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Kurzfassung

In dieser Arbeit wurde ein Konzept entwickelt, bei der für den K-means und den K-means++
eine effiziente Berechnung der Metriken ermöglicht wurde. Mit Hilfe der Metriken wurde an-
schließend ein Konvergenzkriterium zur frühzeitigen Terminierung für den K-means und den
K-means++ aufgestellt. In den Experimenten konnte gezeigt werden, dass sowohl für syntheti-
sche, als auch für reale Datensätze Einsparungen in den Iterationen und der Ausführungszeit
von über 90% möglich waren. Zudem wurde verdeutlicht, dass eine höhere Einsparung der
Ausführungszeit auch gleichzeitig mit einem höheren Qualitätsverlust verbunden ist. Des Wei-
teren wurden diese beiden Metriken genutzt, um geeignete Zeitpunkte für eine Visualisierung
auszumachen. Dabei ergaben sich für beide Metriken, die für jeweils beide Algorithmen ge-
prüft wurden, je unterschiedliche Werte für die Anzahl der Visualisierungen. Diese erstreckten
sich von 0% bis 30% der Anzahl der Iterationen des jeweiligen Durchlaufs. Es wurde zudem
aufgezeigt, dass für beide Metriken die meisten Durchläufe der Visualisierungen im Bereich
von 5% bis 20% waren. Daraufhin wurden beide Ansätze kombiniert, das heißt, dass untersucht
wurde wie viele Visualisierungen sich bis zum festgelegten Konvergenzkriterium ergeben.
Dabei hat sich herausgestellt, dass sich dafür deutlich mehr Visualisierungen im Verhältnis
von Visualisierungen und Iterationen bis zur Konvergenz ergab.
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1. Einleitung

Im heutigen Big Data-Zeitalter wächst die Anzahl der Daten exponentiell an. Mit jedem Jahr
verdoppelt sich das jährlich weltweit generierte Datenvolumen. Laut einer Studie von Seagate
wurden 2013 ungefähr 3,5 Zetabyte an Daten generiert. 2020 hingegen soll die Anzahl auf bis
zu 40 Zetabyte ansteigen [RGR17]. Das entspricht einem jährlich generierten Datenvolumen
von 5200 GB pro Person. Dazu zählen unter anderem alle möglichen Arten von Daten, die
durch eine Interaktion mit Menschen im Internet geschehen [FAT+14]. Dies ist beispielsweise
in sozialen Netzwerken wie Facebook oder Twitter, aber auch in einer e-Commerce Plattform
wie Amazon der Fall. So fallen bei Amazon täglich mehr als 10 Millionen Transaktionen und 3
Millionen Einkäufe an [DHJ+07]. Durch eine geeignete Analyse dieser Daten ist es möglich das
Kaufverhalten der Kunden zu analysieren und die Kunden zu gruppieren, wodurch den Kunden
Vorschläge für einen weiteren Kauf gemacht werden können, der auf dem bisherigen Interessen
basiert. Die Analyse, bei der aus einer Sammlung von Daten Informationen gewonnen werden,
wird auch als Data Mining bezeichnet . Ein weiteres Anwendungsgebiet des Data Minings
ergibt sich für Banken und Versicherungen in der Erstellung einer Risikoanalyse. Wenn zum
Beispiel entschieden werden soll, ob einem Kunden ein Kredit bzw. eine Lebensversicherung
angeboten werden soll[Fas]. Es kann allerdings auch in der Biologie eingesetzt werden, um
verschiedene verschiedene Gene mit ähnlicher Funktion zusammen zu fassen oder um Pflanzen
und Tiere zu klassifizieren [HPK11].

Durch die steigenden und komplexer werdenden Daten stoßen die Data Mining-Verfahren
jedoch schnell an ihre Grenzen. Zum Einen müssen die Daten vor einer Analyse oft vor-
verarbeitet werden, da sie unvollständig oder fehlerbehaftet sein können. Dadurch ergibt sich
ein längerer und meist auch iterativer Prozess. Des Weiteren ist das Ergebnis einer Analyse
nur so gut wie es von einem menschlichen Experten interpretiert wird. Denn für die Analyse
sind zahlreiche verschiedene und komplexe Beziehungen zu beachten, die eine automatisierte
Auswertung der Analyse erschweren [WZWD14]. Die Data Mining-Verfahren sind zwar
meist iterative Verfahren, jedoch ist es nicht möglich die Zwischenschritte dieser Verfahren
einzusehen. Dadurch sind die Verfahren wie eine undurchsichtige Black-Box, da zwischen
Eingabe der Parameter und der Ausgabe des Resultats keinerlei Steuerungsmöglichkeit besteht
und somit oft unklar ist unter welchen Umständen Ergebnisse zustande kommen [JMF99]. Dies
wird in Abbildung 1.1 dargestellt. Die transformierten Daten stellen dabei Daten dar, die vor
verarbeitet wurden, um in einem für die Analyse geeigneten Format vorzuliegen. Dazu gehört
zum Beispiel die Bereinigung der Daten von Ausreißern oder eine Voraggregation der Daten.
Erst wenn die Analyse abgeschlossen ist, wird das Ergebnis zur Evaluation weitergeleitet.
Diese wird dann von einem menschlichen Experten durchgeführt, der anhand von geeigneten

13



1. Einleitung

Abbildung 1.1.: Ist-Zustand des Analyseprozesses

Metriken bewertet, ob das Ergebnis sinnvoll ist oder nicht. Ist das Ergebnis sinnvoll, erhält man
neues Wissen über die Daten, wenn nicht, dann muss der Analyseschritt mit neuen Parametern
(und eventuell einem anderen Verfahren) erneut durchgeführt werden.

Zudem beinhalten die Analyseverfahren häufig Optimierungsfunktionen. Diese Funktionen
streben einen Zielzustand an, der z. B. durch die Minimierung einer Fehlerfunktion erreicht
werden soll. Dies resultiert jedoch oft in einer Langläufigkeit der Berechnungen, besonders
wenn es sich um große Datenmengen handelt. Um dem entgegenzuwirken wird ein Konver-
genzkriterium benötigt, welches ein approximiertes Ergebnis liefert. Für die Bewertung der
Zielzustände der Verfahren gibt es zahlreiche Metriken, wodurch Rückschlüsse auf die Eignung
der Parameter gezogen werden können. Dabei entstehen allerdings zwei Probleme:

i) Die Metriken sind sehr komplex und zahlreich und je nach Verfahren werden andere
Metriken benötigt.

ii) Die Bewertung findet erst nach der Terminierung der Verfahren statt.

1.1. Ziele

Ein Ziel dieser Arbeit ist es, die Analyse und die Evaluation enger miteinander zu verknüpfen.
Dies soll durch einen Zustand erreicht werden, der in Abbildung 1.2 dargestellt wird.

Dabei werden dem Nutzer Zwischenergebnisse der Verfahren gezeigt. Der Nutzer hat dann die

Abbildung 1.2.: Soll-Zustand des Analyseprozesses

Möglichkeit zu entscheiden, ob er die Analyse fortsetzen möchte oder nicht. Dadurch soll es
für den Nutzer nachvollziehbarer werden, wie bestimmte Ergebnisse entstehen. Ein weiterer

14



1.2. Gliederung der Arbeit

Punkt ist, dass der Nutzer frühzeitig erkennen kann, falls eine Analyse eine unerwünschte
Form annimmt und er kann das Verfahren früher abbrechen, um es mit neuen Parametern
zu wiederholen. Somit wird auch Zeit eingespart, da der Nutzer nicht die komplette Analyse
abwarten muss, um dann festzustellen, dass das Ergebnis nicht sinnvoll ist. Die Zeitpunkte der
Visualisierung sollen dabei mit Hilfe von geeigneten Metriken bestimmt werden.

Ein weiteres Ziel dieser Arbeit zielt ebenfalls darauf ab, die Analyse-Verfahren zu verkürzen.
Dabei sollen die Analyseverfahren frühzeitig terminieren, wenn bereits eine ausreichende
Qualität erreicht ist und keine großen Änderungen zu erkennen sind. Dazu soll mit Hilfe von
geeigneten Metriken ein Konvergenzkriterium aufgestellt werden, welches angibt, wann eine
ausreichende Qualität erreicht ist. Die Ziele fokussieren sich in dieser Arbeit auf Clustering-
Algorithmen, insbesondere den K-means und den DBSCAN.

1.2. Gliederung der Arbeit

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen und verwandte Arbeiten: In diesem Kapitel werden die Grundla-
gen für diese Arbeit geschaffen und es wird auf verwandte Arbeiten eingegangen.

Kapitel 3 – Konzept zur Berechnung der Metriken in Teilschritten: In diesem Kapitel
werden geeignete Metriken ausgewählt und es wird ein Konzept für eine optimierte
Berechnung dieser Metriken vorgestellt

Kapitel 4 – Experimentelle Umsetzung: In diesem Kapitel wird auf die prototypische Im-
plementierung eingegangen und der Ablauf der Experimente wird beschrieben.

Kapitel 5 – Evaluation: In diesemKapitel wird evaluiert welcheMetriken sich für ein Konver-
genzkriterium eignen und welche sich für die Visualisierung von Zwischenergebnissen
eignen. Anschließend wird untersucht wie viel Zeit mit dem Konvergenzkriterium ein-
gespart werden kann und mit welchem Qualitätsverlust dies verbunden ist. Zudem
werden zwei Ansätze für die Visualisierung von Zwischenergebnissen vorgestellt und
mit einander verglichen.

Kapitel 6 – Zusammenfassung und Ausblick: In diesem Kapitel wird eine Zusammenfas-
sung der Arbeit gegeben und es wird darauf eingegangen, wo noch Potenzial für weitere
Forschungen vorhanden ist.
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2. Grundlagen und verwandte Arbeiten

In diesem Kapitel werden die nötigen Grundlagen für die nachfolgenden Kapitel dieser Arbeit
geschaffen und es wird eine Übersicht über verwandte Arbeiten gegeben. Dazu wird ein spezi-
fisches Verfahren der Analyse eingegangen, das Clustering, und es werden die verschiedenen
Möglichkeiten der Evaluation des Clusterings aufgezeigt. Bevor es allerdings zu der Analyse
kommt, müssen die Daten aus einer riesigen Datenmenge ausgewählt und meist auch noch
vor-verarbeitet werden, damit überhaupt eine Analyse stattfinden kann. Der gesamte Prozess
vom Auswählen der Daten bis hin zur Gewinnung von Wissen wird als Knowledge Discovery in
Databases (KDD) [FPS96b] bezeichnet. Der KDD Prozess umfasst alle Schritte vom Auswählen
der Daten, z. B. aus einer Datenbank, bis hin zur Evaluation der Analyse-Ergebnisse. In der
Abbildung 2.1 sind alle Schritte des KDD Prozesses zu sehen. Dabei ist zu sehen, dass vor dem

Abbildung 2.1.: Übersicht über die Schritte des KDD Prozesses [Cha16]

Data Mining Schritt zunächst Daten ausgewählt werden müssen. Diese werden anschließend
vor-verarbeitet, was z. B. heißen kann, dass sie von Ausreißern befreit werden oder, dass
die Daten aggregiert werden. Daraufhin werden die Daten in ein passendes Format für die
Analyse umgewandelt. Das Data Mining repräsentiert dabei die eigentliche Analyse und wird
in Abschnitt 2.1 thematisiert. In Abschnitt 2.2 wird eingehender auf ein spezifisches Data
Mining-Verfahren, das Clustering, eingegangen. Für dieses spezifische Verfahren werden in
Abschnitt 2.3 drei Algorithmen vorgestellt. Die Möglichkeiten, die es zur Evaluation dieser
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2. Grundlagen und verwandte Arbeiten

Algorithmen gibt, wird in Abschnitt 2.4 dargelegt. In Abschnitt 2.5 wird auf verwandte Arbeiten
eingegangen.

2.1. Data Mining

Das Data Mining beschreibt das Extrahieren von nützlichen Mustern aus großen Datenmengen
[HPK11]. Dabei sind nicht alle Muster, die beim Data Mining entstehen nützlich. Daher wird
es meist auch mehrfach mit unterschiedlichen Algorithmen und/ oder Parametern auf der
selben Datenmenge ausgeführt. Denn wenn die Muster, die am Ende der Analyse gewonnen
werden, unzureichend bzw. unbrauchbar sind, kann zu einem beliebigen vorherigen Schritt
zurückgekehrt werden, um so an bessere Muster zu gelangen. Das kann beispielsweise durch
schrittweises Ändern der Algorithmen oder der Parameter geschehen. Hier stößt das Data
Mining auch an seine Grenzen, da unter anderem oftmals nicht klar ist, was die Ursachen für
ein ungenügendes Ergebnis der Analyse sind. Dafür gibt es zahlreiche Möglichkeiten, zum
einen Ursachen, die unabhängig vom Data Mining Schritt selbst auftreten, wie zum Beispiel
einen Fehler in der Vorverarbeitung, schlecht ausgewählte Daten oder eine ungenügende
Evaluation der Ergebnisse. Zum anderen Ursachen, die auf das Data Mining zurück zu führen
sind, wie zum Beispiel, dass das ausgewählte Verfahren nicht zum Hintergrundwissen und
zum Ziel der Analyse passt, dass ein ungeeigneter Algorithmus ausgewählt wurde oder, dass
für den Algorithmus ungeeignete Parameter ausgewählt wurden.

Typische Data Mining-Verfahren sind das Clustering, eine Klassifikation, eine Regression,
eine Assoziationsanalyse, eine Ausreißer Erkennung oder eine statistische Analyse [FPS96a].
Generell lassen sich die Data Mining-Verfahren in überwachte und unüberwachte Verfahren
aufteilen. Unüberwacht bedeutet dabei, dass nur die Daten selbst die Eingabe für das Verfahren
sind und keine zusätzlichen Informationen. Bei überwachten Verfahren hingegen enthält die
Eingabe zusätzliche Informationen zur Datenmenge, wie z. B. vordefinierte Klassen [HPK11]
.

2.2. Clustering

Das Clustering ist eine unüberwachte Methode, bei der versucht wird die Daten in Gruppen
aufzuteilen, sodass sich die Daten innerhalb eines Clusters möglichst ähnlich sind (hohe
intra-cluster Ähnlichkeit) und Daten in verschiedenen Clustern möglichst unähnlich (geringe
inter-cluster Ähnlichkeit) sind. Generell kann zwischen hartem und weichem (oder auch fuzzy)
Clustering unterschieden werden. Beim harten Clustering gehört jeder Datenpunkt zu genau
einem Cluster oder zu keinem Cluster, falls es sich bei dem Punkt um einen Ausreißer handelt.
Beim weichen Clustering hingegen kann ein Punkt zu keinem, einem oder mehreren Clustern
gehören [JMF99]. Für hartes Clustering kann das Clustering Problem wie in Definition 2.2.1
formuliert werden.
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2.2. Clustering

Definition 2.2.1 (Clustering Problem)
Sei eine Menge von Daten M = {m1, . . . , mn} gegeben. Zusätzlich bezeichnet A die Menge der
Punkte, die als Ausreißer identifiziert wurden. Das Clustering Problem besteht darin eine Partition
C = {C1, . . . , Ck} aus M zu erstellen, für die folgende Bedingungen erfüllt sind:

i) ∀i ̸= j : Ci ∩ Cj = ∅

ii)
⋃k

i=1 Ci = M \ A

iii) ∀i : Ci ̸= ∅

Sollte ein Algorithmus keine Ausreißer behandeln, dann gilt A = ∅.

Eine Lösung des Clustering-Problems ist nicht zwangsläufig eine optimale Lösung. Die meis-
ten Clustering-Algorithmen berechnen auch nicht die optimale Lösung, da das Finden einer
optimalen Lösung des NP-hart ist [ADHP09].

Des weiterenmuss einMaß definiert werden, welches angibt wie ähnlich sich zwei Datenpunkte
sind. Dazu wird meist eine Distanzmetrik herangezogen, die die Ähnlichkeit zwischen zwei
Datenpunkten beschreibt. Die Wahl der Distanzmetrik ist dabei eine wichtige Entscheidung,
die getroffen werden muss. Je nach Anwendungsbereich der Daten und je nach Algorithmus
eignet sich eine besser als eine andere. Im Folgenden werden einige bekannte Distanzmetriken
genannt [GMW07]. Die gebräuchlichste Distanzmetrik ist die euklidische Distanz

d(x, y) =
√√√√ n∑

i=1
(xi − yi)2. (2.1)

Diese ist ein Spezialfall der Minkowski-Metrik mit r = 2

d(x, y) = r

√√√√(
n∑

i=1
(xi − yi)r). (2.2)

Setzt man r = 1 in der Minkowski-Metrik, dann erhält man die Manhattan-Metrik (auch
Block-Distanz genannt)

d(x, y) =
n∑

i=1
|xi − yi|. (2.3)

Eine weitere beliebte Distanzmetrik ist die Hamming-Distanz

d(x, y) = 1
n

n∑
i=1

δi mit δi =

1 falls xi ̸= yi

0 sonst
(2.4)
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Ein Vorteil der euklidischen Distanz ist, dass sie gut geeignet ist für Daten, die kompakte und
isolierte Cluster enthalten, jedoch neigt sie dazu nur sphärische Cluster zu erkennen [MJ96].
Ein genereller Nachteil der Minkowski-Metriken ist, dass dazu tendiert wird, dass die Attribute,
die am größten skaliert sind, die anderen Attribute dominieren. Dies ist beispielsweise bei der
Hamming-Distanz nicht der Fall, da die Skalierung der Attribute keine Auswirkung auf diese
Distanzmetrik hat. Eine Übersicht über weitere bekannte Distanzmetriken wird in [CCT10]
gegeben.

2.2.1. Anforderungen an das Clustering

Vor der Wahl eines Clustering-Algorithmus sollten Anforderungen an den Algorithmus gestellt
werden. Mit Hilfe dieser Anforderungen kann ein geeigneter Algorithmus ausgewählt werden.
Einige dieser Anforderungen können auf Grundlage der vorhandenen Daten erschlossen
werden, andere sind allerdings erst während oder nach der Analyse erkennbar. Sollten sie
bereits vor der Ausführung bekannt sein, also aus den Daten ablesbar sein, kann mit deren Hilfe
ein geeigneter Algorithmus ausgewählt werden. Typische Anforderungen sind [HPK11]:

Skalierbarkeit Einige Algorithmen arbeiten sehr gut auf kleinen Datenmengen. Hat man
jedoch eine Datenmenge, die mehrere Millionen Datenpunkte enthält, sollte der Algo-
rithmus auf dieser in angemessener Zeit anwendbar sein.

Typen der Attribute Viele Algorithmen können nur mit numerischen Daten umgehen, be-
sonders Algorithmen die Distanz-basiert sind. Allerdings ist es auch möglich, dass die
Attribute der Daten andere Typen enthalten, wie z. B. binäre, kategorische Daten oder
eine Kombination aus diesen.

Willkürlich geformte Cluster Algorithmen, die als Distanzmetrik die euklidische Distanz
benutzen, neigen dazu nur sphärische Cluster mit gleicher Größe oder Dichte zu finden.
Allerdings können Cluster auch willkürliche Formen mit unterschiedlicher Größer und
Dichte annehmen.

Ausreißer Behandlung In vielen Datenmengen kommt es vor, dass fehlerhafte Daten vor-
handen sind oder Daten, die Extremdaten sind und sich stark von den anderen Daten
unterscheiden. In vielen Algorithmen werden die Ausreißer nicht extra behandelt, wo-
durch das Ergebnis verzerrt werden kann.

Wahl der Parameter Für die Ausführung der Algorithmen werden meist zusätzliche Parame-
ter benötigt. Eine schlechte Wahl der Parameter kann dabei zu einem unbrauchbarem
Ergebnis führen. Daher sollte abgewägt werden, welche Informationen über die Da-
tenmenge bekannt sind und welche Parameter eines Algorithmus dadurch abgedeckt
werden können.

Dimension der Daten Die Laufzeit vieler Algorithmen ist davon abhängig, wie viele Attri-
bute die Daten enthalten. Bei einer Vielzahl von Attributen sollte daher der Algorithmus
mit Sorgfalt ausgewählt werden.
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Interpretierbarkeit und Nutzbarkeit Das Interpretieren des Ergebnisses stellt eine schwieri-
ge Aufgabe dar. Da die Clustering unüberwacht ist, gibt es bei der Analyse kein richtiges
oder falsches Ergebnis. Es gibt nur sinnvolle oder weniger sinnvolle Ergebnisse, wodurch
eine automatisierte Bewertung schwer möglich ist, da auch immer der Anwendungs-
bereich und das Ziel der Analyse mit berücksichtigt werden muss. Aus diesem Grund
sollte auch der Algorithmus dementsprechend gewählt werden.

2.2.2. Klassen von Clustering-Algorithmen

Es gibt eine Vielzahl von verschiedenen Klassen von Clustering-Algorithmen. Zudem gibt es
auch unterschiedliche Klassifikationen. Ein Beispiel für existierende Klassen von Clustering-
Algorithmen wird in Abbildung 2.2 gegeben. Dabei werden zu jeder Klasse auch einige der

Abbildung 2.2.: Übersicht über bekannte Klassen von Clustering Algorithmen [FAT+14]

Vertreter genannt. Dies ist allerdings nur ein grober Überblick, denn es gibt zahlreiche Verfah-
ren, die sich entweder gar nicht in eine der gezeigten Klassen einordnen lassen oder die sich
in mehrere Klassen einordnen lassen [Ber+06]. In mancher Literatur wird auch nur zwischen
partitionierenden und hierarchischen Verfahren unterschieden [JD88]. In diesem Abschnitt
werden die partitionierenden und die dichte-basierten Verfahren vorgestellt, da diese im Laufe
dieser Arbeit genauer untersucht werden.

Partitionierende Verfahren

Partitionierende Clustering Algorithmen versuchen aus einer Menge von Datenpunkten k
Partitionen zu erstellen. Jede dieser Partitionen repräsentiert dabei ein Cluster. Meist wird
k dabei vom Benutzer gewählt. Zunächst wird eine initiale Partition erstellt und diese wird
dann versucht iterativ zu ändern, indem man die Clusterzugehörigtkeit der jeweiligen Punkte
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verändert wird [JMF99]. Ein Beispiel für einen partitionierenden Clustering Algorithmus ist
der K-means, der in Abschnitt 2.3.1 vorgestellt wird.

Dichte-basierte Verfahren

Dichte-basierte Verfahren beruhen darauf, ein Cluster wachsen zu lassen, solange die umliegen-
de Dichte bestimmte Kriterien erfüllt. Das heißt z. B., dass sich in einer bestimmten Region eine
Mindestanzahl an Punkten befinden muss. Ein Beispiel für einen dichte-basierten Algorithmus
ist der DBSCAN Algorithmus, der in Abschnitt 2.3.3 vorgestellt wird. Der generelle Vorteil
dieser Verfahren ist, dass Cluster mit willkürlichen Formen erkannt werden können und das
sie Ausreißer erkennen können [Est09]. Allerdings sind diese Verfahren dafür meist mit einem
höheren Berechnungsaufwand verbunden.

2.3. Clustering-Algorithmen

In diesem Abschnitt werden drei Clustering-Algorithmen vorgestellt. Einmal der weit verbrei-
tete partitionierende Algorithmus K-means und der dichte-basierte Algorithmus DBSCAN,
sowie der K-means++, welcher eine Erweiterung des K-means darstellt und sich nur in der
Initialisierung unterscheidet. Des weiteren werden diese Algorithmen mit einander vergli-
chen.

2.3.1. K-means

Der K-means [Mac67] Algorithmus ist ein weit verbreiteter Algorithmus, der erstmals von
Macqueen (1967) formuliert wurde und zu den partitionierenden Algorithmen gehört. Zunächst
erstellt er eine Anfangspartition die dann iterativ verändert wird. In jeder Iteration wird
versucht die Partition so zu ändern, dass eine Fehlerfunktion minimiert wird. Dabei ist die
Fehlerfunktion davon abhängig welche Distanzmetrik benutzt wird.

Wird die euklidische Distanzmetrik benutzt, dann ist diese Fehlerfunktion die quadratische
Fehlerfunktion. Sei C = {C1, . . . , Ck} eine Menge von Clustern, dann lautet die quadratische
Fehlerfunktion wie folgt:

E(C) =
k∑

i=1

∑
mi∈Ci

d(mi, ceni)2 (2.5)

Dabei bezeichnet ceni den Zentroiden des Clusters Ci = {m1, . . . , mn} und lässt sich mit der
Formel 2.6 berechnen.

ceni = 1
n

n∑
i=1

mi (2.6)
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Der Zentroid steht dabei als Zentrum des Clusters repräsentativ für das Cluster. Die Zentroide
werden zu Beginn des Algorithmus zufällig gewählt. Anschließend folgt eine Iteration aus zwei
Schritten. Zunächst kommt der Schritt der Datenzuweisung. Dabei wird jeder Datenpunkt
dem Cluster des Zentroiden mit dem geringsten Abstand zugewiesen. Schritt zwei ist die Neu-
berechnung der Zentroide. Hier werden die Zentroide mit Hilfe der Formel aus Gleichung (2.6)
neu berechnet. Zusammengefasst läuft der Algorithmus folgendermaßen ab:

1. Wähle zufällig k Datenpunkte als Zentroide.

2. Berechne für jeden Punkt den Zentroid, der den geringsten Abstand zu diesem Punkt
hat und füge den Punkt zum Cluster dieses Zentroids hinzu.

3. Berechne die Cluster Zentren neu mit der Formel 2.6.

4. Falls sich in Schritt 3 mind. ein Zentroid geändert hat, dann gehe zu 2. Andernfalls:
Stopp;

Der Pseudocode des Algorithmus wird in Algorithmus 2.1 gegeben.

Beispiel In Abbildung 2.3 wird ein Beispiel für einen Durchlauf des K-means Algorithmus
gegeben mit k = 2. Im Schritt a) Sind zunächst nur die Datenpunkte zu sehen. In Schritt b)

Abbildung 2.3.: Beispiel für die Ausführung des K-means Algorithmus [Pie13]

werden die Zentroide zufällig bestimmt. Anschließend werden in Schritt c) alle Punkte dem
Zentroid zugewiesen, der den kleinsten Abstand zu diesem Punkt hat. Daraufhin werden in
Schritt d) die Zentroide mit der Formel 2.6 neu berechnet. In Schritt e) werden dann wiederum
die Punkte dem nächstgelegenen Zentroid zugewiesen, ehe in Schritt f) die Zentroide neu
berechnet werden.
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Algorithmus 2.1 K-means Algorithmus
1: procedure K-means(numberOfClusters, points)
2: finish← false;
3: while (!finish) do
4: clearClusters();
5: oldCentroids← getCurrentCentroids();
6: assignCluster();
7: calculateCentroids();
8: newCentroids← getCurrentCentroids();
9:
10: totalCentroidsDistance← getCentroidDistances(oldCentroids, newCentroids)
11: finish← (totalCentroidsDistance == 0) ;
12: end while
13: end procedure
14:
15: procedure assignCluster
16: min←∞;
17: nearestCluster← empty cluster;
18: for all point ∈ points do
19: min←∞;
20: for all cluster ∈ clusters do
21: distance← getDistance(point, cluster.getCentroid());
22: if (distance < min) then
23: min← distance;
24: nearestCluster← cluster;
25: end if
26: end for
27: nearestCluster.addPoint(point);
28: end for
29: end procedure
30:
31: procedure calculateCentroids
32: for all cluster ∈ clusters do
33: sum← [0, . . . , 0];
34: clusterPoints← cluster.getPoints();
35: for all (point ∈ clusterPoints) do
36: sum← (sum + point.getElements)/clusterPoints.size; // Vektor Addition
37: end for
38: cluster.getCentroid().setElements(sum);
39: end for
40: end procedure
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Die Berechnung der initialen Zentroide erfolgt zufällig, wobei nicht eindeutig festgelegt ist,
was zufällig heißt. Nach Lloyd [Llo82] werden zufällig beliebige Punkte als initiale Zentroide
bestimmt. MacQueen [Mac67] hingegen schlägt vor, zufällige Punkte aus der Datenmenge als
initiale Zentroide zu wählen. Es existieren mittlerweile mehrere Möglichkeiten die initialen
Zentroide zu bestimmen [CKV13]. Die Komplexität des Algorithmus beträgt O(k · n · t). Dabei
ist n die Anzahl der Datenpunkte, k die Anzahl der Cluster und t die Anzahl der Iterationen.
In den meisten Anwendungsfällen und besonders bei größeren Datenmengen gilt, dass k < n
und t < n, somit kann er in den meisten Fällen mit O(n) abgeschätzt werden [HPK11]. Dies
macht ihn für große Datenmengen sehr effizient.

Einschränkungen

Der Algorithmus konvergiert zwar gegen ein Minimum der quadratischen Fehlerfunktion,
allerdings wird nur garantiert, dass er gegen ein lokales Minimum konvergiert und nicht gegen
ein globales. Lokal bedeutet dabei, dass es zwar ein Minimum in der Funktion ist, es ist aber
nicht das kleinste Minimum der Funktion. Global wiederum bedeutet, dass es das kleinste
Minimum ist und es auch kein kleineres gibt. Des Weiteren muss die Anzahl der Cluster vor
der Ausführung des Algorithmus bekannt sein. In der Praxis steht man allerdings oft vor dem
Problem, dass nicht genug Informationen über die Daten vorhanden sind, um zu entscheiden,
wie viele Cluster am Ende entstehen soll. Eine Möglichkeit dies zu umgehen ist, dass der
Algorithmus mehrmals mit unterschiedlichen k’s ausgeführt wird. Am Ende aller Durchläufe
wird das k bzw. der Durchlauf genommen, bei dem der beste Wert für eine vorher ausgewählte
Metrik vorhanden ist.

Ein weiterer Punkt ist, dass der Algorithmus Ausreißer nicht behandelt. Sollte einer der Punkte
einen großen Abstand zu allen anderen Punkten haben, verschiebt sich somit auch der Zentroid
in die Richtung des Ausreißers. Hinzu kommt, dass der Algorithmus keine sphärischen Cluster
erkennen kann und von der Wahl der initialen Zentroide abhängig ist. Durch die initiale Wahl
der Zentroide kann die Anzahl der Iterationen stark variieren und das Ergebnis geändert
werden.

2.3.2. K-means++

Der K-means++ [AV07] Algorithmus ist ein partitionierender Algorithmus, der sich nur in
der Wahl der Zentroide vom K-means unterscheidet. In der Initialisierung der Zentroide wird
versucht, dass Punkte, die weiter entfernt sind von einem Zentroid auch mit einer höheren
Wahrscheinlichkeit als neuer Zentroid gewählt wird. Dazu wird die minimale Distanz zum
nächstgelegenen Zentroid bestimmt, die mit D(mi) für einen Punkt mi bezeichnet wird. Dann
wird für jeden Punkt die gewichtete Wahrscheinlichkeitsfunktion bestimmt, mit deren Hilfe
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der nächste Zentroid ausgewählt wird. Die Wahrscheinlichkeitsfunktion für einen Punkt mi

sieht folgendermaßen aus:

P (mi) = D(mi)2∑
mj∈M D(mj)2 (2.7)

Diese Wahrscheinlichkeitsfunktion wird immer, nachdem ein Zentroid ausgewählt wurde,
für jeden Punkt neu berechnet. Punkte, die bereits als Zentroid ausgewählt wurden erhalten
somit die Wahrscheinlichkeit 0, da sie den Abstand 0 zu sich selbst haben. Der komplette
Initialisierungsschritt läuft folgendermaßen ab:

1. Sei M = {m1, . . . , mn} die Menge der Datenpunkte. Bestimme zufällig ein mi ∈M als
Zentroid.

2. Berechne für jedes mi ∈M die minimale Distanz D(mi).

3. Wähle nun zufällig den nächsten Zentroid mj ∈M mit einer Wahrscheinlichkeit von
P (mj) aus.

4. Wiederhole Schritt 2 und 3 bis k Zentroide ausgewählt wurden.

Die Einschränkungen und Vorteile des K-means++ sind die gleichen wie die des K-means
Algorithmus. Die Komplexität des Algorithmus ist ebenfalls die Gleiche. Die Initialisierung des
K-means++ liegt zwar in O(k · n) und nicht in O(k) wie beim K-means, allerdings bleibt die
Gesamtkomplexität damit gleich, da O(k ·n)+O(k ·n ·t) = O(k ·n ·t). Obwohl man annehmen
könnte, dass der K-means++ im Allgemeinen länger braucht als der K-means, konnte gezeigt
werden, dass bessere Laufzeiten und auch bessere Ergebnisse erzielt werden konnten [AV07].
Zudem wurde gezeigt, dass Ergebnis nicht mehr so stark vom Zufall abhängt.

2.3.3. DBSCAN

Der Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [EKS+96] Algo-
rithmus ist ein dichte-basierter Algorithmus. Dieser Algorithmus versucht Punkte, die in einer
bestimmten Region eine hohe Dichte aufweisen, zu einem Cluster zusammenzufassen. Dabei
muss ein Cluster eine bestimmte Anzahl von Punkten haben, die vorher festgelegt werden muss.
Sollte hingegen eine Region ein niedrige Dichte haben, ist das ein Anzeichen für Ausreißer.
Der Radius des Bereiches, in dem untersucht wird wie viele Punkte in diesem Bereich liegen
muss ebenfalls vorher festgelegt werden. Im DBSCAN Kontext werden Ausreißer auch als
Noise bezeichnet, weshalb diese Bezeichnung hier übernommen wird. Die Menge der Noise im
DBSCAN Kontext wird in Definition 2.3.7 formal definiert. Da der DBSCAN dichte-basiert ist
und nicht zentroid-basiert, kann er willkürliche geformte Cluster erkennen. Um den Algorith-
mus formulieren zu können, werden zunächst notwendige Definitionen eingeführt, die sich an
[EKS+96] orientieren.
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Definitionen

Definition 2.3.1 (Epsilon- Nachbarschaft)
Die Epsilon-Nachbarschaft eines Punktes p, bezeichnet mit Nε(p), ist definiert durch

Nε(p) = {q ∈M | d(q, p) ≤ ε}, (2.8)

wobei M die Menge der zu clusternden Datenpunkte ist.

Die Epsilon Nachbarschaft eines Punktes beinhaltet somit alle Punkte, die einen Abstand
kleiner oder gleich ϵ zu diesem Punkt haben. Solch ein Punkt wird zudem als Kernobjekt
bezeichnet, falls die ε-Nachbarschaft des Punktes mindestens minPts Punkte enthält. Formal
ausgedrückt bedeutet das:

Definition 2.3.2 (Kernobjekt)
Ein Punkt p heißt Kernobjekt, falls

|Nε(p)| ≥MinPts. (2.9)

Dabei bezeichnet MinPts die minimale Anzahl an Punkten, die in einem Cluster liegen müssen.

Definition 2.3.3 (Direkt dichte-erreichbar)
Ein Punkt p heißt direkt dichte-erreichbar von einem Punkt q falls

1. p ∈ Nε(q)

2. q ist ein Kernobjekt

Dabei bezeichnet MinPts die minimale Anzahl an Punkten, die in einem Cluster liegen müssen.

Definition 2.3.4 (dichte-erreichbar)
Ein Punkt p heißt dichte-erreichbar von einem Punkt q, falls es eine Sequenz von Punkten p =
p1, p2, . . . , pi = q gibt, so dass pl direkt dichte-erreichbar ist von pl+1 ∀l = 1, . . . , i− 1.

Definition 2.3.5 (dichte-verbunden)
Zwei Punkte p und q heißen dichte-verbunden, falls es einen Punkt r gibt, so dass p dichte-erreichbar
ist von r und q dichte-erreichbar ist von r.

Da die Definition von dichte-erreichbar auf der Definition von direkt dichte-erreichbar aufbaut,
ist jeder Punkt der direkt-dichte erreichbar ist auch dichte-erreichbar, allerdings nicht umge-
kehrt. Es ist sogar so, dass dichte-erreichbar die transitive Hülle von direkt-dichte erreichbar
ist. Das bedeutet, dass alle Punkte, die nur über die Transitivität in der direkt dichte-erreichbar
Relation zueinander stehen, nicht aber direkt in Relation zueinander, stehen trotzdem direkt in
Relation zueinander bezüglich der dichte-erreichbar Relation. Konkret bedeutet das, wenn p
und q direkt dichte-erreichbar sind und q und r direkt dichte-erreichbar sind, dann müssen p
und r nicht zwangsläufig direkt dichte-erreichbar sein. Allerdings sind p und r dann dichte-
erreichbar. Des weiteren ist direkt-dichte erreichbar asymmetrisch. Dichte-Erreichbarkeit
wiederum ist symmetrisch. Dies soll im Folgenden durch ein Beispiel verdeutlicht werden.
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(a) direkt dichte-erreichbar (b) dichte-erreichbar (c) dichte-verbunden

Abbildung 2.4.: Beispiel zur Verdeutlichung von direkt dichte-erreichbar, dichte-erreichbar
und dichte-verbunden

Beispiel In Abbildung 2.4 wird ein Beispiel zur Verdeutlichung der Definitionen gegeben.
Der Parameter ε wird durch die roten Kreise gegeben. Diese stellen die ε-Umgebung eines
Punktes dar. Für dieses Beispiel ist MinPts = 3. In (a) ist p direkt dichte-erreichbar von q, da
p ∈ Nε(q) und |Nε(q)| = 4 > MinPts. Allerdings ist q nicht direkt dichte-erreichbar von p.
In (b) ist ein Beispiel für die Dichte-Erreichbarkeit gegeben. Dabei ist r dichte-erreichbar von
q, weil p direkt dichte-erreichbar ist von q und r dichte-erreichbar ist von p. In der Abbildung
(c) sind p und q dichte-verbunden, da sowohl p, als auch q dichte-erreichbar sind von r.

Ein dichtebasiertes Cluster kann dann wie in Definition 2.3.6 definiert werden.
Definition 2.3.6 (Cluster)
Sei M eine Menge von Datenpunkten. Ein Cluster ∅ ≠ C ⊆M erfüllt folgende Bedingungen:

1. ∀p, q ∈M : p ∈ C und q dichte-erreichbar von p, dann ist q ∈ C (Maximalität).

2. ∀p, q ∈ C : p und q sind dichte-verbunden (Verbundenheit).

Aus der Definition Definition 2.3.6 folgt, dass jedes Cluster C mindestens MinPts Punkte
enthalten muss. Denn sei p ∈ C , dann existiert ein q ∈ C , sodass p und q dichte-verbunden
sind (Verbundenheit). Allerdings muss q dann mindestens die Kernobjekt Eigenschaft erfüllen,
womit mindestens MinPts in der Epsilon-Nachbarschaft von q liegen. Diese Punkte sind alle
(direkt) dichte-erreichbar von q und somit auch in C (Maximalität).

Noise kann jetzt als Menge von Punkten definiert werden, die zu keinem Cluster gehören.

Definition 2.3.7 (Noise)
Sei M eine Menge von Datenpunkten und Ci ⊆M , i = 1, . . . , k die zugehörigen Cluster. Dann
ist

Noise = {p ∈M | ∀i = 1, . . . , k : p /∈ Ci } (2.10)

Da die Definitionen eingeführt sind, kann der Algorithmus beschrieben werden. Dieser wird
in Algorithmus 2.2 in Pseudocode dargestellt. Zunächst sind die clusterId’s aller Punkte auf
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UNCLASSIFIED gesetzt. Dann wird mit einem zufälligen Punkt p begonnen. Für diesen Punkt
p wird dann die Funktion expandCluster in Zeile 4 aufgerufen. In dieser Funktion werden
zunächst alle Punkte gesucht, die in Nε(p) liegen und in der Menge seeds gespeichert. In Zeile
14 wird geprüft, ob es sich bei dem Punkt um ein Kernobjekt handelt. Falls nicht wird der
Punkt als Noise identifiziert und es wird false zurückgegeben. Dadurch wird die clusterId
nicht erhöht, was bedeutet, dass kein neues Cluster entsteht. Sollte der Punkt jedoch ein
Kernpunkt sein, entsteht ein neues Cluster, welches mindestens die aktuellen Punkte aus der
Menge seeds enthält. Aus diesem Grund wird in Zeile 19-21 die clusterId aller Punkte aus der
Menge seeds auf die momentane clusterId gesetzt. Ab Zeile 24 wird dann für jeden Punkt
aus der Menge seeds, außer den Punkt p, der an die Funktion übergeben wurde, geschaut,
welcher der Punkte ein Kernobjekt ist. Sollte einer dieser Punkte ein Kernobjekt sein, wird
seine clusterId auf die momentane clusterId gesetzt (Zeile 32). Hat Punkt zudem davor noch die
clusterId UNCLASSIFIED gehabt haben, dann wird er zu der Menge seeds hinzugefügt (Zeile
29 - 31). Sobald die Menge seeds leer wird, wird die while-Schleife verlassen und es wird true
zurückgegeben. Daraufhin wird die clusterId in der Funktion DBSCAN um eins erhöht (Zeile
5), da ein neues Cluster entstanden ist. Dies wird dann für jeden Punkt aus der Datenmenge
points wiederholt.

Nach Definition 2.3.6 kann es passieren, dass zwei Cluster, die sich sehr nahe sind, zu ei-
nem Cluster verschmolzen werden. Daher wird der Abstand zwischen zwei Clustern C1, C2
als d(C1, C2) = min{d(p, q) | p ∈ C1, q ∈ C2} definiert. Die Zwei Cluster C1, C2 sollen
anschließend verschmolzen werden, falls d(C1, C2) ≤ ε.

Da der Algorithmus dichte-basiert ist, ist es mit ihm möglich willkürlich geformte Cluster zu
erkennen. Hinzu kommt, dass das Ergebnis des Algorithmus nicht durch Ausreißer verzerrt
wird, da er Ausreißer behandelt. Anders als beim K-means muss vor der Ausführung des
Algorithmus die Anzahl der Cluster nicht vorher bekannt sein.

Einschränkungen

Ein Nachteil den DBSCAN gegenüber dem K-means hat, ist, dass die Laufzeit von DBSCAN bei
einer naiven Implementierung O(n2) beträgt. Wird eine räumliche Indexstruktur (R*-Baum)
benutzt, dann kann die Komplexität auf O(n logn) verbessert werden, was allerdings immer
noch schlechter wäre als beim K-means. Dadurch wäre der Algorithmus bei sehr großen
Mengen nicht die ideale Wahl. Hinzu kommt, dass der Parameter ϵ (sollte er einmal gesetzt
worden sein) fest ist. Das bedeutet, dass Cluster, die eine unterschiedliche Dichte aufweisen
nicht erkannt werden können. Ein weiterer Punkt sind die Parameter des Algorithmus. Zum
einen sind zwei Parameter, die bestimmt werden müssen und zum anderen beeinflusst die
Wahl der Parameter den Algorithmus sehr stark. Wird das Epsilon beispielsweise zu groß
gewählt erhält man unter Umständen nur ein Cluster. Wird es zu klein gewählt, ist es möglich,
dass kein Cluster entsteht. Das gleiche Problem erhält man auch mit den Min Points. Um
dem entgegen zu wirken, kann eine Heuristik verwendet werden. Diese wird im Folgenden
erläutert.
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2. Grundlagen und verwandte Arbeiten

Algorithmus 2.2 DBSCAN Algorithmus
1: procedure DBSCAN(eps, MinPts, points)
2: clusterId← 0
3: for all p ∈ points do
4: if expandCluster(eps, MinPts,clusterId, p, points) then
5: clusterId← clusterId + 1
6: end if
7: end for
8: end procedure
9:
10: procedure expandCluster(eps, MinPts,clusterId currentPoint, points)
11: UNCALSSIFIED← -1
12: NOISE← -2
13: seeds← epsNeighbourhood(currentPoint, eps)
14: if |seeds| < MinPts then
15: currentPoint.setClusterId(NOISE)
16: return false
17: end if
18:
19: for all seed ∈ seeds do
20: seed.setClusterId(clusterId)
21: end for
22:
23: seeds← seeds \ {currentPoint}
24: while seeds ̸= ∅ do
25: p← seeds.getFirstPoint()
26: result← epsNeighbourhood(p, eps)
27: if |result| ≥MinPts then
28: for all point ∈ result do
29: if point.clusterId == UNCLASSIFIED then
30: seeds← seeds ∪ {point}
31: end if
32: point.setClusterId(clusterId)
33: end for
34: end if
35: seeds← seeds \ {p}
36: end while
37: return true
38: end procedure
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2.3. Clustering-Algorithmen

Eigenschaft K-means/++ DBSCAN

Komplexität O(n · k · t) O(n2)

Parameter k: Anzahl der Cluster
ϵ: Dichte Parameter
MinPts: Mindestanzahl Punkte
in einem Cluster

Erkennbare Formen von Clustern Sphärische Cluster Willkürliche Formen
Ausreißerbehandlung Nein Ja

Cluster Kriterium Quadratische Fehlerfunktion
Verschmelze Punkte die
dichte-erreichbar sind zu
einem Cluser

Abhängig von Reihenfolge
der Datenpunkte

Initialisierung der Zentroide
von Reihenfolge der Daten abhängig Nein

Typ der Attribute Numerisch Numerisch

Tabelle 2.1.: Vergleich der Algorithmen K-means, K-means++ und DBSCAN

Wahl der Parameter

Für die Wahl der Parameter des DBSCAN Algorithmus gibt es eine einfache Heuristik. Diese
benutzt dazu den k-Nearest-Neighbour1 Algorithmus. Dazu muss zunächst der Parameter k
bestimmt werden. In der Literatur wird vorgeschlagen, diesen mit k = 2 · d − 1 zu wählen,
wobei d die Dimension der Datenpunkte ist. Der MinPts Parameter wird auf k gesetzt. Für
die Bestimmung von ε wird zunächst für jeden Punkt der Abstand zum k nächsten Nachbarn
berechnet. Alle Distanzen werden dann absteigend sortiert in einem Graphen ausgegeben.
Anschließend wird der erste Punkt bestimmt, bei dem ein „Ellenbogenpunkt“ zu erkennen ist.
Sei dazu zunächst Fk : M → R eine Funktion mit

Fk(p) = d(p, qk) wobei qk der k nächste Nachbar von p ist.

Anschließend wird Fk(M), wobei M die Menge der Datenpunkte ist, in absteigender Ordnung
sortiert und in einem zwei-zweidimensionalen Graph dargestellt. Danach wird ε = Fk(z0)
gesetzt, wobei z0 der erste Ellenbogenpunkt des Graphen von Fk. Der einfachste Weg diesen
Ellenbogenpunkt zu bestimmen ist, indem der Graph von Fk einem Benutzer gezeigt wird und
dieser den Punkt anschließend abliest [Est09].

Abschließend wird in Tabelle 2.1 ein Vergleich der Algorithmen gegeben. Dabei sind K-means
und K-means++ in einer Spalte, da es zwischen den beiden keine Unterschiede, bis auf die
Initialisierung gibt.

1http://scholarpedia.org/article/K-nearest_neighbor
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2. Grundlagen und verwandte Arbeiten

2.4. Evaluationsmetriken

Für die Bewertung des Ergebnisses eines Clustering-Algorithmus wird normalerweise ein
menschlicher Experte herangezogen. Dieser braucht geeignete Metriken, um das Ergebnis zu
interpretieren. Dabei gibt es eine Vielzahl von Metriken, die benutzt werden können und es
gibt auch nicht immer die ideale Metrik, die benutzt wird. Denn je nach Fokus des Analysten
und Ziel der Analyse können die herangezogen Metriken von Fall zu Fall variieren. Daher ist
auch trotz der Metriken ein menschlicher Experte zur Auswertung der Analyse notwendig.

2.4.1. Klassifikation der Metriken

Es gibt drei Arten von Metriken, die unterschieden werden. Die internen Metriken, die externen
Metriken und die relativen Metriken [JD88].

Interne Metriken

Die internen Metriken haben zum Ziel, Aussagen über die interne Struktur der Cluster zu
treffen. Dabei wird versucht die Kompaktheit, die Separation oder beides zu beurteilen. Die
Kompaktheit beschreibt wie groß die intra-Cluster Ähnlichkeit ist, also wie groß die Abstän-
de der Punkte innerhalb eines Clusters sind. Es gibt dabei mehrere Möglichkeiten diese zu
berechnen. Im Folgenden wird die Kompaktheit als Abstand der Punkte eines Clusters zum
zugehörigen Zentroid gewählt.

Definition 2.4.1 (Kompaktheit)
Sei C = {C1, . . . , Ck} eine Menge von Clustern. Dann ist die Kompaktheit definiert als

Kompaktheit(C) =
k∑

i=1

∑
mi∈Ci

d(ceni, mi) (2.11)

Die Separation hingegen beschreibt die inter-Cluster Ähnlichkeit, also wie groß der Abstand
zwischen den Clustern ist. Dabei gibt es auch hier mehrere Möglichkeiten diese zu berechnen.
In dieser Arbeit werden die Abstände der Zentroide der Cluster als Maß genommen.

Definition 2.4.2 (Separation)
Sei C = {C1, . . . , Ck} eine Menge von Clustern. Dann ist die Separation von C definiert als

Separation(C) =
k∑

i=1

k∑
j=1

d(ceni, cenj) (2.12)

Dabei beschreibt ceni jeweils den Zentroid des Clusters Ci.
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2.4. Evaluationsmetriken

Index Name Formel

Rand Index R = a+d
M

Jaccard Koeffizient J = a
a+b+c

Folkes und Mallows Index FM =
√

a
a+b
∗ a

a+c

Precision P = a
a+c

Recall Rec = a
a+d

F-Measure F = 2 ∗ 1
( 1

P
+ 1

Rec
)

Tabelle 2.2.: Übersicht über externe Metriken (aus [GMW07])

Externe Metriken

Bei externen Metriken werden Daten zur Evaluation benutzt, die nicht für das Clustering be-
nutzt wurden. Das heißt , dass externeDaten verwendet werden. Dafürwerden vor-klassifizierte
Ergebnisse gebraucht. Anschließend werden die vor-klassifizierten Ergebnisse mit den Ergeb-
nissen des Algorithmus verglichen.

Zunächst bezeichnen wir mit C = {C1, . . . , Cn} die Menge der Cluster, die nach Ausführung
eines Clustering Algorithmus entstehen. Mit P = {P1, . . . , Pk} wird die Partition bezeichnet,
mit der C verglichen werden soll. Anschließend werden Variablen a, b, c und d eingeführt, die
für einige externe Metriken benutzt werden.

• a: Bezeichnet die Anzahl der Paare von Punkten, die im selben Cluster in C , als auch im
selben Cluster in P liegen (True Positiv).

• b: Bezeichnet die Anzahl der Paare von Punkten, die im selben Cluster in C liegen, aber in
P in verschiedenen Clustern liegen (True negativ).

• c: Ist das Gegenstück zu b. Die Anzahl der Punkte von Paaren, die im selben Cluster in C
sind, allerdings in P in verschiedenen Clustern (False Positiv).

• d: Anzahl der Paare von Punkten, wo die Punkte in verschieden Clustern aus C liegen, als
auch in P (False Negativ).

Sei M die Anzahl der Paare, die aus den n Datenpunkten gebildet werden können. Dann ist

M = a + b + c + d = n(n− 1)
2 (2.13)

Aufbauend darauf werden in Tabelle 2.2 einige bekannte externe Metriken dargestellt.
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2. Grundlagen und verwandte Arbeiten

Algorithmus 2.3 Algorithmus zur Bestimmung der Parameter
1: for nc = nmin to nmax do
2: for i=1 to r do
3: P ←Wähle Parameterkonfiguration aus
4: C ← Führe Algorithmus mit den Parametern P aus
5: qi ← Berechne Metrik für C
6: end for
7: Wähle besten Wert aus {q1, . . . , qr} aus.
8: end for

Relative Metriken

Das Ziel der relativen Metriken, ist, eine geeignete Parameterkonfigurationen für die Algo-
rithmen zu finden. Es werden mehrere Durchläufe der Algorithmen mit unterschiedlichen
Parametern durchgeführt. Am Ende werden dann die Ergebnisse anhand einer geeigneten
Metrik bewertet und so das Ergebnis, welches den bestenWert der Metrik aufweist, ausgewählt.
Dazu wird meist eine interne Metrik benutzt.

Ist die Anzahl der Cluster ein Parameter des Algorithmus, dann kann der in Algorithmus 2.3
gezeigte Pseudocode zur Bestimmung der Parameter genutzt werden. Dabei bezeichnet nc den
Parameter der Anzahl der Cluster. Des Weiteren muss der Algorithmus, der minimale und der
maximale Wert der für die Anzahl der Cluster benutzt wird, so wie die Anzahl der Durchläufe
r als Eingabe erhalten.

Als Beispiel könnte r = 10 Durchläufe gewählt werden und nmin = 1 und nmax = 50 gesetzt
werden. Als Metrik könnte die Separation oder die Kompaktheit herangezogen werden.

2.5. Verwandte Arbeiten

Für dem K-means Algorithmus wurden zahlreiche Erweiterungen vorgestellt. Die meisten
davon versuchen entweder, die Initialisierung der Zentroide zu optimieren [CKV13] oder
durch zusätzliche Heuristiken, wie zum Beispiel durch eine minimale/ maximale Anzahl der
Cluster [Jai10]. Des Weiteren wurden Optimierungen vorgenommen in dem die Anzahl der
Vergleiche, die beim K-means gemacht werden zu reduzieren [Phi02] oder einen kd-Baum
als Datenstruktur zu verwenden, um so eine effizientere Berechnung zu ermöglichen [PM99].
Steinbach et al. [STK+03] schlagen den bisecting K-means vor, der eine hierarchische Version
des K-means darstellt. Jain [Jai10] geben eine Übersicht über weitere bekannte Erweiterungen
des K-means.

Mexicano et al. [MRC+16] schlagen einen Ansatz vor, der ebenfalls versucht mit einer Heuristik
die Ausführungszeit des K-means zu reduzieren. Die early stop heuristic geht davon aus, dass
die erste Verschiebung der Zentroiden, die nach der Initialisierung stattfindet am größten
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2.5. Verwandte Arbeiten

ist. Ausgehend davon wird dieser Wert als Vergleichswert genommen und wird mit Dmax

bezeichnet. Terminiert wird anschließend, sobald die Verschiebung der Zentroide kleiner oder
gleich 5% von Dmax beträgt. Für diesen Ansatz konnte eine Reduktion der Ausführungszeit
von bis zu 87% mit einem Qualitätsverlust von nur 2,46% erreicht werden.

In dieser Arbeit wird ebenfalls versucht ein Konvergenzkriterium zu finden, das auf geeigneten
Metriken basiert. Dazu werden geeignete Metriken untersucht und ausgewählt. Allerdings wird
ein Konzept entwickelt, bei dem die Metriken auf die Zwischenberechnungen des K-means
zu greifen, um so eine effizientere Berechnung zu ermöglichen. Es sollen zudem stabilere
Ergebnisse werden, als dies bei Mexicano et al. [MRC+16] der Fall war. Hinzu kommt, dass
diese Metriken zudem dazu genutzt werden, um Zeitpunkte für eine Visualisierung von Zwi-
schenergebnissen zu finden.
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3. Konzept zur Berechnung der
Metriken in Teilschritten

In diesem Kapitel wird ein Konzept für eine effiziente Berechnung der Metriken vorgestellt.
Dazu werden in Abschnitt 3.1 Anforderungen an die Klassen von Metriken gestellt und die
Klasse, die die Anforderungen am ehesten erfüllt, ausgewählt. Anschließend werden kon-
krete Metriken dieser Klasse vorgestellt. In Abschnitt 3.3 werden dann Optimierungsansätze
vorgestellt, um so eine effizientere Berechnung zu ermöglichen.

3.1. Anforderungen

In diesem Abschnitt wird eine Klasse von Metriken ausgewählt, die weiter untersucht wird.
Um eine geeignete Klasse auszuwählen, werden erst Kriterien benötigt, um die Klassen von
Metriken miteinander vergleichen zu können. Dazu werden Anforderungen an die Metriken
gestellt. Anschließend wird verglichen welche Klasse der Metriken die Anforderungen am
ehesten erfüllt und diese wird dann weitergehend untersucht. Die Anforderungen, die aufgrund
der Ziele an die Metriken gestellt werden, sind:

Eignung für große Datenmengen (A1) Die Berechnung der Metriken sollte für große Da-
tenmengen mit möglichst geringer Komplexität möglich sein.

Möglichkeit Zwischenergebnisse auszuwerten (A2) Um geeignete Interaktionspunkte
für eine Visualisierung zu finden, sollten die Metriken leicht interpretierbare Werte
für Zwischenergebnisse der Algorithmen liefern.

Auswertung nur anhand der Cluster (A3) Das Ergebnis des Clusterings sollte ohne zusätz-
liche Daten ausgewertet werden können.

Entdeckung von neuen Clustern (A4) Sollten durch den Algorithmus Cluster entdeckt
werden, die in vorherigen Durchläufen nicht erkannt wurden, sollten die Metriken das
Ergebnis deswegen nicht schlechter bewerten, nur weil es nicht einem bereits bekannten
Ergebnis entspricht.

Anwendbarkeit auf ausgewählte Algorithmen (A5) Die Metriken sollten auf die Algorith-
men, die im Fokus dieser Arbeit stehen, anwendbar sein.
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3. Konzept zur Berechnung der Metriken in Teilschritten

Anforderung Interne Metriken Externe Metriken

A1 wird nicht erfüllt wird nicht erfüllt
A2 wird erfüllt wird erfüllt
A3 wird erfüllt wird nicht erfüllt
A4 wird erfüllt wird nicht erfüllt
A5 wird erfüllt wird erfüllt

Tabelle 3.1.: Darstellung der Anforderungen und welche Klasse von Metriken die jeweilige
Anforderung erfüllt

Da die relativen Metriken andere Metriken nutzen, um geeignete Parameter heraus zu finden,
werden nur die internen und die externen Metriken untersucht.

Die Anforderung A1 wird sowohl für die externen, als auch für die internen Metriken nur unzu-
reichend erfüllt. Da die internen Metriken die Kompaktheit und/oder die Separation betrachten,
müssen dazu die Zentroide berechnet werden. Da für die Berechnung der Zentroide alle Punkte
einmal betrachtet werden müssen ergibt sich daraus mindestens eine Laufzeit von O(n). Für
die externen Metriken muss das Ergebnis der Clustering mit dem des vorklassifizierten Daten-
satzes verglichen werden. Dadurch müssen auch hier alle Punkte einmal betrachtet werden.
Die internen Metriken haben jedoch den Vorteil, dass der K-means beispielsweise die Zentroide
berechnet. Wenn die Metriken auf diese Zentroide zugreifen können, beträgt die Berechnung
der Zentroide für die Metriken O(1) statt O(n) ohne, dass dadurch die Berechnungszeit für
den K-means erhöht wird. Die Anforderung A2 wird für beide Metriken erfüllt. Allerdings ist
diese Anforderung eher vom Algorithmus abhängig, als von der Metrik. So ist es für den DB-
SCAN eher weniger sinnvoll Zwischenergebnisse auszuwerten, da eventuell noch nicht jeder
Punkt in ein Cluster eingeteilt wurde. Somit wären die Metriken für die Zwischenergebnisse
nicht sehr sinnvoll. Die Anforderung A3 wird nur für die internen Metriken erfüllt, da die
externen Metriken zusätzlich zu dem Ergebnis der Clustering noch einen vor-klassifizierten
Datensatz brauchen. Da dieser mit dem Ergebnis der Clustering verglichen wird, werden neue
Cluster, die bei der Clustering entstehen, aber nicht im vor-klassifizierten Datensatz enthalten
sind, schlechter bewertet. Aus diesem Grund wird auch die Anforderung A4 für nicht für die
externen Metriken erfüllt. Für die internen Metriken hingegen wird die Anforderung erfüllt.
Die Anforderung A5 wiederum wird für beide Klassen von Metriken erfüllt, da sich beide
grundsätzlich auf die Algorithmen K-means, K-means++ und DBSCAN anwenden lassen.

In Tabelle 3.1 wird zusammengefasst welche Anforderungen die internen und welche die
externen Metriken erfüllen. Die internen Metriken erfüllen dabei 4 der 5 Anforderungen. Für
die Anforderung A1 können zudem noch Optimierungen in Anlehnung an den Algorithmus
durchgeführt werden. Die externen Metriken hingegen erfüllen 2 der 5 Anforderungen. Aus
diesem Grund werden die internen Metriken für die weitere Untersuchung ausgewählt.
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3.2. Interne Metriken

3.2. Interne Metriken

In diesem Abschnitt werden einige bekannte interne Metriken vorgestellt, die für die Expe-
rimente genutzt werden. Zu jeder Metrik wird auch die Komplexität für die Berechnung der
Metrik mit angegeben, unter der Annahme, dass keine Optimierungen für die Berechnung
vorgenommen werden. Wie die Metriken und die Algorithmen angepasst werden können, um
eine effizientere Berechnung zu ermöglichen, wird in Abschnitt 3.3 eingehender untersucht.
Anschließend soll experimentell bestimmt werden, welche der hier vorgestellten Metriken
sich dazu eignen einen Zeitpunkt für eine frühzeitige Terminierung der Algorithmen zu finden
und welche sich dafür eignen, geeignete Zeitpunkte für eine Visualisierung zu bestimmen.

Für jede Metrik wird in diesem Abschnitt auch vorgestellt wie die Komplexität zur Berechnung
dieser Metrik aussieht. Dafür wird davon ausgegangen, dass die Berechnung aller Zentroiden
in O(r · n) möglich ist, wobei r die Dimension der Datenpunkte beschreibt. Ebenso wird
angenommen, dass die Berechnung des Abstands zweier Punkt in O(r) möglich ist. Dadurch
wäre die Berechnung der Zentroide in O(r · n) möglich.

In diesem Abschnitt wird mit C = {C1, . . . , Ck} eine Menge von Clustern und mit ceni der
Zentroid des Clusters Ci bezeichnet. Zudem sei n = ∑k

i=1 |Ci| = |M | die Anzahl der Punkte
in der Datenmenge M.

3.2.1. Sum of Squared Errors

Die Sum of Squared Errors (SSE) wurde bereits in Abschnitt 2.3.1 als Fehlerfunktion eingeführt,
die der K-means Algorithmus versucht zu minimieren. Sie eignet sich aber auch als interne
Metrik, die die Kompaktheit der Cluster beschreibt. Sie berechnet für jedes Cluster den qua-
drierten Abstand der Punkte in diesem Cluster zum Zentroiden des Clusters und summiert
diese Werte dann auf. Berechnen lässt sie sich mit der Formel 3.1.

E(C) =
k∑

i=1

∑
mi∈Ci

d(mi, ceni)2 (3.1)

Komplexität Die Berechnung der Zentroide liegt in O(r ·n) und anschließend wird für jedes
Cluster und jeden Punkt der quadratische Abstand bestimmt. Dies beträgt ebenfalls O(r · n).
Somit ergibt sich insgesamt für die gesamte Komplexität O(2 · r · n) = O(r · n).
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3. Konzept zur Berechnung der Metriken in Teilschritten

3.2.2. Dunn Index

Der Dunn Index (DI) [Dun74] kombiniert die Kompaktheit und die Separation. Dabei wird
der minimale Separationswert ins Verhältnis zum maximalen Kompaktheitswert gesetzt. Die
Berechnung des Dunn Index wird in Formel 3.2 gegeben.

DI(C) = min{Separation(Ci, Cj) | Ci, Cj ∈ C}
max{Kompaktheit(Ci) | Ci ∈ C}

(3.2)

Je höher der Dunn Index ist, desto besser ist die Qualität der Cluster. Es konnte festgestellt
werden, dass Rauschen das Ergebnis verzerrt, da er den minimalen Separations- und den
maximalen Kompaktheiswert betrachtet [HBV02]. Bezdek und Pal [BP98] schlagen daher 3
generalisierte Dunn Indizes vor, die robuster gegen Ausreißer sind.

Komplexität Für die Kompaktheit und die Separation muss zunächst der Zentroid berechnet
werden. Die Berechnung aller Zentroiden liegt in O(r ·n). Für die Separation müssen zusätzlich
noch die Distanzen zwischen allen Paaren von Zentroiden berechnet werden, dies sind k·(k−1)

2
Paare. Also wären das zusätzlich noch O(k2) Berechnungen die hinzukommen, wobei jede
dieser Berechnung in O(r) liegt. Insgesamt ergibt sich somit eine Komplexität von O(r · n +
r · k2) = O(r · (n + k2) [VCH10].

3.2.3. Silhouetten Koeffizient

Der Silhouetten Koeffizient (SK) [Rou87] versucht eine Aussage über die Kompaktheit und die
Separation zu treffen, sowohl für einzelne Punkte, als auch für Cluster. Dazu sei p ein beliebiger
Punkt aus einem Cluster C . Mit a wird die durchschnittliche Distanz von p zu den anderen
Punkten innerhalb des Clusters C bezeichnet. Somit berechnet sich a mit der Formel

a(p) = avg{d(p, p′) | p ̸= p′ ∈ C } (3.3)

Des weiteren wird b als das Minimum der durchschnittlichen Distanzen von p zu Punkten in
anderen Clustern definiert. Betrachten wir also alle Cluster, dann ist

b(p) = min
C ̸=C′
{avg{d(p, p′) | p′ ∈ C ′ }} (3.4)

Die Definition der Silhouette eines Punktes p wird in der Formel 3.5 gegeben.

SK(p) = b(p)− a(p)
max{a(p), b(p)} (3.5)

Der Silhouetten-Koeffizient für ein Cluster wäre dann der Durchschnitt der Summe von s(p)
für alle Punkte p aus der Datenmenge. Der Wert des Koeffizienten liegt immer zwischen −1
und 1, wobei ein höherer Wert für eine bessere Qualität der Cluster steht.
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3.2. Interne Metriken

Komplexität Für die Berechnung des Silhouetten-Koeffizienten muss zunächst die Distanz
für alle Paare von Punkten berechnet werden. Sind die Punkte im selben Cluster, dann wird
die Distanz für die Berechnung von a benutzt. Andernfalls wird sie für die Berechnung von
b benutzt. Die Anzahl aller Paare von Punkten ist n∗(n−1)

2 . Die Berechnung hierfür liegt in
O(n2) und jede dieser Abstandsberechnung liegt in O(r), womit sich dafür eine Komplexität
von O(n2 · r) ergibt. Sobald alle Distanzen verfügbar sind, liegt die Berechnung von b in
O(k · r) für einen Punkt. Für alle Punkte wäre das somit O(n · k · r). Da a und b bekannt
sind, liegt die Berechnung von s(p) in O(1). Da dies aber für jeden Punkt berechnet werden
muss, kommt eine Laufzeit von O(n) hinzu. Insgesamt ergibt sich somit eine Komplexität von
O(n2 · r + n · k · r + n) = O(n2 · r), da k ≤ n gilt [VCH10].

3.2.4. Davies-Bouldin Index

Der Davies-Bouldin Index (DBI) [DB79] misst die Ähnlichkeit zwischen jedem Cluster und
dem Cluster, der ihm am ähnlichsten ist. Dazu wird mit Rij der Grad der Ähnlichkeit zwischen
zwei Clustern Ci und Cj bezeichnet. Dieser basiert auf dem Streuungsgrad und der Unähn-
lichkeit. Der Streuungsgrad repräsentiert dabei die Kompaktheit in einem Cluster und wird in
Definition 3.2.1 definiert.
Definition 3.2.1 (Streuungsgrad)
Sei Ci ein Cluster, dann ist der Streuungsgrad si definiert als

si = 1
ki

∑
x∈Ci

d(x, ceni) (3.6)

Dabei ist ki die Anzahl der Punkte im Cluster Ci.

Die Unähnlichkeit hingegen beschreibt die Separation zweier Cluster und wird in Definiti-
on 3.2.2 definiert.
Definition 3.2.2 (Unähnlichkeitsmaß)
Seien Ci und Cj zwei Cluster. Dann ist die Unähnlichkeit zwischen Ci und Cj definiert als

dij = d(ceni, cenj) (3.7)

Die Berechnung des Davies-Bouldin Index wird in der Formel 3.8 dargestellt.

DBI = 1
k

k∑
i=1

maxj ̸=iRij (3.8)

Rij kann dabei frei gewählt werden, muss allerdings folgende Bedingungen erfüllen:
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3. Konzept zur Berechnung der Metriken in Teilschritten

i) Rij ≥ 0

ii) Rij = Rji

iii) Wenn si = 0 und sj = 0 dann Rij = 0

iv) Wenn sj > sk und dij = dik dann Rij > Rik

v) Wenn sj = sk und dij < dik dann Rij > Rik

Ein Rij das die Bedingungen erfüllt, wäre Rij = si+sj

dij
.

Desto geringer der Davies-Bouldin Index ist, desto besser ist die Qualität der Cluster.

Komplexität Zur Berechnung des Davies-Bouldin Index müssen zunächst die Zentroide für
den Streuungsgrad berechnet werden. Diese Berechnung liegt in O(r · n). Sind die Zentroide
bekannt, ist zur Berechnung aller Streuungsgrade ein Aufwand von O(r · n) nötig. Für das
Unähnlichkeitsmaßmüssen alle Paare von Zentroiden berechnet werden, was einer Komplexität
vonO(r ·k2) entspricht. Anschließend muss der Termmaxj ̸=iRij berechnet werden, was einem
Aufwand von O(k) entspricht, da die Werte zur Berechnung eines Rij bekannt sind und es
insgesamt k Rij ’s gibt, von denen das Maximum bestimmt werden muss. Da diese Berechnung
k-mal ausgeführt werden muss ist die Komplexität hierfür O(k2). Insgesamt ergibt sich somit
für die Berechnung des Index eine Komplexität von O(r · n + r · k2 + k2) = O(r · (n + k2))
[VCH10].

3.2.5. Coggins-Jain Index

Der Coggins-Jain Index (CJ) [CJ85] berechnet für jeden Cluster den Quotienten aus Separation
und Kompaktheit und wählt dann den minimalen Wert. Der Index berechnet sich wie in Formel
3.9 beschrieben, wobei Separation(Ci) = min{Separation(Ci, Cj) | Cj ∈ C}.

CJ(C) = min

{
Separation(Ci)

Kompaktheit(Ci)
|Ci ∈ C

}
(3.9)

Ein höherer Wert des Index bedeutet auch eine bessere Qualität der Cluster.

Komplexität Für die Berechnung des Coggins-Jain Indexmüssen sowohl für die Kompaktheit,
als auch für die Separation alle Zentroide berechnet werden, was in O(rṅ) liegt. Angenommen
es wird ein Cluster betrachtet, dann muss für dieses Cluster die Separation zu allen anderen
Clustern berechnet werden. Das sind k−1Cluster und da die Zentroide bekannt sind, wäre diese
Berechnung in O(k) möglich. Für die Kompaktheit, müsste der Abstand von allen Punkten zum
Zentroid bestimmt werden, was einem Aufwand von O(r · n) entspricht. Da die Berechnung
für die Separation und die Kompaktheit für alle Cluster durchgeführt werden müssen, kommt
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3.3. Optimierungsansätze für die Berechnung

für beide Berechnung der Faktor k hinzu. Damit ergibt sich insgesamt eine Komplexität von
O(k2 + k · r · n).

3.2.6. Anzahl geänderter Punkte

Diese Metrik beschreibt die Anzahl der Punkte die ihre Clusterzugehörigkeit seit der letzten
Iteration verändert haben. Damit ist gemeint, dass es eine Änderung gibt, wenn ein Punkt
seine Clusterzugehörigkeit ändert. Das heißt man berechnet die Änderungsrate in dem man
die Anzahl der Punkte nimmt, die ihre Clusterzugehörigkeit seit der letzten Iteration geändert
haben und setzt diese ins Verhältnis zu der Anzahl aller Punkte.

Sei M = {m1, . . . , mn} eine Menge an Datenpunkten und sei ci(p) für i > 0 eine Funktion,
die einem Punkt p sein zugehöriges Cluster in der Iteration i zuordnet. Dann lässt die Anzahl
der geänderten Punkte in der Iteration i mit der Formel Gleichung (3.10) berechnen.

#GPi = |{p ∈M | ci(p) ̸= ci−1(p) }| (3.10)

Für den K-means und den K-means++ Algorithmus wird für die erste Iteration #GP1 = |M |
gesetzt, da in der ersten Iteration alle Punkte zum ersten Mal einem Cluster zugewiesen
werden.

Komplexität Für die Berechnung der Komplexität der Anzahl der geänderten Punkte, wird
vorausgesetzt, dass es möglich ist, auf die Funktion ci(p) und ci−1(p) in O(1) zuzugreifen.
Generell ist es nicht möglich auf die Berechnung der letzten Iteration zuzugreifen ohne den
Algorithmus leicht abzuändern. Für diesen Fall wird allerdings davon ausgegangen, dass dies
möglich ist, da der Algorithmus in Abschnitt 3.3 entsprechend angepasst wird. Anschlie-
ßend müssen die Funktionen für alle Punkte ausgewertet werden. Damit ergibt sich für die
Berechnung eine Komplexität von O(n).

3.3. Optimierungsansätze für die Berechnung

In diesem Abschnitt werden Optimierungsansätze zur Anpassung der Metriken und Algo-
rithmen untersucht, um so eine effizientere Berechnung der Metriken zu ermöglichen. Da
die Metriken in jeder Iteration berechnet werden sollen, ist eine Komplexität von O(1) oder
maximal O(k) wünschenswert. Dies wird versucht zu erreichen, in dem die Berechnungen, die
im K-means durchgeführt werden gespeichert und für die Metriken zur Verfügung gestellt wer-
den. Dies soll allerdings keine großen Auswirkungen auf die Laufzeit des Algorithmus haben.
Das bedeutet, dass nur zusätzliche Werte gespeichert oder Berechnungen in konstanter Zeit
hinzugefügt werden. Im Folgenden werden einige Ansätze vorgestellt, um die Berechnung der
Metriken zu optimieren. In Algorithmus 3.1 wird die Umsetzung der Ansätze dargestellt, wobei
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3. Konzept zur Berechnung der Metriken in Teilschritten

nur die assignCluster() Methode des K-means abgeändert wurde. Der Rest des Algorithmus ist
wie in Algorithmus 2.1 beschrieben.

Berechnung der Zentroide (OA1) Der erste Ansatz ist, dass die Berechnung der Zentroide
im K-means auch den Metriken zur Verfügung gestellt wird. Denn die meisten internen
Metriken verwenden auch diese Zentroide zur Berechnung. Dadurch ist es für die Me-
triken möglich einen Zentroiden in O(1) zu berechnen, wodurch die Berechnung aller
Zentroiden für die Metriken in O(k) möglich ist. Dieser Ansatz wurde in Algorithmus 3.1
nicht dargestellt, da dem Cluster ein Feld centroid gegeben wurde, welches dann bei der
Berechnung der Metriken durch eine Methode getCentroid() in einem Cluster abgerufen
werden konnte. Ein Unterschied zur ursprünglichen Berechnung der Metriken ist nicht
zu erwarten, da sich die Berechnung nicht ändert, sondern lediglich die Art und Weise
wie den Metriken der Zentroid zur Verfügung gestellt wird.

Berechnung der Kompaktheit (OA2) Der zweite Ansatz zielt darauf ab, die Komplexität
für die Berechnung der Kompaktheit zu reduzieren. Selbst wenn die Berechnung der
Zentroide in O(k) möglich ist, muss für die Kompaktheit trotzdem noch der Abstand
jedes Punktes innerhalb eines Clusters mit dem Zentroiden berechnet werden. Dies ergibt
dann eine Komplexität von O(kṅ · r). Aus diesem Grund wird versucht die Kompaktheit
nicht durch die Distanz vom Zentroiden zu allen Punkten innerhalb eines Clusters zu
bestimmen, sondern nur die Distanz vom Zentroiden zu dem Punkt, der innerhalb des
Clusters liegt, aber am weitesten vom Zentroiden entfernt ist. Dazu muss beim K-means
Algorithmus, wenn die Punkte zu einem Zentroiden zugewiesen werden immer die
Distanz gespeichert werden, wo die Distanz zum Zentroiden am größten ist. Dazu wäre
eine zusätzliche Variable im K-means Algorithmus zu speichern und eine zusätzliche
if -Abfrage wäre notwendig. Dies wird in Algorithmus 3.1 in den Zeilen 20 - 22 deutlich.
In Zeile 20 wird abgefragt ob der Wert min, der den Abstand vom Punkt zum nächsten
Zentroiden beschreibt, größer ist, als die momentan gespeicherte maxPointDistance für
das Cluster. Falls ja wird der maxPointDistance-Wert des Clusters auf den Wert min
gesetzt.

Zusätzlich muss in der Zeile 8 noch der Wert der maxPointDistance eines Clusters auf
0 gesetzt werden, da sonst fälschlicherweise der maxPointDistance-Wert der letzten
Iteration größer ist, als der der jetzigen Iteration, obwohl der Punkt nicht mehr im
Cluster enthalten ist. Der Vorteil dieses Ansatz ist, dass er sich für jede Metrik umsetzen
lässt, die die Kompaktheit berechnet. Allerdings ist es dadurch möglich, dass die Metriken
durch diesen Ansatz andere Werte annehmen als durch ihre ursprüngliche Berechnung.
Wie stark die Unterschiede sind wird in Abschnitt 5.1 evaluiert.

Berechnung der Anzahl der geänderten Punkte (OA3) Der dritte Ansatz betrifft die An-
zahl der geänderten Punkte. Dafür wird im K-means Algorithmus eine zusätzliche
Variable eingeführt, die immer um eins hochgezählt wird, falls ein Punkt einem neuen
Cluster zugewiesen wird. Auch hier bleibt die Komplexität des Algorithmus unverändert,
da eine zusätzliche Zählervariable eingeführt wird und eine if -Abfrage, ob ein Punkt
einem neuen Cluster zugewiesen wurde. Wenn ja wird der Zähler um eins erhöht. In
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3.3. Optimierungsansätze für die Berechnung

Ansatz Betroffene Metriken Komplexität Optimierte Komplexität

OA1 DI, CJ, DBI, SSE O(n · r) O(k)
OA2 DI, CJ, DBI, S O(n · r) O(k)
OA3 #GPi O(n) O(1)
OA4 SSE O(n · r) O(1)

Tabelle 3.2.: Übersicht der Optimierungsansätze mit den Metriken, die von dem Ansatz betrof-
fen sind, so wie die Komplexität für den optimierten Ansatz und die ursprüngliche
Komplexität

Algorithmus 3.1 wird dies in den Zeilen 16 - 18 verdeutlicht. In Zeile 16 wird abgefragt,
ob das Cluster des Punktes aus der letzten Iteration mit dem neu zugewiesenen Cluster
übereinstimmt. Falls dies nicht der Fall ist, wird die Variable changedPoints um eins
erhöht (Zeile 17). Dadurch muss die Metrik nur diese Zählervariable abfragen und durch
die Anzahl aller Punkte teilen, womit die Berechnung dann in O(1) liegt.

Berechnung der SSE (OA4) Der vierte Ansatz betrifft die Sum of Squared Errors. Dazu wird
ausgenutzt, dass während die Punkte einem Zentroid zugeordnet werden, die Distanz
zwischen dem Punkt und seinem zugehörigen Zentroid bestimmt wird. Dieser Wert
muss anschließend nur noch quadriert werden. Die notwendigen Schritte werden in
Algorithmus 3.1 in der Zeile 15 verdeutlicht. Dabei wird die sseDistance gespeichert und
der quadrierte Wert des Punktes zu seinem Zentroiden wird addiert. Zusätzlich muss die
sseDistance vor jeder Iteration noch auf 0 gesetzt werden. Durch diesen Ansatz sollte die
SSE nicht von der SSE mit der ursprünglichen Berechnung abweichen, da die Berechnung
dieselbe bleibt. Jedoch wird durch diesen Ansatz die SSE der letzten Iteration berechnet
und nicht der momentanen Iteration. Denn im K-means Algorithmus werden zuerst die
Punkte einem Zentroiden zugeordnet und anschließend die Zentroide neu berechnet,
womit sich nach der Neuberechnung der Zentroide auch eine neue SSE ergeben kann.

In Tabelle 3.2 wird eine Übersicht über die Optimierungsansätze gegeben, so wie die jeweilige
Metrik, die von diesem Ansatz betroffen ist. Mit Komplexität ist die ursprüngliche Komple-
xität gemeint, die ohne den Optimierungsansatz notwendig ist. Die optimierte Komplexität
beschreibt die Komplexität, falls der Optimierungsansatz für die Berechnung der Metriken
genutzt wird.
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Algorithmus 3.1 Optimierte AssignCluster Methode
1: procedure assignCluster
2: min←∞;
3: nearestCluster← empty cluster;
4: changedPoints← 0
5: for all point ∈ points do
6: min←∞;
7: for all cluster ∈ clusters do
8: cluster.setMaxPointDistance(0);
9: distance← getDistance(point, cluster.getCentroid());
10: if (distance < min) then
11: min← distance;
12: nearestCluster← cluster;
13: end if
14: end for
15: sseDistance← sseDistance + min2; // Umsetzung von OA4
16: if (point.getCluster() != cluster) then
17: changedPoints← changedPoints + 1; // Umsetzung von OA3
18: end if
19: nearestCluster.addPoint(point);
20: if (min > cluster.maxPointDistance() then
21: cluster.setmaxPointDistance(min); // Umsetzung von OA2
22: end if
23: point.setCluster(cluster);
24: end for
25: end procedure
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4. Experimentelle Umsetzung

In diesem Kapitel wird auf die Umsetzung der Experimente eingegangen. Das Ziel der Ex-
perimente ist, herauszufinden, welche der in Abschnitt 3.2 vorgestellten Metriken sich für
einen Zeitpunkt für eine frühzeitige Terminierung von Clustering-Algorithmen ohne großen
Qualitätsverlust eignen. Des Weiteren soll erforscht werden, welche Metriken sich für die
Bestimmung von Zeitpunkten zur Visualisierung von Zwischenergebnissen während der Aus-
führung von Clustering-Algorithmen eignen. In Abschnitt 4.1 wird auf den Aufbau und die
Struktur des Prototypen eingegangen. In Abschnitt 4.2 wird erläutert welche Schritte in den
Experimenten durchgeführt wurden und es wird auf die technischen Details eingegangen, die
zur Umsetzung der Experimente genutzt wurden. Anschließend werden die Datensätze, die
für die Experimente genutzt wurden in Abschnitt 4.3 beschrieben.

Hier kurz die Ziele der Experimente erklären. Hier auch iwo erwähnen, dass DBSCAN nicht
gut geeignet für die Konvergenz.

4.1. Prototypische Implementierung

In diesem Abschnitt wird auf den Aufbau des Prototypen eingegangen, der im Rahmen dieser
Arbeit entstanden ist. Als Programmiersprache wurde Java genutzt. In Abbildung 4.1 wird
eine Übersicht über die Struktur der Pakete als UML Paketdiagramm gegeben. Im Model Paket
sind die Implementierungen für einen Datenpunkt und ein Cluster enthalten. Der Ablauf der
Experimente befindet sich im Paket Evaluation. Dieser wird in Abschnitt 4.2 genauer unter-
sucht. Das Paket Metrics enthält die Implementierungen der Metriken, die in Abschnitt 3.2
vorgestellt wurden. Jede dieser Metrik erbt von der abstrakten Klasse Metric und überschreibt
die Methode calculate, die als Eingabe eine Liste von Clustern bekommt und gibt den Wert der
Metrik als double zurück. Für jede dieser Metrik wird auch immer die Zeit, die die zur Berech-
nung gebraucht wird, festgehalten. Zur Verwaltung der Metriken ist die Klasse MetricHelper
vorhanden. Diese ist als Singleton1 implementiert und enthält eine Map namens metricsMap,
die als Schlüssel den Namen einer Metrik enthält und als Wert eine Instanz der jeweiligen
Metrik-Klasse. Zudem enthält sie eine Methode calculateAllMetricsWithMeasure, die den Wert
jeder Metrik berechnet und die benötigte Zeit für die Berechnung erfasst. Soll eine Metrik
hinzugefügt werden, dann muss eine Klasse für diese Metrik erstellt werden, die von der

1http://campus.murraystate.edu/academic/faculty/wlyle/430/rc008-designpatterns_online.pdf
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4. Experimentelle Umsetzung

Abbildung 4.1.: UML Paketdiagramm der Pakete des Prototypen

Klasse Metric erbt und die Methode calculate überschreibt. Anschließend muss eine Instanz
dieser Metrik-Klasse der metricsMap zusammen mit einem passenden Namen hinzugefügt
werden. Diese Metrik wird dann ohne weitere Schritte in den Experimenten berechnet und in
der graphischen Benutzeroberfläche angezeigt. Allerdings werden die Metriken nur für die
Algorithmen K-means und K-means++ berechnet.

Im Algorithms Paket wurden die Clustering-Algorithmen K-means, K-means++ und DBSCAN
implementiert. Diese Algorithmen erben alle von der abstrakten Klasse Algorithm und imple-
mentieren die Methoden nextIteration und run. Die Methode nextIteration gibt das Zwischener-
gebnis der nächsten Iteration des Algorithmus zurück. Die Methode run führt den Algorithmus
solange aus, bis er terminiert und gibt das Endergebnis des Algorithmus zurück. Um einen
Algorithmus hinzuzufügen, muss eine Klasse erstellt werden, die von der Klasse Algorithm
erbt und genau diese beiden Methoden implementiert. Soll dieser Algorithmus auch in der
graphischen Oberfläche ausgewählt werden können, muss zunächst ein Button für diesen
Algorithmus in der Klasse StartFrame hinzugefügt werden. Anschließend muss ein Controller
für diesen Algorithmus erstellt werden, der von der Klasse Controller erbt. Dieser Controller
muss dann der Klasse StartFrame hinzugefügt werden. Einen Algorithmus für die Experimente
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hinzuzufügen ist so ohne weiteres nicht möglich, da zunächst die Wahl der Parameter und
welche Metriken genutzt werden sollen, geklärt werden muss.

Im Paket GUI ist die Implementierung der graphischen Benutzeroberfläche enthalten. Diese
wurde als Swing-Anwendung umgesetzt. Für die Darstellung der Ergebnisse einer Clustering
in Diagrammen wurde die Open-Sourcce Bibliothek JFreeChart2 genutzt. In Abbildung 4.2 ist
ein Beispiel für den Startbildschirm nach dem Generieren des Datensatzes „Gaussian mixture“.
Der Datensatz wurde generiert in dem in der Menüleiste auf „Generieren“ und anschließend

Abbildung 4.2.: Startbildschirm des Prototypen nach dem Generieren des Datensatzes „Gaus-
sian mixture“

auf „Gaussian mixture“ geklickt wurde. Anschließend kann mittels einer der drei Buttons ein
Algorithmus ausgewählt werden, der durchgeführt werden soll. Wird auf den Button next
iteration geklickt, wird die nächste Iteration des Algorithmus ausgeführt und das Ergebnis
dieser Iteration angezeigt. Dazu werden auch die Metriken angezeigt, die für das Zwischener-
gebnis berechnet wurden. Sollte der Algorithmus terminieren erscheint eine Meldung, dass
der Algorithmus terminiert ist. In Abbildung 4.3 ist ein Beispiel für die Visualisierung der
Zwischenergebnisse zusammen mit den ausgewählten Metriken gegeben. Diese Benutzer-
oberfläche ist nur indirekt Bestandteil der Arbeit, da sie nicht für die Experimente genutzt
wurde, sondern nur zur Veranschaulichung der Algorithmen und dessen Zwischenergebnisse
dienen sollte. Die Experimente befinden sich im Paket Evaluation. Dieses wird im Abschnitt 4.2
zusammen mit dem Ablauf der Experimente eingehender erläutert.

2http://www.jfree.org/jfreechart/
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Abbildung 4.3.: Beispiel für das Anzeigen eines Zwischenergebnisses für den Algorithmus
K-means

4.2. Versuchsaufbau

In diesem Abschnitt wird der Aufbau und der Ablauf der Experimente beschrieben. Die Ex-
perimente befinden sich im Prototypen im Paket Evaluation. Das Ziel der Experimente ist es,
die implementierten Algorithmen auf vorher ausgewählten Datensätzen auszuführen. Welche
Datensätze dafür genutzt wurden, wird in Abschnitt 4.3 beschrieben. Für jeden Algorithmus
wurde jede Iteration mit der momentanen Ausführungszeit des Algorithmus, der jeweiligen Ite-
ration, so wie den Metriken und deren Berechnungszeit festgehalten. Für eine besser Übersicht
wurden diese Daten in eine CSV-Datei exportiert. Wie so eine Datei nach dem Exportieren
aussieht wird in Abbildung 4.4 dargestellt. Dabei sind die Werte für alle Metriken, die in
Abschnitt 3.2 vorgestellt wurden, für jede Iteration enthalten zusammen mit der Zeit die die
Berechnung der Metriken mit Hilfe der Optimierungsansätze aus Abschnitt 3.3 benötigt haben.
Da die Algorithmen K-means und K-means++ die Zentroide zufällig initialisieren, werden meh-
rere Durchläufe für die Algorithmen durchgeführt. Für jeden der beiden Algorithmen werden
10 Durchläufe durchgeführt. Für jeden Durchlauf wird eine CSV-Datei wie in Abbildung 4.4
erstellt. Dabei wurde in der ersten Spalte die Zeit des Algorithmus zur Zeit der Iteration, die in
der zweiten Spalte steht, festgehalten. Die Spalten daneben enthalten die Werte der Metriken
zur jeweiligen Iteration. Zusätzlich wurde noch für jede Metrik die Zeit festgehalten, die für
ihre Berechnung benötigt wurde. Für den K-means und den K-means++ wurden zudem auch
noch unterschiedliche k’s festgelegt, da in der Praxis oft nicht bekannt ist, welches k das
Optimale ist. Als untere Grenze wurde k = 5 gewählt und als obere Grenze k = 50. Zudem
wurden nicht alle k’s zwischen 5 und 50 ausprobiert, sondern immer nur in 5er Schritten.
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Abbildung 4.4.: Beispiel für die Darstellung der exportierten Ergebnisse nach einemDurchlauf
des K-means Algorithmus

Der Grund dafür ist, das wenn die Algorithmen für alle k’s von 1 bis 50 ausgeführt werden
würden, ein Algorithmus 10 · 50 = 500 mal ausgeführt werden müsste. Dies würde jedoch die
Kapazitäten dieser Arbeit sprengen und wäre auch nicht praxistauglich.

Ausgeführt wurden die Experimente auf einer virtuellen Maschine auf einerOpenStack3 Instanz.
Als Betriebssystem wurde Ubuntu 14.04 genutzt mit 16GB Arbeitsspeicher, 8 Kernen und 80GB
Festplattenspeicher.

4.3. Datensätze

In diesem Abschnitt werden die Datensätze beschrieben, die für die Evaluation genutzt wurden.
Die Datensätze teilen sich dabei auf in reale und synthetische Datensätze.

4.3.1. Reale Datensätze

Die realen Datensätze stammen aus dem UCI Machine Learning Repository [FA12]. Davon
wurden 5 Datensätze genommen, die unter dem Task Clustering oder Classification zu finden
waren. Datensätze, die unter dem Classification Task zu finden sind, sind dabei ebenfalls für
die Experimente geeignet, denn der Unterschied zu den Datensätzen des Task Clustering ist,

3https://www.openstack.org/
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4. Experimentelle Umsetzung

Datensatz #Instanzen #Attribute Optimales k Abkürzung

3D Road Network 434874 4 - 3DRN
Individual Household Electric Power Consumption 2075259 9 - IHEPC
Shuttle (Statlog) 58000 9 7 Shuttle
Online Reatil 541909 8 5 OR
Skin Segmentation 245057 4 2 SKin

Tabelle 4.1.: Reale Datensätze mit der Anzahl der Instanzen, der Anzahl der Attribute und
dem optimalem k (falls vorhanden)

dass zusätzlich noch für eine Teilmenge der Daten eine Klassifizierung vorliegt. Dadurch ist
für diese Datensätze die Anzahl der Cluster bekannt und es kann beispielsweise im späteren
Verlauf evaluiert werden, wie gut die Ansätze für das optimale k sind und wie gut für ein eher
ungeeignetes k. Zusätzlich wurde darauf geachtet, dass es sich bei den Attributen nur um
numerische Attribute handelt. Attribute die nicht optimal geeignet sind für die behandelten
Clustering-Algorithmen, wie z. B. eine ID oder nicht numerische Attribute wurden entfernt.
Die verwendeten Datensätze mit der zugehörigen Anzahl der Instanzen, der Attribute und
dem optimalem k werden in Tabelle 4.1 dargestellt. Bei zwei dieser Datensätze ist das optimale
k unbekannt. Dies wurde mit einem „-“ gekennzeichnet. Der Datensatz mit den meisten
Instanzen ist der Individual household electric power consumption Datensatz. Der Datensatz mit
den wenigsten Instanzen ist der Shuttle Datensatz.

4.3.2. Synthetische Datensätze

Für die synthetischen Datensätze wurden die unterschiedlichsten Datensätze ausgewählt. Es
wurde darauf geachtet, dass Datensätze mit einer unterschiedlichen Anzahl an Clustern, mit
spiral-förmigen Clustern und Datensätze, die für die ausgewählten Algorithmen geeignet
und ungeeignet sind, vertreten sind. In Tabelle 4.2 werden die ausgewählten synthetischen
Datensätze mit der Anzahl der Instanzen, der Attribute, dem optimalem k und der zugehörigen
Referenz dargestellt.

52



4.3. Datensätze

Datensatz #Instanzen #Attribute Optimales k Referenz

A1 3000 2 20 [KF02]
A2 5250 2 35 [KF02]
A3 7500 2 50 [KF02]
Aggregation 788 2 7 [GMT07]
Chainlink 1000 3 2 [Ult05]
Cluto-t4 8000 2 6 [Kar02]
Cluto-t5 8000 2 6 [Kar02]
Cluto-t7 10000 2 9 [KHK99]
Cluto-t8 8000 2 8 [KHK99]
D31 3100 2 31 [VRB02]
Diamond9 3000 2 9 [SC04]
Engytime 4096 2 2 [Ult05]
R15 600 2 15 [VRB02]
S1 5000 2 15 [FV06]
S2 5000 2 15 [FV06]
S3 5000 2 15 [FV06]
S4 5000 2 15 [FV06]
Spiral 312 2 3 [CY08]
Unbalance 6500 2 8 [RF16]

Tabelle 4.2.: Synthetische Datensätze mit der Anzahl der Instanzen, der Anzahl der Attribute,
dem optimalen k und der dazu gehörigen Referenz
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5. Evaluation

In diesem Kapitel werden die Ansätze aus Abschnitt 3.3 anhand von mehreren Datensätzen
getestet. In Abschnitt 5.1 werden die untersuchten Metriken evaluiert. Dazu wird geschaut
welche der Metriken sich für ein frühzeitiges Terminieren vom K-means Algorithmus eignen
und es wird ein entsprechendes Konvergenzkriterium festgelegt. Des Weiteren wird unter-
sucht, welche Metriken sich dafür eignen, geeignete Zeitpunkte für die Visualisierung von
Zwischenergebnissen zu finden. In Abschnitt 5.2 wird das definierte Konvergenzkriterium
evaluiert. Dafür wird geschaut wie viel Zeit und Iterationen im Vergleich zum ursprünglichen
Algorithmus eingespart werden können, wenn der Algorithmus terminieren würde, sobald das
Konvergenzkriterium erreicht wurde, und wie hoch der Qualitätsverlust ist, wenn der Algorith-
mus konvergiert. Die Evaluation der Zeitpunkte für die Visualisierung wird in Abschnitt 5.3
vorgenommen. Anschließend wird in Abschnitt 5.4 evaluiert, wie viele Visualisierungen sich
ergeben, wenn die Algorithmen durch das Konvergenzkriterium früher terminieren.

5.1. Metriken

In diesem Abschnitt werden die ausgewählten Metriken evaluiert. Dazu wird zum Einen
untersucht, welche Metriken sich für ein Konvergenzkriterium eignen und welche sich dafür
eignen, um geeignete Zeitpunkte zur Visualisierung von Zwischenergebnissen zu finden. Dazu
werden die in Abschnitt 4.2 beschriebenen Experimente mit den in Abschnitt 4.3 vorgestellten
Datensätzen ausgeführt.

Da bis auf die SSE und die#GPi alle Metriken im Bereich zwischen 0 und 1 liegen, werden diese
dahingehend abgeändert, dass für diese ebenfalls ein Wert zwischen 0 und 1 erreicht wird, um
sie besser mit den anderen Metriken vergleichen zu können. Für die SSE wird die Änderung seit
der letzten Iteration in Prozent betrachtet. Die Berechnungwird in Gleichung (5.1) dargestellt.

%SSEi = (SSEi−1 − SSEi)
SSEi−1

(5.1)

Dabei bezeichnet SSEi die SSE am Ende der Iteration i. Da die SSE für den K-means und den
K-means++ in jeder Iteration versucht wird zu minimieren, ist die SSE in der nächsten Iteration
immer kleiner als in der vorherigen. Dadurch ist immer einWert zwischen 0 und 1 gewährleistet.
Allerdings ist die %SSEi dadurch nur für i > 1 definiert, da die SSE0 undefiniert ist.
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Für die Anzahl der geänderten Punkte wird die Änderung in Prozent seit der ersten Iteration
betrachtet, da sich in der ersten Iteration alle Punkte ändern und es somit zumindest keine
größeren Änderungen geben kann. Dadurch errechnet sich die Prozent der geänderten Punkte
wie in Gleichung (5.2) beschrieben.

%GPi = (#GP0 −#GPi)
#GP0

(5.2)

Zunächst konnte festgestellt werden, dass die Berechnung der Metriken durch die in Ab-
schnitt 3.3 beschrieben Optimierungsansätze sehr gering ist. In Abbildung 5.1 wird der Be-
rechnungsaufwand der Metriken im Verhältnis zur Ausführungszeit des K-means Algorithmus
für den Realdatensatz Individual Household Electric Power Consumption mit k = 50 dargestellt.
Dazu wurden die Berechnungszeiten für jede Iteration der jeweiligen Metrik aufsummiert

Abbildung 5.1.: Berechnungszeit der Metriken im Verhältnis zur Ausführungszeit des K-
means Algorithmus in Prozent für den Individual Household Electric Power
Consumption Datensatz mit k = 50

und durch die Ausführungszeit des Algorithmus geteilt. Zusätzlich wurde dies mit dem Faktor
100 multipliziert um so eine Prozentangabe zu erhalten. Für alle Metriken ist zu sehen, dass
die Berechnungszeit deutlich unter 1% im Vergleich zu der Ausführungszeit des K-means
liegt. Den größten Berechnungsaufwand hat dabei der Davies-Bouldin Index mit 0, 0888%. Die
anderen Metriken weisen sogar einen deutlich geringeren Berechnungsaufwand. Als Nächstes
werden die Verläufe der Metriken während der Ausfürhung der Algorithmen betrachtet um so
geeignete Metriken heraus zu finden. In Abbildung 5.2 wird der Verlauf der Metriken für den K-
means (a) und den K-means++ (b) Durchlauf dargestellt. Als Datensatz wurde der Realdatensatz
3D Road Network mit k = 5 verwendet. Auf der x-Achse ist die jeweilige Iteration und auf der
y-Achse der Wert der jeweiligen Metrik zu sehen. Für diesen Datensatz ist zu erkennen, dass
der Verlauf der Metriken kaum Schwankungen aufweist und die Metriken sich relativ schnell
einem bestimmten Grenzwert annähern. Für den K-means sind beim Davies-Bouldin Index
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5.1. Metriken

(a) K-means (b) K-means++

Abbildung 5.2.: Verlauf der Metriken während der Ausführung des K-means und des K-
means++ Algorithmus auf dem Datensatz 3D Road Network mit k = 5

leichte Schwankungen im Verlauf zu erkennen. Dies ist jedoch beim K-means++ nicht zu sehen.
Solch ein Verlauf ohne große Schwankungen wäre für ein Konvergenzkriterium wünschens-
wert, da relativ schnell abgeschätzt werden könnte, gegen welchen Wert die Metrik strebt,
wenn der Algorithmus terminiert. Dies ist besonders bei den Realdatensätzen aufgetreten.
Allerdings war insbesondere für die synthetische Datensätze ein anderer Verlauf der Metriken
zu beobachten, wie Abbildung 5.3 zeigt. In dieser Abbildung ist der Verlauf der Metriken für

(a) K-means (b) K-means++

Abbildung 5.3.: Verlauf der Metriken während der Ausführung des K-means und des K-
means++ Algorithmus auf dem Datensatz A1 mit k = 5

die Algorithmen auf dem Datensatz A1 mit k = 5 zu sehen. Dabei ist zu erkennen, dass der
Verlauf der Metriken, im Vergleich zu Abbildung 5.2, größere Schwankungen aufweist. Zu
Beginn der Algorithmen sind diese Schwankungen am deutlichsten zu erkennen. Dabei sind
sowohl Schwankungen nach oben als auch nach unten zu erkennen, was die Einschätzung

57



5. Evaluation

deutlich erschwert, da nicht einmal ersichtlich ist, in welche Richtung sich diese Metriken
bewegen. Dies ist insbesondere beim Davis-Bouldin Index, beim Coggins-Jain Index und beim
Dunn Index der Fall. Der Silhouetten-Koeffizient weist kleinere Schwankungen auf als die
vorher genannten Metriken. Für den K-means++ hat der Silhouetten-Koeffizient sogar einen
monoton fallenden Verlauf. Allerdings ist dies nicht der gewünschte Verlauf der Metrik, da dies
bedeuten würde, dass die Qualität der Cluster im Laufe des Algorithmus schlechter wird. Hinzu
kommt, dass es auch Durchläufe gab, bei denen der Silhouetten-Koeffizient angestiegen ist. Ein
Grund hierfür könnte der in Abschnitt 3.3 beschriebene Optimierungsansatz OA2 sein, welcher
die Kompaktheit durch den Abstand des Punktes mit der größten Distanz zum Zentroiden
beschreibt. Denn die erwähnten Metriken sind alle von diesem Ansatz betroffen. Allerdings ist
eine Berechnung der Metriken ohne diesen Optimierungsansatz nicht erstrebenswert, da die
Berechnung der Metriken sonst in mindestens O(n) liegt, womit die Berechnung der Metriken
in einer Iteration fast so hoch ist, wie die Berechnung für einen kompletten Durchlauf des
Algorithmus. Für die %SSEi und die %GPi ist zu erkennen, dass diese am Anfang relativ stark
abfallen und sich dann im Bereich um die 0 herum bewegen. Dabei sind zwar auch Ausreißer
nach oben zu erkennen, allerdings sind diese nicht so gravierend. Zudemwaren die Verläufe für
die %SSEi und die %GPi für alle Datensätze ähnlich wie in Abbildung 5.2 und Abbildung 5.3
dargestellt.

Aus diesem Grund, weil sich der Verlauf am ehesten abschätzen lässt, haben sich diese beiden
Metriken als am Geeignetsten für ein Konvergenzkriterium herausgestellt. Würde die %GPi

alleine als Konvergenzkriterium herangezogen werden, dann würde nur eine Aussage über die
Änderung der Punkte getroffen werden, nicht aber über die Qualität. Denn es ist möglich, dass
zwar wenige Punkte ihre Clusterzugehörigkeit ändern, dies jedoch einen großen Einfluss auf
die Qualität hat. In Abbildung 5.4 wird dies verdeutlicht. Dabei ist der Wert der %SSEi und der
%GPi in Prozent gegeben. Die %GPi fällt in der Abbildung zwar monoton, die %SSEi jedoch
weist besonders zu Beginn noch größere Schwankungen auf. Auf der anderen Seite wiederum
ist ein Verlauf wie in Abbildung 5.5 möglich. Dabei fällt die %SSEi stark zu Beginn sehr stark
und die %GPi schwankt sehr stark. Zudem ist die %SSEi bereits nach Iteration 6 deutlich
unter 1%. Allerdings steigt sie danach auch wieder (Iteration 9 - 13). Die %GPi hingegen
weist zu diesem Zeitpunkt noch starke Schwankungen auf und fällt erst nach der Iteration
12 unter 10%. Würde nur die %SSEi als Konvergenzkriterium gewählt werden, würde der
Algorithmus bereits vor dem Wiederanstieg der %SSEi terminieren, wodurch eine größere
Qualitätsänderung verloren geht. Der erstgenannte Fall tritt zwar öfters auf, sollte jedoch der
andere Fall auftreten, wäre auch dies durch eine Kombination der beiden Metriken abgedeckt.
Als Konvergenzkriterium wurde somit eine Kombination aus diesen beiden Metriken festgelegt.
Sobald diese Metriken einen bestimmten Schwellenwert unterschreiten, sollen die Algorithmen
terminieren. Dies bedeutet, dass die Algorithmen terminieren, wenn die erste Iteration i erreicht
ist, für die die Gleichung (5.3) erfüllt ist.

(%SSEi ≤ ε1) ∧ (%GPi ≤ ε2) (5.3)

Für die Bestimmung von geeigneten Zeitpunkten für die Visualisierung von Zwischener-
gebnissen sind diese Metriken ebenfalls gut geeignet, da sie auch mit angeben wie viel sich
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5.2. Konvergenzkriterien

Abbildung 5.4.: Verlauf der %SSEi und der %GPi in Prozent während der Ausführung des
K-means Algorithmus auf dem Datensatz Shuttle mit k = 50

geändert hat. Ähnlich wie beim Konvergenzkriterium wird ein Schwellenwert gesetzt und
sobald dieser überschritten wird, stellt dies ein Zeitpunkt für eine Visualisierung dar. Anders
als beim Konvergenzkriterium werden beide Metriken separat behandelt und es wird nicht
geschaut ob in jeder Iteration der Schwellenwert überschritten wird, sondern es wird die
Summe der jeweiligen Metrik berechnet, bis dieser Schwellenwert überschritten wird. Wird
dieser Schwellenwert überschritten, dann wird die Summe auf 0 gesetzt und es wird wieder
auf die gleiche Weise geschaut wann die Summe der jeweiligen Metrik den Schwellenwert
überschreitet. Zur Verdeutlichung wird dies in Algorithmus 5.1 für die %GPi in Pseudocode
dargestellt. Dabei ist α der Schwellenwert der erreicht werden soll und sum die beschriebene
Summe. Für die %SSEi ist die Vorgehensweise analog dazu.

Die Schwellenwerte ε1, ε2 und α werden im späteren Verlauf experimentell bestimmt und
evaluiert.

5.2. Konvergenzkriterien

In diesemAbschnitt soll evaluiert werden, wie gut das Konvergenzkriterium (vgl. (5.3)) geeignet
ist. Dazu werden die Ergebnisse, die anhand der Datensätze gemacht wurden, bewertet. Zuvor
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5. Evaluation

Algorithmus 5.1 Pseudocode für die Bestimmung von geeigneten Zeitpunkten für eine Vi-
sualisierung für einen Schwellenwert α

1: sum← 0
2: numberOfV isualisations← 0
3: while !algorithm.isF inished do
4: . . . // Führe nächste Iteration des Algorithmus aus
5: sum← sum + algorithm.getPercentOfChangedPoints()
6: if sum ≥ α then
7: visualize()
8: sum← 0
9: numberOfV isualisations← numberOfV isualisations + 1
10: end if
11: . . .
12: end while

werden allerdings erst die Schwellenwerte für das Konvergenzkriterium in Abschnitt 5.2.1 be-
stimmt. Anschließend wird das Konvergenzkriterium anhand der Ergebnisse in Abschnitt 5.2.2
evaluiert. In Abschnitt 5.2.3 werden kritische Fälle, die sich während der Bewertung ergeben
haben, genauer untersucht und es wird nach den Ursachen geforscht.

Abbildung 5.5.: Verlauf der %SSEi und der %GPi in Prozent während der Ausführung des
K-means Algorithmus auf dem Datensatz S4 mit k = 50
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5.2. Konvergenzkriterien

5.2.1. Bestimmung der Schwellenwerte

Für die Evaluierung des Konvergenzkriteriums (vgl. Gleichung (5.3)) müssen zunächst die
Parameter ε1 und ε2 bestimmtwerden. Dazuwurde der Verlauf derMetriken%GPi und%SSEi

eingehender analysiert und geschaut unter welche Werte die Metriken fallen müssen, damit
kein Anstieg im Verlauf mehr zu sehen ist. Wie die Abbildungen 5.4 und 5.5 zeigen, hat sich für
die%GPi dabei einWert von 10% als gut geeignet herausgestellt, womit ε1 = 0, 1 gesetzt wurde.
Dies wird aber noch einmal in Abbildung 5.6 verdeutlicht. In dieser Abbildung ist die%SSEi zu

Abbildung 5.6.: Verlauf der %SSEi und der %GPi in Prozent während der Ausführung des
K-means++ Algorithmus auf dem Datensatz Online Retail mit k = 50

Beginn deutlich unter 5%. Ab Iteration 7 jedoch fängt sie wieder an zu steigen und weist in der
Folge größere Schwankungen auf. In der Iteration 25 steigt sie sogar auf einenWert über 50% an.
Die %GPi hat zwar auch einige Schwankungen im Verlauf bis Iteration 11, jedoch fällt sie auch
erst nach Iteration 11 unter den 10%-Wert. In den folgenden Iterationen hat die %GPi einen
monotonen fallenden Verlauf, allerdings müsste für die Konvergenz dann die %SSEi wieder
unter ihren Schwellenwert fallen. Dadurch kann ein größerer Qualitätsverlust verhindert
werden, da die Terminierung des Algorithmus erst erfolgt, wenn sich die %SSEi wieder
eingependelt hat. In der Abbildung 5.6 wir allerdings auch deutlich, dass der Schwellenwert
von %SSEi deutlich unter 5% liegen sollte. Denn die %SSEi fällt in Iteration 19 unter 5%,
steigt danach aber trotzdem auch nochmal an, während die %GPi unter ihrem Schwellenwert
bleibt. Um auch so einen Fall abzudecken wird daher der Schwellenwert von %SSEi auf
1% gesetzt. Also wird ε2 = 0, 01 gesetzt. Daher lautet das festgelegte Konvergenzkriterium
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mit festgelegten Schwellenwerten wie in (C, 5.4) beschrieben und wird im Folgenden mit C
bezeichnet.

(%SSEi ≤ 0.01) ∧ (%GPi ≤ 0.1) (C, 5.4)

5.2.2. Bewertung anhand der Ergebnisse

Im Folgenden soll evaluiert werden wie gut dieses Kriterium geeignet ist, indem die Qualität der
Terminierung des Algorithmus mit der Qualität der früheren Terminierung des Algorithmus
aufgrund des Konvergenzkriteriums verglichen wird. Dazu wird der Algorithmus ausgeführt
und wenn das Konvergenzkriterium C erreicht ist, wird die Qualität, die Anzahl der Iterationen
und die Ausführungszeit des Algorithmus bis zu diesem Zeitpunkt festgehalten. Wenn der
Algorithmus terminiert, weil sich die Zentroide nicht mehr verschieben wird dafür ebenfalls
die Qualität, die Anzahl der Iterationen und die Ausführungszeit festgehalten. Für die Qualität
wird die SSE herangezogen, da diese das Konvergenzkriterium des Standard K-means ist und
gegen ein lokales Minimum konvergiert. Somit ist die SSE zum Zeitpunkt der Terminierung
der bestmögliche Wert der bei einer früheren Terminierung erreicht werden kann. Für die
Beschreibung des Qualitätsverlusts wird der relative Qualitätsverlust herangezogen. Die Formel
zur Berechnung des relativen Qualitätsverlustes ist in (5.5) beschrieben.

%E = SSEC − SSES

SSEC

(5.5)

Dabei bezeichnet SSEC die SSE zum Zeitpunkt der Terminierung durch das Konvergenzkriteri-
um C und SSES bezeichnet die SSE am Ende der Terminierung durch das Konvergenzkriterium
des Standard K-means, welches im Folgenden mit S bezeichnet wird. Die Versuche wurden wie
in Abschnitt 4.2 beschrieben durchgeführt. Es wurde zudem geschaut wo die kleinste, größte
und der Median der Iterationen liegt bei denen der Algorithmus durch das Konvergenzkri-
terium C terminiert. Falls nicht anders angegeben werden im Folgenden Aussagen über den
Median getroffen, da der Median im Gegensatz zum Mittelwert beispielsweise robuster gegen
Ausreißer ist [Dix53].
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5.2. Konvergenzkriterien

Tabelle 5.1.: Einsparung von Iteration und Ausführungszeit, so wie Qualitätsverlust und
SSEC für K-means und K-means++ nach der Ausführung auf den Realdatensät-
zen für die Median Durchläufe der Konvergenz

K-means K-means++

Datensatz k %I %A %E SSEC %I %A %E SSEC

IHEPC 5 81,82% 67,41% 0,15% 6,00E+07 89,47% 64,93% 52,02% 6,46E+07
IHEPC 10 95,08% 85,46% 0,80% 2,29E+07 87,80% 70,66% 0,02% 2,25E+07
IHEPC 15 96,59% 89,58% 69,19% 5,12E+07 90,91% 76,76% 1,17% 1,32E+07
IHEPC 20 93,14% 86,95% 1,13% 1,79E+07 94,64% 83,73% 6,62% 1,53E+07
IHEPC 25 94,41% 89,50% 0,83% 1,38E+07 96,59% 86,98% 3,13% 8,00E+06
IHEPC 30 96,00% 91,81% 2,93% 1,59E+07 95,39% 87,24% 3,18% 7,87E+06
IHEPC 35 95,97% 92,05% 10,04% 1,20E+07 93,66% 86,49% 24,56% 7,95E+06
IHEPC 40 95,71% 92,37% 6,39% 1,11E+07 96,09% 89,75% 6,37% 5,91E+06
IHEPC 45 97,77% 94,73% 20,23% 1,29E+07 97,97% 91,79% 13,88% 6,21E+06
IHEPC 50 96,58% 93,62% 10,09% 8,48E+06 95,18% 89,45% 1,99% 4,68E+06

OR 5 51,72% 36,78% 1,36% 3,45E+09 59,09% 58,51% 0,55% 3,40E+09
OR 10 34,38% 24,63% 0,45% 2,01E+09 52,78% 53,54% 3,00% 1,95E+09
OR 15 56,86% 50,84% 5,66% 1,44E+09 66,67% 65,25% 12,14% 1,68E+09
OR 20 52,27% 47,29% 3,94% 1,37E+09 77,50% 77,50% 6,56% 1,34E+09
OR 25 69,23% 63,24% 4,36% 1,32E+09 80,85% 84,75% 3,15% 1,29E+09
OR 30 67,74% 62,80% 6,09% 1,32E+09 84,62% 85,07% 35,01% 1,20E+09
OR 35 81,31% 76,97% 5,08% 1,32E+09 80,49% 80,95% 33,40% 1,13E+09
OR 40 80,65% 76,63% 7,95% 1,34E+09 87,27% 88,42% 2,04% 1,13E+09
OR 45 77,27% 73,37% 4,25% 1,29E+09 88,24% 88,30% 6,88% 2,42E+08
OR 50 75,34% 71,26% 2,14% 1,26E+09 72,73% 73,34% 3,09% 1,32E+08

Shuttle 5 95,90% 85,02% 0,21% 1,51E+08 71,43% 55,50% 0,21% 1,24E+08
Shuttle 10 96,64% 88,71% 22,88% 7,32E+07 96,61% 86,14% 0,11% 5,31E+07
Shuttle 15 93,22% 85,25% 31,44% 8,89E+07 96,25% 87,35% 10,74% 1,64E+07
Shuttle 20 94,35% 89,02% 11,41% 6,76E+07 98,53% 91,43% 22,23% 1,08E+07
Shuttle 25 93,85% 89,03% 0,68% 9,94E+07 88,14% 82,49% 42,13% 9,50E+06
Shuttle 30 92,24% 88,21% 8,81% 1,16E+08 88,14% 80,45% 1,55% 5,71E+06
Shuttle 35 91,51% 88,09% 0,31% 7,18E+07 93,98% 88,09% 4,13% 2,81E+06
Shuttle 40 89,90% 86,47% 0,22% 8,35E+07 87,50% 83,01% 44,91% 4,36E+06
Shuttle 45 91,67% 87,03% 0,32% 8,44E+07 86,67% 81,73% 3,02% 2,20E+06
Shuttle 50 91,35% 88,15% 1,71% 8,39E+07 82,05% 78,20% 4,14% 2,20E+06
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K-means K-means++

Datensatz k %I %A %E SSEC %I %A %E SSEC

Skin 5 57,14% 32,84% 0,01% 5,10E+08 72,22% 54,62% 0,15% 5,03E+08
Skin 10 81,08% 72,67% 4,07% 3,58E+08 63,16% 47,25% 0,07% 2,63E+08
Skin 15 71,43% 64,51% 9,17% 2,03E+08 81,40% 70,10% 11,52% 2,39E+08
Skin 20 76,92% 70,24% 7,49% 1,63E+08 75,76% 66,75% 0,17% 1,45E+08
Skin 25 69,70% 64,43% 2,05% 1,23E+08 76,67% 72,53% 1,56% 1,22E+08
Skin 30 86,96% 83,89% 4,28% 1,12E+08 80,00% 73,89% 4,26% 1,00E+08
Skin 35 72,22% 67,63% 7,07% 8,64E+07 79,49% 74,65% 6,29% 8,50E+07
Skin 40 88,64% 85,73% 11,65% 8,33E+07 77,14% 72,88% 5,51% 7,93E+07
Skin 45 80,33% 78,47% 11,19% 8,27E+07 92,45% 88,06% 7,00% 6,96E+07
Skin 50 82,54% 79,28% 10,71% 6,91E+07 80,00% 77,05% 6,99% 6,06E+07

3DRN 5 78,26% 60,33% 4,43% 1,41E+33 86,36% 70,00% 5,77% 1,43E+33
3DRN 10 71,88% 60,96% 8,90% 3,63E+32 86,15% 50,00% 12,05% 3,76E+32
3DRN 15 77,23% 75,00% 14,04% 2,04E+32 80,85% 50,00% 3,57% 1,82E+32
3DRN 20 88,02% 80,51% 34,22% 1,83E+32 90,32% 66,67% 5,62% 1,25E+32
3DRN 25 90,12% 70,07% 54,91% 1,47E+32 79,49% 50,00% 5,04% 9,35E+31
3DRN 30 92,27% 87,12% 40,89% 9,35E+31 78,13% 50,00% 1,98% 4,25E+31
3DRN 35 83,82% 78,68% 11,76% 4,68E+31 88,33% 80,00% 55,03% 7,42E+31
3DRN 40 91,88% 87,40% 43,51% 6,31E+31 79,55% 75,00% 2,47% 2,64E+31
3DRN 45 91,93% 87,69% 66,23% 1,11E+32 75,00% 66,67% 2,97% 2,41E+31
3DRN 50 88,12% 84,00% 22,11% 3,78E+31 87,10% 75,00% 3,07% 1,94E+31

Min 34,38% 24,63% 0,01% 8,48E+06 52,78% 47,25% 0,02% 2,20E+06
Max 97,77% 94,73% 69,19% 1,41E+33 98,53% 91,79% 55,03% 1,43E+33
Median 88,07% 82,20% 6,24% 1,37E+08 86,26% 76,91% 4,20% 1,23E+08
Mittelwert 82,82% 76,27% 12,19% 5,32E+31 83,74% 74,58% 9,86% 4,79E+31

Realdatensätze

In Tabelle 5.1 werden die Ergebnisse für die Durchläufe, wo die Algorithmen K-means und
K-means++ im Median durch das Konvergenzkriterium C terminiert haben, für die Realda-
tensätze dargestellt. Das bedeutet, dass von 10 Durchläufen untersucht wurde, bei welchem
dieser Durchläufe der Median der Iteration liegt, in der konvergiert wurde. Dabei stellt %I die
Iterationen in Prozent dar, die durch C im Vergleich zu S eingespart wurden. Diese lässt sich
mit der Gleichung

%I = IC − IS

IS

(5.6)
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5.2. Konvergenzkriterien

berechnen, wobei IC die Anzahl der Iterationen für die Terminierung mittels des Konvergenz-
kriteriums C beschreibt und IS entsprechend für das Konvergenzkriterium S. Die Zeit, die
eingespart wurde, wird in Prozent in den Spalten %A angegeben. Die Berechnung verläuft
analog zu %I . Zur besseren Übersicht wurden zudem Zellen grün markiert, falls %I ≥ 80%
%A ≥ 80% und rot , falls %E ≥ 5% war. Des weiteren wurde für jede Spalte separat der Min-,
Max-, Median- und Mittelwert erfasst. Zunächst ist in der Tabelle zu sehen, dass durch das
Konvergenzkriterium relativ viel Zeit und Iterationen eingespart werden können. Insbesondere
für den Datensatz mit den meisten Instanzen, dem IHEPC Datensatz. Dies ist sowohl für den
K-means als auch den K-means++ der Fall. So wurden immer mehr als 80% an Iterationen
eingespart und immer mindestens 64% der Ausführungszeit. Insgesamt waren die Qualitäts-
verluste Tabelle 5.1 beim K-means 22-mal unter 5% und 32-mal unter 10%. Für den K-means
waren die Qualitätsverluste sogar 26-mal unter 5% und 37-mal unter 10%. In der Einsparung
der Ausführungszeit und der Iterationen sind sich zudem der K-means und der K-means++
sehr ähnlich. Dies wird in Abbildung 5.7 verdeutlicht. In dieser ist die Ausführungszeit für alle
realen Datensätze mit allen k’s für den K-means und den K-means++ dargestellt. Für den IHCEP
Datensatz wird dabei festgestellt, dass der K-means in der Einsparung der Ausführungszeit für
alle k’s oberhalb des K-means++ ist.

Im Qualitätsverlust gibt es allerdings deutliche Unterschiede bei den Algorithmen. So ist beim
IHEPC Datensatz für k = 5 der Qualitätsverlust für K-means mit 0,15% sehr gering und beim
K-means++ mit 52,02% sehr hoch, was zunächst überraschend wirkt, da für den K-means++
auf Grund seiner besseren Initialisierungsstrategie auch bessere Ergebnisse erwartet wurden.
Wird für diesen Fall allerdings die absolute Qualität betrachtet, kann festgestellt werden, dass
die Qualität, die mit dem K-means++ erreicht wurde deutlich besser als die des K-means
ist. Denn für den K-means wäre die SSES = 59905497, 3 und für den K-means++ wäre die
SSES = 31015774, 911. Hinzu kommt, dass es für die realen Datensätze nur 5-mal der Fall
war, dass die SSEC des K-means kleiner war als die des K-means++. Die 5-mal wo dies auftrat
wurden in der Tabelle 5.1 mit blau gekennzeichnet.

In Abbildung 5.8 sind besonders gute Ergebnisse beim K-means für den Shuttle Datensatz für
k = 5, 25, 35, 40, 45, 50 zu erkennen. Dabei lag der Qualitätsverlust außer für k = 50 unter
1%. Für k = 50 lag der Qualitätsverlust bei 1,71%. In Abbildung 5.7 ist zudem zusehen, dass für
diese Fälle mindestens 85% der Ausführungszeit eingespart werden. Würde man nur nach dem
Qualitätsverlust gehen, müsste der OR Datensatz hervorgehoben werden, d K-means für diesen
Datensatz keine großen Schwankungen aufweist und zudem immer knapp unter oder über dem
5%-Wert liegt. Betrachtet man allerdings für diesen Datensatz die eingesparte Ausführungszeit
ist zu sehen, dass diese immer unter 80% liegt (vgl. Abbildung 5.7). Für den K-means++ ist
der Skin Datensatz hervorzuheben. Für k = 5, 10, 30, 35, 45, 50 war der Qualitätsverlust unter
5% und für k = 10, 30, 35, 45 war zudem die Einsparung über 80%. Dafür waren für k = 25
und k = 40 die Qualitätsverluste über 40%. Wird zudem die Abbildung 5.8 betrachtet, ist zu
erkennen, dass der Parameter k einen großen Einfluss auf den Qualitätsverlust hat. Sowohl

1Die SSES berechnet sich durch Umformung der Gleichung (5.5) mit SSES = SSEC −%E ∗ SSESC
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5. Evaluation

Abbildung 5.7.: Einsparung der Ausführungszeit in Prozent für den K-means und K-means++
über alle reale Datensätze und die verschiedenen k’s

für den K-means als auch den K-means++ sind immer wieder größere Schwankungen für den
Qualitätsverlust zu erkennen.

In Tabelle 5.2 wird der Qualitätsverlust und die eingesparte Iteration in Abhängigkeit von der
eingesparten Ausführungszeit für den K-means dargestellt. Dabei wurde untersucht wie sich
bei einer Einsparung die größer oder gleich 50%, 70%,80% und 90% der Qualitätsverlust und
die eingesparten Iterationen verhalten. Zudem wird die Anzahl der Durchläufe aufgefasst für
die die Einsparung der Ausführungszeit unter 50%, . . . , 90% war und ins Verhältnis zu allen
gesetzt. In dieser Tabelle ist zu sehen, dass der der Qualitätsverlust im Median steigt, wenn
man einen Bereich mit einer höheren Einsparung der Ausführungszeit betrachtet. So beträgt

66



5.2. Konvergenzkriterien

Abbildung 5.8.: Qualitätsverlust in Prozent für den K-means und K-means++ über alle reale
Datensätze und die verschiedenen k’s

%A größer als 50% 70% 80% 90%

Anzahl 46/50 37/50 26/50 5/50

Min %E 0,15% 0,21% 0,21% 2,93%
%I 56,86% 75,34% 86,96% 95,71%

Median %E 7,28% 8,81% 9,43% 10,04%
%I 89,27% 91,67% 93,18% 96,00%

Max %E 69,19% 69,19% 69,19% 20,23%
%I 97,77% 97,77% 97,77% 97,77%

Tabelle 5.2.: Qualitätsverlust und Einsparung an Iterationen in Abhängigkeit von der einge-
sparten Ausführungszeit für den K-means auf den realen Datensätzen

der Qualitätsverlust für eine Einsparung der Ausführungszeit von 50% im Median 7,28% und
für eine Einsparung der Ausführungszeit von 90% beträgt der der Qualitätsverlust im Median
10,04%. Das bedeutet, dass der Qualitätsverlust steigt, wenn es eine höhere Einsparung der
Ausführungszeit gab. In Tabelle 5.3 wird die selbe Tabelle für den K-means++ dargestellt. Für
den K-means++ ist dabei ebenfalls zu sehen, dass im Median für höhere Einsparungen der
Ausführungszeit auch höhere Qualitätsverluste zu erkennen sind. Herauszuheben ist dabei, dass
der Qualitätsverlust beim K-means++ im Median immer geringer ist als beim K-means, außer
für eine Einsparung der Ausführungszeit von 90% oder mehr. Für diese liegt der Qualitätsverlust
im Median bei 18,06% für den K-means++ und bei 10,04% für den K-means.
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%A größer als 50% 70% 80% 90%

Anzahl 45/50 35/50 21/50 2/50

Min %E 0,02% 0,02% 0,11% 13,88%
%I 52,78% 72,73% 80,49% 97,97%

Median %E 4,26% 5,51% 6,62% 18,06%
%I 87,10% 87,80% 93,66% 98,25%

Max %E 55,03% 55,03% 44,91% 22,23%
%I 98,53% 98,53% 98,53% 98,53%

Tabelle 5.3.: Qualitätsverlust und Einsparung an Iterationen in Abhängigkeit von der einge-
sparten Ausführungszeit für den K-means++ auf den realen Datensätzen

Synthetische Datensätze

In Tabelle A.1 auf Seite 88 werden alle Ergebnisse der Durchläufe, in denen die Algorithmen K-
means und K-means++ im Median durch C terminiert haben, für die synthetischen Datensätze
dargestellt.

Allgemein sind für die synthetischen Datensätze bessere Ergebnisse zu erkennen als für die
realen Datensätze, was den Qualitätsverlust anbelangt. So lag der Qualitätsverlust bei den
synthetischen Datensätzen für den K-means im Median bei 1,79% und für den K-means++
bei 1,19%. Bei den realen Datensätzen sind es für den K-means hingegen 6,24% und für den
K-means++ 4,2%. In der eingesparten Ausführungszeit sind die realen Datensätze dafür im
Median besser. Für den K-means sind das 82,20% und für den K-means++ 76,91%. Bei den
synthetischen Datensätzen sind es für den K-means 79,45% und für den K-means++ 75%.

Zudem ist zu sehen, dass bei den synthetischen Datensätzen auch gute Ergebnisse erzielt
werden konnten für Datensätze bei denen der K-means eher ungeeignet ist. So war für den
Spiral Datensatz der Qualitätsverlust für den K-means++ für k = 5 bei 7,97%, für die restlichen
k’s allerdings immer deutlich unter 1%. Für den K-means lag der Qualitätsverlust, außer für
k = 10, für alle k’s unter 1%. Für k = 10 lag er bei 1,18%. Die Einsparung der Ausführungszeit
lag zudem für beide Algorithmen für alle k’s über 50% und es konnten sogar bis zu 92,31%
für den K-means und bis zu 93,14% für den K-means++ eingespart werden. Das ist dadurch
zu begründen, dass sich die SSE für Datensätze, die für den K-means ungeeignet sind, kaum
Änderungen in der SSE ergeben. In Abbildung 5.9 wird dies für den Spiral Datensatz mit k = 50
für den K-means++ Algorithmus verdeutlicht. Sowohl die %SSEi als auch %GPi gehen relativ
schnell gegen 0 und zeigen im Verlauf auch keinerlei Schwankungen.
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Abbildung 5.9.: Verlauf der %SSEi und der %GPi in Prozent während der Ausführung des
K-means++ Algorithmus auf dem Datensatz Spiral mit k = 50

Tabelle 5.4.: Darstellung des Qualitätsverlusts und der Einsparung an Iterationen in Abhän-
gigkeit von der eingesparten Ausführungszeit für den K-means auf den syntheti-
schen Datensätzen

%A größer als >50% >70% >80% >90%

Anzahl 178 129 61 3

Min %E 0,00% 0,00% 0,00% 0,12%
%I 50,00% 56,25% 68,00% 86,67%

Median %E 2,45% 2,82% 3,01% 0,20%
%I 2,45% 2,82% 84,92% 92,08%

Max %E 33,15% 33,15% 27,41% 4,39%
%I 92,31% 92,31% 92,31% 4,39%
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Tabelle 5.5.: Darstellung des Qualitätsverlusts und der Einsparung an Iterationen in Ab-
hängigkeit von der eingesparten Ausführungszeit für den K-means++ auf den
synthetischen Datensätzen

%A größer als >50% >70% >80% >90%

Anzahl 182/190 126/190 55/190 5/190

Min %E 0,00% 0,00% 0,00% 0,04%
%I 53,85% 67,86% 76,19% 83,87%

Median %E 1,93% 2,30% 2,83% 4,69%
%I 74,41% 78,37% 84,78% 90,61%

Max %E 52,74% 52,74% 52,74% 21,99%
%E 93,14% 93,14% 93,14% 93,14%

5.2.3. Mögliche Problematik der Qualitätsverluste

In diesem Unterabschnitt wird untersucht, wie es zu den teilweise großen Qualitätsverlusten
kommen kann, insbesondere bei den realen Datensätzen.

Dazu wurde zunächst der Datensatz 3DRN betrachtet. Für diesen gab es für den K-means einen
Qualitätsverlust von 66,23% für k=45 (vgl. Tabelle 5.1). Es ist aber auch festzustellen, dass es
eine Einsparung in der Ausführungszeit von 87,69% gab. In Abbildung 5.10 ist der Verlauf der
%SSEi und der %GPi in Prozent zu sehen und zusätzlich sind die beiden Schwellenwerte
ε1 = 1% und ε2 = 10% mit angegeben. Dabei ist der Schwellenwert für die %GPi (ε2) bereits
nach Iteration 3 unterschritten und bleibt in der Folge auch unter diesem Schwellenwert. Die
%SSEi fällt in Iteration 9 unter ihren Schwellenwert (ε1). Allerdings gibt es im späteren Verlauf
noch einmal einen Anstieg bis zu fast 40% (Iteration 19-21). Durch diese große Änderung die
sich noch ergibt entsteht dieser große Qualitätsverlust.

Eine Möglichkeit um dies zu verhindern wäre die Schwellenwerte ε1 und ε2 geringer zu
setzen. Allerdings ist nicht klar wie gering diese dann gesetzt werden sollten, da dies sehr
stark vom Datensatz abhängig ist. Es ist auch nicht garantiert, dass dadurch nicht auch große
Qualitätsverluste entstehen, denn theoretisch könnte die %SSEi beliebig nahe gegen 0 gehen
und trotzdem können noch einmal Schwankungen nach oben auftreten. Zudem sind dann
auch keine so großen Einsparungen in der Ausführungszeit möglich.

5.3. Interaktionspunkte

In diesemAbschnitt wird evaluiert, wie oft für die beidenMetriken%SSEi und%GPi Zeitpunk-
te für eine Visualisierung von Zwischenergebnissen bestimmt werden. Dazu sollen zunächst
die Schwellenwerte für beide Metriken in Abschnitt 5.3.1 bestimmt werden. Anschließend

70



5.3. Interaktionspunkte

Abbildung 5.10.: Verlauf der %SSEi und der %GPi in Prozent während der Ausführung des
K-means Algorithmus auf dem Datensatz Online Retail mit k = 45

werden die Ergebnisse für den K-means und den K-means++ in Abschnitt 5.3.2 bewertet. Die
Bewertung für den DBSCAN erfolgt in Abschnitt 5.3.4.

5.3.1. Bestimmung der Schwellenwerte

Die Bestimmung eines Schwellenwertes gestaltet sich insofern schwierig, als das zunächst
nicht klar ist, was überhaupt eine geeignete Anzahl an Visualisierungen darstellt. Allerdings
ist festzustellen, dass beispielsweise ein Schwellenwert von 50% dafür sorgen würde, dass es
nur sehr wenige Visualisierungen geben würde. Hinzu kommt, dass in Abschnitt 5.2 bereits
diskutiert wurde, dass die SSEi und die GPi zwar ähnliche Verläufe haben, die Kurve SSEi

jedoch tendenziell unterhalb der GPi liegt. Aus diesem Grund wird für beide Metriken eine
unterschiedliche Anzahl an Visualisierungen für den gleichen Schwellenwert vermutet, wo-
durch zwei Ergebnisse entstehen, die anschließend miteinander verglichen werden können.
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Als Schwellenwert wurde für beide Metriken der Wert 10% angenommen, wobei durchaus auch
andere Werte wie zum Beispiel 5% denkbar wären. Größere Werte als 10% erscheinen allerdings
nicht sinnvoll, da die Experimente gezeigt haben, dass es sonst relativ wenige Visualisierungen
gibt.

5.3.2. Bewertung für K-means und K-means++

Für die Visualisierung ist eine Bewertung wie für die Konvergenzkriterien nicht möglich. Denn
für die Visualisierung müsste für eine geeignete Bewertung die Interaktion mit einem Nutzer
berücksichtigt werden. Anschließend könnte evaluiert werden, ob und wie viel Zeitaufwand
auf Grund der Visualisierungen entsteht oder ob dadurch sogar Zeit eingespart wird, weil für
einen Nutzer die Zwischenergebnisse ausreichend sind. Dies könnte beispielsweise durch eine
Nutzerstudie evaluiert werden. Dies würde allerdings den Rahmen dieser Arbeit sprengen,
weshalb dies zukünftigen Arbeiten überlassen bleibt.

In diesem Abschnitt wird daher nicht evaluiert wie viel zusätzlicher Aufwand durch die
Visualisierung entsteht bzw. eingespart wird, sondern wie viele Visualisierungen im Verhältnis
zu der Anzahl der Iterationen entstanden sind. Denn es ist wichtig, dass zum Einen eine
Mindestanzahl an Visualisierungen vorhanden ist, um so eine bessere Nachvollziehbarkeit der
Ergebnisse zu ermöglichen, zum anderen sollten nicht zu viele Visualisierungen entstehen, da
dies sonst denAufwand der Analyse deutlich erhöhenwürde.WelcheWerte dabei als untere und
welche als obere Schranke sinnvoll sind, müsste ebenfalls in einer Nutzerstudie herausgefunden
werden. Für einen besseren Vergleich der Ergebnisse wurden aber im Folgenden für eine untere
Schranke 5% an Visualisierungen im Verhältnis zur Anzahl der Iterationen und 20% für eine
obere Schranke angenommen. Im Folgenden wird %Vis verwendet als Abkürzung für die
Anzahl der Visualisierungen im Verhältnis zur Anzahl der Iterationen in Prozent.

In Tabelle 5.6 werden für die realen Datensätze die Anzahl der Iterationen, so wie die %Vis für
die SSEi und die GPi in Prozent angegeben und das sowohl für den K-means als auch für den
K-means++. Zusätzlich wurden noch für jede Spalte die Min-, Max-, Median- und Mittelwerte
angegeben. In der Tabelle ist zu erkennen, dass die %Vis für die SSEi in den meisten Fällen
niedriger ist, als für die %Vis für die GPi.

Tabelle 5.6.: Visualisierungen, die in Abhängigkeit der Anzahl der Itertaionen, für den K-
means und den K-means++ auf den realen Datensätzen entstanden sind

K-means K-means++

Datensatz #Cluster #It %Vis SSEi %Vis GPi #It %Vis SSEi %Vis GPi

Skin 5 22 23,08% 18,18% 29 10,34% 27,59%
Skin 10 35 13,79% 20,00% 171 2,92% 5,26%
Skin 15 44 12,50% 18,18% 142 1,41% 3,52%
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Tabelle 5.6 fortgesetzt von vorheriger Seite

K-means K-means++

Datensatz #Cluster #It %Vis SSEi %Vis GPi #It %Vis SSEi %Vis GPi

Skin 20 44 14,71% 11,36% 190 2,11% 3,68%
Skin 25 47 12,12% 12,77% 129 3,10% 3,88%
Skin 30 68 6,67% 7,35% 62 6,45% 9,68%
Skin 35 53 12,82% 13,21% 59 8,47% 10,17%
Skin 40 84 6,67% 10,71% 57 8,77% 14,04%
Skin 45 61 10,20% 13,11% 67 2,99% 8,96%
Skin 50 77 7,81% 9,09% 69 5,80% 8,70%

Shuttle 5 166 2,41% 4,22% 19 5,26% 5,26%
Shuttle 10 127 3,15% 4,72% 37 5,41% 5,41%
Shuttle 15 116 5,17% 8,62% 39 7,69% 10,26%
Shuttle 20 163 2,45% 4,91% 45 4,44% 8,89%
Shuttle 25 129 3,10% 6,20% 39 5,13% 10,26%
Shuttle 30 115 6,96% 8,70% 42 7,14% 7,14%
Shuttle 35 105 6,67% 10,48% 49 4,08% 8,16%
Shuttle 40 99 5,05% 9,09% 44 6,82% 9,09%
Shuttle 45 95 6,32% 10,53% 63 4,76% 9,52%
Shuttle 50 98 6,12% 12,24% 71 5,63% 7,04%

OR 5 29 17,24% 17,24% 29 17,24% 13,79%
OR 10 35 25,71% 37,14% 33 24,24% 18,18%
OR 15 50 22,00% 28,00% 38 23,68% 15,79%
OR 20 42 28,57% 35,71% 38 13,16% 23,68%
OR 25 66 15,15% 31,82% 36 8,33% 16,67%
OR 30 56 19,64% 30,36% 44 15,91% 25,00%
OR 35 89 11,24% 20,22% 52 7,69% 9,62%
OR 40 84 13,10% 22,62% 53 13,21% 16,98%
OR 45 79 12,66% 17,72% 60 3,33% 11,67%
OR 50 73 12,33% 19,18% 44 11,36% 11,36%

IHEPC 5 34 5,88% 8,82% 34 8,82% 8,82%
IHEPC 10 59 6,78% 11,86% 45 2,22% 6,67%
IHEPC 15 124 1,61% 4,84% 56 3,57% 5,36%
IHEPC 20 116 2,59% 6,03% 112 1,79% 5,36%
IHEPC 25 161 2,48% 5,59% 124 0,81% 6,45%
IHEPC 30 179 2,23% 5,59% 131 2,29% 6,11%
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Tabelle 5.6 fortgesetzt von vorheriger Seite

K-means K-means++

Datensatz #Cluster #It %Vis SSEi %Vis GPi #It %Vis SSEi %Vis GPi

IHEPC 35 201 1,99% 4,98% 150 2,00% 5,33%
IHEPC 40 203 1,97% 5,42% 213 0,94% 4,69%
IHEPC 45 277 1,81% 4,33% 165 1,82% 4,24%
IHEPC 50 275 1,09% 4,00% 225 1,33% 4,00%

3DRN 5 43 11,63% 13,95% 37 5,41% 8,11%
3DRN 10 74 14,86% 17,57% 56 5,36% 12,50%
3DRN 15 121 4,13% 9,92% 64 3,13% 6,25%
3DRN 20 149 6,71% 11,41% 56 7,14% 8,93%
3DRN 25 162 4,32% 11,73% 35 5,71% 8,57%
3DRN 30 177 8,47% 10,73% 39 10,26% 10,26%
3DRN 35 99 10,10% 9,09% 44 6,82% 6,82%
3DRN 40 116 5,17% 8,62% 42 4,76% 9,52%
3DRN 45 98 7,14% 7,14% 42 9,52% 11,90%
3DRN 50 100 5,00% 7,00% 41 4,88% 7,32%

MIN 2 4,00% 19,00 0,81% 3,52%
MAX 15 37,14% 225,00 24,24% 27,59%
Median 5 10,62% 51 5,41% 8,86%
Mittelwert 6,24 12,85% 71 6,71% 9,73%

In Tabelle 5.7 wird untersucht, wie das Verhalten für unterschiedliche Wertebereiche der
%Vis ist. Dazu wurde der Bereich zwischen 5 und 20% genommen und geschaut für wie viele
Durchläufe das zutrifft, wenn man diese Bereich verkleinert. Zusätzlich wurde geschaut bei
wie vielen Durchläufen die %Vis unter 5% und bei wie vielen sie über 20% lag. Zu diesen wurde
auch noch immer die Gesamtanzahl der Durchläufe dazu geschrieben. Alle Zeilen bei denen
die Anzahl der Durchläufe größer als 25 war wurden mit grün markiert.

Auffällig dabei ist, dass sowohl für den K-means als auch für den K-means++ die %Vis für beide
Metriken immer bei mehr als der Hälfte der Durchläufe im Bereich zwischen 5 und 20% liegt.
Zudem ist zu erkennen, dass sich die meisten Durchläufe für die %Vis im Bereich zwischen
5 und 15% liegen und das jeweils für beide Metriken bei beiden Algorithmen. Für die GPi

liegt die Anzahl der Durchläufe für den K-means++, für die die %Vis im Bereich zwischen 5
und 10% liegt mit 27 auch über der Hälfte. Somit sind die Visualisierungen für die meisten
Durchläufe im Bereich zwischen 5 und 20%. Zudem sind für mehr als die Hälfte der Durchläufe
die Visualisierungen im Bereich zwischen 5 und 15%.
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Tabelle 5.7.: Anzahl der Durchläufe für verschiedene Wertebereiche der %Vis für die realen
Datensätze

K-means K-means++

%Vis SSEi %Vis GPi %Vis SSEi %Vis GPi

Anzahl der
Durchläufe für die

die %Vis im
Bereich x ist

5% ≤ x ≤ 20% 33/50 36/50 27/50 41/50
10% ≤ x ≤ 20% 13/50 19/50 7/50 14/50
15% ≤ x ≤ 20% 3/50 6/50 2/50 4/50
5% ≤ x ≤ 15% 27/50 26/50 25/50 37/50
5% ≤ x ≤ 10% 10/50 13/50 20/50 27/50
x < 5% 14/50 6/50 21/50 6/50
x > 20% 3/50 8/50 2/50 3/50

Wie gut geeignet diese Werte wiederum sind, muss eine Nutzerstudie ergeben. Sollte sich dabei
ergeben, dass es zu viele Visualisierungen sind, können die Schwellenwerte für die Metriken
entsprechend reduziert werden. Umgekehrt, wenn es zu wenig Visualisierungen sind, können
die Schwellenwerte erhöht werden. Allerdings ist es selbst mit einer Nutzerstudie schwer zu
evaluieren, was eine geeignete Zahl an Visualisierungen ist, da es vom Datensatz und vor allem
vom Expertenwissen des Nutzers abhängt, was eine gute Anzahl an Visualisierungen ist.

5.3.3. Synthetische Datensätze

In Tabelle A.2 auf Seite 90 werden die Ergebnisse der Visualisierung für die synthetischen
Datensätze dargestellt. Auch hier ist zu erkennen, dass die Visualisierungen für die GPi

tendenziell höher sind, als für die SSEi. DesWeiteren sind die Iterationen für die synthetischen
Datensätzen im Median bei 33, wohingegen es bei den realen Datensätzen 97 im Median waren.
Dies könnte einer der Gründe sein, weshalb die % Vis im Median für beide Metriken bei beiden
Algorithmen größer ist. Dennoch ist es auch hier der Fall, dass die meisten Durchläufe eine
%Vis im Bereich von 5 und 20% auf. In Tabelle A.2 werden die Anzahl der Durchläufe dargestellt
für unterschiedliche Werte Bereiche der %Vis. Die Zeilen, bei denen dies auf mehr als die Hälfte
der Durchläufe zutraf, wurden grün markiert. Dabei ist zu sehen, dass die %Vis für einen sehr
großen Teil der Durchläufe zwischen 5 und 20 % liegt.

5.3.4. DBSCAN

Für den DBSCAN hat sich gezeigt, dass die Metriken, die für den K-means und den K-means++
genutzt wurden, ungeeignet sind, da diese meist die Zentroide betrachten. Da der DBSCAN die
Zentroide nicht während seiner Ausführung berechnet, wäre eine zusätzliche Berechnung der
Zentroide ein zu großer zeitlicher Aufwand. Daher wurden die Kriterien für eine Visualisierung
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Tabelle 5.8.: Anzahl der Durchläufe für unterschiedliche %Vis Bereiche für die synthetischen
Datensätze

K-means K-means++

%Vis SSEi %Vis Gpi %Vis SSEi %Vis Gpi

Anzahl der
Durchläufe für die

die %Vis im
Bereich x ist

5% ≤ x ≤ 20% 165/190 177/190 156/190 166/190
10% ≤ x ≤ 20% 87/190 77/190 45/190 109/190
15% ≤ x ≤ 20% 63/190 44/190 9/190 18/190
5% ≤ x ≤ 15% 141/190 134/190 148/190 149/190
5% ≤ x ≤ 10% 83/190 34/190 111/190 17/190
x < 5% 18/190 8/190 34/190 19/190
x > 20% 7/190 5/190 2/190 5/190

für den DBSCAN anders festgelegt. Der erste Ansatz ist analog zu dem Ansatz, wie er für den
K-means/++ verwendet wurde. Denn es wird visualisiert, wenn die Summe der Punkte, die
ihre Clusterzugehörigkeit ändern, 10% übersteigt. Eine Änderung der Clusterzugehörigkeit
meint in diesem Sinne, wenn ein Punkt als Ausreißer identifiziert wird oder wenn er einem
Cluster zugeordnet wird. Das zweite Kriterium ist, dass immer visualisiert wird, wenn ein
neues Cluster entsteht.

Bevor dies an den Datensätzen getestet werden konnte, mussten allerdings zuerst die Para-
meter für den Algorithmus bestimmt werden. Dazu wurde die Heuristik implementiert und
angewendet, die in Abschnitt 2.3.3 auf Seite 31 vorgestellt wurde. In Tabelle 5.9 werden die
Ergebnisse der Visualisierung für diese zwei Kriterien dargestellt. #Vis CE steht dabei für die
Anzahl der Visualisierungen, wenn ein neues Cluster entsteht und #Vis für die Anzahl der
Visualisierungen, die für die GPi gemacht wurden. In der Tabelle ist zu erkennen, dass die #Vis
CE immer größer oder gleich der #Vis GPi ist. Dabei werden teilweise auch sehr große Werte
angenommen. So sind für den synthetischen Datensatz cluto-t8-8k 222 Visualisierungen für die
#Vis CE gemessen worden. Bei den realen Datensätzen waren es für den 3DRN Datensatz sogar
1810 Visualisierungen. Zwar ist dadurch eine bessere Nachvollziehbarkeit möglich, allerdings
steigt der Aufwand der Analyse stark an und es wäre ein nicht vertretbarer Zeitaufwand
erforderlich. Für die #Vis GPi hingegen, zumindest für die synthetischen Datensätze, scheinen
die Anzahl der Visualisierungen vergleichbar mit denen, wie sie für den K-means und den
K-means++ gemacht wurden. Für die realen Datensätze sind für den Shuttle Datensatz 1, für den
Shuttle Datensatz 1 uns den 3DRN Datensatz 0 Visualisierungen. Der Grund hierfür könnte in
der Wahl der Parameter liegen, da die Parameter manuell aus dem k-Distanzgraphen abgelesen
wurden.
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Tabelle 5.9.: Visualisierungen für den DBSCAN für die realen und synthetischen Datensätze

Datensatz #Vis GPi #Vis CE

Real

Skin 2 368
3DRN 0 1810
Shuttle 1 1
OR 10 578
IHEPC 12 1672

Synthetisch

a1 19 28
a2 26 34
a3 40 49
Aggregation 8 8
D31 31 31
R15 15 15
s1 15 46
s2 13 39
s3 8 40
s4 7 53
spiral 3 3
unbalance 3 5
chainlink 16 16
cluto-t4-8k 18 85
cluto-t5-8k 22 256
cluto-t7-10k 29 208
cluto-t8-8k 14 222
diamond9 26 89
engytime 5 101

5.4. Visualisierungen bis zur Konvergenz

In diesem Abschnitt werden die Ansätze für die Konvergenz und die Anzahl der Zeitpunkte
für eine Visualisierung miteinander verknüpft. In Tabelle 5.10 wird dafür für den K-means
und den K-means++ die Anzahl der Iterationen bis zur frühzeitigen Terminierung durch das
Konvergenzkriterium dargestellt. Dazu wird Anzahl der Visualisierungen für beide Metriken
ins Verhältnis zur Anzahl der Iterationen bis zur frühzeitigen Terminierung gesetzt. Die Anzahl
der Visualisierungen im Verhältnis zur Anzahl der Iterationen bis zur Konvergenz wird mit
%Viskonv bezeichnet. Dabei ist auffällig, dass die %Viskonv für beide Metriken deutlich höher
ist, als dies ohne die Konvergenz der Fall war. So sind teilweise Werte bis zu 100% zu erkennen
und der Median liegt beim K-means für die SSEi bei 50%, was bedeutet, dass für diese bis zur
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Konvergenz jede zweite Iteration visualisiert wird. Ein Beispiel, bei dem alle Iterationen bis
zur Konvergenz mit der GPi visualisiert werden, ist für den Datensatz OR mit k = 25 gegeben.
In Tabelle 5.6 ist zu erkennen, dass für diesen Durchlauf 66 Iterationen ohne frühzeitige
Terminierung erreicht wurden. Das bedeutet, dass sogar alle Visualisierungen für diesen
Durchlauf bis zur frühzeitigen Terminierung durch das Konvergenzkriterium stattfinden. Für
die GPi ist der Median wert sogar bei 80%. Für den K-means++ ist die %Viskonv für die SSEi

mit 46,68% ähnlich dem K-means. Für die GPi hingegen ist ein deutlicher Unterschied zu
erkennen, da diese im Median bei 48,82% liegt.

Tabelle 5.10.: %Viskonv für den K-means und den K-means++ auf den realen Datensätzen
K-meas K-means++

Datensatz #Cluster #Ikonv %Vis SSEi %Vis GPi #Ikonv %Vis SSEi %Vis GPi

Skin 5 10 30,00% 40,00% 6 32,73% 49,09%
Skin 10 7 57,14% 100,00% 13 23,27% 46,53%
Skin 15 13 30,77% 61,54% 8 48,86% 61,08%
Skin 20 11 45,45% 45,45% 11 37,50% 37,50%
Skin 25 15 26,67% 40,00% 11 36,47% 36,47%
Skin 30 9 44,44% 55,56% 14 29,41% 29,41%
Skin 35 15 33,33% 46,67% 11 45,99% 45,99%
Skin 40 10 50,00% 90,00% 19 20,83% 26,04%
Skin 45 12 41,67% 66,67% 5 86,89% 86,89%
Skin 50 14 35,71% 50,00% 15 25,97% 25,97%

Shuttle 5 7 57,14% 100,00% 47 8,43% 12,65%
Shuttle 10 5 80,00% 100,00% 4 92,91% 92,91%
Shuttle 15 8 75,00% 75,00% 4 45,98% 68,97%
Shuttle 20 10 40,00% 80,00% 8 50,00% 87,50%
Shuttle 25 8 50,00% 100,00% 15 26,14% 39,20%
Shuttle 30 9 88,89% 77,78% 14 58,63% 51,30%
Shuttle 35 9 77,78% 88,89% 7 100,00% 100,00%
Shuttle 40 10 50,00% 90,00% 12 40,40% 48,48%
Shuttle 45 8 75,00% 75,00% 13 47,37% 47,37%
Shuttle 50 9 66,67% 88,89% 18 34,11% 34,11%

OR 5 14 35,71% 35,71% 12 42,15% 42,15%
OR 10 23 39,13% 56,52% 17 54,45% 78,66%
OR 15 22 50,00% 63,64% 17 60,00% 78,00%
OR 20 21 57,14% 71,43% 14 78,57% 92,86%
OR 25 21 47,62% 100,00% 13 79,12% 100,00%
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K-meas K-means++

Datensatz #Cluster #Ikonv %Vis SSEi %Vis GPi #Ikonv %Vis SSEi %Vis GPi

OR 30 19 57,89% 89,47% 9 69,64% 81,25%
OR 35 17 58,82% 94,12% 17 51,83% 51,83%
OR 40 17 64,71% 100,00% 11 65,48% 84,18%
OR 45 18 55,56% 77,78% 9 86,08% 86,08%
OR 50 18 50,00% 77,78% 20 45,21% 40,18%

IHEPC 5 7 28,57% 42,86% 4 55,88% 55,88%
IHEPC 10 3 66,67% 100,00% 7 55,59% 69,49%
IHEPC 15 5 40,00% 80,00% 11 17,74% 26,61%
IHEPC 20 8 37,50% 87,50% 6 48,28% 48,28%
IHEPC 25 9 44,44% 100,00% 5 72,88% 91,10%
IHEPC 30 8 50,00% 100,00% 8 48,52% 72,79%
IHEPC 35 9 44,44% 88,89% 13 31,40% 47,10%
IHEPC 40 9 44,44% 100,00% 8 50,39% 62,98%
IHEPC 45 7 71,43% 85,71% 6 71,17% 100,00%
IHEPC 50 10 30,00% 70,00% 13 22,64% 45,27%

3DRN 5 10 50,00% 60,00% 6 85,27% 85,27%
3DRN 10 21 52,38% 61,90% 10 87,84% 97,60%
3DRN 15 28 17,86% 42,86% 23 12,95% 17,26%
3DRN 20 18 55,56% 94,44% 14 41,61% 48,55%
3DRN 25 17 41,18% 88,24% 33 12,04% 21,06%
3DRN 30 14 92,86% 92,86% 39 28,41% 20,66%
3DRN 35 17 58,82% 52,94% 12 69,26% 51,95%
3DRN 40 10 60,00% 100,00% 24 12,64% 12,64%
3DRN 45 8 87,50% 87,50% 25 20,41% 16,33%
3DRN 50 12 41,67% 58,33% 13 23,25% 31,00%

Min 3 17,86% 35,71% 4 8,43% 12,64%
Max 28 92,86% 100,00% 47 100,00% 100,00%
Median 10 50,00% 80,00% 12 46,68% 48,82%
Mittelwert 12,38 51,75% 76,64% 13 47,85% 55,69%
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6. Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konvergenzkriterium anhand von 2 Metriken aufgestellt und es
wurden Zeitpunkte für eine Visualisierung von Zwischenergebnissen bestimmt. Dazu wurde
in Abschnitt 3.3 ein Konzept und eine prototypische Implementierung entwickelt, bei der für
den K-means und den K-means++ eine effiziente Berechnung der Metriken ermöglicht wurde.
In Abschnitt 5.1 wurde veranschaulicht, dass Berechnungsaufwand für die gesamte Berech-
nung der Metriken in jeder Iteration insgesamt deutlich unter 1% der Ausführungszeit der
Algorithmen lag. Zudem wurde ein Konvergenzkriterium aufgestellt, dass auf der Änderung
der quadratischen Fehlerfunktion im Vergleich zur vorherigen Iteration (mit %SSEi bezeich-
net), so wie auf der Änderung der Anzahl der geänderten Punkte seit der letzten Iteration im
Verhältnis zu allen Punkten (mit %GPi bezeichnet) basiert. Das Konvergenzkriterium sieht
dabei vor, dass sobald diese Metriken einen bestimmten Schwellenwert überschreiten, dass
der Algorithmus dann terminiert wird. In den Experimenten konnte gezeigt werden, dass
sowohl für synthetische, als auch für reale Datensätze Einsparungen in den Iterationen und
der Ausführungszeit von über 90% mit geringem Qualitätsverlust möglich waren. So konnten
für den Shuttle Datensatz 85,02% der Ausführungszeit eingespart werden bei einem Qualitäts-
verlust von 0,21%. Für den Datensatz mit den meisten Instanzen, den IHEPC Datensatz konnte
ähnliches erreicht werden. Für diesen war eine Einsparung der Ausführungszeit von 89,5% bei
einem Qualitätsverlust von 0,83% möglich. Zudem wurde verdeutlicht, dass für eine geringere
Einsparung der Ausführungszeit ein geringerer Qualitätsverlust vorhanden war. So war für
den K-means++ bei einer Einsparung von 50% der Qualitätsverlust im Median bei 4,26%. Für
eine Einsparung von 90% hingegen, lag der Qualitätsverlust im Median bei 18,06%. Ein Problem
das sich ergab war, dass sowohl die %SSEi, als auch die %GPi keinen monotonen Verlauf
aufwiesen. Das bedeutet, dass Fälle aufgetreten sind, bei denen die %SSEi und die %GPi nach
dem sie unter einen bestimmten Schwellenwert gefallen sind, noch einmal anstiegen. Dieses
Verhalten wurde allerdings nur bei 12% der Durchläufe, die im Median konvergiert haben,
beobachtet. Zudem lassen sich diese Fälle auch nicht vermeiden, da der K-means nur gegen
ein lokales und nicht gegen ein globales Minimum der SSE konvergiert.

Des Weiteren wurden diese beiden Metriken genutzt, um geeignete Zeitpunkte für eine Visuali-
sierung auszumachen. Dabei ergaben sich für beide Metriken, die für jeweils beide Algorithmen
geprüft wurden, unterschiedliche Werte für die Anzahl der Visualisierungen. Diese erstreckten
sich von 0% bis 30% der Anzahl der Iterationen des jeweiligen Durchlaufs. Es wurde zudem auf-
gezeigt, dass sich für beide Metriken die meisten Durchläufe Visualisierungen im Bereich von
5% bis 20% der gesamten Anzahl an Iterationen aufwiesen. Mehr als die Hälfte der Durchläufe
wies zudem Visualisierungen im eingeschränkteren Bereich von 5% bis 15% auf. Anschließend
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wurde untersucht wie viele Visualisierungen sich bis zum festgelegten Konvergenzkriterium
ergeben. Dabei hat sich herausgestellt, dass sich dafür deutlich mehr Visualisierungen im
Verhältnis von Visualisierungen und Iterationen bis Konvergenz ergab. Dabei waren Visua-
lisierungen von bis zu 100% vorhanden und im Median lagen die Visualisierungen für beide
Algorithmen knapp unter 50 %. Nur bei der GPi für den K-means lag der Median-Wert bei
80%.

Ausblick

In zukünftigen Arbeiten kann versucht werden das in dieser erstellte Konzept auf bereits exis-
tierende System anzuwenden. So könnte untersucht werden, ob sich das Konvergenzkriterium
in ähnlicher Weise auch für bereits bekannte verteilte Systeme, wie z. B. Apache Hadoop1 oder
Apache Spark2 anwenden lässt und ob dabei ähnliche Ergebnisse in Hinblick zur Zeiteinspa-
rung und Qualitätsverlust erzielt werden können. Zudem könnte erforscht werden, ob das
Konzept auch skalierbar ist. Das heißt zum einen, dass es für deutlich größere Datenmengen
noch effizient einsetzbar ist und ob es möglich ist die Berechnungen auf mehrere Rechner zu
verteilen, also beispielsweise in einem Cluster. Dabei könnte auch untersucht werden, ob die
Ergebnisse durch Vorverarbeitungsschritte, wie z.B. das Data Sampling, also wenn die Analyse
nur auf einer Teilmenge der Daten durchgeführt wird, verbessert werden können.

Des Weiteren könnte für eine Evaluation, wie geeignet die Zeitpunkte der Visualisierungen
sind eine Nutzerstudie durchgeführt werden. Dazu müsste untersucht werden, ob zum einen
die Ergebnisse besser nachvollziehbar und besser interpretiert werde können im Vergleich ohne
Visualisierung von Zwischenergebnissen und zum Anderen, wie sich der Mehraufwand, der
durch die Visualisierungen entsteht, verhält. Für ersteres müsste geschaut werden, wie gut die
Ergebnisse von einem Nutzer mit Visualisierung ausgewertet wird und wie die Auswertung oh-
ne Visualisierung erfolgt. Für letzteres müsste zusätzlich die Zeit erfasst werden, die insgesamt
für die Analyse anfällt. Zusätzlich könnte in dieser Studie untersucht werden, wie die Interpre-
tation der Ergebnisse und der Zeitaufwand für eine Kombination des Konvergenzkriteriums
und der Visualisierungen ausfällt.

1http://hadoop.apache.org/
2https://spark.apache.org/
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A. Anhang

A.1. Tabelle der Ergebnisse der Konvergenz für die
synthetischen Datensätze

K-means K-means++

Datensatz k %I %A %E SSEC %I2 %A3 %E4 SSEC

a1 5 86,36% 81,77% 2,13% 1,31E+11 78,26% 78,95% 2,62% 1,31E+11
a1 10 64,29% 61,74% 0,70% 5,16E+10 77,14% 79,10% 3,63% 5,69E+10
a1 15 70,97% 69,68% 6,29% 3,22E+10 75,86% 74,60% 1,32% 3,14E+10
a1 20 64,00% 61,14% 13,08% 1,62E+10 46,67% 46,15% 0,00% 1,22E+10
a1 25 77,42% 78,52% 26,74% 1,37E+10 82,14% 81,82% 1,94% 1,39E+10
a1 30 83,78% 82,42% 21,83% 1,14E+10 78,57% 68,84% 1,08% 8,61E+09
a1 35 73,08% 70,70% 1,04% 7,61E+09 81,25% 78,23% 2,24% 7,38E+09
a1 40 74,07% 73,90% 2,30% 7,07E+09 77,78% 71,43% 1,62% 6,10E+09
a1 45 74,07% 73,49% 1,74% 6,15E+09 66,67% 49,64% 0,45% 4,84E+09
a1 50 69,57% 67,80% 2,67% 4,91E+09 70,83% 65,43% 0,25% 4,07E+09
a2 5 55,00% 42,70% 0,66% 4,15E+11 76,47% 71,05% 2,41% 4,19E+11
a2 10 78,57% 79,37% 0,37% 1,99E+11 85,37% 87,60% 14,39% 2,27E+11
a2 15 65,52% 66,90% 5,10% 1,12E+11 66,67% 67,63% 1,55% 1,30E+11
a2 20 73,33% 73,74% 5,03% 8,03E+10 87,50% 89,70% 13,22% 8,15E+10
a2 25 70,97% 71,71% 4,76% 5,68E+10 75,76% 75,71% 1,20% 5,32E+10
a2 30 86,96% 86,67% 7,76% 4,76E+10 75,00% 75,33% 3,22% 4,20E+10
a2 35 64,29% 65,54% 1,07% 3,12E+10 71,43% 67,03% 0,43% 3,33E+10
a2 40 68,00% 69,92% 18,57% 3,46E+10 78,13% 72,84% 2,12% 2,45E+10
a2 45 70,37% 69,28% 0,98% 2,24E+10 74,07% 73,19% 1,13% 1,83E+10
a2 50 74,19% 75,59% 15,21% 1,86E+10 76,00% 71,91% 2,23% 1,48E+10
a3 5 75,00% 47,50% 0,34% 8,88E+11 81,82% 82,11% 2,83% 9,52E+11
a3 10 86,57% 84,19% 10,52% 4,84E+11 90,48% 90,55% 21,99% 5,76E+11
a3 15 79,59% 81,25% 0,92% 2,76E+11 87,88% 90,61% 4,69% 2,70E+11
a3 20 65,52% 63,96% 6,16% 1,93E+11 74,19% 76,50% 4,56% 1,89E+11
a3 25 81,82% 80,54% 4,65% 1,43E+11 80,95% 81,27% 4,24% 1,33E+11
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Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %I %A %E SSEC %I2 %A3 %E4 SSEC

a3 30 56,00% 58,49% 1,72% 1,02E+11 76,47% 74,35% 5,02% 1,08E+11
a3 35 62,96% 64,81% 1,50% 7,91E+10 72,00% 70,78% 0,69% 8,05E+10
a3 40 70,00% 70,53% 7,35% 7,21E+10 76,67% 76,63% 2,27% 7,04E+10
a3 45 74,19% 70,53% 5,28% 6,42E+10 73,33% 73,90% 2,72% 5,97E+10
a3 50 62,50% 57,71% 4,76% 5,42E+10 72,00% 71,00% 2,19% 4,38E+10
Aggregation 5 53,85% 66,67% 0,02% 1,70E+04 79,17% 62,96% 35,57% 2,63E+04
Aggregation 10 70,37% 74,07% 1,20% 6,71E+03 63,16% 63,16% 0,28% 7,21E+03
Aggregation 15 63,16% 60,00% 1,06% 5,22E+03 73,33% 64,52% 1,46% 3,97E+03
Aggregation 20 63,16% 63,64% 0,37% 3,76E+03 72,41% 53,85% 5,53% 2,48E+03
Aggregation 25 69,23% 72,00% 2,21% 2,65E+03 64,71% 59,26% 0,22% 1,59E+03
Aggregation 30 76,67% 76,92% 1,36% 1,36E+03 80,65% 77,55% 3,31% 1,03E+03
Aggregation 35 65,22% 60,71% 0,05% 7,66E+02 75,86% 53,13% 1,71% 7,59E+02
Aggregation 40 77,50% 77,94% 6,11% 8,92E+02 87,50% 81,88% 0,10% 4,27E+02
Aggregation 45 83,33% 78,87% 0,46% 6,64E+02 83,33% 62,07% 0,00% 2,44E+02
Aggregation 50 69,23% 73,49% 0,00% 6,04E+02 81,48% 63,64% 0,00% 1,74E+02
chainlink 5 74,07% 76,00% 0,65% 3,42E+02 83,87% 90,32% 5,05% 3,59E+02
chainlink 10 47,37% 34,62% 0,21% 1,24E+02 71,88% 61,90% 4,90% 1,25E+02
chainlink 15 69,23% 67,14% 0,58% 7,85E+01 57,14% 55,00% 0,31% 5,75E+01
chainlink 20 67,65% 61,40% 16,57% 4,29E+01 63,16% 42,42% 2,46% 3,20E+01
chainlink 25 56,52% 59,46% 1,32% 3,60E+01 73,08% 68,89% 5,96% 1,98E+01
chainlink 30 70,73% 55,91% 14,04% 1,71E+01 70,83% 60,00% 8,75% 1,56E+01
chainlink 35 50,00% 50,00% 0,05% 1,13E+01 68,18% 61,29% 0,31% 9,15E+00
chainlink 40 65,22% 76,77% 1,56% 1,01E+01 80,77% 67,95% 1,17% 7,04E+00
chainlink 45 75,00% 76,19% 0,00% 1,07E+01 70,00% 62,90% 7,72% 5,41E+00
chainlink 50 80,49% 60,76% 6,94% 8,24E+00 73,91% 58,88% 18,40% 2,93E+00
cluto-t4-8k 5 52,94% 41,25% 0,09% 2,87E+07 42,11% 42,00% 0,03% 2,85E+07
cluto-t4-8k 10 81,82% 81,16% 2,02% 1,43E+07 84,44% 84,85% 0,45% 1,56E+07
cluto-t4-8k 15 72,73% 58,38% 0,92% 8,50E+06 69,57% 69,34% 3,20% 9,22E+06
cluto-t4-8k 20 75,00% 63,23% 3,10% 5,96E+06 67,86% 70,05% 1,18% 6,03E+06
cluto-t4-8k 25 66,67% 66,78% 0,45% 4,42E+06 73,53% 71,22% 1,78% 4,55E+06
cluto-t4-8k 30 72,22% 72,30% 1,76% 3,87E+06 77,27% 74,25% 2,01% 3,36E+06
cluto-t4-8k 35 67,74% 52,53% 5,24% 2,86E+06 78,13% 61,87% 10,03% 3,08E+06
cluto-t4-8k 40 74,29% 73,98% 1,98% 2,32E+06 81,25% 80,25% 2,92% 2,25E+06
cluto-t4-8k 45 71,88% 66,80% 2,32% 2,19E+06 84,91% 84,41% 3,37% 2,01E+06
cluto-t4-8k 50 65,52% 65,40% 1,97% 1,63E+06 77,78% 78,14% 1,23% 1,69E+06
cluto-t5-8k 5 85,29% 85,86% 2,65% 2,79E+07 73,33% 73,68% 2,73% 1,86E+07
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A.1. Tabelle der Ergebnisse der Konvergenz für die synthetischen Datensätze

Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %I %A %E SSEC %I2 %A3 %E4 SSEC

cluto-t5-8k 10 76,92% 71,96% 0,74% 7,41E+06 85,71% 84,78% 0,40% 7,08E+06
cluto-t5-8k 15 85,00% 84,07% 1,87% 5,67E+06 84,38% 84,97% 0,27% 5,66E+06
cluto-t5-8k 20 81,82% 72,93% 4,08% 3,67E+06 87,23% 86,10% 2,50% 3,12E+06
cluto-t5-8k 25 80,00% 63,84% 1,83% 2,61E+06 76,92% 72,73% 1,91% 2,23E+06
cluto-t5-8k 30 80,00% 78,12% 1,13% 1,72E+06 76,00% 75,73% 1,33% 1,61E+06
cluto-t5-8k 35 75,76% 73,05% 3,46% 1,65E+06 77,42% 77,46% 0,74% 1,19E+06
cluto-t5-8k 40 74,29% 74,89% 1,48% 1,38E+06 69,23% 67,65% 1,18% 1,06E+06
cluto-t5-8k 45 72,97% 72,41% 3,66% 8,80E+05 86,21% 84,60% 5,99% 9,01E+05
cluto-t5-8k 50 76,47% 75,09% 3,53% 8,28E+05 77,50% 75,50% 5,59% 6,76E+05
cluto-t7-10k 5 45,00% 42,03% 0,08% 7,14E+07 50,00% 49,15% 0,10% 7,12E+07
cluto-t7-10k 10 86,67% 77,70% 4,79% 3,70E+07 70,00% 68,71% 0,36% 3,75E+07
cluto-t7-10k 15 93,89% 88,78% 3,46% 2,28E+07 87,27% 85,71% 11,65% 2,31E+07
cluto-t7-10k 20 79,07% 78,04% 1,73% 1,57E+07 84,44% 63,88% 1,12% 1,55E+07
cluto-t7-10k 25 85,00% 80,13% 6,34% 1,28E+07 82,93% 80,77% 2,88% 1,24E+07
cluto-t7-10k 30 88,73% 80,70% 3,81% 1,11E+07 85,71% 84,32% 5,50% 9,33E+06
cluto-t7-10k 35 84,21% 78,87% 14,73% 8,55E+06 82,61% 81,73% 9,56% 7,64E+06
cluto-t7-10k 40 72,50% 71,11% 3,53% 6,22E+06 87,50% 87,22% 5,26% 5,88E+06
cluto-t7-10k 45 82,14% 80,13% 5,11% 7,28E+06 78,13% 77,21% 1,95% 5,04E+06
cluto-t7-10k 50 68,97% 61,44% 1,69% 4,73E+06 78,38% 78,60% 4,41% 4,22E+06
cluto-t8-8k 5 55,56% 54,39% 0,09% 5,90E+07 63,16% 66,00% 0,22% 5,89E+07
cluto-t8-8k 10 75,76% 73,72% 5,51% 2,78E+07 82,35% 83,55% 17,85% 3,07E+07
cluto-t8-8k 15 83,02% 84,92% 5,44% 1,84E+07 80,00% 79,41% 5,83% 1,77E+07
cluto-t8-8k 20 84,31% 68,13% 3,43% 1,29E+07 86,54% 85,35% 8,63% 1,34E+07
cluto-t8-8k 25 83,64% 83,75% 6,96% 1,08E+07 77,78% 76,04% 1,01% 9,76E+06
cluto-t8-8k 30 75,00% 73,85% 6,67% 7,93E+06 85,11% 83,40% 3,65% 7,66E+06
cluto-t8-8k 35 78,72% 77,10% 4,29% 6,85E+06 77,27% 78,37% 1,84% 6,22E+06
cluto-t8-8k 40 76,32% 73,71% 2,52% 5,52E+06 74,19% 70,35% 1,73% 5,28E+06
cluto-t8-8k 45 82,46% 84,68% 6,03% 4,90E+06 81,82% 80,81% 2,81% 4,57E+06
cluto-t8-8k 50 84,48% 83,84% 24,90% 5,26E+06 71,88% 70,86% 4,62% 4,02E+06
D31 5 41,67% 45,00% 0,00% 1,96E+05 68,42% 73,08% 2,95% 2,03E+05
D31 10 82,93% 73,96% 33,15% 1,07E+05 45,45% 41,67% 0,00% 7,43E+04
D31 15 42,86% 40,91% 0,00% 4,43E+04 75,00% 73,68% 9,41% 5,34E+04
D31 20 53,85% 53,85% 0,07% 3,36E+04 70,59% 70,49% 8,21% 2,65E+04
D31 25 58,82% 57,69% 0,00% 2,19E+04 72,22% 64,44% 3,76% 2,50E+04
D31 30 68,18% 72,06% 6,59% 1,14E+04 70,59% 69,37% 0,03% 1,27E+04
D31 35 72,00% 72,78% 12,55% 1,31E+04 76,92% 73,38% 0,59% 7,60E+03

85



A. Anhang

Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %I %A %E SSEC %I2 %A3 %E4 SSEC

D31 40 50,00% 50,40% 0,30% 6,01E+03 79,17% 75,63% 1,74% 4,69E+03
D31 45 77,78% 77,19% 0,43% 8,49E+03 82,35% 81,02% 0,75% 3,56E+03
D31 50 66,67% 66,81% 0,80% 5,41E+03 88,68% 85,05% 0,44% 3,21E+03
diamond9 5 87,50% 92,08% 4,39% 3,62E+03 73,68% 75,86% 1,12% 3,49E+03
diamond9 10 72,00% 73,17% 0,60% 9,63E+02 84,85% 82,46% 1,00% 1,49E+03
diamond9 15 87,18% 87,76% 2,19% 7,55E+02 79,17% 80,70% 1,41% 7,80E+02
diamond9 20 78,57% 81,19% 3,96% 5,86E+02 71,43% 73,85% 1,36% 5,67E+02
diamond9 25 77,78% 77,69% 6,99% 4,79E+02 55,56% 57,14% 0,88% 4,02E+02
diamond9 30 83,33% 83,25% 8,60% 4,11E+02 73,08% 70,83% 2,83% 3,42E+02
diamond9 35 75,68% 76,09% 18,13% 3,22E+02 80,49% 74,41% 7,26% 2,49E+02
diamond9 40 69,70% 69,10% 1,37% 2,11E+02 73,08% 69,80% 4,40% 2,14E+02
diamond9 45 78,38% 80,37% 7,68% 1,84E+02 75,86% 73,40% 2,26% 1,53E+02
diamond9 50 77,14% 79,38% 9,90% 1,48E+02 75,76% 68,18% 1,46% 1,26E+02
engytime 5 82,35% 83,93% 1,91% 4,56E+03 86,54% 82,72% 1,09% 5,19E+03
engytime 10 82,98% 84,21% 2,03% 2,44E+03 88,14% 84,83% 8,07% 2,61E+03
engytime 15 76,92% 77,65% 6,68% 1,78E+03 86,00% 86,06% 2,33% 1,66E+03
engytime 20 84,62% 81,23% 2,65% 1,32E+03 85,45% 85,46% 7,37% 1,29E+03
engytime 25 82,14% 82,69% 4,40% 1,03E+03 84,78% 81,55% 5,64% 9,75E+02
engytime 30 77,78% 70,69% 2,68% 8,37E+02 86,67% 87,61% 8,58% 8,34E+02
engytime 35 87,32% 87,10% 5,37% 7,26E+02 81,82% 76,58% 2,83% 6,28E+02
engytime 40 79,17% 78,46% 3,55% 5,87E+02 75,68% 72,88% 3,59% 5,24E+02
engytime 45 70,59% 66,58% 3,83% 5,24E+02 86,44% 86,86% 2,42% 4,11E+02
engytime 50 76,74% 81,64% 1,52% 4,77E+02 77,14% 73,05% 10,98% 3,55E+02
R15 5 82,14% 87,50% 13,81% 5,63E+03 60,00% 66,67% 0,00% 5,99E+03
R15 10 68,75% 70,83% 5,85% 1,84E+03 63,64% 33,33% 0,00% 1,32E+03
R15 15 60,00% 62,50% 0,02% 4,63E+02 80,00% 61,90% 0,13% 4,14E+02
R15 20 66,67% 31,03% 0,00% 9,67E+02 80,00% 64,44% 16,70% 2,27E+02
R15 25 76,19% 76,47% 0,03% 3,54E+02 84,00% 64,58% 0,11% 1,63E+02
R15 30 83,87% 79,66% 2,53% 1,55E+02 77,27% 66,67% 1,12% 6,15E+01
R15 35 87,76% 88,64% 0,59% 3,84E+02 81,48% 57,78% 0,01% 4,16E+01
R15 40 88,37% 88,89% 0,44% 1,62E+02 90,48% 74,34% 0,21% 6,20E+01
R15 45 88,10% 86,81% 0,00% 1,01E+02 90,48% 78,45% 0,17% 2,14E+01
R15 50 82,76% 85,19% 0,00% 1,15E+02 84,85% 59,38% 0,00% 1,10E+01
s1 5 64,71% 60,00% 8,07% 1,23E+14 62,50% 68,29% 0,00% 1,26E+14
s1 10 50,00% 52,94% 0,00% 3,51E+13 58,33% 60,61% 0,00% 4,78E+13
s1 15 52,94% 58,21% 0,00% 1,52E+13 69,57% 67,05% 0,01% 2,05E+13

86



A.1. Tabelle der Ergebnisse der Konvergenz für die synthetischen Datensätze

Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %I %A %E SSEC %I2 %A3 %E4 SSEC

s1 20 89,80% 89,33% 1,26% 1,78E+13 88,24% 89,09% 0,81% 1,39E+13
s1 25 77,78% 76,51% 1,22% 7,45E+12 85,29% 85,28% 2,23% 7,30E+12
s1 30 81,25% 82,35% 3,74% 6,94E+12 83,33% 80,81% 2,09% 6,07E+12
s1 35 80,65% 82,19% 8,17% 5,85E+12 80,00% 76,86% 2,06% 5,46E+12
s1 40 72,41% 74,90% 2,26% 4,79E+12 75,00% 72,09% 6,11% 4,33E+12
s1 45 70,83% 57,05% 2,60% 4,94E+12 69,57% 67,22% 1,05% 3,87E+12
s1 50 82,98% 81,38% 3,60% 3,72E+12 75,00% 71,74% 0,98% 3,34E+12
s2 5 60,00% 46,94% 0,25% 1,05E+14 53,85% 52,17% 0,01% 9,90E+13
s2 10 70,83% 69,23% 1,20% 4,51E+13 71,43% 70,18% 1,20% 3,99E+13
s2 15 79,49% 81,93% 27,41% 2,61E+13 66,67% 58,44% 0,29% 1,87E+13
s2 20 82,86% 79,14% 1,29% 1,19E+13 76,19% 80,49% 0,43% 1,54E+13
s2 25 76,92% 70,50% 0,40% 1,71E+13 86,49% 82,17% 3,51% 1,03E+13
s2 30 79,41% 80,43% 2,82% 8,86E+12 76,00% 74,27% 1,11% 8,20E+12
s2 35 75,00% 75,34% 2,15% 7,31E+12 75,00% 71,49% 2,28% 7,05E+12
s2 40 76,47% 67,96% 7,51% 6,73E+12 75,00% 71,68% 1,25% 6,43E+12
s2 45 86,44% 87,96% 11,56% 5,95E+12 72,00% 72,58% 0,42% 5,00E+12
s2 50 76,32% 76,61% 3,52% 4,69E+12 69,23% 66,21% 1,19% 4,08E+12
s3 5 64,29% 42,42% 0,02% 7,50E+13 75,00% 75,00% 0,41% 7,64E+13
s3 10 78,13% 76,19% 16,05% 3,95E+13 75,86% 75,64% 1,07% 3,04E+13
s3 15 70,97% 62,02% 8,44% 1,83E+13 82,05% 82,00% 12,16% 2,11E+13
s3 20 82,93% 68,18% 1,87% 1,41E+13 78,57% 75,57% 0,97% 1,36E+13
s3 25 86,27% 71,86% 4,48% 1,21E+13 88,37% 88,10% 4,97% 1,20E+13
s3 30 88,73% 87,19% 9,58% 1,10E+13 84,62% 83,03% 2,31% 9,80E+12
s3 35 83,33% 81,46% 6,02% 8,87E+12 66,67% 68,46% 0,81% 8,00E+12
s3 40 85,96% 86,31% 3,01% 7,20E+12 58,33% 54,67% 0,53% 6,80E+12
s3 45 76,19% 75,75% 2,55% 5,93E+12 78,79% 74,41% 6,61% 6,51E+12
s3 50 81,63% 79,75% 9,74% 6,19E+12 68,00% 63,41% 1,42% 4,58E+12
s4 5 73,91% 69,35% 0,72% 6,31E+13 86,84% 74,85% 2,42% 6,47E+13
s4 10 83,67% 84,44% 13,30% 3,29E+13 72,73% 72,58% 1,62% 2,89E+13
s4 15 64,00% 44,14% 0,79% 1,69E+13 81,08% 80,00% 8,43% 1,77E+13
s4 20 82,61% 82,67% 2,37% 1,39E+13 79,41% 77,78% 3,58% 1,27E+13
s4 25 85,00% 85,43% 4,67% 1,13E+13 81,08% 76,03% 4,06% 1,11E+13
s4 30 87,84% 85,69% 6,36% 8,85E+12 88,89% 89,02% 4,93% 8,39E+12
s4 35 80,43% 79,10% 7,50% 7,77E+12 80,00% 78,37% 1,14% 6,54E+12
s4 40 77,14% 78,34% 6,10% 7,16E+12 75,86% 75,56% 11,30% 6,30E+12
s4 45 70,97% 70,03% 5,85% 5,55E+12 69,23% 63,54% 1,94% 4,46E+12
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Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %I %A %E SSEC %I2 %A3 %E4 SSEC

s4 50 76,32% 77,87% 1,71% 5,20E+12 74,07% 69,40% 10,16% 3,97E+12
spiral 5 56,25% 72,73% 0,18% 7,11E+03 73,08% 70,00% 7,97% 7,94E+03
spiral 10 61,90% 53,85% 1,18% 3,21E+03 68,42% 55,56% 0,46% 3,73E+03
spiral 15 68,00% 85,71% 0,76% 1,74E+03 61,90% 50,00% 0,51% 1,54E+03
spiral 20 86,67% 92,31% 0,20% 1,04E+03 86,36% 62,50% 0,87% 9,14E+02
spiral 25 84,44% 89,36% 0,00% 6,31E+02 81,25% 68,63% 0,00% 3,59E+02
spiral 30 74,07% 62,50% 0,96% 4,04E+02 83,87% 75,00% 0,00% 1,71E+02
spiral 35 82,61% 90,00% 0,01% 2,07E+02 88,89% 63,33% 0,01% 1,00E+02
spiral 40 87,23% 88,00% 0,01% 1,56E+02 87,50% 88,44% 0,00% 3,83E+01
spiral 45 84,62% 78,13% 0,00% 1,42E+02 83,87% 75,23% 0,01% 2,55E+01
spiral 50 85,71% 89,71% 0,46% 8,05E+01 94,20% 93,14% 0,04% 1,47E+01
unbalance 5 83,33% 87,10% 0,15% 2,20E+12 71,43% 67,74% 0,09% 1,32E+12
unbalance 10 91,30% 88,18% 0,05% 2,15E+12 88,89% 88,89% 52,74% 4,43E+11
unbalance 15 89,19% 89,18% 0,06% 1,48E+12 86,84% 85,38% 0,69% 1,64E+11
unbalance 20 85,71% 88,17% 0,09% 8,06E+11 89,80% 90,61% 1,88% 1,47E+11
unbalance 25 90,00% 70,83% 0,21% 7,90E+11 82,35% 82,20% 2,44% 9,88E+10
unbalance 30 90,63% 90,30% 0,12% 1,21E+12 82,35% 81,70% 1,02% 8,81E+10
unbalance 35 89,83% 84,14% 0,40% 1,44E+11 85,42% 85,10% 0,94% 7,07E+10
unbalance 40 86,96% 75,89% 0,02% 1,91E+12 84,44% 82,94% 1,83% 5,54E+10
unbalance 45 87,50% 85,70% 0,13% 1,01E+12 86,36% 84,17% 3,90% 3,62E+10
unbalance 50 90,57% 88,70% 14,37% 9,79E+10 81,82% 79,15% 2,65% 3,59E+10

Max 91,30% 92,31% 27,41% 1,05E+14 94,20% 93,14% 52,74% 9,90E+13
Median 82,12% 79,45% 1,79% 5,94E+12 79,10% 75,00% 1,19% 5,23E+12
Mittelwert 79,60% 77,11% 3,60% 1,20E+13 78,10% 74,38% 3,34% 1,10E+13
Min 41,67% 31,03% 0,00% 8,24E+00 42,11% 33,33% 0,00% 2,93E+00

Tabelle A.1.: Ergebnisse der Konvergenz für K-means und K-means++ für die synthetischen
Datensätze

88



A.2. Darstellung des Spiral Datensatzes

A.2. Darstellung des Spiral Datensatzes

Abbildung A.1.: Darstellung des Spiral Datensatzes [CY08]
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A. Anhang

A.3. Ergebnisse der Visualisierung für synthetische
Datensätze

Tabelle A.2.: Visualisierungen für synthetische Datensätze für den K-means und den K-
means++

K-means K-means++

Datensatz #Cluster #Iterationen %Vis SSEi %Vis GPi #Iterationen %Vis SSEi %Vis %GPi

a1 5 29 13,79% 17,24% 22 18,18% 22,73%
a1 10 31 6,45% 9,68% 24 12,50% 16,67%
a1 15 32 18,75% 18,75% 28 7,14% 10,71%
a1 20 27 18,52% 14,81% 29 10,34% 10,34%
a1 25 28 21,43% 14,29% 25 8,00% 8,00%
a1 30 25 12,00% 12,00% 26 7,69% 7,69%
a1 35 27 11,11% 11,11% 26 3,85% 7,69%
a1 40 24 12,50% 12,50% 24 4,17% 8,33%
a1 45 25 16,00% 16,00% 23 8,70% 8,70%
a1 50 29 6,90% 10,34% 24 8,33% 12,50%
a2 5 25 8,00% 16,00% 29 6,90% 6,90%
a2 10 31 9,68% 12,90% 29 6,90% 13,79%
a2 15 33 9,09% 9,09% 28 10,71% 14,29%
a2 20 33 15,15% 15,15% 34 5,88% 5,88%
a2 25 34 11,76% 14,71% 27 7,41% 11,11%
a2 30 31 12,90% 12,90% 30 13,33% 13,33%
a2 35 31 9,68% 12,90% 30 13,33% 13,33%
a2 40 27 11,11% 11,11% 29 10,34% 10,34%
a2 45 28 17,86% 14,29% 24 12,50% 12,50%
a2 50 26 15,38% 11,54% 25 12,00% 12,00%
a3 5 22 13,64% 18,18% 26 3,85% 7,69%
a3 10 40 7,50% 12,50% 39 5,13% 10,26%
a3 15 45 11,11% 15,56% 42 9,52% 11,90%
a3 20 32 9,38% 12,50% 41 4,88% 9,76%
a3 25 38 13,16% 15,79% 39 7,69% 10,26%
a3 30 35 8,57% 11,43% 34 11,76% 11,76%
a3 35 35 14,29% 14,29% 29 6,90% 6,90%
a3 40 29 13,79% 13,79% 29 6,90% 10,34%
a3 45 29 13,79% 13,79% 29 10,34% 10,34%
a3 50 29 13,79% 13,79% 31 9,68% 9,68%
Aggregation 5 16 18,75% 18,75% 19 10,53% 15,79%
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A.3. Ergebnisse der Visualisierung für synthetische Datensätze

Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #Iterationen %Vis sse %Vis Gpi #Iterationen %Vis SSE %Vis Gpi

Aggregation 10 19 15,79% 15,79% 21 9,52% 14,29%
Aggregation 15 24 8,33% 12,50% 21 9,52% 14,29%
Aggregation 20 22 9,09% 13,64% 24 8,33% 12,50%
Aggregation 25 28 17,86% 14,29% 22 9,09% 9,09%
Aggregation 30 27 14,81% 11,11% 28 10,71% 10,71%
Aggregation 35 30 13,33% 10,00% 29 3,45% 3,45%
Aggregation 40 34 8,82% 8,82% 42 2,38% 2,38%
Aggregation 45 41 7,32% 4,88% 31 6,45% 3,23%
Aggregation 50 32 9,38% 6,25% 29 10,34% 6,90%
D31 5 19 15,79% 26,32% 15 13,33% 20,00%
D31 10 18 27,78% 22,22% 14 21,43% 21,43%
D31 15 17 23,53% 17,65% 15 13,33% 6,67%
D31 20 19 15,79% 15,79% 15 13,33% 13,33%
D31 25 22 13,64% 13,64% 18 11,11% 11,11%
D31 30 23 17,39% 17,39% 22 9,09% 9,09%
D31 35 25 20,00% 12,00% 20 5,00% 5,00%
D31 40 23 17,39% 13,04% 24 8,33% 8,33%
D31 45 25 12,00% 8,00% 26 7,69% 7,69%
D31 50 24 16,67% 8,33% 27 7,41% 7,41%
R15 5 11 18,18% 18,18% 11 9,09% 18,18%
R15 10 19 21,05% 15,79% 15 20,00% 20,00%
R15 15 22 9,09% 9,09% 23 8,70% 4,35%
R15 20 22 9,09% 9,09% 24 8,33% 4,17%
R15 25 27 11,11% 11,11% 25 4,00% 4,00%
R15 30 24 16,67% 8,33% 23 8,70% 4,35%
R15 35 42 2,38% 4,76% 29 6,90% 3,45%
R15 40 42 9,52% 7,14% 30 6,67% 3,33%
R15 45 41 7,32% 4,88% 38 7,89% 2,63%
R15 50 42 11,90% 7,14% 33 6,06% 3,03%
s1 5 20 15,00% 20,00% 15 20,00% 20,00%
s1 10 27 22,22% 18,52% 18 11,11% 11,11%
s1 15 25 4,00% 4,00% 20 15,00% 10,00%
s1 20 31 9,68% 9,68% 32 3,13% 6,25%
s1 25 32 9,38% 12,50% 32 3,13% 6,25%
s1 30 30 10,00% 13,33% 30 3,33% 6,67%
s1 35 30 10,00% 13,33% 29 6,90% 10,34%
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Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #Iterationen %Vis sse %Vis Gpi #Iterationen %Vis SSE %Vis Gpi

s1 40 32 9,38% 12,50% 27 3,70% 11,11%
s1 45 31 9,68% 12,90% 26 11,54% 11,54%
s1 50 34 5,88% 11,76% 29 6,90% 6,90%
s2 5 22 9,09% 13,64% 18 22,22% 16,67%
s2 10 23 17,39% 17,39% 25 4,00% 8,00%
s2 15 27 14,81% 11,11% 21 14,29% 14,29%
s2 20 41 9,76% 7,32% 27 7,41% 7,41%
s2 25 33 12,12% 12,12% 32 6,25% 9,38%
s2 30 43 6,98% 9,30% 34 5,88% 8,82%
s2 35 35 5,71% 8,57% 33 6,06% 12,12%
s2 40 35 8,57% 11,43% 36 5,56% 8,33%
s2 45 30 13,33% 13,33% 30 6,67% 10,00%
s2 50 33 9,09% 12,12% 30 6,67% 10,00%
s3 5 27 14,81% 18,52% 32 6,25% 12,50%
s3 10 27 11,11% 14,81% 29 6,90% 10,34%
s3 15 28 14,29% 17,86% 39 7,69% 12,82%
s3 20 35 8,57% 14,29% 37 10,81% 13,51%
s3 25 47 6,38% 10,64% 38 5,26% 10,53%
s3 30 46 6,52% 13,04% 40 5,00% 10,00%
s3 35 37 8,11% 13,51% 34 5,88% 11,76%
s3 40 36 8,33% 11,11% 32 9,38% 9,38%
s3 45 38 10,53% 10,53% 34 8,82% 11,76%
s3 50 31 12,90% 16,13% 33 9,09% 9,09%
s4 5 23 8,70% 17,39% 25 8,00% 16,00%
s4 10 44 6,82% 11,36% 29 17,24% 20,69%
s4 15 43 11,63% 16,28% 32 12,50% 15,63%
s4 20 38 7,89% 10,53% 34 8,82% 11,76%
s4 25 42 7,14% 9,52% 37 8,11% 13,51%
s4 30 44 6,82% 13,64% 49 6,12% 8,16%
s4 35 39 7,69% 12,82% 40 5,00% 10,00%
s4 40 40 7,50% 10,00% 28 10,71% 10,71%
s4 45 35 11,43% 14,29% 28 10,71% 10,71%
s4 50 37 8,11% 10,81% 30 10,00% 10,00%
spiral 5 20 15,00% 25,00% 22 13,64% 22,73%
spiral 10 23 13,04% 13,04% 23 13,04% 13,04%
spiral 15 25 16,00% 16,00% 22 13,64% 13,64%
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Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #Iterationen %Vis sse %Vis Gpi #Iterationen %Vis SSE %Vis Gpi

spiral 20 25 12,00% 8,00% 29 6,90% 6,90%
spiral 25 34 14,71% 8,82% 32 9,38% 6,25%
spiral 30 42 11,90% 7,14% 32 6,25% 3,13%
spiral 35 45 4,44% 4,44% 44 4,55% 2,27%
spiral 40 44 6,82% 4,55% 40 7,50% 2,50%
spiral 45 44 6,82% 4,55% 42 2,38% 2,38%
spiral 50 45 4,44% 2,22% 38 5,26% 2,63%
unbalance 5 29 6,90% 6,90% 15 6,67% 6,67%
unbalance 10 36 2,78% 8,33% 35 2,86% 5,71%
unbalance 15 50 2,00% 12,00% 29 3,45% 10,34%
unbalance 20 58 1,72% 10,34% 42 4,76% 14,29%
unbalance 25 67 2,99% 8,96% 53 1,89% 9,43%
unbalance 30 49 4,08% 14,29% 46 4,35% 10,87%
unbalance 35 47 4,26% 14,89% 50 2,00% 10,00%
unbalance 40 48 8,33% 12,50% 44 6,82% 9,09%
unbalance 45 51 1,96% 9,80% 49 4,08% 12,24%
unbalance 50 40 2,50% 12,50% 37 8,11% 13,51%
chainlink 5 22 9,09% 18,18% 26 7,69% 11,54%
chainlink 10 20 15,00% 20,00% 26 15,38% 15,38%
chainlink 15 32 15,63% 15,63% 24 12,50% 16,67%
chainlink 20 24 12,50% 12,50% 22 9,09% 9,09%
chainlink 25 24 16,67% 16,67% 21 9,52% 9,52%
chainlink 30 25 20,00% 20,00% 22 9,09% 9,09%
chainlink 35 26 19,23% 11,54% 22 9,09% 9,09%
chainlink 40 30 10,00% 10,00% 20 20,00% 15,00%
chainlink 45 27 14,81% 11,11% 38 5,26% 2,63%
chainlink 50 33 18,18% 9,09% 28 3,57% 3,57%
cluto-t4-8k 5 21 14,29% 19,05% 20 20,00% 25,00%
cluto-t4-8k 10 36 5,56% 11,11% 32 9,38% 12,50%
cluto-t4-8k 15 43 9,30% 16,28% 29 10,34% 17,24%
cluto-t4-8k 20 38 10,53% 10,53% 32 9,38% 12,50%
cluto-t4-8k 25 35 14,29% 17,14% 35 5,71% 11,43%
cluto-t4-8k 30 35 11,43% 14,29% 40 10,00% 12,50%
cluto-t4-8k 35 38 7,89% 15,79% 39 7,69% 12,82%
cluto-t4-8k 40 34 8,82% 11,76% 34 8,82% 11,76%
cluto-t4-8k 45 48 6,25% 10,42% 34 5,88% 11,76%
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Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #Iterationen %Vis sse %Vis Gpi #Iterationen %Vis SSE %Vis Gpi

cluto-t4-8k 50 34 14,71% 14,71% 37 5,41% 8,11%
cluto-t5-8k 5 14 14,29% 14,29% 15 6,67% 6,67%
cluto-t5-8k 10 25 12,00% 16,00% 26 3,85% 3,85%
cluto-t5-8k 15 30 3,33% 6,67% 28 3,57% 7,14%
cluto-t5-8k 20 30 13,33% 16,67% 31 6,45% 12,90%
cluto-t5-8k 25 42 4,76% 7,14% 29 10,34% 13,79%
cluto-t5-8k 30 35 11,43% 11,43% 37 5,41% 8,11%
cluto-t5-8k 35 30 10,00% 13,33% 38 7,89% 10,53%
cluto-t5-8k 40 44 4,55% 11,36% 32 6,25% 9,38%
cluto-t5-8k 45 36 8,33% 13,89% 42 4,76% 7,14%
cluto-t5-8k 50 42 9,52% 11,90% 31 9,68% 9,68%
cluto-t7-10k 5 19 26,32% 26,32% 17 17,65% 17,65%
cluto-t7-10k 10 68 5,88% 8,82% 64 3,13% 6,25%
cluto-t7-10k 15 40 7,50% 15,00% 39 5,13% 10,26%
cluto-t7-10k 20 52 5,77% 9,62% 49 4,08% 8,16%
cluto-t7-10k 25 48 6,25% 10,42% 48 6,25% 10,42%
cluto-t7-10k 30 58 5,17% 8,62% 54 7,41% 9,26%
cluto-t7-10k 35 45 6,67% 11,11% 45 6,67% 11,11%
cluto-t7-10k 40 48 12,50% 14,58% 52 5,77% 9,62%
cluto-t7-10k 45 50 8,00% 12,00% 44 6,82% 11,36%
cluto-t7-10k 50 51 9,80% 9,80% 42 9,52% 9,52%
cluto-t8-8k 5 28 10,71% 14,29% 37 10,81% 18,92%
cluto-t8-8k 10 38 13,16% 13,16% 31 6,45% 9,68%
cluto-t8-8k 15 42 11,90% 16,67% 45 6,67% 8,89%
cluto-t8-8k 20 66 4,55% 9,09% 44 4,55% 9,09%
cluto-t8-8k 25 61 6,56% 11,48% 40 5,00% 12,50%
cluto-t8-8k 30 60 8,33% 11,67% 47 6,38% 10,64%
cluto-t8-8k 35 52 7,69% 13,46% 44 6,82% 11,36%
cluto-t8-8k 40 47 6,38% 10,64% 37 5,41% 10,81%
cluto-t8-8k 45 56 7,14% 10,71% 45 6,67% 11,11%
cluto-t8-8k 50 48 8,33% 10,42% 32 9,38% 15,63%
diamond9 5 27 11,11% 14,81% 27 3,70% 11,11%
diamond9 10 17 35,29% 29,41% 31 12,90% 12,90%
diamond9 15 35 8,57% 11,43% 25 8,00% 12,00%
diamond9 20 36 8,33% 13,89% 29 6,90% 13,79%
diamond9 25 35 11,43% 14,29% 32 9,38% 12,50%
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A.3. Ergebnisse der Visualisierung für synthetische Datensätze

Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #Iterationen %Vis sse %Vis Gpi #Iterationen %Vis SSE %Vis Gpi

diamond9 30 32 9,38% 15,63% 30 6,67% 10,00%
diamond9 35 30 10,00% 16,67% 27 7,41% 11,11%
diamond9 40 38 10,53% 10,53% 29 10,34% 10,34%
diamond9 45 28 10,71% 17,86% 27 11,11% 14,81%
diamond9 50 25 12,00% 16,00% 25 8,00% 12,00%
engytime 5 33 6,06% 15,15% 42 7,14% 19,05%
engytime 10 41 4,88% 14,63% 46 4,35% 15,22%
engytime 15 46 6,52% 15,22% 51 5,88% 13,73%
engytime 20 61 3,28% 11,48% 52 5,77% 13,46%
engytime 25 54 7,41% 16,67% 44 4,55% 11,36%
engytime 30 57 5,26% 10,53% 50 6,00% 12,00%
engytime 35 42 7,14% 14,29% 36 5,56% 13,89%
engytime 40 37 8,11% 13,51% 42 7,14% 11,90%
engytime 45 39 10,26% 12,82% 58 3,45% 6,90%
engytime 50 35 8,57% 11,43% 38 5,26% 10,53%

Min 11 1,72% 2,22% 11 1,89% 2,27%
Max 68 35,29% 29,41% 64 22,22% 25,00%
Median 33 9,78% 12,66% 30 7,41% 10,38%
Mittelwert 34,42631579 10,82% 12,86% 31,7 8,16% 10,60%
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