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Vorwort

Strukturen mit Dimensionen von wenigen Nanometern, wie man sie in modernen Chips findet,
können nur noch mit erheblichem Aufwand in komplexen Herstellungsprozessen produziert
werden. Hierbei können, in Abhängigkeit von Prozess-Parametern und Design, Defekte auf-
treten, die das Zeitverhalten der Schaltung beeinflussen und sowohl rein zufälliger, als auch
systematischer Natur sein können. Durch die stetig steigenden Taktfrequenzen häuft sich dabei
die Gefahr, dass kleine Verzögerungsfehler auftreten, welche im Vergleich zu statischen Fehlern
nur unter Echtzeit-Bedingungen sichtbar werden.

Um die Chipausbeute bei der Herstellung zu erhöhen und Qualitätsanforderungen zu ge-
währleisten, ist Diagnose deshalb von essentieller Bedeutung. Defekte müssen lokalisiert und
anfällige Stellen in fehlerhaften Schaltkreisen ausfindig gemacht werden. Dadurch können das
Design und der Herstellungsprozess optimiert und die Kosten pro fehlerfreien Chip bei der
Entwicklung gesenkt werden.

Die genaue Diagnose der kleinen Verzögerungsfehler stellt jedoch eine große Herausforderung
dar, da das Verhalten und die Simulation dieser Fehler sehr komplex sind, und diese nicht
mehr effektiv mit einfacheren Fehlermodellen, wie dem Transitionsfehlermodell [WLRI87]
abgedeckt werden können. Zudem erschweren Variationen innerhalb der Schaltkreise die
Diagnose.

Das Ziel dieser Arbeit ist die Entwicklung eines Verfahrens zur Diagnose von kleinsten Verzö-
gerungsfehlern, welches Defektstellen effizient lokalisieren und die Defektgrößen der Fehler
abschätzen kann. Dabei soll ein simulationsbasierter Ansatz mit einem Zeitsimulator verwendet
werden, um die Fehler präzise auszuwerten und stabile Ergebnisse bei Präsenz von Variationen
zu ermöglichen.

Ziel

• Entwicklung eines Verfahrens zur Diagnose von einzelnen kleinsten Verzögerungsfehlern:

– Implementierung von gängigen fehlermodellunabhängigen Methoden zur Reduzie-
rung der initialen Kandidaten.

– Entwicklung einer simulationsbasierten Analyse zur Identifikation der Fehlers.

• Evaluierung des vorgestellten Verfahrens und Diskussion der Resultate.
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Gliederung

Dieses Dokument ist folgendermaßen gegliedert:

Kapitel 1 – Grundlagen: Dieses Kapitel dient der Erläuterung der verwendeten Definitionen
und Hintergründe.

Kapitel 2 – Small Delay Fehlermodell: Dieses Kapitel gibt eine kurze Einführung in das ver-
wendete Fehlermodell. Zusätzlich werden gängige Diagnoseverfahren vorgestellt und
diskutiert, sowie Hintergründe zur Diagnose vom SMALLDELAY Fehlern erläutert.

Kapitel 3 – Adaptive simulationsbasierte Diagnose: In diesem Kapitel werden die Schritte der
entwickelten Diagnosemethode vorgestellt. Diese setzt sich aus zwei Teilen – einer
strukturellen und einer simulationsbasierten Analyse – zusammen. Des Weiteren wird
das Bewertungsverfahren der Fehlerkandidaten erläutert.

Kapitel 4 – Ergebnisse: Hier wird der Aufbau der durchgeführten Experimente vorgestellt,
sowie die Ergebnisse präsentiert und diskutiert.

Am Schluss folgt eine Zusammenfassung.
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Liste verwendeter Symbole

∆T(o), ∆T
min, ∆T

max Slack eines Ausgangs o, Kleinster bzw. größter Slack an einem Knotens

δ f Defektgröße eines SMALLDELAY-Fehlers

∆err Fehler/Abweichung der Defektgröße

δest, δ f in Erste Abschätzung der Defektgröße und Korrektur
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1 Grundlagen

1.1 Erklärung grundlegender Begriffe

Netzlisten

Eine Netzliste ist ein gerichteter azyklischer Graph G(V, E) über einer Knotenmenge V, sowie
einer Kantenmenge E, und dient der Beschreibung kombinatorischer Schaltkreise auf Logik-
Ebene. Dabei repräsentiert jeder Knoten n ∈ V ein bestimmtes Gatter des Schaltkreises.
Die einzelnen Kanten (x, y) ∈ E modellieren jeweils eine direkte Verbindung zwischen zwei
Logikgattern x, y ∈ V, bei denen der Ausgang von x mit einem Eingang von y verknüpft ist.
Dabei ist x ein direkter Vorgänger im Fan-In von y – umgekehrt ist y ein direkter Nachfolger
im Fan-Out von x. Die Menge der Knoten ohne direkten Vorgänger (Nachfolger) bezeichnet
die Menge der primären Eingänge (Ausgänge) eines Schaltkreises und wird im Folgenden mit
I (O) notiert.

Um mit Hilfe von Netzlisten den Wert eines beliebigen Gatters n ∈ V im Schaltkreis zu
bestimmen, wendet man dessen assoziierte Funktion ϕ(x0, x1, ...xk−1) auf die Werte der direkten
Vorgänger an. Aufgrund der Datenabhängigkeiten setzt dies voraus, dass alle Vorgänger zuvor
berechnet wurden und deren Werte bekannt sind. Eine Möglichkeit dies zu gewährleisten,
ist die Evaluierung der einzelnen Knoten in V in topologisch sortierter Reihenfolge von
Schaltungseingängen zu Ausgängen, indem V in sogenannte Ebenen (Level) L0, L1, ...Lk−1
partitioniert wird, sodass für alle Knoten x ∈ Li, y ∈ Lj gilt: (x, y) ∈ E⇒ i < j.

Defekte, Fehler und Fehlermodelle

Als Defekt bezeichnet man eine Störung bzw. Veränderung in der physischen Struktur des
Schaltkreises, die z.B. durch Verunreinigungen im verwendeten Material, durch auftretende
Variationen im Herstellungsprozess oder durch einen fehlerhaften Entwurf entstanden sind.
Solche Defekte können die Schaltung derart beeinflussen, dass das Verhalten von der Spezifika-
tion abweicht. Um dieses Fehlverhalten aufgrund von Defekten beschreiben zu können, wird
im Allgemeinen der Begriff „Fehler” verwendet. Ein Fehler dient der logischen Abstraktion und
Einschränkung des Defektausmaßes auf einer höheren Ebene und repräsentiert für gewöhnlich
eine ganze Klasse unterschiedlicher physischer Defekte, die aber allesamt ein und das selbe
Fehlverhalten verursachen.
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1 Grundlagen

Fehler werden nach einem bestimmten Fehlermodell spezifiziert, welches die Zahl der mögli-
chen Defektszenarien auf eine endliche Menge beschränkt. So modelliert das bekannte Haftfeh-
lermodell (Stuck-At) für jede Fehlerstelle (wie z.B. Gatter oder Leitungen) einen StuckAt-0 und
einen StuckAt-1 Fehler, sowie den fehlerfreien Zustand, während man beim Brückenfehlermodell
für eine wired-AND- oder wired-OR-Brücke an einer Stelle verschiedener Kombinationen für
ein Aggressor-Signal zur Wahl haben kann. [BA02] bietet eine Übersicht von unterschiedlichen
Fehlermodellen für verschiedene Abstraktionsebenen.

Darüber hinaus unterscheidet man zwischen Einzel- und Mehrfachfehlermodellen. In letzterem
wird die Möglichkeit des gleichzeitigen Auftretens verschiedener Fehler berücksichtigt, was
die Komplexität des Modells letztlich aufgrund der steigenden Zahl der Fehler-Kombinationen
erhöht. Die Wahl des Fehlermodells bestimmt somit sowohl die Präzision, aber auch die
Komplexität der modellierten Defekte.

Fehlersimulation

Mit Hilfe von expliziter Fehlersimulation kann das Verhalten von Schaltkreisen unter Einfluss
von Defekten gezielt getestet und beobachtet werden. Dadurch gewinnt man die Erkenntnis,
ob ein Defekt in der Schaltung für bestimmte Eingabestimuli (Testmuster) einen Fehler am
Ausgang produziert und welches Ausmaß dieser Fehler hat. Dieser Mechanismus kann dann für
eine Reihe verschiedener Anwendungen verwendet werden [WWW06], wie der Bestimmung
der Fehlerabdeckung von automatisch generierten ATPG (Automatic Test Pattern Generator)
Testmustersätzen, oder im Rahmen einer Fehlerdiagnose z.B. durch die Generierung eines
Fehlerwörterbuchs.

Abb. 1.1 zeigt die schematische Darstellung einer Fehlersimulation. Hier wird ein Testmuster an
die primären Eingänge von zwei Instanzen eines Schaltkreises angelegt. Der untere Schaltkreis

Testmuster

fehlerhaftes Modell

Gutsimulation/
fehlerfreie Antworten

bitweiser
Vergleich

Syndrom-
vektor

Fehler
erkannt

G'

G

Abbildung 1.1: Schema eines Fehlersimulation. – Die Antworten der fehlerhaften Schaltung G′

werden mit denen der Spezifikation G verglichen.
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1.2 Verzögerungsfehler und Modelle

G repräsentiert eine Gutsimulation, die Referenzantworten gemäß der Spezifikation liefert.
Schaltkreis G′ wurde dagegen so modifiziert, dass das beabsichtigte Verhalten dem Einfluss
eines bestimmten Fehlers entspricht. Diese Modifikation wird Fehlerinjektion genannt. Im
Anschluss an die Simulation werden die Antwortmuster beider Schaltkreise von den primären
Ausgängen abgelesen und miteinander verglichen. Durch eine bitweise XOR-Verknüpfung (⊕)
der Antworten erhält man ein Symptom, welches Aufschluss darüber gibt, ob ein Ausgang
fehlerhaft ist oder nicht. Die vereinigten Symptome eines ganzen Testmustersatzes bilden das
Syndrom des Fehlers.

Damit ein Fehler von einem Testmuster sichtbar gemacht werden kann, müssen die folgenden
Bedingungen erfüllt sein:

• Der Fehler muss über die primären Eingänge aktiviert werden (fault exitation).

• Der Fehler muss zu den primären Ausgängen propagiert werden (fault propagation).

Manche Fehler haben solch komplexe Aktivierungs- und Propagierungsbedingungen, sodass
diese bei Verwendung von pseudozufallsgenerierten Testmustern nur mit einer sehr geringen
Wahrscheinlichkeit sichtbar werden. Hierfür müssen ATPG-Tools zur Testmustergenerierung
verwendet werden, um die Detektierbarkeit der Fehler und somit die Fehlerabdeckung der
Testmustersätze zu verbessern.

1.2 Verzögerungsfehler und Modelle

Im Gegensatz zu den Defekten aus statischen Fehlermodellen, wie dem Haftfehlermodell,
beeinflussen Verzögerungsdefekte nicht die logische Struktur der Schaltung, sondern das
Zeitverhalten der einzelnen Gatter und Leitungen. Dabei können Signalwechsel (Transitionen)
an den defekten Stellen verlangsamt werden, wodurch es vorkommen kann, dass bestimmte
Transitionen im Schaltkreis die Zeitanforderungen der Schaltung überschreiten, die durch die
geforderten Taktfrequenzen der Schaltung bestimmt sind. In der Regel verletzt ein Signal
die Zeitanforderungen, wenn die Differenz von Abtastzeit und Stabilisierungszeit am Ausgang
negativ ist. Diese Differenz wird auch Slack genannt. Zum Zeitpunkt der Abtastung können
die Signalwechsel an den Ausgängen nicht mehr registriert werden, was typischerweise einen
Fehler zur Folge hat.

Um Verzögerungsfehler testen zu können, muss der Fehler durch eine Signaltransition an
der Fehlerstelle aktiviert werden. Zur Erzeugung dieser Transitionen, benötigt man Stimuli
in Form eines Verzögerungstests, der aus einer Sequenz von zwei Testmustern, einem Initiali-
sierungsvektor (IV) und einem Propagierungsvektor (PV), besteht. Der IV initialisiert dabei
die Eingänge und die restlichen Knoten der Schaltung mit einem Signalwert. Durch den PV
finden dann Signalwechsel an bestimmten Eingängen statt, die als Transitionen durch den
Schaltkreis propagiert werden.
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1 Grundlagen

2 u

2 u
+2 u

fehlerfrei: 1
fehlerhaft: 0

Abbildung 1.2: Beispiel eines Verzögerungstests. – Aktivierung und Propagierung eines Verzö-
gerungsfehlers an der Leitung D mit IV = (110) und PV = (111). Verzöge-
rungen sind in Einheiten u angegeben.

Fehler-Modelle

In der Literatur zu Test und Simulation taucht eine an Vielfalt möglichen Verzögerungsfehler-
Modellen auf [KC98, MA98]. Zu den bekanntesten zählen dabei das Transitionsfehlermodell
[WLRI87], das Gatterverzögerungsmodell [CIR87] und das Pfadverzögerungsmodell [Smi85]. Im
Folgenden werden diese kurz vorgestellt:

Transitionsfehler Transitionsfehler modellieren für einen Test eine unendliche lokale Verzöge-
rung an einer Leitung oder einem Gatter. Dabei wird zwischen Fehlern bei fallender (Slow-
to-Fall (STF)) und steigender Flanke (Slow-to-Rise (STR)) unterschieden. In [WLRI87]
wurde gezeigt, dass diese Transitionsfehler sehr effizient mit Hilfe von temporären Haft-
fehlern simuliert werden können und bei der Berechnung dabei keine Zeitinformation
benötigen. So zeigt etwa ein aktivierter STR-Fehler an einem Gatter ein identisches
Verhalten, wie ein StuckAt-0 Fehler aus dem Haftfehlermodell. Dasselbe gilt auch für STF
und StuckAt-1 Fehler.

Gatterverzögerungsfehler Ein Gatterverzögerungsfehler nach [CIR87] liegt vor, wenn ein lo-
kaler Defekt die Signalpropagierungszeiten eines Gatters – für entweder steigende oder
fallende Flanken – zusätzlich um eine Defektgröße δ f erhöht und der Fehler an min-
destens einem sensibilisierten Ausgang im Ausgangskegel sichtbar wird. Im Gegensatz
zum Transitionsfehlermodell ([WLRI87]), wird hier das Zeitverhalten einzelner Gatter
mit berücksichtigt und durch Intervalle abgeschätzt. [IRW90] definiert mit Hilfe der
Slacks an den einzelnen Knoten für jede Fehlerstelle eine Mindestdefektgröße, um die
Testbarkeit zu gewährleisten.

Pfadverzögerungsfehler In diesem Modell von [Smi85] wird angenommen, dass sich ein Ver-
zögerungsdefekt im Schaltkreis global entlang der Leitungen eines kompletten Pfades
von primär Eingang nach primär Ausgang aufteilt. Der Pfadverzögerungsfehler (PDF) tritt
dann auf, sobald eine Transition entlang dieses Pfades vom Eingang zum Ausgang propa-
giert. Dabei wird anhand der Polarität der Transition am Eingang zwischen steigenden
und fallenden PDFs unterschieden.
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1.3 Logische Diagnose kombinatorischer Schaltungen

1.3 Logische Diagnose kombinatorischer Schaltungen

Bei der logischen Diagnose eines kombinatorischen Schaltkreises versucht man anhand der
Testantworten eines fehlerhaften Chips, auf die Defektursache im Schaltkreis zu schließen.
Während der Chipentwicklung ist dies von besonderem Interesse, da Fehler, die in verschie-
denen Chips aufgrund systematischer Defekte häufiger auftreten, auf fehleranfällige Stellen
in der Schaltung hindeuten können. Mit der logischen Diagnose versucht man deshalb diese
fehleranfälligen Stellen im Schaltkreis zu identifizieren, um Maßnahmen zur Anpassung des
Designs bzw. des Layouts einzuleiten und zukünftige Chips gegen die Fehler abzuhärten.

Die logische Diagnose kombinatorischer Schaltungen hat sich hauptsächlich in zwei unter-
schiedliche Paradigmen aufgespalten: Dies sind die sogenannten Cause-Effect- und Effect-Cause-
Verfahren [WWW06].

1.3.1 Cause-Effect Verfahren

Bei Cause-Effect Verfahren versucht man anhand der Antworten simulierter Fehler (Causes)
aus einem festgelegten Modell, das Syndrom (Effect) des zu diagnostizierenden Chips, dem
sogenannten DUD (Device under Diagnosis), zu untersuchen. Hierfür werden typischerweise
sogenannte Fehlerwörterbücher verwendet, in denen die Testantworten aller modellierten
Fehler zum Vergleich abgespeichert sind. Ein Nachteil dieses Verfahrens ist die Abhängigkeit
der Größe des Wörterbuchs von der Zahl der modellierten Fehler, der Anzahl der Ausgänge
im Schaltkreis, sowie der untersuchten Testmuster. Zudem können nur solche Fehler genau
diagnostiziert werden, die vom gewählten Modell abgedeckt werden und somit vom Wörter-
buch erfasst sind [WWW06]. Abweichungen, die im Fehlermodell nur implizit oder garnicht
abgedeckt sind, können für die Diagnose irreführend sein und sogar soweit führen, dass diese
nicht diagnostiziert werden können.

1.3.2 Effect-Cause Verfahren

Effect-Cause Verfahren verwenden einen umgekehrten Ansatz. Hierbei geht man der Feh-
lerursache des DUDs auf den Grund, indem das Syndrom anhand der Informationen über
den Schaltkreis genauer analysiert und die mögliche Defektursache auf eine Menge an Feh-
lerkandidaten eingeschränkt wird. Ein Vorteil des Effect-Cause Ansatzes ist die allgemeine
Unabhängigkeit von einem Fehlermodell, da keine expliziten Annahmen über Fehler gemacht
werden [WWW06].

Ein bekanntes Verfahren ist das Strukturelle Pruning [WL89], auch Backconing genannt.
Hierbei werden die möglichen Fehlerkandidaten auf den Schnitt der Eingangskegel aller
fehlerhaften Schaltungsausgänge logisch eingegrenzt.
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1 Grundlagen

Das SLAT Verfahren (Single Location At a Time) aus [BHHS01, Hui04] verfolgt einen so-
genannten „Inject & Evaluate” Ansatz, bei dem Fehler unterschiedlichster Art mit Hilfe von
einfacher Haftfehlersimulation lokalisiert werden. Hierbei werden für jeden fehlerhaften
Test Haftfehler an Kandidatenstellen simuliert, um Testmuster mit einer sogenannten SLAT-
Eigenschaft zu identifizieren. Bei einem Testmuster mit SLAT-Eigenschaft existiert ein Haftfehler,
der das Syndrom durch einen lokalen Defekt für diesen Test erklären kann. Findet sich dabei
keine Stelle, die alle Syndrome der fehlerhaften Tests durch SLAT-Mustern erklären kann, so
wird die kleinstmögliche Menge an Fehlerstellen gesucht (Multiplets), die diese abdeckt.

1.4 POINTER Diagnose

Eine Diagnosemethode zur Analyse von Testantworten ist das POINTER (Partially Overlap-
ping Impact couNTER) Verfahren aus [HW09], welches eine Erweiterung des SLAT-Verfahrens
von [BHHS01, Hui04] bildet und sich zur Effect-Cause Diagnose von beliebigen Fehlern aus
dem CLF-Kalkül (Conditional Line Flip) [Wun09] bewährt hat. Im CLF-Modell wird das
Fehlverhalten eines Signals Z allgemein durch eine Bedingung mit beliebiger Komplexität
modelliert, sodass Z f = Z⊕ (Bedingung).

Zur Diagnose dieser Fehler verwendet das POINTER-Verfahren dabei Haftfehler, die in einer
Fehlermaschine (FM) simuliert werden, um Referenzantworten zu generieren. Beim Ver-
gleichen der Antworten mit dem DUD werden dabei für jeden Fehler und jedes untersuchte
Testmuster sogenannte Evidenzen berechnet, die zur Bewertung der möglichen Fehlerkandi-
daten und zur Identifizierung der Defektstelle dienen. Die Evidenz eines Fehlers f für ein
Testmuster π ist als Tupel e( f , π) = (σf ,π, ι f ,π, τf ,π, γ f ,π) definiert, dessen Komponenten durch
bitweises Vergleichen des Antwortmusters aus FM und DUD extrahiert werden:

• σf ,π ist die Anzahl der vom Referenzfehler f erklärten fehlerhaften Ausgänge des DUDs.

• ι f ,π ist die Anzahl der von f falsch vorhergesagten fehlerhaften Antwortbits.

• τf ,π ist die Anzahl der fehlerhaften Ausgänge im DUD, die vom Referenzfehler nicht
erklärt werden können.

• γ f ,π (= min({σf ,π, ι f ,π})) ermöglicht eventuell Annahmen, ob ein Symptom von einem
einzelnen oder von mehreren Haftfehlern erzeugt wurde.

Für einen ganzen Testmustersatz Π = {π0, π1, ..., πk−1} mit k Tests, werden die Evidenzen
e( f , π) aller Antwortmuster π ∈ Π eines Referenzfehlers f komponentenweise aufsummiert,
um die globale Evidenz e( f , Π) des Fehlers zu berechnen:

e( f , Π) = (σf , ι f , τf , γ f ) = (∑Π σf ,π, ∑Π ι f ,π, ∑Π τf ,π, ∑Π γ f ,π).
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1.5 Wave Zeitsimulator

Nach Berechnung der globalen Evidenzen aller Fehlerkandidaten, werden diese mit Hilfe der
folgenden GSI (Gamma-Sigma-Iota) Bewertungsfunktion sortiert:

1. γ f1 > γ f2 ⇒ Rang( f1) > Rang( f2),

2. σf1 > σf2 ⇒ Rang( f1) < Rang( f2), wenn γ f1 = γ f2 ,

3. ι f1 > ι f2 ⇒ Rang( f1) > Rang( f2), wenn γ f1 = γ f2 und σf1 = σf2 .

Dabei wird zunächst nach aufsteigendem γ f sortiert, um jene Kandidaten an die Spitze der
Liste zu bringen, die als einzelne bedingte Haftfehler das Syndrom des DUDs erklären können.
Anschließend werden die Kandidaten mit gleichem γ f in absteigender Reihenfolge nach der
Anzahl der erklärten Bits σf sortiert. In einem letzten Schritt werden gleiche Kandidaten nach
aufsteigenden ι f geordnet, um die Anzahl der Fehlvorhersagen zu minimieren.

Je niedriger der Rang eines Kandidaten ist, umso besser kann dieser das Syndrom des DUDs
erklären und desto wahrscheinlicher verweist der Fehler auf die eigentliche Defektstelle.

1.5 Wave Zeitsimulator

In dieser Arbeit wird ein dynamischer Zeitsimulator namens „Wave” verwendet, welcher von
Stefan Holst entwickelt wurde, um die Schaltaktivität in Schaltkreisen zur Abschätzung der
Leistungsaufnahme messen zu können.

Da die Simulation von Schaltkreisen stark parallelisierbar ist und dynamische Zeitsimulation im
Vergleich zur Booleschen Logiksimulation einen hohen Rechenaufwand hat, macht dieser dabei
Gebrauch von der NVIDIA R©CUDATM Architektur [NVI12], um den Simulationsprozess mit
Hilfe von Parallelisierung auf CUDATM-fähigen Grafikkarten zu beschleunigen. Durch das Many-
Threading Paradigma kann der Simulator vorhandenen Struktur- und Daten-Parallelismus bei
der Simulation ausbeuten. Dabei kann dieser eine große Anzahl an Gattern für mehrere Test-
muster auf verschiedenen Rechenkernen der GPGPU (General Purpose Graphics Processing
Unit) parallel verarbeiten und evaluieren

Der Wave-Simulationskern erlaubt dabei die präzise Modellierung und effiziente Evaluierung
vollständiger Signalverläufe an Gattern durch sogenannte Waveforms. Ein Waveform beschreibt
den Verlauf eines Signals anhand einer Liste von absteigend sortierten Zeitpunkten ti ∈ R+

0 ,
an denen jeweils Signalwechsel stattfinden. Nach Definition muss das durch das Waveform be-
schriebene Signal für t→ ∞ einen Wert von ’0’ haben, weshalb gegebenenfalls eine künstliche
Transition (∞) hinzugefügt werden muss. Durch die umgekehrte Reihenfolge bei der Aus-
wertung der Transitionen können die Waveforms bezüglich der Speicherallokation effizienter
berechnet werden.

In Abbildung 1.3 sind Beispiele von Signalverläufen mit der dazugehörigen Waveform-
Repräsentation illustriert.
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1 Grundlagen
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Abbildung 1.3: Beispiel der Waveform-Darstellung. – Das Symbol • wird als Terminalzei-
chen verwendet, während mit ∞ die Signalverläufe für t→ ∞ künstlich auf
’0’ gesetzt werden. In der unteren Grafik wird ein NAND-Gatter mit einer
Verzögerung von δ = 0.5 evaluiert.

Der Wave-Simulator verwendet eine GPGPU-gestützte Testmusterkonvertierung und ein schlan-
kes Interface, um den Kommunikationsaufwand zwischen Host-CPU und GPGPU minimal zu
halten und die Simulationszeit zu reduzieren. Bei jeder Auswertung können dabei unterschiedli-
che nominal Schaltzeiten und normalverteilte Variation der Gatterverzögerungen für steigende
bzw. fallende Flanken berücksichtigt werden. Eine Puls-Filterung unterdrückt zusätzlich kurz
aufeinanderfolgende Signalwechsel.
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2 SMALLDELAY Fehlermodell

Dieses Kapitel stellt die Ergebnisse einer vorangegangenen Arbeit [Sch11] vor, auf die in
dieser Arbeit zurückgegriffen wird. In [Sch11] wurde ein Modell für Verzögerungsfehler in
Schaltkreisen entwickelt und der GPGPU-beschleunigte Wave-Zeitsimulator zur Simulation
dieser Fehler erweitert. Des Weiteren wurde das POINTER Diagnoseverfahren für Verzöge-
rungsfehler evaluiert und eine Methode vorgeschlagen, um die Diagnose unter Verwendung
des Fehlersimulators zu verbessern.

Im Folgenden wird das implementierte Verzögerungsfehlermodell vorgestellt, welches in dieser
Arbeit verwendet wird und der Ansatz zur Diagnose vorgestellt.

2.1 Hintergrund

Das in dieser Arbeit verwendete Fehlermodell ist eine verallgemeinerte Variante des Gatterverzö-
gerungsmodells, um kleinste Verzögerungsfehler (sogenannte SMALLDELAYS) zu repräsentieren
[Sch11]. Hierbei handelt es sich um ein Einzelfehlermodell, in dem jeder Fehler f die Verzöge-
rungszeit des assoziierten Gatters um eine Defektgröße δ f erhöht, sodass die Zeitbedingungen
eines oder mehrerer Pfade des Schaltkreises verletzt werden. Die berechneten Defektgrößen
werden hierbei anhand der nominal Gatterschaltzeiten im Schaltkreis bestimmt und über die
Slacks der verschiedenen Pfade durch einen Knoten berechnet (siehe Abb. 2.1).

2 u

2 u

3 u

3 u

{6, 8}
{5 , 8}

Fehler: {3, 5, 6, 8}
D=[3, 8]

{4}
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Abtastzeit: T = 10 u

p4: Σδ = 5
→ Δ4 = T - 5 = 5 

p1: Σδ = 2
→ Δ1 = T - 2 = 8 
p2,3: Σδ = 4 
→ Δ2,3 = T - 4 = 6 

p5: Σδ = 7
→ Δ5 = T - 7 = 3 

0 u

0 u

0 u

0 u
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Abbildung 2.1: Herleitung einzelner Defektgrößen δ f für einen Knoten im SMALLDELAY-
Fehlermodell. – Die Slacks ∆pi eines jeden Pfades pi durch den Knoten dienen
als mögliche Fehlergrößen.
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2 SMALLDELAY Fehlermodell

Der Slack ∆p eines Pfades p ist definiert als die Differenz von Abtastzeit und der kumulativen
Verzögerung δp der einzelnen Gatter von p. Ist ∆p > 0, so sind die Zeitbedingungen des Pfades
erfüllt1. Ein SMALLDELAY-Fehler der Größe δ f eines Knoten n verletzt die Zeitbedingungen aller
Pfade p durch diesen, die eine kumulative Verzögerung von T− δ f oder mehr besitzen, da ∆′p =

∆p− δ f = (T− δp)− δ f ≤ T− T + δ f − δ f = 0. Dadurch hat jeder aus dem Modell hergeleitete
Fehler an einem Knoten ein einzigartiges Fehlverhalten [Sch11]. Hierbei ist noch zu erwähnen,
dass eine Verletzung der Zeitbedingungen entlang eines sensibilisierten Pfades nicht zwingend
einen Fehler am Ausgang verursachen muss. Durch nicht robuste Signalpropagierung können
sogenannte Hazards entstehen, die ein Signal über einen begrenzten Zeitraum invertieren.
Dabei kann es passieren, dass Ausgangssignale, die von einem Hazard betroffen sind, mit
einem guten Wert abgetastet werden und der Fehler nicht erkannt wird.

Bei einem SMALLDELAY-Fehler wird sich zudem nicht auf eine Polarität der Transitionen
beschränkt, wodurch der Fehler einen physischen Defekt modelliert, der sowohl steigende als
auch fallende Flanken durch die Defektstelle beeinflusst.

Da die Anzahl der Pfade in einem Schaltkreis im schlimmsten Fall exponentiell mit der An-
zahl der Gatter steigen kann [WWW06] und die Initialisierung der vollständigen Fehler-
menge aufgrund der hohen Fehlerzahl (siehe Tabelle 4.1 in Kapitel 4) sehr zeitaufwändig
ist, wurde in [Sch11] eine Methode vorgeschlagen, um durch Quantisierung sogenannter
Defektgrößen-Intervalle verschiedene Fehlergrößen zu extrahieren. Ein Defektgrößen-Intervall
Dn beschränkt hierbei die relevanten Defektgrößen eines Knotens n mit Hilfe des kleinsten
detektierbaren Defekts δmin und einer Transitionsfehlergröße δmax, welche durch den längsten
und kürzesten Pfad durch diesen bestimmt sind. Als Transitionsfehlergröße eines Knotens wird
hierbei die kleinstmögliche Defektgröße verwendet, die benötigt wird, um die Zeitbedingungen
aller Pfade durch den Knoten zu verletzen.

2.2 Diagnose von Verzögerungsfehlern

2.2.1 Critical Path Tracing für Verzögerungsfehler

Ein häufig verwendetes Effect-Cause Verfahren bei der Diagnose kombinatorischer Schaltun-
gen ist das Critical Path Tracing (CPT) von [AMM83], welches ursprünglich zur impliziten
Fehlersimulation vorgeschlagen wurde und in [GLP92, GLP95] für die Diagnose von Verzö-
gerungsfehlern erweitert worden ist. Im CPT werden für jeden Test die Signale fehlerhafter
Ausgänge zu den Eingängen zurückverfolgt, um so die möglichen Fehlerkandidaten in der Schal-
tung räumlich einzuschränken. Dabei wird Anfangs eine Kandidatenliste mit allen Fehlerstellen
des Schaltkreises initialisiert. Anschließend wird diese folgendermaßen reduziert:

1Signaltransitionen zum Zeitpunkt der Abtastung werden hier als eine Verletzung der Zeitbedingungen betrachtet.
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2.2 Diagnose von Verzögerungsfehlern

∧ C0 C1 T0 T1 H0 H1

C0 C1 C1 C1 C1 C1 C1
C1 C1 C0 T1 T0 H1 H0
T0 C1 T1 T1 H1 H1 T1
T1 C1 T0 H1 T0 H1 T0
H0 C1 H1 H1 H1 H1 H1
H1 C1 H0 T1 T0 H1 H0

Tabelle 2.1: Mehrwertige Logik. – Wahrheitstabelle eines NAND-Gatters mit zwei Eingängen
für sechswertige Logik.

Für einen fehlerhaften Test wird eine Gutsimulation in mehrwertiger Logik durchgeführt, um
die Signalpropagierung und die möglichen Transienten für den Test im Schaltkreis sichtbar
zu machen. Häufig wird dabei auf eine sechswertige Logik nach [Hay86] zurückgegriffen, die
sich zur Analyse von Transienten eignet.

Die Logik verwendet dabei die folgenden Symbole zur Repräsentation von Signalzuständen:

• C0: repräsentiert ein Signal, das über die Zeit konstant auf ’0’ bleibt. (stabile ’0’)

• C1: repräsentiert ein Signal, das über die Zeit konstant auf ’1’ bleibt. (stabile ’1’)

• T0: repräsentiert ein Signal, das ausgehend von einem initialen Wert ’1’ nach Stabilisie-
rung den Wert ’0’ annimmt. (steigende Transition)

• T1: repräsentiert ein Signal, das ausgehend von einem initialen Wert ’0’ nach Stabilisie-
rung den Wert ’1’ annimmt. (fallende Transition)

• H0: repräsentiert ein Signal, das ausgehend von einem initialen Wert ’0’ mögliche
Transitionen haben kann, aber nach Stabilisierung wieder ’0’ ist. (statischer 0-Hazard)

• H1: repräsentiert ein Signal, das ausgehend von einem initialen Wert ’1’ mögliche
Transitionen haben kann, aber nach Stabilisierung wieder ’1’ ist. (statischer 1-Hazard)

In Tabelle 2.1 ist die Wahrheitstabelle des NAND-Gatters aus der H6-Logik illustriert.

Nach der Gutsimulation werden die Signalleitungen und Gatter im Eingangskegel eines jeden
fehlerhaften Ausgang im DUD anhand der Netzliste und den Transienten an den Knoten
zurückverfolgt. Dabei werden an Gattern nur die Eingänge weiterverfolgt, die Ereignisse (z.B.
Transitionen oder Hazards) bzw. Signalwechsel für das aktuelle Testmuster aufweisen [GLP92],
da Leitungen und Gatter ohne Signalwechsel für den Test keine Verzögerungsfehler propagieren
können und diese dadurch nicht zur Erzeugung des Syndroms beitragen. Alle Leitungen und
Gatter, die von dem fehlerhaften Ausgang zurückverfolgt werden können, werden dann mit
der Liste der verbliebenen Kandidaten geschnitten.
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2 SMALLDELAY Fehlermodell

Diese Prozedur wird für jeden der zu untersuchenden Tests ausgeführt, um so die Kandidaten
stetig reduzieren zu können. Mit der Einzelfehlerannahme befindet sich der gesuchte Kandidat
dabei immer unter den verbleibenden Kandidaten, da dieser bei jedem fehlerhaften Test
von allen fehlerhaften Ausgängen zurückverfolgt werden können muss. Erweiterungen und
Optimierungen für die Rückverfolgung sehen vor, das Backtracing bei kontrollierten Gattern
auf Gattereingänge mit kontrollierenden Ereignissen zu beschränken [GLP95]. Kontrollierende
bzw. dominante Ereignisse sind Signalverläufe mit kontrollierendem Finalwert. Ein Gatter
wird als kontrolliert bezeichnet, wenn ein oder mehrere Eingänge kontrollierende Ereignisse
haben, d.h. sodass Signalwechsel an nicht kontrollierenden Eingängen zu keiner Änderung
des Finalwerts am Gatterausgang führen. Die Idee ist hierbei, dass die Fehlerpropagierung von
Eingängen mit nicht-dominierenden Ereignissen durch dominierende fehlerfreie Ereignisse
maskiert wird, da letztere das Gatter in einen kontrollierten und fehlerfreien Zustand bringen.

2.2.2 Weitere Verfahren

Im Folgenden werden weitere Methoden zur Diagnose von Verzögerungsfehlern vorgestellt:

In [TBT98] werden zunächst fehlerhafte Ausgänge im Schaltkreis mit einer Backtracing-
Prozedur zurückverfolgt, um eine Menge initialer Fehlerkandidaten zu berechnen. Die Kandi-
daten werden anschließend mit Hilfe expliziter Simulation von Gatterverzögerungsfehlern in
mehrwertiger Logik reduziert. Dabei werden Fehler ausgeschlossen, wenn die Antworten nicht
mit dem DUD übereinstimmen. Zusätzlich wird versucht über die Simulation von fehlerfreien
Tests weitere verbleibende Kandidaten zu eliminieren.

[WHH02] verwendet sogenannte Symbolische Fehlerpropagierung mit mehrwertiger Logik zur
Diagnose von Gatterverzögerungsfehlern. Hierbei wird die mögliche Propagierung eines Fehlers
ausgehend von einer Fehlerstelle für alle fehlerhaften Testmuster des DUDs beobachtet. Eine
Bewertungsfunktion wird dann dazu verwendet, um die Übereinstimmung mit dem DUD zu
messen.

Das Verfahren aus [ATH+07] wird zur Diagnose kleinster Verzögerungsfehler vorgeschlagen
und verwendet neben mehrwertiger Logiksimulation mit Backtracing zusätzlich die Zeit der
letzten Transition an einem jeden Knoten. Hierbei werden Fehler mit der kleinsten detektier-
baren Defektgröße an den einzelnen Kandidatenstellen für fehlerhafte und fehlerfreie Tests
beobachtet und bewertet.

In [MMSTR08] wird eine initiale Kandidatenmenge durch Backtracing der fehlerhaften Ausgän-
ge berechnet und die möglichen Defektgrößen der Knoten mit Hilfe einer Zeitsimulation durch
eine Unter- und Oberschranke eingegrenzt. Die Information über die Slacks an fehlerhaften
und fehlerfreien Ausgängen wird dann dazu verwendet die Kandidatenmenge systematisch zu
reduzieren.
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2.3 POINTER Diagnose mit Resimulation

Die Verfahren aus [RBG+07, BGPV10] verwenden mehrwehrtige Logiksimulation und Critical
Path Tracing, um die möglichen Fehlerstellen eines DUDs einzuschränken. In einem zweiten
Schritt wird für jede Kandidatenstelle eine Menge an möglichen Fehlertypen bestimmt, die
anhand der Symbole der Logiksimulation berechnet werden.

[PB07] verwendet sogenannte Segment Netzwerk Fehler (SNF) zur Darstellung von Verzöge-
rungsfehlern. Bei der Diagnose werden nach einem konservativen Backconing alle verbleibende
Kandidatenstellen mit einer ,X’-Propagierung simuliert, um die Fehlerpropagierung ausgehend
von den Stellen zu beobachten und eine Fehlersignatur zu bestimmen. Die Signaturen dieser
Fehler werden dann zu einem Fehler-Cluster-Graphen zusammengesetzt und analysiert, um
passende SNFs zu extrahieren.

In [YB08, YB10] wurde ein Verfahren zur Diagnose von Mehrfachfehlern vorgestellt. Hierbei
wird nach einem Backtracing an den verbliebenen Kandidaten ,X’-Markierungen injiziert, die zu
den Ausgängen propagiert werden. Anschließend werden durch eine konservative Rückwärtsim-
plikation ausgehend von fehlerfreien Ausgängen weitere Fehlerkandidaten ausgeschlossen.

Ein statistischer Ansatz zur Diagnose von Verzögerungsfehlern wurde in [KWCL03] präsentiert.
Hierbei werden statistische statische Zeit-Analyse (SSTA) und dynamische Zeitsimulation verwen-
det, um über die Fehlerwahrscheinlichkeiten der Ausgänge die statistische Übereinstimmung
von Kandidaten zu berechnen und zu vergleichen.

Die meisten der vorgestellten Methoden verwenden ein mehrstufiges Diagnoseverfahren und
nutzen dabei das Backtracing von fehlerhafter Ausgänge, um die initiale Kandidatenmenge
einzuschränken. Insbesondere bei den simulationsbasierten Ansätzen kann der Aufwand
durch die Vorarbeit stark verringert werden, da Fehlersimulation je nach Modell sehr teuer
werden kann. Nur wenige der Diagnoseverfahren verwenden dabei jedoch die Zeitdaten der
Schaltungen. Zudem wird oftmals die Information über fehlerhafte und fehlerfreie Ausgänge
verwendet, um Kandidaten auszuschließen. Hierbei werden leider keine dynamischen Hazards
in den Signalverläufen berücksichtigt, was z.B. bei nicht-robuster Fehlerpropagierung in die Irre
führen kann. Simulationsbasierte Ansätze mit Auswertung der Signalverläufe durch explizite
Zeitsimulation sind dem Autor nicht bekannt.

2.3 POINTER Diagnose mit Resimulation

Um das POINTER-Verfahren für SMALLDELAY-Fehler zu beobachten und auszuwerten, wurde
der parallele Fehlersimulator in [Sch11] zunächst dazu genutzt, um fehlerhafte Testantworten
von DUDs zu generieren. Mit Hilfe von einer Fehlermaschine zur Simulation von einzelnen
Haftfehlern wurde das Syndrom eines DUDs ausgewertet. Da SMALLDELAY-Fehler an einem
Gatter zwar unabhängig von der Polarität der Transitionen aktiviert werden können, aber die
Aktivierung der Haftfehler vom aktuellen Signalwert abhängig ist, hatten sich die Evidenzen
des Fehlers auf die jeweiligen Haftfehler-Repräsentanten (StuckAt-0, StuckAt-1) am Knoten
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2 SMALLDELAY Fehlermodell
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Abbildung 2.2: Beispiel eines Verzögerungsfehlers, der aufgrund von nicht robuster Signalpro-
pagierung für das Testmuster nicht durch den Haftfehler-Repräsentanten am
Gatter ersetzt werden kann.

aufgeteilt. In Abhängigkeit der Häufigkeit der Polarität bei fehleraktivierenden Transitionen,
hatte sich hierbei gezeigt, dass die Evidenzen einzelner Haftfehler nicht zur Diagnose ge-
eignet sind. Deswegen wurden die Evidenzen der Haftfehler-Repräsentanten eines Gatters
durch komponentenweises addieren in sogenannte Lokationsevidenzen zusammengefasst
[Sch11].

Da Haftfehler unabhängig von einer Defektgröße sind und ohne Transitionen aktiviert wer-
den, haben die Lokationsevidenzen sehr viele Fehlvorhersagen produziert. Solche Haftfehler,
die näher an den Ausgängen waren und kleinere Ausgangskegel hatten, wurden typischer-
weise besser bewertet als jene, die im Eingangsbereich lagen, wodurch diese bei kleineren
Verzögerungsfehlern irreführende Ergebnisse geliefert hatten. Weil SMALLDELAY-Fehler an
einem Knoten in Abhängigkeit der Defektgröße oftmals nur einen bestimmten Anteil aller
sensibilisierten Pfade durch diesen verletzen, ist häufig der Fall aufgetreten, dass σf ,π > 0
und ι f ,π > 0, wodurch γ f ,π > 0. Aus diesem Grund musste die Bewertungsfunktion der
Evidenzen auf Sigma-Iota-Gamma geändert werden, da sehr viele falsche bzw. unlogische
Fehler (z.B. σf = 0⇒ γ f = 0) besser gewichtet worden sind und die eigentlichen Kandidaten
sehr weit von den ersten Rängen verdrängt hatten [Sch11].

Bei der sogenannten Resimulation wurden die Fehlerstellen der sortierten und bewerte-
ten Lokationsevidenzen mit Hilfe des Zeitsimulators nachsimuliert, um das Verhalten von
Verzögerungsfehlern an den Kandidatenstellen zum Abtastzeitpunkt zu beobachten. Aus Grün-
den der Performance wurde dabei für eine beschränkte Anzahl an Knoten (die besten 25
berichteten Fehlerstellen) jeweils der Transitionsfehler und die mittlere Defektgröße des
Defektgrößen-Intervalls simuliert. Dabei konnte mit der Resimulation eine Verbesserung der
Diagnoseergebnisse erzielt werden [Sch11].

2.4 Neuer Ansatz

Das in dieser Arbeit präsentierte Verfahren setzt gänzlich auf SMALLDELAY-Referenzfehler
und wendet sich damit von der Haftfehlersimulation ab, da Haftfehler die Verzögerungsfehler
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Räumliche Einschränkung der Kandidaten

Zeitliche Einschränkung der Kandidaten
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Nominalverzögerungen,
Abtastzeit

Abbildung 2.3: Übersicht des zweistufigen Diagnoseansatzes.

nicht in einem ausreichenden Maß repräsentieren können. Dies ist an einem Beispiel in
Abbildung 2.2 illustriert. Hier produziert ein Verzögerungsfehler für eine steigende Transition
einen fehlerhaften Ausgang. Da sich die Fehlerpropagierung am folgenden Verzweigungsstamm
auf zwei Pfade verteilt und diese später (mit umgekehrter Polarität) rekonvergieren, ist das
Ausgangssignal nur für einen kurzen Moment als Hazard sichtbar. Der zugehörige Haftfehler-
Repräsentant (StuckAt-0) kann dieses Symptom jedoch nicht reproduzieren, da dieser das
Ausgangsgatter konstant auf einem kontrollierten Wert hält. Für das Ausgangsgatter findet sich
hier jedoch ein Haftfehler (StuckAt-1) um das Symptom zu reproduzieren, wodurch dieser nun
besser bewertet wird als der eigentliche Kandidat.

Um die Simulation der SMALLDELAYs effizient zu gestalten, soll dabei zunächst die Menge
der logischen Kandidaten eingeschränkt werden. Als nächsten Schritt sollen in selektiven
Verfahren die zu simulierenden Kandidaten adaptiv anhand des Evidenzverhaltens bestimmt
werden, um die Zahl der Simulationen gering zu halten.

Ein weiteres Problem beim Vergleichen von Referenzfehler-Antworten mit dem Syndrom eines
DUDs entsteht, wenn eine hohe Dynamik in den Ausgangssignalen vorliegt. So können dann
bereits kleinste Abweichungen im Abtastzeitpunkt zwischen fehlerhaft und fehlerfrei unterschei-
den. Insbesondere führen Variationen der Gatterverzögerungen dazu, dass das Fehlermodell
das Verhalten des Defekts im DUD nicht mehr akkurat nachahmen kann, wodurch ein direkter
Vergleich zusätzlich erschwert wird. Da der verwendete Zeitsimulator die Signalverläufe im
Schaltkreis präzise modellieren kann, sollen diese genauer untersucht werden, um Aufschluss
über die Stabilität von Ausgangssignalen zu geben und diese in die Bewertung von Kandidaten
mit einfließen zu lassen.
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3 Adaptive simulationsbasierte Diagnose

Dieses Kapitel beschreibt ein Verfahren zur Diagnose von Verzögerungsfehlern, das anhand
der Testantworten des zu diagnostizierenden Chips (DUDs) sowohl die Defektstelle einzelner
SMALLDELAY-Fehler lokalisieren als auch die Defektgröße bestimmen kann. Aufgrund der Kom-
plexität des Verzögerungsfehlermodells, wurde das Verfahren aus zwei Teilen zusammengesetzt:
Einer strukturellen und einer simulationsbasierten Analyse.

Der erste Abschnitt dieses Kapitels befasst sich mit der strukturellen Analyse. Hierbei werden
fehlermodellunabhängige Effect-Cause-Methoden zur räumlichen, sowie zeitlichen Einschrän-
kung der möglichen initialen Fehlerkandidaten eingesetzt und eine erste Abschätzung der
Defektgröße durchgeführt.

Der zweite Teil beschreibt die simulationsbasierte Analyse. Dabei wird eine neuartige Cause-
Effect-Methode vorgestellt, die mit Hilfe expliziter Simulation von SMALLDELAY-Fehlern die
verbleibenden Kandidaten genauer untersucht. Die zu simulierenden Fehler werden dabei
adaptiv bestimmt, um die Gesamtzahl der Simulationen zu begrenzen.

Im dritten Teil wird ein Verfahren zur Bewertung der Fehlerkandidaten eingeführt, welches
die Stabilität in den Ausgangssignalen mit berücksichtigt und die Diagnoseresultate im Falle
von Variationen im Schaltkreis verbessert.

3.1 Strukturelle Analyse

Die Anzahl der möglichen SMALLDELAY-Fehler in einem Schaltkreis hängt von der Zahl der
Pfade ab [Sch11] und kann im schlimmsten Fall exponentiell mit der Gatterzahl N steigen,
weshalb eine erschöpfende Fehler-Simulation zur Diagnose mit allen Kandidaten praktisch nicht
durchsetzbar ist [WWW06]. Da industrielle Schaltkreise — insbesondere Full-Scan-Designs —
typischerweise kurze Pfade und kleine Kegel besitzen, haben Verzögerungsfehler an einem
Gatter meist jedoch nur auf einen relativ kleinen Bereich der Schaltung Einfluss. Dadurch
sind Fehler häufig nur an einer kleinen Anzahl von Ausgängen sichtbar. Umgekehrt lässt sich
die Fehlerquelle anhand der fehlerhaften Ausgänge ebenso auf einen Bereich der Schaltung
räumlich eingrenzen. Fehlerkandidaten, die sich außerhalb dieser Bereiche befinden, können
ohne explizites Überprüfen durch Fehlersimulation von den Untersuchungen ausgeschlossen
werden. Die strukturellen Analyse hat nun als Aufgabe diese Bereiche zu identifizieren. Als
Ausgangspunkt dienen dabei die jeweiligen Testantworten der zu diagnostizierenden Chips.
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3.1.1 Räumliche Einschränkung der Kandidaten

Damit eine Fehlerstelle zur Menge der potentiellen Kandidaten angehören kann, müssen bei
dem Knoten die folgenden beiden Punkte für jeden fehlerhaften Ausgang der Testmuster erfüllt
sein:

Fehler-Aktivierung Es kommen nur solche Knoten als Kandidaten in Frage, die bei allen fehler-
haften Verzögerungstests mindestens eine Transition im Signalverlauf aufweisen.

Fehler-Propagierung Ausgehend von der Defektstelle der Kandidaten, müssen bei aktiviertem
Fehler die Transitionen an der Fehlerstelle zu jedem betroffenen Ausgang des fehlerhaften
Tests propagieren können.

Alle Knoten, die mindestens einmal gegen diese Bedingungen verstoßen, können von den
Kandidaten logisch ausgeschlossen werden. Um die Bedingungen zu überprüfen, wurde das in
Abschnitt 2.2.1 vorgestellte Critical Path Tracing für Verzögerungsfehler [GLP95] gewählt.

Critical Path Tracing

Das implementierte Critical Path Tracing (CPT) beruht auf Grundversion von [GLP95]. Aus-
gehend von einer Logiksimulation der fehlerhaften Verzögerungstests in sechswertiger Logik
[Hay86], werden die fehlerhaften Ausgänge des DUDs über die sensibilisierten Leitungen in
der Schaltung bis zu den Eingängen verfolgt und markiert. Von jeden fehlerhaften Ausgang
eines jeden Testmusters werden die Gatter mit möglichen Transienten (T0, T1, H0, H1) in
einer Backtracing-Iteration traversiert. Im Rahmen einer Optimierung aus [GLP95] werden
dabei Signale mit dominierenden Ereignissen bevorzugt, d.h. wenn ein Gatter an den Ein-
gängen sowohl dominierende als auch nicht-dominierende Ereignisse aufweist, dann wird das
Backtracing nur an den jeweiligen dominierenden Eingängen fortgesetzt.

Nach der Rückverfolgung eines fehlerhaften Ausgangs werden die markierten Gatter in einer
Liste Si zusammengefasst und mit den verbleibenden Kandidaten geschnitten, um eine initiale
Kandidaten-Liste S (= ∩Si) zu erhalten. Jeder dieser Kandidaten s ∈ S erfüllt dabei die
Aktivierungs- und Propagierungsbedingungen für das Syndrom des DUDs, während die Gatter
aus V \ S gegen mindestens eine dieser Bedingungen verstoßen haben.

In Abbildung 3.1 ist das Critical Path Tracing an einem Beispiel illustriert. Hier wurde das CPT
auf zwei Verzögerungstests angewendet. Dicken Linien markieren die Teile der Schaltung, die
beim Backtracing zurückverfolgt werden konnten. Beim ersten Verzögerungstest (1–2) muss
die Prozedur für jeden der beiden fehlerhaften Ausgänge separat aufgerufen werden. Nach
Rückverfolgung des zweiten Tests (3) reduziert sich die logische Kandidatenmenge auf zwei
Stellen. Alle verbleibenden Kandidaten nach einem Schritt sind schattiert dargestellt.
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Abbildung 3.1: Einfaches Critical Path Tracing am Beispiel mit zwei fehlerhaften Verzöge-
rungstests. – Das defekte Gatter ist mit einem ,X’ markiert. Die Symbole der
Logiksimulation vom untersuchten Test sind an den Leitungen dargestellt.
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Kollabierung struktureller Äquivalenzen

Verzögerungsfehler an unterschiedlichen Gattern in einem Schaltkreis können für einen Test
oder einen ganzen Testmustersatz ein identisches Syndrom verursachen und sich dadurch
äquivalent verhalten. Dies kann dabei mehrere Ursachen haben:

• Der Testmustersatz kann die Fehler nicht weiter unterscheiden, weil der Fehlereffekt z.B.
aufgrund blockierender Seitenpfade nicht an alle Ausgänge propagiert werden kann.

• Die Gatter und deren assoziierte Fehler sind strukturell äquivalent und produzieren für
alle Testmuster ein identisches Syndrom.

Im ersten Fall können die Äquivalenzen aufgelöst werden, indem man versucht die Fehlerinfor-
mation, die von einer möglichen Fehler-Stelle aus propagiert wird, zu maximieren. Hierbei
könnte man mit Hilfe von ATPG-Tools (Automatic Test Pattern Generation) einen geeigne-
ten Testmustersatz erzeugen, der Transitionen über alle möglichen Pfade durch die Gatter
verschickt und so ein vollständiges Bild des Fehlerausmaßes erzeugt. In der Praxis ist dies aber
aufgrund der hohen Anzahl an möglichen Pfaden im Schaltkreis nicht durchführbar.

Im Fall einer strukturellen Äquivalenz lässt sich die Fehlerinformation dagegen nicht durch
die Wahl eines anderen Testmustersatzes verbessern. Fehler mit fester Defektgröße können an
diesen Gattern aufgrund des äquivalenten Verhaltens nicht unterschieden werden, wodurch die
diagnostische Auflösung beschränkt wird. Deshalb werden die im Anschluss an das Critical Path
Tracing verbleibenden Fehlerkandidaten von strukturell äquivalenten Knoten in Äquivalenzklas-
sen eingeteilt, sodass der Diagnosealgorithmus die Symptome eines DUDs nun zu bestimmten
Fehlerklassen zuordnen kann. Die Gatter der Äquivalenzklassen werden für SMALLDELAYs dabei
gemäß einem Vorschlag aus [Sch11] zusammengefasst, der auf einer Methode aus [WLRI87]
zur Bestimmung der strukturellen Äquivalenzen bei Transitionsfehlern basiert. Hierfür werden
die folgenden Regeln verwendet:

(R1) Sei n ein Gatter mit einem einzigen Fanout g. Dann sind n und g strukturell äquivalent,
wenn g einen einzigen Eingang hat.

(R2) Seien n und g bzw. g und h strukturell äquivalent, dann sind n und h ebenfalls strukturell
äquivalent (Transitivität).

Mit g als einzigem Nachfolger von n sind die beiden Gatter Teil eines Fanout-freien Bereichs.
Da g keine zusätzlichen Nebenpfade (Off-Path Signale) hat, ist die Menge an Pfaden durch den
Knoten n identisch mit denen durch g, wodurch alle injizierten SMALLDELAY-Fehler dieselben
Aktivierungs- und Propagierungsbedingungen haben. Dabei bleibt auch die Puls-Filterung der
Signale entlang der Kette konsistent, sodass das Verhalten von Fehlern gleicher Größe an n und
g identisch ist. Die Gatter können somit durch keinen Verzögerungstest unterschieden werden
und sind deshalb strukturell äquivalent (R1). Mit Hilfe der transitiven Eigenschaft (R2) werden
die strukturell äquivalenten Gatter nun folgendermaßen in Äquivalenzklassen eingeteilt:
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δ-Äquivalenzklasse
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Abbildung 3.2: Strukturelle Äquivalenz. – Kollabierung einer δ-Äquivalenzklasse zu einem
Repräsentanten.

Definition 3.1 (δ-Äquivalenzklasse). Sei H ⊆ G ein verbundener Graph bestehend aus einer
Kette von k strukturell äquivalenten Gattern n0, n1, ..., nk−1. Ist H maximal und gemäß den vorigen
Regeln, dann bilden die Knoten von H eine δ-Äquivalenzklasse.

Die Gatter der Äquivalenzklassen und deren assoziierte Fehler werden nun zu einzelnen
Repräsentanten reduziert (Fault-Collapsing), die das Verhalten der Fehler in ihrer Klasse wider-
spiegeln. Als Repräsentant wurde das vorderste Glied der Kette einer jeden Äquivalenzklasse
gewählt. Einzelne Gatter, die nicht nach Definition 3.1 in Gruppen zusammengefasst werden
konnten, bilden jeweils eigenständige Klassen. Die Beschränkung der CPT Kandidaten auf
die Repräsentanten von Äquivalenzklassen verringert dabei den Aufwand weiterer logischer
Diagnose-Verfahren. Falls die logische Diagnose zur Steuerung einer physischen Untersuchung
(z.B. mit dem Elektronenraster-Mikroskop) verwendet werden soll, so müssen die einzelnen
Fehlerstellen der Äquivalenzklassen dennoch explizit untersucht werden, um die defekte Stelle
auszumachen. Abbildung 3.2 illustriert das Schema einer Kollabierung von strukturell äquiva-
lenten Gattern und zeigt die Äquivalenzklasse mit dem dazugehörigen Repräsentanten.

3.1.2 Zeitliche Einschränkung der Kandidaten

Mit dem Critical Path Tracing und der Kollabierung von strukturellen Äquivalenzen können die
initialen Fehler-Kandidaten eines Schaltkreises räumlich reduziert werden. Da SMALLDELAYs
mit ihrer individuellen Verzögerung auch eine Zeitkomponente besitzen, kann es vorkommen,
dass manche Symptome aufgrund bestimmter Pfadlängen bei der Signalpropagierung nur für
bestimmte Defektgrößen an den verbleibenden Knoten sichtbar sind. Dadurch kann zusätzlich
eine globale zeitliche Abschätzung der Defekte aller Knoten durch Eingrenzung der DUD-
Fehlergröße δ f mit Hilfe einer Unter- (LB) und einer Obergrenze (UB) durchgeführt werden,
sodass δ f ∈ [LB, UB]. Des Weiteren kann die Fehlerinformation dazu verwendet werden, um
eine erste Abschätzung der Defektgröße zu gewinnen.
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Bestimmung einer Untergrenze

Zur Bestimmung einer Defekt-Untergrenze wird die minimale (EA) und maximale (LS) ku-
mulative Signal-Propagierungszeit von den Eingängen bis zu den Knoten durch den Schaltkreis
propagiert [Sch11]. Die Zeiten errechnen sich über die Nominalschaltzeiten der jeweiligen
Gatter: Sei n ∈ V ein Gatter mit einer Nominalverzögerung von δ, dann gilt

EA(n) = min
i∈FanIn(n)

(EA(i)) + δ und LS(n) = max
i∈FanIn(n)

(LS(i)) + δ.

Die Eingänge i ∈ I ⊆ V des Schaltkreises werden mit EA(i) = 0 und LS(i) = 0 initialisiert.
An einem Schaltungsausgang o ∈ O ⊆ V kann man aus den Zeiten EA(o) und LS(o) die
kumulative Verzögerung des längsten bzw. kürzesten Pfades von den Schaltungseingängen
bis Ausgang o ableiten. Mit Hilfe der Slacks ∆T

min = T− LS(o) bzw. ∆T
max = T− EA(o) dieser

Pfade lässt sich dabei ein Defektgrößen-Intervall für den Ausgang o bestimmen [Sch11]:

Do = [∆T
min, ∆T

max].

Das Defekt-Intervall Do vereint alle relevanten Defektgrößen eines Ausgangs o. So gibt
min(Do) die untere Schranke der detektierbaren Defektgrößen an. Defekte mit einer Ver-
zögerung δ f < min(Do) werden am Ausgang nicht erkannt, und müssen deswegen nicht
weiter betrachtet werden. Die obere Schranke max(Do) repräsentiert dagegen die kleinst-
mögliche Transitionsfehler-Größe an diesem Ausgang. Da jeder Transitionsfehler bereits den
schlimmsten Fall eines Verzögerungsfehlers an einem Gatter modelliert, brauchen die De-
fekte δ f > max(Do) im variationsfreien Fall ebenfalls nicht weiter betrachtet zu werden.
Die Berechnung der Propagierungszeiten wird einmalig und mit einem Aufwand von O(N)

durchgeführt.

Lemma 3.1.1. Um die effektive Defekt-Untergrenze LB eines Fehlers anhand der fehlerhaften
Ausgänge O f zu bestimmen, wird im Folgenden die größte untere Schranke der Defekt-Intervalle
Do aller Ausgänge o ∈ O f berechnet:

LB = min(∩o∈O f {Do}) = max({min(Do) : o ∈ O f }).

Dadurch ist sichergestellt, dass die Zeitbedingung von mindestens einem Pfad durch einen jeden
Ausgang verletzt ist.

Beweis. Sei LB = max({min(Do) : o ∈ O f }). Dann gibt es einen Ausgang o ∈ O f , an dem
ein längster Pfad p mit einem Slack ∆T

min = LB endet. Nimmt man nun an, es existiere eine
kleinere Schranke LB′ = LB− ε für ein ε > 0, dann ist die Slack-Differenz des längsten Pfades
durch o und der neuen Schranke LB′ gegeben mit ∆T

min − ∆T
LB′ = LB− LB′ = ε > 0. Daraus

folgt o /∈ O f und ein Widerspruch.
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Beispiel 3.1. Seien Do1 = [3, 5] und Do2 = [1, 6] die Defekt-Intervalle zweier feh-
lerhafter Ausgänge o1, o2 ∈ O f . Dann ist LB = max({min([3, 5]), min([1, 6])}) =
max({3, 1}) = 3 die Mindestdefektgröße, die benötigt wird, um das Zeitverhalten
von o1 und o2 zu verletzen.

Für den variationsfreien Fall repräsentiert die hergeleitete Schranke LB immer eine gülti-
ge Untergrenze, mit der die Fehlermenge an den verbleibenden Gatter-Kandidaten zeitlich
eingegrenzt werden kann.

Bestimmung einer Obergrenze

In [MMSTR08] werden die fehlerfreien Antworten dazu genutzt, um Aussagen über eine
mögliche Obergrenze zu machen. Hierbei wird angenommen, dass Defekte, die einen Fehler
über einen Pfad zu einem Ausgang o ∈ O propagieren können, nicht groß genug sind, wenn
o bei der Abtastung einen fehlerfreien Wert aufweist. Bei genauerer Betrachtung können
Glitches und Hazards an den Schaltungsausgängen dabei jedoch einen falschen Eindruck
verbreiten, wenn die Signale zum Zeitpunkt T der Abtastung einen gutartigen Wert besitzen. Als
Konsequenz würde die Defekt-Obergrenze somit unterschätzt werden, wodurch der eigentliche
Fehlerkandidat aus der Kandidatenmenge entfällt. Aus diesem Grund wurde in dieser Arbeit
auf eine obere Beschränkung der Defektgröße durch fehlerfreie Antworten verzichtet.

Die Obergrenze UB wird deshalb mit der größten aller kleinsten Transitionsfehlergrößen
UB = max(∪o∈O f Do) abgeschätzt, wodurch sichergestellt ist, dass alle betroffenen Ausgänge
verletzt werden können und größere Defekte keine Änderungen am Syndrom verursachen.

Erste Abschätzung der Defektgröße

Um die Defektgröße in einer ersten Instanz genauer zu approximieren, wird mit dem Zeitsi-
mulator zunächst eine Gutsimulation der Testmustermenge Π durchgeführt. Anschließend
extrahiert man für jeden fehlerhaften Ausgang o ∈ O f eines fehlerhaften Verzögerungstests
π ∈ Π die Stabilisierungszeit LS(o, π) im fehlerfreien Fall. Die Stabilisierungszeit eines
Ausgangs gibt dabei den Zeitpunkt der letzten Transition im Signalverlauf an.

Mit Hilfe der Abtastzeit T kann man den Slack ∆T(o) = T − LS(o, π) am Schaltungsaus-
gang o ∈ O f eines fehlerhaften Verzögerungstests π berechnen und erhält somit eine mögliche
Defektgröße, die zur Verletzung der Zeitbedingungen an o verwendet werden kann. Hierbei
wird angenommen, dass die Zeitbedingungen an einem Knoten verletzt sind, sobald der Slack
∆T(o) ≤ 0 ist. Da die Zeitbedingung eines jeden fehlerhaften Ausgangs o ∈ O f notwendiger-
weise verletzt sein muss, wird das Maximum der berechneten Slacks zur Abschätzung der
möglichen Defektgröße δest genommen:

δest = max({∆T(o) : o ∈ O f }).
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Je nachdem, über welche Pfade die Verzögerungstests die Transitionen durch den Schaltkreis
propagieren, können die Stabilisierungszeiten der Signale und die daraus resultierenden Slacks
variieren.

Aufgrund der Berücksichtigung der Signalpropagierung in der Zeitsimulation kann die abge-
schätzte Defektgröße δest die echte Defektgröße δ f insbesondere bei robusten Verzögerungstests
relativ gut approximieren.

Falls die Stabilisierungszeiten an einem Ausgang durch einen Pfad bestimmt ist, der nicht
durch die Fehlerstelle führt, ist es möglich, dass δ f unterschätzt wird. Das tritt hauptsächlich
dann auf, wenn der Seiten-Pfad eine größere Propagierungzeit hat, als der Pfad durch die
Fehlerstelle. Das Unterschätzen ist aber nicht weiter schlimm, da δest in diesem Fall immer
noch eine gültige Untergrenze ist.

A

B
Z

t1 t20 T

0 T

Abbildung 3.3: Überschätzung der Defektgröße durch blockierte Transitionen in der Zeitsimu-
lation. Das Ausgangssignal ist hier konstant, wodurch δest = T.

Bei nicht-robuster Signalpropagierung kann die Defektgröße durch Zeitsimulation allerdings
auch überschätzt werden. Dies ist in Abbildung 3.3 am Beispiel eines NAND-Gatters zu sehen.
Während der Gutsimulation erreicht das Eingangssignal A einen kontrollierenden Zustand
zur Zeit t1 > 0, noch bevor B diesen bei t2 > t1 verlässt. Die Propagierung der Transitionen
wird maskiert, wodurch der Gatterausgang auf einem konstant kontrollierten Wert bleibt. Die
Stabilisierungszeit von Z ist aufgrund der fehlender Transitionen gleich null und es ergibt sich
eine Untergrenze von δest = T. Da jedoch t1 > 0 und der tatsächliche Defekt δ f somit auch eine
Größe von δ f = T − t1 haben kann, würde dieser Defekt bei der Begrenzung der Kandidaten
ausgeschlossen werden, da δ f < δest. Aus diesem Grund ist δest keine gültige Untergrenze und
eignet sich deshalb nicht zur Einschränkung der Kandidatenmenge.

3.2 Simulationsbasierte Analyse

Nachdem die initialen Fehler-Kandidaten durch die strukturelle Analyse räumlich und zeitlich
reduziert worden sind, werden nun die verbleibenden Fehlerstellen durch explizite Fehlersimu-
lation genauer untersucht, um so den eigentlichen Defekt lokalisieren zu können.
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Abbildung 3.4: Berechnung der Evidenz-Komponenten (σf ′,π, τf ′,π und ι f ′,π) eines Referenz-
fehlers f ′ für ein Testmuster π durch Vergleich der fehlerhaften Ausgänge.

3.2.1 Aufbau

Abbildung 3.4 zeigt den allgemeinen Aufbau der simulationsbasierten Analyse. Hierbei wird
ein Antwortmuster des zu diagnostizierenden Chips (DUD) mit denen der von einer Fehler-
maschine (FM) simulierten Referenzfehler verglichen. Die FM ist hier ein Zeitsimulator, der
einzelne SMALLDELAY-Fehler in die Schaltung injizieren und diese mit Hilfe der Signalverläufe
(Waveforms) präzise an beliebigen Zeitpunkten evaluieren kann.

Für jeden Verzögerungstest π werden beim Vergleichen der Antworten eines Referenzfehlers f
aus der Kandidatenmenge anhand die fehlerhaften Bits von DUD und FM sogenannte Evidenzen
e( f , π) berechnet. Evidenzen sind Tupel, die sich aus den Komponenten σf ,π, τf ,π, sowie ι f ,π
zusammensetzen (vgl. [HW07]). Durch komponentenweises Addieren der e( f , π) eines jeden
Testmusters π ∈ Π, erhält man die globale Evidenz e( f , Π) des Referenzfehlers f für den
gesamten Testmustersatz. Nach Simulation aller Referenzfehler werden die globalen Evidenzen
mit Hilfe einer Funktion bewertet, um so eine sortierte Liste von Kandidaten zu erhalten, die
den Defekt im DUD am besten erklären können.

3.2.2 Adaptive Simulation

Nach der strukturellen Analyse kann die Zahl der möglichen Fehlerkandidaten immer noch
sehr groß sein. Diese hängt dabei sowohl von der Menge der verbleibenden Fehlerstellen S
nach dem Critical Path Tracing, als auch von der Zahl der verschiedenen zu untersuchenden
Defektgrößen an jedem Knoten ab. Bei der Fehlergenierierung im SMALLDELAY-Fehlermodell
sind die einzelnen Defektgrößen eines Knoten durch die Menge der unterschiedlich langen
Pfade durch diesen bestimmt [Sch11]. Jeder im Fehlermodell generierte Defekt eines Knotens
verletzt dabei in Abhängigkeit der assoziierten Defektgröße δ die Zeitbedingungen aller Pfade
mit der Länge größer oder gleich T − δ.
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3 Adaptive simulationsbasierte Diagnose

Sei nun k die gemittelte Anzahl an verschieden langen Pfaden durch die Knoten in G, dann
existieren durchschnittlich k verschiedene SMALLDELAY-Fehler für einen jeden Knoten im
Modell, womit die Gesamtzahl der zu simulierenden Fehler mit O(k · |S|) abgeschätzt werden
kann. Da Fehlersimulation mit dem Zeitsimulator ein sehr aufwändiger Prozess ist und k in der
Regel sehr groß ist, wäre ein simulationsbasierter Ansatz mit der vollständigen verbliebenen
Kandidatenmenge S aus den O(k · |S|) Fehlern somit immer noch sehr kostspielig. Aus diesem
Grund muss die Zahl der Simulationen noch weiter gesenkt werden.

Untersuchung des Evidenz-Verhaltens

Um den Simulationsaufwand weiter reduzieren zu können, werden in dieser Arbeit Annahmen
über das qualitative Verhalten der Evidenzen von Fehlern an den einzelnen Kandidatenstellen
gemacht.

Hierbei wurde zunächst das Verhalten von Fehlern an der eigentlichen Defektstelle

in Abhängigkeit der Defektgröße beobachtet. Die Zahl der übereinstimmenden fehlerhaften Bits
σf ′ eines Referenzfehlers f ′ wies dabei für eine Defektgröße δ f ′ ≈ δ f ein globales Maximum
auf. Für δ f ′ < δ f fielen diese typischerweise geringer aus, da sich die Zahl der fehlerhaften
Antwortbits für kleinere Defekte verringert. Ebenso wurde bei δ f ′ > δ f ein Verlust an σf ′

festgestellt, was sich durch die Präsenz von Hazards erklären ließ, die über den Zeitpunkt der
Abtastung hinausgeschoben worden sind. Bei den Fehlvorhersagen ι f ′ konnte man des Weiteren
beobachten, dass sich die Anzahl bei Erhöhung der Defektgröße im qualitativen Verlauf bis zur
Sättigung stetig vergrößert hat. Lediglich bei δ f ′ ≈ δ f wurde ein vorübergehender Einbruch im
Verlauf festgestellt. Hier hat ι f ′ ein lokales Minimum aufgewiesen, da die Defektgrößen δ f ′ und
δ f übereingestimmt hatten.

Zudem wurde angenommen, dass Defekte einer Größe an den unterschiedlichen Gattern
aufgrund von strukturellen Korrelationen ein gleichartiges Fehlverhalten aufweisen. Erste Beob-
achtungen hatten dabei ergeben, dass sich die qualitativen Verläufe der Evidenzkomponenten
σf ′ und ι f ′ für unterschiedlichen Kandidatenstellen gleich verhalten, da die Gatter ähnliche
Aktivierungs- und Propagierungsbedingungen haben. In Abhängigkeit von der Struktur des
Schaltkreises (z.B. durch Rekonvergenzen), können sich die Verläufe einzelner Gatter dennoch
von anderen unterscheiden. Allerdings wurde unter den Ausreißern ebenso ein Gruppen-
Verhalten festgestellt, sodass auch hier von Ähnlichkeiten im qualitativen Verlauf gesprochen
werden kann.

Abbildung 3.5 illustriert die Ähnlichkeiten der Evidenzen am Beispiel der Kandidaten S nach
der strukturellen Analyse mit 2560 Testantworten eines DUDs. Jede Kurve entspricht dem
Verlauf der übereinstimmenden (Sigma) bzw. falsch vorhergesagten (Iota) fehlerhaften Bits
aller simulierten Defekte an den Kandidatenstellen.
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Abbildung 3.5: Sigma- und Iota-Werte von CPT-Kandidaten für einen Testsatz aus Pseudozu-
fallsmustern. Die simulierten Defekte der eigentlichen Fehlerstelle sind mit
schwarzen Kreisen eingezeichnet. Der senkrechte Strich markiert die eigentli-
che Größe des Defekts (112) im DUD.
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Selektive Simulation der Kandidaten

Die Ähnlichkeiten in den Evidenzen werden nun ausgenutzt, um selektiv Kandidaten zu
simulieren. Dabei werden die folgenden drei Schritte ausgeführt:

• Simuliere die in der ersten Instanz abgeschätzte Defektgröße δest an allen CPT-Kandidaten
und bewerte die Evidenzen.

• Simuliere eine Menge verschiedener Defektgrößen an der Stelle des besten Kandidaten
aus Schritt 1 und bewerte die Evidenzen.

• Simuliere die Defektgröße δ f in des besten Kandidaten aus Schritt 2 an allen anderen
CPT-Fehlerstellen und bewerte die Evidenzen.

Zunächst wird an allen Kandidaten S des Critical Path Tracing die in Abschnitt 3.1.2 abge-
schätzte Defektgröße mit der Fehlermaschine simuliert. Die dabei berechneten Evidenzen
werden anschließend mit Hilfe einer Bewertungsfunktion evaluiert (siehe nächster Abschnitt),
um einen Einstiegspunkt s ∈ S zu finden. Wenn die strukturelle Analyse bereits eine gute
Approximation der Defektgröße liefert, sodass δest ≈ δ f , dann befindet sich der Eingangspunkt
mit hoher Wahrscheinlichkeit an der eigentlichen Defektstelle.

Im zweiten Schritt wird anschließend die abgeschätzte Defektgröße δest korrigiert, indem
das Verhalten einer Menge von Defekten verschiedener Größen am Einstiegspunkt s simuliert
und beobachtet wird. Hinsichtlich der vielen Pfade im Schaltkreis ist die Berechnung einer
vollständigen Liste mit allen Fehler eines Knotens nach dem Modell sehr aufwändig. Die zu
simulierenden Fehler werden deshalb durch eine Quantisierung des Defekt-Intervalls am Ein-
stiegspunkt gewonnen, welches folgendermaßen nach [Sch11] bestimmt wird: Sei δmin(s) der
kleinste detektierbare Defekt und δmax(s) der Transitionsfehler des Knoten s, dann repräsentiert
Ds = [δmin(s), δmax(s)] das Defektgrößen-Intervall von s. Aus diesem lassen sich nun durch
Quantisieren des Intervalls mit einem festen Faktor q insgesamt q verschiedene Defektgrößen
in gleichen Abständen extrahieren. Diese können nun mit Hilfe der berechneten Ober- und
Untergrenzen auf die Menge D′s = QUANTISIERE(Ds, q) ∩ [LB, UB] reduziert werden.

Anmerkung: Durch die Quantisierung des Defekt-Intervalls Ds in diskrete Werte
kann es passieren, dass sich der eigentliche zu diagnostizierende Defekt nicht mehr
unter den extrahierten Größen befindet, wodurch ein Fehler bei der Abschätzung
eingeführt wird. Die Abweichung ist dabei abhängig vom gewählten Quantisie-
rungsfaktor q, der die Abstände zwischen zwei aufeinanderfolgenden Defektgrößen
in D′s bestimmt. Der lokale Fehler der Abschätzung beträgt bei einer erfolgreichen
Diagnose somit im Mittel ∆err = |δ f in− δ f | ≈ 1

2 ·
1
q Prozent. Zeitgleich reduziert die

Quantisierung jedoch die Komplexität des Fehlermodells in der Zeit-Komponente
auf einen konstanten Quantisierungsfaktor q < k und bietet einen Kompromiss
zwischen Präzision und Aufwand.
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Abbildung 3.6: Illustration aller Schritte der selektiven Simulation. – a) Bestimmung des
Einstiegspunktes. b) Korrektur der abgeschätzten Defektgröße. c) Finale Eva-
luierung der Kandidaten.

Die verbleibenden Defektgrößen in D′s werden dann in der Fehlermaschine simuliert. Nach
Bewertung der Evidenzen extrahiert man die Defektgröße δ f in des besten Kandidaten, welche
im Weiteren als neue Abschätzung von δ f dient.

Im dritten und letzten Schritt werden die einzelnen CPT-Fehlerstellen unter der korrigierten
Defektgröße δ f in evaluiert und die Evidenzen berechnet. Da die korrigierte Defektgröße am
Einstiegspunkt bereits im vorigen Schritt simuliert worden ist, muss diese hier nicht mehr
zusätzlich ausgewertet werden. Nach einer letzten Bewertung der resultierenden Evidenzen
erhält man dann die finale Rangliste mit den wahrscheinlichsten Kandidaten für den Defekt im
DUD.

Zur Veranschaulichung der selektiven Simulationsmethode wurden die drei Schritte in Abbil-
dung 3.6 illustriert. Im Vergleich zum vollen Simulationsansatz, müssen mit dieser Methode
nur q + 2 · |S| − 1 ∈ O(k + |S|) anstatt O(k · |S|) Simulationen durchgeführt werden.
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3 Adaptive simulationsbasierte Diagnose

3.3 Bewertung der Kandidaten

Die einzelnen Komponenten σf , τf und ι f der globalen Evidenz e( f , Π) eines Kandidaten f ge-
ben Aufschluss darüber, wie gut dieser den Fehler im DUD erklären (Sigma) bzw. nicht erklären
kann (Iota, Tau). Da Sigma und Tau durch FB1 = σf + τf korrelieren (siehe Abb. 3.4), werden
im Folgenden nur die Sigma und Iota Komponenten betrachtet. Mit Hilfe einer geeigneten
Bewertungsfunktion können die globalen Evidenzen der Kandidaten verglichen werden, um
eine sortierte Liste mit den wahrscheinlichsten Kandidaten zu erstellen. Dabei soll gelten: Je
kleiner der Rang des Kandidaten in der Liste, umso besser erklärt er das Syndrom des DUD.

Simulierte Fehler an der eigentlichen Defektstelle können idealerweise alle Fehlerbits des
DUD erklären und haben dabei keine Fehlvorhersagen. Dadurch haben diese typischerweise
einen kleinen Rang. Die Bewertungsmethode der POINTER-Diagnose [HW07] wendet hierbei
ein mehrstufiges Verfahren mit komponentenweiser Sortierung der Evidenzen an, welches
Kandidaten zunächst nach den meisten erklärten Fehlerbits σf und anschließend nach den
wenigstens Fehlvorhersagen ι f sortiert. Bei einer hohen Dynamik in den Ausgangssignalen (z.B.
Hazards) eignen sich diese Verfahren jedoch nicht zum Vergleichen von Verzögerungsfehlern,
da bereits kleinste Abweichungen in der Defektgröße dazu führen können, dass nicht mehr alle
fehlerhaften Antwortbits erklärt werden. Somit kann es passieren, dass der eigentliche Fehler
aufgrund fehlender Sigmas von der Spitze der Kandidatenliste verdrängt wird und absteigt,
unabhängig davon, ob der Kandidat Fehlvorhersagen produziert oder nicht.

3.3.1 Reward & Penalty

Hinsichtlich der oben erwähnten Problematik bezüglich der Dynamik in den Syndromen, wird
hier für die Bewertung der Kandidaten eine gewichtete Summe über die einzelnen Evidenz-
Komponenten verwendet. Die Summe berechnet einen Score-Wert, der eine gleichzeitige
Auswertung der erklärten und falsch vorhergesagten Bits ermöglicht:

score( f ) = ωσ · σf + ωι · ι f .

Dadurch ist es möglich, dass Kandidaten, die nicht alle Fehlerbits erklären, trotzdem die
beste Bewertung haben können, wenn diese im Vergleich zu den anderen Kandidaten wenig
Fehlvorhersagen aufweisen. Die Gewichte ωσ und ωι wurden dabei so gewählt, dass für jedes
erklärte Bit in σf ein Punkt an den Kandidaten verteilt und für jede falschen Vorhersage ι f
ein Teil als Strafe abgezogen wird. In der Literatur [WWW06] wird dieses Verfahren deshalb
„Reward and Penalty” genannt.

Beim Vergleich der Evidenzen zweier Fehler f1 und f2 gilt somit:

score( f1) > score( f2)⇒ Rang( f1) < Rang( f2).

1FB = Anzahl der fehlerhaften Bits im DUD Test.
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Abbildung 3.7: Mittelwerte avg(U) von Signalverläufen in einer Umgebung U 3 T.

3.3.2 Berücksichtigung der Signal-Stabilität

Wenn die Signalverläufe an den Schaltungsausgängen zum Zeitpunkt der Abtastung T eine ge-
wisse Dynamik aufweisen, kann es passieren, dass bei kleinsten Abweichungen der Defektgröße
eines Fehlers oder bei Variationen der Gatterverzögerungen im Schaltkreis, unterschiedliche
Signalwerte abgetastet werden. Dadurch wird der direkte Vergleich des Syndroms eines simu-
lierten Fehlers mit dem DUD erschwert. Aus diesem Grund werden die Ausgangssignale der
Fehlermaschine im Folgenden in einem Bereich um den Abtastzeitpunkt T ausgewertet, um die
Stabilität zu ermitteln.

Der Zeitsimulator liefert zunächst den genauen Verlauf eines Signals als Waveform signal(t),
welches für alle t ∈ R+

0 evaluiert werden kann:

signal : R+
0 → {0, 1}.

Als einfaches Maß zur Bestimmung der Stabilität an einem Ausgang, betrachtet man diesen
dann in einer Umgebung U = [t0, t1] ⊆ R+

0 um den Abtastzeitpunkt T ∈ U. Dabei berechnet
man die Abweichung des abgetasteten Werts eines Ausgangs bei T vom gemittelten Wert des
Signals über U. Da ein Signalverlauf eine partiell integrierbare Funktion bildet, kann der
Mittelwert avg(U) ∈ [0, 1] folgendermaßen bestimmt werden:

avg(U) =
1

t1 − t0

∫
U

signal(t) dt.

Zur Veranschaulichung wurden in Abbildung 3.7 Beispiele von berechneten Mittelwerten
einzelner Signalverläufe illustriert. Der Mittelwert entspricht dabei gleichzeitig der Wahrschein-
lichkeit P[„signal(t) = 1”] bei gleichverteilt zufälligem Abtasten an einer Stelle t ∈ U.
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Robuste Evaluierung der Syndrome

Bei der Evaluierung wird nun die Stabilität der berechneten Evidenzkomponenten verwendet,
um eine robuste Auswertung der Syndrome im Falle von Variationen zu ermöglichen. Dazu
wird im Folgenden zunächst der Begriff des Syndromsignals eines Ausgangs definiert:

Definition 3.2 (Syndromsignal). Das Syndromsignal syn(t) eines Schaltungsausganges ist
eine Funktion des Ausgangssignals signal(t) in Abhängigkeit einer Zeitkomponente t ∈ R+

0 und
dem stabilen Wert f inal = limt→∞ signal(t) ∈ {0, 1}. Es beschreibt die Boolesche Differenz von
signal(t) und f inal:

syn(t) := signal(t)⊕ f inal =

1− signal(t) Wenn f inal = 1,

signal(t) sonst.

Wie schon signal(t) ist auch syn(t) vollständig über R+
0 definiert und kann daher partiell

integriert werden:

∫
U

syn(t) dt =
∫

U
(signal(t)⊕ f inal) dt =


(t1 − t0)−

∫
U

signal(t) dt Wenn f inal = 1,∫
U

signal(t) dt sonst.

Über den Mittelwert avgsyn(U) vom Syndromsignal eines Ausgangs o ∈ O wird nun dessen
Fehlerwahrscheinlichkeit ωU(o) in der Umgebung U 3 T für den aktuellen Test bestimmt.
Da syn(t) = 1 ⇔ „signal(t) fehlerhaft”, gilt ωU(o) = avgsyn(U) = P[„Ausgang fehlerhaft”].
Bei der Auswertung des Testmusters fließt diese dann als Gewicht für die jeweiligen Evidenz-
Komponenten ein.

Sei ωU(o) die in einer Umgebung U gemessene Fehlerwahrscheinlichkeit eines Ausgangs o ∈ O
der FM. Ferner sei αo = 1 (αo = 0), wenn o im DUD fehlerhaft (fehlerfrei) ist. Beim Vergleich
eines Tests π für einen Referenzfehler f wird für jeden Ausgang o des DUDs mit αo = 1 die
Fehlerwahrscheinlichkeit ωU(o) bestimmt. Aufgrund der Korrelation von σf ,π und τf ,π, werden
diese um ωU(o) bzw. 1−ωU(o) erhöht, sodass

σf ,π := ∑
o∈O

(αo · wU(o))

und
τf ,π := ∑

o∈O
(αo · (1− wU(o))).

Da bei der Berechnung der σf ,π und τf ,π alle fehlerhaften Bits des DUDs betrachtet wer-
den, ermöglicht dies einen Teil der durch Variationen entgangenen Evidenzen mit ωU(o) zu
rekonstruieren.
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3.4 Zusammenfassung

Von den fehlerfreien Ausgängen des DUDs werden nur jene Ausgänge in der FM untersucht,
die zum Zeitpunkt T einen fehlerhaften Wert aufweisen. Für jeden fehlerhaften Ausgang o ∈ O f
wird ι f ,π dabei um ωU(o) erhöht:

ι f ,π := ∑
o∈O f

((1− αo) · wU(o))

Dies bedeutet im Fall, wenn das Syndromsignal eines zum Zeitpunkt T fehlerhaften Aus-
gangs der FM seinen Wert aufgrund einer oder mehrerer Transitionen innerhalb des ob-
servierten Zeitraums U wechselt, dass die Fehlerwahrscheinlichkeit für diesen Ausgang
P[„o fehlerhaft in U”] = ωU(o) < 1 ist. Mit ωU(o) als Gewichtung können die von Hazards,
Glitches und von nahe am Abtastzeitpunkt stattfindenen Transitionen verursachten Iotas der
fehlerhaften Ausgänge somit reduziert werden. Dabei werden die Evidenzen an die Fehlerwahr-
scheinlichkeiten angepasst werden, wodurch eine robuste Auswertung bei Abweichungen der
Defektgröße oder Variationen der Gatterverzögerungen ermöglicht wird. Die Fehlerwahrschein-
lichkeiten der fehlerfreien Ausgänge der FM werden nicht weiter betrachtet. Eine zusätzliche
Untersuchung dieser Ausgänge würde die Evaluierung durch zuviele Fehlvorhersagen negativ
beeinflussen, da anhand der fehlerfreien DUD Antworten zum Zeitpunkt T mit dem Antwort-
mustersatz keine Annahmen über die Stabilität der jeweiligen Ausgänge gemacht werden
können.

3.4 Zusammenfassung

In diesem Kapitel wurde ein Diagnose-Verfahren für kombinatorische Schaltungen vorgestellt,
das einzelne SMALLDELAY-Fehler lokalisieren und deren Defektgröße abschätzen kann. Dabei
kommen sowohl Effect-Cause als auch Cause-Effect Verfahren zum Einsatz.

Anhand der Fehlerinformationen des zu diagnostizierenden Chips, werden in einers struk-
turellen Analyse zunächst die initialen logischen Fehlerstellen mit dem Critical Path Tracing
räumlich eingeschränkt. Des Weiteren wird eine globale zeitliche Eingrenzung, sowie eine erste
genauere Abschätzung der möglichen Defektgröße unternommen.

Im Rahmen einer simulationsbasierten Analyse wurde eine neuartige Methode zur systemati-
schen Findung der Fehlerursache in O(k + |S|) Schritten vorgestellt, welche mit Hilfe eines
Zeitsimulators die Kandidaten effizient und präzise auswerten kann. Dabei wird die Stabilität
der jeweiligen Ausgangssignale mit berücksichtigt, um im Falle von Variationen im Schaltkreis
robuste Resultate zu liefern.
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4 Ergebnisse

Dieses Kapitel beschreibt die Experimente und deren Ergebnisse, die im Rahmen dieser Arbeit
durchgeführt wurden, um die Diagnostizierfähigkeit der präsentierten Methode für beliebige
SMALLDELAY-Fehler zu untersuchen. Dabei wurden sowohl kleinere als auch größere industri-
elle Benchmark-Schaltkreise getestet. Zusätzlich wurde das Verhalten des Diagnosealgorithmus
bei Gatter-Variationen und kompaktierten Test-Antworten überprüft.

4.1 Aufbau der Experimente

Timing-Daten der Schaltkreise

Der Zeitsimulator benötigt zur Simulation der Schaltkreise die Nominalschaltzeiten von allen
Gattern. Diese müssen sowohl für steigende als auch fallende Flanken definiert sein. Im Rahmen
dieser Arbeit wurden diese zur Vereinfachung in Form von Einheitsgrößen gewählt und sind
für steigende und fallende Flanken identisch. Die Einheitsgrößen sind für die jeweiligen
primitiven Gattertypen dabei wie folgt festgelegt worden:

• Gatter mit zwei Eingängen (AND, NAND, OR, NOR, XOR, XNOR) haben eine Verzögerung
von 2 u.

• Gatter mit einem Eingang (INV, BUF) haben eine Verzögerung von 1 u.

• Schaltungseingänge und Ausgänge (INPUT, OUTPUT) haben keine Verzögerung (0 u).

Andere Gattertypen treten in den verwendeten Schaltkreisen dabei nicht auf.

Die Abtastzeit T an den Ausgängen wurde in Abhängigkeit der Tiefe h vom Schaltungsgraphen
berechnet. Um einen genügend großen Abstand zwischen der maximalen Verzögerung des
längsten Pfades und dem Abtastzeitpunkt einzuhalten, wurde zur Berechnung von T eine Ver-
zögerung von drei Einheiten pro Ebene gewählt, sodass T = (3 · h) u. Dadurch ist sichergestellt,
dass bei den fehlerfreien Schaltkreisen die Zeitbedingungen der Pfade auch unter Variationen
einhalten werden können, da die maximale Verzögerungszeit eines Schaltungsknoten kleiner
als die der Ebene ist.

Eine Übersicht mit den Daten aller untersuchten Schaltkreise befindet sich in Tabelle 4.1.
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Schaltkreis Eingänge Ausgänge Gatter Tiefe Pfade SmallDelays

ISCAS ’85

c432 36 7 216 29 8.39 · 104 2.05 · 106

c499 41 32 246 14 9.44 · 103 1.30 · 105

c880 60 26 435 30 8.64 · 103 1.89 · 105

c1355 41 32 590 27 4.17 · 106 1.06 · 108

c1908 33 25 1057 44 7.29 · 105 2.49 · 107

c2670 233 140 1476 39 6.80 · 105 2.12 · 107

c3540 50 22 1983 56 2.87 · 107 1.17 · 109

c5315 178 123 2973 52 1.34 · 106 5.36 · 107

c6288 32 32 2416 124 9.89 · 1019 9.16 · 1021

c7552 207 108 4043 45 7.26 · 105 2.32 · 107

ISCAS ’89
s35932 1763 2048 16353 29 1.97 · 105 5.02 · 106

s38417 1664 1742 23537 48 1.39 · 106 4.52 · 107

s38584 1464 1730 21462 59 1.08 · 106 4.72 · 107

ITC ’99

b17 1452 1512 35549 103 3.95 · 1011 2.43 · 1013

b20 522 512 21599 73 2.90 · 108 1.27 · 1010

b21 522 512 22055 74 2.78 · 108 1.22 · 1010

b22 767 757 32090 74 4.37 · 108 1.92 · 1010

NXP

p35k 2912 2229 41443 72 6.03 · 109 3.57 · 1011

p81k 4029 3952 106450 55 1.71 · 108 5.77 · 109

p89k 4632 4557 80963 109 1.28 · 108 6.55 · 109

p100k 5902 5829 84356 104 2.55 · 1010 1.69 · 1012

p141k 11290 10502 152808 92 1.13 · 109 5.21 · 1010

p259k 18713 18495 298796 204 3.59 · 1014 4.32 · 1016

p269k 17333 16621 239771 105 1.68 · 107 5.69 · 108

p286k 18351 17835 332726 178 2.82 · 1011 2.38 · 1013

p378k 15732 17420 341315 108 6.80 · 108 2.26 · 1010

p418k 30430 29809 382633 234 1.69 · 1014 1.60 · 1016

Tabelle 4.1: Daten der im Rahmen dieser Arbeit untersuchten Benchmark-Schaltkreise von
ISCAS ’85, ISCAS ’89, ITC ’99 und NXP.

Fehler-Generierung

Um die Diagnose-Methode auszuwerten, wurde für verschiedene Schaltkreise der ISCAS ’85, ’89,
sowie ITC ’99 und NXP Benchmarks jeweils eine Liste mit zu diagnostizierenden SMALLDELAY-
Fehlern bereitgestellt. Hierfür wurden über die Nominalschaltzeiten der Schaltkreise zunächst
die vollständigen Fehlermengen nach dem pfadbasierten Modell [Sch11] aufwändig berechnet.
Aufgrund von momentanen Einschränkungen in der Fehlersimulation, wurden in dieser Arbeit
bei der Erzeugung der Fehler nur Gatterausgänge betrachtet [Sch11]. Ebenso werden Defekte
an primären Schaltungseingängen und -Ausgängen bei der Generierung ausgeschlossen.
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4.1 Aufbau der Experimente

Die generierten Fehler der Liste sind anschließend in zufälliger Reihenfolge in eigenständige
DUDs injiziert und im Zeitsimulator mit Verzögerungstests simuliert worden, um Testantworten
zu erzeugen und die Detektierbarkeit der Fehler festzulegen. Für die Diagnoseexperimente
wurden dabei jeweils eine Liste mit den ersten 1000 von den Testmustern erkannten Fehlern
eines jeden Schaltkreises abgespeichert, die in den Folgeexperimenten als Antworten von
defekten Chips wiederverwendet werden. Dadurch ist sowohl die Defektstelle als auch die
Defektgröße der Fehler in den Listen zufällig.

Als Testmustersätze wurden die von ADAMA generierten Pseudozufallsmuster verwendet,
welche in Paare aus Initialisierungs- und Propagierungsvektor unterteilt und zu Verzöge-
rungstests zusammengesetzt wurden. Zum Testen der DUDs wurden dafür 10240 Testmuster
generiert, was 5120 Verzögerungstests entspricht. Lediglich bei den ISCAS ’85 Schaltkreisen
sind aufgrund des Größenunterschieds nur halb so viele Muster verwendet worden.

Bewertung der Experimente

Bei der Bewertung des Diagnosealgorithmus werden die folgenden Kriterien betrachtet: Die Dia-
gnostizierbarkeit, die diagnostische Auflösung und die Abweichung der geschätzten Defektgröße.
Als Diagnostizierbarkeit wird dabei der Quotient aus (Anzahl Erfolge / Anzahl Experimente)
bezeichnet. Die diagnostische Auflösung entspricht der Anzahl der vom Diagnose-Tool gemel-
deten Kandidaten, welche im Anschluss an die logische Diagnose möglicherweise noch genauer
untersucht werden müssen, um die eigentliche Defektstelle auf dem Chip zu lokalisieren. Die
Abweichung der geschätzten Defektgröße gibt die prozentuale Abweichung des vorherge-
sagten Defekts relativ zur Breite des globalen Defektgrößen-Intervalls an, welches durch den
kürzesten und längsten Pfad im Schaltkreis bestimmt ist.

Nach der Berechnung und Sortierung der Evidenzen aller finalen Fehlerkandidaten, wird die
Liste in Gruppen aus Kandidaten mit identischen Evidenzen unterteilt, die anhand der Testant-
worten mit dem Algorithmus nicht weiter unterschieden werden können. Da die Reihenfolge
der Kandidaten einer Rang-Gruppe je nach verwendetem Sortierverfahren unterschiedlich
ausfallen kann, müssen die Evidenzen einer Gruppe deshalb gleichwertig behandelt werden.
Deswegen wird hier zur Bewertung ausschließlich der mittlere Rang der Kandidaten verwen-
det. Der Mittel-Rang eines Kandidaten s ist der durchschnittliche Rang aller Kandidaten in
seiner Rang-Gruppe. Sei RG(s) die Menge der Kandidaten in der Rang-Gruppe von s, und
Index(RG(s)) der beste Rang in RG(s), dann ist der Mittel-Rang von s (und auch allen anderen
Kandidaten der selben Rang-Gruppe) definiert durch:

MittelRang(s) = Index(RG(s)) +
⌊
|RG(s)|

2

⌋
.

Je kleiner der diagnostizierte Mittel-Rang des echten Kandidaten ist, umso besser ist das Ergeb-
nis der Diagnose. Die Fehlerdiagnose eines DUDs wird als Erfolg oder erfolgreich bezeichnet,
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4 Ergebnisse

Rang Evidenz Rang-Gruppe Index(RG) Mittel-Rang

1 e0 1 1 2
2 e0 1 1 2
3 e1 2 3 4
4 e1 2 3 4
5 e1 2 3 4
6 e2 3 6 6

Tabelle 4.2: Beispiel. – Rang-Gruppe und Mittel-Rang einer sortierten Liste von Evidenzen.

wenn sich der Mittel-Rang des wirklichen Fehlerkandidaten zwischen eins und zehn befindet.
Andernfalls wird der Fehler als nicht diagnostizierbar angenommen und sein Mittel-Rang auf
elf gesetzt. Hat der Kandidat eines zu diagnostizierenden Fehlers einen Mittel-Rang von eins,
so ist der Fehler perfekt diagnostiziert worden.

Da in dem hier vorgestellten Verfahren immer eine bewertete Liste von allen Kandidaten als
Ergebnis ausgegeben wird, wurde bezüglich der diagnostischen Auflösung der durchschnittliche
Mittel-Rang [HW07] der eigentlichen Kandidaten gewählt.

Parameter-Einstellungen

Vor Durchführung der Diagnose-Experimente mussten zunächst die benötigten Parameter
der Heuristik festgelegt werden, um die Defektgrößen-Quantisierung, die Umgebung zur
Evaluierung der Ausgänge und die Gewichte zur Bewertung der Evidenzen zu bestimmen.
Dabei wurden die folgenden Einstellungen gewählt:

• Defekt-Intervall Quantisierungsfaktor: q = 20.

• ωU–Umgebung: U = [T − 5%, T + 2.5%] = [0.95 · T, 1.025 · T].

• Gewichtung der Evidenz-Komponenten : ωσ = 1.0, ωι = −0.35.

Die Umgebung U ist asymmetrisch um den Abtastzeitpunkt T verteilt und jenseits von T
stärker beschränkt. Hierbei wird das Wissen ausgenutzt, dass sich Ausgangssignale für t > T
stabilisieren und letztendlich einen guten Wert annehmen. Bei den Gewichten der Evidenz-
Komponenten ist anfangs festgestellt worden, dass die Resultate der Diagnose bei Variation des
ωι-Parameters variieren. In einem frühen Experiment mit Haftfehlern wurden bei den ISCAS ’85
Schaltkreisen verschiedene Gewichtungen getestet von denen ωι = −0.35 im Durchschnitt die
höchste Rate an Erst-Rängen erzielt hatte. Aus diesem Grund wurde die Einstellungen in den
weiteren Experimenten beibehalten.
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4.2 Diagnose von Verzögerungsfehlern

Schaltkreis Erfolga Gruppe 1 Rang 1 Auflösung δ-Abw.

c432 99.3% 96.6% 90.8% 1.3 ±3.6%
c499 97.2% 94.9% 84.7% 1.4 ±12.8%
c880 98.8% 97.0% 77.1% 1.5 ±4.0%
c1355 98.9% 96.5% 83.0% 1.4 ±7.4%
c1908 96.1% 87.0% 67.6% 2.0 ±9.0%
c2670 93.3% 83.4% 67.2% 2.4 ±7.1%
c3540 97.0% 94.8% 85.7% 1.5 ±2.9%
c5315 96.7% 92.5% 86.4% 1.6 ±3.4%
c6288 81.7% 74.9% 69.4% 3.2 ±6.2%
c7552 97.0% 91.9% 84.1% 1.6 ±3.5%
s35932 99.8% 98.2% 94.9% 1.1 ±5.7%
s38417 99.1% 96.6% 84.1% 1.3 ±4.1%
s38584 98.8% 94.1% 73.2% 1.6 ±3.9%

∅ 96.4% 92.2% 80.6% 1.7 ±5.7%

Tabelle 4.3: Ergebnisse der ISCAS ’85 und ’89 Benchmark-Schaltkreise. – Für jeden Schaltkreis
wurden die Antwortmuster von 1000 fehlerhaften DUDs untersucht.

aMittel-Rang 1–10.

Verwendete Hardware

Sämtliche Experimente wurden auf modernen handelsüblichen Desktop-Computern durchge-
führt, welche jeweils mit einem Intel Core i7 Prozessor, 8 GB RAM (max. 4 GB verwendet)
und einer NVIDIA R©CUDATMGTX 480 Grafikkarte mit 1,6 GB globalem Speicher ausgestattet
waren.

4.2 Diagnose von Verzögerungsfehlern

In Tabelle 4.3 sind die Diagnose-Ergebnisse der ISCAS ’85 und ’89 Schaltkreise mit nominalen
Gatterverzögerungen dargestellt. In der linken Spalte steht der Namen der diagnostizierten
Schaltkreise. Spalte zwei zeigt die Prozentzahlen der erfolgreich diagnostizierten Fehler. Spalte
drei und vier zeigen den Anteil der Versuche, bei denen der eigentliche Fehler in der ersten
Rang-Gruppe bzw. auf dem ersten Mittel-Rang (und somit perfekt) diagnostiziert worden
ist. Die fünfte Spalte gibt die diagnostische Auflösung wieder. In der letzten Spalte steht die
durchschnittliche Abweichung der abgeschätzten Defektgröße.

Die durchschnittliche Erfolgsrate der ISCAS Schaltkreise lag mit Nominalzeiten bei 96,4%
und in 80,6% der Fälle konnte der Fehler perfekt diagnostiziert werden. Die diagnostische
Auflösung beträgt somit etwa 1,7 Kandidaten. Im Durchschnitt sind 38,8 Fehlerstellen nach
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4 Ergebnisse

Schaltkreis Erfolg Gruppe 1 Rang 1 Auflösung δ-Abw.

c499 100.0% 98.7% 89.0% 1.1 ±7.8%
c880 99.8% 94.5% 80.1% 1.4 ±2.8%
c1355 99.9% 95.0% 89.4% 1.1 ±5.9%
c2670 97.8% 84.0% 78.2% 1.7 ±2.3%
c7552 99.5% 93.4% 90.9% 1.2 ±1.8%
s35932 100.0% 95.8% 94.6% 1.1 ±3.5%
s38584 99.3% 91.5% 77.7% 1.5 ±2.7%

Tabelle 4.4: Ausschnitt der Diagnoseergebnisse der ISCAS Schaltkreise bei vollständiger Simu-
lation der quantisierten Defekt-Intervalle (q = 20) eines jeden Kandidaten.

dem Critical Path Tracing (CPT) übrig geblieben und mussten in der simulationsbasierten
Analyse untersucht werden. Am schlechtesten schnitt der Schaltkreis c6288 ab, der aufgrund
seiner vielen Verzweigungsstämme und Rekonvergenzen schwer zu diagnostizieren ist und
im Mittel etwa 196 CPT Kandidaten produziert hat. Bei 92,2% der DUDs wurde der Fehler
in der ersten Rang-Gruppe diagnostiziert, was vermuten lässt, dass die Fehlerabdeckung des
verwendeten Testmustersatzes nicht hoch genug war, um die Kandidaten zu unterscheiden.
Hier könnte man versuchen, mit Hilfe von ATPG-Tools (Automatic Test Pattern Generation)
weitere Testmuster zu erzeugen, sodass die Kandidaten der Gruppe unterschieden werden.

Die Abweichung der abgeschätzten Defektgröße betrug im Schnitt ±5, 7% und lag damit mehr
als doppelt so hoch, als der erwartete Mittelwert von ±2, 5%, welcher durch den gewählten
Quantisierungsfaktor q = 20 eingeführt wird. Die erhöhte Abweichung lässt sich zum einen
dadurch erklären, dass durch das Integral des Syndrom-Waveforms die Defektgröße überschätzt
wird. Zum anderen haben falsche Einstiegspunkte gelegentlich zu Ausreißern geführt, bei
denen die Aussagekraft der erklärten Bits (Sigma) zu sehr von den Fehlvorhersagen (Iotas)
unterdrückt wurde. Der Algorithmus hatte anschließend die Defektgröße bei der Korrektur
immer weiter reduziert, um die Iotas zu verringern und so eine bessere Bewertung zu erlangen.
Dies hatte letztlich zur Folge, dass der Defekt unterschätzt wurde.

Der Zeitaufwand der Diagnose eines defekten Schaltkreises reichte bei den ISCAS ’85 von
0,7 (c432) bis 22,6 Sekunden (c6288) für die 2560 Verzögerungstests. Im Schnitt dauerten die
Versuche 5,5 Sekunden pro DUD, während der Median bei 2,1 Sekunden lag. Die ISCAS ’89
Schaltungen benötigten etwa 11,1 Sekunden Rechenzeit bei doppelter Anzahl der Tests.

Zum Vergleich wurden in Tabelle 4.4 ein paar Ergebnisse bei Simulation aller quantisierten
Defektkandidaten dargestellt. Die Diagnose dieser Schaltkreise hatte dabei einen Simulations-
aufwand von durchschnittlich 545 Simulationen pro DUD und lag damit etwa neun Mal höher
als der vorgestellte adaptive Ansatz mit 62 Simulationen.
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4.2 Diagnose von Verzögerungsfehlern

Schaltkreis Erfolg Gruppe 1 Rang 1 Auflösung δ-Abw.

b17 95.2% 87.6% 60.8% 2.1 ±3.6%
b20 98.0% 93.2% 80.6% 1.6 ±2.4%
b21 97.7% 92.9% 78.1% 1.6 ±2.3%
b22 96.5% 91.0% 77.9% 1.7 ±2.1%
p35k 93.3% 89.0% 59.2% 2.4 ±4.7%
p81k 97.9% 95.7% 81.5% 1.5 ±4.2%
p89k 98.2% 90.8% 63.7% 1.8 ±3.0%

p100k 96.0% 89.6% 81.2% 1.8 ±2.6%
p141k 98.6% 95.5% 79.9% 1.5 ±3.2%
p259k 95.8% 90.3% 80.8% 1.7 ±1.7%
p269k 99.0% 95.3% 80.5% 1.4 ±4.4%
p286k 98.3% 93.3% 77.9% 1.5 ±2.5%
p378k 97.5% 93.5% 90.8% 1.5 ±3.5%
p418k 96.5% 90.7% 75.8% 1.8 ±1.7%
∅ 97.0% 92.0% 76.3% 1.7 ±3.0%

Tabelle 4.5: Diagnose-Ergebnisse der ITC ’99 und NXP Schaltkreise. – Demonstration an
größeren Benchmark-Schaltkreisen.

Skalierbarkeit

Um die Brauchbarkeit des Diagnose-Algorithmus für größere Schaltkreise zu testen, wurden
Experimente mit ITC ’99 und industriellen Benchmark Schaltkreisen von NXP durchgeführt.
Die Ergebnisse sind in Tabelle 4.5 zusammengefasst.

Beim Vergleich mit den ISCAS Schaltkreisen ist hier bei der diagnostischen Auflösung und
den Erfolgen ein qualitativ ähnliches Verhalten zu erkennen. Viele Schaltkreise wiesen einen
hohen Anteil an strukturellen Äquivalenzen auf, sodass die Kollabierung der Äquivalenzklassen
einen nicht-vernachlässigbaren Teil der Kandidaten eliminieren konnte. Die durchschnittliche
Anzahl an Kandidaten nach dem CPT betrug 40,7 Fehlerstellen. Zusätzlich wurden durch die
Kollabierung auch die Rang-Gruppen verkleinert, wodurch bei den NXP Schaltkreisen die
durchschnittliche Rate der Erst-Ränge um über 17 Prozentpunkte verbessert werden konnte.
Die Zahl der in der ersten Rang-Gruppe diagnostizierten DUDs lässt zudem wieder vermuten,
dass die Fehlerunterscheidung des Testmustersatzes zu gering war, um die Kandidaten aus-
einanderzuhalten. Hierfür müssten auch zusätzliche Muster generiert werden, sodass diese
Gruppen weiter untersucht werden können. Die geringere Fehler-Abweichung kommt durch
die höhere Tiefe der NXP Schaltkreise zustande. Je tiefer ein Schaltkreis ist, umso größer ist in
der Regel auch das globale Defektgrößen-Intervall, da dieses von der Differenz der Slacks vom
längsten und kürzesten Pfad im Schaltkreis abhängt. Da die Abweichung eines Defekts an ei-
nem Knoten relativ zu den globalen Grenzen gemessen wurde, fallen die lokalen Abweichungen
beim Vergleich dadurch weniger ins Gewicht, weil die untersuchten Defektgrößen-Intervalle
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4 Ergebnisse

der einzelnen Knoten verhältnismäßig kleiner sind. Dieses Phänomen war insbesondere bei den
Schaltkreisen p259k und p418k zu beobachten, bei denen die durchschnittliche Abweichung
weit unter dem Erwartungswert lag.

Bei den Rechenzeiten wurden für die Versuche der ITC ’99 Schaltkreise mit 5120 Verzö-
gerungstests durchschnittlich 24,5 Sekunden pro DUD gemessen. Bei NXP waren es 158,5
Sekunden.

4.2.1 Stabilität des Verfahrens

Bislang wurden bei der Diagnose nur Variationen in der Defektgröße betrachtet, die durch die
in der Referenz-Fehlermaschine verwendete quantisierte Fehlergenerierung eingeführt werden
und Unterschiede in den Testantworten verursachen können. Dabei sind in DUD und FM
jeweils die selben Nominalschaltzeiten der Gatter verwendet worden. In der Realität entstehen
bei der Herstellung der Integrierten Schaltkreise jedoch Variationen, die dafür sorgen, dass
die genauen Schaltzeiten im DUD nicht mehr präzise vorhergesagt werden können und der
Vergleich mit dem exakten Modell unrealistisch wird.

Um die Stabilität der Diagnose-Methode in solch einem Fall auch untersuchen zu können,
wurden die Gatterschaltzeiten mit zufälligen Variationen versehen. Als Wahrscheinlichkeitsver-
teilung für die Zufallskomponente wurde hierbei die Gaußsche Normalverteilung N (µ, σ2)

verwendet. Der Erwartungswert µ stellt hierbei die nominale Verzögerung eines Gatters dar.
Aufgrund der hohen Abtastzeiten wurden 25% des Nominalwertes als Standardabweichung
gewählt (σ = 0.25 · µ), sodass die Zeitbedingungen der Pfade im fehlerfreien Fall nur mit
geringer Wahrscheinlichkeit verletzt werden. Solch eine Verletzung würde im DUD zu einem
Mehrfachfehler im DUD führen, bei dem das implementierte CPT unter Umständen eine leere
Kandidatenmenge zurückliefern könnte und der Diagnosealgorithmus terminiert. Tatsächlich
ist dies hier jedoch in keinem der durchgeführten Experimente vorgekommen.

Die Gatterverzögerungen der DUDs wurden hier in Abhängigkeit der Instanz, sowie der
Gatter-ID, bei jeder Simulation neu festgelegt. Die Defektgrößen der injizierten Fehler sind
dabei unabhängig von der Variation an den Gattern und wurden nicht zusätzlich beeinflusst.
Aufgrund der Variationen verändern sich die kumulativen Verzögerungen entlang der einzelnen
Pfade durch die Schaltkreise. Dies hat Veränderungen in den Syndromen zur Folge, da manch
fehlerhafter Pfad im Referenzmodell, wieder fehlerfrei wird bzw. ein fehlerfreier Pfad nun
gegen die Zeitbedingungen verstoßen kann. Ebenso können Transitionen sichtbar werden, die
vorher durch kontrollierte Werte oder Pulsfilterung geblockt waren und umgekehrt. Durch die
Variationen wurden die Fehler in 731 der 13000 DUDs nicht mehr erkannt.

In Tabelle 4.6 sind die Diagnose-Ergebnisse der fehlerhaften ISCAS Schaltkreise mit Variation
abgebildet. Hierbei gibt es bei den Erfolgen, sowie den Erst-Rängen und der diagnostischen
Auflösung nur kleine Differenzen, woraus sich schließen lässt, dass sich die vorgestellte Methode
robust in der Präsenz von Variationen verhält. Die Zahl der ersten Rang-Gruppen ist um fast
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4.2 Diagnose von Verzögerungsfehlern

Schaltkreis Erfolg Gruppe 1 Rang 1 Auflösung δ-Abw.

c432 98.5% 94.9% 88.6% 1.4 ±4.5%
c499 96.2% 88.7% 82.7% 1.6 ±11.1%
c880 98.3% 93.9% 76.8% 1.5 ±4.6%

c1355 97.7% 91.9% 81.3% 1.5 ±9.7%
c1908 95.6% 85.4% 67.4% 1.9 ±9.4%
c2670 92.7% 79.9% 66.7% 2.5 ±7.9%
c3540 96.7% 92.5% 86.0% 1.5 ±3.4%
c5315 96.5% 89.8% 84.7% 1.6 ±4.0%
c6288 83.2% 74.3% 69.8% 3.0 ±5.7%
c7552 94.4% 87.6% 80.8% 1.9 ±4.1%
s35932 99.0% 90.5% 88.1% 1.3 ±6.2%
s38417 99.0% 94.0% 83.0% 1.4 ±4.5%
s38584 98.6% 90.4% 71.1% 1.6 ±3.9%

∅ 95.9% 88.7% 79.0% 1.8 ±6.1%

Tabelle 4.6: Diagnose-Ergebnisse der ISCAS ’85 und ’89 Schaltkreise bei normalverteilter
Variation der Gatterverzögerungen mit 25% Standardabweichung.

vier Prozentpunkte gesunken, was sich anhand der veränderten Syndrome erklären lässt.
Hier haben sich bei der Auswertung in der Referenzsimulationen aufgrund der Änderungen
in den Syndromen neue Sigmas, Iotas und Taus ergeben, sodass die Kandidaten der ersten
Rang-Gruppe separiert werden konnten.

Anmerkung: Die Abtastzeit der Schaltungen ist in den Experimenten sehr hoch
gewählt worden. Für kleinere Abtastzeiten nahe der Schaltungsverzögerungen wird
vermutet, dass sich zusätzliche Filter-Effekte ergeben, die die Fehlerpropagierung
maskieren und somit zu weniger fehlerhaften Antwortbits führen.

Diagnose auf kompaktierten Antwortmustern

In einem letzten Experiment wurde die Diagnose auf kompaktierten Antwortmustern nach
[HW09] beobachtet. Dazu sind die realen Ausgänge RO eines Schaltkreises in k gleich lange
Scan-Ketten partitioniert worden. Diese wurden dann mit einem einfachen Paritätsbaum (XOR)
verknüpft, der die aktuellen Werte einer jeden Scan-Kette (Vektor) zu einem Antwortbit
zusammenfasst. Jedes dieser Bits repräsentiert einen virtuellen Ausgang VO, deren Anzahl
durch die maximale Länge der Ketten definiert ist. Die maximale Länge aller Ketten gibt dann
die Zahl der virtuellen Ausgänge an, von denen die komprimierten Testmuster abgelesen
werden. Die Kompressionsrate Rc der kompaktierten Antwortmuster ist dabei durch den
Quotienten Rc = |RO|/|VO| bestimmt. Falls sich die Ausgänge gleichmäßig und restlos auf
die k gleich langen Ketten verteilen lassen ist Rc = k.
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4 Ergebnisse

Schaltkreis Rc Erfolg Gruppe 1 Rang 1 Auflösung δ-Abw.

c432 3.5 98.9% 95.7% 89.1% 1.3 ±3.1%
c499 16.0 98.5% 94.9% 84.2% 1.4 ±11.9%
c880 13.0 97.2% 93.8% 76.0% 1.6 ±3.4%

c1355 16.0 97.9% 94.4% 80.1% 1.5 ±8.3%
c1908 12.5 84.4% 75.3% 59.7% 3.0 ±9.3%
c2670 15.6 93.1% 83.3% 67.3% 2.4 ±6.5%
c3540 11.0 95.2% 91.9% 83.3% 1.7 ±3.1%
c5315 15.4 95.4% 91.4% 85.7% 1.7 ±3.4%
c6288 16.0 53.3% 44.4% 40.9% 6.0 ±16.0%
c7552 15.4 89.7% 85.7% 74.4% 2.5 ±6.0%
s35932 128.0 98.4% 98.0% 94.3% 1.2 ±3.7%
s38417 124.0 96.6% 93.7% 81.9% 1.6 ±3.3%
s38584 123.6 95.0% 90.0% 70.6% 2.0 ±3.9%

∅ 91.8% 87.1% 76.0% 2.2 ±6.3%

Tabelle 4.7: Diagnose-Ergebnisse der ISCAS ’85 und ’89 Schaltkreise mit kompaktierten Ant-
worten.

Tabelle 4.7 zeigt die Ergebnisse der Diagnose kompaktierter Antworten für die ISCAS Schalt-
kreise. Für die ’85er Serie wurde die Kompressionsrate so gewählt, dass die sich Anzahl der
virtuellen Ausgänge für die meisten Schaltkreise auf zwei reduziert hatten. Bei c2670, c5315
und c7552 ist eine maximale Kompressionsrate von Rc = 16 verwendet worden. Bei den ISCAS
’89 Schaltkreisen wurde diese auf etwa 128 erhöht.

In den Experimenten ist dabei die durchschnittliche Zahl der möglichen Fehlerstellen nach
dem Critical Path Tracing durch die Komprimierung auf 92,8 angestiegen. Das Gesamtbild der
Ergebnisse ist jedoch vergleichbar mit der unkomprimierten Variante. Am schlechtesten schnitt
wieder der c6288 Schaltkreis ab, bei dem aufgrund der vielen Rekonvergenzen und den zwei
virtuellen Ausgängen durchschnittlich 571 Gatter untersucht werden mussten.

4.3 Evaluierung

In diesem Kapitel wurden die Ergebnisse der Versuche vorgestellt, die im Rahmen dieser Arbeit
durchgeführt worden sind. Dabei wurde die Diagnostizierfähigkeit der präsentierten Methode
für einzelne SMALLDELAY-Fehler beliebiger Größe sowohl in kleinen als auch in größeren
industriellen Benchmark-Schaltkreisen demonstriert. Im Focus der Auswertung lagen neben
der Lokalisierung der Defektstelle, auch die Abweichung der abgeschätzten Defektgröße der
diagnostizierten Fehler.
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4.3 Evaluierung

Experiment Fehler Erfolg Gruppe 1 Rang 1 Auflsg. δ-Abw.

ISCAS ’85 10000 95.6% 90.9% 79.6% 1.8 ±6.0%
ISCAS ’89 3000 99.2% 96.3% 84.1% 1.3 ±4.6%
ITC ’99 4000 96.9% 91.2% 74.4% 1.7 ±2.6%
NXP 10000 97.1% 92.4% 77.1% 1.7 ±3.1%
ISCAS Variation 12269 95.6% 88.7% 79.0% 1.8 ±6.1%
ISCAS Kompaktierung 12610 91.8% 87.1% 76.0% 2.2 ±6.3%

Gesamt 51879a 95.3% 90.1% 78.0% 1.8 ±5.2%

Tabelle 4.8: Zusammenfassung der Ergebnisse aller durchgeführten Experimente. Die letzte
Zeile betrachtet dabei die fehlerhaften DUDs aller Experimente im Ganzen.

aErkannte Fehler von insgesamt 53000 DUDs.

Zur Übersicht wurden die Ergebnisse der jeweiligen Diagnose-Experimente in Tabelle 4.8
zusammengefasst.

Insgesamt konnten in den Experimenten 95,3% aller DUDs erfolgreich und 78,0% perfekt
diagnostiziert werden. Mit der mittleren diagnostischen Auflösung von 1,8 befand sich der
eigentliche Fehler somit für die meisten Fälle unter den ersten beiden Kandidaten. Dabei gilt
im Allgemeinen: Je mehr Fehlerinformation ein Defekt für verschiedene Verzögerungstests
produziert, umso leichter und besser lässt sich dieser diagnostizieren, da zum einen weniger
Kandidaten nach dem Critical Path Tracing übrig bleiben und sich zum anderen die simulierten
Fehler an der eigentliche Defektstelle durch stärkere Evidenzen behaupten können.

Mit Hilfe von normalverteilter Variation der Gatterschaltzeiten wurde das reale Verhalten einer
Menge von Schaltkreisen nachgeahmt, wodurch sich die einzelnen DUDs vom Referenzmo-
dell distanziert haben. Hierbei wurde die Stabilität des Diagnoseverfahrens gegenüber den
Variationen im Schaltkreis demonstriert.

In einem letzten Experiment wurde noch ein Anwendungsfall untersucht, bei dem direkte
Diagnose auf mit Hilfe von Paritätsbäumen kompaktierte Antwortmuster angewendet wurde.
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5 Zusammenfassung

Heutzutage ist Fehlerdiagnose während der Entwicklung von integrierten Schaltkreisen un-
verzichtbar, um die Ausbeute und Qualität der Chips in der Produktion zu verbessern (Yield-
Ramping) und die kumulativen Kosten pro hergestellten Chip zu senken.

Das Ziel dieser Arbeit war der Entwurf einer Diagnose-Methode von kleinsten Verzögerungs-
fehlern, die Defekte unter einer großen Mengen von möglichen Kandidaten ausfindig machen
kann. Die präsentierte Methode kombiniert die Vorteile der Effect-Cause und Cause-Effect
Paradigmen und greift auf einen effizienten GPGPU beschleunigten Zeitsimulator zurück, mit
dem das Zeitverhalten in den Schaltkreisen präzise ausgewertet werden kann. Ein neuartiger
simulationsbasierter Ansatz untersucht dabei nur einen Bruchteil aller möglichen Fehler, um
den Gesamtaufwand der Diagnose zu reduzieren. Bei der Evaluierung von Fehlern mit dem
Simulator werden die Signalverläufe der Schaltungsausgänge in einem Zeitraum um den Ab-
tastzeitpunkt betrachtet, sodass die Fehlerwahrscheinlichkeiten einzelner Ausgänge bestimmt
und zur Bewertung der Fehlerkandidaten verwendet werden können.

Experimente mit zufälligen Testmustern hatten gezeigt, dass der Diagnose-Algorithmus für
kleine und größere Schaltkreise anwendbar ist und gute Ergebnisse auch im Fall von Variationen
liefert. In den Versuchen wurde die eigentliche Defektstelle dabei im Schnitt unter den ersten
beiden gemeldeten Kandidaten gefunden, bei einer geringen durchschnittlichen Abweichung
der abgeschätzten Defektgröße.

Da Verzögerungsdefekte aufgrund von schrumpfenden Herstellungsprozessen und den steigen-
den Anforderungen bezüglich der Performanz der Schaltungen unvermeidbar sind und immer
mehr zum Problem werden, ist die weitere Forschung an Diagnose-Methoden von essentieller
Bedeutung.

Eine Möglichkeit zur Verbesserung der Präzision wäre hierbei ein komplexeres Auswertungs-
verfahren der Syndrome anhand der Waveforms im Simulator. Des Weiteren könnte die
Generierung zusätzlicher Verzögerungstests mit ATPG zur Erhöhung der Fehlerabdeckung der
verwendeten Tests, sowie zur weiteren Unterscheidung von Kandidaten einer Rang-Gruppe
behilflich sein. Ebenfalls könnte man untersuchen, inwiefern sich mit Hilfe von maschinellem
Lernen die Symptome klassifizieren lassen, um die diagnostische Auflösung durch Manipulation
der Parameterkonfigurationen mit geeigneten Trainingsdaten zu verbessern. Des Weiteren
könnte die Diagnostizierbarkeit von weiteren bzw. allgemeineren Fehlermodellen untersucht
werden.
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A ADAMA dfdiagnose

Das Diagnoseverfahren wurde in das vorhandene ADAMA-Framework (Adaptive Diagnosis
of Arbitrary Manifold Artifacts) implementiert und benötigt zur Ausführung die Angabe des
zu diagnostizierenden Schaltkreises. Sei Model.lg die Beschreibung, des zu diagnostizierenden
Schaltkreises, dann wird das Basisaufruf der Diagnose folgendermaßen ausgeführt:

> adama dfdiagnose <Model.lg> {Optionen}

Ferner muss die Angabe ggf. mit dem absoluten oder relativen Pfad erweitert werden, falls sich
der Schaltkreis nicht im aktuellen Verzeichnis befindet. Ohne die Angabe weiterer Optionen
wird nach Aufruf zunächst die vollständige Menge der SMALLDELAY-Fehler des Schaltkreises
generiert (nach [Sch11]) und anschließend nacheinander in DUDs injiziert, simuliert und
unter Verwendung der Standardparameter-Einstellungen diagnostiziert.

Es folgt eine Liste aller Optionen und Parametern (Die Standardeinstellungen sind dahinter in
Klammern angegeben):

-k <Datei>: Kernel. Absoluter/relativer Pfad des auszuführenden Zeit-Simulators (Standard
java).

-d <Wert>: Device. Spezifiziert die ID der zu benutzenden CUDA-Grafikkarte (Standard 0).

-m <Wert>: Memory. Legt den maximalen globalen Speicher auf der GPGPU fest, der für den
Waveform-Speicher reserviert wird (100).

-wc <Wert>: Waveform capacity. Waveform-Kapazität eines Basisregisters (34).

-i <Wert>: Initial wave-memory. Anteil des Waveform-Speichers der für die initialen Register
reserviert wird. Der restliche Teil wird für Rekalibrierungen freigehalten (0.5).

-r <Wert>: Random patterns. Anzahl der Zufallsmuster. Da der Simulator Musterblöcke zu je
64 Mustern bearbeitet, wird dieser Wert auf den nächsthöheren durch 64 teilbaren Wert
aufgerundet (Standardwert 64).

-p <Datei>: Deterministic patterns. Pfad zu Datei mit existiereneden deterministischen Testmus-
tern.

-sdf <Datei>: Pfad zu Datei mit gespeicherten Nominalverzögerungen der Gatter ∗.sd f -Format.

-c <Kompaktor-Spec>: Compactor mode. Kompaktierung der Antwortmuster nach einer be-
stimmten Kompaktor-Spezifikation.
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A ADAMA dfdiagnose

-cs <Datei>: Cached sizes. Initialisiert Waveform-Register mit gespeicherten Größen aus einer
Datei.

-cu: Cache update. Aktualisiert gespeicherte Registergrößen in der Datei, falls diese während
der Simulation verändert worden sind.

-fl <Datei>: Fault-list. Spezifiziert Name und Pfad einer existierenden Fehler-Liste für die DUD
Defekte.

-cl <Wert>: Crop list. Nachbearbeitung einer Fehler-Liste: Beschränkung auf die ersten X Fehler
mit -cl X, Beschränkung auf X zufällige Fehler mit -cl rX und Beschränkung der Liste
auf ein Intervall von Fehler X bis einschliesslich Fehler Y -cl X:Y.

-fm <Wert>: Fault model. Vollständige Berechnung von Fehlern aus einem Fehlermodell nach
[Sch11] zur DUD Defekt Generierung. Jeder Fehler wird in ein eigenständiges DUD
injiziert und diagnostiziert. Wird eine Fehlerliste mit -fl übergeben, so ist diese Option
obsolet.

-var <Wert>: Spezifiziert die prozentuale Standardabweichung aller nominalen Gatterverzö-
gerungen im DUD. Der Simulator verwendet zufällige Verzögerungen mit Gaußscher
Normalverteilung.

-q: Faktor zur Quantisierung der Defektgrößen im Referenzfehlermodell.

-all: Forciere vollständige Simulation aller CPT-Fehlerkandidaten.

-norep: Unterbindet Kollabierung der Fehler-Äquivalenzklassen

-wiota <Wert>: Gewicht der Iota Evidenz-Komponente (Standard -0.35).

Beispiel

Beispielbefehl für die Diagnose der ersten 1000 in einer Liste abgespeicherten Fehler des
Schaltkreises c1908 mit 2560 pseudozufälligen Verzögerungstests und einer Defektintervall-
Quantisierung von q = 20 des Referenzmodells:

> adama dfdiagnose c1908.lg -fl fehlerliste.fl -cl 1000 -r 5120 -q 20

60



Listing A.1 Beispielausgabe des Diagnoseprogramms.
1 0000486.323 [--] Defect 43 of 1000: SDF { NAND_2_481/0 92.0 } (46.341465% local, 42.424244% global)
2 0000486.323 [DD] ClassRepresentative SDF { NAND_2_481/0 92.0 } (1 faults)
3 0000486.323 [DD] DUD Simulation...
4 0000486.441 [--] Structural Analysis // Auswertung, CPT und Defektgroessenbestimmung
5 0000486.558 [--] FailingBlocks 40
6 0000486.558 [--] FailingPatterns 57
7 0000486.558 [--] FailingBits 98
8 0000486.558 [--] FailingVirtualOutputs 4
9 0000486.579 [DD] Elapsed Time

10 0000486.579 [DD] 6Valued Simulation 3 ms
11 0000486.579 [DD] Critical Path Tracing 4 ms
12 0000486.579 [DD] Lower Bound Estimation 21 ms
13 0000486.579 [DD] Model [81.0 : 130.0] (units)
14 0000486.579 [DD] Est. Size: 135.0 (units) // abgeschaetzte Defektgroesse
15 0000486.579 [DD] OVERESTIMATED
16 0000486.579 [DD] CPT Target fault 98/98 traces (17 candidates): OK
17 0000486.580 [--] Simulation-based Analysis
18 0000486.580 [--] Removed PIs/POs: 0 suspect(s) removed
19 0000486.580 [--] Collapsed List: 1 suspect(s) removed
20 0000486.581 [--] Building Initial SDF Candidate Set...
21 0000486.581 [DD] Using estimated LB: 130.0 (units)
22 0000486.581 [DD] Initial Suspect List: 16 of 320 faults
23 0000486.581 [--] Horizontal Scan...
24 0000488.876 [--] Vertical Scan...
25 0000488.876 [--] Entry Point NAND_2_651 scanned 12 times // Defekt-Intervall Quantisierung
26 0000488.876 [--] Node Range [64.0:104.0]
27 0000489.947 [--] Adjusted DefectSize 94.0 (units) // korrigierte Defektgroesse
28 0000489.947 [--] Horizontal Scan...
29 0000491.176 [DD] Evidence Updates 15
30 0000491.176 [--] Total Simulations 43
31 0000491.176 [--] --- Suspect Evaluation ---
32 0000491.176 [--] Group 1 ... 1 : *SDF { NAND_2_481/0 94.0 }
33 0000491.176 [--] ----------
34 0000491.176 [--] ActualRank 1
35 0000491.177 [--] MiddleRank 1 // Diagnostizierter Mittelrang des eigentlichen Kandidaten
36 0000491.177 [--] RankGroup 1
37 0000491.177 [--] GroupSize 1
38 0000491.177 [--] BestEvidence SDF { NAND_2_481/0 94.0 }: sig 96.790115 (98) iot 3.4320989 (5) with

score 95.58888
39 0000491.177 [--] ActualEvidence SDF { NAND_2_481/0 94.0 }: sig 96.790115 (98) iot 3.4320989 (5) with

score 95.58888
40 0000491.177 [DD] Top-5 Suspects
41 0000491.177 [DD] 1. gamma 0 sigma 96.790115 (98) iota 3.4320989 (5) tau 0 (SDF { NAND_2_481/0 94.0 })
42 0000491.177 [DD] 2. gamma 12 sigma 40.901234 (42) iota 51.79012 (53) tau 56 (SDF { NAND_2_651/0 94.0

})
43 0000491.177 [DD] 3. gamma 3 sigma 34.814816 (36) iota 34.87654 (40) tau 62 (SDF { NAND_2_531/0 94.0 })
44 0000491.177 [DD] 4. gamma 6 sigma 33.25926 (34) iota 35.864197 (37) tau 64 (SDF { BUF_1_670/0 94.0 })
45 0000491.177 [DD] 5. gamma 6 sigma 33.25926 (34) iota 35.864197 (37) tau 64 (SDF { NAND_2_659/0 94.0 })
46 0000491.177 [DD] Defect Size Deviation 4.878047% (local), 3.030303% (global) // Fehler der

abgeschaetzten Groesse
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B Notizen zur Implementierung

Mehrwertige Logiksimulation

Die Implementierung der sechswertigen Logik H6 = {C0, C1, T0, T1, H0, H1} basiert auf dem
Konstruktionsverfahren von [Hay86]. Dabei wird die interne Repräsentation der Logiksymbole
mit Hilfe eines 3-Tupels realisiert. Hayes verwendet dazu je einen B2-Unterraum für Initial-
und Finalwert, sowie dreiwertige Logikkomponente aus E3 = {0, 1, X} zur Beschreibung des
Zustands in der transienten Region, um Kompatibilität mit der komponentenweisen Anwendung
der Logikoperatoren zu ermöglichen. In dieser Arbeit wurde jedoch anstatt des Signalzustands
der Übergangsregion, eine Transitionsmarkierung T ∈ B2 verwendet, welche angibt, ob
Signalwechsel innerhalb der Übergangsregion stattfinden (T) oder das Signal konstant ist (T).
Initialwert (I) und Finalwert (S) der Knoten sind dabei nach wie vor kompatibel mit Boolescher
Logik. Die Transitionsmarkierung (T) muss mit Hilfe einer Ereignispropagierungsfunktion
fT berechnet werden.

Sei die Tupel-Repräsentation eines Symbols w ∈H6 wie folgt notiert:

w = (I × S× T) =

{[
I
S

]
,
[

T
]}

=

[
I S
− T

]
∈H6.

Zur Berechnung eines Logikoperators ◦ für zwei beliebige Elemente w1, w2 ∈ H6 wird eine
Funktion fT zur Propagierung von Transitionen definiert werden, sodass gilt:

w1 ◦ w2 =

[
I1 ◦ I2 S1 ◦ S2

− fT(◦, w1, w2)

]
∈H6.

Die Funktion fT verwendet dabei das Wissen über die kontrollierenden Werte der Gatterfunk-
tionen ◦ und wurde nach folgender Regel aufgestellt:

Regel 1. Ein Knoten propagiert ein Ereignis (T) genau dann, wenn mindestens
ein direkter Vorgänger ein Ereignis besitzt, und alle anderen Vorgänger keinen
konstanten kontrollierenden Zustand (C0, C1) aufweisen.
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B Notizen zur Implementierung

Beispiel B.1. (Ereignispropagierung) Betrachte man ein NAND-Gatter mit Eingangs-
signalen A und B und Ausgangssignal Z. Sei wA = T1 und wB = T0. Da Z von
keinem Eingang aus konstant kontrolliert wird und mindestens eine Transition statt-
findet, wird ein Ereignis propagiert:

wZ = wA∧wB =

[
0 1
− 1

]
∧
[

1 0
− 1

]
=

[
1 1
− 1

]
= H1.

Sei nun wB = C0 ein konstantes kontrollierendes Signal, dann wird die Ereignispro-
pagierung von A durch Z gestoppt, da der Knoten nicht sensibilisiert ist:

wZ = wA∧wB =

[
0 1
− 1

]
∧
[

0 0
− 0

]
=

[
1 1
− 0

]
= C1.

Da jedes der verwendeten Symbole S, I und T mit einem einzelnen Bit repräsentiert werden
kann, benötigt diese Implementierung der sechswertigen Logik im Vergleich zu [Hay86] nur
drei statt dlog2(|B2|)e+ dlog2(|E3|)e+ dlog2(|B2|)e = 1 + 2 + 1 = 4 Bits.

Um die Auswirkungen von Verzögerungsfehlern im Schaltkreis genauer untersuchen zu kön-
nen, werden die Elemente der H6 Algebra nun mit einer Defektmarkierung erweitert. Da
Verzögerungsfehler rein dynamischer Natur sind und die Fehlereffekte nur bei Knoten mit
Transitionen auftreten können, werden die Defektmarkierungen auf Elemente mit Ereignissen
beschränkt und bei konstanten Signalen (C0, C1) ignoriert. Jeder Zustand mit Ereignis kann so-
mit entweder als fehlerhaft (D) oder fehlerfrei (D) angesehen werden. Ein Signal wird dabei
als fehlerhaft bezeichnet, wenn seine Stabilisierungszeit gegen die Zeitbedingungen verstoßen
kann, während bei fehlerfreien Signalen dagegen sichergestellt wird, dass die Nominalzeiten
unter allen Umständen eingehalten werden. Als Konsequenz erweitert sich die Grundmenge
der Algebra um weitere vier – auf insgesamt zehn – Wertelemente und wird im Folgenden mit
dem Symbol W notiert:

W = {C0, C1, T0, T1, H0, H1, } ∪ {D0, D1, X0, X1}

Zur Veranschaulichung und zum besseren Verständnis wurden die Logiksymbole in Tabelle. B.1
zusammengefasst. Innerhalb der grau angedeuteten Bereiche des Signalverlaufs findet der
Schaltvorgang statt und es wird ein beliebiger Wert angenommen (Unbekannt ,X’).

Die interne Repräsentation dieser zehn Zustände benötigt mindestens dlog2 10e = 4 Bits. Zwar
lassen sich damit bis zu 24 = 16 verschiedene Symbole kodieren, die restlichen Kombinationen
werden im Rahmen dieser Arbeit jedoch nicht verwendet. Die Kodierung der Logiksymbole
wurde bei der Erweiterung so gewählt, dass Transitions- und Defektmarkierungen jeweils
durch eigenständige Bits repräsentiert werden.
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fehlerfrei fehlerhaft
Symbol Signal Symbol Signal

C0 –

C1 –

T0 D0

T1 D1

H0 X0

H1 X1

Tabelle B.1: Auflistung aller Symbole der zehnwertigen Algebra. – Die graue Fläche mar-
kiert den Übergangsbereich, der senkrechte Strich repräsentiert den Signal-
Abtastzeitpunkt in Relation zur Stabilisierungszeit.

Die Tupelrepräsentation eines Symbols in der W-Algebra sieht somit nun wie folgt aus:

w = (I × S× T × D) =

{[
I
S

]
,
[

T
]

,
[

D
]}

=

[
I S
D T

]
∈W.

Die Rechenregeln der erweiterten Algebra für die Komponenten I, S und T sind unabhängig
von D und werden wie gehabt übernommen. Bei der Berechnung der Defektmarkierung im
Falle einer zehnwertigen Simulation ist zu beachten, dass Fehlereffekte am Eingang eines
Gatters durch Seiten-Pfade (Off-Path) maskiert werden können und die Weiterleitung gestoppt
wird. Anders als bei der konservativen Transitionsberechnung, kann dies auch in Gegenwart
von Ereignissen an Seiten-Pfaden geschehen, sofern diese den Knoten dominieren. In diesem
Fall würde zwar die Transitionsmarkierung propagiert werden, nicht aber der Fehlereffekt.

Simulation

Implementiert wurden die Zustände eines Knoten mit 64-Bit Vektoren (Java Long-Typ) zur
vektorweisen Bearbeitung im Stil des Parallel Pattern Single Fault Propagation (PPSFP)
Paradigmas. Der Zustand eines Signals A wird dabei mit jeweils zwei Vektoren AV und AT

repräsentiert. Der erste Vektor AV = {S31 I31...S1 I1S0 I0} hält an 64 Bit-Positionen abwechselnd
die I- und S-Bits der einzelnen Signalverläufe und kann somit die Information von bis zu 32 ver-
schiedenen Verzögerungstests tragen. S31 befindet sich dabei an der höchstwertigen Bitposition
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B Notizen zur Implementierung

Algorithmus B.1 Evaluierung eines Gatters in sechswertiger Logik (PPSFP).
1: procedure CALC(n) // Knoten mit Eingangssignalen A, B und Ausgang Z
2: Berechne ZV = AV ◦ BV (Boolesche Logiksimulation).
3: Setze ZT auf 0 zurück.
4: /∗ Ereignispropagierungsfunktion fT ∗/
5: if TYP(n) ∈ {AND, NAND} then // Nicht-kontrollierender Wert = 1
6: ZT ← (AT ∧ BT) ∨ (AT ∧ (BV ∨ (BV � 1))) ∨ (BT ∧ (AV ∨ (AV � 1)))
7: else if TYP(n) ∈ {OR, NOR} then // Nicht-kontrollierender Wert = 0
8: ZT ← (AT ∧ BT) ∨ (AT ∧ (BV ∨ (BV � 1))) ∨ (BT ∧ (AV ∨ (AV � 1)))
9: else if TYP(n) ∈ {XOR, XNOR} then

10: ZT ← (AT ∨ BT)

11: else // INV, BUF und OUTPUT
12: ZT ← AT

13: end if
14: Setze D-Bits von ZT zurück auf 0.
15: end procedure

des Vektors. Ein zweiter Vektor AT = {T31D31...T1D1T0D0} hält die Transitions- und Defekt-
markierungen der Zustände fest. Der Zustand eines Schaltungseingangs A wird für beliebige
Zuweisungen in einem Verzögerungstest aus Initialisierungs- (IV) und Propagierungswerten
(PV) nun wie folgt bestimmt:

Sei π = {PV31 IV31...PV1 IV1PV0 IV0}, dann setze die Initial- und Finalwerte des Knoten auf
AV := π. Um die durch den Test erzeugten initialen Transitionen zu übernehmen, muss
zusätzlich IT := (IV ⊕ (IV � 11)) ∧ 0xAAAA ... AA16 gesetzt werden. Durch die bitweise XOR-
Verknüpfung wird bei einem Signalwechsel von I nach S automatisch die Transitionsmarkierung
erzeugt. Die Maskierung am Ende soll lediglich dazu dienen, um die durch den Shift-Operator
entstandenen Defekt-Markierungen zu löschen. Nach Zuweisung aller Eingangssignale wird
der Rest der Schaltung durch Auswerten der Gattersignale in topologisch sortierter Reihenfolge
simuliert.

Bei der Simulation können die Berechnungen der S, I, T und D Markierungen getrennt durch-
geführt werden. Zu beachten sind dabei die Datenabhängigkeiten der einzelnen Komponenten,
weshalb zunächst die S und I Bits, dann T und zum Schluss D berechnet werden müssen.
Algorithmus B.1 zeigt die Evaluierung eines einzelnen Gatter in sechswertiger Logik. Die
Prozedur verwendet sowohl Boolesche Logiksimulation, als auch die Transitionspropagierung
fT. In einem Schaltkreis werden alle Gatter in topologisch sortierter Reihenfolge, beginnend
ab den Eingängen, in Richtung der Ausgänge ausgewertet, um die Datenabhängigkeiten der
einzelnen Knoten zu berücksichtigen.

1Bitweiser Schiebe-Operator (Bit-Shift) nach links.
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Critical Path Tracing

Damit das Critical Path Tracing für einen fehlerhaften Musterblock des DUDs ausgeführt werden
kann, muss dieser zunächst in der mehrwertigen Logik simuliert werden, um die internen
Signale aller Knoten in der Schaltung zu initialisieren. Die Simulationsergebnisse werden dann
mit den DUD Antworten verglichen, sodass alle fehlerhafte Ausgänge identifiziert werden
können. Der folgende Algorithmus B.2 zeigt die implementierte Prozedur zur Rückverfolgung
der fehlerhaften Ausgänge eines Musterblocks.

Algorithmus B.2 Critical Path Tracing für einen Test (PPSFP).
1: procedure CPT(G, π) // Schaltung G, Testantwort π.
2: /∗ Voraussetzung: Initialisierte Zustände aller Knoten durch Gutsimulation. ∗/
3: for all o ∈ Ausgänge do
4: f ehler ← (π[o]⊕ oV) ∧ 0xAAAA ... AA16 // Berechne Syndrom von Ausgang.
5: if f ehler 6= 0 then
6: Lösche D-Markierungen von allen Knoten.
7: oT ← oT ∨ ( f ehler ≫ 1) // Setze D von Ausgang.
8: for all Gatter n ∈ V in umgekehrter topologischer Reihenfolge do
9: if MARKIERT(n) 6= 0 then

10: BACKTRACE(n)
11: Aktualisiere Backtrace-Zähler von Knoten n.
12: end if
13: end for
14: end if
15: end for
16: end procedure

Bei einem zu untersuchenden Ausgang werden zunächst alle noch vorhandenen Defektmarkie-
rungen früherer CPT Iterationen im Schaltkreis gelöscht, und die des fehlerhaften Ausgangs mit
dem Syndrom initialisiert. Anschließend wird in umgekehrt topologisch sortierter Reihenfolge
für alle Gatter eine BACKTRACE-Funktion (Alg. B.3) aufgerufen, bei der versucht wird, die an
einem Knoten vorhandene Defektmarkierung an seine Eingangsknoten weiterzuleiten.

Um festzustellen, ob ein Knoten für die Testmuster eines Musterblocks mit einer Defektmarke
oder einer Transitionsmarke versehen ist, wird sein Zustandsvektor ZT entsprechend maskiert.
Dazu werden die folgenden Primitive verwendet:

• Überprüfe Defekt: MARKIERT(Z) := ZT ∧ 0x5555 ... 5516

• Überprüfe Ereignis: EREIGNIS(Z) := (ZT ≫ 21) ∧ 0x5555 ... 5516

2Bitweiser Schiebe-Operator (Bit-Shift) nach rechts.
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B Notizen zur Implementierung

Algorithmus B.3 Rückpropagierung der D-Markierung (PPSFP).
1: procedure BACKTRACE(n) // Knoten mit Eingangssignalen A, B und Ausgang Z
2: obs← EREIGNIS(Z) ∧MARKIERT(Z)
3: if TYP(n) ∈ {AND, NAND, OR, NOR} then
4: AT ← AT ∨ (obs ∧ EREIGNIS(A) ∧ (CTRLS(A, n) ∨ CTRLD(n)))
5: BT ← BT ∨ (obs ∧ EREIGNIS(B) ∧ (CTRLS(B, n) ∨ CTRLD(n)))
6: else if TYP(n) ∈ {XOR, XNOR} then
7: AT ← AT ∨ (obs ∧ EREIGNIS(A))

8: BT ← BT ∨ (obs ∧ EREIGNIS(B))
9: else // INV, BUF und OUTPUT

10: AT ← AT ∨ obs
11: end if
12: end procedure

Die in Algorithmus B.3 vorgestellte BACKTRACE-Prozedur verwendet des Weiteren zwei Funk-
tionen zur Bestimmung der Kontrollierbarkeit (CTRLS(A, n)) und Kontrolliertheit (CTRLD(n))
eines Knotens n.

Dabei untersucht CTRLS(A, n), ob der Finalwert des Eingangs A in Abhängigkeit des unter-
suchten Gattertyps von n einen kontrollierenden Wert aufweist:

CTRLS(A, n) := 0x5555 ... 5516 ∧


(AV ≫ 1) If TYP(n) ∈ {AND, NAND},
(AV ≫ 1) else if TYP(n) ∈ {OR, NOR},
−1 else.

In CTRLD(n) wird bestimmt, ob der Ausgang eines Knotens einen kontrollierten Wert besitzt,
wodurch man folgern kann, dass mindestens ein Eingang einen kontrollierenden Wert hat:

CTRLD(n) := 0x5555 ... 5516 ∧


(ZV ≫ 1) If TYP(n) ∈ {AND, NOR},
(ZV ≫ 1) else if TYP(n) ∈ {NAND, OR},
−1 else.

Um die Schnittmenge der Kandidaten einer jeden Rückverfolgung zu berechnen wird für
jeden Knoten n ∈ V ein Zähler count[n] verwendet, der die Anzahl der Rückverfolgungen für
den Knoten speichert [TBT98, BGPV10]. Diese werden zu Beginn der Untersuchung auf null
gesetzt. Der Zähler eines Knoten wird im Anschluss an die D-Propagierung mit der BACKTRACE-
Prozedur aktualisiert. Dabei wird der Wert eines Knoten n um die Anzahl der D-Markierungen
in seinem Zustandsvektor ZT erhöht, welche mit Hilfe einer schnellen Methode zum Zählen
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der Einsen in einem 64-Bit Vektor berechnet wird. Diese ist bereits in der Java Long-Klasse
enthalten:

count[n] := count[n] + Long.BITCOUNT((ZT ∧ 0xAAAA ... AA16)).

Nach der Evaluierung aller Musterblöcke wird die initiale Kandidatenmenge S anhand der
Zähler und der Gesamtzahl FB der fehlerhaften Antwortbits des DUDs bestimmt. Da im
Einzelfehlerfall die Defektursache von jedem fehlerhaften Ausgang zurückverfolgt werden
können muss, berechnen sich die Kandidaten wie folgt:

S := {n ∈ V : count[n] == FB}.

Simulationsbasierte Analyse

Bei der Defektgrößenabschätzung und der simulationsbasierten Analyse wird auf einen GPGPU-
beschleunigten Fehlersimulator für SMALLDELAYs aus [Sch11] zurückgegriffen.

GPGPU-gestützte Berechnung des Syndroms

Die Auswertung der Referenzfehler mit den Integralen benötigt die Signalverläufe der Ausgän-
ge, welche sich nach der Simulation der Verzögerungstests im globalem Speicher der GPGPU
befinden. Für die Waveform-Signale werden jedoch im Durchschnitt über 90% des globalen
Speichers der GPGPU allokiert. Da der Transfer dieses Speichers viel Zeit kostet, würde dies
die Diagnose durch die nötige Kommunikation und Synchronisation stark verlangsamen. Des
Weiteren benötigt die serielle Auswertung auf der Host-CPU zusätzliche Rechenzeit. Aus diesen
Gründen wurde die Berechnung der Syndrom-Integrale als CUDA-Kernel implementiert, damit
diese auf der GPGPU parallelisiert ausgeführt werden kann. Zudem müssen dann — dank der
berechneten Integralwerte — nicht mehr die vollständigen Waveform-Signale der Ausgänge
von der GPGPU kopiert werden, wodurch die transferierte Datenmenge stark reduziert wird.

Sei signal(Z) der Signalverlauf des zu untersuchenden Ausgangs Z und sei U = [Umin, Umax] ∈
R+

0 der zu integrierende Zeitbereich in der Zeitdomäne, dann ist die Fläche des Signalverlaufs
gegeben durch

Fläche(Z) =
∫

U
signalZ(t) dt.

Mit Hilfe des folgenden einfachen Algorithmus B.4 können die Signalverläufe in U partiell
integriert und somit die Fläche berechnet werden. Da die Transitionszeiten der einzelnen
Waveforms auf der GPGPU gemäß Definition in absteigender Reihenfolge gespeichert sind,
werden diese in umgekehrter Reihenfolge evaluiert, wodurch die einzelnen Flächenstücke
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B Notizen zur Implementierung

Algorithmus B.4 Waveform Integral
1: function WAVEINT(W, Umin, Umax)
2: /∗ Anmerkung: Auswertung der Waveforms geschieht in umgekehrter Reihenfolge. ∗/
3: Summe← 0
4: letzter← Umax // Start für partielles Integral.
5: i← max({j : tj ∈W, tj ≤ Umax}) // Index der letzten Transition t ≤ Umax

6: while (ti ≥ Umin) ∧ (i ≥ 0) do
7: if Transition ti ist steigend then
8: Summe← Summe + (letzter− ti) // Fläche zwischen ti+1 und ti.
9: end if

10: letzter← ti
11: i← i− 1
12: end while
13: if (i ≥ 0) ∧ (Transition ti steigend) then
14: Summe← Summe + (letzter−Umin) // Schließe Waveform, falls nötig.
15: end if
16: return Summe
17: end function

jeweils bei fallenden Flanken beginnen und bei den darauffolgenden steigenden Flanken
wieder geschlossen werden.

Um den Algorithmus für das Waveform-Integral auf das Syndrom anzuwenden, wird die
Polarität des Signalverlaufs eines jeden Ausgangs in Abhängigkeit seines stabilisierten Werts
limt→∞ signal(t) ∈ {0, 1} bestimmt. Im Fall, dass der stabile Wert des Ausgangssignals ’0’ ist, ist
das Waveform gleichzeitig das Syndrom und es muss nichts getan werden. Im anderen Fall muss
die Polarität der Transitionen jedoch umgekehrt werden. Da im Simulator die Signalwerte aller
Waveform-Repräsentationen nach Definition für t → ∞ immer einen stabilen Wert von null
haben müssen, werden Signale mit einem Finalwert von ’1’ durch eine zusätzliche Transition
∞ terminiert. Deshalb muss hier nur die Transition der Stelle t = ∞ ignoriert werden, um
das Syndrom-Waveform zu generieren, da durch das „Auslassen” des Schaltvorgangs an t der
eigentliche Wert des Signals invertiert wird.
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