
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 2351

Depth control of an Underwater
Robot

Matthias van de Weyer

Course of Study: Technische Kybernetik

Examiner: Prof. Dr. rer. nat. habil. Paul Levi

Supervisor: Dipl.-Ing. Tobias Dipper

Commenced: 25.07.2011

Completed: 24.01.2011

CR-Classification: I.2.9, I.6.0, B.1.0

Zusammenfassung

Für autonome Unterwasserfahrzeuge ist es unerlässlich selbstständig eine vorgege-
bene Tiefe anfahren und halten zu können. Dieser Vorgang ist im allgemeinen nicht
einfach, da eine Tiefenänderung ein nichtlinearer Vorgang ist. Außerdem müssen
Störgrößen, wie beispielsweiße durch Wasserströmungen, kompensiert werden.
Diese Arbeit befasst sich mit der Entwicklung eines Tiefenreglers für eine sehr
kleine Unterwasserplattform, welcher genau diese Aufgaben übernimmt. Dazu
wird zuerst das Modell der Plattform aus den Bewegungsgleichungen hergeleitet
und in Matlab Simulink modelliert. Mit diesem Modell können beliebige Regel-
strukturen und Parameter in kurzer Zeit Simuliert werden. Da die Plattform sehr
klein ist, werden einfache Reglerstrukturen wie PID oder Zustandsrückführung
verwendet. Um die Nichtlinearität nicht zu vernachlässigen wird das Modell ex-
akt linearisiert. Der entwickelte Regler wird dann auf dem Microcontroller Board,
im Inneren der Plattform, implementiert und getestet.

Abstract

For autonomous underwater vehicles, it is absolutely essential to be able to reach
and keep a given depth autonomously. This procedure is usually not trivial, be-
cause a depth change is a nonlinear event. In addition disturbances, like water
currents have to be compensated.
This thesis deals with the development of a depth controller for a very small under-
water platform and should perform this tasks. Therefore, the model of the platform
is deduced from the equations of motions and simulated in Matlab Simulink. With
this model, it is possible to simulate arbitrary control structures and control param-
eters in short time. Because the platform is very small, simple control structures
like PID or state feedback will be used. To not neglect the nonlinearity, the system
will be exact linearized. The designed controller will then be implemented on the
micro controller board inside the platform.

Contents

List of Figures VIII

List of Tables XI

1 Introduction 1
1.1 Goal . 2
1.2 Approach . 2

2 Modeling 3
2.1 Dynamics . 3

2.1.1 Weight force . 3
2.1.2 Buoyancy . 4
2.1.3 Hydrodynamic resistance . 4
2.1.4 Complete equations of motion 5
2.1.5 State space representation . 5

2.2 Model Parameters . 7
2.2.1 Weight (m) . 7
2.2.2 Surface area (A) . 7
2.2.3 Drag coefficient (cw) . 7
2.2.4 Transmission Factor (k) . 8
2.2.5 Water - density (ρ) . 8
2.2.6 Linearization factor (clin) . 8

2.3 Simulink model . 9

3 Control unit design 11
3.1 Stability . 11
3.2 Controllability . 11
3.3 Observability . 11
3.4 Transfer Function . 12
3.5 PID-Controller . 12

3.5.1 P-term . 13
3.5.2 I-term . 13
3.5.3 D - Term . 14
3.5.4 Anti-windup . 14
3.5.5 Loop tuning . 14

VII

Contents

3.6 Nonlinear approach . 16
3.6.1 Exact linearization . 16
3.6.2 State Feedback . 20
3.6.3 State observer . 22

4 Simulation 25
4.1 Input signal . 25
4.2 PID controlled system . 25

4.2.1 Simulink plan . 25
4.2.2 Results . 26

4.3 Nonlinear state feedback . 28
4.3.1 Simulink plan . 28
4.3.2 Results . 28
4.3.3 Margin of error . 29

5 Hardware 35
5.1 Platform . 35

5.1.1 Experimentation Board . 35
5.1.2 Feedback Sensor . 35

5.2 Implementation . 36
5.2.1 I2C communication . 36
5.2.2 Temperature and pressure conversion 36
5.2.3 Timing . 37
5.2.4 Communication . 38
5.2.5 Compressor feedback . 40
5.2.6 Depth control . 41

5.3 Implementation of the PID controller 43

6 Experiments 45
6.1 Setup . 45
6.2 Holding depth with the state feedback controller 45
6.3 Holding depth with the PID-controller 45
6.4 Step response with the PID-controller 46
6.5 Results . 46

7 Conclusion 49
7.1 Summary . 49
7.2 Future work . 49

Literatur A

VIII

List of Figures

2.1 Comparison of the linearized velocity influence and the real velocity
influence . 9

2.2 Simulink model of the dynamics of the robot 9

3.1 Pole-zero plot . 12
3.2 Model of the control loop with a PID-controller 13
3.3 Structure of a PID-controller with anti-windup 15
3.4 Principle of exact linearization [FH08] 16
3.5 Plot of the sign function (green) and absolute value(red) 18
3.6 Model of the exact linearization equation 19
3.7 Structure of a state feedback controller 21
3.8 State feedback controller modeled in Simulink 22
3.9 State observer modeled with Matlab Simulink 23

4.1 Simulated depth profile . 26
4.2 Model of the control loop with a PID-controller 26
4.3 Calculation of the absolute deviation 27
4.4 Behavior of the controlled PID system 27
4.5 Control variable u of the PID controlled system 28
4.6 Absolute deviation of the closed loop with a PID-controller 29
4.7 Complete Simulink plan with state feedback controller and exact lin-

earization . 30
4.8 Behavior of the system with a state feedback controller 31
4.9 Control variable u of the state feedback controlled system 31
4.10 Absolute deviation of the state feedback controlled system 32
4.11 Sate feedback controlled system with simulated disturbances of white

noise added to the simulated sensor value and a gain on the esti-
mated volume . 32

4.12 Control variable u with simulated disturbances through adding white
noise to the depth value and a gain to the estimated volume. 33

4.13 Control variable u with simulated disturbances smoothened by a
PT1 term . 33

5.2 Bluelight module . 38
5.1 Flowchart of the Timer1IntHandler . 39

IX

List of Figures

5.3 Calculation of |x2| . 42
5.4 Flowchart of the PID controller . 43

6.1 Test result with the PID controlled system trying to hold a constant
depth of 0.2m . 46

6.2 Test result with the PID controlled system performing a depth change
from 0.2m to 0.3m . 47

X

List of Tables

1.1 Comparison of direct and indirect diving 2

2.1 System Parameters . 8

5.1 Commands for controlling the robot 40

XI

1 Introduction

Underwater missions are always an expensive and sophisticated task. Divers can
only operate in very limited depths and manned submarines are extremely expen-
sive and very rare. Therefore, many missions are realized by the use of remote
controlled or autonomous underwater robots. These systems can go up to very
high depth without endangering any humans. Some tasks for underwater robots
are the exploration of the sea, the search for underwater mines as well as working
in different areas, like for example after the drowning of the oil platform Deep-
water Horizon in 2010 [Joh12]. Another domain for especially small autonomous
underwater robots (AUV) is the exploration of swarm algorithms [CoC13].
A main objective for all kinds of autonomous underwater robots is to reach and
keep a given depth autonomously. A controller for this given task has to fulfill sev-
eral requirements. First of all, it has to keep the depth within the tolerance under
the disturbance of sea current or hydrodynamic forces. Second, the controller has
to be simple enough to be implemented on the micro-controller of the robot. The
following thesis is going to describe a minimalistic way of implementing a con-
troller inside a very small AUV platform.
There are already several very complex depth control systems using high perfor-
mance control algorithms like neuronal net control, fuzzy control or adaptive con-
trol [J.Y00]. All of this control structures are designed for underwater vehicles op-
erating in the sea in a depth of up to 6000 meters [J.Y00]. These locations require
a much better control algorithm because of the disturbances trough sea currents.
All of this structures are very powerful but way to complicated and complex to be
implemented inside the very small platform that is built to operate in an aquarium
without massive disturbances [CoC13]. The platform is equipped with a variable
compressor to change the depth. This method of depth changing is called the in-
direct method. The variable compressor is changing the volume and therefore the
water displacement of the robot. This creates up- or down forces that move the
robot up or down. In theory, this method only consumes energy when the depth
is changed. When holding a constant depth, the forces pulling it up and down
should be exactly equal, so there is no need to move the compressor. In the praxis,
this point will never be reached exactly. This means that the compressor will be
moving slightly all the time. An other method of changing the depth is the direct
method. This method is easier to control, because the force pushing the robot under
water can be controlled directly. The direct method uses a marine screw propeller
to create a constant down force that holds the robot under water. If the platform is

1

1 Introduction

balanced very well, it also consumes energy only for changing the depth. As soon
as the mass of the robot is varying, the energy consumption will increase. The best
diving method would be a combination of both. The indirect method to balance
the robot and the direct to reach a given depth.

indirect direct
energy only for depth changing constant use of energy

needs a pressure tank only needs a turbine
controlling is very complex easy to control

can’t go up without motor movement self rising if the motor is not working

Table 1.1: Comparison of direct and indirect diving

1.1 Goal

The goal of this thesis is to design a preferably simple controller to reach and keep
a given depth. This controller has to be designed, simulated and implemented on
the experimentation platform.

1.2 Approach

The first objective to reach the given goal, is to create a model of the system. There-
fore the equations of motion have to be set up. The equations have to be trans-
formed into a Simulink modell to simulate them. Up next is the design of the con-
troller. One kind possible controller for the given task is a PID controller. This kind
of controller could work if the nonlinearity of the system can be neglected. Lin-
earizing the system is a common way to simplify a system. In the given case, the
linearized system should still match the reality because the robot is using very low
speed. If the nonlinearity can’t be ignored, it is necessary to compensate the nonlin-
earity. For this, the system can be transformed into a linear system with the method
of exact linearization. The transformed system can then be easily controlled with a
state feedback controller. If the simulated controller reaches the given goal, it can
be implemented on the micro processor inside the robot.

2

2 Modeling

An underwater robot is a non linear and time invariant system [J.Y00]. Therefore
it is absolutely necessary to have a model to simulate the effect of various control
parameters. The base for the model are mathematical equations that describe the
real system as good as possible. For the control unit design, it is often necessary to
make some simplifications. The system model has to match the real system. So it
is better to model it first without simplifications and then do the controller design
with a simplified model.

2.1 Dynamics

The vertical dynamics of the underwater robot are described trough three parts,
the weight (Sec. 2.1.1), buoyancy (Sec. 2.1.2) and the hydrodynamic resistance (Sec.
2.1.3) of the water. To transform the power balance into a differential equation,
Newton’s second law can be used:

F = m ∗ a (2.1)

With:

F = Force [N]
m = mass [kg]

a = acceleration
[m

s2

]

2.1.1 Weight force

The weight force is the only force pulling the robot under water. It is made up of
the mass of the robot and the gravity of the earth. In general, the gravity depends
on the position where the experiments are made. But the difference is very low, so
all calculations are made with a gravity of 9.81 m

s2 . The weight force of the platform
is constant.

Fg = m ∗ g (2.2)

3

2 Modeling

With: [BKL05]

Fg = weight [N]

g = gravitation acceleration
[m

s2

]
= 9.81

2.1.2 Buoyancy

The buoyancy is pointing in the opposite direction of the weight force. It is respon-
sible for bringing the robot up again. If the buoyancy is bigger than the weight
force, the robot is going upwards, if the buoyancy is lower than the weight force,
the robot is sinking down. To hold a constant depth, both forces have to be exactly
equal. Because of the compressor, the buoyancy is also responsible for every depth
change. Trough pulling the compressor in, the volume and the buoyancy of the
robot is lowered and the robot is sinking down. To go up again, the expanding
compressor increases the buoyancy.

Fa = ρ ∗V ∗ g (2.3)

With: [BKL05]

Fa = acceleration power [N]

V = volume [m3]

ρ = density of the water
[

kg
m3

]

2.1.3 Hydrodynamic resistance

The Hydrodynamic resistance occurs in both directions. It acts like a break and is
lowering the diving speed of the robot. It represents the flow resistance through the
density of the water and the shape of the robot. When holding a constant depth,
there is no resistance.

Fs =
1
2
∗ ρ ∗ v2 ∗ A ∗ cw (2.4)

With: [BKL05]

Fs = Hydrodynamic resistance [N]

v = Diving speed
[m

s

]
A = surface area of the robot [m2]

cw = drag coefficient

4

2.1 Dynamics

Because of the bidirectional functionality of the robot, the equation has to be
modified. The direction of the robot has no influence in this equation, because the
speed is squared. With a negative velocity, the resistance would also point in the
positive direction, so it would accelerate the robot.
To get the flow resistance working in both directions, the v2 is replaced by v ∗ |v|

Fs =
1
2
∗ ρ ∗ v ∗ |v| ∗ A ∗ cw (2.5)

2.1.4 Complete equations of motion

The equations (2.2) to (2.4) can be composed to only one, describing the power
balance of the whole system.

F = m ∗ g− ρ ∗V ∗ g +
1
2
∗ ρ ∗ v ∗ |v| ∗ A ∗ cw (2.6)

This power balance can be transformed by the use of Eq. 2.1 in a differential equa-
tion, describing the dynamics of the system.

ẍ = g− ρ ∗ g ∗V
m

+
1

2 ∗m
∗ ρ ∗ ẋ ∗ |ẋ| ∗ A ∗ cw (2.7)

The depth of the robot is changed by creating an up- or down force trough vary-
ing the volume. Unfortunately there is no feedback sensor leading back the actual
position of the compressor to control the volume directly. Therefore the volume
can’t be used as input value. The volume is replaced with the integral over the
motor time, which represents the force pushing the compressor up or down. The
motor time is then used as input signal for the controller.

2.1.5 State space representation

In state space representation, a n - th order differential equation is described through
n first order differential equations [Lun07]. If the model is given in state space rep-
resentation, with a initial condition x0, it is then possible to compute the unique

5

2 Modeling

output parameter for each possible input parameter.

x1 = d
x2 = v = ẋ1

x3 =
m
ρ
−V

ẋ1 = x2

ẋ2 = k1 ∗ x3 − k2 ∗ x2 ∗ |x2|
ẋ3 = k ∗ u = −V̇

x(0) = x0, withx = [x1, x2, x3]
T

(2.8)

With the limits:

4.25 ∗ 10−4m3 6V 6 4.45 ∗ 10−4m3

2.5 ∗ 10−6 m3

s
6V̇ 6 2.5−6 m3

s
−1 6u 6 1

k1 =
ρ ∗ g

m

k2 =
1

2 ∗m
∗ ρ ∗ A ∗ cw

d = Depth of the robot [m]
k = Transmission factor of the compressor
u = input value

The diving speed of the robot has a quadratic influence on the hydrodynamic
resistance. Thin nonlinearity would be much more difficult to control than a lin-
ear system. Because of the very low speed of the robot the error through the as-
sumption that the speed is influencing the hydrodynamic resistance in a linear way
would be very low, so the system is handled as linear system.
With this simplification done, the system can be transfered into state space repre-

6

2.2 Model Parameters

sentation.

ẋ = Ax + Bu

y = CTx + Du

ẋ =

0 1 0
0 −k2 ∗ clin k1
0 0 0

 ∗ x +

0
0
k

 ∗ u

y =
[
1 0 0

]
∗ x

(2.9)

With:

clin = Linearization constant

2.2 Model Parameters

There are only five Parameters that describe the whole system. The weight (m) , the
surface (A) the drag coefficient of the robot(cw), the transmission factor(k) between
the motor and the volume - slider and the density of the water (ρ).

2.2.1 Weight (m)

The weight of the bot is affecting the force that pulls the robot under water. The
weight can be measured easily by putting it on a scale. The robot weighs 0.434 kg.

2.2.2 Surface area (A)

When going up or down, the complete projection surface of the robot has to pass
the water, so the surface is of great significance for the flow resistance. The part of
the flow resistance referring to the shape of the bot is described through the product
of surface area and drag coefficient. The robot has an elliptic shape. It is 12.5 cm
long and 9.5 cm wide. So the projetion surface area is approximately 8 ∗ 10−3m2

2.2.3 Drag coefficient (cw)

The drag coefficient reflects the resistance of the robot against the water. It is signif-
icantly influencing the hydrodynamic resistance. A lower drag coefficient means
that there is less drag.The shape of the top and the bottom part of the robot are dif-
ferent. While the top has an elliptic shape and can be approximated by a circle (drag
coefficient of 1.11 [Boe09]), the bottom is more like a sphere (drag coefficient of 0.4
[Boe09]). The actual coefficient is something in the middle. For all calculations, the
drag coefficient will be 0.75.

7

2 Modeling

2.2.4 Transmission Factor (k)

The transmission factor represents the factor between motor runtime and volume
change. Therefore, it is necessary to know the volume of the robot with fully ex-
tended and fully retracted slider. This can be measured by putting the robot in the
water and measuring the supplanted water. The complete volume is between 425
and 445 cm3 so the volume can be altered by 20 cm3. To fully extend the compressor,
it takes about 8 seconds. So the changing rate is 2.5 cm3

s or 2.5 ∗ 10−6 m3

s . The time
to expand the compressor is depending on the speed of the motor and therefore
on the battery voltage. To have an accurate value, the robot measures the times
and calculates the transmission factor when the compressor is initialized. But the
simulation is made with a constant factor of 2.5 ∗ 10−6 m3

s .

2.2.5 Water - density (ρ)

In general, the density of water is depending on the pressure and temperature
[ALL92]. It would be possible to compensated these influences with the data from
the pressure sensor. Because of the very low difference, this isn’t necessary and all
calculations are made with a density of 1000 kg

m3 .

2.2.6 Linearization factor (clin)

The purpose of the linearization factor is to minimize the error, that is made through
the linearization of the influence of the velocity. Therefore the maximal diving
speed of the robot has to be estimate. This speed is very low. So a value of 0.2 m

s
should match the reality very good. Then the polynomial is approximated with a
straight line. A line with a slope of 0.15 matches very good. This value is deter-
mined with the Matlab function polyfit. Figure 2.1 shows the polynomial velocity
(green) together with the linearized velocity (blue).

Parameter Value
ρ 1000kg ∗m−3

A 8 ∗ 10−3m2

cw 0.75
m 0.434kg
clin 0.15
k 2.5 ∗ 10−6 m3

s

Table 2.1: System Parameters

8

2.3 Simulink model

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

v

v*
|v

|

Linearization factor

real velocity influence
linearized velocity influence

Figure 2.1: Comparison of the linearized velocity influence and the real velocity
influence

2.3 Simulink model

To make sure the reactions of the modeled system and the real system match, the
model has to match the real system as perfect as possible. The modeled system rep-
resents the complete equation of motion (Eq. 2.7). The Simulink model of the robot

x3

3 x2

2

x1

1

v-> p

1
s

nonlinear
absorbabillity

-K-

ku-> V

1
s

k

k

a->v

1
s

V->a

-K-

Product
Abs

|u|

u

1

Figure 2.2: Simulink model of the dynamics of the robot

dynamics is shown in Fig. 2.2. The input variable u represents the output of the
controller. The states x1 (depth), x2 (velocity) and x3 (weight compensated volume)
are representing the states of the system. The signals x2 and x3 are only used for
monitoring, because they are not measurable in the real robot. The only value that
is used for the control process is the depth x1, which is also available on the real
system trough the pressure sensor. The triangular blocks represent a multiplication

9

2 Modeling

with a constant, while the square product block stands for the multiplication of two
signals.

10

3 Control unit design

3.1 Stability

To make statements about the stability of the System, the eigenvalues of the control
Matrix (2.9) have to be computed. Figure 3.1 shows the Pole-zero plot of the system.

det(sI − A) = 0⇒ s1 = 0, s2 = 0, s3 = −k2 ∗ clin (3.1)

Because of the two eigenvalues s1,2 = 0, the system is instable. To make it a stable
system, a controller is necessary.

3.2 Controllability

To make sure that the System can be controlled, the controllability matrix Qs (3.2)
is computed.

Qs = [b, Ab, A2b] =

0 0 k1 ∗ k
0 k1 ∗ k −k ∗ k1 ∗ k2 ∗ clin
k 0 0

 (3.2)

With: [Ebe11]

The matrix shows thatRank(Qs) = 3 for k 6= 0 and the system is controllable.

3.3 Observability

If the PID-controller can’t stabilize the system, it might be necessary to exact lin-
earize the system and implement a state feedback controller. This kind of controller
needs all states of the system, not only the measurable x1. These other states can be
calculated by a state observer, if the input parameter and the output parameter are
measurable [Ebe11]. To make sure that the system is observable, the observability
matrix is calculated.

Qb = [c, ATc, (A2)Tc]T =

1 0 0
0 1 0
0 −k2 ∗ clin k1

 (3.3)

11

3 Control unit design

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pole-Zero Map

Real Axis (seconds-1)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

-1
)

Figure 3.1: Pole-zero plot

As in the controllability matrix, the matrix has the full rank of 3 and is therefore
observable for k1 6= 0.

3.4 Transfer Function

For further control technique analysis, the transfer function is necessary. It can be
derivated from the state space representation.

G(s) = cT(sI − A)−1b =
k1 ∗ k

s3 + k2 ∗ s2 ∗ clin
(3.4)

3.5 PID-Controller

The PID-Controller (proportiona integral-derivative controller) is a linear controller
consisting of three parts, the P-term, the I-term and the D-term. Because of the
linearity of the PID-controller, the nonlinear system has to be linearized. Therefore
the nonlinear resistance is approximated with a linear term. This might lead to
some inaccuracie. Figure 3.2 shows the control loop with a PID-controller.

12

3.5 PID-Controller

e(t)

y

1

controlled system

In1 Out1

Kp

-K-

Ki

-K-

Kd

-K-

Integrator

1
s

Derivative

du/dt

w

1

Figure 3.2: Model of the control loop with a PID-controller

3.5.1 P-term

The P-term is a simple proportional boost of the input signal (the deviation between
desired and real depth), with the factor KP. The main task of the P-term is to scale
the input signal to get an output value that stabilizes the system.

Pout = e(t) ∗ KP (3.5)

With:

KP = proportional factor
e(t) = desired depth - actual depth

3.5.2 I-term

The I-term integrates the error between desired and actual position and multiplies
it with a static factor KI . Thus the value is increasing when the desired depth is dif-
fering from the real depth. The I-Term eliminates the permanent control deviation.

Iout = KI ∗
t∫

0

e(τ) dτ (3.6)

With:

KI = integrating factor

13

3 Control unit design

3.5.3 D - Term

The D - term is a differentiator. It does not directly react to the error e(t) but to the
change of the error. So the D - term alters the output value as soon as the error is
varying. This makes the PID - controller a suitable choice for the given system.

Dout = KD ∗
d
dt

e(t) (3.7)

With:

KD = differential factor

3.5.4 Anti-windup

The control variables like the volume and the changing rate are limited. An integra-
tor together with limited control variables is always a bit more difficult. If a large
control variable is limited by the saturation, the integrator is still integrating but
the control variable isn’t rising. If the error e(t) is getting smaller again, there is a
delay trough the high integrator value [Ada09]. This could lead to the escalation of
the system or the system could begin to swing. It is necessary to implement an anti
- windup strategy. This can be done by subtracting the value before and behind the
limitation, multiplying it with a constant and subtracting it from the integrator. So
the integrator value is decreased, when the control variable is limited by the satura-
tion. Figure 3.3 shows the previous PID-controller with an anti - windup method.

3.5.5 Loop tuning

To stabilize a system with a PID-controller, it is necessary to appoint the three pa-
rameters KP, KD and KI . This can be done by several methods.
The first method is to tune the loop automatically. A tool like Matlab needs the
transfer function of the system and calculates the three parameters. The problem
with this method is, that it’s hard to tell how the system is stabilized and that pa-
rameters like the reaction time can’t be influenced .
The second method is to use empirical determined rules, like the Ziegler Nichols
adjustment tuning [Lun07]. With this method, the control parameters are deter-
mined with rules based on the gain, time constant and reaction time of the system.
But this methods requires the system to be already stable. Thus the method can’t

14

3.5 PID-Controller

e(t)

y

1

controlled system

In1 Out1

Saturation

Kp

-K-

Ki

-K-

Kd

-K-

Integrator

1
s

Derivative

du/dt

Anti windup

1

Add

w

1

Figure 3.3: Structure of a PID-controller with anti-windup

be used, because the given system is instable.
The method that is used in this case, does a pole placement. It tries to compen-
sate the problematic poles to stabilize the system. The control parameters can be
calculated through the transfer function of the closed loop.

K(s) =
KI + s ∗ KP + s2 ∗ KD

s
; G(s) =

k1 ∗ k
s3 + s2 ∗ k2

p(s) = (s +
1
4

k2)
4 = s4 + s3 ∗ k2 +

3
8
∗ s2 ∗ k2

2 +
1
16
∗ s ∗ k3

2 +
1

256
∗ k4

2

G ∗ K + 1 = s4 + s3 ∗ k2 + s2 ∗ k1 ∗ k ∗ KD + s ∗ k1 ∗ k ∗ KP + k1 ∗ k ∗ KI
!
= p(s)

(3.8)

Unfortunately the closed loop is a fourth order system. The PID-controller (K(s))
has only three degrees of freedom and allows therefore only three poles to be placed
arbitrary. To stabilize the system, the poles have to be placed, so that the s3 term
of the desired polynomial (p(s)) equals the s3 term of G ∗ K + 1. So the poles are
placed to (s + 1

4 ∗ k2)4.
The numerator of the closed loop can’t be altered anyway. Therefore it is enough
to calculated G ∗ K + 1 instead of G∗K

G∗K+1 . This keeps the equation easier.
Equating the coefficients provides the following control parameters:

KD =
3 ∗ k2

2
8 ∗ k1 ∗ k

KP =
1 ∗ k3

2
16 ∗ k1 ∗ k

KI =
1 ∗ k4

2
256 ∗ k1 ∗ k

(3.9)

15

3 Control unit design

These parameters can be manually fine tuned. The simulation shows that the best
behavior of the system is reached with KP,tuned = KP

10 , KI,tuned = KI
100 and KD,tuned =

KD.

3.6 Nonlinear approach

The simulation of the linear PID-controller (Sec. 4.2) shows that the system can
be stabilized, but the permanent control deviation can’t be eliminated without a
nonlinear controller. The robot is swinging around the desired position. To get
better results, the nonlinearity can’t be ignored.

3.6.1 Exact linearization

With the exact linearization, the nonlinear system is transformed into a linear sys-
tem, that can easily be controlled by a linear controller. Therefore the nonlinearity
on the entrance of the control path is being compensated by an inverse nonlinear-
ity inside the controller. Figure 3.4 shows the principle of exact linearization on an
example system, where a cubic function inside the control path is compensated by
the cube root in the controller.
To exact linearize the system, it is necessary to calculate the new control variable u
[FH08].

u =
−L3

f h(x) + v

LgL2
f h(x)

(3.10)

Figure 3.4: Principle of exact linearization [FH08]

Given the system in the form:

ẋ = f (x) + g(x)u
y = h(x)

(3.11)

16

3.6 Nonlinear approach

Leads to:

f (x) =

 x2
k1 ∗ x3 − k2 ∗ x2 ∗ |x2|

0

 ; g(x) =

0
0
k


y(x) = x1

(3.12)

The first step is, to compute the Lie - derivatives of the vector fields g(x) and f(x)
and the scalar function h(x).

L f h(x) =
(

∂h
∂x

)T

∗ f (x) =

1
0
0

T

∗ f (x) = x2 (3.13)

The 2nd. step:

L2
f h(x) =

∂[L f h(x)]
∂x

∗ f (x) =

0
1
0

T

∗ f (x) = k1 ∗ x3 − k2 ∗ x2 ∗ |x2| (3.14)

The absolute value is not continuously differentiable because of the kink at f (x) =
0. Because of that, it can’t be easily derived. In the given case, the derivation can be
calculated with a trick. The problematic point f (x) = 0 can be neglected because
the complete term becomes zero through the multiplication with x2. The derivation
represents the slope at the actual position. The slope of the absolute value function
is −1 for x < 0 and +1 for x > 0. This is exactly the same behavior as the sign
function. So the derivative of the absolute value function can be described through
the sign function. Figure 3.5 shows the absolute value and the sign function as the
derivative.

f (x) = |x|, ˙f (x) =

{
−1, x < 0
1, x > 0

= sign(x)

d
dx

x2 ∗ |x2| = |x2|+ x2 ∗ sign(x2) = 2 ∗ |x2|

(3.15)

So the complete Lie - derivation can be computed as follows.

17

3 Control unit design

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2
sign and absolute value function

sign(x)
abs(x)

Figure 3.5: Plot of the sign function (green) and absolute value(red)

L3
f h(x) =

 1
−|x2| ∗ k2 − x2 ∗ sign(x2) ∗ k2

k1

 ∗ f (x)

= −k1 ∗ k2 ∗ |x2| ∗ x3 − k1 ∗ k2 ∗ x3 ∗ x2 ∗ sign(x2) + k2
2 ∗ x3

2

+ x2
2 ∗ |x2| ∗ k2

2 ∗ sign(x2)

with x2 ∗ sign(x2) = |x2| and |x2| ∗ sign(x2) = x2

= −2 ∗ k1 ∗ k2 ∗ |x2| ∗ x3 + 2 ∗ k2
2 ∗ x3

2 = α

Lgh(x) =

1
0
0

T

∗ g(x) = 0

LgL f h(x) =
[

∂L f h(x)
∂x

]T

∗ g(x) =

0
1
0

T

∗ g(x) = 0

LgL2
f h(x) =

 0
−|x2| ∗ k2 − x2 ∗ sign(x2) ∗ k2

k1

 ∗ g(x) = k1 ∗ k = β

(3.16)

Only the third term is not equal to zero, so the relative degree is 3 and the necessary
condition is fulfilled.
With all Lie - derivations computed, the new control variable u can be calculated.

18

3.6 Nonlinear approach

The control variable u is the signal that controls the motor power. To compute u, a
new input signal v is introduced. This variable v represents the linear input for the
controller.

u =
1
β
(v− a)

=
1

k1 ∗ k
∗ (v + 2 ∗ k1 ∗ k2 ∗ |x2| ∗ x3 + 2 ∗ k2

2 ∗ x3
2)

(3.17)

With:

k1 =
ρ ∗ g

m

k2 =
1

2 ∗m
∗ ρ ∗ A ∗ cw

u = control variable
v = new input variable

This equations are modeled in Simulink to be able to simulate the controller. Figure
3.6 shows the previously calculated equation for u in Simulink.

u

1

x2^3

abs(x2)*x3
Add

Abs

|u|

2*k2^2

-K-

2*k1*k2

-K-

1/(k1*k)

-K-

v 3

x3

2

x2

1

Figure 3.6: Model of the exact linearization equation

As mentioned above, the nonlinear system is transformed into a linear system,

19

3 Control unit design

to be controlled by a linear controller. This transformation is calculated as follows.

z =

z1
z2
z3

 =

 h(x)
L f h(x)
L2

f h(x)

 =

 x1
x2

k1 ∗ x3 − x2 ∗ |x2| ∗ k2


ż =

 ẋ1
ẋ2

ẋ3 ∗ k1 − ẋ2 ∗ |x2| ∗ k2 − sign(x2) ∗ x2 ∗ ẋ2 ∗ k2


=

 ẋ1
ẋ2

ẋ3 ∗ k1 − ẋ2 ∗ |x2| ∗ k2 − |x2| ∗ ẋ2 ∗ k2


ż1 = f1(x) + g1(x)u = x2

ż2 = f2(x) + g2(x)u = k1 ∗ x3 − k2 ∗ x2 ∗ |x2|
ż3 = f3(x) + g3(x)u = k ∗ u

ż =

 x2
k1 ∗ x3 − k2 ∗ x2 ∗ |x2|

k1 ∗ k ∗ u− (k1 ∗ x3 − k2 ∗ x2 ∗ |x2|) ∗ 2 ∗ |x2| ∗ k2


=

z2
z3
v

 =

0 1 0
0 0 1
0 0 0

 z +

0
0
1

 v

y = z1

(3.18)

The transformed system is equal to a chain of three integrators and can be con-
trolled very easily.

3.6.2 State Feedback

A internal feedback controller is a linear controller that stabilizes through feeding
back all states multiplied by a factor. Therefore it is necessary to know all states.
In the given case, only the position of the robot (x1) can be measured. All other
states have to be estimated. The feedback factors can be computed very easily by
the direct solution process [Ebe11].

20

3.6 Nonlinear approach

control path

K

�

� �

−

Figure 3.7: Structure of a state feedback controller

A =

0 1 0
0 0 1
0 0 0

 , b =

0
0
1

 , k =

k1
k2
k3


det(s ∗ I − (A− b ∗ kT)

!
= p(s)

s3 + s2 ∗ k3 + s ∗ k2 + k1
!
= p(s)

⇒ k1 = 3, k2 = 3, k3 = 1

(3.19)

With:

s = Laplace variable
I = identity matrix

p(s) = desired poles, here (s + 1)3

With these factors, it is possible to stabilize the system. But a regular state feedback
controller doesn’t eliminate the permanent control deviation. This problem can be
solved by adding an integrator. The integrator integrates the error and therefore
eliminates the permanent control deviation, like the I - term of the PID-controller.
This leads to an integrator chain with four integrators, instead of three, what means
that the feedback factors have to be changed slightly.

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , b =


0
0
0
1

 , k =


k1
k2
k3
k4


det(s ∗ I − (A− b ∗ kT)

!
= p(s)

s4 + s3 ∗ k4 + s2 ∗ k3 + s ∗ k2 + k1
!
= p(s)

⇒ k1 = 1, k2 = 4, k3 = 6, k4 = 4

(3.20)

With:

p(s) = desired poles, (s + 1)4

21

3 Control unit design

Figure 3.8 shows the complete state feedback controller with the previously calcu-
lated parameters modeled in Simulink.

4*x1

6*x2

v1

4

6

Integrator

1
s

4*x2dot

4

1*I

1

x2dot

4

x2

3

real x1

2

desired x1 1

Figure 3.8: State feedback controller modeled in Simulink

3.6.3 State observer

The state feedback controller, as well as the exact linearization need the diving ve-
locity and acceleration, depth and volume of the robot, to act properly. The only
known state is the depth x1 and the output signal u. All other states have to be
computed, using only these two values.

The velocity, x2 can be computed by deriving x1.

x2 =
∂

∂t
x1 (3.21)

For the state feedback, it is also essential to know the acceleration ẋ2. The accelera-
tion could be computed by the second derivation of x1. This would lead to a very
bad signal, because the noise in x1 would be boosted through the derivations. The
better solution is to compute it algebraic.

ẋ2 = k1 ∗ x3 − k2 ∗ x2 ∗ |x2| (3.22)

22

3.6 Nonlinear approach

The value of x3 can be calculated by integrating the output signal, that equals the
runtime of the motor and multiplying it with the transmission factor k.

x3 = k ∗
t∫

0

u dt (3.23)

Figure 3.9 shows the previous equations modeled in Simulink.

x3 out

3

x2' out

2

x2 out

1

x2*|x2| k2

k2

k1
k1

k

k

Integrator

1
s

Derivative

du/dt

Abs

|u|

u In

2

x1 In

1

Figure 3.9: State observer modeled with Matlab Simulink

23

4 Simulation

The Simulation is a very important tool for the control unit design. By simulating
every new controller parameter or new controller design, the response of the model
is shown within seconds. Implementing these changes on the real platform would
take much more time then just changing the simulation.

4.1 Input signal

To simulate the system, it is necessary to have an input signal. This signal should
represent the later input signal of the real system. The input is generated trough
three step functions. Two of them are positive and one negative. With this setup,
it is possible to test the behavior of the system with different depth changes. Fig-
ure 4.1 shows the depth profile through the step functions (blue/solid) and the
smoothened profile (red/flushed) that is then used for the simulation. Smoothing
the profile makes the later results much better, because the overshoot is signifi-
cantly decreased. The smoothing is realized with the filter function shown in Eq.
4.1.

G(s) =
1

s + 1
(4.1)

4.2 PID controlled system

First the PID-controller is tested. The PID-controller would be a very simple solu-
tion to control the system.

4.2.1 Simulink plan

To keep the plan as clear as possible, the different models are grouped in subsys-
tems. Figure 4.2 shows the complete Simulink plan.
The controller block is the PID-controller with anti - windup (Fig. 3.3). The sys-
tem model represents the behavior of the robot (Fig. 2.2). The evaluation block
calculates the absolute deviation of the control loop. Therefore it subtracts the de-
sired and real position of the robot, squares and integrates it (Fig. 4.3). The scope
displays the results of the simulation.

25

4 Simulation

0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time [s]

de
pt

h
[m

]

Input function

input function
smoothened input function

Figure 4.1: Simulated depth profile

evaluation

desired

actual
deviation

Transfer Fcn

1

s+1

System modell

u x1

Step2

Step1

Step ScopeController

e u

Figure 4.2: Model of the control loop with a PID-controller

4.2.2 Results

The advantage of the simulation is that the results are visible within seconds. There
are three diagrams created through the scope block, the absolute deviation (Fig.
4.6), the control variable u (Fig. 4.5) and most important the process of the depth of
the platform (Fig. 4.4).
Figure 4.4 shows the behavior of the controlled system, with the tuned parameters
from Sec. 3.5.5. The red line represents the desired path of the platform, the blue
line corresponds the real depth process. It shows, that the system gets stable and
is not collapsing. But there is some overshot after the depth changes and the plat-
form is oscillating around the desired position. This is caused by the nonlinearity
of the system that has been linearized. For better results, it is necessary to design a
nonlinear controller.

26

4.2 PID controlled system

deviation

1

Integrator

1
s

Fcn

u^2

actual

2

desired

1

Figure 4.3: Calculation of the absolute deviation

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

de
pt

h
[m

]

Controlled system

real behavior
desired behavior

Figure 4.4: Behavior of the controlled PID system

The second digram (Figure 4.5) shows the control variable u created by the con-
troller. This is the variable that controls the motor power in the real system between
100 and zero percent in both directions. The Diagram shows, that the controller hits
the limitation several times, but due to the anti - windup strategy, the system is not
collapsing. It also shows, that the motor would be running all the time. This leads
to a high energy consumption and can be traced back to the swinging of the system.

The last diagram (Figure 4.6) shows the absolute error of the controlled system.
It shows, that the error increases more after a change of the desired depth. This
can be traced back to the overshoot. After that the slope is decreasing but never
getting zero. The reason for that is the permanent oscillating around the desired
position. A total error of 0.09 after 200 seconds doesn’t look bad on the first view.
But the error is squared and small deviations therefore result in a small increase of
the total deviation. In addition to that, this error will grow as long as the system is
running, because of the permanent control deviation. This error value can be used
to compare different controllers.

27

4 Simulation

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time [s]

m
ot

or
 p

ow
er

[%
]

Control variable u

control variable u

Figure 4.5: Control variable u of the PID controlled system

4.3 Nonlinear state feedback

The results of the nonlinear state feedback controller should be better then the lin-
ear PID - controller. To be able to compare the results, the input signal stays the
same.

4.3.1 Simulink plan

Figure 4.7 shows the complete Simulink plan with the state feedback controller and
the exact linearization to compensate the nonlinearity inside the system. The input
function as well as the modell and the evaluation are the same subsystems as in the
linear PID case. The observer (Figure 3.9) calculates the needed values for x2, ẋ2
and x3 with the given position (x1) and u.
The state feedback controller (Figure 3.8) uses the calculated values, and creates the
output value v which is than processed in the exact linearization subsystem. The
exact linearization subsystem uses the calculated values to calculate the inverse
nonlinearity of the system to compensate it. This subsystem is shown in Figure 3.6.

4.3.2 Results

The variables plotted by the scope are the same like in the PID case.
Figure 4.8 shows the behavior of the system, controlled with the state feedback
controller that is shown in Fig. 3.8. The solid red line represents the desired path
while the dashed blue line is the real path. It shows, that the platform follows the
path way better than with the PID-controller. There is only very little delay until

28

4.3 Nonlinear state feedback

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time [s]

de
vi

at
io

n

Absolute deviation

deviation

Figure 4.6: Absolute deviation of the closed loop with a PID-controller

the robot starts to follow the depth change. This can be traced back to the high
inertia of the system. Compared to the PID controlled system, there is no swinging
around the desired position. The platform is following the desired path perfectly.

The control variable u is plotted in figure 4.9. The maximum values of the control
variable stays way smaller than in the PID controlled system and it doesn’t hit the
limitation. So there shouldn’t be a windup problem. An anti-windup strategy isn’t
necessary in this case.

The absolute deviation value (Figure 4.10) is smaller than in the PID controlled
System and it doesn’t rise without a depth change. This is because of the eliminated
permanent control deviation. The system reaches the desired depth and keeps it
until there is a change in the desired position. So the only error is made when the
depth is changed. This error can be decreased by making the system faster through
placing the poles different. But this could also destabilize the system and therefore
an error of 0.045 is tolerated.

4.3.3 Margin of error

The previously shown system is calculated with perfect values. These values can’t
be reached in the real system. Therefore some disturbances have to be simulated to
see if the controller can handle them. The real sensor has noise for about 0.1 mm.
This doesn’t sound much but has a direct effect on the behavior of the system. This
disturbance can be modeled by adding white noise to the calculated depth value
(x1). Another major source of error is the calculated volume (x3). The value is cal-
culated, with the assumption that the motor speed is linear. Because of the poor
quality of the motor and the transmission, the actual motor speed is diverging very
much. This has been modeled by multiplying the calculated volume with an factor

29

4 Simulation

observer

x1 In

u In

x2 out

x2' out

x3 out

model

u x1

excat linearization

x2

x3

v

Out1

evaluation

desired

actual
deviation

controller

desired
x1
x2

x2dot

Out1

Transfer Fcn

1

s+1

Step2

Step1

Step

Scope

Saturation

Figure 4.7: Complete Simulink plan with state feedback controller and exact
linearization

of 1.2. This means a deviation of 20% and should simulate a behavior more closely
to the reality. Figure 4.11 shows the effect of these changes in the simulation. There
is no visible change compared to the ideal system. The control variable u (Figure
4.12) looks completely different. The motor is switching between full speed for-
ward and full speed backward all the time. This would result in a massive energy
consumption and a very bad behavior of the system, because of the inertia of the
robot. The control variable has to be smoothened to make it applicable. This can be
done by adding a PT1 term like shown in Eq. 4.2 after the controller.

G(s) =
5

s + 5
(4.2)

The effect is visible in Figure 4.13. The variable is still noisy but a larger smoothing
would lead to too much phase shifting and the collapse of the whole system. This
means that the motor is running all the time as well. But a behavior like in Figure
4.9 can’t be achieved in reality. Because there is always a disturbance, through
inaccuracies of the sensors or from outside the system, like water currents.

30

4.3 Nonlinear state feedback

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

time [s]

Controlled system

de
pt

h
[m

]

desired behavior
real behavior

Figure 4.8: Behavior of the system with a state feedback controller

0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time [s]

m
ot

or
 p

ow
er

[%
]

Control variable u

control variable u

Figure 4.9: Control variable u of the state feedback controlled system

31

4 Simulation

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

time [s]

Absolute deviation

de
vi

at
io

n

deviation

Figure 4.10: Absolute deviation of the state feedback controlled system

0 20 40 60 80 100 120 140 160 180 200
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time [s]

Controlled system

de
pt

h
[m

]

real behavior
desired behavior

Figure 4.11: Sate feedback controlled system with simulated disturbances of white
noise added to the simulated sensor value and a gain on the estimated
volume

32

4.3 Nonlinear state feedback

0 20 40 60 80 100 120 140 160 180 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time [s]

M
ot

or
 p

ow
er

 [%
]

Control variable u with simulated disturbances

control variable u

Figure 4.12: Control variable u with simulated disturbances through adding white
noise to the depth value and a gain to the estimated volume.

0 20 40 60 80 100 120 140 160 180 200
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time [s]

M
ot

or
 p

ow
er

 [%
]

Smoothened control variable u with simulated disturbances

control variable u

Figure 4.13: Control variable u with simulated disturbances smoothened by a PT1
term

33

5 Hardware

5.1 Platform

The objective for the platform was to make it as easy and cheap as possible. There-
fore, the base for the complete robot is a remote controlled toy submarine. All
the electronic has been removed and replaced with the microprocessor board. The
original submarine was very small, so the top part has been replaced with a rapid
prototyped cover with much more space for all the electronic to fit in. Using a pre-
fabricated platform has several advantages and disadvantages. On the one hand
developing the complete submarine with casing, drives, steering systems and get-
ting all of it water tight is very costly. On the other hand, there are always compro-
mises to be made. In this case, the controllability of the depth compressor is such a
compromise. It would be much easier and more accurate to control the depth if the
compressor could be controlled in a more accurate way. Like having a stepper mo-
tor, servo motor or a feedback at which position the compressor is at the moment.
Adding these feedback sensor is prevented by an other compromise. Although the
platform has already been enlarged, it is still very tight.

5.1.1 Experimentation Board

The Board is equipped with two ARM Cortex microprocessors, running at 50 MHz.
For communication there are 4 Bluelight - modules and a RF - module. The first
controller is responsible for two of the Bluelight - modules and the electrical sense
system. The second one is dedicated for controlling the motors and the rest of the
periphery. For the depth feedback, there is a MS5803 pressure sensor connected
via I2C. For further projects, the board is also equipped with a compass and an
accelerometer.

5.1.2 Feedback Sensor

For the feedback, a MS5803 Sensor is used. This is a very small pressure sensor,
which is mainly used for watches, or height control for model helicopters. It is able
to measure the height with a resolution of up to 10 centimeters. Because the density
of water is thousand times higher than the density of air, the resolution under water
is theoretical 0, 1mm. With this sensor, it is possible to get a very accurate depth
feedback, up to 3 meters total depth. The Sensor is connected via the I2C Bus.

35

5 Hardware

5.2 Implementation

All the programming is made in C with the programming environment µVision3.

5.2.1 I2C communication

The pressure sensor MS5803 offers two types of communication, the SPI ans I2C
Bus. I2C has been chosen, because it is easy to use and there are only two strands
necessary. To retrieve data over the I2C bus, there are usually two steps required.
First the controller has to send a command that contains the address of the receiver
and a command that initiates a reaction of the receiver. Then the sender switches
to receive mode and waits for the answer. In the given case, the controller sends
the command to initiate the conversion of the pressure and waits for the sensor to
reply. The commands for the sensor are always 8 bit long, while the response is
between 16 bit (constants) and 32bit (pressure and temperature values). Therefore
2 methods are programmed, one to send an 8 bit word to the sensor and one to
receive n- bytes from the sensor.

5.2.2 Temperature and pressure conversion

To get the pressure data from the sensor, there are several steps to be made. The
pressure value from the sensor has to be calculated using six 16 bit constants. These
constants are stored in the internal PROM of the sensor. The constants are elected
when the sensor is initiated. To retrieve the constants, the controller sends a com-
mand that contains the address of the desired constant and waits until the sensor
returns the value. This step is repeated until all constants are retrieved. These con-
stants are static and are only retrieved when the sensor is initiated.
To retrieve an actual pressure or temperature value, the controller sends a com-
mand including the desired variable and the sampling rate. The sensor is able to
measure temperature and pressure in 5 different accuracies, between 256 and 4096
samples. A higher sample number means longer time until the value is available.
After the command is sent, the controller has to wait a predefined time, depending
on the sampling count, between 0.6 and 9 milliseconds. Then a command is sent
that instructs the sensor to return the converted value. The received values are only
raw data. To get the real pressure values, there are some calculations to be made.
For the temperature calculation, it is necessary to compute the difference between
the actual and the reference temperature.

dT = D2− C5 ∗ 28

TEMP = 2000 + dT ∗ C6

28

(5.1)

36

5.2 Implementation

With: [dat10]

dT = Difference between actual and reference temperature
TEMP = Actual Temperature

D2 = Digital temperature value
C5 = Reference temperature (sensor constant)
C6 = Temperature coefficient (sensor constant)

The pressure itself depends on the temperature, because the temperature is influ-
encing the measure electronic. This disturbance is eliminated through calculating
the temperature compensated pressure.
To calculate the pressure, it is necessary to calculate the offset at the actual temper-
ature , the sensitivity at the actual temperature and the compensated pressure.

OFF = C2 ∗ 216 +
C4 ∗ dT

27

SENS = C1 ∗ 215 +
C3 ∗ dT

28

P =
D1∗SENS

221 −OFF
215

(5.2)

With: [dat10]

OFF = Offset at actual temperature
SENS = Sensitivity at actual temperature

P = Temperature compensated pressure
D1 = Digital pressure value
C1 = Pressure sensitivity (sensor constant)
C2 = Pressure offset (sensor constant)
C3 = Temperature coefficient of pressure sensitivity (sensor constant)
C4 = Temperature coefficient of pressure offset (sensor constant)

The now calculated pressure is an integer value. These pressure value is used as
feedback for the depth control.

5.2.3 Timing

There are several tasks inside the program that require an accurate timing. There-
fore, one of the three internal 32 - bit counters is used as an timer, to generate an

37

5 Hardware

interrupt every millisecond. This interrupt routine is used to increment the tim-
ing variables. The interrupt handler could also trigger the methods, like the depth
controller directly. But this causes several problems, because the interrupt can only
be triggered if the method is completed and one run of the depth control method
takes more then one millisecond. Therefore the interrupt handler only increments
variables and sets bits that trigger the methods later. Figure 5.1 shows the flow
chart of the interrupt handler
The first variable is the system counter. This counter is incremented, all the time
the controller is running. It is mainly used to trigger the command evaluation (Sec.
5.2.4).
The variable msDelay is used to delay the controller for a given time. To do so the
method waitMilli(int) initiates the variable with the delay time and waits until it
gets zero again. This method is used for example, to delay the controller while the
sensor is converting the data.
The query over the motor direction increases or decreases the compressor position
while the motor is running to be able to make assumptions about the actual posi-
tion of the compressor.
The last part of the interrupt handler creates a cycle of 10Hz for the depth con-
troller. The depth controller works with discretized states and needs to be called in
a constant cycle. The variable pidTakt is increases until it reaches 100, then the flag
pidGo is set to one. With this flag set, the main method triggers the depth control.

5.2.4 Communication

Figure 5.2: Bluelight
module

A communication system is essential for debugging and
sending commands to the robot. There would be three
possible ways of establishing a connection. The first pos-
sibility would be to use a wired UART interface. This
would be very fast but the wires could distort the results
because of the additional weight. The second possibility
is to use the RF - receiver. But the given test platform isn’t
equipped with RF. So the communication is realized with
Bluelight.
Bluelight is a simple module that can establish a UART
connection with up to 9600 baud. It uses two LEDs for
sending data and one receiver. The range of the Bluelight
module is very limited. Figure 5.2 shows the Bluelight
module that is used on the computer side. The LEDs on
the left and right are for sending and the receiver is in the
middle. The Platform is equipped with 4 Bluelight systems, to communicate with
other robots around it. Only one of them is used here.

The commands for controlling the robot are shown in table 5.1. All commands

38

5.2 Implementation

Timer1IntHandler

Increase system

counter

msDelay? Increase msDelayY

motor3Directi

on = 100?

Increase

pumpActPosition
Y

Decrease

pumpActPosition

motor3Directi

on = -100?
Y

pidTakt<100

&!pidGo ?
Increase pidTaktY

pidTakt>=100

?

pidTakt = 0

pidGo = 1
Y

End

Figure 5.1: Flowchart of the Timer1IntHandler

39

5 Hardware

begin with a # to indicate that a command is following. The main method checks if
there are any new commands. Experiments showed, that there is a problem, if the
check is done at every pass, so the robot checks for commands once a second. This
doesn’t mean a loss of commands, because the received commands are written in
the UART buffer.
The first three commands are for controlling the robot manually.
Configuring the compressor means, that the compressor is pulled in, until the end
switch is reached. Then it is pushed out again, up to the other end switch, while the
controller is counting the time. This time is used as indicator for the compressor
position.
Commands four and five return the actual depth or position of the compressor
without initiating any moving reaction.
Command six is executed before a dive is initiated, while the robot is on the water
surface. The robot stores the actual pressure value as offset, so the depth can be
calculated to the water surface.
The most important command is the dive command. A dive is initiated by sending
the desired depth in centimeters. To indicate, that the following command contains
depth informations, the # is followed by a $.
Commands can be sent by every terminal program via serial - port, or by using the
Matlab program that is programmed especially for that purpose.

Command Meaning
0 Stop the compressor
1 Compressor push
2 Compressor pull
3 Configure the compressor
4 Return the actual position of the compressor
5 Return the actual depth
6 Take the actual pressure as zero position

$ XXX Go to specified depth in millimeters

Table 5.1: Commands for controlling the robot

5.2.5 Compressor feedback

Unfortunately, there is no sensor that measures the actual position of the compres-
sor in an absolute or relative way. There are only two limit switches on both ends.
These switches are triggering an interrupt that stops the motor, to prevent the mo-
tor from getting damaged. For the depth control, it is necessary to know the volume
of the robot as accurate as possible. So the actual position of the compressor has to
be estimated. This is done with the help of the timer handler, that is executed every

40

5.2 Implementation

millisecond. When the compressor motor is running, the handler adds or subtracts
a value, indicated by the speed of the motor, to the actual compressor position. This
method is very inaccurate, because the motor takes some time to spin up and isn’t
linear because of the very imprecise transmission. To improve the accuracy, the
compressor position is reseted, once the compressor hits a limiting switch, where
the exact volume is known.

5.2.6 Depth control

The depth control is realized by a discrete controller. A time continuous controller
can’t be implemented into a digital system. Time discrete integrators and differen-
tiators can be represented by simple equations.

Integrator:

esum = esum + e
I =Ta ∗ eSum

(5.3)

With:

esum = Sum of the error
e = deviation between desired and actual position
I = Integral value

Ta = Time constant

Differentiator:

D =
1
Ta
∗ (e− eold)

eold = e
(5.4)

With:

eold = Last error e
D = Differential value

With these equations, the rest of the observer can be constructed nearly directly
out of the Simulink plan

x2 =
1
Ta
∗ (e− eold)

ẋ2 = k1 ∗ x3 − k2 ∗ x2 ∗ |x2|
(5.5)

41

5 Hardware

Figure 5.3: Calculation of |x2|

Only the absolute value of x2 is calculated by an if - prompt shown in figure 5.3.
The estimated value for x3 is calculated with the actual compressor position.

The control variable v is calculated through a simple equation, with the help of
the previous estimated states. This equation equals the Simulink structure in Figure
3.8.

v = desiredDepth− (Ta ∗ esum + 4 ∗ actDepth + 6 ∗ x2 + 4 ∗ ẋ2) (5.6)

Finally there is only the compensation of the nonlinearity inside the control path
missing. This is done with the equation, visible in Figure 3.6

u1 =
1

k1 ∗ k
∗ (v + 2 ∗ k2

2 ∗ x2
3 − 2 ∗ k1 ∗ k2 ∗ |x2| ∗ x3) (5.7)

The motor signal has to be smoothened. This is done by using a PT1 term. The
time continuous term is shown in Eq. 4.2. To implement this term, it has to be
discretized. This can be done by using the Matlab method c2d. This method needs
the system and the sample time (in this case: 0.1). There are several methods to
discretize the system, zero order hold is used here.

u =
0.2212

u1 − 0.7788
(5.8)

The now calculated control variable is used to control the speed of the compres-
sor motor by PWM. A u value of 1 means 100% motor power upwards, a value of
−1 means 100% in the other direction. The motor is controlled by sending integer
values between −100 and 100 to the motor control method. It also needs a PWM
signal of at least 75% before it starts running. Therefore it is necessary to add an

42

5.3 Implementation of the PID controller

PID controller

e= desiredDepth – actualDepth

esum = esum + e

u = Kp*e + Ki*Ta*esum +

Kd/Ta*(e-eold)

eold = e

set new motor speed

end

Figure 5.4: Flowchart of the PID controller

offset to the control variable. This is done with the following equation:

motorSpeed =


u ∗ 25− 75 u < 0
u ∗ 25 + 75 u > 0
0 u = 0

(5.9)

5.3 Implementation of the PID controller

To be able to compare the results, the PID controller is also implemented. The PID
controller is not depending on estimated states. It calculates the control variable
only with the measured pressure value (x1). Therefore the controller at least stabi-
lizes the system.
The implementation is easier than the state feedback controller. The control vari-
able is calculated through three simple equations.

43

5 Hardware

Pterm = KP ∗ e
Iterm = KI ∗ Ta ∗ esum

Dterm =
KD

Ta
∗ (e− eold)

u = Pterm + Iterm + Dterm

(5.10)

The u value is then converted like described in Eq. 5.9 and is sent to the motor
control method. The flowchart of the PID controller is shown in Fig 5.4.

44

6 Experiments

6.1 Setup

The tests are made in a large aquarium with a dimension of 2x1.4x0.6m. This al-
lows to test in several depths and without large disturbances. All test are made at
one side of the aquarium, to make sure the data from the robot can be received.
The blue light module is placed outside the aquarium to ensure a good connection.
For transmitting, the robot is using the Bluelight module on the front. The robot is
sending the actual pressure value and the behavior is plotted with a Matlab pro-
gram.

6.2 Holding depth with the state feedback controller

Because the state feedback controller showed the best behavior in the simulation,
it is tested first. The tests with the real platform shows the difference between the
simulation and the reality. Although the simulation is looking very good, the real
system is behaving completely differently. The controller doesn’t stabilize the sys-
tem. Analyzing the estimated states showed that the states are very inaccurate.
The compressor motor is switching very often. This leads to a very inaccurate es-
timated volume, because changing the direction of the compressor always takes
some time of idle that would be very complicated to model. Also the velocity val-
ues are inaccurate. Although the noise on the pressure value is very small, through
the derivation the velocity value gets useless. A state feedback controller is very
difficult to use without reliable estimated states.

6.3 Holding depth with the PID-controller

The first test for the PID-controller is to keep a constant depth of 20 centimeters. The
behavior of the platform is logged for 200 seconds and plotted. This plot is shown
in Fig. 6.1. The figure shows, that the system is stable and not collapsing. But the
control accuracy is not very good. There are two overlaid oscillations. One of them
has a period of about 200 seconds and a peak of approximately 10 centimeters. The
origin of this oscillation is not clear, it could be caused by the integrator. The second
oscillation is faster, it has a period of only 20 seconds but a peak - peak distance of
up to 20 centimeters. For this vibration, the origin is probably the linearization.

45

6 Experiments

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

de
pt

h
[m

]

time [s]

Behavior of the real system

real behavior
desired behavior

Figure 6.1: Test result with the PID controlled system trying to hold a constant
depth of 0.2m

This swinging was already visible in the simulation, but with a smaller peak that
was explained by the linearization of the system. The swinging is now boosted
because of the bad controllability of the motor. With both vibrations combined, the
system is swinging for up to 20 centimeters around the desired position. All tries
to improve the accuracy by tuning the control parameters show no enhancements.

6.4 Step response with the PID-controller

In the second test, the robot is keeping a constant depth of 20 centimeters and gets
a change of the desired depth to 30 centimeters just after the recording is started.
This test result is visible in Fig. 6.2. The Figure shows, that the system is reacting on
the change of the desired depth. It is reaching the new desired depth and swinging
around the new position. Because of the high inertia of the system, this task is very
slow. Also in this case, there are the two overlaid osillations from Sec. 6.3.

6.5 Results

The experiments show, that a very simple toy can be controlled by a PID-controller,
but the accuracy isn’t very good. The system is able to keep a specified depth and to
react on a depth change. To reach the new desired depth it takes some time, because
of the high inertia of the system. The accuracy could be improved by finding a way
to estimate the states better or through modifying the platform.

46

6.5 Results

0 20 40 60 80 100 120 140 160 180 200
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Behavior of the real system

time [s]

de
pt

h
[m

]

desired behavior
real behavior

Figure 6.2: Test result with the PID controlled system performing a depth change
from 0.2m to 0.3m

47

7 Conclusion

7.1 Summary

Summarized, the thesis shows the steps from a given platform with predefined sen-
sors and actors to the implemented depth controller.
To reach this goal, the system has been modeled by deriving the equations of
motion that describe the system. These equations have been modeled in Matlab
Simulink to be able to simulate different control structures and parameters without
using the real system.
Two different types of controllers were tested. The first one was a linear PID - con-
troller. The simulation showed, that the system can be stabilized but the permanent
control deviation can’t be eliminated. The reason for this behavior was the nonlin-
earity of the control path. To improve the accuracy, the system was exact linearized
and controlled by a state feedback controller. For this, it was necessary to estimated
all states of the system. The results in the simulation were promising, the system
reached the desired position in a very short time and kept it perfectly. Both con-
trollers were implemented in C on the microprocessor board. To send commands
to the board and to receive validation informations, a transmission system was
implemented. This has been done by using the Bluelight modules, a system that
implements an UART interface by the use of LEDs.
The complete system was then tested inside the aquarium.
At first, the state feedback controller was tested, because of the better behavior
in the simulation. The results were the complete opposite of the simulation, the
state feedback controller was not able to stabilize the system. This can be justi-
fied through the combination of inaccurate estimated states and inaccurate motor
control. The PID controller showed a better behavior, it was stabilizing the system
but the accuracy was not very good. The system was swinging around the desired
position with two overlaid oscillations. One of these oscillations was caused by
the nonlinearity of the system that has been linearized to be able to use a linear
controller. The origin of the second oscillation could be caused by the integrator.

7.2 Future work

A major improvement would be a feedback sensor for the volume of the robot, or
the ability to control the compressor in a more accurate way.

49

7 Conclusion

For a volume sensor, there are two strategies. The motor of the robot could be
equipped with a incremental position encoder that triggers a signal on every rota-
tion of the motor. The controller could count these signals and calculate the com-
pressor position relative. Another method would be to attach a variable resistor to
the compressor. The controller could then calculate the position absolute by using
an AD converter.
Another method to increase the accuracy of the compressor would be to use a dif-
ferent kind of motor. By using a stepper or servo motor, the compressor could be
controlled more accurately. Therefore it would be possible for the controller to ad-
just the desired volume. This would also reduce the complexity of the controller,
because the volume could be controlled directly and not only the motor power.

50

Bibliography

[Ada09] J. Adamy. Nichtlineare Regelungen. Springer, 2009.

[ALL92] J. Ans, E. Lax, and M.D. Lechner. Taschenbuch fuer Chemiker und Physiker:
Physikalisch-chemische Daten. Taschenbuch fuer Chemiker und Physiker.
Springer, 1992.

[BKL05] J. Berber, H. Kacher, and R. Langer. Physik in Formeln und Tabellen. Teubner,
2005.

[Boe09] L. Boeswirth. Technische Stroemungslehre: Lehr- und Uebungsbuch. Viewegs
Fachbuecher der Technik. Vieweg+Teubner Verlag, 2009.

[CoC13] CoCoRo. Collective Cognitive robots FP7. 2011 - 2013.

[dat10] Data sheet MS5803-01BA miniature variometer module. 2010.

[Ebe11] Prof. Dr.-Ing. Christian Ebenbauer. Einfuehrung in die Regelungstechnik
Zusammenfassung: Begriffe und Formeln. 2011.

[FH08] Torsten Bertram Frank Hoffmann. Nichtlineare Regelung. 2008.

[Joh12] Anathol Johansen. Tödliche Tiefen. http://www.welt.de/print/die_welt/
wissen/article13826422/Toedliche-Tiefen.html, 21.01.2012.

[J.Y00] J.Yuh. Design and Control of Autonomous Underwater Robots: A Survey. 2000.

[Lun07] Jan Lunze. Regelungstechnik I, volume 6. Auflage. 2007.

[PS08] W. Plaßmann and D. Schulz. Handbuch Elektrotechnik: Grundlagen und An-
wendungen für Elektrotechniker. Vieweg+Teubner Verlag, 2008.

[RC90] Fortis A. Papoulias Anthony J. Healey Roberto Christ. Adaptive Sliding
Mode Control of Autonomous Underwater Vehicle in the Dive Plane. 1990.

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Matthias van de Weyer)

	List of Figures
	List of Tables
	Introduction
	Goal
	Approach

	Modeling
	Dynamics
	Weight force
	Buoyancy
	Hydrodynamic resistance
	Complete equations of motion
	State space representation

	Model Parameters
	Weight (m)
	Surface area (A)
	Drag coefficient (cw)
	Transmission Factor (k)
	Water - density ()
	Linearization factor (clin)

	Simulink model

	Control unit design
	Stability
	Controllability
	Observability
	Transfer Function
	PID-Controller
	P-term
	I-term
	D - Term
	Anti-windup
	Loop tuning

	Nonlinear approach
	Exact linearization
	State Feedback
	State observer

	Simulation
	Input signal
	PID controlled system
	Simulink plan
	Results

	Nonlinear state feedback
	Simulink plan
	Results
	Margin of error

	Hardware
	Platform
	Experimentation Board
	 Feedback Sensor

	Implementation
	 I2C communication
	Temperature and pressure conversion
	Timing
	Communication
	Compressor feedback
	Depth control

	Implementation of the PID controller

	Experiments
	Setup
	Holding depth with the state feedback controller
	Holding depth with the PID-controller
	Step response with the PID-controller
	Results

	Conclusion
	Summary
	Future work

	Literatur

