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Kurzfassung

Model Order Reduction (MOR) ist der Oberbegriff fiir Methoden, die den Berechnungsaufwand
mathematischer Modelle verringern, indem deren Komplexitit reduziert wird. Kénnen diese
Methoden Berechnung einer Kombination von Hodgkin-Huxley-Modell und Monodomain-Modell
beschleunigen? Das Hodgkin-Huxley-Modell ist ein rechenaufwindiges Modell zur Berechnung
der Ionenstrome innerhalb von Muskelfasern, welches mit dem Monodomain-Modell kombiniert
wird, das die Ausbreitung von Aktionspotentialen entlang der Muskelfasern beschreibt.

Untersucht werden in der Bachelorarbeit Fehler und Beschleunigung von MOR-Verfahren wie
POD-Galerkin oder Discrete Empirical Interpolation Method (DEIM) mithilfe von KerMor, einem
Framework, das Methoden der Model Order Reduction bereitstellt.






Inhaltsverzeichnis

1 Einleitung

2 Grundlagen

2.1 Anatomische, physikalische und biochemische Grundlagen . . . . . . . ... ..
2.2 Nichtlineare dynamische Differentialgleichungen . . .. .. ... .. ... ...

2.3 Hodgkin-Huxley-Modell . . .. ... ... ..
2.4 Monodomain-Modell . . .. ... ... ....
25 Loser .. ... ... .. ... ..
2.6 Model Order Reduction . . . .. ... .....

3 Ergebnisse
3.1 Kombination der Modelle und Diskretisierung
32 KerMor . . . ... ... oL
3.3 Singuldrwerte . ... ... ...........
3.4 Einzelnes Aktionspotential . . . . . ... ...
3.5 Mehrere Trajectories . . ... .........
3.6  Vergleich der verschiedenen Diskretisierungen

4 Zusammenfassung und Ausblick

Literaturverzeichnis

15

17
17
19
20
23
23
24

27
27
28
28
30
34
35

41

43






Abbildungsverzeichnis

2.1
2.2
2.3
2.4
2.5

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

Motorneuron . . . . . ... oo
Skelettmuskel . . . . .. ...
Aktionspotential . . . . . . ...
Sarkomere . . . . . ..
Hodgkin-Huxley-Modell:Stromkreis . . . . . ... ... ... ... ........

Singularwerte fir Matrix mit V, m, n und h-Werten (absolut) . . . . .. ... ..
Singularwerte fir Matrix mit V, m, n und h-Werten (relativ) . . . . . ... .. ..
Singularwerte fir Matrix mit V-Werten (absolut) . . . . . .. ... ... ... ..
Singularwerte fir Matrix mit V-Werten (relativ) . . . . ... .. ... ... ...
POD-Galerkin Beschleunigung tiber verschiedene Zeitschritte . . . .. ... ..
POD-Galerkin Fehler iiber verschiedene Zeitschritte . . . . . . . ... ... ...
POD-Galerkin Beschleunigung (absolut) . . . . ... ... ... .. ... ....
POD-Galerkin Beschleunigung (relativ) . . . . .. ... ... .. ... .. ....
POD-Galerkin Fehler (absolut) . . . . ... ... ... .. ... ... .......
POD-Galerkin Fehler (relativ) . . .. ... ... ... ... ... ... ......
POD-Galerkin Fehler-Beschleunigungsdiagramm . . . .. ... ... ... ...
DEIM Beschleunigung (relativ) . . . . . . ... ... ... ... ... ...
DEIM Fehler (relativ) . . . . . . . . . . . . .
DEIM Fehler 320 Elemente (relativ) . . .. ... ... ... ... ... ......
DEIM und POD-Galerkin, DEIM fest, Beschleunigung (relativ) . . . ... .. ..
DEIM und POD-Galerkin, DEIM fest, Fehler (relativ) . . . . .. .. ... ... ..
DEIM und POD-Galerkin, POD fest, Fehler (relativ) . . . ... ... ... ....
DEIM und POD-Galerkin, POD fest, Fehler (relativ) . .. ... ... ... ....
POD-Galerkin mit mehreren Input-Funktionen Beschleunigung . . . . ... ..
POD-Galerkin mit mehreren Input-Funktionen Fehler . . . . . . . ... ... ..
POD-Galerkin mit V-Matrix, Fehler . . . . . . .. ... ... ... ... .....
POD-Galerkin mit V-Matrix, Fehler . . . . . . . . . . . . .. .. ... ... ...

18
18
19
20
21

29
30
30
31
31
32
32
33
33
34
34
35
35
36
36
37
37
38
38
39
39






Tabellenverzeichnis






Verzeichnis der Listings

11






Verzeichnis der Algorithmen

21 DEIM . . . e

13






1 Einleitung

Die Simulation der Ausbreitung von Aktionspotentialen entlang von Muskelfasern kann Teil der
Simulation in ganzen Muskeln sein. Diese Berechnungen sind sehr aufwéndig, da ein Muskel
eine groffe Anzahl im Bereich von mehreren Millionen von Muskelfasern verschiedener Grofle
enthalten kann. Das Modell, das in dieser Arbeit untersucht wird, ist ein nichtlineares dynamisches
System gewohnlicher Differentialgleichungen, die mit einer partiellen Differentialgleichung
gekoppelt werden. Dieses Modell muss also auch noch mit einer ausreichenden Anzahl diskreter
Elemente und mit ausreichend feinen Zeitschritten berechnet werden.

Diese Berechnungen kénnen von Model-Order-Reduction-Methoden wie POD-Galerkin und
DEIM beschleunigt werden. Model-Order-Reduction-Methoden sind eine Klasse mathematischer
Verfahren, die das Ziel haben, Rechenzeit und Komplexitat von dynamischen Systemen, die viel
Rechenzeit benétigen und sehr komplex sind, zu reduzieren. Diese Verfahren arbeiten unter
der Pramisse, dass sich der Mechanismus, der dem zu reduzierenden System zugrunde liegt, in
einer niedrigeren Dimension effektiv approximiert werden kann. Daher wird in dieser Arbeit
untersucht, wie dieses Modell am besten fiir verschiedene MOR-Methoden approximiert wird.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: Hier werden die Grundlagen beschrieben, die fiir die Simulationen in
dieser Arbeit benotigt werden.

Kapitel 3 — Ergebnisse: In diesem Kapitel werden die Ergebnisse fiir die Berechnung des vor-
gestellten Modells mit MOR-Methoden beschrieben.

Kapitel 4 — Zusammenfassung und Ausblick bespricht die Ergebnisse der Arbeit sowie mog-
liche zukiinftige Schritte in diesem Bereich.
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2 Grundlagen

2.1 Anatomische, physikalische und biochemische Grundlagen

In diesem Kapitel werden kurz Aufbau und Funktionsweise von Motorneuronen und Skelett-
muskeln sowie chemische Reaktionen im Skelettmuskel beschrieben [Hei]. Besonders wird in
diesem Kapitel darauf eingegangen, wie Aktionspotentiale tiber Motorneuron und Muskelfasern
iibertragen werden und schlie8lich zu einer Krafterzeugung in den Muskelfasern fithren. Fiir
weitere Details wird auf Heidlauf [Hei] verwiesen. Diese Quelle wird auch zur Beschreibung
von Funktionsweise und Aufbau in diesem Kapitel verwendet und aus ihr sind Abbildung 2.1,
Abbildung 2.2 und Abbildung 2.3. Wenn in Kapitel 2.1 zusitzliche oder andere Quellen verwendet
werden, dann werden diese am Ende des Satzes oder Absatzes genannt.

2.1.1 Motorneuronen

Abbildung 2.1 zeigt den Aufbau eines Motorneurons. Der Zellkérper des Motorneurons, hier
Soma genannt, liegt im Riickenmark. Es ist tiber das Axon mit einzelnen Muskelfasern eines
Skelettmuskels verbunden. Das Motorneuron erhalt elektrische Signale iiber die Dentriten von
anderen Neuronen aus dem Riickenmark. Darauthin leitet es dann unter bestimmten Bedingungen
kurze elektrische Signale, sogenannte Aktionspotentiale, iiber das Axon und die neuromuskulére
Verbindung an die Muskelfasern weiter. Wenn ein Aktionspotential entlang eines Motorneurons
zur neuromuskuliren Verbindung propagiert wird, werden dort aufgrund der Spannung Ca?*-
Kanile geoffnet. Der Anteil der C'a?*-Tonen im Neuron erhéht sich, was dazu fiihrt, dass das
Motorneuron Neurotransmitter freigibt. Deshalb 6ffnen sich Na™-Ionenkanile in der Muskelfa-
sermembran. Die weitere Ausbreitung des Aktionspotentials entlang einer Muskelfaser wird in
Abschnitt 2.1.2 beschrieben.

Motorneuronen konnen mit einer unterschiedlichen Anzahl an Muskelfasern im Muskel ver-
bunden sein. Die Anzahl der mit ihnen verbundenen Fasern reicht von einigen Dutzend bis zu
mehreren Zehntausend. Die Fasern, die mit einem bestimmten Motorneuron verbunden sind,
missen nicht alle im selben Bereich des Muskels liegen, sie konnen auch verteilt sein. Die Einheit
von Motorneuron und damit verbundenen Muskelfasern nennt man Motor Unit.

2.1.2 Skelettmuskel und Muskelfasern
Der Skelettmuskel besteht aus einzelnen Muskelfasern, die mit extrazellularem Bindegewebe

gebiindelt und in einer bestimmten Form gehalten werden. In Abbildung 2.2 kann man die vom
Bindegewebe (hier Epimysium, Endomysium und Perimysium) gebiindelten Muskelfasern des
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Abbildung 2.2: Skelettmuskel

Muskels sehen. Je nach Grofie des Muskels konnen so zwischen einigen 100 bis zu mehreren
Millionen Muskelfasern gebiindelt werden.

Die Zellmembran dieser Muskelfasern enthilt Ionenpumpen und Ionenkanile. Diese erméglichen
es, Ionen aus dem Zellinneren nach auf3en und Ionen von auf3erhalb der Zelle ins Zellinnere zu
beférdern. Ein Beispiel fiir eine dieser Ionenpumpen ist die Na™ — K" -Ionenpumpe, die fiir drei
Na™T-Ionen, die aus der Zelle bewegt werden, zwei K *_-Tonen ins Zellinnere beférdert. Dieser
Ionenaustausch fiithrt bei Muskelfasern im Ruhezustand zu einer Spannung zwischen Zellinnerem
und dem Aufleren der Zelle. Das Potential liegt ungefahr im Bereich von -70 mV bis -80 mV.

Fiir jedes Ion (Na™, K+, Cl~, Ca?") gibt es einen Gleichgewichtszustand mit einem bestimmten
elektrischen Potential, in dem die Anzahl der nach innen beforderten Ionen der Anzahl der nach
auflen gebrachten entspricht. Dieses liegt fiir KT bei -90mV, fiir Na™ aber bei 75mV. Das ist
weit von der Ruhespannung der Zelle entfernt, weil die Zellmembran im Ruhezustand kaum
Na™-Tonen durchlisst.[Hei]

Das éndert sich, wenn ein zusitzlicher Strom wie das Aktionspotential der Motorneuronen an
einem Teil der Muskelfaser anliegt. Wenn das Aktionspotential ausreichend grof3 ist, kommt es
zu einer Depolarisierung. Die Membran wird durchlissiger fiir Na™-Ionen und die Spannung
andert sich aufgrund dieser Ionen, die nun in das Innere der Zelle gelangen kénnen. Wenn die
Spannung einen bestimmten Wert iibersteigt, werden weitere Ionenkanile geoffnet, die weitere
Nat-lonen ins Zellinnere lassen, das Potential nahert sich der Gleichgewichtsspannung von Na™
an. Daraufhin werden die Ionenkanile wieder geschlossen und die Zelle repolarisiert, das bedeutet,
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Abbildung 2.3: Aktionspotential

dass das Potential wieder in den Ruhezustand zuriickkehrt. War der Stimulationsstrom grofy genug,
wird nun das Aktionspotential entlang der Zelle propagiert, und die oben beschriebenen Schritte
wiederholen sich an anderen Stellen entlang der Zellmembran.

In Abbildung 2.3 ist der zeitliche Verlauf eines Aktionspotentials zu sehen. Das Ruhepotential liegt
bei circa -75mV und es kommt zu einer Depolarisierung. Nach der Repolarisierung gibt es eine
kurze Phase, in der die Spannung unter dem Ruhepotential liegt. In dieser Zeitspanne ist daher
eine hohere Spannung nétig, die Schwellspannung zu erreichen und ein weiteres Aktionspotential
Zu propagieren.

Das Aktionspotential, das entlang der Zellmembran propagiert wird, wird tiber die sogenannten
T-Tubuli von der Zellmembran ins Zellinnere geleitet, diese kann man in Abbildung 2.4 aus
[14] sehen. Sie sind um die Myofibrillen geschlungen, die die einzelnen Muskelfasern weiter
strukturieren. Myofibrillen sind Ketten von Sarkomeren. Diese Sarkomere sind die Teile des
Muskels, in denen die Kraft oder Bewegung erzeugt wird. Ein Sarkomer besteht aus einer Reihe von
dicken und diinnen Filamenten, Proteinen, die einander iiberlappen. Im Inneren der Muskelfaser
fithrt eine Spannungsinderung zur Offnung bestimmter Ionenkanéle und der Ausschiittung
von Ca?* aus dem sarkoplasmatischen Retikulum, dieses ist ein Speicher von Ca?* in hoher
Konzentration. Die Ionen verbinden sich mit Troponin-C-Molekiilen in den Sarkomeren, was es
ermoglicht, dass sich die dicken und diinnen Fasern der Sarkomere verbinden und die Sarkomere
sich zusammenziehen.

2.2 Nichtlineare dynamische Differentialgleichungen

Jede nichtlineare dynamische Differentialgleichung (ohne Parameter) kann in folgender Form
beschrieben werden:

x'(t) = f(x(t),t) + A(t)x(t) + B(t)u(t) (2.1)
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Die Ausgabe des Sytems wird mit w(t) berechnet, indem x(¢) mit C(t) skaliert wird.

2.3 Hodgkin-Huxley-Modell
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(2.2)

(2.3)

Hier enthalt A (¢)x(¢) mit der Matrix A den linearen Teil des Systems und f(x(¢), ¢) den nichtli-
nearen Teil. B(¢)u(t) ist die von der Eingabematrix B(¢) gewichtete Eingabefunktion und enthlt
somit alles, was mit der Eingabe oder dem Input zusammenhéangt. [Wir14]

Das Hodgkin-Huxley-Modell ist ein biophysikalisches Modell, das dazu genutzt wird, die Spannung
sowie die Entwicklung der Spannung, die an einer Zellmembran anliegt, zu simulieren. Dazu wird
in diesem biophysikalischen Modell, anders als in phanomenologischen Modellen, Wissen iiber
Funktionsweise und Aufbau von Zelle und Zellmembran verwendet. Das Modell beschreibt das
Verhalten der Spannung an einer Zellmembran mit Hilfe eines elektrischen Stromkreises.[Hei]
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Abbildung 2.5: Hodgkin-Huxley-Modell:Stromkreis

Abbildung 2.5 zeigt den Aufbau dieses Stromkreises. Wie in Abschnitt 2.1.2 beschrieben, erméogli-
chen es Ionenpumpen, Ionenkanile und Durchldssigkeit der Zellmembran, die Anzahl der Ionen
zu beeinflussen, die die Membran passieren. Das fiihrt zu einer elektrischen Spannung zwischen
Auflerem und Innerem der Zelle. Das Verhalten dieser Pumpen, Kanile und der Zellmebran ist
wiederum von der Spannung abhéngig, die an der Membran anliegt.[Hei]

Man kann nun in Abbildung 2.5 sehen, dass Ionenpumpen und Ionenkanéle mit spannungsab-
héingigen Widerstdnden vor Stromquellen simuliert werden, die zu einem Kondensator parallel
geschaltet sind. Diese spannungsabhiangigen Widerstande simulieren fiir die einzelnen Ionen
Na™ und K™, welchen Einfluss sie bei einer bestimmten Spannung auf die Gesamtspannung
haben, was davon abhingt, wie durchlassig die Zellmembran fiir diese Ionen ist. Die Spannungen
der Stromquellen entsprechen dem Gleichgewichtszustand der jeweiligen Ionen. Fx und En,
haben also das Potential des Gleichgewichtszustands von Na™ und K+, der Wert von EJ, ist nicht
vom Gleichgewichtszustand eines bestimmten Ions abhéngig, da damit der Leckstrom simuliert
werden soll. Dieser beschreibt das Verhalten der Zellmembran, die immer fiir einen gewissen
Anteil von Cl~ oder K aufgrund von Leckkanilen durchlissig ist. Der Widerstand g7, ist daher
auch nicht spannungsabhangig wie die anderen beiden Widerstinde im Modell.[Hei]

Das Verhalten von Widerstinden und externem Simulationsstrom fithrt dazu, dass eine Spannung
am Kondensator anliegt, die die elektrische Spannung an der Muskelfasermembran simuliert.
Mit diesem Stromkreis kann man Differentialgleichungen aufstellen, mit deren Hilfe eine Ap-
proximation der Membranspannung berechnet werden kann. Aus dem Stromkreis ergibt sich
Gleichung (2.4), wobei I;,,, die Summe der Stréme im Stromkreis reprasentiert. [Hei]

ov,

I, = Cma—;” + Lipn =0 (2.4)
Lion = INg + Ik + I, — Istim (2.5)
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Die einzelnen Strome konnen mit Hilfe des Ohmschen Gesetzes berechnet werden.

I; = gi(Vy — E;) Vi € {Na, K, L} (2.6)

Die Widerstande g5 und g, sind tiber die Gatingvariablen n, m und h von der Spannung abhangig.
Diese Variablen werden durch die Reaktionsgleichungen 2.9 berechnet. Gleichung (2.10) zeigt die
Standardform der Hin- und Riickreaktionsgleichungen fiir die Variablen m, n und h.[Hei]

gk = grn' 2.7)

gNa = gNam’h (2.8)

2 (V) (1) = Bu(Vio Y € {n, m, ) 29)
o= 2y e (Vi) BV} (2.10)

Co + dyexp(Vmes)

Aus diesen Gleichungen folgen die nichtlinearen Differentialgleichungen in Gleichung (2.11).

_é(gﬁamgh(vm - ENa) + g}(n4(V - EK) + gL(V EL) - Istim)

Bt —0.1%(V;n+50 vm 75

% 71+e$;((7(vz+5)0))(1 —m) — 4 x exp(= (Vm+ ))m
oh - 0.07 * exp(—Y=tT5) (1 — h) — Wh
on —0.01%(V;,, +65) Vin+75

(2.11)

In der weiteren Arbeit werden bei der Simulation folgende Werte und Startwerte aus [Hei] verwen-
Cm g Na g}( g_L EN a EK EL

det: 5 5 5 5
1F/ cm 120mS /cm” | 360 mS/cm” | 0.3mS/cm” | 40 mV | -87 mv | -64.387 mV
Vino —75mV
Xo = mo _ 0.325 (2.12)
ho 0.05
U 0.6
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2.4 Monodomain-Modell

Das Hodgkin-Huxley-Modell beschreibt das Verhalten der Muskelfasermembran an einem be-
stimmten Punkt. Spannungsidnderungen an einer Stelle der Membran beeinflussen aber auch das
elektrische Potential in anderen Bereichen entlang der Zellmembran. Dieser Zusammenhang
wird durch das Monodomain-Modell beschrieben. Der Name Monodomain bezieht sich auf das
Bidomain-Modell. Im Bidomain-Modell werden zur Berechnung der elektrischen Spannung elek-
trisch inaktive Regionen und elektrisch aktive Regionen unterschieden, im Monodomain-Modell
werden nur elektrisch aktive Regionen betrachtet. In Gleichung (2.13) ist der rechte Teil schon aus
Abschnitt 2.3 bekannt. Dieser wird zu einer Diffusionsgleichung tiber die Spannung mit dem Dif-
fusionskoeffizienten o, ¢y verbunden. In Gleichung (2.13) kann Gleichung (2.5) aus Abschnitt 2.3
eingesetzt werden. Dadurch wird die partielle Differentialgleichung des Monodomain-Modells
mit dem System nichtlinearer gewo6hnlicher Differentialgleichungen des Hodgkin-Huxley-Modell
gekoppelt. [Hei]

oV,

div(oefrgrad(Vi,)) = Am(CmW

+ Iion) (2.13)
Fiir den Fall, dass es nur eine Raumdimension gibt, kann Gleichung (2.13) umgeschrieben werden
in Gleichung (2.14). Mit dieser Gleichung kann nun die Propagierung des Aktionspotentials
entlang der Membran einer Muskelfaser beschrieben werden. [Hei]

Oy Vi 1, OV
A,,C,, Ozoz  C,, " ot

(2.14)

Es gelten fiir die Berechnungen dieses Gleichungssystems in dieser Arbeit die Neumann-
Randbedingungen.

2.5 Loser

Zur Losung von Differentialgleichungen wie Gleichung (2.14) wird ein numerischer Loser benoétigt.
Ein Beispiel fiir ein numerisches Losungsverfahren, mit dem nichtlineare dynamische Differenti-
algleichungen in der Form von Gleichung (2.1), Gleichung (2.2) gelost werden kénnen, ist das
semi-implizite Eulerverfahren oder Godunov-Splitting, das eine Kombination aus implizitem und
explizitem Eulerverfahren ist.[Hei]

Gleichung (2.1) lasst sich mit diesem Verfahren in zwei Differentialgleichungen in folgender Form
aufteilen:

(2.15)

Also kann ihre Losung approximiert werden, indem zuerst der nichtlineare Teil z* (¢ 4 1) explizit
berechnet wird und dann das lineare Gleichungssystem dt * A(¢)x((t + 1)) = x*(¢t + 1) nach
x((t + 1)) gelost wird.[Hei]
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2.6 Model Order Reduction

Model-Order-Reduction-Methoden sind eine Klasse mathematischer Verfahren, die das Ziel haben,
Rechenzeit und Komplexitat von dynamischen Systemen, die viel Rechenzeit benétigen und
sehr komplex sind, zu reduzieren. Diese Verfahren arbeiten unter der Pramisse, dass sich der
Mechanismus, der dem zu reduzierenden System zugrunde liegt, in einer niedrigeren Dimension
effektiv approximiert werden kann.

Methoden der Model Order Reduction, die haufig eingesetzt werden, sind Unterraumprojektions-
verfahren. Diese verwenden einen Unterraum, auf den das komplexe System reduziert wird. In
diese Gruppe gehoren das POD-Galerkin-Verfahren und DEIM (Discrete Empirical Interpolation
Method), deren Anwendung auf nichtlineare dynamische Differentialgleichungen in diesem Ka-
pitel besprochen wird. Davor wird auf das POD-Verfahren (Proper Orthogonal Decomposition)
eingegangen, das die Basisvektoren eines moglichst optimalen Unterraums approximieren soll.
Die Algorithmen DEIM und POD, die in diesem Kapitel vorkommen, werden in der Simulation
der Ergebnisse in dieser Arbeit verwendet, wie sie im MOR-Framework KerMor implementiert
wurden und kénnen in [Wir14] und [CS10] nachgelesen werden. [CS10] [Wir14]

2.6.1 POD

Die Proper Orthogonal Decomposition oder POD ist eine Methode, mit der eine Unterraum-
approximation im Hilbertraum berechnet wird. Die Basis dieser Projektion ist die Menge der
orthonormalen Vektoren {¢; }, die das Minimierungsproblem Gleichung (2.17) erfiillen.[CS10]
[Wir14]

n k
ming, v i = Y (] ) ill3
(@ }zzljzl ; j (2.17)
bf b5 = i

Die optimale Basis zur Losung dieses Optimierungsproblems kann fiir eine Matrix X berechnet
werden, indem die Singuldrwertzerlegung auf dieser Matrix durchgefiithrt wird. In unserem Fall
besteht diese Matrix X aus den Trajectories X = x!,...,x". Jedes x' ist eine Ergebnismatrix
der Berechnung des Modells zu den jeweiligen Zeitschritten, die in den spiteren Berechnungen
verwendet werden sollen. Fiir die verschiedenen Matrizen x’ kénnen somit zum Beispiel un-
terschiedliche Ergebnisse fiir verschiedene Eingaben verwendet werden. Die k Basisvektoren
eines Unterraums mit Dimension k sind dann die ersten k Spaltenvektoren der Matrix V in Glei-
chung (2.18), die die linken Singularvektoren nach der Singularwertzerlegung enthilt. Aufierdem
ist hier kurz anzumerken, dass aufgrund des Zusammenhangs in Gleichung (2.19) die Anzahl der
Singuldrvektoren, die fiir eine Approximation mit einer bestimmten Genauigkeit benétigt werden,
daran erkannt werden kann, wie stark die Wertabnahme der Singularwerte ist.[CS10] [Wir14]
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Yy =vw?T (2.18)

Ns k T
Sollyi =Y (wivvils = > oF (2.19)
j=1

i=1 i=k+1

2.6.2 POD-Galerkin

Mit der Matrix V, die mit POD berechnet wurde, kann jetzt das reduzierte System zu einem
nichtlinearen dynamischen Gleichungssystem berechnet werden. Die volle Ausgabe des Systems
kann aus der reduzierten Ausgabe mit

mathbfy(t) = CVyx(t) und dim(y(t)) = n berechnet werden. Vj, beschreibt hier die Matrix
V bis zum k-ten Spaltenvektor mit dim(V;]') = k x n. Damit hat y(¢) die Dimension k. Die
Startwerte des reduzierten Systems werden aus den Anfangswerten berechnet, die fiir das volle

System gegeben sind, wie in 2.20 ersichtlich ist.[CS10] [Wir14]

2(0) = V,I'z(0) = Vil zg (2.20)

So kommt man auf Gleichung (2.21) fiir das reduzierte Modell. A wird hier mit VI AV, auf
eine k x k-Matrix reduziert. Die Ergebnisse des reduzierten Modells werden in der nichtlinearen
Funktion F mit V2 auf dim(x(t)) = n projiziert, also auch n mal in der Funktion ausgewertet.
Diese Eigenschaft ist einer der Hauptnachteile des POD-Galerkin-Ansatzes. Die Reduzierung
wirkt sich ndmlich nicht auf die Auswertung der nichtlinearen Funktion oder der beiden Matrix-
Vektor-Multiplikationen aus. Diese hdngen immer noch von n ab. Je nach Berechnungsaufwand
der nichtlinearen Funktion kann hier aber die Hauptlast der Berechnung liegen.[CS10] [Wir14]

Die Matrix Vi, sowie die Multiplikationen mit den anderen konstanten Matrizen kénnen vor der
eigentlichen Berechnung des reduzierten Modells in der sogenannten Offline-Phase berechnet
werden. Der beabsichtigte Zeitgewinn erfolgt, wenn diese Matrizen verwendet werden konnen,
das System in der Online-Phase fiir mehrere verschiedene Parameter oder Eingabefunktionen mit
akzeptabler Genauigkeit zu berechnen.[CS10] [Wir14]

%i(t) = VEAV X(t) + VEF(VX(t)) + VIBu(t)
y(t) = CVix(t)

(2.21)

2.6.3 DEIM

Ein Ansatz, das Problem, dass die Berechnung des reduzierten Modells immer noch von n abhangt
zu lésen, das im POD-Galerkin-Ansatz auftrat, ist die Deterministische Empirische Interpolations-
methode (DEIM). Deren Ansatz ist es, auch die nichtlineare Funktion auf einen Unterraum, hier
U, zu reduzieren und damit die Anzahl der Auswertungen der Funktion zu verringern.[CS10]

Das volle Ergebnis der Funktion F soll {iber Interpolation eines Koeffizientenvektors ¢(7) mit
der Matrix U berechnet werden kénnen. Also gilt PT f(7) = (PTU)c(7), wobei P eine Auswahl
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Algorithmus 2.1 DEIM

procedure DEIM2(w;;", C R")
INPUT ™,
OUTPUT : ¢ = [p1, ..., pm|T € R™
[l 1] + max|uy
U up, P [e,, ], @ = [g)
for! =2mdo
Solve (PTU)c = PTy, for ¢
r =u — Uc
[[p]; 1] = maz]r|

U + [Uw),P ¢+ [Pe,], @ + ﬁ]
1

end for
end procedure

von Einheitsvektoren ist. Diese Eigenschaften konnen umgestellt werden zu f(7) ~ Uc(7) =
U(PTU)='PT f(1). Es wird also ausgenutzt, dass P diinn besetzt ist und somit F nur noch an
k Stellen ausgewertet werden muss. Zu beachten ist, dass dieser Vorteil nur erhalten bleibt, wenn

die Auswertung von F an einem bestimmten Punkt nicht von zu vielen benachbarten Punkten
abhangt.[CS10]

Der DEIM-Algorithmus ist ein Greedy-Algorithmus. Fiir einen neuen Basisvektor u; wird der
Punkt ermittelt, an dem die grofite Differenz in der Approximation im Vergleich zur Berechnung
mit den schon gewéhlten Basisvektoren liegt. Fiir diesen wird dann ein neuer Einheitsbasisvektor
zu P hinzugefiigt, um die Approximation in diese Richtung zu verbessern.[CS10] [Wir14] [CS10]

Damit ergibt sich folgendes Gleichungssystem, wenn man POD-Galerkin mit DEIM kombi-
niert[CS10]:

%i(t) = VEAV%(t) + VEUPTU)'PTF(Vix(t)) + VI Bu(t)
y(t) = CV,a(t)

(2.22)
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3 Ergebnisse

In diesem Kapitel wird beschrieben, wie bei der Berechnung der Ergebnisse vorgegangen wurde,
welche Schwierigkeiten es bei der Berechnung gab, sowie zuletzt, zu welchen Ergebnissen die
Berechnung mit unterschiedlichen MOR-Methoden fithrte. Zuerst wird in Abschnitt 3.1 beschrie-
ben, wie das System diskretisiert wurde, in Abschnitt 3.2 wird besprochen, was KerMor ist und
welche Vorteile oder Nachteile die Berechnung durch KerMor hat. Im Abschnitt 3.3 werden die
ersten Ergebnisse vorgestellt. Es geht in diesem Abschnitt darum, ob sich das Modell fiir die
Propagation von Aktionspotentialen entlang von Muskelfasern iiberhaupt fiir MOR-Methoden
eignet. Ergebnisse der Reduktion mit MOR-Methoden werden dann in Abschnitt 3.4, Abschnitt 3.5
und Abschnitt 3.6 besprochen.

3.1 Kombination der Modelle und Diskretisierung

Die Modelle Hodgkin-Huxley und Monodomain werden fiir die Berechnungen des Systems kombi-
niert, wie in Gleichung (2.14) beschrieben. Fiir das System gelten Neumann-Randbedingungen, das
heif}t, dass es keine Diffusion "tiber den Rand hinaus"gibt. Die partielle Ableitung zweiter Ordnung
nach der Raumdimension x wird mit einer central-difference-Approximation zweiter Ordnung
nach der Finite-Elemente-Methode diskretisiert. Diese Diskretisierung fithrt zur Matrix A, die
mit der Spannung V multipliziert wird und damit den linearen Teil dieses nichtlinearen Modells
formt Gleichung (3.1). Diese Matrix und damit das Modell kénnen nach dieser Entscheidung auf
zwei verschiedene Weisen diskretisiert werden, welche sich auf den Fehler der Approximation
und die Laufzeit auswirken konnen. Entweder werden die Ergebnisse der Berechnung der Gating-
Variablen m, n und h ins Gesamtmodell ibernommen oder sie werden in der Funktion f berechnet,
aber nicht als Ergebnis ausgegeben.

Beide Entscheidungen haben auf den ersten Blick Vor- und Nachteile. Der erste Fall sorgt dafiir,
dass die Matrix A um den Faktor vier grofier ist als im zweiten Fall und damit die Berechnungsdauer
von Multiplikationen mit dieser Matrix grofler wire. Ein Vorteil dieses Ansatzes wére aber, dass
mehr Daten zur Verfiigung stehen, um mit POD die Unterraumapproximation V zu berechnen.
Der Grundgedanke der Unterraumapproximation war, dass sich hinter einem komplexen System
ein Mechanismus niedrigerer Dimension verbirgt. Wenn die entscheidende Variable nun m, n oder
h wire, dann kann eine Approximation, die nur die Spannungswerte zur Berechnung bekommt,
schlechtere Ergebnisse produzieren.

OVm Ocff 1 1
_ - — 1
P A Codi? AV, + ( Cm)F(Vm,t) + (Cm)Bu(t) (3.1)
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3.2 KerMor

Fiir die Untersuchung von Model-Order-Reduction-Verfahren und dem oben beschriebenen Modell
zur Approximation der Propagation von Aktionspotentialen entlang der Membran von Muskelfa-
sern wurde das Framework KerMor verwendet, das in MatLab bereitgestellt wird. Dieses enthalt
eine Reihe von Methoden und Klassen, die mit Model-Order-Reduction zu tun haben oder fur
diese benotigt werden konnen. Darunter sind Loser, der DEIM-Algorithmus und Algorithmen
wie POD, Greedy-POD und POD-Galerkin. Implementiert wurden im Zuge der Untersuchung die
beiden oben genannten Diskretisierungen des Systems. Das beinhaltet Methoden zum Berechnen
der verschiedenen Matrizen (lineare Matrix A, Eingabematrix B, Ausgabematrix C), verschie-
dene Inputfunktionen und Methoden zur Berechnung der nichtlinearen Funktion an einzelnen
bestimmten Punkten oder an allen Punkten in einem bestimmten Zeitschritt, sowie eine Methode
zur Berechnung der analytischen Losung der Jacobimatrix dieser Funktion, da die Approximation
mit finiten Differenzen einen zu groflen Fehler hatte.

Es mussten einige Anderungen am Framework vorgenommen werden, um vergleichbare Test-
ergebnisse zu erhalten. So war es notwendig, einige Fehler zu korrigieren, die auftraten, wenn
man mit Systemen rechnete, die nicht parametrisiert waren. Zudem wurde die Zeitmessung leicht
abgeandert, um die tatsichliche Laufzeit der Approximationen zu vergleichen, da ein Problem mit
der Messung der Laufzeit von DEIM auftrat. Wenn DEIM in KerMor aktiviert wird, finden mehr
Funktionsaufrufe statt, bevor die nichtlineare Funktion ausgewertet werden kann. Diese Aufrufe
vor jeder Berechnung von F wurden urspriinglich mitgemessen und verzerrten die Ergebnisse. Bei
den Tests stellte sich aulerdem heraus, dass kleinste Anderungen am Code zu grofien Anderungen
in den gemessenen Zeiten fithren konnten, deshalb wurde versucht, den Code in den Methoden
zur Berechnung der Ergebnisse fiir alle Punkte und zur Berechnung der Ergebnisse fiir bestimmte
Punkte moglichst vergleichbar zu programmieren.

Fir die numerische Losung der Ergebnisse wurde immer das semi-implizite Eulerverfahren als
Loser verwendet. Die in KerMor implementierte Version hat die Eigenschaft, dass immer nur ein
Schritt moglich ist und nicht mehrmals in kleineren Zeitschritten zum Beispiel bei der expliziten
Losung des nichtlinearen Teils der Gleichung iteriert werden kann. Die Zeitschritte fiir expliziten
und impliziten Teil konnen aulerdem nicht unabhéngig voneinander gewahlt werden.

In den Tests wird fiir die Berechnung der Matrix V bei POD-Galerkin und Deim das Gesamtergebnis
von V, m, n und h verwendet. Fiir die Berechnung der Matrizen U und P bei DEIM wird die explizite
Loésung der nichtlinearen Funktion verwendet, also das Teilergebnis dieser Funktion fiir V, m, n
und h.

3.3 Singularwerte

Der Singularwertzerfall ist ein guter Hinweis darauf, wie erfolgreich die Anwendung von Un-
terraumprojektionsverfahren auf bestimmte Systeme ist Abschnitt 2.6.1. Deshalb wurde der
Singularwertzerfall fiir verschiedene Mengen von diskreten Elementen und verschiedene Grofien
der Zeitschritte fiir die Systeme mit Matrix V,m,n,h und V untersucht. Die Lange der Muskelfaser
wurde wahrend aller Simulationen bei einem Zentimeter belassen, was bedeutet, dass sich mit
der Anzahl der diskreten Elemente ihre Grofie dndert.
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Auflerdem wurde der Stimulationspunkt in allen Versuchen auf das dritte diskrete Element einer
Seite festgelegt. In der Muskelfaser kann diese Stimulation auch an einer anderen Stelle eher in
der Mitte der Faser erfolgen, aber aufgrund der Symmetrieeigenschaften der Ausbreitung des
Aktionspotentials ware es iiberfliissiger Rechenaufwand, den Stimulationspunkt in die Mitte zu
legen.

In diesem und jedem Fall ohne andere Angabe in den weiteren Kapiteln wurde iiber eine Zeitdauer
von 10ms die Ausbreitung des Aktionspotentials simuliert, der Stimulationsstrom liegt am Anfang
der Simulation fiir 0.5ms an und die Muskelfaser hat eine Lange von einem Zentimeter. In jedem
Fall, in dem nicht explizit die Grofie eines Zeitschrittes fiir die Simulation angegeben ist, wurde
das System mit Zeitschritten von 0.0005ms gelGst.

Abbildung 3.1 zeigt den Zerfall von Singularwerten fiir eine unterschiedliche Anzahl von Ele-
menten des Systems mit V;m,n und h auflerhalb der nichtlinearen Funktion. Man erkennt, dass
es fiir jede Anzahl von Elementen einen steilen Abfall der Singularwerte gibt und die Anzahl
der Singuldarwerte mit sehr niedrigem Wert zunimmt, je hoher die Anzahl der Elemente wird. In
Abbildung 3.2 sind die Werte im Verhaltnis zu der Gesamtzahl an Singularwerten des Ergebnisses
angegeben. Die Grafik zeigt, dass der Zerfall der Singuldrwerte mit der Anzahl an Elementen
ansteigt. Bei 10 diskreten Elementen ist er noch flach, bei 320 schon so steil, dass schon ab weniger
als 40% der Gesamtzahl von Singuldrwerten die niedrigste Ordnung erreicht wird.

1000000
10000+
100
1
0,01
5 0,0001 W 10 Elemente
% ¢ 20 Elemente
ES 1E-06 40 Elemente
'c% 1E-08 A 80 Elemente
1E-10 » 160 Elemente
. 320 Elemente
1E-12- me
>
1E-14
VD XA 70 VD o> O O VDA O 0 VL D D
DR R RS R A AL PSSP

Singularwerte nach GréRe geordnet

Abbildung 3.1: Singularwerte fiir Matrix mit V, m, n und h-Werten (absolut)

Im Vergleich zu diesen Ergebnissen fiir V,m,n,h ist der Zerfall der Singularwerte in Abbildung 3.3
und Abbildung 3.4 sowohl in relativer als auch absoluter Betrachtung flacher. Es zeigt sich aber
auch hier, dass die Zerfallsrate mit Verringerung der Grofle der diskreten Elemente steigt.

Diese Ergebnisse lassen auf den ersten Blick darauf schlieflen, dass es wahrscheinlich besser
funktioniert, die erste Diskretisierungsvariante mit Unterraumprojektionsverfahren zu reduzieren,
aber auch eine Beschleunigung der Berechnung erfolgen kann, wenn die zweite Variante reduziert
wird.
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Abbildung 3.2: Singularwerte fiir Matrix mit V, m, n und h-Werten (relativ)
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] A >
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Singulérwerte nach GroRRe geordnet

Abbildung 3.3: Singularwerte fiir Matrix mit V-Werten (absolut)

3.4 Einzelnes Aktionspotential

In diesem Kapitel werden die Ergebnisse der MOR-Verfahren DEIM, POD-Galerkin, DEIM +
POD-Galerkin fiir eine Inputfunktion mit einem Stimulationsstrom zu Beginn der Simulation
mit einer Dauer von 0.5ms verglichen. Es wird itber 10ms simuliert. Zuerst wurden Werte, wie
Beschleunigung des reduzierten Modells in der Online-Phase gegeniiber dem vollen Modell sowie
der Berechnungsfehler, fiir die Methode POD-Galerkin mit verschiedenen Zeitschritten und
unterschiedlicher Anzahl der diskreten Elemente gemessen.

Abbildung 3.5 und Abbildung 3.6 zeigen, dass die Anderung der Grofle der Zeitschritte keinen
erkennbaren Effekt auf Beschleunigung oder Fehler hat, wenn man die Dimension des reduzierten
Models andert. Die einzige Beobachtung, die gemacht werden kann, ist, dass mit einem gréberen
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Abbildung 3.4: Singularwerte fiir Matrix mit V-Werten (relativ)

Zeitschritt der Fehler kleiner wird, wenn die Dimension des reduzierten POD-Galerkin-Modells
nahe an der des vollen Modells liegt.

Die X-Werte geben jeweils die Dimension des mit POD-Galerkin reduzierten Modells fiir 80
diskrete Elemente an, die Y-Werte, um welchen Faktor das reduzierte Modell schneller ist oder
den durchschnittlichen reduzierten L2-Fehler des Modells iiber Raum und Zeit.

35
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0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Anzahl an Moden

Abbildung 3.5: POD-Galerkin Beschleunigung tiber verschiedene Zeitschritte

Abbildung 3.8 zeigt, dass die Beschleunigung der Berechnung fiir das gleiche Verhiltnis der
Dimensionen von vollem und reduziertem Modell steigt, Abbildung 3.10, dass der Fehler fiir dieses
Verhiéltnis der Dimensionen des vollen und des reduzierten Modells sinkt.

Es ergibt sich also in Abbildung 3.11 die Beobachtung, dass mit steigender Anzahl an Flementen
fiir denselben Fehler eine grofiere Beschleunigung erreicht werden kann. Diese Ergebnisse wiirden
zu dem Schluss fithren, dass das Modell mit der Diskretisierungsvariante, in der die Ergebnisse
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Abbildung 3.7: POD-Galerkin Beschleunigung (absolut)

aller Variablen von der nichtlinearen Funktion F ibergeben werden, erfolgreich mit der POD-
Galerkin-Methode beschleunigt werden kann. Ein Problem dieses Ansatzes ist aber, dass es ab
einer gewissen Anzahl an Flementen einen Bereich gibt, in dem das reduzierte Modell instabil ist.
Zum Beispiel gibt es im reduzierten Modell fiir 320 Elemente einen Bereich zwischen 160 und 600
Moden, in dem das System instabil ist.

In den nichsten Simulationen wurden die Ergebnisse der DEIM-Methode zuerst ohne POD-
Galerkin-Methode simuliert. In Abbildung 3.12 ist zu sehen, dass die Beschleunigung fiir DEIM
nicht so stark wie in POD-Galerkin ansteigt, wenn weniger Punkte ausgewertet werden und diese
interpoliert werden. Aulerdem sinkt im Gegensatz zu POD-Galerkin die Beschleunigung, je mehr
Elemente simuliert werden. Der Fehler in Abbildung 3.13 nimmt auflerdem nicht so gleichmaflig
ab, wie bei POD-Galerkin. Diese Verteilung der Fehlerwerte kann man sehr gut in Abbildung 3.14
fiir 320 Elemente sehen.
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Abbildung 3.9: POD-Galerkin Fehler (absolut)

Im nachsten Simulationsdurchlauf wurden darauthin die Projektion der nichtlinearen Funktion
und des Gesamtmodells auf jeweils einen Unterraum getestet, zuerst wurde die Dimension des
reduzierten Modells au3erhalb der nichlinearen Funktion gedndert. Die Anzahl an Punkten,
die in der Funktion berechnet werden, wurde auf das 0.8-fache der Gesamtzahl festgesetzt. In
Abbildung 3.15 kann man erkennen, dass diese Kombination im Vergleich zu DEIM ohne Projektion
des Gesamtmodells zu einem gleichméfligeren Anstieg der Beschleunigung fiihrt, das Modell auf
diese Art zu reduzieren aber keine Zeitvorteile gegentiber der POD-Galerkin-Variante hat, der
Fehler in Abbildung 3.16 entwickelt sich auch sehr dhnlich zu POD-Galerkin ohne DEIM.

Daraufhin wurde das Verhalten gepriift, wenn die Anzahl der Moden der Projektion des Gesamt-
systems fiir 80 Elemente auf 200 festgesetzt ist. Auch in diesem Fall gibt es keine Vorteile der
Kombination, in Abbildung 3.17 und Abbildung 3.18 schneidet DEIM ohne POD sogar sowohl im
Fehler als auch in der Beschleunigung besser ab als die Kombination von beiden.
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Abbildung 3.11: POD-Galerkin Fehler-Beschleunigungsdiagramm

3.5 Mehrere Trajectories

Nachdem gezeigt wurde, dass es moglich ist, ein System zu reduzieren, wird nun untersucht, ob
es auch moglich ist, die Moden fiir das POD-Galerkin-Verfahren aus den Ergebnissen von Berech-
nungen mit verschiedenen Eingabefunktionen zu berechnen, und mit diesen dann akzeptable
Fehler- und Beschleunigungswerte fiir verschiedene Eingaben zu erzielen, womit es moglich wire,
mit den MOR-Verfahren die Berechnung zu beschleunigen, da man somit nicht fiir jede Eingabe
eine Projektionsmatrix ausreichender Gréfie vorberechnen muss.

In dieser Simulation wurden daher die Ergebnismatrizen fiir 80 diskrete Elemente und fiinf Einga-
befunktionen tiber 200ms simuliert. Die Eingabefunktionen wenden einen Stimulationsstrom auf
ein Flement mit einer Frequenz zwischen 50Hz und 90Hz fiir jeweils 0.05ms an. Dann wurden die
Moden der Matrix dieser Ergebnisse ausgerechnet. Mit diesen Basen wurden dann die reduzierten
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Abbildung 3.13: DEIM Fehler (relativ)

Modelle fiir die verschiedenen Eingabefunktionen simuliert. Abbildung 3.20 zeigt den Fehler dieser
Berechnungen, Abbildung 3.19 die Beschleunigung fiir die jeweilige Dimension des reduzierten
Modells. Es zeigt sich, dass die Fehlerwerte fiir die verschiedenenen Eingaben relativ nahe zusam-
men liegen. Auflerdem ist die Beschleunigung zwar nicht so stark wie bei der Berechnung der
Moden fiir einen einzelnen Eingabefall, wie zum Beispiel bei den Berechnungen fiir eine einzelne
Spannungsspitze, aber es kann immer noch die doppelte Geschwindigkeit erreicht werden.

3.6 Vergleich der verschiedenen Diskretisierungen

Fiir die am Anfang des Kapitels besprochene erste Diskretisierungsvariante wurde festgestellt, dass
es Probleme damit gibt, dass das Ergebnis des reduzierten Modells fiir bestimmte Dimensionen
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Abbildung 3.15: DEIM und POD-Galerkin, DEIM fest, Beschleunigung (relativ)

dieses Modells instabil wird. Deshalb wird nun die zweite Diskretisierungsvariante untersucht.
Fir dieselben Einstellungen wie in Abschnitt 3.4 wird nun die zweite Diskretisierungsvariante
untersucht. In Abbildung 3.21 und Abbildung 3.22 ist zu sehen, dass die Beschleunigung der
Berechnung mit sinkender Dimension des reduzierten Modells oder steigender Anzahl an dis-
kreten Elementen nicht so sehr steigt wie in der ersten Diskretisierungsvariante. Das liegt aber
daran, dass die Matrix A in diesem Fall anders als im ersten Fall die Form einer Bandmatrix hat,
also ein Gleichungssystem mit dieser Matrix deutlich schneller gelost werden kann als normale
Matrizen. Wenn diese aber reduziert wird, dann muss die reduzierte Matrix mit einem hoheren
Rechenaufwand geldst werden. Die Beschleunigung fllt also nicht so hoch aus, weil die Berech-
nung sowieso schon schneller ist. Der Berechnungsfehler nimmt dafiir auch nicht so stark ab
wie im ersten Fall — damit kann die Vermutung aus Abschnitt 3.3 bestatigt werden, dass die erste
Diskretisierungsvariante genauere Ergebnisse liefert —, aber immer noch so schnell, dass genaue
Ergebnisse in der Halfte der Berechnungszeit des vollen Modells berechnet werden kénnen. Dazu
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Abbildung 3.16: DEIM und POD-Galerkin, DEIM fest, Fehler (relativ)
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Abbildung 3.17: DEIM und POD-Galerkin, POD fest, Fehler (relativ)

kommt noch, dass es bei der Berechnung mit POD-Galerkin in dieser Diskretisierungsvariante
keine Bereiche gibt, in denen das reduzierte Modell instabil wird. Diese Ergebnisse sprechen dafiir,
im Anwendungsfall diese praktikablere zweite Variante zu verwenden.
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Abbildung 3.18: DEIM und POD-Galerkin, POD fest, Fehler (relativ)
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Abbildung 3.19: POD-Galerkin mit mehreren Input-Funktionen Beschleunigung
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Abbildung 3.20: POD-Galerkin mit mehreren Input-Funktionen Fehler
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Abbildung 3.21: POD-Galerkin mit V-Matrix, Fehler
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Abbildung 3.22: POD-Galerkin mit V-Matrix, Fehler
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4 Zusammenfassung und Ausblick

In der Arbeit wurden zwei verschiedene Diskretisierungsansatze zur Berechnung der Kombination
des Hodgkin-Huxley-Modells und des Monodomain-Modells zur Propagation von Aktionspoten-
tialen entlang von Muskelfasern beschrieben. Diese wurden fiir verschiedene Eingaben, Anzahl
diskreter Elemente und Zeitschritte fiir die Model-Order-Reduction-Methoden POD-Galerkin
und DEIM sowie die Kombination beider untersucht. Dabei ergab sich, dass beide das Potential
haben, die Berechnung des Modells zu beschleunigen. Mit POD-Galerkin ist es auflerdem méglich,
die Moden fiir das Modell mit reduzierter System fiir mehrere Eingabefunktionen mit hoher
Genauigkeit vorauszuberechnen.

Die Kombination von POD-Galerkin und Interpolation iiber bestimmte Punkte des nichtlinearen
Teils des Modells ergab nicht die gewiinschten Beschleunigungssteigerungen gegeniiber der
separaten Anwendung dieser Methoden.

Das Ergebnis des Vergleichs der beiden Diskretisierungsvarianten ist, dass die zweite Variante,
in der nur das Ergebnis fiir die elektrische Spannung aus der nichtlinearen Funktion verwendet
wird, besser ist, weil die Berechnung schneller moglich ist und das reduzierte System — anders als
in der anderen Variante - fiir alle Dimensionen dieses Systems stabil ist.

Ausblick

In der Arbeit wurden einige Fragen beantwortet, aber auch einige neue aufgeworfen. So konnte
man untersuchen, weshalb die Kombination von DEIM und POD-Galerkin in KerMor langsamer
war, als die einzelne Anwendung dieser Verfahren. Auflerdem muss fiir den Anwendungsfall
ein Verfahren entwickelt werden, mit dem festgelegt wird, welche Daten in der Offline-Phase
berechnet werden oder wie effektiv entschieden werden kann, welche Dimension das reduzierte
Modell haben soll (zum Beispiel mit Fehlerschatzern). In der Online-Phase ist die Frage, ob und
wie die Moden, die zur Reduktion des Models verwendet werden, wihrend der Berechnung
geiandert werden konnen, wenn sich zum Beispiel die Eingabe dndert. Aufierdem kann fiir weitere
Verfahren der Model Order Reduction getestet werden, ob diese fiir das fragliche Modell bessere
Approximations- und Beschleunigungsergebnisse erzielen. Am verwendeten Framework KerMor
kann auch weiter gearbeitet werden. Weitere Methoden der Model Order Reduction kénnen
implementiert werden, die Laufzeitberechnung kann vergleichbarer gestaltet werden.
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