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Kurzfassung

In vielen Bereichen werden heutzutage grofle Mengen an Daten gesammelt. Das Verstehen
solcher Daten erfordert meistens eine Vorverarbeitung und Visualisierung. Taxiunternehmen
sammeln unter anderem Bewegungsdaten, die Analyse von Verkehrsbehinderungen oder
allgemeinen Mustern erlauben. Um sowohl effizienter, als auch tibersichtlicher die Daten zu
analysieren und darzustellen, werden Bewegungsdaten oft durch Map Matching Algorith-
men vereinfacht. Dabei wird der Datensatz auf einen Graphen des Straflennetzes abgebildet.
Zusatzlich konnen Ungenauigkeiten und fehlerhafte Messungen behoben werden. Solche Al-
gorithmen enthalten jedoch Parameter und miissen meistens auf die Daten angepasst werden.
Diese Arbeit zeigt ein interaktives Map Matching Verfahren. Durch visuelle Unterstiitzung
kann ein Analyst die Parameter fiir eine effiziente Anwendung einstellen. Das entwickelte
Verfahren wurde implementiert und anschlieBend in mehreren Fallstudien ausgewertet.
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1 Einleitung

Geographische Daten (Geodaten) werden héufig in groflen Mengen durch GPS-Gerite in
Fahrzeugen gesammelt. Die von Taxiunternehmen erfassten Daten werden oft analysiert, um
in verschiedenen Bereichen Informationen zu sammeln. Sie konnen zum Beispiel genutzt
werden, um Strecken, auf denen sich hdufig Verkehrsstaus bilden, zu entdecken [WLY+13]
oder um vorherzusagen wo und wann Taxifahrer schneller Fahrgaste finden konnen [LZS+11].
Ein grofler Teil solcher Daten enthalt jedoch haufig falsche Messungen, Ausreifler oder keine
relevanten Informationen. Aus diesem Grund wird der Datensatz meistens bereinigt, bevor
Wissen gewonnen werden kann.

Fiir eine Analyse der Daten spielen u.a. die Bereiche ,Data Mining“ und ,Information Visua-
lization® eine wichtige Rolle. Der erste Schritt ist jedoch fast immer eine Vorverarbeitung
der Aufzeichnungen. Bevor sie nach Mustern durchsucht und anschaulich dargestellt werden
konnen, ist es sinnvoll Daten ohne Informationsgehalt zu filtern und die restlichen in ein
gewiinschtes Format zu konvertieren. Solche Schritte konnen Performanz und Speicherplatz
verbessern.

Ein moglicher Schritt fiir die Vorverarbeitung von Geodaten ist das Map Matching. Dabei wer-
den die Messungen zu Punkten bzw. Pfaden auf einem Straflennetz zugewiesen. Wenn Straflen
statt Koordinaten betrachtet werden, sind Zusammenhénge in den Daten besser zu erkennen.
Bevorzugte Strecken und Eigenschaften des Verkehrsfluss konnen einfacher berechnet werden.
Weil in der Regel weder Messungen, noch Strafleninformation exakt sind, kommt es meistens
zu Fehlern in diesem Verfahren. Um das Ergebnis zu verbessern, wird das Map Matching fiir
jeden Datensatz angepasst. Solche Algorithmen besitzen meistens Parameter, die in Abhéngig-
keit von der Qualitit und Eigenschaften der Messungen eingestellt werden sollten. Dazu ist
eine Visualisierung der Bewegungsdaten und der Eigenschaften hilfreich. Wahrend andere
Arbeiten versuchen die Map Matching Genauigkeit durch fortgeschrittene Berechnungen zu
verbessern, wird in dieser Arbeit untersucht, wie ein Analyst, bei der Anwendung eines solchen
Algorithmus, das moglichst beste Ergebnis erzielen kann. Es wurde ein System entwickelt, das
dem Nutzer hilft Ausreifler in Daten zu bereinigen, Fehler im Strafiennetz zu korrigieren und
Parameter zu optimieren. Interaktionen, Eigenschaften und Ergebnisse des Verfahrens sollen
sinnvoll visualisiert werden, so dass der Prozess verfolgt werden kann und Fehler erkennbar
sind. Zur Verifizierung des entwickelten Systems wurde ein Datensatz, welcher von Taxis
gesammelt wurde, und ein Modell des entsprechenden Straflennetzes verwendet.
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1 Einleitung

Gliederung

Zu Beginn der Arbeit werden verwandte Arbeiten vorgestellt (Kapitel 2). AnschliefSend folgen
die Grundlagen (Kapitel 3) dieser Arbeit und das Konzept (Kapitel 4) des entwickelten Verfah-
rens. Kapitel 5 beschreibt die Implementierung, welche anschlieflend in Kapitel 6 auf einen
Datensatz angewendet wurde, um das System auszuwerten. Die Arbeit wird dann durch eine
Zusammenfassung und den Ausblick moglicher Ankniipfungspunkte abgeschlossen.
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2 Verwandte Arbeiten

Es wurden verwandte Arbeiten in verschiedenen Bereichen betrachtet. Zuerst werden Grund-
lagen der visuellen Analyse angeschaut. Ferner beschaftigt sich eine Vielzahl an Arbeiten
mit der Analyse von Geodaten. Ein anderer, seit kurzem wachsender Bereich ist die inter-
aktive Vorverarbeitung von Daten. Zuletzt werden verschiedene Map Matching Verfahren
angeschaut.

2.1 Datenexploration und Visualisierung

Data-Mining hat viele Rollen in der realen Welt. Wozu es gebraucht und was die Grundlagen
von Data-Mining sind, haben Fayyad et al. [FPS96] schon friih erlautert. Sie erklaren den
Prozess, wie Wissen aus Datenbanken gewonnen werden kann, und beschreiben beliebte
Methoden fiir Data-Mining. Schneidermann [Shn01] zeigt spater, dass Exploration der Daten
wichtig ist und gibt Richtlinien fiir die Entwicklung von Werkzeugen zur Exploration vor.
Zusatzlich zur Wichtigkeit der Visualisierung, betont er, dass der Nutzer im Vordergrund
steht. Dieser soll die Werkzeuge verstehen und Kontrolle dariiber haben, um finden zu kénnen,
wonach gesucht wird.

Die Kombination aus Data-Mining und Informationsvisualisierung vereinigt mit der menschli-
chen Wahrnehmung bildet die Grundlage fiir Visual Analytics. Keim et al. [KAF+08] beschrei-
ben den Zusammenhang verschiedener Bereiche und erklaren den Visual Analytics Prozess.
Dieser Prozess besteht aus einer ,Sensemaking“-Schleife, mit welcher durch Visualisierung,
Wahrnehmung und Analyse Kenntnisse erlangt werden. Eine wichtige Grundlage in Visual
Analytics bildet das Konzept des ,Visual Information-Seeking Mantra“ [Shn96], welches Regeln
fiir das Entwickeln von Benutzeroberflachen stellt.

Auch fiir visuelle Exploration grofler Mengen an Geodaten zeigen Arbeiten [AAWO07], wie
diese durch Aggregationstechniken anschaulich visualisiert werden konnen.

2.2 Geodaten-Analyse

Geodaten werden genutzt, um Muster und Eigenschaften im Verkehrsfluss zu zeigen. Statt
mit Kameras, die teuer und inflexibel sind, zeigen Wang et al. [WLY+13] wie Daten betrachtet
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2 Verwandte Arbeiten

werden konnen, um Verkehrsstaus zu erkennen. Ihre Arbeit verarbeitet die Daten in mehreren
Schritten und nutzt geeignete Ansichten, um jeweils die Ergebnisse zu visualisieren. Dabei wer-
den zuerst Bewegungsdaten und Straflennetz bereinigt. Anschlieffend wird ein Map Matching
Algorithmus auf diese angewendet und aus den Ergebnissen kann die mittlere Geschwindigkeit
fiir Straflen pro Zeitintervall berechnet werden. Eine dhnliche Pipeline, bestehend aus Map
Matching und anschlielenden Analyseschritten, verwenden auch Lu et al. [LLY+15], um die
Auswabhl verschiedener Strecken bei dhnlichem Start und Zielpunkt zu erklaren. Statt mittlerer
Geschwindigkeit, sind bei ihrer Fragestellung jedoch die moglichen Strecken vom Start zum
Endpunkt relevant zur Analyse. Zuletzt folgt die Visualisierung und Exploration der Daten
und Eigenschaften.

Bevor man in der Lage sein kann Erkenntnisse zu erlangen, miissen zuerst die Daten bereinigt
werden. Li et al. [LWW15] stellen vor, wie bestimmte Qualitiatsprobleme in GPS-Daten erkannt
und entfernt werden konnen. Um die Probleme zu finden, verwenden sie aktives Lernen,
welches Eingabe durch einen Analysten erfordert. Anomalien, die nicht als Qualititsproblem
definiert wurden, konnen auf diese Weise jedoch nicht erkannt werden.

2.3 Interaktive Verarbeitung

Um Zeitreihendaten zu verarbeiten, bietet es sich an Operationen zu definieren, so dass der
Analyst die geeigneten Schritte der Verarbeitungspipeline wéahlen kann [BRG+12]. Mogliche
Schritte sind Methoden zur Bereinigung, Normalisierung oder Bestimmung eines Ahnlichkeits-
maf. Die Wahl der Operationen und ihre Parameter kann auf eine relativ kleine Datenmenge
angepasst und anschlieflend auf die restlichen Daten angewendet werden.

Methoden des maschinellen Lernens bieten einen alternativen Ansatz, um abweichende Daten
zu bereinigen. Dies kann fiir GPS-Messungen angewendet werden, um abweichende Trajekto-
rien zu identifizieren [LYC10]. Der Analyst hat dabei die Aufgabe das Modell mit Hilfe eines
vorhandenen Datensets zu trainieren.

2.4 Map Matching

Navigationssysteme sind heutzutage in einem Grof3teil von Fahrzeugen und Mobiltelefonen.
Schon innerhalb der ersten Navigationssysteme in Fahrzeugen wurde Map Matching ein-
gesetzt, um die Position auf dem Stralennetz zu bestimmen [Col90]. Die anfangs simplen
Matching Algorithmen, welche einfach die niachstgelegene Strafle gesucht haben, wurden
spater fiir verschiede Anwendungen erweitert und verbessert. Navigationssysteme nutzen
in der Regel inkrementelle Matching Verfahren, welche nur die aktuelle Messung oder die
letzten n Messungen betrachten. Im Gegensatz dazu beriicksichtigen globale Algorithmen eine
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2.4 Map Matching

vollstandige Folge von Messungen, um bessere Ergebnisse zu erreichen. Diese konnen jedoch
nicht angewendet werden, wenn Messungen in Echtzeit gemessen werden.

Das Ziel vieler Arbeiten besteht darin, die Genauigkeit von Map Matching Algorithmen zu ver-
gleichen oder verbessern. Wegen Hindernissen zwischen Fahrzeug und Satelliten oder aufgrund
schlechter Verteilung der Satelliten, wird der Messfehler von GPS-Geraten erhoht [MKHO06].
Um trotzdem richtige Ergebnisse zu erhalten, werden fortgeschrittene Algorithmen entwickelt,
die zusatzliche Eigenschaften (z.B. Fahrtrichtung, Stralentopologie und Geschwindigkeit)
berticksichtigen [WBKO00]. Andere Arbeiten zeigen Optimierungen fiir geringe Abtastraten
[LZZ+09] [MKYM12] oder fiir komplexe Straflennetze [OQNO03].
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3 Grundlagen

In diesem Kapitel werden die Grundlagen vorgestellt, die zum Verstehen dieser Arbeit relevant
sind und fiir Entscheidung beim Vorgehen nétig waren. Dazu werden zuerst die Grundlagen
von Visual Analytics vorgestellt. Danach werden die Eigenschaften von Bewegungsdaten
beschrieben. Zuletzt folgt ein Vergleich verschiedener Map Matching Methoden.

3.1 Visual Analytics

Visual Analytics kombiniert Mensch und Computer. Durch eine enge Kopplung von analyti-
sches Denken und interaktiver Visualisierung sollen komplexe Daten nachvollzogen werden.

3.1.1 Data-Mining

Data-Mining ist die Anwendung von Algorithmen, um Muster in Daten zu finden. Dabei gibt
es einige beliebte Methoden.

Clustering ist ein moglicher Algorithmus, der dhnliche Elemente in Gruppen (Cluster) zuord-
net. ,Hierarchische Clusutering“ Verfahren beginnen mit einem groen Cluster, der schrittweise
unterteilt wird, oder mit vielen kleinen Clustern, die vereinigt werden. Diese schlieffen also
aus, dass Elemente zu mehreren Gruppen gehoren, wiahrend in anderen Methoden sich die
Gruppen tberlappen konnen.

Klassifikation nutzt eine Funktion, um den Daten Klassen zuzuweisen. Der ,naive Bayes-
Klassifikator” ist eine probabilistische Methode, die einfach anzuwenden ist. Sie berechnet zu
einem Element die Wahrscheinlichkeit, mit der es zu einer Klasse gehort, und weist es zur
Klasse mit der grofiten Wahrscheinlichkeit zu.

Diese und andere Algorithmen werden in vielen Bereichen angewendet [FPS96]. Fiir Be-
wegungsdaten kann Clustering genutzt werden, um dhnliche Fahrten zusammenzufassen.
Dadurch konnen zusétzlich Daten anschaulicher dargestellt werden und es wird Speicherplatz
gespart.
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3 Grundlagen

Visualisierung

Fiir die Entwicklung einer Nutzeroberflache, stellt Ben Schneiderman [Shn96] sieben Aufgaben
an den Programmierer. Zuerst soll ein Uberblick tiber die Daten verschafft werden. Fiir interes-
sante Daten soll ein Zoom und Filtern méglich sein, um diese genauer zu betrachten. Uber
Elemente sollen Details und Relationen angezeigt werden konnen. Zusatzlich ist eine Historie
wichtig, um Aktionen riickgédngig zu machen. Und zuletzt soll es méglich sein gefundene Daten
und Ergebnisse zu speichern.

Fir verschiedene Datentypen (1-dimensional, 2-dimensional, Zeitreihen, ...) gibt es jeweils
bevorzugte Methoden, um diese darzustellen. Geographische Koordinaten kénnen durch eine
Kartenansicht anschaulich visualisiert werden. Die zeitliche Komponente von Bewegungsdaten
kann durch Zeitfilter manipuliert werden [AAWO07].

Interaktion

In Visual Analytics kommt nach der Visualisierung die Aufgabe des Nutzers. Dieser kann
die dargestellten Informationen interpretieren und durch Exploration analysieren. Mittels
Interaktion mit dem System kann er anschlieflend den Fokus auf die relevanten Daten setzen.
Auf diese Weise kann die Visualisierung verbessert werden und der beschriebene Prozess wird
wiederholt. Das Verstandnis der Daten wird durch mehrere Iterationen verbessert, bis ein
Ergebnis erreicht oder die Hypothese erfiillt ist.

3.2 Bewegungsdaten

GPS-Daten von Fahrzeugen werden aus verschiedenen Grinden gesammelt. Sie erlauben
das Kontrollieren und Analysieren von Fahrzeugen. Diese Daten bestehen in der Regel aus
Positionsinformation (Breitengrad, Langengrad) und Zeitstempel. Zusétzlich konnen weitere
Eigenschaften wie Fahrtrichtung und Geschwindigkeit gemessen werden. Eine Folge solcher
zusammenhéngender Messungen bildet eine Trajektorie.

Die Daten werden meistens in einem Intervall von mehreren Sekunden bis wenigen Minuten
gesammelt. Je kleiner das Intervall, desto besser konnen die Daten interpretiert werden. Kleine
Intervalle fithren jedoch zu grofien Datenmengen, die grof3ere Berechnungen als Folge haben.
Die Performanz von sowohl Berechnungen der Eigenschaften, als auch der Visualisierung
kann durch die groflen Datenmenge limitiert werden. Daher sind Aggregationstechniken, z.B.
Clustering [AAW07] oder Map Matching gut geeignet.

Ein anderes Problem, das auch bei GPS-Daten auftaucht, ist die Qualitat der Messungen. Die
GPS-Genauigkeit kann durch verschiedene Faktoren beeinflusst werden [MKHO06] und ist daher
oft nicht exakt. Bei Unternehmen mit tausenden von Fahrzeugen kommen auch Hardwarefehler
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3.3 Vergleich von Map Matching Verfahren

vor, die zu Fehlerhaften Messungen fithren konnen. Zuletzt sind auch menschliche Fehler
bei der Bedienung von GPS-Geriten nicht auszuschlieBen und kénnen zu sinnlosen Daten
fuhren.

3.3 Vergleich von Map Matching Verfahren

Definition Map Matching bezeichnet den Prozess, bei dem geographische Messungen auf
ein Kartenmodell abgebildet werden. Typischerweise handelt es sich um GPS-Messungen, die
auf einen Graphen mit Straflen als Kanten abgebildet werden. Das Map Matching vereinfacht
den Umgang mit den Daten zur Analyse und ermdglicht eine einfachere und tibersichtliche
Visualisierung. Zusatzlich kann bei groffen Datenmengen Speicherplatz erspart werden. Map
Matching Verfahren konnen in verschiedene Kategorien unterteilt werden, die sich in der
Regel durch das Anwendungsgebiet auszeichnen. Allgemein wird zwischen inkrementellen
und globalen Algorithmen unterschieden.

Inkrementelle Verfahren werden oft angewendet, wenn die Daten nicht schon vorhanden sind,
sondern in Echtzeit gemessen werden. Ein grofles Anwendungsgebiet sind daher Navigati-
onsgerite in Fahrzeugen, welche stets die Position des Fahrzeugs ermitteln miissen. Fiir das
Matching einer Messung wird daher entweder nur die letzte Messung betrachtet oder die letz-
ten n Messungen. Eigenschaften zu beriicksichtigen sind die Entfernung — zwischen Messung
und Position auf der betrachteten Strafle — und Verbindungen von der zuletzt bestimmten
Position. Diese Algorithmen haben daher in der Regel relativ geringe Laufzeiten.

Bei globalen Verfahren ist die Vollstandigkeit der Daten eine Voraussetzung, da diese immer
eine Sequenz von Messungen auswerten. Fiir globale Algorithmen bestehen wiederum meh-
rere Ansatze. Die geometrische Methode sucht einen Pfad, der eine minimale Distanz (z.B.
Fréchet-Distanz [WWFZ13]) zur gemessenen Trajektorie besitzt. Verbindungen zwischen Stra-
Ben werden bei topologischen Methoden betrachtet, aber nicht bei geometrischen. Andere
probabilistische Verfahren konnen zusétzlich auch Geschwindigkeit und Richtung beriick-
sichtigen [PHO08]. Eine Kombination dieser Methoden kann wiinschenswert sein, da sie Stirken
und Schwichen besitzen [QONO07].
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4 Konzept

Das Map Matching geographischer Daten soll durch einen Analysten optimiert werden.
Waihrenddessen sollen Ergebnisse und Eigenschaften der Daten visualisiert werden, um den
Nutzer in diesem Prozess zu unterstiitzen. Dieses ,Anpassen” des Map Matching Verfahrens
auf die Daten hat zwei Ziele. Zuerst soll die Genauigkeit des Algorithmus maximiert werden.
Fahrten sollten nicht zu falschen Pfaden zugewiesen werden. Solche Fehler sind meistens nicht
erkennbar, aber es kann unterschieden werden fiir welche Trajektorien das Map Matching
gut verlauft und wo das Ergebnis fehlerhaft sein kann. Dieses Mafl wird in dieser Arbeit als
Unsicherheit bezeichnet. Die Unsicherheit einer Fahrt wird wiahrend dem Map Matching
(Kapitel 4.1) berechnet. Das zweite Ziel besteht darin, die Fahrten zu reduzieren, fiir die der
Algorithmus kein Ergebnis finden kann. Fiir den Anteil solcher Fahrten wird der Begriff Feh-
lerrate verwendet. Fehlende Straflenkanten im Graphen oder falsche Messungen fithren zum
Fehlschlagen des Algorithmus. Um beide Probleme gleichzeitig zu optimieren, werden Ande-
rungen iterativ vorgenommen. Vor dem Map Matching kann optional ein Vorbereitungsschritt
ausgefithrt werden. Daten beinhalten oft Probleme (siehe Kapitel 3.2), die sowohl Fehlerrate
und Unsicherheit erhohen, als auch die Ergebnisse verfalschen wiirden. Deshalb werden solche
Daten im Vorbereitungsschritt herausgenommen.

Zu Beginn des Arbeitsprozesses (Abbildung 4.1) wahlt der Analyst aus, welche Geodaten fiir
das Anpassen geladen werden sollen. Es kann sich dabei um ein relativ kleines Datensample
handeln, welches stellvertretend fiir den gesamten Datensatz optimiert wird. Diese Daten und
das Straflennetz werden zur Ubersicht in einer Kartenansicht dargestellt. Anschliefend kann
der Analyst entweder die Parameter fiir Vorbereitungsschritte und Map Matching anpassen
oder diese mit Standardparametern durchfithren. Das Map Matching berechnet ein Ergebnis,
Fehlerrate und Unsicherheit, welche ebenfalls visualisiert werden. Dies ermdglicht es dem
Nutzer zu erkennen wo Fehlerstellen sind und diese konnen durch interaktiver Korrektur
des Straflennetzes oder der Parameter verbessert werden. Durch mehrmaliges Wiederholen
dieser Schritte sollen alle sichtbaren Fehlerquellen behoben werden. Wenn das Verfahren also
optimiert ist, konnen die Parameter und das Stralennetz gespeichert werden oder das Map
Matching kann auf den gesamten Datensatz angewendet werden.

4.1 St-Matching

Fir das Map Matching wird der ST-Matching [LZZ+09] Algorithmus verwendet, welcher
hohe Genauigkeit fiir geringe Abtastraten haben soll. Es handelt sich um ein probabilistisches
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4 Konzept

Kartenansicht Darstellung won
Anderungen

/

Anderung der Parameter Berechnung von

Datenauswahl Fehlerrate und Ergebnisgraph
Unsicherheit

N e

[Knrrektur am Stralennetz Pre-Processing & Map

Matching

Abbildung 4.1: Arbeitsprozess

globales Verfahren, das sowohl Topologie des Strafiennetzes, als auch Geschwindigkeit des
Fahrzeugs beriicksichtigt. Als globaler Algorithmus besitzt er eine hohere Komplexitit als
inkrementelle, aber weil Daten nicht zur Laufzeit gemessen werden, erreicht er eine bessere
Genauigkeit. Durch Einstellen der Parameter konnen die Laufzeit und die Genauigkeit be-
einflusst werden, womit sich dieser Algorithmus gut fiir interaktive Verfahren eignet. Falls
der Prozess zu lange dauert, kann die Laufzeit auf Kosten der Genauigkeit reduziert werden.
Zusitzlich wurde ST-Matching fiir Messungen mit geringer Samplingrate entwickelt, die auch
in den untersuchten Daten (siehe Kapitel 5.1) gegeben ist.

Es wird eine raumliche und eine zeitliche Komponente betrachtet. Der Algorithmus wird von
Lou et al. [LZZ+09] in drei Schritten beschrieben:

1. Candidate Preparation
2. Spatio-Temporal Analysis
3. Result Matching

Candidate Preparation

Der Algorithmus wird jeweils auf eine Trajektorie angewendet. Eine Trajektorie besteht
aus n Messpunkten p;. Im ersten Schritt werden zu den n Messungen in der Trajektorie
jeweils k Kandidaten gesucht. Ein Kandidat ist eine Projektion auf einer Straflenkante mit
der minimalen Distanz zu den gemessenen Koordinaten. Um diese zu finden, wird ein Gitter
zur Indizierung der Straflenkanten erstellt. Dazu wird jede Kante entsprechend ihrer Position
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4.1 St-Matching

in Gitterzellen, durch die sie verlauft, hinzufigt. Falls der Gitterabstand so grof} ist wie die
maximale Distanz, in der Kandidaten gesucht werden, miissen zu jeder Messungen nur ihre
entsprechende Zelle und dessen Nachbarzellen nach Straflenkanten durchsucht werden. Das
Ergebnis dieses Verfahrens ist eine Menge von bis zu k£ Kandidaten fiir jede Messung. Fiir
Kandidaten werden in folgenden Schritten die Straflenkante, die Position auf der Kante und
die Distanz zur Messung als Eigenschaften gebraucht.

Spatio-Temporal Analysis

Der zweite Schritt ist die Analyse der raumlichen und zeitlichen Eigenschaften. Ein Bestand-
teil der rdaumlichen Komponente ist die Wahrscheinlichkeit des Kandidaten N (c}). Diese ist
nur von der Distanz -/ zwischen Position der GPS-Messung p; und dem j-ten Kandidaten
¢/ von p; abhingig. Sie wird durch eine Normalverteilung modelliert und reprisentiert die
Wahrscheinlichkeit, dass der Kandidat ein ,Match® ist. Die Berechnung sieht wie gefolgt aus:

1 @l-w?

e 202 (4.1)

N(c]) = 5

i ist der Erwartungswert und o stellt die Standardabweichung dar. Fiir diese Parameter werden,
die von Lou et al. [LZZ+09] empfohlenen Werte, ;1 = Om und 0 = 20m verwendet.

Die zweite raumliche Eigenschaft reprasentiert die Topologie und hangt von den Verbindungen
zwischen zwei Kandidaten ab. Berechnet wird diese aus der geographischen Distanz d;_;_,;
zwischen Messpunkten p;_; und p; dividiert mit der Lange w(;_1 s)—(i,) des kiirzesten Pfa-
des zwischen ¢ _; und ¢!. Die Lingen der ersten und der letzten Kante in diesem Pfad sind
entsprechend der Position des Kandidaten gewichtet, da dieser auf der Kante liegen.

V(CS Ct) — di—l—n‘ (4'2)

W(i—1,5)—=(i,t)

W(i—1,5)—(i,+) kann mit Hilfe des Dijkstra-Algorithmus aus dem gegebenen Strafiennetz fiir alle
1 <s<kundallel <t < k berechnet werden. Das Produkt dieser beiden Bestandteile bildet
die rdumliche Analyse

Fs(c; , =) = N(Cj) Ve, d) (4.3)

1

mit 2 < <n.

Als letztes wird die zeitliche Analyse berechnet, welche die Geschwindigkeitsbeschrankungen
beriicksichtigt. Die durchschnittliche Geschwindigkeit 7 zwischen zwei Kandidaten betragt

_ W(i—1,5)—(4,t)
U(i—1,8)—(it) = AL (4.4)
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4 Konzept

und stellt einen Vektor mit m gleichen Elementen dar. Der Vektor (vy,vs, ..., v,,)7 enthilt
die Geschwindigkeitsbeschrinkungen auf dem Pfad (ey, ey, ..., €,,) zwischen ¢;_; und ¢!. Die
zeitliche Komponente sei dann die Kosinus-Ahnlichkeit dieser beiden Vektoren

) e (Vy - D)
\/Z vu)2\/ZTzl(U(i—Ls)—m,t))z

S

Fr(c_, — ¢

(4.5)

und es gelte wieder 2 <17 < n.

Result Matching

Der letzte Schritt besteht darin, einen Pfad aus den jeweils £ Kandidaten der n Messungen zu

finden, der am wahrscheinlichsten ist. Dazu wird aus den Kandidaten ein Graph erstellt. Mit

Hilfe der zeitlichen und rdumlichen Analyse wird die sogenannte ST-Funktion definiert:
F(c;y = ¢) = Fs(c]

=) Frc = d),2<i<n (4.6)

l ’L

Der gesuchte Pfad besitzt eine maximale Summe der ST-Wertemit 1 < s < kund1 <t < k.
=) F(c_, =) (4.7)
=2

Der Algorithmus, der diesen Pfad P = (c5, ..., ¢!) berechnet, wird in Kapitel 5.2 erklirt.

Das arithmetische Mittel {iber alle Werte der ST-Funktionen jedes Ergebnisses wird in dieser
Arbeit als Sicherheit S fiir m Pfade P; der Lange | P;| definiert.

S

m

S = (4.8)

Weil das in der Regel sehr kleine Werte sind, wird hier fiir besseres Verstdndnis folgende
Unsicherheit U berechnet:
U=1000-(1-295) (4.9)

Diese wird genutzt, um die Qualitdt der Ergebnisse zu vergleichen.

4.2 Visualisierung

Die verschiedenen Formen von Informationen sollen jeweils durch eine passende Darstellung
visualisiert werden. Es gibt drei Arten von Daten, mit welchen gearbeitet wird.

1. Rohdaten (GPS-Koordinaten mit Zeitstempel, Straflennetz)

2. Verarbeitete Daten (Ergebnis des Map Matching)
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4.2 Visualisierung
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Abbildung 4.2: Uberblick des entwickelten Systems. 1) Auswahl von Dateien, die geladen
(oben) und ,gematcht® (unten) werden; 2) Parametereinstellung des Pre-
Processing; 3) Parametereinstellung des Map Matching; 4) Kartenansicht
zur Darstellung der Bewegungsdaten; 5) Liniendiagramm zur Darstellung von
Fehlern im Map Matching Algorithmus; 6) Liniendiagramm zur Darstellung
der Unsicherheit im Map Matching Algorithmus.

3. Eigenschaften (Fehlerrate etc. vom Map Matching Algorithmus)

Eine intuitive Weise diese darzustellen ist mit Hilfe einer Kartenansicht (4 in Abbildung 4.2).
Um einen Uberblick tiber die Rohdaten zu schaffen, wird jede Fahrt des Fahrzeugs durch
Verbinden der Koordinaten dargestellt (Abbildung 4.4 links).

Nach dem Map Matching Algorithmus erhilt man zum einen das Ergebnis und zusatzlich
dessen Unsicherheit U. Die Ergebnisse bestehen aus Listen von Kandidaten, welche jeweils
auf Kanten im Straflengraphen abgebildet und gezeichnet werden (Abbildung 4.3 rechts). Bei
einer hoheren Anzahl von Fahrten durch eine Strafie, wird diese breiter gezeichnet.

Um diese Ergebnisse zu verbessern, sollten noch die Fahrten, fiir die der Matching Algorithmus
kein Ergebnis findet oder das Ergebnis zu unsicher ist, ebenfalls betrachtet werden. Beide
Probleme konnen auf der Karte gezeichnet werden. Durch Splatting (siehe Kapitel 5.2) der
Kanten fehlerhafter Trajektorien ist es moglich Fahrten darzustellen, so dass Stellen mit vielen
Fehlern erkennbar sind (Abbildung 4.4 Mitte). Auf dieser Weise kann auch die Unsicherheit
(Abbildung 4.4 rechts) von erfolgreich berechneten Trajektorien dargestellt werden. Diese
Darstellung kann parallel zum Map Matching erstellt werden, sodass ein Analyst schon wah-
rend der Berechnung Problemstellen finden kann und eventuell vorzeitig eine neue Iteration
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4 Konzept

) [ )

Abbildung 4.3: Links: Kartenansicht. Mitte: Stralengraph. Rechts: Stralengraph (gelb) mit
Ergebnis (griin) des Map Matching.

Abbildung 4.4: Links: Rohdaten. Mitte: Fehleranzahl des Map Matching. Fahrten ohne Kan-
didat zu einer Messung in rot. Fahrten ohne Verbindung zwischen zwei Mes-
sungen in blau. Rechts: Mittlere Unsicherheit des Map Matching. Geringe
Unsicherheit in blau. Hohe Unsicherheit in rot.

beginnt. Zusétzlich besitzt jedes Fahrzeug einen Fortschrittsbalken, welcher durch Verwendung
verschiedener Farben die Anteile an fehlerhafter und erfolgreicher Berechnungen darstellt (1
in Abbildung 4.2).

Der Analyst soll bei Anderungen sehen, wie sie sich auf das Verfahren auswirken. Um einen
Uberblick dariiber zu schaffen, werden Fehlerrate und Unsicherheit betrachtet. Beide Grofien
sind von einander abhiangig. Wenn Parameter (z.B. maximale Distanz zu Kandidaten) so
eingestellt sind, dass der Algorithmus nur fiir Fahrten mit geringer Unsicherheit erfolgreich
ist, so steigt die Fehlerrate. Eine zu starke Lockerung der Parameter kann jedoch dazu fiithren,
dass den Trajektorien falsche Pfade zugewiesen werden und die Unsicherheit steigt. Die Werte
von Fehlerrate und Unsicherheit werden deshalb in jeweils einem Liniendiagramm (5 & 6 in
Abbildung 4.2) iibereinander dargestellt.

Dieser Wert wird auf der y-Achse des Diagramms dargestellt, wahrend die x-Achse die Itera-
tionen reprasentiert. Die Fehlerrate wird in drei Kategorien unterteilt:

1. Keine Kandidaten gefunden

2. Keine Stralenverbindung zwischen Kandidaten gefunden
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4.3 Interaktionen

3. Andere

Kandidaten und Pfade zwischen Kandidaten existieren immer, jedoch sind diese jeweils durch
eine maximale Distanz beschrankt, um falsche Ergebnisse zu vermeiden. Griinde dafiir sind zum
Beispiel fehlende Straflenkanten oder Messpunkte aulerhalb des Straflengraphen. ,Andere”
Fehler sind zum Beispiel Trajektorien mit nur einer oder keine Messung. Die Anteile (Prozent
von allen Fahrten) dieser drei Fehler und ihre Summe werden auf der y-Achse im Diagramm der
Fehlerrate dargestellt. Idealerweise sollen alle Werte in beiden Diagrammen bei jeder Iteration
kleiner werden.

Um das Intervall geeigneter und giiltige Werte fiir die Parameter darzustellen, eignet sich
die Anwendung von Slidern (2 & 3 in Abbildung 4.2). Ein exaktes Einstellen fiir Parameter
hoherer Grofienordnung kann durch Anwenden eines einfachen Textfeldes erreicht werden.
Fiir Vorbereitungsschritte, die Fahrten vor dem Map Matching Algorithmus filtern, kann ein
Histogramm tiber dem jeweiligen Slider hilfreich sein. Aufgrund der schiefen Verteilung der
Fahrten wird eine logarithmische y-Achse fiir die Histogramme verwendet. Der Nutzer kann
dadurch die Qualitiat der Daten iiberblicken und einschitzen welche Werte sinnvoll fiir den
Parameter sind.

4.3 Interaktionen

Eine Aufgabe des Nutzers besteht darin, Probleme zu beheben, die der Algorithmus nicht
erkennt. Idealerweise kann ein Experte Domanenwissen einbringen, um diese Schwierigkeiten
zu beseitigen.

Das Straflennetz kann ein Teil dieser Probleme sein. Der Straflengraph besteht aus Knoten
an Kreuzungen und die Straflen werden als Kanten modelliert. Wegen menschlicher Fehler
kann der Graph Ungenauigkeiten enthalten. Es konnen zum Beispiel Knoten an Kreuzungen
fehlen oder ganze Straflen werden ausgelassen. Zusatzlich konnen aus verschiedenen Griinden
Abweichungen entstehen. Haufig sind Straflenkanten zu lang, weil sie nur an den Kreuzungen
Knoten besitzen. Das verwendete Straflennetz kann veraltet sein oder komplizierte Verbindun-
gen wurden vereinfacht. Bei solchen Problem kann der Map Matching Algorithmus scheitern,
welches der Analyst erkennt und anschlieflend die nétigen Straflenkanten hinzufiigen oder
verschieben kann. Zur Hilfe ist es moglich Fehler automatisch zu erkennen. Durch Driicken
eines Buttons (,Find failures® in Abbildung 4.2) sucht das System die Stellen mit den meisten
Fehlern oder mit der groten Unsicherheit und zeigt diese dem Nutzer im Mittelpunkt der
Kartenansicht (siehe Abbildung 4.5). Dazu werden die Berechnungen, die zum Darstellen der
Unsicherheit und der Fehleranzahl nétig sind, verwendet (siehe Kapitel 5.2).

Um den richtigen Verlauf von Straflen zu finden, kann eine Kartenansicht (z.B. OpenStreetMap
[Ope]) im Hintergrund verwendet werden. Alternativ ist es moglich die Originaltrajektorien
zu betrachten, welche aber nicht unbedingt dem Straf3enverlauf folgen. Bei Kurven, die im
Strafennetz nicht richtig dargestellt sind, kann der Analyst nach dem Map Matching eine
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4 Konzept

.. Measurement|s) without candidates: ~15.0
B Measurementis) without path: ~19.0

o

Abbildung 4.5: Automatische Erkennung von Fehlern. Hervorgehobene Fehlerstelle (griin),
an welcher zu vielen Messungen kein Kandidat gefunden wurde (rot) und/oder
keine Verbindung zwischen den Messungen (blau) gefunden wurde.

Fehlerstelle auswéhlen und das System schlagt eine Verbesserung durch Einfiigen eines Kno-
tens vor (siehe Abbildung 4.6). Um diese Verbesserung zu finden wird zuerst die nachste
Straflenkante in der Nahe der Fehlerstelle gesucht. AnschlieBend werden alle Fahrten, welche
durch die Fehlerstelle verlaufen, angeschaut. Von jeder dieser Trajektorien wird der Messpunkt
gesucht, der eine maximale Distanz zur gefunden Straf3e hat, aber auch keine andere Strafle
naher an dem Punkt ist. Die mittlere Position dieser Messpunkte bildet den neuen Knoten,
welcher mit den zwei Knoten der urspriinglichen Straflenkante verbunden wird. Alternativ
kann das System die Kandidatendistanz an dieser Stelle zum ndtigen Wert erhohen, damit allen
Messungen in der Nahe ein Kandidat zugewiesen wird. Dazu wird wieder zunéchst die nachste
Straflenkante in der Nahe gesucht. AnschlieBend wird der maximale Abstand zwischen der
Stralenkante und den Messpunkten fehlgeschlagener Fahrten, die sich an der Fehlerstelle
befinden, berechnet.

Durch Erhohen der maximalen Distanz, in der Kandidaten gesucht werden (3 in Abbildung
4.2), konnen Fahrten trotzdem zur entsprechenden Strafle zugewiesen werden. Gleichzeitig
ist es jedoch moglich, dass andere Fahrten zu falschen Straflen zugewiesen werden, falls der
Parameter zu grof3 ist. Um dies zu erkennen, kann die Unsicherheit beim Map Matching
betrachtet werden (6 in Abbildung 4.2).
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4.3 Interaktionen

Abbildung 4.6: Vorgeschlagene Korrektur einer Straf3e. Links: Urspriingliche Straflenkante
(gelb) mit Fehlerdarstellung (rot). Rechts: Vorgeschlagener Verlauf der Strafie
(hellrot) ersetzt urspriingliche Kante (blau). Griiner Punkt beschreibt die
ausgewahlte Fehlerstelle.

Der Ursprung eines anderen Problems liegt in den Daten. Durch defekte Hardware oder
falsche Nutzung entstehen verschiedene Arten von Fehler. Zum Beispiel konnen fehlende
Daten, falsche Koordinaten oder falsche Zeitstempel enthalten sein. Weil solche Daten nicht
korrigiert werden konnen, sollten jeweils die Messungen oder die ganzen Fahrten geloscht
werden. Dazu wird der Vorbereitungsschritt vor dem Map Matching Algorithmus verwendet.
Der Nutzer bestimmt dabei die Parameter fiir minimale Anzahl an Messungen pro Fahrt
und maximale geographische Distanz zwischen Messungen. Messungen mit sehr geringer
Anderung der zuletzt gemessenen Koordinaten konnen aus ihrer Trajektorie entfernt werden.
Solche Messungen entstehen wenn sich Fahrzeuge nicht bewegen. Sie verursachen grofie
Datenmengen und enthalten keinen Informationsgehalt, da das Stehen nach dem Entfernen
anhand des Zeitstempels erkannt werden kann

Um die Genauigkeit des Algorithmus zu erhdhen, ist es moglich die Anzahl der Kandidaten
k, die pro Messung betrachtet werden, zu erh6hen. Dies geht jedoch auf Kosten der Laufzeit,
die quadratisch erhoht wird. Die Laufzeit des Algorithmus - angewendet auf eine Trajektorie
der Linge n auf einem Graphen mit m Kanten - betrigt O(nk?mlogm + nk?). Zusitzlich
kann die maximale Geschwindigkeit (bzw. maximale Distanz) zwischen Kandidaten bestimmt
werden, um unrealistische Moglichkeiten wéihrend der Berechnung zu verwerfen.
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5 Implementierung

Fiir diese Arbeit wurde ein Datensatz verwendet, der von einem Taxiunternehmen aufgezeich-
net und bereitgestellt wurde. Dieses Kapitel beschreibt zuerst den Aufbau dieser Datenmenge
und erklért anschlieend die Implementierung des entwickelten Systems.

5.1 Datensatz

Die in dieser Arbeit verwendeten Daten wurden von iiber 8.400 Taxis in der Stadt Hangzhou,
China gesammelt. Sie wurden zwischen dem 01.01.2013 und dem 31.01.2013 in einem Intervall
von einer Minute gemessen und bilden ca. 24 Millionen Fahrten. Jedes Taxi wird durch eine
Datei im JSON-Format reprasentiert. Diese Dateien bestehen aus Listen von Fahrten, die
ebenfalls aus Listen von Messungen bestehen. Eine Messung beinhaltet Messungs-Id, Fahrzeug-
Id, Langengrad, Breitengrad, Geschwindigkeit, Winkel, Fahrgast (in Taxi), Serverzeit und
Taxizeit.

Das bereitgestellte Stralennetz besteht aus einem ungerichteten Graphen G(V, E') mit Knoten
V und Kanten E. Die Knoten bestehen aus den Koordinaten der entsprechenden Kreuzung
und einer Knotennummer. Jede Kante besitzt zwei Knotennummern und den Stralentypen.
Insgesamt besteht der Graph aus 5039 Knoten und 7036 Kanten.

5.2 Programmierung

Der praktische Teil dieser Arbeit wurde mit der Programmiersprache Java durchgefiihrt. Die
Programmierung des Systems richtet sich nach dem Model View Controller Entwurfsmuster.
Das Modell beinhaltet die geladenen Daten (Trajektorien, Straf3engraph) und die Préasentations-
schicht stellt diese Daten, sowie Ergebnisse, Fehler und Parameter des Systems dem Benutzer
vor. Aktionen des Analysten (Kapitel 4.3) werden durch Kontrollelemente bearbeitet, welche
direkt die Daten dndern (z.B. Parameter) oder Berechnungen ausfithren (z.B. Map Matching).
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5 Implementierung

GuiComponent

WatchingData

- Failures: List<StMstching=
- Results: List<StMatching>
K + executeMatching()

DataSelection sendRefreshEvent]) : void

N X FailChart Map
- loadFile(String) : void ErrorChart

- matchCar(int) : vaid

Splatting Parameters Sthatchin

F—— - trajecteny:

+
+ nun{) : voi

ParameterPanel GraphQ rorQ i 1]

e e Para et void - emorSplstting: Splstting || |- fsilureSplatting: Splatting

“ .. wea
sinterfaces |07

Abbildung 5.1: Aufbau des Systems

Modell

Die oberste Schickt der Klassenhierarchie (siehe Abbildung 5.1) besteht aus der ,DataModel”-
Klasse. Nach dem Singleton-Modell existiert nur eine Instanz dieser Klasse. Sie enthalt die
Eingabedaten (Straf3engraph, Trajektorien) und verweist auf die unteren Schichten, welche
fiir Oberflache und Berechnungen zustéindig sind. Die ,MatchingData“-Klasse startet Threads
zur Berechnung vom Map Matching und verwaltet diese, sowie dessen Ergebnisse. Sobald
die Berechnungen fertig sind, wird ein Event an die Karte und ihre Komponenten (Overlays)
geschickt, sodass diese die neuen Daten laden.

Zur Modellierung des Stralennetzes wurde Graph-Struktur des Prefuse Toolkit [Pre] verwen-

det.

GUI

Fir die Kartenansicht wurde die JXMapViewer-Bibliothek [chr] verwendet. Diese erlaubt
eine einfache Implementierung von ,Overlays®, um die Taxifahrten und Fehler auf der Karte
darzustellen. JXMapKit fiihrt auflerdem Umrechnungen zwischen geographischen Koordinaten
und Pixelkoordinaten durch. Zoom- und Panning-Funktionen sind ebenfalls implementiert.
Die Overlays werden im Hintergrund in jeweils eine BufferedImage Struktur gezeichnet. Diese
Bilder werden neu gezeichnet, sobald die Kartenansicht gedndert wird oder ein Event durch
Map Matching Komponenten ankommt.
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5.2 Programmierung

Die Liniendiagramme, um Fehler und Sicherheit anzuzeigen, wurden mittels JFreeChart [JFr]
entwickelt. Mit jeder Iteration des Map Matching werden ihre Werte erneuert, sobald die
Berechnung aller Fahrzeuge abgeschlossen ist.

Edge Splatting

Die Anzahl an Fehlern und die mittlere Unsicherheit werden durch ,Edge Splatting“ berechnet.
Dazu wird ein Array mit einem Eintrag pro Pixel auf der Kartenansicht initialisiert. Die Eintrage
enthalten eine Summe und die Anzahl der Summanden.

Fir jede Kante wird tiber die Pixelpositionen iteriert, iiber die diese Kante verlauft. In der
Umgebung von jedem Pixel wird im Array ein Wert zu dessen Summe addiert. Als Umgebung
wird ein Quadrat mit Seitenlédnge 7 Pixel betrachtet, wobei die Kante durch dessen Mittelpunkt
verlauft. Der addierte Wert nimmt mit dem Abstand zum Mittelpunkt linear ab.

Beim Berechnen der Matrix fiir das Fehler-Overlay wird iiber die Kanten der im ST-Matching
fehlgeschlagenen Trajektorien iteriert. Der addierte Werte betrdgt immer 1, da das Splatting
darstellen soll wie viele Fehler an Stellen entstehen. Dies wird fiir jeden Fehlertyp (siehe Kapitel
4.2) durchgefiihrt, um diese zu unterscheiden.

Um die Unsicherheit darzustellen, wird tiber die Pfade von Kandidaten (Ergebnis vom ST-
Matching) iteriert. Die betrachteten Kanten sind jedoch die Verbindungen der Messpunkte,
zu welchen die Kandidate gehoren. Statt den mittleren Wert der Sicherheit aus Formel 4.8,
kann hier der Wert der ST-Funktion (Formel 4.6) genutzt werden, um die Unsicherheit fiir eine
Kante zweier Kandidaten zu berechnen. Diese Unsicherheit wird also entlang zu den Pixel der
Kante addiert und anschlief3end wird sie durch die Anzahl der Summanden dividiert, um die
mittlere Unsicherheit an den jeweiligen Stellen zu erhalten.

Wenn die jeweilige Matrix berechnet ist, werden die Werte normiert und eine Farbe wird fiir
jeden Wert interpoliert und im Pixel des entsprechenden Bildes gezeichnet.

ST-Matching

Der Map Matching Algorithmus wurde entsprechend dem in Kapitel 4.1 besprochenem Ver-
fahren implementiert. Die fiir Formel 4.5 benétigte Geschwindigkeitsbegrenzung ist nicht im
Straflengraphen enthalten, daher wurde eine typische Geschwindigkeit fiir den jeweiligen Stra-
entyp angenommen. Die Lénge des kiirzesten Pfades zwischen zwei Kandidaten w;_1,¢)— (i)
(siche Kapitel 4.1) wurde mit einem Dijkstra-Algorithmus berechnet. Durch Anwendung eines
schnelleren Algorithmus, wire es jedoch moglich die Laufzeit des ST-Matching zu verbessern.
Weitere Optimierungen des Algorithmus beschreiben Lou et al. [LZZ+09] in ihrer Arbeit.

Um den besten Pfad im Kandidatengraph zu finden (siehe Kapitel 4.1) wird Algorithmus
5.1 verwendet. Eingabedaten sind k; Kandidaten zu jedem Messpunkt p;, mit 1 < ¢ < n
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5 Implementierung

Algorithmus 5.1 Result Matching

procedure FINDBESTPATH(c])

Highest[i][j] //Summe der ST-Werte fiir besten Pfad bis ¢/
forallcf,1 <p <k do
Highest([1][p] :== N(c})
end for
for:=2...ndo
forallcf,1 <t <k;do
Max = —o0
forallc; |,1 <s<k;_;do
StValue := StFunction(c;_,, ct)
Sum := Highest[i — 1][s] + StV alue
if Sum > Max then
Maz := Sum
ct.setStValue(stValue) //Zum Berechnen der Unsicherheit
ct.setParent(c;_,) //Vorginger mit héchster Summe
end if
Highestli][t] := Max
end for
end for
end for
resultList //Bester Pfad der Kandidaten
candidate = argmax(Highest[n|[s]),1 < s < k,, //Bester letzter Kandidat
fori=n—-1...1do
result List.add(candidate)
candidate = candidate.get Parent()
end for
reverse(resultList)

end procedure

und 1 < j < k;. Das Ergebnis ist eine Liste von Kandidaten, die den besten Pfad bilden.
Zusétzlich wird jedem Kandidaten der Messungen p, . . . p,, der Wert der ST-Funktion (Formel
4.6) zugewiesen, durch welchen sich die Unsicherheit (Formel 4.9) berechnet. Der restliche Teil
des Algorithmus verlauft wie er in der Arbeit von Lou et al. [LZZ+09] beschrieben wurde.

Das Map Matching wird fiir jedes ausgewahlte Taxi parallel berechnet. Die Regionen, wo eine
Fahrt verlduft, werden gespeichert, so dass bei Anderungen am Stralennetz nur die betroffenen

Fahrten neu berechnet werden miissen.
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6 Fallstudien

Nach der Implementierung wurde untersucht, wie grof3 der Einfluss des Nutzers ist. Dazu
wurde zuerst verfolgt, wie sich Anderungen an den Parametern auf das Ergebnis auswirken
und ob diese sinnvoll sind. Anschlieflend wurde die Qualitat des gegebenen Strafiennetzes
betrachtet und schrittweise verbessert.

6.1 lterative Parameteranpassung

Zuerst wurde der Einfluss der Parametereinstellung untersucht. Je schlechter die Qualitat
der Messdaten und des Straflengraphen, desto mehr sollten sich Parameter auf das Ergebnis
auswirken. Bei exakten Daten sollte der Algorithmus immer das richtige Ergebnis liefern.
Da die verwendeten Daten ein relativ hohes Messintervall von einer Minute haben, mussten
Parameter angepasst werden. Auch der Straflengraph weicht an Stellen von der Realitit
ab. Die zwei wichtigsten Parameter des ST-Matching sind die Anzahl der Kandidaten und
die maximale Distanz zwischen Messpunkt und Kandidat. Zur Untersuchung wurden die
Anfangsparameter auf drei Kandidaten und 100m maximaler Distanz gesetzt. Eine relativ
kleine Anzahl an Kandidaten erlaubt schnelleres Berechnen der Iterationen, wiahrend andere
Parameter bestimmt werden. Es wurden zehn zufillig ausgewahlte Fahrzeuge betrachtet, die
jeweils zwischen 2000 und 4000 Fahrten besaf3en. Der erste Schritt nach Laden der Taxifahrten
ist in der Regel das Map Matching, um eine Ubersicht tiber die Qualitit der Daten zu verschaffen.
Weil die Daten oft nicht bereinigt sind, ist es meistens wiinschenswert unrealistische Fahrten
durch den Vorverarbeitungsschritt zu filtern. Nach dem Entfernen solcher Fahrten, schlug der

Abbildung 6.1: Fehler im Straflennetz. Links:Fehlende Straflenkanten & Knoten. Mitte: Strafle
mit vielen Kanten. Rechts: Ungerader Straflenverlauf.
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6 Fallstudien

Map Matching Algorithmus bei jeder vierten Fahrt fehl. Die meisten Fehler entstanden weil
keine Kandidaten in der Niahe einer Messung gefunden wurden.

Kandidatendistanz

Obwohl die Kandidatendistanz zu 100m gesetzt wurde und GPS-Messungen in der Regel
eine deutliche bessere Genauigkeit besitzen, entstanden viele Fehler. Die Ursache davon ist
haufig das Straflennetz. Falls eine Strafle nicht im Graphen vorhanden ist, so kann das richtige
Ergebnis nicht berechnet werden. Anhand der Fehlerdarstellung konnte jedoch erkannt werden,
dass viele Straf3en vorhanden waren und trotzdem nicht vom Algorithmus gefunden wurden.
In den meisten solchen Féllen war die Strafie an den Knoten anndhernd exakt, aber wegen
ungeradem Verlauf weichte sie dazwischen von der Realitat ab (Abbildung 6.1 rechts). Solche
Falle entstanden meistens am Rand der Stadt, wiahrend im Zentrum von Hangzhou und in
Wohngebieten, wo die Strafien kurz und regelmaflig verlaufen, kaum Fehler auftauchten. Das
Problem kann durch Erhéhen der Kandidatendistanz gelost werden, aber es ist zu erwarten,
dass die Unsicherheit zunimmt, wenn weit entfernte Straf3en betrachtet werden. Weil immer die
k Kandidaten, die am nachsten sind, betrachtet werden, sollte das korrekte Ergebnis durch den
Algorithmus auch als Moglichkeit verarbeitet werden. Falls aber eine Strafle im Straflennetz
nicht vorhanden ist, so wird bei zu hoher Kandidatendistanz ein falsches Ergebnis berechnet.
Das verwendete Straflennetz hatte in der Tat auch viele fehlende Strafien (Abbildung 6.1
links) auflerhalb des Zentrums. Demonstrativ wurde die Kandidatendistanz auf den maximal
zuldssigen Wert (500m) erhoht. Dabei wurde fiir die meisten Fahrten ein Ergebnis berechnet
(siehe Abbildung 6.2), sogar wenn Straflen nicht im Graphen modelliert waren. Obwohl also
Fehler beim Map Matching entstanden, wurde jedoch auch Unsicherheit geringer, was ein
besseres Ergebnis andeutet. Um solche offensichtlichen Fehler zu vermeiden, wurde 150m
als Distanz verwendet, welche ebenfalls eine deutliche Verbesserung im Vergleich zu den
Anfangswerten brachte (siehe Tabelle 6.1).

Anzahl an Kandidaten

Die Anzahl betrachteter Kandidaten ist relevant, wenn sich andere Strafen naher an der Strafe,
die tatsdchlich befahren wurde, befinden. Falls Messungen auf den richtigen Stralenkanten
liegen, so reicht es nur einen Kandidaten anzuschauen. Gleichzeitig sollte ein zu grofler Wert
in der Regel nicht zu falschen Ergebnissen fithren, da ndhere Kandidaten als wahrscheinlicher
angenommen werden. In Fallen, wo viele Kanten im Graph nah an einander sind (z.B. mehrere
Spuren oder Kreuzungen, siehe Abbildung 6.1 Mitte), kann eine kleine Kandidatenzahl zu
Fehlern fithren. Aufgrund der Performanz wurde erst am Ende der Studie die Anzahl an
Kandidaten von drei auf sechs erhoht. Ein viel grofierer Wert sollte sich nicht auf die Ergebnisse
auswirken. Diese Anderung fithrte zu einer Verbesserung der Unsicherheit, da bei komplizierten
Verbindungen héufiger die richtigen Pfade gefunden wurden. Die Berechnungszeit wurde
dadurch nahezu vervierfacht und betrug 658 Sekunden, statt wie zuvor 182 Sekunden.
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6.1 lterative Parameteranpassung

Iteration| Anzahl Max Dis- | Fehlerrate | Unsicherheitl Kommentar
der Kandi- | tanz zu
daten Kandidaten
1 3 100m 27.0% 928.7 Map Matching
2 3 100m 24.8% 907.8 Filtern unrealistischer Fahrten
3 3 500m 9.4% 903.9 Sehr grofle Kandidatendistanz
4 3 150m 18.6% 905.4 Sinnvolle Kandidatendistanz
5 6 150m 18.5% 893.9 Doppelte Anzahl an Kandidaten

Tabelle 6.1: Berechnete Iterationen fiir Parameteroptimierung.

Abbildung 6.2: Fehlerrate (links) und Ungenauigkeit (rechts) der Iterationen wihrend der
Parameteroptimierung (Tabelle 6.1).
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6 Fallstudien

Abbildung 6.3: Briicke iiber Qiantang-Fluss. Links: Ungenauer Straflengraph. Rechts: Korri-
gierter Straflengraph.

6.2 StraBennetz Korrektur

Der fiir diese Arbeit verwendete Straflengraph von Hangzhou war Zentrum detailliert, aber
in dufleren Stadtvierteln an vielen Stellen unvollstindig. Daher wurde betrachtet, wie die
Ergebnisse vom Straflennetz abhdngen, wenn dieses verbessert wird. Nach dem Laden der
Fahrzeugdaten wurde der Map Matching Algorithmus zur Ubersicht durchgefiihrt. Dabei wur-
de die Anzahl an Kandidaten auf drei pro Messung gesetzt. Die maximale Distanz betrug 100m
und maximale Geschwindigkeit 120km /h. Fehlerhafte Messungen fithrten zu einer uniiber-
sichtlichen Darstellung der Fehler. Viele solcher Fahrten verliefen quer durch Hangzhou (siehe
Abbildung 6.5 links). Um diese zu entfernen, wurde die Vorverarbeitung verwendet. Durch
Begrenzung der maximalen Distanz wurden diese Probleme bereinigt. Zusatzlich wurden Tra-
jektorien mit weniger als fiinf Messungen gefiltert, da Taxifahrten in der Regel mindestens fiinf
Minuten dauern. Nach einem erneuten Matching war die Fehlerdarstellung deutlich iibersicht-
licher (siehe Abbildung 6.5 Mitte). Viele der sichtbaren Fehlerquellen waren langere Straflen,
die als Kandidaten nicht gefunden wurden. Bei den meisten Briicken iiber den Qiantang-Fluss
entstanden solche Fehler. Die auffélligen Probleme dieser Form wurden durch Unterteilung
der jeweiligen Kanten in mehreren Abschnitten behoben (Abbildung 6.3). Anschlieflend wurde
nochmals der Matching Algorithmus fiir Fahrten in der Ndhe dieser Straflen berechnet. An
den bearbeiteten Strafien entstanden in der Regel keine Fehler mehr. Auffillig war jedoch, dass
oft an den meisten mehrspurigen Straflen keine Pfade zwischen Kandidaten gefunden wurden.
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6.2 StraBennetz Korrektur

Iteration | Fehlerrate | Unsicherheit | Kommentar

1 30.2% 923.9 Map Matching

2 25.9% 906.1 Filtern unrealistischer Fahrten

3 24.2% 906.5 Korrektur ungerader Straf3en

4 24.1% 906.4 Korrektur von komplexen Verbindungen
5 21.3% 906.9 Einfiigen von fehlenden Straflen

6 15.5% 895.6 Parameter & weitere Iterationen

Tabelle 6.2: Berechnete Iterationen fiir Straflennetzoptimierung.

Grund dafiir sind die vielen Knoten, die oft an Kreuzungen, Kreisverkehren und Ausfahrten
vorhanden sind. Eine Verbesserung solcher Verbindungen erwies sich ohne Vorwissen der
Struktur als schwierig und konnte kaum behoben werden. Nach diesen Bereinigungsschritten
war die Identifizierung fehlender Straflen deutlich einfacher. An grofien Parkplatzen, wie am
Flughafen, ist das Map Matching ebenfalls haufig fehlgeschlagen, da diese nicht im Graphen
modelliert sind. Durch Betrachten der Rohdaten und der Kartenansicht konnten viele davon
erkannt und hinzugefiigt werden. Das geschieht durch einfaches Einfiigen von einen oder
mehreren Knoten, welche durch Kanten mit dem bestehenden Graphen verbunden werden.

Von den 25.096 Fahrten (10 Taxis) ist der Algorithmus am Anfang bei 30, 2% der Berechnungen
fehlgeschlagen. Das haufigste Problem waren nicht gefundene Kandidaten. Nach Vorverarbei-
tung wurden 7356 irrelevante Fahrten gefiltert. Ein Grof3teil davon bestand aus Trajektorien mit
nur einer Messung. Von den verbliebenen 17.740 Fahrten war der Algorithmus mit insgesamt
25.9% fehlgeschlagenen Fahrten etwas erfolgreicher. Die Unsicherheit war nach dem Filtern
ebenfalls geringer. In den néchsten Schritten blieb diese jedoch ndherungsweise konstant (siehe
Abbildung 6.4). Auch die Korrektur des Straflenverlaufs dnderte die Unsicherheit kaum, weil
diese Korrektur sich hauptsachlich auf die bisher fehlgeschlagenen Berechnungen auswirkt.
Den grofiten Effekt auf die Fehlerrate hatte das Einfiigen von fehlenden Straflen. Nur durch das
Hinzufiigen der Strecken mit groflem Fehler war der Algorithmus bei ca. 500 Fahrten (2.8%)
mehr erfolgreich.

Durch mehrfaches Wiederholen der durchgefithrten Schritte, konnte das Ergebnis weiter
verbessert werden. Zuletzt wurden auch die in Kapitel 6.1 erzielten Parameter verwendet.
Sowohl der berechnete Anteil (siehe Tabelle 6.2), als auch die auf der Karte sichtbaren Fehler
(Abbildung 6.5) wurden deutlich reduziert. Ein noch besseres Ergebnis konnte durch Bedienung
von Experten, die mit dem Straflennetz vertraut sind, erreicht werden.

39



6 Fallstudien

Abbildung 6.4: Fehlerrate (links) und Ungenauigkeit (rechts) der Iterationen wahrend der
Straflennetz Korrektur (Tabelle 6.2).

Abbildung 6.5: Links: Map Matching ohne Anpassung. Mitte: Map Matching nach Filtern
unrealistischer Fahrten. Rechts: Map Matching nach allen Schritten (siehe
Tabelle 6.2).
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7 Zusammenfassung und Ausblick

In dieser Arbeit wurde zuerst erklart, welche Probleme bei nicht bereinigten Geodaten vor-
kommen. Anschliefend wurden Map Matching Verfahren als Vorbereitungsschritt fiir die
Daten beschrieben. Es wurde ein System zur Darstellung eines Map Matching Algorithmus
entwickelt, welches mit Hilfe verschiedener Ansichten die Daten, Ergebnisse und Fehler im
Matching Algorithmus darstellt. Die Darstellung der Daten und Interaktion des Anwenders
wurden dabei als Schwerpunkte betrachtet. Grof3e Fehlerstellen werden im Verfahren hervorge-
hoben, sodass durch Anderungen am Stralennetz und Einstellen von Parametern das Matching
Verfahren effektiv optimiert wird. Das entwickelte System verbessert an einem Datensample
die Ergebnisse des Map Matching und fiihrt dieses anschlieffend auf den grof3en Datensatz
aus.

Nach einer Implementierung wurde das Konzept, anhand eines von Taxis gesammelten Da-
tensatzes, in Fallstudien ausgewertet. Ergebnisse zeigten, dass das Map Matching bei einem
Grofteil der Rohdaten fehlschlagt, wenn das Verfahren nicht an die Daten angepasst wird.
Danach wurde demonstriert welchen Einfluss der Analyst auf das Map Matching hat.

Ausblick

Das Pre-Precessing von Daten ist ein Prozess, der meistens gebraucht wird, um die Daten zu
verstehen. Obwohl viele Arbeiten Ansétze bieten, um problematische Daten zu finden, werden
solche Daten haufig verworfen, auch wenn sie eventuell relevant sind. Ein mégliche Erwei-
terung des Ansatzes dieser Arbeit besteht in der Kombination der Bereiche. Es konnen zum
Beispiel falsche oder fehlende Komponenten im Straflennetz erkannt und manuell korrigiert
werden. Durch maschinelles Lernen sollen anschlieflend dhnliche Probleme automatisch geldst
werden.

Ein Aspekt, der in dieser Arbeit nicht angeschaut wurde, sind die Eigenschaften des Stra-
Bennetzes in Abhéngigkeit der Region. Es ist in der Regel im Zentrum und in Wohngebieten
dichter als an anderen Stellen, sodass an solchen Regionen verschiedene Parameter fiir das
Map Matching eventuell sinnvoller sind.
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