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Kurzfassung

In dieser Arbeit wird ein erweiterbares Framework zur Generierung von Rest-
bussimulationen fiir Fahrzeug-Netzwerke vorgestellt. Die Anforderungen an ein
derartiges Framework werden erortert und mit bestehenden Architekturmo-
dellen im Gesamtfahrzeug-Kontext kontrastiert. Die Variabilitdt der Kommuni-
kationsbeschreibungen fiir Fahrzeug-Netzwerke wird im Generierungsprozess
beriicksichtigt, so dass ein kontrolliertes Nachziehen von Anderungen erméglicht
wird. Ein Fokus des entwickelten Frameworks liegt in der Erweiterbarkeit hin-
sichtlich zusatzlicher Beschreibungsformate fiir die Buskommunikation sowie
hinsichtlich zuséatzlicher Zielplattformen.



Abstract

This work introduces an extensible framework for generating residual bus simu-
lations of vehicle networks. The requirements for this framework are discussed
and contrasted against existing architectural models for representing the soft-
ware architecture of a vehicle. The variability of the input specifications for a
simulation is taken into account throughout the generation process, leading to a
maintainable solution. The framework offers extension points for supporting ad-
ditional input formats for communication specifications as well as for additional
target platforms.
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Kapitel 1
Einfiihrung

Die Softwareentwicklung fiir den Automobilbau stellt die beteiligten Entwickler
auf Seiten des Herstellers wie auf Seiten der Zulieferer vor Integrationsaufga-
ben, die mit den Prozessen und Vorgehensweisen aus anderen Industrieberei-
chen nicht sinnvoll zu bewéltigen sind. Dabei liegen die Griinde nicht in der
Komplexitit der einzelnen Steuergerite, sondern im hohen und immer mehr
zunehmenden Vernetzungsgrad und in der Variabilitdt, die im Rahmen des
Produktlinienentwicklungs-Prozesses fiir das iibergeordnete Gesamtfahrzeug
entsteht, sowie in der sehr speziell strukturierten Zuliefererstruktur. Durch sehr
hohe Stiickzahlen gibt es fiir Zulieferer kaum Spielraum in der Auslegung der
Hardware; die Software muss entsprechend nahe an der Hardware sein, was
dem zugleich verlangten Anspruch der Variabilitidt entgegenlauft. Die Code-
Generierung ist ein Ansatz, diese Aspekte in Einklang zu bringen.

1.1 Aufgabenstellung und Ubersicht

In dieser Arbeit wird ein Framework zur Generierung von Restbussimulatio-
nen fiir Fahrzeug-Netzwerke vorgestellt, das die geschilderte Problematik im
Kontext der Steuergerdte-Entwicklung und des Steuergeréte-Tests aufgreift. Die
Anforderungen an Systeme zur Generierung von Restbussimulationen werden
erortert und mit bestehenden Architekturmodellen im Gesamtfahrzeug-Kontext
kontrastiert. Die Variabilitdt der Kommunikationsbeschreibungen fiir Fahrzeug-
Netzwerke wird im Generierungsprozess beriicksichtigt, so dass ein kontrolliertes
Nachziehen von Anderungen erméglicht wird. Ein Fokus des entwickelten Frame-
works liegt in der Erweiterbarkeit hinsichtlich zusétzlicher Beschreibungsformate



fiir die Buskommunikation sowie hinsichtlich zusétzlicher Zielplattformen.

Diese Arbeit gliedert sich wie folgt: das vorliegende Kapitel erldutert den
fachlichen und technischen Kontext. Kapitel 2 untersucht die Anforderungen an
die Software-Architektur von Restbussimulationen und stellt diese der AUTOSAR-
Architektur gegeniiber. Kapitel 3 stellt die grundlegenden Konzepte bei der Code-
Generierung vor und beschreibt das entwickelte Framework im Kontext dieser
Konzepte. Kapitel 4 stellt einige Details der Implementierung vor. Kapitel 5 stellt
mogliche Erweiterungen und Verbesserungen vor, die auf den Ergebnissen dieser
Arbeit aufbauen kénnen.

1.2 Firmenportrat

Die Firma Berger Elektronik GmbH ist ein in Sindelfingen anséssiges Unterneh-
men im Automobil-Sektor mit den Schwerpunkten Bordbussysteme und Steue-
rungselektronik, insbesondere fiir das Priifstand-Umfeld. Die Berger Elektronik
ist an die in Boblingen beheimatete Star Cooperation Gruppe angeschlossen.
Intern gliedert sich der Betrieb in Entwicklungsabteilung, Kfz-Werkstatt und
Produktions-Werkstatt.

1.3 Kommunikationsnetzwerke und Bussysteme in
Fahrzeugen

Modelle moderner Fahrzeugbaureihen im Personen- wie auch im Nutzfahrzeug-
Bereich weisen einen hohen Vernetzungsgrad hinsichtlich der in ihnen verbauten
Steuergerate auf. Waren in der Vergangenheit hauptsachlich Anwendungen in
der Motor-Steuerung und im Getriebestrang sowie sicherheitsrelevante Aspekte
und gesetzliche Anforderungen an die Umweltvertraglichkeit verantwortlich fiir
einen starken Anstieg der notwendigen Konnektivitét, so zdhlen heute auch und
vor allem Komfort-Funktionen und Infotainment-Systeme zu den treibenden
Kraften fiir neue Funktionalitdt und damit verbundene neue Technologien.

Im Folgenden werden die wichtigsten Bussysteme (CAN, LIN und Flexray)
kurz beschrieben; fiir eine detaillierte Beschreibung, insbesondere im Hinblick
auf die physikalische Topologie, die in der vorliegenden Arbeit eine sehr unter-
geordnete Rolle spielt, sei auf die einschligige Literatur verwiesen (insbesonde-
re [Par07], [ZS10] und [ReiO8]]).

CAN (Controller Area Network) realisiert einen Multi-Master-Bus, d.h. alle
teilnehmenden Steuergerate sind gleichberechtigt und kdnnen prinzipiell zu
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Abbildung 1.1: Typische Topologie eines heterogenen Bordnetzwerkes I@I

beliebigen Zeitpunkten Sendeversuche starten, sofern der Bus frei ist. Die Adres-
sierung erfolgt inhaltsbasiert mittels des Identifiers einer versendeten Nachricht.
Dieser Identifier dient auch als Basis fiir die Arbitrierung, wobei CAN eine bitwei-
se Arbitrierung definiert, die bei Konflikten diejenige Nachricht mit dem kleinsten
Identifier am hochsten priorisiert, so dass der Sender dieser Nachricht den Zugriff
auf den Bus erhilt; dies ist im Wesentlichen eine Variante von CSMA/CA. Der
korrekte Empfang von Nachrichten wird tiberpriift, indem jeder Empfanger auf
dem Bus eine empfangene Nachricht bestitigt; hierzu setzt jeder Empféanger,
der eine Nachricht korrekt erhalten hat, ein Empfangs-Bit unmittelbar beim
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Empfang der Nachricht. Dies wird vom Sender erkannt; bleibt eine Empfangs-
bestédtigung aus, d.h. setzt keiner der potentiellen Empfénger das Empfangs-Bit
oder ist kein Empfénger vorhanden, so definiert CAN ein bestimmtes Verhalten
fiir Wiederholungs-Versuche und den Ubergang in Fehlerzusténde [Par07].

LIN (Local Interconnect Network) ist als einfaches, kostengiinstiges Bus-System
fiir raumlich beschrankte Sensor-Aktor-Netzwerke ohne hohen Bandbreitenbe-
darf und mit begrenzter Teilnehmerzahl konzipiert worden, mit dem Hintergrund,
diesen Anwendungsfall giinstiger abdecken zu kénnen als es durch ein vergleich-
bares CAN-Netzwerk moglich ware [ZS10]. Ein LIN-Netzwerk besteht aus einem
Master-Steuergerédt und einem oder mehreren Slave-Steuergeréten, wobei nur
der Master die Kommunikation initiieren darf. Der Master steuert den Buszugriff,
indem er den Slaves Botschaften sendet, auf die diese reagieren kénnen, wobei
in der Schedule definiert ist, welches Slave-Steuergerit auf welche Botschaften
antworten darf; das Zeitverhalten, das ebenfalls in dieser Schedule definiert
ist, ist nur fiir den Master relevant. LIN definiert besondere Nachrichten, die
fiir die Initilerung von Sleep- und Wakeup-Verhalten verantwortlich sind und
legt zeitliche Reaktionsfenster fest, die von Master und Slaves beim Eintritt in
den Sleep-Modus und beim Wiedereintritt in den aktiven Modus eingehalten
werden miissen. Erwdhnenswert ist, dass die LIN-Spezifikationen [LIN]] nicht
nur die Ubertragungsschicht und das Protokoll beschreiben, sondern auch ein
generisches API und ein Format zur formalen Beschreibung von LIN-Netzwerken
(siehe Abschnitt festlegen.

Die mangelnde Echtzeitfahigkeit von CAN sowie die fehlende Moglichkeit,
auf Protokollebene redundante CAN-Netzwerke einzurichten (beides Vorausset-
zung flir so genannte X-By-Wire-AnwendungerE[) fiihrte zur Entwicklung des
Byteflight-Protokolls, das als Flexray-Protokoll in einer modifizierten Auspragung
standardisiert wurde [ZS10]. Echtzeitfdhigkeit wird hier durch die Verwendung
von TDMA und einer Scheduling-Tabelle sowie Mechanismen zur globalen (d.h.
innerhalb eines Netzwerk-Clusters) Synchronisation der Zeitgeber aller Cluster-
Teilnehmer ermdglicht. Die Ausfallsicherheit wird (optional) erhoht, indem zwei
physikalisch getrennte Kanile fiir die redundante Ubertragung von Informatio-
nen genutzt werden, wobei die Konsistenzpriifung durch die Bus-Controller auf
Protokollebene erfolgt und nicht durch ECU-Software auf Anwendungsebene

1Ein Uberbegriff fiir Steer-By-Wire, Brake-By-Wire und dhnliche Mechanismen. Im KFZ-Kontext
wird damit die Ersetzung von physikalischen Steuerungseinrichtung wie Lenksdule und Bremsleitung
durch zuverlédssige und ausfallsichere Bussysteme bezeichnet. Zwar stehen heute bereits alle Infor-
mationen als Sensorwerte zur Verfiigung, um dies zu realisieren (Lenkradwinkel und Bremspedalstel-
lung), jedoch ist es gesetzlich nicht erlaubt, vollstéindig auf die physikalischen Ubertragungswege zu
verzichten.

11



erfolgen muss.

Der Bereich Infotainment, d.h. der Bereich der Integration von Unterhaltungs-
elektronik in das Bordnetzwerk von Personenkraftfahrzeugen der Oberklasse,
war dariiber hinaus Motivation fiir die Entwicklung eines komplett neuen Bus-
systems (MOST, Media Oriented Systems Transport ), das dem im Vergleich zu
herkdmmlichen Anwendungen extrem erhohten Bandbreiten-Bedarf Rechnung
tragt [[ZS10].

1.4 Beschreibungsformate fiir Buskommunikation

Zur sinnvollen Auslegung der Bus-Systeme fiir das Bordnetzwerk ist es notwen-
dig, die gesamten moglichen Kommunikationspfade und -inhalte auf der Ebene
des Gesamt-Systems zu erfassen. Zu diesem Zweck, d.h. zur formalen Beschrei-
bung der Kommunikations-Muster in Bordnetzwerken, existieren verschiedene
Standards und Industrie-Standards, die ein Datenmodell und ein Dateiformat
(teilweise auch eine Methodologie) definieren, die dies ermoglichen.

Diese Beschreibungsdateien spielen im Systemintegrations-Prozess zwischen
Gesamtfahrzeug-Hersteller und Zulieferern eine zentrale Rolle; in Abschnitt[2.6.]]
wird dies (im Kontext der AUTOSAR-Methodologie) néher erlautert.

Das Datenmodell, das durch diese Beschreibungsdateien beschrieben wird,
enthélt als zentrale, in allen Formaten vorhandene Elemente die folgenden
Elemente:

Busse und deren Parameter Die physikalisch vorhandenen Busse, deren Typ
und deren Parameter miissen definiert werden konnen. Fiir den CAN-Bus
sind dies die Bitrate und der Typ, fiir LIN und Flexray sind zusatzliche
Parameter fiir die Einrichtung und Aufteilung der Scheduling-Tabelle not-
wendig.

ECUs ECUs (Electronic Control Unit) entsprechen (physikalisch vorhandenen)
Steuergeriten und miissen beschrieben werden konnen.

Netzwerkknoten Verwendet eine ECU einen bestimmten physikalisch vorhan-
denen Bus, so ist sie ein Netzwerkknoten auf diesem Bus. Ist eine ECU an
mehrere Busse angebunden, so existiert sie als logischer Netzwerkknoten
auf allen diesen Bussen. Logisch entspricht dies einer Zuordnung von ECUs
zu den physikalisch vorhandenen Bussen.

Nachrichten auf Protokoll-Ebene Die auf jedem Bus ausgetauschten Nachrich-
ten sowie deren busspezifische Parameter miissen definiert werden kénnen.
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Fiir den CAN-Bus ist dies relativ einfach moglich (zu jeder Nachricht muss
lediglich der CAN-Identifier und die Lénge definiert werden kénnen). Fiir
Flexray ist die Zuordnung einer Nachricht zu einem Slot in der Schedule
notwendig. Dariiber hinaus ist es in der Regel so, dass fiir den Nachrich-
ten-Inhalt bestimmte Default-Belegungen angegeben werden konnen oder
Bitmuster fiir nicht verwendete Teile einer Nachricht definiert werden
konnen.

Signale Signale entsprechen in der Regel bestimmten Werten aus dem physi-
kalischen Fahrzeug-Modell, z.B. Sensorwerten, oder Notifikationen {iber
Ereignisse, die im Fahrzeug auftreten.

Signal-Kodierung Die konkrete Darstellung von Signalen muss in einem be-
stimmten Format (Wertetyp, Bitldnge usw.) erfolgen; diese Kodierungs-
Informationen miissen definiert und den Signalen zugeordnet werden
konnen. Eine Umrechnungs-Vorschrift von dieser Darstellung in konkrete
physikalische Werte muss ebenfalls definiert und einem Signal zugeord-
net werden konnen. Naheres zu dieser Thematik ist in Abschnitt 2.1.2]
beschrieben.

Zuordnung von Signalen zu Nachrichten Fiir Signale muss definiert werden
konnen, in welchen Nachrichten sie in welcher Kodierung vorkommen und
welche Teile im Byte-Array der Nachricht sie belegen.

Zuordnung von Signalen zu Empfingern Fiir Signale muss definiert werden
koénnen, welche Netzwerkknoten sie empfangen. Hier stellt sich die Frage,
warum dies nicht auf Nachrichtenebene erfolgt, da dies dem Verhalten auf
Protokollebene entspricht. Die Antwort liegt darin, dass durch die explizite
Beschreibung, welche Signale von einem Knoten empfangen werden, eine
hohere Flexibilitit erreicht wird, da dann ein Wechsel der Nachricht, die das
Signal enthélt, moglich ist, ohne dass dies notwendige Anpassungen nach
sich zieht. Dariiber hinaus ermdglicht dies eine Optimierung hinsichtlich
des Nachrichteninhaltes, indem statisch ein Filter fiir den Bus-Controller
der empfangenden ECU definiert werden kann, der nur bei Anderungen der
tatséchlich fiir diese ECU relevanten Teile der Nachricht eine Weiterleitung
der Nachricht vom Bus-Controller zum eigentlichen Host-Microcontroller
veranlasst.

Zuordnung von Nachrichten zu Sendern Zu jeder Nachricht muss definiert
werden konnen, von welchem Netzwerkknoten sie gesendet werden darf.
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Bei neueren Beschreibungsformaten kommt eine zusétzliche Abstraktionsebe-
ne zwischen Signalen und Botschaften hinzu, die so genannten PDUs (Protocol
Data Unit) [[AUTal]. Signale verweisen dann nicht direkt auf Botschaften, sondern
auf PDUs, und diese verweisen auf Botschaften. Hintergrund und Motivation
dafiir ist, dass unterschiedliche Bussysteme jeweils andere Maximalgrof3en fiir
Botschaften definieren. Die PDUs dienen dazu, die Einhaltung dieser Maximal-
groen zu gewahrleisten, ohne auf die Verwendung grof3er Botschaften auf
Bussystemen, die diese unterstiitzen, zu verzichten AUTDb].

Das alteste im grofleren Umfang eingesetzte und derzeit noch am weitesten
verbreitete Format ist das von der Firma Vector Informatik entwickelte und durch
eine umfangreiche Werkzeugkette unterstiitzte DBC-Format (das Akronym steht
fiir den generischen Begriff Database Container), das auf die Beschreibung von
CAN-Netzwerken beschrénkt ist. Die Serialisierung erfolgt als textbasierte Datei,
deren Syntax in keinerlei Weise standardisiert oder vollstédndig 6ffentlich definiert
ist und die iiblicherweise mit dem Werkzeug CanDB von Vector Informatik
erstellt wird. Das DBC-Format ermoglicht die Definition beliebiger Attribute
und die Zuordnung dieser Attribute zu den Modell-Elementen des Bordnetzes,
so dass Herstellern die Definition von eigenen, iiber die Grundfunktionalitét
hinausgehende semantische Erweiterungen ermoglicht wird, sofern sich diese
Erweiterungen durch die Definition von Attributen fiir Elemente realisieren
lassen. Diese Attribute sind typisiert, so dass rudimentédre werkzeuggestiitzte
Konsistenzpriifungen moglich sind. Eine typische Anwendung fiir dieses Attribut-
Metamodell ist die Definition von Attributen, die von nachgelagerten Werkzeugen
der Werkzeugkette verwendet werden kdnnen, z.B. von Code-Generatoren.

Spezifisch fiir LIN existiert das LDF-Format (LIN Description File), das Teil der
LIN-Spezifikationen ist (ergénzt durch so genannte Node Capability Files (NCF)),
die zuséatzliche, ECU-zentrische Sichten realisieren).

Eine neuere, durch eine herstelleriibergreifende Organisation gestiitzte Spe-
zifikation existiert unter dem Namen Fibex (Fieldbus Exchange Format), die eine
XML-basierte serialisierte Darstellung definiert und generell nicht busspezifisch
ist, sondern die Bus-Systeme CAN, LIN, Flexray und MOST unterstiitzt, wobei
kleinere Teil-Spezifikationen fiir notwendige busspezifische Spezialisierungen als
gesonderte XSD-Definitionen existieren [ZS10].

Auch AUTOSAR enthélt Mechanismen zur Beschreibung von Bordnetzwerken,
wobei sich diese semantisch an dem von Fibex vorgeschriebenen Modell orientie-
ren (in der AUTOSAR-Terminologie wird dies Fibex-Core genannt) [AUTd].
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1.5 Restbussimulationen

Der hohe Vernetzungsgrad hat Auswirkungen auf die Entwicklung und den Test
von Steuergeriten und Fahrzeug-Komponenten, da es dadurch in aller Regel so
ist, dass das zu testende Steuergerat nicht in Isolation (d.h. ohne die Prasenz
anderer Steuergeréte an einem der Bussysteme, die das zu testende Steuergerat
verwendet) getestet werden kann [[ZS10].

Die zu testende ECU erwartet bestimmte Nachrichten, die in bestimmten
Zeitintervallen auftreten miissen, um nicht in einen Fehlerzustand {iberzugehen
und die Funktion einzustellen. Es kann hierbei unterschieden werden zwischen
Nachrichten, die tatséchlich notwendig fiir die Funktion des zu testenden Steuer-
gerates sind (etwa weil sie Signale enthalten, die von der ECU weiterverarbeitet
oder ausgewertet werden), und Nachrichten, die als Kontroll-Nachrichten dienen,
um zu erkennen, ob das Bordnetzwerk intakt ist. Dies kann weiter unterschie-
den werden in implizite Kontroll-Nachrichten, d.h. zyklische Nachrichten, die
eigentlich konkrete Inhalte enthalten, die aber zur Zustands-Ermittlung des
Bordnetzwerkes missbraucht werden und explizite Netzwerk-Management-Nach-
richten, die spezifisch zu diesem Zweck existieren. Andererseits erwartet die
ECU, sofern sie selbst periodische Nachrichten generiert, dass diese von anderen
ECUs bestitigt werden (zum Beispiel durch das Setzen des Acknowledgement-
Bits, das im Falle der CAN-Kommunikation auf Protokoll-Ebene anzeigt, ob eine
Nachricht von mindestens einem weiteren Bus-Teilnehmer empfangen wurde).
Fehlen diese Bestdtigungen, so geht die zu testende ECU u.U. ebenfalls in einen
Fehlerzustand iiber.

Der Ansatz, diese Erwartungen der ECU in Bezug auf ihre Umwelt (d.h. die
vorhandenen Busteilnehmer) wihrend der Test-Laufe auf der ECU selbst zu
simulieren, z.B. durch einen Dummy-Bus-Treiber, scheitert aus verschiedenen
Griinden. Zum einen sind Serien-ECUs so knapp dimensioniert, dass derartige
Zusatzfunktionalitit zu Testzwecken nicht mit untergebracht werden kann. Zum
anderen unterliegt der Quellcode fiir Serien-ECUs strengen Audit-Regeln und ist
u.U. formal validiert, so dass jegliche Zusatzfunktionen zu Test-Zwecken diese
Validierung untergraben wiirde (oder ebenfalls auditiert und validiert werden
miissten). Ein anderer Aspekt ist, dass das Fehlverhalten bei fehlender Bus-
Anbindung oder fehlenden Kommunikations-Partnern ein integraler Bestandteil
des von der ECU zu realisierenden Verhaltens ist, so dass dieses ohnehin getestet
werden muss, selbst wenn es moglich wére, Teile der Funktionalitdt ohne echte
Bus-Anbindung zu simulieren.

Daher ist es zum Test von Steuergeridten notwendig, die fehlende Kommuni-
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kation zu ersetzen, indem auf dem Bus, auf dem ein Steuergerét Netzwerkknoten
ist, eine gewisse Grund-Kommunikation erzeugt wird und so die fehlenden ande-
ren ECUs, die eigentlich zur Funktion des zu testenden Steuergerétes notwendig
sind, zu simulieren. Dies wird mit dem Begriff Restbussimulation bezeichnet.
Hierbei wird unterschieden zwischen der statischen Restbussimulation und der
dynamischen Restbussimulation. Die statische Restbussimulation erzeugt Bus-
Kommunikation, indem die benétigten Nachrichten (deren Aufbau und Stan-
dard-Inhalt z.B. aus eine Beschreibungsdatei ermittelt werden kann) geméaf der
ihnen zugeordneten Parameter (Zykluszeit) periodisch gesendet werden. Die
dynamische Restbussimulation erginzt dies um beliebiges Verhalten, d.h. die
Nachrichteninhalte und Parameter sind nicht a priori festgelegt, sondern werden
in Reaktion auf externe Ereignisse verandert und gesendet. Im Kontext dieser
Arbeit wird die dynamischen Restbussimulation als Anwendung betrachtet, die
auf ein statisches Restbussimulations-Geriist zugreift und dieses durch beliebigen
benutzerdefinierten Code ergénzt.

Dieses prinzipielle Konzept der Restbussimulation ist in Abbildung|[1.2] darge-
stellt.

Restbussimulationen kommen nicht nur beim Test von einzelnen ECUs zum
Einsatz, sondern konnen im Kontext der Serienfertigung an Priifstinden einge-
setzt werden, um Fahrzeug-Komponenten zu testen. Hiufiger Einsatzfall sind
Motoren-Priifstinde, da das Motorsteuergerét in der Regel von vielen anderen
ECUs abhéngig ist und damit eine umfangreiche Simulation dieser ECUs fiir den
isolierten Test eines Motors notwendig ist. Hierbei kommen noch zusétzliche Auf-
gaben hinzu, wie die Anbindung an Systeme zur Vorgabe von Parameterwerten
und zur Protokollierung der Priifungen sowie die Anbindung an Systeme, die
die Leistungs-Elektronik steuern und im Fall von Motoren-Priifstinden den Zu-
und Abluft-Strom regulieren und protokollieren. Die Anbindung dieser Systeme
erfolgt in der Regel ebenfalls iiber die bereits vorhandenen Busse (nicht zuletzt
um die Einfiihrung zusétzlicher Hardware und Verkabelung zu vermeiden).

Ein kontrarer, komplementéarer Einsatzfall fiir Restbussimulationen ist der
Austausch einer ECU durch eine Restbussimulation im realen Fahrzeug. Dies
ist z.B. sinnvoll fiir den Test neuer Algorithmen fiir Stabilitdts-Programme und
dhnliche aufwéndige Anwendungsfille. Die Implementierung neuer Algorithmen
direkt auf der betroffenen ECU ist nicht praktikabel, da dies aufwindige Anpas-
sungen an die Limitierungen der vorhandenen ECU erfordern wiirde und so ein
schnelles, kosteneffizientes Prototyping von Algorithmen nicht moglich wéireE]

2Dies beruht auf der in der Regel zutreffenden Annahme, dass das eingesetzte System zur
Restbussimulation wesentlich méachtiger und einfacher erweiterbar ist als ein Seriensteuergerét.
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Abbildung 1.2: Klassischer Anwendungsfall der Restbussimulation ||

1.6 Gateways

Mit Gateways werden ECUs bezeichnet, die als wesentliche Aufgabe das Ab-
bilden von Nachrichten oder Signalen von einem Bus auf einen anderen Bus
iibernehmen, wobei unterschieden wird zwischen Gateways, die zwischen physi-
kalisch unterschiedlichen Bussystemen vermitteln kénnen (so genannte Protokoll-
Gateways) und Gateways, die lediglich zur Isolierung unterschiedlicher Busse
dienen. Diese Isolierung kann physikalischer Natur sein (z.B. durch Optokoppler)
oder logischer Natur, z.B. soll der Diagnose-Bus in der Regel nicht alle Nach-
richten mitlesen kdnnen und nicht beliebige Nachrichten an die internen Busse
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weiterleiten kénnen. Um diese Gateway-Steuergerate zu simulieren, muss ein Fra-
mework fiir Restbussimulationen Mechanismen zum Routing von Informationen
zwischen den Bussen einer ECU bereitstellen.

Auch Steuergerite, die keine explizite Gateway-Funktion haben, konnen an
mehreren Bussen anliegen (z.B. ein Scheibenwischer-Steuergerat, das seine Si-
gnale iiber einen CAN-Bus bekommt und an seine iiber einen lokalen LIN-Cluster
angebundenen Aktoren weitergibt); deren Simulation vereinfacht sich durch
die Bereitstellung von Gateway-Funktionalitdt durch ein Restbussimulations-
Framework.

1.7 Rolle der Code-Generierung

Der Umfang der Kommunikationsmatrix und die dieser zu Grunde liegende
Regularitét fiihrt dazu, dass eine manuelle Implementierung der Kommunika-
tions-Strukturen zum Zwecke der Simulation teuer und fehleranfillig ist, so
dass sich der Einsatz von Code-Generatoren hier aufdréngt, um eine konsistente
Basis der durch die Kommunikationsmatrix definierten Strukturen zu schaf-
fen [ZS10,KF09].

Eine dynamische Interpretation der Kommunikationsmatrix zur Laufzeit, d.h.
die Ausfithrung des definierten zyklischen Verhaltens durch eine generische
Laufzeit-Bibliothek, ist prinzipiell mdglich, setzt aber entsprechende Hardware-
Ressourcen fiir das System voraus, das die Restbussimulation ausfiihrt, und
schlie3t eine Portierung auf beschranktere Hardware-Plattformen kategorisch
aus. In Féllen, wo dies akzeptabel ist, insbesondere im Falle von host-gebun-
denen Restbussimulationen (d.h. Restbussimulationen, die nicht autonom auf
dedizierter Hardware, sondern unter der Kontrolle eines Entwicklungsrechners
mit entsprechender Umgebung laufen), ist dies jedoch durchaus eine praktikable
Losung. Fiir eine dynamische Restbussimulation stellt sich bei diesem interpreta-
tiven Ansatz die Frage, wie die eigentlichen Simulationsaspekte, d.h. das nicht
durch die Kommunikationsmatrix beschriebene Verhalten, durch den Benutzer
implementiert werden kénnen (siehe hierzu Abschnitt[2.5.3).
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Kapitel 2

Architekturen fiur
Restbussimulationen

In diesem Kapitel werden die grundsitzlichen Anforderungen an Architekturen
fiir Restbussimulationen dargelegt und, in Abschnitt mit einer Referenz-
Architektur fiir Seriensteuergerite im Gesamtfahrzeug kontrastiert.

2.1 Aufgaben der Restbussimulation

Eine Restbussimulation muss die folgenden unterschiedlichen Kernaufgaben
erfiillen (siehe Abbildung [2.1)):

e die Verarbeitung der Bus-Botschaften im Sinne der in den Datenbanken
spezifizierten Parametern (Signalverarbeitung)

e die Ereignisverarbeitung, d.h. die Anbindung externer Ereignisse an die
Zielplattform und die Weiterleitung generierter Ereignisse an die Zielplatt-
form

e das Ausfiihren von benutzerdefinierten oder extern generierten Erweite-
rungen, die an die Ereignisverarbeitung gebunden sind

¢ die Beeinflussung des Sendeverhaltens von Teilen der simulierten Netz-
werkteilnehmer in Reaktion auf Ereignisse oder Fehlerfélle
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Abbildung 2.1: Restbussimulation, bestehend aus Signalverarbeitungs-Kernel,
Plattform-Anbindung und benutzerdefinierter Callback-Funktionalitét [Ber]]

Busagnostische Ereignisse

2.1.1 ECU-Simulation

Jede fiir die Restbussimulation relevante ECU muss als Software-Komponente
in der generierten Anwendung abgebildet sein. Bei ECUs, die auf mehreren
Bussen aktiv sein kdnnen, empfiehlt sich, insbesondere im Falle von unterschied-
lichen physikalischen Bussen, die Simulation der ECU aufzuteilen in einzelne
Komponenten, die jeweils die Anbindung an den jeweiligen Bus realisiert (sie-
he Abbildung|[2.2)). Interne Kommunikation innerhalb der ECU ist problemlos
moglich, da die Restbussimulation und damit alle logischen Knoten der ECU
innerhalb eines Addressraumes ausgefiihrt werden. Diese Methode, ECUs wenn
noétig in busspezifische Knoten zu separieren, hat den Vorteil, dass Gateways
nicht als Sonderfélle behandelt werden miissen.

2.1.2 Signalverarbeitung

Die Beschreibungsdateien fiir die Kommunikationsmatrix definieren fiir Nachrich-
ten, die iiber die unterstiitzten Bussysteme {ibertragen werden, Interpretations-
Vorschriften, die es ermoglichen, aus dem auf Busebene als abstraktes Byte-
Array vorliegenden Nachrichteninhalt Signal-Informationen zu extrahieren und
zu diesen extrahierten Signal-Werten eine physikalische Umrechnungs-Vorschrift
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Abbildung 2.2: ECU-Sicht und logische Abbildung in Software-Komponenten am
Beispiel einer Gateway-ECU

zu definieren.

Es gibt einige Aspekte, die diese Funktionalitdt in mancher Hinsicht kom-
plexer macht als vergleichbare Beschreibungsformate fiir Bindrformate, wie sie
z.B. in Middleware-Systemen in der PC-Welt vorkommen (Beispiele fiir diese
Beschreibungen sind z.B. CORBA, Protocol Buffers oder BSON):

Nachrichten mit Signalen unterschiedlicher Byte-Reihenfolge Innerhalb ei-
ner Nachricht diirfen Signale mit unterschiedlicher Endianness, d.h. Byte-
Reihenfolge, vorkommen. Die zwei von allen Beschreibungsformaten er-
laubten Varianten sind hier die Intel-Reihenfolge (genannt little endian;
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das Byte, das das hochstwertige Bit enthélt, belegt die hohere Speicher-
Adresse) und die Motorola-Reihenfolge (genannt big endian; das Byte,
das das hochstwertige Bit enthélt, belegt die niedrigste Speicher-Adres-
se). Sollen Signale arithmetisch verarbeitet werden, so miissen sie in das
Format konvertiert werden, das vom verwendeten Prozessor verwendet
wird, d.h. Signale im Intel-Format miissen bei Verwendung einer Prozes-
sor-Architektur, die das Motorola-Format unterstiitzt, in dieses konvertiert
werden. Signale, die im Motorola-Format vorliegen, miissen entsprechend
auf Plattformen mit Intel-Format in dieses konvertiert werden.

Signale, die Byte-Grenzen verletzen Es gibt Signale, die nicht an Byte-Gren-
zen orientiert sind, d.h. die Teile eines Bytes und Teile eines angrenzenden
Bytes belegen.

Signale beliebiger Lénge Bei Signalen, deren Linge nicht genau 8, 16, 32 oder
64 Bit betragt, ergibt sich die Problematik, dass das Signal in der Rest-
bussimulation durch einen C-Typ reprasentiert werden muss, der einem
dieser Liangen entspricht (der kleinstmogliche dieser Typen bezogen auf
die Signal-Linge), d.h. das Signal wird durch eine Variable verwaltet, von
der nur ein bestimmter Bereich verwendet werden darf.

Die haufigsten in dieser Kategorie auftretenden Fille sind Signale, die
kleiner sind als ein Byte. Dies ist fiir Signale, deren C-Typ als unsigned
definiert ist, kein Problem (die hoherwertigen Bits, die nicht Teil des
Signals sind, kdnnen auf O gesetzt werden). Arithmetische Operationen
funktionieren wie erwartet. Bei Signalen, deren C-Typ als signed definiert
ist, ergibt sich das Problem, dass hier der Rohwert im Zweier-Komplement
vorliegt, dieser aber nicht einfach durch Nullsetzen der héheren Bit-Stellen
in den (grofleren) C-Typ libernommen werden kann. Stattdessen muss
durchgefiihrt werden, was als sogenannte Sign-Extension bekannt ist, bzw.
diese muss umgangen werden.

Ein so extrahiertes Signal liegt nach diesen Nachbehandlungen als Rohwert
vor. Flir manche Arten von Signalen, z.B. einfache Flags oder Enumerationen, die
keine skalare Grofde, sondern bestimmte diskrete Zustdnde reprdsentieren, ist
dies ausreichend, d.h. sie sind semantisch direkt verwertbar. Fiir skalare Werte
muss u.U. zusitzlich eine Umrechnung vom Rohwert in den physikalischen Wert
erfolgen, falls dies in der Beschreibungsdatei angegeben wird. Ublicherweise ist
dies notwendig, wenn bestimmte Sensorwerte auf Seite des Senders exakt so in
die Nachricht gepackt werden, wie sie der Sensor liefert (z.B. 12 Bit fiir viele
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Standard-A/D-Wandler oder Winkelgeber). In diesem Fall muss eine Umrechnung
von diesem Rohwert in eine physikalische GréRe erfolgen. Ublichstes Verfahren ist
eine lineare Umrechnung, d.h. eine Umrechnung mittels einer linearen Funktion,
die eine Skalierung des Rohwertes, gefolgt von einer zuséatzlichen Verschiebung,
realisiert. Einzelne Beschreibungsformate erlauben es, unterschiedliche lineare
Umrechnungen fiir verschiedene Wertebereiche des Rohwertes zu definieren
oder ein explizites Mapping von Werten durchzufiihren, d.h. bestimmte diskrete
Werte des Rohwertes auf andere diskrete Werte abzubilden (die letztere Variante
kommt z.B. im Rahmen der Netzwerk-Management-Funktionalitdt hdufig zum
Einsatz).

Samtliche in diesem Abschnitt beschriebenen Konversionen und Umrechnun-
gen miissen selbstverstdndlich auch in der umgekehrten Richtung erfolgen, d.h.
es muss auch der Weg vom physikalischen Wert zum Rohwert und von diesem
zum in die Botschaft integrierten Signalwert realisiert werden.

Als zusatzliche Anforderung bei diesem Aspekt ergibt sich die Notwendigkeit,
eine gewisse Transaktionalitit zu schaffen, so dass Lese- und Schreibvorgénge
auf Nachrichtenpuffern bei Verwendung mehrerer Threads keine unerwiinschten
Effekte erzeugen. Ein Beispiel ist die Vermeidung des so genannten Tearing,
das auftritt, wenn ein Thread ein sich iiber mehrere Byte erstreckendes Signal
in einen Puffer integriert, und ein anderer auf diesen Puffer lesend zugreift,
wiahrend erst Teile des Signals in den Puffer geschrieben wurden. Die Einbindung
dieser Synchronisations-Mechanismen muss moglichst geringen Einfluss auf die
Performance haben; hier bietet sich z.B. die Verwendung von Read-Write-Locks
an, die mehreren lesenden Threads ermdéglichen, gleichzeitig auf ein geschiitztes
Objekt zuzugreifen, aber nur den Zugriff durch einen einzelnen schreibenden
Thread erlaubt (der wiederum nur Zugriff erhélt, wenn kein lesender Thread
zugreift) [Ker10]. Es geht hier nicht nur um den Aspekt der Synchronisation im
temporalen Sinne, d.h. die Garantie des exklusiven Zugriffs auf eine Ressource
fiir eine bestimmte Zeitspanne, sondern auch um die Speicher-Synchronisation
(durch Einrichtung von Memory-Barrieren), die je nach verwendetem Betriebssys-
tem und Threading-Modell nur an bestimmten Synchronisationspunkten erfolgt;
ohne diese Barrieren wiirde das C-Speicher-Modell erlauben, dass der Compiler
den Zugriff auf von mehreren Threads verwendete Variablen so optimiert (z.B.
durch die zeitweise Verwendung eines Registers fiir eine eigentlich speicherresi-
dente Variable), dass nicht garantiert werden kann, dass Anderungen an einer
Variablen aus einem Thread jemals fiir andere Threads sichtbar werden. [[]

lUnter pthread-Implementierungen dienen die Methoden zur Steuerung des exklusiven Zugriffs
gleichzeitig auch als Memory-Barrieren, so dass in der Regel hier kein zusétzlicher Aufwand entsteht.
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2.1.3 Ereignisorientiertes Anwendungsmodell

Uber die Qualitét einer Restbussimulation entscheidet deren Fihigkeit, eingehen-
de Ereignisse zu verarbeiten und ausgehende Ereignisse zu generieren. Jegliche
Bewertung der Qualitdt muss diesen Aspekt mit hinreichender Gewichtung mit-
einbeziehen, und das Verarbeitungs-Modell fiir Ereignisse muss eine zentrale
Rolle in der Architektur der Restbussimulation spielen. Fiir eingehende Ereignisse
gibt es hierbei keine elementaren Unterschiede zu {iblichen Server-Anwendungen
(allerdings mit deutlich kleineren Paketgrof3en und deutlich hoherer Ereignisdich-
te). Fiir die ausgehenden Ereignisse gibt es jedoch den zentralen Aspekt der Zeit:
fiir die Restbussimulation ist es in der iiberwiegenden Zahl der Anwendungsfélle
nicht zielfiihrend, Antworten auf Ereignisse moglichst schnell zu senden, sondern
diese miissen in aller Regel zu definierten Zeitpunkten gesendet werden, wobei
die Mechanismen und Anforderungen an das temporale Verhalten stark von
den Rahmenbedingungen der Restbussimulation abhédngen, insbesondere den
eingesetzten Bussystemen und dem Lastprofil des konkreten Anwendungsfalles.

Im Folgenden werden die grundsétzlichen Ereignisse beschrieben, die fiir die
Restbussimulation zuginglich sein miissen.

2.1.4 Busspezifische Ereignisse

Die folgenden Ereignisse sind in ihrer Schnittstelle und teilweise in ihrer Seman-
tik abhéngig vom Bus-Typ, {iber die das Ereignis ausgelost wird. In der laufenden
Restbussimulation konnen sie einem konkreten Bus-Kanal zugeordnet werden.

Botschaftsempfang Dieses Ereignis wird ausgelost, wenn der Bus-Controller
eine giiltige Nachricht empfangen hat und dies dem Betriebssystem bzw. bei
Systemen ohne Betriebssystem direkt der Anwendung tiber einen Interrupt
signalisiert. Der Inhalt der Nachricht wird in den Speicherbereich der
Anwendung iibernommen und u.U. eine vom Benutzer definierte Funktion
aufgerufen, die eine Referenz auf diesen Nachrichtenpuffer als Parameter
erhalt.

Botschaftsiibermittlung Haufig gibt es Nachrichten, in denen bestimmte Felder
eine besondere Semantik besitzen (Beispiel: Priifsumme oder fortlaufender
Nachrichtenzihler); diese Felder miissen nicht nur bei Anderungen an
Signalwerten neu gesetzt werden, sondern vor jedem Senden der Nach-
richt (unabhingig von vorhandenen Anderungen an reguliren Signalen
derselben Nachricht). Aus diesem Grund muss auch das bevorstehende
Senden einer Nachricht als Ereignis zur Erweiterung durch den Benutzer
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zur Verfiigung stehen (wiederum als Callback-Funktion mit einer Referenz
auf die zu sendende Nachricht als Parameter). Dies ermdglicht es, unmittel-
bar vor dem Senden eine anwendungsspezifische Priifsumme zu berechnen
oder einen Nachrichtenzdhler zu erhohen.

Fehler auf Busebene Fehler auf physikalischer Ebene werden direkt vom Con-
troller (u.U. sogar direkt vom Transceiver) behandelt; dies ist notwen-
dig, da je nach Busprotokoll eine Maskierung einzelner Fehler durch den
Controller erfolgen muss (z.B. durch das automatische erneute Senden
fehlerhaft tibertragener Nachrichten). Unter CAN gibt es definierte Con-
troller-Zustédnde [|ZS10], die nach bestimmten Hiufungen von Fehlern
eingenommen werden und die fiir die Restbussimulation relevant sind
und an diese weitergeleitet werden. Typische Reaktionen der Anwendung
auf solche Ereignisse sind z.B. der Ubergang in einen benutzerdefinierten
sicheren Zustand beim Ubergang des Controllers in einen Fehlerzustand
und das Wiederaufnehmen der reguldren Aktivitit beim Wiedereintritt des
Controllers in einen aktiven Zustand sowie das Loggen des Ereignisses.

Eine explizite Einsicht in jedes Fehlerereignis (oder das anwendungsgesteu-
erte Erzeugen solcher Fehler) auf Busebene ist fiir solche Anwendungsfille
interessant, die sich mit der Analyse der Bus-Topologie und der Priifung
des Verhaltens von Controllern befassen; dies sind jedoch keine Anwen-
dungsfille fiir die Restbussimulation, sondern fiir spezielle Fault-Injection-
Werkzeuge, die an bestimmte Hardware mit Bus-Controllern gebunden
sind, die einen niedrigeren Abstraktionsgrad als die Standard-Bus-Control-
ler aufweisen miissen, bzw. die an spezielle Transceiver gebunden sind, die
dynamisch neu konfiguriert werden kénnen, ein bestimmtes Fehlverhalten
Zu zeigen.

2.1.5 Busagnostische Ereignisse

Die folgenden Ereignisse werden von der Restbussimulation selbst erzeugt oder
deren Erzeugung wird durch die Restbussimulation veranlasst, um mit benut-
zerdefinierten Callback-Funktionen darauf reagieren zu konnen. Sie sind un-
abhangig von der Anbindung der Restbussimulation an konkrete Bus-Kanile.

Anwendungsstart Beim Start der Restbussimulation miissen Parameter fiir Bus-
Kanéle gesetzt werden, die Bedatung E] der Datenpuffer geméaf} den In-
formationen in den verwendeten Datenbasen oder ggf. durch vorgegebe-

2Terminus fiir die Vorbelegung von Datenwerten
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ne Default-Werte durchgefiihrt und (im Entwicklungs-Modus) Server fiir
Kontroll- und Tracer-Kanéle initialisiert werden.

Anwendungsende Beim Beenden der Restbussimulation miissen die Parameter
fiir Bus-Kanéle zuriickgesetzt werden bzw. diese deaktiviert werden.

Zeitereignisse Die Restbussimulation muss fiir relative oder absolute Zeitpunkte
benutzerdefinierte Funktionen ausfiihren konnen. Verwendet werden kann
dies z.B. zur Verdnderung von Signalwerten gemal} einer gewiinschten
zeitabhingigen Kennlinie. Andere Anwendungsfélle sind das Sampling von
analogen oder digitalen Eingangssignalen durch eine benutzerdefinierte
periodische Funktion.

Signalwert-Anderungen Signale werden zwar als Teil von Botschaften zwi-
schen Teilnehmern kommuniziert und sind damit prinzipiell busspezifisch;
sie sind innerhalb einer Restbussimulation jedoch als eigenstdndige Ele-
mente manipulierbar und haben aus Benutzersicht keine direkte Assozia-
tion mit dem verwendeten Kommunikationsmechanismus (diese Abstrak-
tion ist ja gerade eine der Hauptaufgaben des Restbussimulations-API).
Anderungen an Signalwerten miissen im Hinblick auf definierte Werte-
bereiche {iberwacht werden, wobei es weitgehend anwendungsabhéngig
ist, ob unzulissige Anderungen unterbunden werden, auf die zulissigen
Grenzwerte abgebildet werden oder Warnungen auslosen.

Prozessvariablen-Anderungen Um wihrend frither Entwicklungsphasen exter-
ne Groflen (Sensorwerte etc.) zu simulieren oder um Vorgabewerte an
eine laufende Restbussimulation weiterzuleiten werden in der Regel so
genannte Prozessvariable verwendet. Sie ermoglichen einen kontrollier-
ten Zugriff auf den gekapselten Datenwert und propagieren diesen bei
Anderungen an abhingige Funktionen und erméglichen so eine Variante
von Dataflow-Programmierung, d.h. das systematische Anbinden von Er-
eignisbehandlungsroutinen und das automatische Berechnen abgeleiteter
GroRen bei Anderungen. Hiufig motiviert sich die Dataflow-Semantik auch
aus den graphischen Darstellungen, die viele Simulations-Umgebungen
bieten (vermutlich bekanntestes Beispiel hierfiir sind Matlab-Simulink-
Blocke, bei denen der Datenfluss als Verbindung der Ausgangs-Ports von
Datenquellen mit den Eingangs-Ports von Datensenken modelliert wird).

Dieser Mechanismus unterscheidet sich hinsichtlich der zuvor genannten
Manipulation von Signalwerten dadurch, dass in diesem Fall die Variablen
nicht in den Datenbasen definiert sein miissen, sondern vom Benutzer
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Abbildung 2.3: Hardware-Plattform ISI CANyon [Ber]

explizit eingefiihrt werden. Sie stellen in der Regel Aspekte dar, die nicht
Element der durch die Datenbasen modellierten Architektur sind, son-
dern speziell fiir die Restbussimulation in einem bestimmten Umfeld (z.B.
am Priifstand) benotigte Parameter, z.B. festgelegte Laufzeit, Kennlinien-
verlaufe, Diagnose- und Debug-Informationen.

2.2 CAN-Kommunikation unter Linux

Da die Referenz-Implementierung fiir ein Linux-System auf PowerPC-Basis er-
folgt (das ISI CANyon von Berger Elektronik, konzipiert von Bastian Hitzler
in [Hit10]); siehe Abbildung[2-3), werden im Folgenden einige Aspekte von Li-
nux als Softwareplattform erlautert, mit dem Fokus auf die Untertiitzung des
vorgestellten ereignisorientierten Anwendungsmodells. Fiir Leser, die bereits
auf Erfahrungen in der Linux-Systemprogrammierung zuriickblicken diirfen, ist
dennoch Abschnitt[2.2.4]relevant, da dieser auf die Einbindung von CAN eingeht,
was ein eher wenig bekannter Teil des Linux-Kernels sein diirfte.
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2.2.1 Klassifikation von Anwendungen

In der Systemprogrammierung gibt es zwei unterschiedliche Kategorien, in die
TasksE]hinsichtlich ihres Ressourcenbedarfs eingeordnet werden: I/0-gebundene
Tasks und CPU-gebundene Tasks.

I/0-gebundene Tasks verbringen den wesentlichen Teil ihrer Zeit in Warte-
zustdnden, wobei der Begriff ,Warten“ in diesem Zusammenhang entweder das
Warten auf die Gewéhrung eines exklusiven Nutzungsrechts fiir eine bestimmte
Ressource beschreibt oder das Warten auf das Auftreten von Ereignissen im
Zusammenhang mit einer bestimmten Ressource (z.B. auf Eingabe- und Ausga-
be-Ereignisse), wobei es zu grof3en Teilen betriebssystemabhéngig ist, welche
Ereignisse zur Verfiigung stehen. Die bei weitem am héufigsten verarbeiteten Er-
eignisse sind die Ein- und Ausgabe von Daten {iber Netzwerk- oder Dateisystem-
Schnittstellen.

CPU-gebundene Tasks verbringen den wesentlichen Teil ihrer Zeit mit Be-
rechnungen, d.h. der aktiven Verwendung eines Prozessorkerns. Beispiele sind
algorithmisch aufwéindige Datentransformationen und Berechnungen.

Im Hinblick auf Linux-Systeme ist eine dhnliche, aber nicht vollig identische
Klassifikation in Syscalf¥lastige Tasks und User-Space-lastige Tasks méglich.
Wenn ein Programm einen Syscall ausfiihrt, werden immer zwei Kontextwechsel
durchgefiihrt (nach dem Aufruf aus dem User-Space wird in den Kernel-Kontext
gewechselt und vor der Riickkehr wird vom Kernel-Kontext in den User-Space
gewechselt), der zudem weitreichendere Konsequenzen hat und hohere Kosten
verursacht als ein Kontextwechsel zwischen unterschiedlichen User-Space-Tasks.
Diese hoheren Kosten fiir Syscalls im Gegensatz zu einfachen Funktionsaufrufen
innerhalb einer Anwendung liegen unter anderem an den unterschiedlichen
Adressraumen, in denen der Kernel und der Anwendungsprozess laufen (hier
sind immer Puffer-Kopien notwendig statt wie beim Aufruf innerhalb der Anwen-
dung nur Referenzen zu libergeben), sowie an der Notwendigkeit des Kernels,
eine viel gezieltere Uberpriifung von Parametern durchzufiihren, um bestimmten

3Im Folgenden wird der Begriff Task als Uberbegriff fiir Prozesse und Threads verwendet. Es
ist betriebssystemabhéngig, inwieweit sich Threads und Prozesse unterscheiden. Eine generelle
Unterscheidung ist dadurch gegeben, dass Prozesse in einem logisch voneinander unabhéngigen
Adressraum ablaufen, wahrend Threads immer den Adressraum des Elternprozesses verwenden.
Somit sind Prozesse gegenseitig besser isoliert, mit den damit verbundenen Vorteilen und Ein-
schrankungen.

4Ein Syscall bezeichnet den Aufruf einer im Kernel definierten Routine, die im geschiitzten
Speicherbereich des Kernels ablduft; zur Abgrenzung gegen den allgemeinen Begriff ,,Systemaufruf”,
der sich u.U. auch auf Aufrufe von in vom Betriebssystem bereitgestellten Bibliotheken vorhandene
Funktionen ausdehnen lésst, hat der Begriff ,,Syscall“ eine deutlich prézisere Definition.
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Sicherheitsaspekten gerecht zu werden, die zwar nur im traditionellen Mehrbe-
nutzerbetrieb essentiell sind, die aber nicht einfach deaktiviert werden kénnen.

In der iiberwiegenden Mehrheit der Anwendungsfélle fiir konkrete Restbus-
simulationen dominieren die Anforderungen an die Ereignisverarbeitung die
Architektur; algorithmisch aufwéndige Restbussimulationen (man denke an das
Prototyping von ESP-Steuergeréten) sind durchaus méglich, werden jedoch in
der Praxis im Prototypen-Stadium meist innerhalb einer Umgebung zur numeri-
schen Simulation (z.B. Matlab) entwickelt, da in diesem Fall das algorithmische
Prototyping (d.h. die Entwicklung und Optimierung des Algorithmus) den Ent-
wicklungsaufwand dominiert.

Eine Integration algorithmisch aufwédndiger Anwendungen in ein ereignisori-
entiertes System ist meist durch eine Diskretisierung des Algorithmus moglich.
Der umgekehrte Fall, die Integration von hinreichend prézisen Ereignisbehand-
lungs-Funktionen in ein System mit blockierenden Berechnungen, ist dagegen
nicht moglich (bzw. wiederum nur durch eine Diskretisierung der Berechnung),
so dass eine ereignisorientierte Architektur als Voraussetzung fiir Restbussimula-
tionen gelten kann.

2.2.2 1/0-Multiplexing

Das ereignisorientierte Anwendungsmodell fiihrt dazu, dass die Anwendung
einen wesentlichen Teil ihrer Laufzeit mit dem Warten auf Ereignisse verbringt.
Um diese Wartezustdnde sinnvoll handzuhaben, d.h. die Ausfiihrung von Funk-
tionen auch wahrend des Wartens zu ermoglichen, gibt es zwei unterschiedliche
Ansatze, die kombiniert werden miissen, um ein effizientes Warten auch bei
einer groferen Menge an potentiellen Ereignissen zu ermdglichen.

Einerseits muss die Anwendung in verschiedene Threads partitioniert werden,
so dass die Blockierung des Kontrollflusses durch das Warten in einem Thread
die lauffahigen Teile der Anwendung nicht beeintrachtigt. In der Praxis ist es
jedoch nicht moglich, jeden Ereignistyp durch einen eigenen Thread vom Rest
der Anwendung zu entkoppeln, da dies einerseits Arbeitsspeicher fiir die Thread-
Verwaltung benoétigt (ein eigener Stack pro Thread sowie diverse Verwaltungsin-
formationen) und andererseits CPU-Zeit verbraucht und interne Cache-Invalidie-
rungen und Memory-Bus-Last durch Kontext-Wechsel verursacht [Ker10]. Bei
neueren Linux-Systemen ist zwar ein sogenannter O(1)-Scheduler vorhanden,
bei dem die Zeit zum Kontext-Wechsel zwischen zwei Tasks nicht von der Ge-
samtzahl der Tasks abhingig ist, sondern konstant [Hall1]]. Die Gesamtzeit fiir
das Scheduling zwischen allen Tasks ist jedoch weiterhin abhangig von der Ge-
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samtzahl der Tasks, gema® der Formel tcpy =Y, tn+>., Ces =D, tn +1Cls,
mit topy als Zeit fiir einen kompletten Scheduling-Zyklus fiir alle als gleich
priorisiert angenommenen Tasks, n als Anzahl der Tasks, ¢,, als Zeit fiir Task n
im betrachteten Zyklus und C.;, als konstante Zeit fiir einen einzelnen Kontext-
Wechsel.

Es ist also dariiber hinaus notwendig, innerhalb eines einzelnen Threads
nicht nur auf ein bestimmtes Ereignis warten zu kénnen, sondern auf eine Menge
an FEreignissen (um so die Anzahl der fiir die Ereignisbehandlung dedizierten
Threads drastisch zu verringern). Der Standard-Mechanismus dafiir ist unter
POSIX-Systemen die Verwendung der select-Funktiorﬂ die auf Ereignisse einer
Menge von Dateideskriptoren wartet und das Warten unterbricht, wenn fiir min-
destens einen dieser Dateideskriptoren Ereignisse signalisiert werden. Hierbei ist
zu erwahnen, dass dies selbstverstéandlich kein aktives Warten und Abfragen der
Menge an Deskriptoren im User-Space durch die Anwendung bewirkt (d.h. kein
Polling), sondern die Abgabe des Kontrollflusses der Anwendung (Descheduling
des Threads) und eine durch den Kernel initiierte Wiederaufnahme desselben im
Falle von Ereignissen auf den iberwachten Deskriptoren. Die unterschiedlichen
Modelle sind in Abbildung 2.4} Abbildung 2.5 Abbildung[2.6|und Abbildung
dargestellt.

Prinzipiell ist es moglich, sdmtliche an einen Dateideskriptor gebundenen
Ereignisse so in einem einzelnen Thread zu behandeln. Dies fiihrt jedoch leicht zu
einer softwaretechnisch unschénen Konglomeration von eigentlich unabhéngigen
Aspekten. Dies mag vor dem Hintergrund der Code-Generierung nicht dramatisch
erscheinen (der Benutzer kommt mit dem intern verwendeten Mechanismus nicht
direkt in Kontakt), ist allerdings fiir die Wartbarkeit und Erweiterungsfahigkeit
der Code-Generatoren nachteilig. Insbesondere gibt es ohnehin Ereignisse, die
nicht auf Dateideskriptoren abgebildet werden koénnen, so dass zwangslaufig
alternative Methoden hinzugezogen werden miissen. Ein Vorteil der Einzel-
Thread-Losung wére allerdings, dass die Abbildung auf ein microcontrollernahes
(durch Interrupts getriebenes) Verarbeitungsmodell oder eine Echtzeit-Variante
von Linux so einfacher méglich ist.

Eine Alternative zur select-Funktion ist (sofern auf die POSIX-Kompatibilitét
verzichtet werden kann und eine Linux-Losung akzeptabel ist) die Verwendung
des epoll-API, das bei einer grofleren Menge an zu {iberwachenden Dateide-
skriptoren effizienter ist als select-Aufrufe [Keg].

5Eine ausfiihrliche Beschreibung der Thematik ist zu finden unter [Keg].
%Das Socket-API von Windows unterstiitzt zwar eine Variante von select, jedoch ist diese auch
nur mit Sockets und nicht mit beliebigen Dateideskriptoren verwendbar.
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FD 1 FD 2 FD 3 FD 4 FD 5

Thread 1

Abbildung 2.4: Ein einzelner Thread; read ()-Call suspendiert den Thread, bis
der Kernel ein Ereignis auf dem {iberwachten Dateideskriptor signalisiert.

FD 1 FD 2 FD 3 FD 4 FD 5
’ read() ‘ ’ read() ‘ ’ read() ‘ ’ read() ‘ ’ read() ‘
Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

Abbildung 2.5: Mehrere Threads; read()-Call suspendiert den aufrufenden
Thread, bis der Kernel ein Ereignis auf dem iiberwachten Dateideskriptor signali-

siert. [Ber]]

FD 1 FD 2 FD 3 FD 4 FD 5
i
Thread 1 Thread 2

Abbildung 2.6: Mehrere Threads; select ()-Call suspendiert den aufrufenden
Thread, bis der Kernel ein Ereignis auf mindestens einem der {iberwachten
Deskriptoren signalisiert. [Ber]]
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select()

Thread 1

Abbildung 2.7: Ein einzelner Thread; select ()-Call suspendiert den Thread, bis
der Kernel ein Ereignis auf mindestens einem der iiberwachten Deskriptoren
signalisiert. [Ber]]

2.2.3 Prazises Scheduling im User-Space

Um mit hinreichender Genauigkeit zu bestimmten Zeitpunkten Botschaften
senden zu konnen, muss ein Zeitgeber mit einer Auflésung im Bereich von
etwa 100 Mikrosekunden verfiigbar sein[’| Dies motiviert sich aus der Tatsache,
dass bei den meisten Beschreibungsformaten fiir die Buskommunikation die
Zykluszeit von Botschaften mit einer Millisekunde Genauigkeit angegeben wird.
In der Regel werden bei sicherheitskritischen Anforderungen (bei denen eine
potentielle Totzeit von einer Millisekunde nicht akzeptabel wére) die Botschaften
ausserhalb eines eventuell vorhandenen Zyklus unmittelbar als Botschaften
hoher Prioritit gesendet (zumindest bei CAN-Kommunikation, wo dies moglich
ist, da kein Scheduling auf Protokollebene einzuhalten ist). Bei Verwendung von
CAN nimmt die reine Ubertragungszeit fiir eine Nachricht bereits mehr als 100
Mikrosekunden in Anspruch [ReiO8]]. Die clock_nanosleep-Funktion E] bewirkt
unter Linux das Warten auf den Ablauf des gegebenen Intervalls oder auf das
Erreichen eines absoluten Zeitpunktes.

In [Ker10] werden mehrere Linux-spezifische Ansitze vorgestellt, wie die
Realisierung von Funktionsaufrufen zu prazisen Zeitpunkten realisiert werden
kann, darunter der timerfd-Ansatz, bei dem spezielle virtuelle Dateideskriptoren
als Zeitgeber erzeugt werden konnen und somit in eine regulédre select-Schleife

7Dies betrifft das Scheduling von CAN- und LIN-Botschaften; unter Flexray erfolgt das eigentliche
Senden durch den dedizierten Flexray-Controller, da die Prazisionsanforderungen hier ungleich
hoher sind.

8Die selbstverstindlich, entgegen dem Anschein, der durch den Funktionsnamen erweckt wird,
keine Nanosekunden-Aufldsung hat, sondern eine systemspezifische Auflosung.
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eingebunden werden kénnen und somit auf Ereignisse des Zeitgebers und 1/O-
Ereignisse mit dem gleichen Mechanismus reagiert werden kann.

Wiirde die Restbussimulation als Kernel-Modul laufen (siehe Abschnitt[2.5.2)),
so konnte das Timing durch die Kernel-Timer erfolgen, die sich durch hochst-
mogliche Prazision (fiir die verwendete Plattform) und einfache Programmier-
Schnittstelle (Trigger-Zeitpunkt mit auszufiihrender Callback-Funktion) auszeich-
nen. Der verwendete Timer-Wheel-Algorithmus zur Realisierung des Scheduling
der Kernel-Timer, wie sie im Kernel 2.6 realisiert sind, ist in [GNO6] beschrieben.

2.2.4 SocketCAN

Das verwendete Linux-System unterstiitzt das CAN-Protokoll bzw. CAN-Hardwa-
re mittels der urspriinglich von der Volkswagen AG entwickelten so genannten
SocketCAN-Treibelﬂ die seit einiger Zeit Teil des Mainline-Kernels sind. Das
Besondere an diesen ist, dass sie auf dem gewohnlichen Netzwerk-Stack von
Linux aufbauen und CAN als neue Protokollfamilie einfiihren. Technisch und
konzeptuell hat CAN keinerlei Uberschneidungen mit den iiblichen von diesem
Stack unterstiitzten Protokollen (unterschiedliche Bus-Physik, unterschiedliche
Arbitrierung); Motivation fiir die Verwendung des Netzwerk-Stacks zur Anbin-
dung von CAN-Controllern war ausschliellich die Nutzung der bestehenden
Infrastruktur wie Puffer-Verwaltungs-Datenstrukturen und -Funktionen auf Ker-
nel-Seite und die Nutzung von bestehenden, bewéahrten Datei- und Socket-APIs
im User-Space. Durch die Integration in den Netzwerk-Stack ist es moglich, das
POSIX-Socket-API zum Senden und Empfangen von CAN-Botschaften zu verwen-
den; die Einfithrung eines neuen API speziell fiir CAN wurde so vermieden und
Anwendungsentwickler konnen bekannte und bewéhrte 1/0-Muster fiir die CAN-
Kommunikation verwenden.

Die grundsatzliche Funktionsweise besteht darin, dass von der CAN-Hard-
ware (d.h. den angebundenen CAN-Controllern) abstrahiert wird, indem jeder
vorhandene CAN-Kanal als eigenes Netzwerk-Interface angeboten wird, auf dem
die vom Netzwerk-Stack vorgegebenen Operationen garantiert werden [[Har].
Anwendungen instantiieren mittels des Socket-API logische bidirektionale Ver-
bindungen zu diesen Netzwerk-Interfaces, wobei der Kernel als Multiplexer
agiert, indem er mehreren Anwendungen erlaubt, dasselbe Gerit zu verwenden.
Die Koordination des Zugriffs erfolgt hierbei durch den Kernel und muss nicht
von den Anwendungen implementiert werden. Diese zwangslaufige Delegation
der Aufgaben an den Kernel hat subtile Implikationen, auf die in Abschnitt

9Die urspriingliche Bezeichnung fiir dieses API lautete Low Level CAN Framework (LLCF).
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Anwendung RBS Anwendung

i\

libc Socket-API \ \

Kernel Netzwerk-Stack \

SocketCA \ ¥
BcM| | RAW

Hardware CAN-Controller CAN-Controller

CAN-Transceiver ’ CAN-Transceiver ‘

CAN-Bus
Abbildung 2.8: Abstraktionsschichten bei Verwendung von SocketCAN [Ber]]

eingegangen wird.

SocketCAN bietet, neben den in dieser Arbeit nicht betrachteten Transport-
protokollen, grundsatzlich zwei Arten von CAN-Sockets, RAW-Sockets und
BCM-Sockets, die im Folgenden beschrieben werden und in Tabelle ge-
geniibergestellt werden, wobei beide Arten problemlos gemeinsam verwendet
werden, sowohl innerhalb einer Anwendung als auch in unterschiedlichen Pro-
zessen [Har].

Abbildung zeigt schematisch die Kommunikations-Pfade zwischen An-
wendung, Kernel und Hardware.

2.2.5 RAW-Sockets

Die RAW-Sockets entsprechen von der Verwendungsweise her reguldren Sockets
oder Dateideskriptoren: sie erlauben das Senden einer CAN-Botschaft mit den
gewohnten send bzw. write Systemfunktionen und das Empfangen einer ein-
zelnen CAN-Botschaft mit den recv bzw. read Systemfunktionen; SocketCAN
garantiert hierbei, dass Aufrufe jeweils eine vollstdndige Botschaft komplett
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Anwendung RBS Anwendung

®
oo (entspr. Zyklus)
libc Socket-API
Kernel Netzwerk-Stack
SocketCA \

BCM RAW

yd
Hardware CAN-Controller ’CAN-Controller ‘

[ee}

CAN-Transceiver ’ CAN-Transceiver ‘

CAN-Bus

Abbildung 2.9: Dateniibertragungs-Pfad bei Verwendung von RAW-Sockets. Bei
jedem Senden muss die Userspace-Kernelspace-Grenze passiert werden, was
Speicherkopien verursacht. Die Anwendung ist fiir das korrekte Timing verant-
wortlich. [Ber]

konsumieren bzw. liefern. Die RAW-Sockets sind echte Dateideskriptoren und
konnen somit u. a. auch in select Systemaufrufen verwendet werden, um ef-
fizientes I/O-Multiplexing zu realisieren. RAW-Sockets bieten die Moglichkeit,
Filter zu definieren, um den Empfang von Botschaften auf solche Botschaften
beschrénken, deren ID die Filterbedingungen erfiillen. Die Durchfiihrung des Fil-
terns im Kernel verhindert unnoétige Kopien vom Kernel-Space in den User-Space.
Je nach verwendetem CAN-Controller kdnnte die Filterung auch direkt auf der
CAN-Hardware erfolgen; allerdings kann dies unter SocketCAN auf Grund des
potentiellen intern stattfindenden Multiplexing von Nachrichten an verschiedene
Sockets in verschiedenen Prozessen nicht durchgefiihrt werden [Har]].
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2.2.6 BCM-Sockets

Der Broadcast Manager (BCM) kann beschrieben werden als ein Management-
API fiir zyklische CAN-Sendeauftrage: anstatt CAN-Botschaften direkt aus ei-
ner Anwendung zu senden, werden stattdessen dem BCM Sendeauftrége fiir
Botschaften iibermittelt, die zusitzlich zum Dateninhalt der Botschaften Infor-
mationen liber Zykluszeiten enthalten. Der BCM (der im Kontext des SocketCAN-
Moduls im Kernel 1auft) iibernimmt darauthin die Verantwortung fiir das zykli-
sche Senden der ihm iibermittelten Botschaften; die Anwendung wird davon
entlastet, insbesondere was das relativ aufwéandig zu realisierende Zeitverhal-
ten (Einhaltung der Zykluszeiten) betrifft. Zusétzlich werden unnétige Kopien
zwischen User-Space und Kernel-Space vermieden, die sonst beim mehrmaligen
Senden von Botschaften gleichen Inhalts notig wéren. Abbildung [2.10|stellt die-
sen Sachverhalt dar, wahrend Abbildung[2.9] die Realisierung mit RAW-Sockets
gegeniiberstellt.

Soll der Dateninhalt einer vom BCM verwalteten Botschaft veridndert werden,
so kann dies als Anderungsauftrag iiber den BCM-Socket iibermittelt werden;
dabei kann angegeben werden, ob die verdnderte Botschaft sofort gesendet
werden und ein neuer Zyklus gestartet werden soll oder ob die verdnderte
Botschaft im Rahmen des néchsten reguliaren Zykluspunktes gesendet werden
und der bestehende Zyklus beibehalten werden soll [Har|]. Das Abbrechen eines
Sendezyklus fiir eine CAN-Botschaft erfolgt analog.

Ein weiterer spezieller Anwendungsfall, den der BCM unterstiitzt, ist das
Umschalten eines zyklischen Sendeauftrags von einem Intervall auf ein anderes
Intervall nach einer definierten Anzahl von Durchldufen; relevant ist dies z.B.
bei Nachrichten, die bei Einschaltvorgdngen wichtig sind (z.B. zur Initialisierung
anderer ECUs) und daher mit niedriger Zykluszeit gesendet werden sollen, im
laufenden Betrieb aber eine hohere Zykluszeit ausreichend ist.

BCM-Sockets konnen auch zum Empfangen von Nachrichten verwendet wer-
den. Hier ist zusdtzlich zu den auch bei den RAW-Sockets vorhandenen ID-
basierten Filtern eine inhaltsbasierte Optimierung moglich: der Socket kann so
konfiguriert werden, dass eine Botschaft nur an die Anwendungsschicht wei-
tergeleitet wird, wenn sich seit dem letzten Empfang dieser Botschaft nichts
am Inhalt verdndert hat. Hierbei ist durch Bitmasken konfigurierbar, welche
Bereiche einer Botschaft fiir den Empfanger {iberhaupt relevant sind. Des Wei-
teren kann eine Zeitiiberwachung erfolgen, indem fiir eine zu empfangende
Nachricht ein Timeout-Wert ¢ angegeben wird; wird nach dem ersten Emp-
fang der Nachricht nicht nach spatestens ¢ Zeiteinheiten die Nachricht erneut
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Anwendung RBS Anwendung

einmalig (Setup)
libc Socket-API
Kernel Netzwerk-Stack
SocketCA

BCM RAW
®

/oo (entspr. Zyklus)

I~

4
Hardware CAN-Controller ’CAN-Controller ‘

(o]

CAN-Transceiver ’ CAN-Transceiver ‘

CAN-Bus

Abbildung 2.10: Dateniibertragungs-Pfad bei Verwendung von BCM-Sockets. Die
Anwendung muss die Daten fiir eine zyklisch zu sendende Botschaft nur einmalig
(und bei Anderungen) an den Kernel iibertragen. Das Timing erledigt das BCM-
Kernelmodul. [Ber]]

empfangen, erhélt die Anwendung iiber den BCM-Socket eine entsprechende
Benachrichtigung. Optional kann auf das Warten auf den Empfang mindestens ei-
ner Nachricht zum Starten der Uberwachung verzichtet werden und unmittelbar
mit der Uberwachung begonnen werden.

Dariiber hinaus wird die zeitbasierte Drosselung von an die Anwendung
iibermittelten Botschaften unterstiitzt, d.h. fiir eine Botschaft, deren Verarbeitung
durch die Anwendung bei zu hiufigen Anderungen nicht gewihrleistet werden
kann, kann explizit ein Minimal-Intervall angegeben werden, das zwischen zwei
aufeinanderfolgenden Anderungen des Botschaftsinhaltes abgelaufen sein muss,
um die Weiterleitung an die Anwendungsschicht zu veranlassen.

RAW BCM

Senden
Empfangen
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RAW BCM

Empfangs-Multiplexing X
Autonomes zyklisches Senden -
Callbacks nach dem Empfangen

X X
[ S

X
Callbacks vor dem Senden X
Error-Frames empfangen X
Bus-Off-Benachrichtigungen empfangen X
Timeout-Uberwachnug -
Filterung durch Botschafts-Identifier X
Inhaltsbasierte Filterung durch Bitmasken -
Umschaltung des Sende-Intervalls -
Nutzung virtueller CAN-Bus X

X X X X X X X X

Drosselung von Botschaften -

Tabelle 2.1: Vergleich RAW- und BCM-Sockets. Fehlende Funktionalitdt muss von
der Anwendung realisiert werden.

2.2.7 Error-Frames und Bus-Off-Benachrichtigung

Fiir Anwendungen, die {iber Error-Frames auf dem Bus oder iiber die Abschal-
tung der Bus-Verbindung durch den CAN-Controller (als Reaktion auf Fehler)
informiert werden miissen, gibt es bei beiden Socket-Arten die Moglichkeit, den
Empfang entsprechender Botschaften, die standardmé&@ig nicht an die Anwen-
dung weitergeleitet werden, zu aktivieren. Es handelt sich hierbei nicht um
die eigentlichen Error-Frames, die auf dem Bus liegen, sondern um spezielle
Nachrichten, die der SocketCAN-Treiber verwendet, um die Anwendung iiber
diese Ereignisse zu informieren. Die Ubermittlung erfolgt lokal zwischen Kernel
und Anwendung und geht nicht iber den CAN-Controller; es wird lediglich
der bereits bestehende Socket zwischen Kernel und Anwendung genutzt, um
fiir derartige Out-Of-Band-Informationen keinen orthogonalen Mechanismus
verwenden zu miissen.

2.2.8 Virtueller CAN-Bus

SocketCAN ermoglicht es, virtuelle CAN-Kanéle zu definieren, mit denen die
beschriebenen Socket-Arten ohne Anderungen verwendet werden kénnen. Diese

10 jedoch nicht bei autonomen Sendeauftrigen.
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simulieren die Kommunikation, ohne auf CAN-Hardware zuzugreifen bzw. ohne
diese vorauszusetzen. Einfache Tests ohne Anspruch auf hohe Aussagekraft sind
so trivial moglich [Har].

2.3 CAN-Kommunikation unter Windows

Unter Windows gibt es kein etabliertes CAN-Framework und keine einheitli-
che Abstraktion fiir Hardware unterschiedlicher Hersteller. Die XL Library von
Vector Informatik, die simtliche Hardware-Produktlinien dieses Herstellern mit
sdmtlichen Bussystemen unterstiitzt, kann als Basis fiir so genannte online Rest-
bussimulationen verwendet werden, d.h. Restbussimulationen, die direkt auf
einem Host-Rechner laufen statt auf einer dezidierten CAN-Hardware, die auto-
nom lauffahig istE-]

2.3.1 Vector XL Library

Die Vector XI. Library wird von Vector Informatik als einheitliche Software-
Schnittstelle zum Ansprechen der von dieser Firma vertriebenen CAN-, Flexray-,
LIN- und MOST-Hardware zur Verfiigung gestellt. Sie besteht aus einer dynami-
schen Bibliothek (DLL) mit zugehoriger Header-Datei, die intern die hardware-
spezifischen Treiber der konkret verwendeten Hardware anspricht [[Vec].

2.3.2 Port-Konzept

Die zentralen Abstraktionen, die die Vector XL Library zur Verfiigung stellt,
sind Ports (entspricht einer logischen Verbindung zu einem physikalisch vor-
handenen oder virtuellen Kanal, vom Konzept her dhnlich einem SocketCAN-
Socket) und abstrakte Ereignis-Objekte, die die unterstiitzten busspezifischen
und generischen Ereignisse (Sende-, Empfangs- und Zeitgeber-Ereignisse) ab-
strahieren [Vec|]. Diese Ereignisse kénnen mit den unter Windows verwendeten
Methoden zur Ereignis-Behandlung verwendet werden, wie im néchsten Ab-
schnitt beschrieben. Wie unter SocketCAN, so kann auch mit der Vector XL
Library eine Anwendung mehrere Ports fiir denselben physikalischen Kanal
éffneﬂ und die Bibliothek iibernimmt die ndtige Replikation der Ereignisse und
Synchronisation des Zugriffs, und entlastet so den Anwendungsprogrammierer.

HMit dem CAN Case XL steht mittlerweile auch eine autonom lauffihige Hardware zur Verfiigung,
dhnlich den etablierten Produkten von Samtec oder Berger Elektronik.
12Es koénnen auch mehrere Anwendungen einen Port fiir denselben physikalischen Kanal erzeugen.
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Derjenige Port fiir einen bestimmten physikalischen Kanal, der zuerst geoffnet
wird, hat erweiterte Berechtigungen und nur {iber diesen konnen Bus-Parameter
gesetzt werden [Vec].

2.3.3 Ereignis-Behandlung unter Windows

Windows stellt ein generisches Modell zur Ereignis-Verarbeitung zur Verfiigung,
das eine einheitliche Behandlung von vom Betriebssystem bereitgestellten Er-
eignissen und anwendungsspezifischen Ereignissen ermoglicht. Die zentralen
Elemente sind die Methoden WaitForSingleObject bzw. WaitForMultipleOb-
jects, die von der Semantik her dem select-Systemaufruf von POSIX-Systemen
entsprechen und es ermoglichen, den Kontrollfluss des aktuellen Threads zu
suspendieren, um ressourcenschonend auf eines oder eines von mehreren Er-
eignissen zu warten. Die Ereignisse sind gebunden an einen opaken Datentyp
(HANDLE), auf dem die Operationen SetEvent und ResetEvent moglich sind.
Wird auf ein solches Objekt die Operation SetEvent ausgefiihrt, so wird ein
Thread, der mittels einer der WaitFor. . .-Methoden auf Ereignisse fiir dieser
Objekt wartet, benachrichtigt [T_g] und nimmt seinen unterbrochenen Kontroll-
fluss wieder auf. Dadurch ist es fiir Entwickler, die mit dem low-level Windows-
API vertraut sind, einfach, die von der XL Library generierten Ereignisse zu
verwerten.

2.3.4 Zeitgeber

Die Vector XL Library stellt, ebenfalls nutzbar {iber den generischen Ereignis-
Behandlungsmechanismus, einen préizisen Zeitgeber zur Verfiigung, der durch
die verwendete Hardware gesteuert wird, so dass Anwendungen nicht auf die
entsprechenden Funktionen des Windows-API angewiesen sind und keinen dedi-
zierten Timer-Thread erzeugen miissen, sondern einen Zeitgeber mit determinis-
tischer, hoher Prézision nutzen kénnen [[Vec].

3Interessanterweise hat Linux erst verhéltnisméRig spét ein API fiir generische Events eingefiihrt
(unter dem Begriff event£fd), das eine dhnliche Semantik bietet wie der beschriebene Mechanismus
von Windows. Zuvor mussten benutzerdefinierte Ereignisse mittels generischer Schnittstellen fiir die
Interprozess-Kommunikation wie Pipes oder Message Queues nachgebildet werden (dies ist auch
heute noch der bevorzugte Weg, da das eventfd-API auf Linux beschrankt ist, Pipes und Message
Queues dagegen auf allen POSIX-Systemen vorausgesetzt werden konnen) [Ker10].
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2.3.5 Anbindung von Anwendungen

Von Vector wird die XL Library nur als C-API und als .NET-API (die intern
das C-API verwendet, aber das Arbeiten auf einer hoheren Abstraktions-Ebene
ermoglicht) angeboten; eine Unterstiitzung von Java miisste mittels JNI reali-
siert werden, wobei eine vollstdndige Unterstiitzung auf Grund des Umfangs
sehr aufwandig ist und auf Grund der Verwendung von Out-Parametern auch
nicht vollstdndig dquivalent umgesetzt werden kann. Aus diesem Grund ist der
einfachste Weg, die Vector XL Library als zusétzliche Zielplattform zu nutzen, die
Verwendung des C-APIL

2.3.6 Ubersetzung mit mingw

Mit dem auf GCC basierenden mingw-Compiler steht ein frei redistributierbarer
Compiler fiir Windows zur Verfiigung, mit dem sich eine vollstindige Werk-
zeugkette fiir die Ubersetzung der Restbussimulation bei Verwendung des C-API
einbinden lasst, ohne auf die Auslieferung eines kommerziellen, mit zusétzlichen
Kosten fiir den Endnutzer verbundenen Compilers angewiesen zu sein.

2.4 Diskussion der Nachteile von SocketCAN und
XL Library

Ein Nachteil von SocketCAN liegt darin, dass das zu Grunde liegende Koordinati-
onsmodell, insbesondere das Multiplexen empfangener Botschaften durch den
Kernel, nicht mit der reguldren 1:1-Beziehung zwischen dem Ereignis , Botschafts-
empfang” und der Reaktion auf die Botschaft in der Anwendung iibereinstimmt,
wie sie von fast allen anderen APIs zum Ansprechen von CAN-Hardware vor-
gegeben wird, insbesondere bei mikrocontrollernahen APIs. Diese bieten als
minimales API eine synchrone Can_Send-Methode sowie einen Benachrichtigung-
Mechanismus (mittels Interrupt oder Callback-Funktion) iber Empfangs-Ereig-
nisse und eine Can_Receive-Funktion zum Auslesen der Botschaft durch die
Anwendung nach einer vorangegangenen Benachrichtigung oder durch Polling
an; die Moglichkeit, von mehreren Anwendungen aus (oder von mehreren Stel-
len aus einer Anwendung heraus) auf dasselbe Empfangsereignis zu reagieren
existiert bei diesen APIs nicht, sondern muss explizit nachgebildet werden (z.B.
durch anwendungsinterne Botschafts-Warteschlangen, wobei die Speicherver-
waltung durch die Anwendung erfolgt).
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Wird also bei der Anwendungs-Architektur zu sehr auf die von SocketCAN
bereitgestellten Mechanismen gesetzt, so beeintrachtigt dies die Portierbarkeit
der Anwendungen auf Systeme ohne SocketCAN. Es existieren jedoch APIs, die
einen dhnlichen Mechanismus zum Multiplexen der CAN-Kanéle anbieten, z.B.
die bereits erwdhnte XL Driver Library der Firma Vector, die es ermdglicht, meh-
rere Anwendungen iiber so genannte Ports (nicht zu verwechseln mit TCP/IP-
Ports) an die eigentlichen CAN-Treiber anzubinden, wobei hier dhnlich wie unter
SocketCAN jeder Port eine eigene Empfangsqueue verwaltet. Hier lief3e sich ver-
mutlich eine gemeinsame Abstraktionsschicht definieren, die die Schnittmenge
der Funktionalitdt von SocketCAN und XL Driver Library kapselt.

Die speziellen Aspekte der BCM-Sockets, insbesondere das autonome zykli-
sche Senden, lassen sich ebenfalls nicht ohne erheblichen Aufwand auf die oben
dargestellten einfacheren APIs portieren, so dass es hier wichtig ist, die Verwen-
dung von BCM-Funktionalitdt entsprechend zu kapseln. Wird ein AUTOSAR-
COM-Stack verwendet, so stehen entsprechende auftragsbasierte Schnittstellen
allerdings zur Verfiigung [AUTal.

Weiter ist bei den BCM-Sockets kritisch, dass bei der Verwendung des autono-
men Sendens keine Moglichkeit besteht, Callbacks vor jedem Senden aufzurufen;
fiir Botschaften, bei denen diese Funktionalitit erforderlich ist, muss das zykli-
sche Senden aus der Anwendung heraus erfolgen.

Ein weiteres Problem, dass sich bei zu starker Konzentration auf das durch
SocketCAN bereitgestellte Abstraktions-Modell ergibt, ist, dass keine definierten,
aus dem User-Space aufrufbaren Schnittstellen zur Konfiguration der Controllers
existieren; stattdessen muss das Standard-Tool ip verwendet werden, um die
CAN-Kanéle der Controller zu konfigurieren [Har]. Die dort vorgenommene
Konfiguration beeinflusst das Verhalten aller an diese Kanéle gebundenen CAN-
Sockets. Fiir bestimmte Wechsel der Betriebsmodi des CAN-Controllers (z.B. von
der aktiven Teilnahme mit Bestédtigung aller empfangenen Nachrichten zum pas-
siven Modus, in dem Nachrichten empfangen, aber nicht bestétigt werden) muss
der CAN-Kanal deaktiviert werden und mit verdnderten Parametern neu aktiviert
werden, was alle daran gebundenen CAN-Sockets ungiiltig macht; Anwendungen,
die dieses Verhalten benétigen, miissen diese Bedingungen abfangen, was die
Komplexitit der Ereignisbehandlungs-Routinen erhoht.

Die Nachteile der Verwendung der XL Library liegen &hnlich. Auch hier steht
das machtige Port-Konzept eventuellen Portierungen auf eingebettete Plattfor-
men entgegen. Zusatzlich wird die Losung an einen bestimmten Hardware-
Hersteller gebunden und ist nur unter Windows lauffahig; es gibt zwar andere
Hersteller, die die Aufruf-Konventionen der XL Library emulieren oder nachbil-
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den, aber dies ist eher die Ausnahme, so dass die XL Library in keiner Weise als
Standard angesehen werden kann (der hohe Verbreitungsgrad resultiert nur aus
der sehr hohen Markt-Prasenz von Vector).

2.5 Alternativen zur beschriebenen Architektur

Zur vorgestellten Architektur gibt es fundamental verschiedene Ansétze, die im
Folgenden kurz beschrieben werden.

2.5.1 Echtzeit-Linux

Der fiir das verwendete Ziel-System verwendete Kernel ist kein Echtzeit-Kernel.
Ein Echtzeit-Kernel ist kompilierbar und verwendbar fiir die CANyon-Hard-
ware, unterstiitzte zum Zeitpunkt der Arbeit aber wichtige Elemente wie den
NAND-Flash-Speicher nicht, so dass dieser aus pragmatischen Griinden nicht
produktiv verwendet werden kann. Die prinzipiellen Hintergriinde der Echtzeit-
Unterstiitzung unter Linux sind in [Halll]] umrissen.

2.5.2 Kernelmodul fiir spezifische Restbussimulation

Ein vollkommen anderer Ansatz wére die Generierung der Restbussimulation
und der zugehorigen benutzerdefinierten Erweiterungen als Kernel-Modul. Die
stark modularisierte Architektur des Linux-Kernels macht dies moglich, sofern
fiir den verwendeten Kernel das dynamische Laden von Modulen E] aktiviert ist.
Diese Architektur-Variante ist in Abbildung dargestellt. Bei Verwendung
eines Kernels, der keine dynamischen Module unterstiitzt, konnte ebenfalls die
Restbussimulation als Kernel-Modul generiert werden, dieses miisste dann jedoch
statisch gegen den Kernel gelinkt werden, was zur Folge hitte, dass immer der
komplette Kernel neu auf das Zielgerét aufgespielt werden miisste, was aus
verschiedenen Griinden (Dauer des Vorgangs und die Gefahr, das System in
einen unbenutzbaren Zustand zu bringen) nicht akzeptabel ist. Die Vorteile
dieser Losung sind:

e Zero-Copy moglich, d.h. bestmogliche Vermeidung von Puffer-Kopien von
empfangenen und gesendeten Datenpaketen. Da Restbussimulation und
Kernel im gleichen Adressraum ablaufen, konnen Referenzen auf Daten-
pakete (mittels Zeigern) zwischen den Schichten weitergeleitet werden

l4Dynamische Kernel-Module sind keine dynamischen Bibliotheken (1ibXX.so) im Sinne des unter
Linux iiblichen 1d-Linkers, wie man vermuten konnte.
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Kernel Netzwerk-Stack

SocketCA
RBS BCM RAW
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’ CAN-Transceiver ‘ ’ CAN-Transceiver ‘

CAN-Bus

Abbildung 2.11: Architektur-Alternative: Restbussimulation als Kernel-Modul.
Dies vermeidet jegliche Userspace-Kernelspace-Puffer-Kopien durch die Kommu-
nikationstétigkeiten der RBS. [Ber]

anstatt (beim Ubergang zwischen Kernel und User-Space) Kopien erzeugen
zu missen.

e Bestmogliches Timing, da Kernel-Timer-Callbacks genutzt werden konnen
und keine Latenz durch das Aktivieren eines auf ein Timer-Ereignis war-
tenden User-Space-Threads durch den Scheduler auftritt.

e Die Nutzung hardwarespezifischer Funktionen, z.B. der CAN-Mailboxen
auf dem Controller unter Umgehung des SocketCAN-API, wird ermdglicht.
Somit kann die bestmogliche Ausnutzung der Fahigkeiten der Hardware
gewahrleistet werden.

Zu den Nachteilen zihlen:

e Erschwertes Debugging. Da die Restbussimulation im Kernel ablauft, kann
kein einfaches Remote-Debugging (z.B. mit gdb und gdbserver) durch-
gefiihrt werden, sondern es miissen spezielle Kernel-Debugger eingesetzt
werden. Zusatzlich miissen in Abhingigkeit davon, in welcher Schicht
genau das Problem vermutet wird, bestimmte Kernel-Optionen aktiviert
werden, was unter Umstidnden das Neuiibersetzen des Kernels erfordert. [

I5Die Aktivierung aller Debug- und Trace-Optionen des Kernels fiihrt, sofern der Kernel damit
tiberhaupt iibersetzbar ist, mit Sicherheit zu interessantem Laufzeit-Verhalten, trégt aber in aller
Regel nicht zur Identifikation des Problems bei.
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e Dem Benutzer, der die benutzerdefinerten Teile der Restbussimulation
implementiert, wird extreme Programmierdisziplin abverlangt, um blo-
ckierendes Verhalten zu vermeiden. Innerhalb eines Kernel-Moduls hat
blockierendes Verhalten unter Umsténden sehr obskure, schwierig zu ermit-
telnde Ursachen einerseits und Symptome andererseits. Des Weiteren steht
innerhalb des Kernels die C-Standard-Bibliothek (1ibc unter Linux) nicht
zur Verfligung, so dass zwangslaufig kernelinterne APIs genutzt werden
miissen, was die Portabilitidt des benutzerdefinierten Teils der Restbussimu-
lation beeintréchtigt.

e Lizenzproblematik: der Kernel steht unter der GPL, daher muss duf3erst
streng darauf geachtet werden, welche Kernel-Funktionen verwendet wer-
den kénnen und wie gegen den Kernel gelinkt wird, um eine Kontamination
eines proprietdren RBS-Moduls zu vermeiden.

Die beiden zuerst aufgefithrten Nachteile sind sehr schwerwiegend, da die
Restbussimulation (als Artefakt einer Rapid-Prototyping-Werkzeugkette) einfach
zu entwickeln sein muss; spezielle Erfahrung im Debuggen von Kernel-Modulen
oder spezifische Kenntnisse iiber kernelinterne Kommunikationsmechanismen
und APIs und deren Praemptionsverhalten gehoren typischerweise nicht zum
Repertoire eines Priifstandsingenieurs.

2.5.3 Eingebetteter Interpreter

Ein anderer Ansatz, die Erweiterung von Restbussimulationen durch den Benut-
zer zu ermoglichen, besteht darin, ein statisches Restbussimulations-Framework
zur Verfiigung zu stellen, das einen Skript-Interpreter einbettet. Sdmtliche benut-
zerspezifischen Aspekte (sowohl die Kommunikations-Matrix als auch benutzer-
definierte Logik und Ereignisbehandlung) kann dann als Quelltext in der Sprache
des verwendeten Interpreters auf des Zielsystem geladen werden. Mogliche Kan-
didaten sind Lua und Python, die beide auf der eingesetzten CANyon-Hardware
laufféahig sind und sich leicht in eine Host-Anwendung in C einbetten lassen
sowie ein leistungsfahiges Foreign-Function-Call-Interface fiir die Integration
beliebiger C-Funktionen bieten. Fiir Lua gibt es Ansétze fiir einen Just-in-Time-
Compiler fiir die PowerPC-Architektur, so dass hier u.U. auf dem Zielsystem selbst
der Quellcode zur Laufzeit in Maschinencode kompiliert werden kann anstatt die

16Bei statisch gegen den Kernel gelinkten Modulen trifft dies immer zu. Da die RBS-Anwendung
jedoch nicht ausgeliefert wird, sondern vom Kunden generiert wird und in der Regel nicht vertrieben,
sondern intern genutzt wird, befindet man sich rechtlich in einer (hellen) Grauzone.
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Performance-Einbuf3en durch die Interpretation von Bytecode in Kauf nehmen
zu miissen. Die Vorteile einer solchen Losung sind:

Kein Cross-Compiler Es geniigt ein einfacher Upload der Quelldateien auf das
Zielsystem; der Benutzer bendtigt keinen Cross-Compiler, der den Quellco-
de auf dem Host-System {ibersetzt.

Einfachere Sprache Die erwédhnten Skriptsprachen erfordern u.U. weniger Quell-
code im Vergleich zum benoétigten C-Code fiir d4quivalente Aufgaben. Das
dynamische Redefinieren von Funktionen ist einfacher moglich als es in C
z.B. durch die Verwendung von Funktionszeigern ist.

Der Interpreter-Ansatz weist auch einige Nachteile auf:

Performance Der zu erzielende hohe Datendurchsatz ist mit interpretierten
Sprachen (selbst wenn es sich um interpretierten Bytecode wie bei Python
und Lua handelt) schwieriger zu erzielen.

Portierbarkeit Der Interpreter stellt signifikante Anforderungen an die Laufzeit-
umgebung. Python ist ohne Anderungen nicht ohne ein Betriebssystem
auf der Zielplattform ausfithrbar. Fiir Lua wird zumindest eine C-Laufzeit-
umgebung vorausgesetzt, die unter Umstdnden méchtiger ist als das, was
kleinere eingebettete Systeme bieten.

Sprache Die Einarbeitung in eine andere Programmiersprache ist notwendig,
was in manchen Umgebungen nicht akzeptabel ist.

Tooling Das Tooling fiir den verwendeten Interpreter bzw. dessen Sprachfamilie
ist u.U. nicht ausreichend fiir den kommerziellen Einsatz; besonders schwer
wiegt hier in der Regel das Fehlen eines Remote-Debuggers.

Zu den kommerziellen Anbietern, die diesen Ansatz wihlen (nicht dediziert
fiir den Bereich Restbussimulationen, sondern im Bereich HIL-Simulation) [[7}
gehoren unter anderem DSpace, die einen echtzeitfahigen Python-Interpreter fiir
ihre Produkte DS1005 PPC und DS1006 bereitstellen.

2.6 Anwendbarkeit von AUTOSAR

Die Anforderungen an ein System zur Restbussimulation unterscheiden sich
teilweise deutlich von Anforderungen an Architekturen fiir einzelne ECUs zur

17Hardware-in-the-Loop
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Verwendung in der Serienproduktion eines Gesamtfahrzeugs, und dies nicht
nur im Hinblick auf die offensichtlich differierenden nicht-funktionalen An-
forderungen, sondern auch in Bezug auf konkrete funktionale Anforderungen.
Die Unterschiede lassen sich am plausibelsten erklaren, indem man die Rest-
bussimulation als Produkt eines Rapid-Prototyping-Prozesses auffasst, der, wie
beim Rapid Prototyping iiblich, hohe Produktivitit fiir bestimmte Klassen von
Problemen ermoglicht, mit dem Kompromiss, dass Teilaspekte der erzielten
Losungen weniger optimiert sind als in einer vollstindig durchkonfigurierten
anwendungsspezifischen Einzellosung.

Die AUTOSAR-Architektur, geschaffen als herstelleriibergreifendes Instrument
zur System-Integration zwischen Gesamtfahrzeugherstellern und deren Zuliefe-
rern, hat den Schwerpunkt, die Integration von Modulen mit nahezu vollstdndig
statisch definierten Schnittstellen zu steuern und zu vereinfachen [KF09]], wo-
hingegen Restbussimulationen unter anderem eingesetzt werden, um dynamisch
Eigenschaften eines Gesamtsystems auf einfache Weise variieren zu kénnen, um
das Verhalten auf diese Variationen analysieren zu konnen.

Bestimmte Teile von AUTOSAR, insbesondere die dort vorgegebenen Schich-
ten und deren Abstraktionsniveau, sind im Kontext der Architektur fiir Rest-
bussimulationen durchaus anwendbar, unter Umstdnden mit Einschrankungen,
wie im Folgenden beschrieben, wiahrend andere Aspekte sich nicht sinnvoll auf
Architekturen fiir Restbussimulationen iibertragen lassen.

Aus diesem Grund erschien es sinnvoll, in den folgenden Abschnitten zunéchst
eine kurze Einfithrung in das AUTOSAR-Konzept zu geben, bevor abschliefsend
in Abschnitt die Konflikte zwischen dem Abstraktionsgrad von AUTOSAR
und dem Abstraktionsgrad einer Restbussimulation diskutiert werden.

2.6.1 Duale Funktion

AUTOSAR hat eine duale Funktion bei der System-Integration bei Gesamtfahr-
zeug-Herstellern und deren Zulieferern: zum einen definiert es eine Methodo-
logie, ein Vokabular und eine Notation fiir den Entwurf und die Beschreibung
von Software-Komponenten und deren Interaktionen. Andererseits legt es ein
(konservatives) Schichten-Modell fiir die Interaktion zwischen Software-Kom-
ponenten und so genannter Basis-Software (BSW; siehe Abschnitt [2.6.5)) fest.
Diese beiden Aufgaben erfiillt es sowohl im Kontext des Gesamtfahrzeugs als
auch im Kontext des einzelnen Steuergerites, d.h. es wird eine Uberfithrung
von der Architektur fiir das Gesamtsystem in die Architektur des Steuergerates
ermoglicht und fiir die dabei entstehenden bzw. auftretenden Integrationsaufga-
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ben definierte Losungsmuster definiert. Die steuergerédtebezogene Sicht wird im
Allgemeinen als ECU-zentrische Sicht bezeichnet; separierte Teile einer Gesamt-
system-Spezifikation, die die fiir eine einzelne ECU relevanten Informationen
enthalten, werden analog dazu als ECU-Extrakte bezeichnet [[KF09].

2.6.2 Ablauf

Die oben genannte Dualitat schldgt sich auch in der Rollenverteilung nieder,
wobei es sinnvoll ist, zwischen Entwickler und Integrator zu unterscheiden; der
Ablauf entspricht dabei folgendem Muster: der Entwickler erhalt die Schnitt-
stellen-Spezifikation der zu entwickelnden Komponente in Form eines Satzes
von AUTOSAR-Dokumenten (zusammen mit anderen, nicht nach AUTOSAR
formalisierten funktionalen und nicht-funktionalen Anforderungen), und setzt
die Komponente um (interner Entwurf, Implementierung und Test). Der Inte-
grator erhélt die Komponente (entweder als Quellcode oder als kompilierten
Objektcode fiir eine bestimmte Hardware-Architektur) und kann diese durch
die im Zusammenhang mit der formalen Schnittstellen-Beschreibung definier-
ten Konfigurations-Schnittstelle (siehe Abschnitt in ein Gesamtsystem
integrieren.

2.6.3 Komponenten-Modell

Fiir die Modellierung von Software-Komponenten und deren Schnittstellen sowie
fiir die Modellierung der Verbindungen zwischen konkreten Instanzen dieser
Komponenten stellt AUTOSAR eine an der UML orientierte Notation bereit, die in
serialisierter Form als so genannte AUTOSAR-Software-Component vorliegt und
in ein AUTOSAR-System eingebunden werden kann. Die Details dieser Notation
werden in [[AUTc] beschrieben.

Diese Notation kann, wie oben erwéhnt, zur Beschreibung eigener Software-
Komponenten verwendet werden; jedoch ist auch die Basis-Software, d.h. die
von AUTOSAR bereits innerhalb des Standards vordefinierten Module, in die-
ser Notation beschrieben, so dass der Zugriff von eigenen Komponenten und
Anwendungs-Software auf die Basis-Software von AUTOSAR einfach modelliert
werden kann und sichergestellt werden kann, dass nur die von der Basis-Software
bereitgestellten Schnittstellen verwendet werden.

Hinsichtlich der Werkzeug-Unterstiitzung von AUTOSAR hat die einheitli-
che Beschreibung von Komponenten der Basis-Software und benutzerdefinier-
ten Software-Komponenten den weiteren Vorteil, dass Standard-Komponenten
(BSW-Module) und benutzerdefinierte Komponenten auf einheitliche Weise mit
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Werkzeugunterstiitzung konfiguriert werden konnen; gesonderte Konfigurati-
ons-Werkzeuge fiir die benutzerdefinierten Software-Komponenten entfallenE]
Dies hat auch Auswirkungen auf die Code-Generatoren, die die Anpassung der
Software-Komponenten realisiert, da auch hier fiir Basis-Software und eigene
Module ein einheitliches Konzept verwendet werden kann.

2.6.4 Virtual Functional Bus

AUTOSAR fiihrt mit dem so genannten Virtual Functional Bus (VFB) eine Abstrak-
tions-Schicht fiir die Anbindung von Signalen an die Software-Komponenten ein,
die von der konkreten Ubertragungsform dieser Signale abstrahiert (d.h. auf ho-
hen Modellierungs-Ebenen ist nicht beschrieben, mittels welchem Medium oder
welchem Bus-Typ Signale zwischen Komponenten propagiert werden). Diese Ab-
straktion kann in nachfolgenden, feineren Modellierungs-Schritten aufgehoben
werden, indem sogenannte Signalpfad-Beschrdnkungen eingefiihrt werden, mit-
tels derer explizit angegeben werden kann, {iber welche physikalischen Kanéle
(CAN, LIN, Flexray, Ethernet, ECU-intern) das Weiterleiten von Signalen erfolgen
muss, erfolgen darf oder nicht erfolgen darf. Der Haupt-Grund fiir die Notwen-
digkeit fir diese Beschrankungen liegt darin, dass unter Umstdnden manche
bestehende Gerate nicht in der AUTOSAR-Systembeschreibung erfasst sind; dies
trifft z.B. fiir spezielle Steuergerate zu, die nicht Teil der Serie sind, wie et-
wa Steuergerite, die Teil der Messausriistung sind und nur fiir Fahrzeuge der
Testflotte relevant sind.

Konkret ist der Virtual Functional Bus eine signalorientierte Schnittstelle,
die das Setzen und Lesen von Signal-Werten in einer Weise ermoglicht, die die
Komponenten, die diese Schnittstelle verwenden, vom konkret verwendeten Si-
gnaliibertragungs-Mechanismus unabhéngig macht. In nachgelagerten Schritten
erlaubt der AUTOSAR-Prozess, dass so z.B. Signale, die zwischen Komponenten
einer einzelnen ECU ausgetauscht werden, rein iiber den Zugriff auf gemeinsa-
me Variablen zwischen den betroffenen Komponenten realisiert wird (bei der
Generierung der RTE fiir die entsprechende ECU) und keine Signaliibertragung
iiber externe Kanéle erfolgt.

18Fiir ein sehr komplexes Modul tritt unter Umstéinden der Fall ein, dass dieses zwar theoretisch
in generischer Weise konfiguriert werden kann, dies jedoch nicht praktikabel ist, so dass zuséatzlich
eine spezielle Konfigurationslosung notig ist. Fiir Module, die lediglich einfache Parametrisierungen
erfordern, ist der generische Ansatz jedoch ausreichend.

49



2.6.5 Basis-Software

Mit dem Begriff Basis-Software (BSW) werden unter AUTOSAR bestimmte Soft-
ware-Komponenten bezeichnet, deren funktionale Anforderungen und Schnitt-
stellen durch AUTOSAR selbst in Form einer Spezifikation vorgegeben werden.
Dies sind in der Regel Abstraktionen fiir Treiber und ergdnzende Abstraktio-
nen fiir die Kommunikation zwischen Anwendungs-Schicht und diesen Treibern.
Ein weiterer grof3er Teil der Basis-Software besteht aus dem Kommunikations-
Stack und dessen unterstiitzenden und ergdnzenden Modulen (PDU-Router, PDU-
Multiplexer etc.) [AUTal.

2.6.6 Runtime Environment

AUTOSAR erwartet auf einer konkreten ECU, auf der AUTOSAR-Komponenten
oder Basis-Software laufen sollen, dass dort eine Laufzeitumgebung, die soge-
nannte Runtime Environment (RTE) vorhanden ist. Diese wird durch einen ECU-
spezifischen Generator generiert, zusammen mit ECU-spezifischen Varianten der
Basis-Software. Die RTE entspricht der ECU-zentrischen Sicht auf das System.
Hier wird der Signal-Fluss, der tiber das VFB-Konzept modelliert wurde, konkret
umgesetzt, indem der Generator fiir die RTE entscheidet, ob Signale an Software-
Komponenten auf andere ECUs weitergeleitet werden miissen oder nur zur Kom-
munikation zwischen Software-Komponenten innerhalb dieser ECU verwendet
werden. Im letzteren Fall konnen die bereits im Abschnitt zum VFB erwédhnten
Optimierungen beziiglich des Signal-Zugriffs durchgefiihrt werden; andernfalls
miissen diese Signale mittels des Kommunikations-Stacks {iber die der ECU zur
Verfligung stehenden physikalischen Kanile weitergeleitet werden.

2.6.7 Konzept der Konfiguration

Das Prinzip, die Schnittstellen zur Konfiguration einer Komponente in die forma-
le Schnittstellen-Definition mit aufzunehmen sowie die Differenzierung zwischen
unterschiedlichen Ebenen und Zeitpunkten fiir die Konfiguration ist konzeptuell
dasjenige Kriterium, das AUTOSAR im Umfeld der Symbiose zwischen Zulieferer
und Gesamtfahrzeug-Hersteller besonders attraktiv macht. Beschreibungs-Me-
thoden fiir Software-Komponenten gibt es in grol3er Zahl und mit hoher Varianz
hinsichtlich der Praxistauglichkeit, aber ein dhnlich detailliertes Konfigurations-
Modell als Kernaspekt (mit dem Fokus auf die Compiler- und Linker-Spezifika
von C-Modulen im Hinblick auf eingebettete Systeme) findet man nur selten,
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wie ein Vergleich von AUTOSAR mit den in [TMDO09]] vorgestellten Architektur-
Modellen leicht ergibt. E

2.6.8 Konflikte zwischen AUTOSAR-Abstraktionen und Rest-
bussimulationen

Ein Konfliktpunkt zwischen einer Architektur im Sinne von AUTOSAR und einer
Architektur fiir Restbussimulationen liegt darin, dass eine konkret realisierte
AUTOSAR-Implementierung immer an eine ECU-Instanz gebunden ist. Eine Rest-
bussimulation hingegen soll in der Regel mehrere ECUs auf einer gemeinsamen
Hardware simulieren. Eine Hardware-Abstraktion im Sinne von AUTOSAR l&sst
sich hier nicht vollstdndig simulieren, da bestimmte Funktionen (z.B. Andern
der Betriebs-Modi von CAN-Controllern) das Verhalten bestimmter Hardware-
Module beeinflussen miissen, um extern sichtbare Auswirkungen zu haben; soll
die Restbussimulation (die mehrere ECUs simuliert) z.B. den Ubergang einer
ECU von aktiver Teilnahme am CAN-Bus zu passiver Teilnahme simulieren, so
beeinflusst dies auch alle anderen simulierten ECUs.

Eine andere Quelle von Unterschieden zwischen Restbussimulationen und
dem AUTOSAR-Konzept liegt in der starken Fokussierung von AUTOSAR auf
statische Bindung und Zuweisung. Fiir den schnellen Entwicklungszyklus, der
fiir eine Restbussimulation typisch ist, muss es moglich sein, bestimmte Konfi-
gurationseinstellungen, die von AUTOSAR statisch vorgenommen werden, zur
Laufzeit oder zumindest iiber eine Post-Build-Konfiguration vorzunehmen, da
eine vollstindige Neugenerierung der Anwendung die Produktivitdt des Anwen-
ders empfindlich stort ]

Ein weiterer Aspekt, der die Entwicklung von Restbussimulationen mittels
der AUTOSAR-Methodik erschwert, ist die stark signalorientierte Herangehens-
weise, die bei der Entwicklung und Einbindung von Software-Komponenten
in ein AUTOSAR-System notwendig ist; traditionelle Werkzeuge zur Erstellung
von Restbussimulationen sind noch stark an den busspezifischen Botschaften
orientiert und betrachten Signale nicht auf Systemebene, sondern als Teile
der gesendeten Botschaften. AUTOSAR abstrahiert auf der Schnittstellenebe-
ne zwischen Software-Komponenten von den konkreten Botschaften, so dass
eine botschaftsorientierte Entwicklung von Funktionalitit, wie sie in der tra-

9Diese Spezialisierung auf C fiihrt natiirlich dazu, dass argumentiert werden kann, AUTOSAR sei
gegeniiber anderen Architekturbeschreibungs-Sprachen zumindest in Teilen weniger allgemeingiiltig.
20Exemplarisch fiir die Problematik der Konflikte zwischen dynamischen APIs und statischer
Konfiguration sei das SocketAdaptor-Modul genannt, das zu dem Zweck existiert, die dynamische
Natur von TCP/IP-Sockets auf die unter AUTOSAR iibliche Weise statisch konfigurierbar zu machen.
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ditionellen Entwicklung von Restbussimulationen vorherrschend ist, erschwert
wird [KF09]. Symptomatisch hierfiir ist zum Beispiel, dass eigene Software-Kom-
ponenten {iber so genannte Ports eingebunden werden miissen, wenn sie Daten
von der AUTOSAR-RTE bendtigen, und diese Ports die Semantik von Signalen

widerspiegeln.
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Kapitel 3
Modulare Code-Generierung

Code-Generierung ist prinzipiell immer dann notwendig, wenn eine grundsétzlich
hinreichend genaue formale Spezifikation E] auf Grund von Unzulédnglichkeiten
der verwendeten Programmiersprache oder Beschrankungen der Laufzeitum-
gebung nicht mit vertretbarem Aufwand direkt in ausfiihrbare Form gebracht
werden kann. Aufgabe der Code-Generierung ist es, eine zuséatzlich Abstrakti-
onsebene zu schaffen, die statt der Transformation von der Spezifikation zum
Zielsystem eine Transformation von der Spezifikation in ein Zwischenformat und
von diesem Zwischenformat ins Zielsystem realisiert. Beim klassischen Begriff
der Code-Generierung aus dem Compilerbau (der hier nicht betrachtet wird)
werden fiir diese unterschiedlichen Ebenen die Begriffe Frontend (Verstehen der
Spezifikation, im Compilerbau sind dies Programmiersprachen), Middleend (ein
Neologismus fiir compilerabhéngige Zwischendarstellungen, im Compilerbau
sind dies Datenstrukturen fiir abstrakte, annotierte Syntaxbdume oder lineari-
sierte Darstellungen davon) und Backend (im Compilerbau meist spezifischer
Assembler- oder Maschinencode fiir bestimmte Prozessorarchitekturen, selte-
ner Hochsprachen) verwendet. Bei der Code-Generierung im in dieser Arbeit
betrachteten Sinn ist das Frontend zustindig fiir das Verstdndnis von Busbeschrei-
bungsdateien und das Backend zustindig fiir die Generierung von Hochsprachen-
Code, der die in der Spezifikation beschriebenen Kommunikationsmuster fiir
eine bestimmte Klasse von Zielsystemen realisiert.

1d.h. eine Spezifikation, die eine bestimmte Problemdomine vollstindig beschreibt
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3.1 Typische Ansatze

Im Folgenden werden iibliche Ansétze fiir die Code-Generierung auf unterschied-
lichen Ebenen kurz vorgestellt, wobei der Fokus auf einer moglichst breiten Sicht
liegt.

3.1.1 Analogien zum Compilerbau

Die in der Einleitung zu diesem Kapitel beschriebene Verteilung der Aufga-
ben auf drei Schichten weist neben der allgemein sinnvollen Trennung der
Zustandigkeiten den zusatzlichen Vorteil auf, dass bei Unterstiitzung mehrerer
Eingabe- und Ausgabeformate kein kombinatorisch ansteigender Aufwand be-
trieben werden muss, sondern (im Idealfall) jedes Frontend mit jedem Backend
verwendet werden kann, da die Transformation in eine Zwischendarstellung
diese beiden Schichten entkoppelt: fiir die Unterstiitzung neuer Eingabefor-
mate kann ein neues Modul eingefiihrt werden, das die Transformation in die
Zwischendarstellung realisiert; die Transformation in das Ausgabeformat ver-
wendet die bestehenden Module. Fiir die Unterstiitzung neuer Ausgabeformate
muss nicht eine Transformation von jedem Eingabeformat in das neue Ausga-
beformat implementiert werden, sondern lediglich eine Transformation von
der Zwischendarstellung in das neue Ausgabeformat. Fiir n Eingabeformate
und m Ausgabeformate reduziert sich so die Anzahl der zu implementierenden
Transformationen von n X m zu n + m.

Der AUTOSAR-Ansatz unterscheidet sich von diesem Ansatz in wesentlichen
Punkten:

e Es wird ein kanonisches Eingabeformat vorgeschrieben (die AUTOSAR-
Systembeschreibung); eine Unterstiitzung von anderen Eingabeformaten
muss zwangsldufig aulserhalb des AUTOSAR-Kontexts erfolgen (z.B. durch
eine externe Transformation in AUTOSAR-konforme Fragmente). Eine
gesonderte Zwischendarstellung entfallt damit.

e Es muss eine AUTOSAR-Laufzeitumgebung fiir die Zielplattform existieren.
Grofl3e Teile der Laufzeitumgebung werden zwar generiert, dies setzt al-
lerdings die Existenz der entsprechenden AUTOSAR-Basissoftware fiir die
Zielplattform voraus.

AUTOSAR muss diese Einschrankungen vornehmen, da das abgedeckte An-
wendungsgebiet viel breiter ist als das in der vorliegenden Arbeit abgedeckte
Gebiet der Restbussimulation und weil eine AUTOSAR-System-Spezifikation die
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Definition von Aspekten erlaubt, die spezifische Interna der Laufzeitumgebung
betreffen (es ware beispielsweise sinnlos, in der Spezifikation ein bestimmtes
Scheduling-Verhalten definieren zu kénnen, ohne dass bekannt ist, ob und wie
dieses von der Laufzeitumgebung unterstiitzt wird und wie die Abbildung auf
das Laufzeitsystem erfolgen muss). Fiir die Generierung einer Restbussimulati-
on ist lediglich die Garantie notwendig, dass fiir eine Zielplattform das genau
definierte (und eingeschriankte) API zur Verfiigung steht und die versprochene
Semantik hat; damit sind die Anforderungen an die Zielplattform wesentlich
iibersichtlicher, so dass insgesamt die Komplexitét der Informationen, die vom
Frontend geliefert und durch das Middleend transformiert werden miissen, viel
geringer ist.

3.1.2 Sprachinterne Code-Generierung

Als transzendenter Idealfall des Software-Engineering kann die Transformation
einer Spezifikation in ein ausfiihrbares System innerhalb einer Sprache gelten.
Fiir eine solche Sprache muss gelten, dass das Abstraktionsniveau nicht vorge-
geben ist, sondern vom Benutzer aufgabenspezifisch angepasst werden kann.
Dies wird meist so realisiert, dass fiir bestimmte syntaktische Elemente die sonst
iibliche Interpretation durch Parser oder Compiler aufgehoben wird und durch
vom Benutzer definierte Logik ersetzt wird. Dadurch lésst sich realisieren, was in
den letzten Jahren unter dem Begriff eingebettete doménenspezifische Sprachen
(DSL) zusammengefasst wird, ndmlich die Moglichkeit, beliebige strukturierte
Informationen innerhalb der Sprache zu definieren, diese ebenfalls mit Mitteln
der Sprache bzw. deren Laufzeitumgebung zu transformieren und die transfor-
mierte Darstellung dynamisch zu interpretieren. E] Charakteristisch ist hierbei,
dass die erweiterten Elemente auf symbolischer Ebene und nicht auf lexikalischer
Ebene interpretiert werden, was einerseits die Moglichkeiten einschrankt und
andererseits die Interpretation erleichtert. [

Zu den bekanntesten Sprach-Familien, die derartiges ermoglichen, gehoren
die Lisp- und Scheme-Familien und deren Derivate sowie bestimmte stackbasierte
Sprachen wie Factor.

2Wobei der Begriff ,Interpretation” hier eine eventuelle Just-In-Time-Kompilierung nicht aus-
schlief3t.

3In Common Lisp existiert allerdings die Méglichkeit, Erweiterungen auf lexikalischer Ebene durch
so genannte Reader-Erweiterungen zuzulassen, wobei der Reader hier der Common Lisp spezifische
Mechanismus fiir das lexikalische Scannen ist, dessen Funktionsumfang iiber die sonst wahrend der
lexikalischen Analysephase durchgefiihrten Aufgaben hinausgeht. So kdnnen etwa benutzerdefinierte
Callback-Funktionen aufgerufen werden, die beim Auftreten bestimmter lexikalischer Elemente in
einen benutzerdefinierten Lexer-Modus umschalten.
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Eine grofere Akzeptanz dieser Sprachfamilien in der Industrie blieb bis-
her aus; liber Konzepte wie aspektorientierte Programmierung durch Bytecode-
Weaving zur Laufzeit diffundieren diese Mechanismen jedoch (zum Teil in stark
eingeschrénkter Form) in die in der Industrie etablierten Sprachfamilien der JVM-
und .NET-Plattformen oder sind in Form des so genannten Monkey-Patchings in
dynamisch typisierten Sprachen wie Python und Ruby wiederzuerkennen. E] In
Java muss zur dynamischen Generierung von Bytecode auf externe Bibliotheken
wie ObjectWeb ASM oder cglib zuriickgegriffen werden, wahrend unter .NET
mit System.Reflection.Emit ein Modul zur dynamischen Bytecode-Generie-
rung bereits Teil der Standard-Bibliothek ist. Auch in C gibt es isolierte Beispiele
fiir (Maschinen-) Code-Generierung zur Laufzeit, z.B. im Kapitel von Petzold
in [OWO7].

Es gibt viele technische Griinde, die einer Implementierung von derartigen
Transformations-Aufgaben innerhalb einer geeigneten Sprache entgegenstehen;
die héufigsten sind:

e Fiir die Spezifikation des Problems steht bereits ein extern vorgegebenes
Beschreibungsformat fest (Standard oder Quasi-Standard), so dass eine
Spezifikation des Problems als eingebettete DSL in dieser Hinsicht keine
Vorteile bringt. Im Kontext dieser Arbeit dul3ert sich dies in der Existenz
bestehender Beschreibungsformate fiir die Kommunikations-Matrix.

e Fiir ein Zielsystem steht keine bzw. keine ausreichend performante Lauf-
zeitumgebung fiir die Sprache zur Verfiigung, oder der Ressourcenbedarf
eines derartigen Laufzeitsystems {ibersteigt die zuldssigen extern definierte
Beschrankungen des Zielsystems. Im Kontext dieser Arbeit kommt dieser
Punkt zum Tragen, da eine Portierung auf kleiner dimensionierte Hardware-
Plattformen moglich sein muss.

e Es muss eine Verkniipfung der generierten Funktionalitdt mit bestehenden
System-Komponenten erfolgen. Im Kontext dieser Arbeit ist dies die Ver-

4Im Falle der aspektorientierten Programmierung war der Verantwortliche fiir die bekannteste
Implementierung (AspectJ) gleichzeitig der Mitgestalter des Meta-Object-Protokolls von Common
Lisp.

5Seit Version 1.6 des Sun (bzw. jetzt Oracle) Java Development Kit gibt es das Compiler-API
(im Paket javax.tools), das das dynamische Kompilieren von Java-Quelldateien in Bytecode und
das Laden der generierten Klassen realisiert, indem es den bestehenden javac-Compiler innerhalb
einer laufenden JVM {iber interne Mechanismen ansprechbar macht. Allerdings ist dies eher als
Notlosung zu verstehen, da dies sich prinzipiell nicht von einem Aufruf des javac-Compilers als
externen Prozess unterscheidet.
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kniipfung mit bestehenden Betriebssystem-Schnittstellen oder Hardware-
Treibern.

e Die generierte Grund-Funktionalitdt muss in bestimmter Weise erweiterbar
sein durch benutzerdefinierte Logik. Im Kontext dieser Arbeit ist dies die
Einschrankung, dass eine generierte Restbussimulation durch ein C-API
vom Benutzer erweitert werden kénnen muss.

Keines dieser Argumente ist ein Ausschlul3kriterium. Allerdings wird die
Durchgéngigkeit, die eine sprachinterne Losung auszeichnet, unterbrochen.

Haufig angefiihrte Argumente, die gegen die Verwendung solcher Losungen
aus Griinden der Verstandlichkeit fiir den Entwickler sprechen, basieren meist
auf dem falschen Vergleich zwischen einer Mainstream-Sprache (fiir die berech-
tigterweise keine Einarbeitung vorausgesetzt wird) und der Losungs-Sprache (fiir
die der Einarbeitungsaufwand berechtigt als hoch angesetzt wird); es miisste je-
doch statt der alleinigen Betrachtung der Mainstream-Sprache eine Betrachtung
der Mainstream-Sprache und allen an der Transformation beteiligten Techno-
logien erfolgen und die Einarbeitung in diese Technologien mitbertiicksichtigt
werden. Fiir eine komplexere Transformationskette kann dieser Aufwand er-
heblich sein. Ebenso muss fiir die Betrachtung der Wartbarkeit die Komplexitat
betrachtet werden, die eine aus mehreren Technologien mit unterschiedlichen
Entwicklungszyklen bestehende Losung mit sich bringt. Hinzu kommt die haufig
trivialisierte Tatsache, dass in komplexeren Transformationsketten effektiv meh-
rere Programmiersprachen zum Einsatz kommen. Als Beispiel sei XSLT genannt,
das eine Turing-vollstdndige, eigene Sprache ist. E]Ein anderes Symptom ist die
Verwendung von komplexen Mapping-Definitionen in technologiespezifischen
XML-Formaten, deren Umfang bei reinen Transformationsprojekten hiufig den
Umfang der eigentlichen Implementierung in der Host-Sprache iibersteigt, so
dass die Aufgaben der Host-Sprache auf einfachen Glue-Code reduziert werden.
Argumente, die sich fiir die Host-Sprache auf Grund von Aspekten wie statischer
Typsicherheit aussprechen, verlieren empfindlich an Glaubwiirdigkeit, wenn der
GroRteil der Doménenlogik in untypisierten Textdateien definiert ist. ']

6Zur Betrachtung von XSLT als funktionale Programmiersprache siehe http://fxsl!
sourceforge.net/articles/FuncProg/Functional’,20Programming.html

/Zwar sind XML-Formate in der Regel durch DTD- oder XSD-Beschreibungen definiert, allerdings
sind diese haufig nur unvollstandig oder ad-hoc mit dem Typsystem der Host-Sprache verbunden.
Technologien wie EMF [Ecld]] oder JAXB [jax|] beheben diese Diskrepanzen zum Teil, indem Klassen
generiert werden, die die durch das Schema definierten Beziehungen ins Typsystem der Host-Sprache
abbilden und so eine ganzheitliche Typisierung schaffen.
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3.1.3 Sprachiibergreifende Code-Generierung

Ublicher als die im vorigen Abschnitt beschriebene sprachinterne Code-Generie-
rung ist die sprachiibergreifende Code-Generierung, d.h. das Erzeugen von Code-
Artefakten einer Zielsprache mittels eines Generators, der in einer bestimmten
Host-Sprache implementiert ist.

Hierbei gibt es prinzipiell drei Ausprdgungen, wie die Generierung erfolgen
kann:

Direkt Die Ein- und Ausgabemechanismen der Host-Sprache kénnen prinzipiell
verwendet werden, um beliebige Artefakte zu erzeugen. Losungen dieser
Art sind aus einer Vielzahl von Griinden zum strukturierten Generieren
grolderer Artefakte nicht praktikabel: potentiell schlechte Wartbarkeit durch
fast zwangsldufig erfolgende Vermengung von Datenaufbereitung und
Datenausgabe, manuelle Iteration {iber Eingangsdaten notwendig, hohe
Fehleranfélligkeit durch fehlende frithe syntaktische Priifung der Ausgabe,
Notwendigkeit der Ubersetzung vor dem Ausfiihren, Erweiterungen durch
den Endnutzer nicht einfach moéglich.

Template-basiert Der in der industriellen Praxis am haufigsten anzutreffende
Ansatz ist eine duale Losung, die aus einem Treiber in einer Host-Sprache
und der Spezifikation der Ausgabe mittels einer Template-Sprache besteht;
eine Diskussion der Vorteile dieser Losung erfolgt im Anschluss.

AST-basiert Wenn die zu generierenden Artefakte einer bestimmten bekannten
Syntax entsprechen (was in vielen Féllen vorausgesetzt werden kann),
so kann das zu generierende Artefakt als abstrakter Syntaxbaum (Ab-
stract Syntax Tree, AST) erzeugt und manipuliert werden; zur tatsdchlichen
Manifestation des Artefaktes als konkrete Datei kann der abstrakte Syn-
taxbaum dann serialisiert werden. Voraussetzung ist, dass ein Mechanis-
mus zur Verfiigung steht, um die Syntax als abstrakten Syntaxbaum zu
reprasentieren, z.B. im Falle von C als Klassen-Bibliothek, die die AST-
Knoten als programmatisch manipulierbaren Objektgraph zugénglich ma-
chen. Ein solcher Objektgraph kann dann serialisiert werden, um das zu
generierende Artefakt zu erzeugen. Diese Losung bietet den Vorteil, dass
die syntaktische Korrektheit des generierten Artefakts garantiert werden
kann. Insbesondere bei mehrstufigen Manipulationen am Ausgabeformat
erhoht dieser Ansatz so die Zuverlassigkeit. Ein weiterer Vorteil ist die
leichtere Testbarkeit: wenn das zu generierende Artefakt als Objektgraph
programmatisch zugénglich ist, konnen beliebige Aspekte leicht program-
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matisch iiberpriift werden; bei anderen Losungen muss zu Testzwecken
das generierte Artefakt textuell untersucht werden, was aufwéandiger und
fehleranfalliger ist. Ein Nachteil des AST-basierten Ansatzes ist, dass keine
Isomorphie zwischen der Spezifikation des zu generierenden Artefaktes
und dem schlief3lich generierten Artefakt gegeben ist (der abstrakte Syn-
taxbaum ist nicht unmittelbar verstindlich); der Einarbeitungsaufwand in
die verwendete Bibliothek zur Verwaltung und Manipulation des Objekt-
graphen ist unter Umstdnden hoch und setzt Kenntnisse im Compilerbau
(oder zumindest ein gewisses Verstdndnis fiir Parser-Konzepte) voraus. Die
AST-Bibliothek muss notwendigerweise die gesamte Zielsprache abdecken,
selbst wenn der konkrete Anwendungsfall nur eine Untermenge davon
nutzt; diese Komplexitat muss vom Entwickler mitgetragen werden, was
eine kognitive Belastung darstellt. Das AUTOSAR-Werkzeug Tresos Stu-
dio von Elektrobit erlaubt diesen Ansatz (zusatzlich zu dem auch dort
vorwiegend verwendeten Template-basierten Mechanismus) in seinem ,,C
Data Structures Generator”, allerdings nur fiir die Untermenge von C, die
Variablen- und Strukturdefinitionen enthalt [[Ele].

Es gibt verschiedene Aspekte, die die Einfithrung einer Template-Sprache in
den Generierungs-Prozess motivieren und rechtfertigen:

e Die abstrakte Definition der Ausgabe und die konkrete Form der Ausga-
be sollen moglichst isomorph gehalten werden, so dass bei Anderungen
des Ausgabeformates diese Anderungen leicht auf die generischen Tem-
plates iibertragen werden konnen. Unter Umstanden kann dadurch die
Moglichkeit offen gehalten werden, die Templates durch den Benutzer
und nicht nur durch den Tool-Hersteller veranderbar zu machen, was in
manchen Fillen eine zusétzliche Dimension der Variabilitdat ermoglicht.
Benutzer konnen so neue Anwendungsfille abdecken, es besteht jedoch
die reale Gefahr, dass Losungen, die auf derartigen Anderungen aufbauen,
kaum mehr durch den Tool-Hersteller wartbar sind. Die Voraussetzung
dafiir ist, dass die Templates dynamisch interpretiert werden, so dass sich
Anderungen ohne ein Neuiibersetzen des Code-Generierungs-Frameworks
auswirken konnen. Ein Voriibersetzen der Templates (z.B. durch das Gene-
rieren von Java-Bytecode durch einen speziellen Template-Compiler), wie
es von manchen Frameworks unterstiitzt wird, steht diesem Aspekt unter
Umstdnden entgegen.

e Die Definition der Ausgabe soll moglichst entkoppelt sein von der Da-
tenaufbereitung, d.h. die Templates sollen frei sein von jeglicher Logik,
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die nicht unmittelbar das Format der Ausgabe betrifft. Kenntnisse in der
Treiber-Sprache, d.h. der Host-Sprache, die die Code-Generierung steuert,
sollen moglichst nicht notwendig sein, um eine Anpassung der Templa-
tes vorzunehmen. Im Umkehrschluss bedeutet dies, dass die Templates
mit vollstdndig aufbereiteten, konsistenten Daten parametrisiert werden
miissen.

e Es sollen verschiedene Zielformate unterstiitzt werden, d.h. entweder
verschiedene Zielsprachen oder Varianten in derselben Zielsprache, die
unterschiedlich genug sind, um eigene Templates zu verwenden anstatt
die Variabilitat als Fallunterscheidungen in bestehenden Templates zu
integrieren (z.B. durch Praprozessor-Direktiven).

3.1.4 Klassifikation von generierten Artefakten

Im Hinblick auf die Tatsache, dass bestimmte Teile einer generierten Restbussimu-
lation durch den Benutzer erweiterbar sein miissen, ergibt sich die Problematik,
dass es in einem derartigen Projekt drei Kategorien von Quellcode gibt:

Rein generiert Quellcode wird generiert, eine Erweiterung oder Modifikation
durch den Benutzer ist jedoch nicht zulassig.

Reiner Benutzer-Code Quellcode liegt vollstandig unter der Kontrolle des Be-
nutzers.

Generiert und durch den Benutzer erweitert Quellcode wird generiert und
kann durch den Benutzer in bestimmter, definierter Weise{ﬂ erginzt oder
modifiziert werden. Entscheidend ist hier die Frage, was mit diesem Quell-
code passieren soll, wenn neu generiert werden muss.

Ziel ist es, die dritte Kategorie zu vermeiden bzw. die Zahl der Quellcode-
Artefakte und den Umfang der Quellcode-Anteile, die in diese Kategorie fallen,
moglichst gering zu halten. Die Diskrepanz zwischen diesem Ziel und der Not-
wendigkeit, dennoch einen Mechanismus bereitzustellen, um generierten Code
und benutzerdefinierten Code zu verkniipfen, wird in der Literatur manchmal
als Generation Gap bezeichnet [VIi].

Dabei geht es um zwei zusammenhéngende Aspekte:

8Die Art und Weise, wie Erweiterungen méglich sind, kann hier entweder durch Konventionen
gefordert werden, z.B. beschrieben durch eine wie auch immer geartete Benutzerdokumentation, oder
durch statische Priifungen validiert werden, falls die erlaubten Erweiterungen durch die Semantik
und das Typsystem der Zielsprache priifbar sind (d.h. durch den Compiler fiir die Zielsprache).
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e Wie werden Benutzererweiterungen mit dem Framework-Code verkniipft,
d.h. wie weif} das Framework, welche Erweiterungen durch den Benutzer
implementiert wurden?

e Wie werden Modifikationen durch den Benutzer iibernommen, wenn neu
generiert werden muss?

Beim ersten Aspekt gibt es, abhingig von der Zielsprache, bewahrte Mecha-
nismen, wie die Anbindung von Framework-Code und benutzerdefiniertem Code
erfolgen kann. Ist die Zielsprache objektorientiert und erlaubt sie die Definition
von Klassen mit abstrakten Methoden, so konnen Erweiterungen durch den
Benutzer derart erlaubt werden, dass fiir einen bestimmten zu erweiternden
Aspekt eine abstrakte Basis-Klasse (mit leeren oder abstrakten Implementie-
rungen) generiert wird. Der Benutzer muss bestimmte Methoden dieser Basis-
Klasse iiberschrieben, indem er eine eigene Implementierung dieser Basis-Klasse
definiert und eigene Implementierungen fiir bestimmte Methoden bereitstellt.
Die Anbindung samtlicher Funktionalitét fiir diesen Aspekt erfolgt, indem die
konkrete Klasse statt der Basis-Klasse vom Framework verwendet wird. Nicht
erweiterte Funktionalitit ist unproblematisch, da die leere Implementierung
der Basis-Klasse verwendet wird. Erweiterungen, fiir die eine Implementierung
erzwungen werden soll, konnen in der Basis-Klasse als rein abstrakte Methoden
definiert werden, so dass die Implementierung durch den Benutzer zwangslaufig
bei Ableitung von den Basis-Klasse erfolgen muss.

In C muss die Anbindung durch Funktionszeiger erfolgen; Erweiterungen
durch den Benutzer miissen in Form neuer Funktionen implementiert werden
und diese Funktionen dem Framework bekannt gemacht werden, indem ein
bestimmter Funktionszeiger des Frameworks auf die implementierte Funkti-
on gesetzt wird. Das Standard-Verhalten bei fehlenden Erweiterungen durch
den Benutzer kann entweder realisiert werden, indem die zu setzenden Funk-
tionszeiger auf eine leere Funktion zeigen oder indem die Funktionszeiger mit
NULL initialisiert werden. Letzterer Fall ist sinnvoll, um unnétige Aufrufe zu
vermeiden, jedoch muss die Giiltigkeit des Funktionszeigers an jeder Aufrufstelle
iiberpriift werden, um Speicherzugriffsfehler zu vermeiden. Um die Granula-
ritdt der Anbindung zu Erhohen (d.h. eine Gruppe von Funktionen gesammelt
anzubinden statt jede einzelne Funktion anzubinden) ist es unter Umstdnden
sinnvoll, eine Art Callback-Interface zu definieren als struct von zusammen-
gehorigen Funktionszeigern; diese Struktur kann im Benutzer-Code initialisiert
und dem Framework {ibergeben werden, statt eine Vielzahl von Funktionszei-
gern {ibergeben zu miissen, was fehleranfalliger und weniger wartbar ist. Eine
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Methode, um die Implementierung unbedingt notwendiger Erweiterungen durch
den Benutzer zu erzwingen und zur Ubersetzungszeit zu priifen, gibt es streng
genommen nichtﬂ; der zuvor beschriebene Mechanismus des Callback-Interfaces
kann jedoch auch zu diesem Zweck verwendet werden. Ein weiterer Vorteil eines
Callback-Interfaces ist, dass so ein atomarer Austausch von Funktionsgruppen
zur Laufzeit erleichtert wird, was z.B. die Implementierung von Zustandsau-
tomaten erleichtert: benutzerdefinierter Code kann mehrere Instanzen eines
Callback-Interfaces definierten, die jeweils auf Funktionen zeigen, die dem zu
realisierenden Verhalten fiir einen bestimmten Systemzustand entsprechen. Beim
Wechsel des Systemzustandes kann die fiir diesen Zustand definierte Callback-
Interface-Instanz dem Framework iibergeben werden.

Beim zweiten Aspekt geht es darum, dass bestimmte Teile einer generierten
Anwendung nicht zur Erweiterung durch den Benutzer vorgesehen sind, wohin
andere Teile dies erlauben. Bei den nicht erweiterbaren Teilen konnen die be-
troffenen Artefakte beliebig neu generiert werden, indem die alten Versionen
iiberschrieben werden. Bei den benutzererweiterbaren Teilen ergibt sich die
Problematik, dass die vom Benutzer erweiterten Artefakte nicht tiberschrieben
werden sollten, da sonst die Erweiterungen des Benutzers verloren gehen.

Es gibt unterschiedliche Ansétze, wie dies gelost werden kann.

e Der einfachste Weg ist es, die durch den Benutzer erweiterten Teile nie
neu zu generieren. Dies entspricht dem sogenannten Scaffolding-Prinzip,
d.h. es wird davon ausgegangen, dass die Generierung nur zur Erstellung
eines initialen Anwendungsgeriistes genutzt wird, das einmal aus einem
bestimmten Stand der Datenbasis generiert wird und danach vollstandig
unter der Kontrolle des Benutzers steht.

e Ein weiterer einfacher Ansatz besteht darin, die nicht als erweiterbar
anzusehenden Teil neu generieren zu lassen, d.h. zu iiberschreiben, und
die benutzererweiterbaren Teile ebenfalls neu zu generieren, aber zuvor
die durch den Benutzer bereits modifizierten Artefakte zu sichern und nach
dem Abschluss des Generierungs-Vorganges eine Moglichkeit zu bieten,
die vorgenommenen Modifikationen wieder zu integrieren (z.B. unter
Verwendung von Merge- und Diff-Werkzeugen.

e Eine Erweiterung dieses Ansatzes ist das automatische Integrieren von
Modifikationen durch den Benutzer. Dies kann auf der Ebene der generier-

20der erst in der Linker-Phase: Framework-Code kann sich auf Funktionsnamen beziehen, von
denen erwartet wird, dass sie in einem vom Benutzer erweiterten Modul existieren; ist dies nicht der
Fall, meldet der Linker dies als nicht auflosbare Referenz.
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ten Artefakte erfolgen, d.h. durch Inspektion der zuerst generierten und
dann durch den Benutzer erweiterten Artefakte, Vergleich mit dem Zu-
stand der Artefakte nach dem Neu-Generieren und textuelles Nachziehen
der Anderungen (unter Verwendung von Diff- und Merge-Funktionalitit),
oder auf der Ebene des Datenmodells, sofern die Benutzer-Modifikationen
sich darin in einer bestimmten Form manifestieren. Mit diesem Ansatz
kann nicht nur das Nachziehen von Benutzer-Modifikationen realisiert
werden, sondern es konnen zusitzlich diese Modifikationen an den neuen
Stand der Datenbasis angepasst werden, sofern dies moglich ist (siehe

Abschnitt[3.4.5).

3.1.5 Informationen iiber den Generierungs-Vorgang

Aufrufer der Generatoren miissen in der Regel {iber bestimmte wahrend des
Generierungs-Vorganges auftretende Ereignisse informiert werden. Typische
Arten von Informationen sind generierte Artefakte, Attribute dieser Artefakte
(z.B. Zeit, die zum Generieren benoétigt wurde oder Grof3e der generierten Datei),
angelegte Verzeichnisse oder verwendete Quellen.

Typischerweise werden diese Informationen genutzt, um den Generierungs-
Prozess zu dokumentieren, d.h. dem Benutzer den Fortschritt anzuzeigen oder
die Vorginge in eine Datei zu loggen. Im Kontext der Eclipse-IDE werden die
Informationen ebenfalls genutzt, um neu generierte Ressourcen dem Frame-
work mitzuteilen, so dass bestimmte Projekt-Informationen aktualisiert werden
konnen. So muss z.B. die CDT-Infrastruktur (Build-System und Editoren) be-
nachrichtigt werden, wenn neue Quell- oder Header-Dateien verfiigbar sind,
so dass gegebenenfalls Makefiles neu generiert werden kénnen und Scanner-
Informationen (entspricht in etwa einer Datenbank zur Hilfe bei der Quellco-
de-Navigation) neu angelegt werden konnen sowie gegebenenfalls getffnete
Ansichten fiir Dateien, die beim Generieren geloscht wurden, zu schliel3en.

Diese Informationen kénnen grundsatzlich auf zwei Arten dem Aufrufer
bereitgestellt werden: zeitnah mit dem Ereignis (Push-Ansatz, meist via Callback-
Interface) oder am Ende des Generierens von Clients abgefragt werden (Pull-
Ansatz, z.B. als Attribut des Generators).

Die Vorteile des Push-Ansatzes sind, dass die sukzessive gesendeten Informa-
tionen sich zur Fortschrittsanzeige eignen, was insbesondere bei sehr umfangrei-
chen Quell- oder Ausgabe-Dateien hilfreich sein kann. Des Weiteren kann dem
Aufrufer die Moglichkeit gegeben werden, den Generierungs-Vorgang dynamisch
zu beeinflussen, z. B. bei bestimmten Ereignissen zu stoppen oder fehlende
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Eingaben durch den Benutzer vornehmen zu lassen. Eine Variante des Callback-
basierten Push-Ansatzes ist die Verwendung des generischen Observer-Patterns,
z. B. durch die Verwendung des PropertyChange-API von Java oder (falls eine
komponenteniibergreifende Losung benétigt wird) des EventAdmin-Services von
OSGi. Hier registriert sich der Aufrufer beim Generator als Listener und erhélt
iiber eine generische Callback-Methode (entsprechend den Vorgaben des ver-
wendeten API) die Ereignisse in Form von Event-Objekten. Vorteil und Nachteil
zugleich bei dieser Variante ist die schwache Typisierung dieser Event-Typen, die
meist kaum mehr als Container fiir Schliissel-Wert-Paare sind. Dadurch kénnen
sie zwar leicht von spezifischen Generatoren um neue Attribute erweitert werden,
aber die Schnittstelle ist fragil, da Aufrufer nicht wissen, welche Attribute der
Generator bereitstellt. Mechanismen, um dies zu erginzen, stehen zwar zur
Verfligung, zerstoren aber die Attraktivitdt dieser Variante (die ja gerade in der
Verwendung eines generischen APIs liegt). Statt des generischen PropertChange-
Listener-Mechanismus konnen eigene, spezifische Listener- und Event-Klassen
eingefithrt werden, die eine stérkere Typsicherheit aufweisen.

Der Pull-Ansatz ist einfacher zu implementieren und zu verwenden, insbeson-
dere weil die Informationen bereits in aggregierter Form bereitgestellt werden
konnen (ist ein Aufrufer beim Push-Ansatz nur an aggregierten Informationen
interessiert, so muss er die Aggregation im Callback-Interface selbst durchfiihren;
da dies jedoch haufig noétig ist, besteht die Gefahr, dass diese Funktionalitét in
mehreren Aufrufern dupliziert implementiert wird).

Eine Losung, bei der der Aufrufer periodisch Informationen des Generators
abfragt, ist nicht praktikabel, da der Synchronisationsaufwand fiir die Kommuni-
kation zwischen mehreren Threads die Komplexitét auf Client- und auf API-Seite
unnotig erhoht.

Eine der dominierenden Losungen zur Code-Generierung, die Modeling Work-
flow Engine (im Rahmen des Eclipse Modeling Framework entwickelt), setzt den
spezifischen Listener-Ansatz um, indem ein Interface Issues eingefiihrt wird. Ei-
ne Instanz dieser Klasse kann implementiert werden, um auf Ereignisse wahrend
aller Phasen des Generierungs-Prozesses zu reagieren und um gegebenenfalls
die Ereignisse zum Zwecke einer spiteren Auswertung zu aggregieren.

Eine besondere Bedeutung kommt dem Mechanismus zur Weiterleitung von
Ereignissen beim Generieren im Hinblick auf Fehler zu. Der {ibliche Exception-Me-
chanismus von Java sieht keine direkte Moglichkeit vor, Exceptions systematisch
zu aggregieren. Dariiber hinaus eignen sich Exceptions nur zum sofortigen Ab-

10purch die von Aufrufer-Seite aus ohne Lock lesbaren Collection-Klassen seit Java 1.5 sinkt dieser
Aufwand allerdings.
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bruch einer durchgefiihrten Aufgabe (fail-fast), aber im Kontext der bei der Code-
Generierung hiufig auftretenden langwierigen Operationen ist dieses Verhalten
nicht zielfiihrend: wenn 90 Prozent eines Vorganges erfolgreich durchlaufen
wird und wéhrend des 91. Prozentes eine Ausnahmebedingung auftritt, so muss
der Benutzer die Fehlermeldung interpretieren und den Prozess mit neuen Ein-
gangsdaten neu starten. Tritt nun beim 92. Prozent ein Fehler auf, muss dieser
Zyklus wiederholt werden. Zielfithrender und produktiver ist es, zu erlauben, den
gesamten Prozess zu durchlaufen und samtliche Fehler zu aggregieren. Der Be-
nutzer kann im Idealfall alle Probleme beheben und den Prozess neu starten, so
dass nur zwei Zyklen durchlaufen werden miissen. Gegenseitige Abhéngigkeiten
zwischen Fehlern (Folgefehler, Maskierung von Fehlern durch andere Fehlern)
verhindern, dass dieser Idealfall immer erreichbar ist.

3.2 Phasen des Generierungsprozesses

Ubertrigt man die in Abschnittbeschriebenen Konzepte der Trennung von
Frontend und Backend sowie Entkopplung und Komplexitdtsreduktion durch
ein Zwischenformat auf den hier behandelten Fall der Generierung von Rest-
bussimulationen, so ergibt sich die Anforderung, fiir jedes zu unterstiitzende
Eingabeformat ein Frontend-Modul (fiir die Transformation des Eingabeforma-
tes in die Zwischendarstellung) sowie fiir jede unterstiitzte Zielplattform ein
Backend-Modul (fiir die Transformation von der Zwischendarstellung in platt-
formspezifischen Quellcode) bereitzustellen sowie die nétige Infrastruktur und
eine geeignete Zwischendarstellung zu definieren, mittels derer der benétigte
Informationsfluss realisiert werden kann. Zudem ergeben sich in der Praxis
zusatzliche Aspekte im Zusammenhang mit den Erweiterungen der Restbussi-
mulation durch benutzerdefinierten Code, die in Abschnitt beschrieben
werden und die ebenfalls Einfluss auf die Architektur der benétigten Transforma-
tionskette haben.

Eine vollstédndige Transformation von Spezifikation zu iibersetzbarem Quell-
code setzt sich demnach aus mindestens zwei Phasen zusammen: der Transfor-
mation aus den Netzwerkbeschreibungsdateien in das intern verwendete Format
und der Transformation vom internen Format in den Quelltext.

3.2.1 Dekomposition des Generierungsprozesses

Die Tatsache, dass der Generierungsprozess sich aus mehreren Stufen zusam-
mensetzt und dass eine Systematik gegeben sein muss, die eine Verkniipfung
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dieser Stufen erlaubt, wird von bestehenden Frameworks zur Code-Generierung
erkannt.

Die Modeling Workflow Engine 16st den Aspekt der Verkniipfung der ein-
zelnen Stufen eines mehrstufigen Transformations- bzw. Generierungs-Prozes-
ses durch eine Workflow-Abstraktion [Ecle], die aus einer Prozessdefinition
gemal} einem XML Schema sowie einer Laufzeitumgebung zur Interpretation
und Ausfiihrung dieser Prozessdefinition besteht. Die Verkniipfung der einzel-
nen Stufen erfolgt, indem jedem Schritt mehrere sogenannte Eingangs- und
Ausgangs-Slots zugewiesen werden konnen. Die Eingangs-Slots sind symboli-
sche Referenzen auf Dateien (in der Regel serialisierte Modelle), die von dem
auszufiihrenden Schritt benétigt werden, und die Ausgangs-Slots beschreiben,
welche neuen (oder aktualisierten) Dateien nach dem Ausfithren dieses Schrit-
tes zur Verfiigung stehen, auf die sich nachgelagerte Schritte beziehen kénnen.
Durch die explizite Definition der konsumierten und erzeugten Artefakte ist der
Prozessablauf besser dokumentiert als bei ausschlieflicher Angabe der einzelnen
Schritte, wo zusétzlicher Rechercheaufwand notwendig ist, um die fiir jeden
Schritt relevanten Dateien zu ermitteln. Ublicherweise werden die eigentlichen
Zielartefakte, d.h. zu generierende Quelldateien, nicht durch die Ausgabe-Slots
beschrieben; z.B. wird fiir einen Schritt, der eine Vielzahl von Quellcode-Da-
teien generiert, lediglich ein Makefile durch einen Ausgabe-Slot definiert, das
Beziige zu den Quelldateien aufweist, nicht jedes einzelne generierte Artefakt.
Nachfolgende Schritte konsumieren dann nur das Makefile.

Das AUTOSAR-Werkzeug Tresos-Studio der Firma Elektrobit implementiert
diesen Aspekt mittels des in der Java-Welt allgegenwartigen Build-Tools Apache
Ant [Apall, was den Vorteil hat, das die Mechanismen zur Konfiguration und
Erweiterung der Prozessdefinition (d.h. der Ant-spezifischen build.xml-Datei)
bei vielen Nutzern bereits als Vorkenntnisse vorausgesetzt werden konnen; eine
Einarbeitung in eine spezielle Workflow-Definitions-Sprache und deren Semantik
bei der konkreten Ausfiihrung, wie dies bei Verwendung der Modeling Workflow
Engine notig ist, entfallt somit [Ele]. Als Schnittstellen zwischen den Prozessstu-
fen ist man nicht auf die Angabe der Eingabe- und Ausgabe-Slots angewiesen,
was sich bei Abhangigkeiten, die sich nicht in dieses Schema einordnen lassen,
flexibler ist. Die Einheitlichkeit und Systematik des Slot-Mechanismus kann dabei
selbstversténdlich verloren gehen; die Ant-Build-Datei erlaubt durch ein Makro-
System die Definition beliebiger Logik und ist Turing-vollstdandig, was dazu fiihrt,
dass die Build-Datei beliebig komplex werden kann und dies in der Regel fiir ein
zentrales Dokument wie die Prozessdefinition nicht erwiinscht ist.

Ein wesentlicher Unterschied zwischen Ant und der Modeling Workflow En-
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gine besteht in der Art der Kopplung zwischen den einzelnen Schritten. Die
Modeling Workflow Engine bietet zwar die Eingangs- und Ausgangs-Slots, fiihrt
aber die Schritte in der Reihenfolge aus, wie sie in der Prozessdefinition auf-
gefiihrt sind, d.h. die einzelnen Schritte sind temporal gekoppelt. Unter Ant folgt
(éhnlich wie in einem Makefile) die Abarbeitung der Schritte geméal3 den in
der Prozessdefinition definierten Abhéngigkeiten und sind unabhangig von der
lexikalischen Reihenfolge in der Prozessdefinition. Dies fiihrt zu besseren auto-
matisch moglichen Optimierungen des Prozesses, ist aber fiir das menschliche
Verstdandnis geringfiigig komplexer als eine temporale Abhéngigkeit.

3.2.2 Dekomposition der einzelnen Schritte

Zusatzlich zur Dekomposition des Gesamt-Prozesses in einzelne Schritte ist es
im Hinblick auf Wartbarkeit und Erweiterbarkeit notwendig, Mechanismen zur
Dekomposition eines einzelnen Schrittes in Abhangigkeit von der Struktur der
jeweiligen Eingangsdaten vorzusehenEl, d.h. eine Zuordnung von Strukturele-
menten zu moglichst modularen und autonomen Komponenten zu erreichen, die
genau diese Strukturelemente behandeln.

Der Grundgedanke ist, dass das Eingangsmodell, das einem Schritt zu Grun-
de liegt, gewisse Strukturelemente enthilt, die fiir sich gesondert betrachtet
werden konnen, d.h. aus dem iibergeordneten Kontext des Modells herausgelost
behandelt werden konnen (oder mit minimaler Kontext-Information behandelt
werden). Fiir diese Strukturelemente kann die Logik zur Transformation bzw.
Generierung ausgelagert werden in eigene Module.

Bei spiter eventuell auftretenden Erweiterungen oder Anderungen am Sche-
ma des Eingangsmodells (d.h. bei neu hinzukommenden Strukturelementen oder
bei wegfallenden Strukturelementen) wird so die Anpassung des entsprechenden
Generierungs- oder Transformations-Schrittes erleichtert: fiir neue Strukturele-
mente kann eine Komponente implementiert und im Haupt-Modul des Prozess-
Schrittes mit dem Typ des Strukturelementes assoziiert werden; fiir nicht mehr
zu behandelnde Strukturelemente kann die Assoziation der behandelnden Kom-
ponente mit dem betroffenen Strukturelement riickgéngig gemacht werden.

Dieser Mechanismus eignet sich prinzipiell auch zur Erweiterung fiir benutzer-
spezifische AnwendungsféilleEZ], so dass die Behandlung bestimmter Strukturele-
mente gedndert werden kann, ohne die Kern-Funktionalitit des iibergeordneten

HEine Dekomposition eines Schrittes in einzelne Schritte ist trivial durch eine sequentielle
Ausfithrung mehrerer Schritte moglich; dies wird hier nicht betrachtet.
120der organisationsspezifische Anwendungsfille
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Prozess-Schrittes anzutastenE]

3.2.3 Abstraktion der Eingangsdaten

Um zu vermeiden, dass bestimmte Aspekte des Transformationsprozesses fiir
jedes Eingangsformat individuell implementiert werden miissen, ist es sinnvoll,
die gemeinsamen Aspekte der unterschiedlichen Eingangsformate so zu abstra-
hieren, dass diese teilweise Duplikation von Losungen nicht mehr notig ist. Das
so definierte Zwischenformat blendet notwendigerweise manche Informationen
aus, die in den individuellen Eingangsformaten zur Verfiigung stehen; ist dies
nicht akzeptabel, so muss ein Mechanismus geschaffen werden oder nachriistbar
sein, wie diese Abstraktionsschicht bei Bedarf umgangen werden kann und direkt
auf die Eingangsdaten zugegriffen werden kann; dies wird meist mit dem Begriff
Traceability bezeichnet. Dies betrifft insbesondere die in DBC-Dateien moglichen
benutzerdefinierten Attribute, die ein eigenes Metamodell zur Beschreibung
beliebiger Attribute fiir Netzwerkelemente und Zuordnung beliebiger Werte zu
diesen Attributen bilden. Dadurch ist es moglich, dass jeder Hersteller fiir be-
stimmte Aspekte des Kommunikationsnetzwerks eine eigene Semantik festlegen
kann, die beispielsweise das Verhalten von Knoten zur Laufzeit der Simulation
beeinflusst. Andere Eingangsformate, wie Fibex, unterstiitzen ein derartiges
benutzerdefiniertes Metamodell fiir Attribute nicht; aus diesem Grunde ist es
nicht sinnvoll, diesen Mechanismus eines einzelnen Eingangsformates in der
Abstraktionsschicht nachzubilden.

Ein zusatzlicher Aspekt, der durch das Zwischenformat abgedeckt werden
muss, ist die Verwaltung von Informationen, die nicht Teil der Eingangsdatei-
en sind, sondern Teil der vom Benutzer definierten Restbussimulation. Diese
Informationen umfassen mindestens die folgenden Aspekte:

Aktivierung von Knoten und Botschaften Es muss beschrieben werden kdnnen,
ob bestimmte Netzwerkelemente Teil der simulierten Elemente sind (d.h.
ob diese von der Restbussimulation simuliert werden sollen) oder ob sie
als real vorhanden angenommen werden sollen.

Callbacks Es muss beschrieben werden kénnen, ob es fiir ein bestimmtes Er-
eignis eine vom Benutzer angegebene Callback-Funktion gibt, die vom
Framework beim Eintreten des Ereignisses aufgerufen werden muss.

13Im Idealfall liegen die Strukturelemente im Eingangsformat so vor, dass bei Verwendung eines
Template-Ansatzes das Element direkt, d.h. ohne weitere Aufbereitung, an den zugehérigen Template-
Satz weitergegeben werden kann, aber dies ist eher die Ausnahme.
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Weitere Informationen, z.B. iiber das Projekt-Setup und die Zuordnung
von physikalischen Kanélen zu Controllern der Ziel-Hardware und die Para-
meter-Belegung dieser Controller, konnten ebenfalls in diese Abstraktionsschicht
iibernommen werden, kénnen auf Grund des fehlenden Bezugs zu den Eingangs-
daten aber auch extern verwaltet werden.

Fiir die Definition der Callbacks ist relevant, dass sich das Callback nicht auf
ein bestimmtes Element bezieht, sondern auf eine bestimmte Beziehung eines
Elementes zu einem anderen Element, d.h. fiir die vollstandige Beschreibung
der Restbussimulation miissen die Beziehungen zwischen Elementen u.U. ex-
pliziter gemacht werden, als diese im Informationsmodell des Eingabeformates
vorhanden sind. Anders formuliert: das Eingabeformat beschreibt das Kommuni-
kationsnetzwerk als Graph zwischen den Elementen Knoten, Nachrichten und
Signalen; fiir die Konfiguration einer Restbussimulation sind die Kanten dieses
Graphen jedoch genauso wichtig wie die Elemente selbst und miissen deshalb
im Zwischenformat explizit gemacht werden.

Aus diesem Grund erleichtert es die Code-Generierung, das Eingabemodell
in dieser Beziehung zu expandieren, d.h. die Abstraktionsschicht muss manche
im Eingangsformat vorhandene implizite Beziehungen als vollwertige Elemente
aufnehmen. Diese teilweise Linearisierung der Eingabedaten ermdglicht eine
Vereinfachung des Code-Generierungs-Schrittes, da fiir ein zu behandelndes
Objekt weniger Kontext-Informationen mit {ibergeben werden miissen bzw. diese
Kontext-Informationen nicht wahrend des Generierungs-Schrittes berechnet
werden miissen. Speziell zu diesem Aspekt gibt es interessante Unterschiede
zwischen dem DBC-Format, das Beziehungen sehr redundanzfrei modelliert und
somit die Freistellung bestimmter Beziehungen erschwert, und neueren Formaten
wie Fibex und AUTOSAR-System-Konfiguration, in denen viele Beziehungen
sowohl auf System-Ebene als auch auf der Ebene der einzelnen ECU beschrieben
sind, was eine gewisse Redundanz bei der Modellierung erfordert, aber die
Extraktion bestimmter Beziehungen erleichterth]

Eine weitere Aufgabe, die mittels der Zwischenschicht realisiert werden kann,
ist das dokumentiibergreifende Validieren der Datenbasis, was wichtig ist fiir
den Anwendungsfall, dass mehrere Eingangsdateien einem physikalischem Kanal
zugeordnet werden sollen, um die mehrfache Verwendung gleicher Botschafts-
Identifier zu vermeiden bzw. den Benutzer dariiber zu informieren.

Auch die in Abschnitt beschriebene Funktionalitét ist ohne Verwendung
einer einheitlichen Abstraktionsschicht nur durch aufwéndiges Ermitteln von

14Djes impliziert nicht, dass Fibex- oder AUTOSAR-Beschreibungen generell einfacher zu behandeln
sind; dies ist auf Grund der komplexeren Strukturen nicht der Fall.
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Querbeziigen und evtl. durch das dokumentiibergreifende Auflésen von Bezie-
hungen realisierbar. Die Ermittlung der Differenz zwischen zwei verschiedenen
Versions-Stdnden wird einerseits erleichtert durch die Komplexititsreduktion, die
die Abstraktionsschicht schafft (d.h. nicht relevante Aspekte werden automatisch
ausgeblendet). Andererseits muss durch Verwendung eines vereinheitlichten
Formates fiir die Zwischendarstellung der Algorithmus zur Bildung der Diffe-
renz nur fiir dieses Format implementiert werden und nicht fiir jedes einzelne
Eingabeformat (bzw. im Extremfall fiir jede Kombination von Eingabeformaten).

3.2.4 Transformation Eingangsdaten — Zwischenformat

Die Transformation der Eingangsdaten in das Zwischenformat muss weiter un-
terteilt werden in mehrere Schritte: das Einlesen der Eingangsdaten aus der
serialisierten Darstellung (d.h. aus Dateien), die eigentliche Transformation der
Daten in das Zwischenformat, die Zusammenfithrung von Daten aus mehreren
Quellen und die damit verbundene Konflikterkennung sowie die Serialisierung
des Zwischenformates.

Die ersten beiden Schritte sind spezifisch fiir den Typ der verwendeten Ein-
gangsdaten, wahrend die iibrigen Schritte generisch sein kénnen, da sie nur auf
der Zwischendarstellung operieren.

Der erste spezifische Schritt, das Einlesen der serialisierten Daten, erfolgt ja
nach verwendetem Datenformat entweder durch geeignete speziell zu entwi-
ckelnde Parser; so stehen fiir DBC-Dateien und LDF-Dateien von Berger Elek-
tronik entwickelte Parser zur Verfiigung [|Sar11,|Hit10,|FralOf]. Im Falle von
XML werden {iblicherweise XML-Parser oder XML-Mapper wie JAXB oder EMF
verwendet.

Die verwendete Technologie zum Einlesen der Daten beeinflusst auch die
zur Verfiigung stehenden Optionen fiir die Realisierung des Transformations-
Schrittes.

In jedem Fall moglich ist eine manuelle Implementierung der Transforma-
tion, d.h. die Uberfithrung des Datenmodells, wie es der Parser liefert, in das
Zwischenformat mit den Mitteln der Host-Sprache. Im Wesentlichen muss hier-
zu das Datenmodell traversiert werden und zu Elementen im Eingangsmodell
die korrespondierenden Elemente im Zwischenformat erzeugt und parametriert
werden. Bei speziellen Parsern, die die Daten iiber ein individuelles Datenmo-
dell zugédnglich machen, ist dies oft der einzige gangbare Weg. Entwurfsmuster
wie Visitor und Builder haben sich zur Strukturierung dieser Losungsvariante
bewihrt [GHJ94].
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Existiert das Eingangsformat als XML- oder EMF-Modell, und ist das Zwi-
schenformat ebenfalls als (anderes) XML- oder EMF-Modell definiert (wobei die
Modelle jeweils dem XSD-Metamodell bzw. dem Ecore-Metamodell entsprechen),
so kann der Einsatz von speziellen Mapping-Technologien in Betracht gezogen
werden. Diese ermoglichen es, die Transformation deklarativ zu definieren, was
insbesondere bei grofferen Modellen den Aufwand gegeniiber einer manuellen
Implementierung reduzieren kann. Der Nachteil derartiger Transformations-
Sprachen ist, dass u.U. ein hoher Einarbeitungsaufwand notig sowie spezielle
Werkzeugunterstiitzung (Editoren und Compiler fiir die Transformationssprache)
notwendig.

Einen breiten Uberblick {iber Sprachen zur Modelltransformation sowie zur
Theorie der Triple-Graph-Grammatiken, die vielen dieser Sprachen zu Grunde
liegt, bietet [Hub08]]. Eine genauere Beschreibung der Theorie der Triple-Graph-
Grammatiken liefert [KWO7]].

In der vorliegenden Arbeit werden explizite Modelltransformations-Sprachen
nicht weiter betrachtet; durch die Implementierung der Zwischenschicht mittels
EMF ist jedoch eine zukiinftige Transformation von anderen EMF-Modellen, z.B.
mittels der Transformations-Sprache ATL denkbar [Eclall.

3.2.5 Transformation Zwischenformat — Ausgabeformat

Die Transformation vom Zwischenformat in das Ausgabeformat ist die eigentliche
Code-Generierung. Fast alle industriell eingesetzten Losungen hierfiir sind als
duale Ansitze realisiert, bei denen ein Treiber in einer Host-Sprache und eine
Beschreibung der Ausgabe in einer Template-Sprache kombiniert werden (siehe

Abschnitt[3.1.3)).

3.3 Projekt-Modell

Zur Zusammenstellung der zu einer zu generierenden Restbussimulation gehorigen
Informationen wurde eine Projekt-Abstraktions-Schicht geschaffen, die die fiir
das Projekt relevanten Datenbasen, die Zielplattform fiir das Projekt, die vor-
handenen physikalischen Kanéle (Art, Bezeichnung und Parameter) und die
Zuordnung der Datenbasen zu den Kanilen einerseits sowie die Zuordnung der
Kanéle zu den Anschliissen der Zielplattform andererseits erméglicht. Die Zuord-
nungen zwischen ICluster, IChannel und IConnector orientieren sich im Kern
an der vom Fibex-Standard definierten Topologie (die von AUTOSAR weitgehend
iibernommen wurde). Diese Informationen werden als Projekt-Konfigurations-

71



Datei gespeichert und dienen als Treiber fiir die fiir das Projekt verwendeten
Code-Generatoren. Eine Ubersicht iiber die Beziehungen ist in Abbildung zu
finden.

IKayakProject O = >|IClusterContainer O ICluster O
+getChildren() : Object [0..*]
+getDescription() : String

/
IChannel O 0..*
+getSymbolicName() : String
+getType() : IChannelType
0..1
—> IDevice OpFp— IConnector O
+getGenericName() : String +getName() : String
+getSpecificName() : String +getType() : IConnectorType
+getVendorName() : String +getld() : int
+getModelldentifier() : String +getParameters() : Map

Abbildung 3.1: Abstrakte Projekt-Struktur [Ber]

Im Folgenden werden die Elemente der Projekt-Konfiguration néher beschrie-
ben.

3.3.1 Abstraktion der Datenbasen

Da mehrere unterschiedliche Eingangs-Formate unterstiitzt werden miissen, ist
eine Abstraktionsschicht fiir die Einbindung dieser Formate notwendig, die das
Referenzieren konkreter Dateien und die Deserialisierung dieser Daten mittels
des fiir das spezifische Datenformat verwendeten API ermoglicht (z.B. Verwen-
dung generischer XML-APIs oder eines spezifischen Parsers fiir spezielle Daten-
formate), ohne dass die Projekt-Abstraktions-Schicht diese APIs kennen muss.
So kann gewdhrleistet werden, dass flir weitere zu unterstiitzende Datenformate
keine Anderungen an der Projekt-Abstraktions-Schicht notwendig sind, sondern
diese als externe Funktionalitéit eingebunden werden kénnen (wie dies konkret
funktioniert, d.h. wie die Anbindung externer Funktionalitat realisiert wird,
ist in Abschnitt beschrieben). Die Einfithrung von IClusterContainer als
iibergeordnete Instanz iiber ICluster motiviert sich aus der Tatsache, dass man-
che Eingangsformate die Definition mehrerer Netzwerk-Cluster innerhalb einer
Datei ermoglichen, so dass IClusterContainer sich auf die Ressource bezieht,
die die Netzwerk-Cluster definiert, wahrend sich ICluster auf einen einzelnen
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Netzwerk-Cluster bezieht und die generische Operation getChildren bereitstellt,
die in abstrakter, vom konkreten Eingangsformat unabhéngiger Weise den Inhalt
der Clusters zuganglich macht.

3.3.2 Abstraktion der physikalischen Kanale

Die physikalischen Kanile, die fiir eine zu generierende Restbussimulation re-
levant sind, werden beschrieben durch den Bus-Typ des physikalischen Busses
und einen Parametersatz zur Beschreibung der Parameter fiir den konkreten
Bus; dieser Parametersatz ist auf der Ebene der Projekt-Konfiguration abstrakt
gehalten. Wichtig fiir die Restbussimulation ist insbesondere der symbolische
Name eines physikalischen Busses, da dieser sich auswirkt auf die generierten
API-Funktionen fiir die Restbussimulation.

3.3.3 Abstraktion der Zielplattform

Die Zielplattform wird dem Projekt explizit zugewiesen. Sie ist definiert durch
eine Reihe beschreibender Merkmale sowie den ihr zugeordneten Anschliissen,
fiir die der Anschluss-Typ und mogliche Parameter definiert werden kénnen.
Die Anschliisse dienen als Endpunkte fiir physikalische Kanéle. Die Menge der
unterstiitzten Zielplattformen ist nach oben hin offen, so dass neue Plattformen
(oder Plattform-Varianten) als externe Module eingefiihrt werden konnen, ohne
das Kern-System zu verdndern (siehe Abschnitt.

Das Anwendungsprofil ist ein zusatzliches Merkmal, anhand dessen die Klasse
der zu generierenden Anwendung definiert wird. Dies dient im Wesentlichen
dazu, unterschiedliche typische Anwendungsarten wie Gateways oder Logger
fiir eine Plattform generieren zu konnen, ohne dass diese Anwendungstypen
als eigene Zielplattformen definiert werden miissen. Auch kundenspezifische
Anwendungstypen konnen so definiert werden.

Die Auswahl der benétigten Generatoren fiir ein Projekt erfolgt dann mittels
der Kombination aus Zielplattform und Anwendungsprofil (auch hierzu sei auf
Abschnitt verwiesen).
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Auswahl
Zielplattform

Auswahl
Anwendungsprofil

Physikalische
Busse
konfigurieren

Datenbasen
festlegen

Kanalbelegung
konfigurieren

Projekt-Konfiguration

Abbildung 3.2: Ablauf der Projekt-Konfiguration [Ber]]

Der Ablauf der Projekt-Konfiguration ist in Abbildung(3.2]dargestellt. Eine kur-
ze Erlduterung: die Zielplattform und das Anwendungsprofil werden ausgewéhlt.
Die zu verwendenden Datenbasen werden eingebunden. Die physikalischen
Kanile werden definiert und die Datenbasen werden diesen zugewiesen. Ab-
schlieBend werden die physikalischen Kanéle den Anschliissen der Zielplattform
zugeordnet.

Ein konkretes Beispiel fiir eine Projekt-Konfiguration, die die Zuordnung
zwischen den Projekt-Elementen und der zugehorigen realen Topologie zeigt,
ist in Abbildung dargestellt. Hier ist die Projekt-Struktur fiir eine Konfi-
guration dargestellt, die fiir eine Topologie mit zwei physikalischen Kanélen
(Chassis und Powertrain) jedem Kanal die zugehdorige Datenbank zuordnet sowie
die Anbindung der Anschliisse der verwendeten Zielplattform an diese Kanile
definiert.
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db 1:

—{ can_4 : IConnector |-

an f- verweist auf ;
DBCClusterContainer | — — '  «arifac: [
powertrain.dbc
— -’ cluster_1 : DBCCluster }—l
|
db 2: verweist auf .
™ DBCClusterContainer | — — — > «amfact» b
| chassis.dbc
| ’ cluster_2 : DBCCluster }—l
I liegt auf liegt auf
Vi \z
project : powertrain : chassis :
IKayakProject IChannel IChannel
A [N
Iangebunden an | angebunden an
canyon : IDevice I |
| .
entspricht ~ CAN_1
—{ can_1 : IConnector |— —————— CANyon
— . CAN_2
—{ can_2 : IConnector |- _ _entspricht _ ~_
| can 3:iConnector | — enisericht _ CAN.3
entspricht ~ CAN__

Abbildung 3.3: Konkretes Beispiel fiir eine Projekt-Konfiguration ||

3.4 Generator-Architektur

IGenerator und IComponentContribution.

Im Folgenden wird eine Umsetzung der in Abschnitt(3.2| beschriebenen Anforde-
rungen vorgestellt. Wo moglich, werden Einzelheiten an Hand von konkreten
Beispielen veranschaulicht.

3.4.1 Kern-Abstraktionen und deren Interaktionen

Den Kern des entwickelten Generator-Frameworks bilden die Abstraktionen

IGenerator ist die Schnittstelle fiir einen einzelnen Schritt im Generierungs-
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von Eingangsdaten erfolgt {iber einzelne Implementierungen der Schnittstelle
IComponentContribution, die mittels der Schnittstelle IContributionHandler
an eine IGenerator-Instanz gebunden werden kénnen. Dadurch wird eine Zu-
ordnung zwischen Strukturelementen zu ihren behandelnden Modulen erreicht.

Eine IGenerator-Instanz ruft die ihr zugeordneten IComponentContribu-
tion-Instanzen auf, indem sie {iber ihre Eingangsdaten iteriert (wie dies erfolgt,
ist abhédngig von den verwendeten Eingangsdaten fiir den von diesem Generator
implementierten Schritt) und fiir jedes potentiell behandelbare Strukturelement
iiberpriift, ob eine der IComponentContribution-Instanzen dieses Element be-
handeln kann. Diese Priifung erfolgt mittels der Methode isContextSupported
von IComponentContribution. Ist diese Uberpriifung positiv, so wird die con-
tribute-Methode dieser IComponentContribution-Instanz aufgerufen, indem
deren contribute-Methode aufgerufen wird, wobei das zu behandelnde Ele-
ment nicht direkt iibergeben wird, sondern verpackt in eine IContext-Instanz,
die zusétzlich notige Informationen iiber den aufrufenden Generator weitergibt.

Die so aufgerufene IComponentContribution-Instanz transformiert das ihr
iibergebene Element, indem sie es, je nach konkretem Fall, in ein Element des
Zielmodells tiberfiihrt oder indem sie Templates fiir dieses Element instantiiert
und das Element an diese Templates iibergibt, in der Regel mit zusétzlichen Pa-
rametern. Dabei erfolgt die Ausgabe in Form eines finalen, als Datei generierten
Artefaktes nicht direkt, sondern es wird ein Event vom Typ IArtifactEvent er-
zeugt und iiber die IArtefactHandler-Schnittstelle an die aufrufende IGenera-
tor-Instanz iibergeben. Die Motivation fiir diese Indirektion erfolgt im néchsten
Abschnitt. Ebenso ist es moglich, dass eine IComponentContribution-Instanz
einen Beitrag zu Artefakten leisten will, die von einer anderen IComponentCon-
tribution-Instanz generiert werden. Dies ist so moglich, dass die Intention
dieses Beitrags in Form einer IAttributeEvent-Instanz {iber die Schnittstelle
IAttributeHandler an den aufrufenden Generator weitergeleitet wird.

Eine Ubersicht iiber die beteiligten Kern-Abstraktionen des Generator-Frame-
works bietet Abbildung
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IGenerator O
+generate() : void

N IAttributeEventHandler O
+handleAttributeEvent( event : AttributeEvent ) : void

AttributeEvent

+getAttName() : String
+getAttValue() : String

— |ArtifactEventHandler O
+handleArtifactEvent( event : ArtifactEvent ) : void

ArtifactEvent

+getType() : String
+getTemplate() : Object
+getFileName() : String

> IContributionHandler O

+handleContribution( contribution : IComponentContribution, context : IContext ) : vo
+dispatchToContributions( context : IContext ) : void

IComponentContribution O

+contribute( context : IContext ) : void
+isContextSupported( context : IContext ) : boolean

IContext O
+getRoot() : Object
+getlssues() : llssueReporter| angebunden
durch

Abbildung 3.4: Kern-Abstraktionen des Generator-Frameworks II

Um die Realisierung von IGenerator-Implementierungen zu vereinfachen
und zu vereinheitlichen, wird die Klasse AbstractGenerator als abstrakte Basis-
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Klasse bereitgestellt, die die unter anderem bereits die Infrastruktur fiir die
Registrierung von IComponentContribution-Instanzen bereitstellt.

Die weitere Unterteilung der Generator-Funktionalitat, d.h. die konkreten
Unterklassen von IGenerator, fallt in zwei dominierende Kategorien:

C-Code-Generierung Fiir Generatoren, die die eigentliche Generierung von
C-Code durchfiihren, wird als spezifische Basis-Klasse die Klasse Base-
CCodeGenerator bereitgestellt, die eine Visitor-Methode implementiert,
die iiber die Strukturelemente des Zwischenformates iteriert und die auf
diese Strukturelemente registrierten IComponentContribution-Instanzen
aufruft.

Modell-Transformation Fiir Generatoren, die eine Transformation der Ein-
gangsformate in das Zwischenformat oder eine Vorkonditionierung oder
Konsolidierung des Zwischenformates realisieren, wird die Basis-Klasse
AbstractModelTransformer bereitgestellt, die einfache Methoden zum
Serialisieren und Deserialisieren des Zwischenformates und die Ermittlung
der Differenzen zwischen zwei Instanzen des Zwischenformates realisiert.

Diese beiden Basis-Klassen bilden ein Vokabular, mit dem die benotigte
Funktionalitat fiir die Transformations-Kette in konsistenter Weise abgebildet
werden kann, indem die Funktionalitéit jedes konkreten Prozess-Schrittes als
Unterklasse einer dieser Basis-Klassen erfolgen kann. Fiir Prozess-Schritte, die
sich nicht in eine dieser Kategorien einordnen lassen, kann eine Implementierung
erfolgen, die direkt auf IGenerator bzw. AbstractGenerator aufsetzt und die
beiden bevorzugten Basis-Klassen konnen ignoriert werden. Die wichtigsten
konkret verwendeten Unterklassen sind in Abbildung dargestellt; wichtig ist,
dass alle plattformspezifischen Aspekte in einem plattformspezifischen Generator
gekapselt sind und alle iibrigen Generatoren fiir alle Plattformen genutzt werden
koénnen.

Als bevorzugte Basis-Implementierung fiir IComponentContribution exis-
tiert die Klasse AbstractComponentContribution, die bevorzugt zu verwen-
den ist und die die notwendigen Anbindungen dieser Schnittstelle (Anbindung
an IArtifactHandler und IAttributeHandler) in einheitlicher Weise reali-
siert und einfache Methoden bereitstellt, um IArtifactEvent- und IAttribute-
Event-Instanzen zu erzeugen und an die entsprechenden registrierten Handler
(dies sind in der Regel die aufrufenden IGenerator-Instanzen) zu propagieren.
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IGenerator ()
+generate() : void

T

AbstractGenerator
BaseCCodeGenerator AbstractModelTransformer

T— AN

- AbstractCleaner

| ConservativeCleaner

platform.canyon

CCodeGenerator FullCleaner

L ModelBuilder

]

platform.xllib || UserModelSettingsintegrator

CCodeGenerator —

UserCodeReconciler

Abbildung 3.5: Verwendete Generatoren und plattformspezifische Anteile I@I
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3.4.2 Behandlung von Artefakt- und Attribut-Beitragen

Die zuvor erwahnte Schnittstelle TArtifactHandler, die von jeder IGenerator-
Unterklasse implementiert wird, erméglicht es, Artefakte nicht direkt zu generie-
ren, sondern detailliert zu steuern, wie und zu welchem Zeitpunkt das von einem
IArtifactEvent spezifizierte Artefakt generiert wird. Die Motivation dafiir ist,
dass es durch die Moglichkeit der Erweiterung der Restbussimulation durch
den Benutzer zwei Klassen von zu generierenden Artefakten gibt: bestimmte
Quelldateien sind nicht fiir die Erweiterung durch den Benutzer vorgesehen, d.h.
sie werden nur generiert, aber nichts an diesem generierten Quellcode darf vom
Benutzer verdndert werden. Diese Artefakte konnen somit immer wieder neu
generiert werden, ohne dass darauf geachtet werden muss, ob sie Anderungen
durch den Benutzer enthalten. Artefakte, die der Klasse der durch den Benut-
zer erweiterbaren Dateien angehoren, diirfen nicht in jedem Fall iiberschrieben
werden, sondern miissen entweder belassen werden, wie sie sind, oder es muss,
wenn eine solche Datei neu generiert werden soll, die alte Version gesichert
werden, bevor sie {iberschrieben wird[7]

Der Typ des Artefaktes wird dabei iiber ein Feld des entsprechenden IAr-
tifactEvents bestimmt, das von der Ereignis-Quelle, d.h. der erzeugenden
IComponentContribution-Instanz, entsprechend korrekt gesetzt werden muss.
Mit dieser Information kann der Generator zentralisiert entscheiden, wie das
behandelte Artefakt erstellt werden muss, indem es je nach Typ die entsprechende
Strategie auswahlt.

Ein weiterer Vorteil der Kapselung von Informationen zu jedem zu generieren-
den Artefakt ist, dass eine Erweiterung auf andere unterstiitzte Template-Arten
dadurch an einer zentralen Stelle erfolgen kann, indem ein zuséatzlicher Hand-
ler fiir Artefakt-Ereignisse mit der neuen Template-Variante implementiert und
registriert wird. Aspekte wie die Gewahrleistung der Atomizitédt der Erstellung
von Artefakten, d.h. die Sicherheit, dass ein Artefakt entweder vollstindig und
korrekt generiert wird oder das urspriingliche Artefakt an seiner Stelle verbleibt,
konnen ebenfalls als zentrale Strategie fiir manche Artefakt-Typen eingebunden
werden.

Im Hinblick auf die Generierung von C-Code ist in diesem Zusammenhang
eine Optimierung moglich, indem ein neu zu generierendes Artefakt nur als
Dateisystem-Datei geschrieben wird, wenn der Inhalt sich vom bisher an dieser
Stelle befindenden Artefakt unterscheidet (dies kann z.B. mittels einer kryp-
tographischen Priifsumme {iberpriift werden); ist dies nicht der Fall, so kann

I5Eine andere Moglichkeit der Behandlung wird in Abschnitt beschrieben.
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das urspriingliche Artefakt verbleiben, und der make-Prozess kompiliert die ent-
sprechende Quelldatei (und evtl. davon abhéngige Dateien) nicht neu, was bei
grofleren Projekten eine fiir den Benutzer signifikante Zeitersparnis bewirkt

Eine weiterer Aspekt des Generierungs-Prozesses, der durch den IAttribute-
Handler-Mechanismus abgedeckt werden kann, ist das Loschen von Artefakten,
z.B. beim Wegfall von Netzwerk-Knoten aus der Datenbasis und anschlief3endem
Neugenerieren oder auch, um einen vollstdndigen Build des Projektes zu erzwin-
gen. Auch hier kann je nach der Kategorie des zu 16schenden Artefaktes zentral
entschieden werden, ob das Artefakt vom Dateisystem geloscht werden soll oder
(bei Artefakten, die Anderungen durch den Benutzer enthalten konnen) ob das
Artefakt gesichert werden muss.

Die Schnittstelle IAttributeHandler realisiert die Moglichkeit, dass einzel-
ne IComponentContribution-Instanzen Beitrdge zu Artefakten liefern, die von
anderen IComponentContribution-Instanzen erzeugt werden. Dies nutzt die
verzogerte Generierung der Artefakte aus, indem zuerst alle Attribut-Ereignisse
abgearbeitet werden und in die entsprechenden Artefakte injiziert werden, bevor
alle dem Generator mittels IArtifactEvent libergebenen Artefakte generiert
werden. Damit ist die Reihenfolge der Ausfiihrung, d.h. ob fiir ein bestimmtes
Artefakt zuerst die Attribut-Ereignisse oder das Artefakt-Ereignis an den Genera-
tor geleitet werden, nicht relevant, was der Tatsache Rechnung tragt, dass die
einzelnen IComponentContribution-Instanzen moglichst nichts voneinander
wissen sollen und insbesondere nicht in temporaler Abhéngigkeit voneinander
stehen sollen. Die Assoziation zwischen dem Eigner des Artefaktes, fiir das ein
Attribut gesetzt werden soll, und der externen Komponente, die das Attribut
setzt, erfolgt ausschlief3lich {iber den Namen des Attributes, was beachtet werden
muss, wenn dieser Mechanismus hiufiger eingesetzt wird, da es dann u.U. zu
Namenskonflikten kommen kann.

Das ereignisbasierte Behandeln der Artefakt-Generierung und Attribut-Wei-
terleitung hat auch Auswirkungen auf die Testbarkeit: in Testfallen konnen
aufwéndige dateisystembasierte Tests, die Priifen, ob eine bestimmte Datei durch
einen bestimmten Prozess-Schritt generiert werden, ersetzt werden durch einfa-
che Tests, die Priifen, ob ein entsprechendes IArtifactEvent fiir das erwartete
Artefakt erzeugt wurde. Dies hilft natiirlich nur bei Tests, die lediglich die Présenz
des Artefakts betreffen. Bei inhaltsbasierten Priifungen ist der ereignisbasierte

16Bei Build-Systemen, die (anders als make), eine Neukompilierung nicht vom Zeitstempel der
generierten Datei abhdngig machen, sondern bereits selbst an Hand einer Priifsumme eine inhaltsba-
sierte Entscheidung {iber eine notwendige Neukompilierung treffen, konnte dieser Schritt entfallen.
Beispiele fiir derartige Build-Systeme sind cons, SCons, waf, omake und fabricate; von diesen ist
SCons am populdrsten.
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Ansatz jedoch auch hilfreich, da im Kontext des Tests spezielle Artefakt-Hand-
ler verwendet werden konnen, die das Artefakt nicht als persistente Datei im
Dateisystem erzeugen, sondern als Byte-Array im Speicher, was die Inspektion
des Inhaltes erleichtert und das sonst notwendige Entfernen der wihrend dem
Test generierten Artefakte iiberfliissig macht.

3.4.3 Fassade zur Verwendung der Generatoren

Um einerseits die richtige Sequenzierung der einzelnen fiir den Generierungs-
Prozess verwendeten Schritte zu gewéhrleisten und andererseits die Integration
der Code-Generierung mit dem nachgelagerten Build-Prozess, d.h. dem Kompi-
lieren des Quellcodes und Linken des Objektcodes (realisiert durch einen Aufruf
von make) zu ermdglichen, wurde das Interface BuildService eingefiihrt. Dieses
erlaubt es, verschiedene Auspridgungen des Generierungs- und Build-Prozesses
einfach auszufithren, ohne dass einzelne Prozess-Schritte konfiguriert werden
miissen. Die wichtigsten dieser Auspragungen umfassen:

Konservative Code-Generierung Es werden Anderungen aus den Eingangsda-
teien eingebunden und Code wird neu generiert, aber es werden dabei
keine durch den Benutzer erweiterbaren Quell-Artefakte {iberschrieben.
Typischer Anwendungsfall ist, dass ein Benutzer neue Elemente aus den
Eingangsdaten einbeziehen will.

Vollstindige Code-Generierung Es werden Anderungen aus den Eingangsda-
teien eingebunden und Code wird neu generiert und eventuell bestehende
durch den Benutzer erweiterte Quell-Artefakte werden iiberschrieben. Ty-
pischer Anwendungsfall ist, dass ein Benutzer den urspriinglichen Zustand
des erweiterbaren Quellcodes wiederherstellen kann, um so z.B. das Pro-
jekt wieder in einen kompilierbaren Zustand zu bringen. Hier ist wichtig,
dass die Granularitat regulierbar ist, d.h. dass die Neu-Generierung auf
bestimmte Artefakte beschriankt werden kann, falls der Benutzer nur diese
neu generieren will.

Nur Build Es werden keine Eingangsdaten neu eingebunden und kein Code neu
generiert, sondern nur das Binary neu gelinkt und gegebenenfalls zuvor
Quell-Artefakte, die durch den Benutzer verdndert wurden, neu kompiliert.

Vollstindiger Build Es werden Anderungen aus den Eingangsdateien einge-
bunden und Code wird generiert, dieser kompiliert und der resultierende

7Dies sind keine aus funktionaler Sicht wichtigen Aspekte, aber sie zeigen die grundsitzliche
Flexibilitat, die dieser Ansatz bietet.
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Objektcode zu einem Binary gelinkt. Typischer Anwendungsfall ist das
erstmalige Generieren, Kompilieren und Linken eines Projektes.

Die Schaffung einer Schnittstelle fiir die korrekte Verwendung der Generato-
ren isoliert die konkreten Generator-Implementierungen von Modulen, die nur
ein Interesse an der korrekten Ausfiihrung des Build-Prozesses haben und nicht
an den einzelnen Schritten; dies betrifft die iiberwiegende Mehrheit der Module,
einschliel8lich aller Benutzerschnittstellen.

3.4.4 Informationsfluss wiahrend des Generierungs-Vorgangs

Die in Abschnitt beschriebene Thematik der Behandlung von Status-
und Fehler-Meldungen wahrend des Generierungs-Prozesses wird wie in Ab-
bildung [3.6] dargestellt behandelt. Die Schnittstelle IIssueReporter erméglicht
die Realisierung des dort beschriebenen spezifischen Listener-Ansatzes. Konkrete
Implementierungen realisieren die Schnittstelle in einer der Umgebung ange-
passten Weise; fiir eine Generierung aullerhalb einer Entwicklungsumgebung
wird die Klasse ConsoleIssueReporter bereitgestellt, die die vom Generierungs-
Prozess gelieferten Informationen an die Standard-Ausgabe bzw. die Standard-
Fehlerausgabe weiterleitet; im Kontext der Entwicklungsumgebung wird eine
spezielle Klasse UiIssueReporter bereitgestellt, die die Umwandlung dieser
Informationen in spezielle Strukturen realisiert, die in der Log-Ansicht der IDE
angezeigt werden konnen.

Eine spezielle Methode von IIssueReporter, die Methode vetoableCon-
tinuation, erlaubt es, den Generierungs-Prozess bei bestimmten kritischen
Bedingungen optional fortzusetzen oder abzubrechen. Durch die kontextspezifi-
sche Implementierung dieser Methode kann hier wiederum innerhalb der IDE
eine Riickfrage an den Benutzer erfolgen und bei Verwendung aufRerhalb der
IDE kann eine Implementierung dieser Methode so erfolgen, dass bei Fehlern der
Generierungs-Prozess abgebrochen wird und bei einfachen Problemen der Ge-
nerierungs-Prozess fortgesetzt wird. Prinzipiell konnte diese Behandlung durch
Inspektion der Meldungen noch verfeinert werden und konfigurierbar gemacht
werden.
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lissueReporter O

+debug( context : Object, message : String ) : void

+info( context : Object, message : String ) : void

+warn( context : Object, message : String ) : void

+error( context : Object, message : String ) : void

+log( context : Object, message : String, type : IssueType ) : void
+vetoableContinuation( context : Object, message : String, type : IssueType ) : boolearr

T T
| —| | «enumeration»

ConsolelssueReporter A IssueType
ul
I -DEBUG
UllssueReporter -INFO
-WARNING
-ERROR

Abbildung 3.6: Verarbeitung von Statusmeldungen wéhrend der Generierung
[Ber]]

3.4.5 Anderungen am Modell nachziehen

Da sich die verwendete Datenbasis fiir die Kommunikationsmatrix in gewissem
Mafe dndert (entweder durch Anderungen, die von aufRen kommen, z.B. im
Rahmen der Produktentwicklung des durch die Restbussimulation gepriiften oder
getesteten Produkts, oder durch anwendungsspezifische Anderungen, die der
Benutzer selbst gezielt vornimmt), miissen Mechanismen integriert werden, wie
die von Anderungen an der Datenbasis betroffenen Teile der Restbussimulation
angepasst werden kénnen, d.h. wie selektiv Anderungen an der Datenbasis in die
bestehende Restbussimulation integriert werden kénnen. Um die Beschreibung
im Folgenden kiirzer und préziser zu machen, werden die folgenden Bezeichnun-
gen verwendet: K4 fiir den Stand der Datenbasis zum Zeitpunkt der letzten
Generierung, K., fiir den Stand der Datenbasis zu einem spéateren Zeitpunkt
und A fiir die strukturelle Differenz zwischen K ;4 und K, ...

Der Aspekt der Variabilitdt der Kommunikationsmatrix betrifft speziell den
durch den Benutzer erweiterten Teil der Restbussimulation (im Folgenden mit
R, scr bezeichnet). Beim rein generierten Teil der RBS (im Folgenden mit R,
bezeichnet) spielt dies keine Rolle, da dieser einfach vollstdndig neu generiert
werden kann. Die am benutzererweiterten Teil notwendigen Anpassungen fallen
in verschiedene Kategorien, die im Folgenden beschrieben werden. Die Reaktio-
nen auf die Anderungen, d.h. wie eine Anpassung von R, erfolgen muss, wird
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hinter dem Symbol — angegeben (der Prozess der Anpassung von R, wird
im folgenden Konsolidierung genannt).

Entfernte Elemente ECUs, Botschaften oder Signale sind in K ;4 enthalten und
in K., nicht enthalten
— Benutzer ist verantwortlich fir das Entfernen von API-Methoden, die
auf diesen Elementen operieren (die betroffenen Stellen konnen jedoch
durch das System markiert oder annotiert werden, so dass dem Benutzer
ein Uberblick iiber die durchzufiihrenden Anderungen gegeben wird).

Neue Elemente ECUs, Botschaften oder Signale sind in K., enthalten, aber
in K4 nicht enthalten
— Keine Konsolidierung notwendig; Benutzer kann nach dem Generieren
die neuen API-Methoden in seinem bestehenden Code verwenden; eine
Anpassung bestehenden Codes (automatisch oder durch den Benutzer) ist
nicht erforderlich.

Anderungen an Attributen Attribut-Werte von Elementen wurden geindert;
hier sind drei Félle unterscheidbar in Bezug darauf, wie diese Art von
Anderung sich auf eine bestehende Restbussimulation auswirken kann:

o Das betroffene Attribut wird ausschlief8lich intern (in R,.,) verwendet
und hat keine Auswirkung hinsichtlich Rz,
— Keine Konsolidierung notwendig (R,., kann einfach neu generiert
werden).

e API-Namen sind betroffen. ECUs, Botschaften oder Signale weisen in
K, einen anderen Bezeichner auf als in K4, sind aber (auf Grund
einer bestimmten Aquivalenz-Metrik) die selben Elemente
— Benutzerdefinierter Code, der sich auf API-Namen bezieht, die von
den Anderungen am Bezeichner eines Elementes betroffen sind, muss
angepasst werden, indem alle C-Bezeichner mit dem alten Namen
durch die C-Bezeichner des neuen Namens ersetzt werden.

e API-Semantik ist betroffen. Hier muss der Benutzer benachrichtigt
werden, um eventuelle Inkonsistenzen beheben zu kénnen, die auftre-
ten, wenn der benutzerdefinierte Code zwar syntaktisch korrekt ist,
aber durch die Anderungen eine falsche Semantik erhélt. Ein Beispiel
fiir den letzteren Fall wire die Anderung der Linge eines Signals von
2 Bit auf 4 Bit. Der fiir den Benutzer verwendbare Typ bleibt hierbei
1 Byte grof3 (C-Typ unsigned char), so dass alle Verwendungen des
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Signals im benutzerdefinierten Code syntaktisch korrekt sind und
nicht vom Compiler beanstandet werden kénnen

— Jedes Vorkommen der betroffenen API-Funktionen muss fiir den
Benutzer kenntlich gemacht werden, damit dieser iiberpriifen kann,
ob die Semantik der Verwendung der API-Funktion an der entspre-
chenden Stelle durch die Anderung beeinflusst wird.

Diese Klassifizierung bietet keine scharfe Abgrenzung, da es Falle gibt, bei
denen der Vergleich von K, und K., nicht ausreicht, um zu entscheiden, ob
eine bestimmte Anderung semantisch als das Hinzufiigen eines neuen Elementes
und das Entfernen eines alten Elementes gewertet werden soll oder als komplexe
Anderung eines bestehenden Elementes. Die Intention der Anderung ist nicht
aus dem statusbasierten Vergleich des alten und neuen Zustands ermittelbar. Ein
operationsbasierter Vergleich, beschrieben z.B. in [Lan09]], kann diesen Missstand
beheben, ist jedoch nur praktikabel, wenn die Anderungen in kontrollierter und
protokollierter Form vorliegen, was im vorliegenden Anwendungsfall, bei dem
die Eingabedateien durch ein beliebiges Tool extern gedndert werden kénnen,
nicht gegeben ist und auch nicht implementiert werden kann. Eine eindeutige
Identifikation (an Hand des Namens oder eines anderen eindeutigen Attributes)
von Elementen konnte diese Unschirfe der Klassifikation beheben, ist aber nicht
gegeben, da fiir den hier vorliegenden Anwendungsfall gerade diese eindeutigen
Attribute (die sich hiufig in den API-Namen manifestieren) auch als variabel
betrachtet werden miissen, um eine Anpassung von API-Namen im bestehenden
Code durchfithren zu konnen (so ist z.B. die Botschafts-ID fiir jeden Kanal
eindeutig, zwischen Versionen kann sich diese jedoch &ndern, so dass dieses
Attribut trotz seiner Eindeutigkeit nicht zur Nachverfolgbarkeit des betroffenen
Elementes verwendet werden kann). [

18Dje Verwendung von Bitfeldern beseitigt das Problem nicht (Zuweisungen semantisch ungiiltiger
Werte konnen dadurch weiterhin nicht vom Compiler aufgedeckt werden). Ebenso kann eine si-
gnalspezifische Typ-Definition dies nicht aufdecken, da die Typ-Definition auf einen bestehenden
numerischen Wert-Typ von C abgebildet werden muss (und damit wieder keine Wertebereichs-
Uberpriifung durch den Compiler erfolgen kann). Eine echte Subtyp-Definition fiir numerische Typen
mit Einschrankung des Wertebereichs, wie es beispielsweise in Ada moglich ist, existiert in C nicht.
Selbstverstindlich sind auch in Ada nur triviale Bereichsiiberschreitungen zur Ubersetzungs-Zeit
erkennbar, wie etwa bei der Zuweisung von Literalen oder konstanten Ausdriicken; die Uberpriifung
von komplexen, dynamischen Ausdriicken muss weiterhin zur Laufzeit erfolgen.

19Die Generierung von kiinstlichen eindeutigen IDs ist prinzipiell moglich. Die Nachteile,
ausfiihrlich diskutiert in zahlreichen Arbeiten zu dieser Thematik im Kontext von Datenbanken,
sind jedoch gravierend. Im Wesentlichen verschiebt sich das Problem dann auf das Problem der
Aufrechterhaltung dieser IDs; die zu Grunde liegende Problematik bleibt dieselbe.

86



Es ist also notwendig, eine heuristische Klassifizierung von Anderungen an
Hand der strukturellen Eigenschaften von K,;; und K., vorzunehmen.

Es miissen jedoch nicht nur Anderungen an den Datenbasen in die existieren-
de Restbussimulation iibernommen werden kénnen, sondern bereits vorgenom-
mene Anpassungen (Aktivierungsstatus von Netzwerk-Knoten und Botschaften,
benutzerdefinierte Callbacks) miissen auf das neu erzeugte Modell angewandt
werden, um zu vermeiden, dass der Benutzer Elemente nach dem Nachziehen
von Anderungen erneut annotieren muss (z.B. Festlegen des Aktivierungsstatus
von Elementen und definierte Callbacks fiir Elemente).

Abgesehen von dieser Ubernahme vorgenommener Anderungen erfolgt die
Unterstiitzung fiir Modelldanderungen nur in Downstream-Richtung, d.h. es wer-
den nur Anderungen von den Datenquellen zum Modell verfolgt; in die andere
Richtung werden keine Anderungen propagiert (dies wire auch nicht sinnvoll,
da die einzigen zulédssigen Ergdnzungen am Modell Aspekte betreffen, die im
Kontext der Datenquellen keine Bedeutung haben, z.B. Aktivierungsstatus und
definierte Callbacks). Ebenfalls wird keine gesonderte Unterstiitzung fiir typische
Mehrbenutzer-Konflikte implementiert (unabhingige Anderungen desselben Mo-
dells durch mehrere Benutzer mit spéterer Zusammenfiihrung der Ergebnisse).

Der grundsitzliche interne Ablauf beim Neugenerieren einer Restbussimu-
lation in Reaktion aus Anderungen an den Eingangsdaten ist in Abbildung
dargestellt. Die einzelnen Schritte im Detail:

Eingangsdaten in Zwischenformat transformieren Die Kommunikationsma-
tritzen, auf die sich die Projekt-Konfiguration bezieht, werden in ein Zwi-
schenformat transformiert.

Nachziehen von Benutzermanipulationen am alten Modell Die vom Benut-
zer vorgenommenen Anderungen an einem alten Zustand der Datenbasis
werden, sofern vorhanden, in die neue Datenbasis ibernommen. Dies be-
trifft bisher nur den Aktivierungs-Status von Knoten und Botschaften, ist
aber prinzipiell erweiterbar auf andere Objekt-Eigenschaften.

Code-Generierung Generierung des C-Codes fiir R,.,, und fiir neue Artefakte
in Ruser-

Differenzen-Bildung Ermitteln der Unterschiede zwischen der neuen Datenba-
sis und der alten Datenbasis.

Code-Konsolidierung Ausgehend von den ermittelten Unterschieden zwischen
den Standen der Datenbasis wird R, .., (sofern existent) angepasst. Das
genaue Vorgehen hierzu ist in Abschnitt beschrieben.
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Abbildung 3.7: Reaktion auf Anderungen an Eingangsdaten II
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3.5 Modularitats-Konzept

Um die Anbindung externer Funktionalitit zu realisieren, d.h. die Moglichkeit
zu bieten, zusétzliche Bibliotheken einzubinden, die das Kern-System in be-
stimmter Weise erweitern, stehen im Java-Umfeld einige etablierte Mechanismen
zur Verfligung, die im Folgenden kurz beschrieben werden; es 143t sich nicht
vermeiden, dass dabei auf einige Aspekte der Classloader-Infrastruktur von Java
eingegangen wird.

Allen Mechanismen gemeinsam ist, dass sie das Problem 16sen, wie das Kern-
System das Vorhandensein bestimmter Erweiterungen in externen Modulen re-
gistriert, wobei diese Erweiterungen immer konkrete Implementierungs-Klassen
eines bestimmten Interfaces sind, dass das Kern-System zu diesem Zwecke vor-
sieht. Im einfachsten Fall reduziert sich dies auf die Aufgabe, alle konkreten
Implementierungen eines bestimmten Interfaces zu finden, die vom Programm-
Kontext aus zuganglich sind; dies ist in der Regel jedoch nicht erwiinscht (z.B.
wenn bestimmte Basis-Klassen nicht verwendet werden sollen, da sie keine
vollstdndige Implementierung bereitstellen).

Die Problematik ist in Abbildung beispielhaft dargestellt. Hier soll das
Kern-System durch die Bereitstellung von Implementierungen des Interfaces
core.ISomeService durch externe Module erweitert werden kdnnen. Das Paket
core darf keine Abhéngigkeiten von diesen zusatzlichen Modulen haben (zum
Zeitpunkt der Auslieferung des Systems ist u.U. nicht einmal bekannt, dass es
diese Module gibt). Ziel ist es, dass die Methode SomeServiceLookup.getIm-
plementations alle Implementierungen auflisten kann, ohne direkte Kenntnis
iiber die installierten Erweiterungs-Module zu haben.

Klassen werden in Java immer {iber einen so genannten Classloader geladen;
dies erfolgt unmittelbar bevor sie das erste Mal verwendet werden | Dabei
wird in der Regel eine Bytecode-Datei (so genanntes Classfile) aus einer per-
sistenten Form in den Speicher geladen und dynamisch mit der aufrufenden
Klasse verlinkt. Um die zu ladende Klasse zu finden, wird deren voll qualifizierter
Name verwendet. Der (iibliche) Classloader hat einen Suchpfad (der so genannte
Classpath), der die moglichen Speicherorte angibt (in Form von Dateisystem-Ver-
zeichnissen oder JAR-Archiven), in denen die zu suchende Klasse gesucht wird.
Es wird die erste Klasse geladen, die gefunden wird. Dies ist effizient moglich,
wenn der Name der Klasse bekannt ist. Bei der naiven Suche nach allen Imple-
mentierungen eines bestimmten Interfaces miissten alle Klassen im Classpath

20Eine semantisch prizisere Auskunft zu den Umstinden, die das Laden einer Klasse ausldsen, sei
auf die JVM-Spezifikation verwiesen (z.B. in [LY99]).
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Abbildung 3.8: Generische Problematik der nicht-invasiven Erweiterung durch
externe Module [Ber]

geladen werden und untersucht werden, ob sie dieses Interface implementieren;
dies ist bei grofderen Systemen nicht mehr effizient méglichE da diese mehrere
zehntausende von Classfiles enthalten kdnnen und die Suche somit unzumutbar
lange dauern wiirde.

Aus diesem Grund ist dieser naive Algorithmus in der Praxis fiir grofRere
Systeme nicht nutzbar; stattdessen muss ein deklarativer Ansatz gewéahlt wer-
den, bei dem Anbieter einer Implementierung fiir ein bestimmtes Interface dies
explizit durch Meta-Informationen bekanntmachen (und so fiir das Kern-System
programmatisch zuganglich machen). Dies kann im Prinzip in beliebiger Weise

21Je nach verwendetem Framework ist eine derartige Inspektion aller Klassen {iberhaupt nicht
moglich, z.B. in OSGi-Containern, da dort kein globaler Konsens iiber die ladbaren Klassen be-
steht, sondern jedes Modul seinen eigenen Classpath (bzw. ein Konzept dquivalent zum Classpath)
verwaltet.
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geschehen, z.B. auch durch einen anwendungsspezifischen eigenen Mechanis-
mus. Typisches Vorgehen bei der manuellen Registrierung ware (bezogen auf
das dargestellte Beispiel) die Einrichtung einer Methode registerSomeService
fiir die im SomeServiceLookup-Klasse, wobei garantiert sein muss, dass jedes
Modul, das Implementierungen bereitstellt, diese Registrierungs-Methode fiir
jede von ihm bereitgestellte Implementierung einmal aufruft, wobei weiterhin
garantiert sein muss, dass alle diese Aufrufe erfolgen, bevor die Liste der Im-
plementierungen das erste Mal abgefragt wird, was bei gréReren Systemen auf
Grund transitiver Abhédngigkeitsbeziehungen und unterschiedlicher Aktivierungs-
Zeitpunkte fiir einzelne Module nicht einfach zu realisieren ist, ohne explizit in
die Aktivierungs-Reihenfolge der Module einzugreifen; ein solcher Eingriff hat
jedoch das Potential, andere System-Eigenschaften negativ zu beeinflussen.

Um die Notwendigkeit der manuellen Registrierung zu umgehen gibt es die
folgenden drei Mechanismen, die sich als Standards etabliert haben, und die
jeweils eigene Einschriankungen und Moglichkeiten aufweisen:

Service Provider Interface Die mit Java 6 eingefiihrte java.util.Service-
Loader-Klasse ermoglicht das Ermitteln von Implementierungen eines In-
terfaces iiber den Classpath, wobei die Deklaration der Implementierungen
wie folgt erfolgen muss: im Verzeichnis services im Verzeichnis META-INF
des Archivs, das die zu registrierende Implementierung enthalt, muss eine
Datei angelegt werden mit dem vollstdndig qualifizierten Namen des betrof-
fenen Interfaces als Dateinamen. Der Inhalt dieser Datei besteht aus einer
Zeile mit dem vollstdndig qualifizierten Namen der Implementierungs-
Klasse fiir jede bereitgestellte Implementierungs-Klasse, wobei sich diese
nicht zwangslaufig in den Paketen befinden miissen, die von dem registrie-
renden Archiv verwaltet werden. Diese Art der Registrierung funktioniert
prinzipiell mit allen Anwendungen, die Java 6 verwenden. Die Imple-
mentierungen fiir ein bestimmtes Interface kénnen dann (bezogen auf das
Beispiel) mittels des Aufrufs ServicelLoader.load(ISomeService.class)
ermittelt werden.

OSGi-Services Da die Eclipse-Umgebung, in deren Kontext das System lauft,
ein vollstandiger OSGi-Container ist (Equinox), konnen die OSGi-Mecha-
nismen zur Registrierung fiir Services fiir ein bestimmtes Interface genutzt
werden. Siehe hierzu die OSGi-Spezifikation [[OSG]l. Diese Art der Registrie-
rung funktioniert mit allen {iblichen OSGi-Containern und hat prinzipiell
den Vorteil, dass Services zur Laufzeit registriert und deregistriert werden
konnen, was fiir den hier betrachteten Anwendungsfall jedoch irrelevant
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ist [MVA10].

Eclipse Extension Registry Ein noch spezifischerer Mechanismus ist die Eclipse
Extension Registry, die die Grundlage des Plugin-Konzeptes von Eclipse
bildet und entsprechend nicht leicht auf3erhalb von Eclipse-Anwendungen
nutzbar ist. Grundlage sind die so genannten Extension Points, die die er-
weiterbaren Aspekte des Systems deklarieren. Ein externes Modul (d.h. ein
0SGi-Bundle), das einen bestimmten Extension Point verwenden will, muss
in einer Datei plugin.xml im Bundle des Moduls ein XML-Fragment mit
den von dem verwendeten Extension Point erwarteten Informationen (u.U.
geniigt hier ein Klassenname der von diesem Modul bereitzustellenden
Implementierungs-Klasse). Die Implementierungen fiir jeden Extension
Point sind iiber ein spezielles, Eclipse-spezifisches API abrufbar, das weit
weniger komfortabel ist als der einfache ServiceLoader-Mechanismus,
jedoch prinzipiell die Moglichkeit bietet, beliebige zusétzliche Strukturen
und Informationen, die {iber den Klassennamen hinausgehen, deklarativ an-
zugeben. Die Notwendigkeit, dass die Existenz des Extension Point explizit
angegeben werden muss sorgt dafiir, dass dieser rudimentir dokumentiert
ist und von potentiellen Verwendern erkannt werden kann.

Mit jedem dieser Mechanismen kann das gewtiinschte Ziel erreicht werden.
Die OSGi-Services sind jedoch schwer korrekt zu verwenden. Die Eclipse Extensi-
on Registry macht die Anwendung abhéngig von Teilen des Eclipse-Frameworks
und die Verwendung ist eher umsténdlich. Die Verwendung von Extension Points
ist jedoch zwingend notwendig fiir Aspekte, die vom Eclipse-Framework selbst
zur Erweiterung vorgesehen sind, d.h. die Integration der Benutzerschnittstelle
und der Projekt-Strukturen, der Compiler-Toolchain, so dass hier dieser Mecha-
nismus verwendet werden muss. Als einfachste Losung wird jedoch, wo moéglich,
der ServiceLoader-Mechanismus verwendet.
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Kapitel 4

Ausgewahlte Aspekte der
Implementierung

4.1 IDE und Werkzeugkette

Das vorgestellte Generator-Framework wurde in eine Eclipse-basierte Entwick-
lungsumgebung integriert, wobei die Notwendigkeit, eine vollstdndige C-IDE
fiir die benutzererweiterbaren Teile der Restbussimulation bereitzustellen, den
Ausschlag fiir die Wahl von Eclipse als Basis-Plattform gab; im Folgenden einige
der Integrationspunkte:

C-IDE Das CDT-Projekt (C Development Tooling) ergéanzt die Eclipse-Basis-Platt-
form (die so genannte Workbench) um eine C- und C+ +-Entwicklungs-
umgebung mit Editor, Syntax-Highlighting, semantischer Navigation und
Symbolaufl6sung, Auto-Vervollstindigung sowie Compiler- und Build-Un-
terstiitzung. CDT bildet die Basis zahlreicher kommerzieller C- und C++-
Entwicklungsumgebungen, darunter CodeWarrior (ab Version 10) und die
QNX Momentics Suite, so dass sich fiir erfahrene Entwickler der Einarbei-
tungsaufwand in Grenzen hélt.

Toolchain-Anbindung Der verwendete Cross-Compiler (eine GCC-Variante)
bzw. der lokale mingw-Compiler wird iiber deklarative Schnittstellen von
CDT eingebunden.

Makefile-Generierung durch CDT Makefiles fiir ein Projekt werden von CDT
generiert, wobei die fiir das Projekt definierten Quellcode- und Header-
Verzeichnisse als Quelle fiir Abhangigkeitsinformationen dienen.
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Ausfithrung des Build durch CDT Die Makefiles fiir das Projekt werden von
einem regulidren make-Kommando ausgefiihrt und die Ausfithrung von CDT
iiberwacht, wobei eventuelle Fehler in entsprechende Ul-Elemente und
Quellcode-Annotationen umgewandelt werden.

Deployment durch RSE Die Ubertragung des RBS-Binary auf die CANyon-Ziel-
hardware erfolgt mittels SSH, wobei eine reine Java-Bibliothek fiir das
SSH-Protokoll zum Einsatz kommt, die Teil des RSE-Projektes (Remote
Systems Explorer) ist.

Debugging durch CDT und RSE Das Debugging auf der CANyon-Zielhardware
erfolgt mittels gdb und gdbserver, wobei gdb auf dem IDE-Host lauft
und gdbserver auf dem CANyon. CDT macht die von gdb zur Verfiigung
gestellte Funktionalitit in der UI der IDE zugénglich.

RBS-UI Die Informationen der konsolidierten Datenbasis werden in einer spezi-
ellen Perspektive angezeigt, so dass der Anwender einfachen Zugriff auf
die RBS-API-Funktionen hat, die auf diesen Informationen moglich sind.
Dies sind im Wesentlichen die Funktionen zur Signalmanipulation und zur
dynamischen Aktivierung und Deaktivierung von Botschaften und Knoten.
Ebenso wurden Ul-Elemente integriert, die eine Navigation der benutzerer-
weiterbaren Teile des RBS-Quellcodes mit Hilfe der semantischen Struktur
der zu Grunde liegenden Datenbasis erlauben.

Kritischster Integrationspunkt war die Auflosung von Diskrepanzen zwischen
der vom Eclipse-Framework vorgegebenen Projekt-Struktur und der tatséchlich
bengétigten Projekt-Struktur (wie in Abschnitt[3.3|beschrieben). Ein urspriinglicher
Ansatz, bei dem viele der dort beschriebenen Elemente in impliziter Weise be-
schrieben wurden, hatte zur Auswirkung, dass eine nachtrigliche Umkonfigurie-
rung bestimmter Aspekte eines bestehenden Projektes nicht moglich waren, und
zog eine grofRe Umstrukturierung nach sich, die als Resultat das in Abschnitt[3.3|
beschriebene Modell hervorbrachte, dass sich in der folgenden Entwicklung dann
jedoch sehr gut bewéhrte und ein nahezu ideales Abstraktionsniveau aufweist.

4.2 Zwischenformat und Code-Konsolidierung

In diesem Abschnitt wird die Implementierung der Zwischendarstellung kurz
vorgestellt und deren Verwendung im Hinblick auf die Anpassung des benutze-
rerweiterten Quellcodes beschrieben.
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4.2.1 EMF

Als Format fiir die Zwischendarstellung der konsolidierten und linearisierten
Eingangsdaten wurde EMF verwendet. EMF ist ein Framework zur modellba-
sierten Softwareentwicklung, das als Schnittstelle zwischen Java, UML und XSD
geeignet ist und das fiir bestimmte, haufig bendtigte Aspekte (wie etwa Seriali-
sierung und Deserialisierung in XML, XMI und ein EMF-spezifisches Binédrformat,
Benachrichtigung von Listenern bei Anderungen) direkt nutzbaren Java-Code
generiert. Die Entscheidung auf EMF fiel aus zwei Griinden:

e Es musste ein serialisierbares Zwischenformat gefunden werden, wobei
die Serialisierung und Deserialisierung im Hinblick auf die Erweiterbarkeit
durch Dritt-Anbieter (u.U. mit anderen Sprachen als Java) erfolgen sollte,
so dass sich ein XML-basiertes Format anbot. Zu den Alternativen zu EMF
in dieser Hinsicht zdhlen z.B. die zahlreichen Implementierungen der JAXB-
Spezifikation.

e Das Zwischenformat sollte die in Abschnitt umrissenen Konzepte
zur Ermittlung und Behandlung von Anderungen erméglichen. Fiir EMF
existiert hier das im nichsten Abschnitt beschriebene EMF Compare. Hierzu
gibt es sehr wenige Alternativen; die Bibliotheken XMLDiff und XMLUnit
ermoglichen das Bilden von Differenzen zwischen zwei XML-Dateien (des-
selben Schemas), waren aber von der Granularitit her nicht geeignet, um
im Kontext dieser Arbeit verwendet werden zu konnen.

4.2.2 EMF Compare

Zur Anpassung bestehenden benutzererweiterbaren Quellcodes in Reaktion auf
eine erfolgte Anderung an den Eingangs-Kommunikationsmatrizen des Projektes
werden die Stdnde der konsolidierten Datenbasis vor dem letzten Generieren
und der aktuelle Stand verglichen (siehe Abbildung [3.7). Dies erfolgt mittels
EMF Compare, das ein generisches API zum Vergleich von EMF-Modellen bereit-
stellt. Die grundsatzliche Vergleichs-Heuristik von Modell-Elementen, die von
EMF Compare realisiert wird, ist in [XSO5|]] ausfiihrlich und in [Lan09] kurz
beschrieben; einbezogen in die Vergleichs-Operationen werden unter anderem
Objekt-Relationen und Objekt-Eigenschaften. Die Ermittlung der Differenzen
erfolgt in zwei Schritten: die Bildung des so genannten MatchModel, das kor-
respondierende Elemente zwischen zwei Modell-Stdnden (und Elemente ohne
korrespondierendes Element im jeweils anderen Stand) liefert, und die Bildung
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des DiffModel, das das MatchModel transformiert und um detailliertere Informa-
tionen zu den Unterschieden zwischen korrespondierenden Elementen erweitert.

Die Rechenzeit fiir die Gewinnung der MatchModel- und DiffModel-Instan-
zen zwischen zwei Versionen der konsolidierten Datenbasis ist in nicht-linea-
rer Weise abhéngig von der Grolde der Datenbasis. EMF Compare bietet die
Moglichkeit, eine obere Grenze fiir die Komplexitit der Ahnlichkeits-Berechnung
festzulegen, mit dem Risiko, dass manche Anderungen nicht zugeordnet werden
konnen[[| Fiir die konkret untersuchten realen Datenbasen war die Performance
des Standard-Algorithmus durchaus akzeptabel, so dass dieser beibehalten wur-
de. In [FL95] ist jedoch ein alternativer Algorithmus beschrieben, der in einem
Projekt zur Ergédnzung von EMF Compare verwendet wird [Leo].

4.2.3 Gewinnung von Konsolidierungs-Informationen

Fiir die Gewinnung der Konsolidierungs-Informationen wird das DiffModel
zwischen altem und neuem Modell erfasst, die so gewonnenen Anderungs-In-
formationen werden klassifiziert (in nicht relevante, konsolidierbare und nicht
konsolidierbare Anderungen) und die betroffenen Elemente werden expandiert,
indem zu jedem betroffenen Element die zugehorigen API-Namen, wie sie im
alten Modell auftreten und die zugehorigen API-Namen, wie sie im neuen Modell
existieren, aufeinander abgebildet (dquivalent fiir die Artefakt-Namen); die Abbil-
dung ist eine einfache String-zu-String-Abbildung von altem API- oder Artefakt-
Name zu neuem API- oder Artefakt-Name fiir jeden Aspekt des von der Anderung
betroffenen Elementes. Die so gewonnenen Mapping-Informationen werden
verwendet, um die existierenden Quellcode-Artefakte in R, ;. anzupassen, wie
in den folgenden Abschnitten beschrieben. In der momentanen Implementierung
erfolgt die Ermittlung der API- und Artefakt-Namen {iber bestimmte Template-
Fragmente, die mit alter und neuer Element-Version instantiiert werden und in
die benoétigten Mapping-Informationen umgewandelt werden. Die Integration
in die Templates ermoglicht das Single-Sourcing dieser Informationen, da diese
ohnehin bereits in den Templates definiert sind.

4.2.4 Konsolidierung von API-Namen

Fiir jedes Artefakt, das Teil von R, ist, werden die gewonnenen Mapping-
Informationen angewandt, indem alle C-Bezeichner, die einem in den Mapping-

IDies erfolgt durch die Definition der GroRe des Suchfensters, innerhalb dessen nach einem
potentiell ahnlichen Element gesucht wird. Die Distanzmetrik ist in ebenfalls in der aufgefiihrten
Arbeit beschrieben.
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Informationen enthaltenen Schliissel entsprechen (entsprechend einem alten
API-Namen), in die diesem Schliissel entsprechenden Wert (entsprechend dem
neuen API-Namen) umgeschrieben werden. Hierbei wird bisher rein lexikalisch
vorgegangen, d.h. dort, wo ein Lexem auftritt, dass dem zu ersetzenden Ele-
ment entspricht, wird dieses ersetzt; eine Ersetzung, die auf der abstrakten
Syntax von C operiert und so z.B. keine Ersetzungen in auskommentiertem
Code vornimmt, ware jedoch moglich und wiinschenswert. Die Beachtung der
lexikalischen Struktur bewirkt gegeniiber der naiven Ersetzung, dass keine Tei-
lersetzungen vorgenommen werden, sondern nur die Stellen behandelt werden,
an denen der zu ersetzende Bezeichner tatsdchlich auftritt und nicht nur als
Teil eines anderen Bezeichners; das Fehlen von Namensraumen in C und die
damit verbundene notwendige volle Qualifizierung von Bezeichnern (z.B. durch
Unterstriche im Bezeichner) erleichtert diesen Vorgang.

Dariiber hinaus gibt es den Fall von gegenseitiger Ersetzung, d.h. ein Element
A wird in B umbenannt und Element B wird im gleichen Transformations-Schritt
in A umbenannt. Hier wiirde die beschriebene Vorgehensweise scheitern, da
die Ersetzung von A zu B, gefolgt von einer nachfolgenden Ersetzung von B
zu A zur Folge hitte, dass alle Vorkommen von A und B zu A ersetzt werden.
Um dieses Problem zu 16sen, muss die Ersetzung in zwei Stufen erfolgen: die
Ersetzung des zu ersetzenden Elementes durch einen eindeutigen temporiren
Bezeichner und nachfolgend eine Ersetzung dieses temporiren Bezeichners
durch den endgiiltigen Bezeichner.

4.2.5 Konsolidierung von Artefakt-Namen

Fiir das Umbenennen von bestehenden Quellcode-Dateien werden die Mapping-
Informationen ebenfalls genutzt. Bei der Behandlung von Anderungen, die, wie
oben beschrieben, eine gegenseitige Umbenennung von Artefakten bewirken,
wird eine Variante des zuvor beschriebenen zweistufigen Prozesses angewandt
(auf der Ebene der Artefakt-Namen). Die in Abschnitt[3.4.2|beschriebenen Mecha-
nismen konnen angewandt werden, um, wie dort beschrieben, die existierenden
Dateien zu sichern und das Uberschreiben von existierenden Dateien bei glei-
chem Inhalt zu verhindern.

4.2.6 Benutzerinteraktion

In der vorliegenden Implementierung werden nicht konsolidierbare Anderungen,
sofern der Generator im Kontext einer IDE lduft, dem Benutzer mittels Markie-
rungen (Resource Marker in der Eclipse-Terminologie) kenntlich gemacht durch
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graphische Annotationen der Stellen, an denen sich die von der Anderung be-
troffenen API-Elemente befinden. Beim Wegfall eines Signals aus der Datenbasis
wiren dies etwa alle Stellen in R, ..., an denen Aufrufe der (nun nicht mehr vor-
handenen) Signal-Zugriffsmethoden erfolgen. Die dem Benutzer prasentierten
Informationen sind generischer Natur und warnen, dass Anderungen des API
erfolgten und diese vom Benutzer {iberpriift werden miissen. Hier wére eine
bessere Klassifizierung der Anderungen oder eine genauere Fehlerbeschreibung
(insbesondere bei den erwihnten Anderungen an der Signal-Kodierung) vorteil-
haft.

4.3 Dynamische Aspekte

Um eine generierte Restbussimulation sinnvoll ausbauen zu konnen und nicht
auf externe Tools zur Uberwachung der durch die Restbussimulation erzeugten
Buskommunikation angewiesen zu sein, wurden verschiedene Mechanismen
implementiert und in die Entwicklungsumgebung integriert.

4.3.1 CAN-Analyzer

Es wurde ein TCP/IP-basierter Kommunikationskanal zur Weiterleitung der CAN-
Kommunikation der auf einem CANyon-Gerat angeschlossenen Busse realisiert;
dadurch lassen sich Botschaften und Signale {iberwachen, ohne dass am Ent-
wickler-PC eine extra CAN-Hardware vorhanden ist (Tunnelung von CAN nach
TCP/IP via CANyon).

4.3.2 Dynamische Beeinflussung

Ebenfalls iiber TCP/IP wurde ein Kommunikationskanal zur dynamischen Beein-
flussung einer laufenden Restbussimulation realisiert, {iber den die innerhalb der
Simulation laufenden Netzwerkknoten aktiviert und deaktiviert werden konnen,
das Sendeverhalten einzelner Botschaften verdndert werden kann und gesendete
Signale neu belegt werden kénnen.
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Kapitel 5

Zusammenfassung und
Ausblick

Die realisierten Generatoren fiir die unterstiitzten Zielplattformen ermoglichen
eine einfache Generierung von Restbussimulationen und die Erweiterung dieser
Restbussimulationen auf eine klar definierte Weise. Indem die Variabilitét der
Datenbasen, die als Grundlage fiir die generierte Restbussimulation dienen, im
Generierungs-Prozess durchgingig beriicksichtigt wird, wird die Anpassung von
generierten und erweiterten Restbussimulationen in Reaktion auf Anderungen
dieser Eingangsdaten erleichtert.

Das entwickelte Generator-Framework eignet sich als Grundlage fiir die Imple-
mentierung anwendungsspezifischer oder organisationsspezifischer Generatoren
(entweder als neue Plattformen oder durch Spezialisierung der Generatoren fiir
bestehende Plattformen) mit vertretbarem Aufwand und, bei Beachtung gewisser
Rahmenbedingungen, ohne Anderungen am Kern-System.

Im Folgenden werden einige mogliche und empfehlenswerte Erweiterungen
fiir das entwickelte Generator-Framework beschrieben, die die in dieser Arbeit
begonnenen Aspekte verbessern oder ergéanzen.

5.1 Zusatzliche Ziel-Plattformen

Die bisher vollstandig (CANyon) oder teilweise (durch die Vector XL Library
unterstiitzte Plattformen) unterstiitzten Ziel-Systeme sind nur in Verbindung mit
einem Betriebssystem verwendbar. Wie in Abschnitt beschrieben, werden
diese unterstiitzten Ziel-Plattformen durch méchtigere APIs angesprochen, als sie
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fiir Systeme ohne Betriebssystem zu erwarten oder moglich sind. Eine Portierung
auf eine bare-metal Hardware-Plattform unter Verwendung microcontrollerna-
her Programmierung wiirde u.U. Félle aufdecken, fiir die die entworfene und
implementierte Generator-Architektur noch nicht optimal ist. Eine mogliche Ziel-
Plattform ware das ISIM flexible von Berger Elektronik.

Eine weitere lohnende Zielplattform wére eine AUTOSAR-Architektur, d.h. die
Verwendung eines (extern generierten) AUTOSAR-COM-Stacks als Kommunika-
tions-Schnittstelle, wobei die in Abschnitt beschriebenen Einschréankungen
zu beachten sind. Eine vollstdndige Generierung eines AUTOSAR-COM-Stacks
liegt nicht mehr in der Doméne von Restbussimulationen.

5.2 Modellierung mittels Zustandsmodellen

Die Anwendungsfalle, fiir die Restbussimulationen eingesetzt werden, sind, wie
bereits beschrieben, stark ereignisgesteuert und stark zustandsorientiert. Derar-
tige Systeme konnen durch Modellierungs-Notationen fiir Zustandsautomaten
gut und relativ vollstindig beschrieben werden, wobei sich die graphischen
Varianten dieser Notationen auch von Nicht-Programmierern nutzen lassen und
so der potentielle Anwenderkreis erweitert werden kann. Durch die auf diesen
Notationen méglichen Analysen lassen sich bestimmte Eigenschaften des Systems
einfach automatisch untersuchen und verifizieren, die sonst durch manuelle Tests
iberpriift werden miissen. Ein triviales Beispiel fiir derartige Eigenschaften, die
auf diese Weise analysiert werden konnen, sind unerreichbare Zusténde.

Etablierte Notationen sind hier UML Statecharts [[Obj] (die z.B. durch das Pa-
pyrus-Projekt [Eclf] in die entwickelte Werkzeugkette integriert werden kénnten)
oder (als kommerzielles Produkt) die Stateflow-Erweiterung fiir Matlab Simu-
link [Mat], mittels der extern Code fiir das Zustandsmodell generiert werden
kann und dieser {iber eine zu definierende, schmale Schnittstelle an die generier-
te Restbussimulation angebunden werden konnte.

Das in [[SamO08]] beschriebene Event-Framework wire ebenfalls ein mégliches
Ziel fiir die Integration der Restbussimulation in einen Zustandsautomaten.

Die wichtigsten Aspekte, die im Zusammenhang mit der Integration von
Zustandsautomaten in die Restbussimulation behandelt werden miissen, sind im
Folgenden dargelegt.
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5.2.1 Nutzung des RBS-API

Das API der Restbussimulation (Signalmanipulation, Knoten- und Botschafts-
Aktivierung) muss vom Zustandsautomaten aus aufrufbar sein, damit Guards
sich auf Signalwerte beziehen konnen und innerhalb von Aktionen die entspre-
chenden Methoden zum Aktivieren und Deaktivieren von Elementen oder zum
Setzen neuer Signalwerte verwendet werden konnen. Ausreichend ist hier die
Einbindung des generierten Restbussimulations-API durch den Zustandsauto-
maten; nicht zwingend notwendig, aber aus Sicht der Benutzerfreundlichkeit
wichtig, ist die Repréasentation der Modell-Elemente der Restbussimulation im
Modellierung-Werkzeug, so dass nicht erst beim Ubersetzen oder Linken der RBS
gegen den Zustandsautomaten die Verwendung von falschen Bezeichnern oder
Funktionsnamen aufgedeckt wird, sondern der Benutzer bereits beim Modellie-
ren die giiltigen RBS-API-Namen zur Verfiigung hat. Im Falle von Werkzeugen,
die auf UML Statecharts operieren, wére dies z.B. einfach moglich, indem die
Funktionen der Restbussimulation durch Operationen einer Klasse RBS im Kon-
text des Statecharts symbolisch zugénglich gemacht werden. Dazu kann z.B. ein
Transformations-Schritt vom internen Zwischenformat in das iiblicherweise vom
UML-Tools verwendeten XML-Metadata-Interchange-Format (XMI) implemen-
tiert werden; diese Informationen konnen dann vom entsprechenden UML-Tool
importiert werden, bevor ein Statechart angelegt wird.

5.2.2 Weiterleitung von RBS-Ereignissen

Der Zustandsautomat muss durch die Restbussimulation mit einem Ereignisstrom
versorgt werden. Die Abbildung von Ereignissen der Restbussimulation in die
erwarteten Strukturen des Zustandsautomaten muss implementiert werden, so
dass sich die Ereignisse als Events fiir Transitionen im Sinne der Statechart-
Semantik nutzen lassen.

5.3 AST-basierte Code-Konsolidierung

Die in Abschnitt beschriebene Konsolidierung arbeitet auf textueller Ebene,
was teilweise fragil in Bezug auf die Struktur des Quellcodes ist. Eine intelligen-
tere Implementierung konnte auf Syntaxbaum (AST) arbeiten, der dem Code zu
Grunde liegt; so konnte z.B. kommentierter Code von der Konsolidierung aus-
geschlossen werden oder selektiv einzelne Methoden einer Datei {iberschrieben
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werden, sowie die Robustheit gegeniiber Anderungen der Quellcode-Struktur
erhoht werden.

Als funktionales Vorbild fiir die Funktionsweise einer derartigen Implemen-
tierung konnte das im Rahmen von JET verwendete JMerge [Eclb] dienen, dass
die Manipulation eines Java-ASTs auf einem relative hohen Abstraktionsgrad
ermoglicht. Auf Grund der héheren syntaktischen und semantischen Komplexitét
von C diirfte der Aufwand fiir die Implementierung einer funktional 4quivalenten
Bibliothek fiir C jedoch nicht unerheblich sein, selbst wenn auf bestehende Parser
und AST-Bibliotheken zuriickgegriffen wird (z.B. den C-Parser von CDT [Eclc]]).
Die enorme Komplexitat ist teilweise zuriickzufithren auf die lexikalisch ori-
entierte Arbeitsweise des C-Priaprozessors; hierbei gilt die Aussage von Bjarne
Stroustrup (in Bezug auf den Préaprozessor von C und C+ +, im folgenden Zitat
Cpp genannt): ,In retrospect, maybe the worst aspect of Cpp is that it has stifled
the development of programming environments for C. The archaic and character-
level operation of Cpp makes nontrivial tools for C and C++ larger, slower, less
elegant, and less effective than one would have thought possible.” [Str94] E]

5.4 Gateway-Generierung

Mit dem entwickelten Framework sind Gateways leicht programmierbar, da alle
notwendigen Kommunikations-Strukturen und Signalmanipulations-Routinen
bereits generiert werden. Damit stehen alle Schnittstellen fiir das program-
matische Routen von Dateninhalten (auf Botschafts- oder Signal-Ebene) zur
Verfiigung. Fiir einfache Gateway-Anwendungen kénnen so manuell Mappings
auf Botschaftsebene oder Signalebene eingefiigt werden, indem in den Emp-
fangs-Callbacks des Ursprungs-Kanals die notwendigen Mappings durch einfache
API-Aufrufe durchgefiihrt werden. Sind viele Botschaften oder Signale zu rou-
ten, ist dies eine wenig produktive Tatigkeit. Eine graphische Unterstiitzung
wiirde den Komfort hier deutlich erh6éhen. Dariiber hinaus konnte so auch ei-
ne Validierung der Konsistenz des Signal-Mappings integriert werden, die bei
semantisch ungiiltigen Abbildungen (z.B. zwischen Signalen mit unterschiedli-
chen Dimensionen oder Signale mit unterschiedlichen definierten SI-Einheiten
ohne Durchfiihrung der notwendigen Skalierung) oder bei Abbildungen mit sehr
grol3em Prézisionsverlust dabei helfen kann, bestimmte Arten von Fehlern zu
vermeiden.

IMan beachte auch Bjarne Stroustrups Stellungnahme zu bestimmten Zitaten, die ihm
falschlicherweise zugeordnet werden (unter http://www2.research.att.com/~bs/bs_faq.html#
really-say-that).
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AUTOSAR erlaubt die Definition von Gateways als Teil einer AUTOSAR-Sys-
tem-Configuration (auf Botschafts-Ebene, PDU-Ebene und Signal-Ebene) [AUTal].
Dazu muss der Gateway jedoch als ECU in der System-Configuration existieren;
ad-hoc Gateways (z.B. zur Integration von Messtechnik in ein existierendes Ge-
samt-System) lassen sich nicht definieren (dies wiirde auch dem Konzept von
AUTOSAR als ganzheitliche Architektur fiir ein Gesamt-System widersprechen),
so dass diese Methode sich lediglich als optionaler Konfigurations-Mechanismus
fiir Gateways eignet, jedoch nicht alle Anwendungsfélle abdecken kann.

In [Obe07]] wird ein modellbasierter Ansatz fiir die Konfiguration von Gate-
ways im Automotive-Umfeld vorgestellt, der in [Obe09] durch eine Methodik
zum Fault-Containment ergénzt wird; insbesondere das in diesen Arbeiten ver-
wendete Modell zur Datenhaltung innerhalb der Gateway-ECU (in den Arbeiten
Real-Time-Database genannt), das zusétzlich zu den abzubildenden Daten die
Aktualisierungs-Semantik dieser Daten und andere zeitliche Aspekte verwaltet,
ist auch fiir die allgemeine Restbussimulation interessant (wobei die temporare
Daten-Semantik bei Verwendung eines AUTOSAR-Kommunikations-Stacks dort
im Wesentlichen bereits vorhanden ist, so dass hier darauf geachtet werden muss,
keine parallelen Mechanismen einzufiihren).

5.5 Test-Automatisierung

Die Validierung einer Umgebung zur Restbussimulation wirft gegeniiber dem Test
regulérer eingebetteter Systeme zusétzliche Probleme auf, da keine generische
Bewertung eines kompletten Systems stattfinden kann, sondern immer nur die
konkrete Implementierung auf Seiten des Benutzers gegen dessen konkrete
Anforderungen getestet werden kann. Das breite Anwendungsspektrum, das
durch Restbussimulationen abgedeckt werden kann, bewirkt, dass nicht der
gesamte Losungsraum fiir den Toolhersteller zuganglich ist, wobei dies fiir die
funktionalen Aspekte (was macht die vom Benutzer mit dem Tool generierte
und angepasste Restbussimulation?) sowie die so genannten nicht-funktionalen
Aspekte (welche Bus-Last und Antwortzeiten erwartet der Benutzer von einer
konkreten Restbussimulation?) der Losung gilt. Wie bei jedem Test muss durch
die Bildung von Aquivalenzklassen bestimmter Restbussimulations-Profile eine
moglichst gute Abdeckung des Losungsraumes angendhert werden. Es muss also
eine Losung gefunden werden, die Variabilitit unter diesen Aquivalenzklassen in
den Griff zu bekommen und die Definition von Tests fiir jede Aquivalenzklasse
moglichst einfach zu gestalten.

Diese Methode kann bei entsprechendem Entwurf mit verhaltnismal3ig wenig
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Aufwand auch in einer fiir den Benutzer geeigneten Form angeboten werden,
so dass dieser eine von ihm entwickelte Restbussimulation gegen die nur ihm
zugénglichen Anforderungen testen kann. Die Integration einer solchen Test-
Umgebung hat den Vorteil, dass keine externen Tools (z.B. CANoe und des-
sen Test-Umgebung) zur Validierung der Restbussimulation verwendet werden
miissen, sondern eine durchgehende Werkzeugkette angeboten werden kann,
die Entwicklung, Testfall-Definition und System-Test umfasst.

5.5.1 Trace-basierter Test

Da fiir eine Restbussimulation als Korrektheits-Kriterium das nach auf3en sicht-
bare Verhalten gilt, kann die Validierung als Black-Box-Test erfolgen, wobei
die Black-Box die generierte Software (mit gegebenenfalls vorhandenen Erwei-
terungen gemaf der konkreten Anwendung) und die Hardware umfasst; die
Einbeziehung der Hardware ermoglicht die Verwendung desselben Testfalls fiir
jede Hardware, die durch den Code-Generator unterstiitzt wird. Dadurch ergibt
sich als zusétzlicher moglicher Anwendungsfall die Bewertung unterschiedli-
cher Hardware-Losungen fiir eine konkrete Restbussimulation (z.B. fiir Vorab-
Analysen zur Auslegung der Hardware-Losung).

Das externe Verhalten einer Restbussimulation kann durch das Mitschneiden
samtlichen Busverkehrs zwischen Restbussimulation und anderen Komponen-
ten vollstandig erfasst werden (so genannter Trace), indem die iibertragenen
Nachrichten (Parameter und Dateninhalt sowie zugehériger Zeitstempel) aufge-
zeichnet werden. [’ Die Validierung einer Restbussimulation kann dann durch die
Auswertung von Traces in Bezug auf die fiir die Restbussimulation definierten
Anforderungen erfolgen, d.h. fiir jede Anforderung kann ein entsprechendes
Antwort-Verhalten der Restbussimulation in Form von erwarteten Reaktionen,
die im Trace sichtbar sind, definiert werden. Die Stimulation der zu testenden
Restbussimulation kann z.B. durch ein zweites System erfolgen, fiir das explizit
zu diesem Zweck aus den Testfillen entsprechender Code generiert wird.

Allgemeine Formalismen zur Beschreibung temporalen Verhaltens existieren
z.B. als Derivate von Konzepten wie CTL (Computational Tree Logic) oder LTL
(Linear Temporal Logic), die beide eine (diskrete) temporale Pradikatenlogik
verwenden [BKOS8|]. Weniger theoretische Ansétze zur temporalen Logik finden
sich in [HLPOS§]].

2Anforderungen, die interne Zustandsinderungen der Restbussimulation betreffen, miissen in
irgendeiner Form nach auflen gefiihrt werden, wenn sie mit dieser Methodik beobachtet werden
sollen.
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5.5.2 Graphische Test-Fall-Modellierung

Die Beschreibung von Test-Féllen mit textuellen Notationen oder Test-Skripten
wird zunehmend verdréngt durch die Verwendung graphischer Notationen fiir
die Test-Fall-Modellierung. Haufig, z.B. beim EXAM-Framework des Herstellers
Micronova, wird hierfiir eine Untermenge der UML verwendet (im speziellen
Sequenzdiagramme), um Request-Response-Szenarien zu definieren und so das
Verhalten des getesteten Systems zu priifen.

Eine erste, sehr rudimentére Integration von der auf dem CANyon laufenden
Restbussimulation mit EXAM wurde begonnen. Die Methodik fiir die Integra-
tion sieht hier vor, dass eine Schnittstelle definiert wird, die die moglichen
Interaktionen mit dem System beschreibt, sowie eine Implementierung dieser
Schnittstelle bereitstellt. Die Implementierung muss in der Sprache Python erfol-
gen. Bestimmte Schnittstellen sind im so genannten EXAM-Core bereits definiert
und sollten bevorzugt verwendet werden, um eine Austauschbarkeit der Tests zu
gewahrleisten.

Der Test-Fall-Bearbeiter kann diese Schnittstellen verwenden, um mittels
UML-Sequenz-Diagrammen den Test-Ablauf zu definieren. Diese Test-Félle konnen
parametrisiert und ausgefiihrt werden; Resultate der Ausfiihrung konnen in die
von EXAM bereitgestellte Test-Datenbank geschrieben und so dokumentiert
werden.

5.6 Clustering von CANyon-Geraten

Fiir umfangreiche Gesamtfahrzeug-Simulationen, insbesondere wenn die Platt-
form fiir das Rapid-Prototyping von stark algorithmenlastigen Anwendungen
verwendet wird (Beispiel: Stabilitidtsprogramme wie ESP), ist ein einzelnes Gerat
unter Umsténden zu leistungschwach, um zusétzlich zur Restbussimulation noch
unoptimierte nummerische Algorithmen unter weichen Echtzeitbedingungen
auszufithren. Durch eine Verteilung der Aufgaben auf mehr als ein Gerit, z.B.
durch die Auslagerung von nicht unmittelbar fiir die algorithmische Simulation
wichtigen Restbussimulation-Teilen auf ein Zweit-Gerét, kann eine Entlastung
erreicht werden. Eine Verbindung der Gerite ist durch die Verwendung desselben
Busses gegeben, so dass die Verwendung eines zusitzlichen Kommunikationsme-
diums entféllt. Fiir echte Hardware-in-the-Loop-Anwendungen mit Prézisions-
Anforderungen im Mikrosekunden-Bereich diirfte diese Losung eher uninter-
essant sein, da der Kernel des CANyon-Systems durchsatzorientiert ist und keine
harten Echtzeit-Anforderungen unterstiitzt.
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Glossar

A/D
API

AST

AUTOSAR

BCM

BSW

CAN

CANyon

DT

CSMA/CA

CTL
ECU

EMF

Analog/Digital
Application Programming Interface

Abstract Syntax Tree; strukturierte Reprasentation von Dokumenten-
Inhalten

Automotive Open System Architecture

Broadcast Manager; Kernel-Modul von SocketCAN, das ei-
ne auftragsbasierte Schnittstelle zur Konfiguration der CAN-
Kommunikation bereitstellt

Basis-Software; anwendungsunabhingige Teile eines Software-
Systems

Controller Area Network; Multi-Master-Bussystem zur Kommu-
nikation zwischen Steuergeriten

Hardwareplattform von Berger Elektronik fiir autonome Rest-
bussimulationen

C/C+ + Development Tooling

Carrier Sense Multiple Access with Collision Avoidance; Buszugriffs-
Verfahren, bei dem der Status des Mediums (in der Regel ist
dies der Spannungspegel) verwendet wird, um Kollisionen zu
erkennen und zu vermeiden

Computational Tree Logic
Electronic Control Unit; Steuergerat

Eclipse Modeling Framework
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Fibex
GcCc
GDB
HIL
I/0
JVM
LDF

LIN

LTL

MOST

NCF

OSGi

PDU
POSIX
RBS
RSE

RTE

TDMA

Ul

VFB

Fieldbus Exchange Format
GNU Compiler Collection
GNU Debugger
Hardware-in-the-loop
Input/Output

Java Virtual Machine

LIN Description File

Local Interconnect Network; serielles Bussystem zur Kommu-
nikation zwischen Steuergerédten und deren lokalen Aktoren
und Sensoren

Linear Temporal Logic

Media Oriented Systems Transport; optisches Bussystem mit
hoher Bandbreite, optimiert fiir Streaming-Anwendungen

Node Capability File

OSGi Service Platform; Komponenten- und Service-Modell fiir
Java-Plattformen

Protocol Data Unit

Portable Operating System Interface for Unix
Restbussimulation

Remote Systems Explorer

Runtime Environment; Laufzeitumgebung von AUTOSAR im
Kontext einer spezifischen ECU

Time Division Multiple Access; Buszugriffs-Verfahren, bei dem
a-priori Zeitschlitze fiir bestimmte Knoten oder Datenelemen-
te reserviert werden und so ein deterministischer Buszugriff
moglich ist

User Interface (Benutzerschnittstelle)

Virtual Functional Bus
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XMI XML Metadata Interchange; von der Object Management Group
(OMG) definiertes Austauschformat fiir UML-Modelle, das in-
zwischen auch fiir die Serialisierung anderer Modelle genutzt
wird)

XSD XML Schema Definition
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