
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Transformation of TOSCA to
Natural Language Texts

Marco Radic

Course of Study: Informatik

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Jasmin Guth, M.Sc.

Commenced: April 4, 2017

Completed: October 4, 2017

CR-Classification: I.2.7, K.6.2, D.2.7

Abstract

Cloud computing changes the way businesses plan, use and manage their IT systems
and resources. Different cloud providers offer distinctive interfaces for the deployment
and management of applications in their respective cloud environments.

The organization OASIS addresses these circumstances with the Topology and Orches-
tration Specification for Cloud Applications (TOSCA). This standard offers a language to
express applications as directed graphs and their management behavior in a standardized
and vendor-independent manner.

In numerous roles in the development, a textual description of the application, its
entities and their relationships, for instance to serve as textual documentation, is
of use. The TOSCA standard places no restriction on the complexity of a topology
graph. Therefore, a textual representation of the graph can also get arbitrarily large
and complex. Additionally, every change has to be reflected in the documentation
accordingly. Consequently, an automated approach to the generation of such textual
representations is preferable.

This work describes a concept for the automated generation of textual descriptions of
TOSCA topology graphs. This is accomplished by combining typical tasks from natural
language generation with domain-specific information in order to generate appropriate
textual descriptions. The concept is implemented in a prototype and validated in a
use-case scenario.

3

Kurzfassung

Cloud Computing verändert die Planung, den Einsatz und das Management von in-
formationstechnologischen Systemen in Unternehmen. Verschiedene Anbieter von
Cloudservices bieten unterschiedliche Schnittstellen, um Deployment und Management
von Applikationen in ihrer angebotenen Cloudumgebung zu ermöglichen.

Die Organisation OASIS adressiert diesen Sachverhalt mit der Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA). Dieser Standard bietet eine Sprache,
um Applikationen als gerichteten Topologiegraphen und ihr Managementverhalten
standardisiert und anbieterunabhängig zu beschreiben.

In den unterschiedlichen Rollen der Entwicklung ist oftmals eine textuelle Beschreibung
der Applikation, ihrer Komponenten und deren Beziehungen untereinander, beispiel-
sweise zu Dokumentationszwecken, wünschenswert. Da der TOSCA Standard keine
Restriktionen bezüglich der Komplexität eines Topologiegraphen setzt, kann auch eine
textuelle Repräsentation eines solchen Graphen beliebig komplex werden. Zudem muss
jede Änderung entsprechend in der textuellen Dokumentation angepasst werden. Daher
ist ein automatisiertes Verfahren zu Generierung solcher textueller Beschreibungen
erstrebenswert.

Diese Arbeit beschreibt ein Konzept zur automatisierten Generierung textueller Repräsen-
tationen von TOSCA Topologiegraphen. Dazu werden Aufgaben und typische Merkmale
aus dem Bereich der natürlichsprachlichen Generierung mit domänenspezifischen In-
formationen angereichert, um natürlichsprachliche Beschreibungen zu generieren. Das
Konzept wird prototypisch implementiert und in einem Beispielszenario validiert.

4

Contents

1 Introduction 15

2 Foundations 17
2.1 TOSCA . 17
2.2 Natural Language Generation . 19

3 Related Work 25

4 Approach 29
4.1 TOSCA Topologies and Domain . 29
4.2 Formalizing Relationships as Message Triples 31
4.3 Determination of Order and Aggregation of Message Triples 32
4.4 Lexicalization . 36
4.5 Generating Referring Expressions . 37
4.6 Realization . 37

5 Implementation 39
5.1 Document Planning . 40
5.2 Microplanning . 40
5.3 Realization . 41

6 Validation 43
6.1 Use-Case: IoT Scenario . 43

7 Conclusion and Future Work 47

Bibliography 49

5

List of Figures

2.1 Generalized ServiceTemplate illustration [OAS13] 18
2.2 Example topology adapted from the OpenTOSCA Website [IAA17] . . . 19
2.3 NLG Pipeline proposed by Reiter et al. [RDF00] 20

4.1 Overview of the Approach . 30
4.2 Simple Message Triple consisting of one relationship (l.) and multiple of

the same relationship type (r.) . 32
4.3 Topology with two tiers . 34
4.4 Subtasks of the Lexicalization task . 36

6.1 TOSCA Topology representing an IoT scenario including two Raspberry
Pi devices and a MQTT Broker instance 44

7

List of Tables

5.1 Regular expressions used to sanitize entity names 41

9

List of Listings

4.1 Example of a NodeTemplate Definition with additional Properties 35
4.2 Example of a RelationshipTemplate Definition 35

5.1 documentation tag content example, adapted from [IAA17] 39

6.1 Message Triples created by the algorithm 45
6.2 Additional Message Triples for connections 45
6.3 Output text for the example topology . 46

11

List of Algorithms

4.1 TripleCollection-Algorithm . 33

13

1 Introduction

Cloud Computing is a paradigm that fundamentally changes how computing resources
are treated. Previously, businesses had to invest time and money into the purchase and
maintenance of their own hardware. With cloud computing, instead of maintaining the
whole infrastructure stack themselves, businesses can treat these resources abstractly
as utilities [AFG+10]. This abstraction provides more flexibility [MG+11] and enables
operations to focus on their business competences [LF09].

However, different cloud providers maintain distinctive ways to deploy and manage
applications in cloud environments. This problem is further accompanied by the fact
that dependence on the interfaces of a particular vendor is to be avoided to prevent
lock-in situations.

With the TOSCA (Topology and Orchestration Specification for Cloud Applications) Stan-
dard, OASIS introduced a language that aims to standardize the way cloud applications
are deployed and managed in cloud environments [BBH+13]. Using the standard,
cloud applications are characterized using topology graphs to describe their components,
properties and express relationships between them. In addition, the management is
described using workflow plans. TOSCA aims to provide portability and independence
of cloud providers.

In different stages of the development and management of a cloud applications, numer-
ous roles are introduced to the application in different situations. Depending on the
context, a textual documentation of the topology might be desired. As there are no size
or complexity restrictions imposed on topology graphs, textual representations can get
arbitrarily big and complex. Generating these textual descriptions as documentation
of work is oftentimes tedious, as every change has to be reflected accordingly in the
documentation. Therefore, a systematic approach for the automated generation of such
texts is desirable.

In this work, we propose an approach that enables automated generation of textual
descriptions of TOSCA topology graphs by addressing common tasks in Natural Language
generation with domain-specific solutions. To validate the approach, a prototype was
implemented, which takes a topology graph as input and outputs a textual description
of it in English language. Furthermore, the approach is described in detail by running it
on an exemplary topology graph.

15

1 Introduction

Outline

This thesis is sectioned into the following Chapters:

Chapter 2 – Foundations: This Chapter introduces important foundations and con-
cepts for TOSCA and Natural Language Generation that are important in this
work.

Chapter 3 – Related Work: In this Chapter, related work in the context of this thesis is
presented.

Chapter 4 – Approach: This Chapter describes the approach and conceptual work of
this thesis, providing the theoretical knowledge for the prototypical implementa-
tion.

Chapter 5 – Implementation: This Chapter presents the implementation of a prototype
following the conceptual work of the previous chapters.

Chapter 6 – Validation: In this Chapter, we validate the feasibility of the approach with
an exemplary topology graph.

Chapter 7 – Conclusion and Future Work In this Chapter, we provide a conclusion
and outlook for further work on this topic.

16

2 Foundations

In this Chapter, we introduce foundational knowledge that is required to understand
important terms and concepts used throughout this thesis.

An introduction to TOSCA is provided in Section 2.1. Section 2.2 provides an overview
for the topic of Natural Language Generation.

2.1 TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) Standard
by the Organization for the Advancement of Structured Information Standards (OASIS)
provides a language standard for the description of enterprise cloud applications and
their management and orchestration behavior [OAS13]. TOSCA allows for the composi-
tion of such applications through Service Templates. A Service Template contains two
main concepts. One is a structural model of the service in the form of a topology graph,
as well as Plans for managing and orchestrating the application. Cloud applications are
abstracted to graphs, consisting of components as nodes, and respective relationships
between them as edges. With topology graphs, TOSCA provides an abstraction for cloud
applications, which together with workflow-based management plans increases porta-
bility and encourages reusability [BBKL14]. In order to ship the Templates and their
implementations in a portable manner, TOSCA defines the Cloud Service Archive (CSAR)
as a self-contained package. The general scheme of a Service Template is depicted in
Figure 2.1.

17

2 Foundations

Figure 2.1: Generalized ServiceTemplate illustration [OAS13]

The topologies are described in TopologyTemplates, which represent directed graphs.
Entities are represented as NodeTemplates and act as vertices. The edges are relationships
between entities, which are represented as RelationshipTemplates. They are typed by
NodeTypes and RelationshipTypes, respectively, which define the sets of properties and
interfaces they offer. In addition, NodeTypes can explicitly express their capabilities
they offer and requirements they need, for relationships to be established. The typing
mechanism allows for inheritance, comparable to inheritance constructs in object-
oriented programming languages.

Figure 2.2 depicts an example for a topology graph. Nodes are displayed with their ID,
their respective NodeTypes are denoted using squared brackets. The PredictionService and
DeliveryService are both applications that run on the Python Interpreter and therefore
depend on a suitable Python installation. This semantic information is reflected in the
topology using the dependsOn relationship between the two Services and the Python in-
stallation. All other relationships in the topology are hostedOn relationships. The Python
interpreter and a Flink instance are hosted on a Ubuntu Virtual Machine installation.
The Virtual Machine runs on a Hypervisor.

18

2.2 Natural Language Generation

Figure 2.2: Example topology adapted from the OpenTOSCA Website [IAA17]

2.2 Natural Language Generation

Natural Language Generation (NLG) is regarded as a subfield of both computational
linguistics and artificial intelligence and focuses on (semi-)automated generation of texts
in natural language by computer systems [RD97]. In the following, a typical general
architecture for Natural Language Generation systems is described.

Pipeline Architecture

For the implementation of NLG systems, Reiter et al. [RDF00] propose a module-based
pipeline, where individual tasks are bundled in modules. The individual tasks each
bundle a set of problems that the system might impose. While the system can implement
every task individually, the authors emphasize that the pipeline architecture can also be

19

2 Foundations

seen as an outline with important topics to consider when implementing such a system.
As a consequence, individual tasks might be modified, merged, swapped or removed
entirely when appropriate. Nonetheless, when given the task of generating natural
language for a given input specification, it is considered a useful measure to consider
solutions for these imposed tasks when building a NLG system. The composition of the
modules and their respective tasks are depicted in Figure 2.3. In the following, every
task is described shortly.

Figure 2.3: NLG Pipeline proposed by Reiter et al. [RDF00]

Document Planning

The Document Planning module generates an outline for the document to be generated.
It determines the information to include and how that information is to be structured.

Content Determination The task of Content Determination is to identify the infor-
mation that is to be communicated from the input and therefore precedes other tasks.

20

2.2 Natural Language Generation

Depending on the application, this task has to incorporate different factors. The commu-
nicative goal has to be considered, which defines the topic that the output is required to
cover. Furthermore the content itself is analyzed regarding its level of detail. Oftentimes,
an initial level of knowledge in the specific domain is assumed or determined for readers
of the text. This leads to decisions regarding the level of detail of the content to be
generated. Moreover, constraints on the output or the system itself can change the
requirements of content determination. Examples are space constraints on the length of
the output or time constraints on the processing time of the NLG system. As these factors
are decided, the information source, which acts as the input, is analyzed and processed
into chunks of information. At this point, concrete input information is abstracted to an
internal representation, which can be manipulated by the system.

Document Structuring While the output of the previous step provides the content to
include, this content is unordered. As texts can be seen as ordered structures, such as
sentences or paragraphs, ordering is established by the Document Structuring task. This
structure is highly dependent on the application, therefore domain-specific information
about the input is often necessary. A general objective of this task can be formulated
as establishing an ordering over the content elements, such that the resulting text is
intuitive and accessible to read. Common strategies for structuring include proper
expression of hierarchical concepts, changing level of detail and grouping of similar
content, e.g. in a paragraph.

Microplanning

Microplanning takes on the idea of the previous module, but takes it to a more granular
level of detail. Instead of document-level, this module operates on a level of sections and
sentences. The information that was previously determined is structured and modified
in such a way that it can be expressed in natural language.

Lexicalization The task of Lexicalization is to find the correct wording for the content
that was previously determined. This includes e.g. nouns, verbs and adjectives in order
to describe the content in the target language. In addition, syntactic structures from the
language are also incorporated.

Referring Expression Generation Every time an entity from the content is referred to
in text, it is referenced by a referring expression. As an example, consider the following
sentences “John bought milk. He drove home right after.” Both “John” and “he” are

21

2 Foundations

expressions referring to John. Oftentimes, an entity might be referred to in different
ways, depending on the contextual information available. As the content is determined
and domain-specific information is available, the limited context available is used to
limit the range of possible referring expressions. A problem that might occur in this
task is the avoidance of ambiguities in the references. A referring expression should be
deterministically traceable to an entity [DR95]. Generally, in a NLG system, and initial
reference is to be differentiated from a subsequent reference. An initial reference occurs
when an entity is introduced, e.g. mentioned explicitly for the first time. Subsequent
references to the same entity can account for the fact that an initial reference occurred
in the context. The references used range from explicit descriptors of entities, pronouns
that identify an entity in the context, to a set of attributes that identifies that entity
without ambiguity [DR95].

Aggregation Aggregation is a structural task that determines the structures to use to
express certain sets of information and removes redundancy [Dal99]. This includes
grouping information into e.g. paragraphs or sentences. Several pieces of information
can e.g. be combined in a single sentence. For example “John was born in England. John
was raised in Italy.” could for instance be combined into the sentence “John was born in
England and raised in Italy.” The degree of grouping messages into structures is content-
and domain-specific.

Realization

At this point in the pipeline, the whole document is present in an abstract structure
inside the system. For mapping these structures to a document instance, a Realizer is
used. Depending on design decisions in previous tasks, the level of realization that has
to be applied to the internal structures differs.

Linguistic Realization While previous tasks assembled internal structural represen-
tations of text, the Linguistic Realizer maps these representations to sentences. For
this, morphological and orthographical rules of the target language are inflicted along
with correct syntax and grammar rules. The amount of realization done in this step
is dependent on the level of abstractness of the internal representations established
by previous tasks. For instance, a system using templates (Section 2.2) might perform
considerably less work on ensuring correct grammar as the templates are available
preconfigured.

22

2.2 Natural Language Generation

Structure Realization Previously, the Linguistic Realizer constructed a text out of
internal representation. This text is still regarded as abstract, as it needs to medium or
document to be placed in. The Structure Realizer is concerned with this task. Conceptu-
ally the Linguistic Realizer builds components of a text, such as sentences or paragraphs.
The Structure Realization task puts these language constructs into documents, which
is the output of the system. This corresponds to assembling a document following
conventions of document formats, e.g. the source code of a LaTeX-document or correct
HTML-tags.

Templating

Sometimes, the text in specific domains is of rather static nature. Patterns in texts can be
identified and subsequently extracted for reusability. These extracted parts of sentences
can be used as sentence templates. When incorporating NLG into a system, a fully
featured linguistic systems is often not necessary, as argued in [Rei95] and [VTK05].
Therefore, if a fully linguistic system is not needed or too costly, templating presents a
viable alternative [RM93].

They are also referred to as templated sentence plans, as they provide an organized way
to plan out the sentence structure in a generalized manner. The use of templates does
not necessarily exclude the possibility of making use of linguistic systems, as there exist
hybrid systems that make use of templates, as well as linguistic features such as dynamic
morphology to generate grammatically sound text [VTK05].

23

3 Related Work

In this Chapter, related work to the generation of natural language texts in the context
of information technological systems is presented.

XtraGen

Stenzhorn [Ste02] introduces the framework XtraGen, which uses Java and XML mes-
sages to construct an easily integratable solution for applications generating text. The
author argues that the majority of software systems that need to generate text do not
need complete linguistic systems, and therefore uses a concept of expendable templates
that can include predefined text as well as rules and constraints for dynamic generation
of text. For this reason, they can be considered hybrid templates, as linguistic informa-
tion can be incorporated into this structure. These templates are defined using XML
and makes use of its expressive nature. Preset conditions define the cases for when it is
appropriate to use the template. The system can be considered a general-purpose NLG
system, as it makes no assumptions about domain-specific information of the input.

Generating Natural Language Texts from Business Process
Models

Leopold et al. [LMP12] present an approach for the transformation of BPMN 2.01 process
models into natural language texts. Processes in specific domains are often designed by
domain experts. These experts may, although, lack knowledge of specific conventions and
notations in the process modeling language, which motivates an automated generation
of textual representations of these process models. This is accomplished by implementing
the pipeline-architecture approach by Reiter et al. [RDF00]. In the Text Planning step,

1http://www.bpmn.org

25

http://www.bpmn.org

3 Related Work

relevant linguistic information is extracted from the process model using a part-of-
speech tagger and the semantic net WordNet [Mil95]. The order is derived by splitting
the processes into fragments in order to restructure them in tree form. This ordering
provides a consistent approach for Document Structuring. Microplanning as well as
Realization are accomplished by making use of closed-source, commercial tools. Created
documents do not only include raw text, but are enriched by the inclusion of lists and
paragraphs to provide flexibility in expressing complex subgraphs of models.

ModelExplainer

The MODEX system, developed by Lavoie et al. [LRR96], aims to generate a human-
readable linguistic representation of models based on the Object Definition Language
standard. It is argued that different requirements analysts as well as domain experts work
on modeling using graphical notation. A textual representation can aid in complementing
such a graphical representation in order to prevent semantic errors during the modeling
and in later stages of development. The system generates HTML files that contains
hyperlinks for interactive navigation throughout different text paragraphs. Other notable
features of the generated documents are the inclusion of examples of instances of the
model, as well as negative example to emphasize the semantic implications of the model
to prevent errors in further development. The authors argue that, since the modeling
language is domain-independent, MODEX is domain independent as well. In order to
adapt to this, the authors propose to incorporate annotations and additional free text
from user entry to improve the quality and semantic accuracy of the generated texts.

Generating Natural Language specifications from UML class
diagrams

Meziane et al. [MAA08] present an approach to textual representations of UML class
diagrams with the help of GeNLangUML. The authors argue that the need for natural
language representations is often need in Software Engineering for documentation and
maintenance purposes. The implementation of GeNLangUML is template based in regards
to sentence plans and realization, because sophisticated grammar formalisms are not
needed to express the class relations. This is further emphasized by the authors, as they
claim that the language used in diagrams is a small subset of the English language.

26

NaturalOWL

Androutsopoulos et al. [GA07], [ALG13] propose their approach to verbalization of
Semantic Web OWL ontologies, with their system NATURALOWL. The pipeline approach
by Reiter et al. [RDF00] was implemented here again. What is remarkable about their
approach, is the level of influence that the author of an ontology model has in the
generation of the textual representation. They accommodate the domain-independence
and generality of OWL ontologies by actively relying on additional annotations by the
ontology’s author in order to generate more coherent and semantically sound text. For
example, the author has to provide inflected forms of every verb, noun or adjective used
in an OWL message triple for the triple to be correctly realized in text later. In addition
to this, custom sentence plans can be provided, which lead to more expressive sentences
in the text.

Automatic Documentation Generation via Source Code
Summarization of Method Context

McBurney et al. [MM14] address the problem of automated documentation generation
for source code. They observe that manually created documentation of source code
oftentimes has a lower priority as the development progresses. In addition, the documen-
tation provided sometimes lacks useful insights for further development. An automated
approach to documentation generation can counteract this, by providing standardized
descriptions of methods for the documentation that automatically changes alongside
with changes in the source code. A notable difference in their approach to previous work
on this topic is the incorporation of the context of a method in the software system in
the textual documentation for a method. For a given method, they analyzed the call
graph of the system using a modification of the PageRank algorithm to determine the
methods that call the original method, as well as the methods that get called by it. Then,
the system extracts semantic information about the method by relying on meaningful
and consistent naming, following the Software Word Usage Model naming conventions.
This information is then propagated to a NLG system that follows the typical pipeline
approach by Reiter and Dale [RDF00].

27

4 Approach

This Chapter describes an approach to generate textual descriptions from TOSCA topol-
ogy graphs.

The typical NLG pipeline tasks are adjusted to suit TOSCA topology-specific charac-
teristics. An overview of the approach is provided in Figure 4.1. First, the individual
components from the topology are extracted from the source files of the input. Then,
an internal graph representation is constructed from these components. The system
then performs an algorithm on the graph in order to determine the structure of the text
(Section 4.3). The result of the algorithm is a list of individual messages, which are then
processed in the Microplanning task. After further processing and composition by the
Realizer task, the output is a textual description of the topology.

4.1 TOSCA Topologies and Domain

4.1.1 Definitions

The TOSCA specification [OAS13] defines a topology graph as part of a Service Template.
We define the topology graph as a directed graph G = (V, E) by extending it with the
following definitions:

V :={NodeTemplates in the TopologyTemplate}
E ⊆{(u, v)| u, v ∈ V }

Einv :={(v, u)| (u, v) ∈ E}
Edgelabels :={Types of RelationshipTemplates}
Nodelabels :={Names of NodeTemplates}
relationship :E → Edgelabels

source :E → V, (u, v) 7→ u

target :E → V, (u, v) 7→ v

29

4 Approach

Figure 4.1: Overview of the Approach

4.1.2 Input: TOSCA Topology

The first task of the pipeline is to determine the content from the given input data. The
systems input is a CSAR, that according to the TOSCA specification [OAS13], has the
following structure:

.csar

/TOSCA-Metadata

TOSCA.meta

Definitions

Plans

...

30

4.2 Formalizing Relationships as Message Triples

In a CSAR file, a TOSCA.meta has to be present in the TOSCA-Metadata/ directory. It
describes metadata and organization about the CSAR and its components. The rest of
the files are .tosca files that include all the elements of a ServiceTemplate organized
in directories. These files are collected and transformed into an internal graph repre-
sentation of NodeTemplates (Listing 4.1) and RelationshipTemplates (Listing 4.2). This
transformation allows for the following steps to make use of characteristics of graphs,
such as well known algorithms.

4.2 Formalizing Relationships as Message Triples

During the individual pipeline tasks, a system-specific internal representation of the
document to be created is typically used. Reiter et al. [RDF00] propose the concept
of a Message data structure, which contains all the accumulated information and trans-
formations of previous pipeline tasks. In NATURALOWL [ALG13], edges of ontology
graphs are transformed to Message Triples, which in short contain information about
the source and target of an ontology relationship. For this work, we adapt this concept
and introduce Message Triples to our system. Similarly to its use in NATURALOWL,
Message Triples are used to represent edges in the topology graph. The data structure
aims to facilitate bundling similar content by allowing to collect edges with the same
relationship type into a single Message Triple.

A Message Triple is a three-tuple, that, given e ∈ E, is of the following form:

<source(e), relationship(e), target(e) >

With the introduction of Message Triples, a naive approach to building sentences could
be to generate one Message Triple per edge in the topology graph. The system could
then generate one sentence per Triple generated. While this is possible, it does not
provide additional value over storing the individual edges themselves, as their source
node, type of relationship and target node can easily be determined. In addition to
storing individual relationships as Message Triples, an and-operator to bundle a set of
nodes is allowed as the first argument. This allows for multiple, similar relationships that
have the same target and are of the same type to be expressed together for more fluency
in the output. In addition, this allows for Message Triples to be aggregated, which
corresponds to sentence Aggregation and therefore partially covers the Aggregation
pipeline task. Consider the example depicted in Figure 4.2 (r.).

The corresponding Message Triple would be of the following form:

<and(v1, . . . , vn−1), relationship(e), vn >

31

4 Approach

Figure 4.2: Simple Message Triple consisting of one relationship (l.) and multiple of
the same relationship type (r.)

4.3 Determination of Order and Aggregation of Message
Triples

Having defined an intermediate representation of information in the form of Message
Triples, this informational content has to be brought into an order according to the
Document Structuring task. For that, we propose an algorithm that is a modification
of the Depth-First Search algorithm for graphs [Tar72]. The procedure aims to collect
all edges in the topology graph in a specific order and merges multiple edges into
Message triples whenever possible. This provides a linear order of Message Triples.
The corresponding pipeline task is Document Structuring, as the algorithm provides a
structured order to Message Triples that are eventually transformed into the output text.
The algorithm is listed in Algorithm 4.1.

The input for the algorithm is assumed to be a topology graph G(V, E) along with a
root node, which is usually the most low-level element in the topology, for instance a
Hypervisor or Virtual Machine. In the first step, the given topology graph is inverted,
replacing E with Einv for the rest of the procedure. This is done to incorporate the
observation, that topology graphs tend to “spread” from the root-node, as branching
occurs. After that, the list that holds the resulting Message Triples is initialized, alongside
with a Stack. The root-Node is then pushed onto this newly generated Stack. The
algorithm then enters a loop, where, similar to iterative Depth-First Search, the Stack’s
top node is popped. If this node was not yet visited, the algorithm marks it as visited
and collects all outgoing edges of that node in Message Triples, which are added to the
list of Triples. All target nodes of these outgoing edges are then pushed to the Stack.

32

4.3 Determination of Order and Aggregation of Message Triples

Algorithm 4.1 TripleCollection-Algorithm

procedure COLLECTTRIPLES(topology, root)
invert(topology) // E is replaced by Einv

Triples← List

S← EmptyStack

S.push(root)
while S is not empty do

v ← S.pop()
if v.visited is false then

v.visited← true
relationshipGroups← v.outgoingEdges.groupBy(relationship)
for all group ∈ relationshipGroups do // transform pairs of the same

relationship types
Triples.add(MessageTriple(group.sourceNodes,group.relationship,v))

end for
for all (v, u) ∈ Einv do

S.push(u)
end for

end if
end while
return Triples

end procedure

A precondition of the algorithm is that there exists a path from every node v ∈ V to the
root node. For a TOSCA topology, this is usually only the case for a single-tier application
topology with exactly one root node. In order to allow applications with multiple root
nodes, which corresponds to multiple tiers in application topologies, the tiers have to be
split beforehand.

This is accomplished by assuming that there exists a unique relationship in the topology
graph, which is used to denote the connection-relationship of one tier to another, and
removing this relationship would mean that the two tiers are no longer weakly connected.
In practice, this is a connectsTo-relationship or a derivation of the connectsTo base type.
By temporarily removing all connectsTo-relationships and storing them elsewhere, we
can determine every single tier and its root as the input for the algorithm. The procedure
will in consequence not capture the relationship between tiers as a Message Triple. The
stored relationships can then be transformed to Message Triples and added to their
respective Message Triple list that is the output for a single tier.

33

4 Approach

The conceptual illustration of a topology with two tiers is depicted in Figure 4.3. The
two tiers operate separately, but maintain a connection at some point between two
components through a connectsTo relationship.

Figure 4.3: Topology with two tiers

In this example, the algorithm runs on every tier separately. Then, the Message Triples
of Tier 2 are extended with a connectsTo Message Triple, which connects the two tiers.

Sentence Aggregation

Aggregation it part of the Microplanning task. As information is expressed in text,
redundancy can occur. The task of aggregation is to remove redundant information
and to produce more coherent and fluent output [Dal99]. In Section 4.3, aggregation
is already performed to a certain degree during the execution of the algorithm for
Document Structuring. In this section, we propose an additional rule for sentence
aggregation for the system.

The two sentences:

34

4.3 Determination of Order and Aggregation of Message Triples

The Prediction Service and the Delivery Service depend on the Python Interpreter.

The Prediction Service and the Delivery Service are hosted on a Flink instance.

A possible aggregating transformation that attempts to remove duplicate information
and merges the two sentences into one:

The Prediction Service and the Delivery Service depend on the Python Interpreter and are
hosted on a Flink instance.

We can formalize this rule for a nonempty sets of entities A, B and C, and relationships
rel1 and rel2:

< A, rel1, B >

< A, rel2, C >

→ [< A, rel1, B >, < A, rel2, C >]

Message Triples of this form are collected and included in the same template in the
system.

Listing 4.1 Example of a NodeTemplate Definition with additional Properties
<tosca:NodeTemplate xmlns:ns119="http://opentosca.org/nodetypes" name="VSphere_5.5"

id="VSphere_5_5" type="ns119:VSphere_5.5">

<tosca:Properties>

<ns119:CloudProviderProperties xmlns="http://opentosca.org/nodetypes"

xmlns:ty="http://opentosca.org/nodetypes">

<ty:HypervisorEndpoint>endpointurl</ty:HypervisorEndpoint>

<ty:HypervisorTenantID>smartservices</ty:HypervisorTenantID>

<ty:HypervisorUserName>user</ty:HypervisorUserName>

<ty:HypervisorUserPassword>pass</ty:HypervisorUserPassword>

</ns119:CloudProviderProperties>

</tosca:Properties>

</tosca:NodeTemplate>

Listing 4.2 Example of a RelationshipTemplate Definition
<tosca:RelationshipTemplate

xmlns:tbt="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes" name="con_13"

id="con_13" type="tbt:HostedOn">

<tosca:SourceElement ref="Ubuntu-14_04-VM"/>

<tosca:TargetElement ref="VSphere_5_5"/>

</tosca:RelationshipTemplate>

35

4 Approach

4.4 Lexicalization

The task is Lexicalization is to determine the required lexical and syntactical means to
express the generated Message Triples. This includes the determination of descriptors
that individual entities will later be referred to as in the output text. The subtasks of
Lexicalization of this system are illustrated in Figure 4.4. Incoming Message Triples are
temporarily split into their individual entities, for which a describing name is determined.
This is elaborated in detail in Section 5.2.1. Then, appropriate templates for the Message
Triples are determined. These processing steps are supported with the incorporation of
domain-specific knowledge. This knowledge e.g. aids in the determination of an entity
type from a taxonomy. Furthermore, it facilitates the initial process of creating templates.
These templates are then prepared to form a sentence, but is still considered an internal
representation, as following steps might further transform these sentence templates.

Figure 4.4: Subtasks of the Lexicalization task

4.4.1 Sentence Templates

In language independent NLG systems, very refined language models are used, which
can get highly complex. They are both difficult to create and maintain. Furthermore, it
is argued that the sophistication of such models does not correlate with sophistication
of language output in the majority of cases when domain-specific information is to be
verbalized. Oftentimes, similarities and patterns are identified in the language used
to describe domain-specific topics. These can be extracted and stored separately to
reduce the complexity of the system. These fixed parts serve as templates, as they can
be reused.

36

4.5 Generating Referring Expressions

4.4.2 Descriptors for Entities

Naming of Nodes and Relationships is up to the architect designing the TOSCA Ser-
viceTemplate. To further categorize nodes such as Ubuntu VM, a taxonomy is needed.
Some systems use a semantic net such as WordNet [Mil95], usually for general domains.
In the case of the specific domain of TOSCA, a small custom taxonomy might be created
for the system that categorizes entities in a two-layer hierarchical categorization.

4.5 Generating Referring Expressions

The way an entity is referred to in a text is context-sensitive and determined by the
referring expression task. The task determines if an entity is referred to using an explicit
descriptor, or if a suitable pronoun is used. In the proposed system, the generation of
referring expressions is greedy. The entity that was referred to last is saved in a variable.
When an entity is about to be mentioned, it is checked for equality to that variable.
Essentially, as long as no other entity was referred to, an entity can be referred to with
an appropriate referring pronoun.

4.6 Realization

The Realization task is divided into two subtasks.

The first, Linguistic Realization, processes the information and structures that were
generated during the previous tasks and generates sentences from the underlying
representation in the system. In the proposed system this task is closely tied to sentence
templates. As discussed in [RM93], truly linguistic systems are difficult and expensive
to maintain. Especially when only a subset of expressions of a language is used in the
problem domain, a rather static approach using templates sentences is argued to be
more suitable. In this approach, sentence templates are used to provide the Realization
module.

37

5 Implementation

This Chapter discusses a prototypical implementation that incorporates concepts and
ideas of the presented approach in Chapter 4. The prototype uses the Java programming
language1 Specific use-cases are presented in Chapter 6.

5.0.1 TOSCA’s documentation-Tag

Throughout this work, we have not assumed the presence of the TOSCA documentation-
Tag in any XML element. This tag is an optional field that every element in TOSCA
supports by specification [OAS13]. Using this field, the author of the respective topology
has the ability to provide additional documentation and information for the element.
This documentation can be provided in natural language, which acts as a valuable
resource for any natural language generation system. The documentation provided by
the author could be incorporated into the natural language description of the topology.
Furthermore, the field could be filled with additional semantic information that could
otherwise not be inferred with the given information about the topology.

Listing 5.1 documentation tag content example, adapted from [IAA17]
<documentation>

The corresponding TOSCA topology consists of three stacks: one for the first device,

one for the second device, and one for the Message Broker.

</documentation>

In this implementation, the presence of a documentation-Tag for any element is not
assumed, although they can aid in producing more qualitative content. An example is
provided in Listing 5.1.

1https://www.java.com

39

https://www.java.com

5 Implementation

5.1 Document Planning

5.1.1 Handling Input and Content Determination

The input for the prototype is a collection of .tosca files from CSAR archives. Using the
TOSCA XSD schema, which is available at [OAS13], these files are then deserialized
into Java objects using the Java Architecture for XML Binding (JAXB) component of
OpenTOSCA. With JAXB, the elements and their respective hierarchy are mapped to
Java objects according to the provided schema. Then, an internal representation of
the topology is created using a graph structure. Nodes and edges are created and
connected according to the TopologyTemplate in the ServiceTemplate. NodeTemplates and
RelationshipTemplates are encapsuled into the respective nodes and edges. This allows
access to properties of the respective Nodes and Relationships in the topology, combined
with graph algorithms that can be used on the structure.

5.1.2 Document Structuring

To obtain MessageTriples, the proposed algorithm is then performed on the graph
structure. The result is an ordered list of MessageTriples that can be seen as an
alternative representation of the graph.

5.2 Microplanning

5.2.1 Sanitization of Names and Descriptors

Naming in the topology files usually follows naming conventions. For example, some-
times very detailed information such as the version number of a piece of software is
required to be included. In a description of the topology, this might not be the level of
detail that is needed, instead of Ubuntu_14_04-VM for example, the entity in question
could also be referred to as Ubuntu, Ubuntu VM, Linux OS or else. This is also the case
with custom tags used for elements, such as in the CloudProviderProperties tag in
Listing 4.1. Here, camel case is used to denote the properties which otherwise might not
have been referred to by their natural language name (such as “Hypervisor-Endpoint”).
Camel cased words can simply be split up by the rules they are constructed, as a whites-
pace can be inserted before every capital letter that is not the first, then optionally
modifying the case of the first letter of every word when appropriate. As a more general
solution, a rule-based String sanitizer is used in this work. Individual rules are added

40

5.3 Realization

manually. They aim to remove special characters and simplify overly technical names
for the sake of readability. These rules make use of regular expressions. Expressions are
matched as patterns, and then appropriately replaced with sanitized versions for later
use in textual descriptions. Table 5.1 lists some expressions in Java Syntax. Regular
braces (a ()-pair) enclose entities that can in the matched replacement referred to as $n,
where n denotes the n-th entity.

Regular Expression Replacement
([A-Za-z])_([0-9]) $1 $2

([0-9])(_|-)([A-Za-z]) $1 $3

([0-9])(_|-)([0-9]) $1.$3

([A-Za-z])(_|-)([0-9]) $1 $3

Table 5.1: Regular expressions used to sanitize entity names using Java syntax

As for descriptors for relationships, we can observe that a small number of base types
are defined as RelationshipTypes. Based on this observation, we infer the descriptor for a
Relationship by following the inheritance path to the base type and use an appropriate
verbalization of it.

5.3 Realization

5.3.1 Sentence Templates

The system uses sentence templates to perform the Linguistic Realization task. A Tem-
plate Engine is responsible for mapping Message Triples to sentences using appropriate
templates. The templates are strings with special placeholders, similar to those found in
other templating engines such as Jinja2. Since every Message Triple contains exactly one
target-node, because of how the algorithm in Section 4.3 operates, it is referred to in
the templates as

{{target}}

The source-nodes (v1, . . . , vn) are referred to with

{{v_1}}, ..., {{v_n}}.

2http://jinja.pocoo.org

41

http://jinja.pocoo.org

5 Implementation

Relationships (rel1, . . . , relm) are represented as

{{rel_1}}, ..., {{rel_m}}.

Every Message Triple is realized using one sentence template. For every placeholder, the
appropriate referring expression is filled.

5.3.2 Structure Realization

With linguistically realized sentences, the task of producing the output text remains.
The prototype currently supports only basic export functionality as an unformatted text.
Generally speaking, this component can be designed in a modular way, so that different
export formats, such as HTML or LaTex source code for instance, are possible outputs.
Depending on the use-case, the export could be directly integrated into external software
through an interface, and further processed outside of the system.

42

6 Validation

In Chapter 4 we introduced an approach to generate textual descriptions of TOSCA
topologies. Chapter 5 provides information on a prototypical implementation of the
approach. In this Chapter, feasibility of the presented approach is validated using the
prototype by running it on an exemplary topology. Individual tasks are revisited in the
context of the use-case and described.

6.1 Use-Case: IoT Scenario

The following topology is adapted from the OpenTOSCA website1. The application
topology is depicted in Figure 6.1. It uses different technologies to realize the following
scenario:

Two Raspberry Pi devices control a temperature sensor and a ventilator respectively
(both not part of the application topology). One device acts as a Publisher of information
and obtains data from the temperature sensor, which is then sent to an Eclipse Mosquitto2

Topic via MQTT3. The Mosquitto instance acts as a Broker in the MQTT network and can
send a signal to the second Raspberry Pi device, which is subscribed to the Topic. If the
data received by the second device indicates a temperature above a certain threshold,
the device activates the ventilator connected to it. Both devices interface with their
connected sensors and the MQTT Topic using Python4 scripts.

6.1.1 Document Planning

As described in the approach, the content determination includes all nodes and re-
lationships found in the topology. The topology graph consists of multiple tiers that

1http://www.opentosca.org/sites/examples.html
2https://mosquitto.org
3http://mqtt.org
4https://www.python.org

43

http://www.opentosca.org/sites/examples.html
https://mosquitto.org
http://mqtt.org
https://www.python.org

6 Validation

Figure 6.1: TOSCA Topology representing an IoT scenario including two Raspberry Pi
devices and a MQTT Broker instance

communicate with each other through a MQTTConnection-edge. As the document struc-
ture algorithm can only handle stacks individually, these connection relationships are
temporarily not considered in the construction of Message Triples to obtain three distinct
connected components in the topology. This information is recognized by the system as
it detects three root-nodes. Every stack is then processed by the algorithm, yielding the
lists of Message Triples in Listing 6.1:

Subsequently, the MQTTConnection-edges are transformed into additional Message
Triples:

These two additional Message Triples are then appended to the list of Message Triples
for the Broker-Tier, as it represents the target of both connection-relationships (Listing
6.2).

44

6.1 Use-Case: IoT Scenario

Listing 6.1 Message Triples created by the algorithm
Tier 1:

MessageTriple[source=[Raspbian1], target=[DevicePi1], type=hostedOn]

MessageTriple[source=[Python1, TemperatureSubscriber], target=[Raspbian1], type=hostedOn]

MessageTriple[source=[TemperatureSubscriber], target=[Python1], type=dependsOn]

Tier 2:

MessageTriple[source=[BrokerOS], target=[Hypervisor], type=hostedOn]

MessageTriple[source=[MessageBroker], target=[BrokerOS], type=hostedOn]

MessageTriple[source=[TemperatureTopic], target=[MessageBroker], type=dependsOn]

Tier 3:

MessageTriple[source=[Raspbian2], target=[DevicePi2], type=hostedOn]

MessageTriple[source=[TemperaturePublisher, Python2], target=[Raspbian2], type=hostedOn]

MessageTriple[source=[TemperaturePublisher], target=[Python2], type=dependsOn]

Listing 6.2 Additional Message Triples for connections
MessageTriple[source=[TemperatureSubscriber], target=[TemperatureTopic],

type=MQTTConnection]

MessageTriple[source=[TemperaturePublisher], target=[TemperatureTopic],

type=MQTTConnection]

6.1.2 Microplanning

In Microplanning, all nodes and relationships are processed to identify an appropriate
and readable representation in the output document. The natural language representa-
tion of relationships are derived from their base type. Since hostedOn and dependsOn
are considered base types, only the descriptor MQTTConnection has to be changed. One
alternative is to express this relationship explicitly as a “MQTTConnection relationship”.
The approach of the prototype is to use the descriptor of the relationships base type, in
this case a connectsTo relationship.

6.1.3 Realized Output

After Document Planning and Microplanning, an internal representation of the topology
has been assembled. The Realizer task takes this representation as input and produces
the output. Appropriate sentence templates for Message Triples are selected and filled.
In this case, sentence templates with the ability to express additional information for
nodes has been selected. If a node is referred to as a single entity and is mentioned as
such for the first time in the text, it is introduced to the reader by explicitly stating its
type in a subordinate clause.

45

6 Validation

The generated output of the prototype is listed in Listing 6.3.

Listing 6.3 Output text for the example topology
The topology consists of a total of 12 entities and 13 relationships.

It is split into three stacks.

Raspbian1, which acts as an Operating System, is hosted on DevicePi1, which acts as an

IoT device.

Python1 and TemperatureSubscriber are hosted on Raspbian1.

TemperatureSubscriber, which acts as a MQTT Subscriber instance, depends on Python1,

which acts as an Interpreter.

BrokerOS, which acts as an Operating System, is hosted on a Hypervisor.

MessageBroker, which acts as a MQTT Broker instance, is hosted on BrokerOS.

TemperatureTopic, which acts as a MQTT Topic, depends on MessageBroker.

Raspbian2, which acts as an Operating System, is hosted on DevicePi2, which acts as an

IoT device.

TemperaturePublisher and Python2 are hosted on Raspbian2.

TemperaturePublisher, which acts as a MQTT Publisher instance, depends on Python2, which

acts as an Interpreter.

46

7 Conclusion and Future Work

This Chapter provides a short summary of this work. In addition, future work on the
system is proposed and use-cases are discussed.

Conclusion

In this work, an approach for the automated generation of natural language descriptions
of TOSCA topology graphs has been proposed. To accomplish this, every typical task in
Natural Language Generation is addressed with a solution that is tailored to the problem
domain of application topologies.

First, foundations of TOSCA and Natural Language generation were presented. This
provided a base for examining related work.

With the aid of observations made in foundational as well as related work, an approach
for transforming TOSCA topologies to natural language texts was presented. First,
TOSCA topologies are input and its files are parsed and processed. To determine a linear
order of entities to structure the text, an algorithm was presented. Through application of
aggregation techniques, more fluent and readable sentences are formed. The sentences
are then surfaced from underlying representations by a Realizer component. The output
of the system is a textual representation of the topology graph.

This concept was implemented in a prototype and validated with an exemplary topology
graph.

Future Work

This Section discusses Future Work based on this work.

The presented approach does currently not include processing techniques to express
individual components of graphs in detail, such as Properties and Interfaces of Nodes.
For this, the entire pipeline has to be extended, ranging from Content Determination,

47

7 Conclusion and Future Work

over additional sentence structures, to Structure Realization in the output document.
More granular descriptions are therefore a task for future work.

In addition, the prototype only provides simple text export functionality of the output,
which could be extended to support different document formats or an integration with
visual modeling tools for topologies such as Winery [KBBL13] to combine visual and
textual information in documents.

The generated textual representations can also be used as a starting point to assess
the possibilities of reconstructing topology graphs from textual or other unstructured
representations of applications. This can be motivated by the sheer amount of online
software repositories on platforms such as GitHub1. Oftentimes, these repositories
include descriptions and instructions in natural language. Recent work on the automated
generation of TOSCA topologies from public repositories by Endres et al. [EBLW] has
shown that applications can be automatically “ported” to topologies graphs. The quality
of the results could possibly be improved by including information from the textual
documentation available. For this purpose, named entity recognition and part-of-speech
tagging [MS+99] could be inflicted on the textual descriptions.

1https://octoverse.github.com

48

https://octoverse.github.com

Bibliography

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. “A view of cloud computing.” In:
Communications of the ACM 53.4 (2010), pp. 50–58 (cit. on p. 15).

[ALG13] I. Androutsopoulos, G. Lampouras, D. Galanis. “Generating natural lan-
guage descriptions from OWL ontologies: the NaturalOWL system.” In:
Journal of Artificial Intelligence Research 48 (2013), pp. 671–715 (cit. on
pp. 27, 31).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
S. Wagner. “OpenTOSCA–a runtime for TOSCA-based cloud applications.”
In: International Conference on Service-Oriented Computing. Springer. 2013,
pp. 692–695 (cit. on p. 15).

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. “TOSCA: Portable Au-
tomated Deployment and Management of Cloud Applications.” Englisch.
In: Advanced Web Services. New York: Springer, Jan. 2014, pp. 527–549.
ISBN: 978-1-4614-7534-7. DOI: 10.1007/978-1-4614-7535-4_22. URL:
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INBOOK-2014-01&engl=0 (cit. on p. 17).

[Dal99] H. Dalianis. “Aggregation in natural language generation.” In: Computa-
tional Intelligence 15.4 (1999), pp. 384–414 (cit. on pp. 22, 34).

[DR95] R. Dale, E. Reiter. “Computational interpretations of the Gricean maxims in
the generation of referring expressions.” In: Cognitive science 19.2 (1995),
pp. 233–263 (cit. on p. 22).

[EBLW] C. Endres, U. Breitenbücher, F. Leymann, J. Wettinger. “Anything to Topol-
ogy - A Method and System Architecture to Topologize Technology-Specific
Application Deployment Artifacts.” In: Proceedings of the 7th International
Conference on Cloud Computing and Services Science (CLOSER 2017), Porto,
Portugal (cit. on p. 48).

49

http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2014-01&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INBOOK-2014-01&engl=0

Bibliography

[GA07] D. Galanis, I. Androutsopoulos. “Generating multilingual descriptions from
linguistically annotated OWL ontologies: the NaturalOWL system.” In:
Proceedings of the Eleventh European Workshop on Natural Language Genera-
tion. Association for Computational Linguistics. 2007, pp. 143–146 (cit. on
p. 27).

[IAA17] IAAS. OpenTOSCA. 2017. URL: http://www.opentosca.org/ (cit. on pp. 19,
39).

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. “Winery–a modeling
tool for TOSCA-based cloud applications.” In: International Conference on
Service-Oriented Computing. Springer. 2013, pp. 700–704 (cit. on p. 48).

[LF09] F. Leymann, D. Fritsch. “Cloud Computing: The Next Revolution in IT.” In:
Proceedings of the 52th Photogrammetric Week (2009), pp. 3–12 (cit. on
p. 15).

[LMP12] H. Leopold, J. Mendling, A. Polyvyanyy. “Generating natural language texts
from business process models.” In: International Conference on Advanced
Information Systems Engineering. Springer. 2012, pp. 64–79 (cit. on p. 25).

[LRR96] B. Lavoie, O. Rambow, E. Reiter. “The Modelexplainer.” In: Proceedings
of the 8th international workshop on natural language generation. 1996,
pp. 9–12 (cit. on p. 26).

[MAA08] F. Meziane, N. Athanasakis, S. Ananiadou. “Generating Natural Language
specifications from UML class diagrams.” In: Requirements Engineering 13.1
(2008), pp. 1–18 (cit. on p. 26).

[MG+11] P. Mell, T. Grance, et al. “The NIST Definition of Cloud Computing.” In:
(2011) (cit. on p. 15).

[Mil95] G. A. Miller. “WordNet: a lexical database for English.” In: Communications
of the ACM 38.11 (1995), pp. 39–41 (cit. on pp. 26, 37).

[MM14] P. W. McBurney, C. McMillan. “Automatic documentation generation via
source code summarization of method context.” In: Proceedings of the 22nd
International Conference on Program Comprehension. ACM. 2014, pp. 279–
290 (cit. on p. 27).

[MS+99] C. D. Manning, H. Schütze, et al. Foundations of Statistical Natural Language
Processing. Vol. 999. MIT Press, 1999 (cit. on p. 48).

[OAS13] OASIS-Standard. Topology and Orchestration Specification for Cloud Applica-
tions Version 1.0. Nov. 25, 2013. URL: http://docs.oasis-open.org/tosca/
TOSCA/v1.0/os/TOSCA-v1.0-os.html (cit. on pp. 17, 18, 29, 30, 39, 40).

[RD97] E. Reiter, R. Dale. “Building applied natural language generation systems.”
In: Natural Language Engineering 3.1 (1997), pp. 57–87 (cit. on p. 19).

50

http://www.opentosca.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

[RDF00] E. Reiter, R. Dale, Z. Feng. Building Natural Language Generation Systems.
Vol. 33. MIT Press, 2000 (cit. on pp. 19, 20, 25, 27, 31).

[Rei95] E. Reiter. “NLG vs. templates.” In: arXiv preprint cmp-lg/9504013 (1995)
(cit. on p. 23).

[RM93] E. Reiter, C. Mellish. “Optimizing the costs and benefits of natural language
generation.” In: IJCAI. 1993, pp. 1164–1171 (cit. on pp. 23, 37).

[Ste02] H. Stenzhorn. “XtraGen: a natural language generation system using XML-
and Java-technologies.” In: Proceedings of the 2nd workshop on NLP and
XML-Volume 17. Association for Computational Linguistics. 2002, pp. 1–8
(cit. on p. 25).

[Tar72] R. Tarjan. “Depth-first search and linear graph algorithms.” In: SIAM journal
on computing 1.2 (1972), pp. 146–160 (cit. on p. 32).

[VTK05] K. Van Deemter, M. Theune, E. Krahmer. “Real versus template-based natu-
ral language generation: A false opposition?” In: Computational Linguistics
31.1 (2005), pp. 15–24 (cit. on p. 23).

All links were last followed on September 28, 2017.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Foundations
	2.1 TOSCA
	2.2 Natural Language Generation

	3 Related Work
	4 Approach
	4.1 TOSCA Topologies and Domain
	4.2 Formalizing Relationships as Message Triples
	4.3 Determination of Order and Aggregation of Message Triples
	4.4 Lexicalization
	4.5 Generating Referring Expressions
	4.6 Realization

	5 Implementation
	5.1 Document Planning
	5.2 Microplanning
	5.3 Realization

	6 Validation
	6.1 Use-Case: IoT Scenario

	7 Conclusion and Future Work
	Bibliography

