
Institut für Softwaretechnologie

Universität Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Konzeption und Realisierung
einer Steuerungssystem-HMI für

Mobilgeräte

Erik-Felix Tinsel

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. rer. nat. Stefan Wagner

Betreuer/in: Dr. rer. nat. Asim Abdulkhaleq,

M. Sc. Matthias Strljic

Beginn am: 01. Dezember 2016

Beendet am: 01. Juni 2017

CR-Nummer: H.5.2, J.7

Kurzfassung

Diese Arbeit umfasst die Konzeption und Realisierung einer Benutzerschnittstelle zur Steuerung

eines automatisierten Cocktailmixers des Instituts für Steuerungstechnik der Werkzeugmaschi-

nen und Fertigungseinrichtungen der Universität Stuttgart. Dazu wird insbesondere der Stand

der Technik möglicher Architekturmuster und Kommunikationsparadigmen analysiert und in

einer Softwarekonzeption, den zugrundeliegenden Anforderungen entsprechend, angewendet.

Ebenso werden Mechanismen und Vorgehensweise zur Schaffung von Benutzerfreundlichkeit

recherchiert und berücksichtigt. Die Arbeit präsentiert eine mögliche Implementierung zur Be-

dienung und Verwaltung des automatisierten Cocktailmixers und begründet die angewandten

Softwareentscheidungen basierend auf deren Ergebnissen.

3

Inhaltsverzeichnis

1 Einleitung 9
1.1 Motivation . 9

1.2 Zielsetzung . 10

1.3 Aufbau der Arbeit . 12

2 Grundlagen und Technik 13
2.1 Raspberry Pi . 14

2.2 Steuerungssysteme . 16

2.2.1 Hauptprogramm . 17

2.2.2 Datenbankverwaltung . 19

2.2.3 Maschinensteuerung . 19

2.3 Benutzeroberfläche . 20

2.4 Stand der Technik . 21

2.4.1 Architekturmuster . 21

2.4.2 Kommunikationsparadigmen . 33

2.4.3 Benutzerfreundlichkeit . 34

3 Analyse 37
3.1 Ausgangssituation . 37

3.1.1 Benutzerfreundlichkeit . 38

3.1.2 Softwaredesign . 39

3.2 Anforderungskatalog . 40

3.2.1 Funktionale Anforderungen . 40

3.2.2 Nichtfunktionale Anforderungen . 44

3.2.3 Sonstige Anforderungen . 44

3.3 Verwandte Arbeiten . 49

3.3.1 Bartendro™ . 49

3.3.2 Barobot . 50

3.4 Abgrenzung . 51

4 Konzeption 53
4.1 Systementwurf . 54

4.1.1 Systemarchitektur . 54

4.1.2 Serverseitige Architektur . 55

4.1.3 Clientseitige Architektur . 66

5

4.2 Prototyp . 70

5 Implementierung 73
5.1 Werkzeuge und Richtlinien . 73

5.2 Handbuch . 75

5.3 Resultate . 77

6 Schlussbetrachtung 85
6.1 Zusammenfassung . 85

6.2 Ausblick . 86

Literaturverzeichnis 87

6

Akronyme

APT Advanced Package Tool. 15

CRUD Create, Read, Update, Delete. 33

CSS Cascading Style Sheets. 66

EER Enhanced entitiy-relationship. 64

GPIO General-purpose input/output. 14

GUI Graphical User Interface. 49

HDMI High-Definition Multimedia Interface. 14

HMI Human Machine Interface. 85

HTML Hypertext Markup Language. 20

HTTP Hypertext Transfer Protocol. 33

IDE Integrated development environement. 74

ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen. 9

JSON JavaScript Object Notation. 33

LED Light-emitting diode. 16

MIME Multipurpose Internet Mail Extensions. 33

MVC Model-View-Controller. 25

RAM Random-access memory. 14

REST Representational State Transfer. 33

SOA Serviceorientierte Architektur. 31

SPI Serial Peripheral Interface. 15

SSH Secure Shell. 15

UML Unified Modeling Language. 54

URI Uniform Resource Identifier. 33

7

Akronyme

URL Uniform Resource Locator. 38

USB Universal Serial Bus. 14

XML Extensible Markup Language. 33

8

1 Einleitung

Das Institut für Steuerungstechnik derWerkzeugmaschinen und Fertigungseinrichtungen (ISW)

entwickelte gemeinsam mit einigen Studenten einen automatischen Cocktailmixer. Dieser

wird bei gegebenem Anlass zu Präsentationszwecken vor Ort oder auf Messen vorgeführt. Die

bisherige Entwicklung der Studenten aus den Studiengängen Mechatronik und Maschinenbau

stützte sich besonders auf die Zusammenstellung der Hardware und deren Funktionalität. Diese

Arbeit legt den Fokus auf die Entwicklung der Software für den Einsatz des automatischen

Cocktailmixers. Einleitend befindet sich dafür die konkrete Motivation dieser Arbeit, deren

Zielsetzung, sowie der Aufbau dieses Dokuments.

1.1 Motivation

Der am Institut entwickelte, automatische Cocktailmixer kann sechs Saftbehälter und acht

Cocktaildispenser über eine motorisierte Schiene ansteuern, auf welcher ein zu befüllendes

Glas aufgestellt wird. Die Aufträge erhält der Cocktailmixer über eine Weboberfläche, welche

von den Benutzern über eine drahtlose Verbindung aufrufbar ist. Eine solche, benutzerfreundli-

che Webanwendung, die sich sowohl für den Bediener als auch für zukünftige Programmierer

übersichtlich gestaltet, stellt einen Kernpunkt in der Konzeption und anschließenden Nutzung

des Cocktailmixers dar. Eine besondere Herausforderung ist das unterschiedliche Verhalten

der Oberfläche unter Berücksichtigung verschiedener Benutzerrollen, sowie der Kompatibilität

mit mobilen Endgeräten, welche eine angepasste Darstellung verlangen. Für eine möglichst

variierbare Architektur der Softwarekomponenten ist zudem insbesondere die Modularisierung

ein unabdingbares Paradigma.

Die bestehende Softwareumsetzung (vgl. Abbildung 1.1) des Cocktailmixers erfüllt diese und

weitere Anforderungen an das System nicht ausreichend oder gar nicht. Deswegen soll mit

dieser Arbeit eine neue Benutzerschnittstelle geschaffen werden, welche möglichst viele funk-

tionale und nichtfunktionale Anforderungen an das bestehende System abdeckt.

9

1 Einleitung

Abbildung 1.1: Ursprüngliche grafische Oberfläche des Cocktailmixers

1.2 Zielsetzung

Ziel dieser Arbeit ist es, die Benutzerschnittstelle des Cocktailmixers zu Analysieren und

daraufhin neu zu Konzipieren und Entwickeln. Die nachfolgend definierten Phasen sollen

diese Zielsetzung detaillieren:

1. Recherche über den Stand der Technik

Für die Erfassung des Stands der Technik sollen aktuelle, frei verfügbare Mechanismen

für die Softwareentwicklung untersucht und gegenübergestellt werden, um so eine

begründete Softwarearchitektur zusammenzustellen.

10

1.2 Zielsetzung

2. Analyse der Anforderungen an die Umsetzung

Die Analyse erfordert zum einen eine Einarbeitung, als auch eine Recherche über die

notwendigen Anforderungen an das System.

• Einarbeitung in das Ist-System

Die bestehende Architektur soll hinreichend überblickt werden, um ein Verständnis

für und Erkenntnisse zu der Einbettung dieser Arbeit zu gewinnen.

• Bedürfnisanalyse

Das bestehende System soll so analysiert werden, dass die Ziele dieser Arbeit

ersichtlich werden. Dazu gehört es, die Bedürfnisse aller Akteure an das System

zu erfassen. Je mehr Anforderungen dabei abgedeckt werden, umso vollständiger

lässt sich schließlich ein Entwurf des Softwaresystems anfertigen, der auf diese

Anforderungen in seiner Zielsetzung direkten Bezug nimmt.

3. Ausarbeitung eines Softwareentwurfs

Ein Softwareentwurf soll erstellt und begründet werden.

• Erarbeiten des Entwurfs

Auf Grundlage der Bedürfnisanalyse und des Stands der Technik soll ein Ent-

wurf angefertigt werden. Dieser beinhaltet wesentliche Strukturmerkmale der zu

entwickelnden Software und dokumentiert die Architektur, um eine spätere Imple-

mentierung zu erleichtern und zukünftige Wartungs- oder Erweiterungsarbeiten

zu vereinfachen.

• Begründung der Designentscheidungen und der gewählten Entwicklungsplattform

Die gewählten Entwicklungswerkzeuge und Architekturentscheidungen sollen

nach einer Analyse der Alternativen begründet werden.

4. Implementierung des Entwurfs

Das Softwaresystem soll auf Basis des erstellten Entwurfs erstellt werden.

5. Validierung des Resultates gegen die Anforderungen

Die Ergebnisse der Implementierung sollen geprüft und gegebenenfalls korrigiert werden.

Insbesondere die in der Bedürfnisanalyse festgelegten Anforderungen sollten sich in der

Prüfung wiederfinden.

11

1 Einleitung

1.3 Aufbau der Arbeit

Diese Arbeit ist nach den Phasen der Zielsetzung aufgebaut. Zu Beginn befindet sich eine

Einführung in die Grundlagen des Cocktailmixers und den für diese Arbeit benötigten Stand

der Technik in Kapitel 2. Im Anschluss daran wird das zu entwickelnde System durch Anforde-

rungen und Vergleiche, wie auch einer Abgrenzung in Kapitel 3 spezifiziert. Mit Hilfe dieser

Erkenntnisse wurde der Entwurf des Systems und dessen Prototyp entwickelt. Er befindet sich

in Kapitel 4. Kapitel 5 präsentiert die Ergebnisse der Entwicklung dieses Entwurfs. In diesem

Kapitel werden zudem die Anforderungen anhand der Realisierung validiert. Zum Schluss

wird in Kapitel 6 eine Zusammenfassung gegeben und die Möglichkeiten weiteren Vorgehens

erläutert.

12

2 Grundlagen und Technik

Um ein Verständnis für die in dieser Arbeit behandelten Themen zu vermitteln, verschafft das

Kapitel Grundlagen und Technik einen Überblick auf das bestehende System des automati-

sierten Cocktailmixers. Dabei wird vertiefend auf die eingesetzte Hardware, den Raspberry

Pi, die Steuerungssysteme, als auch auf die bereits entwickelte Software eingegangen. Zu-

sätzlich werden die Ergebnisse der Recherche des aktuellen Stands der Technik im Bereich

der Softwarearchitektur, den Kommunikationsparadigmen und der Benutzerfreundlichkeit im

Softwaredesign aufgeführt.

Das Grundgerüst des automatisierten Cocktailmixers besteht aus Bosch-Profilen. An diesen

sind Dispenser für die alkoholischen Getränke, Saftbehälter und die Rückwand, welche die

Hardware beinhaltet, verbaut. Am Boden des Cocktailmixers befinden sich zwei Führungs-

schienen auf denen ein Schlitten mit einer Druckplatte von einem Schrittmotor an die Position

der Getränke bewegt wird. Ein ebenfalls am Schlitten angebrachter Hebelarm, der mit einem

Getriebemotor betrieben wird, löst die Dispenser aus; die Saftbehälter werden über Magnetven-

tile geöffnet und geschlossen. Auf der linken Seite ist ein Display an einem Profil angebracht.

Dieses zeigt dem Benutzer die Weboberfläche des Cocktailmixers. (vgl. Abbildung 2.1)

Abbildung 2.1: Vorderansicht des Cocktailmixers

13

2 Grundlagen und Technik

2.1 Raspberry Pi

Um die Anzeige auf einem Touchscreen und die verarbeitende Logik bereitzustellen, kommt

innerhalb des automatisierten Cocktailmixers ein Raspberry Pi 3 Modell B zum Einsatz. Dieser

ist mit einer Taktfrequenz von 4x1200 Megahertz und 1024 Megabyte Random-access memory

(RAM) eine leistungsstarke Grundlage zum Betreiben des Betriebssystems. Zu seinen für

den Cocktailmixer und dessen Entwicklung relevanten Eigenschaften gehören 4 Universal

Serial Bus (USB)-Ports (vgl. Abbildung 2.2, Nummber 1), 26 General-purpose input/output

(GPIO)-Pins (vgl. Abbildung 2.2, Nummer 2), ein High-Definition Multimedia Interface (HDMI)-

Port (vgl. Abbildung 2.2, Nummer 3), ein microSD-Kartenleser (vgl. Abbildung 2.2 auf der

Rückseite) und ein 802.11n drahtloses Netzwerk (vgl. Abbildung 2.2, Nummer 4). Zudem lässt

sich der Raspberry Pi mit einer Größe von 85,6mm × 56mm platzsparend an den Cocktailmixer

anbringen. [Rasb]

Abbildung 2.2: Draufsicht Raspberry Pi 3 Modell B

14

2.1 Raspberry Pi

Eine Besonderheit des Raspberry Pi sind die GPIO-Pins. Diese Pins können programmiert

werden, um mit der Umgebung zu interagieren. Dabei kann die Schnittstelle beispielsweise

ein Signal eines Sensors oder Daten eines anderen Computers sowie eines elektrischen Geräts

entgegennehmen. Da die maximal anliegende elektrische Leistung an den GPIO-Pins nicht zu

hoch sein darf, kann an ihnen eine Erweiterung angeschlossen werden, mit der auch leistungs-

starke Motoren zu Betreiben sind. [Rasa]

Auf der in den Raspberry Pi eingesetzten microSD-Karte ist das Open Source Betriebssystem

Raspbian [Rasc] installiert. Dieses basiert auf Debian [Deb] und ermöglicht mit seiner inte-

grierten Benutzeroberfläche ein erleichtertes Einrichten der benötigten Software, um den

Cocktailmixer zu betreiben. Mit dem Paketmanager Advanced Package Tool (APT) können

aus einer großen Paketliste benötigte Anwendungen anhand weniger Eingaben auf dem Be-

triebssystem installiert werden. Um die Arbeitsweise von APT zu verdeutlichen, zeigt Listing

2.1 exemplarisch drei Befehle, die eine aktuelle Paketliste anfordern (Zeile 1), vorhandene

Anwendungen, welche von APT verwaltet werden und neue Versionen bereitstellen, erneuert

(Zeile 2) und anschließend das Paket OpenJDK 8 auf dem Betriebssystem installiert (Zeile 3).

Listing 2.1: APT Code-Beispiele

1 sudo apt−ge t update

2 sudo apt−ge t upgrade

3 sudo apt−ge t i n s t a l l openjdk−8− j dk

Über ein im System integriertes Konfigurationsmenü lässt sich der Raspberry Pi einrichten.
Dazu gehört die Benutzerverwaltung, die (De)Aktivierung einzelner Schnittstellen wie der

Secure Shell (SSH) oder dem Serial Peripheral Interface (SPI), Übertaktungsoptionen und der

Konfiguration der Lokalisierung.

Der Raspberry Pi kann ein drahtloses Netzwerk aufbauen mit dem sich Benutzer bis in einige

Meter Entfernung authentifizieren und anschließend verbinden können. Einmal verbunden

lassen sich lokal bereitgestellte Webseiten aufrufen, über welche schließlich eine Interaktion

mit der Maschine möglich wird.

An den HDMI-Port lässt sich ein Monitor anschließen, um auf das Betriebssystem zuzugreifen

und dieses zu konfigurieren. Für den Arbeitsbetrieb mit dem Cocktailmixer ist ein Touch-

screen angeschlossen. Über diesen kann, als Alternative oder Ergänzung zu einem drahtlosen

Netzwerk, direkt mit dem System interagiert werden.

15

2 Grundlagen und Technik

2.2 Steuerungssysteme

Außer dem Raspberry Pi kommen noch weitere Hardwarekomponenten innerhalb des

Cocktailmixer-Systems zum Einsatz. Da diese Arbeit den Schwerpunkt auf die Software des

Cocktailmixers legt, wird die eingesetzte Hardware an dieser Stelle nur kurz beschrieben. Der

Fokus dieses Abschnitts liegt auf der Realisierung des Maschinencodes, der für die Steuerung

der Hardware auf den Raspberry Pi programmiert wurde.

Wie bereits in Abschnitt 2.1 beschrieben, ist es möglich an die GPIO-Pins des Raspberry
Pi Modell 3 B eine Erweiterung anzuschließen. Dies ist vor allem dann notwendig, wenn

leistungsstarke Komponenten betrieben werden müssen. Da der automatisierte Cocktailmixer

unter anderem zwei Motoren steuern soll, wurde eine solche Erweiterung installiert:

Das Gertboard besitzt unterschiedliche Funktionsblöcke, die miteinander verbunden werden

können. Dabei handelt es sich um

• 12 gepufferte Ein- und Ausgänge für die Interaktion mit anderen Geräten

• 3 Druckschalter zum Auslösen von Eingangssignalen

• 6 Open-Kollektor-Treiber (50V, 0,5A) zum Betreiben von Lampen oder Relais mit hoher

Leistung

• 18V,2A Motorsteuerung mit Geschwindigkeits- und Richtungskontrolle

• 28-Pin dual-in-line ATmega-Microcontroller zum Programmieren von Funktionalität

• 2-Kanal 8,10 oder 12 Bit digital- zu analog- Konverter zum Wandeln digitaler Signale in

analoge

• 2-Kanal 10 Bit analog- zu digital- Konverter zum Wandeln analoger Signale in digitale

[LV12]

Mit Hilfe des Gertboards werden ein Getriebemotor, ein Schrittmotor, zwei Light-emitting

diodes (LEDs) und die Magnetventile angesteuert. Der Schrittmotor bewegt den Schlitten an die

Position des gewünschten Dispensers oder Saftbehälters. Falls ein Dispenser angesteuert wurde,

wird dieser durch den Getriebemotor ausgelöst. Die LEDs sollen dem Benutzer signalisieren,

dass der Cocktailmixer den Mischvorgang startet, sobald der Start-Taster betätigt wird und ihn

über den Abschluss ebenjenes Vorgangs informieren. Die Magnetventile öffnen sich für eine

im Maschinencode festgelegte Zeit und geben so die Flüssigkeit in das Glas auf dem Schlitten

ab.

16

2.2 Steuerungssysteme

Der Maschinencode des automatisierten Cocktailmixers wurde mit der Programmiersprache

Python 2.7 realisiert. Für Python existieren unterschiedliche Softwarepakete wie RPi.GPIO
[RPi] oder WiringPi [Wir], um die GPIO-Pins und somit das Gertboard über den Raspberry Pi
anzusprechen [LV12]. Ersteres Paket kommt in der Programmierung des Cocktailmixers zum

Einsatz.

Wie in Abbildung 2.3 zu sehen, gliedert sich die Programmierung in drei Module, die in den

folgenden Unterabschnitten näher beschrieben werden.

Abbildung 2.3: Struktur des Maschinencodes nach Hermann

2.2.1 Hauptprogramm

Das Hauptprogramm besteht aus drei Klassen: Init, Main und Jobs. Init ist die Klasse, die der
Benutzer beim Starten der Maschinensteuerung über die Konsole aufruft. Innerhalb dieser

werden die in der Datenbank hinterlegten Zustände initialisiert und die Hauptklasse Main
aufgerufen. Von dort aus wird, wie in Abbildung 2.4 skizziert, eine Endlosschleife gestartet. In

jedem Durchlauf wird dabei überprüft, ob in der Datenbank der Zustand zum Beenden des

Cocktailmixers eingetragen ist. Falls dies der Fall ist, verlässt der Cocktailmixer die Schleife

und trägt die Zustände entsprechend in der Datenbank ein. Findet sich kein Zustand zum

Beenden in der Datenbank, weißt die Maschinensteuerung den ausgehenden GPIO-Pins ihre

Spannung (LOW/HIGH) und dem eingehenden Pin einen pull-down-Widerstand zu.

17

2 Grundlagen und Technik

Nun wird überprüft, ob ein Service-Zustand in der Datenbank hinterlegt ist und sich die

Maschine derzeit im Leerlauf befindet. Sind beide Zustände erfüllt, wird der Service-Modus

aktiviert - ansonsten prüft die Maschinensteuerung, ob derzeit eine Bestellung offen ist. Im

Falle einer nicht bearbeiteten Bestellung in der Datenbank wird die Maschine in einen Ar-

beitszustand versetzt und die Klasse Jobs aufgerufen. Diese Klasse lädt die benötigten Schritte

für die anliegende Bestellung aus der Datenbank und wartet, bis der Benutzer ein Glas auf

die Druckplatte stellt und den Start-Schalter bedient. Für diesen Vorgang hat der bestellen-

de Benutzer 30 Sekunden Zeit, danach wird die Bestellung gelöscht und die Schleife in der

Klasse Main beginnt von vorn. Wurde der Schalter innerhalb der gegebenen Zeit ausgelöst

und meldet der Druckplattensensor ein aufgestelltes Glas, werden die einzelnen Stationen

abgefahren. Wurden alle Schritte ausgeführt und befindet sich der Schlitten wieder an seinem

ursprünglichen Platz, wartet die Maschine, bis der Druckplattensensor eine Entnahme des

Glases signalisiert. Der Cocktailmixer beginnt daraufhin die Schleife von neuem.

Abbildung 2.4: Ausschnitt des Aktivitätsdiagramms der Klasse Main

18

2.2 Steuerungssysteme

2.2.2 Datenbankverwaltung

Die Datenbankverwaltung besteht aus den Klassen Drucksensor, Order, SQL, Tasks, Volume und
Ventile. Die Klasse SQL wird von den restlichen Klassen genutzt, um eine Verbindung mit einer

lokal betriebenen MySQL-Datenbank herzustellen. So ruft die Klasse Drucksensor die Daten
aus der Datenbank auf, die bestimmen, ab welchem Wert der Drucksensor ein aufgestelltes

Glas signalisieren soll. Die Klasse Order prüft auf offene Bestellungen in der Datenbank, ruft

das benötigte Rezept für eine Bestellung ab und legt abgeschlossene Bestellungen als erledigt

ab. Die Klasse Tasks holt sämtliche Zustände aus der Datenbank und setzt diese entsprechend

des Zustands in dem sich die Maschine befindet. Die Klasse Volume verarbeitet die aktuellen
Füllstände der Saftbehälter und der alkoholischen Getränke. Die Klasse Ventile regelt das

Öffnen und Schließen der Ventile im Reinigungsmodus.

2.2.3 Maschinensteuerung

Die Maschinensteuerung ist die Schnittstelle zwischen dem Maschinencode und der eingesetz-

ten Hardware, wie dem Getriebemotor, dem Schrittmotor, der Druckplatte und den LEDs. Dabei

wird vor allem das Softwarepaket RPi.GPIO eingesetzt, um über die GPIO-Pins des Raspberry
Pi das Gertboard und so die einzelnen Komponenten anzusteuern. Listing 2.2 zeigt als Bei-

spiel der Maschinensteuerung die Realisierung des Getriebemotors, der an einen Dispenser

herangeführt werden soll. Die Funktion wird mit den Parametern 2000, 50 und dem Pin des

Getriebemotors aufgerufen. In Zeile 7 wird die benötigte Pulsweite errechnet und in Zeile 8 die

Zeitperiode, um auf den benötigten Hertz-Wert zu gelangen. Die errechneten Werte zeigten in

vorherigen Experimenten mit 50% der Maximaldrehgeschwindigkeit ein sanftes Anlegen mit

einem vernachlässigbar kleinen, zusätzlichen Zeitaufwand [Her16]. In der For-Schleife wird

schließlich der Getriebemotor über den GPIO-Pin angesteuert.

Listing 2.2: Funktion vor_slow zur Steuerung des Getriebemotors

1 impor t RPi . GPIO as GPIO

2 impor t sys

3 from t ime impor t s l e e p

4 c l a s s D i spense r : #Aus Da r s t e l l ung sg ru enden l e i c h t v e r e i n f a c h t

5 Reps = 400

6 Her tz = 2000

7 Freq = (1 / f l o a t (Her tz))

8 d e f vor_s low (s e l f , Reps , pu l s e_w id th_pe r c en t , port_num) :

9 pu l s e_w id th = pu l s e _w id t h_pe r c en t / f l o a t (1 0 0) ∗ s e l f . F req

10 t ime_pe r i od = (s e l f . F req

11 − (s e l f . F req ∗ pu l s e _w id t h_pe r c en t / f l o a t (1 0 0)))

12 f o r i i n range (0 , Reps) :

13 GPIO . ou tpu t (port_num , 0)

14 t ime . s l e e p (pu l s e_w id th)

15 GPIO . ou tpu t (port_num , 1)

16 t ime . s l e e p (t ime_pe r i od)

19

2 Grundlagen und Technik

2.3 Benutzeroberfläche

Die Benutzeroberfläche des automatisierten Cocktailmixers wird über ein eigens aufgespanntes

drahtloses Netzwerk bereitgestellt. Benutzer können sich an diesem authentifizieren und

verbinden und daraufhin die Webseite des Cocktailmixers aufrufen. Auf dieser Webseite

werden folgende Funktionen angeboten:

• Benutzername eingeben

• Getränke bestellen

• Bestellung löschen

• Bestellung ändern

Folgende Funktionen dienen der Administration der Benutzeroberfläche und benötigen somit

einen restriktiven Zugang um ausgeführt zu werden:

• Ressource hinzufügen

• Ressource ändern

• Rezept hinzufügen

• Rezept ändern

• Rezept löschen

• Ressource nachfüllen

• Behälter leeren und reinigen

• Servicemodus starten und beenden

Die Programmierung der Benutzeroberfläche wurde in PHP realisiert. Die Hauptfunktionalität

ist in der Datei fun.inc.php umgesetzt. Dort befinden sich alle Klassen, die für die Verwaltung

der Benutzeroberfläche notwendig sind. Auch die Datenbankzugriffe werden größtenteils

in diesen Klassen durchgeführt. Die restlichen Dateien beinhalten den Hypertext Markup

Language (HTML)-Code derWebseite, der zum einen Teil mit Hilfe der Funktionen aus der Datei

fun.inc.php und zum anderen Teil mit Datenbankaufrufen innerhalb der Datei selbst befüllt

wird. Die beiden Benutzerrollen Admin und Bediener besitzen jeweils eigene, größtenteils

redundante Codeabschnitte zur Umsetzung der Administrationsansicht.

20

2.4 Stand der Technik

2.4 Stand der Technik

Dieser Abschnitt schafft durch die Aufarbeitung des aktuellen Stands der Technik eine Rah-

menumgebung der Entwurfsentscheidungen dieser Arbeit. Dabei werden unterschiedliche

Erkenntnisse und/oder Standards aus den Bereichen der Architekturmuster, der Kommunikati-

onsparadigmen und der Usability von Software vorgestellt.

2.4.1 Architekturmuster

Die Softwarearchitektur einer Anwendung oder eines Systems ist eine Struktur, welche ihre

einzelnen Komponenten, deren extern sichtbaren Eigenschaften und die Relationen unter ihnen

beinhaltet [BCK03]. Architekturmuster stellen einen Teil der Softwarearchitektur dar, indem

sie den Stil der Gesamtarchitektur eines Systems beschreiben [Has06]. Im Folgenden werden

sechs Architekturmuster aus dem Buch Architektur-und Entwurfsmuster der Softwaretechnik
[GD13] von Joachim Gall und Manfred Dausmann in alphabetischer Reihenfolge beschrieben.

Diese Muster werden laut den Autoren in der Praxis besonders häufig eingesetzt.

Broker

Das Architekturmuster Broker setzt ein System mit mehreren Clients und Servern zusammen.

Dabei vermittelt eine zwischen Clients und Servern platzierte Instanz die Aufrufe an die kor-

rekte Adresse und liefert deren Antwort zurück. Diese Instanz wird als Broker bezeichnet.
Hintergrund dieses Architekturmusters ist der wachsende Bedarf an Rechenleistung und an

Speicherplatz bei gleichzeitig wachsender Benutzerzahl und somit die Notwendigkeit eines

verteilten Systems. Bei diesem Muster stellen die Server-Komponenten einen oder mehrere

Dienste zur Verfügung, welche von einem Client benötigt werden. Zu erwähnen ist hierbei,

dass ein Server auch in der Rolle des Clients agieren kann, um den Dienst eines anderen Servers

zu benutzen - analoges gilt für den Client. Stellt ein Server seine Dienste über einen Broker zur
Verfügung, kann ein Client, der diesen Dienst benötigt eine Anfrage an den Broker senden.
Server und Client kennen sich somit nicht physisch, sondern rein logisch. Wenn sowohl Client

als auch Server Klassen bereitstellen, die eine Serialisierung und Deserialisierung ihrer gesen-

deten Nachrichten übernehmen, können beide in unterschiedlichen Programmiersprachen

realisiert werden. Soll das Architekturmuster auf mehrere Rechner verteilt werden, wird der

Broker nicht auf einem eignen Rechner realisiert, wie man zuerst annehmen könnte; statt-

dessen wird er selbst verteilt. Jeder Rechner, der eine Client- oder Serverkomponente enthält

erhält einen Broker. So kann ein lokaler Broker die Kommunikation innerhalb des Rechners

übernehmen und sendet Daten an einen entfernten Broker, falls ein Dienst des entfernten

Servers benötigt wird oder ein entfernter Client einen Zugriff verlangt. Ein Dienst muss durch

dieses Prinzip auch nur an dem lokalen Broker angemeldet werden - ist diesem ein Dienst

unbekannt kommuniziert er mit den übrigen Brokern und leitet die Anfrage an die korrekte

Adresse weiter. [GD13]

21

2 Grundlagen und Technik

Tabelle 2.1 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Broker-

Architekturmusters ergeben.

Tabelle 2.1: Vor- und Nachteile des Broker-Architekturmusters nach Goll und Dausmann

Vorteile Nachteile

+ Die Kommunikation zwischen Server und

Client wird von der Funktionalität des Ser-

vers / Clients getrennt.

+ Dienste können (auch dynamisch zur

Laufzeit) verändert werden, ohne die

Client-Seite anpassen zu müssen
1
.

+ Client und Server können in unterschiedli-

chen Programmiersprachen realisiert wer-

den.

- Der Ausfall eines lokalen Brokers beein-
trächtigt alle auf dem Rechner installierten

Client- und Serverkomponenten.

- Ein indirekter Aufruf über einen Broker

resultiert in schlechterer Performance als

eine direkte Kommunikation.

- Der Broker kann ein Engpass bezüglich

des Durchsatzes sein.

Gründe zum Einsatz des Broker-Architekturmusters:

• Eine Entkopplung von Client- und Serverkomponenten ist erwünscht.

• Komponenten sollen untereinander auf ihre Dienste zugreifen, ohne Kenntnis über deren

physischen Adresse.

• Komponenten sollen zur Laufzeit veränderbar sein
1
.

• Details der Implementierung von Client-Komponenten und Diensten sollen verborgen

werden.

1
Falls gerade kein Aufruf stattfindet und die Schnittstelle, welche die Aufrufe verwaltet, nicht verändert wird

22

2.4 Stand der Technik

Pipes and Filter

Das Architekturmuster Pipes and Filter erhielt seinen Namen aufgrund der Struktur welches

dieses Muster prägt. Ein System wird dabei in seine Verarbeitungsschritte zerlegt. Ein einzelner

Schritt wird als Filter bezeichnet. Je zwei Filter sind über eine Pipe miteinander verbunden.

Ein Filter erhält eine Eingabe, verarbeitet sie sequentiell und wandelt sie in eine Ausgabe

um. Diese Ausgabe kann schließlich über eine Pipe zu einem weiteren Filter fließen. Der

Filter kann der Eingabe Teile entnehmen, hinzufügen oder Teile der Eingabe abändern. Die

Pipes zwischen den Filtern puffern die Daten, die durch sie hindurch geschickt werden - die

Filter werden somit asynchron entkoppelt. Eine Folge von Pipes and Filtern wird als Pipeline
bezeichnet. Am Kopf einer solchen Pipeline befindet sich die Informationsquelle, an deren

Ende die Informationsausgabe. Die beiden Komponenten bilden die einzige Schnittstelle nach

außen. Abbildung 2.5 zeigt die Struktur des Architekturmusters Pipes and Filter; dabei sind

die Schnittstellen grau, die Pipes schwarz und die Filter weiß hinterlegt. Die Gesamtheit der

Pipes eins bis vier und der Filter eins, zwei und drei wird in ihrer Reihenfolge als eine Pipeline

bezeichnet.

Abbildung 2.5: Struktur des Architekturmusters Pipes and Filter

Die Informationsquelle kann sich entweder aktiv oder passiv verhalten. Ist sie aktiv, schickt sie

Daten an eine Pipe, während sie passiv wartet, bis der nächste Filter Daten von ihr anfordert.

Ebenso verhält es sich mit der Informationsausgabe; diese fordert aktiv Daten aus einer Pipe

an und wartet passiv, bis sie Daten erhält. Auch Filter können aktiv oder passiv im System

agieren. Ein aktiver Filter sendet und empfängt an und von seinen anliegenden Pipes. Passive

Filter erhalten ihre Daten von einer Pipe mit einem vorhergehenden, aktiven Filter. Ebenso

werden die Daten des passiven Filters über eine nachfolgende Pipe von einem aktiven Filter

abgeholt. Durch diese Festlegung sind einige Szenarien ableitbar, so zum Beispiel das Pull-
Prinzip, bei dem nur die Informationsausgabe aktiv ist, oder das Push-Prinzip, bei dem die

Informationsquelle allein aktiv ist. [GD13]

23

2 Grundlagen und Technik

Tabelle 2.2 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Pipes and

Filter-Architekturmusters ergeben.

Tabelle 2.2: Vor- und Nachteile des Pipes and Filter-Architekturmusters nach Goll und Daus-

mann

Vorteile Nachteile

+ Innerhalb einer Pipeline sind Filter, Infor-

mationsquelle und/oder Informationsaus-

gabe leicht aus- oder vertauschbar
1
.

+ Verarbeitungsschritte, die nicht nebenein-

anderliegen, besitzen keinen direkten Da-

tenaustausch und sind somit entkoppelt.

+ Filter sind in anderen Pipelines leicht wie-

derverwendbar.

- Da im System kein gemeinsamer Zustand

existiert, ist die Umsetzung einer Fehlerbe-

handlung erschwert.

- Die Geschwindigkeit der Pipeline wird

durch den langsamsten Filter bestimmt -

keine vollständige Parallelisierung, da Fil-

ter aufeinander warten.

- Bei einem schlecht gewählten Datenfor-

mat der Pipes kann ein erhöhter Aufwand

bei der Datenkonvertierung in einzelnen

Filtern entstehen.

Gründe zum Einsatz des Pipes and Filter-Architekturmusters:

• Die Verarbeitungsschritte werden sequentiell abgearbeitet.

• Pipelines und deren Komponenten könnten in zukünftigen Realisierungen wiederver-

wendet werden.

1
Dies ist auch abhängig von der Festlegung des Datenformats innerhalb der Pipes

24

2.4 Stand der Technik

Model-View-Controller

Häufig muss in interaktiven Systemen mit unterschiedlichen Darstellungen auf verschiede-

ne Benutzereingaben reagiert werden. Die angeforderten Daten müssen für diesen Vorgang

gespeichert und verarbeitet werden. Das Architekturmuster Model-View-Controller (MVC)

trennt die Komponenten Modell (Model), Ansicht (View) und Controller strikt voneinander ab.

Dies bedeutet jedoch nicht, dass die Komponenten nicht miteinander kommunizieren können.

Die Komponente Modell beinhaltet die Daten als auch deren Verarbeitung. Die Ansicht erhält

die anzuzeigenden Daten von der Modell-Komponente und präsentiert sie den Benutzern. Der

Controller verarbeitet die Benutzereingaben innerhalb des Systems. Eine Ansicht ist dabei

einem Controller zugeordnet; ein Controller kann allerdings mehrere Ansichten steuern. Da

die Controller- und Ansichtskomponente in einer wechselseitigen Abhängigkeit stehen (die

Ansicht informiert den Controller über die vom Benutzer getätigten Eingaben und der Con-

troller bestimmt den Zustand der Ansicht), werden diese in einer Abwandlung des Musters zu

der Komponente Delegate (= Benutzerschnittstelle) zusammengefasst. Im Folgenden werden

die drei Komponenten des MVC-Musters im Detail erläutert.

Das Modell wird von den übrigen beiden Komponenten unabhängig behandelt. Dies bedeutet,

dass ein Konzept und eine Implementierung des Modells ohne Berücksichtigung der Ansicht

oder des Controllers getätigt werden kann. Es besitzt die Funktionalität, gespeicherte Daten

aufzurufen, zu verarbeiten und zu verändern. Um die Ansichtskomponente über die Änderung

von Daten zu informieren, existieren zwei Vorgehensweisen. Beim passiven Modell teilt der

Controller die Änderungen der Daten mit. Das aktive Modell informiert die Ansichten des Sys-

tems selbst über seine Zustandsänderungen. Hier können zwei Modi unterschieden werden: Im

Push-Betrieb sendet das Modell seine Daten als Übergabeparameter an die Ansichtskomponente.

Im Pull-Betrieb wird die Ansicht lediglich darüber informiert, dass neue Daten verarbeitet

wurden - die Ansicht holt sich diese daraufhin selbst von der Modellkomponente ein.

Die Ansichtskomponente präsentiert die Daten des Modells dem Benutzer. Dabei sind unter-

schiedliche Ansichten, auch für identische Daten, vorgesehen. Dafür muss eine Ansicht genaue

Informationen über ein Modell besitzen. Ändert sich der Aufbau eines Modells, hat das häufig

auch eine Änderung der Ansicht zur Folge. Eine Ansicht enthält zudem Steuerelemente, wie

zum Beispiel Eingabefelder, deren Benutzung ein Ereignis auslösen, das an den für die Ansicht

zuständigen Controller weitergegeben wird.

Der Controller interpretiert die Anfrage(n) eines Benutzers und legt fest, welche Ereignisse

zu welchen Funktionsaufrufen innerhalb des Modells führen. Ebenso gehört es zu seinen

Aufgaben, die Ansicht über Änderungen zu informieren, die im Zusammenhang mit dem

Funktionsaufruf stehen (zum Beispiel das Deaktivieren einer Schaltfläche). [GD13]

25

2 Grundlagen und Technik

Tabelle 2.3 zeigt drei Vor- und zwei Nachteile, die sich aus der Anwendung des MVC-

Architekturmusters ergeben.

Tabelle 2.3: Vor- und Nachteile des MVC-Architekturmusters nach Goll und Dausmann

Vorteile Nachteile

+ Die Modell-Komponente kann unabhän-

gig von der Benutzeroberfläche entworfen

und die Benutzeroberfläche ohne Verän-

derungen an der Modell-Komponente an-

gepasst werden.

+ DasModell ist unabhängig von einer Ober-

fläche testbar.

+ Es können verschiedene Benutzeroberflä-

chen für dieselbe Anwendung entworfen

werden.

- Die Performance kann sinken, wenn eine

Anzeige mehrere Aufrufe benötigt, um die

zur Anzeige benötigten Daten von dem

Modell zu erhalten.

- Bei kleineren Anwendungen ist der erhöh-

te Implementierungsaufwand für die Er-

füllung des Architekturmusters nicht ge-

rechtfertigt.

Gründe zum Einsatz des MVC-Architekturmusters:

• Das System soll interaktiv sein.

• Die Benutzerschnittstelle soll vom Rest des Systems abgeschirmt werden.

26

2.4 Stand der Technik

Plugin

Der Begriff Plugin (auch Plug-in) stammt aus dem Englischen „to plug sth. in“ und bedeutet

übersetzt „etwas einstecken“. Als Architekturmuster verstanden bedeutet dies ein lauffähiges

System, das ständig erweiterbar ist. Der Hintergrund dieses Musters ist der Wunsch, Soft-

ware, die relativ verlässlich in Betrieb ist, nicht mehr zu verändern, sondern flexibel um neue

Funktionalitäten zu erweitern. Um dies zu bewerkstelligen, benötigt es Schnittstellen, die eine

solche Erweiterung zulassen. Die Anwendung soll dabei auch ohne ein Hinzufügen neuer Kom-

ponenten funktionieren können. Eine Plugin-Komponente ist nicht als ein Endpunkt zu sehen

- viel mehr kann das Plugin ebenfalls eine Schnittstelle implementieren, an der neue Plugins

kaskadiert werden können. Ein Plugin-Manager realisiert die Schnittstelle zu einzelnen Plugins

einer Anwendung. Möchte der Benutzer beispielsweise einen, der Applikation unbekannten,

Dateityp öffnen, fragt der Plugin-Manager die existenten Plugins ab und prüft, ob diese Funk-

tionen bereitstellen, welche diesen Dateityp behandeln können. Ist dies für ein Plugin der Fall,

wird der Aufruf an das gefundene Plugin weitergeleitet. Wird kein Plugin gefunden führt die

Anwendung allerdings weiter aus und startet eine Fehlerbehandlung. Abbildung 2.6 zeigt eine

Realisierung des Plugin-Architekturmusters mit drei Plugins. Die Anwendung interagiert über

einen Plugin-Manager mit ihnen. [GD13]

Abbildung 2.6: Struktur des Plugin-Architekturmusters

27

2 Grundlagen und Technik

Tabelle 2.4 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Plugin-

Architekturmusters ergeben.

Tabelle 2.4: Vor- und Nachteile des Plugin-Architekturmusters nach Goll und Dausmann

Vorteile Nachteile

+ Jedes Plugin besitzt seine eigene Zustän-

digkeit.

+ Plugins erlauben die Erweiterung eines be-

stehenden Systems ohne Kenntnisse über

dessen Programmcode.

+ Die Entwicklung komplexer Software ist

bequem aufteilbar.

- Die Entwicklungszeit der initialen Anwen-

dung ist höher, da in diese die für das Mus-

ter benötigten Schnittstellen implementie-

ren werden müssen.

- Der Verwaltungsaufwand während der

Ausführung einer speziellen Anwendung

steigt.

- Es muss für alle Erweiterungen eine ge-

meinsame Schnittstelle gefunden werden.

Gründe zum Einsatz des Plugin-Architekturmusters:

• Ein großer Kreis von Benutzern hat unterschiedliche Anforderungen an die Anwendung.

• Einzellösungen zu entwickeln ist nicht kosteneffizient.

• Die Benutzer sollen die Anwendung selbst erweitern können.

28

2.4 Stand der Technik

Schichtenmodell

Das Schichtenmodell ist ein Architekturmuster, dass seine Komponenten als Teilsysteme in

horizontale Schichten einteilt. Die Komponenten sind dabei Unteraufgaben wie die Daten-

haltung oder die Kommunikation. Tiefere Schichten stellen den höheren Funktionalität in

Form von Diensten bereit; unter den Schichten gilt das Client-Server-Prinzip. Eine Schicht

hängt dabei nie von den ihr übergeordneten Schichten ab und jede Schicht bietet der nächst

höheren ihre Dienste an. Ein Zugriff findet dabei über Schnittstellen statt, welche von der

direkt darunterliegenden Schicht bereitstellt werden. Eine weniger strikte Variation des Mus-

ters erlaubt auch Zugriffe auf alle Schichten unter der aufrufenden Schicht. Die einzelnen

Schichten des Schichtenmodells werden abstrakt betrachtet. So kann man ein Betriebssystem

als eine Schicht ansehen welche sich über der Hardware-Schicht befindet. Geht man von

einem verteilten System mit Client und Server aus, lässt sich das Schichtenmodell auf zwei

Arten implementieren. Bei der Thin-Client-Architektur ist die oberste Schicht des Clients

die Schicht der Benutzerschnittstelle (Eingabe/Ausgabe). Darunter folgt, da es sich um ein

verteiltes System handelt, eine Kommunikationsschicht, um mit dem entfernten Server zu

kommunizieren. Der Server stellt in seiner obersten Schicht die Kommunikationsschicht bereit.

Darunter befindet sich eine Verarbeitungsschicht. Diese greift wiederum auf eine unter ihr

liegende, persistente Datenhaltungsschicht zum Speichern oder Laden von Daten zu. Wendet

man die Fat-Client-Architektur an, befindet sich die Verarbeitungsschicht statt auf dem Server

direkt über der Kommunikationsschicht des Clients. Abbildung 2.7 veranschaulicht die beiden

Varianten des Architekturmusters. [GD13]

Abbildung 2.7: Architektur Thin/Fat-Client als Schichtenmodell

29

2 Grundlagen und Technik

Tabelle 2.5 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung des Schichtenmodells

ergeben.

Tabelle 2.5: Vor- und Nachteile des Schichtenmodells nach Goll und Dausmann

Vorteile Nachteile

+ Jede Schicht stellt eine Abstraktion einer

Funktionalität dar und erleichtert die Ver-

ständlichkeit des Ganzen.

+ Sind die Schnittstellen festgelegt, können

die einzelnen Schichten parallel entwi-

ckelt werden.

+ Schichten können gegebenenfalls wieder-

verwendet werden.

- Eine Anfrage, die mehrere Schichten

durchlaufen muss, ist langsamer als der

direkte Zugriff.

- Änderungen können sich über eine Schicht

hinaus erstrecken was Mehraufwand be-

deutet.

- Es kann sich als schwer herausstellen, die

richtige Anzahl an Schichten festzulegen.

Gründe zum Einsatz des Schichtenmodells:

• Da das Schichtenmodell abstrahiert, kann es besonders gut als ein übergeordnetes

Architekturmuster verwendet werden, in dessen Schichten weitere Architekturmuster

eingebettet werden.

30

2.4 Stand der Technik

Serviceorientierte Architektur

Eine Serviceorientierte Architektur (SOA) fasst Teile eines Geschäftsprozesses als Dienste

in Form von Komponenten in einem verteilten System auf. Damit ein solcher Dienst den

Anforderungen der Geschäftsprozesse gerecht wird, muss er eine Vielzahl von Eigenschaften

besitzen. So sollte er zuallererst in einem Netzwerk zur Verfügung stehen. Von dort aus soll er

unabhängig aufrufbar sein. Sein Zustand darf sich nach einer Benutzung für darauffolgende

Aufrufe nicht verändern - er muss zustandslos sein. Die Dienste sollen untereinander entkop-

pelt sein und dynamisch zur Laufzeit aufgerufen werden können. Ein Dienst sollte zudem

stets austauschbar sein. Dafür benötigt das System standardisierte Schnittstellen. Der Dienst

soll plattform- und ortsunabhängig sein. Zur Nutzung des Dienstes sollen seine Schnittstellen

genügen; die Implementierung bleibt verborgen. Die Dienste sollen schließlich in einem Ver-

zeichnis registriert sein.

Ein Dienst kann aus mehreren elementaren Diensten zusammengesetzt sein, die genau eine

einfache Funktion der Anwendung in sich kapseln. Ruft ein Dienst weitere Dienste oder elemen-

tare Dienste zur Erbringung seiner Leistung auf, nennt man ihn zusammengesetzten Dienst.

Die Beziehungsstruktur zwischen dem Verzeichnis, dem Benutzer und dem Dienstanbieter

wird als SOA-Dreieck dargestellt. Dieses ist in Abbildung 2.8 abgebildet. [GD13]

Abbildung 2.8: SOA-Dreieck

31

2 Grundlagen und Technik

Tabelle 2.6 zeigt drei Vor- und drei Nachteile, die sich aus der Anwendung der serviceorientier-

ten Architekur ergeben.

Tabelle 2.6: Vor- und Nachteile einer serviceorientierten Architektur nach Goll und Dausmann

Vorteile Nachteile

+ Die Komplexität verteilter Systeme ist

durch die Aufteilung in Komponenten von

Diensten und elementaren Diensten redu-

ziert.

+ (elementare) Dienste sind wiederverwend-

bar.

+ Bei gleichbleibender Schnittstelle kann die

Implementierung eines Dienstes stets aus-

getauscht werden.

- Eine feingranulare Dienstaufteilung er-

zeugt hohe Komplexität.

- Es entsteht ein Mehraufwand durch eine

Kommunikation über mehrere Schichten

hinweg.

- Die SOA ist nur bei klar definierten und

dokumentierten Geschäftsprozessen mög-

lich.

Gründe zum Einsatz einer serviceorientierten Architekur:

• Die Geschäftsprozesse sind gut dokumentiert und wohldefiniert.

• Das eingesetzte System ist komplex und soll vereinfacht werden.

• Kunden bzw. Lieferanten sollen in die Geschäftsprozesse eingebunden werden.

32

2.4 Stand der Technik

2.4.2 Kommunikationsparadigmen

Unter Einhaltung eines modularen Architekturansatzes, bietet es sich an, die Kommunikation

zwischen den Hauptkomponenten möglichst unabhängig zu gestalten. Das bedeutet, dass

Server und Client, unabhängig von ihrer konkreten Implementierung, Daten über die Kommu-

nikationsschnittstelle austauschen können. Für dieses Ziel existiert ein Architekturansatz, der

schon im Jahr 2000 entwickelt wurde und heute in vielen großen Frameworks wiederzufinden

ist. Es handelt sich hierbei um das Programmierparadigma Representational State Transfer

(REST). Das Paradigma basiert auf folgenden Prinzipien [Rod08]:

• Hypertext Transfer Protocol (HTTP)-Methoden werden explizit so verwendet, wie man

sie konventionell vorgesehen hat [FGM+99]. Insbesondere die grundlegenden Create,

Read, Update, Delete (CRUD)-Funktionen können so auf die HTTP-Methoden POST,
GET, PUT und DELETE übertragen werden.

• Jeder Zugriff auf den angefragten Server erfolgt unter REST zustandslos. Diese Eigen-

schaft ist gerade durch die Anforderung an Verfügbarkeit und schneller Antwortzeit

auch bei einer hohen Belastung unerlässlich. Jeder Client wird somit vom Server, seiner

Anfrage bezüglich, gleichbehandelt; lediglich der Inhalt der übermittelten Nachricht und

deren Antwort verändern die Zustände beider Seiten.

• Uniform Resource Identifiers (URIs) sind einzigartig, eingängig und sinnvoll gewählt.

Hierbei wird zum Beispiel die Hierarchie, welche durch die Trennung der URI mit

Schrägstrichen erfolgt, als ein Baum aufgefasst und so die Adresse logisch unterteilt.

• Das genutzte Format zum Datenaustausch ist simpel gehalten und für den Menschen

leicht zu lesen und interpretieren. Dafür werden gängige Multipurpose Internet Mail

Extensionss (MIMEs), wie Extensible Markup Language (XML) und JavaScript Object

Notation (JSON), genutzt.

Eine Alternative des REST-Architekturansatzes ist die Verwendung von nachrichtenorien-

tierter Middleware. Hierbei übernehmen Broker die Kommunikation zwischen den verteilten

Systemen und ermöglichen so eine Entkopplung der Komponenten. Während bei REST ein

synchroner Datenaustausch stattfindet, können die Broker Nachrichten auch asynchron unter-

einander austauschen. Ein synchroner Datenaustausch benötigt eine Fehlerbehandlung auf

der Seite des Senders, wenn gesendete Nachrichten keine Antwort erhalten. Ein asynchroner

Datenaustausch erfordert die Fehlerbehandlung auf Seiten des Brokers, der für die Nachrich-

tenübermittlung zuständig ist. Eine Schlussfolgerung dieser Eigenschaft ist, dass ein Ausfall

oder Fehlverhalten des Brokers den gesamten Nachrichtenaustausch zum Stillstand bringt.

[Cur04]

33

2 Grundlagen und Technik

2.4.3 Benutzerfreundlichkeit

Die Benutzerfreundlichkeit (engl. usability) wird nach Nielsen wie folgt definiert:

„Usability is a quality attribute that assesses how easy user interfaces are to use. The word ‘usability’
also refers to methods for improving ease-of-use during the design process.“ [Nie03]

Nielsen unterteilt die Benutzerfreundlichkeit zudem in fünf Komponenten:

• Lernbarkeit:Wie leicht können Benutzer eine gegebene Aufgabe bei einer Erstbenut-

zung des Designs lösen.

• Effizienz: Wie schnell können Aufgaben gelöst werden, wenn der Benutzer einmal mit

dem Design vertraut ist.

• Informationsaufnahme: Wie leicht kann erlerntes Können bezüglich des Designs

nach einer gewissen Zeit wieder aufgerufen werden.

• Fehler: Wie viele Fehler machen Benutzer? Wie schwerwiegend fallen diese aus? Wie

leicht ist die Fehlerbehandlung?

• Bedürfnisbefriedigung: Ist das Design angenehm bedienbar?

Neben der Benutzerfreundlichkeit existiert die Nützlichkeit als Qualitätsmerkmal, welches

besagt, zu welchem Grad Software die von ihr geforderten Funktionen bereitstellt. Beide

Merkmale legen fest, wie verwendbar eine Softwareanwendung ist. Ein hoher Grad an Be-

nutzerfreundlichkeit ist vor allem im Internet von großer Relevanz. Ist diese nicht gegeben,

verlassen die Benutzer eine Webseite. Im Intranet erhöht sie die Produktivität der Angestellten,

falls sie hoch angesetzt ist. [Nie03]

34

2.4 Stand der Technik

Ein etabliertes Maß um ein Softwaredesign auf Benutzerfreundlichkeit hin zu prüfen, ist der

Abgleich mit den acht goldenen Regeln von Shneiderman:

• Konsistenz: Verwandte Funktionen (z. B. Löschen, Weiter oder Zurück) sollten über das

gesamte Design sowohl vorhanden und gleich benannt sein als auch gleich funktionieren.

• Universelle Benutzbarkeit: Sowohl neuen Benutzern als auch erfahrenen Anwendern

des Designs soll eine praktische Benutzung angeboten werden. Dazu muss für Neulinge

eine einfache, intuitive Bedienung angeboten werden, während erfahrenen Benutzern

durch Abkürzungen ein schnellerer Arbeitsablauf ermöglicht wird.

• Informative Rückmeldungen anbieten: Der Benutzer muss über die durchlaufenen

Aktionen unverzüglich nach deren Abschluss informiert werden. Die Rückmeldungen

können bei häufig auftretenden Aktionen geringer und bei weniger auftretenden Aktio-

nen höher ausfallen.

• Abgeschlossenheit: Bei Aktionen, die mehrere Sequenzen benötigen, soll der Benutzer

zu jedem Zeitpunkt wissen, an welcher Stelle er sich befindet. Ebenso soll die Sequenz

einen erkennbaren Anfang und ein erkennbares Ende haben.

• Fehlervermeidung: Dem Benutzer sollen illegale oder inkorrekte Interaktionen mit

dem System erkennbar gemacht werden. Ebenso sollen dem Benutzer mögliche Lösungs-

vorschläge angeboten werden.

• Umkehrbarkeit: Es sollen so viele Aktionen wie möglich umkehrbar sein, damit sich

der Benutzer aus einem unerwünschten Zustand entfernen kann.

• Benutzerkontrolle: Dem Benutzer soll die Kontrolle über das System gewährt werden.

Er selbst soll durch seine Interaktionen Prozesse in Gang setzen, diese unterbrechen

oder stoppen können.

• Kurzzeitgedächtnis entlasten: Der Benutzer soll mit der bereitgestellten Information

nicht überfordert werden. Als eine Faustregel gilt, dass ein Mensch im Durchschnitt

sieben plus/minus zwei Informationseinheiten im Kurzzeitgedächtnis aufnehmen kann

[Mil56].

35

2 Grundlagen und Technik

Um die Benutzerfreundlichkeit eines Designs zu steigern, muss die visuelle Wahrnehmung

angezeigter Elemente bekannt sein. Einen ersten Zusammenhang stellte Wertheimer mit einer

Sammlung wesentlicher Faktoren (später als Gestaltgesetze bekannt) her:

• Gesetz der Nähe: Gleiche oder sich ähnelnde Elemente, die nah beieinander liegen,

werden auch als zusammengehörig wahrgenommen.

• Gesetz der Ähnlichkeit: Gleiche oder sich ähnelnde Elemente werden als zusammen-

gehörig wahrgenommen.

• Gesetz der Geschlossenheit: Elemente, die einfache Formen wie ein Dreieck, einen

Kreis oder ein Quadrat bilden, werden als zusammengehörig wahrgenommen.

• Prägnanzgesetz: Einzelne Elemente, die sich von allen anderen unterscheiden, werden

vorrangig wahrgenommen.

• Gesetz der einfachen Gestalt: Unterbrochene oder mehrdeutige Formen werden als

einfache Formen (z. B. Dreieck, Kreis oder Quadrat) wahrgenommen.

• Gesetz der einfachen Fortsetzung: Linien, die sich schneiden, werden so wahrgenom-

men, als ob sie in ihre ursprüngliche Richtung weiter verlaufen.

36

3 Analyse

In diesem Kapitel sind sämtliche Ergebnisse der Recherche festgehalten. Diese beginnt mit

einer Prüfung des bisherigen Systems. Anschließend sind die Anforderungen an das System do-

kumentiert. Diese unterteilen sich in die funktionalen, die nichtfunktionalen und die sonstigen

Anforderungen. Schließlich werden zwei ähnliche Arbeiten präsentiert und die Notwendigkeit

dieser Arbeit durch eine Abgrenzung von diesen und dem bestehenden System untermauert.

Die Analyse der genannten Abschnitte ist ein notwendiger Schritt, welcher der Konzeption

vorausgeht. Die Erkenntnisse dieses Kapitels, besonders die Anforderungen an das System,

legen den Grundstein für die Erstellung des Systementwurfs.

3.1 Ausgangssituation

Dieser Abschnitt soll erläutern, inwiefern eine Neuentwicklung des bestehenden Systems

aus Sicht des aktuellen Stands der Technik notwendig ist. Dabei werden Probleme benannt

und mögliche Lösungsansätze
1
skizziert, welche später im Systementwurf vertieft behandelt

werden. Die Betrachtung beschränkt sich dabei lediglich auf die Benutzeroberfläche des Cock-

tailmixers (siehe auch Abschnitt 3.4). Der Abschnitt nimmt dabei Bezug auf den Stand der

Benutzeroberfläche von Dezember 2016.

Die Analyse der Ausgangssituation teilt sich in die Benutzerfreundlichkeit und dem Software-

design auf.

1
Die Lösungsansätze werden an dieser Stelle nur exemplarisch genannt, um zu verdeutlichen, dass eine

Lösung der Probleme überhaupt möglich ist.

37

3 Analyse

3.1.1 Benutzerfreundlichkeit

Die Benutzerfreundlichkeit der bestehenden Benutzerschnittstelle weißt an vier Stellen er-

kennbare Mängel auf, die im Folgenden genauer beschrieben werden.

Notwendiges Vorwissen

Um die bestehende Webanwendung zu benutzen, müssen Bediener und Administratoren

die Uniform Resource Locators (URLs) für die Anmeldeseite wissen und manuell aufrufen.

Ein Zugriffspunkt, der nach erfolgreichem Einloggen in die allgemeine Bedienoberfläche

eingebettet ist, würde das Vorwissen auf die Zugangsdaten beschränken.

Verletzung der goldenen Regeln von Shneiderman

Die Benutzeroberfläche liefert an einigen Stellen eine unzureichende oder keine Rückmeldung

auf getätigte Benutzereingaben. Diese können durch das Hinzufügen von Textmeldungen

ergänzt werden. Ebenso wird die Regel der universellen Benutzbarkeit für neue Bediener und

Administratoren verletzt - die Benutzeroberfläche ist wegen ihrer verschachtelten Menüfüh-

rung und einiger uneinheitlicher Seiten zu kompliziert und muss vereinfacht werden.

Keine Internationalisierung

Das bestehende System ist nur in deutscher Sprache verfügbar. Durch die Implementierung

einer Internationalisierung können weitere Sprachen eingepflegt werden. Dafür müssen jedes

Vorkommnis eines sprachlichen Konstrukts dynamisch der ausgewählten Sprache angepasst

werden.

Responsives Design

Die bestehende Benutzeroberfläche stellt kein responsives Design für mobile Endgeräte bereit.

Die Webseite wird bei einem Aufruf von einem solchen Gerät der Bildschirmgröße des Geräts

angepasst. Dies ist insbesondere bei Smartphones nachteilig, da die Anzeige dort sehr klein
ausfällt und ein manuelles Vergrößern notwendig ist. Die Benutzeroberfläche muss demnach

für mobile Endgeräte angepasst werden.

38

3.1 Ausgangssituation

3.1.2 Softwaredesign

Das Softwaredesign der bestehenden Benutzerschnittstelle beinhaltet zwei Mängel, die an

dieser Stelle genannt werden.

Fehlende Dokumentation

Der Cocktailmixer wurde inkrementell über mehrere Entwickler hinweg programmiert. Eine

Dokumentation des Programmcodes wurde dabei minimal gehalten. Diese muss in Form eines

Systementwurfs und einer Dokumentation innerhalb des Programmcodes erstellt werden.

Keine Modularisierung

Die Architektur des bestehenden Systems folgt keinem klaren Architekturmuster (vgl. Un-

terabschnitt 2.4.1). Stattdessen wirkt es, als wäre an den jeweils zu bearbeitenden Stellen

Programmcode hinzugefügt worden, obwohl von vorherigen Entwicklern funktionsidentische

Klassen an anderer Stelle bereitgestellt wurden. Der Code für den Bediener und den Adminis-

trator ist größtenteils redundant und könnte mit wenigen Änderungen vereint werden. Eine

Kapselung des Codes findet ausschließlich bei dem Code des Bedieners und des Administrators

statt, die jeweils in einen eigenen Ordner platziert wurden. Eine große Zahl unterschiedlicher

Funktionen wurde in eine einzelne Datei geschrieben (vgl. Abschnitt 2.3), die von den anderen

Klassen aufgerufen wird - das macht eine Wartung schwierig und den Code unübersichtlich.

Dass Systemmuss unter Einhaltung eines oder mehrerer Architekturmuster entwickelt werden,

sodass eine Übersichtlichkeit hergestellt wird.

39

3 Analyse

3.2 Anforderungskatalog

Dieser Abschnitt enthält alle gesammelten Anforderungen, die an eine Benutzeroberfläche

des Cocktailmixers gestellt werden. Die Anforderungen wurden zum einen aus vorherigen

Arbeiten entnommen, zum anderen entstammen sie mehreren geführten Gesprächen mit dem

Betreuer und den Verantwortlichen. In Unterabschnitt 3.2.1 befinden sich alle erkannten funk-

tionalen Anforderungen an das System. In Unterabschnitt 3.2.2 werden die nichtfunktionalen

Anforderungen präsentiert. Schließlich sind in Unterabschnitt 3.2.3 alle sonstigen Anforde-

rungen aufgezählt. Daraufhin werden zwei der Anwendungsfälle vorgestellt, welche eine

Interaktion mit dem System beschreiben. Die Benutzerrollen sind zum einen der Bediener und

zum anderen ein Administrator für die Verwaltung der Benutzeroberfläche. Das System besteht

aus den Rollen Client und Server. Abbildung 3.1 veranschaulicht ein Anwendungsfalldiagramm

bestehend aus den Anwendungsfällen, die aus den funktionalen Anforderungen abgeleitet

wurden. In diesem Diagramm wurden die Anwendungsfälle der Benutzerrollen Bediener und

Administrator veranschaulicht.

3.2.1 Funktionale Anforderungen

In diesem Unterabschnitt sind die funktionalen Anforderungen, ihrer Funktionalität nach

sortiert, aufgezählt. Tabelle 3.1 beinhaltet alle Anforderungen an die Rezepte, Tabelle 3.2 zeigt

alle Anforderungen an eine Rezeptliste. In Tabelle 3.3 werden die Anforderungen an eine

Warteliste aufgeführt. Die Anforderungen an eine Startseite sind in Tabelle 3.4 aufgezählt.

Tabelle 3.5 beinhaltet die Benutzerprofil-Anforderungen. Schließlich sind in Tabelle 3.6 alle

erkannten Anforderungen eingetragen, welche die Administrationsoberfläche betreffen.

Tabelle 3.1: Softwareanforderungen - Rezepte

Nummer Beschreibung der Anforderung
R1 Einzelne Rezepte sollen aufrufbar sein.

R2 Die Zutaten der Rezepte sollen angezeigt werden.

R3 Dem Benutzer soll ein Bild (mehrere Bilder) von dem Rezept angezeigt

werden.

R4 Dem Benutzer sollen weitere Informationen über das Rezept angezeigt

werden.

R5 Der Benutzer soll eine oder mehrere Rezepte bestellen können.

40

3.2 Anforderungskatalog

Tabelle 3.2: Softwareanforderungen - Rezeptliste

Nummer Beschreibung der Anforderung
RL1 Dem Benutzer soll eine Liste mit verfügbaren Rezepten angezeigt werden.

RL2 Existieren viele Rezepte sollen diese über mehrere Seiten hinweg ange-

zeigt werden.

RL3 Die Zutaten der Rezepte in der Rezeptliste sollen auf Wunsch angezeigt

oder ausgeblendet werden.

RL4 Dem Benutzer soll ein Bild (mehrere Bilder) von dem Rezept in der

Rezeptliste angezeigt werden.

RL5 Der Benutzer soll auf Wunsch weitere Informationen zu dem Rezept über

die Rezeptliste einholen können.

RL6 Der Benutzer soll eine odermehrere Rezepte über die Rezeptliste bestellen

können.

Tabelle 3.3: Softwareanforderungen - Warteliste

Nummer Beschreibung der Anforderung
W1 Eine aktuelle Liste mit offenen Bestellungen soll auf der Einstiegsseite

angezeigt werden.

W2 Die Liste soll, je nach Bedarf, ein- und ausblendbar sein.

W3 Falls mehrere offene Bestellungen in der Liste vorhanden sind, soll dem

Benutzer die Reihenfolge erkennbar gemacht werden.

W4 Nach Ausführung einer Bestellung soll diese aus der Warteliste entfernt

werden.

W5 Falls eine Bestellung aktiv ist und der Benutzer innerhalb von einer

bestimmten Zeit das Glas nicht abstellt und/oder den Starttaster nicht

drückt, soll der Vorgang abgebrochen werden, die Bestellung aus der Liste

der offenen Bestellungen gestrichen werden und die nächste Bestellung

nachrücken.

41

3 Analyse

Tabelle 3.4: Softwareanforderungen - Startseite

Nummer Beschreibung der Anforderung
S1 Der Benutzer soll auf einer Seite informiert werden, welcher Vorgang

derzeit abgearbeitet wird.

S2 Der Benutzer soll auf einer Seite informiert werden, wann das Glas auf

die Ablagefläche des Tisches gestellt werden darf.

S3 Der Benutzer soll auf einer Seite informiert werden, wann das Getränk

fertig zur Entnahme ist.

Tabelle 3.5: Softwareanforderungen - Benutzerprofil

Nummer Beschreibung der Anforderung
B1 Der Benutzer soll sich am System anmelden können und von diesem

Zeitpunkt an mit seinem eingetragenen Namen interagieren können.

B2 Falls der Benutzer sich mit einem korrekten Administrator-Passwort

am System anmeldet, soll er von diesem Zeitpunkt an als Administrator

interagieren können.

B3 Ein angemeldeter Benutzer soll sich vom System abmelden können und

dabei sämtliche Privilegien, die er nach seiner Anmeldung erhielt, wieder

verlieren.

42

3.2 Anforderungskatalog

Tabelle 3.6: Softwareanforderungen - Administrationsoberfläche

Nummer Beschreibung der Anforderung
A1 Ein Administrator soll über die Benutzeroberfläche auf einen Adminis-

trationsbereich zugreifen können.

A2 Innerhalb des Administrationsbereichs sollen alle aktuellen Zustände des

Cocktailmixers angezeigt werden.

A3 Innerhalb des Administrationsbereichs sollen alle Zutaten angezeigt wer-

den.

A4 Innerhalb des Administrationsbereichs sollen Zutaten hinzugefügt wer-

den können. Dabei soll festlegbar sein, ob die Zutat aktiv ist. Zudem

soll der Name, der Typ, die Viskosität, der Port, die Information und die

Bilder gesetzt werden können.

A5 Innerhalb des Administrationsbereichs sollen Zutaten bearbeitet werden

können. Dabei soll festlegbar sein, ob die Zutat aktiv ist. Zudem soll der

Name, der Typ, die Viskosität, der Port, die Information und die Bilder

gesetzt werden können.

A6 Zwei Zutaten sollen sich nicht denselben Port teilen dürfen.

A7 Innerhalb des Administrationsbereichs sollen Zutaten gelöscht werden

können, falls sie in keinem Rezept mehr vorhanden sind.

A8 Innerhalb des Administrationsbereichs sollen Zutaten nachgefüllt werden.

Eine Statusleiste soll dabei den aktuell berechneten Füllstand der Zutat

anzeigen.

A9 Innerhalb des Administrationsbereichs sollen alle Rezepte angezeigt wer-

den.

A10 Innerhalb des Administrationsbereichs sollen Rezepte hinzugefügt wer-

den können. Dabei soll festlegbar sein, ob das Rezept aktiv ist. Zudem

soll der Name, die Zutaten, die Information und die Bilder gesetzt werden

können.

A11 Innerhalb des Administrationsbereichs sollen Rezepte bearbeitet werden

können. Dabei soll festlegbar sein, ob das Rezept aktiv ist. Zudem soll

der Name, die Zutaten, die Information und die Bilder gesetzt werden

können.

A12 Innerhalb des Administrationsbereichs sollen Rezepte gelöscht werden

können.

A13 Innerhalb des Administrationsbereichs sollen alle Bestellungen angezeigt

werden.

A14 Innerhalb des Administrationsbereichs sollen einzelne Bestellungen ge-

löscht werden können.

A15 Innerhalb des Administrationsbereichs sollen alle Bestellungen auf ein-

mal gelöscht werden können.

A16 Innerhalb des Administrationsbereichs soll der Servicemodus zum Befül-

len und Reinigen aktiviert werden können.

43

3 Analyse

3.2.2 Nichtfunktionale Anforderungen

In diesemAbschnitt befinden sich jene Anforderungen, die keiner einzelnen Funktion innerhalb

der Anwendung zugeordnet sind. Stattdessen entstammen die hier aufgeführtenAnforderungen

den Funktionen oder betten diese ein. Die nichtfunktionalen Anforderungen sind in Tabelle

3.7 aufgelistet.

Tabelle 3.7: Nichtfunktonale Anforderungen an das Softwaresystem

Nummer Beschreibung der Anforderung
N1 Das System soll von mehreren Benutzern gleichzeitig bedienbar sein.

Dabei gilt eine Untergrenze von 10 Personen.

N2 Das System soll von Seiten der Software ohne bemerkbare Verzögerungen

bedienbar sein.

N3 Das System soll stabil sein.

N4 Das System soll testbar sein.

N5 Das System soll intuitiv bedienbar sein.

N6 Das System soll nachträglich änderbar und erweiterbar sein.

N7 Die Komponenten des Systems sollten möglichst unabhängig funktionie-

ren.

N8 Das System soll möglichst plattformunabhängig sein.

N9 Das System soll verständlich konstruiert und dokumentiert sein.

N10 Das System soll wartbar sein.

N11 Das System soll auf Geräten mit unterschiedlicher Displaygröße ange-

passt dargestellt werden.

3.2.3 Sonstige Anforderungen

Dieser Abschnitt bündelt alle Anforderungen, die sich weniger auf das System, sondern mehr

auf den Arbeitsprozess beziehen. Die Ergebnisse sind in Tabelle 3.8 festgehalten.

Tabelle 3.8: Sonstige Anforderungen an das Softwaresystem

Nummer Beschreibung der Anforderung
SO1 Während der Entwicklung ist mit dem Betreuer Rücksprache zu halten

und ihn über den Fortgang zu unterrichten.

SO2 Ein Prototyp soll angefertigt werden.

SO3 Das entwickelte System soll nach Fertigstellung bei einer Abnahme vor-

gestellt werden.

44

3.2 Anforderungskatalog

Tabelle 3.9: Anwendungsfall Rezept bestellen

Ziel Der Besteller möchte ein Rezept zur Warteliste hinzu-

fügen.

Akteure Besteller, Client-System, Server-System

Beschreibung Der Besteller intendiert das automatische Zubereiten

des ausgewählten Rezepts von dem Cocktailmixer.

Ebene Benutzerebene

Priorität Medium

Hauptablauf
Vorbedingung Der Benutzer befindet sich innerhalb der Benutzer-

schnittstelle des Cocktailmixers.

1 Besteller Der Besteller ruft die Rezeptliste auf.

2 Besteller Der Besteller wählt ein Rezept aus der Rezeptliste aus.

3 Besteller Der Besteller betätigt die Schaltfläche Bestellen in der

Taskleiste des Rezepts.

4 Client-System Das Client-System übermittelt die Bestellung.

5 Server-System Das Server-System nimmt die Bestellung entgegen.

Alternative: Die Bestellung enthält

fehlerhafte Daten.

Alternativablauf 5a

6 Server-System Das Server-System fügt die Bestellung der Warteliste

hinzu.

7 Server-System Das Server-System sendet eine Nachricht an das Client-

System, um es über die erfolgreiche Eintragung der

Bestellung zu informieren.

8 Client-System Das Client-System zeigt eine Meldung über den Erfolg

der Eintragung an.

Nachbedingung Das Rezept ist der Warteliste hinzugefügt.

Alternativablauf 5a
Vorbedingung Die Bestellung enthält fehlerhafte Daten.

5a1 Server-System Das Server-System übermittelt eine Fehlernachricht

an das Client-System.

5a2 Client-System Das Client-System zeigt eine Fehlermeldung an.

Nachbedingung Das Rezept ist der Warteliste nicht hinzugefügt.

45

3 Analyse

Tabelle 3.10: Anwendungsfall Servicemodus aktivieren

Ziel Der Administrator möchte den Servicemodus aktivie-

ren.

Akteure Administrator, Client-System, Server-System

Beschreibung Der Servicemodus dient der Reinigung und dem Nach-

füllen der Saftbehälter.

Ebene Administrationsebene

Priorität Medium

Hauptablauf
Vorbedingung Der Administrator ist am System authentifiziert.

Der Administrator befindet sich innerhalb der Benut-

zerschnittstelle des Cocktailmixers.

1 Administrator Der Administrator öffnet die Administrationsoberflä-

che über den zugehörigen Link.

2 Administrator Der Administrator wählt den gewünschten Servicemo-

dus durch Betätigen der Schaltfläche aus (Reinigungs-

modus / Nachfüllmodus).

3 Client-System Das Client-System übermittelt eine Nachricht an das

Server-System.

4 Server-System Das Server-System validiert, dass der Administrators

authentifiziert ist und somit eine Interaktion erlaubt

ist.

Alternative: Der Benutzer ist nicht

authentifiziert.

Alternativablauf 4a

5 Server-System Der Server nimmt die Serviceanfrage entgegen.

Alternative: Die Daten sind

fehlerhaft.

Alternativablauf 5a

6 Server-System Der Server aktiviert den Servicemodus durch verän-

dern einer Zeile in der Datenbank.

7 Server-System Der Server übermittelt eine Nachricht an das Client-

System und informiert über eine erfolgreiche Eintra-

gung.

8 Client-System Das Client-System zeigt dem Administrator eine Mel-

dung über den Erfolg der Eintragung an.

Nachbedingung Der Servicemodus wurde aktiviert.

46

3.2 Anforderungskatalog

Alternativablauf 4a
Vorbedingung Der Benutzer ist nicht authentifiziert.

4a1 Server-System Das Server-System übermittelt eine Fehlernachricht

an das Client-System.

4a2 Client-System Das Client-System zeigt eine Fehlermeldung an.

Nachbedingung Der Servicemodus wurde nicht aktiviert.

Alternativablauf 5a
Vorbedingung Die Daten sind fehlerhaft.

5a1 Server-System Das Server-System übermittelt eine Fehlernachricht

an das Client-System.

5a2 Client-System Das Client-System zeigt eine Fehlermeldung an.

Nachbedingung Der Servicemodus wurde nicht aktiviert.

47

3 Analyse

Abbildung 3.1: Anwendungsfalldiagramm

48

3.3 Verwandte Arbeiten

3.3 Verwandte Arbeiten

3.3.1 Bartendro™

Bartendro™ [Bara] ist ein auf Kickstarter [Kic] finanzierter, automatisierter Cocktailmixer.

Die Schnittstelle zu dem Benutzer wird, ähnlich wie bei dem Cocktailmixer des ISW, über

ein selbst erstelltes drahtloses Netzwerk hergestellt. Über einen Browser gelangt man auf die

Hauptseite, auf welcher die zur Verfügung stehenden Cocktails ausgewählt werden können.

Nach der Auswahl eines Cocktails können noch zusätzliche Einstellungen in Abhängigkeit

der Zutaten vorgenommen werden. Beispielsweise kann einem Cocktail mehr oder weniger

Alkohol zugewiesen werden. Erweiterte Einstellungen sind über eine Administrationsschicht

ausführbar (z. B. das Einstellen neuer Getränke, das Zuschalten von Dispensern und das

Reinigen dieser) Für die Programmierung wurde die Programmiersprache Python mit dem

Framework Flask gewählt. Die entwickelte Benutzeroberfläche steht unter der GNU General
Public License [Barc] zur Verfügung. [Par14]

Abbildung 3.2: Cocktail-Auswahlbildschirm des Bartendro™ Graphical User Interface (GUI)

[Barb]

49

3 Analyse

3.3.2 Barobot

Barobot [Bar14a] ist ein ebenfalls über Kickstarter [Kic] finanzierter, automatisierter Cocktail-

mixer. Zwar wurde das angestrebte Ziel an Einnahmen nie erreicht, dennoch entwickelten die

Erfinder lange Zeit weiter an der Maschine. Mittlerweile existiert die Webseite des Barobot
nicht mehr, der Programmcode ist allerdings noch frei zugänglich. [Bar13a] Anders als bei

Bartendro kann Barobot mithilfe einer Android App bedient werden. Diese ermöglicht eine

Auswahl aus über 1500 Cocktails, die bereits in der Datenbank vorinstalliert sind. Falls hierbei

eine Entscheidung schwer fällt, können Cocktails auch zufällig bestellt werden. Der Benutzer

kann auswählen, welche Flaschen an die Dispenser angebracht sind und das Programm filtert

automatisch, sodass nur Cocktails angezeigt werden, welche mit der Auswahl an angeschlos-

senen Getränken mischbar sind. Auch neue Getränke können in die Datenbank eingegeben

werden. [Bar13b]

Abbildung 3.3: Cocktail-Auswahlbildschirm der Barobot GUI [Bar14b]

50

3.4 Abgrenzung

3.4 Abgrenzung

Diese Arbeit beschäftigt sich mit der Entwicklung einer Benutzeroberfläche des bestehenden

Cocktailmixers. Eine Anpassung des Maschinencodes findet nur seitens der Schnittstellen statt,

die diesen mit der Benutzeroberfläche und der Datenbank verbinden. Des Weiteren wird das

Betriebssystem so angepasst, dass die entwickelte Benutzeroberfläche auf diesem ausführbar

ist. Eine Anpassung der Hardwarekomponenten findet nicht statt.

Zur Entwicklung der Benutzeroberfläche sollen insbesondere aktuelle Techniken (vgl. Ab-

schnitt 2.4) zum Einsatz kommen. Die Architektur soll einen modularen Ansatz verfolgen, um

eine schwache bis lose Kupplung einzelner Komponenten zu gewährleisten. Damit wird die

Notwendigkeit einer weiteren Neuentwicklung der gesamten Oberfläche verringert.

Anders als bei dem entwickelten Cocktailmixer Barobot (vgl. Unterabschnitt 3.3.2), soll die
Benutzeroberfläche von dem automatisierten Cocktailmixer des ISW als reine Webplattform

realisiert werden. Dies ermöglicht eine hohe Plattformunabhängigkeit und erspart so einen

Mehraufwand bei der Entwicklung. Die Oberfläche soll, anders als bei den verwandten Arbei-

ten, den Benutzern mitteilen, welche Interaktion nötig ist und ich welchem Zustand sich die

Maschine befindet.

51

4 Konzeption

Abbildung 4.1: Logo der Weboberfläche Cocktailbar

Dieses Kapitel beinhaltet den Systementwurf der entwickelten Benutzeroberfläche des Cock-

tailmixers. Der Name der Arbeit wurde passend auf die reale Welt übertragen und lautet

Cocktailbar. Das Logo (vgl. Abbildung 4.1), bestehend aus drei Gläsern, welche man häufig in

einer Cocktailbar wiederfindet, soll die Oberfläche mit demAnwendungsgebiet assoziieren. Das

Kapitel gliedert sich in zwei Abschnitte. Im ersten wird der Entwurf, aufgeteilt in seine beiden

Hauptkomponenten, vorgestellt. Der zweite Abschnitt zeigt die Ergebnisse eines Prototypen

der Webanwendung Cocktailbar.
Hinweis: In den vorherigen Kapiteln wurde das Rezept als Begriff für eine Sammlung von

Zutaten verwendet. Dieser Begriff ist zur Verständlichkeit gewählt worden, da eine Sammlung

von Zutaten nicht zwangsläufig ein Cocktail ist. In der internen Realisierung der Softwarean-

wendung wurde statt Rezept jedoch der Begriff Cocktail benutzt.

53

4 Konzeption

4.1 Systementwurf

Cocktailbar ist in zwei Hauptkomponenten unterteilt: Dem Server und dem Client. Die Kompo-

nenten sind gemäß dem Schichtenmodell (vgl. Abschnitt 2.4.1) aufgebaut. Die Verarbeitungs-

komponente befindet sich dabei auf der Serverseite, was dem Thin Client-Prinzip entspricht.

Die verarbeitende Komponente wird im folgenden Abschnitt über die serverseitige Architektur

(vgl. Abschnitt 4.1.2) vertieft behandelt. Die Kommunikationsschnittstelle der beiden Kom-

ponenten folgt dem REST-Paradigma. Eine Kapselung mit Hilfe des Schichtenmodells und

die Verfolgung des REST-Paradigmas ermöglichen es jederzeit, eine der beiden Komponenten

auszutauschen oder sie ohne die jeweils andere Komponente zu betreiben.Dadurch ist die

nichtfunktionale Anforderung N7 erfüllt. Der Client ist für die Anzeige, Eingabebehandlung

und Aktualisierung der Bedienelemente zuständig, während der Server Informationen über

den Cocktailmixer aufruft, abspeichert und an den Client weitergibt.

Das Schichtenmodell unter Einhaltung des Thin Client-Prinzips eignet sich besonders gut

für das zu entwickelte System: Wie in den folgenden Unterabschnitten beschrieben, besitzen

die Komponenten eine Hierarchie, wie sie auch bei diesem Architekturmuster Anwendung

findet. Eine ähnliche Hierarchie ist auch bei dem Architekturmuster Pipes und Filter (vgl.

Unterabschnitt 2.4.1) gegeben, allerdings wird der Gebrauch aktiver oder passiver Filter nicht

benötigt. Die beidseitige Benutzung einer Kommunikationsschicht erlaubt es außerdem, das in

Unterabschnitt 2.4.2 beschriebene REST-Paradigma einzusetzen, um eine Abkopplung der bei-

den Hauptkomponenten Server und Client zu bewirken (vgl. Anforderung N7). Der Beschluss

die Verarbeitungsschicht serverseitig zu platzieren begründet sich durch das Vorhandensein

restriktiver Zugänge. Eine clientseitige Verarbeitung wäre in diesem Fall ein potentielles Si-

cherheitsrisiko und wird deshalb vermieden. Betrachtet man die Kommunikationsschicht als

einen Broker, kann ebenjenes Broker-Muster angewandt werden. Um dieses in einem verteilten

System zu betreiben, müssten die Schnittstellen allerdings erst angepasst werden (Für die

bisherigen Anforderungen ist ein verteiltes System nicht notwendig). Das MVC-Modell eignet

sich für diese Architektur nicht. Würde man dieses übertragen, wäre der Server als Model
anzusehen und der Client als View / Controller - Der Server hat allerdings mehr Funktionalität

als die einer Model-Komponente und das Zusammenlegen von Server und Client verringert

wiederum die Modularisierung. Der Einsatz einer SOA ist elegant, wäre allerdings für diese

Arbeit zu komplex; Geschäftsprozesse werden für den automatischen Cocktailmixer nicht

angewandt. Da das bisherige System keine Schnittstellen bereitstellt, ist eine Realisierung als

Plugin-Architekturmuster ebenfalls nicht umsetzbar.

4.1.1 Systemarchitektur

Dieser Unterabschnitt behandelt den Server und den Client im Detail. Dafür werden die

konzipierten Komponenten erläutert und zur Förderung der Verständlichkeit mit Hilfe von

Unified Modeling Language (UML)-Diagrammen veranschaulicht. Weitere Informationen zu

54

4.1 Systementwurf

UML können dem Werk Unified Modeling Language Reference Manual, The (2Nd Edition) von
Rumbaugh, Jacobson und Booch entnommen werden.

4.1.2 Serverseitige Architektur

Der Server ist in sechs Pakete unterteilt. Das Paket transport ist der Kommunikationsschicht

zuzuordnen. Es empfängt GET- und POST-Anfragen und sendet Antworten, die es von der

Controller-Komponente erhält. Diese ist gemeinsam mit dem Paket models, exceptions, und
machine Teil der Verarbeitungsschicht. Der Controller prüft dabei, ob es sich bei den Anfragen

um valide Operationen handelt und sendet gegebenenfalls einen Fehler, der im Paket exceptions
definiert ist. Die für die zu verarbeitenden Objekte benötigten Klassen befinden sich in dem

Paket models. Die Komponente machine ist von den übrigen Paketen völlig losgelöst. In ihr

befindet sich der ursprünglicheMaschinencode, der die Schnittstelle zu der Hardware bildet (vgl.

Unterabschnitt 2.2.3). Da der Code jedoch über eigene Schnittstellen Code aus der Datenbank

ausliest, wurde er in die Schicht über der Datenhaltung eingebettet. Die Datenhaltungsschicht

bildet die unterste Schicht des Servers und stellt Funktionalitäten zum Lesen und Schreiben in

einerMySQL-Datenbank bereit. Die geschilderte Struktur kann in Abbildung 4.2 nachvollzogen

worden. Die Starter-Klasse CocktailBackendApplication vervollständigt das Diagramm. Diese

Klasse befindet sich in keinem Paket und beinhaltet einige innere Verwaltungsklassen und

eine Startfunktion.

Abbildung 4.2: UML-Paketdiagramm des Servers

55

4 Konzeption

Paket transport

Das Paket transport bildet die Kommunikationsschicht und damit die oberste Schicht des

Servers. Hier befindet sich die Schnittstelle zum Frontend. Die Funktionen, die hier bereitgestellt

werden, können vom Frontend beispielsweise über GET- und POST-Anfragen angesprochen

werden und so einen Datenaustausch bewirken. Die Objekte werden an dieser Stelle auch an

Klassen aus dem Paket models gebunden. Die in diesem Paket bestehenden Klassen beinhalten

alle Funktionen des Pakets controller, welche eine Interaktion über die Kommunikationsschicht

erfordern. Eine Zugriffskontrolle findet ebenfalls auf dieser Ebene statt; unerlaubte Zugriffe

auf restriktive Funktionen werden direkt abgewiesen. Folgende Klassen sind hier realisiert:

• AdministrationReceiver: Verwaltet das Setzen von Servicemodi und das Nachfüllen

von Zutaten.

• AuthenticationReceiver: Verwaltet Authentifizierungsanfragen und antwortet mit

einem Token, der den Benutzer für zukünftige Anfragen authentifiziert, oder einer

Fehlermeldung.

• CocktailReceiver: Beinhaltet sämtliche Funktionen zum Transport von Informationen

über die Rezepte des Systems. Dazu gehört beispielsweise das schrittweise Ausgeben

aller vorhandenen Rezepte oder das Hinzufügen/Entfernen eines Rezeptes.

• IngredientReceiver: Beinhaltet sämtliche Funktionen zum Transport von Informatio-

nen über die Zutaten des Systems. Dazu gehört beispielsweise das schrittweise Ausgeben

aller vorhandenen Zutaten oder das Hinzufügen/Entfernen einer Zutat.

• OrderReceiver: Stellt die Schnittstelle rund um den Bestellvorgang zur Verfügung. Hier

wird die Kommunikation zum Hinzufügen, Entfernen oder Einholen einer oder mehrerer

Bestellungen realisiert.

• PortReceiver: Gibt eine Liste aller hinterlegten Anschlüsse des Cocktailmixers zurück,

die schließlich von Zutaten belegt werden können.

• UserReceiver: Regelt das Einholen von Informationen über einen Benutzer oder dessen

Ausloggen aus dem System.

56

4.1 Systementwurf

Paket exceptions

Das Exception-Paket des Servers enthält alle Fehlertypen, die von Cocktailbar benötigt werden.
Folgende Fehlertypen können vom Paket controller geworfen werden:

• CocktailStepsCocktailNullException: Beim Hinzufügen eines einzelnen Schritts für

die Zubereitung eines Rezepts wurde kein Rezept angegeben.

• CocktailStepsExistException: Das gegebene Rezept enthält bereits Zubereitungs-

schritte.

• CocktailStepsIngredientNullException: Beim Hinzufügen eines einzelnen Schritts

für die Zubereitung eines Rezepts wurde keine Zutat angegeben.

• CocktailStepsNotConsecutiveException: Die übermittelten Schrittnummern sind

nicht durchgängig.

• CocktailStepsStepnumberExistsException: Die angegebene Schrittnummer exis-

tiert bereits. Dies kann beispielsweise auftreten, wenn eine Schrittnummer innerhalb

eines Rezepts doppelt an den Server gesendet wurde.

• IngredientInUseException: Die zu löschende Zutat ist noch Teil eines Rezepts und

kann nicht entfernt werden.

• OrderCocktailNullException: Eine gegebene Bestellung steht nicht im Kontext zu

einem Rezept.

• OrdererUsernameExistsException: Der gewünschte Benutzername ist bereits belegt.

• OrdererUsernameNotAllowed: Der gewünschte Benutzername ist nicht erlaubt (z. B.

admin).

• OrdererUsernameNullException: Kein Benutzername wurde angegeben.

• PortIdentifierNotFoundException: Der angegebene Anschlussbezeichner ist nicht
im System hinterlegt.

• PortIdentifierNullException: Es wurde kein Anschlussbezeichner angegeben.

• PortOccupiedException: Der gegebene Anschluss ist bereits belegt.

57

4 Konzeption

Paket controller

Das Controller-Paket des Servers enthält die Grundfunktionen der Webanwendung Cocktail-

bar und befindet sich in der Verarbeitungsschicht des Servers. Die Verarbeitungsklassen der

Benutzeranfragen sind als Singleton realisiert, die, mit Hilfe von Modellobjekten, Anfragen

verarbeiten. Außer den Klassen, welche die Benutzeranfragen verarbeiten, befinden sich in

diesem Paket Klassen für den korrekten Betrieb des Servers. Dazu gehören vor allem Authenti-

fizierungslogiken und erweiterte Zugriffsregeln, sowie Sicherheitskomponenten. Im Folgenden

werden die Verarbeitungsklassen der Benutzeranfragen genauer erläutert.

• AdministrationProcessor: Die Administrationsverwaltungsklasse beinhaltet alle Me-

thoden, die einen administrativen Zugang erfordern. Die Klassen werden von den zu-

griffsbeschränkten Methoden aus dem Paket transport aufgerufen. Die Klasse erlaubt
Funktionalitäten wie das Hinzufügen oder Entfernen von Rezepten und Zutaten. Sie

sendet nach einer erfolgreichen Verarbeitung die Daten entweder an die Datenhaltungs-

schicht weiter oder wirft einen Fehler aus dem Paket exceptions. Um die Verarbeitung

besser zu verstehen, ist in Abbildung 4.3 ein exemplarischer Ablauf zum Hinzufügen

einer Zutat modelliert. Zur Vereinfachung ist in diesem Diagramm die Verarbeitung von

Zutatenbildern nicht berücksichtigt. Ebenso wurde, zur Bewahrung der Übersicht, der

gesamte Client zusammengefasst. Wie in der Abbildung zu sehen ist, ruft die Klasse

AdministrationProcessor, nachdem sie von der korrespondierenden Transportklasse auf-

gerufen wurde, einige Methoden der Datenhaltungsschicht auf, um zu prüfen, ob die

Anfrage valide ist. Daraufhin wird ein Zutatenmodell befüllt und in der Datenhaltung

abgespeichert.

• OrderProcessor: Die Bestellverarbeitung behandelt den Umgang mit Bestellungen.

Dazu gehört das schrittweise Ausgeben der Cocktails, das Prüfen von eingehenden

Bestellungen, das Ausgeben einer Bestellliste und die Ausgabe des Maschinenzustands.

• UserProcessor: Die Klasse UserProcessor erlaubt die Verwaltung der Benutzer. Dazu

gehört das Hinzufügen, Ausloggen oder Ausgeben eines Benutzers und seines Profils.

58

4.1 Systementwurf

Abbildung 4.3: UML-Sequenzdiagramm - Zutat hinzufügen

59

4 Konzeption

Paket models

Das Models-Paket beinhaltet alle Klassen, die notwendig sind, um Cocktailbar in einer ob-

jektorientierten Umgebung zu betreiben. Hier werden Klassen für Objekte wie Cocktails oder

Besteller definiert. Das Erzeugen neuer Objekte wird im Paket controller oder transport vor-
genommen. Dort werden die von der REST-Schnittstelle empfangenen Daten in ein Modell

überführt. Die Modelle kommen in fast identischer Form auch clientseitig zum Einsatz. Ebenso

werden sie nahezu identisch in der Datenbank abgelegt. Die folgende Klassen sind auf dem

System im Einsatz, ihre Abhängigkeiten sind in Abbildung 4.4 anhand eines Klassendiagramms

dargestellt.

• Cocktail: Das Modell Cocktail beschreibt die Rezepte innerhalb des Systems. Rezepte

können aktiv sein oder nicht. Sie besitzen eine eindeutige Identifizierungssnummer,

einen Namen, ein Datum der Erstellung sowie einen Ersteller, ein oder mehrere Bilder

(vgl. ImageUrl), einen Informationstext, die Anzahl bisheriger Bestellungen, die benötigte

Zeit für die Zubereitung, keinen, einen oder mehrere Schritte (vgl. Step) und einen Typen.

• Drucksensor: Das Modell Drucksensor repräsentiert den Druckschalter im System und

beschreibt, ab welchem Gewicht ein Glas erkannt werden soll. Das Modell wird innerhalb

des Systems nicht eingesetzt, muss aber in der Datenbank abgelegt werden, damit der

Maschinencode diese Informationen auslesen kann.

• ImageUrl: Das Modell ImageUrl speichert den Pfad der Bilddateien für Rezepte und

Zutaten. Ein Pfad besitzt eine eindeutige Identifizierungsnummer, die Pfadadresse und

einen Cocktail oder eine Zutat.

• Ingredient:DasModell Ingredient beschreibt die Zutaten innerhalb des Systems. Zutaten

können aktiv sein oder nicht. Sie besitzen eine eindeutige Identifizierungsnummer, einen

Namen, ein Datum der Erstellung sowie einen Ersteller, ein oder mehrere Bilder (vgl.

ImageUrl), einen Informationstext, einen Port, die Anzahl bisheriger Bestellungen, die

benötigte Zeit für die Zubereitung, eine Viskosität und einen Typen. Das Modell Zutaten

ist exemplarisch in Abbildung 4.5 samt seiner Abhängigkeiten veranschaulicht.

• Order: Die Klasse Order beinhaltet ein Modell für Bestellungen, das vom System für die

Verarbeitung ebenjener benötigt wird. Dabei hat eine Bestellung immer eine eindeutige

Identifizierungsnummer, ein bestelltes Rezept, ein Datum der Erstellung (wichtig für die

Reihenfolge der Abarbeitung), einen Besteller und einen Status.

• Orderer: Das Modell Orderer repräsentiert den Benutzer innerhalb des Systems. Es

besitzt eine eindeutige Identifizierungsnummer, einen Benutzernamen, ein Password

(für Administratoren), ein Datum der Erstellung, und eine oder mehrere Rollen.

• OrdersAndTasks: Das Modell OrdersAndTasks wird benötigt, um dem Client in regel-

mäßigen Abständen Informationen über den Zustand des Systems zu übermitteln. In

ihm befindet sich eine Liste der Aufgaben und ihres Zustands (vgl. Task) und eine Liste

der obersten Bestellungen (vgl. Order) für das Anzeigen der Warteliste.

60

4.1 Systementwurf

• Port: Das Modell Port spiegelt einen Anschluss an dem Cocktailmixer wider. Jeder

Anschluss hat einen eindeutigen Namen. Ebenso hat ein Anschluss eine X-Koordinate,

die bestimmt, wie weit der Schrittmotor zu fahren hat, bis er an der korrekten Position

angelangt ist. Der Typ des Anschlusses (Dispenser oder Ventil) ist ebenso hinterlegt.

• Role: Eine Rolle wird von der Klasse Role im System repräsentiert. Jedem Benutzer kann

eine Rolle zugewiesen werden, damit er bestimmte Aufgaben innerhalb des Systems

ausführen kann.

• Status:Die Klasse Status ist für die Kommunikationsschicht bestimmt. Ein Status besteht

lediglich aus einem Titel und einer Nachricht, die über die Kommunikationsschicht

versendet wird. Der Status beinhaltet dabei Fehler oder Informationen, die der Server an

den Client übermitteln muss.

• Step: Das Modell Step dient der Datenhaltung einzelner Schritte zur Zubereitung eines

Cocktails. Einem Schritt ist dementsprechend auch immer ein Rezept und eine Zutat

zugewiesen. Hinzu kommt die Anzahl der Abgaben, die der jeweilige Anschluss seinem

Getränk abziehen soll (z. B. bedeutet die Zahl eins an einem Dispenser 25ml). Schließlich

hat jeder Schritt, der einem Rezept zugeordnet ist eine Position, an der er ausgeführt

wird.

• Task: Die Klasse Task stellt den Zustand der Maschine im System dar. Alle Zustände,

die der Cocktailmixer einnehmen kann sind hier hinterlegt. Ebenso ist zu jedem Zustand

festgehalten, ob dieser aktiv ist oder nicht. Der Cocktailmixer kannmehrere der folgenden

Zustände einnehmen:

– IDLE: Der Cocktailmixer wartet auf einen Befehl.

– JOBDONE: Das Rezept wurde abgearbeitet, das Glas kann jetzt entnommen wer-

den.

– DOINGJOB: Der Cocktailmixer arbeitet momentan ein Rezept ab.

– QUIT: Der Zustand SHUTDOWN wurde aktiv. Die Maschine soll bei der nächsten

Möglichkeit heruntergefahren werden und keine weiteren Aufträge abarbeiten.

– REBOOT: Der Cocktailmixer soll bei der nächsten Möglichkeit neu starten.

– RUNNING: Der Cocktailmixer ist in Betrieb.

– SERVICE_CLEANING: Der Reinigungsservice ist in Betrieb.

– SERVICE_REFILL: Der Nachfüllservice ist in Betrieb.

– SHUTDOWN: Der Cocktailmixer soll heruntergefahren werden.

– START: Ist dieser Zustand aktiv, soll der Cocktailmixer die Startroutinen durch-

führen.

– STOP: Zustand zum Aktivieren eines Sicherheitsstopps.

61

4 Konzeption

Abbildung 4.4: Klassen und deren Abhängigkeiten des Paket models

62

4.1 Systementwurf

Abbildung 4.5: Ingredient-Klasse samt Abhängigkeiten

63

4 Konzeption

Paket machine

Das Paketmachine enthält den in Unterabschnitt 2.2.3 beschriebenenMaschinencode. Das Paket

hat keine Schnittstellen zu den restlichen Komponenten und stellt auch keine Schnittstellen

zur Verfügung. Die Kommunikation zwischen dem Maschinencode und dem restlichen System

findet ausschließlich über das Ablegen und Auslesen von Datenbankinhalten statt.

Paket database

Das Paket database beinhaltet Klassen zur Interaktion mit einer Datenbank. Da die Klassen im

Umgang mit der Datenbank generisch agieren, können in den meisten Fällen unterschiedliche

SQL-Datenbanken eingesetzt werden ohne ihren Code anzupassen
1
. Die Klassen des Pakets

basieren auf der Java Persistence Programmschnittstelle, was das Ablegen und Aufrufen von

Daten aus der Datenbank in einer objektorientierten Umgebung stark vereinfacht, da der

Entwickler nur noch in seltenen Fällen in SQL selbst schreiben muss. Das verbessert die

Lernkurve beim Einarbeiten in das System und erfüllt die nichtfunktionalen Anforderungen

N9 und N10. Jedes in Unterabschnitt 4.1.2 beschriebene Modell (außer das zusammengesetzte

Modell OrdersAndTasks und das rein transportbezogene Modell Status) besitzt eine eigene
Klasse für die Interaktion mit der Datenbank. Abbildung 4.6 zeigt ein Enhanced entitiy-

relationship (EER)-Diagramm [Elm08] der Datenbank mit allen Tabellen samt Spalten und

deren Abhängigkeiten untereinander.

1
Spezifische Muster der gewählten SQL-Datenbank müssen im Code dennoch berücksichtigt werden

64

4.1 Systementwurf

Abbildung 4.6: EER-Diagramm der Datenbank

65

4 Konzeption

4.1.3 Clientseitige Architektur

Der Client ruft Funktionen und Ressourcen des Servers über die Kommunikationsschnittstelle

auf und bildet die Softwareanwendung damit auf dem Endgerät ab. Für die Anzeige der Software

und die Erfüllung der Anforderungen müssen eine Vielzahl an Elementen bereitgestellt werden.

Bekannte Vertreter sind hierbei Text, Schaltflächen, Bilder oder Eingabemasken. Darüber hinaus

ist ein wesentlicher Faktor der Anzeige dessen Interaktivität und die Fähigkeit, angezeigte

Informationen nahtlos aktuell zu halten. Eine große Herausforderung stellt die Bereitstellung

der Anwendung auf unterschiedlichsten Geräten dar. Bekannte Vertreter sind hierbei der

Computer, das Tablet und das Smartphone. Jedes dieser Geräte benutzt schließlich einen

eigenen Webbrowser, der gegebenenfalls eine gesonderte Behandlung benötigt. Sowohl für

den Einsatz unterschiedlichster Elemente als auch der Notwendigkeit einer Interaktivität und

Aktualität von Informationen existieren Frameworks, die dem Entwickler helfen, sich auf

die wesentliche Entwicklung zu konzentrieren, statt jedes Konzept von Grund auf selbst zu

programmieren. Frameworks für die Anzeige von Elementen basieren hierbei fast immer auf

den Websprachen HTML und Cascading Style Sheets (CSS). Der Client ist in sechs Pakete

unterteilt. Das Paket actions fungiert als einziges Paket der Kommunikationsschicht und

ermöglicht den Informationsaustausch mit dem Server. Die Ergebnisse dieser Aufrufe wird

an das Paket reducers weitergeleitet, welches diese dann in die Pakete components und routes
übergibt. Das Paket components beinhaltet einzelne Anzeigekomponenten. Das Paket routes
enthält alle notwendigen Seiten für die Anzeige der Komponenten. Komponenten und Seiten

bedienen sich des Pakets messages, in welchem Übersetzungen für unterschiedliche Sprachen

enthalten sind.

Abbildung 4.7: UML-Paketdiagramm des Clients

66

4.1 Systementwurf

Paket components

Das Paket components beinhaltet die für die Anzeige benötigten Komponenten. Dabei handelt

es sich nicht um primitive Anzeigeelemente, wie Textboxen oder Schaltflächen, sondern viel

mehr um Elemente, welche über diese primitiven Elemente hinaus zur Anzeige benötigt werden

oder eine Zusammensetzung aus primitiven Anzeigeelementen darstellen. Die hier angelegten

Elemente werden schließlich auf den Seiten des Pakets routes aufgerufen und eingebunden.

Folgende Anzeigekomponenten wurden für die Anzeige erstellt:

• AdminCocktails: Die Komponente AdminCocktails ist für die Anzeige der Rezeptliste
im Administrationsbereich zuständig. Schaltflächen für das Speichern, die Bearbeitung

und das Löschen werden hier definiert. Ebenso existiert für jedes Feld des Modells

Cocktail eine Eingabemöglichkeit, um dieses abzuändern. Die Anzeige der Rezepte ist

auf mehrere Seiten verteilt, die über ein horizontal ausgerichtetes Zahlenfeld angesteuert

werden können. Auf einer Seite werden bis zu fünf Rezepte abgebildet.

• AdminIngredients: Die Komponente AdminIngredients ist für die Anzeige der Zu-

tatenliste im Administrationsbereich zuständig. Schaltflächen für das Speichern, die

Bearbeitung und das Löschen werden hier definiert. Ebenso existiert für jedes Feld des

Modells Ingredient eine Eingabemöglichkeit, um dieses abzuändern. Die Anzeige der

Zutaten ist auf mehrere Seiten verteilt, die über ein horizontal ausgerichtetes Zahlenfeld

angesteuert werden können. Auf einer Seite werden bis zu fünf Zutaten abgebildet.

• AdminOrders: Die Komponente AdminOrders ist für die Anzeige der Bestellliste im
Administrationsbereich zuständig. Schaltflächen für das Löschen einzelner oder aller

Bestellungen sind hier definiert. Die Anzeige der Bestellungen ist auf mehrere Seiten

verteilt, die über ein horizontal ausgerichtetes Zahlenfeld angesteuert werden können.

Auf einer Seite werden bis zu zwanzig Bestellungen abgebildet.

• Cocktail:Die KomponenteCocktail ist für die Anzeige eines einzelnen Rezepts zuständig.
Dieses unterscheidet sich in der Anzeige von der Rezeptliste insofern, dass zusätzlich

zu den Zutaten der Informationstext angezeigt wird. Ebenso hat der Benutzer über ein

Zurück-Bedienfeld die Möglichkeit, zu seiner vorherig besuchten Seite zurückzukehren.

• CocktailList: Die Komponente CocktailList ist für die Anzeige der Rezeptliste zuständig.
Jedes Rezept wird dabei samt seinen Zutaten angezeigt. Eine Schaltfläche ermöglicht es,

auf Geräten mit kleinem Display die Zutaten auszublenden, um die Liste so schneller

zu durchlaufen. Zusätzlich wird am unteren Rand des Rezepts eine Schaltfläche zum

Bestellen angezeigt. Die Anzeige der Rezepte ist auf mehrere Seiten verteilt, die über

ein horizontal ausgerichtetes Zahlenfeld angesteuert werden können. Auf einer Seite

werden bis zu fünf Rezepte abgebildet.

• Footer: Die Fußleiste der Webseite beinhaltet einen Link zum ISW.

67

4 Konzeption

• Header: Die Kopfleiste der Webseite beinhaltet die Links zum Navigieren auf der Web-

seite und die Komponente LanguageSwitcher. Ebenso wird das Logo der Anwendung

Cocktailbar angezeigt.

• LanguageSwitcher: Die Komponente LanguageSwitcher ermöglicht das Umschalten

der Sprache mit Hilfe von Flaggensymbolen im Kopfbereich der Webseite.

• Link: Eine Komponente zum Navigieren auf der Webseite.

• Navigation: Eine Sammlung von Links, die in der Kopfleiste angezeigt wird.

• Orders: Die Komponente Orders realisiert die Warteliste, die zusammen mit der Kopf-

und Fußleiste auf jeder Seite der Webanwendung angezeigt wird.

• ServiceModePanel: Die Komponente ServiceModePanel zeigt zwei Schaltflächen zum

Aktivieren der vorhandenen Servicemodi.

• Statuspanel: Die Komponente Statuspanel dient der Anzeige des Status der Hardware
im Administrationsbereich. Mit Hilfe dieser Anzeige ist der Administrator mit einem

Blick in der Lage den Zustand der Maschine nachzuvollziehen.

Paket messages

Das Paketmessages beinhaltet die Übersetzungen der Texte auf der Webseite Cocktailbar. Jeder

Text erhält eine eindeutige Identifizierung und wird umschrieben, sodass ein Übersetzer die

Datei ohne Vorwissen bearbeiten kann und so eine neue Sprache in das System eingliedern

kann. Bisher wurden die Sprachen Deutsch und Englisch im System hinterlegt.

Paket routes

Das Paket routes beinhaltet die einzelnen Seiten der Webseite Cocktailbar. Auf diesen werden

die Komponenten des Pakets components angezeigt. Ebenso können diese Seiten über die

Adressleiste des Webbrowsers direkt angesteuert werden. Bei mehrdeutigen Seiten, wie denen

eines einzelnen Rezepts, hilft eine Identifizierungsnummer bei der Ansteuerung. Die folgenden

Seiten sind für den Client notwendig:

• admin: Diese Seite beinhaltet die Liste der Rezepte, Zutaten und Bestellungen als Admi-

nistrationsansicht. Ebenso wird der Maschinenzustand hier abgebildet.

• cocktail: Diese Seite stellt ein einzelnes Rezept dar. Der Benutzer kann jedes Rezept

über eine Identifizierungsnummmer in der Adressleiste des Webbrowsers ansteuern. Die

Rezepte sind gleichzeitig auch über die Rezeptliste zu erreichen.

• display: Die Seite display zeigt dem Benutzer Informationen über den aktuellen Verar-

beitungsschritt der Maschine an. Dazu gehört beispielsweise die Aufforderung an den

obersten Benutzer der Warteliste, ein Glas auf den Schlitten der Maschine zu stellen.

68

4.1 Systementwurf

• error: Diese Seite wird dem Benutzer angezeigt, falls ein Fehler im System auftrat.

• home: Die Seite home zeigt dem Benutzer die Rezeptliste und dient gleichzeitig als

Startseite der Webanwendung Cocktailbar.

• login: Die Login-Seite ermöglicht das Anmelden am System, entweder nur mit einem

Benutzernamen, oder mit einem Passwort, um den Administrationsbereich aufzurufen.

• notFound: Diese Seite wird angezeigt, falls der Benutzer einen Abschnitt der Webseite

ansteuert, der nicht definiert ist oder auf den er mit seinen aktuellen Rechten nicht

zugreifen darf.

Paket actions

Das Paket actions bildet die Kommunikationsschicht des Clients und damit die Schnittstelle

zum Server ab. Die Funktionen, senden über GET- und POST-Anfragen Befehle an den Server

und verarbeiten dessen Antwort. Unterabschnitt 4.1.2 beschreibt bereits die Schnittstellen

der Kommunikationsschicht des Servers. Auf der Clientseite ist ein gegenläufig äquivalenter

Aufbau realisiert.

Paket reducers

Das Paket reducers verarbeitet die Anfragen aus dem Paket actions und teilt diese mit den

Komponenten und Seiten derWebanwendung Cocktailbar. In diesen Klassen kann somit auf die

Antworten des Servers reagiert werden, um dem Benutzer eine angemessene Darstellung auf

seine Anfrage zu ermöglichen. Falls ein Fehler bei der Anfrage auftrat kann der Zustand zum

Beispiel so manipuliert werden, dass eine Textbox erscheint, die dem Benutzer den Fehlertext

präsentiert.

69

4 Konzeption

4.2 Prototyp

Dieser Abschnitt beinhaltet die Ergebnisse der Erstellung eines Prototypen für die Webanwen-

dung Cocktailbar. Der Prototyp wurde für eine Darstellung auf einem Computer und einem

Smartphone bzw. Tablet optimiert. Dies erfüllt Anforderung N11. Der Prototyp erleichtert die

darauffolgende Entwicklung, da unterschiedliche Darstellungsformen bereits im Voraus geplant

werden können. Im oberen Teil der mobilen Ansicht (vgl. Abbildung 4.8) ist die Warteliste zu

erkennen. Daran anschließend befindet sich eine Liste zur Sammlung der eigenen Bestellungen.

Dies ist nicht Bestandteil der Anforderung gewesen, könnte allerdings nachträglich in die

Oberfläche eingepflegt werden. Die Rezeptliste listet die Rezepte mit Bild und den einzelnen

Zutaten auf. Durch betätigen der Details-Schaltfläche gelangt man zu einer detaillierteren

Ansicht des Rezepts. Ebenso kann man, durch Betätigung der Bestellen-Schaltfläche ein Rezept

bestellen, damit es in die Warteliste aufgenommen und schließlich von dem Cocktailmixer

zubereitet wird. Auf der rechten Seite der Kopfleiste erkennt man, dass aktuell ein Benutzer

am System angemeldet ist. Durch antippen der Grafik neben dem Namen gelangt man auf das

Benutzerprofil und kann sich vom System abmelden. In Abbildung 4.9 ist eine Desktopansicht

der Cocktailauswahlliste dargestellt. Im Vergleich zu der mobilen Ansicht fällt auf, dass die

Warteliste nicht eingerückt mit den restlichen Elementen dargestellt wird, sondern einen

eigenen Platz erhält. Dadurch wir der vorhandene Platz effektiver ausgenutzt.

70

4.2 Prototyp

Abbildung 4.8: Prototyp der Cocktailauswahlliste (mobile Ansicht)

71

4 Konzeption

Abbildung 4.9: Prototyp der Cocktailauswahlliste (Desktopansicht)

72

5 Implementierung

Das Kapitel Implementierung enthält das Vorgehen bei der Entwicklung der Weboberfläche

Cocktailbar. Der Abschnitt 5.1 erläutert die eingesetzten Werkzeuge und die einzuhaltenden

Richtlinien. Um zukünftigen Administratoren und Entwicklern einen Einstieg zu erleichtern,

befindet sich in Abschnitt 5.2 ein Handbuch zur Nutzung von Cocktailbar. Schließlich befinden

sich in Abschnitt 5.3 die Ergebnisse der Implementierung.

5.1 Werkzeuge und Richtlinien

Um die Implementierung von Cocktailbar möglichst effizient und geordnet durchzuführen,

benötigt es einiger wohl gewählter Werkzeuge und Richtlinien bei der Programmierung. Es ist

dabei wichtig festzuhalten, dass kein richtiges Werkzeug für einen Anwendungsfall existiert.

Viel mehr ist die Wahl des Werkzeugs abhängig von der Gewohnheit und den persönlichen

Präferenzen des Entwicklers. Als ein Beispiel könnte man das Schreiben von Code betrach-

ten: ein Entwickler kann den Code in einem auf seinem System vorinstallierten Texteditor

schreiben - er spart sich damit den Download von Drittanbietersoftware und hat somit keinen

Mehraufwand. Ein anderer Entwickler würde allerdings eine Software für das Schreiben von

Code bevorzugen, um so deren Eigenschaften ausnutzen zu können. Folgende Werkzeuge zur

Erstellung von Code sind an dieser Stelle nennenswert:

• Code-Editor Der Code-Editor stellt zahlreiche Werkzeuge zur Erleichterung der Pro-

grammierung und der Verständlichkeit bereit. Dazu gehören Mechanismen wie die

Kolorierung von Codesegmenten, deren Formatierung oder die Autovervollständigung

von intendiertem Code.

• Compiler und/oder Interpreter Compiler übersetzen den gesamten geschriebenen

Code in eine gewünschte Zielsprache. Ein wichtiger Teil dieses Vorgangs ist die Synta-

xanalyse. Sie zerlegt den Code in einzelne Bestandteile und kann so durch hinterlegte

Regeln prüfen, ob es sich um korrekt zusammengesetzte Befehle handelt. Durch diesen

Vorgang wird dem Entwickler die Fehlersuche stark vereinfacht. Ein Interpreter führt

ebenfalls eine Syntaxanalyse durch, mit dem Unterschied, dass der Code von Ausdruck zu

Ausdruck eingelesen wird, statt anfangs den gesamten Code zu verarbeiten. Ob ein Inter-

preter oder ein Compiler zum Einsatz kommen hängt oft stark von der zu entwickelnden

Programmiersprache ab.

73

5 Implementierung

• Build-Automatisierung Die Build-Automatisierung geht einen Schritt über das Kompi-

lieren oder Interpretieren von Code hinaus und beinhaltet zusätzliche Funktionalität für

den Entwicklungsprozess von Software. Einige Mechanismen sind dabei das Verpacken

von kompiliertem Code in komprimierte Formate, die Erstellung von Ausführungsdateien

für gezielte Betriebssysteme oder die Versionsverwaltung.

• Debugger Ein Debugger ist ein Werkzeug zum Testen von Programmcode und der

Fehlersuche in diesem. Für den Programmcode können dabei Testfälle geschrieben

werden, die dem Entwickler bestenfalls Fehler in der Programmierung erkennbar machen.

Debugger erlauben häufig auch das Schrittweise ausführen von Programmcode, womit

die Fehlersuche enorm erleichtert werden kann. Mit Hilfe eines Debuggers ist es somit

möglich, die eigene Programmierung zu validieren und die Interpretation des Systems

nachzuvollziehen.

Für den Einsatz von mehreren Werkzeugen existieren diverse Entwicklungsumgebungen

(Integrated development environement (IDE)). Diese IDEs stellen häufig große Mengen an

Werkzeugen bereit. Nach dem Plugin-Architekturmuster (vgl. Unterabschnitt 2.4.1) können

Entwickler oft eigene Werkzeuge in diese IDEs einfügen.

Eine IDE kommt auch bei der Entwicklung von Cocktailbar zum Einsatz. Diese unterstützt die

oben genannten Funktionen. Darüber hinaus können beispielsweise Diagramme für ein Reverse
Engineering erstellt werden, Code aufgeräumt werden oder automatisch Dokumentationen

erzeugt werden.

Die Programmierung wird darüber hinaus unter Einhaltung gewisser Richtlinien entwickelt.

Diese Richtlinien dienen in erster Linie dazu, die spätere Wartung zu erleichtern und

während der Entwicklung Fehler zu vermeiden. Richtlinien, die den Code betreffen, fordern

den Programmierer häufig dazu auf, diesen möglichst übersichtlich und standardisiert zu

programmieren. Eine für den in Java geschriebenen Server eingesetzte Richtlinie stammt von

dem Unternehmen Google und nennt sich Google Java Style Guide [Goo]. Diese Richtlinie
bündelt eine Vielzahl von Regeln, die bei der Entwicklung eingehalten werden sollten. Die

Regeln beginnen bereits bei der Erstellung der Datei; der Dateiname ist gleich dem Namen der

Klasse, die sich in dieser Datei befinden soll plus der Dateiendung „.java“. Eine weitere Regel
ist beispielsweise, dass der Programmierer bei if-, else-, for-, do- und while-Ausdrücken immer

eine öffnende und eine schließende Klammer anfügt. Des Weiteren soll eine Zeile nicht mehr

als hundert Zeichen enthalten. Auch die Deklaration von Variablen wird reglementiert: Eine

lokale Variable wird erst an der Stelle deklariert, an der sie auch einsetzt wird. [Goo]

74

5.2 Handbuch

5.2 Handbuch

Der folgende Abschnitt beschreibt die Einrichtung der Webanwendung Cocktailbar.

Um Cocktailbar zu betreiben muss sich der Cocktailmixer in Betrieb befinden. Es wird davon

ausgegangen, dass auf dem integrierten Raspberry Pi 3 Modell B das Betriebssystem Raspbian
installiert ist. Folgende Pakete sind unter Raspbian zu installieren

1
: java8, python2.7, python-

mysql.connector, python-spidev, python-rpi.gpio, mysql-server, npm, nodeJS, yarn.

Nach der Installation lässt sich der Source Code des Servers mit den Befehlen in Listing 5.1

(Zeile 1 und 2) in der Kommandozeile zu einer ausführbaren JAR-Datei komprimieren. Nach

Ausführung dieses Befehls befindet sich die JAR-Datei im Ordner target des Basisverzeichnisses.
Der Server lässt sich nach Ausführung dieser Schritte für jeden weiteren Start mit dem Befehl

in Listing 5.1 (Zeile 3) ausführen:

Listing 5.1: Erstellen einer JAR-Datei und Starten des Servers in der Kommandozeile

1 cd / path / to / s e r v e r

2 mvn package # mvnw package on windows hos t

3 j a v a − j a r s e r v e r j a r f i l e . j a r

Zum Starten des Clients muss zuerst in den Ordner des Source Codes navigiert werden (vgl.

Listing 5.2 Zeile 1). Anschließend lädt der Paketmanager mit einem Befehl die benötigten Pakete

herunter (vgl. Listing 5.2 Zeile 2). Der folgende Befehl wird nach der Installation ausgeführt

kompiliert den Source Code (vgl. Listing 5.2 Zeile 3). Um den Client zu starten wird schließlich

der letzte Befehl ausgeführt (vgl. Listing 5.2 Zeile 4).

Listing 5.2: Installieren und Starten des Clients in der Kommandozeile

1 cd / path / to / c l i e n t

2 npm i n s t a l l

3 yarn b u i l d −− −−r e l e a s e

4 PORT=3001 node b u i l d / s e r v e r . j s

1
für das Installieren von Paketen vgl. Abschnitt 2.1

75

5 Implementierung

Falls ein Debugging des Maschinencodes erwünscht ist, kann dieser gesondert vom Server

ausgeführt werden. Dazu müssen zuerst folgende Zeilen aus der Main-Methode des Servers

auskommentiert werden:

Listing 5.3: Integrierter Maschinencode des Servers

1 t r y {

2 P r o c e s s p = Runtime . ge tRunt ime () . exec (" python machine / s t a r t − i n i t . py ") ;

3 } c a t ch (IOExcep t i on e) {

4 e . p r i n t S t a c kT r a c e () ;

5 }

Schließlich kann der Maschinencode manuell mit folgendem Befehl gestartet werden:

Listing 5.4:Manuelles Starten des Maschinencodes

1 cd / path / to / s e r v e r / s r c / main / j a v a / de / isw / u n i s t u t t g a r t / machine

2 python s t a r t − i n i t . py &

76

5.3 Resultate

5.3 Resultate

Dieser Abschnitt präsentiert die Resultate der Implementierung der Webanwendung Cocktail-
bar. Hierfür wird die Webanwendung mit ihren Anforderungen (vgl. Abschnitt 3.2) abgeglichen

und Anhand relevanter Abbildungen beschrieben.

Abbildung 5.1: Cocktailbar - Rezept

Abbildung 5.1 zeigt die Anzeige eines einzelnen Rezepts. Jedes im System vorhandene Rezept

lässt sich auf diese Weise über eine eigene URL ansteuern und anzeigen (vgl. Anforderung

R1). Des Weiteren werden sämtliche Zutaten, die in dem Rezept enthalten sind dem Benutzer

angezeigt (vgl. Anforderung R2). Ebenso enthält die Rezeptansicht ein Bild des Rezepts und

weitere Informationen über das Rezept (vgl. Anforderung R3 und R4). Über die Taskleiste

unterhalb des Rezepts kann der Benutzer das angezeigte Rezept bestellen (vgl. Anforderung R5).

Die Taskleiste und die Zurück-Schaltfläche sind über die gesamte Anwendung gleich gehalten.

Dies erfüllt die goldene Regel der Konsistenz von Shneiderman (vgl. Unterabschnitt 2.4.3.

Ebenso wird die Regel der informativen Rückmeldung erfüllt, wenn man eine Bestellung tätigt:

nach der Interaktion mit der Schaltfläche öffnet sich ein Dialog, der den Benutzer informiert,

ob die Bestellung erfolgreich im System eingegangen ist.

77

5 Implementierung

Abbildung 5.2: Cocktailbar - Rezeptliste

Abbildung 5.2 zeigt die Rezeptliste der Webanwendung Cocktailbar (vgl. Anforderung RL1). Da
mehr als fünf Rezepte im System hinterlegt sind, wird im oberen (und im unteren) Bereich der

Liste eine Auswahl der Seite angeboten, sodass die Rezepte über mehrere Seiten hinweg verteilt

werden können (vgl. Anforderung RL2). Dies erfüllt die goldene Regel Shneidermans über die

Entlastung des Kurzzeitgedächtnis (vgl. Unterabschnitt 2.4.3). Ebenfalls befindet sich am oberen

Rand der Liste ein Kontrollkästchen, mit dem die Zutaten der Rezepte ein- und ausgeblendet

werden können (vgl. Anforderung RL3). Wie auch in der einzelnen Rezeptansicht wird ein Bild

für jedes Rezept der Liste angezeigt (vgl. Anforderung RL4). Mit Hilfe der Taskleiste unter jedem

Rezept kann der Benutzer in die Einzelansicht des Rezepts gelangen oder das Rezept bestellen

(vgl. Anforderung RL5 und RL6). Die Bündelung sämtlicher Interaktionsmöglichkeiten und

somit deren kombinierter Wahrnehmung in der Taskleiste beruht auf dem Gesetz der Nähe

(vgl. Unterabschnitt 2.4.3).

78

5.3 Resultate

Abbildung 5.3: Cocktailbar - Warteliste

Die vorherigen Abbildungen zeigen bereits die realisierte Warteliste in ausgeblendetem Zu-

stand. Abbildung 5.3 zeigt die Liste, wenn der Benutzer sie durch die Interaktion mit der

Schaltfläche eingeblendet hat (vgl. Anforderung W1 und W2). Die fünf obersten Bestellungen

werden mit ihrem Rezept und Besteller nach der Reihenfolge ihrer Abarbeitung aufgezählt

(vgl. Anforderung W3). Die oberste Bestellung ist dabei auch im ausgeblendeten Zustand

ersichtlich. Nach Ausführung einer Bestellung wird diese aus der Warteliste entfernt werden.

Dafür wird der aktuelle Stand der Warteliste in kurzem Abstand über den Server abgefragt (vgl.

Anforderung W4 und W5). Da die Warteliste, so wie auch die Rezepte und Zutaten, jeweils

innerhalb eines Quadrats abgebildet sind, werden deren Inhalte auch als zusammengehörig

wahrgenommen (vgl. Unterabschnitt 2.4.3, Gesetz der Geschlossenheit).

79

5 Implementierung

Abbildung 5.4: Cocktailbar - Startseite

Abbildung 5.4 zeigt die Startseite, welche Informationen über die aktuellen Vorgänge des

automatisierten Cocktailmixers enthält. Die Startseite ist dabei nicht die Eingangsseite, auf die

man gelangt, wenn Cocktailbar zum ersten Mal aufgerufen wird (dies ist die Rezeptliste). Das

Display des automatisierten Cocktailmixers soll dagegen diese Startseite ständig anzeigen
1
,

um dem Benutzer, der an der Reihe ist mitzuteilen, welche Schritte er zu befolgen hat (vgl.

Anforderung S1, S2 und S3).

Abbildung 5.5: Cocktailbar - Kopfleisten

1
Die übrige Webseite ist über das Display dennoch aufrufbar.

80

5.3 Resultate

Abbildung 5.6: Cocktailbar - Login

Auf Abbildung 5.6 ist der Login-Bereich der Webanwendung Cocktailbar zu sehen. Unter Einga-
be eines Benutzernamens und Bestätigung mit Hilfe der Schaltfläche interagiert der Benutzer

mit dem eingegebenen Pseudonym (Ist kein Benutzername angegeben wird das Pseudonym

„Anonymous User“ benutzt). Falls der Benutzer, zusätzlich zu seinem Benutzernamen, noch

ein Passwort angibt, prüft das System, ob mit dieser Kombination aus Benutzername und

Passwort ein administrativer Account hinterlegt ist. Ist dies der Fall, kann der Benutzer fortan

als Administrator interagieren. (vgl. Anforderung B1 und B2)

Abbildung 5.5 zeigt eine unterschiedliche Ansicht der Kopfleiste; einmal wenn ein Benutzer

am System angemeldet ist und einmal wenn ein Benutzer sich am System anmelden kann. Ist

ein Benutzer angemeldet kann er über den Link „Ausloggen“ sämtliche erhaltenen Privilegien

ablegen und fortan wieder unter dem Pseudonym „Anonymous User“ interagieren (vgl. Anfor-

derung B3). Die Bündelung der Links in einer Menüleiste entspricht dem Gesetz der Nähe (vgl.

Unterabschnitt 2.4.3) und vereinfacht dem Benutzer, durch die Webseite zu navigieren.

81

5 Implementierung

Abbildung 5.7: Cocktailbar - Administrationsbereich

Hat sich ein Benutzer mit einem administrativen Account am System angemeldet, erreicht er

über die Kopfleiste (vgl. Abbildung fig:cockkopf) den Administrationsbereich (vgl. Anforderung

A1). Auf dieser Seite kann der Benutzer im oberen Bereich durch alle aktuellen Zustände des

Systems hindurchscrollen und so, auch ohne Sicht auf die Maschine, feststellen, ob diese

beispielsweise in Betrieb ist, gerade ein Rezept zubereitet oder auf die Entnahme des Glases

wartet (vgl. Anforderung A2). Unter der Statusleiste befindet sich die Serviceleiste. Mit dieser

lässt sich der Reinigungsmodus und der Nachfüllmodus aktivieren. Wird der Nachfüllmodus

aktiviert, pausiert das System die Abarbeitung der Bestellungen, bis dieser wieder deaktiviert

wird. Bei aktivem Reinigungsmodus können Zutaten, die sich an Ventilen befinden über die

Taskleiste gereinigt werden - Die Ventile öffnen sich nach Betätigung der Schaltfläche für

eine gewisse Zeit (vgl. Anforderung A16). Unterhalb der Statusanzeige können drei Reiter

ausgeklappt werden, in denen die administrative Ansicht der Rezept-, Zutaten- und Bestellliste

angezeigt wird (vgl. Anforderung A3, A8 und A13). Mit Hilfe der Taskleiste unter den Rezepten

und Zutaten lassen sich hier Rezepte und Zutaten löschen und bearbeiten (vgl. Anforderung

A5,A7, A11 und A12). Dabei können nur Zutaten gelöscht werden, die sich in keinem Rezept

mehr befinden. Ebenfalls kann sich eine Zutat keinen Anschluss mit einer weiteren Zutat

teilen (vgl. Anforderung A6). Eine Zutat kann darüber hinaus über die Taskleiste nachgefüllt

werden; ihr Füllstand wird im unteren Bereich des Rezepts mit Hilfe eines Fortschrittsbalkens

82

5.3 Resultate

angezeigt (vgl. Anforderung A7). Im linken, oberen Bereich der Rezepte und der Zutaten kann

der Benutzer über eine Schaltfläche neue Rezepte (bzw. neue Zutaten) zu dem momentanen

Bestand hinzufügen (vgl. Anforderung A4 und A10). In der administrativen Bestellliste können

entweder einzelne oder alle Bestellungen aus dem System gelöscht werden (vgl. Anforderung

A14 und A15).

83

6 Schlussbetrachtung

In diesem Kapitel schließt die Arbeit über die Konzeption und Realisierung einer

Steuerungssystem-Human Machine Interface (HMI) für Mobilgeräte mit einer Zusam-

menfassung. In dieser werden insbesondere die gesetzten Ziele mit dem Inhalt dieser

Arbeit verglichen. Ebenso befindet sich in diesem Kapitel ein Ausblick, der die mögliche

Weiterentwicklung der Webanwendung Cocktailbar umschreibt. Hierfür werden auch Ideen

und Konzepte vorgeschlagen, die in dieser Arbeit nicht realisiert wurden.

6.1 Zusammenfassung

Diese Arbeit begann mit der Recherche über den Stand der Technik. Dabei wurden sechs

Architekturmuster vorgestellt sowie deren Vor- und Nachteile aufgezählt. Ebenso wurde über

das Kommunikationsparadigma REST recherchiert. Schließlich wurden etablierte Gesetze und

Richtlinien der Benutzerfreundlichkeit ergründet. Im Anschluss daran folgte die Analyse des

bestehenden Systems. Dazu wurde dieses mit den Ergebnissen der Recherche abgeglichen

und auf Mängel hin überprüft. Daran anschließend wurden funktionale, nichtfunktionale und

sonstige Anforderungen an das System in einem Anforderungskatalog gesammelt und die

Arbeit von existierenden Arbeiten abgegrenzt. Der Analyse als Grundlage folgte die Konzep-

tion der Webanwendung Cocktailbar in Form eines Systementwurfs und dessen Prototypen.

Innerhalb des Systementwurfs konnten die Ergebnisse des Stands der Technik wiederver-

wendet werden. Ebenso wurden die Anforderungen aus dem Analyseteil berücksichtigt. Als

Ergebnis des Entwurfs wurden seine Teilkomponenten ausführlich aufgezählt und in ihrer

Funktion beschrieben. Der Prototyp diente einer ersten Impression des fertig entworfenen

Systems. Durch ihn wurden die Entwurfsentscheidungen überprüft und gegebenenfalls er-

gänzt oder beschnitten. Der abschließende Teil dieser Arbeit schilderte die Implementierung

des Softwareentwurfs. Dabei wurden Rahmenbedingungen wie eingesetzte Werkzeuge und

Richtlinien erläutert. Ebenso wurde ein Handbuch angefügt, dass bei der weiteren Entwick-

lung und Benutzung der Webanwendung Cocktailbar unterstützen soll. Im letzten Teil des

Implementierungsabschnitts wurden schließlich die praxisorientierten Ergebnisse der Arbeit

präsentiert und mit den Anforderungen des Analyseteils abgeglichen.

85

6 Schlussbetrachtung

6.2 Ausblick

Die Webanwendung Cocktailbar stellt ein Fundament für die Weiterentwicklung der Soft-

wareseite des automatischen Cocktailmixers da. Dabei beschränkt sich Cocktailbar auf die
Benutzerschnittstelle und lässt den Maschinencode weitgehend unberührt. Ein erster Schritt

könnte die Angliederung des Maschinencodes an den Server darstellen. Da die Komponente in

der Verarbeitungsschicht des Servers einzuordnen ist und ihre Funktionalität der des control-
ler-Pakets des Servers gleicht, ist eine lose Kopplung hier nicht sinnvoll. Beide Komponenten

sind darüber hinaus in unterschiedlichen Programmiersprachen entwickelt, was die Wartung

erschwert. Die Webanwendung Cocktailbar selbst könnte um einige Funktionen erweitert

werden, welche die Interaktion mit dem System interessanter gestalten könnten. Dazu gehört

beispielsweise die Möglichkeit, Rezepte zufällig zu bestellen (vgl. Funktionalität von Barobot in

Unterabschnitt 3.3.2). Ebenso könnte man Rezepte von den Benutzern selbst zusammenstellen

lassen und so nach internen oder benutzerdefinierten Rezepten filtern. Die Statusmeldungen,

die der Maschinencode bisher ausgibt, könnten darüber hinaus erweitert werden. Man könnte

dazu die aktuellen Schritte des Cocktailmixers genauer anzeigen lassen (z. B. „Fülle Orangensaft

ein...“).

Das System Cocktailbar wurde so entwickelt, dass zukünftig noch weitere Programmierer an

ihm weiterarbeiten können - Die Entwicklung des automatisierten Cocktailmixers hat mit

dieser Arbeit einen neuen Baustein hinzugewonnen.

86

Literaturverzeichnis

[Bara] Bartendro™. Automatisierter Cocktailmixer. url: http://partyrobotics.com/ (zitiert

auf S. 49).

[Barb] Bartendro™. Cocktail-Auswahlbildschirm der GUI. url: http://cdn.shopify.com/s/

files/1/0455/5013/files/blog_UI-1024x703.jpg?259 (zitiert auf S. 49).

[Barc] Bartendro™. GNU General Public License. url: https://github.com/partyrobotics/

bartendro/blob/master/COPYING (zitiert auf S. 49).

[Bar13a] Barobot. Source Code. 2013. url: https://code.google.com/archive/p/barobot/

source/default/source (zitiert auf S. 50).

[Bar13b] Barobot. Technische Details. 2013. url: https://code.google.com/archive/p/barobot/

wikis/TechnicalDetails.wiki (zitiert auf S. 50).

[Bar14a] Barobot. Automatisierter Cocktailmixer. 2014. url: https://www.kickstarter.com/

projects/barobot/barobot-a-cocktail-mixing-robot (zitiert auf S. 50).

[Bar14b] Barobot. Cocktail-Auswahlbildschirm der GUI. 2014. url: http://cdn.firstwefeast.
com/assets/2014/05/barobotscreen.jpg (zitiert auf S. 50).

[BCK03] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. Addison-Wesley

Professional, 2003 (zitiert auf S. 21).

[Cur04] E. Curry. „Message-oriented middleware“. In: Middleware for communications
(2004), S. 1–28 (zitiert auf S. 33).

[Deb] Debian. Offizielle Webseite. url: https://www.debian.org/ (zitiert auf S. 15).

[Elm08] R. Elmasri. Fundamentals of database systems. Pearson Education India, 2008

(zitiert auf S. 64).

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee.

Hypertext Transfer Protocol – HTTP/1.1. United States, 1999 (zitiert auf S. 33).

[GD13] J. Goll, M. Dausmann. Architektur-und entwurfsmuster der softwaretechnik. Bd. 1.
Springer, 2013 (zitiert auf S. 21–32).

[Goo] Google. Google Java Style Guide. url: https : / / google . github . io / styleguide /
javaguide.html (zitiert auf S. 74).

[Has06] W. Hasselbring. „Software-Architektur“. In: Informatik-Spektrum 29.1 (2006), S. 48–

52. issn: 1432-122X. doi: 10.1007/s00287-005-0049-5. url: http://dx.doi.org/10.

1007/s00287-005-0049-5 (zitiert auf S. 21).

87

http://partyrobotics.com/
http://cdn.shopify.com/s/files/1/0455/5013/files/blog_UI-1024x703.jpg?259
http://cdn.shopify.com/s/files/1/0455/5013/files/blog_UI-1024x703.jpg?259
https://github.com/partyrobotics/bartendro/blob/master/COPYING
https://github.com/partyrobotics/bartendro/blob/master/COPYING
https://code.google.com/archive/p/barobot/source/default/source
https://code.google.com/archive/p/barobot/source/default/source
https://code.google.com/archive/p/barobot/wikis/TechnicalDetails.wiki
https://code.google.com/archive/p/barobot/wikis/TechnicalDetails.wiki
https://www.kickstarter.com/projects/barobot/barobot-a-cocktail-mixing-robot
https://www.kickstarter.com/projects/barobot/barobot-a-cocktail-mixing-robot
http://cdn.firstwefeast.com/assets/2014/05/barobotscreen.jpg
http://cdn.firstwefeast.com/assets/2014/05/barobotscreen.jpg
https://www.debian.org/
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
http://dx.doi.org/10.1007/s00287-005-0049-5
http://dx.doi.org/10.1007/s00287-005-0049-5
http://dx.doi.org/10.1007/s00287-005-0049-5

Literaturverzeichnis

[Her16] V. Hermann. „Konzeption und Entwicklung eines web- und datenbankbasierten

Steuerungssystems für einen automatisierten Cocktailmischer“. Bachelorarbeit.

Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrich-

tungen, Universität Stuttgart, 2016 (zitiert auf S. 17, 19).

[Kic] Kickstarter. Projektfinanzierung über Crowdfunding. url: https://www.kickstarter.

com (zitiert auf S. 49, 50).

[LV12] G. van Loo, M. VanInwegen. Gertboard Benutzerhandbuch. 2012 (zitiert auf S. 16,
17).

[Mil56] G. A. Miller. „The magical number seven, plus or minus two: some limits on our

capacity for processing information.“ In: Psychological review 63.2 (1956), S. 81

(zitiert auf S. 35).

[Nie03] J. Nielsen. Usability 101: Introduction to usability. 2003 (zitiert auf S. 34).

[Par14] Party Robotics. Getting Started Guide. 2014 (zitiert auf S. 49).

[Rasa] Raspberry Pi. Dokumentation GPIO. url: https : / / www . raspberrypi . org /

documentation/usage/gpio/ (zitiert auf S. 15).

[Rasb] Raspberry Pi. Frequently Asked Questions. url: https://www.raspberrypi.org/help/

faqs/ (zitiert auf S. 14).

[Rasc] Raspbian OS. Offizielle Webseite. url: https://www.raspberrypi.org/downloads/

raspbian/ (zitiert auf S. 15).

[RJB04] J. Rumbaugh, I. Jacobson, G. Booch. Unified Modeling Language Reference Manual,
The (2Nd Edition). Pearson Higher Education, 2004. isbn: 0321245628 (zitiert auf

S. 55).

[Rod08] A. Rodriguez. „Restful web services: The basics“. In: IBM developerWorks (2008)
(zitiert auf S. 33).

[RPi] RPi.GPIO. Package Webseite. url: https://pypi.python.org/pypi/RPi.GPIO (zitiert

auf S. 17).

[Shn10] B. Shneiderman. Designing the user interface: strategies for effective human-
computer interaction. Pearson Education India, 2010 (zitiert auf S. 35, 38).

[Wer23] M. Wertheimer. „Untersuchungen zur Lehre von der Gestalt. II“. In: Psychologische
forschung 4.1 (1923), S. 301–350 (zitiert auf S. 36).

[Wir] WiringPi. Package Webseite. url: https://pypi.python.org/pypi/wiringpi/2.44.0
(zitiert auf S. 17).

Alle URLs wurden zuletzt am 28. 05. 2017 geprüft.

88

https://www.kickstarter.com
https://www.kickstarter.com
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/help/faqs/
https://www.raspberrypi.org/help/faqs/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/wiringpi/2.44.0

Abbildungsverzeichnis

1.1 Ursprüngliche grafische Oberfläche des Cocktailmixers 10

2.1 Vorderansicht des Cocktailmixers . 13

2.2 Draufsicht Raspberry Pi 3 Modell B . 14

2.3 Struktur des Maschinencodes . 17

2.4 Ausschnitt des Aktivitätsdiagramms der Klasse Main (Maschinencode) 18

2.5 Struktur des Architekturmusters Pipes and Filter 23

2.6 Struktur des Plugin-Architekturmusters . 27

2.7 Architektur Thin/Fat-Client als Schichtenmodell 29

2.8 SOA-Dreieck . 31

3.1 Anwendungsfalldiagramm . 48

3.2 Cocktail-Auswahlbildschirm des Bartendro™ GUI 49

3.3 Cocktail-Auswahlbildschirm der Barobot GUI 50

4.1 Logo der Weboberfläche Cocktailbar . 53

4.2 UML-Paketdiagramm des Servers . 55

4.3 UML-Sequenzdiagramm - Zutat hinzufügen 59

4.4 Klassen und deren Abhängigkeiten des Paket models 62

4.5 Ingredient-Klasse samt Abhängigkeiten . 63

4.6 EER-Diagramm der Datenbank . 65

4.7 UML-Paketdiagramm des Clients . 66

4.8 Prototyp der Cocktailauswahlliste (mobile Ansicht) 71

4.9 Prototyp der Cocktailauswahlliste (Desktopansicht) 72

5.1 Cocktailbar - Rezept . 77

5.2 Cocktailbar - Rezeptliste . 78

5.3 Cocktailbar - Warteliste . 79

5.4 Cocktailbar - Startseite . 80

5.5 Cocktailbar - Kopfleisten . 80

5.6 Cocktailbar - Login . 81

5.7 Cocktailbar - Administrationsbereich . 82

89

Tabellenverzeichnis

2.1 Vor- und Nachteile des Broker-Architekturmusters 22

2.2 Vor- und Nachteile des Pipes and Filter-Architekturmusters 24

2.3 Vor- und Nachteile des MVC-Architekturmusters 26

2.4 Vor- und Nachteile des Plugin-Architekturmusters 28

2.5 Vor- und Nachteile des Schichtenmodells . 30

2.6 Vor- und Nachteile einer serviceorientierten Architektur 32

3.1 Softwareanforderungen - Rezepte . 40

3.2 Softwareanforderungen - Rezeptliste . 41

3.3 Softwareanforderungen - Warteliste . 41

3.4 Softwareanforderungen - Startseite . 42

3.5 Softwareanforderungen - Benutzerprofil . 42

3.6 Softwareanforderungen - Administrationsoberfläche 43

3.7 Nichtfunktonale Anforderungen an das Softwaresystem 44

3.8 Sonstige Anforderungen an das Softwaresystem 44

3.9 Anwendungsfall Rezept bestellen . 45

3.10 Anwendungsfall Servicemodus aktivieren . 46

91

Listings

2.1 APT Code-Beispiele . 15

2.2 Funktion vor_slow zur Steuerung des Getriebemotors 19

5.1 Erstellen einer JAR-Datei und Starten des Servers in der Kommandozeile . . . 75

5.2 Installieren und Starten des Clients in der Kommandozeile 75

5.3 Integrierter Maschinencode des Servers . 76

5.4 Manuelles Starten des Maschinencodes . 76

	1 Einleitung
	1.1 Motivation
	1.2 Zielsetzung
	1.3 Aufbau der Arbeit

	2 Grundlagen und Technik
	2.1 Raspberry Pi
	2.2 Steuerungssysteme
	2.2.1 Hauptprogramm
	2.2.2 Datenbankverwaltung
	2.2.3 Maschinensteuerung

	2.3 Benutzeroberfläche
	2.4 Stand der Technik
	2.4.1 Architekturmuster
	2.4.2 Kommunikationsparadigmen
	2.4.3 Benutzerfreundlichkeit

	3 Analyse
	3.1 Ausgangssituation
	3.1.1 Benutzerfreundlichkeit
	3.1.2 Softwaredesign

	3.2 Anforderungskatalog
	3.2.1 Funktionale Anforderungen
	3.2.2 Nichtfunktionale Anforderungen
	3.2.3 Sonstige Anforderungen

	3.3 Verwandte Arbeiten
	3.3.1 Bartendro™
	3.3.2 Barobot

	3.4 Abgrenzung

	4 Konzeption
	4.1 Systementwurf
	4.1.1 Systemarchitektur
	4.1.2 Serverseitige Architektur
	4.1.3 Clientseitige Architektur

	4.2 Prototyp

	5 Implementierung
	5.1 Werkzeuge und Richtlinien
	5.2 Handbuch
	5.3 Resultate

	6 Schlussbetrachtung
	6.1 Zusammenfassung
	6.2 Ausblick

	Literaturverzeichnis

