

Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3335

Framework für die Visualisierung
von Datenqualität in

Simulation-Workflows

Marcel Russ

Studiengang: Softwaretechnik

Prüfer: Jun.-Prof. Dr. Dimka Karastoyanova
Betreuer: Dipl.-Math. Michael Reiter
Begonnen am: 30. April 2012
Beendet am: 30. Oktober 2012

CR-Klassifikation: C.2.1, C.2.4, D.2.2, D.2.11, D.2.12 D.2.13, E.1, E.1,

H.1.2, H.3.5, H.5.2, H.5.3, I.3.2, I.6.7, J.2

- 1 -

- 2 -

Zusammenfassung

In dieser Arbeit wurde ein Konzept für das Visualisieren von Datenqualität in Simulation-
Workflows entwickelt und durch ein Java Framework (Java Data Quality Visualization
Framework) realisiert. Es ermöglicht Wissenschaftlern laufende Simulationen, anhand
visualisierter Datenqualitätswerte, zu überwachen und bei Bedarf in diese einzugreifen.
Das Framework unterstützt dabei mehrere Simulationen und unterscheidet die abge-
stuften Rechte der beteiligen Wissenschaftler – sowohl bei der Generierung der Visuali-
sierungen, als auch bei der Weiterleitung von Steuerungsbefehlen an den Simulation-
Workflow.
Während der Überwachung behält der Wissenschaftler die Kontrolle über die gesamte
Visualisierungspipeline. Er kann dadurch interaktiv in die einzelnen Schritte eingreifen
und die Visualisierung, seinen individuellen Anforderungen entsprechend, anpassen.
Des Weiteren unterscheidet das Konzept die unterschiedlichen Arten von Anzeigegerä-
ten bei der Erstellung der Visualisierung. Dadurch ermöglicht es das Framework, für
leistungsstarke Geräte komplexe Geometriemodelle und für leistungsschwache einfa-
che Bilder zu erzeugen.

- 3 -

Inhaltsverzeichnis

1	
 Einleitung .. 11	

1.1	
 Aufgabenstellung .. 13	

1.2	
 Verwandte Arbeiten .. 14	

1.3	
 Struktur der Arbeit ... 15	

1.4	
 Notation und Schreibstil .. 16	

2	
 Grundlagen ... 17	

2.1	
 Daten .. 17	

2.1.1	
 Definition des Begriffs Daten .. 17	

2.1.2	
 Struktur ... 18	

2.1.3	
 Änderungsrate .. 18	

2.1.4	
 Visualisierung von Daten .. 19	

2.2	
 Simulation ... 19	

2.3	
 Datenqualität ... 20	

2.3.1	
 Definition von Datenqualität .. 21	

2.3.2	
 Dimensionen von Datenqualität .. 21	

2.3.3	
 Java Data Quality Calculation Framework ... 23	

2.4	
 Service Oriented Architecture ... 23	

2.4.1	
 WebServices .. 24	

2.5	
 Simulation-Workflow ... 27	

3	
 Visualisierung von Datenqualität .. 30	

3.1	
 Ziele der Visualisierung .. 30	

3.2	
 Definitionen von Visualisierungen ... 32	

3.2.1	
 Visualisierung ... 32	

3.2.2	
 Informations- und Datenvisualisierung ... 32	

3.2.3	
 Datenqualitätsvisualisierung ... 33	

3.3	
 Visualisierungspipeline ... 33	

3.3.1	
 Datenaufbereitung (Filtering) .. 34	

3.3.2	
 Mapping .. 34	

3.3.3	
 Bildgenerierung (Rendering) .. 35	

3.3.4	
 Verteilung der Stufen der Visualisierungspipeline .. 35	

3.4	
 Anforderungen an eine Visualisierung .. 37	

3.4.1	
 Expressivität ... 38	

3.4.2	
 Effektivität ... 39	

3.4.3	
 Angemessenheit ... 40	

3.5	
 Beschreibung der Daten als Ausgangspunkt der Visualisierung 41	

3.5.1	
 Datenformate .. 41	

3.5.2	
 Reduktion einer Datenmenge ... 42	

3.6	
 Einflussfaktoren auf die Visualisierung ... 43	

3.6.1	
 Bearbeitungsziele ... 43	

3.6.2	
 Menschliche Wahrnehmung – Objekterkennung und Gestaltgesetze 44	

3.6.3	
 Anwendungsumgebung .. 50	

- 4 -

3.6.4	
 Ressourcen .. 51	

3.7	
 Grundlegende Techniken ... 52	

3.7.1	
 Visuelle Variablen ... 52	

3.7.2	
 Visuelle Abbildungen .. 53	

3.8	
 Finden von Visualisierungen ... 55	

3.8.1	
 Herausforderungen beim Entwerfen passender Symbole 55	

3.8.2	
 Entwerfen von Symbolen .. 56	

3.8.3	
 Beispiel für die Auswahl einer Visualisierungsform 56	

3.9	
 Visualisierung von Datenqualität .. 57	

3.9.1	
 Datenaufbereitung (Filtering) .. 57	

3.9.2	
 Visualisierung ... 58	

4	
 Anforderungen an das Visualisierungsframework ... 68	

4.1	
 Allgemeine Anforderungen an das Framework .. 68	

4.1.1	
 Wiederverwendbarkeit (ℜ1) .. 68	

4.1.2	
 Anbindung an das JDQCF (ℜ2) ... 68	

4.1.3	
 Anbindung an externe Datenquellen (ℜ3) .. 68	

4.1.4	
 Unterstützung mehrere Simulationen (ℜ4) ... 69	

4.1.5	
 Verarbeitung unterschiedlicher Datenstrukturen (ℜ5) 69	

4.2	
 Anforderungen aus Sicht der Wissenschaftler .. 69	

4.2.1	
 Anforderungen an die Benutzerverwaltung .. 69	

4.2.2	
 Anforderungen an die Visualisierungskomponente 70	

4.2.3	
 Anforderungen an das Verteilen der Daten .. 71	

4.3	
 Anforderungen aus Sicht der Programmierer ... 71	

4.3.1	
 Funktionale Anforderungen .. 72	

4.3.2	
 Nichtfunktonale Anforderung .. 72	

5	
 Konzeptioneller Entwurf des Java Data Quality Visualization Framework 73	

5.1	
 Erweiterung des bisherigen Simulationskontextes ... 74	

5.2	
 Grundsätzliche Architektur .. 76	

5.2.1	
 Einordnung des JDQVisF in den Simulation-Workflow 79	

5.3	
 Struktureller Aufbau des JDQVisF .. 81	

5.3.1	
 Plug-In Architektur .. 82	

5.4	
 Komponenten des JDQVisF ... 83	

5.4.1	
 Architektur des JDQVisController ... 84	

5.4.2	
 Architektur des VisualizationMediator .. 91	

5.4.3	
 Namespaces des JDQVisF .. 101	

5.5	
 Beschreibung des Visualisierungsprozess ... 109	

6	
 Technische Umsetzung des Java Data Quality Visualization Framework 111	

6.1	
 Aufbau und Struktur der PlugInRegister.xml .. 111	

6.2	
 JDQVisController Klasse .. 111	

6.2.1	
 Benutzerregistrierung über die registerUser – Methode 112	

6.2.2	
 Anbindung an das JDQCF über die subscribe-Methode 115	

6.2.3	
 Schnittstelle für den Empfang von Rohdaten ... 116	

- 5 -

6.2.4	
 Methoden für die Verarbeitung von Benutzerinteraktionen 118	

6.3	
 Umsetzung des VisualizationMediator .. 121	

6.3.1	
 Instanziierung eines VisualizationMediators ... 121	

6.3.2	
 Visualize-Methode des VisualizationMediators .. 122	

6.3.3	
 Erweiterungsschnittstellen des VisualizationMediator 123	

6.3.4	
 Registrierung der Visualisierungs-Plug-Ins .. 125	

6.3.5	
 Realisierung der Visualisierungsspezifikationen .. 128	

6.4	
 Umsetzung der Plug-Ins ... 131	

6.4.1	
 Beispielimplementierung eines Authorizer-Plug-In 131	

6.4.2	
 Beispielimplementierung eines Filter-Plug-In ... 132	

6.4.3	
 Beispielimplementierung eines Visualizer-Plug-In 134	

6.4.4	
 Beispielimplementierung eines Dispatcher-Plug-In 136	

6.4.5	
 Beispielimplementierung eines SimulationController-Plug-In 138	

6.5	
 Der JDQVisClient .. 139	

6.5.1	
 Registrierung am JDQVisF ... 139	

6.5.2	
 Beschreibung der Benutzerinteraktionen ... 140	

6.5.3	
 Beeinflussung der Generierungen einer Visualisierung 140	

6.5.4	
 Steuerung der Simulation durch einen SimulationControlRequests 142	

7	
 Ausblick .. 143	

7.1	
 Integration in die Simulation-Workflowumgebung .. 143	

7.2	
 Visualisierung weiterer Datenqualitäten ... 143	

7.3	
 Entwicklung von domänen-spezifischen Plug-Ins ... 144	

7.4	
 Integration eines WS-HumanTask Systems ... 144	

Literaturverzeichnis ... 146	

8	
 Appendix A – Beispielvisualisierung Datenqualität .. 	

9	
 Appendix B – Beispielvisualisierung Datenqualität mit Simulationsdaten 	

- 6 -

Abbildungsverzeichnis

1-1: Einordnung Java Data Quality Visualization Framework 13	

1-2: DaVis: Abbildung der Datenwerte auf die Länge der Tabellenzelle 15	

2-1: Aufbau einer FEM basierten Simulation ... 20	

2-2: SOA Dreieck ... 24	

2-3: Aufbau WSDL ... 27	

2-4: Architektur eines Simulation-Workflows ... 28	

2-5: Generelle Architektur eines Simulation-Workflows .. 29	

3-1: Stufen der Visualisierungspipeline .. 34	

3-2: Datenfluss in der Visualisierungspipeline ... 35	

3-3: Varianten zur Verteilung der Schritte der Visualisierungspipeline 36	

3-4: Beispiel Lie Factor .. 39	

3-5: Beispiel Chart Junk ... 40	

3-6: Abbildung spezielle auf allgemeine Bearbeitungsziele ... 44	

3-7: Beispiel Präattentive Wahrnehmung .. 45	

3-8: Gesetz der Nähe ... 46	

3-9: Gesetz der Ähnlichkeit .. 47	

3-10: Gesetz der guten Gestalt... 47	

3-11: Gesetz der guten Fortsetzung .. 47	

3-12: Gesetz der Geschlossenheit ... 48	

3-13: Gesetz des gemeinsamen Schicksaals .. 48	

3-14: Vordergrund - Hintergrund. ... 49	

3-15: Firgurwahrnehmung .. 49	

3-16: Einfache Fortsetzung .. 50	

3-17: Dünn ist im Hintergrund .. 50	

3-18: Grafische Variablen .. 52	

3-19: Regularität .. 53	

3-20: Beispiel für das Finden von Visualisierungen (Teil 1) ... 56	

3-21: Beispiel des Findens von Visualisierungen (Teil 2) .. 57	

3-22: Datenqualitätsdimension Genauigkeit als Zielscheibe ... 59	

3-23: Datenqualitätsdimension Genauigkeit als Fadenkreuz ... 59	

3-24: Datenqualitätsdimension Rechtzeitigkeit als Wecker... 60	

3-25: Datenqualitätsdimension Rechtzeitigkeit als Wecker (Teil 2)................................ 61	

3-26: Datenqualitätsdimension Rechtzeitigkeit als Sanduhr..................................... 61	

3-27: Datenqualitätsdimension Vollständigkeit als Säule .. 62	

3-28: Datenqualitätsdimension Vollständigkeit als Kuchendiagramm 63	

3-29: Datenqualitätsdimension Konsistenz als Zielscheibe ... 64	

3-30: Datenqualitätsdimension Konsistenz .. 64	

3-31: Datenqualitätsdimension Aktualität ... 65	

3-32: Datenqualitätsdimension Schwankungsfreudigkeit .. 66	

3-33: Datenqualitätsdimension Schwankungsfreudigkeit... 66	

- 7 -

5-1: Simulation-Wissenschaftler-Beziehung .. 74	

5-2: Wissenschaftler-Simulation-Beziehung. ... 74	

5-3: Beispielhafte Wissenschaftler-Simulation-Beziehungen ... 75	

5-4: Client-Server Architektur ... 76	

5-5: JDQVisF als zentrale Komponente... 77
5-6: Unterstützung unterschiedlicher Anzeigegeräte durch das JDQVisF 78	

5-7: Einordung des JDQVisF zwischen Simulation-Workflow und Wissenschaftler 80	

5-8: Struktureller Aufbau des JDQVisF .. 81	

5-9: Interne Aufteilung des JDQVisF ... 83	

5-10: Komponenten des JDQVisF mit hervorgehobenem JDQVisController 84	

5-11: Kennzeichnung der Schnittstellen des JDQVisController 84	

5-12: Authorizer-Plug-In des JDQVisController ... 86	

5-13: SimulationController-Plug-In des JDQVisController ... 87	

5-14: Empfang der Rohdaten für das JDQVisF ... 89	

5-15: Anbindung des JDQVisController an das JDQCF .. 90	

5-16: Komponenten des JDQVisF mit hervorgehobenen VisualizationMediator 91	

5-17: Schnittstellen des VisualizationMediator .. 91	

5-18: Aufteilung der Visualisierungspipeline... ... 93
5-19: Filter-Plug-In des VisualizationMediator ... 95	

5-20: Visualizer-Plug-In des VisualizationMediator .. 97	

5-21: Dispatcher-Plug-In des VisualizationMediator .. 99	

5-22: Namespace-Hierarchie der Ressourcen und Datenhaltung 102	

5-23: Namespace-Hierarchie der Plug-Ins ... 106	

5-24: Namespace-Hierarchie der Schnittstellen .. 107	

5-25: Konzeptioneller Visualisierungsablauf .. 109	

6-1: Klassendiagramm des JDQVisController ... 112	

6-2: Klassendiagramm der VisSpecification-Klasse .. 114	

6-3: Sequenzdiagramm für die Benutzerregistrierung ... 115	

6-4: Aufbau einer Subscribe-Nachricht an das JDQCF ... 116	

6-5: Klassendiagramm des DataReceiver ... 117	

6-6: Klassendiagramm des VisualizationMediator ... 121	

6-7: Ablauf der Instanziierung eines VisualizationMediator ... 122	

6-8: Ablauf der visualize-Methode des VisualizationMediator 123	

6-9: Sequenzdiagramm des Filter-Plug-Ins ... 133	

6-10: Vereinfachter Ablauf des Visualizer-Plug-In ...135	

6-11: Basisbilder der Dimension Rechtzeitigkeit .. 136	

6-12: Visualisierung der Dimension Rechtzeitigkeit ... 136	

6-13: Vereinfachter Ablauf eines Dispatcher-Plug-Ins ... 137	

6-14: Beispielimplementierung eines SimulationController-Plug-In 138	

6-15: Steuerung des Filter-Plug-Ins ... 141	

7-1: Beispiel Datenqualitätsvisualisierungen innerhalb Simulationsdaten....................144	

7-2: WS-HumanTask zur Bewertung der Datenqualität ... 145	

- 8 -

Tabellenverzeichnis

Tabelle 1: Symbolerklärungen in den Beschreibungen der Namespaces. 101	

- 9 -

Listings

Listing 1: Beispiel für die Repräsentation eines Datenqualitätswertes in XML 41	

Listing 2: Struktur der Registrierung eines Authorizer-Plug-Ins 113	

Listing 3: Beispiel für ein InterpretionCalculationResult ... 117	

Listing 4: Methodensignatur der modifyVisualizerSpecification-Methode............ 119	

Listing 5: Methodensignatur der sendSimulationControlRequest-Methode............ 119	

Listing 6: Struktur der Registrierung eines SimulationController-Plug-Ins im.............. 120	

Listing 7: Struktur der Registrierung eines Filter-Plug-In ... 125	

Listing 8: Struktur der Registrierung eines Visualizer-Plug-In 126	

Listing 9: Struktur der Registrierung eines Dispatcher-Plug-In 127	

Listing 10: Aufbau der FilterSpecification.xml .. 128	

Listing 11: Aufbau einer VisualizerSpecification.xml .. 129	

Listing 12: Aufbau einer DispatcherSpecification.xml .. 130	

Listing 13: Beispieleintrag in die Benutzerdatenbank des Authorizer-Plug-Ins 132	

Listing 14: Aufbau einer registerUser-Message ... 139	

Listing 15: Antwort des JDQVisController bei erfolgreicher Anmeldung 140	

Listing 16: Aufbau einer modifyFilterSpecification-Nachricht 142	

- 10 -

Abkürzungsverzeichnis

JDQCF Java Data Quality Calculation Framework

JDQVisF Java Data Quality Visualization Framework

JDQVisClient Wissenschaftler mit einem Anzeigegerät

QoD Datenqualität (Quality of Data)

WS WebServices

WSDL Web Service Description Language

XML Extensible Markup Language

SOA Service Oriented Architecture

WfMS Workflow Management System

- 11 -

Farbenverzeichnis

Java Data Quality Visualization Framework

JDQVisController

VisualizationMediator

Benutzerautorisierung

Simulationssteuerung

Datenaufbereitung

Visualisierung

Datenverteilung

Datenerzeugung

- 12 -

1 Einleitung

In den letzten Jahren wurden Workflow-Technologien zur Durchführung von daten- und
zeitintensiven Berechnungen unter dem Begriff Scientific-Workflows in die Wissenschaft
übertragen. Ein Teilgebiet stellen dabei Simulation-Workflows dar, bei denen beispiels-
weise das Wachstum eines Tumors oder eines Knochens simuliert werden. Ein solcher
Simulation-Workflow hat typischerweise eine lange Laufzeit und bearbeitet verschiede-
ne Arten von Daten. Dabei hat die Qualität dieser Daten großen Einfluss auf das end-
gültige Simulationsergebnis. Eine schlechte Datenqualität führt mit großer Wahrschein-
lichkeit zu ungenauen oder im schlechtesten Fall zu unbrauchbaren Ergebnissen.

Eine Möglichkeit repräsentative Ergebnisse zu erreichen, ist die Überwachung der lau-
fenden Simulation anhand der Qualität ihrer Daten. Dabei werden die Daten unter ver-
schiedenen Gesichtspunkten, wie die Genauigkeit oder Vollständigkeit, betrachtet. Für
die Berechnung der Datenqualitätswerte wurde 2011 eine Framework (Java Data Quali-
ty Framework [1]) entwickelt.

In dieser Diplomarbeit wird ein Konzept für die Visualisierung von Datenqualitätswerten
in Simulation-Workflows entwickelt und durch das Java Data Quality Visualization
Framework (JDQVisF) realisiert. Es generiert aus den zuvor berechneten Datenquali-
tätswerten aussagekräftige Visualisierungen und erleichtert den Wissenschaftlern
dadurch, die Überwachung der Datenqualität innerhalb der laufenden Simulation.

Das JDQVisF wird dabei verschiedene Arten von Anzeigegeräten unterstützen. Das
bedeutet, dass je nach gewähltem Anzeigegerät unterschiedliche Visualisierungen ge-
neriert werden.
Zusätzlich wird das JDQVisF die Rolle des Wissenschaftlers bei der Generierung der
Visualisierungen und der Benutzerinteraktionen berücksichtigen.
Damit der Wissenschaftler auf veränderte Datenqualitätswerte reagieren kann, bietet
das JDQVisF eine Schnittstelle zur Steuerung der laufende Simulation an. Dies ermög-
licht beispielsweise das Abbrechen einer Simulation bei schlechter Datenqualität.

Abbildung 1-1 zeigt die Einordnung des JDQVisF zwischen Simulation-Workflow und
Wissenschaftler.

- 13 -

Abbildung 1-1: Zusammenhang Simulation-Workflow, Java Data Quality Visualization
Framework und Wissenschaftler

1.1 Aufgabenstellung

Im Rahmen dieser Diplomarbeit sollen Konzepte für die Visualisierung von Datenquali-
tät (QoD) in Simulation-Workflows erarbeitet und prototypisch realisiert werden. Dazu
werden zunächst die Grundlagen für die visuelle Darstellung im Bereich der wissen-
schaftlichen QoD entwickelt. Anschließend werden die Rahmenbedingungen an ein
entsprechendes Visualisierungs-Framework formuliert, beispielsweise der Zugriffssi-
cherheit und der Registrierung am System. Dadurch wird sichergestellt, dass kein Un-
berechtigter die Daten einsehen oder schlimmstenfalls die Simulation manipulieren
kann.

Nachdem die Grundlagen und Anforderungen aufgezeigt wurden, wird anhand derer
eine Architektur vorgestellt und darauf basierend ein Framework, das folgende Funktio-
nen erfüllt:

Bereitstellung verschiedener Visualisierungstypen – Je nach Eingabeformat wer-
den unterschiedliche Diagrammarten und Darstellungsmöglichkeiten, z.B. Einzel-
werte oder einen zeitlichen Verlauf zur Verfügung gestellt.

Generierung der Visualisierung von QoD-Daten – Die Eingabedaten werden anhand

- 14 -

ihres Formates, entweder QoD-Einzelwerte oder QoD + Simulationsdaten, unter-
schiedlich verarbeitet.

Möglichkeit zur Einbindung spezieller Visualisierungen – Abhängig vom späteren
Ausgabegerät, z.B. einem Browser, Tablett oder Smartphone, gibt es unterschied-
liche Ansprüche an die Visualisierung der Daten. Hierfür bietet das System die
Möglichkeit über Plug-In-Schnittstellen geeignete Visualisierungen einzubinden.

Unterstützung verschiedener Arten von Darstellungsgeräten – iPad, Android-
Tablet, eMail, usw.

Integration einer Autorisierungsfunktionalität des Benutzers – Die Benutzer wer-
den bei der Anmeldung auf ihre Rechte hin überprüft.

Unterstützung bei der Steuerung der Simulation – Das Framework wird den Benut-
zer bei der Steuerung der Simulation unterstützen.

1.2 Verwandte Arbeiten

In [2] werden Theorien, Verfahren und Techniken zum Thema Datenqualität vorgestellt.
Dabei werden verschiedene Fragestellungen wie die Relevanz von Datenqualität unter-
sucht und an Beispielen deutlich gemacht.

In [1] wird ein Framework für die Berechnung von Datenqualität in Simulation-Workflows
auf Basis konventioneller Workflow-Technologien entwickelt. Dazu analysiert es Simula-
tionsdaten auf Basis von Metriken. Anschließend werden die Resultate durch eine In-
terpretationseinheit bewertet und somit Datenqualitätswerte erzeugt. Es unterstützt da-
bei neben der maschinelle Berechnung auch die Berechnung und Interpretation durch
einen Menschen. Die Ergebnisse dieser Berechnungen dienen dem JDQVisF als Ein-
gabedaten.

[42] ist eine Zusammenfassung einer Fachtagung der National Center for Geographic
Information and Analysis (NCGIA) und befasst sich mit den Auswirkungen der
Datenqualität in Geoinformationssystemen (GIS). In den Gesprächen werden die
Rolle und der Nutzen einer Visualisierung für das Verständnis über die Qualität
der GIS-Daten vorgestellt. Zudem wird gezeigt, wie wichtig die Zuverlässigkeit
der Daten für die spätere Nutzung und Glaubwürdigkeit ist .

In [27] wird ein Werkzeug für die Visualisierung von allgemeinen Datenqualitätswerten
vorgestellt. Es reduziert eine Datenmenge auf eine tabellarische Repräsentation. Diese
soll helfen fehlende oder invalide Daten schnell zu erkennen, Inkonsistenzen aufzude-
cken oder verschiedene Datenversionen zu vergleichen. Dabei repräsentiert die Länge
einer Tabellenzelle den Datenwert.

- 15 -

Abbildung 1-2: DaVis: Abbildung der Datenwerte auf die Länge der Tabellenzelle [27]

Leider konnte neben [27] keine weitere Referenz zu diesem Werkzeug gefunden wer-
den.

Nach meinem besten Wissen und Gewissen gibt es zum Zeitpunkt der Erstellung dieser
Diplomarbeit keine weiteren verwandten Arbeiten zum Thema Visualisierung von Da-
tenqualitätswerten in Simulation-Workflows.

Alle Ideen und Konzepte die in dieser Arbeit vorgestellt werden, wurden durch regelmä-
ßige Treffen mit dem Betreuer abgesprochen und abgestimmt.

1.3 Struktur der Arbeit

Nach diesem einleitenden Kapitel 1 werden in Kapitel 2 alle, für das Verständnis wichti-
gen, Grundlagen behandelt. Dazu zählen insbesondere die Definition der Begriffe Daten
und Datenqualität, das JDQCF, sowie eine Einführungen in die Themen Simulation-
Workflow, Service Oriented Architecture und WebServices.

Kapitel 3 befasst sich mit den allgemeinen Grundlagen des Themenbereichs Visualisie-
rung. Hierzu gehören unter anderem die Ziele von Visualisierungen, alle wichtigen Defi-
nitionen zum Thema Visualisierung, die Visualisierungspipeline, die Anforderungen an
eine gute Visualisierung, Einflussfaktoren auf die Visualisierung, Grundlegende Visuali-
sierungstechniken. Zudem wird die Problemstellung des Findens passender Visualisie-
rungen untersucht und Beispielvisualisierungen von Datenqualitätswerten aufgezeigt.

Kapitel 4 beschreibt die Anforderungen an das zu entwickelnde Visualisierungsframe-
work. Da das JDQVisF zwei verschiedene Benutzergruppen besitzt, werden diese ge-
trennt nach „Wissenschaftler“ und „Programmierer“ aufgestellt und formuliert.

In Kapitel 5 wird der konzeptionelle Entwurf des JDQVisF gezeigt. Grundsätzlich kann
beim JDQVisF von einer logisch getrennten Dreischichtenarchitektur gesprochen wer-
den, da es sich zwischen dem Simulation-Workflow und den Wissenschaftlern einord-
net. Neben einer Visualisierungseinheit, wird es eine Komponente zur Benutzersteue-
rung enthalten. Bei dieser müssen sich die Wissenschaftler anmelden bevor sie die Da-
tenqualität visualisiert auf ihr Endgerät erhalten.

- 16 -

Kapitel 6 beschreibt die technische Umsetzung der in Kapitel 5 erarbeiteten Konzepte.
Dabei werden alle Komponenten und jeweils eine Erweiterung für das JDQVisF be-
schrieben.

Kapitel 7 beschließt diese Diplomarbeit durch die Beschreibung zukünftiger Arbeiten auf
Grundlage des JDQVisF.

1.4 Notation und Schreibstil

Diese Diplomarbeit wird in deutsch verfasst. Einige Begriffe wie Service Oriented Archi-
tecture, WebServices, Mapping oder Namespace werden jedoch nicht übersetzt und
unter der englischen Originalbezeichnung verwendet, da sie als allgemein anerkannt
gelten.

In dieser Arbeit wird für die Bezeichnung von unbestimmten Personen wie Wissen-
schaftler, Benutzer und Entwickler die maskuline und feminine Form zusammengefasst
und unter der maskulinen Form verwendet. Diese Konvention soll den Lesefluss ge-
genüber der ausgeschriebenen Form („Wissenschaftler(in)“) erleichtern und nicht dis-
kriminierend sein.

- 17 -

2 Grundlagen

In diesem Kapitel werden die Grundlagen und Hintergrundinformationen gegeben, wel-
che für die anschließenden Kapitel und das allgemeine Verständnis der späteren Kon-
zepte von Bedeutung sind.

2.1 Daten

In diesem Kapitel wird zunächst der Begriff Daten definiert, bevor anschließend die ver-
schiedenen Strukturen und deren Bedeutung erklärt werden. Am Ende des Kapitels
wird ein Ausblick zur Visualisierung von Daten gegeben.

2.1.1 Definition des Begriffs Daten

Für den Begriff Daten sind in der Literatur unterschiedliche Definitionen verbreitet. Die
verschiedenen Einsatzumgebung und Fachgebieten prägen die Definitionen maßgeb-
lich. Beispielsweise spricht [2] von Daten, „die Objekte der realen Welt darstellen“. Da-
gegen werden in der Informatik Daten, „als in erkennungsfähiger Form dargestellte
Elemente einer Information, die in Systemen verarbeitet werden können.“ [4] definiert.

In Simulationen werden Informationen aus unterschiedlichen Fachbereichen mit unter-
schiedlicher Herkunft verarbeitet. In manchen beziehen sich Daten auf reale Objekte,
beispielsweise bei der Simulation des Knochenwachstums, in anderen beziehen sie
sich auf mathematische Modelle, die mögliche zukünftige Ereignisse, beispielsweise
den Klimawandel der nächsten Jahre, prognostizieren. Damit dieses weite Feld der wis-
senschaftlichen Simulation nicht eingeschränkt wird und durch die enge Anbindung die-
ser Arbeit an [1], wird die Definition aus [1] übernommen.

Definition: Daten

Daten repräsentieren Informationen.

Durch diese Definition können Daten in einem sehr breiten Umfeld eingesetzt werden.
Der Begriff umfasst demnach auch ein Bild, ein Stück Programmcode oder eine Textda-
tei welche durch [1] bewertet und anschließend visualisiert dargestellt werden können.

Die Singularform Datum beschreibt einen einzelnen Datenwert in einer Menge von Da-
ten.

- 18 -

2.1.2 Struktur

Nach [2] lassen sich Daten anhand ihrer Struktur in drei verschiedene Klassen einteilen.
Strukturierte Daten sind Daten bei denen jedes Datenelement einer festen Struktur zu-
geordnet ist. Beispielsweise enthalten relationale Tabellen strukturierte Daten.
Semistrukturierte Daten sind Daten deren Struktur flexibel ist. Das heißt, die Daten sind
nicht an ein festes Schema gebunden und sind selbstbeschreibend. Als ein Beispiel für
semistrukturierte Daten kann hier die Markupsprache XML genannt werden. Eine XML-
Datei kann ein zu Grunde liegendes Schema haben, muss es aber nicht, solange es die
grundsätzlichen Anforderungen an ein XML-Dokument erfüllt.
Unstrukturierte Daten sind Daten, die in natürlicher Sprache ausgedrückt werden und
somit keiner speziellen Struktur zuzuordnen sind.

Je nach Klasse können unterschiedliche Visualisierungen sinnvoll sein. Zum Beispiel
können strukturierte Daten leicht auf einer Skala abgebildet werden, da sie in direkter
Beziehung zu dieser existieren. Wohingegen der Informationsgehalt aus unstrukturier-
ten Daten vor einer Visualisierung herausgearbeitet werden muss. Die Problemstellung
des Findens guter Visualisierungen wird in Kapitel 3.8 genauer betrachtet.

2.1.3 Änderungsrate

Daten lassen sich, neben der Struktur, entsprechend der Häufigkeit ihrer Änderungen in
drei Klassen unterteilen [2].
Stabile Daten (stable data) sind Daten die sich mit hoher Wahrscheinlichkeit nicht än-
dern werden. Als Beispiel können hier wissenschaftliche Arbeiten genannt werden. Es
kommen zwar stetig neue hinzu, die alten verbleiben aber unverändert. Die zweite
Klasse sind die langzeitbeständige Daten (Long-term-changing data). Sie beinhaltet
Daten, die sich nur sehr selten verändern. Adressen oder Telefonnummern sind typi-
sche Beispiele für Daten in dieser Klasse.
In der dritten Klasse liegen die sich häufig ändernde Daten (frequently-changing data).
Sie zeichnen sich durch einer hohen Änderungsrate aus. Typische Beispiele sind Daten
zur Temperaturangabe oder zu Stauinformationen.

Unter Berücksichtigung der Änderungsrate ergibt sich, dass für einige Daten die Daten-
qualität häufiger berechnet und untersucht werden muss, als für andere. Aus diesem
Grund spielt die Änderungsrate eines Datums bei den Auswahl einer passenden Visua-
lisierung eine wichtige Rolle. Stabile oder langzeitbeständige Daten können komplexer
und aufwändiger visualisiert werden, als sich schnell verändernde Daten. Dem Betrach-
ter bleibt für eine effektive Auswertung des Informationsgehaltes länger Zeit. Schnell
verändernde Daten und damit auch schnell verändernde Visualisierungen hingegen,
müssen den Informationsgehalt auf das Wesentliche reduzieren, um dem Betrachter
einen schnellen und effizienten Zugang zu ermöglichen.

Die wichtigsten Anforderungen, die bei der Auswahl guter Visualisierungen beachtet
werden müssen, werden in Kapitel 3.4 beschrieben.

- 19 -

2.1.4 Visualisierung von Daten

Der Durchbruch des Computers führte in der Wissenschaft zu dem sogenannten
„Fourth Paradigm For Science“ [5]. Es beschreibt das computergestützte Berechnen
sehr großer Simulationen mit teilweise sehr langer Laufzeit und riesiger Datenmengen
als Ergebnis. Große wissenschaftliche Einrichtungen, wie beispielsweise das australi-
sche Square Kilometre Array [10], der Teilchenbeschleuniger LHC am CERN [11] oder
Pan-STARRS [12], können am Tag leicht mehrere Petabyte an Daten erzeugen [5]. Der
Umgang mit diesen Datenmengen stellt die heutige Wissenschaftler vor große Heraus-
forderungen.

Ein Ansatz für eine effektive und effiziente Auswertung dieser Datenflut bieten Visuali-
sierungen. Sie erlauben durch das Auswählen relevanter Daten, die ursprüngliche Da-
tenmenge zum Teil drastisch zu verringern und somit das Simulationsziel in einem en-
geren Umfeld zu betrachten [2]. Visualisierungen ermöglichen den Wissenschaftlern
einen vereinfachten Einstieg und bieten eine gemeinsame Kommunikationsgrundlage.

In Kapitel 3 werden dazu Konzepte, Methoden und Techniken vorgestellt.

2.2 Simulation

Dieses Kapitel gibt einen Einblick in wissenschaftliche Simulationen. Hierzu wird zu-
nächst der Begriff Simulation definiert und mit einer FEM (Finite Element Methode) ba-
sierten Simulation ein Beispiel aufgezeigt.

Definition: Simulation

A simulation imitates one process by another process. In this definition, the term
‘process’ refers solely to some object or system whose state changes in time. If
the simulation is run on a computer, it is called computer simulation. [13]

In den Naturwissenschaften werden häufig so genannte FEM basierte Simulationen
eingesetzt [28]. In diesen werden komplexe Differentialgleichungen numerisch für dis-
krete Zeitschritte gelöst. Dabei werden Ergebnisse für einen einzelnen Zeitschritt durch
das Lösen von Matrizengleichungen berechnet. FEM basierte Simulation können sehr
langläufig sein und produzieren dabei komplexe Datenstrukturen.

Nach [28] gliedert sich eine FEM-basierte Simulation in drei Phasen, welche jeweils
wiederum in verschiedene Schritte unterteilt sind. (Abbildung 2-1 zeigt einen Bei-
spielaufbau.)
Die erste Phase ist die Vorverarbeitungsphase (Preprocessing Phase). In dieser wer-
den alle relevanten Eingabedaten für die spätere Berechnungsphase gesammelt. Dazu
zählen beispielsweise das Geometriemodell, Materialparameter und FEM-Parameter.

- 20 -

In der Berechnungsphase (Equation Solving Phase) werden Matrix-Gleichungen, basie-
rend auf den zuvor festgelegten Parametern, gelöst. Die Matrixgleichungen werden für
jeden Zeitschritt gelöst, wobei die entstandenen Zwischenergebnisse wieder als Para-
meter in die Berechnung mit einfließen. Die Anzahl der Wiederholungen wird in diesem
Beispiel vor der Berechnungsphase festgelegt.
In abschließenden Auswertungsphase (Postprocessing Phase) werden die finalen Er-
gebnisse ausgewertet. Da durch FEM basierten Simulationen sehr große Datenmengen
entstehen können, werden in dieser Phase Visualisierungen eingesetzt. Diese können
die entstandene Datenmenge durch gezielte Abbildungen reduzieren und präsentieren.
Visualisierungen helfen dadurch den Wissenschaftlern, die Ergebnisdaten in einem
bstimmten Kontext zu betrachten.

Time Loop (7) for i = 1 to n

Create FEM
Parameters (3)

geometry
data

FEM impl. +
FEM grid type

boundary
condition

solver type +
error tolerance

Adjust Boundary
Conditions (4)

Visualization
(9)

Choose Matrix
Solver (6)

Define Geometry
Data (1)

Preprocessing Phase

Equation Solving Phase Postprocessing Phase

Define Material
Parameter (2)

material
parameters

initial
condition

Adjust Initial
Conditions (5)

Solve Matrix
Equation (8)

matrix
equation

(intermediate)
results

FEM
grid

 initial
FEM grid

Legend:

Control flow

Data dependencies

postprocessing
output

Abbildung 2-1: Aufbau einer FEM basierten Simulation [28]

2.3 Datenqualität

Die Berechnungen in komplexen und langläufige Simulationen können oft mehrere Wo-
chen andauern. Um sicher zu stellen, dass die berechneten Endergebnisse korrekt
sind, ist es wichtig die laufende Simulation zu überwachen. Dadurch kann bei Bedarf

- 21 -

frühzeitig in die laufende Simulation eingegriffen werden. Damit die Simulation reprä-
sentierbare Ergebnisse liefert, werden insbesondere an die verwendeten Daten be-
stimmte Ansprüche gestellt. Beispielsweise darf die Genauigkeit der Zwischenergebnis-
sen einen bestimmten Schwellenwert nicht unterschreiten, um die Korrektheit der End-
ergebnisse nicht zu beeinflussen [7].
Diese Ansprüche werden im Folgenden unter dem Begriff der Datenqualität zusam-
mengefasst.

Dieses Kapitel gibt neben der Definition, einen Überblick über die wichtigsten Gesichts-
punkte, so genannte Dimensionen, nach denen die Daten untersucht werden können.

2.3.1 Definition von Datenqualität

Die International Association for Information and Data Quality [6] setzt Datenqualität
und Informationsqualität gleich und fasst sie unter dem Begriff „Information quality“ zu-
sammen:

Information quality – (1) Consistently meeting all knowledge worker and end-customer

expectations in all quality characteristics of the information products and services
required to accomplish the enterprise mission (internal knowledge worker) or per-
sonal objectives (end customer). (2) The degree to which information consistently
meets the requirements and expectations of all knowledge workers who require it
to perform their processes. [6]

Da in dieser Arbeit von einem sehr allgemeinen Daten-Begriff ausgegangen wird und in
Anlehnung an [1], wird der zweite Teil dieser Definition angepasst und Datenqualität für
die Visualisierung in Simulation-Workflows wie folgt definiert:

Definition: Datenqualität (Quality of Data, QoD)

Das Ausmaß, in dem Daten die Anforderungen und Erwartungen der Wissenschaft-
ler konsistent erfüllen.

Diese Definition erlaubt es Datenqualität skalenunabhängig betrachten zu können. Bei-
spielsweile können Datenattribute auf Skalen der Form {Gut, Schlecht} oder auf Zah-
lenwerte von 0 bis 1 abgebildet und entsprechend interpretiert werden.

2.3.2 Dimensionen von Datenqualität

In [2] wird Datenqualität durch die sechs Dimensionen Genauigkeit, Vollständigkeit, Ak-
tualität, Rechtzeitigkeit, Schwankungsfreudigkeit und Konsistenz beschrieben. Diese
Dimensionen werden in dieser Arbeit übernommen und dienen den späteren Visualisie-
rungen als Eingabedaten.

- 22 -

In den folgenden Abschnitten werden die einzelnen Datenqualitäts-Dimensionen ge-
nauer betrachtet und in Zusammenhang mit Simulation-Workflows gebracht.

2.3.2.1 Genauigkeit (Accuracy)

Bei wissenschaftlichen Simulationen spielt vor allem die Genauigkeit eine bedeutende
Rolle. Sie beschreibt die Nähe zwischen einem Wert v und einem Wert v’, wobei v’ ein
reales Objekt korrekt repräsentiert und v die Annäherung an diesen Wert [2]. Dabei
bezieht sich die Genauigkeit nicht nur auf die mathematische Bedeutung, sondern kann
auf jede Art von Attributen angewendet werden. Beispielsweise könnte der Name einer
Person v’ = John sein. Eine Annäherung v = Jhn ist damit unkorrekt. Nach [2] kann Ge-
nauigkeit auf eine syntaktische und semantische Ebene untersucht werden.
Die syntaktische Genauigkeit beschreibt die Nähe eines Wertes v zu den Elementen
des dazugehörigen Definitionsbereiches. Beispielsweise ist der Wert v = 0.59 in einem
Definitionsbereich [0...1] syntaktisch korrekt, der Wert v = -0.59 hingegen nicht.
Die semantische Genauigkeit hingegen beschreibt die Nähe eines Wertes v zu einem
wahren Wert v’. In dem Beispiel würde v = 0.59 und v’ = 0.6 eine hohe semantische
Genauigkeit bedeuten, wenn die Zahlenwerte bei der Interpretation ähnlich groß sein
sollen.

Bei komplexen Simulationen spielt in erster Linie die Genauigkeit bei mathematischen
Berechnungen eine entscheidende Rolle. Wenn sich beispielsweise die Berechnung auf
mehrere Berechnungseinheiten verteilt, kann es bei mangelnder Genauigkeit der Zwi-
schenergebnisse leicht zu einer Fehlerfortpflanzung kommen und das Berechnungser-
gebnis maßgeblich beeinflussen oder sogar unbrauchbar machen.

2.3.2.2 Vollständigkeit (Completness)

Die Dimension Vollständigkeit beschreibt allgemein das Ausmaß, in dem Daten von
ausreichender Breite, Tiefe und Umfang für die jeweilige Aufgabe vorhanden sind [8].
Sie taucht innerhalb eines Simulation-Workflow an unterschiedlichen Stellen auf. Bei-
spielsweise kann direkt beim Start die Vollständigkeit der Ausgangsdaten untersucht
werden.

2.3.2.3 Aktualität (Currency)

Aktualität beschreibt wie schnell die Daten bei einer Änderung aktualisiert werden [2].
Als ein Beispiel können bei einer verteilten Simulation die Eingabedaten der einzelnen
Services genommen werden. Wenn ein Service Daten eines anderen Services als Ein-
gabedaten erhält und das sofort nach jeder Datenänderung, dann ist die Aktualität
hoch.

- 23 -

2.3.2.4 Rechtzeitigkeit (Timeliness)

Nach [2] beschreibt die Rechtzeitigkeit wie gegenwärtig die Daten für die aktuelle Auf-
gabe sind.
In Simulationen mit verteilten Berechnungseinheiten ist diese Dimension besonders
wichtig: Wenn eine Berechnungseinheit einer darauf folgenden Einheit die Ergebnisse
zu spät zur Verfügung stellt, kann es zu Engpässen und somit zur Verzögerung der ge-
samten Berechnung kommen.

2.3.2.5 Schwankungsfreudigkeit (Volatility)

Die Dimension Schwankungsfreudigkeit beschreibt die Frequenz mit der sich die Daten
mit der Zeit verändern [2]. Dabei gibt es einen direkten Zusammenhang mit den in Kapi-
tel 2.1.3 vorgestellten Klassen zur Änderungsrate. Bei einer hohen Änderungsrate, etwa
bei dem Wert einer Aktie ist die Schwankungsfreudigkeit hoch. Bei stabilen Daten, etwa
dem Geburtsdatum einer Person, entsprechend bei 0.

2.3.2.6 Konsistenz (Consistency)

Die Dimension Konsistenz erfasst die Verletzung von semantischen Regeln die über
eine Menge von Datenelemente definiert ist [2]. Insbesondere beschreibt sie die Bezie-
hung des Simulationsziel zu den zu Grunde liegenden Daten. Soll beispielsweise bei
einer Simulation das Knochenwachstum eines 40-jährigen Mannes nach einer Sportver-
letzung berechnet werden und bekommt dazu die Knochendaten eines dreijährigen
Mädchens als Eingabedaten, wird das Ergebnis unbrauchbar sein.

2.3.3 Java Data Quality Calculation Framework

Das Java Data Quality Framework (JDQCF) ist ein Framework für die Berechnung von
Datenqualität in Simulation-Workflows. Es wird in [1] genauer beschrieben und soll hier
nur kurz angesprochen werden.
Das JDQCF ordnet sich logisch vor dem hier zu entwickelnden Java Data Quality Vi-
sualization Framework (JDQVisF) in den Simulation-Workflow ein. Das JDQCF berech-
net die Datenqualität und versendet die Daten an das JDQVisF. Es liefert somit die Ein-
gabedaten für die Visualisierung. Neben den Datenqualitätswerten kann das JDQCF
zusätzlich die originalen Simulationswerte versenden oder eine Referenz auf diese ge-
ben. Sie können somit bei der Visualisierung berücksichtigt werden.

2.4 Service Oriented Architecture

In vielen Branchen werden Geschäftsprozesse mit Hilfe von Software umgesetzt. Dabei
enthalten unterschiedliche Geschäftsprozesse häufig gleiche Teilprozesse und oder

- 24 -

Funktionen. Service Oriented Architecture (SOA) beschreibt einen Software-
Architekturstil mit dem Ziel, diese Funktionen, anstatt durch prozessspezifische Lösun-
gen, durch so genannte Services den einzelnen Geschäftsprozessen zur Verfügung zu
stellen. Sie erhöht dadurch die Flexibilität der Gesamtarchitektur und die Wiederver-
wendbarkeit einzelner Komponenten. [18]

Abbildung 2-2 zeigt das Zusammenspiel der einzelnen Komponenten einer SOA durch
das so genannte SOA Dreieck. Es enthält jeweils eine Komponente für das Veröffentli-
chen von Services, das Finden und das Verknüpfen des Service-Benutzers mit dem
Service-Anbieter.

Abbildung 2-2: SOA Dreieck

Im ersten Schritt registriert ein Service-Anbieter (Service Provider) seine funktionalen
und nichtfunktionalen Eigenschaften bei der Service Discovery (1). Im zweiten Schritt
stellt ein möglicher Konsument (Service Consumer) an die Service Discovery eine An-
frage über die gewünschten funktionalen und nichtfunktionalen Anforderungen (2). Die
Service Discovery wählt im nächsten Schritt einen passenden Service Provider aus und
übergibt dem Service Consumer Metadaten (z.B. IP Adresse des Service Provider) mit
deren Hilfe er sich an den Service Provider binden und dessen Funktionen verwenden
kann (3).

2.4.1 WebServices

In diesem Abschnitt wird ein Überblick über die WebService-Technologie gegeben, die
für das Verständnis dieser Arbeit wichtige Eigenschaften beschreibt. Für eine detaillierte
Ausführung sei an dieser Stelle auf [18] und [33] verwiesen.

WebServices sind eine weitverbreitete Technologie für die Umsetzung einer SOA. Sie
zeichnen sich durch die Verwendung standardisierter, plattformunabhängiger Techno-
logien, wie das XML-Format und SOAP-Nachrichten, aus [1]. Ein WebService bietet
dabei über standardisierte Schnittstellen ausgeschriebene und über das Internet zur

Service
Discovery

Service
Consumer

Service
Provider

Find Publish

Bind

1.2.

3.

- 25 -

Verfügung gestellte Funktionalitäten an. Er realisiert dadurch eine Schnittstelle zwi-
schen Service Consumer und Service Provider.

Das World Wide Web Consortium (W3C) definiert WebServices wie folgt:

Definition: WebService

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards. [29]

Aus der Definition lassen sich drei wichtige Eigenschaften von WebServices ableiten:

WebServices sind miteinander kombinierbar – WebServices zeichnen sich durch

standardisierte Schnittstellen aus mit denen sie untereinander verknüpft werden
können. Beispielsweise wird das JDQVisF als WebService implementiert wer-
den, der von anderen WebServices verwendet werden kann und selber einen
WebServices (z.B. das JDQCF) für die Dateneingabe benutzt.

WebServices sind lose gekoppelt – WebServices können auf unterschiedlichen Um-
gebungen laufen und in unterschiedlichen Programmiersprachen implementiert
sein. Damit sie trotzdem miteinander kombinierbar sind, benutzen sie definierte
Schnittstellen zur Kommunikation. Dadurch entsteht eine lose Kopplung und ein-
zelne WebServices lassen sich leicht austauschen oder anpassen. Beispielswei-
se werden zur Visualisierung von Datenqualität, diese Werte zuerst vom JDQCF
berechnet und anschließend über eine SOAP-Nachricht an das Visualisierungs-
framework übergeben.

WebService sind immer verfügbar – Das heißt, ein WebService ist 24/7 erreichbar

und kann die Anfragen des Service Consumer mit einer ausreichenden Qualität
bearbeiten. Für das hier zu entwickelnde Visualisierungsframework bedeutet
das, dass ein Wissenschaftler zu jeder Tages- und Nachtzeit die Datenqualität
visuell auf seinem Endgerät dargestellt bekommt und so seine laufenden Simula-
tion überwachen kann.

2.4.1.1 WebService Beschreibung

Um die lose Kopplung eines Service Consumer und des Service Provider zu erreichen,
werden standardisierte Beschreibungen der angebotenen Schnittstellen benötigt. Die

- 26 -

Web Service Description Language (WSDL) erlaubt es einem Service Producer seine
funktionalen Eigenschaften plattformunabhängig zu definieren.
Die Definitionen von nichtfunktionalen Eigenschaften können durch den WS-Policys
Standard [32] umgesetzt werden.

Da das Visualisierungsframework später als WebService zur Verfügung gestellt wird,
wird im Folgenden der Aufbau eines WSDL-Dokumentes beschrieben.

WSDL

WSDL ist eine auf XML-basierte Metasprache für die Beschreibung der funktionalen
Eigenschaften wie Methoden, Parameter und Austauschprotokolle eines WebService.
Die syntaktischen Informationen eines WSDL Dokumentes wird durch die WSDL Spezi-
fikation gegeben. Sie ist in Versionen v1.1 und v2.0 verfügbar. Da die neue Version
v2.0 nur wenig verbreitet ist, beziehen sich alle Aussagen in dieser Arbeit auf die Versi-
on v1.1.

Abbildung 2-3 zeigt den Aufbau eines WSDL-Dokumentes. Es enthält die Beschreibun-
gen der Schnittstellen, das Zugangsprotokoll und Details zum Deployment sowie alle
Notwendigen Informationen für den Zugriff auf den WebService.

Ein WSDL-Dokument kann grundsätzlich in zwei Bereiche eingeteilt werden.
Im abstrakten Teil wird beschrieben was der WebService anbietet. Es werden die benö-
tigten Datentypen (types), abstrakte Definitionen der Nachrichten für die Eingabe-, Aus-
gabe- und Fehlermeldungen (messages) und eine Menge von abstrakten Beschreibun-
gen der Operationen (operation) die vom WebService unterstützt werden (portType)
definiert [33].
Im konkreten Teil werden Informationen darüber hinzugefügt, wie mit dem WebService
kommuniziert werden kann (binding) und wo dieser erreichbar ist (service). Das binding
enthält konkrete Protokolle und Datenformate, um einen portType zu implementieren.
Das Element service enthält eine Menge von individuellen „Endpunkten“ (port), die über
eine Netzwerkadresse erreichbar sind und ein bestimmtest binding unterstützen. [33]

- 27 -

Abbildung 2-3: Aufbau eines WSDL-Dokuments nach der WSDL-Spezifikation v1.1 mit
Kennzeichnung des abstrakten und konkreten Teils

2.5 Simulation-Workflow

Workflows beschreiben Kompositionen von voneinander abhängigen Aufgaben, die auf
einem Computer unter Verwendung eines Workflow-Management-Systems (WfMS)
ausgeführt werden [30]. Klassische Workflows dienen dazu, Geschäftsprozesse und IT
zusammenzuführen. Dabei können die einzelnen Aufgaben durch WebServices reali-
siert sein, die auf unterschiedlichen Umgebungen und auf unterschiedlichen Rechnern
ausgeführt werden.

Seit einigen Jahren werden bekannte Workflow-Technologien in die Wissenschaft unter
dem Namen Scientific-Workflows übertragen [30]. Speziell im Gebiet der Simulationen
bieten diese mehrere Vorteile. Durch ihre Hilfe kann beispielsweise das Auswerten der
Simulationsergebnisse auf mehrere Wissenschaftler verteilt werden. Außerdem erleich-
tern sie den Umgang mit großen Datenmengen, wie sie in komplexen und langläufigen
Simulationen entstehen können.

types

binding

definitions

input

output

operation

portType

message

port

service

Abstract
C

oncrete

"What"

"How"

"Where"

- 28 -

Abbildung 2-4 zeigt die Architektur eines Simulation-Workflow unter Verwendung von
WebService-Technologien als eine Implementierung einer SOA und der Workflowspra-
che BPEL [30]. Der Service-Bus startet die verschiedenen Services für die Bearbeitung
der Aufgaben innerhalb der Simulation. Das in [30] vorgestellte Scientific WfMS ver-
wendet die konventionelle Workflow-Technologie, um Simulation-Workflows auf Basis
kausalen Abhängigkeiten oder Datenabhängigkeiten zu modellieren. Genauer gesagt,
kann ein Wissenschaftler durch die Verwendung von Workflow-Technologie ein Work-
flow-Modell erstellen, welches die Aufgaben definiert und die Reihenfolge in der diese
verarbeitet werden müssen festlegt. Ein solches Modell dient als Vorlage aus der jeder
Workflow instanziiert werden kann. Das bedeutet, dass jeder Workflow aus einem zu-
grunde liegenden Workflow-Modell heraus erstellt wird. Diese konkrete Workflowinstanz
kann dann durch eine Workflow-Engine eines WfMS ausgeführt werden. [30]

Abbildung 2-4: Architektur eines Simulation-Workflows auf Basis konventioneller Work-
flow-Technologie [30]

Simulation-Workflows, basierend auf kausalen Abhängigkeiten oder Datenabhängigkei-
ten, können langläufige Berechnungen und die Verwendung komplexen Datenstruktu-
ren unterstützen. Dabei können durch konventionelle Workflow-Technologie einzelne
WebServices zu einem übergeordneter Prozess zusammengestellt werden, der zur Be-
arbeitung einzelner Aufgaben eingesetzt werden kann. Diese Technik ermöglicht den
Simulation-Workflow auf einer abstrahierten Ebene zu betrachten.

Abbildung 2-5 zeigt die generelle Architektur eines Simulations-Workflows. Diese ist in
drei Schichten eingeteilt [28].

- 29 -

Abbildung 2-5: Generelle Architektur eines Simulation-Workflows [28]

Die WfMS Schicht ist für die Ausführung des Simulation-Workflows auf Basis konventi-
oneller Workflow-Technologien verantwortlich. Sie verbindet einzelne WebServices um
das Simulationsziel zu erreichen.
Die Service-Bus Schicht dient dem WfMS für den Aufruf der einzelnen Services. Das
bedeutet, dass das WfMS nicht direkt die einzelnen Services aufruft. Der Service-Bus
wählt einen passenden Service für die Bearbeitung der Aufgabe aus. Bei der Auswahl
berücksichtigt er sowohl funktionale (z.B. die möglichen Operationen) als auch nicht-
funktionale Anforderungen (z.B. Datenqualitätsanforderungen) der Services. Ist ein
passender Service gefunden, übergibt der Service-Bus die Anfrage des Workflows an
diesen. Nach der Bearbeitung gibt der Service-Bus das Ergebnis an den Workflow zu-
rück.
Die Service-Schicht beschreibt alle Services die vom Workflow zusammengestellt und
verwendet werden können. Jeder Service besitzt dazu standardisierte Schnittstellen
und Beschreibungen seiner funktionalen und nichtfunktionalen Anforderungen. Zu den
Funktionalen zählen zum Beispiel mögliche Operationen, Parameter und Datentypen.
Zu den Nichtfunktionalen gehören Anforderungen wie Kosten, durchschnittliche Re-
chenzeit oder Anforderungen an die Datenqualität. Diese Schnittstellenbeschreibungen
werde vom Service-Bus als Auswahlkriterien verwendet. [30]

Workflow Management
System Layer

Service Bus Service Bus Layer

Service
A

Service
B

Service
C Service Layer

- 30 -

3 Visualisierung von Datenqualität

Visualisierungen sollen den Betrachter bei der Auswertung einer Datenmenge unter-
stützen. Um dieses grundsätzliche Ziel zu erreichen, müssen diese Visualisierungen
bestimmte Kriterien erfüllen. In diesem Kapitel werden hierzu Konzepte, Methoden und
Techniken aufgezeigt und mögliche Visualisierungen für Datenqualitätswerte vorge-
stellt.

Im ersten Teil werden zunächst die grundsätzlichen Ziele von Visualisierungen gezeigt.
Anschließend werden die Begriffe Visualisierung, Informations- und Datenvisualisierung
und Datenqualitätsvisualisierung definiert. Danach wird die allgemeine Visualisierungs-
pipeline vorgestellt und die drei Stufen Filtering, Mapping und Rendering erklärt.
Anschließend werden die Anforderungen Expressivität, Effektivität und Angemessenheit
für gute Visualisierungen und die verschiedenen Einflussfaktoren gezeigt. Darauf auf-
bauend werden grundsätzliche Visualisierungstechniken vorgestellt und das Problem
des Findens passender Visualisierungen beschrieben. Abschließend werden Techniken
für die Visualisierung von Datenqualitätswerten vorgestellt.

3.1 Ziele der Visualisierung

Rolf Däßler begründet die Bedeutung der Visualisierungen wie folgt:

„Visualisierung entspricht der Neigung der menschlichen Spezies und
unserer Kultur, visuelle Repräsentationsformen zu bevorzugen.[...] Nur
ca. 13% der Information werden mit dem Gehör und 12% mit Hilfe an-
derer Sinnesorgane aufgenommen.“ [3].

Das bedeutet, dass zwischen 60% und 80% der Informationen aus visuellen Eindrücken
gewonnen werden [14].
Das Ziel jeder Visualisierung ist es, diese Erkenntnisse auszunutzen und die Informati-
onen innerhalb abstrakter Daten verständlich wiederzugeben und dadurch eine effizien-
te Analyse zu ermöglichen. Speziell in wissenschaftlichen Simulationen, bei denen rie-
sige Datenmengen entstehen können, ist die visuelle Repräsentation eine Möglichkeit
die Auswertung und Bewertung zu vereinfachen.

In diesem Kapitel werden zunächst die allgemeinen Aufgaben der Visualisierung und
ihre Ziele in ähnlichen Einsatzgebieten aufgezeigt. Anschließend werden diese allge-
meingültig formuliert und auf die Visualisierung von Datenqualität in Simulation-
Workflows übertragen.

- 31 -

Die Visualisierung ist immer auch Teil eines kreativen Prozesses, bei dem Strukturen
und Zusammenhänge untersucht und kommuniziert werden. 1987 wurden von Mc Cor-
mick, De Fanti und Brown die zwei Hauptaufgaben der Visualisierung beschrieben, wel-
che auch heute noch aktuell sind.

Ergebnispräsentation – Visualisierungen sollen Ergebnisse präsentieren und somit

„...das Verständnis und die Kommunikation über die Daten und die zugrunde lie-
genden Modelle und Konzepte erleichtern.“ [17]

Datenanalyse – Bilder sollen dem Betrachter helfen verborgene Zusammenhänge der

Daten „...nicht nur zu sehen, sondern auch zu erkennen, zu verstehen und zu be-
werten [...] die allein aus Interpretation von Zahlenkolonnen nicht ableitbar wären.“
[17]

Das Gebiet der Informationsvisualisierung geht noch einen Schritt weiter und definiert
unabhängig vom Anwendungszweck und der Präsentationsform drei Ziele der Visuali-
sierung von Daten:

1. „Die Veranschaulichung und gegebenenfalls Vereinfachung von komplexen Pro-
zessabläufen und Objektbeziehungen anhand von Symbolen, Diagrammen oder
Animationen.“ [3]

2. „Die Vereinfachung des Zugangs zu Massendaten, z.B. durch Klassifikation und
Datenstrukturierung.“ [3]

3. „Unterstützung bei der Analyse und Interpretation von Daten, z.B. Sichtbarma-

chung verborgener Trends, sowie Erleichterung der Mustererkennung.“ [3]

Aus diesen beiden Ansätzen kann ein allgemeines Ziel für Visualisierungen in wissen-
schaftlichen Bereichen formuliert werden:

„Es sollen die Analyse, das Verständnis und die Kommunikation von Modellen, Konzep-
ten und Daten in der Wissenschaft erleichtert werden.“ [16]

Davon abgeleitet, ergeben sich für die Visualisierung von Datenqualität in Simulation-
Workflows folgende Ziele:

Analyse – Dem Wissenschaftler soll anhand der grafischen Darstellung der Datenquali-

tätswerte eine vereinfachte Analyse ermöglicht und so bei der Entscheidungsfin-
dung, z.B. einem möglichen Eingriff in die laufende Berechnung, unterstützt wer-
den. Dies kann zum Beispiel durch das Hervorheben kritischer Datenwerte oder das
Filtern uninteressanter Metadaten geschehen.

- 32 -

Verständnis – Durch eine vom Betrachter leicht erfassbare visuelle Repräsentation von
abstrakten Datenqualitätswerten, kann das Verständnis gesteigert werden. So kann
je nach abgebildeter Skala, die jeweils geeignetste Darstellung gewählt werden.

Kommunikation – In Kooperation mit verschiedenen Domänenspezialisten, kann die

grafischen Darstellung helfen, allen Beteiligten einen vereinfachten Zugang zu den
Daten zu ermöglichen und kritische Komponenten zu erkennen und entsprechend
anzupassen. Auch unbekannte Skalen können so leichter von Nicht-
Domänenspezialisten erfasst und kritisch bewertet werden.

Daten – Da Datenqualitätswerte abstrakte Werte sind die nach [1] auf verschiedene

Skalen abgebildet werden können, helfen grafische Darstellungen diese leichter zu
erfassen und zu verarbeiten. Metaphern wie beispielsweise ein Wecker für die Di-
mension Rechtzeitigkeit kann die Bedeutung eines Zahlenwertes verdeutlichen.

3.2 Definitionen von Visualisierungen

In den folgenden Abschnitten werden die Begriffe Visualisierung, Informations- und Da-
tenvisualisierung und Datenqualitätsvisualisierung definiert.

3.2.1 Visualisierung

Da das Visualisierungsframework in unterschiedlichen Bereichen eingesetzt wird und
dabei die unterschiedlichsten Arten von Visualisierungen generiert werden müssen,
wird von einem breiten Visualisierungs-Begriff ausgegangen und die Definition aus [3]
übernommen.

Definition: Visualisierung

Der Prozess und das Ergebnis einer Darstellung oder Repräsentation von Informa-
tionen, die mit dem Auge wahrgenommen werden kann.

Diese grundsätzliche Definition erlaubt es einen breiten Einsatzbereich von Visualisie-
rungen zu betrachten. So können Visualisierungen für reine Datenqualitätswerte, für
Datenqualitätswerte in Kombination mit Simulationsdaten oder nur für Simulationsdaten
generiert werden.

3.2.2 Informations- und Datenvisualisierung

Die Abgrenzung der Begriffe Informationsvisualisierung und Datenvisualisierung ist
noch nicht einheitlich gelöst. Dies liegt vor allem an einer fehlenden, allgemein aner-
kannten Definition des Informationsbegriffes [17].

- 33 -

Aus diesem Grund, werden im Folgenden die beiden Begriffe als Synonyme behandelt
und unter dem Begriff Informationsvisualisierung verwendet.

In der Literatur existieren unterschiedliche Definitionen von Informationsvisualisierung.
Um im anschließenden Kapitel Datenqualitätsvisualisierung definieren zu können, wird
hier eine Definition von [19] übernommen.

Definition: Informationsvisualisierung

Die Informationsvisualisierung nutzt Computergrafiken und -Interaktionen um dem
Menschen bei der Lösung von Problemen zu unterstützen.

Die Informationsvisualisierung ist demnach ein Teilgebiet der Visualisierung. Sie hat
das Ziel, große Informations- bzw. Datenmengen in ein, für Menschen leicht zu erfas-
sendes Format zu bringen, um so die Entscheidungsfindung zu erleichtern.

3.2.3 Datenqualitätsvisualisierung

In Anlehnung an die Informationsvisualisierung, wird Datenqualitätsvisualisierung im
Kontext wissenschaftlicher Simulationen wie folgt definiert:

Definition: Datenqualitätsvisualisierung

Die Datenqualitätsvisualisierung beschreibt die computergestützte visuelle Reprä-
sentation von Datenqualitätswerten mit dem Ziel, Wissenschaftler bei der Analyse
von Simulationen zu unterstützen.

Diese allgemeine Definition erlaubt es, Datenqualitätsvisualisierungen formatunabhän-
gig zu betrachten. Dadurch sind einfache Bilder, genauso wie komplexe 3D Visualisie-
rungen, Datenqualitätsvisualisierungen.
Durch den Verzicht einer Skala in dieser Definition, ermöglicht sie, Datenqualitätsvisua-
lisierungen vom jeweiligen Einsatzgebiet und Fachbereich kontextabhängig zu gestal-
ten.
Zudem berücksichtigt diese Definition die subjektiven Eigenschaften wie Sehschwächen
oder Farbenblindheit eines Betrachters und kann diese in die Generierung der Daten-
qualitätsvisualisierung einfließen lassen.

3.3 Visualisierungspipeline

Der Visualisierungsprozess beschreibt das grundsätzliche Vorgehen bei der Generie-
rung von Visualisierungen. Er besteht aus den drei grundsätzlichen Schritten: Filtering,
Mapping und Rendering, die unter dem Begriff Visualisierungspipeline zusammenge-
fasst werden.

- 34 -

Abbildung 3-1 zeigt den Ablauf bei der Generierung von Visualisierungen. Zuerst wer-
den die Rohdaten aufbereitet, anschließend ein Geometriemodell erstellt und daraus im
letzten Schritt ein Bild generiert.

Abbildung 3-1: Stufen der Visualisierungspipeline [17]

In den folgenden Abschnitten werden die einzelnen Stufen genauer betrachtet.

3.3.1 Datenaufbereitung (Filtering)

Die erste Stufe der Visualisierungspipeline ist die Datenaufbereitung. Sie realisiert eine
Daten-zu-Daten-Abbildung [17]. Das heißt, dieser Schritt bekommt Rohdaten als Einga-
be und bereitet diese für alle weiteren Schritte auf.

Das Filtering hat im Bereich der Datenqualitätsvisualisierung zwei Hauptaufgaben.
Zum einen soll die Datenmenge reduziert werden können, um dadurch Rechenkapazi-
täten einzusparen. Werden beispielsweise die originalen Simulationswerte für die aktu-
elle Problemlösung von den Wissenschaftlern nicht benötigt, können diese entfernt und
nur die reinen Datenqualitätswerte an die Visualisierung weitergeleitet werden.
Zum anderen sollen, entgegen der englischen Bezeichnung, extern liegende Simulati-
onsdaten geladen werden können, wenn sie für die Visualisierung benötigt werden.

Eine weitere Aufgabe eines Filters, könnte das Verwalten von Metadaten sein, welche
für das Steuern der späteren Visualisierungsschritte benötigt werden. Falls es sich um
ein verteiltes System handelt, können an dieser Stelle beispielsweise die Rücksendead-
ressen spezifiziert werden.

Als Ergebnis des Filtering, liegen aufbereiteten Daten vor, die an die nachfolgenden
Schritte übergeben werden [17].

3.3.2 Mapping

Die zweite Stufe der Visualisierungspipeline, das Mapping, ist das Kernstück des Visua-
lisierungsprozess. Sie realisiert eine Daten-zu-Geometrie-Abbildung. Dabei werden
auch nicht-geometrische Daten, wie etwa Datenqualitätswerte, auf geometrische Primi-
tive einschließlich der zugehörigen Attribute, wie Farbe und Textur, abgebildet [17].

Filtering Mapping RenderingDaten Bild

- 35 -

In diesem Schritt entscheidet sich, wie die Daten später visuell repräsentiert werden.
Die einzelnen Bestandteile eines guten Mappings werden in den nachfolgenden Kapi-
teln ausführlich behandelt.

3.3.3 Bildgenerierung (Rendering)

Die letzte Stufe der Visualisierungspipeline ist die Bildgenerierung. In diesem Schritt
werden aus den abstrakten Geometriedaten die später angezeigten Bilder generiert.
Die Bildgenerierung beschreibt eine Abbildung von Geometrie- auf Bilddaten. Nach der
Bilderzeugung folgt die Ausgabe auf einem Anzeigegerät.

Abbildung 3-2 fasst die Visualisierungspipeline aus Sicht des Datenflusses zusammen.

Abbildung 3-2: Datenfluss in der Visualisierungspipeline [17]

3.3.4 Verteilung der Stufen der Visualisierungspipeline

Wie schon bei der Datenaufbereitung erwähnt, können die einzelnen Schritte der Visua-
lisierungspipeline auf mehrere Rechner verteilt sein. Beispielsweise lassen sich so Vi-
sualisierungs-Services als Teil einer SOA einsetzen. Da das hier zu entwickelnden
Framework später Teil einer großen Simulation-Workflow-Umgebung wird, werden hier
die vier Varianten aus [17] zur Verteilung der drei Stufen gezeigt (siehe Abbildung 3-3).
Dabei wird zwischen dem Autor (später JDQVisF) und dem Betrachter (später
JDQVisClient) als mögliche Rollen unterschieden. Das Framework wird alle Stufen der
Verteilung unterstützen.

Rohdaten aufbereitete
Daten

Geometrie-
daten Bilddaten

- 36 -

Abbildung 3-3: Varianten zur Verteilung der Schritte der Visualisierungspipeline [17]

Variante 1 – Der Autor erzeugt ein Bild oder eine Bildsequenz (a)

Hier führt der Autor alle Schritte der Visualisierungspipeline durch. Der Betrachter
hat keine Möglichkeit in den Visualisierungsprozess einzugreifen. Praktisch bedeu-
tet das, dass der Autor Bilder erzeugt, die er anschließend an den Betrachter ver-
sendet. Diese Variante setzt im Allgemeinen eine sehr hohe Bandbreite voraus,
wenn ohne Kompressionsverluste und in Echtzeit Datenqualitätswerte visualisiert
für den Betrachter zur Verfügung stehen sollen.

Variante 2 – Der Autor erzeugt ein Geometriemodell der Daten (b)
Bei dieser Variante erstellt der Autor ein Geometriemodell der Daten, legt also die
Art und Weise fest wie das Bild später beim Betrachter generiert wird. Der Betrach-
ter kann die Bildgenerierung nach seinen speziellen Anforderungen und Vorstellun-
gen steuern. Obwohl diese Variante den Vorteil bringt, dass der Betrachter beliebig
im Geometriemodell navigieren kann und somit auch Details analysieren kann, die
bei der ersten Variante verborgen geblieben wären, so hat er doch keinen Einfluss
auf das Mapping, bei dem wichtige Entscheidungen für die Darstellungsmöglichkei-
ten getroffen werden.

Variante 3 – Der Betrachter erzeugt die Visualisierung (c)
Hier liefert der Autor lediglich die Rohdaten für die Visualisierung. Alle Schritte der
Visualisierungspipeline werden vom Betrachter durchgeführt. Dies ermöglicht einen
maximalen Grad der Freiheit und bietet dem Betrachter volle Kontrolle über den Vi-
sualisierungsprozess. Der Nachteil liegt aber vor allem in der Menge der Rohdaten.
Bei der Berechnung von Datenqualitätswerten, können diese leicht in den Giga-

F M RDaten

Autor

Bild

Betrachter

a) Variante 1: Der Autor erzeugt ein Bild

F M RDaten

Autor

Bild

Betrachter

b) Variante 2: Der Autor erzeugt ein
 Geometriemodell

F M RDaten

Autor

Bild

Betrachter

c) Variante 3: Der Betrachter erzeugt die
 Visualisierung

F M RDaten

Autor

Bild

Betrachter

d) Variante 4: Der Autor erzeugt ein
 Geometriemodell unter Kontrolle
 des Betrachters

Filtering Mapping RenderingF M R

- 37 -

bytebereich gehen. Diese Datenmenge lässt sich nicht ohne weiteres versenden.
Außerdem müsste ein einheitliches Datenformat für den Austausch festgelegt wer-
den.

Variante 4 – Der Autor erzeugt ein Geometriemodell unter Kontrolle des Betrachters (d)
Diese Variante ist ein Kompromiss aus den oben beschriebenen. Hierbei erzeugt
der Autor, wie in Variante 2 ein Geometriemodell der Daten, führt also die ersten
beiden Schritte der Visualisierungspipeline durch. Er tut dies aber unter Kontrolle
des Betrachters, welcher über eine definierte Schnittstelle in den Filter- und Model-
lierungsprozess eingreifen kann. Der Betrachter seinerseits generiert am Ende ein
Bild aus dem Geometriemodell. Somit wird sicher gestellt, dass der Betrachter im-
mer genau die Visualisierung bekommt, welche aktuell für seine Problemstellung
am geeignetsten ist.

3.4 Anforderungen an eine Visualisierung

Die Visualisierung von Datenwerten ist eine Abbildung ihrer Eigenschaften auf visuelle
Attribute und hat als Ergebnis ein Bild oder Bildsequenzen. Diese Abbildung kann eine
einfach Form, wie etwa eine Abbildung auf Farbattribute sein, oder aber komplex mit
Animationen und einem dreidimensionalen Geometriemodell.
Bevor die allgemeinen Anforderungen an eine Visualisierung genauer untersucht wer-
den können, muss zunächst der Begriff Visualisierungsqualität definiert werden. Sie
dient als Referenz für die Nützlichkeit und somit für das Erfüllen des Effektivitätskriteri-
ums (siehe Kapitel 3.4.2) einer bestimmten Visualisierung.

Definition: Visualisierungsqualität

Die Qualität einer Visualisierung definiert sich durch den Grad, in dem die bildliche
Darstellung das kommunikative Ziel der Präsentation erreicht. Sie lässt sich als das
Verhältnis von der vom Betrachter in einem Zeitraum wahrgenommenen Informati-
onen zu der im gleichen Zeitraum zu vermittelnden Informationen beschreiben. Die
Qualität einer Visualisierung ist somit in starkem Maße abhängig von den Charakte-
ristika der zugrunde liegenden Daten und ihrer Eigenschaften, dem Bearbeitungs-
ziel, den Eigenschaften des Darstellungsmediums sowie den Wahrnehmungskapa-
zitäten und den Erfahrungen des Betrachters. [17]

Die Visualisierungsqualität beschreibt demnach das Verständnis des Benutzers, eine
reale Situation, z.B. die Datenqualitäts- und Simulationswerte, anhand ihrer Repräsen-
tation durch die visuellen Attribute zu rekonstruieren, verstehen und Rückschlüsse zu
ziehen.

- 38 -

Die Qualität der Visualisierung ist abhängig von vielen Einflussfaktoren. Folgende Fak-
toren spielen bei der Erzeugung einer geeigneten Visualisierung eine besondere Rolle
[17]:

• Die Art und Struktur der Daten
• Das Bearbeitungsziel der Visualisierung
• Das Vorwissen des Anwenders / Betrachters
• Die visuelle Fähigkeiten und Vorlieben des Betrachters
• Übliche Metaphern des Anwendungsgebietes / Konventionen
• Die Charakteristika des Darstellungsmediums

In Kapitel 3.6 wird auf die Faktoren genauer eingegangen, die im Zusammenhang mit
Datenqualität relevant sind.

Aus der Definition der Visualisierungsqualität lassen sich die Anforderungen Expressivi-
tät, Effektivität und Angemessenheit ableiten, die bei der Visualisierung einer Daten-
menge eingehalten werden müssen.

3.4.1 Expressivität

Nach [17] ist das wichtigste Kriterium einer guten Visualisierung ihre Expressivität oder
Ausdrucksfähigkeit. Sie besagt, dass die zugrunde liegende Datenmenge möglichst
unverfälscht wiedergegeben werden muss und nur die tatsächlich enthaltenen Informa-
tionen dargestellt werden. Sie ist vor allem von der Struktur und Art der Daten abhän-
gig. Um eine effektive Verarbeitung der Visualisierung zu gewährleisten, ist das Expres-
sivitätskriterium Grundvoraussetzung. Das bedeutet insbesondere, dass die Auswahl
der Visualisierungstechnik der ersten Schritt bei der Visualisierung von Daten sein muss
[17].

In der Informationsvisualisierung wurde zur Beurteilung der Expressivität der Begriff
Lie Factor eingeführt:

Lie Factor – “The representation of numbers, as physically measured on the

surface of the graphic itself, should be directly proportional to the quanti-
ties represented." [19]

Er beschreibt demnach die Größe des Effektes in der grafischen Repräsentation zu
dem tatsächlichen Effekt innerhalb der Daten:

Größe des Effektes in der Grafik
Lie Factor = --

Größe des Effektes in den Daten

Durch die Proportionalität ist ein Wert um 1 ein Maß für eine hohe Expressivität. Ein
Wert kleiner 1 bedeutet, dass wichtige Effekte in den Daten nicht oder nur schwach ab-

- 39 -

gebildet wurden und ein Wert größer als 1 lässt auf eine Dramatisierung des Effektes
schließen. Abbildung 3-4 zeigt ein bekanntes Beispiel für einen Lie Factor größer 1 und
dadurch eine Verletzung des Expressivitätskriteriums. Das Bild illustriert die Ölpreisent-
wicklung zwischen 1973 und 1979 durch immer größer werdende Ölfässer. Dabei
wächst die Größe der Ölfässer jedoch viel schneller als die tatsächliche Preissteige-
rung, was zu einem Lie Factor größer als 1 führt.

Steigerung der Größe der Ölfässer
Lie Factor = -- > 1

Tatsächliche Ölpreiserhöhung

Abbildung 3-4: Beispiel Lie Factor - Die Größe der Ölfässer wächst stärker als die tat-
sächlichen Ölpreisentwicklung [19]

3.4.2 Effektivität

Da es für ein und dieselbe Datenmenge durchaus mehrere Visualisierungsformen ge-
ben kann, die das Expressivitätskriterium erfüllen, wird ein weiteres Auswahlkriterium
benötigt. Es muss entschieden werden, welche Darstellungsform die Eigenschaften der
Daten optimal wiedergibt. Anders als das Expressivitätskriterium ist die Effektivität einer
Visualisierung zusätzlich zu den Daten auch von den jeweiligen Einflussfaktoren ab-
hängig (siehe Kapitel 3.6) [17]. Beispielsweise spielt das Bearbeitungsziel oder die Re-
chenleistung des Anzeigegerätes eine entscheidende Rolle. Hier muss genau unter-
sucht werden, welche Informationen und Eigenschaften auf welche Art und Weise dar-
gestellt werden müssen, damit sie der Betrachter effektiv erkennen kann.

- 40 -

Das Effektivitätskriterium beschreibt also den Nutzen der gewählten Darstellungsform
im aktuellen Kontext. Das heißt, es „..gibt Aufschluss über die Fähigkeit einer Darstel-
lungsform, die in ihr enthaltenen Informationen zu veranschaulichen und auf intuitive
Weise dem Betrachter zu vermitteln“ [17].
Für eine häufige Form der Verletzung des Effektivitätskriteriums, hat sich in der Infor-
mationsvisualisierung der Begriff Chart Junk gebildet [19]. Unter diesen Begriff fallen
alle Eigenschaften eines Diagrammes, die für den Betrachter für die Problemlösung
keine nützlichen Zusatzinformationen bereitstellen und somit für die Informationsüber-
tragung nutzlos sind.

Abbildung 3-5 zeigt ein Beispiel für Char Junk anhand eines dreidimensionalen Balken-
diagramms. Die eigentlichen Informationen sind dabei die Skalen und die errechneten
Werte. Alle anderen grafischen Attribute, wie der 3D-Effekt oder der Schattenwurf, tra-
gen nicht zum Verständnis bei und können den Betrachter unnötig verwirren.

Abbildung 3-5: Beispiel Chart Junk – Kein Informationsgewinn durch das Hinzufügen
eines 3D-Effektes, Schatten und horizontalen Linien zum Diagramm [19]

3.4.3 Angemessenheit

Die Angemessenheit beschreibt den, für eine Visualisierung benötigten, Rechenauf-
wand und ihren physikalischen Ressourcenbedarf. Sie beschreibt also weniger die Qua-
lität der resultierenden Visualisierung aus Sicht des Betrachters, als vielmehr den Auf-
wand und die Kosten für deren Generierung. [17]
Die Angemessenheit ist eng mit dem Effektivitätskriterium und den Einflussfaktoren
verbunden und spielt bei der Auswahl passender Visualisierungen eine wichtige Rolle.
Beispielsweise müssen, bei sich schnell ändernden Daten, in kurzen Abständen neue

Informationen

keine Zusatzinformationen

- 41 -

Visualisierungen generiert und präsentiert werden, die nur die wichtigsten Eigenschaf-
ten der Datenmenge abbilden. Im Gegensatz dazu, können bei langzeitbeständigen
Daten komplexere und rechenintensivere Visualisierungen berechnet werden.

3.5 Beschreibung der Daten als Ausgangspunkt der Visualisierung

Der Ausgangspunkt jeder Visualisierung ist die ihr zugrunde liegende Datenmenge. Wie
in Kapitel 2.1 definiert, können Daten verschiedene Strukturen und Formate besitzen.

Diese Kapitel zeigt Daten im Kontext der Visualisierung.

3.5.1 Datenformate

Im Kapitel 2.1.2 und 2.1.3 wurden Daten im Zusammenhang nach ihren logischen Ei-
genschaften, Struktur und Änderungsrate, untersucht. Nach [17] darf zusätzlich bei
praktischen Visualisierungsanwendungen die Art die Art und Weise, wie die Daten und
ihre Eigenschaften physikalisch gespeichert sind, nicht vernachlässigt werden. Da das
hier entwickelte Visualisierungsframework in einer heterogenen Simulationsumgebung
mit unterschiedlichen Komponenten realisiert werden soll, ist die Unterstützung einheit-
licher Datenformate für die Kommunikation unentbehrlich.

Für die Repräsentation der Datenqualitätswerte wird das Extensible Markup Language
(XML) [34] Format verwenden. Es erlaubt eine plattformunabhängige hierarchische Be-
schreibung der Daten und eignet sich durch die verbreitete Unterstützung innerhalb der
WebServices Technologie, besonders für die Verwendung innerhalb von Simulation-
Workflows.
Für den interessierten Leser sei an dieser Stelle auf die Internetseite des W3C [34]
verwiesen, da eine detaillierte Beschreibung von XML den Rahmen dieser Arbeit über-
steigt.

Listing 1 zeigt beispielhaft die Struktur eines Datenqualitätswert als Eingabedatum für
die Visualisierung.

Listing 1: Beispiel für die Repräsentation eines Datenqualitätswertes in XML

Page 1 of 1/Users/marcelruss/SkyDrive/Dipl…beit/Diagramme/xml/Subscibe.xml
Saved: 21.10.12 15:26:15 Printed For: Marcel Russ

<InterpretionCalculationResult>1
	 <Value> 0.95 </Value>2
	 <InterpretionId> Accuracy </InterpretionId>3
</InterpretionCalculationResult>4

5
6
7

- 42 -

Das Format der generierten Visualisierungen ist maßgeblich von den Eigenschaften der
Anzeigegeräte abhängig. So können leistungsstarke Geräte, wie Tablet-Computer,
komplexe Visualisierungen verarbeiten, wohingegen leistungsschwache Geräte nur Bil-
der anzeigen können.
Das JDQVisF wird grundsätzlich jedes Datenformat, das auf den jeweiligen Geräten
verarbeitet werden kann, unterstützen. Beispielsweise können einfache Bilder durch
das freie, erweiterbare und verlustfreie Grafikformat PNG [35] dargestellt werden. Kom-
plexe 3D-Visualisierungen hingegen, können durch die Datenformate VRML oder X3D
[36] an die Anzeigegeräte versendet werden.
Für eine genaue Beschreibung der vorgestellten Formate sei an dieser Stelle auf die
Quellen [35] und [36] verwiesen, da eine detaillierte Beschreibung den Umfang dieser
Arbeit übersteigen würden.

3.5.2 Reduktion einer Datenmenge

Große Datenmengen lassen sich, auf Grund ihres komplexen Informationsgehalts, sel-
ten in einem einzigen Bild verständlich wiedergeben. Insbesondere bei Simulationsda-
ten, deren Anzahl leicht in die Millionen gehen kann, wäre eine Visualisierung aller Wer-
te restlos überladen. Aus diesem Grund, kann es notwendig sein, die ursprüngliche Da-
tenmenge vor der Visualisierung zu reduzieren und somit den Betrachter bei der Aus-
wertung der Daten zu unterstützen.

Im Folgenden werden die nach [17] existierenden Möglichkeiten zur Datenreduktion im
Bezug auf Datenqualitätswerte und Simulationsdaten gezeigt:

Entfernung irrelevanter Daten – Je nach Aufgabenstellung und Einsatzgebiet ist es

sinnvoll, uninteressante Daten vor der Visualisierung zu entfernen. Uninteressant
sind in diesem Zusammenhang alle Daten, die nichts zum Verständnis des Betrach-
ters beitragen oder keinen Einfluss auf das betrachtete Problem haben. Beispiels-
weise können bei FEM basierten Simulationen alle Metadaten, die nicht direkt in
Zusammenhang mir der Datenqualität oder der Simulationsergebnisse stehen, ent-
fernt werden.

Abstraktion der Datenmenge – Bei diesem Ansatz werden nur die wichtigsten Eigen-

schaften der Daten visualisiert, anstelle der gesamten Datenmenge. Beispielsweise
können bei einer Übersichtsanzeige, die einzelnen Dimensionen der Datenquali-
tätswerte zu einem einzelnen QoD-Wert aggregiert werden. Hier könnte zum Bei-
spiel der Maximal/ Minimalwert, der Durchschnitt oder Median der sechs Dimensi-
onen berechnet und visualisiert werden. Wobei, unter dem Gesichtspunkt der Da-
tenqualität, der Minimalwert eine besondere Rolle spielt. Es kann in vielen Fällen
ausreichen, wenn eine Dimension, zum Beispiel die Genauigkeit, die an sie gestell-
ten Anforderungen nicht erfüllt und dadurch das Ergebnis der Berechnung un-
brauchbar macht.

- 43 -

Angabe eines Bereiches von Interesse – Bei großen Simulationen kann es sinnvoll
sein dem jeweiligen Domänenspezialisten nur die Datenqualitätswerte im Detail zu
zeigen, die für sein Gebiet von Interesse sind. Das heißt, die Datenwerte können in
zwei Klassen eingeteilt werden. Die „wichtigen Daten“, die genauer betrachtet wer-
den müssen und in „übrige Daten“, bei denen eine aggregierte Darstellung ausrei-
chend ist. Ein weiteres Beispiel im Zusammenhang mit Datenqualität könnte eine
Auswahl der Datenqualitätswerte sein, welche an den Rändern der Metrik liegen.
Bei einem Schwellenwert von 0,7 wäre es demnach sinnvoll, nur die Werte beson-
ders hervorzuheben, bzw. visuell zu kennzeichnen, die nahe an diesem Wert oder
darunter liegen. So können mögliche kritische Komponenten frühzeitig erkannt wer-
den.

Auswahl von Teilmengen – Hier werden aus der Ausgangsdatenmenge Teilmengen

erzeugt, welche anschließend einzeln visualisiert werden. Im Zusammenhang mit
Datenqualität kann hier der Ansatz des „Focusing & Linking“ betrachtet werden. Er
beschreibt die Auswahl von Datenwerten die für das aktuelle Problem am wichtigs-
ten sind. So kann bei der Visualisierung von Simulationsdaten oder Datenqualitäts-
werten der Fokus auf den Bereich der Datenmenge gesetzt werden, an dem das
untersuchte Problem vermutet wird.

3.6 Einflussfaktoren auf die Visualisierung

Das Finden einer Visualisierung die alle in Kapitel 3.4 gezeigten Anforderungen erfüllt,
ist von vielen Einflussfaktoren abhängig. Hierzu zählen neben den Charakteristiken der
zu visualisierenden Datenmenge, vor allem auch die Spezifikation von Bearbeitungszie-
len, die somit die eigentlichen Ziele einer Visualisierung festlegen [17].
Die Bearbeitungsziele werden im ersten Unterkapitel genauer betrachtet. Anschließend
werden die Eigenschaften menschlicher visueller Wahrnehmung gezeigt. Die letzten
Abschnitte befassen sich mit den Faktoren Anwendungsumgebung und Ressourcen.

3.6.1 Bearbeitungsziele

Die Ziele, die mit einer Visualisierung verfolgt werden, haben zusammen mit den Eigen-
schaften der zugrunde liegenden Datenmenge einen entscheidenden Einfluss auf die
Erzeugung expressiver Bilder [17]. Sie legen fest, welche Informationen im Bild reprä-
sentiert werden und somit bei der späteren visuellen Analyse leicht und eindeutig zu
erkennen sein sollen.

Nach [17] ist die Beschreibung der Bearbeitungsziele nicht problemlos. Aus Anwender-
sicht wäre eine detaillierte, problemangepasste Beschreibung ideal. Zum Beispiel, wäre
bei der Untersuchung von Datenqualitätswerten innerhalb einer Knochensimulation eine
Zielvorgabe, „Farbiges Erkennen von numerischen Problemzonen“. Diesen Detailie-

- 44 -

rungsgrad können aber nur hochspezialisierte Visualisierungswerkzeuge verarbeiten.
Aus diesem Grund ist die Formulierung allgemeingültiger Bearbeitungsziele, die Fach-
bereichsübergreifend gelten, wichtig.
[17] formuliert mit Directed Search, Comparision und Exploration drei allgemeine Bear-
beitungsziele und leitet daraus verschiedene Problemklassen ab, die als Oberklassen
für die allgemeinen Bearbeitungsziele eingesetzt werden können. Im Bezug auf Daten-
qualitätsvisualisierung spielen die Folgenden eine wichtige Rolle:

Identifikationsproblem – Welchen Wert haben Daten in einem bestimmten Gebiet?

Lokalisierungsproblem – Wo liegen Daten in einem bestimmten Gebiet?

Korrelationsproblem – Gibt es Zusammenhänge zwischen zwei oder mehreren Vari-

ablen oder Datenwerten und bestimmten Gebieten des Beobachtungsraumes?

Vergleichsproblem – Wie unterscheiden sich die Datenwerte in einem bestimmten

Gebiet oder zu unterschiedlichen Zeitpunkten?

Verteilungsproblem – Wo liegen Extremwerte und Ausreißer?

Um den Anforderungen der einzelnen Fachbereiche (z.B. innerhalb einer Simulation)
gerecht zu werden, sind Abbildungen der speziellen Bearbeitungsziele auf die allgemei-
nen Bearbeitungsziele notwendig (siehe Abbildung 3-6).

Abbildung 3-6: Abbildung von speziellen Bearbeitungszielen auf allgemeine Bearbei-
tungszielen zur Beeinflussung von Visualisierungsentscheidungen [17]

Das oben genannte domainspezifische Bearbeitungsziel „Farbigen Erkennens von nu-
merischen Problemzonen“, könnte also auf die allgemeinen Ziele „Identifikation“ und
„Lokalisation“ abgebildet werden.

3.6.2 Menschliche Wahrnehmung – Objekterkennung und Gestaltgesetze

Der Mensch hat spezielle Fähigkeiten, die für effektive Visualisierungen berücksichtigt
werden müssen. Dieses Kapitel fasst die physischen und psychologischen Eigenschaf-

spezielle
Bearbeitungsziele

spezielle
Bearbeitungsziele

allgemeine
Bearbeitungsziele

Visualisierungs-
entscheidungen

- 45 -

ten zusammen und verdeutlicht diese an verschiedene Beispiele. Der genaue Ablauf
der Bilderkennung durch das Auge und Gehirn würde den Umfang dieser Arbeit über-
steigen und wird deshalb nur sehr vereinfacht aufgezeigt. Der Interessierte Leser sei an
dieser Stelle auf [38] verwiesen.

Die im Folgenden gezeigten Gesetze und Prinzipien zur menschlichen visuellen Wahr-
nehmung sind elementar wichtig und bilden die Basis für das Entwickeln und Finden
guter Visualisierungen.

“Perception is our window to the world that enables us to experience
what is out there in our environment. Thus, perception is the first step
in the process that eventually results in all of our cognitions. Paying at-
tention, forming and recalling memories, using language, and reason-
ing and solving problems all depend right at the beginning on percep-
tion. Without perception, these processes would be absent or greatly
degraded. Therefore it is accurate to say that perception is the gate-
way to cognition.” [19]

3.6.2.1 Präattentive Wahrnehmung

Die präattentive Wahrnehmung ist die Fähigkeit des Menschen, innerhalb kürzester Zeit
(200 – 250 Millisekunden) die Elemente zu erkennen, die aus einer Menge hervorste-
chen [19]. Sie unterscheidet dabei zwischen Farbe, Form, Ausrichtung, Größe, Abge-
schlossenheit, Gruppierungen, Anzahl oder Luminanz.

Die präattentive Wahrnehmung soll hier an einem Beispiel durch das Erkennen eines
roten Punktes in einer Menge von blauen Punkten gezeigt werden (Abbildung 3-7) [19].
Es ist ohne Absuchen des Bildes leicht zu Erkennen, ob dieses einen roten Punkt ent-
hält oder nicht.

Abbildung 3-7: Beispiel Präattentive Wahrnehmung – Entscheiden ob ein roter Punkt in
der Menge enthalten ist [19]

- 46 -

3.6.2.2 Gestaltprinzipien nach Max Wertheimer

Max Wertheimer (1880 – 1943) war Psychologe und Philosoph und gilt als Begründer
der Gestaltpsychologie. Er befasste sich unter anderem mit der Wahrnehmung von Ob-
jekten.
Das es sich bei der Objektwahrnehmung um einen sehr komplexen Vorgang handelt,
bleibt den meisten Menschen verborgen, da ihnen die Erkennung und Wahrnehmung
als selbstverständlich und einfach vorkommt. Bekannte Bilder, wie beispielsweise im
Straßenverkehr Autos und andere Verkehrsteilnehmer, werden leicht und oftmals un-
bewusst wahrgenommen und verarbeitet [20].

Wenn man jedoch die Ausgangsbedingungen betrachtet, unter denen ein Objekt als
solches erkannt wird, erkennt man die dahinterliegende Komplexität. Ein Körper erzeugt
zweidimensionale Abbilder auf unserer Netzhaut. Bei der Objekterkennung müssen die-
se dann in eine dreidimensionale Abbildung mit Hilfe der Umwelt umwandelt werden
[20].
Dabei können leicht Probleme entstehen. Beispielsweise muss, wenn sich Linien
schneiden, entschieden werden, ob es sich nach dem Schnitt um das selbe Objekt
handelt oder nicht[20].

Ein in der Literatur anerkannter Ansatz zur Erklärung der Objektwahrnehmung liefern
die Gestaltgesetze beruhend auf Max Wertheimer [20]:

Das Gesetz der Nähe – besagt, dass gleiche Elemente (Elemente mit gleichem Reiz)

mit geringeren Abständen zueinander als zusammengehörig wahrgenommen
werden. Wie in Abbildung 3-8 zu sehen, werden die Punkte links in Zeilen und
rechts in Spalten geordnet.

Abbildung 3-8: Gesetz der Nähe – Gruppierung der Punkte in Zeilen und Spalten [20]

Das Gesetz der Ähnlichkeit – besagt, dass sich ähnliche Elemente als zusammenge-

höriger empfunden werden, als sich unähnlich stehende. Dabei ist es irrelevant ob
diese sich in Form, Farbe oder anderem ähnlich sind. Abbildung 3-9 illustriert dies
an einem Beispiel.

- 47 -

Abbildung 3-9: Gesetz der Ähnlichkeit – Gruppierung der Elemente nach Farbe und
Form [20]

Das Gesetz der guten Gestalt – besagt, dass sich gestalthafte Wahrnehmungseinhei-

ten so ausbilden, dass sie im Ergebnis eine möglichste einfache und einprägsame
Gestalt, wie Vierecke, Kreuze, usw., darstellen. Abbildung 3-10 zeigt dieses Ver-
halten an einem Beispiel. In Abbildung 3-10 b entscheidet das Gehirn, dass sich
dieses Bild aus zwei Quadraten zusammenstellt, wobei in Abbildung 3-10 c ver-
schiedenen Vielecke wahrgenommen werden.

Abbildung 3-10: Gesetz der guten Gestalt – Durch Farbkodierung entstehen
verschiedene Vielecke [20]

Das Gesetz der guten Fortsetzung – besagt, dass im Fall zweier sich treffender Linien

a und b davon ausgegangen wird, dass sich diese im Punkt x schneiden und nicht,
wie in Abbildung 3-11 rechts, ein V-förmiges Gebilde repräsentieren.

Abbildung 3-11: Gesetz der guten Fortsetzung – Das Gehirn setzt die Linien so fort,
dass sie sich schneiden [20]

a a a

b b b

xxx

- 48 -

Das Gesetz der Geschlossenheit – verweist auf die Tatsache, dass in geometrischen
Gebilden, diejenigen Strukturen als Figur wahrgenommen werden, die eher ge-
schlossen (Abbildung 3-12 links und Mitte) wirken als offene (Abbildung 3-13
rechts).

Abbildung 3-12: Gesetz der Geschlossenheit – Enge und regelmäßig Strukturen werden
eher als Figur wahrgenommen als unregelmäßige [20]

Das Gesetz des gemeinsamen Schicksaals – besagt, dass sich Elemente einer Reiz-

vorlage, die eine Veränderung oder Bewegung, z.B. durch Drehung oder Ver-
schiebung in die gleiche Richtung, als Einheit wahrgenommen werden (Abbildung
3-13).

Abbildung 3-13: Gesetz des gemeinsamen Schicksaals – Gleichzeitig bewegende Ob-
jekte gehören zusammen [20]

3.6.2.3 Figur-Grund-Unterscheidung

Neben den oben aufgeführten Gestaltgesetzen existiert noch eine weitere, für die Ob-
jekterkennung wichtige Eigenschaft. Die Figur-Grund-Unterscheidung (oder Vorder-
grund-Hintergrund-Unterscheidung) beschreibt die grafische und räumliche Organisati-
on von Einheiten. Dies geschieht in der Regel unter Bildung einer Markoeinheit [20].
Beispielsweise gruppieren sich viele Menüpunkte auf dem Bildschirm zu einem Menü.

Im Folgenden werden diese Prinzipien genauer betrachtet [20]:

• Die kleinere Einheit wird eher als Figur vor einem größeren Hintergrund wahrge-
nommen als umgekehrt. Die Figur liegt dabei phänomenal vor dem Hintergrund.

• Die dunklere Einheit wird eher als Figur auf einem helleren Hintergrund wahrge-
nommen als eine hellere vor dunklem Grund.

- 49 -

Abbildung 3-14 verdeutlicht die beiden Prinzipien.

Abbildung 3-14: Vordergrund - Hintergrund: Objekt ist klein, mit Silhouette und im Vor-
dergrund [14]. Links ist das schwarze Objekt im Vordergrund, rechts das weiße.

• Eine räumliche zentrale Einheit wird eher wahrgenommen als eine periphere, wie

beispielsweise ein Anmelde- oder Hinweisfenster auf dem Hauptbildschirm.

• Eine Einheit mit einer vertikalen oder horizontalen Hauptachse wird eher als Fi-
gur wahrgenommen. Dabei ist die Wirkung der vertikalen größer als die einer ho-
rizontalen.

• Eine symmetrische Einheit wird eher als Figur wahrgenommen als eine asym-
metrische. Die Symmetrie um die senkrechte Mittelachse hat dabei die stärkste
Wirkung.

Abbildung 3-15: Symmetrische Einheiten werden als Figur wahrgenommen – Links die
mit symmetrischen Rand. In der Mitte die schwarzen und rechts die weißen Einheiten.

[14]

• Eine Einheit mit konvexen Rändern wird eher als Figur wahrgenommen als eine

mit konkaven (nach innen gewölbten) Rändern [20].

In Kombination mit den oben gezeigten Gestaltprinzipien lassen sich noch folgende
Aussagen zur Objekterkennung machen die für eine gute Visualisierung zusätzlich be-
rücksichtigt werden müssen [14]:

- 50 -

Einfache Fortsetzung – beschreibt das Vervollständigen von grafischen Attributen zu
bekannten Formen. In Abbildung 3-16 werden die gestrichelten Linien zu zwei in-
einander verschachtelten Objekten fortgesetzt.

Abbildung 3-16: Einfache Fortsetzung – Das Gehirn formt aus den gestrichelten

 Linien ein Rechteck und ein Sechseck [14]

Dünn ist im Hintergrund – besagt, dass dünnere Formen eher in den Hintergrund ge-

setzt werden als dicke. Abbildung 3-17 illustriert diesen Zusammenhang.

Abbildung 3-17: Dünn ist im Hintergrund, dick im Vordergrund [14]

3.6.3 Anwendungsumgebung

Nach [17] sind neben den im vorangegangen Kapitel aufgezeigten wahrnehmungspsy-
chologischen Aspekten der Visualisierung von Daten auch der Anwendungskontext, die
anwendungsspezifischen Eigenschaften sowie spezielle Anwenderpräferenzen zu be-
achten.
Dabei umfasst der Anwendungskontext existierende Konventionen im Anwendungsge-
biet und die Anwenderpräferenzen.
Das Anwendungsgebiet beschreibt alle schon vorhanden Konventionen zur Darstellung
bestimmter Informationen in dem jeweiligen Fachbereich. Darunter fallen auch allge-
meingeltende Regeln und Metaphern des adressierten Kulturkreises. Ein wichtiger und
in der Literatur gut untersuchter Aspekt, ist dabei die Farbe. Während in unserem Kul-
turraum die Farbe Weiß für Freude und Reinheit und Schwarz für Trauer in Verbindung

- 51 -

gebracht wird, sind in Indien diese Farbdeutungen genau umgekehrt. Auch in verschie-
denen Fachbereichen kann die Bedeutung von Farbe stark variieren. So steht die Farbe
Rot in der Wissenschaft als Gefahrensignal, die Farben Blau als neutrales und Grün als
positives Signal. In der Medizin steht rot jedoch für Leben und ist daher eher positiv,
grün und blau dagegen werden mit Infizierungen und dem Tod in Verbindung gebracht
und daher als negativ empfunden.
Die Anwenderpräferenzen beschreiben dagegen die Präferenzen und speziellen Anfor-
derungen des einzelnen Anwenders im speziellen Anwendungsfall. Hierunter fallen
auch physische Einschränkungen wie Farbenblindheit und andere Sehschwächen. [17]

Aus diesen Beispielen lässt sich ableiten, dass die Anwendungsumgebung beim Finden
guter Visualisierungen genau untersucht werden muss. Andernfalls kann der Anwen-
dungskontext einen zu großen limitierender Faktor darstellen, der die Expressivität und
Effektivität von Visualisierungsverfahren wesentlich beeinflussen kann. [17]

3.6.4 Ressourcen

Ein weiterer wichtiger Einflussfaktor bei der Erzeugung von Visualisierungen sind die
zur Verfügung stehenden Ressourcen. Dabei fallen unter diesen Begriff alle eingesetz-
ten Hardware-, Software- und Peripheriekomponenten die zur Visualisierung verwendet
werden.

Nach [17] haben vor allem die Eigenschaften Farbvisualisierung und die Texturdarstel-
lung des Anzeigegerätes, großen Einfluss auf die Effektivität. Die wichtigsten, im Zu-
sammenhang mit Datenqualitätsvisualisierung, werden nachfolgend genauer betrachtet.

Ortsauflösung – Die Ortsauflösung ist einer der wichtigsten Aspekte, der bei der Vi-

sualisierung berücksichtigt werden muss. Es wird im allgemeinen durch die Para-
meter absolute Größe des Darstellungsbereiches, die Rastergröße des Bildspei-
chers und die Rastergröße des Darstellungs- und Ausgabemediums beschrieben.

Farbwiedergabe – Die Farbwiedergabe spielt bei der Visualisierung von Datenquali-

tätswerten eine besondere Rolle. Mit ihrer Hilfe kann die präattentive Wahrnehmung
besonders gut ausgenutzt werden um schnell unzureichende Qualitätswerte aus ei-
ner großen Datenmenge zu erkennen. Damit werden an das Ausgabegerät Min-
destanforderungen an die Farbwiedergabe gestellt, die vor der Entwicklung von Vi-
sualisierungen untersucht werden müssen.

Rechenleistung – Die unterschiedlichen Rechenleistungen der Anzeigegeräte müssen

bei der Generierung der Visualisierungen berücksichtigt werden. Je nach Einsatz-
gebiet kann das ein oder andere Gerät zur Darstellung unbrauchbar sein. Soll bei-
spielsweise eine 3D-Annimation eines Knochens angezeigt werden, können Anzei-
gegräte ohne die Möglichkeit des 3D-Renderings nicht zur Darstellung verwendet
werden.

- 52 -

3.7 Grundlegende Techniken

Das in Kapitel 3.2.2 vorgestellte Mapping ist das Kernstück der Visualisierungspipeline.
Bei dieser Stufe werden die Eigenschaften der zu Grunde liegenden Datenmenge auf
visuelle Attribute, auch visuelle Variablen genannt, abgebildet.

Diese Kapitel beschreibt die grundlegenden Techniken, die später für das Visualisieren
von Datenqualitätswerten eingesetzt werden.

3.7.1 Visuelle Variablen

In der Literatur haben sich die, von [21] eingeführten, visuellen Variablen durchgesetzt
und werden in diesem Abschnitt genauer betrachtet.

Definition: Visuelle Variable

Die Mittel der graphischen Darstellung zur Transkription von Ähnlichkeits-, Ord-
nungs- und Proportionalitätsbeziehungen sind die acht Variationen, die das Auge in
Bezug auf „Flecken“ wahrnehmen kann [21].

Abbildung 3-18: Grafische Variablen nach [22]

Zahl der nutzbaren Variationen (schematisch)

Form

Muster

Orientierung

Farbe

Helligkeit

Größe

Position

Ein "gestaltloser
Fleck" kann
variiert werden
in:

Grafische Variablen

…

…

…

…

…

…

…

- 53 -

Nach [17] hat jede dieser Variablen seine eigene spezifische Wirkung, die [21] in drei
Formen unterscheidet:

Selektive Wirkung – Diese Variablen können unterschiedlichen Datenwerte in Grup-

pen aufteilen und unterscheiden. [21] nennt diese explizit trennende Variable und
zählt vor allem Muster, Farbe, Orientierung und Form dazu. Diese Variablen eignen
sich nach [17] besonders gut dazu Daten auf einer nominalen Skala darzustellen.

Ordinale Wirkung – Datenwerte, die durch solche Variablen kodiert sind, werden vom

Betrachter spontan in eine Ordnung gebracht. Es lassen sich also besonders Da-
tenwerte mit einer ordinalen Ordnung gut visualisieren.

Proportionale Wirkung – Zusätzlich zu der Ordnung der Daten, lassen sich Datenwer-

te durch eine Kodierung mit solchen Variablen mit der zu Grunde liegenden Mess-
größen in Beziehungen bringen.

Seit [21] im Jahr 1982 die vorgestellten Variablen zum ersten mal nannte und einführte,
finden immer wieder Diskussionen über Erweiterungen statt. Alle neuen Ideen aufzufüh-
ren würde aber den Umfang dieser Arbeit übersteigen. Ein spannender Ansatz, der spä-
ter auch zur Visualisierung der Datenqualitätsdimension Konsistenz weiter verfolgt wird,
stellt die visuelle Variable Regularität dar [23]. Sie beschreibt den visuellen Zusammen-
hang durch die Anordnung mehrerer Elemente innerhalb eines Bildausschnitts (siehe
Abbildung 3-19).

Abbildung 3-19: Regularität [23]

3.7.2 Visuelle Abbildungen

Die Abbildung der Datenwerte auf die grafischen Variablen ist die wichtigste Aufgabe
beim Mapping. Hier entscheidet sich, wie gut die spätere Visualisierung ist und ob sie
dem Betrachter bei der Lösung seines Problems helfen kann. Diagramme stellen dabei
die allgemeinste Form der grafischen Darstellung von Daten dar. Von denen in [17] vor-
gestellten Abbildungen, werden in diesem Abschnitt die, für die Datenqualitätsvisualisie-
rung wichtigen, gezeigt und auf ihre speziellen Eigenschaften eingegangen.

Regular Irregular

- 54 -

3.7.2.1 Abbildung auf Position, Größe und Orientierung

Die Lokalisation von Objekten im Sehfeld, sowie die Fähigkeiten leicht Positions- und
Größenvergleiche anstellen zu können, sind grundsätzliche Abläufe der menschlichen
visuellen Wahrnehmung [17]. Diese Prozesse können, dank der hohen örtlichen Auflö-
sung im menschlichen Auge, besonders genau durchgeführt werden. Eine Vielzahl der
heute eingesetzten Diagramme nutzen diese Fähigkeiten aus.
Die wichtigsten sind:

Punktdiagramme – Sie nutzen die Eigenschaft der menschlichen Wahrnehmung für

die Visualisierung aus, sehr gut relative Positionen einschätzen und vergleichen zu
können.

Linien- und Kurvendiagramme – Auch diese Diagrammarten nutzen die gute Wahr-

nehmbarkeit von Positions- und Längendifferenzen, um Informationen effektiv wie-
derzugeben. Dabei werden die Werte auf einer gemeinsamen Skala quantitativ ab-
gebildet. Um Trends und lokale Strukturen besser erkennen zu können, werden be-
nachbarte Punkte miteinander verbunden. Diese Diagrammart ist besonders dafür
geeignet, zeitabhängige Strukturänderungen anzuzeigen, wie beispielsweise Da-
tenqualitätswerte einer Komponente im Laufe der gesamten Simulation.

Säulen- und Balkendiagramme – Liegen die Datenwerten auf einer ordinalen oder

diskreten Skala, können auf der waagerechten Achse des Koordinatensystems die
Skala, zum Beispiel die Datenqualitätsdimensionen, und auf der senkrechten Achse
die dazugehörigen abhängigen Größen eingezeichnet werden.

Histogramme – Sie stellen eine spezielle Form von Säulendiagrammen dar, mit dem

Unterschied, dass nicht die einzelnen Datenwerte abgetragen werden, sondern de-
ren Häufigkeit. Eine Anwendung im Zusammenhang mit Datenqualität in Simulati-
on-Workflows, könnte die Auswahl eines Services sein, dessen Ergebnisse mit ei-
ner hohen Häufigkeit eine gute Qualität besitzen.

Kreisdiagramme – Es wird wie Säulendiagramme zur Darstellung von Dateneigen-

schaften verwendet, die auf einer quantitativen Skala liegen. Das Kreisdiagramm
besitzt jedoch, statt eines rechtwinkligen Koordinatensystems, einen Kreis als Be-
zugssystem. Auf diesem werden die Werte der verschiedenen Eigenschaften, durch
unterschiedlich gefärbte Kreisteilen dargestellt werden.

3.7.2.2 Abbildung auf Farbe

Wie im Kapitel über menschliche Wahrnehmung aufgezeigt wurde, stellt die Abbildung
auf Farbe ein wichtiges Mittel zur Visualisierung dar. Sie wird vom Betrachter, sofern er
keine Einschränkungen wie Farbenblindheit hat, präattentiv wahrgenommen. Zusätzlich
lässt sich Farbe mit allen zuvor genannten Visualisierungstechniken kombinieren und

- 55 -

stellt somit in vielen Fällen einen zusätzlichen Freiheitsgrad für die Visualisierung von
Daten zur Verfügung [17].

Das Gebiet der Farbenlehre ist ein sehr großes Feld und wird daher in dieser Arbeit nur
im Kontext Datenqualitätsvisualisierung in Kapitel 3.10 eingeschränkt behandelt. Dort
werden die Farben Grün und Rot zur Unterscheidung von guter und schlechter Daten-
qualität verwendet.
Für Menschen mit einem eingeschränkten Sehvermögen, etwa einer rot-grün-Blindheit,
können andere Unterscheidungsmerkmale wie Texturen oder Muster verwendet wer-
den. In dieser Arbeit wird jedoch davon ausgegangen, dass der Leser keine beeinträch-
tigende Sehschwäche besitzt und die vorgestellten Visualisierungen vollständig erken-
nen kann.

3.8 Finden von Visualisierungen

Dieses Kapitel beschreibt die Problematik des Findens guter Visualisierungen, die für
einen konkreten Anwendungsfall eingesetzt werden können und alle an sie gestellten
Anforderungen erfüllen.

3.8.1 Herausforderungen beim Entwerfen passender Symbole

Die Schwierigkeit bei der Entwicklung von guten Visualisierungen entsteht vor allem
durch die in Kapitel 3.6 genannten Einflussfaktoren. Damit aussagekräftige Visualisie-
rungen entwickelt werden können, müssen diese genau untersucht und berücksichtigt
werden. Dazu ist es in erster Linie notwendig, das Anwendungsgebiet sowie die Präfe-
renzen und Gewohnheiten der späteren Anwender zu verstehen und sie in den Visuali-
sierungsprozess mit einzubeziehen.

In der ersten Phase stellen sich nach [25] vor allem folgende drei Fragen die mit Hilfe
der späteren Benutzer und Experten des Anwendungsgebietes zu beantworten sind:

Was soll dargestellt werden? – Diese Frage zielt vor allem auf den informativen Inhalt

und damit auf die expressiven Eigenschaften der Visualisierung ab. In der Antwort
sind alle Eigenschaften der Datenmenge enthalten, welche auf visuelle Attribute
abgebildet werden sollen.

Wozu soll die Darstellung dienen? – Diese Frage dient zur Formulierung des Visuali-

sierungsziels und ist somit Teil des Effektivkriteriums. Im Ergebnis befinden sich
vor allem die Wünsche und Erwartungen der speziellen Benutzer.

Wer soll informiert oder überzeugt werden? – In der letzten Fragen werden die Be-

nutzergruppen untersucht, welche mit der Visualisierung arbeiten werden. Hier

- 56 -

müssen alle Standardsymbole, Farbsemantiken und alle weiteren Randbedingun-
gen sehr genau abgesteckt werden, um möglichst eindeutige und unmissverständ-
lichen Visualisierungen zu erreichen.

3.8.2 Entwerfen von Symbolen

Der zweite Schritt bei der Entwicklung guter Visualisierungen, ist das Entwerfen von
passenden Symbolen und Metaphern. Diese werden nach [24] typischerweise durch
ausgebildete Designer gefertigt und für viel Geld eingekauft.
Anschließend werden diese dann durch Versuche mit Probanden in mehreren Stufen
evaluiert und verfeinert. Ein Teil bei diesen Visualisierungsstudien ist zum Beispiel der
schrittweise Aufbau des Symbols, durch den Einsatz verschiedener Filter. Das jeweils
entstandene Bild wird dabei durch die Probanden frei interpretiert. Das heißt, sie be-
kommen keinerlei Hintergrundinformationen und müssen beschreiben, in welchem Zu-
sammenhang sie diese Symbole setzen würden. Je nach eingesetztem Filter können so
unterschiedliche Informationen der Symbole herausgearbeitet und verbessert werden.
Beispielsweise könnte in einem ersten Schritt ein Farbfilter eingesetzt werden, welcher
das Symbol nur in Schwarz-Weiß darstellt und so den Fokus des Benutzers auf dessen
Struktur und den Aufbau lenkt ohne durch grelle Farben abzulenken.
Durch diesen schrittweisen Prozess und durch das entsprechende Auswählen der Ver-
suchsparameter und Filter, lassen sich so, für einen speziellen Anwendungsfall, Visuali-
sierungen entwickeln, die allen in Kapitel 3.4 genannten Ansprüchen gerecht werden.

3.8.3 Beispiel für die Auswahl einer Visualisierungsform

In diesem Abschnitt soll anhand eines Beispiels gezeigt werden, wie das Lösen eines
einfachen Problems maßgeblich von der gewählte Visualisierung abhängig ist.

Problem: Ordnen Sie eine Menge von Werten in absteigender Reihenfolge.

Variante 1 – Kreisdiagramm

Abbildung 3-20: Beispiel für das Finden von Visualisierungen (Teil 1)

- 57 -

Wie in der Darstellung zu sehen, ist die Wahl eines Kreisdiagramms für diese Art von
Problemstellungen ungeeignet. Das menschliche Auge kann nur schwer Größenver-
hältnisse von angrenzenden, runden Objekten auflösen.

Variante 2 – Säulendiagramm

Abbildung 3-21: Beispiel des Findens von Visualisierungen (Teil 2)

Ein Säulendiagramm hingegen bietet dem Auge genügend Freiraum, um die einzelnen
Balken zu vergleichen und zu bewerten. Aus diesem Grund ist es für diese Art von
Problemstellung besonders gut geeignet.

3.9 Visualisierung von Datenqualität

Nachdem nun alle wichtigen Grundlagen für das Generieren expressiver und effektiver
Visualisierungen gezeigt wurden, werden in diesem Kapitel spezielle Visualisierungen
für Datenqualitätswerte erarbeitet. Dazu werden die einzelnen Schritte der Visualisie-
rungspipeline entsprechend angepasst und modelliert. Anschließend werden Visualisie-
rungen für die sechs vorgestellten Datenqualitätsdimensionen aufgezeigt.

3.9.1 Datenaufbereitung (Filtering)

Die Datenaufbereitung, oder Filtering, ist der erste Schritt in der Visualisierungspipeline.
Hier werden die Datenqualitätswerte und Simulationsdaten aufbereitet, um in den spä-
teren Schritten effizient verarbeitet werden zu können. Da alleine die Simulationsdaten
in den Gigabytebereich gehen können, stellt dieser Schritt eine besondere Herausforde-
rung dar. Er muss für jede Problemstellung genau untersucht werden, damit die spätere
Visualisierung das Expressivitätskriterium erfüllt und keine wichtigen Informationen ver-
loren gehen.
Zusätzlich muss hier nach dem Format der Eingabedaten unterschieden werden. Lie-
gen beispielsweise die Daten als einzelne Datenqualitätswerte innerhalb eines einzel-

- 58 -

nen XML-Dokument vor, können diese ohne weitere Filterung an das Mapping überge-
ben werden. Liegen die Datenqualitätswerte jedoch in Kombination mit den ursprüngli-
chen Simulationsdaten vor, beispielweise ein Geometriemodell des menschlichen
Oberarmknochen, kann es auf Grund der reinen Datenmenge sinnvoll sein, nur eine
bestimmte Auswahl der Simulationsdaten zu visualisieren. Dadurch kann die Rechen-
zeit kurz gehalten werden und Gesamtperfomance wird nicht negativ beeinträchtigt.
Beim Filtering ist sowohl eine maschinelle, als auch die menschliche Datenauswahl
möglich.

3.9.2 Visualisierung

Das Mapping ist der wichtigste und komplizierteste Schritt in der Visualisierungspipe-
line. Hier entscheidet sich, welche Informationen mit welchen visuellen Variablen dar-
gestellt werden.

Dieser Abschnitt zeigt mögliche Visualisierungen von Datenqualitätswerten, aufgeteilt
nach der jeweiligen Dimension.

Datenqualitätswerte sind abstrakte Daten, die auf unterschiedlichen Skalen abgebildet
werden können. Um eine schnelle Auswertung der erzeugten Visualisierungen zu er-
möglichen, muss das eingesetzte Mapping eine Abbildung auf visuelle Variablen reali-
sieren, die dem späteren Betrachter geläufig sind. Nach [17] stellen Metaphern eine
gute Möglichkeit dar, um diese Ansprüche zu realisieren. Dabei muss die spätere An-
wendungsumgebung genau untersucht werden, um Missverständnisse und mögliche
Fehlinterpretationen zu vermeiden.

Wie im Kapitel über das Finden von guter Visualisierungen gezeigt wurde, stellt dieser
Schritt eine große Herausforderung dar. Die im Folgenden präsentierten Visualisierun-
gen werden später im Kontext eines wissenschaftlichen Knochensimulations-Workflow
eingesetzt und stellen somit Spezialfälle und Interpretationen der sechs Datenqualitäts-
dimensionen durch den Autor und seinen Betreuer dar. Das grundsätzliche Vorgehen
kann jedoch als Muster für das Finden weiterer Visualisierungen in anderen Einsatzge-
bieten dienen.

3.9.2.1 Genauigkeit (Accuracy)

Für die Visualisierung von Genauigkeit bieten sich verschiedene nützliche Assoziatio-
nen und Metaphern an. In dieser Arbeit wird das Symbol der Zielscheibe gewählt, da
diese je nach eingesetzter Datenqualitätsskala leicht verändert werden kann. Das be-
deutet, je nach Skala und Ansprüchen des Benutzers an die Genauigkeit der visuellen
Repräsentation, lassen sich die Ringe der Zielscheibe variieren. Zudem bietet sie eine
einfache Möglichkeit einen gegebenen Schwellenwert einzuzeichnen. Er ermöglicht
dem Betrachter, dank der Fähigkeit des menschlichen Auges relative Positionierungen
gut einschätzen zu können, leicht einen Soll-Ist-Vergleich durchzuführen ohne die ge-

- 59 -

nauen Zahlenwerte vergleichen zu müssen. Zusätzlich werden die Farben Rot für nied-
rige Genauigkeit und Grün für hohe Genauigkeit als Verstärkung des visuellen Ein-
drucks eingesetzt. Abbildung 3-22 und Abbildung 3-23 zeigen Beispielvisualisierungen
der Dimension Genauigkeit. Jeweils mit einem Schwellenwert (blauer Kreis). Die ein-
zelnen Datenwerte werden als schwarzer Kreis dargestellt, wobei wie im Sport, die äu-
ßere Kante den erreichten Wert anzeigt. Der genaue Wert kann zur leichteren und
exakten Analyse zusätzlich unter dem jeweiligen Bild angezeigt werden.

Abbildung 3-22: Genauigkeit als Zielscheibe auf der Skala von 0 bis 1 und einem
Schwellenwert von 0,5

Ist die eingesetzte Skala, bzw. der exakte Wert nicht von Bedeutung, dann kann die
Zielscheibe leicht modifiziert und wie in Abbildung 3-23 zu sehen eingesetzt werden.
Das Bild ähnelt jetzt eher einem Fadenkreuz, das anzeigt, ob sich das Ziel, der ge-
wünschte Datenqualitätswert, im Sucher befindet und somit erreicht wird oder nicht.

Abbildung 3-23: Genauigkeit als Fadenkreuz ohne Visualisierung der Skala und mit
Schwellenwert von 0,5

3.9.2.2 Rechtzeitigkeit (Timeliness)

Auch für eine grafische Repräsentation der Datenqualitätsdimension Rechtzeitigkeit gibt
es eine Reihe von passenden Metaphern und Symbole, die eingesetzt werden können.

0.9 0.5 0.4 0.5

0.9 0.5 0.4 0.5

- 60 -

Wie schon bei der Dimension Genauigkeit wird hier ein Symbol entwickelt, das vom Be-
nutzer sofort erkannt und leicht verstanden wird und außerdem skalenunabhängig und
mit unterschiedlichsten Anforderungen eingesetzt werden kann. Da die Uhr schon im-
mer ein Symbol für die Zeit war, wird sie auch hier eingesetzt. Sie kombiniert alle gefor-
derten Ansprüche an eine gute Visualisierung.
Die erste Variante einer Uhr, die wohl jedem im Zusammenhang mit Rechtzeitigkeit in
den Sinn kommt, ist der Wecker. Er steht wie kein anderes Symbol für das nicht ver-
passen eines Ereignisses und bietet durch ein großes Ziffernblatt genug Platz um zu-
sätzliche Informationen darzustellen.

Abbildung 3-24 zeigt eine mögliche Variante. Die Skala von 0 bis 1 wird dabei auf das
Ziffernblatt abgetragen. Der erreichte Datenqualitätswert wird mit einem schwarzen Pfeil
angezeigt, der auf die entsprechende Ziffer zeigt. So lässt sich auch leicht der Schwel-
lenwert durch einen blauen Strich zeigen, der ebenfalls auf die entsprechende Ziffer
zeigt und so einen leichten Soll-Ist-Vergleich ermöglicht. Zusätzlich zeigen die Farben
Grün und Rot eine gute Rechtzeitigkeit und eine schlechte Rechtzeitigkeit an. Auch der
Animationseffekt im rechten Bild verdeutlicht das zu späte Eintreffen der Datenwerte
symbolisch.

Abbildung 3-24: Rechtzeitigkeit als Wecker auf der Skala von 0 bis 1 und
 Schwellenwert von 0,5

Ist die genaue Skala für den Betrachter uninteressant, lässt sich der Wecker leicht, wie
in Abbildung 3-25 zu sehen modifizieren. Hier wird nur der Schwellenwert an die sym-
bolische 12 gesetzt und der Datenqualitätswert entweder davor, bei guter Rechtzeitig-
keit, oder dahinter, bei schlechter Rechtzeitigkeit, gezeichnet. Der Abstand des schwar-
zen Pfeils zu 12 Uhr und damit zum Schwellenwert spielt dabei keine Rolle.

1 0.1
0.2

0.8

0.6
0.7 0.4

0.5

0.3

0.9
1 0.1

0.20.8

0.6
0.7

0.40.5

0.3

0.9

- 61 -

Abbildung 3-25 Rechtzeitigkeit als Wecker ohne Visualisierung der Skala und
 Schwellenwert von 0,5

Eine weitere Metapher, welche abgeleitet von einer Uhr im Zusammenhang mit Recht-
zeitigkeit eingesetzt werden kann, ist die Sanduhr. Im Gegensatz zum Wecker bietet
diese keine gute Möglichkeit einer exakten Abbildung der eingesetzten Skala. Ihre Stär-
ke liegt jedoch darin, dass der Benutzer sofort erkennt, wann eine gute Rechtzeitigkeit
und wann eine schlechte Rechtzeitigkeit erreicht wird. Sie kann also vor allem für einen
schnellen Soll-Ist-Vergleich eingesetzt werden.

Abbildung 3-26 zeigt zwei Beispiele. Der Datenqualitätswert wird hier durch Sand re-
präsentiert. Dieser ist bei guter Rechtzeitigkeit oberhalb der Verengung und bei
schlechter Rechtzeitigkeit darunter. Die Verengung wiederum repräsentiert den Schwel-
lenwert, der mindestens erreicht werden muss für eine gute Rechtzeitigkeit. Es können
somit zwei Bilder entstehen. Bei guter Rechtzeitigkeit ist der Sand oberhalb und bei
schlechter Rechtzeitigkeit darunter. Wie schon in den Visualisierungen zuvor, werden
auch hier die Farben Rot und Grün zur Verdeutlichung eingesetzt und unterstützen da-
bei die Wahrnehmung.

Abbildung 3-26: Rechtzeitigkeit als Sanduhr ohne Visualisierung der Skala und
 Schwellenwert von 0,5

0.9 0.50.4 0.5

0.9

0.5 0.5

0.4

- 62 -

3.9.2.3 Vollständigkeit (Completeness)

Für die Dimension Vollständigkeit werden in diesem Abschnitt wieder zwei mögliche
Visualisierungen gezeigt, die sich im praktischen Versuch als nützlich herausgestellt
haben. Als erstes folgt hier eine Abbildung auf einen Zylinder. Dieser ist durch seine
vielen Gestaltungsmöglichkeiten besonders gut geeignet Zahlenwerte und die dazuge-
hörige Skala abzubilden. Abbildung 3-27 zeigt zwei Beispiele. Links gute Vollständigkeit
und rechts schlechte Vollständigkeit. Dabei werden die einzelnen Skalenwerte als waa-
gerechte Linien horizontal gestapelt. Die Vollständigkeit wird durch die entsprechende
Füllung des Zylinders symbolisiert und mit Hilfe einer etwas dickeren Linie in Kombina-
tion mit dem Zahlenwert abgetragen. Die übrigen Linien sollen den Abstand bis zur voll-
ständigen Füllung verdeutlichen. Diese Darstellung erlaubt es zudem den Schwellen-
wert, hier als blaue Linie, einzuzeichnen und so einen effektiven und effizienten Soll-Ist-
Vergleich durchzuführen. Zusätzlich werden die Farben Grün für gute Vollständigkeit
und Rot für schlechte Vollständigkeit eingesetzt.

Abbildung 3-27: Vollständigkeit Säule mit Skala und mit Schwellenwert von 0,5

Ist die genaue Skala eher uninteressant, können für eine Visualisierung der Dimension
Vollständigkeit die Werte, ähnlich einem Kuchendiagram, auf einem Kreis abgetragen
werden. Der Unterschied besteht darin, dass die fehlende Werte nicht mit eingezeichnet
werden und ein Lücke entsteht. Dank den Fähigkeit des menschlichen Sehsystems Lü-
cken zu füllen, entsteht auf diese Weise eine expressive Darstellung. Auch hier wird der
Schwellenwert als blaue Linie eingezeichnet und hilft somit bei der Bewertung des Da-
tenwertes. Für die genaue Untersuchung kann der tatsächlich erreichte Datenqualitäts-
wert unter das Bild oder, wie in den anderen Visualisierungen auch, direkt ins Bild ein-
getragen werden. Die Farben Rot und Grün werden wieder für die Verdeutlichung ge-
nützt.

0.4
0.5

0.7
0.5

- 63 -

Abbildung 3-28: Vollständigkeit ohne Skala und mit Schwellenwert von 0,7

3.9.2.4 Konsistenz (Consistency)

Bisher waren die vorgestellten Visualisierungen intuitiv und vertraut. Mit der Datenquali-
tätsdimension Konsistenz werden die meisten Menschen jedoch auf Anhieb keine pas-
sende Metapher oder ein zugehöriges Bild verbinden. Um auch hier eine Visualisierung
zu finden, welche den oben genannten Ansprüchen genügt, wird zuerst etwas näher auf
den Begriff Konsistenz eingegangen.
Die Definition des Begriffes Konsistenz beschreibt sie in der Wissenschaft als „Grad
und Art des Zusammenhalts eines Stoffes“ und in der Logik als „strenger gedanklicher
Zusammenhalt“ [37]. Konsistenz beschreibt demnach den Zusammenhalt mehrerer
Elemente innerhalb einer bestimmten Menge. Aus diesem Verständnis kann die folgen-
de Visualisierung abgeleitet werden.

Ähnlich der Visualisierung von Genauigkeit bildet die Zielscheibe als Metapher die Aus-
gangsform. Darauf kann leicht die verwendete Skala abgebildet werden. Der Schwel-
lenwert kann ebenfalls einfach eingezeichnet werden. Auf die Zielscheibe werden vier
Punkte eingezeichnet. Alle verteilt auf dem selben Ring und mit gleichem Abstand zuei-
nander. Der Ring repräsentiert dabei den erreichten Datenqualitätswert. Das bedeutet,
bei einer guten Konsistenz liegen die Punkte dicht bei einander und bei einer schlech-
ten Konsistenz weiter auseinander. Die Farben Grün und Rot werden, wie immer, zur
Kennzeichnung von guter Konsistenz und schlechter Konsistenz als verstärkendes Mit-
tel eingesetzt. Abbildung 3-29 zeigt ein Beispiel.

0.9 0.7 0.4 0.7

- 64 -

Abbildung 3-29: Konsistenz Zielscheibe mit Skala und mit Schwellenwert von 0,5

Ist die betrachtete Skala beim Filtering aus der Visualisierungspipeline ausgeschlossen
worden, das heißt nur der berechnete Datenqualitätswert ist von Bedeutung und nicht
die genaue Zuordnung, so kann die Zielscheibe wie in Abbildung 3-30 zu sehen ent-
sprechend angepasst werden. Hier werden die einzelnen Punkte nach einem speziellen
Algorithmus im Kreis verteilt. Wobei ein enger Zusammenschluss als gute Konsistenz
und eine weitgehend freie Verteilung als schlechte Konsistenz zu werten sind. Der
blaue Kreis zeigt wieder den Schwellenwert an. Jedoch ohne genauen Wert um eine
binäre Bewertung, gut oder schlecht, geben zu können. Liegen alle eingezeichneten
Punkte darin, dann ist es eine gute Konsistenz, liegen einige außerhalb eine schlechte
Konsistenz. Mit der Anzahl von innen und außen liegenden Punkte kann so auch eine
Einschätzung der Konsistenz gegeben werden. Um trotz fehlender Skala eine wissen-
schaftliche Untersuchung zu ermöglichen, werden die exakten Datenqualitätswerte un-
terhalb des Bildes geschrieben.

Abbildung 3-30: Konsistenz ohne Skala und Schwellenwert

3.9.2.5 Aktualität (Currency)

Für die Dimension Aktualität gibt es erneut keine intuitive und vertraute Metapher die
sich als Basissymbol für die Visualisierung eignet. Ein dennoch weit verbreitetes Sym-
bol, das vor allem bei Internetbrowsern häufig eingesetzt wird, ist ein Kreis mit einem

0.7 0.5 0.3 0.5

0.9 0.5 0.3 0.5

- 65 -

Pfeil am Ende. Dieses Symbol wird im Folgenden als Basissymbol verwendet, da es
viel Platz für Informationen und eine Reihe von Anpassungsmöglichkeiten bietet. Dabei
wird, je nach erreichtem Datenqualitätswert, der Außenkreis mehr oder weniger farbig
gezeichnet. Die errechnete Aktualität wird an das Ende der farbigen Markierung des
Außenkreises geschrieben. Zusammen mit dem eingezeichneten Schwellenwert lässt
sich so leicht ein Soll-Ist-Vergleich durchführen. Zusätzlich entscheidet der Schwellen-
wert, wann die Füllung des Außenkreises grün gefärbt wird und wann rot.
Je nach Anforderung ist es zudem möglich die Skala auf der Datenqualitätswert liegt mit
einzuzeichnen.

Abbildung 3-31: Aktualität ohne Skala und mit Schwellenwert von 0,5

3.9.2.6 Schwankungsfreudigkeit (Volatility)

Für die Datenqualitätsdimension Schwankungsfreudigkeit gibt es mehrere passende
Metaphern, welche jeweils unterschiedliche Möglichkeiten der Anpassung erlauben. Als
erstes wird im folgenden eine Visualisierung beschrieben, die sich an der Anzeige für
Aktienkurse orientiert. Abbildung 3-32 zeigt zwei Beispiele. Bei guter Schwankungs-
freudigkeit wird eine Sinuskurve gezeichnet die sich flach und gleichmäßig um eine
waagerechte Linie windet. Bei schlechter Schwankungsfreudigkeit hingegen, wird eine
zitternde, unregelmäßige Kurve gezeichnet die sich ebenfalls entlang einer waagerech-
ten Linie bewegt. Der genaue Datenwert wird unterhalb des Bildes geschrieben. Die
Farben Grün und Rot werden wie bisher unterstützend eingesetzt.

Diese Form der Visualisierung hat aber neben der leichten Erkennung und Zuordnung
der Werte zwei Nachteile. Zum einen kann die Skala, auf der sich der Datenqualitäts-
wert befindet nicht mit abgebildet werden und zum anderen kann der Schwellenwert,
welcher entscheidet ob es sich um eine gute oder schlechte Schwankungsfreudigkeit
handelt, ebenfalls nicht eingezeichnet werden.
Werden diese Faktoren außer acht gelassen, so bieten diese Metapher aber eine effek-
tive und leichte Einordung und Bewertung des Sachverhaltes.

0.5
0.3

0.5

0.9

0.5

- 66 -

Abbildung 3-32: Schwankungsfreudigkeit ohne Skala und Schwellenwert

Ist das Anzeigen des Schwellenwertes und der Skala von Bedeutung, lassen sich ba-
sierend auf dem Symbol des Pendels weitere Visualisierungen entwickeln, welche die
oben genannten Anforderungen erfüllen. Abbildung 3-33 zeigt zwei Beispiele. Die Grafik
besteht aus einem Halbkreis, welcher die maximale Pendelbewegung repräsentiert,
einem Pfeil, der den aktuellen Datenqualitätswert anzeigt, einer blauen Linie, welche
den Schwellenwert zum Vergleich anzeigt und dem genauen Wert, der wieder unterhalb
des Bildes angezeigt wird. Zudem werden wieder die Farben Rot und Grün als verstär-
kendes Mittel eingesetzt.
Diese Form der Visualisierung bietet viel Raum für spezifische Anpassungen. Bei-
spielsweise ließe sich die Skala leicht einzeichnen oder der Schwellenwert entfernen.

Abbildung 3-33: Schwankungsfreudigkeit als Pendel ohne Skala und
 Schwellenwert von 0,7

3.9.2.7 Allgemeine Diagramme

Die in den voran gegangenen Abschnitten vorgestellten Visualisierungen stellen Spezi-
alfälle dar, die sich vor allem zur Darstellung einzelner Werte ohne Bezug zu einander
eignen. In vielen Fällen stehen die verschiedenen Datenqualitätswerte jedoch in Bezie-
hung zu einander, wie beispielsweise die Rechtzeitigkeit und Genauigkeit. Wenn die
Simulation hohe Ansprüche an die Genauigkeit der einzelnen Datenwerte stellt, so kann
es vorkommen, dass Komponenten länger für eine Berechnung benötigen und somit die
Ergebnisse nicht innerhalb eines geforderten Zeitraums der nächsten Komponente zur
Verfügung stellen. Um solche Beziehungen visuell auszudrücken zu können, müssen
die Datenqualitätswerte auf einer einheitlichen Skala mit einheitlich definierten visuellen

0.8 0.4

- 67 -

Attributen abgebildet werden. Nur so ist eine effektive Bearbeitung durch den Benutzer
gewährleistet.
Auch wenn einzelne Services im Bezug auf ihre Datenqualität über einen Zeitraum be-
trachtet werden sollen, bieten sich die einfachen Standarddiagramme, wie Kurven- und
Liniendiagramme aus Kapitel 3.7.2.1 an.

- 68 -

4 Anforderungen an das Visualisierungsframework

Dieses Kapitel beschreibt die Anforderungen an das Visualisierungsframework, welches
zur Unterstützung der wissenschaftlichen Auswertung von Datenqualitätswerten in Si-
mulation-Workflows eingesetzt wird.

Im ersten Teil werden zunächst die allgemeinen Anforderungen formuliert. Die Struktur
der nachfolgenden Kapitel orientiert sich anschließend an den beiden Benutzergruppen
des Visualisierungsframeworks, „Wissenschaftler“ und „Programmierer“. Dazu werden
im zweiten Teil die Anforderungen der Wissenschaftler, als direkte Anwender eines
WebServices auf Basis des Visualisierungsframeworks, gezeigt.
Im dritten Abschnitt werden die Anforderungen seitens der Entwickler von Erweiterun-
gen für das Visualisierungsframework formuliert.

Alle Anforderungen werden für das spätere Referenzieren durch das Symbol ℜ (Requi-
rement) nummeriert.

4.1 Allgemeine Anforderungen an das Framework

Dieses Kapitel beschreibt zunächst die allgemeinen Anforderungen an das Visualisie-
rungsframework.

4.1.1 Wiederverwendbarkeit (ℜ1)

Das Framework soll so entworfen werden, dass es leicht von einer Simulation-
Workflow-Umgebung zu einer anderen portiert werden kann.

4.1.2 Anbindung an das JDQCF (ℜ2)

Das Framework soll das JDQCF (siehe Kapitel 2.3.3) als Datenquelle für die Visualisie-
rungen verwenden. So können die durch das JDQCF generierten Datenqualitätswerte
verarbeitet werden.

4.1.3 Anbindung an externe Datenquellen (ℜ3)

Simulationsdaten können auf einem externen Server liegen. Um diese Daten trotzdem
verarbeiten zu können, soll das Framework die Möglichkeit bieten, referenzierte Daten
zu laden und in dem Visualisierungsprozess zu berücksichtigen. Beispielsweise können
diese Rohdaten durch einen Data as a Service (DaaS) [40] zur Verfügung gestellt wer-
den. Das JDQCF übergibt dann lediglich die Adresse unter welche die Daten breitge-
stellt werden.

- 69 -

4.1.4 Unterstützung mehrere Simulationen (ℜ4)

Das Framework soll mehrere laufende Simulationen unterscheiden können. Somit kann
ein Wissenschaftler jede seiner Simulationen gleichzeitig überwachen.

4.1.5 Verarbeitung unterschiedlicher Datenstrukturen (ℜ5)

Das Framework wird in unterschiedlichsten Fachbereichen eingesetzt. Damit verbunden
können unterschiedliche Daten entstehen. Um die größtmögliche Flexibilität zu gewähr-
leisten, soll das Framework unterschiedliche Datenstrukturen verarbeiten können.

4.2 Anforderungen aus Sicht der Wissenschaftler

Dieses Kapitel beschreibt die Anforderungen aus Sicht der Wissenschaftler. Diese ha-
ben als Endbenutzer vor allem Anforderungen an die Benutzerverwaltung und die gene-
rierten Visualisierungen.

4.2.1 Anforderungen an die Benutzerverwaltung

Dieser Abschnitt beschreibt die verschiedenen Anforderungen der Wissenschaftler an
die Benutzerverwaltung der Visualisierungsframeworks.

4.2.1.1 Verwaltung von mehreren Benutzern (ℜ6)

Das Framework soll die Verwaltung von mehreren gleichzeitig angemeldeten Wissen-
schaftlern unterstützen.

4.2.1.2 Autorisierung des Benutzers (ℜ7)

Um die Zugriffssicherheit auf die laufende Simulation und deren Daten zu gewährleis-
ten, soll das Framework die Möglichkeit bieten, eine simulationsabhängige Benutzerau-
torisierung einzubinden. Es soll sichergestellt werden, dass nur berechtigte Personen
die Daten verarbeiten können.

4.2.1.3 Unterstützung bei Steuerung der Simulation durch den Benutzer (ℜ8)

Das Framework soll eine Schnittstelle für die Steuerung einer laufenden Simulation be-
reitstellen. Das bedeutet, dass es dem Wissenschaftler die grafischen Hilfsmittel dazu
bereit stellt, beispielsweise einen „Simulation Abbrechen“-Button. Dabei soll das Visua-
lisierungsframework diese Aktion nicht implementieren. Es soll die konkrete Aktion, zum

- 70 -

Beispiel das Drücken dieses Buttons, über ein Schnittstelle an eine externe Stelle wei-
terleiten, an der sie entsprechend verarbeitet wird.

4.2.1.4 Verwendung eines rollenbasierten Systems zur Regelung der

 Benutzerinteraktionen (ℜ9)

In Simulation-Workflows gibt es spezielle Rollenverteilungen. So gibt es im Allgemeinen
eine Person die für die Simulation verantwortlich ist (Simulation Owner) und somit alle
Rechte für die Interaktion mit dieser besitzt. Neben ihr gibt es meist noch weitere Wis-
senschaftler mit unterschiedlichen Rollen und Rechten an der Simulation.
Diese Struktur soll sich in dem Framework wiederspiegeln, so dass unterschiedliche
Rollen, ihren Rechten entsprechende Interaktionsmöglichkeiten besitzen. Beispielswei-
se besitzt der Simulation Owner alle Rechte an der Simulation und darf in alle Stufen
der Visualisierungspipeline oder in die laufende Simulation eingreifen. Andere Wissen-
schaftler, mit weniger Rechten, können diese Steuerungsmöglichkeiten nur einge-
schränkt oder gar nicht nutzen.

4.2.2 Anforderungen an die Visualisierungskomponente

Dieses Kapitel beschreibt die Anforderungen an die Visualisierungskomponente des
Frameworks.

4.2.2.1 Berücksichtigung der Rolle des Wissenschaftlers bei der

 Visualisierung (ℜ10)

Das Framework soll die Rolle eines Wissenschaftler in einer Simulation bei der Gene-
rierung der Visualisierungen berücksichtigen. Das bedeutet, dass unterschiedliche Rol-
len zu unterschiedlichen Visulisierungen führen können. Beispielsweise werden für den
Simulation Owner, neben den Datenqualitätswerten, zusätzlich die eigentlichen Simula-
tionsdaten visualisiert. Bei anderen Wissenschaftlern mit weniger Rechten werden hin-
gegen nur die Datenqualitätswerte zur Überwachung angezeigt.

4.2.2.2 Generierung expressiver, effektiver und angemessener

 Datenqualitätsvisualisierungen (ℜ11)

Das Framework soll aus den empfangenen Daten Visualisierungen generieren können,
welche die in Kapitel 3.4 gezeigten Anforderungen erfüllen. Dazu gehören insbesondere
das Generieren expressiver, effektiver und angemessener Datenqualitätsvisualisierun-
gen.

- 71 -

4.2.2.3 Gerüst für die unterschiedlichen Stufen der Visualisierungspipeline (ℜ12)

Wie in Kapitel 3.3.4 gezeigt, können die einzelnen Stufen der Visualisierungspipeline
auf verschiedenen Rechnern und durch unterschiedliche Programmiersprachen reali-
siert werden. Das Framework soll die unterschiedlichen Varianten zur Verteilung dieser
Stufen unterstützen.

4.2.2.4 Unterstützung unterschiedlicher Ausgabegeräte (ℜ13)

Die generierten Visualisierungen sollen auf unterschiedlichen Anzeigegeräten präsen-
tiert werden können. Das bedeutet, dass das Visualisierungsframework die unterschied-
lichen Geräteeigenschaften bei der Generierung der Visualisierungen berücksichtigt.

4.2.2.5 Steuerung der Visualisierungspipeline durch den Benutzer (ℜ14)

Das Framework soll dem Benutzer die Möglichkeit geben, die Generierung der Visuali-
sierungen interaktiv zu beeinflussen. Beispielsweise soll dieser die Möglichkeit haben
zu entscheiden ob er eine Übersicht aller Datenqualitätsvisualisierungen mit oder ohne
den dazugehörigen Simulationsdaten dargestellt bekommt.

4.2.3 Anforderungen an das Verteilen der Daten

Neben der Benutzersteuerung und Visualisierung ist das Verteilen der generierten Vi-
sualisierungen von Bedeutung.

4.2.3.1 Unterstützung von unterschiedlichen Kommunikationsprotokollen (ℜ15)

Je nach gewähltem Anzeigegerät können unterschiedliche Protokolle für das Versen-
den der Daten notwendig sein. Hierzu soll das Framework unterschiedliche Versandar-
ten wie SOAP with Attachment Nachrichten oder das Ablegen der Visualisierungen auf
einem Server unterstützen.

4.3 Anforderungen aus Sicht der Programmierer

Dieses Kapitel beschreibt die Anforderungen an das Visualisierungsframework aus
Sicht der Entwickler. Diese gliedern sich in funktionale- und nichtfunktionale Anforde-
rungen.

- 72 -

4.3.1 Funktionale Anforderungen

In diesem Abschnitt werden die funktionalen Anforderungen der Programmierer an das
Visualisierungsframework formuliert.

4.3.1.1 Das Framework soll einen einfachen Rahmen für die Entwicklung von

 Erweiterungen bereitstellen (ℜ16)

Das Framework soll einen einfachen Rahmen für das Erweitern bereitstellen. So sollen
Entwickler ihre Algorithmen leicht einbinden können, ohne das gesamte Framework
anpassen zu müssen.

4.3.1.2 Trennung der Schnittstellen zur Benutzerautorisierung und der

 Visualisierungskomponente (ℜ17)

Da es sich bei der Entwicklung der Benutzerautorisierung und der Visualisierungskom-
ponenten um unterschiedliche Problemstellungen handelt, soll das Framework diesen
zweigeteilten Charakter in seiner Architektur und seinen Schnittstellenbeschreibungen
berücksichtigen.

4.3.2 Nichtfunktonale Anforderung

Dieser Abschnitt zeigt die nichtfunktionale Anforderung der Entwickler an das Visualisie-
rungsframework.

4.3.2.1 Lose Kopplung der Komponenten (ℜ18)

Der flexible Einsatz der Frameworks soll sich durch eine lose Kopplung der einzelnen
Komponenten leicht realisieren lassen. So sollen einzelne Komponenten leicht an neue
Bedingungen anpassbar oder austauschbar sein.

- 73 -

5 Konzeptioneller Entwurf des Java Data Quality Visualization
Framework

Ziel dieser Arbeit ist es die Wissenschaftler bei der Überwachung von laufenden Simu-
lationen durch die Visualisierung der Datenqualität zu unterstützen. In diesem Kapitel
wird dazu der konzeptionelle Entwurf des Java Data Quality Visualization Framework
(JDQVisF) erarbeitet. Es werden zunächst die Architektur und die entsprechenden
Komponenten entworfen und schließlich zu einem Gesamtsystem zusammengefügt.

Für das leichtere Verständnis und zur Vermeidung von Verwechslungen werden im fol-
genden das Framework und eine Implementierung auf Basis dieses Frameworks
gleichgesetzt und unter dem Begriff JDQVisF zusammengefasst.
Ein Wissenschaftler mit seinem Anzeigegerät wird unter dem Begriff JDQVisClient ver-
wendet.
Ein Programmierer der Visualisierungen realisiert, wird als Visualisierer bezeichnet.
Das Symbol ℜ verweist auf die jeweilig Anforderung aus Kapitel 4.

Zudem werden die einzelnen Komponenten in allen Abbildungen mit den selben Farben
kodiert. Dadurch können die zum Teil komplexen Zusammenhänge der Komponenten
leichter verstanden werden und der Gesamtüberblick bewahrt werden.

Alle im Folgenden vorgestellten Konzepte und Architekturentscheidungen entstanden
durch Rücksprachen mit dem Betreuer.

- 74 -

5.1 Erweiterung des bisherigen Simulationskontextes

Um die Anforderungen an das JDQVisF umsetzen zu können, ist es notwendig den bis-
herigen Simulationskontext um eine SimulationId und UserId zu erweitern.

In einer Simulation kann es mehrere Wissenschaftler bzw. JDQVisClienten mit unter-
schiedlichen Rollen und Rechten geben [25]. So gibt es typischerweise einen Wissen-
schaftler (Simulation-Owner) der die Verantwortung für die Simulation trägt und somit
alle Rechte an ihr besitzt. Es kann jedoch zusätzliche Mitarbeiter (Domänen-
Spezialisten oder Hilfswissenschaftler) geben, welche weniger Rechte an der gesamten
Simulation besitzen und nur für ein Teilgebiet zuständig sind. Es entsteht durch diesem
Zusammenhang eine 1:n Simulation-Wissenschaftler-Beziehung.

Abbildung 5-1: Simulation-Wissenschaftler-Beziehung. Zu einer Simulation kann es
mehrere Wissenschaftler mit unterschiedlichen Rollen geben

Auf der anderen Seite kann ein Wissenschaftler mit verschiedenen Rollen an mehreren
Simulationen arbeiten. Es entsteht eine 1:m Wissenschaftler-Simulation-Beziehung.

Abbildung 5-2: Wissenschaftler-Simulation-Beziehung. Ein Wissenschaftler kann meh-
rere Simulationen mit unterschiedlichen Rollen betreuen

Kombiniert man diese beiden Zusammenhänge, ergibt sich eine m:n Wissenschaftler-
Simulation-Beziehung.

Simulation A
Domain-Specia

list

Simulation-Owner

n

1
1

1

Simu.
A

Simulation-Owner

Domain-Specialist Simu.
B

Simu.
C

Simulation-Owner

- 75 -

Damit das JDQVisF diese Beziehung korrekt auflösen und verarbeiten kann, benötigt es
sowohl für die Simulation als auch für den Wissenschaftler eine Identifikationsmöglich-
keit. Aus diesem Grund wird der bisherige Simulationskontext um eine SimulationId und
einer UserId erweitert. Dies ermöglicht das Einbinden von mehreren Simulationen in
das JDQVisF (ℜ4) und die Verarbeitung mehrerer Benutzern mit unterschiedlichen Rol-
len (ℜ6 und ℜ9). Abbildung 5-3 zeigt den Zusammenhang.

Abbildung 5-3: Beispielhafte Wissenschaftler-Simulation-Beziehungen mit UserIds und
SimulationIds zur Identifikation. Ein Wissenschaftler kann an mehrere Si-

mulationen arbeiten und eine Simulation kann von mehreren Wissen-
schaftlern in unterschiedlichen Rollen betreut werden

Wie das JDQVisF die SimulationId und UserId genau verwendet, wird in den nachfol-
genden Kapiteln bei der Beschreibung der Gesamtarchitektur und der einzelnen Kom-
ponenten gezeigt.

Simu.
A

Domain-Specialist

Simulation-Owner

Simulation-Owner

Domain-Specialist

UserId_1

UserId_2

UserId_3

Simulation-Owner SimulatonId_1

Simu.
B

SimulatonId_2

Simu.
C

SimulatonId_2

- 76 -

5.2 Grundsätzliche Architektur

Um die in Kapitel 4 gezeigten Anforderungen zu erfüllen und den unterschiedlichen Be-
nutzergruppen des JDQVisF gerecht zu werden, wird die Architektur aus zwei verschie-
denen Sichtweisen heraus aufgebaut. Zum einen aus Sicht der Programmierer des
Frameworks und somit als direkter Benutzer. Zum anderen aus Sicht der Wissenschaft-
ler als Endbenutzer des JDQVisF.

Neben den funktionalen Anforderungen stehen vor allem Flexibilität, Einfachheit, Ro-
bustheit und Wiederverwendbarkeit der Komponenten im Vordergrund. Wobei Flexibili-
tät bedeutet, dass das JDQVisF betriebssystemunabhängig eingesetzt und leicht an
neue Anforderungen angepasst werden kann. Einfachheit bezieht sich sowohl auf die
Implementierung, als auch auf das Verwenden des JDQVisF.

Als grundsätzliche Architekturentscheidung wird eine Client-Server-Architektur (siehe
Abbildung 5-4) gewählt. Diese bringt sowohl aus Sicht der Wissenschaftler (JDQVisCli-
ent) als auch aus Sicht der Programmierer (Visualizer) viele Vorteile mit sich, die in den
folgenden Abschnitten gezeigt werden.

Abbildung 5-4: Client-Server Architektur mit Unterscheidung der Anwender des
JDQVisF. Oben sind die Entwickler, die ihre Algorithmen in das JDQVisF

einpflegen, unten die JDQVisClients

JDQVisF

JDQVisClient JDQVisClient JDQVisClient

Visualizer Visualizer Visualizer

VisVisVis

- 77 -

Den JDQVisClients bietet das JDQVisF als WebService eine zentrale Stelle für die An-
meldung und entkoppelt sie dadurch vom restlichen Simulation-Workflow.
Ein Vorteil der Server-Komponente, ist die Einführung einer zentralen Benutzersteue-
rung. Die verschiedenen Client-Programme müssen dadurch nicht die Zugriffsrechte
des jeweiligen Wissenschaftler beachten, was eine vereinfachte Implementierung er-
möglicht. Das JDQVisF bietet eine gemeinsame Komponente für die Konfiguration und
Wartung der Benutzersteuerung, was das Hinzufügen neuer Wissenschaftler zu einer
Simulation oder das Anpassen der Rechte eines Wissenschaftlers an einer Simulation
vereinfacht.
Durch die Entkopplung der Clientprogramme von den Simulation-Workflows, lassen
sich diese simulationsunabhängig einsetzten (ℜ5). Die jeweiligen Autorisierungsfunkti-
onen werden im JDQVisF zusammengefasst und ermöglichen dadurch eine simulati-
onsabhängige Anmeldung jedes JDQVisClients ohne lokale Überprüfung.

Die Architektur unterstützt neben den unterschiedlichen JDQVisClients auch mehrerer
Simulationen. Ein Wissenschaftler muss eine neue Simulation nur einmal beim
JDQVisF registrieren und kann anschließend beliebig viele Anzeigegeräte für deren
Überwachung einsetzen, ohne diese anpassen zu müssen.

Abbildung 5-5: JDQVisF als zentrale Komponente zwischen verschiedenen
 Simulationen und JDQVisClients

Ein weiterer Grund der zu dieser Client-Server-Architektur führt, ist die Notwendigkeit
für die Berücksichtigung der Rolle eines Wissenschaftlers in einer Simulation (ℜ9). Das

JDQVisF

JDQVisClient JDQVisClient JDQVisClient

Simulation
Instanz 1

Simulation
Instanz 2

Simulation
Instanz 3

- 78 -

JDQVisF berücksichtigt diesen Zusammenhang bei der Generierung von Visualisierun-
gen, so dass eine rollenbasierte Visualisierung auf Clientseite entfällt.
Durch das Auslagern des rollenbasierten Rechtesystems auf Serverseite, wird zudem
das kontrollierte Eingreifen in die Simulation durch den Wissenschaftler ermöglicht
(ℜ14). Das Clientprogramm muss die Rechte des aktuell angemeldeten Wissenschaft-
ler nicht kennen, was zu einer weiteren Vereinfachung führt.

Allgemein entlastet diese Architektur das Anzeigegerät durch die Verarbeitung der
Rohdaten und die Generierung der Visualisierungen auf Serverseite. Das JDQVisF bie-
tet den Wissenschaftlern die Möglichkeit, sowohl leistungsschwache als auch leistungs-
starke Anzeigegeräte zu verwenden (ℜ13). So kann beispielsweise ein Tablet-
Computer komplexere Visualisierungen verarbeiten und das Rendering lokal ausführen.
In diesem Fall würde das JDQVisF nur das Filtern und Mappen der Daten übernehmen
und das berechnete Geometriemodell an das Anzeigegerät versenden. Der Tablet-
Computer übernimmt anschließend lokal das Rendering. Bei einem schwachen Anzei-
gegeräten, etwa einem Internetbrowser, kann das JDQVisF alle Schritte der Visualisie-
rungspipeline übernehmen und fertige Bilddateien zur Anzeige bereitstellen.
Das JDQVisF unterstützt somit alle Möglichkeiten zur Verteilung der Schritte der Visua-
lisierungspipeline (ℜ12).

Abbildung 5-6: Unterstützung unterschiedlicher Anzeigegeräte durch das JDQVisF:
(links) lokales Rendering des Visualisierungsmodells. (rechts) anzeige

des fertigen Bildes

Durch das Auslagern der Visualisierungskomponente vom Clientgerät auf das JDQVisF
können auch leicht neue Anzeigegeräte verwendet werden, ohne dass neue Visualisie-
rungsalgorithmen auf Clientseite implementiert werden müssen. Es können bereits vor-
handene Visualisierungsalgorithmen des JDQVisF genutzt werden. Vorausgesetzt sie
passen zu dem neuen Anzeigegerät. Wird für ein Anzeigegerät ein spezieller Visualisie-
rungsalgorithmus benötigt, kann dieser zum JDQVisF hinzugefügt werden. Ist das nicht
erwünscht, so übernimmt das JDQVisF lediglich die Anbindung an den Simulation-

JDQVisF

JDQVisClient JDQVisClient

- 79 -

Workflow und die Benutzersteuerung und leitet die empfangenen Daten an das Gerät
weiter. Dadurch erleichtert diese Architektur eine Endgeräteunabhängigkeit, da die Ver-
arbeitungslogik durch den Server übernommen werden kann. Zusätzlich ermöglicht die-
se Client-Server-Architektur das Generieren der selben Visualisierungen für Anzeigege-
räte mit unterschiedlichen Betriebssystemen aber ähnlichen Geräteeigenschaften. So
können beispielsweise auf einem Android-Tablet die gleichen komplexen Visualisierun-
gen angezeigt werden wie auf einem iPad.

Aus Sicht der Visualisierer bietet diese Architektur und damit die Visualisierung auf Ser-
verseite, ebenfalls mehrere Vorteile. Durch die Skalierbarkeit des Servers lassen sich
selbst für leistungsschwache Geräte schöne und komplexe Visualisierungen generie-
ren. Der Server kann das rechenintensive Mapping und Rendering übernehmen.
Dadurch ist der Visualisierer nicht durch die fehlende Rechenleistung der Anzeigegerä-
te eingeschränkt.
Neben der Skalierbarkeit bietet diese Client-Server-Architektur den Visualisierern auch
eine gemeinsame Stelle, an der er seine neuen Visualisierungsalgorithmen einbinden
kann. Etwa wenn eine neue Simulation überwacht werden soll oder eine neue Rolle in
einer Simulation hinzugefügt wird. Er ist von den Anzeigegeräten entkoppelt und muss
bei einer Änderung nicht jedes verwendete Gerät anpassen. Muss ein Visualisierungs-
algorithmus angepasst werden, so bietet das JDQVisF eine zentrale Komponente für
die Wartung und die Pflege an.

Ein weiterer Vorteil dieser Architektur ist die Möglichkeit, Daten in einen zentralen
Cache abzulegen. So können bei Bedarf zeitliche Verläufe visualisiert werden oder die
Daten nach Simulationsende ausgewertet werden.

Bevor in den nächsten Kapiteln der genaue Aufbau der JDQVisF und die einzelnen
Komponenten im Detail erarbeitet werden, wird im nächsten Abschnitt zunächst die
Einordnung in den Simulation-Workflow gezeigt.

5.2.1 Einordnung des JDQVisF in den Simulation-Workflow

Eine Visualisierung hilft dem Wissenschaftler bei der Auswertung abstrakter Datenmen-
gen, wie sie bei Simulationen entstehen. Sie bildet damit eine Schnittstelle zwischen
Datenerzeuger, hier die Simulation, und Datenverarbeitung durch den Wissenschaftler.
Dieser verbindende Charakter spiegelt sich bei der Einordnung des JDQVisF in den
Simulation-Workflow wieder. Es gruppiert sich logisch zwischen diesen beiden Kompo-
nenten. Abbildung 5-7 zeigt den Zusammenhang:

- 80 -

Abbildung 5-7: Einordung des JDQVisF zwischen Simulation-Workflow und Wissen-
schaftler

Durch diese Einordnung bildet sich eine logisch getrennte Dreischichtenarchitektur. Der
Simulation-Workflow erzeugt Daten, die mit Hilfe des JDQVisF gerätespezifisch visuali-
siert werden und schließlich auf dem Gerät des Wissenschaftlers dargestellt werden.
Auf der anderen Seite melden sich die Wissenschaftler beim JDQVisF an, um sich für
Simulationen zu registrieren.

Simulation-Workflow

JDQVisF

D
ata

Picture

Visualization

Workflow-Tier

JDQVisF-Tier

JDQVisClient-Tier

- 81 -

5.3 Struktureller Aufbau des JDQVisF

Grundsätzlich wird der Aufgabenbereich des JDQVisF in zwei Kategorien eingeteilt.
Zum einen in Wissenschaftler- und Simulationsverwaltung und zum anderen in die
Steuerung der Visualisierungspipeline. Aus diesem Grund wird die Architektur des
JDQVisF in die zwei Kernkomponenten JDQVisController und VisualizationMediator,
die jeweils einen Aufgabenbereich übernehmen, aufgeteilt. Der JDQVisController über-
nimmt die Benutzerverwaltung, die Anbindung an das JDQCF und das Weiterleiten von
Steuerungsbefehlen. Der VisualizationMediator ist unabhängig von der Benutzersteue-
rung und übernimmt das Visualisieren und Versenden der Datenqualitätswerte.

Diese Trennung ermöglicht die Aufteilung der Schnittstellen nach ihrem Einsatzgebiet
und vereinfacht die Wartung der Benutzersteuerung und das Verwalten der Simulatio-
nen durch die Wissenschaftler auf der einen Seite und die Wartung der Visualisierungs-
pipeline durch die Visualisierer auf der anderen (ℜ17). Ein Wissenschaftler kann die
Benutzersteuerung anpassen, ohne die Visualisierungskomponente zu beeinflussen.
Die Visualisierer können neue Visulisierungsalgorithmen einbinden ohne die Benutzer-
steuerung anpassen zu müssen.

Abbildung 5-8 zeigt den strukturellen Aufbau des JDQVisF mit Anbindung an das
JDQCF und einer Komponente für die Steuerung der Simulation (siehe Kapitel 5.4.1.1).

Abbildung 5-8: Struktureller Aufbau des JDQVisF mit Anbindung an das JDQCF und
einem SimulationController. Die Pfeile deuten den Datenaustausch zwi-

schen den Komponenten an

JDQVis
Controller

Visualization
Mediator

…

Simulation
Controller JDQCF

JDQVisF

JDQVisClient JDQVisClient

- 82 -

5.3.1 Plug-In Architektur

Das JDQVisF soll mehrere gleichzeitig laufende Simulationen unterstützen (ℜ4). Dabei
können die Ansprüche an die Benutzerautorisierung oder an die Visualisierungsalgo-
rithmen variieren. Ein Wissenschaftler kann an einer Simulation A andere Rechte besit-
zen als an einer Simulation B. Des weiteren sollen leicht neue Simulationen und Visua-
lisierungsalgorithmen zum JDQVisF hinzugefügt werden können (ℜ13). Aus diesen
Gründen können, weder der JDQVisController noch ein VisualizationMediator, aus ab-
geschlossenen Komponenten bestehen, die alle Simulationen und Rechte berücksichti-
gen. Möchte ein Wissenschaftler beispielsweise eine neue Simulation hinzufügen oder
ein Visualisierer einen neuen Visualisierungsalgorithmus, müsste er die komplette
Komponente verändern, was die Wahrscheinlichkeit von Fehlern erhöht und die War-
tung erschwert. Die Anforderung an eine lose Kopplung der einzelnen Komponenten
wird dadurch erfüllt (ℜ18).
Aus diesen Gründen wird für die Realisierung des JDQVisController und des Visualiza-
tionMediator eine Plug-In Architektur verwendet. Dabei bilden diese die beiden Kern-
komponenten, die durch spezielle Schnittstellen erweitert werden können. Das ermög-
licht sowohl das leichte Hinzufügen neuer Simulationen oder Rollen, als auch den Aus-
tausch von funktionalen Komponenten wie Filter, Visualisierer, Verteiler, SimulationCon-
troller oder Benutzerautorisierung durch die Entwickler und bietet damit ein hohes Maß
an Flexibilität (ℜ18).

Ein weiterer Grund für diese Architekturentscheidung ist die Möglichkeit, durch die Aus-
lagerung der funktionalen Erweiterungen, neue Anforderungen seitens der Wissen-
schaftler oder neue Visualisierungsalgorithmen durch die Visualisierer zur Laufzeit in
das JDQVisF einzubinden. Auf diese Weise werden andere laufende Simulationen nicht
beeinflusst.

Eine Erweiterung wird im folgenden als Plug-In bezeichnet und beschreibt eine funktio-
nale Komponente des JDQVisF. Beispielsweise sind Filter- oder Autorisierungskompo-
nenten Plug-Ins die vom JDQVisF bei Bedarf geladen und an entsprechender Stelle
aufgerufen werden.

Eine solche Plug-In-Architektur ermöglicht zudem die leichte Wiederverwendung des
gesamten JDQVisF oder einzelner Komponenten (ℜ1).

- 83 -

5.4 Komponenten des JDQVisF

Abbildung 5-9: Interne Aufteilung des JDQVisF in die zwei Hauptkomponenten
JDQVisController und VisualizationMediator

Die Architektur des JDQVisF besteht aus zwei Kernkomponenten, die zum einen für die
Simulations- und Benutzersteuerung und zum anderen für die Steuerung der Visualisie-
rungspipeline zuständig sind. Der JDQVisController steuert und verwaltet die verschie-
denen JDQVisClients, koordiniert die Registrierungen am JDQCF, leitet Steuerungsbe-
fehle an den Simulation-Workflow weiter, dient zur Realisierung der Zugriffsicherheit
und verwaltet alle VisualizationMediatoren. Ein VisualizationMediator steuert die Visua-
lisierungspipeline und versendet die generierten Visualisierungen.

Diese zweigeteilte Architektur entsteht aus den unterschiedlichen Anforderungen der
Plug-In-Entwickler und der Wissenschaftler. Möchte ein Entwickler eine neue Visualisie-
rung für das JDQVisF realisieren muss er lediglich die entsprechende Schnittstelle des
VisualizationMediator implementieren. Durch die Trennung ist er dabei völlig unabhän-
gig vom restlichen Aufbau des JDQVisF und kann sich ganz auf die für ihn wichtigen
Stellen konzentrieren. Auf der anderen Seite meldet sich ein JDQVisClient beim
JDQVisController an einer zentralen Stelle an und kann durch dessen Schnittstellen
den gesamten Visualisierungsprozess nach seinen Wünschen anpassen (ℜ17). Ein
direkten Eingriff in die Visualisierungsalgorithmen ist dazu nicht nötig.

Die Kommunikation zwischen dem JDQVisController und einem VisualizationMediator
wird in Kapitel 0 gezeigt.

Im Folgenden werden die beiden Teilarchitekturen JDQVisController und Visualization-
Mediator des JDQVisF vorgestellt. Dazu wird jeweils die Architektur und die entspre-
chenden Plug-Ins detailliert erarbeitet.

JDQVis
Controller

Visualization
Mediator

JDQVisF

- 84 -

5.4.1 Architektur des JDQVisController

Abbildung 5-10: Komponenten des JDQVisF mit hervorgehobenem JDQVisController

Der JDQVisController ist die Hauptkomponente des JDQVisF. Er bildet eine Schicht
zwischen JDQVisClient und Simulation-Workflow. Bei ihm können sich JDQVisClienten
registrieren, die Visualisierungspipeline beeinflussen und Steuerungsanfragen ihrer Si-
mulation stellen. Der JDQVisController realisiert die Kommunikation zwischen
JDQVisClient und JDQVisF.

Der JDQVisController fungiert dabei als eine Kernkomponente, die über verschiedene
Schnittstellen funktional erweitert werden kann (Abbildung 5-11).
Diese Architekturentscheidung begründet sich hauptsächlich durch die Anforderung an
das JDQVisF, mehrere Simulationen zu unterstützen (ℜ4). Die gewählte Plug-In-
Architektur bietet den Vorteil, unterschiedliche Anforderungen in unterschiedlichen Si-
mulationsumgebungen bezüglich der Benutzerautorisierung (UserAuthorizerInterface)
oder Simulationssteuerung (SimulationControllerInterface) zu unterstützten. Es müssen
lediglich die entsprechenden Plug-Ins implementiert und in das JDQVisF eingebunden
werden (siehe Kapitel 5.3.1).

Abbildung 5-11: Kennzeichnung der Schnittstellen des JDQVisController. Die Symbole
kennzeichnen den unterschiedlichen Charakter der Schnittstellen. Die

Farben dienen zur Codierung der unterschiedlichen Schnittstellen

JDQVis
Controller

Visualization
Mediator

JDQVisF

JDQVis
Controller

Simulation
Controller-
Plug-In

Authorizer-
Plug-Ins

Data
Producer

UserAuthorizerInterfaceSimulationControllerInterface

DataInputInterface

- 85 -

Die wesentlichen Aufgaben des JDQVisController sind die richtigen Plug-Ins für jeden
JDQVisClienten zu laden, diese zu koordinieren und ihm zur Verfügung zu stellen.

Das Registrieren am JDQCF und das Empfangen der Datenqualitätswerte wird nicht in
Plug-Ins ausgelagert. Diese Entscheidung begründet sich dadurch, dass das JDQCF
mehrere Simulationen unterstützen werden kann und somit nur einmalige in das
JDQVisF eingebunden werden muss. Damit auch externe Programme Rohdaten an das
für das Visualisieren bereitstellen können, bietet der JDQVisController eine Schnittstelle
für den Empfang von Datenwerten (DataInputInterface) an. Diese Schnittstelle wird in
der technischen Umsetzung des JDQVisF in Kapitel 6.2.3 genauer beschrieben und
wird an dieser Stelle nur für das allgemeine Verständnis erwähnt.

Die Unterstützung eines rollenbasierten Rechtesystems des Wissenschaftler wird durch
die gewählte Plug-In-Architektur ebenfalls umgesetzt. Für jede Rolle, Simulation und
jedes Anzeigegerät, können unterschiedliche Plug-Ins für die Verarbeitung geladen
werden. Das bedeutet insbesondere auch, dass ein JDQVisClient mehrere Simulatio-
nen überwachen kann und jeweils andere Rechte an ihnen besitzt. Er bekommt also
durch das Laden verschiedenen Benutzerautorisierungs-Plug-Ins unterschiedliche Rol-
len zugeteilt, die für die weiteren Visualisierungsschritte berücksichtigt werden. (ℜ9,
ℜ10)

Für die Zuordnung der unterschiedlichen Daten, die bei mehreren parallel laufenden
Simulationen und gleichzeitig angemeldeten JDQVisClients entstehen, werden Name-
spaces (siehe Kapitel 5.4.3.1) eingesetzt. Jeder JDQVisClient besitzt zu jeder Simulati-
on einen eigenen Namespace in dem alle relevanten Daten abgelegt werden. Dieser
wird vom JDQVisController für jeden angemeldeten JDQVisClient durch seine UserId
einzigartig generiert. Eine Verwechslung von Wissenschaftlern wird dadurch ausge-
schlossen und die Datenintegrität sichergestellt. Diese Architekturentscheidung erhöht
somit die allgemeine Zugriffsicherheit. Nichtautorisierte Benutzer oder Wissenschaftler
mit weniger Rechten an einer Simulation, können durch dieses Sandbox-Prinzip nicht
auf Daten anderer angemeldeter Wissenschaftler zugreifen.

In den folgen Abschnitten werden die Erweiterungsschnittstellen für die Benutzerautori-
sierung und Simulationssteuerung vorgestellt. Zudem wird der Empfang der Rohdaten
durch das JDQCF gezeigt.

5.4.1.1 Erweiterungen des JDQVisController

Der JDQVisController kann durch die verschiedenen Ansprüche an ihn, die Benutzerau-
torisierung und Simulationssteuerung nicht in einer abgeschlossenen Komponente um-
setzen.
Aus diesem Grund bietet das JDQVisF über die beiden Schnittstellen UserAuthorizerIn-
terface und SimulationControllerInterface die Möglichkeit simulationsabhängige Authori-

- 86 -

zer-Plug-Ins und SimulationController-Plug-Ins einzubinden. Diese werden bei Bedarf
durch den JDQVisController geladen und ausgeführt.

Diese konzeptionelle Trennung der Schnittstellen zur Benutzerautorisierung und Steue-
rung der Simulation vereinfacht die unterschiedlichen Ansprüche der verschiedenen
Benutzergruppen des JDQVisF zu realisieren. Auf der einen Seite können Wissen-
schaftler durch das Authorizer-Plug-In simulationsabhängig neue Mitarbeiter hinzufü-
gen, ihre Rechte verändern oder komplett aus der Simulation entfernen, wodurch ein
rollenbasiertes Rechtesystem für den Wissenschaftler leicht umzusetzen ist (ℜ9). Auf
der anderen Seite bietet das SimulationController-Plug-In eine zentrale Stelle, die den
Zugriff auf die Simulation durch definierte Regeln steuern kann (ℜ14).
Aus Sicht der Entwickler bietet diese Trennung den Vorteil, dass er jeweils eine definier-
te Schnittstelle für die Realisierung eines Authorizer- oder SimulationController-Plug-Ins
zur Verfügung gestellt bekommt. Soll ein neues Plug-In eingebunden werden, muss
lediglich die entsprechende Schnittstelle implementiert und im entsprechenden Name-
space (siehe Kapitel 0) registriert werden. Eine direkte Manipulation des JDQVisF ist
dadurch nicht erforderlich. Diese Architektur basiert durch die Trennung der Plug-Ins
vom Rest des JDQVisF auf einer losen Kopplung, was ihre Einfachheit und Flexibilität
erhöht, was wiederum ihre Portabilität und Wiederverwendbarkeit ermöglicht (ℜ18).

Die folgenden Unterkapitel beschreiben die Erweiterungen für die Benutzerautorisierung
und Simulationssteuerung sowie die Anbindung an das JDQCF im Detail.

5.4.1.1.1 Benutzerautorisierung durch ein Authorizer-Plug-In

Abbildung 5-12: Authorizer-Plug-In des JDQVisController

Ein Authorizer-Plug-In ist eine Erweiterung des JDQVisController für die Autorisierung
von JDQVisClients (ℜ7). Diese Komponente des JDQVisF bietet den JDQVisClienten
eine zentrale Stelle für die Anmeldung zur Überwachung von Simulationen.

JDQVis
Controller

Simulation
Controller-
Plug-In

Authorizer-
Plug-Ins

Data
Producer

UserAuthorizerInterfaceSimulationControllerInterface

DataInputInterface

- 87 -

Ein Authorizer-Plug-In bekommt die Anmeldedaten, bestehend aus Benutzername und
Passwort, als Eingabe und liefert eine JDQVisUser-Objekt als Ausgabe. Ein JDQVis-
User-Objekt besteht aus einer UserId und einer Role. Eine UserId dient dem JDQVis-
Controller als Referenz auf den angemeldeten Wissenschaftler und kann aus einer be-
liebigen Zahlen- und Buchstabenkombination bestehen. Die Role spiegelt die Rolle des
Wissenschaftlers in der Simulation. So kann vom JDQVisController und vom Visualiza-
tionMediator unterschieden werden, welche Rechte der Wissenschaftler an der Simula-
tion besitzt. Das JDQVisF setzt durch diese Architektur eine simulationsabhängige Be-
nutzerautorisierung um (ℜ7, ℜ9).

Ein Benutzerautorisierungs-Plug-In ist für genau eine Simulation verantwortlich. Das
bedeutet, dass für unterschiedliche Simulationen, unterschiedliche Benutzerautorisie-
rungs-Plug-Ins ausgeführt werden müssen. Indem der Entwickler verschiedene Plug-Ins
implementiert, kann er für jede Simulation festlegen, welche Wissenschaftler sich für
eine Simulation anmelden können und welche Rechte sie an dieser Simulation haben.

UserAuthorizationInterface

Der JDQVisController bietet über das UserAuthorizationInterface die Möglichkeit neue
Benutzerautorisierungen in das JDQVisF einzubinden. Dazu muss ein Benutzerautori-
sierungs-Plug-In die getUser-Methode implementieren. Diese bekommt als Parameter
den Benutzernamen und Passwort für die angeforderte Simulation. (ℜ16)

Eine technische Umsetzung eines UserAuthorizationInterface wird in Kapitel 6.2.1.1
gezeigt.

5.4.1.1.2 Simulationssteuerung durch ein SimulationController-Plug-In

Abbildung 5-13: SimulationController-Plug-In des JDQVisController

JDQVis
Controller

Simulation
Controller-
Plug-In

Authorizer-
Plug-Ins

UserAuthorizerInterfaceSimulationControllerInterface

Data
Producer

DataInputInterface

- 88 -

Ein SimulationController-Plug-In ist eine Erweiterung des JDQVisController für die Wei-
terleitung von Steuerungsbefehlen an die Simulation. Es bietet dem Wissenschaftler die
Möglichkeit in eine laufende Simulation einzugreifen. Durch diese Plug-In Architektur
lassen sich simulationsabhängige, komplexe Steuerungen realisieren. Beim JDQVis-
Controller angemeldete Wissenschaftler können nur in die Simulationen eingreifen für
die sie registriert sind. Durch diese Sandbox-Architektur wird die Integrität der Simulati-
onsdaten durch das JDQVisF gewährleistet (ℜ8).

Da der Fokus des JDQVisF auf dem Visualisieren von Datenqualität liegt, wird diese
Komponente lediglich als eine Schnittstelle für das Weiterleiten der Benutzereingaben
verwendet. Der JDQVisController ruft beim Empfang eines Steuerungsbefehls für die
Simulation das für die entsprechende SimulationId registrierte Plug-In auf.

Aus Sicht der Simulationssteuerung bietet diese Lösung einen einfachen Weg für das
Verarbeiten von Steuerungsbefehlen, da sie sich nur über eine Schnittstelle am
JDQVisF registrieren muss.

Ein SimulationController-Plug-In bekommt eine UserId und den Steuerbefehl als Einga-
be und gibt einen Verarbeitungsbericht in Textform als Rückgabe zurück. Die UserId
dient dem SimulationController-Plug-In als Referenz auf den Wissenschaftler der den
Steuerbefehl an das JDQVisF gesendet hat. Ist ein Wissenschaftler für eine Simulatio-
nId beim JDQVisController angemeldet, kann er diese mit Hilfe des Plug-Ins steuern.
Wichtige Anwendungsfälle könnten das vorzeitige Abbrechen der Simulation oder das
Auswechseln von Workflow-Komponenten bei schlechter Datenqualität sein. Durch das
Übergeben der UserId kann das SimulationController-Plug-In entscheiden, ob der Wis-
senschaftler die nötigen Rechte für den übergebenen Steuerbefehl besitzt.

SimulationControllerInterface

Der JDQVisController bietet über das SimulationControllerInterface eine Schnittstelle für
die Anbindung von SimulationController-Plug-Ins.

Die Umsetzung eines SimulationControllerInterface wird in Kapitel 6.2.1.1 gezeigt.

- 89 -

5.4.1.2 Empfang der Rohdaten für das JDQVisF

Abbildung 5-14: Empfang der Rohdaten für das JDQVisF

Um Datenqualitätsvisualisierungen erstellen zu können benötigt das JDQVisF Eingabe-
daten. Aus Gründen der Wiederverwendbarkeit des JDQVisF und Entkopplung vom
JDQCF wird, im Gegensatz zu den oberen beiden Abschnitten, eine Architektur auf Ba-
sis von Namespaces (siehe Kapitel 5.4.3.1) vorgestellt.
Für jede Simulation gibt es einen bestimmten Namespace / raw, an dem die Rohdaten
für die weitere Verarbeitung liegen. Das bedeutet, sollen neue Datenqualitätswerte
durch das JDQVisF visualisiert werden, müssen sie in diesen Namespace abgelegt
werden.

Diese Methode ermöglicht das Empfangen von Rohdaten, z.B. Datenqualitätswerten,
ohne die direkte Anbindung an das JDQCF. Somit kann das JDQVisF auch Daten aus
anderen Datenquellen (DataProducer) für die Eingabedaten verwenden.

Für das Überwachen der Namespaces besitzt der JDQVisController eine Hilfskompo-
nente. Liegen neue Eingabedaten an, benachrichtig diese den JDQVisController. Diese
Komponente trennt somit die Funktion Datenempfang von den übrigen Aufgaben des
JDQVisController und führt dadurch zu einer besseren Struktur.
Der genaue Ablauf bei dem Empfang von Rohdaten wird in der technischen Umsetzung
des JDQVisF in Kapitel 6.2.3 gezeigt.

Konzeptionelle Anbindung an das JDQCF (ℜ2)

Dieser Abschnitt beschreibt die konzeptionelle Anbindung des JDQVisF an das JDQCF.
Für die genaue Beschreibung des JDQCF und dessen konzeptionellen Aufbau wird auf
[1] verwiesen.

- 90 -

Um das JDQCF als Datenquelle nutzen zu können, muss das JDQVisF zwei Schritte
realisieren. Im ersten Schritt muss es sich beim JDCQF über eine Subscibe-Nachricht
für eine Simulation oder Metrik registrieren. Eine Metrik beschreibt dabei eine Daten-
qualitätsdimension. Das bedeutet, das JDQVisF muss sich für eine vollständige Über-
wachung, auf alle gewünschten Metriken registrieren. Im zweiten Schritt muss es für
den Empfang von Datenqualitätswerten die DataQualityReceiver-Schnittstelle des
JDQCF implementieren. Dieses enthält eine Methode, die für den Empfang der Daten-
qualitätswerte aufgerufen wird. Die berechneten Datenqualitätswerte werden durch das
JDQCF an den QoDReceiver in serialisierter Form übermittelt. Dazu werden die Calcu-
lationResult-Container von der DispatchingApi in XML serialisiert und in den SOAP-
Header der Response-Nachricht gepackt.

Abbildung 5-15 zeigt die Anbindung des JDQVisF an das JDQCF mit allen nötigen
Schritten.

Abbildung 5-15: Anbindung des JDQVisController an das JDQCF

Da das JDQVisF das JDQCF als eine mögliche Datenquelle verwendet, werden durch
den QoDReceiver des JDQVisController alle empfangenen Datenqualitätswerte in den
entsprechenden Namespace in XML serialisiert.

JDQCF

DataQualityReceiver - Interface

QoDReceiver
114.137.141.1:1121

DataQualityReceiverWS
receive()

Simulation-Workflow

VisMediator 1

EndpointList

User 1

Authorization Plug-Ins

SimulationController

User n…

JDQVisController VisMediator m

…

subscribe-Message DQCalculation Result

- 91 -

5.4.2 Architektur des VisualizationMediator

Abbildung 5-16: Komponenten des JDQVisF mit hervorgehobenen
 VisualizationMediator

Ein VisualizationMediator ist die zweite Hauptkomponente des JDQVisF und realisiert
das Visualisieren der Datenqualitätswerte und die Steuerung der Visualisierungspipe-
line. Er besitzt eine ähnliche Architektur wie der JDQVisController. Der Visualization-
Mediator generiert für jeden, beim JDQVisController angemeldeten JDQVisClient und
SimulationId, unterschiedliche Visualisierungen. Da das JDQVisF mehrere Simulationen
und eine variierende Anzahl von Wissenschaftlern mit unterschiedlichen Rechten unter-
stützt, wäre der VisualizationMediator als eine abgeschlossene Visualisierungskompo-
nente zu unflexibel, komplex, fehleranfällig und wartungsintensiv. Aus diesem Grund
wird eine Plug-In-Architektur für den VisualizationMediator gewählt. Der Visualization-
Mediator ist eine Steuerungskomponente, welche die Generierung der Visualisierungen
durch die Steuerung der Visualisierungspipeline übernimmt (ℜ5). Er wird vom JDQVisF
benötigt, um alle Stufen zu koordinieren. Da ein hohes Maß an Flexibilität erreicht wer-
den soll, werden die Schritte der Visualisierungspipeline durch verschiedene Plug-Ins
realisiert.
Abbildung 5-17 zeigt die Schnittstellen des VisualizationMediator.

Abbildung 5-17: Schnittstellen des VisualizationMediator

JDQVis
Controller

Visualization
Mediator

JDQVisF

FilterInterface

VisualizerInterface

DispatcherInterface

Filter-Plug-In

Visualizer-
Plug-Ins

Dispatcher-
Plug-Ins

Visualization
Mediator

- 92 -

Diese Plug-In Architektur bietet die Möglichkeit, die unterschiedlichen Eigenschaften der
Anzeigegeräte in der Visualisierungspipeline zu berücksichtigen. Sie erlaubt eine flexib-
le Zusammenstellung der einzusetzenden Plug-Ins und kann dadurch die unterschiedli-
chen Rechte der Wissenschaftler unterstützen. Zudem ermöglicht diese Architektur die
unterschiedlichen Eigenschaften von verschiedenen Anzeigegeräten bei der Generie-
rung der Visualisierungen zu berücksichtigen. So können beispielsweise für ein Tablet-
Computer mit viel Rechenleistung und einem Smartphone mit wenig Rechenleistung
unterschiedliche Visualisierungen für die gleichen Daten und Rollen generiert werden
(ℜ13). Der VisualizationMediator lädt jeweils ein passendes Filter-, Visualizer- und Dis-
patcher-Plug-In und bietet somit ein Gerüst für die unterschiedlichen Stufen der Visuali-
sierungspipeline (ℜ12).

Wie bei dem JDQVisController hat diese Plug-In-Architektur wichtige Eigenschaften, mit
deren Hilfe die Anforderungen an das JDQVisF umgesetzt werden können. So besitzen
die einzelnen Plug-Ins eine lose Kopplung untereinander. Das bedeutet, einzelne Plug-
Ins können leicht ausgetauscht oder an neue Anforderungen angepasst werden.
Dadurch wird die Wartung und Pflege vereinfacht und die Flexibilität und Wiederver-
wendbarkeit des ganzen JDQVisF oder einzelner Plug-Ins erhöht. Zudem ermöglicht sie
eine flexible Zusammenstellung von Filter-, Visualizer- und Dispatcher-Plug-Ins. So
kann beispielsweise ein Filter-Plug-In unabhängig von der späteren Visualisierung und
einzig unter Berücksichtigung der Rolle und Simulation realisiert werden. Zudem ermög-
licht diese Architektur die einzelnen Schritte der Visualisierungspipeline durch unter-
schiedliche Spezialisten zu realisieren. So kann beispielsweise ein Wissenschaftler
durch das Implementieren eines Filter-Plug-Ins für jede Rolle festlegen, welche Daten
für die Visualisierung freigegeben werden. Der Visualisierer hingegen muss sich keine
Gedanken um die Herkunft der Daten machen und kann sich auf seinen Visualisie-
rungsalgorithmus konzentrieren. Ein Dispatcher-Plug-In bekommt die generierten Vi-
sualisierungen als Eingabedaten und versendet sie an die gewünschte Adresse mit
dem implementierten Protokoll und ist dabei komplett von der restlichen Visualisie-
rungspipeline entkoppelt.

Zusätzlich hat diese Plug-In-Architektur den Vorteil, dass Plug-Ins zur Laufzeit einge-
bunden oder ausgetauscht werden können ohne das gesamte JDQVisF anzupassen
und somit andere Simulationen und JDQVisClienten zu beeinträchtigen.

Um die gewünschten Visualisierungen zu generieren wählt der VisualizationMediator
mit Hilfe eines Plug-In-Registers jeweils ein Filter-, ein Visualizer- und ein Dispatcher-
Plug-In aus. Das Register enthält neben der Rolle des Wissenschaftlers und der Simu-
lationId eine DeviceId, welche für die Auswahl der Visualizer- und Dispatcher-Plug-Ins
mitentscheidend ist (ℜ10). Der genaue Aufbau dieses Registers wird in Kapitel 6.3.4
gezeigt.

Abbildung 5-18 beschreibt die Aufteilung der Visualisierungspipeline auf Filter- Visuali-
zer- und Dispatcher-Plug-Ins mit Kennzeichnung des Datenflusses. Die Schritte Map-

- 93 -

ping und Rendering werden zu einem Visualizer-Plug-In zusammengefasst. Dies hat
den Vorteil, dass die Implementierung von geräteabhängigen Visualisierungen verein-
facht wird. Für ein Anzeigegerät mit viel Rechenleistung kann beispielsweise nur das
Mapping innerhalb des Visualizer-Plug-In realisiert werden und das Rendering lokal auf
dem Gerät. Bei einem leistungsschwachen Gerät wiederum kann die Rechenleistung
des Servers ausgenutzt werden, um komplexe Bilder zu generieren.

Abbildung 5-18: Aufteilung der Visualisierungspipeline auf Filter- Visualizer- und
 Dispatcher-Plug-In mit Kennzeichnung des Datenflusses

Die Einbindung der Plug-Ins für die Visualisierung in den VisualizationMediator und
nicht an den JDQVisController begründet sich durch die in Kapitel 0 gezeigte Trennung
des Aufgabenbereichs des JDQVisF. Er bietet zusätzlich den Visualisierern einen zent-
ralen Punkt um ihre Visualizer-Plug-In einzubinden und erleichtert dadurch die Wartung
und Pflege.

Für die Gewährleistung der Integrität der Daten, die bei den einzelnen Schritten entste-
hen, werden wie beim JDQVisController Namespaces (siehe Kapitel 5.4.3.2) verwen-
det. Das dadurch entstehende Sandbox-Prinzip verhindert die Veränderung der Daten
durch die anderen geladenen Plug-Ins.

In den folgenden Abschnitten werden die Erweiterungen der Visualisierungspipeline des
VisualizationMediator genauer beschrieben.

Filtering

Mapping

Rendering

Dispatching

Filter-Plug-In

Visualizer-Plug-In

Dispatcher-Plug-In

Simulation

JDQVisClient

data flow

- 94 -

5.4.2.1 Erweiterungen des VisualizationMediators

Der VisualizationMediator kann seine Visualisierungspipeline wegen der oben gezeig-
ten Anforderungen nicht in einer abgeschlossenen Komponente umsetzen. Aus diesem
Grund bietet das JDQVisF den Entwicklern drei Schnittstellen an um ihre Filter-, Visua-
lizer- und Dispatcher-Plug-Ins dem VisualizationMediator zur Verfügung zu stellen. Da-
zu gehören das FilterInterface für Filter-Plug-Ins, das VisualizerInterface für Visualizer-
Plug-Ins und das DispatcherInterface für Dispatcher-Plug-Ins.

Dieses Kapitel beschreibt die konzeptionelle Architektur der Erweiterungen, ihre Funkti-
onen und ihre Schnittstellen.

Die konzeptionelle Aufteilung der Visualisierungspipeline in diese drei Plug-Ins begrün-
det sich hauptsächlich durch die daraus entstehende Flexibilität. Der VisualizationMedi-
ator kann zu jeder Rolle-Simulation-Anzeigegerät-Beziehung die passenden Plug-Ins zu
einer Visualisierungspipeline kombinieren. Er nutzt die Wiederverwendbarkeit der ein-
zelnen Plug-Ins und vermeidet dadurch redundante Implementierungen, was die War-
tung und Pflege der einzelnen Plug-Ins vereinfacht.
In der ersten Stufe können die Wissenschaftler simulationsabhängige und rollenbasierte
Filter entwickeln, ohne die restlichen, zum Teil komplizierten, Schritte der Visualisie-
rungspipeline anpassen zu müssen. In der zweiten Stufe kann ein Visualisierer, der ein
Visualizer-Plug-In entwickelt, die Eigenschaften eines Anzeigegerätes optimal ausnut-
zen. Er kann komplizierte Visualisierungsalgorithmen einbinden, ohne sich Gedanken
um die Datenherkunft oder das Versenden der Visualisierungen machen zu müssen. In
der letzten Stufe versendet ein Dispatcher-Plug-In Eingabedaten an eine bestimme Ad-
resse, ohne das deren Herkunft berücksichtigt werden muss.

Um den jeweiligen Spezialisten einen einfache Rahmen für das Einbinden ihrer Plug-Ins
bereitzustellen, bietet das JDQVisF drei Schnittstellen mit jeweils nur einer Methode an.
Diese Architektur teilt dadurch die Plug-Ins nach ihrer jeweiligen Aufgabe und ermög-
licht das Laden der richtigen Plug-Ins durch den VisualizationMediator. Möchte bei-
spielsweise ein Visualisierer ein neues Visualizer-Plug-In für ein spezielles Anzeigege-
rät und eine bereits existierende Rolle und Simulation in das JDQVisF einbinden, so
muss er nur eine Schnittstelle implementieren und das Plug-In im entsprechenden
Namespace (siehe Kapitel 5.4.3.2) registrieren. Das gleiche gilt für die Filter- und Dis-
patcher-Plug-Ins.

Visualisierungsspezifikationen

Da alle Plug-Ins eine in sich abgeschlossene Komponente bilden, benötigten sie eine
Möglichkeit für die Kommunikation mit dem VisualizationMediator, um beispielsweise
den Ein- und Ausgabepfad der Daten zu bekommen. Zusätzlich benötigen Filter- und
Visualizer-Plug-Ins eine Schnittstelle zu dem Wissenschaftler, über die dieser in die Vi-
sualisierungspipeline eingreifen kann. Aus diesem Grund werden für die drei Plug-Ins
so genannte Visualisierungsspezifikationen angelegt. Sie enthalten beispielsweise den

- 95 -

Ein- und Ausgabepfad der Daten und im Fall von Filter- und VisualizerSpecifications ein
Element für die Benutzeranfragen. Der Plug-In-Entwickler muss sich also nicht um die
Beschaffung der Ein- und Ausgabepfade kümmern, was die Implementierung verein-
facht. Der JDQVisController passt die entsprechenden Spezifikationen bei der Anmel-
dung eines JDQVisClienten oder bei dem Empfang eines Steuerungsbefehls an. Eine
persistente Auslagerung dieser Spezifikationen, zum Beispiel in eine XML-Datei, bietet
im Gegensatz zu einer einfachen Parameterübergabe durch den VisualizationMediator
an die Verarbeitungsmethoden der Plug-Ins, mehrere Vorteile. So können Wissen-
schaftler, beispielsweise zu Simulationsbeginn, festlegen, welche Daten während des
Simulationsdurchganges visualisiert werden und auf welche Art. Sie müssen dazu ein-
malig ihre Filter- und VisualizerSpecifications mit Hilfe des JDQVisController anpassen.
Diese werden dann bei jeder Anmeldung des Wissenschaftlers unabhängig vom Anzei-
gegerät berücksichtigt. Somit erhält er selbst bei Anzeigegeräte ohne Interaktionsmög-
lichkeiten genau die Visualisierungen, die er zuvor an einem anderen Anzeigegerät kon-
figuriert hat.

Im Folgenden werden die einzelnen Plug-Ins, die entsprechende Schnittstelle des
JDQVisF und die Einbindung in das JDQVisF gezeigt.

5.4.2.1.1 Datenaufbereitung durch ein Filter-Plug-In

Abbildung 5-19: Filter-Plug-In des VisualizationMediator

Ein Filter-Plug-In ist eine Erweiterung für die erste Stufe der Visualisierungspipeline. Es
bekommt die Rohdaten als Eingabe und liefert aufbereitete Daten als Ausgabe. Dabei
ist ein Filter-Plug-In für eine SimulationId und eine bestimmte Rolle in dieser Simulation
verantwortlich. Das bedeutet, dass für jede Rolle in einer Simulation unterschiedliche
Filteroperationen ausgeführt werden können. Ein Wissenschaftler kann durch die Im-
plementierung von unterschiedlichen Filter-Plug-Ins für alle Wissenschaftler festlegen,
welche Daten die einzelnen Rollen sehen können und welche ihnen verborgen bleiben.
Beispielsweise benötigt der Wissenschaftler dem die Simulation gehört alle Daten, wäh-
rend für Wissenschaftler mit weniger Rechten, nur die berechneten Datenqualitätswerte

FilterInterface

VisualizerInterface

DispatcherInterface

Filter-Plug-In

Visualizer-
Plug-Ins

Dispatcher-
Plug-Ins

Visualization
Mediator

- 96 -

sichtbar sind. Zudem lassen sich durch dadurch die Interaktionsmöglichkeiten des
JDQVisClient an dem Filter-Plug-In kontrollieren. So kann das Filter-Plug-In anhand der
Rolle unterscheiden, ob es eine Steuerungsanfrage bearbeitet oder nicht.

Das Filter-Plug-In bietet den Wissenschaftler eine einfache Möglichkeit die Rechte von
Rollen anzupassen. Durch die gewählte Plug-In-Architektur können leicht weitere Rollen
zu einer Simulation hinzugefügt, bearbeitet oder einzelne Rollen entfernt werden.

Da ein Filter entgegen des Namens zur allgemeinen Rohdatenaufbereitung verwendet
wird, ist er insbesondere dafür verantwortlich, die originalen Simulationsdaten bei Be-
darf zu laden und sie für die weiteren Verarbeitung zur Verfügung zu stellen. Dabei
können die Simulationsdaten außerhalb des JDQVisF, beispielsweise bei einer Data as
a Service (DaaS) liegen. Ein DaaS beschreibt eine Datenbank in der Cloud und wird in
[31] und [40] genauer beschrieben. Es liegt in der Verantwortung des Plug-In Entwickler
die Simulationsdaten zu dereferenzieren und zu laden. Die Adresse der Daten erhält ein
Filter beispielsweise aus den Rohdaten des JDQCF. (ℜ3)

FilterSpecification

Ein Filter-Plug-In kann über eine so genannte FilterSpecification gesteuert werden. In
ihr findet der Programmierer alle für ihn wichtigen Angaben. So wird in ihr neben der
Rolle und der SimulationId der Ein- und Ausgabepfad der Daten und ein FilterRequest
angegeben.

In Kapitel 6.3.5.1 wird die Umsetzung einer FilterSpecification durch ein XML-Dokument
gezeigt.

FilterInterface

Der VisualizationMediator bietet über das FilterInterface die Möglichkeit, neue Filteral-
gorithmen in das JDQVisF einzubinden. Dazu muss ein Filter-Plug-In die filterData-
Methode implementieren. Sie bekommt den Pfad zu einer passenden FilterSpecification
als Parameter.

- 97 -

5.4.2.1.2 Visualisierung durch ein Visualizer-Plug-In

Abbildung 5-20: Visualizer-Plug-In des VisualizationMediator

Ein Visualizer-Plug-In fasst die zweite und dritte Stufe der Visualisierungspipeline zu-
sammen und realisiert dadurch die Schritte Mapping und Rendering. Diese Zusammen-
legung begründet sich durch die Unterstützung von unterschiedlichen Anzeigegeräten
durch das JDQVisF. Sie ermöglicht es dem Visualisierer, optimal auf das Anzeigegerät
und der Simulation abgestimmte Visualisierungen zu generieren. Dadurch kann, bei-
spielsweise bei leistungsstarken Anzeigegeräten, das JDQVisF nur das Mapping durch
ein Visualizer-Plug-In übernehmen. Das Rendering, also die tatsächliche Bildgenerie-
rung, wird lokal auf dem Gerät ausgeführt und kann die individuellen Stärken des Gerä-
tes vollständig ausnutzen. Bei leistungsschwachen Geräten kann der Visualisierer hin-
gegen die Rechenleistung des Servers ausnutzen. So kann er komplexe Visualisierun-
gen erstellen, welche auf Geräteseite nur noch angezeigt werden müssen.
Zudem ermöglicht diese Plug-In-Architektur dem VisualizationMediator eine einfache
Zusammenstellung seiner Visualisierungspipeline, indem er für jede Simulation-Rolle-
Anzeigegerät-Beziehung, das jeweils passende Visualizer-Plug-In auswählt (ℜ13).
Durch die lose Kopplung der einzelnen Plug-Ins untereinander und insbesondere auch
innerhalb der Visualisierungspipeline, können leicht neue Anzeigegeräte zur Visualisie-
rung der Datenqualität hinzugefügt werden können. Ein Visualisierer muss lediglich ein
neues Visualizer-Plug-In in das JDQVisF hinzufügen (siehe Kapitel 6.3.4.2) und einen
entsprechenden Client auf dem Anzeigegerät installieren.

Aus Sicht der Plug-In-Entwickler bietet diese Architektur mehrere Vorteile. Sie können
unabhängig der restlichen Komponenten des JDQVisF ihre Visualisierungen in dessen
Visualisierungspipeline einbinden. Das vereinfacht insbesondere das Anpassen und
Hinzufügen von Visualisierungsalgorithmen und erleichtert somit die Wartung. Die klare
Trennung der Schritte Filtern und Visualisieren entkoppelt zusätzlich die Visualisierer
von den Wissenschaftlern, die das Aufbereiten der Rohdaten übernehmen können. So

FilterInterface

VisualizerInterface

Filter-Plug-In

Visualizer-
Plug-Ins

Visualization
Mediator

DispatcherInterface

Dispatcher-
Plug-Ins

- 98 -

sind die Visualizer-Plug-In unabhängig von der Datenquelle realisierbar, was die Flexibi-
lität erhöht.

Ein Visualizer-Plug-In bekommt die aufbereiteten Daten als Eingabe und liefert die ge-
nerierten Visualisierungen als Ausgabe. Als Visualisierung werden sowohl einfache Bil-
der, zum Beispiel für einen Internetbrowser, wie auch komplexe Geometriemodelle für
leistungsstärkere Ausgabegeräte unterstützt. Für die Umsetzung wählt der Visualiza-
tionMediator für das aktuelle Anzeigegeräte, das jeweils passende Visualizer-Plug-Ins
aus.

Wie beim Filtern, muss der VisualizationMediator auch beim Visualisieren zwischen den
einzelnen Simulationen und deren unterschiedlichen Rollen unterscheiden. Somit ist es
möglich, dass unterschiedliche Rollen unterschiedliche Visualisierungen als Ausgabe
erhalten (ℜ10). Beispielsweise kann ein Visualizer-Plug-In für die Rolle mit allen Rech-
ten an der Simulation, zusätzlich zu den Datenqualitätswerten, auch die Simulationsda-
ten visualisieren. Rollen mit weniger Rechten bekommen hingegen nur die visualisierten
Datenqualitätswerte angezeigt. Zudem lassen sich durch die Berücksichtigung der Rolle
die Interaktionsmöglichkeiten zwischen JDQVisClient und Visualizer-Plug-In kontrollie-
ren. So kann ein Visualizer-Plug-In für jede Rolle definieren, ob es die Steuerungsan-
frage bearbeitet oder nicht.

Um unterschiedliche Visualisierungen für unterschiedliche Endgeräte zu erhalten, lädt
der VisualizationMediator das passende Plug-In. Dieses findet er anhand eines Plug-In-
Registers (siehe Kapitel 6.1) in der alle Visualizer-Plug-Ins mit einer SimulationId, Role
und DeviceId registriert sind. Diese DeviceId kennzeichnen die Anzeigegeräte, die das
Plug-In unterstützt. Jedes Visualizer-Plug-In, das vom VisualizationMediator geladen
werden soll, muss mindestens eine DeviceId unterstützen.

VisualizerSpecification

Ein Visualizer-Plug-In wird durch eine VisualizerSpecification gesteuert. In ihr findet der
Programmierer alle für ihn wichtigen Angaben. So wird in ihr neben der Rolle und der
SimulationId auch der Ein- und Ausgabepfad der Daten und ein VisualizationRequest
angegeben.
Für jedes SimulationId-User-Paar gibt es genaue eine VisualizerSpecification. Eine Vi-
sualizerSpecification auf Basis einer SimulationId-Role ist nicht möglich, da diese mög-
liche Benutzerinteraktionen beschreiben und somit für jeden JDQVisClienten einzigartig
sein müssen, um andere JDQVisClients mit der selben Rolle nicht zu beeinflussen.

In Kapitel 6.3.5.2 wird die Umsetzung einer VisualizerSpecification durch ein XML-
Dokument gezeigt.

VisualizerInterface

Das JDQVisF bietet über das VisualizerInterface die Möglichkeit neue Visualisierungs-
algorithmen für den VisualizationMediator einzubinden. Dazu muss ein Visualizer-Plug-

- 99 -

In die visualizeData-Methode implementieren. Diese bekommt als Parameter den Pfad
zu einer passenden VisualizerSpecification.

Der VisualizationMediator hat keinen Einfluss auf die tatsächliche Visualisierung der
Daten und kann somit nicht garantieren, dass gute Visualisierungen (siehe Kapitel 3.4)
generiert werden oder nicht. Die Verantwortung der Berücksichtigung der Anforderun-
gen an eine Visualisierung liegt bei den Entwicklern der Visualizer-Plug-Ins. Für die Un-
terstützung wird zusätzlich ein Verweis auf diese Arbeit im Interface gegeben (ℜ11).

5.4.2.1.3 Verteilung der Visualisierungen durch ein Dispatcher-Plug-In

Abbildung 5-21: Dispatcher-Plug-In des VisualizationMediator

Ein Dispatcher-Plug-In ist eine Erweiterung für das Versenden der generierten Visuali-
sierungen. Es bekommt dabei die Visualisierungen als Eingabe und verteilt diese an die
angegebene Adresse. Wie in den zuvor vorgestellten Erweiterungen, wird auch hier die
Plug-In Variante aus Gründen der Flexibilität gewählt. Diese bietet den Vorteil, dass
leicht neue Versandarten eingebunden oder bestehende angepasst werden können.
Zudem wird das Versenden der Visualisierungen von den restlichen Komponenten des
JDQVisF entkoppelt, was zu einer Vereinfachung der Wartung führt (ℜ16). Aus Sicht
der Implementierer bietet diese lose Kopplung zusätzlich den Vorteil, dass sie nur eine
Schnittstelle implementieren müssen um ihre Versandarten in das JDQVisF einzubin-
den. Anpassungen am JDQVisF sind nicht nötig (ℜ17, ℜ18).

Diese Plug-In Architektur ermöglicht dem JDQVisF unterschiedliche Versandprotokolle
(z.B. SOAP) und -Arten (z.B. SOAP-HTTP-Binding) für das Verteilen der Daten zu un-
terstützen. Das Verwenden von Dispatcher-Plug-Ins bietet den Vorteil, dass der Visuali-
zationMediator für jede Rolle und Anzeigegerät ein anderes Plug-In verwenden kann.
Es lassen sich Versandarten einbinden, die genau auf ein Anzeigegerät und den An-
sprüchen der Wissenschaftler abgestimmt sind. Beispielsweise können die Daten über
Soap-Nachrichten an ein leistungsstarkes Anzeigegerät versendet werden. Eine andere

DispatcherInterface

Dispatcher-
Plug-Ins

Visualization
Mediator

FilterInterface

Filter-Plug-In

VisualizerInterface

Visualizer-
Plug-Ins

- 100 -

Möglichkeit ist die Daten auf einem Server abzulegen, bei dem sie über eine URL abge-
fragt werden können (ℜ15).

Neben dem reinen Verteilen der Daten bietet ein Dispatcher-Plug-In die Möglichkeit,
Daten an eine Cache-Komponente zu versenden. Damit lassen sich auch Visualisie-
rungen älterer Simulationsdaten generieren oder zeitliche Verläufe der Simulation ab-
bilden.

DispatcherSpecification

Ein Dispatcher-Plug-In wird durch eine DispatcherSpecification gesteuert. In ihr findet
der Programmierer alle wichtigen Angaben. So wird in ihr neben der Rolle und der Si-
mulationId, der Ein- und Ausgabepfad der Daten, das Eingabeformat und einen optiona-
len Pfad für die Ablage in den Cache des JDQVisF angegeben.

In Kapitel 6.3.5.3 wird die Umsetzung einer DispatcherSpecification als XML-Dokument
gezeigt.

DispatcherInterface

Der VisualizationMediator bietet über das DispatcherInterface die Möglichkeit neue Ver-
teilungsalgorithmen in das JDQVisF einzubinden. Dazu muss ein Dispatcher-Plug-In die
dispatchData-Methode implementieren. Diese bekommt als Parameter den Pfad zu ei-
ner passenden DispatcherSpecification.

- 101 -

5.4.3 Namespaces des JDQVisF

Dieses Kapitel beschreibt die verschiedenen Namensräume (Namespaces) die das
JDQVisF unterstützt. Sie werden von der vorgestellten Architektur benötigt, um für jede
Simulation-Wissenschaftler-Anzeigegerät-Beziehung die richtigen Daten zu finden und
zu verarbeiten. Sie realisieren dadurch das Sandbox-Prinzip des JDQVisF, das die Zu-
griffsicherheit und die Datenintegrität gewährleisten.

Für die Beschreibung der Namespaces werden SimulationIds und UserIds in einfachen
Hochkomma geschrieben. Sie werden im konkreten Fall durch die echten Identifiatonen
ersetzt. Tabelle 1 gibt eine Erklärung der Symbole, die in den folgenden Unterkapiteln
verwendetet werden.

Tabelle 1: Erklärung der Symbole in den Beschreibungen der Namespaces des
JDQVisF.

Symbol Bedeutung
’simulationId’ Repräsentiert einen Platzhalter für eine konkrete SimulationId.

’userId’ Repräsentiert einen Platzhalter für eine konkrete UserId.

* Beliebige Anzahl von Elementen inkl. 0.

+ Beliebige Anzahl von Elementen größer als 0.

! Genau ein Element.

| Genau ein Element der Auswahl.

5.4.3.1 Ressourcen und Datenhaltung

Dieses Kapitel beschreibt die verschiedenen Namespaces für die Ressourcen und Da-
tenhaltung. Sie dienen zur Identifikation der Daten, die bei den verschiedenen Stufen
der Visualisierungspipeline entstehen.

Abbildung 5-22 zeigt einen Überblick der Namespaces für die Ressourcen. Die Farben
beziehen sich auf die der einzelnen Komponenten des JDQVisF und kennzeichnen das
entsprechenden Verwendungsgebiet.

- 102 -

Abbildung 5-22: Übersicht über die Namespace-Hierarchie der Ressourcen und Daten-
haltung des JDQVisF mit entsprechenden Kardinalitäten

/ res

Dieses Element enthält alle Ressourcen, die für die Visualisierung von Datenquali-
tät und deren Steuerung benötigt werden. Es enthält genau ein cache-, ein fil-
tered-, ein raw-, ein visualizationspecification- und ein visualized-Element.

res

raw

filtered

visualized

cache

visualization-
specification

'simuId' QoDValues.xml

'simuId'

…

'simuId'

'simuId'

…

'simuId'

'simuId'

…

'simuId'

'simuId'

…

'simuId'

'simuId'

…

QoDValues.xml

'userId'

'userId'

Data.xml

'userId'

'userId'

'Visualization'

raw QoDValues.xml

visualization 'userId'

'userId'

role 'role1'

'role n'

…

…

…

…

'Visualization'

Filter-
Specification.xml

Visualizer-
Specification.xml

Dispatcher-
Specification.xml

'userId'

'userId'

…

FilterSpecification.xml

Visualizer-
Specification.xml

Dispatcher-
Specification.xml

RoleSpecification.xml

…
 cardinality

- 103 -

/ res / raw
Dieses Element enthält alle, dem JDQVisF bekannten, Simulationen und dient
zum Empfang der Rohdaten aus dem Simulation-Workflow, beispielsweise vom
JDQCF. Es dient als Ausgangspunkt aller weiteren Schritte der Visualisierungs-
pipeline.

/ res / raw / ’simulationId’ *
Dieses Element enthält die Rohdaten einer Simulation. Es besitzt nur ein weiteres
Kindelement /QoDValues! in dem die Rohdaten gespeichert sind. Rohdaten sind
im Zusammenhang von Simulation-Workflows, die Datenqualitätswerte und even-
tuell zusätzlichen Simulationsdaten, welche visualisiert werden sollen. Sie dienen
den Filter-Plug-Ins als Eingabedaten.

/ res / filtered
Dieses Element enthält alle, dem JDQVisF bekannten, Simulationen und dient als
Container für die aufbereiteten Datenqualitäts- und Simulationsdaten. Es beinhal-
tet damit alle Daten, die in nach der ersten Stufe der Visualisierungspipeline, dem
Filtern, entstehen.

/ res / filtered / ’simulationId’*
Dieses Element enthält für die jeweilige Simulation alle am JDQVisF registrierten
UserIds als Kindelemente. Somit können die unterschiedlichen Anforderungen und
Rollen der einzelnen Wissenschaftler unterschieden werden.

/ res / filtered / ’simulationId’ / ‚userId’
Dieses Element repräsentiert die Simulation-Wissenschaftler-Beziehung und be-
sitzt genau ein Kindelement /Data. In diesem werden die aufbereiteten Datenquali-
täts- und Simulationsdaten für den Wissenschaftler und die Simulation gespei-
chert. Damit ist es möglich, die unterschiedlichen Simulation-Wissenschaftler-
Beziehungen umzusetzen. Je nach Simulation und Rolle werden unterschiedliche
Daten generiert und in dem entsprechenden Namespace abgelegt. Die dort lie-
genden Daten dienen als Eingabe der Visualizer-Plug-Ins.

/ res / visualized
Dieses Element enthält alle, dem JDQVisF bekannten, Simulationen und dient als
Container für die visualisierten Datenqualitäts- und Simulationsdaten. Es beinhal-
tet alle Daten, die in der zweiten Stufe der Visualisierungspipeline, dem Visualisie-
ren, entstehen.

/ res / visualized / ’simulationId’*
Dieses Element enthält für die jeweilige Simulation alle registrierten UserIds als
Kindelemente. Somit können die unterschiedlichen Anforderungen und Rollen der
einzelnen Wissenschaftler unterschieden werden.

- 104 -

/ res / visualized / ’simulationId’ / ‚userId’
Dieses Element repräsentiert die Simulation-Wissenschaftler-Beziehung und be-
sitzt die generierten Visualisierungen als Kindelemente. Damit ist es möglich die
unterschiedlichen Simulation-Wissenschaftler-Beziehungen umzusetzen. Je nach
Simulation und Rolle werden unterschiedliche Visulisierungen generiert und in
dem entsprechenden Namespace abgelegt. Die dort liegenden Daten dienen als
Eingabe der Dispatcher-Plug-Ins.

/ res / visualizationspecification
Dieses Element enthält alle, dem JDQVisF bekannten, Simulationen und dient als
Container für alle Visualisierungsspezifikationen.

/ res / visualizationspecification / ’simulationId’ *
Dieses Element dient zur Kennzeichnung der angeforderten Simulation. Es enthält
für jeden registrierten Benutzer die jeweiligen Visualisierungsspezifikationen. Dazu
enthält es zwei Kindelemente. /user enthält alle Spezifikationen von aktiven Be-
nutzern. /role enthält dagegen für jede Rolle in der Simulation Muster-
Visualisierungsspezifikationen.

/ res / visualizationspecification / ’simulationId’ / user / ’userId’*
Dieses Element enthält für den Wissenschaftler mit entsprechender UserId die
verschiedenen Visualisierungsspezifikationen für das Filtern (/FilterSpecification),
Visualisieren (/VisualizerSpecification) und Versenden (/DispatcherSpecification)
der Daten. Außerdem wird über das Element /RoleSpecification die Rolle des
Wissenschaftlers in der aktuellen Simulation festgelegt.

/ res / visualizationspecification / ’simulationId’ / user / ’userId’ / FilterSpecification!
Dieses Element enthält alle Anweisungen des JDQVisClient für das geladene Fil-
ter-Plug-In

/ res / visualizationspecification / ’simulationId’ / user / ’userId’ / VisualizerSpecification!

Dieses Element enthält alle Anweisungen für das geladene Visualizer-Plug-In.

/ res / visualizationspecification / ’simulationId’ / user / ’userId’ / DispatcherSpecification!
Dieses Element enthält alle Anweisungen für das geladene Dispatcher-Plug-In.

/ res / cache
Dieses Element enthält alle, dem JDQVisF bekannten, Simulationen und dient
zum Speichern der Simulationsdaten und generierten Visualisierungen für spätere
Auswertungen oder falls der Simulation-Workflow zum Anfragezeitpunkt keine
neuen Daten sendet.

/ res / cache / ’simulationId’*

Dieses Element enthält alle verarbeiteten Daten einer Simulation. Das bedeutet,
dass alle Rohdaten und generierten Visualisierungen für jeden Benutzer (UserId)

- 105 -

gespeichert werden. Dazu besitzt es die beiden Kindelement /raw und
/visualizations, wobei letzteres noch beliebig viele Kindelemente für die unter-
schiedlichen UserIds (/’userId’) besitzt.

5.4.3.2 Funktionale Erweiterungen und deren gemeinsames Register

Dieses Kapitel beschreibt die Namespaces für die Plug-Ins, welche die Benutzer-
autorisierung, die Steuerung der Simulation, das Filtern der Rohdaten, das Visualisieren
der aufbereiteten Daten und das Versenden der generierten Visualisierungen realisie-
ren.

Abbildung 5-23 zeigt den Aufbau der Namespaces für die Plug-In-Verwaltung des
JDQVisF.

- 106 -

Abbildung 5-23: Übersicht über die Namespace-Hierarchie der Plug-Ins für das
JDQVisF mit entsprechenden Kardinalitäten

/ plugins

Dieses Element ist das Wurzelelement aller Plug-Ins, die vom JDQVisF geladen
werden sollen. Es enthält jeweils Kindelemente für Authorizer-Plug-Ins, Dispat-
cher-Plug-Ins, Filter-Plug-Ins und Visualizer-Plug-Ins.

plugins

authorization

filter

visualizer

dispatcher

PluginRegister.xml

'Authorizaton-Plug-In'

…

'Filter-Plug-In'

…

'Visualizer-Plug-In'

…

'Dispatcher-Plug-In'

…

'Authorizaton-Plug-In'

'Filter-Plug-In'

'Visualizer-Plug-In'

'Dispatcher-Plug-In'

simulationController

'SimuControl-Plug-In'

'SimuControl-Plug-In'

…

…
 cardinality

- 107 -

/ plugins / PluginRegister
Dieses Element dient zur Registrierung der Plug-Ins. Hier müssen alle Erweite-
rungen, sei es ein Dispatcher-, Filter-, Autorisierungs- oder Visualizer-Plug-Ins, die
vom JDQVisF verwendet werden sollen, eingetragen werden. Der genau Prozess
der Plug-In-Registrierung wird in Kapitel 6.1 gezeigt.

/ plugins / (authorizer | simulationController | dispatcher | filter | visualizer)

Dieses Element enthält beliebig viele Kindelemente / ’Plug-In’ und ist der Aus-
gangspunkt aller Plug-Ins. Jedes Plug-In das eine Funktionalität realisiert, kann
eines dieses Element als Elternknoten besitzen. Beispielsweise hat ein konkretes
Filter-Plug-In: / plugin / filter als Elternknoten.

5.4.3.3 Schnittstellen

Um das JDQVisF durch Plug-Ins funktional zu erweitern, bietet es verschieden Schnitt-
stellen an. Dieses Kapitel beschreibt die Namespaces der Schnittstellen (Interfaces)
des JDQVisF. Wenn ein Entwickler ein neues Plug-In implementieren möchte, dass
vom JDQVisF geladen werden kann, muss er eines der folgenden Interfaces implemen-
tieren.

Abbildung 5-24 zeigt die Namespacehierarchie der Interfaces die das JDQVisF anbie-
tet.

Abbildung 5-24: Übersicht über die Namespace-Hierarchie aller Interfaces des JDQVisF

interfaces

AuthorizerInterface

FilterInterface

VisualizerInterface

DispatcherInterface

SimulationControllerInterface

- 108 -

/ interfaces

Dieses Element ist das Wurzelelement aller Interfaces die vom JDQVisF bereit
gestellt werden. Es besitzt vier Kindelemente: /UserAuthorizerInterface,
/SimulationControllerInterface /DispatcherInterface, /FilterInterface und
/VisualizerInterface. Hier findet ein Plug-In-Entwickler das entsprechende Inter-
face.

- 109 -

5.5 Beschreibung des Visualisierungsprozess

Dieser Abschnitt beschreibt den konzeptionellen Prozess von der Anmeldung beim
JDQVisController bis zum Versenden der Visualisierungen durch ein Dispatcher-Plug-
In.

Abbildung 5-25: Konzeptioneller Ablauf vom Registrieren des JDQVisClients bis zum
Versenden der Daten

Schritt 1 – Anmeldung beim JDQVisController

Möchte ein Wissenschaftler die Datenqualität einer Simulation mit Hilfe des
JDQVisF überwachen, so muss er sich zunächst beim JDQVisController registrie-
ren. Dazu benötigt der JDQVisController neben der SimulationId und DeviceId ei-
nen Benutzernamen und ein Passwort um sicher zu stellen, dass nur am System
registrierte und somit berechtigte Personen Zugriff auf die angeforderten Simulati-
onsdaten erhalten. Die Anmeldedaten werden über das UserAuthorizerInterface
mit Hilfe eines entsprechenden Authorizer-Plug-Ins validiert.

Ist ein Benutzer erfolgreich am JDQVisController mit seiner UserId und Role regis-
triert, werden daraus in Kombination mit der SimulationId die im vorangegangenen
Kapitel vorgestellten Namensräume (Namespaces) generiert. Diese dienen im
weiteren Visualisierungsprozess zur Identifikation der benötigten Daten.

JDQVisController Visualization
Mediator

Owner
Filter

Tablet
Visualizer

Tablet
Dispatcher

Autorization

JDQCF

1.1

1.2

2. 3.

3.1

3.2

3.3

3.4

4.1

4.4

Log

4.2

4.3

JDQVisClient

- 110 -

Schritt 2 – Registrierung beim JDQCF

Erhält der JDQVisController bei der Anmeldung eines Benutzers eine inaktive Si-
mulationId, so wird diese aktiv. Aktiv heißt, dass der JDQVisController sich beim
JDQCF für generierte Datenqualitätswerte dieser Simulation als Endpunkt neu re-
gistriert. Für ein bereits aktive SimulationId ist dieser Schritt nicht notwendig, da
das JDQVisF für diese Simulation beim JDQCF durch einer früheren Anmeldung
registriert wurde.

Schritt 3 – Empfang der Datenqualitätswerten und Start der Visualisierung

Empfängt der JDQVisController über seinen QoDReceiver neue Datenqualitäts-
werte, so wird daraus die SimulationId gelesen. Im Anschluss wird für alle, für die-
se SimulationId angemeldeten, JDQVisClienten der Visualisierungsprozess ge-
startet. Dazu wird jeweils ein passender VisualizationMediator instanziiert. Dieser
lädt dabei, die für die SimulationId-Role-DeviceId-Beziehung passenden, Plug-Ins
und stellt sie für die Generierung der Visualisierung bereit.

Schritt 4 – Visualisierung der Datenqualitätswerte und Verteilung

Ist der VisualizationMediator instanziiert, startet der JDQVisController für jeden
angemeldeten JDQVisClient dessen Visualisierungspipeline durch Aufruf der visu-
alize-Methode des VisualizatonMediator. Diese führt nacheinander die Methoden
der einzelnen Plug-Ins aus. Zuerst wird die filterData-Methode des geladenen Fil-
ter-Plug-Ins, anschließend die visualizeData-Methode des geladenen Visualizer-
Plug-Ins und zum Schluss die dispatchData-Methode des geladenen Dispatcher-
Plug-Ins ausgeführt.
Tritt bei den einzelnen Schritten ein Fehler auf, so wird der JDQVisClient über den
JDQVisController darüber informiert. Ein typischer Fehler könnte dabei ein unauf-
findbares Plug-In sein. Tritt dieser Fehler auf, ist höchstwahrscheinlich ein fehlen-
der oder fehlerhafter Eintrag im Plug-In-Register verantwortlich.

Wurden die Daten korrekt visualisiert, kann der JDQVisClient diese über das ent-
sprechende Protokoll empfangen und anzeigen.

- 111 -

6 Technische Umsetzung des Java Data Quality Visualization
Framework

Dieses Kapitel beschreibt die technische Umsetzung des JDQVisF. Dazu werden zu-
nächst die Komponenten JDQVisController und VisualizationMediator beschrieben.
Anschließend werden für jedes Plug-In Beispielimplementierungen gezeigt.

Das JDQVisF wird in der aktuellen Java-Version 1.7 implementiert und mit Hilfe von
JAX-WS als WebService deklariert.

6.1 Aufbau und Struktur der PlugInRegister.xml

In den vorangegangenen Kapiteln wurde argumentiert warum das JDQVisF, genauer
gesagt, seine beiden Hauptkomponenten JDQVisController und VisualizationMediator,
durch Plug-In-Architekturen umgesetzt werden.

Nachdem ein Entwickler ein neues Plug-In für das JDQVisF implementiert hat, muss es
für die Verwendung beim JDQVisF registriert werden. Aus diesem Grund besitzt das es
ein Plug-In-Register (PlugInRegister.xml). Es wird als XML Datei realisiert, da so die
Entwickler auf einfache Weise ihre Plug-Ins einbinden können.

Die PlugInRegister.xml enthält eine Liste von Beschreibungen aller verwendeter Plug-
Ins. Da es sich um eine einzelne Datei unter einem festen Verzeichnis (/ plugins /
PlugInRegister.xml) handelt, können Entwickler ihre Plug-Ins einfach am JDQVisF re-
gistrieren. Das JDQVisF kann durch dieses Verfahren zur Laufzeit um neue Plug-Ins
erweitert werden oder bestehende ausgetauscht und angepasst werden.

Die genauen Einträge innerhalb der PlugInRegister.xml werden in den Unterkapiteln der
jeweiligen Komponenten gezeigt.

6.2 JDQVisController Klasse

Die Klasse JDQVisController ist der Ausgangspunkt für jede Interaktion mit dem
JDQVisF und wird mit Hilfe von JAX-WS Annotationen als WebService ausgeschrieben
(siehe Abbildung 6-1).

- 112 -

Abbildung 6-1: Klassendiagramm des JDQVisController

Der JDQVisController bietet dem JDQVisClient fünf Methoden für die Interaktion. Diese
werden in den folgenden Abschnitten genauer beschrieben.

6.2.1 Benutzerregistrierung über die registerUser – Methode

Die registerUser-Methode ist der Einstiegspunkt für jeden JDQVisClient. Sie erwartet
als Parameter die SimulationId, die Anmeldedaten für das Authorizer-Plug-In und die
Kennzeichnung des gewünschten Anzeigegerätes über die DeviceId. Wurde der Benut-
zer erfolgreich durch das Authorizer-Plug-In überprüft, gibt diese Methode eine UserId
zurück. Diese dient als Referenz und wird für alle weiteren Interaktionen mit dem
JDQVisController benötigt.

6.2.1.1 AuthorizationInterface.jar

Das AuthorizationInterface.jar beschreibt die Schnittstelle des JDQVisController für das
Einbinden der Authorizer-Plug-Ins. Es enthält lediglich ein Paket (authorizationinterface)
mit einem Interface (DQAuthorization) darin. Dieses Interface bietet die Methode autho-
rize an. Sie erwartet einen Benutzername und ein Passwort als Parameter.

void DQFileChanged(String simuId)
- void subscribe(String simuId)

@WebMethod
+ String registerUser(String simuId, String name,
 String psw, String deviceId)
@WebMethod
+ String logout(String simuId, String userId)
@WebMethod
+ String modifyFilterSpecification(String userId,
 String simuId, String request)
@WebMethod
+ String modifyVisualizerSpecificaton(String userId,
 String simuId, String request)
@WebMethod
+ String sendSimulationControlRequest(String userId,
 String simuId, String request)

- VisSpecification[] activeVisSpecList
- String[] activeSimulations
- DirectoryWatcher[] directoryWatcher
- DQChangeListener dqlistener

@WebService
JDQVisController

- 113 -

Möchte der Entwickler ein Authorizer-Plug-In realisieren, so muss er das DQAuthoriza-
tionInterface in seiner Library einbinden und das Interface DQAuthorization implemen-
tieren.

Das UserAuthorizerInterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace
/ interfaces / UserAuthorizerInterface.jar des JDQVisF zu finden.

Damit der JDQVisController ein Authorizer-Plug-In verwenden kann, muss es unter der
URL zu finden sein, die in dem in Kapitel 5.4.3.2 vorgestellten Namespace / plugins /
PlugInRegister.xml registriert ist. Die URL kann auf eine beliebige Adresse zeigen. So
ist es möglich auch externe Autorisierungsservices, die nicht in das JDQVisF eingebun-
den werden sollen, zu nutzen. Für eine leichtere Wartung, bietet das JDQVisF einen
speziellen Namespace für alle Autorisierungs-Plug-Ins unter / plugins / authorizer an.

6.2.1.2 Registrierung eines Authorizer-Plug-In

Um ein Authorizer-Plug-In zu registrieren ist ein Eintrag in das PlugInRegister notwen-
dig. Listing 2 zeigt den strukturellen Aufbau einer Registrierung im PlugInRegister.

Listing 2: Struktur der Registrierung eines Authorizer-Plug-Ins im PlugInRegister.xml

/ plugin

Repräsentiert ein JDQVisF-Plug-In. Das type-Attribut dqauthorization identifiziert
es als Autorisierungs-Plug-In.

/ plugin / simulationId+

Beinhaltet jeweils die SimulationId für die dieses Plug-In geladen werden soll.

 / plugin / url

Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So können auch externe Autorisierungsservices in das JDQVisF
eingebunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive
handeln muss.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqauthorization'>1
	 <simulationId> ... </simulationId>+2
	 <url> ... </url>3
	 <classname> ... </classname>4
</plugin>5

6
7
8

- 114 -

/ plugin / classname
Dieses Element identifiziert die Klasse die das UserAuthorizerInterface implemen-
tiert. Sie dient als Einstiegspunkt aller Authorizer-Plug-Ins und wird vom JDQVis-
Controller bei der Benutzeranmeldung aufgerufen.

6.2.1.3 Ablauf der Benutzerregistrierung

Der JDQVisClient ruft die registerUser-Methode mit den Parametern: SimulationId, Be-
nutzername, Passwort und DeviceId auf. Mit Hilfe des GoF-Factory-Patterns [41] wird
daraufhin ein passender DQAuthorizer instanziiert. Dazu wählt die AuthorizerFactory
Klasse mit Hilfe der SimulationId aus dem PlugInRegister.xml ein passendes Autorisie-
rungs-Plug-In aus. Wird kein passendes gefunden, wird von der AuthorizerFactory
Klasse nichts zurück gegeben und eine Fehlermeldung informiert den JDQVisClient.
Ist ein passendes Authorizer-Plug-In gefunden, wird eine neue Instanz der Klasse zu-
rückgegeben, die innerhalb des Plug-Ins das UserAuthorizerInterface implementiert.
Anschließend ruft der JDQVisController die authorize-Methode des Authorizer-Plug-Ins
auf und übergibt den Benutzername und das Passwort. Sind die Anmeldedaten korrekt,
wird ein JDQVisUser Objekt an den JDQVisController zurückgegeben. Dieser leitet die
darin enthaltende UserId an den JDQVisClient weiter. Andernfalls wird ein leeren String
zurückgegeben.

Ist der Benutzer erfolgreich für eine SimulationId angemeldet, generiert der JDQVisCon-
troller die entsprechenden Namespaces. Anschließend wird eine neue VisSpecification
(Abbildung 6-2) aus den Anmeldedaten erstellt und zur activeVisSpecList des JDQVis-
Controller hinzugefügt.

Abbildung 6-2: Klassendiagramm der VisSpecification-Klasse im Package
com.jdqvis.model

com.jdqvis.model

+ VisSpecification(String aSimuId, String aUserId,
 String aDeviceId)
+ String getUserId()
+ String getSimuId()
+ String getDeviceId()
+ VisualizationMediator
 getVisualizationMediator()

- String simuId
- String userId
- String deviceId
- VisualizationMediator visMediator

VisSpecification

- 115 -

Abbildung 6-3 fasst den Ablauf in einem Sequenzdiagramm zusammen.

Abbildung 6-3: Sequenzdiagramm für die Benutzerregistrierung

6.2.2 Anbindung an das JDQCF über die subscribe-Methode

Das JDQCF bietet zwei Möglichkeiten für das Übermitteln von Ergebnisse von Daten-
qualitätsberechnungen an. Zum einen kann in einem Task ein externer Empfänger (hier
der QoDReceiver des JDQVisF) angegeben werden. Zum anderen können Ergebnisse
subskribiert werden. Das bedeutet, dass für laufenden Datenqualitätsberechnungen
weitere externe Empfänger eingetragen werden.

Der JDQVisController realisiert einen solchen Subskribierungsauftrag in seiner
subscribe-Methode. Diese wird aufgerufen, sobald sich ein neuer JDQVisClient ange-

:JDQVisController

registerUser(simuId,
 name, psw, deviceId)

bspAuthorizer.newInstance()

JDQVisClient
:AuthorizerFactory

:bspAuthorizer

createAuthorizer(simuId)
searchAuthorizerPlugIn(simuId)

userId

userId

authorize(name, psw)

activeVisSpecList.add(new VisSpecification(simuId, userId, deviceId))

subscribe(simuId)

generateNamespaces(simuId, userId)

- 116 -

meldet hat. Sie überprüft, ob die angeforderte SimulationId bereits durch einen anderen
JDQVisClient angefordert wurde. Falls nein, sendet der JDQVisController eine subscri-
be-Nachricht über SOAP/HTTP-Binding an das JDQCF und gibt die Adresse seines
QoDReceiver als so genannten Endpoint an. Ein Endpoint repräsentiert eine IP Adres-
se, an die das JDQCF die berechneten Datenqualitätswerte versendet.

Zu beachten ist, dass zum Zeitpunkt der Entstehung dieser Arbeit, das JDQCF die Re-
gistrierung für eine bestimmte SimulationId noch nicht unterstützt. Das JDQVisF muss
daher alle Metriken von Hand beim JDQCF registrieren. Eine globale Überwachung der
Simulation ist dadurch nur eingeschränkt möglich.

Abbildung 6-4 zeigt den Aufbau einer Subscribe-Nachricht an das JDQCF.

Abbildung 6-4: Aufbau einer Subscribe-Nachricht an das JDQCF [1]

Für weiter Information sei an dieser Stelle an [1] verwiesen.

6.2.3 Schnittstelle für den Empfang von Rohdaten

Damit der Empfang von Rohdaten nicht auf das JDQCF beschränkt bleibt, bietet das
JDQVisF über den Namespace aus Kapitel 5.4.3.1 / res / raw / ’simulationId‘ / QoDVa-
lues.xml. ein Verzeichnis für Rohdaten an. Dieses dient als Schnittstelle für den Emp-
fang neuer Rohdaten. Ändert sich diese Datei, bemerkt es der DQChangeListener und
ein neuer Visualisierungsdurchgang wird durch den JDQVisController gestartet.

Das JDQVisF bietet zwei Möglichkeiten für den Empfang neuer Rohdaten an. Zum ei-
nen durch die direkte Anbindung an das JDQCF durch den QoDReceiver, zum anderen
bietet das JDQVisF durch die Klasse DataReceiver einen WebService für das Empfan-
gen von Datenqualitätswerten an.

6.2.3.1 Funktionsweise des QoDReceiver

Der QoDReceiver ist eine Klasse des JDQVisF für das Empfangen von Datenqualitäts-
werten vom JDQCF. Sie implementiert dessen DataQualityReceiverWebService-
Interface welches die receive-Methode enthält.

Page 1 of 1/Users/marcelruss/SkyDrive/Dipl…beit/Diagramme/xml/Subscibe.xml
Saved: 21.10.12 15:25:24 Printed For: Marcel Russ

<DataQualitySubsciption>1
	 <MetrikId> Accuracy </MetrikId>2
	 <wsa:ReplyTo>3
	 	 <wsa:Address> 4
	 	 	 http://example.JDQVisF.com 5
	 	 </wsa:Address>6
	 </wsa:ReplyTo>7
</DataQualitySubsciption>8

9
10
11

- 117 -

Hat das JDQCF neue Datenqualitätswerte errechnet, werden diese an den Service als
SOAP-Nachricht übermittelt (Listing 3 zeigt einen Auszug). Der QoDReceiver empfängt
diese Daten mit Hilfe der receive-Methode und schreibt sie in den entsprechenden
Namespace aus Kapitel 5.4.3.1 / res / raw / ’simulationId’ / QoDValues.xml.

Listing 3: Beispiel für ein InterpretionCalculationResult, das vom JDQCF an einen
DataQualityReceiverWebServerices versendet wird

Für den genauen Ablauf des Versendens der Datenqualitätswerte und die Funktions-
weise der DispatchingAPI des JDQCF, sei an dieser Stelle auf [1] verwiesen.

6.2.3.2 Funktionsweise des DataReceiver

Der DataReceiver ist eine Klasse die vom JDQVisF als WebService bereitgestellt wird.
Sie dient für den Empfang neuer Datenqualitätswerte die nicht direkt vom JDQCF ver-
sendet werden. Möchte ein Datenerzeuger seine Daten mit Hilfe des JDQVisF visuali-
sieren, so muss er zuerst einen DataReceiver instanziieren. Dazu benötigt er die Simu-
lationId und drei Listen für die Datenqualitätsdimensionen, die dazu passenden Daten-
qualitätswerten und den Schwellenwerten der einzelnen Dimensionen.

Stehen neue Datenqualitätswerte bereit, so wird über die writeDataToXml-Methode des
DataReceiver die neue Datenqualitätsdatei (siehe Kapitel 5.4.3.1) / res / raw / ’simulati-
onId’ / QoDValues.xml aus den Listen erstellt.

Abbildung 6-5: Klassendiagramm des DataReceiver

Page 1 of 1/Users/marcelruss/SkyDrive/Dipl…beit/Diagramme/xml/Subscibe.xml
Saved: 21.10.12 15:26:15 Printed For: Marcel Russ

<InterpretionCalculationResult>1
	 <Value> 0.95 </Value>2
	 <InterpretionId> Accuracy </InterpretionId>3
</InterpretionCalculationResult>4

5
6
7

com.jdqvis.datareceiver

+ QoDReceiver (String simulationId,
 String[] Dimensions,
 Double[] Values,
 Double[] Thresholds)
@WebMethod
+ void writeDataToXml ()

- String[] dimensions
- Double[] values
- Double[] thresholds;
- String simulationId

@WebService
DataReceiver

- 118 -

6.2.3.3 DirectoryWatcher und DQChangeListener

Ist der JDQVisClient erfolgreich am JDQVisF angemeldet, so instanziiert der JDQVis-
Controller einen neuen DirectoryWatcher und einen DQChangeListener für den ent-
sprechenden Namespace aus Kapitel 5.4.3.1 / res / raw / ’simulationId‘ / QoDValu-
es.xml. Diese Klassen erkennen ob neue Rohdaten für die Visualisierung bereit stehen
und benachrichtigen den JDQVisController über seine DQFileChanged-Methode. Diese
startet daraufhin einen neuen Visualisierungsdurchgang. Sie durchsucht dabei die
activeVisSpecList des JDQVisController nach aktiven VisSpecifications. Werden pas-
sende VisSpecifications gefunden, werden ihre VisualizationMediators instanziiert und
deren visualize-Methode aufgerufen (siehe Kapitel 6.3.1 und 6.3.2).

6.2.4 Methoden für die Verarbeitung von Benutzerinteraktionen

Der JDQVisController bietet drei Methoden für die Verarbeitung von Benutzerinteraktio-
nen an. Zwei für die Manipulation der Filter- und VisualizerSpecification und eine für das
senden von Steuerbefehlen für die Simulation.

Für die Umsetzung der in Kapitel 6.5.3 beschriebene Beeinflussung der Visualisie-
rungsspezifikationen bietet der JDQVisController die beiden Methoden modifyFilterSpe-
cification und die modifyVisualizerSpecification an. Sie ermöglichen es dem JDQVisCli-
ent, alle Schritte der Visualisierungspipeline zu beeinflussen (siehe Kapitel 3.3.4). Da
der grundsätzliche Ablauf bei beiden Methoden der selbe ist, wird dieser im Folgenden
anhand der modifyVisualizerSpecification Methode erklärt.

6.2.4.1 Beeinflussung eine Visualizer-Plug-In

Mir Hilfe der modifyVisualizerSpecification-Methode des JDQVisController kann ein
JDQVisClient den Visualisierungsschritt der Visualisierungspipeline beeinflussen. Dazu
übergibt er seine UserId, die SimulationId und die Anfrage in Textform (siehe Kapitel
6.4.3). Ein Beispiel für eine Visualisierungsanfrage könnte „Zoom-In“ oder „showOver-
view“ sein. Der JDQVisController passt daraufhin die passende VisualizerSpecification
an, indem er in das request-Element die erhaltene Anfrage schreibt.
Bei positiver Anpassung erhält der JDQVisClient eine Bestätigungsnachricht. Konnte
die VisualizerSpecification nicht verändert werden, erhält er eine Fehlermeldung.

- 119 -

Listing 4: Methodensignatur der modifyVisualizerSpecification-Methode des
 JDQVisController mit JAX-WS Annotationen

6.2.4.2 Steuerung der laufenden Simulation

Mit Hilfe der sendSimulationControlRequest-Methode des JDQVisController, kann ein
JDQVisClient Steuerungsbefehle für eine Simulation senden. Dazu übergibt er seine
UserId, die gewünschte SimulationId und den Steuerbefehl in Textform. Als Antwort
kann ein Text vom SimulationController-Plug-In zurück gegeben werden.

Listing 5: Methodensignatur der sendSimulationControlRequest-Methode des
 JDQVisController mit JAX-WS Annotationen

Diese Methode wählt ein, zur SimulationId passendes, SimulationController-Plug-In
über die SimulationControllerFactory Klasse aus. Diese implementiert das GoF-Factory-
Pattern [41]. Die Klasse sucht in der PlugInRegister.xml nach einem simulationControl-
ler-Plug-In das die übergebende SimulationId unterstützt. Ist ein passendes Plug-In ge-
funden, wird eine Instanz der Klasse zurück gegeben, die das SimulationControllerInter-
face implementiert. Anschließend wird die processSimulationRequest-Methode des
Plug-Ins aufgerufen. Sie bekommt die UserId und den Request als Parameter überge-
ben. Als Antwort erwartet der JDQVisController ein Text den er dem JDQVisClient wei-
terleitet.

6.2.4.2.1 SimulationControllerInterface.jar

Der JDQVisController bietet über das SimulationControllerInterface die Möglichkeit, Si-
mulationController-Plug-Ins in das JDQVisF einzubinden. Dazu muss es die process-
SimulationRequest-Methode implementieren. Diese bekommt als Parameter die UserId

Page 1 of 1/Users/marcelruss/SkyDrive/Dipl…iagramme/xml/modifyVisSpec.java
Saved: 21.10.12 16:00:41 Printed For: Marcel Russ

@WebMethod1
public String modifyVisualizerSpecification(2
	 	 	 @WebParam(name='userId') String userId,3
	 	 	 @WebParam(name='simulationId') String simuId,4
	 	 	 @WebParam(name='request') String request5
)6
	 	 	7
	 	 	8

Page 1 of 1/Users/marcelruss/SkyDrive/Dipl…/Diagramme/xml/sendSimuReq.java
Saved: 21.10.12 16:09:08 Printed For: Marcel Russ

	 	 	1
@WebMethod2
public String sendSimulationControllRequest(3
	 	 	 @WebParam(name='userId') String userId,4
	 	 	 @WebParam(name='simulationId') String simuId,5
	 	 	 @WebParam(name='request') String request6
)7
	 	 	8
	 	 	9
	 	 	10

- 120 -

und den Steuerbefehl in Textform, beispielsweise „Abbruch“. Als Rückgabe erwartet der
JDQVisController einen Text.

Das SimulationControllerInterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace
/ interfaces / SimulationControllerInterface.jar des JDQVisF zu finden.

6.2.4.2.2 Registrierung eines SimulationController-Plug-In

Um ein SimulationController-Plug-In zu registrieren, ist ein Eintrag in das PlugInRegister
notwendig. Listing 6 zeigt den strukturellen Aufbau einer Registrierung im PlugInRegis-
ter.

Listing 6: Struktur der Registrierung eines SimulationController-Plug-Ins im
 PlugInRegister.xml

/ plugin

Repräsentiert ein JDQVisF-Plug-In. Das type-Attribut simulationController identifi-
ziert es als SimulationController-Plug-In.

/ plugin / simulationId

Beinhaltet die SimulationId für die dieses Plug-In geladen werden soll.

 / plugin / url

Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So können auch externe SimulationController in das JDQVisF ein-
gebunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive han-
deln muss.

/ plugin / classname
Dieses Element identifiziert die Klasse die das SimulationControllerInterface im-
plementiert. Sie dient als Einstiegspunkt aller SimulationController-Plug-Ins und
wird vom JDQVisController zur Verarbeitung von Steuerbefehlen aufgerufen.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='simulationController'>1
	 <simulationId> example </simulationId>2
	 <url> ./plugins/simulationController/ExampleController.jar </url>3
	 <classname> controller.ExampleController </classname>4
</plugin>5

6
7
8

- 121 -

6.3 Umsetzung des VisualizationMediator

Der VisualizationMediator ist für das Generieren der Visualisierungen zuständig. Er
steuert die Visualisierungspipeline durch das Laden der richtigen Filter-, Visualizer- und
Dispatcher-Plug-Ins.

Abbildung 6-6: Klassendiagramm des VisualizationMediator

In den folgenden Abschnitten werden die einzelnen Methoden und ihr Zusammenspiel
aufgezeigt.

6.3.1 Instanziierung eines VisualizationMediators

Empfängt das JDQVisF neue Datenqualitätswerte wird über die DQFileChanged-
Methode des JDQVisController für jede aktive VisSpecification überprüft, ob sie die
übergebene SimulationId als Attribut besitzt. Ist dies der Fall wird festgestellt, ob ihr Vi-
sualizationMediator schon instanziiert wurde. Wenn nein, wird ein neuer Visualization-
Mediator erstellt.
Der Konstruktor des VisualizationMediator erwartet das VisSpecification-Objekt. Zuerst
generiert er aus dessen Attributen seinen visSpeciBasicPath. Dieser zeigt auf den in
Kapitel 5.4.3.1 gezeigten Namespace / res / visspecifications / ’simuId’ / user / ’userId’
und dient als Referenz für alle Visualisierungs-Plug-Ins. Anschließend werden die ent-
sprechenden Plug-Ins über die jeweiligen Factory-Klassen instanziiert.

Abbildung 6-7 zeigt ein Sequenzdiagramm der einzelnen Schritte. Der Übersicht halber,
werden die jeweiligen Plug-In-Klassen nicht gezeigt.

- String readRole(String visSpecPath)
+ VisualizationMediator(VisSpecification visSpec)
+ String visualize()

- DQFilter dqFilter
- DQVisualizer dqVisualizer
- DQDispatcher dqDispatcher
- String visSpecBasicPath
- String deviceId

VisualizationMediator

- 122 -

Abbildung 6-7: Ablauf der Instanziierung eines VisualizationMediator

6.3.2 Visualize-Methode des VisualizationMediators

Wurde ein VisualizationMediator erfolgreich instanziiert, kann seine visualize-Methode
aufgerufen werden. Da alle nötigen Plug-Ins bereits in den Attributen des Visualization-
Mediators bei der Instanziierung gesetzt wurden, erwartet diese Methode keine Para-
meter. Als Rückgabe liefert sie einen Logbericht. Dieser enthält Informationen über den
Status der Visualisierung.

Abbildung 6-8 zeigt ein den Ablauf mit Hilfe eines Sequenzdiagramms.

:Visualization
Mediator

readRole(visSpecpath)newInstance(visSpec)

bspFilter.newInstance()

:FilterFactory

createFilter(simuId, role)
createFilter(simuId, role)

bspVisualizer.newInstance()

:VisualizerFactory

createVisualizer(simuId, role, deviceId)
createVisualizer(simuId, role, deviceId)

:DispatcherFactory

createDispatcher(simuId, role, deviceId)
createDispatcher(simuId, role, deviceId)

bspDispatcher.newInstance()

newInstance

- 123 -

Abbildung 6-8: Ablauf der visualize-Methode des VisualizationMediator

6.3.3 Erweiterungsschnittstellen des VisualizationMediator

Dieser Abschnitt zeigt die Umsetzung der Schnittstellen die vom JDQVisF für das Ein-
binden neuer Visualisierungs-Plug-Ins bereit gestellt werden.

:Visualization
Mediator

visualize()

:bspFilter

filterData(fiterSpecPath)

:bspVisualizer

:bspDispatcher

dispatchData(dispatcherSpecPath)

log

visualizeData(visualizerSpecPath)

generateLog

generateLog

generateLog

- 124 -

6.3.3.1 FilterInterface.jar

Das JDQVisF bietet über das FilterInterface.jar Entwicklern die Möglichkeit neue Filter-
Plug-Ins einzubinden. Das DQFilterInterface enthält lediglich die filterData-Methode. Sie
erwartet als Eingabe den Pfad unter dem die gewünschte FilterSpecification zu finden
ist.

Das FilterInterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace / interfaces /
FilterInterface.jar des JDQVisF zu finden.

6.3.3.2 VisualizerInterface.jar

Das JDQVisF bietet über das VisualizerInterface die Möglichkeit neue Visualisierungs-
algorithmen für den VisualizationMediator einzubinden. Das VisualizerInterface enthält
die visualizeData-Methode. Diese bekommt als Parameter den Pfad zu einer passen-
den VisualizerSpecification und ist der Einstiegspunkt für jedes Visualizer-Plug-In.

Das VisualizerInterface ist unter dem in Kapitel 5.4.3.3 gezeigten Namespace / inter-
faces / VisualizerInterface.jar des JDQVisF zu finden.

6.3.3.3 DispatcherInterface.jar

Das DispatcherInterface des JDQVisF ermöglicht den Plug-In-Entwickler neue Ver-
sandarten für die berechneten Visualisierungen einzubinden. Es enthält das DQDispat-
cher Interface, welches wiederum die dispatchData-Methode enthält. Diese Methode ist
er Einstiegspunkt für jedes Dispatcher-Plug-In.

Das DispatcherInterface ist unter dem in Kapitel 5.4.3.3 vorgestellten Namespace / in-
terfaces / DispatcherInterface.jar des JDQVisF zu finden.

6.3.3.4 Hilfsklassen der Interfaces

Um das Realisieren der Interfaces für die Entwickler zu vereinfachen und um die In-
teroperabilität der verschiedenen Plug-Ins sicherzustellen, enthalten die vorgestellten
Schnittstellen neben der reinen Interfacebeschreibung zusätzlich folgende Hilfsklassen:

DQReader – Er ließt mit seiner readQoDValues-Methode aus den Rohdaten alle wich-

tigen Daten aus. Dazu gehören: Die Skala auf der die Werte liegen und die Adres-
se bei der die originalen Simulationsdaten liegen. Zusätzlich bietet er eine Liste
mit DQCalculationResults an. Dabei besteht ein DQCalculationResult immer aus
einer Beschreibung, einem Wert und dem Schwellenwert. Also Beispielsweise
„Accuracy, 0.9, 0.5“.

- 125 -

PropertiesReader – Er ließt mit seiner readProperties-Methode aus der Visualisie-
rungsspezifikation alle Attribute und Elemente. Zu den Attributen gehören die Si-
mulationId und die Rolle. Als Elemente werden beispielsweise der Ein- und Aus-
gabepfad der Daten und der Request des Wissenschaftlers zurück gegeben.

6.3.4 Registrierung der Visualisierungs-Plug-Ins

Damit die einzelnen Visualisierungs-Plug-Ins vom VisualizationMediator geladen wer-
den können, müssen sie in der PlugInRegister.xml registriert werden. Die folgenden
Abschnitte zeigen die jeweilige Struktur dieser Einträge.

6.3.4.1 Registrierung eines Filter-Plug-In

Damit der VisualizationMediator ein Filter-Plug-In verwenden kann, muss es zunächst in
der Plug-In-Register.xml registriert werden. Listing 7 zeigt die Struktur der Registrierung
eines Filters in der PlugInRegister.xml.

Listing 7: Struktur der Registrierung eines Filter-Plug-In in der PluginRegister.xml

/ plugin

Repräsentiert ein JDQVisF-Plug-In. Das type-Attribut dqfilter identifiziert es als Fil-
ter-Plug-In das vom VisualizationMediator geladen werden kann.

/ plugin / role+
Dieses Element identifiziert alle Rollen für die das Plug-In geladen werden soll.

/ plugin / simuId+

Beinhaltet alle SimulationIds für die dieses Plug-In geladen werden soll.

 / plugin / url

Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So können auch externe Filter-Plug-Ins in das JDQVisF eingebun-
den werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive handeln
muss.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqfilter'>1
	 <role> ... </role>+2
	 <simulationId> ... </simulationId>+3
	 <url> ... </url>4
	 <classname> ... </classname>5
</plugin>6

7
8
9

- 126 -

/ plugin / classname
Dieses Element identifiziert die Klasse die das FilterInterface implementiert. Sie
dient als Einstiegspunkt aller Filter-Plug-Ins und wird vom VisualizationMediator zu
Begin des Visualisierungsprozesses geladen.

6.3.4.2 Registrierung eines Visualizer-Plug-In

Damit der VisualizationMediator ein Visualizer-Plug-In verwenden kann, muss es in der
PlugInRegister.xml registriert sein. Listing 8 zeigt die Struktur der Registrierung eines
Visualizer-Plug-In in der Register.xml.

Listing 8: Struktur der Registrierung eines Visualizer-Plug-In in der PlugInRegister.xml

/ plugin

Repräsentiert ein JDQVisF-Plug-In. Das type-Attribut dqvisualizer identifiziert es
als Visualizer-Plug-In das vom VisualizationMediator geladen werden kann.

/ plugin / role+
Dieses Element identifiziert alle Rollen für die das Plug-In geladen werden soll.

/ plugin / simuId+

Beinhaltet alle SimulationIds für die dieses Plug-In geladen werden soll.

/ plugin / deviceId
Beinhaltet alle Anzeigegeräte für die dieses Plug-In geladen werden soll.

 / plugin / url

Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So können auch externe Visualizer-Plug-Ins in das JDQVisF einge-
bunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive handeln
muss.

/ plugin / classname

Dieses Element identifiziert die Klasse die das VisualizerInterface implementiert.
Sie dient als Einstiegspunkt aller Visualizer-Plug-Ins und wird vom Visualization-
Mediator nach dem Filtern der Daten geladen.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqvisualizer'>1
	 <role> ... </role>+2
	 <simulationId> ... </simulationId>+3
	 <deviceId> ... </deviceId>+4
	 <url> ... </url>5
	 <classname> ... </classname>6
</plugin>7

8
9
10

- 127 -

6.3.4.3 Registrierung eines Dispatcher-Plug-In

Damit der VisualizationMediator ein Dispatcher-Plug-In für das Versenden der generier-
ten Bilder verwenden kann, muss diese in der PlugInRegister.xml registriert sein. Listing
9 zeigt die Struktur zur Registrierung eines Dispatcher-Plug-In in der PlugInRegis-
ter.xml.

Listing 9: Struktur der Registrierung eines Dispatcher-Plug-In in der PlugInRegister.xml

/ plugin

Repräsentiert ein JDQVisF-Plug-In. Das type-Attribut dqdispatcher identifiziert es
als Dispatcher-Plug-In das vom VisualizationMediator geladen werden kann.

/ plugin / role+
Dieses Element identifiziert alle Rollen für die das Plug-In geladen werden soll.

/ plugin / simuId+

Beinhaltet alle SimulationIds für die dieses Plug-In geladen werden soll.

/ plugin / deviceId+
Beinhaltet alle Anzeigegeräte für die dieses Plug-In geladen werden soll.

 / plugin / url

Beinhaltet die URL an der das Plug-In zu finden ist. Das JDQVisF bietet dazu de-
finierte Namespaces (siehe Kapitel 5.4.3.2) an. Prinzipiell kann die URL jedoch
beliebig sein. So können auch externe Dispatcher-Plug-Ins in das JDQVisF einge-
bunden werden. Dabei ist zu beachten, dass es sich um ein .jar-Archive handeln
muss.

/ plugin / classname

Dieses Element identifiziert die Klasse die das DispatcherInterface implementiert.
Sie dient als Einstiegspunkt aller Disaptcher-Plug-Ins und wird vom Visualization-
Mediator nach dem Visualisieren der Daten geladen.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqdispatcher'>1
	 <role> ... </role>+2
	 <simulationId> ... </simulationId>+3
	 <deviceId> ... </deviceId>+4
	 <url> ... </url>5
	 <classname> ... </classname>6
</plugin>7

8
9
10

- 128 -

6.3.5 Realisierung der Visualisierungsspezifikationen

Dieser Abschnitt zeigt die Realisierung der vorgestellten Visualisierungsspezifikationen.

6.3.5.1 FilterSpecification

Eine FilterSpecification liegt unter dem in Kapitel 5.4.3.1 vorgestellten Namespace / res
/ visspecification / ’simuId’ / user / ’userId’ / FilterSpecification.xml. Sie existiert für jedes
SimulationId-UserId-Paar und enthält alle Elemente, die für das Aufbereiten der Rohda-
ten wichtig sind.

Listing 10 zeigt den Aufbau einer FilterSpecification.xml.

Listing 10: Aufbau der FilterSpecification.xml

/ filterDescription

Wurzelelement jeder FilterSpecification. Als Attribute hat es die Rolle und die Si-
mulationId für die das Plug-In verwendet wird.

/ filterDescription / inputpath
Dieses Element repräsentiert den Ort an dem die Rohdaten liegen. Dabei kann es
sich insbesondere um die Daten des JDQCF handeln.

/ filterDescription / outputpath

Diese Element repräsentiert den Ort an dem die aufbereiteten Daten gespeichert
werden müssen, damit sie in den weiteren Schritten des Visualisierungsprozess
verwendet werden können.

/ filterDescription / filterRequest
Dieses Element kann zur Manipulation des Filter-Plug-Ins verwendet werden
(ℜ14). Es wird vom JDQVisController gesetzt, sobald er einen FilterRequest von
einen JDQVisClienten empfangen hat. Ein FilterRequest kann dabei beliebige
Anweisungen enthalten die von dem Filter-Plug-In umgesetzt werden können. Da-
bei kann das JDQVisF nicht garantieren, dass dieser Request auch verarbeitet
wird. Es bietet über dieses Element lediglich die Schnittstelle zwischen Wissen-
schaftler und Filter-Plug-In an. Die Verantwortung der Bearbeitung liegt beim Fil-
ter-Plug-In.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqdispatcher'>1
	 <role> ... </role>+2
	 <simulationId> ... </simulationId>+3
	 <deviceId> ... </deviceId>+4
	 <url> ... </url>5
	 <classname> ... </classname>6
</plugin>7

8
9

<filterDescription role="Owner" simulationId="'simuId'">10
	 <inputpath>./res/raw/'simuId'/QoDvalues.xml</inputpath>11
	 <outputpath>./res/filtered/'simuId'/'userId'/Data.xml</outputpath>12
	 <request>showAllData</request>13
</filterDescription>14

15
16

<visualizationDescription role="Owner" simulationId="'simuId'">17
	 <inputpath>./res/filtered/'simuId'/'userId'/Data.xml</inputpath>18
	 <outputpath>./res/visualized/'simuId'/'userId'/</outputpath>19
	 <request>Portrait</request>20
</visualizationDescription>21

22
23

<dispatchDescription role="Owner" simulationId="'simuId'">24
	 <inputpath>./res/visualized/'simuId'/'userId'/</inputpath>25
	 <inputpathRaw>./res/raw/'simuId'/</inputpathRaw>26
	 <outputAddress>27
	 	 http://192.168.1.2/JDQVis/'simuId'/visualizations/'userId'/28
	 </outputAddress>29
	 <cachepathRaw>./cache/'simuId'/raw/</cachepathRaw>30
	 <cachepathVisualization>./cache/'simuId'/visualization/'userId'/</cachepathVisualization>31
</dispatchDescription>32

- 129 -

6.3.5.2 VisualizerSpecification

Eine VisualizerSpecification liegt unter dem in Kapitel 5.4.3.1 gezeigten Namespace /
res / visspecification / ’simuId’ / user / ’userId’ / VisualizerSpecification.xml. Sie existiert
für jedes SimulationId-UserId-Paar und definiert alle Elemente, die für das Visualisieren
der Daten wichtig sind.

Listing 11 zeigt den Aufbau einer VisualizerSpecification.xml in Pseudo-XML.

Listing 11: Aufbau einer VisualizerSpecification.xml

/ visualizationDescription

Wurzelelement jeder VisualizerSpecification. Als Attribute hat es die Rolle und die
SimulationId für die das Plug-In verwendet wird.

/ visualizationDescription / inputpath
Dieses Element repräsentiert den Ort an dem die Eingabedaten liegen. Dabei
kann es sich insbesondere um die zuvor aufbereiteten Daten durch ein Filter-Plug-
In handeln.

/ visualizationDescription / outputpath
Diese Element repräsentiert den Ort an dem die Visualisierungen gespeichert
werden müssen, damit sie von einem Dispatcher-Plug-In verwendet werden kön-
nen.

/ visualizationDescription / visualizationRequest

Dieses Element kann zur Manipulation des Visualizer-Plug-Ins verwendet werden
(ℜ14). Es wird vom JDQVisController gesetzt, sobald er einen VisualizationRequ-
est von einen JDQVisClienten empfangen hat. Ein VisualizationRequest kann da-
bei beliebige Anweisungen enthalten, die von dem Visualizer-Plug-In umgesetzt
werden können. Dabei kann das JDQVisF nicht garantieren, dass dieser Request
auch verarbeitet wird. Es bietet über dieses Element lediglich die Schnittstelle da-
für an. Die Verantwortung liegt bei dem Plug-In-Entwickler.

6.3.5.3 DispatcherSpecification

Eine DispatcherSpecification liegt unter dem in Kapitel 5.4.3.1 vorgestellten Namespace
/ res / visspecification / ’simuId’ / user / ’userId’ / DispatcherSpecification.xml. Sie exis-

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqdispatcher'>1
	 <role> ... </role>+2
	 <simulationId> ... </simulationId>+3
	 <deviceId> ... </deviceId>+4
	 <url> ... </url>5
	 <classname> ... </classname>6
</plugin>7

8
9

<filterDescription role="Owner" simulationId='simuId'>10
	 <inputpath>./res/raw/'simuId'/QoDvalues.xml</inputpath>11
	 <outputpath>./res/filtered/'simuId'/'userId'/Data.xml</outputpath>12
	 <request>showAllData</request>13
</filterDescription>14

15
16

<visualizationDescription role="Owner" simulationId="'simuId'">17
	 <inputpath>./res/filtered/'simuId'/'userId'/Data.xml</inputpath>18
	 <outputpath>./res/visualized/'simuId'/'userId'/</outputpath>19
	 <request>Portrait</request>20
</visualizationDescription>21

22
23

- 130 -

tiert für jedes SimulationId-UserId-Paar und definiert alle wichtigen Elemente, die für
das Versenden der Daten wichtig sind.

Listing 12 zeigt den Aufbau einer DispatcherSpecification.

Listing 12: Aufbau einer DispatcherSpecification.xml

/ dispatchDescription

Wurzelelement jeder DispatchSpecification. Als Attribute hat es die Rolle und die
SimulationId für die das Plug-In verwendet wird.

/ dispatchDescription / inputpath
Dieses Element repräsentiert den Ort an dem die Visualisierungen als Eingabeda-
ten liegen.

/ dispatchDescription / inputpathRaw
Dieses Element repräsentiert den Ort an dem die Simulationsdaten als Eingabe-
daten liegen.

/ dispatchDescription / outputaddress
Diese Element repräsentiert die Adresse an die das Dispatcher-Plug-In die Daten
versenden soll.

/ dispatchDescription / cachpathRaw

Dieses Element repräsentiert die Adresse des Caches an den die Simulationsda-
ten zusätzlich kopiert werden können.

/ dispatchDescription / cachpathVisualization
Dieses Element repräsentiert die Adresse des Caches an den die Visualisierungen
zusätzlich kopiert werden können.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqdispatcher'>1
	 <role> ... </role>+2
	 <simulationId> ... </simulationId>+3
	 <deviceId> ... </deviceId>+4
	 <url> ... </url>5
	 <classname> ... </classname>6
</plugin>7

8
9

<filterDescription role="Owner" simulationId="'simuId'">10
	 <inputpath>./res/raw/'simuId'/QoDvalues.xml</inputpath>11
	 <outputpath>./res/filtered/'simuId'/'userId'/Data.xml</outputpath>12
	 <request>showAllData</request>13
</filterDescription>14

15
16

<visualizationDescription role="Owner" simulationId="'simuId'">17
	 <inputpath>./res/filtered/'simuId'/'userId'/Data.xml</inputpath>18
	 <outputpath>./res/visualized/'simuId'/'userId'/</outputpath>19
	 <request>Portrait</request>20
</visualizationDescription>21

22
23

<dispatchDescription role="Owner" simulationId="'simuId'">24
	 <inputpath>./res/visualized/'simuId'/'userId'/</inputpath>25
	 <inputpathRaw>./res/raw/'simuId'/</inputpathRaw>26
	 <outputAddress>27
	 	 http://192.168.1.2/JDQVis/'simuId'/visualizations/'userId'/28
	 </outputAddress>29
	 <cachepathRaw>./cache/'simuId'/raw/</cachepathRaw>30
	 <cachepathVisualization>./cache/'simuId'/visualization/'userId'/</cachepathVisualization>31
</dispatchDescription>32

- 131 -

6.4 Umsetzung der Plug-Ins

Dieses Kapitel beschreibt die Entwicklung von Plug-Ins zur Erweiterung des JDQVisF.
Dazu wird jeweils ein Authorizer-, ein Filter-, ein Visualizer-, ein Dispatcher- und ein Si-
mulationController-Plug-In beschrieben.

Bevor die einzelnen Implementierungen vorgestellt werden, wird zunächst der grund-
sätzliche Ablauf bei der Entwicklung eines Plug-Ins zur Erweiterung des JDQVisF ge-
zeigt:

Schritt 1: Einbindung des Interface.jar – Für die Entwicklung eines neuen Plug-Ins ist

es notwendig, das entsprechende Interface.jar in den Java Build Path einzubin-
den. Das Interface.jar findet der Entwickler in dem vorgestellten Namespace / res /
interfaces (siehe Kapitel 5.4.3.3).

Schritt 2: Implementierung – Damit das JDQVisF das neue Plug-In verwenden kann,

ist es notwendig die entsprechenden Interfaces zu Implementieren.

Schritt 3: Test – Da das JDQVisF keine Kontrolle über die Korrektheit der Plug-Ins hat,

ist es sehr wichtig das neue Plug-In gewissenhaft zu testen um Fehler zur Laufzeit
zu vermeiden.

Schritt 4: Einbindung in das JDQVisF – Nach dem erfolgreichen Testen, wird das

neue Plug-In in den vorgestellten Namespace (siehe Kapitel 5.4.3.2) als lauffähi-
ges .jar-Archiv exportiert. Lauffähig bedeutet in diesem Fall, dass alle vom Plug-In
benötigten Ressourcen in dem .jar-Archiv enthalten sind.

Schritt 5: Registrierung in der PlugInRegister.xml – Damit das neue Plug-In zur

Laufzeit vom JDQVisF geladen werden kann, muss es in der PlugInRegister.xml
registriert werden. Dazu werden beispielsweise die URL, unter der das Plug-In ge-
funden werden kann, und eine SimulationId, für die das Plug-In verwendet werden
soll, eingetragen. Die genauen Einträge wurden, für Authorizer-Plug-Ins in Kapitel
6.2.1.2, für SimulationController-Plug-Ins in Kapitel 6.2.4.2.2 und für Plug-Ins zur
Erweiterung der Visualisierungspipeline im Kapitel 6.3.4, gezeigt.

6.4.1 Beispielimplementierung eines Authorizer-Plug-In

Ein Authorizer-Plug-In wird von JDQVisController zur Autorisierung eines Wissenschaft-
lers für eine Simulation geladen. Das bedeutet, dass für jede Simulation innerhalb des
JDQVisF ein Authorizer-Plug-In existieren muss.

Das hier entwickelte Authorizer-Plug-In realisiert das AuthorizationInterface (siehe Kapi-
tel 6.2.1.1) und implementiert die authorize-Methode. Diese bekommt als Eingabe einen

- 132 -

Benutzernamen und ein Passwort und gibt ein JDQVisUser-Objekt zurück. Sind die
Anmeldedaten nicht korrekt, wird null zurück gegeben.
Zur Überprüfung der Benutzerdaten besitzt das Plug-In ein XML-Dokument. Es enthält
alle an der Simulation beteiligten Wissenschaftler mit ihrer Rolle. Listing 13 zeigt einen
Beispieleintrag.

Listing 13: Beispieleintrag in die Benutzerdatenbank des Authorizer-Plug-Ins

6.4.2 Beispielimplementierung eines Filter-Plug-In

Für die Datenaufbereitung können in die Visualisierungspipeline eines Visualization-
Mediator Filter-Plug-Ins eingebunden werden. Dieser Abschnitt beschreibt eine Bei-
spielimplementierung eines Filters, der das FilterInterface (siehe Kapitel6.3.3.1) reali-
siert. Um die vielseitigen Möglichkeiten eines Filter-Plug-Ins zu zeigen, wird ein Filter für
einen Wissenschaftler mit allen Rechten gezeigt. Für die Überwachung der Simulation
soll der Wissenschaftler neben den Datenqualitätsvisualisierungen, zusätzlich Visuali-
sierungen der originalen Simulationsdaten angezeigt bekommen. Die Simulationsdaten
liegen dabei auf einem externen Server und müssen durch das Filter-Plug-In vor der
Visualisierung geladen und aufbereitet werden.

Der Einstiegspunkt des Filter-Plug-Ins ist die filterData-Methode. Diese bekommt als
Parameter den Pfad zu einer passenden FilterSpecification (siehe Kapitel 6.3.5.1).

Abbildung 6-9 zeigt vereinfacht die einzelnen Schritte der Datenaufbereitung innerhalb
des Filters als Sequenzdiagramm ohne technische Details.

Page 1 of 2/Users/marcelruss/SkyDrive/Diplomarbeit/Diagramme/xml/Plugin.xml
Saved: 21.10.12 16:14:27 Printed For: Marcel Russ

<plugin type='dqdispatcher'>1
	 <role> ... </role>+2
	 <simulationId> ... </simulationId>+3
	 <deviceId> ... </deviceId>+4
	 <url> ... </url>5
	 <classname> ... </classname>6
</plugin>7

8
9

<filterDescription role="Owner" simulationId="'simuId'">10
	 <inputpath>./res/raw/'simuId'/QoDvalues.xml</inputpath>11
	 <outputpath>./res/filtered/'simuId'/'userId'/Data.xml</outputpath>12
	 <request>showAllData</request>13
</filterDescription>14

15
16

<visualizationDescription role="Owner" simulationId="'simuId'">17
	 <inputpath>./res/filtered/'simuId'/'userId'/Data.xml</inputpath>18
	 <outputpath>./res/visualized/'simuId'/'userId'/</outputpath>19
	 <request>Portrait</request>20
</visualizationDescription>21

22
23

<dispatchDescription role="Owner" simulationId="'simuId'">24
	 <inputpath>./res/visualized/'simuId'/'userId'/</inputpath>25
	 <inputpathRaw>./res/raw/'simuId'/</inputpathRaw>26
	 <outputAddress>27
	 	 http://192.168.1.2/JDQVis/'simuId'/visualizations/'userId'/28
	 </outputAddress>29
	 <cachepathRaw>./cache/'simuId'/raw/</cachepathRaw>30
	 <cachepathVisualization>./cache/'simuId'/visualization/'userId'/</cachepathVisualization>31
</dispatchDescription>32

33
34

<userlist>35
36

	 <user name='aName' password='123'>37
	 	 <userId>aUserId</userId>38
	 	 <role>Owner</role>39
	 </user>40

41
	 <user name='michaelreiter' password='12345'>42
	 	 <userId>mreiter</userId>43
	 	 <role>Owner</role>44
	 </user>45
	46
	 <user name='tobiaswagner' password='987'>47

- 133 -

Abbildung 6-9: Sequenzdiagramm des Filter-Plug-Ins

Im ersten Schritt instanziiert der Filter einen PropertiesReader und einen DQReader.
Diese stellen alle wichtige Informationen wie den Ein- und Ausgabepfad und die Refe-
renz der Simulationsdaten bereit (siehe Kapitel 6.3.3.4).
Anschließend löscht das Filter-Plug-In alle alten Dateien innerhalb des Ausgabepfades
(siehe Kapitel 5.4.3.1). Dadurch wird sicher gestellt, dass ein Visualizer-Plug-In nur die
Daten erhält die es für die Visualisierung benötigt.
Im dritten Schritt lädt der Filter die referenzierten Simulationsdaten von einem Server
und kopiert sie in den Namespace aus Kapitel 5.4.3.1. Die Adresse des Servers, bei
dem die Simulationsdaten liegen, ist in den Rohdaten (QoDValues.xml, siehe Kapitel
6.2.3) enthalten und wird mit Hilfe des DQReader ausgelesen.
Anschließend wird die Adresse der Simulationsdaten auf den neuen lokalen Pfad des
JDQVisF gesetzt und die modifizierte QoDValues.xml an den entsprechenden Name-
space aus Kapitel 5.4.3.1 geschrieben.

Da es sein kann, dass zu einer Simulation keine externen Daten angegeben sind, wer-
den hier die oben genannten Schritte für das Laden der Simulationsdaten übersprungen
und nur die Datenqualitätswerte entsprechend verarbeitet.

:DQFilter

filterData(filterSpecPath)

:PropertiesReader

:DQReader

newInstance(filterSpecPath)
readProperties()

newInstance(propertiesReader.inputPath)
readDQValues()

deleteFiles(propertiesReader.outputPath)

dereferenceSimulationData(dqReader.simudataURL)

propertiesReader

dqReader

setNewSimulationDataPath()

writeNewQoDFile()

- 134 -

6.4.3 Beispielimplementierung eines Visualizer-Plug-In

Ein Visualizer-Plug-In realisiert die zweite Stufe der Visualisierungspipeline eines Visua-
lizationMediator und implementiert das VisualizerInterface (siehe Kapitel 6.3.3.2). In
diesem Kapitel wird ein Visualizer-Plug-In vorgestellt, welches die Dataqualitätsvisuali-
sierungen aus Kapitel 3.9.2 generiert und in Kombination mit den Visualisierungen der
Simulationsdaten zu einem Gesamtbild zusammenfügt. Das beutetet, dass es die
Schritte Mapping und Rendering der Visualisierungspipeline übernimmt und die fertigen
Bilder für die Anzeigegeräten bereitstellt. Zusätzlich bietet das Visualizer-Plug-In einem
JDQVisClient die Möglichkeit, die Bildgenerierung mit Hilfe eines Requests (siehe Kapi-
tel 6.3.5.2) zu steuern. Der Wissenschaftler kann dadurch wählen ob er nur Datenquali-
tätsvisualisierungen im Querformat oder Datenqualitätsvisualisierungen zusammen mit
Simulationsvisualisierungen im Hochformat angezeigt bekommt (siehe Appendix A und
B).

Abbildung 6-10 zeigt ein vereinfachtes Sequenzdiagramm mit allen wichtigen Schritten
für die Generierung der Visualisierungen. Dabei wird zwischen den beiden Alternativen
Landscape und Portrait, gekennzeichnet durch alt, unterschieden. Technische Details
werden für eine besseren Übersicht weggelassen.

- 135 -

Abbildung 6-10: Vereinfachter Ablauf des Visualizer-Plug-In mit zwei alternativen
 Pfaden

Im ersten Schritt werden jeweils ein PropertiesReader und ein DQReader instanziiert.

Sie stellen alle wichtigen Pfade und Daten für die Visualisierung bereit (siehe Kapitel

6.3.3.2). Anschließend wird je nach Request ein Bild, das entweder eine nur Datenqua-

litätsvisualisierungen oder Datenqualitätsvisualisierungen mit Simulationsvisualisierun-

gen enthält, generiert und an den entsprechenden Namespace aus Kapitel 5.4.3.1 ge-

speichert.

:DQVisualizer

visualizeData(visSpecPath)

:PropertiesReader

:DQReader

newInstance(visSpecPath)
readProperties()

newInstance(propertiesReader.inputPath)
readDQValues()

propertiesReader

dqReader

alt
[Request = "Landscape"] ForAll QoDValues in dqReader.CalculationResults:

 generateQoDVisualization("Landscape")

alt
[Request = "Portrait"]

generateLandscapeImage()

ForAll Dimensions in dqReader.CalculationResults:
 generateQoDVisualization("Portrait")

generatePortraitImage()

writeFile(propertiesReader.outputPath)

- 136 -

Der folgende Abschnitt beschreibt beispielhaft das Visualisieren der einzelnen Daten-
qualitätsdimensionen anhand der Dimension Rechtzeitigkeit (siehe Kapitel 3.9.2.2). Der
grundsätzliche Ablauf ist bei allen Dimensionen der gleiche.

Visualisierung der Dimension Rechtzeitigkeit

Die Visualisierung der Dimension Rechtzeitigkeit gliedert sich in zwei Teile. Zuerst wird
ein Basisbild geladen. Je nachdem ob der Datenqualitätswert größer oder kleiner ist als
der Schwellenwert, ist das ist ein Wecker mit grünem oder rotem Ziffernblatt. Abbildung
6-11 zeigt die beiden Basisbilder.

Abbildung 6-11: Basisbilder der Dimension Rechtzeitigkeit. Links schlechte, rechts gute
Datenqualität

Anschließend werden der Datenqualitätswert und der Schwellenwertes als Zeiger in das
Bild gezeichnet. Zum leichtern Erfassen werden die Werte zusätzlich unter dem Icon als
Zahlenwert geschrieben (Abbildung 6-12).

Abbildung 6-12: Visualisierung der Dimension Rechtzeitigkeit mit den eingefügten QoD-
und Schwellenwerten. Links schlechte, rechts gute Datenqualität

6.4.4 Beispielimplementierung eines Dispatcher-Plug-In

Ein Dispatcher-Plug-In wird am Ende der Visualisierungspipeline vom VisualizationMe-
diator geladen. Es versendet die generierten Visualisierungen an die angegebene Ad-

- 137 -

resse aus der DispatcherSpezfication.xml (Kapitel 6.3.5.3). Grundsätzlich können dabei
alle möglichen Versandarten und -protokolle umgesetzt werden.

Als Beispielimplementierung wird ein Dispatcher-Plug-In gezeigt, welches die generier-
ten Visualisierungen auf einen Server kopiert. Von diesem können die Visualisierungen
anschließend über URL-Anfragen von den Anzeigegeräten geladen werden. Diese
URLs sind für alle UserIds unterschiedlich, so dass jeder Wissenschaftler genau die
Visualisierungen angezeigt bekommt, die für ihn generiert wurden.

Abbildung 6-13 zeigt einen vereinfachten Ablauf ohne technische Details.

Abbildung 6-13: Vereinfachter Ablauf eines Dispatcher-Plug-Ins

Im ersten Schritt wird ein PropertiesReader, der die URL des Ausgabepfades enthält,
instanziiert. Anschließend werden alle Dateien die sich im späteren Zielverzeichnis des
Server befinden gelöscht. Dadurch wird sicher gestellt, dass dem Wissenschaftler im-
mer die aktuellsten Visualisierungen angezeigt bekommt. Im nächsten Schritt werden
alle Dateien die sich im Eingabepfad befinden in das Zielverzeichnis des Server kopiert
und somit dem Wissenschaftler zur Verfügung gestellt. Im letzten Schritt werden alle
neuen Visualisierungen im Eingabeverzeichnis gelöscht. Dadurch wird sichergestellt,
dass im nächsten Verteilungsdurchgang keine alten Daten an den Server übergeben
werden.

:DQVisualizer

dispatchData (specPath)

:PropertiesReader

newInstance (specPath)
readProperties()

propertiesReader

copyNewFilesTo (propertiesReader.outputPath)

deleteOldFiles (propertiesReader.outputPath)

deleteFiles (propertiesReader.inputPath)

- 138 -

6.4.5 Beispielimplementierung eines SimulationController-Plug-In

Ein SimulationController-Plug-In ist eine Erweiterung des JDQVisF, mit dessen Hilfe der
Wissenschaftler in die laufende Simulation eingreifen kann. Es wird vom JDQVisCon-
troller beim Empfang eines Steuerungsbefehls geladen und dessen processSimulation-
Request-Methode aufgerufen.

Da der Fokus dieser Arbeit auf dem Visualisieren von Datenqualität liegt, wird in diesem
Abschnitt lediglich eine prototypische Umsetzung eines SimulationController-Plug-Ins
gezeigt. Dieses öffnet ein Fenster, das den Steuerungsbefehl und die UserId des Wis-
senschaftlers anzeigt. Ein Wissenschaftler kann dann diesen Request, beispielsweise
als Web Services Human Task (WS-HumanTask) [38], in der laufende Simulation aus-
führen. (Siehe Kapitel 7.4)

Abbildung 6-14: Beispielimplementierung eines SimulationController-Plug-In

- 139 -

6.5 Der JDQVisClient

Diese Kapitel beschreibt das JDQVisF aus Sicht der JDQVisClienten. Es zeigt welche
Interaktionsmöglichkeiten diese mit dem JDQVisF haben und wie diese umgesetzt wer-
den können.

Das JDQVisF ist ein WebService für Visualisierung von Datenqualitätswerten. Es bietet
über seine WSDL-Datei seinen potentiellen Clients alle nötigen Informationen an.

6.5.1 Registrierung am JDQVisF

Damit ein Wissenschaftler seine Simulation mit Hilfe des JDQVisF überwachen kann
benötigt er mindestens ein Client-Programm, das dessen WSDL-Datei interpretieren
kann und die registerUser-Methode des JDQVisController aufruft.

Listing 14 zeigt den Aufbau einer registerUser-SOAP-Nachricht des Client für die Re-
gistrierung am JDQVisF.

Listing 14: Aufbau einer registerUser-Message

/ registerUser
Dieses Element beschreibt die Methode des JDQVisController für die Benutzerre-
gistrierung.

/ registerUser / simulationId
Dieses Element kennzeichnet die SimulationId für die sich der Wissenschaftler
anmelden möchte. Der JDQVisController wählt anhand dieser SimulationId das
passenden Authorizer-Plug-In aus.

/ registerUser / username
Dieses Element ist der Benutzername, der durch das Authorizer-Plug-In validiert
wird.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/RequestSOAP.xml
Saved: 24.09.12 07:57:19 Printed For: Marcel Russ

POST /wsJDQVis HTTP/1.11
Content-type: text/xml;charset="utf-8"2
Soapaction: ""3
Accept: text/xml, multipart/related, text/html, image/gif, image/jpeg, *; q=.2, */*; q=.24
User-Agent: JAX-WS RI 2.1.6 in JDK 65
Host: 172.20.10.3:80816
Connection: keep-alive7
Content-Length: 2658

9
<?xml version="1.0" ?>10

11
12

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">13
	 <S:Body>14
	 	 <ns2:registerUser xmlns:ns2="http://user.jdqvis.com/">15
	 	 	 <simulationId>exampleSimulation</simulationId>16
	 	 	 <username>exampleUsername</username>17
	 	 	 <password>123</password>18
	 	 	 <deviceId>default</deviceId>19
	 	 </ns2:registerUser>20
	 </S:Body>21
</S:Envelope>22

23
24
25
26
27
28
29
30

- 140 -

/ registerUser / password
Dieses Element ist das Passwort, das durch das Authorizer-Plug-In validiert wird.

/ registerUser / deviceId
Dieses Element beschreibt das Anzeigegerät für das die Visualisierungen gene-
riert werden sollen. Dabei ist zu beachten, dass passende Visualizer-Plug-Ins
beim JDQVisF registriert sind (siehe Kapitel 6.3.4). Hier muss nicht das aktuelle
Gerät, das zur Registrierung am JDQVisF verwendet wird angegeben werden.
Beispielsweise könnte ein Client-Programm nur für die Registrierung eingesetzt
werden. Der Wissenschaftler könnte die Visualisierungen zu einem späteren Zeit-
punkt über einen Internetbrowser betrachten.

Ist der Wissenschaftler erfolgreich am JDQVisController angemeldet, erhält er von die-
sem seine UserId als Antwort.

Listing 15: Antwort des JDQVisController bei erfolgreicher Anmeldung

6.5.2 Beschreibung der Benutzerinteraktionen

Ein Wissenschaftler kann mit Hilfe des JDQVisF zum einen die Visualisieren beeinflus-
sen und zum anderen die laufende Simulation steuern. Dazu bietet das JDQVisF zwei
Arten von Benutzeranfragen an. Zum einen die VisualizationControlRequests und Fil-
terControlRequests zur Beeinflussung der Visualisierungs-Plug-Ins und zu anderen die
SimulationControlRequests zur Steuerung der SimulationController-Plug-Ins. Die Tren-
nung dieser Methoden wurde in den vorangegangenen Kapiteln argumentiert.

6.5.3 Beeinflussung der Generierungen einer Visualisierung

Der Wissenschaftler kann die Visualisierungs-Plug-Ins mit Hilfe von VisualizationCon-
trolRequests oder FilterControlRequest beeinflussen. Dazu bietet der JDQVisController
in der WSDL-Datei die modifyVisualizerSpecification() und modifyFilterSpecification()
Methoden an. Diese erhalten als Parameter die UserId, SimulationId und die gewünsch-
te Modifikationen.

Der JDQVisController passt über diese Methoden die entsprechende Filter- oder Visua-
lizerSpecification des Wissenschaftlers für die angelmeldete Simulation an. Somit wird

Page 1 of 1/Users/marcelruss/SkyDrive/Diplomarbeit/ResponseSOAP.xml
Saved: 24.09.12 07:57:19 Printed For: Marcel Russ

HTTP/1.1 200 OK1
Transfer-encoding: chunked2
Content-type: text/xml;charset="utf-8"3

4
<?xml version="1.0" ?>5

6
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">7
	 <S:Body>8
	 	 <ns2:registerUserResponse xmlns:ns2="http://user.jdqvis.com/">9
	 	 	 <return>exampleUserId</return>10
	 	 </ns2:registerUserResponse>11
	 </S:Body>12
</S:Envelope>13

14
15
16
17

- 141 -

beim nächsten Visualisierungsaufruf die veränderte Visualisierungsspezifikation in den
Plug-Ins verarbeitet. Damit ein Filter- oder VisualizationRequest von einem Plug-In um-
gesetzt werden kann, muss dieser auch implementiert sein. Das bedeutet insbesonde-
re, dass es eine Kopplung zwischen Clientprogramm und den Visualisierungs-Plug-Ins
gibt. Für jede im Clientprogramm mögliche Interaktion muss die entsprechenden Reali-
sierung in den Plug-Ins existieren.

Abbildung 6-15 zeigt beispielhaft die Steuerung des Filter-Plug-Ins durch ein Client-
Programm. Der rote Pfeil kennzeichnet die einzelnen Verarbeitungsschritte.

Abbildung 6-15: Steuerung des Filter-Plug-Ins durch ein Client-Programm. Der rote Pfeil
markiert die Bearbeitung des FilterRequest

Durch die Registrierung der Plug-Ins für eine bestimmte Rolle wird zusätzlich sicherge-
stellt, dass nur VisualizationRequests verarbeitet werden, für die der JDQVisClient auch
die Rechte besitzt. Beispielsweise kann ein Wissenschaftler festlegen, dass er nur bei
Unterschreitungen eines Schwellenwertes informiert wird. Ein Hilfswissenschaftler kann
dagegen keine Auswahl der Daten vornehmen und muss dadurch die ihm zugeteilte
Datenmenge auswerten.

Das JDQCF könnte über die Angabe von XPath-Ausdrücken ebenfalls so manipuliert
werden, dass es nur bestimmt Daten als Eingabedaten an das JDQVisF sendet. Diese
Form der Manipulation wird aber vom JDQVisF nicht unterstützt, da es zu Folge hätte,

Dispatcher
Plug-In

Visualization
Plug-In

Filter
Plug-In

VisualizationMediator

Visualize only QoD

Visualize all data

Show only Simulatondata

JDQVisController

ModifyFilterSpezification-Message

modifyFilterSpezification("onlyQoD")

readFilterRequest:
"onlyQoD" {...}

modified FilterSpezification

Client

Server

- 142 -

dass alle JDQVisClients von der Änderung betroffen wären. Ist eine solche globale Ma-
nipulation den Wissenschaftlern gewünscht, so gibt es zwei Möglichkeiten dies Umzu-
setzen. Zum einen können entsprechende Filter-Plug-Ins für die betroffene Rolle und
Simulation in das JDQVisF eingebunden werden. Zum anderen kann das JDQCF durch
das Einbinden eines ExternalTasks dahingehend modifiziert werden [1].

Listing 16 zeigt den Aufbau einer modifyFilterSpecification-Nachricht in der ein
JDQVisClient festlegt, dass er nur visualisierte Datenqualitätswerte empfangen möchte.
Das Laden der Simulationsdaten innerhalb des Filter-Plug-Ins ist somit nicht nötig.

Listing 16: Aufbau einer modifyFilterSpecification-Nachricht

6.5.4 Steuerung der Simulation durch einen SimulationControlRequests

Das JDQVisF bietet den Wissenschaftlern über die SimulationControlRequests eine
Möglichkeit in die laufende Simulation einzugreifen. Dazu bietet der JDQVisController in
der WSDL-Datei die sendSimulationControlRequest()-Methode an. Diese erhält als Pa-
rameter die UserId und den Steuerbefehl.
Empfängt der JDQVisController über diese Methode einen Steuerungsbefehl, leitet er
diesen an das entsprechende SimulationController-Plug-In weiter welches ihn verarbei-
ten kann.

Page 1 of 1/Users/marcelruss/SkyDrive/Diplo…erSpezificattion_SOAPRequest.xml
Saved: 17.09.12 17:27:40 Printed For: Marcel Russ

Content-type: text/xml;charset="utf-8"1
Soapaction: ""2
Accept: text/xml, multipart/related, text/html, image/gif, image/jpeg, *; q=.2, */*; q=.23
User-Agent: JAX-WS RI 2.1.6 in JDK 64
Host: 172.20.10.3:80815
Connection: keep-alive6
Content-Length: 2357

8
9

<?xml version="1.0" ?>10
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">11
	 <S:Body>12
	 	 <ns2:modifyFilterSpezification xmlns:ns2="http://user.jdqvis.com/">13
	 	 	 <userId>exampleUserId</userId>14
	 	 	 <simulationId>exampleSimulation</simulationId>15
	 	 	 <filterReqeust>OnlyQoD</filterReqeust>16
	 	 </ns2:modifyFilterSpezification>17
	 </S:Body>18
</S:Envelope>19

20
21
22

- 143 -

7 Ausblick

Durch die vorgestellte flexible Architektur sind verschiedenste und breit gestreute Ein-
satzgebiete für das JDQVisF denkbar. In diesem Kapitel werden mögliche zukünftige
Arbeiten im Zusammenhang mit dem JDQVisF vorgestellt.

7.1 Integration in die Simulation-Workflowumgebung

Durch die Integration in eine existierende Simulation-Workflow-Umgebung, könnte das
JDQVisF den Wissenschaftlern helfen, eine laufende Simulation anhand visualisierter
Datenqualitätswerte zu überwachen. Denkbar wäre, dass das JDQVisF zusammen mit
dem JDQCF als gemeinsamer Datenqualitätsservice in den Workflow integriert wird.
Dadurch könnten sie als eine Einheit für die Überwachung und Steuerung der Simulati-
on eingesetzt werden.

Ein weitere Möglichkeit wäre das JDQVisF in die Service Discovery eines Enterprise
Service Bus (ESB) zu integrieren. In einer parallel zu dieser Arbeit entstehenden Diplo-
marbeit wird ein Enterprise Service Bus entwickelt, welcher eine datenqualitäts-
gesteuerte Service Discovery auf Basis der WS-Policy Spezifikation ermöglicht. Durch
spezielle Visualisierungen könnten die zum Teil komplexen Abhängigkeiten zwischen
Datenqualitätsanforderungen und Datenqualitätszusicherungen bei der Service Dis-
covery verständlich wiedergegeben werden. Insbesondere könnten durch die Integrati-
on des JDQVisF in den ESB auch dessen Entscheidungen bei der Serviceauswahl den
beteiligten Wissenschaftler visuell präsentiert werden.
Eine weitere Anwendung könnte die Auswahl geeigneter Services auf Grundlage der
visualisierten Datenqualitätswerte durch die Wissenschaftler sein.

7.2 Visualisierung weiterer Datenqualitäten

In dieser Arbeit wurde das Gebiet der Datenqualität in einem engen Rahmen durch die
vorgestellten sechs Datenqualitätsdimensionen betrachtet. Bei komplexen FEM-
basierten Simulationen, haben die Wissenschaftler jedoch zusätzlich Ansprüche an die
Daten, wie beispielsweise an die Matrixpopulation oder die Hauptdiagonale einer Mat-
rix. Um auch solche Datenqualitätsdimensionen durch das JDQVisF visualisieren zu
könne, müssen entsprechende Plug-Ins entwickelt und in dieses eingebunden werden.

Für reine Datenqualitäten könnte zudem eine einheitliche Visualisierung durch Stan-
darddiagramme in das JDQVisF eingebunden werden. Diese haben den Vorteil, dass
sie der Gefahr einer möglichen Fehlinterpretation durch eine einheitliche Darstellung

- 144 -

entgegen wirken und dadurch eine gemeinsame Kommunikationsgrundlage für die un-
terschiedlichen Domänenspezialisten bilden können.

7.3 Entwicklung von domänen-spezifischen Plug-Ins

Die flexible Architektur des JDQVisF ermöglicht es, domänen-spezifische Visualisierun-
gen zu generieren oder simulationsabhängige Autorisierungen und Steuerungen einzu-
binden. Speziell bei der Generierung der Visualisierungen können leicht neue Algorith-
men eingebunden werden. Eine mögliche Erweiterung wäre, neben den reinen Daten-
qualitätswerten, eine Kombination aus diesen mit den originalen Simulationsdaten dar-
zustellen. Dabei könnte eine kombinierte Visualisierung generiert werden, die dem Wis-
senschaftler direkt anzeigt in welchem Bereich seiner Simulationsdaten welche Daten-
qualität herrscht. Abbildung 7-1 zeigt ein mögliches Beispiel in der die Stellen rot mar-
kiert werden, bei denen die berechneten Simulationsdaten nicht mit den tatsächlichen
Daten, die aus Lehrbüchern bekannt sind, übereinstimmt.

Abbildung 7-1: Beispiel: Datenqualitätsvisualisierungen innerhalb der Simulationsdaten

7.4 Integration eines WS-HumanTask Systems

Das JDQVisF visualisiert die zuvor berechneten und interpretierten Datenqualitätswerte.
Soll die Datenqualität jedoch von einem Wissenschaftler bewertet werden, könnte das
JDQVisF diesem nur zuvor berechneten Metrik-Ergebnisse visuell präsentieren. Diese
können anschließend von dem Wissenschaftler interpretiert werden.
Für die Umsetzung einer solchen subjektiven Bewertung oder zur Steuerung der lau-
fenden Simulation, könnte die Integration eines WS-HumanTask-Systems [38] in das
JDQVisF erfolgen. Es erlaubt Menschen in einen Simulation-Workflow einzubinden und
Aufgaben auszuführen. Mit Hilfe eines geeigneten Client-Programms, könnten Wissen-

- 145 -

schaftler so die visualisierten Simulationsdaten bewerten und mit Hilfe eines Simulati-
onController-Plug-Ins und des JDQVisF an den Simulation-Workflow weiterleiten (siehe
Abbildung 7-2).

Abbildung 7-2: WS-HumanTask zur Bewertung der Datenqualität

Simulation-Workflow

Interpretation

JDQVisF

D
ata

Visualization

JDQCFMetrikCalc.Result

- 146 -

Literaturverzeichnis

[1] U. Breitenbücher: Datenqualität in Simulations-Workflows, 2011

[2] C. Batini, M. Scannapieco: Data Quality – Concepts, Methologies and Tech-
nics: Spinger, 2006

[3] S. Schick, B. Theobald: Informationsvisualisierung im WM: Projekt Wissens-
management Universität des Saarlands, 2005

[4] ITWissen – Home: http://www.itwissen.info/definition/lexikon/Daten-data.html,
Abgerufen am 14. Mai 2012

[5] T. Hey, S. Tansley, K. Tolle, Herausgeber: The Fourth Paradigm: Data-
Intensive Scientific Discovery: Microsoft Reserch, 2009

[6] International Association for Information and Data Quality – Home:
http://iaidq.org/main/glossary.shtml#I, Abgerufen am 14. Mai 2012

[7] M. Reiter, H. Truong, S. Dustdar, D. Karastoyanova, R. Krause, F. Leymann,
D. Pahret: On Analyzing Quality of Data Influences on Perfomance of Finite
Elements driven Computional Simulations, 2012

[8] R. Y. Wang, D.M. Strong: Beyound Accurancy: What Data Quality Means to
Data Consumer, 1996

[9] L. L. Pipino, Y. W. Lee, R. Y. Wang: Data Quality Assessment, 2002

[10] SKA – Home: www.ska.goc.au, Abgerufen am 15. Mai 2012

[11] CERN – Home: http://public.web.cern.ch/public/en/LHC/LHC-en.html, Abgeru-
fen am 15. Mai 2012

[12] Pan-STARS – Home: http://pan-starrs.ifa.hawaii.edu/public , Abgerufen am
15. Mai 2012

[13] S. Hartmann: The World as a Process: Simulations in the Natural and Social
Sciences, 2005.

[14] T. Schlegel: Graphical-Interactive Systems, Institut für Visualisierung, Univer-
sität Stuttgart, WS 09/10

[15] R. Däßler: Informationsvisualisierung – Stand, Kritik und Perspektiven, 1999

[16] J. Rang: Visualisierung wissenschaftlicher Daten, TU Braunschweig, 2006

[17] H. Schuhmann, W. Müller: Visualisierung – Grundlagen und allgemeine Me-
thoden, 2000

- 147 -

[18] S, Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson: Web
Services Platform Architecture, 2005

[19] M. Burch: Informationsvisualisierung, Institut für Visualisierung und Interaktive
Systeme, Universität Stuttgart, WS 11/12

[20] Prof. D. Jackèl, Dr.-Ing. B. Karstens, C. Becker: Vortragsseminar: Visuelle
Wahrnehmung und 3D-Displays, Objektwahrnehmung und Gestaltgesetzte
nach Wertheimer, Universität Rostock, WS00/01

[21] J. Bertin: Grafische Darstellung und die graphische Weiterverarbeitung der
Information, 1982

[22] Leibniz-Institut für Länderkunde – Home: http://www.nationalatlas.de/
deutscher-nationalatlas%20/kartographie/grundelemente-der-karte/

[23] L. Sijvesma: Colloquim Map Design, 2009

[24] Prof. A. Schmidt, Institut für Visualisierung und Interaktive Systeme, Universi-
tät Stuttgart, Persönliches Gespräch, 3. Juli 2012

[25] J. W. Seifert: Visualisieren, Präsentieren, Moderieren, 2001

[26] M. Reiter, Institut für Architektur von Anwendungssystemen, Universität Stutt-
gart, Persönliches Gespräch, 18. September 2012

[27] R. Sulo, S. Eick, R. Grossman: Davis: A Tool for Visualizing Data Quality,
2005

[28] M. Reiter, U. Breitenbücher, D. Karastoyanova, O. Kopp: Quality Driven Simu-
lation-Workflows, 2012

[29] W3C- Home: http://www.w3.org/TR/ws-arch/#whatis, Abgerufen am 29. Sep-
tember 2012

[30] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, M. Reiter: Conventi-
onal Workflow Technology for Scientific Simulations, 2011

[31] H. Motahari-Nezad, B. Stephanson, S. Singhai: Outsourcing Business to
Cloud Computing, 2009

[32] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez:
Web services policy 1.5-framework: W3C Recommendation, 2007

[33] F. Leymann: Web Services, Institut für Architektur von Anwendungssystemen,
Universität Stuttgart, WS 11/12

[34] W3C – Home: http://www.w3.org/XML, Abgerufen am 4. Oktober 2012

- 148 -

[35] Portable Network Graphic – Home: http://www.libpng.org/pub/png/, Abgerufen
am 3. Oktober 2012

[36] OnlyOpenSource – Home: http://www.only-open-source.com/dokus/3d-
visualisierungsformate.html#vrml, Abgerufen am 24. Oktober 2012

[37] Wörterbuchsubstanz aus: Duden – Wissensnetz deutsche Sprache, 2011

[38] A. Agrawal, M. Amend, M. Kloppmann, D. König, F. Leymann, et al.: Web
Services Human Task (WS-HumanTask), Version 1.0, 2007.

[39] W. Bils: Warum das Auge sehen kann, Quelle & Meyer, 2010

[40] H. L. Truong, S. Dustar: On Evaluating an Publishing Data Concerns for Data
as a Service, Distributed System Group, Vienna University of Technology

[41] E. Gamma, R. Helm, R. E. Johnson, J. Vlissides: Design Patterns. Elements
of Reusable Object-Oriented Software, 1994

[42] M. Kate Beard: NCGIA Research Initiative 7 Visualization of Spatial Data
Quality, University of Maine, 1991

8 Appendix A – Beispielvisualisierung Datenqualität

9 Appendix B – Beispielvisualisierung Datenqualität mit origina-
len Simulationsdaten

Erklärung

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie alle wörtlich
oder sinngemäß übernommenen Stellen in der Arbeit gekennzeichnet habe. Die Arbeit
ist in gleicher oder ähnlicher Form noch nicht als Prüfungsarbeit eingereicht worden.

(Marcel Russ)

