Universitat
Stuttgart

Institut fiir Architektur von Anwendungssystemen

Universitit Stuttgart M
Universitatsstrafie 38

D - 70569 Stuttgart

Diplomarbeit Nr. 3444

Integration der SimTech
Workflow-Umgebung mit

Studiengang:

Priifer:
Betreuer:
begonnen am:

beendet am:

CR-Klassifikation:

existierenden eScience
Plattformen

Daniel Huss

Softwaretechnik

Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Dipl.-Inf., Dipl.-Wirt. Ing.(FH) Karolina Vukojevic
27.12.2012

09.08.2013

D.2.12, H.4.1, 1.6.7

Zusammenfassung

In den letzten Jahren sind vor allem in den USA und in Grofbritannien neue digitale Plattformen und
Softwarewerkzeuge fiir die Zusammenarbeit von Wissenschaftlern und zur gemeinsamen Nutzung von
Rechenkapazitéiten entstanden. Die Plattformen nanoHUB, myExperiment und das wissenschaftliche
Workflow-Management-System Taverna sind fiir diese Arbeit ausgewéhlt worden, um eine Integration
der angebotenen Dienste und Funktionen mit der SimTech Workflow-Umgebung zu priifen. Fiir je-
den der drei Kandidaten wurden mehrere mdogliche Integrationsanséitze erarbeitet und eine technische
Realisierung der Integration umrissen. Anschliefend wurden die Integrationsansétze einer Bewertung
hinsichtlich ihres Nutzens und der Machbarkeit unterzogen. Es musste festgestellt werden, dass keine
der untersuchten Plattformen die Auslagerung von SimTech-Infrastruktur auf die Rechenressourcen
der Plattform ermdglicht, obwohl dies ein wichtiges Ziel der Arbeit war. Als Alternative wurde des-
halb nach Abwégung der sonstigen Integrationsansiitze eine Integrationslsung konstruiert, welche
die Ausfithrung von datenflussorientierten Taverna-Workflows als Bestandteil von BPEL-Prozessen
ermoglicht.

Abstract

Over the last few years, new digital platforms and software tools for the global collaboration between
scientists and for the sharing of computing resources have emerged, primarily in the US and in Great
Britain. In this work, the platforms nanoHUB and myExperiment, as well as the scientific workflow
management system Taverna haven been selected for analysis of potential integration opportunities
with the SimTech workflow environment. For each of those candidates, several integration approaches
have been identified and a draft for a potential technical realization has been developed. Each inte-
gration approach has subsequently been evaluated for its usefulness and feasibility within the given
time frame. As a result of this evaluation, none of the presented platforms seems to offer a way to
satisfyingly externalize existing SimTech infrastructure or applications. The main objective of this
work could therefore not be achieved, and an alternative approach had to be chosen. As the best
remaining integration approach, the inclusion of Taverna’s data flow centric workflows within BPEL
processes has been implemented.

iii

Inhalt

1

Enleitung . ..o e 1
1.1 Ziele der Arbeitot 1
1.2 Gliederung 2
Grundlagen e 3
2.1 B CIBIICE . . vttt e e 3
2.2 Geschiftsprozesse und Workflows i e 3
2.3 Simulation Workflows e 4
2.4 Technologien 5
2.5 SimTech Workflow-Umgebung. e 10
Untersuchung der eScience-Plattformen i 13
3.1 nanoHUB 13
3.2 myExperiment 20
3.3 Taverna 22
Wabhl einer Integrationsaufgabe 29
4.1 Auswahlkriterien e 29
4.2 Analyse und Bewertung e 29
4.3 Entscheidung fiir Taverna Workflows als Bestandteil von BPEL-Prozessen 31
Integration der Taverna Workflow-Engine 33
5.1 Anforderungen e 33
5.2 Beispiel 33
5.3 Entwurf . . e 34
5.4 Auswahl eines Entwurfsansatzesc. . 39
5.5 Implementierung 41
Brgebnis . .o 47
6.1 Ausblick 47

1 Einleitung

Im vergangenen Jahrzehnt sind vor allem in den USA und in Grofibritannien neue digitale Plattformen
sowie Softwarewerkzeuge fiir die organisations- und landeriibergreifende Zusammenarbeit von Wissen-
schaftlern entstanden. Wissenschaftliche Einrichtungen bringen dort unter der Flagge von eScience
und cyberinfrastructure Forderprogrammen neue Arbeitsweisen sowie I'T-Infrastruktur hervor, die eine
globale Vernetzung von Wissenschaftlern und die gemeinsame Nutzung von Rechenressourcen ermog-
lichen sollen. Die Simulation als etablierte Sdule des wissenschaftlichen Erkenntnisgewinns nimmt in
diesem Kontext eine zentrale Rolle ein: Simulationswerkzeuge, die verteilte Ausfiihrung von Experi-
menten im Rechner und die gemeinsame Auswertung von Simulationsergebnissen sind wiederkehrende
Themen der neuen Plattformen.

In dieser Arbeit soll herausgearbeitet werden, inwiefern sich die neuen Plattformen, Dienste und
Softwarewerkzeuge mit der bestehenden SimTech Workflow-Umgebung integrieren lassen. Besonderes
Augenmerk soll dabei auf solchen Angeboten liegen, welche die Nutzung der Plattformen als Laufzeit-
umgebung fiir Simulation Workflows ermdglichen.

Der Exzellenzcluster Simulation Technology (SimTech) ist Teil einer Férderlinie der Exzellenzinitiative
des Bundes und der Lander zur Forderung von Wissenschaft und Forschung an deutschen Hochschule
und arbeitet in interdisziplindren Projekten an neuartigen Werkzeugen fiir Computersimulationen.
Diese Werkzeuge sollen es ermoglichen, skaleniibergreifende Simulationen miteinander zu verkniip-
fen und in eine gemeinsame Entwicklungs- und Ausfiihrungsumgebung zu integrieren. Das Institut
fiir Architektur von Anwendungssystemen befasst sich in SimTech mit der Nutzung von Workflow-
Technologie zur Modellierung und Ausfiihrung wissenschaftlicher Simulationen.

1.1 Ziele der Arbeit

Abbildung 1 zeigt die Teilziele dieser Arbeit und die grundsétzliche Vorgehensweise: Zunéchst werden
wir existierende eScience Plattformen auf Moglichkeiten zur Integration mit der SimTech Workflow-
Umgebung untersuchen. Fiir jeden gefundenen Integrationsansatz wird grob die Herangehensweise
fiir eine technische Realisierung sowie Hindernisse, welche die technische Realisierung erschweren,
beschrieben.

Die gefundenen Integrationsansétze bewerten wir anschliefend mittels nachvollziehbarer Kriterien hin-
sichtlich ihres Nutzens fiir SimTech. Zusétzlich versuchen wir fiir alle positiv bewerteten Ansétze die
Machbarkeit der Integration im Zeitfenster dieser Diplomarbeit abzuschétzen. Anschliefend wird mit-
hilfe dieser Analyse eine konkrete Integrationsaufgabe ausgewéhlt, geplant und durchgefiihrt. Dazu
ermitteln wir Anforderungen an die Realisierung, und bewerten anhand dieser Anforderungen verschie-
dene Implementierungsalternativen. Eine entsprechende Softwarelosung wird konstruiert, und deren
Ergebnisse anschlieffend diskutiert.

Untersuchung der Bewertung der Wahl einer Vergleich von Konstruktion
Plattformen Integrationsansatze Integrationsaufgabe Implementierungsansatzen der Losung
Integrationsansatze Nutzen? Machbarkeit?

— A —p —>A

| TR, B, — B, —s 5

’ B3 —» '
— . —> — C — —>><
—0—> —X

Abbildung 1. Vorgehensweise

1.2 Gliederung

Auf dieses Einleitungskapitel folgt im zweiten Kapitel eine kurze Einfithrung in die Themengebiete,
die wir im Verlauf dieser Ausarbeitung ansprechen werden. Die verwendeten Technologien werden
ebenfalls erlautert.

Im dritten Kapitel werden die untersuchten Plattformen nanoHUB.org und myExperiment sowie das
Workflow-Management-System Taverna vorgestellt. Fiir jede Plattform beschreiben wir - noch méog-
lichst wertungsfrei - die entdeckten Integrationsansiitze und skizzieren jeweils die grundsétzliche Her-
angehensweise einer technischen Realisierung.

In Kapitel vier erfolgt die Analyse der gefunden Integrationsansitze im Hinblick auf ihren Nutzen
fiir SimTech und auf die Machbarkeit im Zeitfenster dieser Diplomarbeit. Hier soll mdoglichst nach-
vollziehbar dargelegt werden, warum die Wahl auf Integration der Taverna Workflow Engine gefallen
ist.

Das fiinfte Kapitel dokumentiert Anforderungsanalyse, Entwurf und Implementierung einer Lésung

zur Integration der Taverna Workflow Engine.

Im sechsten und letzten Kapitel bewerten wir abschlieffend, inwiefern die Ziele der Diplomarbeit
erreicht wurden. Es wird diskutiert, was an der implementierten Losung verbessert werden kann und
welche weiteren Integrationsschritte im Anschluss an diese Diplomarbeit folgen kénnten.

2 Grundlagen

Dieses Kapitel soll das notige Grundwissen iiber die angesprochenen Themengebiete vermitteln sowie
die verwendeten Technologien beschreiben, soweit es fiir das Verstdndnis dieser Ausarbeitung not-
wendig ist. Die Beschreibungen gehen von einem Vorwissensstand aus, den man in etwa bei einem
Studenten der Informatik oder eines dhnlichen Studiengangs im vierten Semester erwarten konnte.
Wir verzichten beispielsweise darauf, die Grundlagen der Modelltheorie oder der objektorientierten
Programmierung zu wiederholen.

2.1 eScience

In der Forschung nimmt die EDV heute oft eine zentrale Rolle ein. Besonders in Fachgebieten wie der
Physik oder den Biowissenschaften beruht der Gewinn neuer Erkenntnisse immer mehr auf komplexen
Computerberechnungen und auf der Auswertung grofer Datenmengen, die bei Experimenten oder Si-
mulationen entstehen. In diesem Kontext beschreibt Wouters [27] den Begriff eScience (auch e-Science
oder E-Science) als die Verkniipfung mehrerer Entwicklungen: Erstens, die gemeinsame Arbeit welt-
weit verteilter wissenschaftlicher Einrichtungen an Forschungsprojekten, um massive Datenmengen,
wie sie z.B. vom LHC! oder der Kepler Mission? produziert werden, in absehbarer Zeit zu verarbeiten.
Zweitens, die Nutzung spezialisierter Internet-Plattformen zur Kommunikation und Zusammenarbeit.
Drittens, die Freigabe und gemeinsame Nutzung von Rechnerkapazitéten in Form von Grid-Com-
puting. Beim Grid Computing bildet eine Menge von vernetzten Rechnern, die von verschiedenen
Inhabern betrieben und kontrolliert werden, eine logische Einheit: das Grid [9]. Die Rechner, aus de-
nen ein Grid besteht, konnen sich in ihrer geographischen Lage und in ihrer Leistungsfihigkeit sehr
unterscheiden. Durch den Einsatz von Middleware werden diese Unterschiede vor den Benutzern des
Grids aber verborgen, sodass das Grid nach aufien als ein hochverfiighbarer Dienst zur Abarbeitung
von Computerberechnungen erscheint. Uber eine Softwareschnittstelle werden Berechnungsaufgaben
an das Grid iibermittelt und dann so abgearbeitet, dass sich die Rechenlast moglichst gleichméfig auf
die Rechner des Grids verteilt. Der Zugang zu einem Grid ermdglicht Wissenschaftlern, bei Bedarf die
Rechenkapazitit eines virtuellen Hochstleistungsrechners zu nutzen.

Ein weiterer wichtiger Teilaspekt der eScience-Bewegung sind die Werkzeuge zur Kommunikation, Da-
tenerhebung, Datenverarbeitung und Automatisierung. Die Allgegenwirtigkeit von Software-Werkzeu-
gen bei der Forschungsarbeit hat Auswirkungen auf die Arbeitsweise von Wissenschaftlern: Ingenieur-
méfiges Vorgehen wird wichtiger, ebenso die Kooperation mit der Industrie. Nicht zuletzt ist eScience
aber auch ein Schlagwort zur Forderung und Ausrichtung wissenschaftlicher Einrichtungen, urspriing-
lich in britischen Kreisen, seit etwa 2003 aber auch in Deutschland [23, 2].

2.2 Geschiftsprozesse und Workflows

Workflow-Technologie ist die Grundlage fiir Simulation Workflows. Dieser Abschnitt soll keine er-
schopfende Auseinandersetzung mit dem Thema bieten, sondern nur die wichtigsten Grundbegriffe
vermitteln. Workflows haben ihren Ursprung in der Automatisierung von Geschéftsprozessen. Ein
Geschéftsprozess ist ein wiederholbarer Vorgang innerhalb einer Organisation, mit dem (mindestens)
ein wohldefiniertes Ziel erreicht wird, z.B. der Bestellvorgang bei einem Versandhandler. An Ge-
schéftsprozessen kénnen verschiedene Parteien teilnehmen, z.B. ein Kunde, Abteilungen der eigenen

! Large Hadron Collider, derzeit weltweit grofter Teilchenbeschleuniger
2 NASA-Projekt zur Suche nach Planeten auRerhalb des Sonnensystems iiber ein Weltall-Teleskop

Organisation und andere Organisationen. Workflows bilden Geschiiftsprozesse im Computer ab, wobei
Leymann und Roller [17] zwischen drei Dimensionen unterscheiden:

1. What - Aus welchen Einzelschritten besteht der Workflow und in welcher Reihenfolge sind sie
auszufiithren?

2. Who - Welche Teilnehmer hat der Workflow und welche Rollen nehmen sie ein?
3. With - Welche Ressourcen, Daten, Programme etc. benotigt der Workflow zur Ausfiihrung?

Die Ausfiihrung von Workflows im Rechner geschieht, indem aus einem Workflow-Modell eine Work-
flow-Instanz erzeugt wird. Die Bezeichnungen ,Prozess” und ,Workflow* werden im realen Sprachge-
brauch oft synonym, und je nach Kontext sowohl fiir das Modell als auch fiir die Instanz verwendet.
Abbildung 2 zeigt dagegen die korrekte Terminologie.

{ \ 4 \
In der realen Welt Im Computer
Prozessmodell - >| Workflow-Modell
1 1
Instantiierung Instantiierung
n n
A 4 A 4
Prozessinstanz |< »| Workflow-Instanz
\ J . J

Abbildung 2. Terminologie fiir Modelle und Instanzen basierend auf [17]

Workflow-Management-Systeme

Ein Workflow-Management-System (WMS) ist Software zur Verwaltung von Workflow-Modellen und
Instanzen. Es ldsst sich grob in zwei Bereiche unterteilen: Entwurf und Ausfithrung. Im Entwurfs-
bereich werden Workflow-Modelle mit einem Softwarewerkzeug, dem Modeling Tool, modelliert und
abgespeichert. Im Ausfiihrungsbereich werden abgespeicherte Workflow-Modelle zur Ausfiihrung vor-
bereitet und instantiiert. Laufende Workflow-Instanzen koénnen iiberwacht werden. Zusétzlich sam-
meln WEMS oft Daten zur Auditierung beendeter Workflow-Instanzen. Zur Speicherung persistenter
Daten, wie z.B. den Zustand laufender Workflow-Instanzen, setzen WfMS in der Regel relationale,
transaktionale Datenbanksysteme ein.

2.3 Simulation Workflows

In der Wissenschaft wird zunehmend Workflow-Technologie eingesetzt, um wissenschaftliche Arbeits-
vorgénge zu automatisieren [27, 10]. Indem Experimente und Simulationen als Workflows modelliert
werden, kénnen andere Wissenschaftler sie mit wenig Aufwand wiederholen und anpassen, was die
Kollaboration zwischen Wissenschaftlern an unterschiedlichen Standorten férdert. Da im wissenschaft-
lichen Umfeld viele unterschiedliche Technologien und Software-Werkzeuge zum Einsatz kommen, ist
Workflow-Technologie auch als Form der Anwendungsintegration niitzlich.

Simulation Workflows sind eine spezielle Form der wissenschaftlichen Workflows, bei denen der Schwer-
punkt auf der Ausfilhrung und Auswertung von Computersimulationen liegt. Sie unterscheiden sich
in einigen Punkten von Business-Workflows [24]. Wissenschaftliche Workflows sind datenzentriert,
wahrend Business-Workflows sich am Kontrollfluss orientieren. Die verarbeitete Datenmenge je In-
stanz ist in wissenschaftlichen Workflows deutlich grofer. Auch die Phasenmodelle (siehe Abbildung
3) unterscheiden sich stark voneinander: Bei Business-Workflows werden die Schritte Modellierung,
Installation, Ausfiihrung, Uberwachung und Analyse in der Regel von unterschiedlichen Spezialisten
ausgefiihrt, in wissenschaftlichen Workflows {ibernimmt der Wissenschaftler all diese Aufgaben. Einige

wissenschaftliche WfMS wie Taverna unterscheiden zudem nicht zwischen Installation und Instanti-
ierung von Workflow-Modellen. Der Grund dafiir ist, dass Wissenschaftler oft nach dem Prinzip von
Versuch und Irrtum vorgehen und daher aus einem Workflow-Modell nicht selten nur eine Instanz er-
zeugt wird, bevor es Anderungen am Modell gibt. Bei Business-Workflows werden einmal installierte
Workflow-Modelle dagegen vielfach instantiiert, bevor Anderungen am Modell eine erneute Installation
erfordern.

‘—\ f_>
(Analyse Modellierung]

Fachexperte

(Analyse] (Modellierung]

ausfiihren /
fortsetzen

Wirtschaftsanalyst

A

Administrator
(IT-Fachkraft)

Uberwachung Installation

Wissenschaftler

. Ausfuhrung &

Uberwachung

Ausfihrung

!

Kunde / Angestellter

IT-Fachkraft

Legende

Abbildung 3. Phasenmodell fiir Business-Workflows (links) und wissenschaftliche Workflows (rechts) [10]

2.4 Technologien

In den folgenden Abschnitten werden die verwendeten Technologien kurz beschrieben. Die Erklarungen
zeigen auf, in welchem Zusammenhang die Technologie in dieser Arbeit verwendet wird und warum
das Versténdnis der Technologie nétig ist.

VNC

Virtual Network Computing (VNC) bezeichnet die Steuerung entfernter Rechner iiber ein Netzwerk
mithilfe des Remote Framebuffer Protocols. Dazu iibertrigt der VNC Client Tastatur- und Mausereig-
nisse an den VNC Server, dieser iibertrigt im Gegenzug den aktuellen Bildschirminhalt an den VNC
Client. Diese Technologie ist aufgrund der geringen Bandbreite vieler Netzwerke und der vergleichs-
weise hohen Latenz nicht fiir fliissige Wiedergabe von Videos oder Animationen geeignet, sondern
wird hauptséchlich zur Fernwartung von Rechnersystemen eingesetzt. Auf der Plattform nanoHUB3
wird per VNC die Benutzung von Simulationswerkzeugen im Webbrowser ermoglicht.

XML

Die eXtensible Markup Language (XML) ist ein vom W3C standardisiertes Format, das strukturierte
Daten in Form von XML-Dokumenten beschreibt [4]. XML-Dokumente enthalten hierarchische Da-
tenstrukturen, die nach formal spezifizierten Regeln als maschinenlesbarer Text dargestellt werden
koénnen. Abbildung 4 zeigt ein einfaches Beispieldokument, in dem einige Daten iiber diese Ausarbei-
tung festgehalten sind. Die grundlegenden Bausteine, aus denen XML-Dokumente bestehen, sind dort
gekennzeichnet.

% http://nanochub.org

http://nanohub.org

<?xml version="1.0" encoding="UTF-8"?>
<diplomarbeit>
<bearbeiter>
Wurzel-Element <name>Daniel Huss</name>
<email>hussdl@studi.informatik.uni-stuttgart.de</email>

Attribut des <telefon> Elements \ Text-Inhalt des <email> Elements
Kind-Elemente

<telefon art="Privat">123 456 789</telefon>
<telefon art="Biiro">000 111</telefon>
</bearbeiter>
<kapitel name="Einleitung" seitenzahl="2"
<kapitel name="Grundlagen" seitenzahl="4" />
<kapitel name="Untersuchung der Plattformen" />
</diplomarbeit>

Kurzschreibweise fir
Elemente ohne Inhalt

Abbildung 4. XML-Beispieldokument

In der Praxis ist es fiir die Verarbeitung von XML-Dokumenten wichtig, Annahmen iiber den Aufbau
und den Inhalt eines bestimmten Dokumenten-Typs treffen zu kénnen. Dazu muss z.B. eingeschrinkt
werden, welche Elemente in diesem Dokumenten-Typ vorkommen diirfen, wie die Elemente angeord-
net werden miissen, welchen Inhalt sie besitzen diirfen und welche Attribute die Elemente aufweisen
diirfen. Es existieren mehrere Varianten, mit denen man solche Einschrankungen fiir XML-Dokumente
formulieren kann. Fiir diese Arbeit sind aber lediglich XML Schema Definitions (XSD) von Bedeutung
[7]. Mit der Einfithrung von Schemadefinitionen wird XML zur Metasprache [25]: Jede Schemadefini-
tion ist selbst ein XML-Dokument und beschreibt eine Klasse von giiltigen XML-Dokumenten. Die
Menge aller giiltigen XML-Dokumente fiir ein bestimmtes Schema bilden eine Sprache. Abbildung 5
zeigt eine solche Schemadefinition fiir das Beispiel aus Abbildung 4. XML sowie Schemadefinitionen
sind fiir diese Arbeit wichtig, weil andere Technologien wie BPEL und Web services darauf aufbauen,
und da wir XML héufig als Dateiformat zur Speicherung hierarchischer Datenstrukturen wiederfinden.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="diplomarbeit">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="bearbeiter" maxOccurs="2" minOccurs="1"/>
<xsd:element ref="kapitel"” minOccurs="3" maxOccurs="10"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="bearbeiter">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="email" type="xsd:string"/>
<xsd:element name="telefon" minOccurs="60" maxOccurs="unbounded">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="art" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="kapitel">
<xsd:complexType>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="seitenzahl" type="xsd:int" use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Abbildung 5. Mogliches XML Schema fiir das Beispieldokument aus Abbildung 4

Web Services

Der folgende Abschnitt ist der Versuch, einen Kompromiss zwischen den Definitionen von Weerawa-
rana et al. [25] und dem W3C [3] zu finden: Web services sind eigensténdige Softwarekomponenten,
die ihre Funktionalitét als Dienst {iber ein Netzwerk bereitstellen. Web service Technologie beschéf-
tigt sich nicht mit der konkreten Implementierung von Funktionalitéit, sondern liefert ein plattform-
und herstellerunabhéngiges Modell fiir Beschreibung, Auffindung und Abruf der Schnittstellen von
Softwarekomponenten. Implementierungsdetails und Eigenheiten ihrer Laufzeitumgebung verbergen
Web sevices hinter offentlichen Schnittstellen, die durch den Austausch von Nachrichten angespro-
chen werden. Dadurch wird eine lose Kopplung zwischen Web services und ihren Abrufern erzwungen.
Jeder Web service besitzt eine Identitét und eine maschinenlesbare Beschreibung, die es einem Rech-
ner ermdglicht, die Funktionalitéit des Web services abzurufen. Web services haben im Gegensatz zu
anderen Dienstauspragungen kein Konzept von Abschaltung oder Pausierung: wenn ein Web service
verfiighar bzw. erreichbar ist, dann ist er auch angeschaltet. Obwohl der Name es suggeriert, miissen
Web services nicht unbedingt {iber das Web erreichbar sein.

Die Integrationslosung, welche im Rahmen dieser Arbeit konstruiert wird, soll als Web service be-
reitgestellt werden. Fiir diese Arbeit ist nur eine bestimmte technische Ausprigung von Web services
von Bedeutung: Sie basieren auf XML, verwenden SOAP/HTTP zur Kommunikation und werden mit
WSDL beschrieben.

SOAP

Web services kommunizieren mit der Aufenwelt, indem sie Nachrichten empfangen und versenden.
SOAP ist ein vom W3C standardisiertes, erweiterbares Protokoll zur Zustellung solcher Nachrichten
ausgehend von ihrem Absender iiber eine Menge von Zwischenstationen bis zu ihrem endgiiltigen
Empfanger [11]. SOAP-Nachrichten sind XML-Dokumente mit dem Wurzelelement Envelope, darun-
ter konnen im Element Header Metainformationen zur Nachricht abgelegt werden, die eigentlichen
Nutzdaten der Nachricht befinden sich im Element Body (s. Abbildung 6). SOAP gibt zwar keinen
Transportmechanismus fiir die Dateniibermittlung zwischen zwei Stationen vor, in der Praxis wird
aber hiufig HTTP eingesetzt.

....... <Envelope
_______ xmlns="http://schemas.xmlsoap.org/soap/envelope/">
~ <Body> .. </Body>
T Envel
SOAP-Nachricht ~ ™7==--. </Envelope>
_—————— -
Ubertragungsrichtung
"v"‘\‘ "v"‘\‘
. . .y .
L) f ” r
O Transport — *___ ¢ el .
1 0..N 1
Absender Zwischenstationen Empfanger
(initial sender) (intermediaries) (ultimate receiver)

Abbildung 6. Zustellung einer SOAP-Nachricht

WSDL

Die maschinenlesbare Beschreibung eines Web services sollte alle Informationen enthalten, die man
benétigt, um den Web service zu benutzen. Die Web Services Description Language (WSDL) iiber-
nimmt diese Aufgabe: Sie ist ein XML-Format zur Beschreibung der funktionalen Aspekte von Web
services [25].

WSDL-Dokumente bestehen aus einem abstrakten, wiederverwendbaren Teil und einem konkreten
Teil. Im abstrakten Teil wird beschrieben, was der Web service kann: welche Operationen verfiigbar
sind, welche Eingaben und Ausgaben sie haben. Im konkreten Teil wird beschrieben, wo der Web
service gefunden werden kann und iiber welchen Aufrufmechanismus der Web service benutzt wird.

Die aktuelle Version des WSDL-Standards ist zwar 2.0, da aber BPEL mit dieser Version nicht kompa-
tibel ist, wird in dieser Arbeit ausschlieflich WSDL 1.1 verwendet. Abbildung 7 zeigt die wichtigsten
Elemente, aus denen WSDL-Dokumente der Version 1.1 bestehen: PortTypes sind abstrakte Schnitt-
stellendefinitionen, die eine oder mehrere Operationen enthalten. Jede Operation besitzt eine Eingabe
oder eine Ausgabe oder beides. Zur Ausnahmebehandlung kénnen Operationen zusitzlich eine Menge
von Fehlerzustdnden (faults) definieren. Jeder Eingabe, Ausgabe und jedem Fehler wird eine Nachricht
(message) zugeordnet. Das Binding beschreibt, wie Operationen eines bestimmten PortTypes aufge-
rufen werden und definiert Kodierung sowie Transport von Nachrichten iiber das Netzwerk. Jedes
Binding bezieht sich auf genau einen PortType, aber fiir jeden PortType kénnen mehrere Bindings
definiert werden. Ein mdgliches Binding, und das in dieser Arbeit ausschliefslich verwendete, ist das
SOAP-Binding im Document-Literal-Stil. Ein Port gibt den Ort einer Implementierung eines PortTy-
pe an und nennt das Binding, mit dem diese Implementierung aufgerufen werden kann. Das Service-
Element fasst schliefilich einen oder mehrere Ports zu einem identifizierbaren Web service zusammen.
Nicht abgebildet ist das Element types, welches die verfiigbaren Datenstrukturen fiir Nachrichtenin-
halte beschreibt. In der Regel wird XML Schema als Typsystem verwendet. Ebenfalls nicht abgebildet
ist das Element import, welches erlaubt, sich innerhalb eines WSDL-Dokuments auf den Inhalt an-
derer WSDL-Dokumente zu beziehen.

Abstrakt § Konkret

implementiert

Port Type € Service

b@Z
bietet en 4

ur bietet -

5 bestimmt Aufrufmechanik verwendet

Operation <€ Binding <€—— Port

ot

hat fur
Eingabe,
Ausgabe,

Fehler

et
beg\\(“m
Message

Abbildung 7. WSDL 1.1 - Elemente und deren Beziehungen

BPEL

Die Web Services Business Process Execution Language 2.0 (BPEL) ist ein erweiterbares, XML-
basiertes Metamodell fiir Workflow- und Prozessmodelle [1]. BPEL ist das Metamodell der SimTech
Simulation Workflows. Gleichzeitig wird BPEL aber auch in der Industrie eingesetzt, da es sich um
einen OASIS*-Industriestandard handelt.

BPEL-Prozesse nutzen die Funktionalitdt bestehender Web services. Das Metamodell bietet selbst
nur generische Strukturen zur Steuerung des Kontrollflusses, zur Interaktion mit Web services und
zur Manipulation von XML-Datenstrukturen [25]. Zur Modellierung des Kontrollflusses kénnen so-
wohl blockbasierte Elemente wie Sequenzen, Schleifen oder If-Abfragen, als auch Graphen verwendet

* Organization for the Advancement of Structured Information Standards: https://www.oasis"=open.org

https://www.oasis"=open.org

werden. Der Datenfluss eines BPEL-Prozesses ist implizit durch den modellierten Kontrollfluss gege-
ben. Die im Rahmen dieser Arbeit erstellte Software zur Integration der Taverna Workflow-Engine
ist darauf ausgerichtet, von BPEL-Prozessen benutzt zu werden, daher werden wir in Kapitel 5 die
Interaktion von Web services mit BPEL-Prozessinstanzen genauer betrachten.

Java

Java ist eine Software-Plattform und eine populdre Programmiersprache, die im Kontext dieser Di-
plomarbeit an zwei Stellen relevant ist: Einerseits wird das Taverna W{MS mit Java entwickelt, an-
dererseits erfolgt die Konstruktion der Integrationslosung in Java Standard Edition, Version 6. Wir
gehen im Folgenden lediglich von Grundkenntnissen der Syntax, der Verwendung von Annotationen
sowie der hiufig verwendeten Datentypen wie String und byte[] aus. Ebenfalls von Bedeutung ist
das JAR-Dateiformat, in dem Java-Programme und Softwarebibliotheken ausgeliefert werden. Eine
JAR-Datei ist ein ZIP-Archiv, das eine Menge von Java-Klassen und sonstigen Dateien enthélt, die
wahrend der Ausfilhrung einer Java-Anwendung geladen werden kénnen. In einem speziellen Ordner
namens META-INF werden Metadaten abgelegt, welche z.B. die digitale Signatur des Inhalts einer
JAR-Datei ermoglichen.

JAXB

Die Java API for XML Binding (JAXB) ist eine Standard-Softwarebibliothek zur bidirektionalen Ab-
bildung von XML Schemadefinitionen auf Java-Klassen [14, 28]. Uber mitgelieferte Tools lassen sich
aus einer bestehenden Schemadefinition eine Menge von annotierten Java-Klassen generieren. Jede
generierte Klasse reprisentiert ein Element oder einen Typ aus der Schemadefinition. Umgekehrt las-
sen sich aber auch bestehende Java-Klassen mit JAXB-Annotationen anreichern, um die statische
Struktur der Klasse auf XML Schema abzubilden. In beiden Fillen kénnen iiber JAXB Instanzen
der annotierten Klassen aus eingelesenen XML-Dokumenten erzeugt werden. Instanzen der annotier-
ten Klassen koénnen wiederum zu XML-Dokumenten serialisiert werden. Natiirlich besteht auch die
Moglichkeit, solche Objekte programmatisch zu erzeugen oder zu verdndern.

JAXB wird in dieser Arbeit in Version 2.1 bei der Konstruktion der Integrationslosung verwendet.
Es wird ausschlieflich der Schema-zu-Java-Ansatz eingesetzt, d.h. es werden XML Schemadefinitio-
nen modelliert und Java-Klassen daraus generiert. Der generierte Code wird nicht manuell gedndert,
sondern bei jeder Anpassung der Schemadefinition miissen die Java-Klassen erneut generiert werden.

JAX-WS

Die Java API for XML Web services (JAX-WS) ist eine Standard-Softwarebibliothek fiir die Arbeit
mit Web services unter Java[16]. JAX-WS unterstiitzt den Entwickler sowohl bei der Verwendung be-
stehender Web services in Java-Anwendungen als auch bei der Implementierung neuer Web services.
Um die Datenstrukturen aus XML-basierten Web services auf Java-Klassen abzubilden, wird JAXB
verwendet. Wie auch bei JAXB gibt es bei JAX-WS zwei grundsétzliche Herangehensweisen: Ent-
weder werden aus einem bestehenden WSDL-Dokument Java-Klassen generiert, oder es wird bereits
existierender Java-Code mit JAX-WS-Annotationen versehen.

Alle Web services, die im Rahmen dieser Diplomarbeit konstruiert werden, setzen JAX-WS in der
Version 2.1 ein. Bei der Implementierung neuer Web services wird, aufler zu Testzwecken, immer
zuerst ein WSDL-Dokument modelliert und der Java-Code aus diesem Dokument generiert (sieche
Abbildung 8). Die generierten Service Clients sind zu ignorieren oder zu l6schen, weil der generierte
Code Mingel aufweist: Er verweist per absoluter Pfadangabe auf die WSDL-Datei, aus welcher der
Client generiert wurde und ist somit an einen einzigen Rechner gekoppelt.

Apache Maven

Maven ist u.a. ein Werkzeug fiir die automatisierte Erstellung von Softwareartefakten aus Quellcode
und wird hauptsichlich zur Verwaltung von Java-Projekten eingesetzt. Sowohl Taverna als auch die

{ \ { \
WSDL Dokument Java-Klassen
- | Datenstrukturen II #II Java Bindings |
N
modelliert
< @ > | Port Types } ------ ’){ Endpoint Interfaces l
Entwickler
wsdl % |

. | Services I #I Service=€lients l

\ J \ J

Abbildung 8. Verwendung von JAX-WS in dieser Arbeit

implementierte Integrationslosung verwenden Maven in der Version 2 oder 3. Einige Begriffe aus der
Maven-Terminologie, die fiir das Verstdndnis der Ausarbeitung wichtig sind, werden hier vorgestellt.

Projekt Ein Projekt ist eine kohirente Menge von Programmcode-Dateien, sonstigen Ressourcen
sowie Informationen iiber das Projekt selbst. Aus einem Maven-Projekt geht in der Regel ein Soft-
wareartefakt hervor, z.B. ein ausfiihrbares Programm, eine Programmbibliothek oder eine Website.
Jedes Maven-Projekt wird durch eine XML-Datei namens pom. xml beschrieben, welche sich im Stamm-
verzeichnis des Projekts befindet. Die Beschreibung enthélt u.a. Name, Version, Besitzer und Art des
Projekts, den Typ des Hauptartefakts, Abhéngigkeiten von anderen Maven-Projekten sowie eine Be-
schreibung der Aktivitdten, die zur Erstellung der Artefakte durchgefiihrt werden miissen.

Build Der Buildprozess ist die Menge und Reihenfolge der Aktivitaten, die Maven durchfiihren muss,
um die Zielartefakte aus dem Quellcode und anderen Ressourcen eines Projekts zu erstellen. Dazu
gehort in der Regel die Kompilierung des Quellcodes in Bindrdateien, Ausfithrung von Softwaretests,
Paketierung der Bindrdateien, digitale Signatur der Artefakte, etc. Aus jedem Maven-Projekt geht
genau ein Hauptartefakt hervor, z.B. das ausfiihrbare Programm in Form einer JAR-Datei. Zusétzlich
konnen weitere Nebenartefakte entstehen, z.B. die Dokumentation oder der Quellcode.

Repository Maven-Artefakte werden in Repositories installiert, um sie als Abhéngigkeit fiir andere
Projekte verfligbar zu machen. Dazu wird einfach die Artefaktdatei in ein bestimmtes Verzeichnis
kopiert. Der genaue Verzeichnispfad lasst sich anhand des Namens, Typs und Versionsnummer des
zugehorigen Maven-Projekts eindeutig bestimmen. Abhéngigkeiten, die im lokalen Repository nicht
verfiighar sind, werden wihrend des Builds bei Bedarf aus einem entfernten Repository per HTTP
nachgeladen und in das lokale Repository kopiert.

2.5 SimTech Workflow-Umgebung

Der Ausgangspunkt unserer Integrationsaufgabe ist die SimTech Workflow-Umgebung (Abbildung 9).
Sie besteht im Wesentlichen aus einem Workflow Modeling Tool (im Bild links) und einer Server-
seite (im Bild rechts). Der Datenaustausch zwischen Modeling Tool und der Serverseite findet zum
Teil direkt, zum Teil {iber Apache ActiveMQ statt. ActiveM(Q ist ein Dienst zur Ubertragung von
Nachrichten zwischen verschiedenen Anwendungen.

Serverseite

Auf der Serverseite werden Dienste und sonstige Software betrieben, welche die Modellierung und
Ausfiihrung von Simulation Workflows unterstiitzen. Die Laufzeitumgebung fiir diese Dienste ist der
Apache Tomcat Web Container. ODE-PGF ist eine modifizierte Version der Apache ODE BPEL-
Engine und ist fiir die Ausfiihrung von BPEL-Prozessen zusténdig. Apache Axis2 ist ein Container
fiir Web services, der u.a. die Implementierung einiger Simulation-Workflow-Aktivitdten beinhaltet.

10

Eclipse JEE Apache Tomcat
[ODE Process Management]1 =(Apache ODE-PGF }7—
[SimTech BPEL Designer }— Al:tFi’\j::\‘:Q [Other Software... <
(Other Plugins...) Axis2
Web Services... l % v
Databases
<«—> Data or Message Flow

Abbildung 9. Vereinfachte Darstellung der SimTech-Architektur [12]

Zur Speicherung persistenter Daten kommen die Datenbanksysteme MySQL und PostgreSQL zum
Einsatz.

Modeling Tool

Das Modeling Tool basiert auf der Eclipse Rich Client Platform und deren Plugin-System, die SimTech
Werkzeuge zur Modellierung von Simulation Workflows sind als Eclipse-Plugins realisiert. Im Mittel-
punkt steht der SimTech BPEL Designer, der eine modifizierte Version des Eclipse BPEL Designers
ist. Der SimTech BPEL Designer visualisiert BPEL-Prozessmodelle und erlaubt die Bearbeitung der
Prozessmodelle iiber eine graphische Oberfliche. Um die modellierten Prozesse aus der Eclipse-Ent-
wicklungsumgebung heraus zu instantiieren, wird das ODE Process Management Plugin verwendet.
Es erlaubt die Verwaltung einer lokalen Installation der Apache ODE. Indem das Modeling Tool mit
der BPEL-Engine kommuniziert, lassen sich iiber die graphische Oberfliche auch laufende BPEL-
Prozessinstanzen iiberwachen oder debuggen, die Ergebnisse beendeter Instanzen kénnen analysiert
werden.

11

3 Untersuchung der eScience-Plattformen

In diesem Teil der Arbeit werden die bereits vor Beginn dieser Arbeit ausgesuchten Plattformen
nanoHUB.org und myExperiment sowie das wissenschaftliche WfMS Taverna vorgestellt. Anschliefend
betrachten wir die in Frage kommenden Integrationsansitze, wobei fiir jeden Integrationsansatz ein
grobes Konzept zur technischen Realisierung umrissen werden soll. Eine ausfiihrliche Bewertung der
gefundenen Integrationsansitze erfolgt separat in Kapitel 4.

Die Integrationsmoglichkeiten lassen sich, wie in Abbildung 3 dargestellt, grundséitzlich in zwei Kate-
gorien unterteilen: Zum einen kdnnen niitzliche Funktionen oder Daten, welche von den Plattformen
angeboten werden, in das bestehenden SimTech-System aufgenommen oder dort verfiighar gemacht
werden. Andererseits besteht die Mdoglichkeit, SimTech-Infrastruktur auf den Ressourcen des Platt-
form-Betreibers zur Verfiigung zu stellen. Beide Richtungen sind Gegenstand dieser Arbeit.

Plattform-Ressourcen fur eScience Plattform
SimTech verfligbar machen

[l
SimTech-Ressourcen tber “E
>

Plattform bereitstellen
Tools Prozesse Hosting Daten Weitere

Abbildung 10. Mégliche Ausrichtung der Integrationsansitze

Zur allgemeinen Vorgehensweise bei der Untersuchung gibt es zwei Anmerkungen: Integrationsan-
sitze, bei denen die Plattform offensichtlich nicht im Sinne ihres Betreibers benutzt wird oder bei
denen gegen die Nutzungsbedingungen verstofen wird, kommen nicht in Betracht. Ebenfalls nicht
Teil dieser Arbeit sind solche Integrationsvorhaben, die eine besondere Kooperationsvereinbarung der
Universitdt Stuttgart mit dem jeweiligen Plattform-Betreiber benttigen wiirden. Wir beschrinken uns
im Folgenden daher auf jene Teile der Plattformen, die fiir jeden Plattform-Benutzer zugénglich sind.

3.1 nanoHUB

nanoHUB.org? ist eine Web-Plattform fiir Wissenschaftler und Studenten mit dem Schwerpunkt Nano-
technologie. Die Nutzer der Plattform stellen auf nanoHUB Ressourcen mit Bezug zur Nanotechnologie
zur Verfligung: Interaktive Simulationstools, Prisentationen, Lehrmaterialien und sonstige Dateien wie
Quellcode oder Kalkulationstabellen. Fiir samtliche Inhalte, die von Benutzern hochgeladen werden,
fordern die Betreiber ein uneingeschrinktes Nutzungsrecht ein®.

Die interaktiven Simulationstools sind das herausragende Merkmal der Plattform. Sie erlauben dem
Benutzer, aus dem Webbrowser heraus rechenintensive Operationen auf Grid-Ressourcen der Platt-
form-Betreiber und deren Partnern auszufithren. Des Weiteren bietet nanoHUB einige Social-Networ-
king-Funktionen wie ein persénliches Profil, Nachrichtenaustausch mit anderen Benutzern, Gruppen
und Kontakten. Ein Teil dieser Funktionen ist auch ohne Registrierung abrufbar. Fiir den Upload
von Dateien sowie fiir die Benutzung der Simulationstools ist jedoch die Anmeldung mit einem Be-
nutzerkonto erforderlich. Die Registrierung eines neuen Benutzerkontos ist kostenlos und durch ein
CAPTCHAT vor Automatisierung geschiitzt.

nanoHUB wird seit 2002 vom Network for Computational Nanotechnology (NCN) entwickelt und
betrieben [15]. Das NCN ist ein Netzwerk US-amerikanischer Universitdten, in welchem die Pur-
due University als Betreiber von nanoHUB.org eine fithrende Rolle einnimmt. Andere Mitglieder des

® http://nanohub.org

5 https://nanohub.org/legal/license; http://archive.is/adGAU

" Completely Automated Public Turing test to tell Computers and Humans Apart - Sicherheitsmechanismus,
der erzwingen soll, dass ein Vorgang von einem Menschen ausgefiihrt wird.

13

http://nanohub.org
https://nanohub.org/legal/license
http://archive.is/adGAU

NCN wie die University of Illinois oder das Massachusetts Institute of Technology tragen zur Platt-
form hauptséchlich bei, indem sie Simulationstools, Prisentationen und Lehrmaterialien bereitstellen.
Geldgeber des NCN ist die National Science Foundation (NSF), welche die Plattform im Zeitraum von
2002 bis 2010 mit knapp 14 Mio. USD gefordert hat. Fiir den Zeitraum von 2013 bis voraussichtlich
2017 werden ca. weitere 14 Mio. USD zur Verfiigung stehen®.

Abbildung 11 zeigt die grobe Funktionsweise der Plattform: Benutzer interagieren mit dem System
hauptsichlich per Webbrowser, auf der nanoHUB.org Website werden die Inhalte {iber ein Content-
Management-System (CMS) prisentiert. Auch die Simulationstools werden im Webbrowser bedient.
Der Zugriff auf die Simulationstools erfolgt durch ein Java-Applet, welches einen VNC-Client imple-
mentiert. Das Applet stellt eine Verbindung zu einem virtuellen Desktop her, welcher auf den Rechnern
der Purdue-Universitéit oder deren Partnern ausgefiihrt wird. Fiir Berechnungen, die von den Simula-
tionstools durchgefiihrt werden, steht also die Kapazitit des entfernten Rechners zur Verfiigung. Bis
zu drei solcher VNC-Sitzungen lassen sich je Benutzer gleichzeitig starten. Eine begonnene Sitzung
kann pausiert und spater wiederaufgenommen werden.

|) N\
p N ' I Affiliate Grid Resources

nanoHUB.org
HTTP HUBzero
—’»
4— VNC Applet <\ VNC Per-User Virtual Environment
A User Web Browser
cMs Simulation Tool
isa X Session Linux
4 nanoFORGE > 0s
. Trac PMS VNC Server X Session
\ & Proxy Manager
Ny HTTP
» Subversion
Tool . < Repository User-Mapped File System
Developer SVN Client
- J _)
Legend
<«—>» Data or Message Flow A = B Arunning in B <—)p Protocol :

Abbildung 11. Aufbau der nanoHUB Plattform

Fiir jeden im System registrierten Benutzer wird serverseitig bei Bedarf ein isolierter, virtueller Li-
nux-Rechner angelegt, in dem der virtuelle Desktop lduft. In dessen virtuellen Dateisystem werden
auch Tool-Sitzungen abgespeichert und Simulationsergebnisse abgelegt. Die eingesetzte Virtualisie-
rungssoftware ist OpenVZ°. Benutzer kénnen Simulationstools zur Plattform beitragen, sie nehmen
dann die Rolle eines Tool-Entwicklers ein und erhalten Zugriff auf die nanoFORGE, einen gesonderten
Bereich der Plattform. Die nanoFORGE bietet Tool-Entwicklern Projektverwaltung via Trac!® sowie
Zugriff auf ein Subversion-Repository je Simulationstool.

HUBzero

nanoHUB.org basiert auf dem Softwarestack HUBzero [18]. Bei HUBzero handelt es sich um eine
wiederverwendbare Sammlung von Tools und Middleware, mit der sich eine Plattform wie nanoHUB

8 Zugehorige Forderungen der NSF:

— http://wuw.nsf.gov/awardsearch/showAward?AWD_ID=0228390; http://archive.is/W881N
— http://wuw.nsf.gov/awardsearch/showAward?AWD_ID=1227110; http://archive.is/2QQ1A

9 http://openvz.org
10 Web-basierte Software zur Projektverwaltung: http://trac.edgewall.org/

14

http://www.nsf.gov/awardsearch/showAward?AWD_ID=0228390
http://archive.is/W881N
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1227110
http://archive.is/2QQlA
http://openvz.org
http://trac.edgewall.org/

aufbauen und warten lidsst. Um eine HUBzero-basierte Plattform zu skalieren, wird eine Menge von
Rechnern (Nodes), auf denen die HUB-Software installiert ist, zu einem Cluster verbunden. Dazu teilt
ein Administrator dem System die Adressen bzw. Netzwerknamen dieser Rechner per Weboberflache
oder Kommandozeilenprogramm mit.

Zum Teil ist HUBzero eine Weiterentwicklung des Purdue University Network Computing Hub aus
dem Jahr 1996 [13]. Alle Komponenten, die in HUBzero zum Einsatz kommen, sind freie Software. In
Abbildung 12 ist zu sehen, wie diese Komponenten aufeinander aufbauen: Die Grundlage bildet das
Linux-Betriebssystem, eine Virtualisierungssoftware stellt die nétige Isolation zwischen verschiedenen
Benutzern und deren virtuellen Desktops her. Uber eine entsprechende Firewall-Konfiguration wird
sicherheitshalber verhindert, dass Simulationstools eingehende TCP/IP Verbindungen oder UDP-Pa-
kete empfangen koénnen. Eine Clustering-Komponente sorgt fiir die Synchronisierung verschiedener
HUBzero-Nodes und ermdglicht so die Skalierung des Systems, indem einfach die Software auf jedem
Rechner im Cluster installiert wird. Um die von jedem Benutzer verbrauchten Ressourcen wie Spei-
cherplatz und CPU-Zeit zu begrenzen, werden Quotas benutzt. Zur Ausfithrung von Simulationstools
und deren Bedienung im Webbrowser erzeugt das System X!!-Sessions und leitet sie per VNC an den
Browser weiter. Das Rappture-Framework ermdglicht hierbei die Definition von graphischen Oberfla-
chen fiir bestehende Kommandozeilen-Simulationsprogramme. Auf diesen Funktionen setzt schliefilich
ein Content-Management-System auf, welches auf dem Joomla-Framework basiert.

Content Management System

Clustering

) VNC Rappture

Job Scheduler File
Transfer
Load Balancer X Window System
uota Propagation
Q pag Quotas
Firewall

Usermode Virtualization

Linux Environment

Abbildung 12. HUBzero Software Stack

Neben nanoHUB existieren weitere Plattformen, die auf HUBzero aufbauen, z.B. pharmaHUB'? und
NEEShub'?. Bei HUBzero handelt es sich allerdings um eine reine Softwareldsung, d.h. die Ressourcen,
welche z.B. zur Ausfithrung der Simulationstools bendtigt werden, muss der Betreiber selbst bereit-
stellen. Gemeinniitzige Organisationen kénnen auf Anfrage direkt bei der Purdue University Hosting
sowie Training der Mitarbeiter erhalten!'*.

Rappture

Ein erwdhnenswertes Teilprojekt der nanoHUB /HUBzero-Plattform ist die Rapid Application Infra-
structure : ein Framework zur Kapselung von Programmen, die selbst keine graphische Benutzer-
schnittstelle haben. Rappture {ibernimmt die Generierung einer GUI, das Sammeln der zum Start
notigen Benutzereingaben, den Aufruf des Programms und die Darstellung der Ausgabe. Fiir jedes zu
kapselnde Programm legt der Entwickler hierfiir eine XML-Konfigurationsdatei tool.xml an, in der

1 Basis fiir graphische Oberflichen unter Linux

2 Plattform fiir Pharmatechnik: https://pharmahub.org/
13 Plattform fiir Erdbebentechnik: http://nees.org/

" http://hubzero.org/hosting /purdue

15

https://pharmahub.org/
http://nees.org/

u.a. die moglichen Ein- und Ausgaben des Programms beschrieben werden. Falls die Kommandozeilen-
schnittstelle zur Ubergabe der Benutzereingaben und der Programmausgabe nicht ausreicht, existiert
eine Rappture-API, die explizit aus dem betroffenen Programm heraus angesteuert werden kann. Das
erfordert natiirlich, dass der Entwickler Zugriff auf den Quellcode des gekapselten Programms hat.
Anwendungen, die auf Rappture aufbauen, kénnen auf nanoHUB.org und anderen HUBzero-basierten
Portalen mit wenig Aufwand installiert werden. Rappture ist das bevorzugte Entwicklungswerkzeug
fiir Simulationstools, das man auf nanoHUB.org findet (sieche Abbildung 13).

Home MyHUB Resources Members Explore About Support Need Help? @

ONLINE SIMULATION

FOR NANOTECHNOLOGY AU

Daniel Huss (hussdl)

Home > resources > Tools > Nano Heatflow > Session: 603400 “Nano Heatflow"

nanoHUB Edit Display Yiew Tools Macros Help

a a6F8 @nre B K<

706 x 382 54.2/245.4 Wb; 13/13 ms
T O | "y 710x500

Abbildung 13. Ausfilhrung eines Rappture-getriebenen Simulationstools auf nanoHUB.org

Integration mit nanoHUB

In den folgenden Abschnitten betrachten wir die gefundenen Integrationsansitze fiir nanoHUB.

Ausfiithrung von SimTech-Anwendungen auf nanoHUB.org

Was nanoHUB von anderen Plattformen unterscheidet, sind vor allem die serverseitig ausgefiihrten,
interaktiven Simulationstools, die per VNC bedient werden. Jeder registrierte Benutzer kann Projek-
te fiir neue Simulationstools anlegen, Quellcode und Bindrdateien hochladen und seine Tools verdf-
fentlichen. Es liegt daher nahe, zu priifen, inwiefern sich dieses Angebot nutzen lidsst, um SimTech-
Anwendungen auf nanoHUB auszufiihren.

Abbildung 14 zeigt den Ablauf einer neuen Tool-Registrierung: Um eigene Simulationstools auf na-
noHUB anzulegen, wird auf Anfrage in einem separaten Bereich (nanoFORGE) ein Subversion-Re-
pository sowie ein Trac-Projekt eingerichtet. Der Tool-Entwickler muss seinen Quellcode in dieses
Repository hochladen, unabhéngig davon, ob er sein Tool als Open-Source oder Closed-Source ver-
offentlichen mochte. Die Installation des Tools erfolgt ebenfalls manuell auf Anfrage. Ein nanoHUB-
Mitarbeiter priift dann den hochgeladenen Code und fiihrt den Build-Vorgang durch. Wenn es sich um
eine Rappture-Anwendung handelt, kann man davon ausgehen, dass keine besondere Dokumentation
fiir die Installation nétig ist. Ansonsten muss der Tool-Entwickler die notigen Schritte fiir den Build
im Trac Projekt-Wiki fiir den nanoHUB-Mitarbeiter vorher nachvollziehbar dokumentieren. Andert

16

Wartezeit

3

Benutzer nanoHUB Mitarbeiter

Registriere neues Tool

Lade Quellcode hoch «

v

Beantrage Installation Installaftlon und
Freigabe
Lauftest <
Andere Beantrage Veroffentliche
Quellcode Veroffentlichung Tool

\

Abbildung 14. Registrierung und Installation eines neuen Simulationstools

der Entwickler etwas am Tool-Quellcode, muss erneut die Installation beantragt werden. Ist der Ent-
wickler mit der Installation zufrieden, beantragt er die Veroffentlichung des Tools. Es kann immer nur
eine Version des Tools veroffentlicht sein.

Weil dieser Prozess eher trage ist, existiert fiir die Anwendungsentwicklung zusétzlich die Moglichkeit,
einen ,,Workspace* einzurichten. Dabei handelt es sich um einen kompletten, virtuellen Linux-Desktop
inklusive IDE, auf den man via VNC zugreift. Uber den Workspace hat der Entwickler Zugriff auf seine
Software und kann Lauftests durchfiihren, bevor das Tool von einem nanoHUB-Mitarbeiter installiert
wird. Dem gewthnlichen nanoHUB-Benutzer steht dieser Workspace allerdings nicht zur Verfiigung!s.

Um SimTech-Dienste und Anwendungen auf nanoHUB auszufiihren, muss der zuvor beschriebene
Tool-Registrierungsprozess mindestens einmal durchgefiihrt werden. Bei jeder Anderung muss aufer-
dem erneut die Installation und die Freigabe durch einen nanoHUB-Mitarbeiter angefordert werden.
Die Ausfiihrung von Serverdiensten und lange laufenden Programmen ist allerdings problematisch:

— Die Lebensdauer aller serverseitig ausgefiilhrten Programmen ist an die zugehorige VNC-Sitzung
gekoppelt. Wird die VNC-Sitzung im Browser beendet oder pausiert, stoppt auch die serverseitige
Ausfiithrung des Simulationstools.

— Die Architektur der Plattform ist darauf ausgerichtet, interaktive Programme auszufiihren.

— Eingehende Netzwerkverbindungen sind nicht moglich. Ob serverseitige Programme ausgehende
Verbindungen zum Internet herstellen konnen, ist unklar'® (siehe Abbildung 15).

— Die Verwendung der Plattform als Hoster fiir Web services ist mit hoher Wahrscheinlichkeit nicht
im Sinne der Betreiber und wiirde schnell unterbunden werden.

5 Quelle: https://nanohub. org/tools/workspace/
16 Eine Supportanfrage sowie eine 6ffentliche Frage auf der nanoHUB Website blieben unbeantwortet: https:
//nanohub. org/answers/question/1210

17

https://nanohub.org/tools/workspace/
https://nanohub.org/answers/question/1210
https://nanohub.org/answers/question/1210

Affiliate Grid Resources

HUBzero

Firewall

Per-User Virtual Environment

External Software

. v

SimTech Application hosted
on nanoHUB.org

¥ Linux

X Session (O
VNC Server X Session >

<>
& Proxy Manager

Web Browser

VNC Applet <

User-Mapped File System

Legend

<«—>» Data or Message Flow A » B Arunningin B <) Protocol

cacea’

Abbildung 15. Integrationsansatz: Ausfiihrung von SimTech-Anwendungen auf nanoHUB.org

Verwendung der interaktiven Simulationstools in Simulation Workflows

nanoHUB bietet etwa 260 Simulationstools fiir das Fachgebiet Nanotechnologie an. Andere HUBzero-
basierte Plattformen verwenden denselben Mechanismus, um Simulationstools fiir weitere Fachgebiete
zur Verfiigung zu stellen. Es ist denkbar, dass einige dieser bestehenden Simulationstools niitzlich
genug sind, um sie als Komponenten in Simulation Workflows einzusetzen. Die einzige Schnittstelle
zu den Simulationstools ist VNC, daher muss jede technische Realisierung fiir den Zugriff auf die
Simulationstools einen VNC-Client verwenden. Natiirlich soll der Aufruf eines Simulationstools aus
einem Simulation Workflow keine Interaktion des Wissenschaftlers mit dem Tool erfordern, sondern
automatisiert ablaufen. Um die Eingaben an das Tool abzusetzen, miissen also Tastatur- und Maus-
ereignisse simuliert werden, die Ausgabe muss per Texterkennung eingelesen werden, oder, sofern das
Tool es erméglicht, als Dateidownload gespeichert werden.

Ein Konzept fiir die technische Umsetzung wird in Abbildung 16 dargestellt: Simulation Workflows (1)
rufen in diesem Ansatz per BPEL-Invoke (2) einen Web service, der fiir die Ausfithrung von Simulati-
onstools beliebiger HUBzero-basierter Plattformen zustidndig ist. Dieser neue Web service besteht im
Wesentlichen aus zwei Komponenten (3): Eine VNC-Automatisierungskomponente muss mithilfe einer
Tool-spezifischen Beschreibungsdatei in der Lage sein, fiir ein bestimmtes Simulationstool die ndtigen
Eingaben zu machen und die Ausgabe des Simulationstools abzugreifen. Die Beschreibungsdatei muss
die visuellen Positionen aller Eingabefelder enthalten, ggf. in Abhingigkeit der Fensterproportionen.
Um einen giiltigen Kontext fiir die VNC-Sitzung zu schaffen, wird eine zweite Komponente benétigt,
die sich per HTTP-Client auf der HUB-Website einloggt. Zusétzlich zu diesen beiden Mechanismen
muss evtl. ein Load Balancer oder eine Warteschlange zum Einsatz kommen, da pro eingeloggtem
Benutzer nur eine begrenzte Zahl von VNC-Sitzungen gleichzeitig aktiv sein darf.

Nutzung der Datei-Ressourcen

Jeder nanoHUB-Benutzer erhilt 1 GiB Speicher fiir die Veroffentlichung von Dateien wie Simulati-
onsergebnissen oder Lehrmaterial. Fiir die Tool-Entwicklung stehen auflerdem Subversion-Repositories
zur Verfligung, in denen sich Dokumente versioniert einpflegen lassen. Prinzipiell 14sst sich dieses An-
gebot nutzen, um in Simulation Workflows bestehende Datenséitze der Plattform abzurufen oder z.B.
Simulationsergebnisse auf der Plattform zu speichern und mit anderen Benutzern zu teilen.

18

Eclipse JEE Apache Tomcat

ODE Process Management

ﬁ{ Apache ODE-PGF

Apache

SimTech BPEL Designer ActiveMQ

Other Plugins...

Tool Input
Parameters

VNC Automation
N Component
Tool Output

Login / Session
Manager

nanoHUB.org

CMS

Legend

<«—> Data or Message Flow A -} B ArunninginB <) Protocol

Simulation
Workflow

[nanoHUB]
Compute
Eigenstates

<bpel:invoke>

Affiliate Grid Resources

HUBzero

Per-User Virtual Environment

Eigenstate Computation Tool

¥

Linux
X ion
Sessio) — os
\ VNC Server X Session
>
& Proxy Manager

User-Mapped File System

Abbildung 16. Integrationsansatz: Verwendung der interaktiven Simulationstools in Simulation Workflows

19

Fiir den lesenden und schreiben Zugriff auf Dateien bietet nanoHUB zwar WebDAV'7 und SFTP'®
als zusétzliche Schnittstellen an, im Versuch waren diese aber nicht erreichbar. Eine Integrations-
16sung miisste daher wie in Abbildung 17 dargestellt per HTTP die Anmeldung auf der Website
automatisieren und den Dateitransfer ebenfalls per HT'TP vornehmen. Problematisch fiir diesen In-
tegrationsansatz ist jedoch, dass jeder Upload eines regulidren nanoHUB-Benutzers erst von einem
nanoHUB-Mitarbeiter manuell freigegeben werden muss.

Eclipse JEE Apache Tomcat | .7 a Simulation
sef” Workflow

{ Apache ODE-PGF] @ :

[ODE Process Management j

!

Apache
[SimTech BPEL Designer ActiveMQ [Other Software... jj \ . Pﬁ:;::l::“
““ Data

[Other Plugins... j) ies . i

Xis .

/ ~\ : J
! Datastore Service —/®
- e ss s <bpel:invoke>

, S EEEEEEE—
HUB module nanoHUB.org

. Subversion
“1 Repository

HTTP Client

Login / Session
Manager

\; cMS

Legend

<—>» Data or Message Flow

Abbildung 17. Integrationsansatz: Nutzung der Datei-Ressourcen

3.2 myExperiment

myExperiment ist eine Web-Plattform zur gemeinsamen Nutzung und Verteilung von wissenschaft-
lichen Workflows und der dazugehorigen Ressourcen. Die Plattform ist ein Projekt der eScience-Or-
ganisation myGrid'® und wird hauptsichlich von der University of Southampton und der University
of Manchester entwickelt und betrieben. Haupt-Geldgeber ist der Engineering and Physical Sciences
Research Council (EPSRC). Seit 2001 wurden die myGrid-Projekte mit etwa 6,5 Mio. GBP gefordert,
im Januar 2014 lduft der aktuelle Zuschuss aus?°. Das Hauptziel des Projekts ist es, den Benutzern zu
ermoglichen, ihre Workflows aktiv mit anderen Wissenschaftlern zu teilen. myExperiment beschreibt

7 Web Distributed Authoring and Versioning: Erweiterung von HT'TP fiir Dateizugriffe.

'8 Secure File Transfer Protocol: Protokoll zur verschliisselten Ubertragung von Dateien iiber ein Netzwerk.
19 http://www.mygrid.org.uk/

20 Zugehorige Forderungen des EPSRC:

— http://gow.epsrc.ac.uk/NGBOViewGrant .aspx?GrantRef=EP/G026238/1; http://archive.is/PxH8G
— http://gow.epsrc.ac.uk/NGBOViewGrant .aspx?GrantRef=EP/D044324/1; http://archive.is/3HLgp
— http://gow.epsrc.ac.uk/NGBOViewGrant .aspx?GrantRef=GR/R67743/01; http://archive.is/iUtIP

20

http://www.mygrid.org.uk/
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G026238/1
http://archive.is/PxH8G
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/D044324/1
http://archive.is/3HLqp
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=GR/R67743/01
http://archive.is/iUtIP

sich selbst als virtuelle Forschungsumgebung, konkret handelt es sich um ein Repository fiir wissen-
schaftliche Workflows und sonstige Dateien. Man findet aufserdem grundlegende Social Networking
Funktionen wie Benutzerprofile, Kontaktlisten, Gruppen und Nachrichtenversand. Des Weiteren bie-
tet myExperiment eine Sicht auf die Daten des Service-Katalogs BioCatalogue 2!, in dem Web services
zu verschiedenen Themenbereichen der Biowissenschaften registriert sind. [5]

Ein herausragendes Merkmal der Plattform ist die automatische Erkennung und Aufbereitung von
Metadaten beim Upload von Workflows. Fiir eine Reihe von Workflow-Sprachen generiert die Website
automatisch Vorschau-Diagramme und Statistiken, z.B. iiber die verwendeten Workflow-Aktivitaten.
Unter den unterstiitzten Workflow-Sprachen befinden sich auch Taverna 1 und Taverna 2 Workflows,
BPEL allerdings nicht?2.

Die Funktionen der Website stehen zum grofsen Teil auch {iber eine HTTP-Schnittstelle zur Verfii-
gung. Der Lesezugriff auf Ressourcen der Plattform ist vollstindig implementiert. Eine detaillierte
und aktuelle Auflistung der implementierten Funktionen befindet sich im myExperiment Entwickler-
Wiki??. Die Ruby on Rails Webanwendung hinter myExperiment ist freie Software unter der BSD-
Lizenz und kann prinzipiell von jedermann in Betrieb genommen werden. Im Rahmen dieser Arbeit
wurde aufler http://www.myexperiment.org allerdings kein weiterer ernsthafter Betreiber entdeckt.

Integration mit myExperiment

Die Moglichkeiten zur Integration mit myExperiment sind etwas eingeschrinkt, da myExperiment
Workflow-Modelle lediglich speichert, versioniert und indexiert, aber keine Ausfithrung der hochge-
ladenen Workflows ermdglicht. Das Workflow-Repository kénnte dennoch in die SimTech-Modellie-
rungsumgebung integriert werden, auch wenn keine Metadaten-Erkennung fiir BPEL-Workflows zur
Verfiigung steht. Des Weiteren sind die Nutzung der Datei-Ressourcen und des Service-Katalogs denk-
bare Integrationsansitze.

Einbindung des Workflow-Repositories

Wird das Workflow Repository in das SimTech Modeling Tool integriert, sind mehrere Anwendungs-
fille denkbar. Zum einen kann der Benutzer lokal gespeicherte Workflows mit dem myExperiment
Repository synchronisieren und versionieren. Zum anderen lassen sich Taverna Workflows anderer
myExperiment-Benutzer auffinden und als Sub-Prozess aufrufen, falls Taverna Workflows ebenfalls
integriert werden. Diese Funktionen miissten mit einem neuen Eclipse-Plugin realisiert werden, wel-
ches mit der myExperiment HTTP- API oder mit der Web-Oberflache interagiert.

Nutzung der Datei-Ressourcen

Wie auch bei nanoHUB (siehe Abschnitt 3.1) steht es jedem Benutzer der Plattform frei, beliebige
Dateien hochzuladen. Im Unterschied zu nanoHUB findet auf myExperiment jedoch keine manuelle
Freigabe der hochgeladenen Daten statt und die technische Realisierung wird durch die vorhandene
HTTP-API etwas vereinfacht. myExperiment behélt sich vor, Kopien aller hochgeladenen Daten zu
erstellen.

Nutzung des Service-Katalogs

Der Service-Katalog BioCatalogue kann in das SimTech Modeling Tool integriert werden, um dem
Modellierer wissenschaftlicher Workflows eine durchsuchbare Auswahl von Web services anzubieten.
Niitzliche Dienste konnen dann z.B. per Drag&Drop direkt in ein Workflow-Modell eingefiigt werden.
Die entsprechenden BPEL-Fragmente, z.B. invoke-Aktivitdten, werden automatisch erzeugt. Um dies
zu realisieren, miissten ein oder mehrere Eclipse-Plugins entwickelt werden, die Suchanfragen des

2! http://biocatalogue.org
22 Liste der unterstiitzen Typen: http://www.myexperiment.org/content_types; http://archive.is/Qjpx7
%3 http://wiki.myexperiment.org/index.php/Developer:API; http://archive.is/a19¥m

21

http://www.myexperiment.org
http://biocatalogue.org
http://www.myexperiment.org/content_types
http://archive.is/Qjpx7
http://wiki.myexperiment.org/index.php/Developer:API
http://archive.is/a19Ym

Modellierers an den Service-Katalog weiterleiten, das Suchergebnis auf geeignete Weise présentieren
und bei Bedarf BPEL-Fragmente fiir den Aufruf der Web services erzeugen.

3.3 Taverna

Taverna ist ein Workflow-Management-System mit einer proprietdren Workflow-Beschreibungssprache
[26]. Wie myExperiment ist auch Taverna ein Projekt der eScience-Organisation myGrid. Das Projekt
hat zwar enge Verbindungen zu den Biowissenschaften, dennoch sind Taverna-Workflows universell
einsetzbar und nicht an eine bestimmte Doméne gebunden [20]. In dieser Arbeit betrachten wir das
Release 2.4, was in der ersten Hélfte 2013 der aktuelle Stand war. Taverna ist vollstdndig in Java
geschrieben und ist freie Software unter der GNU Lesser General Public License 2.1.

Abbildung 18 zeigt die Hauptbestandteile der Taverna-Softwaresammlung. Sie besteht aus einem Mo-
deling Tool, in dem auch Workflows ausgefiihrt werden kénnen und aus zwei separaten Workflow-
Ausfiihrungsumgebungen. In den folgenden Abschnitten werden das zugrundeliegende Workflow Me-
tamodell und die einzelnen Softwarekomponenten kurz beschrieben.

Taverna 2.4

/, \\

) .

W, Workflow Engine Core !
(e i
i Services (Activity Implementations) 1
]]
i e Beanshell e REST Service e XPath e Spreadsheet import !
i e SOAP Service e R-Shell e Data Conversion e Local Tool Execution !
i :
| Reference Provenance . :
| Workflow Metamodel Raven Security |
i AP AP |
]]
]
- mmmmms Z bttt A mTTTTmmmsmsmmmmmmm Z S !

i «use»

Workbench
Apache - -
Workfl Inst T t Workflow Execution Workflow Execution
orktlow Ins anc'e om(-:a Monitor Result View
Management Service Container
7'y [Graphical Workflow Designer]
myExperiment .
SOAP/HTTP «use» { Integration] { Service Catalogue]

Command Line Interface

Command Line] [Workflow Engine]

Environment |I/O

Legend

«use»

<) Protocol AﬂB A hosted on B === Dependency §

Abbildung 18. Hauptbestandteile des Taverna 2.4 WfMS

Ein Taverna 2 Workflow ist ein gerichteter, azyklischer Graph, dessen Knoten Verarbeitungseinheiten
(processors) sind. Jede Verarbeitungseinheit wandelt eine Menge von Eingaben in eine Menge von Aus-
gaben um. Es gibt zwei Kantentypen: einen fiir den Datenfluss zwischen den Verarbeitungseinheiten
und einen weiteren fiir den Kontrollfluss. Den Kontrollfluss kann, muss man aber nicht modellieren, weil
ein impliziter Kontrollfluss aus dem Datenfluss hervorgeht. Die Orientierung am Datenfluss ermdglicht
einen relativ effizienten Umgang mit Datenstromen (siche Abschnitt Services) sowie die automatische
Parallelisierung des Kontrollflusses. Abbildung 19 zeigt die graphische Darstellung eines einfachen

22

Taverna-Workflows, bei dem der Kontrollfluss durch eine explizite Kontrollfluss-Kante eingeschriankt
wird. Die Kante stellt eine Kausalordnung zwischen den verbundenen Verarbeitungseinheiten her.

* Workflow output ports

Schritt_3 Schritt_4

- Workflow input ports : outl | in1

v
: D - | Schritt_1 Schritt_2 in | out2 in2 | out =E Ausgabe1 :|
:) [| out! [int out3 in3 REST Service : :
: Eingabe > in : out : :
: : out2 » in2 query | responseBody (B Ausgabe2 :

........................ safe status

Legende

— Datenfluss ——@ Kontrollfluss]

Abbildung 19. Einfacher Taverna-Workflow mit einer expliziten Kontrollfluss-Kante

Das Taverna Workflow Metamodell kennt drei Datenstrukturen: Skalare vom Typ String oder byte[],
Fehlerdokumente und Listen. Listen kénnen alle Datentypen enthalten und bis zu einer Tiefe von 100
geschachtelt werden. Im Gegensatz zu BPEL 2.0 bietet das Taverna Metamodell keine blockbasierten
Programmierstrukturen. For-Schleifen miissen nicht explizit modelliert werden, sondern kénnen emu-
liert werden, indem ein ausgehender Listen-Datenfluss an eine Verarbeitungseinheit angelegt wird, die
als Eingabe Skalare erwartet. Repeat-Until-Schleifen lassen sich iiber einen gesonderten Mechanismus
implementieren, bei dem ein verschachtelter Workflow so lange wiederholt wird, bis eine bestimmte
Bedingung eintritt.

Workflow Engine

Der Kern des Taverna WIMS umfasst knapp 40 Maven-Projekte. Die Artefakte, welche aus diesen
Projekten hervorgehen, ergeben aber noch keine lauffihige Software. Es handelt sich um Libraries,
auf denen eine konkrete Ausfilhrungsumgebung wie der Taverna Server aufbauen kann. Aus diesem
Grund ist die Workflow Engine in Abbildung 18 zur Unterscheidung von lauffihigen Softwareproduk-
ten mit einer gestrichelten Linie dargestellt. Zum Kern gehoért auch das XML-basierte Exportformat
fiir Taverna 2 Workflows, welches die Dateierweiterung t2flow trigt. Version 1 der Taverna Engine
verwendet mit SCUFL ein anderes Workflow Metamodell und Exportformat. Im Folgenden ist mit
der Bezeichnung ,,Taverna Workflow* immer t2flow gemeint.

Services Workflow-Aktivitdten heifen im Taverna-Vokabular Services. Ein Service ist eine Verar-
beitungseinheit und hat somit 0..n Eingaben und 0..m Ausgaben. Verschachtelte Workflows sowie
Aktionen zur Konvertierung, Aufteilung oder Zusammenfithrung von Datenstreams sind ebenfalls
Verarbeitungseinheiten, aber keine Services. Taverna erméglicht Streaming der Ein- und Ausgaben
zwischen Verarbeitungseinheiten. Ein Service, welcher von der Ausgabe eines anderen Services ab-
héngt, muss daher nicht warten, bis die vorherige Berechnung komplett abgeschlossen ist, sondern
kann einen eingehenden Datenstrom stiickchenweise verarbeiten, wie ihn der vorgeschaltete Service
produziert. So entstehen innerhalb eines Taverna Workflows automatisch Daten-Pipelines. Allerdings
unterstiitzen nicht alle Service-Typen Streaming.

Die folgenden Service-Implementierungen stehen jedem Taverna Workflow zur Verfiigung:

— Ausfithrung eines Beanshell-Skripts. Beanshell ist eine Skriptsprache mit vereinfachter Java-Syn-
tax. Der Skript-Code wird in das Workflow Modell eingebettet. Pipelining der Ein- und Ausgaben
von Beanshell-Skripten ist in Version 2.4 nicht moglich?4.

— Web service Aufruf per SOAP/HTTP anhand einer WSDL-Datei
— Aufruf von HTTP-Schnittstellen

24 Offene Aufgabe fiir Taverna 3: http://dev.mygrid.org.uk/issues/browse/T3-87; http://archive.is/
VciaQ

23

http://dev.mygrid.org.uk/issues/browse/T3-87
http://archive.is/VcU9Q
http://archive.is/VcU9Q

— Statistische Berechnungen und Grafiken per R-Shell?
— Ausfithrung von XPath-Queries

— Ausfithrung lokaler Programme per Kommandozeile
— Import von Kalkulationstabellen

Weitere Service-Implementierungen lassen sich auf drei Arten realisieren: In der einfachsten Variante
kann iiber den Beanshell-Service Java-Code aus einer JAR-Datei ausgefiihrt werden. Dazu muss die
JAR-Datei zusammen mit dem Workflow ausgeliefert werden. Eine weitere Moglichkeit ist die Ver-
wendung des API Consumer Tools 2%, mit dem sich Teile einer Java-API als Service abbilden lassen.
Das Tool erstellt eine XML-Datei, welche in der Taverna Workbench importiert werden kann. Auch
bei dieser Variante miissen die gerufenen Java-Klassen und deren Abhéngigkeiten fiir die Ziel-Ausfiih-
rungsumgebung verfiigbar gemacht werden. Die dritte und aufwéndigste Moglichkeit ist die Erstellung
eines Taverna-Plugins, das einen neuen Service-Typ implementiert.

Reference & Provenance APls Die Workflow-Engine behandelt in ihrer Java-API alle Datensétze
zundchst als Referenzen. Um an die dahinterliegenden Datenstreams zu gelangen, muss eine Referenz
iiber die Reference API aufgelost werden. Der konkrete Speicherort der Daten ist implementierungsab-
hingig: die Daten kénnen lokal im Arbeitsspeicher oder in einer entfernten Datenbank abgelegt sein.
Fiir Daten, die von einem Taverna Workflow produziert werden, kann die Engine iiber die Provenance
APT automatisch Herkunftsnachweise erzeugen und diese separat in einer Datenbank speichern.

Raven Fest in die Workflow Engine integriert ist ein eigener Java Classloading-Mechanismus, der
sich an Maven-Artefakten orientiert. Raven setzt den Java Classpath-Mechanismus teilweise aufer
Kraft und ladt Klassen stattdessen aus einem Maven-Repository. Fiir jedes registrierte Maven-Ar-
tefakt wird ein eigener Classloader instantiiert, welcher alle Klassen aus der transitiven Hiille der
Maven-Abhéangigkeiten des Artefakts laden kann. Somit wird es moglich, verschiedene Versionen von
Softwarebibliotheken gleichzeitig zu nutzen.

Server

Der Taverna Server ist eine Java-Webanwendung zur Ausfiihrung von Taverna Workflows, auf die
entfernt iiber eine HTTP- oder eine SOAP Web service Schnittstelle zugegriffen werden kann. Uber
diese Schnittstelle werden Workflow-Instanzen sowie deren Ein- und Ausgabedaten verwaltet, und die
Konfiguration des Servers gedndert. Anders als bei der Apache ODE wird beim Taverna Server keine
Menge von installierten Workflow-Modellen verwaltet. Der Taverna Server nimmt bei jedem Start
einer neuen Workflow-Instanz das zugehdrige Workflow-Modell als Parameter der submitWorkflow
Operation entgegen und ordnet das Modell ausschliefslich der gestarteten Instanz zu. Jede gestartete
Workflow-Instanz erhélt eine eindeutige Kennung, iiber die sich nach dem Start u.a. das dazugehorige
Workflow-Modell und die erzeugten Ausgaben abrufen lassen. Der Server fiihrt jede Workflow-Instanz
in einer eigenen Java Virtual Machine (JVM) aus, indem er einen neuen Betriebssystem-Prozess
abzweigt.

Command Line Interface

Neben dem Server existiert mit der Kommandozeilen-Schnittstelle eine einfachere Moglichkeit, Taverna
Workflows auszufiihren. Auch hier entsteht je Workflow-Instanz ein neuer Betriebssystem-Prozess. Die
Ein- und Ausgabedaten werden als Dateien iibergeben, wobei man sehr kleine Eingaben auch direkt
als Kommandozeilenargument {ibergeben kann.

25 Softwareumgebung fiir statistische Berechnungen: http://www.r-project.org/
26 nttp://www.taverna.org.uk/documentation/taverna-2-x/api- consumer-tool/

24

http://www.r-project.org/
http://www.taverna.org.uk/documentation/taverna-2-x/api-consumer-tool/

Workbench

Die Taverna Workbench besteht im Wesentlichen aus einem graphischen Workflow Designer, einer
Ansicht zur Ausfilhrung von Workflows und zur Auswertung der Ergebnisse, Integration mit myEx-
periment und dem Servicekatalog BioCatalogue.org.

Der Servicekatalog und die myExperiment-Integration unterstiitzen den Anwender bei der Auswahl
geeigneter Workflow-Aktivitdten und enthalten hauptsichlich Web services fiir Aufgaben aus den
Biowissenschaften. Die gefundenen Services lassen sich direkt als neue Aktivitdt in den aktuell be-
arbeiteten Workflow einfiigen. Workflows werden im Workflow Designer per Drag&Drop modelliert,

das Layout des Datenfluss-Graphen (sieche Abbildung 20) wird dabei stets automatisch berechnet und
l&sst sich nicht vom Benutzer &ndern.

(& Taverna Workbench 2.4.0 o [m]]
Fle Edit Insert View Wiorkflows Advanced Help

FeoxXH P AvaE [{#es+hE TS

| Desion [Results | [myExperiment | €} Service Catalogue
rvice panel Example_workflow_for_REST_and_XPath_activities from C:\de...
Fitter: [Clear o &, —Q| I@ (o) | T M | &
Import new services =
| = Avaizble services = e R I
) Service templates - Workflow input ports .
[5) Local services B -
=) Biomart @ http: {/www.biomart.org biomart/mar tservice | | N
(=) WSDL @ http: feutis.ncbi.nim.nih. gov/entrezfeutis/soap/eutis. wsdl .
Name Location A -
Workflow explorer | Details | Validation report | S .
%: Example_workflow_for_REST_and_XPath_activities = . N
5= Workflow input perts Y A I I S,
i A Name_Of Location
= Workflow output ports location o
|- W output
i Services LookupWOEID_REST_Service
. B4 Extract WOEID_¥Path_Service = =
i i @ xml_text
-, nodslst | responseBody status
-8 nodelistAsxML
! - es; LookupWOEID_REST _Service
i i@ location | |
@, responsetody xml_text o
.8 stans =l| |l | L

Abbildung 20. Taverna Workflow Designer

Wird ein Workflow in der Workbench ausgefiihrt, erhélt man eine graphische Darstellung des Aus-
fithrungsfortschritts. Durch Farbung des Graphen werden ausgefithrte Aktivitdten, noch nicht aus-
gefithrte Aktivitdten und Fehler bei der Ausfiihrung unterschieden. Noch wahrend der Ausfithrung
koénnen Teilausgaben untersucht werden, sobald sie vorliegen. Bisher unterstiitzt die Workbench nur
die Ausfithrung auf dem lokalen Rechner, es gibt keine Integration mit dem Taverna Server.

Zukiinftige Entwicklung

In der zweiten Hélfte des Jahres 2013 soll die erste Alphaversion?” von Taverna 3.0 erscheinen, in
der es zwei signifikante Anderungen geben wird: Zum einen wird SCUFL22?® t2flow als Workflow-

Beschreibungssprache ersetzen, zum anderen wird anstelle von Raven in Zukunft das OSGi-Framework
als Modulsystem eingesetzt.

Integration von Taverna

Taverna ist im Gegensatz zu den anderen untersuchten Plattformen eine reine Softwareplattform
ohne dazugehdrige Infrastruktur. Die Integration von Taverna in die SimTech Workflow-Umgebung
ist daher eine (nicht weniger spannende) Riickfall-Losung, falls aus der Untersuchung von nanoHUB
und myExperiment keine attraktiveren Integrationsansitze hervorgehen.

7 Taverna Roadmap: http://www.taverna.org.uk/introduction /roadmap/;http://archive.is/76xdX
%8 http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2+language

25

http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2+language

Taverna Workflows als Bestandteil von BPEL-Prozessen

Bei diesem Integrationsansatz wird ermdoglicht, beliebige Taverna-Workflows als Bestandteil in die
BPEL-basierten Simulation Workflows einzubinden (siehe Abbildung 21). Es gibt verschiedene Mog-
lichkeiten, diesen Ansatz technisch zu realisieren, z.B. durch Integration des Taverna Servers, durch
Generierung von Wrapper Web services oder durch Erweiterung der Apache ODE. Wir werden diese
Herangehensweisen in Kapitel 4.2 im Detail betrachten. Alle Losungen, die Web service einsetzen,
miissen lange laufende Taverna-Workflows und somit die asynchrone Ausfithrung mittels Callback un-
terstiitzen. Die Fahigkeit, Taverna-Workflows in Simulation Workflows einzusetzen, ist Voraussetzung
fiir alle weiteren Integrationsansitze, die im Folgenden genannt werden.

rSlmulatlon Workflow (BPEL) . Taverna Workflow

,,,,,, A “

Apache Tomcat H Workflow input ports

[Apache ODE-PGF J
[Other Software.. jj

Axis2

Compute Cell
State

" (S

Web Services... H

\ J

Abbildung 21. Integrationsansatz: Taverna Workflows als als Bestandteil von BPEL-Prozessen

Verwaltung von Taverna Server-Installationen im SimTech Modeling Tool

Falls der Taverna Server eingesetzt wird, um Taverna Workflows als Bestandteil von BPEL-Prozes-
sen auszufiihren, kann das SimTech Modeling Tool um einen neuen Adapter fiir den Taverna Server
erweitert werden (siche Abbildung 22). Mit diesem Server-Adapter konnen lokale oder entfernte In-
stallationen des Taverna Servers verwaltet werden. Denkbare Anwendungsfille sind z.B. Uberwachung
und manuelle Terminierung laufender Workflow-Instanzen oder die Verwaltung der Serverkonfigurati-
on. Die Umsetzung dieses Integrationsansatzes wiirde analog zur ODE-Integration als Eclipse-Plugin
erfolgen.

Eingliederung der Taverna Workbench in den SimTech BPEL Designer

Um in BPEL eingebettete Taverna-Workflows direkt aus dem SimTech Modeling Tool heraus zu editie-
ren, konnen Teile der Taverna Workbench in den BPEL Designer integriert werden (siche Abbildung
23). Dieser Integrationsansatz ldsst sich z.B. realisieren, indem die betroffenen Workbench-Artefakte
als Eclipse-Plugins zur Verfiigung gestellt werden. Alternativ dazu kann die Workbench auch weiterhin
als eigensténdige Anwendung ausgefiihrt werden: Der bestehende Workbench-Quellcode muss dann so
erweitert werden, dass Inter-Prozess-Kommunikation mit dem SimTech Modeling Tool méglich wird.

26

Taverna Workflow Instances

-"-r A
Eclipse JEE Apache Tomcat | .-~
’ N (all)
: Taverna Process L B
H R
: Management E‘ ,L Taverna Server
ODE Process Management > Apache ODE-PGF] “.‘
Apache } B
SimTech BPEL Designer ActiveMQ Other Software... Y : 1
Outputd || Output! OutvulZJV
(Other Plugins...) - IR e)
Axis2 L Ouipu@ [T OulputT [Oup2 | 7
— | T)
‘ Web Services...
N
<«—>» Data or Message Flow E

Abbildung 22. Integrationsansatz: Verwaltung von Taverna Server-Installationen aus Eclipse

rEcIipse JEE Apache Tomcat

[Other Plugins...]J [Other Software...

[ODE Process Managementj [
l] Apache)
SimTech BPEL Designer A
¢ ActiveMQ 4{ Taverna Server

J

Apache ODE-PGF

J

Taverna Process i R

: - Axis2

: Management !

N e e cccccccccccccccccccccccaam” ’ S —

i Web Services...

g -) y,

~»! Taverna Workflow Designer H

<«—>» Data or Message Flow

Abbildung 23. Integrationsansatz: Eingliederung der Taverna Workbench in den SimTech BPEL Designer

27

4 Wahl einer Integrationsaufgabe

Da im zeitlichen Rahmen dieser Diplomarbeit nicht alle Integrationsansitze aus den Kapiteln 3.1,
3.3 und 3.2 verwirklicht werden kénnen und auch nicht jeder denkbare Integrationsansatz unbedingt
sinnvoll ist, muss eine Auswahl getroffen werden. Dazu ermitteln wir zunéchst die Kriterien, nach
denen wir bewerten, wie attraktiv und wie machbar die einzelnen Integrationsansitze sind. Nachdem
wir anhand dieser Kriterien eine Auswahl getroffen haben, werden wir in Kapitel 5 die genauen
Anforderungen an die Integrationslésung ermitteln, verschiedene Losungsalternativen vorstellen, und
die Implementierung einer Losung vorstellen.

4.1 Auswahlkriterien

Die Integrationsansétze werden im Folgenden nicht anhand einer Ordinalskala, sondern eher in Form
von Gutachten miteinander verglichen. Entsprechend sind die Kriterien auch keine objektiv quanti-
fizierbaren Einheiten, sondern von subjektiver Natur. Sie lassen sich in die Kategorien Nutzen und
Machbarkeit aufteilen.

Nutzen

Anhand dieser Kriterien bewerten wir die Niitzlichkeit und damit die Attraktivitit eines Integrations-
ansatzes getrennt von der tatsichlichen Machbarkeit der Integration.

— Nutzung von externer Infrastruktur: Von besonders grofem Interesse sind alle Ansétze, mit denen
sich bestehende SimTech-Infrastruktur auf die Rechner der Plattform auslagern lassen.

— Nihe zum Thema: Alle Integrationsansitze sollten einen klaren Bezug zur bestehenden Workflow-
Umgebung erkennen lassen.

— Neuartigkeit: Der ausgewidhlte Ansatz sollte entweder etwas ermoglichen, was vorher in der
SimTech Workflow-Umgebung nicht mdoglich war oder erlauben, dass etwas radikal anders ge-
macht wird als zuvor.

— Ersetzbarkeit: Ein attraktiver Integrationsansatz nutzt die herausragenden Merkmale der eScience-
Plattform und ist nicht leicht durch die Dienste eines spezialisierteren Anbieters zu ersetzen.

— Zweckentfremdung: Die integrierte Plattform sollte auf die vom Betreiber vorgesehene Weise be-
nutzt werden und eine Integrationslosung sollte keine technischen Mafnahmen umgehen, die eine
Zweckentfremdung verhindern sollen.

Machbarkeit

Anhand dieser Kriterien soll versucht werden, abzuschétzen, ob die Planung und Konstruktion einer
Integrationslésung innerhalb des Zeitfensters dieser Diplomarbeit zu machen ist. Zundchst muss die
Komplezitit der Aufgabe eingeschétzt werden. Eine technisch sehr anspruchsvolle Aufgabe bedeutet
ein hoheres Risiko, dass der Aufwand unterschétzt wird oder unvorhergesehene Probleme bei der
Konstruktion auftreten. Potenzielle technische Probleme sollen bereits im Vorfeld erkannt werden und
die Wahl der Aufgabe sollte eher risikoavers gesteuert sein, da es im Zeitplan dieser Arbeit wenig
Spielraum fiir Anderungen gibt. Der geschiitzte Zeitaufwand sollte im Bereich von 160 Stunden liegen,
damit die Aufgabe rechtzeitig abgeschlossen werden kann.

4.2 Analyse und Bewertung

Die Ansitze aus Kapitel 3 werden an dieser Stelle auf Eignung und Machbarkeit untersucht.

29

Ausfiithrung von SimTech-Anwendungen auf nanoHUB.org

Auf den ersten Blick scheint dieser Ansatz vielversprechend, aber in der Untersuchung hat sich ge-
zeigt, dass die gewiinschte Ausfithrung von Serverdiensten sich mit nanoHUB nicht umsetzen lasst.
Der manuelle Freischaltprozess fiir neue Simulationstools ist zwar problematisch, aber kein KO-Krite-
rium. Entscheidend sind vielmehr die Kopplung der Ausfiihrung von Simulationstools an eine VNC-
Sitzung sowie die Erwartung der Plattform-Betreiber, dass interaktive Software aufgespielt wird. Ein-
zig das SimTech Modeling Tool kénnte auf nanoHUB ausgefiihrt werden, wenn auch die Bedienung
einer Eclipse-Anwendung im Browserfenster etwas unangenehm ist. Auf die Interaktion mit einer
ODE-Instanz muss aufgrund der isolierten Ausfithrungsumgebung aller Simulationstools verzichtet
werden, ebenso auf eingehende und moglicherweise auf ausgehende Netzwerkverbindungen. Es ist zu-
dem sehr fraglich, ob die Installation einer kompletten Eclipse-Plattform genehmigt werden wiirde,
weil sich deren Ressourcenverbrauchsprofil von den bestehenden Simulationstools sehr unterscheidet.
Ob fiir Simulationstools iiberhaupt eine JVM zur Verfiigung steht, ist unklar. Im Versuch wurde die
Installation einer einfachen Java-Anwendung mit Swing-GUI verweigert. Aus den genannten Griinden
erscheint deshalb auch die Auslagerung des Modeling Tools unattraktiv.

Verwendung der interaktiven Simulationstools in Simulation Workflows

Die Simulationstools sind zwar das herausragende Merkmal der Plattform, jedoch besteht an der
Verwendung der bestehenden Tools nur geringes Interesse. Viele der angebotenen Tools sind lediglich
GUI-Wrapper um frei verfiighare Kommandozeilenprogramme. Solche Software sollte besser iiber WS-
I]22] anstatt iiber VNC eingebunden werden. Die Ansteuerung der Simulationstools iiber VNC ist
zudem sehr aufwiindig, technisch nicht elegant und unzuverlissig: Kleinste Anderungen der Tool-
Oberflidche konnen die VNC-Automatisierung zum Erliegen bringen. Im gegebenen Zeitrahmen wére
die Konstruktion vermutlich nicht machbar, da der geschitzte Aufwand bei mehr als 320 Stunden
liegt.

Nutzung der Datei-Ressourcen

Dieser Ansatz scheitert an den Kriterien Neuartigkeit und Ersetzbarkeit: Fiir Datei-Hosting sind
andere Dienste besser geeignet, auch wenn dadurch Kosten verursacht werden. Die manuelle Freigabe
aller Uploads auf nanoHUB macht den Ansatz ebenfalls unattraktiv. Obwohl die technische Umsetzung
mangels einer geeigneten Schnittstelle unangemessen aufwindig wére, lige sie mit weniger als 160
Stunden dennoch innerhalb des vorgegebenen Zeitrahmens.

Einbindung des Workflow-Repositories
Dieser Ansatz ist uninteressant, solange die SimTech Workflow-Umgebung keine Taverna-Workflows

unterstiitzt, da im Workflow-Repository von myExperiment keine BPEL-Prozesse gefiihrt werden.
Dieser Ansatz gehort mit weniger als 160 Stunden zu den einfachen Aufgaben.

Nutzung der Datei-Ressourcen

Die Nutzung der Datei-Ressourcen auf myExperiment unterscheidet sich nur in Details von nanoHUB
und ist daher ebenfalls kein attraktiver Integrationsansatz.

Nutzung des Service-Katalogs

Ein Web-basierter Servicekatalog wie BioCatalogue ist bisher nicht in das SimTech Modeling Tool
integriert. Die Vorteile gegeniiber der direkten Benutzung der Servicekatalog-Website sind jedoch
iiberschaubar, sodass hier wenig Neuartiges entsteht. Der Servicekatalog und insbesondere das An-
gebot von BioCatalogue haben sich im Gespriach mit den Betreuern als wenig interessant fiir das

30

Institut herausgestellt. Da eine ansprechende Prisentation der Suchergebnisse im Modeling Tool sehr
aufwindig werden kann, liegt der geschétzte Zeitaufwand bei etwa 160 Stunden.

Taverna Workflows als Bestandteil von BPEL-Prozessen

Die Orientierung am Datenfluss in Taverna-Workflows ist ein komplementérer Ansatz zu BPEL, den
es so in der existierenden SimTech Workflow-Umgebung noch nicht gibt. Mit diesem Integrationsan-
satz lassen sich die Stdrken von Taverna-Workflows in BPEL-Prozessen nutzen. Gleichzeitig ist die
Ausfiihrung von Taverna-Workflows der Ausgangspunkt fiir weitere Taverna-bezogene Integrationsan-
sitze. Der Aufwand zur Realisierung hingt von der Komplexitéit des gewahlten Entwurfsansatzes ab.
Unter den diskutierten Anséitzen sind auch solche mit etwa 160 Stunden Aufwand.

Verwaltung von Taverna Server-Installationen im SimTech Modeling Tool

Die Integration des Taverna Servers in das Modeling Tool ist fiir den Betrieb von Taverna-Workflows
nicht essenziell, sondern bietet nur Bequemlichkeitsfunktionen. Da im Gegensatz zur ODE-Integration
kein automatisches Deployment von Taverna-Workflow-Modellen bendétigt wird, ist der Nutzen dieser
Integration sehr fraglich. Der Konstruktionsaufwand liegt geschétzt bei weniger als 160 Stunden.

Eingliederung der Taverna Workbench in den SimTech BPEL Designer

Falls Taverna-Workflows in BPEL-Dateien eingebettet werden, ist dieser Integrationsansatz eine grofie
Erleichterung, um die eingebetteten Taverna-Workflows zu bearbeiten. Dennoch bietet die Integration
der Workbench keine grundlegend neue Funktionalitit. Falls Taverna-Workflows per Dateireferenz in
BPEL-Prozesse eingebunden werden, wire sie iberfliissig. Die Komplexitit dieser Integrationsaufgabe
héngt stark von der Herangehensweise ab: Die Bereitstellung der Workbench als Eclipse-Plugins ist
im Vergleich sehr viel aufwindiger als die Modifikation der alleinstehenden Workbench-Anwendung.
Letzteres liegt bei einem geschitzten Aufwand von unter 160 Stunden.

4.3 Entscheidung fiir Taverna Workflows als Bestandteil von BPEL-Prozessen

Die endgiiltige Wahl der durchzufiihrenden Integrationsaufgabe erfolgte in Absprache mit den Betreu-
ern. Da die Untersuchung ergeben hat, dass auf nanoHUB keine Dienste ausgelagert werden kénnen,
fiel die Wahl auf Taverna. In dieser Arbeit soll die Taverna Workflow-Engine integriert werden, da die
Ausfithrung von Taverna-Workflows als Bestandteil von BPEL-Prozessen Voraussetzung fiir weitere
Integrationsschritte ist.

31

5 Integration der Taverna Workflow-Engine

In diesem Kapitel werden wir die konkreten Anforderungen an die Integrationslésung sammeln und
davon ausgehend verschiedene Entwurfsansétze vorstellen. Die Entwurfsansitze werden miteinander
hinsichtlich der Anforderungen verglichen und ein geeigneter Ansatz wird schlieflich zur Implemen-
tierung ausgewahlt.

5.1 Anforderungen

Wir unterscheiden zwischen Basisanforderungen, die auf jeden Fall von allen Ansétzen erfiillt sein miis-
sen, und weiteren Anforderungen, deren Erfiillungsgrad mit einer dreiwertigen Ordinalskala abgebildet
wird: - (schlecht), o (ohne Wertung), + (gut).

Basisanforderungen

Dies sind die zu implementierenden, elementaren Anwendungsfille. Taverna-Workflows miissen als Be-
standteil eines BPEL-Prozesses synchron als auch asynchron ausfiihrbar sein. Per BPEL-Code miissen
laufende Taverna-Workflow-Instanzen abgebrochen werden kénnen. Es muss ein Konzept zur Fehler-
behandlung vorhanden sein, da Taverna-Workflows Fehler erzeugen kénnen und diese in Form von
Fehlerdokumenten als Teil des Ausfiihrungsergebnisses zuriickliefern. Die Workflow-Eingaben miissen
vom Modellierer per BPEL-Code gesetzt und veréndert werden kénnen. Die Workflow-Ausgabe muss
vom umgebenden BPEL-Prozess ausgelesen und ausgewertet werden konnen. Dabei muss das Taver-
na-Typsystem vollstindig unterstiitzt werden, d.h. es muss zwischen Zeichenketten, Bindrdaten und
(verschachtelten) Listen unterschieden werden.

Weitere Anforderungen
— Standardkonformitdt: Werden bestehende Standards im Entwurf und in der Implementierung ver-
wendet?

— Plattformunabhéngigkeit: Kann die Losung in unterschiedlichen Hardware- und Softwareumge-
bungen ausgefiihrt werden?

— Erweiterbarkeit /Anderbarkeit: Wie grof ist der Aufwand aus der Sicht eines Entwicklers, um neue
Funktionen hinzuzufiigen oder bestehende Funktionalitit zu dndern?

— Implementierungsaufwand: Kann die Losung im gegebenen Zeitrahmen konstruiert werden?

— Komplexitit des Losungsansatzes: Ist der Entwurf aus der Sicht eines Entwicklers fiir das Problem
angemessen?

— Bedienbarkeit: Ist die Losung aus Sicht eines Anwenders einfach zu bedienen?

— Wiederverwendung: Werden bestehende Softwarelosungen wiederverwendet, anstatt das Rad neu
zu erfinden?

— Erweiterte Management-Funktionalitit: Bietet die Losung neben den Basisfunktionen zur Aus-
fiihrung von Taverna-Workflows weitere Funktionalitit zur Verwaltung von Workflow-Instanzen
oder der Software-Konfiguration?

5.2 Beispiel

Die Integrationsaufgabe soll hier anhand eines Beispiels verdeutlicht werden. In diesem Beispiel wird
ein bestehender Taverna-Workflow in einen BPEL-Workflow eingebunden und mehrmals ausgefiihrt.
Der Taverna-Workflow (siche Abbildung 24) ist in diesem Beispiel ein Platzhalter fiir eine komplexere
Simulation von Zellen in einem Gewebe: Er berechnet fiir ein gegebenes zweidimensionales Zellgitter

33

einen Zeitschritt in Conway’s Game of Life?® und liefert das veréinderte Zellgitter zuriick. Der um-
gebende BPEL-Prozess hat die Aufgabe, das initiale Zellgitter entgegenzunehmen und den Taverna-
Workflow in einer Schleife aufzurufen. Die Riickgabe des Taverna-Workflows wird jeweils zur Eingabe
des nichsten Durchlaufs. Nach jedem Durchlauf gibt der BPEL-Prozess das Zwischenergebnis zur Vi-
sualisierung an einen speziellen Web service weiter. Dies wird fortgefiihrt, bis eine bestimmte Anzahl
von Iterationen erreicht ist. Abbildung 25 zeigt das Beispiel als Pseudocode.

public void BpelProcess() {

Taverna2Workflow cell_simulation_tick;
WebService visualizer;

Cells cells =
"<cells colsPerRow='10">

<a/><a/><a/><d/><d/><d/><d/><d/><d/><d/>
<d/><a/><a/><a/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><d/><d/><a/><a/>
<a/><d/><d/><d/><d/><d/><d/><a/><a/><a/>
<d/><d/><d/><d/><d/><a/><a/><a/><d/><d/>
<d/><d/><d/><d/><a/><d/><a/><d/><d/><d/>
<d/><d/><a/><a/><a/><d/><d/><d/><d/><d/>
<d/><a/><d/><a/><d/><d/><d/><d/><d/><a/>
<a/><a/><d/><d/><d/><d/><d/><d/><d/><d/>

: : <d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>

| rows || encodedCells || colsPerRow |V <d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>

e) \ l / </cells>"

int iterations = 0;
to_xml_and_image do {

........................ WorkflowOutput output = cell_simulation_tick.
. Workfloy output ports invoke(new WorkflowInput(cells));
: : cells = output.cells;

cells A4 visualizer.invoke(cells, iterations);

} while (++iterations <= 100);

Abbildung 24. Taverna-Workflow fiir die Abbildung 25. Pseudocode fiir den BPEL-Prozess des
Berechnung eines Zeitschritts in Conway’s Beispiels
Game of Life

5.3 Entwurf

Im Folgenden werden verschiedene Entwurfsalternativen vorgestellt, mit denen sich die Basisanforde-
rungen am gezeigten Beispiel erfiillen lassen. Der am besten geeignete Entwurfsansatz wird ausgewéhlt
und implementiert.

Ansatz 1: Alleinstehender Web service je Taverna-Workflow

Bei diesem Ansatz wird je auszufithrendem Taverna-Workflow-Modell ein alleinstehendes Web service
Artefakt erzeugt, welches ohne weitere Abhéingigkeiten in der Lage ist, Instanzen eines bestimmiten
Taverna-Workflow-Modells auszufiihren. Der Web service iibernimmt die statische Struktur des Taver-
na-Workflows bzgl. der Ein- und Ausgaben (siehe Abbildung 26). Die Schnittstelle des Web services
ist in zwei PortTypes aufgeteilt. Der erste PortType bietet drei Operationen: Die Operation start
beginnt die asynchrone Ausfiihrung eines Taverna-Workflows mit der gegebenen Eingabe, liefert in
der Antwort-Nachricht eine Instanz-ID zuriick und sorgt dafiir, dass nach dem Ende der Ausfithrung

29 Bekanntes, einfaches Regelwerk fiir einen zweidimensionalen zelluliren Automaten

34

ein Callback-Web-Service aufgerufen wird. Die Instanz-ID ist eine UUID und wird zur Korrelation
bei asynchroner Ausfiihrung verwendet. Mit der abort Operation wird die Ausfiithrung einer asyn-
chron gestarteten Workflow-Instanz abgebrochen. Die Operation execute ist die synchrone Variante,
welche in der Antwort-Nachricht bereits das Ergebnis der Ausfiihrung sowie evtl. aufgetretene Feh-
ler enthélt. Um das Ergebnis der asynchronen Ausfiihrung zu erhalten, muss von der BPEL-Engine
eine Implementierung des zweiten PortTypes bereitgestellt werden. Dieser PortType enthilt nur eine
Callback-Funktion ohne Riickgabewert, welche die Workflow-Ausgabe entgegennimmt.

Wie in Abbildung 28 dargestellt, wird das Web service Artefakt durch einen Code-Generator erzeugt,
der aus einem gegebenen Taverna-Workflow annotierte Java-Klassen generiert und kompiliert. Der
Taverna-Workflow wird als Ressource in die JAR-Datei eingebettet. Zusétzlich werden die Kernklas-
sen der Taverna Workflow-Engine eingebettet. Bei der Instantiierung delegiert der Web service die
Ausfiihrung dann an die Taverna-Klasse WorkflowInstanceFacade. Zur Installation auf Axis2 wird
die resultierende JAR*Datei in den Ordner WEB-INF/servicejars kopiert.

CeliStateWorkflowPortType

+execute(input: Input): Output Input

+start(input: Input, callback: Endpoint): InstancelD +cells: Cells
+abort(id: InstanceID): Output

Output

CellStateWorkflowCallbackPortType
+cells: Cells

+errors: Error[]

+onResult(id: InstancelD, result: Output)

Abbildung 26. Web service Schnittstelle fiir Beispiel-Workflow

Resources

N —
workflow.t2flow

I N

A\ 4

{ Workflow input ports

T

in [in2 [in3

Generated Code build Stand-Alone
. > Axis2 Web
O WebService.java

n Taverna
E Workflow

2flow Model

action

Service

outl | out2

Java Code
Generator
 Workflof output ports

N (N\
ey - /
~ , represents

L J hTSY bj taverna-engine.jar i

P
.

~eo

Abbildung 27. Alleinstehender Web service, der ein Taverna-Workflow-Modell reprisentiert

Ansatz 2: Generischer Web service zur Ausfiihrung beliebiger Taverna-Workflows

Bei diesem Ansatz wird eine Alternative zum Taverna Server entwickelt. Dieser alternative Ausfiih-
rungsdienst besitzt eine vereinfachte Schnittstelle, die sich gut in BPEL-Prozesse integrieren lédsst. Im
Gegensatz zum Taverna Server muss diese Software nicht unter den Bedingungen der GNU Lesser Ge-
neral Public License verteilt werden. Intern delegiert der Web service die Ausfiihrung an die Taverna
Workflow Engine, welche auf geeignete Weise in den Web service eingebettet wird.

Aufgrund der generischen Schnittstelle (sieche Abbildung 29) existiert kein Schema, das fiir ein be-
stimmtes Taverna Workflow-Modell verhindert, dass strukturell falsche Eingabeparameter abgesendet

35

.. Bewer- .
Kriterium Begriindung
tung
Standardkonformitit + Basiert auf Web service Technologie, verwendet JAX-WS.
Plattformunabhiingigkeit + In jeder Java Virtual Machine ab Java SE 1.6 lauffahig.
Erweiterbarkeit / Ander- Anderungen an der Code-Generierung sind aufwindig, bei je-
barkeit der Anderung miissen alle Web services neu generiert werden.
Implementierungsaufwand 0 Code-Generierung ist vergleichsweise aufwindig.
Komplexitiat des Losungs- Code-Generierung ist aufwindig und bringt nur geringe Vor-
ansatzes - teile im Vergleich zu Ansatz 2.
Bedienbarkeit + Taverna Workﬂmﬁr 1/0O wird durch XML Schema 1:1 abgebil-
det und eingeschrénkt.

Wiederverwendun Der Taverna Server wird nicht fiir die Ausfiilhrung wieder-

& - verwendet, die Taverna Workflow Engine wird eingebettet.
Erweiterte Management- Nicht vorhanden.
Funktionalitat -

Tabelle 1: Erfiillungsgrad weiterer Anforderungen (Ansatz 1)

werden. Die verfiigharen Operationen dhneln denen aus Ansatz 1 stark: Um einen beliebigen Taverna-
Workflow synchron auszufiihren, wird die execute Operation verwendet. Das Workflow-Modell, aus
dem die Instanz erzeugt werden soll, ist Teil der Eingabe. Zusitzlich wird die Workflow-Eingabe in
Form von data port Belegungen iibergeben. Die Workflow-Ausgabe wird ebenfalls in Form von data
port Belegungen zuriickgeliefert. Fiir die asynchrone Ausfiithrung muss die Workflow-Engine wieder-
um den Callback-PortType implementieren und wird vom Web service nach dem Aufruf der start
Operation iiber das Ergebnis der Ausfilhrung informiert. Auch in diesem Szenario werden Workflow-
Instanzen iiber UUIDs korreliert.

Generic
: Q@@A \ Taverna 2 Executor
O N SENPI A : R Axis2 Web Service
inl I in2 | in3

Workflow

outl | out2 A2flow Model
Workﬂy[/ outpit égrts @ taverna—englne.Jar

action

Abbildung 28. Generischer Web service zur Ausfithrung von Taverna-Workflows

Ansatz 3: Direkte Verwendung des Taverna Servers

Bei diesem Ansatz wird die SOAP-Schnittstelle des Taverna Servers verwendet, um in BPEL-Prozessen
Taverna-Workflows auszufiithren. Eine neue Softwarekomponente generiert zu diesem Zweck fiir ein
gegebenes Taverna Workflow-Modell BPEL-Fragmente, in denen die nétige Kommunikation mit einer
Instanz des Taverna Servers stattfindet.

36

Taverna2ExecutorPortType

Taverna2ExecutorCallbackPortType

+executeWorkflow(input: Input): Output

+submitWorkflow(workflow: Workflow, input: Input, callback: Endpoint)

+abortWorkflow(id: InstanceID): Output

+submitWorkflowCallback(id: InstancelID, output: Output)

Input Output 0..% Error
o b
+type: String
errors +message: String
dataPorts dataPorts
0..* 0..* 1 Dataltem
DataPort 0..%
value
+name: String
items
Val Li
DocumentContent alue st
+document: Document [:
LiteralContent
content 1
TextContent
“+text: String BinaryContent > content
+data: byte[] [~

Abbildung 29. Generische Web service Schnittstelle fiir Taverna-Workflows

Bewer- .
Kriterium Begriindung
tung
Standardkonformitéit + Basiert auf Web service Technologie, verwendet JAX-WS.
Plattformunabhéngigkeit + In jeder Java Virtual Machine ab Java SE 1.6 lauffahig.
. N . 3 . 1 . . T _
Erweiterbarkeit / Ander- Anderungen wirken sich .bofort auf alle neu ftusgefuhrten a
. (o) verna-Workflows aus. SimTech hat vollstdndige Kontrolle
barkeit .
iiber den Quellcode.
Implementierungsaufwand + Vergleichsweise gering.
Komplexitiit des Losungs- Ansatz ist optimiert auf mog%lchﬁt el.nfach.e Integratlo.n in
ansatzes + BPEL-Prozesse. Der Web service ist eine simple, generische
Losung, die fiir alle Taverna Workflows funktioniert.
Es existiert ein XML Schema, welches die Taverna Workflow
1/O abbildet. Allerdings ist dieses Schema generisch und es
Bedienbarkeit 0 kann vorkommen, dass trotz richtiger Syntax falsche Einga-
ben an den Workflow iibergeben werden (z.B. eine Liste statt
eines Skalars).
. Hier wird ein Teil der Funktionalitdt des Taverna Servers un-
Wiederverwendung -

Erweiterte Management-
Funktionalitét

ter einer besser geeigneten Schnittstelle nachgebaut.

Nicht vorhanden, muss durch Erweiterung hinzugefiigt wer-
den.

Tabelle 2: Erfiillungsgrad weiterer Anforderungen (Ansatz 2)

37

Kriterium

Bewer-
tung

Begriindung

Standardkonformitét

Plattformunabhéngigkeit

Erweiterbarkeit / Ander-
barkeit

Implementierungsaufwand

Komplexitdt des Losungs-
ansatzes

Bedienbarkeit

Wiederverwendung

Erweiterte Management-
Funktionalitét

Der Taverna Server bietet eine Web service Schnittstelle {iber
SOAP/HTTP und kann somit in BPEL eingebunden werden.
Zur Authentifizierung muss aber eine proprietire Erweiterung
der Apache ODE verwendet werden.

Der Taverna Server muss in Tomcat 6 in einer Unix-artigen
Umgebung ausgefiihrt werden. Andere Umgebungen werden
nicht unterstiitzt.

Anderungen am Taverna Server miissen aufgrund der LGPL-
Bestimmungen der myGrid Community zugénglich gemacht
werden. Die Dokumentation fiir Entwickler ist schlecht oder
nicht vorhanden.

Es miissen zur Integration des Taverna Servers komplexe
BPEL-Fragmente erzeugt werden, welche die Interaktion mit
dem Server steuern. Die Dokumentation der Taverna Server
API ist schlecht, was viel Experimentierungsaufwand zur
Folge hat. Im Versuch konnte der Taverna Server nicht er-
folgreich in Betrieb genommen werden.

Die Taverna Server API ist schlecht geeignet, um in BPEL-
Prozesse eingebunden zu werden. Das Resultat sind lange
BPEL-Fragmente fiir einfachste Operationen. Da kein Call-
back-Mechanismus existiert, muss Polling zur Abfrage der
Ergebnisse implementiert werden.

Der Modellierer von Workflows muss fiir jede Ausfiihrung ei-
nes Taverna-Workflows viele einzelne Web service Aufrufe
iiberblicken. Der einzige Mechanismus, um diese Aufrufe lo-
gisch zu gruppieren, ist das BPEL scope Element.

Der Taverna Server wird verwendet, um Taverna-Workflows
auszufithren

Vorhanden: Verwaltung von Workflow-Instanzen und Server-
konfiguration

Tabelle 3: Erfiillungsgrad weiterer Anforderungen (Ansatz 3)

38

Ansatz 4: Generierung von BPEL-Wrapper-Prozessen

Dieser Ansatz ist eine Erweiterung von Ansatz 2 und 3, bei der trotz Existenz eines generischen Aus-
fiihrungsdienstes einzelne Taverna-Workflow-Modelle und deren spezifische Eingaben- und Ausgaben
auf Web services abgebildet werden (sieche Abbildung 30). Hier generiert eine neue Softwarekomponen-
te aus einer Taverna-Workflowdefinition einen Wrapper-BPEL-Prozess, der wiederum die Ausfithrung
des Workflows an den Taverna Server oder die alternative Implementierung aus Ansatz 2 delegiert.
Der auszufiihrende Taverna-Workflow wird dabei in den generierten BPEL-Prozess eingebettet. Am
Erfiillungsgrad der zusitzlichen Anforderungen dndert sich im Vergleich zu Ansatz 2 und 4 nichts,
daher verzichten wir an dieser Stelle darauf, die Tabellen zu wiederholen.

e N\

s N

Generated Artifacts

g BPEL Process

.bpel

Workflow input ports

BPEL
Process
Generator

in1 [in2 [in3 E Taverna

= Workflow
t2flow Model

output

out [ouz Process Web

. Service
wsdl Interface

Worktioph outpit é‘i‘ o

e

' J

Abbildung 30. Generierung von BPEL-Wrapper-Prozessen

Ansatz 5: Erweiterung der Apache ODE

Die Ausfithrungsumgebung der BPEL-Prozesse kann theoretisch so erweitert werden, dass sie Taverna-
Workflows direkt, d.h. ohne Interaktion mit einem Web service ausfithren kann. Dazu muss eine
BPEL-Erweiterungsaktivitit (siehe Abbildung 31) definiert werden, welche von der ODE erkannt und
unterstiitzt wird. Intern wird die ODE bei einer solchen Erweiterungsaktivitit die Ausfilhrung an
eine eingebettete Taverna Workflow-Engine delegieren. Mit diesem Ansatz ist man allerdings auf die
ODE als Ausfithrungsumgebung beschrankt, bzw. das Feature muss fiir jede BPEL-Engine erneut
implementiert werden.

<bpel:extensionActivity xmlns:t2="http://taverna2.simtech.uni-stuttgart.de">

<t2:executeWorkflow faultOnError="false"” mode="synchronous"” maxExecutionTime="PTIH">

<t2:workflowModel>
<t2:resource>http://localhost/resources/my-workflow.t2flow</t2:resource>

</t2:workflowModel>
<t2:input dataPort="cells"” from-variable="cells" />
<t2:output dataPort="cells" to-variable="cells" />
<t2:errors to-variable="lastErrors"/>

</t2:executeWorkflow>

</bpel:extensionActivity>

Abbildung 31. Variante einer BPEL-Erweiterungsaktivitét fiir das Beispiel aus 5.2

5.4 Auswahl eines Entwurfsansatzes

Die Umsetzung als BPEL- bzw. als ODE-Erweiterung kommt nicht in Frage, da zur Wahrung der
Standardkonformitdt die Losung als Web service implementiert werden soll. Der Entwurfsansatz zur

39

Bewer-

Kriterium Begriindung
tung
- Es muss eine BPEL <extensionActivity> eingefiihrt werden
Standardkonformitét - ’
nardioniorm die zunéchst nur von der Apache ODE verstanden wird.
i Die Losung ist an die Apache ODE gekoppelt und funktio-
Plattf bh. keit -
arormunabhanglgiet niert nicht mit anderen BPEL-Engines.
Erweiterbarkeit / Ander- Der Quellcode der Apache ODE ist verfiigbar, benotigt aber
barkeit 0 FEinarbeitung.

Implementierunesaufwand Die Apache ODE muss auf nicht-triviale Weise modifiziert
P & werden, was das Verstindnis der ODE-Interna voraussetzt.
Komplexitit des Losungs- Die Einschrénkung auf eine bestimmte Workflow-Engine er-

ansatzes 0 scheint nicht angemessen.
Aus der Sicht des Workflow-Modelliereres ist dies der ein-
fachste Ansatz, da der gesamte Vorgang der Ubergabe von

Bedienbarkeit + Workflow-Eingaben, Ausfithrung und Speicherung der Worf-
klow-Ausgaben in nur einer Aktivitét stattfindet. Es gibt kei-
ne sichtbare Interaktion mit Drittkomponenten.

. Der Taverna Server wird bei diesem Ansatz nicht zur Aus-

Wiederverwendung - .. .
fiihrung eingesetzt.

FErweiterte Management- + Management-Funktionen der Apache ODE konnen verwendet

Funktionalitét

werden.

Tabelle 4: Erfiilllungsgrad weiterer Anforderungen (Ansatz 5)

40

Ansteuerung des Taverna Servers (Ansatz 3) ist aus mehreren Griinden unattraktiv: Zum einen kénn-
te die Realisierung aufgrund des hohen Aufwands zur Inbetriebnahme des Servers und zur Fehlerbe-
seitigung bei der Integration der Server-API zeitlich scheitern. Andererseits kann diese Losung nur
mit zusétzlicher Tool-Unterstiitzung vom Workflow-Modellierer verwendet werden, da nicht-triviale
BPEL-Fragmente generiert werden miissen. Ansatz 1 und 2 sind dagegen simpel genug, um Taverna-
Workflows auch hindisch per Texteditor oder mit dem bestehenden Modeling Tool in BPEL-Code
einzubinden. Ansatz 1 sowie Ansatz 4 scheiden jedoch aus, da sie iiber zusétzlichen Aufwand eine 1:1
Beziehung zwischen Web service und Taverna-Workflow-Modell herstellen, obwohl sich dieses Merkmal
im Verlauf der Arbeit als nicht erwiinscht erwiesen hat. Der zu implementierende Entwurfsan-
satz ist somit Ansatz 2: ein generischer Web service zur Ausfiihrung beliebiger Taverna-

Workflows.

5.5 Implementierung

In diesem Kapitel wird die Implementierung des generischen Web services zur Ausfiihrung beliebiger
Taverna-Workflows (im Folgenden: Taverna 2 Executor) beschrieben. Wir werden dabei weniger auf
Implementierungsdetails eingehen, sondern wollen eher die Konzepte hinter der implementierten Lo-
sung vorstellen. Dieses Kapitel soll keinen Ersatz fiir die mitgelieferte Dokumentation der Software
darstellen.

Die wichtigsten Probleme und Lésungen, die im Verlauf der Konstruktion aufgetreten sind, werden hier
genannt. Dies betrifft hauptsdchlich die Interaktion zwischen BPEL-Prozessen und Web services, die
Einbettung der Taverna Workflow Engine in eine fremde Softwarekomponente sowie das Deployment
von Web services auf Apache Axis2. Zum Schluss wird die Funktionsweise der fertiggestellten Losung
anhand des Beispiels aus Kapitel 5.2 demonstriert.

Interaktion BPEL-Prozess - Web service

Um die Probleme und Losungen bei der Kommunikation zwischen dem Web service zur Ausfilhrung
von Taverna-Workflows und BPEL-Prozessen zu beschreiben, muss zuerst die generelle Interaktion
erklirt werden. BPEL-Prozessinstanzen konnen tiber die invoke-Aktivitat initiativ eine Operation
eines dem Prozess bekannten Web services aufrufen. Der konkrete Ort, an dem sich dieser Web service
befindet, kann z.B. zum Zeitpunkt der Installation des Prozessmodells auf der BPEL-Engine fest-
gelegt werden. Umgekehrt kann die Aufsenwelt mit einem BPEL-Prozess {iber dessen Web-Service-
Schnittstelle kommunizieren. Fiir jedes installierte Prozessmodell startet die BPEL-Engine einen oder
mehrere Web services, iiber deren Operationen eingehende Nachrichten an Prozessinstanzen gesendet
werden konnen (sieche Abbildung 32).

Apache ODE

r r
Instanzen Modell Web Service

CellStateProcess

o CellStateProcess CellStateProcess Taverna 2 Executor

Service

‘< Korrelation?

CellStateProcess
Instance 2

CellStateProcess
Instance 3

®&®®

Abbildung 32. Interaktion mit BPEL-Prozess: Korrelation und Callback-Adresse

Durch diesen Mechanismus treten zwei Probleme auf, welche auch die Implementierung des Taver-
na 2 Executors betreffen: Erstens miissen alle Nachrichten, die an BPEL-Prozesse gesendet werden,

41

Informationen enthalten, die der BPEL-Engine ermdglichen, die Nachricht einer Prozessinstanz zuzu-
ordnen. Falls keine Zuordnung mdglich ist, muss die BPEL-Engine entweder eine neue Prozessinstanz
erstellen oder die Nachricht verwerfen. Im Fall der asynchronen Ausfithrung von Taverna-Workflows
(sieche Abbildung 33) wird deshalb von der submitWorkflow-Operation eine Instanz-ID zuriickgelie-
fert. Der Callback-Operation, welche von der BPEL-Engine bereitgestellt werden muss, iibergibt der
Taverna 2 Executor diese Instanz-ID, sodass die BPEL-Engine {iber den Korrelationsmechanismus
jene Prozessinstanz aktivieren kann, welche den urspriinglichen submitWorkflow-Aufruf initiiert hat.

Asynchroner Aufruf J

:BPEL Process ‘Taverna 2 :Taverna Engine
Executor

submitWorkflow(in1, in2, in3)

\J

T
|
|
I
I
I
I
submit(Workflow, Input) |
|

Workflow ID
Workflow ID

onResult(Workflow ID, Output)

ubmitWorkflowCallback(Workflow ID, outl, out2) J

S
-
%

Abbildung 33. Asynchroner Aufruf eines Taverna-Workflows aus einem BPEL-Prozess

Das zweite Problem in diesem Szenario ist die Ubergabe der konkreten Callback-Adresse. Soll ein
Taverna-Workflow asynchron ausgefiihrt werden, dann muss der Taverna 2 Executor am Ende der
Ausfiihrung eine Nachricht an die Web-Service-Schnittstelle des BPEL-Prozesses senden, um der Pro-
zessinstanz das Ergebnis und die Ausgabe der Ausfiihrung mitzuteilen. Dazu bendétigt der Taverna 2
Executor eine Empfingeradresse, die ihm von der Prozessinstanz explizit mitgeteilt werden muss. Die-
ses Problem kann gelost werden, indem der BPEL-Prozess zur Laufzeit den Wert eines Partner-Links
ausliefst, welcher die benétigten Adressdaten enthilt. Partner-Links werden in BPEL verwendet, um
die Teilnehmer an einer Prozessinstanz abzubilden und ihnen konkrete Verbindungsendpunkte zuzu-
ordnen. Abbildung 34 zeigt die konkrete Umsetzung dieser Losung in unserem Beispielprozess.

Probleme wihrend der Implementierung

In diesem Abschnitt sollen Ereignisse festgehalten werden, die zu einer nennenswerten Verzogerung
oder zum Abbruch eines Implementierungsschrittes gefithrt haben.

Einbettung der Taverna Workflow Engine Der gewihlte Entwurfsansatz sah urspriinglich vor, dass
mehrere Instanzen der Taverna Workflow Engine parallel in einem Servlet-Container wie Tomcat
ausgefithrt werden sollten. Nach etwa einem Drittel des geplanten Implementierungsaufwands stellte
sich jedoch heraus, dass dieser Ansatz zum Scheitern verurteilt war. Der Grund dafiir ist die intensive
Nutzung des Singleton-(Anti-)Patterns innerhalb der Taverna Kernklassen. Basismechanismen wie
die Datenbank-Konfiguration sind so implementiert, dass es je JVM nur eine Instanz davon geben
kann. Die Einbettung der Workflow Engine in den Taverna 2 Executor war somit nicht praktikabel.

42

<bpel:assign>
<bpel:copy>
<bpel:from>
<bpel:literal>
<l-- .0 ==>
<t2t:callback>
<t2t:soap version="1.2" style="document-literal" address="" />
</t2t:callback>
</bpel:literal>
</bpel:from>
<bpel:to>$submitWorkflowRequest.payload</bpel:to>
</bpel:copy>
<bpel:copy>
<!-- Kopiere Verbindungsendpunkt-Adresse aus Partner-Link in callback-Element -->
<bpel:from partnerLink="t2executor"” endpointReference="myRole"></bpel:from>
<bpel:to>$submitWorkflowRequest.payload//*[local-name()="soap"]/@address</bpel:to>
</bpel:copy>
</bpel:assign>

Abbildung 34. Vorbereitung der Callback-Informationen im BPEL-Prozess

Erschwerend kam hinzu, dass die Softwarebibliothek JDOM 1.0 durch Taverna auf den Java Classpath
geladen wird. Dadurch kommt es in Verbindung mit JAX-WS zu einem Fehler, der verhindert, dass
ausgehende SOAP-Nachrichten gesendet werden kénnen. Ein XML-Namespace-Prifix wird in dieser
Konstellation mehrfach vergeben, was das XML-Dokument ungiiltig macht.

Die Losung dieses Problems besteht darin, die Ausfithrung von Taverna-Workflows an einen separaten
Prozess mit eigener JVM zu delegieren, anstatt die Taverna Workflow Engine in die eigene Software
einzubetten. Nach einigen Versuchen stellte sich heraus, dass die Verwendung der Taverna Command
Line die einfachste Losung darstellt. Die Umstellung auf den Start eines neuen Taverna Command Line
Prozesses je Workflow-Instanz bringt allerdings Performanceprobleme mit sich: Da fiir den Durchlauf
einer neuen Workflow-Instanz eine JVM hochgefahren werden muss, verzégert sich der Start um etwa
fiinf Sekunden.

Deployment auf Apache Axis2 Axis2 ermdoglicht nicht, in einer Web service Implementierung wie
dem Taverna 2 Executor Softwarebibliotheken zu verwenden, die gleichzeitig von Axis2 in einer ande-
ren Version eingebunden werden. Verwendet man dennoch eine andere Version, kénnen subtile Fehler
auftreten, da nicht die Bibliothek aktiv ist, gegen die urspriinglich entwickelt wurde. In diesem konkre-
ten Fall wurde vom Taverna 2 Executor die aktuelle Version 2.4 der Apache Commons IO Bibliothek
verwendet, wihrend Axis2 die veraltete Version 1.4 im Classpath bereitstellte. Dies fiihrte dazu, dass
nach einem eigentlich erfolgreichen Durchlauf einer Taverna-Workflow-Instanz aufgrund einer nicht
vorhandenen Methode ein Fehler auftrat, welcher den Durchlauf zum Scheitern brachte. Die Suche
nach der Fehlerursache gestaltete sich frustrierend und vor allem zeitaufwéindig.

Das Problem konnte jedoch gelést werden, indem bei der Erstellung des Axus2-Servicearchivs das
Maven Shade Plugin verwendet wird. Mit diesem Build-Plugin ist es durch Bytecode-Manipula-
tion moglich, die konfliktbeladenen Klassen in einen anderen Namensraum zu verschieben, sofern
im Vorfeld bekannt ist, welche Klassen Probleme verursachen. Anstelle der konfliktbeladenen Klas-
se org.apache.commons.io.I0Utils l4dt der Taverna 2 Executor jetzt die konfliktfreie Klasse
notaxis2.org.apache.commons.io.I0Utils (sieche Abbildung 35).

<configuration>
<relocations>
<relocation>
<pattern>org.apache.commons</pattern>
<shadedPattern>notaxis2.org.apache.commons</shadedPattern>
</relocation>
</relocations>
</configuration>

Abbildung 35. Konfiguration des Maven Shade Plugins fiir Axis2

43

Projektstruktur

Die konstruierte Integrationslésung besteht aus einer Reihe von Maven-Projekten, die einen Abhéngig-
keitsgraphen bilden (siche Abbildung 36). Auf der untersten Ebene liegt das Projekt t2-types, welches
ausschlieflich generierte Java-Bindings fiir hdufig verwendete XML-Datenstrukturen und das t2flow
Format enthélt. Alle XML-Bindings werden fiir JAXB 2.1 generiert. Eine Ebene dariiber befindet sich
das Projekt t2-executor-service-api, welches den Schnittstellenteil des Taverna 2 Executors ent-
halt. Die Java Klassen werden per wsimport aus den WSDL-Definitionen generiert und enthalten noch
keine Funktionalitdt. Die eigentliche Implementierung liegt im Projekt t2-executor-service-impl.
Auf dieser Implementierung bauen zwei verschiedene Distributions-Artefakte fiir den Web service
auf: eines fiir Apache Axis2 und ein weiteres fiir die JAX-WS Referenzimplementierung Metro. Beim
Projekt t2-bpel-process-generator handelt es sich um ein obsoletes Projekt zur Generierung von
BPEL-Prozessen anhand der I/O-Schnittstellen von Taverna-Workflow-Modellen. Damit sollte ur-
spriinglich Ansatz 4 aus Kapitel 5.3 umgesetzt werden, was aber nicht weiter verfolgt wird.

taverna-workflow-integration

[t2-executor-service-distro-axis2] [t2-executor-service-distro-metro]

t2-executor-service-impl = [t2-bpel-process-generator]

t2-executor-service-api A

t2-types Legende

[--- A hingt von B ab

Abbildung 36. Projektstruktur und Abhingigkeiten

Klassenstruktur

Anstelle einer erschopfenden Darstellung aller Klassen soll hier eine kompakte Beschreibung der zen-
tralen Elemente der Implementierung gegeben werden. Ausgangspunkt der Beschreibung ist die Klasse
Taverna2ExecutorService (sieche Abbildung 37). Diese Klasse implementiert alle funktionalen As-
pekte des Taverna 2 Executors und verwendet dazu bei Bedarf spezialisierte Komponenten, die zusam-
mengehorige Funktionalitit biindeln. Im Moment existiert mit dem WorkflowInstanceManager genau
eine solche Komponente. Der WorkflowInstanceManager hat die Aufgabe, eine Menge von Taverna-
Workflow-Instanzen zu verwalten. Seine Funktionsweise dhnelt der eines Java ExecutorService: Neue
Workflow-Instanzen kénnen iiber die submitWorkflow-Methode zur asynchronen Ausfithrung iiberge-
ben werden. Der Aufrufer erhilt ein Future-Objekt zuriick, mit dem sich das Ergebnis der Ausfiihrung
abfragen lasst. Zusitzlich kann der Aufrufer ein Callback registrieren lassen, welches nach erfolgreicher
oder fehlerhafter Beendigung des Durchlaufs aufgerufen wird. Uber diesen Callback-Mechanismus wird
auch die Riickmeldung des Ausfiihrungsergebnisses an die aufrufende BPEL-Prozessinstanz realisiert.

Die Schnittstelle WorkflowInstance reprisentiert das Wissen, wie Taverna-Workflows auszufithren
sind und hat die Aufgabe, jeder Workflow-Instanz eine Identitdt sowie einen Ausfiihrungszustand
zuzuordnen. Momentan existiert mit der CommandLineWorkflowInstance nur eine konkrete Auspra-

44

gung dieser Schnittstelle. Eine CommandLineWorkflowInstance verwendet eine lokale Installation der
Taverna Command Line zur Ausfiilhrung der Taverna-Workflows. Ein- und Ausgaben der Workflows
werden iiber das lokale Dateisystem geschrieben und gelesen. Der WorkflowInstanceManager sorgt
fiir die notige Isolation zwischen verschiedenen Workflow-Instanzen, indem er jeder Instanz ein privates
Arbeitsverzeichnis zuweist.

Die Klasse Taverna2ExecutorService trigt selbst keine @WebService-Annotation, sondern dient als
Basis fiir konkrete Service-Distributionen, die von der Klasse erben und mit @WebService annotiert
werden. Die abgeleiteten Distributionsklassen kénnen keine Funktionalitét iiberschreiben, sondern sind
lediglich dazu gedacht, Anpassungen an die Eigenheiten der Ziel-Installationsumgebung wie Axis2 oder
Metro zu implementieren.

Taverna2ExecutorServiceOnMetro Taverna2ExecutorServiceOnAxis2

o v

Taverna2Executor ------- {> Taverna2ExecutorService

+submitWorkflow()
+abortWorkflow() CommandLineWorkflowInstance
+executeWorkflow()
-instanceManager A

WorkflowInstanceManager :

. ! o O
+submitWorkflow() .
+cancelWorkflow()] WorkflowInstance
+getWorkflowState() -instances

Abbildung 37. Vereinfachtes Klassendiagramm der Implementierung

Anwendung auf das Beispiel

Um das Implementierungskapitel abzuschlieffen, wird an dieser Stelle der vollstindig integrierte Bei-
spielprozess mit einem Taverna-Bestandteil vorgestellt. Zur Erinnerung: Das Beispiel simuliert fiir
eine gegebene Startkonfiguration eine Menge von Zeitschritten in Conway’s Game of Life. Die Ein-
zelschritt-Logik ist als Taverna-Workflow implementiert und wird vom umgebenden BPEL-Prozess
in einer Schleife aufgerufen. Anhand der Markierungen in Abbildung 38 kann die Funktionsweise des
Taverna 2 Executors nachvollzogen werden: Da es sich um einen asynchronen Aufruf mit Callback
handelt, wird in Schritt (1) zunéchst die Verbindungsendpunkt-Adresse der Prozessinstanz aus dem
zugehorigen Partner-Link extrahiert. In Schritt (2) wird innerhalb der Schleife per invoke-Aktivitét
die submitWorkflow-Operation des Taverna 2 Executors aufgerufen. Der auszufiihrende Workflow, der
aktuelle Zustand des Zellgitters und die Callback-Informationen werden als Parameter mitgegeben.
Im dritten Schritt startet der Taverna 2 Executor den Taverna-Workflow, indem er die Ausfiihrung an
die Taverna Command Line delegiert. Nachdem die Ausfithrung beendet ist, wird die BPEL-Prozess-
instanz in Schritt (4) durch den Taverna 2 Executor iiber das Ausfithrungsergebnis benachrichtigt.
Der Taverna 2 Executor sendet dazu die Instanz-ID sowie den neuen Zustand des Zellgitters an die
in Schritt (1) hinterlegte Callback-Adresse. Durch die Angabe der Instanz-ID ist die BPEL-Engine
in der Lage, die Antwort der korrekten Prozessinstanz zuzuordnen. Als letzte Aktion jedes Schleifen-
durchlaufs ruft die BPEL-Prozessinstanz per invoke-Aktivitéit einen Visualisierungs-Web-Service auf,
welcher das zuletzt berechnete Zellgitter auf dem lokalen Rechner graphisch darstellt.

45

95u0dsal IMIFS QIM == 15aNbaAU IINIBS GIM —

Mmo|{eled ——

puadan

v

MOYI2dS5|02 _ SMol __ 5|23 _

A

s1lod Idul MO|JHI0M

SIOJMOOXT ¢ RUIOART, SOp SunpuamlIap Iojun [oIdstog soSTpurIs[[OA 8¢ Sunpliqqy

17740 punay

X|J1eW 0

/[..deos,,=()aueu-1e>07]//peorAed

v [«

s3lod Indul Moo

MO|}}I0\ BUIDAR]

<Ado>:1adq/>
<01:12dq/>Sssauppe

*3SanbaymoT 43 JOMITWANS$< 0 Tadg>

</.@704Au,=9dUdJd43y3uTodpus

,J403N23x3z3, =)uTjJdaulded
wod4:7dqg>

<Adod:Tadg>| .-

SSaUPPY dIeq||e) A1y

\
@
9JIAIDS uoljezijensip w
< & s
& <S|199>
3 W ubissy =
<S||190> > wie[yug
<3dJUalajayaduelsur> - ﬁ_n_\@
<9IUdlajayaduelsul> -
9JIAIBS ulll.ll-lllllllllllVﬂu
Bloxlghls) & | "
C BUuJdAe] [} ubissy =
K L}
[v |v [} o
" aouanbas Z
cocaas
< £
pr—
N & <S||190> Bl
1D eulane] Berbas & doo1
=)

|RuUrpeaday _/w\

& Aday [

o* MO H_

0 N T
32 ubissy =~

aequessul [

ouanbas &

®

MO[PIOM T3d8

46

6 Ergebnis

In dieser Arbeit wurden die eScience-Plattformen nanoHUB und myExperiment sowie das wissen-
schaftliche WfMS Taverna auf Moglichkeiten zur Interaktion mit der SimTech Workflow-Umgebung
untersucht. Verschiedene Integrationsanséitze wurden herausgearbeitet und einer Bewertung unterzo-
gen. Die Untersuchung hat ergeben, dass die gewiinschte Auslagerung von SimTech-Anwendungen und
Infrastruktur auf die Ressourcen der Plattformbetreiber leider nicht machbar ist, da kein geeignetes
Angebot existiert. Als beste verbleibende Losung wurde die Integration des Taverna WMS ausge-
wahlt. Mehrere Entwurfsansétze zur Integration der Taverna Workflow Engine wurden aufgestellt und
miteinander verglichen. Mit der konstruierten Integrationslésung lassen sich die datenflussorientierten
Taverna-Workflows als Bestandteil der BPEL-basierten Simulation Workflows ausfiihren.

Die Schwierigkeit der Integrationsaufgabe wurde unterschitzt. Eine Einbettung der Taverna Work-
flow Engine in eine Web service Implementierung war geplant, konnte aber aufgrund technischer
Schwierigkeiten nicht durchgefiihrt werden. Der Losungsansatz musste durch eine Alternative mit
Performanceeinbuffen ersetzt werden. Fiir lange laufende Taverna-Workflows ist die Verlangsamung
jedoch nicht signifikant.

6.1 Ausblick

Ein wichtiges Ziel der Arbeit war die Suche nach Hosting-Gelegenheiten fiir die SimTech Workflow-
Umgebung. Da unter den betrachteten Plattformen keine zufriedenstellende Moglichkeit gefunden
wurde, konnten sich Folgearbeiten mit anderen eScience-Plattformen oder Hosting-Diensten befassen.
Was die erfolgte Taverna-Integration betrifft, so bietet sich eine Reihe von Verbesserungsmdoglichkeiten
und Fortsetzungsarbeiten an:

Performance-Verbesserungen

In der vorliegenden Losung wird fiir jede Workflow-Instanz eine neue JVM erzeugt. Ein einzelner, de-
dizierter Betriebssystem-Prozess wére aber bereits ausreichend, um die Probleme der fehlgeschlagenen
Einbettung zu umgehen. Der Taverna 2 Executor konnte die Ausfiihrung des Workflows z.B. durch
geeignete Inter-Prozess-Kommunikation an diesen Prozess delegieren, anstatt die Taverna Command
Line zu verwenden. Noch besser wére es natiirlich, wenn es einem (fihigeren) Programmierer gelinge,
die Taverna Workflow Engine trotz der genannten Probleme einzubetten.

Hinzufiigen von Management-Funktionalitat

In einer Folgearbeit konnen Management-Funktionen zur erweiterten Verwaltung von Workflow-In-
stanzen in den Taverna 2 Executor eingebaut werden. Dazu miissen natiirlich zunéchst die Anforde-
rungen an die zu erstellenden Erweiterungen erhoben werden. Mit dem bestehenden Code lassen sich
einfache Funktionen wie die Auflistung aller Instanzen und deren Ausfithrungsstatus schnell realisie-
ren, da die bendtigten Datenstrukturen bereits vorhanden sind.

Verbesserung der Callback-Mechanik

Im Moment unterstiitzt der Taverna 2 Executor Service zwei Callback-Mechanismen: die automati-
sche Suche eines passenden Verbindungsendpunktes anhand eines gegebenen WSDL-Dokuments und
die Ubergabe einer Endpunkt-URL. Die Datenstrukturen des WS-Addressing-Standards werden bis-
her vom Dienst noch nicht verstanden. Unterstiitzung fiir diese und weitere Verbindungsendpunkt-
Beschreibungen konnten mit weniger als 20 Stunden Aufwand hinzugefiigt werden.

47

Evaluation des Taverna Servers

Falls geniigend Zeit zur Verfiigung steht, kann gepriift werden, ob eine Implementierung des Entwurfs-
ansatzes 3 aus Kapitel 5.3 zufriedenstellende Ergebnisse liefert. Eine Implementierung auf Basis des Ta-
verna Servers kénnte den Taverna 2 Executor ersetzen und die Erstellung eines Eclipse-Serveradapters
rechtfertigen.

Integration weiterer Taverna-Komponenten

Mit der Moglichkeit, Taverna-Workflows in Simulation Workflows einzusetzen, konnen darauf autbau-
ende Integrationsansiitze wie z.B. die Einbindung des myExperiment Workflow Repositories oder die
Eingliederung der Workbench durchgefiihrt werden.

48

Abbildungsverzeichnis

W N

0~ O Ot

10

12
13
14
15
16

17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

VOorgehenswelset e
Terminologie fiir Modelle und Instanzen basierend auf [17].........................
Phasenmodell fiir Business-Workflows (links) und wissenschaftliche Workflows
(rechts) [10] ..o e
XML-Beispieldokumentttt i e e
Mbogliches XML Schema fiir das Beispieldokument aus Abbildung 4
Zustellung einer SOAP-Nachricht e
WSDL 1.1 - Elemente und deren Beziehungen.......
Verwendung von JAX-WS in dieser Arbeit......... i
Vereinfachte Darstellung der SimTech-Architektur [12]
Mogliche Ausrichtung der Integrationsansitzec i,
Aufbau der nanoHUB Plattform.
HUBzero Software Stack e
Ausfiithrung eines Rappture-getriebenen Simulationstools auf nanoHUB.org
Registrierung und Installation eines neuen Simulationstools
Integrationsansatz: Ausfithrung von SimTech-Anwendungen auf nanoHUB.org........
Integrationsansatz: Verwendung der interaktiven Simulationstools in Simulation
WoOrKHOWS . . .o
Integrationsansatz: Nutzung der Datei-Ressourcen
Hauptbestandteile des Taverna 2.4 WEMS i,
Einfacher Taverna-Workflow mit einer expliziten Kontrollfluss-Kante
Taverna Workflow Designer i i e
Integrationsansatz: Taverna Workflows als als Bestandteil von BPEL-Prozessen
Integrationsansatz: Verwaltung von Taverna Server-Installationen aus Eclipse
Integrationsansatz: Eingliederung der Taverna Workbench in den SimTech BPEL

DS gIeT . oot e
Taverna-Workflow fiir die Berechnung eines Zeitschritts in Conway’s Game of Life
Pseudocode fiir den BPEL-Prozess des Beispiels,
Web service Schnittstelle fiir Beispiel-Workflow.
Alleinstehender Web service, der ein Taverna-Workflow-Modell représentiert
Generischer Web service zur Ausfithrung von Taverna-Workflows
Generische Web service Schnittstelle fiir Taverna-Workflows
Generierung von BPEL-Wrapper-Prozessen o i,
Variante einer BPEL-Erweiterungsaktivitdt fiir das Beispiel aus 5.2
Interaktion mit BPEL-Prozess: Korrelation und Callback-Adresse...................
Asynchroner Aufruf eines Taverna-Workflows aus einem BPEL-Prozess..............
Vorbereitung der Callback-Informationen im BPEL-Prozess........................
Konfiguration des Maven Shade Plugins fiir Axis2 oo ...
Projektstruktur und Abhéngigkeiten
Vereinfachtes Klassendiagramm der Implementierung
Vollstandiges Beispiel unter Verwendung des Taverna 2 Executors

49

e~ =

N O O Ot

11
13
14
15
16
17
18

19
20
22
23
25
26
27

Abkiirzungen

API Application Programming Interface

BPEL Business Process Execution Language

EDV Elektronische Datenverarbeitung

EPSRC Engineering and Physical Sciences Research Council
HTTP Hypertext Transfer Protocol

JAXB Java Architecture for XML Binding

JAX-WS Java API for XML Web Services

JVM Java Virtual Machine

LGPL GNU Lesser General Public License

OASIS Organization for the Advancement of Structured Information Standards
ODE Orchestration Director Engine

SFTP Secure File Transfer Protocol

SCUFL Simple Conceptual Unified Flow Language

VNC Virtual Network Computing

w3C World Wide Web Consortium

WebDAV Web-based Distributed Authoring and Versioning
WIMS Workflow Management System

WSDL Web Services Description Language

WWW World Wide Web

XML Extensible Markup Language

50

Literatur

1]
2]

3]
[4]

(5]

[6]

7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]
[20]

[21]

22]

23]
[24]

[25]

[26]
27]

28]

Alexandre Alves et al. OASIS Web Services Business Process Ezecution Language (WS-BPEL) 2.0. URL:
http://docs.oasis-open.org/wsbpel/2.0/0S/usbpel-v2.0-0S.html.

Bundesministerium fiir Wirtschaft und Arbeit und Bundesministerium fiir Bildung und Forschung. In-
formationsgesellschaft Deutschland 2006, Aktionsprogramm der Bundesregierung.

David Booth et al. Web Services Architecture. URL: http://www.w3.org/TR/ws-arch/.

Tim Bray et al. Fxtensible Markup Language (XML) 1.0 (Fifth Edition). URL: http://www.w3.org/TR/
xml/.

David De Roure, Carole Goble und Robert Stevens. “The Design and Realisation of the myExperi-
ment Virtual Research Environment for Social Sharing of Workflows”. In: Future Generation Computer
Systems 25 (2008), S. 561-567.

Raymond Dormien. “Service-Bus-Erweiterung um Pandas-basierte Simulationen in Workflows zu nut-
zen”. Diplomarbeit. Universitdt Stuttgart, Fakultit Informatik, Elektrotechnik und Informationstechnik,
Germany, 2011, S. 67.

David C. Fallside und Priscilla Walmsley. XML Schema Part 0: Primer Second Edition. URL: http:
//wwu.w3.org/TR/xmlschema-0/.

Forschungsfelder SRC SimTech und Ezzellenzcluster Stmulation Technology. URL: http://www.simtech.
uni-stuttgart.de/forschung/forschungsfelder/index.html; http://archive.is/YZca7.

Tan Foster und Carl Kesselman, Hrsg. The grid: blueprint for a new computing infrastructure. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

K. Gorlach et al. “Guide to e-Science”. In: Hrsg. von Y. Yang, L. Wang und W. Lie. Springer Verlag,
2011. Kap. Conventional Workflow Technology for Scientific Simulation.

Martin Gudgin et al. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). URL: http:
//www.w3.org/TR/soapl2-partl/.

Michael Hahn und Karolina Vukojevic. Prototyp SWMS. SimTech. 2013.

N.H. Kapadia und J. A B Fortes. “On the design of a demand-based network-computing system: the
Purdue University Network-Computing Hubs”. In: High Performance Distributed Computing, 1998. Pro-
ceedings. The Seventh International Symposium on. 1998, S. 71-80.

Kohsuke Kawaguchi, Sekhar Vajjhala und Joe Fialli. The Java™ Architecture for XML Binding (JAXB)
2.2. 2009.

G. Klimeck et al. “nanoHUB.org: Advancing Education and Research in Nanotechnology”. In: Computing
in Science Engineering 10.5 (2008), S. 17-23.

Jitendra Kotamraju. The Java API for XML-Based Web Services (JAX-WS) 2.2 Rev a. 2011.

Frank Leymann und Dieter Roller. Production workflow: concepts and techniques. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2000.

M. McLennan und R. Kennell. “HUBzero: A Platform for Dissemination and Collaboration in Compu-
tational Science and Engineering”. In: Computing in Science Engineering 12.2 (2010), S. 48-53.
nanoHUB.org. Workspace. 2006. URL: https://nanohub.org/resources/1242; http://archive. is/
WeS4P.

Thomas Oinn et al. “Taverna: lessons in creating a workflow environment for the life sciences”. In:
Concurrency and Computation: Practice and Ezperience 18.10 (2006), S. 1067-1100.

PN 8: Integrated data management, workflow and visualisation to enable an integrative systems science.
URL: http://www.simtech.uni-stuttgart.de/forschung/pn/pn8/index.html; http://archive.is/
YGs6L.

Jens Rutschmann. “Generisches Web Service Interface um Simulationsanwendungen in BPEL-Prozesse
einzubinden”. Diplomarbeit. Universitdt Stuttgart, Fakultdt Informatik, Elektrotechnik und Informati-
onstechnik, Germany, 2009, S. 116.

Research Council e Science Core Programme. Defining e-Science. URL: http://www.nesc.ac.uk/nesc/
define.html; http://archive.is/AHBoF.

I.J. Taylor et al. Workflows for E-Science: Scientific Workflows for Grids. Springer-Verlag London Li-
mited, 2007.

Sanjiva Weerawarana et al. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging and More. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005.

Katherine Wolstencroft et al. “The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud”. In: Nucleic Acids Research 41.W1 (2013), W557-W561.
Paul Wouters. What is the matter with e-Science? — thinking aloud about informatisation in knowledge
creation. 2006. URL: http://www.pantaneto.co.uk/issue23/wouters.htm; http://archive.is/y3ufg.
Sharon Biocca Zakhour, Sowmya Kannan und Raymond Gallardo. The Java Tutorial: A Short Course
on the Basics. 5. Aufl. Addison-Wesley Professional, 2013.

o1

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.simtech.uni-stuttgart.de/forschung/forschungsfelder/index.html
http://www.simtech.uni-stuttgart.de/forschung/forschungsfelder/index.html
http://archive.is/YZca7
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
https://nanohub.org/resources/1242
http://archive.is/WeS4P
http://archive.is/WeS4P
http://www.simtech.uni-stuttgart.de/forschung/pn/pn8/index.html
http://archive.is/YGs6L
http://archive.is/YGs6L
http://www.nesc.ac.uk/nesc/define.html
http://www.nesc.ac.uk/nesc/define.html
http://archive.is/AHBoF
http://www.pantaneto.co.uk/issue23/wouters.htm
http://archive.is/y3ufg

Alle Links wurden zuletzt am 13. Juni 2013 iiberpriift.

52

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu haben. Ich habe keine anderen als die angegebe-
nen Quellen benutzt und alle wortlich oder sinngeméft aus anderen Werken iibernommene Aussagen
als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Priifungsverfahrens. Ich habe diese Arbeit bisher weder teilweise noch vollsténdig
ver6ffentlicht. Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren iiberein.

Ort, Datum Unterschrift

	Einleitung
	Ziele der Arbeit
	Gliederung

	Grundlagen
	eScience
	Geschäftsprozesse und Workflows
	Simulation Workflows
	Technologien
	SimTech Workflow-Umgebung

	Untersuchung der eScience-Plattformen
	nanoHUB
	myExperiment
	Taverna

	Wahl einer Integrationsaufgabe
	Auswahlkriterien
	Analyse und Bewertung
	Entscheidung für Taverna Workflows als Bestandteil von BPEL-Prozessen

	Integration der Taverna Workflow-Engine
	Anforderungen
	Beispiel
	Entwurf
	Auswahl eines Entwurfsansatzes
	Implementierung

	Ergebnis
	Ausblick

