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Kurzfassung

In vielen Bereichen werden heutzutage große Mengen an Daten gesammelt. Das Verstehen

solcher Daten erfordert meistens eine Vorverarbeitung und Visualisierung. Taxiunternehmen

sammeln unter anderem Bewegungsdaten, die Analyse von Verkehrsbehinderungen oder

allgemeinen Mustern erlauben. Um sowohl effizienter, als auch übersichtlicher die Daten zu

analysieren und darzustellen, werden Bewegungsdaten oft durch Map Matching Algorith-

men vereinfacht. Dabei wird der Datensatz auf einen Graphen des Straßennetzes abgebildet.

Zusätzlich können Ungenauigkeiten und fehlerhafte Messungen behoben werden. Solche Al-

gorithmen enthalten jedoch Parameter und müssen meistens auf die Daten angepasst werden.

Diese Arbeit zeigt ein interaktives Map Matching Verfahren. Durch visuelle Unterstützung

kann ein Analyst die Parameter für eine effiziente Anwendung einstellen. Das entwickelte

Verfahren wurde implementiert und anschließend in mehreren Fallstudien ausgewertet.
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1 Einleitung

Geographische Daten (Geodaten) werden häufig in großen Mengen durch GPS-Geräte in

Fahrzeugen gesammelt. Die von Taxiunternehmen erfassten Daten werden oft analysiert, um

in verschiedenen Bereichen Informationen zu sammeln. Sie können zum Beispiel genutzt

werden, um Strecken, auf denen sich häufig Verkehrsstaus bilden, zu entdecken [WLY+13]

oder um vorherzusagen wo und wann Taxifahrer schneller Fahrgäste finden können [LZS+11].

Ein großer Teil solcher Daten enthält jedoch häufig falsche Messungen, Ausreißer oder keine

relevanten Informationen. Aus diesem Grund wird der Datensatz meistens bereinigt, bevor

Wissen gewonnen werden kann.

Für eine Analyse der Daten spielen u.a. die Bereiche „Data Mining“ und „Information Visua-

lization“ eine wichtige Rolle. Der erste Schritt ist jedoch fast immer eine Vorverarbeitung

der Aufzeichnungen. Bevor sie nach Mustern durchsucht und anschaulich dargestellt werden

können, ist es sinnvoll Daten ohne Informationsgehalt zu filtern und die restlichen in ein

gewünschtes Format zu konvertieren. Solche Schritte können Performanz und Speicherplatz

verbessern.

Ein möglicher Schritt für die Vorverarbeitung von Geodaten ist dasMapMatching. Dabei wer-
den die Messungen zu Punkten bzw. Pfaden auf einem Straßennetz zugewiesen. Wenn Straßen

statt Koordinaten betrachtet werden, sind Zusammenhänge in den Daten besser zu erkennen.

Bevorzugte Strecken und Eigenschaften des Verkehrsfluss können einfacher berechnet werden.

Weil in der Regel weder Messungen, noch Straßeninformation exakt sind, kommt es meistens

zu Fehlern in diesem Verfahren. Um das Ergebnis zu verbessern, wird das Map Matching für

jeden Datensatz angepasst. Solche Algorithmen besitzen meistens Parameter, die in Abhängig-

keit von der Qualität und Eigenschaften der Messungen eingestellt werden sollten. Dazu ist

eine Visualisierung der Bewegungsdaten und der Eigenschaften hilfreich. Während andere

Arbeiten versuchen die Map Matching Genauigkeit durch fortgeschrittene Berechnungen zu

verbessern, wird in dieser Arbeit untersucht, wie ein Analyst, bei der Anwendung eines solchen

Algorithmus, das möglichst beste Ergebnis erzielen kann. Es wurde ein System entwickelt, das

dem Nutzer hilft Ausreißer in Daten zu bereinigen, Fehler im Straßennetz zu korrigieren und

Parameter zu optimieren. Interaktionen, Eigenschaften und Ergebnisse des Verfahrens sollen

sinnvoll visualisiert werden, so dass der Prozess verfolgt werden kann und Fehler erkennbar

sind. Zur Verifizierung des entwickelten Systems wurde ein Datensatz, welcher von Taxis

gesammelt wurde, und ein Modell des entsprechenden Straßennetzes verwendet.
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1 Einleitung

Gliederung

Zu Beginn der Arbeit werden verwandte Arbeiten vorgestellt (Kapitel 2). Anschließend folgen

die Grundlagen (Kapitel 3) dieser Arbeit und das Konzept (Kapitel 4) des entwickelten Verfah-

rens. Kapitel 5 beschreibt die Implementierung, welche anschließend in Kapitel 6 auf einen

Datensatz angewendet wurde, um das System auszuwerten. Die Arbeit wird dann durch eine

Zusammenfassung und den Ausblick möglicher Anknüpfungspunkte abgeschlossen.
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2 Verwandte Arbeiten

Es wurden verwandte Arbeiten in verschiedenen Bereichen betrachtet. Zuerst werden Grund-

lagen der visuellen Analyse angeschaut. Ferner beschäftigt sich eine Vielzahl an Arbeiten

mit der Analyse von Geodaten. Ein anderer, seit kurzem wachsender Bereich ist die inter-

aktive Vorverarbeitung von Daten. Zuletzt werden verschiedene Map Matching Verfahren

angeschaut.

2.1 Datenexploration und Visualisierung

Data-Mining hat viele Rollen in der realen Welt. Wozu es gebraucht und was die Grundlagen

von Data-Mining sind, haben Fayyad et al. [FPS96] schon früh erläutert. Sie erklären den

Prozess, wie Wissen aus Datenbanken gewonnen werden kann, und beschreiben beliebte

Methoden für Data-Mining. Schneidermann [Shn01] zeigt später, dass Exploration der Daten

wichtig ist und gibt Richtlinien für die Entwicklung von Werkzeugen zur Exploration vor.

Zusätzlich zur Wichtigkeit der Visualisierung, betont er, dass der Nutzer im Vordergrund

steht. Dieser soll die Werkzeuge verstehen und Kontrolle darüber haben, um finden zu können,

wonach gesucht wird.

Die Kombination aus Data-Mining und Informationsvisualisierung vereinigt mit der menschli-

chenWahrnehmung bildet die Grundlage fürVisual Analytics. Keim et al. [KAF+08] beschrei-

ben den Zusammenhang verschiedener Bereiche und erklären den Visual Analytics Prozess.

Dieser Prozess besteht aus einer „Sensemaking“-Schleife, mit welcher durch Visualisierung,

Wahrnehmung und Analyse Kenntnisse erlangt werden. Eine wichtige Grundlage in Visual

Analytics bildet das Konzept des „Visual Information-Seeking Mantra“ [Shn96], welches Regeln

für das Entwickeln von Benutzeroberflächen stellt.

Auch für visuelle Exploration großer Mengen an Geodaten zeigen Arbeiten [AAW07], wie

diese durch Aggregationstechniken anschaulich visualisiert werden können.

2.2 Geodaten-Analyse

Geodaten werden genutzt, um Muster und Eigenschaften im Verkehrsfluss zu zeigen. Statt

mit Kameras, die teuer und inflexibel sind, zeigen Wang et al. [WLY+13] wie Daten betrachtet
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2 Verwandte Arbeiten

werden können, um Verkehrsstaus zu erkennen. Ihre Arbeit verarbeitet die Daten in mehreren

Schritten und nutzt geeignete Ansichten, um jeweils die Ergebnisse zu visualisieren. Dabei wer-

den zuerst Bewegungsdaten und Straßennetz bereinigt. Anschließend wird ein Map Matching

Algorithmus auf diese angewendet und aus den Ergebnissen kann die mittlere Geschwindigkeit

für Straßen pro Zeitintervall berechnet werden. Eine ähnliche Pipeline, bestehend aus Map

Matching und anschließenden Analyseschritten, verwenden auch Lu et al. [LLY+15], um die

Auswahl verschiedener Strecken bei ähnlichem Start und Zielpunkt zu erklären. Statt mittlerer

Geschwindigkeit, sind bei ihrer Fragestellung jedoch die möglichen Strecken vom Start zum

Endpunkt relevant zur Analyse. Zuletzt folgt die Visualisierung und Exploration der Daten

und Eigenschaften.

Bevor man in der Lage sein kann Erkenntnisse zu erlangen, müssen zuerst die Daten bereinigt

werden. Li et al. [LWW15] stellen vor, wie bestimmte Qualitätsprobleme in GPS-Daten erkannt

und entfernt werden können. Um die Probleme zu finden, verwenden sie aktives Lernen,

welches Eingabe durch einen Analysten erfordert. Anomalien, die nicht als Qualitätsproblem

definiert wurden, können auf diese Weise jedoch nicht erkannt werden.

2.3 Interaktive Verarbeitung

Um Zeitreihendaten zu verarbeiten, bietet es sich an Operationen zu definieren, so dass der

Analyst die geeigneten Schritte der Verarbeitungspipeline wählen kann [BRG+12]. Mögliche

Schritte sind Methoden zur Bereinigung, Normalisierung oder Bestimmung eines Ähnlichkeits-

maß. Die Wahl der Operationen und ihre Parameter kann auf eine relativ kleine Datenmenge

angepasst und anschließend auf die restlichen Daten angewendet werden.

Methoden des maschinellen Lernens bieten einen alternativen Ansatz, um abweichende Daten

zu bereinigen. Dies kann für GPS-Messungen angewendet werden, um abweichende Trajekto-

rien zu identifizieren [LYC10]. Der Analyst hat dabei die Aufgabe das Modell mit Hilfe eines

vorhandenen Datensets zu trainieren.

2.4 Map Matching

Navigationssysteme sind heutzutage in einem Großteil von Fahrzeugen und Mobiltelefonen.

Schon innerhalb der ersten Navigationssysteme in Fahrzeugen wurde Map Matching ein-

gesetzt, um die Position auf dem Straßennetz zu bestimmen [Col90]. Die anfangs simplen

Matching Algorithmen, welche einfach die nächstgelegene Straße gesucht haben, wurden

später für verschiede Anwendungen erweitert und verbessert. Navigationssysteme nutzen

in der Regel inkrementelle Matching Verfahren, welche nur die aktuelle Messung oder die

letzten n Messungen betrachten. Im Gegensatz dazu berücksichtigen globale Algorithmen eine
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2.4 Map Matching

vollständige Folge von Messungen, um bessere Ergebnisse zu erreichen. Diese können jedoch

nicht angewendet werden, wenn Messungen in Echtzeit gemessen werden.

Das Ziel vieler Arbeiten besteht darin, die Genauigkeit von Map Matching Algorithmen zu ver-

gleichen oder verbessern.WegenHindernissen zwischen Fahrzeug und Satelliten oder aufgrund

schlechter Verteilung der Satelliten, wird der Messfehler von GPS-Geräten erhöht [MKH06].

Um trotzdem richtige Ergebnisse zu erhalten, werden fortgeschrittene Algorithmen entwickelt,

die zusätzliche Eigenschaften (z.B. Fahrtrichtung, Straßentopologie und Geschwindigkeit)

berücksichtigen [WBK00]. Andere Arbeiten zeigen Optimierungen für geringe Abtastraten

[LZZ+09] [MKYM12] oder für komplexe Straßennetze [OQN03].

15





3 Grundlagen

In diesem Kapitel werden die Grundlagen vorgestellt, die zum Verstehen dieser Arbeit relevant

sind und für Entscheidung beim Vorgehen nötig waren. Dazu werden zuerst die Grundlagen

von Visual Analytics vorgestellt. Danach werden die Eigenschaften von Bewegungsdaten

beschrieben. Zuletzt folgt ein Vergleich verschiedener Map Matching Methoden.

3.1 Visual Analytics

Visual Analytics kombiniert Mensch und Computer. Durch eine enge Kopplung von analyti-

sches Denken und interaktiver Visualisierung sollen komplexe Daten nachvollzogen werden.

3.1.1 Data-Mining

Data-Mining ist die Anwendung von Algorithmen, um Muster in Daten zu finden. Dabei gibt

es einige beliebte Methoden.

Clustering ist ein möglicher Algorithmus, der ähnliche Elemente in Gruppen (Cluster) zuord-

net. „Hierarchische Clusutering“ Verfahren beginnenmit einem großen Cluster, der schrittweise

unterteilt wird, oder mit vielen kleinen Clustern, die vereinigt werden. Diese schließen also

aus, dass Elemente zu mehreren Gruppen gehören, während in anderen Methoden sich die

Gruppen überlappen können.

Klassifikation nutzt eine Funktion, um den Daten Klassen zuzuweisen. Der „naive Bayes-

Klassifikator“ ist eine probabilistische Methode, die einfach anzuwenden ist. Sie berechnet zu

einem Element die Wahrscheinlichkeit, mit der es zu einer Klasse gehört, und weist es zur

Klasse mit der größten Wahrscheinlichkeit zu.

Diese und andere Algorithmen werden in vielen Bereichen angewendet [FPS96]. Für Be-

wegungsdaten kann Clustering genutzt werden, um ähnliche Fahrten zusammenzufassen.

Dadurch können zusätzlich Daten anschaulicher dargestellt werden und es wird Speicherplatz

gespart.
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3 Grundlagen

Visualisierung

Für die Entwicklung einer Nutzeroberfläche, stellt Ben Schneiderman [Shn96] sieben Aufgaben

an den Programmierer. Zuerst soll ein Überblick über die Daten verschafft werden. Für interes-

sante Daten soll ein Zoom und Filtern möglich sein, um diese genauer zu betrachten. Über

Elemente sollen Details und Relationen angezeigt werden können. Zusätzlich ist eine Historie

wichtig, um Aktionen rückgängig zu machen. Und zuletzt soll es möglich sein gefundene Daten

und Ergebnisse zu speichern.

Für verschiedene Datentypen (1-dimensional, 2-dimensional, Zeitreihen, . . . ) gibt es jeweils

bevorzugte Methoden, um diese darzustellen. Geographische Koordinaten können durch eine

Kartenansicht anschaulich visualisiert werden. Die zeitliche Komponente von Bewegungsdaten

kann durch Zeitfilter manipuliert werden [AAW07].

Interaktion

In Visual Analytics kommt nach der Visualisierung die Aufgabe des Nutzers. Dieser kann

die dargestellten Informationen interpretieren und durch Exploration analysieren. Mittels

Interaktion mit dem System kann er anschließend den Fokus auf die relevanten Daten setzen.

Auf diese Weise kann die Visualisierung verbessert werden und der beschriebene Prozess wird

wiederholt. Das Verständnis der Daten wird durch mehrere Iterationen verbessert, bis ein

Ergebnis erreicht oder die Hypothese erfüllt ist.

3.2 Bewegungsdaten

GPS-Daten von Fahrzeugen werden aus verschiedenen Gründen gesammelt. Sie erlauben

das Kontrollieren und Analysieren von Fahrzeugen. Diese Daten bestehen in der Regel aus

Positionsinformation (Breitengrad, Längengrad) und Zeitstempel. Zusätzlich können weitere

Eigenschaften wie Fahrtrichtung und Geschwindigkeit gemessen werden. Eine Folge solcher

zusammenhängender Messungen bildet eine Trajektorie.

Die Daten werden meistens in einem Intervall von mehreren Sekunden bis wenigen Minuten

gesammelt. Je kleiner das Intervall, desto besser können die Daten interpretiert werden. Kleine

Intervalle führen jedoch zu großen Datenmengen, die größere Berechnungen als Folge haben.

Die Performanz von sowohl Berechnungen der Eigenschaften, als auch der Visualisierung

kann durch die großen Datenmenge limitiert werden. Daher sind Aggregationstechniken, z.B.

Clustering [AAW07] oder Map Matching gut geeignet.

Ein anderes Problem, das auch bei GPS-Daten auftaucht, ist die Qualität der Messungen. Die

GPS-Genauigkeit kann durch verschiedene Faktoren beeinflusst werden [MKH06] und ist daher

oft nicht exakt. Bei Unternehmenmit tausenden von Fahrzeugen kommen auch Hardwarefehler
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3.3 Vergleich von Map Matching Verfahren

vor, die zu Fehlerhaften Messungen führen können. Zuletzt sind auch menschliche Fehler

bei der Bedienung von GPS-Geräten nicht auszuschließen und können zu sinnlosen Daten

führen.

3.3 Vergleich von Map Matching Verfahren

Definition Map Matching bezeichnet den Prozess, bei dem geographische Messungen auf

ein Kartenmodell abgebildet werden. Typischerweise handelt es sich um GPS-Messungen, die

auf einen Graphen mit Straßen als Kanten abgebildet werden. Das Map Matching vereinfacht

den Umgang mit den Daten zur Analyse und ermöglicht eine einfachere und übersichtliche

Visualisierung. Zusätzlich kann bei großen Datenmengen Speicherplatz erspart werden. Map

Matching Verfahren können in verschiedene Kategorien unterteilt werden, die sich in der

Regel durch das Anwendungsgebiet auszeichnen. Allgemein wird zwischen inkrementellen

und globalen Algorithmen unterschieden.

Inkrementelle Verfahren werden oft angewendet, wenn die Daten nicht schon vorhanden sind,

sondern in Echtzeit gemessen werden. Ein großes Anwendungsgebiet sind daher Navigati-

onsgeräte in Fahrzeugen, welche stets die Position des Fahrzeugs ermitteln müssen. Für das

Matching einer Messung wird daher entweder nur die letzte Messung betrachtet oder die letz-

ten n Messungen. Eigenschaften zu berücksichtigen sind die Entfernung – zwischen Messung

und Position auf der betrachteten Straße – und Verbindungen von der zuletzt bestimmten

Position. Diese Algorithmen haben daher in der Regel relativ geringe Laufzeiten.

Bei globalen Verfahren ist die Vollständigkeit der Daten eine Voraussetzung, da diese immer

eine Sequenz von Messungen auswerten. Für globale Algorithmen bestehen wiederum meh-

rere Ansätze. Die geometrischeMethode sucht einen Pfad, der eine minimale Distanz (z.B.

Fréchet-Distanz [WWFZ13]) zur gemessenen Trajektorie besitzt. Verbindungen zwischen Stra-

ßen werden bei topologischenMethoden betrachtet, aber nicht bei geometrischen. Andere

probabilistische Verfahren können zusätzlich auch Geschwindigkeit und Richtung berück-

sichtigen [PH08]. Eine Kombination dieser Methoden kann wünschenswert sein, da sie Stärken

und Schwächen besitzen [QON07].
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4 Konzept

Das Map Matching geographischer Daten soll durch einen Analysten optimiert werden.

Währenddessen sollen Ergebnisse und Eigenschaften der Daten visualisiert werden, um den

Nutzer in diesem Prozess zu unterstützen. Dieses „Anpassen“ des Map Matching Verfahrens

auf die Daten hat zwei Ziele. Zuerst soll die Genauigkeit des Algorithmus maximiert werden.

Fahrten sollten nicht zu falschen Pfaden zugewiesen werden. Solche Fehler sind meistens nicht

erkennbar, aber es kann unterschieden werden für welche Trajektorien das Map Matching

gut verläuft und wo das Ergebnis fehlerhaft sein kann. Dieses Maß wird in dieser Arbeit als

Unsicherheit bezeichnet. Die Unsicherheit einer Fahrt wird während dem Map Matching

(Kapitel 4.1) berechnet. Das zweite Ziel besteht darin, die Fahrten zu reduzieren, für die der

Algorithmus kein Ergebnis finden kann. Für den Anteil solcher Fahrten wird der Begriff Feh-
lerrate verwendet. Fehlende Straßenkanten im Graphen oder falsche Messungen führen zum

Fehlschlagen des Algorithmus. Um beide Probleme gleichzeitig zu optimieren, werden Ände-

rungen iterativ vorgenommen. Vor dem Map Matching kann optional ein Vorbereitungsschritt

ausgeführt werden. Daten beinhalten oft Probleme (siehe Kapitel 3.2), die sowohl Fehlerrate

und Unsicherheit erhöhen, als auch die Ergebnisse verfälschen würden. Deshalb werden solche

Daten im Vorbereitungsschritt herausgenommen.

Zu Beginn des Arbeitsprozesses (Abbildung 4.1) wählt der Analyst aus, welche Geodaten für

das Anpassen geladen werden sollen. Es kann sich dabei um ein relativ kleines Datensample

handeln, welches stellvertretend für den gesamten Datensatz optimiert wird. Diese Daten und

das Straßennetz werden zur Übersicht in einer Kartenansicht dargestellt. Anschließend kann

der Analyst entweder die Parameter für Vorbereitungsschritte und Map Matching anpassen

oder diese mit Standardparametern durchführen. Das Map Matching berechnet ein Ergebnis,

Fehlerrate und Unsicherheit, welche ebenfalls visualisiert werden. Dies ermöglicht es dem

Nutzer zu erkennen wo Fehlerstellen sind und diese können durch interaktiver Korrektur

des Straßennetzes oder der Parameter verbessert werden. Durch mehrmaliges Wiederholen

dieser Schritte sollen alle sichtbaren Fehlerquellen behoben werden. Wenn das Verfahren also

optimiert ist, können die Parameter und das Straßennetz gespeichert werden oder das Map

Matching kann auf den gesamten Datensatz angewendet werden.

4.1 St-Matching

Für das Map Matching wird der ST-Matching [LZZ+09] Algorithmus verwendet, welcher

hohe Genauigkeit für geringe Abtastraten haben soll. Es handelt sich um ein probabilistisches
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4 Konzept

Abbildung 4.1: Arbeitsprozess

globales Verfahren, das sowohl Topologie des Straßennetzes, als auch Geschwindigkeit des

Fahrzeugs berücksichtigt. Als globaler Algorithmus besitzt er eine höhere Komplexität als

inkrementelle, aber weil Daten nicht zur Laufzeit gemessen werden, erreicht er eine bessere

Genauigkeit. Durch Einstellen der Parameter können die Laufzeit und die Genauigkeit be-

einflusst werden, womit sich dieser Algorithmus gut für interaktive Verfahren eignet. Falls

der Prozess zu lange dauert, kann die Laufzeit auf Kosten der Genauigkeit reduziert werden.

Zusätzlich wurde ST-Matching für Messungen mit geringer Samplingrate entwickelt, die auch

in den untersuchten Daten (siehe Kapitel 5.1) gegeben ist.

Es wird eine räumliche und eine zeitliche Komponente betrachtet. Der Algorithmus wird von

Lou et al. [LZZ+09] in drei Schritten beschrieben:

1. Candidate Preparation

2. Spatio-Temporal Analysis

3. Result Matching

Candidate Preparation

Der Algorithmus wird jeweils auf eine Trajektorie angewendet. Eine Trajektorie besteht

aus n Messpunkten pi. Im ersten Schritt werden zu den n Messungen in der Trajektorie

jeweils k Kandidaten gesucht. Ein Kandidat ist eine Projektion auf einer Straßenkante mit

der minimalen Distanz zu den gemessenen Koordinaten. Um diese zu finden, wird ein Gitter

zur Indizierung der Straßenkanten erstellt. Dazu wird jede Kante entsprechend ihrer Position
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4.1 St-Matching

in Gitterzellen, durch die sie verläuft, hinzufügt. Falls der Gitterabstand so groß ist wie die

maximale Distanz, in der Kandidaten gesucht werden, müssen zu jeder Messungen nur ihre

entsprechende Zelle und dessen Nachbarzellen nach Straßenkanten durchsucht werden. Das

Ergebnis dieses Verfahrens ist eine Menge von bis zu k Kandidaten für jede Messung. Für

Kandidaten werden in folgenden Schritten die Straßenkante, die Position auf der Kante und

die Distanz zur Messung als Eigenschaften gebraucht.

Spatio-Temporal Analysis

Der zweite Schritt ist die Analyse der räumlichen und zeitlichen Eigenschaften. Ein Bestand-

teil der räumlichen Komponente ist die Wahrscheinlichkeit des Kandidaten N(cj
i ). Diese ist

nur von der Distanz xj
i zwischen Position der GPS-Messung pi und dem j-ten Kandidaten

cj
i von pi abhängig. Sie wird durch eine Normalverteilung modelliert und repräsentiert die

Wahrscheinlichkeit, dass der Kandidat ein „Match“ ist. Die Berechnung sieht wie gefolgt aus:

N(cj
i ) = 1√

2πσ
e

(x
j
i

−µ)2

2σ2
(4.1)

µ ist der Erwartungswert und σ stellt die Standardabweichung dar. Für diese Parameter werden,

die von Lou et al. [LZZ+09] empfohlenen Werte, µ = 0m und σ = 20m verwendet.

Die zweite räumliche Eigenschaft repräsentiert die Topologie und hängt von den Verbindungen

zwischen zwei Kandidaten ab. Berechnet wird diese aus der geographischen Distanz di−1→i

zwischen Messpunkten pi−1 und pi dividiert mit der Länge w(i−1,s)→(i,t) des kürzesten Pfa-

des zwischen cs
i−1 und ct

i. Die Längen der ersten und der letzten Kante in diesem Pfad sind

entsprechend der Position des Kandidaten gewichtet, da dieser auf der Kante liegen.

V (cs
i−1, ct

i) = di−1→i

w(i−1,s)→(i,t)
(4.2)

w(i−1,s)→(i,t) kann mit Hilfe des Dijkstra-Algorithmus aus dem gegebenen Straßennetz für alle

1 ≤ s ≤ k und alle 1 ≤ t ≤ k berechnet werden. Das Produkt dieser beiden Bestandteile bildet

die räumliche Analyse

FS(cs
i−1 → ct

i) = N(cj
i ) · V (cs

i−1, ct
i) (4.3)

mit 2 ≤ i ≤ n.

Als letztes wird die zeitliche Analyse berechnet, welche die Geschwindigkeitsbeschränkungen

berücksichtigt. Die durchschnittliche Geschwindigkeit v zwischen zwei Kandidaten beträgt

v(i−1,s)→(i,t) = w(i−1,s)→(i,t)

∆ti−1→i

(4.4)
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4 Konzept

und stellt einen Vektor mit m gleichen Elementen dar. Der Vektor (v1, v2, ..., vm)T
enthält

die Geschwindigkeitsbeschränkungen auf dem Pfad (e1, e2, ..., em) zwischen cs
i−1 und ct

i. Die

zeitliche Komponente sei dann die Kosinus-Ähnlichkeit dieser beiden Vektoren

FT (cs
i−1 → ct

i) =
∑m

u=1(vu · v)√∑m
u=1(vu)2

√∑m
u=1(v(i−1,s)→(i,t))2

(4.5)

und es gelte wieder 2 ≤ i ≤ n.

Result Matching

Der letzte Schritt besteht darin, einen Pfad aus den jeweils k Kandidaten der n Messungen zu

finden, der am wahrscheinlichsten ist. Dazu wird aus den Kandidaten ein Graph erstellt. Mit

Hilfe der zeitlichen und räumlichen Analyse wird die sogenannte ST-Funktion definiert:

F (cs
i−1 → ct

i) = FS(cs
i−1 → ct

i) · FT (cs
i−1 → ct

i), 2 ≤ i ≤ n (4.6)

Der gesuchte Pfad besitzt eine maximale Summe der ST-Werte mit 1 ≤ s ≤ k und 1 ≤ t ≤ k.

F (P ) =
n∑

i=2
F (cs

i−1 → ct
i) (4.7)

Der Algorithmus, der diesen Pfad P = (cs
1, . . . , ct

n) berechnet, wird in Kapitel 5.2 erklärt.

Das arithmetische Mittel über alle Werte der ST-Funktionen jedes Ergebnisses wird in dieser

Arbeit als Sicherheit S für m Pfade Pi der Länge |Pi| definiert.

S =
∑m

i=1
F (Pi)
|Pi|−1

m
(4.8)

Weil das in der Regel sehr kleine Werte sind, wird hier für besseres Verständnis folgende

Unsicherheit U berechnet:

U = 1000 · (1 − S) (4.9)

Diese wird genutzt, um die Qualität der Ergebnisse zu vergleichen.

4.2 Visualisierung

Die verschiedenen Formen von Informationen sollen jeweils durch eine passende Darstellung

visualisiert werden. Es gibt drei Arten von Daten, mit welchen gearbeitet wird.

1. Rohdaten (GPS-Koordinaten mit Zeitstempel, Straßennetz)

2. Verarbeitete Daten (Ergebnis des Map Matching)
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4.2 Visualisierung

Abbildung 4.2: Überblick des entwickelten Systems. 1) Auswahl von Dateien, die geladen

(oben) und „gematcht“ (unten) werden; 2) Parametereinstellung des Pre-

Processing; 3) Parametereinstellung des Map Matching; 4) Kartenansicht

zur Darstellung der Bewegungsdaten; 5) Liniendiagramm zur Darstellung von

Fehlern im Map Matching Algorithmus; 6) Liniendiagramm zur Darstellung

der Unsicherheit im Map Matching Algorithmus.

3. Eigenschaften (Fehlerrate etc. vom Map Matching Algorithmus)

Eine intuitive Weise diese darzustellen ist mit Hilfe einer Kartenansicht (4 in Abbildung 4.2).

Um einen Überblick über die Rohdaten zu schaffen, wird jede Fahrt des Fahrzeugs durch

Verbinden der Koordinaten dargestellt (Abbildung 4.4 links).

Nach dem Map Matching Algorithmus erhält man zum einen das Ergebnis und zusätzlich

dessen Unsicherheit U . Die Ergebnisse bestehen aus Listen von Kandidaten, welche jeweils

auf Kanten im Straßengraphen abgebildet und gezeichnet werden (Abbildung 4.3 rechts). Bei

einer höheren Anzahl von Fahrten durch eine Straße, wird diese breiter gezeichnet.

Um diese Ergebnisse zu verbessern, sollten noch die Fahrten, für die der Matching Algorithmus

kein Ergebnis findet oder das Ergebnis zu unsicher ist, ebenfalls betrachtet werden. Beide

Probleme können auf der Karte gezeichnet werden. Durch Splatting (siehe Kapitel 5.2) der

Kanten fehlerhafter Trajektorien ist es möglich Fahrten darzustellen, so dass Stellen mit vielen

Fehlern erkennbar sind (Abbildung 4.4 Mitte). Auf dieser Weise kann auch die Unsicherheit

(Abbildung 4.4 rechts) von erfolgreich berechneten Trajektorien dargestellt werden. Diese

Darstellung kann parallel zum Map Matching erstellt werden, sodass ein Analyst schon wäh-

rend der Berechnung Problemstellen finden kann und eventuell vorzeitig eine neue Iteration
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4 Konzept

Abbildung 4.3: Links: Kartenansicht.Mitte: Straßengraph. Rechts: Straßengraph (gelb) mit

Ergebnis (grün) des Map Matching.

Abbildung 4.4: Links: Rohdaten. Mitte: Fehleranzahl des Map Matching. Fahrten ohne Kan-

didat zu einer Messung in rot. Fahrten ohne Verbindung zwischen zwei Mes-

sungen in blau. Rechts: Mittlere Unsicherheit des Map Matching. Geringe

Unsicherheit in blau. Hohe Unsicherheit in rot.

beginnt. Zusätzlich besitzt jedes Fahrzeug einen Fortschrittsbalken, welcher durch Verwendung

verschiedener Farben die Anteile an fehlerhafter und erfolgreicher Berechnungen darstellt (1

in Abbildung 4.2).

Der Analyst soll bei Änderungen sehen, wie sie sich auf das Verfahren auswirken. Um einen

Überblick darüber zu schaffen, werden Fehlerrate und Unsicherheit betrachtet. Beide Größen

sind von einander abhängig. Wenn Parameter (z.B. maximale Distanz zu Kandidaten) so

eingestellt sind, dass der Algorithmus nur für Fahrten mit geringer Unsicherheit erfolgreich

ist, so steigt die Fehlerrate. Eine zu starke Lockerung der Parameter kann jedoch dazu führen,

dass den Trajektorien falsche Pfade zugewiesen werden und die Unsicherheit steigt. Die Werte

von Fehlerrate und Unsicherheit werden deshalb in jeweils einem Liniendiagramm (5 & 6 in

Abbildung 4.2) übereinander dargestellt.

Dieser Wert wird auf der y-Achse des Diagramms dargestellt, während die x-Achse die Itera-

tionen repräsentiert. Die Fehlerrate wird in drei Kategorien unterteilt:

1. Keine Kandidaten gefunden

2. Keine Straßenverbindung zwischen Kandidaten gefunden
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4.3 Interaktionen

3. Andere

Kandidaten und Pfade zwischen Kandidaten existieren immer, jedoch sind diese jeweils durch

eine maximale Distanz beschränkt, um falsche Ergebnisse zu vermeiden. Gründe dafür sind zum

Beispiel fehlende Straßenkanten oder Messpunkte außerhalb des Straßengraphen. „Andere“

Fehler sind zum Beispiel Trajektorien mit nur einer oder keine Messung. Die Anteile (Prozent

von allen Fahrten) dieser drei Fehler und ihre Summe werden auf der y-Achse im Diagramm der

Fehlerrate dargestellt. Idealerweise sollen alle Werte in beiden Diagrammen bei jeder Iteration

kleiner werden.

Um das Intervall geeigneter und gültige Werte für die Parameter darzustellen, eignet sich

die Anwendung von Slidern (2 & 3 in Abbildung 4.2). Ein exaktes Einstellen für Parameter

höherer Größenordnung kann durch Anwenden eines einfachen Textfeldes erreicht werden.

Für Vorbereitungsschritte, die Fahrten vor dem Map Matching Algorithmus filtern, kann ein

Histogramm über dem jeweiligen Slider hilfreich sein. Aufgrund der schiefen Verteilung der

Fahrten wird eine logarithmische y-Achse für die Histogramme verwendet. Der Nutzer kann

dadurch die Qualität der Daten überblicken und einschätzen welche Werte sinnvoll für den

Parameter sind.

4.3 Interaktionen

Eine Aufgabe des Nutzers besteht darin, Probleme zu beheben, die der Algorithmus nicht

erkennt. Idealerweise kann ein Experte Domänenwissen einbringen, um diese Schwierigkeiten

zu beseitigen.

Das Straßennetz kann ein Teil dieser Probleme sein. Der Straßengraph besteht aus Knoten

an Kreuzungen und die Straßen werden als Kanten modelliert. Wegen menschlicher Fehler

kann der Graph Ungenauigkeiten enthalten. Es können zum Beispiel Knoten an Kreuzungen

fehlen oder ganze Straßen werden ausgelassen. Zusätzlich können aus verschiedenen Gründen

Abweichungen entstehen. Häufig sind Straßenkanten zu lang, weil sie nur an den Kreuzungen

Knoten besitzen. Das verwendete Straßennetz kann veraltet sein oder komplizierte Verbindun-

gen wurden vereinfacht. Bei solchen Problem kann der Map Matching Algorithmus scheitern,

welches der Analyst erkennt und anschließend die nötigen Straßenkanten hinzufügen oder

verschieben kann. Zur Hilfe ist es möglich Fehler automatisch zu erkennen. Durch Drücken

eines Buttons („Find failures“ in Abbildung 4.2) sucht das System die Stellen mit den meisten

Fehlern oder mit der größten Unsicherheit und zeigt diese dem Nutzer im Mittelpunkt der

Kartenansicht (siehe Abbildung 4.5). Dazu werden die Berechnungen, die zum Darstellen der

Unsicherheit und der Fehleranzahl nötig sind, verwendet (siehe Kapitel 5.2).

Um den richtigen Verlauf von Straßen zu finden, kann eine Kartenansicht (z.B. OpenStreetMap

[Ope]) im Hintergrund verwendet werden. Alternativ ist es möglich die Originaltrajektorien

zu betrachten, welche aber nicht unbedingt dem Straßenverlauf folgen. Bei Kurven, die im

Straßennetz nicht richtig dargestellt sind, kann der Analyst nach dem Map Matching eine
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4 Konzept

Abbildung 4.5: Automatische Erkennung von Fehlern. Hervorgehobene Fehlerstelle (grün),

an welcher zu vielenMessungen kein Kandidat gefunden wurde (rot) und/oder

keine Verbindung zwischen den Messungen (blau) gefunden wurde.

Fehlerstelle auswählen und das System schlägt eine Verbesserung durch Einfügen eines Kno-

tens vor (siehe Abbildung 4.6). Um diese Verbesserung zu finden wird zuerst die nächste

Straßenkante in der Nähe der Fehlerstelle gesucht. Anschließend werden alle Fahrten, welche

durch die Fehlerstelle verlaufen, angeschaut. Von jeder dieser Trajektorien wird der Messpunkt

gesucht, der eine maximale Distanz zur gefunden Straße hat, aber auch keine andere Straße

näher an dem Punkt ist. Die mittlere Position dieser Messpunkte bildet den neuen Knoten,

welcher mit den zwei Knoten der ursprünglichen Straßenkante verbunden wird. Alternativ

kann das System die Kandidatendistanz an dieser Stelle zum nötigen Wert erhöhen, damit allen

Messungen in der Nähe ein Kandidat zugewiesen wird. Dazu wird wieder zunächst die nächste

Straßenkante in der Nähe gesucht. Anschließend wird der maximale Abstand zwischen der

Straßenkante und den Messpunkten fehlgeschlagener Fahrten, die sich an der Fehlerstelle

befinden, berechnet.

Durch Erhöhen der maximalen Distanz, in der Kandidaten gesucht werden (3 in Abbildung

4.2), können Fahrten trotzdem zur entsprechenden Straße zugewiesen werden. Gleichzeitig

ist es jedoch möglich, dass andere Fahrten zu falschen Straßen zugewiesen werden, falls der

Parameter zu groß ist. Um dies zu erkennen, kann die Unsicherheit beim Map Matching

betrachtet werden (6 in Abbildung 4.2).
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4.3 Interaktionen

Abbildung 4.6: Vorgeschlagene Korrektur einer Straße. Links: Ursprüngliche Straßenkante
(gelb) mit Fehlerdarstellung (rot). Rechts: Vorgeschlagener Verlauf der Straße

(hellrot) ersetzt ursprüngliche Kante (blau). Grüner Punkt beschreibt die

ausgewählte Fehlerstelle.

Der Ursprung eines anderen Problems liegt in den Daten. Durch defekte Hardware oder

falsche Nutzung entstehen verschiedene Arten von Fehler. Zum Beispiel können fehlende

Daten, falsche Koordinaten oder falsche Zeitstempel enthalten sein. Weil solche Daten nicht

korrigiert werden können, sollten jeweils die Messungen oder die ganzen Fahrten gelöscht

werden. Dazu wird der Vorbereitungsschritt vor dem Map Matching Algorithmus verwendet.

Der Nutzer bestimmt dabei die Parameter für minimale Anzahl an Messungen pro Fahrt

und maximale geographische Distanz zwischen Messungen. Messungen mit sehr geringer

Änderung der zuletzt gemessenen Koordinaten können aus ihrer Trajektorie entfernt werden.

Solche Messungen entstehen wenn sich Fahrzeuge nicht bewegen. Sie verursachen große

Datenmengen und enthalten keinen Informationsgehalt, da das Stehen nach dem Entfernen

anhand des Zeitstempels erkannt werden kann

Um die Genauigkeit des Algorithmus zu erhöhen, ist es möglich die Anzahl der Kandidaten

k, die pro Messung betrachtet werden, zu erhöhen. Dies geht jedoch auf Kosten der Laufzeit,

die quadratisch erhöht wird. Die Laufzeit des Algorithmus – angewendet auf eine Trajektorie

der Länge n auf einem Graphen mit m Kanten – beträgt O(nk2m log m + nk2). Zusätzlich
kann die maximale Geschwindigkeit (bzw. maximale Distanz) zwischen Kandidaten bestimmt

werden, um unrealistische Möglichkeiten während der Berechnung zu verwerfen.
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5 Implementierung

Für diese Arbeit wurde ein Datensatz verwendet, der von einem Taxiunternehmen aufgezeich-

net und bereitgestellt wurde. Dieses Kapitel beschreibt zuerst den Aufbau dieser Datenmenge

und erklärt anschließend die Implementierung des entwickelten Systems.

5.1 Datensatz

Die in dieser Arbeit verwendeten Daten wurden von über 8.400 Taxis in der Stadt Hangzhou,

China gesammelt. Sie wurden zwischen dem 01.01.2013 und dem 31.01.2013 in einem Intervall

von einer Minute gemessen und bilden ca. 24 Millionen Fahrten. Jedes Taxi wird durch eine

Datei im JSON-Format repräsentiert. Diese Dateien bestehen aus Listen von Fahrten, die

ebenfalls aus Listen von Messungen bestehen. Eine Messung beinhaltet Messungs-Id, Fahrzeug-

Id, Längengrad, Breitengrad, Geschwindigkeit, Winkel, Fahrgast (in Taxi), Serverzeit und

Taxizeit.

Das bereitgestellte Straßennetz besteht aus einem ungerichteten Graphen G(V, E) mit Knoten

V und Kanten E. Die Knoten bestehen aus den Koordinaten der entsprechenden Kreuzung

und einer Knotennummer. Jede Kante besitzt zwei Knotennummern und den Straßentypen.

Insgesamt besteht der Graph aus 5039 Knoten und 7036 Kanten.

5.2 Programmierung

Der praktische Teil dieser Arbeit wurde mit der Programmiersprache Java durchgeführt. Die

Programmierung des Systems richtet sich nach demModel View Controller Entwurfsmuster.

Das Modell beinhaltet die geladenen Daten (Trajektorien, Straßengraph) und die Präsentations-

schicht stellt diese Daten, sowie Ergebnisse, Fehler und Parameter des Systems dem Benutzer

vor. Aktionen des Analysten (Kapitel 4.3) werden durch Kontrollelemente bearbeitet, welche

direkt die Daten ändern (z.B. Parameter) oder Berechnungen ausführen (z.B. Map Matching).
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5 Implementierung

Abbildung 5.1: Aufbau des Systems

Modell

Die oberste Schickt der Klassenhierarchie (siehe Abbildung 5.1) besteht aus der „DataModel“-

Klasse. Nach dem Singleton-Modell existiert nur eine Instanz dieser Klasse. Sie enthält die

Eingabedaten (Straßengraph, Trajektorien) und verweist auf die unteren Schichten, welche

für Oberfläche und Berechnungen zuständig sind. Die „MatchingData“-Klasse startet Threads

zur Berechnung vom Map Matching und verwaltet diese, sowie dessen Ergebnisse. Sobald

die Berechnungen fertig sind, wird ein Event an die Karte und ihre Komponenten (Overlays)

geschickt, sodass diese die neuen Daten laden.

Zur Modellierung des Straßennetzes wurde Graph-Struktur des Prefuse Toolkit [Pre] verwen-

det.

GUI

Für die Kartenansicht wurde die JXMapViewer-Bibliothek [chr] verwendet. Diese erlaubt

eine einfache Implementierung von „Overlays“, um die Taxifahrten und Fehler auf der Karte

darzustellen. JXMapKit führt außerdem Umrechnungen zwischen geographischen Koordinaten

und Pixelkoordinaten durch. Zoom- und Panning-Funktionen sind ebenfalls implementiert.

Die Overlays werden im Hintergrund in jeweils eine BufferedImage Struktur gezeichnet. Diese

Bilder werden neu gezeichnet, sobald die Kartenansicht geändert wird oder ein Event durch

Map Matching Komponenten ankommt.
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5.2 Programmierung

Die Liniendiagramme, um Fehler und Sicherheit anzuzeigen, wurden mittels JFreeChart [JFr]

entwickelt. Mit jeder Iteration des Map Matching werden ihre Werte erneuert, sobald die

Berechnung aller Fahrzeuge abgeschlossen ist.

Edge Splatting

Die Anzahl an Fehlern und die mittlere Unsicherheit werden durch „Edge Splatting“ berechnet.

Dazu wird ein Array mit einem Eintrag pro Pixel auf der Kartenansicht initialisiert. Die Einträge

enthalten eine Summe und die Anzahl der Summanden.

Für jede Kante wird über die Pixelpositionen iteriert, über die diese Kante verläuft. In der

Umgebung von jedem Pixel wird im Array ein Wert zu dessen Summe addiert. Als Umgebung

wird ein Quadrat mit Seitenlänge 7 Pixel betrachtet, wobei die Kante durch dessen Mittelpunkt

verläuft. Der addierte Wert nimmt mit dem Abstand zum Mittelpunkt linear ab.

Beim Berechnen der Matrix für das Fehler-Overlay wird über die Kanten der im ST-Matching

fehlgeschlagenen Trajektorien iteriert. Der addierte Werte beträgt immer 1, da das Splatting
darstellen soll wie viele Fehler an Stellen entstehen. Dies wird für jeden Fehlertyp (siehe Kapitel

4.2) durchgeführt, um diese zu unterscheiden.

Um die Unsicherheit darzustellen, wird über die Pfade von Kandidaten (Ergebnis vom ST-

Matching) iteriert. Die betrachteten Kanten sind jedoch die Verbindungen der Messpunkte,

zu welchen die Kandidate gehören. Statt den mittleren Wert der Sicherheit aus Formel 4.8,

kann hier der Wert der ST-Funktion (Formel 4.6) genutzt werden, um die Unsicherheit für eine

Kante zweier Kandidaten zu berechnen. Diese Unsicherheit wird also entlang zu den Pixel der

Kante addiert und anschließend wird sie durch die Anzahl der Summanden dividiert, um die

mittlere Unsicherheit an den jeweiligen Stellen zu erhalten.

Wenn die jeweilige Matrix berechnet ist, werden die Werte normiert und eine Farbe wird für

jeden Wert interpoliert und im Pixel des entsprechenden Bildes gezeichnet.

ST-Matching

Der Map Matching Algorithmus wurde entsprechend dem in Kapitel 4.1 besprochenem Ver-

fahren implementiert. Die für Formel 4.5 benötigte Geschwindigkeitsbegrenzung ist nicht im

Straßengraphen enthalten, daher wurde eine typische Geschwindigkeit für den jeweiligen Stra-

ßentyp angenommen. Die Länge des kürzesten Pfades zwischen zwei Kandidaten w(i−1,s)→(i,t)
(siehe Kapitel 4.1) wurde mit einem Dijkstra-Algorithmus berechnet. Durch Anwendung eines

schnelleren Algorithmus, wäre es jedoch möglich die Laufzeit des ST-Matching zu verbessern.

Weitere Optimierungen des Algorithmus beschreiben Lou et al. [LZZ+09] in ihrer Arbeit.

Um den besten Pfad im Kandidatengraph zu finden (siehe Kapitel 4.1) wird Algorithmus

5.1 verwendet. Eingabedaten sind ki Kandidaten zu jedem Messpunkt pi mit 1 ≤ i ≤ n
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5 Implementierung

Algorithmus 5.1 Result Matching

procedure FindBestPath(cj
i )

Highest[i][j] //Summe der ST-Werte für besten Pfad bis cj
i

for all cp
1, 1 ≤ p ≤ k1 do

Highest[1][p] := N(cp
1)

end for
for i = 2 . . . n do

for all ct
i, 1 ≤ t ≤ ki do

Max := −∞
for all cs

i−1, 1 ≤ s ≤ ki−1 do
StV alue := StFunction(cs

i−1, ct
i)

Sum := Highest[i − 1][s] + StV alue
if Sum > Max then

Max := Sum
ct

i.setStV alue(stV alue) //Zum Berechnen der Unsicherheit

ct
i.setParent(cs

i−1) //Vorgänger mit höchster Summe

end if
Highest[i][t] := Max

end for
end for

end for
resultList //Bester Pfad der Kandidaten

candidate = argmax(Highest[n][s]), 1 ≤ s ≤ kn //Bester letzter Kandidat

for i = n − 1 . . . 1 do
resultList.add(candidate)
candidate := candidate.getParent()

end for
reverse(resultList)

end procedure

und 1 ≤ j ≤ ki. Das Ergebnis ist eine Liste von Kandidaten, die den besten Pfad bilden.

Zusätzlich wird jedem Kandidaten der Messungen p2 . . . pn der Wert der ST-Funktion (Formel

4.6) zugewiesen, durch welchen sich die Unsicherheit (Formel 4.9) berechnet. Der restliche Teil

des Algorithmus verläuft wie er in der Arbeit von Lou et al. [LZZ+09] beschrieben wurde.

Das Map Matching wird für jedes ausgewählte Taxi parallel berechnet. Die Regionen, wo eine

Fahrt verläuft, werden gespeichert, so dass bei Änderungen am Straßennetz nur die betroffenen

Fahrten neu berechnet werden müssen.
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6 Fallstudien

Nach der Implementierung wurde untersucht, wie groß der Einfluss des Nutzers ist. Dazu

wurde zuerst verfolgt, wie sich Änderungen an den Parametern auf das Ergebnis auswirken

und ob diese sinnvoll sind. Anschließend wurde die Qualität des gegebenen Straßennetzes

betrachtet und schrittweise verbessert.

6.1 Iterative Parameteranpassung

Zuerst wurde der Einfluss der Parametereinstellung untersucht. Je schlechter die Qualität

der Messdaten und des Straßengraphen, desto mehr sollten sich Parameter auf das Ergebnis

auswirken. Bei exakten Daten sollte der Algorithmus immer das richtige Ergebnis liefern.

Da die verwendeten Daten ein relativ hohes Messintervall von einer Minute haben, mussten

Parameter angepasst werden. Auch der Straßengraph weicht an Stellen von der Realität

ab. Die zwei wichtigsten Parameter des ST-Matching sind die Anzahl der Kandidaten und

die maximale Distanz zwischen Messpunkt und Kandidat. Zur Untersuchung wurden die

Anfangsparameter auf drei Kandidaten und 100m maximaler Distanz gesetzt. Eine relativ

kleine Anzahl an Kandidaten erlaubt schnelleres Berechnen der Iterationen, während andere

Parameter bestimmt werden. Es wurden zehn zufällig ausgewählte Fahrzeuge betrachtet, die

jeweils zwischen 2000 und 4000 Fahrten besaßen. Der erste Schritt nach Laden der Taxifahrten

ist in der Regel das MapMatching, um eine Übersicht über die Qualität der Daten zu verschaffen.

Weil die Daten oft nicht bereinigt sind, ist es meistens wünschenswert unrealistische Fahrten

durch den Vorverarbeitungsschritt zu filtern. Nach dem Entfernen solcher Fahrten, schlug der

Abbildung 6.1: Fehler im Straßennetz. Links:Fehlende Straßenkanten & Knoten. Mitte: Straße

mit vielen Kanten. Rechts: Ungerader Straßenverlauf.

35



6 Fallstudien

Map Matching Algorithmus bei jeder vierten Fahrt fehl. Die meisten Fehler entstanden weil

keine Kandidaten in der Nähe einer Messung gefunden wurden.

Kandidatendistanz

Obwohl die Kandidatendistanz zu 100m gesetzt wurde und GPS-Messungen in der Regel

eine deutliche bessere Genauigkeit besitzen, entstanden viele Fehler. Die Ursache davon ist

häufig das Straßennetz. Falls eine Straße nicht im Graphen vorhanden ist, so kann das richtige

Ergebnis nicht berechnet werden. Anhand der Fehlerdarstellung konnte jedoch erkannt werden,

dass viele Straßen vorhanden waren und trotzdem nicht vom Algorithmus gefunden wurden.

In den meisten solchen Fällen war die Straße an den Knoten annähernd exakt, aber wegen

ungeradem Verlauf weichte sie dazwischen von der Realität ab (Abbildung 6.1 rechts). Solche

Fälle entstanden meistens am Rand der Stadt, während im Zentrum von Hangzhou und in

Wohngebieten, wo die Straßen kurz und regelmäßig verlaufen, kaum Fehler auftauchten. Das

Problem kann durch Erhöhen der Kandidatendistanz gelöst werden, aber es ist zu erwarten,

dass die Unsicherheit zunimmt, wenn weit entfernte Straßen betrachtet werden. Weil immer die

k Kandidaten, die am nächsten sind, betrachtet werden, sollte das korrekte Ergebnis durch den

Algorithmus auch als Möglichkeit verarbeitet werden. Falls aber eine Straße im Straßennetz

nicht vorhanden ist, so wird bei zu hoher Kandidatendistanz ein falsches Ergebnis berechnet.

Das verwendete Straßennetz hatte in der Tat auch viele fehlende Straßen (Abbildung 6.1

links) außerhalb des Zentrums. Demonstrativ wurde die Kandidatendistanz auf den maximal

zulässigen Wert (500m) erhöht. Dabei wurde für die meisten Fahrten ein Ergebnis berechnet

(siehe Abbildung 6.2), sogar wenn Straßen nicht im Graphen modelliert waren. Obwohl also

Fehler beim Map Matching entstanden, wurde jedoch auch Unsicherheit geringer, was ein

besseres Ergebnis andeutet. Um solche offensichtlichen Fehler zu vermeiden, wurde 150m
als Distanz verwendet, welche ebenfalls eine deutliche Verbesserung im Vergleich zu den

Anfangswerten brachte (siehe Tabelle 6.1).

Anzahl an Kandidaten

Die Anzahl betrachteter Kandidaten ist relevant, wenn sich andere Straßen näher an der Straße,

die tatsächlich befahren wurde, befinden. Falls Messungen auf den richtigen Straßenkanten

liegen, so reicht es nur einen Kandidaten anzuschauen. Gleichzeitig sollte ein zu großer Wert

in der Regel nicht zu falschen Ergebnissen führen, da nähere Kandidaten als wahrscheinlicher

angenommen werden. In Fällen, wo viele Kanten im Graph nah an einander sind (z.B. mehrere

Spuren oder Kreuzungen, siehe Abbildung 6.1 Mitte), kann eine kleine Kandidatenzahl zu

Fehlern führen. Aufgrund der Performanz wurde erst am Ende der Studie die Anzahl an

Kandidaten von drei auf sechs erhöht. Ein viel größerer Wert sollte sich nicht auf die Ergebnisse

auswirken. Diese Änderung führte zu einer Verbesserung der Unsicherheit, da bei komplizierten

Verbindungen häufiger die richtigen Pfade gefunden wurden. Die Berechnungszeit wurde

dadurch nahezu vervierfacht und betrug 658 Sekunden, statt wie zuvor 182 Sekunden.
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6.1 Iterative Parameteranpassung

Iteration Anzahl
der Kandi-
daten

Max Dis-
tanz zu
Kandidaten

Fehlerrate Unsicherheit Kommentar

1 3 100m 27.0% 928.7 Map Matching

2 3 100m 24.8% 907.8 Filtern unrealistischer Fahrten

3 3 500m 9.4% 903.9 Sehr große Kandidatendistanz

4 3 150m 18.6% 905.4 Sinnvolle Kandidatendistanz

5 6 150m 18.5% 893.9 Doppelte Anzahl an Kandidaten

Tabelle 6.1: Berechnete Iterationen für Parameteroptimierung.

Abbildung 6.2: Fehlerrate (links) und Ungenauigkeit (rechts) der Iterationen während der

Parameteroptimierung (Tabelle 6.1).
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6 Fallstudien

Abbildung 6.3: Brücke über Qiantang-Fluss. Links: Ungenauer Straßengraph. Rechts: Korri-
gierter Straßengraph.

6.2 Straßennetz Korrektur

Der für diese Arbeit verwendete Straßengraph von Hangzhou war Zentrum detailliert, aber

in äußeren Stadtvierteln an vielen Stellen unvollständig. Daher wurde betrachtet, wie die

Ergebnisse vom Straßennetz abhängen, wenn dieses verbessert wird. Nach dem Laden der

Fahrzeugdaten wurde der Map Matching Algorithmus zur Übersicht durchgeführt. Dabei wur-

de die Anzahl an Kandidaten auf drei pro Messung gesetzt. Die maximale Distanz betrug 100m
und maximale Geschwindigkeit 120km/h. Fehlerhafte Messungen führten zu einer unüber-

sichtlichen Darstellung der Fehler. Viele solcher Fahrten verliefen quer durch Hangzhou (siehe

Abbildung 6.5 links). Um diese zu entfernen, wurde die Vorverarbeitung verwendet. Durch

Begrenzung der maximalen Distanz wurden diese Probleme bereinigt. Zusätzlich wurden Tra-

jektorien mit weniger als fünf Messungen gefiltert, da Taxifahrten in der Regel mindestens fünf

Minuten dauern. Nach einem erneuten Matching war die Fehlerdarstellung deutlich übersicht-

licher (siehe Abbildung 6.5 Mitte). Viele der sichtbaren Fehlerquellen waren längere Straßen,

die als Kandidaten nicht gefunden wurden. Bei den meisten Brücken über den Qiantang-Fluss

entstanden solche Fehler. Die auffälligen Probleme dieser Form wurden durch Unterteilung

der jeweiligen Kanten in mehreren Abschnitten behoben (Abbildung 6.3). Anschließend wurde

nochmals der Matching Algorithmus für Fahrten in der Nähe dieser Straßen berechnet. An

den bearbeiteten Straßen entstanden in der Regel keine Fehler mehr. Auffällig war jedoch, dass

oft an den meisten mehrspurigen Straßen keine Pfade zwischen Kandidaten gefunden wurden.
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6.2 Straßennetz Korrektur

Iteration Fehlerrate Unsicherheit Kommentar

1 30.2% 923.9 Map Matching

2 25.9% 906.1 Filtern unrealistischer Fahrten

3 24.2% 906.5 Korrektur ungerader Straßen

4 24.1% 906.4 Korrektur von komplexen Verbindungen

5 21.3% 906.9 Einfügen von fehlenden Straßen

6 15.5% 895.6 Parameter & weitere Iterationen

Tabelle 6.2: Berechnete Iterationen für Straßennetzoptimierung.

Grund dafür sind die vielen Knoten, die oft an Kreuzungen, Kreisverkehren und Ausfahrten

vorhanden sind. Eine Verbesserung solcher Verbindungen erwies sich ohne Vorwissen der

Struktur als schwierig und konnte kaum behoben werden. Nach diesen Bereinigungsschritten

war die Identifizierung fehlender Straßen deutlich einfacher. An großen Parkplätzen, wie am

Flughafen, ist das Map Matching ebenfalls häufig fehlgeschlagen, da diese nicht im Graphen

modelliert sind. Durch Betrachten der Rohdaten und der Kartenansicht konnten viele davon

erkannt und hinzugefügt werden. Das geschieht durch einfaches Einfügen von einen oder

mehreren Knoten, welche durch Kanten mit dem bestehenden Graphen verbunden werden.

Von den 25.096 Fahrten (10 Taxis) ist der Algorithmus am Anfang bei 30, 2% der Berechnungen

fehlgeschlagen. Das häufigste Problem waren nicht gefundene Kandidaten. Nach Vorverarbei-

tung wurden 7356 irrelevante Fahrten gefiltert. Ein Großteil davon bestand aus Trajektorien mit

nur einer Messung. Von den verbliebenen 17.740 Fahrten war der Algorithmus mit insgesamt

25.9% fehlgeschlagenen Fahrten etwas erfolgreicher. Die Unsicherheit war nach dem Filtern

ebenfalls geringer. In den nächsten Schritten blieb diese jedoch näherungsweise konstant (siehe

Abbildung 6.4). Auch die Korrektur des Straßenverlaufs änderte die Unsicherheit kaum, weil

diese Korrektur sich hauptsächlich auf die bisher fehlgeschlagenen Berechnungen auswirkt.

Den größten Effekt auf die Fehlerrate hatte das Einfügen von fehlenden Straßen. Nur durch das

Hinzufügen der Strecken mit großem Fehler war der Algorithmus bei ca. 500 Fahrten (2.8%)

mehr erfolgreich.

Durch mehrfaches Wiederholen der durchgeführten Schritte, konnte das Ergebnis weiter

verbessert werden. Zuletzt wurden auch die in Kapitel 6.1 erzielten Parameter verwendet.

Sowohl der berechnete Anteil (siehe Tabelle 6.2), als auch die auf der Karte sichtbaren Fehler

(Abbildung 6.5) wurden deutlich reduziert. Ein noch besseres Ergebnis könnte durch Bedienung

von Experten, die mit dem Straßennetz vertraut sind, erreicht werden.
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6 Fallstudien

Abbildung 6.4: Fehlerrate (links) und Ungenauigkeit (rechts) der Iterationen während der

Straßennetz Korrektur (Tabelle 6.2).

Abbildung 6.5: Links: Map Matching ohne Anpassung. Mitte: Map Matching nach Filtern

unrealistischer Fahrten. Rechts: Map Matching nach allen Schritten (siehe

Tabelle 6.2).
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7 Zusammenfassung und Ausblick

In dieser Arbeit wurde zuerst erklärt, welche Probleme bei nicht bereinigten Geodaten vor-

kommen. Anschließend wurden Map Matching Verfahren als Vorbereitungsschritt für die

Daten beschrieben. Es wurde ein System zur Darstellung eines Map Matching Algorithmus

entwickelt, welches mit Hilfe verschiedener Ansichten die Daten, Ergebnisse und Fehler im

Matching Algorithmus darstellt. Die Darstellung der Daten und Interaktion des Anwenders

wurden dabei als Schwerpunkte betrachtet. Große Fehlerstellen werden im Verfahren hervorge-

hoben, sodass durch Änderungen am Straßennetz und Einstellen von Parametern das Matching

Verfahren effektiv optimiert wird. Das entwickelte System verbessert an einem Datensample

die Ergebnisse des Map Matching und führt dieses anschließend auf den großen Datensatz

aus.

Nach einer Implementierung wurde das Konzept, anhand eines von Taxis gesammelten Da-

tensatzes, in Fallstudien ausgewertet. Ergebnisse zeigten, dass das Map Matching bei einem

Großteil der Rohdaten fehlschlägt, wenn das Verfahren nicht an die Daten angepasst wird.

Danach wurde demonstriert welchen Einfluss der Analyst auf das Map Matching hat.

Ausblick

Das Pre-Precessing von Daten ist ein Prozess, der meistens gebraucht wird, um die Daten zu

verstehen. Obwohl viele Arbeiten Ansätze bieten, um problematische Daten zu finden, werden

solche Daten häufig verworfen, auch wenn sie eventuell relevant sind. Ein mögliche Erwei-

terung des Ansatzes dieser Arbeit besteht in der Kombination der Bereiche. Es können zum

Beispiel falsche oder fehlende Komponenten im Straßennetz erkannt und manuell korrigiert

werden. Durch maschinelles Lernen sollen anschließend ähnliche Probleme automatisch gelöst

werden.

Ein Aspekt, der in dieser Arbeit nicht angeschaut wurde, sind die Eigenschaften des Stra-

ßennetzes in Abhängigkeit der Region. Es ist in der Regel im Zentrum und in Wohngebieten

dichter als an anderen Stellen, sodass an solchen Regionen verschiedene Parameter für das

Map Matching eventuell sinnvoller sind.
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