
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraÿe 38
D - 70569 Stuttgart

Diplomarbeit Nr. 3444

Integration der SimTech

Work�ow-Umgebung mit

existierenden eScience

Plattformen

Daniel Huss

Studiengang: Softwaretechnik

Prüfer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Betreuer: Dipl.-Inf., Dipl.-Wirt. Ing.(FH) Karolina Vukojevic

begonnen am: 27.12.2012

beendet am: 09.08.2013

CR-Klassi�kation: D.2.12, H.4.1, I.6.7

Zusammenfassung

In den letzten Jahren sind vor allem in den USA und in Groÿbritannien neue digitale Plattformen und
Softwarewerkzeuge für die Zusammenarbeit von Wissenschaftlern und zur gemeinsamen Nutzung von
Rechenkapazitäten entstanden. Die Plattformen nanoHUB, myExperiment und das wissenschaftliche
Work�ow-Management-System Taverna sind für diese Arbeit ausgewählt worden, um eine Integration
der angebotenen Dienste und Funktionen mit der SimTech Work�ow-Umgebung zu prüfen. Für je-
den der drei Kandidaten wurden mehrere mögliche Integrationsansätze erarbeitet und eine technische
Realisierung der Integration umrissen. Anschlieÿend wurden die Integrationsansätze einer Bewertung
hinsichtlich ihres Nutzens und der Machbarkeit unterzogen. Es musste festgestellt werden, dass keine
der untersuchten Plattformen die Auslagerung von SimTech-Infrastruktur auf die Rechenressourcen
der Plattform ermöglicht, obwohl dies ein wichtiges Ziel der Arbeit war. Als Alternative wurde des-
halb nach Abwägung der sonstigen Integrationsansätze eine Integrationslösung konstruiert, welche
die Ausführung von daten�ussorientierten Taverna-Work�ows als Bestandteil von BPEL-Prozessen
ermöglicht.

Abstract

Over the last few years, new digital platforms and software tools for the global collaboration between
scientists and for the sharing of computing resources have emerged, primarily in the US and in Great
Britain. In this work, the platforms nanoHUB and myExperiment, as well as the scienti�c work�ow
management system Taverna haven been selected for analysis of potential integration opportunities
with the SimTech work�ow environment. For each of those candidates, several integration approaches
have been identi�ed and a draft for a potential technical realization has been developed. Each inte-
gration approach has subsequently been evaluated for its usefulness and feasibility within the given
time frame. As a result of this evaluation, none of the presented platforms seems to o�er a way to
satisfyingly externalize existing SimTech infrastructure or applications. The main objective of this
work could therefore not be achieved, and an alternative approach had to be chosen. As the best
remaining integration approach, the inclusion of Taverna's data �ow centric work�ows within BPEL
processes has been implemented.

iii

Inhalt

1 Einleitung . 1
1.1 Ziele der Arbeit . 1
1.2 Gliederung . 2

2 Grundlagen . 3
2.1 eScience . 3
2.2 Geschäftsprozesse und Work�ows . 3
2.3 Simulation Work�ows . 4
2.4 Technologien . 5
2.5 SimTech Work�ow-Umgebung. 10

3 Untersuchung der eScience-Plattformen . 13
3.1 nanoHUB . 13
3.2 myExperiment . 20
3.3 Taverna . 22

4 Wahl einer Integrationsaufgabe . 29
4.1 Auswahlkriterien . 29
4.2 Analyse und Bewertung . 29
4.3 Entscheidung für Taverna Work�ows als Bestandteil von BPEL-Prozessen 31

5 Integration der Taverna Work�ow-Engine . 33
5.1 Anforderungen . 33
5.2 Beispiel . 33
5.3 Entwurf . 34
5.4 Auswahl eines Entwurfsansatzes . 39
5.5 Implementierung . 41

6 Ergebnis . 47
6.1 Ausblick . 47

v

1 Einleitung

Im vergangenen Jahrzehnt sind vor allem in den USA und in Groÿbritannien neue digitale Plattformen
sowie Softwarewerkzeuge für die organisations- und länderübergreifende Zusammenarbeit von Wissen-
schaftlern entstanden. Wissenschaftliche Einrichtungen bringen dort unter der Flagge von eScience

und cyberinfrastructure Förderprogrammen neue Arbeitsweisen sowie IT-Infrastruktur hervor, die eine
globale Vernetzung von Wissenschaftlern und die gemeinsame Nutzung von Rechenressourcen ermög-
lichen sollen. Die Simulation als etablierte Säule des wissenschaftlichen Erkenntnisgewinns nimmt in
diesem Kontext eine zentrale Rolle ein: Simulationswerkzeuge, die verteilte Ausführung von Experi-
menten im Rechner und die gemeinsame Auswertung von Simulationsergebnissen sind wiederkehrende
Themen der neuen Plattformen.

In dieser Arbeit soll herausgearbeitet werden, inwiefern sich die neuen Plattformen, Dienste und
Softwarewerkzeuge mit der bestehenden SimTech Work�ow-Umgebung integrieren lassen. Besonderes
Augenmerk soll dabei auf solchen Angeboten liegen, welche die Nutzung der Plattformen als Laufzeit-
umgebung für Simulation Work�ows ermöglichen.

Der Exzellenzcluster Simulation Technology (SimTech) ist Teil einer Förderlinie der Exzellenzinitiative
des Bundes und der Länder zur Förderung von Wissenschaft und Forschung an deutschen Hochschule
und arbeitet in interdisziplinären Projekten an neuartigen Werkzeugen für Computersimulationen.
Diese Werkzeuge sollen es ermöglichen, skalenübergreifende Simulationen miteinander zu verknüp-
fen und in eine gemeinsame Entwicklungs- und Ausführungsumgebung zu integrieren. Das Institut
für Architektur von Anwendungssystemen befasst sich in SimTech mit der Nutzung von Work�ow-
Technologie zur Modellierung und Ausführung wissenschaftlicher Simulationen.

1.1 Ziele der Arbeit

Abbildung 1 zeigt die Teilziele dieser Arbeit und die grundsätzliche Vorgehensweise: Zunächst werden
wir existierende eScience Plattformen auf Möglichkeiten zur Integration mit der SimTech Work�ow-
Umgebung untersuchen. Für jeden gefundenen Integrationsansatz wird grob die Herangehensweise
für eine technische Realisierung sowie Hindernisse, welche die technische Realisierung erschweren,
beschrieben.

Die gefundenen Integrationsansätze bewerten wir anschlieÿend mittels nachvollziehbarer Kriterien hin-
sichtlich ihres Nutzens für SimTech. Zusätzlich versuchen wir für alle positiv bewerteten Ansätze die
Machbarkeit der Integration im Zeitfenster dieser Diplomarbeit abzuschätzen. Anschlieÿend wird mit-
hilfe dieser Analyse eine konkrete Integrationsaufgabe ausgewählt, geplant und durchgeführt. Dazu
ermitteln wir Anforderungen an die Realisierung, und bewerten anhand dieser Anforderungen verschie-
dene Implementierungsalternativen. Eine entsprechende Softwarelösung wird konstruiert, und deren
Ergebnisse anschlieÿend diskutiert.

B

C

Integrationsansätze

A

1.

D

Nutzen? Machbarkeit?

C

B

B3

B4

B2

B1

Untersuchung der

Plattformen

Bewertung der

Integrationsansätze

2.
B

C

A

D

3.
B

Wahl einer

Integrationsaufgabe

4.

Vergleich von

Implementierungsansätzen

5.

Konstruktion

der Lösung

Abbildung 1. Vorgehensweise

1

1.2 Gliederung

Auf dieses Einleitungskapitel folgt im zweiten Kapitel eine kurze Einführung in die Themengebiete,
die wir im Verlauf dieser Ausarbeitung ansprechen werden. Die verwendeten Technologien werden
ebenfalls erläutert.

Im dritten Kapitel werden die untersuchten Plattformen nanoHUB.org und myExperiment sowie das
Work�ow-Management-System Taverna vorgestellt. Für jede Plattform beschreiben wir - noch mög-
lichst wertungsfrei - die entdeckten Integrationsansätze und skizzieren jeweils die grundsätzliche Her-
angehensweise einer technischen Realisierung.

In Kapitel vier erfolgt die Analyse der gefunden Integrationsansätze im Hinblick auf ihren Nutzen
für SimTech und auf die Machbarkeit im Zeitfenster dieser Diplomarbeit. Hier soll möglichst nach-
vollziehbar dargelegt werden, warum die Wahl auf Integration der Taverna Work�ow Engine gefallen
ist.

Das fünfte Kapitel dokumentiert Anforderungsanalyse, Entwurf und Implementierung einer Lösung
zur Integration der Taverna Work�ow Engine.

Im sechsten und letzten Kapitel bewerten wir abschlieÿend, inwiefern die Ziele der Diplomarbeit
erreicht wurden. Es wird diskutiert, was an der implementierten Lösung verbessert werden kann und
welche weiteren Integrationsschritte im Anschluss an diese Diplomarbeit folgen könnten.

2

2 Grundlagen

Dieses Kapitel soll das nötige Grundwissen über die angesprochenen Themengebiete vermitteln sowie
die verwendeten Technologien beschreiben, soweit es für das Verständnis dieser Ausarbeitung not-
wendig ist. Die Beschreibungen gehen von einem Vorwissensstand aus, den man in etwa bei einem
Studenten der Informatik oder eines ähnlichen Studiengangs im vierten Semester erwarten könnte.
Wir verzichten beispielsweise darauf, die Grundlagen der Modelltheorie oder der objektorientierten
Programmierung zu wiederholen.

2.1 eScience

In der Forschung nimmt die EDV heute oft eine zentrale Rolle ein. Besonders in Fachgebieten wie der
Physik oder den Biowissenschaften beruht der Gewinn neuer Erkenntnisse immer mehr auf komplexen
Computerberechnungen und auf der Auswertung groÿer Datenmengen, die bei Experimenten oder Si-
mulationen entstehen. In diesem Kontext beschreibt Wouters [27] den Begri� eScience (auch e-Science
oder E-Science) als die Verknüpfung mehrerer Entwicklungen: Erstens, die gemeinsame Arbeit welt-
weit verteilter wissenschaftlicher Einrichtungen an Forschungsprojekten, um massive Datenmengen,
wie sie z.B. vom LHC1 oder der Kepler Mission2 produziert werden, in absehbarer Zeit zu verarbeiten.
Zweitens, die Nutzung spezialisierter Internet-Plattformen zur Kommunikation und Zusammenarbeit.
Drittens, die Freigabe und gemeinsame Nutzung von Rechnerkapazitäten in Form von Grid-Com-
puting. Beim Grid Computing bildet eine Menge von vernetzten Rechnern, die von verschiedenen
Inhabern betrieben und kontrolliert werden, eine logische Einheit: das Grid [9]. Die Rechner, aus de-
nen ein Grid besteht, können sich in ihrer geographischen Lage und in ihrer Leistungsfähigkeit sehr
unterscheiden. Durch den Einsatz von Middleware werden diese Unterschiede vor den Benutzern des
Grids aber verborgen, sodass das Grid nach auÿen als ein hochverfügbarer Dienst zur Abarbeitung
von Computerberechnungen erscheint. Über eine Softwareschnittstelle werden Berechnungsaufgaben
an das Grid übermittelt und dann so abgearbeitet, dass sich die Rechenlast möglichst gleichmäÿig auf
die Rechner des Grids verteilt. Der Zugang zu einem Grid ermöglicht Wissenschaftlern, bei Bedarf die
Rechenkapazität eines virtuellen Höchstleistungsrechners zu nutzen.

Ein weiterer wichtiger Teilaspekt der eScience-Bewegung sind dieWerkzeuge zur Kommunikation, Da-
tenerhebung, Datenverarbeitung und Automatisierung. Die Allgegenwärtigkeit von Software-Werkzeu-
gen bei der Forschungsarbeit hat Auswirkungen auf die Arbeitsweise von Wissenschaftlern: Ingenieur-
mäÿiges Vorgehen wird wichtiger, ebenso die Kooperation mit der Industrie. Nicht zuletzt ist eScience
aber auch ein Schlagwort zur Förderung und Ausrichtung wissenschaftlicher Einrichtungen, ursprüng-
lich in britischen Kreisen, seit etwa 2003 aber auch in Deutschland [23, 2].

2.2 Geschäftsprozesse und Work�ows

Work�ow-Technologie ist die Grundlage für Simulation Work�ows. Dieser Abschnitt soll keine er-
schöpfende Auseinandersetzung mit dem Thema bieten, sondern nur die wichtigsten Grundbegri�e
vermitteln. Work�ows haben ihren Ursprung in der Automatisierung von Geschäftsprozessen. Ein
Geschäftsprozess ist ein wiederholbarer Vorgang innerhalb einer Organisation, mit dem (mindestens)
ein wohlde�niertes Ziel erreicht wird, z.B. der Bestellvorgang bei einem Versandhändler. An Ge-
schäftsprozessen können verschiedene Parteien teilnehmen, z.B. ein Kunde, Abteilungen der eigenen

1 Large Hadron Collider, derzeit weltweit gröÿter Teilchenbeschleuniger
2 NASA-Projekt zur Suche nach Planeten auÿerhalb des Sonnensystems über ein Weltall-Teleskop

3

Organisation und andere Organisationen. Work�ows bilden Geschäftsprozesse im Computer ab, wobei
Leymann und Roller [17] zwischen drei Dimensionen unterscheiden:

1. What - Aus welchen Einzelschritten besteht der Work�ow und in welcher Reihenfolge sind sie
auszuführen?

2. Who - Welche Teilnehmer hat der Work�ow und welche Rollen nehmen sie ein?

3. With - Welche Ressourcen, Daten, Programme etc. benötigt der Work�ow zur Ausführung?

Die Ausführung von Work�ows im Rechner geschieht, indem aus einem Work�ow-Modell eine Work-
�ow-Instanz erzeugt wird. Die Bezeichnungen �Prozess� und �Work�ow� werden im realen Sprachge-
brauch oft synonym, und je nach Kontext sowohl für das Modell als auch für die Instanz verwendet.
Abbildung 2 zeigt dagegen die korrekte Terminologie.

Taverna Server

Workflow Instance
Management Service

Embedded Taverna
Workflow Engine

Prozessinstanz

In der realen Welt

Instantiierung

1

n

Prozessmodell

Workflow-Instanz

Im Computer

Instantiierung

1

n

Workflow-Modell

Abbildung 2. Terminologie für Modelle und Instanzen basierend auf [17]

Work�ow-Management-Systeme

Ein Work�ow-Management-System (WfMS) ist Software zur Verwaltung von Work�ow-Modellen und
Instanzen. Es lässt sich grob in zwei Bereiche unterteilen: Entwurf und Ausführung. Im Entwurfs-
bereich werden Work�ow-Modelle mit einem Softwarewerkzeug, dem Modeling Tool, modelliert und
abgespeichert. Im Ausführungsbereich werden abgespeicherte Work�ow-Modelle zur Ausführung vor-
bereitet und instantiiert. Laufende Work�ow-Instanzen können überwacht werden. Zusätzlich sam-
meln WfMS oft Daten zur Auditierung beendeter Work�ow-Instanzen. Zur Speicherung persistenter
Daten, wie z.B. den Zustand laufender Work�ow-Instanzen, setzen WfMS in der Regel relationale,
transaktionale Datenbanksysteme ein.

2.3 Simulation Work�ows

In der Wissenschaft wird zunehmend Work�ow-Technologie eingesetzt, um wissenschaftliche Arbeits-
vorgänge zu automatisieren [27, 10]. Indem Experimente und Simulationen als Work�ows modelliert
werden, können andere Wissenschaftler sie mit wenig Aufwand wiederholen und anpassen, was die
Kollaboration zwischen Wissenschaftlern an unterschiedlichen Standorten fördert. Da im wissenschaft-
lichen Umfeld viele unterschiedliche Technologien und Software-Werkzeuge zum Einsatz kommen, ist
Work�ow-Technologie auch als Form der Anwendungsintegration nützlich.

Simulation Work�ows sind eine spezielle Form der wissenschaftlichen Work�ows, bei denen der Schwer-
punkt auf der Ausführung und Auswertung von Computersimulationen liegt. Sie unterscheiden sich
in einigen Punkten von Business-Work�ows [24]. Wissenschaftliche Work�ows sind datenzentriert,
während Business-Work�ows sich am Kontroll�uss orientieren. Die verarbeitete Datenmenge je In-
stanz ist in wissenschaftlichen Work�ows deutlich gröÿer. Auch die Phasenmodelle (siehe Abbildung
3) unterscheiden sich stark voneinander: Bei Business-Work�ows werden die Schritte Modellierung,
Installation, Ausführung, Überwachung und Analyse in der Regel von unterschiedlichen Spezialisten
ausgeführt, in wissenschaftlichen Work�ows übernimmt der Wissenschaftler all diese Aufgaben. Einige

4

wissenschaftliche WfMS wie Taverna unterscheiden zudem nicht zwischen Installation und Instanti-
ierung von Work�ow-Modellen. Der Grund dafür ist, dass Wissenschaftler oft nach dem Prinzip von
Versuch und Irrtum vorgehen und daher aus einem Work�ow-Modell nicht selten nur eine Instanz er-
zeugt wird, bevor es Änderungen am Modell gibt. Bei Business-Work�ows werden einmal installierte
Work�ow-Modelle dagegen vielfach instantiiert, bevor Änderungen amModell eine erneute Installation
erfordern.

Kunde / Angestellter

Fachexperte

Modellierung

Wissenschaftler

IT-FachkraftAdministrator
(IT-Fachkraft)

Wirtschaftsanalyst

Analyse

Überwachung

Ausführung

Installation

unterbrechen

ausführen /
fortsetzen

Analyse Modellierung

Ausführung &
Überwachung

Phase Benutzer Aktion

Legende

Abbildung 3. Phasenmodell für Business-Work�ows (links) und wissenschaftliche Work�ows (rechts) [10]

2.4 Technologien

In den folgenden Abschnitten werden die verwendeten Technologien kurz beschrieben. Die Erklärungen
zeigen auf, in welchem Zusammenhang die Technologie in dieser Arbeit verwendet wird und warum
das Verständnis der Technologie nötig ist.

VNC

Virtual Network Computing (VNC) bezeichnet die Steuerung entfernter Rechner über ein Netzwerk
mithilfe des Remote Framebu�er Protocols. Dazu überträgt der VNC Client Tastatur- und Mausereig-
nisse an den VNC Server, dieser überträgt im Gegenzug den aktuellen Bildschirminhalt an den VNC
Client. Diese Technologie ist aufgrund der geringen Bandbreite vieler Netzwerke und der vergleichs-
weise hohen Latenz nicht für �üssige Wiedergabe von Videos oder Animationen geeignet, sondern
wird hauptsächlich zur Fernwartung von Rechnersystemen eingesetzt. Auf der Plattform nanoHUB3

wird per VNC die Benutzung von Simulationswerkzeugen im Webbrowser ermöglicht.

XML

Die eXtensible Markup Language (XML) ist ein vom W3C standardisiertes Format, das strukturierte
Daten in Form von XML-Dokumenten beschreibt [4]. XML-Dokumente enthalten hierarchische Da-
tenstrukturen, die nach formal spezi�zierten Regeln als maschinenlesbarer Text dargestellt werden
können. Abbildung 4 zeigt ein einfaches Beispieldokument, in dem einige Daten über diese Ausarbei-
tung festgehalten sind. Die grundlegenden Bausteine, aus denen XML-Dokumente bestehen, sind dort
gekennzeichnet.

3 http://nanohub.org

5

http://nanohub.org

<?xml version="1.0" encoding="UTF-8"?>
<diplomarbeit>

<bearbeiter>
<name>Daniel Huss</name>
<email>hussdl@studi.informatik.uni-stuttgart.de</email>

<telefon art="Privat">123 456 789</telefon>
<telefon art="Büro">000 111</telefon>

</bearbeiter>
<kapitel name="Einleitung" seitenzahl="2" />
<kapitel name="Grundlagen" seitenzahl="4" />
<kapitel name="Untersuchung der Plattformen" />

</diplomarbeit>

Kurzschreibweise für
Elemente ohne Inhalt

Wurzel-Element

Kind-Elemente
Attribut des <telefon> Elements Text-Inhalt des <email> Elements

Abbildung 4. XML-Beispieldokument

In der Praxis ist es für die Verarbeitung von XML-Dokumenten wichtig, Annahmen über den Aufbau
und den Inhalt eines bestimmten Dokumenten-Typs tre�en zu können. Dazu muss z.B. eingeschränkt
werden, welche Elemente in diesem Dokumenten-Typ vorkommen dürfen, wie die Elemente angeord-
net werden müssen, welchen Inhalt sie besitzen dürfen und welche Attribute die Elemente aufweisen
dürfen. Es existieren mehrere Varianten, mit denen man solche Einschränkungen für XML-Dokumente
formulieren kann. Für diese Arbeit sind aber lediglich XML Schema De�nitions (XSD) von Bedeutung
[7]. Mit der Einführung von Schemade�nitionen wird XML zur Metasprache [25]: Jede Schemade�ni-
tion ist selbst ein XML-Dokument und beschreibt eine Klasse von gültigen XML-Dokumenten. Die
Menge aller gültigen XML-Dokumente für ein bestimmtes Schema bilden eine Sprache. Abbildung 5
zeigt eine solche Schemade�nition für das Beispiel aus Abbildung 4. XML sowie Schemade�nitionen
sind für diese Arbeit wichtig, weil andere Technologien wie BPEL und Web services darauf aufbauen,
und da wir XML häu�g als Dateiformat zur Speicherung hierarchischer Datenstrukturen wieder�nden.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="diplomarbeit">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="bearbeiter" maxOccurs="2" minOccurs="1"/>
 <xsd:element ref="kapitel" minOccurs="3" maxOccurs="10"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="bearbeiter">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:element name="telefon" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="art" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="kapitel">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="seitenzahl" type="xsd:int" use="optional"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Abbildung 5. Mögliches XML Schema für das Beispieldokument aus Abbildung 4

6

Web Services

Der folgende Abschnitt ist der Versuch, einen Kompromiss zwischen den De�nitionen von Weerawa-
rana et al. [25] und dem W3C [3] zu �nden: Web services sind eigenständige Softwarekomponenten,
die ihre Funktionalität als Dienst über ein Netzwerk bereitstellen. Web service Technologie beschäf-
tigt sich nicht mit der konkreten Implementierung von Funktionalität, sondern liefert ein plattform-
und herstellerunabhängiges Modell für Beschreibung, Au�ndung und Abruf der Schnittstellen von
Softwarekomponenten. Implementierungsdetails und Eigenheiten ihrer Laufzeitumgebung verbergen
Web sevices hinter ö�entlichen Schnittstellen, die durch den Austausch von Nachrichten angespro-
chen werden. Dadurch wird eine lose Kopplung zwischen Web services und ihren Abrufern erzwungen.
Jeder Web service besitzt eine Identität und eine maschinenlesbare Beschreibung, die es einem Rech-
ner ermöglicht, die Funktionalität des Web services abzurufen. Web services haben im Gegensatz zu
anderen Dienstausprägungen kein Konzept von Abschaltung oder Pausierung: wenn ein Web service
verfügbar bzw. erreichbar ist, dann ist er auch angeschaltet. Obwohl der Name es suggeriert, müssen
Web services nicht unbedingt über das Web erreichbar sein.

Die Integrationslösung, welche im Rahmen dieser Arbeit konstruiert wird, soll als Web service be-
reitgestellt werden. Für diese Arbeit ist nur eine bestimmte technische Ausprägung von Web services
von Bedeutung: Sie basieren auf XML, verwenden SOAP/HTTP zur Kommunikation und werden mit
WSDL beschrieben.

SOAP

Web services kommunizieren mit der Auÿenwelt, indem sie Nachrichten empfangen und versenden.
SOAP ist ein vom W3C standardisiertes, erweiterbares Protokoll zur Zustellung solcher Nachrichten
ausgehend von ihrem Absender über eine Menge von Zwischenstationen bis zu ihrem endgültigen
Empfänger [11]. SOAP-Nachrichten sind XML-Dokumente mit dem Wurzelelement Envelope, darun-
ter können im Element Header Metainformationen zur Nachricht abgelegt werden, die eigentlichen
Nutzdaten der Nachricht be�nden sich im Element Body (s. Abbildung 6). SOAP gibt zwar keinen
Transportmechanismus für die Datenübermittlung zwischen zwei Stationen vor, in der Praxis wird
aber häu�g HTTP eingesetzt.

1
Absender

(initial sender)

0..N
Zwischenstationen

(intermediaries)

1
Empfänger

(ultimate receiver)

…

SOAP-Nachricht

<Envelope
 xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Header> … </Header>
 <Body> … </Body>
</Envelope>

Transport

Übertragungsrichtung

Abbildung 6. Zustellung einer SOAP-Nachricht

WSDL

Die maschinenlesbare Beschreibung eines Web services sollte alle Informationen enthalten, die man
benötigt, um den Web service zu benutzen. Die Web Services Description Language (WSDL) über-
nimmt diese Aufgabe: Sie ist ein XML-Format zur Beschreibung der funktionalen Aspekte von Web
services [25].

7

WSDL-Dokumente bestehen aus einem abstrakten, wiederverwendbaren Teil und einem konkreten
Teil. Im abstrakten Teil wird beschrieben, was der Web service kann: welche Operationen verfügbar
sind, welche Eingaben und Ausgaben sie haben. Im konkreten Teil wird beschrieben, wo der Web
service gefunden werden kann und über welchen Aufrufmechanismus der Web service benutzt wird.

Die aktuelle Version des WSDL-Standards ist zwar 2.0, da aber BPEL mit dieser Version nicht kompa-
tibel ist, wird in dieser Arbeit ausschlieÿlich WSDL 1.1 verwendet. Abbildung 7 zeigt die wichtigsten
Elemente, aus denen WSDL-Dokumente der Version 1.1 bestehen: PortTypes sind abstrakte Schnitt-
stellende�nitionen, die eine oder mehrere Operationen enthalten. Jede Operation besitzt eine Eingabe
oder eine Ausgabe oder beides. Zur Ausnahmebehandlung können Operationen zusätzlich eine Menge
von Fehlerzuständen (faults) de�nieren. Jeder Eingabe, Ausgabe und jedem Fehler wird eine Nachricht
(message) zugeordnet. Das Binding beschreibt, wie Operationen eines bestimmten PortTypes aufge-
rufen werden und de�niert Kodierung sowie Transport von Nachrichten über das Netzwerk. Jedes
Binding bezieht sich auf genau einen PortType, aber für jeden PortType können mehrere Bindings
de�niert werden. Ein mögliches Binding, und das in dieser Arbeit ausschlieÿlich verwendete, ist das
SOAP-Binding im Document-Literal-Stil. Ein Port gibt den Ort einer Implementierung eines PortTy-
pe an und nennt das Binding, mit dem diese Implementierung aufgerufen werden kann. Das Service-
Element fasst schlieÿlich einen oder mehrere Ports zu einem identi�zierbaren Web service zusammen.
Nicht abgebildet ist das Element types, welches die verfügbaren Datenstrukturen für Nachrichtenin-
halte beschreibt. In der Regel wird XML Schema als Typsystem verwendet. Ebenfalls nicht abgebildet
ist das Element import, welches erlaubt, sich innerhalb eines WSDL-Dokuments auf den Inhalt an-
derer WSDL-Dokumente zu beziehen.

Abbildung 7. WSDL 1.1 - Elemente und deren Beziehungen

BPEL

Die Web Services Business Process Execution Language 2.0 (BPEL) ist ein erweiterbares, XML-
basiertes Metamodell für Work�ow- und Prozessmodelle [1]. BPEL ist das Metamodell der SimTech
Simulation Work�ows. Gleichzeitig wird BPEL aber auch in der Industrie eingesetzt, da es sich um
einen OASIS4-Industriestandard handelt.

BPEL-Prozesse nutzen die Funktionalität bestehender Web services. Das Metamodell bietet selbst
nur generische Strukturen zur Steuerung des Kontroll�usses, zur Interaktion mit Web services und
zur Manipulation von XML-Datenstrukturen [25]. Zur Modellierung des Kontroll�usses können so-
wohl blockbasierte Elemente wie Sequenzen, Schleifen oder If-Abfragen, als auch Graphen verwendet

4 Organization for the Advancement of Structured Information Standards: https://www.oasis"=open.org

8

https://www.oasis"=open.org

werden. Der Daten�uss eines BPEL-Prozesses ist implizit durch den modellierten Kontroll�uss gege-
ben. Die im Rahmen dieser Arbeit erstellte Software zur Integration der Taverna Work�ow-Engine
ist darauf ausgerichtet, von BPEL-Prozessen benutzt zu werden, daher werden wir in Kapitel 5 die
Interaktion von Web services mit BPEL-Prozessinstanzen genauer betrachten.

Java

Java ist eine Software-Plattform und eine populäre Programmiersprache, die im Kontext dieser Di-
plomarbeit an zwei Stellen relevant ist: Einerseits wird das Taverna WfMS mit Java entwickelt, an-
dererseits erfolgt die Konstruktion der Integrationslösung in Java Standard Edition, Version 6. Wir
gehen im Folgenden lediglich von Grundkenntnissen der Syntax, der Verwendung von Annotationen
sowie der häu�g verwendeten Datentypen wie String und byte[] aus. Ebenfalls von Bedeutung ist
das JAR-Dateiformat, in dem Java-Programme und Softwarebibliotheken ausgeliefert werden. Eine
JAR-Datei ist ein ZIP-Archiv, das eine Menge von Java-Klassen und sonstigen Dateien enthält, die
während der Ausführung einer Java-Anwendung geladen werden können. In einem speziellen Ordner
namens META-INF werden Metadaten abgelegt, welche z.B. die digitale Signatur des Inhalts einer
JAR-Datei ermöglichen.

JAXB

Die Java API for XML Binding (JAXB) ist eine Standard-Softwarebibliothek zur bidirektionalen Ab-
bildung von XML Schemade�nitionen auf Java-Klassen [14, 28]. Über mitgelieferte Tools lassen sich
aus einer bestehenden Schemade�nition eine Menge von annotierten Java-Klassen generieren. Jede
generierte Klasse repräsentiert ein Element oder einen Typ aus der Schemade�nition. Umgekehrt las-
sen sich aber auch bestehende Java-Klassen mit JAXB-Annotationen anreichern, um die statische
Struktur der Klasse auf XML Schema abzubilden. In beiden Fällen können über JAXB Instanzen
der annotierten Klassen aus eingelesenen XML-Dokumenten erzeugt werden. Instanzen der annotier-
ten Klassen können wiederum zu XML-Dokumenten serialisiert werden. Natürlich besteht auch die
Möglichkeit, solche Objekte programmatisch zu erzeugen oder zu verändern.

JAXB wird in dieser Arbeit in Version 2.1 bei der Konstruktion der Integrationslösung verwendet.
Es wird ausschlieÿlich der Schema-zu-Java-Ansatz eingesetzt, d.h. es werden XML Schemade�nitio-
nen modelliert und Java-Klassen daraus generiert. Der generierte Code wird nicht manuell geändert,
sondern bei jeder Anpassung der Schemade�nition müssen die Java-Klassen erneut generiert werden.

JAX-WS

Die Java API for XML Web services (JAX-WS) ist eine Standard-Softwarebibliothek für die Arbeit
mit Web services unter Java[16]. JAX-WS unterstützt den Entwickler sowohl bei der Verwendung be-
stehender Web services in Java-Anwendungen als auch bei der Implementierung neuer Web services.
Um die Datenstrukturen aus XML-basierten Web services auf Java-Klassen abzubilden, wird JAXB
verwendet. Wie auch bei JAXB gibt es bei JAX-WS zwei grundsätzliche Herangehensweisen: Ent-
weder werden aus einem bestehenden WSDL-Dokument Java-Klassen generiert, oder es wird bereits
existierender Java-Code mit JAX-WS-Annotationen versehen.

Alle Web services, die im Rahmen dieser Diplomarbeit konstruiert werden, setzen JAX-WS in der
Version 2.1 ein. Bei der Implementierung neuer Web services wird, auÿer zu Testzwecken, immer
zuerst ein WSDL-Dokument modelliert und der Java-Code aus diesem Dokument generiert (siehe
Abbildung 8). Die generierten Service Clients sind zu ignorieren oder zu löschen, weil der generierte
Code Mängel aufweist: Er verweist per absoluter Pfadangabe auf die WSDL-Datei, aus welcher der
Client generiert wurde und ist somit an einen einzigen Rechner gekoppelt.

Apache Maven

Maven ist u.a. ein Werkzeug für die automatisierte Erstellung von Softwareartefakten aus Quellcode
und wird hauptsächlich zur Verwaltung von Java-Projekten eingesetzt. Sowohl Taverna als auch die

9

Java-Klassen

.wsdl

WSDL Dokument

Datenstrukturen

modelliert

Entwickler
Services

Port Types

Java Bindings

Endpoint Interfaces

Service Clients

Abbildung 8. Verwendung von JAX-WS in dieser Arbeit

implementierte Integrationslösung verwenden Maven in der Version 2 oder 3. Einige Begri�e aus der
Maven-Terminologie, die für das Verständnis der Ausarbeitung wichtig sind, werden hier vorgestellt.

Projekt Ein Projekt ist eine kohärente Menge von Programmcode-Dateien, sonstigen Ressourcen
sowie Informationen über das Projekt selbst. Aus einem Maven-Projekt geht in der Regel ein Soft-
wareartefakt hervor, z.B. ein ausführbares Programm, eine Programmbibliothek oder eine Website.
Jedes Maven-Projekt wird durch eine XML-Datei namens pom.xml beschrieben, welche sich im Stamm-
verzeichnis des Projekts be�ndet. Die Beschreibung enthält u.a. Name, Version, Besitzer und Art des
Projekts, den Typ des Hauptartefakts, Abhängigkeiten von anderen Maven-Projekten sowie eine Be-
schreibung der Aktivitäten, die zur Erstellung der Artefakte durchgeführt werden müssen.

Build Der Buildprozess ist die Menge und Reihenfolge der Aktivitäten, die Maven durchführen muss,
um die Zielartefakte aus dem Quellcode und anderen Ressourcen eines Projekts zu erstellen. Dazu
gehört in der Regel die Kompilierung des Quellcodes in Binärdateien, Ausführung von Softwaretests,
Paketierung der Binärdateien, digitale Signatur der Artefakte, etc. Aus jedem Maven-Projekt geht
genau ein Hauptartefakt hervor, z.B. das ausführbare Programm in Form einer JAR-Datei. Zusätzlich
können weitere Nebenartefakte entstehen, z.B. die Dokumentation oder der Quellcode.

Repository Maven-Artefakte werden in Repositories installiert, um sie als Abhängigkeit für andere
Projekte verfügbar zu machen. Dazu wird einfach die Artefaktdatei in ein bestimmtes Verzeichnis
kopiert. Der genaue Verzeichnispfad lässt sich anhand des Namens, Typs und Versionsnummer des
zugehörigen Maven-Projekts eindeutig bestimmen. Abhängigkeiten, die im lokalen Repository nicht
verfügbar sind, werden während des Builds bei Bedarf aus einem entfernten Repository per HTTP
nachgeladen und in das lokale Repository kopiert.

2.5 SimTech Work�ow-Umgebung

Der Ausgangspunkt unserer Integrationsaufgabe ist die SimTech Work�ow-Umgebung (Abbildung 9).
Sie besteht im Wesentlichen aus einem Work�ow Modeling Tool (im Bild links) und einer Server-
seite (im Bild rechts). Der Datenaustausch zwischen Modeling Tool und der Serverseite �ndet zum
Teil direkt, zum Teil über Apache ActiveMQ statt. ActiveMQ ist ein Dienst zur Übertragung von
Nachrichten zwischen verschiedenen Anwendungen.

Serverseite

Auf der Serverseite werden Dienste und sonstige Software betrieben, welche die Modellierung und
Ausführung von Simulation Work�ows unterstützen. Die Laufzeitumgebung für diese Dienste ist der
Apache Tomcat Web Container. ODE-PGF ist eine modi�zierte Version der Apache ODE BPEL-
Engine und ist für die Ausführung von BPEL-Prozessen zuständig. Apache Axis2 ist ein Container
für Web services, der u.a. die Implementierung einiger Simulation-Work�ow-Aktivitäten beinhaltet.

10

Apache
ActiveMQ

 Apache Tomcat

 Axis2

Web Services...Web Services...

 Eclipse JEE

SimTech BPEL Designer

ODE Process Management

Data or Message Flow

Apache ODE-PGF

Databases

Other Applications...Other Software...

Other Plugins...Other Plugins...

Abbildung 9. Vereinfachte Darstellung der SimTech-Architektur [12]

Zur Speicherung persistenter Daten kommen die Datenbanksysteme MySQL und PostgreSQL zum
Einsatz.

Modeling Tool

Das Modeling Tool basiert auf der Eclipse Rich Client Platform und deren Plugin-System, die SimTech
Werkzeuge zur Modellierung von Simulation Work�ows sind als Eclipse-Plugins realisiert. Im Mittel-
punkt steht der SimTech BPEL Designer, der eine modi�zierte Version des Eclipse BPEL Designers
ist. Der SimTech BPEL Designer visualisiert BPEL-Prozessmodelle und erlaubt die Bearbeitung der
Prozessmodelle über eine graphische Ober�äche. Um die modellierten Prozesse aus der Eclipse-Ent-
wicklungsumgebung heraus zu instantiieren, wird das ODE Process Management Plugin verwendet.
Es erlaubt die Verwaltung einer lokalen Installation der Apache ODE. Indem das Modeling Tool mit
der BPEL-Engine kommuniziert, lassen sich über die graphische Ober�äche auch laufende BPEL-
Prozessinstanzen überwachen oder debuggen, die Ergebnisse beendeter Instanzen können analysiert
werden.

11

3 Untersuchung der eScience-Plattformen

In diesem Teil der Arbeit werden die bereits vor Beginn dieser Arbeit ausgesuchten Plattformen
nanoHUB.org und myExperiment sowie das wissenschaftliche WfMS Taverna vorgestellt. Anschlieÿend
betrachten wir die in Frage kommenden Integrationsansätze, wobei für jeden Integrationsansatz ein
grobes Konzept zur technischen Realisierung umrissen werden soll. Eine ausführliche Bewertung der
gefundenen Integrationsansätze erfolgt separat in Kapitel 4.

Die Integrationsmöglichkeiten lassen sich, wie in Abbildung 3 dargestellt, grundsätzlich in zwei Kate-
gorien unterteilen: Zum einen können nützliche Funktionen oder Daten, welche von den Plattformen
angeboten werden, in das bestehenden SimTech-System aufgenommen oder dort verfügbar gemacht
werden. Andererseits besteht die Möglichkeit, SimTech-Infrastruktur auf den Ressourcen des Platt-
form-Betreibers zur Verfügung zu stellen. Beide Richtungen sind Gegenstand dieser Arbeit.

SimTech-Ressourcen über
Plattform bereitstellen

Plattform-Ressourcen für
SimTech verfügbar machen

SimTech eScience Plattform

DatenTools HostingProzesse

...
Weitere

Apache
ActiveMQ

 Apache Tomcat

 Axis2

Web Services...Web Services...

 Eclipse JEE

SimTech BPEL Designer

ODE Process Management Apache ODE-PGF

Other Plugins...Other Plugins...

Databases

Other Applications...Other Applications...

Abbildung 10. Mögliche Ausrichtung der Integrationsansätze

Zur allgemeinen Vorgehensweise bei der Untersuchung gibt es zwei Anmerkungen: Integrationsan-
sätze, bei denen die Plattform o�ensichtlich nicht im Sinne ihres Betreibers benutzt wird oder bei
denen gegen die Nutzungsbedingungen verstoÿen wird, kommen nicht in Betracht. Ebenfalls nicht
Teil dieser Arbeit sind solche Integrationsvorhaben, die eine besondere Kooperationsvereinbarung der
Universität Stuttgart mit dem jeweiligen Plattform-Betreiber benötigen würden. Wir beschränken uns
im Folgenden daher auf jene Teile der Plattformen, die für jeden Plattform-Benutzer zugänglich sind.

3.1 nanoHUB

nanoHUB.org5 ist eine Web-Plattform für Wissenschaftler und Studenten mit dem Schwerpunkt Nano-
technologie. Die Nutzer der Plattform stellen auf nanoHUB Ressourcen mit Bezug zur Nanotechnologie
zur Verfügung: Interaktive Simulationstools, Präsentationen, Lehrmaterialien und sonstige Dateien wie
Quellcode oder Kalkulationstabellen. Für sämtliche Inhalte, die von Benutzern hochgeladen werden,
fordern die Betreiber ein uneingeschränktes Nutzungsrecht ein6.

Die interaktiven Simulationstools sind das herausragende Merkmal der Plattform. Sie erlauben dem
Benutzer, aus dem Webbrowser heraus rechenintensive Operationen auf Grid-Ressourcen der Platt-
form-Betreiber und deren Partnern auszuführen. Des Weiteren bietet nanoHUB einige Social-Networ-
king-Funktionen wie ein persönliches Pro�l, Nachrichtenaustausch mit anderen Benutzern, Gruppen
und Kontakten. Ein Teil dieser Funktionen ist auch ohne Registrierung abrufbar. Für den Upload
von Dateien sowie für die Benutzung der Simulationstools ist jedoch die Anmeldung mit einem Be-
nutzerkonto erforderlich. Die Registrierung eines neuen Benutzerkontos ist kostenlos und durch ein
CAPTCHA7 vor Automatisierung geschützt.

nanoHUB wird seit 2002 vom Network for Computational Nanotechnology (NCN) entwickelt und
betrieben [15]. Das NCN ist ein Netzwerk US-amerikanischer Universitäten, in welchem die Pur-
due University als Betreiber von nanoHUB.org eine führende Rolle einnimmt. Andere Mitglieder des

5 http://nanohub.org
6 https://nanohub.org/legal/license; http://archive.is/adGAU
7 Completely Automated Public Turing test to tell Computers and Humans Apart - Sicherheitsmechanismus,
der erzwingen soll, dass ein Vorgang von einem Menschen ausgeführt wird.

13

http://nanohub.org
https://nanohub.org/legal/license
http://archive.is/adGAU

NCN wie die University of Illinois oder das Massachusetts Institute of Technology tragen zur Platt-
form hauptsächlich bei, indem sie Simulationstools, Präsentationen und Lehrmaterialien bereitstellen.
Geldgeber des NCN ist die National Science Foundation (NSF), welche die Plattform im Zeitraum von
2002 bis 2010 mit knapp 14 Mio. USD gefördert hat. Für den Zeitraum von 2013 bis voraussichtlich
2017 werden ca. weitere 14 Mio. USD zur Verfügung stehen8.

Abbildung 11 zeigt die grobe Funktionsweise der Plattform: Benutzer interagieren mit dem System
hauptsächlich per Webbrowser, auf der nanoHUB.org Website werden die Inhalte über ein Content-
Management-System (CMS) präsentiert. Auch die Simulationstools werden im Webbrowser bedient.
Der Zugri� auf die Simulationstools erfolgt durch ein Java-Applet, welches einen VNC-Client imple-
mentiert. Das Applet stellt eine Verbindung zu einem virtuellen Desktop her, welcher auf den Rechnern
der Purdue-Universität oder deren Partnern ausgeführt wird. Für Berechnungen, die von den Simula-
tionstools durchgeführt werden, steht also die Kapazität des entfernten Rechners zur Verfügung. Bis
zu drei solcher VNC-Sitzungen lassen sich je Benutzer gleichzeitig starten. Eine begonnene Sitzung
kann pausiert und später wiederaufgenommen werden.

notify staff

nanoHUB.org

Subversion
Repository

User Web Browser

Tool Developer

is a

HTTP
VNC

build &
install tool

nanoHUB Staff
Member

review tool
upload tool source code

1

3
4 52

VNC Applet

CMS

register tool

Trac PMS

nanoFORGE

notification

Affiliate Grid Resources

Linux
OS

HUBzero

VNC Server
& Proxy

X Session
Manager

Per-User Virtual Environment

X Session

Simulation Tool

User-Mapped File System

nanoHUB.org

Subversion
Repository

User Web Browser

Tool
Developer

is a

HTTP

VNC Applet

CMS

Trac PMS

nanoFORGE

HTTP

SVN Client

Affiliate Grid Resources

Linux
OS

HUBzero

VNC Server
& Proxy

X Session
Manager

Per-User Virtual Environment

X Session

Simulation Tool

User-Mapped File System

VNC

Data or Message Flow A B A running in B Protocol

Legend

Data or Message Flow A B A running in B Protocol

Legend

Abbildung 11. Aufbau der nanoHUB Plattform

Für jeden im System registrierten Benutzer wird serverseitig bei Bedarf ein isolierter, virtueller Li-
nux-Rechner angelegt, in dem der virtuelle Desktop läuft. In dessen virtuellen Dateisystem werden
auch Tool-Sitzungen abgespeichert und Simulationsergebnisse abgelegt. Die eingesetzte Virtualisie-
rungssoftware ist OpenVZ9. Benutzer können Simulationstools zur Plattform beitragen, sie nehmen
dann die Rolle eines Tool-Entwicklers ein und erhalten Zugri� auf die nanoFORGE, einen gesonderten
Bereich der Plattform. Die nanoFORGE bietet Tool-Entwicklern Projektverwaltung via Trac10 sowie
Zugri� auf ein Subversion-Repository je Simulationstool.

HUBzero

nanoHUB.org basiert auf dem Softwarestack HUBzero [18]. Bei HUBzero handelt es sich um eine
wiederverwendbare Sammlung von Tools und Middleware, mit der sich eine Plattform wie nanoHUB

8 Zugehörige Förderungen der NSF:

� http://www.nsf.gov/awardsearch/showAward?AWD_ID=0228390; http://archive.is/W881N
� http://www.nsf.gov/awardsearch/showAward?AWD_ID=1227110; http://archive.is/2QQlA

9 http://openvz.org
10 Web-basierte Software zur Projektverwaltung: http://trac.edgewall.org/

14

http://www.nsf.gov/awardsearch/showAward?AWD_ID=0228390
http://archive.is/W881N
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1227110
http://archive.is/2QQlA
http://openvz.org
http://trac.edgewall.org/

aufbauen und warten lässt. Um eine HUBzero-basierte Plattform zu skalieren, wird eine Menge von
Rechnern (Nodes), auf denen die HUB-Software installiert ist, zu einem Cluster verbunden. Dazu teilt
ein Administrator dem System die Adressen bzw. Netzwerknamen dieser Rechner per Webober�äche
oder Kommandozeilenprogramm mit.

Zum Teil ist HUBzero eine Weiterentwicklung des Purdue University Network Computing Hub aus
dem Jahr 1996 [13]. Alle Komponenten, die in HUBzero zum Einsatz kommen, sind freie Software. In
Abbildung 12 ist zu sehen, wie diese Komponenten aufeinander aufbauen: Die Grundlage bildet das
Linux-Betriebssystem, eine Virtualisierungssoftware stellt die nötige Isolation zwischen verschiedenen
Benutzern und deren virtuellen Desktops her. Über eine entsprechende Firewall-Kon�guration wird
sicherheitshalber verhindert, dass Simulationstools eingehende TCP/IP Verbindungen oder UDP-Pa-
kete empfangen können. Eine Clustering-Komponente sorgt für die Synchronisierung verschiedener
HUBzero-Nodes und ermöglicht so die Skalierung des Systems, indem einfach die Software auf jedem
Rechner im Cluster installiert wird. Um die von jedem Benutzer verbrauchten Ressourcen wie Spei-
cherplatz und CPU-Zeit zu begrenzen, werden Quotas benutzt. Zur Ausführung von Simulationstools
und deren Bedienung im Webbrowser erzeugt das System X11-Sessions und leitet sie per VNC an den
Browser weiter. Das Rappture-Framework ermöglicht hierbei die De�nition von graphischen Ober�ä-
chen für bestehende Kommandozeilen-Simulationsprogramme. Auf diesen Funktionen setzt schlieÿlich
ein Content-Management-System auf, welches auf dem Joomla-Framework basiert.

Content Management System

Clustering

Load Balancer

File

Transfer

VNC
Job Scheduler

Linux Environment

Usermode Virtualization

Quotas
Quota Propagation

X Window System

Firewall

Rappture

Abbildung 12. HUBzero Software Stack

Neben nanoHUB existieren weitere Plattformen, die auf HUBzero aufbauen, z.B. pharmaHUB12 und
NEEShub13. Bei HUBzero handelt es sich allerdings um eine reine Softwarelösung, d.h. die Ressourcen,
welche z.B. zur Ausführung der Simulationstools benötigt werden, muss der Betreiber selbst bereit-
stellen. Gemeinnützige Organisationen können auf Anfrage direkt bei der Purdue University Hosting
sowie Training der Mitarbeiter erhalten14.

Rappture

Ein erwähnenswertes Teilprojekt der nanoHUB/HUBzero-Plattform ist die Rapid Application Infra-
structure : ein Framework zur Kapselung von Programmen, die selbst keine graphische Benutzer-
schnittstelle haben. Rappture übernimmt die Generierung einer GUI, das Sammeln der zum Start
nötigen Benutzereingaben, den Aufruf des Programms und die Darstellung der Ausgabe. Für jedes zu
kapselnde Programm legt der Entwickler hierfür eine XML-Kon�gurationsdatei tool.xml an, in der

11 Basis für graphische Ober�ächen unter Linux
12 Plattform für Pharmatechnik: https://pharmahub.org/
13 Plattform für Erdbebentechnik: http://nees.org/
14 http://hubzero.org/hosting/purdue

15

https://pharmahub.org/
http://nees.org/

u.a. die möglichen Ein- und Ausgaben des Programms beschrieben werden. Falls die Kommandozeilen-
schnittstelle zur Übergabe der Benutzereingaben und der Programmausgabe nicht ausreicht, existiert
eine Rappture-API, die explizit aus dem betro�enen Programm heraus angesteuert werden kann. Das
erfordert natürlich, dass der Entwickler Zugri� auf den Quellcode des gekapselten Programms hat.
Anwendungen, die auf Rappture aufbauen, können auf nanoHUB.org und anderen HUBzero-basierten
Portalen mit wenig Aufwand installiert werden. Rappture ist das bevorzugte Entwicklungswerkzeug
für Simulationstools, das man auf nanoHUB.org �ndet (siehe Abbildung 13).

Home › resources › Tools › Nano Heatflow › Session: 603400 "Nano Heatflow"

Daniel Huss (hussdl)

0 New Messages

Need Help?Home My HUB Resources Members Explore About Support

Abbildung 13. Ausführung eines Rappture-getriebenen Simulationstools auf nanoHUB.org

Integration mit nanoHUB

In den folgenden Abschnitten betrachten wir die gefundenen Integrationsansätze für nanoHUB.

Ausführung von SimTech-Anwendungen auf nanoHUB.org

Was nanoHUB von anderen Plattformen unterscheidet, sind vor allem die serverseitig ausgeführten,
interaktiven Simulationstools, die per VNC bedient werden. Jeder registrierte Benutzer kann Projek-
te für neue Simulationstools anlegen, Quellcode und Binärdateien hochladen und seine Tools veröf-
fentlichen. Es liegt daher nahe, zu prüfen, inwiefern sich dieses Angebot nutzen lässt, um SimTech-
Anwendungen auf nanoHUB auszuführen.

Abbildung 14 zeigt den Ablauf einer neuen Tool-Registrierung: Um eigene Simulationstools auf na-
noHUB anzulegen, wird auf Anfrage in einem separaten Bereich (nanoFORGE) ein Subversion-Re-
pository sowie ein Trac-Projekt eingerichtet. Der Tool-Entwickler muss seinen Quellcode in dieses
Repository hochladen, unabhängig davon, ob er sein Tool als Open-Source oder Closed-Source ver-
ö�entlichen möchte. Die Installation des Tools erfolgt ebenfalls manuell auf Anfrage. Ein nanoHUB-
Mitarbeiter prüft dann den hochgeladenen Code und führt den Build-Vorgang durch. Wenn es sich um
eine Rappture-Anwendung handelt, kann man davon ausgehen, dass keine besondere Dokumentation
für die Installation nötig ist. Ansonsten muss der Tool-Entwickler die nötigen Schritte für den Build
im Trac Projekt-Wiki für den nanoHUB-Mitarbeiter vorher nachvollziehbar dokumentieren. Ändert

16

Registriere neues Tool

Quelle: https://nanohub.org/resources/3865/download/tools.pdf

Benutzer nanoHUB Mitarbeiter

Freigabe

Lade Quellcode hoch

Beantrage Installation
Installation und

Freigabe

Wartezeit

Veröffentliche

Tool

Lauftest

Ändere

Quellcode

Beantrage

Veröffentlichung

Abbildung 14. Registrierung und Installation eines neuen Simulationstools

der Entwickler etwas am Tool-Quellcode, muss erneut die Installation beantragt werden. Ist der Ent-
wickler mit der Installation zufrieden, beantragt er die Verö�entlichung des Tools. Es kann immer nur
eine Version des Tools verö�entlicht sein.

Weil dieser Prozess eher träge ist, existiert für die Anwendungsentwicklung zusätzlich die Möglichkeit,
einen �Workspace� einzurichten. Dabei handelt es sich um einen kompletten, virtuellen Linux-Desktop
inklusive IDE, auf den man via VNC zugreift. Über den Workspace hat der Entwickler Zugri� auf seine
Software und kann Lauftests durchführen, bevor das Tool von einem nanoHUB-Mitarbeiter installiert
wird. Dem gewöhnlichen nanoHUB-Benutzer steht dieser Workspace allerdings nicht zur Verfügung15.

Um SimTech-Dienste und Anwendungen auf nanoHUB auszuführen, muss der zuvor beschriebene
Tool-Registrierungsprozess mindestens einmal durchgeführt werden. Bei jeder Änderung muss auÿer-
dem erneut die Installation und die Freigabe durch einen nanoHUB-Mitarbeiter angefordert werden.
Die Ausführung von Serverdiensten und lange laufenden Programmen ist allerdings problematisch:

� Die Lebensdauer aller serverseitig ausgeführten Programmen ist an die zugehörige VNC-Sitzung
gekoppelt. Wird die VNC-Sitzung im Browser beendet oder pausiert, stoppt auch die serverseitige
Ausführung des Simulationstools.

� Die Architektur der Plattform ist darauf ausgerichtet, interaktive Programme auszuführen.

� Eingehende Netzwerkverbindungen sind nicht möglich. Ob serverseitige Programme ausgehende
Verbindungen zum Internet herstellen können, ist unklar16 (siehe Abbildung 15).

� Die Verwendung der Plattform als Hoster für Web services ist mit hoher Wahrscheinlichkeit nicht
im Sinne der Betreiber und würde schnell unterbunden werden.

15 Quelle: https://nanohub.org/tools/workspace/
16 Eine Supportanfrage sowie eine ö�entliche Frage auf der nanoHUB Website blieben unbeantwortet: https:

//nanohub.org/answers/question/1210

17

https://nanohub.org/tools/workspace/
https://nanohub.org/answers/question/1210
https://nanohub.org/answers/question/1210

Affiliate Grid Resources

Linux
OS

HUBzero

VNC Server
& Proxy

X Session
Manager

Per-User Virtual Environment

X Session

User-Mapped File System

Simulation
Workflow

[nanoHUB]
Compute

Eigenstates

Affiliate Grid Resources

Linux
OS

VNC

HUBzero

VNC Server
& Proxy

X Session
Manager

Per-User Virtual Environment

nanoHUB.org

CMS

X Session

Eigenstate Computation Tool

User-Mapped File System

<bpel:invoke>

➀

➁

Firewall

External Software

Web Browser

VNC Applet
VNC

 Apache Tomcat

??
SimTech Application hosted

on nanoHUB.org

Login / Session
Manager

VNC Automation
Component

Tool Output

Tool Input
Parameters

Tool GUI Descriptor

➂

Data or Message Flow A B A running in B Protocol

Data or Message Flow A B A running in B Protocol

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

 Eclipse JEE

SimTech BPEL Designer

ODE Process Management

Other Software...Other Software...

Other Plugins...Other Plugins...

Apache ODE-PGF

HUB Tool Executor
Service

Legend

Legend

Abbildung 15. Integrationsansatz: Ausführung von SimTech-Anwendungen auf nanoHUB.org

Verwendung der interaktiven Simulationstools in Simulation Work�ows

nanoHUB bietet etwa 260 Simulationstools für das Fachgebiet Nanotechnologie an. Andere HUBzero-
basierte Plattformen verwenden denselben Mechanismus, um Simulationstools für weitere Fachgebiete
zur Verfügung zu stellen. Es ist denkbar, dass einige dieser bestehenden Simulationstools nützlich
genug sind, um sie als Komponenten in Simulation Work�ows einzusetzen. Die einzige Schnittstelle
zu den Simulationstools ist VNC, daher muss jede technische Realisierung für den Zugri� auf die
Simulationstools einen VNC-Client verwenden. Natürlich soll der Aufruf eines Simulationstools aus
einem Simulation Work�ow keine Interaktion des Wissenschaftlers mit dem Tool erfordern, sondern
automatisiert ablaufen. Um die Eingaben an das Tool abzusetzen, müssen also Tastatur- und Maus-
ereignisse simuliert werden, die Ausgabe muss per Texterkennung eingelesen werden, oder, sofern das
Tool es ermöglicht, als Dateidownload gespeichert werden.

Ein Konzept für die technische Umsetzung wird in Abbildung 16 dargestellt: Simulation Work�ows (1)
rufen in diesem Ansatz per BPEL-Invoke (2) einen Web service, der für die Ausführung von Simulati-
onstools beliebiger HUBzero-basierter Plattformen zuständig ist. Dieser neue Web service besteht im
Wesentlichen aus zwei Komponenten (3): Eine VNC-Automatisierungskomponente muss mithilfe einer
Tool-spezi�schen Beschreibungsdatei in der Lage sein, für ein bestimmtes Simulationstool die nötigen
Eingaben zu machen und die Ausgabe des Simulationstools abzugreifen. Die Beschreibungsdatei muss
die visuellen Positionen aller Eingabefelder enthalten, ggf. in Abhängigkeit der Fensterproportionen.
Um einen gültigen Kontext für die VNC-Sitzung zu scha�en, wird eine zweite Komponente benötigt,
die sich per HTTP-Client auf der HUB-Website einloggt. Zusätzlich zu diesen beiden Mechanismen
muss evtl. ein Load Balancer oder eine Warteschlange zum Einsatz kommen, da pro eingeloggtem
Benutzer nur eine begrenzte Zahl von VNC-Sitzungen gleichzeitig aktiv sein darf.

Nutzung der Datei-Ressourcen

Jeder nanoHUB-Benutzer erhält 1 GiB Speicher für die Verö�entlichung von Dateien wie Simulati-
onsergebnissen oder Lehrmaterial. Für die Tool-Entwicklung stehen auÿerdem Subversion-Repositories
zur Verfügung, in denen sich Dokumente versioniert einp�egen lassen. Prinzipiell lässt sich dieses An-
gebot nutzen, um in Simulation Work�ows bestehende Datensätze der Plattform abzurufen oder z.B.
Simulationsergebnisse auf der Plattform zu speichern und mit anderen Benutzern zu teilen.

18

Affiliate Grid Resources

Linux
OS

HUBzero

VNC Server
& Proxy

X Session
Manager

Per-User Virtual Environment

X Session

User-Mapped File System

Simulation
Workflow

[nanoHUB]
Compute

Eigenstates

Affiliate Grid Resources

Linux
OS

VNC

HUBzero

VNC Server
& Proxy

X Session
Manager

Per-User Virtual Environment

nanoHUB.org

CMS

X Session

Eigenstate Computation Tool

User-Mapped File System

<bpel:invoke>

➀

➁

Firewall

External Software

Web Browser

VNC Applet
VNC

 Apache Tomcat

??
SimTech Application hosted

on nanoHUB.org

Login / Session
Manager

VNC Automation
Component

Tool Output

Tool Input
Parameters

Tool GUI Descriptor

➂

Data or Message Flow A B A running in B Protocol

Data or Message Flow A B A running in B Protocol

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

 Eclipse JEE

SimTech BPEL Designer

ODE Process Management

Other Software...Other Software...

Other Plugins...Other Plugins...

Apache ODE-PGF

HUB Tool Executor
Service

Legend

Legend

Abbildung 16. Integrationsansatz: Verwendung der interaktiven Simulationstools in Simulation Work�ows

19

Für den lesenden und schreiben Zugri� auf Dateien bietet nanoHUB zwar WebDAV17 und SFTP18

als zusätzliche Schnittstellen an, im Versuch waren diese aber nicht erreichbar. Eine Integrations-
lösung müsste daher wie in Abbildung 17 dargestellt per HTTP die Anmeldung auf der Website
automatisieren und den Dateitransfer ebenfalls per HTTP vornehmen. Problematisch für diesen In-
tegrationsansatz ist jedoch, dass jeder Upload eines regulären nanoHUB-Benutzers erst von einem
nanoHUB-Mitarbeiter manuell freigegeben werden muss.

nanoHUB.org

Simulation
Workflow

Publish Result
Data

Subversion
Repository

<bpel:invoke>

➀

➁

Data or Message Flow

[nanoHUB]

➂

HUB module

Login / Session
Manager

HTTP Client

CMS

 Apache Tomcat

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

 Eclipse JEE

SimTech BPEL Designer

ODE Process Management

Other Software...Other Software...

Other Plugins...Other Plugins...

Apache ODE-PGF

Datastore Service

Legend

Abbildung 17. Integrationsansatz: Nutzung der Datei-Ressourcen

3.2 myExperiment

myExperiment ist eine Web-Plattform zur gemeinsamen Nutzung und Verteilung von wissenschaft-
lichen Work�ows und der dazugehörigen Ressourcen. Die Plattform ist ein Projekt der eScience-Or-
ganisation myGrid19 und wird hauptsächlich von der University of Southampton und der University
of Manchester entwickelt und betrieben. Haupt-Geldgeber ist der Engineering and Physical Sciences
Research Council (EPSRC). Seit 2001 wurden die myGrid-Projekte mit etwa 6,5 Mio. GBP gefördert,
im Januar 2014 läuft der aktuelle Zuschuss aus20. Das Hauptziel des Projekts ist es, den Benutzern zu
ermöglichen, ihre Work�ows aktiv mit anderen Wissenschaftlern zu teilen. myExperiment beschreibt

17 Web Distributed Authoring and Versioning: Erweiterung von HTTP für Dateizugri�e.
18 Secure File Transfer Protocol: Protokoll zur verschlüsselten Übertragung von Dateien über ein Netzwerk.
19 http://www.mygrid.org.uk/
20 Zugehörige Förderungen des EPSRC:

� http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G026238/1; http://archive.is/PxH8G
� http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/D044324/1; http://archive.is/3HLqp
� http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=GR/R67743/01; http://archive.is/iUtIP

20

http://www.mygrid.org.uk/
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G026238/1
http://archive.is/PxH8G
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/D044324/1
http://archive.is/3HLqp
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=GR/R67743/01
http://archive.is/iUtIP

sich selbst als virtuelle Forschungsumgebung, konkret handelt es sich um ein Repository für wissen-
schaftliche Work�ows und sonstige Dateien. Man �ndet auÿerdem grundlegende Social Networking
Funktionen wie Benutzerpro�le, Kontaktlisten, Gruppen und Nachrichtenversand. Des Weiteren bie-
tet myExperiment eine Sicht auf die Daten des Service-Katalogs BioCatalogue 21, in dem Web services
zu verschiedenen Themenbereichen der Biowissenschaften registriert sind. [5]

Ein herausragendes Merkmal der Plattform ist die automatische Erkennung und Aufbereitung von
Metadaten beim Upload von Work�ows. Für eine Reihe von Work�ow-Sprachen generiert die Website
automatisch Vorschau-Diagramme und Statistiken, z.B. über die verwendeten Work�ow-Aktivitäten.
Unter den unterstützten Work�ow-Sprachen be�nden sich auch Taverna 1 und Taverna 2 Work�ows,
BPEL allerdings nicht22.

Die Funktionen der Website stehen zum groÿen Teil auch über eine HTTP-Schnittstelle zur Verfü-
gung. Der Lesezugri� auf Ressourcen der Plattform ist vollständig implementiert. Eine detaillierte
und aktuelle Au�istung der implementierten Funktionen be�ndet sich im myExperiment Entwickler-
Wiki23. Die Ruby on Rails Webanwendung hinter myExperiment ist freie Software unter der BSD-
Lizenz und kann prinzipiell von jedermann in Betrieb genommen werden. Im Rahmen dieser Arbeit
wurde auÿer http://www.myexperiment.org allerdings kein weiterer ernsthafter Betreiber entdeckt.

Integration mit myExperiment

Die Möglichkeiten zur Integration mit myExperiment sind etwas eingeschränkt, da myExperiment
Work�ow-Modelle lediglich speichert, versioniert und indexiert, aber keine Ausführung der hochge-
ladenen Work�ows ermöglicht. Das Work�ow-Repository könnte dennoch in die SimTech-Modellie-
rungsumgebung integriert werden, auch wenn keine Metadaten-Erkennung für BPEL-Work�ows zur
Verfügung steht. Des Weiteren sind die Nutzung der Datei-Ressourcen und des Service-Katalogs denk-
bare Integrationsansätze.

Einbindung des Work�ow-Repositories

Wird das Work�ow Repository in das SimTech Modeling Tool integriert, sind mehrere Anwendungs-
fälle denkbar. Zum einen kann der Benutzer lokal gespeicherte Work�ows mit dem myExperiment
Repository synchronisieren und versionieren. Zum anderen lassen sich Taverna Work�ows anderer
myExperiment-Benutzer au�nden und als Sub-Prozess aufrufen, falls Taverna Work�ows ebenfalls
integriert werden. Diese Funktionen müssten mit einem neuen Eclipse-Plugin realisiert werden, wel-
ches mit der myExperiment HTTP- API oder mit der Web-Ober�äche interagiert.

Nutzung der Datei-Ressourcen

Wie auch bei nanoHUB (siehe Abschnitt 3.1) steht es jedem Benutzer der Plattform frei, beliebige
Dateien hochzuladen. Im Unterschied zu nanoHUB �ndet auf myExperiment jedoch keine manuelle
Freigabe der hochgeladenen Daten statt und die technische Realisierung wird durch die vorhandene
HTTP-API etwas vereinfacht. myExperiment behält sich vor, Kopien aller hochgeladenen Daten zu
erstellen.

Nutzung des Service-Katalogs

Der Service-Katalog BioCatalogue kann in das SimTech Modeling Tool integriert werden, um dem
Modellierer wissenschaftlicher Work�ows eine durchsuchbare Auswahl von Web services anzubieten.
Nützliche Dienste können dann z.B. per Drag&Drop direkt in ein Work�ow-Modell eingefügt werden.
Die entsprechenden BPEL-Fragmente, z.B. invoke-Aktivitäten, werden automatisch erzeugt. Um dies
zu realisieren, müssten ein oder mehrere Eclipse-Plugins entwickelt werden, die Suchanfragen des

21 http://biocatalogue.org
22 Liste der unterstützen Typen: http://www.myexperiment.org/content_types; http://archive.is/Qjpx7
23 http://wiki.myexperiment.org/index.php/Developer:API; http://archive.is/a19Ym

21

http://www.myexperiment.org
http://biocatalogue.org
http://www.myexperiment.org/content_types
http://archive.is/Qjpx7
http://wiki.myexperiment.org/index.php/Developer:API
http://archive.is/a19Ym

Modellierers an den Service-Katalog weiterleiten, das Suchergebnis auf geeignete Weise präsentieren
und bei Bedarf BPEL-Fragmente für den Aufruf der Web services erzeugen.

3.3 Taverna

Taverna ist ein Work�ow-Management-System mit einer proprietären Work�ow-Beschreibungssprache
[26]. Wie myExperiment ist auch Taverna ein Projekt der eScience-Organisation myGrid. Das Projekt
hat zwar enge Verbindungen zu den Biowissenschaften, dennoch sind Taverna-Work�ows universell
einsetzbar und nicht an eine bestimmte Domäne gebunden [20]. In dieser Arbeit betrachten wir das
Release 2.4, was in der ersten Hälfte 2013 der aktuelle Stand war. Taverna ist vollständig in Java
geschrieben und ist freie Software unter der GNU Lesser General Public License 2.1.

Abbildung 18 zeigt die Hauptbestandteile der Taverna-Softwaresammlung. Sie besteht aus einem Mo-
deling Tool, in dem auch Work�ows ausgeführt werden können und aus zwei separaten Work�ow-
Ausführungsumgebungen. In den folgenden Abschnitten werden das zugrundeliegende Work�ow Me-
tamodell und die einzelnen Softwarekomponenten kurz beschrieben.

Taverna v2.4

Command Line Interface

Workflow Engine
Command Line

Environment I/O

Workflow Engine Java Classes

Activity Implementations

Workflow Metamodel SecurityRaven

· Rest Service
· R-Shell

· XPath
· Data Flow

Provenance
API

Reference
API

Apache
Tomcat

Container

SOAP/REST

Server

Workflow Instance
Management Service

Workbench

Graphical Workflow Designer

Workflow Execution
Monitor

myExperiment
Integration

Service Catalogue

Workflow Execution
Result View

· Beanshell
· Soap Service

· Spreadsheet import
· Local Program Execution

«use»

«use»
DependencyBA A hosted on BProtocol

«use»

Command Line Interface

Workflow Engine
Command Line

Environment I/O

Workflow Engine Core

Services (Activity Implementations)

Workflow Metamodel SecurityRaven

· REST Service
· R-Shell

· XPath
· Data Conversion

Provenance
API

Reference
API

Apache
Tomcat

Container

SOAP/HTTP

Server

Workflow Instance
Management Service

Workbench

Graphical Workflow Designer

Workflow Execution
Monitor

myExperiment
Integration

Service Catalogue

Workflow Execution
Result View

· Beanshell
· SOAP Service

· Spreadsheet import
· Local Tool Execution

«use»
DependencyBA A hosted on BProtocol

«use»

«use»«use»

Taverna 2.4

Legend
Legend

Abbildung 18. Hauptbestandteile des Taverna 2.4 WfMS

Ein Taverna 2 Work�ow ist ein gerichteter, azyklischer Graph, dessen Knoten Verarbeitungseinheiten
(processors) sind. Jede Verarbeitungseinheit wandelt eine Menge von Eingaben in eine Menge von Aus-
gaben um. Es gibt zwei Kantentypen: einen für den Daten�uss zwischen den Verarbeitungseinheiten
und einen weiteren für den Kontroll�uss. Den Kontroll�uss kann, muss man aber nicht modellieren, weil
ein impliziter Kontroll�uss aus dem Daten�uss hervorgeht. Die Orientierung am Daten�uss ermöglicht
einen relativ e�zienten Umgang mit Datenströmen (siehe Abschnitt Services) sowie die automatische
Parallelisierung des Kontroll�usses. Abbildung 19 zeigt die graphische Darstellung eines einfachen

22

Taverna-Work�ows, bei dem der Kontroll�uss durch eine explizite Kontroll�uss-Kante eingeschränkt
wird. Die Kante stellt eine Kausalordnung zwischen den verbundenen Verarbeitungseinheiten her.

...

...

...
Compute Cell

State

Simulation Workflow (BPEL)
Taverna Workflow

Taverna Workflow Instances

Data or Message Flow

Taverna Process
Management

 Apache ODE Taverna Server

 Modelle

 Instanzen

A B C

C1A1 A2 A3 B1 B2

Instanzen Modelle

A1 A1P

A2 A2P

A3 A3P

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

SimTech BPEL Designer

ODE Process Management Apache ODE-PGF

Other Software...Other Software...

Other Plugins...Other Plugins...

Data or Message Flow

Taverna Server
Taverna Process

Management

 Eclipse JEE Apache Tomcat

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Other Software...Other Software...

 Apache Tomcat

ODE Process Management

Other Plugins...Other Plugins...

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Taverna Server

Other Software...Other Software...

Eclipse JEE Apache Tomcat

Taverna Workflow Designer

SimTech BPEL Designer

Web Services A B C Web Service

Datenfluss

Legende

Kontrollfluss

Abbildung 19. Einfacher Taverna-Work�ow mit einer expliziten Kontroll�uss-Kante

Das Taverna Work�ow Metamodell kennt drei Datenstrukturen: Skalare vom Typ String oder byte[],
Fehlerdokumente und Listen. Listen können alle Datentypen enthalten und bis zu einer Tiefe von 100
geschachtelt werden. Im Gegensatz zu BPEL 2.0 bietet das Taverna Metamodell keine blockbasierten
Programmierstrukturen. For-Schleifen müssen nicht explizit modelliert werden, sondern können emu-
liert werden, indem ein ausgehender Listen-Daten�uss an eine Verarbeitungseinheit angelegt wird, die
als Eingabe Skalare erwartet. Repeat-Until-Schleifen lassen sich über einen gesonderten Mechanismus
implementieren, bei dem ein verschachtelter Work�ow so lange wiederholt wird, bis eine bestimmte
Bedingung eintritt.

Work�ow Engine

Der Kern des Taverna WfMS umfasst knapp 40 Maven-Projekte. Die Artefakte, welche aus diesen
Projekten hervorgehen, ergeben aber noch keine lau�ähige Software. Es handelt sich um Libraries,
auf denen eine konkrete Ausführungsumgebung wie der Taverna Server aufbauen kann. Aus diesem
Grund ist die Work�ow Engine in Abbildung 18 zur Unterscheidung von lau�ähigen Softwareproduk-
ten mit einer gestrichelten Linie dargestellt. Zum Kern gehört auch das XML-basierte Exportformat
für Taverna 2 Work�ows, welches die Dateierweiterung t2flow trägt. Version 1 der Taverna Engine
verwendet mit SCUFL ein anderes Work�ow Metamodell und Exportformat. Im Folgenden ist mit
der Bezeichnung �Taverna Work�ow� immer t2flow gemeint.

Services Work�ow-Aktivitäten heiÿen im Taverna-Vokabular Services. Ein Service ist eine Verar-
beitungseinheit und hat somit 0..n Eingaben und 0..m Ausgaben. Verschachtelte Work�ows sowie
Aktionen zur Konvertierung, Aufteilung oder Zusammenführung von Datenstreams sind ebenfalls
Verarbeitungseinheiten, aber keine Services. Taverna ermöglicht Streaming der Ein- und Ausgaben
zwischen Verarbeitungseinheiten. Ein Service, welcher von der Ausgabe eines anderen Services ab-
hängt, muss daher nicht warten, bis die vorherige Berechnung komplett abgeschlossen ist, sondern
kann einen eingehenden Datenstrom stückchenweise verarbeiten, wie ihn der vorgeschaltete Service
produziert. So entstehen innerhalb eines Taverna Work�ows automatisch Daten-Pipelines. Allerdings
unterstützen nicht alle Service-Typen Streaming.

Die folgenden Service-Implementierungen stehen jedem Taverna Work�ow zur Verfügung:

� Ausführung eines Beanshell-Skripts. Beanshell ist eine Skriptsprache mit vereinfachter Java-Syn-
tax. Der Skript-Code wird in das Work�ow Modell eingebettet. Pipelining der Ein- und Ausgaben
von Beanshell-Skripten ist in Version 2.4 nicht möglich24.

� Web service Aufruf per SOAP/HTTP anhand einer WSDL-Datei

� Aufruf von HTTP-Schnittstellen
24 O�ene Aufgabe für Taverna 3: http://dev.mygrid.org.uk/issues/browse/T3-87; http://archive.is/

VcU9Q

23

http://dev.mygrid.org.uk/issues/browse/T3-87
http://archive.is/VcU9Q
http://archive.is/VcU9Q

� Statistische Berechnungen und Gra�ken per R-Shell25

� Ausführung von XPath-Queries

� Ausführung lokaler Programme per Kommandozeile

� Import von Kalkulationstabellen

Weitere Service-Implementierungen lassen sich auf drei Arten realisieren: In der einfachsten Variante
kann über den Beanshell-Service Java-Code aus einer JAR-Datei ausgeführt werden. Dazu muss die
JAR-Datei zusammen mit dem Work�ow ausgeliefert werden. Eine weitere Möglichkeit ist die Ver-
wendung des API Consumer Tools 26, mit dem sich Teile einer Java-API als Service abbilden lassen.
Das Tool erstellt eine XML-Datei, welche in der Taverna Workbench importiert werden kann. Auch
bei dieser Variante müssen die gerufenen Java-Klassen und deren Abhängigkeiten für die Ziel-Ausfüh-
rungsumgebung verfügbar gemacht werden. Die dritte und aufwändigste Möglichkeit ist die Erstellung
eines Taverna-Plugins, das einen neuen Service-Typ implementiert.

Reference & Provenance APIs Die Work�ow-Engine behandelt in ihrer Java-API alle Datensätze
zunächst als Referenzen. Um an die dahinterliegenden Datenstreams zu gelangen, muss eine Referenz
über die Reference API aufgelöst werden. Der konkrete Speicherort der Daten ist implementierungsab-
hängig: die Daten können lokal im Arbeitsspeicher oder in einer entfernten Datenbank abgelegt sein.
Für Daten, die von einem Taverna Work�ow produziert werden, kann die Engine über die Provenance
API automatisch Herkunftsnachweise erzeugen und diese separat in einer Datenbank speichern.

Raven Fest in die Work�ow Engine integriert ist ein eigener Java Classloading-Mechanismus, der
sich an Maven-Artefakten orientiert. Raven setzt den Java Classpath-Mechanismus teilweise auÿer
Kraft und lädt Klassen stattdessen aus einem Maven-Repository. Für jedes registrierte Maven-Ar-
tefakt wird ein eigener Classloader instantiiert, welcher alle Klassen aus der transitiven Hülle der
Maven-Abhängigkeiten des Artefakts laden kann. Somit wird es möglich, verschiedene Versionen von
Softwarebibliotheken gleichzeitig zu nutzen.

Server

Der Taverna Server ist eine Java-Webanwendung zur Ausführung von Taverna Work�ows, auf die
entfernt über eine HTTP- oder eine SOAP Web service Schnittstelle zugegri�en werden kann. Über
diese Schnittstelle werden Work�ow-Instanzen sowie deren Ein- und Ausgabedaten verwaltet, und die
Kon�guration des Servers geändert. Anders als bei der Apache ODE wird beim Taverna Server keine
Menge von installierten Work�ow-Modellen verwaltet. Der Taverna Server nimmt bei jedem Start
einer neuen Work�ow-Instanz das zugehörige Work�ow-Modell als Parameter der submitWorkflow

Operation entgegen und ordnet das Modell ausschlieÿlich der gestarteten Instanz zu. Jede gestartete
Work�ow-Instanz erhält eine eindeutige Kennung, über die sich nach dem Start u.a. das dazugehörige
Work�ow-Modell und die erzeugten Ausgaben abrufen lassen. Der Server führt jede Work�ow-Instanz
in einer eigenen Java Virtual Machine (JVM) aus, indem er einen neuen Betriebssystem-Prozess
abzweigt.

Command Line Interface

Neben dem Server existiert mit der Kommandozeilen-Schnittstelle eine einfachere Möglichkeit, Taverna
Work�ows auszuführen. Auch hier entsteht je Work�ow-Instanz ein neuer Betriebssystem-Prozess. Die
Ein- und Ausgabedaten werden als Dateien übergeben, wobei man sehr kleine Eingaben auch direkt
als Kommandozeilenargument übergeben kann.

25 Softwareumgebung für statistische Berechnungen: http://www.r-project.org/
26 http://www.taverna.org.uk/documentation/taverna-2-x/api-consumer-tool/

24

http://www.r-project.org/
http://www.taverna.org.uk/documentation/taverna-2-x/api-consumer-tool/

Workbench

Die Taverna Workbench besteht im Wesentlichen aus einem graphischen Work�ow Designer, einer
Ansicht zur Ausführung von Work�ows und zur Auswertung der Ergebnisse, Integration mit myEx-
periment und dem Servicekatalog BioCatalogue.org.

Der Servicekatalog und die myExperiment-Integration unterstützen den Anwender bei der Auswahl
geeigneter Work�ow-Aktivitäten und enthalten hauptsächlich Web services für Aufgaben aus den
Biowissenschaften. Die gefundenen Services lassen sich direkt als neue Aktivität in den aktuell be-
arbeiteten Work�ow einfügen. Work�ows werden im Work�ow Designer per Drag&Drop modelliert,
das Layout des Daten�uss-Graphen (siehe Abbildung 20) wird dabei stets automatisch berechnet und
lässt sich nicht vom Benutzer ändern.

Abbildung 20. Taverna Work�ow Designer

Wird ein Work�ow in der Workbench ausgeführt, erhält man eine graphische Darstellung des Aus-
führungsfortschritts. Durch Färbung des Graphen werden ausgeführte Aktivitäten, noch nicht aus-
geführte Aktivitäten und Fehler bei der Ausführung unterschieden. Noch während der Ausführung
können Teilausgaben untersucht werden, sobald sie vorliegen. Bisher unterstützt die Workbench nur
die Ausführung auf dem lokalen Rechner, es gibt keine Integration mit dem Taverna Server.

Zukünftige Entwicklung

In der zweiten Hälfte des Jahres 2013 soll die erste Alphaversion27 von Taverna 3.0 erscheinen, in
der es zwei signi�kante Änderungen geben wird: Zum einen wird SCUFL228 t2flow als Work�ow-
Beschreibungssprache ersetzen, zum anderen wird anstelle von Raven in Zukunft das OSGi-Framework
als Modulsystem eingesetzt.

Integration von Taverna

Taverna ist im Gegensatz zu den anderen untersuchten Plattformen eine reine Softwareplattform
ohne dazugehörige Infrastruktur. Die Integration von Taverna in die SimTech Work�ow-Umgebung
ist daher eine (nicht weniger spannende) Rückfall-Lösung, falls aus der Untersuchung von nanoHUB
und myExperiment keine attraktiveren Integrationsansätze hervorgehen.

27 Taverna Roadmap: http://www.taverna.org.uk/introduction/roadmap/;http://archive.is/76xdX
28 http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2+language

25

http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2+language

Taverna Work�ows als Bestandteil von BPEL-Prozessen

Bei diesem Integrationsansatz wird ermöglicht, beliebige Taverna-Work�ows als Bestandteil in die
BPEL-basierten Simulation Work�ows einzubinden (siehe Abbildung 21). Es gibt verschiedene Mög-
lichkeiten, diesen Ansatz technisch zu realisieren, z.B. durch Integration des Taverna Servers, durch
Generierung von Wrapper Web services oder durch Erweiterung der Apache ODE. Wir werden diese
Herangehensweisen in Kapitel 4.2 im Detail betrachten. Alle Lösungen, die Web service einsetzen,
müssen lange laufende Taverna-Work�ows und somit die asynchrone Ausführung mittels Callback un-
terstützen. Die Fähigkeit, Taverna-Work�ows in Simulation Work�ows einzusetzen, ist Voraussetzung
für alle weiteren Integrationsansätze, die im Folgenden genannt werden.

...

...

...
Compute Cell

State

Simulation Workflow (BPEL)
Taverna Workflow

Taverna Workflow Instances

Data or Message Flow

Taverna Process
Management

 Apache ODE Taverna Server

 Modelle

 Instanzen

A B C

C1A1 A2 A3 B1 B2

Instanzen Modelle

A1 A1P

A2 A2P

A3 A3P

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

SimTech BPEL Designer

ODE Process Management Apache ODE-PGF

Other Software...Other Software...

Other Plugins...Other Plugins...

Data or Message Flow

Taverna Server
Taverna Process

Management

 Eclipse JEE Apache Tomcat

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Other Software...Other Software...

 Apache Tomcat

ODE Process Management

Other Plugins...Other Plugins...

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Taverna Server

Other Software...Other Software...

Eclipse JEE Apache Tomcat

Taverna Workflow Designer

SimTech BPEL Designer

Web Services A B C Web Service

Abbildung 21. Integrationsansatz: Taverna Work�ows als als Bestandteil von BPEL-Prozessen

Verwaltung von Taverna Server-Installationen im SimTech Modeling Tool

Falls der Taverna Server eingesetzt wird, um Taverna Work�ows als Bestandteil von BPEL-Prozes-
sen auszuführen, kann das SimTech Modeling Tool um einen neuen Adapter für den Taverna Server
erweitert werden (siehe Abbildung 22). Mit diesem Server-Adapter können lokale oder entfernte In-
stallationen des Taverna Servers verwaltet werden. Denkbare Anwendungsfälle sind z.B. Überwachung
und manuelle Terminierung laufender Work�ow-Instanzen oder die Verwaltung der Serverkon�gurati-
on. Die Umsetzung dieses Integrationsansatzes würde analog zur ODE-Integration als Eclipse-Plugin
erfolgen.

Eingliederung der Taverna Workbench in den SimTech BPEL Designer

Um in BPEL eingebettete Taverna-Work�ows direkt aus dem SimTech Modeling Tool heraus zu editie-
ren, können Teile der Taverna Workbench in den BPEL Designer integriert werden (siehe Abbildung
23). Dieser Integrationsansatz lässt sich z.B. realisieren, indem die betro�enen Workbench-Artefakte
als Eclipse-Plugins zur Verfügung gestellt werden. Alternativ dazu kann die Workbench auch weiterhin
als eigenständige Anwendung ausgeführt werden: Der bestehende Workbench-Quellcode muss dann so
erweitert werden, dass Inter-Prozess-Kommunikation mit dem SimTech Modeling Tool möglich wird.

26

...

...

...
Compute Cell

State

Simulation Workflow (BPEL)
Taverna Workflow

Taverna Workflow Instances

Data or Message Flow

Taverna Process
Management

 Apache ODE Taverna Server

 Modelle

 Instanzen

A B C

C1A1 A2 A3 B1 B2

Instanzen Modelle

A1 A1P

A2 A2P

A3 A3P

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

SimTech BPEL Designer

ODE Process Management Apache ODE-PGF

Other Software...Other Software...

Other Plugins...Other Plugins...

Data or Message Flow

Taverna Server
Taverna Process

Management

 Eclipse JEE Apache Tomcat

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Other Software...Other Software...

 Apache Tomcat

ODE Process Management

Other Plugins...Other Plugins...

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Taverna Server

Other Software...Other Software...

Eclipse JEE Apache Tomcat

Taverna Workflow Designer

SimTech BPEL Designer

Web Services A B C Web Service

Abbildung 22. Integrationsansatz: Verwaltung von Taverna Server-Installationen aus Eclipse

...

...

...
Compute Cell

State

Simulation Workflow (BPEL)
Taverna Workflow

Taverna Workflow Instances

Data or Message Flow

Taverna Process
Management

 Apache ODE Taverna Server

 Modelle

 Instanzen

A B C

C1A1 A2 A3 B1 B2

Instanzen Modelle

A1 A1P

A2 A2P

A3 A3P

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

SimTech BPEL Designer

ODE Process Management Apache ODE-PGF

Other Software...Other Software...

Other Plugins...Other Plugins...

Data or Message Flow

Taverna Server
Taverna Process

Management

 Eclipse JEE Apache Tomcat

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Other Software...Other Software...

 Apache Tomcat

ODE Process Management

Other Plugins...Other Plugins...

Apache
ActiveMQ

 Axis2

Web Services...Web Services...

Apache ODE-PGF

Taverna Server

Other Software...Other Software...

Eclipse JEE Apache Tomcat

Taverna Workflow Designer

SimTech BPEL Designer

Web Services A B C Web Service

Abbildung 23. Integrationsansatz: Eingliederung der Taverna Workbench in den SimTech BPEL Designer

27

4 Wahl einer Integrationsaufgabe

Da im zeitlichen Rahmen dieser Diplomarbeit nicht alle Integrationsansätze aus den Kapiteln 3.1,
3.3 und 3.2 verwirklicht werden können und auch nicht jeder denkbare Integrationsansatz unbedingt
sinnvoll ist, muss eine Auswahl getro�en werden. Dazu ermitteln wir zunächst die Kriterien, nach
denen wir bewerten, wie attraktiv und wie machbar die einzelnen Integrationsansätze sind. Nachdem
wir anhand dieser Kriterien eine Auswahl getro�en haben, werden wir in Kapitel 5 die genauen
Anforderungen an die Integrationslösung ermitteln, verschiedene Lösungsalternativen vorstellen, und
die Implementierung einer Lösung vorstellen.

4.1 Auswahlkriterien

Die Integrationsansätze werden im Folgenden nicht anhand einer Ordinalskala, sondern eher in Form
von Gutachten miteinander verglichen. Entsprechend sind die Kriterien auch keine objektiv quanti-
�zierbaren Einheiten, sondern von subjektiver Natur. Sie lassen sich in die Kategorien Nutzen und
Machbarkeit aufteilen.

Nutzen

Anhand dieser Kriterien bewerten wir die Nützlichkeit und damit die Attraktivität eines Integrations-
ansatzes getrennt von der tatsächlichen Machbarkeit der Integration.

� Nutzung von externer Infrastruktur: Von besonders groÿem Interesse sind alle Ansätze, mit denen
sich bestehende SimTech-Infrastruktur auf die Rechner der Plattform auslagern lassen.

� Nähe zum Thema: Alle Integrationsansätze sollten einen klaren Bezug zur bestehenden Work�ow-
Umgebung erkennen lassen.

� Neuartigkeit: Der ausgewählte Ansatz sollte entweder etwas ermöglichen, was vorher in der
SimTech Work�ow-Umgebung nicht möglich war oder erlauben, dass etwas radikal anders ge-
macht wird als zuvor.

� Ersetzbarkeit: Ein attraktiver Integrationsansatz nutzt die herausragenden Merkmale der eScience-
Plattform und ist nicht leicht durch die Dienste eines spezialisierteren Anbieters zu ersetzen.

� Zweckentfremdung: Die integrierte Plattform sollte auf die vom Betreiber vorgesehene Weise be-
nutzt werden und eine Integrationslösung sollte keine technischen Maÿnahmen umgehen, die eine
Zweckentfremdung verhindern sollen.

Machbarkeit

Anhand dieser Kriterien soll versucht werden, abzuschätzen, ob die Planung und Konstruktion einer
Integrationslösung innerhalb des Zeitfensters dieser Diplomarbeit zu machen ist. Zunächst muss die
Komplexität der Aufgabe eingeschätzt werden. Eine technisch sehr anspruchsvolle Aufgabe bedeutet
ein höheres Risiko, dass der Aufwand unterschätzt wird oder unvorhergesehene Probleme bei der
Konstruktion auftreten. Potenzielle technische Probleme sollen bereits im Vorfeld erkannt werden und
die Wahl der Aufgabe sollte eher risikoavers gesteuert sein, da es im Zeitplan dieser Arbeit wenig
Spielraum für Änderungen gibt. Der geschätzte Zeitaufwand sollte im Bereich von 160 Stunden liegen,
damit die Aufgabe rechtzeitig abgeschlossen werden kann.

4.2 Analyse und Bewertung

Die Ansätze aus Kapitel 3 werden an dieser Stelle auf Eignung und Machbarkeit untersucht.

29

Ausführung von SimTech-Anwendungen auf nanoHUB.org

Auf den ersten Blick scheint dieser Ansatz vielversprechend, aber in der Untersuchung hat sich ge-
zeigt, dass die gewünschte Ausführung von Serverdiensten sich mit nanoHUB nicht umsetzen lässt.
Der manuelle Freischaltprozess für neue Simulationstools ist zwar problematisch, aber kein KO-Krite-
rium. Entscheidend sind vielmehr die Kopplung der Ausführung von Simulationstools an eine VNC-
Sitzung sowie die Erwartung der Plattform-Betreiber, dass interaktive Software aufgespielt wird. Ein-
zig das SimTech Modeling Tool könnte auf nanoHUB ausgeführt werden, wenn auch die Bedienung
einer Eclipse-Anwendung im Browserfenster etwas unangenehm ist. Auf die Interaktion mit einer
ODE-Instanz muss aufgrund der isolierten Ausführungsumgebung aller Simulationstools verzichtet
werden, ebenso auf eingehende und möglicherweise auf ausgehende Netzwerkverbindungen. Es ist zu-
dem sehr fraglich, ob die Installation einer kompletten Eclipse-Plattform genehmigt werden würde,
weil sich deren Ressourcenverbrauchspro�l von den bestehenden Simulationstools sehr unterscheidet.
Ob für Simulationstools überhaupt eine JVM zur Verfügung steht, ist unklar. Im Versuch wurde die
Installation einer einfachen Java-Anwendung mit Swing-GUI verweigert. Aus den genannten Gründen
erscheint deshalb auch die Auslagerung des Modeling Tools unattraktiv.

Verwendung der interaktiven Simulationstools in Simulation Work�ows

Die Simulationstools sind zwar das herausragende Merkmal der Plattform, jedoch besteht an der
Verwendung der bestehenden Tools nur geringes Interesse. Viele der angebotenen Tools sind lediglich
GUI-Wrapper um frei verfügbare Kommandozeilenprogramme. Solche Software sollte besser über WS-
I[22] anstatt über VNC eingebunden werden. Die Ansteuerung der Simulationstools über VNC ist
zudem sehr aufwändig, technisch nicht elegant und unzuverlässig: Kleinste Änderungen der Tool-
Ober�äche können die VNC-Automatisierung zum Erliegen bringen. Im gegebenen Zeitrahmen wäre
die Konstruktion vermutlich nicht machbar, da der geschätzte Aufwand bei mehr als 320 Stunden
liegt.

Nutzung der Datei-Ressourcen

Dieser Ansatz scheitert an den Kriterien Neuartigkeit und Ersetzbarkeit: Für Datei-Hosting sind
andere Dienste besser geeignet, auch wenn dadurch Kosten verursacht werden. Die manuelle Freigabe
aller Uploads auf nanoHUBmacht den Ansatz ebenfalls unattraktiv. Obwohl die technische Umsetzung
mangels einer geeigneten Schnittstelle unangemessen aufwändig wäre, läge sie mit weniger als 160
Stunden dennoch innerhalb des vorgegebenen Zeitrahmens.

Einbindung des Work�ow-Repositories

Dieser Ansatz ist uninteressant, solange die SimTech Work�ow-Umgebung keine Taverna-Work�ows
unterstützt, da im Work�ow-Repository von myExperiment keine BPEL-Prozesse geführt werden.
Dieser Ansatz gehört mit weniger als 160 Stunden zu den einfachen Aufgaben.

Nutzung der Datei-Ressourcen

Die Nutzung der Datei-Ressourcen auf myExperiment unterscheidet sich nur in Details von nanoHUB
und ist daher ebenfalls kein attraktiver Integrationsansatz.

Nutzung des Service-Katalogs

Ein Web-basierter Servicekatalog wie BioCatalogue ist bisher nicht in das SimTech Modeling Tool
integriert. Die Vorteile gegenüber der direkten Benutzung der Servicekatalog-Website sind jedoch
überschaubar, sodass hier wenig Neuartiges entsteht. Der Servicekatalog und insbesondere das An-
gebot von BioCatalogue haben sich im Gespräch mit den Betreuern als wenig interessant für das

30

Institut herausgestellt. Da eine ansprechende Präsentation der Suchergebnisse im Modeling Tool sehr
aufwändig werden kann, liegt der geschätzte Zeitaufwand bei etwa 160 Stunden.

Taverna Work�ows als Bestandteil von BPEL-Prozessen

Die Orientierung am Daten�uss in Taverna-Work�ows ist ein komplementärer Ansatz zu BPEL, den
es so in der existierenden SimTech Work�ow-Umgebung noch nicht gibt. Mit diesem Integrationsan-
satz lassen sich die Stärken von Taverna-Work�ows in BPEL-Prozessen nutzen. Gleichzeitig ist die
Ausführung von Taverna-Work�ows der Ausgangspunkt für weitere Taverna-bezogene Integrationsan-
sätze. Der Aufwand zur Realisierung hängt von der Komplexität des gewählten Entwurfsansatzes ab.
Unter den diskutierten Ansätzen sind auch solche mit etwa 160 Stunden Aufwand.

Verwaltung von Taverna Server-Installationen im SimTech Modeling Tool

Die Integration des Taverna Servers in das Modeling Tool ist für den Betrieb von Taverna-Work�ows
nicht essenziell, sondern bietet nur Bequemlichkeitsfunktionen. Da im Gegensatz zur ODE-Integration
kein automatisches Deployment von Taverna-Work�ow-Modellen benötigt wird, ist der Nutzen dieser
Integration sehr fraglich. Der Konstruktionsaufwand liegt geschätzt bei weniger als 160 Stunden.

Eingliederung der Taverna Workbench in den SimTech BPEL Designer

Falls Taverna-Work�ows in BPEL-Dateien eingebettet werden, ist dieser Integrationsansatz eine groÿe
Erleichterung, um die eingebetteten Taverna-Work�ows zu bearbeiten. Dennoch bietet die Integration
der Workbench keine grundlegend neue Funktionalität. Falls Taverna-Work�ows per Dateireferenz in
BPEL-Prozesse eingebunden werden, wäre sie über�üssig. Die Komplexität dieser Integrationsaufgabe
hängt stark von der Herangehensweise ab: Die Bereitstellung der Workbench als Eclipse-Plugins ist
im Vergleich sehr viel aufwändiger als die Modi�kation der alleinstehenden Workbench-Anwendung.
Letzteres liegt bei einem geschätzten Aufwand von unter 160 Stunden.

4.3 Entscheidung für Taverna Work�ows als Bestandteil von BPEL-Prozessen

Die endgültige Wahl der durchzuführenden Integrationsaufgabe erfolgte in Absprache mit den Betreu-
ern. Da die Untersuchung ergeben hat, dass auf nanoHUB keine Dienste ausgelagert werden können,
�el die Wahl auf Taverna. In dieser Arbeit soll die Taverna Work�ow-Engine integriert werden, da die
Ausführung von Taverna-Work�ows als Bestandteil von BPEL-Prozessen Voraussetzung für weitere
Integrationsschritte ist.

31

5 Integration der Taverna Work�ow-Engine

In diesem Kapitel werden wir die konkreten Anforderungen an die Integrationslösung sammeln und
davon ausgehend verschiedene Entwurfsansätze vorstellen. Die Entwurfsansätze werden miteinander
hinsichtlich der Anforderungen verglichen und ein geeigneter Ansatz wird schlieÿlich zur Implemen-
tierung ausgewählt.

5.1 Anforderungen

Wir unterscheiden zwischen Basisanforderungen, die auf jeden Fall von allen Ansätzen erfüllt sein müs-
sen, und weiteren Anforderungen, deren Erfüllungsgrad mit einer dreiwertigen Ordinalskala abgebildet
wird: - (schlecht), o (ohne Wertung), + (gut).

Basisanforderungen

Dies sind die zu implementierenden, elementaren Anwendungsfälle. Taverna-Work�ows müssen als Be-
standteil eines BPEL-Prozesses synchron als auch asynchron ausführbar sein. Per BPEL-Code müssen
laufende Taverna-Work�ow-Instanzen abgebrochen werden können. Es muss ein Konzept zur Fehler-
behandlung vorhanden sein, da Taverna-Work�ows Fehler erzeugen können und diese in Form von
Fehlerdokumenten als Teil des Ausführungsergebnisses zurückliefern. Die Work�ow-Eingaben müssen
vom Modellierer per BPEL-Code gesetzt und verändert werden können. Die Work�ow-Ausgabe muss
vom umgebenden BPEL-Prozess ausgelesen und ausgewertet werden können. Dabei muss das Taver-
na-Typsystem vollständig unterstützt werden, d.h. es muss zwischen Zeichenketten, Binärdaten und
(verschachtelten) Listen unterschieden werden.

Weitere Anforderungen

� Standardkonformität: Werden bestehende Standards im Entwurf und in der Implementierung ver-
wendet?

� Plattformunabhängigkeit: Kann die Lösung in unterschiedlichen Hardware- und Softwareumge-
bungen ausgeführt werden?

� Erweiterbarkeit/Änderbarkeit: Wie groÿ ist der Aufwand aus der Sicht eines Entwicklers, um neue
Funktionen hinzuzufügen oder bestehende Funktionalität zu ändern?

� Implementierungsaufwand: Kann die Lösung im gegebenen Zeitrahmen konstruiert werden?

� Komplexität des Lösungsansatzes: Ist der Entwurf aus der Sicht eines Entwicklers für das Problem
angemessen?

� Bedienbarkeit: Ist die Lösung aus Sicht eines Anwenders einfach zu bedienen?

� Wiederverwendung: Werden bestehende Softwarelösungen wiederverwendet, anstatt das Rad neu
zu er�nden?

� Erweiterte Management-Funktionalität: Bietet die Lösung neben den Basisfunktionen zur Aus-
führung von Taverna-Work�ows weitere Funktionalität zur Verwaltung von Work�ow-Instanzen
oder der Software-Kon�guration?

5.2 Beispiel

Die Integrationsaufgabe soll hier anhand eines Beispiels verdeutlicht werden. In diesem Beispiel wird
ein bestehender Taverna-Work�ow in einen BPEL-Work�ow eingebunden und mehrmals ausgeführt.
Der Taverna-Work�ow (siehe Abbildung 24) ist in diesem Beispiel ein Platzhalter für eine komplexere
Simulation von Zellen in einem Gewebe: Er berechnet für ein gegebenes zweidimensionales Zellgitter

33

einen Zeitschritt in Conway's Game of Life29 und liefert das veränderte Zellgitter zurück. Der um-
gebende BPEL-Prozess hat die Aufgabe, das initiale Zellgitter entgegenzunehmen und den Taverna-
Work�ow in einer Schleife aufzurufen. Die Rückgabe des Taverna-Work�ows wird jeweils zur Eingabe
des nächsten Durchlaufs. Nach jedem Durchlauf gibt der BPEL-Prozess das Zwischenergebnis zur Vi-
sualisierung an einen speziellen Web service weiter. Dies wird fortgeführt, bis eine bestimmte Anzahl
von Iterationen erreicht ist. Abbildung 25 zeigt das Beispiel als Pseudocode.

Executor
Provider

Callback
Consumer

Asynchroner Aufruf

:BPEL Process
:Taverna 2
Executor

submitWorkflow(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID
Workflow ID

onResult(Workflow ID, Output)

submitWorkflowCallback(Workflow ID, out1, out2)

Synchroner Aufruf

:BPEL Process
:Taverna 2
Executor

execute(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID

(out1, out2)

onResult(Workflow ID, Output)

Visualization Service

Taverna 2 Executor Service

Taverna CLI
<cells> →

← <instanceReference>

← <cells>

Loop

Data Flow

Legend

Web service request Web service response

<bpel:copy>
 <bpel:from
partnerLink="t2executor"
endpointReference="myRole"/>

<bpel:to>$submitWorkflowRequest.
payload//*[local-name()="soap"]/
@address</bpel:to>
</bpel:copy>

➀
➁

➂
④

⑤

BPEL Workflow
Taverna Workflow

<cells> →

← <instanceReference>

Retrieve Callback Address

BPEL Process Taverna 2 Executor

Executor
Consumer

Callback
Provider

public void BpelProcess() {

 Taverna2Workflow cell_simulation_tick;
 WebService visualizer;

 XML cells =
 "<cells colsPerRow='10'>
 <a/><a/><a/><d/><d/><d/><d/><d/><d/><d/><d/><a/><a/><a/><d/><d/><d/>
 <d/><d/><d/><d/><d/><d/><d/><d/><d/><d/><d/><a/><a/><a/><d/><d/><d/>
 <d/><d/><d/><a/><a/><a/><d/><d/><d/><d/><d/><a/><a/><a/><d/><d/><d/>
 <d/><d/><d/><a/><d/><a/><d/><d/><d/><d/><d/><a/><a/><a/><d/><d/><d/>
 <d/><d/><d/><a/><d/><a/><d/><d/><d/><d/><d/><a/><a/><a/><d/><d/><d/>
 <d/><d/><d/><d/><d/><d/><d/><d/><d/><d/><d/><a/><a/><a/><d/><d/><d/>
 </cells>"
 int iterations = 0;
 do {
 WorkflowOutput output = cell_simulation_tick.invoke(new WorkflowInput(cells));
 cells = output.cells;
 visualizer.invoke(cells, iterations);
 } while (++iterations <= 100);
}

Abbildung 24. Taverna-Work�ow für die
Berechnung eines Zeitschritts in Conway's
Game of Life

Executor
Provider

Callback
Consumer

Asynchroner Aufruf

:BPEL Process
:Taverna 2
Executor

submitWorkflow(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID
Workflow ID

onResult(Workflow ID, Output)

submitWorkflowCallback(Workflow ID, out1, out2)

Synchroner Aufruf

:BPEL Process
:Taverna 2
Executor

execute(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID

(out1, out2)

onResult(Workflow ID, Output)

Visualization Service

Taverna 2 Executor Service

Taverna CLI
<cells> →

← <instanceReference>

← <cells>

Loop

Data Flow

Legend

Web service request Web service response

<bpel:copy>
 <bpel:from
partnerLink="t2executor"
endpointReference="myRole"/>

<bpel:to>$submitWorkflowRequest.
payload//*[local-name()="soap"]/
@address</bpel:to>
</bpel:copy>

➀
➁

➂
④

⑤

BPEL Workflow
Taverna Workflow

<cells> →

← <instanceReference>

Retrieve Callback Address

BPEL Process Taverna 2 Executor

Executor
Consumer

Callback
Provider

public void BpelProcess() {

 Taverna2Workflow cell_simulation_tick;
 WebService visualizer;

 Cells cells =
 "<cells colsPerRow='10'>
 <a/><a/><a/><d/><d/><d/><d/><d/><d/><d/>

<d/><a/><a/><a/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><d/><d/><a/><a/>
<a/><d/><d/><d/><d/><d/><d/><a/><a/><a/>
<d/><d/><d/><d/><d/><a/><a/><a/><d/><d/>

 <d/><d/><d/><d/><a/><d/><a/><d/><d/><d/>
<d/><d/><a/><a/><a/><d/><d/><d/><d/><d/>
<d/><a/><d/><a/><d/><d/><d/><d/><d/><a/>
<a/><a/><d/><d/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>

 </cells>"
 int iterations = 0;
 do {
 WorkflowOutput output = cell_simulation_tick.

invoke(new WorkflowInput(cells));
 cells = output.cells;
 visualizer.invoke(cells, iterations);
 } while (++iterations <= 100);
}

Abbildung 25. Pseudocode für den BPEL-Prozess des
Beispiels

5.3 Entwurf

Im Folgenden werden verschiedene Entwurfsalternativen vorgestellt, mit denen sich die Basisanforde-
rungen am gezeigten Beispiel erfüllen lassen. Der am besten geeignete Entwurfsansatz wird ausgewählt
und implementiert.

Ansatz 1: Alleinstehender Web service je Taverna-Work�ow

Bei diesem Ansatz wird je auszuführendem Taverna-Work�ow-Modell ein alleinstehendes Web service
Artefakt erzeugt, welches ohne weitere Abhängigkeiten in der Lage ist, Instanzen eines bestimmten

Taverna-Work�ow-Modells auszuführen. Der Web service übernimmt die statische Struktur des Taver-
na-Work�ows bzgl. der Ein- und Ausgaben (siehe Abbildung 26). Die Schnittstelle des Web services
ist in zwei PortTypes aufgeteilt. Der erste PortType bietet drei Operationen: Die Operation start

beginnt die asynchrone Ausführung eines Taverna-Work�ows mit der gegebenen Eingabe, liefert in
der Antwort-Nachricht eine Instanz-ID zurück und sorgt dafür, dass nach dem Ende der Ausführung

29 Bekanntes, einfaches Regelwerk für einen zweidimensionalen zellulären Automaten

34

ein Callback-Web-Service aufgerufen wird. Die Instanz-ID ist eine UUID und wird zur Korrelation
bei asynchroner Ausführung verwendet. Mit der abort Operation wird die Ausführung einer asyn-
chron gestarteten Work�ow-Instanz abgebrochen. Die Operation execute ist die synchrone Variante,
welche in der Antwort-Nachricht bereits das Ergebnis der Ausführung sowie evtl. aufgetretene Feh-
ler enthält. Um das Ergebnis der asynchronen Ausführung zu erhalten, muss von der BPEL-Engine
eine Implementierung des zweiten PortTypes bereitgestellt werden. Dieser PortType enthält nur eine
Callback-Funktion ohne Rückgabewert, welche die Work�ow-Ausgabe entgegennimmt.

Wie in Abbildung 28 dargestellt, wird das Web service Artefakt durch einen Code-Generator erzeugt,
der aus einem gegebenen Taverna-Work�ow annotierte Java-Klassen generiert und kompiliert. Der
Taverna-Work�ow wird als Ressource in die JAR-Datei eingebettet. Zusätzlich werden die Kernklas-
sen der Taverna Work�ow-Engine eingebettet. Bei der Instantiierung delegiert der Web service die
Ausführung dann an die Taverna-Klasse WorkflowInstanceFacade. Zur Installation auf Axis2 wird
die resultierende JAR�Datei in den Ordner WEB-INF/servicejars kopiert.

CellStateWorkflowPortType

+execute(input: Input): Output
+start(input: Input, callback: Endpoint): InstanceID
+abort(id: InstanceID): Output

CellStateWorkflowCallbackPortType

+onResult(id: InstanceID, result: Output)

Output

+cells: Cells
+errors: Error[]

Input

+cells: Cells

Abbildung 26. Web service Schnittstelle für Beispiel-Work�ow

Importer

<wsdl:portType name="MyT2Flow">
 <wsdl:operation name="start">
 <wsdl:input message="tns:asyncReq"></wsdl:input>
 <wsdl:output message="tns:asyncRes"></wsdl:output>
 </wsdl:operation>
</wsdl:portType>

<wsdl:portType name="MyT2FlowCallback">
 <wsdl:operation name="callback">
 <wsdl:input message="tns:callbackReq"></wsdl:input>
 <wsdl:output message="tns:callbackRes"></wsdl:output>
 </wsdl:operation>
</wsdl:portType>

+

DB.t2flow

Taverna
Workflow
Definition

.jar

Web
Service
Artifact.wsdl

Web
Service

Interface

Taverna
Workflow

Engine

Simulation Workflow

.t2flow

Taverna
Workflow

Model

Java Code
Generator

Stand-Alone
Axis2 Web

Service

Generated Code

C WebService.java

Libs

taverna-engine.jar

Resources

workflow.t2flow

input output build

GameOfLifePortType

· start(cells): ID
· abort(ID)
· execute(cells): (errors, cells)

represents

Taverna Workflow Instances

Process Operations

· ...
· resultCallback(ID, errors, out1, out2)

Abbildung 27. Alleinstehender Web service, der ein Taverna-Work�ow-Modell repräsentiert

Ansatz 2: Generischer Web service zur Ausführung beliebiger Taverna-Work�ows

Bei diesem Ansatz wird eine Alternative zum Taverna Server entwickelt. Dieser alternative Ausfüh-
rungsdienst besitzt eine vereinfachte Schnittstelle, die sich gut in BPEL-Prozesse integrieren lässt. Im
Gegensatz zum Taverna Server muss diese Software nicht unter den Bedingungen der GNU Lesser Ge-
neral Public License verteilt werden. Intern delegiert der Web service die Ausführung an die Taverna
Work�ow Engine, welche auf geeignete Weise in den Web service eingebettet wird.

Aufgrund der generischen Schnittstelle (siehe Abbildung 29) existiert kein Schema, das für ein be-
stimmtes Taverna Work�ow-Modell verhindert, dass strukturell falsche Eingabeparameter abgesendet

35

Kriterium Begründung

Standardkonformität + Basiert auf Web service Technologie, verwendet JAX-WS.

Plattformunabhängigkeit + In jeder Java Virtual Machine ab Java SE 1.6 lauffähig.

-

Implementierungsaufwand o Code-Generierung ist vergleichsweise aufwändig.

-

Bedienbarkeit +

Wiederverwendung -

- Nicht vorhanden.

Bewer-
tung

Erweiterbarkeit / Änder-
barkeit

Änderungen an der Code-Generierung sind aufwändig, bei je-
der Änderung müssen alle Web services neu generiert werden.

Komplexität des Lösungs-
ansatzes

Code-Generierung ist aufwändig und bringt nur geringe Vor-
teile im Vergleich zu Ansatz 2.

Taverna Workflow I/O wird durch XML Schema 1:1 abgebil-
det und eingeschränkt.

Der Taverna Server wird nicht für die Ausführung wieder-
verwendet, die Taverna Workflow Engine wird eingebettet.

Erweiterte Management-
Funktionalität

Tabelle 1: Erfüllungsgrad weiterer Anforderungen (Ansatz 1)

werden. Die verfügbaren Operationen ähneln denen aus Ansatz 1 stark: Um einen beliebigen Taverna-
Work�ow synchron auszuführen, wird die execute Operation verwendet. Das Work�ow-Modell, aus
dem die Instanz erzeugt werden soll, ist Teil der Eingabe. Zusätzlich wird die Work�ow-Eingabe in
Form von data port Belegungen übergeben. Die Work�ow-Ausgabe wird ebenfalls in Form von data
port Belegungen zurückgeliefert. Für die asynchrone Ausführung muss die Work�ow-Engine wieder-
um den Callback-PortType implementieren und wird vom Web service nach dem Aufruf der start
Operation über das Ergebnis der Ausführung informiert. Auch in diesem Szenario werden Work�ow-
Instanzen über UUIDs korreliert.

<wsdl:portType name="TavernaWorkflowExecutor">
 <wsdl:operation name="invokeAsync">
 <wsdl:input message="tns:asyncReq"></wsdl:input>
 <wsdl:output message="tns:asyncRes"></wsdl:output>
 </wsdl:operation>
</wsdl:portType>

<wsdl:portType name="TavernaWorkflowCallback">
 <wsdl:operation name="callback">
 <wsdl:input message="tns:callbackReq"></wsdl:input>
 <wsdl:output message="tns:callbackRes"></wsdl:output>
 </wsdl:operation>
</wsdl:portType>

.t2flow

Taverna
Workflow
Definition DB

Taverna
Workflow

Executor Web
Service

Taverna
Workflow

Engine

Simulation Workflow

.t2flow

Taverna
Workflow

Model

Generic
Taverna 2 Executor
Axis2 Web Service

Libs

taverna-engine.jar

input

Abbildung 28. Generischer Web service zur Ausführung von Taverna-Work�ows

Ansatz 3: Direkte Verwendung des Taverna Servers

Bei diesem Ansatz wird die SOAP-Schnittstelle des Taverna Servers verwendet, um in BPEL-Prozessen
Taverna-Work�ows auszuführen. Eine neue Softwarekomponente generiert zu diesem Zweck für ein
gegebenes Taverna Work�ow-Modell BPEL-Fragmente, in denen die nötige Kommunikation mit einer
Instanz des Taverna Servers statt�ndet.

36

Taverna2ExecutorPortType

+executeWorkflow(input: Input): Output
+submitWorkflow(workflow: Workflow, input: Input, callback: Endpoint)
+abortWorkflow(id: InstanceID): Output

Taverna2ExecutorCallbackPortType

+submitWorkflowCallback(id: InstanceID, output: Output)

Input Output

DataPort

+name: String

ListValue

LiteralContent

BinaryContent

+data: byte[]

items

0..*

DataItem

value

1

Content

content 1

dataPorts

0..*

dataPorts

0..*

Error

+type: String
+message: Stringerrors

0..*

DocumentContent

+document: Document

TextContent

+text: String

Abbildung 29. Generische Web service Schnittstelle für Taverna-Work�ows

Kriterium Begründung

Standardkonformität + Basiert auf Web service Technologie, verwendet JAX-WS.

Plattformunabhängigkeit + In jeder Java Virtual Machine ab Java SE 1.6 lauffähig.

o

Implementierungsaufwand + Vergleichsweise gering.

+

Bedienbarkeit o

Wiederverwendung -

-

Bewer-
tung

Erweiterbarkeit / Änder-
barkeit

Änderungen wirken sich sofort auf alle neu ausgeführten Ta-
verna-Workflows aus. SimTech hat vollständige Kontrolle
über den Quellcode.

Komplexität des Lösungs-
ansatzes

Ansatz ist optimiert auf möglichst einfache Integration in
BPEL-Prozesse. Der Web service ist eine simple, generische
Lösung, die für alle Taverna Workflows funktioniert.

Es existiert ein XML Schema, welches die Taverna Workflow
I/O abbildet. Allerdings ist dieses Schema generisch und es
kann vorkommen, dass trotz richtiger Syntax falsche Einga-
ben an den Workflow übergeben werden (z.B. eine Liste statt
eines Skalars).

Hier wird ein Teil der Funktionalität des Taverna Servers un-
ter einer besser geeigneten Schnittstelle nachgebaut.

Erweiterte Management-
Funktionalität

Nicht vorhanden, muss durch Erweiterung hinzugefügt wer-
den.

Tabelle 2: Erfüllungsgrad weiterer Anforderungen (Ansatz 2)

37

Kriterium Begründung

Standardkonformität o

Plattformunabhängigkeit -

o

Implementierungsaufwand -

-

Bedienbarkeit -

Wiederverwendung +

+

Bewer-
tung

Der Taverna Server bietet eine Web service Schnittstelle über
SOAP/HTTP und kann somit in BPEL eingebunden werden.
Zur Authentifizierung muss aber eine proprietäre Erweiterung
der Apache ODE verwendet werden.

Der Taverna Server muss in Tomcat 6 in einer Unix-artigen
Umgebung ausgeführt werden. Andere Umgebungen werden
nicht unterstützt.

Erweiterbarkeit / Änder-
barkeit

Änderungen am Taverna Server müssen aufgrund der LGPL-
Bestimmungen der myGrid Community zugänglich gemacht
werden. Die Dokumentation für Entwickler ist schlecht oder
nicht vorhanden.

Es müssen zur Integration des Taverna Servers komplexe
BPEL-Fragmente erzeugt werden, welche die Interaktion mit
dem Server steuern. Die Dokumentation der Taverna Server
API ist schlecht, was viel Experimentierungsaufwand zur
Folge hat. Im Versuch konnte der Taverna Server nicht er-
folgreich in Betrieb genommen werden.

Komplexität des Lösungs-
ansatzes

Die Taverna Server API ist schlecht geeignet, um in BPEL-
Prozesse eingebunden zu werden. Das Resultat sind lange
BPEL-Fragmente für einfachste Operationen. Da kein Call-
back-Mechanismus existiert, muss Polling zur Abfrage der
Ergebnisse implementiert werden.

Der Modellierer von Workflows muss für jede Ausführung ei-
nes Taverna-Workflows viele einzelne Web service Aufrufe
überblicken. Der einzige Mechanismus, um diese Aufrufe lo-
gisch zu gruppieren, ist das BPEL scope Element.

Der Taverna Server wird verwendet, um Taverna-Workflows
auszuführen

Erweiterte Management-
Funktionalität

Vorhanden: Verwaltung von Workflow-Instanzen und Server-
konfiguration

Tabelle 3: Erfüllungsgrad weiterer Anforderungen (Ansatz 3)

38

Ansatz 4: Generierung von BPEL-Wrapper-Prozessen

Dieser Ansatz ist eine Erweiterung von Ansatz 2 und 3, bei der trotz Existenz eines generischen Aus-
führungsdienstes einzelne Taverna-Work�ow-Modelle und deren spezi�sche Eingaben- und Ausgaben
auf Web services abgebildet werden (siehe Abbildung 30). Hier generiert eine neue Softwarekomponen-
te aus einer Taverna-Work�owde�nition einen Wrapper-BPEL-Prozess, der wiederum die Ausführung
des Work�ows an den Taverna Server oder die alternative Implementierung aus Ansatz 2 delegiert.
Der auszuführende Taverna-Work�ow wird dabei in den generierten BPEL-Prozess eingebettet. Am
Erfüllungsgrad der zusätzlichen Anforderungen ändert sich im Vergleich zu Ansatz 2 und 4 nichts,
daher verzichten wir an dieser Stelle darauf, die Tabellen zu wiederholen.

Importer

.t2flow

Taverna
Workflow
Definition

+
.wsdl

Process
Web Service

Interface .bpel

BPEL
Process

DB

Taverna Workflow
Executor Web Service

Taverna
Workflow

Engine

Asynchrous Taverna Workflow Invocationsd

 : SimulationProcess : TavernaProcess : TavernaExecutionService : TavernaWorkflowEngine

1 : invokeAsync() 2 : invokeAsync()
3 : instantiate()

45
6

7 : done(workflowId)

89 : callback(workflowId)

1011 : callback(worklowId)

12

workflowId
workflowId workflowId

Simulation Workflow

.t2flow

Taverna
Workflow

Model

BPEL
Process

Generator

input output

Generated Artifacts

.wsdl

Process Web
Service

Interface

.bpel

BPEL Process

represents

Abbildung 30. Generierung von BPEL-Wrapper-Prozessen

Ansatz 5: Erweiterung der Apache ODE

Die Ausführungsumgebung der BPEL-Prozesse kann theoretisch so erweitert werden, dass sie Taverna-
Work�ows direkt, d.h. ohne Interaktion mit einem Web service ausführen kann. Dazu muss eine
BPEL-Erweiterungsaktivität (siehe Abbildung 31) de�niert werden, welche von der ODE erkannt und
unterstützt wird. Intern wird die ODE bei einer solchen Erweiterungsaktivität die Ausführung an
eine eingebettete Taverna Work�ow-Engine delegieren. Mit diesem Ansatz ist man allerdings auf die
ODE als Ausführungsumgebung beschränkt, bzw. das Feature muss für jede BPEL-Engine erneut
implementiert werden.

Taverna Server

Workflow Instance
Management Service

Embedded Taverna
Workflow Engine

Prozessinstanz

In der realen Welt

Instantiierung

1

n

Prozessmodell

Workflow-Instanz

Im Computer

Instantiierung

1

n

Workflow-Modell

<bpel:extensionActivity xmlns:t2="http://taverna2.simtech.uni-stuttgart.de">

<t2:executeWorkflow faultOnError="false" mode="synchronous" maxExecutionTime="PT1H">
<t2:workflowModel>

<t2:resource>http://localhost/resources/my-workflow.t2flow</t2:resource>
</t2:workflowModel>
<t2:input dataPort="cells" from-variable="cells" />
<t2:output dataPort="cells" to-variable="cells" />
<t2:errors to-variable="lastErrors"/>

</t2:executeWorkflow>

</bpel:extensionActivity>

Abbildung 31. Variante einer BPEL-Erweiterungsaktivität für das Beispiel aus 5.2

5.4 Auswahl eines Entwurfsansatzes

Die Umsetzung als BPEL- bzw. als ODE-Erweiterung kommt nicht in Frage, da zur Wahrung der
Standardkonformität die Lösung als Web service implementiert werden soll. Der Entwurfsansatz zur

39

Kriterium Begründung

Standardkonformität -

Plattformunabhängigkeit -

o

Implementierungsaufwand -

o

Bedienbarkeit +

Wiederverwendung -

+

Bewer-
tung

Es muss eine BPEL <extensionActivity> eingeführt werden,
die zunächst nur von der Apache ODE verstanden wird.

Die Lösung ist an die Apache ODE gekoppelt und funktio-
niert nicht mit anderen BPEL-Engines.

Erweiterbarkeit / Änder-
barkeit

Der Quellcode der Apache ODE ist verfügbar, benötigt aber
Einarbeitung.

Die Apache ODE muss auf nicht-triviale Weise modifiziert
werden, was das Verständnis der ODE-Interna voraussetzt.

Komplexität des Lösungs-
ansatzes

Die Einschränkung auf eine bestimmte Workflow-Engine er-
scheint nicht angemessen.

Aus der Sicht des Workflow-Modelliereres ist dies der ein-
fachste Ansatz, da der gesamte Vorgang der Übergabe von
Workflow-Eingaben, Ausführung und Speicherung der Worf-
klow-Ausgaben in nur einer Aktivität stattfindet. Es gibt kei-
ne sichtbare Interaktion mit Drittkomponenten.

Der Taverna Server wird bei diesem Ansatz nicht zur Aus-
führung eingesetzt.

Erweiterte Management-
Funktionalität

Management-Funktionen der Apache ODE können verwendet
werden.

Tabelle 4: Erfüllungsgrad weiterer Anforderungen (Ansatz 5)

40

Ansteuerung des Taverna Servers (Ansatz 3) ist aus mehreren Gründen unattraktiv: Zum einen könn-
te die Realisierung aufgrund des hohen Aufwands zur Inbetriebnahme des Servers und zur Fehlerbe-
seitigung bei der Integration der Server-API zeitlich scheitern. Andererseits kann diese Lösung nur
mit zusätzlicher Tool-Unterstützung vom Work�ow-Modellierer verwendet werden, da nicht-triviale
BPEL-Fragmente generiert werden müssen. Ansatz 1 und 2 sind dagegen simpel genug, um Taverna-
Work�ows auch händisch per Texteditor oder mit dem bestehenden Modeling Tool in BPEL-Code
einzubinden. Ansatz 1 sowie Ansatz 4 scheiden jedoch aus, da sie über zusätzlichen Aufwand eine 1:1
Beziehung zwischen Web service und Taverna-Work�ow-Modell herstellen, obwohl sich dieses Merkmal
im Verlauf der Arbeit als nicht erwünscht erwiesen hat. Der zu implementierende Entwurfsan-

satz ist somit Ansatz 2: ein generischer Web service zur Ausführung beliebiger Taverna-

Work�ows.

5.5 Implementierung

In diesem Kapitel wird die Implementierung des generischen Web services zur Ausführung beliebiger
Taverna-Work�ows (im Folgenden: Taverna 2 Executor) beschrieben. Wir werden dabei weniger auf
Implementierungsdetails eingehen, sondern wollen eher die Konzepte hinter der implementierten Lö-
sung vorstellen. Dieses Kapitel soll keinen Ersatz für die mitgelieferte Dokumentation der Software
darstellen.

Die wichtigsten Probleme und Lösungen, die im Verlauf der Konstruktion aufgetreten sind, werden hier
genannt. Dies betri�t hauptsächlich die Interaktion zwischen BPEL-Prozessen und Web services, die
Einbettung der Taverna Work�ow Engine in eine fremde Softwarekomponente sowie das Deployment
von Web services auf Apache Axis2. Zum Schluss wird die Funktionsweise der fertiggestellten Lösung
anhand des Beispiels aus Kapitel 5.2 demonstriert.

Interaktion BPEL-Prozess - Web service

Um die Probleme und Lösungen bei der Kommunikation zwischen dem Web service zur Ausführung
von Taverna-Work�ows und BPEL-Prozessen zu beschreiben, muss zuerst die generelle Interaktion
erklärt werden. BPEL-Prozessinstanzen können über die invoke-Aktivität initiativ eine Operation
eines dem Prozess bekannten Web services aufrufen. Der konkrete Ort, an dem sich dieser Web service
be�ndet, kann z.B. zum Zeitpunkt der Installation des Prozessmodells auf der BPEL-Engine fest-
gelegt werden. Umgekehrt kann die Auÿenwelt mit einem BPEL-Prozess über dessen Web-Service-
Schnittstelle kommunizieren. Für jedes installierte Prozessmodell startet die BPEL-Engine einen oder
mehrere Web services, über deren Operationen eingehende Nachrichten an Prozessinstanzen gesendet
werden können (siehe Abbildung 32).

Executor
Provider

Callback
Consumer

Asynchroner Aufruf

:BPEL Process
:Taverna 2
Executor

submitWorkflow(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID
Workflow ID

onResult(Workflow ID, Output)

submitWorkflowCallback(Workflow ID, out1, out2)

Synchroner Aufruf

:BPEL Process
:Taverna 2
Executor

execute(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID

(out1, out2)

onResult(Workflow ID, Output)

Visualization Service

Taverna 2 Executor Service

Taverna CLI
<cells> →

← <instanceReference>

← <cells>

Loop

Data Flow

Legend

Web service request Web service response

<bpel:copy>
 <bpel:from
partnerLink="t2executor"
endpointReference="myRole"/>

<bpel:to>$submitWorkflowRequest.
payload//*[local-name()="soap"]/
@address</bpel:to>
</bpel:copy>

➀
➁

➂
④

⑤

BPEL Workflow

Taverna Workflow

<cells> →

← <instanceReference>

Retrieve Callback Address

BPEL Process Taverna 2 Executor

Executor
Consumer

Callback
Provider

public void BpelProcess() {

 Taverna2Workflow cell_simulation_tick;
 WebService visualizer;

 Cells cells =
 "<cells colsPerRow='10'>
 <a/><a/><a/><d/><d/><d/><d/><d/><d/><d/>

<d/><a/><a/><a/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><d/><d/><a/><a/>
<a/><d/><d/><d/><d/><d/><d/><a/><a/><a/>
<d/><d/><d/><d/><d/><a/><a/><a/><d/><d/>

 <d/><d/><d/><d/><a/><d/><a/><d/><d/><d/>
<d/><d/><a/><a/><a/><d/><d/><d/><d/><d/>
<d/><a/><d/><a/><d/><d/><d/><d/><d/><a/>
<a/><a/><d/><d/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>

 </cells>"
 int iterations = 0;
 do {
 WorkflowOutput output = cell_simulation_tick.

invoke(new WorkflowInput(cells));
 cells = output.cells;
 visualizer.invoke(cells, iterations);
 } while (++iterations <= 100);
}

 Apache ODE

 Modell Instanzen

CellStateProcess
CellStateProcess

 Instance 1

Web Service

CellStateProcess
Service

Taverna 2 Executor

CellStateProcess

 Instance 2

CellStateProcess

Instance 3

← Adresse?

Korrelation?

Abbildung 32. Interaktion mit BPEL-Prozess: Korrelation und Callback-Adresse

Durch diesen Mechanismus treten zwei Probleme auf, welche auch die Implementierung des Taver-
na 2 Executors betre�en: Erstens müssen alle Nachrichten, die an BPEL-Prozesse gesendet werden,

41

Informationen enthalten, die der BPEL-Engine ermöglichen, die Nachricht einer Prozessinstanz zuzu-
ordnen. Falls keine Zuordnung möglich ist, muss die BPEL-Engine entweder eine neue Prozessinstanz
erstellen oder die Nachricht verwerfen. Im Fall der asynchronen Ausführung von Taverna-Work�ows
(siehe Abbildung 33) wird deshalb von der submitWorkflow-Operation eine Instanz-ID zurückgelie-
fert. Der Callback-Operation, welche von der BPEL-Engine bereitgestellt werden muss, übergibt der
Taverna 2 Executor diese Instanz-ID, sodass die BPEL-Engine über den Korrelationsmechanismus
jene Prozessinstanz aktivieren kann, welche den ursprünglichen submitWorkflow-Aufruf initiiert hat.

Executor
Provider

Callback
Consumer

Asynchroner Aufruf

:BPEL Process
:Taverna 2
Executor

submitWorkflow(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID
Workflow ID

onResult(Workflow ID, Output)

submitWorkflowCallback(Workflow ID, out1, out2)

Synchroner Aufruf

:BPEL Process
:Taverna 2
Executor

execute(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID

(out1, out2)

onResult(Workflow ID, Output)

Visualization Service

Taverna 2 Executor Service

Taverna CLI
<cells> →

← <instanceReference>

← <cells>

Loop

Data Flow

Legend

Web service request Web service response

<bpel:copy>
 <bpel:from
partnerLink="t2executor"
endpointReference="myRole"/>

<bpel:to>$submitWorkflowRequest.
payload//*[local-name()="soap"]/
@address</bpel:to>
</bpel:copy>

➀
➁

➂
④

⑤

BPEL Workflow

Taverna Workflow

<cells> →

← <instanceReference>

Retrieve Callback Address

BPEL Process Taverna 2 Executor

Executor
Consumer

Callback
Provider

public void BpelProcess() {

 Taverna2Workflow cell_simulation_tick;
 WebService visualizer;

 Cells cells =
 "<cells colsPerRow='10'>
 <a/><a/><a/><d/><d/><d/><d/><d/><d/><d/>

<d/><a/><a/><a/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><d/><d/><a/><a/>
<a/><d/><d/><d/><d/><d/><d/><a/><a/><a/>
<d/><d/><d/><d/><d/><a/><a/><a/><d/><d/>

 <d/><d/><d/><d/><a/><d/><a/><d/><d/><d/>
<d/><d/><a/><a/><a/><d/><d/><d/><d/><d/>
<d/><a/><d/><a/><d/><d/><d/><d/><d/><a/>
<a/><a/><d/><d/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>

 </cells>"
 int iterations = 0;
 do {
 WorkflowOutput output = cell_simulation_tick.

invoke(new WorkflowInput(cells));
 cells = output.cells;
 visualizer.invoke(cells, iterations);
 } while (++iterations <= 100);
}

 Apache ODE

 Modell Instanzen

CellStateProcess
CellStateProcess

 Instance 1

Web Service

CellStateProcess
Service

Taverna 2 Executor

CellStateProcess

 Instance 2

CellStateProcess

Instance 3

← Adresse?

Korrelation?

<bpel:assign>
<bpel:copy>

<bpel:from>
<bpel:literal>
 <!-- ... -->

<t2t:callback>
 <t2t:soap version="1.2" style="document-literal" address="" />
</t2t:callback>

</bpel:literal>
</bpel:from>
<bpel:to>$submitWorkflowRequest.payload</bpel:to>

</bpel:copy>
<bpel:copy>

<!-- Kopiere Verbindungsendpunkt-Adresse aus Partner-Link in callback-Element -->
<bpel:from partnerLink="t2executor" endpointReference="myRole"></bpel:from>
<bpel:to>$submitWorkflowRequest.payload//*[local-name()="soap"]/@address</bpel:to>

</bpel:copy>
</bpel:assign>

Abbildung 33. Asynchroner Aufruf eines Taverna-Work�ows aus einem BPEL-Prozess

Das zweite Problem in diesem Szenario ist die Übergabe der konkreten Callback-Adresse. Soll ein
Taverna-Work�ow asynchron ausgeführt werden, dann muss der Taverna 2 Executor am Ende der
Ausführung eine Nachricht an die Web-Service-Schnittstelle des BPEL-Prozesses senden, um der Pro-
zessinstanz das Ergebnis und die Ausgabe der Ausführung mitzuteilen. Dazu benötigt der Taverna 2
Executor eine Empfängeradresse, die ihm von der Prozessinstanz explizit mitgeteilt werden muss. Die-
ses Problem kann gelöst werden, indem der BPEL-Prozess zur Laufzeit den Wert eines Partner-Links
auslieÿt, welcher die benötigten Adressdaten enthält. Partner-Links werden in BPEL verwendet, um
die Teilnehmer an einer Prozessinstanz abzubilden und ihnen konkrete Verbindungsendpunkte zuzu-
ordnen. Abbildung 34 zeigt die konkrete Umsetzung dieser Lösung in unserem Beispielprozess.

Probleme während der Implementierung

In diesem Abschnitt sollen Ereignisse festgehalten werden, die zu einer nennenswerten Verzögerung
oder zum Abbruch eines Implementierungsschrittes geführt haben.

Einbettung der Taverna Work�ow Engine Der gewählte Entwurfsansatz sah ursprünglich vor, dass
mehrere Instanzen der Taverna Work�ow Engine parallel in einem Servlet-Container wie Tomcat
ausgeführt werden sollten. Nach etwa einem Drittel des geplanten Implementierungsaufwands stellte
sich jedoch heraus, dass dieser Ansatz zum Scheitern verurteilt war. Der Grund dafür ist die intensive
Nutzung des Singleton-(Anti-)Patterns innerhalb der Taverna Kernklassen. Basismechanismen wie
die Datenbank-Kon�guration sind so implementiert, dass es je JVM nur eine Instanz davon geben
kann. Die Einbettung der Work�ow Engine in den Taverna 2 Executor war somit nicht praktikabel.

42

Executor
Provider

Callback
Consumer

Asynchroner Aufruf

:BPEL Process
:Taverna 2
Executor

submitWorkflow(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID
Workflow ID

onResult(Workflow ID, Output)

submitWorkflowCallback(Workflow ID, out1, out2)

Synchroner Aufruf

:BPEL Process
:Taverna 2
Executor

execute(in1, in2, in3)

:Taverna Engine

submit(Workflow, Input)

Workflow ID

(out1, out2)

onResult(Workflow ID, Output)

Visualization Service

Taverna 2 Executor Service

Taverna CLI
<cells> →

← <instanceReference>

← <cells>

Loop

Data Flow

Legend

Web service request Web service response

<bpel:copy>
 <bpel:from
partnerLink="t2executor"
endpointReference="myRole"/>

<bpel:to>$submitWorkflowRequest.
payload//*[local-name()="soap"]/
@address</bpel:to>
</bpel:copy>

➀
➁

➂
④

⑤

BPEL Workflow

Taverna Workflow

<cells> →

← <instanceReference>

Retrieve Callback Address

BPEL Process Taverna 2 Executor

Executor
Consumer

Callback
Provider

public void BpelProcess() {

 Taverna2Workflow cell_simulation_tick;
 WebService visualizer;

 Cells cells =
 "<cells colsPerRow='10'>
 <a/><a/><a/><d/><d/><d/><d/><d/><d/><d/>

<d/><a/><a/><a/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><d/><d/><a/><a/>
<a/><d/><d/><d/><d/><d/><d/><a/><a/><a/>
<d/><d/><d/><d/><d/><a/><a/><a/><d/><d/>

 <d/><d/><d/><d/><a/><d/><a/><d/><d/><d/>
<d/><d/><a/><a/><a/><d/><d/><d/><d/><d/>
<d/><a/><d/><a/><d/><d/><d/><d/><d/><a/>
<a/><a/><d/><d/><d/><d/><d/><d/><d/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>
<d/><d/><d/><d/><d/><d/><a/><a/><a/><d/>

 </cells>"
 int iterations = 0;
 do {
 WorkflowOutput output = cell_simulation_tick.

invoke(new WorkflowInput(cells));
 cells = output.cells;
 visualizer.invoke(cells, iterations);
 } while (++iterations <= 100);
}

 Apache ODE

 Modell Instanzen

CellStateProcess
CellStateProcess

 Instance 1

Web Service

CellStateProcess
Service

Taverna 2 Executor

CellStateProcess

 Instance 2

CellStateProcess

Instance 3

← Adresse?

Korrelation?

<bpel:assign>
<bpel:copy>

<bpel:from>
<bpel:literal>
 <!-- ... -->

<t2t:callback>
 <t2t:soap version="1.2" style="document-literal" address="" />
</t2t:callback>

</bpel:literal>
</bpel:from>
<bpel:to>$submitWorkflowRequest.payload</bpel:to>

</bpel:copy>
<bpel:copy>

<!-- Kopiere Verbindungsendpunkt-Adresse aus Partner-Link in callback-Element -->
<bpel:from partnerLink="t2executor" endpointReference="myRole"></bpel:from>
<bpel:to>$submitWorkflowRequest.payload//*[local-name()="soap"]/@address</bpel:to>

</bpel:copy>
</bpel:assign>

Abbildung 34. Vorbereitung der Callback-Informationen im BPEL-Prozess

Erschwerend kam hinzu, dass die Softwarebibliothek JDOM 1.0 durch Taverna auf den Java Classpath
geladen wird. Dadurch kommt es in Verbindung mit JAX-WS zu einem Fehler, der verhindert, dass
ausgehende SOAP-Nachrichten gesendet werden können. Ein XML-Namespace-Prä�x wird in dieser
Konstellation mehrfach vergeben, was das XML-Dokument ungültig macht.

Die Lösung dieses Problems besteht darin, die Ausführung von Taverna-Work�ows an einen separaten
Prozess mit eigener JVM zu delegieren, anstatt die Taverna Work�ow Engine in die eigene Software
einzubetten. Nach einigen Versuchen stellte sich heraus, dass die Verwendung der Taverna Command
Line die einfachste Lösung darstellt. Die Umstellung auf den Start eines neuen Taverna Command Line
Prozesses je Work�ow-Instanz bringt allerdings Performanceprobleme mit sich: Da für den Durchlauf
einer neuen Work�ow-Instanz eine JVM hochgefahren werden muss, verzögert sich der Start um etwa
fünf Sekunden.

Deployment auf Apache Axis2 Axis2 ermöglicht nicht, in einer Web service Implementierung wie
dem Taverna 2 Executor Softwarebibliotheken zu verwenden, die gleichzeitig von Axis2 in einer ande-
ren Version eingebunden werden. Verwendet man dennoch eine andere Version, können subtile Fehler
auftreten, da nicht die Bibliothek aktiv ist, gegen die ursprünglich entwickelt wurde. In diesem konkre-
ten Fall wurde vom Taverna 2 Executor die aktuelle Version 2.4 der Apache Commons IO Bibliothek
verwendet, während Axis2 die veraltete Version 1.4 im Classpath bereitstellte. Dies führte dazu, dass
nach einem eigentlich erfolgreichen Durchlauf einer Taverna-Work�ow-Instanz aufgrund einer nicht
vorhandenen Methode ein Fehler auftrat, welcher den Durchlauf zum Scheitern brachte. Die Suche
nach der Fehlerursache gestaltete sich frustrierend und vor allem zeitaufwändig.

Das Problem konnte jedoch gelöst werden, indem bei der Erstellung des Axus2-Servicearchivs das
Maven Shade Plugin verwendet wird. Mit diesem Build-Plugin ist es durch Bytecode-Manipula-
tion möglich, die kon�iktbeladenen Klassen in einen anderen Namensraum zu verschieben, sofern
im Vorfeld bekannt ist, welche Klassen Probleme verursachen. Anstelle der kon�iktbeladenen Klas-
se org.apache.commons.io.IOUtils lädt der Taverna 2 Executor jetzt die kon�iktfreie Klasse
notaxis2.org.apache.commons.io.IOUtils (siehe Abbildung 35).

<configuration>
<relocations>

<relocation>
<pattern>org.apache.commons</pattern>
<shadedPattern>notaxis2.org.apache.commons</shadedPattern>

</relocation>
</relocations>

</configuration>

Abbildung 35. Kon�guration des Maven Shade Plugins für Axis2

43

Projektstruktur

Die konstruierte Integrationslösung besteht aus einer Reihe von Maven-Projekten, die einen Abhängig-
keitsgraphen bilden (siehe Abbildung 36). Auf der untersten Ebene liegt das Projekt t2-types, welches
ausschlieÿlich generierte Java-Bindings für häu�g verwendete XML-Datenstrukturen und das t2flow
Format enthält. Alle XML-Bindings werden für JAXB 2.1 generiert. Eine Ebene darüber be�ndet sich
das Projekt t2-executor-service-api, welches den Schnittstellenteil des Taverna 2 Executors ent-
hält. Die Java Klassen werden per wsimport aus den WSDL-De�nitionen generiert und enthalten noch
keine Funktionalität. Die eigentliche Implementierung liegt im Projekt t2-executor-service-impl.
Auf dieser Implementierung bauen zwei verschiedene Distributions-Artefakte für den Web service
auf: eines für Apache Axis2 und ein weiteres für die JAX-WS Referenzimplementierung Metro. Beim
Projekt t2-bpel-process-generator handelt es sich um ein obsoletes Projekt zur Generierung von
BPEL-Prozessen anhand der I/O-Schnittstellen von Taverna-Work�ow-Modellen. Damit sollte ur-
sprünglich Ansatz 4 aus Kapitel 5.3 umgesetzt werden, was aber nicht weiter verfolgt wird.

taverna-workflow-integration

t2-executor-service-impl

t2-executor-service-api

t2-bpel-process-generator

t2-types

t2-executor-service-distro-axis2 t2-executor-service-distro-metro

Legende

A B A hängt von B ab

Abbildung 36. Projektstruktur und Abhängigkeiten

Klassenstruktur

Anstelle einer erschöpfenden Darstellung aller Klassen soll hier eine kompakte Beschreibung der zen-
tralen Elemente der Implementierung gegeben werden. Ausgangspunkt der Beschreibung ist die Klasse
Taverna2ExecutorService (siehe Abbildung 37). Diese Klasse implementiert alle funktionalen As-
pekte des Taverna 2 Executors und verwendet dazu bei Bedarf spezialisierte Komponenten, die zusam-
mengehörige Funktionalität bündeln. Im Moment existiert mit dem WorkflowInstanceManager genau
eine solche Komponente. Der WorkflowInstanceManager hat die Aufgabe, eine Menge von Taverna-
Work�ow-Instanzen zu verwalten. Seine Funktionsweise ähnelt der eines Java ExecutorService: Neue
Work�ow-Instanzen können über die submitWorkflow-Methode zur asynchronen Ausführung überge-
ben werden. Der Aufrufer erhält ein Future-Objekt zurück, mit dem sich das Ergebnis der Ausführung
abfragen lässt. Zusätzlich kann der Aufrufer ein Callback registrieren lassen, welches nach erfolgreicher
oder fehlerhafter Beendigung des Durchlaufs aufgerufen wird. Über diesen Callback-Mechanismus wird
auch die Rückmeldung des Ausführungsergebnisses an die aufrufende BPEL-Prozessinstanz realisiert.

Die Schnittstelle WorkflowInstance repräsentiert das Wissen, wie Taverna-Work�ows auszuführen
sind und hat die Aufgabe, jeder Work�ow-Instanz eine Identität sowie einen Ausführungszustand
zuzuordnen. Momentan existiert mit der CommandLineWorkflowInstance nur eine konkrete Ausprä-

44

gung dieser Schnittstelle. Eine CommandLineWorkflowInstance verwendet eine lokale Installation der
Taverna Command Line zur Ausführung der Taverna-Work�ows. Ein- und Ausgaben der Work�ows
werden über das lokale Dateisystem geschrieben und gelesen. Der WorkflowInstanceManager sorgt
für die nötige Isolation zwischen verschiedenen Work�ow-Instanzen, indem er jeder Instanz ein privates
Arbeitsverzeichnis zuweist.

Die Klasse Taverna2ExecutorService trägt selbst keine @WebService-Annotation, sondern dient als
Basis für konkrete Service-Distributionen, die von der Klasse erben und mit @WebService annotiert
werden. Die abgeleiteten Distributionsklassen können keine Funktionalität überschreiben, sondern sind
lediglich dazu gedacht, Anpassungen an die Eigenheiten der Ziel-Installationsumgebung wie Axis2 oder
Metro zu implementieren.

Taverna2ExecutorServiceTaverna2Executor

+submitWorkflow()
+abortWorkflow()
+executeWorkflow()

WorkflowInstanceManager

+submitWorkflow()
+cancelWorkflow()
+getWorkflowState()

Taverna2ExecutorServiceOnMetro Taverna2ExecutorServiceOnAxis2

WorkflowInstance

-instanceManager

1

@WebService

-instances

0..*

CommandLineWorkflowInstance

Abbildung 37. Vereinfachtes Klassendiagramm der Implementierung

Anwendung auf das Beispiel

Um das Implementierungskapitel abzuschlieÿen, wird an dieser Stelle der vollständig integrierte Bei-
spielprozess mit einem Taverna-Bestandteil vorgestellt. Zur Erinnerung: Das Beispiel simuliert für
eine gegebene Startkon�guration eine Menge von Zeitschritten in Conway's Game of Life. Die Ein-
zelschritt-Logik ist als Taverna-Work�ow implementiert und wird vom umgebenden BPEL-Prozess
in einer Schleife aufgerufen. Anhand der Markierungen in Abbildung 38 kann die Funktionsweise des
Taverna 2 Executors nachvollzogen werden: Da es sich um einen asynchronen Aufruf mit Callback
handelt, wird in Schritt (1) zunächst die Verbindungsendpunkt-Adresse der Prozessinstanz aus dem
zugehörigen Partner-Link extrahiert. In Schritt (2) wird innerhalb der Schleife per invoke-Aktivität
die submitWorkflow-Operation des Taverna 2 Executors aufgerufen. Der auszuführende Work�ow, der
aktuelle Zustand des Zellgitters und die Callback-Informationen werden als Parameter mitgegeben.
Im dritten Schritt startet der Taverna 2 Executor den Taverna-Work�ow, indem er die Ausführung an
die Taverna Command Line delegiert. Nachdem die Ausführung beendet ist, wird die BPEL-Prozess-
instanz in Schritt (4) durch den Taverna 2 Executor über das Ausführungsergebnis benachrichtigt.
Der Taverna 2 Executor sendet dazu die Instanz-ID sowie den neuen Zustand des Zellgitters an die
in Schritt (1) hinterlegte Callback-Adresse. Durch die Angabe der Instanz-ID ist die BPEL-Engine
in der Lage, die Antwort der korrekten Prozessinstanz zuzuordnen. Als letzte Aktion jedes Schleifen-
durchlaufs ruft die BPEL-Prozessinstanz per invoke-Aktivität einen Visualisierungs-Web-Service auf,
welcher das zuletzt berechnete Zellgitter auf dem lokalen Rechner graphisch darstellt.

45

Ex
ec

u
to

r
P

ro
vi

d
er

C
al

lb
ac

k
C

o
n

su
m

er

A
sy

n
ch

ro
n

e
r

A
u

fr
u

f

:B
P

EL
 P

ro
ce

ss
:T

av
er

n
a

2

Ex
ec

u
to

r

su
b

m
it

W
o

rk
fl

o
w

(i
n

1
, i

n
2

, i
n

3
)

:T
av

er
n

a
En

gi
n

e

su
b

m
it

(W
o

rk
fl

o
w

, I
n

p
u

t)

W
o

rk
fl

o
w

 ID
W

o
rk

fl
o

w
 ID

o
n

R
es

u
lt

(W
o

rk
fl

o
w

 ID
, O

u
tp

u
t)

su
b

m
it

W
o

rk
fl

o
w

C
al

lb
ac

k(
W

o
rk

fl
o

w
 ID

, o
u

t1
, o

u
t2

)

Sy
n

ch
ro

n
e

r
A

u
fr

u
f

:B
P

EL
 P

ro
ce

ss
:T

av
er

n
a

2

Ex
ec

u
to

r

ex
ec

u
te

(i
n

1
, i

n
2

, i
n

3
)

:T
av

er
n

a
En

gi
n

e

su
b

m
it

(W
o

rk
fl

o
w

, I
n

p
u

t)

W
o

rk
fl

o
w

 ID

(o
u

t1
, o

u
t2

)

o
n

R
es

u
lt

(W
o

rk
fl

o
w

 ID
, O

u
tp

u
t)

V
is

u
al

iz
at

io
n

 S
e

rv
ic

e

Ta
ve

rn
a

2

Ex
e

cu
to

r
Se

rv
ic

e

Ta
ve

rn
a

C
LI

<c
el

ls
>
→

←
 <

in
st

an
ce

R
ef

er
en

ce
> ←

 <
ce

lls
>

Lo
o

p

D
at

a
Fl

o
w

Le
ge

n
d

W
eb

 s
er

vi
ce

 r
eq

u
es

t
W

eb
 s

er
vi

ce
 r

es
p

o
n

se

<
b
p
e
l
:
c
o
p
y
>

<
b
p
e
l
:
f
r
o
m

p
a
r
t
n
e
r
L
i
n
k
=
"
t
2
e
x
e
c
u
t
o
r
"

e
n
d
p
o
i
n
t
R
e
f
e
r
e
n
c
e
=
"
m
y
R
o
l
e
"
/
>

<
b
p
e
l
:
t
o
>
$
s
u
b
m
i
t
W
o
r
k
f
l
o
w
R
e
q
u
e
s
t
.

p
a
y
l
o
a
d
/
/
*
[
l
o
c
a
l
-
n
a
m
e
(
)
=
"
s
o
a
p
"
]
/

@
a
d
d
r
e
s
s
<
/
b
p
e
l
:
t
o
>

<
/
b
p
e
l
:
c
o
p
y
>

➀

➁
➂

④

⑤

B
P

EL
 W

o
rk

fl
o

w

Ta
ve

rn
a

W
o

rk
fl

o
w

<c
el

ls
>
→

←
 <

in
st

an
ce

R
ef

er
en

ce
>

R
e

tr
ie

ve
 C

al
lb

ac
k

A
d

d
re

ss

B
P

EL
 P

ro
ce

ss
Ta

ve
rn

a
2

 E
xe

cu
to

r

Ex
ec

u
to

r
C

o
n

su
m

er

C
al

lb
ac

k
P

ro
vi

d
er

p
u
b
l
i
c

v
o
i
d

B
p
e
l
P
r
o
c
e
s
s
(
)

{

T
a
v
e
r
n
a
2
W
o
r
k
f
l
o
w

c
e
l
l
_
s
i
m
u
l
a
t
i
o
n
_
t
i
c
k
;

W
e
b
S
e
r
v
i
c
e

v
i
s
u
a
l
i
z
e
r
;

C
e
l
l
s

c
e
l
l
s

=

"
<
c
e
l
l
s

c
o
l
s
P
e
r
R
o
w
=
'
1
0
'
>

<
a
/
>
<
a
/
>
<
a
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>

<
d
/
>
<
a
/
>
<
a
/
>
<
a
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>

<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
a
/
>
<
a
/
>

<
a
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
a
/
>
<
a
/
>
<
a
/
>

<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
a
/
>
<
a
/
>
<
a
/
>
<
d
/
>
<
d
/
>

<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
a
/
>
<
d
/
>
<
a
/
>
<
d
/
>
<
d
/
>
<
d
/
>

<
d
/
>
<
d
/
>
<
a
/
>
<
a
/
>
<
a
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>

<
d
/
>
<
a
/
>
<
d
/
>
<
a
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
a
/
>

<
a
/
>
<
a
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>

<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
a
/
>
<
a
/
>
<
a
/
>
<
d
/
>

<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
d
/
>
<
a
/
>
<
a
/
>
<
a
/
>
<
d
/
>

<
/
c
e
l
l
s
>
"

i
n
t

i
t
e
r
a
t
i
o
n
s

=

0
;

d
o

{

W
o
r
k
f
l
o
w
O
u
t
p
u
t

o
u
t
p
u
t

=

c
e
l
l
_
s
i
m
u
l
a
t
i
o
n
_
t
i
c
k
.

i
n
v
o
k
e
(

n
e
w

W
o
r
k
f
l
o
w
I
n
p
u
t
(

c
e
l
l
s

)

)
;

c
e
l
l
s

=

o
u
t
p
u
t
.
c
e
l
l
s
;

v
i
s
u
a
l
i
z
e
r
.
i
n
v
o
k
e
(

c
e
l
l
s
,

i
t
e
r
a
t
i
o
n
s

)
;

}

w
h
i
l
e

(

+
+
i
t
e
r
a
t
i
o
n
s

<
=

1
0
0

)
;

}

 A
p

ac
h

e
 O

D
E

 M
o

d
e

ll
 In

st
an

ze
n

C
el

lS
ta

te
P

ro
ce

ss
C

el
lS

ta
te

P
ro

ce
ss

 In
st

an
ce

 1

W
e

b
 S

e
rv

ic
e

C
el

lS
ta

te
P

ro
ce

ss
Se

rv
ic

e
Ta

ve
rn

a
2

 E
xe

cu
to

r

C
el

lS
ta

te
P

ro
ce

ss

 In
st

an
ce

 2

C
el

lS
ta

te
P

ro
ce

ss

In
st

an
ce

 3

←
 A
d
re
ss
e?

K
o
rr
el
a
ti
o
n
?

<
b
p
e
l
:
a
s
s
i
g
n
>

<
b
p
e
l
:
c
o
p
y
>

<
b
p
e
l
:
f
r
o
m
>

<
b
p
e
l
:
l
i
t
e
r
a
l
>

<
!
-
-

.
.
.

-
-
>

<
t
2
t
:
c
a
l
l
b
a
c
k
>

<
t
2
t
:
s
o
a
p

v
e
r
s
i
o
n
=
"
1
.
2
"

s
t
y
l
e
=
"
d
o
c
u
m
e
n
t
-
l
i
t
e
r
a
l
"

a
d
d
r
e
s
s
=
"
"

/
>

<
/
t
2
t
:
c
a
l
l
b
a
c
k
>

<
/
b
p
e
l
:
l
i
t
e
r
a
l
>

<
/
b
p
e
l
:
f
r
o
m
>

<
b
p
e
l
:
t
o
>
$
s
u
b
m
i
t
W
o
r
k
f
l
o
w
R
e
q
u
e
s
t
.
p
a
y
l
o
a
d
<
/
b
p
e
l
:
t
o
>

<
/
b
p
e
l
:
c
o
p
y
>

<
b
p
e
l
:
c
o
p
y
>

<
!
-
-

K
o
p
i
e
r
e

V
e
r
b
i
n
d
u
n
g
s
e
n
d
p
u
n
k
t
-
A
d
r
e
s
s
e

a
u
s

P
a
r
t
n
e
r
-
L
i
n
k

i
n

c
a
l
l
b
a
c
k
-
E
l
e
m
e
n
t

-
-
>

<
b
p
e
l
:
f
r
o
m

p
a
r
t
n
e
r
L
i
n
k
=
"
t
2
e
x
e
c
u
t
o
r
"

e
n
d
p
o
i
n
t
R
e
f
e
r
e
n
c
e
=
"
m
y
R
o
l
e
"
>
<
/
b
p
e
l
:
f
r
o
m
>

<
b
p
e
l
:
t
o
>
$
s
u
b
m
i
t
W
o
r
k
f
l
o
w
R
e
q
u
e
s
t
.
p
a
y
l
o
a
d
/
/
*
[
l
o
c
a
l
-
n
a
m
e
(
)
=
"
s
o
a
p
"
]
/
@
a
d
d
r
e
s
s
<
/
b
p
e
l
:
t
o
>

<
/
b
p
e
l
:
c
o
p
y
>

<
/
b
p
e
l
:
a
s
s
i
g
n
>

<
c
o
n
f
i
g
u
r
a
t
i
o
n
>

<
r
e
l
o
c
a
t
i
o
n
s
>

<
r
e
l
o
c
a
t
i
o
n
>

<
p
a
t
t
e
r
n
>
o
r
g
.
a
p
a
c
h
e
.
c
o
m
m
o
n
s
<
/
p
a
t
t
e
r
n
>

<
s
h
a
d
e
d
P
a
t
t
e
r
n
>
n
o
t
a
x
i
s
2
.
o
r
g
.
a
p
a
c
h
e
.
c
o
m
m
o
n
s
<
/
s
h
a
d
e
d
P
a
t
t
e
r
n
>

<
/
r
e
l
o
c
a
t
i
o
n
>

<
/
r
e
l
o
c
a
t
i
o
n
s
>

<
/
c
o
n
f
i
g
u
r
a
t
i
o
n
>

A
b
b
il
d
u
n
g
3
8
.
V
ol
ls
tä
n
d
ig
es

B
ei
sp
ie
l
u
nt
er

V
er
w
en
d
u
n
g
d
es

T
av
er
n
a
2
E
xe
cu
to
rs

46

6 Ergebnis

In dieser Arbeit wurden die eScience-Plattformen nanoHUB und myExperiment sowie das wissen-
schaftliche WfMS Taverna auf Möglichkeiten zur Interaktion mit der SimTech Work�ow-Umgebung
untersucht. Verschiedene Integrationsansätze wurden herausgearbeitet und einer Bewertung unterzo-
gen. Die Untersuchung hat ergeben, dass die gewünschte Auslagerung von SimTech-Anwendungen und
Infrastruktur auf die Ressourcen der Plattformbetreiber leider nicht machbar ist, da kein geeignetes
Angebot existiert. Als beste verbleibende Lösung wurde die Integration des Taverna WfMS ausge-
wählt. Mehrere Entwurfsansätze zur Integration der Taverna Work�ow Engine wurden aufgestellt und
miteinander verglichen. Mit der konstruierten Integrationslösung lassen sich die daten�ussorientierten
Taverna-Work�ows als Bestandteil der BPEL-basierten Simulation Work�ows ausführen.

Die Schwierigkeit der Integrationsaufgabe wurde unterschätzt. Eine Einbettung der Taverna Work-
�ow Engine in eine Web service Implementierung war geplant, konnte aber aufgrund technischer
Schwierigkeiten nicht durchgeführt werden. Der Lösungsansatz musste durch eine Alternative mit
Performanceeinbuÿen ersetzt werden. Für lange laufende Taverna-Work�ows ist die Verlangsamung
jedoch nicht signi�kant.

6.1 Ausblick

Ein wichtiges Ziel der Arbeit war die Suche nach Hosting-Gelegenheiten für die SimTech Work�ow-
Umgebung. Da unter den betrachteten Plattformen keine zufriedenstellende Möglichkeit gefunden
wurde, könnten sich Folgearbeiten mit anderen eScience-Plattformen oder Hosting-Diensten befassen.
Was die erfolgte Taverna-Integration betri�t, so bietet sich eine Reihe von Verbesserungsmöglichkeiten
und Fortsetzungsarbeiten an:

Performance-Verbesserungen

In der vorliegenden Lösung wird für jede Work�ow-Instanz eine neue JVM erzeugt. Ein einzelner, de-
dizierter Betriebssystem-Prozess wäre aber bereits ausreichend, um die Probleme der fehlgeschlagenen
Einbettung zu umgehen. Der Taverna 2 Executor könnte die Ausführung des Work�ows z.B. durch
geeignete Inter-Prozess-Kommunikation an diesen Prozess delegieren, anstatt die Taverna Command
Line zu verwenden. Noch besser wäre es natürlich, wenn es einem (fähigeren) Programmierer gelänge,
die Taverna Work�ow Engine trotz der genannten Probleme einzubetten.

Hinzufügen von Management-Funktionalität

In einer Folgearbeit können Management-Funktionen zur erweiterten Verwaltung von Work�ow-In-
stanzen in den Taverna 2 Executor eingebaut werden. Dazu müssen natürlich zunächst die Anforde-
rungen an die zu erstellenden Erweiterungen erhoben werden. Mit dem bestehenden Code lassen sich
einfache Funktionen wie die Au�istung aller Instanzen und deren Ausführungsstatus schnell realisie-
ren, da die benötigten Datenstrukturen bereits vorhanden sind.

Verbesserung der Callback-Mechanik

Im Moment unterstützt der Taverna 2 Executor Service zwei Callback-Mechanismen: die automati-
sche Suche eines passenden Verbindungsendpunktes anhand eines gegebenen WSDL-Dokuments und
die Übergabe einer Endpunkt-URL. Die Datenstrukturen des WS-Addressing-Standards werden bis-
her vom Dienst noch nicht verstanden. Unterstützung für diese und weitere Verbindungsendpunkt-
Beschreibungen könnten mit weniger als 20 Stunden Aufwand hinzugefügt werden.

47

Evaluation des Taverna Servers

Falls genügend Zeit zur Verfügung steht, kann geprüft werden, ob eine Implementierung des Entwurfs-
ansatzes 3 aus Kapitel 5.3 zufriedenstellende Ergebnisse liefert. Eine Implementierung auf Basis des Ta-
verna Servers könnte den Taverna 2 Executor ersetzen und die Erstellung eines Eclipse-Serveradapters
rechtfertigen.

Integration weiterer Taverna-Komponenten

Mit der Möglichkeit, Taverna-Work�ows in Simulation Work�ows einzusetzen, können darauf aufbau-
ende Integrationsansätze wie z.B. die Einbindung des myExperiment Work�ow Repositories oder die
Eingliederung der Workbench durchgeführt werden.

48

Abbildungsverzeichnis

1 Vorgehensweise . 1
2 Terminologie für Modelle und Instanzen basierend auf [17] . 4
3 Phasenmodell für Business-Work�ows (links) und wissenschaftliche Work�ows

(rechts) [10] . 5
4 XML-Beispieldokument . 6
5 Mögliches XML Schema für das Beispieldokument aus Abbildung 4 6
6 Zustellung einer SOAP-Nachricht . 7
7 WSDL 1.1 - Elemente und deren Beziehungen . 8
8 Verwendung von JAX-WS in dieser Arbeit . 10
9 Vereinfachte Darstellung der SimTech-Architektur [12] . 11
10 Mögliche Ausrichtung der Integrationsansätze . 13
11 Aufbau der nanoHUB Plattform. 14
12 HUBzero Software Stack . 15
13 Ausführung eines Rappture-getriebenen Simulationstools auf nanoHUB.org 16
14 Registrierung und Installation eines neuen Simulationstools . 17
15 Integrationsansatz: Ausführung von SimTech-Anwendungen auf nanoHUB.org 18
16 Integrationsansatz: Verwendung der interaktiven Simulationstools in Simulation

Work�ows . 19
17 Integrationsansatz: Nutzung der Datei-Ressourcen . 20
18 Hauptbestandteile des Taverna 2.4 WfMS . 22
19 Einfacher Taverna-Work�ow mit einer expliziten Kontroll�uss-Kante 23
20 Taverna Work�ow Designer . 25
21 Integrationsansatz: Taverna Work�ows als als Bestandteil von BPEL-Prozessen 26
22 Integrationsansatz: Verwaltung von Taverna Server-Installationen aus Eclipse 27
23 Integrationsansatz: Eingliederung der Taverna Workbench in den SimTech BPEL

Designer . 27
24 Taverna-Work�ow für die Berechnung eines Zeitschritts in Conway's Game of Life 34
25 Pseudocode für den BPEL-Prozess des Beispiels . 34
26 Web service Schnittstelle für Beispiel-Work�ow . 35
27 Alleinstehender Web service, der ein Taverna-Work�ow-Modell repräsentiert 35
28 Generischer Web service zur Ausführung von Taverna-Work�ows 36
29 Generische Web service Schnittstelle für Taverna-Work�ows . 37
30 Generierung von BPEL-Wrapper-Prozessen . 39
31 Variante einer BPEL-Erweiterungsaktivität für das Beispiel aus 5.2 39
32 Interaktion mit BPEL-Prozess: Korrelation und Callback-Adresse 41
33 Asynchroner Aufruf eines Taverna-Work�ows aus einem BPEL-Prozess 42
34 Vorbereitung der Callback-Informationen im BPEL-Prozess . 43
35 Kon�guration des Maven Shade Plugins für Axis2 . 43
36 Projektstruktur und Abhängigkeiten . 44
37 Vereinfachtes Klassendiagramm der Implementierung . 45
38 Vollständiges Beispiel unter Verwendung des Taverna 2 Executors 46

49

Abkürzungen

API Application Programming Interface

BPEL Business Process Execution Language

EDV Elektronische Datenverarbeitung

EPSRC Engineering and Physical Sciences Research Council

HTTP Hypertext Transfer Protocol

JAXB Java Architecture for XML Binding

JAX-WS Java API for XML Web Services

JVM Java Virtual Machine

LGPL GNU Lesser General Public License

OASIS Organization for the Advancement of Structured Information Standards

ODE Orchestration Director Engine

SFTP Secure File Transfer Protocol

SCUFL Simple Conceptual Uni�ed Flow Language

VNC Virtual Network Computing

W3C World Wide Web Consortium

WebDAV Web-based Distributed Authoring and Versioning

WfMS Work�ow Management System

WSDL Web Services Description Language

WWW World Wide Web

XML Extensible Markup Language

50

Literatur

[1] Alexandre Alves et al. OASIS Web Services Business Process Execution Language (WS-BPEL) 2.0. url:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[2] Bundesministerium für Wirtschaft und Arbeit und Bundesministerium für Bildung und Forschung. In-
formationsgesellschaft Deutschland 2006, Aktionsprogramm der Bundesregierung.

[3] David Booth et al. Web Services Architecture. url: http://www.w3.org/TR/ws-arch/.
[4] Tim Bray et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). url: http://www.w3.org/TR/

xml/.
[5] David De Roure, Carole Goble und Robert Stevens. �The Design and Realisation of the myExperi-

ment Virtual Research Environment for Social Sharing of Work�ows�. In: Future Generation Computer
Systems 25 (2008), S. 561�567.

[6] Raymond Dormien. �Service-Bus-Erweiterung um Pandas-basierte Simulationen in Work�ows zu nut-
zen�. Diplomarbeit. Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik,
Germany, 2011, S. 67.

[7] David C. Fallside und Priscilla Walmsley. XML Schema Part 0: Primer Second Edition. url: http:
//www.w3.org/TR/xmlschema-0/.

[8] Forschungsfelder SRC SimTech und Exzellenzcluster Simulation Technology. url: http://www.simtech.
uni-stuttgart.de/forschung/forschungsfelder/index.html; http://archive.is/YZca7.

[9] Ian Foster und Carl Kesselman, Hrsg. The grid: blueprint for a new computing infrastructure. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

[10] K. Görlach et al. �Guide to e-Science�. In: Hrsg. von Y. Yang, L. Wang und W. Lie. Springer Verlag,
2011. Kap. Conventional Work�ow Technology for Scienti�c Simulation.

[11] Martin Gudgin et al. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). url: http:
//www.w3.org/TR/soap12-part1/.

[12] Michael Hahn und Karolina Vukojevic. Prototyp SWMS. SimTech. 2013.
[13] N.H. Kapadia und J. A B Fortes. �On the design of a demand-based network-computing system: the

Purdue University Network-Computing Hubs�. In: High Performance Distributed Computing, 1998. Pro-
ceedings. The Seventh International Symposium on. 1998, S. 71�80.

[14] Kohsuke Kawaguchi, Sekhar Vajjhala und Joe Fialli. The Java� Architecture for XML Binding (JAXB)
2.2. 2009.

[15] G. Klimeck et al. �nanoHUB.org: Advancing Education and Research in Nanotechnology�. In: Computing
in Science Engineering 10.5 (2008), S. 17�23.

[16] Jitendra Kotamraju. The Java API for XML-Based Web Services (JAX-WS) 2.2 Rev a. 2011.
[17] Frank Leymann und Dieter Roller. Production work�ow: concepts and techniques. Upper Saddle River,

NJ, USA: Prentice Hall PTR, 2000.
[18] M. McLennan und R. Kennell. �HUBzero: A Platform for Dissemination and Collaboration in Compu-

tational Science and Engineering�. In: Computing in Science Engineering 12.2 (2010), S. 48�53.
[19] nanoHUB.org. Workspace. 2006. url: https://nanohub.org/resources/1242; http://archive.is/

WeS4P.
[20] Thomas Oinn et al. �Taverna: lessons in creating a work�ow environment for the life sciences�. In:

Concurrency and Computation: Practice and Experience 18.10 (2006), S. 1067�1100.
[21] PN 8: Integrated data management, work�ow and visualisation to enable an integrative systems science.

url: http://www.simtech.uni-stuttgart.de/forschung/pn/pn8/index.html; http://archive.is/
YGs6L.

[22] Jens Rutschmann. �Generisches Web Service Interface um Simulationsanwendungen in BPEL-Prozesse
einzubinden�. Diplomarbeit. Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informati-
onstechnik, Germany, 2009, S. 116.

[23] Research Council e Science Core Programme. De�ning e-Science. url: http://www.nesc.ac.uk/nesc/
define.html; http://archive.is/AHBoF.

[24] I.J. Taylor et al. Work�ows for E-Science: Scienti�c Work�ows for Grids. Springer-Verlag London Li-
mited, 2007.

[25] Sanjiva Weerawarana et al. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging and More. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005.

[26] Katherine Wolstencroft et al. �The Taverna work�ow suite: designing and executing work�ows of Web
Services on the desktop, web or in the cloud�. In: Nucleic Acids Research 41.W1 (2013), W557�W561.

[27] Paul Wouters. What is the matter with e-Science? � thinking aloud about informatisation in knowledge
creation. 2006. url: http://www.pantaneto.co.uk/issue23/wouters.htm; http://archive.is/y3ufg.

[28] Sharon Biocca Zakhour, Sowmya Kannan und Raymond Gallardo. The Java Tutorial: A Short Course
on the Basics. 5. Au�. Addison-Wesley Professional, 2013.

51

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.simtech.uni-stuttgart.de/forschung/forschungsfelder/index.html
http://www.simtech.uni-stuttgart.de/forschung/forschungsfelder/index.html
http://archive.is/YZca7
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
https://nanohub.org/resources/1242
http://archive.is/WeS4P
http://archive.is/WeS4P
http://www.simtech.uni-stuttgart.de/forschung/pn/pn8/index.html
http://archive.is/YGs6L
http://archive.is/YGs6L
http://www.nesc.ac.uk/nesc/define.html
http://www.nesc.ac.uk/nesc/define.html
http://archive.is/AHBoF
http://www.pantaneto.co.uk/issue23/wouters.htm
http://archive.is/y3ufg

Alle Links wurden zuletzt am 13. Juni 2013 überprüft.

52

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die angegebe-
nen Quellen benutzt und alle wörtlich oder sinngemäÿ aus anderen Werken übernommene Aussagen
als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise noch vollständig
verö�entlicht. Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum Unterschrift

	Einleitung
	Ziele der Arbeit
	Gliederung

	Grundlagen
	eScience
	Geschäftsprozesse und Workflows
	Simulation Workflows
	Technologien
	SimTech Workflow-Umgebung

	Untersuchung der eScience-Plattformen
	nanoHUB
	myExperiment
	Taverna

	Wahl einer Integrationsaufgabe
	Auswahlkriterien
	Analyse und Bewertung
	Entscheidung für Taverna Workflows als Bestandteil von BPEL-Prozessen

	Integration der Taverna Workflow-Engine
	Anforderungen
	Beispiel
	Entwurf
	Auswahl eines Entwurfsansatzes
	Implementierung

	Ergebnis
	Ausblick

