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Kurzfassung

Eine möglichst realistische und somit dreidimensionale Repräsentation von Szenen und
Objekten ist Grundlage heutiger Echtzeit- und Vermessungssysteme. Damit erhält die-

ses Thema auch in der Computer Vision Einzug. Die Datenerhebung findet meist mittels
Laserscanner statt indem ein, um zwei orthogonal zueinander stehende Achsen, rotierender
Laserstrahl die Umgebung punktweise abtastet. Die Rundumaufnahmen einer Farbkamera
können zusätzlich Farbinformationen liefern, wie dies bei Laserscannern der Firma FARO
der Fall ist.

Um eine vollständige Beschreibung von Szene und Objekt zu erhalten, muss dieser Vor-
gang von verschiedenen Standpunkten aus wiederholt durchgeführt werden. Aufnahmen
aus unterschiedlichen Blickwinkeln, die Überschneidungen beinhalten, sind das Ergebnis.
Im Rahmen dieser Diplomarbeit sollen Verfahren zur automatisierten Ausrichtung zweier
Aufnahmen, unter Verwendung der Punktinformationen untersucht werden. Der Schwer-
punkt liegt dabei auf punktbasierten Verfahren die sich nicht der Extraktion geometrischer
Merkmale bedienen.
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1. Einleitung

Die dreidimensional hochaufgelöste Repräsentation von Szenen und Objekten ist heute
gefragter als niemals zuvor. Realisiert wird dies mit Hilfe moderner Laserscanner. Der

rotierende Laserstrahl tastet dabei punktweise die Distanzen der Umgebung in alle Richtun-
gen ab. Eine integrierte Digitalkamera erzeugt zusätzlich Farbbilder die Farbinformationen
zu den einzelnen Punkten, liefern. Aus den so akquirierten Daten wird am Computer mittels
Software eine gefärbte 3D-Punktwolke generiert.

Um eine Szene oder ein Objekt vollständig erfassen zu können müssen mehrere Aufnahmen
aus verschiedenen Blickwinkeln erzeugt werden. Diese Tatsache erfordert eine spätere Über-
führung und Ausrichtung in ein gemeinsames Koordinatensystem. Der hohe Zeitaufwand
und die mangelnde Genauigkeit einer manuellen Überführung verlangen automatisierte
Verfahren. Diese verwenden meist charakteristische Merkmale, wie zum Beispiel künst-
liche Marker, die in der Szene platziert und aufgenommen werden. Eine Identifikation
gleicher Marker in verschiedenen Punktwolken gibt dann Aufschluss über deren globale
Zusammenhänge.

Eine starke Preisreduzierung und die stets akkurater werdende Arbeitsweise der Geräte,
führen zu einem immer größer werdenden Anwendungsbereich. So werden in der Archi-
tektur Gebäude vermessen, in Produktionsstätten sichert man die Qualität, Lagerbestände
werden überwacht und neben Reverse-Engineering von Bauteilen kommen sie auch bei
der Tatortssicherung in der Forensik zum Einsatz. In vielen dieser Einsatzbereiche können
keine künstlichen Marker eingesetzt werden, da diese die Szene verändern würden. Ist das
der Fall, werden stattdessen geometrische Merkmale, wie Linien, Eckpunkte oder Flächen,
aus den akquirierten Daten extrahiert und als zusammengehörig identifiziert. Natürliche
Umgebungen enthalten oft nur sehr wenige oder keine dieser geometrischen Merkmale, wie
in Abbildung 1.1, demonstriert wird.

Betrachtet man das Problem der Ausrichtung von 3D-Punktwolken in Echtzeit-Systemen,
wie z.B. der Roboternavigation oder Objekterkennung, werden punktbasierte Merkmale
herangezogen oder einzelne Punkte miteinander verglichen. Das hat den Vorteil, dass sie
unabhängig von der betrachteten Szene operieren können. Einige dieser Verfahren sind
sogar in der Lage Vorabinformationen über eine wahrscheinliche Lage der Punktwolken
zu verarbeiten. Dadurch kann die Problemkomplexität reduziert werden. Bei einer großen
Anzahl von Punkten sind diese Verfahren jedoch sehr rechenaufwändig und kommen daher
meist nur auf Punktwolken geringer Dichte zum Einsatz.

Sensoren zur Gewinnung von Vorabinformationen, über Position und Ausrichtung erzeugter
Punktwolken, sind in heutigen Laserscannern häufig integriert. Diese werden jedoch meist
nur zur Erkennung einer fehlerhaften Ausrichtung oder der Verbesserung des Ergebnisses,
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1. Einleitung

eingesetzt. Mit dem Einsatz von Sensoren, neuen Techniken der Datenreduktion und mit den
immer leistungsfähiger werdenden Computersystemen, könnte es möglich sein punktbasierte
Algorithmen zur Ausrichtung hochaufgelöster 3D-Punktwolken zu verwenden. Die daraus
resultierende Möglichkeit der automatisierten Verarbeitung von Szenen bei welchen bisher
eingesetzte Verfahren versagen, würde zu einer Erschließung neuer Anwendungsgebiete
führen.

Abbildung 1.1.: Vergleich natürliche und künstliche Umgebung - Links: Harte Kanten und große Flächen
bieten die Möglichkeit aussagekräftige geometrische Merkmale zu extrahieren. Rechts: Überwiegend vertreten
sind Rundungen. Aussagekräftige, vergleichbare Flächen oder Kanten sind kaum vorhanden.

1.1. Motivation

Die Entwicklung punktbasierter Algorithmen, zur Ausrichtung von Punktwolken, wird seit
geraumer Zeit vorangetrieben. Dies wird dadurch begründet, dass sie häufig zur Navigation
von Robotern sowie zur Erkennung von Objekten, beides wesentliche Anwendungsgebiete
der heutigen Zeit, eingesetzt werden. Das Ergebnis sind hoch-optimierte Algorithmen,
die spezifische Eigenschaften von Punktwolken ausnutzen. Oft führt dies zu einer deutlich
effizienteren Verarbeitung der Daten, als dies bei Verfahren möglich ist, die auf der Grundlage
geometrischer Merkmale arbeiten. Erschwerend kommt hinzu, dass die Genauigkeit einer
Ausrichtung hier auf die Präzision, der erkannten Merkmale, beschränkt ist.

Bei der Verwendung geometrischer Merkmale entsteht außerdem oft das Problem, dass
zu viele oder gar zu wenige, oftmals keine, Merkmale identifiziert werden. Eine Über-
bzw. Unterbestimmung des Problems und somit eine fehlerhafte oder gar ausbleibende
Ausrichtung der Punktwolken, ist die Folge.

Die Verwendung und Untersuchung punktbasierter Algorithmen erfolgt häufig auf Punkt-
wolken geringer Dichte oder sehr geringer Punktmengen. Dies führt schnell zu der Annahme,
dass diese Art von Algorithmen nicht für die Ausrichtung hochaufgelöster Punktwolken
geeignet ist.
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Die meisten zur Erzeugung hochaufgelöster Punktwolken verwendeten Geräte wie z.b der
FARO Focus3D besitzen Sensoren, wie Inklinometer, Altimeter, GPS und Kompass. Mit Hilfe
dieser können Informationen über die räumlichen Beziehungen der einzelnen Punktwolken
zueinander ermittelt werden. Einige der punktbasierten Verfahren sind in der Lage diese zu
berücksichtigten. Neben der generellen Reduktion der Problemkomplexität kann dadurch ein
sehr zielgerichtetes Suchen der korrekten Lösung erfolgen. Das Ausbleiben oder Ermitteln
eines, von Grund auf falschen, Ergebnisses kann dadurch umgangen werden.

Unter Berücksichtigung dieser Tatsachen, könnte es möglich sein, automatisierte Verfahren
zur Ausrichtung hochaufgelöster Punktwolken zu verwenden und, unabhängig von der
betrachteten Szene eine korrekte Lösung, in angemessener Zeit, zu finden.

1.2. Aufgabenstellung

In dieser Diplomarbeit soll das Problem der automatisierten, paarweisen Ausrichtung
hochaufgelöster Punktwolken unter der Verwendung punktbasierter Verfahren untersucht
werden. Diese sollen sich nicht der Extraktion geometrischer Merkmale oder künstlicher
Marker bedienen.

Dabei soll betrachtet werden, inwiefern zusätzliche Informationen, die aus Richtungs- und
Lagesensoren gewonnen werden, dabei hilfreich sind. Hierfür ist es notwendig punktbasierte
Algorithmen ihrer Lösungsstrategie entsprechend, zu klassifizieren und deren Stellvertreter
zu ermitteln. Diese sollen dann in einer Testumgebung, in Zusammenarbeit mit der Firma
FARO, in die Software SCENE (siehe Abschnitt 2.1.4) implementiert werden. Abschließend
ist eine Analyse der Algorithmen in verschiedenen Szenarien durchzuführen. Diese soll
Fragen zu folgenden Anforderungen beantworten:

• Konvergenz - Das Verfahren findet eine Lösung, die einer Verbesserung der Ausgangs-
situation entspricht.

• Stabilität - Das Verfahren konvergiert für verschieden Ausgangssituationen.

• Effizienz - Das Verfahren findet in angemessener Zeit eine Lösung.

• Reproduzierbarkeit - Das Verfahren findet für identische Ausgangssituationen stets
die selbe Lösung.

13



1. Einleitung

1.3. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen - erläutert einführenden Begriffe und stellt die verwendete Hardware
bzw. Software vor.

Kapitel 3 – Registrierung von Punktwolken - definiert das betrachtete Problem und klassifi-
ziert die dafür vorhandenen Ansätze. Dabei wird auch die Wahl der zur genaueren
Untersuchung herangezogenen Algorithmen motiviert.

Kapitel 4 – Fehlermaße - beschreibt die zur Evaluierung der erzielten Ergebnisse verwende-
ten Fehlermaße einer Transformation.

Kapitel 5 – Testumgebung - erörtert die zur Analyse verwendeten Rahmenbedingungen. Ent-
halten ist eine Beschreibung einzelner Testszenarien sowie der Ablauf der durchgeführ-
ten Untersuchungen.

Kapitel 6 – Sub-Sampling - stellt unterschiedliche Methoden zur Datenreduktion hochaufge-
löster 3D-Punktwolken vor. Außerdem werden dabei Vor- und Nachteile aufgezeigt
und erläutert.

Kapitel 7 – Point Feature Histogram (PFH) - vermittelt den Point Feature Histogramm Ansatz,
erläutert dessen Funktionsweise und geht auf mögliche Erweiterungen ein. Abschlie-
ßend wird die zur Analyse bereitgestellte Variante erläutert.

Kapitel 8 – Spin-Images (SI) - beleuchtet die Arbeitsweise und dabei notwendige Modifika-
tionen des Spin-Image Algorithmus.

Kapitel 9 – Iterative Closest Point (ICP) - erklärt das Funktionsprinzip des Iterative Closest
Point Algorithmus und stellt einige unterschiedliche Varianten dessen vor. Anschlie-
ßend wird die implementierte Variante vorgestellt.

Kapitel 10 – Normal Distribution Transformation (NDT) - gibt Einblick in die generelle Verfah-
rensweise des Normal Distribution Transformation Ansatz und erläutert mögliche
Modifikationen.

Kapitel 11 – Analyse - präsentiert die Ergebnisse durchgeführter Analysen der vorgestellten
Varianten von PFH, SI, ICP und NDT.

Kapitel 12 – Fazit und Ausblick - vergleicht die einzelnen Registrierungsverfahren unterein-
ander und gibt Ausblick auf weitere Untersuchungen.

Kapitel 13 – Zusammenfassung - resümiert die in dieser Arbeit behandelten Themen.
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2. Grundlagen

In diesem Kapitel werden die verwendeten Technologien und Werkzeuge vorgestellt. Dies
soll dem Leser einen Einstieg in das Thema ermöglichen. Außerdem sind Grundlagen für

die im späteren Verlauf erläuterten Zusammenhänge notwendig. Eine allumfassende Betrach-
tung des Themengebietes ist im Rahmen dieser Arbeit weder möglich noch gewünscht.

Der erste Teil dieses Kapitels befasst sich mit der Akquirierung der Daten. Dazu wird der
in dieser Diplomarbeit verwendete Laserscanner und dessen Funktionsweise beschrieben.
Anschließend werden die erfassten Daten in ihrer Form als Punktwolken genauer erläutert
um deren Eigenschaften zu verstehen. Der darauf folgende Abschnitt befasst sich mit
verschiedenen Repräsentationen einer Punktwolke im Arbeitsspeicher des Computers. Diese
sind an vielen Stellen für das Laufzeitverhalten der Algorithmen relevant. Zuletzt soll ein
Einblick in die Methoden zur Reduktion der Punktmengen gegeben werden.

2.1. Laserscanner

Der dieser Diplomarbeit zugrunde liegende Laserscanner wurde von der Firma FARO
entwickelt und trägt die Bezeichnung FARO R© Focus3D (siehe Abbildung 2.1). Dessen Aufbau,
Eigenschaften, Funktionsprinzip und Einsatzbereiche werden in diesem Abschnitt behandelt.
Außerdem wird Einblick in die ebenfalls von der Firma FARO R© entwickelte Software SCENE
gegeben werden.

2.1.1. Funktionsprinzip des Laserscanners

In Abbildung 2.1 ist ein Produktfoto des Focus3D zu sehen. Die Ausmaße des Focus3D sind
240× 200× 100 mm. Auf der rechten Seite des Gehäuses ist ein Touchscreen zu sehen über
welchen Konfigurationen wie z.b die Auflösung einer Punktwolke vorgenommen werden
können. Die unterstützten Auflösungen sind in Tabelle 2.1 festgehalten. Diese beziehen
sich auf eine maximale Reichweite von 120 Metern. Um den Scanvorgang zu starten muss
lediglich ein Button auf dem Touchscreen gedrückt werden.

In der linken Seite des Gerätes wird der Laserstrahl erzeugt und über den um 45◦ geneigten
Spiegel im Zentrum des Laserscanners in jede beliebige Richtung der Umgebung entsendet.
Dazu rotiert der Spiegel horizontal um 360◦, während sich der Scanner langsam, vertikal
um 180◦ seiner eigenen Achse dreht (siehe Abbildung 2.2). Durch die Kombination dieser
Rotationen wird eine kugelförmige Umgebung des Laserscanner abgetastet. Die kompakte
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2. Grundlagen

Abbildung 2.1.: FARO R© Focus3D Laserscanner - Der von der Firma FARO R© entwickelte Laserscanner
Focus3D, ist über einen Touchscreen bedienbar. Laser und Kamera sind in der linken Hälfte des Gerätes
untergebracht.[FAR12]

und schlanke Bauweise des Scanners erlaubt ein vertikales Sichtfeld von 305◦. Der Laser
arbeitet mit einer Wellenlänge von 905 Nanometern und gehört mit einer Leistung von 20
Miliwatt zu den nicht augensicheren Lasern der Klasse 3R.

Die Abtastung der Umgebung erfolgt diskret, da jeder Punkt von einem Laserstrahl gemessen
wird. Pro Sekunde werden dabei 976.000 Strahlen abgefeuert und ebenso viele Punkte
gemessen. Ein ausgesandter Laserstrahl wird vom ersten Hindernis diffus reflektiert. Teile
des reflektierten Strahles werden vom Laserscanner wieder aufgefangen. Die Distanz des

Auflösung Punkte Zeile × Punkte Spalte Winkelauflösung

1/1 17067 × 40960 0.009◦/Pixel
1/2 8534 × 20480 0.018◦/Pixel
1/4 4267 × 10240 0.036◦/Pixel
1/8 2133 × 5120 0.072◦/Pixel
1/16 1067 × 2560 0, 144◦/Pixel

Tabelle 2.1.: Scanauflösungen des Focus3D - Die hier aufgeführten Auflösungen werden vom Focus3D unter-
stützt. Eine Zeile entspricht einer vertikalen Rotation des Spiegels, eine Spalte einer halben, horizontalen Rotation
des Gerätes.
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2.1. Laserscanner

zu messenden Punktes wird mittels Phasenverschiebung des modulierten Laserstrahles
errechnet. Eine hochfrequente Sinusschwingung erlaubt dabei Genauigkeiten von bis zu 2
mm. Niedere Frequenzen ermöglichen das Messen großer Entfernungen und sind notwendig
um Mehrdeutigkeiten aufzulösen. Die X- und Y-Koordinate zu der gemessenen Distanz wird
über die Winkelpositionen des Spiegels und des Gerätes ermittelt. Ein 3D-Punkt ist das
Resultat.

Abbildung 2.2.: Funktionsprinzip FARO R© Focus3D Laserscanner - Links: Der Laserstrahl wird über den
Spiegel in die Umgebung entsendet. Mitte: Die vertikale Rotation des Spiegels lenkt den Laserstrahl in vertikalen
Kreisen um den Laserscanner herum ab. Rechts: Die zusätzliche horizontale Rotation des Gerätes gewährleistet
eine vertikale Abtastung der Umgebung .[FAR12]

Ebenfalls in der linken Seite des Gerätes (siehe Abbildung 2.1), ist eine Digitalkamera mit
Blick auf den Spiegel montiert. Während erneuter horizontaler Rotationen des Spiegels
und einer vertikalen Rotation des Scanners um weitere 180◦, erzeugt diese 84 Farbbilder
kombiniert mit einer Auflösung von 70 Mio. Pixeln. Aus ihnen wird in einem späteren Schritt
mittels Software (siehe Abschnitt 2.1.4) ein Panoramabild erzeugt, das die gesamte Umge-
bung des Laserscanner umfasst. Anschließend kann die Farbinformation der Bildpixel auf
die vom Laser gemessenen 3D Punkte projiziert werden um die Punktwolke zu kolorieren.

Die akquirierten Daten werden auf einer SD-Karte gespeichert, deren Slot sich auf der
rechten Seite des Gerätes unterhalb des Touchscreens befindet. Mit ihr können die erzeug-
ten Punktwolken auf den Computer übertragen werden um weitere Verarbeitungsschritte
durchzuführen.

2.1.2. Sensoren

Versucht man die Lage eines Objektes abhängig von einer Bezugsposition im 3D-Raum voll-
ständig zu beschreiben, das entspricht der Problematik des Ausrichtens zweier Punktwolken
zueinander (siehe Kapitel 3), sind 6 Freiheitsgrade notwendig. Dabei handelt es sich um die
Verschiebung in X-, Y- und Z- Richtung, sowie die Rotationen um X-, Y-, und Z-Achse.
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2. Grundlagen

Einige der im Späteren betrachteten Algorithmen sind in der Lage, diese Art der Information
zu verarbeiten. Dies führt zu einer Reduktion der Freiheitsgrade und somit der Problemkom-
plexität. Im Folgenden wird daher ein Überblick der im Focus3D verfügbaren sowie weiteren
Sensoren zur Lage- und Positionsbestimmung vorgestellt. Dies lassen sich allgemein in zwei
Kategorien fassen, Lage- und Positionsbestimmung.

Die Z-Achse ist dabei als die Achse definiert, um welche sich der Scanner beim Scanvorgang
dreht. X- und Y-Achse bilden dann die Ebene auf welcher die Z-Achse orthogonal steht.

• Lagesensoren Diese geben Aufschluss über die Neigung des Laserscanners. Die Nei-
gung ist im 3D-Raum eine Bewegung die mittels Rotationen um die Koordinatenachsen
beschrieben werden kann.

Ein im Focus3D verfügbarer Sensor ist das Inklinometer. Dabei handelt es sich um einen
Zweiachsen-Kompensator. Dieser ist in der Lage, die Rotationen um zwei verschiedene
Achsen zu messen, die X und Y-Achse. Sind die Rotationen um 2 Achsen bekannt,
reduziert sich die Problemkomplexität auf 4 Freiheitsgrade. Diese sind die Verschiebung
in X-, Y- und Z- Richtung sowie die Rotation um die Z-Achse. Bei einer Genauigkeit
von ±0, 015◦ [FAR12] können diese Messergebnisse ohne zusätzliche Korrekturen
verwendet werden.

Bei einem weiteren, im Focus3D verfügbaren Lagesensor handelt es sich um den
Kompass. Dieser orientiert sich am Erdmagnetfeld und nutzt als Bezugspunkt den
geografischen Nordpol. Der Einsatz eines Kompass löst demnach einen Freiheitsgrad
der Drehung. Im System des Laserscanner liefert er Informationen bezüglich der
Rotation um die Z-Achse. Bei einer Genauigkeit von ±20◦ [FAR12] ist diese Information
sehr unsicher. Externe, omnipräsente Magnetfelder, meist verursacht durch benachbarte
Elektrogeräte, überdecken das Erdmagnetfeld was zu falschen Informationen führen
kann.

• Positions-Sensoren Sie dienen im allgemeinen dazu, die Position eines Objektes im
3D-Raum zu bestimmen. Dies entspricht den Verschiebungen in Richtung der Koordi-
natenachsen (X, Y, Z).

Der wohl bekannteste Ansatz ist die Satellitennavigation wie z.B. GPS (NAVSTAR
GPS) [Ame08], Galileo, Compass etc. Bezugspunkte sind dabei um die Erde kreisen-
de Satelliten. Aus deren ausgesandten und überlagerten Signalen kann die Position
eines Objektes auf der Erde bestimmt werden. Sie lösen daher 3 Freiheitsgrade und
reduzieren das betrachtete Problem auf Rotationen um die Koordinatenachsen. Die
Genauigkeit dieser Information hängt stark von der Stärke des erhaltenen Signals und
der verwendeten Technik ab. Allgemein kann dabei eine Genauigkeit von ±2− 7m
[Ame08, JRE+

04] unter freiem Himmel erwartet werden.

Nur die Höhe eine Objektes (Z-Koordinate) bestimmend arbeiten Höhenmesser (Altime-
ter). Realisiert wird dies über das Messen des Luftdruckes. Bezogen auf die Position
des Laserscanner wird eine Verschiebung in Richtung der Z-Achse gemessen. Sein
Beitrag zur Reduktion der Komplexität beschränkt sich auf diesen einen Freiheitsgrad.
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Dieser kann mit einer Genauigkeit von ±5 m [FAR12] bestimmt werden. Ein Altimeter
ist im Focus3D enthalten.

Die relativ zu einem bestimmten Ausgangspunkt zurückgelegte Trajektorie zu erfassen
ist eine weiter Methode, um eine Position zu bestimmen. Dies wird als Odometrie
bezeichnet [Hoc05, Nü02]. Der Fehler dieser Information ist abhängig von der Länge
der zurückgelegten Strecke und bewegt sich im Meter-Bereich. Bestimmt werden
kann dabei die Verschiebung in Richtung der X- und Y- Koordinate, wodurch zwei
Freiheitsgrade der Translation gelöst sind.

Betrachtet man die Kombination aller hier aufgeführten Sensoren, könnte der Schluss
gezogen werden, dass Informationen für alle Freiheitsgrade bestimmt werden können.
Die Lagesensoren liefern Informationen bezüglich der Rotationen um X-, Y-, Z-Achse, die
Positions-Sensoren lösen die Verschiebung in selbige. Ungenauigkeiten der Sensoren, sowie
verrauschte oder ganz ausbleibende Signale führen jedoch dazu, dass ein Großteil dieser
Information lediglich als Hilfestellung benutzt werden kann.

2.1.3. Einsatzbereich

Die wahrheitsgetreue, dreidimensionale Repräsentation einer Szene und die sich hierdurch
ergebenden Möglichkeiten, machen 3D-Laserscanner für eine Vielzahl verschiedener An-
wendungen interessant. Besonders beliebt sind dabei Anwendungsbereiche, bei welchen die
Visualisierung und Vermessung von Objekten oder ganzer Umgebungen eine Rolle spielt.
Sinkende Anschaffungskosten sorgen dafür, dass 3D-Laserscanner auch in Anwendungs-
gebiete Einzug halten, bei welchen es nicht nur darum geht kostenintensive, industrielle
Prozesse zu optimieren. Im Folgenden werden einige typische Einsatzbereiche vorgestellt.

Forstwirtschaft Zur nachhaltigen Forstwirtschaft gehört die Dokumentation der Waldbe-
stände. Mit Hilfe von 3D- Laserscannern ist es möglich diese flächendeckend und ohne
erheblichen Zeitaufwand zu erstellen. Die Dokumnetation kann dann in die Software voll-
automatischer Holzernter eingespielt werden [Tre12]. Zur Abholzung freigegeben Bäume
können darin markiert werden. Sind Bäume gefällt oder durch Unwetterschäden nicht
mehr vorhanden, kann die Dokumentation durch das Entfernen der entsprechenden Daten
stets aktuell gehalten werden. Außerdem können Kollateralschäden, verursacht durch das
Schlagen von Zufahrtswegen, im Voraus ermittelt und minimal gehalten werden.
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2. Grundlagen

Abbildung 2.3.: Einsatzbereich Forstwirtschaft - Links: Akquirierte Daten eines Waldes. Rechts: Zur Abholzung
freigegebene und für die Bestandspflege zu erhaltende, markierte Bäume. [Tre12]

Denkmalschutz Um Denkmäler zu schützen und zu erhalten sind häufig Restaurationen
notwendig. Mit Hilfe von 3D-Laserscannern ist es möglich Objekte oder ganze Gebäude zu
erfassen, ohne dabei empfindliche Bereiche zu strapazieren. Dies ist auf Grund der kontakt-
freien Erfassung der Umgebung möglich. Anschließend kann eine ausführlich Planung der
Restauration durchgeführt werden.

Abbildung 2.4.: Einsatzbereich Denkmalschutz - Das King’s Theatre in Glasgow wurde im Zuge einer Sanie-
rung 2011 mittels 3D-Laserscanner vollständig erfasst.[FAR12]

Vermessung Seit Menschengedenken besteht die Notwendigkeit, Objekte, Umgebungen,
Landschaften etc. zu vermessen. Oft ist dies mit einem sehr hohen Zeitaufwand verbunden
und bestimmte Bereiche sind nur schwer zugänglich. Werden Messungen dabei fehlerhaft
durchgeführt oder gar vergessen, bedarf es einer erneuten, aufwendigen Durchführung
dieser. 3D-Laserscannern ermöglichen es Daten aus sicherer Entfernung einmal zu erfassen
und unabhängig davon beliebige Messungen durchzuführen.
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2.1. Laserscanner

Abbildung 2.5.: Einsatzbereich Vermessung - Erfassen eines Straßenzuges, beliebige Messungen sind jederzeit
möglich ohne die Straße erneut besuchen zu müssen.[FAR12]

Forensik Im Bereich der Forensik und der Unfallforschung werden Laserscanner eingesetzt,
um Tat- und Unfallorte zu dokumentieren. Im Vergleich zu herkömmlichen Methoden kann
dies mittels 3D-Laserscanner kontaktfrei und präzise erfolgen. Außerdem ist ein späteres
Analysieren und Rekonstruieren des Tat- bzw. Unfallhergangs beliebig oft möglich, ohne
Daten zu verfälschen.

Abbildung 2.6.: Einsatzbereich Forensik - Beispiel einer forensischen Analyse. Anhand der Verteilung der
Blutspritzer und der Formung des Einschussloches wird der Schusswinkel rekonstruiert.[FAR12]
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2. Grundlagen

2.1.4. FARO SCENE

SCENE ist eine für den FARO Focus3D konzipierte Software zur Verwaltung und Manipula-
tion von Punktwolken. Mit ihr können ganze Scanprojekte in einem eigenen Repositorium
verwaltet werden und nach Belieben importiert, exportiert und wiederhergestellt werden.
Beim Import neuer Punktwolken werden diese zunächst gefiltert (siehe Abschnitt 2.2) und
auf Wunsch des Benutzers mit Farbe versehen.

Wurden mehrere Punktwolken der selben Szene aus verschiedenen Blickwinkeln erzeugt,
bietet SCENE die Möglichkeit, diese zueinander auszurichten. Dies kann dabei manuell oder
automatisiert (siehe Kapitel 3) durch die Extraktion künstlicher Marker und geometrischer
Merkmale, erfolgen.

Verschiedenste Arten der Visualisierung, von planaren Ansichten über Tiefen- und Inten-
sitätsbildern bis hin zur 3D-Ansicht, werden unterstützt. Neben der Visualisierung stehen
dem Benutzer diverse Werkzeuge zur Verfügung. Diese reichen von Messungen aller Art
über das Erkennen geometrischer Objekte, bis hin zur Analyse der akquirierten Daten.

Abbildung 2.7.: Punktwolken Software SCENE - Auf der linken Seite befindet sich eine Übersicht der im
Projekt enthaltenen Punktwolken. Ebenfalls dort einzusehen sind extrahierte Objekte, Messungen etc. Rechts
befindet sich der Bereich in welchem die Visualisierung der Punktwolken stattfindet; hier zu sehen eine 3D-
Visualisierung.

2.2. Punktwolken

Die in dieser Diplomarbeit verwendeten Punktwolken wurden mit dem FARO R© Focus3D

erzeugt (siehe Abschnitt 2.1.1) und anschließend mit der Software SCENE (siehe Abschnitt
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2.1.4) verarbeitet. In diesem Abschnitt wird daher auf die Struktur und die Eigenschaften
einer solchen Punktwolke eingegangen. Außerdem werden die darauf angewendeten Filter
zum Entfernen von Störungen (Rauschen) erläutert.

2.2.1. Oberflächen-Punktwolken

Die vom FARO R© Focus3D erzeugten Punktwolken sind Oberflächen-Punktwolken. Oft wer-
den diese auch 2

1
2 D-Punktwolken oder sphärische Punktwolken genannt und zeichnen sich

dadurch aus, dass die Koordinaten zweier Dimensionen durch eine Rasterebene festgelegt
sind. Jeder Rasterzelle wird ein Wert zugeordnet, in diesem Fall eine gemessene Distanz.
Auf diese Art entstandene Punktwolken beschreiben dadurch die Oberflächen der in einer
Szene vorkommenden Objekte.

Die Zuordnung einer Distanz zu einer Rasterzelle erfolgt über die Winkelstellungen von
Spiegel und Laserscanner. Dies ist schematisch in Abbildung 2.8 zu sehen. Aus den Polar-
koordinaten (d, θ, φ) werden die kartesischen Koordinaten eine Punktes pi ermittelt. Dabei
entspricht d der gemessenen Distanz, θ dem horizontalen und φ dem vertikalen Winkel.
Über diese können auch die mittels Digitalkamera ermittelten Farbinformationen den ent-
sprechenden Punkten zugeordnet werden. Diese Methodik führt dazu, dass die Dichte einer
Punktwolke mit der Distanz zum Laserscanner abnimmt (siehe Abbildung 2.8). Der Bereich
unter dem Laserscanner kann nicht eingesehen werden, da er durch diesen selbst verdeckt
wird.

Scanner
d

θφ

Abbildung 2.8.: Oberflächen-Punktwolke - Links: Der Winkel φ entspricht der Winkelstellung des Laserscanner,
θ des Spiegels. Die Rasterebene ist durch diese beiden Winkel definiert. Die Distanz d wird vom Laser gemessen.
Rechts: Die Dichte einer sphärischen Punktwolke nimmt mit der Entfernung zum Laserscanner ab. Der Bereich
unter dem Laserscanner kann nicht eingesehen werden da er durch selbigen verdeckt wird.

2.2.2. Filter

Das Akquirieren von Daten ist stets fehlerbehaftet. In der Bildverarbeitung wird dies all-
gemein als Rauschen bezeichnet und äußert sich in fehlerhaften Koordinaten einzelner
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2. Grundlagen

3D-Punkte. Da sich Rauschen stets negative auf die Verarbeitung der Daten auswirkt, müs-
sen Punktwolken gefiltert werden.

Die Filterung der hier verwendeten Punktwolken wird von SCENE (siehe Abschnitt 2.1.4)
bewerkstelligt. Dazu werden die im Folgenden Filter angewendet:

• Dark-Point-Filter - Die Distanz zu einem gemessenen Punkt wird mittels Phasen-
verschiebung und Intensität des reflektierten Laserstrahles errechnet (siehe Abschnitt
2.1.1). Ist die Intensität des reflektierten Strahles zu schwach (trifft z.B. auf sehr dunkle,
stark absorbierende Objekte), kann keine Zusicherung über die Korrektheit der gemes-
senen Distanz gegeben werden. In diesem Fall wird der Punkt aus der Punktwolke
entfernt.

• Stray-Point-Filter - Dieser Filter versucht Rauschen zu erkennen und zu eliminieren.
Dazu wird die Umgebung eines jeden Punktes betrachtet. Weichen Distanzwerte einzel-
ner Punkte auf zu geringem Raum voneinander ab, werden diese aus der Punktewolke
entfernt. Verursacht werden kann dies z.B. durch Schmutzpartikel in der Luft, welche
den Strahl reflektieren bevor dieser das eigentliche Objekt erreicht.

2.3. Datenstrukturen

Bei der Verarbeitung großer Punktmengen spielt das Auffinden und der Zugriff auf ein
Datum eine entscheidende Rolle. Wie und mit welcher Effizienz diese Operationen ausgeführt
werden sind maßgeblich von der Datenstruktur abhängig, in welcher diese gespeichert
werden. In diesem Abschnitt soll daher auf einige der grundlegendsten Datenstrukturen
im Bereich der 3D-Datenverarbeitung eingegangen werden. Als Programmiersprache wird
C++ zugrunde gelegt. Das Augenmerk liegt dabei auf die für diese Diplomarbeit wichtigen
Operationen. Diese sind der Zugriff auf ein bestimmtes Element, sowie die Suche nach
dem nächsten Nachbarn eines Punktes. Außerdem soll ein Einblick in den Speicherbedarf
gegeben werden. Betrachtet werden dabei Punktwolken mit 3D-Punkten, gegeben durch X-,
Y-, und Z-Koordinate.

2.3.1. 1D-Array

Das 1D-Array ist eine der einfachsten Datenstrukturen zum Speichern großer Punktmengen.
Da es linear im Speicher liegt, d.h. kein Verlinkungen zwischen den einzelnen Elementen
notwendig sind, ist sie sehr speicherplatzeffizient. Für eine Punktwolke mit n Elementen
werden n Elemente der Größe eines 3D-Punktes benötigt. Erzeugen lässt es sich in O(n).

Zugriffe auf einzelne Elemente erfolgen mittels Index (Speicheradresse), in konstanter Zeit,
also O(1) . Da 3-D Punkte in einem Array nicht nach ihrer vollständigen räumlichen Lage
sortiert vorliegen können, muss bei der Suche nach einem Element im Worst-Case das
gesamte Array durchlaufen werden. Dies entspricht einer Komplexität von O(n). Die Suche
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2.3. Datenstrukturen

nach dem nächsten Nachbarn eines 3D-Punktes ist äquivalent zur Suche eines bestimmten
Elementes und liegt ebenfalls in O(n).

2.3.2. 2D-Array

Diese Datenstruktur entspricht einer speziell auf 2
1
2 D-Punktwolken zugeschnittene Spei-

cherstruktur und wird auch als Range-Image bezeichnet. Sie setzt voraus, dass jeder Punkt
eindeutig ist, was durch das Erzeugungsprinzip (siehe Abschnitt 2.2.1) einer 2

1
2 D-Punktwolke

gegeben ist. In ihr können 3D-Punkte nach zwei Dimensionen (hier mit X und Y bezeichnet)
sortiert abgelegt werden.

Realisiert wird dies in Form eines 2D-Array. Jede vorkommende X-Koordinate erhält eine ei-
gene Zeile, jede vorkommende Y-Koordinate eine eigene Spalte. Die zugehörige Z-Koordinate
wird dann an entsprechender Stelle gespeichert. Für n 3D-Punkte werden n Elemente der
Größe einer Z-Koordinate benötigt. Da die Elemente wie in einem 1D-Array linear im Spei-
cher liegen, ist der Speicheraufwand noch geringer und lässt sich ebenfalls in O(n) erzeugen.
Zugriffe auf Elemente erfolgen per Index, d.h. in konstanter Zeit (O(1)).

Durch die Eindeutigkeit eines 3D-Punktes kann selbst die Suche nach einem bestimmten
Element in konstanter Zeit durchgeführt werden. Die Nachbarschaftssuche erfordert ebenfalls
konstanten Zeitaufwand. Für den Zugriff auf einen Nachbar muss lediglich der Index der in
Suchrichtung liegenden Koordinate erhöht werden.

2.3.3. K-dimensionaler-Baum (KD-Tree)

Ein k-dimensionaler Baum ist ein binärer Suchbaum zum Speichern von Punkten des Rk.
Dadurch ist es möglich verschiedenste vektorisierbare Elemente zu verwalten [BL97]. Für
3D-Punkte wird demnach ein 3-dimensionaler Baum benötigt. Die Punkte liegen dabei in
alle Dimensionen sortiert vor.

Jede Ebene im Baum teilt den Punktraum durch eine Hyperebene entlang einer Raumachse.
Sei die Baumwurzel als Ebene 0 definiert, dann teilen die Baumebenen {p|p mod 3 = 0}
den Punktraum in Richtung der X-Achse, {p|p mod 3 = 1} und {p|p mod 3 = 2} in
Richtung der Y- und Z-Achse.

Die 3D-Punkte werden in den Knoten des Baumes gespeichert. Der Speicheraufwand liegt
dadurch in O(n + (n · 2t)) wobei t den Speicherplatz eines Zeigers auf einen Kind-Knoten
definiert. Der Zugriff auf ein bestimmtes Element entspricht der Suche nach diesem und
erfolgt in O(log(n)).

Der Aufbau des k-dimensionalen Baumes erfordert eine Suche nach der richtigen Position
eines jeden Elementes. Dies entspricht einer Komplexität von O(nlog(n)). Sei für das Ele-
ment l der nächste Nachbar gesucht, dann wird dessen Teilbaum rekursiv bis zum Blatt
durchlaufen und als aktueller nächster Nachbar markiert. Beim rekursiven Rücklauf werden
sämtliche an den Abstiegspfad angrenzenden Unterbäume im ersten Knoten besucht. Ist
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2. Grundlagen

deren Distanz zu l geringer als die des aktuellen nächsten Nachbarn, wird dieser aktualisiert.
Dies erfordert einen Zeitaufwand von O(log(n)).

Die in dieser Diplomarbeit verwendeten k-dimensionalen Bäume entstammen der Point
Cloud Library [Lib12i]. Dabei handelt es sich um eine Variante die im Allgemeinen einen
balancierten Suchbaum, realisiert durch eine adaptive Wahl der zu bildenden Hyperebene,
erzeugt. Operationen auf diesen können dann im Average-Case erfolgen, daher beziehen
sich die hier genannten Komplexitätsklassen ebenfalls auf diesen.

Weiterführende Informationen zu KD-Tree’s können unter [NLH07] und [BL97] gefunden
werden.
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3. Registrierung von Punktwolken

Um eine vollständige, dreidimensionale Repräsentation einer Szene zu erhalten ist es not-
wendig, Punktwolken aus verschiedenen Blickwinkeln zu erzeugen. Durch Verdeckung

fehlende Bereiche werden dadurch ebenfalls erfasst. Die so erzeugten Punktwolken müssen
anschließend in ein gemeinsames Koordinatensystem überführt und zueinander ausgerichtet
werden. Dies ist notwendig, um die aufgenommene Szene maßstabsgetreu und der Realität
entsprechend repräsentieren zu können.

Beim Überführen der Punktwolken in ein globales Koordinatensystem werden die erfassten
Punktkoordinaten aller Punktwolken so transformiert, dass sie demselben Maß entsprechen.
Dies bedeutet, dass Skalierungen und Verzerrungen in den Punktkoordinaten angeglichen
werden müssen. Da die hier verwendeten Punktwolken bereits demselben Maßstab und
Prinzip entsprechend erzeugt wurden (siehe Abschnitt 2.1.1), ist dies jedoch nicht not-
wendig. Das Überführen in ein gemeinsames Koordinatensystem entspricht dadurch dem
Übereinanderlegen des Ursprungs (Scannerposition) beider Punktwolken (siehe Abbildung
3.1).

Wenn ein Punkt einer Szene aus unterschiedlichen Positionen aufgenommen wird, tritt dieser
in verschiedenen Punktwolken auf. Sind die Punktwolken nicht zueinander ausgerichtet,
besitzt er in jeder Punktwolke eine andere Koordinate. Diese Punkte werden als korrespon-
dierend bzw. als Korrespondenzen bezeichnet. Das Auffinden von Korrespondenzen sowie
das Verschieben (Translation) und Verdrehen (Rotation) der Punktwolken, sodass korrespon-
dierende Punkte jeder Punktwolke dieselbe Koordinate besitzen, wird als Registrierung
bezeichnet. (siehe Abbildung 3.1).

Grundlegend lässt sich die Registrierung auf zwei Arten durchführen: direkt/manuell und
automatisiert. Bei der direkten/manuellen Registrierung wird Position und Orientierung
des Laserscanners während dem Scanvorgang in einem globalen Koordinatensystem be-
stimmt [SB05]. Heutige Technologien und Sensoren erlauben es diese Informationen auch
automatisch zu erfassen, weshalb man auch von einer direkten Registrierung spricht. Meist
wird dabei eine Kombination verschiedener Sensoren wie GPS, Kompass und Inklinometer
benutzt. Der Einsatz eines Trägheitsnavigationssystems wie von Talaya et al.[JRE+

04] be-
schrieben, ist dabei ebenso, denkbar wie die Verwendung odometrischer Daten, die bei der
Roboternavigation zum Einsatz kommt [Hoc05, Nü02].
Ungenauigkeiten oder gar ausbleibende Signale der Sensoren (wie z.B. GPS in Gebäuden)
führen dabei häufig zu großen Abweichungen in der Registrierung und erfordern oft zu-
sätzliche Elektronik. Daher ist diese Art der Registrierung nur für bestimmte Szenarien
geeignet.
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3. Registrierung von Punktwolken

Abbildung 3.1.: Registrierung von Punktwolken - Links: Die Punktwolken liegen in einem gemeinsamen
Koordinatensystem vor; der Ursprung beider Punktwolken liegt übereinander (kleiner Kreis Punkte rechts
unten). Rechts: Die Punktwolken wurden registriert; der Szene entsprechend gleiche Punkte liegen übereinander.

Im Rahmen dieser Diplomarbeit soll die automatisierte, paarweise Registrierung betrachtet
werden. Bei dieser werden, anders als bei der globalen Registrierung, nicht beliebig viele,
sondern nur Paare von Punktwolken zueinander ausgerichtet [DH01]. Der Ursprung einer
Punktwolke (Laserscanner-Position) wird dabei an dem des gemeinsamen Koordinatensys-
tems fixiert. Ausgerichtet wird die verbleibende Punktwolke. Für sie muss die passende
Transformation (Translation und Rotation) berechnet werden. Im R3 entspricht dies dem
Bestimmen von sechs Freiheitsgraden (Translation entlang der X-, Y- und Z-Achse und
Rotation um X-, Y- und Z-Achse).

Automatisierte Ansätze zum Lösen des Registrierungsproblems sind in großer Zahl vorhan-
den. Nachdem das Registrierungsproblem mathematisch definiert wurde, wird daher eine
mögliche Klassifikation vorgestellt. Diese gibt einen allgemeinen Überblick und kategorisiert
die im Späteren untersuchten Algorithmen (Iterative Closest Point, Normal Distribution
Transformation, Point-Feature-Histogram, Spin-Images).

3.1. Mathematische Definition

Gegeben seien zwei, in globalen Koordinaten vorliegende 3D-Punktwolken P und Q. Diese
repräsentieren dieselbe Szene aus verschiedenen Blickwinkeln.

P = {pi|pi ∈ R3, 0 < i ≤ n, n ∈N}(3.1)
Q = {qj|qj ∈ R3, 0 < j ≤ m, m ∈N}
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3.2. Klassifikation

Sei außerdem eine beliebige Transformation im R3 durch die Rotationsmatrix R und einen
Translationsvektor~t wie folgt beschrieben.

R = Rx · Ry · Rz(3.2)

Rx =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 , α ∈ R, 0 ≤ α < 360

Ry =

 cos(β) 0 sin(β)

0 1 0
− sin(β) 1 cos(β)

 , β ∈ R, 0 ≤ β < 360

Rz =

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 , γ ∈ R, 0 ≤ γ < 360

~t =

 tx

ty

tz

 , tx, ty, tz ∈ R

Des Weiteren sei eine Korrespondenz definiert als ein Paar von Punkten beider Punktwolken,
deren Punktkoordinaten, der repräsentierten Szene entsprechend, identisch sein sollten.

c = (cp, cq), cp ∈ P, cq ∈ Q(3.3)

Das Registrierungsproblem ist dann gelöst, wenn R und~t so bestimmt sind, dass für die
Menge aller Korrespondenzen C gilt:

C = {(ckp , ckq)|ckp = R · ckq +~t, 1 ≤ k ≤ |C|}(3.4)

Auf Grund von Ungenauigkeiten in den Messdaten (z.B. Rauschen) kann diese Gleichheit in
der Praxis nahezu nie erreicht werden. Daher muss diese Definition um einen Grenzwert
ε ∈ R erweitert werden.

C = {(ckp , ckq)| ‖ckp − (R · ckq +~t)‖2 ≤ ε, 1 ≤ k ≤ |C|}(3.5)

Der Abstand zwischen zwei korrespondierenden Punkten (‖ckp − (R · ckq +~t)‖2) wird dabei
als Spannung bezeichnet.

3.2. Klassifikation

Dieser Abschnitt gibt einen Einblick in die Vielfalt der Lösungsvarianten des Registrie-
rungsproblems. Dabei wird dem Leser auch eine Kategorisierung der im späteren Verlauf
untersuchten Algorithmen vorgestellt. Gründe der Wahl sind über die in Abschnitt 1.2
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3. Registrierung von Punktwolken

definierten Kriterien sowie die in der Klassifikation beleuchteten Verfahrensweisen zu er-
schließen. Eine vollständige Betrachtung aller aktuell existierenden Algorithmen würde den
Rahmen diese Arbeit sprengen.

Prinzipiell existieren vielerlei mögliche Klassifikationen automatisierter Registrierungs-
Algorithmen. Dabei ist die Trennung durch das Aufgabengebiet ebenso berechtigt, wie eine
Klassifizierung basierend auf der mathematischen Definition, der zur Berechnung einer
Transformation benutzten Methodik. Die hier verwendete Klassifikation basiert auf der von
[SMFF05] und [CF01]. Sie teilt automatisierte Registrierungs-Algorithmen grundlegend in
zwei Klassen:

• Grobregistrierung - Diese Klasse beherbergt Verfahren, die nicht in der Lage sind
Vorwissen zu verarbeiten. Dadurch sind sie in der Lage, Punktwolken unabhängig von
ihrer initialen Ausrichtung zu registrieren. Das Ergebnis ist dabei meist ungenau; die
Punktwolken sind nur grob zueinander ausgerichtet.

• Feinregistrierung - In dieser Klasse beheimatet sind Algorithmen, die Vorabinforma-
tionen bezüglich der Ausrichtung zweier Punktwolken zueinander verwenden. Dabei
wird eine grobe Ausrichtung der Punktwolken als initiale Situation vorausgesetzt und
verfeinert.

3.2.1. Grobregistrierung

Ziel der Grobregistrierung ist es, Korrespondenzen zwischen zwei Punktwolken zu finden.
Dazu werden besondere Merkmale aus beiden Punktwolken extrahiert und miteinander
verglichen. Sehr ähnliche Merkmale werden als Korrespondenzen betrachtet. Die Erken-
nung ähnlicher Merkmale wird dabei als Korrespondenzsuche bezeichnet und weist im
Allgemeinen eine Komplexität von O(n2) auf. Dabei bezeichnet n die Anzahl gefundener
Merkmale in einer Punktwolke. Aus ihnen wird eine Transformation berechnet, die alle
korrespondierenden Merkmale bestmöglich zueinander ausrichtet. Dies erfolgt mittels Singu-
lärwertzerlegung der Korrelationsmatrix und Schwerpunktdifferenz der Korrespondenzen
(siehe Anhang A).

Welche Art von Merkmal dabei gewählt, auf welche Art und Weise die Transformation
berechnet und welche Registrierungsstrategie zur Optimierung des Ergebnisses verwendet
wird, unterscheidet die einzelnen Verfahren voneinander. Weiter differenziert wird an dieser
Stelle über die Art der verwendeten Merkmale. Dies liegt darin begründet, dass Strategie,
Transformation und Optimierung oftmals identisch sind.

Künstliche Merkmale

Als Merkmale werden bei dieser Methode spezielle Marker eingesetzt. Diese besitzen eine
vorgegebene, algorithmisch leicht auffindbare, geometrische oder optische Struktur (siehe
Abbildung 3.2). Vor dem Scanvorgang werden diese in der aufzunehmenden Szene so
platziert, dass aus jedem Blickwinkel ausreichend viele (mindestens drei) davon im Überlapp
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sichtbar sind. Nach dem Scanvorgang werden die akquirierten Punktwolken auf Marker
hin untersucht. Extrahiert wird Art und Position eines Markers. Korrespondierende Marker
können dann durch die in Graphen repräsentierten räumlichen Relationen ermittelt werden
[Bog08].

Werden nicht allzu komplexe Marker verwendet, ist eine Extraktion mit geringem Zeitauf-
wand möglich. Wurden diese außerdem sinnvoll (keine symmetrische Anordnung) platziert,
ist eine äußerst zuverlässige Registrierung der Punktwolken möglich. Nachteile dieser Me-
thodik stellten der hohe Zeitaufwand zur Positionierung der Marker, sowie das Verdecken
einzelner Bereiche der Szene durch diese dar.

Abbildung 3.2.: Künstliche Marker - Links: Schachbrettmuster. Rechts: Kugelboard.
Diese Marker werden als leicht auffindbare Korrespondenzpunkte zur Registrierung von der Firma FARO
verwendet [FAR12].

Geometrische Merkmale

Als geometrische Merkmale werden aus Kanten gebildete Eckpunkte [Ber09, Tro08], Recht-
ecke [Ber09] und Flächen [DB06] verwendet. Eckpunkte werden dabei meist über zwei,
bzw. drei sich schneidende Kanten definiert und sind translationsinvariant. Kanten haben
den Vorteil, dass lediglich die Rotation um sich selbst und die Verschiebung entlang ihrer
Richtung ungeklärt bleibt. Die Länge einer Kante kann jedoch auf Grund des Blickwinkels oft
nicht exakt bestimmt werden. Rechtecke hingegen legen sämtliche Rotationen außer die sym-
metrischen um deren Normale fest. Allgemeine Flächen können das Problem der Symmetrie
lösen; die Extraktion und der Vergleich dieser ist jedoch deutlich zeitaufwendiger.

Zur Extraktion und zum Vergleich dieser Merkmale existieren hoch-optimierte Verfahren.
Dadurch kann der Zeitaufwand der Merkmalssuche gering gehalten werden. Nachteil ist,
dass nicht jede Szene (speziell natürliche Umgebungen) diese geometrischen Merkmale in
ihrer Reinform enthält.Oft können dadurch keine Merkmale gefunden werden. Andererseits
können in künstlichen Szenen (Bürogebäude, Straßenzüge etc.) sehr viele davon extrahiert
werden. Dies stellt dann eine zeitliche Herausforderung an die Korrespondenzsuche dar.

Punkt-Deskriptor basierte Verfahren Punktbasierte Merkmale beschreiben generell die Um-
gebung eines konkreten Punktes. Daher werden diese Merkmale auch als Deskriptoren
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bezeichnet. Deskriptoren sind allgemeine, durch ihre Berechnungsvorschrift definierte punkt-
basierte Merkmale. Ziel der Deskriptoren ist es, einzelne Punkte einer Punktwolke über
eine abstrakte Repräsentation vergleichbar zu beschreiben. Aus diesem Grund werden von
Deskriptoren folgende Eigenschaften gefordert [BO08]:

• Transformations-Invariant - Es sei angenommen, dass ein Deskriptor für einen Punkt
p einer Punktwolke bestimmt und anschließend transformiert wird (p− > p′). Dann
muss der Deskriptor von p′ gleich bzw. ähnlich dem Deskriptor von p sein.

• Vergleichbar - Zwei auf unterschiedlichen Punktwolken berechnete Deskriptoren
müssen über ein Maß vergleichbar sein, welches deren Ähnlichkeit beschreibt.

• Effizient - Die Berechnung eines Deskriptors sollte in angemessener Zeit erfolgen.
Dabei sollen nur für den späteren Vergleich notwendige Informationen berechnet
werden.

• Rausch-Unempfindlich Angemessen verrauschte Daten verändern die vom Deskriptor
berechneten Informationen nur so stark, dass identische Punkte vom Ähnlichkeitsmaß
auch als solche erkannt werden.

Verschiedene Verfahren unterscheiden sich grundlegend in der Definition ihres Deskriptors.
Im Folgenden werden einige der bekanntesten vorgestellt.

Ein sehr einfacher Deskriptor ist der von Oztireli und Basdogan [BO08] vorgestellte. Dieser
beschreibt die Distanz eines Punktes zum Schwerpunkt seiner benachbarten Punkte. Er
lässt sich sehr effizient berechnen und ist wenig anfällig für Rauschen. Die Aussagekraft ist
jedoch sehr eingeschränkt, da bereits benachbarte Punkte nahezu identische Deskriptoren
erzeugen.

Chua [CJ97] führte im Jahr 1997 erstmals die Punktsignatur ein. Für einen Punkt p wird
dabei der Verlauf der Oberfläche C, auf welcher sich p befindet, als Deskriptor verwendet.
Dabei werden Schnittpunkte einer Kugelumgebung von p mit der Oberfläche C ermittelt.
Anschließend werden diese auf die Tangentialebene von p und C projiziert. Über den
Normalenvektor von p und den von p entferntesten Punktvektor n1 wird innerhalb der
Kugelumgebung mittels Kreuzprodukt ein Orthonormalsystem definiert. In diesem kann
nun jeder sich in C befindliche Punkt als vorzeichenbehaftete Distanz und Rotation um n1
repräsentiert werden. Der resultierende Deskriptor entspricht einer 2D-Funktion und wird
über den Vergleich von Stützstellen mit anderen auf Ähnlichkeit geprüft. Der Deskriptor
reagiert sensibel auf Rauschen und die Berechnung der Schnitte ist zeitintensiv [SMFF05].

Eine Form der statistischen Punkt-Signatur wurde in [WHH03] vorgestellt. Sogenannte
Surflet-Pair-Relation Histogramme beschreiben die Oberflächenbeziehung zwischen zwei
benachbarten Punkten über ein Referenzkoordinatensystem.
Dieses Prinzip wurde zu den sogenannten Point Feature Histograms (PFH) [JA09, RMBB08,
RBMB08, Rus09] ausgebaut. Eine Abwandlung der Point Feature Histograms sind die
Fast-Point-Feature-Histograms (FPFH) [RBB09]. Sie gestalten den PFH-Deskriptor weniger
rechenaufwendig. Der PFH-Ansatz ist einer der heute am stärksten vertretenen Algorithmen
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im Bereich der Objekterkennung und Registrierung ganzer Szenen. Auf Grund seiner
scheinbar guten Ergebnisse ist er einer der später untersuchten Algorithmen (siehe 7).

Gegenstand eines etwas anderen Ansatzes zur Berechnung eines Deskriptors, welcher auch
als Punktsignatur betrachtet werden kann, sind die sogenannten Spin-Images [FSM08, JH99,
Joh97, CHH99, HH99]. Ursprünglich wurden sie zur Objekterkennung entwickelt. Die dabei
erzielten Resultate und die Aussagekraft des Deskriptors sind Anlass, diese beim Einsatz
einer Szenen-Registrierung zu untersuchen (siehe 8).

Bei Principal Curvatures [REF+
94] werden Punkte über die Oberfläche auf der sie sich

befinden beschrieben. Dazu wird maximale und minimale Krümmung sowie die Normale
der Oberfläche als Punktsignatur benutzt. Das Berechnen der Krümmung ist dabei sehr
aufwendig und anfällig für Rauschen [SMFF05].

Ein weiterer Ansatz [CYL98] basiert auf der Principal Component Analysis. Mit ihrer
Hilfe werden die Orientierungen der Hauptachsen zweier Punktwolken bestimmt und
zueinander ausgerichtet. Die Translation wird über den Schwerpunkt der Punktwolken
ermittelt. Untersuchungen von [SMFF05] haben gezeigt, dass dieses Verfahren sehr schnell
ist. Für eine erfolgreiche Registrierung müssen sich die Punktwolken jedoch mehr als die
Hälfte überlappen. Da diese Annahme in den hier untersuchten Szenarien nicht getroffen
werden kann, scheidet dieses Verfahren zur weiteren Untersuchung aus.

Der letzte hier behandelte Deskriptor ist ein, auf den Extended-Gaussian-Images (EGI),
basierender. Grundlegendes Prinzip ist dabei, die Normalen aller Punkte einer Punktwolke
auf eine Gauß-Kugel aufzutragen. Gleiche Normalen werden an derselben Stelle aufgetra-
gen. Sind viele Normalen sehr ähnlich, erhält die Gauß-Kugel an diesen Stellen besondere
Ausprägungen und wird als EGI bezeichnet. EGI’s mit ähnlichen Ausprägungen beschreiben
dieselben Punktmenge. Rotiert werden müssen die Punktwolken so, dass die Ausprägungen
übereinander liegen.
In [Dol05] werden die Normalen von Punkten und segmentierten Flächen verwendet. Bei
[MPID06] wird ein EGI für eine gesamte Punktwolke erzeugt. Diese Verfahren ist für den
Einsatz in einem globalen Registrierungsvorgang gedacht. Dabei werden die EGI’s mit Hilfe
von Kugelflächenfunktionen (Sphärische Harmonische) repräsentiert. Mittels Korrelationsko-
effizient können diese dann mit geringem Zeitaufwand verglichen werden. Die Translation
wird ebenfalls über eine Korrelationsfunktion definiert welche den Überlappungsbereich der
bereits rotierten Punktwolken bewertet. Das Verfahren arbeitet sehr schnell und erzielt gute
Resultate, erfordert jedoch einen Überlappungsbereich von mindestens 45%.

Weitere Verfahren

Neben der Verwendung von Deskriptoren existieren noch weitere Verfahren, die nicht näher
klassifiziert werden. Hierzu sind im Folgenden einige Repräsentative vorgestellt.

In [TCC98] wird ein Ansatz vorgestellt, welcher mit Hilfe algebraischer Methoden den
Oberflächenverlauf einer Punktwolke als Polynome repräsentiert. Diese Repräsentation ist
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3. Registrierung von Punktwolken

wenig anfällig für Rauschen und bietet eine effiziente Repräsentation zur Korrespondenzsu-
che. Nachteil davon ist jedoch, dass ein Überlappungsbereich von 85% [SMFF05] gefordert
wird.

Auch genetische Algorithmen haben längst Einzug gehalten; als Individuum wird in [BS96]
dabei ein Vektor von Korrespondenzen definiert. Mit Hilfe der Punktkoordinaten und
Orientierungen eines Punktes wird eine Fitnessfunktion aufgestellt. Diese bewertet Winkel-
abweichungen und Distanzen.
In [LCE06] wird als Individuum ein sechsdimensionaler Vektor als Individuum verwendet.
Dieser beschreibt die Rotation und Translation um die Koordinatenachsen. Die Fitnessfunkti-
on basiert auf den Least Trimmed Squares [CSK05]. Generell leiden genetische Algorithmen
unter einer gewissen Willkür. So sind im Allgemeinen Aussagen über die Konvergenz und
Laufzeit schwer möglich.

Ein anderer, auf RANSAC (Random Sample Consensus) basierender, Ansatz wurde von
Chen [CHC] vorgestellt. Dabei werden alle Punktkombinationen, jeweils drei benachbarter
Punkte, der Ziel-Punktwolke betrachtet. Beschrieben werden sie über ihre Distanzrelatio-
nen zueinander. In der Daten-Punktwolke werden drei Punkte gesucht, welche dieselben
Distanzrelationen aufweisen. Diese sechs Punkte definieren dann drei Korrespondenzen,
die zur Berechnung einer eindeutigen Transformation ausreichend sind. Wiederholt wird
dies für alle Punktkombinationen und resultierenden Korrespondenz Tripletts. Als finale
Transformation wird aus der Menge aller Transformationen diejenige gewählt, die am häu-
figsten berechnet wurde. Das Ergebnis der Registrierung ist beeindruckend, ebenso der
exorbitante Rechenaufwand bei großen Punktwolken. Dieser kann durch eine zufällige Wahl
von Tripplets minimiert werden, führt dann allerdings zu einer weniger stabilen Variante.

3.2.2. Feinregistrierung

Die Feinregistrierung versucht eine bereits grobe Ausrichtung zweier Punktwolken zu
optimieren. Im Allgemeinen geschieht dies in einem iterativen Prozess. Dabei wird in jedem
Schritt angestrebt eine Fehlerfunktion zu minimieren. Das Registrierungsproblem kann
dann als Optimierungsproblem betrachtet werden. Trotzdem bedienen sich einige der hier
angesiedelten Algorithmen ebenfalls der Suche nach Korrespondenzen. Diese werden zur
Definition der Fehlerfunktion verwendet.

Eine Unterscheidung der Verfahren ist oft über deren Fehlerfunktion, Definition als
Optimierungs- oder Korrespondenzproblem sowie der Methodik zur Bestimmung einer
Transformation realisiert. Hier soll die zugrundeliegenden Idee im Vordergrund stehen, da
eine Veränderung der vorher genannten Unterscheidungsmöglichkeiten meist nur zu einer
Variante und keinem neuen Verfahren führt.

Der wohl bekannteste hier vertretene Algorithmus ist der ICP (Iterative Closest Point), wie er
von von Besl und McKay [BM92] eingeführt wurde. Dieser versucht den Abstand zwischen
Korrespondenzen zu minimieren. Von ihm existieren unzählige Varianten, die auf Punkt-
wolken geringer Dichte bzw. Punktmenge sehr gut untersucht wurden. Die dabei erzielten
Ergebnisse waren ausschlaggebendes Argument, diesen Algorithmus in die Untersuchungen
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3.2. Klassifikation

der vorliegenden Arbeit aufzunehmen. Eine genauere Beschreibung wird daher in Abschnitt
9 vorgenommen.

Ebenfalls den Abstand zwischen Korrespondenzen minimierend, arbeitet der von Chow et.
al [CTL04] entworfene genetische Algorithmus. Dabei wird als Individuum ein sechsdimen-
sionaler Vektor definiert, dessen Einträge die drei Rotationswinkel und Verschiebungen in
Richtung der Koordinatenachsen repräsentieren. Mittels Mutation und Crossover wird dann
der Transformationsraum nach der besten Lösung durchsucht. Als Fehlerfunktion wird der
Median der Abstände zwischen Punkt-zu-Punkt-Korrespondenzen verwendet. Da lokale
Minima der Fehlerfunktion mit Hilfe genetischer Algorithmen umgangen werden können,
kann über die Konvergenzgeschwindigkeit nur wenig ausgesagt werden.

Der letzte hier angesprochene Algorithmus benutzt die durch [BS03] eingeführte Normal-
verteilung von Punkten und wird daher auch NDT (Normal Distribution Transformation)
genannt. Dieses Konzept wurde von Magnusson in [Mag09, MLD07] für 3D-Punktwolken
erweitert. Die dabei erzielten Ergebnisse sind sehr gut und fordern, dass auch dieser Algo-
rithmus im weiteren Verlauf genauer zu untersuchen 10 auf Seite 73.
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4. Fehlermaße

Um das Ergebnis einer Registrierung evaluieren zu können sind Fehlermaße notwendig.
Diese müssen unabhängig vom verwendeten Algorithmus vergleichbar sein. Sinnvoll

erscheint es dabei, den Fehler über den Unterschied zwischen der korrekten und berechneten
Transformation zu ermitteln.

Mit Hilfe homogener Transformationsmatrizen wird im ersten Teil dieses Kapitels ein dafür
geeignetes Fehlermaß vorgestellt. Dieses erfasst den verursachten Gesamtfehler einer Regis-
trierung. Eine gesonderte Betrachtung des durch die Rotation bzw. Translation verursachten
Fehlers ist dabei nicht möglich. Sie gibt jedoch Aufschluss über die Stärken und Schwächen
eines Algorithmus. Daher werden zwei weitere Fehlermaße eingeführt, die eine Aussage
bezüglich des Rotations- und Translationsfehlers ermöglichen.

Die korrekte Transformation sei dabei durch die Rotationsmatrix Rc und den Translations-
vektor ~tc gegeben, die berechnete analog dazu, durch Re und ~te. Definiert sind diese wie in
Abschnitt 3.1.

4.1. Gesamtfehler

Eine gemeinsame Darstellung von Rotation und Translation ist durch homogene Transfor-
mationsmatrizen (R4×4) gegeben. Diese Darstellung ermöglicht es, den Unterschied zweier
Transformationen über Matrizen-Normen zu beschreiben.

Verwendet wird die Frobeniusnorm. Sie ist auf dem Körper der reellen Zahlen über eine
Vektornorm definiert. Dabei wird eine m× n Matrix (m, n ∈ N) als m + n dimensionaler
Vektor aufgefasst. Entsprechend der euklidischen Vektornorm lässt sich die Frobeniusnorm
für eine Matrix A ∈ Rm×n definieren als:

||A||F =

√√√√ m

∑
i=1

n

∑
j=1
|aij|2, aij ∈ R(4.1)

Sei die korrekte (Rc,~tc) und die berechnete Transformation (Rc, ~tc) in homogenen Transforma-
tionsmatrizen ohne Skalierung und Verzerrung durch H4×4

c und H4×4
e gegeben, dann ist der

Gesamtfehler EGesamt der Registrierung über deren Differenzmatrix Hd = Hc − He definiert
als:

eGesamt = ||Hd||F =

√√√√ 4

∑
i=1

4

∑
j=1

(hdij)
2, i, j ∈N(4.2)
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Dieses Maß beschreibt den Unterschied zwischen einer berechneten und einer korrekten
Transformation. Dadurch steht es in direktem Zusammenhang zur Güte eines Registrierungs-
ergebnisses. Translation und Rotation werden dabei gemeinsam betrachtet. Unterschiedliche
Abweichungen in Translation und Rotation können dadurch zu einem identischen Fehler
führen.

4.2. Translationsfehler

Um das Ergebnis eines Registrierungs-Algorithmus richtig zu deuten muss festgestellt
werden können, weshalb sich ein Punkt einer Punktwolke nicht an seiner korrekten Position
befindet. Eine Ursache kann dabei eine fehlerhafte Translation sein.

Der Einfluss der Translation~t ∈ R3 bei der Transformation eines Punktes p ∈ R3 ist durch
ft(p) = p +~t gegeben. Wie weit ein Punkt p dabei durch die berechnete Translation fälschli-
cherweise verschoben wurde, kann durch den Differenzvektor ~eTranslation der resultierenden
Punktpositionen zueinander wie folgt gemessen werden:

~eTranslation = ftc − fte(4.3)
= p + tc − p + te

= tc − te

Der Translationsfehler ist dabei unabhängig von der Punktposition eines Punktes p. Das
bedeutet, dass der Translationsfehler auf alle Punkte in selbem Maße wirkt und repräsentativ
für den verursachten Fehler innerhalb einer gesamten Punktwolke steht. Als vergleichbares
Maß kann dann die euklidische Norm von ~eTranslation gebildet werden:

eTranslation = ‖~eTranslation‖2(4.4)

4.3. Rotationsfehler

Neben dem Translationsfehler hat auch die fehlerhafte Rotation einer Punktwolke Einfluss
auf die Abweichung der darin enthaltenen Punkte zu deren korrekten Postion.

Analog zum Translationsfehler bestünde ein Ansatz um diesen Fehler zu erfassen darin, den
Abstand~eRotation zwischen dem korrekt und fehlerhaft rotierten Punkt zu verwenden. Sei die
Rotation R ∈ R3 des Punktes p ∈ R3 einer Punktwolke gegeben durch fR(p) = R · p, dann
lässt sich dieser beschreiben als:

~e = fRc(p)− fRc(p)(4.5)
= Rc · p− Re · p
= (Rc − Re) · p
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4.3. Rotationsfehler

Problem dabei ist, dass der Einfluss einer Rotation abhängig von der Lage eines Punktes ist.
Dadurch ist keine repräsentative Aussage für eine gesamte Punktwolke möglich. Ein Fehler
mit mehr Aussagekraft wird durch die LUB-Norm (lowest-upper-bound) beschrieben:

‖A‖L = max
x≤0

‖Ax‖
‖x‖ = max

|x|=1
‖Ax‖, x ∈ Rn, A ∈ Rm×n(4.6)

Der Fehler unter der Matrix-Abbildung A lässt sich dabei abschätzen als:

‖Ax‖ ≤ ‖A‖L · ‖x‖(4.7)

Mit zunehmender Norm von x wird dieser also größer. Berechnen lässt er sich mittels
Singulärwertzerlegung der Fehlermatrix Rd = Rc − Re:

Rd = UDVTmit(4.8)
UUT = 1 ∈ R3×3

VTV = 1 ∈ R3×3

D = diag(σ1, σ2, σ3) ∈ R3×3

Dabei ist das Bild der Einheitskugel S2 unter der Fehlermatrix Rd gegeben durch:

Rd · S2 (4.9)
= UDVTS2 (VTS2=S2)

= UDS2(4.9)

Dies entspricht einem Ellipsoid mit Halbachsen σ1, σ2, σ3 und den Spaltenvektoren von U als
Halbachsenvektoren. Hiermit lässt sich die LUB-Norm berechnen als:

eRotation = ‖Rd‖L = max(σ1, σ2, σ3)(4.10)

Dies bedeutet, dass ein Punkt p der fälschlicherweise mittels fRe(p) statt fRc(p) rotiert wird,
pro Abstand 1 zum Ursprung einen maximalen Fehler von eRotation erfährt. Eine genauere
Aufschlüsselung des Fehlers in Richtung der Koordinatenachsen der Punktwolke ist durch
eine Projektion des Ellipsoides auf diese möglich. Der daraus resultierende Vektor ist gegben
durch:

~eRotation = (ex, ey, ey) ∈ R3(4.11)
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5. Testumgebung

Dieses Kapitel beschreibt den Rahmen, in dem die Analysen der einzelnen Algorith-
men durchgeführt wurden. Dadurch wird die Möglichkeit gegeben Testergebnisse zu

reproduzieren und nachzuvollziehen.

Zur Analyse der Algorithmen wurde eine in die Software SCENE (siehe Abschnitt 2.1.4)
integrierte Testumgebung implementiert. Dies ermöglicht, die mit dem Laserscanner Focus3D

(siehe Abschnitt 2.1) erhobenen Testszenarien (Punktwolken, Farbbilder und Sensorinforma-
tionen) zu verwalten und gemäß Abschnitt 2.2.2 zu filtern.

Die Testumgebung wurde in C ++ implementiert. Alle ausgeführten Tests und die damit
verbundenen Laufzeitanalysen beziehen sich auf ein mit Microsoft R© Windows 7 - 64 Bit
betriebenes System. Die darin enthaltenen Komponenten sind ein Intel R© Core i7 Prozessor
mit jeweils 2.2 GHz pro Kern (4 Kerne insgesamt) sowie 8 GB DDR3 Arbeitsspeicher mit
einer Taktfrequenz von 1330 MHz.

Nachdem der Funktionsumfang der Testumgebung erläutert und auf die Implementierung
bzw. interne Funktionsweise eingegangen wurde, werden die zur Analyse herangezogenen
Testszenarien vorgestellt.

5.1. Funktionsumfang

Die Testumgebung wird über eine Liste von Konfigurationsdateien gesteuert, die den Funkti-
onsumfang widerspiegeln. Jede Konfigurationsdatei besteht dabei aus zwei unterschiedlichen
Bereichen und entspricht einem Testverfahren.

• Verwaltung - Hier werden die im Wesentlichen zur Verwaltung notwendigen Informa-
tionen definiert. Dazu gehören Ausgabedateien wie Ereignisprotokolle, Analysedateien
der Registrierungsergebnisse und Informationen über einzelne Repräsentationen einer
Punktwolke (z.B. Deskriptoren (siehe Abschnitt 3.2.1). An dieser Stelle wird auch
die Sub-Sampling-Rate des Uniformen-Sub-Sampling festgelegt. (siehe Abschnitt 6.1).
Außerdem kann definiert werden, ob Algorithmen sukzessive aufeinander angewendet
werden sollen oder nicht.

• Algorithmen - Dieser Teil besteht aus einer Liste der zu prozessierenden Algorithmen.
Dabei ist für jeden Algorithmus ein Parameterset zu definieren Dies kann auf zwei
Arten erfolgen.
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5. Testumgebung

– Normal - Es wird ein einfaches Parameterset definiert, mit welchem der zugehö-
rige Algorithmus prozessiert wird.

– Automatisch - Es wird ein Parameterset definiert, bei welchem für jeden Pa-
rameter ein Start- und Endwert sowie eine Schrittweite festgelegt wird. Die
Registrierung wird dann mit allen Kombinationen möglicher Parameter einzeln
ausgeführt.

Hier wird auch das räumliche Sub-Sampling definiert, welches mehr Funktionen als
nur das Reduzieren von Daten zur Aufgabe haben kann (siehe Abschnitt 7).

Ist ein Testverfahren abgeschlossen werden die erzeugten bzw. transformierten Punktwolken
in einer von SCENE gegebenen Projektstruktur separat gespeichert. Sie ermöglicht auch die
in Dateien exportierte Registrierungsergebnisse zu verlinken. Ermöglicht wird dadurch eine
spätere Betrachtung aller notwendigen Daten.

5.2. Funktionsweise

Die Funktionsweise der Testumgebung lässt sich in zwei grundlegende Arbeitsschritte glie-
dern. Diese werden für jeden Testlauf und somit für jede Konfigurationsdatei durchgeführt.

• Initialisierung - In diesem Schritt wird die übermittelte Konfigurationsdatei eingele-
sen und falls erforderlich automatische Parametersets für Parameteranalysen generiert.
Anschließend werden die Punktwolken in bereits gefilterter Form geladen. Die Ur-
sprünge der Punktwolken werden dabei übereinander gelegt; es ist keine Information
bezüglich der Transformationen vorhanden. Eine Liste der zu prozessierenden Algo-
rithmen wird angelegt.

• Ausführung - Hier wird die Liste der angelegten Algorithmen durchlaufen und nach-
einander ausgeführt. Für jeden Algorithmus werden dabei die folgenden Teilschritte
durchlaufen:

1. Übermitteln der Punktwolken (von vorherigem Algorithmus falls sukzessiv)

2. Ausführung des Algorithmus (Registrierung oder Sampling der Punktwolken)

3. Speichern der generierten bzw. transformierten Punktwolken in SCENE

4. Berechnung des Registrierungsfehler

5. Exportieren und Verlinken der Ergebnisse

Im Wesentlichen wurden dafür fünf, sehr eng miteinander kooperierende, Klassen entworfen
und in C++ implementiert. Augenmerk wurde dabei auf die Trennung von Verwaltung und
Datenhaltung sowie Performanz und Speicherbedarf gelegt.
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• SCENE-Punktwolke - Bei dieser Klasse handelt es sich um eine Repräsentation, der in
SCENE gespeicherten Punktwolke. Über sie können Punktdaten von SCENE geladen,
gespeichert, gefiltert und verändert werden. Dadurch bildet sie im Allgemeinen die
Schnittstelle zwischen SCENE und der Testumgebung.

• PCL-Punktwolke - Einige der implementierten Algorithmen entstammen der PCL
(Point Cloud Library) [Lib12a]. Sie arbeiten auf einer eigenen Speicherstruktur, welche
durch diese Klasse repräsentiert wird. Diese Speicherstruktur ist in der Lage ver-
schiedene Repräsentationen einer Punktwolke gleichzeitig zu speichern, den Zugriff
auf diese zu realisieren und bei Bedarf in Dateien zu exportieren. Dazu gehören z.B
die Orientierungen von Punkten oder Deskriptoren (siehe Abschnitt 3.2.1). Auch be-
werkstelligt sie die Konvertierung einer SCENE-Punktwolke in das PCL-Format und
umgekehrt. Eine PCL-Punktwolke kann mit einer SCENE-Punktwolke verlinkt werden.
Dadurch können Daten bei Bedarf geladen, entladen und gespeichert werden. Dies
spart Speicherplatz und erlaubt es, sämtliche Zugriffe auf Punktwolken über diese
Klasse zu bewerkstelligen.

• Attribut-Container - Der Attribut-Container ist eine Klasse, die in der Lage ist be-
liebige Datentypen zu verwalten. Diese können über einen eindeutigen Bezeichner
gespeichert und ausgelesen werden. Ebenfalls bietet er die Möglichkeit alle gespei-
cherten Informationen als String serialisiert auszulesen. Über ihn können Parameter,
Ergebnisse und Zustände kompakt ausgetauscht werden.

• Algorithmen-Basisklasse - Diese Klasse ist abstrakt und dient als normierte Schnitt-
stelle zwischen den Algorithmen und einer beliebigen anderen Klasse. Von ihr muss
ein Algorithmus abgeleitet werden, um in der Testumgebung ausgeführt werden zu
können. Sie hält Instanzen von PCL-Punktwolken und Attribut-Containern. Außerdem
stellt sie Funktionalitäten zum Zugriff auf diese bereit.

• Management - Die Management-Klasse ist für die Verwaltung und Koordination aller
ablaufenden Prozesse zuständig. Dazu gehören die Analyse der Konfigurationsdateien,
die Autogenerierung von Parametersets sowie die Beschaffung der Punktwolken.
Außerdem ist sie für das Ausführen der einzelnen Algorithmen, die Fehlerberechnung
und Aufbereitung bzw. Export der Ergebnisse zuständig.

5.3. Testszenarien

Zur Analyse der Registrierungsalgorithmen wurden Punktwolken aus drei verschiedenen
Umgebungen mit Hilfe des Laserscanner Focus3D generiert. Die Testszenarien wurden so
gewählt, dass typische Situationen aus allen Anwendungsbereichen repräsentiert werden
(siehe Abbildung 5.1). Sie werden wie folgt unterschieden:

• Indoor-Szenario - Indoor-Szenarien zeigen sich häufig symmetrisch weil überwiegend
Flächen, Kanten und Ecken vorhanden sind. Ihre Ausdehnung (5− 20 Meter) ist im
Allgemeinen gering. Sensorinformationen wie Kompass oder Inklinometer sind oft
fehlerbehaftet, odometrische Daten jedoch können sehr genau erhoben werden. Die

43



5. Testumgebung

geringe Ausdehnung führt zu einem meist großen Überlappungsbereich. Dieser ist auf
Grund von Verdeckungen jedoch nicht durchgängig.

• Outdoor-Szenario - Outdoor-Szenarien zeichnen sich durch überwiegend runde
Oberflächen und sehr schwache Kanten aus. Ihre Ausdehnung entspricht meist der
maximalen Reichweite des Laserscanner (120 m). Zur Bestimmung von Position und
Lage können vielerlei Sensoren verwendet werden. Das trägt zu einer meist guten
Bestimmung einer groben Ausrichtung bei. Der Überlappungsbereich ist dabei häufig
durchgängig, die Größe stark von der Distanz der Laserscanner-Positionen abhängig.

• Hybrid-Szenario - Hybride Szenarien sind eine Mischung aus Indoor- und Outdoor-
Szenarien. Sie beinhalten Flächen, Kanten, Ecken und Rundungen. Ihre Ausdehnung
sowie deren Überlappungsbereich entspricht der eines Outdoor-Szenarios.

Abbildung 5.1.: Testszenarien - Verschiedene zur Analyse der Registrierungs-Algorithmen verwendete Testsze-
narien. Von links nach rechts: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von oben nach unten: Planare Ansicht,
3D-Ansicht, Korrespondenz-Ansicht.

Die Punktwolken wurden manuell registriert. Eine der Punktwolken, im Folgenden als Ziel-
punktwolke bezeichnet, wurde dabei mit der Position des Laserscanners am Ursprung des
gemeinsamen Koordinatensystems fixiert. Die Andere, im Folgenden als Datenpunktwolke
bezeichnet, wurde transformiert. Die korrekte Transformation wird zur Berechnung des
Registrierungsfehlers benutzt (siehe Kapitel 4) und vor der Prozessierung eines Algorith-
mus entfernt. Dadurch liegen beide Laserscanner-Positionen im Ursprung. Die Aufgabe
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Indoor-Szenario Hybrid-Szenario Outdoor-Szenario

Translation
x (m) 2.96 −1.29 −14.50
y (m) −1.33 7.18 7.33
z (m) 0.00 −0.14 4.51

Rotation z (◦) 242.23 358.08 346.60

Tabelle 5.1.: Korrekte Transformationen der Testszenarien - Aufgeführt sind die zum korrekten Ausrichten
der Datenpunktwolke notwendigen Translationen und Rotationen der einzelnen Testszenarien.

eines Registrierungsalgorithmus in der Testumgebung kann dann als das Wiederfinden der
korrekten Transformation für die Datenpunktwolke bezeichnet werden.

Einige der Registrierungsalgorithmen sind in der Lage Vorabinformationen (Initiale Trans-
formation) zu verarbeiten. Die von einem Inklinometer erhaltenen Daten sind äußerst zu-
verlässig und präzise. Sie werden direkt auf die Punktdaten angewendet und sind dadurch
implizit vorhanden. Die verbleibende Rotation um die Z-Achse (z ∈ R, 0 ≤ z ≤ 360) sowie
die Translation (~t = tx, ty, tz ∈ R3) werden simuliert. Dadurch ist ein szenenübergreifender
Vergleich der Registrierungsergebnisse möglich. Ein initiales Parameterset Γψ

~ξ
ist dann wie

folgt gegeben:

Γψ
~ξ

=

{
z + ψ, mit (z + ψ) ∈ [0, 360], ψ ∈ R

~t +~ξ, mit ~ξ ∈ R3(5.1)

Die Transformationen zur korrekten Registrierung der Datenpunktwolke an die Zielpunkt-
wolke der einzelnen Testszenarien, sind in Tabelle 5.1 aufgeführt.
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6. Sub-Sampling

Hochaufgelöste Punktwolken, wie die hier betrachteten, enthalten bis zu 700 Millionen
Punkte. Diese Datenmenge stellt selbst für heutige Prozessoren und parallelisierte

Verarbeitungsschritte eine Herausforderung dar. Speziell bei der Registrierung ist diese
Masse an Punkten oft hinderlich und in der Verarbeitung sehr zeitaufwändig.

Sub-Sampling beschreibt im allgemeinen Sinne die Reduktion von Daten. In diesem Fall ist
damit das Verringern der Anzahl von Punkten in einer Punktwolke gemeint und wird als
eine Veränderung der Auflösung der Umgebung bezeichnet. Dies wird realisiert, indem von
einer Punktwolke P eine Teilmenge P′ bestimmt wird, sodass P′ ⊆ P ∧ P′ 6= ∅ gilt. Definiert
seien diese dabei wie in Gleichung 3.2.
Bei den hier verwendeten sphärischen Punktwolken (siehe Abschnitt 2.2.1) lassen sich im
Allgemeinen zwei Klassen des Sub-Sampling definieren [MMRM10]. Diese unterscheiden
sich in der Berücksichtigung der Entfernungsinformation.

In den folgenden Abschnitten wird ein Einblick in die für diese Diplomarbeit relevanten
Sub-Sampling Verfahren gegeben. Behandelt werden dabei das zufällige-, diskrete- und
räumliche Sub-Sampling.

6.1. Entfernungsunabhängiges Sub-Sampling

Wie durch die Bezeichnung suggeriert, handelt es sich bei dieser Art des Sub-Sampling um
Verfahren, welche die räumliche Lage der Punkte einer Punktwolke nicht berücksichtigen.
Nach welchem Muster die zur Repräsentation der Punktwolke herangezogenen Punkte
ausgewählt werden, unterscheidet die verschiedenen Verfahren.

• Diskret - Diskret bedeutet in diesem Zusammenhang, dass Punkte in einer diskreten
Schrittweite ausgewählt werden. Als Reihenfolge wird dabei Zeile für Zeile des 2

1
2 D

Rasters, beginnend mit der dem Laserscanner am nächsten liegenden, verwendet. Soll
die Punktwolke P mit n ∈ N Punkten auf m ∈ N Punkte reduziert werden, so wird
jeder bm/nc-te Punkt in P′ übernommen. Ist n mod m 6= 0, dann gilt bm/nc · n < m.
Dies bedeutet, dass nicht m Intervalle selber Größe möglich sind. Ausgeglichen werden
kann dies, indem das letzte Element pauschal zu P′ hinzugefügt oder ignoriert wird.

Diskretes Sub-Sampling kann schnell und speichereffizient realisiert werden. Außerdem
bliebt die Eigenschaft der Dichteverteilung einer Punktwolke (siehe Abbildung 6.1)
erhalten. Sich in unmittelbarer Nähe des Laserscanner befindende Bereiche sind nach
dem Sampling noch immer dichter repräsentiert als ferne. Der Zeitaufwand ist hierbei
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zu vernachlässigen, da lediglich P durchlaufen werden muss und die entsprechenden
Punkte nach P′ kopiert werden.

Zusätzlicher Zeitaufwand erfordert diese Art des Sub-Sampling nicht, da bereits beim Laden
der Punktwolken entschieden werden kann, welcher Punkt in P′ enthalten sein soll. Dem
Zeitvorteil entgegen wirkt jedoch, wie bei allen entfernungsunabhängigen Sub-Sampling
Verfahren, die resultierende Repräsentation der gesamten Szene.

Ein dem diskreten Sub-Sampling entsprechendes Verfahren wird von der Software SCENE
[FAR12] bereitgestellt. Dieses wird zum Sub-Sampling der in Abschnitt 5.3 vorgestellten
Punktwolken verwendet. Als repräsentative Auflösungen wurden diese auf 1K, 10K, 100K,
1M, 10M (K=Tausend, M=Millonen) Punkte reduziert. Optimierungen der verwendeten
Variante führen dazu, dass keine Reduktion auf eine exakte Punktmenge erfolgen kann.
Die verschiedenen Auflösungen enthalten dadurch Abweichungen in der Punktmenge von
±2%.

Abbildung 6.1.: Diskretes Sub-Sampling - Verschiedene Szenen in unterschiedlichen Auflösungsstufen mittels
diskretem Sub-Sampling bearbeitet. Von links nach rechts: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von oben
nach unten: Volle Auflösung, 1M, 100K Punkte. Eine hohe Punktdichte ist im Nahbereich des Laserscanners stets
erhalten.
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6.2. Entfernungsabhängiges Sub-Sampling

Beim entfernungsabhängigen, auch räumliches oder uniformes Sub-Sampling genannt, wer-
den Punkte ihrer räumlichen Lage entsprechend betrachtet. Dazu wird über eine Punktwolke
P, ausgehend vom Ursprung (Position des Laserscanners), ein Raster erzeugt, welches diese
in einzelne Zellen und somit Teilpunktwolken Pi teilt. Meist (so auch bei dem hier verwen-
deten Verfahren) wird dazu eine Voxel-Grid benutzt, dessen Zellen aus Quadern bestehen.
Jede Teilpunktwolke soll nach dem Sub-Sampling durch nur einen Punkt in P′ repräsentiert
werden. Die Wahl des Repräsentanten kann dabei auf beliebige Art und Weise getroffen
werden. Sinnvoll erscheint dabei meist der Schwerpunkt (S) einer Teilpunktwolke.

Sei k ∈N die Anzahl der Punkte einer Teilpunktwolke und seien diese, wie in Gleichung
(3.2) definiert, dann berechnet sich dieser wie folgt:

S =
1
k

k

∑
i=1

Pi,(6.1)

Im Allgemeinen gilt dabei S 6∈ P. P′ entspricht dadurch einer Approximation der in P
enthaltenen Daten.

Die Dichte der resultierenden Punktwolke P′ ist weitgehend gleich verteilt. Lediglich an
den Rändern der Zellen können Ballungen auftreten. Damit bleibt die Dichteeigenschaft der
sphärischen Punktwolke nicht erhalten. Sie wird ersetzt durch eine im Wesentlichen der Grö-
ße einer Raster-Zelle entsprechenden. (siehe Abbildung 6.3). Dadurch ist auf jeder Auflösung
stets die gesamte Szene repräsentiert. Wie detailliert einzelne in der Szene vorkommenden
Objekte dabei vertreten sind, hängt von der Anzahl der Punkte ab. Im Allgemeinen kann
jedoch davon ausgegangen werden, dass jedes Objekt relativ zu seiner Größe mit ähnlich
vielen Punkten und somit in selbem Maße detailliert repräsentiert ist.

Abbildung 6.2.: Räumliches Sub-Sampling Zeit-Punkt-Zellgrößen-Vergleich - Oben: Die Sampling-Rate ist
im wesentlichen von der Ausdehnung einer Szene bestimmt. Unten: Aus der Wahl des Schwerpunktes als
Repräsentant einer Zelle, resultiert ein konstanter Zeitaufwand.
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6. Sub-Sampling

Abbildung 6.3.: Räumliches Sub-Sampling - Verschiedene Szenen in unterschiedlichen Auflösungsstufen,
mittels räumlichem Sub-Sampling bearbeitet. Von links nach rechts: Indoor-Szene, Hybrid-Szene, Outdoor-Szene.
Von oben nach unten: Volle Auflösung, 1M, 100K. Eine gleichmäßige Punktdichte ist zu sehen.

Die Anzahl verbleibender Punkte bei variierender Zellgröße in P′ ist in erster Linie von der
Ausdehnung einer Punktwolke P abhängig. Ausgedehnte Punktwolken, wie sie meist in
Outdoor- und Hybrid-Szenen entstehen, erfahren bei steigender Zellgröße eine geringere
Datenreduktion, als Indoor-Szenen (siehe Abschnitt 5.3). Diese zeichnen sich durch eine
geringe Ausdehnung und eine gleichmäßige räumliche Dichte aus (siehe Abbildung 6.2).

Der Zeitaufwand dieses Verfahrens ist im Allgemeinen durch das Berechnen des Repräsen-
tanten in jeder Rasterzelle bestimmt. Im Falle des Schwerpunktes ist dieser konstant und
dadurch von der Anzahl der Punkte in einer Punktwolke abhängig. Mit sinkender Zellgröße
steigt die Anzahl der Zellen. Der zur Verwaltung der Zellen notwendige Mehraufwand wirkt
sich ebenfalls auf die Laufzeit aus (siehe Abbildung 6.2).

Das hier beschriebene Verfahren des entfernungsabhängigen Sub-Sampling wird im Späteren
als Vorverarbeitung zur Registrierung der in Abschnitt 5.3 vorgestellten Punktwolken verwen-
det. Als repräsentative Auflösungen wurden diese auf 1K, 10K, 100K, 1M ,10M (K=Tausend,
M=Millonen) Punkte reduziert. Da keine exakte Reduktionsrate bestimmt werden kann,
enthalten die verschiedenen Auflösungen Abweichungen von ±2% in der tatsächlichen
Punktmenge.
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Der verwendete Programmcode entstammt der Point Cloud Library [Lib12j] dessen Korrekt-
heit vorausgesetzt wird. Zur Nachbarschaftssuche wird dabei ein KD-Tree verwendet.
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7. Point Feature Histogram (PFH)

Der Point Feature Histogram (PFH) Ansatz entstammt der Idee einer statistischen Be-
schreibung von Punktumgebungen. Wie bereits in Abschnitt 3.2.1 erwähnt, wurde diese

im Jahre 2003 erstmals von [WHH03] unter dem Namen „Surflet-Pair-Relation Histograms“
(SPRH) eingeführt. Verwendet wurden diese zur Objekterkennung. Dabei werden SPRH’s
für ein Objekt erzeugt und in einer Datenbank abgelegt. Anschließend werden die für
eine Punktwolke erzeugten SPRH’s mit dieser Datenbank abgeglichen. Rusu et al. nutzten
diese in [RMBB08] zur Segmentierung geometrischer Strukturen. Vorteilhaft war dabei, dass
Histogramme bestimmter geometrischer Strukturen, einzigartige Ausprägungen aufweisen.
Erweitert und ausführlicher untersucht wurden sie dann in [RBMB08, RBB09, Rus09]. Dabei
wurde auch der Begriff Point Feature Histograms geprägt sowie deren Verwendung zur
Registrierung von 3D-Szenen. Anzusiedeln ist der PFH-Ansatz in der Klasse der deskrip-
torbasierten Grobregistrierung. Daher ist er nicht in der Lage Informationen einer initialen
Ausrichtung zu verarbeiten.

In diesem Kapitel wird das Funktionsprinzip des PFH-Algorithmus erläutert. In Abschnitt
Erweiterungen werden Erweiterungen vorgestellt, die Einfluss auf Qualität und Laufzeit
nehmen. Zuletzt wird eine Variante vorgestellt die dann in Kapitel 11 auf hochaufgelösten
Punktwolken verwendet wird.

7.1. Funktionsprinzip

Soll eine Datenpunktwolke Q an eine Zielpunktwolke P, definiert wie in Gleichung 3.2
registriert werden, dann ist die grundlegende Idee des PFH-Algorithmus für jeden Punkt der
beiden Punktwolken ein PFH seiner Umgebung zu erstellen. Anschließend werden die PFH
aus P mit denen aus Q verglichen. Ähnliche PFH weisen auf gleiche Punkte hin und werden
als korrespondierend betrachtet. Aus ihrer Punktkoordinaten wird dann die Transformation
berechnet, die alle korrespondierenden Punkte bestmöglich zueinander ausrichtet (siehe
Anhang A).

Das PFH eines Punktes pq ∈ P beschreibt die Oberfläche Cq ⊂ P auf der sich dieser befindet.
Definiert ist Cq über eine Kugelumgebung mit Radius k ∈ R und Mittelpunkt pq. Alle sich
in dieser Kugelumgebung befindenden Punkte pki ∈ P, 1 ≤ i ≤ |P| bilden Cq. Im PFH wird
Cq über die Distanz- und Orientierungsverhältnisse der sich auf Cq befindenden Punkte
repräsentiert. (siehe Abbildung 7.1). Diese werden für jedes sich in Cq befindende Punktpaar
berechnet. Die vollständige Berechnung eines PFH liegt dadurch in der Komplexitätsklasse
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7. Point Feature Histogram (PFH)

Abbildung 7.1.: Point Feature Histogramm Deskriptor - Links: Das für den Ausgangspunkt (pq) berechnete
PFH beschreibt die Oberfläche einer spezifizierten Nachbarschaft (gestrichelter Kreis). Dazu werden Distanz-
und Orientierungsverhältnisse zwischen allen darin enthaltenen Punktpaaren (pki, i = [1, 5] ∈N) erfasst [Rus09].
Rechts: Erweiterte Nachbarschaft des Ausgangspunktes (pq), um die Kugelumgebungen (weiß hinterlegte Kreise)
seiner Nachbarn (pki

, i = [1, 5] ∈N), zur Berechnung des FPFH.

O(|Cp|2). Für eine Punktwolke mit n ∈N Punkten ergibt sich eine Gesamt-Komplexität von
O(n|Cp|2).

Das Distanz- und Orientierungsverhältnis eines Punktpaares wird im PFH in kodierter
Form festgehalten. Primäres Ziel davon ist, ein rotationsinvariantes Bezugssystem[WHH03,
RMBB08] für diese zu erzeugen. Bewerkstelligt wird dies mit dem sogenannte Darboux-
Frame (siehe Abbildung 7.2) [RMBB08]. Seien ps, pt ∈ P als zwei sich in der Nachbarschaft
von pq befindenden Punkte definiert, weiter seien ihre zugehörigen Normalen durch ns und
nt gegeben und sind diese einheitlich zum Standpunkt des Laserscanners ausgerichtet, so
berechnet sich der Darboux-Frame mit Ursprung in ps wie folgt:

u = ns(7.1)

v = v× pt − ps

‖pt − ps‖2
w = u× v

Basierend auf diesem Bezugssystem wird das Distanz- und Orientierungsverhältnis eines
Punktpaares durch das folgenden Quadrupel kodiert:

d = ‖pt − ps‖2(7.2)
α = v · nt

φ = u · (pt − ps)

d
θ = arctan w · nt, u · nt

Die ursprüngliche Information zweier Punkte und ihrer Normalen (Distanz und Orientie-
rung) ist dann durch vier, statt zwölf Parameter repräsentiert.
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Abbildung 7.2.: Darboux Frame - Geometrische Veranschaulichung des Darboux-Frame (u, v, w) sowie das
berechnete Quadrupel (pt − ps, α, φ, θ) für ein Punktpaar (pt,ps) und dessen Normalen nt und ns.[Rus09].

Das, für jedes in Cp vorkommende Punktpaar, berechnete Quadrupel muss nun im PFH
vermerkt werden. Dies erfordert eine Diskretisierung der im Quadrupel kontinuierlich
vorliegenden Parameter. Dazu wird der Wertebereich jedes Parameters in uniforme Klassen
aufgeteilt. Sei die Anzahl der Klassen pro Parameter b, ergibt sich ein PFH der Größe b4 (bei
zwölf Parametern b12). Jeder Parameterwert kann dadurch einer Klasse zugeteilt werden. In
ihm werden dann die Häufigkeiten der vorkommenden Parameterwerte prozentual zu |Cp|
festgehalten.

Zum Vergleich der so generierten PFH existieren vielerlei Metriken. Ihre Beschreibung ist im
folgenden Abschnitt (7.2) zu finden.

7.2. Erweiterungen

In diesem Abschnitt werden Erweiterungen des PFH-Algorithmus vorgestellt. Diese zielen
auf das Umgehen spezieller Probleme sowie eine Optimierung des Standardansatzes (siehe
Abschnitt 7.1) ab. Im folgenden sind einige dieser, kategorisiert nach ihrem Wirkungsbereich,
erläutert. Eine umfassende Betrachtung aller vorhandenen Erweiterungen und Varianten
führt an dieser Stelle zu weit.

7.2.1. Punktwahl

Viele der berechneten PFH einer Punktwolke, speziell benachbarter Punkte, sind sehr ähnlich.
Dadurch sind bestimmte Bereiche überrepräsentiert. Die Folge ist, dass sehr häufig falsche
Korrespondenzen gebildet werden.

Eine Lösung für dieses Problem ist die Betrachtung nur einer besonders aussagekräftige
Teilmenge der Punktwolke. Sie kann dabei zufällig, über räumliches Sub-Sampling oder
Keypoint-Detektoren, (wie z.B. 3D-SIFT [SCM10]) bestimmt werden. Ein Nachteil dieser
Ansätze ist, dass Teilmengen in beiden Punktwolken bestimmt werden können, die keinen
gemeinsamen Überlapp mehr bilden.
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Eine etwas andere Variante (Persistente PFH) versucht sehr ähnliche PFH zu verwerfen
[RBMB08]. Hierzu wird für jeden Punkt einer Punktwolke ein PFH berechnet. Aus allen
PFH wird dann ein Durchschnittshistogramm PFHµ bestimmt. Anschließend wird für jedes
PFH die Distanz zu PFHµ berechnet. Aus dieser lässt sich dann eine Standardabweichung σ
zum Durchschnittshistogramm ermitteln. Verworfen werden nun alle PFH, deren Distanz zu
PFHµ kleiner als α · σ ist. PFH deren Distanz größer ist, werden als einzigartig betrachtet.
Optional wird dies zusätzlich über verschiedene Berechnungs-Radien prozessiert. Ist ein
PFH über mehrere Radien hinweg einzigartig, wird es als persistent betrachtet. Persistente
PFH sind besonders aussagekräftig, da sie im Allgemeinen robust sind und sich voneinander
unterscheiden.

Wird zu einem persistenten PFH ein sehr ähnliches gefunden, kann mit hoher Wahrschein-
lichkeit von einer korrekten Korrespondenz ausgegangen werden. Der Nachteil dieser
Erweiterung steckt in der Laufzeit. Sowohl der Vergleich zum Durchschnittshistogramm als
auch die Berechnung der PFH über mehrere Skalen hinweg ist sehr rechenaufwändig.

7.2.2. PFH Größe

Die Größe eines PFH ist im wesentlichen von der Anzahl (Quadrupel) und der Diskretisie-
rungsrate (b) der Parameter abhängig. Grundlegend kann gesagt werden, dass ein PFH, je
größer es ist, die dadurch beschriebene Oberfläche umso genauer repräsentiert. Gleichzeitig
gilt aber auch, dass je größer das PFH ist, desto zeitaufwändiger der spätere Vergleich in der
Korrespondenzsuche ist.

Rusu [Rus09] kam zu dem Ergebnis, dass die Distanzinformation zwischen zwei Punkten
einer 2

1
2 D-Punktwolke nur sehr geringfügige Aussagekraft über die beschriebene Oberfläche

besitzt. Dies basiert auf der Tatsache, dass die Abstände benachbarter Punkte durch das
Aufnahmeprinzip (siehe Abschnitt 2.2.1) bedingt, nur sehr gering und meist uniform sind.
Diese Erkenntnis erlaubt eine Reduktion des Quadrupels (< d, α, φ, θ >) auf ein Triplett der
Form < α, φ, θ >. Die Größe des PFH reduziert sich dadurch auf b3. Sie ermöglicht es die
verbleibenden, aussagekräftigeren Informationen genauer abzubilden (erhöhen von b).

7.2.3. Einflussbereich

Der PFH-Deskriptor betrachtet jedes mögliche Punktpaar der zu beschreibenden Oberfläche
Cp. Seine Berechnugskomplexität liegt dadurch in O(|Cp|2). Sollen grobe Strukturen als
Merkmale verwendet werden, muss der Radius der Kugelumgebung erhöht werden. Dadurch
wird eine größere Oberfläche betrachtet, |Cp| wächst und mit ihr auch die Rechenzeit.

Der in [RBB09] vorgestellte FPFH (Fast Point Feature Histogram) Deskriptor reduziert die
quadratische Komplexität des PFH-Deskriptor. Sei p ∈ P dabei der Punkt für den ein
FPFH berechnet werden soll. In der Menge K sind alle die Punkte enthalten, die sich in
der Kugelumgebung mit Radius r und Mittelpunkt p befinden. Ein SPFH (Simplified Point
Feature Histogram) wird dann für p berechnet, indem das Triplett < α, φ, θ > zwischen
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p und jedem Punkt in K berechnet wird. Anschließend wird die Nachbarschaft von p um
die Kugelumgebungen der in K enthaltenen Punkte, erweitert (siehe Abbildung 7.1). Das
resultierende FPFH für p wird dann wie folgt berechnet:

FPFH(p) = SPFH(p) +
1
|K|

|K|

∑
k=1

1
ωk
· SPFH(k)(7.3)

Dabei ist ωk eine von der Distanz zwischen p und k ∈ K abhängige Gewichtung, die
den Einfluss der erweiterten Nachbarschaften bestimmt. Sei Cp die gesamte, betrachtete
Punktmenge bei der Berechnung des FPFH für p, dann ist die resultierende Komplexität des
FPFH-Deskriptor O(|Cp|).

7.2.4. Metrik

Zur Identifikation korrespondierender PFH müssen diese miteinander verglichen und deren
Ähnlichkeit evaluiert werden. Sowohl Geschwindigkeit als auch die Aussagekraft sind dabei
beeinflussbare Größen.

Hierzu wurden in [WHH03, Rus09] verschiedene Metriken vorgestellt. Dabei bezeichnet k
die Klassenanzahl zweier PFH (H und H′), H(i) und H′(i), die für die Klasse 1 ≤ i ≤ d
berechneten Werte (siehe Gleichung 7.5 ).

Untersuchungen von [WHH03] und [Rus09] zufolge liefert die Kullback-Leibler Divergenz
bei höchstem Zeitaufwand die besten Ergebnisse. Die Unterschiede zum Chi-Quadrat-Test
und der Bhattacharyya Distanz sind dabei gering. Qualitativ am schlechtesten schneiden die
restlichen Metriken ab, sind jedoch deutlich schneller. Prinzipiell kann gesagt werden, dass
sich die Qualität konträr zur Laufzeit verhält. Dabei sei beachtet, dass sich abhängig von der
Szene unterschiedliche Metriken profilieren können.
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d⋂(H, H′) =
k

∑
i=1

min(H(i), H′(i)) (Intersection)(7.4)

dL1(H, H′) =
k

∑
i=1

(H(i)− H′(i)) (Manhattan Distanz)

dL2(H, H′) =

√√√√ k

∑
i=1

(H(i)− H′(i))2 (Euklidische Distanz)

dJM(H, H′) =

√√√√ k

∑
i=1

(√
H(i)−

√
H′(i)

)2

(Jeffries-Matusita)

dε(H, H′) =
k

∑
i=1

(H(i)− H′(i))2 (Summed Squared Distanz)

dB(H, H′) = ln
k

∑
i=1

√
(H(i)− H′(i)) (Bhattacharyya Distanz)

dχ2
1
(H, H′) =

k

∑
i=1

(H(i)− H′(i))2

H(i)
(Chi-Quadrat Test, 1.Form)

dχ2
2
(H, H′) =

k

∑
i=1

(H(i)− H′(i))2

H(i)− H′(i)
(Chi-Quadrat Test, 2.Form)

dκ(H,H′) =
k

∑
i=1

(H(i)− H′(i)) ln
H(i)
H′(i)

(Kullback-Leibler)

7.3. Analysierte Variante

Dieser Abschnitt erläutert die zur Analyse implementierte Variante des PFH-Algorithmus.
Der Fokus wurde dabei auf die Laufzeit gelegt. Zum Einsatz kommt daher ein Persistenz-Test
der nur eine Skala betrachtet. Im Folgenden sind die einzelnen Schritte des Algorithmus
vorgestellt.

Im ersten Schritt wird für jeden Punkt beider Punktwolken die Normale bestimmt. Das
Einflussgebiet für diese ist über den Radius einer Kugelumgebung definiert. Für die darin
enthaltenen Punkte wird eine Principal Component Analysis der Kovarianzmatrix durchge-
führt (siehe Kapitel B). Anschließend werden alle Normalen in Richtung des Laserscanner-
Standpunktes ausgerichtet. Verwendet wurde dabei das in der Point Cloud Library verfüg-
bare Modul [Lib12h]. Die dabei verwendete Datenstruktur entspricht einem KD-Tree (siehe
Abschnitt 2.3.3) um notwendige Suchoperationen performant durchführen zu können.

Basierend auf den Normalen wird für jeden Punkt beider Punktwolken ein FPFH [Lib12e]
berechnet. PFH sind auf Grund des zu hohen Rechenaufwandes (Tests ergaben bei diskret re-
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duzierten Punktdaten von 100K und einem Radius von 0, 25 Meter, Laufzeiten von bis zu 20
Minuten) nicht performant. Dabei wird das Triplett < α, φ, θ > verwendet. Der Wertebereich
jedes Parameters ist dabei auf 11 Klassen festgelegt. Diese werden konkateniert, sodass ein
Histogramm der Größe 33 entsteht. Es wird dann auf Persistenz bzw. Einzigartigkeit geprüft,
indem ein Vergleich mit dem Durchschnittshistogramm durchgeführt wird (Standardabwei-
chung durch Normalverteilung approximiert [Rus09]). Dabei wird, auf Grund ihrer hohen
Aussagekraft, als Metrik die Kullback-Leibler-Divergenz verwendet. Sie soll einen Ausgleich
zu einem nicht über mehrere Skalen hinweg, durchgeführten Test der Einzigartigkeit bilden.
Verwendet wurde dabei die bereits vorhandene Implementierung der Point Cloud Library
[Lib12g, Lib12e].

Die so entstandenen FPFH werden anschließend auf Korrespondenzen untersucht. Zum
Vergleich der FPFH wird dabei die Merkmalsdistanz verwendet. Da ein FPFH vektorisiert
werden kann, lässt es sich in einem KD-Tree organisieren. Das, bezogen auf die Merkmals-
distanz, ähnlichste FPFH wird dann über eine zeiteffiziente Suche des nächsten Nachbarn
bestimmt. Verwendet wurde dabei die der Point Cloud Library entstammende Variante
[Lib12c]

Die resultierenden Korrespondenzen müssen anschließend auf Eindeutigkeit geprüft werden.
Das ist notwendig, da ein FPFH nächster Nachbar zu beliebig vielen anderen sein kann. Tritt
dieser Fall ein, wird nur jene Korrespondenz verwendet, welche die höchste Ähnlichkeit
aufweist. Zusätzlich werden alle Korrespondenzen verworfen, deren Ähnlichkeitsmaß (Merk-
malsdistanz) zueinander einen spezifizierten Grenzwert überschreitet. Entfernt werden so
Korrespondenzen, deren korrespondierenden FPFH sehr unähnlich sind.

Abschließend wird über die Punktinformationen der resultierenden Korrespondenzen die
Transformation bestimmt, die alle korrespondierenden Punkte bestmöglich zueinander
ausrichtet. Dies erfolgt mit Hilfe der Singulärwertzerlegung (siehe Anhang A) [Lib12d].

Eine Korrektheit externer Implementierungen wird dabei vorausgesetzt.
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8. Spin-Images (SI)

Das Prinzip der Spin-Images (SI) wurde 1997 von Johnson [Joh97] publiziert. Entwickelt
wurden sie zur Objekterkennung. Die Idee dabei ist, von den zu erkennenden Objekten

eine SI Repräsentation anzufertigen und in einer Datenbank zu speichern. Zur Laufzeit
werden dann die aus einer Szene erzeugten SI mit denen der Datenbank abgeglichen.
Gibt es Übereinstimmungen, wurde ein Objekt erkannt. Zusätzlich kann dadurch auch die
Ausrichtung eines erkannten Objektes bestimmt werden. Diesem Prinzip entsprechend sollen
im folgenden die SI für zwei Punktwolken erzeugt und miteinander verglichen werden,
um Korrespondenzen zu identifizieren. SI können keine Lage und Positionsinformationen
berücksichtigen, sind über einen Deskriptor definiert und gehören dadurch zur Klasse der
deskriptorbasierten, grobregistrierenden Algorithmen (siehe Abschnitt 3.2.1).

Im Laufe dieses Kapitels wird das Funktionsprinzip der SI nach [Joh97] erläutert und auf
Erweiterungen dieser eingegangen. Abschließend wird die zur Analyse herangezogene
Variante vorgestellt.

8.1. Funktionsprinzip

SI sind Deskriptoren, die für einzelne Punkte der Punktwolken berechnet werden. Für
diese beschreiben sie ihre darunterliegende Oberfläche. Hierzu wird für jeden Punkt eine
Transformations-invariante Rotationsachse definiert. Wird um diese rotiert, werden alle
sich in einem definierten Einzugsgebiet befindlichen Punkte besucht. Diese werden dann in
einem 2D-Bildarray festgehalten. Anschaulich kann das mit einem um eine Achse rotierenden
Blatt verglichen werden, auf welches die durchlaufenen 3D-Punkte aufgezeichnet werden
(siehe Abbildung 8.1). Bereiche an denen viele Punkte aufgetragen werden sind dunkler
repräsentiert als andere.

Zur Erzeugung eines SI muss für jeden Punkt der Punktwolken eine Normale über ein defi-
niertes Einflussgebiet (Kugelumgebung mit Radius r) berechnet werden. Die Orientierung der
Normale muss für alle einheitlich erfolgen, um eine Invarianz gegenüber Transformationen
zu gewährleisten. Für Punktwolken wird dafür im Allgemeinen der Laserscanner-Standort
verwendet. Sei p ein Punkt einer Punktwolke, für den ein SI berechnet werden soll und n
beschrieben als die zugehörige Normale sowie P die zur Bestimmung der Normalen berech-
nete Tangentialebene, auf welcher sich p befindet, dann ist eine transformationsinvariante
Basis durch (p, n) definiert. Die Rotationsachse L wird als eine zu n parallel und durch p
verlaufende Linie definiert. Ein in der Umgebung von p liegender Punkt wird dann über eine
radiale und axiale Distanz α ∈ R und β ∈ R in zylindrischen Koordinaten beschrieben. Eine
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8. Spin-Images (SI)

Abbildung 8.1.: Spin Image Deskriptor - Links: Ein SI wird als eine Abtragung aller 3D-Punkte betrachtet, die
bei einer Ebenen-Rotation um eine definierte Achse besucht werden [JH99]. Rechts: SI Parameter für einen Punkt
p. Nachbarpunkte werden über die Basis (p, np) in zylindrischen Koordinaten (α, β) dargestellt [Joh97].

Rotation von 360◦ um L definiert diese zylindrische Umgebung von p. Alle darin enthaltenen
Punkte werden wie folgt in das 2D-SI Sp abgebildet:

Sp : R3 7→ R2, Sp(x) 7→ (α, β) =

(√
‖x− p‖2 − (n · (x− p))2, n · (x− p)

)
(8.1)

Da α und β auch negativ sein können, hat das theoretische SI eine Größe von 2α× 2β. Zur
tatsächlichen Repräsentation in einem 2D-Bildarray muss der Wertebereich von α und β
diskretisiert werden. Zur Vereinfachung wird dabei ein quadratisches SI der Größe W ×W
mit W ∈ N verwendet. Sei b die Schrittweite definiert als W = b · i + 0 und W = b · j + 0,
wobei i ∈N die Anzahl der Zeilen des SI und j ∈N die Spalten bezeichnet, dann wird der
Punkt x gemäß Sp(x) an Position (i, j) im diskreten SI abgebildet:

i =

⌊
W
2 − β

b

⌋
, j =

⌊α

b

⌋
(8.2)

An dieser Position wird dann die Anzahl der Punkte, anteilig zur Gesamtzahl projizierter
Punkte, vermerkt.

Zum Vergleich der SI wird standardmäßig der in Bildvergleichen häufig verwendete lineare
Korrelationskoeffizient [Joh97] eingesetzt. Seien Sp und Sq zwei diskrete SI, mit jeweils
n = i · j Einträgen, dann ist dieser definiert als:

R(Sp, Sq) =

n
∑
i,j

Sp(i, j)Sp(i, j)−
n
∑
i,j

Sp(i, j)
n
∑
i,j

Sq(i, j)√√√√√
 n

∑
i,j

Sp(i, j)2 −
(

n
∑
i,j

Sp(i, j)

)2
 n

∑
i,j

Sq(i, j)2 −
(

n
∑
i,j

Sq(i, j)

)2


(8.3)

Er liefert Werte im Intervall [−1, 1]. Dabei entspricht 1 einer großen, −1 keiner Ähnlichkeit.
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8.2. Erweiterungen

Dieser Abschnitt behandelt Probleme, die bei der Erzeugung und dem Vergleich von SI auftre-
ten können. Parallel dazu wird auch eine Lösung präsentiert. Eine ausführliche Betrachtung
findet dabei nicht statt.

Kleine Änderungen der Punktdaten (Rauschen) haben einen direkten Einfluss auf das
resultierende SI [Joh97] eines Punktes. Dadurch können für korrespondierende Punkte
unterschiedliche SI entstehen. Um dies zu umgehen wird ein Punkt x nur dann auf das SI
abgebildet, wenn dessen Normale nx zu der von p (np) in folgender Weise kompatibel ist:

cos−1(np · nx) < Ap(8.4)

Ap wird dabei als Support-Winkel bezeichnet.

Verursacht durch das beschriebene Kompatibilitätskriterium kann ein Spin Image an einer
Positionen (i, j) fälschlicherweise keine Einträge enthalten. Zur Lösung dieses Problems wird
zwischen jeweils vier benachbarten SI Positionen bilinear interpoliert [FSM08, Joh97]. Die
Gewichtungen werden dabei wie folgt berechnet:

wa = α− ib, wb = β +
W
2
− jb(8.5)

Die resultierenden Einträge eines SI Sp an Position (i, j) sind dann:

Sp(i, j + 1) = Sp(i, j + 1) + a(b− wb)(8.6)
Sp(i + 1, j) = Sp(i + 1, j) + wb(b− wa)

Sp(i + 1, j + 1) = Sp(i + 1, j + 1) + (wawb)

Sp(i, j) = Sp(i, j) + (b− wa)(b− wb)

Dadurch entstehen weichere Verläufe innerhalb des SI, die den Prozess der Korrespondenz-
findung verbessern. Allerdings werden dadurch auch feine Details ausgeblendet.

Auf Grund nicht vollständig überlappender Punktwolken weisen korrespondierende Punkte
weiterhin unterschiedliche SI auf. Meist enthalten diese sogar eine unterschiedliche Anzahl
abgebildeter Punkte. Da der Korrelationskoeffizient darauf sehr sensibel reagiert, wird in
[Joh97] ein weiteres Ähnlichkeitskriterium eingeführt. Dieses ist eine Mischung aus Korrela-
tionskoeffizient und Normalverteilung. Es berücksichtigt eine unterschiedliche Verteilung
von Punkten. Definiert ist dieses wie folgt:

C(Sp, Sq) = (arctan (R(Sp, Sq)))
2 − λ

1
n− 3

(8.7)

Dabei sind Sp und Sq SI der Punkte p und q, n betitelt die Größe der Spin -Images. R
entspricht dem Korrelationskoeffizienten und λ gewichtet den Einfluss von R. Das erlaubt
ein Erkennen korrespondierender Punkte mit leicht unterschiedlichen SI.
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8.3. Analysierte Variante

Zur Analyse wurde eine Variante eingesetzt, die aus Modulen der Point Cloud Library
[Lib12a] zusammengesetzt wurde.

Für jeden Punkt beider Punktwolken wird die Normale bestimmt [Lib12h]. Das erfolgt mit
Hilfe der PCA (siehe Kapitel B). Der Einzugsbereich wird dabei über den Radius einer
Kugelumgebung definiert. Anschließend wird für jeden Punkt ein SI, wie in Abschnitt
8.1 vorgestellt, bestimmt. Dabei wird ein Support-Winkel verwendet, um Ausreißer zu
eliminieren. Außerdem wird eine bilineare Interpolation (siehe Abschnitt 8.2) durchgeführt.
Die Größe des Spin-Images ist auf 8× 8 festgelegt.

Um die Korrespondenzsuche in einem zeitlichen Rahmen zu halten und möglichst aussage-
kräftige SI zu extrahieren, wird auch hier der in Abschnitt 7.2.1 eingeführte Persistenz-Test
durchgeführt. Möglich wird dies durch die Auffassung eines SI als Vektor der Länge i · j. Als
Vergleichsmetrik wird ebenfalls die Kullback-Leibler-Divergenz verwendet.

Zur Bestimmung der Korrespondenzen wird wie bei der analysierten Variante der PFH die
Merkmalsdistanz verwendet. Das erfolgt ebenfalls unter der Betrachtung eines SI als Vektor.
Die Suche nach Korrespondenzen wird dadurch auf die des nächsten Nachbarn reduziert.
Mit Hilfe eines KD-Tree [Lib12i] (siehe Abschnitt 2.3.3) ist diese Suche effizient möglich.

Die so erhaltenen Korrespondenzen werden analog zu der in Abschnitt 7.3 vorgestellten
Lösung auf Eindeutigkeit geprüft. Ein Verwerfung von Korrespondenzen bezüglich eines
spezifizierten Grenzwertes erfolgt ebenfalls über die Merkmalsdistanz, welche durch die
Auffassung eines SI als Vektor, im KD-Tree effizient ermittelt werden kann.

Abschließend wird aus den Punktkoordinaten der korrespondierenden SI mit Hilfe der
Singulärwertzerlegung (siehe Anhang A) eine Transformation bestimmt [Lib12d].

Die Korrektheit der externen Implementierungen wird vorausgesetzt.
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9. Iterative Closest Point (ICP)

Der 1992 von Besl und McKay [BM92] vorgestellte Iterative Closest Point (ICP) Ansatz
ist einer der berühmtesten Algorithmen im Bereich der 3D-Registrierung (Klassischer

ICP). Er gehört, wie in Abschnitt 3.2.2 erläutert, zur Klasse der Feinregistrierung. Durch
seine Fähigkeit beliebige geometrische Daten (Punkte, Liniensegmente, Kurven, Oberflächen
(Meshes)) verarbeiten zu können, hat er Einzug in nahezu jeden Anwendungsbereich der
Registrierung von 3D-Daten erhalten. Besonders etabliert hat er sich in der Robotik. Aufgaben
wie die Selbstlokalisierung können mit Hilfe odometrischer Daten und Objekterkennung in
Echtzeit bewältigt werden [RL01]. Die dabei verarbeiteten Datenmengen beschränken sich
jedoch meist auf 1000− 10.000 Datenpunkte.

Dieses Kapitel stellt das Funktionsprinzip des ICP-Algorithmus vor. Anschließend wird ein
Einblick in vorhandene Varianten sowie der in dieser Diplomarbeit untersuchten Variante
(siehe Kapitel 11) gegeben.

9.1. Funktionsprinzip

Der ICP-Algorithmus versucht in einem iterativen Prozess eine Datenpunktwolke (Q) zu
einer Zielpunktwolke (P) auszurichten. Dabei wird vorausgesetzt, dass Q durch eine initiale
Transformation bereits grob an P registriert wurde. Für jeden Punkt pi ∈ P, (1 ≤ i ≤ |P|)
wird dabei der nächste Nachbar nnpi ∈ Q ermittelt. Seien P und Q wie in Gleichung (3.2)
definiert, dann lässt sich dieser beschreiben als:

nnpi = qj ∈ Q ∧ ∀ql ∈ Q : ‖pi − qj‖2 ≤ ‖pi − ql‖2, j, l = 1...|Q|(9.1)

‖p− q‖2 =
√
(px − qx)2 + (py − qy)2 + (pz − qz)2, p ∈ P, q ∈ Q

Diese bilden Korrespondenzen, aus denen jene Transformation berechnet wird, die alle
Korrespondenzpunkte bestmöglich zueinander ausrichtet (siehe Anhang A) . Ein Anwenden
dieser Transformation auf Q entspricht dann einer Minimierung der quadratischen Distanzen
zwischen den Korrespondenzpunkten Betrachtet man die Menge aller Korrespondenzen,
lässt sich dies als Summe der quadratischen Distanzen ausdrücken. Sei durch R und T eine
Transformation wie in Gleichung (3.3) definiert, dann lässt sich diese wie folgt beschreiben:

E(R, T) =
|C|

∑
i=1

|C|

∑
j=1

wij||pi − (R · qj − T + qj)||2(9.2)
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9. Iterative Closest Point (ICP)

Dabei bezeichnet C = {(pi, qj)|pi ∈ P, qi ∈ Q, 1 ≤ i ≤ Np, 1 ≤ j ≤ Nq} die Korrespondenz-
Menge (siehe Abschnitt 3.1). Die Gewichtung wij ist wie folgt belegt: wij = 1 wenn (pi, qi) ∈ K,
ansonsten wij = 0.

Im Sinne des ICP-Algorithmus wird E(R, T) als Fehler betrachtet und beschreibt, wie weit
zwei Punktwolken von ihrer korrekten Ausrichtung entfernt sind. Über mehrere Iterationen
des beschriebenen Prozederes hinweg, wird dieser Fehler minimiert. Dadurch definiert der
ICP-Algorithmus das Registrierungsproblem als eine Mischung aus Korrespondenz- und
Optimierungsproblem.

9.2. Varianten

Der vielseitige Einsatzbereich des ICP hat zu einer ungeheuren Vielfalt an Varianten geführt.
In [RL01] wurde eine Kategorisierung der vorhandenen Varianten über mögliche Modifika-
tionen einzelner Arbeitsschritte des ICP vorgenommen. Dabei wurden die sechs Teilschritte
Punktwahl, Korrespondenzfindung, Korrespondenzgewichtung, Korrespondenzverwerfung,
Fehlermaß und Minimierung betrachtet.

Neben der Kategorisierung verschiedener Varianten, wurden diese auch genauer untersucht
und miteinander verglichen. Basierend auf den von Rusinkiewicz et al. [RL01] durchge-
führten Untersuchungen soll im Folgenden ein Überblick der einzelnen Arbeitsschritte,
existierenden Varianten und deren Verhalten gegeben werden.

9.2.1. Punktwahl

Bei der Punktwahl wird grundlegend in der gesamten oder nur teilweisen Verwendung der
involvierten Punktwolken unterschieden. Ziel davon soll eine Reduktion der Datenmenge
sein.

Die vorgestellten Algorithmen erzeugen Teilmengen dabei mittels uniformem, random und
einem auf besonderen Intensitäts- und Farbwerten basierten Sub-Sampling. Rusinkiewicz
et al. selbst führen in ihrem Vergleich eine neue Sub-Sampling-Strategie ein, bei der nur
die Punkte einer Punktwolke verwendet werden, deren Normalen sehr unterschiedlich sind
(Normal-Space-Sampling). Ziel davon ist es, aussagekräftige Repräsentanten der Punktwol-
ken zu erhalten. Generell können die Teilmengen von beiden oder nur einer Punktwolke
sowie in jeder oder nur der ersten Iteration (Random-Sampling) erzeugt werden.

Auf das Konvergenzverhalten und die Qualität der Ergebnisse haben verschiedene Sub-
Sampling-Strategien bei rauschfreien Daten keinen Einfluss. Ein beidseitiges Sub-Sampling
erzielt geringfügig höhere Genauigkeiten als das einseitige. Konkrete Laufzeiten werden an
dieser Stelle nicht genannt. Als Abschätzung kann dafür das Konvergenzverhalten im Falle
einer einmaligen Sub-Sampling-Strategie herangezogen werden.
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9.2.2. Korrespondenzfindung

Die Suche von Korrespondenzen und somit des nächsten Nachbarn ist der zeitaufwändigs-
te Arbeitsschritt des ICP. In [NLH07, FBF77, EMSS96] werden KD-Trees (siehe Abschnitt
2.3.3) und Cached-KD-Trees beschrieben. Diese erlauben eine effiziente Suche des nächsten
Nachbarn in O(log(n)) anstelle von O(n) (siehe Abschnitt 2.3.3). Wird eine vektorisierbare
Repräsentation von korrespondierenden Elementen verwendet, kann diese Suchvariante mit
jeder beliebigen, im Folgenden betrachteten Modifikation kombiniert werden. Unterschieden
werden diese in der Art der Korrespondenzen und der Auffindung dieser verwendeten
Technik.

Während der klassische ICP Punktkorrespondenzen (Point-to-Point) (siehe Abbildung 9.1)
basierend auf Positionsdaten ermittelt, verwenden Varianten[JK97] zusätzlich Farbinforma-
tionen der Punkte. Ergebnissen zufolge kann dadurch die Genauigkeit und Anzahl benötigter
Iterationen reduziert werden. Als Normal-Shooting (Point-to-Plane) (siehe Abbildung 9.1)
bezeichneten Rusinkiewicz et al. eine Variante, die der Normalen eines Datenpunktes (Punkt
aus Datenpunktwolke) zur Oberfläche der Zielpunktwolke folgt und den dort getroffenen
Punkt als korrespondierend betrachtet. Ein Ausbilden falscher Korrespondenzen aufgrund
von Ausreißern oder versetzten Oberflächenverläufen die sich als geringste Punkt-zu-Punkt-
Distanz anbieten würden, soll dadurch verhindert werden Reverse-Calibration projiziert
(Point-to-Projektion) (siehe Abbildung 9.1) einen Zielpunkt über den Ursprung der Daten-
punktwolke auf selbige. Dadurch ist keine Suche des nächsten Nachbarn notwendig. Für all
diese Ansätze kann die Bestimmung des nächsten Nachbarn durch Informationen wie Nor-
malen, Farbe oder Intensität eines Punktes optimiert werden. Diese Informationen werden
auch Kompatibilitäten genannt. ICP-Varianten, die diese Informationen nutzen, tragen daher
auch den Namen „Iterative Compatible Point“.

Rusinkiewicz et al. kamen zu dem Ergebnis, dass der Point-to-Point Ansatz kombiniert
mit einer Normalenkompatibilität (Punkte mit Winkeldifferenz der Normalen < 45◦), das
qualitativ beste Ergebnis bei bestem Konvergenzverhalten erzielt. Der Zeitaufwand ist dabei
deutlich geringer als bei Point-to-Plane mit Normalenkompatibilität. Sowohl Qualität als
auch Konvergenzverhalten sind dabei jedoch besser als beim Point-to-Projektion Ansatz.
Dieser schneidet diesbezüglich am schlechtesten ab, ist aber auch am schnellsten. In den
Untersuchungen wurden rauschfreie Daten verwendet. Die Sensibilität der Normalen auf
Rauschen führt im Allgemeinen zu schlechten Ergebnissen. Generell kann aber gesagt
werden, dass diese Modifikationen das Bilden schlechter Korrespondenzen unterbinden.

9.2.3. Korrespondenzgewichtung

Mit Hilfe einer Gewichtung soll in diesem Schritt der Einfluss einzelner, als besonders gut
erachteter Korrespondenzen auf das Fehlermaß verstärkt werden.

Als Variationen werden die konstante (alle Korrespondenzen gleich gewichtet), die ent-
fernungsabhängige (je kleiner die Distanz, desto höher die Gewichtung), die kompati-
bilitätsabhängige (je ähnlicher die Normalenrichtungen oder Farbwerte desto höher die
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Abbildung 9.1.: Korrespondenz-Findung - Links: Point-to-Point Korrespondenz; der nächste Nachbar (minima-
les Distanz ds) zu p ist q. Mitte: Point-to-Plane Korrespondenz; q ist Schnittpunkt des Normalen-Strahles von p
und korrespondiert. q′ entspricht der Projektion von p auf die Tangentialebene deren Berührpunkt q ist. Rechts:
Punkt p wird vom Ursprung der Datenpunktwolke aus (OQ) auf die Zielpunktwolke vorwärts-projiziert. Mittels
Ursprung der Zielpunktwolke (OP) wird p vor der Projektion ermittelt. [PS03]

Gewichtung) und eine auf dem Rauschverhalten des Laserscanner basierte Gewichtung
vorgestellt. Bei Letzterer wird jedem Punkt, basierend auf einem Rauschmodell des verwen-
deten Entfernungssensors, eine Wahrscheinlichkeit zugeordnet. Diese beschreibt, ob und
wie stark ein Punkt fehlerbehaftet ist (ein hohe Wahrscheinlichkeit entspricht einer geringer
Gewichtung).

Die durchgeführten Untersuchungen haben gezeigt, dass die entfernungsabhängige und
kompatibilitätsabhängige Gewichtung prinzipiell die Anzahl der Iterationen minimieren
können, dies aber stark datenabhängig (Rauschen etc.) ist. Außerdem entspricht die entfer-
nungsabhängige Gewichtung der im folgenden Abschnitt vorgestellten Grenzwertverwer-
fung. Abschließend wird festgestellt, dass der generelle Einfluss von Gewichtungen auf das
Endergebnis gering und somit zu vernachlässigen ist.

9.2.4. Korrespondenzverwerfung

In diesem Schritt wird versucht einem definierten Qualitätsmaß entsprechend schlechte
Korrespondenzen zu erkennen und zu eliminieren. Dies soll Qualität und Korrespondenz-
verhalten des Algorithmus verbessern.

Eine vorgestellte Modifikation benutzt dazu die Entfernung der Korrespondenzpunkte. Dabei
werden alle Korrespondenzen verworfen, deren Punkt-zu-Punkt-Distanz einen spezifizierten
Grenzwert überschreitet.

Ein etwas variabler Grenzwert wird von einer anderen Variante verwendet. Dabei werden
die n% schlechtesten Korrespondenzen, bezüglich ihrer Punkt-zu-Punkt-Distanz verworfen.
Ein weiterer Ansatz vergleicht die Punkt-zu-Punkt-Distanz benachbarter Korrespondenzen
und verwirft Ausreißer.

Als ähnliche Variante wurde auch das Verwerfen von Korrespondenzen, deren Punkt-zu-
Punkt-Distanz größer als das Vielfache der Standardabweichung aller Korrespondenzen ist,
vorgestellt. Einem generellen Problem folgend entfernt die letzte betrachtete Modifikation
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Abbildung 9.2.: Korrespondenzverwerfung - Links: Randbereiche der Oberflächen führen häufig zur Bildung
falscher Korrespondenzen. Rechts: Die Korrespondenzen an Randbereichen wurden verworfen.

Korrespondenzen, deren Punkte auf dem Rand einer Oberfläche liegen (siehe Abbildung
9.2).

Rusinkiewicz et al. kamen zu dem Schluss, dass Stabilität und Genauigkeit durch das
Entfernen von ausreißenden Korrespondenzen verbessert werden kann. Die Konvergenzge-
schwindigkeit jedoch bleibt davon nahezu unbeeinflusst.

9.2.5. Fehlermaß und Minimierung

In diesem Abschnitt werden zwei Arbeitsschritte auf Grund ihres engen Zusammenhangs
gemeinsam betrachtet. Dabei kann das Fehlermaß verändert und abhängig davon auf
verschiedene Art und Weise minimiert werden. Der Minimierungsschritt beinhaltet dabei
auch die Berechnung der Transformation.

Der klassische ICP verwendet als Fehlermaß die Summe quadratischer Distanzen der ge-
fundenen Korrespondenzen. Minimiert werden kann dieses Fehlermaß mittels Singulär-
wertzerlegung (siehe Anhang A), orthonormalen Matrizen, Quaternionen und Dual-Zahl
Quaternionen. Diese wurden in [ELF97] genauer auf Präzision und Stabilität hin mit dem
Ergebnis untersucht, dass ihre Unterschiede nur sehr gering sind.

Ein weitere von Rusinkiewicz et al. erwähnte Variante erweitert die Metrik der Summe
quadratischer Fehler auf zusätzliche Farbinformationen.

Der in Abschnitt 9.2.2 vorgestellte Point-to-Plane Ansatz wurde mit einer eigenen Metrik
eingeführt. Diese beschreibt die Summe der quadratischen Abstände eines jeden Zielpunktes,
zu der Tangentialebene, deren Berührpunkt dem korrespondierenden Datenpunkt entspricht.
Dieses Fehlermaß erfordert, auf Grund seiner nicht-linearen Form, ein Lösungsverfahren,
wie z.B. das Levenberg-Marquard-, das erweiterte Gauß-Seidel- oder das Newton-Raphson-
Verfahren.

Betrachtete man die Minimierung über mehrere Iterationen hinweg, können verschiedene
Strategien zum Minimieren des gesamten Fehlers verwendet werden. Ein recht geradliniges
Verfahren bestimmt dabei in jeder Iteration eine Menge von Korrespondenzen und eine
Transformation, die ihren Abstand zueinander minimiert.

Der klassische ICP verwendet neben diesem eine zusätzliche Extrapolation im Transformati-
onsraum. Über den Transformations- und Fehlerverlauf bisheriger Iterationen,wird dabei
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approximiert und extrapoliert. Ausreißende Transformationen werden dann geringfügig
korrigiert, wodurch das Konvergenzverhalten verbessert wird.

Eine Brute-Force ähnliche Methode wurde ebenfalls untersucht. In dieser wird der ICP mit
verschiedenen initialen Transformation prozessiert. Als endgültige Transformation wird
die gewählt, die den geringsten Fehler verursacht. Auf diese Art und Weise können lo-
kale Minima der Fehlerfunktion übersprungen werden. Dem selben Ziel folgend wurde
ein Simulated-Annealing Ansatz vorgestellt. Er wurde jedoch auf Grund seines hohen
Rechenaufwandes nicht weiter untersucht.

Der zuletzt betrachtete Ansatz verwendet in jeder Iteration eine zufällige Teilmenge von
Korrespondenzen. Minimiert wird mit den Korrespondenzen, deren Fehler am geringsten
ist. Der Ansatz erfordert einen hohen Zeitaufwand und enthält Zufallselemente, dessen
Ausgang schwer zu bestimmen ist.

9.3. Analysierte Variante

Die zur Analyse verwendete Variante soll aussagekräftige Ergebnisse zu den in Abschnitt
1.2 genannten Kriterien (Konvergenz, Effizienz, Stabilität und Reproduzierbarkeit) liefern.
Basierend auf den Ergebnissen von [RL01] wurde daher entschieden, die in der Point Cloud
Library vorhandene Variante des ICP [Lib12f] in leicht veränderter Form zu verwenden.

Gemäß der im vorherigen Abschnitt beschriebenen Kategorisierung ist sie wie folgt zusam-
mengestellt:

• Punktwahl - In jeder Iteration werden die gesamten Punktwolken verwendet. Eine
Reduktion der Daten kann im Vorfeld mit Hilfe der in Kapitel 6 vorgestellten Verfahren
gewährleistet werden.

• Korrespondenzfindung - Als Korrespondenzen werden Punkt-zu-Punkt Korrespon-
denzen verwendet. Farb- oder Normaleninformationen werden auf Grund des zusätzli-
chen Rechenaufwandes nicht betrachtet. Die Suche des nächsten Nachbarn wird mittels
KD-Tree (siehe Abschnitt 2.3.3) durchgeführt.

• Korrespondenzgewichtung - Alle Korrespondenzen werden gleich gewichtet (kon-
stante Gewichtung), da der Einfluss von Gewichtungen sehr gering ist und teilweise
über die Korrespondenzverwerfung gesteuert werden kann.

• Korrespondenzverwerfung - Zur Verwerfung schlechter Korrespondenzen wird die
entfernungsabhängige Verwerfung verwendet. Dabei werden korrespondierenden
Punkte, deren Distanz zueinander einen spezifizierten Grenzwert übersteigt, verwor-
fen. Dieser wird im folgenden als Korrespondenzgrenzwert bezeichnet. An dieser
Stelle wurde die in der Point Cloud Library vorhandene Variante modifiziert. Diese
verwendet zusätzlich die Verwerfung ausreißender Korrespondenzen, basierend auf
einem RANSAC-Ansatz. Aufgrund des dadurch eingeführten Zufallselementes und
der damit verbundenen Verletzung der Reproduzierbarkeit wurde sie entfernt.
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• Fehlermaß und Minimierung - Basierend auf der Wahl der Korrespondenzfindung,
wird die Summe der quadratischen Distanzen (siehe Gleichung (9.2)) verwendet. Mittels
Singulärwertzerlegung wird minimiert (siehe Anhang A).

Das Verfahren konvergiert, wenn die folgenden drei Bedingungen (Abbruchbedingungen)
erfüllt sind:

1. Transformationsgrenzwert - Die Differenz der berechneten Transformationen zwi-
schen aktueller und vorheriger Iteration ist geringer, als ein spezifizierter Grenzwert.

2. Fehlergrenzwert - Der berechnete Fehler (Summe der quadratischen Distanzen) ist
geringer als ein spezifizierter Grenzwert.

3. Iterationen - Eine spezifizierte Anzahl von Iterationen wurde ausgeführt.
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10. Normal Distribution Transformation (NDT)

Der Normal Distribution Transformation Ansatz (NDT) wurde erstmals von Biber und
Strasser [BS03] im Jahre 2003 vorgestellt. Ursprünglich war dieser für zweidimensionale

Punktdaten konzipiert (2D-NDT). Ripperda [Rip05] konzipierte 2005 eine aus 2D-Schnitten
beschriebene 3D-Variante. 2007 erweiterte Magnusson [MLD07] diesen für den Einsatz in
autonomen Minenfahrzeugen vollständig auf den dreidimensionalen Raum (3D-NDT). In
seiner zwei Jahre später erschienenen Dissertation [Mag09], wurde dieser genauer untersucht.
Durch die Fähigkeit initiale Transformationen verarbeiten zu können, gliedert er sich in
die Klasse der feinregistrierenden Algorithmen ein. Sein Haupteinsatzgebiet wird dabei in
der Navigation autonomer Roboter und dem Erstellen von Umgebungskarten aus dichten
3D-Punktwolken gesehen.

Im Laufe dieses Kapitels wird die Funktionsweise des 3D-NDT vorgestellt. Außerdem
wird ein Überblick möglicher Erweiterungen sowie der in Kapitel 11 untersuchten Variante
gegeben.

10.1. Funktionsprinzip

Dreh- und Angelpunkt des NDT liegt in seiner Repräsentation der Zielpunktwolke P (siehe
Gleichung (3.2)). Diese wird wie beim räumlichen Sub-Sampling (siehe Abschnitt 6.2) in ein
Gitter zerlegt, das aus uniformen Zellen besteht. Für jede Zelle B wird dann der Schwerpunkt
q und die Kovarianzmatrix C der darin enthaltenen Punkte bi gebildet.

q =
1
|B|

|B|

∑
i=1

bi, B ⊆ P(10.1)

C =
1

|B− 1|

|B|

∑
i=1

(bi − q)(bi − q)T

Diese modellieren die Normalverteilung N(q, C) der in Zelle B vorhandenen Punkte. Um eine
aussagekräftige Kovarianzmatrix zu erhalten sind dazu mindestens fünf Punkte notwendig
[MLD07]. Weiter kann darauf basierend eine Wahrscheinlichkeitsdichtefunktion (PDF) p(x)
definiert werden:

p(x) =
1
c

exp
(
− (x− q)TC−1(x− q)

2

)
, x ∈ R3(10.2)
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Diese beschreibt die Wahrscheinlichkeit, dass in Zelle B ein Punkt an Position x vorkommt.
Die Konstante c dient zur Normalisierung und kann in diesem Fall als 1 festgelegt werden
[MLD07].

Sei T(e, qi) eine Transformationsfunktion, die einen Punkt qi aus der Daten-Punktwolke Q
(die an P registriert werden soll) gemäß einer Pose e im R3 transformiert. Die Pose e ist
dabei durch eine Translation und Rotation, wie in Gleichung (3.3) gegeben. Mit eulerschen
Winkeln ist diese dann beschrieben als:

e =
(
ψ, θ, φ, tx, ty, tz

)
, 0 ≤ ψ, θ, φ ≤ 360◦, tx, ty, tz ∈ R3(10.3)

Eine Bewertungsfunktion s(e), die eine Güte der Ausrichtung von Q zu P liefert, wird dann
definiert als:

s(e) = −
|Q|

∑
i=1

p(T(e, qi))(10.4)

Dies entspricht der negierten Summe der Wahrscheinlichkeiten, mit denen Punkte aus Q,
unter der Pose e, zu denen in P korrelieren.

Da die Fehlerfunktion über eine PDF definiert ist, existieren für diese stetige Ableitungen
erster und zweiter Ordnung. Diese erlauben, das Registrierungsproblem als nichtlineares
Optimierungsproblem der Form

H∆e = −g(10.5)

mit Hessematrix H und Gradienten g von s(e) zu definieren. Gelöst werden kann es mit Hilfe
numerischer Optimierungsverfahren. Wird dabei das iterative Newton-Verfahren verwendet,
wird die Transformationsänderung ∆e in jeder Iteration zu der bisherigen hinzugefügt. Für
Punkte aus Q gilt dann in jeder Iteration:

q′i = T(e + ∆e, qi)− q(10.6)

10.2. Varianten

Einige Bereiche des NDT lassen sich in Hinblick auf Qualität, Laufzeit und Einsatzbereich op-
timieren. Ein Überblick bisheriger Modifikationen wird im folgenden gegeben. Der Anspruch
auf Vollständigkeit wird und soll dabei nicht erhoben werden.

Wie bereits erwähnt stellten Ripperda und Brenner [Rip05] ebenfalls eine 3D-Variante des
NDT vor. Dabei wird eine 3D-Punktwolke in 2D-Scheiben zerlegt. Auf diesen kann dann der
von Biber und Strasser [BS03] vorgestellte Algorithmus ausgeführt werden. Nachteil dieses
Verfahrens ist, dass nur auf einer Ebene (Scheibe) registriert werden kann. Dies bedeutet,
dass die Punktwolken auf der selben Höhe erzeugt worden sein müssten, was selten der Fall
ist.
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In [KTMA08] wurde eine Erweiterung vorgestellt, die ebenfalls auf dem 2D-NDT basiert. Bei
dieser wird die Kovarianzmatrix einer Zelle in jeder Iteration leicht abgeschwächt. Dadurch
entsteht eine „verblasste“ Repräsentation der Punktwolke. Kaminade et al. erzielten dadurch
auf zweidimensionalen Daten eine höhere Genauigkeit als mit der von Biber und Strasser
[BS03] präsentierten Variante.

Magnusson [Mag09] beschreibt mehrere Erweiterungen seines eingeführten 3D-NDT. Diese
behandeln im Allgemeinen die Wahl der Zellgrößen, was als Art der Diskretisierung einer
Punktwolke interpretiert werden kann. Dabei wird eine auf einem Octree (wie KD-Tree (siehe
Abschnitt 2.3.3) aber mit acht statt zwei Kindern je Knoten) basierende Methode beschrieben.
Diese verfeinert durch Zerlegung in kleinere Zellen Bereiche einer Punktwolke, wenn die
Varianz der Normalverteilung einen spezifizierten Grenzwert übersteigt. Ziel dabei ist es,
markante Bereiche genauer zu untersuchen. Der Octree dient dabei zur Beschleunigung der
Punkt-Zell-Vergleiche und Verwaltung der unterschiedlichen Zellhierarchien.

Als weitere adaptive Variante wird eine Segmentierung der Punktwolke vorgestellt. Jedes
erkannte Segment wird dabei als eine Zelle repräsentiert.

Ein anderer Ansatz verringert die Zellgröße von Iteration zu Iteration. Dies hat den Effekt
einer Grob-zu-Fein-Registrierung.

Die trilineare Interpolation ist eine 3D-Erweiterung der in [BS03] bereits vorgestellten Glät-
tung der Normalverteilungsfunktion. Diese wird dabei für eine Zelle in Abhängigkeit der
benachbarten acht berechnet. Dadurch entsteht ein achtfacher Berechnungsaufwand, wie
Magnusson selbst berichtet.

Takeuchi [TT06] präsentierte eine Modifikation, deren Besonderheit in der Wahl der Zellgrö-
ßen liegt. Dabei wird die Zellgröße mit der Entfernung zum Laserscanner erhöht. Dadurch
werden entfernte rauschbehaftete Bereiche weniger detailliert repräsentiert als nahe. Die auf
einer Indoor-Szene durchgeführten Untersuchungen erbrachten gute Ergebnisse.

10.3. Analysierte Variante

Die zur Analyse verwendete Variante entstammt der Point Cloud Library [Lib12b]. Diese ent-
spricht der in [Mag09] vorgestellten Variante. Die Korrektheit der dortigen Implementierung
wird vorausgesetzt.

Als PDF wird dabei eine Mischung aus Normalverteilung und uniformer Verteilung von
Punktdaten verwendet. Diese ist definiert als[Mag09]:

p(x) = c1 exp
(
− (x− q)TC−1(x− q)

2

)
+ c2 p0(10.7)

Dabei beschreibt p0 die Rate erwarteter Ausreißer in den Punktdaten. Die Konstanten c1 und
c2 werden so gewählt, dass die Summe aller Wahrscheinlichkeiten 1 ergibt. Dadurch kann
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der nicht unerhebliche Einfluss von Ausreißern auf die Bewertungsfunktion limitiert werden.
In der verwendeten Implementierung werden die Konstanten wie folgt belegt:

c1 = 10 · (1− p0)(10.8)

c2 =
1

(Zellgröße)3

Die so definierte PDF führt zu nicht trivialen ersten und zweiten Ableitungen der zu
optimierenden Fehlerfunktion. Daher wird diese über eine Gaußsche Normalverteilung
approximiert [Mag09]. Der Einfluss eines Punktes x auf die Bewertungsfunktion ist dann
gegeben durch:

p(x) = −d1 exp
(
−d2

2
(x− q)TC−1(x− q)

)
(10.9)

d1 = − log(c1 − c2)− log(c2)

d2 = −2 log

(
(− log(c1 exp

(
− 1

2

)
+ c2) + log(c2)

d1

)

Zur Repräsentation der Zellen wird ein Voxel-Grid, wie bereits in Abschnitt 6.2 erwähnt,
mit konstanten, gleichseitigen Quadern verwendet. Zur Optimierung wird das iterative
Newton-Verfahren unter Verwendung der Moré-Thuente Variante [MTMp92] eingesetzt.

Als Konvergenzkriterium werden die folgenden Bedingungen verwendet:

1. Tranformationsgrenzwert Die berechnete Transformationsänderung ist geringer als
ein spezifizierter Grenzwert.

2. Iterationen Eine spezifizierte Anzahl an Iterationen wurde ausgeführt.
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Ziel dieses Kapitels ist es, die Eignung punktbasierter Registrierungsalgorithmen auf
hochaufgelösten Punktwolken zu klären. Analysiert werden dazu die bereits vorgestell-

ten Varianten der Registrierungsalgorithmen PFH (siehe Abschnitt 7.3), SI (siehe Abschnitt
8.3), ICP (siehe Abschnitt 9.3) und NDT (siehe Abschnitt 10.3).

Verwendet wird der in Kapitel 5 beschriebene Aufbau. Dabei werden die drei vorgestellten
Testszenarien 5.3 in den diskreten und räumlichen Auflösungen 1K, 10K, 100K, 1M, 10M
(K=Tausend, M=Millonen) (siehe Kapitel 6) registriert.

Die folgenden vier Unterkapitel befassen sich mit den Analysen der jeweiligen Algorithmen.
Dabei werden zuerst die einzelnen Parameter studiert. Auf Grund sehr langer Laufzeiten
wird dabei eine Auflösung von 100K verwendet. Dies entspricht beim räumlichen Sub-
Sampling einer Zellgröße von 0, 06 m für das Indoor-Szenario bzw. 0, 25 m für Hybrid-
und Outdoor-Szenario. Anschließend werden die in 1.2 erwähnten Anforderungen der
Konvergenz, Effizienz und Stabilität untersucht. Die Reproduzierbarkeit muss nicht weiter
untersucht werden, da diese bereits durch die Wahl der Varianten gewährleistet ist.

11.1. Point Feature Histogram

Der PFH Algorithmus ist nicht in der Lage Vorabinformationen zu verarbeiten. Eine initiale
Ausrichtung der Punktwolken ist daher durch das Platzieren der Punktwolken mit der
Position des Laserscanners auf dem Ursprung des gemeinsamen Koordinatensystems (siehe
Abschnitt 5.3) gegeben. Die initialen Fehler dazu sind in Anhang C einzusehen.

Die hier analysierte Variante des PFH Algorithmus kann im Wesentlichen über den Nor-
malenradius, den Merkmalsradius, die Abweichung vom Durchschnittshistogramm und
den Korrespondenzgrenzwert gesteuert werden. Mit Hilfe dieser Parameter sollen möglichst
aussagekräftige FPFH aus Ziel- und Datenpunktwolke extrahiert werden. Davon wird sich
eine Berechnung möglichst weniger aber dafür korrekter Korrespondenzen erhofft.

11.1.1. Normalenradius

Die Suche nach besonders aussagekräftigen FPFH kann auch als Suche nach möglichst
unterschiedlichen FPFH betrachtet werden. Die Normale eines Punktes bildet hierfür die
Grundlage und sollte daher so berechnet werden, dass die tatsächliche Orientierung eines
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Punktes möglichst genau repräsentiert wird. Ist dies nicht der Fall kann die anschließend
grobe Klassifizierung im Histogramm zu ähnlichen oder gar gleichen FPFH führen.

Zur Untersuchung des Normalenradius wurde ein Merkmalsradius gewählt, der auch bei
einer räumlichen Reduktion der Punktdaten ausreichend viele Nachbarn eines Punktes
betrachtet. Eine Verwerfung der Merkmale durch Prüfen der Einzigartigkeit sowie eine
Verwerfung von Korrespondenzen über einen Korrespondenzgrenzwert erfolgte dabei nicht.
Lediglich die Eindeutigkeit der Korrespondenzen wurde abgefragt. Die resultierende Anzahl
an Korrespondenzen gibt dadurch Aufschluss über die Ähnlichkeit der FPFH. Eine geringe
Anzahl von Korrespondenzen bedeutet, dass viele FPFH der Zielpunktwolke zu einem FPFH
der Datenpunktwolke (ebenso umgekehrt) korrespondieren, verworfen werden und ähnlich
sind. Bei einer hohen Anzahl resultierender Korrespondenzen sind die FPFH entsprechend
unterschiedlich.

Abbildung 11.1.: FPFH Normalenradius - Eine geringe Anzahl von Korrespondenzen indiziert ähnliche FPFH,
eine sehr hohe entsprechend unterschiedliche. Bei räumlichem Sub-Sampling verbessert sich mit einer steigenden
Anzahl unterschiedlicher FPFH das Registrierungsergebnis.

Basierend auf den Ergebnissen in Abbildung 11.1 kann gesagt werden, dass eine Wahl des
Normalenradius größer als der Merkmalsradius keine Verbesserung des Registrierungsergeb-
nisses erzielt. Eine zu kleine Wahl führt allerdings dazu, dass sehr ähnliche FPFH entstehen.
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Besonders auffällig ist dies bei diskret reduzierten Punktwolken. Ursache davon ist vermut-
lich die sehr dichte Repräsentation der dem Laserscanner naheliegenden Bereiche. Diese
zeichnen sich in Hybrid- und Outdoor-Szenario durch überwiegend flachen Untergrund,
im Indoor-Szenario durch flache Wände, Decken und Böden aus. Punkte, die auf einer
Fläche liegen, erhalten bei kleinen Radien eine nahezu identische Normale, woraus auch
identische FPFH folgen. Bei größeren Radien fließen auch Bereiche außerhalb der Flächen
in die Berechnung der Normalen ein, was unterschiedlichere Normalen und FPFH erzeugt.
Die hohe Punktdichte führt dazu, dass benachbarte Punkte selbst bei größeren Radien sehr
ähnliche Normalen aufweisen. Dies erklärt auch, dass auf räumlich reduzierten Punktdaten
generell mehr Korrespondenzen gebildet werden.

Auf räumlich reduzierten Daten verbessert sich das Registrierungsergebnis bei sinkender
Ähnlichkeit der FPFH. Die vollständige, aber weniger detaillierte Repräsentation einer Szene
führt vermutlich dazu, dass sich für die in ihr enthaltenen Objekte ausgeprägtere Merkmale
ausbilden lassen.

Für diskretes Sub-Sampling lässt sich kein Zusammenhang zwischen der Ähnlichkeit der
FPFH und dem Registrierungsergebnis herstellen. Auch die Wahl des Normalenradius
scheint bei dem hier verwendeten Merkmalsradius keinen wesentlichen Einfluss auf dieses
zu nehmen. Die allgemein niedrige Anzahl von Korrespondenzen weist darauf hin, dass die
dortigen FPFH unterschiedlich genug sind um eindeutige Korrespondenzen ausbilden zu
können, aber nicht in einem Maß, welches eine korrekte Zuordnung der Korrespondenz-
punkte erlaubt.

11.1.2. Merkmalsradius

Dieser Parameter bestimmt die auf ein FPFH Einfluss nehmende Umgebung eines Punk-
tes. Bildlich gesprochen bedeutet dies, dass ein große Wahl des Merkmalsradius zu einer
Repräsentation größer Merkmale führt. Analog zum Normalenradius wurde auch bei den
Untersuchungen zum Merkmalsradius keine Prüfung der Einzigartigkeit und Verwerfung
von Korrespondenzen bezüglich eines Korrespondenzgrenzwertes vorgenommen. Durch die
Eindeutigkeitsprüfung der Korrespondenzen ist deren Anzahl auch hier ein Indikator für
die Ähnlichkeit der FPFH.

Die Ergebnisse in Abbildung 11.2 zeigen, dass sich bei einem steigenden Merkmalsradius
auf diskret reduzierten Punktdaten eine nur unwesentliche Verbesserung des Registrierungs-
ergebnisses einstellt. Am meisten profitiert das Outdoor-Szenario von sehr großen Radien.
Die Verschiedenheit der FPFH steigt bei allen Szenarien mit dem Merkmalsradius bis zu
einer wesentlichen Überschreitung des Normalenradius und sinkt anschließend wieder. Sehr
viele Korrespondenzen werden dabei in der Hybrid-Szene berechnet.

Bei räumlich reduzierten Punktwolken sinkt der Registrierungsfehler mit steigendem Merk-
malsradius bis der Normalenradius überschritten wird; danach verläuft er konstant. Die
Anzahl der Korrespondenzen ist auf räumlich reduzierten Punktdaten deutlich höher und
führt zu dem Schluss, dass mehr voneinander verschiedene FPFH ausgebildet werden
konnten.

79



11. Analyse

Abbildung 11.2.: FPFH Merkmalsradius - Eine geringe Anzahl von Korrespondenzen indiziert ähnliche FPFH,
eine sehr hohe entsprechend unterschiedliche. Der Merkmalsradius sollte, um möglichst viele verschiedene
FPFH zu erhalten, mindestens so groß wie der Normalenradius gewählt werden.

Der Einfluss des Merkmalsradius auf das Registrierungsergebnis bei einem diskreten Sub-
Sampling lässt vermuten, dass größere als die hier untersuchten Merkmalsradien bessere
Ergebnisse erzielen. Aus Effizienzgründen stellt dies jedoch keine Option dar und wird daher
nicht weiter untersucht. Der hohe Einfluss sehr dicht repräsentierte Flächen auf die FPFH
benachbarten Punkte scheint ein Problem darzustellen. Thematisiert wurde dies bereits
für den Normalenradius (siehe Abschnitt 11.1.1) und lässt sich auf den Merkmalsradius
übertragen. Indiz dafür ist die geringe Anzahl berechneter Korrespondenzen für das Indoor-
und Outdoor-Szenario sowie die damit verbundene Ähnlichkeit der FPFH. Im Vergleich
zur Hybrid-Szene enthalten sie sehr ausgedehnte und dem Laserscanner nahe Flächen. Ein
räumliches Sub-Sampling wirkt diesem Problem entgegen.

11.1.3. Abweichung Durchschnittshistogramm

Dieser Parameter entscheidet über die Anzahl und Ähnlichkeit der zur Korrespondenzsuche
zugelassenen FPFH. Das Ziel ist es, aus den berechneten FPFH für Ziel- und Datenpunkt-

80



11.1. Point Feature Histogram

wolke die unterschiedlichsten herauszufiltern. Die geforderte Abweichung wird über das
Vielfache (α) der Standardabweichung bestimmt. Hohe Werte für α fordern eine große Abwei-
chung vom Durchschnittshistogram, niedrige eine entsprechend kleine. Zur Untersuchung
wurde keine Verwerfung der Korrespondenzen durch einen spezifizierten Korrespondenz-
grenzwert vorgenommen. Eine hohe Anzahl von Korrespondenzen kann dadurch als ein
Vorkommen vieler verschiedener Strukturen in einer Szene betrachtet werden. Analog dazu
sind viele ähnliche Strukturen vorhanden, wenn die Anzahl der verbleibenden Korrespon-
denzen gering ist. Die Ergebnisse der Untersuchungen sind in Abbildung 11.3 einzusehen.

Abbildung 11.3.: FPFH Abweichung Durchschnittshistogramm - Eine Verbesserung des Registrierungsergeb-
nisses durch die Verwerfung von FPFH, welche dem Durchschnittshistogramm zu ähnlich sind, erfolgt im
Wesentlichen bei diskret reduzierten Punktwolken.

Allgemein ist zu sehen, dass eine zu hohe Wahl von α dazu führt, dass keine Korrespon-
denzen gebildet werden können. Resultat ist der globale Fehler als Registrierungsergebnis.
Während sich mit steigendem α das Registrierungsergebnis auf räumlich reduzierten Punkt-
wolken zunehmend verschlechtert, verbessert sich dieses bei diskret reduzierten Punktwol-
ken. Abhängig von der Szene existiert dafür jedoch eine Obergrenze, ab welcher sich dieses
über den initialen Fehler hinweg verschlechtert. Betrachtet man die Anzahl der verbleibenden
Korrespondenzen ist zu sehen, dass diese mit steigendem α sinkt. Die Reduktionsrate ist bei
diskret reduzierten Punktwolken jedoch geringer als dies bei räumlichem Sub-Sampling zu
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beobachten ist. Zusätzlich sind bei räumlich reduzierten Punktdaten Unterschiede in den
einzelnen Szenarien zu verzeichnen.

Eine Erklärung dafür liefert die Betrachtung des Durchschnittshistogramms. Wie bereits im
vorherigen Abschnitt festgestellt führt diskretes Sub-Sampling zu überwiegend ähnlichen
FPFH. Das daraus resultierende Durchschnittshistogramm wird aller Wahrscheinlichkeit
nach ähnliche Ausprägungen wie die überwiegend vorkommenden FPFH aufweisen. Für ein
geringes α werden dadurch bereits sehr viele FPFH verworfen. Die verbleibenden FPFH besit-
zen besondere Ausprägungen und erlauben eine korrekte Korrespondenzfindung wodurch
sich das Registrierungsergebnis verbessert. Räumliches Sub-Sampling hingegen repräsentiert
die einzelnen Strukturen der gesamten Szene weniger dicht, wodurch abhängig von der
Szenerie, mehr unterschiedliche FPFH entstehen. Dies führt zu einem Durchschnittshisto-
gramm, welches keine besonderen Ausprägungen enthält. Bereits für sehr kleine Werte
von α werden dadurch markante FPFH verworfen. Wird ein FPFH der Zielpunktwolke
verworfen, dessen korrespondierendes FPFH der Datenpunktwolke aber nicht, entstehen
falsche Korrespondenzen und beeinflussen das Registrierungsergebnis negativ.

11.1.4. Korrespondenzgrenzwert

Die Verwerfung erzeugter Korrespondenzen, deren korrespondierenden FPFH einen spezi-
fizierten Grenzwert überschreiten, hat eine Identifizierung falscher Korrespondenzen zur
Aufgabe. Dabei wird davon ausgegangen, dass sich die Güte einer Korrespondenz über die
Unterschiedlichkeit der korrespondierenden FPFH beschreiben lässt. Grundlage für die hier
durchgeführten Untersuchungen sind die aus den vorherigen Abschnitten individuell für
Szene und Sampling-Strategie ermittelten Parameterwerte. Die Registrierungsergebnisse der
einzelnen Szenarien sind in Abbildung 11.4 festgehalten.

Erwartungsgemäß steigt mit dem Korrespondenzgrenzwert auch die Anzahl der verblei-
benden Korrespondenzen. Die stärke des Anstiegs gibt Auskunft darüber, in welchem
Verhältnis sehr ähnliche bzw. sehr unterschiedliche, korrespondierende FPFH in der in-
itialen Korrespondenzmenge enthalten sind. Ein linearer Verlauf deutet demnach auf eine
Gleichverteilung dieser hin. Steigt die Anzahl der Korrespondenzen logarithmisch, sind die
korrespondierenden FPFH sehr unterschiedlich, entsprechend ähnlich bei einem exponenti-
ellen Verlauf. Anhängig ist dies von der jeweiligen Szene und Sub-Sampling-Strategie, was
sich mit den Beobachtungen im vorherigen Abschnitt (11.1.3 Abweichung Durchschnittshi-
stogramm) deckt. In welcher Größenordnung sich die Ähnlichkeit der FPFH dabei definiert,
ist ebenfalls von der Sub-Sampling-Strategie und Szene abhängig. Auf räumlich reduzierten
Punktwolken bleibt die Anzahl der Korrespondenzen selbst bei einer Änderung des Kor-
respondenzgrenzwertes um 10000 konstant. Das Hybrid-Szenario hingegen zeigt deutliche
Reaktionen bei einer Änderung von dessen um 5. Diese Tatsache macht die Bestimmung
eines Korrespondenzgrenzwertes äußerst problematisch.

Betrachtet man das Registrierungsergebnis wird deutlich, dass durch die Verwendung ei-
nes Korrespondenzgrenzwertes hier keine Verbesserung erzielt werden kann. Die initiale
Korrespondenzmenge lieferte für alle Szenarien und Sub-Sampling-Strategien ein besseres
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Abbildung 11.4.: FPFH Korrespondenzgrenzwert - „Initial“ entspricht einem unendlichen Korrespondenz-
grenzwert (keine Korrespondenzverwerfung). Die Korrespondezverwerfung führt in keinem Szenario zu einer
Verbesserung des Registrierungsergebnisses. Bei einer diskreten Reduktion der Indoor- und Outdoor-Szene ist
erst ab einem Grenzwert von 1000 die minimal sinnvolle Anzahl von drei Korrespondenzen verfügbar.

Ergebnis. Die Verwerfung von Korrespondenzen, über die Forderung einer spezifizierten
Ähnlichkeitsbeziehung der korrespondierenden FPFH, scheint in diesem Registrierungs-
schema einen eher negativen Einfluss auf die Qualität der Registrierung zu haben. In den
nachfolgenden Untersuchungen wird daher auf ein Verwerfung der Korrespondenzen über
den hier präsentierten Korrespondenzgrenzwerte verzichtet.

11.1.5. Konvergenz

Mit Hilfe der vorhergehenden Parameterstudie wurden für die unterschiedlichen Szenen
und Sub-Sampling-Strategien Parametersets definiert, die bei der verwendeten Auflösung
von 100K scheinbar gute Registrierungsergebnisse erzielen. Diese wurden anschließend
zur Registrierung auf verschiedenen Auflösungen verwendet. Da der PFH-Algorithmus
keine initiale Ausrichtung verarbeitet, werden die globalen Fehler (siehe Anhang C) als
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Konvergenzkriterien im Sinne der definierten Anforderungen verwendet. Die Ergebnisse
sind in Abbildung 11.5 präsentiert.

Abbildung 11.5.: FPFH Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach
einer Registrierung der unterschiedlichen Szenarien auf verschiedenen, räumlichen und diskreten Auflösungen.
Außerdem ist die Anzahl der verwendeten Korrespondenzen abgebildet. Die Ausgangssituation ist durch die
globale Ausrichtung gegeben. Der damit verbundene initiale Gesamtfehler liegt für die Indoor-Szenerie bei 4.05,
für die hybride Szene bei 7.30 und für das Outdoor-Szenario bei 16.87 (siehe Anhang C).

Für die Auflösungen 100K und 1M konnten alle Szenarien erfolgreich registriert werden.
Dabei erzielen räumliche reduzierte Punktwolken besonders bei höheren Auflösungen
ein besseres Ergebnis. Die geringe Anzahl der Korrespondenzen auf diskret reduzierten
Punktdaten lässt den Schluss zu, dass die hohe Punktdichte zu einer Vielzahl ähnlicher FPFH
führt. Je geringer die Anzahl vorhandener Korrespondenzen, desto größer ist der Einfluss
falscher Korrespondenzpaare auf das Registrierungsergebnis. Ein Ausbilden ausschließlich
korrekter Korrespondenzen wird bei hohen Auflösungen als nahezu unmöglich erachtet.

Bei einer diskreten Auflösung von 1K konnten für Indoor- und Outdoor-Szenario keine
Korrespondenzen ermittelt werden. Die Ursache ist, dass alle FPFH aufgrund zu hoher
Ähnlichkeit durch die Abweichung vom Durchschnittshistogramm verworfen wurden. Eine
räumliche Auflösung von 1K erlaubt das Bilden von unterschiedlichen FPFH. Eine erfolgrei-
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che Registrierung ist dennoch nicht möglich. Dies ist auch bei einer diskreten und räumlichen
Auflösung von 10K zu beobachten. Auffällig sind dabei die sehr hohen Rotationsfehler und
im Allgemeinen eher geringen Translationsfehler. Eine Betrachtung der Korrespondenzpaare
zeigt, dass FPFH markanter Bereiche korrekt zugeordnet wurden. FPFH der in allen Sze-
narien sehr ausgedehnten Böden führen jedoch zu falschen Korrespondenzen zwischen
dem Bodenbereich der Ziel- und Datenpunktwolke. Dadurch erfolgt ein im Wesentlichen
richtiges Übereinanderschieben des Bodens. Anteilig sind die Korrespondenzen der Boden-
bereiche den Korrespondenzpaaren markanter Bereiche überlegen und verhindern dadurch
ein Auflösen der Rotation.

Aufgrund zu langer Laufzeiten (siehe nächster Abschnitt 11.1.6) wurde eine Auflösung von
10M nicht untersucht. Vermutlich würde das Registrierungsergebnis für diskret reduzierte
Punktdaten erneut schlechter werden, während es sich beim räumlichen Sub-Sampling
weitgehend konstant verhielte.

Das genauste Registrierungsergebnis wurde für das räumlich reduzierte Indoor-Szenario,
bei einer Auflösung von 1M erzielt. Dabei betrug ~eTranslation = (0.99,−1.38,−0.68) m und
~eRotation = (0.00, 0.07, 0.02) m.

11.1.6. Effizienz

Die in Abbildung 11.6 gemessenen Laufzeiten beziehen sich auf die im vorherigen Abschnitt
(Konvergenz 11.1.5) durchgeführten Untersuchungen.

Festzustellen ist, dass diskret reduzierte Punktwolken für alle Auflösungen deutlich längere
Laufzeiten zur Berechnung der Normalen und FPFH aufweisen als räumlich reduzierte.
Begründet liegt dies in der höheren Punktdichte diskret reduzierter Punktwolken. Sie führt
zu einer höheren Anzahl von Punkten in einer definierten Kugelumgebung jedes einzelnen
Punktes, als dies bei räumlich reduzierten Punktdaten der Fall ist.

Wie bereits bei der Untersuchung der Parameter festgestellt, führt ein räumliches Sub-
Sampling zu einer größeren Anzahl von Korrespondenzen. Dementsprechend ist der Zeit-
aufwand zur Korrespondenzfindung deutlich höher als bei diskretem Sub-Sampling. Der
Einfluss auf die Gesamtlaufzeiten ist speziell bei niedrigen Auflösungen enorm.

Unterschiedliche Laufzeiten sind ebenfalls zwischen den verschiedenen Szenarien zu erken-
nen. Rückzuführen ist dies ebenfalls auf die Punktdichte, welche mitunter auch von der
Beschaffenheit einer Szene abhängig ist. In der Theorie ist die Zeitkomplexität für das Be-
rechnen der Normalen und FPFH linear in der Anzahl der Punkte. Große Radien, eine hohe
Punktdichte und die logarithmische Suche der in einer Kugelumgebung enthaltenen Punkte
auf KD-Trees, führen jedoch zu sehr hohen Konstanten und einem nahezu quadratischen
Laufzeitverhalten für diskret reduzierte Punktdaten.

Für eine erfolgreich Registrierung muss mindestens eine Auflösung von 100K verwendet
werden. Eine mittlere Berechnungszeit, wie für das räumlich reduzierte Hybrid-Szenario,
liegt bei ≈ 0.01 Minuten für die Normalen, ≈ 0.1 Minuten für die FPFH und ≈ 1 Minute für
das Berechnen und Verwerfen der Korrespondenzen.

85



11. Analyse

Abbildung 11.6.: FPFH Effizienz - Abgebildet sind die Laufzeiten zur Berechnung der Normalen, der FPFH,
der Korrespondenzen sowie die Gesamtlaufzeit der verschiedenen Szenarien auf unterschiedlichen, diskreten
und räumlichen Auflösungen. Eine diskrete Reduktion der Punktwolken führt durch die hohe Punktdichte zu
einer zeitintensiven Berechnung der Normalen und FPFH.

11.1.7. Stabilität

Wie die Parameterstudie (siehe Abschnitte 11.1.1, 11.1.2, 11.1.3, 11.1.4) bereits anzeigt, musste
für jede Szene und Sub-Sampling-Strategie ein individuelles Parameterset definiert werden.
Diese sind außerdem wenig tolerant gegenüber Abweichungen von den optimalen Parame-
tern. Mit den individuellen Parametersets war es gemäß den Untersuchungen in Abbildung
11.5 möglich, Punktwolken verschiedener Auflösungen korrekt zu registrieren.

Für sehr geringe Auflösungen konnte keine korrekte Registrierung erfolgen (siehe Abbildung
11.5). Bei steigender diskreter Auflösung verschlechterte sich das Registrierungsergebnis.
Offensichtlich sollte die Szenerie weder zu detailliert noch zu schwach repräsentiert sein. Ein
stabiles Verhalten kann lediglich für räumlich reduzierte Punktwolken auf den Auflösungen
100K und 1M verzeichnet werden.

Bei höheren Auflösungen war es möglich alle drei Szenarien korrekt zu registrieren (siehe
Abbildung 11.5). Die höchsten Fehlerschwankungen traten dabei für die Outdoor-Szene
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auf. Sie ist durch sehr ähnliche Strukturen definiert, was einer Erzeugung markanter FPFH
entgegenwirkt. Laufzeiten lassen sich nicht unbedingt voraussagen, da eine Abhängigkeit
dieser von der Punktdichte und somit von der Szene selbst existiert (siehe vorheriger
Abschnitt 11.1.6).

11.2. Spin-Images

Der SI Algorithmus ist ebenso wie der PFH-Algorithmus nicht in der Lage Vorabinformatio-
nen zu verarbeiten. Eine initiale Ausrichtung der Punktwolken ist daher durch das Platzieren
der Punktwolken mit der Position des Laserscanners auf dem Ursprung des gemeinsamen
Koordinatensystems (siehe Abschnitt 5.3) gegeben. Die resultierenden „globalen“ Fehler
dazu sind in Anhang C einzusehen.

Wesentlich Kontrollelemente des Algorithmus sind der Normalenradius, der Suchradius,
der Support-Winkel, die Abweichung vom Durchschnittshistogram sowie die Verwerfung
von Korrespondenzen bezüglich eines spezifizierten Grenzwertes. Diese Parameter sollen so
gewählt werden, dass möglichst aussagekräftige SI aus Ziel- und Datenpunktwolke extrahiert
werden. Erhofft wird sich dadurch eine Berechnung möglichst weniger, aber dafür korrekter
Korrespondenzen.

11.2.1. Normalenradius

Wie bereits bei der Untersuchung des Normalenradius der FPFH (siehe Abschnitt 11.1.1)
wurde der Merkmalsradius so gewählt, dass unabhängig von der Sub-Sampling-Strategie
ausreichend viele Punkte in der Umgebung eines Punktes zur Berechnung eines aussage-
kräftigen SI zu finden sind. Ebenfalls wurde keine Verwerfung der SI durch die Abweichung
vom Durchschnittshistogramm vorgenommen. Durch die Prüfung der Korrespondenzen
auf Eindeutigkeit gibt die Anzahl dieser Auskunft über die Ähnlichkeit der SI. Eine gerin-
ge Anzahl entspricht dabei vielen ähnlichen SI, eine hohe weist auf unterschiedliche hin.
Festgehalten sind die Ergebnisse in Abbildung 11.7.

Festzustellen ist, dass die Unterschiedlichkeit der SI mit steigendem Normalenradius zu-
nimmt, ab einem gewissen Normalenradius jedoch gesättigt verläuft. Der Normalenradius
ab welchem eine Sättigung eintritt scheint dabei unabhängig von der Sub-Sampling-Strategie.
Ein Zusammenhang zum Merkmalsradius kann ebenfalls nicht festgestellt werden. Diskret
reduzierte Punktdaten weisen in allen Szenarien eine geringere Anzahl von Korrespon-
denzen auf als dies für räumliches Sub-Sampling der Fall ist. Auch steigt die Anzahl der
Korrespondenzen auf räumliche reduzierten Punktwolken linear, während eine diskrete
Reduktion zu einem logarithmischen Verlauf bis zur Sättigung führt. Dieses Verhalten wurde
bereits beim Normalenradius der FPFH festgestellt (siehe Abschnitt 11.1.1) und lässt sich
offensichtlich auf dieselbe Ursache zurückführen, nämlich dass eine höhere Punktdichte
größere Radien zur Berechnung verschiedener Normalen erfordert.
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Abbildung 11.7.: SI Normalenradius - Eine geringe Anzahl von Korrespondenzen indiziert ähnliche SI, eine sehr
hohe entsprechend unterschiedliche. Bei einem räumlichem Sub-Sampling verbessert sich mit einer steigenden
Anzahl unterschiedlicher SI auch das Registrierungsergebnis.

Da über die Normale eines Punktes die Rotationsachse seines SI definiert wird scheint
es vernünftig, dass benachbarte Punkte mit sehr ähnlichen Normalen, nahezu identische
Bereiche im SI klassifizieren, wodurch diese nur geringe bzw. keine Unterschiede aufweisen.
Die Indoor-Szene zeigt außerdem, dass zu große Radien ebenfalls ähnliche SI erzeugen
können, da der Einfluss großer Strukturen, welche durch viele Punkte repräsentiert werden
(wie z.b. Flächen), die Normale eines Punktes verfälschen können.

Betrachtet man den Einfluss des Normalenradius auf das Registrierungsergebnis, ist lediglich
für die Outdoor-Szene eine klare Reaktion zu verbuchen. Bei ihr bleibt das Registrierungs-
ergebnis ab einem Normalenradius stabil, welcher in etwa der maximalen Anzahl von
Korrespondenzen, also vielen verschiedenen SI entspricht. Dieses Verhalten ist auch auf
räumlich reduzierten Punktdaten zu beobachten. Bei ihnen verbessert sich das Registrie-
rungsergebnis mit steigender Anzahl verschiedener SI. Lediglich die Indoor-Szene zeigt trotz
konstanter Anzahl von Korrespondenzen eine Verschlechterung. Die Ursache wird in der
bereits erwähnten Verfälschung von Normalen bei zu großen Radien vermutet.
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11.2.2. Suchradius

Um Aufschluss über die Ähnlichkeit der berechneten SI zu erhalten, wurde auch für die
Untersuchungen zum Suchradius keine Prüfung der SI auf Einzigartigkeit durchgeführt. Die
Verwerfung nicht eindeutiger Korrespondenzen erlaubt daher, wie im vorherigen Abschnitt
(11.2.1 Normalenradius), eine Aussage über die Ähnlichkeit der SI. Die erzielten Ergebnisse
sind in Abbildung 11.8 präsentiert. Dabei wurden die verschiedenen Szenarien auf unter-
schiedlichen räumlichen und diskreten Auflösungen bei einem variierenden Suchradius
registriert.

Abbildung 11.8.: SI Suchradius - Eine geringe Anzahl von Korrespondenzen indiziert ähnliche FPFH, eine sehr
hohe entsprechend unterschiedliche. Auf räumlich reduzierten Punktwolken verbessert sich das Registrierungs-
ergebnis mit steigendem Suchradius, bis die Verschiedenheit der SI zu sinken beginnt.

Unabhängig von Sub-Sampling-Strategie und Szenario ist zu beobachten, dass die Verschie-
denheit der SI mit dem Suchradius bis zu einem Maximum steigt. Eine weitere Erhöhung
des Suchradius führt zu einer Abnahme der Korrespondenzanzahl. Erklären lässt sich dieses
Verhalten dadurch, dass der Suchradius im Wesentlichen die Größe des Bereiches festlegt,
aus welchem Punkte in das SI projiziert werden. Werden sehr große Bereiche betrachtet,
wird die Klassifizierung der einzelnen Punkte sehr grob, wodurch ähnliche SI entstehen. Bei
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einer kleinen Wahl des Suchradius werden zu kleine Bereiche betrachtet um die eigentliche
Form der betrachteten Oberfläche noch abbilden zu können.

Vergleicht man die Anzahl der Korrespondenzen mit dem Registrierungsfehler kann für
räumliches Sub-Sampling gesagt werden, dass der Registrierungsfehler mit einer steigenden
Verschiedenheit der SI bis zu einem Minimum sinkt und sich anschließend einpendelt. Auf
diskret reduzierten Punktwolken ist kaum ein Einfluss des Merkmalsradius zu erkennen.
Eine zu große Wahl führt beim Outdoor-Szenario zum Divergieren, das Hybrid-Szenario
alterniert um den initialen Fehler und das Indoor-Szenario zeigt überhaupt keine Reaktion.
Vermutlich führt die hohe Punktdichte dazu, dass selbst bei kleinen Radien bereits SI
entstehen, die unterschiedlich genug sind um eindeutige Korrespondenzen auszubilden,
aber nicht in einem Maß, welches einer korrekte Ausbildung von Korrespondenzen erlaubt.

11.2.3. Support-Winkel

Analog zu den vorherigen zwei Abschnitten kann auch in diesem die Ähnlichkeit der
SI anhand der Anzahl berechneter Korrespondenzen abgelesen werden. Die Ergebnisse
der durchgeführten Untersuchung sind in Abbildung 11.8 präsentiert. Dabei wurden die
verschiedenen Szenarien auf unterschiedlichen räumlichen und diskreten Auflösungen bei
einem variierenden Support-Winkel registriert.

In den hier untersuchten Szenarien konnte kein wesentlicher Einfluss des Support-Winkels
auf das Registrierungsergebnis oder die Ähnlichkeit der SI festgestellt werden. Lediglich für
einen Support-Winkel von 1 (Kosinus des Winkels) ist für alle Szenarien zu beobachten, dass
die Verschiedenheit der SI sinkt und der Registrierungsfehler steigt.

Ein Support-Winkel von 1 bedeutet, dass ein benachbarter Punkt nur dann in das SI projiziert
wird, wenn seine Normale eine mit der Rotationsachse identische Richtung aufweist. Eine
Betrachtung der resultierenden SI hat gezeigt, dass dadurch nur sehr wenige Punkte projiziert
werden. Die Einträge nahezu aller SI sind daher 0 und diese somit identisch. Der nicht
vorhandene Einfluss der Support-Winkel kleiner als 1 wird in den weitestgehend rauschfreien
Punktdaten sowie der Glättung von SI durch die bilineare Interpolation vermutet. Indiz dafür
ist der mittlere quadratische Abstand zwischen korrespondierenden Punkten, der ebenfalls
unverändert bleibt und dadurch eine identische Korrespondenzbildung signalisiert. Einzige
Ausnahme ist das Hybrid-Szenario auf räumliche reduzierten Punktdaten, welches sehr
kleine und markante Strukturen enthält, die bei einer geringen Auflösung wahrscheinlich als
Rauschen interpretiert werden.
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Abbildung 11.9.: SI Support-Winkel - Bei einem Support-Winkel von 1 muss die Normale eines Punktes
identisch zur Rotationsachse sein, um auf das SI projiziert zu werden. Dies führt dazu, dass für beinahe alle SI
keine Abbildung der Punkte aus dem Suchraum erfolgt, wodurch diese identisch sind.

11.2.4. Abweichung Durchschnittshistogramm

Analog zur Abweichung vom Durchschnittshistogramm bei den PFH (siehe Abschnitt 11.1.3),
entscheidet auch dieser Parameter über die Anzahl und Ähnlichkeit der zur Korrespondenz-
suche zugelassenen SI. Die geforderte Abweichung wird auch hier über das Vielfache (α)
der Standardabweichung bestimmt, so fordern hohe Werte für α eine große, niedrige eine
entsprechend kleine Abweichung vom Durchschnittshistogram. Zur Untersuchung wurde
keine Verwerfung der Korrespondenzen durch einen spezifizierten Korrespondenzgrenzwert
vorgenommen. Die Ergebnisse der auf unterschiedlichen, räumlich und diskret reduzierten
Szenarien durchgeführten Untersuchungen sind Abbildung 11.10 visualisiert.

Wie zu erwarten sinkt bei beiden Sub-Sampling-Strategien die Anzahl der Korrespondenzen
mit steigendem α. Bei räumlich reduzierten Daten erfolgt dies jedoch wesentlich schnel-
ler. Vermutlich entsteht durch die bereits in den vorherigen Abschnitten festgestellte hohe
Verschiedenheit der SI ein sehr allgemeines Durchschnittshistogramm mit hoher Standard-
abweichung. Dadurch werden schon bei kleinen Werten für α sehr viele SI verworfen.
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Untermauern lässt sich dies durch den mit α steigenden Registrierungsfehler auf nahezu
allen Szenarien. Offensichtlich werden SI entfernt deren Existenz, eine Ausbildung korrekter
Korrespondenzen fordert.

Bei diskret reduzierten Punktdaten ist ein allgemeines Alternieren um den Ausgangsfehler
zu beobachten. Für einzelne α-Werte jedoch ist eine deutliche Verbesserung zu beobachten.
Auch hier bildet die Hybrid-Szene eine Ausnahme. Sie verhält sich ähnlich wie auf räumlich
reduzierten Punktdaten.

Abbildung 11.10.: SI Abweichung Durchschnittshistogramm - Eine Verbesserung des Registrierungsergebnis-
ses durch die Verwerfung von SI welche dem Durchschnittshistogramm zu ähnlich sind, erfolgt im Wesentlichen
bei diskret reduzierten Punktwolken. Ein räumliches Sub-Sampling führt vermutlich zu bereits sehr unterschied-
lichen SI.

11.2.5. Korrespondenzgrenzwert

Die Verwerfung erzeugter Korrespondenzen, deren korrespondierenden SI einen spezifi-
zierten Grenzwert überschreiten, hat wie bei den PFH (siehe Abschnitt 11.1.4) eine Identi-
fizierung falscher Korrespondenzen zur Aufgabe. Die Güte einer Korrespondenz ist dabei
über die Merkmalsdistanz der korrespondierenden SI definiert. Für die hier durchgeführ-
ten Untersuchungen wurden die aus den vorherigen Abschnitten individuell für Szene
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und Sampling-Strategie ermittelten Parameterwerte verwendet. Die Ergebnisse der Regis-
trierungen auf den einzelnen Szenarien sind in Abbildung 11.11 festgehalten. Der initiale
Fehler entspricht dabei einer Registrierung ohne Korrespondenzverwerfung durch einen
Korrespondenzgrenzwert.

Abbildung 11.11.: SI Korrespondenzgrenzwert - „Initial“ entspricht einem unendlichen Korrespondenzgrenz-
wert (keine Korrespondenzverwerfung). Die Korrespondenzverwerfung bezüglich eines spezifizierten Grenzwer-
tes verbessert das Registrierungsergebnis nur unwesentlich.

Ein Korrespondenzgrenzwert von 0 erfordert Korrespondenzen, deren korrespondierenden
SI absolut identisch sind. Wie an der Anzahl der daraus resultierenden Korrespondenzen zu
sehen ist, führt dies bei allen Szenarien, unabhängig von der Sub-Sampling-Strategie dazu,
dass alle Korrespondenzen verworfen werden.

Indoor- und Hybrid-Szenario zeigen auf diskret reduzierten Punktdaten für sehr kleine
Korrespondenzgrenzwerte eine geringe Verbesserung des Registrierungsergebnisses. Offen-
sichtlich repräsentiert die Merkmalsdistanz der korrespondierenden SI bei diesen Szenarien
die Güte der Korrespondenzen relativ gut. Weniger eindeutig verhält sich das diskret re-
duzierte Outdoor-Szenario, welches starke Schwankungen zwischen sehr schlechten und
dem initialen Registrierungsergebnis aufweist. Für größere Werte als die in Abbildung 11.11

präsentierten verhält es sich jedoch stabil.

93



11. Analyse

Auf räumlich reduzierten Punktdaten ist ein ähnliches Verhalten für die Hybrid-Szene zu
beobachten. Offensichtlich enthalten beide Szenarien Korrespondenzen, deren korrespondie-
renden SI eine gewisse Verschiedenheit aufweisen, aber dennoch korrekte Korrespondenzen
bilden. Die räumlich reduzierten Indoor- und Outdoor-Szenarien hingegen verhalten sich
stabil. Eine Verbesserung des initialen Fehlers ist lediglich für sehr kleine Korrespondenz-
grenzwerte zu beobachten.

Den Ergebnissen nach zu urteilen hat eine Verwerfung von Korrespondenzen durch einen
spezifizierten Korrespondenzgrenzwert in dem hier betrachteten System nur einen margi-
nalen Einfluss auf die Verbesserung des Registrierungsergebnisses. Vermutlich führt das
räumliche Sub-Sampling zu bereits sehr markanten SI; die starke Reduktion der SI durch
den Vergleich am Durchschnittshistogram führt offensichtlich bei diskret reduzierten Daten
hingegen zu einer sehr elitären Menge an Korrespondenzen.

11.2.6. Konvergenz

Mit Hilfe der vorhergehenden Parameterstudie wurden für die unterschiedlichen Szenen und
Sub-Sampling-Strategien Parametersets definiert, die für eine Auflösung von 100K scheinbar
gute Registrierungsergebnisse erzielen. Für die folgenden Untersuchungen wurden sie zur
Registrierung auf verschiedenen Auflösungen verwendet. Da der SI-Algorithmus nicht in
der Lage ist eine initiale Ausrichtung zu verarbeiten, werden die globalen Fehler (siehe
Anhang C) als Konvergenzkriterien im Sinne der definierten Anforderungen verwendet. Die
Ergebnisse sind in Abbildung 11.5 präsentiert.

Bei einer diskreten und räumlichen Auflösung von 1K konnte keines der Testszenarien
erfolgreich registriert werden. Das Hybrid-Szenario ist dabei die einzige Szenerie, für die
sowohl auf räumlich wie auch diskret reduzierten Punktdaten Korrespondenzen gefunden
werden konnten. Mittels räumlichem Sub-Sampling lies sich das Hybrid-Szenario bereits bei
einer Auflösung von 10K registrieren. Bei einer diskreten Reduktion konnten ebenfalls keine
Korrespondenzen gefunden werden. Dieselbe Problematik ist auch für das Outdoor-Szenario
zu beobachten. Sehr geringe diskrete Auflösungen führen offensichtlich dazu, dass zu wenig
markante Struktur zu detailliert vorhanden ist (große Bodenflächen), was zu sehr ähnlichen
SI führt, die dann verworfen werden. Indiziert wird dies durch die Tatsache, dass durch die
Abweichung vom Durchschnittshistogramm alle SI verworfen wurden.

Mit einer steigenden räumlichen Auflösung sinkt der Registrierungsfehler bei allen Szenarien,
sodass diese konvergieren. Auch für höhere diskrete Auflösungen ist das zu beobachten. Der
sehr hohe Rotationsfehler und eine Betrachtung der Korrespondenzpaare allerdings weisen
auf das altbekannte Problem der großen Bodenflächen hin (siehe Abbildung 11.1.5). Diese
führen dazu, dass Punkte korrespondierender Objekte falsche Korrespondenzen ausbilden.
Korrekte Korrespondenzen anderer Objekte führen dann vermutlich zu einer symmetrischen
Rotation. Der translatorische Anteil kann durch das Übereianderschieben der störenden
Objekte (hier im allgemeinen Flächen) dennoch teilweise gelöst werden.

Aufgrund unpraktikabler Laufzeiten (siehe nächster Abschnitt 11.2.7) wurde eine Auflösung
von 10M nicht untersucht. Der Verlauf des Registrierungsfehler lässt vermuten, dass keine
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Abbildung 11.12.: SI Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach einer
Registrierung der unterschiedlichen Szenarien auf verschiedenen, räumlichen und diskreten Auflösungen.
Außerdem ist die Anzahl der Korrespondenzen abgebildet. Als initiale Ausrichtung ist die globale gegeben, der
damit verbundene initiale Gesamtfehler liegt für die Indoor-Szenerie bei 4.05, für die hybride Szene bei 7.30 und
für das Outdoor-Szenario bei 16.87 (siehe Anhang C).

wesentliche Verbesserung des Registrierungsergebnisses zu erwarten ist. Basierend auf
diesen Untersuchungen ist auszumachen, dass für ein erfolgreiche Registrierung der hier
untersuchten Szenarien eine räumliche Reduktion der Punktwolken erforderlich ist.

Die genauste Registrierung wurde beim räumlich reduzierten Indoor-Szenario mit einer
Auflösung von 100K erzielt. Dabei betrug ~eTranslation = (1.26,−1.06,−0.19) m und ~eRotation =
(0.22, 0.05, 0.04) m.

11.2.7. Effizienz

Die in Abbildung 11.6 festgehaltenen Laufzeiten beziehen sich auf die im vorherigen Ab-
schnitt (Konvergenz 11.2.6) durchgeführten Untersuchungen. Eine Auflösung von 10M
wurde aufgrund zu hoher und damit wenig praktikabler Laufzeiten nicht untersucht.
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Abbildung 11.13.: SI Effizienz - Abgebildet sind die Laufzeiten zur Berechnung der Normalen, der SI, der
Korrespondenzen und die Gesamtlaufzeit der verschiedenen Szenarien auf unterschiedlichen, diskreten und
räumlichen Auflösungen.

Wie aufgrund der hohen Punktdichte bei diskret reduzierten Punktwolken zu erwarten,
erfordert die Berechnung der Normalen und SI hier deutlich mehr Zeit als dies für räumlich
reduzierte Punktdaten der Fall ist. Hingegen erfordert die deutliche höhere Anzahl von Kor-
respondenzen, welche durch räumliches Sub-Sampling zustande kommen (siehe vorheriger
Abschnitt 11.2.6), mehr Zeit bei der Berechnung der Korrespondenzen (Korrespondenzfin-
dung und Verwerfung).

Ergebnis ist, dass insgesamt betrachtet nur gering höhere Laufzeiten für diskret reduzierte
Punktdaten entstehen. Eine Abhängigkeit von der Szenerie kann auf Grund der Untersu-
chungsergebnisse nur spekuliert werden. Vermutet wird jedoch, dass bei einer gleichen
Parameterwahl eine nahezu konstante Gesamtlaufzeit zu erwarten ist, da höhere Punktdich-
ten zu mehr Laufzeit bei der Berechnung der Normalen und SI führen, aber im Allgemeinen
auch zu eher ähnlichen SI und somit zu einer geringeren Anzahl der zur Korrespondenzsuche
zugelassenen Punkte.

Für eine erfolgreich Registrierung muss mindestens eine Auflösung von 100K verwendet
werden. Eine durchschnittliche Laufzeit wie für das diskret reduzierte Indoor-Szenario
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bei einer Auflösung von 100K erfordert ≈ 0.01 Minuten für die Berechnung der Norma-
len, ≈ 0.05 Minuten für die SI und ≈ 0.8 Minuten zur Berechnung und Verwerfung der
Korrespondenzen.

11.2.8. Stabilität

Wie die Parameterstudie (siehe Abschnitte 11.2.1, 11.2.2, 11.2.4, 11.2.5) bereits gezeigt hat,
ist es prinzipiell möglich ein Parameterset zu definieren, mit dem sich die verschiedenen
Szenarien registrieren lassen. Auch weisen die einzelnen Parameter ein allgemein robustes
Verhalten gegenüber Änderungen des Wertebereiches auf. Über die verschiedenen Auflösun-
gen hinweg war es zumindest für höhere Auflösungen möglich die einzelnen Szenarien mit
konstanten Parameterwerten erfolgreich zueinander auszurichten.

Für sehr geringe Auflösungen war keine korrekte Registrierung möglich (siehe Abbildung
11.12). Auch für höhere diskrete Auflösungen konnte nahezu kein korrekte Registrierungs-
ergebnis erzielt werden, auch wenn der Algorithmus im Sinne des Konvergenzkriterium
erfolgreich war. Mit Hilfe des räumlichen Sub-Sampling war eine korrekte Ausrichtung der
Punktwolken für alle Szenarien ab einer Auflösung von 100K möglich.

Betrachtet man die Registrierungsergebnisse über die einzelnen Szenarien hinweg, können
alle Szenarien mit einem relativ ähnlichen Registrierungsfehler zueinander ausgerichtet
werden; allerdings nur auf räumlich reduzierten Punktdaten. Unterschiede in den Laufzeiten
zwischen den einzelnen Szenarien scheinen eher gering zu sein; ein eindeutiger Beleg dafür
existiert jedoch nicht.

11.3. Iterative Closest Point

Der ICP kann Vorabinformation in Form einer initialen Ausrichtung berücksichtigen. Für die
nachfolgenden Untersuchungen wurde die initiale Ausrichtung Γ−10

(3,3,1)T (siehe Abschnitt 5.3)
verwendet. Sie zeichnet sich durch die Genauigkeiten der in Abschnitt 2.1.2 vorgestellten
Sensoren aus. Die daraus resultierenden initialen Fehler sind in Anhang C präsentiert.

11.3.1. Fehlergrenzwert

Der Fehlergrenzwert hat im wesentlichen Einfluss auf die Genauigkeit des Registrierungser-
gebnisses. Dies scheint durch seine Abhängigkeit von den Punkt-zu-Punkt-Korrespondenzen,
die zur Bestimmung der Transformation verwendet werden, einher zu gehen. Angenommen
die Korrespondenzpunkte können gut zueinander ausgerichtet werden und der Fehlergrenz-
wert ist gering, dann würde ein große Wahl, das Konvergieren des Algorithmus trotz großer
Entfernung der korrespondierenden Punkte erlauben.

Betrachtet man Abbildung 11.14 fällt auf, dass bei diskret reduzierten Punktdaten das
Registrierungsergebnis schon bei deutlich kleineren Fehlergrenzwerten negativ beeinflusst
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wird als dies bei räumlichem Sub-Sampling der Fall ist. Ursache davon scheint eine generell
ungenauere Registrierung auf räumlich reduzierten Daten zu sein.

Betrachtet man die Punktdichte der unterschiedlichen Sub-Sampling-Strategien kann gesagt
werden, dass diese beim räumlichen Sub-Sampling geringer ist als bei diskretem (gleich
Punktzahl bei höherer Ausdehnung). Dies bedeutet auch, dass die Anzahl der im Überlap-
pungsbereich enthaltenen Punkte (Korrespondenzpunkte) ebenfalls geringer ist. Zusätzlich
entsprechen mittels räumlichem Sub-Sampling verarbeitete Punktwolken, einer Approxi-
mation der ursprünglichen Punktdaten, wodurch selbst bei einer hypothetisch perfekten
Registrierung ohne Sensorfehler Spannungen entstehen. Diese werden unter dieser Betrach-
tung auf weniger Punkte verteilt, als dies bei diskret reduzierten Punktwolken der Fall ist,
was zu einem höheren Fehler führt.

Abbildung 11.14.: ICP Fehlergrenzwert - Der Einfluss des Fehlergrenzwertes auf das Registrierungsergebnis
ist bei räumlich reduzierten Punktdaten geringer als bei diskreten.

11.3.2. Transformationsgrenzwert

Der Transformationsgrenzwert kann als Forderung an die Stabilität des Registrierungsergeb-
nisses betrachtet werden. Ändert sich die Transformation von einer Iteration zur anderen,
haben sich auch die Korrespondenzen geändert. Ändern sich diese nicht, ist auch die
resultierende Transformation dieselbe. Als Folge dessen kann die Höhe der Transformations-
änderung in Zusammenhang mit der Menge und Unterschiedlichkeit der neu gebildeten
Korrespondenzen gebracht werden.

Bei dieser Untersuchung wurden die verbleibenden Abbruchkriterien so gewählt, dass ein
Konvergieren nur über den Transformationsgrenzwert möglich war. In den Ergebnissen
(siehe Abbildung 11.15) ist ein szenenübergreifend einheitliches Verhalten zu sehen. Eine
sehr geringe Erhöhung des Transformationsgrenzwertes führt dabei zu einer enormen
Verschlechterung des Registrierungsergebnisses. Bei räumlich reduzierten Punktdaten ist
der Schwellwert, bei welchem dieses Verhalten zu beobachten ist, höher.
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Geht man davon aus, dass zum Erreichen des globalen Minimums der Fehlerfunktion viel
kleine Schritte benötigt werden (breites globales Minimum (siehe Abbildung 11.16)), führt
eine zu große Wahl des Transformationsgrenzwertes dazu, dass dieses nicht erreicht werden
kann. Eine zu kleine Wahl könnte sogar das Übergehen dessen zur Folge haben. Wird
wie in Abschnitt 11.3.1 davon ausgegangen, dass räumlich reduzierte Daten aufgrund der
Punktapproximation generell höhere Fehler verursachen können, liegt der Schluss nahe,
dass das globale Minimum der resultierenden Fehlerfunktion weniger tief aber sein Pik
dafür steiler ist. Ein hoher Transformationsgrenzwert könnte dann trotzdem gute Ergebnisse
liefern.

Abbildung 11.15.: ICP Transformationsgrenzwert - Das Unterbinden kleiner Transformationsänderungen ver-
schlechtert das Registrierungsergebnis. Auf diskret reduzierten Punktdaten macht sich dies schneller bemerkbar
als auf räumlich reduzierten.

11.3.3. Iterationen

Die Anzahl maximaler Iterationen legt fest, wie viele Versuche zum Auffinden einer dem
Transformations- und Fehlergrenzwert entsprechenden Lösung zur Verfügung stehen. Verhin-
dert werden kann dadurch ein endloses Iterieren aufgrund alternierender Korrespondenzen
bei schlechtem Fehlerwert.

Bei dieser Untersuchung wurden die verbleibenden Abbruchkriterien so gewählt, dass
ein Konvergieren nur durch das Erreichen der maximalen Anzahl zulässiger Iterationen
möglich war (siehe Abbildung 11.16). Auf diskret reduzierten Punktwolken ist dabei ein
lineares Konvergieren in nahezu allen Szenarien zu beobachten; räumlich reduzierte Daten
konvergieren im Vergleich dazu schneller.

Angenommen die geringere Dichte nach einem räumlichen Sub-Sampling sorgt dafür, dass
weniger Korrespondenzen in jeder Iteration ausgebildet werden können, dann existieren auch
weniger Kandidaten für falsche Punktkorrespondenzen und ein schnelleres Konvergieren ist
die Folge.
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Besonders auffällig ist das Divergieren der Outdoor-Szene auf räumliche reduzierten Punkt-
wolken nach dem Erreichen eines Minimums. Grund dafür ist, dass die verbleibenden
Abbruchkriterien nicht ausreichend strikt gewählt sind und somit über das Minimum hin-
weg iteriert wird. Ist in einem solchen Falle kein Divergieren zu beobachten, kann von einem
stabilen Minimum ausgegangen werden und der Algorithmus alterniert um dieses.

Abbildung 11.16.: ICP Iterationen - Bei gleichverteilten Punktdaten, wie durch räumliches Sub-Sampling
erzeugt, kann eine zu hohe Anzahl von Iterationen eine Verschlechterung des Ergebnisses zur Folge haben.
Vermieden werden kann dies durch eine striktere Wahl der verbleibenden Abbruchbedingungen.

11.3.4. Korrespondenzgrenzwert

Der Korrespondenzgrenzwert bestimmt im Allgemeinen die Schrittweite einer Iteration. Seine
Wahl steht dadurch in Zusammenhang mit der initialen Ausrichtung. Ist er im Verhältnis zu
dieser zu klein gewählt, können (speziell in den ersten Iterationen wichtig) keine korrekten
Korrespondenzen ausgebildet werden. Dadurch besteht die Gefahr in eine beliebige Richtung
zu iterieren. Eine zu große Wahl kann dazu führen, dass in jeder Iteration (speziell in der
letzten Iteration problematisch) fehlerhafte Korrespondenzen ausgebildet werden, die im
Allgemeinen einen negativen Einfluss auf das Registrierungsergebnis haben.

Belegt sei dies mit den in Abbildung 11.17 vorgestellten Ergebnissen. Zu sehen ist, dass der
minimale Korrespondenzgrenzwert welcher zu einer erfolgreichen Registrierung führt bei
allen Szenarien nahezu identisch ist. Auf räumlich reduzierten Daten ist bei einem zu großen
Korrespondenzgrenzwert ein Divergieren der Indoor- und Outdoor-Szene zu sehen.

Abhängig von der Szene und Höhe des Korrespondenzgrenzwertes besteht die Möglichkeit,
dass selbst beim Erreichen des globalen Minimums der Fehlerfunktion falsche Korrespon-
denzen gebildet werden. Bricht der Algorithmus nicht ab (zu strikte Abbruchkriterien) kann
dadurch ein Divergieren erfolgen. Homogen verteilte Punkte neigen offensichtlich aufgrund
des bereits thematisierten generellen Fehlers durch die Approximation von Daten (siehe
Abschnitt 11.3.3) eher dazu, die Abbruchkriterien zu verfehlen.
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Abbildung 11.17.: ICP Korrespondenzgrenzwert - Zu hohe Korrespondenzgrenzwerte können abhängig von
der Szene auf räumlich reduzierten Punktdaten zu einem Divergieren des Algorithmus führen.

11.3.5. Konvergenz

Wie in Anhang (siehe Anhang C) präsentiert kann der Algorithmus im Sinne der definierten
Konvergenzanforderung, bei der initialen Ausrichtung Γ−10

(3.0,3.0,1.0)T als konvergiert betrachtet
werden, wenn der Fehler eGesamt kleiner als 4, 36 ist. Für die hier durchgeführte Analyse
wurden Parametersets für die einzelnen Szenarien und Sub-Sampling-Strategien verwendet,
die sich durch die vorhergehende Parameterstudie bei einer Auflösung von 100K als sinnvoll
erwiesen haben.

Betrachtet man den Gesamtfehler der Registrierung (siehe Abbildung 11.18) ist festzustellen,
dass der Algorithmus auf allen Auflösungen und über alle Szenarien hinweg konvergiert.
Einzige Ausnahme bildet die Outdoor-Szene bei einer diskreten Auflösung von 1K. Dem
durchweg eher schlechten Registrierungsergebnis bei dieser Auflösung kann nachgesagt
werden, dass generell zu wenig Struktur für eine gute Registrierung vorhanden ist. Widerlegt
wird dies durch ein sehr gutes Registrierungsergebnis der Indoor-Szene unter Verwendung
einer diskreten Reduktion der Punktwolken. Offensichtlich sind selbst bei dieser Auflösung
die sehr nahe am Laserscanner liegenden Wände und Decken detailliert genug vorhanden
um die richtige Richtung vorzugeben.

Bei einer Auflösung von 10M diskreter Reduktion sind vermutlich die eben genannten
Strukturen ausschlaggebend für ein sehr schlechtes Registrierungsergebnis (siehe Abbildung
11.18). Der Abbruch durch den Fehlergrenzwert und der verhältnismäßig hohe Rotationsfeh-
ler lassen den Schluss zu, dass durch die hohe Punktanzahl ein lokales Minimum erschaffen
wurde, welches tief genug für einen Abbruch war. Der vergleichsweise hohe Rotationsfehler
lässt dabei eine symmetrische Lösung vermuten.

Für die anderen Szenarien kann durch räumliches Sub-Sampling das Registrierungsergebnis
verbessert werden. Mit zunehmender Auflösung und der daraus resultierenden Punktdichte
ändert sich dies zu Gunsten des diskreten Sub-Sampling. Vermutlich kommt dabei die
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Abbildung 11.18.: ICP Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach
einer Registrierung der unterschiedlichen Szenarien auf verschiedenen, räumlichen und diskreten Auflösungen.
Außerdem ist der Grund des Abbruchs festgehalten. Als initiale Ausrichtung wurde für alle Szenarien Γ−10

(3.0,3.0,1.0)T

verwendet; der initiale Gesamtfehler liegt daher bei 4, 36 (siehe Anhang C).

Ungenauigkeit des räumliches Sub-Sampling durch die Approximation der Punktdaten zum
Tragen.

Das beste Registrierungsergebnis wurde für das Indoor-Szenario bei einer Auflösung von
10K diskretem Sub-Sampling erreicht. Dabei betrug ~eTranslation = (−0.07,−0.04− 0.00) m
und ~eRotation = (0.04, 0.04, 0.00) m.

11.3.6. Effizienz

Die Laufzeit des ICP ist im Wesentlichen von der Größe der Punktwolken und der Anzahl
benötigter Iterationen abhängig. Grund dafür ist, dass in jeder Iteration der nächste Nachbar
eines Punktes gesucht werden muss. Besitzt die Zielpunktwolke n und die Datenpunktwolke
k Punkte, kann mittels KD-Tree die Komplexität der Suche von O(n · k) auf O(n · log(k))
reduziert werden (siehe Abschnitt 2.3.3). Nach jeder Iteration müssen die Punkte der Da-
tenpunktwolke erneut in diesen eingefügt und gelöscht werden, was einen zusätzlichen
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Aufwand erfordert. Die resultierenden Laufzeiten sind in Abbildung 11.19 einzusehen. Sie
basieren auf den im vorhergehenden Abschnitt durchgeführten Untersuchungen.

Festzustellen ist, dass bei räumlich reduzierten Punktwolken im Allgemeinen eine geringere
Anzahl von Iterationen notwendig ist, um ein Abbruchkriterium zu erfüllen. Ursache könnte
dabei sein, dass die gleichverteilte Repräsentation der Punktwolken größere Schrittweiten
pro Iteration erlauben.

Weiterhin fällt auf, dass die Laufzeiten auf räumlich reduzierten Daten, trotz einer geringeren
Anzahl von Iterationen, nahezu identisch zu den auf diskret reduzierten Punktwolken sind.
Untersuchungen haben gezeigt, dass die Suche des nächsten Nachbarn, bei der hier verwen-
deten Variante des KD-Tree (siehe Abschnitt 2.3.3), für räumlich reduzierte Punktwolken
mehr Zeit benötigt als dies für diskret reduzierte der Fall ist. Verursacht wird dies durch
einen nicht balancierten KD-Tree nach einem räumlichen Sub-Sampling.

Abschließend kann außerdem gesagt werden, dass ein Registrieren ohne die Reduktion der
Punktwolken nicht in angemessener Zeit möglich ist.

Abbildung 11.19.: ICP Effizienz - Oben Links: Laufzeit des ICP auf unterschiedlich reduzierten Punktwolken.
Oben Rechts: Anzahl der zum Konvergieren benötigter Iterationen. Unten Links\Rechts: Durchschnittliche und
maximale Laufzeit bei der Suche des nächsten Nachbarn mit den verwendeten KD-Trees auf diskret und räumlich
reduzierten Punktwolken.
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11.3.7. Stabilität

Wie die in Abschnitt 11.3.5 durchgeführten Untersuchungen gezeigt haben ist es möglich
ein Parameterset zu definieren, mit welchem über verschiedene Auflösungen hinweg ein
akzeptables Ergebnis erzielt werden kann. Außerdem konnte ein Parameterset definiert
werden, mit welchem die drei Testszenarien, sowohl diskret als auch räumlich reduziert,
registriert werden konnten.

Aus der bereits vorgenommenen Untersuchung der Parameter ist ersichtlich, dass eine Verän-
derung der Parameter auch das Registrierungsergebnis beeinflusst. Größere Toleranzbereiche
können im Allgemeinen durch räumliches Sub-Sampling erzielt werden. Grund dafür ist
offensichtlich die homogene Repräsentation einer Punktwolke, welche bei jeder Auflösung
die Struktur der gesamten Szene erhält. Besonders auffällig bleibt dennoch, dass bereits
sehr kleine Änderungen der Parameterwerte, sehr große Sprünge im Ergebnis verursachen.
Nichts desto trotz ist es möglich ein Parameterset zu definieren, welches für alle Szenarien
ein akzeptables Ergebnis liefert.

Wird als Stabilitätskriterium die Auflösung verwendet kann festgestellt werden, dass ihre Ver-
änderung nur sehr geringen Einfluss auf das Registrierungsergebnis hat. Stabile Ergebnisse
konnten für alle Auflösungen außer 1K erzielt werden. (siehe Abbildung 11.18).

Betrachtet man die Sub-Sampling-Strategien separat, zeigt sich ein stabiles Verhalten (siehe
Abbildung 11.18). So wurde unabhängig von diesen stets ein sehr ähnliches Ergebnis erzielt.
Während die Genauigkeit des Registrierungsergebnisses mit steigender diskreter Auflösung
steigt, bleibt dieses bei einem räumlichen Sub-Sampling konstant. Ausnahme bildet dabei,
wie bereits thematisiert, die Indoor-Szene bei einer diskreten Auflösung von 1K.

Die unterschiedlichen Testszenarien konnten alle erfolgreich registriert werden (siehe Ab-
bildung 11.18). Das Indoor-Szenario erzielte dabei die besten Ergebnisse. Ursache sind die
durch Wände und Decken vorhandenen starken Strukturen. Sie bieten dem Algorithmus gute
Anhaltspunkte um in jeder Iteration die richtige Richtung zu erfassen. Das Hybrid-Szenario
bietet ähnlich markante Bereiche. Der zudem recht große Überlappungsbereich erlaubt eine
genaue Registrierung. Relativ ungenau wurde das Outdoor-Szenario registriert. Grund dafür
sind offensichtlich die sehr ähnlichen und ineinander übergehenden Konturen.

Werden Translations- und Rotationsfehler genauer untersucht fällt auf, dass deren Anteile
unabhängig von Auflösung, Sub-Sampling-Strategie und Szenario sind (siehe Abbildung
11.18). Rotation und Translation können nach diesen Fakten in selbem Maße stabil gelöst
werden. Eine Betrachtung des Rotationsfehler ~eRotation hat außerdem ergeben, dass die durch
das Inklinometer festgelegten Rotationen um X- und Y-Achse stets beibehalten wurden.

11.4. Normal-Distribution Transformation

Auch der NDT ist in der Lage, Vorabinformation in Form einer initialen Ausrichtung zu
berücksichtigen. Wie beim ICP wurde für die nachfolgenden Untersuchungen die, sich

104



11.4. Normal-Distribution Transformation

durch die Genauigkeiten der in Abschnitt 2.1.2 vorgestellten Sensoren auszeichnende, initiale
Ausrichtung Γ−10

(3,3,1)T (siehe Abschnitt 5.3) verwendet. Ihre initialen Fehler sind in Anhang C
festgehalten.

11.4.1. Iterationen

Die Anzahl maximaler Iterationen legt fest, wie viele Versuche zum Auffinden einer dem
Transformationsgrenzwert entsprechenden Lösung zur Verfügung stehen. Verhindert wird
dadurch ein endloses Suchen nach einer Lösung, wenn diese nicht gefunden werden kann.
Bei den hierzu durchgeführten Untersuchungen wurde der Transformationsgrenzwert so
gewählt, dass ein Abbruch des Algorithmus nur durch das Durchführen der maximalen
Anzahl von Iterationen erfolgt (siehe Abbildung 11.20).

Abbildung 11.20.: NDT Iterationen - Registrierungsergebnis nach unterschiedlichen Iterationsschritten. Der
Transformationsgrenzwert wurde dabei so gewählt, dass ein Abbruch durch das Erreichen der maximal zulässi-
gen Iterationen erfolgt. Räumlich reduzierte Daten unterbinden das Divergieren der Indoor-Szene.

Auf diskret reduzierten Punktdaten ist dabei festzustellen, dass eine zu hohe Anzahl an
Iterationen, wie im Falle des Indoor- und Outdoor-Szenario zu einem schlechteren Registrie-
rungsergebnis führt. Anders ausgedrückt kann ein Übergehen der korrekten Lösung erfolgen,
wenn diese nicht durch den Transformationsgrenzwert erkannt wird. Die Hybrid-Szene
zeigt dieses Verhalten nicht. Vermutlich führen die darin enthaltenen, klar voneinander
getrennten Strukturen, zu einem sehr tiefen und breitem globalen Minimum der Fehlerfunk-
tion welches nicht verlassen werden kann. Große und flache Strukturen wie in Indoor- und
Outdoor-Szene können symmetrische Minima bilden, die dann im Allgemeinen weniger
breit und ausgeprägt sind und eventuell übersprungen werden. Indikator dafür ist der selbst
bei divergentem Verhalten stets niedrige Wert der NDT Fehlerfunktion.

Eine Registrierung auf räumlich reduzierten Daten behebt das Divergenz-Problem für
die Indoor-Szenerie und führt sogar zu einem Konvergieren bei einer geringeren Anzahl
von Iterationen. Das Outdoor-Szenario hingegen benötigt mehr Iteration als bei diskret
reduzierten Punktwolken und konvergiert nicht mehr linear. Durch räumliches Sub-Sampling
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wird eine Szene homogen und vollständig repräsentiert. Dies bedeutet, dass ein Objekt
abhängig von seiner Größe durch entsprechend viele Punkte repräsentiert wird. Dadurch
sind in einer Szene nahezu immer auch symmetriebrechende Objekte vorzufinden. Im
Falle des Outdoor-Szenario verursachen diese offensichtlich, dass der hier korrekte Einfluss
symmetrischer Objekte zu starken Einfluss auf das Registrierungsergebnis nimmt.

11.4.2. Transformationsgrenzwert

Der Transformationsgrenzwert kann wie beim ICP als Stabilitätskriterium interpretiert
werden. Ändert sich die Transformation nur noch sehr geringfügig, wurde ein Minimum oder
Plateau der Fehlerfunktion erreicht. Ein weiteres Optimieren führt dann zu keinem besseren
Ergebnis oder sogar zu einem Überspringen des Minimums (schlechteres Ergebnis). Für die
hier durchgeführten Untersuchungen wurde die Anzahl durchzuführender Iterationen so
gewählt, dass ein Konvergieren nur durch das Erreichen des Transformationsgrenzwertes
erfolgen kann (siehe Abbildung 11.21).

Abbildung 11.21.: NDT Transformationsgrenzwert - Ein zu kleiner Transformationsgrenzwert kann zu einem
Überspringen von Minima führen. Die Anzahl durchzuführender Iterationen wurden bei dieser Untersuchung
so gewählt, dass ein Abbruch durch den Transformationsgrenzwert erfolgt.

Auf räumlich reduzierten Punktdaten ist zu sehen, dass die Indoor-Szene bei kleinen Trans-
formationsgrenzwerten ein sehr schlechtes Registrierungsergebnis aufweist. Dieses verbessert
sich jedoch sprunghaft, wenn der Transformationsgrenzwert erhöht wird. Die deutlich höhe-
re Anzahl durchgeführter Iterationen bei niedrigen Transformationsgrenzwerten weisen auf
ein Überspringen des globalen Minimums hin. Die beiden anderen Szenen verhalten sich
wenig auffällig.

Räumliches Sub-Sampling verhindert das Überspringen des globalen Minimums der Indoor-
Szene. Vermutlich erzeugt dieses ein breiteres globales Minimum, welches selbst bei kleinen
Transformationsgrenzwerten nicht übersprungen werden kann.

Ursache des starken Sprunges bei einem Transformationsgrenzwert von 0.1 ist die Schrittwei-
te des Moré-Thuente Verfahren. Sie definiert eine obere Schranke. Genauer wird diese jedoch
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nicht diskutiert. Der interessierte Leser sei aber auf [MTMp92] und die Implementierung
des NDT [Lib12b] verwiesen.

11.4.3. Zellgröße

Über die Zellgröße kann gesagt werden, dass sie bestimmt wie detailliert die Punktwolke in
der PDF repräsentiert ist. Kleine Zellen führen zu einem hohen Einfluss der einzelnen Punkte
auf die PDF, große Zellen hingegen glätten diese. Vergleichbar ist dies mit der Betrachtung
feiner bzw. grober Merkmale. Welche Art der Merkmale dabei in der PDF repräsentiert
werden sollen ist abhängig von der Beschaffenheit des zu registrierenden Szenario.

Die Ergebnisse der Untersuchung in Abbildung 11.22 zeigen, dass der Einfluss auf das
Registrierungsergebnis sehr prägnant ist. Bei diskret reduzierten Daten profilieren sich, auf
Grund der detaillierten Repräsentation einzelner Objekte der Szene, kleinere Zellgrößen. Bei
räumlich reduzierten Punktwolken führt auch die Verwendung großer Zellgrößen zu guten
Ergebnissen. Das Hybrid- und Outdoor-Szenario profitieren dabei am meisten von einer
räumlichen Repräsentation bezüglich der Genauigkeit und Stabilität des Parameters. Ursache
davon ist offensichtlich, dass die in ihnen vermehrt vorkommenden großen Strukturen,
durch das räumliche Sub-Sampling mit einer gleichmäßigeren Punktdichte und somit einer
aussagekräftigeren PDF repräsentiert werden. Bei allen Szenarien ist auf räumlich reduzierten
Daten außerdem eine geringere Schwankung des Fehlers zu verzeichnen.

Abbildung 11.22.: NDT Zellgröße - Verhalten des Algorithmus bei unterschiedlichen Zellgrößen in den
verschiedenen Szenarien. Bei räumlich reduzierten Punktwolken sind die Fehlerschwankungen geringer.

11.4.4. Ausreißerrate

Über die Ausreißerrate wird bestimmt, wie stark eine Struktur vertreten sein muss, um
Einfluss auf die Fehlerfunktion zu erhalten. Anders ausgedrückt sinkt der Einfluss schwach
repräsentierter Strukturen bei einer steigenden Ausreißerrate.
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Betrachtet man das Registrierungsergebnis bei den diskret reduzierten Szenarien fällt auf,
dass besonders Indoor- und Outdoor-Szene von einer hohen Ausreißerrate profitieren. Sie
enthalten demnach Bereiche die eine hohe Wahrscheinlichkeit zur falschen Korrespondenz
aufweisen und aufgrund ihres relativ großen Anteils in der Szene eine hohe Ausreißerrate
erfordern um „ausgeblendet“ werden zu können. In der Indoor-Szene könnten dies z.B. die
an den Flur angrenzenden Zimmer sein. Durch die unterschiedlichen Blickwinkel sind in
Ziel- und Datenpunktwolke unterschiedliche, aber nahezu identisch strukturierte Bereiche
sichtbar. Für die Outdoor-Szene ist eine solches Objekt durch den Boden gegeben, der für
Ziel- und Datenpunktwolke in unterschiedliche Richtungen ausgedehnt ist. Die Hybrid-Szene
zeigt nahezu keinen Einfluss auf eine Änderung der Ausreißerrate. In ihr sind aber auch
keine größeren Objekte enthalten, die durch Verdeckung in einer der beiden Punktwolken
nicht sichtbar wären.

Auf räumlich reduzierten Daten sind alle Objekte einer Szene abhängig von deren Größe
ähnlich dicht repräsentiert. Dadurch müsste der Einfluss einzelner Strukturen auf die Fehler-
funktion nahezu identisch sein. Aufgrund dessen entsteht das beim diskreten Sub-Sampling
auftretende Problem der Verdeckung in dieser Form nicht. Wie in der Outdoor-Szene zu
sehen, kann eine hohe Ausreißerrate dennoch zu einem schlechteren Registrierungsergebnis
führen. Ein plausible Erklärung dafür ist, dass kleine Strukturen, die für eine korrekte
Ausrichtung notwendig sind, durch hohe Ausreißerraten zusätzlich an Einfluss verlieren.
Diese wären in der Outdoor-Szene durch die zwei freistehenden Felsen gegeben.

Abbildung 11.23.: NDT Ausreißerrate - Eine hohe Ausreißerrate kann den zur korrekten Ausrichtung störenden
Objekten den Einfluss auf die Fehlerfunktion entziehen. Bei räumlichem Sub-Sampling kann dies aber auch für
richtungsweisende Strukturen erfolgen was einen negativen Einfluss auf das Registrierungsergebnis zur Folge,
hat.

11.4.5. Konvergenz

Für die hier durchgeführten Registrierungen wurden szenenabhängige Parameter verwen-
det, die sich durch die vorhergehende Parameterstudie als sinnvoll erwiesen haben. Mit
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diesem Parameterset wurde dann auf verschiedenen diskreten und räumlichen Auflösun-
gen registriert. Die resultierenden Ergebnisse sind in Abbildung 11.24 zusammengetragen.
Wie in Anhang (siehe Anhang C) präsentiert kann der Algorithmus im Sinne der Konver-
genzanforderung und der hier verwendeten, initialen Ausrichtung Γ−10

(3.0,3.0,1.0)T als konvergiert
betrachtet werden, wenn der Fehler eGesamt kleiner als 4, 36 ist.

Abbildung 11.24.: NDT Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach
einer Registrierung der unterschiedlichen Szenarien auf verschiedenen, räumlichen und diskreten Auflösungen.
Außerdem ist der Grund des Abbruchs festgehalten. Als initiale Ausrichtung wurde für alle Szenarien Γ−10

(3.0,3.0,1.0)T

verwendet; der initiale Gesamtfehler liegt daher bei 4, 36 (siehe Anhang C).

Auf diskret reduzierten Daten lässt sich die Indoor-Szene lediglich für die Auflösungen 100K
und 10M registrieren. Eine Betrachtung des Rotationsfehlers der verbleibenden Auflösungen
sowie der Abbruch durch das Erreichen des Transformationsgrenzwertes weist darauf hin,
dass der Algorithmus offensichtlich in Richtung eines symmetrischen Minimum iteriert
hat. Verursacht werden können symmetrische Minima durch Wände, Boden und Decke,
welche in dieser Szene bei einem diskreten Sub-Sampling sehr markant repräsentiert werden.
Räumliches Sub-Sampling erzeugt eine gleichverteilte Repräsentation der Punktwolken
wodurch dieser Effekt offensichtlich verhindert wird und ein Konvergieren auf allen Auflö-
sungen außer 1K möglich macht. Ein Blick auf den Translationsfehler lässt vermuten, dass
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nicht genügend Struktur vorhanden ist um eine eindeutige PDF zu erzeugen, da bei dieser
geringen Auflösung nahezu ausschließlich Boden und Decke vorhanden ist.

Die Hybrid-Szene zeichnet sich durch viele unterschiedliche, kleine und große Strukturen
aus. Dies scheint der Grund zu sein, dass dieses Szenario lediglich bei einer diskreten
Auflösung von 1K nicht konvergiert. Ein verhältnismäßig schlechtes Ergebnis wird bei einer
räumlichen Auflösung von 1M erzielt. Der Abbruch durch das Iterationskriterium und der
hohe Translationsfehler könnte auf ein Alternieren in einem lokalen Minimum zurückgeführt
werden.

Sehr durchwachsen sind die Ergebnisse des Outdoor-Szenario. Mit einer diskreten Datenre-
duktion ist einer Registrierung mit den Auflösungen 100K und 1M und 10M möglich. In
den verbleibenden konnte die Translation nicht gelöst werden, was bei einem Abbruch durch
den Transformationsgrenzwert wieder ein Indiz für ein lokales Minimum sein könnte. Die
sehr ähnlichen Formen der Felsketten in dieser Szene bieten dafür genügend Anhaltspunkte.
So scheint dies auch die Ursache einer nicht erfolgreichen Registrierung bei einer räumlichen
Auflösung von 10M zu sein. Auf allen verbleibenden räumlichen Auflösung konnte das
Outdoor-Szenario registriert werden.

Das beste Ergebnis wurde für die Indoor-Szene bei einer räumlichen Auflösung von 10M
erzielt. Dabei wurde eine Genauigkeit von~eTranslation = (0.009,−0.058, 0.007)T und~eRotation =
(0.013, 0.002, 0.003)T erreicht.

11.4.6. Effizienz

In Abbildung 11.25 ist der Zeitaufwand und die Anzahl der zum Konvergieren benötigter Ite-
rationen des Algorithmus für verschiedene, diskrete und räumliche Auflösungen abgetragen.
Diese basieren auf den im vorhergehenden Abschnitt durchgeführten Untersuchungen.

Abbildung 11.25.: NDT Effizienz - Links: Laufzeit des NDT auf unterschiedlich reduzierten Punktwolken.
Rechts: Anzahl der zum Konvergieren benötigter Iterationen.
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Zeitaufwändigste Operation des Algorithmus ist im Wesentlich die Berechnung der Fehler-
funktion in jeder Iteration. Hierzu muss für jeden Punkt der Datenpunktwolke bestimmt
werden, in welche Zelle der Zielpunktwolke er transformiert wurde. Anschließend muss die
gesamte Zelle durchlaufen und die Fehlerfunktion berechnet werden. Der Berechnungsauf-
wand dieser Operation ist linear mit der Anzahl der Punkte in jeder Zelle und somit auch
für die gesamte Punktwolke.

Vergleicht man die Anzahl durchgeführter Iterationen mit der Laufzeit fällt auf, dass räumlich
reduzierte Daten bei einer meist geringeren Anzahl von Iterationen mehr Zeit benötigen.
Ursache davon ist die räumliche Repräsentation der Zielpunktwolke als Voxel-Grid. Die
hier verwendete Variante des Voxel-Grids [Lib12k] verarbeitet Suchanfragen über spezielle
KD-Trees [Lib12i] die wie bereits in Kapitel (siehe Abschnitt 11.3.6) thematisiert auf räumlich
reduzierten Punktdaten im Allgemeinen längere Laufzeiten aufweisen. Außerdem enthält
der Voxel-Grid einer räumlich reduzierten Punktwolke meist mehr Zellen, als dies bei einer
diskreten Reduktion der Fall ist. Dadurch entsteht ein nicht unbedingt zu vernachlässigender
Mehraufwand bei der Verwaltung des Voxel-Grids, der zusätzlich Einfluss auf die Laufzeit
nimmt.

Abbildung 11.26.: NDT Effizienz - Abgebildet ist die zum Aufbau des Voxel-Grids benötigte Zeit für un-
terschiedliche Auflösungen. Für räumlich reduzierte Punktwolken wird mehr Zeit benötigt als für diskret
reduzierte.

Nicht berücksichtigt wurde bisher der Zeitaufwand, welcher durch den Aufbau des Voxel-
Grids selbst entsteht. Wie in Abbildung 11.26 zu sehen steigt dieser mit der Punktanzahl.
Auch beim Aufbau des Voxel-Grids sind KD-Trees beteiligt, wodurch auch dabei eine zeitliche
Abhängigkeit von der Sub-Sampling-Strategie zu erkennen ist. Der maximale Zeitaufwand
bei 10M Punkten räumlich reduzierter Punktwolken beläuft sich dabei auf ≈ 13 Sekunden.
Bei der damit verbundenen Laufzeit von 100.70 Minuten ist diese jedoch vernachlässigbar
gering.

Generell kann gesagt werden, dass bei einer minimalen Laufzeit von 54.67 Minuten auf 10M
Punkten und einem Registrierungsfehler eGesamt von 0.22, der NDT für ein punktbasiertes
Verfahren äußerst performant ist.
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11.4.7. Stabilität

Die in Abschnitt 11.4.5 durchgeführte Untersuchung zeigt, dass es möglich ist ein Parameter-
set für einzelne Szenen zu definieren, mit welchem eine Registrierung über verschiedene
Auflösungen hinweg erfolgen kann. Unterschiedliche Parameter müssen dabei nicht nur
für die einzelnen Szenen ermittelt werden, sondern auch für die unterschiedlichen Sub-
Sampling-Methoden wie aus den Parameterstudien in den Abschnitten 11.4.1 - 11.4.4 bereits
hervorgeht.

Betrachtet man die Stabilität des Registrierungsergebnisses über verschiedene Auflösungen
hinweg (siehe Abbildung 11.24) wird deutlich, dass eine Repräsentation der Punktwolken
mit 1K für diesen Algorithmus im Allgemeinen zu gering ist. Für die restlichen Auflösungen
konnten nahezu ausnahmslos akzeptable Ergebnisse im Sinne des Konvergenzkriteriums
erreicht werden.

Die Ergebnisse in Abbildung 11.24 zeigen, dass auf räumlich reduzierten Punktdaten durch-
weg ein besseres und über verschiedene Auflösungen hinweg stabileres Registrierungsergeb-
nis erzielt werden konnte. Die homogene Repräsentation einer Szene führt offensichtlich zu
einer aussagekräftigen und eindeutigen PDF. Diskretes Sub-Sampling hingegen verursacht
häufig Probleme, da auf verschiedenen Auflösungen, unterschiedliche Merkmale stärker
bzw. schwächer vorhanden sind.

In nahezu allen Untersuchungen konnte das Hybrid-Szenario, mit einer besseren Lösung als
der initialen Ausrichtung registriert werden. Mittels räumlichem Sub-Sampling lässt sich
diese Aussage auch für die anderen beiden Szenarien treffen. Die Symmetrie der Indoor-
Szene sowie die sehr ähnlichen Objektformen der Outdoor-Szene können häufig nicht richtig
verarbeitet werden (siehe Abbildung 11.24). Bemerkbar macht sich dies in sehr großen
Translations- und Rotationsfehlern. Die durch das Inklinometer festgelegte X-Y-Ebene wurde
jedoch stets beibehalten und nicht verändert.
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Zum Vergleich der einzelnen Algorithmen untereinander wurden die jeweils besten Regis-
trierungsergebnisse (siehe Abbildung 12.2), die kürzesten Laufzeiten (siehe Abbildung

12.1) sowie die dafür notwendigen Auflösungen betrachtet. Die kürzesten Laufzeiten be-
ziehen sich dabei auf die kleinsten Auflösungen für die ein Konvergieren im Sinne des
Konvergenzkriterium (siehe Abschnitt 1.2) erfolgte.

Abbildung 12.1.: Übersicht Laufzeit - Abgebildet sind die kürzesten Laufzeiten (links) der einzelnen Algorith-
men, mit denen ein Registrierungsergebnis (rechts) auf den entsprechend reduzierten Szenarien erzielt werden
konnte, welches der Konvergenzanforderung (siehe Abschnitt 1.2) entspricht. Die zugehörigen Auflösungen sind
über den Registrierungsfehler abgetragen.

Betrachtet man die Laufzeiten der einzelnen Algorithmen kann gesagt werden, dass für
kein Verfahren ein Registrieren ohne eine Reduktion der Punktwolken in praktikabler Zeit
möglich ist. Über alle Szenarien hinweg zeigt sich der ICP als schnellster Algorithmus
und erzielt dabei sogar die besten Registrierungsergebnisse. Mit einer nur unwesentlich
längeren und ähnlich genauen Registrierung benötigt der NDT deutlich weniger Zeit als
PFH und SI. Die SI weisen dabei die längsten Laufzeiten auf, was mit der höheren Auflösung
zusammenhängt, die von ihnen benötigt wird, um das Konvergenzkriterium zu erfüllen.
Dabei erreichen sie Genauigkeiten, welche auch von den PFH auf niedrigeren Auflösungen
erreicht werden.

Starke Schwankungen bei der Genauigkeit sowie der Laufzeit sind bei beiden Verfahren
für die einzelnen Szenarien zu beobachten. Ein räumliches Sub-Sampling führt in allen
Szenarien zu einer Reduktion der benötigten Zeit. Besonders stabil in der Laufzeit, dem
Registrierungsergebnis und der dafür notwendigen Auflösung zeigt sich der ICP und
nur unwesentlich schlechter der NDT. Beide Verfahren profitieren besonders bei geringen
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Auflösungen davon, dass keine zeitaufwendige Extraktion von Merkmalen notwendig ist.
Räumliches Sub-Sampling führt bei ihnen nicht immer zu einer kürzeren Laufzeit.

Abbildung 12.2.: Übersicht Genauigkeit - Abgebildet sind die besten Registrierungsergebnisse (links) der
einzelnen Algorithmen auf den entsprechend reduzierten Szenarien. Die zugehörigen Auflösungen sind über
den Registrierungsfehler abgetragen. Außerdem sind die dafür notwendigen Laufzeiten (rechts) einzusehen.

Die genausten Registrierungsergebnisse wurden vom NDT erreicht. Für räumlich reduzierte
Punktwolken waren bei genaueren Ergebnissen geringere Auflösungen notwendig. Nahezu
identische Genauigkeiten erzielt der ICP auf meist geringeren Auflösungen, wodurch auch
die Laufzeiten seiner besten Registrierungsergebnisse im Allgemeinen geringer ausfallen.
Über die verschiedenen Szenarien hinweg erweisen sich die Registrierungsergebnisse sehr
stabil; lediglich die Outdoor-Szenerie reißt aus.

PFH und SI registrieren mit einem nahezu identischen Fehlern auf den einzelnen Szena-
rien. Etwas genauere Ergebnisse erzielt dabei der PFH-Algorithmus bei ebenfalls nahezu
identischen Auflösungen. Einen deutlichen Zeitvorteil können dabei jedoch die Spin-Images
für sich verbuchen. Räumliches Sub-Sampling führte bei beiden Algorithmen zu einem
genaueren Ergebnis.

Im Vergleich zu ICP und NDT erzielen PFH und SI sehr deutlich ungenauere Registrie-
rungsergebnisse. Erwähnt sei dabei, dass eine besonders akkurate Registrierung nicht ihrer
Konzeption entspricht.

Werden die Ergebnisse aller Algorithmen aus Kapitel 11 resümiert kann gesagt werden,
dass für ein räumliches Sub-Sampling bei allen Verfahren und über sämtliche Auflösungen
hinweg ein stabileres Registrierungsergebnis, als es für eine diskrete Reduktion der Fall ist,
zu beobachten war. Auch scheint dies für die Stabilität der Parameter zu gelten. Für SI und
PFH ging außerdem meist eine Reduktion der Laufzeit einher, für ICP und NDT ergab sich
meist das Gegenteil. Eine alternative Datenstruktur zum hier verwendeten KD-Tree könnte
dies jedoch ändern.

Basierend auf den in dieser Diplomarbeit durchgeführten Untersuchungen kann der Schluss
gezogen werden, dass bei einer ausreichend genauen Sensorinformation der ICP, als das
Beste der hier untersuchten Verfahren ist, um unterschiedliche Szenarien in praktikabler
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Zeit sehr genau zu registrieren. Er erzielte die stabilsten Registrierungsergebnisse über die
verschiedenen diskreten und räumlichen Auflösungen hinweg und erlaubt eine Registrierung
der verschiedenen Szenarien mit einem gemeinsamen Parameterset.

Sind Sensorinformationen nur unzuverlässig oder sehr ungenau vorhanden sollte auf den
SI-Algorithmus zurückgegriffen werden. Auch er registriert verschiedene Szenarien relativ
zuverlässig und benötigt dafür deutlich weniger Zeit als der PFH, auch wenn er nicht
dessen Genauigkeiten erreicht. Wird besonderen Wert auf die Genauigkeit und die Laufzeit
gelegt, unabhängig von einer Stabilität über verschiedene Szenarien hinweg, empfiehlt sich
eine Verwendung des NDT- bzw. bei nicht vorhandener initialer Ausrichtung der FPFH-
Algorithmus.

In dieser Arbeit nicht behandelt aber sporadisch untersucht wurde das Verhalten des ICP
und NDT bei verschiedenen initialen Ausrichtungen. Ergeben hat sich dabei, dass beide
Algorithmen selbst bei einer initialen Ausrichtung von Γ±20

±5,±5,±3 noch immer Ergebnisse
liefern, die als konvergiert betrachtet werden können. Eine Obergrenze soll hierdurch jedoch
nicht definiert sein. Wird eine Untersuchung der initialen Ausrichtungen durchgeführt
erscheint auch sinnvoll, eine iterative Anpassung der Parameter zu betrachten.

Für deskriptorbasierte Verfahren existieren bereits Ansätze, die eine Detektion sogenannter
Keypoints (siehe Abschnitt 7.2.1), auf den zu registrierenden Punktwolken durchführen.
Merkmale (z.b. PFH oder SI) werden anschließend nur für die Keypoints berechnet. Dies
kann den Rechenaufwand reduzieren, wenn die Berechnung der Keypoints schneller erfolgt,
als das Berechnen und Verwerfen wenig markanter Merkmale. Außerdem bietet es die
Möglichkeit, aussagekräftige Bereiche einer Szene über eine Repräsentation zu identifizieren,
die zur Korrespondenzfindung ungeeignet ist.

Weiterhin wäre aufschlussreich das Verhalten feinregistrierender Algorithmen (ICP und NDT)
prozessiert auf den Ergebnissen grobregistrierender Algorithmen (PFH und SI) zu untersu-
chen. Besonders interessant könnte dabei die Betrachtung der Stabilität auf unterschiedlich
diskret und räumlich reduzierten Szenarien ausfallen.
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13. Zusammenfassung

Einleitend wurde die Problematik der paarweisen Registrierung von hochaufgelösten
Punktwolken mit Verfahren erläutert, die auf geometrischen Merkmalen basieren. Diese

motivierte eine Analyse alternativer, punkt- und deskriptorbasierter Verfahren; Anforderun-
gen an diese wurden in Abschnitt 1.2 definiert.

Kapitel 2 befasste sich mit den zum Verständnis notwendigen Grundlagen. Vorgestellt wurde
dabei der zur Erzeugung der Punktwolken verwendete Laserscanner FARO R© Focus3D sowie
mögliche Sensoren zur Erhebung von Lage und Positionsinformationen. Anschließend wur-
den die Eigenschaften der untersuchten Punktwolken und ihre mögliche Repräsentationen
im Arbeitsspeicher des Computers beschrieben.

Nachdem das in dieser Diplomarbeit betrachtete Registrierungsproblem in Abschnitt 3.1
definiert war, wurde eine Klassifikation verschiedener Algorithmen vorgestellt, die dieses
Problem zu lösen versuchen (siehe Abschnitt 3.2).

Für die Evaluierung der Registrierungsergebnisse wurden im darauf folgenden Kapitel
(4) Fehlermaße definiert, die eine gesonderte Betrachtung der Rotation und Translation
erlauben.

Kapitel 5 beschrieb die implementierte Testumgebung in welcher die Analysen durchgeführt
wurden. Außerdem wurden die einzelnen Testszenarien, eine Indoor- Hybrid- und Outdoor-
Szene, vorgestellt.

Zur Reduktion der Datenmengen wurden in Kapitel 6 die Methoden des diskreten und
räumlichen Sub-Sampling vorgestellt sowie deren Unterschiedlichkeit der Betrachtung von
Entfernungsinformation herausgearbeitet.

Die anschließenden vier Kapitel präsentierten die zur Untersuchung herangezogenen Algo-
rithmen. Dazu gehören die PFH (Kapitel 7), die SI (Kapitel 8), der ICP (Kapitel 9) und der
NDT (Kapitel 10).

In Kapitel 11 wurde dann gezeigt, dass punktbasierte Verfahren in der Lage sind hoch-
aufgelöste 3D-Punktwolken zu registrieren. Festgestellt wurde dabei, dass der Berechnungs-
aufwand der vorgestellten Verfahren jedoch eine Reduktion der Datenmenge erfordert.
Außerdem führen nicht reduzierte Daten häufig zu schlechteren Ergebnissen, da offen-
sichtlich zu viel Information zu Mehrdeutigkeit führt. Verfahren die keine Repräsentation
der Punktwolken in Form von Merkmalen verwenden (ICP und NDT) sind bei geringen
Auflösungen deutlich schneller und auch präziser. Speziell auf reduzierten Punktmengen
ist das Berechnen von Merkmalen weitaus aufwendiger als eine direkter Punkt-zu-Punkt
Vergleich über mehrere Iterationen hinweg.
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A. Transformationsbestimmung mittels
Singulärwertzerlegung

Es sei ein Registrierungsproblem wie in Abschnitt 3.1 gegeben. Dabei sind P und Q die
zu registrierenden Punktwolken und C eine dafür bestimmte Korrespondenzmenge.

CP = {cpi|cpi ∈ P ∧ cpi ∈ C, 1 ≤ i ≤ |P|} bezeichnet die Menge der Punkte aus P die zu
Punkten aus Q korrespondieren. Analog ist CQ = {cqj |cqj ∈ Q ∧ cqj ∈ C, 1 ≤ j ≤ |Q|}
definiert.

Die Translation T lässt sich mit Hilfe der Schwerpunkte SCP und SCQ der Korrespondenz-
mengen wie folgt berechnen:

T = SCP − SCQ mit SCP =
1

CP

CP

∑
i=1

cpi , SCQ =
1

CQ

CQ

∑
j=1

cqi(A.1)

Mittels Korrelationsmatrix und Singulärwertzerlegung [AHB87] lässt sich anschließend die
Rotation bestimmen. Um eine korrekte Korrelationsmatrix H ∈ R3×3 zu erhalten, müssen die
Korrespondenzmengen zentriert werden. Bewerkstelligt wird dies über die zuvor berechneten
Schwerpunkte, sodass die Bildungsvorschrift von K gegeben ist durch:

H =
|C|

∑
k=1

(ckp − SCP)(ckq − SCQ)
T(A.2)

Diese lässt sich über die Singulärwertzerlegung als Produkt von Matrizen darstellen:

H = UDVT, U, D, V ∈ R×

U und VT beinhalten dabei die durch die Abbildung H beschrieben Rotation, D die Verzer-
rung. Die gesuchte Rotation R ist dann gegeben durch [ELF97]:

R = VUT(A.3)

Aus einer Menge von Korrespondenzen wurde somit eine Transformation (R,T) berechnet, die
alle korrespondierenden Punkte bestmöglich aufeinander abbildet. Dies bedeutet, dass die
Summe der quadratischen Abstände zwischen korrespondierenden Punkten nach anwenden
der Transformation minimal ist.
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B. Normalen-Berechnung mittels
Hauptkomponenten Analyse (PCA)

Die Normale eines sich auf einer Oberfläche befindenden Punktes zu bestimmen entspricht
der Bestimmung der Tangentialebene an diesem Punkt [Rus09]. Das hierzu verwendete
Verfahren nennt sich Hauptkomponenten Analyse bzw. Principal Component Analysis
(PCA).

Es sei P eine Punktwolke wie in Abschnitt 3.1 definiert und außerdem weiter ein Punkt
p ∈ P und seine Kugelumgebung mit Radius r. Die Menge seiner Nachbarn ist dann gegeben
durch K = ki ∈ P|‖p− ki‖2 ≤ r, 1 ≤ i < |P|. Der zugehörige Schwerpunkt s der Menge K
definiert als:

s =
1
|K|

|K|

∑
i=1

ki(B.1)

Mit Hilfe dessen lässt sich die folgende Kovarianzmatrix berechnen:

C =
1
|K|

|K|

∑
i=1

(ki − s) · (ki − s)T(B.2)

Diese ist symmetrisch und positiv semidefinit. Dadurch besitzt sie reelle Eigenwerte λjR. Die
zugehörigen Eigenvektoren ~vj bilden ein Orthogonalsystem entsprechend den Hauptkompo-
nenten von K. Der zum kleinsten Eigenwert 0 ≤ λ0,≤ λ1 ≤ λ2 gehörende Eigenvektor ~v0
entspricht dann einer Approximation der gesuchten Normale ±~np = (nx, ny, nz).

Oft ist es notwendig die Normalen aller Punkte einer Punktwolke P einheitlich auszurichten
(Bestimmen des Vorzeichens). Als dafür notwendigen Bezugspunkt wird der Standpunkt
des Laserscanners vP, oft auch als Viewpoint bezeichnet, herangezogen. Für einen Punkt
p ∈ P muss das Vorzeichen so gewählt werden, dass gilt:

~np · (vP − p) > 0(B.3)
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C. Initiale Ausrichtungen

Wird die initiale Transformation der Datenpunktwolke als Registrierungsergebnis betrachtet,
lassen sich für diese die in Kapitel 4 eingeführten Fehlermaße berechnen. Sind die Fehler nach
einer Registrierung geringer als die initial berechneten, war die Registrierung erfolgreich.

Wird keine initiale Ausrichtung vorgenommen liegen die Punktwolken in einem gemeinsa-
men (globalen) Koordinatensystem, mit der Platzierung des Laserscanners im Ursprung vor.
Die Rotation entspricht der Ausrichtung des Laserscanners bei der Aufnahme. Die Fehler
der „globalen“ Ausrichtung sind in Tabelle C.1 einzusehen, die visuelle Darstellung davon
in Abbildung C.2.

Ist die initiale Ausrichtung gemäß Gleichung 5.1 für alle Szenarien dieselbe, sind auch die
resultierenden Fehler identisch. Diese sind in Tabelle C.1 für Γ−10

(3.0,3.0,1.0)T festgehalten und in
Abbildung C.1 zu betrachten.
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C. Initiale Ausrichtungen

Abbildung C.1.: Globale Ausrichtung Zu sehen sind die verschiedenen Testszenarien in der „globalen“ Aus-
richtung. Von oben nach unten: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von links nach rechts: Diskretes
Sub-Sampling, räumliches Sub-Sampling.
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Abbildung C.2.: Initiale Ausrichtung - Zu sehen sind die verschiedenen Testszenarien nach der initialen
Ausrichtung Γ−10

(3.0,3.0,1.0)T . Von oben nach unten: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von links nach rechts:
Diskretes Sub-Sampling, räumliches Sub-Sampling.
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C. Initiale Ausrichtungen

Indoor-Szenario Hybrid-Szenario Outdoor-Szenario

Globale Fehler

eGesamt 4.05 7.30 16.87

eTranslation (m) 3.24 7.28 16.86

eRotation 1.70 0.04 0.23

~eTranslation

x (m) 2.96 −1.29 −14.50
y (m) −1.33 7.18 7.33
z (m) 0.00 −0.14 4.51

~eRotation

x ( 1
m ) 0.94 0.02 0.14

y ( 1
m ) 0.76 0.01 0.04

z ( 1
m ) 0.00 0.00 0.00

Initiale Fehler Γ−10
(3.0,3.0,1.0)T

eGesamt 4.37

eTranslation (m) 4.37

eRotation 0.18

~eTranslation

x (m) −3.00
y (m) −3.00
z (m) −1.00

~eRotation

x ( 1
m ) 0.00

y ( 1
m ) 0.10

z ( 1
m ) 0.00

Tabelle C.1.: Initiale Fehler - Aufgeführt sind die resultierenden Fehler der globalen Ausrichtungen sowie
der durch Γ−10

(3.0,3.0,1.0)T gegebene initiale Ausrichtung der einzelnen Testszenarien. Die resultierenden Fehler für

Γ−10
(3.0,3.0,1.0)T sind für alle Szenarien identisch.
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