Institut fur Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstralle 38
D-70569 Stuttgart

Diplomarbeit Nr. 3335

Framework flir die Visualisierung
von Datenqualitat in
Simulation-Workflows

Marcel Russ

Studiengang: Softwaretechnik

Prufer: Jun.-Prof. Dr. Dimka Karastoyanova
Betreuer: Dipl.-Math. Michael Reiter
Begonnen am: 30. April 2012

Beendet am: 30. Oktober 2012

CR-Klassifikation: C21,C.24, D.2.2, D.211, D.212 D.2.13, E.1, E.1,
H.1.2, H.3.5,H.5.2, H5.3,1.3.2,1.6.7, J.2

Zusammenfassung

In dieser Arbeit wurde ein Konzept fur das Visualisieren von Datenqualitat in Simulation-
Workflows entwickelt und durch ein Java Framework (Java Data Quality Visualization
Framework) realisiert. Es ermdglicht Wissenschaftlern laufende Simulationen, anhand
visualisierter Datenqualitatswerte, zu Uberwachen und bei Bedarf in diese einzugreifen.
Das Framework unterstutzt dabei mehrere Simulationen und unterscheidet die abge-
stuften Rechte der beteiligen Wissenschaftler — sowohl bei der Generierung der Visuali-
sierungen, als auch bei der Weiterleitung von Steuerungsbefehlen an den Simulation-
Workflow.

Wahrend der Uberwachung behalt der Wissenschaftler die Kontrolle ber die gesamte
Visualisierungspipeline. Er kann dadurch interaktiv in die einzelnen Schritte eingreifen
und die Visualisierung, seinen individuellen Anforderungen entsprechend, anpassen.
Des Weiteren unterscheidet das Konzept die unterschiedlichen Arten von Anzeigegera-
ten bei der Erstellung der Visualisierung. Dadurch ermdglicht es das Framework, flr
leistungsstarke Gerate komplexe Geometriemodelle und fur leistungsschwache einfa-
che Bilder zu erzeugen.

Inhaltsverzeichnis
I =T 1 =Y 1T RO 1
1.1 AUFGabENSIEIIUNG ... 13
1.2 Verwandte Arbeiten ..o 14
1.3 SHrUKIUF der ArDEIL. 15
1.4 Notation und SChreibstil........ ... 16
14 ¥ 4 e | = Vo =Y o O 17
2.1 DAEN ..t e e e e e e e e et e raraaaaa 17
2.1.1 Definition des Begriffs Daten.............ooooriiiiiiiiiiii e 17
2 B (T |« (1 PP 18
2.1.3 ANAEIUNGSIAEot 18
2.1.4 Visualisierung von Daten...........ccoooiiiiiiiieieeeee e 19
2.2 SIMUIGLION ...ttt a e e e e e e e e e e e e e e e e e nnnnre e 19
2.3 DatenqUAalitAt.........ccoooemiiii e 20
2.3.1 Definition von Datenqualitat..............ccooommiiiiiiiii e 21
2.3.2 Dimensionen von Datenqualitat.............ccccooooiiiiiiiiiiiiic e, 21
2.3.3 Java Data Quality Calculation Frameworkcoooiiiiiiiiiiiiiiiiiieeeeeeeeen 23
2.4 Service Oriented ArchiteCtUre..........ooeiiiiii i 23
241 WEDSEIVICES ..ottt e e e e e e e as 24
2.5 SIimulatioN-WOrKFIOWeeiiiiiiiiiiiie e 27
3 Visualisierung von Datenqualitat...............ccccemimimmiieccemsscccccss s 30
3.1 Ziele der ViSUaliSIErUNGcooiiiiiiiiiiiecee et e e e e e e e e e e e eeeeenenannnnas 30
3.2 Definitionen von VisualiSi€rUNGEN..........uuiiiieeii e e e e e e 32
3.2.1 ViSUAIISIEIUNGcooeieeeeeeeeee ettt e e e e e e e e e e e e e e e e eeeesennannnns 32
3.2.2 Informations- und DatenvisualiSierungeeeeiiiiiiieiieeeeeeeeeeeeeeeeiines 32
3.2.3 DatenqualitatsvisualiSIerung..........ccooeeeeeiiiiiiiiiicccer e 33
3.3 VisualisierungspipeliNecoooeiiiiiiiii e 33
3.3.1 Datenaufbereitung (FIREriNG)......ccooviiiiiiieiiieeeeeeece e 34
G TG T 1Y/ =T o o[T P 34
3.3.3 Bildgenerierung (ReNdEering)cccceeiiiiiieiiiiieeeeeeeese e 35
3.3.4 Verteilung der Stufen der Visualisierungspipeline............ccccceeeeviivieviiinnnnnes 35
3.4 Anforderungen an eine VisualiSIeruNg........cccoeeeiiieiiiiiiiiiiieecee e 37
3.4.1 EXPreSSiVItat.....ccoooviiiiiieee e 38
3.4.2 EffektiVItAt ... 39
3.4.3 ANGEMESSENNEIL.......uiiiiiiiiii e 40
3.5 Beschreibung der Daten als Ausgangspunkt der Visualisierung..............ccoeeeevnenn. 41
3.5.1 Datenformate. ... 41
3.5.2 Reduktion einer Datenmenge..........cooooviiiiiiiiiiiiiiie e 42
3.6 Einflussfaktoren auf die VisualiSi€rungcccooeeieiiiiiiiiiieiiccieeee e 43
3.6.1 BearbeitungSzi€leoooemmmiiiii s 43
3.6.2 Menschliche Wahrnehmung — Objekterkennung und Gestaltgesetze.......... 44

3.6.3 ANWwendungSUMQGEDUNGoiiiiiiiiiiiee e e e 50

3.6.4 RESSOUICEN ...ttt e e e e e e e e e eeeeearenaaaas 51
3.7 Grundlegende TeChNIKENcooiiiiiiiiee e e e 52
3.7.1 Visuelle Variablen ... 52
3.7.2 Visuelle ABDIlAUNGEN ..o 53
3.8 Finden von VisualiSIErUNGEN..........oi i e e 55
3.8.1 Herausforderungen beim Entwerfen passender Symbole............................ 55
3.8.2 Entwerfen von SymboOIen............ooiiiiiiiii e 56
3.8.3 Beispiel fur die Auswahl einer Visualisierungsform..............cccccoevviviiiiinnnnnnn. 56
3.9 Visualisierung von Datenqualitat ... 57
3.9.1 Datenaufbereitung (FIREriNG)......ccooeiiiiiiiiiiieeeeeeere e 57
3.9.2 ViISUALISIEIUNG .. .ceeiiiiie et e e e e e e e e e et e e e e e eeannns 58
4 Anforderungen an das Visualisierungsframeworkcccccevimrmmirinneenennnnnnnnn. 68
4.1 Allgemeine Anforderungen an das Frameworkccccooeeieeeeiieiiiceeeeiiniiceee e 68
4.1.1 Wiederverwendbarkeit (J1).........uvemmiiiiiiiiiiiiiieeee e 68
4.1.2 Anbindung an das JDQCF (R2)ccoiiiiiiiieeeeieee e 68
4.1.3 Anbindung an externe Datenquellen (03)...........coooiiiiiiiiiiiieeeeee 68
4.1.4 Unterstitzung mehrere Simulationen (R4)..........ooooiiiiiiiiieeeeeee e 69
4.1.5 Verarbeitung unterschiedlicher Datenstrukturen (h5).......ccccccuvvvrveveeeeennnn.n. 69
4.2 Anforderungen aus Sicht der Wissenschaftler............cccoooooiiiiiiiicceee, 69
4.2.1 Anforderungen an die Benutzerverwaltungccccoeeiiiiiiiiiiiiccceeeee e, 69
4.2.2 Anforderungen an die Visualisierungskomponente............ccccoevvvivvicceeenennn. 70
4.2.3 Anforderungen an das Verteilen der Daten..............ccccooeeiiiiiiiiiicccceeee e 71
4.3 Anforderungen aus Sicht der Programmierer...........ccccooveeiieeiiieeeieceeeeceee e 71
4.3.1 Funktionale Anforderungenoooooeiiiiiiiiiccc e 72
4.3.2 Nichtfunktonale Anforderung ..o 72
5 Konzeptioneller Entwurf des Java Data Quality Visualization Framework....... 73
5.1 Erweiterung des bisherigen Simulationskontextesccccceeeeeiiiiiiiiiiiiiiiiiiiiiiis 74
5.2 Grundsatzliche ArchiteKiur...........ooo i 76
5.2.1 Einordnung des JDQVisF in den Simulation-Workflowcccccccooii. 79
5.3 Struktureller Aufbau des JDQVISF ... 81
5.3.1 Plug-In ArChiteKtUrcoeeeeeeee e 82
5.4 Komponenten des JDQVISFoouiiiuiiiiiiii e 83
5.4.1 Architektur des JDQVIiSCONIOIIEr........ccoooiiiiiiiieeeeeee e 84
5.4.2 Architektur des VisualizationMediatoroouuiiiiiiiiii, 91
5.4.3 Namespaces des JDQVISFuiiiiiiiiiiii e 101
5.5 Beschreibung des VisualiSIerungSProZEssoveeevviiiiiieeeiiiiiiee e eeeeennns 109
6 Technische Umsetzung des Java Data Quality Visualization Framework...... 111
6.1 Aufbau und Struktur der PluginRegister.xml ..o, 111
6.2 JDQViIiSCONIrOlEr KIASSEccuiiiiiiiiiieiiii ettt 111
6.2.1 Benutzerregistrierung Uber die registerUser — Methode.................cccoo... 112
6.2.2 Anbindung an das JDQCF Uber die subscribe-Methode.........cccccccccoeee. 115

6.2.3 Schnittstelle fur den Empfang von Rohdatencccccooeiiiiiiiiiinnnnn, 116

-5-

6.2.4 Methoden fur die Verarbeitung von Benutzerinteraktionen 118
6.3 Umsetzung des VisualizationMediator...............ccooooiiiiiiiiiiccceeee e, 121
6.3.1 Instanziierung eines VisualizationMediators...............cccccceeiiieiiiiiiiie e, 121
6.3.2 Visualize-Methode des VisualizationMediatorscccoeovieiiiiiiiiiiiiniinnns 122
6.3.3 Erweiterungsschnittstellen des VisualizationMediator..............cc.c...cooeee. 123
6.3.4 Registrierung der Visualisierungs-Plug-Inscooooiiiiiiiiiiiiiieeeeee, 125
6.3.5 Realisierung der Visualisierungsspezifikationencccccceeiiiinnnnnnnnn, 128
6.4 Umsetzung der PIUG-INS ... 131
6.4.1 Beispielimplementierung eines Authorizer-Plug-In..............cccccoeiiiiinnnnnnnn, 131
6.4.2 Beispielimplementierung eines Filter-Plug-Inccooooiiiii . 132
6.4.3 Beispielimplementierung eines Visualizer-Plug-In..........ccccooovviiiiininnnnnnnn. 134
6.4.4 Beispielimplementierung eines Dispatcher-Plug-In............ccoooeiiiiiiiinnnnnnn. 136
6.4.5 Beispielimplementierung eines SimulationController-Plug-In..................... 138
6.5 Der JDQVISCHENT.......uuiiiiiiiiieieeieee et e e e e e e e e 139
6.5.1 Registrierung am JDQVISFcoooiiiiiiiiiiiiii e 139
6.5.2 Beschreibung der Benutzerinteraktionencoiiiiiii, 140
6.5.3 Beeinflussung der Generierungen einer Visualisierungccccceveveennns 140
6.5.4 Steuerung der Simulation durch einen SimulationControlRequests........... 142
U T «] 143
7.1 Integration in die Simulation-Workflowumgebungiiiiiiiiiiiiiiiiiiiieeee, 143
7.2 Visualisierung weiterer Datenqualitatencccooooiiiiccciie e, 143
7.3 Entwicklung von domanen-spezifischen Plug-Ins..............iiiiiiiiiiiiiiieee, 144
7.4 Integration eines WS-HumanTask Systems..............oooorimiiiiiiiiiie e 144
LiteraturverzeiChnis..........ooiiieer 146
8 Appendix A — Beispielvisualisierung Datenqualitat................ccccceviiiiiiiimniniieccennnnn.

9 Appendix B — Beispielvisualisierung Datenqualitat mit Simulationsdaten

Abbildungsverzeichnis

1-1: Einordnung Java Data Quality Visualization Frameworkcccccccoeiiiiiiinnnnnnnn, 13
1-2: DaVis: Abbildung der Datenwerte auf die Lange der Tabellenzelle 15
2-1: Aufbau einer FEM basierten Simulationcccoiiiiiiie 20
2-2: SOA DIFEIECK ...ttt et e e e e e e e e e e e e e e e e e 24
2-3: AUDAU WSDL ...ttt e e e e e e e e e e e e e e e s eees 27
2-4: Architektur eines Simulation-Workflowscccooiiiiiiiie 28
2-5: Generelle Architektur eines Simulation-Workflowscccccooiiiiiiiiiiiiiiiiiee, 29
3-1: Stufen der Visualisierungspipeline..........ccooiieeiiiieiiieeeeeeecee e 34
3-2: Datenfluss in der Visualisierungspipelingoooiiiiiiiiiiiiiiiee e 35
3-3: Varianten zur Verteilung der Schritte der Visualisierungspipeline.......................... 36
3-4: Beispiel Lie FaCIOr ..o 39
3-5: Beispiel Chart JUNK.........uuieiiiicce et 40
3-6: Abbildung spezielle auf allgemeine Bearbeitungsziele............c..cccceeeiiiiiiiiiiiiinnnns 44
3-7: Beispiel Praattentive Wahrnehmungcccooooiiiiiiiiiiiiccceee e 45
K C 1T =Y Ao [Tl N = = PP 46
3-9: Gesetz der ANNICHKEIL.............coeeeeeeeeceeeeeeeeeeee et ene e, 47
3-10: Gesetz der guten Gestalt............ooveeiiiiiiii e s 47
3-11: Gesetz der guten FOrtSEtZUNGovvveiiiiii e 47
3-12: Gesetz der GeschloSSenheit............ooooiiiie e 48
3-13: Gesetz des gemeinsamen SchiCKSaalScooiviiiiiiiiiiiiicieee e 48
3-14: Vordergrund - HINtErgrund.oouueiiiiiiiie e e e e 49
3-15: FirgurwahrmenMUNG.......c.oooiiiiieeee e e e e e e e e e e e e e e e eeeasanaaa 49
3-16: Einfache FOrSEtZUNG.........coooiiiieee e 50
3-17: DUNnn ist im HINtergrundoooommiiiicie e e e e e 50
3-18: Grafische Variablen ... 52
3-19: REQUIAIITAL ...t e e e e e e e e e e e e e e e eessnannaaa 53
3-20: Beispiel fur das Finden von Visualisierungen (Teil 1).......cccceeiieiiiiiiiiiiiiiieieiiiiinas 56
3-21: Beispiel des Findens von Visualisierungen (Teil 2)uvvieiieeiiiiiiiiiiiiieeeeeiiiis 57
3-22: Datenqualitatsdimension Genauigkeit als Zielscheibecccccooviiiiiiiiiinnnns 59
3-23: Datenqualitatsdimension Genauigkeit als Fadenkreuz.................ccccovvveeviiinnnnnnes 59
3-24: Datenqualitatsdimension Rechtzeitigkeit als Wecker...........cccooveeeeiiiiiiiiiiiiiiiinnne, 60
3-25: Datenqualitatsdimension Rechtzeitigkeit als Wecker (Teil 2)..........ceeeeeeiieennee.n. 61
3-26: Datenqualitatsdimension Rechtzeitigkeit als Sanduhr................cccooviiicc s 61
3-27: Datenqualitatsdimension Vollstandigkeit als Sauleccccooeeiiiiiiiiiiiiiiiiii, 62
3-28: Datenqualitatsdimension Vollstandigkeit als Kuchendiagramm 63
3-29: Datenqualitatsdimension Konsistenz als Zielscheibe..........cc..cccoooovviiiiiiiinnnnnnnnn. 64
3-30: Datenqualitatsdimension KONSIStENZ................uoeeiiiiiiiiiiiiiecee e 64
3-31: Datenqualitatsdimension AKtualitat................ccoooeeeiiiiiie e 65
3-32: Datenqualitatsdimension Schwankungsfreudigkeitcccoooeiiiiiiiiiiiiiiiiiiinnne, 66
3-33: Datenqualitatsdimension Schwankungsfreudigkeit...............cccoriiiiiiiciccieeeee. 66

-7-

5-1: Simulation-Wissenschaftler-Beziehungcoooriiiriiiiiiiii e 74
5-2: Wissenschaftler-Simulation-Beziehung. ..o 74
5-3: Beispielhafte Wissenschaftler-Simulation-Beziehungen...................cccoiiininnnns 75
5-4: Client-Server ArChiteKiur...........ooo i 76
5-5: JDQVisF als zentrale KOmMpPOoNENte.............uuuuuiiiiiiieiiiiiieeeeeeeeeeeeee e 77
5-6: Unterstitzung unterschiedlicher Anzeigegerate durch das JDQVisF..................... 78
5-7: Einordung des JDQVisF zwischen Simulation-Workflow und Wissenschaftler 80
5-8: Struktureller Aufbau des JDQVISF ... 81
5-9: Interne Aufteilung des JDQVISF ... 83
5-10: Komponenten des JDQVisF mit hervorgehobenem JDQVisController 84
5-11: Kennzeichnung der Schnittstellen des JDQVisController...............ccccoeiiiiiiinnnneee. 84
5-12: Authorizer-Plug-In des JDQVISCONIrOllereeeiiiiiiiiiiiiiiieeeeeeee 86
5-13: SimulationController-Plug-In des JDQVisControllercccccoeviiiiiiiiciiiiiiinee 87
5-14: Empfang der Rohdaten flr das JDQVISFuuuiiiiiiiiiiiiiiee 89
5-15: Anbindung des JDQVisController an das JDQCFccccooeiiiiiiiiiiiiiie, 90
5-16: Komponenten des JDQVisF mit hervorgehobenen VisualizationMediator........... 91
5-17: Schnittstellen des VisualizationMediatoreoeeiiiiiiiiiiiiiiee 91
5-18: Aufteilung der Visualisierungspipeline..............ueiiiiieiiiieiiieeeeeeee e e 93
5-19: Filter-Plug-In des VisualizationMediatorccoooviiiiiiiiii e 95
5-20: Visualizer-Plug-In des VisualizationMediator..............ccoeiiiiiiiiiiiiiiii e, 97
5-21: Dispatcher-Plug-In des VisualizationMediator.............cccooooiiiiiiiiiiiiiiiii e, 99
5-22: Namespace-Hierarchie der Ressourcen und Datenhaltungcc..c..oooooee. 102
5-23: Namespace-Hierarchie der Plug-INS.........cooooiiiiiiiiiiii e 106
5-24: Namespace-Hierarchie der Schnittstellencccooveeiiiiiiii e, 107
5-25: Konzeptioneller Visualisierungsablauf...............cccoooiiiiiiiicciiiee e, 109
6-1: Klassendiagramm des JDQVisSCoNtroller ..o 112
6-2: Klassendiagramm der VisSpecification-Klassecciieiiiiiiiiiiiiiiiieeeeis 114
6-3: Sequenzdiagramm fur die Benutzerregistrierungccceceeeeeeeiiiiiieeeeiieeeeeees 115
6-4: Aufbau einer Subscribe-Nachricht an das JDQCF ... 116
6-5: Klassendiagramm des DataReCeIVErcccoooiiiiiiiiiiiiiiccceee e 117
6-6: Klassendiagramm des VisualizationMediator..................iiiiiiiiiiiiiiiiiieeeee, 121
6-7: Ablauf der Instanziierung eines VisualizationMediatorc.ccccccoeiiiiiiiinnnnnn, 122
6-8: Ablauf der visualize-Methode des VisualizationMediatorcccceeeiiiiiiinnns 123
6-9: Sequenzdiagramm des Filter-Plug-Ins ..., 133
6-10: Vereinfachter Ablauf des Visualizer-Plug-Inoiiiiiiiiiiiieeeeeeeeei, 135
6-11: Basisbilder der Dimension Rechtzeitigkeit.................oooviiiiiiiii, 136
6-12: Visualisierung der Dimension Rechtzeitigkeit.................oiiiiiiiiiiiiieees 136
6-13: Vereinfachter Ablauf eines Dispatcher-Plug-Ins...............iiiiiiiiiiiiiiiiieees 137
6-14: Beispielimplementierung eines SimulationController-Plug-In.................c........... 138
6-15: Steuerung des Filter-PIug-INSuueeiiiiiie e 141
7-1: Beispiel Datenqualitatsvisualisierungen innerhalb Simulationsdaten.................... 144

7-2: WS-HumanTask zur Bewertung der Datenqualitat...............ccccceeeeiiiiiiiiiiiiieneennns 145

Tabellenverzeichnis

Tabelle 1: Symbolerklarungen in den Beschreibungen der Namespaces. 101

Listings

Listing 1: Beispiel fur die Reprasentation eines Datenqualitatswertes in XML 41
Listing 2: Struktur der Registrierung eines Authorizer-Plug-Ins............cccccceeeiiiiinnnn. 113
Listing 3: Beispiel fur ein InterpretionCalculationResult..............coooeviiiiiiiiie, 117
Listing 4: Methodensignatur der modifyVisualizerSpecification-Methode.................... 119
Listing 5: Methodensignatur der sendSimulationControlRequest-Methode................. 119
Listing 6: Struktur der Registrierung eines SimulationController-Plug-Ins im.............. 120
Listing 7: Struktur der Registrierung eines Filter-Plug-In..............ooooiiiiiiiine, 125
Listing 8: Struktur der Registrierung eines Visualizer-Plug-In.............cccccceeeeiiiiiinnnen. 126
Listing 9: Struktur der Registrierung eines Dispatcher-Plug-Incccccoeeiieiiin. 127
Listing 10: Aufbau der FilterSpecification.Xmlccccooeiiiiiiiiiiiiiee e, 128
Listing 11: Aufbau einer VisualizerSpecification.xml..............cccoorririiiicciiiieeee 129
Listing 12: Aufbau einer DispatcherSpecification.xml............ccccoovriiiiicciiiee, 130
Listing 13: Beispieleintrag in die Benutzerdatenbank des Authorizer-Plug-Ins............ 132
Listing 14: Aufbau einer registerUser-Message........cccooeeeiiieiiiiiiieiiieiiceeee e 139
Listing 15: Antwort des JDQVisController bei erfolgreicher Anmeldung...................... 140

Listing 16: Aufbau einer modifyFilterSpecification-Nachricht.................ccccoeeeii. 142

-10 -
Abklrzungsverzeichnis

JDQCF Java Data Quality Calculation Framework
JDQVisF Java Data Quality Visualization Framework

JDQVisClient Wissenschaftler mit einem Anzeigegerat

QoD Datenqualitat (Quality of Data)

WS WebServices

WSDL Web Service Description Language
XML Extensible Markup Language

SOA Service Oriented Architecture

WIMS Workflow Management System

-11-
Farbenverzeichnis

Java Data Quality Visualization Framework
‘ JDQVisController
‘ VisualizationMediator
Benutzerautorisierung
Simulationssteuerung
Datenaufbereitung
Visualisierung

Datenverteilung

Datenerzeugung

-12 -

1 Einleitung

In den letzten Jahren wurden Workflow-Technologien zur Durchfiuhrung von daten- und
zeitintensiven Berechnungen unter dem Begriff Scientific-Workflows in die Wissenschaft
ubertragen. Ein Teilgebiet stellen dabei Simulation-Workflows dar, bei denen beispiels-
weise das Wachstum eines Tumors oder eines Knochens simuliert werden. Ein solcher
Simulation-Workflow hat typischerweise eine lange Laufzeit und bearbeitet verschiede-
ne Arten von Daten. Dabei hat die Qualitat dieser Daten grof3en Einfluss auf das end-
gultige Simulationsergebnis. Eine schlechte Datenqualitat fihrt mit grof3er Wahrschein-
lichkeit zu ungenauen oder im schlechtesten Fall zu unbrauchbaren Ergebnissen.

Eine Méglichkeit reprasentative Ergebnisse zu erreichen, ist die Uberwachung der lau-
fenden Simulation anhand der Qualitat ihrer Daten. Dabei werden die Daten unter ver-
schiedenen Gesichtspunkten, wie die Genauigkeit oder Vollstdndigkeit, betrachtet. Fur
die Berechnung der Datenqualitatswerte wurde 2011 eine Framework (Java Data Quali-
ty Framework [1]) entwickelt.

In dieser Diplomarbeit wird ein Konzept fur die Visualisierung von Datenqualitatswerten
in Simulation-Workflows entwickelt und durch das Java Data Quality Visualization
Framework (JDQVisF) realisiert. Es generiert aus den zuvor berechneten Datenquali-
tatswerten aussagekraftige Visualisierungen und erleichtert den Wissenschaftlern
dadurch, die Uberwachung der Datenqualitat innerhalb der laufenden Simulation.

Das JDQVisF wird dabei verschiedene Arten von Anzeigegeraten unterstutzen. Das
bedeutet, dass je nach gewahltem Anzeigegerat unterschiedliche Visualisierungen ge-
neriert werden.

Zusatzlich wird das JDQVisF die Rolle des Wissenschaftlers bei der Generierung der
Visualisierungen und der Benutzerinteraktionen berucksichtigen.

Damit der Wissenschaftler auf veranderte Datenqualitatswerte reagieren kann, bietet
das JDQVisF eine Schnittstelle zur Steuerung der laufende Simulation an. Dies ermdg-
licht beispielsweise das Abbrechen einer Simulation bei schlechter Datenqualitat.

Abbildung 1-1 zeigt die Einordnung des JDQVisF zwischen Simulation-Workflow und
Wissenschaftler.

-13 -

Simulation - Workflow

~

Abbildung 1-1: Zusammenhang Simulation-Workflow, Java Data Quality Visualization
Framework und Wissenschaftler

1.1 Aufgabenstellung

Im Rahmen dieser Diplomarbeit sollen Konzepte flr die Visualisierung von Datenquali-
tat (QoD) in Simulation-Workflows erarbeitet und prototypisch realisiert werden. Dazu
werden zunachst die Grundlagen flur die visuelle Darstellung im Bereich der wissen-
schaftlichen QoD entwickelt. AnschlieRend werden die Rahmenbedingungen an ein
entsprechendes Visualisierungs-Framework formuliert, beispielsweise der Zugriffssi-
cherheit und der Registrierung am System. Dadurch wird sichergestellt, dass kein Un-
berechtigter die Daten einsehen oder schlimmstenfalls die Simulation manipulieren
kann.

Nachdem die Grundlagen und Anforderungen aufgezeigt wurden, wird anhand derer
eine Architektur vorgestellt und darauf basierend ein Framework, das folgende Funktio-
nen erfullt:

Bereitstellung verschiedener Visualisierungstypen — Je nach Eingabeformat wer-
den unterschiedliche Diagrammarten und Darstellungsmdglichkeiten, z.B. Einzel-
werte oder einen zeitlichen Verlauf zur Verflgung gestellt.

Generierung der Visualisierung von QoD-Daten — Die Eingabedaten werden anhand

-14 -

ihres Formates, entweder QoD-Einzelwerte oder QoD + Simulationsdaten, unter-
schiedlich verarbeitet.

Moglichkeit zur Einbindung spezieller Visualisierungen — Abhangig vom spateren
Ausgabegerat, z.B. einem Browser, Tablett oder Smartphone, gibt es unterschied-
liche Anspriche an die Visualisierung der Daten. Hierfur bietet das System die
Madglichkeit Uber Plug-In-Schnittstellen geeignete Visualisierungen einzubinden.

Unterstiitzung verschiedener Arten von Darstellungsgeraten — iPad, Android-
Tablet, eMail, usw.

Integration einer Autorisierungsfunktionalitit des Benutzers — Die Benutzer wer-
den bei der Anmeldung auf ihre Rechte hin tGberpruift.

Unterstlitzung bei der Steuerung der Simulation — Das Framework wird den Benut-
zer bei der Steuerung der Simulation unterstitzen.

1.2 Verwandte Arbeiten

In [2] werden Theorien, Verfahren und Techniken zum Thema Datenqualitat vorgestellt.
Dabei werden verschiedene Fragestellungen wie die Relevanz von Datenqualitat unter-
sucht und an Beispielen deutlich gemacht.

In [1] wird ein Framework flr die Berechnung von Datenqualitat in Simulation-Workflows
auf Basis konventioneller Workflow-Technologien entwickelt. Dazu analysiert es Simula-
tionsdaten auf Basis von Metriken. AnschlieRend werden die Resultate durch eine In-
terpretationseinheit bewertet und somit Datenqualitatswerte erzeugt. Es unterstitzt da-
bei neben der maschinelle Berechnung auch die Berechnung und Interpretation durch
einen Menschen. Die Ergebnisse dieser Berechnungen dienen dem JDQVisF als Ein-
gabedaten.

[42] ist eine Zusammenfassung einer Fachtagung der National Center for Geographic
Information and Analysis (NCGIA) und befasst sich mit den Auswirkungen der
Datenqualitat in Geoinformationssystemen (GIS). In den Gesprachen werden die
Rolle und der Nutzen einer Visualisierung fur das Verstandnis Uber die Qualitat
der GIS-Daten vorgestellt. Zudem wird gezeigt, wie wichtig die Zuverlassigkeit
der Daten fur die spatere Nutzung und Glaubwdirdigkeit ist .

In [27] wird ein Werkzeug fur die Visualisierung von allgemeinen Datenqualitatswerten
vorgestellt. Es reduziert eine Datenmenge auf eine tabellarische Reprasentation. Diese
soll helfen fehlende oder invalide Daten schnell zu erkennen, Inkonsistenzen aufzude-
cken oder verschiedene Datenversionen zu vergleichen. Dabei reprasentiert die Lange
einer Tabellenzelle den Datenwert.

-15-

i
Il's

Abbildung 1-2: DaVis: Abbildung der Datenwerte auf die Lénge der Tabellenzelle [27]

Leider konnte neben [27] keine weitere Referenz zu diesem Werkzeug gefunden wer-
den.

Nach meinem besten Wissen und Gewissen gibt es zum Zeitpunkt der Erstellung dieser
Diplomarbeit keine weiteren verwandten Arbeiten zum Thema Visualisierung von Da-
tenqualitatswerten in Simulation-Workflows.

Alle Ideen und Konzepte die in dieser Arbeit vorgestellt werden, wurden durch regelma-
Rige Treffen mit dem Betreuer abgesprochen und abgestimmt.

1.3 Struktur der Arbeit

Nach diesem einleitenden Kapitel 1 werden in Kapitel 2 alle, flr das Verstandnis wichti-
gen, Grundlagen behandelt. Dazu zahlen insbesondere die Definition der Begriffe Daten
und Datenqualitdt, das JDQCF, sowie eine EinfUhrungen in die Themen Simulation-
Workflow, Service Oriented Architecture und WebServices.

Kapitel 3 befasst sich mit den allgemeinen Grundlagen des Themenbereichs Visualisie-
rung. Hierzu gehdéren unter anderem die Ziele von Visualisierungen, alle wichtigen Defi-
nitionen zum Thema Visualisierung, die Visualisierungspipeline, die Anforderungen an
eine gute Visualisierung, Einflussfaktoren auf die Visualisierung, Grundlegende Visuali-
sierungstechniken. Zudem wird die Problemstellung des Findens passender Visualisie-
rungen untersucht und Beispielvisualisierungen von Datenqualitatswerten aufgezeigt.

Kapitel 4 beschreibt die Anforderungen an das zu entwickelnde Visualisierungsframe-
work. Da das JDQVisF zwei verschiedene Benutzergruppen besitzt, werden diese ge-
trennt nach ,Wissenschaftler” und ,Programmierer aufgestellt und formuliert.

In Kapitel 5 wird der konzeptionelle Entwurf des JDQVisF gezeigt. Grundsatzlich kann
beim JDQVisF von einer logisch getrennten Dreischichtenarchitektur gesprochen wer-
den, da es sich zwischen dem Simulation-Workflow und den Wissenschaftlern einord-
net. Neben einer Visualisierungseinheit, wird es eine Komponente zur Benutzersteue-
rung enthalten. Bei dieser missen sich die Wissenschaftler anmelden bevor sie die Da-
tenqualitat visualisiert auf ihnr Endgerat erhalten.

-16 -

Kapitel 6 beschreibt die technische Umsetzung der in Kapitel 5 erarbeiteten Konzepte.
Dabei werden alle Komponenten und jeweils eine Erweiterung fur das JDQVisF be-
schrieben.

Kapitel 7 beschlie3t diese Diplomarbeit durch die Beschreibung zukunftiger Arbeiten auf
Grundlage des JDQVisF.

1.4 Notation und Schreibstil

Diese Diplomarbeit wird in deutsch verfasst. Einige Begriffe wie Service Oriented Archi-
tecture, WebServices, Mapping oder Namespace werden jedoch nicht Ubersetzt und
unter der englischen Originalbezeichnung verwendet, da sie als allgemein anerkannt
gelten.

In dieser Arbeit wird flr die Bezeichnung von unbestimmten Personen wie Wissen-
schaftler, Benutzer und Entwickler die maskuline und feminine Form zusammengefasst
und unter der maskulinen Form verwendet. Diese Konvention soll den Lesefluss ge-
genuber der ausgeschriebenen Form (,Wissenschaftler(in)“) erleichtern und nicht dis-
kriminierend sein.

-17 -

2 Grundlagen

In diesem Kapitel werden die Grundlagen und Hintergrundinformationen gegeben, wel-
che fur die anschlieRenden Kapitel und das allgemeine Verstandnis der spateren Kon-
zepte von Bedeutung sind.

2.1 Daten

In diesem Kapitel wird zunachst der Begriff Daten definiert, bevor anschliel3end die ver-
schiedenen Strukturen und deren Bedeutung erklart werden. Am Ende des Kapitels
wird ein Ausblick zur Visualisierung von Daten gegeben.

2.1.1 Definition des Begriffs Daten

FUr den Begriff Daten sind in der Literatur unterschiedliche Definitionen verbreitet. Die
verschiedenen Einsatzumgebung und Fachgebieten pragen die Definitionen maligeb-
lich. Beispielsweise spricht [2] von Daten, ,die Objekte der realen Welt darstellen®. Da-
gegen werden in der Informatik Daten, ,als in erkennungsféhiger Form dargestellte
Elemente einer Information, die in Systemen verarbeitet werden kénnen.“[4] definiert.

In Simulationen werden Informationen aus unterschiedlichen Fachbereichen mit unter-
schiedlicher Herkunft verarbeitet. In manchen beziehen sich Daten auf reale Obijekte,
beispielsweise bei der Simulation des Knochenwachstums, in anderen beziehen sie
sich auf mathematische Modelle, die mogliche zuklnftige Ereignisse, beispielsweise
den Klimawandel der nachsten Jahre, prognostizieren. Damit dieses weite Feld der wis-
senschaftlichen Simulation nicht eingeschrankt wird und durch die enge Anbindung die-
ser Arbeit an [1], wird die Definition aus [1] GUbernommen.

Definition: Daten
Daten repréasentieren Informationen.

Durch diese Definition kdnnen Daten in einem sehr breiten Umfeld eingesetzt werden.
Der Begriff umfasst demnach auch ein Bild, ein Stlick Programmcode oder eine Textda-
tei welche durch [1] bewertet und anschlieend visualisiert dargestellt werden kénnen.

Die Singularform Datum beschreibt einen einzelnen Datenwert in einer Menge von Da-
ten.

-18 -

2.1.2 Struktur

Nach [2] lassen sich Daten anhand ihrer Struktur in drei verschiedene Klassen einteilen.
Strukturierte Daten sind Daten bei denen jedes Datenelement einer festen Struktur zu-
geordnet ist. Beispielsweise enthalten relationale Tabellen strukturierte Daten.
Semistrukturierte Daten sind Daten deren Struktur flexibel ist. Das heif3t, die Daten sind
nicht an ein festes Schema gebunden und sind selbstbeschreibend. Als ein Beispiel fur
semistrukturierte Daten kann hier die Markupsprache XML genannt werden. Eine XML-
Datei kann ein zu Grunde liegendes Schema haben, muss es aber nicht, solange es die
grundsatzlichen Anforderungen an ein XML-Dokument erfullt.

Unstrukturierte Daten sind Daten, die in natlrlicher Sprache ausgedrickt werden und
somit keiner speziellen Struktur zuzuordnen sind.

Je nach Klasse kdnnen unterschiedliche Visualisierungen sinnvoll sein. Zum Beispiel
konnen strukturierte Daten leicht auf einer Skala abgebildet werden, da sie in direkter
Beziehung zu dieser existieren. Wohingegen der Informationsgehalt aus unstrukturier-
ten Daten vor einer Visualisierung herausgearbeitet werden muss. Die Problemstellung
des Findens guter Visualisierungen wird in Kapitel 3.8 genauer betrachtet.

2.1.3 Anderungsrate

Daten lassen sich, neben der Struktur, entsprechend der Haufigkeit ihrer Anderungen in
drei Klassen unterteilen [2].

Stabile Daten (stable data) sind Daten die sich mit hoher Wahrscheinlichkeit nicht an-
dern werden. Als Beispiel kdnnen hier wissenschaftliche Arbeiten genannt werden. Es
kommen zwar stetig neue hinzu, die alten verbleiben aber unverandert. Die zweite
Klasse sind die langzeitbestédndige Daten (Long-term-changing data). Sie beinhaltet
Daten, die sich nur sehr selten verandern. Adressen oder Telefonnummern sind typi-
sche Beispiele fur Daten in dieser Klasse.

In der dritten Klasse liegen die sich héufig &ndernde Daten (frequently-changing data).
Sie zeichnen sich durch einer hohen Anderungsrate aus. Typische Beispiele sind Daten
zur Temperaturangabe oder zu Stauinformationen.

Unter Berlicksichtigung der Anderungsrate ergibt sich, dass fiir einige Daten die Daten-
qualitat haufiger berechnet und untersucht werden muss, als fir andere. Aus diesem
Grund spielt die Anderungsrate eines Datums bei den Auswahl einer passenden Visua-
lisierung eine wichtige Rolle. Stabile oder langzeitbesténdige Daten kbnnen komplexer
und aufwandiger visualisiert werden, als sich schnell verandernde Daten. Dem Betrach-
ter bleibt fur eine effektive Auswertung des Informationsgehaltes langer Zeit. Schnell
verandernde Daten und damit auch schnell verandernde Visualisierungen hingegen,
mussen den Informationsgehalt auf das Wesentliche reduzieren, um dem Betrachter
einen schnellen und effizienten Zugang zu ermaéglichen.

Die wichtigsten Anforderungen, die bei der Auswahl guter Visualisierungen beachtet
werden mussen, werden in Kapitel 3.4 beschrieben.

-19 -

2.1.4 Visualisierung von Daten

Der Durchbruch des Computers fuhrte in der Wissenschaft zu dem sogenannten
.Fourth Paradigm For Science® [5]. Es beschreibt das computergestiutzte Berechnen
sehr grofer Simulationen mit teilweise sehr langer Laufzeit und riesiger Datenmengen
als Ergebnis. GrofRe wissenschaftliche Einrichtungen, wie beispielsweise das australi-
sche Square Kilometre Array [10], der Teilchenbeschleuniger LHC am CERN [11] oder
Pan-STARRS [12], kbnnen am Tag leicht mehrere Petabyte an Daten erzeugen [5]. Der
Umgang mit diesen Datenmengen stellt die heutige Wissenschaftler vor grol3e Heraus-
forderungen.

Ein Ansatz fur eine effektive und effiziente Auswertung dieser Datenflut bieten Visuali-
sierungen. Sie erlauben durch das Auswahlen relevanter Daten, die urspringliche Da-
tenmenge zum Teil drastisch zu verringern und somit das Simulationsziel in einem en-
geren Umfeld zu betrachten [2]. Visualisierungen ermoéglichen den Wissenschaftlern
einen vereinfachten Einstieg und bieten eine gemeinsame Kommunikationsgrundlage.

In Kapitel 3 werden dazu Konzepte, Methoden und Techniken vorgestelit.

2.2 Simulation

Dieses Kapitel gibt einen Einblick in wissenschaftliche Simulationen. Hierzu wird zu-
nachst der Begriff Simulation definiert und mit einer FEM (Finite Element Methode) ba-
sierten Simulation ein Beispiel aufgezeigt.

Definition: Simulation
A simulation imitates one process by another process. In this definition, the term
‘process’ refers solely to some object or system whose state changes in time. If
the simulation is run on a computer, it is called computer simulation. [13]

In den Naturwissenschaften werden haufig so genannte FEM basierte Simulationen
eingesetzt [28]. In diesen werden komplexe Differentialgleichungen numerisch fur dis-
krete Zeitschritte geldst. Dabei werden Ergebnisse fur einen einzelnen Zeitschritt durch
das Ldsen von Matrizengleichungen berechnet. FEM basierte Simulation kdnnen sehr
langlaufig sein und produzieren dabei komplexe Datenstrukturen.

Nach [28] gliedert sich eine FEM-basierte Simulation in drei Phasen, welche jeweils
wiederum in verschiedene Schritte unterteilt sind. (Abbildung 2-1 zeigt einen Bei-
spielaufbau.)

Die erste Phase ist die Vorverarbeitungsphase (Preprocessing Phase). In dieser wer-
den alle relevanten Eingabedaten flr die spatere Berechnungsphase gesammelt. Dazu
zahlen beispielsweise das Geometriemodell, Materialparameter und FEM-Parameter.

-20 -

In der Berechnungsphase (Equation Solving Phase) werden Matrix-Gleichungen, basie-
rend auf den zuvor festgelegten Parametern, geldst. Die Matrixgleichungen werden flr
jeden Zeitschritt gelost, wobei die entstandenen Zwischenergebnisse wieder als Para-
meter in die Berechnung mit einflie3en. Die Anzahl der Wiederholungen wird in diesem
Beispiel vor der Berechnungsphase festgelegt.

In abschlielRenden Auswertungsphase (Postprocessing Phase) werden die finalen Er-
gebnisse ausgewertet. Da durch FEM basierten Simulationen sehr grol3e Datenmengen
entstehen kdnnen, werden in dieser Phase Visualisierungen eingesetzt. Diese kdnnen
die entstandene Datenmenge durch gezielte Abbildungen reduzieren und prasentieren.
Visualisierungen helfen dadurch den Wissenschaftlern, die Ergebnisdaten in einem
bstimmten Kontext zu betrachten.

Preprocessing Phase

geometry material FEM impl. + initial boundary initial solver type +
data parameters FEM grid type FEM grid condition condition error tolerance

| e YYYY

FEM matrix \ postprocessing Legend
. N output H
gr.ld equxtlon 4 A Control flow
v v - (intermediate) —
results Visualization . Data dependencies
O ™ ©) e

Time Loop (7)0 fori=1ton

%(-—/
Equation Solving Phase Postprocessing Phase

Abbildung 2-1: Aufbau einer FEM basierten Simulation [28]

2.3 Datenqualitat

Die Berechnungen in komplexen und langlaufige Simulationen kdnnen oft mehrere Wo-
chen andauern. Um sicher zu stellen, dass die berechneten Endergebnisse korrekt
sind, ist es wichtig die laufende Simulation zu Uberwachen. Dadurch kann bei Bedarf

-21 -

frihzeitig in die laufende Simulation eingegriffen werden. Damit die Simulation repra-
sentierbare Ergebnisse liefert, werden insbesondere an die verwendeten Daten be-
stimmte Anspriche gestellt. Beispielsweise darf die Genauigkeit der Zwischenergebnis-
sen einen bestimmten Schwellenwert nicht unterschreiten, um die Korrektheit der End-
ergebnisse nicht zu beeinflussen [7].

Diese Anspriche werden im Folgenden unter dem Begriff der Datenqualitadt zusam-
mengefasst.

Dieses Kapitel gibt neben der Definition, einen Uberblick tiber die wichtigsten Gesichts-
punkte, so genannte Dimensionen, nach denen die Daten untersucht werden kénnen.

2.3.1 Definition von Datenqualitat

Die International Association for Information and Data Quality [6] setzt Datenqualitét
und Informationsqualitét gleich und fasst sie unter dem Begriff ,Information quality” zu-
sammen:

Information quality — (1) Consistently meeting all knowledge worker and end-customer
expectations in all quality characteristics of the information products and services
required to accomplish the enterprise mission (internal knowledge worker) or per-
sonal objectives (end customer). (2) The degree to which information consistently
meets the requirements and expectations of all knowledge workers who require it
to perform their processes. [6]

Da in dieser Arbeit von einem sehr allgemeinen Daten-Begriff ausgegangen wird und in
Anlehnung an [1], wird der zweite Teil dieser Definition angepasst und Datenqualitat fur
die Visualisierung in Simulation-Workflows wie folgt definiert:

Definition: Datenqualitit (Quality of Data, QoD)
Das Ausmal, in dem Daten die Anforderungen und Erwartungen der Wissenschaft-
ler konsistent erfillen.

Diese Definition erlaubt es Datenqualitat skalenunabhangig betrachten zu kénnen. Bei-
spielsweile kdnnen Datenattribute auf Skalen der Form {Gut, Schlecht} oder auf Zah-
lenwerte von 0 bis 1 abgebildet und entsprechend interpretiert werden.

2.3.2 Dimensionen von Datenqualitat

In [2] wird Datenqualitat durch die sechs Dimensionen Genauigkeit, Vollstédndigkeit, Ak-
tualitat, Rechtzeitigkeit, Schwankungsfreudigkeit und Konsistenz beschrieben. Diese
Dimensionen werden in dieser Arbeit Gbernommen und dienen den spateren Visualisie-
rungen als Eingabedaten.

-22 -

In den folgenden Abschnitten werden die einzelnen Datenqualitats-Dimensionen ge-
nauer betrachtet und in Zusammenhang mit Simulation-Workflows gebracht.

2.3.2.1 Genauigkeit (Accuracy)

Bei wissenschaftlichen Simulationen spielt vor allem die Genauigkeit eine bedeutende
Rolle. Sie beschreibt die Nahe zwischen einem Wert v und einem Wert v’, wobei v’ ein
reales Objekt korrekt reprasentiert und v die Annaherung an diesen Wert [2]. Dabei
bezieht sich die Genauigkeit nicht nur auf die mathematische Bedeutung, sondern kann
auf jede Art von Attributen angewendet werden. Beispielsweise kdnnte der Name einer
Person v’ = John sein. Eine Annaherung v = Jhn ist damit unkorrekt. Nach [2] kann Ge-
nauigkeit auf eine syntaktische und semantische Ebene untersucht werden.

Die syntaktische Genauigkeit beschreibt die Nahe eines Wertes v zu den Elementen
des dazugehorigen Definitionsbereiches. Beispielsweise ist der Wert v = 0.59 in einem
Definitionsbereich [0...1] syntaktisch korrekt, der Wert v = -0.59 hingegen nicht.

Die semantische Genauigkeit hingegen beschreibt die Nahe eines Wertes v zu einem
wahren Wert v'. In dem Beispiel wirde v = 0.59 und v’ = 0.6 eine hohe semantische
Genauigkeit bedeuten, wenn die Zahlenwerte bei der Interpretation ahnlich grof3 sein
sollen.

Bei komplexen Simulationen spielt in erster Linie die Genauigkeit bei mathematischen
Berechnungen eine entscheidende Rolle. Wenn sich beispielsweise die Berechnung auf
mehrere Berechnungseinheiten verteilt, kann es bei mangelnder Genauigkeit der Zwi-
schenergebnisse leicht zu einer Fehlerfortpflanzung kommen und das Berechnungser-
gebnis malgeblich beeinflussen oder sogar unbrauchbar machen.

2.3.2.2 Volistandigkeit (Completness)

Die Dimension Vollsténdigkeit beschreibt allgemein das Ausmal, in dem Daten von
ausreichender Breite, Tiefe und Umfang fur die jeweilige Aufgabe vorhanden sind [8].
Sie taucht innerhalb eines Simulation-Workflow an unterschiedlichen Stellen auf. Bei-
spielsweise kann direkt beim Start die Vollstandigkeit der Ausgangsdaten untersucht
werden.

2.3.2.3 Aktualitat (Currency)

Aktualitét beschreibt wie schnell die Daten bei einer Anderung aktualisiert werden [2].
Als ein Beispiel kdnnen bei einer verteilten Simulation die Eingabedaten der einzelnen
Services genommen werden. Wenn ein Service Daten eines anderen Services als Ein-
gabedaten erhalt und das sofort nach jeder Datenanderung, dann ist die Aktualitat
hoch.

-23 -

2.3.2.4 Rechtzeitigkeit (Timeliness)

Nach [2] beschreibt die Rechtzeitigkeit wie gegenwartig die Daten fur die aktuelle Auf-
gabe sind.

In Simulationen mit verteilten Berechnungseinheiten ist diese Dimension besonders
wichtig: Wenn eine Berechnungseinheit einer darauf folgenden Einheit die Ergebnisse
zu spat zur Verfugung stellt, kann es zu Engpassen und somit zur Verzégerung der ge-
samten Berechnung kommen.

2.3.2.5 Schwankungsfreudigkeit (Volatility)

Die Dimension Schwankungsfreudigkeit beschreibt die Frequenz mit der sich die Daten
mit der Zeit verandern [2]. Dabei gibt es einen direkten Zusammenhang mit den in Kapi-
tel 2.1.3 vorgestellten Klassen zur Anderungsrate. Bei einer hohen Anderungsrate, etwa
bei dem Wert einer Aktie ist die Schwankungsfreudigkeit hoch. Bei stabilen Daten, etwa
dem Geburtsdatum einer Person, entsprechend bei 0.

2.3.2.6 Konsistenz (Consistency)

Die Dimension Konsistenz erfasst die Verletzung von semantischen Regeln die Uber
eine Menge von Datenelemente definiert ist [2]. Insbesondere beschreibt sie die Bezie-
hung des Simulationsziel zu den zu Grunde liegenden Daten. Soll beispielsweise bei
einer Simulation das Knochenwachstum eines 40-jahrigen Mannes nach einer Sportver-
letzung berechnet werden und bekommt dazu die Knochendaten eines dreijahrigen
Madchens als Eingabedaten, wird das Ergebnis unbrauchbar sein.

2.3.3 Java Data Quality Calculation Framework

Das Java Data Quality Framework (JDQCF) ist ein Framework fur die Berechnung von
Datenqualitat in Simulation-Workflows. Es wird in [1] genauer beschrieben und soll hier
nur kurz angesprochen werden.

Das JDQCF ordnet sich logisch vor dem hier zu entwickelnden Java Data Quality Vi-
Sualization Framework (JDQVisF) in den Simulation-Workflow ein. Das JDQCF berech-
net die Datenqualitat und versendet die Daten an das JDQVisF. Es liefert somit die Ein-
gabedaten fur die Visualisierung. Neben den Datenqualitatswerten kann das JDQCF
zusatzlich die originalen Simulationswerte versenden oder eine Referenz auf diese ge-
ben. Sie kdnnen somit bei der Visualisierung berlcksichtigt werden.

24 Service Oriented Architecture

In vielen Branchen werden Geschéaftsprozesse mit Hilfe von Software umgesetzt. Dabei
enthalten unterschiedliche Geschaftsprozesse haufig gleiche Teilprozesse und oder

-24 -

Funktionen. Service Oriented Architecture (SOA) beschreibt einen Software-
Architekturstil mit dem Ziel, diese Funktionen, anstatt durch prozessspezifische Losun-
gen, durch so genannte Services den einzelnen Geschaftsprozessen zur Verfugung zu
stellen. Sie erhoht dadurch die Flexibilitat der Gesamtarchitektur und die Wiederver-
wendbarkeit einzelner Komponenten. [18]

Abbildung 2-2 zeigt das Zusammenspiel der einzelnen Komponenten einer SOA durch
das so genannte SOA Dreieck. Es enthalt jeweils eine Komponente fir das Veroéffentli-
chen von Services, das Finden und das Verknlupfen des Service-Benutzers mit dem
Service-Anbieter.

Service
Discovery

Find/ 2. -\ Publish

Service 3. Service
4 i >
Bind

Abbildung 2-2: SOA Dreieck

Im ersten Schritt registriert ein Service-Anbieter (Service Provider) seine funktionalen
und nichtfunktionalen Eigenschaften bei der Service Discovery (1). Im zweiten Schritt
stellt ein moglicher Konsument (Service Consumer) an die Service Discovery eine An-
frage Uber die gewunschten funktionalen und nichtfunktionalen Anforderungen (2). Die
Service Discovery wahlt im nachsten Schritt einen passenden Service Provider aus und
ubergibt dem Service Consumer Metadaten (z.B. IP Adresse des Service Provider) mit
deren Hilfe er sich an den Service Provider binden und dessen Funktionen verwenden
kann (3).

2.41 WebServices

In diesem Abschnitt wird ein Uberblick (iber die WebService-Technologie gegeben, die
fur das Verstandnis dieser Arbeit wichtige Eigenschaften beschreibt. Fur eine detaillierte
Ausflhrung sei an dieser Stelle auf [18] und [33] verwiesen.

WebServices sind eine weitverbreitete Technologie fir die Umsetzung einer SOA. Sie
zeichnen sich durch die Verwendung standardisierter, plattformunabhangiger Techno-
logien, wie das XML-Format und SOAP-Nachrichten, aus [1]. Ein WebService bietet
dabei Uber standardisierte Schnittstellen ausgeschriebene und Uber das Internet zur

-25-

Verfligung gestellte Funktionalitdten an. Er realisiert dadurch eine Schnittstelle zwi-
schen Service Consumer und Service Provider.

Das World Wide Web Consortium (W3C) definiert WebServices wie folgt:

Definition: WebService
A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards. [29]

Aus der Definition lassen sich drei wichtige Eigenschaften von WebServices ableiten:

WebServices sind miteinander kombinierbar — WebServices zeichnen sich durch
standardisierte Schnittstellen aus mit denen sie untereinander verknupft werden
konnen. Beispielsweise wird das JDQVisF als WebService implementiert wer-
den, der von anderen WebServices verwendet werden kann und selber einen
WebServices (z.B. das JDQCF) fur die Dateneingabe benutzt.

WebServices sind lose gekoppelt — WebServices kdnnen auf unterschiedlichen Um-
gebungen laufen und in unterschiedlichen Programmiersprachen implementiert
sein. Damit sie trotzdem miteinander kombinierbar sind, benutzen sie definierte
Schnittstellen zur Kommunikation. Dadurch entsteht eine lose Kopplung und ein-
zelne WebServices lassen sich leicht austauschen oder anpassen. Beispielswei-
se werden zur Visualisierung von Datenqualitat, diese Werte zuerst vom JDQCF
berechnet und anschlieRend Uber eine SOAP-Nachricht an das Visualisierungs-
framework Ubergeben.

WebService sind immer verfiigbar — Das heil3t, ein WebService ist 24/7 erreichbar
und kann die Anfragen des Service Consumer mit einer ausreichenden Qualitat
bearbeiten. Fur das hier zu entwickelnde Visualisierungsframework bedeutet
das, dass ein Wissenschaftler zu jeder Tages- und Nachtzeit die Datenqualitat
visuell auf seinem Endgerat dargestellt bekommt und so seine laufenden Simula-
tion Uberwachen kann.

2.4.1.1 WebService Beschreibung

Um die lose Kopplung eines Service Consumer und des Service Provider zu erreichen,
werden standardisierte Beschreibungen der angebotenen Schnittstellen bendtigt. Die

-206 -

Web Service Description Language (WSDL) erlaubt es einem Service Producer seine
funktionalen Eigenschaften plattformunabhangig zu definieren.

Die Definitionen von nichtfunktionalen Eigenschaften kénnen durch den WS-Policys
Standard [32] umgesetzt werden.

Da das Visualisierungsframework spater als WebService zur Verfligung gestellt wird,
wird im Folgenden der Aufbau eines WSDL-Dokumentes beschrieben.

WSDL

WSDL ist eine auf XML-basierte Metasprache fur die Beschreibung der funktionalen
Eigenschaften wie Methoden, Parameter und Austauschprotokolle eines WebService.
Die syntaktischen Informationen eines WSDL Dokumentes wird durch die WSDL Spezi-
fikation gegeben. Sie ist in Versionen v1.1 und v2.0 verfugbar. Da die neue Version
v2.0 nur wenig verbreitet ist, beziehen sich alle Aussagen in dieser Arbeit auf die Versi-
onv1.1.

Abbildung 2-3 zeigt den Aufbau eines WSDL-Dokumentes. Es enthalt die Beschreibun-
gen der Schnittstellen, das Zugangsprotokoll und Details zum Deployment sowie alle
Notwendigen Informationen flr den Zugriff auf den WebService.

Ein WSDL-Dokument kann grundsatzlich in zwei Bereiche eingeteilt werden.

Im abstrakten Teil wird beschrieben was der WebService anbietet. Es werden die beno-
tigten Datentypen (types), abstrakte Definitionen der Nachrichten fur die Eingabe-, Aus-
gabe- und Fehlermeldungen (messages) und eine Menge von abstrakten Beschreibun-
gen der Operationen (operation) die vom WebService unterstitzt werden (portType)
definiert [33].

Im konkreten Teil werden Informationen darUber hinzugefiigt, wie mit dem WebService
kommuniziert werden kann (binding) und wo dieser erreichbar ist (service). Das binding
enthalt konkrete Protokolle und Datenformate, um einen portType zu implementieren.
Das Element service enthalt eine Menge von individuellen ,Endpunkten® (port), die Uber
eine Netzwerkadresse erreichbar sind und ein bestimmtest binding unterstttzen. [33]

-27 -

definitions
types
message
>
O
portType " What" (_,L:p
Q
operation 9._
| input |
| output |
S P —
binding "How" 8
>
Q
service "Where" 'C_D'_
port | D
.. —

Abbildung 2-3: Aufbau eines WSDL-Dokuments nach der WSDL-Spezifikation v1.1 mit
Kennzeichnung des abstrakten und konkreten Teils

2.5 Simulation-Workflow

Workflows beschreiben Kompositionen von voneinander abhangigen Aufgaben, die auf
einem Computer unter Verwendung eines Workflow-Management-Systems (WfMS)
ausgefuhrt werden [30]. Klassische Workflows dienen dazu, Geschaftsprozesse und IT
zusammenzuflhren. Dabei kdnnen die einzelnen Aufgaben durch WebServices reali-
siert sein, die auf unterschiedlichen Umgebungen und auf unterschiedlichen Rechnern
ausgefuhrt werden.

Seit einigen Jahren werden bekannte Workflow-Technologien in die Wissenschaft unter
dem Namen Scientific-Workflows Ubertragen [30]. Speziell im Gebiet der Simulationen
bieten diese mehrere Vorteile. Durch ihre Hilfe kann beispielsweise das Auswerten der
Simulationsergebnisse auf mehrere Wissenschaftler verteilt werden. Aul3erdem erleich-
tern sie den Umgang mit gro3en Datenmengen, wie sie in komplexen und langlaufigen
Simulationen entstehen kénnen.

-28 -

Abbildung 2-4 zeigt die Architektur eines Simulation-Workflow unter Verwendung von
WebService-Technologien als eine Implementierung einer SOA und der Workflowspra-
che BPEL [30]. Der Service-Bus startet die verschiedenen Services fur die Bearbeitung
der Aufgaben innerhalb der Simulation. Das in [30] vorgestellte Scientific WfMS ver-
wendet die konventionelle Workflow-Technologie, um Simulation-Workflows auf Basis
kausalen Abhangigkeiten oder Datenabhangigkeiten zu modellieren. Genauer gesagt,
kann ein Wissenschaftler durch die Verwendung von Workflow-Technologie ein Work-
flow-Modell erstellen, welches die Aufgaben definiert und die Reihenfolge in der diese
verarbeitet werden mussen festlegt. Ein solches Modell dient als Vorlage aus der jeder
Workflow instanziiert werden kann. Das bedeutet, dass jeder Workflow aus einem zu-
grunde liegenden Workflow-Modell heraus erstellt wird. Diese konkrete Workflowinstanz
kann dann durch eine Workflow-Engine eines WfMS ausgefiuhrt werden. [30]

SimTech Workflow Management System

GUI
Service Workflow . Result
Catalog Modeller Monitor Display /ﬁ\/\
f F ~UJ
: : ¢ : oy
: Service Bus / g ’ ‘.
.% Monitoring Deployment Security |q_p! PEEN . ,
2 Resource N\ @ A
g 1 Manage- "\ /»‘
8 Provenance ment S —
[} - _
'% | Execution |, Service o
= i, l » . < » . [\
2 Auditing Engine Discovery |« &
t 3 Service Registry

Abbildung 2-4: Architektur eines Simulation-Workflows auf Basis konventioneller Work-
flow-Technologie [30]

Simulation-Workflows, basierend auf kausalen Abhangigkeiten oder Datenabhangigkei-
ten, kdnnen langlaufige Berechnungen und die Verwendung komplexen Datenstruktu-
ren unterstitzen. Dabei kdnnen durch konventionelle Workflow-Technologie einzelne
WebServices zu einem Ubergeordneter Prozess zusammengestellt werden, der zur Be-
arbeitung einzelner Aufgaben eingesetzt werden kann. Diese Technik ermdglicht den
Simulation-Workflow auf einer abstrahierten Ebene zu betrachten.

Abbildung 2-5 zeigt die generelle Architektur eines Simulations-Workflows. Diese ist in
drei Schichten eingeteilt [28].

-29 -

O—0O—
Workflow Management
~ System Layer

[Service Bus] Service Bus Layer

Service Service Service .
[A][B][C jSerwceLayer

Abbildung 2-5: Generelle Architektur eines Simulation-Workflows [28]

Die WfMS Schicht ist fur die Ausfuhrung des Simulation-Workflows auf Basis konventi-
oneller Workflow-Technologien verantwortlich. Sie verbindet einzelne WebServices um
das Simulationsziel zu erreichen.

Die Service-Bus Schicht dient dem WfMS fur den Aufruf der einzelnen Services. Das
bedeutet, dass das WfMS nicht direkt die einzelnen Services aufruft. Der Service-Bus
wahlt einen passenden Service fur die Bearbeitung der Aufgabe aus. Bei der Auswahl
bertcksichtigt er sowohl funktionale (z.B. die moéglichen Operationen) als auch nicht-
funktionale Anforderungen (z.B. Datenqualitatsanforderungen) der Services. Ist ein
passender Service gefunden, Ubergibt der Service-Bus die Anfrage des Workflows an
diesen. Nach der Bearbeitung gibt der Service-Bus das Ergebnis an den Workflow zu-
ruck.

Die Service-Schicht beschreibt alle Services die vom Workflow zusammengestellt und
verwendet werden konnen. Jeder Service besitzt dazu standardisierte Schnittstellen
und Beschreibungen seiner funktionalen und nichtfunktionalen Anforderungen. Zu den
Funktionalen zahlen zum Beispiel mogliche Operationen, Parameter und Datentypen.
Zu den Nichtfunktionalen gehoéren Anforderungen wie Kosten, durchschnittliche Re-
chenzeit oder Anforderungen an die Datenqualitat. Diese Schnittstellenbeschreibungen
werde vom Service-Bus als Auswahlkriterien verwendet. [30]

-30 -

3 Visualisierung von Datenqualitat

Visualisierungen sollen den Betrachter bei der Auswertung einer Datenmenge unter-
stitzen. Um dieses grundsatzliche Ziel zu erreichen, mussen diese Visualisierungen
bestimmte Kriterien erfullen. In diesem Kapitel werden hierzu Konzepte, Methoden und
Techniken aufgezeigt und mogliche Visualisierungen flr Datenqualitadtswerte vorge-
stellt.

Im ersten Teil werden zunachst die grundsatzlichen Ziele von Visualisierungen gezeigt.
Anschlieend werden die Begriffe Visualisierung, Informations- und Datenvisualisierung
und Datenqualitédtsvisualisierung definiert. Danach wird die allgemeine Visualisierungs-
pipeline vorgestellt und die drei Stufen Filtering, Mapping und Rendering erklart.
AnschlieRend werden die Anforderungen Expressivitét, Effektivitadt und Angemessenheit
fur gute Visualisierungen und die verschiedenen Einflussfaktoren gezeigt. Darauf auf-
bauend werden grundsatzliche Visualisierungstechniken vorgestellt und das Problem
des Findens passender Visualisierungen beschrieben. Abschlieliend werden Techniken
fur die Visualisierung von Datenqualitatswerten vorgestellt.

3.1 Ziele der Visualisierung

Rolf Daldler begrindet die Bedeutung der Visualisierungen wie folgt:

,Visualisierung entspricht der Neigung der menschlichen Spezies und
unserer Kultur, visuelle Reprasentationsformen zu bevorzugen.[...] Nur
ca. 13% der Information werden mit dem Gehér und 12% mit Hilfe an-
derer Sinnesorgane aufgenommen.” [3].

Das bedeutet, dass zwischen 60% und 80% der Informationen aus visuellen Eindricken
gewonnen werden [14].

Das Ziel jeder Visualisierung ist es, diese Erkenntnisse auszunutzen und die Informati-
onen innerhalb abstrakter Daten verstandlich wiederzugeben und dadurch eine effizien-
te Analyse zu ermdoglichen. Speziell in wissenschaftlichen Simulationen, bei denen rie-
sige Datenmengen entstehen kdnnen, ist die visuelle Reprasentation eine Mdglichkeit
die Auswertung und Bewertung zu vereinfachen.

In diesem Kapitel werden zunachst die allgemeinen Aufgaben der Visualisierung und
ihre Ziele in ahnlichen Einsatzgebieten aufgezeigt. AnschlieRend werden diese allge-
meingultig formuliert und auf die Visualisierung von Datenqualitat in Simulation-
Workflows Ubertragen.

-31 -

Die Visualisierung ist immer auch Teil eines kreativen Prozesses, bei dem Strukturen
und Zusammenhange untersucht und kommuniziert werden. 1987 wurden von Mc Cor-
mick, De Fanti und Brown die zwei Hauptaufgaben der Visualisierung beschrieben, wel-
che auch heute noch aktuell sind.

Ergebnisprasentation — Visualisierungen sollen Ergebnisse prasentieren und somit
»-..das Verstandnis und die Kommunikation Uber die Daten und die zugrunde lie-
genden Modelle und Konzepte erleichtern.” [17]

Datenanalyse — Bilder sollen dem Betrachter helfen verborgene Zusammenhange der
Daten ,...nicht nur zu sehen, sondern auch zu erkennen, zu verstehen und zu be-
werten [...] die allein aus Interpretation von Zahlenkolonnen nicht ableitbar wéren.“
[17]

Das Gebiet der Informationsvisualisierung geht noch einen Schritt weiter und definiert
unabhangig vom Anwendungszweck und der Prasentationsform drei Ziele der Visuali-
sierung von Daten:

1. ,Die Veranschaulichung und gegebenenfalls Vereinfachung von komplexen Pro-
zessabldufen und Objektbeziehungen anhand von Symbolen, Diagrammen oder
Animationen.” [3]

2. ,Die Vereinfachung des Zugangs zu Massendaten, z.B. durch Klassifikation und
Datenstrukturierung.” [3]

3. ,Unterstiitzung bei der Analyse und Interpretation von Daten, z.B. Sichtbarma-
chung verborgener Trends, sowie Erleichterung der Mustererkennung.” [3]

Aus diesen beiden Ansatzen kann ein allgemeines Ziel fur Visualisierungen in wissen-
schaftlichen Bereichen formuliert werden:

-ES sollen die Analyse, das Verstédndnis und die Kommunikation von Modellen, Konzep-
ten und Daten in der Wissenschaft erleichtert werden.” [16]

Davon abgeleitet, ergeben sich fir die Visualisierung von Datenqualitat in Simulation-
Workflows folgende Ziele:

Analyse — Dem Wissenschaftler soll anhand der grafischen Darstellung der Datenquali-
tatswerte eine vereinfachte Analyse ermoglicht und so bei der Entscheidungsfin-
dung, z.B. einem moglichen Eingriff in die laufende Berechnung, unterstitzt wer-
den. Dies kann zum Beispiel durch das Hervorheben kritischer Datenwerte oder das
Filtern uninteressanter Metadaten geschehen.

-32 -

Verstandnis — Durch eine vom Betrachter leicht erfassbare visuelle Reprasentation von
abstrakten Datenqualitatswerten, kann das Verstandnis gesteigert werden. So kann
je nach abgebildeter Skala, die jeweils geeignetste Darstellung gewahlt werden.

Kommunikation — In Kooperation mit verschiedenen Domanenspezialisten, kann die
grafischen Darstellung helfen, allen Beteiligten einen vereinfachten Zugang zu den
Daten zu ermoglichen und kritische Komponenten zu erkennen und entsprechend
anzupassen. Auch unbekannte Skalen kdnnen so leichter von Nicht-
Domanenspezialisten erfasst und kritisch bewertet werden.

Daten — Da Datenqualitatswerte abstrakte Werte sind die nach [1] auf verschiedene
Skalen abgebildet werden kdnnen, helfen grafische Darstellungen diese leichter zu
erfassen und zu verarbeiten. Metaphern wie beispielsweise ein Wecker fur die Di-
mension Rechtzeitigkeit kann die Bedeutung eines Zahlenwertes verdeutlichen.

3.2 Definitionen von Visualisierungen

In den folgenden Abschnitten werden die Begriffe Visualisierung, Informations- und Da-
tenvisualisierung und Datenqualitdtsvisualisierung definiert.

3.2.1 Visualisierung

Da das Visualisierungsframework in unterschiedlichen Bereichen eingesetzt wird und
dabei die unterschiedlichsten Arten von Visualisierungen generiert werden mussen,
wird von einem breiten Visualisierungs-Begriff ausgegangen und die Definition aus [3]
ubernommen.

Definition: Visualisierung
Der Prozess und das Ergebnis einer Darstellung oder Repréasentation von Informa-
tionen, die mit dem Auge wahrgenommen werden kann.

Diese grundsatzliche Definition erlaubt es einen breiten Einsatzbereich von Visualisie-
rungen zu betrachten. So kénnen Visualisierungen fur reine Datenqualitatswerte, fur
Datenqualitatswerte in Kombination mit Simulationsdaten oder nur flr Simulationsdaten
generiert werden.

3.2.2 Informations- und Datenvisualisierung

Die Abgrenzung der Begriffe Informationsvisualisierung und Datenvisualisierung ist
noch nicht einheitlich geldst. Dies liegt vor allem an einer fehlenden, allgemein aner-
kannten Definition des Informationsbegriffes [17].

-33-

Aus diesem Grund, werden im Folgenden die beiden Begriffe als Synonyme behandelt
und unter dem Begriff Informationsvisualisierung verwendet.

In der Literatur existieren unterschiedliche Definitionen von Informationsvisualisierung.
Um im anschlieBenden Kapitel Datenqualitéatsvisualisierung definieren zu kénnen, wird
hier eine Definition von [19] Gbernommen.

Definition: Informationsvisualisierung
Die Informationsvisualisierung nutzt Computergrafiken und -Interaktionen um dem
Menschen bei der Lésung von Problemen zu unterstiitzen.

Die Informationsvisualisierung ist demnach ein Teilgebiet der Visualisierung. Sie hat
das Ziel, grole Informations- bzw. Datenmengen in ein, fur Menschen leicht zu erfas-
sendes Format zu bringen, um so die Entscheidungsfindung zu erleichtern.

3.2.3 Datenqualitatsvisualisierung

In Anlehnung an die Informationsvisualisierung, wird Datenqualitatsvisualisierung im
Kontext wissenschaftlicher Simulationen wie folgt definiert:

Definition: Datenqualitatsvisualisierung
Die Datenqualitatsvisualisierung beschreibt die computergestlitzte visuelle Repré-
sentation von Datenqualitdtswerten mit dem Ziel, Wissenschaftler bei der Analyse
von Simulationen zu unterstiitzen.

Diese allgemeine Definition erlaubt es, Datenqualitatsvisualisierungen formatunabhan-
gig zu betrachten. Dadurch sind einfache Bilder, genauso wie komplexe 3D Visualisie-
rungen, Datenqualitatsvisualisierungen.

Durch den Verzicht einer Skala in dieser Definition, ermdglicht sie, Datenqualitatsvisua-
lisierungen vom jeweiligen Einsatzgebiet und Fachbereich kontextabhangig zu gestal-
ten.

Zudem berUcksichtigt diese Definition die subjektiven Eigenschaften wie Sehschwachen
oder Farbenblindheit eines Betrachters und kann diese in die Generierung der Daten-
qualitatsvisualisierung einflieRen lassen.

3.3 Visualisierungspipeline

Der Visualisierungsprozess beschreibt das grundsatzliche Vorgehen bei der Generie-
rung von Visualisierungen. Er besteht aus den drei grundsatzlichen Schritten: Filtering,
Mapping und Rendering, die unter dem Begriff Visualisierungspipeline zusammenge-
fasst werden.

-34-

Abbildung 3-1 zeigt den Ablauf bei der Generierung von Visualisierungen. Zuerst wer-
den die Rohdaten aufbereitet, anschlie3iend ein Geometriemodell erstellt und daraus im
letzten Schritt ein Bild generiert.

Daten —»| Filtering | Mapping ->_—>Bild

Abbildung 3-1: Stufen der Visualisierungspipeline [17]

In den folgenden Abschnitten werden die einzelnen Stufen genauer betrachtet.

3.3.1 Datenaufbereitung (Filtering)

Die erste Stufe der Visualisierungspipeline ist die Datenaufbereitung. Sie realisiert eine
Daten-zu-Daten-Abbildung [17]. Das heil3t, dieser Schritt bekommt Rohdaten als Einga-
be und bereitet diese fur alle weiteren Schritte auf.

Das Filtering hat im Bereich der Datenqualitatsvisualisierung zwei Hauptaufgaben.

Zum einen soll die Datenmenge reduziert werden kénnen, um dadurch Rechenkapazi-
taten einzusparen. Werden beispielsweise die originalen Simulationswerte fur die aktu-
elle Problemldsung von den Wissenschaftlern nicht bendtigt, kdnnen diese entfernt und
nur die reinen Datenqualitatswerte an die Visualisierung weitergeleitet werden.

Zum anderen sollen, entgegen der englischen Bezeichnung, extern liegende Simulati-
onsdaten geladen werden kénnen, wenn sie fur die Visualisierung bendtigt werden.

Eine weitere Aufgabe eines Filters, kdnnte das Verwalten von Metadaten sein, welche
fur das Steuern der spateren Visualisierungsschritte benétigt werden. Falls es sich um
ein verteiltes System handelt, kdnnen an dieser Stelle beispielsweise die Rucksendead-
ressen spezifiziert werden.

Als Ergebnis des Filtering, liegen aufbereiteten Daten vor, die an die nachfolgenden
Schritte Ubergeben werden [17].

3.3.2 Mapping

Die zweite Stufe der Visualisierungspipeline, das Mapping, ist das Kernstlick des Visua-
lisierungsprozess. Sie realisiert eine Daten-zu-Geometrie-Abbildung. Dabei werden
auch nicht-geometrische Daten, wie etwa Datenqualitatswerte, auf geometrische Primi-
tive einschliel3lich der zugehorigen Attribute, wie Farbe und Textur, abgebildet [17].

-35-

In diesem Schritt entscheidet sich, wie die Daten spater visuell reprasentiert werden.
Die einzelnen Bestandteile eines guten Mappings werden in den nachfolgenden Kapi-
teln ausfuhrlich behandelt.

3.3.3 Bildgenerierung (Rendering)

Die letzte Stufe der Visualisierungspipeline ist die Bildgenerierung. In diesem Schritt
werden aus den abstrakten Geometriedaten die spater angezeigten Bilder generiert.
Die Bildgenerierung beschreibt eine Abbildung von Geometrie- auf Bilddaten. Nach der
Bilderzeugung folgt die Ausgabe auf einem Anzeigegerat.

Abbildung 3-2 fasst die Visualisierungspipeline aus Sicht des Datenflusses zusammen.

aufbereitete Geometrie-
Daten daten

Abbildung 3-2: Datenfluss in der Visualisierungspipeline [17]

3.3.4 Verteilung der Stufen der Visualisierungspipeline

Wie schon bei der Datenaufbereitung erwahnt, kdnnen die einzelnen Schritte der Visua-
lisierungspipeline auf mehrere Rechner verteilt sein. Beispielsweise lassen sich so Vi-
sualisierungs-Services als Teil einer SOA einsetzen. Da das hier zu entwickelnden
Framework spater Teil einer grollen Simulation-Workflow-Umgebung wird, werden hier
die vier Varianten aus [17] zur Verteilung der drei Stufen gezeigt (siehe Abbildung 3-3).
Dabei wird zwischen dem Autor (spater JDQVisF) und dem Betrachter (spater
JDQVisClient) als mogliche Rollen unterschieden. Das Framework wird alle Stufen der
Verteilung unterstitzen.

-36 -

Autor Betrachter Autor Betrachter
Daten— F = M — R Bild Daten— F (> M ‘ » R —Bild
a) Variante 1: Der Autor erzeugt ein Bild b) Variante 2: Der Autor erzeugt ein
Geometriemodell
Autor Betrachter Autor Betrachter
Daten F —> M = R |—Bild Daten—»| F » M » R —Bild
c) Variante 3: Der Betrachter erzeugt die d) Variante 4: Der Autor erzeugt ein
Visualisierung Geometriemodell unter Kontrolle
des Betrachters
F Filtering M | Mapping R | Rendering

Abbildung 3-3: Varianten zur Verteilung der Schritte der Visualisierungspipeline [17]

Variante 1 — Der Autor erzeugt ein Bild oder eine Bildsequenz (a)
Hier fhrt der Autor alle Schritte der Visualisierungspipeline durch. Der Betrachter
hat keine Moglichkeit in den Visualisierungsprozess einzugreifen. Praktisch bedeu-
tet das, dass der Autor Bilder erzeugt, die er anschlieRend an den Betrachter ver-
sendet. Diese Variante setzt im Allgemeinen eine sehr hohe Bandbreite voraus,
wenn ohne Kompressionsverluste und in Echtzeit Datenqualitatswerte visualisiert
fur den Betrachter zur Verfugung stehen sollen.

Variante 2 — Der Autor erzeugt ein Geometriemodell der Daten (b)

Bei dieser Variante erstellt der Autor ein Geometriemodell der Daten, legt also die
Art und Weise fest wie das Bild spater beim Betrachter generiert wird. Der Betrach-
ter kann die Bildgenerierung nach seinen speziellen Anforderungen und Vorstellun-
gen steuern. Obwohl diese Variante den Vorteil bringt, dass der Betrachter beliebig
im Geometriemodell navigieren kann und somit auch Details analysieren kann, die
bei der ersten Variante verborgen geblieben waren, so hat er doch keinen Einfluss
auf das Mapping, bei dem wichtige Entscheidungen fur die Darstellungsmdglichkei-
ten getroffen werden.

Variante 3 — Der Betrachter erzeugt die Visualisierung (c)
Hier liefert der Autor lediglich die Rohdaten fur die Visualisierung. Alle Schritte der
Visualisierungspipeline werden vom Betrachter durchgefuhrt. Dies ermoglicht einen
maximalen Grad der Freiheit und bietet dem Betrachter volle Kontrolle Uber den Vi-
sualisierungsprozess. Der Nachteil liegt aber vor allem in der Menge der Rohdaten.
Bei der Berechnung von Datenqualitatswerten, kdnnen diese leicht in den Giga-

-37 -

bytebereich gehen. Diese Datenmenge lasst sich nicht ohne weiteres versenden.
Aulerdem musste ein einheitliches Datenformat flr den Austausch festgelegt wer-
den.

Variante 4 — Der Autor erzeugt ein Geometriemodell unter Kontrolle des Betrachters (d)
Diese Variante ist ein Kompromiss aus den oben beschriebenen. Hierbei erzeugt
der Autor, wie in Variante 2 ein Geometriemodell der Daten, fuhrt also die ersten
beiden Schritte der Visualisierungspipeline durch. Er tut dies aber unter Kontrolle
des Betrachters, welcher Uber eine definierte Schnittstelle in den Filter- und Model-
lierungsprozess eingreifen kann. Der Betrachter seinerseits generiert am Ende ein
Bild aus dem Geometriemodell. Somit wird sicher gestellt, dass der Betrachter im-
mer genau die Visualisierung bekommt, welche aktuell fur seine Problemstellung
am geeignetsten ist.

3.4 Anforderungen an eine Visualisierung

Die Visualisierung von Datenwerten ist eine Abbildung ihrer Eigenschaften auf visuelle
Attribute und hat als Ergebnis ein Bild oder Bildsequenzen. Diese Abbildung kann eine
einfach Form, wie etwa eine Abbildung auf Farbattribute sein, oder aber komplex mit
Animationen und einem dreidimensionalen Geometriemodell.

Bevor die allgemeinen Anforderungen an eine Visualisierung genauer untersucht wer-
den kénnen, muss zunachst der Begriff Visualisierungsqualitdt definiert werden. Sie
dient als Referenz fur die Nutzlichkeit und somit flr das Erfullen des Effektivitatskriteri-
ums (siehe Kapitel 3.4.2) einer bestimmten Visualisierung.

Definition: Visualisierungsqualitat

Die Qualitat einer Visualisierung definiert sich durch den Grad, in dem die bildliche
Darstellung das kommunikative Ziel der Prédsentation erreicht. Sie ldsst sich als das
Verhéltnis von der vom Betrachter in einem Zeitraum wahrgenommenen Informati-
onen zu der im gleichen Zeitraum zu vermittelnden Informationen beschreiben. Die
Qualitat einer Visualisierung ist somit in starkem Mal3e abhéngig von den Charakte-
ristika der zugrunde liegenden Daten und ihrer Eigenschaften, dem Bearbeitungs-
ziel, den Eigenschaften des Darstellungsmediums sowie den Wahrnehmungskapa-
zitdten und den Erfahrungen des Betrachters. [17]

Die Visualisierungsqualitat beschreibt demnach das Verstandnis des Benutzers, eine
reale Situation, z.B. die Datenqualitats- und Simulationswerte, anhand ihrer Reprasen-
tation durch die visuellen Attribute zu rekonstruieren, verstehen und Rlckschllisse zu
ziehen.

-38 -

Die Qualitat der Visualisierung ist abhangig von vielen Einflussfaktoren. Folgende Fak-
toren spielen bei der Erzeugung einer geeigneten Visualisierung eine besondere Rolle
[17]:

* Die Art und Struktur der Daten

* Das Bearbeitungsziel der Visualisierung

* Das Vorwissen des Anwenders / Betrachters

* Die visuelle Fahigkeiten und Vorlieben des Betrachters

 Ubliche Metaphern des Anwendungsgebietes / Konventionen

* Die Charakteristika des Darstellungsmediums

In Kapitel 3.6 wird auf die Faktoren genauer eingegangen, die im Zusammenhang mit
Datenqualitat relevant sind.

Aus der Definition der Visualisierungsqualitat lassen sich die Anforderungen Expressivi-
tat, Effektivitat und Angemessenheit ableiten, die bei der Visualisierung einer Daten-
menge eingehalten werden mussen.

3.41 Expressivitat

Nach [17] ist das wichtigste Kriterium einer guten Visualisierung ihre Expressivitat oder
Ausdrucksfahigkeit. Sie besagt, dass die zugrunde liegende Datenmenge moglichst
unverfalscht wiedergegeben werden muss und nur die tatsachlich enthaltenen Informa-
tionen dargestellt werden. Sie ist vor allem von der Struktur und Art der Daten abhan-
gig. Um eine effektive Verarbeitung der Visualisierung zu gewahrleisten, ist das Expres-
sivitatskriterium Grundvoraussetzung. Das bedeutet insbesondere, dass die Auswahl
der Visualisierungstechnik der ersten Schritt bei der Visualisierung von Daten sein muss
[17].

In der Informationsvisualisierung wurde zur Beurteilung der Expressivitat der Begriff
Lie Factor eingeflhrt:

Lie Factor — “The representation of numbers, as physically measured on the
surface of the graphic itself, should be directly proportional to the quanti-

ties represented.” [19]

Er beschreibt demnach die Grolle des Effektes in der grafischen Reprasentation zu
dem tatsachlichen Effekt innerhalb der Daten:

Grolle des Effektes in der Grafik

Lie Factor =
GrolRe des Effektes in den Daten

Durch die Proportionalitat ist ein Wert um 1 ein Mal} flir eine hohe Expressivitat. Ein
Wert kleiner 1 bedeutet, dass wichtige Effekte in den Daten nicht oder nur schwach ab-

-39 -

gebildet wurden und ein Wert groRer als 1 lasst auf eine Dramatisierung des Effektes
schlie3en. Abbildung 3-4 zeigt ein bekanntes Beispiel fur einen Lie Factor grofder 1 und
dadurch eine Verletzung des Expressivitatskriteriums. Das Bild illustriert die Olpreisent-
wicklung zwischen 1973 und 1979 durch immer gréRer werdende Olfasser. Dabei
wachst die GroRe der Olfasser jedoch viel schneller als die tatsachliche Preissteige-
rung, was zu einem Lie Factor groRer als 1 flhrt.

Steigerung der GroRe der Olfasser
Lie Factor = >1
Tatséachliche Olpreiserhéhung

INTHE BARREL...

ﬁitiopprmbblol
[~ , leaving

‘520 Aratia

on Jan. 1

Abbildung 3-4: Beispiel Lie Factor - Die GréRRe der Olfdsser wéchst stérker als die tat-
séchlichen Olpreisentwicklung [19]

3.4.2 Effektivitat

Da es fir ein und dieselbe Datenmenge durchaus mehrere Visualisierungsformen ge-
ben kann, die das Expressivitatskriterium erflllen, wird ein weiteres Auswahlkriterium
bendtigt. Es muss entschieden werden, welche Darstellungsform die Eigenschaften der
Daten optimal wiedergibt. Anders als das Expressivitatskriterium ist die Effektivitat einer
Visualisierung zusatzlich zu den Daten auch von den jeweiligen Einflussfaktoren ab-
hangig (siehe Kapitel 3.6) [17]. Beispielsweise spielt das Bearbeitungsziel oder die Re-
chenleistung des Anzeigegerates eine entscheidende Rolle. Hier muss genau unter-
sucht werden, welche Informationen und Eigenschaften auf welche Art und Weise dar-
gestellt werden mussen, damit sie der Betrachter effektiv erkennen kann.

- 40 -

Das Effektivitatskriterium beschreibt also den Nutzen der gewahlten Darstellungsform
im aktuellen Kontext. Das heildt, es ,..gibt Aufschluss (ber die Fahigkeit einer Darstel-
lungsform, die in ihr enthaltenen Informationen zu veranschaulichen und auf intuitive
Weise dem Betrachter zu vermitteln“ [17].

Fir eine haufige Form der Verletzung des Effektivitatskriteriums, hat sich in der Infor-
mationsvisualisierung der Begriff Chart Junk gebildet [19]. Unter diesen Begriff fallen
alle Eigenschaften eines Diagrammes, die fir den Betrachter fir die Problemldsung
keine nutzlichen Zusatzinformationen bereitstellen und somit fur die Informationsuber-
tragung nutzlos sind.

Abbildung 3-5 zeigt ein Beispiel fur Char Junk anhand eines dreidimensionalen Balken-
diagramms. Die eigentlichen Informationen sind dabei die Skalen und die errechneten
Werte. Alle anderen grafischen Attribute, wie der 3D-Effekt oder der Schattenwurf, tra-
gen nicht zum Verstandnis bei und kébnnen den Betrachter unnétig verwirren.

keine Zusatzinformationen

Informationen

Abbildung 3-5: Beispiel Chart Junk — Kein Informationsgewinn durch das Hinzufiigen
eines 3D-Effektes, Schatten und horizontalen Linien zum Diagramm [19]

3.4.3 Angemessenheit

Die Angemessenheit beschreibt den, flr eine Visualisierung bendtigten, Rechenauf-
wand und ihren physikalischen Ressourcenbedarf. Sie beschreibt also weniger die Qua-
litdt der resultierenden Visualisierung aus Sicht des Betrachters, als vielmehr den Auf-
wand und die Kosten fur deren Generierung. [17]

Die Angemessenheit ist eng mit dem Effektivitatskriterium und den Einflussfaktoren
verbunden und spielt bei der Auswahl passender Visualisierungen eine wichtige Rolle.
Beispielsweise mussen, bei sich schnell andernden Daten, in kurzen Abstanden neue

41 -

Visualisierungen generiert und prasentiert werden, die nur die wichtigsten Eigenschaf-
ten der Datenmenge abbilden. Im Gegensatz dazu, kdnnen bei langzeitbestandigen
Daten komplexere und rechenintensivere Visualisierungen berechnet werden.

3.5 Beschreibung der Daten als Ausgangspunkt der Visualisierung

Der Ausgangspunkt jeder Visualisierung ist die ihr zugrunde liegende Datenmenge. Wie
in Kapitel 2.1 definiert, kdonnen Daten verschiedene Strukturen und Formate besitzen.

Diese Kapitel zeigt Daten im Kontext der Visualisierung.

3.5.1 Datenformate

Im Kapitel 2.1.2 und 2.1.3 wurden Daten im Zusammenhang nach ihren logischen Ei-
genschaften, Struktur und Anderungsrate, untersucht. Nach [17] darf zusatzlich bei
praktischen Visualisierungsanwendungen die Art die Art und Weise, wie die Daten und
ihre Eigenschaften physikalisch gespeichert sind, nicht vernachlassigt werden. Da das
hier entwickelte Visualisierungsframework in einer heterogenen Simulationsumgebung
mit unterschiedlichen Komponenten realisiert werden soll, ist die Unterstitzung einheit-
licher Datenformate fur die Kommunikation unentbehrlich.

FiUr die Reprasentation der Datenqualitatswerte wird das Extensible Markup Language
(XML) [34] Format verwenden. Es erlaubt eine plattformunabhangige hierarchische Be-
schreibung der Daten und eignet sich durch die verbreitete Unterstitzung innerhalb der
WebServices Technologie, besonders fur die Verwendung innerhalb von Simulation-
Workflows.

FUr den interessierten Leser sei an dieser Stelle auf die Internetseite des W3C [34]
verwiesen, da eine detaillierte Beschreibung von XML den Rahmen dieser Arbeit Uber-
steigt.

Listing 1 zeigt beispielhaft die Struktur eines Datenqualitatswert als Eingabedatum fir
die Visualisierung.

<InterpretionCalculationResult>

<Value> 0.95 </Value>

<InterpretionId> Accuracy </Interpretionld>
</InterpretionCalculationResult>

Listing 1: Beispiel fiir die Reprasentation eines Datenqualitdtswertes in XML

-42-

Das Format der generierten Visualisierungen ist mafl3geblich von den Eigenschaften der
Anzeigegerate abhangig. So kdnnen leistungsstarke Gerate, wie Tablet-Computer,
komplexe Visualisierungen verarbeiten, wohingegen leistungsschwache Gerate nur Bil-
der anzeigen kdnnen.

Das JDQVisF wird grundsatzlich jedes Datenformat, das auf den jeweiligen Geraten
verarbeitet werden kann, unterstlitzen. Beispielsweise konnen einfache Bilder durch
das freie, erweiterbare und verlustfreie Grafikformat PNG [35] dargestellt werden. Kom-
plexe 3D-Visualisierungen hingegen, kénnen durch die Datenformate VRML oder X3D
[36] an die Anzeigegerate versendet werden.

FiUr eine genaue Beschreibung der vorgestellten Formate sei an dieser Stelle auf die
Quellen [35] und [36] verwiesen, da eine detaillierte Beschreibung den Umfang dieser
Arbeit Ubersteigen wirden.

3.5.2 Reduktion einer Datenmenge

Grolle Datenmengen lassen sich, auf Grund ihres komplexen Informationsgehalts, sel-
ten in einem einzigen Bild verstandlich wiedergeben. Insbesondere bei Simulationsda-
ten, deren Anzahl leicht in die Millionen gehen kann, ware eine Visualisierung aller Wer-
te restlos Uberladen. Aus diesem Grund, kann es notwendig sein, die urspringliche Da-
tenmenge vor der Visualisierung zu reduzieren und somit den Betrachter bei der Aus-
wertung der Daten zu unterstitzen.

Im Folgenden werden die nach [17] existierenden Moglichkeiten zur Datenreduktion im
Bezug auf Datenqualitatswerte und Simulationsdaten gezeigt:

Entfernung irrelevanter Daten — Je nach Aufgabenstellung und Einsatzgebiet ist es
sinnvoll, uninteressante Daten vor der Visualisierung zu entfernen. Uninteressant
sind in diesem Zusammenhang alle Daten, die nichts zum Verstandnis des Betrach-
ters beitragen oder keinen Einfluss auf das betrachtete Problem haben. Beispiels-
weise kdonnen bei FEM basierten Simulationen alle Metadaten, die nicht direkt in
Zusammenhang mir der Datenqualitdt oder der Simulationsergebnisse stehen, ent-
fernt werden.

Abstraktion der Datenmenge — Bei diesem Ansatz werden nur die wichtigsten Eigen-
schaften der Daten visualisiert, anstelle der gesamten Datenmenge. Beispielsweise
kénnen bei einer Ubersichtsanzeige, die einzelnen Dimensionen der Datenquali-
tatswerte zu einem einzelnen QoD-Wert aggregiert werden. Hier konnte zum Bei-
spiel der Maximal/ Minimalwert, der Durchschnitt oder Median der sechs Dimensi-
onen berechnet und visualisiert werden. Wobei, unter dem Gesichtspunkt der Da-
tenqualitat, der Minimalwert eine besondere Rolle spielt. Es kann in vielen Fallen
ausreichen, wenn eine Dimension, zum Beispiel die Genauigkeit, die an sie gestell-
ten Anforderungen nicht erflllt und dadurch das Ergebnis der Berechnung un-
brauchbar macht.

-43-

Angabe eines Bereiches von Interesse — Bei groflen Simulationen kann es sinnvoll
sein dem jeweiligen Domanenspezialisten nur die Datenqualitadtswerte im Detail zu
zeigen, die fur sein Gebiet von Interesse sind. Das heil}t, die Datenwerte kdnnen in
zwei Klassen eingeteilt werden. Die ,wichtigen Daten“, die genauer betrachtet wer-
den mussen und in ,lbrige Daten“, bei denen eine aggregierte Darstellung ausrei-
chend ist. Ein weiteres Beispiel im Zusammenhang mit Datenqualitat kdnnte eine
Auswahl der Datenqualitatswerte sein, welche an den Randern der Metrik liegen.
Bei einem Schwellenwert von 0,7 ware es demnach sinnvoll, nur die Werte beson-
ders hervorzuheben, bzw. visuell zu kennzeichnen, die nahe an diesem Wert oder
darunter liegen. So kénnen magliche kritische Komponenten frihzeitig erkannt wer-
den.

Auswahl von Teilmengen — Hier werden aus der Ausgangsdatenmenge Teilmengen
erzeugt, welche anschlieliend einzeln visualisiert werden. Im Zusammenhang mit
Datenqualitat kann hier der Ansatz des ,Focusing & Linking“ betrachtet werden. Er
beschreibt die Auswahl von Datenwerten die fur das aktuelle Problem am wichtigs-
ten sind. So kann bei der Visualisierung von Simulationsdaten oder Datenqualitats-
werten der Fokus auf den Bereich der Datenmenge gesetzt werden, an dem das
untersuchte Problem vermutet wird.

3.6 Einflussfaktoren auf die Visualisierung

Das Finden einer Visualisierung die alle in Kapitel 3.4 gezeigten Anforderungen erfillt,
ist von vielen Einflussfaktoren abhangig. Hierzu zahlen neben den Charakteristiken der
zu visualisierenden Datenmenge, vor allem auch die Spezifikation von Bearbeitungszie-
len, die somit die eigentlichen Ziele einer Visualisierung festlegen [17].

Die Bearbeitungsziele werden im ersten Unterkapitel genauer betrachtet. Anschliel3end
werden die Eigenschaften menschlicher visueller Wahrnehmung gezeigt. Die letzten
Abschnitte befassen sich mit den Faktoren Anwendungsumgebung und Ressourcen.

3.6.1 Bearbeitungsziele

Die Ziele, die mit einer Visualisierung verfolgt werden, haben zusammen mit den Eigen-
schaften der zugrunde liegenden Datenmenge einen entscheidenden Einfluss auf die
Erzeugung expressiver Bilder [17]. Sie legen fest, welche Informationen im Bild repra-
sentiert werden und somit bei der spateren visuellen Analyse leicht und eindeutig zu
erkennen sein sollen.

Nach [17] ist die Beschreibung der Bearbeitungsziele nicht problemlos. Aus Anwender-
sicht ware eine detaillierte, problemangepasste Beschreibung ideal. Zum Beispiel, ware
bei der Untersuchung von Datenqualitadtswerten innerhalb einer Knochensimulation eine
Zielvorgabe, ,Farbiges Erkennen von numerischen Problemzonen®. Diesen Detailie-

-44 -

rungsgrad kdnnen aber nur hochspezialisierte Visualisierungswerkzeuge verarbeiten.
Aus diesem Grund ist die Formulierung allgemeingultiger Bearbeitungsziele, die Fach-
bereichsubergreifend gelten, wichtig.

[17] formuliert mit Directed Search, Comparision und Exploration drei allgemeine Bear-
beitungsziele und leitet daraus verschiedene Problemklassen ab, die als Oberklassen
fur die allgemeinen Bearbeitungsziele eingesetzt werden kénnen. Im Bezug auf Daten-
qualitatsvisualisierung spielen die Folgenden eine wichtige Rolle:

Identifikationsproblem — Welchen Wert haben Daten in einem bestimmten Gebiet?
Lokalisierungsproblem — Wo liegen Daten in einem bestimmten Gebiet?

Korrelationsproblem — Gibt es Zusammenhange zwischen zwei oder mehreren Vari-
ablen oder Datenwerten und bestimmten Gebieten des Beobachtungsraumes?

Vergleichsproblem — Wie unterscheiden sich die Datenwerte in einem bestimmten
Gebiet oder zu unterschiedlichen Zeitpunkten?

Verteilungsproblem — Wo liegen Extremwerte und Ausreil3er?
Um den Anforderungen der einzelnen Fachbereiche (z.B. innerhalb einer Simulation)

gerecht zu werden, sind Abbildungen der speziellen Bearbeitungsziele auf die allgemei-
nen Bearbeitungsziele notwendig (siehe Abbildung 3-6).

spezielle
Bearbeitungsziele

Visualisierungs-
entscheidungen

allgemeine
g —

Bearbeitungsziele
spezielle /

Bearbeitungsziele

Abbildung 3-6: Abbildung von speziellen Bearbeitungszielen auf allgemeine Bearbei-
tungszielen zur Beeinflussung von Visualisierungsentscheidungen [17]

Das oben genannte domainspezifische Bearbeitungsziel ,Farbigen Erkennens von nu-
merischen Problemzonen®, konnte also auf die allgemeinen Ziele ,ldentifikation® und
.Lokalisation” abgebildet werden.

3.6.2 Menschliche Wahrnehmung — Objekterkennung und Gestaltgesetze

Der Mensch hat spezielle Fahigkeiten, die fur effektive Visualisierungen berlcksichtigt
werden mussen. Dieses Kapitel fasst die physischen und psychologischen Eigenschaf-

-45-

ten zusammen und verdeutlicht diese an verschiedene Beispiele. Der genaue Ablauf
der Bilderkennung durch das Auge und Gehirn wirde den Umfang dieser Arbeit Uber-
steigen und wird deshalb nur sehr vereinfacht aufgezeigt. Der Interessierte Leser sei an
dieser Stelle auf [38] verwiesen.

Die im Folgenden gezeigten Gesetze und Prinzipien zur menschlichen visuellen Wahr-
nehmung sind elementar wichtig und bilden die Basis fur das Entwickeln und Finden
guter Visualisierungen.

“Perception is our window to the world that enables us to experience
what is out there in our environment. Thus, perception is the first step
in the process that eventually results in all of our cognitions. Paying at-
tention, forming and recalling memories, using language, and reason-
ing and solving problems all depend right at the beginning on percep-
tion. Without perception, these processes would be absent or greatly
degraded. Therefore it is accurate to say that perception is the gate-
way to cognition.” [19]

3.6.2.1 Praattentive Wahrnehmung

Die praattentive Wahrnehmung ist die Fahigkeit des Menschen, innerhalb kirzester Zeit
(200 — 250 Millisekunden) die Elemente zu erkennen, die aus einer Menge hervorste-
chen [19]. Sie unterscheidet dabei zwischen Farbe, Form, Ausrichtung, GrolRe, Abge-
schlossenheit, Gruppierungen, Anzahl oder Luminanz.

Die praattentive Wahrnehmung soll hier an einem Beispiel durch das Erkennen eines
roten Punktes in einer Menge von blauen Punkten gezeigt werden (Abbildung 3-7) [19].
Es ist ohne Absuchen des Bildes leicht zu Erkennen, ob dieses einen roten Punkt ent-
halt oder nicht.

Abbildung 3-7: Beispiel Praattentive Wahrnehmung — Entscheiden ob ein roter Punkt in
der Menge enthalten ist [19]

- 46 -

3.6.2.2 Gestaltprinzipien nach Max Wertheimer

Max Wertheimer (1880 — 1943) war Psychologe und Philosoph und gilt als Begrinder
der Gestaltpsychologie. Er befasste sich unter anderem mit der Wahrnehmung von Ob-
jekten.

Das es sich bei der Objektwahrnehmung um einen sehr komplexen Vorgang handelt,
bleibt den meisten Menschen verborgen, da ihnen die Erkennung und Wahrnehmung
als selbstverstandlich und einfach vorkommt. Bekannte Bilder, wie beispielsweise im
StralRenverkehr Autos und andere Verkehrsteilnehmer, werden leicht und oftmals un-
bewusst wahrgenommen und verarbeitet [20].

Wenn man jedoch die Ausgangsbedingungen betrachtet, unter denen ein Objekt als
solches erkannt wird, erkennt man die dahinterliegende Komplexitat. Ein Kérper erzeugt
zweidimensionale Abbilder auf unserer Netzhaut. Bei der Objekterkennung missen die-
se dann in eine dreidimensionale Abbildung mit Hilfe der Umwelt umwandelt werden
[20].

Dabei konnen leicht Probleme entstehen. Beispielsweise muss, wenn sich Linien
schneiden, entschieden werden, ob es sich nach dem Schnitt um das selbe Objekt
handelt oder nicht[20].

Ein in der Literatur anerkannter Ansatz zur Erklarung der Objektwahrnehmung liefern
die Gestaltgesetze beruhend auf Max Wertheimer [20]:

Das Gesetz der Nahe — besagt, dass gleiche Elemente (Elemente mit gleichem Reiz)
mit geringeren Abstanden zueinander als zusammengehoérig wahrgenommen
werden. Wie in Abbildung 3-8 zu sehen, werden die Punkte links in Zeilen und
rechts in Spalten geordnet.

Abbildung 3-8: Gesetz der Néhe — Gruppierung der Punkte in Zeilen und Spalten [20]

Das Gesetz der Ahnlichkeit — besagt, dass sich dhnliche Elemente als zusammenge-
hdriger empfunden werden, als sich unahnlich stehende. Dabei ist es irrelevant ob
diese sich in Form, Farbe oder anderem ahnlich sind. Abbildung 3-9 illustriert dies
an einem Beispiel.

- 47 -

Abbildung 3-9: Gesetz der Ahnlichkeit — Gruppierung der Elemente nach Farbe und
Form [20]

Das Gesetz der guten Gestalt — besagt, dass sich gestalthafte Wahrnehmungseinhei-
ten so ausbilden, dass sie im Ergebnis eine moglichste einfache und einpragsame
Gestalt, wie Vierecke, Kreuze, usw., darstellen. Abbildung 3-10 zeigt dieses Ver-
halten an einem Beispiel. In Abbildung 3-10 b entscheidet das Gehirn, dass sich
dieses Bild aus zwei Quadraten zusammenstellt, wobei in Abbildung 3-10 c ver-
schiedenen Vielecke wahrgenommen werden.

/ /\\ / /\\ R\
DLW,

a b c

Abbildung 3-10: Gesetz der guten Gestalt — Durch Farbkodierung entstehen
verschiedene Vielecke [20]

Das Gesetz der guten Fortsetzung — besagt, dass im Fall zweier sich treffender Linien
a und b davon ausgegangen wird, dass sich diese im Punkt x schneiden und nicht,
wie in Abbildung 3-11 rechts, ein V-formiges Gebilde reprasentieren.

Abbildung 3-11: Gesetz der guten Fortsetzung — Das Gehirn setzt die Linien so fort,
dass sie sich schneiden [20]

-48 -

Das Gesetz der Geschlossenheit — verweist auf die Tatsache, dass in geometrischen
Gebilden, diejenigen Strukturen als Figur wahrgenommen werden, die eher ge-
schlossen (Abbildung 3-12 links und Mitte) wirken als offene (Abbildung 3-13
rechts).

* * A:A

* % Ao

Abbildung 3-12: Gesetz der Geschlossenheit — Enge und regelméflig Strukturen werden
eher als Figur wahrgenommen als unregelméflige [20]

Das Gesetz des gemeinsamen Schicksaals — besagt, dass sich Elemente einer Reiz-
vorlage, die eine Veranderung oder Bewegung, z.B. durch Drehung oder Ver-
schiebung in die gleiche Richtung, als Einheit wahrgenommen werden (Abbildung
3-13).

Abbildung 3-13: Gesetz des gemeinsamen Schicksaals — Gleichzeitig bewegende Ob-
Jjekte gehbren zusammen [20]

3.6.2.3 Figur-Grund-Unterscheidung

Neben den oben aufgefihrten Gestaltgesetzen existiert noch eine weitere, fur die Ob-
jekterkennung wichtige Eigenschaft. Die Figur-Grund-Unterscheidung (oder Vorder-
grund-Hintergrund-Unterscheidung) beschreibt die grafische und raumliche Organisati-
on von Einheiten. Dies geschieht in der Regel unter Bildung einer Markoeinheit [20].
Beispielsweise gruppieren sich viele Meniipunkte auf dem Bildschirm zu einem Mendi.

Im Folgenden werden diese Prinzipien genauer betrachtet [20]:

* Die kleinere Einheit wird eher als Figur vor einem groReren Hintergrund wahrge-
nommen als umgekehrt. Die Figur liegt dabei phanomenal vor dem Hintergrund.

* Die dunklere Einheit wird eher als Figur auf einem helleren Hintergrund wahrge-
nommen als eine hellere vor dunklem Grund.

-49-

Abbildung 3-14 verdeutlicht die beiden Prinzipien.

by, s

'\ /

Abbildung 3-14: Vordergrund - Hintergrund: Objekt ist klein, mit Silhouette und im Vor-
dergrund [14]. Links ist das schwarze Objekt im Vordergrund, rechts das weil3e.

* Eine raumliche zentrale Einheit wird eher wahrgenommen als eine periphere, wie
beispielsweise ein Anmelde- oder Hinweisfenster auf dem Hauptbildschirm.

* Eine Einheit mit einer vertikalen oder horizontalen Hauptachse wird eher als Fi-
gur wahrgenommen. Dabei ist die Wirkung der vertikalen grof3er als die einer ho-
rizontalen.

* Eine symmetrische Einheit wird eher als Figur wahrgenommen als eine asym-
metrische. Die Symmetrie um die senkrechte Mittelachse hat dabei die starkste

Wirkung.
. M M .]
(- / 4)
S
oo 0 A
. N \ . [
{2 I
S 5 / '
l “ : _.. » l '

Abbildung 3-15: Symmetrische Einheiten werden als Figur wahrgenommen — Links die
mit symmetrischen Rand. In der Mitte die schwarzen und rechts die weilen Einheiten.

[14]

* Eine Einheit mit konvexen Randern wird eher als Figur wahrgenommen als eine
mit konkaven (nach innen gewdlbten) Randern [20].

In Kombination mit den oben gezeigten Gestaltprinzipien lassen sich noch folgende
Aussagen zur Objekterkennung machen die flr eine gute Visualisierung zusatzlich be-
rucksichtigt werden mussen [14]:

-50 -
Einfache Fortsetzung — beschreibt das Vervollstandigen von grafischen Attributen zu

bekannten Formen. In Abbildung 3-16 werden die gestrichelten Linien zu zwei in-
einander verschachtelten Objekten fortgesetzt.

Abbildung 3-16: Einfache Fortsetzung — Das Gehirn formt aus den gestrichelten

Linien ein Rechteck und ein Sechseck [14]

Diinn ist im Hintergrund — besagt, dass dinnere Formen eher in den Hintergrund ge-
setzt werden als dicke. Abbildung 3-17 illustriert diesen Zusammenhang.

Abbildung 3-17: Dinn ist im Hintergrund, dick im Vordergrund [14]

3.6.3 Anwendungsumgebung

Nach [17] sind neben den im vorangegangen Kapitel aufgezeigten wahrnehmungspsy-
chologischen Aspekten der Visualisierung von Daten auch der Anwendungskontext, die
anwendungsspezifischen Eigenschaften sowie spezielle Anwenderpraferenzen zu be-
achten.

Dabei umfasst der Anwendungskontext existierende Konventionen im Anwendungsge-
biet und die Anwenderpraferenzen.

Das Anwendungsgebiet beschreibt alle schon vorhanden Konventionen zur Darstellung
bestimmter Informationen in dem jeweiligen Fachbereich. Darunter fallen auch allge-
meingeltende Regeln und Metaphern des adressierten Kulturkreises. Ein wichtiger und
in der Literatur gut untersuchter Aspekt, ist dabei die Farbe. Wahrend in unserem Kul-
turraum die Farbe Weil} flr Freude und Reinheit und Schwarz fir Trauer in Verbindung

-51 -

gebracht wird, sind in Indien diese Farbdeutungen genau umgekehrt. Auch in verschie-
denen Fachbereichen kann die Bedeutung von Farbe stark variieren. So steht die Farbe
Rot in der Wissenschaft als Gefahrensignal, die Farben Blau als neutrales und Grun als
positives Signal. In der Medizin steht rot jedoch flr Leben und ist daher eher positiv,
grun und blau dagegen werden mit Infizierungen und dem Tod in Verbindung gebracht
und daher als negativ empfunden.

Die Anwenderpraferenzen beschreiben dagegen die Praferenzen und speziellen Anfor-
derungen des einzelnen Anwenders im speziellen Anwendungsfall. Hierunter fallen
auch physische Einschrankungen wie Farbenblindheit und andere Sehschwachen. [17]

Aus diesen Beispielen lasst sich ableiten, dass die Anwendungsumgebung beim Finden
guter Visualisierungen genau untersucht werden muss. Andernfalls kann der Anwen-
dungskontext einen zu grof3en limitierender Faktor darstellen, der die Expressivitat und
Effektivitat von Visualisierungsverfahren wesentlich beeinflussen kann. [17]

3.6.4 Ressourcen

Ein weiterer wichtiger Einflussfaktor bei der Erzeugung von Visualisierungen sind die
zur Verfigung stehenden Ressourcen. Dabei fallen unter diesen Begriff alle eingesetz-
ten Hardware-, Software- und Peripheriekomponenten die zur Visualisierung verwendet
werden.

Nach [17] haben vor allem die Eigenschaften Farbvisualisierung und die Texturdarstel-
lung des Anzeigegerates, grolen Einfluss auf die Effektivitat. Die wichtigsten, im Zu-
sammenhang mit Datenqualitatsvisualisierung, werden nachfolgend genauer betrachtet.

Ortsauflosung — Die Ortsauflésung ist einer der wichtigsten Aspekte, der bei der Vi-
sualisierung bertcksichtigt werden muss. Es wird im allgemeinen durch die Para-
meter absolute GréBe des Darstellungsbereiches, die Rastergrée des Bildspei-
chers und die Rastergrél3e des Darstellungs- und Ausgabemediums beschrieben.

Farbwiedergabe — Die Farbwiedergabe spielt bei der Visualisierung von Datenquali-
tatswerten eine besondere Rolle. Mit ihrer Hilfe kann die praattentive Wahrnehmung
besonders gut ausgenutzt werden um schnell unzureichende Qualitatswerte aus ei-
ner grof3en Datenmenge zu erkennen. Damit werden an das Ausgabegerat Min-
destanforderungen an die Farbwiedergabe gestellt, die vor der Entwicklung von Vi-
sualisierungen untersucht werden mussen.

Rechenleistung — Die unterschiedlichen Rechenleistungen der Anzeigegerate mussen
bei der Generierung der Visualisierungen berlcksichtigt werden. Je nach Einsatz-
gebiet kann das ein oder andere Gerat zur Darstellung unbrauchbar sein. Soll bei-
spielsweise eine 3D-Annimation eines Knochens angezeigt werden, kdnnen Anzei-
gegrate ohne die Moglichkeit des 3D-Renderings nicht zur Darstellung verwendet
werden.

-52 -

3.7 Grundlegende Techniken

Das in Kapitel 3.2.2 vorgestellte Mapping ist das Kernstlick der Visualisierungspipeline.
Bei dieser Stufe werden die Eigenschaften der zu Grunde liegenden Datenmenge auf

visuelle Attribute, auch visuelle Variablen genannt, abgebildet.

Diese Kapitel beschreibt die grundlegenden Techniken, die spater fur das Visualisieren

von Datenqualitdtswerten eingesetzt werden.

3.7.1 Visuelle Variablen

In der Literatur haben sich die, von [21] eingeflhrten, visuellen Variablen durchgesetzt

und werden in diesem Abschnitt genauer betrachtet.

Definition: Visuelle Variable

Die Mittel der graphischen Darstellung zur Transkription von Ahnlichkeits-, Ord-
nungs- und Proportionalitdtsbeziehungen sind die acht Variationen, die das Auge in

Bezug auf ,Flecken“ wahrnehmen kann [21].

Grafische Variablen

Zahl der nutzbaren Variationen (schematisch)

Form

Ein "gestaltloser
Fleck" kann
variiert werden
in:

Muster
Orientierung

Farbe O ‘ .
Helligkeit O ' ‘ ‘

GroBe

Position

>

Abbildung 3-18: Grafische Variablen nach [22]

-53 -

Nach [17] hat jede dieser Variablen seine eigene spezifische Wirkung, die [21] in drei
Formen unterscheidet:

Selektive Wirkung — Diese Variablen kdnnen unterschiedlichen Datenwerte in Grup-
pen aufteilen und unterscheiden. [21] nennt diese explizit trennende Variable und
zahlt vor allem Muster, Farbe, Orientierung und Form dazu. Diese Variablen eignen
sich nach [17] besonders gut dazu Daten auf einer nominalen Skala darzustellen.

Ordinale Wirkung — Datenwerte, die durch solche Variablen kodiert sind, werden vom
Betrachter spontan in eine Ordnung gebracht. Es lassen sich also besonders Da-
tenwerte mit einer ordinalen Ordnung gut visualisieren.

Proportionale Wirkung — Zusatzlich zu der Ordnung der Daten, lassen sich Datenwer-
te durch eine Kodierung mit solchen Variablen mit der zu Grunde liegenden Mess-
grélken in Beziehungen bringen.

Seit [21] im Jahr 1982 die vorgestellten Variablen zum ersten mal nannte und einflhrte,
finden immer wieder Diskussionen Uber Erweiterungen statt. Alle neuen Ideen aufzufih-
ren wirde aber den Umfang dieser Arbeit Ubersteigen. Ein spannender Ansatz, der spa-
ter auch zur Visualisierung der Datenqualitatsdimension Konsistenz weiter verfolgt wird,
stellt die visuelle Variable Regularitat dar [23]. Sie beschreibt den visuellen Zusammen-
hang durch die Anordnung mehrerer Elemente innerhalb eines Bildausschnitts (siehe
Abbildung 3-19).

Regular Irregular

Abbildung 3-19: Regularitét [23]

3.7.2 \Visuelle Abbildungen

Die Abbildung der Datenwerte auf die grafischen Variablen ist die wichtigste Aufgabe
beim Mapping. Hier entscheidet sich, wie gut die spatere Visualisierung ist und ob sie
dem Betrachter bei der Losung seines Problems helfen kann. Diagramme stellen dabei
die allgemeinste Form der grafischen Darstellung von Daten dar. Von denen in [17] vor-
gestellten Abbildungen, werden in diesem Abschnitt die, fir die Datenqualitatsvisualisie-
rung wichtigen, gezeigt und auf ihre speziellen Eigenschaften eingegangen.

-54 -

3.7.2.1 Abbildung auf Position, GroRe und Orientierung

Die Lokalisation von Objekten im Sehfeld, sowie die Fahigkeiten leicht Positions- und
Grolkenvergleiche anstellen zu kénnen, sind grundsatzliche Ablaufe der menschlichen
visuellen Wahrnehmung [17]. Diese Prozesse kdnnen, dank der hohen ortlichen Auflo-
sung im menschlichen Auge, besonders genau durchgefuhrt werden. Eine Vielzahl der
heute eingesetzten Diagramme nutzen diese Fahigkeiten aus.

Die wichtigsten sind:

Punktdiagramme — Sie nutzen die Eigenschaft der menschlichen Wahrnehmung flr
die Visualisierung aus, sehr gut relative Positionen einschatzen und vergleichen zu
kénnen.

Linien- und Kurvendiagramme — Auch diese Diagrammarten nutzen die gute Wahr-
nehmbarkeit von Positions- und Langendifferenzen, um Informationen effektiv wie-
derzugeben. Dabei werden die Werte auf einer gemeinsamen Skala quantitativ ab-
gebildet. Um Trends und lokale Strukturen besser erkennen zu kénnen, werden be-
nachbarte Punkte miteinander verbunden. Diese Diagrammart ist besonders dafir
geeignet, zeitabhangige Strukturanderungen anzuzeigen, wie beispielsweise Da-
tenqualitatswerte einer Komponente im Laufe der gesamten Simulation.

Séaulen- und Balkendiagramme - Liegen die Datenwerten auf einer ordinalen oder
diskreten Skala, kdnnen auf der waagerechten Achse des Koordinatensystems die
Skala, zum Beispiel die Datenqualitatsdimensionen, und auf der senkrechten Achse
die dazugehorigen abhangigen Grollen eingezeichnet werden.

Histogramme — Sie stellen eine spezielle Form von Saulendiagrammen dar, mit dem
Unterschied, dass nicht die einzelnen Datenwerte abgetragen werden, sondern de-
ren Haufigkeit. Eine Anwendung im Zusammenhang mit Datenqualitat in Simulati-
on-Workflows, kdnnte die Auswahl eines Services sein, dessen Ergebnisse mit ei-
ner hohen Haufigkeit eine gute Qualitat besitzen.

Kreisdiagramme — Es wird wie Saulendiagramme zur Darstellung von Dateneigen-
schaften verwendet, die auf einer quantitativen Skala liegen. Das Kreisdiagramm
besitzt jedoch, statt eines rechtwinkligen Koordinatensystems, einen Kreis als Be-
zugssystem. Auf diesem werden die Werte der verschiedenen Eigenschaften, durch
unterschiedlich gefarbte Kreisteilen dargestellt werden.

3.7.2.2 Abbildung auf Farbe

Wie im Kapitel Uber menschliche Wahrnehmung aufgezeigt wurde, stellt die Abbildung
auf Farbe ein wichtiges Mittel zur Visualisierung dar. Sie wird vom Betrachter, sofern er
keine Einschrankungen wie Farbenblindheit hat, praattentiv wahrgenommen. Zusatzlich
lasst sich Farbe mit allen zuvor genannten Visualisierungstechniken kombinieren und

-55.

stellt somit in vielen Fallen einen zusatzlichen Freiheitsgrad fiur die Visualisierung von
Daten zur Verfigung [17].

Das Gebiet der Farbenlehre ist ein sehr grol3es Feld und wird daher in dieser Arbeit nur
im Kontext Datenqualitéatsvisualisierung in Kapitel 3.10 eingeschrankt behandelt. Dort
werden die Farben Grin und Rot zur Unterscheidung von guter und schlechter Daten-
qualitat verwendet.

Fir Menschen mit einem eingeschrankten Sehvermogen, etwa einer rot-grin-Blindheit,
konnen andere Unterscheidungsmerkmale wie Texturen oder Muster verwendet wer-
den. In dieser Arbeit wird jedoch davon ausgegangen, dass der Leser keine beeintrach-
tigende Sehschwache besitzt und die vorgestellten Visualisierungen vollstandig erken-
nen kann.

3.8 Finden von Visualisierungen

Dieses Kapitel beschreibt die Problematik des Findens guter Visualisierungen, die fr
einen konkreten Anwendungsfall eingesetzt werden kdénnen und alle an sie gestellten
Anforderungen erflllen.

3.8.1 Herausforderungen beim Entwerfen passender Symbole

Die Schwierigkeit bei der Entwicklung von guten Visualisierungen entsteht vor allem
durch die in Kapitel 3.6 genannten Einflussfaktoren. Damit aussagekraftige Visualisie-
rungen entwickelt werden kdnnen, missen diese genau untersucht und bericksichtigt
werden. Dazu ist es in erster Linie notwendig, das Anwendungsgebiet sowie die Prafe-
renzen und Gewohnheiten der spateren Anwender zu verstehen und sie in den Visuali-
sierungsprozess mit einzubeziehen.

In der ersten Phase stellen sich nach [25] vor allem folgende drei Fragen die mit Hilfe
der spateren Benutzer und Experten des Anwendungsgebietes zu beantworten sind:

Was soll dargestellt werden? — Diese Frage zielt vor allem auf den informativen Inhalt
und damit auf die expressiven Eigenschaften der Visualisierung ab. In der Antwort
sind alle Eigenschaften der Datenmenge enthalten, welche auf visuelle Attribute
abgebildet werden sollen.

Wozu soll die Darstellung dienen? — Diese Frage dient zur Formulierung des Visuali-
sierungsziels und ist somit Teil des Effektivkriteriums. Im Ergebnis befinden sich
vor allem die Winsche und Erwartungen der speziellen Benutzer.

Wer soll informiert oder lGiberzeugt werden? — In der letzten Fragen werden die Be-
nutzergruppen untersucht, welche mit der Visualisierung arbeiten werden. Hier

-56 -

mussen alle Standardsymbole, Farbsemantiken und alle weiteren Randbedingun-
gen sehr genau abgesteckt werden, um maglichst eindeutige und unmissverstand-
lichen Visualisierungen zu erreichen.

3.8.2 Entwerfen von Symbolen

Der zweite Schritt bei der Entwicklung guter Visualisierungen, ist das Entwerfen von
passenden Symbolen und Metaphern. Diese werden nach [24] typischerweise durch
ausgebildete Designer gefertigt und fur viel Geld eingekauft.

AnschlielRend werden diese dann durch Versuche mit Probanden in mehreren Stufen
evaluiert und verfeinert. Ein Teil bei diesen Visualisierungsstudien ist zum Beispiel der
schrittweise Aufbau des Symbols, durch den Einsatz verschiedener Filter. Das jeweils
entstandene Bild wird dabei durch die Probanden frei interpretiert. Das heil3t, sie be-
kommen keinerlei Hintergrundinformationen und muissen beschreiben, in welchem Zu-
sammenhang sie diese Symbole setzen wirden. Je nach eingesetztem Filter kbnnen so
unterschiedliche Informationen der Symbole herausgearbeitet und verbessert werden.
Beispielsweise kdnnte in einem ersten Schritt ein Farbfilter eingesetzt werden, welcher
das Symbol nur in Schwarz-Weil} darstellt und so den Fokus des Benutzers auf dessen
Struktur und den Aufbau lenkt ohne durch grelle Farben abzulenken.

Durch diesen schrittweisen Prozess und durch das entsprechende Auswahlen der Ver-
suchsparameter und Filter, lassen sich so, fur einen speziellen Anwendungsfall, Visuali-
sierungen entwickeln, die allen in Kapitel 3.4 genannten Ansprichen gerecht werden.

3.8.3 Beispiel fur die Auswahl einer Visualisierungsform

In diesem Abschnitt soll anhand eines Beispiels gezeigt werden, wie das Ldsen eines
einfachen Problems malgeblich von der gewahlte Visualisierung abhangig ist.

Problem: Ordnen Sie eine Menge von Werten in absteigender Reihenfolge.

Variante 1 — Kreisdiagramm

Abbildung 3-20: Beispiel fiir das Finden von Visualisierungen (Teil 1)

-57 -
Wie in der Darstellung zu sehen, ist die Wahl eines Kreisdiagramms fur diese Art von
Problemstellungen ungeeignet. Das menschliche Auge kann nur schwer GroRenver-

haltnisse von angrenzenden, runden Objekten aufldésen.

Variante 2 — Saulendiagramm

A B C D E

Abbildung 3-21: Beispiel des Findens von Visualisierungen (Teil 2)

Ein Saulendiagramm hingegen bietet dem Auge gentigend Freiraum, um die einzelnen
Balken zu vergleichen und zu bewerten. Aus diesem Grund ist es fur diese Art von
Problemstellung besonders gut geeignet.

3.9 Visualisierung von Datenqualitat

Nachdem nun alle wichtigen Grundlagen fir das Generieren expressiver und effektiver
Visualisierungen gezeigt wurden, werden in diesem Kapitel spezielle Visualisierungen
fur Datenqualitatswerte erarbeitet. Dazu werden die einzelnen Schritte der Visualisie-
rungspipeline entsprechend angepasst und modelliert. Anschliel’end werden Visualisie-
rungen fur die sechs vorgestellten Datenqualitatsdimensionen aufgezeigt.

3.9.1 Datenaufbereitung (Filtering)

Die Datenaufbereitung, oder Filtering, ist der erste Schritt in der Visualisierungspipeline.
Hier werden die Datenqualitatswerte und Simulationsdaten aufbereitet, um in den spa-
teren Schritten effizient verarbeitet werden zu kénnen. Da alleine die Simulationsdaten
in den Gigabytebereich gehen kdnnen, stellt dieser Schritt eine besondere Herausforde-
rung dar. Er muss flr jede Problemstellung genau untersucht werden, damit die spatere
Visualisierung das Expressivitatskriterium erfullt und keine wichtigen Informationen ver-
loren gehen.

Zusatzlich muss hier nach dem Format der Eingabedaten unterschieden werden. Lie-
gen beispielsweise die Daten als einzelne Datenqualitatswerte innerhalb eines einzel-

- 58 -

nen XML-Dokument vor, kdnnen diese ohne weitere Filterung an das Mapping Uberge-
ben werden. Liegen die Datenqualitatswerte jedoch in Kombination mit den urspringli-
chen Simulationsdaten vor, beispielweise ein Geometriemodell des menschlichen
Oberarmknochen, kann es auf Grund der reinen Datenmenge sinnvoll sein, nur eine
bestimmte Auswahl der Simulationsdaten zu visualisieren. Dadurch kann die Rechen-
zeit kurz gehalten werden und Gesamtperfomance wird nicht negativ beeintrachtigt.
Beim Filtering ist sowohl eine maschinelle, als auch die menschliche Datenauswahl
mdglich.

3.9.2 Visualisierung

Das Mapping ist der wichtigste und komplizierteste Schritt in der Visualisierungspipe-
line. Hier entscheidet sich, welche Informationen mit welchen visuellen Variablen dar-
gestellt werden.

Dieser Abschnitt zeigt mdgliche Visualisierungen von Datenqualitatswerten, aufgeteilt
nach der jeweiligen Dimension.

Datenqualitatswerte sind abstrakte Daten, die auf unterschiedlichen Skalen abgebildet
werden kénnen. Um eine schnelle Auswertung der erzeugten Visualisierungen zu er-
mdglichen, muss das eingesetzte Mapping eine Abbildung auf visuelle Variablen reali-
sieren, die dem spateren Betrachter gelaufig sind. Nach [17] stellen Metaphern eine
gute Maoglichkeit dar, um diese Anspriche zu realisieren. Dabei muss die spatere An-
wendungsumgebung genau untersucht werden, um Missverstandnisse und mdgliche
Fehlinterpretationen zu vermeiden.

Wie im Kapitel Uber das Finden von guter Visualisierungen gezeigt wurde, stellt dieser
Schritt eine grof3e Herausforderung dar. Die im Folgenden prasentierten Visualisierun-
gen werden spater im Kontext eines wissenschaftlichen Knochensimulations-Workflow
eingesetzt und stellen somit Spezialfalle und Interpretationen der sechs Datenqualitats-
dimensionen durch den Autor und seinen Betreuer dar. Das grundsatzliche Vorgehen
kann jedoch als Muster flr das Finden weiterer Visualisierungen in anderen Einsatzge-
bieten dienen.

3.9.2.1 Genauigkeit (Accuracy)

Fir die Visualisierung von Genauigkeit bieten sich verschiedene nutzliche Assoziatio-
nen und Metaphern an. In dieser Arbeit wird das Symbol der Zielscheibe gewahlt, da
diese je nach eingesetzter Datenqualitatsskala leicht verandert werden kann. Das be-
deutet, je nach Skala und Ansprichen des Benutzers an die Genauigkeit der visuellen
Reprasentation, lassen sich die Ringe der Zielscheibe variieren. Zudem bietet sie eine
einfache Madglichkeit einen gegebenen Schwellenwert einzuzeichnen. Er ermdglicht
dem Betrachter, dank der Fahigkeit des menschlichen Auges relative Positionierungen
gut einschatzen zu kénnen, leicht einen Soll-Ist-Vergleich durchzufihren ohne die ge-

-59 -

nauen Zahlenwerte vergleichen zu mussen. Zusatzlich werden die Farben Rot fur nied-
rige Genauigkeit und Grin fUr hohe Genauigkeit als Verstarkung des visuellen Ein-
drucks eingesetzt. Abbildung 3-22 und Abbildung 3-23 zeigen Beispielvisualisierungen
der Dimension Genauigkeit. Jeweils mit einem Schwellenwert (blauer Kreis). Die ein-
zelnen Datenwerte werden als schwarzer Kreis dargestellt, wobei wie im Sport, die au-
Rere Kante den erreichten Wert anzeigt. Der genaue Wert kann zur leichteren und
exakten Analyse zusatzlich unter dem jeweiligen Bild angezeigt werden.

0.9]0.5 0.4/0.5

Abbildung 3-22: Genauigkeit als Zielscheibe auf der Skala von 0 bis 1 und einem
Schwellenwert von 0,5

Ist die eingesetzte Skala, bzw. der exakte Wert nicht von Bedeutung, dann kann die
Zielscheibe leicht modifiziert und wie in Abbildung 3-23 zu sehen eingesetzt werden.
Das Bild ahnelt jetzt eher einem Fadenkreuz, das anzeigt, ob sich das Ziel, der ge-
wunschte Datenqualitatswert, im Sucher befindet und somit erreicht wird oder nicht.

o 1
N 1/

0.9/0.5 0.4/0.5

Abbildung 3-23: Genauigkeit als Fadenkreuz ohne Visualisierung der Skala und mit
Schwellenwert von 0,5

3.9.2.2 Rechtzeitigkeit (Timeliness)

Auch fur eine grafische Reprasentation der Datenqualitatsdimension Rechtzeitigkeit gibt
es eine Reihe von passenden Metaphern und Symbole, die eingesetzt werden kdnnen.

-60 -

Wie schon bei der Dimension Genauigkeit wird hier ein Symbol entwickelt, das vom Be-
nutzer sofort erkannt und leicht verstanden wird und auf3erdem skalenunabhangig und
mit unterschiedlichsten Anforderungen eingesetzt werden kann. Da die Uhr schon im-
mer ein Symbol fur die Zeit war, wird sie auch hier eingesetzt. Sie kombiniert alle gefor-
derten Anspriche an eine gute Visualisierung.

Die erste Variante einer Uhr, die wohl jedem im Zusammenhang mit Rechtzeitigkeit in
den Sinn kommt, ist der Wecker. Er steht wie kein anderes Symbol fur das nicht ver-
passen eines Ereignisses und bietet durch ein grolRes Ziffernblatt genug Platz um zu-
satzliche Informationen darzustellen.

Abbildung 3-24 zeigt eine mdgliche Variante. Die Skala von 0 bis 1 wird dabei auf das
Ziffernblatt abgetragen. Der erreichte Datenqualitatswert wird mit einem schwarzen Pfeil
angezeigt, der auf die entsprechende Ziffer zeigt. So lasst sich auch leicht der Schwel-
lenwert durch einen blauen Strich zeigen, der ebenfalls auf die entsprechende Ziffer
zeigt und so einen leichten Soll-Ist-Vergleich ermdglicht. Zusatzlich zeigen die Farben
Grin und Rot eine gute Rechtzeitigkeit und eine schlechte Rechtzeitigkeit an. Auch der
Animationseffekt im rechten Bild verdeutlicht das zu spéte Eintreffen der Datenwerte
symbolisch.

Abbildung 3-24: Rechtzeitigkeit als Wecker auf der Skala von 0 bis 1 und
Schwellenwert von 0,5

Ist die genaue Skala fur den Betrachter uninteressant, lasst sich der Wecker leicht, wie
in Abbildung 3-25 zu sehen modifizieren. Hier wird nur der Schwellenwert an die sym-
bolische 12 gesetzt und der Datenqualitatswert entweder davor, bei guter Rechtzeitig-
keit, oder dahinter, bei schlechter Rechtzeitigkeit, gezeichnet. Der Abstand des schwar-
zen Pfeils zu 12 Uhr und damit zum Schwellenwert spielt dabei keine Rolle.

-61 -

0.4/0.5 0.9/0.5

Abbildung 3-25 Rechtzeitigkeit als Wecker ohne Visualisierung der Skala und
Schwellenwert von 0,5

Eine weitere Metapher, welche abgeleitet von einer Uhr im Zusammenhang mit Recht-
zeitigkeit eingesetzt werden kann, ist die Sanduhr. Im Gegensatz zum Wecker bietet
diese keine gute Moglichkeit einer exakten Abbildung der eingesetzten Skala. Ihre Star-
ke liegt jedoch darin, dass der Benutzer sofort erkennt, wann eine gute Rechtzeitigkeit
und wann eine schlechte Rechtzeitigkeit erreicht wird. Sie kann also vor allem flr einen
schnellen Soll-Ist-Vergleich eingesetzt werden.

Abbildung 3-26 zeigt zwei Beispiele. Der Datenqualitatswert wird hier durch Sand re-
prasentiert. Dieser ist bei guter Rechtzeitigkeit oberhalb der Verengung und bei
schlechter Rechtzeitigkeit darunter. Die Verengung wiederum reprasentiert den Schwel-
lenwert, der mindestens erreicht werden muss fur eine gute Rechtzeitigkeit. Es kbnnen
somit zwei Bilder entstehen. Bei guter Rechtzeitigkeit ist der Sand oberhalb und bei
schlechter Rechtzeitigkeit darunter. Wie schon in den Visualisierungen zuvor, werden
auch hier die Farben Rot und Grin zur Verdeutlichung eingesetzt und unterstitzen da-
bei die Wahrnehmung.

Abbildung 3-26: Rechtzeitigkeit als Sanduhr ohne Visualisierung der Skala und
Schwellenwert von 0,5

-62 -

3.9.2.3 Volistandigkeit (Completeness)

Fir die Dimension Vollstdndigkeit werden in diesem Abschnitt wieder zwei mdgliche
Visualisierungen gezeigt, die sich im praktischen Versuch als nutzlich herausgestellt
haben. Als erstes folgt hier eine Abbildung auf einen Zylinder. Dieser ist durch seine
vielen Gestaltungsmaoglichkeiten besonders gut geeignet Zahlenwerte und die dazuge-
hdrige Skala abzubilden. Abbildung 3-27 zeigt zwei Beispiele. Links gute Vollstédndigkeit
und rechts schlechte Vollsténdigkeit. Dabei werden die einzelnen Skalenwerte als waa-
gerechte Linien horizontal gestapelt. Die Vollstédndigkeit wird durch die entsprechende
Flllung des Zylinders symbolisiert und mit Hilfe einer etwas dickeren Linie in Kombina-
tion mit dem Zahlenwert abgetragen. Die ubrigen Linien sollen den Abstand bis zur voll-
standigen Fullung verdeutlichen. Diese Darstellung erlaubt es zudem den Schwellen-
wert, hier als blaue Linie, einzuzeichnen und so einen effektiven und effizienten Soll-Ist-
Vergleich durchzufiihren. Zusatzlich werden die Farben Grin fur gute Vollstédndigkeit
und Rot flr schlechte Vollstdndigkeit eingesetzt.

0.7

0.5

0.4 ©°°

Abbildung 3-27: Vollstandigkeit Sdule mit Skala und mit Schwellenwert von 0,5

Ist die genaue Skala eher uninteressant, konnen flur eine Visualisierung der Dimension
Vollsténdigkeit die Werte, ahnlich einem Kuchendiagram, auf einem Kreis abgetragen
werden. Der Unterschied besteht darin, dass die fehlende Werte nicht mit eingezeichnet
werden und ein Licke entsteht. Dank den Fahigkeit des menschlichen Sehsystems Lii-
cken zu fullen, entsteht auf diese Weise eine expressive Darstellung. Auch hier wird der
Schwellenwert als blaue Linie eingezeichnet und hilft somit bei der Bewertung des Da-
tenwertes. Flr die genaue Untersuchung kann der tatsachlich erreichte Datenqualitats-
wert unter das Bild oder, wie in den anderen Visualisierungen auch, direkt ins Bild ein-
getragen werden. Die Farben Rot und Grun werden wieder fur die Verdeutlichung ge-
nutzt.

-63 -

0.9 /0.7 0.4]0.7

Abbildung 3-28: Vollstandigkeit ohne Skala und mit Schwellenwert von 0,7

3.9.2.4 Konsistenz (Consistency)

Bisher waren die vorgestellten Visualisierungen intuitiv und vertraut. Mit der Datenquali-
tatsdimension Konsistenz werden die meisten Menschen jedoch auf Anhieb keine pas-
sende Metapher oder ein zugehoriges Bild verbinden. Um auch hier eine Visualisierung
zu finden, welche den oben genannten Ansprichen genugt, wird zuerst etwas naher auf
den Begriff Konsistenz eingegangen.

Die Definition des Begriffes Konsistenz beschreibt sie in der Wissenschaft als ,Grad
und Art des Zusammenhalts eines Stoffes” und in der Logik als ,strenger gedanklicher
Zusammenhalt [37]. Konsistenz beschreibt demnach den Zusammenhalt mehrerer
Elemente innerhalb einer bestimmten Menge. Aus diesem Verstandnis kann die folgen-
de Visualisierung abgeleitet werden.

Ahnlich der Visualisierung von Genauigkeit bildet die Zielscheibe als Metapher die Aus-
gangsform. Darauf kann leicht die verwendete Skala abgebildet werden. Der Schwel-
lenwert kann ebenfalls einfach eingezeichnet werden. Auf die Zielscheibe werden vier
Punkte eingezeichnet. Alle verteilt auf dem selben Ring und mit gleichem Abstand zuei-
nander. Der Ring reprasentiert dabei den erreichten Datenqualitatswert. Das bedeutet,
bei einer guten Konsistenz liegen die Punkte dicht bei einander und bei einer schlech-
ten Konsistenz weiter auseinander. Die Farben Grin und Rot werden, wie immer, zur
Kennzeichnung von guter Konsistenz und schlechter Konsistenz als verstarkendes Mit-
tel eingesetzt. Abbildung 3-29 zeigt ein Beispiel.

-64 -

0.7/0.5 0.3/0.5

Abbildung 3-29: Konsistenz Zielscheibe mit Skala und mit Schwellenwert von 0,5

Ist die betrachtete Skala beim Filtering aus der Visualisierungspipeline ausgeschlossen
worden, das heil3t nur der berechnete Datenqualitatswert ist von Bedeutung und nicht
die genaue Zuordnung, so kann die Zielscheibe wie in Abbildung 3-30 zu sehen ent-
sprechend angepasst werden. Hier werden die einzelnen Punkte nach einem speziellen
Algorithmus im Kreis verteilt. Wobei ein enger Zusammenschluss als gute Konsistenz
und eine weitgehend freie Verteilung als schlechte Konsistenz zu werten sind. Der
blaue Kreis zeigt wieder den Schwellenwert an. Jedoch ohne genauen Wert um eine
bindre Bewertung, gut oder schlecht, geben zu kénnen. Liegen alle eingezeichneten
Punkte darin, dann ist es eine gute Konsistenz, liegen einige aulierhalb eine schlechte
Konsistenz. Mit der Anzahl von innen und aulen liegenden Punkte kann so auch eine
Einschatzung der Konsistenz gegeben werden. Um trotz fehlender Skala eine wissen-
schaftliche Untersuchung zu ermdglichen, werden die exakten Datenqualitatswerte un-
terhalb des Bildes geschrieben.

0.9]0.5 0.3]0.5

Abbildung 3-30: Konsistenz ohne Skala und Schwellenwert

3.9.2.5 Aktualitat (Currency)

Fir die Dimension Aktualitat gibt es erneut keine intuitive und vertraute Metapher die
sich als Basissymbol fur die Visualisierung eignet. Ein dennoch weit verbreitetes Sym-
bol, das vor allem bei Internetbrowsern haufig eingesetzt wird, ist ein Kreis mit einem

-65 -

Pfeil am Ende. Dieses Symbol wird im Folgenden als Basissymbol verwendet, da es
viel Platz fUr Informationen und eine Reihe von Anpassungsmoglichkeiten bietet. Dabei
wird, je nach erreichtem Datenqualitatswert, der AulRenkreis mehr oder weniger farbig
gezeichnet. Die errechnete Aktualitat wird an das Ende der farbigen Markierung des
Aulenkreises geschrieben. Zusammen mit dem eingezeichneten Schwellenwert Iasst
sich so leicht ein Soll-Ist-Vergleich durchfihren. Zusatzlich entscheidet der Schwellen-
wert, wann die Fullung des AulRenkreises grun gefarbt wird und wann rot.

Je nach Anforderung ist es zudem mdglich die Skala auf der Datenqualitatswert liegt mit
einzuzeichnen.

0.9
~

0.5 0.5
| | 0.3

Abbildung 3-31: Aktualitdt ohne Skala und mit Schwellenwert von 0,5

3.9.2.6 Schwankungsfreudigkeit (Volatility)

FUr die Datenqualitatsdimension Schwankungsfreudigkeit gibt es mehrere passende
Metaphern, welche jeweils unterschiedliche Mdglichkeiten der Anpassung erlauben. Als
erstes wird im folgenden eine Visualisierung beschrieben, die sich an der Anzeige fur
Aktienkurse orientiert. Abbildung 3-32 zeigt zwei Beispiele. Bei guter Schwankungs-
freudigkeit wird eine Sinuskurve gezeichnet die sich flach und gleichmalig um eine
waagerechte Linie windet. Bei schlechter Schwankungsfreudigkeit hingegen, wird eine
zitternde, unregelmaRige Kurve gezeichnet die sich ebenfalls entlang einer waagerech-
ten Linie bewegt. Der genaue Datenwert wird unterhalb des Bildes geschrieben. Die
Farben Grin und Rot werden wie bisher unterstitzend eingesetzt.

Diese Form der Visualisierung hat aber neben der leichten Erkennung und Zuordnung
der Werte zwei Nachteile. Zum einen kann die Skala, auf der sich der Datenqualitats-
wert befindet nicht mit abgebildet werden und zum anderen kann der Schwellenwert,
welcher entscheidet ob es sich um eine gute oder schlechte Schwankungsfreudigkeit
handelt, ebenfalls nicht eingezeichnet werden.

Werden diese Faktoren auf3er acht gelassen, so bieten diese Metapher aber eine effek-
tive und leichte Einordung und Bewertung des Sachverhaltes.

- 606 -

0.8 0.4

Abbildung 3-32: Schwankungsfreudigkeit ohne Skala und Schwellenwert

Ist das Anzeigen des Schwellenwertes und der Skala von Bedeutung, lassen sich ba-
sierend auf dem Symbol des Pendels weitere Visualisierungen entwickeln, welche die
oben genannten Anforderungen erflllen. Abbildung 3-33 zeigt zwei Beispiele. Die Grafik
besteht aus einem Halbkreis, welcher die maximale Pendelbewegung reprasentiert,
einem Pfeil, der den aktuellen Datenqualitatswert anzeigt, einer blauen Linie, welche
den Schwellenwert zum Vergleich anzeigt und dem genauen Wert, der wieder unterhalb
des Bildes angezeigt wird. Zudem werden wieder die Farben Rot und Grin als verstar-
kendes Mittel eingesetzt.

Diese Form der Visualisierung bietet viel Raum flr spezifische Anpassungen. Bei-
spielsweise liel3e sich die Skala leicht einzeichnen oder der Schwellenwert entfernen.

0.7 0.7

0.85 0.5

Abbildung 3-33: Schwankungsfreudigkeit als Pendel ohne Skala und
Schwellenwert von 0,7

3.9.2.7 Allgemeine Diagramme

Die in den voran gegangenen Abschnitten vorgestellten Visualisierungen stellen Spezi-
alfalle dar, die sich vor allem zur Darstellung einzelner Werte ohne Bezug zu einander
eignen. In vielen Fallen stehen die verschiedenen Datenqualitatswerte jedoch in Bezie-
hung zu einander, wie beispielsweise die Rechtzeitigkeit und Genauigkeit. Wenn die
Simulation hohe Anspriche an die Genauigkeit der einzelnen Datenwerte stellt, so kann
es vorkommen, dass Komponenten langer flr eine Berechnung bendtigen und somit die
Ergebnisse nicht innerhalb eines geforderten Zeitraums der nachsten Komponente zur
Verfigung stellen. Um solche Beziehungen visuell auszudricken zu kénnen, mussen
die Datenqualitatswerte auf einer einheitlichen Skala mit einheitlich definierten visuellen

-67 -

Attributen abgebildet werden. Nur so ist eine effektive Bearbeitung durch den Benutzer
gewahrleistet.

Auch wenn einzelne Services im Bezug auf ihre Datenqualitat Gber einen Zeitraum be-
trachtet werden sollen, bieten sich die einfachen Standarddiagramme, wie Kurven- und
Liniendiagramme aus Kapitel 3.7.2.1 an.

-68 -

4 Anforderungen an das Visualisierungsframework

Dieses Kapitel beschreibt die Anforderungen an das Visualisierungsframework, welches
zur Unterstltzung der wissenschaftlichen Auswertung von Datenqualitatswerten in Si-
mulation-Workflows eingesetzt wird.

Im ersten Teil werden zunachst die allgemeinen Anforderungen formuliert. Die Struktur
der nachfolgenden Kapitel orientiert sich anschliefend an den beiden Benutzergruppen
des Visualisierungsframeworks, ,Wissenschaftler* und ,Programmierer. Dazu werden
im zweiten Teil die Anforderungen der Wissenschaftler, als direkte Anwender eines
WebServices auf Basis des Visualisierungsframeworks, gezeigt.

Im dritten Abschnitt werden die Anforderungen seitens der Entwickler von Erweiterun-
gen fur das Visualisierungsframework formuliert.

Alle Anforderungen werden flir das spatere Referenzieren durch das Symbol h (Requi-
rement) nummeriert.

4.1 Allgemeine Anforderungen an das Framework

Dieses Kapitel beschreibt zunachst die allgemeinen Anforderungen an das Visualisie-
rungsframework.

41.1 Wiederverwendbarkeit (1)

Das Framework soll so entworfen werden, dass es leicht von einer Simulation-
Workflow-Umgebung zu einer anderen portiert werden kann.

4.1.2 Anbindung an das JDQCF (312)

Das Framework soll das JDQCF (siehe Kapitel 2.3.3) als Datenquelle fur die Visualisie-
rungen verwenden. So kénnen die durch das JDQCF generierten Datenqualitatswerte
verarbeitet werden.

41.3 Anbindung an externe Datenquellen ($i3)

Simulationsdaten kdnnen auf einem externen Server liegen. Um diese Daten trotzdem
verarbeiten zu kdnnen, soll das Framework die Mdglichkeit bieten, referenzierte Daten
zu laden und in dem Visualisierungsprozess zu bertcksichtigen. Beispielsweise kdnnen
diese Rohdaten durch einen Data as a Service (DaaS) [40] zur Verflgung gestellt wer-
den. Das JDQCF Ubergibt dann lediglich die Adresse unter welche die Daten breitge-
stellt werden.

-69 -

4.1.4 Unterstitzung mehrere Simulationen ($14)

Das Framework soll mehrere laufende Simulationen unterscheiden konnen. Somit kann
ein Wissenschaftler jede seiner Simulationen gleichzeitig Uberwachen.

4.1.5 Verarbeitung unterschiedlicher Datenstrukturen (i 5)

Das Framework wird in unterschiedlichsten Fachbereichen eingesetzt. Damit verbunden
kénnen unterschiedliche Daten entstehen. Um die grof3tmdgliche Flexibilitat zu gewahr-
leisten, soll das Framework unterschiedliche Datenstrukturen verarbeiten konnen.

4.2 Anforderungen aus Sicht der Wissenschaftler

Dieses Kapitel beschreibt die Anforderungen aus Sicht der Wissenschaftler. Diese ha-
ben als Endbenutzer vor allem Anforderungen an die Benutzerverwaltung und die gene-
rierten Visualisierungen.

4.2.1 Anforderungen an die Benutzerverwaltung

Dieser Abschnitt beschreibt die verschiedenen Anforderungen der Wissenschaftler an
die Benutzerverwaltung der Visualisierungsframeworks.

4.2.1.1 Verwaltung von mehreren Benutzern (1 6)

Das Framework soll die Verwaltung von mehreren gleichzeitig angemeldeten Wissen-
schaftlern unterstutzen.

4.2.1.2 Autorisierung des Benutzers (R7)

Um die Zugriffssicherheit auf die laufende Simulation und deren Daten zu gewahrleis-
ten, soll das Framework die Mdglichkeit bieten, eine simulationsabhangige Benutzerau-
torisierung einzubinden. Es soll sichergestellt werden, dass nur berechtigte Personen
die Daten verarbeiten konnen.

4.2.1.3 Unterstiitzung bei Steuerung der Simulation durch den Benutzer (3 8)

Das Framework soll eine Schnittstelle fur die Steuerung einer laufenden Simulation be-
reitstellen. Das bedeutet, dass es dem Wissenschaftler die grafischen Hilfsmittel dazu
bereit stellt, beispielsweise einen ,Simulation Abbrechen“-Button. Dabei soll das Visua-
lisierungsframework diese Aktion nicht implementieren. Es soll die konkrete Aktion, zum

-70 -

Beispiel das Driicken dieses Buttons, Uber ein Schnittstelle an eine externe Stelle wei-
terleiten, an der sie entsprechend verarbeitet wird.

4.2.1.4 Verwendung eines rollenbasierten Systems zur Regelung der

Benutzerinteraktionen ($19)

In Simulation-Workflows gibt es spezielle Rollenverteilungen. So gibt es im Allgemeinen
eine Person die fur die Simulation verantwortlich ist (Simulation Owner) und somit alle
Rechte fur die Interaktion mit dieser besitzt. Neben ihr gibt es meist noch weitere Wis-
senschaftler mit unterschiedlichen Rollen und Rechten an der Simulation.

Diese Struktur soll sich in dem Framework wiederspiegeln, so dass unterschiedliche
Rollen, ihren Rechten entsprechende Interaktionsmdglichkeiten besitzen. Beispielswei-
se besitzt der Simulation Owner alle Rechte an der Simulation und darf in alle Stufen
der Visualisierungspipeline oder in die laufende Simulation eingreifen. Andere Wissen-
schaftler, mit weniger Rechten, konnen diese Steuerungsmdglichkeiten nur einge-
schrankt oder gar nicht nutzen.

4.2.2 Anforderungen an die Visualisierungskomponente

Dieses Kapitel beschreibt die Anforderungen an die Visualisierungskomponente des
Frameworks.

4.2.2.1 Berucksichtigung der Rolle des Wissenschaftlers bei der

Visualisierung (310)

Das Framework soll die Rolle eines Wissenschaftler in einer Simulation bei der Gene-
rierung der Visualisierungen bertcksichtigen. Das bedeutet, dass unterschiedliche Rol-
len zu unterschiedlichen Visulisierungen fihren kdnnen. Beispielsweise werden fur den
Simulation Owner, neben den Datenqualitatswerten, zusatzlich die eigentlichen Simula-
tionsdaten visualisiert. Bei anderen Wissenschaftlern mit weniger Rechten werden hin-
gegen nur die Datenqualitatswerte zur Uberwachung angezeigt.

4.2.2.2 Generierung expressiver, effektiver und angemessener

Datenqualitatsvisualisierungen (1 11)

Das Framework soll aus den empfangenen Daten Visualisierungen generieren kdnnen,
welche die in Kapitel 3.4 gezeigten Anforderungen erflllen. Dazu gehoéren insbesondere
das Generieren expressiver, effektiver und angemessener Datenqualitatsvisualisierun-
gen.

-71 -

4.2.2.3 Geriist fiir die unterschiedlichen Stufen der Visualisierungspipeline (512)

Wie in Kapitel 3.3.4 gezeigt, kdnnen die einzelnen Stufen der Visualisierungspipeline
auf verschiedenen Rechnern und durch unterschiedliche Programmiersprachen reali-
siert werden. Das Framework soll die unterschiedlichen Varianten zur Verteilung dieser
Stufen unterstutzen.

4.2.2.4 Unterstiitzung unterschiedlicher Ausgabegerate ($113)

Die generierten Visualisierungen sollen auf unterschiedlichen Anzeigegeraten prasen-
tiert werden kdnnen. Das bedeutet, dass das Visualisierungsframework die unterschied-
lichen Gerateeigenschaften bei der Generierung der Visualisierungen bertcksichtigt.

4.2.2.5 Steuerung der Visualisierungspipeline durch den Benutzer (£ 14)

Das Framework soll dem Benutzer die Mdglichkeit geben, die Generierung der Visuali-
sierungen interaktiv zu beeinflussen. Beispielsweise soll dieser die Mdglichkeit haben
zu entscheiden ob er eine Ubersicht aller Datenqualitatsvisualisierungen mit oder ohne
den dazugehorigen Simulationsdaten dargestellt bekommt.

4.2.3 Anforderungen an das Verteilen der Daten

Neben der Benutzersteuerung und Visualisierung ist das Verteilen der generierten Vi-
sualisierungen von Bedeutung.

4.2.3.1 Unterstiitzung von unterschiedlichen Kommunikationsprotokollen (1 15)

Je nach gewahltem Anzeigegerat konnen unterschiedliche Protokolle fur das Versen-
den der Daten notwendig sein. Hierzu soll das Framework unterschiedliche Versandar-
ten wie SOAP with Attachment Nachrichten oder das Ablegen der Visualisierungen auf
einem Server unterstutzen.

4.3 Anforderungen aus Sicht der Programmierer

Dieses Kapitel beschreibt die Anforderungen an das Visualisierungsframework aus
Sicht der Entwickler. Diese gliedern sich in funktionale- und nichtfunktionale Anforde-
rungen.

-72 -

4.3.1 Funktionale Anforderungen

In diesem Abschnitt werden die funktionalen Anforderungen der Programmierer an das
Visualisierungsframework formuliert.

4.3.1.1 Das Framework soll einen einfachen Rahmen fir die Entwicklung von
Erweiterungen bereitstellen (2R 16)
Das Framework soll einen einfachen Rahmen fir das Erweitern bereitstellen. So sollen

Entwickler ihre Algorithmen leicht einbinden kénnen, ohne das gesamte Framework
anpassen zu mussen.

4.3.1.2 Trennung der Schnittstellen zur Benutzerautorisierung und der
Visualisierungskomponente (R17)

Da es sich bei der Entwicklung der Benutzerautorisierung und der Visualisierungskom-

ponenten um unterschiedliche Problemstellungen handelt, soll das Framework diesen

zweigeteilten Charakter in seiner Architektur und seinen Schnittstellenbeschreibungen
bertcksichtigen.

4.3.2 Nichtfunktonale Anforderung

Dieser Abschnitt zeigt die nichtfunktionale Anforderung der Entwickler an das Visualisie-
rungsframework.

4.3.2.1 Lose Kopplung der Komponenten ($118)

Der flexible Einsatz der Frameworks soll sich durch eine lose Kopplung der einzelnen
Komponenten leicht realisieren lassen. So sollen einzelne Komponenten leicht an neue
Bedingungen anpassbar oder austauschbar sein.

-73 -

5 Konzeptioneller Entwurf des Java Data Quality Visualization

Framework

Ziel dieser Arbeit ist es die Wissenschaftler bei der Uberwachung von laufenden Simu-
lationen durch die Visualisierung der Datenqualitat zu unterstitzen. In diesem Kapitel
wird dazu der konzeptionelle Entwurf des Java Data Quality Visualization Framework
(JDQVisF) erarbeitet. Es werden zunachst die Architektur und die entsprechenden
Komponenten entworfen und schlie3lich zu einem Gesamtsystem zusammengeflgt.

Fir das leichtere Verstandnis und zur Vermeidung von Verwechslungen werden im fol-
genden das Framework und eine Implementierung auf Basis dieses Frameworks
gleichgesetzt und unter dem Begriff JDQVisF zusammengefasst.

Ein Wissenschaftler mit seinem Anzeigegerat wird unter dem Begriff JDQVisClient ver-
wendet.

Ein Programmierer der Visualisierungen realisiert, wird als Visualisierer bezeichnet.

Das Symbol) verweist auf die jeweilig Anforderung aus Kapitel 4.

Zudem werden die einzelnen Komponenten in allen Abbildungen mit den selben Farben
kodiert. Dadurch kdnnen die zum Teil komplexen Zusammenhange der Komponenten
leichter verstanden werden und der Gesamtuberblick bewahrt werden.

Alle im Folgenden vorgestellten Konzepte und Architekturentscheidungen entstanden
durch Rucksprachen mit dem Betreuer.

-74 -
5.1 Erweiterung des bisherigen Simulationskontextes

Um die Anforderungen an das JDQVisF umsetzen zu kénnen, ist es notwendig den bis-
herigen Simulationskontext um eine Simulationld und Userld zu erweitern.

In einer Simulation kann es mehrere Wissenschaftler bzw. JDQVisClienten mit unter-
schiedlichen Rollen und Rechten geben [25]. So gibt es typischerweise einen Wissen-
schaftler (Simulation-Owner) der die Verantwortung fur die Simulation tragt und somit
alle Rechte an ihr besitzt. Es kann jedoch zusatzliche Mitarbeiter (Doménen-
Spezialisten oder Hilfswissenschaftler) geben, welche weniger Rechte an der gesamten
Simulation besitzen und nur fur ein Teilgebiet zustandig sind. Es entsteht durch diesem
Zusammenhang eine 1:n Simulation-Wissenschaftler-Beziehung.

Sim Ulatjq n-o0

Wner
1 Simulation A
Domam Specuahst

1

Abbildung 5-1: Simulation-Wissenschaftler-Beziehung. Zu einer Simulation kann es
mehrere Wissenschaftler mit unterschiedlichen Rollen geben

Auf der anderen Seite kann ein Wissenschaftler mit verschiedenen Rollen an mehreren
Simulationen arbeiten. Es entsteht eine 1:m Wissenschaftler-Simulation-Beziehung.

wnel

Domain-Specialist m
ulat,o
W -

Abbildung 5-2: Wissenschaftler-Simulation-Beziehung. Ein Wissenschaftler kann meh-
rere Simulationen mit unterschiedlichen Rollen betreuen

Kombiniert man diese beiden Zusammenhange, ergibt sich eine m:n Wissenschaftler-
Simulation-Beziehung.

-75-

Damit das JDQVisF diese Beziehung korrekt auflésen und verarbeiten kann, bendtigt es
sowohl fur die Simulation als auch fur den Wissenschaftler eine Identifikationsmaoglich-
keit. Aus diesem Grund wird der bisherige Simulationskontext um eine Simulationld und
einer Userld erweitert. Dies ermdglicht das Einbinden von mehreren Simulationen in
das JDQVisF ($14) und die Verarbeitung mehrerer Benutzern mit unterschiedlichen Rol-
len (N6 und $H9). Abbildung 5-3 zeigt den Zusammenhang.

Simulation-Owner “
S|
mulat,-On.o

Simulatonid_1

Simulatonld_2

Userld_1

Domain-Specialist

Sim
ulat,-o
n-o

Domain-Specialist m

Userld_3 Simulatonid_2

Userld_2

Abbildung 5-3: Beispielhafte Wissenschaftler-Simulation-Beziehungen mit Userlds und
Simulationlds zur Identifikation. Ein Wissenschaftler kann an mehrere Si-
mulationen arbeiten und eine Simulation kann von mehreren Wissen-
schaftlern in unterschiedlichen Rollen betreut werden

Wie das JDQVisF die Simulationld und Userld genau verwendet, wird in den nachfol-
genden Kapiteln bei der Beschreibung der Gesamtarchitektur und der einzelnen Kom-
ponenten gezeigt.

-76 -
5.2 Grundsatzliche Architektur

Um die in Kapitel 4 gezeigten Anforderungen zu erflllen und den unterschiedlichen Be-
nutzergruppen des JDQVisF gerecht zu werden, wird die Architektur aus zwei verschie-
denen Sichtweisen heraus aufgebaut. Zum einen aus Sicht der Programmierer des
Frameworks und somit als direkter Benutzer. Zum anderen aus Sicht der Wissenschaft-
ler als Endbenutzer des JDQVisF.

Neben den funktionalen Anforderungen stehen vor allem Flexibilitat, Einfachheit, Ro-
bustheit und Wiederverwendbarkeit der Komponenten im Vordergrund. Wobei Flexibili-
tat bedeutet, dass das JDQVisF betriebssystemunabhangig eingesetzt und leicht an
neue Anforderungen angepasst werden kann. Einfachheit bezieht sich sowohl auf die
Implementierung, als auch auf das Verwenden des JDQVisF.

Als grundsatzliche Architekturentscheidung wird eine Client-Server-Architektur (siehe
Abbildung 5-4) gewahlt. Diese bringt sowohl aus Sicht der Wissenschaftler (JDQVisCli-
ent) als auch aus Sicht der Programmierer (Visualizer) viele Vorteile mit sich, die in den
folgenden Abschnitten gezeigt werden.

2 4 L

Visualizer Visualizer Visualizer
$ﬂ JDQVisF

— ——]

A

JDQVisClient JDQVisClient JDQVisClient

Abbildung 5-4: Client-Server Architektur mit Unterscheidung der Anwender des
JDQVisF. Oben sind die Entwickler, die ihre Algorithmen in das JDQVisF
einpflegen, unten die JDQVisClients

-77 -

Den JDQVisClients bietet das JDQVisF als WebService eine zentrale Stelle fur die An-
meldung und entkoppelt sie dadurch vom restlichen Simulation-Workflow.

Ein Vorteil der Server-Komponente, ist die EinflUhrung einer zentralen Benutzersteue-
rung. Die verschiedenen Client-Programme mussen dadurch nicht die Zugriffsrechte
des jeweiligen Wissenschaftler beachten, was eine vereinfachte Implementierung er-
moglicht. Das JDQVisF bietet eine gemeinsame Komponente fur die Konfiguration und
Wartung der Benutzersteuerung, was das Hinzufigen neuer Wissenschaftler zu einer
Simulation oder das Anpassen der Rechte eines Wissenschaftlers an einer Simulation
vereinfacht.

Durch die Entkopplung der Clientprogramme von den Simulation-Workflows, lassen
sich diese simulationsunabhangig einsetzten (N5). Die jeweiligen Autorisierungsfunkti-
onen werden im JDQVisF zusammengefasst und ermdglichen dadurch eine simulati-
onsabhangige Anmeldung jedes JDQVisClients ohne lokale Uberpriifung.

Die Architektur unterstitzt neben den unterschiedlichen JDQVisClients auch mehrerer
Simulationen. Ein Wissenschaftler muss eine neue Simulation nur einmal beim
JDQVisF registrieren und kann anschlieRend beliebig viele Anzeigegerate fur deren
Uberwachung einsetzen, ohne diese anpassen zu miissen.

Simulation Simulation Simulation
Instanz 1 Instanz 2 Instanz 3

S JDQVisF

1N

o % p

JDQVisClient JDQVisClient JDQVisClient

Abbildung 5-5: JDQViIsF als zentrale Komponente zwischen verschiedenen
Simulationen und JDQVisClients

Ein weiterer Grund der zu dieser Client-Server-Architektur fuhrt, ist die Notwendigkeit
fur die Bertcksichtigung der Rolle eines Wissenschaftlers in einer Simulation (R9). Das

-78 -

JDQVisF berlcksichtigt diesen Zusammenhang bei der Generierung von Visualisierun-
gen, so dass eine rollenbasierte Visualisierung auf Clientseite entfallt.

Durch das Auslagern des rollenbasierten Rechtesystems auf Serverseite, wird zudem
das kontrollierte Eingreifen in die Simulation durch den Wissenschaftler ermdglicht
(M14). Das Clientprogramm muss die Rechte des aktuell angemeldeten Wissenschaft-
ler nicht kennen, was zu einer weiteren Vereinfachung fuhrt.

Allgemein entlastet diese Architektur das Anzeigegerat durch die Verarbeitung der
Rohdaten und die Generierung der Visualisierungen auf Serverseite. Das JDQVisF bie-
tet den Wissenschaftlern die Mdglichkeit, sowohl leistungsschwache als auch leistungs-
starke Anzeigegerate zu verwenden (R13). So kann beispielsweise ein Tablet-
Computer komplexere Visualisierungen verarbeiten und das Rendering lokal ausfihren.
In diesem Fall wirde das JDQVisF nur das Filtern und Mappen der Daten Ubernehmen
und das berechnete Geometriemodell an das Anzeigegerat versenden. Der Tablet-
Computer Ubernimmt anschlieRend lokal das Rendering. Bei einem schwachen Anzei-
gegeraten, etwa einem Internetbrowser, kann das JDQVisF alle Schritte der Visualisie-
rungspipeline iUbernehmen und fertige Bilddateien zur Anzeige bereitstellen.

Das JDQVisF unterstitzt somit alle Mdglichkeiten zur Verteilung der Schritte der Visua-
lisierungspipeline (R12).

JDQVisF

}lLﬁH

JDQVisClient JDQVisClient

Abbildung 5-6: Unterstlitzung unterschiedlicher Anzeigegeréate durch das JDQVisF:
(links) lokales Rendering des Visualisierungsmodells. (rechts) anzeige
des fertigen Bildes

Durch das Auslagern der Visualisierungskomponente vom Clientgerat auf das JDQVisF
kénnen auch leicht neue Anzeigegerate verwendet werden, ohne dass neue Visualisie-
rungsalgorithmen auf Clientseite implementiert werden mussen. Es kdnnen bereits vor-
handene Visualisierungsalgorithmen des JDQVisF genutzt werden. Vorausgesetzt sie
passen zu dem neuen Anzeigegerat. Wird fir ein Anzeigegerat ein spezieller Visualisie-
rungsalgorithmus bendtigt, kann dieser zum JDQVisF hinzugefugt werden. Ist das nicht
erwunscht, so Ubernimmt das JDQVisF lediglich die Anbindung an den Simulation-

-79 -

Workflow und die Benutzersteuerung und leitet die empfangenen Daten an das Gerat
weiter. Dadurch erleichtert diese Architektur eine Endgerateunabhangigkeit, da die Ver-
arbeitungslogik durch den Server Ubernommen werden kann. Zusatzlich ermoglicht die-
se Client-Server-Architektur das Generieren der selben Visualisierungen flr Anzeigege-
rate mit unterschiedlichen Betriebssystemen aber ahnlichen Gerateeigenschaften. So
konnen beispielsweise auf einem Android-Tablet die gleichen komplexen Visualisierun-
gen angezeigt werden wie auf einem iPad.

Aus Sicht der Visualisierer bietet diese Architektur und damit die Visualisierung auf Ser-
verseite, ebenfalls mehrere Vorteile. Durch die Skalierbarkeit des Servers lassen sich
selbst fur leistungsschwache Gerate schone und komplexe Visualisierungen generie-
ren. Der Server kann das rechenintensive Mapping und Rendering Ubernehmen.
Dadurch ist der Visualisierer nicht durch die fehlende Rechenleistung der Anzeigegera-
te eingeschrankt.

Neben der Skalierbarkeit bietet diese Client-Server-Architektur den Visualisierern auch
eine gemeinsame Stelle, an der er seine neuen Visualisierungsalgorithmen einbinden
kann. Etwa wenn eine neue Simulation Uberwacht werden soll oder eine neue Rolle in
einer Simulation hinzugefligt wird. Er ist von den Anzeigegeraten entkoppelt und muss
bei einer Anderung nicht jedes verwendete Gerat anpassen. Muss ein Visualisierungs-
algorithmus angepasst werden, so bietet das JDQVisF eine zentrale Komponente flur
die Wartung und die Pflege an.

Ein weiterer Vorteil dieser Architektur ist die Moglichkeit, Daten in einen zentralen
Cache abzulegen. So kénnen bei Bedarf zeitliche Verlaufe visualisiert werden oder die
Daten nach Simulationsende ausgewertet werden.

Bevor in den nachsten Kapiteln der genaue Aufbau der JDQVisF und die einzelnen
Komponenten im Detail erarbeitet werden, wird im nachsten Abschnitt zunachst die
Einordnung in den Simulation-Workflow gezeigt.

5.21 Einordnung des JDQVisF in den Simulation-Workflow

Eine Visualisierung hilft dem Wissenschaftler bei der Auswertung abstrakter Datenmen-
gen, wie sie bei Simulationen entstehen. Sie bildet damit eine Schnittstelle zwischen
Datenerzeuger, hier die Simulation, und Datenverarbeitung durch den Wissenschaftler.
Dieser verbindende Charakter spiegelt sich bei der Einordnung des JDQVisF in den
Simulation-Workflow wieder. Es gruppiert sich logisch zwischen diesen beiden Kompo-
nenten. Abbildung 5-7 zeigt den Zusammenhang:

-80 -

Simulation-Workflow — Workflow-Tier

JDQVisF — JDQVisF-Tier

uonezijensip

— JDQVisClient-Tier

ﬂh

Abbildung 5-7: Einordung des JDQVisF zwischen Simulation-Workflow und Wissen-
schaftler

Durch diese Einordnung bildet sich eine logisch getrennte Dreischichtenarchitektur. Der
Simulation-Workflow erzeugt Daten, die mit Hilfe des JDQVisF geratespezifisch visuali-
siert werden und schlieBlich auf dem Gerat des Wissenschaftlers dargestellt werden.
Auf der anderen Seite melden sich die Wissenschaftler beim JDQVisF an, um sich fur
Simulationen zu registrieren.

-81 -

5.3 Struktureller Aufbau des JDQVisF

Grundsatzlich wird der Aufgabenbereich des JDQVisF in zwei Kategorien eingeteilt.
Zum einen in Wissenschaftler- und Simulationsverwaltung und zum anderen in die
Steuerung der Visualisierungspipeline. Aus diesem Grund wird die Architektur des
JDQVisF in die zwei Kernkomponenten JDQVisController und VisualizationMediator,
die jeweils einen Aufgabenbereich GUbernehmen, aufgeteilt. Der JDQVisController Uber-
nimmt die Benutzerverwaltung, die Anbindung an das JDQCF und das Weiterleiten von
Steuerungsbefehlen. Der VisualizationMediator ist unabhangig von der Benutzersteue-
rung und Ubernimmt das Visualisieren und Versenden der Datenqualitatswerte.

Diese Trennung ermdglicht die Aufteilung der Schnittstellen nach ihrem Einsatzgebiet
und vereinfacht die Wartung der Benutzersteuerung und das Verwalten der Simulatio-
nen durch die Wissenschaftler auf der einen Seite und die Wartung der Visualisierungs-
pipeline durch die Visualisierer auf der anderen (:17). Ein Wissenschaftler kann die
Benutzersteuerung anpassen, ohne die Visualisierungskomponente zu beeinflussen.
Die Visualisierer kdbnnen neue Visulisierungsalgorithmen einbinden ohne die Benutzer-
steuerung anpassen zu mussen.

Abbildung 5-8 zeigt den strukturellen Aufbau des JDQVisF mit Anbindung an das
JDQCF und einer Komponente fur die Steuerung der Simulation (siehe Kapitel 5.4.1.1).

Controller

JDQVisF

JDQVis
Controller

1
a

JDQVisClient JDQVisClient

Visualization
Mediator

Abbildung 5-8: Struktureller Aufbau des JDQVisF mit Anbindung an das JDQCF und
einem SimulationController. Die Pfeile deuten den Datenaustausch zwi-
schen den Komponenten an

-82 -

5.3.1 Plug-In Architektur

Das JDQVisF soll mehrere gleichzeitig laufende Simulationen unterstiitzen (04). Dabei
konnen die Ansprliche an die Benutzerautorisierung oder an die Visualisierungsalgo-
rithmen variieren. Ein Wissenschaftler kann an einer Simulation A andere Rechte besit-
zen als an einer Simulation B. Des weiteren sollen leicht neue Simulationen und Visua-
lisierungsalgorithmen zum JDQVisF hinzugefligt werden kénnen ($113). Aus diesen
Grunden konnen, weder der JDQVisController noch ein VisualizationMediator, aus ab-
geschlossenen Komponenten bestehen, die alle Simulationen und Rechte berlcksichti-
gen. Moéchte ein Wissenschaftler beispielsweise eine neue Simulation hinzuflgen oder
ein Visualisierer einen neuen Visualisierungsalgorithmus, musste er die komplette
Komponente verandern, was die Wahrscheinlichkeit von Fehlern erhéht und die War-
tung erschwert. Die Anforderung an eine lose Kopplung der einzelnen Komponenten
wird dadurch erfillt ()118).

Aus diesen Grunden wird fur die Realisierung des JDQVisController und des Visualiza-
tionMediator eine Plug-In Architektur verwendet. Dabei bilden diese die beiden Kern-
komponenten, die durch spezielle Schnittstellen erweitert werden kénnen. Das ermog-
licht sowohl das leichte Hinzufligen neuer Simulationen oder Rollen, als auch den Aus-
tausch von funktionalen Komponenten wie Filter, Visualisierer, Verteiler, SimulationCon-
troller oder Benutzerautorisierung durch die Entwickler und bietet damit ein hohes Mal}
an Flexibilitat (1118).

Ein weiterer Grund fur diese Architekturentscheidung ist die Mdglichkeit, durch die Aus-
lagerung der funktionalen Erweiterungen, neue Anforderungen seitens der Wissen-
schaftler oder neue Visualisierungsalgorithmen durch die Visualisierer zur Laufzeit in
das JDQVisF einzubinden. Auf diese Weise werden andere laufende Simulationen nicht
beeinflusst.

Eine Erweiterung wird im folgenden als Plug-In bezeichnet und beschreibt eine funktio-
nale Komponente des JDQVisF. Beispielsweise sind Filter- oder Autorisierungskompo-
nenten Plug-Ins die vom JDQVisF bei Bedarf geladen und an entsprechender Stelle
aufgerufen werden.

Eine solche Plug-In-Architektur ermoglicht zudem die leichte Wiederverwendung des
gesamten JDQVisF oder einzelner Komponenten ($11).

-83 -

5.4 Komponenten des JDQVisF

JDQVisF

JDQVis Visualization

Controller Mediator

Abbildung 5-9: Interne Aufteilung des JDQVisF in die zwei Hauptkomponenten
JDQVisController und VisualizationMediator

Die Architektur des JDQVisF besteht aus zwei Kernkomponenten, die zum einen fur die
Simulations- und Benutzersteuerung und zum anderen fur die Steuerung der Visualisie-
rungspipeline zustandig sind. Der JDQVisController steuert und verwaltet die verschie-
denen JDQVisClients, koordiniert die Registrierungen am JDQCF, leitet Steuerungsbe-
fehle an den Simulation-Workflow weiter, dient zur Realisierung der Zugriffsicherheit
und verwaltet alle VisualizationMediatoren. Ein VisualizationMediator steuert die Visua-
lisierungspipeline und versendet die generierten Visualisierungen.

Diese zweigeteilte Architektur entsteht aus den unterschiedlichen Anforderungen der
Plug-In-Entwickler und der Wissenschaftler. Mochte ein Entwickler eine neue Visualisie-
rung fur das JDQVisF realisieren muss er lediglich die entsprechende Schnittstelle des
VisualizationMediator implementieren. Durch die Trennung ist er dabei vollig unabhan-
gig vom restlichen Aufbau des JDQVisF und kann sich ganz auf die fur ihn wichtigen
Stellen konzentrieren. Auf der anderen Seite meldet sich ein JDQVisClient beim
JDQVisController an einer zentralen Stelle an und kann durch dessen Schnittstellen
den gesamten Visualisierungsprozess nach seinen Winschen anpassen (17). Ein
direkten Eingriff in die Visualisierungsalgorithmen ist dazu nicht nétig.

Die Kommunikation zwischen dem JDQVisController und einem VisualizationMediator
wird in Kapitel 0 gezeigt.

Im Folgenden werden die beiden Teilarchitekturen JDQVisController und Visualization-
Mediator des JDQVisF vorgestellt. Dazu wird jeweils die Architektur und die entspre-
chenden Plug-Ins detailliert erarbeitet.

-84 -

5.4.1 Architektur des JDQVisController

JDQVisF

IDQVis

Controller

Abbildung 5-10: Komponenten des JDQVisF mit hervorgehobenem JDQVisController

Der JDQVisController ist die Hauptkomponente des JDQVisF. Er bildet eine Schicht
zwischen JDQVisClient und Simulation-Workflow. Bei ihm kénnen sich JDQVisClienten
registrieren, die Visualisierungspipeline beeinflussen und Steuerungsanfragen ihrer Si-
mulation stellen. Der JDQVisController realisiert die Kommunikation zwischen
JDQVisClient und JDQVisF.

Der JDQVisController fungiert dabei als eine Kernkomponente, die Uber verschiedene
Schnittstellen funktional erweitert werden kann (Abbildung 5-11).

Diese Architekturentscheidung begrindet sich hauptsachlich durch die Anforderung an
das JDQVisF, mehrere Simulationen zu unterstitzen (%4). Die gewahlte Plug-In-
Architektur bietet den Vorteil, unterschiedliche Anforderungen in unterschiedlichen Si-
mulationsumgebungen bezuglich der Benutzerautorisierung (UserAuthorizerinterface)
oder Simulationssteuerung (SimulationControllerinterface) zu unterstitzten. Es mussen
lediglich die entsprechenden Plug-Ins implementiert und in das JDQVisF eingebunden
werden (siehe Kapitel 5.3.1).

Datalnputinterface

Simulation
Controller-
Plug-In

JDQVis Authorizer-
Controller Plug-lns

SimulationControllerinterface UserAuthorizerinterface

Abbildung 5-11: Kennzeichnung der Schnittstellen des JDQVisController. Die Symbole
kennzeichnen den unterschiedlichen Charakter der Schnittstellen. Die
Farben dienen zur Codierung der unterschiedlichen Schnittstellen

-85 -

Die wesentlichen Aufgaben des JDQVisController sind die richtigen Plug-Ins fur jeden
JDQVisClienten zu laden, diese zu koordinieren und ihm zur Verfigung zu stellen.

Das Registrieren am JDQCF und das Empfangen der Datenqualitatswerte wird nicht in
Plug-Ins ausgelagert. Diese Entscheidung begrundet sich dadurch, dass das JDQCF
mehrere Simulationen unterstitzen werden kann und somit nur einmalige in das
JDQVisF eingebunden werden muss. Damit auch externe Programme Rohdaten an das
fur das Visualisieren bereitstellen kdnnen, bietet der JDQVisController eine Schnittstelle
fur den Empfang von Datenwerten (Datalnputinterface) an. Diese Schnittstelle wird in
der technischen Umsetzung des JDQVisF in Kapitel 6.2.3 genauer beschrieben und
wird an dieser Stelle nur fur das allgemeine Verstandnis erwahnt.

Die Unterstutzung eines rollenbasierten Rechtesystems des Wissenschaftler wird durch
die gewahlte Plug-In-Architektur ebenfalls umgesetzt. Fur jede Rolle, Simulation und
jedes Anzeigegerat, konnen unterschiedliche Plug-Ins flr die Verarbeitung geladen
werden. Das bedeutet insbesondere auch, dass ein JDQVisClient mehrere Simulatio-
nen Uberwachen kann und jeweils andere Rechte an ihnen besitzt. Er bekommt also
durch das Laden verschiedenen Benutzerautorisierungs-Plug-Ins unterschiedliche Rol-
len zugeteilt, die fir die weiteren Visualisierungsschritte berticksichtigt werden. (h9,
$10)

FUr die Zuordnung der unterschiedlichen Daten, die bei mehreren parallel laufenden
Simulationen und gleichzeitig angemeldeten JDQVisClients entstehen, werden Name-
spaces (siehe Kapitel 5.4.3.1) eingesetzt. Jeder JDQVisClient besitzt zu jeder Simulati-
on einen eigenen Namespace in dem alle relevanten Daten abgelegt werden. Dieser
wird vom JDQVisController fir jeden angemeldeten JDQVisClient durch seine Userld
einzigartig generiert. Eine Verwechslung von Wissenschaftlern wird dadurch ausge-
schlossen und die Datenintegritat sichergestellt. Diese Architekturentscheidung erhoht
somit die allgemeine Zugriffsicherheit. Nichtautorisierte Benutzer oder Wissenschaftler
mit weniger Rechten an einer Simulation, kdnnen durch dieses Sandbox-Prinzip nicht
auf Daten anderer angemeldeter Wissenschaftler zugreifen.

In den folgen Abschnitten werden die Erweiterungsschnittstellen fir die Benutzerautori-
sierung und Simulationssteuerung vorgestellt. Zudem wird der Empfang der Rohdaten
durch das JDQCF gezeigt.

5.4.1.1 Erweiterungen des JDQVisController

Der JDQVisController kann durch die verschiedenen Anspriche an ihn, die Benutzerau-
torisierung und Simulationssteuerung nicht in einer abgeschlossenen Komponente um-
setzen.

Aus diesem Grund bietet das JDQVisF Uber die beiden Schnittstellen UserAuthorizerin-
terface und SimulationControllerinterface die Moglichkeit simulationsabhangige Authori-

- 86 -

zer-Plug-Ins und SimulationController-Plug-Ins einzubinden. Diese werden bei Bedarf
durch den JDQVisController geladen und ausgefuhrt.

Diese konzeptionelle Trennung der Schnittstellen zur Benutzerautorisierung und Steue-
rung der Simulation vereinfacht die unterschiedlichen Anspriiche der verschiedenen
Benutzergruppen des JDQVisF zu realisieren. Auf der einen Seite kdnnen Wissen-
schaftler durch das Authorizer-Plug-In simulationsabhangig neue Mitarbeiter hinzufu-
gen, ihre Rechte verandern oder komplett aus der Simulation entfernen, wodurch ein
rollenbasiertes Rechtesystem fiir den Wissenschaftler leicht umzusetzen ist (!h9). Auf
der anderen Seite bietet das SimulationController-Plug-In eine zentrale Stelle, die den
Zugriff auf die Simulation durch definierte Regeln steuern kann (9114).

Aus Sicht der Entwickler bietet diese Trennung den Vorteil, dass er jeweils eine definier-
te Schnittstelle fur die Realisierung eines Authorizer- oder SimulationController-Plug-Ins
zur Verfugung gestellt bekommt. Soll ein neues Plug-In eingebunden werden, muss
lediglich die entsprechende Schnittstelle implementiert und im entsprechenden Name-
space (siehe Kapitel 0) registriert werden. Eine direkte Manipulation des JDQVisF ist
dadurch nicht erforderlich. Diese Architektur basiert durch die Trennung der Plug-Ins
vom Rest des JDQVisF auf einer losen Kopplung, was ihre Einfachheit und Flexibilitat
erhoht, was wiederum ihre Portabilitat und Wiederverwendbarkeit ermoglicht (2118).

Die folgenden Unterkapitel beschreiben die Erweiterungen fur die Benutzerautorisierung
und Simulationssteuerung sowie die Anbindung an das JDQCF im Detail.

5.4.1.1.1 Benutzerautorisierung durch ein Authorizer-Plug-in

Data
Producer

Simulation

Controller- J DQVI S f
Plug-in Controller

Authorizer-
Plug-Ins

UserAuthorizerinterface
Abbildung 5-12: Authorizer-Plug-In des JDQVisController
Ein Authorizer-Plug-In ist eine Erweiterung des JDQVisController fur die Autorisierung

von JDQVisClients (7). Diese Komponente des JDQVisF bietet den JDQVisClienten
eine zentrale Stelle fiir die Anmeldung zur Uberwachung von Simulationen.

- 87 -

Ein Authorizer-Plug-In bekommt die Anmeldedaten, bestehend aus Benutzername und
Passwort, als Eingabe und liefert eine JDQVisUser-Objekt als Ausgabe. Ein JDQVis-
User-Objekt besteht aus einer Userld und einer Role. Eine Userld dient dem JDQVis-
Controller als Referenz auf den angemeldeten Wissenschaftler und kann aus einer be-
liebigen Zahlen- und Buchstabenkombination bestehen. Die Role spiegelt die Rolle des
Wissenschaftlers in der Simulation. So kann vom JDQVisController und vom Visualiza-
tionMediator unterschieden werden, welche Rechte der Wissenschaftler an der Simula-
tion besitzt. Das JDQVisF setzt durch diese Architektur eine simulationsabhangige Be-
nutzerautorisierung um (Rh7, R9).

Ein Benutzerautorisierungs-Plug-In ist fir genau eine Simulation verantwortlich. Das
bedeutet, dass fur unterschiedliche Simulationen, unterschiedliche Benutzerautorisie-
rungs-Plug-Ins ausgefuhrt werden mussen. Indem der Entwickler verschiedene Plug-Ins
implementiert, kann er fur jede Simulation festlegen, welche Wissenschaftler sich flr
eine Simulation anmelden kénnen und welche Rechte sie an dieser Simulation haben.

UserAuthorizationinterface

Der JDQVisController bietet Uber das UserAuthorizationinterface die Moglichkeit neue
Benutzerautorisierungen in das JDQVisF einzubinden. Dazu muss ein Benutzerautori-
sierungs-Plug-In die getUser-Methode implementieren. Diese bekommt als Parameter
den Benutzernamen und Passwort fir die angeforderte Simulation. (116)

Eine technische Umsetzung eines UserAuthorizationinterface wird in Kapitel 6.2.1.1
gezeigt.

5.4.1.1.2 Simulationssteuerung durch ein SimulationController-Plug-In

Data
Producer

Simulation
Controller-
Plug-In

J DQVl S Authorizer-

Plug-Ins

Controller

SimulationControllerinterface

Abbildung 5-13: SimulationController-Plug-In des JDQVisController

- 88 -

Ein SimulationController-Plug-In ist eine Erweiterung des JDQVisController fur die Wei-
terleitung von Steuerungsbefehlen an die Simulation. Es bietet dem Wissenschaftler die
Mdglichkeit in eine laufende Simulation einzugreifen. Durch diese Plug-In Architektur
lassen sich simulationsabhangige, komplexe Steuerungen realisieren. Beim JDQVis-
Controller angemeldete Wissenschaftler kbnnen nur in die Simulationen eingreifen fur
die sie registriert sind. Durch diese Sandbox-Architektur wird die Integritat der Simulati-
onsdaten durch das JDQVisF gewahrleistet (R8).

Da der Fokus des JDQVisF auf dem Visualisieren von Datenqualitat liegt, wird diese
Komponente lediglich als eine Schnittstelle fur das Weiterleiten der Benutzereingaben
verwendet. Der JDQVisController ruft beim Empfang eines Steuerungsbefehls fur die
Simulation das fur die entsprechende Simulationld registrierte Plug-In auf.

Aus Sicht der Simulationssteuerung bietet diese Losung einen einfachen Weg flir das
Verarbeiten von Steuerungsbefehlen, da sie sich nur Uber eine Schnittstelle am
JDQVisF registrieren muss.

Ein SimulationController-Plug-In bekommt eine Userld und den Steuerbefehl als Einga-
be und gibt einen Verarbeitungsbericht in Textform als Rickgabe zurick. Die Userld
dient dem SimulationController-Plug-In als Referenz auf den Wissenschaftler der den
Steuerbefehl an das JDQVisF gesendet hat. Ist ein Wissenschaftler fur eine Simulatio-
nld beim JDQVisController angemeldet, kann er diese mit Hilfe des Plug-Ins steuern.
Wichtige Anwendungsfalle konnten das vorzeitige Abbrechen der Simulation oder das
Auswechseln von Workflow-Komponenten bei schlechter Datenqualitat sein. Durch das
Ubergeben der Userld kann das SimulationController-Plug-In entscheiden, ob der Wis-
senschaftler die nétigen Rechte flr den Ubergebenen Steuerbefehl besitzt.

SimulationControllerinterface

Der JDQVisController bietet Uber das SimulationControllerinterface eine Schnittstelle fir
die Anbindung von SimulationController-Plug-Ins.

Die Umsetzung eines SimulationControllerinterface wird in Kapitel 6.2.1.1 gezeigt.

-89 -

5.4.1.2 Empfang der Rohdaten fur das JDQVisF

Datalnputinterface
Simulation 2 ‘
Controller- JDQV|S Authorizer-
Plug-In Controller Plug-ins

Abbildung 5-14: Empfang der Rohdaten fiir das JDQVisF

Um Datenqualitatsvisualisierungen erstellen zu kénnen bendtigt das JDQVisF Eingabe-
daten. Aus Grinden der Wiederverwendbarkeit des JDQVisF und Entkopplung vom
JDQCF wird, im Gegensatz zu den oberen beiden Abschnitten, eine Architektur auf Ba-
sis von Namespaces (siehe Kapitel 5.4.3.1) vorgestellt.

Fir jede Simulation gibt es einen bestimmten Namespace / raw, an dem die Rohdaten
fur die weitere Verarbeitung liegen. Das bedeutet, sollen neue Datenqualitatswerte
durch das JDQVisF visualisiert werden, mussen sie in diesen Namespace abgelegt
werden.

Diese Methode ermdglicht das Empfangen von Rohdaten, z.B. Datenqualitatswerten,
ohne die direkte Anbindung an das JDQCF. Somit kann das JDQVisF auch Daten aus
anderen Datenquellen (DataProducer) fur die Eingabedaten verwenden.

Fir das Uberwachen der Namespaces besitzt der JDQVisController eine Hilfskompo-
nente. Liegen neue Eingabedaten an, benachrichtig diese den JDQVisController. Diese
Komponente trennt somit die Funktion Datenempfang von den Ubrigen Aufgaben des
JDQVisController und fuhrt dadurch zu einer besseren Struktur.

Der genaue Ablauf bei dem Empfang von Rohdaten wird in der technischen Umsetzung
des JDQVisF in Kapitel 6.2.3 gezeigt.

Konzeptionelle Anbindung an das JDQCF (2)

Dieser Abschnitt beschreibt die konzeptionelle Anbindung des JDQVisF an das JDQCF.
Fir die genaue Beschreibung des JDQCF und dessen konzeptionellen Aufbau wird auf
[1] verwiesen.

-90 -

Um das JDQCF als Datenquelle nutzen zu kénnen, muss das JDQVisF zwei Schritte
realisieren. Im ersten Schritt muss es sich beim JDCQF uber eine Subscibe-Nachricht
fur eine Simulation oder Metrik registrieren. Eine Metrik beschreibt dabei eine Daten-
qualitadtsdimension. Das bedeutet, das JDQVisF muss sich fiir eine vollstandige Uber-
wachung, auf alle gewlinschten Metriken registrieren. Im zweiten Schritt muss es fur
den Empfang von Datenqualitdtswerten die DataQualityReceiver-Schnittstelle des
JDQCF implementieren. Dieses enthalt eine Methode, die fir den Empfang der Daten-
qualitatswerte aufgerufen wird. Die berechneten Datenqualitatswerte werden durch das
JDQCF an den QoDReceiver in serialisierter Form Ubermittelt. Dazu werden die Calcu-
lationResult-Container von der DispatchingApi in XML serialisiert und in den SOAP-
Header der Response-Nachricht gepackt.

Abbildung 5-15 zeigt die Anbindung des JDQVisF an das JDQCF mit allen ndétigen

Schritten.
Simulation-Workflow
]
EndpointList
SUb '-S-qr-l-t? _e_-_/_ﬂ_egsgg & e DataQualityReceiver - Interface ‘ :
receive()
DataQualityReceiverWS n

SimulationController = = = VisMediator 1

QoDReceiver
114.137.141.1:1121

JDQVisController

Authorization Plug-InS = = = VisMediator m

(] (]
User 1 User n

Abbildung 5-15: Anbindung des JDQVisController an das JDQCF

Da das JDQVisF das JDQCF als eine mogliche Datenquelle verwendet, werden durch
den QoDReceiver des JDQVisController alle empfangenen Datenqualitatswerte in den
entsprechenden Namespace in XML serialisiert.

-91 -

5.4.2 Architektur des VisualizationMediator

JDQVisF

Visualization

Mediator

Abbildung 5-16: Komponenten des JDQVisF mit hervorgehobenen
VisualizationMediator

Ein VisualizationMediator ist die zweite Hauptkomponente des JDQVisF und realisiert
das Visualisieren der Datenqualitatswerte und die Steuerung der Visualisierungspipe-
line. Er besitzt eine ahnliche Architektur wie der JDQVisController. Der Visualization-
Mediator generiert fur jeden, beim JDQVisController angemeldeten JDQVisClient und
Simulationld, unterschiedliche Visualisierungen. Da das JDQVisF mehrere Simulationen
und eine variierende Anzahl von Wissenschaftlern mit unterschiedlichen Rechten unter-
stltzt, ware der VisualizationMediator als eine abgeschlossene Visualisierungskompo-
nente zu unflexibel, komplex, fehleranfallig und wartungsintensiv. Aus diesem Grund
wird eine Plug-In-Architektur flr den VisualizationMediator gewahlt. Der Visualization-
Mediator ist eine Steuerungskomponente, welche die Generierung der Visualisierungen
durch die Steuerung der Visualisierungspipeline tbernimmt (:h5). Er wird vom JDQVisF
bendtigt, um alle Stufen zu koordinieren. Da ein hohes Mal} an Flexibilitat erreicht wer-
den soll, werden die Schritte der Visualisierungspipeline durch verschiedene Plug-Ins
realisiert.

Abbildung 5-17 zeigt die Schnittstellen des VisualizationMediator.

Visualizerinterface

P Visualization

Mediator

FilterInterface DispatcherInterface

Abbildung 5-17: Schnittstellen des VisualizationMediator

-92 -

Diese Plug-In Architektur bietet die Mdglichkeit, die unterschiedlichen Eigenschaften der
Anzeigegerate in der Visualisierungspipeline zu berlcksichtigen. Sie erlaubt eine flexib-
le Zusammenstellung der einzusetzenden Plug-Ins und kann dadurch die unterschiedli-
chen Rechte der Wissenschaftler unterstiutzen. Zudem ermadglicht diese Architektur die
unterschiedlichen Eigenschaften von verschiedenen Anzeigegeraten bei der Generie-
rung der Visualisierungen zu berucksichtigen. So kdnnen beispielsweise fur ein Tablet-
Computer mit viel Rechenleistung und einem Smartphone mit wenig Rechenleistung
unterschiedliche Visualisierungen fur die gleichen Daten und Rollen generiert werden
(N13). Der VisualizationMediator 1adt jeweils ein passendes Filter-, Visualizer- und Dis-
patcher-Plug-In und bietet somit ein Gerust fur die unterschiedlichen Stufen der Visuali-
sierungspipeline ($112).

Wie bei dem JDQVisController hat diese Plug-In-Architektur wichtige Eigenschaften, mit
deren Hilfe die Anforderungen an das JDQVisF umgesetzt werden kénnen. So besitzen
die einzelnen Plug-Ins eine lose Kopplung untereinander. Das bedeutet, einzelne Plug-
Ins kdnnen leicht ausgetauscht oder an neue Anforderungen angepasst werden.
Dadurch wird die Wartung und Pflege vereinfacht und die Flexibilitdt und Wiederver-
wendbarkeit des ganzen JDQVisF oder einzelner Plug-Ins erhéht. Zudem ermdglicht sie
eine flexible Zusammenstellung von Filter-, Visualizer- und Dispatcher-Plug-Ins. So
kann beispielsweise ein Filter-Plug-In unabhangig von der spateren Visualisierung und
einzig unter Berucksichtigung der Rolle und Simulation realisiert werden. Zudem ermoég-
licht diese Architektur die einzelnen Schritte der Visualisierungspipeline durch unter-
schiedliche Spezialisten zu realisieren. So kann beispielsweise ein Wissenschaftler
durch das Implementieren eines Filter-Plug-Ins fur jede Rolle festlegen, welche Daten
fur die Visualisierung freigegeben werden. Der Visualisierer hingegen muss sich keine
Gedanken um die Herkunft der Daten machen und kann sich auf seinen Visualisie-
rungsalgorithmus konzentrieren. Ein Dispatcher-Plug-In bekommt die generierten Vi-
sualisierungen als Eingabedaten und versendet sie an die gewiunschte Adresse mit
dem implementierten Protokoll und ist dabei komplett von der restlichen Visualisie-
rungspipeline entkoppelt.

Zusatzlich hat diese Plug-In-Architektur den Vorteil, dass Plug-Ins zur Laufzeit einge-
bunden oder ausgetauscht werden kdnnen ohne das gesamte JDQVisF anzupassen
und somit andere Simulationen und JDQVisClienten zu beeintrachtigen.

Um die gewlnschten Visualisierungen zu generieren wahlt der VisualizationMediator
mit Hilfe eines Plug-In-Registers jeweils ein Filter-, ein Visualizer- und ein Dispatcher-
Plug-In aus. Das Register enthalt neben der Rolle des Wissenschaftlers und der Simu-
lationld eine Deviceld, welche fur die Auswahl der Visualizer- und Dispatcher-Plug-ins
mitentscheidend ist (J110). Der genaue Aufbau dieses Registers wird in Kapitel 6.3.4
gezeigt.

Abbildung 5-18 beschreibt die Aufteilung der Visualisierungspipeline auf Filter- Visuali-
zer- und Dispatcher-Plug-Ins mit Kennzeichnung des Datenflusses. Die Schritte Map-

-93 -

ping und Rendering werden zu einem Visualizer-Plug-In zusammengefasst. Dies hat
den Vorteil, dass die Implementierung von gerateabhangigen Visualisierungen verein-
facht wird. FUr ein Anzeigegerat mit viel Rechenleistung kann beispielsweise nur das
Mapping innerhalb des Visualizer-Plug-In realisiert werden und das Rendering lokal auf
dem Gerat. Bei einem leistungsschwachen Gerat wiederum kann die Rechenleistung
des Servers ausgenutzt werden, um komplexe Bilder zu generieren.

Simulation

b

Filtering Filter-Plug-In

Dispatching

JDQVisClient

Abbildung 5-18: Aufteilung der Visualisierungspipeline auf Filter- Visualizer- und
Dispatcher-Plug-In mit Kennzeichnung des Datenflusses

Die Einbindung der Plug-Ins flr die Visualisierung in den VisualizationMediator und
nicht an den JDQVisController begrundet sich durch die in Kapitel 0 gezeigte Trennung
des Aufgabenbereichs des JDQVisF. Er bietet zusatzlich den Visualisierern einen zent-
ralen Punkt um ihre Visualizer-Plug-In einzubinden und erleichtert dadurch die Wartung
und Pflege.

Fur die Gewahrleistung der Integritat der Daten, die bei den einzelnen Schritten entste-
hen, werden wie beim JDQVisController Namespaces (siehe Kapitel 5.4.3.2) verwen-
det. Das dadurch entstehende Sandbox-Prinzip verhindert die Veranderung der Daten
durch die anderen geladenen Plug-Ins.

In den folgenden Abschnitten werden die Erweiterungen der Visualisierungspipeline des
VisualizationMediator genauer beschrieben.

-94 -

5.4.2.1 Erweiterungen des VisualizationMediators

Der VisualizationMediator kann seine Visualisierungspipeline wegen der oben gezeig-
ten Anforderungen nicht in einer abgeschlossenen Komponente umsetzen. Aus diesem
Grund bietet das JDQVisF den Entwicklern drei Schnittstellen an um ihre Filter-, Visua-
lizer- und Dispatcher-Plug-Ins dem VisualizationMediator zur Verfligung zu stellen. Da-
zu gehdren das Filterinterface fur Filter-Plug-Ins, das Visualizerinterface fir Visualizer-
Plug-Ins und das Dispatcherinterface fur Dispatcher-Plug-Ins.

Dieses Kapitel beschreibt die konzeptionelle Architektur der Erweiterungen, ihre Funkti-
onen und ihre Schnittstellen.

Die konzeptionelle Aufteilung der Visualisierungspipeline in diese drei Plug-Ins begrin-
det sich hauptsachlich durch die daraus entstehende Flexibilitat. Der VisualizationMedi-
ator kann zu jeder Rolle-Simulation-Anzeigegerat-Beziehung die passenden Plug-Ins zu
einer Visualisierungspipeline kombinieren. Er nutzt die Wiederverwendbarkeit der ein-
zelnen Plug-Ins und vermeidet dadurch redundante Implementierungen, was die War-
tung und Pflege der einzelnen Plug-Ins vereinfacht.

In der ersten Stufe kdnnen die Wissenschaftler simulationsabhangige und rollenbasierte
Filter entwickeln, ohne die restlichen, zum Teil komplizierten, Schritte der Visualisie-
rungspipeline anpassen zu massen. In der zweiten Stufe kann ein Visualisierer, der ein
Visualizer-Plug-In entwickelt, die Eigenschaften eines Anzeigegerates optimal ausnut-
zen. Er kann komplizierte Visualisierungsalgorithmen einbinden, ohne sich Gedanken
um die Datenherkunft oder das Versenden der Visualisierungen machen zu missen. In
der letzten Stufe versendet ein Dispatcher-Plug-In Eingabedaten an eine bestimme Ad-
resse, ohne das deren Herkunft bertcksichtigt werden muss.

Um den jeweiligen Spezialisten einen einfache Rahmen flr das Einbinden ihrer Plug-Ins
bereitzustellen, bietet das JDQVisF drei Schnittstellen mit jeweils nur einer Methode an.
Diese Architektur teilt dadurch die Plug-Ins nach ihrer jeweiligen Aufgabe und ermog-
licht das Laden der richtigen Plug-Ins durch den VisualizationMediator. Mdchte bei-
spielsweise ein Visualisierer ein neues Visualizer-Plug-In flr ein spezielles Anzeigege-
rat und eine bereits existierende Rolle und Simulation in das JDQVisF einbinden, so
muss er nur eine Schnittstelle implementieren und das Plug-In im entsprechenden
Namespace (siehe Kapitel 5.4.3.2) registrieren. Das gleiche gilt fUr die Filter- und Dis-
patcher-Plug-Ins.

Visualisierungsspezifikationen

Da alle Plug-Ins eine in sich abgeschlossene Komponente bilden, bendtigten sie eine
Madglichkeit fur die Kommunikation mit dem VisualizationMediator, um beispielsweise
den Ein- und Ausgabepfad der Daten zu bekommen. Zusatzlich bendtigen Filter- und
Visualizer-Plug-Ins eine Schnittstelle zu dem Wissenschaftler, Uber die dieser in die Vi-
sualisierungspipeline eingreifen kann. Aus diesem Grund werden fur die drei Plug-Ins
so genannte Visualisierungsspezifikationen angelegt. Sie enthalten beispielsweise den

-95.-

Ein- und Ausgabepfad der Daten und im Fall von Filter- und VisualizerSpecifications ein
Element fur die Benutzeranfragen. Der Plug-In-Entwickler muss sich also nicht um die
Beschaffung der Ein- und Ausgabepfade kimmern, was die Implementierung verein-
facht. Der JDQVisController passt die entsprechenden Spezifikationen bei der Anmel-
dung eines JDQVisClienten oder bei dem Empfang eines Steuerungsbefehls an. Eine
persistente Auslagerung dieser Spezifikationen, zum Beispiel in eine XML-Datei, bietet
im Gegensatz zu einer einfachen Parameteribergabe durch den VisualizationMediator
an die Verarbeitungsmethoden der Plug-Ins, mehrere Vorteile. So kdénnen Wissen-
schaftler, beispielsweise zu Simulationsbeginn, festlegen, welche Daten wahrend des
Simulationsdurchganges visualisiert werden und auf welche Art. Sie missen dazu ein-
malig ihre Filter- und VisualizerSpecifications mit Hilfe des JDQVisController anpassen.
Diese werden dann bei jeder Anmeldung des Wissenschaftlers unabhangig vom Anzei-
gegerat berucksichtigt. Somit erhalt er selbst bei Anzeigegerate ohne Interaktionsmog-
lichkeiten genau die Visualisierungen, die er zuvor an einem anderen Anzeigegerat kon-
figuriert hat.

Im Folgenden werden die einzelnen Plug-Ins, die entsprechende Schnittstelle des
JDQVisF und die Einbindung in das JDQVisF gezeigt.

5.4.2.1.1 Datenaufbereitung durch ein Filter-Plug-In

Visualizer-
Plug-Ins

Visualization

Dispatcher-

Filter-Plug-in Plug-Ins

o

Mediator

FilterInterface

Abbildung 5-19: Filter-Plug-In des VisualizationMediator

Ein Filter-Plug-In ist eine Erweiterung fur die erste Stufe der Visualisierungspipeline. Es
bekommt die Rohdaten als Eingabe und liefert aufbereitete Daten als Ausgabe. Dabei
ist ein Filter-Plug-In fur eine Simulationld und eine bestimmte Rolle in dieser Simulation
verantwortlich. Das bedeutet, dass fur jede Rolle in einer Simulation unterschiedliche
Filteroperationen ausgefuhrt werden kénnen. Ein Wissenschaftler kann durch die Im-
plementierung von unterschiedlichen Filter-Plug-Ins fur alle Wissenschaftler festlegen,
welche Daten die einzelnen Rollen sehen kdnnen und welche ihnen verborgen bleiben.
Beispielsweise bendtigt der Wissenschaftler dem die Simulation gehdrt alle Daten, wah-
rend fur Wissenschaftler mit weniger Rechten, nur die berechneten Datenqualitatswerte

-96 -

sichtbar sind. Zudem lassen sich durch dadurch die Interaktionsmdglichkeiten des
JDQVisClient an dem Filter-Plug-In kontrollieren. So kann das Filter-Plug-In anhand der
Rolle unterscheiden, ob es eine Steuerungsanfrage bearbeitet oder nicht.

Das Filter-Plug-In bietet den Wissenschaftler eine einfache Mdglichkeit die Rechte von
Rollen anzupassen. Durch die gewahlte Plug-In-Architektur kdnnen leicht weitere Rollen
zu einer Simulation hinzugefligt, bearbeitet oder einzelne Rollen entfernt werden.

Da ein Filter entgegen des Namens zur allgemeinen Rohdatenaufbereitung verwendet
wird, ist er insbesondere daflir verantwortlich, die originalen Simulationsdaten bei Be-
darf zu laden und sie fur die weiteren Verarbeitung zur Verfugung zu stellen. Dabei
konnen die Simulationsdaten aullerhalb des JDQVisF, beispielsweise bei einer Data as
a Service (DaaS) liegen. Ein DaaS beschreibt eine Datenbank in der Cloud und wird in
[31] und [40] genauer beschrieben. Es liegt in der Verantwortung des Plug-In Entwickler
die Simulationsdaten zu dereferenzieren und zu laden. Die Adresse der Daten erhalt ein
Filter beispielsweise aus den Rohdaten des JDQCF. (13)

FilterSpecification

Ein Filter-Plug-In kann Uber eine so genannte FilterSpecification gesteuert werden. In
ihr findet der Programmierer alle fir ihn wichtigen Angaben. So wird in ihr neben der
Rolle und der Simulationld der Ein- und Ausgabepfad der Daten und ein FilterRequest
angegeben.

In Kapitel 6.3.5.1 wird die Umsetzung einer FilterSpecification durch ein XML-Dokument
gezeigt.

Filterinterface

Der VisualizationMediator bietet Uber das Filterinterface die Moglichkeit, neue Filteral-
gorithmen in das JDQVisF einzubinden. Dazu muss ein Filter-Plug-In die filterData-
Methode implementieren. Sie bekommt den Pfad zu einer passenden FilterSpecification
als Parameter.

-97 -

5.4.2.1.2 Visualisierung durch ein Visualizer-Plug-In

Visualizer-
Plug-lns

Visualizerinterface

Visualization Dispatcher-
Filter-Plug-In M ed |at0 r \@ Plug-Ins

Abbildung 5-20: Visualizer-Plug-In des VisualizationMediator

Ein Visualizer-Plug-In fasst die zweite und dritte Stufe der Visualisierungspipeline zu-
sammen und realisiert dadurch die Schritte Mapping und Rendering. Diese Zusammen-
legung begrindet sich durch die Unterstitzung von unterschiedlichen Anzeigegeraten
durch das JDQVisF. Sie ermoglicht es dem Visualisierer, optimal auf das Anzeigegerat
und der Simulation abgestimmte Visualisierungen zu generieren. Dadurch kann, bei-
spielsweise bei leistungsstarken Anzeigegeraten, das JDQVisF nur das Mapping durch
ein Visualizer-Plug-In GUbernehmen. Das Rendering, also die tatsachliche Bildgenerie-
rung, wird lokal auf dem Gerat ausgefuhrt und kann die individuellen Starken des Gera-
tes vollstandig ausnutzen. Bei leistungsschwachen Geraten kann der Visualisierer hin-
gegen die Rechenleistung des Servers ausnutzen. So kann er komplexe Visualisierun-
gen erstellen, welche auf Gerateseite nur noch angezeigt werden mussen.

Zudem ermoglicht diese Plug-In-Architektur dem VisualizationMediator eine einfache
Zusammenstellung seiner Visualisierungspipeline, indem er fur jede Simulation-Rolle-
Anzeigegerat-Beziehung, das jeweils passende Visualizer-Plug-In auswahlt ($113).
Durch die lose Kopplung der einzelnen Plug-Ins untereinander und insbesondere auch
innerhalb der Visualisierungspipeline, kdnnen leicht neue Anzeigegerate zur Visualisie-
rung der Datenqualitat hinzugefigt werden kdnnen. Ein Visualisierer muss lediglich ein
neues Visualizer-Plug-In in das JDQVisF hinzufuigen (siehe Kapitel 6.3.4.2) und einen
entsprechenden Client auf dem Anzeigegerat installieren.

Aus Sicht der Plug-In-Entwickler bietet diese Architektur mehrere Vorteile. Sie kdnnen
unabhangig der restlichen Komponenten des JDQVisF ihre Visualisierungen in dessen
Visualisierungspipeline einbinden. Das vereinfacht insbesondere das Anpassen und
Hinzufligen von Visualisierungsalgorithmen und erleichtert somit die Wartung. Die klare
Trennung der Schritte Filtern und Visualisieren entkoppelt zusatzlich die Visualisierer
von den Wissenschaftlern, die das Aufbereiten der Rohdaten Ubernehmen kénnen. So

-08 -

sind die Visualizer-Plug-In unabhangig von der Datenquelle realisierbar, was die Flexibi-
litat erhoht.

Ein Visualizer-Plug-In bekommt die aufbereiteten Daten als Eingabe und liefert die ge-
nerierten Visualisierungen als Ausgabe. Als Visualisierung werden sowohl einfache Bil-
der, zum Beispiel fur einen Internetbrowser, wie auch komplexe Geometriemodelle flr
leistungsstarkere Ausgabegerate unterstltzt. Fur die Umsetzung wahlt der Visualiza-
tionMediator fur das aktuelle Anzeigegerate, das jeweils passende Visualizer-Plug-Ins
aus.

Wie beim Filtern, muss der VisualizationMediator auch beim Visualisieren zwischen den
einzelnen Simulationen und deren unterschiedlichen Rollen unterscheiden. Somit ist es
mdglich, dass unterschiedliche Rollen unterschiedliche Visualisierungen als Ausgabe
erhalten ($110). Beispielsweise kann ein Visualizer-Plug-In fir die Rolle mit allen Rech-
ten an der Simulation, zusatzlich zu den Datenqualitatswerten, auch die Simulationsda-
ten visualisieren. Rollen mit weniger Rechten bekommen hingegen nur die visualisierten
Datenqualitatswerte angezeigt. Zudem lassen sich durch die Berlicksichtigung der Rolle
die Interaktionsmdglichkeiten zwischen JDQVisClient und Visualizer-Plug-In kontrollie-
ren. So kann ein Visualizer-Plug-In fur jede Rolle definieren, ob es die Steuerungsan-
frage bearbeitet oder nicht.

Um unterschiedliche Visualisierungen flr unterschiedliche Endgerate zu erhalten, 1adt
der VisualizationMediator das passende Plug-In. Dieses findet er anhand eines Plug-In-
Registers (siehe Kapitel 6.1) in der alle Visualizer-Plug-Ins mit einer Simulationld, Role
und Deviceld registriert sind. Diese Deviceld kennzeichnen die Anzeigegerate, die das
Plug-In unterstitzt. Jedes Visualizer-Plug-In, das vom VisualizationMediator geladen
werden soll, muss mindestens eine Deviceld unterstutzen.

VisualizerSpecification

Ein Visualizer-Plug-In wird durch eine VisualizerSpecification gesteuert. In ihr findet der
Programmierer alle fur ihn wichtigen Angaben. So wird in ihr neben der Rolle und der
Simulationld auch der Ein- und Ausgabepfad der Daten und ein VisualizationRequest
angegeben.

Fir jedes Simulationld-User-Paar gibt es genaue eine VisualizerSpecification. Eine Vi-
sualizerSpecification auf Basis einer Simulationld-Role ist nicht mdglich, da diese mog-
liche Benutzerinteraktionen beschreiben und somit fur jeden JDQVisClienten einzigartig
sein mussen, um andere JDQVisClients mit der selben Rolle nicht zu beeinflussen.

In Kapitel 6.3.5.2 wird die Umsetzung einer VisualizerSpecification durch ein XML-
Dokument gezeigt.

Visualizerinterface

Das JDQVisF bietet Uber das Visualizerinterface die Moglichkeit neue Visualisierungs-
algorithmen fur den VisualizationMediator einzubinden. Dazu muss ein Visualizer-Plug-

-99 -

In die visualizeData-Methode implementieren. Diese bekommt als Parameter den Pfad
zu einer passenden VisualizerSpecification.

Der VisualizationMediator hat keinen Einfluss auf die tatsachliche Visualisierung der
Daten und kann somit nicht garantieren, dass gute Visualisierungen (siehe Kapitel 3.4)
generiert werden oder nicht. Die Verantwortung der Berucksichtigung der Anforderun-
gen an eine Visualisierung liegt bei den Entwicklern der Visualizer-Plug-Ins. Fir die Un-
terstlitzung wird zusatzlich ein Verweis auf diese Arbeit im Interface gegeben ($111).

5.4.2.1.3 Verteilung der Visualisierungen durch ein Dispatcher-Plug-In

Visualizer-
Plug-Ins

Visualization

Filter-Plug-In M ed | ator

Dispatcherinterface

Abbildung 5-21: Dispatcher-Plug-In des VisualizationMediator

Ein Dispatcher-Plug-In ist eine Erweiterung fur das Versenden der generierten Visuali-
sierungen. Es bekommt dabei die Visualisierungen als Eingabe und verteilt diese an die
angegebene Adresse. Wie in den zuvor vorgestellten Erweiterungen, wird auch hier die
Plug-In Variante aus Grunden der Flexibilitat gewahlt. Diese bietet den Vorteil, dass
leicht neue Versandarten eingebunden oder bestehende angepasst werden kdnnen.
Zudem wird das Versenden der Visualisierungen von den restlichen Komponenten des
JDQVisF entkoppelt, was zu einer Vereinfachung der Wartung fihrt (R16). Aus Sicht
der Implementierer bietet diese lose Kopplung zusatzlich den Vorteil, dass sie nur eine
Schnittstelle implementieren missen um ihre Versandarten in das JDQVisF einzubin-
den. Anpassungen am JDQVisF sind nicht nétig (117, $118).

Diese Plug-In Architektur ermdglicht dem JDQVisF unterschiedliche Versandprotokolle
(z.B. SOAP) und -Arten (z.B. SOAP-HTTP-Binding) fur das Verteilen der Daten zu un-
terstutzen. Das Verwenden von Dispatcher-Plug-Ins bietet den Vorteil, dass der Visuali-
zationMediator fur jede Rolle und Anzeigegerat ein anderes Plug-In verwenden kann.
Es lassen sich Versandarten einbinden, die genau auf ein Anzeigegerat und den An-
spruchen der Wissenschaftler abgestimmt sind. Beispielsweise kdnnen die Daten Uber
Soap-Nachrichten an ein leistungsstarkes Anzeigegerat versendet werden. Eine andere

- 100 -

Mdglichkeit ist die Daten auf einem Server abzulegen, bei dem sie Uber eine URL abge-
fragt werden koénnen (915).

Neben dem reinen Verteilen der Daten bietet ein Dispatcher-Plug-In die Moglichkeit,
Daten an eine Cache-Komponente zu versenden. Damit lassen sich auch Visualisie-
rungen alterer Simulationsdaten generieren oder zeitliche Verlaufe der Simulation ab-
bilden.

DispatcherSpecification

Ein Dispatcher-Plug-In wird durch eine DispatcherSpecification gesteuert. In ihr findet
der Programmierer alle wichtigen Angaben. So wird in ihr neben der Rolle und der Si-
mulationld, der Ein- und Ausgabepfad der Daten, das Eingabeformat und einen optiona-
len Pfad fur die Ablage in den Cache des JDQVisF angegeben.

In Kapitel 6.3.5.3 wird die Umsetzung einer DispatcherSpecification als XML-Dokument
gezeigt.

Dispatcherinterface

Der VisualizationMediator bietet Uber das Dispatcherinterface die Moglichkeit neue Ver-
teilungsalgorithmen in das JDQVisF einzubinden. Dazu muss ein Dispatcher-Plug-In die
dispatchData-Methode implementieren. Diese bekommt als Parameter den Pfad zu ei-
ner passenden DispatcherSpecification.

- 101 -

5.4.3 Namespaces des JDQVisF

Dieses Kapitel beschreibt die verschiedenen Namensraume (Namespaces) die das
JDQVisF unterstitzt. Sie werden von der vorgestellten Architektur bendtigt, um fur jede
Simulation-Wissenschaftler-Anzeigegerat-Beziehung die richtigen Daten zu finden und
zu verarbeiten. Sie realisieren dadurch das Sandbox-Prinzip des JDQVisF, das die Zu-
griffsicherheit und die Datenintegritat gewahrleisten.

Fir die Beschreibung der Namespaces werden Simulationlds und Userlds in einfachen
Hochkomma geschrieben. Sie werden im konkreten Fall durch die echten Identifiatonen
ersetzt. Tabelle 1 gibt eine Erklarung der Symbole, die in den folgenden Unterkapiteln
verwendetet werden.

Tabelle 1: Erklarung der Symbole in den Beschreibungen der Namespaces des

JDQVisF.
Symbol Bedeutung
’'simulationld’ Reprasentiert einen Platzhalter fir eine konkrete Simulationld.
‘userld’ Reprasentiert einen Platzhalter flr eine konkrete Userl/d.
* Beliebige Anzahl von Elementen inkl. 0.
+ Beliebige Anzahl von Elementen gréfRer als 0.

! Genau ein Element.

| Genau ein Element der Auswahl.

5.4.3.1 Ressourcen und Datenhaltung

Dieses Kapitel beschreibt die verschiedenen Namespaces fir die Ressourcen und Da-
tenhaltung. Sie dienen zur Identifikation der Daten, die bei den verschiedenen Stufen
der Visualisierungspipeline entstehen.

Abbildung 5-22 zeigt einen Uberblick der Namespaces fir die Ressourcen. Die Farben
beziehen sich auf die der einzelnen Komponenten des JDQVisF und kennzeichnen das
entsprechenden Verwendungsgebiet.

-102 -

QoDValues.xml

QoDValues.xml

'userld'

'userld'

res

e
(omms
e}
—

@
visualization- @
specification m
h] Filter-
; Specification.xml
5 Visualizer-
m Specification.xml
Dispatcher-
Specification.xml
iIterSpecification.me

Visualizer-
Specification.xml

Dispatcher-
Specification.xml

RoleSpecification.xml

Abbildung 5-22: Ubersicht iiber die Namespace-Hierarchie der Ressourcen und Daten-
haltung des JDQVisF mit entsprechenden Kardinalitéten

/res
Dieses Element enthalt alle Ressourcen, die fur die Visualisierung von Datenquali-
tat und deren Steuerung bendtigt werden. Es enthalt genau ein cache-, ein fil-
tered-, ein raw-, ein visualizationspecification- und ein visualized-Element.

- 103 -

/res/raw
Dieses Element enthalt alle, dem JDQVisF bekannten, Simulationen und dient
zum Empfang der Rohdaten aus dem Simulation-Workflow, beispielsweise vom
JDQCEF. Es dient als Ausgangspunkt aller weiteren Schritte der Visualisierungs-
pipeline.

/res /raw / 'simulationld’ *
Dieses Element enthalt die Rohdaten einer Simulation. Es besitzt nur ein weiteres
Kindelement /QoDValues! in dem die Rohdaten gespeichert sind. Rohdaten sind
im Zusammenhang von Simulation-Workflows, die Datenqualitatswerte und even-
tuell zusatzlichen Simulationsdaten, welche visualisiert werden sollen. Sie dienen
den Filter-Plug-Ins als Eingabedaten.

/ res /filtered
Dieses Element enthalt alle, dem JDQVisF bekannten, Simulationen und dient als
Container fur die aufbereiteten Datenqualitats- und Simulationsdaten. Es beinhal-
tet damit alle Daten, die in nach der ersten Stufe der Visualisierungspipeline, dem
Filtern, entstehen.

/ res / filtered / 'simulationld’™
Dieses Element enthalt fur die jeweilige Simulation alle am JDQVisF registrierten
Userlds als Kindelemente. Somit kdnnen die unterschiedlichen Anforderungen und
Rollen der einzelnen Wissenschaftler unterschieden werden.

/ res / filtered / 'simulationld’ / ,userld’

Dieses Element reprasentiert die Simulation-Wissenschaftler-Beziehung und be-
sitzt genau ein Kindelement /Data. In diesem werden die aufbereiteten Datenquali-
tats- und Simulationsdaten fur den Wissenschaftler und die Simulation gespei-
chert. Damit ist es moglich, die unterschiedlichen Simulation-Wissenschaftler-
Beziehungen umzusetzen. Je nach Simulation und Rolle werden unterschiedliche
Daten generiert und in dem entsprechenden Namespace abgelegt. Die dort lie-
genden Daten dienen als Eingabe der Visualizer-Plug-Ins.

/ res / visualized
Dieses Element enthalt alle, dem JDQVisF bekannten, Simulationen und dient als
Container fur die visualisierten Datenqualitats- und Simulationsdaten. Es beinhal-
tet alle Daten, die in der zweiten Stufe der Visualisierungspipeline, dem Visualisie-
ren, entstehen.

/ res / visualized / 'simulationld’™
Dieses Element enthalt fir die jeweilige Simulation alle registrierten Userlds als
Kindelemente. Somit konnen die unterschiedlichen Anforderungen und Rollen der
einzelnen Wissenschaftler unterschieden werden.

- 104 -

/ res / visualized / 'simulationld’ / ,userld’
Dieses Element reprasentiert die Simulation-Wissenschaftler-Beziehung und be-
sitzt die generierten Visualisierungen als Kindelemente. Damit ist es moglich die
unterschiedlichen Simulation-Wissenschaftler-Beziehungen umzusetzen. Je nach
Simulation und Rolle werden unterschiedliche Visulisierungen generiert und in
dem entsprechenden Namespace abgelegt. Die dort liegenden Daten dienen als
Eingabe der Dispatcher-Plug-Ins.

/ res / visualizationspecification
Dieses Element enthalt alle, dem JDQVisF bekannten, Simulationen und dient als
Container fur alle Visualisierungsspezifikationen.

/ res / visualizationspecification / 'simulationld’ *
Dieses Element dient zur Kennzeichnung der angeforderten Simulation. Es enthalt
fur jeden registrierten Benutzer die jeweiligen Visualisierungsspezifikationen. Dazu
enthalt es zwei Kindelemente. /user enthalt alle Spezifikationen von aktiven Be-
nutzern. /role enthalt dagegen fur jede Rolle in der Simulation Muster-
Visualisierungsspezifikationen.

/ res / visualizationspecification / 'simulationld’ / user / ‘userld’™
Dieses Element enthalt fir den Wissenschaftler mit entsprechender Userld die
verschiedenen Visualisierungsspezifikationen fur das Filtern (/FilterSpecification),
Visualisieren (/VisualizerSpecification) und Versenden (/DispatcherSpecification)
der Daten. AulRerdem wird Uber das Element /RoleSpecification die Rolle des
Wissenschaftlers in der aktuellen Simulation festgelegt.

/ res / visualizationspecification / 'simulationld’ / user / 'userld’ / FilterSpecification!
Dieses Element enthalt alle Anweisungen des JDQVisClient fir das geladene Fil-
ter-Plug-In

/ res / visualizationspecification / 'simulationld’ / user / 'userld’ / VisualizerSpecification!
Dieses Element enthalt alle Anweisungen fur das geladene Visualizer-Plug-In.

/ res / visualizationspecification / 'simulationld’ / user / 'userld’ / DispatcherSpecification!
Dieses Element enthalt alle Anweisungen fur das geladene Dispatcher-Plug-in.

/res / cache
Dieses Element enthalt alle, dem JDQVisF bekannten, Simulationen und dient
zum Speichern der Simulationsdaten und generierten Visualisierungen flr spatere
Auswertungen oder falls der Simulation-Workflow zum Anfragezeitpunkt keine
neuen Daten sendet.

/ res / cache / 'simulationld™
Dieses Element enthalt alle verarbeiteten Daten einer Simulation. Das bedeutet,
dass alle Rohdaten und generierten Visualisierungen fir jeden Benutzer (Userld)

- 105 -

gespeichert werden. Dazu besitzt es die beiden Kindelement /raw und
Nvisualizations, wobei letzteres noch beliebig viele Kindelemente fir die unter-
schiedlichen Userlds (/'userld’) besitzt.

5.4.3.2 Funktionale Erweiterungen und deren gemeinsames Register

Dieses Kapitel beschreibt die Namespaces fir die Plug-Ins, welche die Benutzer-
autorisierung, die Steuerung der Simulation, das Filtern der Rohdaten, das Visualisieren
der aufbereiteten Daten und das Versenden der generierten Visualisierungen realisie-
ren.

Abbildung 5-23 zeigt den Aufbau der Namespaces fur die Plug-In-Verwaltung des
JDQVisF.

- 106 -

‘SimuControl-Plug-In'

simulationController

'‘SimuControl-Plug-In'

l PluginRegister.xml '

Abbildung 5-23: Ubersicht (iber die Namespace-Hierarchie der Plug-Ins fiir das
JDQVisF mit entsprechenden Kardinalitdten

/ plugins
Dieses Element ist das Wurzelelement aller Plug-Ins, die vom JDQVisF geladen
werden sollen. Es enthalt jeweils Kindelemente flr Authorizer-Plug-Ins, Dispat-
cher-Plug-Ins, Filter-Plug-Ins und Visualizer-Plug-Ins.

- 107 -

/ plugins / PluginRegister
Dieses Element dient zur Registrierung der Plug-Ins. Hier miussen alle Erweite-
rungen, sei es ein Dispatcher-, Filter-, Autorisierungs- oder Visualizer-Plug-Ins, die
vom JDQVisF verwendet werden sollen, eingetragen werden. Der genau Prozess
der Plug-In-Registrierung wird in Kapitel 6.1 gezeigt.

/ plugins / (authorizer | simulationController | dispatcher | filter | visualizer)
Dieses Element enthalt beliebig viele Kindelemente / 'Plug-In’ und ist der Aus-
gangspunkt aller Plug-Ins. Jedes Plug-In das eine Funktionalitat realisiert, kann
eines dieses Element als Elternknoten besitzen. Beispielsweise hat ein konkretes
Filter-Plug-In: / plugin / filter als Elternknoten.

5.4.3.3 Schnittstellen

Um das JDQVisF durch Plug-Ins funktional zu erweitern, bietet es verschieden Schnitt-
stellen an. Dieses Kapitel beschreibt die Namespaces der Schnittstellen (Interfaces)
des JDQVisF. Wenn ein Entwickler ein neues Plug-In implementieren mdchte, dass
vom JDQVisF geladen werden kann, muss er eines der folgenden Interfaces implemen-
tieren.

Abbildung 5-24 zeigt die Namespacehierarchie der Interfaces die das JDQVisF anbie-
tet.

Authorizerlnterface

SimulationControllerinterface

FilterInterface

interfaces

Abbildung 5-24: Ubersicht (iber die Namespace-Hierarchie aller Interfaces des JDQVisF

- 108 -

/ interfaces
Dieses Element ist das Wurzelelement aller Interfaces die vom JDQVisF bereit

gestellt werden. Es besitzt vier Kindelemente: /UserAuthorizerinterface,
/SimulationControllerinterface /Dispatcherinterface, [FilterInterface und
/Visualizerinterface. Hier findet ein Plug-In-Entwickler das entsprechende Inter-

face.

-109 -
5.5 Beschreibung des Visualisierungsprozess

Dieser Abschnitt beschreibt den konzeptionellen Prozess von der Anmeldung beim
JDQVisController bis zum Versenden der Visualisierungen durch ein Dispatcher-Plug-
In.

4.2

JDQCF
Owner
Filter

Autorization

JDQVisClient

Abbildung 5-25: Konzeptioneller Ablauf vom Registrieren des JDQVisClients bis zum
Versenden der Daten

Schritt 1— Anmeldung beim JDQVisController

Mochte ein Wissenschaftler die Datenqualitat einer Simulation mit Hilfe des
JDQVisF Uberwachen, so muss er sich zunachst beim JDQVisController registrie-
ren. Dazu bendétigt der JDQVisController neben der Simulationld und Deviceld ei-
nen Benutzernamen und ein Passwort um sicher zu stellen, dass nur am System
registrierte und somit berechtigte Personen Zugriff auf die angeforderten Simulati-
onsdaten erhalten. Die Anmeldedaten werden uUber das UserAuthorizerinterface
mit Hilfe eines entsprechenden Authorizer-Plug-Ins validiert.

Ist ein Benutzer erfolgreich am JDQVisController mit seiner Userld und Role regis-
triert, werden daraus in Kombination mit der Simulationld die im vorangegangenen
Kapitel vorgestellten Namensraume (Namespaces) generiert. Diese dienen im
weiteren Visualisierungsprozess zur Identifikation der bendtigten Daten.

- 110 -

Schritt 2 - Registrierung beim JDQCF

Erhalt der JDQVisController bei der Anmeldung eines Benutzers eine inaktive Si-
mulationld, so wird diese aktiv. Aktiv heildt, dass der JDQVisController sich beim
JDQCF flr generierte Datenqualitatswerte dieser Simulation als Endpunkt neu re-
gistriert. FUr ein bereits aktive Simulationld ist dieser Schritt nicht notwendig, da
das JDQVisF fur diese Simulation beim JDQCF durch einer fratheren Anmeldung
registriert wurde.

Schritt 3— Empfang der Datenqualitdtswerten und Start der Visualisierung

Empfangt der JDQVisController Uber seinen QoDReceiver neue Datenqualitats-
werte, so wird daraus die Simulationld gelesen. Im Anschluss wird fir alle, fur die-
se Simulationld angemeldeten, JDQVisClienten der Visualisierungsprozess ge-
startet. Dazu wird jeweils ein passender VisualizationMediator instanziiert. Dieser
ladt dabei, die fir die Simulationld-Role-Deviceld-Beziehung passenden, Plug-Ins
und stellt sie fur die Generierung der Visualisierung bereit.

Schritt 4 — Visualisierung der Datenqualitdtswerte und Verteilung

Ist der VisualizationMediator instanziiert, startet der JDQVisController fir jeden
angemeldeten JDQVisClient dessen Visualisierungspipeline durch Aufruf der visu-
alize-Methode des VisualizatonMediator. Diese fuhrt nacheinander die Methoden
der einzelnen Plug-Ins aus. Zuerst wird die filterData-Methode des geladenen Fil-
ter-Plug-Ins, anschlieRend die visualizeData-Methode des geladenen Visualizer-
Plug-Ins und zum Schluss die dispatchData-Methode des geladenen Dispatcher-
Plug-Ins ausgefuhrt.

Tritt bei den einzelnen Schritten ein Fehler auf, so wird der JDQVisClient Uber den
JDQVisController dartber informiert. Ein typischer Fehler kdnnte dabei ein unauf-
findbares Plug-In sein. Tritt dieser Fehler auf, ist hdchstwahrscheinlich ein fehlen-
der oder fehlerhafter Eintrag im Plug-In-Register verantwortlich.

Wurden die Daten korrekt visualisiert, kann der JDQVisClient diese Uber das ent-
sprechende Protokoll empfangen und anzeigen.

- 111 -

6 Technische Umsetzung des Java Data Quality Visualization

Framework

Dieses Kapitel beschreibt die technische Umsetzung des JDQVisF. Dazu werden zu-
nachst die Komponenten JDQVisController und VisualizationMediator beschrieben.
AnschlielRend werden fur jedes Plug-In Beispielimplementierungen gezeigt.

Das JDQVisF wird in der aktuellen Java-Version 1.7 implementiert und mit Hilfe von
JAX-WS als WebService deklariert.

6.1 Aufbau und Struktur der PluginRegister.xml

In den vorangegangenen Kapiteln wurde argumentiert warum das JDQVisF, genauer
gesagt, seine beiden Hauptkomponenten JDQVisController und VisualizationMediator,
durch Plug-In-Architekturen umgesetzt werden.

Nachdem ein Entwickler ein neues Plug-In fur das JDQVisF implementiert hat, muss es
fur die Verwendung beim JDQVisF registriert werden. Aus diesem Grund besitzt das es
ein Plug-In-Register (PluginRegister.xml). Es wird als XML Datei realisiert, da so die
Entwickler auf einfache Weise ihre Plug-Ins einbinden kénnen.

Die PluginRegister.xml enthalt eine Liste von Beschreibungen aller verwendeter Plug-
Ins. Da es sich um eine einzelne Datei unter einem festen Verzeichnis (/ plugins /
PluginRegister.xml) handelt, kdbnnen Entwickler ihre Plug-Ins einfach am JDQVisF re-
gistrieren. Das JDQVisF kann durch dieses Verfahren zur Laufzeit um neue Plug-Ins
erweitert werden oder bestehende ausgetauscht und angepasst werden.

Die genauen Eintrage innerhalb der PluginRegister.xml werden in den Unterkapiteln der
jeweiligen Komponenten gezeigt.

6.2 JDQVisController Klasse

Die Klasse JDQVisController ist der Ausgangspunkt fur jede Interaktion mit dem
JDQVisF und wird mit Hilfe von JAX-WS Annotationen als WebService ausgeschrieben
(siehe Abbildung 6-1).

-112 -

@WebService

JDQVisController
- VisSpecification[] activeVisSpeclList
- String[] activeSimulations
- DirectoryWatcher[] directoryWatcher
- DQChangelistener dqglistener
void DQFileChanged(String simuld)
- void subscribe(String simuld)

@WebMethod

+ String registerUser(String simuld, String name,
String psw, String deviceld)

@WebMethod

+ String logout(String simuld, String userld)

@WebMethod

+ String modifyFilterSpecification(String userlId,
String simuld, String request)

@WebMethod

+ String modifyVisualizerSpecificaton(String userld,
String simuld, String request)

@WebMethod

+ String sendSimulationControlRequest(String userld,
String simuld, String request)

Abbildung 6-1: Klassendiagramm des JDQVisController

Der JDQVisController bietet dem JDQVisClient funf Methoden flr die Interaktion. Diese
werden in den folgenden Abschnitten genauer beschrieben.

6.2.1 Benutzerregistrierung uber die registerUser — Methode

Die registerUser-Methode ist der Einstiegspunkt flr jeden JDQVisClient. Sie erwartet
als Parameter die Simulationld, die Anmeldedaten fur das Authorizer-Plug-In und die
Kennzeichnung des gewlnschten Anzeigegerates Uber die Deviceld. Wurde der Benut-
zer erfolgreich durch das Authorizer-Plug-In Gberprift, gibt diese Methode eine Userld
zurlck. Diese dient als Referenz und wird fur alle weiteren Interaktionen mit dem
JDQVisController bendtigt.

6.2.1.1 Authorizationinterface.jar

Das Authorizationinterface.jar beschreibt die Schnittstelle des JDQVisController fir das
Einbinden der Authorizer-Plug-Ins. Es enthalt lediglich ein Paket (authorizationinterface)
mit einem Interface (DQAuthorization) darin. Dieses Interface bietet die Methode autho-
rize an. Sie erwartet einen Benutzername und ein Passwort als Parameter.

- 113 -

Mdchte der Entwickler ein Authorizer-Plug-In realisieren, so muss er das DQAuthoriza-
tioninterface in seiner Library einbinden und das Interface DQAuthorization implemen-
tieren.

Das UserAuthorizerinterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace
/ interfaces / UserAuthorizerinterface.jar des JDQVisF zu finden.

Damit der JDQVisController ein Authorizer-Plug-In verwenden kann, muss es unter der
URL zu finden sein, die in dem in Kapitel 5.4.3.2 vorgestellten Namespace / plugins /
PluginRegister.xml registriert ist. Die URL kann auf eine beliebige Adresse zeigen. So
ist es mdglich auch externe Autorisierungsservices, die nicht in das JDQVisF eingebun-
den werden sollen, zu nutzen. Fur eine leichtere Wartung, bietet das JDQVisF einen
speziellen Namespace fir alle Autorisierungs-Plug-Ins unter / plugins / authorizer an.

6.2.1.2 Registrierung eines Authorizer-Plug-In

Um ein Authorizer-Plug-In zu registrieren ist ein Eintrag in das PluglnRegister notwen-
dig. Listing 2 zeigt den strukturellen Aufbau einer Registrierung im PluglnRegister.

<plugin type='dqauthorization'>

<simulationId> ... </simulationId>+

<url> ... </url>

<classname> ... </classname>
</plugin>

Listing 2: Struktur der Registrierung eines Authorizer-Plug-Ins im PluginRegister.xml

/ plugin
Reprasentiert ein JDQVisF-Plug-In. Das type-Attribut dqgauthorization identifiziert
es als Autorisierungs-Plug-In.

/ plugin / simulationld+
Beinhaltet jeweils die Simulationld fur die dieses Plug-In geladen werden soll.

/ plugin / url
Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So kdénnen auch externe Autorisierungsservices in das JDQVisF
eingebunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive
handeln muss.

- 114 -

/ plugin / classname
Dieses Element identifiziert die Klasse die das UserAuthorizerinterface implemen-
tiert. Sie dient als Einstiegspunkt aller Authorizer-Plug-Ins und wird vom JDQVis-
Controller bei der Benutzeranmeldung aufgerufen.

6.2.1.3 Ablauf der Benutzerregistrierung

Der JDQVisClient ruft die registerUser-Methode mit den Parametern: Simulationld, Be-
nutzername, Passwort und Deviceld auf. Mit Hilfe des GoF-Factory-Patterns [41] wird
daraufhin ein passender DQAuthorizer instanziiert. Dazu wahlt die AuthorizerFactory
Klasse mit Hilfe der Simulationld aus dem PluginRegister.xml ein passendes Autorisie-
rungs-Plug-In aus. Wird kein passendes gefunden, wird von der AuthorizerFactory
Klasse nichts zurlick gegeben und eine Fehlermeldung informiert den JDQVisClient.

Ist ein passendes Authorizer-Plug-In gefunden, wird eine neue Instanz der Klasse zu-
rickgegeben, die innerhalb des Plug-Ins das UserAuthorizerinterface implementiert.
AnschlielRend ruft der JDQVisController die authorize-Methode des Authorizer-Plug-Ins
auf und Ubergibt den Benutzername und das Passwort. Sind die Anmeldedaten korrekt,
wird ein JDQVisUser Objekt an den JDQVisController zurickgegeben. Dieser leitet die
darin enthaltende Userld an den JDQVisClient weiter. Andernfalls wird ein leeren String
zuruckgegeben.

Ist der Benutzer erfolgreich fur eine Simulationld angemeldet, generiert der JDQVisCon-
troller die entsprechenden Namespaces. Anschlielend wird eine neue VisSpecification
(Abbildung 6-2) aus den Anmeldedaten erstellt und zur activeVisSpecList des JDQVis-
Controller hinzugefugt.

com. jdgvis.model

VisSpecification

- String simuld

- String userId

- String deviceld

- VisualizationMediator visMediator

+ VisSpecification(String aSimuld, String aUserld,

String aDeviceld)

String getUserId()

String getSimuld()

String getDeviceld()

VisualizationMediator
getVisualizationMediator()

+ + + +

Abbildung 6-2: Klassendiagramm der VisSpecification-Klasse im Package
com.jdqvis.model

- 115 -

Abbildung 6-3 fasst den Ablauf in einem Sequenzdiagramm zusammen.

:JDQVisController i :AuthorizerFactory
JDQVisClient

| |
I registerUser(simuld, !
name, psw, deviceld)

|

> createAuthorizer(simuld)))
searchAuthorizerPlugIn(simuld)
| :bspAuthorizer |
bspAuthorizer.newlnstance() I
authorize(name, psw) ’.'
:
|
userld |
SR e et

\ o
' !

generateNamespaces(simuld, userld)

activeVisSpecList.add(new VisSpecification(simuld, userld, deviceld))

subscribe(simuld)

userld
é _____________ =
L o

Abbildung 6-3: Sequenzdiagramm fiir die Benutzerregistrierung

6.2.2 Anbindung an das JDQCF uber die subscribe-Methode

Das JDQCF bietet zwei Moglichkeiten fiir das Ubermitteln von Ergebnisse von Daten-
qualitatsberechnungen an. Zum einen kann in einem Task ein externer Empfanger (hier
der QoDReceiver des JDQVisF) angegeben werden. Zum anderen kdnnen Ergebnisse
subskribiert werden. Das bedeutet, dass fur laufenden Datenqualitdtsberechnungen
weitere externe Empfanger eingetragen werden.

Der JDQVisController realisiert einen solchen Subskribierungsauftrag in seiner
subscribe-Methode. Diese wird aufgerufen, sobald sich ein neuer JDQVisClient ange-

- 116 -

meldet hat. Sie Uberprift, ob die angeforderte Simulationld bereits durch einen anderen
JDQVisClient angefordert wurde. Falls nein, sendet der JDQVisController eine subscri-
be-Nachricht uber SOAP/HTTP-Binding an das JDQCF und gibt die Adresse seines
QoDReceiver als so genannten Endpoint an. Ein Endpoint reprasentiert eine IP Adres-
se, an die das JDQCF die berechneten Datenqualitatswerte versendet.

Zu beachten ist, dass zum Zeitpunkt der Entstehung dieser Arbeit, das JDQCF die Re-
gistrierung flr eine bestimmte Simulationld noch nicht unterstitzt. Das JDQVisF muss
daher alle Metriken von Hand beim JDQCEF registrieren. Eine globale Uberwachung der
Simulation ist dadurch nur eingeschrankt maglich.

Abbildung 6-4 zeigt den Aufbau einer Subscribe-Nachricht an das JDQCF.

<DataQualitySubsciption>
<MetrikId> Accuracy </MetrikId>
<wsa:ReplyTo>
<wsa:Address>
http://example.JDQVisF.com
</wsa:Address>
</wsa:ReplyTo>
</DataQualitySubsciption>

Abbildung 6-4: Aufbau einer Subscribe-Nachricht an das JDQCF [1]

Fur weiter Information sei an dieser Stelle an [1] verwiesen.

6.2.3 Schnittstelle fir den Empfang von Rohdaten

Damit der Empfang von Rohdaten nicht auf das JDQCF beschrankt bleibt, bietet das
JDQVisF Uber den Namespace aus Kapitel 5.4.3.1 /res / raw / 'simulationld*/ QoD Va-
lues.xml. ein Verzeichnis fir Rohdaten an. Dieses dient als Schnittstelle fir den Emp-
fang neuer Rohdaten. Andert sich diese Datei, bemerkt es der DQChangeListener und
ein neuer Visualisierungsdurchgang wird durch den JDQVisController gestartet.

Das JDQVisF bietet zwei Mdglichkeiten fur den Empfang neuer Rohdaten an. Zum ei-
nen durch die direkte Anbindung an das JDQCF durch den QoDReceiver, zum anderen
bietet das JDQVisF durch die Klasse DataReceiver einen WebService fur das Empfan-
gen von Datenqualitadtswerten an.

6.2.3.1 Funktionsweise des QoDReceiver

Der QoDReceiver ist eine Klasse des JDQVisF fur das Empfangen von Datenqualitats-
werten vom JDQCF. Sie implementiert dessen DataQualityReceiverWebService-
Interface welches die receive-Methode enthalt.

- 117 -

Hat das JDQCF neue Datenqualitatswerte errechnet, werden diese an den Service als
SOAP-Nachricht Gbermittelt (Listing 3 zeigt einen Auszug). Der QoDReceiver empfangt
diese Daten mit Hilfe der receive-Methode und schreibt sie in den entsprechenden
Namespace aus Kapitel 5.4.3.1 / res / raw / 'simulationld’ / QoD Values.xml.

<InterpretionCalculationResult>

<Value> 0.95 </Value>

<Interpretionld> Accuracy </Interpretionld>
</InterpretionCalculationResult>

Listing 3: Beispiel fiir ein InterpretionCalculationResult, das vom JDQCF an einen
DataQualityReceiverWebServerices versendet wird

Fir den genauen Ablauf des Versendens der Datenqualitdtswerte und die Funktions-
weise der DispatchingAPI des JDQCF, sei an dieser Stelle auf [1] verwiesen.

6.2.3.2 Funktionsweise des DataReceiver

Der DataReceiver ist eine Klasse die vom JDQVisF als WebService bereitgestellt wird.
Sie dient fir den Empfang neuer Datenqualitatswerte die nicht direkt vom JDQCF ver-
sendet werden. Mdchte ein Datenerzeuger seine Daten mit Hilfe des JDQVisF visuali-
sieren, so muss er zuerst einen DataReceiver instanziieren. Dazu bendtigt er die Simu-
lationld und drei Listen flr die Datenqualitdtsdimensionen, die dazu passenden Daten-
qualitatswerten und den Schwellenwerten der einzelnen Dimensionen.

Stehen neue Datenqualitatswerte bereit, so wird Uber die writeDataToXml-Methode des
DataReceiver die neue Datenqualitatsdatei (siehe Kapitel 5.4.3.1) / res / raw / ’simulati-
onld’/ QoDValues.xml aus den Listen erstellt.

com. jdgvis.datareceiver

@WebService
DataReceiver
String[] dimensions
Double[] values
Double[] thresholds;
String simulationId
QoDReceiver (String simulationld,
String[] Dimensions,
Double[] Values,
Double[] Thresholds)

+

@WebMethod
+ void writeDataToXml OO

Abbildung 6-5: Klassendiagramm des DataReceiver

- 118 -

6.2.3.3 DirectoryWatcher und DQChangeListener

Ist der JDQVisClient erfolgreich am JDQVisF angemeldet, so instanziiert der JDQVis-
Controller einen neuen DirectoryWatcher und einen DQChangeListener flr den ent-
sprechenden Namespace aus Kapitel 5.4.3.1 / res / raw / ’simulationld* / QoDValu-
es.xml. Diese Klassen erkennen ob neue Rohdaten fur die Visualisierung bereit stehen
und benachrichtigen den JDQVisController Gber seine DQFileChanged-Methode. Diese
startet daraufhin einen neuen Visualisierungsdurchgang. Sie durchsucht dabei die
activeVisSpecList des JDQVisController nach aktiven VisSpecifications. Werden pas-
sende VisSpecifications gefunden, werden ihre VisualizationMediators instanziiert und
deren visualize-Methode aufgerufen (siehe Kapitel 6.3.1 und 6.3.2).

6.2.4 Methoden fiir die Verarbeitung von Benutzerinteraktionen

Der JDQVisController bietet drei Methoden fur die Verarbeitung von Benutzerinteraktio-
nen an. Zwei fur die Manipulation der Filter- und VisualizerSpecification und eine fir das
senden von Steuerbefehlen fur die Simulation.

Fir die Umsetzung der in Kapitel 6.5.3 beschriebene Beeinflussung der Visualisie-
rungsspezifikationen bietet der JDQVisController die beiden Methoden modifyFilterSpe-
cification und die modifyVisualizerSpecification an. Sie ermdglichen es dem JDQVisCli-
ent, alle Schritte der Visualisierungspipeline zu beeinflussen (siehe Kapitel 3.3.4). Da
der grundsatzliche Ablauf bei beiden Methoden der selbe ist, wird dieser im Folgenden
anhand der modifyVisualizerSpecification Methode erklart.

6.2.4.1 Beeinflussung eine Visualizer-Plug-In

Mir Hilfe der modifyVisualizerSpecification-Methode des JDQVisController kann ein
JDQVisClient den Visualisierungsschritt der Visualisierungspipeline beeinflussen. Dazu
Ubergibt er seine Userld, die Simulationld und die Anfrage in Textform (siehe Kapitel
6.4.3). Ein Beispiel fur eine Visualisierungsanfrage kénnte ,Zoom-In“ oder ,showQOver-
view“ sein. Der JDQVisController passt daraufhin die passende VisualizerSpecification
an, indem er in das request-Element die erhaltene Anfrage schreibt.

Bei positiver Anpassung erhalt der JDQVisClient eine Bestatigungsnachricht. Konnte
die VisualizerSpecification nicht verandert werden, erhalt er eine Fehlermeldung.

- 119 -

@WebMethod

public String modifyVisualizerSpecification(
@WebParam(name="userId') String userld,
@WebParam(name="simulationId') String simuld,
@WebParam(name="request') String request

D

Listing 4: Methodensignatur der modifyVisualizerSpecification-Methode des
JDQVisController mit JAX-WS Annotationen

6.2.4.2 Steuerung der laufenden Simulation

Mit Hilfe der sendSimulationControlRequest-Methode des JDQVisController, kann ein
JDQVisClient Steuerungsbefehle fur eine Simulation senden. Dazu Ubergibt er seine
Userld, die gewunschte Simulationld und den Steuerbefehl in Textform. Als Antwort
kann ein Text vom SimulationController-Plug-In zurtick gegeben werden.

@WebMethod

public String sendSimulationControllRequest(
@WebParam(name="userId') String userld,
@WebParam(name="'simulationId') String simuld,
@WebParam(name="'request') String request

)

Listing 5: Methodensignatur der sendSimulationControlRequest-Methode des
JDQVisController mit JAX-WS Annotationen

Diese Methode wahlt ein, zur Simulationld passendes, SimulationController-Plug-In
uber die SimulationControllerFactory Klasse aus. Diese implementiert das GoF-Factory-
Pattern [41]. Die Klasse sucht in der PluginRegister.xml nach einem simulationControl-
ler-Plug-In das die Ubergebende Simulationld unterstutzt. Ist ein passendes Plug-In ge-
funden, wird eine Instanz der Klasse zurick gegeben, die das SimulationControllerinter-
face implementiert. Anschlielend wird die processSimulationRequest-Methode des
Plug-Ins aufgerufen. Sie bekommt die Userld und den Request als Parameter Uberge-
ben. Als Antwort erwartet der JDQVisController ein Text den er dem JDQVisClient wei-
terleitet.

6.2.4.2.1 SimulationControllerinterface.jar

Der JDQVisController bietet Uber das SimulationControllerinterface die Mdglichkeit, Si-
mulationController-Plug-Ins in das JDQVisF einzubinden. Dazu muss es die process-
SimulationRequest-Methode implementieren. Diese bekommt als Parameter die Userld

- 120 -

und den Steuerbefehl in Textform, beispielsweise ,Abbruch”. Als Rlickgabe erwartet der
JDQVisController einen Text.

Das SimulationControllerinterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace
/ interfaces / SimulationControllerinterface.jar des JDQVisF zu finden.

6.2.4.2.2 Registrierung eines SimulationController-Plug-In

Um ein SimulationController-Plug-In zu registrieren, ist ein Eintrag in das PluglnRegister
notwendig. Listing 6 zeigt den strukturellen Aufbau einer Registrierung im PluginRegis-
ter.

<plugin type='simulationController'>
<simulationId> example </simulationId>
<url> ./plugins/simulationController/ExampleController.jar </url>
<classname> controller.ExampleController </classname>

</plugin>

Listing 6: Struktur der Registrierung eines SimulationController-Plug-ins im
PluginRegister.xml

/ plugin
Reprasentiert ein JDQVisF-Plug-In. Das type-Attribut simulationController identifi-
zZiert es als SimulationController-Plug-In.

/ plugin / simulationld
Beinhaltet die Simulationld fir die dieses Plug-In geladen werden soll.

/ plugin / url
Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So kénnen auch externe SimulationController in das JDQVisF ein-
gebunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive han-
deln muss.

/ plugin / classname
Dieses Element identifiziert die Klasse die das SimulationControllerinterface im-
plementiert. Sie dient als Einstiegspunkt aller SimulationController-Plug-Ins und
wird vom JDQVisController zur Verarbeitung von Steuerbefehlen aufgerufen.

-121 -
6.3 Umsetzung des VisualizationMediator

Der VisualizationMediator ist fir das Generieren der Visualisierungen zustandig. Er
steuert die Visualisierungspipeline durch das Laden der richtigen Filter-, Visualizer- und
Dispatcher-Plug-Ins.

VisualizationMediator
- DQFilter dgFilter
- DQVisualizer dqVisualizer
- DQDispatcher dgDispatcher
- String visSpecBasicPath
- String deviceld
- String readRole(String visSpecPath)
+ VisualizationMediator(VisSpecification visSpec)

+ String visualize()
S ——

Abbildung 6-6: Klassendiagramm des VisualizationMediator

In den folgenden Abschnitten werden die einzelnen Methoden und ihr Zusammenspiel
aufgezeigt.

6.3.1 Instanziierung eines VisualizationMediators

Empfangt das JDQVisF neue Datenqualitdtswerte wird Uber die DQFileChanged-
Methode des JDQVisController fur jede aktive VisSpecification Uberpruft, ob sie die
ubergebene Simulationld als Attribut besitzt. Ist dies der Fall wird festgestellt, ob ihr Vi-
SualizationMediator schon instanziiert wurde. Wenn nein, wird ein neuer Visualization-
Mediator erstellt.

Der Konstruktor des VisualizationMediator erwartet das VisSpecification-Objekt. Zuerst
generiert er aus dessen Attributen seinen visSpeciBasicPath. Dieser zeigt auf den in
Kapitel 5.4.3.1 gezeigten Namespace / res / visspecifications / 'simuld’ / user / 'userld’
und dient als Referenz fur alle Visualisierungs-Plug-Ins. Anschliel3iend werden die ent-
sprechenden Plug-Ins Uber die jeweiligen Factory-Klassen instanziiert.

Abbildung 6-7 zeigt ein Sequenzdiagramm der einzelnen Schritte. Der Ubersicht halber,
werden die jeweiligen Plug-In-Klassen nicht gezeigt.

-122 -

:Visualization

Mediator :FilterFactory

" 1
newlnstance(VISSPGC;'_ readRole(visSpecpath)

createFilter(simuld, role)

createFilter(simuld, role)

bspFilter.newInstance()

:VisualizerFactory

createVisualizer(simuld, role, deviceld) :

createVisualizer(simuld, role, deviceld)

bspVisualizer.newInstance()

:DispatcherFactory

createDispatcher(simuld, role, deviceld) \

createDispatcher(simuld, role, deviceld)

bspDispatcher.newlInstance()

newlnstance

Abbildung 6-7: Ablauf der Instanziierung eines VisualizationMediator

6.3.2 Visualize-Methode des VisualizationMediators

Wurde ein VisualizationMediator erfolgreich instanziiert, kann seine visualize-Methode
aufgerufen werden. Da alle nétigen Plug-Ins bereits in den Attributen des Visualization-
Mediators bei der Instanziierung gesetzt wurden, erwartet diese Methode keine Para-
meter. Als Ruckgabe liefert sie einen Logbericht. Dieser enthalt Informationen Uber den
Status der Visualisierung.

Abbildung 6-8 zeigt ein den Ablauf mit Hilfe eines Sequenzdiagramms.

-123 -

:Visualization . .
‘ Mediator \ ‘ :bspFilter \
0 0
>

visualize |
:
|
filterData(fiterSpecPath) __ |
<-----------—--——---- '
) generatelLog |
‘ :bspVisualizer \
|
visualizeData(visualizerSpecPath) !
< _______________________
generatelLog !
) ‘ :bspDispatcher \
dispatchData(dispatcherSpecPath) :
|
< -------m-o——-———o———--- l
) generatelog '
log
< --c---m------

I
|
!
Abbildung 6-8: Ablauf der visualize-Methode des VisualizationMediator

6.3.3 Erweiterungsschnittstellen des VisualizationMediator

Dieser Abschnitt zeigt die Umsetzung der Schnittstellen die vom JDQVisF fur das Ein-
binden neuer Visualisierungs-Plug-Ins bereit gestellt werden.

124 -

6.3.3.1 Filterinterface.jar

Das JDQVisF bietet Uber das Filterinterface.jar Entwicklern die Mdglichkeit neue Filter-
Plug-Ins einzubinden. Das DQFilterinterface enthalt lediglich die filterData-Methode. Sie
erwartet als Eingabe den Pfad unter dem die gewtnschte FilterSpecification zu finden
ist.

Das Filterinterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace / interfaces /
Filterinterface.jar des JDQVisF zu finden.

6.3.3.2 Visualizerinterface.jar

Das JDQVisF bietet Uber das Visualizerinterface die Moglichkeit neue Visualisierungs-
algorithmen fUr den VisualizationMediator einzubinden. Das Visualizerinterface enthalt
die visualizeData-Methode. Diese bekommt als Parameter den Pfad zu einer passen-
den VisualizerSpecification und ist der Einstiegspunkt fur jedes Visualizer-Plug-In.

Das Visualizerinterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace / inter-
faces / Visualizerinterface.jar des JDQVisF zu finden.

6.3.3.3 Dispatcherinterface.jar

Das Dispatcherinterface des JDQVisF ermdglicht den Plug-In-Entwickler neue Ver-
sandarten fur die berechneten Visualisierungen einzubinden. Es enthalt das DQDispat-
cher Interface, welches wiederum die dispatchData-Methode enthalt. Diese Methode ist
er Einstiegspunkt fur jedes Dispatcher-Plug-In.

Das Dispatcherinterface ist unter dem in Kapitel 5.4.3.3 vorgestellten Namespace / in-
terfaces / Dispatcherinterface.jar des JDQVisF zu finden.

6.3.3.4 Hilfsklassen der Interfaces

Um das Realisieren der Interfaces fur die Entwickler zu vereinfachen und um die In-
teroperabilitat der verschiedenen Plug-Ins sicherzustellen, enthalten die vorgestellten
Schnittstellen neben der reinen Interfacebeschreibung zusatzlich folgende Hilfsklassen:

DQReader - Er lie3t mit seiner readQoDValues-Methode aus den Rohdaten alle wich-
tigen Daten aus. Dazu gehoren: Die Skala auf der die Werte liegen und die Adres-
se bei der die originalen Simulationsdaten liegen. Zusatzlich bietet er eine Liste
mit DQCalculationResults an. Dabei besteht ein DQCalculationResult immer aus
einer Beschreibung, einem Wert und dem Schwellenwert. Also Beispielsweise
»Accuracy, 0.9, 0.5

-125 -

PropertiesReader — Er lie3t mit seiner readProperties-Methode aus der Visualisie-
rungsspezifikation alle Attribute und Elemente. Zu den Attributen gehdren die Si-
mulationld und die Rolle. Als Elemente werden beispielsweise der Ein- und Aus-
gabepfad der Daten und der Request des Wissenschaftlers zurtick gegeben.

6.3.4 Registrierung der Visualisierungs-Plug-Ins

Damit die einzelnen Visualisierungs-Plug-Ins vom VisualizationMediator geladen wer-
den kénnen, mussen sie in der PluginRegister.xml registriert werden. Die folgenden
Abschnitte zeigen die jeweilige Struktur dieser Eintrage.

6.3.4.1 Registrierung eines Filter-Plug-In

Damit der VisualizationMediator ein Filter-Plug-In verwenden kann, muss es zunachst in
der Plug-In-Register.xml registriert werden. Listing 7 zeigt die Struktur der Registrierung
eines Filters in der PluglnRegister.xml.

<plugin type="dqgfilter'>
<role> ... </role>+
<simulationId> ... </simulationId>+
<url> ... </url>
<classname> ... </classnhame>
</plugin>

Listing 7: Struktur der Registrierung eines Filter-Plug-In in der PluginRegister.xml

/ plugin
Reprasentiert ein JDQVisF-Plug-In. Das type-Attribut dqfilter identifiziert es als Fil-
ter-Plug-In das vom VisualizationMediator geladen werden kann.

/ plugin / role+
Dieses Element identifiziert alle Rollen fur die das Plug-In geladen werden soll.

/ plugin / simuld+
Beinhaltet alle Simulationlds fur die dieses Plug-In geladen werden soll.

/ plugin / url
Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So kénnen auch externe Filter-Plug-Ins in das JDQVisF eingebun-
den werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive handeln
muss.

- 126 -

/ plugin / classname
Dieses Element identifiziert die Klasse die das Filterinterface implementiert. Sie
dient als Einstiegspunkt aller Filter-Plug-Ins und wird vom VisualizationMediator zu
Begin des Visualisierungsprozesses geladen.

6.3.4.2 Registrierung eines Visualizer-Plug-In

Damit der VisualizationMediator ein Visualizer-Plug-In verwenden kann, muss es in der
PluginRegister.xml registriert sein. Listing 8 zeigt die Struktur der Registrierung eines
Visualizer-Plug-In in der Register.xml.

<plugin type='dqgvisualizer's>
<role> ... </role>+
<simulationId> ... </simulationId>+
<deviceld> ... </deviceld>+
<url> ... </url>
<classname> ... </classname>
</plugin>

Listing 8: Struktur der Registrierung eines Visualizer-Plug-In in der PluginRegister.xml

/ plugin
Reprasentiert ein JDQVisF-Plug-In. Das type-Attribut dqvisualizer identifiziert es
als Visualizer-Plug-In das vom VisualizationMediator geladen werden kann.

/ plugin / role+
Dieses Element identifiziert alle Rollen fur die das Plug-In geladen werden soll.

/ plugin / simuld+
Beinhaltet alle Simulationlds fur die dieses Plug-In geladen werden soll.

/ plugin / deviceld
Beinhaltet alle Anzeigegerate fur die dieses Plug-In geladen werden soll.

/ plugin / url
Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So kdnnen auch externe Visualizer-Plug-Ins in das JDQVisF einge-
bunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive handeln
muss.

/ plugin / classname
Dieses Element identifiziert die Klasse die das Visualizerinterface implementiert.
Sie dient als Einstiegspunkt aller Visualizer-Plug-Ins und wird vom Visualization-
Mediator nach dem Filtern der Daten geladen.

- 127 -

6.3.4.3 Registrierung eines Dispatcher-Plug-In

Damit der VisualizationMediator ein Dispatcher-Plug-In flir das Versenden der generier-
ten Bilder verwenden kann, muss diese in der PluginRegister.xml registriert sein. Listing
9 zeigt die Struktur zur Registrierung eines Dispatcher-Plug-In in der PluglnRegis-
ter.xml.

<plugin type="dqdispatcher'>
<role> ... </role>+
<simulationId> ... </simulationId>+
<deviceld> ... </deviceld>+
<url> ... </url>
<classnhame> ... </classname>
</plugin>

Listing 9: Struktur der Registrierung eines Dispatcher-Plug-In in der PluginRegister.xml

/ plugin
Reprasentiert ein JDQVisF-Plug-In. Das type-Attribut dqdispatcher identifiziert es
als Dispatcher-Plug-In das vom VisualizationMediator geladen werden kann.

/ plugin / role+
Dieses Element identifiziert alle Rollen fur die das Plug-In geladen werden soll.

/ plugin / simuld+
Beinhaltet alle Simulationlds fur die dieses Plug-In geladen werden soll.

/ plugin / deviceld+
Beinhaltet alle Anzeigegerate fur die dieses Plug-In geladen werden soll.

/ plugin / url
Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So kdénnen auch externe Dispatcher-Plug-Ins in das JDQVisF einge-
bunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive handeln
muss.

/ plugin / classname
Dieses Element identifiziert die Klasse die das Dispatcherinterface implementiert.
Sie dient als Einstiegspunkt aller Disaptcher-Plug-Ins und wird vom Visualization-
Mediator nach dem Visualisieren der Daten geladen.

- 128 -

6.3.5 Realisierung der Visualisierungsspezifikationen

Dieser Abschnitt zeigt die Realisierung der vorgestellten Visualisierungsspezifikationen.

6.3.5.1 FilterSpecification

Eine FilterSpecification liegt unter dem in Kapitel 5.4.3.1 vorgestellten Namespace / res
/ visspecification / 'simuld’ / user / 'userld’ / FilterSpecification.xml. Sie existiert flr jedes
Simulationld-Userld-Paar und enthalt alle Elemente, die flr das Aufbereiten der Rohda-
ten wichtig sind.

Listing 10 zeigt den Aufbau einer FilterSpecification.xml.

<filterDescription role="Owner" simulationId=""simuld'">
<inputpath>./res/raw/'simuld'/QoDvalues.xml</inputpath>
<outputpath>./res/filtered/'simuld'/'userId'/Data.xml</outputpath>
<request>showAllData</request>

</filterDescription>

Listing 10: Aufbau der FilterSpecification.xml

/ filterDescription
Wurzelelement jeder FilterSpecification. Als Attribute hat es die Rolle und die Si-
mulationld fir die das Plug-In verwendet wird.

/ filterDescription / inputpath
Dieses Element reprasentiert den Ort an dem die Rohdaten liegen. Dabei kann es
sich insbesondere um die Daten des JDQCF handeln.

/ filterDescription / outputpath
Diese Element reprasentiert den Ort an dem die aufbereiteten Daten gespeichert
werden mussen, damit sie in den weiteren Schritten des Visualisierungsprozess
verwendet werden kdnnen.

/ filterDescription / filterRequest

Dieses Element kann zur Manipulation des Filter-Plug-Ins verwendet werden
(R14). Es wird vom JDQVisController gesetzt, sobald er einen FilterRequest von
einen JDQVisClienten empfangen hat. Ein FilterRequest kann dabei beliebige
Anweisungen enthalten die von dem Filter-Plug-In umgesetzt werden kénnen. Da-
bei kann das JDQVisF nicht garantieren, dass dieser Request auch verarbeitet
wird. Es bietet Uber dieses Element lediglich die Schnittstelle zwischen Wissen-
schaftler und Filter-Plug-In an. Die Verantwortung der Bearbeitung liegt beim Fil-
ter-Plug-In.

- 129 -

6.3.5.2 VisualizerSpecification

Eine VisualizerSpecification liegt unter dem in Kapitel 5.4.3.1 gezeigten Namespace /
res / visspecification / 'simuld’ / user / ‘userld’ / VisualizerSpecification.xml. Sie existiert
fur jedes Simulationld-Userld-Paar und definiert alle Elemente, die fur das Visualisieren
der Daten wichtig sind.

Listing 11 zeigt den Aufbau einer VisualizerSpecification.xml in Pseudo-XML.

<visualizationDescription role="Owner" simulationId=""simuId"'">
<inputpath>./res/filtered/'simuld'/'userId'/Data.xml</inputpath>
<outputpath>./res/visualized/"'simuld'/'userId'/</outputpath>
<request>Portrait</request>

</visualizationDescription>

Listing 11: Aufbau einer VisualizerSpecification.xml

/ visualizationDescription
Wurzelelement jeder VisualizerSpecification. Als Attribute hat es die Rolle und die
Simulationld fur die das Plug-In verwendet wird.

/ visualizationDescription / inputpath
Dieses Element reprasentiert den Ort an dem die Eingabedaten liegen. Dabei
kann es sich insbesondere um die zuvor aufbereiteten Daten durch ein Filter-Plug-
In handeln.

/ visualizationDescription / outputpath
Diese Element reprasentiert den Ort an dem die Visualisierungen gespeichert
werden mussen, damit sie von einem Dispatcher-Plug-In verwendet werden kon-
nen.

/ visualizationDescription / visualizationRequest

Dieses Element kann zur Manipulation des Visualizer-Plug-Ins verwendet werden
(R14). Es wird vom JDQVisController gesetzt, sobald er einen VisualizationRequ-
est von einen JDQVisClienten empfangen hat. Ein VisualizationRequest kann da-
bei beliebige Anweisungen enthalten, die von dem Visualizer-Plug-In umgesetzt
werden kénnen. Dabei kann das JDQVisF nicht garantieren, dass dieser Request
auch verarbeitet wird. Es bietet Uber dieses Element lediglich die Schnittstelle da-
fur an. Die Verantwortung liegt bei dem Plug-In-Entwickler.

6.3.5.3 DispatcherSpecification

Eine DispatcherSpecification liegt unter dem in Kapitel 5.4.3.1 vorgestellten Namespace
/ res / visspecification / 'simuld’ / user / 'userld’ / DispatcherSpecification.xml. Sie exis-

- 130 -

tiert fur jedes Simulationld-Userld-Paar und definiert alle wichtigen Elemente, die fur
das Versenden der Daten wichtig sind.

Listing 12 zeigt den Aufbau einer DispatcherSpecification.

<dispatchDescription role="Owner" simulationId=""simuld'">
<inputpath>./res/visualized/'simuld'/"userId'/</inputpath>
<inputpathRaw>./res/raw/"'simuld'/</inputpathRaw>
<outputAddress>

http://192.168.1.2/3DQVis/"simuld'/visualizations/'userld'/
</outputAddress>

<cachepathRaw>./cache/"'simuld'/raw/</cachepathRaw>

<cachepathVisualization>./cache/"'simuld'/visualization/"userld'/</cache
</dispatchDescription>

Listing 12: Aufbau einer DispatcherSpecification.xml

/ dispatchDescription

Wurzelelement jeder DispatchSpecification. Als Attribute hat es die Rolle und die
Simulationld fir die das Plug-In verwendet wird.

/ dispatchDescription / inputpath

Dieses Element reprasentiert den Ort an dem die Visualisierungen als Eingabeda-
ten liegen.

/ dispatchDescription / inputpathRaw

Dieses Element reprasentiert den Ort an dem die Simulationsdaten als Eingabe-
daten liegen.

/ dispatchDescription / outputaddress

Diese Element reprasentiert die Adresse an die das Dispatcher-Plug-In die Daten
versenden soll.

| dispatchDescription / cachpathRaw

Dieses Element reprasentiert die Adresse des Caches an den die Simulationsda-
ten zusatzlich kopiert werden kénnen.

| dispatchDescription / cachpathVisualization

Dieses Element reprasentiert die Adresse des Caches an den die Visualisierungen
zusatzlich kopiert werden kénnen.

-131 -
6.4 Umsetzung der Plug-Ins

Dieses Kapitel beschreibt die Entwicklung von Plug-Ins zur Erweiterung des JDQVisF.
Dazu wird jeweils ein Authorizer-, ein Filter-, ein Visualizer-, ein Dispatcher- und ein Si-
mulationController-Plug-In beschrieben.

Bevor die einzelnen Implementierungen vorgestellt werden, wird zunachst der grund-
satzliche Ablauf bei der Entwicklung eines Plug-Ins zur Erweiterung des JDQVisF ge-
zeigt:

Schritt 1: Einbindung des Interface.jar — Fur die Entwicklung eines neuen Plug-Ins ist
es notwendig, das entsprechende Interface.jar in den Java Build Path einzubin-
den. Das Interface.jar findet der Entwickler in dem vorgestellten Namespace /res /
interfaces (siehe Kapitel 5.4.3.3).

Schritt 2: Implementierung — Damit das JDQVisF das neue Plug-In verwenden kann,
ist es notwendig die entsprechenden Interfaces zu Implementieren.

Schritt 3: Test — Da das JDQVisF keine Kontrolle Uber die Korrektheit der Plug-Ins hat,
ist es sehr wichtig das neue Plug-In gewissenhaft zu testen um Fehler zur Laufzeit
zu vermeiden.

Schritt 4: Einbindung in das JDQVisF — Nach dem erfolgreichen Testen, wird das
neue Plug-In in den vorgestellten Namespace (siehe Kapitel 5.4.3.2) als lauffahi-
ges .jar-Archiv exportiert. Lauffahig bedeutet in diesem Fall, dass alle vom Plug-In
bendtigten Ressourcen in dem .jar-Archiv enthalten sind.

Schritt 5: Registrierung in der PluglinRegister.xml — Damit das neue Plug-In zur
Laufzeit vom JDQVisF geladen werden kann, muss es in der PluginRegister.xml
reqgistriert werden. Dazu werden beispielsweise die URL, unter der das Plug-In ge-
funden werden kann, und eine Simulationld, fur die das Plug-In verwendet werden
soll, eingetragen. Die genauen Eintrage wurden, fur Authorizer-Plug-Ins in Kapitel
6.2.1.2, fur SimulationController-Plug-Ins in Kapitel 6.2.4.2.2 und fur Plug-Ins zur
Erweiterung der Visualisierungspipeline im Kapitel 6.3.4, gezeigt.

6.4.1 Beispielimplementierung eines Authorizer-Plug-In

Ein Authorizer-Plug-In wird von JDQVisController zur Autorisierung eines Wissenschaft-
lers flr eine Simulation geladen. Das bedeutet, dass fur jede Simulation innerhalb des
JDQVisF ein Authorizer-Plug-In existieren muss.

Das hier entwickelte Authorizer-Plug-In realisiert das AuthorizationInterface (siehe Kapi-
tel 6.2.1.1) und implementiert die authorize-Methode. Diese bekommt als Eingabe einen

-132 -

Benutzernamen und ein Passwort und gibt ein JDQVisUser-Objekt zurtck. Sind die
Anmeldedaten nicht korrekt, wird null zurtick gegeben.

Zur Uberpriifung der Benutzerdaten besitzt das Plug-In ein XML-Dokument. Es enthalt
alle an der Simulation beteiligten Wissenschaftler mit ihrer Rolle. Listing 13 zeigt einen
Beispieleintrag.

<user name='aName' password='123"'>
<userld>aUserlId</userId>
<role>0Owner</role>

</user>

Listing 13: Beispieleintrag in die Benutzerdatenbank des Authorizer-Plug-Ins

6.4.2 Beispielimplementierung eines Filter-Plug-In

Fir die Datenaufbereitung kdénnen in die Visualisierungspipeline eines Visualization-
Mediator Filter-Plug-Ins eingebunden werden. Dieser Abschnitt beschreibt eine Bei-
spielimplementierung eines Filters, der das Filterinterface (siehe Kapitel6.3.3.1) reali-
siert. Um die vielseitigen Mdglichkeiten eines Filter-Plug-Ins zu zeigen, wird ein Filter fur
einen Wissenschaftler mit allen Rechten gezeigt. Fiir die Uberwachung der Simulation
soll der Wissenschaftler neben den Datenqualitatsvisualisierungen, zusatzlich Visuali-
sierungen der originalen Simulationsdaten angezeigt bekommen. Die Simulationsdaten
liegen dabei auf einem externen Server und mussen durch das Filter-Plug-In vor der
Visualisierung geladen und aufbereitet werden.

Der Einstiegspunkt des Filter-Plug-Ins ist die filterData-Methode. Diese bekommt als
Parameter den Pfad zu einer passenden FilterSpecification (siehe Kapitel 6.3.5.1).

Abbildung 6-9 zeigt vereinfacht die einzelnen Schritte der Datenaufbereitung innerhalb
des Filters als Sequenzdiagramm ohne technische Details.

- 133 -

:DQFilter :PropertiesReader

|

|

|

|
——

filterData(filterSpecPath)

newlnstance(filterSpecPath).__

readProperties()
propertiesReader
é ___________________
:DQReader

newlnstance(propertiesReader.inputPath)
readDQValues()
dqRead
_ ____doReader ___________________

QdeleteFiles(propertiesReader.outputPath) :

QdereferenceSimuIationData(dgReader.simudataURL)

QsetNewSimuIationDataPath()

QwriteNeroDFiIe()

e
|
|

Abbildung 6-9: Sequenzdiagramm des Filter-Plug-Ins

Im ersten Schritt instanziiert der Filter einen PropertiesReader und einen DQReader.
Diese stellen alle wichtige Informationen wie den Ein- und Ausgabepfad und die Refe-
renz der Simulationsdaten bereit (siehe Kapitel 6.3.3.4).

Anschlie®end ldscht das Filter-Plug-In alle alten Dateien innerhalb des Ausgabepfades
(siehe Kapitel 5.4.3.1). Dadurch wird sicher gestellt, dass ein Visualizer-Plug-In nur die
Daten erhalt die es fur die Visualisierung bendtigt.

Im dritten Schritt 1adt der Filter die referenzierten Simulationsdaten von einem Server
und kopiert sie in den Namespace aus Kapitel 5.4.3.1. Die Adresse des Servers, bei
dem die Simulationsdaten liegen, ist in den Rohdaten (QoDValues.xml, siehe Kapitel
6.2.3) enthalten und wird mit Hilfe des DQReader ausgelesen.

Anschlie®end wird die Adresse der Simulationsdaten auf den neuen lokalen Pfad des
JDQVisF gesetzt und die modifizierte QoDValues.xml an den entsprechenden Name-
space aus Kapitel 5.4.3.1 geschrieben.

Da es sein kann, dass zu einer Simulation keine externen Daten angegeben sind, wer-
den hier die oben genannten Schritte fur das Laden der Simulationsdaten Ubersprungen
und nur die Datenqualitatswerte entsprechend verarbeitet.

134 -

6.4.3 Beispielimplementierung eines Visualizer-Plug-In

Ein Visualizer-Plug-In realisiert die zweite Stufe der Visualisierungspipeline eines Visua-
lizationMediator und implementiert das Visualizerinterface (siehe Kapitel 6.3.3.2). In
diesem Kapitel wird ein Visualizer-Plug-In vorgestellt, welches die Dataqualitatsvisuali-
sierungen aus Kapitel 3.9.2 generiert und in Kombination mit den Visualisierungen der
Simulationsdaten zu einem Gesamtbild zusammenfigt. Das beutetet, dass es die
Schritte Mapping und Rendering der Visualisierungspipeline Gbernimmt und die fertigen
Bilder fUr die Anzeigegeraten bereitstellt. Zusatzlich bietet das Visualizer-Plug-In einem
JDQVisClient die Moglichkeit, die Bildgenerierung mit Hilfe eines Requests (siehe Kapi-
tel 6.3.5.2) zu steuern. Der Wissenschaftler kann dadurch wahlen ob er nur Datenquali-
tatsvisualisierungen im Querformat oder Datenqualitatsvisualisierungen zusammen mit
Simulationsvisualisierungen im Hochformat angezeigt bekommt (siehe Appendix A und
B).

Abbildung 6-10 zeigt ein vereinfachtes Sequenzdiagramm mit allen wichtigen Schritten
fur die Generierung der Visualisierungen. Dabei wird zwischen den beiden Alternativen
Landscape und Portrait, gekennzeichnet durch alt, unterschieden. Technische Details
werden fiir eine besseren Ubersicht weggelassen.

- 135 -

:DQVisualizer :PropertiesReader

visualizeData(visSpecPath)

newlInstance(visSpecPath)

readProperties()
propertiesReader

:DQReader

newlnstance(propertiesReader.inputPath) .

dgReader

readDQValues()

alt
[Request = "Landscape"]

alt
[Request = "Portrait"]

Q generatePortraitimage()

Abbildung 6-10: Vereinfachter Ablauf des Visualizer-Plug-In mit zwei alternativen

Im ersten Schritt werden jeweils ein PropertiesReader und ein DQReader instanziiert.
Sie stellen alle wichtigen Pfade und Daten flir die Visualisierung bereit (siehe Kapitel
6.3.3.2). Anschlieltend wird je nach Request ein Bild, das entweder eine nur Datenqua-
litatsvisualisierungen oder Datenqualitatsvisualisierungen mit Simulationsvisualisierun-

gen enthalt, generiert und an den entsprechenden Namespace aus Kapitel 5.4.3.1 ge-

speichert.

Q writeFile(propertiesReader.outputPath)

Pfaden

- 136 -

Der folgende Abschnitt beschreibt beispielhaft das Visualisieren der einzelnen Daten-
qualitatsdimensionen anhand der Dimension Rechtzeitigkeit (siehe Kapitel 3.9.2.2). Der
grundsatzliche Ablauf ist bei allen Dimensionen der gleiche.

Visualisierung der Dimension Rechtzeitigkeit

Die Visualisierung der Dimension Rechtzeitigkeit gliedert sich in zwei Teile. Zuerst wird
ein Basisbild geladen. Je nachdem ob der Datenqualitatswert grof3er oder kleiner ist als
der Schwellenwert, ist das ist ein Wecker mit grinem oder rotem Ziffernblatt. Abbildung
6-11 zeigt die beiden Basisbilder.

(t)
)

Abbildung 6-11: Basisbilder der Dimension Rechtzeitigkeit. Links schlechte, rechts gute
Datenqualitat

Anschlieend werden der Datenqualitatswert und der Schwellenwertes als Zeiger in das
Bild gezeichnet. Zum leichtern Erfassen werden die Werte zusatzlich unter dem Icon als
Zahlenwert geschrieben (Abbildung 6-12).

Timeliness Timeliness

(()
)

0.38 1 0.6 0.7 10.6

Abbildung 6-12: Visualisierung der Dimension Rechtzeitigkeit mit den eingefiigten QoD-
und Schwellenwerten. Links schlechte, rechts gute Datenqualitat

6.4.4 Beispielimplementierung eines Dispatcher-Plug-In

Ein Dispatcher-Plug-In wird am Ende der Visualisierungspipeline vom VisualizationMe-
diator geladen. Es versendet die generierten Visualisierungen an die angegebene Ad-

- 137 -

resse aus der DispatcherSpezfication.xml (Kapitel 6.3.5.3). Grundsatzlich kbnnen dabei
alle moéglichen Versandarten und -protokolle umgesetzt werden.

Als Beispielimplementierung wird ein Dispatcher-Plug-In gezeigt, welches die generier-
ten Visualisierungen auf einen Server kopiert. Von diesem kénnen die Visualisierungen
anschlieRend Uber URL-Anfragen von den Anzeigegeraten geladen werden. Diese
URLs sind fur alle Userlds unterschiedlich, so dass jeder Wissenschaftler genau die
Visualisierungen angezeigt bekommt, die fur ihn generiert wurden.

Abbildung 6-13 zeigt einen vereinfachten Ablauf ohne technische Details.

‘ :DQVisualizer | ‘:PropertiesReader'

| |

| |

| |

dispatchData (specPath) L :
> !

|

newlnstance (specPath)

readProperties()
propertiesReader

Q deleteOldFiles (propertiesReader.outputPath)
Q copyNewFilesTo (propertiesReader.outputPath)

Q deleteFiles (propertiesReader.inputPath)

-
l
|
|

Abbildung 6-13: Vereinfachter Ablauf eines Dispatcher-Plug-Ins

Im ersten Schritt wird ein PropertiesReader, der die URL des Ausgabepfades enthalt,
instanziiert. Anschlielend werden alle Dateien die sich im spateren Zielverzeichnis des
Server befinden geléscht. Dadurch wird sicher gestellt, dass dem Wissenschaftler im-
mer die aktuellsten Visualisierungen angezeigt bekommt. Im nachsten Schritt werden
alle Dateien die sich im Eingabepfad befinden in das Zielverzeichnis des Server kopiert
und somit dem Wissenschaftler zur Verfugung gestellt. Im letzten Schritt werden alle
neuen Visualisierungen im Eingabeverzeichnis geldscht. Dadurch wird sichergestellt,
dass im nachsten Verteilungsdurchgang keine alten Daten an den Server Ubergeben
werden.

- 138 -

6.4.5 Beispielimplementierung eines SimulationController-Plug-in

Ein SimulationController-Plug-In ist eine Erweiterung des JDQVisF, mit dessen Hilfe der
Wissenschaftler in die laufende Simulation eingreifen kann. Es wird vom JDQVisCon-
troller beim Empfang eines Steuerungsbefehls geladen und dessen processSimulation-
Request-Methode aufgerufen.

Da der Fokus dieser Arbeit auf dem Visualisieren von Datenqualitat liegt, wird in diesem
Abschnitt lediglich eine prototypische Umsetzung eines SimulationController-Plug-Ins
gezeigt. Dieses 06ffnet ein Fenster, das den Steuerungsbefehl und die Userld des Wis-
senschaftlers anzeigt. Ein Wissenschaftler kann dann diesen Request, beispielsweise
als Web Services Human Task (WS-HumanTask) [38], in der laufende Simulation aus-
fuhren. (Siehe Kapitel 7.4)

8 O O

Request Abort

User aUserld

Send to Simulation-Workflow

Cancel

Abbildung 6-14: Beispielimplementierung eines SimulationController-Plug-In

-139 -
6.5 Der JDQVisClient

Diese Kapitel beschreibt das JDQVisF aus Sicht der JDQVisClienten. Es zeigt welche
Interaktionsmdglichkeiten diese mit dem JDQVisF haben und wie diese umgesetzt wer-
den kénnen.

Das JDQVisF ist ein WebService fur Visualisierung von Datenqualitatswerten. Es bietet
uber seine WSDL-Datei seinen potentiellen Clients alle nétigen Informationen an.

6.5.1 Registrierung am JDQVisF

Damit ein Wissenschaftler seine Simulation mit Hilfe des JDQVisF Uberwachen kann
bendtigt er mindestens ein Client-Programm, das dessen WSDL-Datei interpretieren
kann und die registerUser-Methode des JDQVisController aufruft.

Listing 14 zeigt den Aufbau einer registerUser-SOAP-Nachricht des Client fur die Re-
gistrierung am JDQVisF.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:registerUser xmlns:ns2="http://user.jdqvis.com/">
<simulationId>exampleSimulation</simulationId>
<username>exampleUsername</username>
<password>123</password>
<deviceld>default</deviceld>
</ns2:registerUser>
</S:Body>
</S:Envelope>

Listing 14: Aufbau einer registerUser-Message

/ registerUser
Dieses Element beschreibt die Methode des JDQVisController fur die Benutzerre-
gistrierung.

/ registerUser / simulationld
Dieses Element kennzeichnet die Simulationld fir die sich der Wissenschaftler
anmelden moéchte. Der JDQVisController wahlt anhand dieser Simulationld das
passenden Authorizer-Plug-In aus.

/ registerUser / username
Dieses Element ist der Benutzername, der durch das Authorizer-Plug-In validiert
wird.

- 140 -

/ registerUser / password
Dieses Element ist das Passwort, das durch das Authorizer-Plug-In validiert wird.

/ registerUser / deviceld

Dieses Element beschreibt das Anzeigegerat flr das die Visualisierungen gene-
riert werden sollen. Dabei ist zu beachten, dass passende Visualizer-Plug-Ins
beim JDQVisF registriert sind (siehe Kapitel 6.3.4). Hier muss nicht das aktuelle
Gerat, das zur Registrierung am JDQVisF verwendet wird angegeben werden.
Beispielsweise kdnnte ein Client-Programm nur flr die Registrierung eingesetzt
werden. Der Wissenschaftler konnte die Visualisierungen zu einem spateren Zeit-
punkt Uber einen Internetbrowser betrachten.

Ist der Wissenschaftler erfolgreich am JDQVisController angemeldet, erhalt er von die-
sem seine Userld als Antwort.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:registerUserResponse xmlns:ns2="http://user.jdqvis.com/">
<return>exampleUserId</return>
</ns2:registerUserResponse>
</S:Body>
</S:Envelope>

Listing 15: Antwort des JDQVisController bei erfolgreicher Anmeldung

6.5.2 Beschreibung der Benutzerinteraktionen

Ein Wissenschaftler kann mit Hilfe des JDQVisF zum einen die Visualisieren beeinflus-
sen und zum anderen die laufende Simulation steuern. Dazu bietet das JDQVisF zwei
Arten von Benutzeranfragen an. Zum einen die VisualizationControlRequests und Fil-
terControlRequests zur Beeinflussung der Visualisierungs-Plug-Ins und zu anderen die
SimulationControlRequests zur Steuerung der SimulationController-Plug-Ins. Die Tren-
nung dieser Methoden wurde in den vorangegangenen Kapiteln argumentiert.

6.5.3 Beeinflussung der Generierungen einer Visualisierung

Der Wissenschaftler kann die Visualisierungs-Plug-Ins mit Hilfe von VisualizationCon-
trolRequests oder FilterControlRequest beeinflussen. Dazu bietet der JDQVisController
in der WSDL-Datei die modifyVisualizerSpecification() und modifyFilterSpecification()
Methoden an. Diese erhalten als Parameter die Userld, Simulationld und die gewlnsch-
te Modifikationen.

Der JDQVisController passt Uber diese Methoden die entsprechende Filter- oder Visua-
lizerSpecification des Wissenschaftlers flr die angelmeldete Simulation an. Somit wird

141 -

beim nachsten Visualisierungsaufruf die veranderte Visualisierungsspezifikation in den
Plug-Ins verarbeitet. Damit ein Filter- oder VisualizationRequest von einem Plug-In um-
gesetzt werden kann, muss dieser auch implementiert sein. Das bedeutet insbesonde-
re, dass es eine Kopplung zwischen Clientprogramm und den Visualisierungs-Plug-Ins
gibt. FUr jede im Clientprogramm maogliche Interaktion muss die entsprechenden Reali-
sierung in den Plug-Ins existieren.

Abbildung 6-15 zeigt beispielhaft die Steuerung des Filter-Plug-Ins durch ein Client-
Programm. Der rote Pfeil kennzeichnet die einzelnen Verarbeitungsschritte.

Server readFilterRequest:
“OnlyQOD“ {---}

1
modifyFilterSpezification("onlyQoD") modified FilterSpezification Filter
-----------------.Plug-ln

v
P []
-

~JDQVisController VisualizationMediator

Dispatcher
Plug-In

...............................

ModifyFilterSpezification-Message

' rics. firstmetriod/MatricTd>

41.1:1121/receiver

pression>

O Visualize all data

@ Visualize only QoD

O Show only Simulatondata

Abbildung 6-15: Steuerung des Filter-Plug-Ins durch ein Client-Programm. Der rote Pfeil
markiert die Bearbeitung des FilterRequest

Durch die Registrierung der Plug-Ins fir eine bestimmte Rolle wird zusatzlich sicherge-
stellt, dass nur VisualizationRequests verarbeitet werden, fur die der JDQVisClient auch
die Rechte besitzt. Beispielsweise kann ein Wissenschaftler festlegen, dass er nur bei
Unterschreitungen eines Schwellenwertes informiert wird. Ein Hilfswissenschaftler kann
dagegen keine Auswahl der Daten vornehmen und muss dadurch die ihm zugeteilte
Datenmenge auswerten.

Das JDQCF koénnte Uber die Angabe von XPath-Ausdricken ebenfalls so manipuliert
werden, dass es nur bestimmt Daten als Eingabedaten an das JDQVisF sendet. Diese
Form der Manipulation wird aber vom JDQVisF nicht unterstitzt, da es zu Folge hatte,

142 -

dass alle JDQVisClients von der Anderung betroffen wéren. Ist eine solche globale Ma-
nipulation den Wissenschaftlern gewilnscht, so gibt es zwei Mdglichkeiten dies Umzu-
setzen. Zum einen koénnen entsprechende Filter-Plug-Ins fur die betroffene Rolle und
Simulation in das JDQVisF eingebunden werden. Zum anderen kann das JDQCF durch
das Einbinden eines ExternalTasks dahingehend modifiziert werden [1].

Listing 16 zeigt den Aufbau einer modifyFilterSpecification-Nachricht in der ein
JDQVisClient festlegt, dass er nur visualisierte Datenqualitadtswerte empfangen maochte.
Das Laden der Simulationsdaten innerhalb des Filter-Plug-Ins ist somit nicht nétig.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:modifyFilterSpezification xmlns:ns2="http://user.jdqvis.com/">
<userId>exampleUserId</userId>
<simulationId>exampleSimulation</simulationId>
<filterReqgeust>0nlyQoD</filterReqgeust>
</ns2:modifyFilterSpezification>
</S:Body>
</S:Envelope>

Listing 16: Aufbau einer modifyFilterSpecification-Nachricht

6.5.4 Steuerung der Simulation durch einen SimulationControlRequests

Das JDQVisF bietet den Wissenschaftlern Uber die SimulationControlRequests eine
Madglichkeit in die laufende Simulation einzugreifen. Dazu bietet der JDQVisController in
der WSDL-Datei die sendSimulationControlRequest()-Methode an. Diese erhalt als Pa-
rameter die Userld und den Steuerbefehl.

Empfangt der JDQVisController Uber diese Methode einen Steuerungsbefehl, leitet er
diesen an das entsprechende SimulationController-Plug-In weiter welches ihn verarbei-
ten kann.

- 143 -

7 Ausblick

Durch die vorgestellte flexible Architektur sind verschiedenste und breit gestreute Ein-
satzgebiete fur das JDQVisF denkbar. In diesem Kapitel werden mogliche zukunftige
Arbeiten im Zusammenhang mit dem JDQVisF vorgestellt.

71 Integration in die Simulation-Workflowumgebung

Durch die Integration in eine existierende Simulation-Workflow-Umgebung, kdénnte das
JDQVisF den Wissenschaftlern helfen, eine laufende Simulation anhand visualisierter
Datenqualitatswerte zu Uberwachen. Denkbar ware, dass das JDQVisF zusammen mit
dem JDQCF als gemeinsamer Datenqualitatsservice in den Workflow integriert wird.
Dadurch kdnnten sie als eine Einheit fiir die Uberwachung und Steuerung der Simulati-
on eingesetzt werden.

Ein weitere Mdglichkeit ware das JDQVisF in die Service Discovery eines Enterprise
Service Bus (ESB) zu integrieren. In einer parallel zu dieser Arbeit entstehenden Diplo-
marbeit wird ein Enterprise Service Bus entwickelt, welcher eine datenqualitats-
gesteuerte Service Discovery auf Basis der WS-Policy Spezifikation ermdglicht. Durch
spezielle Visualisierungen kdonnten die zum Teil komplexen Abhangigkeiten zwischen
Datenqualitatsanforderungen und Datenqualitatszusicherungen bei der Service Dis-
covery verstandlich wiedergegeben werden. Insbesondere kénnten durch die Integrati-
on des JDQVisF in den ESB auch dessen Entscheidungen bei der Serviceauswahl den
beteiligten Wissenschaftler visuell prasentiert werden.

Eine weitere Anwendung kénnte die Auswahl geeigneter Services auf Grundlage der
visualisierten Datenqualitatswerte durch die Wissenschaftler sein.

7.2 Visualisierung weiterer Datenqualitaten

In dieser Arbeit wurde das Gebiet der Datenqualitat in einem engen Rahmen durch die
vorgestellten sechs Datenqualitatsdimensionen betrachtet. Bei komplexen FEM-
basierten Simulationen, haben die Wissenschaftler jedoch zusatzlich Anspriche an die
Daten, wie beispielsweise an die Matrixpopulation oder die Hauptdiagonale einer Mat-
rix. Um auch solche Datenqualitatsdimensionen durch das JDQVisF visualisieren zu
kénne, mussen entsprechende Plug-Ins entwickelt und in dieses eingebunden werden.

Fir reine Datenqualitaten kdnnte zudem eine einheitliche Visualisierung durch Stan-
darddiagramme in das JDQVisF eingebunden werden. Diese haben den Vorteil, dass
sie der Gefahr einer mdglichen Fehlinterpretation durch eine einheitliche Darstellung

- 144 -

entgegen wirken und dadurch eine gemeinsame Kommunikationsgrundlage fur die un-
terschiedlichen Domanenspezialisten bilden kénnen.

7.3 Entwicklung von domanen-spezifischen Plug-Ins

Die flexible Architektur des JDQVisF ermdglicht es, domanen-spezifische Visualisierun-
gen zu generieren oder simulationsabhangige Autorisierungen und Steuerungen einzu-
binden. Speziell bei der Generierung der Visualisierungen kdnnen leicht neue Algorith-
men eingebunden werden. Eine mdgliche Erweiterung ware, neben den reinen Daten-
qualitatswerten, eine Kombination aus diesen mit den originalen Simulationsdaten dar-
zustellen. Dabei kénnte eine kombinierte Visualisierung generiert werden, die dem Wis-
senschaftler direkt anzeigt in welchem Bereich seiner Simulationsdaten welche Daten-
qualitat herrscht. Abbildung 7-1 zeigt ein mogliches Beispiel in der die Stellen rot mar-
kiert werden, bei denen die berechneten Simulationsdaten nicht mit den tatsachlichen
Daten, die aus Lehrblchern bekannt sind, Ubereinstimmt.

Consistency: 0.3

Abbildung 7-1: Beispiel: Datenqualitdtsvisualisierungen innerhalb der Simulationsdaten

7.4 Integration eines WS-HumanTask Systems

Das JDQVisF visualisiert die zuvor berechneten und interpretierten Datenqualitatswerte.
Soll die Datenqualitat jedoch von einem Wissenschaftler bewertet werden, kénnte das
JDQVisF diesem nur zuvor berechneten Metrik-Ergebnisse visuell prasentieren. Diese
konnen anschlielfend von dem Wissenschaftler interpretiert werden.

Fir die Umsetzung einer solchen subjektiven Bewertung oder zur Steuerung der lau-
fenden Simulation, kdnnte die Integration eines WS-HumanTask-Systems [38] in das
JDQVisF erfolgen. Es erlaubt Menschen in einen Simulation-Workflow einzubinden und
Aufgaben auszufihren. Mit Hilfe eines geeigneten Client-Programms, konnten Wissen-

- 145 -

schaftler so die visualisierten Simulationsdaten bewerten und mit Hilfe eines Simulati-
onController-Plug-Ins und des JDQVisF an den Simulation-Workflow weiterleiten (siehe

Abbildung 7-2).

Simulation-Workflow

JDQVisF @V Ees Xz o0

uonezijensip

uonelaidieyu|

T

Abbildung 7-2: WS-HumanTask zur Bewertung der Datenqualitat

- 146 -

Literaturverzeichnis

[1]
[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

U. Breitenblcher: Datenqualitat in Simulations-Workflows, 2011

C. Batini, M. Scannapieco: Data Quality — Concepts, Methologies and Tech-
nics: Spinger, 2006

S. Schick, B. Theobald: Informationsvisualisierung im WM: Projekt Wissens-
management Universitat des Saarlands, 2005

ITWissen — Home: http://www.itwissen.info/definition/lexikon/Daten-data.html,
Abgerufen am 14. Mai 2012

T. Hey, S. Tansley, K. Tolle, Herausgeber: The Fourth Paradigm: Data-
Intensive Scientific Discovery: Microsoft Reserch, 2009

International Association for Information and Data Quality — Home:
http://iaidg.org/main/glossary.shtml#l, Abgerufen am 14. Mai 2012

M. Reiter, H. Truong, S. Dustdar, D. Karastoyanova, R. Krause, F. Leymann,
D. Pahret: On Analyzing Quality of Data Influences on Perfomance of Finite
Elements driven Computional Simulations, 2012

R. Y. Wang, D.M. Strong: Beyound Accurancy: What Data Quality Means to
Data Consumer, 1996

L. L. Pipino, Y. W. Lee, R. Y. Wang: Data Quality Assessment, 2002
SKA — Home: www.ska.goc.au, Abgerufen am 15. Mai 2012

CERN — Home: http://public.web.cern.ch/public/en/LHC/LHC-en.html, Abgeru-
fen am 15. Mai 2012

Pan-STARS — Home: http://pan-starrs.ifa.hawaii.edu/public , Abgerufen am
15. Mai 2012

S. Hartmann: The World as a Process: Simulations in the Natural and Social
Sciences, 2005.

T. Schlegel: Graphical-Interactive Systems, Institut fur Visualisierung, Univer-
sitat Stuttgart, WS 09/10

R. DaRler: Informationsvisualisierung — Stand, Kritik und Perspektiven, 1999

J. Rang: Visualisierung wissenschaftlicher Daten, TU Braunschweig, 2006

H. Schuhmann, W. Mdller: Visualisierung — Grundlagen und allgemeine Me-
thoden, 2000

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

- 147 -
S, Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson: Web
Services Platform Architecture, 2005

M. Burch: Informationsvisualisierung, Institut flr Visualisierung und Interaktive
Systeme, Universitat Stuttgart, WS 11/12

Prof. D. Jackél, Dr.-Ing. B. Karstens, C. Becker: Vortragsseminar: Visuelle
Wahrnehmung und 3D-Displays, Objektwahrnehmung und Gestaltgesetzte
nach Wertheimer, Universitat Rostock, WS00/01

J. Bertin: Grafische Darstellung und die graphische Weiterverarbeitung der
Information, 1982

Leibniz-Institut fur Landerkunde — Home: http://www.nationalatlas.de/
deutscher-nationalatlas%20/kartographie/grundelemente-der-karte/

L. Sijvesma: Colloquim Map Design, 2009

Prof. A. Schmidt, Institut flr Visualisierung und Interaktive Systeme, Universi-
tat Stuttgart, Personliches Gesprach, 3. Juli 2012

J. W. Seifert: Visualisieren, Prasentieren, Moderieren, 2001

M. Reiter, Institut fir Architektur von Anwendungssystemen, Universitat Stutt-
gart, Personliches Gesprach, 18. September 2012

R. Sulo, S. Eick, R. Grossman: Davis: A Tool for Visualizing Data Quality,
2005

M. Reiter, U. Breitenbucher, D. Karastoyanova, O. Kopp: Quality Driven Simu-
lation-Workflows, 2012

W3C- Home: http://www.w3.org/TR/ws-arch/#whatis, Abgerufen am 29. Sep-
tember 2012

K. Gdrlach, M. Sonntag, D. Karastoyanova, F. Leymann, M. Reiter: Conventi-
onal Workflow Technology for Scientific Simulations, 2011

H. Motahari-Nezad, B. Stephanson, S. Singhai: Outsourcing Business to
Cloud Computing, 2009

A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez:
Web services policy 1.5-framework: W3C Recommendation, 2007

F. Leymann: Web Services, Institut fur Architektur von Anwendungssystemen,
Universitat Stuttgart, WS 11/12

W3C — Home: http://www.w3.org/ XML, Abgerufen am 4. Oktober 2012

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

- 148 -

Portable Network Graphic — Home: http://www.libpng.org/pub/png/, Abgerufen
am 3. Oktober 2012

OnlyOpenSource — Home: http://www.only-open-source.com/dokus/3d-
visualisierungsformate.html#vrml, Abgerufen am 24. Oktober 2012

Woérterbuchsubstanz aus: Duden — Wissensnetz deutsche Sprache, 2011

A. Agrawal, M. Amend, M. Kloppmann, D. Koénig, F. Leymann, et al.: Web
Services Human Task (WS-HumanTask), Version 1.0, 2007.

W. Bils: Warum das Auge sehen kann, Quelle & Meyer, 2010

H. L. Truong, S. Dustar: On Evaluating an Publishing Data Concerns for Data
as a Service, Distributed System Group, Vienna University of Technology

E. Gamma, R. Helm, R. E. Johnson, J. Vlissides: Design Patterns. Elements
of Reusable Object-Oriented Software, 1994

M. Kate Beard: NCGIA Research Initiative 7 Visualization of Spatial Data
Quality, University of Maine, 1991

8

Appendix A — Beispielvisualisierung Datenqualitat

Accuracy Consistency Timeliness

0851 0.5 03107 0.62 1 0.6

Completeness Currency Volatility

, AP

0.77 1 0.6 0851 0.7 0.210.6

9

Appendix B — Beispielvisualisierung Datenqualitat mit origina-

len Simulationsdaten

@

N7

085105 0310.7 0.62 1 0.6

0.77 1 0.6 096 | 0.7 0.210.6

Erklarung

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbststandig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie alle wortlich
oder sinngemald ubernommenen Stellen in der Arbeit gekennzeichnet habe. Die Arbeit
ist in gleicher oder ahnlicher Form noch nicht als Prafungsarbeit eingereicht worden.

(Marcel Russ)

