenfluss: Nein, es lässt sich kein Datenfluss in UML Kommunikations-
diagrammen modellieren.

• (K7) Partnerübergreifender Datenfluss: Nein, die Modellierung eines partnerübergreifen-
den Datenflusses wird nicht unterstützt.

UML Aktivitätsdiagramm

UML Aktivitätsdiagramme gehören im Gegensatz zu den anderen hier vorgestellten Model-
lierungsarten aus UML nicht zu den Interaktionsdiagrammen, sondern zu den Verhaltensdia-
grammen [RBJ05]. Dennoch wurden sie in verschiedenen Arbeiten [BDO06; KP06; MH08] als
geeignete Sprache zur graphischen Modellierung von Choreographien verwendet.

Im Folgenden wird die Eignung von UML Aktivitätsdiagrammen zur Choreographiemodel-
lierung mittels der in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.8 ist die
Choreographie aus Abschnitt 4.2 mittels einem UML Aktivitätsdiagramm umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X X X X X X

47

4 Analyse ausgewählter Sprachen

Abbildung 4.8: Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Aktivitäts-
diagramm

• (K1) Multilaterale Interaktionen: Ja, UML Aktivitätsdiagramme erlauben die Modellierung
von verschiedenen Teilnehmern via „Partitionen“. In UML Aktivitätsdiagrammen werden
außerdem die einzelnen Aktivitäten der Partitionen modelliert. Ein Kontrollfluss sorgt
dabei für die Reihenfolge der ausgeführten Aktivitäten. Der Start einer Choreographie
wird durch ein sogenanntes „Initial Node“ Element gekennzeichnet und das Ende einer
Choreographie wird durch ein „Activity Final Node“ Element repräsentiert. Es können
mehrere Enden modelliert werden, die Choreographie wird dabei durch das erste ausge-
löste End-Element beendet. Es lassen sich außerdemmehrere Start-Elemente modellieren,
was dazu führt, dass verschiedene Kontrollflüsse nebenläufig gestartet werden. Durch
die Datenflüsse werden Interaktionen direkt unterstützt.

• (K2) Teilnehmertopologie: Ja, durch die Modellierung von Partitionen wird eine Teilneh-
mertopologie gewährleistet.

• (K3) Zeit-Constraints: Ja, man kann zeitliche Bedingungen durch sogenannte „Accept
Time Event Actions“ modellieren. Wenn Timeouts innerhalb der „Interruptible Regions“
ausgelöst werden, wird dann der entsprechende Timeout-Pfad gelaufen.

48

4.3 Analyse der ausgewählten Sprachen

• (K4) Daten-basierter Kontrollfluss: Ja, man kann durch „Decision Nodes“ den nachfolgen-
den Kontrollfluss durch bestimmte Abfragen beeinflussen. Damit kann man Abfragen
machen, ob bisher alle wichtigen Daten vorhanden sind z.B., falls nicht wird ein alterna-
tiver Pfad abgelaufen.

• (K5) Modellierung von Datenobjekten: Ja, die Datenobjekte werden als „Object Nodes“
modelliert und agieren hierbei als Input und/oder Output für einzelne Aktivitäten.

• (K6) Expliziter Datenfluss: Ja, es gibt einen expliziten Datenfluss, welcher von der Reprä-
sentation her dem Kontrollfluss gleicht. Diese Datenobjekte dienen als Input und/oder
Output von einzelnen Aktivitäten.

• (K7) Partnerübergreifender Datenfluss: Ja, in UML Aktivitätsdiagrammen macht es keinen
Unterschied, ob man Daten innerhalb einer Partition oder auch an eine Aktivität einer
anderen Partition verschickt. Deshalb ist dieses Kriterium erfüllt.

UML Interaktionsübersichtsdiagramm

UML Interaktionsübersichtsdiagramme zählen zu den Interaktionsdiagrammen. Hier werden
Interaktionen durch eine Variante von Aktivitätsdiagrammen definiert, um eine Übersicht über
den Kontrollfluss zu erhalten [RBJ05].

Im Folgenden wird die Eignung von UML Interaktionsübersichtsdiagrammen zur Choreogra-
phiemodellierung mittels der in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.9
ist die Choreographie aus Abschnitt 4.2 mittels einem UML Interaktionsübersichtsdiagramm
umgesetzt. Zur graphischen Unterstützung der Evaluierung der einzelnen Kritieren, ist in
Abbildung 4.9 die Choreographie aus Abschnitt 4.2 mittels einem UML Interaktionsübersichts-
diagramm umgesetzt/modelliert.

K1 K2 K3 K4 K5 K6 K7
X × X X × × ×

• (K1) Multilaterale Interaktionen: Ja, multilaterale Interaktionen werden unterstützt. Die
Modellierung ist wie eine Mischung aus Aktivitäts- und Sequenzdiagrammen. Wie schon
Aktivitätsdiagramme gibt es hier den „Initial Node“, welcher den Anfang signalisiert
und einen (oder mehrere) „Final Node(s)“. Der Kontrollfluss gleicht ebenfalls dem von
Aktivitätsdiagrammen. Ein Unterschied gegenüber Aktivitätsdiagrammen ist hierbei,
dass es hier keine Partitionen gibt. Die Teilnehmer werden implizit in den einzelnen
„Interactions“ modelliert. Hier wird auch die Interaktion zwischen den Teilnehmern in
Form von Sequenzdiagrammen genau modelliert. Eine Begrenzung für die Anzahl der
Teilnehmer oder Interaktionen gibt es nicht.

• (K2) Teilnehmertopologie: Nein, eine Teilnehmertopologie wird nicht unterstützt, da die
Teilnehmer nur implizit bei den einzelnen Interaktionen angegeben werden.

49

4 Analyse ausgewählter Sprachen

Abbildung 4.9: Umsetzung der Choreographie aus Abschnitt 4.2 mit einem UML Interakti-
onsübersichtsdiagramm

50

4.3 Analyse der ausgewählten Sprachen

• (K3) Zeit-Constraints: Ja, die zeitliche Beschränkungen erfolgen durch sogenannte „Dura-
tionConstraints“ oder „TimeConstraints“, welche modelliert werden wie in Sequenzdia-
grammen. In unserem Beispiel wählen wir die Zeitbegrenzung so, dass nach Abschluss
der Send Data Interaktion innerhalb von 5000s die Interaktion Reply1 durchgeführt
werden muss.

• (K4) Daten-basierter Kontrollfluss: Ja, der Daten-basierte Kontrollfluss erfolgt, wie schon
in Aktivitätsdiagrammen mittels „Decision Nodes“.

• (K5) Modellierung von Datenobjekten: Nein, im Gegensatz zu UML Aktivitätsdiagrammen
lassen sich in Interaktionsübersichtsdiagrammen keine Datenobjekte modellieren.

• (K6) Expliziter Datenfluss: Nein, ein expliziter Datenfluss existiert in UML Interaktions-
übersichtsdiagrammen nicht.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss exis-
tiert in UML Interaktionsübersichtsdiagrammen nicht. Die Daten müssen impliziten
über Nachrichten ausgetauscht werden.

4.3.3 Web Service Flow Language (WSFL)

Die „Web Service Flow Language“ wurde von Leymann [Ley+01] im Jahre 2001 entworfen und
gilt somit als eine der älteren Sprachen, welche zur Choreographiemodellierung geeignet sind.
WSFL ist eine XML-basierte Sprache zur Beschreibung von Web Service Strukturen. WSFL
ist außerdem ein Vorgänger der „Web Services Business Process Execution Language“ (kurz:
BPEL; [ACD+03]), ein Vorreiter zur Modellierung von Orchestrierungen.

Im Folgenden wird die Eignung von WSFL zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Listing 4.1 ist die Choreographie aus Ab-
schnitt 4.2 mittels WSFL umgesetzt. Aus Gründen der Übersichtlichkeit wurden die Definition
der Messages, sowie der <portType>- und <serviceProviderType>-Konstrukte weggelas-
sen.

K1 K2 K3 K4 K5 K6 K7
X X × X X X ×

• (K1) Multilaterale Interaktionen: Ja, WSFL bietet zwei Modelle: „Flow Model“ und „Glo-
bal Model“. In einem Flow-Modell wird der Kontrollfluss eines Prozesses definiert. Im
globalen Modell wird beschrieben, wie die verschiedenen Web Services untereinander
interagieren. Die einzelnen Aktivitäten werden im Flow-Modell definiert. Außerdem
werden auch hier einzelne Interaktionen modelliert. Im globalen Modell hat man mithilfe
der <plugLink>-Konstrukte eine globale Sicht auf die einzelnen Interaktionen. Eine
Beschränkung für die Anzahl der Teilnehmer und Interaktionen gibt es hierbei nicht.

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie wird im globalen Model definiert.

51

4 Analyse ausgewählter Sprachen

• (K3) Zeit-Constraints: Nein, WSFL bietet keine Konstrukte zur Modellierung von Zeit-
Constraints an.

• (K4) Daten-basierter Kontrollfluss: Ja, in WSFL gibt es sogenannte „Transition Conditions“,
welche den Kontrollfluss durch Daten-basierte Abfragen leiten. Dies wird im Flow-Modell
modelliert.

• (K5) Modellierung von Datenobjekten: Ja, in WSFL werden Daten als Nachrichten definiert.

• (K6) Expliziter Datenfluss: Ja, der Datenaustausch geschieht über <dataLink>-Konstrukte.
Bei diesen Datalinks werden die Quell- und Ziel-Aktivitäten mit angegeben.

• (K7) Partnerübergreifender Datenfluss: Nein, die <dataLink>-Konstrukte können nur
innerhalb eines Flow-Modells angegeben werden. Somit kann kein partnerübergreifender
Datenfluss garantiert werden.

1 <?xml version ="1.0" encoding="UTF−8"?>
2
3 < definitions targetNamespace="http ://www.example.org/example−choreography/"
4 xmlns: tio="http :// www.example.org/example−choreography/"
5 xmlns="http :// schemas.xmlsoap.org/wsfl / "
6 xmlns:xsi="http :// www.w3.org/2001/XMLSchema−instance"
7 xsi : schemaLocation="http :// schemas.xmlsoap.org/wsfl / wsfl−schema.xsd">
8
9 <flowModel name="AFlow"
10 serviceProviderType=" tio :TypeA">
11
12 < serviceProvider name="B" type="tio :TypeB"/>
13
14
15 < activity name="issueRequest1">
16 <performedBy serviceProvider="B"/>
17 <implement>
18 <export>
19 <target portType="tio :ARequester"
20 operation="SendRequest1"/>
21 </export>
22 </implement>
23 </ activity >
24
25 < activity name="getData">
26 <performedBy serviceProvider="B"/>
27 <implement>
28 <export>
29 <target portType="tio :ARequester"
30 operation="ReceiveData"/>
31 </export>
32 </implement>

52

4.3 Analyse der ausgewählten Sprachen

33 </ activity >
34
35 < activity name="getReply1">
36 <performedBy serviceProvider="B"/>
37 <implement>
38 <export>
39 <target portType="tio :ARequester"
40 operation="ReceiveReply1"/>
41 </export>
42 </implement>
43 </ activity >
44
45 < activity name="ActivityA01">
46 <performedBy serviceProvider="A"/>
47 <implement>
48 < internal >
49 ...
50 </ internal >
51 </implement>
52 </ activity >
53
54 <controlLink source="issueRequest1 "
55 target ="getData"/>
56 <controlLink source="getData"
57 target ="getReply1" />
58 <controlLink source="getReply1"
59 target ="ActivityA01" />
60 </flowModel>
61
62 <flowModel name="BFlow"
63 serviceProviderType=" tio :TypeB">
64
65
66 < serviceProvider name="A" type="tio:TypeA"/>
67 < serviceProvider name="C" type="tio:TypeC"/>
68
69 <export lifecycleAction ="spawn">
70 <target portType="tio : BReplier "
71 operation="ReceiveRequest1"/>
72 </export>
73
74 < activity name="issueData">
75 <performedBy serviceProvider="A"/>
76 <implement>
77 <export>
78 <target portType="tio : BReplier "
79 operation="SendData"/>
80 </export>
81 </implement>
82 </ activity >
83

53

4 Analyse ausgewählter Sprachen

84 < activity name="issueRequest2">
85 <performedBy serviceProvider="C"/>
86 <implement>
87 <export>
88 <target portType="tio :BRequester"
89 operation="SendRequest2"/>
90 </export>
91 </implement>
92 </ activity >
93
94 < activity name="getReply21">
95 <performedBy serviceProvider="C"/>
96 <implement>
97 <export>
98 <target portType="tio :BRequester"
99 operation="ReceiveReply2.1 " />
100 </export>
101 </implement>
102 </ activity >
103
104 < activity name="getReply22">
105 <performedBy serviceProvider="C"/>
106 <implement>
107 <export>
108 <target portType="tio :BRequester"
109 operation="ReceiveReply2.2 " />
110 </export>
111 </implement>
112 </ activity >
113
114 < activity name="ActivityB01">
115 <performedBy serviceProvider="B"/>
116 <implement>
117 < internal >
118 ...
119 </ internal >
120 </implement>
121 </ activity >
122
123 < activity name="issueReply1">
124 <performedBy serviceProvider="A"/>
125 <implement>
126 <export>
127 <target portType="tio : BReplier "
128 operation="SendReply1"/>
129 </export>
130 </implement>
131 </ activity >
132
133 <controlLink source="issueData"
134 target ="issueRequest2 " />

54

4.3 Analyse der ausgewählten Sprachen

135 <controlLink source="issueRequest2 "
136 target ="getReply21"/>
137 <controlLink source="issueRequest2 "
138 target ="getReply22"/>
139 <controlLink source="getReply21"
140 target ="ActivityB01 " />
141 <controlLink source="ActivityB01 "
142 target ="issueReply1 " />
143 <controlLink source="getReply22"
144 target ="issueReply1 " />
145 </flowModel>
146
147 <flowModel name="CFlow"
148 serviceProviderType=" tio :TypeC">
149
150 < serviceProvider name="B" type="tio :TypeB"/>
151
152 <export lifecycleAction ="spawn">
153 <target portType="tio :CReplier"
154 operation="ReceiveRequest2"/>
155
156 </export>
157
158 < activity name="ActivityC01">
159 <performedBy serviceProvider="C"/>
160 <implement>
161 < internal >
162 ...
163 </ internal >
164
165 </implement>
166 </ activity >
167
168 < activity name="issueReply21">
169 <performedBy serviceProvider="C"/>
170 <implement>
171 <export>
172 <target portType="tio :CReplier"
173 operation="SendReply2.1"/>
174 </export>
175 </implement>
176 </ activity >
177
178 < activity name="issueReply22">
179 <performedBy serviceProvider="C"/>
180 <implement>
181 <export>
182 <target portType="tio :CReplier"
183 operation="SendReply2.2"/>
184 </export>
185 </implement>

55

4 Analyse ausgewählter Sprachen

186 </ activity >
187
188 <controlLink source="ActivityC01"
189 target ="issueReply21"
190 transitionCondition ="X<=Y"/>
191 <controlLink source="ActivityC01"
192 target ="issueReply22"
193 transitionCondition ="X>Y"/>
194 <dataLink name="DataObject2Transfer"
195 source="ActivityC01"
196 target ="issueReply22" />
197 </flowModel>
198
199 <globalModel name="Example−ChoreographyGlobal"
200 serviceProviderType="exampleChoreography">
201
202 < serviceProvider name="A" type="tio:TypeA"/>
203 < serviceProvider name="B" type="tio :TypeB"/>
204 < serviceProvider name="C" type="tio:TypeC"/>
205
206 <plugLink>
207 <source serviceProvider ="A"
208 portType="tio :ARequester"
209 operation="SendRequest1"/>
210 <target serviceProvider ="B"
211 portType="tio : BReplier "
212 operation="ReceiveRequest1"/>
213 </plugLink>
214
215 <plugLink>
216 <source serviceProvider ="B"
217 portType="tio : BReplier "
218 operation="SendData"/>
219 <target serviceProvider ="A"
220 portType="tio :ARequester"
221 operation="ReceiveData"/>
222 </plugLink>
223
224 <plugLink>
225 <source serviceProvider ="B"
226 portType="tio :BRequester"
227 operation="SendRequest2"/>
228 <target serviceProvider ="C"
229 portType="tio :CReplier"
230 operation="ReceiveRequest2"/>
231 </plugLink>
232
233 <plugLink>
234 <source serviceProvider ="C"
235 portType="tio :CReplier"
236 operation="SendReply2.1"/>

56

4.3 Analyse der ausgewählten Sprachen

237 <target serviceProvider ="B"
238 portType="tio :BRequester"
239 operation="ReceiveReply2.1 " />
240 </plugLink>
241
242 <plugLink>
243 <source serviceProvider ="C"
244 portType="tio :CReplier"
245 operation="SendReply2.2"/>
246 <target serviceProvider ="B"
247 portType="tio :BRequester"
248 operation="ReceiveReply2.2 " />
249 </plugLink>
250
251 <plugLink>
252 <source serviceProvider ="B"
253 portType="tio : BReplier "
254 operation="SendReply1"/>
255 <target serviceProvider ="A"
256 portType="tio :ARequester"
257 operation="ReceiveReply1"/>
258 </plugLink>
259 </globalModel>
260
261 </ definitions >

Listing 4.1: Umsetzung der Choreographie aus Abschnitt 4.2 in WSFL

4.3.4 Event-driven Process Chain (EPC)

„Event-driven Process Chain“ (kurz: EPC) wurden ursprünglich von Keller, Scheer und Nüttgens
[KSN92] im Jahres 1992 unter dem deutschen Namen „Ereignisgesteuerte Prozessketten“ (kurz:
EPK) entworfen. Über die Jahre wurden diese EPCs erweitert. Eine neuere Version, bei welchem
unter anderem A.W. Scheer [STA05], einer der Entwickler der ersten Version, beteiligt war
wurde im Jahr 2005 präsentiert. Die folgende Analyse bezieht sich deshalb auf die neuere
Version.

Im Folgenden wird die Eignung von EPCs zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.10 ist die Choreographie aus
Abschnitt 4.2 mittels EPC umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X × × X X X X

57

4 Analyse ausgewählter Sprachen

A B

C

A

B

B

B

B

C

C

Sent Rq1

Received
Rp1

Send
Request 1

Send
Request 2

Receive
Request 1

Receive
Request 2

Receive
Reply 2.1

Send Reply
2.1

Send Reply
2.2

Activity C01

Activity B01

Activity A01

Receive
Reply 2.2

Receive
Reply 1

Send Reply 1

Start
Received

Rq1

Received
Rq2

Sent Rq2X <= Y

Sent Rp2.1

Sent Rp2.2X > Y

V
Received

Rp2.1

End

Sent Rp1

B

Received
Rp2.2

Activity
finished

Data Object
1

Data Object
2

K7

K4

K5

K6

Send Data

Receive
Data

Sent Data

Received
Data

V

XOR

V

A

BA

C

K1

Abbildung 4.10: Umsetzung der Choreographie aus Abschnitt 4.2 mit EPC

58

4.3 Analyse der ausgewählten Sprachen

• (K1) Multilaterale Interaktionen: Ja, in einem EPC werden die einzelnen Aktivitäten,
sowie Events in einem Workflow modelliert. Jeder Aktivität kann man die zuständige
Organisation bzw. Organisationen zuordnen, wodurch die Choreographie entsteht. Diese
Organisationen sind die einzelnen Teilnehmer. Durch diesen Kontrollfluss und den
Datenfluss, sowie den Angaben der Organisationen bei jeder Aktivität, lassen sich die
Interaktionen zwischen den einzelnen Organisationen modellieren. Aus Gründen der
Übersichtlichkeit, ist dieses Kriterium im Beispiel in Abbildung 4.10 nicht gekennzeichnet.
Es ist aber ersichtlich, dass multilaterale Interaktionen unterstützt und hier im Modell
auch wiedergegeben werden.

• (K2) Teilnehmertopologie: Nein, die Organisationen werden implizit bei den Aktivitäten
angegeben. Somit wird die Teilnehmertopologie in EPC nicht unterstützt.

• (K3) Zeit-Constraints: Nein, es werden keine Konstrukte zur Modellierung von Zeit-
Constraints angeboten.

• (K4) Daten-basierter Kontrollfluss: Ja, durch den XOR-Connector in Verbindung mit
Konditionen als Event-Angabe lässt sich ein Daten-basierter Kontrollfluss modellieren.

• (K5) Modellierung von Datenobjekten: Ja, es lassen sich Daten in EPC modellieren.

• (K6) Expliziter Datenfluss: Ja, die modellierten Daten werden als Input und/oder Output
für die einzelnen Aktivitäten angegeben.

• (K7) Partnerübergreifender Datenfluss: Ja, in EPC macht es keinen Unterschied, welcher
Teilnehmer welche Aktivitäten ausführt. So kann ein partnerübergreifender Datenfluss
modelliert werden, indem der Output einer Aktivität eines Teilnehmers gleichzeitig der
Input einer anderen Aktivität eines anderen Teilnehmers ist.

4.3.5 Web Services Choreography Description Language (WS-CDL)

Die „Web Sevices Choreography Description Language“ (kurz: WS-CDL) ist eine von Barros,
Dumas und Oaks [BDO05] definierte XML-basierte Choreographiesprache, welche sich aus den
Vorgängern „Web Services Choreography Interface“ (kurz: WSCI; [AAF+02]) und „Web Service
Conversation Language“ (kurz: WSCL; [BBB+02]) entwickelt hat und diese um zusätzliche
Elemente erweitert.

Im Folgenden wird die Eignung von WS-CDL zur Choreographiemodellierung mittels der
in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Listing 4.2 ist die Choreographie aus
Abschnitt 4.2 mittels WS-CDL umgesetzt. Dieses Beispiel ist nicht vollständig spezifiziert,
da die channelVariable-Elemente in den <interaction>-Blöcken auf Variablen zugreifen,
welche hier aus Gründen der Übersichtlichkeit nicht definiert werden. Diese Elemente sind
allerdings irrelevant für die Analyse der Kriterien.

59

4 Analyse ausgewählter Sprachen

K1 K2 K3 K4 K5 K6 K7
X X X X X × ×

• (K1) Multilaterale Interaktionen: Ja, WS-CDL erlaubt die Modellierung von mehreren Rol-
lentypen mittels <roleType>-Konstrukten, welche die Teilnehmer repräsentieren. Die
Interaktionen werden mittels <interaction>-Konstrukten spezifiziert. Eine Einschrän-
kung für die Anzahl der Rollen oder Interaktionen untereinander gibt es in WS-CDL
nicht.

• (K2) Teilnehmertopologie: Ja, in WS-CDL werden alle vorkommenden Rollen durch das
Konstrukt <roleType> aufgezählt, womit sich eine Topologie ergibt.

• (K3) Zeit-Constraints: Ja, man kann mithilfe von <timeout>-Konstrukten eine Zeit für
die Interaktionen festlegen, welche eingehalten werden muss.

• (K4) Daten-basierter Kontrollfluss: Ja, WS-CDL bietet Konstrukte, bei welchen man be-
stimmte Daten abfragen kann und darauf basierend eine Aktion ausgeführt oder nicht
ausgeführt wird. Dies geschieht innerhalb von <workunit>-Konstrukten, bei welchen
man eine guard-Kondition angeben kann, welche erfüllt sein muss, sodass der entspre-
chende Block ausgeführt wird.

• (K5) Modellierung von Datenobjekten: Ja, es können in WS-CDL Variablen definiert
werden, in welchen Daten gespeichert werden können. Dies geschieht über variable-
Definitionen innerhalb des <variableDefinitions>-Konstruktes.

• (K6) Expliziter Datenfluss: Nein, es kann kein expliziter Datenfluss in WS-CDL modelliert
werden.

• (K7) Partnerübergreifender Datenfluss: Nein, der Austausch von Daten muss über Nach-
richten geschehen.

Beispiel

1 <?xml version ="1.0" encoding="UTF−8"?>
2 <schema xmlns="http://www.w3.org/2001/XMLSchema"
3 xmlns:cdl="http :// www.w3.org/2005/10/cdl"
4 targetNamespace="http ://www.w3.org/2005/10/cdl"
5 elementFormDefault="qualified ">
6
7 <package name="Example"
8 author="Nico_Lässig"
9 targetNamespace="http ://www.example.org/example−choreography/"
10 xmlns="http :// www.w3.org/2005/10/cdl"
11 xmlns:tns="http :// www.example.org/example−choreography/">
12
13 <roleType name="A"> (K2)
14 <behavior name="Behavior1"/>
15 </roleType>

60

4.3 Analyse der ausgewählten Sprachen

16 <roleType name="B">
17 <behavior name="Behavior2"/>
18 </roleType>
19 <roleType name="C">
20 <behavior name="Behavior3"/>
21 </roleType>
22 <relationshipType name="A2B">
23 <roleType typeRef="tns :A"/>
24 <roleType typeRef="tns :B"/>
25 </ relationshipType >
26 <relationshipType name="B2C">
27 <roleType typeRef="tns :B"/>
28 <roleType typeRef="tns :C"/>
29 </ relationshipType >
30
31 <choreography name="ExampleChoreography">
32
33 < relationship type="tns :A2B"/>
34 < relationship type="tns :B2C"/>
35
36 < variableDefinitions > (K5)
37 <variable name="DataObject1" roleTypes="tns :A tns :B"/>
38 <variable name="DataObject2" roleTypes="tns :C"/>
39 </ variableDefinitions >
40
41 <sequence>
42 < interaction name="A2BInteraction1"
43 channelVariable="tns :A2BCV"
44 operation="Req1RepDat">
45 < participate relationshipType ="tns :A2B"
46 fromRoleTypeRef="tns:A" toRoleTypeRef="tns :B"/>
47 <exchange name="Request1"
48 action="request ">
49 <send> ... </send>
50 <receive> ... </ receive>
51 </exchange>
52 <exchange name="DataTransfer"
53 action="respond">
54 <send variable ="cdl : getVariable (’ DataObject1 ’,’’,’’) " />
55 <receive variable ="cdl : getVariable (’ DataObject1 ’,’’,’’) " />
56 </exchange>
57 </ interaction >
58 < interaction name="B2CInteraction1" (K1)
59 channelVariable="tns :B2CCV"
60 operation="Req2">
61 < participate relationshipType ="tns :B2C"
62 fromRoleTypeRef="tns:B" toRoleTypeRef="tns :C"/>
63 <exchange name="Request2"
64 action="request ">
65 <send> ... </send>
66 <receive> ... </ receive>

61

4 Analyse ausgewählter Sprachen

67 </exchange>
68 </ interaction >
69 <workunit name="Workunit1"
70 guard="cdl : getVariable (’ X ’,’’,’’, ’ tns :C’) > cdl : getVariable (’ Y ’,’’,’’,

’ tns :C’) "> (K4)
71 < interaction name="B2CInteraction2"
72 channelVariable="tns :B2CCV"
73 operation="Rep21">
74 < participate relationshipType ="tns :B2C"
75 fromRoleTypeRef="tns:B" toRoleTypeRef="tns :C"/>
76 <exchange name="Reply2.1"
77 action="respond">
78 <send> ... </send>
79 <receive> ... </ receive>
80 </exchange>
81 </ interaction >
82 </workunit>
83 <workunit name="Workunit2"
84 guard="cdl : getVariable (’ X ’,’’,’’, ’ tns :C’) <= cdl : getVariable (’ Y ’,’’,’’,

’ tns :C’) ">
85 < interaction name="B2CInteraction3"
86 channelVariable="tns :B2CCV"
87 operation="Rep22">
88 < participate relationshipType ="tns :B2C"
89 fromRoleTypeRef="tns:B" toRoleTypeRef="tns :C"/>
90 <exchange name="Reply2.2"
91 action="respond">
92 <send> ... </send>
93 <receive> ... </ receive>
94 </exchange>
95 </ interaction >
96 </workunit>
97 < interaction name="A2BInteraction2"
98 channelVariable="tns :A2BCV"
99 operation="Rep1">
100 < participate relationshipType ="tns :A2B"
101 fromRoleTypeRef="tns:A" toRoleTypeRef="tns :B"/>
102 <exchange name="Reply1"
103 action="respond">
104 <send> ... </send>
105 <receive> ... </ receive>
106 </exchange>
107 <timeout time−to−complete="2018−09−24Z"/> (K3)
108 </ interaction >
109 </sequence>
110 </choreography>
111 </package>
112 </schema>

Listing 4.2: Umsetzung der Choreographie aus Abschnitt 4.2 in WS-CDL

62

4.3 Analyse der ausgewählten Sprachen

4.3.6 Declarative Service Flow Language (DecSerFlow)

„DecSerFlow“ ist eine von van der Aalst und Pesic [AP06a] definierte graphische Repräsentati-
on zur deklarativen Modellierung von Choreographien. Die Grundlage von DecSerFlow ist
hierbei die textuelle Logik-Sprache „Linear Temporal Logic“ (kurz: LTL). Die Hauptidee ist,
dass zunächst einmal in der Design-Phase ein graphisches Modell mittels der Notation von
DecSerFlow generiert wird. In der anschließenden Mapping-Phase wird das Modell in LTL
Formeln transformiert. Diese lassen sich dann in der abschließenden Phase, zur Laufzeit mit-
hilfe von entsprechender Software ausführen, welche den Arbeitsfluss kontrollieren. Die Tools
sind dafür geeignet, um Verstöße oder Probleme des Modells zu detektieren und analysieren
[AP06a; AP06b]. In [AP06b] findet sich neben der Modellierung eines einzelnen Services auch
noch die Modellierung von mehreren Services und die Kommunikation zwischen diesen.

Im Folgenden wird die Eignung von DecSerFlow zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.11 ist eine typische Buchhandel-
Choreographie umgesetzt, in welcher ein Kunde ein Buch ausleihen oder kaufen will. Die
genaue Spezifikation dieses Beispiels findet sich in [AP06b].

K1 K2 K3 K4 K5 K6 K7
X X X X × × ×

• (K1) Multilaterale Interaktionen: Ja, multilaterale Interaktionen werden unterstützt. Die
einzelnen Teilnehmer, hier Services genannt, werden in dem Beispiel aus Abbildung 4.11
in Form von Boxen dargestellt. Eine spezielle Bezeichnung hierfür wird nicht definiert.
Innerhalb der Box werden dann die einzelnen Aktivitäten modelliert. Die Kommunika-
tion zwischen den verschiedenen Teilnehmern werden via Pfeile von einer Aktivität
eines Services zu einer Aktivität eines anderen Services symbolisiert. In unserem Bei-
spiel nehmen vier Teilnehmer an einer Choreographie teil: Der Kunde (customer), die
Buchhandlung (bookstore), der Verleger (publisher) und der Absender (shipper). Die
Bedeutung der verschiedenen Pfeil-Typen sind in [AP06a], sowie [AP06b] definiert. In
diesem Beispiel wird eine Choreographie aus Sicht des Kunden repräsentiert. Deshalb
sind hier der Zusammenhang der einzelnen Aktivitäten nur aus Sicht des Kunden genau
modelliert, sowie die Interaktionen zu den anderen Teilnehmern vom Kunden aus und
umgekehrt. Wie die anderen Teilnehmer untereinander kommunizieren oder wie deren
interner Ablauf aussieht, wird hier deshalb nicht gezeigt.

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie wird in DecSerFlow durch die
einzelnen „Boxen“ für jeden Service bewerkstelligt.

• (K3) Zeit-Constraints: Ja, es werden zwar nicht explizit Konstrukte zur Modellierung
von Zeit-Constraints angegeben, jedoch wird erwähnt, dass ein Zustand nicht nur eine
Aktivität sein muss, sondern auch Informationen, wie Zeit oder Daten enthalten kann.
Somit können Informationen bezüglich der Zeit modelliert werden und darauf basierend
auch Constraints. Dieses Kriterium wird im Beispiel nicht wiedergegeben.

63

4 Analyse ausgewählter Sprachen

Abbildung 4.11: Beispiel einer Choreographie in DecSerFlow aus [AP06b]

64

4.3 Analyse der ausgewählten Sprachen

• (K4) Daten-basierter Kontrollfluss: Ja, Daten-abhängige Abfragen können getätigt werden,
woraufhin dann der jeweilige Pfad gewählt wird. Es wird erwähnt, dass die einzelnen
Zustände Informationen von Daten enthalten können. Dieses Kriterium wird in diesem
Beispiel ebenfalls nicht wiedergegeben.

• (K5) Modellierung von Datenobjekten: Nein, Daten können lediglich implizit bei den
einzelnen Aktivitäten als zusätzliche Informationen definiert werden. Eine explizite
Modellierung von Datenobjekten gibt es nicht.

• (K6) Expliziter Datenfluss: Nein, im graphischen Modell von DecSerFlow wird ein Daten-
fluss nicht spezifiziert.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss kann
in DecSerFlow ebenfalls nicht modelliert werden.

4.3.7 Global Calculus

Der „Global Calculus“ ist ein formaler Calculus, welcher seine Ursprünge in WS-CDL hat. Der
Global Calculus wurde ursprünglich von Carbone et al. [CHY07] im Jahre 2006 veröffentlicht
[CHY+06]. Ein Jahr später wurde schließlich ein Paper zu diesem Calculus im Springer-Verlag
veröffentlicht.

Im Folgenden wird die Eignung von Global Calculus zur Choreographiemodellierung mittels
der in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Listing 4.3 ist die Choreographie aus
Abschnitt 4.2 mittels Global Calculus umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X × (X) X × × ×

• (K1)Multilaterale Interaktionen: Ja, multilaterale Interaktionenwerden imGlobal Calculus
unterstützt. Es können beliebige Interaktionen zwischen Teilnehmern via sogenannter
„Channels“ modelliert werden. Die Teilnehmer werden dabei implizit bei der Interaktion
mit angegeben. Aus unserem Beispiel: A → B : Ch1(v s) bezeichnet hierbei, dass A ein
Service Channel namens Ch1 aufgerufen und eine neue Session namens s initiiert hat.
A → B : s⟨Request1⟩ bezeichnet hierbei eine Interaktion zwischen A und B mittels
Session s, namens Request1. Bei einem sequentiellen Ablauf wird ein Punkt zwischen
den einzelnen Interaktionen gemacht. 0 steht für eine Inaktion.

• (K2) Teilnehmertopologie: Nein, eine Übersicht über alle Teilnehmer kann im Global Cal-
culus nicht angegeben werden. Die Teilnehmer werden bei den einzelnen Interaktionen
implizit mit angegeben.

65

4 Analyse ausgewählter Sprachen

• (K3) Zeit-Constraints: Teilweise, es werden keine Konstrukte zur Modellierung von
Zeit-Constraints in der Definition von Global Calculus angegeben. In [CHY+06] wird
allerdings erwähnt, dass die Modellierung von Timeouts (und diversen anderen Elemen-
ten) zwar nicht im Kern von Global Calculus enthalten sind, dies jedoch als Erweiterung
möglich ist. Deshalb ist dieses Kriterium teilweise erfüllt.

• (K4) Daten-basierter Kontrollfluss: Ja, es können „if-else“ Abfragen getätigt werden,
wodurch basierend auf den Daten unterschiedliche Pfade weitergelaufen werden. Somit
ist das Kriterium erfüllt. In unserem Beispiel bezeichnet X > Y @C die Daten-basierte
Abfrage, wobei die Kondition X > Y ist, welche bei Teilnehmer C liegt.

• (K5) Modellierung von Datenobjekten: Nein, Datenobjekte können nicht explizit modelliert
werden. Es können zwar sogenannte „Expressions“ per Nachrichten ausgetauscht werden,
allerdings werden diese implizit bei den Nachrichten angegeben. In unserem Beispiel
wird bei A → B : s⟨Request1, 1000, y⟩ die Expression 1000 der Variable y, welche in
B sein muss, zugewiesen.

• (K6) Expliziter Datenfluss: Nein, ein expliziter Datenfluss lässt sich mit dem Global
Calculus nicht definieren.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss gibt es
ebenfalls nicht im Global Calculus. Es können nur per Nachrichtenaustausch Expressions
weitergegeben werden, welche einer bestimmten Variable des Empfängers zugewiesen
werden.

1 A → B: Ch1(v s) .
2 A → B: s⟨Request1⟩ .
3 B → A: s⟨DataTransfer , 1000, y⟩ .
4 B → C: Ch2(v t) . (K1)
5 B → C: t⟨Request2⟩ .
6 if X > Y@C then (K4)
7 {C → B: t⟨Reply2.1⟩ .
8 B → A: s⟨Reply1⟩ . 0 }
9 else
10 {C → B: t⟨Reply2.2⟩ .
11 B → A: s⟨Reply1⟩ . 0 }

Listing 4.3: Umsetzung der Choreographie aus Abschnitt 4.2 mit dem Global Calculus

66

4.3 Analyse der ausgewählten Sprachen

4.3.8 BPEL4Chor

BPEL4Chor ist eine von Decker et al. [DKLW07] im Jahre 2007 vorgestellte Erweiterung der
zweiten Version des Standards für Orchestrierungsprachen „Business Process Execution Lan-
guage“ (kurz: BPEL; [JEA+07]). Diese Erweiterungen wurden entwickelt, um die Modellierung
von Choreographien auf Basis von BPEL zu ermöglichen. Für die Erweiterungen wurden drei
verschiedene Aspekte betrachtet: (1) Verhaltensbeschreibung der Teilnehmer, (2) Modellierung
einer Teilnehmertopologie und (3) Teilnehmer Grounding.

Im Folgenden wird die Eignung von BPEL4Chor zur Choreographiemodellierung mittels der
in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Listing 4.4 ist die Choreographie aus
Abschnitt 4.2 mittels BPEL4Chor umgesetzt. Dieses Beispiel ist nicht ganz vollständig, da der
messageType in den <messageLink>-, sowie <variable>-Konstrukten auf eine mittels WSDL
definierte Nachricht verweist. Diese sind hier nicht genauer definiert, da sie für die Analyse
der Kriterien nicht relevant sind.

K1 K2 K3 K4 K5 K6 K7
X X X X X × ×

• (K1) Multilaterale Interaktionen: Ja, BPEL4Chor unterstützt die Modellierung von meh-
reren Teilnehmern welche untereinander beliebig kommunizieren können. Bereits in
Standard BPEL ist es möglich, jedoch unterscheidet sich die Modellierung hierfür et-
was in BPEL4Chor. In BPEL4Chor wird die Kommunikation zwischen Teilnehmern
explizit durch ein neu definiertes <messageLink>-Konstrukt modelliert, welches eine
Nachrichtenkante spezifiziert.

• (K2) Teilnehmertopologie: Ja, die Modellierung einer Teilnehmertopologie ist einer der
Aspekte, die durch BPEL4Chor ermöglicht werden. Durch das gleichnamige Konstrukt
<topology> kann eine Teilnehmertopologie modelliert werden. Hier können ebenfalls
neben der Modellierung des Teilnehmertyps auch die Anzahl der Teilnehmer eines
Teilnehmertyps angegeben werden. Neben den Teilnehmern enthält die Topologie auch
die Nachrichtenkanten (messageLinks) zwischen Teilnehmern.

• (K3) Zeit-Constraints: Ja, dies ist bereits im Standard BPELmöglich. Es lassen sich zeitliche
Ausdrücke in Form einer Dauer oder eine genaue Zeitangabe in Form eines Datums oder
Uhrzeit angeben. Mithilfe des <onAlarm> Konstrukts lässt sich dann modellieren, was im
Falle einer Zeitüberschreitung bzw. Nichteinhaltung der Deadline passiert. In unserem
Beispiel haben wir den Termin 2018 − 12 − 24T18 : 00 + 01 : 00 für die Deadline
gewählt.

• (K4) Daten-basierter Kontrollfluss: Ja, bereits in BPEL ist es möglich durch Daten-basierte
Abfragen, den Kontrollfluss zu leiten. Hierfür können <if>-Konstrukte, aber auch Kon-
strukte wie <while> oder <repeatUntil> verwendet werden. Die letzteren zwei ge-
nannten Konstrukte werden verwendet um Aktivitäten mehrfach auszuführen bis eine

67

4 Analyse ausgewählter Sprachen

entsprechende Bedingung erfüllt ist oder eine gewisse Anzahl an Schleifendurchläufen
(Iterationen) ausgeführt wurden.

• (K5) Modellierung von Datenobjekten: Ja, Daten können in BPEL und somit auch
BPEL4Chor durch das Konstrukt <variable> modelliert werden.

• (K6) Expliziter Datenfluss: Nein, in BPEL4Chor kann kein expliziter Datenfluss modelliert
werden.

• (K7) Partnerübergreifender Datenfluss: Nein, Daten können nur per Nachrichten ausge-
tauscht werden.

1 <process name="BehaviorA"
2 xmlns="http :// docs . oasis−open.org/wsbpel/2.0/process / abstract "
3 xmlns:b4c="http :// www.bpel4chor.org/pbd/20140331"
4 targetNamespace="http ://www.example.org/example−choreography/type−a/"
5 abstractProcessProfile ="http :// www.bpel4chor.org/profile/20140331">
6 <variables > (K5)
7 <variable name="DataObject1" messageType="msg:DataTransfer"/>
8 </ variables >
9 <sequence>
10 <invoke name="SendRequest1"/>
11 <receive name="ReceiveData" outputVariable="DataObject1"/>
12 <pick>
13 <onMessage name="ReceiveReply1">
14 <opaqueActivity="ActivityA01" />
15 </onMessage>
16 <onAlarm> (K3)
17 <until>’2018−12−24T18:00+01:00’</until>
18 </onAlarm>
19 </pick>
20 </sequence>
21 </process>
22
23 <process name="BehaviorB"
24 xmlns="http :// docs . oasis−open.org/wsbpel/2.0/process / abstract "
25 xmlns:b4c="http :// www.bpel4chor.org/pbd/20140331"
26 targetNamespace="http ://www.example.org/example−choreography/type−b/"
27 abstractProcessProfile ="http :// www.bpel4chor.org/profile/20140331">
28 < variables >
29 <variable name="DataObject1" messageType="msg:DataTransfer"/>
30 </ variables >
31 <sequence>
32 <receive name="ReceiveRequest1" createInstance="yes" />
33 <invoke name="SendData" inputVariable="DataObject1"/>
34 <invoke name="SendRequest2"/>
35 <pick>
36 <onMessage name="ReceiveReply2.2"/>
37 <onMessage name="ReceiveReply2.1">

68

4.3 Analyse der ausgewählten Sprachen

38 <opaqueActivity="ActivityB01 " />
39 </onMessage>
40 </pick>
41 <invoke name="SendReply1"/>
42 </sequence>
43 </process>
44
45 <process name="BehaviorC"
46 xmlns="http :// docs . oasis−open.org/wsbpel/2.0/process / abstract "
47 xmlns:b4c="http :// www.bpel4chor.org/pbd/20140331"
48 targetNamespace="http ://www.example.org/example−choreography/type−c/"
49 xmlns:var="http :// www.example.org/example−choreography/type−c/"
50 abstractProcessProfile ="http :// www.bpel4chor.org/profile/20140331">
51 <sequence>
52 <receive name="ReceiveRequest2" createInstance="yes" />
53 <opaqueActivity name="ActivityC01"/>
54 <if> (K4)
55 <condition>
56 X > Y
57 </condition>
58 <sequence>
59 <invoke name="SendReply2.2"/>
60 </sequence>
61 <else>
62 <sequence>
63 <invoke name="SendReply2.1"/>
64 </sequence>
65 </ else>
66 </ if >
67 </sequence>
68 </process>
69
70 <topology name="Choreography" (K2)
71 targetNamespace="http ://www.example.org/buchung"
72 xmlns:a="http :// www.example.org/example−choreography/type−a/"
73 xmlns:b="http :// www.example.org/example−choreography/type−b/"
74 xmlns:c="http :// www.example.org/example−choreography/type−c/">
75 <import
76 namespace="http://www.example.org/messages/"
77 importType="http :// schemas.xmlsoap.org/wsdl/" />
78 <participantTypes>
79 <participantType name="A"
80 participantBehaviorDescription ="a :BehaviorA"/>
81 <participantType name="B"
82 participantBehaviorDescription ="b:BehaviorB"/>
83 <participantType name="C"
84 participantBehaviorDescription ="c :BehaviorC"/>
85 </ participantTypes >
86 < participants >
87 < participant name="participant1" type="A" selects =" participant2 " />
88 < participant name="participant2" type="B" selects =" participant3 " />

69

4 Analyse ausgewählter Sprachen

89 < participant name="participant3" type="C"/>
90 </ participants >
91 <messageLinks xmlns:msg="http://www.example.org/messages/"> (K1)
92 <messageLink name="Request1Link"
93 sender=" participant1 " sendActivity="SendRequest1"
94 receiver =" participant2 " receiveActivity ="ReceiveRequest1"
95 messageName="Request1" messageType="msg:Request1"/>
96 <messageLink name="DataTransferLink"
97 sender=" participant2 " sendActivity="SendData"
98 receiver =" participant1 " receiveActivity ="ReceiveData"
99 messageName="DataTranser" messageType="msg:DataTransfer"/>
100 <messageLink name="Request2Link"
101 sender=" participant2 " sendActivity="SendRequest2"
102 receiver =" participant3 " receiveActivity ="ReceiveRequest2"
103 messageName="Message2" messageType="msg:Request2"/>
104 <messageLink name="Reply2.1Link"
105 sender=" participant3 " sendActivity="SendReply2.1"
106 receiver =" participant2 " receiveActivity ="ReceiveReply2.1 "
107 messageName="Reply2.1" messageType="msg:Reply2.1"/>
108 <messageLink name="Reply2.2Link"
109 sender=" participant3 " sendActivity="SendReply2.2"
110 receiver =" participant2 " receiveActivity ="ReceiveReply2.2 "
111 messageName="Reply2.2" messageType="msg:Reply2.2"/>
112 <messageLink name="Reply1Link"
113 sender=" participant2 " sendActivity="SendReply1"
114 receiver =" participant1 " receiveActivity ="ReceiveReply1"
115 messageName="Reply1" messageType="msg:Reply1"/>
116 </messageLinks>
117 </topology>

Listing 4.4: Umsetzung der Choreographie aus Abschnitt 4.2 in BPEL4Chor

4.3.9 Colombo

Colombo ist ein von Berardi et al. [BCD+05] im Jahre 2005 entwickeltes Framework, mit
welchem Web Services spezifiziert werden in Form von (1) atomaren Prozessen, welche sie
ausführen können; (2) ihre Auswirkungen auf die „reale Welt“, was modelliert ist als relationale
Datenbank; (3) ihr Übergangs-basiertes Verhalten; und (4) der Nachrichtenaustausch.

Im Folgenden wird die Eignung von Colombo zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Tabelle 4.1, Listing 4.5 und Abbildung 4.12
ist die Choreographie aus Abschnitt 4.2 mittels dem Colombo Framework umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X × X X X X

70

4.3 Analyse der ausgewählten Sprachen

• (K1) Multilaterale Interaktionen: Ja, in Colombo lassen sich beliebig viele Teilnehmer
spezifizieren, welche beliebig untereinander interagieren können. Bei den Automaten,
welche das Übergangs-basierte Verhalten beschreiben, werden eingehende und ausge-
hende Nachrichten spezifiziert (vgl. Abbildung 4.12), sowie auch interne Aktivitäten
angegeben, welche als atomare Prozesse extern genauer definiert werden (vgl. Listing 4.5).
Um die einzelnen Interaktionen zwischen den Teilnehmern zu identifizieren, also damit
man auch weiß woher eine Nachricht kommt oder an wen eine gesendet wird, werden
„Linkages“ definiert. Wir geben in unserem Beispiel aus Abbildung 4.12 diese Linka-
ges in Klammern bei den jeweiligen Nachrichten an. Wie in [BCD+05] verwenden wir
in unserem Beispiel ein ! für eine ausgehende Nachricht und ? für eine eingehende
Nachricht.

• (K2) Teilnehmertopologie: Ja, die einzelnen Teilnehmer werden durch Automaten beim
Übergangs-basierten Verhalten dargestellt.

• (K3) Zeit-Constraints: Nein, es werden keine Konstrukte zur Modellierung von Zeit-
Constraints bereitgestellt.

• (K4) Daten-basierter Kontrollfluss: Ja, ein Daten-basierter Kontrollfluss kann modelliert
werden. Bei den einzelnen Transitionen lassen sich so bestimmte Datenabfragen model-
lieren. Nur wenn die Bedingungen erfüllt sind, wird der entsprechende Pfad gelaufen.
Innerhalb von atomaren Prozessen lassen sich ebenfalls Daten-basierte Abfragen tätigen.

• (K5) Modellierung von Datenobjekten: Ja, im Modell der „realen Welt“ werden die Daten
modelliert.

• (K6) Expliziter Datenfluss: Ja, die spezifizierten Daten aus dem Modell der realen Welt
können als Input und/oder Output bei den einzelnen atomaren Prozesse dienen. Diese
Daten können hierbei modifiziert werden. In unserem Beispiel wurde ein neuer atomarer
Prozess PrepareReply22 hinzugefügt, da ein atomarer Prozess nicht auch direkt einen
Nachrichtenaustausch darstellen kann.

• (K7) Partnerübergreifender Datenfluss: Ja, die Daten aus der „realen Welt“ dienen als Input
und Output bei den Definitionen der atomaren Prozesse. Da die Daten global liegen, gibt
es keinen Unterschied zwischen einem expliziten oder partnerübergreifenden Datenfluss.
Da atomare Prozesse auf die Daten zugreifen, werden die Aktivitäten SendData und
ReceiveData nicht als Nachrichtenaustausch modelliert, sondern als atomare Prozesse,
welche dann so modelliert werden, sodass SendData entsprechende Daten in der realen
Welt anpasst, welcher als Input für ReceiveData dient.

71

4 Analyse ausgewählter Sprachen

Data1
id1 DataObject1 b c · · ·
· · · · · · · · · · · · · · ·

(K5)

Data2
id2 DataObject2 x y · · ·
· · · · · · · · · · · · · · ·

Tabelle 4.1:Weltschema Instanz in Colombo

1 SendData:
2 I : ...
3 O: d1:Dom= ; %Data Object 1 (K6)
4 effects :
5 ...
6
7 ReceiveData:
8 I : d1:Dom= ; %Data Object 1
9 O: ...
10 effects :
11 ...
12
13 ActivityC01 :
14 I : ...
15 O: d2:Dom= ; %Data Object 2
16 effects :
17 ...
18
19 PrepareReply22:
20 I : d2:Dom= ; %Data Object 2 (K7)
21 O: ...
22 effects :
23 ...
24
25 ActivityA01 : ...
26 ActivityB01 : ...

Listing 4.5: Atomare Prozesse der Choreographie in Colombo

72

4.3 Analyse der ausgewählten Sprachen

start
!Request1(...)

[to B]

ReceiveData(DataObject1; ...)

?Reply1(...)
[from B]

ActivityA01(...)

(a) A (K2)

start
?Request1(...)

[from A]

SendData(...; DataObject1)

!Request2(...)
[to C] (K1)

?Reply2.1(...)
[from C] ?Reply2.2(...)

[from C]
ActivityB01(...)

!Reply1(...)
[to A]

(b) B

start
?Request2(...)

[from B]

ActivityC01(...; DataObject2)

X ≤ Y/
!Reply2.1(...)

[to B]

X > Y/ (K4)
PrepareReply22(
DataObject2; ...)

!Reply2.2
[to B]

(c) C

Abbildung 4.12: Übergangs-basiertes Verhalten der Teilnehmer der Choreographie aus Ab-
schnitt 4.2

73

4 Analyse ausgewählter Sprachen

4.3.10 Interorganizational Workflow Net (IOWF-Net)

Ein „Interorganizational Workflow Net“ (kurz: IOWF-Net) findet seinen Ursprung in Workflow-
Netzen ([Van98]), welche eine bestimmte Art von Petri-Netzen sind. IOWF-Nets wurden im
Jahr 2001 von van der Aalst und Weske [AW01] definiert, um unternehmensübergreifende
Workflows zu modellieren.

Im Folgenden wird die Eignung von IOWF-Nets zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.13 ist eine typische Buchhandel-
Choreographie umgesetzt, in welcher ein Kunde ein Buch ausleihen oder kaufen will. Die
genaue Spezifikation dieses Beispiels findet sich in [AW01].

K1 K2 K3 K4 K5 K6 K7
X X X X × × ×

• (K1) Multilaterale Interaktionen: Ja, IOWF-Nets bestehen aus mehreren Workflow-Netzen
(kurz: WF-Netz), welche je einen Teilnehmer repräsentieren und Domänen genannt
werden, sowie aus verschiedenen Kanälen. Zusätzlich dazu besitzt jede Domäne entspre-
chende Methoden, welche durch einen Kanalfluss über verschiedene Kanäle miteinander
verbunden sind. Durch diese Kanäle und den dazugehörigen Kanalfluss werden die ein-
zelnen Interaktionen zwischen den Teilnehmern modelliert. Eine Beschränkung für die
Anzahl der Teilnehmer oder Interaktionen gibt es hierbei nicht. In unserem Beispiel sind
es vier Teilnehmer: Kunde (customer), Verleger (publisher), Buchhandlung (bookstore)
und Absender (shipper). Die Workflow-Netze sind hier wegen der Übersicht nicht dar-
gestellt, sondern lediglich als Npart

x gekennzeichnet. In Abbildung 4.14 sieht man eine
Übersicht über das dazugehörige Workflow-Netz des Kunden, Npart

C , und wie dabei das
Workflow-Netz mit den Methoden (grau hinterlegte Boxen) zusammenhängt.

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie entsteht dadurch, dass jeder Teil-
nehmer durch ein WF-Netz modelliert wird.

• (K3) Zeit-Constraints: Ja, in Workflow-Netzen können als zeitliche Beschränkungen
modelliert werden, indem eine Timeout-Kondition als Transition modelliert wird.

• (K4) Daten-basierter Kontrollfluss: Ja, in den einzelnen Workflow-Netzen können Ver-
zweigungen mit Vorbedingungen sowie Nachbedingungen angegeben werden. Hierbei
kann man Daten-abhängige Abfragen tätigen, um den anschließenden Pfad zu wählen.
In unserem Beispiel aus [AW01] gibt es keine Daten-basierte Abfrage, weshalb dieses
Kriterium in diesem Beispiel nicht visualisiert werden kann.

• (K5) Modellierung von Datenobjekten: Nein, es wird keine Modellierung von Daten in
IOWF-Net unterstützt.

• (K6) Expliziter Datenfluss: Nein, es wird kein expliziter Datenfluss in IOWF-Nets unter-
stützt.

74

4.3 Analyse der ausgewählten Sprachen

Abbildung 4.13: Beispiel einer Choreographie in IOWF-Net aus [AW01]

75

4 Analyse ausgewählter Sprachen

Abbildung 4.14: Das Workflow-Netz des Kunden (Npart
C) aus Abbildung 4.13 [AW01]

• (K7) Partnerübergreifender Datenfluss: Nein, es kann kein partnerübergreifender Daten-
fluss modelliert werden.

4.3.11 Colored Petri Nets (CPN)

„Colored Petri Nets“ (kurz: CPN) wurden erstmals im Jahre 1981 von Jensen [Jen81] vorgestellt.
Diese CPNswurden im Laufe der Jahre weiterentwickelt. CPNs erweitern klassische Petri-Netze
um Farben zur Modellierung von Daten, Zeit zur Modellierung einer Dauer und Hierarchie
(im ursprünglichen Artikel noch nicht definiert) um große Modellierungen zu strukturieren
[DLC+07].

Im Folgenden wird die Eignung von CPNs zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.15 ist die Choreographie aus
Abschnitt 4.2 mittels einem CPN umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X X X X X X

• (K1) Multilaterale Interaktionen: Ja, in CPNs können beliebig viele Teilnehmer model-
liert werden, welche beliebig untereinander kommunizieren können. Diese Teilnehmer
werden als sogenannte „Sub-modules“ (auch „Subpages“ genannt) dargestellt in der „Top-
Level“ Hierarchieebene. In dieser Ebene werden außerdem die Interaktionen zwischen
den Teilnehmern angegeben. Der interne Prozessablauf der einzelnen Teilnehmer wird
in der Hierarchieebene darunter via CPNs für jeden Teilnehmer dargestellt. Man kann

76

4.3 Analyse der ausgewählten Sprachen

auch mehrere Zwischenebenen einbauen. Aus Gründen der Übersichtlichkeit, werden
in unserem Beispiel aus Abbildung 4.15 die internen Prozessabläufe der einzelnen Teil-
nehmer dargestellt, sowie auch die Interaktionen zwischen diesen (in grün), welche
eigentlich in der Hierarchieebene darüber genauer spezifiziert werden.

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie wird durch die einzelnen CPNs
der Teilnehmer, auch „sub-modules“ genannt, definiert.

• (K3) Zeit-Constraints: Ja, es können Zeit-Constraints modelliert werden, indem bei den
Transitionen die zeitliche Bedingungen angegeben werden.

• (K4) Daten-basierter Kontrollfluss: Ja, wie Zeit-Constraints, können auch Daten-basierte
Bedingungen bei den einzelnen Transitionen angegeben werden.

• (K5) Modellierung von Datenobjekten: Ja, Daten werden durch „Colour“ repräsentiert und
via „colset“-Konstrukten definiert.

• (K6) Expliziter Datenfluss: Ja, jede Aktivität, repräsentiert durch Transitionen, hat einen
Input und Output. Somit wird ein expliziter Datenfluss gewährleistet.

• (K7) Partnerübergreifender Datenfluss: Ja, es macht für den Datenfluss keinen Unterschied
von welchem Service eine Aktivität ausgeführt wird. Somit wird auch ein partnerüber-
greifender Datenfluss garantiert.

1 colset Rq1It =...;
2 colset Data1It =...;
3 colset Rq2It =...;
4 colset DataTOIt =...;
5 colset TimedOut=...;
6 colset C01It =...;
7 colset Rp21It =...;
8 colset Rp22It =...;
9 colset PrepIt =...;
10 colset Rp1It =...;
11 var rq1 : Rq1It ;
12 var rq2 : Rq2It ;
13 var c01:C01It ;
14 var rp1:Rp1It ;
15 var rp21:Rp21It ;
16 var rp22:Rp22It ;
17 var DObj1:Data1It ;
18 var DObj2:Data2It ;
19 var dto :DataTOIt;
20 var prep: PrepIt ;
21 var failure :TimedOut;
22 var success : Success ;

Listing 4.6: Colorsets und Variablen der Choreographie aus Abschnitt 4.2 definiert für das
CPN-Modell aus Abbildung 4.15

77

4 Analyse ausgewählter Sprachen

A B C

Start

1’ Request1

Rq1It 1

Send
Rq 1 Rq1

Rq1It

SRq1Rq1It

Receive
Rq1

RRq1 Rq1It

Send
Data

SD Data1It

Send
Rq2

Data

Data1It (K5)
Receive
Data

Rq2

Rq2It

Receive
Rq2

RRq2 Rq2It

Activity
C01

C01F C01It

Send
Rp2.1

[(#variable X)≤ (#variable Y)]

Send
Rp2.2

[(#variable X)> (#variable Y)] (K4)

Rp2.1

Rp21It

Rp2.2

Rp22It

SRq2Rq2It

Receive
Rp2.1

Receive
Rp2.2RRp21Rp21It

Activity
B01

Rdy

PrepIt

Send
Rp1Rp1

Rp1It

RDDataTOIt

Receive
Rp1[(#timeout dto)= false] (K3)

RRp1 Rp1It

Activity
A01

Timed
Out

[(#timeout dto)= true]

End 2
Success

End 1
Timed Out

rq1

rq1

rq1

rq1

rq1

rq1

DObj1

DObj1

DObj1

rq1

DObj1
(K7)

rq2

rq2 (K1)

rq2

rq2

{DataObject2=DObj2,
variable=X,
variable=Y}

c01

c01 (K6)

rp21

rp22

rq2

rq2

rp21
rq2

prep

rp21

rp21

prep

rp22

rp1

rp1

{Data1It=DObj1,
timeout=BOOL.ran()}

dto

rp1

rp1

rp1

dto

success

failure

Abbildung 4.15: Umsetzung der Choreographie aus Abschnitt 4.2 durch CPN

78

4.3 Analyse der ausgewählten Sprachen

4.3.12 Grid Services Flow Language (GSFL)

Die „Grid Services Flow Language“ (kurz: GSFL) ist eine XML-basierte Sprache zurModellierung
von Workflows von Grid Services, welches aus verschiedenen Modellen besteht: „Activity
Model“, „Composition Model“, „Lifecycle Model“, sowie einer zusätzlichen „Service Providers“
Angabe [KWV+02].

Im Folgenden wird die Eignung von GSFL zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert.

K1 K2 K3 K4 K5 K6 K7
X X × × X X X

Hinweis: Da die einzelnen Konstrukte in der Arbeit von Krishnan, Wagstrom und Von Laszew-
ski nur genannt werden und nicht wie sie genau umgesetzt bzw. modelliert werden, kann ein
Beispiel in GSFL nicht gegeben werden. Außerdem können dadurch bei der Analyse teilweise
relevante Informationen fehlen.

• (K1) Multilaterale Interaktionen: Ja, im Composition Model wird der Kontrollfluss und
Datenfluss beschrieben, sowie die Kommunikationen zwischen den einzelnen Services.
Ein Begrenzung für die Anzahl der Services, welche die Teilnehmer repräsentieren, gibt
es nicht.

• (K2) Teilnehmertopologie: Ja, die Teilnehmer werden in der „Service Providers“ Angabe
aufgelistet und spezifiziert.

• (K3) Zeit-Constraints: Nein, es werden keine Konstrukte zur Modellierung von Zeit-
Constraints in GSFL angegeben.

• (K4) Daten-basierter Kontrollfluss: Nein, es wird in der Arbeit von Krishnan, Wagstrom
und Von Laszewski nicht erwähnt, dass sich der Kontrollfluss durch Daten-basierte
Abfragen leiten lässt.

• (K5) Modellierung von Datenobjekten: Ja, im „Data Model“, welches ein Teilmodell des
„Composition Model“ ist, werden die einzelnen Datenobjekte modelliert.

• (K6) Expliziter Datenfluss: Ja, jedes „DataModel“-Element enthält die Attribute „dataInTo“,
sowie „dataOutFrom“, womit sich beschreiben lässt, für welche Aktivitäten diese Daten
als Input dienen und von welchen Aktivitäten sie der Output sind. Somit wird ein
expliziter Datenfluss gewährleistet.

• (K7) Partnerübergreifender Datenfluss: Ja, es wird nur erwähnt, dass die Daten direkt
als Input oder Ouptut von Aktivitäten modelliert werden können, es wird dabei nicht
erwähnt, dass die Aktivitäten nicht von unterschiedlichen Teilnehmern sein dürfen.
Somit ist dieses Kriterium wahrscheinlich erfüllt.

79

4 Analyse ausgewählter Sprachen

4.3.13 Let’s Dance

„Let’s Dance“ ist eine von Zaha et al. [ZBDH06] veröffentlichte Choreographiesprache aus dem
Jahr 2006. Die Idee der Sprache ist Modelle von Service-Interaktionen von der Verhaltensper-
spektive aus zu erfassen.

Im Folgenden wird die Eignung von Let’s Dance zur Choreographiemodellierung mittels der
in Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.16 ist ein Beispiel einer
Kauf-Choreographie aus [DZD06].

K1 K2 K3 K4 K5 K6 K7
X × X X × × ×

• (K1) Multilaterale Interaktionen: Ja, in Let’s Dance werden die Interaktionen zwischen
den verschiedenen Teilnehmern modelliert. Dabei werden bei jeder Interaktion die
Rollen, sowie die dafür zuständigen Teilnehmer, angegeben. Dabei gibt es für jede
Rolle einen Akteur, der diese Rolle ausführt. Es gibt dabei keine Beschränkungen für
die Anzahl der Rollen und Akteure in einer Let’s Dance Choreographie, weshalb das
Kriterium „Multilaterale Interaktionen“ erfüllt ist. In unserem Beispiel gibt es nur zwei
Rollen: Käufer (Buyer) und Lieferant (Supplier), welche von den Teilnehmern b1 und
s1 ausgeführt werden. Die erste Interaktion Order wird vom Käufer initiiert, wodurch
die Choreographie instanziiert wird.

• (K2) Teilnehmertopologie: Nein, die Teilnehmer werden nur implizit über die einzelnen
Interaktionen angegeben. Eine Übersicht über alle Teilnehmer gibt es somit nicht.

• (K3) Zeit-Constraints: Ja, „Timer“ können in Let’s Dance als Subtyp von Interaktionen
angegeben werden, mithilfe derer sich zeitliche Beschränkungen modellieren lassen. Im
Beispiel aus Abbildung 4.16 ist kein Beispiel davon angegeben, sowie auch nicht in den
restlichen Beispielen der jeweiligen Artikeln ([DKZD06; DZD06; ZBDH06]).

• (K4) Daten-basierter Kontrollfluss: Ja, die Ausführung der verschiedenen Interaktionen
kann an bestimmte Daten-basierte Konditionen gebunden sein. Im Beispiel aus Abbil-
dung 4.16 sind Konditionen angegeben, z.B. able to cancel (s1), welche allerdings nicht
Daten-basiert sind. Daten-basierte Konditionen werden aber ebenfalls so angegeben, z.B.
if X > Y (s1). Der Teilnehmer welcher für die Abfrage zuständig ist, wird in Klammern
angegeben. In diesem Fall ist es der Teilnehmer (s1).

• (K5) Modellierung von Datenobjekten: Nein, in Let’s Dance wird lediglich der Nachrich-
tenaustausch und die Interaktionen zwischen den Teilnehmern modelliert. Es unterstützt
es keine Modellierung von Datenobjekten.

• (K6) Expliziter Datenfluss: Nein, ein expliziter Datenfluss kann in Let’s Dance nicht
modelliert werden.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss kann
in Let’s Dance ebenfalls nicht modelliert werden.

80

4.3 Analyse der ausgewählten Sprachen

Abbildung 4.16: Beispiel einer Choreographie in Let’s Dance aus [DZD06]

4.3.14 Open Workflow Nets (oWFN)

Van der Aalst hat bereits in [Van98] eine spezielle Klasse von Petri Netzen, sogenannte „Work-
flowNets“ (kurz: WFNs), spezifiziert, um die Struktur vonWorkflows zu beschreiben. Da jedoch
auch Workflow Services miteinander kommunizieren können, müssen weitere Konstrukte her,
um die Kommunikationen zu modellieren. „Open Workflow Nets“ (kurz: oWFN) bieten solche
Konstrukte [MRS05].

Im Folgenden wird die Eignung von oWFNs zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.17 ist die Choreographie aus
Abschnitt 4.2 mittels einem zusammengesetzten oWFN umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X X X × × ×

• (K1) Multilaterale Interaktionen: Ja, ein Prozess eines Teilnehmers wird durch ein oWFN
repräsentiert, welches eine Erweiterung eines Workflow-Netzes ist, erweitert durch soge-
nannten „Communication Places“, welche jeweils einen Channel zum Senden und Emp-
fangen von Nachrichten repräsentieren. Durch die Komposition der einzelnen oWFNs
ergibt sich die Choreographie. Zur übersichtlichen Modellierung, verwenden wird die
Schreibweise aus [MRS05] in unserem Beispiel aus Abbildung 4.17 und schreiben somit
für jede ausgehende Nachricht ein ! und für eingehende Nachricht ein ? davor.

81

4 Analyse ausgewählter Sprachen

a0 b0 c0

!Rq1
Rq1

a1

?Rq1

b1

!Data1

b2

!Rq2

Data1
?Data1

K1

Rq2

?Rq2

c1

C01

c2

X ≤ Y t1 X > Y t2 (K4)

c3.1 c3.2

!Rp2.1

!Rp2.2

Rp2.1

Rp2.2

b3

?Rp2.1

?Rp2.2b4.1

B01

b5

!Rp1
Rp1

a2

?Rp1

Deadline (K3)

a3

A01

af

bf

cf

Abbildung 4.17: Umsetzung der Choreographie aus Abschnitt 4.2 durch die Komposition der
oWFNs der einzelnen Teilnehmer: PA⊕B⊕C

82

4.3 Analyse der ausgewählten Sprachen

• (K2) Teilnehmertopologie: Ja, die Teilnehmertopologie ergibt sich durch die verschiedenen
oWFNs der einzelnen Teilnehmer. Die einzelnen oWFNs der Teilnehmer haben wir in
unserem Beispiel nicht realisiert.

• (K3) Zeit-Constraints: Ja, Zeit-Constraints können via Transitionen angegeben werden.

• (K4) Daten-basierter Kontrollfluss: Ja, es können Abzweigungen modelliert werden, wobei
die einzelnen Pfade von Daten-basierten Abfragen abhängen.

• (K5) Modellierung von Datenobjekten: Nein, die Modellierung von Datenobjekten ist in
oWFN nicht möglich.

• (K6) Expliziter Datenfluss: Nein, ein expliziter Datenfluss kann in einem oWFN nicht
modelliert werden.

• (K7) Partnerübergreifender Datenfluss: Nein, in oWFNs wird lediglich der Nachrichtenaus-
tausch modelliert. Deshalb kann ein partnerübergreifender Datenfluss in oWFNs nicht
gewährleistet werden.

4.3.15 Chor

„Chor“ ist eine von Qiu et al. [QZCY07]definierte formale Sprache zur Modellierung von
Choreographien. Es gilt als ein vereinfachtes formales Modell von WS-CDL.

Im Folgenden wird die Eignung von Chor zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.18 ist die Choreographie aus
Abschnitt 4.2 mittels Chor umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X × × × × ×

• (K1) Multilaterale Interaktionen: Ja, in Chor lassen sich beliebig vielen Rollen
modellieren. Die Kommunikationen zwischen den Rollen ist unbeschränkt mög-
lich. Somit werden multilaterale Interaktionen unterstützt. Da Chor eine forma-
le Sprache ist, werden hier alle Rollen in einer Menge angegeben, so wie ih-
re zugehörigen Aktivitäten. In unserem Beispiel sind das RC1 für die Rollen
und locals(C1) für die Aktivitäten, wobei die einzelnen Aktivitäten in der Form
Name_der_AktivitätT eilnehmer_der_sie_ausführt angegeben sind. Eine Kommunikation
geschieht in der Form Name_der_Interaktion[T eilnehmer1,T eilnehmer2]. Der Inhalt der
Nachrichten und die ausgetauschten Daten werden in Chor nicht berücksichtigt.

• (K2) Teilnehmertopologie: Ja, alle Rollen werden in einer Choreographie zusammen in
einer Menge aufgelistet.

• (K3) Zeit-Constraints: Nein, die Modellierung von zeitlichen Beschränkungen wird in
Chor nicht unterstützt.

83

4 Analyse ausgewählter Sprachen

RC1 = {A, B, C} (K2)
locals(C1) = {ActivityA01A, ActivityB01B, ActivityC01C}

C1 = Request1[A,B]; DataTransfer[B,A]; Request2[B,C]; ActivityC01C ; ((Reply2.1[C,B];
ActivityB01B) ⊓ Reply2.2[C,B]); Reply1[B,A]; ActivityA01A (K1)

Abbildung 4.18: Umsetzung der Choreographie aus Abschnitt 4.2 in Chor

• (K4) Daten-basierte Abfragen: Nein, in Chor gibt es zwar ein „Choice“-Element, mithilfe
dessen man wählen kann, welche Aktion als nächstes ausgeführt wird oder welchen Pfad
man weiterläuft, aber es wird nicht spezifiziert, dass man die Wahl durch Daten-basierte
Abfragen treffen kann. Es wird nur erwähnt, dass eine Rolle die Entscheidung treffen
muss. Dieses Choice-Element wird durch das Symbol ⊓ repräsentiert.

• (K5) Modellierung von Datenobjekten: Nein, in Chor gibt es keine explizite Modellierung
von Datenobjekten.

• (K6) Expliziter Datenfluss: Nein, ein expliziter Datenfluss kann in Chor nicht modelliert
werden.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss kann
in Chor ebenfalls nicht realisiert werden.

4.3.16 Deterministic Finite State Automata (DFA)

Ein „Deterministic Finite State Automata“ (kurz: DFA, auf deutsch: „Deterministischer endlicher
Automat“ oder kurz: DEA) wird im Artikel von Wombacher et al. [WFMN04] zur Modellierung
von Choreographien verwendet. Jedoch hat dieser deterministische endliche Automat in der
Definition aus diesem Artikel eine zusätzliche Bedingung, welche es für die ursprünglich
definierten deterministische endliche Automaten nicht gibt. Diese Bedingung ist, dass die
Zustandsübergänge eine bestimmte Form einhalten müssen: from#to#message_name.

Im Folgenden wird die Eignung von DFA’s zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.19 ist die Choreographie aus
Abschnitt 4.2 mittels einem DFA umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X × × × × × ×

84

4.3 Analyse der ausgewählten Sprachen

q0start

q1

q2

q3 q4

q5

A#B#Request1

B#C#Request2 (K1)

C#B#Reply2.1 C#B#Reply2.2

B#A#Reply1 B#A#Reply1

Abbildung 4.19: Umsetzung der Choreographie aus Abschnitt 4.2 mit einem DFA

• (K1) Multilaterale Interaktionen: Ja, in einer Choreographie in einem DFA kann es beliebig
viele Teilnehmer geben, welche untereinander interagieren. Ein DFA unterscheidet sich,
wie in der Einleitung der Sprache erwähnt, in einem Punkten von einem „normalen“
deterministischen endlichen Automaten: Die Zustandsübergänge beschreiben die Inter-
aktionen zwischen zwei Teilnehmern in der Form from#to#message_name. Diese
Form muss eingehalten werden.

• (K2) Teilnehmertopologie: Nein, die Teilnehmer werden implizit bei den Interaktionen in
den Transitionen angegeben.

• (K3) Zeit-Constraints: Nein, in einem DFA gibt es keine Konstrukte zur Modellierung
von Zeit-Constraints.

• (K4) Daten-basierter Kontrollfluss: Nein, Daten-bedingte Konditionen können in DFAs
nicht angegeben werden. In dem Beispiel aus Abbildung 4.19 wird zwar von Zustand q2
eine Abzweigung modelliert, aber die Wahl des Pfades kann nicht Daten-basiert gefällt
werden.

• (K5) Modellierung von Datenobjekten: Nein, es gibt keine Konstrukte zur Modellierung
von Datenobjekten in DFAs.

• (K6) Expliziter Datenfluss: Nein, einen expliziten Datenfluss gibt es nicht.

• (K7) Expliziter und Partnerübergreifender Datenfluss: Nein, auch ein partnerübergreifender
Datenfluss existiert in DFA’s nicht.

85

4 Analyse ausgewählter Sprachen

VA = {someData, data1a, request1DataA, reply1DataA} (K5)
VB = {DataObject1, request1DataB, request2DataB, reply2DataB, reply1DataB}

VC = {XC , YC , DataObject2, request2DataC , reply21DataC , reply22DataC}

Role = {(A, {(Request1, ow)}, VA), (B, {(Request2, ow), (Reply1, ow)}, VB),
(C, {(Reply2.1, ow), (Reply2.2, ow)}, VC)} (K2)

C1 = (A, B, Request 1, request1DataA, request1DataB , ↑); (B, A, Data Transfer,
DataObject1, data1a, ↓); (B, C, Request 2, request2DataB , request2DataC , ↑);

(XC ≤ YC?(C, B, Reply 2.1, reply21DataC , reply2DataB , ↓) ⊕ XC > YC?(C, B, Reply 2.2,
reply22DataC , reply2DataB , ↓)); (B, A, Reply 1, reply1DataB , reply1DataA, ↓) (K1), (K4)

X = someData = data1a = request1DataA = reply1DataA = DataObject1 =
request1DataB = request2DataB = reply2DataB = reply1DataB = XC = YC =

DataObject2 = request2DataC = reply21DataC = reply22DataC = ⊥

C = (C1, Role, X)

Abbildung 4.20: Umsetzung der Choreographie aus Abschnitt 4.2 mit „Bologna“

4.3.17 “Bologna“

„Bologna“ ist ein von Busi et al. [BGG+05b] im Jahre 2005 definiertes formales Modell zur
Beschreibung von Choreographien, welches durch WS-CDL inspiriert wurde. Die Autoren
haben dabei keinen Namen für diese Choreographiesprache angegeben. In [SBFZ08] wird sie
unter dem Namen „Bologna“ referenziert, da sie an der Universität von Bologna entwickelt
wurde, weshalb wir diesen Namen hier ebenfalls verwenden.

Im Folgenden wird die Eignung von „Bologna“ zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Abbildung 4.20 ist die Choreographie aus
Abschnitt 4.2 mittels „Bologna“ umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X × X X × ×

• (K1) Multilaterale Interaktionen: Ja, mit „Bologna“ lassen sich beliebig viele Interaktionen
zwischen beliebig vielen Teilnehmern modellieren. Eine Choreographie C besteht aus
einem Tupel (C, Σ, X), wobei C ∈ CLP und CLP sich über die gegebenen Konver-
sationen (also allen verschiedenen C’s) erstreckt, Σ ⊂ Role eine endliche Menge von

86

4.3 Analyse der ausgewählten Sprachen

allen involvierten Rollen und X eine Kondition ist, welches die Bedingungen des Start-
zustands beschreibt. In C werden die einzelnen Konversationen und die Reihenfolge
dieser Konversationen deklariert. Eine Konversation m besteht aus einem Tupel der
Form η ::= (ρA, ρB, o, x̃, ỹ, dir). ρA ist der Initiator der Nachricht, ρB der Empfänger, o
ist der Name der Operation, x̃ und ỹ die Variablen welche vom Sender und Empfänger
benutzt werden. dir (∈ {↑, ↓}) gibt an, ob die Konversation eine Anfrage (↑) oder eine
Antwort (↓) ist. Wir haben nur ein C definiert, welches die komplette Konversationsab-
folge der Beispielchoreographie beschreibt, weshalb wir C = C1 wählen. Wir wählen
X = someData = data1a = request1DataA = reply1DataA = DataObject1 =
request1DataB = request2DataB = reply2DataB = reply1DataB = XC = YC =
DataObject2 = request2DataC = reply21DataC = reply22DataC = ⊥, wobei ⊥
bedeutet dass eine Variable noch nicht initialisiert ist.

• (K2) Teilnehmertopologie: Ja, die Teilnehmer werden zusätzlich in einer Menge aufgefasst
in der Form {(ρ, ω, V)|ρ ∈ RName, ω ⊂ Op, V ⊂ V ar}, wobei RName eine Liste
der Rollennamen ist und V ar eine Liste von Variablen. Op wird hierbei definiert als
{(o, t)|o ∈ OpName, t ∈ OpType}, wobei OpName eine Liste der Operationennamen
ist undOpType der Typ der Operation, welcher entweder „One-Way“ (ow) oder „Request-
Response“ (rr) annehmen kann. Da in unserem Beispiel nur die Rollen definiert worden
sind, welche an der Choreographie teilnehmen, ist in unserem Fall Σ = Role.

• (K3) Zeit-Constraints: Nein, Konstrukte zur Modellierung von Zeit-Constraints werden
in „Bologna“ nicht gegeben.

• (K4) Daten-basierter Kontrollfluss: Ja, in „Bologna“ kannman die Erfüllung einer Kondition
abfragen, wodurch man entscheiden kann ob ein bestimmter Pfad genommen wird oder
nicht. Die abgefragten Konditionen X werden gefolgt von einem Fragezeichen und den
entsprechenden Konversationen, welche durchgeführt werden, sofern die Kondition
erfüllt ist. In diesem Fall sind die Abfragen XC > YC bzw. XC ≤ YC . Durch das exklusive
Oder ⊕ wird außerdem gewährleistet, dass immer nur einer der beiden Pfade ausgeführt
wird.

• (K5) Modellierung von Datenobjekten: Ja, die relevanten Daten werden als Variablen
in einer Menge definiert. In unserem Beispiel sind die Mengen VA, VB und VC für die
jeweiligen Teilnehmer.

• (K6) Expliziter Datenfluss: Nein, einen expliziten Datenfluss gibt es nicht.

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss kann in
„Bologna“ nicht gewährleistet werden. Der Austausch der Daten muss über Nachrichten
geschehen.

87

4 Analyse ausgewählter Sprachen

4.3.18 Multiagent Protocols (MAP)

Der „Multiagent Protocols“ (kurz: MAP) ist ein von Barker, Walton und Robertson [BWR09]
definierte formale Syntax zur Beschreibung von Choreographien, welche speziell für Choreo-
graphien definiert wurde.

Im Folgenden wird die Eignung von MAP zur Choreographiemodellierung mittels der in
Abschnitt 4.1 vorgestellten Kriterien evaluiert. In Listing 4.7 ist die Choreographie aus Ab-
schnitt 4.2 mittels MAP umgesetzt.

K1 K2 K3 K4 K5 K6 K7
X X X (X) × × ×

• (K1) Multilaterale Interaktionen: Ja, es lassen sich mehrere Teilnehmer modellieren, wel-
che beliebig untereinander interagieren können. In MAP unterscheidet man zwischen
sogenannten „Peers“ und „Rollen“. Jeder Peer hat einen eigenen Namen und muss einer
Rolle zugeordnet werden. Dabei können mehrere Peers der gleichen Rolle angehören. Im
in Listing 4.7 dargestellten Beispiel bedeutet request($Request1, $DataObject1) =>
peer(_, %B) hierbei, dass eine Nachricht des Typs request mit dem Parameter
$Request1 an alle Peers mit der Rolle %B gesendet wird. Wäre der Pfeil <=, dann
würde es bedeuten dass man von allen Peers der Rolle %B solch eine Nachricht erhält.
In diesem Beispiel geben wir die Informationen einer Nachricht als Parameter weiter, so
wie auch die entsprechenden Daten, falls welche ausgetauscht werden.

• (K2) Teilnehmertopologie: Ja, eine Teilnehmertopologie ergibt sich durch die Auflistung
der Rollen im „Protokoll“.

• (K3) Zeit-Constraints: Ja, es lassen sich Zeit-Constraints über das Konstrukt „Timeout“
definieren. Timeouts können in MAP nur als bestimmte Dauer angegeben werden (in
Sekunden), für wie lange man auf eine Antwort wartet. Ein Datum kann man nicht
direkt angeben. Deshalb wurde in unserem Beispiel die Zahl 5000 gewählt, was bedeutet
dass %A nach dem Erhalten des Datenobjekts 1, 5000 Sekunden lang auf eine Antwort
von %B wartet, bevor die Operationen im Timeout-Block ausgelöst werden.

• (K4) Daten-basierter Kontrollfluss: Teilweise, MAP erlaubt nicht direkt einen Daten-
basierten Kontrollfluss. Es wird aber erwähnt, dass es möglich ist hierfür eine Lösung
zu implementieren, wodurch das Kriterium teilweise erfüllt ist. Der or else-Block in
unserem Beispiel wird in MAP allerdings nur ausgeführt, wenn der Block davor eine
Aktion enthält, welche fehlgeschlagen ist.

• (K5) Modellierung von Datenobjekten: Nein, es gibt keine Konstrukte zur expliziten Mo-
dellierung von Datenobjekten in MAP. Die Daten werden implizit über die Interaktionen
mit angegeben.

• (K6) Expliziter Datenfluss: Nein, einen expliziten Datenfluss gibt es nicht.

88

4.3 Analyse der ausgewählten Sprachen

• (K7) Partnerübergreifender Datenfluss: Nein, ein partnerübergreifender Datenfluss lässt
sich in MAP nicht realisieren. Der Datenaustausch geschieht über Nachrichten.

1 %A{ (K2)
2 method main() =
3 request ($Request1) => peer(_ , %B)
4 then
5 reply ($SendData, $DataObject1) <= peer(_ , %B))
6 then waitfor
7 (reply ($Reply1) <= peer(_ , %B))
8 timeout [5000](e) (K3)
9 }
10
11 %B{
12 method main() =
13 request ($Request1, $DataObject1) <= peer(_ , %A)
14 then
15 request ($Request2) => peer(_ , %C) (K1)
16 then
17 reply ($Reply2 .1) <= peer(_ , %C)
18 or else reply ($Reply2 .2) <= peer(_ , %C)
19 then
20 reply ($Reply1) => peer(_ , %A)
21 }
22
23 %C{
24 method main() =
25 request ($Request2) <= peer(_ , %B)
26 then
27 reply ($Reply2 .1) => peer(_ , %B)
28 or else reply ($Reply2 .2) => peer(_ , %B)
29 }

Listing 4.7: Umsetzung der Choreographie aus Abschnitt 4.2 mit MAP

89

4 Analyse ausgewählter Sprachen

4.4 Zusammenfassung der Analyse

In Tabelle 4.2 ist die Analyse der einzelnen Sprachen in einer übersichtlichen Tabelle zusam-
mengefasst, damit man einen direkten Vergleich über das Abschneiden der einzelnen Sprachen
hat. Diese Tabelle ist sortiert nach der Anzahl der zutreffenden Kriterien für eine Sprache.
Bei gleich vielen zutreffenden Kriterien, werden die Sprachen lexikografisch in der Tabelle
angeordnet. Teilweise erfüllte Kriterien werden ebenfalls mit einbezogen.

Wie man aus der Tabelle entnehmen kann, haben lediglich UML Aktivitätsdiagramme und
„Colored Petri Nets“ (CPN) alle Kriterien erfüllt. Dies bedeutet allerdings nicht, dass diese
Sprachen zwingend am besten geeignet sind zur Modellierung von Choreographien, da es
noch einige zusätzliche Kriterien gibt, welche in dieser Arbeit nicht untersucht wurden.

In Abbildung 4.21 sieht man von wieviel Prozent der Sprachen die einzelnen Kriterien erfüllt
werden. Es ist dabei keine Überraschung, dass das erste Kriterium von allen Sprachen erfüllt
wird, da es auch als notwendige Bedingung definiert wurde, welche Choreographiesprachen
erfüllen müssen. Etwas überraschend ist hingegen, dass sich zwar in 81.3% der Sprachen
ein Daten-basierter Kontrollfluss modellieren lassen, aber sich nur in 45.8% der Sprachen
Datenobjekte explizit modellieren lassen. Die Daten werden oft nur implizit modelliert oder
auch gar nicht, obwohl Abfragen getätigt werden können, welche sich auf bestimmte Daten
beziehen. Außerdem zeigt diese Analyse, dass viele Choreographiesprachen keine expliziten
oder partnerübergreifende Datenflüsse unterstützen. In den untersuchten Sprachen lassen sich
die Daten oft nur über Nachrichten austauschen.

90

4.4 Zusammenfassung der Analyse

(K1)M
ultilaterale

Interak-
tionen

(K2)Teilnehm
ertopologie

(K3)Zeit-Constraints

(K4)D
aten-basierterKon-

trollfluss

(K5)M
odellierung

von
D
a-

tenobjekten

(K6)ExpliziterD
atenfluss

(K7)
Partnerübergreifen-

derD
atenfluss

CPN X X X X X X X
UML Aktivitätsdiagramm X X X X X X X

BPMN 2.0 Kollaborationsdiagramm X X X X X X ×
BPMN 2.0 Konversationsdiagramm X X X X X X ×

BPEL4Chor X X X X X × ×
Colombo X X × X X X X
EPC X × × X X X X
GSFL X X × × X X X

WS-CDL X X X X X × ×
WSFL X X × X X X ×

„Bologna“ X X × X X × ×
DecSerFlow X X X X × × ×
IOWF-Net X X X X × × ×
oWFN X X X X × × ×

UML Sequenzdiagramm X X X X × × ×
MAP X X X (X) × × ×

BPMN 2.0 Choreographiediagramm X × X X × × ×
Let’s Dance X × X X × × ×

UML Interaktionsübersichtsdiagramm X × X X × × ×
UML Kommunikationsdiagramm X X × X × × ×

UML Zeitdiagramm X X X × × × ×
Global Calculus X × (X) X × × ×

Chor X X × × × × ×
DFA X × × × × × ×

Tabelle 4.2: Vergleich der Choreographiesprachen

91

4 Analyse ausgewählter Sprachen

(K1
) M
ult
ila
ter
ale

Int
era
kti
on
en

(K2
) T
eil
ne
hm
ert
op
olo
gie

(K3
) Z
eit
-C
on
str
ain
ts

(K4
) D
ate
n-b
asi
ert
er
Ko
ntr
oll
flu
ss

(K5
) M
od
elli
eru
ng
vo
n D

ate
no
bje
kte
n

(K6
) E
xp
lizi
ter
Da
ten
flu
ss

(K7
) P
art
ne
rüb
erg
rei
fen
der

Da
ten
flu
ss

0

20

40

60

80

100 100

75

64.6

81.3

45.8

33.3

20.8

Sp
ra
ch
en
,w

el
ch
e
da
sK

rit
er
iu
m

er
fü
lle
n
(in

%)

Abbildung 4.21: Wieviele Sprachen aus unserer Analyse erfüllen die jeweiligen Kriterien?

92

5 Zusammenfassung und Ausblick

In dieser Arbeit wurde eine Literaturrecherche durchgeführt, bei welcher eine große Menge an
möglichen Choreographiesprachen gefunden wurden. Die Basis der Literaturrecherche lieferte
hierbei das Ergebnis einer automatisierten, Skript-basierten Suche nach Choreographiespra-
chen aus [SHKW11] (zum Zeitpunkt der Veröffentlichung dieser Arbeit ist dieses Paper noch
nicht veröffentlicht worden). Die resultierende Liste wurdemanuell überprüft und anschließend
gefiltert, um Sprachen welche nicht dem Choreographie-Konzept entsprechen aus der Liste
herauszufiltern. Zusätzlich dazu wurde noch einmal manuell nach Choreographiesprachen
gesucht.

Es wurden ebenfalls Kriterien definiert, welche Choreographiesprachen erfüllen sollten. Dabei
lag das Hauptaugenmerk auf Kriterien zur Datenmodellierung. Im Anschluss wurden 24 der
insgesamt gefundenen 130 Sprachen basierend auf deren Relevanz anhand des definierten Krite-
rienkatalog analysiert. Die Analyse der jeweiligen Sprachen wurde dabei durch entsprechende
Beispiele visuell unterstützt. Bei den Sprachen, die es uns durch frei zugängliche Software
ermöglicht haben Beispiele selbst zu modellieren, wurde ein einheitliches Beispiel mittels
dieser Sprachen umgesetzt, um einen direkten Vergleich der einzelnen Choreographiesprachen
zu ermöglichen.

Ausblick

Durch die Definition von Kriterien wurde eine Art Richtlinie definiert, welche zukünftig ent-
wickelte Sprachen oder Erweiterungen bereits existierender Sprachen erfüllen sollen. Da im
Rahmen einer Bachelorarbeit dieser Kriterienkatalog auf ein paar wichtige Kriterien reduziert
werden musste, sollte man diese Kriterien nur als Grundlage sehen. Dieser Katalog sollte
daher um weitere Kriterien erweitert werden, um möglichst vielfältige Bereiche und Anwen-
dungsdomänen abzudecken. Da diese Richtlinie für alle Choreographiesprachen gelten soll,
es aber einige Choreographiesprachen gibt, welche für spezielle Bereiche angepasst werden,
könnte man zusätzlich Kriterienkataloge definieren, welche nur für bestimmte Arten von
Choreographien relevant sind. Im Allgemeinen sollte der Choreographie-Begriff deutlicher
spezifiziert werden. Durch diese „offene“ Definition, werden relevante Kriterien sehr unter-
schiedlich definiert, da viele auf bestimmte Punkte mehr wert legen, als auf andere. Das ist
auch der Grund, warum Sprachen wie BPEL in einigen Arbeiten zur Modellierung von Choreo-
graphien vorgestellt wurden, obwohl diese für Orchestrierungen geeigneter sind und weniger

93

5 Zusammenfassung und Ausblick

zur Modellierung von Choreographien. Daher sollte eine eindeutigere Richtlinie spezifiziert
werden.

Nachdem diese Richtlinie erweitert wird, kann die Analyse in dieser Arbeit um die neuen
Kriterien erweitert werden. Die einzelnen Kriterien könnte man dann ebenfalls gewichten
nach der Relevanz dieser Kriterien. Manche Kriterien sollten nämlich erfüllt werden müssen,
während andere nur optional und nicht so wichtig sind. Außerdem wurde im Rahmen dieser
Arbeit nur eine Teilmenge der gefundenen Choreographiesprachen untersucht. Nur weil
diese Sprachen bekannter sind als andere, heißt das aber nicht, dass diese auch besser zur
Modellierung von Choreographien geeignet sind. Deshalb sollte die Analyse auch um die noch
nicht analysierten Sprachen erweitert werden.

94

Literaturverzeichnis

[AAF+02] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,
K. Riemer, S. Struble, P. Takacsi-Nagy et al. „Web service choreography inter-
face (WSCI) 1.0“. In: Standards proposal by BEA Systems, Intalio, SAP, and Sun
Microsystems (2002) (zitiert auf S. 27, 31, 32, 59).

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte et al. Business process execution language for web
services. 2003 (zitiert auf S. 28, 51).

[AKM08] F. Arbab, N. Kokash, S. Meng. „Towards Using Reo for Compliance-Aware Busi-
ness Process Modeling“. In: Leveraging Applications of Formal Methods, Verifi-
cation and Validation: Third International Symposium, ISoLA 2008, Porto Sani,
Greece, October 13-15, 2008. Proceedings. Hrsg. von T. Margaria, B. Steffen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, S. 108–123 (zitiert auf S. 26).

[AL05] S. Arroyo, J.-M. López Cobo. „SOPHIE: Architecture and overall algorithm of
a choreography service“. In: Proceeding of First Online Metadata and Semantics
Research Conference (MTSR’05). 2005, S. 21–30 (zitiert auf S. 26).

[AM15] E. Aarts, M. Mancioppi. „Correction of Unrealizable Service Choreographies“.
In: (2015) (zitiert auf S. 19, 23).

[Amb02] S. Ambroszkiewicz. „Entish“. In: Internet Technologies, Applications and Societal
Impact. Springer, 2002, S. 289–306 (zitiert auf S. 24).

[AP06a] W.M. P. van der Aalst, M. Pesic. „DecSerFlow: Towards a Truly Declarative
Service Flow Language“. In:Web Services and Formal Methods: Third International
Workshop, WS-FM 2006 Vienna, Austria, September 8-9, 2006 Proceedings. Hrsg.
von M. Bravetti, M. Núñez, G. Zavattaro. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, S. 1–23 (zitiert auf S. 24, 31, 63).

[AP06b] W.M. van der Aalst, M. Pesic. „Specifying, discovering, and monitoring service
flows: Making web services process-aware“. In: BPM Center Report BPM-06-09,
BPMcenter. org (2006) (zitiert auf S. 63, 64).

[AW01] W.M. P. van der Aalst, M. Weske. „The P2P Approach to Interorganizational
Workflows“. In: Advanced Information Systems Engineering: 13th International
Conference, CAiSE 2001 Interlaken, Switzerland, June 4–8, 2001 Proceedings. Hrsg.
von K. R. Dittrich, A. Geppert, M. C. Norrie. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, S. 140–156 (zitiert auf S. 25, 31, 74–76).

95

Literaturverzeichnis

[BB09] P. Besana, A. Barker. „An Executable Calculus for Service Choreography“. In: On
the Move to Meaningful Internet Systems: OTM 2009: Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009, Vilamoura, Portugal, November
1-6, 2009, Proceedings, Part I. Hrsg. von R. Meersman, T. Dillon, P. Herrero. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, S. 373–380 (zitiert auf S. 25).

[BBB+02] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp,
H. Kuno, M. Lemon, G. Pogossiants, S. Sharma et al. „Web services conversation
language (wscl) 1.0“. In:W3C Note 14 (2002) (zitiert auf S. 27, 32, 59).

[BBC+12] C. Bartolini, A. Bertolino, A. Ciancone, G. De Angelis, R. Mirandola. „Quality
Requirements for Service Choreographies.“ In: WEBIST. 2012, S. 143–148 (zitiert
auf S. 26).

[BCD+05] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Mecella. „Automatic Com-
position of Transition-based Semantic Web Services with Messaging“. In: Pro-
ceedings of the 31st International Conference on Very Large Data Bases. VLDB ’05.
Trondheim, Norway: VLDB Endowment, 2005, S. 613–624 (zitiert auf S. 23, 31,
70, 71).

[BDDM04] D. Berardi, F. De Rosa, L. De Santis, M. Mecella. „Finite state automata as con-
ceptual model for e-services“. In: Journal of Integrated Design and Process Science
8.2 (2004), S. 105–121 (zitiert auf S. 27).

[BDO05] A. Barros, M. Dumas, P. Oaks. „A critical overview of the web services choreo-
graphy description language“. In: BPTrends Newsletter 3 (2005), S. 1–24 (zitiert
auf S. 27, 31, 32, 59).

[BDO06] A. Barros, M. Dumas, P. Oaks. „Standards for Web Service Choreography and
Orchestration: Status and Perspectives“. In: Business Process Management Work-
shops: BPM 2005 International Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS,
Nancy, France, September 5, 2005. Revised Selected Papers. Hrsg. von C. J. Bussler,
A. Haller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, S. 61–74 (zitiert
auf S. 47).

[BGG+05a] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro. „Towards a formal frame-
work for choreography“. In: 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise (WETICE’05). Juni 2005,
S. 107–112 (zitiert auf S. 23).

[BGG+05b] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro. „Choreography and Orches-
tration: A Synergic Approach for SystemDesign“. In: Service-Oriented Computing
- ICSOC 2005: Third International Conference, Amsterdam, The Netherlands, De-
cember 12-15, 2005. Proceedings. Hrsg. von B. Benatallah, F. Casati, P. Traverso.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, S. 228–240 (zitiert auf S. 22,
32, 86).

[BJR+96] G. Booch, I. Jacobson, J. Rumbaugh et al. „The unified modeling language“. In:
Unix Review 14.13 (1996), S. 5 (zitiert auf S. 42).

96

Literaturverzeichnis

[BKKR03] M. Bernauer, G. Kappel, G. Kramler, W. Retschitzegger. „Specification of Interor-
ganizational Workflows - A Comparison of Approaches“. In: Proceedings of the
7th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2003).
International Institute of Informatics und Systemics, 2003, S. 30–36 (zitiert auf
S. 18).

[BLWW95] R.W.H. Bons, R.M. Lee, R.W. Wagenaar, C. D. Wrigley. „Modelling inter-
organizational trade using Documentary Petri Nets“. In: Proceedings of the
Twenty-Eighth Annual Hawaii International Conference on System Sciences. Bd. 3.
Jan. 1995, 189–198 vol.3 (zitiert auf S. 24).

[BRM15] P. Bhuyan, A. Ray, D. P. Mohapatra. „A Service-Oriented Architecture (SOA)
Framework Component for Verification of Choreography“. In: Computational
Intelligence in Data Mining - Volume 3: Proceedings of the International Conference
on CIDM, 20-21 December 2014. Hrsg. von L. C. Jain, H. S. Behera, J. K. Mandal,
D. P. Mohapatra. New Delhi: Springer India, 2015, S. 25–35 (zitiert auf S. 25).

[BS08] A. K. Bhattacharjee, R. K. Shyamasundar. „ScriptOrc: A Specification Language
for Web Service Choreography“. In: 2008 IEEE Asia-Pacific Services Computing
Conference. Dez. 2008, S. 1089–1096 (zitiert auf S. 26).

[BWH09] A. Barker, J. B. Weissman, J. I. van Hemert. „The Circulate architecture: avoiding
workflow bottlenecks caused by centralised orchestration“. In:Cluster Computing
12.2 (2009), S. 221–235 (zitiert auf S. 23).

[BWR09] A. Barker, C. D. Walton, D. Robertson. „Choreographing Web Services“. In: IEEE
Transactions on Services Computing 2.2 (Apr. 2009), S. 152–166 (zitiert auf S. 26,
32, 88).

[CCK+01] J. Clark, C. Casanave, K. Kanaskie, B. Harvey, N. Smith, J. Yunker, K. Riemer.
„ebXML Business Process Specification Schema Version 1.01“. In: UN/CEFACT
and OASIS (2001), S. 9 (zitiert auf S. 24).

[CE05a] T. Cottenier, T. Elrad. „Dynamic and decentralized service composition“. In:
Proceedings web information systems and technologies. INSTICC Press (2005),
S. 56–63 (zitiert auf S. 23).

[CE05b] T. Cottenier, T. Elrad. „Executable Choreography ProcesseswithAspect-Sensitive
Services“. In: Computer Science Department, Illinois Institute of Technology (2005)
(zitiert auf S. 24).

[CFGS10] V. Ciancia, G. L. Ferrari, R. Guanciale, D. Strollo. „Global Coordination Policies
for Services“. In: Electronic Notes in Theoretical Computer Science 260 (2010),
S. 73–89 (zitiert auf S. 26).

[CHY+06] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, S. Ross-Talbot. „A
theoretical basis of communication-centred concurrent programming“. In: Web
Services ChoreographyWorking Groupmailing list, to appear as aWS-CDLworking
report (2006) (zitiert auf S. 65, 66).

97

Literaturverzeichnis

[CHY07] M. Carbone, K. Honda, N. Yoshida. „Structured Communication-Centred Pro-
gramming for Web Services“. In: Programming Languages and Systems: 16th
European Symposium on Programming, ESOP 2007, Held as Part of the Joint Euro-
pean Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal,
March 24 - April 1, 2007. Proceedings. Hrsg. von R. De Nicola. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, S. 2–17 (zitiert auf S. 25, 31, 65).

[CLNL03] D.W. Cheung, E. Lo, C.-Y. Ng, T. Lee. „Web Services Oriented Data Processing
and Integration.“ In: WWW (Alternate Paper Tracks). 2003 (zitiert auf S. 27).

[CS11] A. K. Chopra, M. P. Singh. „Colaba: Collaborative design of cross-organizational
processes“. In: 2011 Workshop on Requirements Engineering for Systems, Services
and Systems-of-Systems. Aug. 2011, S. 36–43 (zitiert auf S. 23).

[CT05] I. Chebbi, S. Tata. „CoopFlow: A Framework for Inter-organizational Workflow
Cooperation“. In: On the Move to Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and
ODBASE 2005, Agia Napa, Cyprus, October 31 - November 4, 2005, Proceedings, Part
I. Hrsg. von R. Meersman, Z. Tari. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, S. 112–129 (zitiert auf S. 23).

[Cyb06] D. Cybok. „A Grid workflow infrastructure“. In: Concurrency and Computation:
Practice and Experience 18.10 (2006), S. 1243–1254 (zitiert auf S. 25).

[DB08] G. Decker, A. Barros. „Interaction Modeling Using BPMN“. In: Proceedings of the
2007 International Conference on Business Process Management. BPM’07. Brisbane,
Australia: Springer-Verlag, 2008, S. 208–219 (zitiert auf S. 25, 28).

[DCS09] N. Desai, A. K. Chopra, M. P. Singh. „Amoeba: A Methodology for Modeling and
Evolving Cross-organizational Business Processes“. In: ACM Trans. Softw. Eng.
Methodol. 19.2 (Okt. 2009), 6:1–6:45 (zitiert auf S. 22).

[DGG+15] M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, J. Mauro. „Dynamic
Choreographies“. In: Coordination Models and Languages: 17th IFIP WG 6.1 Inter-
national Conference, COORDINATION 2015, Held as Part of the 10th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2015, Gre-
noble, France, June 2-4, 2015, Proceedings. Hrsg. von T. Holvoet, M. Viroli. Cham:
Springer International Publishing, 2015, S. 67–82 (zitiert auf S. 24).

[DKB08] G. Decker, O. Kopp, A. P. Barros. „An introduction to service choreographies
(Servicechoreographien – eine Einführung)“. In: Information Technology 52.2
(2008), S. 122–127 (zitiert auf S. 13).

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. „BPEL4Chor: Extending BPEL for
Modeling Choreographies“. In: IEEE International Conference on Web Services
(ICWS 2007). Juli 2007, S. 296–303 (zitiert auf S. 22, 31, 67).

[DKLW09] G. Decker, O. Kopp, F. Leymann, M. Weske. „Interacting services: From specifi-
cation to execution“. In: Data & Knowledge Engineering 68.10 (2009), S. 946–972
(zitiert auf S. 17, 33).

98

Literaturverzeichnis

[DKZD06] G. Decker, M. Kirov, J.M. Zaha, M. Dumas. „Maestro for Let’s Dance: An Envi-
ronment for Modeling Service Interactions“. In: (2006) (zitiert auf S. 80).

[DLC+07] X. Deng, Z. Lin, W. Cheng, R. Xiao, L. Fang, L. Li. „ModelingWeb Service Choreo-
graphy and Orchestration with Colored Petri Nets“. In: Eighth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD 2007). Bd. 2. Juli 2007, S. 838–843 (zitiert auf
S. 76).

[DMCS04] N. Desai, A. U. Mallya, A. K. Chopra, M. P. Singh. „Protocols+ Policies: A me-
thodology for business process development“. In: in: Proceedings of the 14th
International World Wide Web Conference (WWW’2005). Citeseer. 2004 (zitiert
auf S. 26).

[DW07] G. Decker, M.Weske. „Local Enforceability in Interaction Petri Nets“. In: Business
Process Management: 5th International Conference, BPM 2007, Brisbane, Australia,
September 24-28, 2007. Proceedings. Hrsg. von G. Alonso, P. Dadam, M. Rosemann.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, S. 305–319 (zitiert auf S. 25).

[DZD06] G. Decker, J.M. Zaha, M. Dumas. „Execution Semantics for Service Choreo-
graphies“. In:Web Services and Formal Methods: Third International Workshop,
WS-FM 2006 Vienna, Austria, September 8-9, 2006 Proceedings. Hrsg. von M. Bra-
vetti, M. Núñez, G. Zavattaro. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, S. 163–177 (zitiert auf S. 80, 81).

[ELT06] J. Eder, M. Lehmann, A. Tahamtan. „Choreographies as Federations of Choreo-
graphies and Orchestrations“. In: Advances in Conceptual Modeling - Theory and
Practice: ER 2006 Workshops BP-UML, CoMoGIS, COSS, ECDM, OIS, QoIS, Sem-
WAT, Tucson, AZ, USA, November 6-9, 2006. Proceedings. Hrsg. von J. F. Roddick,
V. R. Benjamins, S. Si-said Cherfi, R. Chiang, C. Claramunt, R. A. Elmasri, F. Gran-
di, H. Han, M. Hepp, M.D. Lytras, V. B. Mišić, G. Poels, I.-Y. Song, J. Trujillo,
C. Vangenot. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, S. 183–192
(zitiert auf S. 24).

[FDVV11] D. Fahland, M. De Leoni, B. F. Van Dongen,W.M. Van Der Aalst. „Many-to-Many:
Some Observations on Interactions in Artifact Choreographies.“ In: ZEUS 705
(2011), S. 9–15 (zitiert auf S. 13).

[FJ01] U. Frank, J. Jung. „The memo organisation modelling language (memo-orgml)“.
In: Arbeitsberichte des Institut für Wirtschaftsinformatik der Universität Koblenz-
Landau (2001) (zitiert auf S. 25).

[FLB06] J. Fiadeiro, A. Lopes, L. Bocchi. „The SENSORIA Reference Modelling Language:
Primitives for Service Description“. In: available at {www. sensoria-ist. edu}
(2006) (zitiert auf S. 26).

99

Literaturverzeichnis

[Fle10] A. Fleischmann. „What Is S-BPM?“ In: S-BPM ONE – Setting the Stage for Subject-
Oriented Business Process Management: First International Workshop, Karlsruhe,
Germany, October 22, 2009. Revised Selected Papers. Hrsg. von H. Buchwald,
A. Fleischmann, D. Seese, C. Stary. Berlin, Heidelberg: Springer BerlinHeidelberg,
2010, S. 85–106 (zitiert auf S. 26).

[GHB+06] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, Y. Liu.
„Grid-Flow: a Grid-enabled scientific workflow system with a Petri-net-based
interface“. In: Concurrency and Computation: Practice and Experience 18.10 (2006),
S. 1115–1140 (zitiert auf S. 25).

[GHB05] J. Gomez, A. Haller, C. Bussler. „A conversation oriented language for B2B
integration based on semantic web services. web service semantics“. In: Towards
dynamic business integration workshop. In conjunction with the 14th international
world wide web conference (WWW 2005), Chiba, Japan, May 2005. 2005 (zitiert
auf S. 25).

[HBKL17] M. Hahn, U. Breitenbücher, O. Kopp, F. Leymann. „Modeling and Execution
of Data-aware Choreographies. An Overview“. In: Springer Computer Science -
Research and Development (CSRD) (2017) (zitiert auf S. 33, 34).

[HHL+06] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, M. Zapletal. „UN/CEFACT’S Mo-
deling Methodology (UMM): A UML Profile for B2B e-Commerce“. In: Advances
in Conceptual Modeling - Theory and Practice: ER 2006 Workshops BP-UML, Co-
MoGIS, COSS, ECDM, OIS, QoIS, SemWAT, Tucson, AZ, USA, November 6-9, 2006.
Proceedings. Hrsg. von J. F. Roddick, V. R. Benjamins, S. Si-said Cherfi, R. Chiang,
C. Claramunt, R. A. Elmasri, F. Grandi, H. Han, M. Hepp, M. D. Lytras, V. B. Mišić,
G. Poels, I.-Y. Song, J. Trujillo, C. Vangenot. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, S. 19–31 (zitiert auf S. 27).

[HO06] A. Haller, E. Oren. „m3pl: A Work-FLOWS ontology extension to extract cho-
reography interfaces“. In: Proceedings of the Workshop on Semantics for Business
Process Management (SBPM 2006) at the 3rd European Semantic Web Conference
(ESWC 2006). Budva, Montenegro. Citeseer. 2006 (zitiert auf S. 25).

[HOK06] A. Haller, E. Oren, P. Kotinurmi. „m3po: AnOntology to Relate Choreographies to
Workflow Models“. In: 2006 IEEE International Conference on Services Computing
(SCC’06). Sep. 2006, S. 19–27 (zitiert auf S. 26).

[Int02] P. D. Interface. „XML process definition language“. In: Document Number WFMC-
TC-1025 Document Status-XPDL 1 (2002) (zitiert auf S. 27).

[JEA+07] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland et al. „Web services business process execution
language version 2.0“. In: OASIS standard 11.120 (2007), S. 5 (zitiert auf S. 67).

[Jen81] K. Jensen. „Coloured petri nets and the invariant-method“. In: Theoretical Com-
puter Science 14.3 (1981), S. 317–336 (zitiert auf S. 23, 31, 76).

100

Literaturverzeichnis

[JHKK04] J.-y. Jung, W. Hur, S.-H. Kang, H. Kim. „Business process choreography for B2B
collaboration“. In: IEEE Internet Computing 8.1 (Jan. 2004), S. 37–45 (zitiert auf
S. 13).

[JIH10] H. Jamil, A. Islam, S. Hossain. „A declarative language and toolkit for scientific
workflow implementation and execution“. In: International Journal of Business
Process Integration and Management 5.1 (2010), S. 3–17 (zitiert auf S. 22).

[Jun06] J. Jung. Supply chains in the context of resource modelling. eng. ICB-Research
Report 5. Essen, 2006 (zitiert auf S. 25).

[Kab03] V. Kabilan. „Using multi tier contract ontology to model contract workflow
models“. Diss. Data-och systemvetenskap, 2003 (zitiert auf S. 23).

[KEL+11] O. Kopp, L. Engler, T. van Lessen, F. Leymann, J. Nitzsche. „Interaction Cho-
reography Models in BPEL: Choreographies on the Enterprise Service Bus“. In:
Subject-Oriented Business Process Management: Second International Conference,
S-BPM ONE 2010, Karlsruhe, Germany, October 14, 2010. Selected Papers. Hrsg. von
A. Fleischmann, W. Schmidt, R. Singer, D. Seese. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, S. 36–53 (zitiert auf S. 22).

[Ker10] N. Kerschbaumer. Distributed workflow and view definition languages. Techn. Ber.
TR-ISYS, 2010 (zitiert auf S. 24, 27).

[KNMS06] C. Kubczak, R. Nagel, T. Margaria, B. Steffen. „The jABC approach to mediation
and choreography“. In: 2nd Semantic Web Service Challenge Workshop. Bd. 234.
Citeseer. 2006 (zitiert auf S. 25).

[Koe03] M. Koethe. „Business Process Definition Metamodel“. In: Request for Proposals
(bei/2003-01-06). Object Management Group (2003) (zitiert auf S. 23).

[Kop16] O. Kopp. „Partnerübergreifende Geschäftsprozesse und ihre Realisierung in
BPEL“. Diss. Stuttgart, Universität Stuttgart, Diss., 2015, 2016 (zitiert auf S. 13).

[KP06] R. Kazhamiakin, M. Pistore. „Choreography Conformance Analysis: Asynchro-
nous Communications and Information Alignment“. In:Web Services and Formal
Methods: Third International Workshop, WS-FM 2006 Vienna, Austria, September
8-9, 2006 Proceedings. Hrsg. von M. Bravetti, M. Núñez, G. Zavattaro. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, S. 227–241 (zitiert auf S. 47).

[KPR12] D. Knuplesch, R. Pryss, M. Reichert. „Data-aware interaction in distributed
and collaborative workflows: Modeling, semantics, correctness“. In: 8th Inter-
national Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom). Okt. 2012, S. 223–232 (zitiert auf S. 24).

[KSN92] G. Keller, A.-W. Scheer, M. Nüttgens. Semantische Prozeßmodellierung auf der
GrundlageËreignisgesteuerter Prozeßketten (EPK)". Inst. für Wirtschaftsinforma-
tik, 1992 (zitiert auf S. 24, 31, 57).

101

Literaturverzeichnis

[KWH07] Z. Kang, H. Wang, P. C. K. Hung. „WS-CDL+: An Extended WS-CDL Execution
Engine for Web Service Collaboration“. In: IEEE International Conference on Web
Services (ICWS 2007). Juli 2007, S. 928–935 (zitiert auf S. 27).

[KWV+02] S. Krishnan, P. Wagstrom, G. Von Laszewski et al. „GSFL: A workflow framework
for grid services“. In: Preprint ANL/MCS-P980-0802, Argonne National Laboratory
9700 (2002) (zitiert auf S. 25, 31, 79).

[LAN+13] L. A. F. Leite, G. Ansaldi Oliva, G.M. Nogueira, M. A. Gerosa, F. Kon, D. S. Milo-
jicic. „A systematic literature review of service choreography adaptation“. In:
Service Oriented Computing and Applications 7.3 (2013), S. 199–216 (zitiert auf
S. 18, 19).

[Lee97] R.M. Lee. „Amessenger model for navigating among bureaucratic requirements“.
In: Proceedings of the Thirtieth Hawaii International Conference on System Sciences.
Bd. 4. Jan. 1997, 468–477 vol.4 (zitiert auf S. 26).

[Len01] K. Lenz. „Modeling interorganizational workflows with XML nets“. In: Procee-
dings of the 34th Annual Hawaii International Conference on System Sciences. Jan.
2001, 10 pp. (Zitiert auf S. 27).

[Ley+01] F. Leymann et al.Web services flow language (WSFL 1.0). 2001 (zitiert auf S. 27,
31, 51).

[LHPZ06] J. Li, J. He, G. Pu, H. Zhu. „Towards the Semantics for Web Service Choreography
Description Language“. In: Formal Methods and Software Engineering: 8th Inter-
national Conference on Formal Engineering Methods, ICFEM 2006, Macao, China,
November 1-3, 2006. Proceedings. Hrsg. von Z. Liu, J. He. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, S. 246–263 (zitiert auf S. 23).

[LM08] S. Li, H. Miao. „Modeling the Patterns of WS-CDL Interactions Based on Process
Algebra“. In: 2008 International Seminar on Future Information Technology and
Management Engineering. Nov. 2008, S. 222–227 (zitiert auf S. 26).

[LZD12] J. Li, H. Zhang, H. Dun. „A Petri Net Semantics for Web Service in Choreogra-
phy Description Language“. In: 2012 Sixth International Conference on Internet
Computing for Science and Engineering. Apr. 2012, S. 1–7 (zitiert auf S. 26).

[MBLN09] A. Mahfouz, L. Barroca, R. Laney, B. Nuseibeh. „Requirements-Driven Colla-
borative Choreography Customization“. In: Service-Oriented Computing: 7th
International Joint Conference, ICSOC-ServiceWave 2009, Stockholm, Sweden, No-
vember 24-27, 2009. Proceedings. Hrsg. von L. Baresi, C.-H. Chi, J. Suzuki. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, S. 144–158 (zitiert auf S. 22).

[MCT09] L. Mei, W. K. Chan, T. H. Tse. „Data Flow Testing of Service Choreography“. In:
Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering. ESEC/FSE ’09. Amsterdam, The Netherlands: ACM, 2009, S. 151–160
(zitiert auf S. 25).

102

Literaturverzeichnis

[MGWH09] M. Milanović, D. Gašević, G. Wagner, M. Hatala. „Rule-Enhanced Business Pro-
cess Modeling Language for Service Choreographies“. In: Model Driven Enginee-
ring Languages and Systems: 12th International Conference, MODELS 2009, Denver,
CO, USA, October 4-9, 2009. Proceedings. Hrsg. von A. Schürr, B. Selic. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, S. 337–341 (zitiert auf S. 26).

[MH08] J. Mendling, M. Hafner. „From WS-CDL choreography to BPEL process orches-
tration“. In: Journal of Enterprise Information Management 21.5 (2008), S. 525–542
(zitiert auf S. 47).

[Mil06] H. D.-I. N. Milanovic. „Contract-basedweb service composition“. Diss. Humboldt-
Universität zu Berlin, 2006 (zitiert auf S. 23).

[MN04] J. Mendling,M. Nüttgens. „Exchanging EPC business processmodels with EPML“.
In: XML4BPM (2004), S. 61–80 (zitiert auf S. 24).

[MNN05] J. Mendling, G. Neumann, M. Nüttgens. „Yet Another Event-Driven Process
Chain“. In: Business Process Management: 3rd International Conference, BPM
2005, Nancy, France, September 5-8, 2005. Proceedings. Hrsg. von W.M. P. van
der Aalst, B. Benatallah, F. Casati, F. Curbera. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, S. 428–433 (zitiert auf S. 27).

[Mod11] B. P. Model. „Notation (BPMN) version 2.0“. In: OMG Specification, Object Ma-
nagement Group (2011) (zitiert auf S. 22, 31, 37, 39, 40).

[Mon14] F. Montesi. Choreographic programming. InstituttetThe Department, Software
u. a., 2014 (zitiert auf S. 23).

[MR97] S. Mauw, M.A. Reniers. „High-level message sequence charts.“ In: SDL forum.
1997, S. 291–306 (zitiert auf S. 25).

[MRS05] P. Massuthe, W. Reisig, K. Schmidt. „An Operating Guideline Approach to the
SOA“. In: Informatik-Berichte 191. Institut für Informatik, 2005 (zitiert auf S. 26,
31, 81).

[MS03] C. Montangero, L. Semini. „Distributed states temporal logic“. In: arXiv preprint
cs/0304046 (2003) (zitiert auf S. 24).

[MS06] C. Montangero, L. Semini. „A Logical View of Choreography“. In: Coordination
Models and Languages: 8th International Conference, COORDINATION 2006, Bo-
logna, Italy, June 14-16, 2006. Proceedings. Hrsg. von P. Ciancarini, H. Wiklicky.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, S. 179–193 (zitiert auf S. 24).

[MSLH02] J. Meng, S. Y.W. Su, H. Lam, A. Helal. „Achieving dynamic inter-organizational
workflow management by integrating business processes, events and rules“.
In: Proceedings of the 35th Annual Hawaii International Conference on System
Sciences. Jan. 2002, 10 pp. (Zitiert auf S. 24).

[MSW11] A. Meyer, S. Smirnov, M.Weske.Data in business processes. 50. Universitätsverlag
Potsdam, 2011 (zitiert auf S. 18, 33).

103

Literaturverzeichnis

[MY13] F. Montesi, N. Yoshida. „Compositional Choreographies“. In: CONCUR 2013 –
Concurrency Theory: 24th International Conference, CONCUR 2013, Buenos Aires,
Argentina, August 27-30, 2013. Proceedings. Hrsg. von P. R. D’Argenio, H. Mel-
gratti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, S. 425–439 (zitiert
auf S. 23).

[MZW09] T. Motal, M. Zapletal, H. Werthner. „The Business Choreography Language
(BCL) - A Domain-Specific Language for Global Choreographies“. In: 2009 World
Conference on Services - II. Sep. 2009, S. 150–159 (zitiert auf S. 22).

[NFH05] B. Norton, S. Foster, A. Hughes. „A Compositional Operational Semantics for
OWL-S“. In: Formal Techniques for Computer Systems and Business Processes: Euro-
pean Performance Engineering Workshop, EPEW 2005 and International Workshop
on Web Services and Formal Methods, WS-FM 2005, Versailles, France, Septem-
ber 1-3, 2005. Proceedings. Hrsg. von M. Bravetti, L. Kloul, G. Zavattaro. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, S. 303–317 (zitiert auf S. 23).

[NLKL07] J. Nitzsche, T. van Lessen, D. Karastoyanova, F. Leymann. „BPELlight“. In: Busi-
ness Process Management: 5th International Conference, BPM 2007, Brisbane, Aus-
tralia, September 24-28, 2007. Proceedings. Hrsg. von G. Alonso, P. Dadam, M. Ro-
semann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, S. 214–229 (zitiert
auf S. 22).

[Nor11] A. Norta. „A Choreography Language for eBusiness Collaboration“. In: Procee-
dings of the 2011 ACM Symposium on Applied Computing. SAC ’11. TaiChung,
Taiwan: ACM, 2011, S. 468–469 (zitiert auf S. 24).

[Oin04] T. Oinn. „XScufl Language Reference“. In: Internet: Available: www. ebi. ac. uk/t-
mo/mygrid/XScuflSpecification. html [October 14, 2009] (2004) (zitiert auf S. 27).

[PE09] G. Pedraza, J. Estublier. „Distributed Orchestration Versus Choreography: The
FOCAS Approach“. In: Trustworthy Software Development Processes: Internatio-
nal Conference on Software Process, ICSP 2009 Vancouver, Canada, May 16-17,
2009 Proceedings. Hrsg. von Q. Wang, V. Garousi, R. Madachy, D. Pfahl. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, S. 75–86 (zitiert auf S. 25).

[PWW+05] S. Parastatidis, J. Webber, S. Woodman, D. Kuo, P. Greenfield. „An introduction
to the SOAP service description language“. In: School of Computing Science,
University of Newcastle, Newcastle upon Tyne CS-TR-898 (2005) (zitiert auf S. 26).

[QCP+08] Z. Qiu, C. Cai, L. Peng, X. Zhao, H. Yang. „Reasoning about Channel Passing in
Choreography“. In: 2008 2nd IFIP/IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE ’08) 00.undefined (2008), S. 135–142 (zitiert
auf S. 23).

[QZCY07] Z. Qiu, X. Zhao, C. Cai, H. Yang. „Towards the Theoretical Foundation of Cho-
reography“. In: Proceedings of the 16th International Conference on World Wide
Web. WWW ’07. Banff, Alberta, Canada: ACM, 2007, S. 973–982 (zitiert auf S. 23,
31, 83).

104

Literaturverzeichnis

[RBJ05] J. Rumbaugh, G. Booch, I. Jacobson. „The Unified Modeling Language Reference
Manual (with CD-ROM)“. In: (2005) (zitiert auf S. 26, 27, 31, 42, 44, 46, 47, 49).

[RGG96] E. Rudolph, P. Graubmann, J. Grabowski. „Tutorial onMessage Sequence Charts“.
In: Computer Networks and ISDN Systems 28.12 (1996), S. 1629–1641 (zitiert auf
S. 26).

[Rob04] D. Robertson. „Multi-agent Coordination as Distributed Logic Programming“. In:
Logic Programming: 20th International Conference, ICLP 2004, Saint-Malo, France,
September 6-10, 2004. Proceedings. Hrsg. von B. Demoen, V. Lifschitz. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, S. 416–430 (zitiert auf S. 25).

[RS16] R. Ramanujam, S. Sheerazuddin. „Realizable temporal logics for web service
choreography“. In: Journal of Logical and Algebraic Methods in Programming
85.5, Part 1 (2016). Special Issue on Automated Verification of Programs and
Web Systems, S. 759–781 (zitiert auf S. 26).

[RSF+06] D. Roman, J. Scicluna, D. Fensel, A. Polleres, J. de Bruijn, S. Heymans. D14v0. 3.
Ontology-based Choreography of WSMO Services. 2006 (zitiert auf S. 27).

[RWR06] S. Rinderle, A. Wombacher, M. Reichert. „Evolution of Process Choreographies
in DYCHOR“. In: On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA,
GADA, and ODBASE 2006, Montpellier, France, October 29 - November 3, 2006.
Proceedings, Part I. Hrsg. von R. Meersman, Z. Tari. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, S. 273–290 (zitiert auf S. 24).

[SBFZ08] J. Su, T. Bultan, X. Fu, X. Zhao. „Towards a Theory of Web Service Choreogra-
phies“. In: Web Services and Formal Methods: 4th International Workshop, WS-FM
2007, Brisbane, Australia, September 28-29, 2007. Proceedings. Hrsg. von M. Dumas,
R. Heckel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, S. 1–16 (zitiert
auf S. 17, 22, 32, 86).

[Sch11] A. Schönberger. Do We Need a Refined Choreography Notion? 2011 (zitiert auf
S. 13, 17).

[SHK02] J. Shim, D. Han, H. Kim. „Communication Deadlock Detection of Inter-
organizational Workflow Definition“. In: Databases in Networked Information
Systems: Second International Workshop, DNIS 2002 Aizu, Japan, December 16–
18, 2002 Proceedings. Hrsg. von S. Bhalla. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, S. 43–57 (zitiert auf S. 23).

[SHKW11] A. Schönberger, C. Huermer, O. Kopp, A. Wombacher. List of Choreography
Languages – Working Draft. 2011 (zitiert auf S. 21, 22, 93).

[Sin11] M. P. Singh. „Information-driven Interaction-oriented Programming: BSPL, the
Blindingly Simple Protocol Language“. In: The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2. AAMAS ’11. Taipei, Tai-
wan: International Foundation for Autonomous Agents und Multiagent Systems,
2011, S. 491–498 (zitiert auf S. 22).

105

Literaturverzeichnis

[STA05] A.-W. Scheer, O. Thomas, O. Adam. „Process modeling using event-driven pro-
cess chains“. In: Process-Aware Information Systems (2005), S. 119–146 (zitiert auf
S. 57).

[STDD07] G. van Seghbroeck, F. de Turck, B. Dhoedt, P. Demeester. „Web Service Choreo-
graphy Conformance Verification in M2M Systems through the piX-model“. In:
IEEE International Conference on Pervasive Services. Juli 2007, S. 385–390 (zitiert
auf S. 26).

[SV05] C. Seel, D. Vanderhaeghen. „Meta-model based extensions of the EPC for inter-
organisational process modelling“. In: Proceedings 4th Workshop on Geschftspro-
zessmanagement mit Ereignisgesteuerten Prozessketten (EPK 2005). Bd. 167. 2005,
S. 117–136 (zitiert auf S. 24).

[SW10] A. Schonberger, G. Wirtz. „Towards Executing ebBP-Reg B2Bi Choreographies“.
In: 2010 IEEE 12th Conference on Commerce and Enterprise Computing. Nov. 2010,
S. 64–71 (zitiert auf S. 24).

[SWW10] A. Schönberger, C. Wilms, G. Wirtz. A Requirements Analysis of Business-To-
Business Integration. Techn. Ber. 83. Lehrstuhl für Praktische Informatik, 2010, II,
55 S. : graph. Darst. (Zitiert auf S. 17).

[SXS12] Y. Sun, W. Xu, J. Su. „Declarative Choreographies for Artifacts“. In: Service-
Oriented Computing: 10th International Conference, ICSOC 2012, Shanghai, China,
November 12-15, 2012. Proceedings. Hrsg. von C. Liu, H. Ludwig, F. Toumani,
Q. Yu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, S. 420–434 (zitiert
auf S. 24).

[SY07] H. Sun, J. Yang. „BTx-Net: A Token Based Dynamic Model for Supporting Con-
sistent Collaborative Business Transactions“. In: IEEE International Conference
on Services Computing (SCC 2007). Juli 2007, S. 490–497 (zitiert auf S. 23).

[SY08] H. Sun, J. Yang. „CoBTx-Net: AModel for Reliability Verification of Collaborative
Business Transaction“. In: Business Process Management Workshops: BPM 2007 In-
ternational Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws, Brisbane,
Australia, September 24, 2007, Revised Selected Papers. Hrsg. von A. ter Hofstede,
B. Benatallah, H.-Y. Paik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
S. 220–231 (zitiert auf S. 23).

[SZS06] Y. Shi, L. Zhang, B. Shi. „TDWF: A Workflow Model Based on Cooperation of
Web Services“. In: 2006 10th International Conference on Computer Supported
Cooperative Work in Design. Mai 2006, S. 1–6 (zitiert auf S. 26).

[SZZ+12] W. Song, G. Zhang, Y. Zou, Q. Yang, X. Ma. „Towards Dynamic Evolution of Ser-
vice Choreographies“. In: 2012 IEEE Asia-Pacific Services Computing Conference.
Dez. 2012, S. 225–232 (zitiert auf S. 26).

[Tha01] S. Thatte. „XLANG: Web services for business process design“. In: Microsoft
Corporation 2001 (2001) (zitiert auf S. 28).

106

Literaturverzeichnis

[Van98] W.M. Van der Aalst. „The application of Petri nets to workflow management“.
In: Journal of circuits, systems, and computers 8.01 (1998), S. 21–66 (zitiert auf
S. 74, 81).

[VIG+10] H. Vincent, V. Issarny, N. Georgantas, E. Francesquini, A. Goldman, F. Kon.
„CHOReOS: Scaling Choreographies for the Internet of the Future“. In: Midd-
leware ’10 Posters and Demos Track. Middleware Posters ’10. Bangalore, India:
ACM, 2010, 8:1–8:3 (zitiert auf S. 23).

[VMP+12] V. Valero, H. Macià, J. J. Pardo, M. E. Cambronero, G. Díaz. „Transforming Web
Services Choreographies with priorities and time constraints into prioritized-
time colored Petri nets“. In: Science of Computer Programming 77.3 (2012). Feature-
Oriented Software Development (FOSD 2009), S. 290–313 (zitiert auf S. 26).

[VSC04] P. Villarreal, E. Salomone, O. Chiotti. „A UML Profile for Modeling Collaborative
Business Processes based on Interaction Protocols“. In: Argentine Symposium on
Information Systems (ASIS 2004). Bd. 33. 2004 (zitiert auf S. 27).

[WFMN04] A. Wombacher, P. Fankhauser, B. Mahleko, E. Neuhold. „Matchmaking for
business processes based on choreographies“. In: e-Technology, e-Commerce
and e-Service, 2004. EEE ’04. 2004 IEEE International Conference on. März 2004,
S. 359–368 (zitiert auf S. 24, 32, 84).

[Whi04] S. A. White. „Introduction to BPMN“. In: IBM Cooperation 2 (2004) (zitiert auf
S. 22, 31, 37).

[WRS+09] S. Wieczorek, A. Roth, A. Stefanescu, V. Kozyura, A. Charfi, F.M. Kraft, I. Schie-
ferdecker. „Viewpoints for modeling choreographies in service-oriented archi-
tectures“. In: 2009 Joint Working IEEE/IFIP Conference on Software Architecture
European Conference on Software Architecture. Sep. 2009, S. 11–20 (zitiert auf
S. 25).

[XOWY10] Y. Xia, Z. Ouyang, Y. Wu, R. Yang. „Determing performance of choreography-
based composite services“. In: Journal of Convergence Information Technology
5.8 (2010) (zitiert auf S. 25).

[XQH+07] D.H. Xu, Y. Qi, D. Hou, Y. Chen, L. Liu. „A Formal Model for dynamic Web Ser-
vices Composition MAS-Based and Simple Security Analysis Using Spi Calculus“.
In: Next Generation Web Services Practices, 2007. NWeSP 2007. Third International
Conference on. Okt. 2007, S. 69–72 (zitiert auf S. 23).

[Yeu06] W. l. Yeung. „MappingWS-CDL and BPEL into CSP for Behavioural Specification
and Verification of Web Services“. In: 2006 European Conference on Web Services
(ECOWS’06). Dez. 2006, S. 297–305 (zitiert auf S. 23).

[YLZ11] S. Yongchareon, C. Liu, X. Zhao. „An Artifact-Centric View-Based Approach to
Modeling Inter-organizational Business Processes“. In: Web Information System
Engineering –WISE 2011: 12th International Conference, Sydney, Australia, October
13-14, 2011. Proceedings. Hrsg. von A. Bouguettaya, M. Hauswirth, L. Liu. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, S. 273–281 (zitiert auf S. 22).

107

[YRB+10] Q. Yu, M. Rege, A. Bouguettaya, B. Medjahed, M. Ouzzani. „A two-phase frame-
work for quality-aware Web service selection“. In: Service Oriented Computing
and Applications 4.2 (2010), S. 63–79 (zitiert auf S. 27).

[YW03] S.-B. Yan, F.-J. Wang. „A Cooperative Framework for Inter-Organizational Work-
flow System“. In: 2013 IEEE 37th Annual Computer Software and Applications
Conference 00.undefined (2003), S. 64 (zitiert auf S. 23).

[YZQ+06] H. Yang, X. Zhao, Z. Qiu, G. Pu, S. Wang. „A Formal Model for Web Service
Choreography Description Language (WS-CDL)“. In: 2006 IEEE International
Conference on Web Services (ICWS’06). Sep. 2006, S. 893–894 (zitiert auf S. 23).

[ZBDH06] J.M. Zaha, A. Barros, M. Dumas, A. ter Hofstede. „Let’s Dance: A Language
for Service Behavior Modeling“. In: On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE: OTM Confederated International Confe-
rences, CoopIS, DOA, GADA, and ODBASE 2006, Montpellier, France, October 29
- November 3, 2006. Proceedings, Part I. Hrsg. von R. Meersman, Z. Tari. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, S. 145–162 (zitiert auf S. 25, 31,
80).

[ZZ09] J. Zhou, G. Zeng. „A mechanism for grid service composition behavior speci-
fication and verification“. In: Future Generation Computer Systems 25.3 (2009),
S. 378–383 (zitiert auf S. 23, 25).

Alle URLs wurden zuletzt am 01.06.2017 geprüft.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Verwandte Arbeiten
	3 Identifikation und Sammlung von Choreographiesprachen
	3.1 Herangehensweise der Suche
	3.2 Ergebnisse der Suche
	3.3 Möglichkeiten zur Ermittlung der Relevanz der gefundenen Sprachen
	3.4 Berechnung der Relevanz zur Filterung der Sprachen für die Analyse

	4 Analyse ausgewählter Sprachen
	4.1 Vergleichskriterien
	4.2 Abstraktes Beispiel einer Choreographie
	4.3 Analyse der ausgewählten Sprachen
	4.3.1 Business Process Model and Notation (BPMN)
	4.3.2 Unified Modeling Language (UML)
	4.3.3 Web Service Flow Language (WSFL)
	4.3.4 Event-driven Process Chain (EPC)
	4.3.5 Web Services Choreography Description Language (WS-CDL)
	4.3.6 Declarative Service Flow Language (DecSerFlow)
	4.3.7 Global Calculus
	4.3.8 BPEL4Chor
	4.3.9 Colombo
	4.3.10 Interorganizational Workflow Net (IOWF-Net)
	4.3.11 Colored Petri Nets (CPN)
	4.3.12 Grid Services Flow Language (GSFL)
	4.3.13 Let's Dance
	4.3.14 Open Workflow Nets (oWFN)
	4.3.15 Chor
	4.3.16 Deterministic Finite State Automata (DFA)
	4.3.17 “Bologna“
	4.3.18 Multiagent Protocols (MAP)

	4.4 Zusammenfassung der Analyse

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis

