Institut fiir Softwaretechnologie
Universitat Stuttgart

Universitatsstrafie 38
D-70569 Stuttgart

Bachelorarbeit

Konzeption und Realisierung
einer Steuerungssystem-HMI fiir
Mobilgerite

Erik-Felix Tinsel

Studiengang;: Softwaretechnik
Priifer/in: Prof. Dr. rer. nat. Stefan Wagner
Betreuer/in: Dr. rer. nat. Asim Abdulkhaleq,

M. Sc. Matthias Strljic

Beginn am: 01. Dezember 2016

Beendet am: 01. Juni 2017

CR-Nummer: H5.2,].7

Kurzfassung

Diese Arbeit umfasst die Konzeption und Realisierung einer Benutzerschnittstelle zur Steuerung
eines automatisierten Cocktailmixers des Instituts fiir Steuerungstechnik der Werkzeugmaschi-
nen und Fertigungseinrichtungen der Universitét Stuttgart. Dazu wird insbesondere der Stand
der Technik moéglicher Architekturmuster und Kommunikationsparadigmen analysiert und in
einer Softwarekonzeption, den zugrundeliegenden Anforderungen entsprechend, angewendet.
Ebenso werden Mechanismen und Vorgehensweise zur Schaffung von Benutzerfreundlichkeit
recherchiert und berticksichtigt. Die Arbeit prasentiert eine mégliche Implementierung zur Be-
dienung und Verwaltung des automatisierten Cocktailmixers und begriindet die angewandten
Softwareentscheidungen basierend auf deren Ergebnissen.

Inhaltsverzeichnis

1 Einleitung

1.1 Motivation e e e e
1.2 Zielsetzung
1.3 Aufbauder Arbeit

2 Grundlagen und Technik

21 RaspberryPi
2.2 Steuerungssysteme
2.2.1 Hauptprogramm
2.22 Datenbankverwaltung oL
2.23 Maschinensteuerung
2.3 Benutzeroberfliche Lo
24 Standder Technik oo
24.1 Architekturmuster L o
242 Kommunikationsparadigmen
243 Benutzerfreundlichkeit oo oL
3 Analyse
3.1 Ausgangssituation Lo
3.1.1 Benutzerfreundlichkeit oo L
3.1.2 Softwaredesign
3.2 Anforderungskatalog
3.2.1 Funktionale Anforderungen
3.2.2 Nichtfunktionale Anforderungen
3.23 Sonstige Anforderungen L oL
3.3 Verwandte Arbeiten Lo
3.3.1 Bartendro™ L
332 Barobot
3.4 Abgrenzung
4 Konzeption
4.1 Systementwurf.
4.1.1 Systemarchitektur
4.1.2 Serverseitige Architektur o L
413 Clientseitige Architektur 0L

10
12

13
14
16
17
19
19
20
21
21
33
34

37
37
38
39
40
40
44
44
49
49
50
51

53
54
54
55
66

42 Prototyp e
5 Implementierung

5.1 Werkzeuge und Richtlinien

52 Handbuch

53 Resultate
6 Schlussbetrachtung

6.1 Zusammenfassung Lo

6.2 Ausblick

Literaturverzeichnis

73
73
75
77

85
85
86

87

Akronyme

APT Advanced Package Tool. 15

CRUD Create, Read, Update, Delete. 33

CSS Cascading Style Sheets. 66

EER Enhanced entitiy-relationship. 64

GPIO General-purpose input/output. 14

GUI Graphical User Interface. 49

HDMI High-Definition Multimedia Interface. 14
HMI Human Machine Interface. 85

HTML Hypertext Markup Language. 20

HTTP Hypertext Transfer Protocol. 33

IDE Integrated development environement. 74
ISW Institut fiir Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen. 9
JSON JavaScript Object Notation. 33

LED Light-emitting diode. 16

MIME Multipurpose Internet Mail Extensions. 33
MVC Model-View-Controller. 25

RAM Random-access memory. 14

REST Representational State Transfer. 33

SOA Serviceorientierte Architektur. 31

SPI Serial Peripheral Interface. 15

SSH Secure Shell. 15

UML Unified Modeling Language. 54

URI Uniform Resource Identifier. 33

Akronyme

URL Uniform Resource Locator. 38
USB Universal Serial Bus. 14
XML Extensible Markup Language. 33

1 Einleitung

Das Institut fiir Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen (ISW)
entwickelte gemeinsam mit einigen Studenten einen automatischen Cocktailmixer. Dieser
wird bei gegebenem Anlass zu Prasentationszwecken vor Ort oder auf Messen vorgefiihrt. Die
bisherige Entwicklung der Studenten aus den Studiengédngen Mechatronik und Maschinenbau
stiitzte sich besonders auf die Zusammenstellung der Hardware und deren Funktionalitit. Diese
Arbeit legt den Fokus auf die Entwicklung der Software fiir den Einsatz des automatischen
Cocktailmixers. Einleitend befindet sich dafiur die konkrete Motivation dieser Arbeit, deren
Zielsetzung, sowie der Aufbau dieses Dokuments.

1.1 Motivation

Der am Institut entwickelte, automatische Cocktailmixer kann sechs Saftbehalter und acht
Cocktaildispenser iiber eine motorisierte Schiene ansteuern, auf welcher ein zu befillendes
Glas aufgestellt wird. Die Auftrage erhalt der Cocktailmixer iber eine Weboberflache, welche
von den Benutzern iiber eine drahtlose Verbindung aufrufbar ist. Eine solche, benutzerfreundli-
che Webanwendung, die sich sowohl fiir den Bediener als auch fiir zukiinftige Programmierer
tibersichtlich gestaltet, stellt einen Kernpunkt in der Konzeption und anschliefenden Nutzung
des Cocktailmixers dar. Eine besondere Herausforderung ist das unterschiedliche Verhalten
der Oberflache unter Beriicksichtigung verschiedener Benutzerrollen, sowie der Kompatibilitat
mit mobilen Endgeréten, welche eine angepasste Darstellung verlangen. Fiir eine moglichst
variierbare Architektur der Softwarekomponenten ist zudem insbesondere die Modularisierung
ein unabdingbares Paradigma.

Die bestehende Softwareumsetzung (vgl. Abbildung 1.1) des Cocktailmixers erfiillt diese und
weitere Anforderungen an das System nicht ausreichend oder gar nicht. Deswegen soll mit
dieser Arbeit eine neue Benutzerschnittstelle geschaffen werden, welche méglichst viele funk-
tionale und nichtfunktionale Anforderungen an das bestehende System abdeckt.

1 Einleitung

Cocktailmixer

Meus Basteliung

Erik, wéhle hitte einen Cocktail aus.

arthur abel

Cuba Libre

Long Island Ice Tea

Margarita

Planter's Punch

Abbildung 1.1: Urspriingliche grafische Oberflaiche des Cocktailmixers

1.2 Zielsetzung

Ziel dieser Arbeit ist es, die Benutzerschnittstelle des Cocktailmixers zu Analysieren und
daraufhin neu zu Konzipieren und Entwickeln. Die nachfolgend definierten Phasen sollen
diese Zielsetzung detaillieren:

1. Recherche iiber den Stand der Technik

Fiir die Erfassung des Stands der Technik sollen aktuelle, frei verfiigbare Mechanismen
fur die Softwareentwicklung untersucht und gegeniibergestellt werden, um so eine
begriindete Softwarearchitektur zusammenzustellen.

10

1.2 Zielsetzung

2. Analyse der Anforderungen an die Umsetzung

Die Analyse erfordert zum einen eine Einarbeitung, als auch eine Recherche tiber die
notwendigen Anforderungen an das System.

« Einarbeitung in das Ist-System

Die bestehende Architektur soll hinreichend Uiberblickt werden, um ein Verstindnis
fir und Erkenntnisse zu der Einbettung dieser Arbeit zu gewinnen.

« Bediirfnisanalyse

Das bestehende System soll so analysiert werden, dass die Ziele dieser Arbeit
ersichtlich werden. Dazu gehort es, die Bediirfnisse aller Akteure an das System
zu erfassen. Je mehr Anforderungen dabei abgedeckt werden, umso vollstandiger
lasst sich schliefilich ein Entwurf des Softwaresystems anfertigen, der auf diese
Anforderungen in seiner Zielsetzung direkten Bezug nimmt.

3. Ausarbeitung eines Softwareentwurfs

Ein Softwareentwurf soll erstellt und begriindet werden.

« FErarbeiten des Entwurfs

Auf Grundlage der Bediirfnisanalyse und des Stands der Technik soll ein Ent-
wurf angefertigt werden. Dieser beinhaltet wesentliche Strukturmerkmale der zu
entwickelnden Software und dokumentiert die Architektur, um eine spatere Imple-
mentierung zu erleichtern und zukiinftige Wartungs- oder Erweiterungsarbeiten
zu vereinfachen.

« Begriindung der Designentscheidungen und der gewéhlten Entwicklungsplattform

Die gewahlten Entwicklungswerkzeuge und Architekturentscheidungen sollen
nach einer Analyse der Alternativen begriindet werden.

4. Implementierung des Entwurfs
Das Softwaresystem soll auf Basis des erstellten Entwurfs erstellt werden.
5. Validierung des Resultates gegen die Anforderungen

Die Ergebnisse der Implementierung sollen gepriift und gegebenenfalls korrigiert werden.
Insbesondere die in der Bediirfnisanalyse festgelegten Anforderungen sollten sich in der
Priifung wiederfinden.

11

1 Einleitung

1.3 Aufbau der Arbeit

Diese Arbeit ist nach den Phasen der Zielsetzung aufgebaut. Zu Beginn befindet sich eine
Einfithrung in die Grundlagen des Cocktailmixers und den fiir diese Arbeit benétigten Stand
der Technik in Kapitel 2. Im Anschluss daran wird das zu entwickelnde System durch Anforde-
rungen und Vergleiche, wie auch einer Abgrenzung in Kapitel 3 spezifiziert. Mit Hilfe dieser
Erkenntnisse wurde der Entwurf des Systems und dessen Prototyp entwickelt. Er befindet sich
in Kapitel 4. Kapitel 5 prasentiert die Ergebnisse der Entwicklung dieses Entwurfs. In diesem
Kapitel werden zudem die Anforderungen anhand der Realisierung validiert. Zum Schluss
wird in Kapitel 6 eine Zusammenfassung gegeben und die Moglichkeiten weiteren Vorgehens

erlautert.

12

2 Grundlagen und Technik

Um ein Verstandnis fur die in dieser Arbeit behandelten Themen zu vermitteln, verschafft das
Kapitel Grundlagen und Technik einen Uberblick auf das bestehende System des automati-
sierten Cocktailmixers. Dabei wird vertiefend auf die eingesetzte Hardware, den Raspberry
Pi, die Steuerungssysteme, als auch auf die bereits entwickelte Software eingegangen. Zu-
satzlich werden die Ergebnisse der Recherche des aktuellen Stands der Technik im Bereich
der Softwarearchitektur, den Kommunikationsparadigmen und der Benutzerfreundlichkeit im
Softwaredesign aufgefiihrt.

Das Grundgeriist des automatisierten Cocktailmixers besteht aus Bosch-Profilen. An diesen
sind Dispenser fiir die alkoholischen Getranke, Saftbehélter und die Riickwand, welche die
Hardware beinhaltet, verbaut. Am Boden des Cocktailmixers befinden sich zwei Fithrungs-
schienen auf denen ein Schlitten mit einer Druckplatte von einem Schrittmotor an die Position
der Getranke bewegt wird. Ein ebenfalls am Schlitten angebrachter Hebelarm, der mit einem
Getriebemotor betrieben wird, 16st die Dispenser aus; die Saftbehalter werden tiber Magnetven-
tile gedffnet und geschlossen. Auf der linken Seite ist ein Display an einem Profil angebracht.
Dieses zeigt dem Benutzer die Weboberflache des Cocktailmixers. (vgl. Abbildung 2.1)

1 mhdde

> m-w-ﬂ

: Druckplatte

Abbildung 2.1: Vorderansicht des Cocktailmixers

13

2 Grundlagen und Technik

2.1 Raspberry Pi

Um die Anzeige auf einem Touchscreen und die verarbeitende Logik bereitzustellen, kommt
innerhalb des automatisierten Cocktailmixers ein Raspberry Pi 3 Modell B zum Einsatz. Dieser
ist mit einer Taktfrequenz von 4x1200 Megahertz und 1024 Megabyte Random-access memory
(RAM) eine leistungsstarke Grundlage zum Betreiben des Betriebssystems. Zu seinen fiir
den Cocktailmixer und dessen Entwicklung relevanten Eigenschaften gehoren 4 Universal
Serial Bus (USB)-Ports (vgl. Abbildung 2.2, Nummber 1), 26 General-purpose input/output
(GPIO)-Pins (vgl. Abbildung 2.2, Nummer 2), ein High-Definition Multimedia Interface (HDMI)-
Port (vgl. Abbildung 2.2, Nummer 3), ein microSD-Kartenleser (vgl. Abbildung 2.2 auf der
Riickseite) und ein 802.11n drahtloses Netzwerk (vgl. Abbildung 2.2, Nummer 4). Zudem lasst
sich der Raspberry Pi mit einer Gréfie von 85,6mm x 56mm platzsparend an den Cocktailmixer

anbringen. [Rasb]

C65
(LR}

R24» ¢

y Pi 3 Model B V1.2
ispberry Pi

a -

wils o, S e
~ Réd - =

g O ﬁn B Vasssadeds

&, Co48

%) ‘xu!c255

]
swew
- -
==
-
@
#R83

BEIRRRERI

=

b TREBRERRERRISIENE

=3
-
~
O

f RTZ
FCC ID: 2ABCB-RP132
IC: 20953-RP132

L,
-
<
-
o
v
—
[=}

R4GH v
~=rin

T
|
|
|
|

-3
-
-
—
-
-3
—=
—%
-
=9
-
==

© = [0 cos

.

Abbildung 2.2: Draufsicht Raspberry Pi 3 Modell B

14

2.1 Raspberry Pi

Eine Besonderheit des Raspberry Pi sind die GPIO-Pins. Diese Pins konnen programmiert
werden, um mit der Umgebung zu interagieren. Dabei kann die Schnittstelle beispielsweise
ein Signal eines Sensors oder Daten eines anderen Computers sowie eines elektrischen Geréts
entgegennehmen. Da die maximal anliegende elektrische Leistung an den GPIO-Pins nicht zu
hoch sein darf, kann an ihnen eine Erweiterung angeschlossen werden, mit der auch leistungs-
starke Motoren zu Betreiben sind. [Rasa]

Auf der in den Raspberry Pi eingesetzten microSD-Karte ist das Open Source Betriebssystem
Raspbian [Rasc] installiert. Dieses basiert auf Debian [Deb] und erméglicht mit seiner inte-
grierten Benutzeroberflache ein erleichtertes Einrichten der bendtigten Software, um den
Cocktailmixer zu betreiben. Mit dem Paketmanager Advanced Package Tool (APT) kénnen
aus einer groflen Paketliste bendtigte Anwendungen anhand weniger Eingaben auf dem Be-
triebssystem installiert werden. Um die Arbeitsweise von APT zu verdeutlichen, zeigt Listing
2.1 exemplarisch drei Befehle, die eine aktuelle Paketliste anfordern (Zeile 1), vorhandene
Anwendungen, welche von APT verwaltet werden und neue Versionen bereitstellen, erneuert
(Zeile 2) und anschlieffend das Paket OpenJDK 8 auf dem Betriebssystem installiert (Zeile 3).

Listing 2.1: APT Code-Beispiele

1 sudo apt—get update
2 sudo apt—get upgrade
3 sudo apt—get install openjdk—8—jdk

Uber ein im System integriertes Konfigurationsmenii lasst sich der Raspberry Pi einrichten.
Dazu gehort die Benutzerverwaltung, die (De)Aktivierung einzelner Schnittstellen wie der
Secure Shell (SSH) oder dem Serial Peripheral Interface (SPI), Ubertaktungsoptionen und der
Konfiguration der Lokalisierung.

Der Raspberry Pi kann ein drahtloses Netzwerk aufbauen mit dem sich Benutzer bis in einige
Meter Entfernung authentifizieren und anschlieffend verbinden kénnen. Einmal verbunden
lassen sich lokal bereitgestellte Webseiten aufrufen, iiber welche schliellich eine Interaktion
mit der Maschine moglich wird.

An den HDMI-Port lasst sich ein Monitor anschlieflen, um auf das Betriebssystem zuzugreifen
und dieses zu konfigurieren. Fiir den Arbeitsbetrieb mit dem Cocktailmixer ist ein Touch-
screen angeschlossen. Uber diesen kann, als Alternative oder Erginzung zu einem drahtlosen
Netzwerk, direkt mit dem System interagiert werden.

15

2 Grundlagen und Technik

2.2 Steuerungssysteme

Aufler dem Raspberry Pi kommen noch weitere Hardwarekomponenten innerhalb des
Cocktailmixer-Systems zum Einsatz. Da diese Arbeit den Schwerpunkt auf die Software des
Cocktailmixers legt, wird die eingesetzte Hardware an dieser Stelle nur kurz beschrieben. Der
Fokus dieses Abschnitts liegt auf der Realisierung des Maschinencodes, der fir die Steuerung
der Hardware auf den Raspberry Pi programmiert wurde.

Wie bereits in Abschnitt 2.1 beschrieben, ist es moglich an die GPIO-Pins des Raspberry
Pi Modell 3 B eine Erweiterung anzuschlieflen. Dies ist vor allem dann notwendig, wenn
leistungsstarke Komponenten betrieben werden miissen. Da der automatisierte Cocktailmixer
unter anderem zwei Motoren steuern soll, wurde eine solche Erweiterung installiert:

Das Gertboard besitzt unterschiedliche Funktionsblocke, die miteinander verbunden werden
konnen. Dabei handelt es sich um

+ 12 gepufferte Ein- und Ausgénge fiir die Interaktion mit anderen Geréten

+ 3 Druckschalter zum Auslsen von Eingangssignalen

6 Open-Kollektor-Treiber (50V, 0,5A) zum Betreiben von Lampen oder Relais mit hoher
Leistung

+ 18V,2A Motorsteuerung mit Geschwindigkeits- und Richtungskontrolle
+ 28-Pin dual-in-line ATmega-Microcontroller zum Programmieren von Funktionalitat

« 2-Kanal 8,10 oder 12 Bit digital- zu analog- Konverter zum Wandeln digitaler Signale in
analoge

« 2-Kanal 10 Bit analog- zu digital- Konverter zum Wandeln analoger Signale in digitale
[LV12]

Mit Hilfe des Gertboards werden ein Getriebemotor, ein Schrittmotor, zwei Light-emitting
diodes (LEDs) und die Magnetventile angesteuert. Der Schrittmotor bewegt den Schlitten an die
Position des gewiinschten Dispensers oder Saftbehalters. Falls ein Dispenser angesteuert wurde,
wird dieser durch den Getriebemotor ausgeldst. Die LEDs sollen dem Benutzer signalisieren,
dass der Cocktailmixer den Mischvorgang startet, sobald der Start-Taster betétigt wird und ihn
iiber den Abschluss ebenjenes Vorgangs informieren. Die Magnetventile 6ffnen sich fiir eine
im Maschinencode festgelegte Zeit und geben so die Fliissigkeit in das Glas auf dem Schlitten
ab.

16

2.2 Steuerungssysteme

Der Maschinencode des automatisierten Cocktailmixers wurde mit der Programmiersprache
Python 2.7 realisiert. Fiir Python existieren unterschiedliche Softwarepakete wie RPi.GPIO
[RPi] oder WiringPi [Wir], um die GPIO-Pins und somit das Gertboard iiber den Raspberry Pi
anzusprechen [LV12]. Ersteres Paket kommt in der Programmierung des Cocktailmixers zum
Einsatz.

Wie in Abbildung 2.3 zu sehen, gliedert sich die Programmierung in drei Module, die in den
folgenden Unterabschnitten néher beschrieben werden.

Hauptprogramm

A 4 A 4

Datenbank-
verwaltung

A 4

Maschinensteuerung

Datenaustausch

»
»

Abbildung 2.3: Struktur des Maschinencodes nach Hermann

2.2.1 Hauptprogramm

Das Hauptprogramm besteht aus drei Klassen: Init, Main und Jobs. Init ist die Klasse, die der
Benutzer beim Starten der Maschinensteuerung iiber die Konsole aufruft. Innerhalb dieser
werden die in der Datenbank hinterlegten Zustande initialisiert und die Hauptklasse Main
aufgerufen. Von dort aus wird, wie in Abbildung 2.4 skizziert, eine Endlosschleife gestartet. In
jedem Durchlauf wird dabei iiberprift, ob in der Datenbank der Zustand zum Beenden des
Cocktailmixers eingetragen ist. Falls dies der Fall ist, verlasst der Cocktailmixer die Schleife
und tragt die Zustande entsprechend in der Datenbank ein. Findet sich kein Zustand zum
Beenden in der Datenbank, weifit die Maschinensteuerung den ausgehenden GPIO-Pins ihre
Spannung (LOW/HIGH) und dem eingehenden Pin einen pull-down-Widerstand zu.

17

2 Grundlagen und Technik

Nun wird tiberpriift, ob ein Service-Zustand in der Datenbank hinterlegt ist und sich die
Maschine derzeit im Leerlauf befindet. Sind beide Zustande erfillt, wird der Service-Modus
aktiviert - ansonsten prift die Maschinensteuerung, ob derzeit eine Bestellung offen ist. Im
Falle einer nicht bearbeiteten Bestellung in der Datenbank wird die Maschine in einen Ar-
beitszustand versetzt und die Klasse jobs aufgerufen. Diese Klasse ladt die benotigten Schritte
fir die anliegende Bestellung aus der Datenbank und wartet, bis der Benutzer ein Glas auf
die Druckplatte stellt und den Start-Schalter bedient. Fiir diesen Vorgang hat der bestellen-
de Benutzer 30 Sekunden Zeit, danach wird die Bestellung geldscht und die Schleife in der
Klasse Main beginnt von vorn. Wurde der Schalter innerhalb der gegebenen Zeit ausgelost
und meldet der Druckplattensensor ein aufgestelltes Glas, werden die einzelnen Stationen
abgefahren. Wurden alle Schritte ausgefithrt und befindet sich der Schlitten wieder an seinem
urspriinglichen Platz, wartet die Maschine, bis der Druckplattensensor eine Entnahme des
Glases signalisiert. Der Cocktailmixer beginnt daraufhin die Schleife von neuem.

/V laschinensteuerung

Quit Kommando?

%X

warte 5s Maschinensteuerung
Lésche Zustand: im Betrieb

:

: Maschinensteuerung Nein
Bestellung offen?

1E] Ja

Maschinensteuerung . Maschinensteuerung
Zustand: im Betrieb? Nein Zustand: Idle?

Maschinensteuerung
Pin Setup

Maschinensteuerung
Servicemodus?

Nein

Nein

Servicemodus Nein
Ia Ja
Maschinensteuerung Maschinensteuerung
Losche Zustand: Idle Quit Kommando?

Maschinensteuerung

Maschinensteuerung [Liische Zustand: im Betrieb}
Bestellung ausfiihren gs

Maschinensteuerung
Nachflillmodus?

Nein
Maschinensteuerung
Reinigungsmodus?

Ja Maschinensteuerung
Reinigung

Abbildung 2.4: Ausschnitt des Aktivitatsdiagramms der Klasse Main

18

2.2 Steuerungssysteme

2.2.2 Datenbankverwaltung

Die Datenbankverwaltung besteht aus den Klassen Drucksensor, Order, SQL, Tasks, Volume und
Ventile. Die Klasse SQL wird von den restlichen Klassen genutzt, um eine Verbindung mit einer
lokal betriebenen MySQL-Datenbank herzustellen. So ruft die Klasse Drucksensor die Daten
aus der Datenbank auf, die bestimmen, ab welchem Wert der Drucksensor ein aufgestelltes
Glas signalisieren soll. Die Klasse Order priift auf offene Bestellungen in der Datenbank, ruft
das benoétigte Rezept fiir eine Bestellung ab und legt abgeschlossene Bestellungen als erledigt
ab. Die Klasse Tasks holt samtliche Zustande aus der Datenbank und setzt diese entsprechend
des Zustands in dem sich die Maschine befindet. Die Klasse Volume verarbeitet die aktuellen
Fullstande der Saftbehilter und der alkoholischen Getranke. Die Klasse Ventile regelt das
Offnen und Schlief3en der Ventile im Reinigungsmodus.

2.2.3 Maschinensteuerung

Die Maschinensteuerung ist die Schnittstelle zwischen dem Maschinencode und der eingesetz-
ten Hardware, wie dem Getriebemotor, dem Schrittmotor, der Druckplatte und den LEDs. Dabei
wird vor allem das Softwarepaket RPi.GPIO eingesetzt, um tiber die GPIO-Pins des Raspberry
Pi das Gertboard und so die einzelnen Komponenten anzusteuern. Listing 2.2 zeigt als Bei-
spiel der Maschinensteuerung die Realisierung des Getriebemotors, der an einen Dispenser
herangefithrt werden soll. Die Funktion wird mit den Parametern 2000, 50 und dem Pin des
Getriebemotors aufgerufen. In Zeile 7 wird die benétigte Pulsweite errechnet und in Zeile 8 die
Zeitperiode, um auf den benétigten Hertz-Wert zu gelangen. Die errechneten Werte zeigten in
vorherigen Experimenten mit 50% der Maximaldrehgeschwindigkeit ein sanftes Anlegen mit
einem vernachlassigbar kleinen, zusatzlichen Zeitaufwand [Her16]. In der For-Schleife wird
schliefilich der Getriebemotor iiber den GPIO-Pin angesteuert.

Listing 2.2: Funktion vor_slow zur Steuerung des Getriebemotors

1 import RPi.GPIO as GPIO

2 import sys

3 from time import sleep

4 class Dispenser: #Aus Darstellungsgruenden leicht vereinfacht
5 Reps = 400

6 Hertz = 2000

7 Freq = (1 / float(Hertz))

8 def vor_slow(self, Reps,pulse_width_percent, port_num):
9 pulse_width = pulse_width_percent/float (100) self.Freq
10 time_period = (self.Freq

11 — (self.Freq+«pulse_width_percent/float (100)))
12 for i in range (0, Reps):

13 GPIO. output (port_num, 0)

14 time . sleep (pulse_width)

15 GPIO. output (port_num, 1)

16 time . sleep (time_period)

19

2 Grundlagen und Technik

2.3 Benutzeroberflache

Die Benutzeroberfliche des automatisierten Cocktailmixers wird tiber ein eigens aufgespanntes
drahtloses Netzwerk bereitgestellt. Benutzer konnen sich an diesem authentifizieren und
verbinden und daraufhin die Webseite des Cocktailmixers aufrufen. Auf dieser Webseite
werden folgende Funktionen angeboten:

» Benutzername eingeben
+ Getranke bestellen
« Bestellung 16schen
« Bestellung dndern

Folgende Funktionen dienen der Administration der Benutzeroberfliche und benédtigen somit
einen restriktiven Zugang um ausgefiihrt zu werden:

+ Ressource hinzufiigen
+ Ressource dndern
+ Rezept hinzufiigen

« Rezept dndern

Rezept loschen

« Ressource nachfillen

Behilter leeren und reinigen

Servicemodus starten und beenden

Die Programmierung der Benutzeroberfliche wurde in PHP realisiert. Die Hauptfunktionalitat
ist in der Datei fun.inc.php umgesetzt. Dort befinden sich alle Klassen, die fiir die Verwaltung
der Benutzeroberfliche notwendig sind. Auch die Datenbankzugriffe werden grofitenteils
in diesen Klassen durchgefiihrt. Die restlichen Dateien beinhalten den Hypertext Markup
Language (HTML)-Code der Webseite, der zum einen Teil mit Hilfe der Funktionen aus der Datei
fun.inc.php und zum anderen Teil mit Datenbankaufrufen innerhalb der Datei selbst befiillt
wird. Die beiden Benutzerrollen Admin und Bediener besitzen jeweils eigene, grofitenteils
redundante Codeabschnitte zur Umsetzung der Administrationsansicht.

20

2.4 Stand der Technik

2.4 Stand der Technik

Dieser Abschnitt schafft durch die Aufarbeitung des aktuellen Stands der Technik eine Rah-
menumgebung der Entwurfsentscheidungen dieser Arbeit. Dabei werden unterschiedliche
Erkenntnisse und/oder Standards aus den Bereichen der Architekturmuster, der Kommunikati-
onsparadigmen und der Usability von Software vorgestellt.

2.4.1 Architekturmuster

Die Softwarearchitektur einer Anwendung oder eines Systems ist eine Struktur, welche ihre
einzelnen Komponenten, deren extern sichtbaren Eigenschaften und die Relationen unter ihnen
beinhaltet [BCK03]. Architekturmuster stellen einen Teil der Softwarearchitektur dar, indem
sie den Stil der Gesamtarchitektur eines Systems beschreiben [Has06]. Im Folgenden werden
sechs Architekturmuster aus dem Buch Architektur-und Entwurfsmuster der Softwaretechnik
[GD13] von Joachim Gall und Manfred Dausmann in alphabetischer Reihenfolge beschrieben.
Diese Muster werden laut den Autoren in der Praxis besonders haufig eingesetzt.

Broker

Das Architekturmuster Broker setzt ein System mit mehreren Clients und Servern zusammen.
Dabei vermittelt eine zwischen Clients und Servern platzierte Instanz die Aufrufe an die kor-
rekte Adresse und liefert deren Antwort zuriick. Diese Instanz wird als Broker bezeichnet.
Hintergrund dieses Architekturmusters ist der wachsende Bedarf an Rechenleistung und an
Speicherplatz bei gleichzeitig wachsender Benutzerzahl und somit die Notwendigkeit eines
verteilten Systems. Bei diesem Muster stellen die Server-Komponenten einen oder mehrere
Dienste zur Verfiigung, welche von einem Client bendtigt werden. Zu erwahnen ist hierbei,
dass ein Server auch in der Rolle des Clients agieren kann, um den Dienst eines anderen Servers
zu benutzen - analoges gilt fiir den Client. Stellt ein Server seine Dienste iiber einen Broker zur
Verfiigung, kann ein Client, der diesen Dienst benétigt eine Anfrage an den Broker senden.
Server und Client kennen sich somit nicht physisch, sondern rein logisch. Wenn sowohl Client
als auch Server Klassen bereitstellen, die eine Serialisierung und Deserialisierung ihrer gesen-
deten Nachrichten ibernehmen, kénnen beide in unterschiedlichen Programmiersprachen
realisiert werden. Soll das Architekturmuster auf mehrere Rechner verteilt werden, wird der
Broker nicht auf einem eignen Rechner realisiert, wie man zuerst annehmen konnte; statt-
dessen wird er selbst verteilt. Jeder Rechner, der eine Client- oder Serverkomponente enthélt
erhalt einen Broker. So kann ein lokaler Broker die Kommunikation innerhalb des Rechners
ubernehmen und sendet Daten an einen entfernten Broker, falls ein Dienst des entfernten
Servers benétigt wird oder ein entfernter Client einen Zugriff verlangt. Ein Dienst muss durch
dieses Prinzip auch nur an dem lokalen Broker angemeldet werden - ist diesem ein Dienst
unbekannt kommuniziert er mit den ibrigen Brokern und leitet die Anfrage an die korrekte
Adresse weiter. [GD13]

21

2 Grundlagen und Technik

Tabelle 2.1 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Broker-
Architekturmusters ergeben.

Tabelle 2.1: Vor- und Nachteile des Broker-Architekturmusters nach Goll und Dausmann

Vorteile Nachteile
+ Die Kommunikation zwischen Server und | - Der Ausfall eines lokalen Brokers beein-
Client wird von der Funktionalitat des Ser- | trachtigt alle auf dem Rechner installierten
vers / Clients getrennt. Client- und Serverkomponenten.

+ Dienste konnen (auch dynamisch zur | - Ein indirekter Aufruf iiber einen Broker

Laufzeit) veriandert werden, ohne die resultiert in schlechterer Performance als
Client-Seite anpassen zu miissen’. eine direkte Kommunikation.

+ Client und Server kdnnen in unterschiedli- | - Der Broker kann ein Engpass beziiglich
chen Programmiersprachen realisiert wer- | des Durchsatzes sein.
den.

Griinde zum Finsatz des Broker-Architekturmusters:

« Eine Entkopplung von Client- und Serverkomponenten ist erwiinscht.

« Komponenten sollen untereinander auf ihre Dienste zugreifen, ohne Kenntnis tiber deren
physischen Adresse.

« Komponenten sollen zur Laufzeit verinderbar sein’.

+ Details der Implementierung von Client-Komponenten und Diensten sollen verborgen
werden.

!Falls gerade kein Aufruf stattfindet und die Schnittstelle, welche die Aufrufe verwaltet, nicht verandert wird

22

2.4 Stand der Technik

Pipes and Filter

Das Architekturmuster Pipes and Filter erhielt seinen Namen aufgrund der Struktur welches
dieses Muster pragt. Ein System wird dabei in seine Verarbeitungsschritte zerlegt. Ein einzelner
Schritt wird als Filter bezeichnet. Je zwei Filter sind tiber eine Pipe miteinander verbunden.
Ein Filter erhilt eine Eingabe, verarbeitet sie sequentiell und wandelt sie in eine Ausgabe
um. Diese Ausgabe kann schliellich iiber eine Pipe zu einem weiteren Filter flielen. Der
Filter kann der Eingabe Teile entnehmen, hinzufiigen oder Teile der Eingabe abdndern. Die
Pipes zwischen den Filtern puffern die Daten, die durch sie hindurch geschickt werden - die
Filter werden somit asynchron entkoppelt. Eine Folge von Pipes and Filtern wird als Pipeline
bezeichnet. Am Kopf einer solchen Pipeline befindet sich die Informationsquelle, an deren
Ende die Informationsausgabe. Die beiden Komponenten bilden die einzige Schnittstelle nach
auflen. Abbildung 2.5 zeigt die Struktur des Architekturmusters Pipes and Filter; dabei sind
die Schnittstellen grau, die Pipes schwarz und die Filter weify hinterlegt. Die Gesamtheit der
Pipes eins bis vier und der Filter eins, zwei und drei wird in ihrer Reihenfolge als eine Pipeline
bezeichnet.

Informationsquelle Informationsausgabe

Pipeline

Filter 1 lEQEIPP Filter 2 Filter 3

:

Abbildung 2.5: Struktur des Architekturmusters Pipes and Filter

Die Informationsquelle kann sich entweder aktiv oder passiv verhalten. Ist sie aktiv, schickt sie
Daten an eine Pipe, wihrend sie passiv wartet, bis der nachste Filter Daten von ihr anfordert.
Ebenso verhalt es sich mit der Informationsausgabe; diese fordert aktiv Daten aus einer Pipe
an und wartet passiv, bis sie Daten erhalt. Auch Filter konnen aktiv oder passiv im System
agieren. Ein aktiver Filter sendet und empfangt an und von seinen anliegenden Pipes. Passive
Filter erhalten ihre Daten von einer Pipe mit einem vorhergehenden, aktiven Filter. Ebenso
werden die Daten des passiven Filters iiber eine nachfolgende Pipe von einem aktiven Filter
abgeholt. Durch diese Festlegung sind einige Szenarien ableitbar, so zum Beispiel das Pull-
Prinzip, bei dem nur die Informationsausgabe aktiv ist, oder das Push-Prinzip, bei dem die
Informationsquelle allein aktiv ist. [GD13]

23

2 Grundlagen und Technik

Tabelle 2.2 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Pipes and
Filter-Architekturmusters ergeben.

Tabelle 2.2: Vor- und Nachteile des Pipes and Filter-Architekturmusters nach Goll und Daus-

mann
Vorteile Nachteile

+ Innerhalb einer Pipeline sind Filter, Infor- | - Da im System kein gemeinsamer Zustand
mationsquelle und/oder Informationsaus- existiert, ist die Umsetzung einer Fehlerbe-
gabe leicht aus- oder vertauschbar’. handlung erschwert.

+ Verarbeitungsschritte, die nicht nebenein- | - Die Geschwindigkeit der Pipeline wird
anderliegen, besitzen keinen direkten Da- | durch den langsamsten Filter bestimmt -
tenaustausch und sind somit entkoppelt. keine vollstandige Parallelisierung, da Fil-

ter aufeinander warten.

+ Filter sind in anderen Pipelines leicht wie-
derverwendbar. - Bei einem schlecht gewéahlten Datenfor-

mat der Pipes kann ein erhohter Aufwand
bei der Datenkonvertierung in einzelnen
Filtern entstehen.

Griinde zum Einsatz des Pipes and Filter-Architekturmusters:

+ Die Verarbeitungsschritte werden sequentiell abgearbeitet.

« Pipelines und deren Komponenten konnten in zukiinftigen Realisierungen wiederver-
wendet werden.

'Dies ist auch abhiingig von der Festlegung des Datenformats innerhalb der Pipes

24

2.4 Stand der Technik

Model-View-Controller

Haufig muss in interaktiven Systemen mit unterschiedlichen Darstellungen auf verschiede-
ne Benutzereingaben reagiert werden. Die angeforderten Daten miissen fiir diesen Vorgang
gespeichert und verarbeitet werden. Das Architekturmuster Model-View-Controller (MVC)
trennt die Komponenten Modell (Model), Ansicht (View) und Controller strikt voneinander ab.
Dies bedeutet jedoch nicht, dass die Komponenten nicht miteinander kommunizieren kénnen.
Die Komponente Modell beinhaltet die Daten als auch deren Verarbeitung. Die Ansicht erhalt
die anzuzeigenden Daten von der Modell-Komponente und présentiert sie den Benutzern. Der
Controller verarbeitet die Benutzereingaben innerhalb des Systems. Eine Ansicht ist dabei
einem Controller zugeordnet; ein Controller kann allerdings mehrere Ansichten steuern. Da
die Controller- und Ansichtskomponente in einer wechselseitigen Abhangigkeit stehen (die
Ansicht informiert den Controller iiber die vom Benutzer getétigten Eingaben und der Con-
troller bestimmt den Zustand der Ansicht), werden diese in einer Abwandlung des Musters zu
der Komponente Delegate (= Benutzerschnittstelle) zusammengefasst. Im Folgenden werden
die drei Komponenten des MVC-Musters im Detail erlautert.

Das Modell wird von den tibrigen beiden Komponenten unabhéngig behandelt. Dies bedeutet,
dass ein Konzept und eine Implementierung des Modells ohne Beriicksichtigung der Ansicht
oder des Controllers getitigt werden kann. Es besitzt die Funktionalitit, gespeicherte Daten
aufzurufen, zu verarbeiten und zu verandern. Um die Ansichtskomponente iiber die Anderung
von Daten zu informieren, existieren zwei Vorgehensweisen. Beim passiven Modell teilt der
Controller die Anderungen der Daten mit. Das aktive Modell informiert die Ansichten des Sys-
tems selbst {iber seine Zustandsanderungen. Hier konnen zwei Modi unterschieden werden: Im
Push-Betrieb sendet das Modell seine Daten als Ubergabeparameter an die Ansichtskomponente.
Im Pull-Betrieb wird die Ansicht lediglich dariiber informiert, dass neue Daten verarbeitet
wurden - die Ansicht holt sich diese daraufthin selbst von der Modellkomponente ein.

Die Ansichtskomponente prasentiert die Daten des Modells dem Benutzer. Dabei sind unter-
schiedliche Ansichten, auch fir identische Daten, vorgesehen. Dafiir muss eine Ansicht genaue
Informationen tiber ein Modell besitzen. Andert sich der Aufbau eines Modells, hat das haufig
auch eine Anderung der Ansicht zur Folge. Eine Ansicht enthilt zudem Steuerelemente, wie
zum Beispiel Eingabefelder, deren Benutzung ein Ereignis auslosen, das an den fiir die Ansicht
zustandigen Controller weitergegeben wird.

Der Controller interpretiert die Anfrage(n) eines Benutzers und legt fest, welche Ereignisse
zu welchen Funktionsaufrufen innerhalb des Modells fithren. Ebenso gehort es zu seinen
Aufgaben, die Ansicht iiber Anderungen zu informieren, die im Zusammenhang mit dem
Funktionsaufruf stehen (zum Beispiel das Deaktivieren einer Schaltflache). [GD13]

25

2 Grundlagen und Technik

Tabelle 2.3 zeigt drei Vor- und zwei Nachteile, die sich aus der Anwendung des MVC-

Architekturmusters ergeben.

Tabelle 2.3: Vor- und Nachteile des MVC-Architekturmusters nach Goll und Dausmann

Vorteile

Nachteile

+ Die Modell-Komponente kann unabhin-
gig von der Benutzeroberfliche entworfen
und die Benutzeroberfliche ohne Veran-
derungen an der Modell-Komponente an-
gepasst werden.

+ Das Modell ist unabhangig von einer Ober-
flache testbar.

+ Es konnen verschiedene Benutzeroberfla-
chen fiir dieselbe Anwendung entworfen
werden.

- Die Performance kann sinken, wenn eine
Anzeige mehrere Aufrufe benétigt, um die
zur Anzeige benoétigten Daten von dem
Modell zu erhalten.

- Bei kleineren Anwendungen ist der erh6h-
te Implementierungsaufwand fiir die Er-
filllung des Architekturmusters nicht ge-
rechtfertigt.

Grinde zum Einsatz des MVC-Architekturmusters:

« Das System soll interaktiv sein.

+ Die Benutzerschnittstelle soll vom Rest des Systems abgeschirmt werden.

26

2.4 Stand der Technik

Plugin

Der Begriff Plugin (auch Plug-in) stammt aus dem Englischen ,,to plug sth. in“ und bedeutet
ubersetzt ,etwas einstecken”. Als Architekturmuster verstanden bedeutet dies ein lauffdhiges
System, das stindig erweiterbar ist. Der Hintergrund dieses Musters ist der Wunsch, Soft-
ware, die relativ verladsslich in Betrieb ist, nicht mehr zu verandern, sondern flexibel um neue
Funktionalitaten zu erweitern. Um dies zu bewerkstelligen, benétigt es Schnittstellen, die eine
solche Erweiterung zulassen. Die Anwendung soll dabei auch ohne ein Hinzufiigen neuer Kom-
ponenten funktionieren konnen. Eine Plugin-Komponente ist nicht als ein Endpunkt zu sehen
- viel mehr kann das Plugin ebenfalls eine Schnittstelle implementieren, an der neue Plugins
kaskadiert werden konnen. Ein Plugin-Manager realisiert die Schnittstelle zu einzelnen Plugins
einer Anwendung. Mochte der Benutzer beispielsweise einen, der Applikation unbekannten,
Dateityp offnen, fragt der Plugin-Manager die existenten Plugins ab und priift, ob diese Funk-
tionen bereitstellen, welche diesen Dateityp behandeln konnen. Ist dies fiir ein Plugin der Fall,
wird der Aufruf an das gefundene Plugin weitergeleitet. Wird kein Plugin gefunden fiihrt die
Anwendung allerdings weiter aus und startet eine Fehlerbehandlung. Abbildung 2.6 zeigt eine
Realisierung des Plugin-Architekturmusters mit drei Plugins. Die Anwendung interagiert {iber
einen Plugin-Manager mit ihnen. [GD13]

Anwendung

Plugin-Manager

Plugin 1 Plugin 2 Plugin 3

Abbildung 2.6: Struktur des Plugin-Architekturmusters

27

2 Grundlagen und Technik

Tabelle 2.4 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Plugin-

Architekturmusters ergeben.

Tabelle 2.4: Vor- und Nachteile des Plugin-Architekturmusters nach Goll und Dausmann

Vorteile

Nachteile

+ Jedes Plugin besitzt seine eigene Zustan-
digkeit.

+ Plugins erlauben die Erweiterung eines be-
stehenden Systems ohne Kenntnisse tiber
dessen Programmecode.

+ Die Entwicklung komplexer Software ist
bequem aufteilbar.

- Die Entwicklungszeit der initialen Anwen-
dung ist hoher, da in diese die fir das Mus-
ter benétigten Schnittstellen implementie-
ren werden miissen.

- Der Verwaltungsaufwand wiahrend der
Ausfithrung einer speziellen Anwendung
steigt.

- Es muss fiir alle Erweiterungen eine ge-
meinsame Schnittstelle gefunden werden.

Griinde zum Einsatz des Plugin-Architekturmusters:

« Ein grofler Kreis von Benutzern hat unterschiedliche Anforderungen an die Anwendung.

« Einzelldsungen zu entwickeln ist nicht kosteneffizient.

+ Die Benutzer sollen die Anwendung selbst erweitern konnen.

28

2.4 Stand der Technik

Schichtenmodell

Das Schichtenmodell ist ein Architekturmuster, dass seine Komponenten als Teilsysteme in
horizontale Schichten einteilt. Die Komponenten sind dabei Unteraufgaben wie die Daten-
haltung oder die Kommunikation. Tiefere Schichten stellen den hoheren Funktionalitat in
Form von Diensten bereit; unter den Schichten gilt das Client-Server-Prinzip. Eine Schicht
hiangt dabei nie von den ihr iibergeordneten Schichten ab und jede Schicht bietet der nachst
hoheren ihre Dienste an. Ein Zugriff findet dabei iiber Schnittstellen statt, welche von der
direkt darunterliegenden Schicht bereitstellt werden. Eine weniger strikte Variation des Mus-
ters erlaubt auch Zugriffe auf alle Schichten unter der aufrufenden Schicht. Die einzelnen
Schichten des Schichtenmodells werden abstrakt betrachtet. So kann man ein Betriebssystem
als eine Schicht ansehen welche sich iiber der Hardware-Schicht befindet. Geht man von
einem verteilten System mit Client und Server aus, lasst sich das Schichtenmodell auf zwei
Arten implementieren. Bei der Thin-Client-Architektur ist die oberste Schicht des Clients
die Schicht der Benutzerschnittstelle (Eingabe/Ausgabe). Darunter folgt, da es sich um ein
verteiltes System handelt, eine Kommunikationsschicht, um mit dem entfernten Server zu
kommunizieren. Der Server stellt in seiner obersten Schicht die Kommunikationsschicht bereit.
Darunter befindet sich eine Verarbeitungsschicht. Diese greift wiederum auf eine unter ihr
liegende, persistente Datenhaltungsschicht zum Speichern oder Laden von Daten zu. Wendet
man die Fat-Client-Architektur an, befindet sich die Verarbeitungsschicht statt auf dem Server
direkt iiber der Kommunikationsschicht des Clients. Abbildung 2.7 veranschaulicht die beiden
Varianten des Architekturmusters. [GD13]

Thin Client Fat Client

Kommunikations-
schicht

-

Datenhaltungs-
schicht

Benutzer-
schnittstelle

Benutzer- Kommunikations-
schnittstelle schicht

- -

Kommunikations- Verarbeitungs-
schicht schicht

L

Verarbeitungs-
schicht

Client Server Client Server

Abbildung 2.7: Architektur Thin/Fat-Client als Schichtenmodell

29

2 Grundlagen und Technik

Tabelle 2.5 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Schichtenmodells

ergeben.

Tabelle 2.5: Vor- und Nachteile des Schichtenmodells nach Goll und Dausmann

Vorteile

Nachteile

+ Jede Schicht stellt eine Abstraktion einer
Funktionalitat dar und erleichtert die Ver-
standlichkeit des Ganzen.

+ Sind die Schnittstellen festgelegt, konnen
die einzelnen Schichten parallel entwi-
ckelt werden.

+ Schichten konnen gegebenenfalls wieder-
verwendet werden.

- Eine Anfrage, die mehrere Schichten
durchlaufen muss, ist langsamer als der
direkte Zugriff.

- Anderungen konnen sich tiber eine Schicht
hinaus erstrecken was Mehraufwand be-
deutet.

- Es kann sich als schwer herausstellen, die
richtige Anzahl an Schichten festzulegen.

Grinde zum Einsatz des Schichtenmodells:

« Da das Schichtenmodell abstrahiert, kann es besonders gut als ein iibergeordnetes
Architekturmuster verwendet werden, in dessen Schichten weitere Architekturmuster

eingebettet werden.

30

2.4 Stand der Technik

Serviceorientierte Architektur

Eine Serviceorientierte Architektur (SOA) fasst Teile eines Geschiftsprozesses als Dienste
in Form von Komponenten in einem verteilten System auf. Damit ein solcher Dienst den
Anforderungen der Geschiaftsprozesse gerecht wird, muss er eine Vielzahl von Eigenschaften
besitzen. So sollte er zuallererst in einem Netzwerk zur Verfiigung stehen. Von dort aus soll er
unabhéngig aufrufbar sein. Sein Zustand darf sich nach einer Benutzung fiir darauffolgende
Aufrufe nicht verandern - er muss zustandslos sein. Die Dienste sollen untereinander entkop-
pelt sein und dynamisch zur Laufzeit aufgerufen werden konnen. Ein Dienst sollte zudem
stets austauschbar sein. Dafiir benétigt das System standardisierte Schnittstellen. Der Dienst
soll plattform- und ortsunabhangig sein. Zur Nutzung des Dienstes sollen seine Schnittstellen
geniigen; die Implementierung bleibt verborgen. Die Dienste sollen schlief3lich in einem Ver-
zeichnis registriert sein.

Ein Dienst kann aus mehreren elementaren Diensten zusammengesetzt sein, die genau eine
einfache Funktion der Anwendung in sich kapseln. Ruft ein Dienst weitere Dienste oder elemen-
tare Dienste zur Erbringung seiner Leistung auf, nennt man ihn zusammengesetzten Dienst.
Die Beziehungsstruktur zwischen dem Verzeichnis, dem Benutzer und dem Dienstanbieter
wird als SOA-Dreieck dargestellt. Dieses ist in Abbildung 2.8 abgebildet. [GD13]

/ Dienstverzeichnis \

durchsucht veroffentlicht

Dienstnutzer benutzt Dienstanbieter

A 4

Abbildung 2.8: SOA-Dreieck

31

2 Grundlagen und Technik

Tabelle 2.6 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung der serviceorientier-
ten Architekur ergeben.

Tabelle 2.6: Vor- und Nachteile einer serviceorientierten Architektur nach Goll und Dausmann

Vorteile Nachteile
+ Die Komplexitat verteilter Systeme ist | - Eine feingranulare Dienstaufteilung er-
durch die Aufteilung in Komponenten von zeugt hohe Komplexitit.
Diensten und elementaren Diensten redu-
Ziert. - Es entsteht ein Mehraufwand durch eine
Kommunikation iiber mehrere Schichten
+ (elementare) Dienste sind wiederverwend- | hinweg.
bar. - Die SOA ist nur bei klar definierten und
+ Bei gleichbleibender Schnittstelle kann die dokumentierten Geschéftsprozessen mog-
Implementierung eines Dienstes stets aus- | lich.

getauscht werden.

Griinde zum Finsatz einer serviceorientierten Architekur:

« Die Geschiftsprozesse sind gut dokumentiert und wohldefiniert.
+ Das eingesetzte System ist komplex und soll vereinfacht werden.

« Kunden bzw. Lieferanten sollen in die Geschaftsprozesse eingebunden werden.

32

2.4 Stand der Technik

2.4.2 Kommunikationsparadigmen

Unter Einhaltung eines modularen Architekturansatzes, bietet es sich an, die Kommunikation
zwischen den Hauptkomponenten mdoglichst unabhiangig zu gestalten. Das bedeutet, dass
Server und Client, unabhiangig von ihrer konkreten Implementierung, Daten tiber die Kommu-
nikationsschnittstelle austauschen konnen. Fiir dieses Ziel existiert ein Architekturansatz, der
schon im Jahr 2000 entwickelt wurde und heute in vielen grofien Frameworks wiederzufinden
ist. Es handelt sich hierbei um das Programmierparadigma Representational State Transfer
(REST). Das Paradigma basiert auf folgenden Prinzipien [Rod08]:

« Hypertext Transfer Protocol (HTTP)-Methoden werden explizit so verwendet, wie man
sie konventionell vorgesehen hat [FGM+99]. Insbesondere die grundlegenden Create,
Read, Update, Delete (CRUD)-Funktionen kénnen so auf die HTTP-Methoden POST,
GET, PUT und DELETE iibertragen werden.

+ Jeder Zugriff auf den angefragten Server erfolgt unter REST zustandslos. Diese Eigen-
schaft ist gerade durch die Anforderung an Verfiigbarkeit und schneller Antwortzeit
auch bei einer hohen Belastung unerlasslich. Jeder Client wird somit vom Server, seiner
Anfrage bezuglich, gleichbehandelt; lediglich der Inhalt der Gibermittelten Nachricht und
deren Antwort verdndern die Zustédnde beider Seiten.

« Uniform Resource Identifiers (URIs) sind einzigartig, eingéngig und sinnvoll gewéhlt.
Hierbei wird zum Beispiel die Hierarchie, welche durch die Trennung der URI mit
Schrégstrichen erfolgt, als ein Baum aufgefasst und so die Adresse logisch unterteilt.

« Das genutzte Format zum Datenaustausch ist simpel gehalten und fiir den Menschen
leicht zu lesen und interpretieren. Dafiir werden géngige Multipurpose Internet Mail
Extensionss (MIMEs), wie Extensible Markup Language (XML) und JavaScript Object
Notation (JSON), genutzt.

Eine Alternative des REST-Architekturansatzes ist die Verwendung von nachrichtenorien-
tierter Middleware. Hierbei iibernehmen Broker die Kommunikation zwischen den verteilten
Systemen und ermoglichen so eine Entkopplung der Komponenten. Wéahrend bei REST ein
synchroner Datenaustausch stattfindet, konnen die Broker Nachrichten auch asynchron unter-
einander austauschen. Ein synchroner Datenaustausch benétigt eine Fehlerbehandlung auf
der Seite des Senders, wenn gesendete Nachrichten keine Antwort erhalten. Ein asynchroner
Datenaustausch erfordert die Fehlerbehandlung auf Seiten des Brokers, der fiir die Nachrich-
teniibermittlung zusténdig ist. Eine Schlussfolgerung dieser Eigenschaft ist, dass ein Austfall
oder Fehlverhalten des Brokers den gesamten Nachrichtenaustausch zum Stillstand bringt.
[Cur04]

33

2 Grundlagen und Technik

2.4.3 Benutzerfreundlichkeit

Die Benutzerfreundlichkeit (engl. usability) wird nach Nielsen wie folgt definiert:

,Usability is a quality attribute that assesses how easy user interfaces are to use. The word ‘usability’
also refers to methods for improving ease-of-use during the design process.“ [Nie03]

Nielsen unterteilt die Benutzerfreundlichkeit zudem in fiinf Komponenten:

« Lernbarkeit: Wie leicht konnen Benutzer eine gegebene Aufgabe bei einer Erstbenut-
zung des Designs l6sen.

 Effizienz: Wie schnell konnen Aufgaben gelost werden, wenn der Benutzer einmal mit
dem Design vertraut ist.

+ Informationsaufnahme: Wie leicht kann erlerntes Kénnen beziiglich des Designs
nach einer gewissen Zeit wieder aufgerufen werden.

« Fehler: Wie viele Fehler machen Benutzer? Wie schwerwiegend fallen diese aus? Wie
leicht ist die Fehlerbehandlung?

+ Bediirfnisbefriedigung;: Ist das Design angenehm bedienbar?

Neben der Benutzerfreundlichkeit existiert die Niutzlichkeit als Qualitatsmerkmal, welches
besagt, zu welchem Grad Software die von ihr geforderten Funktionen bereitstellt. Beide
Merkmale legen fest, wie verwendbar eine Softwareanwendung ist. Ein hoher Grad an Be-
nutzerfreundlichkeit ist vor allem im Internet von grofier Relevanz. Ist diese nicht gegeben,
verlassen die Benutzer eine Webseite. Im Intranet erhoht sie die Produktivitat der Angestellten,
falls sie hoch angesetzt ist. [Nie03]

34

2.4 Stand der Technik

Ein etabliertes Mafy um ein Softwaredesign auf Benutzerfreundlichkeit hin zu priifen, ist der
Abgleich mit den acht goldenen Regeln von Shneiderman:

Konsistenz: Verwandte Funktionen (z. B. Loschen, Weiter oder Zuriick) sollten iiber das
gesamte Design sowohl vorhanden und gleich benannt sein als auch gleich funktionieren.

Universelle Benutzbarkeit: Sowohl neuen Benutzern als auch erfahrenen Anwendern
des Designs soll eine praktische Benutzung angeboten werden. Dazu muss fiir Neulinge
eine einfache, intuitive Bedienung angeboten werden, wiahrend erfahrenen Benutzern
durch Abkiirzungen ein schnellerer Arbeitsablauf erméglicht wird.

Informative Riickmeldungen anbieten: Der Benutzer muss tiber die durchlaufenen
Aktionen unverziiglich nach deren Abschluss informiert werden. Die Riickmeldungen
konnen bei haufig auftretenden Aktionen geringer und bei weniger auftretenden Aktio-
nen hoher ausfallen.

Abgeschlossenheit: Bei Aktionen, die mehrere Sequenzen bendtigen, soll der Benutzer
zu jedem Zeitpunkt wissen, an welcher Stelle er sich befindet. Ebenso soll die Sequenz
einen erkennbaren Anfang und ein erkennbares Ende haben.

Fehlervermeidung: Dem Benutzer sollen illegale oder inkorrekte Interaktionen mit
dem System erkennbar gemacht werden. Ebenso sollen dem Benutzer mogliche Losungs-
vorschldge angeboten werden.

Umkehrbarkeit: Es sollen so viele Aktionen wie moglich umkehrbar sein, damit sich
der Benutzer aus einem unerwiinschten Zustand entfernen kann.

Benutzerkontrolle: Dem Benutzer soll die Kontrolle iiber das System gewahrt werden.
Er selbst soll durch seine Interaktionen Prozesse in Gang setzen, diese unterbrechen
oder stoppen konnen.

Kurzzeitgedichtnis entlasten: Der Benutzer soll mit der bereitgestellten Information
nicht Giberfordert werden. Als eine Faustregel gilt, dass ein Mensch im Durchschnitt
sieben plus/minus zwei Informationseinheiten im Kurzzeitgedachtnis aufnehmen kann
[Mil56].

35

2 Grundlagen und Technik

Um die Benutzerfreundlichkeit eines Designs zu steigern, muss die visuelle Wahrnehmung
angezeigter Elemente bekannt sein. Einen ersten Zusammenhang stellte Wertheimer mit einer
Sammlung wesentlicher Faktoren (spéter als Gestaltgesetze bekannt) her:

36

Gesetz der Nihe: Gleiche oder sich dhnelnde Elemente, die nah beieinander liegen,
werden auch als zusammengehorig wahrgenommen.

Gesetz der Ahnlichkeit: Gleiche oder sich dhnelnde Elemente werden als zusammen-
gehorig wahrgenommen.

Gesetz der Geschlossenheit: Elemente, die einfache Formen wie ein Dreieck, einen
Kreis oder ein Quadrat bilden, werden als zusammengehorig wahrgenommen.

Pragnanzgesetz: Einzelne Elemente, die sich von allen anderen unterscheiden, werden
vorrangig wahrgenommen.

Gesetz der einfachen Gestalt: Unterbrochene oder mehrdeutige Formen werden als
einfache Formen (z. B. Dreieck, Kreis oder Quadrat) wahrgenommen.

Gesetz der einfachen Fortsetzung: Linien, die sich schneiden, werden so wahrgenom-
men, als ob sie in ihre urspriingliche Richtung weiter verlaufen.

3 Analyse

In diesem Kapitel sind samtliche Ergebnisse der Recherche festgehalten. Diese beginnt mit
einer Prifung des bisherigen Systems. Anschlieffend sind die Anforderungen an das System do-
kumentiert. Diese unterteilen sich in die funktionalen, die nichtfunktionalen und die sonstigen
Anforderungen. Schliefllich werden zwei dhnliche Arbeiten prasentiert und die Notwendigkeit
dieser Arbeit durch eine Abgrenzung von diesen und dem bestehenden System untermauert.
Die Analyse der genannten Abschnitte ist ein notwendiger Schritt, welcher der Konzeption
vorausgeht. Die Erkenntnisse dieses Kapitels, besonders die Anforderungen an das System,
legen den Grundstein fiir die Erstellung des Systementwurfs.

3.1 Ausgangssituation

Dieser Abschnitt soll erlautern, inwiefern eine Neuentwicklung des bestehenden Systems
aus Sicht des aktuellen Stands der Technik notwendig ist. Dabei werden Probleme benannt
und mogliche Losungsansitze' skizziert, welche spéter im Systementwurf vertieft behandelt
werden. Die Betrachtung beschrankt sich dabei lediglich auf die Benutzeroberfliche des Cock-
tailmixers (siehe auch Abschnitt 3.4). Der Abschnitt nimmt dabei Bezug auf den Stand der
Benutzeroberflache von Dezember 2016.

Die Analyse der Ausgangssituation teilt sich in die Benutzerfreundlichkeit und dem Software-
design auf.

'Die Lésungsansitze werden an dieser Stelle nur exemplarisch genannt, um zu verdeutlichen, dass eine
Lésung der Probleme tiberhaupt moglich ist.

37

3 Analyse

3.1.1 Benutzerfreundlichkeit

Die Benutzerfreundlichkeit der bestehenden Benutzerschnittstelle weif3t an vier Stellen er-
kennbare Méngel auf, die im Folgenden genauer beschrieben werden.

Notwendiges Vorwissen

Um die bestehende Webanwendung zu benutzen, miissen Bediener und Administratoren
die Uniform Resource Locators (URLs) fiir die Anmeldeseite wissen und manuell aufrufen.
Ein Zugriffspunkt, der nach erfolgreichem Einloggen in die allgemeine Bedienoberflache
eingebettet ist, wiirde das Vorwissen auf die Zugangsdaten beschranken.

Verletzung der goldenen Regeln von Shneiderman

Die Benutzeroberflache liefert an einigen Stellen eine unzureichende oder keine Riickmeldung
auf getatigte Benutzereingaben. Diese konnen durch das Hinzufiigen von Textmeldungen
erganzt werden. Ebenso wird die Regel der universellen Benutzbarkeit fiir neue Bediener und
Administratoren verletzt - die Benutzeroberflache ist wegen ihrer verschachtelten Meniifiih-
rung und einiger uneinheitlicher Seiten zu kompliziert und muss vereinfacht werden.

Keine Internationalisierung

Das bestehende System ist nur in deutscher Sprache verfiigbar. Durch die Implementierung
einer Internationalisierung konnen weitere Sprachen eingepflegt werden. Dafiir miissen jedes
Vorkommnis eines sprachlichen Konstrukts dynamisch der ausgewéhlten Sprache angepasst
werden.

Responsives Design

Die bestehende Benutzeroberflache stellt kein responsives Design fiir mobile Endgeréte bereit.
Die Webseite wird bei einem Aufruf von einem solchen Geréat der Bildschirmgrofie des Gerats
angepasst. Dies ist insbesondere bei Smartphones nachteilig, da die Anzeige dort sehr klein
ausfillt und ein manuelles Vergrof3ern notwendig ist. Die Benutzeroberfliche muss demnach
fir mobile Endgerate angepasst werden.

38

3.1 Ausgangssituation

3.1.2 Softwaredesign

Das Softwaredesign der bestehenden Benutzerschnittstelle beinhaltet zwei Mangel, die an
dieser Stelle genannt werden.

Fehlende Dokumentation

Der Cocktailmixer wurde inkrementell iiber mehrere Entwickler hinweg programmiert. Eine
Dokumentation des Programmcodes wurde dabei minimal gehalten. Diese muss in Form eines
Systementwurfs und einer Dokumentation innerhalb des Programmcodes erstellt werden.

Keine Modularisierung

Die Architektur des bestehenden Systems folgt keinem klaren Architekturmuster (vgl. Un-
terabschnitt 2.4.1). Stattdessen wirkt es, als wire an den jeweils zu bearbeitenden Stellen
Programmecode hinzugefiigt worden, obwohl von vorherigen Entwicklern funktionsidentische
Klassen an anderer Stelle bereitgestellt wurden. Der Code fiir den Bediener und den Adminis-
trator ist grofitenteils redundant und kénnte mit wenigen Anderungen vereint werden. Eine
Kapselung des Codes findet ausschliefilich bei dem Code des Bedieners und des Administrators
statt, die jeweils in einen eigenen Ordner platziert wurden. Eine grofe Zahl unterschiedlicher
Funktionen wurde in eine einzelne Datei geschrieben (vgl. Abschnitt 2.3), die von den anderen
Klassen aufgerufen wird - das macht eine Wartung schwierig und den Code uniibersichtlich.
Dass System muss unter Einhaltung eines oder mehrerer Architekturmuster entwickelt werden,
sodass eine Ubersichtlichkeit hergestellt wird.

39

3 Analyse

3.2 Anforderungskatalog

Dieser Abschnitt enthalt alle gesammelten Anforderungen, die an eine Benutzeroberflache
des Cocktailmixers gestellt werden. Die Anforderungen wurden zum einen aus vorherigen
Arbeiten entnommen, zum anderen entstammen sie mehreren gefithrten Gesprachen mit dem
Betreuer und den Verantwortlichen. In Unterabschnitt 3.2.1 befinden sich alle erkannten funk-
tionalen Anforderungen an das System. In Unterabschnitt 3.2.2 werden die nichtfunktionalen
Anforderungen prasentiert. Schliefllich sind in Unterabschnitt 3.2.3 alle sonstigen Anforde-
rungen aufgezahlt. Daraufhin werden zwei der Anwendungsfille vorgestellt, welche eine
Interaktion mit dem System beschreiben. Die Benutzerrollen sind zum einen der Bediener und
zum anderen ein Administrator fiir die Verwaltung der Benutzeroberflache. Das System besteht
aus den Rollen Client und Server. Abbildung 3.1 veranschaulicht ein Anwendungsfalldiagramm
bestehend aus den Anwendungsfillen, die aus den funktionalen Anforderungen abgeleitet
wurden. In diesem Diagramm wurden die Anwendungsfille der Benutzerrollen Bediener und
Administrator veranschaulicht.

3.2.1 Funktionale Anforderungen

In diesem Unterabschnitt sind die funktionalen Anforderungen, ihrer Funktionalitat nach
sortiert, aufgezéhlt. Tabelle 3.1 beinhaltet alle Anforderungen an die Rezepte, Tabelle 3.2 zeigt
alle Anforderungen an eine Rezeptliste. In Tabelle 3.3 werden die Anforderungen an eine
Warteliste aufgefithrt. Die Anforderungen an eine Startseite sind in Tabelle 3.4 aufgezahlt.
Tabelle 3.5 beinhaltet die Benutzerprofil-Anforderungen. Schlie8lich sind in Tabelle 3.6 alle
erkannten Anforderungen eingetragen, welche die Administrationsoberflache betreffen.

Tabelle 3.1: Softwareanforderungen - Rezepte

Nummer Beschreibung der Anforderung

R1 Einzelne Rezepte sollen aufrufbar sein.

R2 Die Zutaten der Rezepte sollen angezeigt werden.

R3 Dem Benutzer soll ein Bild (mehrere Bilder) von dem Rezept angezeigt
werden.

R4 Dem Benutzer sollen weitere Informationen iiber das Rezept angezeigt
werden.

R5 Der Benutzer soll eine oder mehrere Rezepte bestellen konnen.

40

3.2 Anforderungskatalog

Tabelle 3.2: Softwareanforderungen - Rezeptliste

Nummer Beschreibung der Anforderung

RL1 Dem Benutzer soll eine Liste mit verfiigbaren Rezepten angezeigt werden.

RL2 Existieren viele Rezepte sollen diese iber mehrere Seiten hinweg ange-
zeigt werden.

RL3 Die Zutaten der Rezepte in der Rezeptliste sollen auf Wunsch angezeigt
oder ausgeblendet werden.

RL4 Dem Benutzer soll ein Bild (mehrere Bilder) von dem Rezept in der
Rezeptliste angezeigt werden.

RL5 Der Benutzer soll auf Wunsch weitere Informationen zu dem Rezept iiber
die Rezeptliste einholen konnen.

RL6 Der Benutzer soll eine oder mehrere Rezepte iiber die Rezeptliste bestellen
konnen.

Tabelle 3.3: Softwareanforderungen - Warteliste

Nummer Beschreibung der Anforderung

W1 Eine aktuelle Liste mit offenen Bestellungen soll auf der Einstiegsseite
angezeigt werden.

W2 Die Liste soll, je nach Bedarf, ein- und ausblendbar sein.

W3 Falls mehrere offene Bestellungen in der Liste vorhanden sind, soll dem
Benutzer die Reihenfolge erkennbar gemacht werden.

W4 Nach Ausfithrung einer Bestellung soll diese aus der Warteliste entfernt
werden.

W5 Falls eine Bestellung aktiv ist und der Benutzer innerhalb von einer

bestimmten Zeit das Glas nicht abstellt und/oder den Starttaster nicht
driickt, soll der Vorgang abgebrochen werden, die Bestellung aus der Liste
der offenen Bestellungen gestrichen werden und die nachste Bestellung
nachriicken.

41

3 Analyse

Tabelle 3.4: Softwareanforderungen - Startseite

Nummer Beschreibung der Anforderung

S1 Der Benutzer soll auf einer Seite informiert werden, welcher Vorgang
derzeit abgearbeitet wird.

S2 Der Benutzer soll auf einer Seite informiert werden, wann das Glas auf
die Ablageflache des Tisches gestellt werden darf.

S3 Der Benutzer soll auf einer Seite informiert werden, wann das Getrank
fertig zur Entnahme ist.
Tabelle 3.5: Softwareanforderungen - Benutzerprofil

Nummer Beschreibung der Anforderung

B1 Der Benutzer soll sich am System anmelden kénnen und von diesem
Zeitpunkt an mit seinem eingetragenen Namen interagieren konnen.

B2 Falls der Benutzer sich mit einem korrekten Administrator-Passwort
am System anmeldet, soll er von diesem Zeitpunkt an als Administrator
interagieren konnen.

B3 Ein angemeldeter Benutzer soll sich vom System abmelden kénnen und
dabei samtliche Privilegien, die er nach seiner Anmeldung erhielt, wieder
verlieren.

42

3.2 Anforderungskatalog

Tabelle 3.6: Softwareanforderungen - Administrationsoberflache

Nummer

Beschreibung der Anforderung

Al

Ein Administrator soll iiber die Benutzeroberfliche auf einen Adminis-
trationsbereich zugreifen konnen.

A2

Innerhalb des Administrationsbereichs sollen alle aktuellen Zustinde des
Cocktailmixers angezeigt werden.

A3

Innerhalb des Administrationsbereichs sollen alle Zutaten angezeigt wer-
den.

A4

Innerhalb des Administrationsbereichs sollen Zutaten hinzugefiigt wer-
den konnen. Dabei soll festlegbar sein, ob die Zutat aktiv ist. Zudem
soll der Name, der Typ, die Viskositit, der Port, die Information und die
Bilder gesetzt werden konnen.

A5

Innerhalb des Administrationsbereichs sollen Zutaten bearbeitet werden
konnen. Dabei soll festlegbar sein, ob die Zutat aktiv ist. Zudem soll der
Name, der Typ, die Viskositat, der Port, die Information und die Bilder
gesetzt werden konnen.

A6

Zwei Zutaten sollen sich nicht denselben Port teilen dirfen.

A7

Innerhalb des Administrationsbereichs sollen Zutaten geloscht werden
konnen, falls sie in keinem Rezept mehr vorhanden sind.

A8

Innerhalb des Administrationsbereichs sollen Zutaten nachgefiillt werden.
Eine Statusleiste soll dabei den aktuell berechneten Fiillstand der Zutat
anzeigen.

A9

Innerhalb des Administrationsbereichs sollen alle Rezepte angezeigt wer-
den.

A10

Innerhalb des Administrationsbereichs sollen Rezepte hinzugefiigt wer-
den konnen. Dabei soll festlegbar sein, ob das Rezept aktiv ist. Zudem
soll der Name, die Zutaten, die Information und die Bilder gesetzt werden
konnen.

All

Innerhalb des Administrationsbereichs sollen Rezepte bearbeitet werden
konnen. Dabei soll festlegbar sein, ob das Rezept aktiv ist. Zudem soll
der Name, die Zutaten, die Information und die Bilder gesetzt werden
konnen.

A12

Innerhalb des Administrationsbereichs sollen Rezepte geloscht werden
konnen.

A13

Innerhalb des Administrationsbereichs sollen alle Bestellungen angezeigt
werden.

Al4

Innerhalb des Administrationsbereichs sollen einzelne Bestellungen ge-
16scht werden konnen.

Al5

Innerhalb des Administrationsbereichs sollen alle Bestellungen auf ein-
mal geloscht werden kénnen.

Al6

Innerhalb des Administrationsbereichs soll der Servicemodus zum Beful-
len und Reinigen aktiviert werden kénnen.

43

3 Analyse

3.2.2 Nichtfunktionale Anforderungen

In diesem Abschnitt befinden sich jene Anforderungen, die keiner einzelnen Funktion innerhalb
der Anwendung zugeordnet sind. Stattdessen entstammen die hier aufgefithrten Anforderungen
den Funktionen oder betten diese ein. Die nichtfunktionalen Anforderungen sind in Tabelle
3.7 aufgelistet.

Tabelle 3.7: Nichtfunktonale Anforderungen an das Softwaresystem

Nummer Beschreibung der Anforderung

N1 Das System soll von mehreren Benutzern gleichzeitig bedienbar sein.
Dabei gilt eine Untergrenze von 10 Personen.

N2 Das System soll von Seiten der Software ohne bemerkbare Verzégerungen
bedienbar sein.

N3 Das System soll stabil sein.

N4 Das System soll testbar sein.

N5 Das System soll intuitiv bedienbar sein.

N6 Das System soll nachtrédglich anderbar und erweiterbar sein.

N7 Die Komponenten des Systems sollten moglichst unabhangig funktionie-
ren.

N8 Das System soll moglichst plattformunabhéngig sein.

N9 Das System soll verstiandlich konstruiert und dokumentiert sein.

N10 Das System soll wartbar sein.

N11 Das System soll auf Geréten mit unterschiedlicher Displaygrofie ange-
passt dargestellt werden.

3.2.3 Sonstige Anforderungen

Dieser Abschnitt biindelt alle Anforderungen, die sich weniger auf das System, sondern mehr
auf den Arbeitsprozess beziehen. Die Ergebnisse sind in Tabelle 3.8 festgehalten.

Tabelle 3.8: Sonstige Anforderungen an das Softwaresystem

Nummer Beschreibung der Anforderung

SO1 Waihrend der Entwicklung ist mit dem Betreuer Riicksprache zu halten
und ihn iiber den Fortgang zu unterrichten.

SO2 Ein Prototyp soll angefertigt werden.

SO3 Das entwickelte System soll nach Fertigstellung bei einer Abnahme vor-

gestellt werden.

44

3.2 Anforderungskatalog

Tabelle 3.9: Anwendungsfall Rezept bestellen

Ziel Der Besteller mochte ein Rezept zur Warteliste hinzu-
fugen.

Akteure Besteller, Client-System, Server-System

Beschreibung Der Besteller intendiert das automatische Zubereiten
des ausgewdhlten Rezepts von dem Cocktailmixer.

Ebene Benutzerebene

Prioritit Medium

Hauptablauf

Vorbedingung Der Benutzer befindet sich innerhalb der Benutzer-
schnittstelle des Cocktailmixers.

1 Besteller Der Besteller ruft die Rezeptliste auf.

2 Besteller Der Besteller wihlt ein Rezept aus der Rezeptliste aus.

3 Besteller Der Besteller betatigt die Schaltflache Bestellen in der
Taskleiste des Rezepts.

4 Client-System Das Client-System iibermittelt die Bestellung.

5 Server-System Das Server-System nimmt die Bestellung entgegen.
Alternative: Die Bestellung enthalt | Alternativablauf 5a
fehlerhafte Daten.

6 Server-System Das Server-System fiigt die Bestellung der Warteliste
hinzu.

7 Server-System Das Server-System sendet eine Nachricht an das Client-
System, um es iiber die erfolgreiche Eintragung der
Bestellung zu informieren.

8 Client-System Das Client-System zeigt eine Meldung iiber den Erfolg
der Eintragung an.

Nachbedingung Das Rezept ist der Warteliste hinzugefiigt.

Alternativablauf 5a

Vorbedingung Die Bestellung enthalt fehlerhafte Daten.

5al Server-System Das Server-System iibermittelt eine Fehlernachricht
an das Client-System.

5a2 Client-System Das Client-System zeigt eine Fehlermeldung an.

Nachbedingung Das Rezept ist der Warteliste nicht hinzugefiigt.

45

3 Analyse

Tabelle 3.10: Anwendungsfall Servicemodus aktivieren

Ziel Der Administrator mochte den Servicemodus aktivie-
ren.

Akteure Administrator, Client-System, Server-System

Beschreibung Der Servicemodus dient der Reinigung und dem Nach-
fillen der Saftbehalter.

Ebene Administrationsebene

Prioritit Medium

Hauptablauf

Vorbedingung Der Administrator ist am System authentifiziert.
Der Administrator befindet sich innerhalb der Benut-
zerschnittstelle des Cocktailmixers.

1 Administrator Der Administrator 6ffnet die Administrationsoberfla-
che tiber den zugehdrigen Link.

2 Administrator Der Administrator wahlt den gewiinschten Servicemo-
dus durch Betatigen der Schaltflache aus (Reinigungs-
modus / Nachfiillmodus).

3 Client-System Das Client-System iibermittelt eine Nachricht an das
Server-System.

4 Server-System Das Server-System validiert, dass der Administrators
authentifiziert ist und somit eine Interaktion erlaubt
ist.

Alternative: Der Benutzer ist nicht | Alternativablauf 4a
authentifiziert.

5 Server-System Der Server nimmt die Serviceanfrage entgegen.
Alternative: Die Daten sind Alternativablauf 5a
fehlerhaft.

6 Server-System Der Server aktiviert den Servicemodus durch veran-
dern einer Zeile in der Datenbank.

7 Server-System Der Server tibermittelt eine Nachricht an das Client-
System und informiert iiber eine erfolgreiche Eintra-
gung.

8 Client-System Das Client-System zeigt dem Administrator eine Mel-
dung tiber den Erfolg der Eintragung an.

Nachbedingung Der Servicemodus wurde aktiviert.

46

3.2 Anforderungskatalog

Alternativablauf 4a

Vorbedingung Der Benutzer ist nicht authentifiziert.

4al Server-System Das Server-System iibermittelt eine Fehlernachricht
an das Client-System.

4a2 Client-System Das Client-System zeigt eine Fehlermeldung an.

Nachbedingung Der Servicemodus wurde nicht aktiviert.

Alternativablauf 5a

Vorbedingung Die Daten sind fehlerhaft.

5al Server-System Das Server-System tibermittelt eine Fehlernachricht
an das Client-System.

5a2 Client-System Das Client-System zeigt eine Fehlermeldung an.

Nachbedingung Der Servicemodus wurde nicht aktiviert.

47

3 Analyse

Cocktailbar
Rezept Rezept
@—«extend» bestellen
R ~
ezeptliste — =<<extend>>— I
aufrufen
Warteliste

O einblenden

&
a [Warteliste
% J—l. ausblenden
o]
A Startseite
aufrufen
@—«extend») Abmelden
Administrationsbereich
Zustinde Zutat
anzeigen hinzufiigen
—_— — <extend>>= — —
utatenliste
. <<extend>> Zutat
anzeigen bearbeiten
Zutat
|— <<extend>> — .
l6schen
Zutat
=<<extend>> =— — Y ..
> nachfiillen
= 10
3 Rezept
=3 =<<extend>> =— — . .
@ I hinzufiigen
S
o
-

Rezeptliste
anzeigen

Rezept
<<extend>> bearbeiten

Rezept
I6schen

— <<extend>>=— —

Bestellung
I6schen

—_<<extend>>=— —

Bestellliste
anzeigen

<<extend>>

Alle Bestellungen
I6schen

Servicemodus
aktivieren

Abbildung 3.1: Anwendungsfalldiagramm

48

3.3 Verwandte Arbeiten

3.3 Verwandte Arbeiten

3.3.1 Bartendro™

Bartendro™ [Bara] ist ein auf Kickstarter [Kic] finanzierter, automatisierter Cocktailmixer.
Die Schnittstelle zu dem Benutzer wird, ahnlich wie bei dem Cocktailmixer des ISW, uiber
ein selbst erstelltes drahtloses Netzwerk hergestellt. Uber einen Browser gelangt man auf die
Hauptseite, auf welcher die zur Verfiigung stehenden Cocktails ausgew&hlt werden konnen.
Nach der Auswahl eines Cocktails konnen noch zusitzliche Einstellungen in Abhéngigkeit
der Zutaten vorgenommen werden. Beispielsweise kann einem Cocktail mehr oder weniger
Alkohol zugewiesen werden. Erweiterte Einstellungen sind tiber eine Administrationsschicht
ausfithrbar (z.B. das Einstellen neuer Getrinke, das Zuschalten von Dispensern und das
Reinigen dieser) Fiir die Programmierung wurde die Programmiersprache Python mit dem
Framework Flask gewahlt. Die entwickelte Benutzeroberflache steht unter der GNU General
Public License [Barc] zur Verfigung. [Par14]

the essentials

Brown Cow

Kahlua, Milk Butterscotch Schnapps, Milk

This brown cow is Iookin? for its brown Butterscotch with some milk takes the
chicken. Will ¥ou help it fi

nd its way? sweet edge of the butterscotch off and
Equal parts of milk and kahlua make for leaves you with a tasty milky cocktail.
a mellow and tasty drink.

Buttery Nipple Cosmopolitan

Butterscotch Schnapps, Baileys Vodka, Triple Sec, Simple Syrup,

Creamy mix gives a nice buttery Baileys ~ Lime Juice, Cranberry Juice
flavor. Smooth as a baby's butt! Cranberry and lime juice make for a tart
cocktail. A drink for sexy people!

Gummy bears

Midori, Triple Sec, Simple Syrup, Vodka, Triple Sec, Lime Juice

Lime Juice, Cranberry Juice It's seppoku, but in reverse! More tangy
This could be called a Midori Cosmo, but than being a terrorist.

we thought it tasted more like gummy

bears. A little sweet, a little tart and

really tasty.

Lemon Drop

Abbildung 3.2: Cocktail-Auswahlbildschirm des Bartendro™ Graphical User Interface (GUI)
[Barb]

49

3 Analyse

3.3.2 Barobot

Barobot [Bar14a] ist ein ebenfalls iiber Kickstarter [Kic] finanzierter, automatisierter Cocktail-
mixer. Zwar wurde das angestrebte Ziel an Einnahmen nie erreicht, dennoch entwickelten die
Erfinder lange Zeit weiter an der Maschine. Mittlerweile existiert die Webseite des Barobot
nicht mehr, der Programmcode ist allerdings noch frei zugénglich. [Bar13a] Anders als bei
Bartendro kann Barobot mithilfe einer Android App bedient werden. Diese ermoglicht eine
Auswahl aus tiber 1500 Cocktails, die bereits in der Datenbank vorinstalliert sind. Falls hierbei
eine Entscheidung schwer fillt, konnen Cocktails auch zufillig bestellt werden. Der Benutzer
kann auswahlen, welche Flaschen an die Dispenser angebracht sind und das Programm filtert
automatisch, sodass nur Cocktails angezeigt werden, welche mit der Auswahl an angeschlos-
senen Getranken mischbar sind. Auch neue Getranke konnen in die Datenbank eingegeben
werden. [Bar13b]

Martini Dry =R Ty Favorites
El F’re*—‘idente

Choose a
Gin &% - drink
Jametﬂ:‘r?],géﬂml.- * | feel lucky
15k

camicme |7 Just Whigky
dl]uﬁ‘.m‘;'!'_rlﬁ%- h-'. '.‘J‘.--. J } cm:ﬁ:mr

Malibu Sky
Martmiry
MartififiFizz [] Mobile orders

IB Past orders

Samba Options and
| &
White Lady

Abbildung 3.3: Cocktail-Auswahlbildschirm der Barobot GUI [Bar14b]

50

3.4 Abgrenzung

3.4 Abgrenzung

Diese Arbeit beschéftigt sich mit der Entwicklung einer Benutzeroberflache des bestehenden
Cocktailmixers. Eine Anpassung des Maschinencodes findet nur seitens der Schnittstellen statt,
die diesen mit der Benutzeroberflache und der Datenbank verbinden. Des Weiteren wird das
Betriebssystem so angepasst, dass die entwickelte Benutzeroberfliche auf diesem ausfiithrbar
ist. Eine Anpassung der Hardwarekomponenten findet nicht statt.

Zur Entwicklung der Benutzeroberflache sollen insbesondere aktuelle Techniken (vgl. Ab-
schnitt 2.4) zum Einsatz kommen. Die Architektur soll einen modularen Ansatz verfolgen, um
eine schwache bis lose Kupplung einzelner Komponenten zu gewahrleisten. Damit wird die
Notwendigkeit einer weiteren Neuentwicklung der gesamten Oberflache verringert.

Anders als bei dem entwickelten Cocktailmixer Barobot (vgl. Unterabschnitt 3.3.2), soll die
Benutzeroberfliche von dem automatisierten Cocktailmixer des ISW als reine Webplattform
realisiert werden. Dies ermdglicht eine hohe Plattformunabhéngigkeit und erspart so einen
Mehraufwand bei der Entwicklung. Die Oberflache soll, anders als bei den verwandten Arbei-
ten, den Benutzern mitteilen, welche Interaktion nétig ist und ich welchem Zustand sich die
Maschine befindet.

51

4 Konzeption

Abbildung 4.1: Logo der Weboberflache Cocktailbar

Dieses Kapitel beinhaltet den Systementwurf der entwickelten Benutzeroberflache des Cock-
tailmixers. Der Name der Arbeit wurde passend auf die reale Welt ibertragen und lautet
Cocktailbar. Das Logo (vgl. Abbildung 4.1), bestehend aus drei Glasern, welche man haufig in
einer Cocktailbar wiederfindet, soll die Oberfliche mit dem Anwendungsgebiet assoziieren. Das
Kapitel gliedert sich in zwei Abschnitte. Im ersten wird der Entwurf, aufgeteilt in seine beiden
Hauptkomponenten, vorgestellt. Der zweite Abschnitt zeigt die Ergebnisse eines Prototypen
der Webanwendung Cocktailbar.

Hinweis: In den vorherigen Kapiteln wurde das Rezept als Begriff fiir eine Sammlung von
Zutaten verwendet. Dieser Begriff ist zur Verstandlichkeit gew&hlt worden, da eine Sammlung
von Zutaten nicht zwangslaufig ein Cocktail ist. In der internen Realisierung der Softwarean-
wendung wurde statt Rezept jedoch der Begriff Cocktail benutzt.

53

4 Konzeption

4.1 Systementwurf

Cocktailbar ist in zwei Hauptkomponenten unterteilt: Dem Server und dem Client. Die Kompo-
nenten sind gemafl dem Schichtenmodell (vgl. Abschnitt 2.4.1) aufgebaut. Die Verarbeitungs-
komponente befindet sich dabei auf der Serverseite, was dem Thin Client-Prinzip entspricht.
Die verarbeitende Komponente wird im folgenden Abschnitt tiber die serverseitige Architektur
(vgl. Abschnitt 4.1.2) vertieft behandelt. Die Kommunikationsschnittstelle der beiden Kom-
ponenten folgt dem REST-Paradigma. Eine Kapselung mit Hilfe des Schichtenmodells und
die Verfolgung des REST-Paradigmas ermoglichen es jederzeit, eine der beiden Komponenten
auszutauschen oder sie ohne die jeweils andere Komponente zu betreiben.Dadurch ist die
nichtfunktionale Anforderung N7 erfiillt. Der Client ist fiir die Anzeige, Eingabebehandlung
und Aktualisierung der Bedienelemente zustdndig, wahrend der Server Informationen tiber
den Cocktailmixer aufruft, abspeichert und an den Client weitergibt.

Das Schichtenmodell unter Einhaltung des Thin Client-Prinzips eignet sich besonders gut
fiir das zu entwickelte System: Wie in den folgenden Unterabschnitten beschrieben, besitzen
die Komponenten eine Hierarchie, wie sie auch bei diesem Architekturmuster Anwendung
findet. Eine dahnliche Hierarchie ist auch bei dem Architekturmuster Pipes und Filter (vgl.
Unterabschnitt 2.4.1) gegeben, allerdings wird der Gebrauch aktiver oder passiver Filter nicht
benétigt. Die beidseitige Benutzung einer Kommunikationsschicht erlaubt es auflerdem, das in
Unterabschnitt 2.4.2 beschriebene REST-Paradigma einzusetzen, um eine Abkopplung der bei-
den Hauptkomponenten Server und Client zu bewirken (vgl. Anforderung N7). Der Beschluss
die Verarbeitungsschicht serverseitig zu platzieren begriindet sich durch das Vorhandensein
restriktiver Zugange. Eine clientseitige Verarbeitung wire in diesem Fall ein potentielles Si-
cherheitsrisiko und wird deshalb vermieden. Betrachtet man die Kommunikationsschicht als
einen Broker, kann ebenjenes Broker-Muster angewandt werden. Um dieses in einem verteilten
System zu betreiben, miissten die Schnittstellen allerdings erst angepasst werden (Fiir die
bisherigen Anforderungen ist ein verteiltes System nicht notwendig). Das MVC-Modell eignet
sich fir diese Architektur nicht. Wiirde man dieses iibertragen, wiare der Server als Model
anzusehen und der Client als View / Controller - Der Server hat allerdings mehr Funktionalitat
als die einer Model-Komponente und das Zusammenlegen von Server und Client verringert
wiederum die Modularisierung. Der Einsatz einer SOA ist elegant, wire allerdings fiir diese
Arbeit zu komplex; Geschaftsprozesse werden fiir den automatischen Cocktailmixer nicht
angewandt. Da das bisherige System keine Schnittstellen bereitstellt, ist eine Realisierung als
Plugin-Architekturmuster ebenfalls nicht umsetzbar.

4.1.1 Systemarchitektur

Dieser Unterabschnitt behandelt den Server und den Client im Detail. Dafiir werden die
konzipierten Komponenten erlautert und zur Férderung der Verstandlichkeit mit Hilfe von
Unified Modeling Language (UML)-Diagrammen veranschaulicht. Weitere Informationen zu

54

4.1 Systementwurf

UML konnen dem Werk Unified Modeling Language Reference Manual, The (2Nd Edition) von
Rumbaugh, Jacobson und Booch entnommen werden.

4.1.2 Serverseitige Architektur

Der Server ist in sechs Pakete unterteilt. Das Paket transport ist der Kommunikationsschicht
zuzuordnen. Es empfangt GET- und POST-Anfragen und sendet Antworten, die es von der
Controller-Komponente erhalt. Diese ist gemeinsam mit dem Paket models, exceptions, und
machine Teil der Verarbeitungsschicht. Der Controller priift dabei, ob es sich bei den Anfragen
um valide Operationen handelt und sendet gegebenenfalls einen Fehler, der im Paket exceptions
definiert ist. Die fiir die zu verarbeitenden Objekte benétigten Klassen befinden sich in dem
Paket models. Die Komponente machine ist von den tibrigen Paketen vo6llig losgelost. In ihr
befindet sich der urspriingliche Maschinencode, der die Schnittstelle zu der Hardware bildet (vgl.
Unterabschnitt 2.2.3). Da der Code jedoch tiber eigene Schnittstellen Code aus der Datenbank
ausliest, wurde er in die Schicht iber der Datenhaltung eingebettet. Die Datenhaltungsschicht
bildet die unterste Schicht des Servers und stellt Funktionalititen zum Lesen und Schreiben in
einer MySQL-Datenbank bereit. Die geschilderte Struktur kann in Abbildung 4.2 nachvollzogen
worden. Die Starter-Klasse CocktailBackendApplication vervollstandigt das Diagramm. Diese
Klasse befindet sich in keinem Paket und beinhaltet einige innere Verwaltungsklassen und
eine Startfunktion.

Kommunikationsschicht

<<creates>>

1

<<creates>>

Verarbeitungsschicht

exceptions

1
<<creates>>

Datenhaltungsschicht

<<creates>>
1

’101 *

<<creates>>

i

database <<creates>>

CocktailbarBackend
Application

Abbildung 4.2: UML-Paketdiagramm des Servers

55

4 Konzeption

Paket transport

Das Paket transport bildet die Kommunikationsschicht und damit die oberste Schicht des
Servers. Hier befindet sich die Schnittstelle zum Frontend. Die Funktionen, die hier bereitgestellt
werden, konnen vom Frontend beispielsweise iiber GET- und POST-Anfragen angesprochen
werden und so einen Datenaustausch bewirken. Die Objekte werden an dieser Stelle auch an
Klassen aus dem Paket models gebunden. Die in diesem Paket bestehenden Klassen beinhalten
alle Funktionen des Pakets controller, welche eine Interaktion Uber die Kommunikationsschicht
erfordern. Eine Zugriffskontrolle findet ebenfalls auf dieser Ebene statt; unerlaubte Zugriffe
auf restriktive Funktionen werden direkt abgewiesen. Folgende Klassen sind hier realisiert:

56

AdministrationReceiver: Verwaltet das Setzen von Servicemodi und das Nachfillen
von Zutaten.

AuthenticationReceiver: Verwaltet Authentifizierungsanfragen und antwortet mit
einem Token, der den Benutzer fur zukiinftige Anfragen authentifiziert, oder einer
Fehlermeldung.

CocktailReceiver: Beinhaltet simtliche Funktionen zum Transport von Informationen
iiber die Rezepte des Systems. Dazu gehort beispielsweise das schrittweise Ausgeben
aller vorhandenen Rezepte oder das Hinzufiigen/Entfernen eines Rezeptes.

IngredientReceiver: Beinhaltet samtliche Funktionen zum Transport von Informatio-
nen iiber die Zutaten des Systems. Dazu gehort beispielsweise das schrittweise Ausgeben
aller vorhandenen Zutaten oder das Hinzufiigen/Entfernen einer Zutat.

OrderReceiver: Stellt die Schnittstelle rund um den Bestellvorgang zur Verfiigung. Hier
wird die Kommunikation zum Hinzufiigen, Entfernen oder Einholen einer oder mehrerer
Bestellungen realisiert.

PortReceiver: Gibt eine Liste aller hinterlegten Anschliisse des Cocktailmixers zuriick,
die schliellich von Zutaten belegt werden konnen.

UserReceiver: Regelt das Einholen von Informationen tiber einen Benutzer oder dessen
Ausloggen aus dem System.

4.1 Systementwurf

Paket exceptions

Das Exception-Paket des Servers enthalt alle Fehlertypen, die von Cocktailbar benétigt werden.
Folgende Fehlertypen konnen vom Paket controller geworfen werden:

CocktailStepsCocktailNullException: Beim Hinzufiigen eines einzelnen Schritts fiir
die Zubereitung eines Rezepts wurde kein Rezept angegeben.

CocktailStepsExistException: Das gegebene Rezept enthélt bereits Zubereitungs-
schritte.

CocktailStepsIngredientNullException: Beim Hinzufiigen eines einzelnen Schritts
fiir die Zubereitung eines Rezepts wurde keine Zutat angegeben.

CocktailStepsNotConsecutiveException: Die iibermittelten Schrittnummern sind

nicht durchgingig.

CocktailStepsStepnumberExistsException: Die angegebene Schrittnummer exis-
tiert bereits. Dies kann beispielsweise auftreten, wenn eine Schrittnummer innerhalb
eines Rezepts doppelt an den Server gesendet wurde.

IngredientInUseException: Die zu 16schende Zutat ist noch Teil eines Rezepts und
kann nicht entfernt werden.

OrderCocktailNullException: Eine gegebene Bestellung steht nicht im Kontext zu
einem Rezept.

OrdererUsernameExistsException: Der gewiinschte Benutzername ist bereits belegt.

OrdererUsernameNotAllowed: Der gewiinschte Benutzername ist nicht erlaubt (z. B.
admin).

OrdererUsernameNullException: Kein Benutzername wurde angegeben.

PortldentifierNotFoundException: Der angegebene Anschlussbezeichner ist nicht
im System hinterlegt.

PortldentifierNullException: Es wurde kein Anschlussbezeichner angegeben.

PortOccupiedException: Der gegebene Anschluss ist bereits belegt.

57

4 Konzeption

Paket controller

Das Controller-Paket des Servers enthalt die Grundfunktionen der Webanwendung Cocktail-
bar und befindet sich in der Verarbeitungsschicht des Servers. Die Verarbeitungsklassen der
Benutzeranfragen sind als Singleton realisiert, die, mit Hilfe von Modellobjekten, Anfragen
verarbeiten. Aufler den Klassen, welche die Benutzeranfragen verarbeiten, befinden sich in
diesem Paket Klassen fiir den korrekten Betrieb des Servers. Dazu gehdren vor allem Authenti-
fizierungslogiken und erweiterte Zugriffsregeln, sowie Sicherheitskomponenten. Im Folgenden
werden die Verarbeitungsklassen der Benutzeranfragen genauer erlautert.

58

+ AdministrationProcessor: Die Administrationsverwaltungsklasse beinhaltet alle Me-

thoden, die einen administrativen Zugang erfordern. Die Klassen werden von den zu-
griffsbeschrankten Methoden aus dem Paket transport aufgerufen. Die Klasse erlaubt
Funktionalitaten wie das Hinzufiigen oder Entfernen von Rezepten und Zutaten. Sie
sendet nach einer erfolgreichen Verarbeitung die Daten entweder an die Datenhaltungs-
schicht weiter oder wirft einen Fehler aus dem Paket exceptions. Um die Verarbeitung
besser zu verstehen, ist in Abbildung 4.3 ein exemplarischer Ablauf zum Hinzufiigen
einer Zutat modelliert. Zur Vereinfachung ist in diesem Diagramm die Verarbeitung von
Zutatenbildern nicht berticksichtigt. Ebenso wurde, zur Bewahrung der Ubersicht, der
gesamte Client zusammengefasst. Wie in der Abbildung zu sehen ist, ruft die Klasse
AdministrationProcessor, nachdem sie von der korrespondierenden Transportklasse auf-
gerufen wurde, einige Methoden der Datenhaltungsschicht auf, um zu priifen, ob die
Anfrage valide ist. Daraufhin wird ein Zutatenmodell befiillt und in der Datenhaltung
abgespeichert.

OrderProcessor: Die Bestellverarbeitung behandelt den Umgang mit Bestellungen.
Dazu gehort das schrittweise Ausgeben der Cocktails, das Priifen von eingehenden
Bestellungen, das Ausgeben einer Bestellliste und die Ausgabe des Maschinenzustands.

UserProcessor: Die Klasse UserProcessor erlaubt die Verwaltung der Benutzer. Dazu
gehort das Hinzufiigen, Ausloggen oder Ausgeben eines Benutzers und seines Profils.

4.1 Systementwurf

Aioysodayyiogd:

(()A31502s1A128"ua1Pa18U1)ANSOISINISS.

(1odpasn)uodies—mMmM |

((adA LauaipaiBupa8-quaipaidul)adA jiusipaiduias—|

((sweN3a8-uaipasdul 39s.

((uonewuoyu3as-yuaipaidur)uonewioyuj}es—

PI9El

193 3uaipassul) 195.
v P 1)SIqe|ieny

(()a3eQ@ M3U)pappyaleqs

(()Agpappvias-uaipaidul)Agpappyios— —

(()Jannoyiasd-uaipaidul)aninoyieos— —

(()421313u3p|1104198°()3404398 3ua1pasSul)saiy3usp|II0dAgauQpul
|

Aioysodayiuaipaidul:

10SSsadoiduoljesisiuiwipy:

X | L

— — — -SMeISMaU — — — =
— —snjeIsMmau— —
<<91e942>;
||||||| wnRl— — — — — — =
(3uaipaidui)ruaipassulppe.
(Sui)juaipalis
<4-(3u31p 1)3usip 1pp

‘_U>_UUU¢ﬁ=U_ﬂU-—m=_u E E
S

inzufiigen

- Zutath

iagramm

UML-Sequenzd

Abbildung 4.3

59

4 Konzeption

Paket models

Das Models-Paket beinhaltet alle Klassen, die notwendig sind, um Cocktailbar in einer ob-
jektorientierten Umgebung zu betreiben. Hier werden Klassen fiir Objekte wie Cocktails oder
Besteller definiert. Das Erzeugen neuer Objekte wird im Paket controller oder transport vor-
genommen. Dort werden die von der REST-Schnittstelle empfangenen Daten in ein Modell
tiberfiihrt. Die Modelle kommen in fast identischer Form auch clientseitig zum Einsatz. Ebenso
werden sie nahezu identisch in der Datenbank abgelegt. Die folgende Klassen sind auf dem
System im Einsatz, ihre Abhéngigkeiten sind in Abbildung 4.4 anhand eines Klassendiagramms
dargestellt.

60

Cocktail: Das Modell Cocktail beschreibt die Rezepte innerhalb des Systems. Rezepte
konnen aktiv sein oder nicht. Sie besitzen eine eindeutige Identifizierungssnummer,
einen Namen, ein Datum der Erstellung sowie einen Ersteller, ein oder mehrere Bilder
(vgl. ImageUrl), einen Informationstext, die Anzahl bisheriger Bestellungen, die benétigte
Zeit fur die Zubereitung, keinen, einen oder mehrere Schritte (vgl. Step) und einen Typen.

Drucksensor: Das Modell Drucksensor reprasentiert den Druckschalter im System und
beschreibt, ab welchem Gewicht ein Glas erkannt werden soll. Das Modell wird innerhalb
des Systems nicht eingesetzt, muss aber in der Datenbank abgelegt werden, damit der
Maschinencode diese Informationen auslesen kann.

ImageUrl: Das Modell ImageUrl speichert den Pfad der Bilddateien fiir Rezepte und
Zutaten. Ein Pfad besitzt eine eindeutige Identifizierungsnummer, die Pfadadresse und
einen Cocktail oder eine Zutat.

Ingredient: Das Modell Ingredient beschreibt die Zutaten innerhalb des Systems. Zutaten
konnen aktiv sein oder nicht. Sie besitzen eine eindeutige Identifizierungsnummer, einen
Namen, ein Datum der Erstellung sowie einen Ersteller, ein oder mehrere Bilder (vgl.
ImageUrl), einen Informationstext, einen Port, die Anzahl bisheriger Bestellungen, die
bendtigte Zeit fiir die Zubereitung, eine Viskositdt und einen Typen. Das Modell Zutaten
ist exemplarisch in Abbildung 4.5 samt seiner Abhéngigkeiten veranschaulicht.

Order: Die Klasse Order beinhaltet ein Modell fiir Bestellungen, das vom System fiir die
Verarbeitung ebenjener benotigt wird. Dabei hat eine Bestellung immer eine eindeutige
Identifizierungsnummer, ein bestelltes Rezept, ein Datum der Erstellung (wichtig fiir die
Reihenfolge der Abarbeitung), einen Besteller und einen Status.

Orderer: Das Modell Orderer reprasentiert den Benutzer innerhalb des Systems. Es
besitzt eine eindeutige Identifizierungsnummer, einen Benutzernamen, ein Password
(fiir Administratoren), ein Datum der Erstellung, und eine oder mehrere Rollen.

OrdersAndTasks: Das Modell OrdersAndTasks wird benétigt, um dem Client in regel-
mafligen Abstdnden Informationen iiber den Zustand des Systems zu iibermitteln. In
ihm befindet sich eine Liste der Aufgaben und ihres Zustands (vgl. Task) und eine Liste
der obersten Bestellungen (vgl. Order) fur das Anzeigen der Warteliste.

4.1 Systementwurf

Port: Das Modell Port spiegelt einen Anschluss an dem Cocktailmixer wider. Jeder
Anschluss hat einen eindeutigen Namen. Ebenso hat ein Anschluss eine X-Koordinate,
die bestimmt, wie weit der Schrittmotor zu fahren hat, bis er an der korrekten Position
angelangt ist. Der Typ des Anschlusses (Dispenser oder Ventil) ist ebenso hinterlegt.

Role: Eine Rolle wird von der Klasse Role im System représentiert. Jedem Benutzer kann
eine Rolle zugewiesen werden, damit er bestimmte Aufgaben innerhalb des Systems
ausfithren kann.

Status: Die Klasse Status ist fiir die Kommunikationsschicht bestimmt. Ein Status besteht
lediglich aus einem Titel und einer Nachricht, die iiber die Kommunikationsschicht
versendet wird. Der Status beinhaltet dabei Fehler oder Informationen, die der Server an
den Client Uibermitteln muss.

Step: Das Modell Step dient der Datenhaltung einzelner Schritte zur Zubereitung eines
Cocktails. Einem Schritt ist dementsprechend auch immer ein Rezept und eine Zutat
zugewiesen. Hinzu kommt die Anzahl der Abgaben, die der jeweilige Anschluss seinem
Getrank abziehen soll (z. B. bedeutet die Zahl eins an einem Dispenser 25ml). Schliellich
hat jeder Schritt, der einem Rezept zugeordnet ist eine Position, an der er ausgefiihrt
wird.

Task: Die Klasse Task stellt den Zustand der Maschine im System dar. Alle Zustande,
die der Cocktailmixer einnehmen kann sind hier hinterlegt. Ebenso ist zu jedem Zustand
festgehalten, ob dieser aktiv ist oder nicht. Der Cocktailmixer kann mehrere der folgenden
Zustande einnehmen:

— IDLE: Der Cocktailmixer wartet auf einen Befehl.

- JOBDONE: Das Rezept wurde abgearbeitet, das Glas kann jetzt entnommen wer-
den.

— DOINGJOB: Der Cocktailmixer arbeitet momentan ein Rezept ab.

— QUIT: Der Zustand SHUTDOWN wurde aktiv. Die Maschine soll bei der nichsten
Moglichkeit heruntergefahren werden und keine weiteren Auftrége abarbeiten.

— REBOOT: Der Cocktailmixer soll bei der nachsten Moglichkeit neu starten.
— RUNNING: Der Cocktailmixer ist in Betrieb.

— SERVICE_CLEANING: Der Reinigungsservice ist in Betrieb.

— SERVICE_REFILL: Der Nachfiillservice ist in Betrieb.

— SHUTDOWN: Der Cocktailmixer soll heruntergefahren werden.

— START: Ist dieser Zustand aktiv, soll der Cocktailmixer die Startroutinen durch-
fithren.

— STOP: Zustand zum Aktivieren eines Sicherheitsstopps.

61

4 Konzeption

*

*

Abbildung 4.4: Klassen und deren Abhédngigkeiten des Paket models

62

4.1 Systementwurf

<<Enumeration>>

AvailablePorts

ALCOHOLIC_ONE
ALCOHOLIC_TWO
ALCOHOLIC_THREE
ALCOHOLIC_FOUR
ALCOHOLIC_FIVE
ALCOHOLIC_SIX
ALCOHOLIC_SEVEN
ALCOHOLIC_EIGHT
NONALCOHOLIC_ONE
NONALCOHOLIC_TWO
NONALCOHOLIC_THREE
NONALCOHOLIC_FOUR
NONALCOHOLIC_FIVE
NONALCOHOLIC_SIX

<<Enumeration>>

PortTypes

DISPENSER

<<Enumeration>>

Type

ALCOHOLIC
NONALCOHOLIC
OTHER

il

-id : Long
-isClosed : int
- port :int

- portldentifier : AvailablePorts

- portPositionx int
- portTypes : PortTypes

ImageUr|

- cocktail : Cocktail

-id : Long

- ingredient Ingredient
- url : String

+ Port(AvailablePorts, int)

+ ImageUrl(String,
Cocktail, Ingredient)

1

1

Ingredient

- active : Boolean

- addedBy : String

- available : Boolean

- calculatedVolume : int
- currentVolume : int

- dateAdded : Date

-id : Long

- imageUrl : List<ImageUrl>
- information : String

- ingredientType : Type
- name : String

- port : Port

- timesOrdered : int

- timeToMix : int

- viscosity : BigDecimal
- volume : int

- volumeUsed : int

+ Ingredient(Boolean, String, Boolean, Date,String, List<imageUrl>,

String, Port, Type, int)

- cocktail : Cocktail
-id : Long

- ingredient Ingredient
- stepNumber : int

- unit:int

+ Step(Ingredient,
Cocktail, int, int)

Y

Abbildung 4.5: Ingredient-Klasse samt Abhangigkeiten

63

4 Konzeption

Paket machine

Das Paket machine enthélt den in Unterabschnitt 2.2.3 beschriebenen Maschinencode. Das Paket
hat keine Schnittstellen zu den restlichen Komponenten und stellt auch keine Schnittstellen
zur Verfugung. Die Kommunikation zwischen dem Maschinencode und dem restlichen System
findet ausschlief3lich tiber das Ablegen und Auslesen von Datenbankinhalten statt.

Paket database

Das Paket database beinhaltet Klassen zur Interaktion mit einer Datenbank. Da die Klassen im
Umgang mit der Datenbank generisch agieren, konnen in den meisten Fallen unterschiedliche
SQL-Datenbanken eingesetzt werden ohne ihren Code anzupassen '. Die Klassen des Pakets
basieren auf der Java Persistence Programmschnittstelle, was das Ablegen und Aufrufen von
Daten aus der Datenbank in einer objektorientierten Umgebung stark vereinfacht, da der
Entwickler nur noch in seltenen Fillen in SQL selbst schreiben muss. Das verbessert die
Lernkurve beim Einarbeiten in das System und erfiillt die nichtfunktionalen Anforderungen
N9 und N10. Jedes in Unterabschnitt 4.1.2 beschriebene Modell (aufler das zusammengesetzte
Modell OrdersAndTasks und das rein transportbezogene Modell Status) besitzt eine eigene
Klasse fiir die Interaktion mit der Datenbank. Abbildung 4.6 zeigt ein Enhanced entitiy-
relationship (EER)-Diagramm [EImO08] der Datenbank mit allen Tabellen samt Spalten und
deren Abhéngigkeiten untereinander.

Spezifische Muster der gewihlten SQL-Datenbank miissen im Code dennoch beriicksichtigt werden

64

4.1 Systementwurf

Wcocktail order W cocktail g
i BIGINT(20)

3 + active BIT(1)
date_added DATETIME id BIGINT(20)

5 < added VARCHAR|

next BIGINT(20) by 258) step_number INT{11)
 status VARGHAR(255) * avallable BIT(1) e __ i O unitiNT(11)
> cockisl_ 1 BIGINT(20) caloulated_volume INT(11)

|

|

I J cocktail_id BIGINT(20)
> orderer_id BIGINT{20) | * cocktail_type VARCHAR(255)

|

) ingredient_id BIGINT(20)

> — = 7 curent_volume INT(11) =
S
i date_added DATETIME *
I “information TEXT |
| M —— I
1 ~ name VARCHAR(255) I |
b » time_to_mix INT{11) | }
|
» times_orderad INT(11) | |
id BIGINT(20) |
»volume INT(11) | I
> imageurl VARCHAR(255) = | }
*last_password_reset_date DATETIME I |
|
~ password VARCHAR(255) | |
|
 permanent BIT(1) m ' }
~ user_added date DATETIME id BIGINT(20) I }
+ usemame VARCHAR(255) t orderer_id BIGINT(20) < access_level INT{11) I }
> ¥ role_id BIGINT(20) name VARCHAR(255) I |
|
> » password VARCHAR(255) | | |
ol |
—
[
id BIGINT(20) id BIGINT(20) I }
» glass INT(11) > active BIT(1) I |
|
* no_glass INT{11) * added_by VARCHAR(255) | |
|
» sensor_date DATETIME > available BIT(1) - +— 4
> * cakoulated_volume INT(11) *
S
)
* date_added DATETIME id BIGINT(20)
*information TEXT 7 url VARGHAR(255)
H——————%
- » ingredient_type VARCHAR(255) > cocktall_id BIGINT(20)
7 name VARCHAR(255) 7 ingredient_id BIGINT (20)
id BIGINT(20) gred
» time_to_mix INT(11) >
< active BIT(1) T
» times_ordered INT(11)
> priority INT(11)
7 task_type VARCHAR(255) |
~ * volume INT{11) | id BIGINT(20)
L » volume_used INT{11) I 7 is_closed INT(11)
> port id BIGINT(20) } port INT(1 1)
——
> » port_identifier VARCHAR(255)

+ port_positionx INT{11)

7 port_types VARCHAR(255)
>

Abbildung 4.6: EER-Diagramm der Datenbank

65

4 Konzeption

4.1.3 Clientseitige Architektur

Der Client ruft Funktionen und Ressourcen des Servers iiber die Kommunikationsschnittstelle
auf und bildet die Softwareanwendung damit auf dem Endgerat ab. Fiir die Anzeige der Software
und die Erfiillung der Anforderungen miissen eine Vielzahl an Elementen bereitgestellt werden.
Bekannte Vertreter sind hierbei Text, Schaltflachen, Bilder oder Eingabemasken. Dariiber hinaus
ist ein wesentlicher Faktor der Anzeige dessen Interaktivitit und die Fahigkeit, angezeigte
Informationen nahtlos aktuell zu halten. Eine grofle Herausforderung stellt die Bereitstellung
der Anwendung auf unterschiedlichsten Gerédten dar. Bekannte Vertreter sind hierbei der
Computer, das Tablet und das Smartphone. Jedes dieser Gerate benutzt schlief3lich einen
eigenen Webbrowser, der gegebenenfalls eine gesonderte Behandlung benétigt. Sowohl fiir
den Einsatz unterschiedlichster Elemente als auch der Notwendigkeit einer Interaktivitat und
Aktualitat von Informationen existieren Frameworks, die dem Entwickler helfen, sich auf
die wesentliche Entwicklung zu konzentrieren, statt jedes Konzept von Grund auf selbst zu
programmieren. Frameworks fiir die Anzeige von Elementen basieren hierbei fast immer auf
den Websprachen HTML und Cascading Style Sheets (CSS). Der Client ist in sechs Pakete
unterteilt. Das Paket actions fungiert als einziges Paket der Kommunikationsschicht und
ermoglicht den Informationsaustausch mit dem Server. Die Ergebnisse dieser Aufrufe wird
an das Paket reducers weitergeleitet, welches diese dann in die Pakete components und routes
iibergibt. Das Paket components beinhaltet einzelne Anzeigekomponenten. Das Paket routes
enthélt alle notwendigen Seiten fiir die Anzeige der Komponenten. Komponenten und Seiten
bedienen sich des Pakets messages, in welchem Ubersetzungen fuir unterschiedliche Sprachen
enthalten sind.

Benutzerschnittstelle

Tl
components

messages
*
- ') ')))
*

Kommunikationsschicht

Abbildung 4.7: UML-Paketdiagramm des Clients

66

4.1 Systementwurf

Paket components

Das Paket components beinhaltet die fiir die Anzeige benétigten Komponenten. Dabei handelt
es sich nicht um primitive Anzeigeelemente, wie Textboxen oder Schaltflichen, sondern viel
mehr um Elemente, welche iiber diese primitiven Elemente hinaus zur Anzeige benotigt werden
oder eine Zusammensetzung aus primitiven Anzeigeelementen darstellen. Die hier angelegten
Elemente werden schlie3lich auf den Seiten des Pakets routes aufgerufen und eingebunden.
Folgende Anzeigekomponenten wurden fiir die Anzeige erstellt:

« AdminCocktails: Die Komponente AdminCocktails ist fiir die Anzeige der Rezeptliste
im Administrationsbereich zustandig. Schaltflachen fiir das Speichern, die Bearbeitung
und das Loschen werden hier definiert. Ebenso existiert fiir jedes Feld des Modells
Cocktail eine Eingabemoglichkeit, um dieses abzuandern. Die Anzeige der Rezepte ist
auf mehrere Seiten verteilt, die iiber ein horizontal ausgerichtetes Zahlenfeld angesteuert
werden konnen. Auf einer Seite werden bis zu finf Rezepte abgebildet.

« AdminIngredients: Die Komponente Adminlngredients ist fiir die Anzeige der Zu-
tatenliste im Administrationsbereich zustandig. Schaltflachen fiir das Speichern, die
Bearbeitung und das Loschen werden hier definiert. Ebenso existiert fiir jedes Feld des
Modells Ingredient eine Eingabemdoglichkeit, um dieses abzuidndern. Die Anzeige der
Zutaten ist auf mehrere Seiten verteilt, die iiber ein horizontal ausgerichtetes Zahlenfeld
angesteuert werden konnen. Auf einer Seite werden bis zu finf Zutaten abgebildet.

« AdminOrders: Die Komponente AdminOrders ist fiir die Anzeige der Bestellliste im
Administrationsbereich zusténdig. Schaltflachen fiir das Loschen einzelner oder aller
Bestellungen sind hier definiert. Die Anzeige der Bestellungen ist auf mehrere Seiten
verteilt, die iiber ein horizontal ausgerichtetes Zahlenfeld angesteuert werden konnen.
Auf einer Seite werden bis zu zwanzig Bestellungen abgebildet.

+ Cocktail: Die Komponente Cocktail ist fiir die Anzeige eines einzelnen Rezepts zustiandig.
Dieses unterscheidet sich in der Anzeige von der Rezeptliste insofern, dass zuséatzlich
zu den Zutaten der Informationstext angezeigt wird. Ebenso hat der Benutzer tiber ein
Zuriick-Bedienfeld die Moglichkeit, zu seiner vorherig besuchten Seite zuriickzukehren.

« CocktailList: Die Komponente CocktailList ist fir die Anzeige der Rezeptliste zustindig.
Jedes Rezept wird dabei samt seinen Zutaten angezeigt. Eine Schaltfliche erméglicht es,
auf Geraten mit kleinem Display die Zutaten auszublenden, um die Liste so schneller
zu durchlaufen. Zusatzlich wird am unteren Rand des Rezepts eine Schaltfliche zum
Bestellen angezeigt. Die Anzeige der Rezepte ist auf mehrere Seiten verteilt, die iiber
ein horizontal ausgerichtetes Zahlenfeld angesteuert werden konnen. Auf einer Seite
werden bis zu finf Rezepte abgebildet.

« Footer: Die Fuflleiste der Webseite beinhaltet einen Link zum ISW.

67

4 Konzeption

» Header: Die Kopfleiste der Webseite beinhaltet die Links zum Navigieren auf der Web-
seite und die Komponente LanguageSwitcher. Ebenso wird das Logo der Anwendung
Cocktailbar angezeigt.

« LanguageSwitcher: Die Komponente LanguageSwitcher ermdglicht das Umschalten
der Sprache mit Hilfe von Flaggensymbolen im Kopfbereich der Webseite.

+ Link: Eine Komponente zum Navigieren auf der Webseite.
« Navigation: Eine Sammlung von Links, die in der Kopfleiste angezeigt wird.

+ Orders: Die Komponente Orders realisiert die Warteliste, die zusammen mit der Kopf-
und Fufileiste auf jeder Seite der Webanwendung angezeigt wird.

+ ServiceModePanel: Die Komponente ServiceModePanel zeigt zwei Schaltflichen zum
Aktivieren der vorhandenen Servicemodi.

« Statuspanel: Die Komponente Statuspanel dient der Anzeige des Status der Hardware
im Administrationsbereich. Mit Hilfe dieser Anzeige ist der Administrator mit einem
Blick in der Lage den Zustand der Maschine nachzuvollziehen.

Paket messages

Das Paket messages beinhaltet die Ubersetzungen der Texte auf der Webseite Cocktailbar. Jeder
Text erhilt eine eindeutige Identifizierung und wird umschrieben, sodass ein Ubersetzer die
Datei ohne Vorwissen bearbeiten kann und so eine neue Sprache in das System eingliedern
kann. Bisher wurden die Sprachen Deutsch und Englisch im System hinterlegt.

Paket routes

Das Paket routes beinhaltet die einzelnen Seiten der Webseite Cocktailbar. Auf diesen werden
die Komponenten des Pakets components angezeigt. Ebenso konnen diese Seiten tiber die
Adressleiste des Webbrowsers direkt angesteuert werden. Bei mehrdeutigen Seiten, wie denen
eines einzelnen Rezepts, hilft eine Identifizierungsnummer bei der Ansteuerung. Die folgenden
Seiten sind fiir den Client notwendig:

« admin: Diese Seite beinhaltet die Liste der Rezepte, Zutaten und Bestellungen als Admi-
nistrationsansicht. Ebenso wird der Maschinenzustand hier abgebildet.

« cocktail: Diese Seite stellt ein einzelnes Rezept dar. Der Benutzer kann jedes Rezept
iiber eine Identifizierungsnummmer in der Adressleiste des Webbrowsers ansteuern. Die
Rezepte sind gleichzeitig auch tiber die Rezeptliste zu erreichen.

« display: Die Seite display zeigt dem Benutzer Informationen iiber den aktuellen Verar-
beitungsschritt der Maschine an. Dazu gehort beispielsweise die Aufforderung an den
obersten Benutzer der Warteliste, ein Glas auf den Schlitten der Maschine zu stellen.

68

4.1 Systementwurf

« error: Diese Seite wird dem Benutzer angezeigt, falls ein Fehler im System auftrat.

« home: Die Seite home zeigt dem Benutzer die Rezeptliste und dient gleichzeitig als
Startseite der Webanwendung Cocktailbar.

+ login: Die Login-Seite ermoglicht das Anmelden am System, entweder nur mit einem
Benutzernamen, oder mit einem Passwort, um den Administrationsbereich aufzurufen.

« notFound: Diese Seite wird angezeigt, falls der Benutzer einen Abschnitt der Webseite
ansteuert, der nicht definiert ist oder auf den er mit seinen aktuellen Rechten nicht
zugreifen darf.

Paket actions

Das Paket actions bildet die Kommunikationsschicht des Clients und damit die Schnittstelle
zum Server ab. Die Funktionen, senden iiber GET- und POST-Anfragen Befehle an den Server
und verarbeiten dessen Antwort. Unterabschnitt 4.1.2 beschreibt bereits die Schnittstellen
der Kommunikationsschicht des Servers. Auf der Clientseite ist ein gegenlaufig dquivalenter
Aufbau realisiert.

Paket reducers

Das Paket reducers verarbeitet die Anfragen aus dem Paket actions und teilt diese mit den
Komponenten und Seiten der Webanwendung Cocktailbar. In diesen Klassen kann somit auf die
Antworten des Servers reagiert werden, um dem Benutzer eine angemessene Darstellung auf
seine Anfrage zu ermdglichen. Falls ein Fehler bei der Anfrage auftrat kann der Zustand zum
Beispiel so manipuliert werden, dass eine Textbox erscheint, die dem Benutzer den Fehlertext
prasentiert.

69

4 Konzeption

4.2 Prototyp

Dieser Abschnitt beinhaltet die Ergebnisse der Erstellung eines Prototypen fiir die Webanwen-
dung Cocktailbar. Der Prototyp wurde fiir eine Darstellung auf einem Computer und einem
Smartphone bzw. Tablet optimiert. Dies erfiillt Anforderung N11. Der Prototyp erleichtert die
darauffolgende Entwicklung, da unterschiedliche Darstellungsformen bereits im Voraus geplant
werden konnen. Im oberen Teil der mobilen Ansicht (vgl. Abbildung 4.8) ist die Warteliste zu
erkennen. Daran anschlielend befindet sich eine Liste zur Sammlung der eigenen Bestellungen.
Dies ist nicht Bestandteil der Anforderung gewesen, konnte allerdings nachtraglich in die
Oberflache eingepflegt werden. Die Rezeptliste listet die Rezepte mit Bild und den einzelnen
Zutaten auf. Durch betétigen der Details-Schaltfliche gelangt man zu einer detaillierteren
Ansicht des Rezepts. Ebenso kann man, durch Betatigung der Bestellen-Schaltflache ein Rezept
bestellen, damit es in die Warteliste aufgenommen und schliefilich von dem Cocktailmixer
zubereitet wird. Auf der rechten Seite der Kopfleiste erkennt man, dass aktuell ein Benutzer
am System angemeldet ist. Durch antippen der Grafik neben dem Namen gelangt man auf das
Benutzerprofil und kann sich vom System abmelden. In Abbildung 4.9 ist eine Desktopansicht
der Cocktailauswahlliste dargestellt. Im Vergleich zu der mobilen Ansicht fallt auf, dass die
Warteliste nicht eingeriickt mit den restlichen Elementen dargestellt wird, sondern einen
eigenen Platz erhalt. Dadurch wir der vorhandene Platz effektiver ausgenutzt.

70

4.2 Prototyp

O
@) @) ©) V)

Aktueller Bestellvorgang ¥4 Long Island Ic... 3/

Meine Bestellungen 2 @ #5 V
Cocktails ‘ Shots ‘ Alkoholfrei ‘
Long Island Iced Tea
Sl 2 ol Wodka + I
vorh‘en 2 cl weiRer Rum Bestellen
2 cGin
2 cl Triple Sec @
Weniger... Details
Bloody Mary
Sl 5 cl \Wodka +
vorh‘En 10 cl Tomatensaft Bestellen
Mehr...
Majito
Kein Bild 6 cl weilker Rum +
Vom' Sal 4 cl Sodawasser Bestellen
Mehr...

Abbildung 4.8: Prototyp der Cocktailauswahlliste (mobile Ansicht)

71

mmw K ling expom €l

o3 jv4 epo20) 7l

ulapuy Usulaug JYULISD) UONISO

Uajl=o159g 13y3)d pun 7|
od5eqe] 19
SISO/ 13

Uoj|21seg NI==Tg]

azaanbsawir |
usjyoyduil

YBSUSNRWOL D 0
2IPOM P G
us1eInz

Aieyy Apooig

2IPO/M 1P Z
us1einz

B3] pad| puels) buo

uabuna1s3g SuRKY

{ulonawi |
1aMeIRZUIN 01
IPNZIY0Y 1L 7

U duwig

135SEMEPOS D
winy Jagiom 3 9
us1einz

“U9INJUIS BJ0D B0 1SNILIS

2197 eqnd A3 1

NHYIS51I0S PUENELS) aWeN uonisod

4 Konzeption

bueblioA|R1s2g J2(IeNy

I ILpe ‘olleH

ualRIsag

+ SN\ SYspuLLaqUN 7/
uajyoydwiz

PIoD [W 001
wny P9
ua1einz

21q7 gND

[SHIOYONIY SIOYS SIIED0D

JEQIIEI0D

vl
x 1egquep0)

ilauswahlliste (Desktopansicht)

Prototyp der Cockta

9

ildung 4

Abb

72

5 Implementierung

Das Kapitel Implementierung enthélt das Vorgehen bei der Entwicklung der Weboberflache
Cocktailbar. Der Abschnitt 5.1 erlautert die eingesetzten Werkzeuge und die einzuhaltenden
Richtlinien. Um zukiinftigen Administratoren und Entwicklern einen Einstieg zu erleichtern,
befindet sich in Abschnitt 5.2 ein Handbuch zur Nutzung von Cocktailbar. Schliefilich befinden
sich in Abschnitt 5.3 die Ergebnisse der Implementierung.

5.1 Werkzeuge und Richtlinien

Um die Implementierung von Cocktailbar moglichst effizient und geordnet durchzufiihren,
bendtigt es einiger wohl gewahlter Werkzeuge und Richtlinien bei der Programmierung. Es ist
dabei wichtig festzuhalten, dass kein richtiges Werkzeug fiir einen Anwendungsfall existiert.
Viel mehr ist die Wahl des Werkzeugs abhangig von der Gewohnheit und den personlichen
Praferenzen des Entwicklers. Als ein Beispiel konnte man das Schreiben von Code betrach-
ten: ein Entwickler kann den Code in einem auf seinem System vorinstallierten Texteditor
schreiben - er spart sich damit den Download von Drittanbietersoftware und hat somit keinen
Mehraufwand. Ein anderer Entwickler wiirde allerdings eine Software fiir das Schreiben von
Code bevorzugen, um so deren Eigenschaften ausnutzen zu kénnen. Folgende Werkzeuge zur
Erstellung von Code sind an dieser Stelle nennenswert:

+ Code-Editor Der Code-Editor stellt zahlreiche Werkzeuge zur Erleichterung der Pro-
grammierung und der Verstandlichkeit bereit. Dazu gehdren Mechanismen wie die
Kolorierung von Codesegmenten, deren Formatierung oder die Autovervollstindigung
von intendiertem Code.

« Compiler und/oder Interpreter Compiler iibersetzen den gesamten geschriebenen
Code in eine gewiinschte Zielsprache. Ein wichtiger Teil dieses Vorgangs ist die Synta-
xanalyse. Sie zerlegt den Code in einzelne Bestandteile und kann so durch hinterlegte
Regeln priifen, ob es sich um korrekt zusammengesetzte Befehle handelt. Durch diesen
Vorgang wird dem Entwickler die Fehlersuche stark vereinfacht. Ein Interpreter fiithrt
ebenfalls eine Syntaxanalyse durch, mit dem Unterschied, dass der Code von Ausdruck zu
Ausdruck eingelesen wird, statt anfangs den gesamten Code zu verarbeiten. Ob ein Inter-
preter oder ein Compiler zum Einsatz kommen hangt oft stark von der zu entwickelnden
Programmiersprache ab.

73

5 Implementierung

+ Build-Automatisierung Die Build-Automatisierung geht einen Schritt iiber das Kompi-
lieren oder Interpretieren von Code hinaus und beinhaltet zusatzliche Funktionalitat fiir
den Entwicklungsprozess von Software. Einige Mechanismen sind dabei das Verpacken
von kompiliertem Code in komprimierte Formate, die Erstellung von Ausfithrungsdateien
fiir gezielte Betriebssysteme oder die Versionsverwaltung,.

+ Debugger Ein Debugger ist ein Werkzeug zum Testen von Programmcode und der
Fehlersuche in diesem. Fiir den Programmcode konnen dabei Testfalle geschrieben
werden, die dem Entwickler bestenfalls Fehler in der Programmierung erkennbar machen.
Debugger erlauben héufig auch das Schrittweise ausfithren von Programmcode, womit
die Fehlersuche enorm erleichtert werden kann. Mit Hilfe eines Debuggers ist es somit
moglich, die eigene Programmierung zu validieren und die Interpretation des Systems
nachzuvollziehen.

Fir den Einsatz von mehreren Werkzeugen existieren diverse Entwicklungsumgebungen
(Integrated development environement (IDE)). Diese IDEs stellen hiufig grofle Mengen an
Werkzeugen bereit. Nach dem Plugin-Architekturmuster (vgl. Unterabschnitt 2.4.1) kénnen
Entwickler oft eigene Werkzeuge in diese IDEs einfiigen.

Eine IDE kommt auch bei der Entwicklung von Cocktailbar zum Einsatz. Diese unterstiitzt die
oben genannten Funktionen. Dariiber hinaus kénnen beispielsweise Diagramme fiir ein Reverse
Engineering erstellt werden, Code aufgerdaumt werden oder automatisch Dokumentationen
erzeugt werden.

Die Programmierung wird dariiber hinaus unter Einhaltung gewisser Richtlinien entwickelt.
Diese Richtlinien dienen in erster Linie dazu, die spatere Wartung zu erleichtern und
wiahrend der Entwicklung Fehler zu vermeiden. Richtlinien, die den Code betreffen, fordern
den Programmierer hiufig dazu auf, diesen moglichst tibersichtlich und standardisiert zu
programmieren. Eine fiir den in Java geschriebenen Server eingesetzte Richtlinie stammt von
dem Unternehmen Google und nennt sich Google Java Style Guide [Goo]. Diese Richtlinie
biindelt eine Vielzahl von Regeln, die bei der Entwicklung eingehalten werden sollten. Die
Regeln beginnen bereits bei der Erstellung der Datei; der Dateiname ist gleich dem Namen der
Klasse, die sich in dieser Datei befinden soll plus der Dateiendung ,,.java“. Eine weitere Regel
ist beispielsweise, dass der Programmierer bei if-, else-, for-, do- und while-Ausdriicken immer
eine 6ffnende und eine schlieffende Klammer anfiigt. Des Weiteren soll eine Zeile nicht mehr
als hundert Zeichen enthalten. Auch die Deklaration von Variablen wird reglementiert: Eine
lokale Variable wird erst an der Stelle deklariert, an der sie auch einsetzt wird. [Goo]

74

5.2 Handbuch

5.2 Handbuch

Der folgende Abschnitt beschreibt die Einrichtung der Webanwendung Cocktailbar.

Um Cocktailbar zu betreiben muss sich der Cocktailmixer in Betrieb befinden. Es wird davon
ausgegangen, dass auf dem integrierten Raspberry Pi 3 Modell B das Betriebssystem Raspbian
installiert ist. Folgende Pakete sind unter Raspbian zu installieren': java8, python2.7, python-
mysql.connector, python-spidev, python-rpi.gpio, mysql-server, npm, node]JS, yarn.

Nach der Installation lasst sich der Source Code des Servers mit den Befehlen in Listing 5.1
(Zeile 1 und 2) in der Kommandozeile zu einer ausfithrbaren JAR-Datei komprimieren. Nach
Ausfithrung dieses Befehls befindet sich die JAR-Datei im Ordner target des Basisverzeichnisses.
Der Server lasst sich nach Ausfithrung dieser Schritte fiir jeden weiteren Start mit dem Befehl
in Listing 5.1 (Zeile 3) ausfiihren:

Listing 5.1: Erstellen einer JAR-Datei und Starten des Servers in der Kommandozeile

1 c¢d /path/to/server
2 mvn package # mvnw package on windows host
3 java —jar serverjarfile.jar

Zum Starten des Clients muss zuerst in den Ordner des Source Codes navigiert werden (vgl.
Listing 5.2 Zeile 1). Anschlieffend l4dt der Paketmanager mit einem Befehl die benétigten Pakete
herunter (vgl. Listing 5.2 Zeile 2). Der folgende Befehl wird nach der Installation ausgefiihrt
kompiliert den Source Code (vgl. Listing 5.2 Zeile 3). Um den Client zu starten wird schlief8lich
der letzte Befehl ausgefiihrt (vgl. Listing 5.2 Zeile 4).

Listing 5.2: Installieren und Starten des Clients in der Kommandozeile

cd /path/to/client

npm install

yarn build — ——release
PORT=3001 node build/server.js

B W N -

!fiir das Installieren von Paketen vgl. Abschnitt 2.1

75

5 Implementierung

Falls ein Debugging des Maschinencodes erwiinscht ist, kann dieser gesondert vom Server
ausgefithrt werden. Dazu miissen zuerst folgende Zeilen aus der Main-Methode des Servers
auskommentiert werden:

Listing 5.3: Integrierter Maschinencode des Servers

try {
Process p = Runtime.getRuntime (). exec ("python machine/start—init.py");

} catch (IOException e) {
e.printStackTrace ();

}

& B R

Schlieflich kann der Maschinencode manuell mit folgendem Befehl gestartet werden:

Listing 5.4: Manuelles Starten des Maschinencodes

1 cd /path/to/server/src/main/java/de/isw/unistuttgart/machine
2 python start—init.py &

76

5.3 Resultate

5.3 Resultate

Dieser Abschnitt prasentiert die Resultate der Implementierung der Webanwendung Cocktail-
bar. Hierfiir wird die Webanwendung mit ihren Anforderungen (vgl. Abschnitt 3.2) abgeglichen
und Anhand relevanter Abbildungen beschrieben.

Cocktailbar B

e

L-1br
—— 0
o e \

Cuba Libre

Y /Zutaten:
e 1 Einheit Limettensaft
e 1 EinheitC
e 4 Einheit Brauner Rum

Onformation:

Cuba Libre (spanisch fUr ,Freies Kuba') ist ein

Abbildung 5.1: Cocktailbar - Rezept

Abbildung 5.1 zeigt die Anzeige eines einzelnen Rezepts. Jedes im System vorhandene Rezept
lasst sich auf diese Weise iiber eine eigene URL ansteuern und anzeigen (vgl. Anforderung
R1). Des Weiteren werden samtliche Zutaten, die in dem Rezept enthalten sind dem Benutzer
angezeigt (vgl. Anforderung R2). Ebenso enthélt die Rezeptansicht ein Bild des Rezepts und
weitere Informationen tiber das Rezept (vgl. Anforderung R3 und R4). Uber die Taskleiste
unterhalb des Rezepts kann der Benutzer das angezeigte Rezept bestellen (vgl. Anforderung R5).
Die Taskleiste und die Zuriick-Schaltflache sind iiber die gesamte Anwendung gleich gehalten.
Dies erfiillt die goldene Regel der Konsistenz von Shneiderman (vgl. Unterabschnitt 2.4.3.
Ebenso wird die Regel der informativen Riickmeldung erfiillt, wenn man eine Bestellung tatigt:
nach der Interaktion mit der Schaltflache 6ffnet sich ein Dialog, der den Benutzer informiert,
ob die Bestellung erfolgreich im System eingegangen ist.

77

5 Implementierung

Cocktailbar B

Aktuelle Bestellung: Cuba Libre von Erik @

v) Zutaten anzeigen!

ACLETk

{Sjol

O
A

Cuba Libre

Y /utaten:

e 1 Einheit Limettensaft

Abbildung 5.2: Cocktailbar - Rezeptliste

Abbildung 5.2 zeigt die Rezeptliste der Webanwendung Cocktailbar (vgl. Anforderung RL1). Da
mehr als finf Rezepte im System hinterlegt sind, wird im oberen (und im unteren) Bereich der
Liste eine Auswahl der Seite angeboten, sodass die Rezepte iiber mehrere Seiten hinweg verteilt
werden konnen (vgl. Anforderung RL2). Dies erfiillt die goldene Regel Shneidermans iiber die
Entlastung des Kurzzeitgedachtnis (vgl. Unterabschnitt 2.4.3). Ebenfalls befindet sich am oberen
Rand der Liste ein Kontrollkédstchen, mit dem die Zutaten der Rezepte ein- und ausgeblendet
werden konnen (vgl. Anforderung RL3). Wie auch in der einzelnen Rezeptansicht wird ein Bild
fir jedes Rezept der Liste angezeigt (vgl. Anforderung RL4). Mit Hilfe der Taskleiste unter jedem
Rezept kann der Benutzer in die Einzelansicht des Rezepts gelangen oder das Rezept bestellen
(vgl. Anforderung RL5 und RL6). Die Biindelung samtlicher Interaktionsmoglichkeiten und
somit deren kombinierter Wahrnehmung in der Taskleiste beruht auf dem Gesetz der Néhe
(vgl. Unterabschnitt 2.4.3).

78

5.3 Resultate

Cocktailbar B

Aktuelle Bestellung: Cuba Libre von Erik

Besteller Getrank Vorgang
~ Glas
I Erik Cuba Libre
aufstellen
2. Anonymous User Cuba Libre Warten

¢ 7 > »
v) Zutaten anzeigen;

Abbildung 5.3: Cocktailbar - Warteliste

Die vorherigen Abbildungen zeigen bereits die realisierte Warteliste in ausgeblendetem Zu-
stand. Abbildung 5.3 zeigt die Liste, wenn der Benutzer sie durch die Interaktion mit der
Schaltflache eingeblendet hat (vgl. Anforderung W1 und W2). Die fiinf obersten Bestellungen
werden mit ihrem Rezept und Besteller nach der Reihenfolge ihrer Abarbeitung aufgezéhlt
(vgl. Anforderung W3). Die oberste Bestellung ist dabei auch im ausgeblendeten Zustand
ersichtlich. Nach Ausfithrung einer Bestellung wird diese aus der Warteliste entfernt werden.
Dafiir wird der aktuelle Stand der Warteliste in kurzem Abstand tiber den Server abgefragt (vgl.
Anforderung W4 und W5). Da die Warteliste, so wie auch die Rezepte und Zutaten, jeweils
innerhalb eines Quadrats abgebildet sind, werden deren Inhalte auch als zusammengehorig
wahrgenommen (vgl. Unterabschnitt 2.4.3, Gesetz der Geschlossenheit).

79

5 Implementierung

Aktuelle Bestellung: Cuba Libre von Erik

Cocktailbar B
(2

Hallo Erik,
Stelle bitte ein leeres Glas auf den Schlitten und driicke den roten Starttaster.
Der Cocktailbot wird anschlieRend dein Getrank Cuba Libre zubereiten.
Du hast 20 Sekunden dafiir Zeit. Danach wird deine Bestellung geldscht.

Abbildung 5.4: Cocktailbar - Startseite

Abbildung 5.4 zeigt die Startseite, welche Informationen tber die aktuellen Vorginge des
automatisierten Cocktailmixers enthalt. Die Startseite ist dabei nicht die Eingangsseite, auf die
man gelangt, wenn Cocktailbar zum ersten Mal aufgerufen wird (dies ist die Rezeptliste). Das
Display des automatisierten Cocktailmixers soll dagegen diese Startseite stindig anzeigen',
um dem Benutzer, der an der Reihe ist mitzuteilen, welche Schritte er zu befolgen hat (vgl.
Anforderung S1, S2 und S3).

Abbildung 5.5: Cocktailbar - Kopfleisten

'Die iibrige Webseite ist iiber das Display dennoch aufrufbar.

80

5.3 Resultate

Cocktailbar B
(2

Aktuelle Bestellung: Cuba Libre von Erik

&

Back

Anmeldung

Bitte melde Dich mit einem
Benutzernamen an.

VIPs und Barkeeper kdnnen sich hier
mit Benutzername und Passwort

anmelden

Username

Passwort

Abbildung 5.6: Cocktailbar - Login

Auf Abbildung 5.6 ist der Login-Bereich der Webanwendung Cocktailbar zu sehen. Unter Einga-
be eines Benutzernamens und Bestatigung mit Hilfe der Schaltfliche interagiert der Benutzer
mit dem eingegebenen Pseudonym (Ist kein Benutzername angegeben wird das Pseudonym
~Anonymous User” benutzt). Falls der Benutzer, zusitzlich zu seinem Benutzernamen, noch
ein Passwort angibt, priift das System, ob mit dieser Kombination aus Benutzername und
Passwort ein administrativer Account hinterlegt ist. Ist dies der Fall, kann der Benutzer fortan
als Administrator interagieren. (vgl. Anforderung B1 und B2)

Abbildung 5.5 zeigt eine unterschiedliche Ansicht der Kopfleiste; einmal wenn ein Benutzer
am System angemeldet ist und einmal wenn ein Benutzer sich am System anmelden kann. Ist
ein Benutzer angemeldet kann er tiber den Link ,Ausloggen® samtliche erhaltenen Privilegien
ablegen und fortan wieder unter dem Pseudonym , Anonymous User” interagieren (vgl. Anfor-
derung B3). Die Biindelung der Links in einer Meniileiste entspricht dem Gesetz der Nahe (vgl.
Unterabschnitt 2.4.3) und vereinfacht dem Benutzer, durch die Webseite zu navigieren.

81

5 Implementierung

Cocktailbar B
Aktuelle Bestellung: Cuba Libre von Erik @
Administration
-

Back

AK IDLE JOBDONE QUIT REBOOT RUNNING
| I I S I S

Reinigungsmodus Nachfillmodus

Cocktails
Zutaten

Bestellungen

Abbildung 5.7: Cocktailbar - Administrationsbereich

Hat sich ein Benutzer mit einem administrativen Account am System angemeldet, erreicht er
tiber die Kopfleiste (vgl. Abbildung fig:cockkopf) den Administrationsbereich (vgl. Anforderung
A1). Auf dieser Seite kann der Benutzer im oberen Bereich durch alle aktuellen Zusténde des
Systems hindurchscrollen und so, auch ohne Sicht auf die Maschine, feststellen, ob diese
beispielsweise in Betrieb ist, gerade ein Rezept zubereitet oder auf die Entnahme des Glases
wartet (vgl. Anforderung A2). Unter der Statusleiste befindet sich die Serviceleiste. Mit dieser
lasst sich der Reinigungsmodus und der Nachfiillmodus aktivieren. Wird der Nachfiillmodus
aktiviert, pausiert das System die Abarbeitung der Bestellungen, bis dieser wieder deaktiviert
wird. Bei aktivem Reinigungsmodus konnen Zutaten, die sich an Ventilen befinden iiber die
Taskleiste gereinigt werden - Die Ventile 6ffnen sich nach Betéatigung der Schaltflache fiir
eine gewisse Zeit (vgl. Anforderung A16). Unterhalb der Statusanzeige konnen drei Reiter
ausgeklappt werden, in denen die administrative Ansicht der Rezept-, Zutaten- und Bestellliste
angezeigt wird (vgl. Anforderung A3, A8 und A13). Mit Hilfe der Taskleiste unter den Rezepten
und Zutaten lassen sich hier Rezepte und Zutaten 16schen und bearbeiten (vgl. Anforderung
A5,A7, A11 und A12). Dabei konnen nur Zutaten geloscht werden, die sich in keinem Rezept
mehr befinden. Ebenfalls kann sich eine Zutat keinen Anschluss mit einer weiteren Zutat
teilen (vgl. Anforderung A6). Eine Zutat kann dariiber hinaus tiber die Taskleiste nachgefiillt
werden; ihr Fiillstand wird im unteren Bereich des Rezepts mit Hilfe eines Fortschrittsbalkens

82

5.3 Resultate

angezeigt (vgl. Anforderung A7). Im linken, oberen Bereich der Rezepte und der Zutaten kann
der Benutzer uiber eine Schaltfliche neue Rezepte (bzw. neue Zutaten) zu dem momentanen
Bestand hinzufiigen (vgl. Anforderung A4 und A10). In der administrativen Bestellliste konnen
entweder einzelne oder alle Bestellungen aus dem System geloscht werden (vgl. Anforderung
A14 und A15).

83

6 Schlussbetrachtung

In diesem Kapitel schlie3t die Arbeit tiber die Konzeption und Realisierung einer
Steuerungssystem-Human Machine Interface (HMI) fiir Mobilgerdte mit einer Zusam-
menfassung. In dieser werden insbesondere die gesetzten Ziele mit dem Inhalt dieser
Arbeit verglichen. Ebenso befindet sich in diesem Kapitel ein Ausblick, der die mdgliche
Weiterentwicklung der Webanwendung Cocktailbar umschreibt. Hierfiir werden auch Ideen
und Konzepte vorgeschlagen, die in dieser Arbeit nicht realisiert wurden.

6.1 Zusammenfassung

Diese Arbeit begann mit der Recherche iiber den Stand der Technik. Dabei wurden sechs
Architekturmuster vorgestellt sowie deren Vor- und Nachteile aufgezahlt. Ebenso wurde iiber
das Kommunikationsparadigma REST recherchiert. Schliefllich wurden etablierte Gesetze und
Richtlinien der Benutzerfreundlichkeit ergriindet. Im Anschluss daran folgte die Analyse des
bestehenden Systems. Dazu wurde dieses mit den Ergebnissen der Recherche abgeglichen
und auf Méngel hin iiberpriift. Daran anschliefend wurden funktionale, nichtfunktionale und
sonstige Anforderungen an das System in einem Anforderungskatalog gesammelt und die
Arbeit von existierenden Arbeiten abgegrenzt. Der Analyse als Grundlage folgte die Konzep-
tion der Webanwendung Cocktailbar in Form eines Systementwurfs und dessen Prototypen.
Innerhalb des Systementwurfs konnten die Ergebnisse des Stands der Technik wiederver-
wendet werden. Ebenso wurden die Anforderungen aus dem Analyseteil beriicksichtigt. Als
Ergebnis des Entwurfs wurden seine Teilkomponenten ausfiihrlich aufgezahlt und in ihrer
Funktion beschrieben. Der Prototyp diente einer ersten Impression des fertig entworfenen
Systems. Durch ihn wurden die Entwurfsentscheidungen iiberpriift und gegebenenfalls er-
ganzt oder beschnitten. Der abschlieflende Teil dieser Arbeit schilderte die Implementierung
des Softwareentwurfs. Dabei wurden Rahmenbedingungen wie eingesetzte Werkzeuge und
Richtlinien erldutert. Ebenso wurde ein Handbuch angefiigt, dass bei der weiteren Entwick-
lung und Benutzung der Webanwendung Cocktailbar unterstiitzen soll. Im letzten Teil des
Implementierungsabschnitts wurden schlief8lich die praxisorientierten Ergebnisse der Arbeit
prasentiert und mit den Anforderungen des Analyseteils abgeglichen.

85

6 Schlussbetrachtung

6.2 Ausblick

Die Webanwendung Cocktailbar stellt ein Fundament fiir die Weiterentwicklung der Soft-
wareseite des automatischen Cocktailmixers da. Dabei beschrankt sich Cocktailbar auf die
Benutzerschnittstelle und lasst den Maschinencode weitgehend unberiihrt. Ein erster Schritt
konnte die Angliederung des Maschinencodes an den Server darstellen. Da die Komponente in
der Verarbeitungsschicht des Servers einzuordnen ist und ihre Funktionalitat der des control-
ler-Pakets des Servers gleicht, ist eine lose Kopplung hier nicht sinnvoll. Beide Komponenten
sind dariiber hinaus in unterschiedlichen Programmiersprachen entwickelt, was die Wartung
erschwert. Die Webanwendung Cocktailbar selbst konnte um einige Funktionen erweitert
werden, welche die Interaktion mit dem System interessanter gestalten konnten. Dazu gehort
beispielsweise die Moglichkeit, Rezepte zufillig zu bestellen (vgl. Funktionalitat von Barobot in
Unterabschnitt 3.3.2). Ebenso konnte man Rezepte von den Benutzern selbst zusammenstellen
lassen und so nach internen oder benutzerdefinierten Rezepten filtern. Die Statusmeldungen,
die der Maschinencode bisher ausgibt, konnten dariiber hinaus erweitert werden. Man konnte
dazu die aktuellen Schritte des Cocktailmixers genauer anzeigen lassen (z. B. ,Fiille Orangensaft
ein...).

Das System Cocktailbar wurde so entwickelt, dass zukiinftig noch weitere Programmierer an
ihm weiterarbeiten konnen - Die Entwicklung des automatisierten Cocktailmixers hat mit
dieser Arbeit einen neuen Baustein hinzugewonnen.

86

Literaturverzeichnis

[Bara]

[Barb]

[Barc]

[Bar13a]

[Bar13b]

[Bar14a]

[Bar14b]

[BCK03]

[Cur04]

[Deb]
[EIm08]

[FGM+99]

[GD13]

[Goo]

[Has06]

Bartendro™. Automatisierter Cocktailmixer. URL: http://partyrobotics.com/ (zitiert
auf' S. 49).

Bartendro™. Cocktail-Auswahlbildschirm der GUL URL: http://cdn.shopify.com/s/
files/1/0455/5013/files/blog_UI-1024x703.jpg?259 (zitiert auf S. 49).

Bartendro™. GNU General Public License. URL: https://github.com/partyrobotics/
bartendro/blob/master/COPYING (zitiert auf S. 49).

Barobot. Source Code. 2013. URL: https://code.google.com/archive/p/barobot/
source/default/source (zitiert auf S. 50).

Barobot. Technische Details. 2013. URL: https://code.google.com/archive/p/barobot/
wikis/TechnicalDetails.wiki (zitiert auf S. 50).

Barobot. Automatisierter Cocktailmixer. 2014. URL: https://www.kickstarter.com/
projects/barobot/barobot-a-cocktail-mixing-robot (zitiert auf S. 50).

Barobot. Cocktail-Auswahlbildschirm der GUL 2014. URL: http://cdn firstwefeast.
com/assets/2014/05/barobotscreen.jpg (zitiert auf S. 50).

L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. Addison-Wesley
Professional, 2003 (zitiert auf S. 21).

E. Curry. ,Message-oriented middleware®. In: Middleware for communications
(2004), S. 1-28 (zitiert auf S. 33).

Debian. Offizielle Webseite. URL: https://www.debian.org/ (zitiert auf S. 15).

R. Elmasri. Fundamentals of database systems. Pearson Education India, 2008
(zitiert auf S. 64).

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1. United States, 1999 (zitiert auf S. 33).

J. Goll, M. Dausmann. Architektur-und entwurfsmuster der softwaretechnik. Bd. 1.
Springer, 2013 (zitiert auf S. 21-32).

Google. Google Java Style Guide. URL: https://google.github.io/styleguide /
javaguide.html (zitiert auf S. 74).

W. Hasselbring. ,Software-Architektur®. In: Informatik-Spektrum 29.1 (2006), S. 48—
52. 1SSN: 1432-122X. por: 10.1007/s00287-005-0049-5. URL: http://dx.doi.org/10.
1007/s00287-005-0049-5 (zitiert auf S. 21).

87

http://partyrobotics.com/
http://cdn.shopify.com/s/files/1/0455/5013/files/blog_UI-1024x703.jpg?259
http://cdn.shopify.com/s/files/1/0455/5013/files/blog_UI-1024x703.jpg?259
https://github.com/partyrobotics/bartendro/blob/master/COPYING
https://github.com/partyrobotics/bartendro/blob/master/COPYING
https://code.google.com/archive/p/barobot/source/default/source
https://code.google.com/archive/p/barobot/source/default/source
https://code.google.com/archive/p/barobot/wikis/TechnicalDetails.wiki
https://code.google.com/archive/p/barobot/wikis/TechnicalDetails.wiki
https://www.kickstarter.com/projects/barobot/barobot-a-cocktail-mixing-robot
https://www.kickstarter.com/projects/barobot/barobot-a-cocktail-mixing-robot
http://cdn.firstwefeast.com/assets/2014/05/barobotscreen.jpg
http://cdn.firstwefeast.com/assets/2014/05/barobotscreen.jpg
https://www.debian.org/
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
http://dx.doi.org/10.1007/s00287-005-0049-5
http://dx.doi.org/10.1007/s00287-005-0049-5
http://dx.doi.org/10.1007/s00287-005-0049-5

Literaturverzeichnis

[Her16]

[Kic]

[LV12]

[Mil56]

[Nie03]

[Par14]
[Rasa]

[Rasb]

[Rasc]

[RJB04]

[Rod08]

[RPi]

[Shn10]

[Wer23]

[Wir]

V. Hermann. ,Konzeption und Entwicklung eines web- und datenbankbasierten
Steuerungssystems fiir einen automatisierten Cocktailmischer®. Bachelorarbeit.
Institut fir Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrich-
tungen, Universitéat Stuttgart, 2016 (zitiert auf S. 17, 19).

Kickstarter. Projektfinanzierung iiber Crowdfunding. URL: https://www.kickstarter.
com (zitiert auf S. 49, 50).

G. van Loo, M. Vanlnwegen. Gertboard Benutzerhandbuch. 2012 (zitiert auf S. 16,
17).

G. A. Miller. , The magical number seven, plus or minus two: some limits on our
capacity for processing information.” In: Psychological review 63.2 (1956), S. 81
(zitiert auf S. 35).

J. Nielsen. Usability 101: Introduction to usability. 2003 (zitiert auf S. 34).
Party Robotics. Getting Started Guide. 2014 (zitiert auf S. 49).

Raspberry Pi. Dokumentation GPIO. URL: https : / / www . raspberrypi . org /
documentation/usage/gpio/ (zitiert auf S. 15).

Raspberry Pi. Frequently Asked Questions. URL: https://www.raspberrypi.org/help/
faqs/ (zitiert auf S. 14).

Raspbian OS. Offizielle Webseite. URL: https://www.raspberrypi.org/downloads/
raspbian/ (zitiert auf S. 15).

J. Rumbaugh, I. Jacobson, G. Booch. Unified Modeling Language Reference Manual,
The (2Nd Edition). Pearson Higher Education, 2004. 1sBN: 0321245628 (zitiert auf
S. 55).

A. Rodriguez. ,Restful web services: The basics®. In: IBM developerWorks (2008)
(zitiert auf S. 33).

RPi.GPIO. Package Webseite. URL: https://pypi.python.org/pypi/RPi.GPIO (zitiert
auf S. 17).

B. Shneiderman. Designing the user interface: strategies for effective human-
computer interaction. Pearson Education India, 2010 (zitiert auf S. 35, 38).

M. Wertheimer. ,Untersuchungen zur Lehre von der Gestalt. II*. In: Psychologische
forschung 4.1 (1923), S. 301-350 (zitiert auf S. 36).

WiringPi. Package Webseite. URL: https://pypi.python.org/pypi/wiringpi/2.44.0
(zitiert auf S. 17).

Alle URLs wurden zuletzt am 28. 05. 2017 gepriift.

88

https://www.kickstarter.com
https://www.kickstarter.com
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/help/faqs/
https://www.raspberrypi.org/help/faqs/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/wiringpi/2.44.0

Abbildungsverzeichnis

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
53
54
5.5
5.6
5.7

Urspringliche grafische Oberflache des Cocktailmixers 10
Vorderansicht des Cocktailmixers 13
Draufsicht Raspberry Pi3 Modell B 14
Struktur des Maschinencodes 0. 17
Ausschnitt des Aktivitatsdiagramms der Klasse Main (Maschinencode) 18
Struktur des Architekturmusters Pipes and Filter 23
Struktur des Plugin-Architekturmusters 27
Architektur Thin/Fat-Client als Schichtenmodell 29
SOA-Dreieck 31
Anwendungsfalldiagramm Lo L 48
Cocktail-Auswahlbildschirm des Bartendro™ GUI 49
Cocktail-Auswahlbildschirm der Barobot GUI 50
Logo der Weboberflache Cocktailbar 53
UML-Paketdiagramm des Servers 55
UML-Sequenzdiagramm - Zutat hinzufiigen 59
Klassen und deren Abhéngigkeiten des Paket models 62
Ingredient-Klasse samt Abhangigkeiten 63
EER-Diagramm der Datenbank, . 65
UML-Paketdiagramm des Clients 66
Prototyp der Cocktailauswahlliste (mobile Ansicht) 71
Prototyp der Cocktailauswabhlliste (Desktopansicht) 72
Cocktailbar-Rezept 77
Cocktailbar - Rezeptliste 78
Cocktailbar - Warteliste 79
Cocktailbar - Startseite 80
Cocktailbar - Kopfleisten 80
Cocktailbar - Login 81
Cocktailbar - Administrationsbereich 82

89

Tabellenverzeichnis

2.1 Vor- und Nachteile des Broker-Architekturmusters
2.2 Vor- und Nachteile des Pipes and Filter-Architekturmusters
2.3 Vor- und Nachteile des MVC-Architekturmusters

2.4 Vor- und Nachteile des Plugin-Architekturmusters
2.5 Vor- und Nachteile des Schichtenmodells
2.6 Vor- und Nachteile einer serviceorientierten Architektur

3.1 Softwareanforderungen - Rezepte
3.2 Softwareanforderungen - Rezeptliste
3.3 Softwareanforderungen - Warteliste

3.4 Softwareanforderungen - Startseite

3.5 Softwareanforderungen - Benutzerprofil
3.6 Softwareanforderungen - Administrationsoberflache
3.7 Nichtfunktonale Anforderungen an das Softwaresystem
3.8 Sonstige Anforderungen an das Softwaresystem
3.9 Anwendungsfall Rezept bestellen
3.10 Anwendungsfall Servicemodus aktivieren

91

Listings

2.1
2.2

5.1
5.2
53
54

APT Code-Beispiele 15
Funktion vor_slow zur Steuerung des Getriebemotors 19
Erstellen einer JAR-Datei und Starten des Servers in der Kommandozeile . . . 75
Installieren und Starten des Clients in der Kommandozeile 75
Integrierter Maschinencode des Servers 76

Manuelles Starten des Maschinencodes 76

	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Aufbau der Arbeit

	2 Grundlagen und Technik
	2.1 Raspberry Pi
	2.2 Steuerungssysteme
	2.2.1 Hauptprogramm
	2.2.2 Datenbankverwaltung
	2.2.3 Maschinensteuerung

	2.3 Benutzeroberfläche
	2.4 Stand der Technik
	2.4.1 Architekturmuster
	2.4.2 Kommunikationsparadigmen
	2.4.3 Benutzerfreundlichkeit

	3 Analyse
	3.1 Ausgangssituation
	3.1.1 Benutzerfreundlichkeit
	3.1.2 Softwaredesign

	3.2 Anforderungskatalog
	3.2.1 Funktionale Anforderungen
	3.2.2 Nichtfunktionale Anforderungen
	3.2.3 Sonstige Anforderungen

	3.3 Verwandte Arbeiten
	3.3.1 Bartendro™
	3.3.2 Barobot

	3.4 Abgrenzung

	4 Konzeption
	4.1 Systementwurf
	4.1.1 Systemarchitektur
	4.1.2 Serverseitige Architektur
	4.1.3 Clientseitige Architektur

	4.2 Prototyp

	5 Implementierung
	5.1 Werkzeuge und Richtlinien
	5.2 Handbuch
	5.3 Resultate

	6 Schlussbetrachtung
	6.1 Zusammenfassung
	6.2 Ausblick

	Literaturverzeichnis

