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Kurzfassung

In dieser Arbeit wurde ein Konzept entwickelt, bei der fiir den K-means und den K-means++
eine effiziente Berechnung der Metriken erméglicht wurde. Mit Hilfe der Metriken wurde an-
schlieflend ein Konvergenzkriterium zur frithzeitigen Terminierung fiir den K-means und den
K-means++ aufgestellt. In den Experimenten konnte gezeigt werden, dass sowohl fiir syntheti-
sche, als auch fiir reale Datensétze Einsparungen in den Iterationen und der Ausfithrungszeit
von iiber 90% moglich waren. Zudem wurde verdeutlicht, dass eine hohere Einsparung der
Ausfithrungszeit auch gleichzeitig mit einem hoheren Qualitdtsverlust verbunden ist. Des Wei-
teren wurden diese beiden Metriken genutzt, um geeignete Zeitpunkte fiir eine Visualisierung
auszumachen. Dabei ergaben sich fiir beide Metriken, die fiir jeweils beide Algorithmen ge-
prift wurden, je unterschiedliche Werte fiir die Anzahl der Visualisierungen. Diese erstreckten
sich von 0% bis 30% der Anzahl der Iterationen des jeweiligen Durchlaufs. Es wurde zudem
aufgezeigt, dass fiir beide Metriken die meisten Durchlaufe der Visualisierungen im Bereich
von 5% bis 20% waren. Daraufhin wurden beide Ansitze kombiniert, das heif3t, dass untersucht
wurde wie viele Visualisierungen sich bis zum festgelegten Konvergenzkriterium ergeben.
Dabei hat sich herausgestellt, dass sich dafiir deutlich mehr Visualisierungen im Verhéltnis
von Visualisierungen und Iterationen bis zur Konvergenz ergab.
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1. Einleitung

Im heutigen Big Data-Zeitalter wiachst die Anzahl der Daten exponentiell an. Mit jedem Jahr
verdoppelt sich das jahrlich weltweit generierte Datenvolumen. Laut einer Studie von Seagate
wurden 2013 ungefahr 3,5 Zetabyte an Daten generiert. 2020 hingegen soll die Anzahl auf bis
zu 40 Zetabyte ansteigen [RGR17]. Das entspricht einem jahrlich generierten Datenvolumen
von 5200 GB pro Person. Dazu zéhlen unter anderem alle moglichen Arten von Daten, die
durch eine Interaktion mit Menschen im Internet geschehen [FAT+14]. Dies ist beispielsweise
in sozialen Netzwerken wie Facebook oder Twitter, aber auch in einer e-Commerce Plattform
wie Amazon der Fall. So fallen bei Amazon taglich mehr als 10 Millionen Transaktionen und 3
Millionen Eink&ufe an [DHJ+07]. Durch eine geeignete Analyse dieser Daten ist es moglich das
Kaufverhalten der Kunden zu analysieren und die Kunden zu gruppieren, wodurch den Kunden
Vorschlage fiir einen weiteren Kauf gemacht werden konnen, der auf dem bisherigen Interessen
basiert. Die Analyse, bei der aus einer Sammlung von Daten Informationen gewonnen werden,
wird auch als Data Mining bezeichnet . Ein weiteres Anwendungsgebiet des Data Minings
ergibt sich fiir Banken und Versicherungen in der Erstellung einer Risikoanalyse. Wenn zum
Beispiel entschieden werden soll, ob einem Kunden ein Kredit bzw. eine Lebensversicherung
angeboten werden soll[Fas]. Es kann allerdings auch in der Biologie eingesetzt werden, um
verschiedene verschiedene Gene mit dhnlicher Funktion zusammen zu fassen oder um Pflanzen
und Tiere zu klassifizieren [HPK11].

Durch die steigenden und komplexer werdenden Daten stoflen die Data Mining-Verfahren
jedoch schnell an ihre Grenzen. Zum Einen miissen die Daten vor einer Analyse oft vor-
verarbeitet werden, da sie unvollstindig oder fehlerbehaftet sein konnen. Dadurch ergibt sich
ein langerer und meist auch iterativer Prozess. Des Weiteren ist das Ergebnis einer Analyse
nur so gut wie es von einem menschlichen Experten interpretiert wird. Denn fiir die Analyse
sind zahlreiche verschiedene und komplexe Beziehungen zu beachten, die eine automatisierte
Auswertung der Analyse erschweren [WZWD14]. Die Data Mining-Verfahren sind zwar
meist iterative Verfahren, jedoch ist es nicht moglich die Zwischenschritte dieser Verfahren
einzusehen. Dadurch sind die Verfahren wie eine undurchsichtige Black-Box, da zwischen
Eingabe der Parameter und der Ausgabe des Resultats keinerlei Steuerungsmoglichkeit besteht
und somit oft unklar ist unter welchen Umstédnden Ergebnisse zustande kommen [JMF99]. Dies
wird in Abbildung 1.1 dargestellt. Die transformierten Daten stellen dabei Daten dar, die vor
verarbeitet wurden, um in einem fiir die Analyse geeigneten Format vorzuliegen. Dazu gehort
zum Beispiel die Bereinigung der Daten von Ausreiflern oder eine Voraggregation der Daten.
Erst wenn die Analyse abgeschlossen ist, wird das Ergebnis zur Evaluation weitergeleitet.
Diese wird dann von einem menschlichen Experten durchgefiihrt, der anhand von geeigneten
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1. Einleitung

Transformierte Sinnvolles Muster
Daten erkannt?

8 0 & Y “—Wissen

I

Analyse Evaluation

Analyse mit
neuen Parametern

Abbildung 1.1.: Ist-Zustand des Analyseprozesses

Metriken bewertet, ob das Ergebnis sinnvoll ist oder nicht. Ist das Ergebnis sinnvoll, erhalt man
neues Wissen liber die Daten, wenn nicht, dann muss der Analyseschritt mit neuen Parametern
(und eventuell einem anderen Verfahren) erneut durchgefiithrt werden.

Zudem beinhalten die Analyseverfahren haufig Optimierungsfunktionen. Diese Funktionen
streben einen Zielzustand an, der z. B. durch die Minimierung einer Fehlerfunktion erreicht
werden soll. Dies resultiert jedoch oft in einer Langlaufigkeit der Berechnungen, besonders
wenn es sich um grofle Datenmengen handelt. Um dem entgegenzuwirken wird ein Konver-
genzkriterium benoétigt, welches ein approximiertes Ergebnis liefert. Fiir die Bewertung der
Zielzustande der Verfahren gibt es zahlreiche Metriken, wodurch Riickschliisse auf die Eignung
der Parameter gezogen werden konnen. Dabei entstehen allerdings zwei Probleme:

i) Die Metriken sind sehr komplex und zahlreich und je nach Verfahren werden andere
Metriken benétigt.

ii) Die Bewertung findet erst nach der Terminierung der Verfahren statt.

1.1. Ziele

Ein Ziel dieser Arbeit ist es, die Analyse und die Evaluation enger miteinander zu verkniipfen.
Dies soll durch einen Zustand erreicht werden, der in Abbildung 1.2 dargestellt wird.

Dabei werden dem Nutzer Zwischenergebnisse der Verfahren gezeigt. Der Nutzer hat dann die

Transformierte Sinnvolles Muster
Daten Evaluation erkannt?
— Zwischenergebnis 0O nicht fortsetzen Ia .
(B Analyse e Wissen

- - —
+ Analyse fortsetzen Algorithmus terminiert
nein

Analyse mit neuen Parametern

Abbildung 1.2.: Soll-Zustand des Analyseprozesses

Moglichkeit zu entscheiden, ob er die Analyse fortsetzen mdchte oder nicht. Dadurch soll es
fir den Nutzer nachvollziehbarer werden, wie bestimmte Ergebnisse entstehen. Ein weiterer
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1.2. Gliederung der Arbeit

Punkt ist, dass der Nutzer friithzeitig erkennen kann, falls eine Analyse eine unerwiinschte
Form annimmt und er kann das Verfahren frither abbrechen, um es mit neuen Parametern
zu wiederholen. Somit wird auch Zeit eingespart, da der Nutzer nicht die komplette Analyse
abwarten muss, um dann festzustellen, dass das Ergebnis nicht sinnvoll ist. Die Zeitpunkte der
Visualisierung sollen dabei mit Hilfe von geeigneten Metriken bestimmt werden.

Ein weiteres Ziel dieser Arbeit zielt ebenfalls darauf ab, die Analyse-Verfahren zu verkiirzen.
Dabei sollen die Analyseverfahren frithzeitig terminieren, wenn bereits eine ausreichende
Qualitit erreicht ist und keine groSen Anderungen zu erkennen sind. Dazu soll mit Hilfe von
geeigneten Metriken ein Konvergenzkriterium aufgestellt werden, welches angibt, wann eine
ausreichende Qualitat erreicht ist. Die Ziele fokussieren sich in dieser Arbeit auf Clustering-
Algorithmen, insbesondere den K-means und den DBSCAN.

1.2. Gliederung der Arbeit

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen und verwandte Arbeiten: In diesem Kapitel werden die Grundla-
gen fiir diese Arbeit geschaffen und es wird auf verwandte Arbeiten eingegangen.

Kapitel 3 — Konzept zur Berechnung der Metriken in Teilschritten: In diesem Kapitel
werden geeignete Metriken ausgewahlt und es wird ein Konzept fiir eine optimierte
Berechnung dieser Metriken vorgestellt

Kapitel 4 — Experimentelle Umsetzung: In diesem Kapitel wird auf die prototypische Im-
plementierung eingegangen und der Ablauf der Experimente wird beschrieben.

Kapitel 5 — Evaluation: In diesem Kapitel wird evaluiert welche Metriken sich fiir ein Konver-
genzkriterium eignen und welche sich fiir die Visualisierung von Zwischenergebnissen
eignen. Anschlieend wird untersucht wie viel Zeit mit dem Konvergenzkriterium ein-
gespart werden kann und mit welchem Qualitdtsverlust dies verbunden ist. Zudem
werden zwei Anséitze fiir die Visualisierung von Zwischenergebnissen vorgestellt und
mit einander verglichen.

Kapitel 6 — Zusammenfassung und Ausblick: In diesem Kapitel wird eine Zusammenfas-
sung der Arbeit gegeben und es wird darauf eingegangen, wo noch Potenzial fiir weitere
Forschungen vorhanden ist.
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2. Grundlagen und verwandte Arbeiten

In diesem Kapitel werden die ndtigen Grundlagen fiir die nachfolgenden Kapitel dieser Arbeit
geschaffen und es wird eine Ubersicht iiber verwandte Arbeiten gegeben. Dazu wird ein spezi-
fisches Verfahren der Analyse eingegangen, das Clustering, und es werden die verschiedenen
Moglichkeiten der Evaluation des Clusterings aufgezeigt. Bevor es allerdings zu der Analyse
kommt, miissen die Daten aus einer riesigen Datenmenge ausgew&hlt und meist auch noch
vor-verarbeitet werden, damit iiberhaupt eine Analyse stattfinden kann. Der gesamte Prozess
vom Auswéhlen der Daten bis hin zur Gewinnung von Wissen wird als Knowledge Discovery in
Databases (KDD) [FPS96b] bezeichnet. Der KDD Prozess umfasst alle Schritte vom Auswéhlen
der Daten, z. B. aus einer Datenbank, bis hin zur Evaluation der Analyse-Ergebnisse. In der
Abbildung 2.1 sind alle Schritte des KDD Prozesses zu sehen. Dabei ist zu sehen, dass vor dem

Interpretation -

Data Mining

il

Transformation

Vorverarbeitung
\ — | Transformierte

b Daten

Auswahl " s \orverarbeitete

1
1
1
| Daten !
1 1

T 1 1

@ . .
~ . y I ]

} Zieldaten ! '

1 1 1

1 1 1

1 1 1

Abbildung 2.1.: Ubersicht tiber die Schritte des KDD Prozesses [Cha16]

Data Mining Schritt zunéachst Daten ausgewahlt werden miissen. Diese werden anschlieffend
vor-verarbeitet, was z. B. heiflen kann, dass sie von Ausreiflern befreit werden oder, dass
die Daten aggregiert werden. Daraufthin werden die Daten in ein passendes Format fiir die
Analyse umgewandelt. Das Data Mining reprasentiert dabei die eigentliche Analyse und wird
in Abschnitt 2.1 thematisiert. In Abschnitt 2.2 wird eingehender auf ein spezifisches Data
Mining-Verfahren, das Clustering, eingegangen. Fiir dieses spezifische Verfahren werden in
Abschnitt 2.3 drei Algorithmen vorgestellt. Die Moglichkeiten, die es zur Evaluation dieser
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2. Grundlagen und verwandte Arbeiten

Algorithmen gibt, wird in Abschnitt 2.4 dargelegt. In Abschnitt 2.5 wird auf verwandte Arbeiten
eingegangen.

2.1. Data Mining

Das Data Mining beschreibt das Extrahieren von niitzlichen Mustern aus grof3en Datenmengen
[HPK11]. Dabei sind nicht alle Muster, die beim Data Mining entstehen niitzlich. Daher wird
es meist auch mehrfach mit unterschiedlichen Algorithmen und/ oder Parametern auf der
selben Datenmenge ausgefithrt. Denn wenn die Muster, die am Ende der Analyse gewonnen
werden, unzureichend bzw. unbrauchbar sind, kann zu einem beliebigen vorherigen Schritt
zuriickgekehrt werden, um so an bessere Muster zu gelangen. Das kann beispielsweise durch
schrittweises Andern der Algorithmen oder der Parameter geschehen. Hier st63t das Data
Mining auch an seine Grenzen, da unter anderem oftmals nicht klar ist, was die Ursachen fiir
ein ungeniigendes Ergebnis der Analyse sind. Dafiir gibt es zahlreiche Moglichkeiten, zum
einen Ursachen, die unabhangig vom Data Mining Schritt selbst auftreten, wie zum Beispiel
einen Fehler in der Vorverarbeitung, schlecht ausgewéhlte Daten oder eine ungeniigende
Evaluation der Ergebnisse. Zum anderen Ursachen, die auf das Data Mining zuriick zu fithren
sind, wie zum Beispiel, dass das ausgewahlte Verfahren nicht zum Hintergrundwissen und
zum Ziel der Analyse passt, dass ein ungeeigneter Algorithmus ausgewahlt wurde oder, dass
fir den Algorithmus ungeeignete Parameter ausgewéhlt wurden.

Typische Data Mining-Verfahren sind das Clustering, eine Klassifikation, eine Regression,
eine Assoziationsanalyse, eine Ausreifler Erkennung oder eine statistische Analyse [FPS96a].
Generell lassen sich die Data Mining-Verfahren in iiberwachte und uniiberwachte Verfahren
aufteilen. Unliberwacht bedeutet dabei, dass nur die Daten selbst die Eingabe fiir das Verfahren
sind und keine zuséatzlichen Informationen. Bei iiberwachten Verfahren hingegen enthalt die
Eingabe zusitzliche Informationen zur Datenmenge, wie z. B. vordefinierte Klassen [HPK11]

2.2. Clustering

Das Clustering ist eine uniiberwachte Methode, bei der versucht wird die Daten in Gruppen
aufzuteilen, sodass sich die Daten innerhalb eines Clusters moglichst dhnlich sind (hohe
intra-cluster Ahnlichkeit) und Daten in verschiedenen Clustern moglichst unahnlich (geringe
inter-cluster Ahnlichkeit) sind. Generell kann zwischen hartem und weichem (oder auch fuzzy)
Clustering unterschieden werden. Beim harten Clustering gehort jeder Datenpunkt zu genau
einem Cluster oder zu keinem Cluster, falls es sich bei dem Punkt um einen Ausreifer handelt.
Beim weichen Clustering hingegen kann ein Punkt zu keinem, einem oder mehreren Clustern
gehoren [JMF99]. Fur hartes Clustering kann das Clustering Problem wie in Definition 2.2.1
formuliert werden.

18



2.2. Clustering

Definition 2.2.1 (Clustering Problem)

Sei eine Menge von Daten M = {my, ..., m,} gegeben. Zusdtzlich bezeichnet A die Menge der
Punkte, die als Ausreifler identifiziert wurden. Das Clustering Problem besteht darin eine Partition
C ={C1,...,Cy} aus M zu erstellen, fiir die folgende Bedingungen erfiillt sind:

D)Vi£j:C;nC; =10
i) U, C; =M\ A
iii) Vi : C; # 0
Sollte ein Algorithmus keine AusreifSer behandeln, dann gilt A = ().

Eine Losung des Clustering-Problems ist nicht zwangslaufig eine optimale Losung. Die meis-
ten Clustering-Algorithmen berechnen auch nicht die optimale Losung, da das Finden einer
optimalen Losung des NP-hart ist [ADHP09].

Des weiteren muss ein Maf3 definiert werden, welches angibt wie dhnlich sich zwei Datenpunkte
sind. Dazu wird meist eine Distanzmetrik herangezogen, die die Ahnlichkeit zwischen zwei
Datenpunkten beschreibt. Die Wahl der Distanzmetrik ist dabei eine wichtige Entscheidung,
die getroffen werden muss. Je nach Anwendungsbereich der Daten und je nach Algorithmus
eignet sich eine besser als eine andere. Im Folgenden werden einige bekannte Distanzmetriken
genannt [GMWO07]. Die gebrauchlichste Distanzmetrik ist die euklidische Distanz

n

d(z,y) = | >_(xi — v:)*. (2.1)

=1

Diese ist ein Spezialfall der Minkowski-Metrik mit r = 2

n

d(x,y) = J (@i —w)"). (2.2)

i=1

Setzt man » = 1 in der Minkowski-Metrik, dann erhilt man die Manhattan-Metrik (auch
Block-Distanz genannt)

d(z,y) = Z |z — il (2.3)
i=1
Eine weitere beliebte Distanzmetrik ist die Hamming-Distanz

12 {1 falls z; # y; (2.4)

d(x,y) = —)» 0; mitd; =
( ) n; 0 sonst
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2. Grundlagen und verwandte Arbeiten

Ein Vorteil der euklidischen Distanz ist, dass sie gut geeignet ist fiir Daten, die kompakte und
isolierte Cluster enthalten, jedoch neigt sie dazu nur sphérische Cluster zu erkennen [M]96].
Ein genereller Nachteil der Minkowski-Metriken ist, dass dazu tendiert wird, dass die Attribute,
die am grofiten skaliert sind, die anderen Attribute dominieren. Dies ist beispielsweise bei der
Hamming-Distanz nicht der Fall, da die Skalierung der Attribute keine Auswirkung auf diese
Distanzmetrik hat. Eine Ubersicht iiber weitere bekannte Distanzmetriken wird in [CCT10]
gegeben.

2.2.1. Anforderungen an das Clustering

Vor der Wahl eines Clustering-Algorithmus sollten Anforderungen an den Algorithmus gestellt
werden. Mit Hilfe dieser Anforderungen kann ein geeigneter Algorithmus ausgewahlt werden.
Einige dieser Anforderungen konnen auf Grundlage der vorhandenen Daten erschlossen
werden, andere sind allerdings erst wahrend oder nach der Analyse erkennbar. Sollten sie
bereits vor der Ausfithrung bekannt sein, also aus den Daten ablesbar sein, kann mit deren Hilfe
ein geeigneter Algorithmus ausgewahlt werden. Typische Anforderungen sind [HPK11]:

Skalierbarkeit Einige Algorithmen arbeiten sehr gut auf kleinen Datenmengen. Hat man
jedoch eine Datenmenge, die mehrere Millionen Datenpunkte enthalt, sollte der Algo-
rithmus auf dieser in angemessener Zeit anwendbar sein.

Typen der Attribute Viele Algorithmen kdnnen nur mit numerischen Daten umgehen, be-
sonders Algorithmen die Distanz-basiert sind. Allerdings ist es auch moglich, dass die
Attribute der Daten andere Typen enthalten, wie z. B. binére, kategorische Daten oder
eine Kombination aus diesen.

Willkirlich geformte Cluster Algorithmen, die als Distanzmetrik die euklidische Distanz
benutzen, neigen dazu nur spharische Cluster mit gleicher Gréfie oder Dichte zu finden.
Allerdings konnen Cluster auch willkiirliche Formen mit unterschiedlicher Gro3er und
Dichte annehmen.

AusreiBer Behandlung In vielen Datenmengen kommt es vor, dass fehlerhafte Daten vor-
handen sind oder Daten, die Extremdaten sind und sich stark von den anderen Daten
unterscheiden. In vielen Algorithmen werden die Ausreifler nicht extra behandelt, wo-
durch das Ergebnis verzerrt werden kann.

Wahl der Parameter Fiir die Ausfithrung der Algorithmen werden meist zusatzliche Parame-
ter benoétigt. Eine schlechte Wahl der Parameter kann dabei zu einem unbrauchbarem
Ergebnis fithren. Daher sollte abgew#gt werden, welche Informationen iiber die Da-
tenmenge bekannt sind und welche Parameter eines Algorithmus dadurch abgedeckt
werden konnen.

Dimension der Daten Die Laufzeit vieler Algorithmen ist davon abhingig, wie viele Attri-
bute die Daten enthalten. Bei einer Vielzahl von Attributen sollte daher der Algorithmus
mit Sorgfalt ausgewahlt werden.
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Interpretierbarkeit und Nutzbarkeit Das Interpretieren des Ergebnisses stellt eine schwieri-
ge Aufgabe dar. Da die Clustering uniiberwacht ist, gibt es bei der Analyse kein richtiges
oder falsches Ergebnis. Es gibt nur sinnvolle oder weniger sinnvolle Ergebnisse, wodurch
eine automatisierte Bewertung schwer moglich ist, da auch immer der Anwendungs-
bereich und das Ziel der Analyse mit beriicksichtigt werden muss. Aus diesem Grund
sollte auch der Algorithmus dementsprechend gewahlt werden.

2.2.2. Klassen von Clustering-Algorithmen

Es gibt eine Vielzahl von verschiedenen Klassen von Clustering-Algorithmen. Zudem gibt es
auch unterschiedliche Klassifikationen. Ein Beispiel fiir existierende Klassen von Clustering-
Algorithmen wird in Abbildung 2.2 gegeben. Dabei werden zu jeder Klasse auch einige der

Clusteralgorithmen

Partitionierend Dichte-basiert Hierarchisch Gitter-basiert Graph-basiert

K-means
K-means++ DBSCAN . DIANA STING Chameleon
K-medoid OPTICS Single-Linkage OntiGrid CACTUS
. : BRIDGE Ward Methode P ROCK
EM-Clustering

Abbildung 2.2.: Ubersicht tiber bekannte Klassen von Clustering Algorithmen [FAT+14]

Vertreter genannt. Dies ist allerdings nur ein grober Uberblick, denn es gibt zahlreiche Verfah-
ren, die sich entweder gar nicht in eine der gezeigten Klassen einordnen lassen oder die sich
in mehrere Klassen einordnen lassen [Ber+06]. In mancher Literatur wird auch nur zwischen
partitionierenden und hierarchischen Verfahren unterschieden [JD88]. In diesem Abschnitt
werden die partitionierenden und die dichte-basierten Verfahren vorgestellt, da diese im Laufe
dieser Arbeit genauer untersucht werden.

Partitionierende Verfahren

Partitionierende Clustering Algorithmen versuchen aus einer Menge von Datenpunkten &
Partitionen zu erstellen. Jede dieser Partitionen reprasentiert dabei ein Cluster. Meist wird
k dabei vom Benutzer gewahlt. Zunachst wird eine initiale Partition erstellt und diese wird
dann versucht iterativ zu dndern, indem man die Clusterzugehorigtkeit der jeweiligen Punkte
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2. Grundlagen und verwandte Arbeiten

verandert wird [JMF99]. Ein Beispiel fiir einen partitionierenden Clustering Algorithmus ist
der K-means, der in Abschnitt 2.3.1 vorgestellt wird.

Dichte-basierte Verfahren

Dichte-basierte Verfahren beruhen darauf, ein Cluster wachsen zu lassen, solange die umliegen-
de Dichte bestimmte Kriterien erfiillt. Das heifit z. B., dass sich in einer bestimmten Region eine
Mindestanzahl an Punkten befinden muss. Ein Beispiel fiir einen dichte-basierten Algorithmus
ist der DBSCAN Algorithmus, der in Abschnitt 2.3.3 vorgestellt wird. Der generelle Vorteil
dieser Verfahren ist, dass Cluster mit willkiirlichen Formen erkannt werden kénnen und das
sie Ausreifler erkennen konnen [Est09]. Allerdings sind diese Verfahren dafiir meist mit einem
héheren Berechnungsaufwand verbunden.

2.3. Clustering-Algorithmen

In diesem Abschnitt werden drei Clustering-Algorithmen vorgestellt. Einmal der weit verbrei-
tete partitionierende Algorithmus K-means und der dichte-basierte Algorithmus DBSCAN,
sowie der K-means++, welcher eine Erweiterung des K-means darstellt und sich nur in der
Initialisierung unterscheidet. Des weiteren werden diese Algorithmen mit einander vergli-
chen.

2.3.1. K-means

Der K-means [Mac67] Algorithmus ist ein weit verbreiteter Algorithmus, der erstmals von
Macqueen (1967) formuliert wurde und zu den partitionierenden Algorithmen gehort. Zunachst
erstellt er eine Anfangspartition die dann iterativ verdndert wird. In jeder Iteration wird
versucht die Partition so zu andern, dass eine Fehlerfunktion minimiert wird. Dabei ist die
Fehlerfunktion davon abhangig welche Distanzmetrik benutzt wird.

Wird die euklidische Distanzmetrik benutzt, dann ist diese Fehlerfunktion die quadratische
Fehlerfunktion. Sei C' = {C1, ..., C}y} eine Menge von Clustern, dann lautet die quadratische
Fehlerfunktion wie folgt:

E(C)=>" Y d(m;,cen;)’ (2.5)

i=1m;eC;
Dabei bezeichnet cen; den Zentroiden des Clusters C; = {my, ..., m,} und lasst sich mit der
Formel 2.6 berechnen.
1 n
cen; = — Z m; (2.6)
n;3
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2.3. Clustering-Algorithmen

Der Zentroid steht dabei als Zentrum des Clusters reprasentativ fiir das Cluster. Die Zentroide
werden zu Beginn des Algorithmus zufillig gewahlt. AnschliefSend folgt eine Iteration aus zwei
Schritten. Zundchst kommt der Schritt der Datenzuweisung. Dabei wird jeder Datenpunkt
dem Cluster des Zentroiden mit dem geringsten Abstand zugewiesen. Schritt zwei ist die Neu-
berechnung der Zentroide. Hier werden die Zentroide mit Hilfe der Formel aus Gleichung (2.6)
neu berechnet. Zusammengefasst lauft der Algorithmus folgendermafien ab:

1. Wihle zufillig k Datenpunkte als Zentroide.

2. Berechne fiir jeden Punkt den Zentroid, der den geringsten Abstand zu diesem Punkt
hat und fiige den Punkt zum Cluster dieses Zentroids hinzu.

3. Berechne die Cluster Zentren neu mit der Formel 2.6.

4. Falls sich in Schritt 3 mind. ein Zentroid geéndert hat, dann gehe zu 2. Andernfalls:
Stopp;

Der Pseudocode des Algorithmus wird in Algorithmus 2.1 gegeben.

Beispiel In Abbildung 2.3 wird ein Beispiel fiir einen Durchlauf des K-means Algorithmus
gegeben mit £ = 2. Im Schritt a) Sind zunédchst nur die Datenpunkte zu sehen. In Schritt b)

& -
s
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- - - L] . -
. . .
» " » " » 2
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Abbildung 2.3.: Beispiel fiir die Ausfithrung des K-means Algorithmus [Pie13]

werden die Zentroide zufillig bestimmt. Anschlieffend werden in Schritt c) alle Punkte dem
Zentroid zugewiesen, der den kleinsten Abstand zu diesem Punkt hat. Daraufhin werden in
Schritt d) die Zentroide mit der Formel 2.6 neu berechnet. In Schritt e) werden dann wiederum
die Punkte dem nichstgelegenen Zentroid zugewiesen, ehe in Schritt f) die Zentroide neu
berechnet werden.
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2. Grundlagen und verwandte Arbeiten

Algorithmus 2.1 K-means Algorithmus

1: procedure K-MEANS(numberOfClusters, points)
2 finish < false;
3 while (!finish) do
4 clearClusters();
5: oldCentroids +— getCurrentCentroids();
6 ASSIGNCLUSTER();
7 CALCULATECENTROIDS();
8 newCentroids <— getCurrentCentroids();
9
10: totalCentroidsDistance <— getCentroidDistances(oldCentroids, newCentroids)
11: finish < (totalCentroidsDistance == 0) ;
12: end while
13: end procedure
14:
15: procedure ASSIGNCLUSTER
16: min <— o0;
17: nearestCluster <— empty cluster;
18: for all point € points do
19: min < oo;
20: for all cluster € clusters do
21: distance <— getDistance(point, cluster.getCentroid());
22: if (distance < min) then
23: min < distance;
24: nearestCluster < cluster;
25: end if
26: end for
27: nearestCluster.addPoint(point);
28: end for
29: end procedure
30:
31: procedure CALCULATECENTROIDS
32: for all cluster € clusters do
33: sum < [0, ..., 0];
34: clusterPoints <— cluster.getPoints();
35: for all (point € clusterPoints) do
36: sum < (sum + point.getElements)/clusterPoints.size; /| Vektor Addition
37: end for
38: cluster.getCentroid().setElements(sum);
39: end for

40: end procedure
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2.3. Clustering-Algorithmen

Die Berechnung der initialen Zentroide erfolgt zufallig, wobei nicht eindeutig festgelegt ist,
was zufallig heiflt. Nach Lloyd [L1o82] werden zufillig beliebige Punkte als initiale Zentroide
bestimmt. MacQueen [Mac67] hingegen schlagt vor, zufillige Punkte aus der Datenmenge als
initiale Zentroide zu wahlen. Es existieren mittlerweile mehrere Moglichkeiten die initialen
Zentroide zu bestimmen [CKV13]. Die Komplexitat des Algorithmus betragt O(k - n - t). Dabei
ist n die Anzahl der Datenpunkte, k die Anzahl der Cluster und ¢ die Anzahl der Iterationen.
In den meisten Anwendungsfallen und besonders bei grofieren Datenmengen gilt, dass £ < n
und ¢ < n, somit kann er in den meisten Fallen mit O(n) abgeschatzt werden [HPK11]. Dies
macht ihn fiir grofle Datenmengen sehr effizient.

Einschrankungen

Der Algorithmus konvergiert zwar gegen ein Minimum der quadratischen Fehlerfunktion,
allerdings wird nur garantiert, dass er gegen ein lokales Minimum konvergiert und nicht gegen
ein globales. Lokal bedeutet dabei, dass es zwar ein Minimum in der Funktion ist, es ist aber
nicht das kleinste Minimum der Funktion. Global wiederum bedeutet, dass es das kleinste
Minimum ist und es auch kein kleineres gibt. Des Weiteren muss die Anzahl der Cluster vor
der Ausfithrung des Algorithmus bekannt sein. In der Praxis steht man allerdings oft vor dem
Problem, dass nicht genug Informationen iiber die Daten vorhanden sind, um zu entscheiden,
wie viele Cluster am Ende entstehen soll. Eine Moglichkeit dies zu umgehen ist, dass der
Algorithmus mehrmals mit unterschiedlichen k’s ausgefithrt wird. Am Ende aller Durchlaufe
wird das k bzw. der Durchlauf genommen, bei dem der beste Wert fiir eine vorher ausgewahlte
Metrik vorhanden ist.

Ein weiterer Punkt ist, dass der Algorithmus Ausreif3er nicht behandelt. Sollte einer der Punkte
einen grof3en Abstand zu allen anderen Punkten haben, verschiebt sich somit auch der Zentroid
in die Richtung des Ausreiflers. Hinzu kommt, dass der Algorithmus keine spharischen Cluster
erkennen kann und von der Wahl der initialen Zentroide abhéngig ist. Durch die initiale Wahl
der Zentroide kann die Anzahl der Iterationen stark variieren und das Ergebnis gedndert
werden.

2.3.2. K-means++

Der K-means++ [AV07] Algorithmus ist ein partitionierender Algorithmus, der sich nur in
der Wahl der Zentroide vom K-means unterscheidet. In der Initialisierung der Zentroide wird
versucht, dass Punkte, die weiter entfernt sind von einem Zentroid auch mit einer hoheren
Wahrscheinlichkeit als neuer Zentroid gewahlt wird. Dazu wird die minimale Distanz zum
nichstgelegenen Zentroid bestimmt, die mit D(m;) fur einen Punkt m; bezeichnet wird. Dann
wird fiir jeden Punkt die gewichtete Wahrscheinlichkeitsfunktion bestimmt, mit deren Hilfe

25



2. Grundlagen und verwandte Arbeiten

der néchste Zentroid ausgewahlt wird. Die Wahrscheinlichkeitsfunktion fiir einen Punkt m;
sieht folgendermafien aus:

D(m)*
ij eM ‘D(m])2

Diese Wahrscheinlichkeitsfunktion wird immer, nachdem ein Zentroid ausgewahlt wurde,
fiir jeden Punkt neu berechnet. Punkte, die bereits als Zentroid ausgewéhlt wurden erhalten
somit die Wahrscheinlichkeit 0, da sie den Abstand 0 zu sich selbst haben. Der komplette
Initialisierungsschritt lauft folgendermafien ab:

1. Sei M = {my,...,m,} die Menge der Datenpunkte. Bestimme zufillig ein m; € M als
Zentroid.

2. Berechne fiir jedes m; € M die minimale Distanz D(m;).

3. Wihle nun zufillig den nachsten Zentroid m; € M mit einer Wahrscheinlichkeit von
P(m;) aus.

4. Wiederhole Schritt 2 und 3 bis k£ Zentroide ausgewahlt wurden.

Die Einschrankungen und Vorteile des K-means++ sind die gleichen wie die des K-means
Algorithmus. Die Komplexitat des Algorithmus ist ebenfalls die Gleiche. Die Initialisierung des
K-means++ liegt zwar in O(k - n) und nicht in O(k) wie beim K-means, allerdings bleibt die
Gesamtkomplexitat damit gleich, da O(k-n)+O(k-n-t) = O(k-n-t). Obwohl man annehmen
konnte, dass der K-means++ im Allgemeinen ldnger braucht als der K-means, konnte gezeigt
werden, dass bessere Laufzeiten und auch bessere Ergebnisse erzielt werden konnten [AV07].
Zudem wurde gezeigt, dass Ergebnis nicht mehr so stark vom Zufall abhéngt.

2.3.3. DBSCAN

Der Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [EKS+96] Algo-
rithmus ist ein dichte-basierter Algorithmus. Dieser Algorithmus versucht Punkte, die in einer
bestimmten Region eine hohe Dichte aufweisen, zu einem Cluster zusammenzufassen. Dabei
muss ein Cluster eine bestimmte Anzahl von Punkten haben, die vorher festgelegt werden muss.
Sollte hingegen eine Region ein niedrige Dichte haben, ist das ein Anzeichen fiir Ausreifler.
Der Radius des Bereiches, in dem untersucht wird wie viele Punkte in diesem Bereich liegen
muss ebenfalls vorher festgelegt werden. Im DBSCAN Kontext werden Ausreifier auch als
Noise bezeichnet, weshalb diese Bezeichnung hier tibernommen wird. Die Menge der Noise im
DBSCAN Kontext wird in Definition 2.3.7 formal definiert. Da der DBSCAN dichte-basiert ist
und nicht zentroid-basiert, kann er willkiirliche geformte Cluster erkennen. Um den Algorith-
mus formulieren zu kénnen, werden zunachst notwendige Definitionen eingefiihrt, die sich an
[EKS+96] orientieren.
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Definitionen

Definition 2.3.1 (Epsilon- Nachbarschaft)
Die Epsilon-Nachbarschaft eines Punktes p, bezeichnet mit N.(p), ist definiert durch

N.(p) ={q € M |d(q,p) < e}, (2.8)

wobei M die Menge der zu clusternden Datenpunkte ist.

Die Epsilon Nachbarschaft eines Punktes beinhaltet somit alle Punkte, die einen Abstand
kleiner oder gleich € zu diesem Punkt haben. Solch ein Punkt wird zudem als Kernobjekt
bezeichnet, falls die e-Nachbarschaft des Punktes mindestens min Pts Punkte enthilt. Formal
ausgedriickt bedeutet das:

Definition 2.3.2 (Kernobjekt)
Ein Punkt p heifSt Kernobjekt, falls

|N:(p)| > MinPts. (2.9)
Dabei bezeichnet MinPts die minimale Anzahl an Punkten, die in einem Cluster liegen miissen.

Definition 2.3.3 (Direkt dichte-erreichbar)
Ein Punkt p heif$t direkt dichte-erreichbar von einem Punkt q falls

1. p € N(q)
2. q ist ein Kernobjekt

Dabei bezeichnet MinPts die minimale Anzahl an Punkten, die in einem Cluster liegen miissen.

Definition 2.3.4 (dichte-erreichbar)
Ein Punkt p heif3t dichte-erreichbar von einem Punkt q, falls es eine Sequenz von Punkten p =
D1, D2, -, Pi = q gibt, so dass p; direkt dichte-erreichbar ist vonp; 1 ¥Vl =1,... i — 1.

Definition 2.3.5 (dichte-verbunden)
Zwei Punkte p und q heifSen dichte-verbunden, falls es einen Punkt r gibt, so dass p dichte-erreichbar
ist von r und q dichte-erreichbar ist von r.

Da die Definition von dichte-erreichbar auf der Definition von direkt dichte-erreichbar aufbaut,
ist jeder Punkt der direkt-dichte erreichbar ist auch dichte-erreichbar, allerdings nicht umge-
kehrt. Es ist sogar so, dass dichte-erreichbar die transitive Hiille von direkt-dichte erreichbar
ist. Das bedeutet, dass alle Punkte, die nur Uiber die Transitivitit in der direkt dichte-erreichbar
Relation zueinander stehen, nicht aber direkt in Relation zueinander, stehen trotzdem direkt in
Relation zueinander beziiglich der dichte-erreichbar Relation. Konkret bedeutet das, wenn p
und ¢ direkt dichte-erreichbar sind und ¢ und r direkt dichte-erreichbar sind, dann miissen p
und r nicht zwangslaufig direkt dichte-erreichbar sein. Allerdings sind p und r dann dichte-
erreichbar. Des weiteren ist direkt-dichte erreichbar asymmetrisch. Dichte-Erreichbarkeit
wiederum ist symmetrisch. Dies soll im Folgenden durch ein Beispiel verdeutlicht werden.
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Abbildung 2.4.: Beispiel zur Verdeutlichung von direkt dichte-erreichbar, dichte-erreichbar
und dichte-verbunden

Beispiel In Abbildung 2.4 wird ein Beispiel zur Verdeutlichung der Definitionen gegeben.
Der Parameter € wird durch die roten Kreise gegeben. Diese stellen die e-Umgebung eines
Punktes dar. Fiir dieses Beispiel ist MinPts = 3. In (a) ist p direkt dichte-erreichbar von ¢, da
p € N.(q) und |N.(q)| = 4 > MinPts. Allerdings ist ¢ nicht direkt dichte-erreichbar von p.
In (b) ist ein Beispiel fiir die Dichte-Erreichbarkeit gegeben. Dabei ist r dichte-erreichbar von
q, weil p direkt dichte-erreichbar ist von g und r dichte-erreichbar ist von p. In der Abbildung
(c) sind p und ¢ dichte-verbunden, da sowohl p, als auch ¢ dichte-erreichbar sind von 7.

Ein dichtebasiertes Cluster kann dann wie in Definition 2.3.6 definiert werden.

Definition 2.3.6 (Cluster)
Sei M eine Menge von Datenpunkten. Ein Cluster ) ## C' C M erfiillt folgende Bedingungen:

1. Vp,q € M : p € C und q dichte-erreichbar von p, dann ist ¢ € C' (Maximalitdt).
2. Vp,q € C : p und q sind dichte-verbunden (Verbundenbheit).

Aus der Definition Definition 2.3.6 folgt, dass jedes Cluster C' mindestens Min Pts Punkte
enthalten muss. Denn sei p € C, dann existiert ein ¢ € C, sodass p und ¢ dichte-verbunden
sind (Verbundenheit). Allerdings muss ¢ dann mindestens die Kernobjekt Eigenschaft erfiillen,
womit mindestens Min Pts in der Epsilon-Nachbarschaft von ¢ liegen. Diese Punkte sind alle
(direkt) dichte-erreichbar von ¢ und somit auch in C' (Maximalitat).

Noise kann jetzt als Menge von Punkten definiert werden, die zu keinem Cluster gehoren.

Definition 2.3.7 (Noise)
Sei M eine Menge von Datenpunkten und C; C M,v = 1,..., k die zugehorigen Cluster. Dann
ist

Noise={pe M |Vi=1,....k: p¢ C; } (2.10)

Da die Definitionen eingefiihrt sind, kann der Algorithmus beschrieben werden. Dieser wird
in Algorithmus 2.2 in Pseudocode dargestellt. Zunéchst sind die clusterId’s aller Punkte auf
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UNCLASSIFIED gesetzt. Dann wird mit einem zufalligen Punkt p begonnen. Fiir diesen Punkt
p wird dann die Funktion expandCluster in Zeile 4 aufgerufen. In dieser Funktion werden
zunichst alle Punkte gesucht, die in N, (p) liegen und in der Menge seeds gespeichert. In Zeile
14 wird gepriift, ob es sich bei dem Punkt um ein Kernobjekt handelt. Falls nicht wird der
Punkt als Noise identifiziert und es wird false zuriickgegeben. Dadurch wird die clusterld
nicht erhoht, was bedeutet, dass kein neues Cluster entsteht. Sollte der Punkt jedoch ein
Kernpunkt sein, entsteht ein neues Cluster, welches mindestens die aktuellen Punkte aus der
Menge seeds enthalt. Aus diesem Grund wird in Zeile 19-21 die clusterld aller Punkte aus der
Menge seeds auf die momentane clusterld gesetzt. Ab Zeile 24 wird dann fiir jeden Punkt
aus der Menge seeds, aufler den Punkt p, der an die Funktion ibergeben wurde, geschaut,
welcher der Punkte ein Kernobjekt ist. Sollte einer dieser Punkte ein Kernobjekt sein, wird
seine clusterld auf die momentane clusterld gesetzt (Zeile 32). Hat Punkt zudem davor noch die
clusterld UNCLASSIFIED gehabt haben, dann wird er zu der Menge seeds hinzugefiigt (Zeile
29 - 31). Sobald die Menge seeds leer wird, wird die while-Schleife verlassen und es wird true
zuriickgegeben. Darauthin wird die clusterld in der Funktion DBSCAN um eins erhoht (Zeile
5), da ein neues Cluster entstanden ist. Dies wird dann fiir jeden Punkt aus der Datenmenge
points wiederholt.

Nach Definition 2.3.6 kann es passieren, dass zwei Cluster, die sich sehr nahe sind, zu ei-
nem Cluster verschmolzen werden. Daher wird der Abstand zwischen zwei Clustern C', C5
als d(Cy,Cy) = min{d(p,q) | p € C1, q¢ € Cy} definiert. Die Zwei Cluster C, C; sollen
anschlieSend verschmolzen werden, falls d(C, Cs) < €.

Da der Algorithmus dichte-basiert ist, ist es mit ihm moglich willkiirlich geformte Cluster zu
erkennen. Hinzu kommt, dass das Ergebnis des Algorithmus nicht durch Ausreifer verzerrt
wird, da er Ausreifler behandelt. Anders als beim K-means muss vor der Ausfithrung des
Algorithmus die Anzahl der Cluster nicht vorher bekannt sein.

Einschrankungen

Ein Nachteil den DBSCAN gegeniiber dem K-means hat, ist, dass die Laufzeit von DBSCAN bei
einer naiven Implementierung O(n?) betrigt. Wird eine raumliche Indexstruktur (R*-Baum)
benutzt, dann kann die Komplexitat auf O(n logn) verbessert werden, was allerdings immer
noch schlechter wire als beim K-means. Dadurch wére der Algorithmus bei sehr grof3en
Mengen nicht die ideale Wahl. Hinzu kommt, dass der Parameter € (sollte er einmal gesetzt
worden sein) fest ist. Das bedeutet, dass Cluster, die eine unterschiedliche Dichte aufweisen
nicht erkannt werden konnen. Ein weiterer Punkt sind die Parameter des Algorithmus. Zum
einen sind zwei Parameter, die bestimmt werden miussen und zum anderen beeinflusst die
Wahl der Parameter den Algorithmus sehr stark. Wird das Epsilon beispielsweise zu grof3
gewahlt erhalt man unter Umstédnden nur ein Cluster. Wird es zu klein gew4hlt, ist es moglich,
dass kein Cluster entsteht. Das gleiche Problem erhilt man auch mit den Min Points. Um
dem entgegen zu wirken, kann eine Heuristik verwendet werden. Diese wird im Folgenden
erlautert.
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2. Grundlagen und verwandte Arbeiten

Algorithmus 2.2 DBSCAN Algorithmus

1: procedure DBSCAN(eps, MinPts, points)

2 clusterld < 0

3 for all p € points do

4 if ExPANDCLUSTER(eps, MinPts,clusterld, p, points) then
5: clusterld < clusterld + 1

6 end if

7 end for

8: end procedure

9

10: procedure EXPANDCLUSTER(eps, MinPts,clusterld currentPoint, points)
11: UNCALSSIFIED <+ -1
12: NOISE < -2

13: seeds <— epsNeighbourhood(currentPoint, eps)
14: if |seeds| < MinPts then

15: currentPoint.setClusterId(NOISE)

16: return false

17: end if

18:

19: for all seed € seeds do

20: seed.setClusterId(clusterId)

21: end for

22:

23: seeds <+ seeds \ {currentPoint}

24: while seceds # () do

25: p < seeds.getFirstPoint()

26: result <— epsNeighbourhood(p, eps)
27: if |result| > MinPts then

28: for all point € result do

29: if point.clusterld == UNCLASSIFIED then
30: seeds < seeds U {point}
31: end if

32: point.setClusterlId(clusterId)
33: end for

34: end if

35: seeds < seeds \ {p}

36: end while

37: return true

38: end procedure
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2.3. Clustering-Algorithmen

Eigenschaft K-means/++ DBSCAN
Komplexitat O(n-k-t) O(n?)

e: Dichte Parameter
Parameter k: Anzahl der Cluster MinPts: Mindestanzahl Punkte

Erkennbare Formen von Clustern
Ausreiflerbehandlung

Cluster Kriterium

Sphérische Cluster
Nein

Quadratische Fehlerfunktion

in einem Cluster
Willkiirliche Formen

Ja

Verschmelze Punkte die
dichte-erreichbar sind zu

einem Cluser
Abhiangig von Reihenfolge Initialisierung der Zentroide
der Datenpunkte von Reihenfolge der Daten abhéngig
Typ der Attribute Numerisch Numerisch

Nein

Tabelle 2.1.: Vergleich der Algorithmen K-means, K-means++ und DBSCAN

Wahl der Parameter

Fiir die Wahl der Parameter des DBSCAN Algorithmus gibt es eine einfache Heuristik. Diese
benutzt dazu den k-Nearest-Neighbour' Algorithmus. Dazu muss zunéchst der Parameter k
bestimmt werden. In der Literatur wird vorgeschlagen, diesen mit £k = 2 - d — 1 zu wahlen,
wobei d die Dimension der Datenpunkte ist. Der Min Pts Parameter wird auf & gesetzt. Fiir
die Bestimmung von ¢ wird zunéchst fiir jeden Punkt der Abstand zum £ nachsten Nachbarn
berechnet. Alle Distanzen werden dann absteigend sortiert in einem Graphen ausgegeben.
Anschliefend wird der erste Punkt bestimmt, bei dem ein ,Ellenbogenpunkt® zu erkennen ist.
Sei dazu zunichst F}, : M — R eine Funktion mit

Fi(p) = d(p, q) wobei g, der k nachste Nachbar von p ist.

AnschlieSend wird F, (M), wobei M die Menge der Datenpunkte ist, in absteigender Ordnung
sortiert und in einem zwei-zweidimensionalen Graph dargestellt. Danach wird ¢ = Fj(2o)
gesetzt, wobei 2, der erste Ellenbogenpunkt des Graphen von Fj. Der einfachste Weg diesen
Ellenbogenpunkt zu bestimmen ist, indem der Graph von Fj, einem Benutzer gezeigt wird und
dieser den Punkt anschliefend abliest [Est09].

Abschlieflend wird in Tabelle 2.1 ein Vergleich der Algorithmen gegeben. Dabei sind K-means
und K-means++ in einer Spalte, da es zwischen den beiden keine Unterschiede, bis auf die
Initialisierung gibt.

http://scholarpedia.org/article/K-nearest_neighbor
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2. Grundlagen und verwandte Arbeiten

2.4. Evaluationsmetriken

Fir die Bewertung des Ergebnisses eines Clustering-Algorithmus wird normalerweise ein
menschlicher Experte herangezogen. Dieser braucht geeignete Metriken, um das Ergebnis zu
interpretieren. Dabei gibt es eine Vielzahl von Metriken, die benutzt werden kénnen und es
gibt auch nicht immer die ideale Metrik, die benutzt wird. Denn je nach Fokus des Analysten
und Ziel der Analyse konnen die herangezogen Metriken von Fall zu Fall variieren. Daher ist
auch trotz der Metriken ein menschlicher Experte zur Auswertung der Analyse notwendig.

2.4.1. Klassifikation der Metriken

Es gibt drei Arten von Metriken, die unterschieden werden. Die internen Metriken, die externen
Metriken und die relativen Metriken [JD88].

Interne Metriken

Die internen Metriken haben zum Ziel, Aussagen iiber die interne Struktur der Cluster zu
treffen. Dabei wird versucht die Kompaktheit, die Separation oder beides zu beurteilen. Die
Kompaktheit beschreibt wie grof3 die intra-Cluster Ahnlichkeit ist, also wie grof3 die Abstén-
de der Punkte innerhalb eines Clusters sind. Es gibt dabei mehrere Moglichkeiten diese zu
berechnen. Im Folgenden wird die Kompaktheit als Abstand der Punkte eines Clusters zum
zugehorigen Zentroid gewéhlt.

Definition 2.4.1 (Kompaktheit)
Sei C'={C1,...,Cy} eine Menge von Clustern. Dann ist die Kompaktheit definiert als

k
Kompaktheit(C) =" > d(cen;, m;) (2.11)

i=1m;eC;

Die Separation hingegen beschreibt die inter-Cluster Ahnlichkeit, also wie grof8 der Abstand
zwischen den Clustern ist. Dabei gibt es auch hier mehrere Moglichkeiten diese zu berechnen.
In dieser Arbeit werden die Abstdnde der Zentroide der Cluster als Mafy genommen.

Definition 2.4.2 (Separation)
SeiC'={C},...,Cy} eine Menge von Clustern. Dann ist die Separation von C' definiert als

ko k
Separation(C) =YY d(cen;, cen;) (2.12)

i=1j=1

Dabei beschreibt cen; jeweils den Zentroid des Clusters ;.
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2.4. Evaluationsmetriken

Index Name Formel

Rand Index R = GTJr[d

Jaccard Koeffizient J=- +‘Z e

Folkes und Mallows Index FM = aL—i-b * a%c
Precision = ﬁ_c

Recall Rec = ai y 1
F-Measure F=2x T3D)

Tabelle 2.2.: Ubersicht iiber externe Metriken (aus [GMW07])

Externe Metriken

Bei externen Metriken werden Daten zur Evaluation benutzt, die nicht fiir das Clustering be-
nutzt wurden. Das heif3t, dass externe Daten verwendet werden. Dafiir werden vor-klassifizierte
Ergebnisse gebraucht. Anschlieffend werden die vor-klassifizierten Ergebnisse mit den Ergeb-
nissen des Algorithmus verglichen.

Zunichst bezeichnen wir mit C' = {C}, ..., C,} die Menge der Cluster, die nach Ausfithrung
eines Clustering Algorithmus entstehen. Mit P = { P, ..., P} wird die Partition bezeichnet,
mit der C' verglichen werden soll. Anschlieend werden Variablen a, b, c und d eingefiihrt, die
fiir einige externe Metriken benutzt werden.

« a: Bezeichnet die Anzahl der Paare von Punkten, die im selben Cluster in C, als auch im
selben Cluster in P liegen (True Positiv).

« b: Bezeichnet die Anzahl der Paare von Punkten, die im selben Cluster in C' liegen, aber in
P in verschiedenen Clustern liegen (True negativ).

« c: Ist das Gegenstiick zu b. Die Anzahl der Punkte von Paaren, die im selben Cluster in C
sind, allerdings in P in verschiedenen Clustern (False Positiv).

« d: Anzahl der Paare von Punkten, wo die Punkte in verschieden Clustern aus C' liegen, als
auch in P (False Negativ).

Sei M die Anzahl der Paare, die aus den n Datenpunkten gebildet werden kénnen. Dann ist

(n—1)

M:a+b+c+d:n 5 (2.13)

Aufbauend darauf werden in Tabelle 2.2 einige bekannte externe Metriken dargestellt.
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2. Grundlagen und verwandte Arbeiten

Algorithmus 2.3 Algorithmus zur Bestimmung der Parameter

1: for n. = n,,in to Ny,e, do

2 fori=1 to rdo

3 P < Wahle Parameterkonfiguration aus

4 C' < Fithre Algorithmus mit den Parametern P aus
5: q; < Berechne Metrik fir C'

6 end for

7 Wihle besten Wert aus {q1, . .., ¢} aus.

8: end for

Relative Metriken

Das Ziel der relativen Metriken, ist, eine geeignete Parameterkonfigurationen fiir die Algo-
rithmen zu finden. Es werden mehrere Durchlaufe der Algorithmen mit unterschiedlichen
Parametern durchgefithrt. Am Ende werden dann die Ergebnisse anhand einer geeigneten
Metrik bewertet und so das Ergebnis, welches den besten Wert der Metrik aufweist, ausgewahlt.
Dazu wird meist eine interne Metrik benutzt.

Ist die Anzahl der Cluster ein Parameter des Algorithmus, dann kann der in Algorithmus 2.3
gezeigte Pseudocode zur Bestimmung der Parameter genutzt werden. Dabei bezeichnet n. den
Parameter der Anzahl der Cluster. Des Weiteren muss der Algorithmus, der minimale und der
maximale Wert der fiir die Anzahl der Cluster benutzt wird, so wie die Anzahl der Durchlaufe
r als Eingabe erhalten.

Als Beispiel konnte r» = 10 Durchlaufe gewahlt werden und n,,;,, = 1 und n,,,, = 50 gesetzt
werden. Als Metrik konnte die Separation oder die Kompaktheit herangezogen werden.

2.5. Verwandte Arbeiten

Fir dem K-means Algorithmus wurden zahlreiche Erweiterungen vorgestellt. Die meisten
davon versuchen entweder, die Initialisierung der Zentroide zu optimieren [CKV13] oder
durch zusiatzliche Heuristiken, wie zum Beispiel durch eine minimale/ maximale Anzahl der
Cluster [Jail0]. Des Weiteren wurden Optimierungen vorgenommen in dem die Anzahl der
Vergleiche, die beim K-means gemacht werden zu reduzieren [Phi02] oder einen kd-Baum
als Datenstruktur zu verwenden, um so eine effizientere Berechnung zu ermoglichen [PM99].
Steinbach et al. [STK+03] schlagen den bisecting K-means vor, der eine hierarchische Version
des K-means darstellt. Jain [Jail0] geben eine Ubersicht tiber weitere bekannte Erweiterungen
des K-means.

Mexicano et al. [MRC+16] schlagen einen Ansatz vor, der ebenfalls versucht mit einer Heuristik
die Ausfithrungszeit des K-means zu reduzieren. Die early stop heuristic geht davon aus, dass
die erste Verschiebung der Zentroiden, die nach der Initialisierung stattfindet am gréfiten
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2.5. Verwandte Arbeiten

ist. Ausgehend davon wird dieser Wert als Vergleichswert genommen und wird mit D4,
bezeichnet. Terminiert wird anschliefSend, sobald die Verschiebung der Zentroide kleiner oder
gleich 5% von D,,,, betragt. Fir diesen Ansatz konnte eine Reduktion der Ausfithrungszeit
von bis zu 87% mit einem Qualitdtsverlust von nur 2,46% erreicht werden.

In dieser Arbeit wird ebenfalls versucht ein Konvergenzkriterium zu finden, das auf geeigneten
Metriken basiert. Dazu werden geeignete Metriken untersucht und ausgewahlt. Allerdings wird
ein Konzept entwickelt, bei dem die Metriken auf die Zwischenberechnungen des K-means
zu greifen, um so eine effizientere Berechnung zu ermdglichen. Es sollen zudem stabilere
Ergebnisse werden, als dies bei Mexicano et al. [MRC+16] der Fall war. Hinzu kommt, dass
diese Metriken zudem dazu genutzt werden, um Zeitpunkte fiir eine Visualisierung von Zwi-
schenergebnissen zu finden.
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3. Konzept zur Berechnung der
Metriken in Teilschritten

In diesem Kapitel wird ein Konzept fiir eine effiziente Berechnung der Metriken vorgestellt.
Dazu werden in Abschnitt 3.1 Anforderungen an die Klassen von Metriken gestellt und die
Klasse, die die Anforderungen am ehesten erfillt, ausgewahlt. Anschliefend werden kon-
krete Metriken dieser Klasse vorgestellt. In Abschnitt 3.3 werden dann Optimierungsansitze
vorgestellt, um so eine effizientere Berechnung zu erméglichen.

3.1. Anforderungen

In diesem Abschnitt wird eine Klasse von Metriken ausgewéhlt, die weiter untersucht wird.
Um eine geeignete Klasse auszuwéhlen, werden erst Kriterien benétigt, um die Klassen von
Metriken miteinander vergleichen zu kénnen. Dazu werden Anforderungen an die Metriken
gestellt. AnschlieSend wird verglichen welche Klasse der Metriken die Anforderungen am
ehesten erfiillt und diese wird dann weitergehend untersucht. Die Anforderungen, die aufgrund
der Ziele an die Metriken gestellt werden, sind:

Eignung fiir groBe Datenmengen (A1) Die Berechnung der Metriken sollte fiir grof3e Da-
tenmengen mit moglichst geringer Komplexitidt moglich sein.

Méglichkeit Zwischenergebnisse auszuwerten (A2) Um geeignete Interaktionspunkte
fir eine Visualisierung zu finden, sollten die Metriken leicht interpretierbare Werte
fiir Zwischenergebnisse der Algorithmen liefern.

Auswertung nur anhand der Cluster (A3) Das Ergebnis des Clusterings sollte ohne zusatz-
liche Daten ausgewertet werden konnen.

Entdeckung von neuen Clustern (A4) Sollten durch den Algorithmus Cluster entdeckt
werden, die in vorherigen Durchldufen nicht erkannt wurden, sollten die Metriken das
Ergebnis deswegen nicht schlechter bewerten, nur weil es nicht einem bereits bekannten
Ergebnis entspricht.

Anwendbarkeit auf ausgewahlte Algorithmen (A5) Die Metriken sollten auf die Algorith-
men, die im Fokus dieser Arbeit stehen, anwendbar sein.
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3. Konzept zur Berechnung der Metriken in Teilschritten

Anforderung Interne Metriken Externe Metriken

Al wird nicht erfullt wird nicht erfillt
A2 wird erfullt wird erfiillt
A3 wird erfullt wird nicht erfillt
A4 wird erfullt wird nicht erfillt
A5 wird erfullt wird erfiillt

Tabelle 3.1.: Darstellung der Anforderungen und welche Klasse von Metriken die jeweilige
Anforderung erfiillt

Da die relativen Metriken andere Metriken nutzen, um geeignete Parameter heraus zu finden,
werden nur die internen und die externen Metriken untersucht.

Die Anforderung A1 wird sowohl fiir die externen, als auch fiir die internen Metriken nur unzu-
reichend erfiillt. Da die internen Metriken die Kompaktheit und/oder die Separation betrachten,
miissen dazu die Zentroide berechnet werden. Da fiir die Berechnung der Zentroide alle Punkte
einmal betrachtet werden miissen ergibt sich daraus mindestens eine Laufzeit von O(n). Fir
die externen Metriken muss das Ergebnis der Clustering mit dem des vorklassifizierten Daten-
satzes verglichen werden. Dadurch miissen auch hier alle Punkte einmal betrachtet werden.
Die internen Metriken haben jedoch den Vorteil, dass der K-means beispielsweise die Zentroide
berechnet. Wenn die Metriken auf diese Zentroide zugreifen konnen, betragt die Berechnung
der Zentroide fir die Metriken O(1) statt O(n) ohne, dass dadurch die Berechnungszeit fir
den K-means erhoht wird. Die Anforderung A2 wird fiir beide Metriken erfiillt. Allerdings ist
diese Anforderung eher vom Algorithmus abhangig, als von der Metrik. So ist es fiir den DB-
SCAN eher weniger sinnvoll Zwischenergebnisse auszuwerten, da eventuell noch nicht jeder
Punkt in ein Cluster eingeteilt wurde. Somit waren die Metriken fiir die Zwischenergebnisse
nicht sehr sinnvoll. Die Anforderung A3 wird nur fiir die internen Metriken erfillt, da die
externen Metriken zusitzlich zu dem Ergebnis der Clustering noch einen vor-klassifizierten
Datensatz brauchen. Da dieser mit dem Ergebnis der Clustering verglichen wird, werden neue
Cluster, die bei der Clustering entstehen, aber nicht im vor-klassifizierten Datensatz enthalten
sind, schlechter bewertet. Aus diesem Grund wird auch die Anforderung A4 fiir nicht fiir die
externen Metriken erfiillt. Fiir die internen Metriken hingegen wird die Anforderung erfillt.
Die Anforderung A5 wiederum wird fiir beide Klassen von Metriken erfiillt, da sich beide
grundsatzlich auf die Algorithmen K-means, K-means++ und DBSCAN anwenden lassen.

In Tabelle 3.1 wird zusammengefasst welche Anforderungen die internen und welche die
externen Metriken erfiillen. Die internen Metriken erfiillen dabei 4 der 5 Anforderungen. Fiir
die Anforderung A1l kénnen zudem noch Optimierungen in Anlehnung an den Algorithmus
durchgefiihrt werden. Die externen Metriken hingegen erfiillen 2 der 5 Anforderungen. Aus
diesem Grund werden die internen Metriken fiir die weitere Untersuchung ausgewéhlt.
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3.2. Interne Metriken

3.2. Interne Metriken

In diesem Abschnitt werden einige bekannte interne Metriken vorgestellt, die fiir die Expe-
rimente genutzt werden. Zu jeder Metrik wird auch die Komplexitat fiir die Berechnung der
Metrik mit angegeben, unter der Annahme, dass keine Optimierungen fiir die Berechnung
vorgenommen werden. Wie die Metriken und die Algorithmen angepasst werden kénnen, um
eine effizientere Berechnung zu ermoéglichen, wird in Abschnitt 3.3 eingehender untersucht.
Anschlief3end soll experimentell bestimmt werden, welche der hier vorgestellten Metriken
sich dazu eignen einen Zeitpunkt fiir eine frithzeitige Terminierung der Algorithmen zu finden
und welche sich dafiir eignen, geeignete Zeitpunkte fiir eine Visualisierung zu bestimmen.

Fiir jede Metrik wird in diesem Abschnitt auch vorgestellt wie die Komplexitat zur Berechnung
dieser Metrik aussieht. Dafiir wird davon ausgegangen, dass die Berechnung aller Zentroiden
in O(r - n) moglich ist, wobei r die Dimension der Datenpunkte beschreibt. Ebenso wird
angenommen, dass die Berechnung des Abstands zweier Punkt in O(r) moglich ist. Dadurch
wire die Berechnung der Zentroide in O(r - n) moglich.

In diesem Abschnitt wird mit C' = {CY, ..., C}} eine Menge von Clustern und mit cen; der
Zentroid des Clusters C; bezeichnet. Zudem sein = 2%, |C;| = |M| die Anzahl der Punkte
in der Datenmenge M.

3.2.1. Sum of Squared Errors

Die Sum of Squared Errors (SSE) wurde bereits in Abschnitt 2.3.1 als Fehlerfunktion eingefiihrt,
die der K-means Algorithmus versucht zu minimieren. Sie eignet sich aber auch als interne
Metrik, die die Kompaktheit der Cluster beschreibt. Sie berechnet fiir jedes Cluster den qua-
drierten Abstand der Punkte in diesem Cluster zum Zentroiden des Clusters und summiert
diese Werte dann auf. Berechnen lésst sie sich mit der Formel 3.1.

k
E(C)=>_ > d(m;,cen;)’ (3.1)
i=1m;eC;

Komplexitdt Die Berechnung der Zentroide liegt in O(7 - n) und anschliefend wird fiir jedes
Cluster und jeden Punkt der quadratische Abstand bestimmt. Dies betrigt ebenfalls O(r - n).
Somit ergibt sich insgesamt fiir die gesamte Komplexitat O(2 - r - n) = O(r - n).
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3. Konzept zur Berechnung der Metriken in Teilschritten

3.2.2. Dunn Index

Der Dunn Index (DI) [Dun74] kombiniert die Kompaktheit und die Separation. Dabei wird
der minimale Separationswert ins Verhéltnis zum maximalen Kompaktheitswert gesetzt. Die
Berechnung des Dunn Index wird in Formel 3.2 gegeben.

min{Separation(C;, C;) | C;,C; € C'}
max{ Kompaktheit(C;) | C; € C}

DI(C) = (3.2)

Je hoher der Dunn Index ist, desto besser ist die Qualitat der Cluster. Es konnte festgestellt
werden, dass Rauschen das Ergebnis verzerrt, da er den minimalen Separations- und den
maximalen Kompaktheiswert betrachtet [HBV02]. Bezdek und Pal [BP98] schlagen daher 3
generalisierte Dunn Indizes vor, die robuster gegen Ausreifier sind.

Komplexitat Fir die Kompaktheit und die Separation muss zunéchst der Zentroid berechnet
werden. Die Berechnung aller Zentroiden liegt in O(r-n). Fiir die Separation miissen zusatzlich
noch die Distanzen zwischen allen Paaren von Zentroiden berechnet werden, dies sind @
Paare. Also wiren das zusitzlich noch O(k?) Berechnungen die hinzukommen, wobei jede
dieser Berechnung in O(r) liegt. Insgesamt ergibt sich somit eine Komplexitit von O(r - n +

r-k?) = O(r- (n+ k*) [VCH10].

3.2.3. Silhouetten Koeffizient

Der Silhouetten Koeffizient (SK) [Rou87] versucht eine Aussage tiber die Kompaktheit und die
Separation zu treffen, sowohl fiir einzelne Punkte, als auch fiir Cluster. Dazu sei p ein beliebiger
Punkt aus einem Cluster C'. Mit a wird die durchschnittliche Distanz von p zu den anderen
Punkten innerhalb des Clusters C' bezeichnet. Somit berechnet sich a mit der Formel

a(p) = avg{d(p,p) |p#p' € C} (3.3)

Des weiteren wird b als das Minimum der durchschnittlichen Distanzen von p zu Punkten in
anderen Clustern definiert. Betrachten wir also alle Cluster, dann ist

b(p) = g;gg{avg{d(p,p’) |p e C'}} (3.4)

Die Definition der Silhouette eines Punktes p wird in der Formel 3.5 gegeben.

__b(p) —alp)
SK(p) = maz{a(p),b(p)}

(3.5)

Der Silhouetten-Koeffizient fiir ein Cluster wire dann der Durchschnitt der Summe von s(p)
fiir alle Punkte p aus der Datenmenge. Der Wert des Koeffizienten liegt immer zwischen —1
und 1, wobei ein hoherer Wert fiir eine bessere Qualitat der Cluster steht.
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3.2. Interne Metriken

Komplexitat Fir die Berechnung des Silhouetten-Koeffizienten muss zunéchst die Distanz
fur alle Paare von Punkten berechnet werden. Sind die Punkte im selben Cluster, dann wird
die Distanz fiir die Berechnung von a benutzt. Andernfalls wird sie fiir die Berechnung von
b benutzt. Die Anzahl aller Paare von Punkten ist w Die Berechnung hierfiir liegt in
O(n?) und jede dieser Abstandsberechnung liegt in O(r), womit sich dafiir eine Komplexitt
von O(n? - r) ergibt. Sobald alle Distanzen verfiigbar sind, liegt die Berechnung von b in
O(k - r) fur einen Punkt. Fir alle Punkte wire das somit O(n - k - 7). Da a und b bekannt
sind, liegt die Berechnung von s(p) in O(1). Da dies aber fiir jeden Punkt berechnet werden
muss, kommt eine Laufzeit von O(n) hinzu. Insgesamt ergibt sich somit eine Komplexitit von

O(n2 ‘T‘f‘”‘ k‘ ’["+’)’L) == O(n2 'T), dak S ngllt [VCHIO]

3.2.4. Davies-Bouldin Index

Der Davies-Bouldin Index (DBI) [DB79] misst die Ahnlichkeit zwischen jedem Cluster und
dem Cluster, der ihm am dhnlichsten ist. Dazu wird mit 1?;; der Grad der Ahnlichkeit zwischen
zwei Clustern C; und C; bezeichnet. Dieser basiert auf dem Streuungsgrad und der Unéhn-
lichkeit. Der Streuungsgrad représentiert dabei die Kompaktheit in einem Cluster und wird in
Definition 3.2.1 definiert.

Definition 3.2.1 (Streuungsgrad)
Sei C; ein Cluster, dann ist der Streuungsgrad s; definiert als

5i= 1 > d(x, cen;) (3.6)

Dabei ist k; die Anzahl der Punkte im Cluster C;.

Die Unahnlichkeit hingegen beschreibt die Separation zweier Cluster und wird in Definiti-
on 3.2.2 definiert.

Definition 3.2.2 (Unahnlichkeitsmaf3)
Seien C; und C; zwei Cluster. Dann ist die Undhnlichkeit zwischen C; und C}; definiert als

d;; = d(cen;, cen;) (3.7)

Die Berechnung des Davies-Bouldin Index wird in der Formel 3.8 dargestellt.

1 k

=1

DBI =

R;; kann dabei frei gewahlt werden, muss allerdings folgende Bedingungen erfiillen:
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3. Konzept zur Berechnung der Metriken in Teilschritten

i) Rij >0
ii) Rjj = Rj;
iii) Wenn s; = Ound s; = O dann R;; = 0
iv) Wenn s; > s; und d;; = d;, dann R;; > Ry

V) Wenn Sj = Sk und dij < d;;, dann Rij > Ry

Si+S;
dij *

Ein R;; das die Bedingungen erfiillt, wire R;; =

Desto geringer der Davies-Bouldin Index ist, desto besser ist die Qualitat der Cluster.

Komplexitat Zur Berechnung des Davies-Bouldin Index miissen zunichst die Zentroide fiir
den Streuungsgrad berechnet werden. Diese Berechnung liegt in O(r - n). Sind die Zentroide
bekannt, ist zur Berechnung aller Streuungsgrade ein Aufwand von O(r - n) notig. Fur das
Unéhnlichkeitsmaf} miissen alle Paare von Zentroiden berechnet werden, was einer Komplexitat
von O(r-k?) entspricht. AnschlieBend muss der Term maz;4; R;; berechnet werden, was einem
Aufwand von O(k) entspricht, da die Werte zur Berechnung eines R;; bekannt sind und es
insgesamt k R;;’s gibt, von denen das Maximum bestimmt werden muss. Da diese Berechnung
k-mal ausgefithrt werden muss ist die Komplexitit hierfiir O(k?). Insgesamt ergibt sich somit
fiir die Berechnung des Index eine Komplexitit von O(r - n +17 - k> + k*) = O(r - (n + k?))
[VCH10].

3.2.5. Coggins-Jain Index

Der Coggins-Jain Index (CJ) [C]J85] berechnet fiir jeden Cluster den Quotienten aus Separation
und Kompaktheit und wiahlt dann den minimalen Wert. Der Index berechnet sich wie in Formel
3.9 beschrieben, wobei Separation(C;) = min{Separation(C;, C;) | C; € C}.

CJ(C) = min{ Sep ammn(cﬁ‘) C; € C} (3.9)

Kompaktheit(C;

Ein hoherer Wert des Index bedeutet auch eine bessere Qualitat der Cluster.

Komplexitat Fir die Berechnung des Coggins-Jain Index miissen sowohl fiir die Kompaktheit,
als auch fiir die Separation alle Zentroide berechnet werden, was in O(rn) liegt. Angenommen
es wird ein Cluster betrachtet, dann muss fiir dieses Cluster die Separation zu allen anderen
Clustern berechnet werden. Das sind £ —1 Cluster und da die Zentroide bekannt sind, ware diese
Berechnung in O(k) moglich. Fiir die Kompaktheit, misste der Abstand von allen Punkten zum
Zentroid bestimmt werden, was einem Aufwand von O(r - n) entspricht. Da die Berechnung
fiir die Separation und die Kompaktheit fiir alle Cluster durchgefithrt werden miissen, kommt
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3.3. Optimierungsansatze fir die Berechnung

fiir beide Berechnung der Faktor £ hinzu. Damit ergibt sich insgesamt eine Komplexitdt von
OK*+k-r-n).

3.2.6. Anzahl gedanderter Punkte

Diese Metrik beschreibt die Anzahl der Punkte die ihre Clusterzugehdrigkeit seit der letzten
Iteration verandert haben. Damit ist gemeint, dass es eine Anderung gibt, wenn ein Punkt
seine Clusterzugehorigkeit andert. Das heifft man berechnet die Anderungsrate in dem man
die Anzahl der Punkte nimmt, die ihre Clusterzugehorigkeit seit der letzten Iteration geandert
haben und setzt diese ins Verhaltnis zu der Anzahl aller Punkte.

Sei M = {my, ..., m,} eine Menge an Datenpunkten und sei ¢;(p) fiir i > 0 eine Funktion,
die einem Punkt p sein zugehoriges Cluster in der Iteration ¢ zuordnet. Dann lésst die Anzahl
der gednderten Punkte in der Iteration ¢ mit der Formel Gleichung (3.10) berechnen.

#GP, = [{p € M |ci(p) # cima(p) } (3.10)

Fir den K-means und den K-means++ Algorithmus wird fiir die erste Iteration #GP; = | M|
gesetzt, da in der ersten Iteration alle Punkte zum ersten Mal einem Cluster zugewiesen
werden.

Komplexitat Fiir die Berechnung der Komplexitit der Anzahl der gednderten Punkte, wird
vorausgesetzt, dass es moglich ist, auf die Funktion ¢;(p) und ¢;_1(p) in O(1) zuzugreifen.
Generell ist es nicht moglich auf die Berechnung der letzten Iteration zuzugreifen ohne den
Algorithmus leicht abzuandern. Fiir diesen Fall wird allerdings davon ausgegangen, dass dies
moglich ist, da der Algorithmus in Abschnitt 3.3 entsprechend angepasst wird. Anschlie-
Bend miissen die Funktionen fiir alle Punkte ausgewertet werden. Damit ergibt sich fiir die
Berechnung eine Komplexitat von O(n).

3.3. Optimierungsansatze fur die Berechnung

In diesem Abschnitt werden Optimierungsansitze zur Anpassung der Metriken und Algo-
rithmen untersucht, um so eine effizientere Berechnung der Metriken zu erméglichen. Da
die Metriken in jeder Iteration berechnet werden sollen, ist eine Komplexitit von O(1) oder
maximal O(k) wiinschenswert. Dies wird versucht zu erreichen, in dem die Berechnungen, die
im K-means durchgefiihrt werden gespeichert und fiir die Metriken zur Verfiigung gestellt wer-
den. Dies soll allerdings keine groflen Auswirkungen auf die Laufzeit des Algorithmus haben.
Das bedeutet, dass nur zusitzliche Werte gespeichert oder Berechnungen in konstanter Zeit
hinzugefiigt werden. Im Folgenden werden einige Ansatze vorgestellt, um die Berechnung der
Metriken zu optimieren. In Algorithmus 3.1 wird die Umsetzung der Ansétze dargestellt, wobei
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3. Konzept zur Berechnung der Metriken in Teilschritten

nur die assignCluster() Methode des K-means abgeéndert wurde. Der Rest des Algorithmus ist
wie in Algorithmus 2.1 beschrieben.

Berechnung der Zentroide (OA1) Der erste Ansatz ist, dass die Berechnung der Zentroide

im K-means auch den Metriken zur Verfiigung gestellt wird. Denn die meisten internen
Metriken verwenden auch diese Zentroide zur Berechnung. Dadurch ist es fiir die Me-
triken moglich einen Zentroiden in O(1) zu berechnen, wodurch die Berechnung aller
Zentroiden fur die Metriken in O (k) méglich ist. Dieser Ansatz wurde in Algorithmus 3.1
nicht dargestellt, da dem Cluster ein Feld centroid gegeben wurde, welches dann bei der
Berechnung der Metriken durch eine Methode getCentroid() in einem Cluster abgerufen
werden konnte. Ein Unterschied zur urspriinglichen Berechnung der Metriken ist nicht
zu erwarten, da sich die Berechnung nicht dndert, sondern lediglich die Art und Weise
wie den Metriken der Zentroid zur Verfiigung gestellt wird.

Berechnung der Kompaktheit (OA2) Der zweite Ansatz zielt darauf ab, die Komplexitat

fur die Berechnung der Kompaktheit zu reduzieren. Selbst wenn die Berechnung der
Zentroide in O(k) moglich ist, muss fiir die Kompaktheit trotzdem noch der Abstand
jedes Punktes innerhalb eines Clusters mit dem Zentroiden berechnet werden. Dies ergibt
dann eine Komplexitat von O(kn - 7). Aus diesem Grund wird versucht die Kompaktheit
nicht durch die Distanz vom Zentroiden zu allen Punkten innerhalb eines Clusters zu
bestimmen, sondern nur die Distanz vom Zentroiden zu dem Punkt, der innerhalb des
Clusters liegt, aber am weitesten vom Zentroiden entfernt ist. Dazu muss beim K-means
Algorithmus, wenn die Punkte zu einem Zentroiden zugewiesen werden immer die
Distanz gespeichert werden, wo die Distanz zum Zentroiden am grofiten ist. Dazu wire
eine zuséatzliche Variable im K-means Algorithmus zu speichern und eine zusétzliche
if -Abfrage ware notwendig. Dies wird in Algorithmus 3.1 in den Zeilen 20 - 22 deutlich.
In Zeile 20 wird abgefragt ob der Wert min, der den Abstand vom Punkt zum néachsten
Zentroiden beschreibt, grofier ist, als die momentan gespeicherte maxPointDistance fir
das Cluster. Falls ja wird der maxPointDistance-Wert des Clusters auf den Wert min
gesetzt.

Zusitzlich muss in der Zeile 8 noch der Wert der maxPointDistance eines Clusters auf
0 gesetzt werden, da sonst falschlicherweise der maxPointDistance-Wert der letzten
Iteration grofler ist, als der der jetzigen Iteration, obwohl der Punkt nicht mehr im
Cluster enthalten ist. Der Vorteil dieses Ansatz ist, dass er sich fiir jede Metrik umsetzen
lasst, die die Kompaktheit berechnet. Allerdings ist es dadurch moglich, dass die Metriken
durch diesen Ansatz andere Werte annehmen als durch ihre urspriingliche Berechnung.
Wie stark die Unterschiede sind wird in Abschnitt 5.1 evaluiert.

Berechnung der Anzahl der geanderten Punkte (OA3) Der dritte Ansatz betrifft die An-
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zahl der gednderten Punkte. Dafiir wird im K-means Algorithmus eine zuséatzliche
Variable eingefiihrt, die immer um eins hochgezéhlt wird, falls ein Punkt einem neuen
Cluster zugewiesen wird. Auch hier bleibt die Komplexitat des Algorithmus unveréndert,
da eine zusatzliche Zahlervariable eingefiihrt wird und eine if-Abfrage, ob ein Punkt
einem neuen Cluster zugewiesen wurde. Wenn ja wird der Zihler um eins erhéht. In



3.3. Optimierungsansatze fir die Berechnung

Ansatz Betroffene Metriken Komplexitat Optimierte Komplexitat

OA1 DI CJ, DBL SSE O(n-r) O(k)
OA2 DI CJ, DBL S O(n-r) O(k)
OA3 #GDP, O(n) O(1)
OA4 SSE O(n-r) O(1)

Tabelle 3.2.: Ubersicht der Optimierungsansétze mit den Metriken, die von dem Ansatz betrof-
fen sind, so wie die Komplexitat fiir den optimierten Ansatz und die urspriingliche
Komplexitat

Algorithmus 3.1 wird dies in den Zeilen 16 - 18 verdeutlicht. In Zeile 16 wird abgefragt,
ob das Cluster des Punktes aus der letzten Iteration mit dem neu zugewiesenen Cluster
tibereinstimmt. Falls dies nicht der Fall ist, wird die Variable changedPoints um eins
erhoht (Zeile 17). Dadurch muss die Metrik nur diese Zahlervariable abfragen und durch
die Anzahl aller Punkte teilen, womit die Berechnung dann in O(1) liegt.

Berechnung der SSE (OA4) Der vierte Ansatz betrifft die Sum of Squared Errors. Dazu wird
ausgenutzt, dass wahrend die Punkte einem Zentroid zugeordnet werden, die Distanz
zwischen dem Punkt und seinem zugehorigen Zentroid bestimmt wird. Dieser Wert
muss anschlieBend nur noch quadriert werden. Die notwendigen Schritte werden in
Algorithmus 3.1 in der Zeile 15 verdeutlicht. Dabei wird die sseDistance gespeichert und
der quadrierte Wert des Punktes zu seinem Zentroiden wird addiert. Zusatzlich muss die
sseDistance vor jeder Iteration noch auf 0 gesetzt werden. Durch diesen Ansatz sollte die
SSE nicht von der SSE mit der urspriinglichen Berechnung abweichen, da die Berechnung
dieselbe bleibt. Jedoch wird durch diesen Ansatz die SSE der letzten Iteration berechnet
und nicht der momentanen Iteration. Denn im K-means Algorithmus werden zuerst die
Punkte einem Zentroiden zugeordnet und anschlieflend die Zentroide neu berechnet,
womit sich nach der Neuberechnung der Zentroide auch eine neue SSE ergeben kann.

In Tabelle 3.2 wird eine Ubersicht tiber die Optimierungsansitze gegeben, so wie die jeweilige
Metrik, die von diesem Ansatz betroffen ist. Mit Komplexitat ist die urspringliche Komple-
xitat gemeint, die ohne den Optimierungsansatz notwendig ist. Die optimierte Komplexitat
beschreibt die Komplexitat, falls der Optimierungsansatz fiir die Berechnung der Metriken
genutzt wird.
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3. Konzept zur Berechnung der Metriken in Teilschritten

Algorithmus 3.1 Optimierte AssignCluster Methode

1: procedure ASSIGNCLUSTER
2 min <— o0;
3 nearestCluster <— empty cluster;
4 changedPoints<« 0
5: for all point € points do
6 min < o<;
7 for all cluster € clusters do
8 cluster.setMaxPointDistance(0);
9 distance <— getDistance(point, cluster.getCentroid());
10: if (distance < min) then
11: min < distance;
12: nearestCluster < cluster;
13: end if
14: end for
15:
16: if (point.getCluster() != cluster) then
17: changedPoints < changedPoints + 1; // Umsetzung von OA3
18: end if
19: nearestCluster.addPoint(point);
20: if (min > cluster.maxPointDistance() then
21: cluster.setmaxPointDistance(min); // Umsetzung von OA2
22: end if
23: point.setCluster(cluster);
24: end for

25: end procedure
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4. Experimentelle Umsetzung

In diesem Kapitel wird auf die Umsetzung der Experimente eingegangen. Das Ziel der Ex-
perimente ist, herauszufinden, welche der in Abschnitt 3.2 vorgestellten Metriken sich fiir
einen Zeitpunkt fiir eine frithzeitige Terminierung von Clustering-Algorithmen ohne grofien
Qualitatsverlust eignen. Des Weiteren soll erforscht werden, welche Metriken sich fiir die
Bestimmung von Zeitpunkten zur Visualisierung von Zwischenergebnissen wéahrend der Aus-
fithrung von Clustering-Algorithmen eignen. In Abschnitt 4.1 wird auf den Aufbau und die
Struktur des Prototypen eingegangen. In Abschnitt 4.2 wird erlautert welche Schritte in den
Experimenten durchgefithrt wurden und es wird auf die technischen Details eingegangen, die
zur Umsetzung der Experimente genutzt wurden. Anschliefend werden die Datensétze, die
fiir die Experimente genutzt wurden in Abschnitt 4.3 beschrieben.

Hier kurz die Ziele der Experimente erklaren. Hier auch iwo erwéahnen, dass DBSCAN nicht
gut geeignet fiir die Konvergenz.

4.1. Prototypische Implementierung

In diesem Abschnitt wird auf den Aufbau des Prototypen eingegangen, der im Rahmen dieser
Arbeit entstanden ist. Als Programmiersprache wurde Java genutzt. In Abbildung 4.1 wird
eine Ubersicht tiber die Struktur der Pakete als UML Paketdiagramm gegeben. Im Model Paket
sind die Implementierungen fiir einen Datenpunkt und ein Cluster enthalten. Der Ablauf der
Experimente befindet sich im Paket Evaluation. Dieser wird in Abschnitt 4.2 genauer unter-
sucht. Das Paket Metrics enthélt die Implementierungen der Metriken, die in Abschnitt 3.2
vorgestellt wurden. Jede dieser Metrik erbt von der abstrakten Klasse Metric und tiberschreibt
die Methode calculate, die als Eingabe eine Liste von Clustern bekommt und gibt den Wert der
Metrik als double zuriick. Fiir jede dieser Metrik wird auch immer die Zeit, die die zur Berech-
nung gebraucht wird, festgehalten. Zur Verwaltung der Metriken ist die Klasse MetricHelper
vorhanden. Diese ist als Singleton' implementiert und enthilt eine Map namens metricsMap,
die als Schliissel den Namen einer Metrik enthalt und als Wert eine Instanz der jeweiligen
Metrik-Klasse. Zudem enthailt sie eine Methode calculateAliMetricsWithMeasure, die den Wert
jeder Metrik berechnet und die benétigte Zeit fiir die Berechnung erfasst. Soll eine Metrik
hinzugefiigt werden, dann muss eine Klasse fiir diese Metrik erstellt werden, die von der

'http://campus.murraystate.edu/academic/faculty/wlyle/430/rc008-designpatterns_online.pdf
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4. Experimentelle Umsetzung
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Abbildung 4.1.: UML Paketdiagramm der Pakete des Prototypen

Klasse Metric erbt und die Methode calculate tiberschreibt. AnschlieBend muss eine Instanz
dieser Metrik-Klasse der metricsMap zusammen mit einem passenden Namen hinzugefiigt
werden. Diese Metrik wird dann ohne weitere Schritte in den Experimenten berechnet und in
der graphischen Benutzeroberfliche angezeigt. Allerdings werden die Metriken nur fiir die
Algorithmen K-means und K-means++ berechnet.

Im Algorithms Paket wurden die Clustering-Algorithmen K-means, K-means++ und DBSCAN
implementiert. Diese Algorithmen erben alle von der abstrakten Klasse Algorithm und imple-
mentieren die Methoden nextlteration und run. Die Methode nextlteration gibt das Zwischener-
gebnis der nachsten Iteration des Algorithmus zuriick. Die Methode run fiihrt den Algorithmus
solange aus, bis er terminiert und gibt das Endergebnis des Algorithmus zuriick. Um einen
Algorithmus hinzuzufiigen, muss eine Klasse erstellt werden, die von der Klasse Algorithm
erbt und genau diese beiden Methoden implementiert. Soll dieser Algorithmus auch in der
graphischen Oberfldche ausgew#hlt werden kénnen, muss zunichst ein Button fiir diesen
Algorithmus in der Klasse StartFrame hinzugefiigt werden. Anschlieend muss ein Controller
fur diesen Algorithmus erstellt werden, der von der Klasse Controller erbt. Dieser Controller
muss dann der Klasse StartFrame hinzugefiigt werden. Einen Algorithmus fiir die Experimente
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4.1. Prototypische Implementierung

hinzuzufiigen ist so ohne weiteres nicht moglich, da zunéachst die Wahl der Parameter und
welche Metriken genutzt werden sollen, geklart werden muss.

Im Paket GUI ist die Implementierung der graphischen Benutzeroberfliche enthalten. Diese
wurde als Swing-Anwendung umgesetzt. Fiir die Darstellung der Ergebnisse einer Clustering
in Diagrammen wurde die Open-Sourcce Bibliothek JFreeChart® genutzt. In Abbildung 4.2 ist
ein Beispiel fiir den Startbildschirm nach dem Generieren des Datensatzes ,Gaussian mixture®.
Der Datensatz wurde generiert in dem in der Mentleiste auf ,Generieren” und anschlieflend
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Abbildung 4.2.: Startbildschirm des Prototypen nach dem Generieren des Datensatzes ,,Gaus-
sian mixture®

auf ,Gaussian mixture” geklickt wurde. AnschlieBend kann mittels einer der drei Buttons ein
Algorithmus ausgewahlt werden, der durchgefithrt werden soll. Wird auf den Button next
iteration geklickt, wird die nachste Iteration des Algorithmus ausgefiihrt und das Ergebnis
dieser Iteration angezeigt. Dazu werden auch die Metriken angezeigt, die fiir das Zwischener-
gebnis berechnet wurden. Sollte der Algorithmus terminieren erscheint eine Meldung, dass
der Algorithmus terminiert ist. In Abbildung 4.3 ist ein Beispiel fiir die Visualisierung der
Zwischenergebnisse zusammen mit den ausgewahlten Metriken gegeben. Diese Benutzer-
oberfldche ist nur indirekt Bestandteil der Arbeit, da sie nicht fiir die Experimente genutzt
wurde, sondern nur zur Veranschaulichung der Algorithmen und dessen Zwischenergebnisse
dienen sollte. Die Experimente befinden sich im Paket Evaluation. Dieses wird im Abschnitt 4.2
zusammen mit dem Ablauf der Experimente eingehender erlautert.

2http://www.jfree.org/jfreechart/
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Abbildung 4.3.: Beispiel fiir das Anzeigen eines Zwischenergebnisses fiir den Algorithmus
K-means

4.2. Versuchsaufbau

In diesem Abschnitt wird der Aufbau und der Ablauf der Experimente beschrieben. Die Ex-
perimente befinden sich im Prototypen im Paket Evaluation. Das Ziel der Experimente ist es,
die implementierten Algorithmen auf vorher ausgewéhlten Datensétzen auszufithren. Welche
Datensitze dafiir genutzt wurden, wird in Abschnitt 4.3 beschrieben. Fiir jeden Algorithmus
wurde jede Iteration mit der momentanen Ausfithrungszeit des Algorithmus, der jeweiligen Ite-
ration, so wie den Metriken und deren Berechnungszeit festgehalten. Fiir eine besser Ubersicht
wurden diese Daten in eine CSV-Datei exportiert. Wie so eine Datei nach dem Exportieren
aussieht wird in Abbildung 4.4 dargestellt. Dabei sind die Werte fiir alle Metriken, die in
Abschnitt 3.2 vorgestellt wurden, fiir jede Iteration enthalten zusammen mit der Zeit die die
Berechnung der Metriken mit Hilfe der Optimierungsansatze aus Abschnitt 3.3 benétigt haben.
Da die Algorithmen K-means und K-means++ die Zentroide zufillig initialisieren, werden meh-
rere Durchldufe fiir die Algorithmen durchgefiihrt. Fiir jeden der beiden Algorithmen werden
10 Durchlédufe durchgefiihrt. Fiir jeden Durchlauf wird eine CSV-Datei wie in Abbildung 4.4
erstellt. Dabei wurde in der ersten Spalte die Zeit des Algorithmus zur Zeit der Iteration, die in
der zweiten Spalte steht, festgehalten. Die Spalten daneben enthalten die Werte der Metriken
zur jeweiligen Iteration. Zusatzlich wurde noch fiir jede Metrik die Zeit festgehalten, die fir
ihre Berechnung benétigt wurde. Fiir den K-means und den K-means++ wurden zudem auch
noch unterschiedliche k’s festgelegt, da in der Praxis oft nicht bekannt ist, welches k das
Optimale ist. Als untere Grenze wurde k = 5 gewahlt und als obere Grenze k£ = 50. Zudem
wurden nicht alle k’s zwischen 5 und 50 ausprobiert, sondern immer nur in 5er Schritten.
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4.3. Datenséatze

algorithm time  iter %SSE_i Silhouett( SSE DI %GP_i CJ DBl %SSE_i time Silhouette DI time %GP_i tin CJ time DBl time
12 ms 1 ##### 0,348 2,05E+11 0,582 0,862 0,761 1,03 0 ms 0ms Oms Oms 0ms 3ms
22 ms 2 0512 0,341 1,92E+11 0,557 0,094 0,760 0,98 0 ms 0ms Oms 1ms 0ms 2ms
29 ms 3 0,030 0,302 1,88E+11 0,511 0,048 0,642 0,96 0 ms 0ms Oms 2ms 0ms 2ms
37 ms 4 0015 0309 1,85E+11 0,483 0,034 0,620 0,96 0 ms 0ms Oms Oms 0ms 2ms
43 ms 5 0,020 0,309 1,79E+11 0,522 0,057 0,638 0,86 0 ms 0ms Oms 1ms 0ms 3ms
48 ms 6 0,040 0,303 1,74E+11 0,568 0,044 0,671 0,79 0 ms 0ms Oms Oms 0ms 2ms
56 ms 7 0016 0304 1,73E+11 0,575 0,017 0,684 0,79 O ms 0ms Oms Oms Oms  4ms
62 ms 8 0,004 0287 1,72E+11 0574 0,011 0,695 0,79 O ms 0ms Oms Oms Oms  2ms
68 ms 9 0,004 0271 1,71E+11 0,584 0,018 0,721 0,79 0 ms 0ms Oms Oms Oms 2ms
73 ms 10 0,010 0,250 1,69E+11 0,595 0,023 0,762 0,77 0ms 0ms Oms 1ms Oms  2ms
78 ms 11 0,010 0,227 1,68E+11 0,595 0,020 0,751 0,77 0 ms 0ms Oms Oms Oms  2ms
83 ms 12 0,007 0,226 1,67E+11 0,599 0,020 0,771 0,77 O ms 0ms Oms Oms Oms  2ms
88 ms 13 0,005 0,214 1,66E+11 0,609 0,017 0,751 0,78 0 ms 0ms Oms Oms 0ms 2ms
92 ms 14 0,004 0,203 1,65E+11 0,622 0,017 0,740 0,80 0 ms 0ms 0Oms 0ms 0Oms 2ms
99 ms 15 0,007 0,199 1,63E+11 0,661 0,024 0,786 0,83 O ms 0ms Oms 0ms 0ms 2ms
104 ms 16 0,027 0,214 1,53E+11 0,732 0,052 0,733 0,86 0 ms 0ms Oms 0ms 0ms 2ms
109 ms 17 0,084 0,233 1,42E+11 0,790 0,056 0,678 0,87 0 ms 0ms Oms 0ms 0ms 2ms
115 ms 18 0,050 0,247 1,38E+11 0,826 0,031 0,649 0,89 0 ms 0ms Oms 0ms 0ms 2ms
121 ms 19 0,013 0247 1,37E+11 0,839 0,020 0,629 0,90 0 ms 0ms Oms Oms 0ms 2ms
127 ms 20 0,005 0,246 1,36E+11 0,824 0,013 0,616 0,90 0 ms 0ms Oms Oms 0ms 2ms

Abbildung 4.4.: Beispiel fiir die Darstellung der exportierten Ergebnisse nach einem Durchlauf
des K-means Algorithmus

Der Grund dafiir ist, das wenn die Algorithmen fiir alle k’s von 1 bis 50 ausgefithrt werden
wiirden, ein Algorithmus 10 - 50 = 500 mal ausgefiihrt werden miisste. Dies wiirde jedoch die
Kapazitaten dieser Arbeit sprengen und wére auch nicht praxistauglich.

Ausgefiihrt wurden die Experimente auf einer virtuellen Maschine auf einer OpenStack® Instanz.
Als Betriebssystem wurde Ubuntu 14.04 genutzt mit 16GB Arbeitsspeicher, 8 Kernen und 80GB
Festplattenspeicher.

4.3. Datensatze

In diesem Abschnitt werden die Datensétze beschrieben, die fiir die Evaluation genutzt wurden.
Die Datensitze teilen sich dabei auf in reale und synthetische Datensétze.

4.3.1. Reale Datensatze

Die realen Datensitze stammen aus dem UCI Machine Learning Repository [FA12]. Davon
wurden 5 Datensatze genommen, die unter dem Task Clustering oder Classification zu finden
waren. Datensitze, die unter dem Classification Task zu finden sind, sind dabei ebenfalls fiir
die Experimente geeignet, denn der Unterschied zu den Datensétzen des Task Clustering ist,

Shttps://www.openstack.org/
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4. Experimentelle Umsetzung

Datensatz #Instanzen #Attribute Optimales k Abkiirzung
3D Road Network 434874 4 - 3DRN
Individual Household Electric Power Consumption 2075259 9 - IHEPC
Shuttle (Statlog) 58000 9 7 Shuttle
Online Reatil 541909 8 5 OR

Skin Segmentation 245057 4 2 SKin

Tabelle 4.1.: Reale Datensitze mit der Anzahl der Instanzen, der Anzahl der Attribute und
dem optimalem k (falls vorhanden)

dass zusétzlich noch fiir eine Teilmenge der Daten eine Klassifizierung vorliegt. Dadurch ist
fir diese Datensétze die Anzahl der Cluster bekannt und es kann beispielsweise im spéteren
Verlauf evaluiert werden, wie gut die Ansatze fiir das optimale k sind und wie gut fiir ein eher
ungeeignetes k. Zusétzlich wurde darauf geachtet, dass es sich bei den Attributen nur um
numerische Attribute handelt. Attribute die nicht optimal geeignet sind fiir die behandelten
Clustering-Algorithmen, wie z. B. eine ID oder nicht numerische Attribute wurden entfernt.
Die verwendeten Datensétze mit der zugehorigen Anzahl der Instanzen, der Attribute und
dem optimalem k werden in Tabelle 4.1 dargestellt. Bei zwei dieser Datensitze ist das optimale
k unbekannt. Dies wurde mit einem ,-“ gekennzeichnet. Der Datensatz mit den meisten
Instanzen ist der Individual household electric power consumption Datensatz. Der Datensatz mit
den wenigsten Instanzen ist der Shuttle Datensatz.

4.3.2. Synthetische Datensatze

Fiir die synthetischen Datensétze wurden die unterschiedlichsten Datensatze ausgewahlt. Es
wurde darauf geachtet, dass Datensétze mit einer unterschiedlichen Anzahl an Clustern, mit
spiral-formigen Clustern und Datensatze, die fiir die ausgewahlten Algorithmen geeignet
und ungeeignet sind, vertreten sind. In Tabelle 4.2 werden die ausgewéhlten synthetischen
Datensatze mit der Anzahl der Instanzen, der Attribute, dem optimalem k und der zugehorigen
Referenz dargestellt.

52



4.3. Datenséatze

Datensatz #Instanzen #Attribute Optimalesk Referenz
Al 3000 2 20 [KF02]
A2 5250 2 35 [KF02]
A3 7500 2 50 [KF02]
Aggregation 788 2 7 [GMTO07]
Chainlink 1000 3 2 [Ult05]
Cluto-t4 8000 2 6 [Kar02]
Cluto-t5 8000 2 6 [Kar02]
Cluto-t7 10000 2 9 [KHK99]
Cluto-t8 8000 2 8 [KHK99]
D31 3100 2 31 [VRB02]
Diamond9 3000 2 9 [SCo04]
Engytime 4096 2 2 [U1t05]
R15 600 2 15 [VRB02]
S1 5000 2 15 [FV06]
S2 5000 2 15 [FV06]
S3 5000 2 15 [FV06]
S4 5000 2 15 [FV06]
Spiral 312 2 3 [CY08]
Unbalance 6500 2 8 [RF16]

Tabelle 4.2.: Synthetische Datensétze mit der Anzahl der Instanzen, der Anzahl der Attribute,
dem optimalen k und der dazu gehoérigen Referenz
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5. Evaluation

In diesem Kapitel werden die Ansétze aus Abschnitt 3.3 anhand von mehreren Datensatzen
getestet. In Abschnitt 5.1 werden die untersuchten Metriken evaluiert. Dazu wird geschaut
welche der Metriken sich fiir ein frithzeitiges Terminieren vom K-means Algorithmus eignen
und es wird ein entsprechendes Konvergenzkriterium festgelegt. Des Weiteren wird unter-
sucht, welche Metriken sich dafiir eignen, geeignete Zeitpunkte fiir die Visualisierung von
Zwischenergebnissen zu finden. In Abschnitt 5.2 wird das definierte Konvergenzkriterium
evaluiert. Dafiir wird geschaut wie viel Zeit und Iterationen im Vergleich zum urspriinglichen
Algorithmus eingespart werden konnen, wenn der Algorithmus terminieren wiirde, sobald das
Konvergenzkriterium erreicht wurde, und wie hoch der Qualitatsverlust ist, wenn der Algorith-
mus konvergiert. Die Evaluation der Zeitpunkte fiir die Visualisierung wird in Abschnitt 5.3
vorgenommen. Anschliefend wird in Abschnitt 5.4 evaluiert, wie viele Visualisierungen sich
ergeben, wenn die Algorithmen durch das Konvergenzkriterium frither terminieren.

5.1. Metriken

In diesem Abschnitt werden die ausgewiahlten Metriken evaluiert. Dazu wird zum Einen
untersucht, welche Metriken sich fiir ein Konvergenzkriterium eignen und welche sich dafiir
eignen, um geeignete Zeitpunkte zur Visualisierung von Zwischenergebnissen zu finden. Dazu
werden die in Abschnitt 4.2 beschriebenen Experimente mit den in Abschnitt 4.3 vorgestellten
Datensétzen ausgefiihrt.

Da bis auf die SSE und die #G P, alle Metriken im Bereich zwischen 0 und 1 liegen, werden diese
dahingehend abgeandert, dass fir diese ebenfalls ein Wert zwischen 0 und 1 erreicht wird, um
sie besser mit den anderen Metriken vergleichen zu kénnen. Fiir die SSE wird die Anderung seit
der letzten Iteration in Prozent betrachtet. Die Berechnung wird in Gleichung (5.1) dargestellt.

(SSE;_, — SSE;)
SSE,_,

%SSE; = (5.1)
Dabei bezeichnet S'SFE; die SSE am Ende der Iteration . Da die SSE fiir den K-means und den
K-means++ in jeder Iteration versucht wird zu minimieren, ist die SSE in der nachsten Iteration

immer kleiner als in der vorherigen. Dadurch ist immer ein Wert zwischen 0 und 1 gewahrleistet.
Allerdings ist die %S SE; dadurch nur fiir i > 1 definiert, da die S'S Ey undefiniert ist.
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5. Evaluation

Fur die Anzahl der geédnderten Punkte wird die Anderung in Prozent seit der ersten Iteration
betrachtet, da sich in der ersten Iteration alle Punkte dndern und es somit zumindest keine
grofleren Anderungen geben kann. Dadurch errechnet sich die Prozent der geinderten Punkte
wie in Gleichung (5.2) beschrieben.

(#GP, — #GPFy)
#G Py

NG P; = (5.2)

Zunichst konnte festgestellt werden, dass die Berechnung der Metriken durch die in Ab-
schnitt 3.3 beschrieben Optimierungsansétze sehr gering ist. In Abbildung 5.1 wird der Be-
rechnungsaufwand der Metriken im Verhéltnis zur Ausfithrungszeit des K-means Algorithmus
fir den Realdatensatz Individual Household Electric Power Consumption mit k = 50 dargestellt.
Dazu wurden die Berechnungszeiten fiir jede Iteration der jeweiligen Metrik aufsummiert

1,00E-01
9,00E-02
8,00E-02
7,00E-02
6,00E-02
5,00E-02
4,00E-02
3,00E-02
2,00E-02
1,006-02

1,476-16 2,17E-14 9,18E-15 2,976-14 2,21E-14
0,00E+00

%SSE, SK DI %GP, a

Abbildung 5.1.: Berechnungszeit der Metriken im Verhéltnis zur Ausfithrungszeit des K-
means Algorithmus in Prozent fiir den Individual Household Electric Power
Consumption Datensatz mit £ = 50

und durch die Ausfithrungszeit des Algorithmus geteilt. Zusatzlich wurde dies mit dem Faktor
100 multipliziert um so eine Prozentangabe zu erhalten. Fiir alle Metriken ist zu sehen, dass
die Berechnungszeit deutlich unter 1% im Vergleich zu der Ausfithrungszeit des K-means
liegt. Den groBiten Berechnungsaufwand hat dabei der Davies-Bouldin Index mit 0, 0888%. Die
anderen Metriken weisen sogar einen deutlich geringeren Berechnungsaufwand. Als Néachstes
werden die Verldufe der Metriken wéhrend der Ausfiirhung der Algorithmen betrachtet um so
geeignete Metriken heraus zu finden. In Abbildung 5.2 wird der Verlauf der Metriken fiir den K-
means (a) und den K-means++ (b) Durchlauf dargestellt. Als Datensatz wurde der Realdatensatz
3D Road Network mit k = 5 verwendet. Auf der x-Achse ist die jeweilige Iteration und auf der
y-Achse der Wert der jeweiligen Metrik zu sehen. Fiir diesen Datensatz ist zu erkennen, dass
der Verlauf der Metriken kaum Schwankungen aufweist und die Metriken sich relativ schnell
einem bestimmten Grenzwert annahern. Fiir den K-means sind beim Davies-Bouldin Index
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5.1. Metriken
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— %SSE Sthouesten foefizient Dunn index %GP. ——cogginsdainindse  —— Davies-Bouldin Index

(a) K-means (b) K-means++

Abbildung 5.2.: Verlauf der Metriken wéhrend der Ausfithrung des K-means und des K-
means++ Algorithmus auf dem Datensatz 3D Road Network mit k = 5

leichte Schwankungen im Verlauf zu erkennen. Dies ist jedoch beim K-means++ nicht zu sehen.
Solch ein Verlauf ohne grofle Schwankungen wire fiir ein Konvergenzkriterium wiinschens-
wert, da relativ schnell abgeschétzt werden konnte, gegen welchen Wert die Metrik strebt,
wenn der Algorithmus terminiert. Dies ist besonders bei den Realdatensitzen aufgetreten.
Allerdings war insbesondere fiir die synthetische Datensatze ein anderer Verlauf der Metriken
zu beobachten, wie Abbildung 5.3 zeigt. In dieser Abbildung ist der Verlauf der Metriken fiir

"  %GP, Sihouetten Koeffizient Dunn Index Coggins-lain Index  ———Davies-Bouldin Index
(a) K-means (b) K-means++

Abbildung 5.3.: Verlauf der Metriken wahrend der Ausfithrung des K-means und des K-
means++ Algorithmus auf dem Datensatz A1 mit k£ = 5

die Algorithmen auf dem Datensatz A1 mit £ = 5 zu sehen. Dabei ist zu erkennen, dass der
Verlauf der Metriken, im Vergleich zu Abbildung 5.2, grofiere Schwankungen aufweist. Zu
Beginn der Algorithmen sind diese Schwankungen am deutlichsten zu erkennen. Dabei sind
sowohl Schwankungen nach oben als auch nach unten zu erkennen, was die Einschatzung
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5. Evaluation

deutlich erschwert, da nicht einmal ersichtlich ist, in welche Richtung sich diese Metriken
bewegen. Dies ist insbesondere beim Davis-Bouldin Index, beim Coggins-Jain Index und beim
Dunn Index der Fall. Der Silhouetten-Koeffizient weist kleinere Schwankungen auf als die
vorher genannten Metriken. Fiir den K-means++ hat der Silhouetten-Koeffizient sogar einen
monoton fallenden Verlauf. Allerdings ist dies nicht der gewiinschte Verlauf der Metrik, da dies
bedeuten wiirde, dass die Qualitét der Cluster im Laufe des Algorithmus schlechter wird. Hinzu
kommt, dass es auch Durchlaufe gab, bei denen der Silhouetten-Koeffizient angestiegen ist. Ein
Grund hierfir konnte der in Abschnitt 3.3 beschriebene Optimierungsansatz OA2 sein, welcher
die Kompaktheit durch den Abstand des Punktes mit der grofiten Distanz zum Zentroiden
beschreibt. Denn die erwahnten Metriken sind alle von diesem Ansatz betroffen. Allerdings ist
eine Berechnung der Metriken ohne diesen Optimierungsansatz nicht erstrebenswert, da die
Berechnung der Metriken sonst in mindestens O(n) liegt, womit die Berechnung der Metriken
in einer Iteration fast so hoch ist, wie die Berechnung fiir einen kompletten Durchlauf des
Algorithmus. Fiir die %S5 S E; und die %G P, ist zu erkennen, dass diese am Anfang relativ stark
abfallen und sich dann im Bereich um die 0 herum bewegen. Dabei sind zwar auch Ausreif3er
nach oben zu erkennen, allerdings sind diese nicht so gravierend. Zudem waren die Verlaufe fiir
die %SSFE; und die %G P, fir alle Datensatze dhnlich wie in Abbildung 5.2 und Abbildung 5.3
dargestellt.

Aus diesem Grund, weil sich der Verlauf am ehesten abschatzen lasst, haben sich diese beiden
Metriken als am Geeignetsten fiir ein Konvergenzkriterium herausgestellt. Wiirde die %G P,
alleine als Konvergenzkriterium herangezogen werden, dann wiirde nur eine Aussage iiber die
Anderung der Punkte getroffen werden, nicht aber iiber die Qualitat. Denn es ist moglich, dass
zwar wenige Punkte ihre Clusterzugehorigkeit andern, dies jedoch einen grof3en Einfluss auf
die Qualitat hat. In Abbildung 5.4 wird dies verdeutlicht. Dabei ist der Wert der %S S E; und der
%G P; in Prozent gegeben. Die %G P; féllt in der Abbildung zwar monoton, die %S SE; jedoch
weist besonders zu Beginn noch grofiere Schwankungen auf. Auf der anderen Seite wiederum
ist ein Verlauf wie in Abbildung 5.5 moglich. Dabei fillt die %S S E; stark zu Beginn sehr stark
und die %G P; schwankt sehr stark. Zudem ist die %SSE; bereits nach Iteration 6 deutlich
unter 1%. Allerdings steigt sie danach auch wieder (Iteration 9 - 13). Die %G P; hingegen
weist zu diesem Zeitpunkt noch starke Schwankungen auf und féllt erst nach der Iteration
12 unter 10%. Wiirde nur die %S SE; als Konvergenzkriterium gew#hlt werden, wiirde der
Algorithmus bereits vor dem Wiederanstieg der %S5 S E; terminieren, wodurch eine grofiere
Qualitatsanderung verloren geht. Der erstgenannte Fall tritt zwar 6fters auf, sollte jedoch der
andere Fall auftreten, wire auch dies durch eine Kombination der beiden Metriken abgedeckt.
Als Konvergenzkriterium wurde somit eine Kombination aus diesen beiden Metriken festgelegt.
Sobald diese Metriken einen bestimmten Schwellenwert unterschreiten, sollen die Algorithmen
terminieren. Dies bedeutet, dass die Algorithmen terminieren, wenn die erste Iteration ¢ erreicht
ist, fiir die die Gleichung (5.3) erfiillt ist.

(BSSE; <e1) N(NGP; < &) (5.3)

Fir die Bestimmung von geeigneten Zeitpunkten fiir die Visualisierung von Zwischener-
gebnissen sind diese Metriken ebenfalls gut geeignet, da sie auch mit angeben wie viel sich
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5.2. Konvergenzkriterien
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Abbildung 5.4.: Verlauf der %SSFE; und der %G P; in Prozent wiahrend der Ausfithrung des
K-means Algorithmus auf dem Datensatz Shuttle mit £ = 50

geandert hat. Ahnlich wie beim Konvergenzkriterium wird ein Schwellenwert gesetzt und
sobald dieser iiberschritten wird, stellt dies ein Zeitpunkt fiir eine Visualisierung dar. Anders
als beim Konvergenzkriterium werden beide Metriken separat behandelt und es wird nicht
geschaut ob in jeder Iteration der Schwellenwert iiberschritten wird, sondern es wird die
Summe der jeweiligen Metrik berechnet, bis dieser Schwellenwert tiberschritten wird. Wird
dieser Schwellenwert tiberschritten, dann wird die Summe auf 0 gesetzt und es wird wieder
auf die gleiche Weise geschaut wann die Summe der jeweiligen Metrik den Schwellenwert
tiberschreitet. Zur Verdeutlichung wird dies in Algorithmus 5.1 fiir die %G P; in Pseudocode
dargestellt. Dabei ist o der Schwellenwert der erreicht werden soll und sum die beschriebene
Summe. Fir die %S SE; ist die Vorgehensweise analog dazu.

Die Schwellenwerte €1, €5 und o werden im spateren Verlauf experimentell bestimmt und
evaluiert.

5.2. Konvergenzkriterien

In diesem Abschnitt soll evaluiert werden, wie gut das Konvergenzkriterium (vgl. (5.3)) geeignet
ist. Dazu werden die Ergebnisse, die anhand der Datensétze gemacht wurden, bewertet. Zuvor
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5. Evaluation

Algorithmus 5.1 Pseudocode fiir die Bestimmung von geeigneten Zeitpunkten fiir eine Vi-
sualisierung fiir einen Schwellenwert «

1: sum <0
2: numberO fVisualisations < 0
3. while !algorithm.isFinished do
4: // Fihre néchste Iteration des Algorithmus aus
sum <— sum + algorithm.get PercentO fChangedPoints()
if sum > o then
visualize()
sum <— 0
numberO fVisualisations <— numberO fVisualisations + 1
10: end if
11: el
12: end while

Y 2 3T

werden allerdings erst die Schwellenwerte fiir das Konvergenzkriterium in Abschnitt 5.2.1 be-
stimmt. Anschlieend wird das Konvergenzkriterium anhand der Ergebnisse in Abschnitt 5.2.2
evaluiert. In Abschnitt 5.2.3 werden kritische Félle, die sich wéhrend der Bewertung ergeben
haben, genauer untersucht und es wird nach den Ursachen geforscht.
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Abbildung 5.5.: Verlauf der %.S5SFE; und der %G P; in Prozent wahrend der Ausfithrung des
K-means Algorithmus auf dem Datensatz S4 mit & = 50

60



5.2. Konvergenzkriterien

5.2.1. Bestimmung der Schwellenwerte

Fur die Evaluierung des Konvergenzkriteriums (vgl. Gleichung (5.3)) miissen zunichst die
Parameter £; und £, bestimmt werden. Dazu wurde der Verlauf der Metriken %G P; und %S S E;
eingehender analysiert und geschaut unter welche Werte die Metriken fallen miissen, damit
kein Anstieg im Verlauf mehr zu sehen ist. Wie die Abbildungen 5.4 und 5.5 zeigen, hat sich fiir
die %G P; dabei ein Wert von 10% als gut geeignet herausgestellt, womit £; = 0, 1 gesetzt wurde.
Dies wird aber noch einmal in Abbildung 5.6 verdeutlicht. In dieser Abbildung ist die %.SSFE; zu
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Abbildung 5.6.: Verlauf der %S SE; und der %G P; in Prozent wihrend der Ausfithrung des
K-means++ Algorithmus auf dem Datensatz Online Retail mit k = 50

Beginn deutlich unter 5%. Ab Iteration 7 jedoch fangt sie wieder an zu steigen und weist in der
Folge grofiere Schwankungen auf. In der Iteration 25 steigt sie sogar auf einen Wert tiber 50% an.
Die %G P, hat zwar auch einige Schwankungen im Verlauf bis Iteration 11, jedoch féllt sie auch
erst nach Iteration 11 unter den 10%-Wert. In den folgenden Iterationen hat die %G P, einen
monotonen fallenden Verlauf, allerdings miisste fiir die Konvergenz dann die %S S E; wieder
unter ihren Schwellenwert fallen. Dadurch kann ein grofierer Qualitatsverlust verhindert
werden, da die Terminierung des Algorithmus erst erfolgt, wenn sich die %SSFE; wieder
eingependelt hat. In der Abbildung 5.6 wir allerdings auch deutlich, dass der Schwellenwert
von %SSE; deutlich unter 5% liegen sollte. Denn die %S5 E; fallt in Iteration 19 unter 5%,
steigt danach aber trotzdem auch nochmal an, wihrend die %G P; unter ihrem Schwellenwert
bleibt. Um auch so einen Fall abzudecken wird daher der Schwellenwert von %SSE; auf
1% gesetzt. Also wird €2 = 0, 01 gesetzt. Daher lautet das festgelegte Konvergenzkriterium
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mit festgelegten Schwellenwerten wie in (C, 5.4) beschrieben und wird im Folgenden mit C
bezeichnet.
(%SSE; <0.01) AM(%GP; <0.1) (C, 5.4)

5.2.2. Bewertung anhand der Ergebnisse

Im Folgenden soll evaluiert werden wie gut dieses Kriterium geeignet ist, indem die Qualitat der
Terminierung des Algorithmus mit der Qualitét der fritheren Terminierung des Algorithmus
aufgrund des Konvergenzkriteriums verglichen wird. Dazu wird der Algorithmus ausgefiihrt
und wenn das Konvergenzkriterium C erreicht ist, wird die Qualitat, die Anzahl der Iterationen
und die Ausfithrungszeit des Algorithmus bis zu diesem Zeitpunkt festgehalten. Wenn der
Algorithmus terminiert, weil sich die Zentroide nicht mehr verschieben wird dafiir ebenfalls
die Qualitat, die Anzahl der Iterationen und die Ausfithrungszeit festgehalten. Fir die Qualitat
wird die SSE herangezogen, da diese das Konvergenzkriterium des Standard K-means ist und
gegen ein lokales Minimum konvergiert. Somit ist die SSE zum Zeitpunkt der Terminierung
der bestmogliche Wert der bei einer fritheren Terminierung erreicht werden kann. Fir die
Beschreibung des Qualitatsverlusts wird der relative Qualitdtsverlust herangezogen. Die Formel
zur Berechnung des relativen Qualitatsverlustes ist in (5.5) beschrieben.

SSEqc — SSEg

hE = SSEc

(5.5)

Dabei bezeichnet SSE¢ die SSE zum Zeitpunkt der Terminierung durch das Konvergenzkriteri-
um C und S'S Eg bezeichnet die SSE am Ende der Terminierung durch das Konvergenzkriterium
des Standard K-means, welches im Folgenden mit S bezeichnet wird. Die Versuche wurden wie
in Abschnitt 4.2 beschrieben durchgefiihrt. Es wurde zudem geschaut wo die kleinste, grofite
und der Median der Iterationen liegt bei denen der Algorithmus durch das Konvergenzkri-
terium C terminiert. Falls nicht anders angegeben werden im Folgenden Aussagen tiber den
Median getroffen, da der Median im Gegensatz zum Mittelwert beispielsweise robuster gegen
Ausreifler ist [Dix53].
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Tabelle 5.1.: Einsparung von Iteration und Ausfithrungszeit, so wie Qualitatsverlust und
SS E¢ fir K-means und K-means++ nach der Ausfithrung auf den Realdatensét-
zen fur die Median Durchlaufe der Konvergenz

K-means K-means++

Datensatz k %I %A %E SSEqx %I %A %E SSEqx

IHEPC 5 67,41% 0,15%  6,00E+07 64,93% 52,02% 6,46E+07
IHEPC 10 0,80% 2,29E+07 70,66% 0,02%  2,25E+07
IHEPC 15 69,19% 5,12E+07 76,76% 1,17% 1,32E+07
IHEPC 20 1,13% 1,79E+07 6,62% 1,53E+07
IHEPC 25 0,83% 1,38E+07 3,13%  8,00E+06
IHEPC 30 2,93% 1,59E+07 3,18% 7,87E+06
IHEPC 35 10,04% 1,20E+07 24,56% 7,95E+06
IHEPC 40 6,39% 1,11E+07 6,37% 5,91E+06
IHEPC 45 20,23% 1,29E+07 13,88% 6,21E+06
IHEPC 50 10,09% 8,48E+06 1,99%  4,68E+06
OR 5 51,72% 36,78% 1,36%  3,45E+09 59,09% 58,51% 0,55%  3,40E+09
OR 10 34,38% 24,63% 0,45% 2,01E+09 52,78% 53,54% 3,00% 1,95E+09
OR 15 56,86% 50,84% 5,66% 1,44E+09 66,67% 65,25% 12,14% 1,68E+09
OR 20 52,27% 47,29%  3,94% 1,37E+09 77,50% 77,50% 6,56% 1,34E+09
OR 25 69,23% 63,24% 4,36% 1,32E+09 3,15% 1,29E+09
OR 30 67,74% 62,80% 6,09% 1,32E+09 35,01% 1,20E+09
OR 35 76,97%  5,08% 1,32E+09 33,40% 1,13E+09
OR 40 76,63% 7,95% 1,34E+09 2,04% 1,13E+09
OR 45 77,27% 73,37% 4,25% 1,29E+09 6,88% 2,42E+08
OR 50 75,34% 71,26% 2,14% 1,26E+09 72,73%  73,34% 3,09% 1,32E+08
Shuttle 5 0,21% 1,51E+08 71,43% 55,50% 0,21% 1,24E+08
Shuttle 10 22,88% 7,32E+07 0,11% 5,31E+07
Shuttle 15 31,44% 8,89E+07 10,74% 1,64E+07
Shuttle 20 11,41% 6,76E+07 22,23% 1,08E+07
Shuttle 25 0,68%  9,94E+07 42,13% 9,50E+06
Shuttle 30 8,81% 1,16E+08 1,55%  5,71E+06
Shuttle 35 0,31% 7,18E+07 4,13% 2,81E+06
Shuttle 40 0,22%  8,35E+07 4491% 4,36E+06
Shuttle 45 0,32%  8,44E+07 3,02%  2,20E+06
Shuttle 50 1,71% 8,39E+07 78,20% 4,14% 2,20E+06
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K-means K-means++

Datensatz k %I %A %E SSEqx %I %A %E SSEqx

Skin 5 57,14% 32,84% 0,01% 5,10E+08 72,22% 54,62% 0,15%  5,03E+08
Skin 10 72,67% 4,07% 3,58E+08 63,16% 47,25% 0,07% 2,63E+08
Skin 15 71,43% 64,51% 9,17%  2,03E+08 70,10% 11,52% 2,39E+08
Skin 20 76,92% 70,24% 7,49%  1,63E+08 75,76% 66,75% 0,17%  1,45E+08
Skin 25 69,70% 64,43% 2,05% 1,23E+08 76,67% 72,53% 1,56%  1,22E+08
Skin 30 4,28%  1,12E+08 73,89% 4,26%  1,00E+08
Skin 35 72,22% 67,63% 7,07%  8,64E+07 79,49% 74,65% 6,29%  8,50E+07
Skin 40 11,65% 8,33E+07 77,14% 72,88% 5,51% 7,93E+07
Skin 45 78,47% 11,19% 8,27E+07 7,00%  6,96E+07
Skin 50 79,28% 10,71% 6,91E+07 77,05% 6,99%  6,06E+07
3DRN 5 7826% 60,33% 443%  1,41E+33 70,00% 5,77%  1,43E+33
3DRN 10 71,88% 60,96% 8,90%  3,63E+32 50,00% 12,05% 3,76E+32
3DRN 15 77,23% 75,00% 14,04% 2,04E+32 50,00% 3,57%  1,82E+32
3DRN 20 34,22% 1,83E+32 66,67% 5,62%  1,25E+32
3DRN 25 70,07% 54,91% 147E+32 79,49% 50,00% 5,04%  9,35E+31
3DRN 30 40,89% 9,35E+31 78,13% 50,00% 1,98%  4,25E+31
3DRN 35 78,68% 11,76% 4,68E+31 55,03% 7,42E+31
3DRN 40 4351% 6,31E+31 79,55% 75,00% 2,47%  2,64E+31
3DRN 45 66,23% 1,11E+32 75,00% 66,67% 2,97% 2,41E+31
3DRN 50 22,11% 3,78E+31 75,00% 3,07%  1,94E+31
Min 34,38% 24,63% 0,01% 8,48E+06 52,78% 47,25% 0,02%  2,20E+06
Max 69,19% 1,41E+33 55,03% 1,43E+33
Median 6,24%  1,37E+08 76,91% 4,20%  1,23E+08
Mittelwert 76,27% 12,19% 5,32E+31 74,58% 9,86%  4,79E+31

Realdatensatze

In Tabelle 5.1 werden die Ergebnisse fiir die Durchlaufe, wo die Algorithmen K-means und
K-means++ im Median durch das Konvergenzkriterium C terminiert haben, fiir die Realda-
tensatze dargestellt. Das bedeutet, dass von 10 Durchlaufen untersucht wurde, bei welchem
dieser Durchldufe der Median der Iteration liegt, in der konvergiert wurde. Dabei stellt %I die
Iterationen in Prozent dar, die durch C im Vergleich zu S eingespart wurden. Diese lasst sich
mit der Gleichung
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berechnen, wobei I die Anzahl der Iterationen fiir die Terminierung mittels des Konvergenz-
kriteriums C beschreibt und /s entsprechend fiir das Konvergenzkriterium S. Die Zeit, die
eingespart wurde, wird in Prozent in den Spalten %A angegeben. Die Berechnung verlauft
analog zu %I. Zur besseren Ubersicht wurden zudem Zellen griin markiert, falls %1 > 80%
%A > 80% und rot, falls % FE > 5% war. Des weiteren wurde fiir jede Spalte separat der Min-,
Max-, Median- und Mittelwert erfasst. Zunachst ist in der Tabelle zu sehen, dass durch das
Konvergenzkriterium relativ viel Zeit und Iterationen eingespart werden konnen. Insbesondere
fir den Datensatz mit den meisten Instanzen, dem IHEPC Datensatz. Dies ist sowohl fiir den
K-means als auch den K-means++ der Fall. So wurden immer mehr als 80% an Iterationen
eingespart und immer mindestens 64% der Ausfithrungszeit. Insgesamt waren die Qualitats-
verluste Tabelle 5.1 beim K-means 22-mal unter 5% und 32-mal unter 10%. Fiir den K-means
waren die Qualitatsverluste sogar 26-mal unter 5% und 37-mal unter 10%. In der Einsparung
der Ausfithrungszeit und der Iterationen sind sich zudem der K-means und der K-means++
sehr ahnlich. Dies wird in Abbildung 5.7 verdeutlicht. In dieser ist die Ausfithrungszeit fiir alle
realen Datensétze mit allen k’s fiir den K-means und den K-means++ dargestellt. Fiir den I[HCEP
Datensatz wird dabei festgestellt, dass der K-means in der Einsparung der Ausfithrungszeit fir
alle k’s oberhalb des K-means++ ist.

Im Qualitatsverlust gibt es allerdings deutliche Unterschiede bei den Algorithmen. So ist beim
IHEPC Datensatz fiir £ = 5 der Qualitatsverlust fiir K-means mit 0,15% sehr gering und beim
K-means++ mit 52,02% sehr hoch, was zunachst iberraschend wirkt, da fiir den K-means++
auf Grund seiner besseren Initialisierungsstrategie auch bessere Ergebnisse erwartet wurden.
Wird fiir diesen Fall allerdings die absolute Qualitat betrachtet, kann festgestellt werden, dass
die Qualitat, die mit dem K-means++ erreicht wurde deutlich besser als die des K-means
ist. Denn fiir den K-means wire die SSFEg = 59905497, 3 und fiir den K-means++ wire die
SSEg¢ = 31015774,91'. Hinzu kommt, dass es fiir die realen Datensitze nur 5-mal der Fall
war, dass die S.'S E~ des K-means kleiner war als die des K-means++. Die 5-mal wo dies auftrat
wurden in der Tabelle 5.1 mit blau gekennzeichnet.

In Abbildung 5.8 sind besonders gute Ergebnisse beim K-means fiir den Shuttle Datensatz fiir
k = 5,25,35,40,45, 50 zu erkennen. Dabei lag der Qualitatsverlust auf8er fiir £ = 50 unter
1%. Fir k = 50 lag der Qualitéatsverlust bei 1,71%. In Abbildung 5.7 ist zudem zusehen, dass fiir
diese Falle mindestens 85% der Ausfithrungszeit eingespart werden. Wiirde man nur nach dem
Qualitatsverlust gehen, miisste der OR Datensatz hervorgehoben werden, d K-means fiir diesen
Datensatz keine groflen Schwankungen aufweist und zudem immer knapp unter oder iiber dem
5%-Wert liegt. Betrachtet man allerdings fiir diesen Datensatz die eingesparte Ausfithrungszeit
ist zu sehen, dass diese immer unter 80% liegt (vgl. Abbildung 5.7). Fiir den K-means++ ist
der Skin Datensatz hervorzuheben. Fiur £ = 5, 10, 30, 35, 45, 50 war der Qualitatsverlust unter
5% und fir k£ = 10, 30, 35, 45 war zudem die Einsparung tiber 80%. Dafiir waren fir k£ = 25
und £ = 40 die Qualitatsverluste iiber 40%. Wird zudem die Abbildung 5.8 betrachtet, ist zu
erkennen, dass der Parameter k einen grof3en Einfluss auf den Qualitatsverlust hat. Sowohl

'Die SSFEg berechnet sich durch Umformung der Gleichung (5.5) mit SSEs = SSEc — %E « SSESc
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Abbildung 5.7.: Einsparung der Ausfithrungszeit in Prozent fiir den K-means und K-means++
iber alle reale Datensétze und die verschiedenen k’s

fir den K-means als auch den K-means++ sind immer wieder grofiere Schwankungen fiir den
Qualitatsverlust zu erkennen.

In Tabelle 5.2 wird der Qualitatsverlust und die eingesparte Iteration in Abhangigkeit von der
eingesparten Ausfithrungszeit fiir den K-means dargestellt. Dabei wurde untersucht wie sich
bei einer Einsparung die grofer oder gleich 50%, 70%,80% und 90% der Qualitdtsverlust und
die eingesparten Iterationen verhalten. Zudem wird die Anzahl der Durchldufe aufgefasst fiir
die die Einsparung der Ausfithrungszeit unter 50%, ..., 90% war und ins Verhéltnis zu allen
gesetzt. In dieser Tabelle ist zu sehen, dass der der Qualitatsverlust im Median steigt, wenn
man einen Bereich mit einer hoheren Einsparung der Ausfithrungszeit betrachtet. So betragt
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Abbildung 5.8.: Qualitdtsverlust in Prozent fiir den K-means und K-means++ iiber alle reale
Datensétze und die verschiedenen k’s

%A groler als  50% 70% 80% 90%

Anzahl 46/50 37/50 26/50 5/50
Min %E 0,15% 0,21% 0,21% 2,93%

%I 56,86% 75,34% 86,96% 95,71%

. %E 7,28% 8,81% 9.43% 10,04%

Median

%I 89,27% 91,67% 93,18% 96,00%
Max %E 69,19% 69,19% 69,19% 20,23%

%I 97.77% 97,77% 97,77% 97,77%

Tabelle 5.2.: Qualitatsverlust und Einsparung an Iterationen in Abhangigkeit von der einge-
sparten Ausfithrungszeit fiir den K-means auf den realen Datensitzen

der Qualitatsverlust fiir eine Einsparung der Ausfithrungszeit von 50% im Median 7,28% und
fiir eine Einsparung der Ausfithrungszeit von 90% betragt der der Qualitatsverlust im Median
10,04%. Das bedeutet, dass der Qualitatsverlust steigt, wenn es eine hohere Einsparung der
Ausfiithrungszeit gab. In Tabelle 5.3 wird die selbe Tabelle fiir den K-means++ dargestellt. Fiir
den K-means++ ist dabei ebenfalls zu sehen, dass im Median fiir hohere Einsparungen der
Ausfiihrungszeit auch hohere Qualitédtsverluste zu erkennen sind. Herauszuheben ist dabei, dass
der Qualitdtsverlust beim K-means++ im Median immer geringer ist als beim K-means, aufler
fiir eine Einsparung der Ausfithrungszeit von 90% oder mehr. Fiir diese liegt der Qualitatsverlust
im Median bei 18,06% fur den K-means++ und bei 10,04% fiir den K-means.
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%A groler als  50% 70% 80% 90%

Anzahl 45/50 35/50 21/50 2/50
Min %E 0,02% 0,02% 0,11% 13,88%
%I 52,78% 72,73% 80,49% 97,97%
) %E 4,26% 5,51% 6,62% 18,06%
Median
%I 87,10% 87,80% 93,66% 98,25%
Max %E 55,03% 55,03% 4491% 22,23%
%I 98,53% 98,53% 98,53% 98,53%

Tabelle 5.3.: Qualitdtsverlust und Einsparung an Iterationen in Abhangigkeit von der einge-
sparten Ausfithrungszeit fiir den K-means++ auf den realen Datensatzen

Synthetische Datensiatze

In Tabelle A.1 auf Seite 88 werden alle Ergebnisse der Durchlédufe, in denen die Algorithmen K-
means und K-means++ im Median durch C terminiert haben, fiir die synthetischen Datensatze
dargestellt.

Allgemein sind fiir die synthetischen Datensétze bessere Ergebnisse zu erkennen als fiir die
realen Datensitze, was den Qualitdtsverlust anbelangt. So lag der Qualitatsverlust bei den
synthetischen Datensétzen fiir den K-means im Median bei 1,79% und fiir den K-means++
bei 1,19%. Bei den realen Datensatzen sind es fiir den K-means hingegen 6,24% und fiir den
K-means++ 4,2%. In der eingesparten Ausfithrungszeit sind die realen Datensétze dafiir im
Median besser. Fur den K-means sind das 82,20% und fiir den K-means++ 76,91%. Bei den
synthetischen Datensitzen sind es fiir den K-means 79,45% und fiir den K-means++ 75%.

Zudem ist zu sehen, dass bei den synthetischen Datensétzen auch gute Ergebnisse erzielt
werden konnten fiir Datensitze bei denen der K-means eher ungeeignet ist. So war fiir den
Spiral Datensatz der Qualitatsverlust fiir den K-means++ fiir £ = 5 bei 7,97%, fiir die restlichen
k’s allerdings immer deutlich unter 1%. Fiir den K-means lag der Qualitatsverlust, auler fir
k = 10, fir alle k’s unter 1%. Fiir £ = 10 lag er bei 1,18%. Die Einsparung der Ausfithrungszeit
lag zudem fiir beide Algorithmen fir alle k’s tiber 50% und es konnten sogar bis zu 92,31%
fir den K-means und bis zu 93,14% fiir den K-means++ eingespart werden. Das ist dadurch
zu begriinden, dass sich die SSE fiir Datensitze, die fiir den K-means ungeeignet sind, kaum
Anderungen in der SSE ergeben. In Abbildung 5.9 wird dies fir den Spiral Datensatz mit & = 50
fur den K-means++ Algorithmus verdeutlicht. Sowohl die %.SS E; als auch %G P; gehen relativ
schnell gegen 0 und zeigen im Verlauf auch keinerlei Schwankungen.
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Abbildung 5.9.: Verlauf der %S SE; und der %G P; in Prozent wihrend der Ausfithrung des
K-means++ Algorithmus auf dem Datensatz Spiral mit k = 50

Tabelle 5.4.: Darstellung des Qualitatsverlusts und der Einsparung an Iterationen in Abhén-
gigkeit von der eingesparten Ausfithrungszeit fiir den K-means auf den syntheti-

schen Datensitzen

%A grofer als >50%  >70%  >80%  >90%
Anzahl 178 129 61 3
Min %E 0,00% 0,00 0,00% 0,12%
%l 50,00% 56,25% 68,00% 86,67%
Median %E 2,45%  2,82% 3,01%  0,20%
%l 2,45%  2,82%  84,92% 92,08%
Max %E 33,15% 33,15% 27,41% 4,39%
%l 92,31% 92,31% 92,31% 4,39%
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Tabelle 5.5.: Darstellung des Qualitatsverlusts und der Einsparung an Iterationen in Ab-
hangigkeit von der eingesparten Ausfithrungszeit fiir den K-means++ auf den
synthetischen Datensitzen

%A grofer als  >50% >70% >80%  >90%

Anzahl 182/190 126/190 55/190 5/190
Min %E 0,00% 0,00% 0,00% 0,04%
%I 53,85% 67,86% 76,19% 83,87%
. %E 1,93% 2,30% 2,83% 4,69%
Median
%I 74,41% 78,37% 84,78% 90,61%
Max %E 52,74% 52,74% 52,74% 21,99%
%E 93,14% 93,14% 93,14% 93,14%

5.2.3. Mogliche Problematik der Qualitatsverluste

In diesem Unterabschnitt wird untersucht, wie es zu den teilweise grof3en Qualitdtsverlusten
kommen kann, insbesondere bei den realen Datensatzen.

Dazu wurde zunachst der Datensatz 3DRN betrachtet. Fiir diesen gab es fiir den K-means einen
Qualitatsverlust von 66,23% fur k=45 (vgl. Tabelle 5.1). Es ist aber auch festzustellen, dass es
eine Einsparung in der Ausfithrungszeit von 87,69% gab. In Abbildung 5.10 ist der Verlauf der
%SSE; und der %G P; in Prozent zu sehen und zusitzlich sind die beiden Schwellenwerte
g1 = 1% und g5 = 10% mit angegeben. Dabei ist der Schwellenwert fir die %G P; (¢2) bereits
nach Iteration 3 unterschritten und bleibt in der Folge auch unter diesem Schwellenwert. Die
%S S E; fallt in Tteration 9 unter ihren Schwellenwert (¢1). Allerdings gibt es im spateren Verlauf
noch einmal einen Anstieg bis zu fast 40% (Iteration 19-21). Durch diese grofie Anderung die
sich noch ergibt entsteht dieser grofie Qualitatsverlust.

Eine Moglichkeit um dies zu verhindern wére die Schwellenwerte £; und €, geringer zu
setzen. Allerdings ist nicht klar wie gering diese dann gesetzt werden sollten, da dies sehr
stark vom Datensatz abhangig ist. Es ist auch nicht garantiert, dass dadurch nicht auch grof3e
Qualitatsverluste entstehen, denn theoretisch kénnte die %S5 S E; beliebig nahe gegen 0 gehen
und trotzdem koénnen noch einmal Schwankungen nach oben auftreten. Zudem sind dann
auch keine so grofien Einsparungen in der Ausfithrungszeit moglich.

5.3. Interaktionspunkte

In diesem Abschnitt wird evaluiert, wie oft fiir die beiden Metriken %.SS F; und %G P; Zeitpunk-
te fiir eine Visualisierung von Zwischenergebnissen bestimmt werden. Dazu sollen zunéchst
die Schwellenwerte fiir beide Metriken in Abschnitt 5.3.1 bestimmt werden. Anschlieflend
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Abbildung 5.10.: Verlauf der %S SE; und der %G P; in Prozent wihrend der Ausfithrung des
K-means Algorithmus auf dem Datensatz Online Retail mit k = 45

werden die Ergebnisse fiir den K-means und den K-means++ in Abschnitt 5.3.2 bewertet. Die
Bewertung fiir den DBSCAN erfolgt in Abschnitt 5.3.4.

5.3.1. Bestimmung der Schwellenwerte

Die Bestimmung eines Schwellenwertes gestaltet sich insofern schwierig, als das zunachst
nicht klar ist, was tiberhaupt eine geeignete Anzahl an Visualisierungen darstellt. Allerdings
ist festzustellen, dass beispielsweise ein Schwellenwert von 50% dafiir sorgen wiirde, dass es
nur sehr wenige Visualisierungen geben wiirde. Hinzu kommt, dass in Abschnitt 5.2 bereits
diskutiert wurde, dass die SSFE; und die G P; zwar dhnliche Verlaufe haben, die Kurve SSE;
jedoch tendenziell unterhalb der G P, liegt. Aus diesem Grund wird fiir beide Metriken eine
unterschiedliche Anzahl an Visualisierungen fiir den gleichen Schwellenwert vermutet, wo-
durch zwei Ergebnisse entstehen, die anschliefend miteinander verglichen werden kénnen.
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Als Schwellenwert wurde fiir beide Metriken der Wert 10% angenommen, wobei durchaus auch
andere Werte wie zum Beispiel 5% denkbar waren. Grof3ere Werte als 10% erscheinen allerdings
nicht sinnvoll, da die Experimente gezeigt haben, dass es sonst relativ wenige Visualisierungen

gibt.

5.3.2. Bewertung fur K-means und K-means++

Fiir die Visualisierung ist eine Bewertung wie fiir die Konvergenzkriterien nicht méglich. Denn
fir die Visualisierung misste fiir eine geeignete Bewertung die Interaktion mit einem Nutzer
beriicksichtigt werden. Anschlieflend konnte evaluiert werden, ob und wie viel Zeitaufwand
auf Grund der Visualisierungen entsteht oder ob dadurch sogar Zeit eingespart wird, weil fiir
einen Nutzer die Zwischenergebnisse ausreichend sind. Dies konnte beispielsweise durch eine
Nutzerstudie evaluiert werden. Dies wiirde allerdings den Rahmen dieser Arbeit sprengen,
weshalb dies zukiinftigen Arbeiten iiberlassen bleibt.

In diesem Abschnitt wird daher nicht evaluiert wie viel zusétzlicher Aufwand durch die
Visualisierung entsteht bzw. eingespart wird, sondern wie viele Visualisierungen im Verhaltnis
zu der Anzahl der Iterationen entstanden sind. Denn es ist wichtig, dass zum Einen eine
Mindestanzahl an Visualisierungen vorhanden ist, um so eine bessere Nachvollziehbarkeit der
Ergebnisse zu erméglichen, zum anderen sollten nicht zu viele Visualisierungen entstehen, da
dies sonst den Aufwand der Analyse deutlich erhohen wiirde. Welche Werte dabei als untere und
welche als obere Schranke sinnvoll sind, miisste ebenfalls in einer Nutzerstudie herausgefunden
werden. Fiir einen besseren Vergleich der Ergebnisse wurden aber im Folgenden fiir eine untere
Schranke 5% an Visualisierungen im Verhaltnis zur Anzahl der Iterationen und 20% fiir eine
obere Schranke angenommen. Im Folgenden wird %Vis verwendet als Abkiirzung fiir die
Anzahl der Visualisierungen im Verhéltnis zur Anzahl der Iterationen in Prozent.

In Tabelle 5.6 werden fur die realen Datensitze die Anzahl der Iterationen, so wie die %Vis fiir
die SSE; und die G P, in Prozent angegeben und das sowohl fiir den K-means als auch fiir den
K-means++. Zusiatzlich wurden noch fiir jede Spalte die Min-, Max-, Median- und Mittelwerte
angegeben. In der Tabelle ist zu erkennen, dass die %Vis fiir die SSE; in den meisten Féllen
niedriger ist, als fiir die %Vis fiir die G F;.

Tabelle 5.6.: Visualisierungen, die in Abhangigkeit der Anzahl der Itertaionen, fiir den K-
means und den K-means++ auf den realen Datensétzen entstanden sind

K-means K-means++
Datensatz #Cluster #It  %Vis SSE; %Vis GP;, #It %Vis SSE; %Vis GP;
Skin 5 22 23,08% 18,18% 29 10,34% 27,59%
Skin 10 35 13,79% 20,00% 171 2,92% 5,26%
Skin 15 44 12,50% 18,18% 142 1,41% 3,52%
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Tabelle 5.6 fortgesetzt von vorheriger Seite

K-means K-means++

Datensatz #Cluster #t  %Vis SSE; %Vis GP, #It %Vis SSE; %Vis G P,
Skin 20 44 14,71% 11,36% 190 2,11% 3,68%
Skin 25 47 12,12% 12,77% 129 3,10% 3,88%
Skin 30 68 6,67% 7,35% 62 6,45% 9,68%
Skin 35 53 12,82% 13,21% 59 8,47 % 10,17%
Skin 40 84 6,67% 10,71% 57 8,77% 14,04%
Skin 45 61 10,20% 13,11% 67 2,99% 8,96%
Skin 50 77 7,81% 9,09% 69 5,80% 8,70%
Shuttle 5 166 2,41% 4,22% 19 5,26% 5,26%
Shuttle 10 127  3,15% 4,72% 37 5,41% 5,41%
Shuttle 15 116  5,17% 8,62% 39 7,69% 10,26%
Shuttle 20 163 2,45% 4,.91% 45 4,44% 8,89%
Shuttle 25 129  3,10% 6,20% 39 5,13% 10,26%
Shuttle 30 115  6,96% 8,70% 42 7,14% 7,14%
Shuttle 35 105  6,67% 10,48% 49 4,08% 8,16%
Shuttle 40 99 5,05% 9,09% 44 6,82% 9,09%
Shuttle 45 95 6,32% 10,53% 63 4,76% 9,52%
Shuttle 50 98 6,12% 12,24% 71 5,63% 7,04%
OR 5 29 17,24% 17,24% 29 17,24% 13,79%
OR 10 35 25,71% 37,14% 33 24,24% 18,18%
OR 15 50 22,00% 28,00% 38 23,68% 15,79%
OR 20 42 28,57% 35,71% 38 13,16% 23,68%
OR 25 66 15,15% 31,82% 36 8,33% 16,67%
OR 30 56 19,64% 30,36% 44 15,91% 25,00%
OR 35 89 11,24% 20,22% 52 7,69% 9,62%
OR 40 84 13,10% 22,62% 53 13,21% 16,98%
OR 45 79 12,66% 17,72% 60 3,33% 11,67%
OR 50 73 12,33% 19,18% 44 11,36% 11,36%
IHEPC 5 34 5,88% 8,82% 34 8,82% 8,82%
IHEPC 10 59 6,78% 11,86% 45 2,22% 6,67%
IHEPC 15 124 1,61% 4,84% 56 3,57% 5,36%
IHEPC 20 116  2,59% 6,03% 112 1,79% 5,36%
IHEPC 25 161 2,48% 5,59% 124 0,81% 6,45%
IHEPC 30 179  2,23% 5,59% 131 2,29% 6,11%
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Tabelle 5.6 fortgesetzt von vorheriger Seite

K-means K-means++

Datensatz #Cluster #It  %Vis SSE; %Vis GP;, #It %Vis SSE; %Vis GP,
IHEPC 35 201 1,99% 4,98% 150 2,00% 5,33%
IHEPC 40 203 1,97% 5,42% 213 0,94% 4,69%
IHEPC 45 277 1,81% 4,33% 165 1,82% 4,24%
IHEPC 50 275 1,09% 4,00% 225 1,33% 4,00%
3DRN 5 43 11,63% 13,95% 37 5,41% 8,11%
3DRN 10 74 14,86% 17,57% 56 5,36% 12,50%
3DRN 15 121 4,13% 9,92% 64 3,13% 6,25%
3DRN 20 149  6,71% 11,41% 56 7,14% 8,93%
3DRN 25 162  4,32% 11,73% 35 5,71% 8,57%
3DRN 30 177 8,47% 10,73% 39 10,26% 10,26%
3DRN 35 99 10,10% 9,09% 44 6,82% 6,82%
3DRN 40 116  5,17% 8,62% 42 4,76% 9,52%
3DRN 45 98 7,14% 7,14% 42 9,52% 11,90%
3DRN 50 100 5,00% 7,00% 41 4,88% 7,32%

MIN 2 4,00% 19,00 0,81% 3,52%

MAX 15 37,14% 225,00 24,24% 27,59%

Median 5 10,62% 51 5,41% 8,86%

Mittelwert 6,24 12,85% 71 6,71% 9,73%

In Tabelle 5.7 wird untersucht, wie das Verhalten fur unterschiedliche Wertebereiche der
%Vis ist. Dazu wurde der Bereich zwischen 5 und 20% genommen und geschaut fiir wie viele
Durchlaufe das zutrifft, wenn man diese Bereich verkleinert. Zusatzlich wurde geschaut bei
wie vielen Durchlaufen die %Vis unter 5% und bei wie vielen sie iiber 20% lag. Zu diesen wurde
auch noch immer die Gesamtanzahl der Durchlaufe dazu geschrieben. Alle Zeilen bei denen
die Anzahl der Durchldufe grofier als 25 war wurden mit griin markiert.

Auftillig dabei ist, dass sowohl fiir den K-means als auch fiir den K-means++ die %Vis fiir beide
Metriken immer bei mehr als der Halfte der Durchlaufe im Bereich zwischen 5 und 20% liegt.
Zudem ist zu erkennen, dass sich die meisten Durchliufe fiir die %Vis im Bereich zwischen
5 und 15% liegen und das jeweils fiir beide Metriken bei beiden Algorithmen. Fiir die G P,
liegt die Anzahl der Durchldufe fiir den K-means++, fiir die die %Vis im Bereich zwischen 5
und 10% liegt mit 27 auch tber der Halfte. Somit sind die Visualisierungen fir die meisten
Durchliaufe im Bereich zwischen 5 und 20%. Zudem sind fiir mehr als die Halfte der Durchlaufe
die Visualisierungen im Bereich zwischen 5 und 15%.
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Tabelle 5.7.: Anzahl der Durchliufe fiir verschiedene Wertebereiche der %Vis fur die realen
Datensitze

K-means K-means++

%Vis SSE; %Vis GP;, %Vis SSE; %Vis GP;

5% < x < 20%

Arral d 10% < x < 20% 13/50 19/50 7/50 14/50
Nz e 5% < 2 < 20%  3/50 6/50 2/50 4/50
Durchlaufe fir die
die %Vis im 5% < x < 16%
€ evIsd 5% < x < 10%  10/50 13/50 20/50
Bereich x ist
x < 5% 14/50 6/50 21/50 6/50
x> 20% 3/50 8/50 2/50 3/50

Wie gut geeignet diese Werte wiederum sind, muss eine Nutzerstudie ergeben. Sollte sich dabei
ergeben, dass es zu viele Visualisierungen sind, konnen die Schwellenwerte fiir die Metriken
entsprechend reduziert werden. Umgekehrt, wenn es zu wenig Visualisierungen sind, kénnen
die Schwellenwerte erhoht werden. Allerdings ist es selbst mit einer Nutzerstudie schwer zu
evaluieren, was eine geeignete Zahl an Visualisierungen ist, da es vom Datensatz und vor allem
vom Expertenwissen des Nutzers abhéngt, was eine gute Anzahl an Visualisierungen ist.

5.3.3. Synthetische Datensatze

In Tabelle A.2 auf Seite 90 werden die Ergebnisse der Visualisierung fiir die synthetischen
Datensatze dargestellt. Auch hier ist zu erkennen, dass die Visualisierungen fir die GP;
tendenziell hoher sind, als fiir die S'S F;. Des Weiteren sind die Iterationen fiir die synthetischen
Datensétzen im Median bei 33, wohingegen es bei den realen Datensatzen 97 im Median waren.
Dies konnte einer der Griinde sein, weshalb die % Vis im Median fiir beide Metriken bei beiden
Algorithmen grofler ist. Dennoch ist es auch hier der Fall, dass die meisten Durchldufe eine
%Vis im Bereich von 5 und 20% auf. In Tabelle A.2 werden die Anzahl der Durchldufe dargestellt
fir unterschiedliche Werte Bereiche der %Vis. Die Zeilen, bei denen dies auf mehr als die Hilfte
der Durchléaufe zutraf, wurden griin markiert. Dabei ist zu sehen, dass die %Vis fiir einen sehr
groflen Teil der Durchlaufe zwischen 5 und 20 % liegt.

5.3.4. DBSCAN

Fiir den DBSCAN hat sich gezeigt, dass die Metriken, die fiir den K-means und den K-means++
genutzt wurden, ungeeignet sind, da diese meist die Zentroide betrachten. Da der DBSCAN die
Zentroide nicht wéahrend seiner Ausfithrung berechnet, wire eine zusatzliche Berechnung der
Zentroide ein zu grofler zeitlicher Aufwand. Daher wurden die Kriterien fiir eine Visualisierung
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Tabelle 5.8.: Anzahl der Durchlaufe fiir unterschiedliche %Vis Bereiche fiir die synthetischen
Datensatze

K-means K-means++

%Vis SSE; %Vis Gp; %Vis SSE; %Vis Gp;

5% < x < 20%

10% < 2 < 20% 87/190 77/190 45/190
Anzahl der
3 o 1% <2 <20%  63/190 44/190 9/190 18/190
Durchlaufe fir die
die %Vis im 5% < w < 15%
D 5% <z < 10%  83/190 34/190 17/190
Bereich x ist
x < 5% 18/190 8/190 34/190 19/190
x> 20% 7/190 5/190 2/190 5/190

fir den DBSCAN anders festgelegt. Der erste Ansatz ist analog zu dem Ansatz, wie er fiir den
K-means/++ verwendet wurde. Denn es wird visualisiert, wenn die Summe der Punkte, die
ihre Clusterzugehorigkeit &ndern, 10% tibersteigt. Eine Anderung der Clusterzugehorigkeit
meint in diesem Sinne, wenn ein Punkt als Ausreif3er identifiziert wird oder wenn er einem
Cluster zugeordnet wird. Das zweite Kriterium ist, dass immer visualisiert wird, wenn ein
neues Cluster entsteht.

Bevor dies an den Datensétzen getestet werden konnte, mussten allerdings zuerst die Para-
meter fiir den Algorithmus bestimmt werden. Dazu wurde die Heuristik implementiert und
angewendet, die in Abschnitt 2.3.3 auf Seite 31 vorgestellt wurde. In Tabelle 5.9 werden die
Ergebnisse der Visualisierung fiir diese zwei Kriterien dargestellt. #Vis CE steht dabei fiir die
Anzahl der Visualisierungen, wenn ein neues Cluster entsteht und #Vis fiir die Anzahl der
Visualisierungen, die fiir die G P; gemacht wurden. In der Tabelle ist zu erkennen, dass die #Vis
CE immer grofler oder gleich der #Vis G'P, ist. Dabei werden teilweise auch sehr grofie Werte
angenommen. So sind fiir den synthetischen Datensatz cluto-t8-8k 222 Visualisierungen fiir die
#Vis CE gemessen worden. Bei den realen Datensétzen waren es fiir den 3DRN Datensatz sogar
1810 Visualisierungen. Zwar ist dadurch eine bessere Nachvollziehbarkeit moglich, allerdings
steigt der Aufwand der Analyse stark an und es wire ein nicht vertretbarer Zeitaufwand
erforderlich. Fiir die #Vis G P, hingegen, zumindest fiir die synthetischen Datensétze, scheinen
die Anzahl der Visualisierungen vergleichbar mit denen, wie sie fiir den K-means und den
K-means++ gemacht wurden. Fiir die realen Datensétze sind fiir den Shuttle Datensatz 1, fiir den
Shuttle Datensatz 1 uns den 3DRN Datensatz 0 Visualisierungen. Der Grund hierfiir konnte in
der Wahl der Parameter liegen, da die Parameter manuell aus dem k-Distanzgraphen abgelesen
wurden.
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Tabelle 5.9.: Visualisierungen fiir den DBSCAN fiir die realen und synthetischen Datensatze
Datensatz #Vis GP;, #Vis CE

Skin 2 368
3DRN 0 1810
Real Shuttle 1 1
OR 10 578
IHEPC 12 1672
al 19 28
a2 26 34
a3 40 49
Aggregation 8 8
D31 31 31
R15 15 15
sl 15 46
s2 13 39
s3 8 40
Synthetisch s4 7 53
spiral
unbalance
chainlink 16 16
cluto-t4-8k 18 85
cluto-t5-8k 22 256
cluto-t7-10k 29 208
cluto-t8-8k 14 222
diamond9 26 89
engytime 5 101

5.4. Visualisierungen bis zur Konvergenz

In diesem Abschnitt werden die Ansitze fiir die Konvergenz und die Anzahl der Zeitpunkte
fiir eine Visualisierung miteinander verkniipft. In Tabelle 5.10 wird dafiir fiir den K-means
und den K-means++ die Anzahl der Iterationen bis zur frithzeitigen Terminierung durch das
Konvergenzkriterium dargestellt. Dazu wird Anzahl der Visualisierungen fiir beide Metriken
ins Verhéltnis zur Anzahl der Iterationen bis zur frithzeitigen Terminierung gesetzt. Die Anzahl
der Visualisierungen im Verhéaltnis zur Anzahl der Iterationen bis zur Konvergenz wird mit
%Visgony bezeichnet. Dabei ist auffallig, dass die %Visy,y,, fiir beide Metriken deutlich hoher
ist, als dies ohne die Konvergenz der Fall war. So sind teilweise Werte bis zu 100% zu erkennen
und der Median liegt beim K-means fiir die SSE; bei 50%, was bedeutet, dass fiir diese bis zur
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Konvergenz jede zweite Iteration visualisiert wird. Ein Beispiel, bei dem alle Iterationen bis
zur Konvergenz mit der G'P; visualisiert werden, ist fiir den Datensatz OR mit k = 25 gegeben.
In Tabelle 5.6 ist zu erkennen, dass fiir diesen Durchlauf 66 Iterationen ohne frithzeitige
Terminierung erreicht wurden. Das bedeutet, dass sogar alle Visualisierungen fiir diesen
Durchlauf bis zur frithzeitigen Terminierung durch das Konvergenzkriterium stattfinden. Fiir
die G P, ist der Median wert sogar bei 80%. Fir den K-means++ ist die %Visgonv fur die SSE;
mit 46,68% dhnlich dem K-means. Fiir die G P; hingegen ist ein deutlicher Unterschied zu
erkennen, da diese im Median bei 48,82% liegt.

Tabelle 5.10.: %Vis;,,,, fiir den K-means und den K-means++ auf den realen Datensitzen

K-meas K-means++

Datensatz #Cluster #li,,, %Vis SSE; %Vis GP, #li,,, %VisSSE; %Vis GP,

Skin 5 10 30,00% 40,00% 6 32,73% 49,09%
Skin 10 7 57,14% 100,00% 13 23,27% 46,53%
Skin 15 13 30,77% 61,54% 8 48,86% 61,08%
Skin 20 11 45,45% 45,45% 11 37,50% 37,50%
Skin 25 15 26,67% 40,00% 11 36,47% 36,47%
Skin 30 9 44,44% 55,56% 14 29,41% 29,41%
Skin 35 15 33,33% 46,67% 11 45,99% 45,99%
Skin 40 10 50,00% 90,00% 19 20,83% 26,04%
Skin 45 12 41,67% 66,67% 5 86,89% 86,89%
Skin 50 14 35,71% 50,00% 15 25,97% 25,97%
Shuttle 5 7 57,14% 100,00% 47 8,43% 12,65%
Shuttle 10 5 80,00% 100,00% 4 92,91% 92,91%
Shuttle 15 8 75,00% 75,00% 4 45,98% 68,97%
Shuttle 20 10 40,00% 80,00% 8 50,00% 87,50%
Shuttle 25 8 50,00% 100,00% 15 26,14% 39,20%
Shuttle 30 9 88,89% 77,78% 14 58,63% 51,30%
Shuttle 35 9 77,78% 88,89% 7 100,00% 100,00%
Shuttle 40 10 50,00% 90,00% 12 40,40% 48,48%
Shuttle 45 8 75,00% 75,00% 13 47,37% 47,37%
Shuttle 50 9 66,67% 88,89% 18 34,11% 34,11%
OR 5 14 35,71% 35,71% 12 42,15% 42,15%
OR 10 23 39,13% 56,52% 17 54,45% 78,66%
OR 15 22 50,00% 63,64% 17 60,00% 78,00%
OR 20 21 57,14% 71,43% 14 78,57% 92,86%
OR 25 21 47,62% 100,00% 13 79,12% 100,00%
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K-meas K-means++
Datensatz #Cluster #li,,, %Vis SSE; %Vis GP;, #li,n, %Vis SSE; %Vis GP,
OR 30 19 57,89% 89,47% 9 69,64% 81,25%
OR 35 17 58,82% 94,12% 17 51,83% 51,83%
OR 40 17 64,71% 100,00% 11 65,48% 84,18%
OR 45 18 55,56% 77,78% 9 86,08% 86,08%
OR 50 18 50,00% 77,78% 20 45,21% 40,18%
IHEPC 5 7 28,57% 42,86% 4 55,88% 55,88%
IHEPC 10 3 66,67% 100,00% 7 55,59% 69,49%
IHEPC 15 5 40,00% 80,00% 11 17,74% 26,61%
IHEPC 20 8 37,50% 87,50% 6 48,28% 48,28%
IHEPC 25 9 44,44% 100,00% 5 72,88% 91,10%
IHEPC 30 8 50,00% 100,00% 8 48,52% 72,79%
IHEPC 35 9 44,44% 88,89% 13 31,40% 47,10%
IHEPC 40 9 44,44% 100,00% 8 50,39% 62,98%
IHEPC 45 7 71,43% 85,71% 6 71,17% 100,00%
IHEPC 50 10 30,00% 70,00% 13 22,64% 45,27%
3DRN 5 10 50,00% 60,00% 6 85,27% 85,27%
3DRN 10 21 52,38% 61,90% 10 87,84% 97,60%
3DRN 15 28 17,86% 42,86% 23 12,95% 17,26%
3DRN 20 18 55,56% 94,44% 14 41,61% 48,55%
3DRN 25 17 41,18% 88,24% 33 12,04% 21,06%
3DRN 30 14 92,86% 92,86% 39 28,41% 20,66%
3DRN 35 17 58,82% 52,94% 12 69,26% 51,95%
3DRN 40 10 60,00% 100,00% 24 12,64% 12,64%
3DRN 45 8 87,50% 87,50% 25 20,41% 16,33%
3DRN 50 12 41,67% 58,33% 13 23,25% 31,00%
Min 3 17,86% 35,71% 4 8,43% 12,64%
Max 28 92,86% 100,00% 47 100,00% 100,00%
Median 10 50,00% 80,00% 12 46,68% 48,82%
Mittelwert 12,38 51,75% 76,64% 13 47,85% 55,69%
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6. Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konvergenzkriterium anhand von 2 Metriken aufgestellt und es
wurden Zeitpunkte fiir eine Visualisierung von Zwischenergebnissen bestimmt. Dazu wurde
in Abschnitt 3.3 ein Konzept und eine prototypische Implementierung entwickelt, bei der fiir
den K-means und den K-means++ eine effiziente Berechnung der Metriken erméglicht wurde.
In Abschnitt 5.1 wurde veranschaulicht, dass Berechnungsaufwand fiir die gesamte Berech-
nung der Metriken in jeder Iteration insgesamt deutlich unter 1% der Ausfithrungszeit der
Algorithmen lag. Zudem wurde ein Konvergenzkriterium aufgestellt, dass auf der Anderung
der quadratischen Fehlerfunktion im Vergleich zur vorherigen Iteration (mit %.S5S E bezeich-
net), so wie auf der Anderung der Anzahl der geinderten Punkte seit der letzten Iteration im
Verhiltnis zu allen Punkten (mit %G Pi bezeichnet) basiert. Das Konvergenzkriterium sieht
dabei vor, dass sobald diese Metriken einen bestimmten Schwellenwert tiberschreiten, dass
der Algorithmus dann terminiert wird. In den Experimenten konnte gezeigt werden, dass
sowohl fiir synthetische, als auch fiir reale Datensétze Einsparungen in den Iterationen und
der Ausfithrungszeit von tiber 90% mit geringem Qualitdtsverlust moglich waren. So konnten
fiir den Shuttle Datensatz 85,02% der Ausfithrungszeit eingespart werden bei einem Qualitats-
verlust von 0,21%. Fir den Datensatz mit den meisten Instanzen, den IHEPC Datensatz konnte
ahnliches erreicht werden. Fir diesen war eine Einsparung der Ausfithrungszeit von 89,5% bei
einem Qualitatsverlust von 0,83% moglich. Zudem wurde verdeutlicht, dass fiir eine geringere
Einsparung der Ausfithrungszeit ein geringerer Qualitatsverlust vorhanden war. So war fiir
den K-means++ bei einer Einsparung von 50% der Qualitatsverlust im Median bei 4,26%. Fiir
eine Einsparung von 90% hingegen, lag der Qualitatsverlust im Median bei 18,06%. Ein Problem
das sich ergab war, dass sowohl die %S SE;, als auch die %G P; keinen monotonen Verlauf
aufwiesen. Das bedeutet, dass Fille aufgetreten sind, bei denen die %S S E; und die %G P; nach
dem sie unter einen bestimmten Schwellenwert gefallen sind, noch einmal anstiegen. Dieses
Verhalten wurde allerdings nur bei 12% der Durchlaufe, die im Median konvergiert haben,
beobachtet. Zudem lassen sich diese Falle auch nicht vermeiden, da der K-means nur gegen
ein lokales und nicht gegen ein globales Minimum der SSE konvergiert.

Des Weiteren wurden diese beiden Metriken genutzt, um geeignete Zeitpunkte fiir eine Visuali-
sierung auszumachen. Dabei ergaben sich fiir beide Metriken, die fiir jeweils beide Algorithmen
gepriift wurden, unterschiedliche Werte fiir die Anzahl der Visualisierungen. Diese erstreckten
sich von 0% bis 30% der Anzahl der Iterationen des jeweiligen Durchlaufs. Es wurde zudem auf-
gezeigt, dass sich fiir beide Metriken die meisten Durchldufe Visualisierungen im Bereich von
5% bis 20% der gesamten Anzahl an Iterationen aufwiesen. Mehr als die Hélfte der Durchlaufe
wies zudem Visualisierungen im eingeschrankteren Bereich von 5% bis 15% auf. Anschlieffend

81



6. Zusammenfassung und Ausblick

wurde untersucht wie viele Visualisierungen sich bis zum festgelegten Konvergenzkriterium
ergeben. Dabei hat sich herausgestellt, dass sich dafiir deutlich mehr Visualisierungen im
Verhiltnis von Visualisierungen und Iterationen bis Konvergenz ergab. Dabei waren Visua-
lisierungen von bis zu 100% vorhanden und im Median lagen die Visualisierungen fiir beide
Algorithmen knapp unter 50 %. Nur bei der G'F, fiir den K-means lag der Median-Wert bei
80%.

Ausblick

In zukiinftigen Arbeiten kann versucht werden das in dieser erstellte Konzept auf bereits exis-
tierende System anzuwenden. So kdnnte untersucht werden, ob sich das Konvergenzkriterium
in dhnlicher Weise auch fiir bereits bekannte verteilte Systeme, wie z. B. Apache Hadoop! oder
Apache Spark® anwenden lasst und ob dabei dhnliche Ergebnisse in Hinblick zur Zeiteinspa-
rung und Qualitatsverlust erzielt werden konnen. Zudem konnte erforscht werden, ob das
Konzept auch skalierbar ist. Das heifSt zum einen, dass es fiir deutlich gréf3ere Datenmengen
noch effizient einsetzbar ist und ob es méglich ist die Berechnungen auf mehrere Rechner zu
verteilen, also beispielsweise in einem Cluster. Dabei konnte auch untersucht werden, ob die
Ergebnisse durch Vorverarbeitungsschritte, wie z.B. das Data Sampling, also wenn die Analyse
nur auf einer Teilmenge der Daten durchgefithrt wird, verbessert werden konnen.

Des Weiteren konnte fiir eine Evaluation, wie geeignet die Zeitpunkte der Visualisierungen
sind eine Nutzerstudie durchgefithrt werden. Dazu miisste untersucht werden, ob zum einen
die Ergebnisse besser nachvollziehbar und besser interpretiert werde konnen im Vergleich ohne
Visualisierung von Zwischenergebnissen und zum Anderen, wie sich der Mehraufwand, der
durch die Visualisierungen entsteht, verhalt. Fiir ersteres miisste geschaut werden, wie gut die
Ergebnisse von einem Nutzer mit Visualisierung ausgewertet wird und wie die Auswertung oh-
ne Visualisierung erfolgt. Fiir letzteres miisste zusatzlich die Zeit erfasst werden, die insgesamt
fiir die Analyse anfallt. Zusatzlich konnte in dieser Studie untersucht werden, wie die Interpre-
tation der Ergebnisse und der Zeitaufwand fiir eine Kombination des Konvergenzkriteriums
und der Visualisierungen ausfallt.

'http://hadoop.apache.org/
2https://spark.apache.org/
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A. Anhang

A.1. Tabelle der Ergebnisse der Konvergenz fir die
synthetischen Datensatze

K-means K-means++

Datensatz k %l %A %E SSEc %12 %A3 %E4 SSE¢q

al 5 86,36% 81,77% 2,13%  1,31E+11 78,26% 78,95% 2,62%  1,31E+11
al 10 64,29% 61,74% 0,70% 5,16E+10 77,14% 79,10% 3,63% 5,69E+10
al 15 70,97% 69,68% 6,29%  3,22E+10 75,86% 74,60% 1,32%  3,14E+10
al 20 64,00% 61,14% 13,08% 1,62E+10 46,67% 46,15% 0,00%  1,22E+10
al 25 7742% 78,52% 26,74% 1,37E+10 82,14% 81,82% 1,94% 1,39E+10
al 30 83,78% 82,42% 21,83% 1,14E+10 78,57% 68,84% 1,08%  8,61E+09
al 35 73,08% 70,70% 1,04%  7,61E+09 81,25% 78,23% 2,24%  7,38E+09
al 40 74,07% 73,90% 2,30%  7,07E+09 77,78% 71,43% 1,62%  6,10E+09
al 45 74,07% 73,49% 1,74%  6,15E+09 66,67% 49,64% 0,45%  4,84E+09
al 50 69,57% 67,80% 2,67%  4,91E+09 70,83% 65,43% 0,25%  4,07E+09
a2 5 55,00% 42,70% 0,66%  4,15E+11 76,47% 71,05% 2,41%  4,19E+11
a2 10 78,57% 79,37% 0,37%  1,99E+11 85,37% 87,60% 14,39% 2,27E+11
a2 15 65,52% 66,90% 5,10% 1,12E+11 66,67% 67,63% 1,55%  1,30E+11
a2 20 73,33% 73,74% 5,03%  8,03E+10 87,50% 89,70% 13,22% 8,15E+10
a2 25 70,97% 71,71% 4,76%  5,68E+10 75,76% 75,71% 1,20%  5,32E+10
a2 30 86,96% 86,67% 7,76%  4,76E+10 75,00% 75,33% 3,22%  4,20E+10
a2 35 64,29% 65,54% 1,07%  3,12E+10 71,43% 67,03% 0,43%  3,33E+10
a2 40 68,00% 69,92% 18,57% 3,46E+10 78,13% 72,84% 2,12%  2,45E+10
a2 45 70,37% 69,28% 0,98%  2,24E+10 74,07% 73,19% 1,13%  1,83E+10
a2 50 74,19% 75,59% 15,21% 1,86E+10 76,00% 71,91% 2,23%  1,48E+10
a3 5 75,00% 4750% 0,34%  8,88E+11 81,82% 82,11% 2,83%  9,52E+11
a3 10 86,57% 84,19% 10,52% 4,84E+11 90,48% 90,55% 21,99% 5,76E+11
a3 15 79,59% 81,25% 0,92%  2,76E+11 87,88% 90,61% 4,69%  2,70E+11
a3 20 65,52% 63,96% 6,16% 1,93E+11 74,19% 76,50% 4,56%  1,89E+11
a3 25 81,82% 80,54% 4,65% 1,43E+11 80,95% 81,27% 4,24%  1,33E+11
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Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %l %A %E SSEqx %12 %A3 %E4 SSEqx

a3 30 56,00% 58,49% 1,72%  1,02E+11 76,47% 74,35% 5,02%  1,08E+11
a3 35 62,96% 64,81% 1,50% 7,91E+10 72,00% 70,78% 0,69%  8,05E+10
a3 40 70,00% 70,53% 7,35%  7,21E+10 76,67% 76,63% 2,27%  7,04E+10
a3 45 74,19% 70,53% 5,28%  6,42E+10 73,33% 73,90% 2,72%  5,97E+10
a3 50 62,50% 57,71% 4,76%  5,42E+10 72,00% 71,00% 2,19%  4,38E+10
Aggregation 5  53,85% 66,67% 0,02%  1,70E+04 79,17% 62,96% 35,57% 2,63E+04
Aggregation 10 70,37% 74,07% 1,20%  6,71E+03 63,16% 63,16% 0,28%  7,21E+03
Aggregation 15 63,16% 60,00% 1,06%  5,22E+03 73,33% 64,52% 1,46%  3,97E+03
Aggregation 20 63,16% 63,64% 0,37%  3,76E+03 72,41% 53,85% 5,53%  2,48E+03
Aggregation 25 69,23% 72,00% 2,21%  2,65E+03 64,71% 59,26% 0,22%  1,59E+03
Aggregation 30 76,67% 76,92% 1,36%  1,36E+03 80,65% 77,55% 3,31%  1,03E+03
Aggregation 35 65,22% 60,71% 0,05%  7,66E+02 75,86% 53,13% 1,71%  7,59E+02
Aggregation 40 77,50% 77,94% 6,11%  8,92E+02 87,50% 81,88% 0,10%  4,27E+02
Aggregation 45 83,33% 78,87% 0,46%  6,64E+02 83,33% 62,07% 0,00%  2,44E+02
Aggregation 50 69,23% 73,49% 0,00%  6,04E+02 81,48% 63,64% 0,00%  1,74E+02
chainlink 5 74,07% 76,00% 0,65%  3,42E+02 83,87% 90,32% 5,05%  3,59E+02
chainlink 10 47,37% 34,62% 0,21% 1,24E+02 71,88% 61,90% 4,90% 1,25E+02
chainlink 15 69,23% 67,14% 0,58%  7,85E+01 57,14% 55,00% 0,31%  5,75E+01
chainlink 20 67,65% 61,40% 16,57% 4,29E+01 63,16% 42,42% 2,46%  3,20E+01
chainlink 25 56,52% 59,46% 1,32% 3,60E+01 73,08% 68,89% 5,96% 1,98E+01
chainlink 30 70,73% 55,91% 14,04% 1,71E+01 70,83% 60,00% 8,75%  1,56E+01
chainlink 35 50,00% 50,00% 0,05% 1,13E+01 68,18% 61,29% 0,31%  9,15E+00
chainlink 40 65,22% 76,77% 1,56% 1,01E+01 80,77% 67,95% 1,17% 7,04E+00
chainlink 45 75,00% 76,19% 0,00% 1,07E+01 70,00% 62,90% 7,72%  5,41E+00
chainlink 50 80,49% 60,76% 6,94%  8,24E+00 73,91% 58,88% 18,40% 2,93E+00
cluto-t4-8k 5  52,94% 41,25% 0,09%  2,87E+07 42,11% 42,00% 0,03%  2,85E+07
cluto-t4-8k 10 81,82% 81,16% 2,02%  1,43E+07 84,44% 84,85% 0,45%  1,56E+07
cluto-t4-8k 15 72,73% 58,38% 0,92%  8,50E+06 69,57% 69,34% 3,20%  9,22E+06
cluto-t4-8k 20 75,00% 63,23% 3,10%  5,96E+06 67,86% 70,05% 1,18%  6,03E+06
cluto-t4-8k 25 66,67% 66,78% 0,45%  4,42E+06 73,53% 71,22% 1,78%  4,55E+06
cluto-t4-8k 30 72,22% 72,30% 1,76%  3,87E+06 77,27% 74,25% 2,01%  3,36E+06
cluto-t4-8k 35 67,74% 52,53% 5,24%  2,86E+06 78,13% 61,87% 10,03% 3,08E+06
cluto-t4-8k 40 74,29% 73,98% 1,98%  2,32E+06 81,25% 80,25% 2,92%  2,25E+06
cluto-t4-8k 45 71,88% 66,80% 2,32%  2,19E+06 84,91% 84,41% 3,37%  2,01E+06
cluto-t4-8k 50 65,52% 65,40% 1,97%  1,63E+06 77,78% 78,14% 1,23%  1,69E+06
cluto-t5-8k 5  85,29% 85,86% 2,65%  2,79E+07 73,33% 73,68% 2,73%  1,86E+07
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A.1. Tabelle der Ergebnisse der Konvergenz fir die synthetischen Datensatze

Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %l %A %E SSE¢ %12 %A3 %E4 SSEq-

cluto-t5-8k 10 76,92% 71,96% 0,74%  7,41E+06 85,71% 84,78% 0,40%  7,08E+06
cluto-t5-8k 15 85,00% 84,07% 1,87%  5,67E+06 84,38% 84,97% 0,27%  5,66E+06
cluto-t5-8k 20 81,82% 72,93% 4,08%  3,67E+06 87,23% 86,10% 2,50%  3,12E+06
cluto-t5-8k 25 80,00% 63,84% 1,83%  2,61E+06 76,92% 72,73% 1,91%  2,23E+06
cluto-t5-8k 30 80,00% 78,12% 1,13%  1,72E+06 76,00% 75,73% 1,33%  1,61E+06
cluto-t5-8k 35 75,76% 73,05% 3,46%  1,65E+06 77,42% 77,46% 0,74%  1,19E+06
cluto-t5-8k 40 74,29% 74,89% 1,48%  1,38E+06 69,23% 67,65% 1,18%  1,06E+06
cluto-t5-8k 45 72,97% 72,41% 3,66%  8,80E+05 86,21% 84,60% 5,99%  9,01E+05
cluto-t5-8k 50 76,47% 75,09% 3,53%  8,28E+05 77,50% 75,50% 5,59%  6,76E+05
cluto-t7-10k 5  45,00% 42,03% 0,08%  7,14E+07 50,00% 49,15% 0,10%  7,12E+07
cluto-t7-10k 10 86,67% 77,70% 4,79%  3,70E+07 70,00% 68,71% 0,36%  3,75E+07
cluto-t7-10k 15 93,89% 88,78% 3,46%  2,28E+07 87,27% 85,71% 11,65% 2,31E+07
cluto-t7-10k 20 79,07% 78,04% 1,73%  1,57E+07 84,44% 63,88% 1,12%  1,55E+07
cluto-t7-10k 25 85,00% 80,13% 6,34%  1,28E+07 82,93% 80,77% 2,88%  1,24E+07
cluto-t7-10k 30 88,73% 80,70% 3,81% 1,11E+07 85,71% 84,32% 5,50%  9,33E+06
cluto-t7-10k 35 84,21% 78,87% 14,73% 8,55E+06 82,61% 81,73% 9,56%  7,64E+06
cluto-t7-10k 40 72,50% 71,11% 3,53% 6,22E+06 87,50% 87,22% 5,26% 5,88E+06
cluto-t7-10k 45 82,14% 80,13% 5,11%  7,28E+06 78,13% 77,21% 1,95%  5,04E+06
cluto-t7-10k 50 68,97% 61,44% 1,69%  4,73E+06 78,38% 78,60% 4,41%  4,22E+06
cluto-t8-8k 5 55,56% 54,39% 0,09% 5,90E+07 63,16% 66,00% 0,22% 5,89E+07
cluto-t8-8k 10 75,76% 73,72% 5,51%  2,78E+07 82,35% 83,55% 17,85% 3,07E+07
cluto-t8-8k 15 83,02% 84,92% 5,44%  1,84E+07 80,00% 79,41% 5,83%  1,77E+07
cluto-t8-8k 20 84,31% 68,13% 3,43%  1,29E+07 86,54% 85,35% 8,63%  1,34E+07
cluto-t8-8k 25 83,64% 83,75% 6,96% 1,08E+07 77,78% 76,04% 1,01%  9,76E+06
cluto-t8-8k 30 75,00% 73,85% 6,67%  7,93E+06 85,11% 83,40% 3,65%  7,66E+06
cluto-t8-8k 35 78,72% 77,10% 4,29%  6,85E+06 77,27% 78,37% 1,84%  6,22E+06
cluto-t8-8k 40 76,32% 73,71% 2,52%  5,52E+06 74,19% 70,35% 1,73%  5,28E+06
cluto-t8-8k 45 82,46% 84,68% 6,03%  4,90E+06 81,82% 80,81% 2,81%  4,57E+06
cluto-t8-8k 50 84,48% 83,84% 24,90% 5,26E+06 71,88% 70,86% 4,62%  4,02E+06
D31 5 41,67% 45,00% 0,00% 1,96E+05 68,42% 73,08% 2,95%  2,03E+05
D31 10 82,93% 73,96% 33,15% 1,07E+05 45,45% 41,67% 0,00%  7,43E+04
D31 15 42,86% 40,91% 0,00%  4,43E+04 75,00% 73,68% 9,41%  5,34E+04
D31 20 53,85% 53,85% 0,07%  3,36E+04 70,59% 70,49% 8,21%  2,65E+04
D31 25 58,82% 57,69% 0,00%  2,19E+04 72,22% 64,44% 3,76%  2,50E+04
D31 30 68,18% 72,06% 6,59%  1,14E+04 70,59% 69,37% 0,03%  1,27E+04
D31 35 72,00% 72,78% 12,55% 1,31E+04 76,92% 73,38% 0,59%  7,60E+03
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Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %l %A %E SSEqx %12 %A3 %E4 SSEqx

D31 40 50,00% 50,40% 0,30% 6,01E+03 79,17% 75,63% 1,74%  4,69E+03
D31 45 77,78% 77,19% 0,43%  8,49E+03 82,35% 81,02% 0,75%  3,56E+03
D31 50 66,67% 66,81% 0,80%  5,41E+03 88,68% 85,05% 0,44%  3,21E+03
diamond9 5 87,50% 92,08% 4,39%  3,62E+03 73,68% 75,86% 1,12%  3,49E+03
diamond9 10 72,00% 73,17% 0,60%  9,63E+02 84,85% 82,46% 1,00%  1,49E+03
diamond9 15 87,18% 87,76% 2,19%  7,55E+02 79,17% 80,70% 1,41%  7,80E+02
diamond9 20 78,57% 81,19% 3,96%  5,86E+02 71,43% 73,85% 1,36%  5,67E+02
diamond9 25 77,78% 77,69% 6,99%  4,79E+02 55,56% 57,14% 0,88%  4,02E+02
diamond9 30 83,33% 83,25% 8,60% 4,11E+02 73,08% 70,83% 2,83%  3,42E+02
diamond9 35 75,68% 76,09% 18,13% 3,22E+02 80,49% 74,41% 7,26%  2,49E+02
diamond9 40 69,70% 69,10% 1,37%  2,11E+02 73,08% 69,80% 4,40%  2,14E+02
diamond9 45 78,38% 80,37% 7,68%  1,84E+02 75,86% 73,40% 2,26%  1,53E+02
diamond9 50 77,14% 79,38% 9,90%  1,48E+02 75,76% 68,18% 1,46%  1,26E+02
engytime 5 82,35% 83,93% 1,91%  4,56E+03 86,54% 82,72% 1,09%  5,19E+03
engytime 10 82,98% 84,21% 2,03%  2,44E+03 88,14% 84,83% 8,07%  2,61E+03
engytime 15 76,92% 77,65% 6,68%  1,78E+03 86,00% 86,06% 2,33%  1,66E+03
engytime 20 84,62% 81,23% 2,65% 1,32E+03 85,45% 85,46% 7,37% 1,29E+03
engytime 25 82,14% 82,69% 4,40%  1,03E+03 84,78% 81,55% 5,64%  9,75E+02
engytime 30 77,78% 70,69% 2,68%  8,37E+02 86,67% 87,61% 8,58%  8,34E+02
engytime 35 87,32% 87,10% 5,37% 7,26E+02 81,82% 76,58% 2,83% 6,28E+02
engytime 40 79,17% 78,46% 3,55%  5,87E+02 75,68% 72,88% 3,59%  5,24E+02
engytime 45 70,59% 66,58% 3,83%  5,24E+02 86,44% 86,86% 2,42%  4,11E+02
engytime 50 76,74% 81,64% 1,52%  4,77E+02 77,14% 73,05% 10,98% 3,55E+02
R15 5 82,14% 87,50% 13,81% 5,63E+03 60,00% 66,67% 0,00%  5,99E+03
R15 10 68,75% 70,83% 5,85%  1,84E+03 63,64% 33,33% 0,00% 1,32E+03
R15 15 60,00% 62,50% 0,02%  4,63E+02 80,00% 61,90% 0,13%  4,14E+02
R15 20 66,67% 31,03% 0,00% 9,67E+02 80,00% 64,44% 16,70% 2,27E+02
R15 25 76,19% 76,47% 0,03%  3,54E+02 84,00% 64,58% 0,11%  1,63E+02
R15 30 83,87% 79,66% 2,53%  1,55E+02 77,27% 66,67% 1,12%  6,15E+01
R15 35 87,76% 88,64% 0,59%  3,84E+02 81,48% 57,78% 0,01%  4,16E+01
R15 40 88,37% 88,89% 0,44%  1,62E+02 90,48% 74,34% 0,21%  6,20E+01
R15 45 88,10% 86,81% 0,00% 1,01E+02 90,48% 78,45% 0,17%  2,14E+01
R15 50 82,76% 85,19% 0,00% 1,15E+02 84,85% 59,38% 0,00%  1,10E+01
sl 5 64,71% 60,00% 8,07% 1,23E+14 62,50% 68,29% 0,00% 1,26E+14
sl 10 50,00% 52,94% 0,00%  3,51E+13 58,33% 60,61% 0,00%  4,78E+13
sl 15 52,94% 58,21% 0,00%  1,52E+13 69,57% 67,05% 0,01%  2,05E+13
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Tabelle A.1 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz k %l %A %E SSE¢ %12 %A3 %E4 SSEq-

sl 20 89,80% 89,33% 1,26%  1,78E+13 88,24% 89,09% 0,81%  1,39E+13
sl 25 77,78% 76,51% 1,22%  7,45E+12 85,29% 85,28% 2,23%  7,30E+12
sl 30 81,25% 82,35% 3,74%  6,94E+12 83,33% 80,81% 2,09%  6,07E+12
sl 35 80,65% 82,19% 8,17%  5,85E+12 80,00% 76,86% 2,06%  5,46E+12
sl 40 72,41% 74,90% 2,26%  4,79E+12 75,00% 72,09% 6,11%  4,33E+12
sl 45 70,83% 57,05% 2,60%  4,94E+12 69,57% 67,22% 1,05%  3,87E+12
sl 50 82,98% 81,38% 3,60%  3,72E+12 75,00% 71,74% 0,98%  3,34E+12
s2 5 60,00% 46,94% 0,25%  1,05E+14 53,85% 52,17% 0,01%  9,90E+13
s2 10 70,83% 69,23% 1,20%  4,51E+13 71,43% 70,18% 1,20%  3,99E+13
s2 15 79,49% 81,93% 27,41% 2,61E+13 66,67% 58,44% 0,29%  1,87E+13
s2 20 82,86% 79,14% 1,29%  1,19E+13 76,19% 80,49% 0,43%  1,54E+13
s2 25 76,92% 70,50% 0,40% 1,71E+13 86,49% 82,17% 3,51%  1,03E+13
s2 30 79,41% 80,43% 2,82%  8,86E+12 76,00% 74,27% 1,11%  8,20E+12
s2 35 75,00% 75,34% 2,15%  7,31E+12 75,00% 71,49% 2,28%  7,05E+12
s2 40 76,47% 67,96% 7,51%  6,73E+12 75,00% 71,68% 1,25%  6,43E+12
s2 45 86,44% 87,96% 11,56% 5,95E+12 72,00% 72,58% 0,42%  5,00E+12
S2 50 76,32% 76,61% 3,52% 4,69E+12 69,23% 66,21% 1,19% 4,08E+12
s3 5 64,29% 42,42% 0,02%  7,50E+13 75,00% 75,00% 0,41%  7,64E+13
s3 10 78,13% 76,19% 16,05% 3,95E+13 75,86% 75,64% 1,07%  3,04E+13
s3 15 70,97% 62,02% 8,44% 1,83E+13 82,05% 82,00% 12,16% 2,11E+13
s3 20 82,93% 68,18% 1,87% 1,41E+13 78,57% 75,57% 0,97%  1,36E+13
s3 25 86,27% 71,86% 4,48%  1,21E+13 88,37% 88,10% 4,97%  1,20E+13
s3 30 88,73% 87,19% 9,58%  1,10E+13 84,62% 83,03% 2,31%  9,80E+12
s3 35 83,33% 81,46% 6,02%  8,87E+12 66,67% 68,46% 0,81%  8,00E+12
s3 40 85,96% 86,31% 3,01%  7,20E+12 58,33% 54,67% 0,53%  6,80E+12
s3 45 76,19% 75,75% 2,55%  5,93E+12  78,79% 74,41% 6,61%  6,51E+12
s3 50 81,63% 79,75% 9,74%  6,19E+12 68,00% 63,41% 1,42%  4,58E+12
s4 5 73,91% 69,35% 0,72%  6,31E+13 86,84% 74,85% 2,42%  6,47E+13
s4 10 83,67% 84,44% 13,30% 3,29E+13 72,73% 72,58% 1,62%  2,89E+13
s4 15 64,00% 4414% 0,79%  1,69E+13 81,08% 80,00% 8,43%  1,77E+13
s4 20 82,61% 82,67% 2,37%  1,39E+13 79,41% 77,78% 3,58%  1,27E+13
s4 25 85,00% 85,43% 4,67% 1,13E+13 81,08% 76,03% 4,06% 1,11E+13
s4 30 87,84% 85,69% 6,36%  8,85E+12 88,89% 89,02% 4,93%  8,39E+12
s4 35 80,43% 79,10% 7,50%  7,77E+12 80,00% 78,37% 1,14%  6,54E+12
s4 40 77,14% 78,34% 6,10%  7,16E+12 75,86% 75,56% 11,30% 6,30E+12
s4 45 70,97% 70,03% 5,85%  5,55E+12 69,23% 63,54% 1,94%  4,46E+12
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Datensatz k %l %A %E SSEqx %12 %A3 %E4 SSEqx

s4 50 76,32% 77,87% 1,71% 5,20E+12 74,07% 69,40% 10,16% 3,97E+12
spiral 5 56,25% 72,73% 0,18% 7,11E+03  73,08% 70,00% 7,97% 7,94E+03
spiral 10 61,90% 53,85% 1,18% 3,21E+03 68,42% 55,56% 0,46% 3,73E+03
spiral 15 68,00% 85,71% 0,76% 1,74E+03 61,90% 50,00% 0,51% 1,54E+03
spiral 20 86,67% 92,31% 0,20% 1,04E+03 86,36% 62,50% 0,87% 9,14E+02
spiral 25 84,44% 89,36% 0,00% 6,31E+02 81,25% 68,63% 0,00% 3,59E+02
spiral 30 74,07% 62,50% 0,96% 4,04E+02 83,87% 75,00% 0,00% 1,71E+02
spiral 35 82,61% 90,00% 0,01% 2,07E+02 88,89% 63,33% 0,01% 1,00E+02
spiral 40 87,23% 88,00% 0,01% 1,56E+02 87,50% 88,44% 0,00% 3,83E+01
spiral 45 84,62% 78,13% 0,00% 1,42E+02 83,87% 75,23% 0,01% 2,55E+01
spiral 50 85,71% 89,71% 0,46% 8,05E+01 94,20% 93,14% 0,04% 1,47E+01
unbalance 5 83,33% 87,10% 0,15% 2,20E+12 71,43% 67,74% 0,09%  1,32E+12
unbalance 10 91,30% 88,18% 0,05% 2,15E+12 88,89% 88,89% 52,74% 4,43E+11
unbalance 15 89,19% 89,18% 0,06% 1,48E+12 86,84% 85,38% 0,69%  1,64E+11
unbalance 20 85,71% 88,17% 0,09% 8,06E+11 89,80% 90,61% 1,88% 1,47E+11
unbalance 25 90,00% 70,83% 0,21% 7,90E+11 82,35% 82,20% 2,44% 9,88E+10
unbalance 30 90,63% 90,30% 0,12% 1,21E+12 82,35% 81,70% 1,02% 8,81E+10
unbalance 35 89,83% 84,14% 0,40% 1,44E+11 85,42% 85,10% 0,94% 7,07E+10
unbalance 40 86,96% 75,89% 0,02% 191E+12 84,44% 82,94% 1,83% 5,54E+10
unbalance 45 87,50% 85,70% 0,13% 1,01E+12 86,36% 84,17% 3,90% 3,62E+10
unbalance 50 90,57% 88,70% 14,37% 9,79E+10 81,82% 79,15% 2,65% 3,59E+10
Max 91,30% 92,31% 27,41% 1,05E+14 94,20% 93,14% 52,74% 9,90E+13
Median 82,12% 79,45% 1,79% 5,94E+12 79,10% 75,00% 1,19% 5,23E+12
Mittelwert 79,60% 77,11% 3,60% 1,20E+13  78,10% 74,38% 3,34% 1,10E+13
Min 41,67% 31,03% 0,00% 8,24E+00 42,11% 33,33% 0,00% 2,93E+00

Tabelle A.1.: Ergebnisse der Konvergenz fiir K-means und K-means++ fiir die synthetischen
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A.2. Darstellung des Spiral Datensatzes
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Abbildung A.1.: Darstellung des Spiral Datensatzes [CY08]
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A.3. Ergebnisse der Visualisierung flir synthetische
Datensatze

Tabelle A.2.: Visualisierungen fiir synthetische Datensétze fiir den K-means und den K-
means++

K-means K-means++

Datensatz #Cluster #Iterationen %Vis SSE; %Vis GP; #lterationen %Vis SSE; %Vis %GP,

al 5 29 13,79% 17,24% 22 18,18% 22,73%
al 10 31 6,45% 9,68% 24 12,50% 16,67%
al 15 32 18,75% 18,75% 28 7,14% 10,71%
al 20 27 18,52% 14,81% 29 10,34% 10,34%
al 25 28 21,43% 14,29% 25 8,00% 8,00%
al 30 25 12,00% 12,00% 26 7,69% 7,69%
al 35 27 11,11% 11,11% 26 3,85% 7,69%
al 40 24 12,50% 12,50% 24 4,17% 8,33%
al 45 25 16,00% 16,00% 23 8,70% 8,70%
al 50 29 6,90% 10,34% 24 8,33% 12,50%
a2z 5 25 8,00% 16,00% 29 6,90% 6,90%
az 10 31 9,68% 12,90% 29 6,90% 13,79%
az 15 33 9,09% 9,09% 28 10,71% 14,29%
az 20 33 15,15% 15,15% 34 5,88% 5,88%
az 25 34 11,76% 14,71% 27 7,41% 11,11%
a2 30 31 12,90% 12,90% 30 13,33% 13,33%
az 35 31 9,68% 12,90% 30 13,33% 13,33%
az 40 27 11,11% 11,11% 29 10,34% 10,34%
a2 45 28 17,86% 14,29% 24 12,50% 12,50%
az 50 26 15,38% 11,54% 25 12,00% 12,00%
a3 5 22 13,64% 18,18% 26 3,85% 7,69%
a3 10 40 7,50% 12,50% 39 5,13% 10,26%
a3 15 45 11,11% 15,56% 42 9,52% 11,90%
a3 20 32 9,38% 12,50% 41 4,88% 9,76%
a3 25 38 13,16% 15,79% 39 7,69% 10,26%
a3 30 35 8,57% 11,43% 34 11,76% 11,76%
a3 35 35 14,29% 14,29% 29 6,90% 6,90%
a3 40 29 13,79% 13,79% 29 6,90% 10,34%
a3 45 29 13,79% 13,79% 29 10,34% 10,34%
a3 50 29 13,79% 13,79% 31 9,68% 9,68%
Aggregation 5 16 18,75% 18,75% 19 10,53% 15,79%

90



A.3. Ergebnisse der Visualisierung fur synthetische Datensatze

Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #Iterationen %Vis sse %Vis Gpi  #lterationen %Vis SSE %Vis Gpi
Aggregation 10 19 15,79% 15,79% 21 9,52% 14,29%
Aggregation 15 24 8,33% 12,50% 21 9,52% 14,29%
Aggregation 20 22 9,09% 13,64% 24 8,33% 12,50%
Aggregation 25 28 17,86% 14,29% 22 9,09% 9,09%
Aggregation 30 27 14,81% 11,11% 28 10,71% 10,71%
Aggregation 35 30 13,33% 10,00% 29 3,45% 3,45%
Aggregation 40 34 8,82% 8,82% 42 2,38% 2,38%
Aggregation 45 41 7.32% 4,88% 31 6,45% 3,23%
Aggregation 50 32 9,38% 6,25% 29 10,34% 6,90%
D31 5 19 15,79% 26,32% 15 13,33% 20,00%
D31 10 18 27,78% 22,22% 14 21,43% 21,43%
D31 15 17 23,53% 17,65% 15 13,33% 6,67%
D31 20 19 15,79% 15,79% 15 13,33% 13,33%
D31 25 22 13,64% 13,64% 18 11,11% 11,11%
D31 30 23 17,39% 17,39% 22 9,09% 9,09%
D31 35 25 20,00% 12,00% 20 5,00% 5,00%
D31 40 23 17,39% 13,04% 24 8,33% 8,33%
D31 45 25 12,00% 8,00% 26 7,69% 7,69%
D31 50 24 16,67% 8,33% 27 7,41% 7,41%
R15 5 11 18,18% 18,18% 11 9,09% 18,18%
R15 10 19 21,05% 15,79% 15 20,00% 20,00%
R15 15 22 9,09% 9,09% 23 8,70% 4,35%
R15 20 22 9,09% 9,09% 24 8,33% 4,17%
R15 25 27 11,11% 11,11% 25 4,00% 4,00%
R15 30 24 16,67% 8,33% 23 8,70% 4,35%
R15 35 42 2,38% 4,76% 29 6,90% 3,45%
R15 40 42 9,52% 7,14% 30 6,67% 3,33%
R15 45 41 7,32% 4,88% 38 7,89% 2,63%
R15 50 42 11,90% 7,14% 33 6,06% 3,03%
sl 5 20 15,00% 20,00% 15 20,00% 20,00%
sl 10 27 22,22% 18,52% 18 11,11% 11,11%
sl 15 25 4,00% 4,00% 20 15,00% 10,00%
sl 20 31 9,68% 9,68% 32 3,13% 6,25%
sl 25 32 9,38% 12,50% 32 3,13% 6,25%
sl 30 30 10,00% 13,33% 30 3,33% 6,67%
sl 35 30 10,00% 13,33% 29 6,90% 10,34%
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Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #lterationen %Vis sse %Vis Gpi  #lterationen %Vis SSE %Vis Gpi
sl 40 32 9,38% 12,50% 27 3,70% 11,11%
sl 45 31 9,68% 12,90% 26 11,54% 11,54%
sl 50 34 5,88% 11,76% 29 6,90% 6,90%
s2 5 22 9,09% 13,64% 18 22,22% 16,67%
s2 10 23 17,39% 17,39% 25 4,00% 8,00%
s2 15 27 14,81% 11,11% 21 14,29% 14,29%
s2 20 41 9,76% 7,32% 27 7,41% 7,41%
s2 25 33 12,12% 12,12% 32 6,25% 9,38%
s2 30 43 6,98% 9,30% 34 5,88% 8,82%
s2 35 35 5,71% 8,57% 33 6,06% 12,12%
s2 40 35 8,57% 11,43% 36 5,56% 8,33%
s2 45 30 13,33% 13,33% 30 6,67% 10,00%
s2 50 33 9,09% 12,12% 30 6,67% 10,00%
s3 5 27 14,81% 18,52% 32 6,25% 12,50%
s3 10 27 11,11% 14,81% 29 6,90% 10,34%
s3 15 28 14,29% 17,86% 39 7,69% 12,82%
s3 20 35 8,57% 14,29% 37 10,81% 13,51%
s3 25 47 6,38% 10,64% 38 5,26% 10,53%
s3 30 46 6,52% 13,04% 40 5,00% 10,00%
s3 35 37 8,11% 13,51% 34 5,88% 11,76%
s3 40 36 8,33% 11,11% 32 9,38% 9,38%
s3 45 38 10,53% 10,53% 34 8,82% 11,76%
s3 50 31 12,90% 16,13% 33 9,09% 9,09%
s4 5 23 8,70% 17,39% 25 8,00% 16,00%
s4 10 44 6,82% 11,36% 29 17,24% 20,69%
s4 15 43 11,63% 16,28% 32 12,50% 15,63%
s4 20 38 7,89% 10,53% 34 8,82% 11,76%
s4 25 42 7,14% 9,52% 37 8,11% 13,51%
s4 30 44 6,82% 13,64% 49 6,12% 8,16%
s4 35 39 7,69% 12,82% 40 5,00% 10,00%
s4 40 40 7,50% 10,00% 28 10,71% 10,71%
s4 45 35 11,43% 14,29% 28 10,71% 10,71%
s4 50 37 8,11% 10,81% 30 10,00% 10,00%
spiral 5 20 15,00% 25,00% 22 13,64% 22,73%
spiral 10 23 13,04% 13,04% 23 13,04% 13,04%
spiral 15 25 16,00% 16,00% 22 13,64% 13,64%
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Datensatz #Cluster #Iterationen %Vis sse %Vis Gpi  #lterationen %Vis SSE %Vis Gpi
spiral 20 25 12,00% 8,00% 29 6,90% 6,90%
spiral 25 34 14,71% 8,82% 32 9,38% 6,25%
spiral 30 42 11,90% 7,14% 32 6,25% 3,13%
spiral 35 45 4,44% 4,44% 44 4,55% 2,27%
spiral 40 44 6,82% 4,55% 40 7,50% 2,50%
spiral 45 44 6,82% 4,55% 42 2,38% 2,38%
spiral 50 45 4,44% 2,22% 38 5,26% 2,63%
unbalance 5 29 6,90% 6,90% 15 6,67% 6,67%
unbalance 10 36 2,78% 8,33% 35 2,86% 5,71%
unbalance 15 50 2,00% 12,00% 29 3,45% 10,34%
unbalance 20 58 1,72% 10,34% 42 4,76% 14,29%
unbalance 25 67 2,99% 8,96% 53 1,89% 9,43%
unbalance 30 49 4,08% 14,29% 46 4,35% 10,87%
unbalance 35 47 4,26% 14,89% 50 2,00% 10,00%
unbalance 40 48 8,33% 12,50% 44 6,82% 9,09%
unbalance 45 51 1,96% 9,80% 49 4,08% 12,24%
unbalance 50 40 2,50% 12,50% 37 8,11% 13,51%
chainlink 5 22 9,09% 18,18% 26 7,69% 11,54%
chainlink 10 20 15,00% 20,00% 26 15,38% 15,38%
chainlink 15 32 15,63% 15,63% 24 12,50% 16,67 %
chainlink 20 24 12,50% 12,50% 22 9,09% 9,09%
chainlink 25 24 16,67% 16,67% 21 9,52% 9,52%
chainlink 30 25 20,00% 20,00% 22 9,09% 9,09%
chainlink 35 26 19,23% 11,54% 22 9,09% 9,09%
chainlink 40 30 10,00% 10,00% 20 20,00% 15,00%
chainlink 45 27 14,81% 11,11% 38 5,26% 2,63%
chainlink 50 33 18,18% 9,09% 28 3,57% 3,57%
cluto-t4-8k 5 21 14,29% 19,05% 20 20,00% 25,00%
cluto-t4-8k 10 36 5,56% 11,11% 32 9,38% 12,50%
cluto-t4-8k 15 43 9,30% 16,28% 29 10,34% 17,24%
cluto-t4-8k 20 38 10,53% 10,53% 32 9,38% 12,50%
cluto-t4-8k 25 35 14,29% 17,14% 35 5,71% 11,43%
cluto-t4-8k 30 35 11,43% 14,29% 40 10,00% 12,50%
cluto-t4-8k 35 38 7,89% 15,79% 39 7,69% 12,82%
cluto-t4-8k 40 34 8,82% 11,76% 34 8,82% 11,76%
cluto-t4-8k 45 48 6,25% 10,42% 34 5,88% 11,76%
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Tabelle A.2 Fortsetzung von vorheriger Seite

K-means K-means++

Datensatz #Cluster #lterationen %Vis sse %Vis Gpi  #lterationen %Vis SSE %Vis Gpi
cluto-t4-8k 50 34 14,71% 14,71% 37 5,41% 8,11%
cluto-t5-8k 5 14 14,29% 14,29% 15 6,67% 6,67%
cluto-t5-8k 10 25 12,00% 16,00% 26 3,85% 3,85%
cluto-t5-8k 15 30 3,33% 6,67% 28 3,57% 7,14%
cluto-t5-8k 20 30 13,33% 16,67% 31 6,45% 12,90%
cluto-t5-8k 25 42 4,76% 7,14% 29 10,34% 13,79%
cluto-t5-8k 30 35 11,43% 11,43% 37 5,41% 8,11%
cluto-t5-8k 35 30 10,00% 13,33% 38 7,89% 10,53%
cluto-t5-8k 40 44 4,55% 11,36% 32 6,25% 9,38%
cluto-t5-8k 45 36 8,33% 13,89% 42 4,76% 7,14%
cluto-t5-8k 50 42 9,52% 11,90% 31 9,68% 9,68%
cluto-t7-10k 5 19 26,32% 26,32% 17 17,65% 17,65%
cluto-t7-10k 10 68 5,88% 8,82% 64 3,13% 6,25%
cluto-t7-10k 15 40 7,50% 15,00% 39 5,13% 10,26%
cluto-t7-10k 20 52 5,77% 9,62% 49 4,08% 8,16%
cluto-t7-10k 25 48 6,25% 10,42% 48 6,25% 10,42%
cluto-t7-10k 30 58 5,17% 8,62% 54 7,41% 9,26%
cluto-t7-10k 35 45 6,67% 11,11% 45 6,67% 11,11%
cluto-t7-10k 40 48 12,50% 14,58% 52 5,77% 9,62%
cluto-t7-10k 45 50 8,00% 12,00% 44 6,82% 11,36%
cluto-t7-10k 50 51 9,80% 9,80% 42 9,52% 9,52%
cluto-t8-8k 5 28 10,71% 14,29% 37 10,81% 18,92%
cluto-t8-8k 10 38 13,16% 13,16% 31 6,45% 9,68%
cluto-t8-8k 15 42 11,90% 16,67% 45 6,67% 8,89%
cluto-t8-8k 20 66 4,55% 9,09% 44 4,55% 9,09%
cluto-t8-8k 25 61 6,56% 11,48% 40 5,00% 12,50%
cluto-t8-8k 30 60 8,33% 11,67% 47 6,38% 10,64%
cluto-t8-8k 35 52 7,69% 13,46% 44 6,82% 11,36%
cluto-t8-8k 40 47 6,38% 10,64% 37 5,41% 10,81%
cluto-t8-8k 45 56 7,14% 10,71% 45 6,67% 11,11%
cluto-t8-8k 50 48 8,33% 10,42% 32 9,38% 15,63%
diamond9 5 27 11,11% 14,81% 27 3,70% 11,11%
diamond9 10 17 35,29% 29,41% 31 12,90% 12,90%
diamond9 15 35 8,57% 11,43% 25 8,00% 12,00%
diamond9 20 36 8,33% 13,89% 29 6,90% 13,79%
diamond9 25 35 11,43% 14,29% 32 9,38% 12,50%
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diamond9 30 32 9,38% 15,63% 30 6,67% 10,00%
diamond9 35 30 10,00% 16,67% 27 7,41% 11,11%
diamond9 40 38 10,53% 10,53% 29 10,34% 10,34%
diamond9 45 28 10,71% 17,86% 27 11,11% 14,81%
diamond9 50 25 12,00% 16,00% 25 8,00% 12,00%
engytime 5 33 6,06% 15,15% 42 7,14% 19,05%
engytime 10 41 4,88% 14,63% 46 4,35% 15,22%
engytime 15 46 6,52% 15,22% 51 5,88% 13,73%
engytime 20 61 3,28% 11,48% 52 5,77% 13,46%
engytime 25 54 7,41% 16,67% 44 4,55% 11,36%
engytime 30 57 5,26% 10,53% 50 6,00% 12,00%
engytime 35 42 7,14% 14,29% 36 5,56% 13,89%
engytime 40 37 8,11% 13,51% 42 7,14% 11,90%
engytime 45 39 10,26% 12,82% 58 3,45% 6,90%
engytime 50 35 8,57% 11,43% 38 5,26% 10,53%
Min 11 1,72% 2,22% 11 1,89% 2,27%
Max 68 35,29% 29,41% 64 22,22% 25,00%
Median 33 9,78% 12,66% 30 7,41% 10,38%
Mittelwert 34,42631579 10,82% 12,86% 31,7 8,16% 10,60%
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