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Kurzfassung

INE moglichst realistische und somit dreidimensionale Reprasentation von Szenen und
E Objekten ist Grundlage heutiger Echtzeit- und Vermessungssysteme. Damit erhalt die-
ses Thema auch in der Computer Vision Einzug. Die Datenerhebung findet meist mittels
Laserscanner statt indem ein, um zwei orthogonal zueinander stehende Achsen, rotierender
Laserstrahl die Umgebung punktweise abtastet. Die Rundumaufnahmen einer Farbkamera
konnen zusitzlich Farbinformationen liefern, wie dies bei Laserscannern der Firma FARO

der Fall ist.

Um eine vollstindige Beschreibung von Szene und Objekt zu erhalten, muss dieser Vor-
gang von verschiedenen Standpunkten aus wiederholt durchgefiihrt werden. Aufnahmen
aus unterschiedlichen Blickwinkeln, die Uberschneidungen beinhalten, sind das Ergebnis.
Im Rahmen dieser Diplomarbeit sollen Verfahren zur automatisierten Ausrichtung zweier
Aufnahmen, unter Verwendung der Punktinformationen untersucht werden. Der Schwer-
punkt liegt dabei auf punktbasierten Verfahren die sich nicht der Extraktion geometrischer
Merkmale bedienen.
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1. Einleitung

IE dreidimensional hochaufgeloste Reprasentation von Szenen und Objekten ist heute
D gefragter als niemals zuvor. Realisiert wird dies mit Hilfe moderner Laserscanner. Der
rotierende Laserstrahl tastet dabei punktweise die Distanzen der Umgebung in alle Richtun-
gen ab. Eine integrierte Digitalkamera erzeugt zusétzlich Farbbilder die Farbinformationen
zu den einzelnen Punkten, liefern. Aus den so akquirierten Daten wird am Computer mittels
Software eine gefarbte 3D-Punktwolke generiert.

Um eine Szene oder ein Objekt vollstandig erfassen zu konnen miissen mehrere Aufnahmen
aus verschiedenen Blickwinkeln erzeugt werden. Diese Tatsache erfordert eine spétere Uber-
fiihrung und Ausrichtung in ein gemeinsames Koordinatensystem. Der hohe Zeitaufwand
und die mangelnde Genauigkeit einer manuellen Uberfiihrung verlangen automatisierte
Verfahren. Diese verwenden meist charakteristische Merkmale, wie zum Beispiel kiinst-
liche Marker, die in der Szene platziert und aufgenommen werden. Eine Identifikation
gleicher Marker in verschiedenen Punktwolken gibt dann Aufschluss tiber deren globale
Zusammenhinge.

Eine starke Preisreduzierung und die stets akkurater werdende Arbeitsweise der Gerite,
fithren zu einem immer grofier werdenden Anwendungsbereich. So werden in der Archi-
tektur Gebdude vermessen, in Produktionsstédtten sichert man die Qualitdt, Lagerbestdnde
werden tiberwacht und neben Reverse-Engineering von Bauteilen kommen sie auch bei
der Tatortssicherung in der Forensik zum Einsatz. In vielen dieser Einsatzbereiche kénnen
keine kiinstlichen Marker eingesetzt werden, da diese die Szene verdndern wiirden. Ist das
der Fall, werden stattdessen geometrische Merkmale, wie Linien, Eckpunkte oder Flachen,
aus den akquirierten Daten extrahiert und als zusammengehorig identifiziert. Natiirliche
Umgebungen enthalten oft nur sehr wenige oder keine dieser geometrischen Merkmale, wie
in Abbildung 1.1, demonstriert wird.

Betrachtet man das Problem der Ausrichtung von 3D-Punktwolken in Echtzeit-Systemen,
wie z.B. der Roboternavigation oder Objekterkennung, werden punktbasierte Merkmale
herangezogen oder einzelne Punkte miteinander verglichen. Das hat den Vorteil, dass sie
unabhéngig von der betrachteten Szene operieren konnen. Einige dieser Verfahren sind
sogar in der Lage Vorabinformationen {iiber eine wahrscheinliche Lage der Punktwolken
zu verarbeiten. Dadurch kann die Problemkomplexitit reduziert werden. Bei einer grofien
Anzahl von Punkten sind diese Verfahren jedoch sehr rechenaufwiandig und kommen daher
meist nur auf Punktwolken geringer Dichte zum Einsatz.

Sensoren zur Gewinnung von Vorabinformationen, iiber Position und Ausrichtung erzeugter
Punktwolken, sind in heutigen Laserscannern hdufig integriert. Diese werden jedoch meist
nur zur Erkennung einer fehlerhaften Ausrichtung oder der Verbesserung des Ergebnisses,
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1. Einleitung

eingesetzt. Mit dem Einsatz von Sensoren, neuen Techniken der Datenreduktion und mit den
immer leistungsfdhiger werdenden Computersystemen, konnte es moglich sein punktbasierte
Algorithmen zur Ausrichtung hochaufgeloster 3D-Punktwolken zu verwenden. Die daraus
resultierende Moglichkeit der automatisierten Verarbeitung von Szenen bei welchen bisher
eingesetzte Verfahren versagen, wiirde zu einer Erschlieffung neuer Anwendungsgebiete
fiihren.

Abbildung 1.1.: Vergleich natiirliche und kiinstliche Umgebung - Links: Harte Kanten und grofie Flachen
bieten die Moglichkeit aussagekriftige geometrische Merkmale zu extrahieren. Rechts: Uberwiegend vertreten
sind Rundungen. Aussagekriftige, vergleichbare Flachen oder Kanten sind kaum vorhanden.

1.1. Motivation

Die Entwicklung punktbasierter Algorithmen, zur Ausrichtung von Punktwolken, wird seit
geraumer Zeit vorangetrieben. Dies wird dadurch begriindet, dass sie haufig zur Navigation
von Robotern sowie zur Erkennung von Objekten, beides wesentliche Anwendungsgebiete
der heutigen Zeit, eingesetzt werden. Das Ergebnis sind hoch-optimierte Algorithmen,
die spezifische Eigenschaften von Punktwolken ausnutzen. Oft fiihrt dies zu einer deutlich
effizienteren Verarbeitung der Daten, als dies bei Verfahren moglich ist, die auf der Grundlage
geometrischer Merkmale arbeiten. Erschwerend kommt hinzu, dass die Genauigkeit einer
Ausrichtung hier auf die Prédzision, der erkannten Merkmale, beschrankt ist.

Bei der Verwendung geometrischer Merkmale entsteht auflerdem oft das Problem, dass
zu viele oder gar zu wenige, oftmals keine, Merkmale identifiziert werden. Eine Uber-
bzw. Unterbestimmung des Problems und somit eine fehlerhafte oder gar ausbleibende
Ausrichtung der Punktwolken, ist die Folge.

Die Verwendung und Untersuchung punktbasierter Algorithmen erfolgt haufig auf Punkt-
wolken geringer Dichte oder sehr geringer Punktmengen. Dies fiihrt schnell zu der Annahme,
dass diese Art von Algorithmen nicht fiir die Ausrichtung hochaufgeldster Punktwolken
geeignet ist.

12



1.2. Aufgabenstellung

Die meisten zur Erzeugung hochaufgeloster Punktwolken verwendeten Gerdte wie z.b der
FARO Focus3D besitzen Sensoren, wie Inklinometer, Altimeter, GPS und Kompass. Mit Hilfe
dieser konnen Informationen tiber die rdumlichen Beziehungen der einzelnen Punktwolken
zueinander ermittelt werden. Einige der punktbasierten Verfahren sind in der Lage diese zu
berticksichtigten. Neben der generellen Reduktion der Problemkomplexitit kann dadurch ein
sehr zielgerichtetes Suchen der korrekten Losung erfolgen. Das Ausbleiben oder Ermitteln
eines, von Grund auf falschen, Ergebnisses kann dadurch umgangen werden.

Unter Berticksichtigung dieser Tatsachen, konnte es moglich sein, automatisierte Verfahren
zur Ausrichtung hochaufgeloster Punktwolken zu verwenden und, unabhéngig von der
betrachteten Szene eine korrekte Losung, in angemessener Zeit, zu finden.

1.2. Aufgabenstellung

In dieser Diplomarbeit soll das Problem der automatisierten, paarweisen Ausrichtung
hochaufgeloster Punktwolken unter der Verwendung punktbasierter Verfahren untersucht
werden. Diese sollen sich nicht der Extraktion geometrischer Merkmale oder kiinstlicher
Marker bedienen.

Dabei soll betrachtet werden, inwiefern zusétzliche Informationen, die aus Richtungs- und
Lagesensoren gewonnen werden, dabei hilfreich sind. Hierfiir ist es notwendig punktbasierte
Algorithmen ihrer Losungsstrategie entsprechend, zu klassifizieren und deren Stellvertreter
zu ermitteln. Diese sollen dann in einer Testumgebung, in Zusammenarbeit mit der Firma
FARO, in die Software SCENE (siehe Abschnitt 2.1.4) implementiert werden. AbschliefSend
ist eine Analyse der Algorithmen in verschiedenen Szenarien durchzufiihren. Diese soll
Fragen zu folgenden Anforderungen beantworten:

e Konvergenz - Das Verfahren findet eine Losung, die einer Verbesserung der Ausgangs-
situation entspricht.

e Stabilitdt - Das Verfahren konvergiert fiir verschieden Ausgangssituationen.
e Effizienz - Das Verfahren findet in angemessener Zeit eine Losung.

e Reproduzierbarkeit - Das Verfahren findet fiir identische Ausgangssituationen stets
die selbe Losung.

13



1. Einleitung

1.3. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen - erldutert einfithrenden Begriffe und stellt die verwendete Hardware
bzw. Software vor.

Kapitel 3 — Registrierung von Punktwolken - definiert das betrachtete Problem und klassifi-
ziert die dafiir vorhandenen Ansétze. Dabei wird auch die Wahl der zur genaueren
Untersuchung herangezogenen Algorithmen motiviert.

Kapitel 4 — FehlermaBe - beschreibt die zur Evaluierung der erzielten Ergebnisse verwende-
ten Fehlermafie einer Transformation.

Kapitel 5 — Testumgebung - erortert die zur Analyse verwendeten Rahmenbedingungen. Ent-
halten ist eine Beschreibung einzelner Testszenarien sowie der Ablauf der durchgefiihr-
ten Untersuchungen.

Kapitel 6 — Sub-Sampling - stellt unterschiedliche Methoden zur Datenreduktion hochaufge-
loster 3D-Punktwolken vor. Aufierdem werden dabei Vor- und Nachteile aufgezeigt
und erldutert.

Kapitel 7 — Point Feature Histogram (PFH) - vermittelt den Point Feature Histogramm Ansatz,
erldutert dessen Funktionsweise und geht auf mogliche Erweiterungen ein. Abschlie-
flend wird die zur Analyse bereitgestellte Variante erldutert.

Kapitel 8 — Spin-Images (Sl) - beleuchtet die Arbeitsweise und dabei notwendige Modifika-
tionen des Spin-Image Algorithmus.

Kapitel 9 — Iterative Closest Point (ICP) - erkladrt das Funktionsprinzip des Iterative Closest
Point Algorithmus und stellt einige unterschiedliche Varianten dessen vor. Anschlie-
end wird die implementierte Variante vorgestellt.

Kapitel 10 — Normal Distribution Transformation (NDT) - gibt Einblick in die generelle Verfah-
rensweise des Normal Distribution Transformation Ansatz und erldautert mogliche
Modifikationen.

Kapitel 11 — Analyse - présentiert die Ergebnisse durchgefiihrter Analysen der vorgestellten
Varianten von PFH, SI, ICP und NDT.

Kapitel 12 — Fazit und Ausblick - vergleicht die einzelnen Registrierungsverfahren unterein-
ander und gibt Ausblick auf weitere Untersuchungen.

Kapitel 13 — Zusammenfassung - restimiert die in dieser Arbeit behandelten Themen.
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2. Grundlagen

IN diesem Kapitel werden die verwendeten Technologien und Werkzeuge vorgestellt. Dies
soll dem Leser einen Einstieg in das Thema ermoglichen. Auflerdem sind Grundlagen fiir
die im spateren Verlauf erlduterten Zusammenhinge notwendig. Eine allumfassende Betrach-
tung des Themengebietes ist im Rahmen dieser Arbeit weder moglich noch gewtinscht.

Der erste Teil dieses Kapitels befasst sich mit der Akquirierung der Daten. Dazu wird der
in dieser Diplomarbeit verwendete Laserscanner und dessen Funktionsweise beschrieben.
Anschliefsend werden die erfassten Daten in ihrer Form als Punktwolken genauer erldutert
um deren Eigenschaften zu verstehen. Der darauf folgende Abschnitt befasst sich mit
verschiedenen Reprasentationen einer Punktwolke im Arbeitsspeicher des Computers. Diese
sind an vielen Stellen fiir das Laufzeitverhalten der Algorithmen relevant. Zuletzt soll ein
Einblick in die Methoden zur Reduktion der Punktmengen gegeben werden.

2.1. Laserscanner

Der dieser Diplomarbeit zugrunde liegende Laserscanner wurde von der Firma FARO
entwickelt und tragt die Bezeichnung FARO® Focus®P (siehe Abbildung 2.1). Dessen Aufbau,
Eigenschaften, Funktionsprinzip und Einsatzbereiche werden in diesem Abschnitt behandelt.
Auferdem wird Einblick in die ebenfalls von der Firma FARO® entwickelte Software SCENE

gegeben werden.

2.1.1. Funktionsprinzip des Laserscanners

In Abbildung 2.1 ist ein Produktfoto des Focus®” zu sehen. Die Ausmafle des Focus®P sind
240 x 200 x 100 mm. Auf der rechten Seite des Gehduses ist ein Touchscreen zu sehen iiber
welchen Konfigurationen wie z.b die Auflosung einer Punktwolke vorgenommen werden
konnen. Die unterstiitzten Aufldsungen sind in Tabelle 2.1 festgehalten. Diese beziehen
sich auf eine maximale Reichweite von 120 Metern. Um den Scanvorgang zu starten muss
lediglich ein Button auf dem Touchscreen gedriickt werden.

In der linken Seite des Gerates wird der Laserstrahl erzeugt und tiber den um 45° geneigten
Spiegel im Zentrum des Laserscanners in jede beliebige Richtung der Umgebung entsendet.
Dazu rotiert der Spiegel horizontal um 360°, wéahrend sich der Scanner langsam, vertikal
um 180° seiner eigenen Achse dreht (siehe Abbildung 2.2). Durch die Kombination dieser
Rotationen wird eine kugelformige Umgebung des Laserscanner abgetastet. Die kompakte
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2. Grundlagen

Abbildung 2.1.: FARO® Focus®’ Laserscanner - Der von der Firma FARO® entwickelte Laserscanner
Focus®P, ist iiber einen Touchscreen bedienbar. Laser und Kamera sind in der linken Halfte des Gerites
untergebracht.[FAR12]

und schlanke Bauweise des Scanners erlaubt ein vertikales Sichtfeld von 305°. Der Laser
arbeitet mit einer Wellenldnge von 905 Nanometern und gehort mit einer Leistung von 20
Miliwatt zu den nicht augensicheren Lasern der Klasse 3R.

Die Abtastung der Umgebung erfolgt diskret, da jeder Punkt von einem Laserstrahl gemessen
wird. Pro Sekunde werden dabei 976.000 Strahlen abgefeuert und ebenso viele Punkte
gemessen. Ein ausgesandter Laserstrahl wird vom ersten Hindernis diffus reflektiert. Teile
des reflektierten Strahles werden vom Laserscanner wieder aufgefangen. Die Distanz des

Auflésung Punkte Zeile x Punkte Spalte Winkelauflésung

1/1 17067 x 40960 0.009° /Pixel
1/2 8534 x 20480 0.018° /Pixel
1/4 4267 x 10240 0.036° / Pixel
1/8 2133 x 5120 0.072° /Pixel
1/16 1067 x 2560 0, 144° /Pixel

Tabelle 2.1.: Scanauflésungen des Focus®” - Die hier aufgefiihrten Auflosungen werden vom Focus®P unter-

stiitzt. Eine Zeile entspricht einer vertikalen Rotation des Spiegels, eine Spalte einer halben, horizontalen Rotation
des Gerites.
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2.1. Laserscanner

zu messenden Punktes wird mittels Phasenverschiebung des modulierten Laserstrahles
errechnet. Eine hochfrequente Sinusschwingung erlaubt dabei Genauigkeiten von bis zu 2
mm. Niedere Frequenzen ermoglichen das Messen grofser Entfernungen und sind notwendig
um Mehrdeutigkeiten aufzulosen. Die X- und Y-Koordinate zu der gemessenen Distanz wird
tiber die Winkelpositionen des Spiegels und des Gerites ermittelt. Ein 3D-Punkt ist das
Resultat.

Abbildung 2.2.: Funktionsprinzip FARO® Focus®” Laserscanner - Links: Der Laserstrahl wird iiber den
Spiegel in die Umgebung entsendet. Mitte: Die vertikale Rotation des Spiegels lenkt den Laserstrahl in vertikalen
Kreisen um den Laserscanner herum ab. Rechts: Die zusitzliche horizontale Rotation des Gerites gewahrleistet
eine vertikale Abtastung der Umgebung .[FAR12]

Ebenfalls in der linken Seite des Gerites (siehe Abbildung 2.1), ist eine Digitalkamera mit
Blick auf den Spiegel montiert. Wahrend erneuter horizontaler Rotationen des Spiegels
und einer vertikalen Rotation des Scanners um weitere 180°, erzeugt diese 84 Farbbilder
kombiniert mit einer Auflésung von 70 Mio. Pixeln. Aus ihnen wird in einem spéateren Schritt
mittels Software (siehe Abschnitt 2.1.4) ein Panoramabild erzeugt, das die gesamte Umge-
bung des Laserscanner umfasst. Anschlieffend kann die Farbinformation der Bildpixel auf
die vom Laser gemessenen 3D Punkte projiziert werden um die Punktwolke zu kolorieren.

Die akquirierten Daten werden auf einer SD-Karte gespeichert, deren Slot sich auf der
rechten Seite des Gerates unterhalb des Touchscreens befindet. Mit ihr konnen die erzeug-
ten Punktwolken auf den Computer iibertragen werden um weitere Verarbeitungsschritte
durchzuftiihren.

2.1.2. Sensoren

Versucht man die Lage eines Objektes abhingig von einer Bezugsposition im 3D-Raum voll-
standig zu beschreiben, das entspricht der Problematik des Ausrichtens zweier Punktwolken
zueinander (siehe Kapitel 3), sind 6 Freiheitsgrade notwendig. Dabei handelt es sich um die
Verschiebung in X-, Y- und Z- Richtung, sowie die Rotationen um X-, Y-, und Z-Achse.
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2. Grundlagen

Einige der im Spéateren betrachteten Algorithmen sind in der Lage, diese Art der Information
zu verarbeiten. Dies fiihrt zu einer Reduktion der Freiheitsgrade und somit der Problemkom-
plexitdt. Im Folgenden wird daher ein Uberblick der im Focus®P verfiigbaren sowie weiteren
Sensoren zur Lage- und Positionsbestimmung vorgestellt. Dies lassen sich allgemein in zwei
Kategorien fassen, Lage- und Positionsbestimmung.

Die Z-Achse ist dabei als die Achse definiert, um welche sich der Scanner beim Scanvorgang
dreht. X- und Y-Achse bilden dann die Ebene auf welcher die Z-Achse orthogonal steht.

18

e Lagesensoren Diese geben Aufschluss iiber die Neigung des Laserscanners. Die Nei-

gung ist im 3D-Raum eine Bewegung die mittels Rotationen um die Koordinatenachsen
beschrieben werden kann.

Ein im Focus®P verfiigbarer Sensor ist das Inklinometer. Dabei handelt es sich um einen
Zweiachsen-Kompensator. Dieser ist in der Lage, die Rotationen um zwei verschiedene
Achsen zu messen, die X und Y-Achse. Sind die Rotationen um 2 Achsen bekannt,
reduziert sich die Problemkomplexitit auf 4 Freiheitsgrade. Diese sind die Verschiebung
in X-, Y- und Z- Richtung sowie die Rotation um die Z-Achse. Bei einer Genauigkeit
von £0,015° [FAR12] konnen diese Messergebnisse ohne zusédtzliche Korrekturen
verwendet werden.

Bei einem weiteren, im Focus®P verfiigbaren Lagesensor handelt es sich um den

Kompass. Dieser orientiert sich am Erdmagnetfeld und nutzt als Bezugspunkt den
geografischen Nordpol. Der Einsatz eines Kompass 10st demnach einen Freiheitsgrad
der Drehung. Im System des Laserscanner liefert er Informationen beziiglich der
Rotation um die Z-Achse. Bei einer Genauigkeit von +20° [FAR12] ist diese Information
sehr unsicher. Externe, omniprasente Magnetfelder, meist verursacht durch benachbarte
Elektrogeréte, iiberdecken das Erdmagnetfeld was zu falschen Informationen fiithren
kann.

Positions-Sensoren Sie dienen im allgemeinen dazu, die Position eines Objektes im
3D-Raum zu bestimmen. Dies entspricht den Verschiebungen in Richtung der Koordi-
natenachsen (X, Y, Z).

Der wohl bekannteste Ansatz ist die Satellitennavigation wie z.B. GPS (NAVSTAR
GPS) [Ameo8], Galileo, Compass etc. Bezugspunkte sind dabei um die Erde kreisen-
de Satelliten. Aus deren ausgesandten und {iiberlagerten Signalen kann die Position
eines Objektes auf der Erde bestimmt werden. Sie 16sen daher 3 Freiheitsgrade und
reduzieren das betrachtete Problem auf Rotationen um die Koordinatenachsen. Die
Genauigkeit dieser Information hangt stark von der Stdrke des erhaltenen Signals und
der verwendeten Technik ab. Allgemein kann dabei eine Genauigkeit von £2 — 7m
[Ameo8, JRET04] unter freiem Himmel erwartet werden.

Nur die Hohe eine Objektes (Z-Koordinate) bestimmend arbeiten Hohenmesser (Altime-
ter). Realisiert wird dies {iber das Messen des Luftdruckes. Bezogen auf die Position
des Laserscanner wird eine Verschiebung in Richtung der Z-Achse gemessen. Sein
Beitrag zur Reduktion der Komplexitat beschrankt sich auf diesen einen Freiheitsgrad.



2.1. Laserscanner

Dieser kann mit einer Genauigkeit von +5 m [FAR12] bestimmt werden. Ein Altimeter
ist im Focus®P enthalten.

Die relativ zu einem bestimmten Ausgangspunkt zurtickgelegte Trajektorie zu erfassen
ist eine weiter Methode, um eine Position zu bestimmen. Dies wird als Odometrie
bezeichnet [[Hocos, Niioz]. Der Fehler dieser Information ist abhdngig von der Lange
der zuriickgelegten Strecke und bewegt sich im Meter-Bereich. Bestimmt werden
kann dabei die Verschiebung in Richtung der X- und Y- Koordinate, wodurch zwei
Freiheitsgrade der Translation geldst sind.

Betrachtet man die Kombination aller hier aufgefiihrten Sensoren, konnte der Schluss
gezogen werden, dass Informationen fiir alle Freiheitsgrade bestimmt werden kénnen.
Die Lagesensoren liefern Informationen beziiglich der Rotationen um X-, Y-, Z-Achse, die
Positions-Sensoren 19sen die Verschiebung in selbige. Ungenauigkeiten der Sensoren, sowie
verrauschte oder ganz ausbleibende Signale fithren jedoch dazu, dass ein Grofiteil dieser
Information lediglich als Hilfestellung benutzt werden kann.

2.1.3. Einsatzbereich

Die wahrheitsgetreue, dreidimensionale Représentation einer Szene und die sich hierdurch
ergebenden Moglichkeiten, machen 3D-Laserscanner fiir eine Vielzahl verschiedener An-
wendungen interessant. Besonders beliebt sind dabei Anwendungsbereiche, bei welchen die
Visualisierung und Vermessung von Objekten oder ganzer Umgebungen eine Rolle spielt.
Sinkende Anschaffungskosten sorgen dafiir, dass 3D-Laserscanner auch in Anwendungs-
gebiete Einzug halten, bei welchen es nicht nur darum geht kostenintensive, industrielle
Prozesse zu optimieren. Im Folgenden werden einige typische Einsatzbereiche vorgestellt.

Forstwirtschaft Zur nachhaltigen Forstwirtschaft gehort die Dokumentation der Waldbe-
stainde. Mit Hilfe von 3D- Laserscannern ist es moglich diese flichendeckend und ohne
erheblichen Zeitaufwand zu erstellen. Die Dokumnetation kann dann in die Software voll-
automatischer Holzernter eingespielt werden [Tre12]. Zur Abholzung freigegeben Baume
konnen darin markiert werden. Sind Baume geféllt oder durch Unwetterschdden nicht
mehr vorhanden, kann die Dokumentation durch das Entfernen der entsprechenden Daten
stets aktuell gehalten werden. Aufierdem konnen Kollateralschdden, verursacht durch das
Schlagen von Zufahrtswegen, im Voraus ermittelt und minimal gehalten werden.
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2. Grundlagen

1“

Abbildung 2.3.: Einsatzbereich Forstwirtschaft - Links: Akquirierte Daten eines Waldes. Rechts: Zur Abholzung
freigegebene und fiir die Bestandspflege zu erhaltende, markierte Biume. [Tre12]

Denkmalschutz Um Denkmailer zu schiitzen und zu erhalten sind hdufig Restaurationen
notwendig. Mit Hilfe von 3D-Laserscannern ist es moglich Objekte oder ganze Gebaude zu
erfassen, ohne dabei empfindliche Bereiche zu strapazieren. Dies ist auf Grund der kontakt-
freien Erfassung der Umgebung moglich. Anschlieffend kann eine ausfiihrlich Planung der
Restauration durchgefiihrt werden.

Abbildung 2.4.: Einsatzbereich Denkmalschutz - Das King’s Theatre in Glasgow wurde im Zuge einer Sanie-
rung 2011 mittels 3D-Laserscanner vollstindig erfasst.[FAR12]

Vermessung Seit Menschengedenken besteht die Notwendigkeit, Objekte, Umgebungen,
Landschaften etc. zu vermessen. Oft ist dies mit einem sehr hohen Zeitaufwand verbunden
und bestimmte Bereiche sind nur schwer zuganglich. Werden Messungen dabei fehlerhaft
durchgefiihrt oder gar vergessen, bedarf es einer erneuten, aufwendigen Durchfithrung
dieser. 3D-Laserscannern ermdglichen es Daten aus sicherer Entfernung einmal zu erfassen
und unabhidngig davon beliebige Messungen durchzufiihren.
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2.1. Laserscanner

Abbildung 2.5.: Einsatzbereich Vermessung - Erfassen eines Straffenzuges, beliebige Messungen sind jederzeit
moglich ohne die Strafie erneut besuchen zu miissen.[FAR12]

Forensik Im Bereich der Forensik und der Unfallforschung werden Laserscanner eingesetzt,
um Tat- und Unfallorte zu dokumentieren. Im Vergleich zu herkoémmlichen Methoden kann
dies mittels 3D-Laserscanner kontaktfrei und prézise erfolgen. Aufierdem ist ein spéiteres
Analysieren und Rekonstruieren des Tat- bzw. Unfallhergangs beliebig oft moglich, ohne
Daten zu verfélschen.

Abbildung 2.6.: Einsatzbereich Forensik - Beispiel einer forensischen Analyse. Anhand der Verteilung der
Blutspritzer und der Formung des Einschussloches wird der Schusswinkel rekonstruiert.[FAR12]
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2. Grundlagen

2.1.4. FARO SCENE

SCENE ist eine fiir den FARO Focus®P konzipierte Software zur Verwaltung und Manipula-
tion von Punktwolken. Mit ihr kénnen ganze Scanprojekte in einem eigenen Repositorium
verwaltet werden und nach Belieben importiert, exportiert und wiederhergestellt werden.
Beim Import neuer Punktwolken werden diese zundchst gefiltert (siehe Abschnitt 2.2) und
auf Wunsch des Benutzers mit Farbe versehen.

Wurden mehrere Punktwolken der selben Szene aus verschiedenen Blickwinkeln erzeugt,
bietet SCENE die Moglichkeit, diese zueinander auszurichten. Dies kann dabei manuell oder
automatisiert (siehe Kapitel 3) durch die Extraktion kiinstlicher Marker und geometrischer
Merkmale, erfolgen.

Verschiedenste Arten der Visualisierung, von planaren Ansichten iiber Tiefen- und Inten-
sitatsbildern bis hin zur 3D-Ansicht, werden unterstiitzt. Neben der Visualisierung stehen
dem Benutzer diverse Werkzeuge zur Verfiigung. Diese reichen von Messungen aller Art
iiber das Erkennen geometrischer Objekte, bis hin zur Analyse der akquirierten Daten.
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Abbildung 2.7.: Punktwolken Software SCENE - Auf der linken Seite befindet sich eine Ubersicht der im
Projekt enthaltenen Punktwolken. Ebenfalls dort einzusehen sind extrahierte Objekte, Messungen etc. Rechts
befindet sich der Bereich in welchem die Visualisierung der Punktwolken stattfindet; hier zu sehen eine 3D-
Visualisierung.

2.2. Punktwolken

Die in dieser Diplomarbeit verwendeten Punktwolken wurden mit dem FARO® Focus3P

erzeugt (siehe Abschnitt 2.1.1) und anschlieffend mit der Software SCENE (siehe Abschnitt
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2.2. Punktwolken

2.1.4) verarbeitet. In diesem Abschnitt wird daher auf die Struktur und die Eigenschaften
einer solchen Punktwolke eingegangen. Auflerdem werden die darauf angewendeten Filter
zum Entfernen von Storungen (Rauschen) erldutert.

2.2.1. Oberflachen-Punktwolken

Die vom FARO® Focus®P erzeugten Punktwolken sind Oberflichen-Punktwolken. Oft wer-

den diese auch 22 D-Punktwolken oder sphérische Punktwolken genannt und zeichnen sich
dadurch aus, dass die Koordinaten zweier Dimensionen durch eine Rasterebene festgelegt
sind. Jeder Rasterzelle wird ein Wert zugeordnet, in diesem Fall eine gemessene Distanz.
Auf diese Art entstandene Punktwolken beschreiben dadurch die Oberfldchen der in einer
Szene vorkommenden Objekte.

Die Zuordnung einer Distanz zu einer Rasterzelle erfolgt {iber die Winkelstellungen von
Spiegel und Laserscanner. Dies ist schematisch in Abbildung 2.8 zu sehen. Aus den Polar-
koordinaten (d, 6, ¢) werden die kartesischen Koordinaten eine Punktes p; ermittelt. Dabei
entspricht d der gemessenen Distanz, 8 dem horizontalen und ¢ dem vertikalen Winkel.
Uber diese kénnen auch die mittels Digitalkamera ermittelten Farbinformationen den ent-
sprechenden Punkten zugeordnet werden. Diese Methodik fiihrt dazu, dass die Dichte einer
Punktwolke mit der Distanz zum Laserscanner abnimmt (siehe Abbildung 2.8). Der Bereich
unter dem Laserscanner kann nicht eingesehen werden, da er durch diesen selbst verdeckt
wird.

Abbildung 2.8.: Oberflichen-Punktwolke - Links: Der Winkel ¢ entspricht der Winkelstellung des Laserscanner,
6 des Spiegels. Die Rasterebene ist durch diese beiden Winkel definiert. Die Distanz d wird vom Laser gemessen.
Rechts: Die Dichte einer spharischen Punktwolke nimmt mit der Entfernung zum Laserscanner ab. Der Bereich
unter dem Laserscanner kann nicht eingesehen werden da er durch selbigen verdeckt wird.

2.2.2. Filter

Das Akquirieren von Daten ist stets fehlerbehaftet. In der Bildverarbeitung wird dies all-
gemein als Rauschen bezeichnet und &dufiert sich in fehlerhaften Koordinaten einzelner
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2. Grundlagen

3D-Punkte. Da sich Rauschen stets negative auf die Verarbeitung der Daten auswirkt, miis-
sen Punktwolken gefiltert werden.

Die Filterung der hier verwendeten Punktwolken wird von SCENE (siehe Abschnitt 2.1.4)
bewerkstelligt. Dazu werden die im Folgenden Filter angewendet:

e Dark-Point-Filter - Die Distanz zu einem gemessenen Punkt wird mittels Phasen-
verschiebung und Intensitdt des reflektierten Laserstrahles errechnet (siehe Abschnitt
2.1.1). Ist die Intensitét des reflektierten Strahles zu schwach (trifft z.B. auf sehr dunkle,
stark absorbierende Objekte), kann keine Zusicherung tiber die Korrektheit der gemes-
senen Distanz gegeben werden. In diesem Fall wird der Punkt aus der Punktwolke
entfernt.

e Stray-Point-Filter - Dieser Filter versucht Rauschen zu erkennen und zu eliminieren.
Dazu wird die Umgebung eines jeden Punktes betrachtet. Weichen Distanzwerte einzel-
ner Punkte auf zu geringem Raum voneinander ab, werden diese aus der Punktewolke
entfernt. Verursacht werden kann dies z.B. durch Schmutzpartikel in der Luft, welche
den Strahl reflektieren bevor dieser das eigentliche Objekt erreicht.

2.3. Datenstrukturen

Bei der Verarbeitung grofier Punktmengen spielt das Auffinden und der Zugriff auf ein
Datum eine entscheidende Rolle. Wie und mit welcher Effizienz diese Operationen ausgefiihrt
werden sind mafigeblich von der Datenstruktur abhingig, in welcher diese gespeichert
werden. In diesem Abschnitt soll daher auf einige der grundlegendsten Datenstrukturen
im Bereich der 3D-Datenverarbeitung eingegangen werden. Als Programmiersprache wird
C++ zugrunde gelegt. Das Augenmerk liegt dabei auf die fiir diese Diplomarbeit wichtigen
Operationen. Diese sind der Zugriff auf ein bestimmtes Element, sowie die Suche nach
dem néchsten Nachbarn eines Punktes. Aufserdem soll ein Einblick in den Speicherbedarf
gegeben werden. Betrachtet werden dabei Punktwolken mit 3D-Punkten, gegeben durch X-,
Y-, und Z-Koordinate.

2.3.1. 1D-Array

Das 1D-Array ist eine der einfachsten Datenstrukturen zum Speichern grofler Punktmengen.
Da es linear im Speicher liegt, d.h. kein Verlinkungen zwischen den einzelnen Elementen
notwendig sind, ist sie sehr speicherplatzeffizient. Fiir eine Punktwolke mit n Elementen
werden n Elemente der Grofle eines 3D-Punktes benotigt. Erzeugen lasst es sich in O(n).

Zugriffe auf einzelne Elemente erfolgen mittels Index (Speicheradresse), in konstanter Zeit,
also O(1) . Da 3-D Punkte in einem Array nicht nach ihrer vollstindigen rdaumlichen Lage
sortiert vorliegen konnen, muss bei der Suche nach einem Element im Worst-Case das
gesamte Array durchlaufen werden. Dies entspricht einer Komplexitit von O(n). Die Suche
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nach dem néchsten Nachbarn eines 3D-Punktes ist dquivalent zur Suche eines bestimmten
Elementes und liegt ebenfalls in O(n).

2.3.2. 2D-Array

Diese Datenstruktur entspricht einer speziell auf 22 D-Punktwolken zugeschnittene Spei-
cherstruktur und wird auch als Range-Image bezeichnet. Sie setzt voraus, dass jeder Punkt

eindeutig ist, was durch das Erzeugungsprinzip (siehe Abschnitt 2.2.1) einer 22D-Punktwolke
gegeben ist. In ihr kénnen 3D-Punkte nach zwei Dimensionen (hier mit X und Y bezeichnet)
sortiert abgelegt werden.

Realisiert wird dies in Form eines 2D-Array. Jede vorkommende X-Koordinate erhilt eine ei-
gene Zeile, jede vorkommende Y-Koordinate eine eigene Spalte. Die zugehorige Z-Koordinate
wird dann an entsprechender Stelle gespeichert. Fiir n 3D-Punkte werden n Elemente der
Grofse einer Z-Koordinate benotigt. Da die Elemente wie in einem 1D-Array linear im Spei-
cher liegen, ist der Speicheraufwand noch geringer und lasst sich ebenfalls in O(n) erzeugen.
Zugriffe auf Elemente erfolgen per Index, d.h. in konstanter Zeit (O(1)).

Durch die Eindeutigkeit eines 3D-Punktes kann selbst die Suche nach einem bestimmten
Element in konstanter Zeit durchgefiihrt werden. Die Nachbarschaftssuche erfordert ebenfalls
konstanten Zeitaufwand. Fiir den Zugriff auf einen Nachbar muss lediglich der Index der in
Suchrichtung liegenden Koordinate erhtht werden.

2.3.3. K-dimensionaler-Baum (KD-Tree)

Ein k-dimensionaler Baum ist ein bindrer Suchbaum zum Speichern von Punkten des RF.
Dadurch ist es moglich verschiedenste vektorisierbare Elemente zu verwalten [BLg7]. Fiir
3D-Punkte wird demnach ein 3-dimensionaler Baum benétigt. Die Punkte liegen dabei in
alle Dimensionen sortiert vor.

Jede Ebene im Baum teilt den Punktraum durch eine Hyperebene entlang einer Raumachse.
Sei die Baumwurzel als Ebene 0 definiert, dann teilen die Baumebenen {p|p mod 3 = 0}
den Punktraum in Richtung der X-Achse, {p|p mod 3 = 1} und {p|p mod 3 = 2} in
Richtung der Y- und Z-Achse.

Die 3D-Punkte werden in den Knoten des Baumes gespeichert. Der Speicheraufwand liegt
dadurch in O(n + (n - 2t)) wobei t den Speicherplatz eines Zeigers auf einen Kind-Knoten
definiert. Der Zugriff auf ein bestimmtes Element entspricht der Suche nach diesem und
erfolgt in O(log(n)).

Der Aufbau des k-dimensionalen Baumes erfordert eine Suche nach der richtigen Position
eines jeden Elementes. Dies entspricht einer Komplexitdt von O(nlog(n)). Sei fur das Ele-
ment [ der ndchste Nachbar gesucht, dann wird dessen Teilbaum rekursiv bis zum Blatt
durchlaufen und als aktueller ndchster Nachbar markiert. Beim rekursiven Riicklauf werden
samtliche an den Abstiegspfad angrenzenden Unterbdume im ersten Knoten besucht. Ist
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deren Distanz zu | geringer als die des aktuellen ndchsten Nachbarn, wird dieser aktualisiert.
Dies erfordert einen Zeitaufwand von O(log(n)).

Die in dieser Diplomarbeit verwendeten k-dimensionalen Baume entstammen der Point
Cloud Library [Lib12i]. Dabei handelt es sich um eine Variante die im Allgemeinen einen
balancierten Suchbaum, realisiert durch eine adaptive Wahl der zu bildenden Hyperebene,
erzeugt. Operationen auf diesen konnen dann im Average-Case erfolgen, daher beziehen
sich die hier genannten Komplexitadtsklassen ebenfalls auf diesen.

Weiterfiihrende Informationen zu KD-Tree’s konnen unter [NL.Hoy] und [BL97] gefunden
werden.
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M eine vollstindige, dreidimensionale Reprdsentation einer Szene zu erhalten ist es not-
wendig, Punktwolken aus verschiedenen Blickwinkeln zu erzeugen. Durch Verdeckung
fehlende Bereiche werden dadurch ebenfalls erfasst. Die so erzeugten Punktwolken miissen
anschlieffend in ein gemeinsames Koordinatensystem tiberfiithrt und zueinander ausgerichtet
werden. Dies ist notwendig, um die aufgenommene Szene mafistabsgetreu und der Realitéit
entsprechend reprasentieren zu kénnen.

Beim Uberfiihren der Punktwolken in ein globales Koordinatensystem werden die erfassten
Punktkoordinaten aller Punktwolken so transformiert, dass sie demselben Maf} entsprechen.
Dies bedeutet, dass Skalierungen und Verzerrungen in den Punktkoordinaten angeglichen
werden miissen. Da die hier verwendeten Punktwolken bereits demselben Mafistab und
Prinzip entsprechend erzeugt wurden (siehe Abschnitt 2.1.1), ist dies jedoch nicht not-
wendig. Das Uberfiihren in ein gemeinsames Koordinatensystem entspricht dadurch dem
Ubereinanderlegen des Ursprungs (Scannerposition) beider Punktwolken (siehe Abbildung

3.1).

Wenn ein Punkt einer Szene aus unterschiedlichen Positionen aufgenommen wird, tritt dieser
in verschiedenen Punktwolken auf. Sind die Punktwolken nicht zueinander ausgerichtet,
besitzt er in jeder Punktwolke eine andere Koordinate. Diese Punkte werden als korrespon-
dierend bzw. als Korrespondenzen bezeichnet. Das Auffinden von Korrespondenzen sowie
das Verschieben (Translation) und Verdrehen (Rotation) der Punktwolken, sodass korrespon-
dierende Punkte jeder Punktwolke dieselbe Koordinate besitzen, wird als Registrierung
bezeichnet. (siehe Abbildung 3.1).

Grundlegend ldsst sich die Registrierung auf zwei Arten durchfiihren: direkt/manuell und
automatisiert. Bei der direkten/manuellen Registrierung wird Position und Orientierung
des Laserscanners wahrend dem Scanvorgang in einem globalen Koordinatensystem be-
stimmt [SBos]. Heutige Technologien und Sensoren erlauben es diese Informationen auch
automatisch zu erfassen, weshalb man auch von einer direkten Registrierung spricht. Meist
wird dabei eine Kombination verschiedener Sensoren wie GPS, Kompass und Inklinometer
benutzt. Der Einsatz eines Tragheitsnavigationssystems wie von Talaya et al.[[RE " 04] be-
schrieben, ist dabei ebenso, denkbar wie die Verwendung odometrischer Daten, die bei der
Roboternavigation zum Einsatz kommt [Hocos, Niioz].

Ungenauigkeiten oder gar ausbleibende Signale der Sensoren (wie z.B. GPS in Gebduden)
fithren dabei haufig zu grofien Abweichungen in der Registrierung und erfordern oft zu-
sdtzliche Elektronik. Daher ist diese Art der Registrierung nur fiir bestimmte Szenarien
geeignet.
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3. Registrierung von Punktwolken

Abbildung 3.1.: Registrierung von Punktwolken - Links: Die Punktwolken liegen in einem gemeinsamen
Koordinatensystem vor; der Ursprung beider Punktwolken liegt {ibereinander (kleiner Kreis Punkte rechts
unten). Rechts: Die Punktwolken wurden registriert; der Szene entsprechend gleiche Punkte liegen tibereinander.

Im Rahmen dieser Diplomarbeit soll die automatisierte, paarweise Registrierung betrachtet
werden. Bei dieser werden, anders als bei der globalen Registrierung, nicht beliebig viele,
sondern nur Paare von Punktwolken zueinander ausgerichtet [DHo1]. Der Ursprung einer
Punktwolke (Laserscanner-Position) wird dabei an dem des gemeinsamen Koordinatensys-
tems fixiert. Ausgerichtet wird die verbleibende Punktwolke. Fiir sie muss die passende
Transformation (Translation und Rotation) berechnet werden. Im R? entspricht dies dem
Bestimmen von sechs Freiheitsgraden (Translation entlang der X-, Y- und Z-Achse und
Rotation um X-, Y- und Z-Achse).

Automatisierte Ansitze zum Losen des Registrierungsproblems sind in grofser Zahl vorhan-
den. Nachdem das Registrierungsproblem mathematisch definiert wurde, wird daher eine
mogliche Klassifikation vorgestellt. Diese gibt einen allgemeinen Uberblick und kategorisiert
die im Spéteren untersuchten Algorithmen (Iterative Closest Point, Normal Distribution
Transformation, Point-Feature-Histogram, Spin-Images).

3.1. Mathematische Definition
Gegeben seien zwei, in globalen Koordinaten vorliegende 3D-Punktwolken P und Q. Diese

reprasentieren dieselbe Szene aus verschiedenen Blickwinkeln.

(3.1) P = {plpieR’, 0<i<n neN}
Q {gjl3; e R®, 0<j<m, meN}
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3.2. Klassifikation

Sei aulerdem eine beliebige Transformation im R durch die Rotationsmatrix R und einen
Translationsvektor f wie folgt beschrieben.

(3-2) R = Ry Ry-R;
1 0 0
Ry, = 0 cos(w) —sin(a) |, a€R, 0<a<360
0 sin(a) cos(a)
cos(pB) 0 sin(p)
R, = 0 1 0o |, BER 0<p<360
—sin(B) 1  cos(B)
cos(y) —sin(y) 0
R, = sin(1y) cos () 0], veR, 0<79<360
0 0 1
tx
f =1t |, totyteR
t;

Des Weiteren sei eine Korrespondenz definiert als ein Paar von Punkten beider Punktwolken,
deren Punktkoordinaten, der reprédsentierten Szene entsprechend, identisch sein sollten.

(33) c = (Cp/ Cq)l Cp € P/ Cq € Q

Das Registrierungsproblem ist dann gelost, wenn R und f so bestimmt sind, dass fiir die
Menge aller Korrespondenzen C gilt:

(3-4) C = {(ck,cx)lex, =R-c,, +F 1<k<|Cl}

Auf Grund von Ungenauigkeiten in den Messdaten (z.B. Rauschen) kann diese Gleichheit in
der Praxis nahezu nie erreicht werden. Daher muss diese Definition um einen Grenzwert
¢ € R erweitert werden.

(3.5) C = {(ex )| ok, —(R-cp +Dll2<e, 1<k<I|C[}
Der Abstand zwischen zwei korrespondierenden Punkten (||c, — (R - ¢k, + £)||2) wird dabei

als Spannung bezeichnet.

3.2. Klassifikation

Dieser Abschnitt gibt einen Einblick in die Vielfalt der Losungsvarianten des Registrie-
rungsproblems. Dabei wird dem Leser auch eine Kategorisierung der im spateren Verlauf
untersuchten Algorithmen vorgestellt. Griinde der Wahl sind {iiber die in Abschnitt 1.2
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3. Registrierung von Punktwolken

definierten Kriterien sowie die in der Klassifikation beleuchteten Verfahrensweisen zu er-
schlieflen. Eine vollstandige Betrachtung aller aktuell existierenden Algorithmen wiirde den
Rahmen diese Arbeit sprengen.

Prinzipiell existieren vielerlei mogliche Klassifikationen automatisierter Registrierungs-
Algorithmen. Dabei ist die Trennung durch das Aufgabengebiet ebenso berechtigt, wie eine
Klassifizierung basierend auf der mathematischen Definition, der zur Berechnung einer
Transformation benutzten Methodik. Die hier verwendete Klassifikation basiert auf der von
[SMFFos] und [CFo1]. Sie teilt automatisierte Registrierungs-Algorithmen grundlegend in
zwei Klassen:

o Grobregistrierung - Diese Klasse beherbergt Verfahren, die nicht in der Lage sind
Vorwissen zu verarbeiten. Dadurch sind sie in der Lage, Punktwolken unabhingig von
ihrer initialen Ausrichtung zu registrieren. Das Ergebnis ist dabei meist ungenau; die
Punktwolken sind nur grob zueinander ausgerichtet.

o Feinregistrierung - In dieser Klasse beheimatet sind Algorithmen, die Vorabinforma-
tionen beziiglich der Ausrichtung zweier Punktwolken zueinander verwenden. Dabei
wird eine grobe Ausrichtung der Punktwolken als initiale Situation vorausgesetzt und
verfeinert.

3.2.1. Grobregistrierung

Ziel der Grobregistrierung ist es, Korrespondenzen zwischen zwei Punktwolken zu finden.
Dazu werden besondere Merkmale aus beiden Punktwolken extrahiert und miteinander
verglichen. Sehr dhnliche Merkmale werden als Korrespondenzen betrachtet. Die Erken-
nung dhnlicher Merkmale wird dabei als Korrespondenzsuche bezeichnet und weist im
Allgemeinen eine Komplexitit von O(n?) auf. Dabei bezeichnet n die Anzahl gefundener
Merkmale in einer Punktwolke. Aus ihnen wird eine Transformation berechnet, die alle
korrespondierenden Merkmale bestmdglich zueinander ausrichtet. Dies erfolgt mittels Singu-
larwertzerlegung der Korrelationsmatrix und Schwerpunktdifferenz der Korrespondenzen
(sieche Anhang A).

Welche Art von Merkmal dabei gewihlt, auf welche Art und Weise die Transformation
berechnet und welche Registrierungsstrategie zur Optimierung des Ergebnisses verwendet
wird, unterscheidet die einzelnen Verfahren voneinander. Weiter differenziert wird an dieser
Stelle iiber die Art der verwendeten Merkmale. Dies liegt darin begriindet, dass Strategie,
Transformation und Optimierung oftmals identisch sind.

Kiinstliche Merkmale

Als Merkmale werden bei dieser Methode spezielle Marker eingesetzt. Diese besitzen eine
vorgegebene, algorithmisch leicht auffindbare, geometrische oder optische Struktur (siehe
Abbildung 3.2). Vor dem Scanvorgang werden diese in der aufzunehmenden Szene so
platziert, dass aus jedem Blickwinkel ausreichend viele (mindestens drei) davon im Uberlapp
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3.2. Klassifikation

sichtbar sind. Nach dem Scanvorgang werden die akquirierten Punktwolken auf Marker
hin untersucht. Extrahiert wird Art und Position eines Markers. Korrespondierende Marker
konnen dann durch die in Graphen représentierten raumlichen Relationen ermittelt werden
[Bogo8].

Werden nicht allzu komplexe Marker verwendet, ist eine Extraktion mit geringem Zeitauf-
wand moglich. Wurden diese aufierdem sinnvoll (keine symmetrische Anordnung) platziert,
ist eine dufSerst zuverldssige Registrierung der Punktwolken moglich. Nachteile dieser Me-
thodik stellten der hohe Zeitaufwand zur Positionierung der Marker, sowie das Verdecken
einzelner Bereiche der Szene durch diese dar.

FARO

04

Abbildung 3.2.: Kiinstliche Marker - Links: Schachbrettmuster. Rechts: Kugelboard.
Diese Marker werden als leicht auffindbare Korrespondenzpunkte zur Registrierung von der Firma FARO
verwendet [FAR12].

Geometrische Merkmale

Als geometrische Merkmale werden aus Kanten gebildete Eckpunkte [Berog, Troo8], Recht-
ecke [Berog] und Flachen [DBo6] verwendet. Eckpunkte werden dabei meist tiber zwei,
bzw. drei sich schneidende Kanten definiert und sind translationsinvariant. Kanten haben
den Vorteil, dass lediglich die Rotation um sich selbst und die Verschiebung entlang ihrer
Richtung ungeklart bleibt. Die Lange einer Kante kann jedoch auf Grund des Blickwinkels oft
nicht exakt bestimmt werden. Rechtecke hingegen legen samtliche Rotationen aufSer die sym-
metrischen um deren Normale fest. Allgemeine Flichen kénnen das Problem der Symmetrie
16sen; die Extraktion und der Vergleich dieser ist jedoch deutlich zeitaufwendiger.

Zur Extraktion und zum Vergleich dieser Merkmale existieren hoch-optimierte Verfahren.
Dadurch kann der Zeitaufwand der Merkmalssuche gering gehalten werden. Nachteil ist,
dass nicht jede Szene (speziell natiirliche Umgebungen) diese geometrischen Merkmale in
ihrer Reinform enthilt.Oft konnen dadurch keine Merkmale gefunden werden. Andererseits
konnen in kiinstlichen Szenen (Biirogebaude, Strafienziige etc.) sehr viele davon extrahiert
werden. Dies stellt dann eine zeitliche Herausforderung an die Korrespondenzsuche dar.

Punkt-Deskriptor basierte Verfahren Punktbasierte Merkmale beschreiben generell die Um-
gebung eines konkreten Punktes. Daher werden diese Merkmale auch als Deskriptoren
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3. Registrierung von Punktwolken

bezeichnet. Deskriptoren sind allgemeine, durch ihre Berechnungsvorschrift definierte punkt-
basierte Merkmale. Ziel der Deskriptoren ist es, einzelne Punkte einer Punktwolke tiber
eine abstrakte Reprasentation vergleichbar zu beschreiben. Aus diesem Grund werden von
Deskriptoren folgende Eigenschaften gefordert [BO0S]:

e Transformations-Invariant - Es sei angenommen, dass ein Deskriptor fiir einen Punkt
p einer Punktwolke bestimmt und anschlieffend transformiert wird (p— > p’). Dann
muss der Deskriptor von p’ gleich bzw. dhnlich dem Deskriptor von p sein.

e Vergleichbar - Zwei auf unterschiedlichen Punktwolken berechnete Deskriptoren
miissen iiber ein Ma8 vergleichbar sein, welches deren Ahnlichkeit beschreibt.

o Effizient - Die Berechnung eines Deskriptors sollte in angemessener Zeit erfolgen.
Dabei sollen nur fiir den spéteren Vergleich notwendige Informationen berechnet
werden.

e Rausch-Unempfindlich Angemessen verrauschte Daten verdndern die vom Deskriptor
berechneten Informationen nur so stark, dass identische Punkte vom Ahnlichkeitsmai3
auch als solche erkannt werden.

Verschiedene Verfahren unterscheiden sich grundlegend in der Definition ihres Deskriptors.
Im Folgenden werden einige der bekanntesten vorgestellt.

Ein sehr einfacher Deskriptor ist der von Oztireli und Basdogan [BOo08] vorgestellte. Dieser
beschreibt die Distanz eines Punktes zum Schwerpunkt seiner benachbarten Punkte. Er
lasst sich sehr effizient berechnen und ist wenig anfillig fiir Rauschen. Die Aussagekraft ist
jedoch sehr eingeschriankt, da bereits benachbarte Punkte nahezu identische Deskriptoren
erzeugen.

Chua [C]97] fithrte im Jahr 1997 erstmals die Punktsignatur ein. Fiir einen Punkt p wird
dabei der Verlauf der Oberflache C, auf welcher sich p befindet, als Deskriptor verwendet.
Dabei werden Schnittpunkte einer Kugelumgebung von p mit der Oberfldche C ermittelt.
Anschliefend werden diese auf die Tangentialebene von p und C projiziert. Uber den
Normalenvektor von p und den von p entferntesten Punktvektor n; wird innerhalb der
Kugelumgebung mittels Kreuzprodukt ein Orthonormalsystem definiert. In diesem kann
nun jeder sich in C befindliche Punkt als vorzeichenbehaftete Distanz und Rotation um 74
reprasentiert werden. Der resultierende Deskriptor entspricht einer 2D-Funktion und wird
tiber den Vergleich von Stiitzstellen mit anderen auf Ahnlichkeit gepriift. Der Deskriptor
reagiert sensibel auf Rauschen und die Berechnung der Schnitte ist zeitintensiv [SMFFos].

Eine Form der statistischen Punkt-Signatur wurde in [WHHo3] vorgestellt. Sogenannte
Surflet-Pair-Relation Histogramme beschreiben die Oberflichenbeziehung zwischen zwei
benachbarten Punkten tiber ein Referenzkoordinatensystem.

Dieses Prinzip wurde zu den sogenannten Point Feature Histograms (PFH) [ Aog, RMBBoS,
RBMBo8, Rusog] ausgebaut. Eine Abwandlung der Point Feature Histograms sind die
Fast-Point-Feature-Histograms (FPFH) [RBBog]. Sie gestalten den PFH-Deskriptor weniger
rechenaufwendig. Der PFH-Ansatz ist einer der heute am starksten vertretenen Algorithmen
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3.2. Klassifikation

im Bereich der Objekterkennung und Registrierung ganzer Szenen. Auf Grund seiner
scheinbar guten Ergebnisse ist er einer der spédter untersuchten Algorithmen (siehe 7).

Gegenstand eines etwas anderen Ansatzes zur Berechnung eines Deskriptors, welcher auch
als Punktsignatur betrachtet werden kann, sind die sogenannten Spin-Images [FSMo8, JHgo,
Johgy, CHHgg, HHgg]. Urspriinglich wurden sie zur Objekterkennung entwickelt. Die dabei
erzielten Resultate und die Aussagekraft des Deskriptors sind Anlass, diese beim Einsatz
einer Szenen-Registrierung zu untersuchen (siehe 8).

Bei Principal Curvatures [REF"94] werden Punkte iiber die Oberfliche auf der sie sich
befinden beschrieben. Dazu wird maximale und minimale Kriimmung sowie die Normale
der Oberfldche als Punktsignatur benutzt. Das Berechnen der Kriimmung ist dabei sehr
aufwendig und anfallig fiir Rauschen [SMFFos].

Ein weiterer Ansatz [CYLg8] basiert auf der Principal Component Analysis. Mit ihrer
Hilfe werden die Orientierungen der Hauptachsen zweier Punktwolken bestimmt und
zueinander ausgerichtet. Die Translation wird {iber den Schwerpunkt der Punktwolken
ermittelt. Untersuchungen von [SMFFo5] haben gezeigt, dass dieses Verfahren sehr schnell
ist. Fiir eine erfolgreiche Registrierung miissen sich die Punktwolken jedoch mehr als die
Halfte tiberlappen. Da diese Annahme in den hier untersuchten Szenarien nicht getroffen
werden kann, scheidet dieses Verfahren zur weiteren Untersuchung aus.

Der letzte hier behandelte Deskriptor ist ein, auf den Extended-Gaussian-Images (EGI),
basierender. Grundlegendes Prinzip ist dabei, die Normalen aller Punkte einer Punktwolke
auf eine Gaufi-Kugel aufzutragen. Gleiche Normalen werden an derselben Stelle aufgetra-
gen. Sind viele Normalen sehr dhnlich, erhilt die Gauf3-Kugel an diesen Stellen besondere
Auspragungen und wird als EGI bezeichnet. EGI’s mit dhnlichen Ausprdagungen beschreiben
dieselben Punktmenge. Rotiert werden miissen die Punktwolken so, dass die Auspragungen
tibereinander liegen.

In [Dolos] werden die Normalen von Punkten und segmentierten Flachen verwendet. Bei
[MPIDo6] wird ein EGI fiir eine gesamte Punktwolke erzeugt. Diese Verfahren ist fiir den
Einsatz in einem globalen Registrierungsvorgang gedacht. Dabei werden die EGI’s mit Hilfe
von Kugelflaichenfunktionen (Sphéarische Harmonische) reprasentiert. Mittels Korrelationsko-
effizient konnen diese dann mit geringem Zeitaufwand verglichen werden. Die Translation
wird ebenfalls iiber eine Korrelationsfunktion definiert welche den Uberlappungsbereich der
bereits rotierten Punktwolken bewertet. Das Verfahren arbeitet sehr schnell und erzielt gute
Resultate, erfordert jedoch einen Uberlappungsbereich von mindestens 45%.

Weitere Verfahren

Neben der Verwendung von Deskriptoren existieren noch weitere Verfahren, die nicht naher
klassifiziert werden. Hierzu sind im Folgenden einige Reprasentative vorgestellt.

In [TCC98] wird ein Ansatz vorgestellt, welcher mit Hilfe algebraischer Methoden den
Oberflachenverlauf einer Punktwolke als Polynome reprasentiert. Diese Reprasentation ist
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wenig anféllig fiir Rauschen und bietet eine effiziente Reprasentation zur Korrespondenzsu-
che. Nachteil davon ist jedoch, dass ein Uberlappungsbereich von 85% [SMFFos] gefordert
wird.

Auch genetische Algorithmen haben lingst Einzug gehalten; als Individuum wird in [BS96]
dabei ein Vektor von Korrespondenzen definiert. Mit Hilfe der Punktkoordinaten und
Orientierungen eines Punktes wird eine Fitnessfunktion aufgestellt. Diese bewertet Winkel-
abweichungen und Distanzen.

In [LCE06] wird als Individuum ein sechsdimensionaler Vektor als Individuum verwendet.
Dieser beschreibt die Rotation und Translation um die Koordinatenachsen. Die Fitnessfunkti-
on basiert auf den Least Trimmed Squares [CSKo5]. Generell leiden genetische Algorithmen
unter einer gewissen Willkiir. So sind im Allgemeinen Aussagen tiber die Konvergenz und
Laufzeit schwer moglich.

Ein anderer, auf RANSAC (Random Sample Consensus) basierender, Ansatz wurde von
Chen [CHC] vorgestellt. Dabei werden alle Punktkombinationen, jeweils drei benachbarter
Punkte, der Ziel-Punktwolke betrachtet. Beschrieben werden sie tiber ihre Distanzrelatio-
nen zueinander. In der Daten-Punktwolke werden drei Punkte gesucht, welche dieselben
Distanzrelationen aufweisen. Diese sechs Punkte definieren dann drei Korrespondenzen,
die zur Berechnung einer eindeutigen Transformation ausreichend sind. Wiederholt wird
dies fiir alle Punktkombinationen und resultierenden Korrespondenz Tripletts. Als finale
Transformation wird aus der Menge aller Transformationen diejenige gewdhlt, die am hédu-
figsten berechnet wurde. Das Ergebnis der Registrierung ist beeindruckend, ebenso der
exorbitante Rechenaufwand bei grofien Punktwolken. Dieser kann durch eine zuféllige Wahl
von Tripplets minimiert werden, fiihrt dann allerdings zu einer weniger stabilen Variante.

3.2.2. Feinregistrierung

Die Feinregistrierung versucht eine bereits grobe Ausrichtung zweier Punktwolken zu
optimieren. Im Allgemeinen geschieht dies in einem iterativen Prozess. Dabei wird in jedem
Schritt angestrebt eine Fehlerfunktion zu minimieren. Das Registrierungsproblem kann
dann als Optimierungsproblem betrachtet werden. Trotzdem bedienen sich einige der hier
angesiedelten Algorithmen ebenfalls der Suche nach Korrespondenzen. Diese werden zur
Definition der Fehlerfunktion verwendet.

Eine Unterscheidung der Verfahren ist oft iiber deren Fehlerfunktion, Definition als
Optimierungs- oder Korrespondenzproblem sowie der Methodik zur Bestimmung einer
Transformation realisiert. Hier soll die zugrundeliegenden Idee im Vordergrund stehen, da
eine Verdnderung der vorher genannten Unterscheidungsmoglichkeiten meist nur zu einer
Variante und keinem neuen Verfahren fiihrt.

Der wohl bekannteste hier vertretene Algorithmus ist der ICP (Iterative Closest Point), wie er
von von Besl und McKay [BM9g2] eingefiihrt wurde. Dieser versucht den Abstand zwischen
Korrespondenzen zu minimieren. Von ihm existieren unzéhlige Varianten, die auf Punkt-
wolken geringer Dichte bzw. Punktmenge sehr gut untersucht wurden. Die dabei erzielten
Ergebnisse waren ausschlaggebendes Argument, diesen Algorithmus in die Untersuchungen
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der vorliegenden Arbeit aufzunehmen. Eine genauere Beschreibung wird daher in Abschnitt
9 vorgenommen.

Ebenfalls den Abstand zwischen Korrespondenzen minimierend, arbeitet der von Chow et.
al [CTLo4] entworfene genetische Algorithmus. Dabei wird als Individuum ein sechsdimen-
sionaler Vektor definiert, dessen Eintrdge die drei Rotationswinkel und Verschiebungen in
Richtung der Koordinatenachsen reprasentieren. Mittels Mutation und Crossover wird dann
der Transformationsraum nach der besten Losung durchsucht. Als Fehlerfunktion wird der
Median der Abstiande zwischen Punkt-zu-Punkt-Korrespondenzen verwendet. Da lokale
Minima der Fehlerfunktion mit Hilfe genetischer Algorithmen umgangen werden konnen,
kann iiber die Konvergenzgeschwindigkeit nur wenig ausgesagt werden.

Der letzte hier angesprochene Algorithmus benutzt die durch [BSo3] eingefiihrte Normal-
verteilung von Punkten und wird daher auch NDT (Normal Distribution Transformation)
genannt. Dieses Konzept wurde von Magnusson in [Magog, MLDoy] fiir 3D-Punktwolken
erweitert. Die dabei erzielten Ergebnisse sind sehr gut und fordern, dass auch dieser Algo-
rithmus im weiteren Verlauf genauer zu untersuchen 10 auf Seite 73.
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4. FehlermafBe

M das Ergebnis einer Registrierung evaluieren zu kénnen sind Fehlermafie notwendig.

Diese miissen unabhidngig vom verwendeten Algorithmus vergleichbar sein. Sinnvoll

erscheint es dabei, den Fehler tiber den Unterschied zwischen der korrekten und berechneten
Transformation zu ermitteln.

Mit Hilfe homogener Transformationsmatrizen wird im ersten Teil dieses Kapitels ein dafiir
geeignetes Fehlermafs vorgestellt. Dieses erfasst den verursachten Gesamtfehler einer Regis-
trierung. Eine gesonderte Betrachtung des durch die Rotation bzw. Translation verursachten
Fehlers ist dabei nicht moglich. Sie gibt jedoch Aufschluss iiber die Starken und Schwichen
eines Algorithmus. Daher werden zwei weitere Fehlermafle eingefiihrt, die eine Aussage
beziiglich des Rotations- und Translationsfehlers ermoglichen.

Die korrekte Transformation sei dabei durch die Rotationsmatrix R, und den Translations-
vektor f, gegeben, die berechnete analog dazu, durch R, und f,. Definiert sind diese wie in
Abschnitt 3.1.

4.1. Gesamtfehler

Eine gemeinsame Darstellung von Rotation und Translation ist durch homogene Transfor-
mationsmatrizen (R**%) gegeben. Diese Darstellung ermoglicht es, den Unterschied zweier
Transformationen iiber Matrizen-Normen zu beschreiben.

Verwendet wird die Frobeniusnorm. Sie ist auf dem Korper der reellen Zahlen iiber eine
Vektornorm definiert. Dabei wird eine m x n Matrix (m,n € IN) als m 4+ n dimensionaler
Vektor aufgefasst. Entsprechend der euklidischen Vektornorm lésst sich die Frobeniusnorm
fiir eine Matrix A € R™*" definieren als:

(4-1) Allr =

Sei die korrekte (Rc,ﬂ) und die berechnete Transformation (R, Fc) in homogenen Transforma-
tionsmatrizen ohne Skalierung und Verzerrung durch H¥** und H}** gegeben, dann ist der
Gesamtfehler Eg,s,m: der Registrierung tiber deren Differenzmatrix H; = H. — H, definiert
als:

(4-2) €Gesamt = HHdHF =
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Dieses Maf3 beschreibt den Unterschied zwischen einer berechneten und einer korrekten
Transformation. Dadurch steht es in direktem Zusammenhang zur Giite eines Registrierungs-
ergebnisses. Translation und Rotation werden dabei gemeinsam betrachtet. Unterschiedliche
Abweichungen in Translation und Rotation kénnen dadurch zu einem identischen Fehler
fiihren.

4.2. Translationsfehler

Um das Ergebnis eines Registrierungs-Algorithmus richtig zu deuten muss festgestellt
werden konnen, weshalb sich ein Punkt einer Punktwolke nicht an seiner korrekten Position
befindet. Eine Ursache kann dabei eine fehlerhafte Translation sein.

Der Einfluss der Translation f € R® bei der Transformation eines Punktes p € R® ist durch
fi(p) = p +f gegeben. Wie weit ein Punkt p dabei durch die berechnete Translation félschli-
cherweise verschoben wurde, kann durch den Differenzvektor €r,,,s1ati0n der resultierenden
Punktpositionen zueinander wie folgt gemessen werden:

(43) ETmnslation = ftc _fte
= ptte—p+t+t
= t.—t

Der Translationsfehler ist dabei unabhédngig von der Punktposition eines Punktes p. Das
bedeutet, dass der Translationsfehler auf alle Punkte in selbem Mafse wirkt und reprasentativ
fiir den verursachten Fehler innerhalb einer gesamten Punktwolke steht. Als vergleichbares
Maf3 kann dann die euklidische Norm von €7,4,s14ti0n gebildet werden:

(4-4) €Translation — "gTranslation HZ

4.3. Rotationsfehler

Neben dem Translationsfehler hat auch die fehlerhafte Rotation einer Punktwolke Einfluss
auf die Abweichung der darin enthaltenen Punkte zu deren korrekten Postion.

Analog zum Translationsfehler bestiinde ein Ansatz um diesen Fehler zu erfassen darin, den
Abstand €Rysation zWischen dem korrekt und fehlerhaft rotierten Punkt zu verwenden. Sei die
Rotation R € R® des Punktes p € R? einer Punktwolke gegeben durch fr(p) = R - p, dann
lasst sich dieser beschreiben als:

(4.5) ¢ fr.(p) — fr.(p)
= Rep—Re-p
= (Rc—R.)-p
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Problem dabei ist, dass der Einfluss einer Rotation abhidngig von der Lage eines Punktes ist.
Dadurch ist keine reprédsentative Aussage fiir eine gesamte Punktwolke moglich. Ein Fehler
mit mehr Aussagekraft wird durch die LUB-Norm (lowest-upper-bound) beschrieben:

A
(4-6) |AllL = max H xH:maxHAxH, x € R", A e R""
<0 x| xi=

Der Fehler unter der Matrix-Abbildung A ldsst sich dabei abschitzen als:
(4.7) [Ax| < [[Al[z - [x]

Mit zunehmender Norm von x wird dieser also grofier. Berechnen ldsst er sich mittels
Singuldrwertzerlegung der Fehlermatrix Ry = R; — R.:

(4.8) R; = UDVTmit
uu’ = 1eRr¥>?
Vv = 1eR¥>3

D = diag(oy,02,03) € R®*3

Dabei ist das Bild der Einheitskugel 5? unter der Fehlermatrix R; gegeben durch:

(49)

Tg2_q2
(4.9) Ry-52 & upyre2 VS

UDS?

Dies entspricht einem Ellipsoid mit Halbachsen ¢4, 02, 03 und den Spaltenvektoren von U als
Halbachsenvektoren. Hiermit ldsst sich die LUB-Norm berechnen als:

(4'10) CRotation = ||RdHL:maX(0'1/0'2/0'3)

Dies bedeutet, dass ein Punkt p der filschlicherweise mittels fg,(p) statt fr.(p) rotiert wird,
pro Abstand 1 zum Ursprung einen maximalen Fehler von egytation €rfahrt. Eine genauere
Aufschliisselung des Fehlers in Richtung der Koordinatenachsen der Punktwolke ist durch
eine Projektion des Ellipsoides auf diese moglich. Der daraus resultierende Vektor ist gegben
durch:

(4.11) Crotation = (ex,ey,6y) € R
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5. Testumgebung

DIESES Kapitel beschreibt den Rahmen, in dem die Analysen der einzelnen Algorith-
men durchgefiihrt wurden. Dadurch wird die Moglichkeit gegeben Testergebnisse zu
reproduzieren und nachzuvollziehen.

Zur Analyse der Algorithmen wurde eine in die Software SCENE (siehe Abschnitt 2.1.4)
integrierte Testumgebung implementiert. Dies ermoglicht, die mit dem Laserscanner FocusP
(siehe Abschnitt 2.1) erhobenen Testszenarien (Punktwolken, Farbbilder und Sensorinforma-
tionen) zu verwalten und geméafd Abschnitt 2.2.2 zu filtern.

Die Testumgebung wurde in C + + implementiert. Alle ausgefiihrten Tests und die damit
verbundenen Laufzeitanalysen beziehen sich auf ein mit Microsoft® Windows 7 - 64 Bit
betriebenes System. Die darin enthaltenen Komponenten sind ein Intel® Core i7 Prozessor
mit jeweils 2.2 GHz pro Kern (4 Kerne insgesamt) sowie 8 GB DDR3 Arbeitsspeicher mit
einer Taktfrequenz von 1330 MHz.

Nachdem der Funktionsumfang der Testumgebung erldutert und auf die Implementierung
bzw. interne Funktionsweise eingegangen wurde, werden die zur Analyse herangezogenen
Testszenarien vorgestellt.

5.1. Funktionsumfang

Die Testumgebung wird tiber eine Liste von Konfigurationsdateien gesteuert, die den Funkti-
onsumfang widerspiegeln. Jede Konfigurationsdatei besteht dabei aus zwei unterschiedlichen
Bereichen und entspricht einem Testverfahren.

e Verwaltung - Hier werden die im Wesentlichen zur Verwaltung notwendigen Informa-
tionen definiert. Dazu gehoren Ausgabedateien wie Ereignisprotokolle, Analysedateien
der Registrierungsergebnisse und Informationen tiber einzelne Représentationen einer
Punktwolke (z.B. Deskriptoren (siehe Abschnitt 3.2.1). An dieser Stelle wird auch
die Sub-Sampling-Rate des Uniformen-Sub-Sampling festgelegt. (siehe Abschnitt 6.1).
Auflerdem kann definiert werden, ob Algorithmen sukzessive aufeinander angewendet
werden sollen oder nicht.

e Algorithmen - Dieser Teil besteht aus einer Liste der zu prozessierenden Algorithmen.
Dabei ist fiir jeden Algorithmus ein Parameterset zu definieren Dies kann auf zwei
Arten erfolgen.
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5. Testumgebung

— Normal - Es wird ein einfaches Parameterset definiert, mit welchem der zugeho-

rige Algorithmus prozessiert wird.

— Automatisch - Es wird ein Parameterset definiert, bei welchem fiir jeden Pa-

rameter ein Start- und Endwert sowie eine Schrittweite festgelegt wird. Die
Registrierung wird dann mit allen Kombinationen moglicher Parameter einzeln
ausgefiihrt.

Hier wird auch das rdaumliche Sub-Sampling definiert, welches mehr Funktionen als
nur das Reduzieren von Daten zur Aufgabe haben kann (siehe Abschnitt 7).

Ist ein Testverfahren abgeschlossen werden die erzeugten bzw. transformierten Punktwolken
in einer von SCENE gegebenen Projektstruktur separat gespeichert. Sie ermoglicht auch die
in Dateien exportierte Registrierungsergebnisse zu verlinken. Ermoglicht wird dadurch eine
spdtere Betrachtung aller notwendigen Daten.

5.2. Funktionsweise

Die Funktionsweise der Testumgebung ldsst sich in zwei grundlegende Arbeitsschritte glie-
dern. Diese werden fiir jeden Testlauf und somit fiir jede Konfigurationsdatei durchgefiihrt.

o Initialisierung - In diesem Schritt wird die {ibermittelte Konfigurationsdatei eingele-
sen und falls erforderlich automatische Parametersets fiir Parameteranalysen generiert.
Anschliefiend werden die Punktwolken in bereits gefilterter Form geladen. Die Ur-
spriinge der Punktwolken werden dabei tibereinander gelegt; es ist keine Information
beziiglich der Transformationen vorhanden. Eine Liste der zu prozessierenden Algo-
rithmen wird angelegt.

o Ausfiithrung - Hier wird die Liste der angelegten Algorithmen durchlaufen und nach-
einander ausgefiihrt. Fiir jeden Algorithmus werden dabei die folgenden Teilschritte
durchlaufen:

1.

2.

3
4.
5

. Exportieren und Verlinken der Ergebnisse

Ubermitteln der Punktwolken (von vorherigem Algorithmus falls sukzessiv)

Ausfiihrung des Algorithmus (Registrierung oder Sampling der Punktwolken)

. Speichern der generierten bzw. transformierten Punktwolken in SCENE

Berechnung des Registrierungsfehler

Im Wesentlichen wurden dafiir fiinf, sehr eng miteinander kooperierende, Klassen entworfen
und in C++ implementiert. Augenmerk wurde dabei auf die Trennung von Verwaltung und
Datenhaltung sowie Performanz und Speicherbedarf gelegt.
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5.3. Testszenarien

e SCENE-Punktwolke - Bei dieser Klasse handelt es sich um eine Reprasentation, der in
SCENE gespeicherten Punktwolke. Uber sie kénnen Punktdaten von SCENE geladen,
gespeichert, gefiltert und verdndert werden. Dadurch bildet sie im Allgemeinen die
Schnittstelle zwischen SCENE und der Testumgebung.

e PCL-Punktwolke - Einige der implementierten Algorithmen entstammen der PCL
(Point Cloud Library) [Lib12a]. Sie arbeiten auf einer eigenen Speicherstruktur, welche
durch diese Klasse reprasentiert wird. Diese Speicherstruktur ist in der Lage ver-
schiedene Représentationen einer Punktwolke gleichzeitig zu speichern, den Zugriff
auf diese zu realisieren und bei Bedarf in Dateien zu exportieren. Dazu gehoren z.B
die Orientierungen von Punkten oder Deskriptoren (siehe Abschnitt 3.2.1). Auch be-
werkstelligt sie die Konvertierung einer SCENE-Punktwolke in das PCL-Format und
umgekehrt. Eine PCL-Punktwolke kann mit einer SCENE-Punktwolke verlinkt werden.
Dadurch konnen Daten bei Bedarf geladen, entladen und gespeichert werden. Dies
spart Speicherplatz und erlaubt es, simtliche Zugriffe auf Punktwolken tiber diese
Klasse zu bewerkstelligen.

o Attribut-Container - Der Attribut-Container ist eine Klasse, die in der Lage ist be-
liebige Datentypen zu verwalten. Diese konnen {iiber einen eindeutigen Bezeichner
gespeichert und ausgelesen werden. Ebenfalls bietet er die Moglichkeit alle gespei-
cherten Informationen als String serialisiert auszulesen. Uber ihn kénnen Parameter,
Ergebnisse und Zustdnde kompakt ausgetauscht werden.

e Algorithmen-Basisklasse - Diese Klasse ist abstrakt und dient als normierte Schnitt-
stelle zwischen den Algorithmen und einer beliebigen anderen Klasse. Von ihr muss
ein Algorithmus abgeleitet werden, um in der Testumgebung ausgefiihrt werden zu
konnen. Sie hélt Instanzen von PCL-Punktwolken und Attribut-Containern. Aufierdem
stellt sie Funktionalititen zum Zugriff auf diese bereit.

e Management - Die Management-Klasse ist fiir die Verwaltung und Koordination aller
ablaufenden Prozesse zustdndig. Dazu gehoren die Analyse der Konfigurationsdateien,
die Autogenerierung von Parametersets sowie die Beschaffung der Punktwolken.
Aufierdem ist sie fiir das Ausfiihren der einzelnen Algorithmen, die Fehlerberechnung
und Aufbereitung bzw. Export der Ergebnisse zustandig.

5.3. Testszenarien

Zur Analyse der Registrierungsalgorithmen wurden Punktwolken aus drei verschiedenen
Umgebungen mit Hilfe des Laserscanner Focus®" generiert. Die Testszenarien wurden so
gewadhlt, dass typische Situationen aus allen Anwendungsbereichen reprasentiert werden
(siehe Abbildung 5.1). Sie werden wie folgt unterschieden:

e Indoor-Szenario - Indoor-Szenarien zeigen sich hdufig symmetrisch weil tiberwiegend
Flachen, Kanten und Ecken vorhanden sind. Ihre Ausdehnung (5 — 20 Meter) ist im
Allgemeinen gering. Sensorinformationen wie Kompass oder Inklinometer sind oft
fehlerbehaftet, odometrische Daten jedoch konnen sehr genau erhoben werden. Die
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5. Testumgebung

geringe Ausdehnung fiihrt zu einem meist grofien Uberlappungsbereich. Dieser ist auf
Grund von Verdeckungen jedoch nicht durchgéingig.

e Outdoor-Szenario - Outdoor-Szenarien zeichnen sich durch {iberwiegend runde
Oberflachen und sehr schwache Kanten aus. Thre Ausdehnung entspricht meist der
maximalen Reichweite des Laserscanner (120 m). Zur Bestimmung von Position und
Lage konnen vielerlei Sensoren verwendet werden. Das trdgt zu einer meist guten
Bestimmung einer groben Ausrichtung bei. Der Uberlappungsbereich ist dabei haufig
durchgingig, die Grofle stark von der Distanz der Laserscanner-Positionen abhéangig.

e Hybrid-Szenario - Hybride Szenarien sind eine Mischung aus Indoor- und Outdoor-
Szenarien. Sie beinhalten Flachen, Kanten, Ecken und Rundungen. Ihre Ausdehnung
sowie deren Uberlappungsbereich entspricht der eines Outdoor-Szenarios.

Abbildung 5.1.: Testszenarien - Verschiedene zur Analyse der Registrierungs-Algorithmen verwendete Testsze-
narien. Von links nach rechts: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von oben nach unten: Planare Ansicht,
3D-Ansicht, Korrespondenz-Ansicht.

Die Punktwolken wurden manuell registriert. Eine der Punktwolken, im Folgenden als Ziel-
punktwolke bezeichnet, wurde dabei mit der Position des Laserscanners am Ursprung des
gemeinsamen Koordinatensystems fixiert. Die Andere, im Folgenden als Datenpunktwolke
bezeichnet, wurde transformiert. Die korrekte Transformation wird zur Berechnung des
Registrierungsfehlers benutzt (siehe Kapitel 4) und vor der Prozessierung eines Algorith-
mus entfernt. Dadurch liegen beide Laserscanner-Positionen im Ursprung. Die Aufgabe
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5.3. Testszenarien

Indoor-Szenario | Hybrid-Szenario | Outdoor-Szenario

X o 2.96 ~1.29 —14.50
Translation | y i) -1.33 7.18 7.33

Z (m) 000 —014 451
Rotation | z¢ | 24223 358.08 346.60

Tabelle 5.1.: Korrekte Transformationen der Testszenarien - Aufgefiihrt sind die zum korrekten Ausrichten
der Datenpunktwolke notwendigen Translationen und Rotationen der einzelnen Testszenarien.

eines Registrierungsalgorithmus in der Testumgebung kann dann als das Wiederfinden der
korrekten Transformation fiir die Datenpunktwolke bezeichnet werden.

Einige der Registrierungsalgorithmen sind in der Lage Vorabinformationen (Initiale Trans-
formation) zu verarbeiten. Die von einem Inklinometer erhaltenen Daten sind dufderst zu-
verldssig und prézise. Sie werden direkt auf die Punktdaten angewendet und sind dadurch
implizit vorhanden. Die verbleibende Rotation um die Z-Achse (z € R,0 < z < 360) sowie
die Translation (? =ty by, t; € R3) werden simuliert. Dadurch ist ein szeneniibergreifender
Vergleich der Registrierungsergebnisse moglich. Ein initiales Parameterset T? ist dann wie

folgt gegeben:

(5.1) — {zw, mit (z+ ) € [0,360], p € R

¢ f+& mit eR3

Die Transformationen zur korrekten Registrierung der Datenpunktwolke an die Zielpunkt-
wolke der einzelnen Testszenarien, sind in Tabelle 5.1 aufgefiihrt.
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6. Sub-Sampling

OCHAUFGELOSTE Punktwolken, wie die hier betrachteten, enthalten bis zu 700 Millionen
H Punkte. Diese Datenmenge stellt selbst fiir heutige Prozessoren und parallelisierte
Verarbeitungsschritte eine Herausforderung dar. Speziell bei der Registrierung ist diese
Masse an Punkten oft hinderlich und in der Verarbeitung sehr zeitaufwandig.

Sub-Sampling beschreibt im allgemeinen Sinne die Reduktion von Daten. In diesem Fall ist
damit das Verringern der Anzahl von Punkten in einer Punktwolke gemeint und wird als
eine Verdnderung der Auflosung der Umgebung bezeichnet. Dies wird realisiert, indem von
einer Punktwolke P eine Teilmenge P’ bestimmt wird, sodass P’ C P A P’ # @ gilt. Definiert
seien diese dabei wie in Gleichung 3.2.

Bei den hier verwendeten sphérischen Punktwolken (siehe Abschnitt 2.2.1) lassen sich im
Allgemeinen zwei Klassen des Sub-Sampling definieren [MMRM10]. Diese unterscheiden
sich in der Berticksichtigung der Entfernungsinformation.

In den folgenden Abschnitten wird ein Einblick in die fiir diese Diplomarbeit relevanten
Sub-Sampling Verfahren gegeben. Behandelt werden dabei das zufillige-, diskrete- und
raumliche Sub-Sampling.

6.1. Entfernungsunabhangiges Sub-Sampling

Wie durch die Bezeichnung suggeriert, handelt es sich bei dieser Art des Sub-Sampling um
Verfahren, welche die rdumliche Lage der Punkte einer Punktwolke nicht berticksichtigen.
Nach welchem Muster die zur Reprasentation der Punktwolke herangezogenen Punkte
ausgewdhlt werden, unterscheidet die verschiedenen Verfahren.

e Diskret - Diskret bedeutet in diesem Zusammenhang, dass Punkte in einer diskreten
Schrittweite ausgewidhlt werden. Als Reihenfolge wird dabei Zeile fiir Zeile des 2:D
Rasters, beginnend mit der dem Laserscanner am nichsten liegenden, verwendet. Soll
die Punktwolke P mit n € IN Punkten auf m € IN Punkte reduziert werden, so wird
jeder |m/n]-te Punkt in P’ iibernommen. Ist n mod m # 0, dann gilt [m/n] -n < m.
Dies bedeutet, dass nicht m Intervalle selber Grofse moglich sind. Ausgeglichen werden
kann dies, indem das letzte Element pauschal zu P’ hinzugefiigt oder ignoriert wird.

Diskretes Sub-Sampling kann schnell und speichereffizient realisiert werden. Aufierdem
bliebt die Eigenschaft der Dichteverteilung einer Punktwolke (siehe Abbildung 6.1)
erhalten. Sich in unmittelbarer Ndhe des Laserscanner befindende Bereiche sind nach
dem Sampling noch immer dichter reprasentiert als ferne. Der Zeitaufwand ist hierbei
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6. Sub-Sampling

zu vernachléssigen, da lediglich P durchlaufen werden muss und die entsprechenden
Punkte nach P’ kopiert werden.

Zusitzlicher Zeitaufwand erfordert diese Art des Sub-Sampling nicht, da bereits beim Laden
der Punktwolken entschieden werden kann, welcher Punkt in P’ enthalten sein soll. Dem
Zeitvorteil entgegen wirkt jedoch, wie bei allen entfernungsunabhangigen Sub-Sampling
Verfahren, die resultierende Reprasentation der gesamten Szene.

Ein dem diskreten Sub-Sampling entsprechendes Verfahren wird von der Software SCENE
[FAR12] bereitgestellt. Dieses wird zum Sub-Sampling der in Abschnitt 5.3 vorgestellten
Punktwolken verwendet. Als reprasentative Auflosungen wurden diese auf 1K, 10K, 100K,
1M, 10M (K=Tausend, M=Millonen) Punkte reduziert. Optimierungen der verwendeten
Variante fiihren dazu, dass keine Reduktion auf eine exakte Punktmenge erfolgen kann.

Die verschiedenen Auflosungen enthalten dadurch Abweichungen in der Punktmenge von
+2%.

Abbildung 6.1.: Diskretes Sub-Sampling - Verschiedene Szenen in unterschiedlichen Auflésungsstufen mittels
diskretem Sub-Sampling bearbeitet. Von links nach rechts: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von oben
nach unten: Volle Auflosung, 1M, 100K Punkte. Eine hohe Punktdichte ist im Nahbereich des Laserscanners stets
erhalten.



6.2. Entfernungsabhangiges Sub-Sampling

6.2. Entfernungsabhéangiges Sub-Sampling

Beim entfernungsabhingigen, auch rdumliches oder uniformes Sub-Sampling genannt, wer-
den Punkte ihrer rdumlichen Lage entsprechend betrachtet. Dazu wird tiber eine Punktwolke
P, ausgehend vom Ursprung (Position des Laserscanners), ein Raster erzeugt, welches diese
in einzelne Zellen und somit Teilpunktwolken P; teilt. Meist (so auch bei dem hier verwen-
deten Verfahren) wird dazu eine Voxel-Grid benutzt, dessen Zellen aus Quadern bestehen.
Jede Teilpunktwolke soll nach dem Sub-Sampling durch nur einen Punkt in P’ représentiert
werden. Die Wahl des Reprasentanten kann dabei auf beliebige Art und Weise getroffen
werden. Sinnvoll erscheint dabei meist der Schwerpunkt (S) einer Teilpunktwolke.

Sei k € N die Anzahl der Punkte einer Teilpunktwolke und seien diese, wie in Gleichung
(3.2) definiert, dann berechnet sich dieser wie folgt:

1 k
(6.1) S=+ Z;Pi,

Im Allgemeinen gilt dabei S ¢ P. P’ entspricht dadurch einer Approximation der in P
enthaltenen Daten.

Die Dichte der resultierenden Punktwolke P’ ist weitgehend gleich verteilt. Lediglich an
den Ridndern der Zellen konnen Ballungen auftreten. Damit bleibt die Dichteeigenschaft der
sphédrischen Punktwolke nicht erhalten. Sie wird ersetzt durch eine im Wesentlichen der Gro-
f3e einer Raster-Zelle entsprechenden. (siehe Abbildung 6.3). Dadurch ist auf jeder Auflosung
stets die gesamte Szene reprdsentiert. Wie detailliert einzelne in der Szene vorkommenden
Objekte dabei vertreten sind, hangt von der Anzahl der Punkte ab. Im Allgemeinen kann
jedoch davon ausgegangen werden, dass jedes Objekt relativ zu seiner Grofse mit dhnlich
vielen Punkten und somit in selbem Mafle detailliert reprédsentiert ist.

1e+008

Indoor —+— Indoor ——
Hybrid 024 Hybrid —— 7
Outdoor —+— Outdoor —»—

022

1e+007

02

1e+0068 F

100000

Anzahl Punkte
Zeit (min)

10000 ¢

1000 ¢

100 0.1

0 01 02 03 04 05 06 07 08 09 1 0.1 02 03 04 05 08 07 08 09 1
Zellgrofie (m) ZellgroRe (m)

Abbildung 6.2.: Rdumliches Sub-Sampling Zeit-Punkt-Zellgrofien-Vergleich - Oben: Die Sampling-Rate ist
im wesentlichen von der Ausdehnung einer Szene bestimmt. Unten: Aus der Wahl des Schwerpunktes als
Reprasentant einer Zelle, resultiert ein konstanter Zeitaufwand.
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Abbildung 6.3.: Rdumliches Sub-Sampling - Verschiedene Szenen in unterschiedlichen Auflosungsstufen,
mittels raumlichem Sub-Sampling bearbeitet. Von links nach rechts: Indoor-Szene, Hybrid-Szene, Outdoor-Szene.
Von oben nach unten: Volle Auflésung, 1M, 100K. Eine gleichmaBige Punktdichte ist zu sehen.

Die Anzahl verbleibender Punkte bei variierender Zellgréfie in P’ ist in erster Linie von der
Ausdehnung einer Punktwolke P abhédngig. Ausgedehnte Punktwolken, wie sie meist in
Outdoor- und Hybrid-Szenen entstehen, erfahren bei steigender Zellgrofie eine geringere
Datenreduktion, als Indoor-Szenen (siehe Abschnitt 5.3). Diese zeichnen sich durch eine
geringe Ausdehnung und eine gleichméfiige raumliche Dichte aus (siehe Abbildung 6.2).

Der Zeitaufwand dieses Verfahrens ist im Allgemeinen durch das Berechnen des Reprasen-
tanten in jeder Rasterzelle bestimmt. Im Falle des Schwerpunktes ist dieser konstant und
dadurch von der Anzahl der Punkte in einer Punktwolke abhdngig. Mit sinkender Zellgrofie
steigt die Anzahl der Zellen. Der zur Verwaltung der Zellen notwendige Mehraufwand wirkt
sich ebenfalls auf die Laufzeit aus (siehe Abbildung 6.2).

Das hier beschriebene Verfahren des entfernungsabhédngigen Sub-Sampling wird im Spéteren
als Vorverarbeitung zur Registrierung der in Abschnitt 5.3 vorgestellten Punktwolken verwen-
det. Als reprasentative Auflosungen wurden diese auf 1K, 10K, 100K, 1M ,10M (K=Tausend,
M=Millonen) Punkte reduziert. Da keine exakte Reduktionsrate bestimmt werden kann,
enthalten die verschiedenen Auflésungen Abweichungen von £2% in der tatsdchlichen
Punktmenge.
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6.2. Entfernungsabhangiges Sub-Sampling

Der verwendete Programmcode entstammt der Point Cloud Library [Lib12j] dessen Korrekt-
heit vorausgesetzt wird. Zur Nachbarschaftssuche wird dabei ein KD-Tree verwendet.
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7. Point Feature Histogram (PFH)

ER Point Feature Histogram (PFH) Ansatz entstammt der Idee einer statistischen Be-
D schreibung von Punktumgebungen. Wie bereits in Abschnitt 3.2.1 erwdhnt, wurde diese
im Jahre 2003 erstmals von [WHIHo3] unter dem Namen , Surflet-Pair-Relation Histograms”
(SPRH) eingefiihrt. Verwendet wurden diese zur Objekterkennung. Dabei werden SPRH’s
fiir ein Objekt erzeugt und in einer Datenbank abgelegt. Anschlieffend werden die fiir
eine Punktwolke erzeugten SPRH’s mit dieser Datenbank abgeglichen. Rusu et al. nutzten
diese in [RMBBo8] zur Segmentierung geometrischer Strukturen. Vorteilhaft war dabei, dass
Histogramme bestimmter geometrischer Strukturen, einzigartige Auspragungen aufweisen.
Erweitert und ausfiihrlicher untersucht wurden sie dann in [RBEMBo8, RBBog, Rusog]. Dabei
wurde auch der Begriff Point Feature Histograms gepragt sowie deren Verwendung zur
Registrierung von 3D-Szenen. Anzusiedeln ist der PFH-Ansatz in der Klasse der deskrip-
torbasierten Grobregistrierung. Daher ist er nicht in der Lage Informationen einer initialen
Ausrichtung zu verarbeiten.

In diesem Kapitel wird das Funktionsprinzip des PFH-Algorithmus erldutert. In Abschnitt
Erweiterungen werden Erweiterungen vorgestellt, die Einfluss auf Qualitat und Laufzeit
nehmen. Zuletzt wird eine Variante vorgestellt die dann in Kapitel 11 auf hochaufgelosten
Punktwolken verwendet wird.

7.1. Funktionsprinzip

Soll eine Datenpunktwolke Q an eine Zielpunktwolke P, definiert wie in Gleichung 3.2
registriert werden, dann ist die grundlegende Idee des PFH-Algorithmus fiir jeden Punkt der
beiden Punktwolken ein PFH seiner Umgebung zu erstellen. Anschliefsend werden die PFH
aus P mit denen aus Q verglichen. Ahnliche PFH weisen auf gleiche Punkte hin und werden
als korrespondierend betrachtet. Aus ihrer Punktkoordinaten wird dann die Transformation
berechnet, die alle korrespondierenden Punkte bestmoglich zueinander ausrichtet (siehe
Anhang A).

Das PFH eines Punktes p,; € P beschreibt die Oberfliche C; C P auf der sich dieser befindet.
Definiert ist C; iiber eine Kugelumgebung mit Radius k € R und Mittelpunkt p,. Alle sich
in dieser Kugelumgebung befindenden Punkte p;, € P,1 < i < |P| bilden C,. Im PFH wird
C, tiber die Distanz- und Orientierungsverhiltnisse der sich auf C; befindenden Punkte
repréasentiert. (siehe Abbildung 7.1). Diese werden fiir jedes sich in C; befindende Punktpaar
berechnet. Die vollstindige Berechnung eines PFH liegt dadurch in der Komplexititsklasse
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Abbildung 7.1.: Point Feature Histogramm Deskriptor - Links: Das fiir den Ausgangspunkt (p;) berechnete
PFH beschreibt die Oberfldche einer spezifizierten Nachbarschaft (gestrichelter Kreis). Dazu werden Distanz-

und Orientierungsverhiltnisse zwischen allen darin enthaltenen Punktpaaren (py;, i = [1,5] € IN) erfasst [Rusog].
Rechts: Erweiterte Nachbarschaft des Ausgangspunktes (p;), um die Kugelumgebungen (weif8 hinterlegte Kreise)
seiner Nachbarn (py,,i = [1,5] € IN), zur Berechnung des FPFH.

O(|Cp|?). Fiir eine Punktwolke mit #n € IN Punkten ergibt sich eine Gesamt-Komplexitit von
O(n|CyP).

Das Distanz- und Orientierungsverhaltnis eines Punktpaares wird im PFH in kodierter
Form festgehalten. Priméres Ziel davon ist, ein rotationsinvariantes Bezugssystem[\WIHo3,
RMBBo8] fir diese zu erzeugen. Bewerkstelligt wird dies mit dem sogenannte Darboux-
Frame (siehe Abbildung 7.2) [RMBBo8]. Seien ps, p; € P als zwei sich in der Nachbarschaft
von p, befindenden Punkte definiert, weiter seien ihre zugehorigen Normalen durch 7, und
n; gegeben und sind diese einheitlich zum Standpunkt des Laserscanners ausgerichtet, so
berechnet sich der Darboux-Frame mit Ursprung in ps wie folgt:

(7.1) u = ns
0 = px _PtTPs
[Pt — psll2
w = UuUX0o

Basierend auf diesem Bezugssystem wird das Distanz- und Orientierungsverhiltnis eines
Punktpaares durch das folgenden Quadrupel kodiert:

(7.2) d = |pr—psl2
X = U-ny
_ (pt —ps)
qj = u d
0 = arctanw-n;u-n;

Die urspriingliche Information zweier Punkte und ihrer Normalen (Distanz und Orientie-
rung) ist dann durch vier, statt zwolf Parameter reprasentiert.
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v=(p,-pP,)xV

w=uxVvV

Abbildung 7.2.: Darboux Frame - Geometrische Veranschaulichung des Darboux-Frame (u, v, w) sowie das
berechnete Quadrupel (p; — ps, &, ¢, ) fiir ein Punktpaar (p¢,ps) und dessen Normalen 7n; und n,.[Rusog].

Das, fiir jedes in C, vorkommende Punktpaar, berechnete Quadrupel muss nun im PFH
vermerkt werden. Dies erfordert eine Diskretisierung der im Quadrupel kontinuierlich
vorliegenden Parameter. Dazu wird der Wertebereich jedes Parameters in uniforme Klassen
aufgeteilt. Sei die Anzahl der Klassen pro Parameter b, ergibt sich ein PFH der Groe b* (bei
zwolf Parametern b'?). Jeder Parameterwert kann dadurch einer Klasse zugeteilt werden. In
ihm werden dann die Haufigkeiten der vorkommenden Parameterwerte prozentual zu |Cy|
festgehalten.

Zum Vergleich der so generierten PFH existieren vielerlei Metriken. Ihre Beschreibung ist im
folgenden Abschnitt (7.2) zu finden.

7.2. Erweiterungen

In diesem Abschnitt werden Erweiterungen des PFH-Algorithmus vorgestellt. Diese zielen
auf das Umgehen spezieller Probleme sowie eine Optimierung des Standardansatzes (siehe
Abschnitt 7.1) ab. Im folgenden sind einige dieser, kategorisiert nach ihrem Wirkungsbereich,
erldutert. Eine umfassende Betrachtung aller vorhandenen Erweiterungen und Varianten
fiihrt an dieser Stelle zu weit.

7.2.1. Punktwahl

Viele der berechneten PFH einer Punktwolke, speziell benachbarter Punkte, sind sehr dhnlich.
Dadurch sind bestimmte Bereiche iiberreprasentiert. Die Folge ist, dass sehr hédufig falsche
Korrespondenzen gebildet werden.

Eine Losung fiir dieses Problem ist die Betrachtung nur einer besonders aussagekriftige
Teilmenge der Punktwolke. Sie kann dabei zuféllig, tiber raumliches Sub-Sampling oder
Keypoint-Detektoren, (wie z.B. 3D-SIFT [SCM10]) bestimmt werden. Ein Nachteil dieser
Ansétze ist, dass Teilmengen in beiden Punktwolken bestimmt werden kénnen, die keinen
gemeinsamen Uberlapp mehr bilden.
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7. Point Feature Histogram (PFH)

Eine etwas andere Variante (Persistente PFH) versucht sehr dhnliche PFH zu verwerfen
[RBMBo8]. Hierzu wird fiir jeden Punkt einer Punktwolke ein PFH berechnet. Aus allen
PFH wird dann ein Durchschnittshistogramm PFH,, bestimmt. Anschlieffend wird fiir jedes
PFH die Distanz zu PFH,, berechnet. Aus dieser ldsst sich dann eine Standardabweichung o
zum Durchschnittshistogramm ermitteln. Verworfen werden nun alle PFH, deren Distanz zu
PFH,, Kleiner als « - o ist. PFH deren Distanz grofer ist, werden als einzigartig betrachtet.
Optional wird dies zusétzlich iiber verschiedene Berechnungs-Radien prozessiert. Ist ein
PFH iiber mehrere Radien hinweg einzigartig, wird es als persistent betrachtet. Persistente
PFH sind besonders aussagekriftig, da sie im Allgemeinen robust sind und sich voneinander
unterscheiden.

Wird zu einem persistenten PFH ein sehr dhnliches gefunden, kann mit hoher Wahrschein-
lichkeit von einer korrekten Korrespondenz ausgegangen werden. Der Nachteil dieser
Erweiterung steckt in der Laufzeit. Sowohl der Vergleich zum Durchschnittshistogramm als
auch die Berechnung der PFH iiber mehrere Skalen hinweg ist sehr rechenaufwandig.

7.2.2. PFH GroBe

Die Grof3e eines PFH ist im wesentlichen von der Anzahl (Quadrupel) und der Diskretisie-
rungsrate (b) der Parameter abhédngig. Grundlegend kann gesagt werden, dass ein PFH, je
grofier es ist, die dadurch beschriebene Oberfldche umso genauer repréasentiert. Gleichzeitig
gilt aber auch, dass je grofler das PFH ist, desto zeitaufwandiger der spatere Vergleich in der
Korrespondenzsuche ist.

Rusu [Rusog] kam zu dem Ergebnis, dass die Distanzinformation zwischen zwei Punkten
einer 22 D-Punktwolke nur sehr geringfiigige Aussagekraft tiber die beschriebene Oberfldche
besitzt. Dies basiert auf der Tatsache, dass die Abstinde benachbarter Punkte durch das
Aufnahmeprinzip (siehe Abschnitt 2.2.1) bedingt, nur sehr gering und meist uniform sind.
Diese Erkenntnis erlaubt eine Reduktion des Quadrupels (< d,«, ¢, 6 >) auf ein Triplett der
Form < a,¢,0 >. Die Grofe des PFH reduziert sich dadurch auf b?. Sie erméglicht es die
verbleibenden, aussagekriftigeren Informationen genauer abzubilden (erhchen von b).

7.2.3. Einflussbereich

Der PFH-Deskriptor betrachtet jedes mogliche Punktpaar der zu beschreibenden Oberflache
Cp. Seine Berechnugskomplexitit liegt dadurch in O(|C,|?). Sollen grobe Strukturen als
Merkmale verwendet werden, muss der Radius der Kugelumgebung erhoht werden. Dadurch
wird eine grofiere Oberfliche betrachtet, |C,| wéchst und mit ihr auch die Rechenzeit.

Der in [RBBog] vorgestellte FPFH (Fast Point Feature Histogram) Deskriptor reduziert die
quadratische Komplexitdt des PFH-Deskriptor. Sei p € P dabei der Punkt fiir den ein
FPFH berechnet werden soll. In der Menge K sind alle die Punkte enthalten, die sich in
der Kugelumgebung mit Radius  und Mittelpunkt p befinden. Ein SPFH (Simplified Point
Feature Histogram) wird dann fiir p berechnet, indem das Triplett < a,¢,6 > zwischen
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p und jedem Punkt in K berechnet wird. Anschliefiend wird die Nachbarschaft von p um
die Kugelumgebungen der in K enthaltenen Punkte, erweitert (sieche Abbildung 7.1). Das
resultierende FPFH fiir p wird dann wie folgt berechnet:

Kl 4

1
. FPFH(p) = SPFH — ) — SPFH(k
73 (p) = SPFH(p) + g1 Y. - SPFH(K

Dabei ist wy eine von der Distanz zwischen p und k € K abhéngige Gewichtung, die
den Einfluss der erweiterten Nachbarschaften bestimmt. Sei C, die gesamte, betrachtete
Punktmenge bei der Berechnung des FPFH fiir p, dann ist die resultierende Komplexitdt des
FPFH-Deskriptor O(|C,|).

7.2.4. Metrik

Zur Identifikation korrespondierender PFH miissen diese miteinander verglichen und deren
Ahnlichkeit evaluiert werden. Sowohl Geschwindigkeit als auch die Aussagekraft sind dabei
beeinflussbare Grofien.

Hierzu wurden in [WHHo3, Rusog] verschiedene Metriken vorgestellt. Dabei bezeichnet k
die Klassenanzahl zweier PFH (H und H’), H(i) und H'(i), die fiir die Klasse 1 < i < d
berechneten Werte (siehe Gleichung 7.5 ).

Untersuchungen von [WHHo3] und [Rusog] zufolge liefert die Kullback-Leibler Divergenz
bei hochstem Zeitaufwand die besten Ergebnisse. Die Unterschiede zum Chi-Quadrat-Test
und der Bhattacharyya Distanz sind dabei gering. Qualitativ am schlechtesten schneiden die
restlichen Metriken ab, sind jedoch deutlich schneller. Prinzipiell kann gesagt werden, dass
sich die Qualitdt kontrar zur Laufzeit verhidlt. Dabei sei beachtet, dass sich abhingig von der
Szene unterschiedliche Metriken profilieren kénnen.
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7. Point Feature Histogram (PFH)

k
(7.4) dn(H,H') = ) min(H(i),H'(i)) (Intersection)
i=1
k
di,(H,H) = (H(i) — H'(i)) (Manhattan Distanz)
i=1
k
di,(H,H') = ,|)_(H(i)— H'(i))> (Euklidische Distanz)

du(H H) = Zk: (\/H(z) — \/H’(i)>2 (Jeffries-Matusita)

k
de(H,H') = Y (H(i)—H'(i))*> (Summed Squared Distanz)

k
dg(H,H') = In)_ y/(H(i) — H'(i)) (Bhattacharyya Distanz)
i=1

k N gl (1))2
d2(H H') = Z (H(Z)H(SI (i) (Chi-Quadrat Test, 1.Form)

Il
—

. . . )
dX%(H,H) = Z H) — (1) (Chi-Quadrat Test, 2.Form)

k .
Aoy = Z(H(i)—H/(i))ln H(Zi) (Kullback-Leibler)

7.3. Analysierte Variante

Dieser Abschnitt erldutert die zur Analyse implementierte Variante des PFH-Algorithmus.
Der Fokus wurde dabei auf die Laufzeit gelegt. Zum Einsatz kommt daher ein Persistenz-Test
der nur eine Skala betrachtet. Im Folgenden sind die einzelnen Schritte des Algorithmus
vorgestellt.

Im ersten Schritt wird fiir jeden Punkt beider Punktwolken die Normale bestimmt. Das
Einflussgebiet fiir diese ist iiber den Radius einer Kugelumgebung definiert. Fiir die darin
enthaltenen Punkte wird eine Principal Component Analysis der Kovarianzmatrix durchge-
fiihrt (siehe Kapitel B). Anschlieffend werden alle Normalen in Richtung des Laserscanner-
Standpunktes ausgerichtet. Verwendet wurde dabei das in der Point Cloud Library verfiig-
bare Modul [Lib12h]. Die dabei verwendete Datenstruktur entspricht einem KD-Tree (siehe
Abschnitt 2.3.3) um notwendige Suchoperationen performant durchfiihren zu konnen.

Basierend auf den Normalen wird fiir jeden Punkt beider Punktwolken ein FPFH [Lib12¢]
berechnet. PFH sind auf Grund des zu hohen Rechenaufwandes (Tests ergaben bei diskret re-
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duzierten Punktdaten von 100K und einem Radius von 0,25 Meter, Laufzeiten von bis zu 20
Minuten) nicht performant. Dabei wird das Triplett < &, ¢, 8 > verwendet. Der Wertebereich
jedes Parameters ist dabei auf 11 Klassen festgelegt. Diese werden konkateniert, sodass ein
Histogramm der Grofse 33 entsteht. Es wird dann auf Persistenz bzw. Einzigartigkeit gepriift,
indem ein Vergleich mit dem Durchschnittshistogramm durchgefiihrt wird (Standardabwei-
chung durch Normalverteilung approximiert [Rusog]). Dabei wird, auf Grund ihrer hohen
Aussagekraft, als Metrik die Kullback-Leibler-Divergenz verwendet. Sie soll einen Ausgleich
zu einem nicht tiber mehrere Skalen hinweg, durchgefiihrten Test der Einzigartigkeit bilden.
Verwendet wurde dabei die bereits vorhandene Implementierung der Point Cloud Library
[Lib1i2g, Lib12e].

Die so entstandenen FPFH werden anschliefSend auf Korrespondenzen untersucht. Zum
Vergleich der FPFH wird dabei die Merkmalsdistanz verwendet. Da ein FPFH vektorisiert
werden kann, lasst es sich in einem KD-Tree organisieren. Das, bezogen auf die Merkmals-
distanz, dhnlichste FPFH wird dann iiber eine zeiteffiziente Suche des nichsten Nachbarn
bestimmt. Verwendet wurde dabei die der Point Cloud Library entstammende Variante
[Lib12c]

Die resultierenden Korrespondenzen miissen anschliefiend auf Eindeutigkeit gepriift werden.
Das ist notwendig, da ein FPFH néchster Nachbar zu beliebig vielen anderen sein kann. Tritt
dieser Fall ein, wird nur jene Korrespondenz verwendet, welche die hochste Ahnlichkeit
aufweist. Zusitzlich werden alle Korrespondenzen verworfen, deren Ahnlichkeitsmaf3 (Merk-
malsdistanz) zueinander einen spezifizierten Grenzwert iiberschreitet. Entfernt werden so
Korrespondenzen, deren korrespondierenden FPFH sehr undhnlich sind.

Abschlieflend wird tiber die Punktinformationen der resultierenden Korrespondenzen die
Transformation bestimmt, die alle korrespondierenden Punkte bestmoglich zueinander
ausrichtet. Dies erfolgt mit Hilfe der Singuldrwertzerlegung (siehe Anhang A) [Lib12d].

Eine Korrektheit externer Implementierungen wird dabei vorausgesetzt.
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8. Spin-Images (SI)

DAs Prinzip der Spin-Images (SI) wurde 1997 von Johnson [Johg7] publiziert. Entwickelt
wurden sie zur Objekterkennung. Die Idee dabei ist, von den zu erkennenden Objekten
eine SI Représentation anzufertigen und in einer Datenbank zu speichern. Zur Laufzeit
werden dann die aus einer Szene erzeugten SI mit denen der Datenbank abgeglichen.
Gibt es Ubereinstimmungen, wurde ein Objekt erkannt. Zusétzlich kann dadurch auch die
Ausrichtung eines erkannten Objektes bestimmt werden. Diesem Prinzip entsprechend sollen
im folgenden die SI fiir zwei Punktwolken erzeugt und miteinander verglichen werden,
um Korrespondenzen zu identifizieren. SI konnen keine Lage und Positionsinformationen
berticksichtigen, sind {iber einen Deskriptor definiert und gehdren dadurch zur Klasse der
deskriptorbasierten, grobregistrierenden Algorithmen (siehe Abschnitt 3.2.1).

Im Laufe dieses Kapitels wird das Funktionsprinzip der SI nach [Johg7] erldutert und auf
Erweiterungen dieser eingegangen. AbschlieSend wird die zur Analyse herangezogene
Variante vorgestellt.

8.1. Funktionsprinzip

SI sind Deskriptoren, die fiir einzelne Punkte der Punktwolken berechnet werden. Fiir
diese beschreiben sie ihre darunterliegende Oberfldche. Hierzu wird fiir jeden Punkt eine
Transformations-invariante Rotationsachse definiert. Wird um diese rotiert, werden alle
sich in einem definierten Einzugsgebiet befindlichen Punkte besucht. Diese werden dann in
einem 2D-Bildarray festgehalten. Anschaulich kann das mit einem um eine Achse rotierenden
Blatt verglichen werden, auf welches die durchlaufenen 3D-Punkte aufgezeichnet werden
(siehe Abbildung 8.1). Bereiche an denen viele Punkte aufgetragen werden sind dunkler
reprdsentiert als andere.

Zur Erzeugung eines SI muss fiir jeden Punkt der Punktwolken eine Normale iiber ein defi-
niertes Einflussgebiet (Kugelumgebung mit Radius 7) berechnet werden. Die Orientierung der
Normale muss fiir alle einheitlich erfolgen, um eine Invarianz gegeniiber Transformationen
zu gewdhrleisten. Fiir Punktwolken wird dafiir im Allgemeinen der Laserscanner-Standort
verwendet. Sei p ein Punkt einer Punktwolke, fiir den ein SI berechnet werden soll und n
beschrieben als die zugehorige Normale sowie P die zur Bestimmung der Normalen berech-
nete Tangentialebene, auf welcher sich p befindet, dann ist eine transformationsinvariante
Basis durch (p, n) definiert. Die Rotationsachse L wird als eine zu n parallel und durch p
verlaufende Linie definiert. Ein in der Umgebung von p liegender Punkt wird dann {iber eine
radiale und axiale Distanz « € R und B € R in zylindrischen Koordinaten beschrieben. Eine
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Abbildung 8.1.: Spin Image Deskriptor - Links: Ein SI wird als eine Abtragung aller 3D-Punkte betrachtet, die
bei einer Ebenen-Rotation um eine definierte Achse besucht werden [JHqg]. Rechts: SI Parameter fiir einen Punkt
p. Nachbarpunkte werden tiber die Basis (p, ;) in zylindrischen Koordinaten (a, 3) dargestellt [Johg7].

Rotation von 360° um L definiert diese zylindrische Umgebung von p. Alle darin enthaltenen
Punkte werden wie folgt in das 2D-SI S, abgebildet:

B R R, 5,0 (0,) = (lx = pla = (0 (= p) - (6 p) )

Da « und B auch negativ sein konnen, hat das theoretische SI eine Grofse von 2« x 2. Zur
tatsdchlichen Repréasentation in einem 2D-Bildarray muss der Wertebereich von a und B
diskretisiert werden. Zur Vereinfachung wird dabei ein quadratisches SI der Grofle W x W
mit W € IN verwendet. Sei b die Schrittweite definiertals W =b-i+0und W =b-j+0,
wobei i € IN die Anzahl der Zeilen des SI und j € IN die Spalten bezeichnet, dann wird der
Punkt x geméf S,(x) an Position (i, j) im diskreten SI abgebildet:

6 =152 -l

An dieser Position wird dann die Anzahl der Punkte, anteilig zur Gesamtzahl projizierter
Punkte, vermerkt.

Zum Vergleich der SI wird standardméfiig der in Bildvergleichen hédufig verwendete lineare
Korrelationskoeffizient [Johg7] eingesetzt. Seien S, und S; zwei diskrete SI, mit jeweils
n = i-j Eintrdgen, dann ist dieser definiert als:

528, (1,)8, (i, 1) — 525, ) 254 (i, )
(83) R(S,,S,) = Y Y Y

2

2
(gsp@ﬁz ~(Es0n) ) (Esioir- (Eson)

Er liefert Werte im Intervall [—1, 1]. Dabei entspricht 1 einer grofien, —1 keiner Ahnlichkeit.
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8.2. Erweiterungen

Dieser Abschnitt behandelt Probleme, die bei der Erzeugung und dem Vergleich von SI auftre-
ten konnen. Parallel dazu wird auch eine Losung prasentiert. Eine ausfiihrliche Betrachtung
findet dabei nicht statt.

Kleine Anderungen der Punktdaten (Rauschen) haben einen direkten Einfluss auf das
resultierende SI [Johg7] eines Punktes. Dadurch konnen fiir korrespondierende Punkte
unterschiedliche SI entstehen. Um dies zu umgehen wird ein Punkt x nur dann auf das SI
abgebildet, wenn dessen Normale 7, zu der von p (1) in folgender Weise kompatibel ist:

(8.4) cos H(ny - ny) < Ay

Ap wird dabei als Support-Winkel bezeichnet.

Verursacht durch das beschriebene Kompatibilitdtskriterium kann ein Spin Image an einer
Positionen (i, j) falschlicherweise keine Eintrége enthalten. Zur Losung dieses Problems wird
zwischen jeweils vier benachbarten SI Positionen bilinear interpoliert [FSMo8, Johg7]. Die
Gewichtungen werden dabei wie folgt berechnet:

(8.5) w, =« —ib, wb:ﬁ—kg—jb

Die resultierenden Eintréage eines SI S, an Position (i, j) sind dann:

(8.6) Sp(i,j+1) Sp(i,j+1)+a(b—wp)
Sp(i+1,j) = Sp(i+1,))+wp(b—wa)
S (1+1]+1) = Spli+1,j+1)+ (wawy)
j) Sp(i,

Sp(i, j) (b= wa)(b —wy)

p

Dadurch entstehen weichere Verldufe innerhalb des SI, die den Prozess der Korrespondenz-
findung verbessern. Allerdings werden dadurch auch feine Details ausgeblendet.

Auf Grund nicht vollstindig tiberlappender Punktwolken weisen korrespondierende Punkte
weiterhin unterschiedliche SI auf. Meist enthalten diese sogar eine unterschiedliche Anzahl
abgebildeter Punkte. Da der Korrelationskoeffizient darauf sehr sensibel reagiert, wird in
[Johg7] ein weiteres Ahnlichkeitskriterium eingefiihrt. Dieses ist eine Mischung aus Korrela-
tionskoeffizient und Normalverteilung. Es berticksichtigt eine unterschiedliche Verteilung
von Punkten. Definiert ist dieses wie folgt:

1
n—3

(8.7) C(Sp,S;) = (arctan (R(Sp, S4)))* — A

Dabei sind S, und S; SI der Punkte p und g, n betitelt die Gréfle der Spin -Images. R
entspricht dem Korrelationskoeffizienten und A gewichtet den Einfluss von R. Das erlaubt
ein Erkennen korrespondierender Punkte mit leicht unterschiedlichen SI.
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8.3. Analysierte Variante

Zur Analyse wurde eine Variante eingesetzt, die aus Modulen der Point Cloud Library
[Lib12a] zusammengesetzt wurde.

Fiir jeden Punkt beider Punktwolken wird die Normale bestimmt [Lib12h]. Das erfolgt mit
Hilfe der PCA (siehe Kapitel B). Der Einzugsbereich wird dabei tiber den Radius einer
Kugelumgebung definiert. Anschliefend wird fiir jeden Punkt ein SI, wie in Abschnitt
8.1 vorgestellt, bestimmt. Dabei wird ein Support-Winkel verwendet, um Ausreifier zu
eliminieren. AufSerdem wird eine bilineare Interpolation (siehe Abschnitt 8.2) durchgefiihrt.
Die Grofse des Spin-Images ist auf 8 x 8 festgelegt.

Um die Korrespondenzsuche in einem zeitlichen Rahmen zu halten und moglichst aussage-
kraftige SI zu extrahieren, wird auch hier der in Abschnitt 7.2.1 eingefiihrte Persistenz-Test
durchgefiihrt. Moglich wird dies durch die Auffassung eines SI als Vektor der Lange i - j. Als
Vergleichsmetrik wird ebenfalls die Kullback-Leibler-Divergenz verwendet.

Zur Bestimmung der Korrespondenzen wird wie bei der analysierten Variante der PFH die
Merkmalsdistanz verwendet. Das erfolgt ebenfalls unter der Betrachtung eines SI als Vektor.
Die Suche nach Korrespondenzen wird dadurch auf die des ndchsten Nachbarn reduziert.
Mit Hilfe eines KD-Tree [Lib12i] (siehe Abschnitt 2.3.3) ist diese Suche effizient moglich.

Die so erhaltenen Korrespondenzen werden analog zu der in Abschnitt 7.3 vorgestellten
Losung auf Eindeutigkeit gepriift. Ein Verwerfung von Korrespondenzen beziiglich eines
spezifizierten Grenzwertes erfolgt ebenfalls tiber die Merkmalsdistanz, welche durch die
Auffassung eines SI als Vektor, im KD-Tree effizient ermittelt werden kann.

Abschliefifend wird aus den Punktkoordinaten der korrespondierenden SI mit Hilfe der
Singuldrwertzerlegung (siche Anhang A) eine Transformation bestimmt [Lib12d].

Die Korrektheit der externen Implementierungen wird vorausgesetzt.
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9. Iterative Closest Point (ICP)

DER 1992 von Besl und McKay [BM9z] vorgestellte Iterative Closest Point (ICP) Ansatz
ist einer der berithmtesten Algorithmen im Bereich der 3D-Registrierung (Klassischer
ICP). Er gehort, wie in Abschnitt 3.2.2 erldutert, zur Klasse der Feinregistrierung. Durch
seine Fahigkeit beliebige geometrische Daten (Punkte, Liniensegmente, Kurven, Oberflichen
(Meshes)) verarbeiten zu konnen, hat er Einzug in nahezu jeden Anwendungsbereich der
Registrierung von 3D-Daten erhalten. Besonders etabliert hat er sich in der Robotik. Aufgaben
wie die Selbstlokalisierung konnen mit Hilfe odometrischer Daten und Objekterkennung in
Echtzeit bewiltigt werden [RLo1]. Die dabei verarbeiteten Datenmengen beschranken sich
jedoch meist auf 1000 — 10.000 Datenpunkte.

Dieses Kapitel stellt das Funktionsprinzip des ICP-Algorithmus vor. Anschlieffend wird ein
Einblick in vorhandene Varianten sowie der in dieser Diplomarbeit untersuchten Variante
(siehe Kapitel 11) gegeben.

9.1. Funktionsprinzip

Der ICP-Algorithmus versucht in einem iterativen Prozess eine Datenpunktwolke (Q) zu
einer Zielpunktwolke (P) auszurichten. Dabei wird vorausgesetzt, dass Q durch eine initiale
Transformation bereits grob an P registriert wurde. Fiir jeden Punkt p; € P, (1 <i < |P|)
wird dabei der néchste Nachbar nn,, € Q ermittelt. Seien P und Q wie in Gleichung (3.2)
definiert, dann ldsst sich dieser beschreiben als:

(9-1) nny, = q;€Q A Vg eQ:|pi—qjll2<llpi—qllz, j1=1.]Q|
\/(Px =42+ (py —4y)* + (P2 —4q2)> pePgeQ

lp =4l

Diese bilden Korrespondenzen, aus denen jene Transformation berechnet wird, die alle
Korrespondenzpunkte bestmdoglich zueinander ausrichtet (siehe Anhang A) . Ein Anwenden
dieser Transformation auf Q entspricht dann einer Minimierung der quadratischen Distanzen
zwischen den Korrespondenzpunkten Betrachtet man die Menge aller Korrespondenzen,
lasst sich dies als Summe der quadratischen Distanzen ausdriicken. Sei durch R und T eine
Transformation wie in Gleichung (3.3) definiert, dann lasst sich diese wie folgt beschreiben:

<l |c|
9-2) EQR,T) = ) ) willpi— (R-q;—T+q))|f

i=1j=1
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Dabei bezeichnet C = {(p;,q;)|pi € P,q; € Q,1 <i < Np,1 < j < N,;} die Korrespondenz-
Menge (siehe Abschnitt 3.1). Die Gewichtung w;; ist wie folgt belegt: w;; = 1 wenn (p;, ;) € K,
ansonsten w;; = 0.

Im Sinne des ICP-Algorithmus wird E(R, T) als Fehler betrachtet und beschreibt, wie weit
zwei Punktwolken von ihrer korrekten Ausrichtung entfernt sind. Uber mehrere Iterationen
des beschriebenen Prozederes hinweg, wird dieser Fehler minimiert. Dadurch definiert der
ICP-Algorithmus das Registrierungsproblem als eine Mischung aus Korrespondenz- und
Optimierungsproblem.

9.2. Varianten

Der vielseitige Einsatzbereich des ICP hat zu einer ungeheuren Vielfalt an Varianten gefiihrt.
In [RLo1] wurde eine Kategorisierung der vorhandenen Varianten tiber mogliche Modifika-
tionen einzelner Arbeitsschritte des ICP vorgenommen. Dabei wurden die sechs Teilschritte
Punktwahl, Korrespondenzfindung, Korrespondenzgewichtung, Korrespondenzverwerfung,
Fehlermafs und Minimierung betrachtet.

Neben der Kategorisierung verschiedener Varianten, wurden diese auch genauer untersucht
und miteinander verglichen. Basierend auf den von Rusinkiewicz et al. [RLo1] durchge-
fiilhrten Untersuchungen soll im Folgenden ein Uberblick der einzelnen Arbeitsschritte,
existierenden Varianten und deren Verhalten gegeben werden.

9.2.1. Punktwahl

Bei der Punktwahl wird grundlegend in der gesamten oder nur teilweisen Verwendung der
involvierten Punktwolken unterschieden. Ziel davon soll eine Reduktion der Datenmenge
sein.

Die vorgestellten Algorithmen erzeugen Teilmengen dabei mittels uniformem, random und
einem auf besonderen Intensitédts- und Farbwerten basierten Sub-Sampling. Rusinkiewicz
et al. selbst fithren in ihrem Vergleich eine neue Sub-Sampling-Strategie ein, bei der nur
die Punkte einer Punktwolke verwendet werden, deren Normalen sehr unterschiedlich sind
(Normal-Space-Sampling). Ziel davon ist es, aussagekraftige Reprasentanten der Punktwol-
ken zu erhalten. Generell konnen die Teilmengen von beiden oder nur einer Punktwolke
sowie in jeder oder nur der ersten Iteration (Random-Sampling) erzeugt werden.

Auf das Konvergenzverhalten und die Qualitdt der Ergebnisse haben verschiedene Sub-
Sampling-Strategien bei rauschfreien Daten keinen Einfluss. Ein beidseitiges Sub-Sampling
erzielt geringfiigig hohere Genauigkeiten als das einseitige. Konkrete Laufzeiten werden an
dieser Stelle nicht genannt. Als Abschitzung kann dafiir das Konvergenzverhalten im Falle
einer einmaligen Sub-Sampling-Strategie herangezogen werden.
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9.2.2. Korrespondenzfindung

Die Suche von Korrespondenzen und somit des ndchsten Nachbarn ist der zeitaufwandigs-
te Arbeitsschritt des ICP. In [NL.Hoy, FBF77, EMSSg6] werden KD-Trees (siehe Abschnitt
2.3.3) und Cached-KD-Trees beschrieben. Diese erlauben eine effiziente Suche des néachsten
Nachbarn in O(log(n)) anstelle von O(n) (siche Abschnitt 2.3.3). Wird eine vektorisierbare
Représentation von korrespondierenden Elementen verwendet, kann diese Suchvariante mit
jeder beliebigen, im Folgenden betrachteten Modifikation kombiniert werden. Unterschieden
werden diese in der Art der Korrespondenzen und der Auffindung dieser verwendeten
Technik.

Waéhrend der klassische ICP Punktkorrespondenzen (Point-to-Point) (siehe Abbildung 9.1)
basierend auf Positionsdaten ermittelt, verwenden Varianten[JKg7] zusatzlich Farbinforma-
tionen der Punkte. Ergebnissen zufolge kann dadurch die Genauigkeit und Anzahl benétigter
Iterationen reduziert werden. Als Normal-Shooting (Point-to-Plane) (siehe Abbildung 9.1)
bezeichneten Rusinkiewicz et al. eine Variante, die der Normalen eines Datenpunktes (Punkt
aus Datenpunktwolke) zur Oberfliche der Zielpunktwolke folgt und den dort getroffenen
Punkt als korrespondierend betrachtet. Ein Ausbilden falscher Korrespondenzen aufgrund
von Ausreiflern oder versetzten Oberflachenverldufen die sich als geringste Punkt-zu-Punkt-
Distanz anbieten wiirden, soll dadurch verhindert werden Reverse-Calibration projiziert
(Point-to-Projektion) (siehe Abbildung 9.1) einen Zielpunkt iiber den Ursprung der Daten-
punktwolke auf selbige. Dadurch ist keine Suche des ndchsten Nachbarn notwendig. Fiir all
diese Ansitze kann die Bestimmung des nédchsten Nachbarn durch Informationen wie Nor-
malen, Farbe oder Intensitédt eines Punktes optimiert werden. Diese Informationen werden
auch Kompatibilititen genannt. ICP-Varianten, die diese Informationen nutzen, tragen daher
auch den Namen , Iterative Compatible Point”.

Rusinkiewicz et al. kamen zu dem Ergebnis, dass der Point-to-Point Ansatz kombiniert
mit einer Normalenkompatibilitat (Punkte mit Winkeldifferenz der Normalen < 45°), das
qualitativ beste Ergebnis bei bestem Konvergenzverhalten erzielt. Der Zeitaufwand ist dabei
deutlich geringer als bei Point-to-Plane mit Normalenkompatibilitdt. Sowohl Qualitét als
auch Konvergenzverhalten sind dabei jedoch besser als beim Point-to-Projektion Ansatz.
Dieser schneidet diesbeziiglich am schlechtesten ab, ist aber auch am schnellsten. In den
Untersuchungen wurden rauschfreie Daten verwendet. Die Sensibilitdt der Normalen auf
Rauschen fiihrt im Allgemeinen zu schlechten Ergebnissen. Generell kann aber gesagt
werden, dass diese Modifikationen das Bilden schlechter Korrespondenzen unterbinden.

9.2.3. Korrespondenzgewichtung
Mit Hilfe einer Gewichtung soll in diesem Schritt der Einfluss einzelner, als besonders gut
erachteter Korrespondenzen auf das Fehlermafs verstarkt werden.

Als Variationen werden die konstante (alle Korrespondenzen gleich gewichtet), die ent-
fernungsabhidngige (je kleiner die Distanz, desto hoher die Gewichtung), die kompati-
bilitditsabhédngige (je dhnlicher die Normalenrichtungen oder Farbwerte desto hoher die
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Abbildung 9.1.: Korrespondenz-Findung - Links: Point-to-Point Korrespondenz; der néchste Nachbar (minima-
les Distanz ds) zu p ist q. Mitte: Point-to-Plane Korrespondenz; g ist Schnittpunkt des Normalen-Strahles von p
und korrespondiert. ¢ entspricht der Projektion von p auf die Tangentialebene deren Berithrpunkt g ist. Rechts:
Punkt p wird vom Ursprung der Datenpunktwolke aus (Og) auf die Zielpunktwolke vorwérts-projiziert. Mittels
Ursprung der Zielpunktwolke (Op) wird p vor der Projektion ermittelt. [PSo3]

Gewichtung) und eine auf dem Rauschverhalten des Laserscanner basierte Gewichtung
vorgestellt. Bei Letzterer wird jedem Punkt, basierend auf einem Rauschmodell des verwen-
deten Entfernungssensors, eine Wahrscheinlichkeit zugeordnet. Diese beschreibt, ob und
wie stark ein Punkt fehlerbehaftet ist (ein hohe Wahrscheinlichkeit entspricht einer geringer
Gewichtung).

Die durchgefiihrten Untersuchungen haben gezeigt, dass die entfernungsabhingige und
kompatibilitdtsabhdngige Gewichtung prinzipiell die Anzahl der Iterationen minimieren
konnen, dies aber stark datenabhédngig (Rauschen etc.) ist. AufSerdem entspricht die entfer-
nungsabhédngige Gewichtung der im folgenden Abschnitt vorgestellten Grenzwertverwer-
fung. Abschlieflend wird festgestellt, dass der generelle Einfluss von Gewichtungen auf das
Endergebnis gering und somit zu vernachldssigen ist.

9.2.4. Korrespondenzverwerfung

In diesem Schritt wird versucht einem definierten Qualititsmaf} entsprechend schlechte
Korrespondenzen zu erkennen und zu eliminieren. Dies soll Qualitdt und Korrespondenz-
verhalten des Algorithmus verbessern.

Eine vorgestellte Modifikation benutzt dazu die Entfernung der Korrespondenzpunkte. Dabei
werden alle Korrespondenzen verworfen, deren Punkt-zu-Punkt-Distanz einen spezifizierten
Grenzwert liberschreitet.

Ein etwas variabler Grenzwert wird von einer anderen Variante verwendet. Dabei werden
die 1% schlechtesten Korrespondenzen, beziiglich ihrer Punkt-zu-Punkt-Distanz verworfen.
Ein weiterer Ansatz vergleicht die Punkt-zu-Punkt-Distanz benachbarter Korrespondenzen
und verwirft AusreifSer.

Als dhnliche Variante wurde auch das Verwerfen von Korrespondenzen, deren Punkt-zu-
Punkt-Distanz grofser als das Vielfache der Standardabweichung aller Korrespondenzen ist,
vorgestellt. Einem generellen Problem folgend entfernt die letzte betrachtete Modifikation
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Abbildung 9.2.: Korrespondenzverwerfung - Links: Randbereiche der Oberfldchen fithren hédufig zur Bildung
falscher Korrespondenzen. Rechts: Die Korrespondenzen an Randbereichen wurden verworfen.

Korrespondenzen, deren Punkte auf dem Rand einer Oberfldche liegen (siehe Abbildung
9.2).

Rusinkiewicz et al. kamen zu dem Schluss, dass Stabilitit und Genauigkeit durch das
Entfernen von ausreiflenden Korrespondenzen verbessert werden kann. Die Konvergenzge-
schwindigkeit jedoch bleibt davon nahezu unbeeinflusst.

9.2.5. FehlermaB und Minimierung

In diesem Abschnitt werden zwei Arbeitsschritte auf Grund ihres engen Zusammenhangs
gemeinsam betrachtet. Dabei kann das Fehlermafd verdndert und abhingig davon auf
verschiedene Art und Weise minimiert werden. Der Minimierungsschritt beinhaltet dabei
auch die Berechnung der Transformation.

Der klassische ICP verwendet als Fehlermafs die Summe quadratischer Distanzen der ge-
fundenen Korrespondenzen. Minimiert werden kann dieses Fehlermafs mittels Singular-
wertzerlegung (siehe Anhang A), orthonormalen Matrizen, Quaternionen und Dual-Zahl
Quaternionen. Diese wurden in [EL.F97] genauer auf Prazision und Stabilitdt hin mit dem
Ergebnis untersucht, dass ihre Unterschiede nur sehr gering sind.

Ein weitere von Rusinkiewicz et al. erwdhnte Variante erweitert die Metrik der Summe
quadratischer Fehler auf zusatzliche Farbinformationen.

Der in Abschnitt 9.2.2 vorgestellte Point-to-Plane Ansatz wurde mit einer eigenen Metrik
eingefiihrt. Diese beschreibt die Summe der quadratischen Abstidnde eines jeden Zielpunktes,
zu der Tangentialebene, deren Beriihrpunkt dem korrespondierenden Datenpunkt entspricht.
Dieses Fehlermaf$ erfordert, auf Grund seiner nicht-linearen Form, ein Losungsverfahren,
wie z.B. das Levenberg-Marquard-, das erweiterte Gauf3-Seidel- oder das Newton-Raphson-
Verfahren.

Betrachtete man die Minimierung iiber mehrere Iterationen hinweg, konnen verschiedene
Strategien zum Minimieren des gesamten Fehlers verwendet werden. Ein recht geradliniges
Verfahren bestimmt dabei in jeder Iteration eine Menge von Korrespondenzen und eine
Transformation, die ihren Abstand zueinander minimiert.

Der klassische ICP verwendet neben diesem eine zusitzliche Extrapolation im Transformati-
onsraum. Uber den Transformations- und Fehlerverlauf bisheriger Iterationen,wird dabei
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approximiert und extrapoliert. Ausreiffende Transformationen werden dann geringfiigig
korrigiert, wodurch das Konvergenzverhalten verbessert wird.

Eine Brute-Force dhnliche Methode wurde ebenfalls untersucht. In dieser wird der ICP mit
verschiedenen initialen Transformation prozessiert. Als endgiiltige Transformation wird
die gewdhlt, die den geringsten Fehler verursacht. Auf diese Art und Weise konnen lo-
kale Minima der Fehlerfunktion tibersprungen werden. Dem selben Ziel folgend wurde
ein Simulated-Annealing Ansatz vorgestellt. Er wurde jedoch auf Grund seines hohen
Rechenaufwandes nicht weiter untersucht.

Der zuletzt betrachtete Ansatz verwendet in jeder Iteration eine zuféllige Teilmenge von
Korrespondenzen. Minimiert wird mit den Korrespondenzen, deren Fehler am geringsten
ist. Der Ansatz erfordert einen hohen Zeitaufwand und enthilt Zufallselemente, dessen
Ausgang schwer zu bestimmen ist.

9.3. Analysierte Variante

Die zur Analyse verwendete Variante soll aussagekraftige Ergebnisse zu den in Abschnitt
1.2 genannten Kriterien (Konvergenz, Effizienz, Stabilitdt und Reproduzierbarkeit) liefern.
Basierend auf den Ergebnissen von [RLo1] wurde daher entschieden, die in der Point Cloud
Library vorhandene Variante des ICP [Lib12f] in leicht veranderter Form zu verwenden.

Gemafs der im vorherigen Abschnitt beschriebenen Kategorisierung ist sie wie folgt zusam-
mengestellt:

e Punktwahl - In jeder Iteration werden die gesamten Punktwolken verwendet. Eine
Reduktion der Daten kann im Vorfeld mit Hilfe der in Kapitel 6 vorgestellten Verfahren
gewdhrleistet werden.

e Korrespondenzfindung - Als Korrespondenzen werden Punkt-zu-Punkt Korrespon-
denzen verwendet. Farb- oder Normaleninformationen werden auf Grund des zusétzli-
chen Rechenaufwandes nicht betrachtet. Die Suche des nichsten Nachbarn wird mittels
KD-Tree (siehe Abschnitt 2.3.3) durchgefiihrt.

e Korrespondenzgewichtung - Alle Korrespondenzen werden gleich gewichtet (kon-
stante Gewichtung), da der Einfluss von Gewichtungen sehr gering ist und teilweise
iiber die Korrespondenzverwerfung gesteuert werden kann.

e Korrespondenzverwerfung - Zur Verwerfung schlechter Korrespondenzen wird die
entfernungsabhingige Verwerfung verwendet. Dabei werden korrespondierenden
Punkte, deren Distanz zueinander einen spezifizierten Grenzwert tibersteigt, verwor-
fen. Dieser wird im folgenden als Korrespondenzgrenzwert bezeichnet. An dieser
Stelle wurde die in der Point Cloud Library vorhandene Variante modifiziert. Diese
verwendet zusétzlich die Verwerfung ausreiffender Korrespondenzen, basierend auf
einem RANSAC-Ansatz. Aufgrund des dadurch eingefiihrten Zufallselementes und
der damit verbundenen Verletzung der Reproduzierbarkeit wurde sie entfernt.
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e Fehlermafs und Minimierung - Basierend auf der Wahl der Korrespondenzfindung,
wird die Summe der quadratischen Distanzen (siehe Gleichung (9.2)) verwendet. Mittels
Singuldrwertzerlegung wird minimiert (siehe Anhang A).

Das Verfahren konvergiert, wenn die folgenden drei Bedingungen (Abbruchbedingungen)
erfiillt sind:

1. Transformationsgrenzwert - Die Differenz der berechneten Transformationen zwi-
schen aktueller und vorheriger Iteration ist geringer, als ein spezifizierter Grenzwert.

2. Fehlergrenzwert - Der berechnete Fehler (Summe der quadratischen Distanzen) ist
geringer als ein spezifizierter Grenzwert.

3. Iterationen - Eine spezifizierte Anzahl von Iterationen wurde ausgefiihrt.
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ER Normal Distribution Transformation Ansatz (NDT) wurde erstmals von Biber und
Strasser [BSo3] im Jahre 2003 vorgestellt. Urspriinglich war dieser fiir zweidimensionale
Punktdaten konzipiert (2D-NDT). Ripperda [Ripo5] konzipierte 2005 eine aus 2D-Schnitten
beschriebene 3D-Variante. 2007 erweiterte Magnusson [MIL.Do7] diesen fiir den Einsatz in
autonomen Minenfahrzeugen vollstindig auf den dreidimensionalen Raum (3D-NDT). In
seiner zwei Jahre spiter erschienenen Dissertation [Magog], wurde dieser genauer untersucht.
Durch die Fahigkeit initiale Transformationen verarbeiten zu konnen, gliedert er sich in
die Klasse der feinregistrierenden Algorithmen ein. Sein Haupteinsatzgebiet wird dabei in
der Navigation autonomer Roboter und dem Erstellen von Umgebungskarten aus dichten
3D-Punktwolken gesehen.

Im Laufe dieses Kapitels wird die Funktionsweise des 3D-NDT vorgestellt. Aufierdem
wird ein Uberblick moglicher Erweiterungen sowie der in Kapitel 11 untersuchten Variante
gegeben.

10.1. Funktionsprinzip

Dreh- und Angelpunkt des NDT liegt in seiner Représentation der Zielpunktwolke P (siehe
Gleichung (3.2)). Diese wird wie beim rdumlichen Sub-Sampling (siehe Abschnitt 6.2) in ein
Gitter zerlegt, das aus uniformen Zellen besteht. Fiir jede Zelle B wird dann der Schwerpunkt
g und die Kovarianzmatrix C der darin enthaltenen Punkte b; gebildet.

1
(10.1) qg = 1B] b, BCP
i=1

L] .
C = ’B_1|;(bz_q)(bl_q)

1

Diese modellieren die Normalverteilung N(g, C) der in Zelle B vorhandenen Punkte. Um eine
aussagekraftige Kovarianzmatrix zu erhalten sind dazu mindestens fiinf Punkte notwendig
[MLDo7]. Weiter kann darauf basierend eine Wahrscheinlichkeitsdichtefunktion (PDF) p(x)
definiert werden:

(10.2) p(x) = 1exp (— (e —q)"C(x - q)> , xeR®

c 2
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Diese beschreibt die Wahrscheinlichkeit, dass in Zelle B ein Punkt an Position x vorkommt.
Die Konstante ¢ dient zur Normalisierung und kann in diesem Fall als 1 festgelegt werden
[MLDo7].

Sei T(e, q;) eine Transformationsfunktion, die einen Punkt g; aus der Daten-Punktwolke Q
(die an P registriert werden soll) gemaf einer Pose ¢ im R® transformiert. Die Pose e ist
dabei durch eine Translation und Rotation, wie in Gleichung (3.3) gegeben. Mit eulerschen
Winkeln ist diese dann beschrieben als:

(10‘3) e = (IPI 9/ 4)/ tXI ty/ tZ) 7 O S 7«,01 6/ 4) S 3600/ tXI ty/ tZ € RB

Eine Bewertungsfunktion s(e), die eine Giite der Ausrichtung von Q zu P liefert, wird dann
definiert als:

Q
(104) s(e) == p(T(e.q:))

i=1

Dies entspricht der negierten Summe der Wahrscheinlichkeiten, mit denen Punkte aus Q,
unter der Pose ¢, zu denen in P korrelieren.

Da die Fehlerfunktion iiber eine PDF definiert ist, existieren fiir diese stetige Ableitungen
erster und zweiter Ordnung. Diese erlauben, das Registrierungsproblem als nichtlineares
Optimierungsproblem der Form

(10.5) HAe = —g

mit Hessematrix H und Gradienten g von s(e) zu definieren. Gelost werden kann es mit Hilfe
numerischer Optimierungsverfahren. Wird dabei das iterative Newton-Verfahren verwendet,
wird die Transformationsanderung Ae in jeder Iteration zu der bisherigen hinzugefiigt. Fiir
Punkte aus Q gilt dann in jeder Iteration:

(10.6) q: = T(e+ Ae,q;) — q

10.2. Varianten

Einige Bereiche des NDT lassen sich in Hinblick auf Qualitdt, Laufzeit und Einsatzbereich op-
timieren. Ein Uberblick bisheriger Modifikationen wird im folgenden gegeben. Der Anspruch
auf Vollstandigkeit wird und soll dabei nicht erhoben werden.

Wie bereits erwdhnt stellten Ripperda und Brenner [Ripos] ebenfalls eine 3D-Variante des
NDT vor. Dabei wird eine 3D-Punktwolke in 2D-Scheiben zerlegt. Auf diesen kann dann der
von Biber und Strasser [BSo03] vorgestellte Algorithmus ausgefiihrt werden. Nachteil dieses
Verfahrens ist, dass nur auf einer Ebene (Scheibe) registriert werden kann. Dies bedeutet,
dass die Punktwolken auf der selben Hohe erzeugt worden sein miissten, was selten der Fall
ist.
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In [KTMAo08] wurde eine Erweiterung vorgestellt, die ebenfalls auf dem 2D-NDT basiert. Bei
dieser wird die Kovarianzmatrix einer Zelle in jeder Iteration leicht abgeschwécht. Dadurch
entsteht eine , verblasste” Reprasentation der Punktwolke. Kaminade et al. erzielten dadurch
auf zweidimensionalen Daten eine hohere Genauigkeit als mit der von Biber und Strasser
[BSo3] prasentierten Variante.

Magnusson [Magog] beschreibt mehrere Erweiterungen seines eingefiihrten 3D-NDT. Diese
behandeln im Allgemeinen die Wahl der Zellgrofsen, was als Art der Diskretisierung einer
Punktwolke interpretiert werden kann. Dabei wird eine auf einem Octree (wie KD-Tree (siehe
Abschnitt 2.3.3) aber mit acht statt zwei Kindern je Knoten) basierende Methode beschrieben.
Diese verfeinert durch Zerlegung in kleinere Zellen Bereiche einer Punktwolke, wenn die
Varianz der Normalverteilung einen spezifizierten Grenzwert iibersteigt. Ziel dabei ist es,
markante Bereiche genauer zu untersuchen. Der Octree dient dabei zur Beschleunigung der
Punkt-Zell-Vergleiche und Verwaltung der unterschiedlichen Zellhierarchien.

Als weitere adaptive Variante wird eine Segmentierung der Punktwolke vorgestellt. Jedes
erkannte Segment wird dabei als eine Zelle reprasentiert.

Ein anderer Ansatz verringert die Zellgrofse von Iteration zu Iteration. Dies hat den Effekt
einer Grob-zu-Fein-Registrierung.

Die trilineare Interpolation ist eine 3D-Erweiterung der in [BSo3] bereits vorgestellten Glat-
tung der Normalverteilungsfunktion. Diese wird dabei fiir eine Zelle in Abhédngigkeit der
benachbarten acht berechnet. Dadurch entsteht ein achtfacher Berechnungsaufwand, wie
Magnusson selbst berichtet.

Takeuchi [TTo6] prasentierte eine Modifikation, deren Besonderheit in der Wahl der Zellgro-
3en liegt. Dabei wird die Zellgrofie mit der Entfernung zum Laserscanner erhoht. Dadurch
werden entfernte rauschbehaftete Bereiche weniger detailliert reprasentiert als nahe. Die auf
einer Indoor-Szene durchgefiihrten Untersuchungen erbrachten gute Ergebnisse.

10.3. Analysierte Variante

Die zur Analyse verwendete Variante entstammt der Point Cloud Library [L.ib12b]. Diese ent-
spricht der in [Magog] vorgestellten Variante. Die Korrektheit der dortigen Implementierung
wird vorausgesetzt.

Als PDF wird dabei eine Mischung aus Normalverteilung und uniformer Verteilung von
Punktdaten verwendet. Diese ist definiert als[Mago9]:

—_N\T-1(y —
(10.7) p(x) = c1exp (_(x 9) C2 (x q))+c2po

Dabei beschreibt pg die Rate erwarteter Ausreifier in den Punktdaten. Die Konstanten c¢; und
c2 werden so gewdhlt, dass die Summe aller Wahrscheinlichkeiten 1 ergibt. Dadurch kann
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der nicht unerhebliche Einfluss von Ausreiflern auf die Bewertungsfunktion limitiert werden.
In der verwendeten Implementierung werden die Konstanten wie folgt belegt:

(10.8) cg = 10-(1—po)
1

2 = (ZellgroBe)3

Die so definierte PDF fiihrt zu nicht trivialen ersten und zweiten Ableitungen der zu
optimierenden Fehlerfunktion. Daher wird diese {iber eine GaufSssche Normalverteilung
approximiert [Magog]. Der Einfluss eines Punktes x auf die Bewertungsfunktion ist dann
gegeben durch:

(10.9) p(x) = —diexp <—dzz(x —q) C T (x - q))
di = —log(ci —c2) —log(ca)
d = —2log <(_ log(c1 exp (_;) +02)+ 108(C2)>
1

Zur Reprasentation der Zellen wird ein Voxel-Grid, wie bereits in Abschnitt 6.2 erwéhnt,
mit konstanten, gleichseitigen Quadern verwendet. Zur Optimierung wird das iterative
Newton-Verfahren unter Verwendung der Moré-Thuente Variante [MTMpg2] eingesetzt.

Als Konvergenzkriterium werden die folgenden Bedingungen verwendet:

1. Tranformationsgrenzwert Die berechnete Transformationsénderung ist geringer als
ein spezifizierter Grenzwert.

2. Iterationen Eine spezifizierte Anzahl an Iterationen wurde ausgefiihrt.
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ZIEL dieses Kapitels ist es, die Eignung punktbasierter Registrierungsalgorithmen auf
hochaufgelosten Punktwolken zu kldren. Analysiert werden dazu die bereits vorgestell-
ten Varianten der Registrierungsalgorithmen PFH (siehe Abschnitt 7.3), SI (siehe Abschnitt
8.3), ICP (siehe Abschnitt 9.3) und NDT (siehe Abschnitt 10.3).

Verwendet wird der in Kapitel 5 beschriebene Aufbau. Dabei werden die drei vorgestellten
Testszenarien 5.3 in den diskreten und rdumlichen Auflosungen 1K, 10K, 100K, 1M, 10M
(K=Tausend, M=Millonen) (siehe Kapitel 6) registriert.

Die folgenden vier Unterkapitel befassen sich mit den Analysen der jeweiligen Algorithmen.
Dabei werden zuerst die einzelnen Parameter studiert. Auf Grund sehr langer Laufzeiten
wird dabei eine Aufldsung von 100K verwendet. Dies entspricht beim rdumlichen Sub-
Sampling einer Zellgréfle von 0,06 m fiir das Indoor-Szenario bzw. 0,25 m fiir Hybrid-
und Outdoor-Szenario. Anschlieflend werden die in 1.2 erwdhnten Anforderungen der
Konvergenz, Effizienz und Stabilitdt untersucht. Die Reproduzierbarkeit muss nicht weiter
untersucht werden, da diese bereits durch die Wahl der Varianten gewéhrleistet ist.

11.1. Point Feature Histogram

Der PFH Algorithmus ist nicht in der Lage Vorabinformationen zu verarbeiten. Eine initiale
Ausrichtung der Punktwolken ist daher durch das Platzieren der Punktwolken mit der
Position des Laserscanners auf dem Ursprung des gemeinsamen Koordinatensystems (siehe
Abschnitt 5.3) gegeben. Die initialen Fehler dazu sind in Anhang C einzusehen.

Die hier analysierte Variante des PFH Algorithmus kann im Wesentlichen {iber den Nor-
malenradius, den Merkmalsradius, die Abweichung vom Durchschnittshistogramm und
den Korrespondenzgrenzwert gesteuert werden. Mit Hilfe dieser Parameter sollen moglichst
aussagekriftige FPFH aus Ziel- und Datenpunktwolke extrahiert werden. Davon wird sich
eine Berechnung moglichst weniger aber dafiir korrekter Korrespondenzen erhoftt.

11.1.1. Normalenradius
Die Suche nach besonders aussagekriftigen FPFH kann auch als Suche nach moglichst

unterschiedlichen FPFH betrachtet werden. Die Normale eines Punktes bildet hierfiir die
Grundlage und sollte daher so berechnet werden, dass die tatsdchliche Orientierung eines
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Punktes moglichst genau reprasentiert wird. Ist dies nicht der Fall kann die anschliefSend
grobe Klassifizierung im Histogramm zu dhnlichen oder gar gleichen FPFH fiihren.

Zur Untersuchung des Normalenradius wurde ein Merkmalsradius gewdhlt, der auch bei
einer rdumlichen Reduktion der Punktdaten ausreichend viele Nachbarn eines Punktes
betrachtet. Eine Verwerfung der Merkmale durch Priifen der Einzigartigkeit sowie eine
Verwerfung von Korrespondenzen iiber einen Korrespondenzgrenzwert erfolgte dabei nicht.
Lediglich die Eindeutigkeit der Korrespondenzen wurde abgefragt. Die resultierende Anzahl
an Korrespondenzen gibt dadurch Aufschluss iiber die Ahnlichkeit der FPFH. Eine geringe
Anzahl von Korrespondenzen bedeutet, dass viele FPFH der Zielpunktwolke zu einem FPFH
der Datenpunktwolke (ebenso umgekehrt) korrespondieren, verworfen werden und dhnlich
sind. Bei einer hohen Anzahl resultierender Korrespondenzen sind die FPFH entsprechend
unterschiedlich.

Diskretes Sub-Sampling 100K Réaumliches Sub-Sampling 100K
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Abbildung 11.1.: FPFH Normalenradius - Eine geringe Anzahl von Korrespondenzen indiziert dhnliche FPFH,
eine sehr hohe entsprechend unterschiedliche. Bei raumlichem Sub-Sampling verbessert sich mit einer steigenden
Anzahl unterschiedlicher FPFH das Registrierungsergebnis.

Basierend auf den Ergebnissen in Abbildung 11.1 kann gesagt werden, dass eine Wahl des

Normalenradius grofier als der Merkmalsradius keine Verbesserung des Registrierungsergeb-
nisses erzielt. Eine zu kleine Wahl fiihrt allerdings dazu, dass sehr dhnliche FPFH entstehen.
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Besonders auffillig ist dies bei diskret reduzierten Punktwolken. Ursache davon ist vermut-
lich die sehr dichte Reprdsentation der dem Laserscanner naheliegenden Bereiche. Diese
zeichnen sich in Hybrid- und Outdoor-Szenario durch tiberwiegend flachen Untergrund,
im Indoor-Szenario durch flache Wiande, Decken und Bdden aus. Punkte, die auf einer
Flache liegen, erhalten bei kleinen Radien eine nahezu identische Normale, woraus auch
identische FPFH folgen. Bei grofleren Radien fliefSen auch Bereiche auferhalb der Flachen
in die Berechnung der Normalen ein, was unterschiedlichere Normalen und FPFH erzeugt.
Die hohe Punktdichte fiithrt dazu, dass benachbarte Punkte selbst bei grofseren Radien sehr
dhnliche Normalen aufweisen. Dies erklidrt auch, dass auf raumlich reduzierten Punktdaten
generell mehr Korrespondenzen gebildet werden.

Auf rdumlich reduzierten Daten verbessert sich das Registrierungsergebnis bei sinkender
Ahnlichkeit der FPFH. Die vollstandige, aber weniger detaillierte Repréasentation einer Szene
fiihrt vermutlich dazu, dass sich fiir die in ihr enthaltenen Objekte ausgepragtere Merkmale
ausbilden lassen.

Fiir diskretes Sub-Sampling lasst sich kein Zusammenhang zwischen der Ahnlichkeit der
FPFH und dem Registrierungsergebnis herstellen. Auch die Wahl des Normalenradius
scheint bei dem hier verwendeten Merkmalsradius keinen wesentlichen Einfluss auf dieses
zu nehmen. Die allgemein niedrige Anzahl von Korrespondenzen weist darauf hin, dass die
dortigen FPFH unterschiedlich genug sind um eindeutige Korrespondenzen ausbilden zu
konnen, aber nicht in einem Maf3, welches eine korrekte Zuordnung der Korrespondenz-
punkte erlaubt.

11.1.2. Merkmalsradius

Dieser Parameter bestimmt die auf ein FPFH Einfluss nehmende Umgebung eines Punk-
tes. Bildlich gesprochen bedeutet dies, dass ein grofie Wahl des Merkmalsradius zu einer
Reprasentation grofier Merkmale fithrt. Analog zum Normalenradius wurde auch bei den
Untersuchungen zum Merkmalsradius keine Priifung der Einzigartigkeit und Verwerfung
von Korrespondenzen beziiglich eines Korrespondenzgrenzwertes vorgenommen. Durch die
Eindeutigkeitspriifung der Korrespondenzen ist deren Anzahl auch hier ein Indikator fiir
die Ahnlichkeit der FPFH.

Die Ergebnisse in Abbildung 11.2 zeigen, dass sich bei einem steigenden Merkmalsradius
auf diskret reduzierten Punktdaten eine nur unwesentliche Verbesserung des Registrierungs-
ergebnisses einstellt. Am meisten profitiert das Outdoor-Szenario von sehr grofsen Radien.
Die Verschiedenheit der FPFH steigt bei allen Szenarien mit dem Merkmalsradius bis zu
einer wesentlichen Uberschreitung des Normalenradius und sinkt anschliefend wieder. Sehr
viele Korrespondenzen werden dabei in der Hybrid-Szene berechnet.

Bei raumlich reduzierten Punktwolken sinkt der Registrierungsfehler mit steigendem Merk-
malsradius bis der Normalenradius tiberschritten wird; danach verlauft er konstant. Die
Anzahl der Korrespondenzen ist auf raumlich reduzierten Punktdaten deutlich hoher und
fithrt zu dem Schluss, dass mehr voneinander verschiedene FPFH ausgebildet werden
konnten.
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Abbildung 11.2.: FPFH Merkmalsradius - Eine geringe Anzahl von Korrespondenzen indiziert dhnliche FPFH,
eine sehr hohe entsprechend unterschiedliche. Der Merkmalsradius sollte, um moglichst viele verschiedene
FPFH zu erhalten, mindestens so grofs wie der Normalenradius gewéahlt werden.

Der Einfluss des Merkmalsradius auf das Registrierungsergebnis bei einem diskreten Sub-
Sampling lasst vermuten, dass grofere als die hier untersuchten Merkmalsradien bessere
Ergebnisse erzielen. Aus Effizienzgriinden stellt dies jedoch keine Option dar und wird daher
nicht weiter untersucht. Der hohe Einfluss sehr dicht reprasentierte Flachen auf die FPFH
benachbarten Punkte scheint ein Problem darzustellen. Thematisiert wurde dies bereits
fiir den Normalenradius (siehe Abschnitt 11.1.1) und lasst sich auf den Merkmalsradius
iibertragen. Indiz dafiir ist die geringe Anzahl berechneter Korrespondenzen fiir das Indoor-
und Outdoor-Szenario sowie die damit verbundene Ahnlichkeit der FPFH. Im Vergleich
zur Hybrid-Szene enthalten sie sehr ausgedehnte und dem Laserscanner nahe Flachen. Ein
raumliches Sub-Sampling wirkt diesem Problem entgegen.

11.1.3. Abweichung Durchschnittshistogramm

Dieser Parameter entscheidet iiber die Anzahl und Ahnlichkeit der zur Korrespondenzsuche
zugelassenen FPFH. Das Ziel ist es, aus den berechneten FPFH fiir Ziel- und Datenpunkt-
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wolke die unterschiedlichsten herauszufiltern. Die geforderte Abweichung wird {iiber das
Vielfache (x) der Standardabweichung bestimmt. Hohe Werte fiir & fordern eine grofie Abwei-
chung vom Durchschnittshistogram, niedrige eine entsprechend kleine. Zur Untersuchung
wurde keine Verwerfung der Korrespondenzen durch einen spezifizierten Korrespondenz-
grenzwert vorgenommen. Eine hohe Anzahl von Korrespondenzen kann dadurch als ein
Vorkommen vieler verschiedener Strukturen in einer Szene betrachtet werden. Analog dazu
sind viele dhnliche Strukturen vorhanden, wenn die Anzahl der verbleibenden Korrespon-
denzen gering ist. Die Ergebnisse der Untersuchungen sind in Abbildung 11.3 einzusehen.
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Abbildung 11.3.: FPFH Abweichung Durchschnittshistogramm - Eine Verbesserung des Registrierungsergeb-
nisses durch die Verwerfung von FPFH, welche dem Durchschnittshistogramm zu dhnlich sind, erfolgt im
Wesentlichen bei diskret reduzierten Punktwolken.

Allgemein ist zu sehen, dass eine zu hohe Wahl von « dazu fiihrt, dass keine Korrespon-
denzen gebildet werden konnen. Resultat ist der globale Fehler als Registrierungsergebnis.
Wihrend sich mit steigendem « das Registrierungsergebnis auf raumlich reduzierten Punkt-
wolken zunehmend verschlechtert, verbessert sich dieses bei diskret reduzierten Punktwol-
ken. Abhéngig von der Szene existiert dafiir jedoch eine Obergrenze, ab welcher sich dieses
iiber den initialen Fehler hinweg verschlechtert. Betrachtet man die Anzahl der verbleibenden
Korrespondenzen ist zu sehen, dass diese mit steigendem a sinkt. Die Reduktionsrate ist bei
diskret reduzierten Punktwolken jedoch geringer als dies bei raumlichem Sub-Sampling zu
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beobachten ist. Zusitzlich sind bei rdumlich reduzierten Punktdaten Unterschiede in den
einzelnen Szenarien zu verzeichnen.

Eine Erkldarung dafiir liefert die Betrachtung des Durchschnittshistogramms. Wie bereits im
vorherigen Abschnitt festgestellt fiihrt diskretes Sub-Sampling zu tiberwiegend dhnlichen
FPFH. Das daraus resultierende Durchschnittshistogramm wird aller Wahrscheinlichkeit
nach dhnliche Ausprdagungen wie die tiberwiegend vorkommenden FPFH aufweisen. Fiir ein
geringes « werden dadurch bereits sehr viele FPFH verworfen. Die verbleibenden FPFH besit-
zen besondere Ausprdagungen und erlauben eine korrekte Korrespondenzfindung wodurch
sich das Registrierungsergebnis verbessert. Riumliches Sub-Sampling hingegen reprasentiert
die einzelnen Strukturen der gesamten Szene weniger dicht, wodurch abhingig von der
Szenerie, mehr unterschiedliche FPFH entstehen. Dies fithrt zu einem Durchschnittshisto-
gramm, welches keine besonderen Auspriagungen enthilt. Bereits fiir sehr kleine Werte
von & werden dadurch markante FPFH verworfen. Wird ein FPFH der Zielpunktwolke
verworfen, dessen korrespondierendes FPFH der Datenpunktwolke aber nicht, entstehen
falsche Korrespondenzen und beeinflussen das Registrierungsergebnis negativ.

11.1.4. Korrespondenzgrenzwert

Die Verwerfung erzeugter Korrespondenzen, deren korrespondierenden FPFH einen spezi-
fizierten Grenzwert {iberschreiten, hat eine Identifizierung falscher Korrespondenzen zur
Aufgabe. Dabei wird davon ausgegangen, dass sich die Giite einer Korrespondenz tiber die
Unterschiedlichkeit der korrespondierenden FPFH beschreiben ldsst. Grundlage fiir die hier
durchgefiihrten Untersuchungen sind die aus den vorherigen Abschnitten individuell fiir
Szene und Sampling-Strategie ermittelten Parameterwerte. Die Registrierungsergebnisse der
einzelnen Szenarien sind in Abbildung 11.4 festgehalten.

Erwartungsgemaf steigt mit dem Korrespondenzgrenzwert auch die Anzahl der verblei-
benden Korrespondenzen. Die stirke des Anstiegs gibt Auskunft dariiber, in welchem
Verhiltnis sehr dhnliche bzw. sehr unterschiedliche, korrespondierende FPFH in der in-
itialen Korrespondenzmenge enthalten sind. Ein linearer Verlauf deutet demnach auf eine
Gleichverteilung dieser hin. Steigt die Anzahl der Korrespondenzen logarithmisch, sind die
korrespondierenden FPFH sehr unterschiedlich, entsprechend dhnlich bei einem exponenti-
ellen Verlauf. Anhdngig ist dies von der jeweiligen Szene und Sub-Sampling-Strategie, was
sich mit den Beobachtungen im vorherigen Abschnitt (11.1.3 Abweichung Durchschnittshi-
stogramm) deckt. In welcher Groflenordnung sich die Ahnlichkeit der FPFH dabei definiert,
ist ebenfalls von der Sub-Sampling-Strategie und Szene abhingig. Auf rdumlich reduzierten
Punktwolken bleibt die Anzahl der Korrespondenzen selbst bei einer Anderung des Kor-
respondenzgrenzwertes um 10000 konstant. Das Hybrid-Szenario hingegen zeigt deutliche
Reaktionen bei einer Anderung von dessen um 5. Diese Tatsache macht die Bestimmung
eines Korrespondenzgrenzwertes dufSerst problematisch.

Betrachtet man das Registrierungsergebnis wird deutlich, dass durch die Verwendung ei-
nes Korrespondenzgrenzwertes hier keine Verbesserung erzielt werden kann. Die initiale
Korrespondenzmenge lieferte fiir alle Szenarien und Sub-Sampling-Strategien ein besseres
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Abbildung 11.4.: FPFH Korrespondenzgrenzwert - ,Initial” entspricht einem unendlichen Korrespondenz-
grenzwert (keine Korrespondenzverwerfung). Die Korrespondezverwerfung fithrt in keinem Szenario zu einer
Verbesserung des Registrierungsergebnisses. Bei einer diskreten Reduktion der Indoor- und Outdoor-Szene ist
erst ab einem Grenzwert von 1000 die minimal sinnvolle Anzahl von drei Korrespondenzen verftigbar.

Ergebnis. Die Verwerfung von Korrespondenzen, iiber die Forderung einer spezifizierten
Ahnlichkeitsbeziehung der korrespondierenden FPFH, scheint in diesem Registrierungs-
schema einen eher negativen Einfluss auf die Qualitdt der Registrierung zu haben. In den
nachfolgenden Untersuchungen wird daher auf ein Verwerfung der Korrespondenzen iiber
den hier prasentierten Korrespondenzgrenzwerte verzichtet.

11.1.5. Konvergenz

Mit Hilfe der vorhergehenden Parameterstudie wurden fiir die unterschiedlichen Szenen
und Sub-Sampling-Strategien Parametersets definiert, die bei der verwendeten Auflosung
von 100K scheinbar gute Registrierungsergebnisse erzielen. Diese wurden anschliefsend
zur Registrierung auf verschiedenen Auflosungen verwendet. Da der PFH-Algorithmus
keine initiale Ausrichtung verarbeitet, werden die globalen Fehler (siehe Anhang C) als
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Konvergenzkriterien im Sinne der definierten Anforderungen verwendet. Die Ergebnisse
sind in Abbildung 11.5 prasentiert.
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Abbildung 11.5.: FPFH Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach
einer Registrierung der unterschiedlichen Szenarien auf verschiedenen, raumlichen und diskreten Auflésungen.
Auflerdem ist die Anzahl der verwendeten Korrespondenzen abgebildet. Die Ausgangssituation ist durch die
globale Ausrichtung gegeben. Der damit verbundene initiale Gesamtfehler liegt fiir die Indoor-Szenerie bei 4.05,
fiir die hybride Szene bei 7.30 und fiir das Outdoor-Szenario bei 16.87 (siehe Anhang C).

Fiir die Auflésungen 100K und 1M konnten alle Szenarien erfolgreich registriert werden.
Dabei erzielen rdumliche reduzierte Punktwolken besonders bei hoheren Aufldsungen
ein besseres Ergebnis. Die geringe Anzahl der Korrespondenzen auf diskret reduzierten
Punktdaten ldsst den Schluss zu, dass die hohe Punktdichte zu einer Vielzahl dhnlicher FPFH
fiihrt. Je geringer die Anzahl vorhandener Korrespondenzen, desto grofier ist der Einfluss
falscher Korrespondenzpaare auf das Registrierungsergebnis. Ein Ausbilden ausschlieflich
korrekter Korrespondenzen wird bei hohen Auflosungen als nahezu unmoglich erachtet.

Bei einer diskreten Auflosung von 1K konnten fiir Indoor- und Outdoor-Szenario keine
Korrespondenzen ermittelt werden. Die Ursache ist, dass alle FPFH aufgrund zu hoher
Ahnlichkeit durch die Abweichung vom Durchschnittshistogramm verworfen wurden. Eine
raumliche Auflosung von 1K erlaubt das Bilden von unterschiedlichen FPFH. Eine erfolgrei-
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che Registrierung ist dennoch nicht moglich. Dies ist auch bei einer diskreten und raumlichen
Auflosung von 10K zu beobachten. Auffillig sind dabei die sehr hohen Rotationsfehler und
im Allgemeinen eher geringen Translationsfehler. Eine Betrachtung der Korrespondenzpaare
zeigt, dass FPFH markanter Bereiche korrekt zugeordnet wurden. FPFH der in allen Sze-
narien sehr ausgedehnten Boden fiihren jedoch zu falschen Korrespondenzen zwischen
dem Bodenbereich der Ziel- und Datenpunktwolke. Dadurch erfolgt ein im Wesentlichen
richtiges Ubereinanderschieben des Bodens. Anteilig sind die Korrespondenzen der Boden-
bereiche den Korrespondenzpaaren markanter Bereiche iiberlegen und verhindern dadurch
ein Auflosen der Rotation.

Aufgrund zu langer Laufzeiten (siehe ndchster Abschnitt 11.1.6) wurde eine Auflésung von
10M nicht untersucht. Vermutlich wiirde das Registrierungsergebnis fiir diskret reduzierte
Punktdaten erneut schlechter werden, wihrend es sich beim rdumlichen Sub-Sampling
weitgehend konstant verhielte.

Das genauste Registrierungsergebnis wurde fiir das rdumlich reduzierte Indoor-Szenario,
bei einer Auflosung von 1M erzielt. Dabei betrug €r,qus1ation = (0.99, —1.38, —0.68) m und
ERotation = (0.00,0.07,0.02) m.

11.1.6. Effizienz

Die in Abbildung 11.6 gemessenen Laufzeiten beziehen sich auf die im vorherigen Abschnitt
(Konvergenz 11.1.5) durchgefiihrten Untersuchungen.

Festzustellen ist, dass diskret reduzierte Punktwolken fiir alle Auflosungen deutlich langere
Laufzeiten zur Berechnung der Normalen und FPFH aufweisen als rdumlich reduzierte.
Begriindet liegt dies in der hoheren Punktdichte diskret reduzierter Punktwolken. Sie fiihrt
zu einer hoheren Anzahl von Punkten in einer definierten Kugelumgebung jedes einzelnen
Punktes, als dies bei raumlich reduzierten Punktdaten der Fall ist.

Wie bereits bei der Untersuchung der Parameter festgestellt, fiithrt ein rdumliches Sub-
Sampling zu einer grofieren Anzahl von Korrespondenzen. Dementsprechend ist der Zeit-
aufwand zur Korrespondenzfindung deutlich hoher als bei diskretem Sub-Sampling. Der
Einfluss auf die Gesamtlaufzeiten ist speziell bei niedrigen Auflésungen enorm.

Unterschiedliche Laufzeiten sind ebenfalls zwischen den verschiedenen Szenarien zu erken-
nen. Riuckzufiihren ist dies ebenfalls auf die Punktdichte, welche mitunter auch von der
Beschaffenheit einer Szene abhédngig ist. In der Theorie ist die Zeitkomplexitat fiir das Be-
rechnen der Normalen und FPFH linear in der Anzahl der Punkte. Grofie Radien, eine hohe
Punktdichte und die logarithmische Suche der in einer Kugelumgebung enthaltenen Punkte
auf KD-Trees, fithren jedoch zu sehr hohen Konstanten und einem nahezu quadratischen
Laufzeitverhalten fiir diskret reduzierte Punktdaten.

Fiir eine erfolgreich Registrierung muss mindestens eine Auflésung von 100K verwendet
werden. Eine mittlere Berechnungszeit, wie fiir das raumlich reduzierte Hybrid-Szenario,
liegt bei ~ 0.01 Minuten fiir die Normalen, ~ 0.1 Minuten fiir die FPFH und ~ 1 Minute fiir
das Berechnen und Verwerfen der Korrespondenzen.
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Abbildung 11.6.: FPFH Effizienz - Abgebildet sind die Laufzeiten zur Berechnung der Normalen, der FPFH,
der Korrespondenzen sowie die Gesamtlaufzeit der verschiedenen Szenarien auf unterschiedlichen, diskreten
und rdumlichen Auflosungen. Eine diskrete Reduktion der Punktwolken fiihrt durch die hohe Punktdichte zu
einer zeitintensiven Berechnung der Normalen und FPFH.

11.1.7. Stabilitat

Wie die Parameterstudie (siehe Abschnitte 11.1.1, 11.1.2, 11.1.3, 11.1.4) bereits anzeigt, musste
tiir jede Szene und Sub-Sampling-Strategie ein individuelles Parameterset definiert werden.
Diese sind aufierdem wenig tolerant gegeniiber Abweichungen von den optimalen Parame-
tern. Mit den individuellen Parametersets war es geméfS den Untersuchungen in Abbildung
11.5 moglich, Punktwolken verschiedener Auflosungen korrekt zu registrieren.

Fiir sehr geringe Auflosungen konnte keine korrekte Registrierung erfolgen (siehe Abbildung
11.5). Bei steigender diskreter Auflosung verschlechterte sich das Registrierungsergebnis.
Offensichtlich sollte die Szenerie weder zu detailliert noch zu schwach reprasentiert sein. Ein
stabiles Verhalten kann lediglich fiir raumlich reduzierte Punktwolken auf den Auflosungen
100K und 1M verzeichnet werden.

Bei hoheren Auflosungen war es moglich alle drei Szenarien korrekt zu registrieren (siehe
Abbildung 11.5). Die hochsten Fehlerschwankungen traten dabei fiir die Outdoor-Szene
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auf. Sie ist durch sehr dhnliche Strukturen definiert, was einer Erzeugung markanter FPFH
entgegenwirkt. Laufzeiten lassen sich nicht unbedingt voraussagen, da eine Abhéngigkeit
dieser von der Punktdichte und somit von der Szene selbst existiert (siehe vorheriger
Abschnitt 11.1.6).

11.2. Spin-Images

Der SI Algorithmus ist ebenso wie der PFH-Algorithmus nicht in der Lage Vorabinformatio-
nen zu verarbeiten. Eine initiale Ausrichtung der Punktwolken ist daher durch das Platzieren
der Punktwolken mit der Position des Laserscanners auf dem Ursprung des gemeinsamen
Koordinatensystems (siehe Abschnitt 5.3) gegeben. Die resultierenden ,globalen” Fehler
dazu sind in Anhang C einzusehen.

Wesentlich Kontrollelemente des Algorithmus sind der Normalenradius, der Suchradius,
der Support-Winkel, die Abweichung vom Durchschnittshistogram sowie die Verwerfung
von Korrespondenzen beziiglich eines spezifizierten Grenzwertes. Diese Parameter sollen so
gewdhlt werden, dass moglichst aussagekriftige SI aus Ziel- und Datenpunktwolke extrahiert
werden. Erhofft wird sich dadurch eine Berechnung moglichst weniger, aber dafiir korrekter
Korrespondenzen.

11.2.1. Normalenradius

Wie bereits bei der Untersuchung des Normalenradius der FPFH (siehe Abschnitt 11.1.1)
wurde der Merkmalsradius so gewéhlt, dass unabhédngig von der Sub-Sampling-Strategie
ausreichend viele Punkte in der Umgebung eines Punktes zur Berechnung eines aussage-
kraftigen SI zu finden sind. Ebenfalls wurde keine Verwerfung der SI durch die Abweichung
vom Durchschnittshistogramm vorgenommen. Durch die Priifung der Korrespondenzen
auf Eindeutigkeit gibt die Anzahl dieser Auskunft iiber die Ahnlichkeit der SI. Eine gerin-
ge Anzahl entspricht dabei vielen d@hnlichen SI, eine hohe weist auf unterschiedliche hin.
Festgehalten sind die Ergebnisse in Abbildung 11.7.

Festzustellen ist, dass die Unterschiedlichkeit der SI mit steigendem Normalenradius zu-
nimmt, ab einem gewissen Normalenradius jedoch gesattigt verlduft. Der Normalenradius
ab welchem eine Sittigung eintritt scheint dabei unabhédngig von der Sub-Sampling-Strategie.
Ein Zusammenhang zum Merkmalsradius kann ebenfalls nicht festgestellt werden. Diskret
reduzierte Punktdaten weisen in allen Szenarien eine geringere Anzahl von Korrespon-
denzen auf als dies fiir rdumliches Sub-Sampling der Fall ist. Auch steigt die Anzahl der
Korrespondenzen auf rdaumliche reduzierten Punktwolken linear, wiahrend eine diskrete
Reduktion zu einem logarithmischen Verlauf bis zur Séttigung fiihrt. Dieses Verhalten wurde
bereits beim Normalenradius der FPFH festgestellt (siehe Abschnitt 11.1.1) und ldsst sich
offensichtlich auf dieselbe Ursache zurtickfithren, ndmlich dass eine hohere Punktdichte
grofiere Radien zur Berechnung verschiedener Normalen erfordert.
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Abbildung 11.7.: SI Normalenradius - Eine geringe Anzahl von Korrespondenzen indiziert dhnliche SI, eine sehr
hohe entsprechend unterschiedliche. Bei einem rdaumlichem Sub-Sampling verbessert sich mit einer steigenden
Anzahl unterschiedlicher SI auch das Registrierungsergebnis.

Da tiber die Normale eines Punktes die Rotationsachse seines SI definiert wird scheint
es verniinftig, dass benachbarte Punkte mit sehr dhnlichen Normalen, nahezu identische
Bereiche im SI klassifizieren, wodurch diese nur geringe bzw. keine Unterschiede aufweisen.
Die Indoor-Szene zeigt auflerdem, dass zu grofle Radien ebenfalls dhnliche SI erzeugen
konnen, da der Einfluss grofser Strukturen, welche durch viele Punkte repréasentiert werden
(wie z.b. Flachen), die Normale eines Punktes verfialschen kénnen.

Betrachtet man den Einfluss des Normalenradius auf das Registrierungsergebnis, ist lediglich
fiir die Outdoor-Szene eine klare Reaktion zu verbuchen. Bei ihr bleibt das Registrierungs-
ergebnis ab einem Normalenradius stabil, welcher in etwa der maximalen Anzahl von
Korrespondenzen, also vielen verschiedenen SI entspricht. Dieses Verhalten ist auch auf
rdaumlich reduzierten Punktdaten zu beobachten. Bei ihnen verbessert sich das Registrie-
rungsergebnis mit steigender Anzahl verschiedener SI. Lediglich die Indoor-Szene zeigt trotz
konstanter Anzahl von Korrespondenzen eine Verschlechterung. Die Ursache wird in der
bereits erwahnten Verfalschung von Normalen bei zu grofien Radien vermutet.
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11.2.2. Suchradius

Um Aufschluss iiber die Ahnlichkeit der berechneten SI zu erhalten, wurde auch fiir die
Untersuchungen zum Suchradius keine Priifung der SI auf Einzigartigkeit durchgefiihrt. Die
Verwerfung nicht eindeutiger Korrespondenzen erlaubt daher, wie im vorherigen Abschnitt
(11.2.1 Normalenradius), eine Aussage iiber die Ahnlichkeit der SI. Die erzielten Ergebnisse
sind in Abbildung 11.8 préasentiert. Dabei wurden die verschiedenen Szenarien auf unter-
schiedlichen rdumlichen und diskreten Auflosungen bei einem variierenden Suchradius
registriert.
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Abbildung 11.8.: SI Suchradius - Eine geringe Anzahl von Korrespondenzen indiziert dhnliche FPFH, eine sehr
hohe entsprechend unterschiedliche. Auf raumlich reduzierten Punktwolken verbessert sich das Registrierungs-
ergebnis mit steigendem Suchradius, bis die Verschiedenheit der SI zu sinken beginnt.

Unabhingig von Sub-Sampling-Strategie und Szenario ist zu beobachten, dass die Verschie-
denheit der SI mit dem Suchradius bis zu einem Maximum steigt. Eine weitere Erh6hung
des Suchradius fiihrt zu einer Abnahme der Korrespondenzanzahl. Erklédren ldsst sich dieses
Verhalten dadurch, dass der Suchradius im Wesentlichen die Grofie des Bereiches festlegt,
aus welchem Punkte in das SI projiziert werden. Werden sehr grofse Bereiche betrachtet,
wird die Klassifizierung der einzelnen Punkte sehr grob, wodurch dhnliche SI entstehen. Bei
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einer kleinen Wahl des Suchradius werden zu kleine Bereiche betrachtet um die eigentliche
Form der betrachteten Oberfldche noch abbilden zu kénnen.

Vergleicht man die Anzahl der Korrespondenzen mit dem Registrierungsfehler kann fiir
rdaumliches Sub-Sampling gesagt werden, dass der Registrierungsfehler mit einer steigenden
Verschiedenheit der SI bis zu einem Minimum sinkt und sich anschliefiend einpendelt. Auf
diskret reduzierten Punktwolken ist kaum ein Einfluss des Merkmalsradius zu erkennen.
Eine zu grofie Wahl fiihrt beim Outdoor-Szenario zum Divergieren, das Hybrid-Szenario
alterniert um den initialen Fehler und das Indoor-Szenario zeigt tiberhaupt keine Reaktion.
Vermutlich fithrt die hohe Punktdichte dazu, dass selbst bei kleinen Radien bereits SI
entstehen, die unterschiedlich genug sind um eindeutige Korrespondenzen auszubilden,
aber nicht in einem Mafs, welches einer korrekte Ausbildung von Korrespondenzen erlaubt.

11.2.3. Support-Winkel

Analog zu den vorherigen zwei Abschnitten kann auch in diesem die Ahnlichkeit der
SI anhand der Anzahl berechneter Korrespondenzen abgelesen werden. Die Ergebnisse
der durchgefiihrten Untersuchung sind in Abbildung 11.8 présentiert. Dabei wurden die
verschiedenen Szenarien auf unterschiedlichen raumlichen und diskreten Auflosungen bei
einem variierenden Support-Winkel registriert.

In den hier untersuchten Szenarien konnte kein wesentlicher Einfluss des Support-Winkels
auf das Registrierungsergebnis oder die Ahnlichkeit der SI festgestellt werden. Lediglich fiir
einen Support-Winkel von 1 (Kosinus des Winkels) ist fiir alle Szenarien zu beobachten, dass
die Verschiedenheit der SI sinkt und der Registrierungsfehler steigt.

Ein Support-Winkel von 1 bedeutet, dass ein benachbarter Punkt nur dann in das SI projiziert
wird, wenn seine Normale eine mit der Rotationsachse identische Richtung aufweist. Eine
Betrachtung der resultierenden SI hat gezeigt, dass dadurch nur sehr wenige Punkte projiziert
werden. Die Eintrdge nahezu aller SI sind daher 0 und diese somit identisch. Der nicht
vorhandene Einfluss der Support-Winkel kleiner als 1 wird in den weitestgehend rauschfreien
Punktdaten sowie der Glattung von SI durch die bilineare Interpolation vermutet. Indiz dafiir
ist der mittlere quadratische Abstand zwischen korrespondierenden Punkten, der ebenfalls
unverdndert bleibt und dadurch eine identische Korrespondenzbildung signalisiert. Einzige
Ausnahme ist das Hybrid-Szenario auf raumliche reduzierten Punktdaten, welches sehr
kleine und markante Strukturen enthilt, die bei einer geringen Auflosung wahrscheinlich als
Rauschen interpretiert werden.
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Abbildung 11.9.: SI Support-Winkel - Bei einem Support-Winkel von 1 muss die Normale eines Punktes
identisch zur Rotationsachse sein, um auf das SI projiziert zu werden. Dies fithrt dazu, dass fiir beinahe alle SI
keine Abbildung der Punkte aus dem Suchraum erfolgt, wodurch diese identisch sind.

11.2.4. Abweichung Durchschnittshistogramm

Analog zur Abweichung vom Durchschnittshistogramm bei den PFH (siehe Abschnitt 11.1.3),
entscheidet auch dieser Parameter iiber die Anzahl und Ahnlichkeit der zur Korrespondenz-
suche zugelassenen SI. Die geforderte Abweichung wird auch hier iiber das Vielfache («x)
der Standardabweichung bestimmt, so fordern hohe Werte fiir « eine grof3e, niedrige eine
entsprechend kleine Abweichung vom Durchschnittshistogram. Zur Untersuchung wurde
keine Verwerfung der Korrespondenzen durch einen spezifizierten Korrespondenzgrenzwert
vorgenommen. Die Ergebnisse der auf unterschiedlichen, raumlich und diskret reduzierten
Szenarien durchgefiihrten Untersuchungen sind Abbildung 11.10 visualisiert.

Wie zu erwarten sinkt bei beiden Sub-Sampling-Strategien die Anzahl der Korrespondenzen
mit steigendem «. Bei rdumlich reduzierten Daten erfolgt dies jedoch wesentlich schnel-
ler. Vermutlich entsteht durch die bereits in den vorherigen Abschnitten festgestellte hohe
Verschiedenheit der SI ein sehr allgemeines Durchschnittshistogramm mit hoher Standard-
abweichung. Dadurch werden schon bei kleinen Werten fiir a sehr viele SI verworfen.
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Untermauern lédsst sich dies durch den mit « steigenden Registrierungsfehler auf nahezu
allen Szenarien. Offensichtlich werden SI entfernt deren Existenz, eine Ausbildung korrekter
Korrespondenzen fordert.

Bei diskret reduzierten Punktdaten ist ein allgemeines Alternieren um den Ausgangsfehler
zu beobachten. Fiir einzelne a-Werte jedoch ist eine deutliche Verbesserung zu beobachten.
Auch hier bildet die Hybrid-Szene eine Ausnahme. Sie verhilt sich dhnlich wie auf rdumlich
reduzierten Punktdaten.
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Abbildung 11.10.: SI Abweichung Durchschnittshistogramm - Eine Verbesserung des Registrierungsergebnis-
ses durch die Verwerfung von SI welche dem Durchschnittshistogramm zu dhnlich sind, erfolgt im Wesentlichen
bei diskret reduzierten Punktwolken. Ein raumliches Sub-Sampling fiihrt vermutlich zu bereits sehr unterschied-
lichen SI.

11.2.5. Korrespondenzgrenzwert

Die Verwerfung erzeugter Korrespondenzen, deren korrespondierenden SI einen spezifi-
zierten Grenzwert tiberschreiten, hat wie bei den PFH (siehe Abschnitt 11.1.4) eine Identi-
fizierung falscher Korrespondenzen zur Aufgabe. Die Giite einer Korrespondenz ist dabei
tiber die Merkmalsdistanz der korrespondierenden SI definiert. Fiir die hier durchgefiihr-
ten Untersuchungen wurden die aus den vorherigen Abschnitten individuell fiir Szene
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und Sampling-Strategie ermittelten Parameterwerte verwendet. Die Ergebnisse der Regis-
trierungen auf den einzelnen Szenarien sind in Abbildung 11.11 festgehalten. Der initiale
Fehler entspricht dabei einer Registrierung ohne Korrespondenzverwerfung durch einen
Korrespondenzgrenzwert.
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Abbildung 11.11.: SI Korrespondenzgrenzwert - ,Initial” entspricht einem unendlichen Korrespondenzgrenz-
wert (keine Korrespondenzverwerfung). Die Korrespondenzverwerfung beztiglich eines spezifizierten Grenzwer-
tes verbessert das Registrierungsergebnis nur unwesentlich.

Ein Korrespondenzgrenzwert von 0 erfordert Korrespondenzen, deren korrespondierenden
SI absolut identisch sind. Wie an der Anzahl der daraus resultierenden Korrespondenzen zu
sehen ist, fithrt dies bei allen Szenarien, unabhingig von der Sub-Sampling-Strategie dazu,
dass alle Korrespondenzen verworfen werden.

Indoor- und Hybrid-Szenario zeigen auf diskret reduzierten Punktdaten fiir sehr kleine
Korrespondenzgrenzwerte eine geringe Verbesserung des Registrierungsergebnisses. Offen-
sichtlich reprédsentiert die Merkmalsdistanz der korrespondierenden SI bei diesen Szenarien
die Giite der Korrespondenzen relativ gut. Weniger eindeutig verhalt sich das diskret re-
duzierte Outdoor-Szenario, welches starke Schwankungen zwischen sehr schlechten und
dem initialen Registrierungsergebnis aufweist. Fiir grofsere Werte als die in Abbildung 11.11
présentierten verhilt es sich jedoch stabil.
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Auf rdumlich reduzierten Punktdaten ist ein dhnliches Verhalten fiir die Hybrid-Szene zu
beobachten. Offensichtlich enthalten beide Szenarien Korrespondenzen, deren korrespondie-
renden SI eine gewisse Verschiedenheit aufweisen, aber dennoch korrekte Korrespondenzen
bilden. Die rdumlich reduzierten Indoor- und Outdoor-Szenarien hingegen verhalten sich
stabil. Eine Verbesserung des initialen Fehlers ist lediglich fiir sehr kleine Korrespondenz-
grenzwerte zu beobachten.

Den Ergebnissen nach zu urteilen hat eine Verwerfung von Korrespondenzen durch einen
spezifizierten Korrespondenzgrenzwert in dem hier betrachteten System nur einen margi-
nalen Einfluss auf die Verbesserung des Registrierungsergebnisses. Vermutlich fiihrt das
raumliche Sub-Sampling zu bereits sehr markanten SI; die starke Reduktion der SI durch
den Vergleich am Durchschnittshistogram fiihrt offensichtlich bei diskret reduzierten Daten
hingegen zu einer sehr elitiren Menge an Korrespondenzen.

11.2.6. Konvergenz

Mit Hilfe der vorhergehenden Parameterstudie wurden fiir die unterschiedlichen Szenen und
Sub-Sampling-Strategien Parametersets definiert, die fiir eine Auflosung von 100K scheinbar
gute Registrierungsergebnisse erzielen. Fiir die folgenden Untersuchungen wurden sie zur
Registrierung auf verschiedenen Auflosungen verwendet. Da der SI-Algorithmus nicht in
der Lage ist eine initiale Ausrichtung zu verarbeiten, werden die globalen Fehler (siehe
Anhang C) als Konvergenzkriterien im Sinne der definierten Anforderungen verwendet. Die
Ergebnisse sind in Abbildung 11.5 prasentiert.

Bei einer diskreten und rdaumlichen Auflosung von 1K konnte keines der Testszenarien
erfolgreich registriert werden. Das Hybrid-Szenario ist dabei die einzige Szenerie, fiir die
sowohl auf rdumlich wie auch diskret reduzierten Punktdaten Korrespondenzen gefunden
werden konnten. Mittels raumlichem Sub-Sampling lies sich das Hybrid-Szenario bereits bei
einer Auflosung von 10K registrieren. Bei einer diskreten Reduktion konnten ebenfalls keine
Korrespondenzen gefunden werden. Dieselbe Problematik ist auch fiir das Outdoor-Szenario
zu beobachten. Sehr geringe diskrete Auflosungen fithren offensichtlich dazu, dass zu wenig
markante Struktur zu detailliert vorhanden ist (grofie Bodenflachen), was zu sehr dhnlichen
SI fiihrt, die dann verworfen werden. Indiziert wird dies durch die Tatsache, dass durch die
Abweichung vom Durchschnittshistogramm alle SI verworfen wurden.

Mit einer steigenden rdumlichen Auflosung sinkt der Registrierungsfehler bei allen Szenarien,
sodass diese konvergieren. Auch fiir hohere diskrete Auflosungen ist das zu beobachten. Der
sehr hohe Rotationsfehler und eine Betrachtung der Korrespondenzpaare allerdings weisen
auf das altbekannte Problem der groflen Bodenfldchen hin (siehe Abbildung 11.1.5). Diese
fithren dazu, dass Punkte korrespondierender Objekte falsche Korrespondenzen ausbilden.
Korrekte Korrespondenzen anderer Objekte fithren dann vermutlich zu einer symmetrischen
Rotation. Der translatorische Anteil kann durch das Ubereianderschieben der storenden
Objekte (hier im allgemeinen Flachen) dennoch teilweise gelost werden.

Aufgrund unpraktikabler Laufzeiten (siehe nédchster Abschnitt 11.2.7) wurde eine Auflésung
von 10M nicht untersucht. Der Verlauf des Registrierungsfehler ldsst vermuten, dass keine

94



11.2. Spin-Images
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Abbildung 11.12.: SI Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach einer
Registrierung der unterschiedlichen Szenarien auf verschiedenen, raumlichen und diskreten Auflosungen.
Aufierdem ist die Anzahl der Korrespondenzen abgebildet. Als initiale Ausrichtung ist die globale gegeben, der
damit verbundene initiale Gesamtfehler liegt fiir die Indoor-Szenerie bei 4.05, fiir die hybride Szene bei 7.30 und
ftir das Outdoor-Szenario bei 16.87 (siehe Anhang C).

wesentliche Verbesserung des Registrierungsergebnisses zu erwarten ist. Basierend auf
diesen Untersuchungen ist auszumachen, dass fiir ein erfolgreiche Registrierung der hier
untersuchten Szenarien eine raumliche Reduktion der Punktwolken erforderlich ist.

Die genauste Registrierung wurde beim raumlich reduzierten Indoor-Szenario mit einer
Auflosung von 100K erzielt. Dabei betrug €ruusiation = (1.26, —1.06, —0.19) m und €rotation =
(0.22,0.05,0.04) m.

11.2.7. Effizienz
Die in Abbildung 11.6 festgehaltenen Laufzeiten beziehen sich auf die im vorherigen Ab-

schnitt (Konvergenz 11.2.6) durchgefiihrten Untersuchungen. Eine Auflésung von 10M
wurde aufgrund zu hoher und damit wenig praktikabler Laufzeiten nicht untersucht.
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Abbildung 11.13.: SI Effizienz - Abgebildet sind die Laufzeiten zur Berechnung der Normalen, der SI, der
Korrespondenzen und die Gesamtlaufzeit der verschiedenen Szenarien auf unterschiedlichen, diskreten und
raumlichen Auflosungen.

Wie aufgrund der hohen Punktdichte bei diskret reduzierten Punktwolken zu erwarten,
erfordert die Berechnung der Normalen und SI hier deutlich mehr Zeit als dies fiir rdumlich
reduzierte Punktdaten der Fall ist. Hingegen erfordert die deutliche hhere Anzahl von Kor-
respondenzen, welche durch rdumliches Sub-Sampling zustande kommen (siehe vorheriger
Abschnitt 11.2.6), mehr Zeit bei der Berechnung der Korrespondenzen (Korrespondenzfin-
dung und Verwerfung).

Ergebnis ist, dass insgesamt betrachtet nur gering hohere Laufzeiten fiir diskret reduzierte
Punktdaten entstehen. Eine Abhéngigkeit von der Szenerie kann auf Grund der Untersu-
chungsergebnisse nur spekuliert werden. Vermutet wird jedoch, dass bei einer gleichen
Parameterwahl eine nahezu konstante Gesamtlaufzeit zu erwarten ist, da hohere Punktdich-
ten zu mehr Laufzeit bei der Berechnung der Normalen und SI fithren, aber im Allgemeinen
auch zu eher dhnlichen SI und somit zu einer geringeren Anzahl der zur Korrespondenzsuche
zugelassenen Punkte.

Fiir eine erfolgreich Registrierung muss mindestens eine Auflésung von 100K verwendet
werden. Eine durchschnittliche Laufzeit wie fiir das diskret reduzierte Indoor-Szenario
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11.3. lterative Closest Point

bei einer Auflosung von 100K erfordert ~ 0.01 Minuten fiir die Berechnung der Norma-
len, ~ 0.05 Minuten fiir die SI und ~ 0.8 Minuten zur Berechnung und Verwerfung der
Korrespondenzen.

11.2.8. Stabilitat

Wie die Parameterstudie (siehe Abschnitte 11.2.1, 11.2.2, 11.2.4, 11.2.5) bereits gezeigt hat,
ist es prinzipiell moglich ein Parameterset zu definieren, mit dem sich die verschiedenen
Szenarien registrieren lassen. Auch weisen die einzelnen Parameter ein allgemein robustes
Verhalten gegeniiber Anderungen des Wertebereiches auf. Uber die verschiedenen Auflésun-
gen hinweg war es zumindest fiir hohere Auflosungen moglich die einzelnen Szenarien mit
konstanten Parameterwerten erfolgreich zueinander auszurichten.

Fiir sehr geringe Auflosungen war keine korrekte Registrierung moglich (siehe Abbildung
11.12). Auch fiir hohere diskrete Auflosungen konnte nahezu kein korrekte Registrierungs-
ergebnis erzielt werden, auch wenn der Algorithmus im Sinne des Konvergenzkriterium
erfolgreich war. Mit Hilfe des raumlichen Sub-Sampling war eine korrekte Ausrichtung der
Punktwolken fiir alle Szenarien ab einer Auflésung von 100K moglich.

Betrachtet man die Registrierungsergebnisse iiber die einzelnen Szenarien hinweg, kénnen
alle Szenarien mit einem relativ dhnlichen Registrierungsfehler zueinander ausgerichtet
werden; allerdings nur auf rdumlich reduzierten Punktdaten. Unterschiede in den Laufzeiten
zwischen den einzelnen Szenarien scheinen eher gering zu sein; ein eindeutiger Beleg dafiir
existiert jedoch nicht.

11.3. lterative Closest Point

Der ICP kann Vorabinformation in Form einer initialen Ausrichtung berticksichtigen. Fiir die
nachfolgenden Untersuchungen wurde die initiale Ausrichtung 1"(’3130 yr (siehe Abschnitt 5.3)
verwendet. Sie zeichnet sich durch die Genauigkeiten der in Abschnitt 2.1.2 vorgestellten

Sensoren aus. Die daraus resultierenden initialen Fehler sind in Anhang C prasentiert.

11.3.1. Fehlergrenzwert

Der Fehlergrenzwert hat im wesentlichen Einfluss auf die Genauigkeit des Registrierungser-
gebnisses. Dies scheint durch seine Abhédngigkeit von den Punkt-zu-Punkt-Korrespondenzen,
die zur Bestimmung der Transformation verwendet werden, einher zu gehen. Angenommen
die Korrespondenzpunkte konnen gut zueinander ausgerichtet werden und der Fehlergrenz-
wert ist gering, dann wiirde ein grofse Wahl, das Konvergieren des Algorithmus trotz grofier
Entfernung der korrespondierenden Punkte erlauben.

Betrachtet man Abbildung 11.14 fillt auf, dass bei diskret reduzierten Punktdaten das
Registrierungsergebnis schon bei deutlich kleineren Fehlergrenzwerten negativ beeinflusst
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wird als dies bei raumlichem Sub-Sampling der Fall ist. Ursache davon scheint eine generell
ungenauere Registrierung auf raumlich reduzierten Daten zu sein.

Betrachtet man die Punktdichte der unterschiedlichen Sub-Sampling-Strategien kann gesagt
werden, dass diese beim rdumlichen Sub-Sampling geringer ist als bei diskretem (gleich
Punktzahl bei hoherer Ausdehnung). Dies bedeutet auch, dass die Anzahl der im Uberlap-
pungsbereich enthaltenen Punkte (Korrespondenzpunkte) ebenfalls geringer ist. Zusatzlich
entsprechen mittels raumlichem Sub-Sampling verarbeitete Punktwolken, einer Approxi-
mation der urspriinglichen Punktdaten, wodurch selbst bei einer hypothetisch perfekten
Registrierung ohne Sensorfehler Spannungen entstehen. Diese werden unter dieser Betrach-
tung auf weniger Punkte verteilt, als dies bei diskret reduzierten Punktwolken der Fall ist,
was zu einem hoheren Fehler fiihrt.
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Abbildung 11.14.: ICP Fehlergrenzwert - Der Einfluss des Fehlergrenzwertes auf das Registrierungsergebnis
ist bei rdumlich reduzierten Punktdaten geringer als bei diskreten.

11.3.2. Transformationsgrenzwert

Der Transformationsgrenzwert kann als Forderung an die Stabilitdt des Registrierungsergeb-
nisses betrachtet werden. Andert sich die Transformation von einer Iteration zur anderen,
haben sich auch die Korrespondenzen gedndert. Andern sich diese nicht, ist auch die
resultierende Transformation dieselbe. Als Folge dessen kann die Hohe der Transformations-
dnderung in Zusammenhang mit der Menge und Unterschiedlichkeit der neu gebildeten
Korrespondenzen gebracht werden.

Bei dieser Untersuchung wurden die verbleibenden Abbruchkriterien so gewihlt, dass ein
Konvergieren nur iiber den Transformationsgrenzwert moglich war. In den Ergebnissen
(siehe Abbildung 11.15) ist ein szenentiibergreifend einheitliches Verhalten zu sehen. Eine
sehr geringe Erhohung des Transformationsgrenzwertes fiihrt dabei zu einer enormen
Verschlechterung des Registrierungsergebnisses. Bei raumlich reduzierten Punktdaten ist
der Schwellwert, bei welchem dieses Verhalten zu beobachten ist, hoher.
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11.3. lterative Closest Point

Geht man davon aus, dass zum Erreichen des globalen Minimums der Fehlerfunktion viel
kleine Schritte bendétigt werden (breites globales Minimum (siehe Abbildung 11.16)), fiihrt
eine zu grofle Wahl des Transformationsgrenzwertes dazu, dass dieses nicht erreicht werden
kann. Eine zu kleine Wahl kénnte sogar das Ubergehen dessen zur Folge haben. Wird
wie in Abschnitt 11.3.1 davon ausgegangen, dass raumlich reduzierte Daten aufgrund der
Punktapproximation generell hohere Fehler verursachen konnen, liegt der Schluss nahe,
dass das globale Minimum der resultierenden Fehlerfunktion weniger tief aber sein Pik
dafiir steiler ist. Ein hoher Transformationsgrenzwert konnte dann trotzdem gute Ergebnisse
liefern.
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Abbildung 11.15.: ICP Transformationsgrenzwert - Das Unterbinden kleiner Transformationsanderungen ver-
schlechtert das Registrierungsergebnis. Auf diskret reduzierten Punktdaten macht sich dies schneller bemerkbar
als auf raumlich reduzierten.

11.3.3. lterationen

Die Anzahl maximaler Iterationen legt fest, wie viele Versuche zum Auffinden einer dem
Transformations- und Fehlergrenzwert entsprechenden Losung zur Verfiigung stehen. Verhin-
dert werden kann dadurch ein endloses Iterieren aufgrund alternierender Korrespondenzen
bei schlechtem Fehlerwert.

Bei dieser Untersuchung wurden die verbleibenden Abbruchkriterien so gewdhlt, dass
ein Konvergieren nur durch das Erreichen der maximalen Anzahl zuldssiger Iterationen
moglich war (siehe Abbildung 11.16). Auf diskret reduzierten Punktwolken ist dabei ein
lineares Konvergieren in nahezu allen Szenarien zu beobachten; raumlich reduzierte Daten
konvergieren im Vergleich dazu schneller.

Angenommen die geringere Dichte nach einem raumlichen Sub-Sampling sorgt dafiir, dass
weniger Korrespondenzen in jeder Iteration ausgebildet werden konnen, dann existieren auch
weniger Kandidaten fiir falsche Punktkorrespondenzen und ein schnelleres Konvergieren ist
die Folge.
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Besonders auffillig ist das Divergieren der Outdoor-Szene auf raumliche reduzierten Punkt-
wolken nach dem Erreichen eines Minimums. Grund dafiir ist, dass die verbleibenden
Abbruchkriterien nicht ausreichend strikt gewahlt sind und somit {iber das Minimum hin-
weg iteriert wird. Ist in einem solchen Falle kein Divergieren zu beobachten, kann von einem
stabilen Minimum ausgegangen werden und der Algorithmus alterniert um dieses.
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Abbildung 11.16.: ICP Iterationen - Bei gleichverteilten Punktdaten, wie durch rdaumliches Sub-Sampling
erzeugt, kann eine zu hohe Anzahl von Iterationen eine Verschlechterung des Ergebnisses zur Folge haben.
Vermieden werden kann dies durch eine striktere Wahl der verbleibenden Abbruchbedingungen.

11.3.4. Korrespondenzgrenzwert

Der Korrespondenzgrenzwert bestimmt im Allgemeinen die Schrittweite einer Iteration. Seine
Wahl steht dadurch in Zusammenhang mit der initialen Ausrichtung. Ist er im Verhiltnis zu
dieser zu klein gewdhlt, konnen (speziell in den ersten Iterationen wichtig) keine korrekten
Korrespondenzen ausgebildet werden. Dadurch besteht die Gefahr in eine beliebige Richtung
zu iterieren. Eine zu grofie Wahl kann dazu fiihren, dass in jeder Iteration (speziell in der
letzten Iteration problematisch) fehlerhafte Korrespondenzen ausgebildet werden, die im
Allgemeinen einen negativen Einfluss auf das Registrierungsergebnis haben.

Belegt sei dies mit den in Abbildung 11.17 vorgestellten Ergebnissen. Zu sehen ist, dass der
minimale Korrespondenzgrenzwert welcher zu einer erfolgreichen Registrierung fiihrt bei
allen Szenarien nahezu identisch ist. Auf rdaumlich reduzierten Daten ist bei einem zu grofien
Korrespondenzgrenzwert ein Divergieren der Indoor- und Outdoor-Szene zu sehen.

Abhingig von der Szene und Hohe des Korrespondenzgrenzwertes besteht die Moglichkeit,
dass selbst beim Erreichen des globalen Minimums der Fehlerfunktion falsche Korrespon-
denzen gebildet werden. Bricht der Algorithmus nicht ab (zu strikte Abbruchkriterien) kann
dadurch ein Divergieren erfolgen. Homogen verteilte Punkte neigen offensichtlich aufgrund
des bereits thematisierten generellen Fehlers durch die Approximation von Daten (siehe
Abschnitt 11.3.3) eher dazu, die Abbruchkriterien zu verfehlen.

100



11.3. lterative Closest Point

Diskretes Sub-Sampling 100K R&umliches Sub-Sampling 100K

Indoor —+—
Hybrid —— |
QOutdoor —#—

Indoor —+—
Hybrid —e—
Outdoor —#—

EGesamt
©Gesamt

Korrespondenzgrenzwert (m) Korrespondenzgrenzwert (m)

Abbildung 11.17.: ICP Korrespondenzgrenzwert - Zu hohe Korrespondenzgrenzwerte konnen abhangig von
der Szene auf raumlich reduzierten Punktdaten zu einem Divergieren des Algorithmus fiihren.

11.3.5. Konvergenz

Wie in Anhang (siehe Anhang C) présentiert kann der Algorithmus im Sinne der definierten

Konvergenzanforderung, bei der initialen Ausrichtung F(’;g 30,1.0)7 als konvergiert betrachtet

werden, wenn der Fehler egesm¢ kleiner als 4,36 ist. Fiir die hier durchgefiihrte Analyse
wurden Parametersets fiir die einzelnen Szenarien und Sub-Sampling-Strategien verwendet,
die sich durch die vorhergehende Parameterstudie bei einer Auflosung von 100K als sinnvoll
erwiesen haben.

Betrachtet man den Gesamtfehler der Registrierung (siehe Abbildung 11.18) ist festzustellen,
dass der Algorithmus auf allen Auflosungen und tiber alle Szenarien hinweg konvergiert.
Einzige Ausnahme bildet die Outdoor-Szene bei einer diskreten Auflosung von 1K. Dem
durchweg eher schlechten Registrierungsergebnis bei dieser Auflosung kann nachgesagt
werden, dass generell zu wenig Struktur fiir eine gute Registrierung vorhanden ist. Widerlegt
wird dies durch ein sehr gutes Registrierungsergebnis der Indoor-Szene unter Verwendung
einer diskreten Reduktion der Punktwolken. Offensichtlich sind selbst bei dieser Auflésung
die sehr nahe am Laserscanner liegenden Wéande und Decken detailliert genug vorhanden
um die richtige Richtung vorzugeben.

Bei einer Auflosung von 10M diskreter Reduktion sind vermutlich die eben genannten
Strukturen ausschlaggebend fiir ein sehr schlechtes Registrierungsergebnis (sieche Abbildung
11.18). Der Abbruch durch den Fehlergrenzwert und der verhdltnisméfiig hohe Rotationsfeh-
ler lassen den Schluss zu, dass durch die hohe Punktanzahl ein lokales Minimum erschaffen
wurde, welches tief genug fiir einen Abbruch war. Der vergleichsweise hohe Rotationsfehler
lasst dabei eine symmetrische Losung vermuten.

Fiir die anderen Szenarien kann durch rdumliches Sub-Sampling das Registrierungsergebnis
verbessert werden. Mit zunehmender Aufldsung und der daraus resultierenden Punktdichte
andert sich dies zu Gunsten des diskreten Sub-Sampling. Vermutlich kommt dabei die
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Abbildung 11.18.: ICP Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach

einer Registrierung der unterschiedlichen Szenarien auf verschiedenen, raumlichen und diskreten Auflésungen.
Auflerdem ist der Grund des Abbruchs festgehalten. Als initiale Ausrichtung wurde fiir alle Szenarien F@lg 30,1.0)7

verwendet; der initiale Gesamtfehler liegt daher bei 4,36 (siehe Anhang C).

Ungenauigkeit des rdumliches Sub-Sampling durch die Approximation der Punktdaten zum
Tragen.

Das beste Registrierungsergebnis wurde fiir das Indoor-Szenario bei einer Auflésung von
10K diskretem Sub-Sampling erreicht. Dabei betrug €rusiation = (—0.07, —0.04 — 0.00) m
und Egotation = (0.04,0.04,0.00) m.

11.3.6. Effizienz

Die Laufzeit des ICP ist im Wesentlichen von der Grofie der Punktwolken und der Anzahl
benotigter Iterationen abhédngig. Grund dafiir ist, dass in jeder Iteration der néchste Nachbar
eines Punktes gesucht werden muss. Besitzt die Zielpunktwolke # und die Datenpunktwolke
k Punkte, kann mittels KD-Tree die Komplexitit der Suche von O(n - k) auf O(n - log(k))
reduziert werden (siehe Abschnitt 2.3.3). Nach jeder Iteration miissen die Punkte der Da-
tenpunktwolke erneut in diesen eingefiigt und geloscht werden, was einen zusatzlichen
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11.3. lterative Closest Point

Aufwand erfordert. Die resultierenden Laufzeiten sind in Abbildung 11.19 einzusehen. Sie
basieren auf den im vorhergehenden Abschnitt durchgefiihrten Untersuchungen.

Festzustellen ist, dass bei raumlich reduzierten Punktwolken im Allgemeinen eine geringere
Anzahl von Iterationen notwendig ist, um ein Abbruchkriterium zu erfiillen. Ursache konnte
dabei sein, dass die gleichverteilte Reprasentation der Punktwolken grofiere Schrittweiten
pro Iteration erlauben.

Weiterhin fillt auf, dass die Laufzeiten auf rdumlich reduzierten Daten, trotz einer geringeren
Anzahl von Iterationen, nahezu identisch zu den auf diskret reduzierten Punktwolken sind.
Untersuchungen haben gezeigt, dass die Suche des ndchsten Nachbarn, bei der hier verwen-
deten Variante des KD-Tree (sieche Abschnitt 2.3.3), fiir raumlich reduzierte Punktwolken
mehr Zeit benétigt als dies fiir diskret reduzierte der Fall ist. Verursacht wird dies durch
einen nicht balancierten KD-Tree nach einem rdumlichen Sub-Sampling.

Abschlieflend kann aufierdem gesagt werden, dass ein Registrieren ohne die Reduktion der
Punktwolken nicht in angemessener Zeit moglich ist.
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Abbildung 11.19.: ICP Effizienz - Oben Links: Laufzeit des ICP auf unterschiedlich reduzierten Punktwolken.
Oben Rechts: Anzahl der zum Konvergieren benotigter Iterationen. Unten Links\Rechts: Durchschnittliche und
maximale Laufzeit bei der Suche des ndchsten Nachbarn mit den verwendeten KD-Trees auf diskret und raumlich
reduzierten Punktwolken.
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11.3.7. Stabilitat

Wie die in Abschnitt 11.3.5 durchgefiihrten Untersuchungen gezeigt haben ist es moglich
ein Parameterset zu definieren, mit welchem {iber verschiedene Auflosungen hinweg ein
akzeptables Ergebnis erzielt werden kann. AufSerdem konnte ein Parameterset definiert
werden, mit welchem die drei Testszenarien, sowohl diskret als auch raumlich reduziert,
registriert werden konnten.

Aus der bereits vorgenommenen Untersuchung der Parameter ist ersichtlich, dass eine Veran-
derung der Parameter auch das Registrierungsergebnis beeinflusst. Groflere Toleranzbereiche
konnen im Allgemeinen durch rdumliches Sub-Sampling erzielt werden. Grund dafiir ist
offensichtlich die homogene Représentation einer Punktwolke, welche bei jeder Auflésung
die Struktur der gesamten Szene erhilt. Besonders aufféllig bleibt dennoch, dass bereits
sehr kleine Anderungen der Parameterwerte, sehr grofle Spriinge im Ergebnis verursachen.
Nichts desto trotz ist es moglich ein Parameterset zu definieren, welches fiir alle Szenarien
ein akzeptables Ergebnis liefert.

Wird als Stabilitatskriterium die Auflosung verwendet kann festgestellt werden, dass ihre Ver-
dnderung nur sehr geringen Einfluss auf das Registrierungsergebnis hat. Stabile Ergebnisse
konnten fiir alle Auflosungen aufler 1K erzielt werden. (siehe Abbildung 11.18).

Betrachtet man die Sub-Sampling-Strategien separat, zeigt sich ein stabiles Verhalten (siehe
Abbildung 11.18). So wurde unabhéngig von diesen stets ein sehr dhnliches Ergebnis erzielt.
Wihrend die Genauigkeit des Registrierungsergebnisses mit steigender diskreter Aufldsung
steigt, bleibt dieses bei einem rdumlichen Sub-Sampling konstant. Ausnahme bildet dabei,
wie bereits thematisiert, die Indoor-Szene bei einer diskreten Auflosung von 1K.

Die unterschiedlichen Testszenarien konnten alle erfolgreich registriert werden (siehe Ab-
bildung 11.18). Das Indoor-Szenario erzielte dabei die besten Ergebnisse. Ursache sind die
durch Wénde und Decken vorhandenen starken Strukturen. Sie bieten dem Algorithmus gute
Anhaltspunkte um in jeder Iteration die richtige Richtung zu erfassen. Das Hybrid-Szenario
bietet dhnlich markante Bereiche. Der zudem recht grole Uberlappungsbereich erlaubt eine
genaue Registrierung. Relativ ungenau wurde das Outdoor-Szenario registriert. Grund dafiir
sind offensichtlich die sehr dhnlichen und ineinander tibergehenden Konturen.

Werden Translations- und Rotationsfehler genauer untersucht fillt auf, dass deren Anteile
unabhédngig von Auflosung, Sub-Sampling-Strategie und Szenario sind (siehe Abbildung
11.18). Rotation und Translation konnen nach diesen Fakten in selbem Mafle stabil gelost
werden. Eine Betrachtung des Rotationsfehler €r,,1ion hat aulerdem ergeben, dass die durch
das Inklinometer festgelegten Rotationen um X- und Y-Achse stets beibehalten wurden.

11.4. Normal-Distribution Transformation

Auch der NDT ist in der Lage, Vorabinformation in Form einer initialen Ausrichtung zu
berticksichtigen. Wie beim ICP wurde fiir die nachfolgenden Untersuchungen die, sich
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11.4. Normal-Distribution Transformation

durch die Genauigkeiten der in Abschnitt 2.1.2 vorgestellten Sensoren auszeichnende, initiale
Ausrichtung 1"(’313?1)T (siehe Abschnitt 5.3) verwendet. Ihre initialen Fehler sind in Anhang C
festgehalten.

11.4.1. lterationen

Die Anzahl maximaler Iterationen legt fest, wie viele Versuche zum Auffinden einer dem
Transformationsgrenzwert entsprechenden Losung zur Verfiigung stehen. Verhindert wird
dadurch ein endloses Suchen nach einer Losung, wenn diese nicht gefunden werden kann.
Bei den hierzu durchgefiihrten Untersuchungen wurde der Transformationsgrenzwert so
gewdhlt, dass ein Abbruch des Algorithmus nur durch das Durchfithren der maximalen
Anzahl von Iterationen erfolgt (siehe Abbildung 11.20).
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Abbildung 11.20.: NDT Iterationen - Registrierungsergebnis nach unterschiedlichen Iterationsschritten. Der
Transformationsgrenzwert wurde dabei so gewédhlt, dass ein Abbruch durch das Erreichen der maximal zuldssi-
gen Iterationen erfolgt. Rdumlich reduzierte Daten unterbinden das Divergieren der Indoor-Szene.

Auf diskret reduzierten Punktdaten ist dabei festzustellen, dass eine zu hohe Anzahl an
Iterationen, wie im Falle des Indoor- und Outdoor-Szenario zu einem schlechteren Registrie-
rungsergebnis fithrt. Anders ausgedriickt kann ein Ubergehen der korrekten Losung erfolgen,
wenn diese nicht durch den Transformationsgrenzwert erkannt wird. Die Hybrid-Szene
zeigt dieses Verhalten nicht. Vermutlich fiihren die darin enthaltenen, klar voneinander
getrennten Strukturen, zu einem sehr tiefen und breitem globalen Minimum der Fehlerfunk-
tion welches nicht verlassen werden kann. Grofse und flache Strukturen wie in Indoor- und
Outdoor-Szene kdnnen symmetrische Minima bilden, die dann im Allgemeinen weniger
breit und ausgepragt sind und eventuell {ibersprungen werden. Indikator dafiir ist der selbst
bei divergentem Verhalten stets niedrige Wert der NDT Fehlerfunktion.

Eine Registrierung auf rdumlich reduzierten Daten behebt das Divergenz-Problem fiir
die Indoor-Szenerie und fiihrt sogar zu einem Konvergieren bei einer geringeren Anzahl
von Iterationen. Das Outdoor-Szenario hingegen benotigt mehr Iteration als bei diskret
reduzierten Punktwolken und konvergiert nicht mehr linear. Durch rdumliches Sub-Sampling
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11. Analyse

wird eine Szene homogen und vollstindig reprédsentiert. Dies bedeutet, dass ein Objekt
abhéngig von seiner Grofle durch entsprechend viele Punkte repréasentiert wird. Dadurch
sind in einer Szene nahezu immer auch symmetriebrechende Objekte vorzufinden. Im
Falle des Outdoor-Szenario verursachen diese offensichtlich, dass der hier korrekte Einfluss
symmetrischer Objekte zu starken Einfluss auf das Registrierungsergebnis nimmt.

11.4.2. Transformationsgrenzwert

Der Transformationsgrenzwert kann wie beim ICP als Stabilitatskriterium interpretiert
werden. Andert sich die Transformation nur noch sehr geringfiigig, wurde ein Minimum oder
Plateau der Fehlerfunktion erreicht. Ein weiteres Optimieren fithrt dann zu keinem besseren
Ergebnis oder sogar zu einem Uberspringen des Minimums (schlechteres Ergebnis). Fiir die
hier durchgefiihrten Untersuchungen wurde die Anzahl durchzufiihrender Iterationen so
gewdhlt, dass ein Konvergieren nur durch das Erreichen des Transformationsgrenzwertes
erfolgen kann (siehe Abbildung 11.21).
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Abbildung 11.21.: NDT Transformationsgrenzwert - Ein zu kleiner Transformationsgrenzwert kann zu einem
Uberspringen von Minima fiihren. Die Anzahl durchzufiihrender Iterationen wurden bei dieser Untersuchung
so gewdhlt, dass ein Abbruch durch den Transformationsgrenzwert erfolgt.

Auf rdumlich reduzierten Punktdaten ist zu sehen, dass die Indoor-Szene bei kleinen Trans-
formationsgrenzwerten ein sehr schlechtes Registrierungsergebnis aufweist. Dieses verbessert
sich jedoch sprunghaft, wenn der Transformationsgrenzwert erhoht wird. Die deutlich hohe-
re Anzahl durchgefiihrter Iterationen bei niedrigen Transformationsgrenzwerten weisen auf
ein Uberspringen des globalen Minimums hin. Die beiden anderen Szenen verhalten sich
wenig auffillig.

Réumliches Sub-Sampling verhindert das Uberspringen des globalen Minimums der Indoor-
Szene. Vermutlich erzeugt dieses ein breiteres globales Minimum, welches selbst bei kleinen
Transformationsgrenzwerten nicht tibersprungen werden kann.

Ursache des starken Sprunges bei einem Transformationsgrenzwert von 0.1 ist die Schrittwei-
te des Moré-Thuente Verfahren. Sie definiert eine obere Schranke. Genauer wird diese jedoch
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11.4. Normal-Distribution Transformation

nicht diskutiert. Der interessierte Leser sei aber auf [MTMpogz2] und die Implementierung
des NDT [Lib12b] verwiesen.

11.4.3. ZeligréBe

Uber die Zellgroe kann gesagt werden, dass sie bestimmt wie detailliert die Punktwolke in
der PDF représentiert ist. Kleine Zellen fithren zu einem hohen Einfluss der einzelnen Punkte
auf die PDF, grofse Zellen hingegen glitten diese. Vergleichbar ist dies mit der Betrachtung
feiner bzw. grober Merkmale. Welche Art der Merkmale dabei in der PDF reprasentiert
werden sollen ist abhédngig von der Beschaffenheit des zu registrierenden Szenario.

Die Ergebnisse der Untersuchung in Abbildung 11.22 zeigen, dass der Einfluss auf das
Registrierungsergebnis sehr pragnant ist. Bei diskret reduzierten Daten profilieren sich, auf
Grund der detaillierten Représentation einzelner Objekte der Szene, kleinere Zellgrofien. Bei
raumlich reduzierten Punktwolken fiihrt auch die Verwendung grofler Zellgrofsen zu guten
Ergebnissen. Das Hybrid- und Outdoor-Szenario profitieren dabei am meisten von einer
raumlichen Représentation beziiglich der Genauigkeit und Stabilitdt des Parameters. Ursache
davon ist offensichtlich, dass die in ihnen vermehrt vorkommenden grofsen Strukturen,
durch das raumliche Sub-Sampling mit einer gleichméfligeren Punktdichte und somit einer
aussagekriftigeren PDF reprasentiert werden. Bei allen Szenarien ist auf raumlich reduzierten
Daten aufierdem eine geringere Schwankung des Fehlers zu verzeichnen.
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Abbildung 11.22.: NDT Zellgro8e - Verhalten des Algorithmus bei unterschiedlichen Zellgrofien in den
verschiedenen Szenarien. Bei raumlich reduzierten Punktwolken sind die Fehlerschwankungen geringer.

11.4.4. AusreiBerrate

Uber die Ausreiflerrate wird bestimmt, wie stark eine Struktur vertreten sein muss, um
Einfluss auf die Fehlerfunktion zu erhalten. Anders ausgedriickt sinkt der Einfluss schwach
reprasentierter Strukturen bei einer steigenden Ausreifserrate.
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11. Analyse

Betrachtet man das Registrierungsergebnis bei den diskret reduzierten Szenarien fllt auf,
dass besonders Indoor- und Outdoor-Szene von einer hohen Ausreifierrate profitieren. Sie
enthalten demnach Bereiche die eine hohe Wahrscheinlichkeit zur falschen Korrespondenz
aufweisen und aufgrund ihres relativ grofSen Anteils in der Szene eine hohe Ausreifierrate
erfordern um ,,ausgeblendet” werden zu konnen. In der Indoor-Szene kénnten dies z.B. die
an den Flur angrenzenden Zimmer sein. Durch die unterschiedlichen Blickwinkel sind in
Ziel- und Datenpunktwolke unterschiedliche, aber nahezu identisch strukturierte Bereiche
sichtbar. Fiir die Outdoor-Szene ist eine solches Objekt durch den Boden gegeben, der fiir
Ziel- und Datenpunktwolke in unterschiedliche Richtungen ausgedehnt ist. Die Hybrid-Szene
zeigt nahezu keinen Einfluss auf eine Anderung der Ausreiflerrate. In ihr sind aber auch
keine grofseren Objekte enthalten, die durch Verdeckung in einer der beiden Punktwolken
nicht sichtbar wéren.

Auf rdumlich reduzierten Daten sind alle Objekte einer Szene abhidngig von deren Grofse
dhnlich dicht reprasentiert. Dadurch miisste der Einfluss einzelner Strukturen auf die Fehler-
funktion nahezu identisch sein. Aufgrund dessen entsteht das beim diskreten Sub-Sampling
auftretende Problem der Verdeckung in dieser Form nicht. Wie in der Outdoor-Szene zu
sehen, kann eine hohe Ausreifierrate dennoch zu einem schlechteren Registrierungsergebnis
fithren. Ein plausible Erklarung dafiir ist, dass kleine Strukturen, die fiir eine korrekte
Ausrichtung notwendig sind, durch hohe Ausreifierraten zuséatzlich an Einfluss verlieren.
Diese wiren in der Outdoor-Szene durch die zwei freistehenden Felsen gegeben.
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" Indoor ——
Hybrid —«—
3 Outdoor —s—

Indoor —+—
Hybrid —s+—
3 Outdoor —#—

©Gesamt
€Gesamt

01 02 03 04 05 06 0.7 08 09 0.1 0.2 03 04 05 0.6 0.7 0.8 09
Aubreiserrate Aulreiserrate

Abbildung 11.23.: NDT Ausreiflerrate - Eine hohe Ausreifierrate kann den zur korrekten Ausrichtung stérenden
Objekten den Einfluss auf die Fehlerfunktion entziehen. Bei rdumlichem Sub-Sampling kann dies aber auch fiir
richtungsweisende Strukturen erfolgen was einen negativen Einfluss auf das Registrierungsergebnis zur Folge,
hat.

11.4.5. Konvergenz

Fiir die hier durchgefiihrten Registrierungen wurden szenenabhidngige Parameter verwen-
det, die sich durch die vorhergehende Parameterstudie als sinnvoll erwiesen haben. Mit
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11.4. Normal-Distribution Transformation

diesem Parameterset wurde dann auf verschiedenen diskreten und raumlichen Auflosun-
gen registriert. Die resultierenden Ergebnisse sind in Abbildung 11.24 zusammengetragen.
Wie in Anhang (siehe Anhang C) prasentiert kann der Algorithmus im Sinne der Konver-

genzanforderung und der hier verwendeten, initialen Ausrichtung I’(’;g 3.0,1.0)7 als konvergiert

betrachtet werden, wenn der Fehler ec,s.m: kleiner als 4, 36 ist.
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Abbildung 11.24.: NDT Konvergenz - Abgebildet ist der Gesamt-, Translations- und Rotationsfehler nach

einer Registrierung der unterschiedlichen Szenarien auf verschiedenen, raumlichen und diskreten Auflésungen.
Auflerdem ist der Grund des Abbruchs festgehalten. Als initiale Ausrichtung wurde fiir alle Szenarien F(T%lgs 01.0)T

verwendet; der initiale Gesamtfehler liegt daher bei 4, 36 (siehe Anhang C).

Auf diskret reduzierten Daten ldsst sich die Indoor-Szene lediglich fiir die Aufldsungen 100K
und 10M registrieren. Eine Betrachtung des Rotationsfehlers der verbleibenden Auflosungen
sowie der Abbruch durch das Erreichen des Transformationsgrenzwertes weist darauf hin,
dass der Algorithmus offensichtlich in Richtung eines symmetrischen Minimum iteriert
hat. Verursacht werden kénnen symmetrische Minima durch Wande, Boden und Decke,
welche in dieser Szene bei einem diskreten Sub-Sampling sehr markant reprasentiert werden.
Raumliches Sub-Sampling erzeugt eine gleichverteilte Reprédsentation der Punktwolken
wodurch dieser Effekt offensichtlich verhindert wird und ein Konvergieren auf allen Auflo-
sungen aufler 1K moglich macht. Ein Blick auf den Translationsfehler ldsst vermuten, dass
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nicht geniigend Struktur vorhanden ist um eine eindeutige PDF zu erzeugen, da bei dieser
geringen Auflosung nahezu ausschliefilich Boden und Decke vorhanden ist.

Die Hybrid-Szene zeichnet sich durch viele unterschiedliche, kleine und grofSe Strukturen
aus. Dies scheint der Grund zu sein, dass dieses Szenario lediglich bei einer diskreten
Auflosung von 1K nicht konvergiert. Ein verhdltnisméafiig schlechtes Ergebnis wird bei einer
raumlichen Aufldsung von 1M erzielt. Der Abbruch durch das Iterationskriterium und der
hohe Translationsfehler konnte auf ein Alternieren in einem lokalen Minimum zuriickgefiihrt
werden.

Sehr durchwachsen sind die Ergebnisse des Outdoor-Szenario. Mit einer diskreten Datenre-
duktion ist einer Registrierung mit den Auflosungen 100K und 1M und 10M mdglich. In
den verbleibenden konnte die Translation nicht gelost werden, was bei einem Abbruch durch
den Transformationsgrenzwert wieder ein Indiz fiir ein lokales Minimum sein konnte. Die
sehr dhnlichen Formen der Felsketten in dieser Szene bieten dafiir geniigend Anhaltspunkte.
So scheint dies auch die Ursache einer nicht erfolgreichen Registrierung bei einer rdumlichen
Auflésung von 10M zu sein. Auf allen verbleibenden rdaumlichen Auflosung konnte das
Outdoor-Szenario registriert werden.

Das beste Ergebnis wurde fiir die Indoor-Szene bei einer raumlichen Auflésung von 10M
erzielt. Dabei wurde eine Genauigkeit von &rsiation = (0.009, —0.058,0.007)T und &rotation =
(0.013,0.002,0.003)7 erreicht.

11.4.6. Effizienz

In Abbildung 11.25 ist der Zeitaufwand und die Anzahl der zum Konvergieren benétigter Ite-
rationen des Algorithmus fiir verschiedene, diskrete und rdumliche Auflosungen abgetragen.
Diese basieren auf den im vorhergehenden Abschnitt durchgefiihrten Untersuchungen.
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Abbildung 11.25.: NDT Effizienz - Links: Laufzeit des NDT auf unterschiedlich reduzierten Punktwolken.
Rechts: Anzahl der zum Konvergieren benotigter Iterationen.
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Zeitaufwandigste Operation des Algorithmus ist im Wesentlich die Berechnung der Fehler-
funktion in jeder Iteration. Hierzu muss fiir jeden Punkt der Datenpunktwolke bestimmt
werden, in welche Zelle der Zielpunktwolke er transformiert wurde. Anschlieflend muss die
gesamte Zelle durchlaufen und die Fehlerfunktion berechnet werden. Der Berechnungsauf-
wand dieser Operation ist linear mit der Anzahl der Punkte in jeder Zelle und somit auch
fur die gesamte Punktwolke.

Vergleicht man die Anzahl durchgefiihrter Iterationen mit der Laufzeit fallt auf, dass raumlich
reduzierte Daten bei einer meist geringeren Anzahl von Iterationen mehr Zeit benotigen.
Ursache davon ist die rdumliche Reprasentation der Zielpunktwolke als Voxel-Grid. Die
hier verwendete Variante des Voxel-Grids [Lib12k] verarbeitet Suchanfragen tiber spezielle
KD-Trees [Lib12i] die wie bereits in Kapitel (siehe Abschnitt 11.3.6) thematisiert auf raumlich
reduzierten Punktdaten im Allgemeinen lingere Laufzeiten aufweisen. Aufierdem enthalt
der Voxel-Grid einer raumlich reduzierten Punktwolke meist mehr Zellen, als dies bei einer
diskreten Reduktion der Fall ist. Dadurch entsteht ein nicht unbedingt zu vernachldssigender
Mehraufwand bei der Verwaltung des Voxel-Grids, der zusétzlich Einfluss auf die Laufzeit
nimmt.
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Abbildung 11.26.: NDT Effizienz - Abgebildet ist die zum Aufbau des Voxel-Grids benétigte Zeit fiir un-
terschiedliche Auflésungen. Fiir rdumlich reduzierte Punktwolken wird mehr Zeit benétigt als fiir diskret
reduzierte.

Nicht berticksichtigt wurde bisher der Zeitaufwand, welcher durch den Aufbau des Voxel-
Grids selbst entsteht. Wie in Abbildung 11.26 zu sehen steigt dieser mit der Punktanzahl.
Auch beim Aufbau des Voxel-Grids sind KD-Trees beteiligt, wodurch auch dabei eine zeitliche
Abhéngigkeit von der Sub-Sampling-Strategie zu erkennen ist. Der maximale Zeitaufwand
bei 10M Punkten raumlich reduzierter Punktwolken belduft sich dabei auf =~ 13 Sekunden.
Bei der damit verbundenen Laufzeit von 100.70 Minuten ist diese jedoch vernachlédssigbar
gering.

Generell kann gesagt werden, dass bei einer minimalen Laufzeit von 54.67 Minuten auf 10M
Punkten und einem Registrierungsfehler egesqm: von 0.22, der NDT fiir ein punktbasiertes
Verfahren dufierst performant ist.
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11.4.7. Stabilitat

Die in Abschnitt 11.4.5 durchgefiihrte Untersuchung zeigt, dass es moglich ist ein Parameter-
set fiir einzelne Szenen zu definieren, mit welchem eine Registrierung tiber verschiedene
Auflésungen hinweg erfolgen kann. Unterschiedliche Parameter miissen dabei nicht nur
fur die einzelnen Szenen ermittelt werden, sondern auch fiir die unterschiedlichen Sub-
Sampling-Methoden wie aus den Parameterstudien in den Abschnitten 11.4.1 - 11.4.4 bereits
hervorgeht.

Betrachtet man die Stabilitdt des Registrierungsergebnisses iiber verschiedene Auflosungen
hinweg (siehe Abbildung 11.24) wird deutlich, dass eine Représentation der Punktwolken
mit 1K fiir diesen Algorithmus im Allgemeinen zu gering ist. Fiir die restlichen Auflésungen
konnten nahezu ausnahmslos akzeptable Ergebnisse im Sinne des Konvergenzkriteriums
erreicht werden.

Die Ergebnisse in Abbildung 11.24 zeigen, dass auf rdumlich reduzierten Punktdaten durch-
weg ein besseres und iiber verschiedene Auflosungen hinweg stabileres Registrierungsergeb-
nis erzielt werden konnte. Die homogene Reprasentation einer Szene fiihrt offensichtlich zu
einer aussagekréftigen und eindeutigen PDF. Diskretes Sub-Sampling hingegen verursacht
héufig Probleme, da auf verschiedenen Auflosungen, unterschiedliche Merkmale stadrker
bzw. schwicher vorhanden sind.

In nahezu allen Untersuchungen konnte das Hybrid-Szenario, mit einer besseren Losung als
der initialen Ausrichtung registriert werden. Mittels rdumlichem Sub-Sampling lésst sich
diese Aussage auch fiir die anderen beiden Szenarien treffen. Die Symmetrie der Indoor-
Szene sowie die sehr dhnlichen Objektformen der Outdoor-Szene kénnen haufig nicht richtig
verarbeitet werden (siehe Abbildung 11.24). Bemerkbar macht sich dies in sehr grofien
Translations- und Rotationsfehlern. Die durch das Inklinometer festgelegte X-Y-Ebene wurde
jedoch stets beibehalten und nicht verandert.
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12. Fazit und Ausblick

ZUM Vergleich der einzelnen Algorithmen untereinander wurden die jeweils besten Regis-
trierungsergebnisse (siehe Abbildung 12.2), die kiirzesten Laufzeiten (siehe Abbildung
12.1) sowie die dafiir notwendigen Auflésungen betrachtet. Die kiirzesten Laufzeiten be-
ziehen sich dabei auf die kleinsten Auflosungen fiir die ein Konvergieren im Sinne des
Konvergenzkriterium (siehe Abschnitt 1.2) erfolgte.
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Abbildung 12.1.: Ubersicht Laufzeit - Abgebildet sind die kiirzesten Laufzeiten (links) der einzelnen Algorith-
men, mit denen ein Registrierungsergebnis (rechts) auf den entsprechend reduzierten Szenarien erzielt werden
konnte, welches der Konvergenzanforderung (sieche Abschnitt 1.2) entspricht. Die zugehérigen Auflosungen sind
tiber den Registrierungsfehler abgetragen.

Betrachtet man die Laufzeiten der einzelnen Algorithmen kann gesagt werden, dass fiir
kein Verfahren ein Registrieren ohne eine Reduktion der Punktwolken in praktikabler Zeit
moglich ist. Uber alle Szenarien hinweg zeigt sich der ICP als schnellster Algorithmus
und erzielt dabei sogar die besten Registrierungsergebnisse. Mit einer nur unwesentlich
langeren und dhnlich genauen Registrierung benétigt der NDT deutlich weniger Zeit als
PFH und SI. Die SI weisen dabei die lingsten Laufzeiten auf, was mit der hoheren Auflosung
zusammenhédngt, die von ihnen benétigt wird, um das Konvergenzkriterium zu erfiillen.
Dabei erreichen sie Genauigkeiten, welche auch von den PFH auf niedrigeren Auflosungen
erreicht werden.

Starke Schwankungen bei der Genauigkeit sowie der Laufzeit sind bei beiden Verfahren
fiir die einzelnen Szenarien zu beobachten. Ein rdumliches Sub-Sampling fiihrt in allen
Szenarien zu einer Reduktion der benétigten Zeit. Besonders stabil in der Laufzeit, dem
Registrierungsergebnis und der dafiir notwendigen Auflosung zeigt sich der ICP und
nur unwesentlich schlechter der NDT. Beide Verfahren profitieren besonders bei geringen
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12. Fazit und Ausblick

Auflésungen davon, dass keine zeitaufwendige Extraktion von Merkmalen notwendig ist.
Réaumliches Sub-Sampling fiihrt bei ihnen nicht immer zu einer kiirzeren Laufzeit.

14 Indoor Diskret o Hybrid Raumlich oo
135 |+ = Indoor Diskret s Indoor Raumlich - Outdoor Diskrel  mmmm—m
121155 F = Indoor Raumlich oo Hybrid Diskret o Outdoor Raumlich s
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Abbildung 12.2.: Ubersicht Genauigkeit - Abgebildet sind die besten Registrierungsergebnisse (links) der
einzelnen Algorithmen auf den entsprechend reduzierten Szenarien. Die zugehorigen Auflosungen sind tiber
den Registrierungsfehler abgetragen. Aufierdem sind die daftiir notwendigen Laufzeiten (rechts) einzusehen.

Die genausten Registrierungsergebnisse wurden vom NDT erreicht. Fiir raumlich reduzierte
Punktwolken waren bei genaueren Ergebnissen geringere Auflosungen notwendig. Nahezu
identische Genauigkeiten erzielt der ICP auf meist geringeren Auflésungen, wodurch auch
die Laufzeiten seiner besten Registrierungsergebnisse im Allgemeinen geringer ausfallen.
Uber die verschiedenen Szenarien hinweg erweisen sich die Registrierungsergebnisse sehr
stabil; lediglich die Outdoor-Szenerie reifst aus.

PFH und SI registrieren mit einem nahezu identischen Fehlern auf den einzelnen Szena-
rien. Etwas genauere Ergebnisse erzielt dabei der PFH-Algorithmus bei ebenfalls nahezu
identischen Auflosungen. Einen deutlichen Zeitvorteil konnen dabei jedoch die Spin-Images
fiir sich verbuchen. Raumliches Sub-Sampling fiihrte bei beiden Algorithmen zu einem
genaueren Ergebnis.

Im Vergleich zu ICP und NDT erzielen PFH und SI sehr deutlich ungenauere Registrie-
rungsergebnisse. Erwihnt sei dabei, dass eine besonders akkurate Registrierung nicht ihrer
Konzeption entspricht.

Werden die Ergebnisse aller Algorithmen aus Kapitel 11 restimiert kann gesagt werden,
dass fiir ein rdumliches Sub-Sampling bei allen Verfahren und tiber simtliche Auflésungen
hinweg ein stabileres Registrierungsergebnis, als es fiir eine diskrete Reduktion der Fall ist,
zu beobachten war. Auch scheint dies fiir die Stabilitdt der Parameter zu gelten. Fiir SI und
PFH ging auflerdem meist eine Reduktion der Laufzeit einher, fiir ICP und NDT ergab sich
meist das Gegenteil. Eine alternative Datenstruktur zum hier verwendeten KD-Tree konnte
dies jedoch d@ndern.

Basierend auf den in dieser Diplomarbeit durchgefiihrten Untersuchungen kann der Schluss
gezogen werden, dass bei einer ausreichend genauen Sensorinformation der ICP, als das
Beste der hier untersuchten Verfahren ist, um unterschiedliche Szenarien in praktikabler
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Zeit sehr genau zu registrieren. Er erzielte die stabilsten Registrierungsergebnisse tiber die
verschiedenen diskreten und rdumlichen Aufldsungen hinweg und erlaubt eine Registrierung
der verschiedenen Szenarien mit einem gemeinsamen Parameterset.

Sind Sensorinformationen nur unzuverléssig oder sehr ungenau vorhanden sollte auf den
SI-Algorithmus zuriickgegriffen werden. Auch er registriert verschiedene Szenarien relativ
zuverladssig und benétigt dafiir deutlich weniger Zeit als der PFH, auch wenn er nicht
dessen Genauigkeiten erreicht. Wird besonderen Wert auf die Genauigkeit und die Laufzeit
gelegt, unabhingig von einer Stabilitét {iber verschiedene Szenarien hinweg, empfiehlt sich
eine Verwendung des NDT- bzw. bei nicht vorhandener initialer Ausrichtung der FPFH-
Algorithmus.

In dieser Arbeit nicht behandelt aber sporadisch untersucht wurde das Verhalten des ICP
und NDT bei verschiedenen initialen Ausrichtungen. Ergeben hat sich dabei, dass beide
Algorithmen selbst bei einer initialen Ausrichtung von Fﬁoﬂl 13 noch immer Ergebnisse
liefern, die als konvergiert betrachtet werden konnen. Eine OBergrenze soll hierdurch jedoch
nicht definiert sein. Wird eine Untersuchung der initialen Ausrichtungen durchgefiihrt
erscheint auch sinnvoll, eine iterative Anpassung der Parameter zu betrachten.

Fiir deskriptorbasierte Verfahren existieren bereits Ansétze, die eine Detektion sogenannter
Keypoints (siehe Abschnitt 7.2.1), auf den zu registrierenden Punktwolken durchfiihren.
Merkmale (z.b. PFH oder SI) werden anschlieffend nur fiir die Keypoints berechnet. Dies
kann den Rechenaufwand reduzieren, wenn die Berechnung der Keypoints schneller erfolgt,
als das Berechnen und Verwerfen wenig markanter Merkmale. Auflerdem bietet es die
Moglichkeit, aussagekriftige Bereiche einer Szene tiber eine Représentation zu identifizieren,
die zur Korrespondenzfindung ungeeignet ist.

Weiterhin wére aufschlussreich das Verhalten feinregistrierender Algorithmen (ICP und NDT)
prozessiert auf den Ergebnissen grobregistrierender Algorithmen (PFH und SI) zu untersu-
chen. Besonders interessant konnte dabei die Betrachtung der Stabilitdt auf unterschiedlich
diskret und rdaumlich reduzierten Szenarien ausfallen.
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13. Zusammenfassung

INLEITEND wurde die Problematik der paarweisen Registrierung von hochaufgelosten
E Punktwolken mit Verfahren erldutert, die auf geometrischen Merkmalen basieren. Diese
motivierte eine Analyse alternativer, punkt- und deskriptorbasierter Verfahren; Anforderun-
gen an diese wurden in Abschnitt 1.2 definiert.

Kapitel 2 befasste sich mit den zum Verstandnis notwendigen Grundlagen. Vorgestellt wurde
dabei der zur Erzeugung der Punktwolken verwendete Laserscanner FARO® Focus®P sowie
mogliche Sensoren zur Erhebung von Lage und Positionsinformationen. Anschlieffend wur-
den die Eigenschaften der untersuchten Punktwolken und ihre mogliche Représentationen
im Arbeitsspeicher des Computers beschrieben.

Nachdem das in dieser Diplomarbeit betrachtete Registrierungsproblem in Abschnitt 3.1
definiert war, wurde eine Klassifikation verschiedener Algorithmen vorgestellt, die dieses
Problem zu l6sen versuchen (siehe Abschnitt 3.2).

Fiir die Evaluierung der Registrierungsergebnisse wurden im darauf folgenden Kapitel
(4) Fehlermafse definiert, die eine gesonderte Betrachtung der Rotation und Translation
erlauben.

Kapitel 5 beschrieb die implementierte Testumgebung in welcher die Analysen durchgefiihrt
wurden. Auflerdem wurden die einzelnen Testszenarien, eine Indoor- Hybrid- und Outdoor-
Szene, vorgestellt.

Zur Reduktion der Datenmengen wurden in Kapitel 6 die Methoden des diskreten und
raumlichen Sub-Sampling vorgestellt sowie deren Unterschiedlichkeit der Betrachtung von
Entfernungsinformation herausgearbeitet.

Die anschlieflenden vier Kapitel prasentierten die zur Untersuchung herangezogenen Algo-
rithmen. Dazu gehoren die PFH (Kapitel 7), die SI (Kapitel 8), der ICP (Kapitel 9) und der
NDT (Kapitel 10).

In Kapitel 11 wurde dann gezeigt, dass punktbasierte Verfahren in der Lage sind hoch-
aufgeloste 3D-Punktwolken zu registrieren. Festgestellt wurde dabei, dass der Berechnungs-
aufwand der vorgestellten Verfahren jedoch eine Reduktion der Datenmenge erfordert.
Auflerdem fiithren nicht reduzierte Daten hdufig zu schlechteren Ergebnissen, da offen-
sichtlich zu viel Information zu Mehrdeutigkeit fiihrt. Verfahren die keine Reprasentation
der Punktwolken in Form von Merkmalen verwenden (ICP und NDT) sind bei geringen
Auflosungen deutlich schneller und auch praziser. Speziell auf reduzierten Punktmengen
ist das Berechnen von Merkmalen weitaus aufwendiger als eine direkter Punkt-zu-Punkt
Vergleich tiber mehrere Iterationen hinweg.
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A. Transformationsbestimmung mittels
Singularwertzerlegung

Es sei ein Registrierungsproblem wie in Abschnitt 3.1 gegeben. Dabei sind P und Q die
zu registrierenden Punktwolken und C eine daftir bestimmte Korrespondenzmenge.
Cp = {cpilep; € PAcp, € C, 1 <i <|P|} bezeichnet die Menge der Punkte aus P die zu
Punkten aus Q korrespondieren. Analog ist Co = {cglcg; € QA ¢y € C, 1<) < [Q]}
definiert.

Die Translation T lésst sich mit Hilfe der Schwerpunkte Sc, und Sc, der Korrespondenz-
mengen wie folgt berechnen:

. 1 Cp 1 Co
(A.1) T = Sc, — SCQ mit  Sc, = C7p lzzl Cpir SCQ = C7Q ]221 Cy;

Mittels Korrelationsmatrix und Singuldrwertzerlegung [AHB87] ldsst sich anschliefsend die
Rotation bestimmen. Um eine korrekte Korrelationsmatrix H € R3*3 zu erhalten, miissen die
Korrespondenzmengen zentriert werden. Bewerkstelligt wird dies tiber die zuvor berechneten
Schwerpunkte, sodass die Bildungsvorschrift von K gegeben ist durch:

|
(A.2) H=Y (cx, — Sc,)(ck, — Sco)T
k=1

Diese lasst sich iiber die Singuldrwertzerlegung als Produkt von Matrizen darstellen:
H=UDV', UD,VeR*

U und VT beinhalten dabei die durch die Abbildung H beschrieben Rotation, D die Verzer-
rung. Die gesuchte Rotation R ist dann gegeben durch [ELFg7]:

(A3) R=vu’
Aus einer Menge von Korrespondenzen wurde somit eine Transformation (R, T) berechnet, die
alle korrespondierenden Punkte bestmoglich aufeinander abbildet. Dies bedeutet, dass die

Summe der quadratischen Abstdnde zwischen korrespondierenden Punkten nach anwenden
der Transformation minimal ist.
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B. Normalen-Berechnung mittels
Hauptkomponenten Analyse (PCA)

Die Normale eines sich auf einer Oberfldche befindenden Punktes zu bestimmen entspricht
der Bestimmung der Tangentialebene an diesem Punkt [Rusog]. Das hierzu verwendete
Verfahren nennt sich Hauptkomponenten Analyse bzw. Principal Component Analysis
(PCA).

Es sei P eine Punktwolke wie in Abschnitt 3.1 definiert und auflerdem weiter ein Punkt
p € P und seine Kugelumgebung mit Radius . Die Menge seiner Nachbarn ist dann gegeben
durch K = k; € P|||p — ki|]|2 < r,1 <i < |P|. Der zugehorige Schwerpunkt s der Menge K
definiert als:

(B.1) ! ik
B.1 s = = i
Kl 5

Mit Hilfe dessen lasst sich die folgende Kovarianzmatrix berechnen:

1 K

(B.2) C=1g i;w —s)- (ki—s)"

Diese ist symmetrisch und positiv semidefinit. Dadurch besitzt sie reelle Eigenwerte A;R. Die
zugehorigen Eigenvektoren 0; bilden ein Orthogonalsystem entsprechend den Hauptkompo-
nenten von K. Der zum kleinsten Eigenwert 0 < Ay, < A; < A, gehorende Eigenvektor 0y
entspricht dann einer Approximation der gesuchten Normale £, = (1, ny, ;).

Oft ist es notwendig die Normalen aller Punkte einer Punktwolke P einheitlich auszurichten
(Bestimmen des Vorzeichens). Als dafiir notwendigen Bezugspunkt wird der Standpunkt
des Laserscanners vp, oft auch als Viewpoint bezeichnet, herangezogen. Fiir einen Punkt
p € P muss das Vorzeichen so gewihlt werden, dass gilt:

(B.3) iy (op—p) >0
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C. Initiale Ausrichtungen

Wird die initiale Transformation der Datenpunktwolke als Registrierungsergebnis betrachtet,
lassen sich fiir diese die in Kapitel 4 eingefiihrten FehlermafSe berechnen. Sind die Fehler nach
einer Registrierung geringer als die initial berechneten, war die Registrierung erfolgreich.

Wird keine initiale Ausrichtung vorgenommen liegen die Punktwolken in einem gemeinsa-
men (globalen) Koordinatensystem, mit der Platzierung des Laserscanners im Ursprung vor.
Die Rotation entspricht der Ausrichtung des Laserscanners bei der Aufnahme. Die Fehler
der ,globalen” Ausrichtung sind in Tabelle C.1 einzusehen, die visuelle Darstellung davon
in Abbildung C.2.

Ist die initiale Ausrichtung gemif3 Gleichung 5.1 fiir alle Szenarien dieselbe, sind auch die
resultierenden Fehler identisch. Diese sind in Tabelle C.1 fiir [';10 festgehalten und in

(3.0,3.0,1.0)7
Abbildung C.1 zu betrachten.
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C. Initiale Ausrichtungen

Abbildung C.1.: Globale Ausrichtung Zu sehen sind die verschiedenen Testszenarien in der ,globalen” Aus-
richtung. Von oben nach unten: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von links nach rechts: Diskretes
Sub-Sampling, raumliches Sub-Sampling.
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Abbildung C.2.: Initiale Ausrichtung - Zu sehen sind die verschiedenen Testszenarien nach der initialen

Ausrichtung 1"(_338 30,10)T Von oben nach unten: Indoor-Szene, Hybrid-Szene, Outdoor-Szene. Von links nach rechts:

Diskretes Sub-Sampling, rdumliches Sub-Sampling.
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C. Initiale Ausrichtungen

‘ Indoor-Szenario ‘ Hybrid-Szenario ‘ Outdoor-Szenario

Globale Fehler
€Gesamt | | 4.05 | 7.30 | 16.87
CTvanslation | o | 3.24 | 7.28 | 16.86
CRotation | | 1.70 | 0.04 | 0.23
X (m) 2.96 —1.29 —14.50
ETranslation Yy m —1.33 7.18 7.33
Z m 0.00 —0.14 4.51
X (1) 0.94 0.02 0.14
ERotation Yy b 0.76 0.01 0.04
Z (1) 0.00 0.00 0.00
Initiale Fehler 1"(_3?00/ 30,1.0)7
€Gesamt ‘ ‘ 4.37
€Translation ‘ (m) ‘ 4.37
€Rotation ‘ ‘ 0.18
X (m) —-3.00
ETranslation Yy —3.00
Z —1.00
X (b 0.00
€Rotation Yy & 0.10
Z 0.00

Tabelle C.1.: Initiale Fehler - Aufgefiihrt sind die resultierenden Fehler der globalen Ausrichtungen sowie

der durch F(;g 3.0,1.0)7 gegebene initiale Ausrichtung der einzelnen Testszenarien. Die resultierenden Fehler fiir
F&lg 3.0,1.0)7 sind fiir alle Szenarien identisch.
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