
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Design Pattern Detection
Framework for TOSCA-Topologies

Marvin Wohlfarth

Course of Study: Softwaretechnik

Examiner: Prof. Dr. h. c. Frank Leymann

Supervisor: Jasmin Guth
Michael Falkenthal

Commenced: 4. Januar 2017

Completed: 4. Juli 2017

CR-Classification: D2.11, D2.3, G2.2, I.5.0

Abstract

Cloud Computing Patterns are Design Patterns especially for cloud applications and
provide abstract solution concepts for often reoccurring problems during the imple-
mentation of cloud applications. These concepts are mainly used by developers and
modelers. To learn about implemented patterns in a completed application, one has
to manually analyze the code and the architecture. To improve this time-consuming
method, the possibility of automating this process is investigated. This bachelor’s thesis
proposes an approach for a Design Pattern Detection Framework, to perform an au-
tomatic pattern detection. TOSCA, provided by OASIS, is a standardized description
for the development of cloud applications. Their architectures can be described by
TOSCA topologies, to model components and relationships among each other. The
framework, which is developed in the context of this bachelor’s thesis, is written in
Java and integrated in Winery, a graphical modeling tool for TOSCA topologies, which
is a part of the OpenTOSCA ecosystem. The underlying concept of this work follows
an approach to detect which Cloud Computing Patterns are used in TOSCA topologies.
The concept defines the modeling of Cloud Computing Patterns with TOSCA topologies
and how TOSCA topologies are abstracted, to be comparable with pattern topologies.
Further, the use of pattern taxonomies is explained to include the interrelations of Cloud
Computing Patterns. Basically, patterns and TOSCA topologies are handled as graphs.
Consequential, probabilities for possible patterns can be set. For the detection of pattern
graphs in a topology graph, an algorithm for subgraph isomorphism is used.

3

Contents

1 Introduction 11

2 Fundamentals 13
2.1 Topology and Orchestration Specification for Cloud Applications 13
2.2 OpenTOSCA-Ecosystem . 14
2.3 Design Patterns . 16
2.4 Amazon Web Services . 18

3 Related Work 19
3.1 OpenTOSCA . 19
3.2 General Pattern Detection . 21
3.3 Algorithm for Subgraph Isomorphism . 22

4 Concept 29
4.1 Basic Idea . 29
4.2 Abstract Components . 29
4.3 Concept to Model Patterns . 30
4.4 Mapping of TOSCA Topologies . 38
4.5 Pattern Taxonomy . 39
4.6 Algorithm . 42
4.7 VF2 Algorithm . 44

5 Implementation 45
5.1 Used Technologies . 45
5.2 Code Structure . 46
5.3 Examples . 48
5.4 Problems . 54
5.5 Limitations . 54
5.6 Expandability . 55

6 Conclusion & Outlook 57

Bibliography 59

5

List of Figures

2.1 Topology of a hosted application . 15

4.1 Node-based Availability Pattern . 33
4.2 Environment-based Availability Pattern 34
4.3 Execution Environment Pattern . 34
4.4 Message-oriented Middleware . 35
4.5 Relational Database Pattern . 36
4.6 Elasticity Manager Pattern . 36
4.7 Elastic Queue Pattern . 37
4.8 Elastic Load Balancer Pattern . 38
4.9 Constraints for mapping of TOSCA topology 40
4.10 Taxonomy for IaaS model . 41
4.11 Taxonomy for PaaS model . 41

5.1 TOSCA topology of the OpenTOSCA Ecosystem 49
5.2 Taxonomy for IaaS with probabilities . 50
5.3 Taxonomy for PaaS with probabilities . 50
5.4 Topology with labels . 51
5.5 Topology for OpenTOSCA with AWS . 52
5.6 Taxonomy for PaaS with probabilities . 53

7

List of Algorithms

3.1 Ullman’s Algorithm . 24
3.2 Pruning Procedure for Ullman’s Algorithm 24

4.1 Matching algorithm . 44

9

1 Introduction

The idea of cloud computing was mentioned for the first time in 1961 by Paul McCarthy
when he talked about utility computing [QLDG09]. The breakthrough of cloud com-
puting started between 2003 and 2006, when big companies like Google1, Amazon2,
and Microsoft3 started to offer public cloud services [QLDG09]. Enterprises started to
outsource their IT resources, because of economical reasons. Today, cloud computing
is present in nearly every section of the business community as well as in the private
life of many people who are users of cloud applications. With an increasing use of
applications hosted in the cloud, the need of standardization increased, too, to enable
automatic deployment and portability of applications [BBKL14a]. The architecture of
cloud applications describes the basic components and their interaction. To model such
architectures, topologies are used. A topology represents the structure of an application
by modeling the different components and their relations. Therefore, the Topology and
Orchestration Specification for Cloud Applications (TOSCA) standard is developed to
provide a uniform standard for the deployment and the administration of cloud applica-
tions. Furthermore, concepts are designed to provide possible solutions to frequently
occurring problems. These concepts are called Cloud Computing Patterns and can be
used independently from used technologies.

Motivation

Cloud Computing Patterns provide good solution concepts for reoccurring problems
concerning the building and managing of cloud applications to fit the requirements
efficiently. Further, these concepts are abstract, independent of concrete vendor products
[FLR+14], and reduce the complexity of the architectures. Retrieving patterns in
the architecture of an application provides a sufficient overview about the underlying
concept. A manual search for realized patterns in an application is very time-consuming
because one has to understand the architecture and behavior of an application in detail.

1https://www.google.com
2https://www.amazon.com
3https://www.microsoft.com

11

https://www.google.com
https://www.amazon.com
https://www.microsoft.com

1 Introduction

By performing a manual search, the advantage of patterns is lost because nevertheless
one needs to know the implementation details. The aim of this bachelor’s thesis is to
develop a concept for an automatic detection of Cloud Computing Patterns in TOSCA
topologies to provide a quick overview on the used architectural structures of a cloud
application and to present an implementation of the introduced concept. Therefore, an
approach to model Cloud Computing Patterns using TOSCA topologies is developed. Also,
a procedure to recognize topology fragments in a TOSCA topology is designed.

Structure

The work is structured as follows:

Chapter 2 – Fundamentals
The basic knowledge for this work is described. This includes essential parts of the
TOSCA-Specification, the OpenTOSCA-Ecosystem, and Design Patterns, i.e., Cloud
Computing Patterns.

Chapter 3 – Related Work
In this chapter works related to the presented approach are described. Therefore,
it is investigated if OpenTOSCA already offers approaches for pattern detection.
Afterwards, an overview of general pattern detection approaches related to this
work is given. Beyond this, algorithms for subgraphisomorphism, needed for the
detection of patterns, are named and described.

Chapter 4 – Concept
The third chapter describes the main concepts of the framework and explains the
framework’s architecture. This includes how the Cloud Computing Patterns are
modeled and hierarchically arranged.

Chapter 5 – Implementation
This chapter describes details of the implementation. This includes the used data
structure needed for the pattern detection, the topologies, and the implemented
subgraph isomorphism. With the help of two exemplary topologies, the func-
tion of the algorithm is explained in detail. Also, issues that occurred during
the development are faced. Furthermore, the restrictions of the framework are
mentioned.

Chapter 6 – Conclusion & Outlook
The final chapter summarizes the results of this work and gives a short outlook to
possible future work.

12

2 Fundamentals

In this chapter terms and technologies are described which are essential for this bache-
lor’s thesis. First of all, basics of the TOSCA-Specification are explained, followed by the
OpenTOSCA-Ecosystem and the concept of design patterns.

2.1 Topology and Orchestration Specification for Cloud
Applications

The TOSCA [OAS13] standard developed by the Organization for the Advancement of
Structured Information Standards (OASIS)1, provides a standard for the description
of cloud applications and their management. The aim of TOSCA is to automate the
deployment and the management of cloud applications and to improve their portability
and interoperability. The overall goal is to offer a vendor-neutral and standardized
ecosystem for cloud applications, that does not require any more external software.

Basically, TOSCA consists of two main parts [BBKL16]: the service template, which
is graphically modeled by a topology, for the service structure of cloud applications,
exemplary shown in Figure 2.1, and the service orchestration for deployment and
management. A topology is a graph of typed nodes and directed, typed edges. For
each node in a topology exists a Node Template, which is representing and holding
information about a single component in a software system (e.g., a web server). Further,
the Node Type defines the type of a Node Template (e.g., Apache Tomcat for the Node
Template web server). The directed, typed edges are instances of Relationship Templates
which are representing the relation or dependencies between two Node Templates. The
Relationship Type defines the type of a Relationship Template and holds the information
about this relation (e.g., a HostedOn relation for an operating system hosted on some
kind of hardware). In addition, each Node Template can hold more information:

• Properties holding specific information like an ip address of a server or login
credentials

1https://www.oasis-open.org/

13

https://www.oasis-open.org/

2 Fundamentals

• Deployment Artifacts describing how this Node Template is deployed (e.g., as a
.war file)

• Management Operations defining input and output parameters plus their data types
and Implementation Artifacts which are implementing those (e.g., a REST-service)

• Capabilities and Requirements, which define the need of an operating system for a
web server for example

2.1.1 Cloud Service Archive

A TOSCA-based application is packaged in a Cloud Service Archive (CSAR) [BBKL16],
which is basically a zip-archive with the ending ".csar". It contains the topology tem-
plates, the types with all properties and the management plans and is the standardized
packaging format for TOSCA service templates.

2.2 OpenTOSCA-Ecosystem

OpenTOSCA2 gets developed at the University of Stuttgart and provides an open source
ecosystem for the OASIS TOSCA standard. It consists of three main parts, the Open-
TOSCA Container, Winery, and Vinothek. Winery is a graphical modeling tool and
provides a topology modeler. Vinothek is a web-based self-service portal for end users to
instantiate cloud applications [BBKL14b]. The OpenTOSCA Container provides a TOSCA
runtime environment.

2.2.1 OpenTOSCA Container

The OpenTOSCA Container provides a TOSCA runtime environment supporting the
imperative and declarative processing of TOSCA topologies [BBH+13]. Therefore, the
deployment and management logic is provided by plans. Imperative processing means
the implementation of management plans can be executed fully automatic, e.g., to start
and to terminate an application. These plans can be realized by Implementation Artifacts
of Node Templates and Relationship Templates. On the other side declarative processing
means the interpretation of the deployment and management logic from plans by the
runtime.

2http://www.opentosca.org/

14

http://www.opentosca.org/

2.2 OpenTOSCA-Ecosystem

(HostedOn)

(HostedOn)

(DeployedOn)

Ubuntu-14.04-VM
(Ubuntu-14.04-VM

…

OpenStack-Liberty-12
(OpenStack-Liberty-12

…

Tomcat_7
(Tomcat_7

…

FlinkApp
(FlinkApp

…

Figure 2.1: Topology of a hosted application

2.2.2 Winery

Winery is an Eclipse project3 providing a web-based environment to graphically model
and create TOSCA applications [KBBL13]. Winery consists of three parts. The first part is

3https://projects.eclipse.org/projects/soa.winery

15

https://projects.eclipse.org/projects/soa.winery

2 Fundamentals

a management graphical user interface (GUI) for Node Types and Node Templates where
new types and templates can be created, or existing ones can be edited or deleted, called
Element Manager. Secondly, the topology modeler which is providing a GUI to create
service templates for a service structure. The last part is the repository, holding the CSAR
files and support the import and export of new files. All elements of Winery, such as Node
Types or Node Templates, are uniquely identifiable and accessible by URLs to enable a
simple way to share topologies. Seven of the 45 elements which are defined in the TOSCA
meta model can be used directly for visual topology modeling. These seven elements are
Relationship Template, Node Template, Relationship Constraint, Deployment Artifact,
Requirement, Capability, and Policy. All remaining elements can be managed in the
Element Manager GUI. Doing this, Winery is separating the simple visual modeling of
application topologies in the Topology Modeler and the more detailed configuration
with more technical insight for experts using the Element Manager. Figure 2.1 shows
an example of an application topology, modeled with the Winery. A simple application
hosted on a tomcat server which is running on an ubuntu virtual machine. This virtual
machine is provided by OpenStack. For this thesis the topology modeler of Winery builds
the entry point. All functionality is implemented in the backend of Winery, more details
will follow in Chapter 5.

2.2.3 Vinothek

The Vinothek provides a GUI for end users and displays the available and deployed
CSARs for easy provisioning. This is an approach to tackle the problem of different
management APIs of TOSCA runtimes, which are not standardized by the specification
yet [BBKL14b]. Vinothek hides all technical details and only shows a simple, graphical
user interface based on web technologies such as HTML5 and JavaScript.

2.3 Design Patterns

As explained in [Gam15] Design Patterns are used to provide a good solution for
specific, but returning problems concerning during the development of object-oriented
software in an abstract form. To build reusable object-oriented software, it is necessary
to solve occurring problems specific for the particular case. Afterwards, the solution has
to be abstracted to provide general concepts for future and similar problems. Design
Patterns provide possible solutions to design problems and make it easier to reuse
successful designs and architectures. In addition, they improve the documentation
and maintenance of existing software systems. A single Design Pattern is a conceptual

16

2.3 Design Patterns

solution, which describes a problem that occurs and then describes a possible solution
concept to it. In general, a pattern consist of four essential elements:

• the pattern name

• the problem on which the pattern can be applied

• the solution to the named problem, which doesn’t give a particular instruction but
an abstract description on how it can be implemented

• the consequences describe the costs and benefits of applying a pattern regarding
the whole implementation

As per the design pattern reference book [Gam15], there are 23 design patterns, which
can be classified in three categories: Creational Patterns, Structural Patterns and Be-
havioral Patterns. Creational Patterns abstract the instantiation process and help to
make a system independent of how its objects are created, composed and represented.
Therefore, these patterns provide a way to create objects while hiding the creation logic.
A common known representative is the Singleton pattern, which ensures that there exists
only one instance of a class. Structural Patterns concern the class and object composition.
They use inheritance to compose interfaces or implementations. An example is the
Composite pattern, which enables composite objects. The Behavioral Patterns concen-
trate on the communication and the assignment of responsibilities between objects. A
popular pattern is the Observer pattern, that offers the possibility to add an observer
to an object’s state. Initially, these three categories of patterns existed. Today, there
exists much more patterns, which cannot be classified to one of these categories. For
example the Model-View-Controller design pattern, which is very popular. Martin Fowler
defines in his book [Fow02] a new category of patterns for object-relational mapping.
He defines patterns for the development of enterprise application architectures with
object-oriented languages like Java or C#. This work will concentrate on a subgroup of
Design Patterns, the Cloud Computing Patterns.

2.3.1 Cloud Computing Patterns

With growing amount of applications running in the cloud, several provider of cloud
platforms developed Design Patterns for the implementation of applications. To introduce
an example, Homer et al. released a book [HSB+14], where they describe Cloud Design
Patterns especially for the use with Microsoft Azure4, the cloud platform offered by
Microsoft5. Those patterns are mainly for the implementation of cloud applications,

4https://azure.microsoft.com
5https://www.microsoft.com

17

https://azure.microsoft.com
https://www.microsoft.com

2 Fundamentals

that will be hosted on the Azure platform. But provider-specific Design Patterns are not
suitable for a general use on different platforms. They differ in the naming of services and
basic architectural aspects. Therefore, Cloud Computing Patterns on a more abstract level
are needed. Fehling et al. deliver this abstraction layer in [FLR+14]. These patterns can
be split in five subcategories. The Cloud Computing Fundamentals describe cloud service
models such as Infrastructure as a Service and cloud deployment types like Public Cloud or
Private Cloud. These patterns extend the National Institute of Standards and Technology
(NIST) cloud definition [MG11]. The cloud offerings describe how a cloud provider
offers resources and functionality for an application. There are cloud environments like
an elastic platform, processing offerings, storage offerings, and communication offerings.
Cloud application architectures specify how applications should be designed to be best
suited adapted for cloud environments. The cloud application management patterns
are used for concepts to manage applications in the cloud automatically. Finally, the
composite cloud applications cover frequent combinations of patterns from the former
described categories. This work will concentrate on an excerption of the Cloud Computing
Fundamentals, the Cloud Offering Patterns and the Cloud Application Management Patterns.
A more detailed description of each pattern used in this work is given in Chapter 4 .

2.4 Amazon Web Services

Amazon Web Services (AWS)6 offers reliable, scalable, and inexpensive cloud computing
services. Very popular products are Amazon EC27 and Amazon Elastic Beanstalk8. EC2
provides an Infrastructure as a Service, while Beanstalk offers a Platform as a Service. Both
are very easy to use and an implementation of the relating Cloud Computing Patterns.
The Amazon Relational Database Service (RDS)9 offers a selection of the most popular
database systems for an easy instantiation. During the development of the Design
Pattern Detection Framework, topologies with AWS components where investigated,
on how Cloud Computing Patterns, like an Elastic Platform, are realized in a practical
use-case. EC2 is a direct use-case of the Elastic Infrastructure pattern and provided as
IaaS. Amazon Elastic Beanstalk is a PaaS implementing the Elastic Platform pattern
as well as the Elastic Load Balancer pattern. Amazon RDS implements the Relational
Database pattern.

6https://aws.amazon.com
7https://aws.amazon.com/de/ec2/
8https://aws.amazon.com/de/elasticbeanstalk/
9https://aws.amazon.com/de/rds/

18

https://aws.amazon.com
https://aws.amazon.com/de/ec2/
https://aws.amazon.com/de/elasticbeanstalk/
https://aws.amazon.com/de/rds/

3 Related Work

As an entry point to the Design Pattern Detection Framework, some other projects and
related topics will be presented in this chapter. First of all, two approaches concerning
OpenTOSCA are investigated. Then, works related to pattern detection in general are
covered. In the third part, an algorithm for subgraph isomorphism is illustrated and
various related algorithms are depicted.

3.1 OpenTOSCA

This section gives attention to two approaches in the context of the development of
OpenTOSCA.

3.1.1 Manual Pattern Detection

Fehling et al. introduce a research process in [FBBL15] on how patterns in various
domains can be identified and organized involving multiple industry partners. This
process is splitted in three parts. First of all, the collection of information, where patterns
could be detected, is explained. Secondly, the extraction of patterns themselves, and
thirdly the application in a concrete use case are declared. The research considered
several different domains of patterns. Cloud Computing Patterns, Cloud Data Patterns,
Application Management Patterns, Green Business Process Patterns and Costume Pat-
terns. Cloud Computing Patterns as well as the Application Management Patterns are
described more detailed in Section 2.3.1. The pattern identification and pattern author-
ing are performed in iterations and repeated as long as new patters are found in the
considered domain. During the pattern identification phase, relevant information of a
domain, in which patterns shall be found, is collected and structured. As a result, a set
of existing solutions is created. During the pattern authoring phase, the patterns are
written. Therefore, the right design for the pattern language based on the considered
domain is chosen and the pattern is written. Subsequently, it is getting reviewed during
further iterations by other pattern authors. The third phase can be independent from

19

3 Related Work

the previous two: the pattern application. In this phase, the patterns are used and
implemented during the development and the design of applications.

Relevance
This works demonstrates a process, how to manually detect patterns in various domains.
In this case, new patterns are searched, different from the topic of this work, to detect
known patterns in a structure. Therefore, it is not relevant for the current work. But it
could be an improvement for the Design Pattern Detection Framework, if the process can
be automated and included in the framework. The detection algorithm would also be
able, to detect new, not yet existing patterns.

3.1.2 Architectural Pattern Language

Another approach to reduce the complexity of cloud application architectures is an
architectural pattern language, also developed by Fehling et al. in [FLR+11]. This lan-
guage describes the principals of cloud computing, available cloud offerings, and cloud
application architectures. The aim is to guide developers during the process of locating
the best cloud environment and the most applicable architecture for their problems.
This process enables a pattern-based application development through interrelation
of patterns. To ensure, that the recommendations for patterns which could be used
are meaningful, a decision recommendation table was designed. This table is showing
well-arranged the interrelations of cloud computing patterns and contains three different
types of pattern interrelations:

• strong cohesion relation (+)

• exclusion cohesion relation (-)

• undetermined relation (o)

The strong cohesion means that one pattern is strongly combined with the related
pattern. The exclusion cohesion relation mentions that those two patterns cannot be
combined. That means, if one pattern appears in an application, it is impossible to
realize the other one. The third one is the undetermined relation, which declares that
there is neither a strong cohesion nor a exclusion between those two patterns. This is an
indication for patterns that are used for different tasks. The table was formed based on
undetermined relations between all patterns.

20

3.2 General Pattern Detection

Relevance
This approach deals with the opposite of the main topic of this thesis. Instead of detect
patterns in a completed application, an application should be implemented based on
the selection of needed patterns. For this thesis the decision recommendation table was
useful to learn about the interrelations of the Cloud Computing Patterns. Based on this
table, a pattern taxonomy was build for defining the probability for the detection of a
specific pattern. This will be declared more detailed in Chapter 4.

3.2 General Pattern Detection

Pattern detection is not just a software engineering related subject, but a very large field
in various domains. In this section, pattern detection approaches in different domains
are introduced.

3.2.1 Pattern Recognition and Machine Learning

Yuichiro Anzai describes in his book [Anz12] general patterns and their recognition by a
computer. He splits up the recognition in two parts: the pattern recognition itself and
machine learning. Anzai uses patterns of real objects, such as pictures. To recognize the
pattern of an object, the computer has to find the boundary lines between the object and
the environment or possible other objects. But when the computer is able to distinguish
between the object and the rest, he still does not know, what kind of object it is. For the
recognition of the object, conceptually knowledge about the object, i.e, its pattern, is
needed. Anzai distinguishes between two algorithms that are necessary: an algorithm
for the detection of an object and an algorithm for recognizing it based on patterns.
During pattern recognition, it is often not possible to determine only one solution based
on given information. So the computer has to deal with possible different sizes of objects
that have the same pattern. Therefore, the computer has to generate new data from the
given data he already recognizes. This process is called machine learning.

Relevance
The work of Anzai describes a general way to pattern recognition. This concept confirms
the approach of this thesis having also two algorithms. One for the detection of the
subgraph isomorphism and one for the recognition of pattern graphs.

21

3 Related Work

3.2.2 Statistical Pattern Recognition

Webb [Web03] focuses on basic pattern recognition procedures with practical applica-
tions on real-world problems. In his approach a pattern denotes a p-dimensional data
vector of measurements. Those measurements are features of an object that is described
by this pattern. Webb distinguishes between supervised and unsupervised classification
of patterns. Supervised classification has a set of data samples with class types, which
are used as exemplars. Unsupervised classification means, the data samples have no
class types and to distinguish one group from another, clustering techniques are used.
The main problem faced in this work concerns the classifier design, the creation of
classes for patterns. Given a set of measurements represented as a pattern vector, this
pattern should be assigned to possible classes. On one side, there is an approach to
assume a knowledge of the underlying class-conditional probability density functions.
This means, for each pattern vector the probability, to be in a specific class, is known.
But in most cases these information will be unknown and must be estimated from a
set of correctly classified samples. The second approach develops decision rules which
separate the measurements of a pattern vector into regions. These regions get classified
and can belong to one or more classes.

Relevance
This approach of Webb is based on statistics and probability density function. As a part
of the Design Pattern Detection Framework, probabilities for possible patterns based
on already detected patterns are set. Although, the approach in the current thesis is
very elementary, this could be an inspiration for a more precise prediction of possible
patterns.

3.3 Algorithm for Subgraph Isomorphism

The subgraph isomorphism problem is a task, in which an input consists of two graphs
G and H and one must determine whether G contains a subgraph that is isomorphic
to H. A subgraph is defined as a graph, that contains a subset of vertices and edges of
the main graph. Two graphs are isomorphic, if they have the same structure, but it is
not forced that their vertices have the same identifier. The subgraph isomorphism is
NP-complete. But there are cases where it may be solved in polynomial time. In the use
case of this thesis it is assumed, that the graphs are finite and small. In the following, an
algorithm is explained as well as some related algorithms.

22

3.3 Algorithm for Subgraph Isomorphism

3.3.1 Ullman

Ullman proposed a backtracking algorithm for the subgraph isomorphism problem
in 1976 and established a basic knowledge for further algorithms facing this prob-
lem [Ull76]. The algorithm basically eliminates inferentially successor nodes in the tree
search. Ullman uses matrices, to model all possible matches between the vertices of a
graph and a possible subgraph. Possible mappings are marked with a 1. By systemati-
cally enumerating all possible matrices, the algorithm checks whether they encode an
isomorphism. To reduce the computation time, a pruning method is used. This method
compares the neighbors of the vertices of a mapping pair, if they can be mapped to
each other too. If no neighbors can be mapped, the mapping pair is wrong and gets
eliminated. This is repeated recursively until no more changes are possible.

Problem definition

Given two graphs G and H, the subgraph isomorphism problem is to determine, if a data
graph G contains a subgraph, that is isomorphic to a query graph H. Subgraph is hereby
called a graph, that contains a subset of vertices and edges of the main graph.

The basic algorithm

First of all, a |VP | × |VG| matrix M0 is set up, where P and G are graphs. V represents
the set of vertices of each graph. For every entry m0

ij in M0, the degree of the vertices
is used as criterion. If deg(vi) ≤ deg(vj), the entry at this point is set to 1. This proofs,
that vi can be mapped to vj, because the latter needs equal or more neighbors. Now
all matrices M that can be obtained from M0 by removing all but one 1 from each row
while having at most one 1 in each column must be tested for the possibility to be a
subgraph isomorphic to P. Removing all but one 1 from each row is needed, because
in one possible isomorphism every vertex of the subgraph can only be mapped to one
vertex in the target graph. Having at most one 1 in each column is necessary, because
it is not possible to map multiple vertices to the same vertex in the target graph. In
Algorithm 3.1, which represents the algorithm in pseudo-code, this is realized in the
loop. The recursive function checks, if the current row is equal to the total amount of
rows. If yes, every vertex of the subgraph is mapped to a vertex in the target graph.
Then, it is checked if this is an isomorphism.

To reduce the computation time, a pruning procedure is used. The pseudo-code for
this procedure is shown in Algorithm 3.2. This offers a simple observation, to check
for the neighbors of an entry in M. An entry mij in M with a 1 means that vi ∈ P can

23

3 Related Work

Algorithmus 3.1 Ullman’s Algorithm

1: function RECURSE(used_columns, cur_row, G, P, M)
2: if cur_row = num_rows(M) then
3: if M is an isomorphism then
4: output yes and end the algorithm
5: end if
6: end if
7: M’ = M
8: prune(M)
9: for all unused columns c do

10: set column c in M’ to 1 and other columns to 0
11: mark c as used
12: recurse(used_column, cur_row+1, G, P, M’)
13: mark c as unused
14: end for
15: output no
16: end function

be mapped to vj ∈ G. But if the algorithm detects that any neighbor of vi ∈ P cannot
be mapped to any neighbor of vj ∈ G, the 1 set at mij is clearly wrong and can be
changed to 0. If this happens, recursively all other changes that might depend on the
previous modification will be indicated and changed as well. The effectiveness of the
pruning procedure depends on the order of the vertices. So a reordering of vertices by
descending degrees would be optimizing the computation time.

Algorithmus 3.2 Pruning Procedure for Ullman’s Algorithm

1: function PRUNE(M)
2: while M was changed do
3: for all (i,j) where M is 1 do
4: for all neighbors x of vi in P do
5: if there is no neighbor y of vj s.t. M(x,y)=1 then
6: M(i,j)=0
7: end if
8: end for
9: end for

10: end while
11: end function

24

3.3 Algorithm for Subgraph Isomorphism

3.3.2 Related algorithms

Existing algorithms can be classified in two categories. The first category are algorithms
for exact subgraph matching and the second one are algorithms for approximately sub-
graph matching. In a recent survey [LHKL13] about the current state of art in subgraph
isomorphism, the authors name five recent algorithms. They represent several optimiza-
tion techniques for the legacy algorithm of Ullman. Therefore, they use different join
orders, pruning rules, and auxiliary information to eliminate false-positive candidates
as early as possible for increasing the performance [LHKL13]. They belong to the first
category and will find all possible subgraphs. As a second subcategory, there exists
also indexing algorithms which can detect if there is one subgraph isomorphism. This
subcategory will not be introduced, because the main goal is to detect multiple matching
subgraphs.

VF2

VF2 is an optimized algorithm for graph matching and is able to efficiently solve
the isomorphism and the graph subgraph isomorphism problem [CFSV04]. The used
memory requirements are reduced significantly by optimizing the exploration of the
search space. Supposing that one has two graphs, a data graph H and a query Graph
G, VF2 selects the first vertex of G and maps it to a vertex in the data graph. Then the
algorithm tries to map a neighbor of the previous vertex to a neighbor of the vertex in
the data graph and repeats this recursively. In the case of no possible matching, the
algorithm goes one step back and selects another neighbor. Since ten years, VF2 is the
state of art algorithm to solve the subgraph isomorphism problem and commonly used
in different applications. This algorithm was used for the implementation and will be
described in more detail in Chapter 4.

VF2 Plus

VF2 Plus is an improved version of the VF2 algorithm especially designed for large
graphs in bioinformatics applications [CFV15]. It improves two important weaknesses
of VF2: the total order relationship and the structure of the terminal sets. VF2 does
not support a sorting procedure and takes the original order of nodes in a graph. VF2
Plus uses a sorting procedure to find a candidate with the lowest probability to find a
matching candidate on the target graph and the highest number of connections to nodes,
that are already used by the algorithm. VF2 just analyzes the direct neighbors of a node
for a new candidate pair. VF2 Plus improves this by exploring nodes that are mapped to
a neighbor of the target node. It also uses a classification system to divide the terminal

25

3 Related Work

sets in different subsets. Due to the optimization for biological graphs, the VF2 Plus was
not considered for the application with normal graphs in this work.

QuickSI

QuickSI was originally designed for smaller graphs. It preprocesses graphs to compute
the frequencies of vertex labels and how often a triple (consisting of a source vertex label,
an edge label, and a target vertex label) appears [SZLY08]. Then a minimum spanning
tree is created, called QI-Sequence [SZLY08], by weighting the edges accordingly (as
the first vertex the one with a higher frequency is used) and the weights are used to
order them in a minimum spanning tree. QuickSI is then searching for a subgraph
using this minimum spanning tree. Regarding the performance, QuickSI and VF2 are
mainly equal. Both are developed as improvements of Ullman’s algorithm. The decision
between QuickSI and VF2 is made for VF2, because of the more common use as reference
algorithm for subgraph isomorphism.

GraphQL

GraphQL is a graph query language [HS08] and as well as the following two algorithms
designed to handle large graphs. It uses neighborhood signatures of data vertices
to prune the initial candidate set and a pruning technique called pseudo subgraph
isomorphism to globally narrow the search space. Pseudo subgraph isomorphism works
by creating a bipartite graph between the query graph and its potential matches in the
data graph. Then it is iteratively comparing subtrees of greater height until it reaches
a specified depth. This algorithm is not used, because it is designed for the use with
large graph databases and ships with an own graph algebra. For this work, small graphs
with simple nodes and edges are used. An algorithm with this level of complexity is not
necessary.

GADDI

GADDI indexes a data graph based on a neighborhood discriminating substructure
(NDS) [ZLY09]. Between pairs of neighboring vertices, NDS is a distance and is handled
as a subgraph. GADDI performs a depth first search to find the next vertex for comparison.
After each run, the vertices are pruned using NDS. This algorithm struggles with a poor
performance due to the expensive NDS distance calculation. Therefore, it was not
considered for this work.

26

3.3 Algorithm for Subgraph Isomorphism

SPath

SPath is defined as a high performance graph indexing mechanism [ZH10]. SPath
focuses on creating a set of shortest paths in the query graph and a path-based indexing
technique for the data graph. Each vertex of the indexed data graph has a neighborhood
signature, which holds information about the shortest paths within the vertex’s vicinity.
Its performance depends very hard from the path search order. Due to its large neigh-
borhood signature overhead, the performance of SPath is poorer compared to GraphQL.
GraphQL is explained to be not considered for the use in this work, so an algorithm with
an even poorer performance is not be used either.

27

4 Concept

In this chapter the underlying concept of the Design Pattern Detection Framework is
explained. Further, the realization of modeling Cloud Computing Patterns using TOSCA
topologies is explained.

4.1 Basic Idea

The general idea is to detect Cloud Computing Patterns in a given TOSCA topology. Those
topologies represent the structure of cloud applications and they can be very complex.
Patterns are not forced to be implemented, so a cloud application may exist without
realizing any patterns. Typically, most cloud applications can implement multiple Cloud
Computing Patterns. To enable the detection programmatically, a consistent structure for
TOSCA topologies and Cloud Computing Patterns is necessary, since the structures need
to be compared accordingly. TOSCA topologies are basically represented as directed
graphs, hence it is useful to model patters as directed graphs as well. Due to the
possibility, that a topology can implement more than just one pattern, a pattern can be
represented in a fragment of a topology. A fragment in a graph is equal to a subgraph,
and therefore the algorithm has to search for matching subgraphs in the topology. Each
subgraph may represent a pattern. For the detection algorithm, which needs to compare
multiple subgraphs, i.e., the patterns, with the topology and its subgraphs, a subgraph
isomorphism algorithm is needed. The chosen algorithm is explained in Section 4.7.

4.2 Abstract Components

Although, each cloud application uses different architectures and different components,
it is possible to generalize those used components. On base of multiple topologies, the
following general components of cloud applications are abstracted. These resulting
components represent the superclasses for the used Node Templates in TOSCA topolo-
gies. These components are used as nodes in pattern graphs and as labels in TOSCA
topologies.

29

4 Concept

• Application components represent one instance of an application.

• Service components are the superclass for resources like Java or Python.

• Storage represents all kind of databases and database management systems.

• Messaging unites message broker and topics.

• Server components stand for web servers like Apache Tomcat1, Apache Server2, or
JBoss3.

• Operating System component represents an instance of a virtual server with a
running operating system.

• Virtual Hardware represents the abstracted, virtual hardware, where the virtual
servers are hosted on. Examples therefore are OpenStack4 or VSphere5.

4.3 Concept to Model Patterns

Cloud Computing Patterns are described in Chapter 2.3.1 and represent abstract and
general concepts to provide good solutions to reoccurring problems. Therefore, a real
implementation of theses patterns is always restricted to the particular use-case and the
used technologies. To be able to use patterns in a context with TOSCA topologies, it is
necessary to model them in a suitable structure. As mentioned above, directed graphs are
chosen for this. Every node of such a graph represents an abstract component of cloud
applications. The concept is designed for the automatic detection of Cloud Computing
Patterns in TOSCA topologies. Because of the limited information available through
the topologies, e.g., there are no details about the implementation or the architectural
design of a component itself, not all Cloud Computing Patterns can be detected by this
algorithm. To form a fundament, the concept and the implementation concentrate on
the following Cloud Computing Patterns extracted from [FLR+14]. The modeled pattern
graphs do not represent full topologies, but subgraphs which can be a fragment of a
respective topology.

1https://tomcat.apache.org/
2https://httpd.apache.org/
3https://www.jboss.org/
4https://www.openstack.org/
5https://www.vmware.com/products/vsphere.html

30

https://tomcat.apache.org/
https://httpd.apache.org/
https://www.jboss.org/
https://www.openstack.org/
https://www.vmware.com/products/vsphere.html

4.3 Concept to Model Patterns

4.3.1 Cloud Computing Fundamentals

The Cloud Computing Fundamentals describe the fundamentals to understand the most of
the other patterns. They describe how IT resources are provided and used. In this work,
the following patterns of the subcategories Cloud Service Models and Cloud Deployment
Models are faced. These patterns are not modeled as graphs. Infrastructure as a Service
(IaaS) and Platform as a Service (PaaS) are detected by analyzing the structure of the
TOSCA topology. The Cloud Deployment Models are detected regarding the use case
of a cloud application. They only differ only in the size of their user groups and their
accessibility.

Infrastructure as a Service
Using the IaaS pattern, providers offer physical and virtual hardware, such as servers,
storage, and networking infrastructure [FLR+14], which can be provisioned quickly.
Those IT resources can be used by customers to install individual operating systems,
middleware, and application software. Many cloud providers also support automatic
scaling of virtual machines. In the context of this work, just virtual hardware is used,
because no physical hardware is modeled using topologies. The IaaS pattern is only
detected, if there is virtual hardware, but no more components such as services or
applications.

Platform as a Service
The PaaS pattern builds up on the IaaS pattern. It offers a new layer upon the infrastruc-
ture by providing managed operating systems and an application hosting environment,
also called middleware. Using this service model, the customer only has to deploy his
applications, the rest is managed by the cloud. This pattern is used for topologies, as
soon as a layer above the virtual hardware or an operating system with services and
servers is detected.

Public Cloud
IT resources or an application running on those, is accessible by a very large customer
group and has public access.

Private Cloud
The resources, that are provided, are only accessible for an exclusive group of users, to
meet a higher grade of privacy and security.

31

4 Concept

Community Cloud
Community means a group of customers, who trust each other and enable a collaborative
and elastic use of IT resources.

Hybrid Cloud
A Hybrid Cloud combines multiple of the former described Cloud Deployment Models to
form a homogeneous hosting environment. Different hosting environments are provided,
that can be accessed by different numbers of users and the underlying IT resources can
be shared between different requirements.

4.3.2 Cloud Offering Patterns

These patterns model the different offerings of functionality, which are provided to the
customer by cloud offerings.

Elastic Infrastructure
An Elastic Infrastructure provides pre-configured virtual server images and storage. The
customer is able to create individual server images for his applications based on pre-
configured images and can add necessary storage resources. All the functionality is
offered via a self-service interface and provides also monitoring information. The elastic
infrastructure enables dynamic allocation of new virtual servers and storage. The use of
an Elastic Infrastructure is detected with keywords, e.g. with an EC2 instance.

Elastic Platform
An Elastic Platform offers a middleware for the execution of custom applications, their
communication and data storage. Middleware is a bundle of services and shared by
different applications on the same host system to reduce management effort. Also the
use of this pattern is detected with keywords, e.g. an Amazon Beanstalk.

Node-based Availability
A cloud provider guarantees the availability of individual nodes, such as virtual servers,
middleware components, or hosted applications. A node is defined available if it is
reachable and performing the expected functions. In the context of TOSCA topologies,
the Node-based Availability is mainly paired with hosted applications. Therefore, this
pattern requires applications to be hosted on different virtual machines. In Figure 4.1,

32

4.3 Concept to Model Patterns

two applications are hosted on two different virtual servers. One application is inde-
pendent from the underlying infrastructure of the other application. In case of a failure
of one virtual server, the other application is still running. This indicates a Node-based
Availability.

Virtual Hardware

Operating System Operating System

Server

Application Application

Server

Figure 4.1: Node-based Availability Pattern

Environment-based Availability
A cloud provider guarantees the availability of the environment hosting individual
nodes, such as virtual servers, middleware components, or hosted applications. For
example, a provider offers an elastic platform to which customers may deploy application
components. Then the provider has to ensure the availability of this environment. There
is no knowledge about the availability of individual nodes in this environment, but the
overall set of deployed nodes. For an Environment-based Availability, the only constraint
is, that all server, services, applications, etc. are deployed and hosted on one virtual
machine. The provider guarantess the availability of the virtual machine and therefore
the availability of the whole environment. This virtual machine is represented as an
operating system in Figure 4.2.

Execution Environment
The Execution Environment pattern describes a concept to avoid duplicate implemen-

33

4 Concept

Virtual Hardware

Operating System

Figure 4.2: Environment-based Availability Pattern

tations of functionality. Application components, which are using similar services and
functionalities, are deployed to an environment, which provides a middleware offering
these services. This enables an efficient sharing of a hosting environment, because not
for every application a new environment with the needed services is build. In Figure
4.3, the graph for this pattern is modeled. The execution environment itself consists of
a bundle of services and servers, This environment is located as middleware between
applications and the operating system. Another constraint is the existence of more than
one application, otherwise there exists no sharing. All components have to be hosted on
the same operating system, which is equal to the same virtual machine.

Service Server

Operating System

Application Application

Execution Environment

Figure 4.3: Execution Environment Pattern

34

4.3 Concept to Model Patterns

Message-oriented Middleware
A message-oriented middleware provides asynchronous message-based communication.
Therefore, message queues are used to exchange information asynchronously and it fits
best, if the transferred amount of data is small. The structure of a message-oriented
middleware requires a broker. The broker is hosted on an operating system. Upon the
broker, a topic is hosted. This topic references a queue. An application can send and
receive messages to and from this queue. This is modeled with the relation between the
application and the messaging component as shown in Figure 4.4.

Operating System

Messaging

MessagingApplication

Figure 4.4: Message-oriented Middleware

Relational Database
The cloud provider offers storage in the form of relational databases for data handling,
for example, a structured query language (SQL) database. For the modeling of this
pattern it is assumed, that a database is set up on a database management system.
Therefore, two components are used. The pattern graph is shown in Figure 4.5.

4.3.3 Cloud Application Management Patterns

These architectural patterns describe how cloud applications can be managed automati-
cally by separate components. Such components handle the automated management of
cloud applications regarding dynamic elasticity, resiliency, updates, etc.

35

4 Concept

Operating System

Storage

Storage

Figure 4.5: Relational Database Pattern

Elasticity Manager
The Elasticity Manager is a component, to elastically scale-out the number of required
application component instances. The manager works as a monitoring tool and if more
instances are required, for example, because of a higher demand, new instances will be
deployed. In Figure 4.6, the manager component is modeled as a service on the virtual
hardware layer.

Virtual HardwareService

Figure 4.6: Elasticity Manager Pattern

Elastic Queue
To use an Elastic Queue in context with a cloud application, it is necessary to provide a
Message-oriented Middleware. This middleware provides queues, which are distributing
asynchronous requests among multiple instances of application components. Paired
with an elastic queue, which monitors these queues, the required amount of instances
for application components can be scaled elastically. As shown in Figure 4.7, this

36

4.3 Concept to Model Patterns

pattern is modeled with a messaging component above the applications. This messaging
component represents the queues. To enable automatic scaling, a manager component
on the layer of the virtual service is also necessary.

Application Application

Virtual Hardware

Messaging

Operating System

Server

Service

Figure 4.7: Elastic Queue Pattern

Elastic Load Balancer
An Elastic Load Balancer is a management component that is provided with information
from a load balancer. A load balancer’s task is to distribute requests among multiple
instances of application components. To be elastic, this function is extended with a
monitoring component, to automatically scale the required number of those instances.
In a topology, this pattern is modeled as a service above the applications as shown
in Figure 4.8. This service has ConnectsTo relations to the applications and can be
identified as a LoadBalancer. The service on the layer of the virtual hardware is an
elasticity manager, to enable the automatic scaling.

37

4 Concept

Application Application

Virtual Hardware

Service

Operating System

Server

Service

Figure 4.8: Elastic Load Balancer Pattern

4.4 Mapping of TOSCA Topologies

TOSCA-Topologies represent the input for the pattern detection algorithm. To be able
to compare them to the Cloud Computing Patterns, it is necessary to know what each
node of the topology represents. Therefore, the topology will be labeled with the same
general component names as the modeled patterns. The first step of labeling a topology
is made during the keyword search. If a node is detected in the keywords, it is labeled
accordingly. The second step is using the present labels and the relationships between the
single nodes of the topology. There are currently three relevant types for relationships:

• DependsOn: This relation is used to define a dependency between two nodes. The
source node of this relationship is the dependent component. The target node
represents the needed resource. For example an Apache Tomcat server (source) is
dependent on a Java Runtime Environment (target).

• DeployedOn: Using this relation shows that an application will be deployed on a
server.

38

4.5 Pattern Taxonomy

• HostedOn: Services like Java, Python, etc. use this relation to identify their host
system, for example, a virtual machine. Also database management systems that
run on a database server use this relation.

• ConnectsTo: Relation for modeling the connection of applications to a service like
a database or a message broker. The source node is the requesting node, the target
node the offering service node.

To start the mapping, the lowest node of the topology is set as the starting point. The
lowest node in this case is defined as the node with no outgoing relations. Outgoing
from the this node, the topology gets labeled by backtracking all incoming relations
of each node. Every node gets only one label and each label represents one of the
abstract components, which are defined in Section 4.2. Therefore, constraints are
defined. Figure 4.9 shows the possible incoming relations of a node. Nodes with a
label are marked with a gray background. Following the incoming relation, the next
node can be labeled. Some nodes have more than one incoming relation. If they
cannot be distinguished by the type of the relation, all possibilities are saved and
the next node is checked. This concept of mapping is strongly dependent from the
collaboration with the keyword detection. In common use cases, the most types of
servers, operating systems, messaging, and storage components are detected using
keywords. In cooperation with this mapping concept it is ensured that all nodes get
labeled. In the special case that a node could not be labeled, all possible labels according
to Figure 4.9 are saved. If a pattern matches a subgraph containing this unidentified
node, the two graphs will be compared using all combinations of different labels for this
node. If they match, the combination is paired with the possible pattern and is added
to the possible pattern list. For example, if the lowest node is detected and labeled as
virtual hardware plus the incoming relation is a HostedOn relation, the source node
has to be an operating system. Otherwise, if the lowest one would be identified as
an Amazon Elastic Beanstalk component with an incoming DeployedOn relation, this
indicates an application component and will be labeled with application.

4.5 Pattern Taxonomy

Based on the decision recommendation table described in Section 3.1.2 pattern tax-
onomies for PaaS and IaaS were created, because all cloud applications are underlying
one of these business models. Working with such taxonomies reduces the runtime of
the subgraph isomorphism algorithm, because impossible patterns can be detected and
removed, before the subgraph isomorphism algorithm starts. In addition, probabilities
can be calculated suggesting other patterns after the detection of a specific pattern, often
there is no hundred percent probability for the existence of a pattern. Starting from one

39

4 Concept

Application

Service

Virtual Hardware

Operating System

Server

Application

ServiceDependsOn

DependsOn

Server

ApplicationDependsOn

DependsOn

Application

Service

DeployedOn

HostedOn

HostedOn

Operating SystemHostedOn

Server

Service

HostedOn

HostedOn

Messaging

ApplicationConnectsTo

Storage

Application

Topic
HostedOn

Messaging

Storage
HostedOn

ConnectsTo

Storage

Messaging
HostedOn

HostedOn

Application
DeployedOn

Service
ConnectsTo

ServiceConnectsTo

Figure 4.9: Constraints for mapping of TOSCA topology

of the Cloud Service Models as initial position, related patterns are arranged in a graph
structure, depending on their interrelations defined in [FLR+14]. The graph cannot
be interpreted as a binding statement for pattern detection, but as a hint for possible
patterns based on previous detected patterns.

4.5.1 Infrastructure as a Service Taxonomy

Figure 4.10 shows the pattern taxonomy for IaaS. According to [FLR+14], the usage of
the Environment-based Availability Pattern is very often found in public clouds. Therefore,
the Public Cloud pattern was added to both taxonomies. The other Cloud Deployment
Patterns cannot be detected from the context of other used patterns, but regarding the
whole topology and analyzing the use case. All three Cloud Management Components,
such as Elastic Queue, need an underlying Elastic Infrastructure to be realized. The

40

4.5 Pattern Taxonomy

IaaS

Elastic
Infrastructure

Elasticity Manager Elastic Load
Balancer Elastic Queue

Node-based
Availability

Environment-
based Availability

Public Cloud

Figure 4.10: Taxonomy for IaaS model

Node-based Availability and the Environment-based Availability patterns can be used in a
standalone application structure without an Elastic Infrastructure, but also together with
this pattern.

4.5.2 Platform as a Service Taxonomy

PaaS

Elastic Platform

Elasticity ManagerElastic Queue

Environment-
based Availability

Node-based
Availability

Execution
Environment

Message-oriented
middleware

Public Cloud

Elastic Load
Balancer

Relational
Database

Figure 4.11: Taxonomy for PaaS model

41

4 Concept

Figure 4.11 shows the pattern taxonomy for PaaS. The Node-based Availability pattern,
the Relational Database pattern, the Execution Environment, and the Environment-based
Availability pattern can be used in both ways again, in a standalone application structure
or in the context of the use with an Elastic Platform. The Public Cloud pattern is also
present here for the same reason as explained in the pattern taxonomy for IaaS. As
a special characteristic in this taxonomy, the two-way directed arrow between Elastic
Platform and Elastic Queue must be mentioned. When a PaaS is detected in combination
with a Message-oriented Middleware, there is the possibility for an Elastic Queue. If this is
confirmed, there must be an Elastic Platform. Therefore, the arrow must point bidirec-
tional. The patterns Elasticity Manager and Elastic Load Balancer need an underlying
Elastic Platform.

4.5.3 Software as Service

The Software as a Service (SaaS) model was not considered, because the topology for
a cloud application with this underlying cloud service model would only consist of
one component, the software or application component itself. Also it is necessary, to
differ from topologies with application component nodes. Those topologies are usually
modeled as PaaS systems, but they also contain application component nodes to model
their future deployment.

4.6 Algorithm

The main algorithm for the pattern detection is divided in three steps. At the beginning,
a simple keyword search is executed. After a successful detection of some keywords,
probabilities for patterns, that may be used in the topology, are set based on the pattern
taxonomies. Afterwards, the TOSCA topology is mapped to a graph. As the third step, a
search for isomorphic subgraphs in the topology is operated. In some topologies there is
the possibility of both cloud service models IaaS and PaaS. This can appear, if the lowest
node is, for example, an OpenStack. OpenStack offers virtual hardware, but if upon this
node a PaaS is modeled, the algorithm will detect both. OpenStack then delivers an
Elastic Infrastructure and above it, the platform is modeled.

Keyword Search & Probabilites
Keywords are predefined and searched in the name property of every Node Template of
the topology. These keywords are used to identify specific components, e.g., Amazon

42

4.6 Algorithm

Elastic Beanstalk 6 or an Apache Tomcat server. If Amazon Elastic Beanstalk is detected
in a topology, it is ensured that a PaaS is offered, because it is a PaaS application
management service. Furthermore, the patterns Elastic Platform and Elastic Load Balancer
can be derived to be implemented as well. This can be ensured, because of the knowledge
about the occurrence of the Amazon Elastic Beanstalk service. Now those patterns are
marked as detected in the pattern taxonomy. Probabilities are set specific for each
pattern based on detected keywords. If a pattern was recognized with keywords, the
probabilities for all direct successor nodes in the taxonomies are set. In case of a
probability that was already set for a node, it will be just overwritten if the current
probability is lower. The following layers of probabilities are used in this descending
hierarchy:

1. Detected

2. High

3. Medium

4. Low

5. Impossible

Mapping of Topology
In this step of the algorithm, the topology is mapped to a graph, to be comparable to
the pattern graphs. This is done by implementing the concept for mapping TOSCA
topologies explained in Subsection 4.4.

Subgraph Isomorphism
For the subgraph isomorphism, all possible subgraphs of the topology graph are created.
According to the pattern taxonomy, the possible pattern graphs are tested for subgraph
isomorphism in each subgraph of the topology using the VF2 algorithm. The result set
contains those pattern graphs, that are isomorphic to a subgraph. Now each pattern
graph is compared to its isomorphic subgraph. This has to be done, because the proof
of subgraph isomorphism does not proof the equal structure of components of the two
graphs. This is done afterwards, by comparing the labeled nodes. If they are matching
too, the pattern is added to the detected pattern list.

6https://aws.amazon.com/de/elasticbeanstalk/

43

https://aws.amazon.com/de/elasticbeanstalk/

4 Concept

4.7 VF2 Algorithm

The VF2 algorithm is an improved version of the VF and Ullman’s algorithm and
optimized for large graphs. VF2 was developed to efficiently solve the graph isomorphism
problem [CFSV04]. Supposing that one has two graphs, a data graph H and a query
Graph G, VF2 selects the first vertex of G and maps it to a vertex in the data graph. In
the next step, VF2 selects a vertex that is connected to the already matched vertices in G
and tries to map it to an also connected vertex in H. This is repeated recursively until all
vertices of G matched a vertex in H or one vertex cannot be matched. In this case, the
algorithm goes one step back and selects another connected vertex. If this one matches,
the algorithm continues as known, otherwise it goes one step back. The performance is
significantly dependent from the choice of the next vertex.

Algorithmus 4.1 Matching algorithm

Input: an intermediate state s; the initial state s0 has M(s0) = ∅
Output: the mappings between the two graphs

1: function MATCH(s)
2: if M(s) covers all the nodes of G2 then return M(s)
3: else
4: Compute the set P(s) of the pairs candidate for inclusion in M(s)
5: for all (n, m) ∈ P (s) do
6: if F(s,n,m) then
7: Compute the state s’ obtained by adding (n,m) to M(s)
8: MATCH(s)
9: end if

10: end for
11: Restore data structures
12: end if
13: end function

In the pseudo-code algorithm, shown in Algorithm 4.1, G2 is the data graph and G1 the
subgraph that should be isomorphic. M(s) represents a partial mapping solution, which
contains only a subset of the components of the whole mapping function M. The set P
contains all candidates that must be investigated for a matching. The function F returns
true, if it is ensured that (n,m) matched and was added to the partial isomorphism.

44

5 Implementation

In this chapter the implementation details of the framework are described and two exam-
ples are explained. For further usages the occurred problems during the implementation
plus the actual limitations are named.

5.1 Used Technologies

In this section the used technologies and libraries are described which are used to
implement the design pattern detection framework.

5.1.1 Winery

The framework is realized as an extension for Winery. In the graphical user interface
itself, the amount of development effort was small and will not be treated in detail. To
be able to use the pattern detection, a button with the label "Detect Pattern" is added
and connected with the REST-API of the Winery repository. The whole logic behind
the detection is implemented in the repository using Java and is located in the Winery
repository module in the package "org.eclipse.winery.repository.patterndetection".

5.1.2 JGraphT

For the implementation of the graphs for the patterns and the TOSCA topology, the
JGraphT 1 library is used. It is a free Java graph library for simple use of different
graph types, like directed, undirected, as well as weighted, unweighted, or user-defined
edges. JGraphT focuses on data structures and the use with algorithms. JGraphT is

1http://jgrapht.org/

45

http://jgrapht.org/

5 Implementation

dual-licensed under LGPL 2 and EPL 3. Each graph consists of a set of vertices and a set
of edges. The vertices can be any kind of Java classes.

Relationship Edge

To be able to use labeled edges, the default edge class which is providing the source and
the target vertex, is extended by a label, represented by a single String. This label defines
the Relationship Type. The different types are named in Chapter 4 in Section 4.4.

5.2 Code Structure

The main class is the Detection class, where the detection algorithm starts. The model
package contains the patterns and all classes used to model the graphs. In the pattern
package all patterns are created as java classes. In the keywords package, enums are
created for each abstract component. Each of these enums is filled with common used
keywords.

5.2.1 Keywords

There are five enums for the keywords. Each enum realizes one abstract component as
described in Section 4.2. These enums are imported and used as ArrayLists.

5.2.2 TNodeTemplateExtended

During the pattern detection, the original TOSCA topology gets labeled to assign each
node to a layer. Therefore, objects of the TNodeTemplateExtended class are used, which
are holding the origin TNodeTemplate object, a label, and an optional keyword. The
label is set during the mapping of the TOSCA topology while the keyword will be set, if
the keyword search matches.

2https://www.gnu.org/licenses/lgpl-3.0.en.html
3https://www.eclipse.org/legal/epl-v10.html

46

https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.eclipse.org/legal/epl-v10.html

5.2 Code Structure

5.2.3 PatternComponent

All pattern graphs have objects of the PatternComponent class as vertices. These Pattern-
Components hold information about the label and two integer values for minimum and
maximum occurrences. This is very important if a subgraph isomorphism is detected
and the two graphs are compared.

5.2.4 Pattern Taxonomy

The implementation of the pattern taxonomies for PaaS and IaaS is done with objects of
a SimpleDirectedWeightedGraph. This graph offers directed edges with the ability to
add a weight, which is important for the probabilities and they are set as follows:

• 0.99 for a detected pattern (cannot be 1.0 because this is the default value for an
edge weight)

• 0.75 for high probability

• 0.5 for medium probability

• 0.25 for low probability

• 0.0 for an impossible pattern matching

5.2.5 Pattern Graph

All patterns are implemented in a separate Java class using objects of a DirectedGraph.
This is a directed graph which has objects of the type PatternComponent as vertices and
edges of the type RelationshipEdge.

5.2.6 Abstract Topology

For the implementation of the mapping of TOSCA topologies, an abstract topology is
used. Therefore, a DirectedGraph is used, having TNodeTemplateExtended objects as
vertices and RelationshipEdge objects as edges. This AbstractTopology class initially
converts the topology to a DirectedGraph. Within the map method, all unlabeled nodes
in this graph are labeled. This method implements the concept of mapping TOSCA
topologies explained in Chapter 4.

47

5 Implementation

5.2.7 Properties

All text values such as labels, pattern names, or keywords are outsourced to a properties
file named patterndetection.properties to enable easy expandability and modification.

5.3 Examples

With two examples of use, the function of the pattern detection will be explained in
practice. One example deals with a classic TOSCA topology modeling the architecture
of the OpenTOSCA ecosystem. The second example of use is an AWS specific topology
with AWS components.

5.3.1 OpenTOSCA Topology

The first example of use utilizes a topology created for the deployment of the OpenTOSCA
ecosystem displayed in Figure 5.1 as input.

Keyword Search
In the first step of the algorithm, the Node Templates of the original topology are
searched for predefined keywords. If a keyword is found, a new object of the type
TNodeTemplateExtended containing the origin Node Template, a label, and the keyword
is created. In this use case, the following nodes are detected with keywords and labeled
accordingly:

• OpenStack-Liberty-12 is detected with the keyword OpenStack. A new TNode-
TemplateExtended is created with the label Virtual_Hardware and the keyword
OpenStack.

• Ubuntu-14.04-VM matches the keyword Ubuntu. It is labeled with OperatingSystem
and the keyword Ubuntu.

• Tomcat_7 matches with the predefined keyword Tomcat and gets labeled with
Server and the found keyword.

• Java7 is labeled with Service and the found keyword Java.

48

5.3 Examples

(DependsOn)

(HostedOn)(DependsOn)(DependsOn)

(HostedOn)

(HostedOn)

(DependsOn)

(HostedOn)

(DependsOn)

(HostedOn)

(DependsOn)

(HostedOn)
(DependsOn)

(HostedOn)

(DependsOn)

(HostedOn)

(HostedOn)

(DependsOn)

Winery
(Winery

…

OpenTOSCA_Vinothek
(OpenTOSCA_Vinothek

…

OpenTOSCA_AdminUI
(OpenTOSCA_AdminUI

…

OpenTOSCA_Container
(OpenTOSCA_Contai…

…

WSO2BPS2
(WSO2BPS2

…

WineryTopologyModeler
(WineryTopologyMod…

…

Tomcat_7
(Tomcat_7

…

Java7
(Java7

…

Ubuntu-14.04-VM
(Ubuntu-14.04-VM

…

OpenStack-Liberty-12
(OpenStack-Liberty-12

…

Figure 5.1: TOSCA topology of the OpenTOSCA Ecosystem

Probabilities
Because of the with keywords detected OpenStack component, the algorithm initially
assumes an IaaS. Now the pattern taxonomy for IaaS is used to set probabilities for
possible patterns as shown in Figure 5.2. At this moment, the algorithm has two detected
patterns: the IaaS and the Elastic Infrastructure pattern. But because of the fact, that
there are more components upon the infrastructure with labels Server and Service, the
algorithm now includes an PaaS as underlying structure. Identical to the IaaS taxonomy,
also the PaaS taxonomy in Figure 5.3 is edited.

The probability for Environment-based Availability is set high, because only one server
component is detected, so the whole environment runs in one instance. On the other
side the probability for a Node-based Availability is reduced to low. All patterns under

49

5 Implementation

IaaS

Elastic
Infrastructure

Elasticity Manager Elastic Load
Balancer Elastic Queue

Node-based
Availability

Environment-
based Availability

Public Cloud

0.99

0.75

0.75 0,25

0.50.50.5

Figure 5.2: Taxonomy for IaaS with probabilities

PaaS

Elastic Platform

Elasticity ManagerElastic Queue

Environment-
based Availability

Node-based
Availability

Message-oriented
middleware

Public Cloud

Elastic Load
Balancer

Relational
Database

0.0

0.75
0.250.0 0.0

Execution
Environment

0.75

0.75

Figure 5.3: Taxonomy for PaaS with probabilities

Elastic Infrastructure are dependent from the installation of OpenStack and cannot be
detected in this way.

For the PaaS taxonomy, the Execution Environment as well as the Environment-based
Availability are marked with high probability because of the existence of services and
one server. Impossible is the Elastic Platform because of the Elastic Infrastructure.

Mapping of the Topology
In this step of the algorithm, the topology will be completely mapped. Starting from the
lowest node, in this case the OpenStack, all nodes now get labeled. Outgoing from the
operating system, all nodes with a HostedOn relation get labeled with Service. These are

50

5.3 Examples

Virtual Hardware

Operating System

Service ServerService Service

Application Application Application Application

Figure 5.4: Topology with labels

the WSO2BPS2 node and the OpenTOSCA_Container. The Tomcat server was already
detected and labeled as a server. Based on the mapping concept, the source nodes of all
incoming DeployedOn relations get labeled as Application. The labeled nodes will then
be added with their edges to a directed graph.

Figure 5.4 represents the graph with the labeled nodes. This is the shape of graph, that
is used in the following subgraph isomorphism algorithm.

Subgraph Isomorphism
All patterns are represented as graphs. Now for the topology all possible subgraphs
are generated, ignoring the subgraphs with only one vertex. It is necessary to compare
the subgraph with the pattern graph afterwards, to ensure that they are isomorphic
and have the same structure. Then two lists with the subgraph and the patterns are
compared using the VF2 algorithm. As the result, all detected patterns are returned as
well as the probabilities for other patterns.

Result
After the algorithm finishes, the following, listed patterns are detected:

• Environment-based Availability

• Execution Environment

51

5 Implementation

• Platform as a Service

• Elastic Infrastructure

5.3.2 AWS Topology

The second example handles a topology for the deployment of the OpenTOSCA ecosystem
to an AWS service as modeled in Figure 5.5.

(DependsOn)

(DependsOn)

(DependsOn)

(DependsOn)

(DependsOn)

(HostedOn)

(HostedOn)

(DeployedOn)

(DeployedOn)

(DeployedOn)

(DeployedOn)

Winery
(Winery

…

OpenTOSCA_Vinothek
(OpenTOSCA_Vinothek

…

OpenTOSCA_AdminUI
(OpenTOSCA_AdminUI

…

OpenTOSCA_Container
(OpenTOSCA_Contai…

…

WSO2BPS2
(WSO2BPS2

…

WineryTopologyModeler
(WineryTopologyMod…

…

AmazonBeanstalk
(AmazonBeanstalk

…

Figure 5.5: Topology for OpenTOSCA with AWS

Keyword Search
In this case, just the AmazonBeanstalk is detected with the keyword Beanstalk. It is
labeled with Service.

Probabilities
In this topology, the algorithm knows because of the Amazon Beanstalk component, that

52

5.3 Examples

PaaS

Elastic Platform

Elasticity ManagerElastic Queue

Environment-
based Availability

Node-based
Availability

Message-oriented
middleware

Public Cloud

Elastic Load
Balancer

Relational
Database

0.0

0.75
0.250.99 0.0

Execution
Environment

0.75

0.75

0.99 0.990.99

Figure 5.6: Taxonomy for PaaS with probabilities

a PaaS service model is present. Because of the Amazon Beanstalk multiple patterns can
be marked as detected, since they are already included in Beanstalk. In Figure 5.6 the
Elastic Platform pattern, Elastic Queue pattern, and the Elasticity Manager pattern are
marked with the value 0.99 which indicates them as detected.

Result
The Amazon Beanstalk offers a complete PaaS. On this platform, the custom applications
are deployed. There cannot be detected more patterns. The algorithm finishes after
the probabilities and returns a list of patterns, which are defined for the use of Amazon
Beanstalk:

• Environment-based Availability

• Execution Environment

• Platform as a Service

• Elastic Platform

• Elastic Load Balancer

5.3.3 Deviations

While comparing the two examples one notices, that in the AWS topology no Elastic
Infrastructure is detected. Since, the single Amazon Beanstalk component hides all

53

5 Implementation

information about the underlying infrastructure, there is no possibility to make any
statement about the infrastructure. But within the Elastic Platform the use of such an
infrastructure is implied, but not mentioned as a detected pattern.

5.4 Problems

During the implementation, some problems occurred. A big issue was the mapping of the
topology just based on the knowledge of relations, the lowest node, and keywords. To
avoid a chaos of if and else constraints, the constraints shown in Figure 4.9 were defined.
Another problem was the combination of IaaS and PaaS. This issue was approached
several times before, because if the topology of a cloud application is fully modeled, it
can happen that both, IaaS and PaaS, are modeled. This problem was solved by checking
both in hierarchical order. With the subgraph isomorphism, the following problem was
present: If a single subgraph isomorphism algorithm is used, he will only return the
result, i.e., if an isomorphism exists, but not the area in the graph. To receive this,
subgraphs of the topology were created. Difficult to implement was the creation of all
these possible subgraphs for the labeled topology graph. For each node, all possible next
nodes plus the combinations with all further detected subgraphs have to be saved as
subgraphs. One more challenge was the lack of visual graphs for debugging purposes.

5.5 Limitations

The current implementation works successful, if only one base node is used. This means,
that only one Node Template may exist with no outgoing relations. If there are more,
the algorithm will not work as expected. Also the topology has to be connected and may
only use the defined Relationship Templates. The TOSCA topology also may not have
multiple edges between two Node Template. Furthermore, topologies with virtualization
components such as Docker4 are not yet supported. Only the Cloud Computing Patterns
defined in Chapter 4 are available for detection.

4https://www.docker.com/

54

https://www.docker.com/

5.6 Expandability

5.6 Expandability

The functionality can be expanded in different ways. On the one hand, the patterns can
be expanded by writing new classes. On the other hand, the available keywords can be
easily expanded by adding new ones to the according enum. Also, all text values can be
modified in the properties file. By doing this, new Relationship Types can be added.

55

6 Conclusion & Outlook

The goal of this bachelor’s thesis is a concept for an automatic detection of Cloud
Computing Patterns in TOSCA topologies as well as a first implementation. First of all,
the underlying technologies and concepts of TOSCA and OpenTOSCA are explained
as well as the sense and the function of design patterns in general. Based on this, a
concept for the Design Pattern Detection Framework is investigated. This concept mainly
concentrates on the modeling of Cloud Computing Patterns as fragments of topologies
and the preparation of TOSCA topologies for the pattern detection by mapping the
single nodes to abstract components. This mapping starts with a keyword search, to find
known components. Afterwards, a mapping algorithm, based on the different relations
of components, maps the rest of the topology, to receive a topology with abstracted
components. The modeling of Cloud Computing Patterns is done with the same abstract
components. Both, the patterns and the topologies, are handled as graphs during the
detection algorithm. With the use of pattern taxonomies, probabilities for possible
patterns based on their interrelations are set. After the creation of all possible subgraphs
of the topology graph, these subgraphs are compared to the pattern graphs using the
VF2 algorithm. This algorithm detects whether a subgraph is isomorphic to a subgraph
in a bigger graph. Pattern subgraphs can be found in topology subgraphs when they are
isomorphic. Then this pattern is marked as detected.
The concrete implementation with a direct integration in Winery is explained in Chap-
ter 5 with all important classes. Also, the functionality is explained using two exemplary
topologies.
The created framework forms a basis for future work and further implementations.
The framework can be extended to support more Cloud Computing Patterns as well as
more keywords. A further extension could be the detection of Composite Cloud Patterns.
Also, an improvement of the subgraph isomorphism is possible. In May 2017, the VF3
algorithm, an upgrade of the VF2 algorithm, is introduced by Carletti et al. [CFSV17].
This evolution of the VF2 Plus aims to enhance the performance on graphs that are
at the same time large and dense. However, the effectiveness of VF3 is only validated
experimentally. To conclude, a concept for pre-processing the topology graph and a
separation into logical subgraphs could be useful, e.g., creating a subgraph for every
virtual machine. This may reduce the computational time.

57

Bibliography

[Anz12] Y. Anzai. Pattern recognition and machine learning. Elsevier, 2012 (cit. on
p. 21).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wag-
ner. “OpenTOSCA - A Runtime for TOSCA-based Cloud Applications.” En-
glish. In: Proceedings of 11th International Conference on Service-Oriented
Computing (ICSOC’13). Vol. 8274. LNCS. Springer Berlin Heidelberg, Dec.
2013, pp. 692–695 (cit. on p. 14).

[BBKL14a] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. “TOSCA: Portable Auto-
mated Deployment and Management of Cloud Applications.” English. In:
Advanced Web Services. New York: Springer, Jan. 2014, pp. 527–549. ISBN:
978-1-4614-7534-7 (cit. on p. 11).

[BBKL14b] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. “Vinothek - A Self-
Service Portal for TOSCA.” Englisch. In: Proceedings of the 6th Central-
European Workshop on Services and their Composition (ZEUS 2014). Ed. by
N. Herzberg, M. Kunze. Vol. 1140. CEUR Workshop Proceedings. CEUR-
WS.org, März 2014, pp. 69–72 (cit. on pp. 14, 16).

[BBKL16] T. Binz, U. Breitenbücher, O. Kopp, F. Leymann. TOSCA and OpenTOSCA.
Presentation. IAAS University of Stuttgart, 2016 (cit. on pp. 13, 14).

[CFSV04] L. P. Cordella, P. Foggia, C. Sansone, M. Vento. “A (sub)graph isomorphism
algorithm for matching large graphs.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 26.10 (Oct. 2004), pp. 1367–1372. ISSN:
0162-8828 (cit. on pp. 25, 44).

[CFSV17] V. Carletti, P. Foggia, A. Saggese, M. Vento. “Introducing VF3: A New
Algorithm for Subgraph Isomorphism.” In: Graph-Based Representations in
Pattern Recognition: 11th IAPR-TC-15 International Workshop, GbRPR 2017,
Anacapri, Italy, May 16–18, 2017, Proceedings. Ed. by P. Foggia, C.-L. Liu,
M. Vento. Cham: Springer International Publishing, 2017, pp. 128–139.
ISBN: 978-3-319-58961-9 (cit. on p. 57).

59

Bibliography

[CFV15] V. Carletti, P. Foggia, M. Vento. “VF2 Plus: An Improved version of VF2
for Biological Graphs.” In: International Workshop on Graph-Based Rep-
resentations in Pattern Recognition. Springer. 2015, pp. 168–177 (cit. on
p. 25).

[FBBL15] C. Fehling, J. Barzen, U. Breitenbücher, F. Leymann. “A Process for Pattern
Identification, Authoring, and Application.” German. In: Proceedings of the
19th European Conference on Pattern Languages of Programs (EuroPLoP).
ACM, Jan. 2015, pp. 1–9 (cit. on p. 19).

[FLR+11] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck. “An Archi-
tectural Pattern Language of Cloud-based Applications.” In: Proceedings of
the 18th Conference on Pattern Languages of Programs (PLoP). ACM, 2011
(cit. on p. 20).

[FLR+14] C. Fehling, F. Leyman, R. Retter, W. Schupeck, P. Arbitter. Cloud computing
patterns: fundamentals to design, build, and manage cloud applications.
Wien; Heidelberg [u.a.]: Springer, 2014, XXVI, 367 Seiten. ISBN: 978-3-
7091-1567-1 (cit. on pp. 11, 18, 30, 31, 40).

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002. ISBN: 0321127420
(cit. on p. 17).

[Gam15] E. Gamma. Design Patterns: Entwurfsmuster als Elemente wiederverwend-
barer objektorientierter Software. 1. Aufl. [Frechen]: mitp, 2015, 472 Seiten.
ISBN: 978-3-8266-9700-5 (cit. on pp. 16, 17).

[HS08] H. He, A. K. Singh. “Graphs-at-a-time: query language and access methods
for graph databases.” In: Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data. ACM. 2008, pp. 405–418 (cit. on
p. 26).

[HSB+14] A. Homer, J. Sharp, L. Brader, M. Narumoto, T. Swanson. “Cloud Design
Patterns.” In: (2014) (cit. on p. 17).

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. “Winery - A Modeling
Tool for TOSCA-based Cloud Applications.” Englisch. In: Proceedings of
11th International Conference on Service-Oriented Computing (ICSOC’13).
Vol. 8274. LNCS. Springer Berlin Heidelberg, Dezember 2013, pp. 700–704
(cit. on p. 15).

[LHKL13] J. Lee, W.-S. Han, R. Kasperovics, J.-H. Lee. “An in-depth comparison of
subgraph isomorphism algorithms in graph databases.” In: Proceedings
of the 39th international conference on Very Large Data Bases. PVLDB’13.
Trento, Italy: VLDB Endowment, 2013, pp. 133–144 (cit. on p. 25).

60

[MG11] P. Mell, T. Grance. The NIST Definition of Cloud Computing. 2011. URL:
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
145.pdf (cit. on p. 18).

[OAS13] OASIS. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0. 2013 (cit. on p. 13).

[QLDG09] L. Qian, Z. Luo, Y. Du, L. Guo. “Cloud computing: An overview.” In: Cloud
computing (2009), pp. 626–631 (cit. on p. 11).

[SZLY08] H. Shang, Y. Zhang, X. Lin, J. X. Yu. “Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism.” In: Proceedings of
the VLDB Endowment 1.1 (2008), pp. 364–375 (cit. on p. 26).

[Ull76] J. R. Ullmann. “An Algorithm for Subgraph Isomorphism.” In: 1976 (cit. on
p. 23).

[Web03] A. R. Webb. Statistical pattern recognition. John Wiley & Sons, 2003 (cit. on
p. 22).

[ZH10] P. Zhao, J. Han. “On graph query optimization in large networks.” In:
Proceedings of the VLDB Endowment 3.1-2 (2010), pp. 340–351 (cit. on
p. 27).

[ZLY09] S. Zhang, S. Li, J. Yang. “GADDI: distance index based subgraph matching
in biological networks.” In: Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology. ACM.
2009, pp. 192–203 (cit. on p. 26).

All links were last followed on July 3, 2017.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	2 Fundamentals
	2.1 Topology and Orchestration Specification for Cloud Applications
	2.2 OpenTOSCA-Ecosystem
	2.3 Design Patterns
	2.4 Amazon Web Services

	3 Related Work
	3.1 OpenTOSCA
	3.2 General Pattern Detection
	3.3 Algorithm for Subgraph Isomorphism

	4 Concept
	4.1 Basic Idea
	4.2 Abstract Components
	4.3 Concept to Model Patterns
	4.4 Mapping of TOSCA Topologies
	4.5 Pattern Taxonomy
	4.6 Algorithm
	4.7 VF2 Algorithm

	5 Implementation
	5.1 Used Technologies
	5.2 Code Structure
	5.3 Examples
	5.4 Problems
	5.5 Limitations
	5.6 Expandability

	6 Conclusion & Outlook
	Bibliography

