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Kurzfassung

Model Order Reduction (MOR) ist der Oberbegriff für Methoden, die den Berechnungsaufwand

mathematischer Modelle verringern, indem deren Komplexität reduziert wird. Können diese

Methoden Berechnung einer Kombination von Hodgkin-Huxley-Modell und Monodomain-Modell

beschleunigen? Das Hodgkin-Huxley-Modell ist ein rechenaufwändiges Modell zur Berechnung

der Ionenströme innerhalb von Muskelfasern, welches mit dem Monodomain-Modell kombiniert

wird, das die Ausbreitung von Aktionspotentialen entlang der Muskelfasern beschreibt.

Untersucht werden in der Bachelorarbeit Fehler und Beschleunigung von MOR-Verfahren wie

POD-Galerkin oder Discrete Empirical Interpolation Method (DEIM) mithilfe von KerMor, einem

Framework, das Methoden der Model Order Reduction bereitstellt.
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1 Einleitung

Die Simulation der Ausbreitung von Aktionspotentialen entlang von Muskelfasern kann Teil der

Simulation in ganzen Muskeln sein. Diese Berechnungen sind sehr aufwändig, da ein Muskel

eine große Anzahl im Bereich von mehreren Millionen von Muskelfasern verschiedener Größe

enthalten kann. Das Modell, das in dieser Arbeit untersucht wird, ist ein nichtlineares dynamisches

System gewöhnlicher Differentialgleichungen, die mit einer partiellen Differentialgleichung

gekoppelt werden. Dieses Modell muss also auch noch mit einer ausreichenden Anzahl diskreter

Elemente und mit ausreichend feinen Zeitschritten berechnet werden.

Diese Berechnungen können von Model-Order-Reduction-Methoden wie POD-Galerkin und

DEIM beschleunigt werden. Model-Order-Reduction-Methoden sind eine Klasse mathematischer

Verfahren, die das Ziel haben, Rechenzeit und Komplexität von dynamischen Systemen, die viel

Rechenzeit benötigen und sehr komplex sind, zu reduzieren. Diese Verfahren arbeiten unter

der Prämisse, dass sich der Mechanismus, der dem zu reduzierenden System zugrunde liegt, in

einer niedrigeren Dimension effektiv approximiert werden kann. Daher wird in dieser Arbeit

untersucht, wie dieses Modell am besten für verschiedene MOR-Methoden approximiert wird.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Hier werden die Grundlagen beschrieben, die für die Simulationen in

dieser Arbeit benötigt werden.

Kapitel 3 – Ergebnisse: In diesem Kapitel werden die Ergebnisse für die Berechnung des vor-

gestellten Modells mit MOR-Methoden beschrieben.

Kapitel 4 – Zusammenfassung und Ausblick bespricht die Ergebnisse der Arbeit sowie mög-

liche zukünftige Schritte in diesem Bereich.
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2 Grundlagen

2.1 Anatomische, physikalische und biochemische Grundlagen

In diesem Kapitel werden kurz Aufbau und Funktionsweise von Motorneuronen und Skelett-

muskeln sowie chemische Reaktionen im Skelettmuskel beschrieben [Hei]. Besonders wird in

diesem Kapitel darauf eingegangen, wie Aktionspotentiale über Motorneuron und Muskelfasern

übertragen werden und schließlich zu einer Krafterzeugung in den Muskelfasern führen. Für

weitere Details wird auf Heidlauf [Hei] verwiesen. Diese Quelle wird auch zur Beschreibung

von Funktionsweise und Aufbau in diesem Kapitel verwendet und aus ihr sind Abbildung 2.1,

Abbildung 2.2 und Abbildung 2.3. Wenn in Kapitel 2.1 zusätzliche oder andere Quellen verwendet

werden, dann werden diese am Ende des Satzes oder Absatzes genannt.

2.1.1 Motorneuronen

Abbildung 2.1 zeigt den Aufbau eines Motorneurons. Der Zellkörper des Motorneurons, hier

Soma genannt, liegt im Rückenmark. Es ist über das Axon mit einzelnen Muskelfasern eines

Skelettmuskels verbunden. Das Motorneuron erhält elektrische Signale über die Dentriten von

anderen Neuronen aus dem Rückenmark. Daraufhin leitet es dann unter bestimmten Bedingungen

kurze elektrische Signale, sogenannte Aktionspotentiale, über das Axon und die neuromuskuläre

Verbindung an die Muskelfasern weiter. Wenn ein Aktionspotential entlang eines Motorneurons

zur neuromuskulären Verbindung propagiert wird, werden dort aufgrund der Spannung Ca2+
-

Kanäle geöffnet. Der Anteil der Ca2+
-Ionen im Neuron erhöht sich, was dazu führt, dass das

Motorneuron Neurotransmitter freigibt. Deshalb öffnen sich Na+
-Ionenkanäle in der Muskelfa-

sermembran. Die weitere Ausbreitung des Aktionspotentials entlang einer Muskelfaser wird in

Abschnitt 2.1.2 beschrieben.

Motorneuronen können mit einer unterschiedlichen Anzahl an Muskelfasern im Muskel ver-

bunden sein. Die Anzahl der mit ihnen verbundenen Fasern reicht von einigen Dutzend bis zu

mehreren Zehntausend. Die Fasern, die mit einem bestimmten Motorneuron verbunden sind,

müssen nicht alle im selben Bereich des Muskels liegen, sie können auch verteilt sein. Die Einheit

von Motorneuron und damit verbundenen Muskelfasern nennt man Motor Unit.

2.1.2 Skelettmuskel und Muskelfasern

Der Skelettmuskel besteht aus einzelnen Muskelfasern, die mit extrazellulärem Bindegewebe

gebündelt und in einer bestimmten Form gehalten werden. In Abbildung 2.2 kann man die vom

Bindegewebe (hier Epimysium, Endomysium und Perimysium) gebündelten Muskelfasern des
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Abbildung 2.1: Motorneuron

Abbildung 2.2: Skelettmuskel

Muskels sehen. Je nach Größe des Muskels können so zwischen einigen 100 bis zu mehreren

Millionen Muskelfasern gebündelt werden.

Die Zellmembran dieser Muskelfasern enthält Ionenpumpen und Ionenkanäle. Diese ermöglichen

es, Ionen aus dem Zellinneren nach außen und Ionen von außerhalb der Zelle ins Zellinnere zu

befördern. Ein Beispiel für eine dieser Ionenpumpen ist die Na+ −K+
-Ionenpumpe, die für drei

Na+
-Ionen, die aus der Zelle bewegt werden, zwei K+

-Ionen ins Zellinnere befördert. Dieser

Ionenaustausch führt bei Muskelfasern im Ruhezustand zu einer Spannung zwischen Zellinnerem

und dem Äußeren der Zelle. Das Potential liegt ungefähr im Bereich von -70 mV bis -80 mV.

Für jedes Ion (Na+, K+, Cl−, Ca2+
) gibt es einen Gleichgewichtszustand mit einem bestimmten

elektrischen Potential, in dem die Anzahl der nach innen beförderten Ionen der Anzahl der nach

außen gebrachten entspricht. Dieses liegt für K+
bei -90mV, für Na+

aber bei 75mV. Das ist

weit von der Ruhespannung der Zelle entfernt, weil die Zellmembran im Ruhezustand kaum

Na+
-Ionen durchlässt.[Hei]

Das ändert sich, wenn ein zusätzlicher Strom wie das Aktionspotential der Motorneuronen an

einem Teil der Muskelfaser anliegt. Wenn das Aktionspotential ausreichend groß ist, kommt es

zu einer Depolarisierung. Die Membran wird durchlässiger für Na+
-Ionen und die Spannung

ändert sich aufgrund dieser Ionen, die nun in das Innere der Zelle gelangen können. Wenn die

Spannung einen bestimmten Wert übersteigt, werden weitere Ionenkanäle geöffnet, die weitere

Na+
-Ionen ins Zellinnere lassen, das Potential nähert sich der Gleichgewichtsspannung von Na+

an. Daraufhin werden die Ionenkanäle wieder geschlossen und die Zelle repolarisiert, das bedeutet,
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Abbildung 2.3: Aktionspotential

dass das Potential wieder in den Ruhezustand zurückkehrt. War der Stimulationsstrom groß genug,

wird nun das Aktionspotential entlang der Zelle propagiert, und die oben beschriebenen Schritte

wiederholen sich an anderen Stellen entlang der Zellmembran.

In Abbildung 2.3 ist der zeitliche Verlauf eines Aktionspotentials zu sehen. Das Ruhepotential liegt

bei circa -75mV und es kommt zu einer Depolarisierung. Nach der Repolarisierung gibt es eine

kurze Phase, in der die Spannung unter dem Ruhepotential liegt. In dieser Zeitspanne ist daher

eine höhere Spannung nötig, die Schwellspannung zu erreichen und ein weiteres Aktionspotential

zu propagieren.

Das Aktionspotential, das entlang der Zellmembran propagiert wird, wird über die sogenannten

T-Tubuli von der Zellmembran ins Zellinnere geleitet, diese kann man in Abbildung 2.4 aus

[14] sehen. Sie sind um die Myofibrillen geschlungen, die die einzelnen Muskelfasern weiter

strukturieren. Myofibrillen sind Ketten von Sarkomeren. Diese Sarkomere sind die Teile des

Muskels, in denen die Kraft oder Bewegung erzeugt wird. Ein Sarkomer besteht aus einer Reihe von

dicken und dünnen Filamenten, Proteinen, die einander überlappen. Im Inneren der Muskelfaser

führt eine Spannungsänderung zur Öffnung bestimmter Ionenkanäle und der Ausschüttung

von Ca2+
aus dem sarkoplasmatischen Retikulum, dieses ist ein Speicher von Ca2+

in hoher

Konzentration. Die Ionen verbinden sich mit Troponin-C-Molekülen in den Sarkomeren, was es

ermöglicht, dass sich die dicken und dünnen Fasern der Sarkomere verbinden und die Sarkomere

sich zusammenziehen.

2.2 Nichtlineare dynamische Differentialgleichungen

Jede nichtlineare dynamische Differentialgleichung (ohne Parameter) kann in folgender Form

beschrieben werden:

x′(t) = f(x(t), t) + A(t)x(t) + B(t)u(t) (2.1)

19



Abbildung 2.4: Sarkomere

x(0) = x0 (2.2)

w(t) = C(t)x(t) (2.3)

Hier enthält A(t)x(t) mit der Matrix A den linearen Teil des Systems und f(x(t), t) den nichtli-

nearen Teil. B(t)u(t) ist die von der Eingabematrix B(t) gewichtete Eingabefunktion und enthält

somit alles, was mit der Eingabe oder dem Input zusammenhängt. [Wir14]

Die Ausgabe des Sytems wird mit w(t) berechnet, indem x(t) mit C(t) skaliert wird.

2.3 Hodgkin-Huxley-Modell

DasHodgkin-Huxley-Modell ist ein biophysikalischesModell, das dazu genutzt wird, die Spannung

sowie die Entwicklung der Spannung, die an einer Zellmembran anliegt, zu simulieren. Dazu wird

in diesem biophysikalischen Modell, anders als in phänomenologischen Modellen, Wissen über

Funktionsweise und Aufbau von Zelle und Zellmembran verwendet. Das Modell beschreibt das

Verhalten der Spannung an einer Zellmembran mit Hilfe eines elektrischen Stromkreises.[Hei]
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Abbildung 2.5: Hodgkin-Huxley-Modell:Stromkreis

Abbildung 2.5 zeigt den Aufbau dieses Stromkreises. Wie in Abschnitt 2.1.2 beschrieben, ermögli-

chen es Ionenpumpen, Ionenkanäle und Durchlässigkeit der Zellmembran, die Anzahl der Ionen

zu beeinflussen, die die Membran passieren. Das führt zu einer elektrischen Spannung zwischen

Äußerem und Innerem der Zelle. Das Verhalten dieser Pumpen, Kanäle und der Zellmebran ist

wiederum von der Spannung abhängig, die an der Membran anliegt.[Hei]

Man kann nun in Abbildung 2.5 sehen, dass Ionenpumpen und Ionenkanäle mit spannungsab-

hängigen Widerständen vor Stromquellen simuliert werden, die zu einem Kondensator parallel

geschaltet sind. Diese spannungsabhängigen Widerstände simulieren für die einzelnen Ionen

Na+
und K+

, welchen Einfluss sie bei einer bestimmten Spannung auf die Gesamtspannung

haben, was davon abhängt, wie durchlässig die Zellmembran für diese Ionen ist. Die Spannungen

der Stromquellen entsprechen dem Gleichgewichtszustand der jeweiligen Ionen. EK und ENa

haben also das Potential des Gleichgewichtszustands von Na+
und K+

, der Wert von EL ist nicht

vom Gleichgewichtszustand eines bestimmten Ions abhängig, da damit der Leckstrom simuliert

werden soll. Dieser beschreibt das Verhalten der Zellmembran, die immer für einen gewissen

Anteil von Cl− oder K+
aufgrund von Leckkanälen durchlässig ist. Der Widerstand gL ist daher

auch nicht spannungsabhängig wie die anderen beiden Widerstände im Modell.[Hei]

Das Verhalten von Widerständen und externem Simulationsstrom führt dazu, dass eine Spannung

am Kondensator anliegt, die die elektrische Spannung an der Muskelfasermembran simuliert.

Mit diesem Stromkreis kann man Differentialgleichungen aufstellen, mit deren Hilfe eine Ap-

proximation der Membranspannung berechnet werden kann. Aus dem Stromkreis ergibt sich

Gleichung (2.4), wobei Iion die Summe der Ströme im Stromkreis repräsentiert. [Hei]

Im = Cm
∂Vm

∂t
+ Iion = 0 (2.4)

Iion = INa + IK + IL − Istim (2.5)
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Die einzelnen Ströme können mit Hilfe des Ohmschen Gesetzes berechnet werden.

Ii = gi(Vm − Ei) ∀i ∈ {Na, K, L} (2.6)

DieWiderstände gk und gNa sind über die Gatingvariablen n, m und h von der Spannung abhängig.

Diese Variablen werden durch die Reaktionsgleichungen 2.9 berechnet. Gleichung (2.10) zeigt die

Standardform der Hin- und Rückreaktionsgleichungen für die Variablen m, n und h.[Hei]

gK = ḡKn4
(2.7)

gNa = ¯gNam3h (2.8)

∂ω

∂t
= αω(Vm)(1− ω)− βω(Vm)ω ∀ω ∈ {n, m, h} (2.9)

ηω = aω + bωVω

cω + dωexp(Vm+eω
fω

)
∀ηω ∈ {αω(Vm), βω(Vm)} (2.10)

Aus diesen Gleichungen folgen die nichtlinearen Differentialgleichungen in Gleichung (2.11).


∂V
∂t
∂m
∂t
∂h
∂t
∂n
∂t

 =


− 1

Cm
( ¯gNam3h(Vm − ENa) + ḡKn4(Vm − EK) + gL(Vm − EL)− Istim)

−0.1∗(Vm+50)
−1+exp( −(Vm+50)

10 )
(1−m)− 4 ∗ exp(−(Vm+75)

18 )m

0.07 ∗ exp(−Vm+75
20 )(1− h)− 1

1+exp(− Vm+45
10 )

h

−0.01∗(Vm+65)
−1+exp(− Vm+65

10 )
(1− n)− 0.125 ∗ exp(Vm+75

80 )n


(2.11)

In der weiteren Arbeit werden bei der Simulation folgendeWerte und Startwerte aus [Hei] verwen-

det:

Cm ¯gNa ḡK ḡL ENa EK EL

1 F/ cm
2

120 mS / cm
2

360 mS / cm
2

0.3 mS / cm
2

40 mV -87 mv -64.387 mV

x0 =


Vm0

m0
h0
n0

 =


−75mV

0.325
0.05
0.6

 (2.12)
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2.4 Monodomain-Modell

Das Hodgkin-Huxley-Modell beschreibt das Verhalten der Muskelfasermembran an einem be-

stimmten Punkt. Spannungsänderungen an einer Stelle der Membran beeinflussen aber auch das

elektrische Potential in anderen Bereichen entlang der Zellmembran. Dieser Zusammenhang

wird durch das Monodomain-Modell beschrieben. Der Name Monodomain bezieht sich auf das

Bidomain-Modell. Im Bidomain-Modell werden zur Berechnung der elektrischen Spannung elek-

trisch inaktive Regionen und elektrisch aktive Regionen unterschieden, im Monodomain-Modell

werden nur elektrisch aktive Regionen betrachtet. In Gleichung (2.13) ist der rechte Teil schon aus

Abschnitt 2.3 bekannt. Dieser wird zu einer Diffusionsgleichung über die Spannung mit dem Dif-

fusionskoeffizienten σeff verbunden. In Gleichung (2.13) kann Gleichung (2.5) aus Abschnitt 2.3

eingesetzt werden. Dadurch wird die partielle Differentialgleichung des Monodomain-Modells

mit dem System nichtlinearer gewöhnlicher Differentialgleichungen des Hodgkin-Huxley-Modell

gekoppelt. [Hei]

div(σeff grad(Vm)) = Am(Cm
∂Vm

∂t
+ Iion) (2.13)

Für den Fall, dass es nur eine Raumdimension gibt, kann Gleichung (2.13) umgeschrieben werden

in Gleichung (2.14). Mit dieser Gleichung kann nun die Propagierung des Aktionspotentials

entlang der Membran einer Muskelfaser beschrieben werden. [Hei]

σeff

AmCm

∂2Vm

∂x∂x
− 1

Cm
Iion = ∂Vm

∂t
(2.14)

Es gelten für die Berechnungen dieses Gleichungssystems in dieser Arbeit die Neumann-

Randbedingungen.

2.5 Löser

Zur Lösung von Differentialgleichungen wie Gleichung (2.14) wird ein numerischer Löser benötigt.

Ein Beispiel für ein numerisches Lösungsverfahren, mit dem nichtlineare dynamische Differenti-

algleichungen in der Form von Gleichung (2.1), Gleichung (2.2) gelöst werden können, ist das

semi-implizite Eulerverfahren oder Godunov-Splitting, das eine Kombination aus implizitem und

explizitem Eulerverfahren ist.[Hei]

Gleichung (2.1) lässt sich mit diesem Verfahren in zwei Differentialgleichungen in folgender Form

aufteilen:

x′(t) = A(t)x(t)
x′(t) = f(x(t), t) + B(t)u(t)

(2.15)

Also kann ihre Lösung approximiert werden, indem zuerst der nichtlineare Teil x∗(t + 1) explizit
berechnet wird und dann das lineare Gleichungssystem dt ∗A(t)x((t + 1)) = x∗(t + 1) nach
x((t + 1)) gelöst wird.[Hei]
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2.6 Model Order Reduction

Model-Order-Reduction-Methoden sind eine Klasse mathematischer Verfahren, die das Ziel haben,

Rechenzeit und Komplexität von dynamischen Systemen, die viel Rechenzeit benötigen und

sehr komplex sind, zu reduzieren. Diese Verfahren arbeiten unter der Prämisse, dass sich der

Mechanismus, der dem zu reduzierenden System zugrunde liegt, in einer niedrigeren Dimension

effektiv approximiert werden kann.

Methoden der Model Order Reduction, die häufig eingesetzt werden, sind Unterraumprojektions-

verfahren. Diese verwenden einen Unterraum, auf den das komplexe System reduziert wird. In

diese Gruppe gehören das POD-Galerkin-Verfahren und DEIM (Discrete Empirical Interpolation

Method), deren Anwendung auf nichtlineare dynamische Differentialgleichungen in diesem Ka-

pitel besprochen wird. Davor wird auf das POD-Verfahren (Proper Orthogonal Decomposition)

eingegangen, das die Basisvektoren eines möglichst optimalen Unterraums approximieren soll.

Die Algorithmen DEIM und POD, die in diesem Kapitel vorkommen, werden in der Simulation

der Ergebnisse in dieser Arbeit verwendet, wie sie im MOR-Framework KerMor implementiert

wurden und können in [Wir14] und [CS10] nachgelesen werden. [CS10] [Wir14]

2.6.1 POD

Die Proper Orthogonal Decomposition oder POD ist eine Methode, mit der eine Unterraum-

approximation im Hilbertraum berechnet wird. Die Basis dieser Projektion ist die Menge der

orthonormalen Vektoren {φi}, die das Minimierungsproblem Gleichung (2.17) erfüllen.[CS10]

[Wir14]

min{φi}k
i=1

n∑
j=1
∥xi −

k∑
i=1

(xT
j φi)φi∥22

φT
i φj = δij

(2.17)

Die optimale Basis zur Lösung dieses Optimierungsproblems kann für eine Matrix X berechnet

werden, indem die Singulärwertzerlegung auf dieser Matrix durchgeführt wird. In unserem Fall

besteht diese Matrix X aus den Trajectories X = x1, ..., xn
. Jedes xi

ist eine Ergebnismatrix

der Berechnung des Modells zu den jeweiligen Zeitschritten, die in den späteren Berechnungen

verwendet werden sollen. Für die verschiedenen Matrizen xi
können somit zum Beispiel un-

terschiedliche Ergebnisse für verschiedene Eingaben verwendet werden. Die k Basisvektoren

eines Unterraums mit Dimension k sind dann die ersten k Spaltenvektoren der Matrix V in Glei-

chung (2.18), die die linken Singulärvektoren nach der Singulärwertzerlegung enthält. Außerdem

ist hier kurz anzumerken, dass aufgrund des Zusammenhangs in Gleichung (2.19) die Anzahl der

Singulärvektoren, die für eine Approximation mit einer bestimmten Genauigkeit benötigt werden,

daran erkannt werden kann, wie stark die Wertabnahme der Singulärwerte ist.[CS10] [Wir14]
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Y = V ΣW T
(2.18)

ns∑
j=1
∥yi −

k∑
i=1

(yT
j vi)vi∥22 =

r∑
i=k+1

σ2
i (2.19)

2.6.2 POD-Galerkin

Mit der Matrix V, die mit POD berechnet wurde, kann jetzt das reduzierte System zu einem

nichtlinearen dynamischen Gleichungssystem berechnet werden. Die volle Ausgabe des Systems

kann aus der reduzierten Ausgabe mit

mathbfy(t) = CVk
˜x(t) und dim(y(t)) = n berechnet werden. Vk beschreibt hier die Matrix

V bis zum k-ten Spaltenvektor mit dim(V T
k ) = k × n. Damit hat

˜y(t) die Dimension k. Die

Startwerte des reduzierten Systems werden aus den Anfangswerten berechnet, die für das volle

System gegeben sind, wie in 2.20 ersichtlich ist.[CS10] [Wir14]

˜x(0) = V T
k x(0) = V T

k x0 (2.20)

So kommt man auf Gleichung (2.21) für das reduzierte Modell. A wird hier mit VT
k AVk auf

eine k × k-Matrix reduziert. Die Ergebnisse des reduzierten Modells werden in der nichtlinearen

Funktion F mit Vkx̃ auf dim(x(t)) = n projiziert, also auch n mal in der Funktion ausgewertet.

Diese Eigenschaft ist einer der Hauptnachteile des POD-Galerkin-Ansatzes. Die Reduzierung

wirkt sich nämlich nicht auf die Auswertung der nichtlinearen Funktion oder der beiden Matrix-

Vektor-Multiplikationen aus. Diese hängen immer noch von n ab. Je nach Berechnungsaufwand

der nichtlinearen Funktion kann hier aber die Hauptlast der Berechnung liegen.[CS10] [Wir14]

Die Matrix Vk sowie die Multiplikationen mit den anderen konstanten Matrizen können vor der

eigentlichen Berechnung des reduzierten Modells in der sogenannten Offline-Phase berechnet

werden. Der beabsichtigte Zeitgewinn erfolgt, wenn diese Matrizen verwendet werden können,

das System in der Online-Phase für mehrere verschiedene Parameter oder Eingabefunktionen mit

akzeptabler Genauigkeit zu berechnen.[CS10] [Wir14]

d

dt
x̃(t) = VT

k AVkx̃(t) + VT
k F(Vkx̃(t)) + VT

k Bu(t)

y(t) = CVkx̃(t)
(2.21)

2.6.3 DEIM

Ein Ansatz, das Problem, dass die Berechnung des reduzierten Modells immer noch von n abhängt

zu lösen, das im POD-Galerkin-Ansatz auftrat, ist die Deterministische Empirische Interpolations-

methode (DEIM). Deren Ansatz ist es, auch die nichtlineare Funktion auf einen Unterraum, hier

U, zu reduzieren und damit die Anzahl der Auswertungen der Funktion zu verringern.[CS10]

Das volle Ergebnis der Funktion F soll über Interpolation eines Koeffizientenvektors c(τ) mit

der Matrix U berechnet werden können. Also gilt P T f(τ) = (P T U)c(τ), wobei P eine Auswahl
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Algorithmus 2.1 DEIM

procedure DEIM2(ul
m
l=1 ⊂ ℜn

)

INPUT :ul
m
l=1

OUTPUT :−→℘ = [℘1, ..., ℘m]T ∈ ℜm

[|ρ|, ℘1]← max|u1|
U← u1, P← [e℘1 ],−→℘ = [℘]
for l = 2 m do

Solve (PTU)c = PTul for c
r = ul −Uc
[[ρ], ℘l] = max|r|

U← [Uul], P← [Pe℘l],−→℘ ←
[−→℘

℘l

]
end for

end procedure

von Einheitsvektoren ist. Diese Eigenschaften können umgestellt werden zu f(τ) ≈ Uc(τ) =
U(P T U)−1P T f(τ). Es wird also ausgenutzt, dass P T

dünn besetzt ist und somit F nur noch an

k Stellen ausgewertet werden muss. Zu beachten ist, dass dieser Vorteil nur erhalten bleibt, wenn

die Auswertung von F an einem bestimmten Punkt nicht von zu vielen benachbarten Punkten

abhängt.[CS10]

Der DEIM-Algorithmus ist ein Greedy-Algorithmus. Für einen neuen Basisvektor ul wird der

Punkt ermittelt, an dem die größte Differenz in der Approximation im Vergleich zur Berechnung

mit den schon gewählten Basisvektoren liegt. Für diesen wird dann ein neuer Einheitsbasisvektor

zu P hinzugefügt, um die Approximation in diese Richtung zu verbessern.[CS10] [Wir14] [CS10]

Damit ergibt sich folgendes Gleichungssystem, wenn man POD-Galerkin mit DEIM kombi-

niert[CS10]:

d

dt
x̃(t) = VT

k AVkx̃(t) + VT
k U(PTU)−1PTF(Vkx̃(t)) + VT

k Bu(t)

y(t) = CVk
˜x(t)

(2.22)
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3 Ergebnisse

In diesem Kapitel wird beschrieben, wie bei der Berechnung der Ergebnisse vorgegangen wurde,

welche Schwierigkeiten es bei der Berechnung gab, sowie zuletzt, zu welchen Ergebnissen die

Berechnung mit unterschiedlichen MOR-Methoden führte. Zuerst wird in Abschnitt 3.1 beschrie-

ben, wie das System diskretisiert wurde, in Abschnitt 3.2 wird besprochen, was KerMor ist und

welche Vorteile oder Nachteile die Berechnung durch KerMor hat. Im Abschnitt 3.3 werden die

ersten Ergebnisse vorgestellt. Es geht in diesem Abschnitt darum, ob sich das Modell für die

Propagation von Aktionspotentialen entlang von Muskelfasern überhaupt für MOR-Methoden

eignet. Ergebnisse der Reduktion mit MOR-Methoden werden dann in Abschnitt 3.4, Abschnitt 3.5

und Abschnitt 3.6 besprochen.

3.1 Kombination der Modelle und Diskretisierung

Die Modelle Hodgkin-Huxley und Monodomain werden für die Berechnungen des Systems kombi-

niert, wie in Gleichung (2.14) beschrieben. Für das System gelten Neumann-Randbedingungen, das

heißt, dass es keine Diffusion "über den Rand hinaus"gibt. Die partielle Ableitung zweiter Ordnung

nach der Raumdimension x wird mit einer central-difference-Approximation zweiter Ordnung

nach der Finite-Elemente-Methode diskretisiert. Diese Diskretisierung führt zur Matrix A, die

mit der Spannung V multipliziert wird und damit den linearen Teil dieses nichtlinearen Modells

formt Gleichung (3.1). Diese Matrix und damit das Modell können nach dieser Entscheidung auf

zwei verschiedene Weisen diskretisiert werden, welche sich auf den Fehler der Approximation

und die Laufzeit auswirken können. Entweder werden die Ergebnisse der Berechnung der Gating-

Variablen m, n und h ins Gesamtmodell übernommen oder sie werden in der Funktion f berechnet,

aber nicht als Ergebnis ausgegeben.

Beide Entscheidungen haben auf den ersten Blick Vor- und Nachteile. Der erste Fall sorgt dafür,

dass dieMatrix A um den Faktor vier größer ist als im zweiten Fall und damit die Berechnungsdauer

von Multiplikationen mit dieser Matrix größer wäre. Ein Vorteil dieses Ansatzes wäre aber, dass

mehr Daten zur Verfügung stehen, um mit POD die Unterraumapproximation V zu berechnen.

Der Grundgedanke der Unterraumapproximation war, dass sich hinter einem komplexen System

ein Mechanismus niedrigerer Dimension verbirgt. Wenn die entscheidende Variable nun m, n oder

h wäre, dann kann eine Approximation, die nur die Spannungswerte zur Berechnung bekommt,

schlechtere Ergebnisse produzieren.

∂Vm
∂t = σeff

AmCmdx2 AVm + (− 1
Cm

)F(Vm, t) + ( 1
Cm

)Bu(t) (3.1)
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3.2 KerMor

Für die Untersuchung vonModel-Order-Reduction-Verfahren und dem oben beschriebenenModell

zur Approximation der Propagation von Aktionspotentialen entlang der Membran von Muskelfa-

sern wurde das Framework KerMor verwendet, das in MatLab bereitgestellt wird. Dieses enthält

eine Reihe von Methoden und Klassen, die mit Model-Order-Reduction zu tun haben oder für

diese benötigt werden können. Darunter sind Löser, der DEIM-Algorithmus und Algorithmen

wie POD, Greedy-POD und POD-Galerkin. Implementiert wurden im Zuge der Untersuchung die

beiden oben genannten Diskretisierungen des Systems. Das beinhaltet Methoden zum Berechnen

der verschiedenen Matrizen (lineare Matrix A, Eingabematrix B, Ausgabematrix C), verschie-

dene Inputfunktionen und Methoden zur Berechnung der nichtlinearen Funktion an einzelnen

bestimmten Punkten oder an allen Punkten in einem bestimmten Zeitschritt, sowie eine Methode

zur Berechnung der analytischen Lösung der Jacobimatrix dieser Funktion, da die Approximation

mit finiten Differenzen einen zu großen Fehler hatte.

Es mussten einige Änderungen am Framework vorgenommen werden, um vergleichbare Test-

ergebnisse zu erhalten. So war es notwendig, einige Fehler zu korrigieren, die auftraten, wenn

man mit Systemen rechnete, die nicht parametrisiert waren. Zudem wurde die Zeitmessung leicht

abgeändert, um die tatsächliche Laufzeit der Approximationen zu vergleichen, da ein Problem mit

der Messung der Laufzeit von DEIM auftrat. Wenn DEIM in KerMor aktiviert wird, finden mehr

Funktionsaufrufe statt, bevor die nichtlineare Funktion ausgewertet werden kann. Diese Aufrufe

vor jeder Berechnung von F wurden ursprünglich mitgemessen und verzerrten die Ergebnisse. Bei

den Tests stellte sich außerdem heraus, dass kleinste Änderungen am Code zu großen Änderungen

in den gemessenen Zeiten führen konnten, deshalb wurde versucht, den Code in den Methoden

zur Berechnung der Ergebnisse für alle Punkte und zur Berechnung der Ergebnisse für bestimmte

Punkte möglichst vergleichbar zu programmieren.

Für die numerische Lösung der Ergebnisse wurde immer das semi-implizite Eulerverfahren als

Löser verwendet. Die in KerMor implementierte Version hat die Eigenschaft, dass immer nur ein

Schritt möglich ist und nicht mehrmals in kleineren Zeitschritten zum Beispiel bei der expliziten

Lösung des nichtlinearen Teils der Gleichung iteriert werden kann. Die Zeitschritte für expliziten

und impliziten Teil können außerdem nicht unabhängig voneinander gewählt werden.

In den Tests wird für die Berechnung derMatrix V bei POD-Galerkin undDeim das Gesamtergebnis

von V, m, n und h verwendet. Für die Berechnung der Matrizen U und P bei DEIMwird die explizite

Lösung der nichtlinearen Funktion verwendet, also das Teilergebnis dieser Funktion für V, m, n

und h.

3.3 Singulärwerte

Der Singulärwertzerfall ist ein guter Hinweis darauf, wie erfolgreich die Anwendung von Un-

terraumprojektionsverfahren auf bestimmte Systeme ist Abschnitt 2.6.1. Deshalb wurde der

Singulärwertzerfall für verschiedene Mengen von diskreten Elementen und verschiedene Größen

der Zeitschritte für die Systeme mit Matrix V,m,n,h und V untersucht. Die Länge der Muskelfaser

wurde während aller Simulationen bei einem Zentimeter belassen, was bedeutet, dass sich mit

der Anzahl der diskreten Elemente ihre Größe ändert.
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Außerdem wurde der Stimulationspunkt in allen Versuchen auf das dritte diskrete Element einer

Seite festgelegt. In der Muskelfaser kann diese Stimulation auch an einer anderen Stelle eher in

der Mitte der Faser erfolgen, aber aufgrund der Symmetrieeigenschaften der Ausbreitung des

Aktionspotentials wäre es überflüssiger Rechenaufwand, den Stimulationspunkt in die Mitte zu

legen.

In diesem und jedem Fall ohne andere Angabe in den weiteren Kapiteln wurde über eine Zeitdauer

von 10ms die Ausbreitung des Aktionspotentials simuliert, der Stimulationsstrom liegt am Anfang

der Simulation für 0.5ms an und die Muskelfaser hat eine Länge von einem Zentimeter. In jedem

Fall, in dem nicht explizit die Größe eines Zeitschrittes für die Simulation angegeben ist, wurde

das System mit Zeitschritten von 0.0005ms gelöst.

Abbildung 3.1 zeigt den Zerfall von Singulärwerten für eine unterschiedliche Anzahl von Ele-

menten des Systems mit V,m,n und h außerhalb der nichtlinearen Funktion. Man erkennt, dass

es für jede Anzahl von Elementen einen steilen Abfall der Singulärwerte gibt und die Anzahl

der Singulärwerte mit sehr niedrigem Wert zunimmt, je höher die Anzahl der Elemente wird. In

Abbildung 3.2 sind die Werte im Verhältnis zu der Gesamtzahl an Singulärwerten des Ergebnisses

angegeben. Die Grafik zeigt, dass der Zerfall der Singulärwerte mit der Anzahl an Elementen

ansteigt. Bei 10 diskreten Elementen ist er noch flach, bei 320 schon so steil, dass schon ab weniger

als 40% der Gesamtzahl von Singulärwerten die niedrigste Ordnung erreicht wird.
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Abbildung 3.1: Singulärwerte für Matrix mit V, m, n und h-Werten (absolut)

Im Vergleich zu diesen Ergebnissen für V,m,n,h ist der Zerfall der Singulärwerte in Abbildung 3.3

und Abbildung 3.4 sowohl in relativer als auch absoluter Betrachtung flacher. Es zeigt sich aber

auch hier, dass die Zerfallsrate mit Verringerung der Größe der diskreten Elemente steigt.

Diese Ergebnisse lassen auf den ersten Blick darauf schließen, dass es wahrscheinlich besser

funktioniert, die erste Diskretisierungsvariante mit Unterraumprojektionsverfahren zu reduzieren,

aber auch eine Beschleunigung der Berechnung erfolgen kann, wenn die zweite Variante reduziert

wird.
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Abbildung 3.2: Singulärwerte für Matrix mit V, m, n und h-Werten (relativ)
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Abbildung 3.3: Singulärwerte für Matrix mit V-Werten (absolut)

3.4 Einzelnes Aktionspotential

In diesem Kapitel werden die Ergebnisse der MOR-Verfahren DEIM, POD-Galerkin, DEIM +

POD-Galerkin für eine Inputfunktion mit einem Stimulationsstrom zu Beginn der Simulation

mit einer Dauer von 0.5ms verglichen. Es wird über 10ms simuliert. Zuerst wurden Werte, wie

Beschleunigung des reduzierten Modells in der Online-Phase gegenüber dem vollen Modell sowie

der Berechnungsfehler, für die Methode POD-Galerkin mit verschiedenen Zeitschritten und

unterschiedlicher Anzahl der diskreten Elemente gemessen.

Abbildung 3.5 und Abbildung 3.6 zeigen, dass die Änderung der Größe der Zeitschritte keinen

erkennbaren Effekt auf Beschleunigung oder Fehler hat, wenn man die Dimension des reduzierten

Models ändert. Die einzige Beobachtung, die gemacht werden kann, ist, dass mit einem gröberen
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Abbildung 3.4: Singulärwerte für Matrix mit V-Werten (relativ)

Zeitschritt der Fehler kleiner wird, wenn die Dimension des reduzierten POD-Galerkin-Modells

nahe an der des vollen Modells liegt.

Die X-Werte geben jeweils die Dimension des mit POD-Galerkin reduzierten Modells für 80

diskrete Elemente an, die Y-Werte, um welchen Faktor das reduzierte Modell schneller ist oder

den durchschnittlichen reduzierten L2-Fehler des Modells über Raum und Zeit.
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Abbildung 3.5: POD-Galerkin Beschleunigung über verschiedene Zeitschritte

Abbildung 3.8 zeigt, dass die Beschleunigung der Berechnung für das gleiche Verhältnis der

Dimensionen von vollem und reduziertem Modell steigt, Abbildung 3.10, dass der Fehler für dieses

Verhältnis der Dimensionen des vollen und des reduzierten Modells sinkt.

Es ergibt sich also in Abbildung 3.11 die Beobachtung, dass mit steigender Anzahl an Elementen

für denselben Fehler eine größere Beschleunigung erreicht werden kann. Diese Ergebnisse würden

zu dem Schluss führen, dass das Modell mit der Diskretisierungsvariante, in der die Ergebnisse
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Abbildung 3.6: POD-Galerkin Fehler über verschiedene Zeitschritte
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Abbildung 3.7: POD-Galerkin Beschleunigung (absolut)

aller Variablen von der nichtlinearen Funktion F übergeben werden, erfolgreich mit der POD-

Galerkin-Methode beschleunigt werden kann. Ein Problem dieses Ansatzes ist aber, dass es ab

einer gewissen Anzahl an Elementen einen Bereich gibt, in dem das reduzierte Modell instabil ist.

Zum Beispiel gibt es im reduzierten Modell für 320 Elemente einen Bereich zwischen 160 und 600

Moden, in dem das System instabil ist.

In den nächsten Simulationen wurden die Ergebnisse der DEIM-Methode zuerst ohne POD-

Galerkin-Methode simuliert. In Abbildung 3.12 ist zu sehen, dass die Beschleunigung für DEIM

nicht so stark wie in POD-Galerkin ansteigt, wenn weniger Punkte ausgewertet werden und diese

interpoliert werden. Außerdem sinkt im Gegensatz zu POD-Galerkin die Beschleunigung, je mehr

Elemente simuliert werden. Der Fehler in Abbildung 3.13 nimmt außerdem nicht so gleichmäßig

ab, wie bei POD-Galerkin. Diese Verteilung der Fehlerwerte kann man sehr gut in Abbildung 3.14

für 320 Elemente sehen.
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Abbildung 3.8: POD-Galerkin Beschleunigung (relativ)
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Abbildung 3.9: POD-Galerkin Fehler (absolut)

Im nächsten Simulationsdurchlauf wurden daraufhin die Projektion der nichtlinearen Funktion

und des Gesamtmodells auf jeweils einen Unterraum getestet, zuerst wurde die Dimension des

reduzierten Modells außerhalb der nichlinearen Funktion geändert. Die Anzahl an Punkten,

die in der Funktion berechnet werden, wurde auf das 0.8-fache der Gesamtzahl festgesetzt. In

Abbildung 3.15 kannman erkennen, dass diese Kombination imVergleich zuDEIM ohne Projektion

des Gesamtmodells zu einem gleichmäßigeren Anstieg der Beschleunigung führt, das Modell auf

diese Art zu reduzieren aber keine Zeitvorteile gegenüber der POD-Galerkin-Variante hat, der

Fehler in Abbildung 3.16 entwickelt sich auch sehr ähnlich zu POD-Galerkin ohne DEIM.

Daraufhin wurde das Verhalten geprüft, wenn die Anzahl der Moden der Projektion des Gesamt-

systems für 80 Elemente auf 200 festgesetzt ist. Auch in diesem Fall gibt es keine Vorteile der

Kombination, in Abbildung 3.17 und Abbildung 3.18 schneidet DEIM ohne POD sogar sowohl im

Fehler als auch in der Beschleunigung besser ab als die Kombination von beiden.
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Abbildung 3.10: POD-Galerkin Fehler (relativ)
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Abbildung 3.11: POD-Galerkin Fehler-Beschleunigungsdiagramm

3.5 Mehrere Trajectories

Nachdem gezeigt wurde, dass es möglich ist, ein System zu reduzieren, wird nun untersucht, ob

es auch möglich ist, die Moden für das POD-Galerkin-Verfahren aus den Ergebnissen von Berech-

nungen mit verschiedenen Eingabefunktionen zu berechnen, und mit diesen dann akzeptable

Fehler- und Beschleunigungswerte für verschiedene Eingaben zu erzielen, womit es möglich wäre,

mit den MOR-Verfahren die Berechnung zu beschleunigen, da man somit nicht für jede Eingabe

eine Projektionsmatrix ausreichender Größe vorberechnen muss.

In dieser Simulation wurden daher die Ergebnismatrizen für 80 diskrete Elemente und fünf Einga-

befunktionen über 200ms simuliert. Die Eingabefunktionen wenden einen Stimulationsstrom auf

ein Element mit einer Frequenz zwischen 50Hz und 90Hz für jeweils 0.05ms an. Dann wurden die

Moden der Matrix dieser Ergebnisse ausgerechnet. Mit diesen Basen wurden dann die reduzierten
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Abbildung 3.12: DEIM Beschleunigung (relativ)
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Abbildung 3.13: DEIM Fehler (relativ)

Modelle für die verschiedenen Eingabefunktionen simuliert. Abbildung 3.20 zeigt den Fehler dieser

Berechnungen, Abbildung 3.19 die Beschleunigung für die jeweilige Dimension des reduzierten

Modells. Es zeigt sich, dass die Fehlerwerte für die verschiedenenen Eingaben relativ nahe zusam-

men liegen. Außerdem ist die Beschleunigung zwar nicht so stark wie bei der Berechnung der

Moden für einen einzelnen Eingabefall, wie zum Beispiel bei den Berechnungen für eine einzelne

Spannungsspitze, aber es kann immer noch die doppelte Geschwindigkeit erreicht werden.

3.6 Vergleich der verschiedenen Diskretisierungen

Für die amAnfang des Kapitels besprochene erste Diskretisierungsvariante wurde festgestellt, dass

es Probleme damit gibt, dass das Ergebnis des reduzierten Modells für bestimmte Dimensionen
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Abbildung 3.14: DEIM Fehler 320 Elemente (relativ)
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Abbildung 3.15: DEIM und POD-Galerkin, DEIM fest, Beschleunigung (relativ)

dieses Modells instabil wird. Deshalb wird nun die zweite Diskretisierungsvariante untersucht.

Für dieselben Einstellungen wie in Abschnitt 3.4 wird nun die zweite Diskretisierungsvariante

untersucht. In Abbildung 3.21 und Abbildung 3.22 ist zu sehen, dass die Beschleunigung der

Berechnung mit sinkender Dimension des reduzierten Modells oder steigender Anzahl an dis-

kreten Elementen nicht so sehr steigt wie in der ersten Diskretisierungsvariante. Das liegt aber

daran, dass die Matrix A in diesem Fall anders als im ersten Fall die Form einer Bandmatrix hat,

also ein Gleichungssystem mit dieser Matrix deutlich schneller gelöst werden kann als normale

Matrizen. Wenn diese aber reduziert wird, dann muss die reduzierte Matrix mit einem höheren

Rechenaufwand gelöst werden. Die Beschleunigung fällt also nicht so hoch aus, weil die Berech-

nung sowieso schon schneller ist. Der Berechnungsfehler nimmt dafür auch nicht so stark ab

wie im ersten Fall – damit kann die Vermutung aus Abschnitt 3.3 bestätigt werden, dass die erste

Diskretisierungsvariante genauere Ergebnisse liefert –, aber immer noch so schnell, dass genaue

Ergebnisse in der Hälfte der Berechnungszeit des vollen Modells berechnet werden können. Dazu
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Abbildung 3.16: DEIM und POD-Galerkin, DEIM fest, Fehler (relativ)
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Abbildung 3.17: DEIM und POD-Galerkin, POD fest, Fehler (relativ)

kommt noch, dass es bei der Berechnung mit POD-Galerkin in dieser Diskretisierungsvariante

keine Bereiche gibt, in denen das reduzierte Modell instabil wird. Diese Ergebnisse sprechen dafür,

im Anwendungsfall diese praktikablere zweite Variante zu verwenden.
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Abbildung 3.18: DEIM und POD-Galerkin, POD fest, Fehler (relativ)
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Abbildung 3.19: POD-Galerkin mit mehreren Input-Funktionen Beschleunigung
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Abbildung 3.20: POD-Galerkin mit mehreren Input-Funktionen Fehler
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Abbildung 3.21: POD-Galerkin mit V-Matrix, Fehler
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Abbildung 3.22: POD-Galerkin mit V-Matrix, Fehler
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4 Zusammenfassung und Ausblick

In der Arbeit wurden zwei verschiedene Diskretisierungsansätze zur Berechnung der Kombination

des Hodgkin-Huxley-Modells und des Monodomain-Modells zur Propagation von Aktionspoten-

tialen entlang von Muskelfasern beschrieben. Diese wurden für verschiedene Eingaben, Anzahl

diskreter Elemente und Zeitschritte für die Model-Order-Reduction-Methoden POD-Galerkin

und DEIM sowie die Kombination beider untersucht. Dabei ergab sich, dass beide das Potential

haben, die Berechnung des Modells zu beschleunigen. Mit POD-Galerkin ist es außerdem möglich,

die Moden für das Modell mit reduzierter System für mehrere Eingabefunktionen mit hoher

Genauigkeit vorauszuberechnen.

Die Kombination von POD-Galerkin und Interpolation über bestimmte Punkte des nichtlinearen

Teils des Modells ergab nicht die gewünschten Beschleunigungssteigerungen gegenüber der

separaten Anwendung dieser Methoden.

Das Ergebnis des Vergleichs der beiden Diskretisierungsvarianten ist, dass die zweite Variante,

in der nur das Ergebnis für die elektrische Spannung aus der nichtlinearen Funktion verwendet

wird, besser ist, weil die Berechnung schneller möglich ist und das reduzierte System – anders als

in der anderen Variante – für alle Dimensionen dieses Systems stabil ist.

Ausblick

In der Arbeit wurden einige Fragen beantwortet, aber auch einige neue aufgeworfen. So könnte

man untersuchen, weshalb die Kombination von DEIM und POD-Galerkin in KerMor langsamer

war, als die einzelne Anwendung dieser Verfahren. Außerdem muss für den Anwendungsfall

ein Verfahren entwickelt werden, mit dem festgelegt wird, welche Daten in der Offline-Phase

berechnet werden oder wie effektiv entschieden werden kann, welche Dimension das reduzierte

Modell haben soll (zum Beispiel mit Fehlerschätzern). In der Online-Phase ist die Frage, ob und

wie die Moden, die zur Reduktion des Models verwendet werden, während der Berechnung

geändert werden können, wenn sich zum Beispiel die Eingabe ändert. Außerdem kann für weitere

Verfahren der Model Order Reduction getestet werden, ob diese für das fragliche Modell bessere

Approximations- und Beschleunigungsergebnisse erzielen. Am verwendeten Framework KerMor

kann auch weiter gearbeitet werden. Weitere Methoden der Model Order Reduction können

implementiert werden, die Laufzeitberechnung kann vergleichbarer gestaltet werden.
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