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Kurzfassung

In dieser Arbeit wird ein erweiterbares Framework zur Generierung von Rest-
bussimulationen für Fahrzeug-Netzwerke vorgestellt. Die Anforderungen an ein
derartiges Framework werden erörtert und mit bestehenden Architekturmo-
dellen im Gesamtfahrzeug-Kontext kontrastiert. Die Variabilität der Kommuni-
kationsbeschreibungen für Fahrzeug-Netzwerke wird im Generierungsprozess
berücksichtigt, so dass ein kontrolliertes Nachziehen von Änderungen ermöglicht
wird. Ein Fokus des entwickelten Frameworks liegt in der Erweiterbarkeit hin-
sichtlich zusätzlicher Beschreibungsformate für die Buskommunikation sowie
hinsichtlich zusätzlicher Zielplattformen.



Abstract

This work introduces an extensible framework for generating residual bus simu-
lations of vehicle networks. The requirements for this framework are discussed
and contrasted against existing architectural models for representing the soft-
ware architecture of a vehicle. The variability of the input specifications for a
simulation is taken into account throughout the generation process, leading to a
maintainable solution. The framework offers extension points for supporting ad-
ditional input formats for communication specifications as well as for additional
target platforms.
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2.3.6 Übersetzung mit mingw . . . . . . . . . . . . . . . . . . . . 41

2.4 Diskussion der Nachteile von SocketCAN und XL Library . . . . . 41
2.5 Alternativen zur beschriebenen Architektur . . . . . . . . . . . . 43

2.5.1 Echtzeit-Linux . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Kernelmodul für spezifische Restbussimulation . . . . . . 43
2.5.3 Eingebetteter Interpreter . . . . . . . . . . . . . . . . . . . 45

2.6 Anwendbarkeit von AUTOSAR . . . . . . . . . . . . . . . . . . . . 46
2.6.1 Duale Funktion . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.2 Ablauf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6.3 Komponenten-Modell . . . . . . . . . . . . . . . . . . . . 48
2.6.4 Virtual Functional Bus . . . . . . . . . . . . . . . . . . . . 49
2.6.5 Basis-Software . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.6 Runtime Environment . . . . . . . . . . . . . . . . . . . . 50
2.6.7 Konzept der Konfiguration . . . . . . . . . . . . . . . . . . 50
2.6.8 Konflikte zwischen AUTOSAR-Abstraktionen und Restbus-

simulationen . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Modulare Code-Generierung 53
3.1 Typische Ansätze . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Analogien zum Compilerbau . . . . . . . . . . . . . . . . . 54
3.1.2 Sprachinterne Code-Generierung . . . . . . . . . . . . . . 55
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Kapitel 1

Einführung

Die Softwareentwicklung für den Automobilbau stellt die beteiligten Entwickler
auf Seiten des Herstellers wie auf Seiten der Zulieferer vor Integrationsaufga-
ben, die mit den Prozessen und Vorgehensweisen aus anderen Industrieberei-
chen nicht sinnvoll zu bewältigen sind. Dabei liegen die Gründe nicht in der
Komplexität der einzelnen Steuergeräte, sondern im hohen und immer mehr
zunehmenden Vernetzungsgrad und in der Variabilität, die im Rahmen des
Produktlinienentwicklungs-Prozesses für das übergeordnete Gesamtfahrzeug
entsteht, sowie in der sehr speziell strukturierten Zuliefererstruktur. Durch sehr
hohe Stückzahlen gibt es für Zulieferer kaum Spielraum in der Auslegung der
Hardware; die Software muss entsprechend nahe an der Hardware sein, was
dem zugleich verlangten Anspruch der Variabilität entgegenläuft. Die Code-
Generierung ist ein Ansatz, diese Aspekte in Einklang zu bringen.

1.1 Aufgabenstellung und Übersicht

In dieser Arbeit wird ein Framework zur Generierung von Restbussimulatio-
nen für Fahrzeug-Netzwerke vorgestellt, das die geschilderte Problematik im
Kontext der Steuergeräte-Entwicklung und des Steuergeräte-Tests aufgreift. Die
Anforderungen an Systeme zur Generierung von Restbussimulationen werden
erörtert und mit bestehenden Architekturmodellen im Gesamtfahrzeug-Kontext
kontrastiert. Die Variabilität der Kommunikationsbeschreibungen für Fahrzeug-
Netzwerke wird im Generierungsprozess berücksichtigt, so dass ein kontrolliertes
Nachziehen von Änderungen ermöglicht wird. Ein Fokus des entwickelten Frame-
works liegt in der Erweiterbarkeit hinsichtlich zusätzlicher Beschreibungsformate
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für die Buskommunikation sowie hinsichtlich zusätzlicher Zielplattformen.
Diese Arbeit gliedert sich wie folgt: das vorliegende Kapitel erläutert den

fachlichen und technischen Kontext. Kapitel 2 untersucht die Anforderungen an
die Software-Architektur von Restbussimulationen und stellt diese der AUTOSAR-
Architektur gegenüber. Kapitel 3 stellt die grundlegenden Konzepte bei der Code-
Generierung vor und beschreibt das entwickelte Framework im Kontext dieser
Konzepte. Kapitel 4 stellt einige Details der Implementierung vor. Kapitel 5 stellt
mögliche Erweiterungen und Verbesserungen vor, die auf den Ergebnissen dieser
Arbeit aufbauen können.

1.2 Firmenporträt

Die Firma Berger Elektronik GmbH ist ein in Sindelfingen ansässiges Unterneh-
men im Automobil-Sektor mit den Schwerpunkten Bordbussysteme und Steue-
rungselektronik, insbesondere für das Prüfstand-Umfeld. Die Berger Elektronik
ist an die in Böblingen beheimatete Star Cooperation Gruppe angeschlossen.
Intern gliedert sich der Betrieb in Entwicklungsabteilung, Kfz-Werkstatt und
Produktions-Werkstatt.

1.3 Kommunikationsnetzwerke und Bussysteme in

Fahrzeugen

Modelle moderner Fahrzeugbaureihen im Personen- wie auch im Nutzfahrzeug-
Bereich weisen einen hohen Vernetzungsgrad hinsichtlich der in ihnen verbauten
Steuergeräte auf. Waren in der Vergangenheit hauptsächlich Anwendungen in
der Motor-Steuerung und im Getriebestrang sowie sicherheitsrelevante Aspekte
und gesetzliche Anforderungen an die Umweltverträglichkeit verantwortlich für
einen starken Anstieg der notwendigen Konnektivität, so zählen heute auch und
vor allem Komfort-Funktionen und Infotainment-Systeme zu den treibenden
Kräften für neue Funktionalität und damit verbundene neue Technologien.

Im Folgenden werden die wichtigsten Bussysteme (CAN, LIN und Flexray)
kurz beschrieben; für eine detaillierte Beschreibung, insbesondere im Hinblick
auf die physikalische Topologie, die in der vorliegenden Arbeit eine sehr unter-
geordnete Rolle spielt, sei auf die einschlägige Literatur verwiesen (insbesonde-
re [Par07], [ZS10] und [Rei08]).

CAN (Controller Area Network) realisiert einen Multi-Master-Bus, d.h. alle
teilnehmenden Steuergeräte sind gleichberechtigt und können prinzipiell zu
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Abbildung 1.1: Typische Topologie eines heterogenen Bordnetzwerkes [Ber]

beliebigen Zeitpunkten Sendeversuche starten, sofern der Bus frei ist. Die Adres-
sierung erfolgt inhaltsbasiert mittels des Identifiers einer versendeten Nachricht.
Dieser Identifier dient auch als Basis für die Arbitrierung, wobei CAN eine bitwei-
se Arbitrierung definiert, die bei Konflikten diejenige Nachricht mit dem kleinsten
Identifier am höchsten priorisiert, so dass der Sender dieser Nachricht den Zugriff
auf den Bus erhält; dies ist im Wesentlichen eine Variante von CSMA/CA. Der
korrekte Empfang von Nachrichten wird überprüft, indem jeder Empfänger auf
dem Bus eine empfangene Nachricht bestätigt; hierzu setzt jeder Empfänger,
der eine Nachricht korrekt erhalten hat, ein Empfangs-Bit unmittelbar beim
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Empfang der Nachricht. Dies wird vom Sender erkannt; bleibt eine Empfangs-
bestätigung aus, d.h. setzt keiner der potentiellen Empfänger das Empfangs-Bit
oder ist kein Empfänger vorhanden, so definiert CAN ein bestimmtes Verhalten
für Wiederholungs-Versuche und den Übergang in Fehlerzustände [Par07].

LIN (Local Interconnect Network) ist als einfaches, kostengünstiges Bus-System
für räumlich beschränkte Sensor-Aktor-Netzwerke ohne hohen Bandbreitenbe-
darf und mit begrenzter Teilnehmerzahl konzipiert worden, mit dem Hintergrund,
diesen Anwendungsfall günstiger abdecken zu können als es durch ein vergleich-
bares CAN-Netzwerk möglich wäre [ZS10]. Ein LIN-Netzwerk besteht aus einem
Master-Steuergerät und einem oder mehreren Slave-Steuergeräten, wobei nur
der Master die Kommunikation initiieren darf. Der Master steuert den Buszugriff,
indem er den Slaves Botschaften sendet, auf die diese reagieren können, wobei
in der Schedule definiert ist, welches Slave-Steuergerät auf welche Botschaften
antworten darf; das Zeitverhalten, das ebenfalls in dieser Schedule definiert
ist, ist nur für den Master relevant. LIN definiert besondere Nachrichten, die
für die Initiierung von Sleep- und Wakeup-Verhalten verantwortlich sind und
legt zeitliche Reaktionsfenster fest, die von Master und Slaves beim Eintritt in
den Sleep-Modus und beim Wiedereintritt in den aktiven Modus eingehalten
werden müssen. Erwähnenswert ist, dass die LIN-Spezifikationen [LIN] nicht
nur die Übertragungsschicht und das Protokoll beschreiben, sondern auch ein
generisches API und ein Format zur formalen Beschreibung von LIN-Netzwerken
(siehe Abschnitt 1.4) festlegen.

Die mangelnde Echtzeitfähigkeit von CAN sowie die fehlende Möglichkeit,
auf Protokollebene redundante CAN-Netzwerke einzurichten (beides Vorausset-
zung für so genannte X-By-Wire-Anwendungen1) führte zur Entwicklung des
Byteflight-Protokolls, das als Flexray-Protokoll in einer modifizierten Ausprägung
standardisiert wurde [ZS10]. Echtzeitfähigkeit wird hier durch die Verwendung
von TDMA und einer Scheduling-Tabelle sowie Mechanismen zur globalen (d.h.
innerhalb eines Netzwerk-Clusters) Synchronisation der Zeitgeber aller Cluster-
Teilnehmer ermöglicht. Die Ausfallsicherheit wird (optional) erhöht, indem zwei
physikalisch getrennte Kanäle für die redundante Übertragung von Informatio-
nen genutzt werden, wobei die Konsistenzprüfung durch die Bus-Controller auf
Protokollebene erfolgt und nicht durch ECU-Software auf Anwendungsebene

1Ein Überbegriff für Steer-By-Wire, Brake-By-Wire und ähnliche Mechanismen. Im KFZ-Kontext
wird damit die Ersetzung von physikalischen Steuerungseinrichtung wie Lenksäule und Bremsleitung
durch zuverlässige und ausfallsichere Bussysteme bezeichnet. Zwar stehen heute bereits alle Infor-
mationen als Sensorwerte zur Verfügung, um dies zu realisieren (Lenkradwinkel und Bremspedalstel-
lung), jedoch ist es gesetzlich nicht erlaubt, vollständig auf die physikalischen Übertragungswege zu
verzichten.
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erfolgen muss.
Der Bereich Infotainment, d.h. der Bereich der Integration von Unterhaltungs-

elektronik in das Bordnetzwerk von Personenkraftfahrzeugen der Oberklasse,
war darüber hinaus Motivation für die Entwicklung eines komplett neuen Bus-
systems (MOST, Media Oriented Systems Transport ), das dem im Vergleich zu
herkömmlichen Anwendungen extrem erhöhten Bandbreiten-Bedarf Rechnung
trägt [ZS10].

1.4 Beschreibungsformate für Buskommunikation

Zur sinnvollen Auslegung der Bus-Systeme für das Bordnetzwerk ist es notwen-
dig, die gesamten möglichen Kommunikationspfade und -inhalte auf der Ebene
des Gesamt-Systems zu erfassen. Zu diesem Zweck, d.h. zur formalen Beschrei-
bung der Kommunikations-Muster in Bordnetzwerken, existieren verschiedene
Standards und Industrie-Standards, die ein Datenmodell und ein Dateiformat
(teilweise auch eine Methodologie) definieren, die dies ermöglichen.

Diese Beschreibungsdateien spielen im Systemintegrations-Prozess zwischen
Gesamtfahrzeug-Hersteller und Zulieferern eine zentrale Rolle; in Abschnitt 2.6.1
wird dies (im Kontext der AUTOSAR-Methodologie) näher erläutert.

Das Datenmodell, das durch diese Beschreibungsdateien beschrieben wird,
enthält als zentrale, in allen Formaten vorhandene Elemente die folgenden
Elemente:

Busse und deren Parameter Die physikalisch vorhandenen Busse, deren Typ
und deren Parameter müssen definiert werden können. Für den CAN-Bus
sind dies die Bitrate und der Typ, für LIN und Flexray sind zusätzliche
Parameter für die Einrichtung und Aufteilung der Scheduling-Tabelle not-
wendig.

ECUs ECUs (Electronic Control Unit) entsprechen (physikalisch vorhandenen)
Steuergeräten und müssen beschrieben werden können.

Netzwerkknoten Verwendet eine ECU einen bestimmten physikalisch vorhan-
denen Bus, so ist sie ein Netzwerkknoten auf diesem Bus. Ist eine ECU an
mehrere Busse angebunden, so existiert sie als logischer Netzwerkknoten
auf allen diesen Bussen. Logisch entspricht dies einer Zuordnung von ECUs
zu den physikalisch vorhandenen Bussen.

Nachrichten auf Protokoll-Ebene Die auf jedem Bus ausgetauschten Nachrich-
ten sowie deren busspezifische Parameter müssen definiert werden können.
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Für den CAN-Bus ist dies relativ einfach möglich (zu jeder Nachricht muss
lediglich der CAN-Identifier und die Länge definiert werden können). Für
Flexray ist die Zuordnung einer Nachricht zu einem Slot in der Schedule
notwendig. Darüber hinaus ist es in der Regel so, dass für den Nachrich-
ten-Inhalt bestimmte Default-Belegungen angegeben werden können oder
Bitmuster für nicht verwendete Teile einer Nachricht definiert werden
können.

Signale Signale entsprechen in der Regel bestimmten Werten aus dem physi-
kalischen Fahrzeug-Modell, z.B. Sensorwerten, oder Notifikationen über
Ereignisse, die im Fahrzeug auftreten.

Signal-Kodierung Die konkrete Darstellung von Signalen muss in einem be-
stimmten Format (Wertetyp, Bitlänge usw.) erfolgen; diese Kodierungs-
Informationen müssen definiert und den Signalen zugeordnet werden
können. Eine Umrechnungs-Vorschrift von dieser Darstellung in konkrete
physikalische Werte muss ebenfalls definiert und einem Signal zugeord-
net werden können. Näheres zu dieser Thematik ist in Abschnitt 2.1.2
beschrieben.

Zuordnung von Signalen zu Nachrichten Für Signale muss definiert werden
können, in welchen Nachrichten sie in welcher Kodierung vorkommen und
welche Teile im Byte-Array der Nachricht sie belegen.

Zuordnung von Signalen zu Empfängern Für Signale muss definiert werden
können, welche Netzwerkknoten sie empfangen. Hier stellt sich die Frage,
warum dies nicht auf Nachrichtenebene erfolgt, da dies dem Verhalten auf
Protokollebene entspricht. Die Antwort liegt darin, dass durch die explizite
Beschreibung, welche Signale von einem Knoten empfangen werden, eine
höhere Flexibilität erreicht wird, da dann ein Wechsel der Nachricht, die das
Signal enthält, möglich ist, ohne dass dies notwendige Anpassungen nach
sich zieht. Darüber hinaus ermöglicht dies eine Optimierung hinsichtlich
des Nachrichteninhaltes, indem statisch ein Filter für den Bus-Controller
der empfangenden ECU definiert werden kann, der nur bei Änderungen der
tatsächlich für diese ECU relevanten Teile der Nachricht eine Weiterleitung
der Nachricht vom Bus-Controller zum eigentlichen Host-Microcontroller
veranlasst.

Zuordnung von Nachrichten zu Sendern Zu jeder Nachricht muss definiert
werden können, von welchem Netzwerkknoten sie gesendet werden darf.
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Bei neueren Beschreibungsformaten kommt eine zusätzliche Abstraktionsebe-
ne zwischen Signalen und Botschaften hinzu, die so genannten PDUs (Protocol
Data Unit) [AUTa]. Signale verweisen dann nicht direkt auf Botschaften, sondern
auf PDUs, und diese verweisen auf Botschaften. Hintergrund und Motivation
dafür ist, dass unterschiedliche Bussysteme jeweils andere Maximalgrößen für
Botschaften definieren. Die PDUs dienen dazu, die Einhaltung dieser Maximal-
größen zu gewährleisten, ohne auf die Verwendung großer Botschaften auf
Bussystemen, die diese unterstützen, zu verzichten [AUTb].

Das älteste im größeren Umfang eingesetzte und derzeit noch am weitesten
verbreitete Format ist das von der Firma Vector Informatik entwickelte und durch
eine umfangreiche Werkzeugkette unterstützte DBC-Format (das Akronym steht
für den generischen Begriff Database Container), das auf die Beschreibung von
CAN-Netzwerken beschränkt ist. Die Serialisierung erfolgt als textbasierte Datei,
deren Syntax in keinerlei Weise standardisiert oder vollständig öffentlich definiert
ist und die üblicherweise mit dem Werkzeug CanDB von Vector Informatik
erstellt wird. Das DBC-Format ermöglicht die Definition beliebiger Attribute
und die Zuordnung dieser Attribute zu den Modell-Elementen des Bordnetzes,
so dass Herstellern die Definition von eigenen, über die Grundfunktionalität
hinausgehende semantische Erweiterungen ermöglicht wird, sofern sich diese
Erweiterungen durch die Definition von Attributen für Elemente realisieren
lassen. Diese Attribute sind typisiert, so dass rudimentäre werkzeuggestützte
Konsistenzprüfungen möglich sind. Eine typische Anwendung für dieses Attribut-
Metamodell ist die Definition von Attributen, die von nachgelagerten Werkzeugen
der Werkzeugkette verwendet werden können, z.B. von Code-Generatoren.

Spezifisch für LIN existiert das LDF-Format (LIN Description File), das Teil der
LIN-Spezifikationen ist (ergänzt durch so genannte Node Capability Files (NCF)),
die zusätzliche, ECU-zentrische Sichten realisieren).

Eine neuere, durch eine herstellerübergreifende Organisation gestützte Spe-
zifikation existiert unter dem Namen Fibex (Fieldbus Exchange Format), die eine
XML-basierte serialisierte Darstellung definiert und generell nicht busspezifisch
ist, sondern die Bus-Systeme CAN, LIN, Flexray und MOST unterstützt, wobei
kleinere Teil-Spezifikationen für notwendige busspezifische Spezialisierungen als
gesonderte XSD-Definitionen existieren [ZS10].

Auch AUTOSAR enthält Mechanismen zur Beschreibung von Bordnetzwerken,
wobei sich diese semantisch an dem von Fibex vorgeschriebenen Modell orientie-
ren (in der AUTOSAR-Terminologie wird dies Fibex-Core genannt) [AUTd].
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1.5 Restbussimulationen

Der hohe Vernetzungsgrad hat Auswirkungen auf die Entwicklung und den Test
von Steuergeräten und Fahrzeug-Komponenten, da es dadurch in aller Regel so
ist, dass das zu testende Steuergerät nicht in Isolation (d.h. ohne die Präsenz
anderer Steuergeräte an einem der Bussysteme, die das zu testende Steuergerät
verwendet) getestet werden kann [ZS10].

Die zu testende ECU erwartet bestimmte Nachrichten, die in bestimmten
Zeitintervallen auftreten müssen, um nicht in einen Fehlerzustand überzugehen
und die Funktion einzustellen. Es kann hierbei unterschieden werden zwischen
Nachrichten, die tatsächlich notwendig für die Funktion des zu testenden Steuer-
gerätes sind (etwa weil sie Signale enthalten, die von der ECU weiterverarbeitet
oder ausgewertet werden), und Nachrichten, die als Kontroll-Nachrichten dienen,
um zu erkennen, ob das Bordnetzwerk intakt ist. Dies kann weiter unterschie-
den werden in implizite Kontroll-Nachrichten, d.h. zyklische Nachrichten, die
eigentlich konkrete Inhalte enthalten, die aber zur Zustands-Ermittlung des
Bordnetzwerkes missbraucht werden und explizite Netzwerk-Management-Nach-
richten, die spezifisch zu diesem Zweck existieren. Andererseits erwartet die
ECU, sofern sie selbst periodische Nachrichten generiert, dass diese von anderen
ECUs bestätigt werden (zum Beispiel durch das Setzen des Acknowledgement-
Bits, das im Falle der CAN-Kommunikation auf Protokoll-Ebene anzeigt, ob eine
Nachricht von mindestens einem weiteren Bus-Teilnehmer empfangen wurde).
Fehlen diese Bestätigungen, so geht die zu testende ECU u.U. ebenfalls in einen
Fehlerzustand über.

Der Ansatz, diese Erwartungen der ECU in Bezug auf ihre Umwelt (d.h. die
vorhandenen Busteilnehmer) während der Test-Läufe auf der ECU selbst zu
simulieren, z.B. durch einen Dummy-Bus-Treiber, scheitert aus verschiedenen
Gründen. Zum einen sind Serien-ECUs so knapp dimensioniert, dass derartige
Zusatzfunktionalität zu Testzwecken nicht mit untergebracht werden kann. Zum
anderen unterliegt der Quellcode für Serien-ECUs strengen Audit-Regeln und ist
u.U. formal validiert, so dass jegliche Zusatzfunktionen zu Test-Zwecken diese
Validierung untergraben würde (oder ebenfalls auditiert und validiert werden
müssten). Ein anderer Aspekt ist, dass das Fehlverhalten bei fehlender Bus-
Anbindung oder fehlenden Kommunikations-Partnern ein integraler Bestandteil
des von der ECU zu realisierenden Verhaltens ist, so dass dieses ohnehin getestet
werden muss, selbst wenn es möglich wäre, Teile der Funktionalität ohne echte
Bus-Anbindung zu simulieren.

Daher ist es zum Test von Steuergeräten notwendig, die fehlende Kommuni-
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kation zu ersetzen, indem auf dem Bus, auf dem ein Steuergerät Netzwerkknoten
ist, eine gewisse Grund-Kommunikation erzeugt wird und so die fehlenden ande-
ren ECUs, die eigentlich zur Funktion des zu testenden Steuergerätes notwendig
sind, zu simulieren. Dies wird mit dem Begriff Restbussimulation bezeichnet.
Hierbei wird unterschieden zwischen der statischen Restbussimulation und der
dynamischen Restbussimulation. Die statische Restbussimulation erzeugt Bus-
Kommunikation, indem die benötigten Nachrichten (deren Aufbau und Stan-
dard-Inhalt z.B. aus eine Beschreibungsdatei ermittelt werden kann) gemäß der
ihnen zugeordneten Parameter (Zykluszeit) periodisch gesendet werden. Die
dynamische Restbussimulation ergänzt dies um beliebiges Verhalten, d.h. die
Nachrichteninhalte und Parameter sind nicht a priori festgelegt, sondern werden
in Reaktion auf externe Ereignisse verändert und gesendet. Im Kontext dieser
Arbeit wird die dynamischen Restbussimulation als Anwendung betrachtet, die
auf ein statisches Restbussimulations-Gerüst zugreift und dieses durch beliebigen
benutzerdefinierten Code ergänzt.

Dieses prinzipielle Konzept der Restbussimulation ist in Abbildung 1.2 darge-
stellt.

Restbussimulationen kommen nicht nur beim Test von einzelnen ECUs zum
Einsatz, sondern können im Kontext der Serienfertigung an Prüfständen einge-
setzt werden, um Fahrzeug-Komponenten zu testen. Häufiger Einsatzfall sind
Motoren-Prüfstände, da das Motorsteuergerät in der Regel von vielen anderen
ECUs abhängig ist und damit eine umfangreiche Simulation dieser ECUs für den
isolierten Test eines Motors notwendig ist. Hierbei kommen noch zusätzliche Auf-
gaben hinzu, wie die Anbindung an Systeme zur Vorgabe von Parameterwerten
und zur Protokollierung der Prüfungen sowie die Anbindung an Systeme, die
die Leistungs-Elektronik steuern und im Fall von Motoren-Prüfständen den Zu-
und Abluft-Strom regulieren und protokollieren. Die Anbindung dieser Systeme
erfolgt in der Regel ebenfalls über die bereits vorhandenen Busse (nicht zuletzt
um die Einführung zusätzlicher Hardware und Verkabelung zu vermeiden).

Ein konträrer, komplementärer Einsatzfall für Restbussimulationen ist der
Austausch einer ECU durch eine Restbussimulation im realen Fahrzeug. Dies
ist z.B. sinnvoll für den Test neuer Algorithmen für Stabilitäts-Programme und
ähnliche aufwändige Anwendungsfälle. Die Implementierung neuer Algorithmen
direkt auf der betroffenen ECU ist nicht praktikabel, da dies aufwändige Anpas-
sungen an die Limitierungen der vorhandenen ECU erfordern würde und so ein
schnelles, kosteneffizientes Prototyping von Algorithmen nicht möglich wäre.2

2Dies beruht auf der in der Regel zutreffenden Annahme, dass das eingesetzte System zur
Restbussimulation wesentlich mächtiger und einfacher erweiterbar ist als ein Seriensteuergerät.
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Abbildung 1.2: Klassischer Anwendungsfall der Restbussimulation [Ber]

1.6 Gateways

Mit Gateways werden ECUs bezeichnet, die als wesentliche Aufgabe das Ab-
bilden von Nachrichten oder Signalen von einem Bus auf einen anderen Bus
übernehmen, wobei unterschieden wird zwischen Gateways, die zwischen physi-
kalisch unterschiedlichen Bussystemen vermitteln können (so genannte Protokoll-
Gateways) und Gateways, die lediglich zur Isolierung unterschiedlicher Busse
dienen. Diese Isolierung kann physikalischer Natur sein (z.B. durch Optokoppler)
oder logischer Natur, z.B. soll der Diagnose-Bus in der Regel nicht alle Nach-
richten mitlesen können und nicht beliebige Nachrichten an die internen Busse
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weiterleiten können. Um diese Gateway-Steuergeräte zu simulieren, muss ein Fra-
mework für Restbussimulationen Mechanismen zum Routing von Informationen
zwischen den Bussen einer ECU bereitstellen.

Auch Steuergeräte, die keine explizite Gateway-Funktion haben, können an
mehreren Bussen anliegen (z.B. ein Scheibenwischer-Steuergerät, das seine Si-
gnale über einen CAN-Bus bekommt und an seine über einen lokalen LIN-Cluster
angebundenen Aktoren weitergibt); deren Simulation vereinfacht sich durch
die Bereitstellung von Gateway-Funktionalität durch ein Restbussimulations-
Framework.

1.7 Rolle der Code-Generierung

Der Umfang der Kommunikationsmatrix und die dieser zu Grunde liegende
Regularität führt dazu, dass eine manuelle Implementierung der Kommunika-
tions-Strukturen zum Zwecke der Simulation teuer und fehleranfällig ist, so
dass sich der Einsatz von Code-Generatoren hier aufdrängt, um eine konsistente
Basis der durch die Kommunikationsmatrix definierten Strukturen zu schaf-
fen [ZS10,KF09].

Eine dynamische Interpretation der Kommunikationsmatrix zur Laufzeit, d.h.
die Ausführung des definierten zyklischen Verhaltens durch eine generische
Laufzeit-Bibliothek, ist prinzipiell möglich, setzt aber entsprechende Hardware-
Ressourcen für das System voraus, das die Restbussimulation ausführt, und
schließt eine Portierung auf beschränktere Hardware-Plattformen kategorisch
aus. In Fällen, wo dies akzeptabel ist, insbesondere im Falle von host-gebun-
denen Restbussimulationen (d.h. Restbussimulationen, die nicht autonom auf
dedizierter Hardware, sondern unter der Kontrolle eines Entwicklungsrechners
mit entsprechender Umgebung laufen), ist dies jedoch durchaus eine praktikable
Lösung. Für eine dynamische Restbussimulation stellt sich bei diesem interpreta-
tiven Ansatz die Frage, wie die eigentlichen Simulationsaspekte, d.h. das nicht
durch die Kommunikationsmatrix beschriebene Verhalten, durch den Benutzer
implementiert werden können (siehe hierzu Abschnitt 2.5.3).
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Kapitel 2

Architekturen für
Restbussimulationen

In diesem Kapitel werden die grundsätzlichen Anforderungen an Architekturen
für Restbussimulationen dargelegt und, in Abschnitt 2.6, mit einer Referenz-
Architektur für Seriensteuergeräte im Gesamtfahrzeug kontrastiert.

2.1 Aufgaben der Restbussimulation

Eine Restbussimulation muss die folgenden unterschiedlichen Kernaufgaben
erfüllen (siehe Abbildung 2.1):

• die Verarbeitung der Bus-Botschaften im Sinne der in den Datenbanken
spezifizierten Parametern (Signalverarbeitung)

• die Ereignisverarbeitung, d.h. die Anbindung externer Ereignisse an die
Zielplattform und die Weiterleitung generierter Ereignisse an die Zielplatt-
form

• das Ausführen von benutzerdefinierten oder extern generierten Erweite-
rungen, die an die Ereignisverarbeitung gebunden sind

• die Beeinflussung des Sendeverhaltens von Teilen der simulierten Netz-
werkteilnehmer in Reaktion auf Ereignisse oder Fehlerfälle
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Abbildung 2.1: Restbussimulation, bestehend aus Signalverarbeitungs-Kernel,
Plattform-Anbindung und benutzerdefinierter Callback-Funktionalität [Ber]

2.1.1 ECU-Simulation

Jede für die Restbussimulation relevante ECU muss als Software-Komponente
in der generierten Anwendung abgebildet sein. Bei ECUs, die auf mehreren
Bussen aktiv sein können, empfiehlt sich, insbesondere im Falle von unterschied-
lichen physikalischen Bussen, die Simulation der ECU aufzuteilen in einzelne
Komponenten, die jeweils die Anbindung an den jeweiligen Bus realisiert (sie-
he Abbildung 2.2). Interne Kommunikation innerhalb der ECU ist problemlos
möglich, da die Restbussimulation und damit alle logischen Knoten der ECU
innerhalb eines Addressraumes ausgeführt werden. Diese Methode, ECUs wenn
nötig in busspezifische Knoten zu separieren, hat den Vorteil, dass Gateways
nicht als Sonderfälle behandelt werden müssen.

2.1.2 Signalverarbeitung

Die Beschreibungsdateien für die Kommunikationsmatrix definieren für Nachrich-
ten, die über die unterstützten Bussysteme übertragen werden, Interpretations-
Vorschriften, die es ermöglichen, aus dem auf Busebene als abstraktes Byte-
Array vorliegenden Nachrichteninhalt Signal-Informationen zu extrahieren und
zu diesen extrahierten Signal-Werten eine physikalische Umrechnungs-Vorschrift
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Abbildung 2.2: ECU-Sicht und logische Abbildung in Software-Komponenten am
Beispiel einer Gateway-ECU [Ber]

zu definieren.
Es gibt einige Aspekte, die diese Funktionalität in mancher Hinsicht kom-

plexer macht als vergleichbare Beschreibungsformate für Binärformate, wie sie
z.B. in Middleware-Systemen in der PC-Welt vorkommen (Beispiele für diese
Beschreibungen sind z.B. CORBA, Protocol Buffers oder BSON):

Nachrichten mit Signalen unterschiedlicher Byte-Reihenfolge Innerhalb ei-
ner Nachricht dürfen Signale mit unterschiedlicher Endianness, d.h. Byte-
Reihenfolge, vorkommen. Die zwei von allen Beschreibungsformaten er-
laubten Varianten sind hier die Intel-Reihenfolge (genannt little endian;
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das Byte, das das höchstwertige Bit enthält, belegt die höhere Speicher-
Adresse) und die Motorola-Reihenfolge (genannt big endian; das Byte,
das das höchstwertige Bit enthält, belegt die niedrigste Speicher-Adres-
se). Sollen Signale arithmetisch verarbeitet werden, so müssen sie in das
Format konvertiert werden, das vom verwendeten Prozessor verwendet
wird, d.h. Signale im Intel-Format müssen bei Verwendung einer Prozes-
sor-Architektur, die das Motorola-Format unterstützt, in dieses konvertiert
werden. Signale, die im Motorola-Format vorliegen, müssen entsprechend
auf Plattformen mit Intel-Format in dieses konvertiert werden.

Signale, die Byte-Grenzen verletzen Es gibt Signale, die nicht an Byte-Gren-
zen orientiert sind, d.h. die Teile eines Bytes und Teile eines angrenzenden
Bytes belegen.

Signale beliebiger Länge Bei Signalen, deren Länge nicht genau 8, 16, 32 oder
64 Bit beträgt, ergibt sich die Problematik, dass das Signal in der Rest-
bussimulation durch einen C-Typ repräsentiert werden muss, der einem
dieser Längen entspricht (der kleinstmögliche dieser Typen bezogen auf
die Signal-Länge), d.h. das Signal wird durch eine Variable verwaltet, von
der nur ein bestimmter Bereich verwendet werden darf.

Die häufigsten in dieser Kategorie auftretenden Fälle sind Signale, die
kleiner sind als ein Byte. Dies ist für Signale, deren C-Typ als unsigned

definiert ist, kein Problem (die höherwertigen Bits, die nicht Teil des
Signals sind, können auf 0 gesetzt werden). Arithmetische Operationen
funktionieren wie erwartet. Bei Signalen, deren C-Typ als signed definiert
ist, ergibt sich das Problem, dass hier der Rohwert im Zweier-Komplement
vorliegt, dieser aber nicht einfach durch Nullsetzen der höheren Bit-Stellen
in den (größeren) C-Typ übernommen werden kann. Stattdessen muss
durchgeführt werden, was als sogenannte Sign-Extension bekannt ist, bzw.
diese muss umgangen werden.

Ein so extrahiertes Signal liegt nach diesen Nachbehandlungen als Rohwert
vor. Für manche Arten von Signalen, z.B. einfache Flags oder Enumerationen, die
keine skalare Größe, sondern bestimmte diskrete Zustände repräsentieren, ist
dies ausreichend, d.h. sie sind semantisch direkt verwertbar. Für skalare Werte
muss u.U. zusätzlich eine Umrechnung vom Rohwert in den physikalischen Wert
erfolgen, falls dies in der Beschreibungsdatei angegeben wird. Üblicherweise ist
dies notwendig, wenn bestimmte Sensorwerte auf Seite des Senders exakt so in
die Nachricht gepackt werden, wie sie der Sensor liefert (z.B. 12 Bit für viele
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Standard-A/D-Wandler oder Winkelgeber). In diesem Fall muss eine Umrechnung
von diesem Rohwert in eine physikalische Größe erfolgen. Üblichstes Verfahren ist
eine lineare Umrechnung, d.h. eine Umrechnung mittels einer linearen Funktion,
die eine Skalierung des Rohwertes, gefolgt von einer zusätzlichen Verschiebung,
realisiert. Einzelne Beschreibungsformate erlauben es, unterschiedliche lineare
Umrechnungen für verschiedene Wertebereiche des Rohwertes zu definieren
oder ein explizites Mapping von Werten durchzuführen, d.h. bestimmte diskrete
Werte des Rohwertes auf andere diskrete Werte abzubilden (die letztere Variante
kommt z.B. im Rahmen der Netzwerk-Management-Funktionalität häufig zum
Einsatz).

Sämtliche in diesem Abschnitt beschriebenen Konversionen und Umrechnun-
gen müssen selbstverständlich auch in der umgekehrten Richtung erfolgen, d.h.
es muss auch der Weg vom physikalischen Wert zum Rohwert und von diesem
zum in die Botschaft integrierten Signalwert realisiert werden.

Als zusätzliche Anforderung bei diesem Aspekt ergibt sich die Notwendigkeit,
eine gewisse Transaktionalität zu schaffen, so dass Lese- und Schreibvorgänge
auf Nachrichtenpuffern bei Verwendung mehrerer Threads keine unerwünschten
Effekte erzeugen. Ein Beispiel ist die Vermeidung des so genannten Tearing,
das auftritt, wenn ein Thread ein sich über mehrere Byte erstreckendes Signal
in einen Puffer integriert, und ein anderer auf diesen Puffer lesend zugreift,
während erst Teile des Signals in den Puffer geschrieben wurden. Die Einbindung
dieser Synchronisations-Mechanismen muss möglichst geringen Einfluss auf die
Performance haben; hier bietet sich z.B. die Verwendung von Read-Write-Locks
an, die mehreren lesenden Threads ermöglichen, gleichzeitig auf ein geschütztes
Objekt zuzugreifen, aber nur den Zugriff durch einen einzelnen schreibenden
Thread erlaubt (der wiederum nur Zugriff erhält, wenn kein lesender Thread
zugreift) [Ker10]. Es geht hier nicht nur um den Aspekt der Synchronisation im
temporalen Sinne, d.h. die Garantie des exklusiven Zugriffs auf eine Ressource
für eine bestimmte Zeitspanne, sondern auch um die Speicher-Synchronisation
(durch Einrichtung von Memory-Barrieren), die je nach verwendetem Betriebssys-
tem und Threading-Modell nur an bestimmten Synchronisationspunkten erfolgt;
ohne diese Barrieren würde das C-Speicher-Modell erlauben, dass der Compiler
den Zugriff auf von mehreren Threads verwendete Variablen so optimiert (z.B.
durch die zeitweise Verwendung eines Registers für eine eigentlich speicherresi-
dente Variable), dass nicht garantiert werden kann, dass Änderungen an einer
Variablen aus einem Thread jemals für andere Threads sichtbar werden. 1

1Unter pthread-Implementierungen dienen die Methoden zur Steuerung des exklusiven Zugriffs
gleichzeitig auch als Memory-Barrieren, so dass in der Regel hier kein zusätzlicher Aufwand entsteht.
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2.1.3 Ereignisorientiertes Anwendungsmodell

Über die Qualität einer Restbussimulation entscheidet deren Fähigkeit, eingehen-
de Ereignisse zu verarbeiten und ausgehende Ereignisse zu generieren. Jegliche
Bewertung der Qualität muss diesen Aspekt mit hinreichender Gewichtung mit-
einbeziehen, und das Verarbeitungs-Modell für Ereignisse muss eine zentrale
Rolle in der Architektur der Restbussimulation spielen. Für eingehende Ereignisse
gibt es hierbei keine elementaren Unterschiede zu üblichen Server-Anwendungen
(allerdings mit deutlich kleineren Paketgrößen und deutlich höherer Ereignisdich-
te). Für die ausgehenden Ereignisse gibt es jedoch den zentralen Aspekt der Zeit:
für die Restbussimulation ist es in der überwiegenden Zahl der Anwendungsfälle
nicht zielführend, Antworten auf Ereignisse möglichst schnell zu senden, sondern
diese müssen in aller Regel zu definierten Zeitpunkten gesendet werden, wobei
die Mechanismen und Anforderungen an das temporale Verhalten stark von
den Rahmenbedingungen der Restbussimulation abhängen, insbesondere den
eingesetzten Bussystemen und dem Lastprofil des konkreten Anwendungsfalles.

Im Folgenden werden die grundsätzlichen Ereignisse beschrieben, die für die
Restbussimulation zugänglich sein müssen.

2.1.4 Busspezifische Ereignisse

Die folgenden Ereignisse sind in ihrer Schnittstelle und teilweise in ihrer Seman-
tik abhängig vom Bus-Typ, über die das Ereignis ausgelöst wird. In der laufenden
Restbussimulation können sie einem konkreten Bus-Kanal zugeordnet werden.

Botschaftsempfang Dieses Ereignis wird ausgelöst, wenn der Bus-Controller
eine gültige Nachricht empfangen hat und dies dem Betriebssystem bzw. bei
Systemen ohne Betriebssystem direkt der Anwendung über einen Interrupt
signalisiert. Der Inhalt der Nachricht wird in den Speicherbereich der
Anwendung übernommen und u.U. eine vom Benutzer definierte Funktion
aufgerufen, die eine Referenz auf diesen Nachrichtenpuffer als Parameter
erhält.

Botschaftsübermittlung Häufig gibt es Nachrichten, in denen bestimmte Felder
eine besondere Semantik besitzen (Beispiel: Prüfsumme oder fortlaufender
Nachrichtenzähler); diese Felder müssen nicht nur bei Änderungen an
Signalwerten neu gesetzt werden, sondern vor jedem Senden der Nach-
richt (unabhängig von vorhandenen Änderungen an regulären Signalen
derselben Nachricht). Aus diesem Grund muss auch das bevorstehende
Senden einer Nachricht als Ereignis zur Erweiterung durch den Benutzer
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zur Verfügung stehen (wiederum als Callback-Funktion mit einer Referenz
auf die zu sendende Nachricht als Parameter). Dies ermöglicht es, unmittel-
bar vor dem Senden eine anwendungsspezifische Prüfsumme zu berechnen
oder einen Nachrichtenzähler zu erhöhen.

Fehler auf Busebene Fehler auf physikalischer Ebene werden direkt vom Con-
troller (u.U. sogar direkt vom Transceiver) behandelt; dies ist notwen-
dig, da je nach Busprotokoll eine Maskierung einzelner Fehler durch den
Controller erfolgen muss (z.B. durch das automatische erneute Senden
fehlerhaft übertragener Nachrichten). Unter CAN gibt es definierte Con-
troller-Zustände [ZS10], die nach bestimmten Häufungen von Fehlern
eingenommen werden und die für die Restbussimulation relevant sind
und an diese weitergeleitet werden. Typische Reaktionen der Anwendung
auf solche Ereignisse sind z.B. der Übergang in einen benutzerdefinierten
sicheren Zustand beim Übergang des Controllers in einen Fehlerzustand
und das Wiederaufnehmen der regulären Aktivität beim Wiedereintritt des
Controllers in einen aktiven Zustand sowie das Loggen des Ereignisses.

Eine explizite Einsicht in jedes Fehlerereignis (oder das anwendungsgesteu-
erte Erzeugen solcher Fehler) auf Busebene ist für solche Anwendungsfälle
interessant, die sich mit der Analyse der Bus-Topologie und der Prüfung
des Verhaltens von Controllern befassen; dies sind jedoch keine Anwen-
dungsfälle für die Restbussimulation, sondern für spezielle Fault-Injection-
Werkzeuge, die an bestimmte Hardware mit Bus-Controllern gebunden
sind, die einen niedrigeren Abstraktionsgrad als die Standard-Bus-Control-
ler aufweisen müssen, bzw. die an spezielle Transceiver gebunden sind, die
dynamisch neu konfiguriert werden können, ein bestimmtes Fehlverhalten
zu zeigen.

2.1.5 Busagnostische Ereignisse

Die folgenden Ereignisse werden von der Restbussimulation selbst erzeugt oder
deren Erzeugung wird durch die Restbussimulation veranlasst, um mit benut-
zerdefinierten Callback-Funktionen darauf reagieren zu können. Sie sind un-
abhängig von der Anbindung der Restbussimulation an konkrete Bus-Kanäle.

Anwendungsstart Beim Start der Restbussimulation müssen Parameter für Bus-
Kanäle gesetzt werden, die Bedatung 2 der Datenpuffer gemäß den In-
formationen in den verwendeten Datenbasen oder ggf. durch vorgegebe-

2Terminus für die Vorbelegung von Datenwerten
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ne Default-Werte durchgeführt und (im Entwicklungs-Modus) Server für
Kontroll- und Tracer-Kanäle initialisiert werden.

Anwendungsende Beim Beenden der Restbussimulation müssen die Parameter
für Bus-Kanäle zurückgesetzt werden bzw. diese deaktiviert werden.

Zeitereignisse Die Restbussimulation muss für relative oder absolute Zeitpunkte
benutzerdefinierte Funktionen ausführen können. Verwendet werden kann
dies z.B. zur Veränderung von Signalwerten gemäß einer gewünschten
zeitabhängigen Kennlinie. Andere Anwendungsfälle sind das Sampling von
analogen oder digitalen Eingangssignalen durch eine benutzerdefinierte
periodische Funktion.

Signalwert-Änderungen Signale werden zwar als Teil von Botschaften zwi-
schen Teilnehmern kommuniziert und sind damit prinzipiell busspezifisch;
sie sind innerhalb einer Restbussimulation jedoch als eigenständige Ele-
mente manipulierbar und haben aus Benutzersicht keine direkte Assozia-
tion mit dem verwendeten Kommunikationsmechanismus (diese Abstrak-
tion ist ja gerade eine der Hauptaufgaben des Restbussimulations-API).
Änderungen an Signalwerten müssen im Hinblick auf definierte Werte-
bereiche überwacht werden, wobei es weitgehend anwendungsabhängig
ist, ob unzulässige Änderungen unterbunden werden, auf die zulässigen
Grenzwerte abgebildet werden oder Warnungen auslösen.

Prozessvariablen-Änderungen Um während früher Entwicklungsphasen exter-
ne Größen (Sensorwerte etc.) zu simulieren oder um Vorgabewerte an
eine laufende Restbussimulation weiterzuleiten werden in der Regel so
genannte Prozessvariable verwendet. Sie ermöglichen einen kontrollier-
ten Zugriff auf den gekapselten Datenwert und propagieren diesen bei
Änderungen an abhängige Funktionen und ermöglichen so eine Variante
von Dataflow-Programmierung, d.h. das systematische Anbinden von Er-
eignisbehandlungsroutinen und das automatische Berechnen abgeleiteter
Größen bei Änderungen. Häufig motiviert sich die Dataflow-Semantik auch
aus den graphischen Darstellungen, die viele Simulations-Umgebungen
bieten (vermutlich bekanntestes Beispiel hierfür sind Matlab-Simulink-
Blöcke, bei denen der Datenfluss als Verbindung der Ausgangs-Ports von
Datenquellen mit den Eingangs-Ports von Datensenken modelliert wird).

Dieser Mechanismus unterscheidet sich hinsichtlich der zuvor genannten
Manipulation von Signalwerten dadurch, dass in diesem Fall die Variablen
nicht in den Datenbasen definiert sein müssen, sondern vom Benutzer
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Abbildung 2.3: Hardware-Plattform ISI CANyon [Ber]

explizit eingeführt werden. Sie stellen in der Regel Aspekte dar, die nicht
Element der durch die Datenbasen modellierten Architektur sind, son-
dern speziell für die Restbussimulation in einem bestimmten Umfeld (z.B.
am Prüfstand) benötigte Parameter, z.B. festgelegte Laufzeit, Kennlinien-
verläufe, Diagnose- und Debug-Informationen.

2.2 CAN-Kommunikation unter Linux

Da die Referenz-Implementierung für ein Linux-System auf PowerPC-Basis er-
folgt (das ISI CANyon von Berger Elektronik, konzipiert von Bastian Hitzler
in [Hit10]; siehe Abbildung 2.3), werden im Folgenden einige Aspekte von Li-
nux als Softwareplattform erläutert, mit dem Fokus auf die Untertützung des
vorgestellten ereignisorientierten Anwendungsmodells. Für Leser, die bereits
auf Erfahrungen in der Linux-Systemprogrammierung zurückblicken dürfen, ist
dennoch Abschnitt 2.2.4 relevant, da dieser auf die Einbindung von CAN eingeht,
was ein eher wenig bekannter Teil des Linux-Kernels sein dürfte.
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2.2.1 Klassifikation von Anwendungen

In der Systemprogrammierung gibt es zwei unterschiedliche Kategorien, in die
Tasks 3 hinsichtlich ihres Ressourcenbedarfs eingeordnet werden: I/O-gebundene
Tasks und CPU-gebundene Tasks.

I/O-gebundene Tasks verbringen den wesentlichen Teil ihrer Zeit in Warte-
zuständen, wobei der Begriff

”
Warten“ in diesem Zusammenhang entweder das

Warten auf die Gewährung eines exklusiven Nutzungsrechts für eine bestimmte
Ressource beschreibt oder das Warten auf das Auftreten von Ereignissen im
Zusammenhang mit einer bestimmten Ressource (z.B. auf Eingabe- und Ausga-
be-Ereignisse), wobei es zu großen Teilen betriebssystemabhängig ist, welche
Ereignisse zur Verfügung stehen. Die bei weitem am häufigsten verarbeiteten Er-
eignisse sind die Ein- und Ausgabe von Daten über Netzwerk- oder Dateisystem-
Schnittstellen.

CPU-gebundene Tasks verbringen den wesentlichen Teil ihrer Zeit mit Be-
rechnungen, d.h. der aktiven Verwendung eines Prozessorkerns. Beispiele sind
algorithmisch aufwändige Datentransformationen und Berechnungen.

Im Hinblick auf Linux-Systeme ist eine ähnliche, aber nicht völlig identische
Klassifikation in Syscall4-lastige Tasks und User-Space-lastige Tasks möglich.
Wenn ein Programm einen Syscall ausführt, werden immer zwei Kontextwechsel
durchgeführt (nach dem Aufruf aus dem User-Space wird in den Kernel-Kontext
gewechselt und vor der Rückkehr wird vom Kernel-Kontext in den User-Space
gewechselt), der zudem weitreichendere Konsequenzen hat und höhere Kosten
verursacht als ein Kontextwechsel zwischen unterschiedlichen User-Space-Tasks.
Diese höheren Kosten für Syscalls im Gegensatz zu einfachen Funktionsaufrufen
innerhalb einer Anwendung liegen unter anderem an den unterschiedlichen
Adressräumen, in denen der Kernel und der Anwendungsprozess laufen (hier
sind immer Puffer-Kopien notwendig statt wie beim Aufruf innerhalb der Anwen-
dung nur Referenzen zu übergeben), sowie an der Notwendigkeit des Kernels,
eine viel gezieltere Überprüfung von Parametern durchzuführen, um bestimmten

3Im Folgenden wird der Begriff Task als Überbegriff für Prozesse und Threads verwendet. Es
ist betriebssystemabhängig, inwieweit sich Threads und Prozesse unterscheiden. Eine generelle
Unterscheidung ist dadurch gegeben, dass Prozesse in einem logisch voneinander unabhängigen
Adressraum ablaufen, während Threads immer den Adressraum des Elternprozesses verwenden.
Somit sind Prozesse gegenseitig besser isoliert, mit den damit verbundenen Vorteilen und Ein-
schränkungen.

4Ein Syscall bezeichnet den Aufruf einer im Kernel definierten Routine, die im geschützten
Speicherbereich des Kernels abläuft; zur Abgrenzung gegen den allgemeinen Begriff

”
Systemaufruf“,

der sich u.U. auch auf Aufrufe von in vom Betriebssystem bereitgestellten Bibliotheken vorhandene
Funktionen ausdehnen lässt, hat der Begriff

”
Syscall“ eine deutlich präzisere Definition.
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Sicherheitsaspekten gerecht zu werden, die zwar nur im traditionellen Mehrbe-
nutzerbetrieb essentiell sind, die aber nicht einfach deaktiviert werden können.

In der überwiegenden Mehrheit der Anwendungsfälle für konkrete Restbus-
simulationen dominieren die Anforderungen an die Ereignisverarbeitung die
Architektur; algorithmisch aufwändige Restbussimulationen (man denke an das
Prototyping von ESP-Steuergeräten) sind durchaus möglich, werden jedoch in
der Praxis im Prototypen-Stadium meist innerhalb einer Umgebung zur numeri-
schen Simulation (z.B. Matlab) entwickelt, da in diesem Fall das algorithmische
Prototyping (d.h. die Entwicklung und Optimierung des Algorithmus) den Ent-
wicklungsaufwand dominiert.

Eine Integration algorithmisch aufwändiger Anwendungen in ein ereignisori-
entiertes System ist meist durch eine Diskretisierung des Algorithmus möglich.
Der umgekehrte Fall, die Integration von hinreichend präzisen Ereignisbehand-
lungs-Funktionen in ein System mit blockierenden Berechnungen, ist dagegen
nicht möglich (bzw. wiederum nur durch eine Diskretisierung der Berechnung),
so dass eine ereignisorientierte Architektur als Voraussetzung für Restbussimula-
tionen gelten kann.

2.2.2 I/O-Multiplexing

Das ereignisorientierte Anwendungsmodell führt dazu, dass die Anwendung
einen wesentlichen Teil ihrer Laufzeit mit dem Warten auf Ereignisse verbringt.
Um diese Wartezustände sinnvoll handzuhaben, d.h. die Ausführung von Funk-
tionen auch während des Wartens zu ermöglichen, gibt es zwei unterschiedliche
Ansätze, die kombiniert werden müssen, um ein effizientes Warten auch bei
einer größeren Menge an potentiellen Ereignissen zu ermöglichen.

Einerseits muss die Anwendung in verschiedene Threads partitioniert werden,
so dass die Blockierung des Kontrollflusses durch das Warten in einem Thread
die lauffähigen Teile der Anwendung nicht beeinträchtigt. In der Praxis ist es
jedoch nicht möglich, jeden Ereignistyp durch einen eigenen Thread vom Rest
der Anwendung zu entkoppeln, da dies einerseits Arbeitsspeicher für die Thread-
Verwaltung benötigt (ein eigener Stack pro Thread sowie diverse Verwaltungsin-
formationen) und andererseits CPU-Zeit verbraucht und interne Cache-Invalidie-
rungen und Memory-Bus-Last durch Kontext-Wechsel verursacht [Ker10]. Bei
neueren Linux-Systemen ist zwar ein sogenannter O(1)-Scheduler vorhanden,
bei dem die Zeit zum Kontext-Wechsel zwischen zwei Tasks nicht von der Ge-
samtzahl der Tasks abhängig ist, sondern konstant [Hal11]. Die Gesamtzeit für
das Scheduling zwischen allen Tasks ist jedoch weiterhin abhängig von der Ge-
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samtzahl der Tasks, gemäß der Formel tCPU =
∑

n tn +
∑

n Ccs =
∑

n tn +nCcs,
mit tCPU als Zeit für einen kompletten Scheduling-Zyklus für alle als gleich
priorisiert angenommenen Tasks, n als Anzahl der Tasks, tn als Zeit für Task n

im betrachteten Zyklus und Ccs als konstante Zeit für einen einzelnen Kontext-
Wechsel. 5

Es ist also darüber hinaus notwendig, innerhalb eines einzelnen Threads
nicht nur auf ein bestimmtes Ereignis warten zu können, sondern auf eine Menge
an Ereignissen (um so die Anzahl der für die Ereignisbehandlung dedizierten
Threads drastisch zu verringern). Der Standard-Mechanismus dafür ist unter
POSIX-Systemen die Verwendung der select-Funktion6, die auf Ereignisse einer
Menge von Dateideskriptoren wartet und das Warten unterbricht, wenn für min-
destens einen dieser Dateideskriptoren Ereignisse signalisiert werden. Hierbei ist
zu erwähnen, dass dies selbstverständlich kein aktives Warten und Abfragen der
Menge an Deskriptoren im User-Space durch die Anwendung bewirkt (d.h. kein
Polling), sondern die Abgabe des Kontrollflusses der Anwendung (Descheduling
des Threads) und eine durch den Kernel initiierte Wiederaufnahme desselben im
Falle von Ereignissen auf den überwachten Deskriptoren. Die unterschiedlichen
Modelle sind in Abbildung 2.4, Abbildung 2.5, Abbildung 2.6 und Abbildung 2.7
dargestellt.

Prinzipiell ist es möglich, sämtliche an einen Dateideskriptor gebundenen
Ereignisse so in einem einzelnen Thread zu behandeln. Dies führt jedoch leicht zu
einer softwaretechnisch unschönen Konglomeration von eigentlich unabhängigen
Aspekten. Dies mag vor dem Hintergrund der Code-Generierung nicht dramatisch
erscheinen (der Benutzer kommt mit dem intern verwendeten Mechanismus nicht
direkt in Kontakt), ist allerdings für die Wartbarkeit und Erweiterungsfähigkeit
der Code-Generatoren nachteilig. Insbesondere gibt es ohnehin Ereignisse, die
nicht auf Dateideskriptoren abgebildet werden können, so dass zwangsläufig
alternative Methoden hinzugezogen werden müssen. Ein Vorteil der Einzel-
Thread-Lösung wäre allerdings, dass die Abbildung auf ein microcontrollernahes
(durch Interrupts getriebenes) Verarbeitungsmodell oder eine Echtzeit-Variante
von Linux so einfacher möglich ist.

Eine Alternative zur select-Funktion ist (sofern auf die POSIX-Kompatibilität
verzichtet werden kann und eine Linux-Lösung akzeptabel ist) die Verwendung
des epoll-API, das bei einer größeren Menge an zu überwachenden Dateide-
skriptoren effizienter ist als select-Aufrufe [Keg].

5Eine ausführliche Beschreibung der Thematik ist zu finden unter [Keg].
6Das Socket-API von Windows unterstützt zwar eine Variante von select, jedoch ist diese auch

nur mit Sockets und nicht mit beliebigen Dateideskriptoren verwendbar.
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FD 2 FD 3 FD 4 FD 5FD 1

read()

Thread 1

Abbildung 2.4: Ein einzelner Thread; read()-Call suspendiert den Thread, bis
der Kernel ein Ereignis auf dem überwachten Dateideskriptor signalisiert.
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read()

Thread 2

FD 3

read()

Thread 3

FD 4

read()

Thread 4

FD 5

read()

Thread 5

FD 1

read()

Thread 1

Abbildung 2.5: Mehrere Threads; read()-Call suspendiert den aufrufenden
Thread, bis der Kernel ein Ereignis auf dem überwachten Dateideskriptor signali-
siert. [Ber]

FD 2 FD 3

select()

Thread 2

FD 4 FD 5FD 1

select()

Thread 1

Abbildung 2.6: Mehrere Threads; select()-Call suspendiert den aufrufenden
Thread, bis der Kernel ein Ereignis auf mindestens einem der überwachten
Deskriptoren signalisiert. [Ber]
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FD 2 FD 3 FD 4 FD 5FD 1

select()

Thread 1

Abbildung 2.7: Ein einzelner Thread; select()-Call suspendiert den Thread, bis
der Kernel ein Ereignis auf mindestens einem der überwachten Deskriptoren
signalisiert. [Ber]

2.2.3 Präzises Scheduling im User-Space

Um mit hinreichender Genauigkeit zu bestimmten Zeitpunkten Botschaften
senden zu können, muss ein Zeitgeber mit einer Auflösung im Bereich von
etwa 100 Mikrosekunden verfügbar sein.7 Dies motiviert sich aus der Tatsache,
dass bei den meisten Beschreibungsformaten für die Buskommunikation die
Zykluszeit von Botschaften mit einer Millisekunde Genauigkeit angegeben wird.
In der Regel werden bei sicherheitskritischen Anforderungen (bei denen eine
potentielle Totzeit von einer Millisekunde nicht akzeptabel wäre) die Botschaften
ausserhalb eines eventuell vorhandenen Zyklus unmittelbar als Botschaften
hoher Priorität gesendet (zumindest bei CAN-Kommunikation, wo dies möglich
ist, da kein Scheduling auf Protokollebene einzuhalten ist). Bei Verwendung von
CAN nimmt die reine Übertragungszeit für eine Nachricht bereits mehr als 100
Mikrosekunden in Anspruch [Rei08]. Die clock nanosleep-Funktion 8 bewirkt
unter Linux das Warten auf den Ablauf des gegebenen Intervalls oder auf das
Erreichen eines absoluten Zeitpunktes.

In [Ker10] werden mehrere Linux-spezifische Ansätze vorgestellt, wie die
Realisierung von Funktionsaufrufen zu präzisen Zeitpunkten realisiert werden
kann, darunter der timerfd-Ansatz, bei dem spezielle virtuelle Dateideskriptoren
als Zeitgeber erzeugt werden können und somit in eine reguläre select-Schleife

7Dies betrifft das Scheduling von CAN- und LIN-Botschaften; unter Flexray erfolgt das eigentliche
Senden durch den dedizierten Flexray-Controller, da die Präzisionsanforderungen hier ungleich
höher sind.

8Die selbstverständlich, entgegen dem Anschein, der durch den Funktionsnamen erweckt wird,
keine Nanosekunden-Auflösung hat, sondern eine systemspezifische Auflösung.
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eingebunden werden können und somit auf Ereignisse des Zeitgebers und I/O-
Ereignisse mit dem gleichen Mechanismus reagiert werden kann.

Würde die Restbussimulation als Kernel-Modul laufen (siehe Abschnitt 2.5.2),
so könnte das Timing durch die Kernel-Timer erfolgen, die sich durch höchst-
mögliche Präzision (für die verwendete Plattform) und einfache Programmier-
Schnittstelle (Trigger-Zeitpunkt mit auszuführender Callback-Funktion) auszeich-
nen. Der verwendete Timer-Wheel-Algorithmus zur Realisierung des Scheduling
der Kernel-Timer, wie sie im Kernel 2.6 realisiert sind, ist in [GN06] beschrieben.

2.2.4 SocketCAN

Das verwendete Linux-System unterstützt das CAN-Protokoll bzw. CAN-Hardwa-
re mittels der ursprünglich von der Volkswagen AG entwickelten so genannten
SocketCAN-Treiber9, die seit einiger Zeit Teil des Mainline-Kernels sind. Das
Besondere an diesen ist, dass sie auf dem gewöhnlichen Netzwerk-Stack von
Linux aufbauen und CAN als neue Protokollfamilie einführen. Technisch und
konzeptuell hat CAN keinerlei Überschneidungen mit den üblichen von diesem
Stack unterstützten Protokollen (unterschiedliche Bus-Physik, unterschiedliche
Arbitrierung); Motivation für die Verwendung des Netzwerk-Stacks zur Anbin-
dung von CAN-Controllern war ausschließlich die Nutzung der bestehenden
Infrastruktur wie Puffer-Verwaltungs-Datenstrukturen und -Funktionen auf Ker-
nel-Seite und die Nutzung von bestehenden, bewährten Datei- und Socket-APIs
im User-Space. Durch die Integration in den Netzwerk-Stack ist es möglich, das
POSIX-Socket-API zum Senden und Empfangen von CAN-Botschaften zu verwen-
den; die Einführung eines neuen API speziell für CAN wurde so vermieden und
Anwendungsentwickler können bekannte und bewährte I/O-Muster für die CAN-
Kommunikation verwenden.

Die grundsätzliche Funktionsweise besteht darin, dass von der CAN-Hard-
ware (d.h. den angebundenen CAN-Controllern) abstrahiert wird, indem jeder
vorhandene CAN-Kanal als eigenes Netzwerk-Interface angeboten wird, auf dem
die vom Netzwerk-Stack vorgegebenen Operationen garantiert werden [Har].
Anwendungen instantiieren mittels des Socket-API logische bidirektionale Ver-
bindungen zu diesen Netzwerk-Interfaces, wobei der Kernel als Multiplexer
agiert, indem er mehreren Anwendungen erlaubt, dasselbe Gerät zu verwenden.
Die Koordination des Zugriffs erfolgt hierbei durch den Kernel und muss nicht
von den Anwendungen implementiert werden. Diese zwangsläufige Delegation
der Aufgaben an den Kernel hat subtile Implikationen, auf die in Abschnitt 2.4

9Die ursprüngliche Bezeichnung für dieses API lautete Low Level CAN Framework (LLCF).
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Kernel Netzwerk-Stack

SocketCAN
BCM RAW

libc Socket-API

Anwendung RBS Anwendung

CAN-Bus

Hardware CAN-Controller

CAN-Transceiver

CAN-Controller

CAN-Transceiver

Abbildung 2.8: Abstraktionsschichten bei Verwendung von SocketCAN [Ber]

eingegangen wird.
SocketCAN bietet, neben den in dieser Arbeit nicht betrachteten Transport-

protokollen, grundsätzlich zwei Arten von CAN-Sockets, RAW-Sockets und
BCM-Sockets, die im Folgenden beschrieben werden und in Tabelle 2.1 ge-
genübergestellt werden, wobei beide Arten problemlos gemeinsam verwendet
werden, sowohl innerhalb einer Anwendung als auch in unterschiedlichen Pro-
zessen [Har].

Abbildung 2.8 zeigt schematisch die Kommunikations-Pfade zwischen An-
wendung, Kernel und Hardware.

2.2.5 RAW-Sockets

Die RAW-Sockets entsprechen von der Verwendungsweise her regulären Sockets
oder Dateideskriptoren: sie erlauben das Senden einer CAN-Botschaft mit den
gewohnten send bzw. write Systemfunktionen und das Empfangen einer ein-
zelnen CAN-Botschaft mit den recv bzw. read Systemfunktionen; SocketCAN
garantiert hierbei, dass Aufrufe jeweils eine vollständige Botschaft komplett
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libc Socket-API
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Abbildung 2.9: Datenübertragungs-Pfad bei Verwendung von RAW-Sockets. Bei
jedem Senden muss die Userspace-Kernelspace-Grenze passiert werden, was
Speicherkopien verursacht. Die Anwendung ist für das korrekte Timing verant-
wortlich. [Ber]

konsumieren bzw. liefern. Die RAW-Sockets sind echte Dateideskriptoren und
können somit u. a. auch in select Systemaufrufen verwendet werden, um ef-
fizientes I/O-Multiplexing zu realisieren. RAW-Sockets bieten die Möglichkeit,
Filter zu definieren, um den Empfang von Botschaften auf solche Botschaften
beschränken, deren ID die Filterbedingungen erfüllen. Die Durchführung des Fil-
terns im Kernel verhindert unnötige Kopien vom Kernel-Space in den User-Space.
Je nach verwendetem CAN-Controller könnte die Filterung auch direkt auf der
CAN-Hardware erfolgen; allerdings kann dies unter SocketCAN auf Grund des
potentiellen intern stattfindenden Multiplexing von Nachrichten an verschiedene
Sockets in verschiedenen Prozessen nicht durchgeführt werden [Har].
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2.2.6 BCM-Sockets

Der Broadcast Manager (BCM) kann beschrieben werden als ein Management-
API für zyklische CAN-Sendeaufträge: anstatt CAN-Botschaften direkt aus ei-
ner Anwendung zu senden, werden stattdessen dem BCM Sendeaufträge für
Botschaften übermittelt, die zusätzlich zum Dateninhalt der Botschaften Infor-
mationen über Zykluszeiten enthalten. Der BCM (der im Kontext des SocketCAN-
Moduls im Kernel läuft) übernimmt daraufhin die Verantwortung für das zykli-
sche Senden der ihm übermittelten Botschaften; die Anwendung wird davon
entlastet, insbesondere was das relativ aufwändig zu realisierende Zeitverhal-
ten (Einhaltung der Zykluszeiten) betrifft. Zusätzlich werden unnötige Kopien
zwischen User-Space und Kernel-Space vermieden, die sonst beim mehrmaligen
Senden von Botschaften gleichen Inhalts nötig wären. Abbildung 2.10 stellt die-
sen Sachverhalt dar, während Abbildung 2.9 die Realisierung mit RAW-Sockets
gegenüberstellt.

Soll der Dateninhalt einer vom BCM verwalteten Botschaft verändert werden,
so kann dies als Änderungsauftrag über den BCM-Socket übermittelt werden;
dabei kann angegeben werden, ob die veränderte Botschaft sofort gesendet
werden und ein neuer Zyklus gestartet werden soll oder ob die veränderte
Botschaft im Rahmen des nächsten regulären Zykluspunktes gesendet werden
und der bestehende Zyklus beibehalten werden soll [Har]. Das Abbrechen eines
Sendezyklus für eine CAN-Botschaft erfolgt analog.

Ein weiterer spezieller Anwendungsfall, den der BCM unterstützt, ist das
Umschalten eines zyklischen Sendeauftrags von einem Intervall auf ein anderes
Intervall nach einer definierten Anzahl von Durchläufen; relevant ist dies z.B.
bei Nachrichten, die bei Einschaltvorgängen wichtig sind (z.B. zur Initialisierung
anderer ECUs) und daher mit niedriger Zykluszeit gesendet werden sollen, im
laufenden Betrieb aber eine höhere Zykluszeit ausreichend ist.

BCM-Sockets können auch zum Empfangen von Nachrichten verwendet wer-
den. Hier ist zusätzlich zu den auch bei den RAW-Sockets vorhandenen ID-
basierten Filtern eine inhaltsbasierte Optimierung möglich: der Socket kann so
konfiguriert werden, dass eine Botschaft nur an die Anwendungsschicht wei-
tergeleitet wird, wenn sich seit dem letzten Empfang dieser Botschaft nichts
am Inhalt verändert hat. Hierbei ist durch Bitmasken konfigurierbar, welche
Bereiche einer Botschaft für den Empfänger überhaupt relevant sind. Des Wei-
teren kann eine Zeitüberwachung erfolgen, indem für eine zu empfangende
Nachricht ein Timeout-Wert t angegeben wird; wird nach dem ersten Emp-
fang der Nachricht nicht nach spätestens t Zeiteinheiten die Nachricht erneut
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Abbildung 2.10: Datenübertragungs-Pfad bei Verwendung von BCM-Sockets. Die
Anwendung muss die Daten für eine zyklisch zu sendende Botschaft nur einmalig
(und bei Änderungen) an den Kernel übertragen. Das Timing erledigt das BCM-
Kernelmodul. [Ber]

empfangen, erhält die Anwendung über den BCM-Socket eine entsprechende
Benachrichtigung. Optional kann auf das Warten auf den Empfang mindestens ei-
ner Nachricht zum Starten der Überwachung verzichtet werden und unmittelbar
mit der Überwachung begonnen werden.

Darüber hinaus wird die zeitbasierte Drosselung von an die Anwendung
übermittelten Botschaften unterstützt, d.h. für eine Botschaft, deren Verarbeitung
durch die Anwendung bei zu häufigen Änderungen nicht gewährleistet werden
kann, kann explizit ein Minimal-Intervall angegeben werden, das zwischen zwei
aufeinanderfolgenden Änderungen des Botschaftsinhaltes abgelaufen sein muss,
um die Weiterleitung an die Anwendungsschicht zu veranlassen.

RAW BCM

Senden × ×
Empfangen × ×
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RAW BCM

Empfangs-Multiplexing × ×
Autonomes zyklisches Senden - ×
Callbacks nach dem Empfangen × ×
Callbacks vor dem Senden × ×10

Error-Frames empfangen × ×
Bus-Off-Benachrichtigungen empfangen × ×
Timeout-Überwachnug - ×
Filterung durch Botschafts-Identifier × ×
Inhaltsbasierte Filterung durch Bitmasken - ×
Umschaltung des Sende-Intervalls - ×
Nutzung virtueller CAN-Bus × ×
Drosselung von Botschaften - ×

Tabelle 2.1: Vergleich RAW- und BCM-Sockets. Fehlende Funktionalität muss von
der Anwendung realisiert werden.

2.2.7 Error-Frames und Bus-Off-Benachrichtigung

Für Anwendungen, die über Error-Frames auf dem Bus oder über die Abschal-
tung der Bus-Verbindung durch den CAN-Controller (als Reaktion auf Fehler)
informiert werden müssen, gibt es bei beiden Socket-Arten die Möglichkeit, den
Empfang entsprechender Botschaften, die standardmäßig nicht an die Anwen-
dung weitergeleitet werden, zu aktivieren. Es handelt sich hierbei nicht um
die eigentlichen Error-Frames, die auf dem Bus liegen, sondern um spezielle
Nachrichten, die der SocketCAN-Treiber verwendet, um die Anwendung über
diese Ereignisse zu informieren. Die Übermittlung erfolgt lokal zwischen Kernel
und Anwendung und geht nicht über den CAN-Controller; es wird lediglich
der bereits bestehende Socket zwischen Kernel und Anwendung genutzt, um
für derartige Out-Of-Band-Informationen keinen orthogonalen Mechanismus
verwenden zu müssen.

2.2.8 Virtueller CAN-Bus

SocketCAN ermöglicht es, virtuelle CAN-Kanäle zu definieren, mit denen die
beschriebenen Socket-Arten ohne Änderungen verwendet werden können. Diese

10Jedoch nicht bei autonomen Sendeaufträgen.
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simulieren die Kommunikation, ohne auf CAN-Hardware zuzugreifen bzw. ohne
diese vorauszusetzen. Einfache Tests ohne Anspruch auf hohe Aussagekraft sind
so trivial möglich [Har].

2.3 CAN-Kommunikation unter Windows

Unter Windows gibt es kein etabliertes CAN-Framework und keine einheitli-
che Abstraktion für Hardware unterschiedlicher Hersteller. Die XL Library von
Vector Informatik, die sämtliche Hardware-Produktlinien dieses Herstellern mit
sämtlichen Bussystemen unterstützt, kann als Basis für so genannte online Rest-
bussimulationen verwendet werden, d.h. Restbussimulationen, die direkt auf
einem Host-Rechner laufen statt auf einer dezidierten CAN-Hardware, die auto-
nom lauffähig ist.11

2.3.1 Vector XL Library

Die Vector XL Library wird von Vector Informatik als einheitliche Software-
Schnittstelle zum Ansprechen der von dieser Firma vertriebenen CAN-, Flexray-,
LIN- und MOST-Hardware zur Verfügung gestellt. Sie besteht aus einer dynami-
schen Bibliothek (DLL) mit zugehöriger Header-Datei, die intern die hardware-
spezifischen Treiber der konkret verwendeten Hardware anspricht [Vec].

2.3.2 Port-Konzept

Die zentralen Abstraktionen, die die Vector XL Library zur Verfügung stellt,
sind Ports (entspricht einer logischen Verbindung zu einem physikalisch vor-
handenen oder virtuellen Kanal, vom Konzept her ähnlich einem SocketCAN-
Socket) und abstrakte Ereignis-Objekte, die die unterstützten busspezifischen
und generischen Ereignisse (Sende-, Empfangs- und Zeitgeber-Ereignisse) ab-
strahieren [Vec]. Diese Ereignisse können mit den unter Windows verwendeten
Methoden zur Ereignis-Behandlung verwendet werden, wie im nächsten Ab-
schnitt beschrieben. Wie unter SocketCAN, so kann auch mit der Vector XL
Library eine Anwendung mehrere Ports für denselben physikalischen Kanal
öffnen12 und die Bibliothek übernimmt die nötige Replikation der Ereignisse und
Synchronisation des Zugriffs, und entlastet so den Anwendungsprogrammierer.

11Mit dem CAN Case XL steht mittlerweile auch eine autonom lauffähige Hardware zur Verfügung,
ähnlich den etablierten Produkten von Samtec oder Berger Elektronik.

12Es können auch mehrere Anwendungen einen Port für denselben physikalischen Kanal erzeugen.
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Derjenige Port für einen bestimmten physikalischen Kanal, der zuerst geöffnet
wird, hat erweiterte Berechtigungen und nur über diesen können Bus-Parameter
gesetzt werden [Vec].

2.3.3 Ereignis-Behandlung unter Windows

Windows stellt ein generisches Modell zur Ereignis-Verarbeitung zur Verfügung,
das eine einheitliche Behandlung von vom Betriebssystem bereitgestellten Er-
eignissen und anwendungsspezifischen Ereignissen ermöglicht. Die zentralen
Elemente sind die Methoden WaitForSingleObject bzw. WaitForMultipleOb-
jects, die von der Semantik her dem select-Systemaufruf von POSIX-Systemen
entsprechen und es ermöglichen, den Kontrollfluss des aktuellen Threads zu
suspendieren, um ressourcenschonend auf eines oder eines von mehreren Er-
eignissen zu warten. Die Ereignisse sind gebunden an einen opaken Datentyp
(HANDLE), auf dem die Operationen SetEvent und ResetEvent möglich sind.
Wird auf ein solches Objekt die Operation SetEvent ausgeführt, so wird ein
Thread, der mittels einer der WaitFor...-Methoden auf Ereignisse für dieser
Objekt wartet, benachrichtigt 13 und nimmt seinen unterbrochenen Kontroll-
fluss wieder auf. Dadurch ist es für Entwickler, die mit dem low-level Windows-
API vertraut sind, einfach, die von der XL Library generierten Ereignisse zu
verwerten.

2.3.4 Zeitgeber

Die Vector XL Library stellt, ebenfalls nutzbar über den generischen Ereignis-
Behandlungsmechanismus, einen präzisen Zeitgeber zur Verfügung, der durch
die verwendete Hardware gesteuert wird, so dass Anwendungen nicht auf die
entsprechenden Funktionen des Windows-API angewiesen sind und keinen dedi-
zierten Timer-Thread erzeugen müssen, sondern einen Zeitgeber mit determinis-
tischer, hoher Präzision nutzen können [Vec].

13Interessanterweise hat Linux erst verhältnismäßig spät ein API für generische Events eingeführt
(unter dem Begriff eventfd), das eine ähnliche Semantik bietet wie der beschriebene Mechanismus
von Windows. Zuvor mussten benutzerdefinierte Ereignisse mittels generischer Schnittstellen für die
Interprozess-Kommunikation wie Pipes oder Message Queues nachgebildet werden (dies ist auch
heute noch der bevorzugte Weg, da das eventfd-API auf Linux beschränkt ist, Pipes und Message
Queues dagegen auf allen POSIX-Systemen vorausgesetzt werden können) [Ker10].
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2.3.5 Anbindung von Anwendungen

Von Vector wird die XL Library nur als C-API und als .NET-API (die intern
das C-API verwendet, aber das Arbeiten auf einer höheren Abstraktions-Ebene
ermöglicht) angeboten; eine Unterstützung von Java müsste mittels JNI reali-
siert werden, wobei eine vollständige Unterstützung auf Grund des Umfangs
sehr aufwändig ist und auf Grund der Verwendung von Out-Parametern auch
nicht vollständig äquivalent umgesetzt werden kann. Aus diesem Grund ist der
einfachste Weg, die Vector XL Library als zusätzliche Zielplattform zu nutzen, die
Verwendung des C-API.

2.3.6 Übersetzung mit mingw

Mit dem auf GCC basierenden mingw-Compiler steht ein frei redistributierbarer
Compiler für Windows zur Verfügung, mit dem sich eine vollständige Werk-
zeugkette für die Übersetzung der Restbussimulation bei Verwendung des C-API
einbinden lässt, ohne auf die Auslieferung eines kommerziellen, mit zusätzlichen
Kosten für den Endnutzer verbundenen Compilers angewiesen zu sein.

2.4 Diskussion der Nachteile von SocketCAN und

XL Library

Ein Nachteil von SocketCAN liegt darin, dass das zu Grunde liegende Koordinati-
onsmodell, insbesondere das Multiplexen empfangener Botschaften durch den
Kernel, nicht mit der regulären 1:1-Beziehung zwischen dem Ereignis

”
Botschafts-

empfang“ und der Reaktion auf die Botschaft in der Anwendung übereinstimmt,
wie sie von fast allen anderen APIs zum Ansprechen von CAN-Hardware vor-
gegeben wird, insbesondere bei mikrocontrollernahen APIs. Diese bieten als
minimales API eine synchrone Can Send-Methode sowie einen Benachrichtigung-
Mechanismus (mittels Interrupt oder Callback-Funktion) über Empfangs-Ereig-
nisse und eine Can Receive-Funktion zum Auslesen der Botschaft durch die
Anwendung nach einer vorangegangenen Benachrichtigung oder durch Polling
an; die Möglichkeit, von mehreren Anwendungen aus (oder von mehreren Stel-
len aus einer Anwendung heraus) auf dasselbe Empfangsereignis zu reagieren
existiert bei diesen APIs nicht, sondern muss explizit nachgebildet werden (z.B.
durch anwendungsinterne Botschafts-Warteschlangen, wobei die Speicherver-
waltung durch die Anwendung erfolgt).
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Wird also bei der Anwendungs-Architektur zu sehr auf die von SocketCAN
bereitgestellten Mechanismen gesetzt, so beeinträchtigt dies die Portierbarkeit
der Anwendungen auf Systeme ohne SocketCAN. Es existieren jedoch APIs, die
einen ähnlichen Mechanismus zum Multiplexen der CAN-Kanäle anbieten, z.B.
die bereits erwähnte XL Driver Library der Firma Vector, die es ermöglicht, meh-
rere Anwendungen über so genannte Ports (nicht zu verwechseln mit TCP/IP-
Ports) an die eigentlichen CAN-Treiber anzubinden, wobei hier ähnlich wie unter
SocketCAN jeder Port eine eigene Empfangsqueue verwaltet. Hier ließe sich ver-
mutlich eine gemeinsame Abstraktionsschicht definieren, die die Schnittmenge
der Funktionalität von SocketCAN und XL Driver Library kapselt.

Die speziellen Aspekte der BCM-Sockets, insbesondere das autonome zykli-
sche Senden, lassen sich ebenfalls nicht ohne erheblichen Aufwand auf die oben
dargestellten einfacheren APIs portieren, so dass es hier wichtig ist, die Verwen-
dung von BCM-Funktionalität entsprechend zu kapseln. Wird ein AUTOSAR-
COM-Stack verwendet, so stehen entsprechende auftragsbasierte Schnittstellen
allerdings zur Verfügung [AUTa].

Weiter ist bei den BCM-Sockets kritisch, dass bei der Verwendung des autono-
men Sendens keine Möglichkeit besteht, Callbacks vor jedem Senden aufzurufen;
für Botschaften, bei denen diese Funktionalität erforderlich ist, muss das zykli-
sche Senden aus der Anwendung heraus erfolgen.

Ein weiteres Problem, dass sich bei zu starker Konzentration auf das durch
SocketCAN bereitgestellte Abstraktions-Modell ergibt, ist, dass keine definierten,
aus dem User-Space aufrufbaren Schnittstellen zur Konfiguration der Controllers
existieren; stattdessen muss das Standard-Tool ip verwendet werden, um die
CAN-Kanäle der Controller zu konfigurieren [Har]. Die dort vorgenommene
Konfiguration beeinflusst das Verhalten aller an diese Kanäle gebundenen CAN-
Sockets. Für bestimmte Wechsel der Betriebsmodi des CAN-Controllers (z.B. von
der aktiven Teilnahme mit Bestätigung aller empfangenen Nachrichten zum pas-
siven Modus, in dem Nachrichten empfangen, aber nicht bestätigt werden) muss
der CAN-Kanal deaktiviert werden und mit veränderten Parametern neu aktiviert
werden, was alle daran gebundenen CAN-Sockets ungültig macht; Anwendungen,
die dieses Verhalten benötigen, müssen diese Bedingungen abfangen, was die
Komplexität der Ereignisbehandlungs-Routinen erhöht.

Die Nachteile der Verwendung der XL Library liegen ähnlich. Auch hier steht
das mächtige Port-Konzept eventuellen Portierungen auf eingebettete Plattfor-
men entgegen. Zusätzlich wird die Lösung an einen bestimmten Hardware-
Hersteller gebunden und ist nur unter Windows lauffähig; es gibt zwar andere
Hersteller, die die Aufruf-Konventionen der XL Library emulieren oder nachbil-
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den, aber dies ist eher die Ausnahme, so dass die XL Library in keiner Weise als
Standard angesehen werden kann (der hohe Verbreitungsgrad resultiert nur aus
der sehr hohen Markt-Präsenz von Vector).

2.5 Alternativen zur beschriebenen Architektur

Zur vorgestellten Architektur gibt es fundamental verschiedene Ansätze, die im
Folgenden kurz beschrieben werden.

2.5.1 Echtzeit-Linux

Der für das verwendete Ziel-System verwendete Kernel ist kein Echtzeit-Kernel.
Ein Echtzeit-Kernel ist kompilierbar und verwendbar für die CANyon-Hard-
ware, unterstützte zum Zeitpunkt der Arbeit aber wichtige Elemente wie den
NAND-Flash-Speicher nicht, so dass dieser aus pragmatischen Gründen nicht
produktiv verwendet werden kann. Die prinzipiellen Hintergründe der Echtzeit-
Unterstützung unter Linux sind in [Hal11] umrissen.

2.5.2 Kernelmodul für spezifische Restbussimulation

Ein vollkommen anderer Ansatz wäre die Generierung der Restbussimulation
und der zugehörigen benutzerdefinierten Erweiterungen als Kernel-Modul. Die
stark modularisierte Architektur des Linux-Kernels macht dies möglich, sofern
für den verwendeten Kernel das dynamische Laden von Modulen 14 aktiviert ist.
Diese Architektur-Variante ist in Abbildung 2.11 dargestellt. Bei Verwendung
eines Kernels, der keine dynamischen Module unterstützt, könnte ebenfalls die
Restbussimulation als Kernel-Modul generiert werden, dieses müsste dann jedoch
statisch gegen den Kernel gelinkt werden, was zur Folge hätte, dass immer der
komplette Kernel neu auf das Zielgerät aufgespielt werden müsste, was aus
verschiedenen Gründen (Dauer des Vorgangs und die Gefahr, das System in
einen unbenutzbaren Zustand zu bringen) nicht akzeptabel ist. Die Vorteile
dieser Lösung sind:

• Zero-Copy möglich, d.h. bestmögliche Vermeidung von Puffer-Kopien von
empfangenen und gesendeten Datenpaketen. Da Restbussimulation und
Kernel im gleichen Adressraum ablaufen, können Referenzen auf Daten-
pakete (mittels Zeigern) zwischen den Schichten weitergeleitet werden

14Dynamische Kernel-Module sind keine dynamischen Bibliotheken (libXX.so) im Sinne des unter
Linux üblichen ld-Linkers, wie man vermuten könnte.
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CAN-Transceiver
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Abbildung 2.11: Architektur-Alternative: Restbussimulation als Kernel-Modul.
Dies vermeidet jegliche Userspace-Kernelspace-Puffer-Kopien durch die Kommu-
nikationstätigkeiten der RBS. [Ber]

anstatt (beim Übergang zwischen Kernel und User-Space) Kopien erzeugen
zu müssen.

• Bestmögliches Timing, da Kernel-Timer-Callbacks genutzt werden können
und keine Latenz durch das Aktivieren eines auf ein Timer-Ereignis war-
tenden User-Space-Threads durch den Scheduler auftritt.

• Die Nutzung hardwarespezifischer Funktionen, z.B. der CAN-Mailboxen
auf dem Controller unter Umgehung des SocketCAN-API, wird ermöglicht.
Somit kann die bestmögliche Ausnutzung der Fähigkeiten der Hardware
gewährleistet werden.

Zu den Nachteilen zählen:

• Erschwertes Debugging. Da die Restbussimulation im Kernel abläuft, kann
kein einfaches Remote-Debugging (z.B. mit gdb und gdbserver) durch-
geführt werden, sondern es müssen spezielle Kernel-Debugger eingesetzt
werden. Zusätzlich müssen in Abhängigkeit davon, in welcher Schicht
genau das Problem vermutet wird, bestimmte Kernel-Optionen aktiviert
werden, was unter Umständen das Neuübersetzen des Kernels erfordert. 15

15Die Aktivierung aller Debug- und Trace-Optionen des Kernels führt, sofern der Kernel damit
überhaupt übersetzbar ist, mit Sicherheit zu interessantem Laufzeit-Verhalten, trägt aber in aller
Regel nicht zur Identifikation des Problems bei.
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• Dem Benutzer, der die benutzerdefinerten Teile der Restbussimulation
implementiert, wird extreme Programmierdisziplin abverlangt, um blo-
ckierendes Verhalten zu vermeiden. Innerhalb eines Kernel-Moduls hat
blockierendes Verhalten unter Umständen sehr obskure, schwierig zu ermit-
telnde Ursachen einerseits und Symptome andererseits. Des Weiteren steht
innerhalb des Kernels die C-Standard-Bibliothek (libc unter Linux) nicht
zur Verfügung, so dass zwangsläufig kernelinterne APIs genutzt werden
müssen, was die Portabilität des benutzerdefinierten Teils der Restbussimu-
lation beeinträchtigt.

• Lizenzproblematik: der Kernel steht unter der GPL, daher muss äußerst
streng darauf geachtet werden, welche Kernel-Funktionen verwendet wer-
den können und wie gegen den Kernel gelinkt wird, um eine Kontamination
eines proprietären RBS-Moduls zu vermeiden. 16

Die beiden zuerst aufgeführten Nachteile sind sehr schwerwiegend, da die
Restbussimulation (als Artefakt einer Rapid-Prototyping-Werkzeugkette) einfach
zu entwickeln sein muss; spezielle Erfahrung im Debuggen von Kernel-Modulen
oder spezifische Kenntnisse über kernelinterne Kommunikationsmechanismen
und APIs und deren Präemptionsverhalten gehören typischerweise nicht zum
Repertoire eines Prüfstandsingenieurs.

2.5.3 Eingebetteter Interpreter

Ein anderer Ansatz, die Erweiterung von Restbussimulationen durch den Benut-
zer zu ermöglichen, besteht darin, ein statisches Restbussimulations-Framework
zur Verfügung zu stellen, das einen Skript-Interpreter einbettet. Sämtliche benut-
zerspezifischen Aspekte (sowohl die Kommunikations-Matrix als auch benutzer-
definierte Logik und Ereignisbehandlung) kann dann als Quelltext in der Sprache
des verwendeten Interpreters auf des Zielsystem geladen werden. Mögliche Kan-
didaten sind Lua und Python, die beide auf der eingesetzten CANyon-Hardware
lauffähig sind und sich leicht in eine Host-Anwendung in C einbetten lassen
sowie ein leistungsfähiges Foreign-Function-Call-Interface für die Integration
beliebiger C-Funktionen bieten. Für Lua gibt es Ansätze für einen Just-in-Time-
Compiler für die PowerPC-Architektur, so dass hier u.U. auf dem Zielsystem selbst
der Quellcode zur Laufzeit in Maschinencode kompiliert werden kann anstatt die

16Bei statisch gegen den Kernel gelinkten Modulen trifft dies immer zu. Da die RBS-Anwendung
jedoch nicht ausgeliefert wird, sondern vom Kunden generiert wird und in der Regel nicht vertrieben,
sondern intern genutzt wird, befindet man sich rechtlich in einer (hellen) Grauzone.
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Performance-Einbußen durch die Interpretation von Bytecode in Kauf nehmen
zu müssen. Die Vorteile einer solchen Lösung sind:

Kein Cross-Compiler Es genügt ein einfacher Upload der Quelldateien auf das
Zielsystem; der Benutzer benötigt keinen Cross-Compiler, der den Quellco-
de auf dem Host-System übersetzt.

Einfachere Sprache Die erwähnten Skriptsprachen erfordern u.U. weniger Quell-
code im Vergleich zum benötigten C-Code für äquivalente Aufgaben. Das
dynamische Redefinieren von Funktionen ist einfacher möglich als es in C
z.B. durch die Verwendung von Funktionszeigern ist.

Der Interpreter-Ansatz weist auch einige Nachteile auf:

Performance Der zu erzielende hohe Datendurchsatz ist mit interpretierten
Sprachen (selbst wenn es sich um interpretierten Bytecode wie bei Python
und Lua handelt) schwieriger zu erzielen.

Portierbarkeit Der Interpreter stellt signifikante Anforderungen an die Laufzeit-
umgebung. Python ist ohne Änderungen nicht ohne ein Betriebssystem
auf der Zielplattform ausführbar. Für Lua wird zumindest eine C-Laufzeit-
umgebung vorausgesetzt, die unter Umständen mächtiger ist als das, was
kleinere eingebettete Systeme bieten.

Sprache Die Einarbeitung in eine andere Programmiersprache ist notwendig,
was in manchen Umgebungen nicht akzeptabel ist.

Tooling Das Tooling für den verwendeten Interpreter bzw. dessen Sprachfamilie
ist u.U. nicht ausreichend für den kommerziellen Einsatz; besonders schwer
wiegt hier in der Regel das Fehlen eines Remote-Debuggers.

Zu den kommerziellen Anbietern, die diesen Ansatz wählen (nicht dediziert
für den Bereich Restbussimulationen, sondern im Bereich HIL-Simulation) 17,
gehören unter anderem DSpace, die einen echtzeitfähigen Python-Interpreter für
ihre Produkte DS1005 PPC und DS1006 bereitstellen.

2.6 Anwendbarkeit von AUTOSAR

Die Anforderungen an ein System zur Restbussimulation unterscheiden sich
teilweise deutlich von Anforderungen an Architekturen für einzelne ECUs zur

17Hardware-in-the-Loop
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Verwendung in der Serienproduktion eines Gesamtfahrzeugs, und dies nicht
nur im Hinblick auf die offensichtlich differierenden nicht-funktionalen An-
forderungen, sondern auch in Bezug auf konkrete funktionale Anforderungen.
Die Unterschiede lassen sich am plausibelsten erklären, indem man die Rest-
bussimulation als Produkt eines Rapid-Prototyping-Prozesses auffasst, der, wie
beim Rapid Prototyping üblich, hohe Produktivität für bestimmte Klassen von
Problemen ermöglicht, mit dem Kompromiss, dass Teilaspekte der erzielten
Lösungen weniger optimiert sind als in einer vollständig durchkonfigurierten
anwendungsspezifischen Einzellösung.

Die AUTOSAR-Architektur, geschaffen als herstellerübergreifendes Instrument
zur System-Integration zwischen Gesamtfahrzeugherstellern und deren Zuliefe-
rern, hat den Schwerpunkt, die Integration von Modulen mit nahezu vollständig
statisch definierten Schnittstellen zu steuern und zu vereinfachen [KF09], wo-
hingegen Restbussimulationen unter anderem eingesetzt werden, um dynamisch
Eigenschaften eines Gesamtsystems auf einfache Weise variieren zu können, um
das Verhalten auf diese Variationen analysieren zu können.

Bestimmte Teile von AUTOSAR, insbesondere die dort vorgegebenen Schich-
ten und deren Abstraktionsniveau, sind im Kontext der Architektur für Rest-
bussimulationen durchaus anwendbar, unter Umständen mit Einschränkungen,
wie im Folgenden beschrieben, während andere Aspekte sich nicht sinnvoll auf
Architekturen für Restbussimulationen übertragen lassen.

Aus diesem Grund erschien es sinnvoll, in den folgenden Abschnitten zunächst
eine kurze Einführung in das AUTOSAR-Konzept zu geben, bevor abschließend
in Abschnitt 2.6.8 die Konflikte zwischen dem Abstraktionsgrad von AUTOSAR
und dem Abstraktionsgrad einer Restbussimulation diskutiert werden.

2.6.1 Duale Funktion

AUTOSAR hat eine duale Funktion bei der System-Integration bei Gesamtfahr-
zeug-Herstellern und deren Zulieferern: zum einen definiert es eine Methodo-
logie, ein Vokabular und eine Notation für den Entwurf und die Beschreibung
von Software-Komponenten und deren Interaktionen. Andererseits legt es ein
(konservatives) Schichten-Modell für die Interaktion zwischen Software-Kom-
ponenten und so genannter Basis-Software (BSW; siehe Abschnitt 2.6.5) fest.
Diese beiden Aufgaben erfüllt es sowohl im Kontext des Gesamtfahrzeugs als
auch im Kontext des einzelnen Steuergerätes, d.h. es wird eine Überführung
von der Architektur für das Gesamtsystem in die Architektur des Steuergerätes
ermöglicht und für die dabei entstehenden bzw. auftretenden Integrationsaufga-
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ben definierte Lösungsmuster definiert. Die steuergerätebezogene Sicht wird im
Allgemeinen als ECU-zentrische Sicht bezeichnet; separierte Teile einer Gesamt-
system-Spezifikation, die die für eine einzelne ECU relevanten Informationen
enthalten, werden analog dazu als ECU-Extrakte bezeichnet [KF09].

2.6.2 Ablauf

Die oben genannte Dualität schlägt sich auch in der Rollenverteilung nieder,
wobei es sinnvoll ist, zwischen Entwickler und Integrator zu unterscheiden; der
Ablauf entspricht dabei folgendem Muster: der Entwickler erhält die Schnitt-
stellen-Spezifikation der zu entwickelnden Komponente in Form eines Satzes
von AUTOSAR-Dokumenten (zusammen mit anderen, nicht nach AUTOSAR
formalisierten funktionalen und nicht-funktionalen Anforderungen), und setzt
die Komponente um (interner Entwurf, Implementierung und Test). Der Inte-
grator erhält die Komponente (entweder als Quellcode oder als kompilierten
Objektcode für eine bestimmte Hardware-Architektur) und kann diese durch
die im Zusammenhang mit der formalen Schnittstellen-Beschreibung definier-
ten Konfigurations-Schnittstelle (siehe Abschnitt 2.6.7) in ein Gesamtsystem
integrieren.

2.6.3 Komponenten-Modell

Für die Modellierung von Software-Komponenten und deren Schnittstellen sowie
für die Modellierung der Verbindungen zwischen konkreten Instanzen dieser
Komponenten stellt AUTOSAR eine an der UML orientierte Notation bereit, die in
serialisierter Form als so genannte AUTOSAR-Software-Component vorliegt und
in ein AUTOSAR-System eingebunden werden kann. Die Details dieser Notation
werden in [AUTc] beschrieben.

Diese Notation kann, wie oben erwähnt, zur Beschreibung eigener Software-
Komponenten verwendet werden; jedoch ist auch die Basis-Software, d.h. die
von AUTOSAR bereits innerhalb des Standards vordefinierten Module, in die-
ser Notation beschrieben, so dass der Zugriff von eigenen Komponenten und
Anwendungs-Software auf die Basis-Software von AUTOSAR einfach modelliert
werden kann und sichergestellt werden kann, dass nur die von der Basis-Software
bereitgestellten Schnittstellen verwendet werden.

Hinsichtlich der Werkzeug-Unterstützung von AUTOSAR hat die einheitli-
che Beschreibung von Komponenten der Basis-Software und benutzerdefinier-
ten Software-Komponenten den weiteren Vorteil, dass Standard-Komponenten
(BSW-Module) und benutzerdefinierte Komponenten auf einheitliche Weise mit
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Werkzeugunterstützung konfiguriert werden können; gesonderte Konfigurati-
ons-Werkzeuge für die benutzerdefinierten Software-Komponenten entfallen.18

Dies hat auch Auswirkungen auf die Code-Generatoren, die die Anpassung der
Software-Komponenten realisiert, da auch hier für Basis-Software und eigene
Module ein einheitliches Konzept verwendet werden kann.

2.6.4 Virtual Functional Bus

AUTOSAR führt mit dem so genannten Virtual Functional Bus (VFB) eine Abstrak-
tions-Schicht für die Anbindung von Signalen an die Software-Komponenten ein,
die von der konkreten Übertragungsform dieser Signale abstrahiert (d.h. auf ho-
hen Modellierungs-Ebenen ist nicht beschrieben, mittels welchem Medium oder
welchem Bus-Typ Signale zwischen Komponenten propagiert werden). Diese Ab-
straktion kann in nachfolgenden, feineren Modellierungs-Schritten aufgehoben
werden, indem sogenannte Signalpfad-Beschränkungen eingeführt werden, mit-
tels derer explizit angegeben werden kann, über welche physikalischen Kanäle
(CAN, LIN, Flexray, Ethernet, ECU-intern) das Weiterleiten von Signalen erfolgen
muss, erfolgen darf oder nicht erfolgen darf. Der Haupt-Grund für die Notwen-
digkeit für diese Beschränkungen liegt darin, dass unter Umständen manche
bestehende Geräte nicht in der AUTOSAR-Systembeschreibung erfasst sind; dies
trifft z.B. für spezielle Steuergeräte zu, die nicht Teil der Serie sind, wie et-
wa Steuergeräte, die Teil der Messausrüstung sind und nur für Fahrzeuge der
Testflotte relevant sind.

Konkret ist der Virtual Functional Bus eine signalorientierte Schnittstelle,
die das Setzen und Lesen von Signal-Werten in einer Weise ermöglicht, die die
Komponenten, die diese Schnittstelle verwenden, vom konkret verwendeten Si-
gnalübertragungs-Mechanismus unabhängig macht. In nachgelagerten Schritten
erlaubt der AUTOSAR-Prozess, dass so z.B. Signale, die zwischen Komponenten
einer einzelnen ECU ausgetauscht werden, rein über den Zugriff auf gemeinsa-
me Variablen zwischen den betroffenen Komponenten realisiert wird (bei der
Generierung der RTE für die entsprechende ECU) und keine Signalübertragung
über externe Kanäle erfolgt.

18Für ein sehr komplexes Modul tritt unter Umständen der Fall ein, dass dieses zwar theoretisch
in generischer Weise konfiguriert werden kann, dies jedoch nicht praktikabel ist, so dass zusätzlich
eine spezielle Konfigurationslösung nötig ist. Für Module, die lediglich einfache Parametrisierungen
erfordern, ist der generische Ansatz jedoch ausreichend.
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2.6.5 Basis-Software

Mit dem Begriff Basis-Software (BSW) werden unter AUTOSAR bestimmte Soft-
ware-Komponenten bezeichnet, deren funktionale Anforderungen und Schnitt-
stellen durch AUTOSAR selbst in Form einer Spezifikation vorgegeben werden.
Dies sind in der Regel Abstraktionen für Treiber und ergänzende Abstraktio-
nen für die Kommunikation zwischen Anwendungs-Schicht und diesen Treibern.
Ein weiterer großer Teil der Basis-Software besteht aus dem Kommunikations-
Stack und dessen unterstützenden und ergänzenden Modulen (PDU-Router, PDU-
Multiplexer etc.) [AUTa].

2.6.6 Runtime Environment

AUTOSAR erwartet auf einer konkreten ECU, auf der AUTOSAR-Komponenten
oder Basis-Software laufen sollen, dass dort eine Laufzeitumgebung, die soge-
nannte Runtime Environment (RTE) vorhanden ist. Diese wird durch einen ECU-
spezifischen Generator generiert, zusammen mit ECU-spezifischen Varianten der
Basis-Software. Die RTE entspricht der ECU-zentrischen Sicht auf das System.
Hier wird der Signal-Fluss, der über das VFB-Konzept modelliert wurde, konkret
umgesetzt, indem der Generator für die RTE entscheidet, ob Signale an Software-
Komponenten auf andere ECUs weitergeleitet werden müssen oder nur zur Kom-
munikation zwischen Software-Komponenten innerhalb dieser ECU verwendet
werden. Im letzteren Fall können die bereits im Abschnitt zum VFB erwähnten
Optimierungen bezüglich des Signal-Zugriffs durchgeführt werden; andernfalls
müssen diese Signale mittels des Kommunikations-Stacks über die der ECU zur
Verfügung stehenden physikalischen Kanäle weitergeleitet werden.

2.6.7 Konzept der Konfiguration

Das Prinzip, die Schnittstellen zur Konfiguration einer Komponente in die forma-
le Schnittstellen-Definition mit aufzunehmen sowie die Differenzierung zwischen
unterschiedlichen Ebenen und Zeitpunkten für die Konfiguration ist konzeptuell
dasjenige Kriterium, das AUTOSAR im Umfeld der Symbiose zwischen Zulieferer
und Gesamtfahrzeug-Hersteller besonders attraktiv macht. Beschreibungs-Me-
thoden für Software-Komponenten gibt es in großer Zahl und mit hoher Varianz
hinsichtlich der Praxistauglichkeit, aber ein ähnlich detailliertes Konfigurations-
Modell als Kernaspekt (mit dem Fokus auf die Compiler- und Linker-Spezifika
von C-Modulen im Hinblick auf eingebettete Systeme) findet man nur selten,
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wie ein Vergleich von AUTOSAR mit den in [TMD09] vorgestellten Architektur-
Modellen leicht ergibt. 19

2.6.8 Konflikte zwischen AUTOSAR-Abstraktionen und Rest-
bussimulationen

Ein Konfliktpunkt zwischen einer Architektur im Sinne von AUTOSAR und einer
Architektur für Restbussimulationen liegt darin, dass eine konkret realisierte
AUTOSAR-Implementierung immer an eine ECU-Instanz gebunden ist. Eine Rest-
bussimulation hingegen soll in der Regel mehrere ECUs auf einer gemeinsamen
Hardware simulieren. Eine Hardware-Abstraktion im Sinne von AUTOSAR lässt
sich hier nicht vollständig simulieren, da bestimmte Funktionen (z.B. Ändern
der Betriebs-Modi von CAN-Controllern) das Verhalten bestimmter Hardware-
Module beeinflussen müssen, um extern sichtbare Auswirkungen zu haben; soll
die Restbussimulation (die mehrere ECUs simuliert) z.B. den Übergang einer
ECU von aktiver Teilnahme am CAN-Bus zu passiver Teilnahme simulieren, so
beeinflusst dies auch alle anderen simulierten ECUs.

Eine andere Quelle von Unterschieden zwischen Restbussimulationen und
dem AUTOSAR-Konzept liegt in der starken Fokussierung von AUTOSAR auf
statische Bindung und Zuweisung. Für den schnellen Entwicklungszyklus, der
für eine Restbussimulation typisch ist, muss es möglich sein, bestimmte Konfi-
gurationseinstellungen, die von AUTOSAR statisch vorgenommen werden, zur
Laufzeit oder zumindest über eine Post-Build-Konfiguration vorzunehmen, da
eine vollständige Neugenerierung der Anwendung die Produktivität des Anwen-
ders empfindlich stört.20

Ein weiterer Aspekt, der die Entwicklung von Restbussimulationen mittels
der AUTOSAR-Methodik erschwert, ist die stark signalorientierte Herangehens-
weise, die bei der Entwicklung und Einbindung von Software-Komponenten
in ein AUTOSAR-System notwendig ist; traditionelle Werkzeuge zur Erstellung
von Restbussimulationen sind noch stark an den busspezifischen Botschaften
orientiert und betrachten Signale nicht auf Systemebene, sondern als Teile
der gesendeten Botschaften. AUTOSAR abstrahiert auf der Schnittstellenebe-
ne zwischen Software-Komponenten von den konkreten Botschaften, so dass
eine botschaftsorientierte Entwicklung von Funktionalität, wie sie in der tra-

19Diese Spezialisierung auf C führt natürlich dazu, dass argumentiert werden kann, AUTOSAR sei
gegenüber anderen Architekturbeschreibungs-Sprachen zumindest in Teilen weniger allgemeingültig.

20Exemplarisch für die Problematik der Konflikte zwischen dynamischen APIs und statischer
Konfiguration sei das SocketAdaptor-Modul genannt, das zu dem Zweck existiert, die dynamische
Natur von TCP/IP-Sockets auf die unter AUTOSAR übliche Weise statisch konfigurierbar zu machen.
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ditionellen Entwicklung von Restbussimulationen vorherrschend ist, erschwert
wird [KF09]. Symptomatisch hierfür ist zum Beispiel, dass eigene Software-Kom-
ponenten über so genannte Ports eingebunden werden müssen, wenn sie Daten
von der AUTOSAR-RTE benötigen, und diese Ports die Semantik von Signalen
widerspiegeln.
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Kapitel 3

Modulare Code-Generierung

Code-Generierung ist prinzipiell immer dann notwendig, wenn eine grundsätzlich
hinreichend genaue formale Spezifikation 1 auf Grund von Unzulänglichkeiten
der verwendeten Programmiersprache oder Beschränkungen der Laufzeitum-
gebung nicht mit vertretbarem Aufwand direkt in ausführbare Form gebracht
werden kann. Aufgabe der Code-Generierung ist es, eine zusätzlich Abstrakti-
onsebene zu schaffen, die statt der Transformation von der Spezifikation zum
Zielsystem eine Transformation von der Spezifikation in ein Zwischenformat und
von diesem Zwischenformat ins Zielsystem realisiert. Beim klassischen Begriff
der Code-Generierung aus dem Compilerbau (der hier nicht betrachtet wird)
werden für diese unterschiedlichen Ebenen die Begriffe Frontend (Verstehen der
Spezifikation, im Compilerbau sind dies Programmiersprachen), Middleend (ein
Neologismus für compilerabhängige Zwischendarstellungen, im Compilerbau
sind dies Datenstrukturen für abstrakte, annotierte Syntaxbäume oder lineari-
sierte Darstellungen davon) und Backend (im Compilerbau meist spezifischer
Assembler- oder Maschinencode für bestimmte Prozessorarchitekturen, selte-
ner Hochsprachen) verwendet. Bei der Code-Generierung im in dieser Arbeit
betrachteten Sinn ist das Frontend zuständig für das Verständnis von Busbeschrei-
bungsdateien und das Backend zuständig für die Generierung von Hochsprachen-
Code, der die in der Spezifikation beschriebenen Kommunikationsmuster für
eine bestimmte Klasse von Zielsystemen realisiert.

1d.h. eine Spezifikation, die eine bestimmte Problemdomäne vollständig beschreibt
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3.1 Typische Ansätze

Im Folgenden werden übliche Ansätze für die Code-Generierung auf unterschied-
lichen Ebenen kurz vorgestellt, wobei der Fokus auf einer möglichst breiten Sicht
liegt.

3.1.1 Analogien zum Compilerbau

Die in der Einleitung zu diesem Kapitel beschriebene Verteilung der Aufga-
ben auf drei Schichten weist neben der allgemein sinnvollen Trennung der
Zuständigkeiten den zusätzlichen Vorteil auf, dass bei Unterstützung mehrerer
Eingabe- und Ausgabeformate kein kombinatorisch ansteigender Aufwand be-
trieben werden muss, sondern (im Idealfall) jedes Frontend mit jedem Backend
verwendet werden kann, da die Transformation in eine Zwischendarstellung
diese beiden Schichten entkoppelt: für die Unterstützung neuer Eingabefor-
mate kann ein neues Modul eingeführt werden, das die Transformation in die
Zwischendarstellung realisiert; die Transformation in das Ausgabeformat ver-
wendet die bestehenden Module. Für die Unterstützung neuer Ausgabeformate
muss nicht eine Transformation von jedem Eingabeformat in das neue Ausga-
beformat implementiert werden, sondern lediglich eine Transformation von
der Zwischendarstellung in das neue Ausgabeformat. Für n Eingabeformate
und m Ausgabeformate reduziert sich so die Anzahl der zu implementierenden
Transformationen von n×m zu n + m.

Der AUTOSAR-Ansatz unterscheidet sich von diesem Ansatz in wesentlichen
Punkten:

• Es wird ein kanonisches Eingabeformat vorgeschrieben (die AUTOSAR-
Systembeschreibung); eine Unterstützung von anderen Eingabeformaten
muss zwangsläufig außerhalb des AUTOSAR-Kontexts erfolgen (z.B. durch
eine externe Transformation in AUTOSAR-konforme Fragmente). Eine
gesonderte Zwischendarstellung entfällt damit.

• Es muss eine AUTOSAR-Laufzeitumgebung für die Zielplattform existieren.
Große Teile der Laufzeitumgebung werden zwar generiert, dies setzt al-
lerdings die Existenz der entsprechenden AUTOSAR-Basissoftware für die
Zielplattform voraus.

AUTOSAR muss diese Einschränkungen vornehmen, da das abgedeckte An-
wendungsgebiet viel breiter ist als das in der vorliegenden Arbeit abgedeckte
Gebiet der Restbussimulation und weil eine AUTOSAR-System-Spezifikation die
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Definition von Aspekten erlaubt, die spezifische Interna der Laufzeitumgebung
betreffen (es wäre beispielsweise sinnlos, in der Spezifikation ein bestimmtes
Scheduling-Verhalten definieren zu können, ohne dass bekannt ist, ob und wie
dieses von der Laufzeitumgebung unterstützt wird und wie die Abbildung auf
das Laufzeitsystem erfolgen muss). Für die Generierung einer Restbussimulati-
on ist lediglich die Garantie notwendig, dass für eine Zielplattform das genau
definierte (und eingeschränkte) API zur Verfügung steht und die versprochene
Semantik hat; damit sind die Anforderungen an die Zielplattform wesentlich
übersichtlicher, so dass insgesamt die Komplexität der Informationen, die vom
Frontend geliefert und durch das Middleend transformiert werden müssen, viel
geringer ist.

3.1.2 Sprachinterne Code-Generierung

Als transzendenter Idealfall des Software-Engineering kann die Transformation
einer Spezifikation in ein ausführbares System innerhalb einer Sprache gelten.
Für eine solche Sprache muss gelten, dass das Abstraktionsniveau nicht vorge-
geben ist, sondern vom Benutzer aufgabenspezifisch angepasst werden kann.
Dies wird meist so realisiert, dass für bestimmte syntaktische Elemente die sonst
übliche Interpretation durch Parser oder Compiler aufgehoben wird und durch
vom Benutzer definierte Logik ersetzt wird. Dadurch lässt sich realisieren, was in
den letzten Jahren unter dem Begriff eingebettete domänenspezifische Sprachen
(DSL) zusammengefasst wird, nämlich die Möglichkeit, beliebige strukturierte
Informationen innerhalb der Sprache zu definieren, diese ebenfalls mit Mitteln
der Sprache bzw. deren Laufzeitumgebung zu transformieren und die transfor-
mierte Darstellung dynamisch zu interpretieren. 2 Charakteristisch ist hierbei,
dass die erweiterten Elemente auf symbolischer Ebene und nicht auf lexikalischer
Ebene interpretiert werden, was einerseits die Möglichkeiten einschränkt und
andererseits die Interpretation erleichtert. 3

Zu den bekanntesten Sprach-Familien, die derartiges ermöglichen, gehören
die Lisp- und Scheme-Familien und deren Derivate sowie bestimmte stackbasierte
Sprachen wie Factor.

2Wobei der Begriff
”
Interpretation“ hier eine eventuelle Just-In-Time-Kompilierung nicht aus-

schließt.
3In Common Lisp existiert allerdings die Möglichkeit, Erweiterungen auf lexikalischer Ebene durch

so genannte Reader-Erweiterungen zuzulassen, wobei der Reader hier der Common Lisp spezifische
Mechanismus für das lexikalische Scannen ist, dessen Funktionsumfang über die sonst während der
lexikalischen Analysephase durchgeführten Aufgaben hinausgeht. So können etwa benutzerdefinierte
Callback-Funktionen aufgerufen werden, die beim Auftreten bestimmter lexikalischer Elemente in
einen benutzerdefinierten Lexer-Modus umschalten.
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Eine größere Akzeptanz dieser Sprachfamilien in der Industrie blieb bis-
her aus; über Konzepte wie aspektorientierte Programmierung durch Bytecode-
Weaving zur Laufzeit diffundieren diese Mechanismen jedoch (zum Teil in stark
eingeschränkter Form) in die in der Industrie etablierten Sprachfamilien der JVM-
und .NET-Plattformen oder sind in Form des so genannten Monkey-Patchings in
dynamisch typisierten Sprachen wie Python und Ruby wiederzuerkennen. 4 In
Java muss zur dynamischen Generierung von Bytecode auf externe Bibliotheken
wie ObjectWeb ASM oder cglib zurückgegriffen werden, während unter .NET
mit System.Reflection.Emit ein Modul zur dynamischen Bytecode-Generie-
rung bereits Teil der Standard-Bibliothek ist. 5 Auch in C gibt es isolierte Beispiele
für (Maschinen-) Code-Generierung zur Laufzeit, z.B. im Kapitel von Petzold
in [OW07].

Es gibt viele technische Gründe, die einer Implementierung von derartigen
Transformations-Aufgaben innerhalb einer geeigneten Sprache entgegenstehen;
die häufigsten sind:

• Für die Spezifikation des Problems steht bereits ein extern vorgegebenes
Beschreibungsformat fest (Standard oder Quasi-Standard), so dass eine
Spezifikation des Problems als eingebettete DSL in dieser Hinsicht keine
Vorteile bringt. Im Kontext dieser Arbeit äußert sich dies in der Existenz
bestehender Beschreibungsformate für die Kommunikations-Matrix.

• Für ein Zielsystem steht keine bzw. keine ausreichend performante Lauf-
zeitumgebung für die Sprache zur Verfügung, oder der Ressourcenbedarf
eines derartigen Laufzeitsystems übersteigt die zulässigen extern definierte
Beschränkungen des Zielsystems. Im Kontext dieser Arbeit kommt dieser
Punkt zum Tragen, da eine Portierung auf kleiner dimensionierte Hardware-
Plattformen möglich sein muss.

• Es muss eine Verknüpfung der generierten Funktionalität mit bestehenden
System-Komponenten erfolgen. Im Kontext dieser Arbeit ist dies die Ver-

4Im Falle der aspektorientierten Programmierung war der Verantwortliche für die bekannteste
Implementierung (AspectJ) gleichzeitig der Mitgestalter des Meta-Object-Protokolls von Common
Lisp.

5Seit Version 1.6 des Sun (bzw. jetzt Oracle) Java Development Kit gibt es das Compiler-API
(im Paket javax.tools), das das dynamische Kompilieren von Java-Quelldateien in Bytecode und
das Laden der generierten Klassen realisiert, indem es den bestehenden javac-Compiler innerhalb
einer laufenden JVM über interne Mechanismen ansprechbar macht. Allerdings ist dies eher als
Notlösung zu verstehen, da dies sich prinzipiell nicht von einem Aufruf des javac-Compilers als
externen Prozess unterscheidet.
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knüpfung mit bestehenden Betriebssystem-Schnittstellen oder Hardware-
Treibern.

• Die generierte Grund-Funktionalität muss in bestimmter Weise erweiterbar
sein durch benutzerdefinierte Logik. Im Kontext dieser Arbeit ist dies die
Einschränkung, dass eine generierte Restbussimulation durch ein C-API
vom Benutzer erweitert werden können muss.

Keines dieser Argumente ist ein Ausschlußkriterium. Allerdings wird die
Durchgängigkeit, die eine sprachinterne Lösung auszeichnet, unterbrochen.

Häufig angeführte Argumente, die gegen die Verwendung solcher Lösungen
aus Gründen der Verständlichkeit für den Entwickler sprechen, basieren meist
auf dem falschen Vergleich zwischen einer Mainstream-Sprache (für die berech-
tigterweise keine Einarbeitung vorausgesetzt wird) und der Lösungs-Sprache (für
die der Einarbeitungsaufwand berechtigt als hoch angesetzt wird); es müsste je-
doch statt der alleinigen Betrachtung der Mainstream-Sprache eine Betrachtung
der Mainstream-Sprache und allen an der Transformation beteiligten Techno-
logien erfolgen und die Einarbeitung in diese Technologien mitberücksichtigt
werden. Für eine komplexere Transformationskette kann dieser Aufwand er-
heblich sein. Ebenso muss für die Betrachtung der Wartbarkeit die Komplexität
betrachtet werden, die eine aus mehreren Technologien mit unterschiedlichen
Entwicklungszyklen bestehende Lösung mit sich bringt. Hinzu kommt die häufig
trivialisierte Tatsache, dass in komplexeren Transformationsketten effektiv meh-
rere Programmiersprachen zum Einsatz kommen. Als Beispiel sei XSLT genannt,
das eine Turing-vollständige, eigene Sprache ist. 6 Ein anderes Symptom ist die
Verwendung von komplexen Mapping-Definitionen in technologiespezifischen
XML-Formaten, deren Umfang bei reinen Transformationsprojekten häufig den
Umfang der eigentlichen Implementierung in der Host-Sprache übersteigt, so
dass die Aufgaben der Host-Sprache auf einfachen Glue-Code reduziert werden.
Argumente, die sich für die Host-Sprache auf Grund von Aspekten wie statischer
Typsicherheit aussprechen, verlieren empfindlich an Glaubwürdigkeit, wenn der
Großteil der Domänenlogik in untypisierten Textdateien definiert ist. 7

6Zur Betrachtung von XSLT als funktionale Programmiersprache siehe http://fxsl.

sourceforge.net/articles/FuncProg/Functional%20Programming.html
7Zwar sind XML-Formate in der Regel durch DTD- oder XSD-Beschreibungen definiert, allerdings

sind diese häufig nur unvollständig oder ad-hoc mit dem Typsystem der Host-Sprache verbunden.
Technologien wie EMF [Ecld] oder JAXB [jax] beheben diese Diskrepanzen zum Teil, indem Klassen
generiert werden, die die durch das Schema definierten Beziehungen ins Typsystem der Host-Sprache
abbilden und so eine ganzheitliche Typisierung schaffen.
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3.1.3 Sprachübergreifende Code-Generierung

Üblicher als die im vorigen Abschnitt beschriebene sprachinterne Code-Generie-
rung ist die sprachübergreifende Code-Generierung, d.h. das Erzeugen von Code-
Artefakten einer Zielsprache mittels eines Generators, der in einer bestimmten
Host-Sprache implementiert ist.

Hierbei gibt es prinzipiell drei Ausprägungen, wie die Generierung erfolgen
kann:

Direkt Die Ein- und Ausgabemechanismen der Host-Sprache können prinzipiell
verwendet werden, um beliebige Artefakte zu erzeugen. Lösungen dieser
Art sind aus einer Vielzahl von Gründen zum strukturierten Generieren
größerer Artefakte nicht praktikabel: potentiell schlechte Wartbarkeit durch
fast zwangsläufig erfolgende Vermengung von Datenaufbereitung und
Datenausgabe, manuelle Iteration über Eingangsdaten notwendig, hohe
Fehleranfälligkeit durch fehlende frühe syntaktische Prüfung der Ausgabe,
Notwendigkeit der Übersetzung vor dem Ausführen, Erweiterungen durch
den Endnutzer nicht einfach möglich.

Template-basiert Der in der industriellen Praxis am häufigsten anzutreffende
Ansatz ist eine duale Lösung, die aus einem Treiber in einer Host-Sprache
und der Spezifikation der Ausgabe mittels einer Template-Sprache besteht;
eine Diskussion der Vorteile dieser Lösung erfolgt im Anschluss.

AST-basiert Wenn die zu generierenden Artefakte einer bestimmten bekannten
Syntax entsprechen (was in vielen Fällen vorausgesetzt werden kann),
so kann das zu generierende Artefakt als abstrakter Syntaxbaum (Ab-
stract Syntax Tree, AST) erzeugt und manipuliert werden; zur tatsächlichen
Manifestation des Artefaktes als konkrete Datei kann der abstrakte Syn-
taxbaum dann serialisiert werden. Voraussetzung ist, dass ein Mechanis-
mus zur Verfügung steht, um die Syntax als abstrakten Syntaxbaum zu
repräsentieren, z.B. im Falle von C als Klassen-Bibliothek, die die AST-
Knoten als programmatisch manipulierbaren Objektgraph zugänglich ma-
chen. Ein solcher Objektgraph kann dann serialisiert werden, um das zu
generierende Artefakt zu erzeugen. Diese Lösung bietet den Vorteil, dass
die syntaktische Korrektheit des generierten Artefakts garantiert werden
kann. Insbesondere bei mehrstufigen Manipulationen am Ausgabeformat
erhöht dieser Ansatz so die Zuverlässigkeit. Ein weiterer Vorteil ist die
leichtere Testbarkeit: wenn das zu generierende Artefakt als Objektgraph
programmatisch zugänglich ist, können beliebige Aspekte leicht program-

58



matisch überprüft werden; bei anderen Lösungen muss zu Testzwecken
das generierte Artefakt textuell untersucht werden, was aufwändiger und
fehleranfälliger ist. Ein Nachteil des AST-basierten Ansatzes ist, dass keine
Isomorphie zwischen der Spezifikation des zu generierenden Artefaktes
und dem schließlich generierten Artefakt gegeben ist (der abstrakte Syn-
taxbaum ist nicht unmittelbar verständlich); der Einarbeitungsaufwand in
die verwendete Bibliothek zur Verwaltung und Manipulation des Objekt-
graphen ist unter Umständen hoch und setzt Kenntnisse im Compilerbau
(oder zumindest ein gewisses Verständnis für Parser-Konzepte) voraus. Die
AST-Bibliothek muss notwendigerweise die gesamte Zielsprache abdecken,
selbst wenn der konkrete Anwendungsfall nur eine Untermenge davon
nutzt; diese Komplexität muss vom Entwickler mitgetragen werden, was
eine kognitive Belastung darstellt. Das AUTOSAR-Werkzeug Tresos Stu-
dio von Elektrobit erlaubt diesen Ansatz (zusätzlich zu dem auch dort
vorwiegend verwendeten Template-basierten Mechanismus) in seinem

”
C

Data Structures Generator“, allerdings nur für die Untermenge von C, die
Variablen- und Strukturdefinitionen enthält [Ele].

Es gibt verschiedene Aspekte, die die Einführung einer Template-Sprache in
den Generierungs-Prozess motivieren und rechtfertigen:

• Die abstrakte Definition der Ausgabe und die konkrete Form der Ausga-
be sollen möglichst isomorph gehalten werden, so dass bei Änderungen
des Ausgabeformates diese Änderungen leicht auf die generischen Tem-
plates übertragen werden können. Unter Umständen kann dadurch die
Möglichkeit offen gehalten werden, die Templates durch den Benutzer
und nicht nur durch den Tool-Hersteller veränderbar zu machen, was in
manchen Fällen eine zusätzliche Dimension der Variabilität ermöglicht.
Benutzer können so neue Anwendungsfälle abdecken, es besteht jedoch
die reale Gefahr, dass Lösungen, die auf derartigen Änderungen aufbauen,
kaum mehr durch den Tool-Hersteller wartbar sind. Die Voraussetzung
dafür ist, dass die Templates dynamisch interpretiert werden, so dass sich
Änderungen ohne ein Neuübersetzen des Code-Generierungs-Frameworks
auswirken können. Ein Vorübersetzen der Templates (z.B. durch das Gene-
rieren von Java-Bytecode durch einen speziellen Template-Compiler), wie
es von manchen Frameworks unterstützt wird, steht diesem Aspekt unter
Umständen entgegen.

• Die Definition der Ausgabe soll möglichst entkoppelt sein von der Da-
tenaufbereitung, d.h. die Templates sollen frei sein von jeglicher Logik,

59



die nicht unmittelbar das Format der Ausgabe betrifft. Kenntnisse in der
Treiber-Sprache, d.h. der Host-Sprache, die die Code-Generierung steuert,
sollen möglichst nicht notwendig sein, um eine Anpassung der Templa-
tes vorzunehmen. Im Umkehrschluss bedeutet dies, dass die Templates
mit vollständig aufbereiteten, konsistenten Daten parametrisiert werden
müssen.

• Es sollen verschiedene Zielformate unterstützt werden, d.h. entweder
verschiedene Zielsprachen oder Varianten in derselben Zielsprache, die
unterschiedlich genug sind, um eigene Templates zu verwenden anstatt
die Variabilität als Fallunterscheidungen in bestehenden Templates zu
integrieren (z.B. durch Präprozessor-Direktiven).

3.1.4 Klassifikation von generierten Artefakten

Im Hinblick auf die Tatsache, dass bestimmte Teile einer generierten Restbussimu-
lation durch den Benutzer erweiterbar sein müssen, ergibt sich die Problematik,
dass es in einem derartigen Projekt drei Kategorien von Quellcode gibt:

Rein generiert Quellcode wird generiert, eine Erweiterung oder Modifikation
durch den Benutzer ist jedoch nicht zulässig.

Reiner Benutzer-Code Quellcode liegt vollständig unter der Kontrolle des Be-
nutzers.

Generiert und durch den Benutzer erweitert Quellcode wird generiert und
kann durch den Benutzer in bestimmter, definierter Weise8 ergänzt oder
modifiziert werden. Entscheidend ist hier die Frage, was mit diesem Quell-
code passieren soll, wenn neu generiert werden muss.

Ziel ist es, die dritte Kategorie zu vermeiden bzw. die Zahl der Quellcode-
Artefakte und den Umfang der Quellcode-Anteile, die in diese Kategorie fallen,
möglichst gering zu halten. Die Diskrepanz zwischen diesem Ziel und der Not-
wendigkeit, dennoch einen Mechanismus bereitzustellen, um generierten Code
und benutzerdefinierten Code zu verknüpfen, wird in der Literatur manchmal
als Generation Gap bezeichnet [Vli].

Dabei geht es um zwei zusammenhängende Aspekte:

8Die Art und Weise, wie Erweiterungen möglich sind, kann hier entweder durch Konventionen
gefordert werden, z.B. beschrieben durch eine wie auch immer geartete Benutzerdokumentation, oder
durch statische Prüfungen validiert werden, falls die erlaubten Erweiterungen durch die Semantik
und das Typsystem der Zielsprache prüfbar sind (d.h. durch den Compiler für die Zielsprache).
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• Wie werden Benutzererweiterungen mit dem Framework-Code verknüpft,
d.h. wie weiß das Framework, welche Erweiterungen durch den Benutzer
implementiert wurden?

• Wie werden Modifikationen durch den Benutzer übernommen, wenn neu
generiert werden muss?

Beim ersten Aspekt gibt es, abhängig von der Zielsprache, bewährte Mecha-
nismen, wie die Anbindung von Framework-Code und benutzerdefiniertem Code
erfolgen kann. Ist die Zielsprache objektorientiert und erlaubt sie die Definition
von Klassen mit abstrakten Methoden, so können Erweiterungen durch den
Benutzer derart erlaubt werden, dass für einen bestimmten zu erweiternden
Aspekt eine abstrakte Basis-Klasse (mit leeren oder abstrakten Implementie-
rungen) generiert wird. Der Benutzer muss bestimmte Methoden dieser Basis-
Klasse überschrieben, indem er eine eigene Implementierung dieser Basis-Klasse
definiert und eigene Implementierungen für bestimmte Methoden bereitstellt.
Die Anbindung sämtlicher Funktionalität für diesen Aspekt erfolgt, indem die
konkrete Klasse statt der Basis-Klasse vom Framework verwendet wird. Nicht
erweiterte Funktionalität ist unproblematisch, da die leere Implementierung
der Basis-Klasse verwendet wird. Erweiterungen, für die eine Implementierung
erzwungen werden soll, können in der Basis-Klasse als rein abstrakte Methoden
definiert werden, so dass die Implementierung durch den Benutzer zwangsläufig
bei Ableitung von den Basis-Klasse erfolgen muss.

In C muss die Anbindung durch Funktionszeiger erfolgen; Erweiterungen
durch den Benutzer müssen in Form neuer Funktionen implementiert werden
und diese Funktionen dem Framework bekannt gemacht werden, indem ein
bestimmter Funktionszeiger des Frameworks auf die implementierte Funkti-
on gesetzt wird. Das Standard-Verhalten bei fehlenden Erweiterungen durch
den Benutzer kann entweder realisiert werden, indem die zu setzenden Funk-
tionszeiger auf eine leere Funktion zeigen oder indem die Funktionszeiger mit
NULL initialisiert werden. Letzterer Fall ist sinnvoll, um unnötige Aufrufe zu
vermeiden, jedoch muss die Gültigkeit des Funktionszeigers an jeder Aufrufstelle
überprüft werden, um Speicherzugriffsfehler zu vermeiden. Um die Granula-
rität der Anbindung zu Erhöhen (d.h. eine Gruppe von Funktionen gesammelt
anzubinden statt jede einzelne Funktion anzubinden) ist es unter Umständen
sinnvoll, eine Art Callback-Interface zu definieren als struct von zusammen-
gehörigen Funktionszeigern; diese Struktur kann im Benutzer-Code initialisiert
und dem Framework übergeben werden, statt eine Vielzahl von Funktionszei-
gern übergeben zu müssen, was fehleranfälliger und weniger wartbar ist. Eine
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Methode, um die Implementierung unbedingt notwendiger Erweiterungen durch
den Benutzer zu erzwingen und zur Übersetzungszeit zu prüfen, gibt es streng
genommen nicht9; der zuvor beschriebene Mechanismus des Callback-Interfaces
kann jedoch auch zu diesem Zweck verwendet werden. Ein weiterer Vorteil eines
Callback-Interfaces ist, dass so ein atomarer Austausch von Funktionsgruppen
zur Laufzeit erleichtert wird, was z.B. die Implementierung von Zustandsau-
tomaten erleichtert: benutzerdefinierter Code kann mehrere Instanzen eines
Callback-Interfaces definierten, die jeweils auf Funktionen zeigen, die dem zu
realisierenden Verhalten für einen bestimmten Systemzustand entsprechen. Beim
Wechsel des Systemzustandes kann die für diesen Zustand definierte Callback-
Interface-Instanz dem Framework übergeben werden.

Beim zweiten Aspekt geht es darum, dass bestimmte Teile einer generierten
Anwendung nicht zur Erweiterung durch den Benutzer vorgesehen sind, wohin
andere Teile dies erlauben. Bei den nicht erweiterbaren Teilen können die be-
troffenen Artefakte beliebig neu generiert werden, indem die alten Versionen
überschrieben werden. Bei den benutzererweiterbaren Teilen ergibt sich die
Problematik, dass die vom Benutzer erweiterten Artefakte nicht überschrieben
werden sollten, da sonst die Erweiterungen des Benutzers verloren gehen.

Es gibt unterschiedliche Ansätze, wie dies gelöst werden kann.

• Der einfachste Weg ist es, die durch den Benutzer erweiterten Teile nie
neu zu generieren. Dies entspricht dem sogenannten Scaffolding-Prinzip,
d.h. es wird davon ausgegangen, dass die Generierung nur zur Erstellung
eines initialen Anwendungsgerüstes genutzt wird, das einmal aus einem
bestimmten Stand der Datenbasis generiert wird und danach vollständig
unter der Kontrolle des Benutzers steht.

• Ein weiterer einfacher Ansatz besteht darin, die nicht als erweiterbar
anzusehenden Teil neu generieren zu lassen, d.h. zu überschreiben, und
die benutzererweiterbaren Teile ebenfalls neu zu generieren, aber zuvor
die durch den Benutzer bereits modifizierten Artefakte zu sichern und nach
dem Abschluss des Generierungs-Vorganges eine Möglichkeit zu bieten,
die vorgenommenen Modifikationen wieder zu integrieren (z.B. unter
Verwendung von Merge- und Diff-Werkzeugen.

• Eine Erweiterung dieses Ansatzes ist das automatische Integrieren von
Modifikationen durch den Benutzer. Dies kann auf der Ebene der generier-

9Oder erst in der Linker-Phase: Framework-Code kann sich auf Funktionsnamen beziehen, von
denen erwartet wird, dass sie in einem vom Benutzer erweiterten Modul existieren; ist dies nicht der
Fall, meldet der Linker dies als nicht auflösbare Referenz.
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ten Artefakte erfolgen, d.h. durch Inspektion der zuerst generierten und
dann durch den Benutzer erweiterten Artefakte, Vergleich mit dem Zu-
stand der Artefakte nach dem Neu-Generieren und textuelles Nachziehen
der Änderungen (unter Verwendung von Diff- und Merge-Funktionalität),
oder auf der Ebene des Datenmodells, sofern die Benutzer-Modifikationen
sich darin in einer bestimmten Form manifestieren. Mit diesem Ansatz
kann nicht nur das Nachziehen von Benutzer-Modifikationen realisiert
werden, sondern es können zusätzlich diese Modifikationen an den neuen
Stand der Datenbasis angepasst werden, sofern dies möglich ist (siehe
Abschnitt 3.4.5).

3.1.5 Informationen über den Generierungs-Vorgang

Aufrufer der Generatoren müssen in der Regel über bestimmte während des
Generierungs-Vorganges auftretende Ereignisse informiert werden. Typische
Arten von Informationen sind generierte Artefakte, Attribute dieser Artefakte
(z.B. Zeit, die zum Generieren benötigt wurde oder Größe der generierten Datei),
angelegte Verzeichnisse oder verwendete Quellen.

Typischerweise werden diese Informationen genutzt, um den Generierungs-
Prozess zu dokumentieren, d.h. dem Benutzer den Fortschritt anzuzeigen oder
die Vorgänge in eine Datei zu loggen. Im Kontext der Eclipse-IDE werden die
Informationen ebenfalls genutzt, um neu generierte Ressourcen dem Frame-
work mitzuteilen, so dass bestimmte Projekt-Informationen aktualisiert werden
können. So muss z.B. die CDT-Infrastruktur (Build-System und Editoren) be-
nachrichtigt werden, wenn neue Quell- oder Header-Dateien verfügbar sind,
so dass gegebenenfalls Makefiles neu generiert werden können und Scanner-
Informationen (entspricht in etwa einer Datenbank zur Hilfe bei der Quellco-
de-Navigation) neu angelegt werden können sowie gegebenenfalls geöffnete
Ansichten für Dateien, die beim Generieren gelöscht wurden, zu schließen.

Diese Informationen können grundsätzlich auf zwei Arten dem Aufrufer
bereitgestellt werden: zeitnah mit dem Ereignis (Push-Ansatz, meist via Callback-
Interface) oder am Ende des Generierens von Clients abgefragt werden (Pull-
Ansatz, z.B. als Attribut des Generators).

Die Vorteile des Push-Ansatzes sind, dass die sukzessive gesendeten Informa-
tionen sich zur Fortschrittsanzeige eignen, was insbesondere bei sehr umfangrei-
chen Quell- oder Ausgabe-Dateien hilfreich sein kann. Des Weiteren kann dem
Aufrufer die Möglichkeit gegeben werden, den Generierungs-Vorgang dynamisch
zu beeinflussen, z. B. bei bestimmten Ereignissen zu stoppen oder fehlende
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Eingaben durch den Benutzer vornehmen zu lassen. Eine Variante des Callback-
basierten Push-Ansatzes ist die Verwendung des generischen Observer-Patterns,
z. B. durch die Verwendung des PropertyChange-API von Java oder (falls eine
komponentenübergreifende Lösung benötigt wird) des EventAdmin-Services von
OSGi. Hier registriert sich der Aufrufer beim Generator als Listener und erhält
über eine generische Callback-Methode (entsprechend den Vorgaben des ver-
wendeten API) die Ereignisse in Form von Event-Objekten. Vorteil und Nachteil
zugleich bei dieser Variante ist die schwache Typisierung dieser Event-Typen, die
meist kaum mehr als Container für Schlüssel-Wert-Paare sind. Dadurch können
sie zwar leicht von spezifischen Generatoren um neue Attribute erweitert werden,
aber die Schnittstelle ist fragil, da Aufrufer nicht wissen, welche Attribute der
Generator bereitstellt. Mechanismen, um dies zu ergänzen, stehen zwar zur
Verfügung, zerstören aber die Attraktivität dieser Variante (die ja gerade in der
Verwendung eines generischen APIs liegt). Statt des generischen PropertChange-
Listener-Mechanismus können eigene, spezifische Listener- und Event-Klassen
eingeführt werden, die eine stärkere Typsicherheit aufweisen.

Der Pull-Ansatz ist einfacher zu implementieren und zu verwenden, insbeson-
dere weil die Informationen bereits in aggregierter Form bereitgestellt werden
können (ist ein Aufrufer beim Push-Ansatz nur an aggregierten Informationen
interessiert, so muss er die Aggregation im Callback-Interface selbst durchführen;
da dies jedoch häufig nötig ist, besteht die Gefahr, dass diese Funktionalität in
mehreren Aufrufern dupliziert implementiert wird).

Eine Lösung, bei der der Aufrufer periodisch Informationen des Generators
abfragt, ist nicht praktikabel, da der Synchronisationsaufwand für die Kommuni-
kation zwischen mehreren Threads die Komplexität auf Client- und auf API-Seite
unnötig erhöht. 10

Eine der dominierenden Lösungen zur Code-Generierung, die Modeling Work-
flow Engine (im Rahmen des Eclipse Modeling Framework entwickelt), setzt den
spezifischen Listener-Ansatz um, indem ein Interface Issues eingeführt wird. Ei-
ne Instanz dieser Klasse kann implementiert werden, um auf Ereignisse während
aller Phasen des Generierungs-Prozesses zu reagieren und um gegebenenfalls
die Ereignisse zum Zwecke einer späteren Auswertung zu aggregieren.

Eine besondere Bedeutung kommt dem Mechanismus zur Weiterleitung von
Ereignissen beim Generieren im Hinblick auf Fehler zu. Der übliche Exception-Me-
chanismus von Java sieht keine direkte Möglichkeit vor, Exceptions systematisch
zu aggregieren. Darüber hinaus eignen sich Exceptions nur zum sofortigen Ab-

10Durch die von Aufrufer-Seite aus ohne Lock lesbaren Collection-Klassen seit Java 1.5 sinkt dieser
Aufwand allerdings.
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bruch einer durchgeführten Aufgabe (fail-fast), aber im Kontext der bei der Code-
Generierung häufig auftretenden langwierigen Operationen ist dieses Verhalten
nicht zielführend: wenn 90 Prozent eines Vorganges erfolgreich durchlaufen
wird und während des 91. Prozentes eine Ausnahmebedingung auftritt, so muss
der Benutzer die Fehlermeldung interpretieren und den Prozess mit neuen Ein-
gangsdaten neu starten. Tritt nun beim 92. Prozent ein Fehler auf, muss dieser
Zyklus wiederholt werden. Zielführender und produktiver ist es, zu erlauben, den
gesamten Prozess zu durchlaufen und sämtliche Fehler zu aggregieren. Der Be-
nutzer kann im Idealfall alle Probleme beheben und den Prozess neu starten, so
dass nur zwei Zyklen durchlaufen werden müssen. Gegenseitige Abhängigkeiten
zwischen Fehlern (Folgefehler, Maskierung von Fehlern durch andere Fehlern)
verhindern, dass dieser Idealfall immer erreichbar ist.

3.2 Phasen des Generierungsprozesses

Überträgt man die in Abschnitt 3.1.1 beschriebenen Konzepte der Trennung von
Frontend und Backend sowie Entkopplung und Komplexitätsreduktion durch
ein Zwischenformat auf den hier behandelten Fall der Generierung von Rest-
bussimulationen, so ergibt sich die Anforderung, für jedes zu unterstützende
Eingabeformat ein Frontend-Modul (für die Transformation des Eingabeforma-
tes in die Zwischendarstellung) sowie für jede unterstützte Zielplattform ein
Backend-Modul (für die Transformation von der Zwischendarstellung in platt-
formspezifischen Quellcode) bereitzustellen sowie die nötige Infrastruktur und
eine geeignete Zwischendarstellung zu definieren, mittels derer der benötigte
Informationsfluss realisiert werden kann. Zudem ergeben sich in der Praxis
zusätzliche Aspekte im Zusammenhang mit den Erweiterungen der Restbussi-
mulation durch benutzerdefinierten Code, die in Abschnitt 3.4.5 beschrieben
werden und die ebenfalls Einfluss auf die Architektur der benötigten Transforma-
tionskette haben.

Eine vollständige Transformation von Spezifikation zu übersetzbarem Quell-
code setzt sich demnach aus mindestens zwei Phasen zusammen: der Transfor-
mation aus den Netzwerkbeschreibungsdateien in das intern verwendete Format
und der Transformation vom internen Format in den Quelltext.

3.2.1 Dekomposition des Generierungsprozesses

Die Tatsache, dass der Generierungsprozess sich aus mehreren Stufen zusam-
mensetzt und dass eine Systematik gegeben sein muss, die eine Verknüpfung
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dieser Stufen erlaubt, wird von bestehenden Frameworks zur Code-Generierung
erkannt.

Die Modeling Workflow Engine löst den Aspekt der Verknüpfung der ein-
zelnen Stufen eines mehrstufigen Transformations- bzw. Generierungs-Prozes-
ses durch eine Workflow-Abstraktion [Ecle], die aus einer Prozessdefinition
gemäß einem XML Schema sowie einer Laufzeitumgebung zur Interpretation
und Ausführung dieser Prozessdefinition besteht. Die Verknüpfung der einzel-
nen Stufen erfolgt, indem jedem Schritt mehrere sogenannte Eingangs- und
Ausgangs-Slots zugewiesen werden können. Die Eingangs-Slots sind symboli-
sche Referenzen auf Dateien (in der Regel serialisierte Modelle), die von dem
auszuführenden Schritt benötigt werden, und die Ausgangs-Slots beschreiben,
welche neuen (oder aktualisierten) Dateien nach dem Ausführen dieses Schrit-
tes zur Verfügung stehen, auf die sich nachgelagerte Schritte beziehen können.
Durch die explizite Definition der konsumierten und erzeugten Artefakte ist der
Prozessablauf besser dokumentiert als bei ausschließlicher Angabe der einzelnen
Schritte, wo zusätzlicher Rechercheaufwand notwendig ist, um die für jeden
Schritt relevanten Dateien zu ermitteln. Üblicherweise werden die eigentlichen
Zielartefakte, d.h. zu generierende Quelldateien, nicht durch die Ausgabe-Slots
beschrieben; z.B. wird für einen Schritt, der eine Vielzahl von Quellcode-Da-
teien generiert, lediglich ein Makefile durch einen Ausgabe-Slot definiert, das
Bezüge zu den Quelldateien aufweist, nicht jedes einzelne generierte Artefakt.
Nachfolgende Schritte konsumieren dann nur das Makefile.

Das AUTOSAR-Werkzeug Tresos-Studio der Firma Elektrobit implementiert
diesen Aspekt mittels des in der Java-Welt allgegenwärtigen Build-Tools Apache
Ant [Apa], was den Vorteil hat, das die Mechanismen zur Konfiguration und
Erweiterung der Prozessdefinition (d.h. der Ant-spezifischen build.xml-Datei)
bei vielen Nutzern bereits als Vorkenntnisse vorausgesetzt werden können; eine
Einarbeitung in eine spezielle Workflow-Definitions-Sprache und deren Semantik
bei der konkreten Ausführung, wie dies bei Verwendung der Modeling Workflow
Engine nötig ist, entfällt somit [Ele]. Als Schnittstellen zwischen den Prozessstu-
fen ist man nicht auf die Angabe der Eingabe- und Ausgabe-Slots angewiesen,
was sich bei Abhängigkeiten, die sich nicht in dieses Schema einordnen lassen,
flexibler ist. Die Einheitlichkeit und Systematik des Slot-Mechanismus kann dabei
selbstverständlich verloren gehen; die Ant-Build-Datei erlaubt durch ein Makro-
System die Definition beliebiger Logik und ist Turing-vollständig, was dazu führt,
dass die Build-Datei beliebig komplex werden kann und dies in der Regel für ein
zentrales Dokument wie die Prozessdefinition nicht erwünscht ist.

Ein wesentlicher Unterschied zwischen Ant und der Modeling Workflow En-
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gine besteht in der Art der Kopplung zwischen den einzelnen Schritten. Die
Modeling Workflow Engine bietet zwar die Eingangs- und Ausgangs-Slots, führt
aber die Schritte in der Reihenfolge aus, wie sie in der Prozessdefinition auf-
geführt sind, d.h. die einzelnen Schritte sind temporal gekoppelt. Unter Ant folgt
(ähnlich wie in einem Makefile) die Abarbeitung der Schritte gemäß den in
der Prozessdefinition definierten Abhängigkeiten und sind unabhängig von der
lexikalischen Reihenfolge in der Prozessdefinition. Dies führt zu besseren auto-
matisch möglichen Optimierungen des Prozesses, ist aber für das menschliche
Verständnis geringfügig komplexer als eine temporale Abhängigkeit.

3.2.2 Dekomposition der einzelnen Schritte

Zusätzlich zur Dekomposition des Gesamt-Prozesses in einzelne Schritte ist es
im Hinblick auf Wartbarkeit und Erweiterbarkeit notwendig, Mechanismen zur
Dekomposition eines einzelnen Schrittes in Abhängigkeit von der Struktur der
jeweiligen Eingangsdaten vorzusehen 11, d.h. eine Zuordnung von Strukturele-
menten zu möglichst modularen und autonomen Komponenten zu erreichen, die
genau diese Strukturelemente behandeln.

Der Grundgedanke ist, dass das Eingangsmodell, das einem Schritt zu Grun-
de liegt, gewisse Strukturelemente enthält, die für sich gesondert betrachtet
werden können, d.h. aus dem übergeordneten Kontext des Modells herausgelöst
behandelt werden können (oder mit minimaler Kontext-Information behandelt
werden). Für diese Strukturelemente kann die Logik zur Transformation bzw.
Generierung ausgelagert werden in eigene Module.

Bei später eventuell auftretenden Erweiterungen oder Änderungen am Sche-
ma des Eingangsmodells (d.h. bei neu hinzukommenden Strukturelementen oder
bei wegfallenden Strukturelementen) wird so die Anpassung des entsprechenden
Generierungs- oder Transformations-Schrittes erleichtert: für neue Strukturele-
mente kann eine Komponente implementiert und im Haupt-Modul des Prozess-
Schrittes mit dem Typ des Strukturelementes assoziiert werden; für nicht mehr
zu behandelnde Strukturelemente kann die Assoziation der behandelnden Kom-
ponente mit dem betroffenen Strukturelement rückgängig gemacht werden.

Dieser Mechanismus eignet sich prinzipiell auch zur Erweiterung für benutzer-
spezifische Anwendungsfälle12, so dass die Behandlung bestimmter Strukturele-
mente geändert werden kann, ohne die Kern-Funktionalität des übergeordneten

11Eine Dekomposition eines Schrittes in einzelne Schritte ist trivial durch eine sequentielle
Ausführung mehrerer Schritte möglich; dies wird hier nicht betrachtet.

12Oder organisationsspezifische Anwendungsfälle
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Prozess-Schrittes anzutasten.13

3.2.3 Abstraktion der Eingangsdaten

Um zu vermeiden, dass bestimmte Aspekte des Transformationsprozesses für
jedes Eingangsformat individuell implementiert werden müssen, ist es sinnvoll,
die gemeinsamen Aspekte der unterschiedlichen Eingangsformate so zu abstra-
hieren, dass diese teilweise Duplikation von Lösungen nicht mehr nötig ist. Das
so definierte Zwischenformat blendet notwendigerweise manche Informationen
aus, die in den individuellen Eingangsformaten zur Verfügung stehen; ist dies
nicht akzeptabel, so muss ein Mechanismus geschaffen werden oder nachrüstbar
sein, wie diese Abstraktionsschicht bei Bedarf umgangen werden kann und direkt
auf die Eingangsdaten zugegriffen werden kann; dies wird meist mit dem Begriff
Traceability bezeichnet. Dies betrifft insbesondere die in DBC-Dateien möglichen
benutzerdefinierten Attribute, die ein eigenes Metamodell zur Beschreibung
beliebiger Attribute für Netzwerkelemente und Zuordnung beliebiger Werte zu
diesen Attributen bilden. Dadurch ist es möglich, dass jeder Hersteller für be-
stimmte Aspekte des Kommunikationsnetzwerks eine eigene Semantik festlegen
kann, die beispielsweise das Verhalten von Knoten zur Laufzeit der Simulation
beeinflusst. Andere Eingangsformate, wie Fibex, unterstützen ein derartiges
benutzerdefiniertes Metamodell für Attribute nicht; aus diesem Grunde ist es
nicht sinnvoll, diesen Mechanismus eines einzelnen Eingangsformates in der
Abstraktionsschicht nachzubilden.

Ein zusätzlicher Aspekt, der durch das Zwischenformat abgedeckt werden
muss, ist die Verwaltung von Informationen, die nicht Teil der Eingangsdatei-
en sind, sondern Teil der vom Benutzer definierten Restbussimulation. Diese
Informationen umfassen mindestens die folgenden Aspekte:

Aktivierung von Knoten und Botschaften Es muss beschrieben werden können,
ob bestimmte Netzwerkelemente Teil der simulierten Elemente sind (d.h.
ob diese von der Restbussimulation simuliert werden sollen) oder ob sie
als real vorhanden angenommen werden sollen.

Callbacks Es muss beschrieben werden können, ob es für ein bestimmtes Er-
eignis eine vom Benutzer angegebene Callback-Funktion gibt, die vom
Framework beim Eintreten des Ereignisses aufgerufen werden muss.

13Im Idealfall liegen die Strukturelemente im Eingangsformat so vor, dass bei Verwendung eines
Template-Ansatzes das Element direkt, d.h. ohne weitere Aufbereitung, an den zugehörigen Template-
Satz weitergegeben werden kann, aber dies ist eher die Ausnahme.
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Weitere Informationen, z.B. über das Projekt-Setup und die Zuordnung
von physikalischen Kanälen zu Controllern der Ziel-Hardware und die Para-
meter-Belegung dieser Controller, könnten ebenfalls in diese Abstraktionsschicht
übernommen werden, können auf Grund des fehlenden Bezugs zu den Eingangs-
daten aber auch extern verwaltet werden.

Für die Definition der Callbacks ist relevant, dass sich das Callback nicht auf
ein bestimmtes Element bezieht, sondern auf eine bestimmte Beziehung eines
Elementes zu einem anderen Element, d.h. für die vollständige Beschreibung
der Restbussimulation müssen die Beziehungen zwischen Elementen u.U. ex-
pliziter gemacht werden, als diese im Informationsmodell des Eingabeformates
vorhanden sind. Anders formuliert: das Eingabeformat beschreibt das Kommuni-
kationsnetzwerk als Graph zwischen den Elementen Knoten, Nachrichten und
Signalen; für die Konfiguration einer Restbussimulation sind die Kanten dieses
Graphen jedoch genauso wichtig wie die Elemente selbst und müssen deshalb
im Zwischenformat explizit gemacht werden.

Aus diesem Grund erleichtert es die Code-Generierung, das Eingabemodell
in dieser Beziehung zu expandieren, d.h. die Abstraktionsschicht muss manche
im Eingangsformat vorhandene implizite Beziehungen als vollwertige Elemente
aufnehmen. Diese teilweise Linearisierung der Eingabedaten ermöglicht eine
Vereinfachung des Code-Generierungs-Schrittes, da für ein zu behandelndes
Objekt weniger Kontext-Informationen mit übergeben werden müssen bzw. diese
Kontext-Informationen nicht während des Generierungs-Schrittes berechnet
werden müssen. Speziell zu diesem Aspekt gibt es interessante Unterschiede
zwischen dem DBC-Format, das Beziehungen sehr redundanzfrei modelliert und
somit die Freistellung bestimmter Beziehungen erschwert, und neueren Formaten
wie Fibex und AUTOSAR-System-Konfiguration, in denen viele Beziehungen
sowohl auf System-Ebene als auch auf der Ebene der einzelnen ECU beschrieben
sind, was eine gewisse Redundanz bei der Modellierung erfordert, aber die
Extraktion bestimmter Beziehungen erleichtert.14

Eine weitere Aufgabe, die mittels der Zwischenschicht realisiert werden kann,
ist das dokumentübergreifende Validieren der Datenbasis, was wichtig ist für
den Anwendungsfall, dass mehrere Eingangsdateien einem physikalischem Kanal
zugeordnet werden sollen, um die mehrfache Verwendung gleicher Botschafts-
Identifier zu vermeiden bzw. den Benutzer darüber zu informieren.

Auch die in Abschnitt 3.4.5 beschriebene Funktionalität ist ohne Verwendung
einer einheitlichen Abstraktionsschicht nur durch aufwändiges Ermitteln von

14Dies impliziert nicht, dass Fibex- oder AUTOSAR-Beschreibungen generell einfacher zu behandeln
sind; dies ist auf Grund der komplexeren Strukturen nicht der Fall.
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Querbezügen und evtl. durch das dokumentübergreifende Auflösen von Bezie-
hungen realisierbar. Die Ermittlung der Differenz zwischen zwei verschiedenen
Versions-Ständen wird einerseits erleichtert durch die Komplexitätsreduktion, die
die Abstraktionsschicht schafft (d.h. nicht relevante Aspekte werden automatisch
ausgeblendet). Andererseits muss durch Verwendung eines vereinheitlichten
Formates für die Zwischendarstellung der Algorithmus zur Bildung der Diffe-
renz nur für dieses Format implementiert werden und nicht für jedes einzelne
Eingabeformat (bzw. im Extremfall für jede Kombination von Eingabeformaten).

3.2.4 Transformation Eingangsdaten→ Zwischenformat

Die Transformation der Eingangsdaten in das Zwischenformat muss weiter un-
terteilt werden in mehrere Schritte: das Einlesen der Eingangsdaten aus der
serialisierten Darstellung (d.h. aus Dateien), die eigentliche Transformation der
Daten in das Zwischenformat, die Zusammenführung von Daten aus mehreren
Quellen und die damit verbundene Konflikterkennung sowie die Serialisierung
des Zwischenformates.

Die ersten beiden Schritte sind spezifisch für den Typ der verwendeten Ein-
gangsdaten, während die übrigen Schritte generisch sein können, da sie nur auf
der Zwischendarstellung operieren.

Der erste spezifische Schritt, das Einlesen der serialisierten Daten, erfolgt ja
nach verwendetem Datenformat entweder durch geeignete speziell zu entwi-
ckelnde Parser; so stehen für DBC-Dateien und LDF-Dateien von Berger Elek-
tronik entwickelte Parser zur Verfügung [Sar11, Hit10, Fra10]. Im Falle von
XML werden üblicherweise XML-Parser oder XML-Mapper wie JAXB oder EMF
verwendet.

Die verwendete Technologie zum Einlesen der Daten beeinflusst auch die
zur Verfügung stehenden Optionen für die Realisierung des Transformations-
Schrittes.

In jedem Fall möglich ist eine manuelle Implementierung der Transforma-
tion, d.h. die Überführung des Datenmodells, wie es der Parser liefert, in das
Zwischenformat mit den Mitteln der Host-Sprache. Im Wesentlichen muss hier-
zu das Datenmodell traversiert werden und zu Elementen im Eingangsmodell
die korrespondierenden Elemente im Zwischenformat erzeugt und parametriert
werden. Bei speziellen Parsern, die die Daten über ein individuelles Datenmo-
dell zugänglich machen, ist dies oft der einzige gangbare Weg. Entwurfsmuster
wie Visitor und Builder haben sich zur Strukturierung dieser Lösungsvariante
bewährt [GHJ94].
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Existiert das Eingangsformat als XML- oder EMF-Modell, und ist das Zwi-
schenformat ebenfalls als (anderes) XML- oder EMF-Modell definiert (wobei die
Modelle jeweils dem XSD-Metamodell bzw. dem Ecore-Metamodell entsprechen),
so kann der Einsatz von speziellen Mapping-Technologien in Betracht gezogen
werden. Diese ermöglichen es, die Transformation deklarativ zu definieren, was
insbesondere bei größeren Modellen den Aufwand gegenüber einer manuellen
Implementierung reduzieren kann. Der Nachteil derartiger Transformations-
Sprachen ist, dass u.U. ein hoher Einarbeitungsaufwand nötig sowie spezielle
Werkzeugunterstützung (Editoren und Compiler für die Transformationssprache)
notwendig.

Einen breiten Überblick über Sprachen zur Modelltransformation sowie zur
Theorie der Triple-Graph-Grammatiken, die vielen dieser Sprachen zu Grunde
liegt, bietet [Hub08]. Eine genauere Beschreibung der Theorie der Triple-Graph-
Grammatiken liefert [KW07].

In der vorliegenden Arbeit werden explizite Modelltransformations-Sprachen
nicht weiter betrachtet; durch die Implementierung der Zwischenschicht mittels
EMF ist jedoch eine zukünftige Transformation von anderen EMF-Modellen, z.B.
mittels der Transformations-Sprache ATL denkbar [Ecla].

3.2.5 Transformation Zwischenformat→ Ausgabeformat

Die Transformation vom Zwischenformat in das Ausgabeformat ist die eigentliche
Code-Generierung. Fast alle industriell eingesetzten Lösungen hierfür sind als
duale Ansätze realisiert, bei denen ein Treiber in einer Host-Sprache und eine
Beschreibung der Ausgabe in einer Template-Sprache kombiniert werden (siehe
Abschnitt 3.1.3).

3.3 Projekt-Modell

Zur Zusammenstellung der zu einer zu generierenden Restbussimulation gehörigen
Informationen wurde eine Projekt-Abstraktions-Schicht geschaffen, die die für
das Projekt relevanten Datenbasen, die Zielplattform für das Projekt, die vor-
handenen physikalischen Kanäle (Art, Bezeichnung und Parameter) und die
Zuordnung der Datenbasen zu den Kanälen einerseits sowie die Zuordnung der
Kanäle zu den Anschlüssen der Zielplattform andererseits ermöglicht. Die Zuord-
nungen zwischen ICluster, IChannel und IConnector orientieren sich im Kern
an der vom Fibex-Standard definierten Topologie (die von AUTOSAR weitgehend
übernommen wurde). Diese Informationen werden als Projekt-Konfigurations-
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Datei gespeichert und dienen als Treiber für die für das Projekt verwendeten
Code-Generatoren. Eine Übersicht über die Beziehungen ist in Abbildung 3.1 zu
finden.

+getName() : String
+getType() : IConnectorType
+getId() : int
+getParameters() : Map

IConnector

+getSymbolicName() : String
+getType() : IChannelType

IChannel

+getGenericName() : String
+getSpecificName() : String
+getVendorName() : String
+getModelIdentifier() : String

IDevice

+getChildren() : Object [0..*]
+getDescription() : String

IClusterIClusterContainerIKayakProject

0..1

0..*

Abbildung 3.1: Abstrakte Projekt-Struktur [Ber]

Im Folgenden werden die Elemente der Projekt-Konfiguration näher beschrie-
ben.

3.3.1 Abstraktion der Datenbasen

Da mehrere unterschiedliche Eingangs-Formate unterstützt werden müssen, ist
eine Abstraktionsschicht für die Einbindung dieser Formate notwendig, die das
Referenzieren konkreter Dateien und die Deserialisierung dieser Daten mittels
des für das spezifische Datenformat verwendeten API ermöglicht (z.B. Verwen-
dung generischer XML-APIs oder eines spezifischen Parsers für spezielle Daten-
formate), ohne dass die Projekt-Abstraktions-Schicht diese APIs kennen muss.
So kann gewährleistet werden, dass für weitere zu unterstützende Datenformate
keine Änderungen an der Projekt-Abstraktions-Schicht notwendig sind, sondern
diese als externe Funktionalität eingebunden werden können (wie dies konkret
funktioniert, d.h. wie die Anbindung externer Funktionalität realisiert wird,
ist in Abschnitt 3.5 beschrieben). Die Einführung von IClusterContainer als
übergeordnete Instanz über ICluster motiviert sich aus der Tatsache, dass man-
che Eingangsformate die Definition mehrerer Netzwerk-Cluster innerhalb einer
Datei ermöglichen, so dass IClusterContainer sich auf die Ressource bezieht,
die die Netzwerk-Cluster definiert, während sich ICluster auf einen einzelnen
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Netzwerk-Cluster bezieht und die generische Operation getChildren bereitstellt,
die in abstrakter, vom konkreten Eingangsformat unabhängiger Weise den Inhalt
der Clusters zugänglich macht.

3.3.2 Abstraktion der physikalischen Kanäle

Die physikalischen Kanäle, die für eine zu generierende Restbussimulation re-
levant sind, werden beschrieben durch den Bus-Typ des physikalischen Busses
und einen Parametersatz zur Beschreibung der Parameter für den konkreten
Bus; dieser Parametersatz ist auf der Ebene der Projekt-Konfiguration abstrakt
gehalten. Wichtig für die Restbussimulation ist insbesondere der symbolische
Name eines physikalischen Busses, da dieser sich auswirkt auf die generierten
API-Funktionen für die Restbussimulation.

3.3.3 Abstraktion der Zielplattform

Die Zielplattform wird dem Projekt explizit zugewiesen. Sie ist definiert durch
eine Reihe beschreibender Merkmale sowie den ihr zugeordneten Anschlüssen,
für die der Anschluss-Typ und mögliche Parameter definiert werden können.
Die Anschlüsse dienen als Endpunkte für physikalische Kanäle. Die Menge der
unterstützten Zielplattformen ist nach oben hin offen, so dass neue Plattformen
(oder Plattform-Varianten) als externe Module eingeführt werden können, ohne
das Kern-System zu verändern (siehe Abschnitt 3.5).

Das Anwendungsprofil ist ein zusätzliches Merkmal, anhand dessen die Klasse
der zu generierenden Anwendung definiert wird. Dies dient im Wesentlichen
dazu, unterschiedliche typische Anwendungsarten wie Gateways oder Logger
für eine Plattform generieren zu können, ohne dass diese Anwendungstypen
als eigene Zielplattformen definiert werden müssen. Auch kundenspezifische
Anwendungstypen können so definiert werden.

Die Auswahl der benötigten Generatoren für ein Projekt erfolgt dann mittels
der Kombination aus Zielplattform und Anwendungsprofil (auch hierzu sei auf
Abschnitt 3.5 verwiesen).
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Auswahl
Anwendungsprofil 

Physikalische
Busse 

konfigurieren

Kanalbelegung 
konfigurieren

Projekt-Konfiguration

Auswahl
Zielplattform

Datenbasen 
festlegen

Abbildung 3.2: Ablauf der Projekt-Konfiguration [Ber]

Der Ablauf der Projekt-Konfiguration ist in Abbildung 3.2 dargestellt. Eine kur-
ze Erläuterung: die Zielplattform und das Anwendungsprofil werden ausgewählt.
Die zu verwendenden Datenbasen werden eingebunden. Die physikalischen
Kanäle werden definiert und die Datenbasen werden diesen zugewiesen. Ab-
schließend werden die physikalischen Kanäle den Anschlüssen der Zielplattform
zugeordnet.

Ein konkretes Beispiel für eine Projekt-Konfiguration, die die Zuordnung
zwischen den Projekt-Elementen und der zugehörigen realen Topologie zeigt,
ist in Abbildung 3.3 dargestellt. Hier ist die Projekt-Struktur für eine Konfi-
guration dargestellt, die für eine Topologie mit zwei physikalischen Kanälen
(Chassis und Powertrain) jedem Kanal die zugehörige Datenbank zuordnet sowie
die Anbindung der Anschlüsse der verwendeten Zielplattform an diese Kanäle
definiert.
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cluster_2 : DBCCluster

cluster_1 : DBCCluster

db_2 : 
DBCClusterContainer

db_1 : 
DBCClusterContainer

CANyonCAN_1

CAN_2

CAN_3

CAN_4can_4 : IConnector

can_3 : IConnector

can_2 : IConnector

can_1 : IConnector

«artifact»

chassis.dbc

«artifact»

powertrain.dbc

canyon : IDevice

powertrain : 
IChannel

project : 
IKayakProject

chassis : 
IChannel

entspricht

entspricht

entspricht

entspricht

liegt auf

angebunden anangebunden an

verweist auf

verweist auf

liegt auf

Abbildung 3.3: Konkretes Beispiel für eine Projekt-Konfiguration [Ber]

3.4 Generator-Architektur

Im Folgenden wird eine Umsetzung der in Abschnitt 3.2 beschriebenen Anforde-
rungen vorgestellt. Wo möglich, werden Einzelheiten an Hand von konkreten
Beispielen veranschaulicht.

3.4.1 Kern-Abstraktionen und deren Interaktionen

Den Kern des entwickelten Generator-Frameworks bilden die Abstraktionen
IGenerator und IComponentContribution.

IGenerator ist die Schnittstelle für einen einzelnen Schritt im Generierungs-
Prozess. Eine konkrete Implementierung dieser Schnittstelle realisiert die in die-
sem Schritt auszuführenden Transformationen. Die inhaltsbasierte Behandlung
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von Eingangsdaten erfolgt über einzelne Implementierungen der Schnittstelle
IComponentContribution, die mittels der Schnittstelle IContributionHandler

an eine IGenerator-Instanz gebunden werden können. Dadurch wird eine Zu-
ordnung zwischen Strukturelementen zu ihren behandelnden Modulen erreicht.

Eine IGenerator-Instanz ruft die ihr zugeordneten IComponentContribu-

tion-Instanzen auf, indem sie über ihre Eingangsdaten iteriert (wie dies erfolgt,
ist abhängig von den verwendeten Eingangsdaten für den von diesem Generator
implementierten Schritt) und für jedes potentiell behandelbare Strukturelement
überprüft, ob eine der IComponentContribution-Instanzen dieses Element be-
handeln kann. Diese Prüfung erfolgt mittels der Methode isContextSupported

von IComponentContribution. Ist diese Überprüfung positiv, so wird die con-

tribute-Methode dieser IComponentContribution-Instanz aufgerufen, indem
deren contribute-Methode aufgerufen wird, wobei das zu behandelnde Ele-
ment nicht direkt übergeben wird, sondern verpackt in eine IContext-Instanz,
die zusätzlich nötige Informationen über den aufrufenden Generator weitergibt.

Die so aufgerufene IComponentContribution-Instanz transformiert das ihr
übergebene Element, indem sie es, je nach konkretem Fall, in ein Element des
Zielmodells überführt oder indem sie Templates für dieses Element instantiiert
und das Element an diese Templates übergibt, in der Regel mit zusätzlichen Pa-
rametern. Dabei erfolgt die Ausgabe in Form eines finalen, als Datei generierten
Artefaktes nicht direkt, sondern es wird ein Event vom Typ IArtifactEvent er-
zeugt und über die IArtefactHandler-Schnittstelle an die aufrufende IGenera-

tor-Instanz übergeben. Die Motivation für diese Indirektion erfolgt im nächsten
Abschnitt. Ebenso ist es möglich, dass eine IComponentContribution-Instanz
einen Beitrag zu Artefakten leisten will, die von einer anderen IComponentCon-

tribution-Instanz generiert werden. Dies ist so möglich, dass die Intention
dieses Beitrags in Form einer IAttributeEvent-Instanz über die Schnittstelle
IAttributeHandler an den aufrufenden Generator weitergeleitet wird.

Eine Übersicht über die beteiligten Kern-Abstraktionen des Generator-Frame-
works bietet Abbildung 3.4.
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+handleContribution( contribution : IComponentContribution, context : IContext ) : void
+dispatchToContributions( context : IContext ) : void

IContributionHandler

+handleAttributeEvent( event : AttributeEvent ) : void

IAttributeEventHandler

+contribute( context : IContext ) : void
+isContextSupported( context : IContext ) : boolean

IComponentContribution

+handleArtifactEvent( event : ArtifactEvent ) : void

IArtifactEventHandler

+getRoot() : Object
+getIssues() : IIssueReporter

IContext

+getType() : String
+getTemplate() : Object
+getFileName() : String

ArtifactEvent

+getAttName() : String
+getAttValue() : String

AttributeEvent

+generate() : void

IGenerator

angebunden
durch

Abbildung 3.4: Kern-Abstraktionen des Generator-Frameworks [Ber]

Um die Realisierung von IGenerator-Implementierungen zu vereinfachen
und zu vereinheitlichen, wird die Klasse AbstractGenerator als abstrakte Basis-
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Klasse bereitgestellt, die die unter anderem bereits die Infrastruktur für die
Registrierung von IComponentContribution-Instanzen bereitstellt.

Die weitere Unterteilung der Generator-Funktionalität, d.h. die konkreten
Unterklassen von IGenerator, fällt in zwei dominierende Kategorien:

C-Code-Generierung Für Generatoren, die die eigentliche Generierung von
C-Code durchführen, wird als spezifische Basis-Klasse die Klasse Base-

CCodeGenerator bereitgestellt, die eine Visitor-Methode implementiert,
die über die Strukturelemente des Zwischenformates iteriert und die auf
diese Strukturelemente registrierten IComponentContribution-Instanzen
aufruft.

Modell-Transformation Für Generatoren, die eine Transformation der Ein-
gangsformate in das Zwischenformat oder eine Vorkonditionierung oder
Konsolidierung des Zwischenformates realisieren, wird die Basis-Klasse
AbstractModelTransformer bereitgestellt, die einfache Methoden zum
Serialisieren und Deserialisieren des Zwischenformates und die Ermittlung
der Differenzen zwischen zwei Instanzen des Zwischenformates realisiert.

Diese beiden Basis-Klassen bilden ein Vokabular, mit dem die benötigte
Funktionalität für die Transformations-Kette in konsistenter Weise abgebildet
werden kann, indem die Funktionalität jedes konkreten Prozess-Schrittes als
Unterklasse einer dieser Basis-Klassen erfolgen kann. Für Prozess-Schritte, die
sich nicht in eine dieser Kategorien einordnen lassen, kann eine Implementierung
erfolgen, die direkt auf IGenerator bzw. AbstractGenerator aufsetzt und die
beiden bevorzugten Basis-Klassen können ignoriert werden. Die wichtigsten
konkret verwendeten Unterklassen sind in Abbildung 3.5 dargestellt; wichtig ist,
dass alle plattformspezifischen Aspekte in einem plattformspezifischen Generator
gekapselt sind und alle übrigen Generatoren für alle Plattformen genutzt werden
können.

Als bevorzugte Basis-Implementierung für IComponentContribution exis-
tiert die Klasse AbstractComponentContribution, die bevorzugt zu verwen-
den ist und die die notwendigen Anbindungen dieser Schnittstelle (Anbindung
an IArtifactHandler und IAttributeHandler) in einheitlicher Weise reali-
siert und einfache Methoden bereitstellt, um IArtifactEvent- und IAttribute-

Event-Instanzen zu erzeugen und an die entsprechenden registrierten Handler
(dies sind in der Regel die aufrufenden IGenerator-Instanzen) zu propagieren.
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UserModelSettingsIntegrator

AbstractModelTransformer

platform.canyon

CCodeGenerator

platform.xllib

CCodeGenerator

BaseCCodeGenerator

ConservativeCleaner

UserCodeReconciler

AbstractGenerator

AbstractCleaner

+generate() : void

IGenerator

ModelBuilder

FullCleaner

Abbildung 3.5: Verwendete Generatoren und plattformspezifische Anteile [Ber]
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3.4.2 Behandlung von Artefakt- und Attribut-Beiträgen

Die zuvor erwähnte Schnittstelle IArtifactHandler, die von jeder IGenerator-
Unterklasse implementiert wird, ermöglicht es, Artefakte nicht direkt zu generie-
ren, sondern detailliert zu steuern, wie und zu welchem Zeitpunkt das von einem
IArtifactEvent spezifizierte Artefakt generiert wird. Die Motivation dafür ist,
dass es durch die Möglichkeit der Erweiterung der Restbussimulation durch
den Benutzer zwei Klassen von zu generierenden Artefakten gibt: bestimmte
Quelldateien sind nicht für die Erweiterung durch den Benutzer vorgesehen, d.h.
sie werden nur generiert, aber nichts an diesem generierten Quellcode darf vom
Benutzer verändert werden. Diese Artefakte können somit immer wieder neu
generiert werden, ohne dass darauf geachtet werden muss, ob sie Änderungen
durch den Benutzer enthalten. Artefakte, die der Klasse der durch den Benut-
zer erweiterbaren Dateien angehören, dürfen nicht in jedem Fall überschrieben
werden, sondern müssen entweder belassen werden, wie sie sind, oder es muss,
wenn eine solche Datei neu generiert werden soll, die alte Version gesichert
werden, bevor sie überschrieben wird.15

Der Typ des Artefaktes wird dabei über ein Feld des entsprechenden IAr-

tifactEvents bestimmt, das von der Ereignis-Quelle, d.h. der erzeugenden
IComponentContribution-Instanz, entsprechend korrekt gesetzt werden muss.
Mit dieser Information kann der Generator zentralisiert entscheiden, wie das
behandelte Artefakt erstellt werden muss, indem es je nach Typ die entsprechende
Strategie auswählt.

Ein weiterer Vorteil der Kapselung von Informationen zu jedem zu generieren-
den Artefakt ist, dass eine Erweiterung auf andere unterstützte Template-Arten
dadurch an einer zentralen Stelle erfolgen kann, indem ein zusätzlicher Hand-
ler für Artefakt-Ereignisse mit der neuen Template-Variante implementiert und
registriert wird. Aspekte wie die Gewährleistung der Atomizität der Erstellung
von Artefakten, d.h. die Sicherheit, dass ein Artefakt entweder vollständig und
korrekt generiert wird oder das ursprüngliche Artefakt an seiner Stelle verbleibt,
können ebenfalls als zentrale Strategie für manche Artefakt-Typen eingebunden
werden.

Im Hinblick auf die Generierung von C-Code ist in diesem Zusammenhang
eine Optimierung möglich, indem ein neu zu generierendes Artefakt nur als
Dateisystem-Datei geschrieben wird, wenn der Inhalt sich vom bisher an dieser
Stelle befindenden Artefakt unterscheidet (dies kann z.B. mittels einer kryp-
tographischen Prüfsumme überprüft werden); ist dies nicht der Fall, so kann

15Eine andere Möglichkeit der Behandlung wird in Abschnitt 3.4.5 beschrieben.
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das ursprüngliche Artefakt verbleiben, und der make-Prozess kompiliert die ent-
sprechende Quelldatei (und evtl. davon abhängige Dateien) nicht neu, was bei
größeren Projekten eine für den Benutzer signifikante Zeitersparnis bewirkt.16

Eine weiterer Aspekt des Generierungs-Prozesses, der durch den IAttribute-

Handler-Mechanismus abgedeckt werden kann, ist das Löschen von Artefakten,
z.B. beim Wegfall von Netzwerk-Knoten aus der Datenbasis und anschließendem
Neugenerieren oder auch, um einen vollständigen Build des Projektes zu erzwin-
gen. Auch hier kann je nach der Kategorie des zu löschenden Artefaktes zentral
entschieden werden, ob das Artefakt vom Dateisystem gelöscht werden soll oder
(bei Artefakten, die Änderungen durch den Benutzer enthalten können) ob das
Artefakt gesichert werden muss.

Die Schnittstelle IAttributeHandler realisiert die Möglichkeit, dass einzel-
ne IComponentContribution-Instanzen Beiträge zu Artefakten liefern, die von
anderen IComponentContribution-Instanzen erzeugt werden. Dies nutzt die
verzögerte Generierung der Artefakte aus, indem zuerst alle Attribut-Ereignisse
abgearbeitet werden und in die entsprechenden Artefakte injiziert werden, bevor
alle dem Generator mittels IArtifactEvent übergebenen Artefakte generiert
werden. Damit ist die Reihenfolge der Ausführung, d.h. ob für ein bestimmtes
Artefakt zuerst die Attribut-Ereignisse oder das Artefakt-Ereignis an den Genera-
tor geleitet werden, nicht relevant, was der Tatsache Rechnung trägt, dass die
einzelnen IComponentContribution-Instanzen möglichst nichts voneinander
wissen sollen und insbesondere nicht in temporaler Abhängigkeit voneinander
stehen sollen. Die Assoziation zwischen dem Eigner des Artefaktes, für das ein
Attribut gesetzt werden soll, und der externen Komponente, die das Attribut
setzt, erfolgt ausschließlich über den Namen des Attributes, was beachtet werden
muss, wenn dieser Mechanismus häufiger eingesetzt wird, da es dann u.U. zu
Namenskonflikten kommen kann.

Das ereignisbasierte Behandeln der Artefakt-Generierung und Attribut-Wei-
terleitung hat auch Auswirkungen auf die Testbarkeit: in Testfällen können
aufwändige dateisystembasierte Tests, die Prüfen, ob eine bestimmte Datei durch
einen bestimmten Prozess-Schritt generiert werden, ersetzt werden durch einfa-
che Tests, die Prüfen, ob ein entsprechendes IArtifactEvent für das erwartete
Artefakt erzeugt wurde. Dies hilft natürlich nur bei Tests, die lediglich die Präsenz
des Artefakts betreffen. Bei inhaltsbasierten Prüfungen ist der ereignisbasierte

16Bei Build-Systemen, die (anders als make), eine Neukompilierung nicht vom Zeitstempel der
generierten Datei abhängig machen, sondern bereits selbst an Hand einer Prüfsumme eine inhaltsba-
sierte Entscheidung über eine notwendige Neukompilierung treffen, könnte dieser Schritt entfallen.
Beispiele für derartige Build-Systeme sind cons, SCons, waf, omake und fabricate; von diesen ist
SCons am populärsten.
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Ansatz jedoch auch hilfreich, da im Kontext des Tests spezielle Artefakt-Hand-
ler verwendet werden können, die das Artefakt nicht als persistente Datei im
Dateisystem erzeugen, sondern als Byte-Array im Speicher, was die Inspektion
des Inhaltes erleichtert und das sonst notwendige Entfernen der während dem
Test generierten Artefakte überflüssig macht. 17

3.4.3 Fassade zur Verwendung der Generatoren

Um einerseits die richtige Sequenzierung der einzelnen für den Generierungs-
Prozess verwendeten Schritte zu gewährleisten und andererseits die Integration
der Code-Generierung mit dem nachgelagerten Build-Prozess, d.h. dem Kompi-
lieren des Quellcodes und Linken des Objektcodes (realisiert durch einen Aufruf
von make) zu ermöglichen, wurde das Interface BuildService eingeführt. Dieses
erlaubt es, verschiedene Ausprägungen des Generierungs- und Build-Prozesses
einfach auszuführen, ohne dass einzelne Prozess-Schritte konfiguriert werden
müssen. Die wichtigsten dieser Ausprägungen umfassen:

Konservative Code-Generierung Es werden Änderungen aus den Eingangsda-
teien eingebunden und Code wird neu generiert, aber es werden dabei
keine durch den Benutzer erweiterbaren Quell-Artefakte überschrieben.
Typischer Anwendungsfall ist, dass ein Benutzer neue Elemente aus den
Eingangsdaten einbeziehen will.

Vollständige Code-Generierung Es werden Änderungen aus den Eingangsda-
teien eingebunden und Code wird neu generiert und eventuell bestehende
durch den Benutzer erweiterte Quell-Artefakte werden überschrieben. Ty-
pischer Anwendungsfall ist, dass ein Benutzer den ursprünglichen Zustand
des erweiterbaren Quellcodes wiederherstellen kann, um so z.B. das Pro-
jekt wieder in einen kompilierbaren Zustand zu bringen. Hier ist wichtig,
dass die Granularität regulierbar ist, d.h. dass die Neu-Generierung auf
bestimmte Artefakte beschränkt werden kann, falls der Benutzer nur diese
neu generieren will.

Nur Build Es werden keine Eingangsdaten neu eingebunden und kein Code neu
generiert, sondern nur das Binary neu gelinkt und gegebenenfalls zuvor
Quell-Artefakte, die durch den Benutzer verändert wurden, neu kompiliert.

Vollständiger Build Es werden Änderungen aus den Eingangsdateien einge-
bunden und Code wird generiert, dieser kompiliert und der resultierende

17Dies sind keine aus funktionaler Sicht wichtigen Aspekte, aber sie zeigen die grundsätzliche
Flexibilität, die dieser Ansatz bietet.
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Objektcode zu einem Binary gelinkt. Typischer Anwendungsfall ist das
erstmalige Generieren, Kompilieren und Linken eines Projektes.

Die Schaffung einer Schnittstelle für die korrekte Verwendung der Generato-
ren isoliert die konkreten Generator-Implementierungen von Modulen, die nur
ein Interesse an der korrekten Ausführung des Build-Prozesses haben und nicht
an den einzelnen Schritten; dies betrifft die überwiegende Mehrheit der Module,
einschließlich aller Benutzerschnittstellen.

3.4.4 Informationsfluss während des Generierungs-Vorgangs

Die in Abschnitt 3.1.5 beschriebene Thematik der Behandlung von Status-
und Fehler-Meldungen während des Generierungs-Prozesses wird wie in Ab-
bildung 3.6 dargestellt behandelt. Die Schnittstelle IIssueReporter ermöglicht
die Realisierung des dort beschriebenen spezifischen Listener-Ansatzes. Konkrete
Implementierungen realisieren die Schnittstelle in einer der Umgebung ange-
passten Weise; für eine Generierung außerhalb einer Entwicklungsumgebung
wird die Klasse ConsoleIssueReporter bereitgestellt, die die vom Generierungs-
Prozess gelieferten Informationen an die Standard-Ausgabe bzw. die Standard-
Fehlerausgabe weiterleitet; im Kontext der Entwicklungsumgebung wird eine
spezielle Klasse UiIssueReporter bereitgestellt, die die Umwandlung dieser
Informationen in spezielle Strukturen realisiert, die in der Log-Ansicht der IDE
angezeigt werden können.

Eine spezielle Methode von IIssueReporter, die Methode vetoableCon-

tinuation, erlaubt es, den Generierungs-Prozess bei bestimmten kritischen
Bedingungen optional fortzusetzen oder abzubrechen. Durch die kontextspezifi-
sche Implementierung dieser Methode kann hier wiederum innerhalb der IDE
eine Rückfrage an den Benutzer erfolgen und bei Verwendung außerhalb der
IDE kann eine Implementierung dieser Methode so erfolgen, dass bei Fehlern der
Generierungs-Prozess abgebrochen wird und bei einfachen Problemen der Ge-
nerierungs-Prozess fortgesetzt wird. Prinzipiell könnte diese Behandlung durch
Inspektion der Meldungen noch verfeinert werden und konfigurierbar gemacht
werden.
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+debug( context : Object, message : String ) : void
+info( context : Object, message : String ) : void
+warn( context : Object, message : String ) : void
+error( context : Object, message : String ) : void
+log( context : Object, message : String, type : IssueType ) : void
+vetoableContinuation( context : Object, message : String, type : IssueType ) : boolean

IIssueReporter

ConsoleIssueReporter
ui

UIIssueReporter
-DEBUG
-INFO
-WARNING
-ERROR

«enumeration»

IssueType

Abbildung 3.6: Verarbeitung von Statusmeldungen während der Generierung
[Ber]

3.4.5 Änderungen am Modell nachziehen

Da sich die verwendete Datenbasis für die Kommunikationsmatrix in gewissem
Maße ändert (entweder durch Änderungen, die von außen kommen, z.B. im
Rahmen der Produktentwicklung des durch die Restbussimulation geprüften oder
getesteten Produkts, oder durch anwendungsspezifische Änderungen, die der
Benutzer selbst gezielt vornimmt), müssen Mechanismen integriert werden, wie
die von Änderungen an der Datenbasis betroffenen Teile der Restbussimulation
angepasst werden können, d.h. wie selektiv Änderungen an der Datenbasis in die
bestehende Restbussimulation integriert werden können. Um die Beschreibung
im Folgenden kürzer und präziser zu machen, werden die folgenden Bezeichnun-
gen verwendet: Kold für den Stand der Datenbasis zum Zeitpunkt der letzten
Generierung, Knew für den Stand der Datenbasis zu einem späteren Zeitpunkt
und ∆K für die strukturelle Differenz zwischen Kold und Knew.

Der Aspekt der Variabilität der Kommunikationsmatrix betrifft speziell den
durch den Benutzer erweiterten Teil der Restbussimulation (im Folgenden mit
Ruser bezeichnet). Beim rein generierten Teil der RBS (im Folgenden mit Rgen

bezeichnet) spielt dies keine Rolle, da dieser einfach vollständig neu generiert
werden kann. Die am benutzererweiterten Teil notwendigen Anpassungen fallen
in verschiedene Kategorien, die im Folgenden beschrieben werden. Die Reaktio-
nen auf die Änderungen, d.h. wie eine Anpassung von Ruser erfolgen muss, wird
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hinter dem Symbol→ angegeben (der Prozess der Anpassung von Ruser wird
im folgenden Konsolidierung genannt).

Entfernte Elemente ECUs, Botschaften oder Signale sind in Kold enthalten und
in Knew nicht enthalten
→ Benutzer ist verantwortlich für das Entfernen von API-Methoden, die
auf diesen Elementen operieren (die betroffenen Stellen können jedoch
durch das System markiert oder annotiert werden, so dass dem Benutzer
ein Überblick über die durchzuführenden Änderungen gegeben wird).

Neue Elemente ECUs, Botschaften oder Signale sind in Knew enthalten, aber
in Kold nicht enthalten
→ Keine Konsolidierung notwendig; Benutzer kann nach dem Generieren
die neuen API-Methoden in seinem bestehenden Code verwenden; eine
Anpassung bestehenden Codes (automatisch oder durch den Benutzer) ist
nicht erforderlich.

Änderungen an Attributen Attribut-Werte von Elementen wurden geändert;
hier sind drei Fälle unterscheidbar in Bezug darauf, wie diese Art von
Änderung sich auf eine bestehende Restbussimulation auswirken kann:

• Das betroffene Attribut wird ausschließlich intern (in Rgen) verwendet
und hat keine Auswirkung hinsichtlich Ruser

→ Keine Konsolidierung notwendig (Rgen kann einfach neu generiert
werden).

• API-Namen sind betroffen. ECUs, Botschaften oder Signale weisen in
Knew einen anderen Bezeichner auf als in Kold, sind aber (auf Grund
einer bestimmten Äquivalenz-Metrik) die selben Elemente
→ Benutzerdefinierter Code, der sich auf API-Namen bezieht, die von
den Änderungen am Bezeichner eines Elementes betroffen sind, muss
angepasst werden, indem alle C-Bezeichner mit dem alten Namen
durch die C-Bezeichner des neuen Namens ersetzt werden.

• API-Semantik ist betroffen. Hier muss der Benutzer benachrichtigt
werden, um eventuelle Inkonsistenzen beheben zu können, die auftre-
ten, wenn der benutzerdefinierte Code zwar syntaktisch korrekt ist,
aber durch die Änderungen eine falsche Semantik erhält. Ein Beispiel
für den letzteren Fall wäre die Änderung der Länge eines Signals von
2 Bit auf 4 Bit. Der für den Benutzer verwendbare Typ bleibt hierbei
1 Byte groß (C-Typ unsigned char), so dass alle Verwendungen des
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Signals im benutzerdefinierten Code syntaktisch korrekt sind und
nicht vom Compiler beanstandet werden können
→ Jedes Vorkommen der betroffenen API-Funktionen muss für den
Benutzer kenntlich gemacht werden, damit dieser überprüfen kann,
ob die Semantik der Verwendung der API-Funktion an der entspre-
chenden Stelle durch die Änderung beeinflusst wird. 18

Diese Klassifizierung bietet keine scharfe Abgrenzung, da es Fälle gibt, bei
denen der Vergleich von Kold und Knew nicht ausreicht, um zu entscheiden, ob
eine bestimmte Änderung semantisch als das Hinzufügen eines neuen Elementes
und das Entfernen eines alten Elementes gewertet werden soll oder als komplexe
Änderung eines bestehenden Elementes. Die Intention der Änderung ist nicht
aus dem statusbasierten Vergleich des alten und neuen Zustands ermittelbar. Ein
operationsbasierter Vergleich, beschrieben z.B. in [Lan09], kann diesen Missstand
beheben, ist jedoch nur praktikabel, wenn die Änderungen in kontrollierter und
protokollierter Form vorliegen, was im vorliegenden Anwendungsfall, bei dem
die Eingabedateien durch ein beliebiges Tool extern geändert werden können,
nicht gegeben ist und auch nicht implementiert werden kann. Eine eindeutige
Identifikation (an Hand des Namens oder eines anderen eindeutigen Attributes)
von Elementen könnte diese Unschärfe der Klassifikation beheben, ist aber nicht
gegeben, da für den hier vorliegenden Anwendungsfall gerade diese eindeutigen
Attribute (die sich häufig in den API-Namen manifestieren) auch als variabel
betrachtet werden müssen, um eine Anpassung von API-Namen im bestehenden
Code durchführen zu können (so ist z.B. die Botschafts-ID für jeden Kanal
eindeutig, zwischen Versionen kann sich diese jedoch ändern, so dass dieses
Attribut trotz seiner Eindeutigkeit nicht zur Nachverfolgbarkeit des betroffenen
Elementes verwendet werden kann). 19

18Die Verwendung von Bitfeldern beseitigt das Problem nicht (Zuweisungen semantisch ungültiger
Werte können dadurch weiterhin nicht vom Compiler aufgedeckt werden). Ebenso kann eine si-
gnalspezifische Typ-Definition dies nicht aufdecken, da die Typ-Definition auf einen bestehenden
numerischen Wert-Typ von C abgebildet werden muss (und damit wieder keine Wertebereichs-
Überprüfung durch den Compiler erfolgen kann). Eine echte Subtyp-Definition für numerische Typen
mit Einschränkung des Wertebereichs, wie es beispielsweise in Ada möglich ist, existiert in C nicht.
Selbstverständlich sind auch in Ada nur triviale Bereichsüberschreitungen zur Übersetzungs-Zeit
erkennbar, wie etwa bei der Zuweisung von Literalen oder konstanten Ausdrücken; die Überprüfung
von komplexen, dynamischen Ausdrücken muss weiterhin zur Laufzeit erfolgen.

19Die Generierung von künstlichen eindeutigen IDs ist prinzipiell möglich. Die Nachteile,
ausführlich diskutiert in zahlreichen Arbeiten zu dieser Thematik im Kontext von Datenbanken,
sind jedoch gravierend. Im Wesentlichen verschiebt sich das Problem dann auf das Problem der
Aufrechterhaltung dieser IDs; die zu Grunde liegende Problematik bleibt dieselbe.
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Es ist also notwendig, eine heuristische Klassifizierung von Änderungen an
Hand der strukturellen Eigenschaften von Kold und Knew vorzunehmen.

Es müssen jedoch nicht nur Änderungen an den Datenbasen in die existieren-
de Restbussimulation übernommen werden können, sondern bereits vorgenom-
mene Anpassungen (Aktivierungsstatus von Netzwerk-Knoten und Botschaften,
benutzerdefinierte Callbacks) müssen auf das neu erzeugte Modell angewandt
werden, um zu vermeiden, dass der Benutzer Elemente nach dem Nachziehen
von Änderungen erneut annotieren muss (z.B. Festlegen des Aktivierungsstatus
von Elementen und definierte Callbacks für Elemente).

Abgesehen von dieser Übernahme vorgenommener Änderungen erfolgt die
Unterstützung für Modelländerungen nur in Downstream-Richtung, d.h. es wer-
den nur Änderungen von den Datenquellen zum Modell verfolgt; in die andere
Richtung werden keine Änderungen propagiert (dies wäre auch nicht sinnvoll,
da die einzigen zulässigen Ergänzungen am Modell Aspekte betreffen, die im
Kontext der Datenquellen keine Bedeutung haben, z.B. Aktivierungsstatus und
definierte Callbacks). Ebenfalls wird keine gesonderte Unterstützung für typische
Mehrbenutzer-Konflikte implementiert (unabhängige Änderungen desselben Mo-
dells durch mehrere Benutzer mit späterer Zusammenführung der Ergebnisse).

Der grundsätzliche interne Ablauf beim Neugenerieren einer Restbussimu-
lation in Reaktion aus Änderungen an den Eingangsdaten ist in Abbildung 3.7
dargestellt. Die einzelnen Schritte im Detail:

Eingangsdaten in Zwischenformat transformieren Die Kommunikationsma-
tritzen, auf die sich die Projekt-Konfiguration bezieht, werden in ein Zwi-
schenformat transformiert.

Nachziehen von Benutzermanipulationen am alten Modell Die vom Benut-
zer vorgenommenen Änderungen an einem alten Zustand der Datenbasis
werden, sofern vorhanden, in die neue Datenbasis übernommen. Dies be-
trifft bisher nur den Aktivierungs-Status von Knoten und Botschaften, ist
aber prinzipiell erweiterbar auf andere Objekt-Eigenschaften.

Code-Generierung Generierung des C-Codes für Rgen und für neue Artefakte
in Ruser.

Differenzen-Bildung Ermitteln der Unterschiede zwischen der neuen Datenba-
sis und der alten Datenbasis.

Code-Konsolidierung Ausgehend von den ermittelten Unterschieden zwischen
den Ständen der Datenbasis wird Ruser (sofern existent) angepasst. Das
genaue Vorgehen hierzu ist in Abschnitt 4.2.3 beschrieben.
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Abbildung 3.7: Reaktion auf Änderungen an Eingangsdaten [Ber]
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3.5 Modularitäts-Konzept

Um die Anbindung externer Funktionalität zu realisieren, d.h. die Möglichkeit
zu bieten, zusätzliche Bibliotheken einzubinden, die das Kern-System in be-
stimmter Weise erweitern, stehen im Java-Umfeld einige etablierte Mechanismen
zur Verfügung, die im Folgenden kurz beschrieben werden; es läßt sich nicht
vermeiden, dass dabei auf einige Aspekte der Classloader-Infrastruktur von Java
eingegangen wird.

Allen Mechanismen gemeinsam ist, dass sie das Problem lösen, wie das Kern-
System das Vorhandensein bestimmter Erweiterungen in externen Modulen re-
gistriert, wobei diese Erweiterungen immer konkrete Implementierungs-Klassen
eines bestimmten Interfaces sind, dass das Kern-System zu diesem Zwecke vor-
sieht. Im einfachsten Fall reduziert sich dies auf die Aufgabe, alle konkreten
Implementierungen eines bestimmten Interfaces zu finden, die vom Programm-
Kontext aus zugänglich sind; dies ist in der Regel jedoch nicht erwünscht (z.B.
wenn bestimmte Basis-Klassen nicht verwendet werden sollen, da sie keine
vollständige Implementierung bereitstellen).

Die Problematik ist in Abbildung 3.8 beispielhaft dargestellt. Hier soll das
Kern-System durch die Bereitstellung von Implementierungen des Interfaces
core.ISomeService durch externe Module erweitert werden können. Das Paket
core darf keine Abhängigkeiten von diesen zusätzlichen Modulen haben (zum
Zeitpunkt der Auslieferung des Systems ist u.U. nicht einmal bekannt, dass es
diese Module gibt). Ziel ist es, dass die Methode SomeServiceLookup.getIm-

plementations alle Implementierungen auflisten kann, ohne direkte Kenntnis
über die installierten Erweiterungs-Module zu haben.

Klassen werden in Java immer über einen so genannten Classloader geladen;
dies erfolgt unmittelbar bevor sie das erste Mal verwendet werden.20 Dabei
wird in der Regel eine Bytecode-Datei (so genanntes Classfile) aus einer per-
sistenten Form in den Speicher geladen und dynamisch mit der aufrufenden
Klasse verlinkt. Um die zu ladende Klasse zu finden, wird deren voll qualifizierter
Name verwendet. Der (übliche) Classloader hat einen Suchpfad (der so genannte
Classpath), der die möglichen Speicherorte angibt (in Form von Dateisystem-Ver-
zeichnissen oder JAR-Archiven), in denen die zu suchende Klasse gesucht wird.
Es wird die erste Klasse geladen, die gefunden wird. Dies ist effizient möglich,
wenn der Name der Klasse bekannt ist. Bei der naiven Suche nach allen Imple-
mentierungen eines bestimmten Interfaces müssten alle Klassen im Classpath

20Eine semantisch präzisere Auskunft zu den Umständen, die das Laden einer Klasse auslösen, sei
auf die JVM-Spezifikation verwiesen (z.B. in [LY99]).
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core

+getImplementations() : ISomeService [0..*]

SomeServiceLookup
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vendorB

SomeServiceImplB

vendorA

SomeServiceImplA

Abbildung 3.8: Generische Problematik der nicht-invasiven Erweiterung durch
externe Module [Ber]

geladen werden und untersucht werden, ob sie dieses Interface implementieren;
dies ist bei größeren Systemen nicht mehr effizient möglich,21 da diese mehrere
zehntausende von Classfiles enthalten können und die Suche somit unzumutbar
lange dauern würde.

Aus diesem Grund ist dieser naive Algorithmus in der Praxis für größere
Systeme nicht nutzbar; stattdessen muss ein deklarativer Ansatz gewählt wer-
den, bei dem Anbieter einer Implementierung für ein bestimmtes Interface dies
explizit durch Meta-Informationen bekanntmachen (und so für das Kern-System
programmatisch zugänglich machen). Dies kann im Prinzip in beliebiger Weise

21Je nach verwendetem Framework ist eine derartige Inspektion aller Klassen überhaupt nicht
möglich, z.B. in OSGi-Containern, da dort kein globaler Konsens über die ladbaren Klassen be-
steht, sondern jedes Modul seinen eigenen Classpath (bzw. ein Konzept äquivalent zum Classpath)
verwaltet.
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geschehen, z.B. auch durch einen anwendungsspezifischen eigenen Mechanis-
mus. Typisches Vorgehen bei der manuellen Registrierung wäre (bezogen auf
das dargestellte Beispiel) die Einrichtung einer Methode registerSomeService

für die im SomeServiceLookup-Klasse, wobei garantiert sein muss, dass jedes
Modul, das Implementierungen bereitstellt, diese Registrierungs-Methode für
jede von ihm bereitgestellte Implementierung einmal aufruft, wobei weiterhin
garantiert sein muss, dass alle diese Aufrufe erfolgen, bevor die Liste der Im-
plementierungen das erste Mal abgefragt wird, was bei größeren Systemen auf
Grund transitiver Abhängigkeitsbeziehungen und unterschiedlicher Aktivierungs-
Zeitpunkte für einzelne Module nicht einfach zu realisieren ist, ohne explizit in
die Aktivierungs-Reihenfolge der Module einzugreifen; ein solcher Eingriff hat
jedoch das Potential, andere System-Eigenschaften negativ zu beeinflussen.

Um die Notwendigkeit der manuellen Registrierung zu umgehen gibt es die
folgenden drei Mechanismen, die sich als Standards etabliert haben, und die
jeweils eigene Einschränkungen und Möglichkeiten aufweisen:

Service Provider Interface Die mit Java 6 eingeführte java.util.Service-

Loader-Klasse ermöglicht das Ermitteln von Implementierungen eines In-
terfaces über den Classpath, wobei die Deklaration der Implementierungen
wie folgt erfolgen muss: im Verzeichnis services im Verzeichnis META-INF
des Archivs, das die zu registrierende Implementierung enthält, muss eine
Datei angelegt werden mit dem vollständig qualifizierten Namen des betrof-
fenen Interfaces als Dateinamen. Der Inhalt dieser Datei besteht aus einer
Zeile mit dem vollständig qualifizierten Namen der Implementierungs-
Klasse für jede bereitgestellte Implementierungs-Klasse, wobei sich diese
nicht zwangsläufig in den Paketen befinden müssen, die von dem registrie-
renden Archiv verwaltet werden. Diese Art der Registrierung funktioniert
prinzipiell mit allen Anwendungen, die Java 6 verwenden. Die Imple-
mentierungen für ein bestimmtes Interface können dann (bezogen auf das
Beispiel) mittels des Aufrufs ServiceLoader.load(ISomeService.class)
ermittelt werden.

OSGi-Services Da die Eclipse-Umgebung, in deren Kontext das System läuft,
ein vollständiger OSGi-Container ist (Equinox), können die OSGi-Mecha-
nismen zur Registrierung für Services für ein bestimmtes Interface genutzt
werden. Siehe hierzu die OSGi-Spezifikation [OSG]. Diese Art der Registrie-
rung funktioniert mit allen üblichen OSGi-Containern und hat prinzipiell
den Vorteil, dass Services zur Laufzeit registriert und deregistriert werden
können, was für den hier betrachteten Anwendungsfall jedoch irrelevant
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ist [MVA10].

Eclipse Extension Registry Ein noch spezifischerer Mechanismus ist die Eclipse
Extension Registry, die die Grundlage des Plugin-Konzeptes von Eclipse
bildet und entsprechend nicht leicht außerhalb von Eclipse-Anwendungen
nutzbar ist. Grundlage sind die so genannten Extension Points, die die er-
weiterbaren Aspekte des Systems deklarieren. Ein externes Modul (d.h. ein
OSGi-Bundle), das einen bestimmten Extension Point verwenden will, muss
in einer Datei plugin.xml im Bundle des Moduls ein XML-Fragment mit
den von dem verwendeten Extension Point erwarteten Informationen (u.U.
genügt hier ein Klassenname der von diesem Modul bereitzustellenden
Implementierungs-Klasse). Die Implementierungen für jeden Extension
Point sind über ein spezielles, Eclipse-spezifisches API abrufbar, das weit
weniger komfortabel ist als der einfache ServiceLoader-Mechanismus,
jedoch prinzipiell die Möglichkeit bietet, beliebige zusätzliche Strukturen
und Informationen, die über den Klassennamen hinausgehen, deklarativ an-
zugeben. Die Notwendigkeit, dass die Existenz des Extension Point explizit
angegeben werden muss sorgt dafür, dass dieser rudimentär dokumentiert
ist und von potentiellen Verwendern erkannt werden kann.

Mit jedem dieser Mechanismen kann das gewünschte Ziel erreicht werden.
Die OSGi-Services sind jedoch schwer korrekt zu verwenden. Die Eclipse Extensi-
on Registry macht die Anwendung abhängig von Teilen des Eclipse-Frameworks
und die Verwendung ist eher umständlich. Die Verwendung von Extension Points
ist jedoch zwingend notwendig für Aspekte, die vom Eclipse-Framework selbst
zur Erweiterung vorgesehen sind, d.h. die Integration der Benutzerschnittstelle
und der Projekt-Strukturen, der Compiler-Toolchain, so dass hier dieser Mecha-
nismus verwendet werden muss. Als einfachste Lösung wird jedoch, wo möglich,
der ServiceLoader-Mechanismus verwendet.
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Kapitel 4

Ausgewählte Aspekte der
Implementierung

4.1 IDE und Werkzeugkette

Das vorgestellte Generator-Framework wurde in eine Eclipse-basierte Entwick-
lungsumgebung integriert, wobei die Notwendigkeit, eine vollständige C-IDE
für die benutzererweiterbaren Teile der Restbussimulation bereitzustellen, den
Ausschlag für die Wahl von Eclipse als Basis-Plattform gab; im Folgenden einige
der Integrationspunkte:

C-IDE Das CDT-Projekt (C Development Tooling) ergänzt die Eclipse-Basis-Platt-
form (die so genannte Workbench) um eine C- und C++-Entwicklungs-
umgebung mit Editor, Syntax-Highlighting, semantischer Navigation und
Symbolauflösung, Auto-Vervollständigung sowie Compiler- und Build-Un-
terstützung. CDT bildet die Basis zahlreicher kommerzieller C- und C++-
Entwicklungsumgebungen, darunter CodeWarrior (ab Version 10) und die
QNX Momentics Suite, so dass sich für erfahrene Entwickler der Einarbei-
tungsaufwand in Grenzen hält.

Toolchain-Anbindung Der verwendete Cross-Compiler (eine GCC-Variante)
bzw. der lokale mingw-Compiler wird über deklarative Schnittstellen von
CDT eingebunden.

Makefile-Generierung durch CDT Makefiles für ein Projekt werden von CDT
generiert, wobei die für das Projekt definierten Quellcode- und Header-
Verzeichnisse als Quelle für Abhängigkeitsinformationen dienen.
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Ausführung des Build durch CDT Die Makefiles für das Projekt werden von
einem regulären make-Kommando ausgeführt und die Ausführung von CDT
überwacht, wobei eventuelle Fehler in entsprechende UI-Elemente und
Quellcode-Annotationen umgewandelt werden.

Deployment durch RSE Die Übertragung des RBS-Binary auf die CANyon-Ziel-
hardware erfolgt mittels SSH, wobei eine reine Java-Bibliothek für das
SSH-Protokoll zum Einsatz kommt, die Teil des RSE-Projektes (Remote
Systems Explorer) ist.

Debugging durch CDT und RSE Das Debugging auf der CANyon-Zielhardware
erfolgt mittels gdb und gdbserver, wobei gdb auf dem IDE-Host läuft
und gdbserver auf dem CANyon. CDT macht die von gdb zur Verfügung
gestellte Funktionalität in der UI der IDE zugänglich.

RBS-UI Die Informationen der konsolidierten Datenbasis werden in einer spezi-
ellen Perspektive angezeigt, so dass der Anwender einfachen Zugriff auf
die RBS-API-Funktionen hat, die auf diesen Informationen möglich sind.
Dies sind im Wesentlichen die Funktionen zur Signalmanipulation und zur
dynamischen Aktivierung und Deaktivierung von Botschaften und Knoten.
Ebenso wurden UI-Elemente integriert, die eine Navigation der benutzerer-
weiterbaren Teile des RBS-Quellcodes mit Hilfe der semantischen Struktur
der zu Grunde liegenden Datenbasis erlauben.

Kritischster Integrationspunkt war die Auflösung von Diskrepanzen zwischen
der vom Eclipse-Framework vorgegebenen Projekt-Struktur und der tatsächlich
benötigten Projekt-Struktur (wie in Abschnitt 3.3 beschrieben). Ein ursprünglicher
Ansatz, bei dem viele der dort beschriebenen Elemente in impliziter Weise be-
schrieben wurden, hatte zur Auswirkung, dass eine nachträgliche Umkonfigurie-
rung bestimmter Aspekte eines bestehenden Projektes nicht möglich waren, und
zog eine große Umstrukturierung nach sich, die als Resultat das in Abschnitt 3.3
beschriebene Modell hervorbrachte, dass sich in der folgenden Entwicklung dann
jedoch sehr gut bewährte und ein nahezu ideales Abstraktionsniveau aufweist.

4.2 Zwischenformat und Code-Konsolidierung

In diesem Abschnitt wird die Implementierung der Zwischendarstellung kurz
vorgestellt und deren Verwendung im Hinblick auf die Anpassung des benutze-
rerweiterten Quellcodes beschrieben.

94



4.2.1 EMF

Als Format für die Zwischendarstellung der konsolidierten und linearisierten
Eingangsdaten wurde EMF verwendet. EMF ist ein Framework zur modellba-
sierten Softwareentwicklung, das als Schnittstelle zwischen Java, UML und XSD
geeignet ist und das für bestimmte, häufig benötigte Aspekte (wie etwa Seriali-
sierung und Deserialisierung in XML, XMI und ein EMF-spezifisches Binärformat,
Benachrichtigung von Listenern bei Änderungen) direkt nutzbaren Java-Code
generiert. Die Entscheidung auf EMF fiel aus zwei Gründen:

• Es musste ein serialisierbares Zwischenformat gefunden werden, wobei
die Serialisierung und Deserialisierung im Hinblick auf die Erweiterbarkeit
durch Dritt-Anbieter (u.U. mit anderen Sprachen als Java) erfolgen sollte,
so dass sich ein XML-basiertes Format anbot. Zu den Alternativen zu EMF
in dieser Hinsicht zählen z.B. die zahlreichen Implementierungen der JAXB-
Spezifikation.

• Das Zwischenformat sollte die in Abschnitt 3.4.5 umrissenen Konzepte
zur Ermittlung und Behandlung von Änderungen ermöglichen. Für EMF
existiert hier das im nächsten Abschnitt beschriebene EMF Compare. Hierzu
gibt es sehr wenige Alternativen; die Bibliotheken XMLDiff und XMLUnit

ermöglichen das Bilden von Differenzen zwischen zwei XML-Dateien (des-
selben Schemas), waren aber von der Granularität her nicht geeignet, um
im Kontext dieser Arbeit verwendet werden zu können.

4.2.2 EMF Compare

Zur Anpassung bestehenden benutzererweiterbaren Quellcodes in Reaktion auf
eine erfolgte Änderung an den Eingangs-Kommunikationsmatrizen des Projektes
werden die Stände der konsolidierten Datenbasis vor dem letzten Generieren
und der aktuelle Stand verglichen (siehe Abbildung 3.7). Dies erfolgt mittels
EMF Compare, das ein generisches API zum Vergleich von EMF-Modellen bereit-
stellt. Die grundsätzliche Vergleichs-Heuristik von Modell-Elementen, die von
EMF Compare realisiert wird, ist in [XS05] ausführlich und in [Lan09] kurz
beschrieben; einbezogen in die Vergleichs-Operationen werden unter anderem
Objekt-Relationen und Objekt-Eigenschaften. Die Ermittlung der Differenzen
erfolgt in zwei Schritten: die Bildung des so genannten MatchModel, das kor-
respondierende Elemente zwischen zwei Modell-Ständen (und Elemente ohne
korrespondierendes Element im jeweils anderen Stand) liefert, und die Bildung
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des DiffModel, das das MatchModel transformiert und um detailliertere Informa-
tionen zu den Unterschieden zwischen korrespondierenden Elementen erweitert.

Die Rechenzeit für die Gewinnung der MatchModel- und DiffModel-Instan-
zen zwischen zwei Versionen der konsolidierten Datenbasis ist in nicht-linea-
rer Weise abhängig von der Größe der Datenbasis. EMF Compare bietet die
Möglichkeit, eine obere Grenze für die Komplexität der Ähnlichkeits-Berechnung
festzulegen, mit dem Risiko, dass manche Änderungen nicht zugeordnet werden
können.1 Für die konkret untersuchten realen Datenbasen war die Performance
des Standard-Algorithmus durchaus akzeptabel, so dass dieser beibehalten wur-
de. In [FL95] ist jedoch ein alternativer Algorithmus beschrieben, der in einem
Projekt zur Ergänzung von EMF Compare verwendet wird [Leo].

4.2.3 Gewinnung von Konsolidierungs-Informationen

Für die Gewinnung der Konsolidierungs-Informationen wird das DiffModel

zwischen altem und neuem Modell erfasst, die so gewonnenen Änderungs-In-
formationen werden klassifiziert (in nicht relevante, konsolidierbare und nicht
konsolidierbare Änderungen) und die betroffenen Elemente werden expandiert,
indem zu jedem betroffenen Element die zugehörigen API-Namen, wie sie im
alten Modell auftreten und die zugehörigen API-Namen, wie sie im neuen Modell
existieren, aufeinander abgebildet (äquivalent für die Artefakt-Namen); die Abbil-
dung ist eine einfache String-zu-String-Abbildung von altem API- oder Artefakt-
Name zu neuem API- oder Artefakt-Name für jeden Aspekt des von der Änderung
betroffenen Elementes. Die so gewonnenen Mapping-Informationen werden
verwendet, um die existierenden Quellcode-Artefakte in Ruser anzupassen, wie
in den folgenden Abschnitten beschrieben. In der momentanen Implementierung
erfolgt die Ermittlung der API- und Artefakt-Namen über bestimmte Template-
Fragmente, die mit alter und neuer Element-Version instantiiert werden und in
die benötigten Mapping-Informationen umgewandelt werden. Die Integration
in die Templates ermöglicht das Single-Sourcing dieser Informationen, da diese
ohnehin bereits in den Templates definiert sind.

4.2.4 Konsolidierung von API-Namen

Für jedes Artefakt, das Teil von Ruser ist, werden die gewonnenen Mapping-
Informationen angewandt, indem alle C-Bezeichner, die einem in den Mapping-

1Dies erfolgt durch die Definition der Größe des Suchfensters, innerhalb dessen nach einem
potentiell ähnlichen Element gesucht wird. Die Distanzmetrik ist in ebenfalls in der aufgeführten
Arbeit beschrieben.
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Informationen enthaltenen Schlüssel entsprechen (entsprechend einem alten
API-Namen), in die diesem Schlüssel entsprechenden Wert (entsprechend dem
neuen API-Namen) umgeschrieben werden. Hierbei wird bisher rein lexikalisch
vorgegangen, d.h. dort, wo ein Lexem auftritt, dass dem zu ersetzenden Ele-
ment entspricht, wird dieses ersetzt; eine Ersetzung, die auf der abstrakten
Syntax von C operiert und so z.B. keine Ersetzungen in auskommentiertem
Code vornimmt, wäre jedoch möglich und wünschenswert. Die Beachtung der
lexikalischen Struktur bewirkt gegenüber der naiven Ersetzung, dass keine Tei-
lersetzungen vorgenommen werden, sondern nur die Stellen behandelt werden,
an denen der zu ersetzende Bezeichner tatsächlich auftritt und nicht nur als
Teil eines anderen Bezeichners; das Fehlen von Namensräumen in C und die
damit verbundene notwendige volle Qualifizierung von Bezeichnern (z.B. durch
Unterstriche im Bezeichner) erleichtert diesen Vorgang.

Darüber hinaus gibt es den Fall von gegenseitiger Ersetzung, d.h. ein Element
A wird in B umbenannt und Element B wird im gleichen Transformations-Schritt
in A umbenannt. Hier würde die beschriebene Vorgehensweise scheitern, da
die Ersetzung von A zu B, gefolgt von einer nachfolgenden Ersetzung von B

zu A zur Folge hätte, dass alle Vorkommen von A und B zu A ersetzt werden.
Um dieses Problem zu lösen, muss die Ersetzung in zwei Stufen erfolgen: die
Ersetzung des zu ersetzenden Elementes durch einen eindeutigen temporären
Bezeichner und nachfolgend eine Ersetzung dieses temporären Bezeichners
durch den endgültigen Bezeichner.

4.2.5 Konsolidierung von Artefakt-Namen

Für das Umbenennen von bestehenden Quellcode-Dateien werden die Mapping-
Informationen ebenfalls genutzt. Bei der Behandlung von Änderungen, die, wie
oben beschrieben, eine gegenseitige Umbenennung von Artefakten bewirken,
wird eine Variante des zuvor beschriebenen zweistufigen Prozesses angewandt
(auf der Ebene der Artefakt-Namen). Die in Abschnitt 3.4.2 beschriebenen Mecha-
nismen können angewandt werden, um, wie dort beschrieben, die existierenden
Dateien zu sichern und das Überschreiben von existierenden Dateien bei glei-
chem Inhalt zu verhindern.

4.2.6 Benutzerinteraktion

In der vorliegenden Implementierung werden nicht konsolidierbare Änderungen,
sofern der Generator im Kontext einer IDE läuft, dem Benutzer mittels Markie-
rungen (Resource Marker in der Eclipse-Terminologie) kenntlich gemacht durch
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graphische Annotationen der Stellen, an denen sich die von der Änderung be-
troffenen API-Elemente befinden. Beim Wegfall eines Signals aus der Datenbasis
wären dies etwa alle Stellen in Ruser, an denen Aufrufe der (nun nicht mehr vor-
handenen) Signal-Zugriffsmethoden erfolgen. Die dem Benutzer präsentierten
Informationen sind generischer Natur und warnen, dass Änderungen des API
erfolgten und diese vom Benutzer überprüft werden müssen. Hier wäre eine
bessere Klassifizierung der Änderungen oder eine genauere Fehlerbeschreibung
(insbesondere bei den erwähnten Änderungen an der Signal-Kodierung) vorteil-
haft.

4.3 Dynamische Aspekte

Um eine generierte Restbussimulation sinnvoll ausbauen zu können und nicht
auf externe Tools zur Überwachung der durch die Restbussimulation erzeugten
Buskommunikation angewiesen zu sein, wurden verschiedene Mechanismen
implementiert und in die Entwicklungsumgebung integriert.

4.3.1 CAN-Analyzer

Es wurde ein TCP/IP-basierter Kommunikationskanal zur Weiterleitung der CAN-
Kommunikation der auf einem CANyon-Gerät angeschlossenen Busse realisiert;
dadurch lassen sich Botschaften und Signale überwachen, ohne dass am Ent-
wickler-PC eine extra CAN-Hardware vorhanden ist (Tunnelung von CAN nach
TCP/IP via CANyon).

4.3.2 Dynamische Beeinflussung

Ebenfalls über TCP/IP wurde ein Kommunikationskanal zur dynamischen Beein-
flussung einer laufenden Restbussimulation realisiert, über den die innerhalb der
Simulation laufenden Netzwerkknoten aktiviert und deaktiviert werden können,
das Sendeverhalten einzelner Botschaften verändert werden kann und gesendete
Signale neu belegt werden können.
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Kapitel 5

Zusammenfassung und
Ausblick

Die realisierten Generatoren für die unterstützten Zielplattformen ermöglichen
eine einfache Generierung von Restbussimulationen und die Erweiterung dieser
Restbussimulationen auf eine klar definierte Weise. Indem die Variabilität der
Datenbasen, die als Grundlage für die generierte Restbussimulation dienen, im
Generierungs-Prozess durchgängig berücksichtigt wird, wird die Anpassung von
generierten und erweiterten Restbussimulationen in Reaktion auf Änderungen
dieser Eingangsdaten erleichtert.

Das entwickelte Generator-Framework eignet sich als Grundlage für die Imple-
mentierung anwendungsspezifischer oder organisationsspezifischer Generatoren
(entweder als neue Plattformen oder durch Spezialisierung der Generatoren für
bestehende Plattformen) mit vertretbarem Aufwand und, bei Beachtung gewisser
Rahmenbedingungen, ohne Änderungen am Kern-System.

Im Folgenden werden einige mögliche und empfehlenswerte Erweiterungen
für das entwickelte Generator-Framework beschrieben, die die in dieser Arbeit
begonnenen Aspekte verbessern oder ergänzen.

5.1 Zusätzliche Ziel-Plattformen

Die bisher vollständig (CANyon) oder teilweise (durch die Vector XL Library
unterstützte Plattformen) unterstützten Ziel-Systeme sind nur in Verbindung mit
einem Betriebssystem verwendbar. Wie in Abschnitt 2.4 beschrieben, werden
diese unterstützten Ziel-Plattformen durch mächtigere APIs angesprochen, als sie
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für Systeme ohne Betriebssystem zu erwarten oder möglich sind. Eine Portierung
auf eine bare-metal Hardware-Plattform unter Verwendung microcontrollerna-
her Programmierung würde u.U. Fälle aufdecken, für die die entworfene und
implementierte Generator-Architektur noch nicht optimal ist. Eine mögliche Ziel-
Plattform wäre das ISIM flexible von Berger Elektronik.

Eine weitere lohnende Zielplattform wäre eine AUTOSAR-Architektur, d.h. die
Verwendung eines (extern generierten) AUTOSAR-COM-Stacks als Kommunika-
tions-Schnittstelle, wobei die in Abschnitt 2.6.8 beschriebenen Einschränkungen
zu beachten sind. Eine vollständige Generierung eines AUTOSAR-COM-Stacks
liegt nicht mehr in der Domäne von Restbussimulationen.

5.2 Modellierung mittels Zustandsmodellen

Die Anwendungsfälle, für die Restbussimulationen eingesetzt werden, sind, wie
bereits beschrieben, stark ereignisgesteuert und stark zustandsorientiert. Derar-
tige Systeme können durch Modellierungs-Notationen für Zustandsautomaten
gut und relativ vollständig beschrieben werden, wobei sich die graphischen
Varianten dieser Notationen auch von Nicht-Programmierern nutzen lassen und
so der potentielle Anwenderkreis erweitert werden kann. Durch die auf diesen
Notationen möglichen Analysen lassen sich bestimmte Eigenschaften des Systems
einfach automatisch untersuchen und verifizieren, die sonst durch manuelle Tests
überprüft werden müssen. Ein triviales Beispiel für derartige Eigenschaften, die
auf diese Weise analysiert werden können, sind unerreichbare Zustände.

Etablierte Notationen sind hier UML Statecharts [Obj] (die z.B. durch das Pa-
pyrus-Projekt [Eclf] in die entwickelte Werkzeugkette integriert werden könnten)
oder (als kommerzielles Produkt) die Stateflow-Erweiterung für Matlab Simu-
link [Mat], mittels der extern Code für das Zustandsmodell generiert werden
kann und dieser über eine zu definierende, schmale Schnittstelle an die generier-
te Restbussimulation angebunden werden könnte.

Das in [Sam08] beschriebene Event-Framework wäre ebenfalls ein mögliches
Ziel für die Integration der Restbussimulation in einen Zustandsautomaten.

Die wichtigsten Aspekte, die im Zusammenhang mit der Integration von
Zustandsautomaten in die Restbussimulation behandelt werden müssen, sind im
Folgenden dargelegt.
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5.2.1 Nutzung des RBS-API

Das API der Restbussimulation (Signalmanipulation, Knoten- und Botschafts-
Aktivierung) muss vom Zustandsautomaten aus aufrufbar sein, damit Guards
sich auf Signalwerte beziehen können und innerhalb von Aktionen die entspre-
chenden Methoden zum Aktivieren und Deaktivieren von Elementen oder zum
Setzen neuer Signalwerte verwendet werden können. Ausreichend ist hier die
Einbindung des generierten Restbussimulations-API durch den Zustandsauto-
maten; nicht zwingend notwendig, aber aus Sicht der Benutzerfreundlichkeit
wichtig, ist die Repräsentation der Modell-Elemente der Restbussimulation im
Modellierung-Werkzeug, so dass nicht erst beim Übersetzen oder Linken der RBS
gegen den Zustandsautomaten die Verwendung von falschen Bezeichnern oder
Funktionsnamen aufgedeckt wird, sondern der Benutzer bereits beim Modellie-
ren die gültigen RBS-API-Namen zur Verfügung hat. Im Falle von Werkzeugen,
die auf UML Statecharts operieren, wäre dies z.B. einfach möglich, indem die
Funktionen der Restbussimulation durch Operationen einer Klasse RBS im Kon-
text des Statecharts symbolisch zugänglich gemacht werden. Dazu kann z.B. ein
Transformations-Schritt vom internen Zwischenformat in das üblicherweise vom
UML-Tools verwendeten XML-Metadata-Interchange-Format (XMI) implemen-
tiert werden; diese Informationen können dann vom entsprechenden UML-Tool
importiert werden, bevor ein Statechart angelegt wird.

5.2.2 Weiterleitung von RBS-Ereignissen

Der Zustandsautomat muss durch die Restbussimulation mit einem Ereignisstrom
versorgt werden. Die Abbildung von Ereignissen der Restbussimulation in die
erwarteten Strukturen des Zustandsautomaten muss implementiert werden, so
dass sich die Ereignisse als Events für Transitionen im Sinne der Statechart-
Semantik nutzen lassen.

5.3 AST-basierte Code-Konsolidierung

Die in Abschnitt 4.2.3 beschriebene Konsolidierung arbeitet auf textueller Ebene,
was teilweise fragil in Bezug auf die Struktur des Quellcodes ist. Eine intelligen-
tere Implementierung könnte auf Syntaxbaum (AST) arbeiten, der dem Code zu
Grunde liegt; so könnte z.B. kommentierter Code von der Konsolidierung aus-
geschlossen werden oder selektiv einzelne Methoden einer Datei überschrieben
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werden, sowie die Robustheit gegenüber Änderungen der Quellcode-Struktur
erhöht werden.

Als funktionales Vorbild für die Funktionsweise einer derartigen Implemen-
tierung könnte das im Rahmen von JET verwendete JMerge [Eclb] dienen, dass
die Manipulation eines Java-ASTs auf einem relative hohen Abstraktionsgrad
ermöglicht. Auf Grund der höheren syntaktischen und semantischen Komplexität
von C dürfte der Aufwand für die Implementierung einer funktional äquivalenten
Bibliothek für C jedoch nicht unerheblich sein, selbst wenn auf bestehende Parser
und AST-Bibliotheken zurückgegriffen wird (z.B. den C-Parser von CDT [Eclc]).
Die enorme Komplexität ist teilweise zurückzuführen auf die lexikalisch ori-
entierte Arbeitsweise des C-Präprozessors; hierbei gilt die Aussage von Bjarne
Stroustrup (in Bezug auf den Präprozessor von C und C++, im folgenden Zitat
Cpp genannt):

”
In retrospect, maybe the worst aspect of Cpp is that it has stifled

the development of programming environments for C. The archaic and character-
level operation of Cpp makes nontrivial tools for C and C++ larger, slower, less
elegant, and less effective than one would have thought possible.“ [Str94] 1

5.4 Gateway-Generierung

Mit dem entwickelten Framework sind Gateways leicht programmierbar, da alle
notwendigen Kommunikations-Strukturen und Signalmanipulations-Routinen
bereits generiert werden. Damit stehen alle Schnittstellen für das program-
matische Routen von Dateninhalten (auf Botschafts- oder Signal-Ebene) zur
Verfügung. Für einfache Gateway-Anwendungen können so manuell Mappings
auf Botschaftsebene oder Signalebene eingefügt werden, indem in den Emp-
fangs-Callbacks des Ursprungs-Kanals die notwendigen Mappings durch einfache
API-Aufrufe durchgeführt werden. Sind viele Botschaften oder Signale zu rou-
ten, ist dies eine wenig produktive Tätigkeit. Eine graphische Unterstützung
würde den Komfort hier deutlich erhöhen. Darüber hinaus könnte so auch ei-
ne Validierung der Konsistenz des Signal-Mappings integriert werden, die bei
semantisch ungültigen Abbildungen (z.B. zwischen Signalen mit unterschiedli-
chen Dimensionen oder Signale mit unterschiedlichen definierten SI-Einheiten
ohne Durchführung der notwendigen Skalierung) oder bei Abbildungen mit sehr
großem Präzisionsverlust dabei helfen kann, bestimmte Arten von Fehlern zu
vermeiden.

1Man beachte auch Bjarne Stroustrups Stellungnahme zu bestimmten Zitaten, die ihm
fälschlicherweise zugeordnet werden (unter http://www2.research.att.com/~bs/bs_faq.html#
really-say-that).
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AUTOSAR erlaubt die Definition von Gateways als Teil einer AUTOSAR-Sys-
tem-Configuration (auf Botschafts-Ebene, PDU-Ebene und Signal-Ebene) [AUTa].
Dazu muss der Gateway jedoch als ECU in der System-Configuration existieren;
ad-hoc Gateways (z.B. zur Integration von Messtechnik in ein existierendes Ge-
samt-System) lassen sich nicht definieren (dies würde auch dem Konzept von
AUTOSAR als ganzheitliche Architektur für ein Gesamt-System widersprechen),
so dass diese Methode sich lediglich als optionaler Konfigurations-Mechanismus
für Gateways eignet, jedoch nicht alle Anwendungsfälle abdecken kann.

In [Obe07] wird ein modellbasierter Ansatz für die Konfiguration von Gate-
ways im Automotive-Umfeld vorgestellt, der in [Obe09] durch eine Methodik
zum Fault-Containment ergänzt wird; insbesondere das in diesen Arbeiten ver-
wendete Modell zur Datenhaltung innerhalb der Gateway-ECU (in den Arbeiten
Real-Time-Database genannt), das zusätzlich zu den abzubildenden Daten die
Aktualisierungs-Semantik dieser Daten und andere zeitliche Aspekte verwaltet,
ist auch für die allgemeine Restbussimulation interessant (wobei die temporäre
Daten-Semantik bei Verwendung eines AUTOSAR-Kommunikations-Stacks dort
im Wesentlichen bereits vorhanden ist, so dass hier darauf geachtet werden muss,
keine parallelen Mechanismen einzuführen).

5.5 Test-Automatisierung

Die Validierung einer Umgebung zur Restbussimulation wirft gegenüber dem Test
regulärer eingebetteter Systeme zusätzliche Probleme auf, da keine generische
Bewertung eines kompletten Systems stattfinden kann, sondern immer nur die
konkrete Implementierung auf Seiten des Benutzers gegen dessen konkrete
Anforderungen getestet werden kann. Das breite Anwendungsspektrum, das
durch Restbussimulationen abgedeckt werden kann, bewirkt, dass nicht der
gesamte Lösungsraum für den Toolhersteller zugänglich ist, wobei dies für die
funktionalen Aspekte (was macht die vom Benutzer mit dem Tool generierte
und angepasste Restbussimulation?) sowie die so genannten nicht-funktionalen
Aspekte (welche Bus-Last und Antwortzeiten erwartet der Benutzer von einer
konkreten Restbussimulation?) der Lösung gilt. Wie bei jedem Test muss durch
die Bildung von Äquivalenzklassen bestimmter Restbussimulations-Profile eine
möglichst gute Abdeckung des Lösungsraumes angenähert werden. Es muss also
eine Lösung gefunden werden, die Variabilität unter diesen Äquivalenzklassen in
den Griff zu bekommen und die Definition von Tests für jede Äquivalenzklasse
möglichst einfach zu gestalten.

Diese Methode kann bei entsprechendem Entwurf mit verhältnismäßig wenig
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Aufwand auch in einer für den Benutzer geeigneten Form angeboten werden,
so dass dieser eine von ihm entwickelte Restbussimulation gegen die nur ihm
zugänglichen Anforderungen testen kann. Die Integration einer solchen Test-
Umgebung hat den Vorteil, dass keine externen Tools (z.B. CANoe und des-
sen Test-Umgebung) zur Validierung der Restbussimulation verwendet werden
müssen, sondern eine durchgehende Werkzeugkette angeboten werden kann,
die Entwicklung, Testfall-Definition und System-Test umfasst.

5.5.1 Trace-basierter Test

Da für eine Restbussimulation als Korrektheits-Kriterium das nach außen sicht-
bare Verhalten gilt, kann die Validierung als Black-Box-Test erfolgen, wobei
die Black-Box die generierte Software (mit gegebenenfalls vorhandenen Erwei-
terungen gemäß der konkreten Anwendung) und die Hardware umfasst; die
Einbeziehung der Hardware ermöglicht die Verwendung desselben Testfalls für
jede Hardware, die durch den Code-Generator unterstützt wird. Dadurch ergibt
sich als zusätzlicher möglicher Anwendungsfall die Bewertung unterschiedli-
cher Hardware-Lösungen für eine konkrete Restbussimulation (z.B. für Vorab-
Analysen zur Auslegung der Hardware-Lösung).

Das externe Verhalten einer Restbussimulation kann durch das Mitschneiden
sämtlichen Busverkehrs zwischen Restbussimulation und anderen Komponen-
ten vollständig erfasst werden (so genannter Trace), indem die übertragenen
Nachrichten (Parameter und Dateninhalt sowie zugehöriger Zeitstempel) aufge-
zeichnet werden. 2 Die Validierung einer Restbussimulation kann dann durch die
Auswertung von Traces in Bezug auf die für die Restbussimulation definierten
Anforderungen erfolgen, d.h. für jede Anforderung kann ein entsprechendes
Antwort-Verhalten der Restbussimulation in Form von erwarteten Reaktionen,
die im Trace sichtbar sind, definiert werden. Die Stimulation der zu testenden
Restbussimulation kann z.B. durch ein zweites System erfolgen, für das explizit
zu diesem Zweck aus den Testfällen entsprechender Code generiert wird.

Allgemeine Formalismen zur Beschreibung temporalen Verhaltens existieren
z.B. als Derivate von Konzepten wie CTL (Computational Tree Logic) oder LTL
(Linear Temporal Logic), die beide eine (diskrete) temporale Prädikatenlogik
verwenden [BK08]. Weniger theoretische Ansätze zur temporalen Logik finden
sich in [HLP08].

2Anforderungen, die interne Zustandsänderungen der Restbussimulation betreffen, müssen in
irgendeiner Form nach außen geführt werden, wenn sie mit dieser Methodik beobachtet werden
sollen.
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5.5.2 Graphische Test-Fall-Modellierung

Die Beschreibung von Test-Fällen mit textuellen Notationen oder Test-Skripten
wird zunehmend verdrängt durch die Verwendung graphischer Notationen für
die Test-Fall-Modellierung. Häufig, z.B. beim EXAM-Framework des Herstellers
Micronova, wird hierfür eine Untermenge der UML verwendet (im speziellen
Sequenzdiagramme), um Request-Response-Szenarien zu definieren und so das
Verhalten des getesteten Systems zu prüfen.

Eine erste, sehr rudimentäre Integration von der auf dem CANyon laufenden
Restbussimulation mit EXAM wurde begonnen. Die Methodik für die Integra-
tion sieht hier vor, dass eine Schnittstelle definiert wird, die die möglichen
Interaktionen mit dem System beschreibt, sowie eine Implementierung dieser
Schnittstelle bereitstellt. Die Implementierung muss in der Sprache Python erfol-
gen. Bestimmte Schnittstellen sind im so genannten EXAM-Core bereits definiert
und sollten bevorzugt verwendet werden, um eine Austauschbarkeit der Tests zu
gewährleisten.

Der Test-Fall-Bearbeiter kann diese Schnittstellen verwenden, um mittels
UML-Sequenz-Diagrammen den Test-Ablauf zu definieren. Diese Test-Fälle können
parametrisiert und ausgeführt werden; Resultate der Ausführung können in die
von EXAM bereitgestellte Test-Datenbank geschrieben und so dokumentiert
werden.

5.6 Clustering von CANyon-Geräten

Für umfangreiche Gesamtfahrzeug-Simulationen, insbesondere wenn die Platt-
form für das Rapid-Prototyping von stark algorithmenlastigen Anwendungen
verwendet wird (Beispiel: Stabilitätsprogramme wie ESP), ist ein einzelnes Gerät
unter Umständen zu leistungschwach, um zusätzlich zur Restbussimulation noch
unoptimierte nummerische Algorithmen unter weichen Echtzeitbedingungen
auszuführen. Durch eine Verteilung der Aufgaben auf mehr als ein Gerät, z.B.
durch die Auslagerung von nicht unmittelbar für die algorithmische Simulation
wichtigen Restbussimulation-Teilen auf ein Zweit-Gerät, kann eine Entlastung
erreicht werden. Eine Verbindung der Geräte ist durch die Verwendung desselben
Busses gegeben, so dass die Verwendung eines zusätzlichen Kommunikationsme-
diums entfällt. Für echte Hardware-in-the-Loop-Anwendungen mit Präzisions-
Anforderungen im Mikrosekunden-Bereich dürfte diese Lösung eher uninter-
essant sein, da der Kernel des CANyon-Systems durchsatzorientiert ist und keine
harten Echtzeit-Anforderungen unterstützt.
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Glossar

A/D Analog/Digital

API Application Programming Interface

AST Abstract Syntax Tree; strukturierte Repräsentation von Dokumenten-
Inhalten

AUTOSAR Automotive Open System Architecture

BCM Broadcast Manager; Kernel-Modul von SocketCAN, das ei-
ne auftragsbasierte Schnittstelle zur Konfiguration der CAN-
Kommunikation bereitstellt

BSW Basis-Software; anwendungsunabhängige Teile eines Software-
Systems

CAN Controller Area Network; Multi-Master-Bussystem zur Kommu-
nikation zwischen Steuergeräten

CANyon Hardwareplattform von Berger Elektronik für autonome Rest-
bussimulationen

CDT C/C++ Development Tooling

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance; Buszugriffs-
Verfahren, bei dem der Status des Mediums (in der Regel ist
dies der Spannungspegel) verwendet wird, um Kollisionen zu
erkennen und zu vermeiden

CTL Computational Tree Logic

ECU Electronic Control Unit; Steuergerät

EMF Eclipse Modeling Framework
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Fibex Fieldbus Exchange Format

GCC GNU Compiler Collection

GDB GNU Debugger

HIL Hardware-in-the-loop

I/O Input/Output

JVM Java Virtual Machine

LDF LIN Description File

LIN Local Interconnect Network; serielles Bussystem zur Kommu-
nikation zwischen Steuergeräten und deren lokalen Aktoren
und Sensoren

LTL Linear Temporal Logic

MOST Media Oriented Systems Transport; optisches Bussystem mit
hoher Bandbreite, optimiert für Streaming-Anwendungen

NCF Node Capability File

OSGi OSGi Service Platform; Komponenten- und Service-Modell für
Java-Plattformen

PDU Protocol Data Unit

POSIX Portable Operating System Interface for Unix

RBS Restbussimulation

RSE Remote Systems Explorer

RTE Runtime Environment; Laufzeitumgebung von AUTOSAR im
Kontext einer spezifischen ECU

TDMA Time Division Multiple Access; Buszugriffs-Verfahren, bei dem
a-priori Zeitschlitze für bestimmte Knoten oder Datenelemen-
te reserviert werden und so ein deterministischer Buszugriff
möglich ist

UI User Interface (Benutzerschnittstelle)

V FB Virtual Functional Bus
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XMI XML Metadata Interchange; von der Object Management Group
(OMG) definiertes Austauschformat für UML-Modelle, das in-
zwischen auch für die Serialisierung anderer Modelle genutzt
wird)

XSD XML Schema Definition
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