
Institut für Kommunikationsnetze und Rechnersysteme

Universität Stuttgart
Pfaffenwaldring 47
D–70569 Stuttgart

Diplomarbeit Nr. 3156

Entwurf und Realisierung eines
Testbeds für die Untersuchung

von verzögerungsbasierten
Staukontrollmechanismen

Mark Hübler

Studiengang: Informatik

Prüfer: Prof. Dr.-Ing. Andreas Kirstädter

Betreuer: Dipl.-Ing. Christian Blankenhorn
Dipl.-Ing. Mirja Kühlewind

begonnen am: 02. März 2011

beendet am: 01. September 2011

CR-Klassifikation: I.6.4, I.6.5, C.2.1, C.2.5, C.2.6

Inhaltsverzeichnis

1 Einleitung 6

2 Grundlagen 8
2.1 TCP-Staukontrolle . 8

2.1.1 Verlustbasierte Staukontrolle . 9

2.1.2 Verzögerungsbasierte Staukontrolle . 9

2.2 Ursachen für Verzögerungen im Netz . 11

2.2.1 Verarbeitungsdauer in Netzwerkgeräten 13

2.2.2 Verzögerungen im WLAN aufgrund des Medienzugriffs 15

2.3 Simulation und Emulation . 17

3 Modellierung von Verzögerungen 18
3.1 Modell für die Verzögerung durch Verarbeitung in Netzwerkgeräten 18

3.2 Stochastisches Modell für die Verzögerung im WLAN 20

3.2.1 Herleitung und Entwicklung des Modells 21

Annahmen und Vereinfachungen . 21

Durchschnittliche Verzögerung und Standardabweichung 23

Entwicklung des stochastischen Modells 24

Bestimmung der durchschnittlichen Zählschrittdauer des Backoff-Zählers 27

Bestimmung der Wahrscheinlichkeiten für Übertragungen und Kolli-
sionen . 28

Bestimmung der Parameter für das WLAN-Modell 30

3.2.2 Erweiterung des Modells für unterschiedlich lange Pakete 30

4 Aufbau des Testbeds 36
4.1 Das Netzemulator-Framework IKR EmuLib . 36

4.2 Aufbau . 37

4.3 Übertragung der Modelle auf das Testbed . 38

4.3.1 Modell für die Verzögerung in Netzwerkgeräten 38

4.3.2 Modell für die Verzögerung im WLAN 39

4.3.3 Konfiguration . 39

5 Validierung 42
5.1 Überprüfung der Verzögerungswerte . 42

5.1.1 Netzwerkprozessor-Modell . 42

5.1.2 WLAN-Modell . 43

2

5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten 46

5.2.1 Netzwerkprozessor-Modell . 46

5.2.2 WLAN-Modell . 49

5.3 Bewertung der Messergebnisse . 51

6 Zusammenfassung und Ausblick 52

Literaturverzeichnis 54

3

Abbildungsverzeichnis

2.1 Prinzipskizze verlustbasierte Staukontrolle . 10

2.2 Prinzipskizze verzögerungsbasierte Staukontrolle 10

2.3 Paketverzögerung in kabelgebundenen Netzwerken 13

2.4 Paketverzögerung in kabelgebundenen Netzwerken 14

2.5 Vereinfachte Darstellung des WLAN-Medienzugriffs mit DCF/Basic Access . 16

4.1 Von SimLib zu EmuLib . 36

4.2 Aufbau des Testbeds mit WLAN-Modell . 38

5.1 Verteilung der berechneten Paketverzögerung für 5 Stationen 45

5.2 Verteilung der berechneten Paketverzögerung für 50 Stationen 46

5.3 Durchsatz von TCP Reno im Netzwerkprozessor-Modell (Flow) 47

5.4 Durchsatz von TCP Vegas im Netzwerkprozessor-Modell (Flow) 48

5.5 Durchsatz von TCP Reno im Netzwerkprozessor-Modell (IPSec) 48

5.6 Durchsatz von TCP Vegas im Netzwerkprozessor-Modell (IPSec) 49

5.7 Durchsatz von TCP Reno im Wlan-Modell . 50

5.8 Durchsatz von TCP Vegas im Wlan-Modell . 50

Tabellenverzeichnis

2.1 Einordnung von TCP im OSI- und TCP/IP-Schichtenmodell 8

2.2 Größenordnung der Verzögerungskomponenten im Netzwerk 12

3.1 Paketverarbeitungsaufwand unterschiedlicher Anwendungen 20

3.2 Verwendete Variablen für das WLAN-Modell 22

3.3 WLAN-Parameter . 31

5.1 Paketverzögerung im Netzwerkprozessor . 43

5.2 Paketverzögerung im WLAN-Modell . 44

4

Verzeichnis der Listings

3.1 Matlab-Code zur Bestimmung von p und τ . 29

4.1 Verbinden von Modellen in SimLib/EmuLib . 39

4.2 Konfigurationsdatei sim.par . 40

5

1 Einleitung

Hintergrund

Die Erfahrung zeigt, dass beim Zugriff auf gemeinsame Netzwerkressourcen immer wieder
einzelne Netzwerkpfade überlastet werden. Zur Auflösung bzw. Vermeidung von Staus ent-
hält das Transmission Control Protocol (TCP) einen Staukontrollmechanismus. Um die
Staukontrolle zu optimieren, wurden verschiedene Varianten für diesen Mechanismus
entwickelt. Dabei kann zwischen zwei Typen der Staukontrolle unterschieden werden –
verlustbasierte und verzögerungsbasierte Staukontrolle. Wie der Name andeutet, beruhen
verzögerungsbasierte Staukontrollmechanismen auf der Messung der Paketverzögerung. Stei-
gende Paketverzögerungen werden als drohender Stau interpretiert. Jedoch sind Staus nicht
die einzigen Einflüsse, welche die Paketverzögerung beeinflussen. Dies kann zu falschen
Reaktionen der Staukontrolle führen.

Im Rahmen dieser Arbeit wurden solche Störgrößen für die verzögerungsbasierte Stau-
kontrolle identifiziert und modelliert, um sie im Netzemulator-Framework IKR-EmuLib
umzusetzen. Mit Hilfe des prototypisch entstandenen Testbeds können verschiedene Mess-
verfahren und Staukontrollmechanismen verglichen werden.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Hier werden die unterschiedlichen Kategorien der TCP-Stau-
kontrolle vorgestellt, verschiedene Komponenten der Paketverzögerung dargestellt und
auf ihre Relevanz untersucht. In diesem Zusammenhang wird der Medienzugriff im
WLAN näher betrachtet. Außerdem werden die Gründe für den Ansatz der Emulation
dargelegt.

Kapitel 3 – Modellierung von Verzögerungen: Hier werden zwei Störgrößen, nämlich die
Verzögerung durch Verarbeitung in Netzwerkgeräten und die Verzögerung bei WLAN-
Verbindungen näher untersucht und modelliert.

Kapitel 4 – Aufbau des Testbeds: In diesem Kapitel werden das Netzemulator-Framework
IKR EmuLib und der Aufbau des Testbeds vorgestellt.

Kapitel 5 – Validierung: Hier werden mittels des Testbeds Messungen durchgeführt und die
Ergebnisse der Arbeit überprüft.

6

1 Einleitung

Kapitel 6 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt mögliche Weiterentwicklungen sowie Anwendungsmöglichkeiten vor.

7

2 Grundlagen

In diesem Kapitel werden die Grundlagen dieser Arbeit erläutert. Zunächst wird die grund-
sätzliche Funktionsweise der TCP-Staukontrolle gezeigt und zwischen verlustbasierter und
verzögerungsbasierter Staukontrolle unterschieden. Um ihren Einfluss auf die verzögerungs-
basierte Staukontrolle zu untersuchen, werden im Anschluss die verschiedenen Kompo-
nenten der Verzögerung in paketvermittelten Netzwerken betrachtet. Es folgt eine nähere
Beschreibung der Verzögerung durch Verarbeitung in Netzwerkgeräten, sowie der Verzöge-
rung im WLAN.

2.1 TCP-Staukontrolle

Das Transmission Control Protocol (TCP) ist ein grundlegendes Protokoll der Internetpro-
tokollfamilie. Es bietet auf der Transportschicht paketvermittelte, zuverlässige und verbin-
dungsorientierte Datenübertragung. [KR05]

OSI-Schicht OSI-Erweiterung TCP/IP-Schicht Beispiele
Anwendung (7) Anwendung DNS, POP, HTTP
Darstellung (6) X.216

Sitzung (5) L2TP
Transport (4) Transport TCP, UDP
Vermittlung (3) Internet IP, ICMP
Sicherung (2) Logical Link Control (2b)

Media Access Control (2a) Host-zu-Netzwerk Ethernet, WLAN
Bitübertragung (1)

Tabelle 2.1: Einordnung von TCP im OSI- und TCP/IP-Schichtenmodell [Tan03, ITU94,
Cis07]

Ein wichtige Aufgabe von TCP ist die Überlast- oder Staukontrolle. Wenn Netzressourcen
gleichzeitig genutzt werden, kann dies zur Überlastung des Netzwerkes führen. Die Staukon-
trolle dient dazu, eine solche Überlastung zu vermeiden oder aufzulösen. Die Staukontrolle
muss dabei von der Flusskontrolle abgegrenzt werden. Während es bei der Staukontrolle
darum geht, ob ein Teilnetz in der Lage ist, den angebotenen Verkehr zu bewältigen, geht
es bei der Flusskontrolle darum, dass ein bestimmter Sender einen bestimmten Empfänger
nicht mit mehr Daten, als dieser bewältigen kann, überschwemmt. Dafür ist die Verar-
beitungsgeschwindigkeit des Empfängers entscheidend, nicht die Übertragungskapazität

8

2.1 TCP-Staukontrolle

des Netzes. [Tan03] In dieser Arbeit geht es um die Staukontrolle. Die TCP-Staukontrolle
versucht Überlastungen von Netzwerkpfaden aufzulösen oder zu vermeiden, indem die be-
teiligten Stationen ihr Sendeverhalten anpassen, sobald sie einen (drohenden) Stau erkennen.
Dabei gibt es zwei Kategorien von Verfahren – verlustbasierte und verzögerungsbasierte
Staukontrolle.

2.1.1 Verlustbasierte Staukontrolle

Wenn eine Verbindung zu stark belastet ist, dann führt dies bei TCP zu Paketverlusten1. Dies
liegt daran, dass bei Überlastung die Warteschlange eines Netzwerknotens so stark wachsen
kann, dass der Pufferspeicher voll ist. In diesem Fall können ankommende Pakete nicht
angenommen werden. Folglich werden sie fallen gelassen. [KR05] Unabhängig davon, ob ein
Paket tatsächlich fallen gelassen wurde, wartet der Sender nur eine gewisse Zeit (timeout)
auf eine Empfangsbestätigung. Bleibt diese aus, geht er davon aus, dass das Paket verloren
gegangen ist und versucht es erneut. Dies hat zur Folge, dass Pakete bei Stau verstärkt
mehrfach übertragen werden müssen, was die Last noch zusätzlich erhöht. Die Aufgabe der
Staukontrolle ist es, das Sendeverhalten so zu ändern, dass der Stau vermieden wird oder
sich auflöst. Umgekehrt soll jedoch auch die Bandbreite möglichst gut ausgenutzt und die
Senderate nicht unnötig niedrig gehalten werden.

Die Grundannahme verlustbasierter Staukontrollmechanismen ist, dass die Ursache für
(verstärkte) Paketverluste eine Überlastung der Verbindung ist. Im Grundsatz funktionieren
diese Mechanismen so, dass die Senderate langsam erhöht wird, bis Paketverluste auftreten.
Wenn Paketverluste auftreten, was der Sender an den ausbleibenden Empfangsbestätigungen
(ACK) erkennt, wird die Senderate deutlich reduziert, um den Stau aufzulösen. Im Anschluss
wird die Rate wieder langsam erhöht, bis erneut Paketverluste auftreten. Verlustbasierte
Staukontrollmechanismen reagieren also erst auf einen mutmaßlich erkannten Stau. Dabei
tastet sich TCP so lange an die mögliche Senderate heran, bis es zu Paketverlusten kommt.
Es kommt also sogar bei alleiniger Nutzung der Verbindung regelmäßig zu einem „Stau“ .
Dieses Verhalten ist notwendig, weil einerseits keine Bandbreite verschenkt werden soll, aber
andererseits keine Möglichkeit besteht, die verfügbare Bandbreite zu ermitteln. [BP95] Das
Sendeverhalten bei verlustbasierter Staukontrolle kann wie in der vereinfachten Abbildung
2.1 aussehen.

2.1.2 Verzögerungsbasierte Staukontrolle

Im Gegensatz zu verlustbasierten Staukontrollmechanismen reagieren die verzögerungsba-
sierten Mechanismen nicht nur auf Paketverluste sondern versuchen über die Verzögerung

1Korrekterweise müsste je nach TCP/IP bzw. OSI-Schicht zwischen Rahmen (frames), Paketen und Segmenten
unterschieden werden. Diese Unterscheidung würde im Zusammenhang mit dieser Arbeit jedoch hauptsächlich
Verwirrung stiften, so dass ich – wie einige der zitierten Arbeiten – fast durchgängig von Paketen sprechen
werde.

9

2.1 TCP-Staukontrolle

Senderate

Zeit

Paketverlust

Abbildung 2.1: Prinzipskizze verlustbasierte Staukontrolle

von Paketen drohende Staus zu erkennen. Dazu wird in der Regel die sogenannte Round Trip
Time (RTT) gemessen. Dies ist die Zeit vom Absenden eines Pakets bis zum Eintreffen der
Empfangsbestätigung. Im Grundsatz funktionieren verzögerungsbasierte Staukontrollme-
chanismen so, dass eine steigende RTT als drohender Stau interpretiert wird. Entsprechend
wird in diesem Fall die Senderate verringert. Wenn sich die RTT wieder erholt, wird auch die
Senderate wieder erhöht. In 2.2 sieht man in einer Prinzipskizze wie sich ein verzögerungs-
basierter Staukontrollmechanismus idealerweise an eine optimale Senderate heran tastet.
Dies ist jedoch wirklich idealisiert. In Kapitel 5 wird sich zeigen, dass dies beim betrachteten
TCP Vegas bei weitem nicht so gut funktioniert. Der Vorteil dieser Vorgehensweise ist, dass

Senderate

Zeit

RTT steigt mit
Netzauslastung

RTT sinkt mit
Netzauslastung

Abbildung 2.2: Prinzipskizze verzögerungsbasierte Staukontrolle

10

2.2 Ursachen für Verzögerungen im Netz

Staus und der damit einhergehende, vorübergehende Einbruch der Datenübertragungsrate
vermieden werden. Voraussetzung für ein gutes Funktionieren ist aber neben schnellen und
präzisen Messungen der Verzögerungen, dass die Ursache von Verzögerungsschwankungen
tatsächlich mit der Belastung des Netzwerkpfades zusammen hängt oder der Mechanismus
zwischen dieser und anderen Ursachen unterscheiden kann.

2.2 Ursachen für Verzögerungen im Netz

Da verzögerungsbasierte Staukontrollmechanismen auf schwankende Paketverzögerungen
reagieren, ist es wichtig, Ursachen und Charakteristik von Verzögerungen zu kennen.

Die Verzögerung in einem paketvermittelten Netzwerk setzt sich aus verschiedenen Kompo-
nenten zusammen. Nach Kurose/Ross sind die vier wichtigsten Komponenten die processing
delay (Verarbeitungsverzögerung), queueing delay (Warteschlangenverzögerung), transmission
delay (Übertragungsverzögerung) und propagation delay (Ausbreitungsverzögerung). Diese
treten an bzw. zwischen jedem Netzwerkknoten auf. [KR05]

• Die processing delay ist die Zeit die auf einem Netzwerkknoten benötigt wird, um das
Paket zu bearbeiten. Dazu gehört es, den Paketheader daraufhin zu untersuchen, wohin
das Paket weiter geschickt werden soll, aber bspw. auch die Zeit zur Überprüfung
auf Bitfehler. Moderne Router erledigen dies im Mikrosekundenbereich oder schneller.
Allerdings können neben der einfachen Weiterleitung (store and forward) von Paketen
auch weitere Aufgaben für Verzögerungen sorgen. Man denke an Firewalls, Network
Address Translation (NAT) oder Virtual Private Networks (VPN). In diesen Fällen kann
die Verzögerung deutlich größer werden.

• Die queueing delay bezeichnet die Zeit, die ein Paket warten muss, bis es verschickt
werden kann, weil andere Pakete vorher an der Reihe sind oder gerade übertragen
werden. Im Idealfall beträgt die queueing delay null. Im schlechtesten Fall „ewig“ (was
im Falle von TCP zur Folge hat, dass das Paket verworfen wird und neu übertragen
werden muss).

• Die transmission delay ist die Zeit, die benötigt wird, ein Paket auf die Leitung zu
schicken. Sie berechnet sich aus der Paketlänge geteilt durch die Übertragungsrate der
Verbindung zum nächsten Knoten. Diese Verzögerungskomponente bewegt sich in der
Größenordnung von Mikro- bis Millisekunden.

• Die propagation delay ist die Zeit, die ein Bit von einem Knoten zum Nächsten braucht.
Sie berechnet sich als Ausbreitungsgeschwindigkeit geteilt durch die Entfernung. Die
Ausbreitungsgeschwindigkeit hängt vom verwendeten Medium (Glasfaser, Kupfer,
Luft etc.) ab und entspricht der Lichtgeschwindigkeit oder knapp darunter. In Wide
Area Networks (WAN) bewegt sich die propagation delay im Millisekundenbereich.

In Tabelle 2.2 finden sich Größenordnungen der Verzögerungskomponenten für eine 200km
lange 1GB/s-Leitung, ein 1250-byte-Paket und einen 100-MIPS-Prozessor.

11

2.2 Ursachen für Verzögerungen im Netz

Verzögerungsart Einfache Paketweiterleitung komplexe Payload-Modifikationen
Processing delay 10µs 1000µs
Queueing delay 0-∞ 0-∞
Transmission delay 10µs 10µs
Propagation delay 1000µs 1000µs

Tabelle 2.2: Größenordnung der Verzögerungskomponenten im Netzwerk [RWW04]

Die processing delay ist normalerweise sehr gering, kann aber sehr unterschiedliche Werte
annehmen. Die Höhe hängt von den durchlaufenen Anwendungen und der verwendeten
Hardware auf den Knoten ab. Bei komplexen Anwendungen macht sie einen erheblichen
Anteil der Verzögerung aus.

Die queueing delay unterliegt enormen Schwankungen von null bis unendlich. Eine steigen-
de queueing delay ist ein Anzeichen für eine sich füllende Warteschlange und damit für
drohende Überlastung. Deswegen ist die Korrelation zwischen Verzögerung und Last als
Grundannahme in die verzögerungsbasierte Staukontrolle eingeflossen.

Die transmission delay nimmt nur einen geringen Anteil an der Gesamtverzögerung ein. Sie
ist proportional zur Paketlänge.

Zumindest bei großen Netzwerken nimmt die propagation delay einen erheblichen Anteil an
der Verzögerung ein. Sie ist konstant, da sie nur vom Übertragungsmedium und von der
Entfernung abhängt.

Selbstverständlich können sich alle diese Verzögerungskomponenten ändern, wenn sich das
Routing im Netzwerk ändert. Auf einer neuen Route findet sich eine andere Konstellation
von Netzwerkgeräten, Leitungen und Entfernung, was sich auf transmission delay, processing
delay, propagation delay und auch auf andere, untergeordnete Verzögerungsarten auswirkt.
Im Falle der processing delay können sich sogar die auf den Knoten laufenden Anwendungen
ändern. Allerdings geht es insbesondere bei den hier relevanten komplexen Anwendungen
oftmals um Knoten, die in jedem Fall durchlaufen werden müssen. Sinnvollerweise kann
bspw. eine Firewall nicht durch verändertes Routing umgangen werden.

Die Ursache für Routingänderungen sind allerdings häufig Überlast und Ausfälle von
Verbindungen. Dementsprechend ist es oft sogar gewünscht, dass sich insbesondere die
queueing delay mit der Route ändert. In jedem Fall muss sich der Staukontrollmechanismus
auf die neue Route einstellen, ohne dass man diesen Vorgang als Störung der Funktionalität
bezeichnen könnte. Deshalb wird bei den folgenden Betrachtungen von einer stabilen Route
ausgegangen wird.

Wenn man von der processing delay absieht, dann ist die Schwankung der Paketverzögerung
bei Verbindungen über Kabel ohne Überlast offenbar sehr gering ist. (Abbildung 2.3) Bei
WLAN-Verbindungen sieht dies anders aus. Auch ohne Stau kommt es hier zu erheblichen
Schwankungen von Paket zu Paket (Abbildung 2.4) Die Ursache dafür liegt in einer Verzö-
gerungskomponente, die bei der Einteilung aus [KR05] nicht berücksichtigt ist, weil sie bei
kabelgebundenen Netzwerken nur eine untergeordnete Rolle spielt, nämlich die Verzögerung

12

2.2 Ursachen für Verzögerungen im Netz

t

Verzögerung

Abbildung 2.3: Paketverzögerung in kabelgebundenen Netzwerken

beim Medienzugriff (media access delay). Diese Verzögerung kann bei WLAN-Verbindungen
erheblich schwanken und ist damit geeignet verzögerungsbasierte Staukontrollmechanismen
zu stören. Die media access delay wird in Abschnitt 2.2.2 genauer untersucht.

2.2.1 Verarbeitungsdauer in Netzwerkgeräten

Wie Abschnitt 2.2 gezeigt hat, kann die processing delay, also die Verarbeitungsdauer in
Netzwerkgeräten sehr unterschiedliche Werte annehmen. Dies legt einen möglichen Einfluss
auf verzögerungsbasierte Staukontrollmechanismen nahe. Deshalb wird sie in dieser Arbeit
näher untersucht.

Zunächst muss geklärt werden, welche Faktoren Einfluss auf die processing delay haben.
Deren Größe hängt hauptsächlich von drei Faktoren ab:

13

2.2 Ursachen für Verzögerungen im Netz

WLAN

t

Verzögerung

Abbildung 2.4: Paketverzögerung in kabelgebundenen Netzwerken

1. Art bzw. Komplexität der Anwendung

2. Leistungsfähigkeit des Netzwerkgerätes

3. Paketeigenschaften

In Abschnitt 2.2 wurde für die Betrachtung ausgeschlossen, dass sich das Routing ändert.
Folglich bleiben die durchlaufenen Netzwerkknoten und damit die Leistungsfähigkeit der
fraglichen Netzwerkgeräte, sowie die darauf laufenden Anwendungen gleich. Damit bleiben
noch Paketeigenschaften, die den Rechenaufwand verändern bzw. von vorn herein eine an-
dere Behandlung zur Folge haben können. Eine solche unterschiedliche Behandlung erfolgt

14

2.2 Ursachen für Verzögerungen im Netz

in der Praxis hauptsächlich aufgrund der Quell- und Zieladressen, die sich innerhalb einer
Verbindung logischerweise nicht ändern. Wenn die Verarbeitungsdauer nicht vom tatsächli-
chen Inhalt des Paketes abhängt, wie dies z.B. bei einem content-based Switch [AAP+

00]
der Fall ist, dann bleibt als Größe, die einen Einfluss auf die Verarbeitungsdauer hat, die
Paketlänge. Wie die Verzögerung in Netzwerkgeräten in Abhängigkeit von der Paketlänge
in ein Modell überführt werden kann, wird in Abschnitt 3.1 gezeigt.

2.2.2 Verzögerungen im WLAN aufgrund des Medienzugriffs

Wie in Abschnitt 2.2 festgestellt wurde, kommt es bei WLAN-Verbindungen zu erheblichen
Schwankungen der Paketverzögerung. Es liegt nahe, die Ursache nur bei der schlechten
Qualität von WLAN-Verbindungen zu suchen. Diese führt zu Paketverlusten auf der MAC-
Schicht (Media Access Control, siehe Tabelle 2.1), welche sich als Verzögerungen auf die
Transportschicht übertragen und im schlimmsten Fall TCP-Neuübertragungen notwendig
machen. Dies ist ein bekanntes Problem, das auch verlustbasierte Staukontrollmechanismen
betrifft. [Tan03] Neben der Unzuverlässigkeit von WLAN-Verbindungen, führt aber schon
die prinzipielle Funktionsweise von WLAN zu Verzögerung beim Medienzugriff (media
access delay), die stark unterschiedlich ausfallen können.

Bei der gemeinsamen Nutzung eines Kanals, muss auf der MAC-Schicht vermieden werden,
dass mehrere Stationen gleichzeitig Pakete übertragen. Andernfalls kommt es zu Kollisionen.
Die Pakete werden dann nicht korrekt übertragen und müssen erneut gesendet werden. Im
Falle von Kabelverbindungen über Ethernet wird dazu ein Verfahren mit Kollisionserken-
nung – CSMA/CD (Carrier Sense Multiple Access/Collision Detection) verwendet. Wenn
eine Station anfängt zu übertragen, und dann bemerkt, dass bereits eine andere Station
überträgt, stellt sie den eigenen Sendeversuch sofort ein. So kann die zeitliche Auswirkung
einer Kollision minimiert werden. Voraussetzung dafür ist, dass die Station in der Lage ist,
gleichzeitig zu übertragen und auf dem Kanal zu horchen. Im Falle von WLAN ist dies
nicht möglich, weil hier die Stationen diese Fähigkeit nicht haben. Wenn eine WLAN-Station
angefangen hat zu übertragen, dann fährt sie damit auch im Falle einer Kollision fort, bis das
gesamte Paket gesendet ist. Die Auswirkung einer Kollision ist deswegen deutlich größer,
weil der Kanal länger belegt ist. Aus diesem Grund wird bei WLAN, sofern keine zentrale
Steuerung vorhanden ist, ein Verfahren mit Kollisionsvermeidung – CSMA/CA (Carrier
Sense Multiple Access/Collision Avoidance) verwendet. [KR05]

Im Falle eines Medienzugriffs mittels der Distributed Coordination Function (DCF)2 läuft
das Verfahren folgendermaßen ab. (Abbildung 2.5 enthält eine vereinfachte Darstellung, bei
der vor allem auf die Unterscheidung der verschiedenen Wartezeiten verzichtet wurde.)

2Bei DCF arbeiten alle Stationen unabhängig, ohne zentrale Steuerung. Der DCF-Modus muss von allen Imple-
mentierungen des IEEE 802.11-Standards unterstützt werden. Daneben gibt es auch einen optionalen PCF-Modus
(Point Coordination Function), bei dem ein Zugriffspunkt alle Aktivitäten in seiner Zelle steuert und so Kollisonen
verhindert. [Tan03]

15

2.2 Ursachen für Verzögerungen im Netz

Paket wird gesendet Paket wird gesendet

Paket wird gesendet

Kollision

Zähler setzt ausHorchen und warten

Horchen und warten

Horchen und warten

Horchen und warten

Sendewunsch

Sendewunsch

Stat ion A

Stat ion B

MAC-ACK von Em pfänger
Weiter senden

zufällige Wartezeit
(Backoff)

zufällige Wartezeit
(Backoff)

Zufallsbereich (Contention Window)
für nächste Stufe verdoppelt

Zufallsbereich (Contention Window)
für nächste Stufe verdoppelt

Abbildung 2.5: Vereinfachte Darstellung des WLAN-Medienzugriffs mit DCF/Basic Access

Wenn eine Station im WLAN ein Paket versenden will, dann horcht sie zunächst auf dem
Kanal, ob dieser frei ist. Wenn dies eine DIFS (Distributed Coordination Function Interframe
Spacing) genannte Zeitspanne lang der Fall ist, würfelt sie einen zufälligen Backoff -Wert3

aus. Dieser Zähler wird nun solange der Kanal frei ist, jede slot time um eins reduziert. Wenn
der Kanal belegt ist, wird das Herunterzählen so lange unterbrochen, bis der Kanal wieder
ein DIFS lang frei ist. Sobald der Backoff-Zähler null erreicht, wird das Paket übertragen.
Empfängt die Empfängerstation das Paket erfolgreich, wartet sie ein SIFS (Short Interframe
Spacing) lang und sendet dann eine Empfangsbestätigung (ACK)4 zurück. Erhält der Sender
kein ACK, wird davon ausgegangen, dass das Paket verloren gegangen ist. Dazu kann
es bspw. kommen wenn zwei Stationen zufällig gleichzeitig übertragen wollen. In diesem
Fall setzt die Station einen Retry- oder Retransmission-Zähler5 eins herauf. Außerdem wird
der Zufallsbereich für den Backoff-Wert, das sogenannte Contention Window verdoppelt bis
ein Maximalwert erreicht wird. Wenn der Retry-Zähler das Retry-Limit erreicht, wird das
Paket verworfen. Wird das Paket erfolgreich versendet, dann wird der Retry-Zähler wieder
auf null und die Größe des Contention Windows auf den Startwert gesetzt. Neben diesem
einfachen Vorgehen (Basic Access) gibt es noch ein erweitertes Verfahren, das besonders bei
großen Datenpaketen Anwendung findet: RTS/CTS Access (Request to Send/Clear to Send).
Dabei wird statt des Datenpakets zunächst ein sehr viel kleineres RTS-Paket gesendet, um
den Kanal zu reservieren. Wenn die Empfänger-Station das RTS-Paket erhält, antwortet sie
nach einem SIFS mit CTS und erlaubt damit das Senden des eigentlichen Datenpakets. Der
Empfang des Datenpakets wird wiederum mit einem ACK quittiert. Alle anderen Stationen
warten währenddessen und senden nicht selbst. Die Länge der Kanalbelegung ist in den RTS-
und CTS-Paketen enthalten. Wenn der Sender kein CTS erhält wird (wie beim fehlenden
ACK) der Retry-Zähler um eins erhöht und das Contention Window vergrößert. [RVP09]

Um einen Eindruck für die Größenverhältnisse der einzelnen Zeiten zu bekommen, seien
hier exemplarisch die Werte nach IEEE 802.11b[iee07] angeführt. Danach ist ein SIFS 10µs,
ein DIFS 50µs und eine slot time 20µs lang. Die Größe des Contention Windows geht von

3engl.: to back off – sich zurückhalten, zurückweichen
4Dieses ACK auf MAC-Ebene darf nicht mit dem TCP-ACK aus der Transportschicht verwechselt werden.
5engl.: to retry – erneut versuchen / retransmission – Neuübertragung

16

2.3 Simulation und Emulation

31 bis 1023. Wie man aus diesen Größenverhältnissen leicht erkennt, hängt die Verzöge-
rung maßgeblich vom zufällig gewählten Backoff-Wert sowie der Anzahl der notwendigen
Übertragungsversuche ab. Es können große Ausreißer bei der Verzögerung entstehen. Es
ist anzunehmen, dass sich diese Verzögerungen ähnlich wie Paketverluste [KR05] von der
MAC-Schicht auf die höheren Netzwerkschichten übertragen. Da TCP die Ursache der
Verzögerung nicht erkennen kann, besteht die Gefahr, dass verzögerungsbasierte Staukon-
trollmechanismen davon gestört werden.

2.3 Simulation und Emulation

Wie gezeigt wurde besteht Bedarf unterschiedliche TCP-Varianten in verschiedenen Szenarien
zu untersuchen. In der Praxis stellen sich dabei diverse Probleme. Zunächst einmal stehen
real existierende Netzwerke in der Regel nicht für die alleinige Nutzung zu Testzwecken
zur Verfügung. Zumindest große Netzwerke können schon aus Platzgründen auch nicht
ohne weiteres auf- bzw. nachgebaut werden. Zudem müsste die notwendige Hard- und
Software vorhanden sein oder beschafft werden, was ggfs. mit hohen Kosten verbunden
ist. Eine Änderung des Aufbaus oder der Parameter ist in der Regel mit hohem Aufwand
verbunden.

Ein weiterer Faktor, der insbesondere den Fall der WLAN-Verbindungen betrifft, ist die
Reproduzierbarkeit. Ein WLAN kann kaum hundertprozentig nach außen abgeschottet
werden. Es besteht immer die Gefahr, dass Einflüsse von außen die Messergebnisse stören.
Ein einfaches Beispiel hierfür wäre, dass nebenan ebenfalls ein WLAN betrieben wird.

Eine Lösung dieser Probleme besteht darin, ein mathematisches Modell des Netzwerks
zu erstellen und es zu simulieren. Weit verbreitet ist dabei die auf diskreten Ereignissen
basierende Simulation. Diskrete Ereignisse bedeutet hier, dass sich der Systemzustand
nur an einer abzählbaren Menge von einzelnen Zeitpunkten unmittelbar ändern kann. Zu
diesen Zeitpunkten tritt ein Ereignis (event) auf. [LK91] Dies klingt zunächst einfach, aber
hinreichend gute Modelle können sehr komplex sein, was nicht nur bei der Berechnung,
sondern auch bei der Erstellung des Modells einen hohen Aufwand bedeuten kann.

Eine Möglichkeit, den Aufwand zu reduzieren ist die Netzwerkemulation. Die Netzwerk-
emulation ist eine Mischung von Realität und Simulation bei der reale Elemente einer
eingesetzten Netzwerkanwendung mit simulierten Elementen kombiniert werden. Es handelt
sich sozusagen um eine Simulation mit Schnittstelle zur Realität. Ein wesentlicher Unter-
schied zwischen Simulation und Emulation ist, dass die Zeit in der Simulation virtuell
und unabhängig von der wirklichen Zeit ist. Die Emulation muss dagegen aufgrund der
Schnittstelle zur Realität in Echtzeit ausgeführt werden. [NGKR06, GRL05]

Für diese Arbeit wurde das auf Paketebene arbeitende Netzemulator-Framework IKR EmuLib
verwendet. Dieses baut auf der ereignisbasierten Simulationsumgebung IKR SimLib auf und
wird im Abschnitt 4.1 näher vorgestellt wird.

17

3 Modellierung von Verzögerungen

In Kapitel 2 wurden zwei Einflüsse herausgearbeitet, welche zu Schwankungen in der
Paketverzögerung führen und damit die Funktion verzögerungsbasierter Staukontrollme-
chanismen stören können. Erstens die Verarbeitung in Netzwerkgeräten und zweitens
Verbindungen über WLAN. Diese sollen im Folgenden modelliert werden. Zunächst die
Verzögerung in Netzwerkgeräten.

3.1 Modell für die Verzögerung durch Verarbeitung in
Netzwerkgeräten

Router und andere Netzwerkgeräte müssen weit mehr leisten als einfach nur Pakete weiter
zu leiten. Firewalls, VPN, NAT, Verschlüsselung und andere Anwendungen benötigen Re-
chenzeit und verzögern so die Ankunft von Paketen. Es gibt einige Forschungsarbeiten dazu,
wie groß der Rechenaufwand ist bzw. wie sehr die Netzwerkgeräte dadurch belastet werden.
So gibt es verschiedene Benchmark-Suites für Netzwerkprozessoren [WF00, MMSH01].

Damit, wie sich dies in Paketverzögerungen übersetzt, beschäftigen sich jedoch relativ we-
nig Arbeiten. Drei Arbeiten, die sich mit dieser Fragestellungen befassen sind [PMF+

03],
[CMZ+

04] und [RWW04]. Davon wird jedoch nur in [RWW04] ein Modell entwickelt, das
die Verzögerung eines einzelnen Pakets in einem einzelnen, parametrisierbaren Netzwerk-
prozessor berechnet. Deshalb habe ich es habe ich für mein Testbed gewählt und umgesetzt.
Im Folgenden wird dieses Modell vorgestellt.

Das Netzwerkprozessor-Modell geht davon aus, dass Verarbeitungskosten einer Anwendung
weitgehend systemunabhängig aus der Zahl der notwendigen Prozessorbefehle und Spei-
cherzugriffe berechnet werden kann. Deswegen beruht es auf folgenden Parametern für die
jeweilige Anwendung a.

• Befehle pro Paket αa (unabhängig von der Länge des Pakets)

• Befehle pro Byte βa

• Speicherzugriffe pro Paket γa (unabhängig von der Länge des Pakets)

• Speicherzugriffe pro Byte δa

• Paketlänge l

18

3.1 Modell für die Verzögerung durch Verarbeitung in Netzwerkgeräten

Näherungsweise können die Zahl der Befehle i und die Zahl der Speicherzugriffe m für eine
Anwendung a in Abhängigkeit von der Paketlänge l wie folgt berechnet werden.

ia(l) = αa + βa · l (3.1)
ma(l) = γa + δa · l (3.2)

Nun müssen die Zahl der Befehle und Speicherzugriffe noch in die benötigte Verarbeitungs-
zeit übersetzt werden. Das Modell geht von einem RISC-Prozessor aus. RISC-Prozessoren
arbeiten pro Takt einen Befehl ab. Deshalb kann die Zahl der Befehle leicht in die entsprechen-
de Verarbeitungszeit tp,a für die Anwendung a auf einem Prozessor p mit der Taktfrequenz
f umgewandelt werden.

tp,a(l) =
ia(l)

f
(3.3)

Für den Speicherzugriff wird eine durchschnittliche Zugriffsdauer tmem angenommen, so
dass man die Speicherzugriffszeit tm,a für eine Anwendung erhält.

tm,a(l) = ma(l) · tmem (3.4)

Damit ergibt sich die Verzögerung ta(l), die ein Paket aufgrund der Verarbeitung erfährt, als
die Summe von verbrauchter Rechen- und Speicherzugriffszeit.

ta(l) =tp,a(l) + tm,a(l) =
αa + βa · l

f
+ γa + δa · l · tmem (3.5)

Einschränkungen des Modells Das gezeigte Modell für die processing delay in einem Netz-
werkgerät hat den Vorteil, dass es sehr einfach ist, aber trotzdem sowohl die Verzögerung
pro Paket als auch die Verzögerung pro byte erfasst.

Es unterliegt aber auch gewissen Einschränkungen. So wird implizit ein lineares Verhalten
vorausgesetzt. Dies gilt zwar für Anwendungen wie Paket-Weiterleitungen und IPSec, aber
bspw. nicht für die schon in Abschnitt 2.2.1 erwähnten content-based Switche. Ein Hindernis
bei der Benutzung kann es zudem sein, dass die Parameter ohne detaillierte Spezifikationen
schwer herzuleiten sind. Außerdem führt die Benutzung von Co-Prozessoren und anderen
Hardwarebeschleunigern zu einer heterogenen Architektur, die nicht so einfach beschrieben
werden kann. [RWW04]

19

3.2 Stochastisches Modell für die Verzögerung im WLAN

Anwendung a Befehle Speicherzugriffe
pro Paket (αa) pro Byte (βa) pro Paket(γa) pro Byte(δa)

IPv4-radix 4493 0 868 0

IPv4-trie 205 0 50 0

Flow-Klassifizierung 153 0 79 0

IPsec-Verschlüsselung -2363 294 -868 104

Tabelle 3.1: Paketverarbeitungsaufwand unterschiedlicher Anwendungen

Parameter für das Modell In [RWW04] wurden vier Anwendungsfälle untersucht, für die
Parameter zur Verfügung stehen. Parameter für andere Anwendungen müssen bei Bedarf
erst bestimmt werden.

• IPv4-radix: Paket-Weiterleitung nach RFC 1812 [Bak95] mit einer Patricia-Trie-Struktur
(engl. radix tree) der Routing-Tabelle.

• IPv4-trie: Ähnlich wie IPv4-radix, benutzt aber eine Trie-Struktur mit kombinierter
Ebenen- und Pfad-Kompression. [NK99]

• Flow-Klassifizierung: Pakete werden in Flows klassifiziert, die durch 5-Tupel (Quell-
adresse, Zieladresse, Quellport, Zielport, Transportprotokoll) definiert werden. Flow-
Klassifizierung ist oftmals Teil von Anwendungen wie Firewall und NAT.

• IPsec-Verschlüsselung: Verschlüsselung der Paket-Payload nach dem IP Security Proto-
koll [KA98] mit 3DES.

Diese Parameter wurden für die untersuchten Anwendungen jeweils mit Hilfe des Tools
PacketBench [RW03, RWW04] ermittelt und können der Tabelle 3.1 entnommen werden.1

3.2 Stochastisches Modell für die Verzögerung im WLAN

Wie in Abschnitt 2.2.2 gezeigt wurde, kann die Paketverzögerung im WLAN stark schwan-
ken und ist damit geeignet verzögerungsbasierte Staukontrollmechanismen zu stören. Im
Folgenden wird ein Modell für die Verzögerung im WLAN entwickelt, um dies untersuchen
zu können. Es gibt eine große Anzahl an Forschungsbeiträgen zur Verzögerung durch
WLANs. In den meisten Fällen wird dabei jedoch nur der Durchsatz oder die durchschnittli-
che Paketverzögerung betrachtet. Einige wenige befassen sich auch mit der Streuung der
Paketverzögerung. Die meisten dieser Modelle beruhen auf dem Markov-Ketten-Modell von
Bianchi [Bia00].

Für die Netzwerkemulation auf Paketebene ist das Verhalten des einzelnen Pakets wichtig.
Hier bietet [RVP09] – eine der Arbeiten, die auf [Bia00] aufbauen – einen guten Ansatzpunkt

1Die Paketlänge enthält den Header. Dies bewirkt, dass die Pro-Paket-Werte negativ sein können. Da jedes Paket
eine Mindestlänge hat, ergibt sich trotzdem ein positives Ergebnis für die Zahl der Befehle und Speicherzugriffe.

20

3.2 Stochastisches Modell für die Verzögerung im WLAN

Bei der Herleitung der durchschnittlichen Paketverzögerung sowie deren Standardabwei-
chung werden dort mathematische Formeln entwickelt, die sich auf einzelne Pakete anwen-
den oder dahingehend verändern lassen. Dieses Modell habe ich angepasst und erweitert
und stelle es hier vor.

Im Folgenden werde sehr viele Parameter und Variablen verwendet. Zur Referenz habe ich
in Tabelle 3.2 eine Übersicht der Wichtigsten erstellt.

3.2.1 Herleitung und Entwicklung des Modells

Annahmen und Vereinfachungen

In [RVP09] stellen P.Raptis, V. Vitsas und K.Paparrizos ein mathematisches Modell für die
Datenübertragung im WLAN mittels DCF vor. Um die Komplexität des Modells und damit
auch die erforderliche Rechenleistung zu reduzieren, haben sie folgende Annahmen und
Vereinfachungen getroffen:

• Keine versteckten Stationen. Es wird davon ausgegangen, dass sich alle Stationen
gegenseitig „hören“ können. Wenn eine Station auf dem Kanal horcht, ist also sicherge-
stellt, dass sie tatsächlich bemerkt, wenn eine der anderen Stationen sendet.

• Keine Capture-Effekte. Der Effekt, dass eine Station den Kanal durchgehend belegt
und die anderen Stationen nicht zum Zuge kommen, wird vernachlässigt. Dies kann
vorkommen wenn aufgrund der höheren Sendeleistung einer Station, deren Pakete bei
einer Kollision nicht verworfen werden, also gegenüber den Paketen anderer Stationen
bevorzugt werden. [LZ05]

• Fehlerfreier Kanal. Pakete gehen nicht aufgrund einer schlechten Verbindungsqualität
verloren sondern nur aufgrund von Kollisionen.

• Fixe Anzahl an Stationen. Es gibt eine bekannte, feste Anzahl teilnehmender Stationen
n, die sich nicht ändert.

• Sättigungszustand. Jede Station hat ständig ein Paket zur Verfügung, das sie senden
will.

• Fixe Paketlänge. Alle Pakete haben die gleiche Länge.

• Alle Pakete kollidieren mit der gleichen Wahrscheinlichkeit. Bei jedem Übertra-
gungsversuch und unabhängig davon wie viele Neuübertragungsversuche unternom-
men werden müssen, kollidiert jedes Paket mit der konstanten und unabhängigen
Wahrscheinlichkeit p. [Bia00]

• Ursache der Verzögerungsschwankung. Die Schwankung bei der Verzögerung von
Paketen entsteht hauptsächlich durch die Wahl unterschiedlicher Backoff-Werte in den
unterschiedlichen Stufen.

21

3.2 Stochastisches Modell für die Verzögerung im WLAN

p Die Wahrscheinlichkeit, dass ein übertragenes Paket kollidiert
τ Die Wahrscheinlichkeit, dass eine Station in einer zufällig gewählten slot time

(siehe σ) ein Paket übertragt
E[slot] Die durchschnittliche Zeit, die eine Station in einem slot zögert oder anders

ausgedrückt die Zeit, die es durchschnittlich dauert, bis der Backoff-Zähler um 1

herabgesetzt wird
Ptr Die Wahrscheinlichkeit, dass von n− 1 Stationen wenigstens eine in der betrach-

teten slot time überträgt
Ps Die Wahrscheinlichkeit, dass eine Übertragung auf dem Kanal erfolgreich ist
Qj Die Wahrscheinlichkeit, dass ein erfolgreich übertragenes Paket in der Stufe j

übertragen wird
Ts Die Zeit, die der Kanal bei einer erfolgreichen Übertragung von den anderen

Stationen als belegt erkannt wird
Tc Die Zeit, die der Kanal bei einer erfolglosen Übertragung von den anderen

Stationen als belegt erkannt wird
SIFS Die Zeit, die vor dem Senden eines ACK-, RTS- oder CTS- Pakets gewartet

werden muss (Short Interframe Spacing)
DIFS Die Zeit, die vor dem Senden eines Pakets gewartet werden muss. (Distributed

Coordination Function Interframe Spacing)
σ Die Zeit, die gehorcht werden muss, um zu entscheiden, ob der Kanal belegt ist

oder nicht (slot time)
δ Verzögerung, die durch die Ausbreitung des Signals im Medium (Luft) entsteht

(propagation delay)
j Die Backoff-Stufe, also die Zahl der bisher unternommenen Übertragungsversu-

che
TMAC Die Zeit, die benötigt wird, um den MAC header zu übertragen
TPHY Die Zeit, die benötigt wird, um den Physical header zu übertragen
TACK Die Zeit, die benötigt wird, um ein ACK zu übertragen
TRTS Die Zeit, die benötigt wird, um ein RTS zu übertragen
TCTS Die Zeit, die benötigt wird, um ein CTS zu übertragen
Wi Größe des Contention Windows in der Stufe i. Die minimale Größe des Conten-

tion Windows ist Wmin = W0

m Anzahl der unterschiedlichen Contention Window-Größen
R Retry- oder Retransmission-Limit
n Anzahl der am WLAN beteiligten Stationen

Tabelle 3.2: Verwendete Variablen für das WLAN-Modell

22

3.2 Stochastisches Modell für die Verzögerung im WLAN

Durchschnittliche Verzögerung und Standardabweichung

In [RVP09] wird für dieses Modell die durchschnittliche Paketverzögerung E[D] wie folgt
hergeleitet. Für jede mögliche Backoff-Stufe werden die Kanalbelegungszeit bei erfolgreicher
Übertragung, die Kanalbelegungszeiten der vorhergehenden Backoff-Stufen mit Kollisionen
und die Zeit, die durchschnittlich gewartet werden muss, bis der Backoffzähler in der
jeweiligen Stufe null erreicht, addiert. (Für den gewürfelten Backoff-Wert wird dabei einfach
die halbe Größe des Contention Windows verwendet.) Das Ergebnis wird dann nach der
Wahrscheinlichkeit für jede Backoff-Stufe gewichtet.

E[D] =
R

∑
j=0

((
Ts + jTc + E[slot]

j

∑
i=0

Wi − 1
2

)
pj(1− p)
1− pR+1

)
(3.6)

Daneben findet sich in [RVP09] noch eine umgeformte Gleichung ohne Summen-Notation.2

E[D] =Ts + Tc
AR

BR
+

1
2BR

E[slot]((W2m+1 −W −m− 1)(BR − Bm)− (Am + Bm) (3.7)

+ W(2H − Bm) + (W2m − 1)(AR − Am −mBR + mBm))

mit den Termen zur Ai, Bi und H zur besseren Lesbarkeit.

Ai =
p(1− pi − i · pi(1− p)

(p− 1)2 , Bi =
1− pi+1

1− p
, H =

1− (2p)m+1

1− 2p
(3.8)

Für die Standardabweichung muss zunächst E[D2] berechnet werden. E[D2] ergibt sich mit
E[Uj−1] für die Verzögerung durch die erfolglosen Stufen mit Kollisionen als

E[D2] =
R

∑
j=0

(1− p)pj

1− pR+1
1

Wj

Wj−1

∑
i=0

(Ts + i · E[slot] + E[Uj−1])
2 (3.9)

Aus E[D] und E[D2] kann dann die Standardabweichung (Jitter) berechnet werden.

Jitter =
√

E[D2]− (E[D])2 (3.10)

Für das zu erstellende Modell sind diese Gleichungen jedoch nicht bzw. nur zur Überprü-
fung nutzbar. Tatsächlich werden beide Gleichungen (3.6) und (3.7) für die durchschnittliche
Paketverzögerung und die daraus resultierenden Standardabweichungen in Kapitel 5 hierzu

2In [RVP09] haben sich bei der Gleichung (3.7) – nach dortiger Zählung Gleichung (19) – zwei Vorzeichenfehler
eingeschlichen, die zu negativen Werten für die Verzögerung führen. Danke an P. Raptis für die Unterstützung
bei der Fehlersuche

23

3.2 Stochastisches Modell für die Verzögerung im WLAN

verwendet. Das verwendete Framework IKR EmuLib (siehe Kapitel 4) – und damit zwangs-
läufig auch das zu entwickelnde Modell – bearbeitet aber einzelne Pakete. Es muss die
Verzögerung für ein bestimmtes Paket berechnet werden. Ein Durchschnittswert und die
Standardabweichung reichen nicht aus, um die Verteilung von Zufallswerten hinreichend
genau zu beschreiben. Für das Modell müsste jedoch die Verteilung der Verzögerungen
bekannt sein. Benötigt wird also ein stochastisches Modell für die Verzögerung der einzelnen
Pakete.

Entwicklung des stochastischen Modells

Die Berechnung meines Modells für einzelne Pakete erfolgt in drei Hauptschritten. In jedem
dieser drei Schritte bestimmt ein Zufallsfaktor über die Behandlung des Pakets.

1. Bestimmung, ob ein Paket letztendlich erfolgreich übertragen wird.

2. Bestimmung der Backoff-Stufe, in welcher die erfolgreiche Übertragung stattfindet.

3. Bestimmung der Verzögerung, die ein übertragenes Paket erfährt.

Bestimmung, ob ein Paket letztendlich erfolgreich übertragen wird Im ersten Schritt wird
berechnet, ob das Paket letztendlich erfolgreich übertragen wird. Alle anderen Pakete werden
verworfen. Trotzdem muss für diese in Schritt 3 die Verzögerung berechnet werden, da dies
die Wartezeit ist, bevor der Sendeversuch für das nächste Paket gestartet werden darf. Im
Falle einer TCP-Verbindung über WLAN ist es die Aufgabe der Transportschicht, für eine
erneute Übertragung der verworfenen Pakete zu sorgen.

Wenn τ die Wahrscheinlichkeit ist, dass eine Station in einer zufällig gewählten slot time
überträgt, dann berechnet sich die Wahrscheinlichkeit Pnone, dass keine von n Stationen
überträgt, als

Pnone = (1− τ)n (3.11)

Entsprechend wird in [RVP09] wird die Wahrscheinlichkeit Ptr, dass mindestens eine von
n− 1 Stationen überträgt, folgendermaßen angegeben.

Ptr = 1− (1− τ)n−1 (3.12)

Dies entspricht der Wahrscheinlichkeit, dass ein Paket, welches die nte Station in der
betreffenden slot time sendet, eine Kollision erfährt.

Weiter wird die Wahrscheinlichkeit Ps, dass eine Übertragung auf dem Kanal erfolgreich ist,
berechnet – mit der Bedingung, dass eine Übertragung auf dem Kanal stattfindet.

Ps =
(n− 1)τ(1− τ)n−2

Ptr
=

(n− 1)τ(1− τ)n−2

1− (1− τ)n−1 (3.13)

24

3.2 Stochastisches Modell für die Verzögerung im WLAN

Für das zu entwickelnde Modell muss ein konkretes Paket betrachtet werden. Es wird auf
jeden Fall versucht, dieses Paket zu übertragen. Dies ist nur eine Frage des Zeitpunkts. (Wie
lange dies dauert, wird in den folgenden Schritten berechnet.) Also ist diese Wahrscheinlich-
keit gleich eins. In der gewählten slot time darf keine andere Station übertragen, sonst kommt
es zur Kollision. Diese Wahrscheinlichkeit ist mit 1− Ptr gegeben. Die Wahrscheinlichkeit
Pdrop, dass die Übertragung nicht innerhalb des Retry-Limits R erfolgreich ist, liegt damit
bei

Pdrop = PR+1
tr mit R ≥ 0 (3.14)

Daraus folgt unmittelbar die Wahrscheinlichkeit Psuccess, dass die Übertragung letztendlich
erfolgreich ist.

Psuccess = 1− Pdrop = 1− PR+1
tr = 1− (1− (1− τ)n−1)R+1 mit R ≥ 0 (3.15)

Im Netzwerkmodell wird mit Hilfe von Psuccess für jedes Paket zufällig entschieden, ob es
erfolgreich übertragen oder doch verworfen wird, weil das Retry-Limit erreicht wurde. Für
erfolgreich übertragene Pakete wird im nächsten Schritt berechnet, wie viele Versuche dazu
benötigt werden. Für Pakete, die verworfen werden, folgt direkt Schritt 3 mit der Berechnung
der Verzögerung.

Bestimmung der Backoff-Stufe, in welcher die erfolgreiche Übertragung stattfindet Für
erfolgreich übertragene Pakete muss nun bestimmt werden, in welcher Stufe die erfolgreiche
Übertragung erfolgt, um im Anschluss die Verzögerung berechnen zu können.

Dazu wird für jede Stufe j eine bestimmte Wahrscheinlichkeit Qj berechnet, dass das Paket
in genau dieser Stufe übertragen wird. Da schon fest steht, dass das Paket erfolgreich
übertragen wird, beträgt die Summe dieser Wahrscheinlichkeiten 1.

Qj =
(1− p)pj

1− pR+1 für 0 ≤ j ≤ R (3.16)

Dies entspricht dem rechten Term aus Gleichung (3.6) für die durchschnittliche Paketverzöge-
rung. Dieser Term hat dort für die Gewichtung der Verzögerungen nach Wahrscheinlichkeit
gesorgt. Im Netzwerkmodell wird die gleiche Formel verwendet, um für jedes Paket einzeln
auszuwürfeln, in welcher Stufe es übertragen wird.

Bestimmung der Verzögerung, die ein übertragenes Paket erfährt Nachdem nun fest steht,
ob und in welcher Backoff-Stufe das Paket übertragen wird, kann berechnet werden, wie
groß die Verzögerung dieses Pakets ist. Diese Verzögerung setzt sich aus der Verzögerung in
den erfolglosen Stufen und – sofern die Übertragung erfolgreich war – der Verzögerung in
der erfolgreichen Stufe zusammen.

25

3.2 Stochastisches Modell für die Verzögerung im WLAN

Die Verzögerung E[Sj] in der erfolgreichen Stufe j ergibt sich aus der Zeit Ts, die der Kanal
bei der Übertragung belegt ist, und dem Produkt aus dem zufällig bestimmten Backoff-Wert
i und der Zeit E[slot], die es dauert den Backoff-Zähler um eins herab zu zählen.

E[Sj] = Ts + i · E[slot] für 0 ≤ j ≤ R, 0 ≤ i ≤Wj − 1 (3.17)

Die Gesamtverzögerung durch Kollisionen E[Uj] bis zur erfolglosen Stufe j setzt sich nach
[RVP09] aus folgenden Komponenten zusammen. Erstens der Zeit Tc, die der Kanal bei
einer Kollision belegt ist, multipliziert mit der Zahl der erfolglosen Stufen j. Zweitens den
aufsummierten durchschnittlichen Backoff-Werten für jede erfolglose Stufe multipliziert mit
der durchschnittlichen Zeit E[slot], die es braucht, den Backoff-Zähler um eins herab zu
setzen. Der durchschnittliche Backoff-Wert wird dabei als arithmetisches Mittel von null und
der jeweiligen Größe des Contention Windows Wz berechnet.3

E[Uj] = (j + 1) · Tc + E[slot] ·
j

∑
z=0

(
Wz − 1

2

)
für 0 ≤ j ≤ R (3.18)

An diesem Punkt habe ich das Modell gegenüber [RVP09] dahingehend verfeinert, dass für
den Backoff-Wert der erfolglosen Stufen nicht nur der Durchschnittswert verwendet wird.
Stattdessen wird für jede einzelne Stufe der Backoff-Wert i zufällig bestimmt. Auf diese
Weise sollten die für die Untersuchung von verzögerungsbasierten Staukontrollmechanismen
interessanten Ausreißer noch besser abgebildet werden. Somit ergibt sich mit dem für Stufe
z zufällig gewählten Backoff-Wert iz die veränderte Gesamtverzögerung Eneu[Uj] durch
Kollisionen bis zur erfolglosen Stufe j als

Eneu[Uj] =
j

∑
z=0

(Tc + iz · E[slot]) für 0 ≤ j ≤ R und iz zufällig aus [0, Wz − 1] (3.19)

Diese Gleichung findet zweifach Verwendung. Einerseits muss im Falle einer insgesamt
gescheiterten Übertragung E[UR] gewartet werden, bis das Retry-Limit R erreicht ist und das
nächste Paket bearbeitet werden kann. Andererseits muss auch für erfolgreich übertragene
Pakete berechnet werden, wie lange die Verzögerung E[Uj−1] in den vorangegangenen
erfolglosen Stufen war.

Die Gesamtverzögerung in der erfolgreichen Stufe j ergibt sich aus der Verzögerung E[Sj] in
der erfolgreichen Stufe j und der Verzögerung E[Uj−1] in den vorangegangenen, erfolglosen
Stufen. Wenn das Paket auf Anhieb in Stufe j = 0 übertragen wird, dann beträgt die
Verzögerung der vorangegangenen Stufen offensichtlich null.

3In [RVP09] wird i statt z als Zählvariable verwendet. Da i jedoch im Folgenden als Variable für den ausgewürfelten
Backoff-Wert verwendet wird, habe ich mich hier für z als Zählvariable entschieden, um die Verwechslungsgefahr
zu beseitigen.

26

3.2 Stochastisches Modell für die Verzögerung im WLAN

E[Dj] = E[Sj] + E[Uj−1] für 0 ≤ j ≤ R (3.20)

mit E[U−1] = 0

Damit sind der logische Berechnungsablauf und die verwendeten Gleichungen im Netz-
werkmodell klar. Um den Rechenaufwand im laufenden Modell gering zu halten, habe
ich die Berechnung der Verzögerungen so implementiert, dass diese für alle möglichen
Backoff-Werte vorab berechnet werden. Zur Laufzeit müssen so nur noch die Backoff-Werte
ausgewürfelt und die dazugehörige Verzögerung nachgeschlagen werden.

Für diese Berechnungen wurden bisher einige Größen, einfach als gegeben angenommen. In
den folgenden Abschnitten werden diese nun hergeleitet.

Bestimmung der durchschnittlichen Zählschrittdauer des Backoff-Zählers

Prinzipiell ist jede slot time gleich lang, aber der Backoff-Zähler wird nur herab gesetzt wenn
der Kanal frei ist. Diese zusätzliche Verzögerung ist in E[slot], der Zeit, die es durchschnittlich
dauert, den Backoff-Zähler um eins herab zu setzen, eingerechnet. E[slot] setzt sich wie folgt
zusammen: die Wahrscheinlichkeit, dass keine andere Station überträgt (1− Ptr) multipliziert
mit der slot time σ plus die Wahrscheinlichkeit, dass jemand erfolgreich (Ps) bzw. erfolglos
(1− Ps) überträgt, jeweils multipliziert mit der Zeit, die der Kanal dann als belegt erkannt
wird (Ts bzw. Tc).

E[slot] = (1− Ptr · σ + Ptr · Ps · Ts ·+Ptr · (1− Ps) · Tc (3.21)

Ptr und Ps sind schon aus den Gleichungen (3.12) und (3.13) bekannt. Die Herleitung der
Kanalbelegungszeiten Ts und Tc folgt im nächsten Abschnitt.

Bestimmung der Kanalbelegungszeiten bei erfolgreicher und erfolgloser Übertragung

Ts und Tc bezeichnen die Zeit, die der Kanal bei erfolgreichem bzw. erfolglosem Senden als
belegt erkannt wird. Für die Berechnung von Ts und Tc muss zwischen Basic Access und
RTS/CTS Access (siehe Kapitel 2.2.2) unterschieden werden.

27

3.2 Stochastisches Modell für die Verzögerung im WLAN

Basic Access Bei Basic Access sind Ts und Tc identisch. Die Belegzeit setzt sich aus
dem Overhead Obas für die Übertragung und der Übertragungsdauer des Pakets selbst
zusammen.

Tbas
s = Tb

c as = Obas +
l
C

(3.22)

Dabei ist l die Paketlänge und C die Übertragungsrate des Kanals. Der Overhead Obas ergibt
sich aus der Beschreibung des Medienzugriffs mit DCF in Abschnitt 2.2.2. Es müssen einfach
nur die verbrauchten Warte- und Übertragungszeiten addiert werden.

Obas = DIFS + TMAC + TPHY + δ + SIFS + TACK (3.23)

RTS/CTS Access Bei RTS/CTS Access wird zuerst mit den kleinen RTS/CTS-Paketen
versucht, den Kanal zu reservieren. Deswegen ändern sich Ts und Tc entsprechend. Die
Übertragungsdauer des Datenpakets bleibt im Erfolgsfall gleich wie bei Basic Access. Nur
der Overhead ändert sich.

TRTS
s = ORTS +

l
C

(3.24)

Analog zu Basic Access bezeichnen ORTS den Overhead für die Übertragung, l die Paketlänge
und C die Übertragungsrate des Kanals. ORTS setzt sich wie folgt aus den Übertragungsdau-
ern und Wartezeiten zusammen.

ORTS = DIFS + TMAC + TPHY + TRTS + 3SIFS + 4δ + TCTS + TACK (3.25)

Eine Kollision betrifft nur die Steuerungspakete. Die verbrauchte Zeit ist also unabhängig
vom eigentlichen Paket.

TRTS
c = DIFS + TRTS + SIFS + TCTS (3.26)

Bestimmung der Wahrscheinlichkeiten für Übertragungen und Kollisionen

Zwei entscheidende Eingangsgrößen für das Modell sind die beiden Wahrscheinlichkeiten
p, dass ein Paket kollidiert und τ, dass eine Station in einer zufällig gewählten slot time ein
Paket übertragt. In [WPL+

02] wurde hierfür ein Gleichungssystem hergeleitet.4

p = 1− (1− τ)n−1 (3.27)

4Die Gleichung für p ist identisch mit der Gleichung (3.12) für Ptr, da beides der Wahrscheinlichkeit entspricht,
dass mindestens eine von n− 1 (anderen) Stationen (gleichzeitig) überträgt.

28

3.2 Stochastisches Modell für die Verzögerung im WLAN

τ =
2(1− 2p)(1− pR+1)

W(1− (2p)m+1)(1− p) + 1− 2p)((1− pR+1) + W2m pm+1(1− pR−m))
(3.28)

mit R > m

Dabei ist n die Zahl der am WLAN beteiligten Stationen. W steht für Wmin und bezeichnet
die die minimale Größe des Contention Windows. R bezeichnet das Retry-Limit und m
die Backoff-Stufe bis zu welcher das Contention Window verdoppelt wird. In den darauf
folgenden Backoff-Stufen bleibt die Größe des Contention Windows konstant.

Die beiden Gleichungen (3.27) und (3.28) bilden ein nicht-lineares Gleichungssystem mit
eindeutiger Lösung, das eine eindeutige Lösung hat und numerisch gelöst werden kann. Im
Rahmen dieser Arbeit wurde dazu MATLAB R2009b verwendet. [Mat] Für die Berechnung
wurde das Gleichungssystem dazu wie in Listing 3.1 in die MATLAB-eigene Sprache
umgesetzt und in einer M-Datei nle.m gespeichert.

function f=nle(x)

W=32;
R=6;
m=5;
n=5;

f=[(1-(1-x(1))^(n-1))-x(2); (2*(1-2*x(2))*(1-x(2)^(R+1)) /
(W*(1-(2*x(2))^(m+1))*(1-x(2))+(1-2*x(2)) *
((1-x(2)^(R+1))+W*(2^m)*(x(2)^(m+1))*(1-x(2)^(R-m)))))-x(1)]

Listing 3.1: Matlab-Code zur Bestimmung von p und τ

Die Werte für W, R, m n sind dabei selbstverständlich nur Beispielwerte, die für verschiedene
Szenarien verändert werden können. Am MATLAB-Prompt müssen nun Startwerte für die
Bestimmung von p und τ eingegeben, sowie die Lösung des Gleichungssystems gestartet
werden. Optional kann mit format long die Zahl der angezeigten Dezimalstellen erhöht
werden.

>> format long;
>> x0 = [0.9 0.1];
>> x = fsolve (’nle’, x0)

Als Ergebnis erhalten wir in unserem Beispiel

x = 0.047852257321780 0.178103546648486

29

3.2 Stochastisches Modell für die Verzögerung im WLAN

also

τ = 0.047851368751331
p = 0.178099982535998

Bestimmung der Parameter für das WLAN-Modell

Alle weiteren Parameter können dem WLAN-Standard [iee07] entnommen bzw. selbst
festgelegt werden. Zu beachten ist dabei, dass im vorgestellten Modell der Backoff-Wert im
Bereich [0, Wj − 1] liegt, wobei der Wert von Wj 2er-Potenzen von W0 annimmt. Im WLAN-
Standard sind die Minimal- und Maximalwert für das Contention-Window um eins niedriger
gewählt, also 1023 statt 1024 und 31 statt 32. Für die Verwendung im Netzwerkmodell müssen
die Werte aus dem Standard also um eins erhöht werden. Mit den angepassten Werten kann
dann die Anzahl der unterschiedlichen Contention-Window-Größen m berechnet werden:

m = log2

(
Wmax

Wmin

)
(3.29)

Ähnlich sieht es beim Retry-Limit aus. Hier muss der Wert gegenüber dem Standard um
eins veringert werden, weil der Wertebereich mit null und nicht mit eins beginnt. Zudem
geht das Modell von nur einem Retry-Limit aus. Der Standard sieht jedoch ein short retry
limit für Basic Access und ein long retry limit für RTS/CTS Access vor.

Bei der Wahl der Anzahl beteiligter WLAN-Stationen muss beachtet werden, dass das Modell
erst ab zwei beteiligten Stationen korrekt arbeitet. Bei logischer Betrachtung kann es jedoch
ohnehin kein WLAN mit weniger als zwei Stationen geben, da zumindest eine Partnerstation
vorhanden sein muss, um Daten zu senden.

In Tabelle 3.3 finden sich die angepassten Parameter für IEEE 802.11b wie sie in [RVP09]
verwendet werden.

3.2.2 Erweiterung des Modells für unterschiedlich lange Pakete

Für eine Übertragung mit TCP ist die Annahme einer festen Paketlänge unrealistisch. Denn
neben den Datenpakten müssen auch die sehr viel kürzeren SYN, FIN und vor allem ACK-
Pakete übertragen werden. (Nicht zu verwechseln mit den ACK-Paketen in der MAC-Schicht,
die in Abschnitt 2.2.2 betrachtet wurden.)

Deswegen habe ich versucht, das WLAN-Modell für Pakete mit variabler Länge aus [RVBP07]
mit diesem Modell zusammen zu führen. Dabei hat sich das Problem gestellt, dass

30

3.2 Stochastisches Modell für die Verzögerung im WLAN

TMAC 224bits/11Mbit/s Zeit, um den MAC header zu übertragen
TPHY 192bits/1Mbit/s Zeit, um den Physical header zu übertragen
TACK 112bits/11Mbit/s + PHY Zeit, um ein ACK zu übertragen
TRTS 160bits/1Mbit/s + PHY Zeit, um ein RTS zu übertragen
TCTS 112bits/1Mbit/s + PHY Zeit, um ein CTS zu übertragen
δ 1µ propagation delay
σ 20µ slot time
SIFS 10µ SIFS
DIFS 50µ DIFS
Wmin 32 Minimale Größe des Contention Windows (W0)
m 5 Anzahl der Contention Window-Größen
R 6 Retry-Limit
n ≥2 Anzahl der am WLAN beteiligten Stationen

Tabelle 3.3: WLAN-Parameter

in [RVBP07] davon ausgegangen wird, dass die möglichen Paketlängen und deren Wahr-
scheinlichkeit bekannt sind. Aus diesem Grund habe ich folgende Vereinfachung getroffen. In
meinem Modell wird nur zwischen langen Paketen und kurzen Paketen unterschieden. Die
Abweichung durch diese Vereinfachung dürfte unwesentlich bleiben, da sowohl die Länge
der Datenpakete als auch der Steuerungspakete in der Regel keinen großen Schwankungen
unterliegen. Das bisherige Modell muss hauptsächlich in einem Punkt modifiziert werden,
nämlich bei der Berechnung der Kanalbelegungszeiten Ts und Tc. Der größte Anpassungs-
aufwand liegt dabei darin, dass anders als in [RVBP07] möglichst wenig Durchschnittswerte,
sondern zum aktuell verarbeiteten Paket passende Werte verwendet werden sollen. Dabei
muss immer beachtet werden, ob sich ein bestimmter Wert auf die betrachtete Station oder
auf die übrigen Stationen bezieht.

Für das erweiterte Modell werden einige Wahrscheinlichkeitswerte in Bezug auf die Länge
der beteiligten Pakete benötigt. Die Wahrscheinlichkeit, dass ein Paket die Länge l hat ist
mit PL(l) gegeben. Dabei geht es um die Pakete der emulierten anderen Stationen. Um zu
entscheiden, ob die betrachtete Station gerade ein langes oder ein kurzes Paket versenden will,
wird zur Laufzeit die jeweilige Paketlänge bestimmt. Dieser Wert muss letztlich experimentell
bestimmt werden. Für eine Größenordnung kann man jedoch davon ausgehen, dass für jedes
angekommene Datenpaket mindestens ein ACK zurück gesendet wird. Der Wert sollte also –
wenn es nur um die Unterscheidung von Steuerungs- und Datenpaketen geht – nahe bei 0.5
liegen.

Die Wahrscheinlichkeit Pk, dass exakt k von n Stationen an einer Kollision teilnehmen, beträgt
nach [RVBP07]

Pk =

(
n
k

)
· τk(1− τ)n−k

qtr(1− qs)
mit k ≥ 2 (3.30)

31

3.2 Stochastisches Modell für die Verzögerung im WLAN

Dabei sind qs und qtr analog zu den Gleichungen (3.12) und (3.13) die Wahrscheinlichkeiten,
dass von n Stationen mindestens eine überträgt, sowie die Wahrscheinlichkeit, dass eine
Übertragung, die auf dem Kanal stattfindet, erfolgreich ist. Mehr dazu im Absatz 3.2.2.

Um zu berechnen, wie lange der Kanal bei einer Kollision belegt ist, wird die Summe der
Wahrscheinlichkeiten Py, dass Pakete kürzer als oder gleich lang wie das längste Paket in
einer Kollision sind, benötigt.

Py = ∑
h∈L|h<l

PL(h) (3.31)

Damit kann die Wahrscheinlichkeit Pl,k, dass ein Paket mit der Länge l bei einer Kollision
mit k involvierten Stationen, das Längste ist, bestimmt werden.

Pl,k =
k

∑
r=1

(−1)r+1
(

k
r

)
(PL(l))rPk−r

y mit 2 ≤ k ≤ n (3.32)

Mit diesen Wahrscheinlichkeiten können die Kanalbelegungszeiten Ts und Tc bestimmt
werden.5 Benötigt werden jeweils drei Werte. Ein Wert für kurze Pakete, ein Wert für lange
Pakete und ein Durchschnittswert. Der Durchschnittswert wird für die Bestimmung der
Zeit E[slot], die es dauert, den Backoff-Zähler herunter zu zählen, benötigt, weil es dabei
nicht um das Paket der betrachteten wartenden Station geht, sondern um die Pakete der
anderen Stationen. Deshalb wird dort – und nur dort – für die Variablen Ts und Tc der
Durchschnittswert eingesetzt.

Wie beim bisherigen Modell müssen auch hier Basic Access und RTS/CTS Access getrennt
behandelt werden.

Basic Access Für erfolgreiche Übertragungen setzt sich Ts aus der Summe des Paket-
Overheads und der Payload zusammen.

Nach [RVBP07] ist der Durchschnittswert für die Kanalbelegung beim erfolgreichen Senden
Ts analog zu Gleichung (3.22).

Ts,avg = Obas +
E[l]
C

(3.33)

Dabei ist E[l] die nach Wahrscheinlichkeit gewichtete, durchschnittliche Länge eines Pakets.
Der Overhead Obas wird wie schon in Gleichung (3.23) für das Modell mit fester Paketlänge
bestimmt.6 Bei Betrachtung einer bestimmten Station und eines bestimmten Pakets ändert
sich an der Gleichung nur, dass die Paketlänge l dieses Pakets verwendet wird.

Ts = Obas +
l
C

(3.34)

5Falls nötig wird bei der Bezeichnung zwischen langen und kurzen Paketen unterschieden, also lbig und lsmall ,
Ts,big und Ts,small , sowie Tcs,big und Tc,small .

6in [RVBP07] geht in Obas fälschlicherweise 2δ statt nur δ ein

32

3.2 Stochastisches Modell für die Verzögerung im WLAN

Für den Fall einer Kollision ist die Länge des längsten in die Kollision verwickelten Pakets
entscheidend, denn so lange dieses übertragen wird, wird der Kanal als belegt erkannt. Der
Durchschnittswert kann hier wieder [RVBP07] entnommen werden.

Tc = Obas +
1
C
·∑

l∈L

(
l ·

n

∑
k=2

PkPl,k

)
(3.35)

Bei nur zwei möglichen Paketlängen ergibt sich daraus.

Tc = Obas +
1
C
·
((

lsmall ·
n

∑
k=2

PkPlsmall ,k

)
+

(
lbig ·

n

∑
k=2

PkPlbig,k

))
(3.36)

Die Berechnung von Tc,big ist trivial, weil in diesem Fall keine anderen Pakete länger sein
können.

Tc,big = Obas +
lbig

C
(3.37)

Für den Fall eines kurzen Pakets muss die Wahrscheinlichkeit berechnet werden, dass dieses
Paket das längste in die Kollision verwickelte Paket ist. Diese beträgt nach Gleichung (3.32)

Plsmall ,k =
k

∑
r=1

(−1)r+1
(

k
r

)
(PL(lsmall))

rPk−r
y,small (3.38)

Py,small entspricht der Wahrscheinlichkeit, dass nur kurze Pakete an der Kollision beteiligt
sind.

Py,small = PL(lsmall)
k−1 (3.39)

RTS/CTS Access Für erfolgreiche Übertragungen sieht der Fall bei RTS/CTS Access ähn-
lich aus wie bei Basic Access, nur dass für den Overhead ORTS nach Gleichung (3.25)
verwendet werden muss. Für den Durchschnittswert muss die Länge l wieder durch den
gewichteten Durchschnittswert E[l] ersetzt werden.

Ts = ORTS +
l
C

ORTS = DIFS + TMAC + TPHY + TRTS + 3 · SIFS + 4 · δ + TCTS + TACK

Kollisionen können bei RTS/CTS Access nur beim Senden der RTS- und CTS-Pakete auftreten.
Entsprechend gilt

Tc = TRTS
c = DIFS + TRTS + SIFS + TCTS (3.40)

33

3.2 Stochastisches Modell für die Verzögerung im WLAN

Durchschnittliche Zählschrittdauer des Backoff-Zählers In [RVBP07] werden statt den
Gleichungen 3.12 für die Wahrscheinlichkeit Ptr, dass eine von n− 1 Stationen überträgt und
3.13 für die Wahrscheinlichkeit, dass eine Übertragung auf dem Kanal erfolgreich ist, die
folgenden beiden Gleichungen verwendet. Dadurch ändert sich die durchschnittliche Zeit
E[slot], für das Herunterzählen des Backoff-Zählers.

qtr = 1− (1− τ)n (3.41)

qs =
nτ(1− τ)n−1

qtr
=

nτ(1− τ)n−1

1− (1− τ)n (3.42)

E[slot] = (1− qtr · σ + qtr · qs · Ts ·+qtr · (1− qs) · Tc (3.43)

Diese Gleichungen unterscheiden sich von denen aus [RVP09] dadurch, dass n anstatt n− 1
Stationen betrachtet werden. In [RVP+

05] wird argumentiert, dass eine Station, welche
gerade zögert, nicht gleichzeitig um den Kanal konkurriert. Dies wird bei meinem Modell,
welches eine bestimmte Station betrachtet noch deutlicher. Wenn die betrachtete Station
darauf wartet, dass der Backoff-Zähler null erreicht, ist es logisch ausgeschlossen, dass sie
gleichzeitig ein Paket übertragt, damit den Kanal belegt und dies selbst als Anlass nimmt,
den Backoff-Zähler nicht herunter zu setzen. Insofern ist die Benutzung der Gleichungen
nach [RVP09] in diesem Zusammenhang logisch.

Für die Berechnung von E[slot] bedeutet dies folgendes. E[slot] hängt nicht von der Pa-
ketlänge der betrachteten Station ab, sondern von den Paketlängen der anderen Stationen.
Deswegen wird hier zwar die Gleichung (3.21) nach [RVP09] verwendet, aber es werden wie
schon erwähnt die Durchschnittswerte für die Kanalbelegung Ts und Tc verwendet, nicht die
oben berechneten Werte für lange oder kurze Pakete.

E[slot] = (1− Ptr · σ + Ptr · Ps · Ts ·+Ptr · (1− Ps) · Tc (3.44)

Auch die Gleichung (3.30) für die Anzahl der an einer Kollision beteiligten Stationen muss
für diesen Fall so angepasst werden, dass nur n− 1 Stationen betrachtet werden.

Pk =

(
n− 1

k

)
· τk(1− τ)n−1−k

Ptr(1− Ps)
mit k ≥ 2 (3.45)

Hybrid Access Basic Access und RTS/CTS Access müssen sich nicht gegenseitig ausschlie-
ßen. In der Praxis wird oftmals für kurze Pakete Basic Access und für Pakete ab einer
gewissen Länge RTS/CTS Access verwendet. Deswegen wird in [RVBP07] auch der soge-
nannte Hybrid Access betrachtet. Allerdings wurde dort nicht berücksichtigt, dass für Basic
Access und RTS/CTS Access in der Regel unterschiedliche Retry-Limits gelten. Dies hat zur
Folge, dass für beide Fälle unterschiedliche Werte für p und τ und die zahlreichen davon
abgeleiteten Parameter gelten. Dies zu berücksichtigen würde die Komplexität des Modells
erheblich erhöhen, vielleicht sogar ein nahezu komplett neues Modell notwendig machen,
weswegen ich diesen Fall von vorn herein nicht berücksichtigt habe.

34

3.2 Stochastisches Modell für die Verzögerung im WLAN

Fazit Das entwickelte erweiterte Modell bildet unterschiedliche Paketlängen zwar nicht
hundertprozentig ab, sollte aber hinreichend genau, um die deutlich unterschiedlichen
Paketlängen von Daten- und Steuerungspaketen zu berücksichtigen. Dabei ist der Realismus
bei Basic Access besser gegeben, weil es wahrscheinlicher ist, dass nur Basic Access verwendet
wird als, dass RTS/CTS Access auch für sehr kleine Pakete angewendet wird.

35

4 Aufbau des Testbeds

Wie bereits ausgeführt, sollen die in Kapitel 3 beschriebenen Modelle emuliert werden. In
diesem Kapitel werden nun das verwendete Netzemulator-Framework und der Aufbau des
Testbeds beschrieben.

4.1 Das Netzemulator-Framework IKR EmuLib

Für die Emulation wird das Framework IKR EmuLib benutzt. IKR EmuLib setzt auf der
ereignisgesteuerten Simulationsumgebung IKR SimLib auf. Ein Simulationsmodell in IKR
SimLib besteht aus einem Netzwerkmodell mit einem Generator (Quelle) und einem Sink
(Abfluss) für den Netzwerkverkehr. [NGKR06]

Bei EmuLib wird dies dahingehend erweitert, dass das System als IP-Paket-Router arbeitet.
Das heißt, dass man über ein Netzwerk-Interface echte Pakete in das Modell schicken kann,
die dort verarbeitet werden und dann wieder über ein Netzwerk-Interface weitergeleitet
werden. (Abbildung 4.1)

Abbildung 4.1: Von SimLib zu EmuLib [NG05]

Da bei der Emulation Elemente der realen Welt integriert werden, muss EmuLib in Echtzeit
arbeiten. Für die Erstellung des Modells bedeutet dies, dass es so effizient sein muss, dass

36

4.2 Aufbau

es mindestens in Echtzeit abgearbeitet werden kann. Es darf also – in unserem Fall – nicht
passieren, dass es länger dauert die Verzögerung zu berechnen, als die Verzögerung selbst
beträgt.

4.2 Aufbau

Für das Testbed wurde ein einfacher Aufbau aus drei Rechnern gewählt. Je ein Rechner
dienen als Sender und Empfänger. Alle Daten, die der Sender an den Empfänger schickt
werden über den dritten Rechner geleitet, auf dem der Emulator mit dem Netzwerkmodell
läuft.

Verwendet wurden 3 Rechner mit jeweils 4GB Arbeitsspeicher und 2x3GHz-Prozessoren.
Auf allen Rechnern lief Ubuntu 10.04 (Maverick Meerkat) und das OpenJDK 6 Java Runtime
Environment. Als Grundlage der Implementuerung dienten IKR SimLib in der Version
2.8.0 Beta2 und IKR EmuLib 1.0 Beta1, sowie eine gepatchte Version von Jpcap 0.7 [Fuj].
Jpcap ist eine von SimLib benötigte Java-Bibliothek für das Capturing und Senden von
Netzwerkpaketen. Die Änderungen beheben folgende Probleme: Erstens werden Pings in
der Standardversion nicht durchgeleitet. Zweitens verwirft Jpcap wie sich im Laufe der
Arbeit herausstellte, die TCP-Optionen, insbesondere das Feld Maximum Segment Size
(MSS), welches für die Aushandlung der Maximum Transmission Unit (MTU) notwendig
ist. Ohne den Patch wurde in der Folge stets eine MSS von nur 576 (statt 1500) byte
ausgehandelt. Das Netzwerk-Interface eth1 von Sender und Empfänger wurde jeweils
mit dem Emulationsrechner verbunden. Beim Sender wurde eth1 die private IP-Adresse
192.168.1.1 zugewiesen, beim Empfänger 192.168.2.1. Der Emulations-Rechner dazwischen
hat die beiden IP-Adressen 192.168.2.1 auf eth1 und 192.168.2.254 auf eth2. Alle Verbindungen
von 192.168.1.1 ins Subnetz 192.168.2.0/24, sowie alle Verbindungen von 192.168.2.1 ins
Subnetz 192.168.1.0/24 wurden über den Emulationsrechner geroutet.

Alle Pakete, die zwischen Sender- und Empfängerrechner ausgetauscht werden – und nur
diese – durchlaufen das Netzwerkmodell. IKR EmuLib erlaubt es, verschiedene Modell-
Komponenten miteinander zu verbinden. Vor das eigentliche Netzwerkprozessor- bzw.
WLAN-Modell wurde jeweils ein begrenzter FIFO-Puffer eingefügt, der sicher stellt, dass
Pakete, die nicht sofort verarbeitet werden können, nicht verworfen werden. Da echte Netz-
werkgeräte einschließlich WLAN-Router ebenfalls einen solchen Puffer besitzen, entspricht
dieses Verhalten der Realität. Bei der Größe des Puffers kann man sich entsprechend an real
existierenden Geräten orientieren.

Abbildung 4.2 zeigt den Aufbau am Beispiel des WLAN-Modells. Der Aufbau mit Netz-
werkprozessor sieht entsprechend aus. Die beiden Modelle können auch kombiniert und
gleichzeitig genutzt werden. Ebenso wäre es ohne weiteres möglich, den Aufbau um weitere
Sender und Empfänger zu erweitern, um z.B. das Zusammenspiel verschiedener Staukon-
trollmechanismen im Hinblick auf Fairness zu untersuchen.

37

4.3 Übertragung der Modelle auf das Testbed

Für die Validierung wurde jedoch jeweils nur ein Sender, ein Empfänger und eines der
beiden Modelle plus FIFO-Puffer verwendet. So können die Effekte des jeweiligen Modells
am besten beobachtet werden.

Router mit

WLAN-ModellSender Empfänger

Abbildung 4.2: Aufbau des Testbeds mit WLAN-Modell

Für die Erzeugung von TCP-Verbindungen wurden auf den jeweiligen Rechnern selbst
geschriebene Sender und Empfänger verwendet. Der Sender baut (über den Emulations-
rechner) eine TCP-Verbindung zum Empfänger auf und versucht dann möglichst schnell
und viel Daten an den Empfänger zu schicken. Dieser macht nichts weiter als die Daten
anzunehmen und in Intervallen mitzuschreiben wie viel Daten empfangen wurden, und
daraus die Übertragungsgeschwindigkeit für das Intervall zu errechnen. Auf dem Emulati-
onsrechner stehen zudem die SimLib-eigenen Messmöglichkeiten zur Verfügung. Darunter
bspw. der DistTimeMeter, welcher zur Messung von Verzögerungen genutzt werden kann
und die dazugehörigen statistischen Werte ermittelt. Unglücklicherweise ist das Auswer-
tungstool SimTree nur für SimLib, nicht aber für EmuLib nutzbar, so dass die Auswertung
der Emulation aufwendiger ist als sie es bei der Simulation wäre.

4.3 Übertragung der Modelle auf das Testbed

Bevor die Modelle im Testbed verwendet werden können, müssen einige Dinge beachtet
werden, die nicht das Modell an sich, sondern die Umsetzung und Verwendung in EmuLib
betreffen.

4.3.1 Modell für die Verzögerung in Netzwerkgeräten

Die Formel (3.5) Verzögerungen durch die Verarbeitung in Netzwerkgeräten konnte ich
für mein Testbed fast direkt implementieren. Zu beachten war, dass das Modell nur auf
Datenpakete, nicht auf Steuerungspakete angewendet werden soll, weil nur auf diesen
ggfs. komplexe Payload-Modifikationen durchgeführt werden. Gelöst habe ich dies über die
Paketlänge. Es wird nur für Pakete mit einer festgelegten Mindestlänge eine Verzögerung
berechnet. Für kürzere Pakete kann eine feste Verzögerung vorgegeben werden.

38

4.3 Übertragung der Modelle auf das Testbed

4.3.2 Modell für die Verzögerung im WLAN

Das entwickelte Modell für die Paketverzögerung im WLAN arbeitet auf der MAC-Schicht.
Das zur Emulation eingesetzte IKR-EmuLib arbeitet jedoch als IP-Paketrouter, also auf der In-
ternetschicht. Deswegen müssen bei der Umsetzung des Modells einige Dinge vorausgesetzt
und bedacht werden.

• Ein IP-Paket muss einem Paket (oder korrekterweise Rahmen) auf MAC-Ebene ent-
sprechen. Dies ist in der Realität normalerweise gegeben [KR05] und wird durch das
Modell implizit vorausgesetzt.

• Als Paketlänge wird die Länge des Rahmens auf MAC-Ebene erwartet, der die TCP-
und IP-Header umfasst. Dies muss bei der Wahl der Parameter und ggfs. bei Testläufen
mit vorgegebener Paketlänge beachtet werden.

• Im Gegensatz zum Modell für die Verzögerung in Netzwerkgeräten sollen im WLAN-
Modell TCP-Steuerungspakete (ACK, SEQ, FIN)1 durch das Modell verzögert werden,
weil sie auch in der Realität ganz normal über das WLAN geschickt werden. Da diese
Pakete das Netzwerkmodell durchlaufen, ist dies gegeben.

4.3.3 Konfiguration

Die Konfiguration des Testbeds erfolgt an zwei Stellen. Einerseits können die unterschiedli-
chen Modell, sowie Messmodule von SimLib/EmuLib im Java-Quellcode zusammengebaut
werden. In Listing 4.1 sind als Beispiel die Generatoren, das Netzwerkprozessor- und das
WLAN-Modell mit ihren jeweiligen Puffer, und der Sink hintereinander geschalten. Die
generatoren und der Sink stellen die Schnittstelle zu den Netzwerk-Interfaces dar. Am Sink
ist dann noch ein Zähler angebracht, welcher die Zahl der übertragenen Nachrichten (Pakete)
zählt und die Simulation bzw. in diesem Fall Emulation nach einer gewissen Anzahl beenden
kann.

mux.connect("output", npQueue, "input");
npQueue.connect("output", np, "input");
np.connect("output", wlanQueue, "input");
wlanQueue.connect("output", wlan, "input");
wlan.connect("output", sink, "input");
controlCountMeter.attachInput(sink, "input");

Listing 4.1: Verbinden von Modellen in SimLib/EmuLib

Andererseits können die Parameter der verwendeten Modelle in einer Konfigurationsdatei
wie sie in Listing 4.2 als Beispiel zu sehen ist konfiguriert werden. In diesem Fall sind sowohl
das Netzwerkprozessormodell als auch das WLAN-Modell aktiviert.

1Das TCP-ACK darf nicht mit dem MAC-ACK verwechselt werden. Letzteres wird im Modell bei der Berechnung
des Overheads Obas bzw. ORTS berücksichtigt.

39

4.3 Übertragung der Modelle auf das Testbed

{
Batches = 4;
BatchPacketCount = 25000;
TransientPacketCount = 1000;

WlanBufferSize = 65536;
NPBufferSize = 65536;

WlanPhase WP {
ServiceTimeDist {
WlanDelay {
PacketLength = 8184; // in bit
SmallPacketLength=80*8; // in bit
PacketLengthThreshold = 576*8; // in bit
SmallPacketProbability = 0.6; // Nicht definiert oder feste Paketlaenge
ChannelBitrate = 11e6;
T_MAC = 224/11e6;
T_PHY = 192/1e6;
T_ACK = 112/11e6 + 192/1e6;
//T_RTS = 160/1e6 + 192/1e6; // Nicht definiert oder 0 bedeutet Basic Access
//T_CTS = 112/1e6 + 192/1e6; // Nicht definiert oder 0 bedeutet Basic Access
PropagationDelay = 1e-6;
SlotTime = 20e-6;
SIFS = 10e-6;
DIFS = 50e-6;

W_min=32;
R=6;
m=5;
n=5;

tau = 0.047851368751331;
p = 0.178099982535998;

}
}

}

NetworkProcessor NP {
ServiceTimeDist {
NetworkProcessorDelay {
ProcessorFrequency = 233e6;
AverageMemoryAccessTime = 170e-9;
PerPacketProcessingCost = 153;
PerByteProcessingCost = 0;
PerPacketMemoryAccesses = 79;
PerByteMemoryAccesses = 0;
DataPacketThreshold = 200; // in byte
ControlPacketDelay = 0.000001;

}
}

}

Generator Generator_1 {
Device = "eth1";

}

40

4.3 Übertragung der Modelle auf das Testbed

Generator Generator_2 {
Device = "eth2";

}

Sink Sink {
}

}

Listing 4.2: Konfigurationsdatei sim.par

41

5 Validierung

In den vorigen Kapiteln wurden Modelle für die Paketverzögerung entwickelt und der
Aufbau des Testbeds beschrieben. Nun soll überprüft werden, ob die Emulation plausible
Ergebnisse liefert. Dazu werden beide Modelle auf zwei Fragen hin überprüft.

1. Ergeben sich plausible Verzögerungswerte für die Pakete?

2. Arbeitet das Netzwerkmodell schnell genug?

Außerdem wird überprüft, wie sich die Netzwerkmodelle mit verschiedenen TCP-Varianten
verhalten. Als Beispiel eines verlustbasierten Staukontrollmechanismus dient dabei TCP Reno.
Stellvertretend für die verzögerungsbasierten Mechnanismen wird TCP Vegas betrachtet.

5.1 Überprüfung der Verzögerungswerte

5.1.1 Netzwerkprozessor-Modell

Bei den Netzwerkprozessoren stellt sich das Problem, dass Vergleichswerte fehlen. Trotzdem
habe ich für die vier Anwendungen aus Abschnitt 3.1 Verzögerungswerte ermittelt. Als
Prozessor wurde dabei der in [RWW04] erwähnte Intel IXP1200 mit einer Taktfrequenz von
233 MHz und einer durchschnittlichen Speicherzugriffszeit von 170ns angenommen. Zur
Bestimmung der Verzögerungswerte habe ich Pings in unterschiedlicher Größe verwendet.
Die gemessenen Durchschnittswerte finden sich in Tabelle 5.1. Die Standardabweichungen
bewegen sich in der Größenordnung von 0, 0 bis 10−10 sind also vernachlässigbar. Man
kann leicht erkennen, dass die Paketlänge nur bei IPsec eine Rolle spielt. Die anderen
Anwendungen sind, wie schon aus Tabelle 3.1 erkennbar war, von der Paketlänge unabhängig.
Der minimale Unterschied in der letzten angegebenen Nachkommastelle bei der Flow-
Klassifizierung ist vernachlässigbar und kommt wohl durch die nie vollständig vermeidbare
Varianz in der Rechen- und Übertragungszeit zustande.

Weiter ist zu erkennen, dass die Verzögerung bei IPsec leicht mehr als proportional mit der
Paketlänge zunimmt.

Die Berechnung des Modells funktioniert anscheinend einwandfrei. Zur Güte des Modells
kann leider mangels Referenzwerten wenig gesagt werden. Die Verzögerungen liegen aber in
der allgemeinen Größenordnung von 10µ für einfache Paketweiterleitungen und 1000µ für
komplexe Payload-Modifikationen wie sie in 2.2 angegeben sind.

42

5.1 Überprüfung der Verzögerungswerte

Anwendung Paketlänge in byte Paketverzögerung in s
IPv4-radix 1500 1, 92832618 · 10−5

1000 1, 92832618 · 10−5

500 1, 92832618 · 10−5

IPv4-trie 1500 8, 79828326 · 10−7

1000 8, 79828326 · 10−7

500 8, 79828326 · 10−7

Flow-Klassifizierung 1500 6, 56652361 · 10−7

1000 6, 56652360 · 10−7

500 6, 56652361 · 10−7

IPsec-Verschlüsselung 1500 1, 88510060 · 10−3

1000 1, 25167571 · 10−3

500 6, 20774421 · 10−4

Tabelle 5.1: Paketverzögerung im Netzwerkprozessor

Die emulation delay, also die Verzögerung gegenüber der Echtzeit liegt in der Größenordnung
von10−4s, was eigentlich nicht besonders hoch ist, aber im Verhältnis zu den berechneten Pa-
ketverzögeruungen relativ viel ist. Sie summiert sich jedoch nicht auf, so dass der Rückstand
gegenüber der Echtzeit insgesamt konstant bleibt und das Modell offenbar schnell genug
berechnet wird.

5.1.2 WLAN-Modell

Für die beiden Varianten des WLAN-Modell wurden für verschiedene Parameter die be-
rechneten Verzögerungen überprüft. Im ersten Schritt wurden dabei die Paketverzögerugen
für das Modell mit fester Paketlänge auf unterschiedliche Weise bestimmt. Erstens die
Berechnung des Modells: darunter sind die Werte, die das Netzwerkmodell für die Verzöge-
rung berechnet, zu verstehen. Diese wurden bei der Berechnung im Modell mitgeschrieben
und mit LibreOffice Calc ausgewertet. Zweitens die Messungen im Modell: dazu wurden
die Verzögerungen mit SimLib-eigenen Mitteln gemessen. Ein sogenannter DistTimeMeter
wurde genutzt, um die Zeit, die ein Paket vom Eingang bis zum Ausgang des Modells
benötigt, sowie die dazugehörigen statistischen Werte, zu bestimmen. Außerdem wurden
die zu erwartenden Werte mit den Gleichungen nach [RVP09] berechnet. Dabei gibt es wie
schon erwähnt zwei Gleichungen, um die durchschnittliche Paketverzögerung zu berechnen,
welche dann auch in die Standardabweichung einfließt. Hier werden beide Werte angegeben,
um zu zeigen, in welchem Genauigkeitsbereich sich das Modell bewegt, und wie sehr schon
die unterschiedlichen Berechnungsweisen das Ergebnis beeinflussen. Obwohl beide Berech-
nungen mathematisch gleichwertig sind, fließen Rundungsfehler unterschiedlich stark in
das Ergebnis ein. Diesen Effekt muss man auch beachten wenn man die Parameter, insbeson-
dere die numerisch bestimmten Parameter p und τ, rundet. Bei diesen ist die Auswirkung
besonder groß, weil sie in den verwendeten Gleichungen potenziert werden.

43

5.1 Überprüfung der Verzögerungswerte

Maßzahl Modellberechnung Modellmessung Raptis Gl. 17 Raptis Gl. 19

5 Stationen
Mittelwert 0,00712929 0,00713048 0,00699598 0,00713811

Standardabw. 0,00824698 0,00823040 0.00843358 0,00831363

Minimum 0,00121955 0,00121955 – –
Maximum 0,36408406 0,36408406 – –

10 Stationen
Mittelwert 0,01484846 0,01485399 0,01472019 0,01497932

Standardabw. 0,02713351 0,02705680 0,02750688 0,02736663

Minimum 0,00121955 0,00121954 – –
Maximum 0,83835756 0,83835756 – –

50 Stationen
Mittelwert 0,07918279 0,07831765 0,07902675

Standardabw. 0,16924886 0,16531442 0,16497662

Minimum 0,00121955 – –
Maximum 1,84702384 – –

Tabelle 5.2: Paketverzögerung in Sekunden im WLAN-Modell

In Tabelle 5.2 finden sich die Ergebnisse mit den Parametern nach Tabelle 3.3 bei Basic Access.
Für die Messung wurden Pings mit der Größe 1023 bytes (inklusive aller Header) durch das
Netzwerkmodell geschickt. Die Messung lief für 100000 Pakete also 50000 Pings und ihre
Antwort.

Wie man sieht sind die Ergebnisse des Netzwerkmodells sehr nahe an denen nach [RVP09].
Teilweise sind die Ergebnisse sogar zwischen den Werten nach den beiden Gleichungen.
Die Größenordnungen passen zudem jeweils zu den – nur ungenau ablesbaren – dortigen
Schaubildern. Dies spricht für eine korrekte Umsetzung. Bei der durchschnittlichen Pakte-
verzögerung lässt sich wie dort eine Proportionalität zur Anzahl der Stationen im WLAN
beobachten. Auch für RTS/CTS Access oder bei der Änderung einzelner Parameter wie der
Größe des Contention Windows ergeben sich keine wesentlichen Abweichungen.

Desweiteren sind die Unterschiede von Messung und Berechnung gering, was darauf schlie-
ßen lässt, dass die Performance des Netzwerkmodells hinreichend gut ist. Dies bestätigen
auch Messungen der emulation delay, also der Verzögerung des Modells gegenüber der Echt-
zeit. Im Idealfall wäre diese null. Negativ kann oder darf sie nicht werden. Wäre dies der Fall
würde dies einen Fehler in EmuLib bedeuten. Für das WLAN-Modell bewegt sie sich im der
Größenordnung von 10−4 bis 10−5 und damit in der Regel mindestens eine Zehnerpotenz
niedriger als die berechnete Verzögerung. Sie tritt also gegenüber der Paketverzögerung
zurück. Es war auch kein Ausummieren der emulation delay zu beobachten, was ebenfalls
dafür spricht, dass die Berechnung des WLAN-Modells schnell genug erfolgt.

Neben den Maßzahlen aus Tabelle 5.2 ist auch die Verteilung der Paketverzögerung inter-
essant. Zu erwarten ist hier, dass die meisten Pakete eine geringer Verzögerung erfahren,

44

5.1 Überprüfung der Verzögerungswerte

es aber einige mit sehr hoher Verzögerung gibt. Dies sieht man in den Abbildungen 5.1
und 5.2. für 5 bzw. 50. Stationen. Die Verteilung ist in beiden Fällen ähnlich, jedoch ist der
Wertebereich für die berechnete Paketverzögerung unterschiedlich. (Man beachte die Skala.)
Auf der fast leer wirkenden Achse verteilen sich bis zu den ermittelten Maximalwerten
einige wenige Pakete. Diese Verteilung entspricht auch ungefähr derjenigen, die in [ZKF04]
gezeigt wird.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
 0

 5000

10000

15000

20000

25000

30000

35000

40000

45000

Berechnete Paketverzögerung in s

A
n

z
a

h
l
d

e
r

P
a

k
e

te

Abbildung 5.1: Verteilung der berechneten Paketverzögerung für 5 Stationen

Nachdem das Grundmodell offenbar korrekte Ergebnisse liefert, muss das erweiterte Modell
für unterschiedliche Paketlängen überprüft werden. Dazu habe ich verglichen, ob es für den
Fall, die obige Konstellation die gleichen Ergebnisse liefert. Hierfür habe ich die Wahrschein-
lichkeit für kleine Pakete sehr niedrig (0,0000001) eingestellt. Korrekt wäre eigentlich null
gewesen, aber dies habe ich als Erkennung dafür, dass das Modell mit fester Paketlänge
verwenden soll implementiert. Auch hier ergaben sich fast die gleichen Werte wie in Tabelle
5.2. Für das ursprüngliche Modell wurde also offenbar kein Fehler eingeführt.

Ob die Werte für die tatsächliche Verwendung von kurzen und langen Paketen tatsächlich
korrekt sind, lässt sich leider mangels Vergleichswerte schlecht beurteilen. Bei den Testläu-
fen im nächsten Abschnitt mit TCP-Verbindungen wurden aber niedrigere Werte für die
durchschnittliche Paketverzögerung gemessen, obwohl die langen Pakete 1500 byte anstatt
1023 byte hatten. Bei 5 Stationen und einem Anteil von 60% kurzen Paketen betrug sie nur
0,00627466s. Erstaunlicherweise ist auch die Standardabweichung geringer, nämlich nur
0,00695920s. Sowohl die maximale Verzögerung (0.30458026s) als auch die minimale Verzö-

45

5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Berechnete Paketverzögerung

A
n
z
a
h
l
d
e
r

P
a
k
e
te

Abbildung 5.2: Verteilung der berechneten Paketverzögerung für 50 Stationen

gerung (0.00053373s) sind ebenfalls geringer als für feste Paketlängen gemessen. Insgesamt
sie die Werte in jedem Fall plausibel, denn sie bestätigen die erwartete bessere Perfomance
Ich hätte allenfalls eine höhere Standardabweichung erwartet.

5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten

Nachdem die Modelle plausible Werte für die Paketverzögerung liefern, sollen nun tatsäch-
lich TCP-Datenströme hindurch geleitet werden. Dabei geht es weniger um Aussagen über
die entsprechenden TCP-Varianten als darum, ob das Verhalten plausibel ist. Gemessen
wurde jeweils die ankommende Datenrate beim Empfänger.

5.2.1 Netzwerkprozessor-Modell

Wie schon festgestellt wurde, erzeugt das Netzwerkprozessor-Modell nur unterschiedliche
Verzögerungen wenn die Paketlänge schwankt. Mangels Möglichkeit einen TCP-Datenstrom
mit willkürlich festgelegten Paketlängen zu erzeugen, konnte ich für das Netzprozessor-
Modell kein Szenario testen, das besondere Ansprüche an die Staukontrolle stellt. Da
das Modell für den Netzwerkprozessor keine Zufallskomponente enthält, sind hier keine

46

5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten

ungewöhnlichen Ergebnisse zu erwarten. Trotzdem sind die Ergebnisse interessant, nicht
zuletzt als Referenz für die Überprüfung des WLAN-Modells, da man sieht, wie sich TCP
im Normalfall bei einem einzelnen Sender auf einer Leitung und konstanter Verzögerung
verhält.

In den Abbildungen 5.3 und 5.4 finden sich die Ergebnisse für einen Fall eine Fall ohne
Einfluss der Paketlänge (FLow-Klassifizierung). Im Endeffekt läuft dies auf eine feste Ver-
zögerung pro Paket hinaus. Das hat den Vorteil, dass man sehr gut das normale Verhalten
von TCP Reno und TCP Vegas sieht. Die Charakteristik des Durchsatzverlaufs ist zwar
unterschiedlich, aber man sieht in beiden Fällen Sägezähne, die eigentlich für verlustbasierte
Staukontrolle typisch ist. Ein kleiner Unterschied besteht aber doch. Bei TCP Vegas sind
die Sägezähne nicht so gerade wie bei TCP Reno und flachen immer mehr ab je näher die
Datenrate der maximalen Rate kommt. Trotzdem konnte offenbar der Paketverlust nicht
vermieden werden, so dass die Datenrate – wie bei Reno – deutlich herunter gesetzt werden
musste.

 0 10000 20000 30000 40000 50000 60000 70000 80000
0

5

10

15

20

25

30

35

40

Zeit in ms

D
a
te

n
ra

te
 i
n
 M

b
it
/s

Abbildung 5.3: Durchsatz von TCP Reno im Netzwerkprozessor-Modell (Flow)

Bei IPSec als Beispiels für eine Anwendung mit Einfluss der Paketlänge (5.5 und 5.6) geht der
Durchsatz gegenüber der Flow-Klassifizierung deutlich herunter. Der Durchsatz sieht wie
gedeckelt mit leichten Abweichungen nach oben und unten aus. Auch hier sehen sich TCP
Reno und Vegas relativ ähnlich. Jedoch gibt es bei Reno wieder teils erhebliche Ausschläge
bei der Datenrate. Obwohl sie teilweise (siehe Flow-Klassifizierung) auch bei TCP Vegas
auftreten, ist das Phänomen bei TCP Reno sehr viel stärker. Das unterschiedliche Verhalten
von TCP Reno und Vegas könnte also einen Einfluss darauf haben.

47

5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten

 0 10000 20000 30000 40000 50000 60000 70000 80000
0

5

10

15

20

25

30

35

Zeit in ms

D
a

te
n
ra

te
 i
n

 M
b
it
/s

Abbildung 5.4: Durchsatz von TCP Vegas im Netzwerkprozessor-Modell (Flow)

0 2 4 6 8 10 12 14 16 18

x 10
4

0

5

10

15

20

25

Zeit in ms

D
a
te

n
ra

te
 i
n
 M

b
it
/s

Abbildung 5.5: Durchsatz von TCP Reno im Netzwerkprozessor-Modell (IPSec)

48

5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000
0

1

2

3

4

5

6

7

Zeit in ms

D
a
te

n
ra

te
 i
n
 M

b
it
/s

Abbildung 5.6: Durchsatz von TCP Vegas im Netzwerkprozessor-Modell (IPSec)

5.2.2 WLAN-Modell

Durch die zufällig schwankende Paketverzögerung im WLAN-Modell ist das Verhalten von
TCP beim Durchlaufen wesentlich interessanter als beim Netzwerkprozessor-Modell. Als
Parameter wurden wiederum diejenigen aus Tabelle 3.3 verwendet. Die Paketlänge für große
Pakete lag bei 1500 byte, was der MTU im Ethernet und damit auch der gängigen Paketgröße
im Internet entspricht. Auch die tatsächlich gemessene Paketlänge lag bei 1500 byte. Die
Länge der kleinen Pakete wurde mit 80 byte festgelegt. Es wurde angenommen, dass 60%
der Pakete klein sind. Da zu jedem Datenpaket mindesens ein ACK gehört, sollte der Wert
realistisch sein.

Der Verlauf der Datenrate ist in den Abbildungen 5.7 für TCP Reno und 5.8 für TCP Vegas
dargestellt. Das Verhalten der beiden TCP-Varianten ist relativ ähnlich. Erstaunlich sind die –
wie beim Netzwerkprozessor-Modell – auftretenden starken Ausschläge bei TCP Reno. TCP
Vegas verhält sich dagegen „normal“ .

In beiden Fällen eine stark schwankende Übertragungsrate. Aufällig ist der stufig wirkende
Verlauf der Durchsatzkurven, der auf den Versuch die maximale Bandbreite zu bestimmen
zurück zu führen sein könnte. Die typische Charakteristik mit Sägezähnen ist nur noch
mit viel Phantasie erkennbar. Beide TCP-Varianten haben also offenbar Schwierigkeiten die
optimale Bandbreite zu finden. Trotzdem kommt ein annehmbarer Durchsatz zustande.

49

5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten

 0 10000 20000 30000 40000 50000 60000 70000 80000
 0

 2

 4

 6

 8

10

12

Zeit in ms

D
a

te
n
ra

te
 i
n

 M
b
it
/s

Abbildung 5.7: Durchsatz von TCP Reno im Wlan-Modell

 0 10000 20000 30000 40000 50000 60000 70000 80000
0

0.5

1

1.5

2

2.5

3

3.5

Zeit in ms

D
a
te

n
ra

te
 i
n
 M

b
it
/s

Abbildung 5.8: Durchsatz von TCP Vegas im Wlan-Modell

50

5.3 Bewertung der Messergebnisse

5.3 Bewertung der Messergebnisse

Zusammenfassend kann gesagt werden, dass die Verzögerungen in den beiden Modellen
offenbar korrekt und hinreichend schnell berechnet werden. Im Falle des WLAN-Modells
kann durch die Ergebnisse in [RVP09] bestätigt werden, dass die berechneten Werte nahe an
der Relität liegen. Für das Netzwerkprozessor-Modell kann leider nur die Größenordnung
als plausibel bezeichnet werden, weil konkrete Referenzwerte zur Überprüfung fehlen.

Zu klären bleibt, welche Ursache die auftretenden Ausschläge bei der Datenrate besonders
von TCP Reno haben. Diese erscheinen mir wenigstens zu hoch. Durch Vergrößerung der
Messintervalle konnte ich zwar Größe der Ausschläge verringern, aber meine Vermutung,
dass sie nur durch ungünstige Intervallgrenzen entstehen hat sich nicht bestätigt. Abgesehen
davon sehen die Verläufe realistisch aus.

51

6 Zusammenfassung und Ausblick

In dieser Arbeit wurde gezeigt, dass verzögerungsbasierte Staukontrollmechanismen von
TCP in manchen Szenarien mangelhaft arbeiten. Dies weckt Bedarf für eine Möglichkeit,
verschiedene TCP-Varianten zu vergleichen. Dazu wurde ein Testbed entwickelt, welches
solche Szenarien emuliert.

Zunächst wurden zwei wichtig erscheinende Störgrößen für die Funktionalität von ver-
zögerungsbasierten Staukontrollmechanismen herausgearbeitet – die Verarbeitungszeit in
Netzwerkgeräten und die schwankende Verzögerung bei WLAN-Verbindungen.

Für die Verzögerung in Netzwerkgeräten wurde ein Modell von [RWW04] in Netzemulator-
Framework IKR EmuLib umgesetzt. Das Modell liefert plausible Ergebnisse, die jedoch
mangels Referenzwerten nicht detailliert überptüft werden können. Zumindest kann aber
gesagt werden, dass die Größenordnung stimmt. Relevant in Bezug auf verzögerungsbasierte
Staukontrolle ist das Netzwerkprozessor-Modell bei schwankenden Paketlängen. Ansonsten
ist die Verzögerung konstant, da eine Zufallskomponente fehlt.

Für WLAN-Verbindungen wurde das Modell für die Paketverzögerung aus [RVP09] ange-
passt, so dass es auch auf einzelne Pakete angewendet werden kann. Außerdem wurde die
zufällige Verzögerung bei Paketkollisionen genauer abgebildet. In einem weiteren Schritt
wurde das Modell nach [RVBP07] erweitert, um unterschiedliche Paketlängen zu berücksich-
tigen. Beide stochastischen Modelle wurden in IKR EmuLib umgesetzt. Messungen haben
die erzeugten Paketverzögerungen des erstellten Modells sehr gut bestätigt.

In Verbindung mit TCP-Verbindungen zeigen sowohl das Netzwerkprozessor-Modell als
auch das WLAN-Modell plausibles Verhalten. Allerdings treten bei TCP Reno Ausschläge
bei der Datenübertragungsrate auf, deren Ursache noch ungeklärt ist. Diese müssen noch
genauer untersucht werden, um ein Problem mit den Modellen oder dem Messvorgang
auszuschließen.

Alles in allem erscheint das Testbed geeignet, mit Hilfe die modellierten Störgrößen, einen
Beitrag zur Analyse unterschiedlicher Staukontrollmechanismen zu leisten.

Ausblick

Mit Hilfe des entworfenen Testbeds können verschiedene TCP Staukontrollmechanismen
verglichen werden. Neben der Performance der jeweiligen Staukontrollmechanismen dürfte

52

6 Zusammenfassung und Ausblick

vor allem auch die Fairness gegenüber anderen Varianten zu untersuchen sein. Es wäre inak-
zeptabel, dass ein neuer Staukontrollmechanismus zu deutlich höheren Bandbreiteanteilen
gegenüber anderen Mechanismen führt.

Trotzdem besteht noch Verbesserungspotential. So könnten WLAN-Verbindungen noch
genauer modelliert werden. Dabei muss jedoch berücksichtigt werden, dass das Modell
schnell genug berechenbar bleiben muss, um in Echtzeit zu arbeiten. Möglichkeiten zur
Verbesserung wären die Berücksichtigung der genauen Paketlänge anstatt nur einer Unter-
scheidung zwischen großen und kleinen Paketen. Interessant wäre auch das Verhalten eines
nicht-gesättigten WLANs, sowie der Mischbetrieb verschiedener WLAN-Standards. Es ist
allerdings zweifelhaft, wenn auch nicht ausgeschlossen, dass diese genauere Modellierung
ein grundsätzlich anderes Verhalten in Bezug auf die Staukontrolle bewirkt.

Interessanter dürfte es sein, Paketverluste aufgrund der unzuverlässigen WLAN-Verbindung
zu modellieren. In einem ersten Schritt könnte man dazu einfach zufällig Pakete verwerfen.
Realistischer wäre es aber wohl, zwischen Phasen mit vielen korrekt übertragenen Bits
in Folge (runs) und Phasen mit vielen fehlerhaften Bits in Folge (burst) zu unterscheiden.
[KWK03] Nicht korrigierte Bitfehler übertragen sich dann in fehlerhafte Pakete, die verworfen
werden müssen. Interessant wäre dieses Szenario, weil in diesem Fall die Reaktion der TCP-
Staukontrolle genau falsch ist. Richtig wäre es, verlorene Pakete so schnell wie möglich
neu zu übertragen. Eine Verlangsamung der Übertragung verschlimmert die Situation
noch. [Tan03] Dies ist allerdings ein Problem, das nicht spezifisch für verzögerungsbasierte
Staukontrolle ist, sondern mindestens genauso stark verlustbasierte Staukontrolle betrifft.

Schließlich könnten noch weitere, bisher unberücksichtigte Störgrößen identifiziert und
umgesetzt werden. Naheliegend wäre dabei eine Untersuchung von anderen Funkübertra-
gungstechniken wie Bluetooth oder UMTS.

Ich bin zuversichtlich, dass das Testbed eine gute Grundlage für die Untersuchung von
Staukontrollmechanismen bietet. Insbesondere der WLAN-Teil dürfte hilfreich sein, da er
trotz Vereinfachungen die Charakteristik von WLAN-Verbindungen mit schwankenden
Verzögerungen gut abbildet.

53

Literaturverzeichnis

[AAP+
00] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradham, D. Saha. Design,

implementation and performance of a content-based switch. In INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings. IEEE, volume 3, pp. 1117–1126. 2000. doi:
10.1109/INFCOM.2000.832470. (Zitiert auf Seite 15)

[Bak95] F. Baker. Requirements for IP Version 4 Routers. RFC 1812, Network Working
Group, 1995. (Zitiert auf Seite 20)

[Bia00] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination
function. Selected Areas in Communications, IEEE Journal on, 18(3):535 –547, 2000.
doi:10.1109/49.840210. (Zitiert auf den Seiten 20 und 21)

[BP95] L. Brakmo, L. Peterson. TCP Vegas: end to end congestion avoidance on a global
Internet. Selected Areas in Communications, IEEE Journal on, 13(8):1465 –1480, 1995.
doi:10.1109/49.464716. (Zitiert auf Seite 9)

[Cis07] Cisco Systems, Inc. Cisco Active Network Abstraction Technology Support and In-
formation Model Reference Manual: Layer 2 Tunnel Protocol "L2TP", 3.6 edition,
2007. URL http://www.cisco.com/en/US/docs/net_mgmt/active_network_
abstraction/3.6/master_tech/9l2tp.html. (Zitiert auf Seite 8)

[CMZ+
04] B.-K. Choi, S. Moon, Z.-L. Zhang, K. Papagiannaki, C. Diot. Analysis of point-

to-point packet delay in an operational network. In INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications Societies,
volume 3, pp. 1797–1807. 2004. doi:10.1109/INFCOM.2004.1354590. (Zitiert auf
Seite 18)

[Fuj] K. Fujii. Jpcap – a Java library for capturing and sending network packets.
Official Website. URL http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/.
(Zitiert auf Seite 37)

[GRL05] S. Guruprasad, R. Ricci, J. Lepreau. Integrated network experimentation using
simulation and emulation. In Testbeds and Research Infrastructures for the Deve-
lopment of Networks and Communities, 2005. Tridentcom 2005. First International
Conference on, pp. 204–212. 2005. doi:10.1109/TRIDNT.2005.21. (Zitiert auf
Seite 17)

54

http://www.cisco.com/en/US/docs/net_mgmt/active_network_abstraction/3.6/master_tech/9l2tp.html
http://www.cisco.com/en/US/docs/net_mgmt/active_network_abstraction/3.6/master_tech/9l2tp.html
http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/

Literaturverzeichnis

[iee07] IEEE Standard for Information Technology-Telecommunications and Information
Exchange Between Systems-Local and Metropolitan Area Networks-Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, 2007. doi:10.1109/IEEESTD.2007.373646.
(Zitiert auf den Seiten 16 und 30)

[ITU94] ITU. X.216: Information technology - Open Systems Interconnection - Presen-
tation service definition, 1994. URL http://www.itu.int/rec/T-REC-X.216/.
(Zitiert auf Seite 8)

[KA98] S. Kent, R. Atkinson. Security architecture for the internet protocol. RFC 2401,
Network Working Group, 1998. (Zitiert auf Seite 20)

[KR05] J. F. Kurose, K. W. Ross. Computer Networking: A top-down approach featuring the
internet. Pearson/Addison-Wesley, 3rd edition, 2005. (Zitiert auf den Seiten 8, 9,
11, 12, 15, 17 und 39)

[KWK03] A. Kopke, A. Willig, H. Karl. Chaotic maps as parsimonious bit error models
of wireless channels. In INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications. IEEE Societies, volume 1, pp. 513–523.
2003. doi:10.1109/INFCOM.2003.1208702. (Zitiert auf Seite 53)

[LK91] A. M. Law, W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 2nd
edition, 1991. (Zitiert auf Seite 17)

[LZ05] X. Li, Q.-A. Zeng. Performance Analysis of the IEEE 802.11 MAC Protocol
over a WLAN with Capture Effect. IPSJ Digital Courier, 1:545–551, 2005. doi:
10.2197/ipsjdc.1.545. (Zitiert auf Seite 21)

[Mat] Matlab. Official German Mathworks Website. URL http://www.mathworks.de/
products/matlab/. (Zitiert auf Seite 29)

[MMSH01] G. Memik, W. H. Mangione-Smith, W. Hu. NetBench: a benchmarking suite for
network processors. In Proceedings of the 2001 IEEE/ACM international conference
on Computer-aided design, ICCAD ’01, pp. 39–42. IEEE Press, 2001. (Zitiert auf
Seite 18)

[NG05] M. Necker, C. Gauger. IKR EmuLib: A Library for Seamless Integration of Simu-
lation and Emulation. ITG FG 5.2.1 Simulationsworkshop, Mittweida, Germany,
2005. URL http://www.ikr.uni-stuttgart.de/Content/Publications/View/
FullFrame.html?36462. (Zitiert auf Seite 36)

[NGKR06] M. C. Necker, C. M. Gauger, S. Kiesel, U. Reiser. IKR EmuLib: A Library for
Seamless Integration of Simulation and Emulation. Measuring, Modelling and
Evaluation of Computer and Communication Systems (MMB), 2006 13th GI/ITG
Conference, pp. 1–18, 2006. (Zitiert auf den Seiten 17 und 36)

[NK99] S. Nilsson, G. Karlsson. IP-address lookup using LC-tries. Selected Areas in
Communications, IEEE Journal on, 17(6):1083 –1092, 1999. doi:10.1109/49.772439.
(Zitiert auf Seite 20)

55

http://www.itu.int/rec/T-REC-X.216/
http://www.mathworks.de/products/matlab/
http://www.mathworks.de/products/matlab/
http://www.ikr.uni-stuttgart.de/Content/Publications/View/FullFrame.html?36462
http://www.ikr.uni-stuttgart.de/Content/Publications/View/FullFrame.html?36462

Literaturverzeichnis

[PMF+
03] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, C. Diot. Measurement and

analysis of single-hop delay on an IP backbone network. Selected Areas in
Communications, IEEE Journal on, 21(6):908 – 921, 2003. doi:10.1109/JSAC.2003.
814410. (Zitiert auf Seite 18)

[RVBP07] P. Raptis, V. Vitsas, A. Banchs, K. Paparrizos. Delay Distribution Analysis of
IEEE 802.11 with Variable Packet Length. In Vehicular Technology Conference, 2007.
VTC2007-Spring. IEEE 65th, pp. 830–834. 2007. doi:10.1109/VETECS.2007.180.
(Zitiert auf den Seiten 30, 31, 32, 33, 34 und 52)

[RVP+
05] P. Raptis, V. Vitsas, K. Paparrizos, P. Chatzimisios, A. C. Boucouvalas, P. Adami-

dis. Packet Delay Modeling of IEEE 802.11 Wireless LANs. In Proceedings of the
2nd International Conference on Cybernetics and Information Technologies, Systems
and Applications (CITSA 2005), volume 1, pp. 71–76. 2005. (Zitiert auf Seite 34)

[RVP09] P. Raptis, V. Vitsas, K. Paparrizos. Packet Delay Metrics for IEEE 802.11 Distribu-
ted Coordination Function. Mobile Networks and Applications, 14:772–781, 2009.
doi:10.1007/s11036-008-0124-7. (Zitiert auf den Seiten 16, 20, 21, 23, 24, 26, 30,
34, 43, 44, 51 und 52)

[RW03] R. Ramaswamy, T. Wolf. PacketBench: a tool for workload characterization
of network processing. In Workload Characterization, 2003. WWC-6. 2003 IEEE
International Workshop on, pp. 42–50. 2003. doi:10.1109/WWC.2003.1249056.
(Zitiert auf Seite 20)

[RWW04] R. Ramaswamy, N. Weng, T. Wolf. Characterizing network processing delay. In
Global Telecommunications Conference, 2004. GLOBECOM ’04. IEEE, volume 3, pp.
1629–1634. 2004. doi:10.1109/GLOCOM.2004.1378257. (Zitiert auf den Seiten 12,
18, 19, 20, 42 und 52)

[Tan03] A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, 4th edition, 2003.
(Zitiert auf den Seiten 8, 9, 15 und 53)

[WF00] T. Wolf, M. Franklin. CommBench-a telecommunications benchmark for network
processors. In Performance Analysis of Systems and Software, 2000. ISPASS. 2000
IEEE International Symposium on, pp. 154–162. 2000. doi:10.1109/ISPASS.2000.
842295. (Zitiert auf Seite 18)

[WPL+
02] H. Wu, Y. Peng, K. Long, S. Cheng, J. Ma. Performance of reliable transport

protocol over IEEE 802.11 wireless LAN: analysis and enhancement. In IN-
FOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 2, pp. 599–607. 2002. doi:
10.1109/INFCOM.2002.1019305. (Zitiert auf Seite 28)

[ZKF04] H. Zhai, Y. Kwon, Y. Fang. Performance analysis of IEEE 802.11 MAC protocols
in wireless LANs. Wireless Communications and Mobile Computing, 4(8):917–931,
2004. doi:10.1002/wcm.263. URL http://dx.doi.org/10.1002/wcm.263. (Zitiert
auf Seite 45)

56

http://dx.doi.org/10.1002/wcm.263

Literaturverzeichnis

Alle URLs wurden zuletzt am 04.08.2011 geprüft.

57

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Mark Hübler)

	1 Einleitung
	2 Grundlagen
	2.1 TCP-Staukontrolle
	2.1.1 Verlustbasierte Staukontrolle
	2.1.2 Verzögerungsbasierte Staukontrolle

	2.2 Ursachen für Verzögerungen im Netz
	2.2.1 Verarbeitungsdauer in Netzwerkgeräten
	2.2.2 Verzögerungen im WLAN aufgrund des Medienzugriffs

	2.3 Simulation und Emulation

	3 Modellierung von Verzögerungen
	3.1 Modell für die Verzögerung durch Verarbeitung in Netzwerkgeräten
	3.2 Stochastisches Modell für die Verzögerung im WLAN
	3.2.1 Herleitung und Entwicklung des Modells
	Annahmen und Vereinfachungen
	Durchschnittliche Verzögerung und Standardabweichung
	Entwicklung des stochastischen Modells
	Bestimmung der durchschnittlichen Zählschrittdauer des Backoff-Zählers
	Bestimmung der Wahrscheinlichkeiten für Übertragungen und Kollisionen
	Bestimmung der Parameter für das WLAN-Modell

	3.2.2 Erweiterung des Modells für unterschiedlich lange Pakete

	4 Aufbau des Testbeds
	4.1 Das Netzemulator-Framework IKR EmuLib
	4.2 Aufbau
	4.3 Übertragung der Modelle auf das Testbed
	4.3.1 Modell für die Verzögerung in Netzwerkgeräten
	4.3.2 Modell für die Verzögerung im WLAN
	4.3.3 Konfiguration

	5 Validierung
	5.1 Überprüfung der Verzögerungswerte
	5.1.1 Netzwerkprozessor-Modell
	5.1.2 WLAN-Modell

	5.2 Überprüfung des Verhaltens verschiedener TCP-Varianten
	5.2.1 Netzwerkprozessor-Modell
	5.2.2 WLAN-Modell

	5.3 Bewertung der Messergebnisse

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

