Institute of Parallel and Distributed Systems
University of Stuttgart
Universitatsstral3e 38

D-70569 Stuttgart

Diploma Thesis Nr. 3492

A Method for Security Breach
Detection through File Access
Monitoring and Pattern
Recognition

Zeynep Oztiirk

Course of Study: Computer Science

Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang
Supervisor: Dipl. Inf. Tim Waizenegger
Commenced: May 16, 2013

Completed: November 15, 2013

CR-Classification: C.2.0,C.23,C.24,D.4.6,K.6.5

Abstract

In the enterprise context a common requirement is to protect confidential information,
such as sensitive customer data, internal corporate data, or research findings, not only
against external, but also internal unauthorized access. The rapidly changing technology
environment has seriously affected the computer security of organizations and governments
around the world. According to the 2013 Data Breach Investigations Report from Verizon,
more than 47,000 reported security incidents, 621 confirmed data breaches, and 44 million
compromised records have been analyzed in 2012. Security breaches cause enormous damage
and cost organizations billions of dollars annually.

Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS) are typical protection
mechanisms that monitor security breaches. Nevertheless, these systems suffer from several
major drawbacks, such as increased configuration complexity, high cost, high maintenance,
high number of false alarms, and requiring a security administrator that can react with
countermeasures to a security breach. In this context, the goal of this thesis is to develop a

novel Breach Detection System (BDS) able to overcome the disadvantages of current IDSs or
IPSs.

In order to detect and analyze security breaches at the operating system level, with a special
focus on file operations, a BDS will be conceptualized and implemented. The aim of this
BDS is to enable Security Breach Detection through File Access Monitoring and Pattern
Recognition. For this purpose, a sensor is used to gather information about the system
behavior while the system is running in a controlled state. Additional, a pattern recognition
engine derives patterns from file access events. These patterns are used to monitor a process
that accesses a certain file, and to determine the legitimacy of the file operations. It can also
be used to suggest a possible access permission to an administrator.

Contents

6

Introduction

1.1 FileSystem
1.2 LSOF-ListOpenFiles
1.3 Computer Security
1.4 Pattern Recognition and Pattern Matching

Related Work

2.1 Intrusion
2.2 Intrusion Prevention System (IPS)
2.3 Intrusion Detection System (IDS)
2.4 Alternative Approaches L L L.

Motivation and Concept of a Breach Detection System (BDS)

3.1 Motivation e
3.2 ConceptOverview
3.3 Descriptionof the Key Terms
3.4 BDS - A Breach Detection System

Implementation

4.1 Client-Server Model
4.2 Components of the proposed Architecture
43 Functionality o

Evaluation
5.1 Evaluationof theconcept
5.2 Evaluation of the prototype,

Conclusion and Outlook

Bibliography

List of Figures

1.1 Tree-like hierarchical Directory Structure of a Unix File System 12
1.2 Data File Directory with its corresponding Inode List 13
1.3 Confidentiality-Integrity-Availability (CIA) triad 16
2.1 ExampleofaFirewall 21
2.2 Architectural View of TrustBox 22
2.3 Rule Structureof Snort 27
2.4 Rule Exampleof Snort 28
3.1 Overview of the Breach Detection System Architecture 33
3.2 BDSPhases 36
4.1 Client-Server Communication over a SOAP Protocol 42
4.2 Class Diagram for the Implementationof BDS 45
4.3 Thenested Hashmap 46
4.4 Class Diagram of the Factory Pattern Method 47
4.5 Functionality of the Breach Detection System 48
46 AsamplePointCloud 50
4.7 Sequence Diagram of the Computation Steps of the Pattern Recognition

Algorithm 51
4.8 Computes the Distance of a new Event (red point) to the existing Events in

the Point Cloud (black and green points) 55
4.9 Graphical Visualization of the Density 57
6.1 Point Cloud with a sequence of operations (left) and two vectors with se-

quences of operations (right) 65

List of Tables

1.1 Standard Directories with respective Descriptions 12
1.2 Sample Lsof Output 14
1.3 Example Lsof OutputforaFile 14

1.4 Example Lsof Output for a Network Communication 15

1.5 Example Lsof Output for a Process Identification Number 15
2.1 Example Rule of a Packet Filtering Firewall 20
3.1 ExampleofanEvent o o Lo oo 34
4.1 The association-matrix Table 46
4.2 Generated Event from Lsof Output 49

List of Listings

4.1 Web Service Endpoint Interface Lo Lo 42
4.2 Web Service Endpoint ImplementationClass 43
4.3 Endpoint Publisher Class 43
4.4 Web Service Client 43

List of Algorithms

4.1 Distance Function builds the Cartesian Product of all Events 52
4.2 Function for Computing the Distance between two Events 53
4.3 Function for Computing the Density 54

1 Introduction

The time when important information used to be written on paper and stored in filing
cabinets is as good as over. Document types have changed in recent years, from classic paper
documents to electronic ones. Meanwhile, almost all information is created electronically by
organizations, private persons, and governments around the world, provided by modern
communication channels such as Internet or intranet.

Moreover, content management systems (CMS) provide a structure which aims to facilitate
the maintenance, representation and usage of edited information like images, graphics, and
texts'. For instance, IBM provides SmartCloud Content Management (SCCM), a cloud-based
enterprise solution with the aim to maintain and archive critical information assets?.

Naturally, this rapidly changing technology environment enables organizations like IBM
new business opportunities, on the one hand, but on the other creates new threats, which
can have serious effects on the security of information resources. A common requirement
of organizations, private persons, and governments is that their confidential information
or data has to be protected against external as well as internal unauthorized access. For
organizations, confidential information is comprised of internal corporate data, research
findings, scientific data, or sales figures; for private persons, their sensitive personal data
like credit card numbers; and for governments, data about legal regulations or other specific
data which might be interesting for third parties.

According to the 2013 Data Breach Investigations Report from Verizon [Ver13] more than
47,000 reported security incidents, 621 confirmed data breaches, and 44 million compromised
records were analyzed in 2012. Security breaches cause enormous damage, and cost organiza-
tions, private persons, as well as governments billions of dollars annually, besides provoking
loss of availability, confidentiality, or integrity which are basic security principles.

Typical protection mechanisms that have the aim of monitoring security breaches are Intru-
sion Detection Systems (IDS) or Intrusion Prevention Systems (IPS). These systems have the
purpose of detecting attacks against networks and computer systems, ensuring compliance of
the security policy, and initiating countermeasures if necessary. Nevertheless, these systems
suffer from several major drawbacks, such as increased configuration complexity, high cost,
high maintenance, high number of false alarms, and requiring a security administrator who
can react with countermeasures to a security breach.

'https:/ /www.bsi.bund.de/DE/Publikationen/Studien/CMS/Studie_CMS.html
http:/ /public.dhe.ibm.com/common/ssi/ecm/en/budo3o4s5usen/BUDo3045USEN.PDF

1 Introduction

Goal of the thesis

The goal of this thesis is to conceptualize a novel method for Security Breach Detection
through File Access Monitoring and Pattern Recognition, as well as to implement a Breach
Detection System (BDS) framework, consisting of a communication protocol, a generic client
component (Sensor), and a server component (Breach Detection Component), to detect and
analyze security breaches at the operating system level, with a special focus on file operations.
The purpose of implementing a BDS is to overcome the disadvantages of current Intrusion
Detection Systems (IDS) or Intrusion Prevention Systems (IPS), and to give an insight into a
novel approach that aims to find out if it is possible to derive patterns from file accesses in
order to achieve a certain security level.

In this BDS, a sensor is used to gather information about the system behavior while the
system is running in a controlled state. A pattern recognition engine is employed to derive
patterns from file accesses events. These patterns are used to monitor a process that accesses
a certain file and to determine the legitimacy of the operation. It can also be used to suggest
a possible access permission to an administrator.

Structure of the thesis

This thesis is divided into six chapters. The first part of the first chapter will give a brief
introduction into the topic as well as the goal and structure of this thesis. The second part
of the first chapter is concerned with basic information about the underlying file concept,
general aspects of computer security, and a brief introduction into the pattern recognition
and pattern matching technologies that might help understand the further work. The second
chapter presents the findings of literature research, and will give an insight into existing
developments security implementation such as Intrusion Detection and Prevention Systems.
The third chapter will introduce the novel concept of Security Breach Detection through File
Access Monitoring and Pattern Recognition and will give the conceptual idea based of this
thesis. Afterwards, a detailed insight into the prototypical implementation of the Breach
Detection System (BDS) is described in chapter four. The fifth chapter will evaluate the concept
and the implementation concerning open conceptual problems, performance, limitations and
implementation hurdles. In conclusion, the final chapter summarizes the results of this thesis
and gives a brief overview of the improvements and expansion possibilities for the novel
approach and proposed Breach Detection System.

10

1.1 File System

1.1 File System

Unix is a class of operating systems. This class includes Unix derivatives such as Linux,
AIX and Solaris. A computer operating system offers a base which allows the user and the
software to use a computer. It provides an execution environment for programs, file system
management, networking stack, access to hardware devices, and administrative tasks. One of
the most significant properties of Unix is the ability of allowing multiusers and multitasking.
The term multiuser conveys that multiple users can work simultaneously on one system
without disturbing each other. Each user has a separate area for their own data, which
cannot be changed or read by other users. The term multitasking indicates that multiple
programs can run simultaneously on one system [Krig8].

One can say that “on a Unix system, everything is a file; if something is not a file, it is a
process” [Garo8]. This statement constitutes one of the meaningful characteristics of the Unix
operating systems. The term file is widely spread in the Unix userland. A file is a kind of
container that contains information about the data. Depending on their content or usage, a
file can be classified into various types. This way, reqular files are ones that cover text files,
programs, and executable files. Directories are files that contain information about other files
that are located in this directory. Special device files are file types like disk drives, webcam,
printer, or monitor and are accessed through files. Reading or writing to special device files
cause input or output on the corresponding devices.

In order to organize, manage, and store huge amount of files, these are grouped together into
a file system. That means, a file system is a structure that is able to archive and administer
data [Krig8]. According to the definition of data from the Internet Security Glossary (RFC
2828), describes data information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.

The file system in Unix-like operating systems has a tree-like hierarchical directory structure,
shown in Figure 1.13. Each file is located in a directory, which itself is a subdirectory of
a directory, except the root directory. The root directory ("/’) is the root of the directory
structure and contains standard directories. Some of the standard directories are listed in
Table 1.1.

For the sake of completeness of the file system section, the implementation of a file system
and the steps of a file access will be described in the next section in consonance with
[Krig8].

In the Unix userland, files are realized with a file system, as described, above and with inodes.
Data file directories contain only the name of the file and an assigned number. This assigned
number is a reference to the inodes list. Figure 1.2 illustrates a data file directory with its
corresponding inode list. A data file directory could be /home/freak/File. A number is
assigned for each file name of the data file directory and this number is used as a index for

3http:/ /www.imb-jena.de/ gmueller/kurse/linux/linuxfibel/dirstruct.htm

11

1 Introduction

o ot |t o [o[[e | [i | o |

| | [| | X11R6|| bin || doo || fb | local | sbin |

| bin | inoude| b || man | | bn | b || man |

Figure 1.1: Tree-like hierarchical Directory Structure of a Unix File System

Standard directories Description
/bin executable files
/dev special device files
/home user directories
/1ib program libraries
/usr Unix System Resources, system and application programs
/proc special files for accessing kernel features
/etc local configuration files
/sbin system programs
/tmp temporary files

Table 1.1: Standard Directories with respective Descriptions

the list of inodes. The inode contains all information about the file, except the file name:
file type, the number of the file names, access rights of the file, the user number and the
user group number, the size of the file, address fields, the date and the time of the last
modification, the date and time of the last file access.

This example in Figure 1.2 illustrates a file access of a user to the file /home/freak/File. UNIX
searches in the root directory ("/’) for the data file directory of home and loads the assigned
inode in the main memory. From this inode, UNIX searches the assigned data block which
contains the directory entry freak and loads this in the main memory. An inode number
is assigned to this directory entry. Afterwards, UNIX loads the assigned inode number of
freak in the main memory and searches for the data block which contains the directory of
freak. The data block is loaded and examined for File1. This entry is associated with an inode

12

1.2 LSOF - List Open Files

number. The inode is loaded and contains the number of the first data block of the file. This
inode can be made available now for an application which searched after this file.

To increase the efficiency of a file access, a cache is used which keeps a set of often accessed
data blocks in the main memory. This way, not all blocks have to be loaded from the hard
disk and as a result, access speed increases.

/\ List of inodes
data file directory
v Entry for each file, inode
number | contains 64 bytes data
addresses 12
1
testFile 6,7
6
texts 1
7
12
reference
file name numberinthe | e
list of inodes

Figure 1.2: Data File Directory with its corresponding Inode List

1.2 LSOF - List Open Files

The Unix userland provides a tool called lsof. Lsof stands for list open files, and lists all
information about files that are currently opened by a user or a running process.

In order to access a file, a process needs a file handle from the operating system. Therefore, a
request like "Can you give me file handle for file ‘file x'?” is sent to the underlying operating
system, and as response it receives the file handle of the file. A file handle can be seen as an
adapter for file accesses between a process and the underlying operating system.

Through the use of 1sof, it is possible to retrieve information about this file handle from the
operating system. It is possible to see which files are accessed by which processes. Informa-
tion about network communication, system users, or devices can be displayed by choosing
particular parameters. If Isof is executed with root rights, all information is displayed for
any opened process that is opened by any user. A sample output executed with root rights
and with the command Isof is shown in Table 1.2 [A.Wo06].

13

1 Introduction

COMMAND | PID | USER | FD | TYPE | DEVICE | SIZE/OFF | NODE NAME
sched o root cwd | VDIR 136,8 1024 2 /
init 1 root cwd | VDIR 136,8 1024 2 /
init 1 root txt VREG 136,8 49016 1655 /sbin/lsof
init 1 root txt | VREG 136,8 51084 3185 /lib/libuutil.so.1
vi 2013 root 3u | VREG 136,8 o 8501 /var/tmp/ExXDaOyd

Table 1.2: Sample Lsof Output

Each line of the output represents one open file. Command stands for the name of the process,
PID for the process identification number, User for the name of the system user, under which
the process is running, Type for the format of the file, Device for the name of the device,
SIZE/OFF for the size of the file, Node for file’s identification on the disk and Name for the
actual name of the file.

The column FD stands for the file descriptor which describes the file from the application
point of view. The entry cwd in the FD column describes the current working directory which
is the starting point of the application. The entry txt describes a program code and data
like the application binary or a shared library. At the last line of this sample output, a user
edits the file /var/tmp/ExXDaO7d with vi and with the file descriptor 3u. The u stands for the
read/write mode. Possible further modes could be 7 for read-only and w for write-only. An
application is opened with three file descriptors, o through 2, for the standard input, output,
and error streams [A.Wo6].

As mentioned above, it is possible to list information about network communication, system
users, or devices by choosing particular parameters. The application examples of Isof which
are shown in Table 1.3 through 1.5 are taken from the homepage of Johannes Franken#.

The first example in Table 1.3 will illustrate who accesses and uses the file vim. Command:
Isof /usr/bin/vim

COMMAND | PID | USER | FD | TYPE | DEVICE | SIZE/OFF | NODE | = NAME
vim 495 | jfranken | txt | REG 3,3 1102088 175460 | /usr/bin/vim
vim 1919 | jfranken | txt | REG 3,3 1102088 175460 | /usr/bin/vim

Table 1.3: Example Lsof Output for a File

The second example in Table 1.4 will illustrate the network communication of a given host
and port. All processes that communicate on port 8o are listed. Command: Isof -i :80

“http:/ /www.jfranken.de/homepages/johannes/vortraege/1sof_inhalt.de.html

14

1.3 Computer Security

COMMAND | PID | USER | FD | TYPE | DEVICE | SIZE/OFF | NODE | NAME
thttpd 569 IPvy 2886 TCP *www (LISTEN)

root
jfranken

ou
opera 3834 2ou | IPvyg 86644 TCP localhost:1055->

localhost:www (CLOSE_WAIT)

Table 1.4: Example Lsof Output for a Network Communication

The third example in Table 1.5 will illustrate all processes that are opened with a given PID.
Command: Isof +p 3050

COMMAND | PID USER FD TYPE | DEVICE | SIZE/OFF | NODE NAME
bash 3050 | jfranken | cwd DIR 3,64 2048 53248 /cdrom
bash 3050 | jfranken rtd DIR 3,3 4096 2 /
bash 3050 | jfranken txt REG 3,3 511400 191483 /bin/bash
bash 3050 | jfranken | mem | REG 3,3 90210 159620 /lib/1d-2.2.5.s0
bash 3050 | jfranken | mem | REG 3,3 248132 160128 | /lib/libncurses.so.5.2
bash 3050 | jfranken ou CHR 136,3 5 /dev/pts/3
bash 3050 | jfranken 1u CHR 136,3 5 /dev/pts/3
bash 3050 | jfranken 2u CHR 136,3 5 /dev/pts/3
bash 3050 | jfranken | 255u | CHR 136,3 5 /dev/pts/3

Table 1.5: Example Lsof Output for a Process Identification Number

1.3 Computer Security

Information system resources such as processors, data storages, file systems or devices, as
well as confidential information assets such as credit card numbers, sensitive customer or
internal corporate data are prone to threats and attacks of third parties. The aim is to detect
vulnerabilites of the system in order to violate the computer security and potential misuse of
confidential information and information system resources.

According to the survey of the 15th Annual CSI Computer Crime and Security Survey of
2010/2011 [CSI11], some types of attacks that occured (by percent of 149 respondents) are as
follows: malware infection 67%, password sniffing 12%, denial of service 17%, unauthorized
access 13%, insider abuse of internet access or email 25% and system penetration by outsider
11%.

Another survey of the CyberSecurity Watch Survey of 2011 from the Computer Emergency
Response Team (CERT) [CSO11] stated that whereas outsider attacks are more reported
(58%) than insider attacks (21%), insider attacks cause more damage to organizations than
outsider attacks. Insider attacks are attacks caused by employees or other third parties of the
company with authorized access and outsider attacks are attacks caused by intruders without
authorized access to the information system resources and confidential information.

Not only organizations, but also private persons are affected by threats from malicious
attackers which intrude in the personal area over the Internet to spy on their private data
like credit card numbers, online banking accesses or any online shopping accounts.

15

1 Introduction

Considering the results of the surveys, a major task of organizations and private persons
should be the protection of their computer security. A definition of the term computer security
is given from National Institute of Standards and Technology (NIST)> in Computer Security,
Principles and Practice [SBo8] as follows:

The protection afforded to an automated information system in order to attain the applicable objectives
of preserving the integrity, availability, and confidentiality of information system resources (includes
hardware, software, firmware, information/data, and telecommunications).

A further definition of security concerning to information technology (IT) is defined in
[Kapo7y] as follows:

The term IT security is used to protect confidential information and information systems against
unauthorized access and manipulation. Furthermore, to ensure the availability of systems which
provide services for legitimate users, including all measures for prevention, detection or logging of
threats.

The common intention of both definitions is to ensure the confidentiality, availability and
integrity of information assets, as well as of information system resources. Figure 1.2 shows
the confidentiality-integrity-availability (CIA) triad which represents the fundamental con-
cept of information security. These terms are defined and used in practice as protective goals
or security goals in order to provide a base for securing information assets and information
system resources.

N
S Data and Services

Availability

Figure 1.3: Confidentiality-Integrity-Availability (CIA) triad

According to [SBo8] and [Kapo7], the following section will define the terms confidentiality,
availability and integrity. In addition to those protective goals, a further term is defined in
practice to ensure the security of information assets and information system resources.

Shttp:/ /www.nist.gov/

16

1.4 Pattern Recognition and Pattern Matching

Confidentiality describes the protection of sensitive information against unauthorized ac-
cesses of third parties. Data confidentiality and privacy are two approaches in relation to
confidentiality. Data confidentiality ensures the protection of sensitive data in order not to
permit unauthorized access and privacy ensures the protection of information that might be
collected or stored without permission.

Integrity describes the protection of sensitive information against unauthorized modifica-
tions of third parties. The integrity can be considered as data integrity and system integrity
depending on the area of use. Data integrity ensures the modification of information and
programs only with authorized access and system integrity ensures the modification of
system functions

Availability describes the protection of information system resources and services in order
to provide available access to legitimate user. An unavailable service or access of a server
over a long period could be existence-threatening, for example, for an online retailer.

Authenticity describes the unique identification of an object or subject in order to ensure the
reliability and the validity. An object in relation to information technology is a term which is
used for defining files, data base entries and processes, whereas a subject defines the user of
the objects for instance server, procedure or the user of the system [Ecki12].

The aim of malicious attackers or intruders is to find weaknesses or vulnerabilities in
computer networks or in IT infrastructure of organizations, as well as of private persons
in order to gain access and breach confidential information assets or information system
resources. A weakness or vulnerability of an information system is a flaw in which the
system security could be manipulated, breached or spoofed by unauthorized third parties
[Eck12]. These weaknesses and vulnerabilities can depend on different aspects and classified
according to [Kapoy] in following fault categories:

o Requirement fault: the requirements in relation to security are faulty and insufficient

e Design fault: the specification of a hardware or software component does not satisfy
the requirements and contains weaknesses and vulnerabilities which can be exploited
through malicious attacker

o Implementation fault: faulty implementation of the design specification which in turn
can cause vulnerabilities

o Installation and Administration fault: during the installation or administration a system
security function might be disabled which can cause vulnerabilities

1.4 Pattern Recognition and Pattern Matching

People have the ability to recognize coherences from a sequence of an information
stream and build patterns out of it. An experimental test set-up from Jason Zweig,
described in [Peto8], gives test participants a sequence of red and green symbols like
GGGGRGGGGGRRGGGGGGRR?. The task was to guess which symbol will come after R

17

1 Introduction

and if they can guess the right symbol, they will rewarded with 5 euro. In order to guess
a sign, most of the test participants try intuitively to recognize a pattern from the given
sequence.

Assuming, a sequence of several signs is given like the above mentioned example. There are
two methods to determine whether a given string matches into the sequence. The sequence
of several signs follows a pattern.

A pattern is described according to Norbert Wiener in [ST13]: one of the most interesting
aspects of the world is that it can be considered to be made up of patterns. A pattern is essentially an
arrangement. It is characterized by the order of the elements of which it is made rather than by the
intrinsic nature of these elements. That means, a pattern classifies different objects depending
on the application, for instance measured values as a signal, pixels of an image or a sequence
of strings from a text.

The first method is Pattern Recognition. Pattern Recognition is a method which attempts to
recognize a structure of a given sequence of objects in order to build a pattern. Based on
these patterns, predictions can be made about the appearance of further objects. Pattern
Recognition is used in different field of applications. Some of the applications are image
processing, character recognition, document analysis, speech recognition or computational
face recognition. In order to determine whether a given string matches into a pattern which
is build of a sequence of several signs, a markov chain can be generated from the given
string. Markov chain is an approach which can recognize simple patterns through the use of
a state machine. With this state machine, it is possible to examine whether the state machine
would be able to recognize the given string. If the state machine can recognize the given
string, it would then follow, that the given string matches into the pattern, otherwise not.

The second method is Pattern Matching. Pattern Matching is a method which in turn
predefines a pattern in some way and examines whether an object matches into the pattern
or not without using a prediction. That means, a string which consists of a text or binary
data, is searched for a given character sequence. The simplest form of Pattern Matching is

for example the use of a search engine where can be searched after a given criteria®.

6ht’fp: / /perldoc.perl.org/perlre html

18

2 Related Work

This chapter will provide a detailed view into works that deal with the problem of security in
computer systems, and give an insight into current developments. First of all, the meaning of
the term intrusion is explained, so that the fundamental approaches, Intrusion Detection Sys-
tem (IDS) and Intrusion Prevention System (IPS), can be presented. Afterwards, Honeypots
and ACCEPT are discussed as alternative approaches to IPS and IDS. All approaches are
examined on basic principles, design approaches and implementation examples in practice
and each approach is reviewed for advantages and disadvantages.

2.1 Intrusion

Before presenting protective and detective mechanisms against intrusions, violations and
security breaches, the term intrusion should be defined. According to Heberling, Levitt
and Mukherjee, an intrusion is a set of actions that aim to compromise the confidentiality,
integrity, and availability. This means that an intrusion is a violation of the security measures
of an information system in order to gain access to confidential information assets [BHo2].
Confidential information includes, for instance, credit card numbers, sensitive customer or
internal corporate data, research findings, or software codes.

Confidentiality, integrity, and availability are defined in chapter 1.3 and are known as protec-
tive goals. The aim of protective goals is ensuring the security of confidential information
assets as well as of the information system resources. Confidentiality describes the protection
of sensitive information against unauthorized access of third parties. Integrity describes the
protection of information against unauthorized modification of third parties. Availability
describes the disposability of resources and services for legitimate users.

2.2 Intrusion Prevention System (IPS)

Today, mostly preventive security mechanisms are used in practice. Prevention mechanisms
are supposed to protect information systems resources and confidential information assets
against malicious attacks, security breaches, and intrusions. These prevention mechanisms
are known as Intrusion Prevention Systems (IPS).

IPS focuses on the transport layer of the ISO/OSI-7-layer model and provides not only a
protection on network level by monitoring the whole data traffic against unauthorized activ-
ity; but, they are also used to block attacks before an intrusion occurs. The ISO/OSI-7-layer

19

2 Related Work

reference model is a design base for communication protocols and computer networks. OSI
stands for Open System Interconnection and was standardized by International Organization
for Standardization (ISO) in order to provide communication standards®.

In some literature, an IPS is referred to as a bouncer who stands in front of a door and pays
attention so that unauthorized or uninvited persons do not enter. In general, IPS can be
distinguished in Host-based Intrusion Prevention System (HIPS) and in Network-based Intrusion
Prevention System (NIPS)>. Modification of system resources like trojan horses and backdoors,
buffer-overflow exploits and access to e-mail contact lists are some of the threats that are
aimed to be addressed by HIPSs. HIPSs are installed on individual hosts in order to protect
the computer networks against these malicious behaviors. NIPSs are located on the network
level of an information system and monitor the incoming data packets for malicious behavior
in order to react with countermeasures, if a malicious behavior or suspected data packets
are detected [SBo8]. Possible countermeasures could be to send a notification mail, block the
whole data traffic or delete malicious packets.

Next, some examples of currently used IPS are shown:

Firewall is the most common and the most used preventive mechanism of organizations in
practice. A firewall, located at the connecting point of the Internet and intranet, as shown in
Figure 2.1 [Kapoy], is a preventive protection mechanism that, through the application of
certain rules, has the goal of analyzing and filtering the data traffic on the network. Rules are
defined by the user during the configuration of the firewall, which will then decide whether
a data packet is legitimate or not [BHo2]. Potential threats that could be harmful for the
data and components of a network are detected and the forwarding of these packets is not
allowed.

Types of firewalls are packet filtering firewalls and application filtering firewalls. Packet
filtering firewalls are the simplest form of firewalls based on the concept of a router at the IP
level [BHo2]. According to [SBo8] a packet filtering firewall uses a set of rules in order to
allow or forbid incoming and outgoing IP packets. A packet filtering example is shown in
the following Table 2.1:

action | ourhost | port | theirhost | port comment
block * * spigot * | we do not trust these people
allow | our-gw | 25 * * | connection to our SMTP port

Table 2.1: Example Rule of a Packet Filtering Firewall
This example of a packet filtering rule depicts that an incoming mail is allowed only to a

gateway host and SPIGOT, an external host, is blocked. The "*" depicts, that there is no
restriction.

'www.elektronik-kompendium.de/sites/kom/0301201.htm
*www.securitymanager.de/magazin/die_tuersteher_intrusion_prevention_systeme.html

20

2.2 Intrusion Prevention System (IPS)

Application filtering firewalls, also referred to as application-level gateways, are firewalls
located at the application level of the ISO/OSI reference model. The task of an application
filtering firewall is to monitor, analyze and filter the communication between client and host
at the application level [Kapo7].

“You can’t fight the fire from behind the firewall” [Thri12]. This statement from ThreatMetrix, a
company providing cybercrime protection, reflects the limitations of a firewall. A firewall
is only able to protect the system from being attacked by the outside attacker, while an
inside attacker can easily bypass these security measures [SB1o]. The detection of complex
DoS attacks, for example an attack on port 8o (HTTP server) or port 25 (Mail server), is not
possible. Therefore, only using traditional firewalls is not sufficient to ensure the security of
an information system [MPB*12].

, Firewall

Figure 2.1: Example of a Firewall

Fail2ban is a preventive mechanism that analyzes logfiles for unauthorized access attempts.
Logfiles are generated automatically from the web server and the underlying operating
system. If there is a malicious indication?, for instance a repeated wrong password entry
or attempted access, the IP address is temporarily blocked for a specified period. Existing
firewall rules are updated, or new rules are generated in order to block further login
attempts.

Access control models are a different way to secure the information system against unau-
thorized access. In contrast with known prevention mechanisms like firewalls or failzban,

twww.failoban.org/wiki/index.php/MainPage

21

2 Related Work

access control models monitor and control the access of certain resources in order to ensure
the integrity, availability and confidentiality of an information system.

A known access control model for the operating system Linux is the approach of Security-
Enhanced Linux (SELinux). SELinux is a security concept based on mandatory access control
(MAC). MAC is a control policy [Upa11] that acts as an additional access control. The
approach is based on a central instance and a security label. The central instance is referred
to as security policy, and the security label as security context. The system assigns objects
and subjects of an information system to a security label. An access matrix is generated from
the security server, which is located in the kernel, with the values of the policy and the label.
According to this access matrix the access can be allowed or denied. In other words, SELinux
decides whether a resource is allowed to access a certain target or not>.

TrustBox is a security architecture to prevent data breaches. A safe environment with
virtual machine monitors (VMM) and a framework that restricts certain accesses or actions
is established. A differentiation is made among sensitive and insensitive data. Access to
sensitive data is only allowed by the trusted virtual machine. This is a platform-independent
virtual machine that contains security policies and has applications like email client and
Microsoft Office Suite. Applications such as web browsers or instant messages run on the
untrusted virtual machine, as they have direct Internet access, and could thus cause potential
safety hazards. Sensitive data is stored in Storage Area Network (SAN), and the access is
secured through an encrypted and authorized communication like IPSpec network tunnel
[SFSF11].

Figure 2.1 [SFSF11] shows how complicated and impractical an environment can be in which
the main goal is to prevent data breaches and securing the whole system.

P ST antivinus e
| (s g VT [
N

«
' . licy enforcement
firewall poicy

E(——a— (A/’ l|l
clearing |
: instance capl

— -
untrusted VM
dpi K |
1| Guest OS T
| \ z'l

Host OS (Windows)

v

| ¢

Figure 2.2: Architectural View of TrustBox

Swww.heise.de/ix/artikel / Gut-bewacht-506652.html

22

2.3 Intrusion Detection System (IDS)

2.3 Intrusion Detection System (IDS)

The increasing number of security incidents shows that the sole use of Intrusion Prevention
Systems (IPS) is not sufficient to ensure the security of an information system [Meio7]. The
configuration and the maintenance of firewalls, as well as access control models, are too
complex. These are main drawbacks of prevention mechanisms. Therefore, preventive
mechanisms need to be complemented by detective mechanisms.

These significant drawbacks of IPS require further considerations so as to solve this security
problem. Besides preventive mechanisms, there are detective ones whose aim is to constrain
and remove damage caused by security breaches and identify the intruder.

An approach that handles this situation are Intrusion-Detection Systems (IDS). According to
[SBo8], an Intrusion Detection is a security service that monitors and analyzes the information
system resources in order to detect and provide real-time or near real-time warning of
attempts of unathorized third parties. An intrusion, as described in the previous section,
generally means that an unauthorized malicious user takes advantage of a vulnerability
in the information system and violates the confidentiality, availability, or integrity of the
resources of an information system.

An intrusion detection system operates like an alarm system. If an invasion is detected by
the IDS, an administrator will be informed via email, SMS, or pager, who then decides how
the problem will be handled [Hilo1]. The aim of such a detection system is to monitor the
underlying information system resources and the computer network against anomalous
behavior, minimize security breaches, identify malicious intruders, and detect existing
vulnerabilities.

Although IDSes became well known by the end of the 1990s through the usage of vendors
like Cisco, Symantec, and ISS, their origin lie in the 1980s. The former concept of intrusion
was first presented by James Anderson. His proposal was to protocol audit trails in order to
trace abuses and gain information about the intruder and their behavior [Draog].

Following that idea, Dorothy Denning reported her approach in the paper An Intrusion
Detection Model. This was the first approach for an intrusion detection model, and based on
this, various IDSes are used in today’s practice. Denning’s theory is based on the assumption
that security breaches can be detected by monitoring audit records, and figuring out if there
is a deviation in the usual or expected usage pattern. Profiles are used to describe the
behavior of subjects concerning objects as metrics, and statistical models. The model does
not depend on a certain system, application environment, system vulnerabilities, or kind of
security breaches. Therefore, it is referred to as an IDES (Intrusion Detection Expert System).
Denning’s security model contains basic elements like Subjects, Objects, Audit records, Profiles,
Anomaly records, and Activity rules [Den87].

Subjects describe operations that are initiated by a user of the monitored system. A process,
or also the system, can be considered as a subject that operates instead of a user or a user
group. Operations are triggered by subjects through user commands.

23

2 Related Work

Objects are resources like programs, files, records, commands, and devices that are generated
by users or programs.

Audit records are reactions from the monitored system caused by subjects that invoke
operations, such as user login, command execution, and file access. Every record consists of
six elements: <Subject, Action, Object, Exception-Condition, Resource-Usage, Time-stamp>

Profiles use metrics and statistical models to define the behavior of subjects relating to objects.
Every activity profile describes normal behavior of subjects or a group of subjects regarding
objects or a group of objects. Each profile characterizes some specific behavioral aspects
of the considered subjects. An activity profile consists of ten elements: <Variable-Name,
Action-Pattern, Exception-Pattern, Resource-Usage-Pattern, Period, Variable-Type, Threshold,
Subject-Pattern, Object-Pattern, Value>

Anomaly records describe an abnormal behavior of a user. If an audit record is created or a
period ends, IDES refreshes activity profiles and searches with activity rules for potential
abnormal behavior. Once an abnormal behavior is noticed, an anomaly record is created that
describes the abnormal behavior. An anomaly record consists of three elements: <Event,
Time-stamp, Profile>

Activity rules are operations that should be performed when an audit record or anomaly
record is created or a period terminates. Activity rules can be sorted in audit-record rule,
periodic-activity-update rule, anomaly-record rules, and periodic-anomaly-analysis rule.

Denning’s concept can be interpreted as a rule based pattern matching system. Audit
records are compared with existing profiles, and profiles decide which rules should be
used to refresh profiles, monitor abnormal behavior, and protocol identified deviations. As
mentioned before, security breaches can be detected by monitoring the target system against
deviation from normal usage. Relations between attack types and deviation of normal
usage are classified in Attempted break-in, Successful break-in, Penetration by legitimate user, Leak-
age by legitimate user, Inference by legitimate user, Trojan horse, Virus, or Denial-of-Service [Den87].

This type of intrusion detection is defined in practice as anomaly detection. In some literature,
it is referred to as behavior-based detection. In order to ensure the security of an information
system, another approach is introduced and referred to as misuse detection. In literature, it is
sometimes called knowledge or signature-based detection. For the following chapters, we
use the terms anomaly detection and misuse detection.

2.3.1 Anomaly Detection

The approach of anomaly detection is based on the hypothesis that anomalous behavior of
the information system or the user itself indicates a security breach. Anomalous behavior
can be defined as a deviation of normal or expected behavior [Deboz], which is measurable
in different ways and stored in reference information. This information about normal or

24

2.3 Intrusion Detection System (IDS)

expected behavior is employed to match against actual behavior. A deviation of normal or
expected behavior is considered as a security breach and an alarm is triggered.

In Intrusion Detection effektiv! [Meioy], Michael Meier describes an approach on how reference
information is created. In order to generate reference profiles, the system requires a phase
to learn the normal behavior. Methods for this learning phase are, for example, neural
networks, statistical methods, or decision trees. Behavior of the user may change with the
time or the period, so this process should be repeated regularly. During the learning phase of
the system, it is possible that a security breach may occur. In consequence of that, reference
profiles could include possible security breaches that are not recognized and each deviation
is interpreted as an attack; as a result, false positives are increased.

False positives are results specified incorrectly as positive. That means, a behavior was
mistakenly identified as an attack. False alarm is triggered by an IDS. False negatives are
results specified incorrectly as negative. That means, a malicious behavior was mistakenly
not identified as an attack.

Although anomaly detection has already existed since the 1980s, this approach is not often
used in practice, because there are several disadvantages that complicate the usage of
anomaly detection:

¢ high false positive rate results in high costs;

results of anomaly detection are not clear enough;

detected anomalous behavior cannot be automatically seen as a security breach;

before an action against the security breach can be done, the detected anomaly behavior
must be evaluated by a security expert;

definition of normal behavior is complex and to classify anomalous behavior as a
general term is difficult.

Besides these disadvantages, the main advantage of this approach is the ability of detecting
unknown and unexpected attacks. Other advantages include:

¢ information about the structure of the attack and the system is not required;
e can detect attackers that are logged in with a "false’-account;

e maintenance of a signature database is no longer required;
2.3.2 Misuse Detection
The approach of misuse detection is based on the detection of attacks by using known
signatures. For each attack a signature is created. A signature is a byte-sequence attack

pattern that uniquely identifies an attack and is stored in a signature database. During the
analysis, signatures in the database are compared with audit data. According to [Deboz]

25

2 Related Work

audit data describes information provided by a system concerning its inner workings and
behavior.

For example, syslog® is a service which provides audit data from the underlying operating
system like UNIX and others. Syslog gleans produced messages and faults in form of a text
string by background processes like services, server or daemon, adds a time stamp and the
application name, and writes it to a log file. If a match is found, an alarm is triggered and
countermeasures are executed by a information security officer or administrator.

Due to the simple implementation, misuse detection is widespread and often used in practice.
One of the most popular signature-based intrusion detection systems is Snort. The reason for
its popularity is the accuracy and the structure of the results. There are several advantages
to this detection system:

o low false positive rate, if signature is precisely defined;

e widespread and simple to implement.

The disadvantage of this detection system is that only known attacks, whose signature is
stored in the database, can be detected. Other disadvantages include:

e if signature is not precisely and correctly defined, it will raise false positives and false
negatives;

e precisely defining a signature is not easy and requires experience;

e signatures are stored in a database and, if this is not updated well, the analysis is not
effective;

e maintenance of a database is an additional effort and fraught with risk.

Depending on the source of the audit data, this detection system can be distinguished in
Network-based Intrusion Detection (NIDS) and Host-based Intrusion Detection (HIDS) in order
to provide segregation of duties. If the data source contains network traffic material, it is
recommended to use network-based IDSs; if the data source is based on host material, it is
recommended to use host-based IDSs.

Network-based Intrusion Detection System (NIDS)
Through the rapid development of the Internet, network attacks like DNS spoofing, TCP
hijacking and port scanning are becoming more popular and an IDS which specializes on

network is needed. The core idea of network intrusion detection is based on monitoring
network traffic and packets.

bhttps:/ /tools.ietf.org /html/rfc5424

26

2.3 Intrusion Detection System (IDS)

Organizations use this kind of detection for monitoring their intranet communication.
Sensors are used to intercept network traffic and compare it with existing signatures. If there
occurs a discrepancy between network configuration or an unexpected event, this will be
sent to an IDS server and stored there in a database. Analysis and possible countermeasures
are taken by the IDS server.

An advantage of a network-based IDS is that it is possible to monitor the whole system with
only one computer. Therefore, it is a central approach and demands less administrative and
financial effort. This is an advantage compared to host-based IDSs, in which a host-based
IDS must be installed and maintained on each host that has to be monitored.

Encryption is one of the biggest challenges that need to be managed by network-based IDSs.
The basis of most internet or intranet connections is Secure Sockets Layer (SSL). SSL is a
network protocol that enables secure data communication between networks. Network-based
IDS cannot decrypt and analyze encrypted data. In this case, it is not possible to detect
attacks and malicious intruders. A network-based IDS should be able to understand common
network protocols like TCP/IP, HTTP, SMTP, or POP [Bieos].

Snort is an open source product and a well-known network-based IDS. Snort can be both
network intrusion detection and network intrusion prevention. It can be configured in three
modes, the simplest of which is the sniffer mode. Packets from the network are read and
displayed as byte sequences in the console. Packet mode stores packets on the hard disk,
and further analysis can be performed from there. Network intrusion detection is the most
complicated mode. It monitors network traffic, and rules are defined to control packets that
might contain possibly malicious content.

Snort is a rule-based approach. Rules have a simple structure shown in Figure 2.3 [SBo§],
consisting of two main components: header and option(s).

. Source IP . . inati inati
Rule header: Action Protocol Source port Direction Destination | Destination
address IP address port

Option(s): Option Option
keyword message

Figure 2.3: Rule Structure of Snort

The rule header contains a set of fixed elements: action stands for a reaction if a packet is
found that suits the rule criteria, protocol stands for the type of the recognized protocols,
currently TCP, UDP, ICMP and IP, source IP address stands for the source of the packet, source

27

2 Related Work

port stands for the source port, direction stands for the direction of monitoring, direction
options are unidirectional (->) and bidirectional (<->), destination IP address stands for the
destination of the packet and destination port for the destination port.

The option(s) contains one or more rule options: option keyword stands for the option and
option message stands for the specification of the option [SBo8].

A rule example of Snort is shown in Figure 2.4 [Eck12]:

alert TCP any any -> 192.168.1.0/24 143 (content: "|90CB COFF FFFF|/bin/sh";\
msg:"'IMAP buffer overflow!"’;)

Figure 2.4: Rule Example of Snort

First line defines the header. Alert is a keyword that triggers and logs an event if a packet
matches with the specified values in the rule. Keyword content determines according to
which pattern it should be looked after. One or multiple options define the warning message
with msg. This rule scans all packets from any IP address with any source port, where the
destination IP address is in the range between 192.168.1.1 and 192.168.1.255. Port is 143.
Rules should be defined in one row, otherwise snort may return an error or interrupt the
analysis.

Thus, Snort is a rule-based approach, and it is possible to define several rules and events
to detect attempts of attacks in network traffic. Attacks can be buffer overflow, port scans,
CGI, and OS fingerprinting. Still, Snort has improvement potential, because defining rules
requires deep knowledge. Next to defining rules, configuring of Snort is also important
because misconfiguration can lead to false positives or false negatives.

Host-based Intrusion Detection (HIDS)

Host-based intrusion detection is based on monitoring system and application data from
an individual host. HIDSs receive audit data from the host, for instance log files, executed
system calls, or file attributes. If anomaly detection is applied, changes of file attributes
(owner, group, or permissions), file content, or path will be monitored. If misuse detection is
applied, system or log files will be checked for predefined patterns.

The advantage of this kind of detection system is that it triggers less false positives than
network-based IDS. Additionally, a host-based detection system can detect attacks over a
terminal, encrypted connections, or malicious programs like Trojan horses. Disadvantages of
this approach are additional costs caused by installation and administration of all monitored
hosts and Denial of Service (DoS) cannot be recognized [Bieos].

28

2.4 Alternative Approaches

Tripwire is a well-known open source host-based IDS for Unix. It verifies the integrity of
important system files and directories by storing properties of files (size, modification date,
or hash value) in a database. Checking for modifications of file systems at regular intervals
can prevent possible attacks. If an attack is detected, an administrator will be notified and
a reaction or countermeasure is initiated. The main drawback of this application is that
integrity checking by mds and sha checksum for each file takes too much computation
time. Another drawback is that intruders who only read data and do not change it are not
recognized. Furthermore, it is essential to keep the tripwire database updated. This is a
great effort if the database is very large [Eck12].

2.4 Alternative Approaches

Besides IDS and IPS, there are alternative approaches with the aim of securing an information
system. One of the alternative approaches are Honeypots and Honeynets which simulate a
supposedly interesting system to lure attackers and a second approach is ACCEPT which
uses a hypervisor to detect, analyze and handle security anomalies. Both approaches are
discussed in the following chapter.

2.4.1 Honeypot and Honeynet

Honeypots are decoy systems [SBo8] that distract attackers from actual valuable data such
as addresses, documents, and security-related firm-specific information. The core idea is
to observe and analyze attacks, in order to gain information about the attackers and the
attack types. Honeypots do not manage access and access rights; therefore, every access is a
potential attack that should be analyzed. If an attack is suspected, the honeypot triggers an
alarm. The attacker and the attack method are investigated in more detail. With additional
information about the attacker and the used methods and techniques, security mechanisms
can be improved and developed.

Advantages of honeypots as a security mechanisms are:

e long-term use can serve to improve the security mechanisms by analyzing identified
attacks, and be used for protection against future attacks;

e supplement to Intrusion Detection or Prevention Systems, since valuable information
about attackers and attack method can be found;

e suitable in demilitarized zone (DMZ) or in firewall, since the attacker would have no
other attack possibility except the Honeypot.

Disadvantages of honeypots as a security mechanisms are:

e high-cost and increased complexity;

e lack of practical experience, usually used only for research;

29

2 Related Work

A distinction is made between fields of application, such as production honeypots and
research honeypots. Production honeypots process unauthorized access. Every access is
considered as an attack and and therefore triggers an alarm. Production systems may thereby
protect against attacks. Research honeypots are used for studies about the attacks and the
technique of the attacker. Depending on the desired target, planned vulnerabilities will be
left open to analyze attacks, for example by worms. Multiple honeypots are called Honeynets.
They have the same functionality as honeypots [SPo4].

2.4.2 ACCEPT

ACCEPT is a relatively novel prevention approach based on the core idea of preventing the
security of an information system with the usage of a virtual machine monitor (hypervisor).
The aim of the approach is to detect, analyze, and handle security anomalies in virtualized
computing systems. Therefore, sensors monitor security anomalies (events) on different
layers of a virtualized computing system. Complex Event Processing (CEP) is used to abstract,
correlate, and aggregate events in order to detect attacks, perform actions, and reduce false
positives. The main drawback of ACCEPT is that this is currently only a theoretical approach,
without a significant implementation [LB12].

30

3 Motivation and Concept of a Breach
Detection System (BDS)

3.1 Motivation

Through the change of the IT environment in recent years, a common requirement of orga-
nizations, private persons, or governments is the security of their confidential information
assets. Every day, huge amounts of sensitive and confidential data is created and transmitted
over the Internet or intranet without one being aware of what actually happens to these data.
Credit card numbers, sensitive customer or internal corporate data, research findings, or
software codes are valuable information that has to be protected against third parties.

The Related Works in chapter 2 gave an insight into existing protection mechanisms and
approaches which attempt to secure the computer systems. The protection mechanisms
can be roughly divided into two approaches, namely Intrusion Prevention System (IPS)
and Intrusion Detection System (IDS). A typical IPS approach is a firewall. A firewall
is a preventive protection mechanism that, through the usage of certain rules, has the
goal of analyzing and filtering the data traffic on the network. Rules are defined by the
user during the configuration of the firewall, which will decide whether a data packet is
legitimate or not [BHoz]. The IDS approach distinguishes between anomaly (behavior-based)
detection and misuse (signature-based) detection. Anomaly detection generates profiles of
the normal usage behavior, and a deviation of the normal usage is considered as security
breach. Differently, misuse detection maintains a signature database with the signature of
attacks, which are compared with audit data during the analysis.

Despite being common practice, IPS and IDS suffer from several significant drawbacks. A
drawback of prevention mechanism is the definition of precise enough rules. The more
imprecise the rules, the worse is the detection of malicious attacks. This means that defining
rules that allow not too many, but also not too few data packets requires prior knowledge
that many users might not have. A further drawback is that the profiles are always updated,
considering that the more recent the profiles are, the more efficient the detection of malicious
intruders is. Drawbacks of detection mechanisms are inflexible behavior of misuse detection
because only stored signatures in a database are detected and high number of false alarms
of anomaly detection.

The goal of this diploma thesis is to conceptualize a novel method for Security Breach
Detection through File Access Monitoring and Pattern Recognition, design and implement a
Breach Detection System (BDS) framework to overcome the drawbacks of current IDS and
IPS.

31

3 Motivation and Concept of a Breach Detection System (BDS)

3.2 Concept Overview

The core idea of this novel approach is a method for Security Breach Detection using File
Access Monitoring and Pattern Recognition. A BDS shown in Figure 3.1 was developed and
able to detect and analyze security breaches at the operating system level. A particular focus
is on the file operations. The concept can be roughly described as follows:

A Sensor continuously monitors the system behavior in a controlled state where the system
is newly installed and not connected with the Internet, and provides this information in
form of an event to the Pattern Engine. An event is a set of parameters used for describing
the properties of a process. The Pattern Engine receives all events and creates a pattern
in the pattern creation phase of the learning phase. The Event Processing Matrix and the
Access Revocation define actions considered to be the result type of the pattern in the pattern
definition phase of the learning phase. Patterns are used to monitor a process that accesses a
certain file and determines the legitimacy of the file operation.

While the system is running in a normal environment (not secured), new events are created
from the current system behavior. These new events are compared in the recognition phase
of the application phase with existing patterns in order to evaluate the system behavior.

In case of an illegal system behavior, an action is executed through the Access Revocation,
which in turn triggers an action like sending a notification mail. In case of a valid system
behavior, the new event is added to the corresponding pattern in the adjusting phase of the
application phase.

32

3.2 Concept Overview

Learning phase-
pattern creation

Learning phase-
pattern definition

Operating System
Level

file operations

event 1
event 2
event 3

Sensor

new Event 1
new Event 2
ew Event 3

Pattern Engine

eventl = new Event1 ?

Access
Recovation
Action 1
Action 2
Action 3

Event Processing Matrix

action

actions

patterns

Figure 3.1: Overview of the Breach Detection System Architecture

Application phase-
recognition

33

3 Motivation and Concept of a Breach Detection System (BDS)

3.3 Description of the Key Terms

Event

David Luckham defines an event as an object that is a record of an activity in a system. The
event signifies the activity, and may be related to other events [Lucoz]. We use the term event
here to denote the properties of a process. A process specifies a running program. Every
program that is started is a process. For instance, a user opens a website or checks the inbox.
An event record consists of five elements: processID, userID, operation, path, date.

It is quite challenging to choose right parameters to uniquely describe a process or an action.
The reason behind choosing these five parameters is that we assume them to be suitable
for this purpose. ProcessID describes the number which uniquely identifies each process.
UserID describes the uniquely assigned user number. Operation describes the name of the
process. Path describes the name of the file. Date describes the current date when the event
is established. For further researches, it is possible to define more parameters.

An example of an event is shown in Table 3.1.

processID | userID | operation path date
event 10 root echo /user/bin/echo | 27/09/2013

Table 3.1: Example of an Event

This event shows who has accessed the file echo. Echo is a UNIX command that writes
strings to a standard output. A root user runs a process with a processID 10, and accesses
the file echo.

System behavior

The term system behavior defines the behavior of a system, and depends on various parameters
such as behavior of a user, underlying operating system, program execution, or configuration.
A differentiation is made between normal or expected and anomalous system behavior.
Normal or expected system behavior means that both hardware and software components
fulfill the expectations that are defined by certain conditions. Anomalous system behavior
can be defined as a deviation of the normal or expected system behavior, caused by anomalies
resulting from changes in hardware and software or their configuration.

There are three types of anomalies. The first type of system anomaly is a behavior which
is not intended or specified by a specification or configuration, for instance environmental
factors such as over-voltage caused by lightning, transmission, or programming errors. The
second type of system anomaly is a behavior in which components like libraries, software,
hardware, or operating system modules are intentionally extended by additional, harmful
functions; an example is Trojan horses. The third type of system anomalies are computer
viruses and worms [GW].

34

3.4 BDS - A Breach Detection System

File access pattern

Each event described as mentioned before represents properties of a file access. A pattern
describes one system function, for example a web server loads a homepage, or an e-mail server
accesses the inbox of a user and consists of multiple events which form a point cloud. That
means, a pattern represents a set of file access events which is gathered while the system is
running.

However, a system does not consist of only one system function; hence, multi-event patterns
are needed for describing one or more system functions. File access patterns are used to
monitor file accesses and decide whether an file operation was legitimate or not.

3.4 BDS - A Breach Detection System

Every action that is performed by a user or a program leaves a trace in some way. The
forensic computer science tracks these digital traces to detect and clarify criminal acts in
court [C.F]. Just as log files, for example from a web server where all requests are logged,
provide information about the usage of an Internet offer’.

Keeping this in mind, a novel approach is conceptualized which examines the file operations
in order to decide the legitimacy of a file operation and detect illegal system behavior which
could be harmful for the security of an information system. Therefore, the proposed BDS
shall monitor the system behavior and map it on patterns of file access events. Every action
that is executed through a user or a program affects a certain number of files. As described
in the introduction chapter, a significant property of the class of Unix operating systems is
the widespread term file. A file can be a regular file (text, programs and executable files),
directories or special device files (disk, webcam or printer). Therefore, file access events are
used to derive patterns, and which in turn monitor processes.

To construct a pattern, events are generated by the sensor component through monitoring
the system behavior. In order to monitor various system functions, it is necessary to use
multiple patterns. That means, by using only one pattern, only one system function can be
monitored. A pattern engine component is used to detect deviations between patterns that
consist of system behaviors recorded at a certain secure time, and patterns that are generated
with current system behavior while the system is running.

The proposed architecture is divided in several phases. Each of the phases represent different
parts and functionalities of the program sequence of the system. The next section will
describe the several phases in detail.

Thttp:/ /www.e-teaching.org/didaktik /qualitaet/logfile

35

3 Motivation and Concept of a Breach Detection System (BDS)

BDS Phases

The proposed BDS is separated into two phases, which is shown in Figure 3.2. The first
phase is called learning phase, which in turn is separated into pattern creation phase and pattern
definition phase. The proposed system learns in the pattern creation phase the system behavior
and creates patterns from this information and after the automatic part is done, the user
defines corresponding actions in the pattern definition phase.

The second phase is called application phase, which in turn is separated into recognition and
adjusting. The proposed system creates new events from the current system behavior and
compares them with existing events in the recognition phase in order to determine the
legitimacy of the file operation and add the new event to the pattern in the adjusting phase
in order to improve the patterns.

The reason behind deciding to divide the BDS into two phases is the issue that, at the
beginning of the system, there is available neither information about the system behavior,
nor events to generate patterns. If it is so, the system cannot differentiate between a valid or
invalid event. Therefore, in a first phase, information about the system behavior has to be
gathered, and in a second phase the pattern can be further improved.

add new event to pattern

)

AAA

Application phase-

v o
> WARNING o action
Learning phase- ./ Learning phase- . Application phase- | | \;¥
pattern creation "I pattern definition recognition result—j
next patteru

o
—» UNKNOWN —N\acti@

Figure 3.2: BDS Phases

3.4 BDS - A Breach Detection System

Learning phase

The purpose of the learning phase is the creation of a set of patterns and the definition of
corresponding actions. Therefore, the learning phase is separated into two parts, the pattern
creation phase and the pattern definition phase. The following sections will describe in detail
the functionality of both phases:

The first part of the learning phase is the pattern creation phase, which learns events from
the system behavior while the system is running in a controlled state and generates patterns
from this events by applying a density function. That means, a pattern is consisted of several
events which represents a system function and the density function itself. A pattern is
constituted by forming a point cloud of all events in a multidimensional space.

After the automatic part is completed, the second part of the learning phase, the pattern
definition phase will be executed. In this phase, a user defines actions which should be
executed, on basis of the generated patterns. In order to define an action, the result type
needs to be considered. Thus, result types are defined as VALID for events which match
into a pattern, WARNING for events which match only to a certain degree into a pattern,
BREACH for events which do not satisfy the properties of the pattern and UNKNOWN for
events where the result is not interpretable. These result types have to associate with actions
in order to react against detected illegal system behavior or breached patterns.

The Breach Detection System Architecture shown in Figure 3.1 consists among others of an
Event Processing Matrix and an Access Revocation component. The Event Processing Matrix
defines an association-matrix that links actions to patterns. In order to know which action
should link to which event, the action has to be defined depending on the result type of
an event. Therefore, a general action in form of a notification-mail is defined which will be
executed if an event applies. This general action can be adapted with a text documentation
or a special action depending on the type of the result and the pattern. For some patterns it
will be necessary to define special actions in order to be able to execute actions on a special
level.

To be able to monitor several system functions multiple pattern support is required. After
defining one pattern in the pattern definition phase, it is possible to repeat the pattern
creation phase and define the next pattern.

Application phase

The general approach of the application phase is to compare new events with existing
patterns in order to determine the legitimacy of a new event. An event consists of various
parameters like processID, userID, operation, path and date. Considering that a process is
accessing not only one but also several files, patterns are generated from various events.
A pattern, as described in the learning phase above, is consisted of several events which
represents a system function and the density function itself. A pattern is constituted by
forming a point cloud of all events in a multidimensional space and each parameter value
of the event represents a coordinate value. The application phase is divided in turn in two

37

3 Motivation and Concept of a Breach Detection System (BDS)

phases, the recognition phase and the adjusting phase. Both phases will be discussed in
detail in the next section:

After the completion of the learning phase, a set of patterns, each with definitions of actions,
are available and the BDS will proceed with the application phase.

The first phase of the application phase is the recognition phase. In this phase, the pattern
recognition algorithm compares each new event with existing patterns in order to examine
whether the new event is valid or not. Therefore, the purpose is to determine the density
of the current position of the new event by using a distance function. To do that, there are
a few major computation steps for determining the density of each new event. The major
computation steps are as follows:

1. generate the new event
2. determine the density of the new event
a) calculate the distance for each pattern
b) calculate the distance for each event
3. decide the legimitacy of the new event

4. add valid event to pattern

The first computation step is to generate the new event. Therefore, the current system
behavior is recorded while the system runs in a normal environment which is not secured.
After generating the new event, the second computation step is to determine the density of
the new event. The density describes the relation between the new event to all events in
the point cloud, that means the frequency of events around the new event. This yields the
following statement:

the higher the density, the more likely it is that the new event matches with a pattern, and the smaller
the density, the more likely it is that the new event does not match with a pattern

This statement indicates that the decision whether the new event is legitimate or not, depends
on the frequency of events around the new event. In order to determine the density, the
distances have to be calculated by calling the distance function. The distance function
computes the distances between the new event to each event of each pattern. To do that, the
distance function calls a method where each parameter of the new event is compared with
each parameter of the actual compared event in the point cloud.

The distance between the new event and the compared event defines how two events differ
from each other. This yields the following statement:

the higher the distance, the more likely it is that the compared events are similar and the smaller the
distance, the more likely it is that the compared events are not similar

Considering this statement, the distance of two events is an essential value while determining
the density. That means, if the distance value is high, as a consequence the density would be

38

3.4 BDS - A Breach Detection System

high, too and if the distance value is small, as a consequence the density would be small,
too.

The third computation step is to decide the legitimacy of the new event. Therefore, the
computed distances are compared with a given radian. If the distances are greater than a
predefined radian, the density is incremented. Depending on the density value, the result
type is determined.

After the first phase is finished and the density value is determined, the second phase, the
adjusting phase will be begin. If the density of the new event fulfills the characteristics of the
pattern, the result type will be set to VALID and the new event will be added to the existing
patterns in order to continue improving the patterns. Otherwise, the new event will be set to
the corresponding result type and adjust to the existing patterns.

39

4 Implementation

In this chapter, the architecture of the BDS will be designed and implemented, which realizes
the concept described in the previous chapter. The prototype is executed in Java and uses
web service for client-server communication. The description encloses procedures, methods,
and results as well as problems arising during realization.

The chapter will give technical details on the prototype and how the client-server commu-
nication and the web service are realized. Afterwards, an overview of the structure and
components of the proposed BDS will be given. This includes descriptions of the components,
functionalities of the BDS, and the development environment.

4.1 Client-Server Model

Architecture

This prototypical implementation of the BDS is realized with the web service technology.
Web services are associated with the concept of Service Oriented Architecture (SOA). SOA
is an architectural style that offers different services to a client, in form of methods and
functions [Ley11].

A web service provides functionalities and services for several applications, which can
be accessed over the network. There is no user involvement; therefore, a web service
is represented as an application-to-application communication, as opposed to a website,
with a human-to-application communication [Ley11]. Platform independence, scalability,
reusability, integration with other systems, and the usage of common standards such as
HTTP and XML are some benefits of web services over other architectural models. They are
able to provide services to the outward through an interface description language, called
Web Service Description Language (WSDL). A WSDL document describes the methods and
functionalities, by which the service will be addressed, as well as the data format that a web
service is offering.

Another way to realize a web service is the RESTful web services technology. REST stands for
Representational State Transfer, and describes an architectural model rather than a protocol.
There is no remote procedure call and argument passed in an XML document; methods such
as POST, PUT and GET are used for request and response, which are transmitted over a
stateless client-server protocol.

41

4 Implementation

Communication

For the proposed BDS, we decided to realize a SOAP-based web service shown in Figure 4.1.
SOAP is a standardized network protocol able to exchange data between systems. Initially, it
stands for the acronym Simple Object Access Protocol. Since 2003, SOAP is used as SOAP
without the acronym. SOAP uses HTTP to access the client through a network, Internet, or
intranet, and invokes their objects and methods. The technology of Remote Procedure Call
(RPC), in which methods are invoked on remote servers to pass arguments and return values,
is used. The parameters and return values are described in the WSDL document [Ley11].
For implementing and deploying the web service, a java-based technology, Java API for XML
Web Services (JAX-WS), is used. JAX-WS provides a platform that facilitates the development.

Client Server

SOAP

Breach Detection
Sensor |

Component

Figure 4.1: Client-Server Communication over a SOAP Protocol

Web service implementation

To provide a web service as a service on the network, the following steps are needed:

1. Web Service Endpoint Interface: First, an interface with the Java Annotation @WebMethod
is implemented. The @S OAPBinding (style = Style.RPC) indicates that this class should be
bound by a SOAP protocol, and the communication by a remote procedure call.

Q@WebService
@S0APBinding(style = Style.RPC)
public interface BDCInterface {
@WebMethod
void notifyEvent(Event event);
@WebMethod
void notifyPoint();}

Listing 4.1: Web Service Endpoint Interface

42

4.1 Client-Server Model

2. Web Service Endpoint Implementation: Second, the implementation of the actual service is
realized. Therefore, the Java Annotation @WebService is denoted with the implemented
endpoint interface from step 1.

@QWebService(endpointInterface = "com.breachDetection.ws.BDCInterface")
Q@S0APBinding(style = Style.RPC)
public class BDCImplementation implements BDCInterface {
public void notifyEvent (Event event) {
patternengine.processEventLerningphase(event) ;
by
public void notifyPoint() {
patternengine.processEventApplicationphase();

i
Listing 4.2: Web Service Endpoint Implementation Class

3. The Endpoint Publisher: With an endpoint publisher it is possible to publish the im-
plemented service to the outward. A WSDL file is created automatically by publishing
the endpoint publisher. For testing purposes, the service can be called up with the URL:
http:/ /localhost:8080/PublishService /BreachDetectionSystem?wsdl"

public class PublishService {
public static void main(Stringl[] args) throws InstantiationException,
IllegalAccessException {
Endpoint endpoint = Endpoint.publish
("http://localhost:8080/PublishService/BreachDetectionSystem",
new BDCImplementation());}}

Listing 4.3: Endpoint Publisher Class

4. Web Service Client: The web service client is the application that accesses the previously
published web service. Therefore, the URL which is the URL from the WSDL file that
was published in step 3 and QName which is the qualified name of the service, has to be
initialized.

public Sensor() {
URL url = new URL(
"http://localhost:8080/PublishService/BreachDetectionSystem?wsdl") ;
QName gname = new (QName("http://ws.breachDetection.com/",
"BDCImplementationService") ;
Service service = Service.create(url, gname);
BDCInterface bdcInterface = service.getPort(BDCInterface.class);}

Listing 4.4: Web Service Client

43

4 Implementation

4.2 Components of the proposed Architecture

The class diagram in Figure 4.2 gives an architectural overview of the classes that have been
implemented, and represents the relationships between the classes. The BDS consists of five
main classes and can be roughly described as follows:

The Sensor component can be seen as a container of information, which continuously delivers
information to the Breach Detection Component. The Breach Detection Component receives the
input from the Sensor and passes it to the Pattern Engine Component. The Pattern Engine
Component is a significant component in this proposed architecture because it implements the
pattern recognition algorithm. The Event Processing Matrix defines an association-matrix that
links patterns to corresponding actions. The Access Revocation Component triggers different
actions depending on the severity and nature of the received event.

The next section will discuss in detail the architectural structure and the underlying data
structure of the implemented components.

Sensor

Sensor is the component which represents the client-side of the web service. Considering this,
a web service is an application-to-application communication, and the term client represents
a server. In order to avoid misunderstandings, we use the term client in this case. This
component has the task of gathering information about the system behavior during file
operations, and passing it by invoking a method that is implemented in the Breach Detection
Component.

Breach Detection Component

Breach Detection Component is the component which represents the server-side of the
implemented web service. This component provides the connection between the Sensor
Component and the Pattern Engine Component. It executes the service that is accessed by
the Sensor Component through the implemented methods.

Pattern Engine

Pattern Engine Component implements the pattern recognition algorithm. The task of
the Pattern Engine Component is to compare two events and determine the legitimacy of
the file operation. In order to detect a deviation of the system behavior or illegal system
behavior, a result is defined. There are four result types: VALID, BREACH, WARNING and
UNKNOWN.

44

4.2 Components of the proposed Architecture

FDBYSIUUONEIONSYSSI0Y (Iaba)u)oeuoioe @
(JuoneaoAsyssadny ¥

ajgnop:(urajgnopjuapunie
Jied:uuuodieb e
ploA{juiodulodazieuas =
ploA(uiundo) Aisusp e
@agolynsay:(uaagunfisuagssadold e

<JaDalU|=1SI AR (JUBAT <)uBAT>]S ABLI)UCIOUN{B0UEISIp

pioa(jusag)aseyduoneaddyiuaadssadoid e
pIoA(JusAg)aseydBuiaTiuaagssadold e
(JouiBuzwaned e

pion{[BuLisurew e
(Joamizsusiiand o
SWUONIBI3OUIE3Iq WO

EMINCISTETG FToY
<<SSE[D) BAB[>>

10

S UONIBI20UIEaI0 W
aulbuguiaped e
<558 BAB[>>

Buns:(uang I unuomyop e

S UOII8180YJERIG WO B
UOMBIOABYSSBIDY &)
<<55B|]) BAB[' ==

SICUONISIS0Y Bl WOl
39B1I3])U|UOIRIONDYSSIIIY &)
<<a0ulia)l| BABT>>

10| wds-

T b v

DIOA(JUBAT I UIYnsaYssa0id @
piox(ggoLinsay)insayssadoid o
(JxuepbuIssatoidiuand e

S U031 L1 WO
xinepBuissasoidiuanzg
<<SSB|7) BAR[>>

Buing:(uanguruiuo 6,4.8 0

BULIS (UeAT JUru)LORYOp o

Bu Ewbc@m_a Iunuolayop e

Buws:(uang I unuomyop e

(JONINYvMUonYop (Jarvauonowyop.y (INMONMNNUoIYOp ¥ (JHOv3yauonyopy
S UONIBIBQUIBSI0 WO S UONI81BQYIESIq WO S UONIS}B0YIBaIY WO S UO0I1IRRY eI WO
ONIN¥YMUONIYOPE arnvAuoiavope NMONYNNUoBaYope HOV3dguonayopa

<=55E|]) BAB[==

<=55E|]) BAB[=>

<=55E|]) BAB[==

<=55E|]) BAE[=>

auibuaupted

pioA(uI'Bus
pioa(uiBumg

I u)aseyduonedlddy e
Wruruaseydbuiest o
pioA{jusAgjluan3finou e
(Juoneswsidwinag.e

S UONI31QUIEIq WO
uonejusws|dwidage
<<S5E|D) BAB[>>

45

pioA(saydeigusuodwoniuied e

(JpueduondaleQ e
<uiod=1s1Ae Ly ()a|IJwoi{SiuIodpeal B

18/dde uondalaguIealg Wwod
|aueduonasiage
<<5SB|D) BAB(>>

10| Josuss-
pioa(uiBumg i unaseyduoneaddy o ¢ ,
pioA (i Bung ‘i wiueseydbuies e | | .. : PNzt
: 170 |pion()aseydbuiieajiosusgun e

ploA{juangJluaAIfnou o

. aoeuslppa- ()osuag e

S UONIRIQUIEIq WOD -
20epRUIOaE 0 F0INBS BINS o

<<308JIaU] BAB[>>

10212 U0N 212U IEAIG WO
losusse
<<55E|]) BAB[=>

r(Bums)ujowonelado o
<UanTz1snAeiy(Bung)ussiedasa e
(JBuisiedosT e

SWU0II2180YIERIq WO
Buisiedjoste
<<SSEB|]) BAB[>>

Class Diagram for the Implementation of BDS

Figure 4.2

4 Implementation

Event Processing Matrix

Event Processing Matrix, shown in Table 4.1, defines an association-matrix that links patterns
to corresponding actions in order to achieve a certain security level. Columns of the matrix
represent the actions that are executed depending on the result of the Pattern Engine
Component. For instance, actions could be to send a notification mail, or block a malicious
user, or shutdown the server by serious security breaches. Rows of the matrix represent the
patterns. For instance, a pattern could be that a web server loads a homepage, or a mail
server accesses the wrong user directory.

patterns/actions send notification mail | block user | shutdown server |
mail server accesses X
wrong user directory
web server loads home page X

Table 4.1: The association-matrix Table

The underlying data structure for this prototypical implementation of an association-matrix
is a nested hashmap, shown in Figure 4.3. A hashmap is an associative storage which keeps a
key with a value. It is ideal for storing a set of unsorted elements and making them available
quickly over the keys. The internal hashing method is fast'. A nested hashmap is a hashmap
linked to another hashmap or multiple hashmaps. The first hashmap stores the identification
number of the patterns and the second, nested hashmap stores the result typ defined in the
Pattern Engine Component.

1 patterniD 1 +| R1 ‘VALID |—>| R2 ‘WARNING |—>| R3 ‘ BREACH |—>| R4 ‘UNKNOWN |
2 patternID 2
3 patternID 3
4 patternID 4
n patternID n

Figure 4.3: The nested Hashmap

Alternatively, another possibility can be used for further developments. Complex Event
Processing (CEP) is a generic term for methods, techniques, and tools to process events
systematically and automatically as they happen, i.e., continuously and promptly [EBog].
However, for the special use case of file operations, we decided to implement our own Event

'Galileo Computing : Java ist auch eine Insel

46

4.2 Components of the proposed Architecture

Processing Matrix instead of using CEP. But for future work, an implementation with CEP
could be possible.

4.2.1 Access Revocation

The Access Revocation Component triggers different actions according to the severity and
nature of the received event. Depending on the defined result type at the Pattern Engine
Component, an action is executed. For VALID, a possible action could be writing a log entry;
for BREACH, shutting down the server; and for WARNING and UNKNOWN, sending a
notification-mail.

The underlying structure of the Access Revocation Component is a factory method pattern.
This is a design pattern, and belongs to the creational patterns. It represents an interface
for the creation of an object, and lets the subclasses decide which concrete class should be
instantiated. In other words, the idea of the factory method pattern is to define a base class
type, and then have any number of subclasses which implement the contract defined by the
base class®.

In our implementation the Access Revocation Class implements the factory class. It can
return several action types, in which the criteria of an action matches the specified action.
The Access Revocation Interface Class represents the abstract class that implements the
action method.

Every action that is returned has to implement this class. The classes doActionBREACH,
doActionUNKNOWN, doActionVALID and doActionWARNING are concrete action classes that
implement the Access Revocation Interface class.

<<Java Class>>» <<Java Interfaces>
©AccessRevocation B AccessRevocationinterface
combreachDetectionws [T T T T T T T T T T T > com.breachDetection.ws
&AccessRevocation() o doAction(int int Event)-String
o actionFactory(Integer):AccessRevocationlnterface

<<Java Class>> <<Java Class>> <<Java Class>> <<Java Class>>
©doActionBREACH ©OdoActionUNKNOWN GdoActionVALID ©doActionWARNING
com.breachDetection.ws com.breachDetection.ws com.breachDetection.ws com.breachDetection.ws
#doActionBREACH() £doActionUNKNOWN() £doActionVALID() £doActionWARNING()
o doAction(int,int Event):String o doAction(int,int Event)-String o doAction(intnt,Event):String o doAction(int,int Event):String

Figure 4.4: Class Diagram of the Factory Pattern Method

*alvinalexander.com/java/java-factory-pattern-example

47

4 Implementation

4.3 Functionality

Considering that this prototype is the first version for the implementation of the concept
described in chapter 3, some differences exist between the concept and the implementation.
In addition to the learning phase and the application phase described in the concept,
a visualization phase is implemented with the help of an applet in order to enable a
representation of the calculated values.

The comparison of the new event with existing patterns and the computation of the density
function is not as described in the concept implicit in the learning phase, but rather explicit
in the application phase. That means, if the pattern recognition would be in the learning
phase, then indeed patterns are generated by a polynomial function or a markov-chain
state machine. The application phase allows instead of an implicit computation, an explicit
measure. By doing so, the environment of the new event is examined and the density values
are measured.

A further difference between the concept and the implementation is that the first version of
the implementation supports only one pattern with predefined actions. That means, only
one pattern is generated and examined against illegal system behavior and a general action
is not used as the concept chapter described. As the Figure 4.4 shows, there are four actions
predefined.

The functionality of the BDS is divided into a learning phase, an application, phase and a
visualization phase, as shown in Figure 4.5. In the following section, the phases are explained
in detail.

Learning phase |— | Application phase »| Visualization phase

Figure 4.5: Functionality of the Breach Detection System

4.3.1 Learning phase

At the beginning of the learning phase, there are no events available. Therefore, in the first
part of the learning phase, for the pattern definition, events have to be loaded and defined.
An event, as introduced in the previous chapter, is a term to define properties of a process.

In order to get information about processes that perform file operations, and thus access
files, the lsof tool is used. As introduced in chapter 1.2, list open files (Isof) consists of a tool
that lists information about files opened by a user or a running process. For this purpose,
we run the command with the following options: -Fpuctn, to receive a list of files that are
currently opened by a user or a process; option -F, to produce output so that other programs
can work more easily; option p, which stands for process ID; option u for process user ID;

48

4.3 Functionality

option c for process command name; option ¢ for file type; option n for file name3. A lsof
output might look like:

pi12
cbash

Uu20
tDIR
n/home/user
tREG
n/sbin/init
tCHR
n/dev/null
tFIFO
npipe

Considering that the use case of this diploma thesis are file operations, only REG, which
stands for regular files, and DIR, for directories are considered. This lsof output is stored in
a text file, and read in through the Sensor Component during the first part of the learning
phase, the pattern creation. An event with the example Isof output is shown in Table 4.2.
This represented event depicts a process with the processID 12 that is executed by a user
with the userID 20 in order to run the operation bash.

processID

userID

operation

path

date

event

12

20

bash

/home/user

creation date

Table 4.2: Generated Event from Lsof Output

To promote a better understanding of the use case, it can be imagined that the whole events
of a pattern form a point cloud in a multidimensional space which is shown in Figure 4.6.
From the figure, it can be seen that, in this pattern, similar events have clustered at the

bottom right.

3http:/ /www.computerhope.com/unix/Isof htm

49

4 Implementation

4 ° ° N
°)
\ o _ . J
o® %%
\\ .:.2’. //‘
L oo © -
\;,, ///\\ /\ -

Figure 4.6: A sample Point Cloud

4.3.2 Application phase

The prototype verifies the file access events and determines the legitimacy of a file operation
in the first part of the application phase, the recogition phase. To realize the pattern
recognition, new events have to be compared with existing ones from which a pattern has
been generated. New events arise from the current system behavior just as described in the
learning phase.

The purpose of the pattern recognition algorithm is to examine, based on the calculated
density, whether a file operation is valid or not. The density describes the relation between
all previous events and the new event. In other words, it depicts the frequency of events
around a new event in the point cloud. The higher the density, the more likely it is that the
new event matches with a pattern, and the smaller the density, the more likely it is that the
new event does not match with a pattern. The computation steps of the pattern recognition
algorithm to determine the density are shown in the sequence diagram of Figure 4.7.

50

4.3 Functionality

proce ss EventApplicationphase distanceFunction computeDistance proce ssDensity

T
|
|
|
|
1: distanceFunction (pattem, new Event) :

|
|
|
|
|
|
|
|,r| 1.1: compute Distance (new Event)
|
|
|

1.2: distance
< 1.3: distance [] foraleventepaﬁem%

1.3.2: pracessDensity (density, new Event)
i

|

|

|

1.3.1: compute density : :
| |

| |

|

1

|

|

1.3.3: result

|
result = (patterniD, resulfTyp, new Event) :
resultTyp = VALID, WARNING, BREACH, UNKNOWN |

I

Figure 4.7: Sequence Diagram of the Computation Steps of the Pattern Recognition Algorithm

In order to decide whether a file operation is valid or not, a pattern recognition algorithm is
used to calculate the density. To determine the density, first of all, the new event has to be
initialized. After this has been done in a way described in the first part of the learning phase,
the first computational step of the pattern recognition algorithm to determine the density
is to invoke the distance function. The distance function builds the cartesian product of all
events.

As described in Algorithm 4.1, the distance function is called with input parameters pattern
and newEvent for each new event, which comes in and computes the distance to all events
in the point cloud by invoking a sub algorithm, the distance computation function described
in Algortihm 4.2. The distance function then returns the calculated distances of all events.

51

4 Implementation

Algorithm 4.1: Distance Function builds the Cartesian Product of all Events

Algorithm distanceFunction (pattern, newEvent)
Input: pattern, newEvent
Output: distances []

distances]]
for all event € pattern do
distance.add(distancecomputation function(newEvent, event))
end for
return distances

The second computation step of the pattern recognition algorithm is to compare each
parameter of the new event with each parameter of all events in the point cloud. This is
done with a weighting function which is implemented in the Algorithm 4.2 and weighted
the parameters considering the similarity and diversity. The distance computation function
has as input values, an event which is included in the pattern, and a new event, which is
recorded by monitoring the current system behavior.

To illustrate the computation with an example, the previous defined event1(12, 20, bash,
/home/user, creation date) and a new event2(10, 1, echo, /usr/bin/echo, creation date) are used.

The parameters processID (12 and 10), userID (20 and 1) and operation (bash and echo) are
simple to weight because they only can be equal or not equal. If they are equal, they are
weighted with 2 and if not, with o.

The value of the date parameters are the timestamp of the creation date of the both events.
If the date value of the event is greater than the date value of the new event, than the date
value of the new event is substracted from the date value of the event. Otherwise, if the data
value of the new event is greater than the date value of the new event, than the data value
of the event is substracted from the date value of the new event. But this case indicates an
event in the past which should not be possible, but however if this case occurs, it can be
interpreted as a breached event. If the result of this computation is without remainder, than
they are weighted with 2. The timestamp is a time designation in seconds, therefore a time
difference of at least 1 second is weighted with o.

Problems occur when comparing the path parameters. For this version of the prototype, we
decided to compare both paths without considering the semantic of the content. This means
that /home/user1 and /home/user2 would be as similar as /user/bin/echo/x and /user/bin/echo/y.
However, they are not equally similar, because /home/user1 and /home/userz are not in the
same directory. In Unix-like operating systems, every user has its own home directory.
Differently, /user/bin/echo/x and /user/bin/echo/y share the same directory. A further sub
algorithm compares each sign of the path parameters on equality and returns an integer
value. This value is used through the weighting function in order to weight the path
parameters. If the result is less than 2, than they are weighted with 2, if the result is less

52

4.3 Functionality

Algorithm 4.2: Function for Computing the Distance between two Events

Algorithm distance computation function (event, newEvent)
Input: event, newEvent
Output: distance

dateDif ference < 0
processDif ference < 0
pathDif ference < 0

path <0

if event.process == newEvent.process then
processDif ference = 2

else
processDif ference = 0

end if

// same for the user and the operation parameter
if event.date > newEvent.date then
dateDif ference = event.date — newEvent.date
end if

if dateDif ference == 0 then

dateDif ference = 2
else

dateDif ference = 0
end if

// sub algorithm compares the both path parameters and returns an integer value

if path < 2 then

pathDif ference = 2
else if path < 6 then

pathDif ference = 1

else
pathDif ference = 0
end if
distance = (processDif ference + userDif ference + operationDif ference -+

pathDif ference + dateDif ference)

if distance == 10 then
distance = 1

else if distance > 1 then
distance = 11 — distance

else if distance == 1 then
distance = 9

else
distance = 10

end if

return distance

53

4 Implementation

than 6, than they are weighted with 1, otherwise with o. That means, we normalize the path
parameters on a scale of 1 for totally equal and 10 for totally different.

All weighted values are calculated together to a distance value and in turn normalized again
on a scale of 1 for nearby and 10 for wide apart. If the distance value is 10, that means, both
events are nearby and the distance is weighted with 1. If the distance value is greater than 1,
the distance is weighted with the result of 11-distance and if the distance value is equal 1,
the distance is weighted with 9, otherwise with 1o0.

The distance computation function returns the calculated distance of both events to the
distance function. These two steps are repeated till all events are compared with the new
event in the point cloud. All computed distances are added and stored in a list of distances.

The density function Algorithm in 4.3 computes the density of one new event by comparing
the distances in the list of distances with a predefined radian. If the distance of the new
event is less than or equal the radian, the density, starting at o, is incremented by 1. It is
preferable to choose the radian great enough to ensure that there are enough events in the
radian.

Algorithm 4.3: Function for Computing the Density

Algorithm density (list of distances [])
Input: list of distances []
Output: density

density < 0
radian € Integer

for all density € distance do
if density < radian then
density <— density + 1
end if
end for
processResult(processDensity(density, newEvent))
densityToPoint(density)

In order to determine the result type for the density and the new event, the processDensity
method described in Algorithm 4.3 is invoked. This method implements a conditional
structure on a scale from 1 to 10. If the density is less than 4, the result type is BREACH and
if the density is greater or equal to 4 and less than 8, the result type is WARNING, otherwise
it is VALID. The result type is not considered for now. This method returns a result with the
patternID, the result type and the newEvent which in turn is processed to the Event Processing
Matrix with the method processResult. The Event Processing Matrix is an association-matrix
that links patterns to corresponding actions and is implemented as a nested hashmap. In
this association-matrix, first after the patternID is searched, afterwards the result type which
is stored behind the patternID in order to execute predefined action.

54

4.3 Functionality

A point cloud with various event points is shown in Figure 4.8. In this example, the red
point represents the new event, the black points represent the events from the pattern, the
green points represent the density and grey circle represent the radius.

The density for this example is six, which means that the associated result type is WARNING
according to above classification. An action for this result type might be sending a notification-
mail. If the density is smaller than four, the associated result type is BREACH and an action
might be shutting down the server or some other countermeasures. If the density is greater
than eight, the associated result type is VALID and an action might be writing a log entry.

Figure 4.8: Computes the Distance of a new Event (red point) to the existing Events in the
Point Cloud (black and green points)

4.3.3 Visualization phase

The purpose of this visualization phase is to provide a user interface in form of an applet in
order to visualize the outputs and the behavior of the Breach Detection System and give a
motivation for a better understanding. The general approach is to map the outputs from the
learning and application phase on two-dimensional coordinates. At a first glance, it is not
obvious which outputs or which values should be visualized. There are some possibilities,
which are discussed at the next section:

One possibility would be to visualize the patterns. A pattern defined in chapter 3 consists of
multiple events and represents a set of file access events. It describes one system function
for example a web server loads home page or an email server accesses to the inbox of a ‘user’.
The implementation of a pattern is a list of events which have each five parameters. The
parameters are processID, userID, operation, path and date. The idea is to visualize each pattern
and mark the new event red, in order to see, to what extent the new event is remote of the
patterns. The difficulty of this approach is the question of how five different parameters can

55

4 Implementation

be visualized on a two-dimensional space and how the unit of the coordinate axes has to be
chosen in order to map all five parameters properly.

Therefore, another possibility would be to visualize the density. The idea of this approach is
to draw a point for each event on the coordinate system concerning the density. The density
describes the relation between events and patterns. For each event there is only one value
and in order to draw a point on the coordinate system, a further value is required. We decide
to take the value of the density as the x-coordinate axis and the value of the patternID as the
y-coordinate axis.

In order to draw the points which have only one value, the circle coordinate representation
is chosen. With the circle coordinate representation the points can be drawn on the diagonal
or on any angle, so that they do not accumulate on a point.

To know the position of the new event on the circumference of a circle, we have to calculate
the point (x,y) first. The density is determined in Algorithm 4.3 and with the method
densitytoPoint, a point can be calculated. For the parameter notation of the point, the radius
(r), the angle (a), and the origin (x, y) are required. This yields the following formula:

x = cx +rx*cos(a)
y =cy+r=*sin(a)

For our approach, the radius (r) corresponds to the density, the angle (a) corresponds to
the patternID and the origin (x, y) to the origin (o, 0). The unit of a has to be converted
into radians with Math.toRadians (patternID). For our approach, this yields the following
formula:

x = density * cos(patternID)
y = density * sin(patternID)

The Cartesian coordinate system and the Graph2D class of Java is used to create two-
dimensional graphs. Since the origin of the coordinate system in Java is by default in the
upper left corner of the applet, the axes of the coordinate system have to be transformed.

Events with a lower density should be drawn further outside, and events with high density
should be drawn more in the middle of the coordinate system. To do that, the value of the
density has to be reversed to ensure a semantically correct drawing. The maximum density
value is deducted from the actual density value in order to normalize the value and ensure
that the point is in a range between the maximum and minimum density. The maximum
value is the size of the eventlist. This yields the following formula:

x = (eventlist.size() — density) cos(patternID)
y = (eventlist.size() — density) sin(patternID)

56

4.3 Functionality

When the new event is close to the existing events, then they are within the pattern; the
further they move away, the more different they are from the corresponding pattern. Figure
4.9 shows points with low density (red) and points with high density (green). The angle is

determined from the patternID, so that it is possible to see how close or how far a point
from a pattern is.

NA

= Pattern 1

Rt

§ Pattern 2

(9] . .

Q. density point

xy)
Pattern n
distance

origin density

Figure 4.9: Graphical Visualization of the Density

57

5 Evaluation

In this chapter, an evaluation of the conceptualized novel approach for Security Breach
Detection and implementation of a BDS prototype is within the scope of this diploma thesis
will be given. Thus, the strengths and weaknesses of the concept, as well as implementation
can be figured out because conceptualizing a novel approach and implementing an associated
prototype, can lead to several challenges. Therefore, primarily the concept is evaluated in
view of open conceptual problems and subsequently, the prototype is evaluated in view of
test data, performance, limitations and implementation hurdle during the implementation.

5.1 Evaluation of the concept

Open conceputal problems

At the moment, it is possible to generate only one pattern and examine new events concerning
this one pattern. As in previous chapters described, a pattern represents a system function
and in order to examine various system functions, a multiple pattern support is required.

Further developments for handling multiple patterns can be added by improving the pattern
recognition algorithm. The issue is, that the algorithm should be changed so, that multiple
patterns can be recognized. Assuming, that we have a new event, that matches into several
patterns, or only into one pattern, or into none of the patterns. The question is when would
be an event valid.

A conceptual decision was to represent all events as points in a multidimensional space, also
referred as point cloud in the previous chapters in order to constitute a pattern through
defining an area in this point cloud. Patterns are objects in a multidimensional space and
currently considered as a field which is an area where the events are located. With this
approach that only cover an area, it is not possible or very difficult to recognize coherences
between events. Assuming, that the sequence of file operations plays a significant role, this
approach would not be sufficient anymore. Additional to this issue, it is not obvious to see
for a user, when a new event comes in, where the pattern starts and ends.

Therefore, other mathematical constructs have to be used instead of fields, that consider
possible probabilities and state transitions and give the opportunity to enable coherences in
events. An approach would be the usage of vectors in a multidimensional space.

59

5 Evaluation

5.2 Evaluation of the prototype

Test data

In order to evaluate the performance and the proper functionality of the implemented BDS
prototype, test data is required. For this testing purpose, a test scenario is evolved which
should represent a known system function. A pretty known system function is the process
that a web server loads a web page.

Therefore, in the learning phase of the prototype, a Isof output is generated manually by
executing the command -Fpuctn. This Isof output is used to constitute patterns which consists
of events and represent various system functions, as well as define corresponding actions
that are executed whether an event is valid or not. All events of a pattern form a point cloud.
In the application phase, another Isof output with the current system behavior is generated
in the same way, as described above.

Performance and Limitations

Once the patterns are generated in the learning phase and a new event is constituted in the
application phase, the pattern recognition algorithm will compute the density of the new
event concerning the patterns. The density is a value which represents the relation between
the new event to all events in the point cloud. Depending on this density, a statement can
be made about the validity of the new event. To compute the density, a distance function is
used which builds the cartesian product of all events. That means, each parameter of events
in the patterns must be compared with each parameter of the new event.

Assuming, our test data consists of a set of 2,000 events or even more which is possible
because lsof lists all files which is opened by any process, in the point cloud and each event
consists of five parameters. That means, we have to compare 2,000*5 parameters with the five
parameters of the new event. The approach to compare each parameter with each other is
too time-consuming and not efficient which in turn has negative effects on the performance
of the prototype. The comparison increases exponential growth of runtime.

A limitation of the first version of the prototype is, as described in the previous section, that
there is currently no support for multiple patterns. At the moment, it is only possible to
generate one pattern and examine new events concerning this one pattern. Further develop-
ments for handling multiple patterns can be added by improving the pattern recognition
algorithm.

A further limitation is the visualization of the density in order to provide a meaningful
representation of the calculated values. The current implementation of the prototype uses a
predfined coordinate system which is implemented in a Java applet to draw all density values
as points. A coordinate system with predefined x and y-axis is not scalable and flexible
because assume that the density value is 50 and the patternID is 1. If the corresponding
point is (49,99/0,87) and the size of the x and y-axis is only 40 units, the calculated point can

60

5.2 Evaluation of the prototype

not be drawn. Therefore, the visualization requires a dynamic, scalable coordinate system
in order to provide an appropriate visualization. As a first approach, we have taken the
maximum x and y value of the calculated points from the density values, as the maximum x
and y-axis unit. By doing so, we managed to draw all points in the coordinate system, but a
further difficulty occured. All points are having nearly the same values or are having at least
only minimal differences. That means, all points are accumulated together and this results
in a non-usable graphic.

Implementation hurdle

As introduced and described in the implementation chapter, a pattern recognition algorithm
is used to compute the density in order to decide whether an event satisfies the validity
of the patterns or not. To do this, a distance function is used which builds the Cartesian
product of all events. This distance function described in Algorithm 4.1 computes for each
new event the distance to all events in the point cloud by invoking a sub algorithm described
in Algorithm 4.2. For this comparison purpose, we implemented a weighting function in
order to compare each parameter of the new event with each parameter of all events in the
point cloud. An event consists of five parameters; processID, userID, operation, path and date.

An implementation hurdle was the realization of the conceptualized weighting function.
The weighting function compares each parameter of the new event with each parameter of
the events in the point cloud and weighted the parameters considering the similarity and
diversity. The parameters processID, userID and operation are simple to weight because they
only can be equal or not equal. If they are equal, they are weighted with 2 and if not, with
0.

A little more difficult is the comparison with the date parameter which is a timestamp of the
creation date of the event. If the date value of the event is greater than the date value of the
new event, than the date value of the new event is substracted from the date value of the
event. If the result is o, than they are weighted with 2, otherwise with o.

The comparison with the path parameter is the most difficult part of the pattern recognition
algorithm because a semantic comparison of the prototype is not possible at the moment. A
path consists of a sequence of strings like /home/user or /usr/bin/echo and in order to simplify
the comparison, the path parameters have to be transformed into an integer value. By doing
this, a difficulty occurred with the semantic of the paths. To determine the similarity and
diversity, a further sub algorithm is used which compares each sign of the string on equality.
If all signs are different, except the first root sign /, we can say that the two paths are
completely different and weight it with 9, on a scale of 1 for totally equal and 10 for totally
different. If all signs are equal, we weight it with 1.

The sub algorithm uses this path value to weight the path parameters. If the result is less
than 2, than they are weighted with 2, if the result is less than 6, than they are weighted with
1, otherwise with o. All weighted values are calculated together and in turn weighted again
on a scale of 1 for equality and 10 for diversity.

61

5 Evaluation

The difficulty of this approach is, that it is obvious to see that it may not always work and
several weighting functions are possible to be implemented. We have arbitrary chosen a
weighting function that use the weights the result with 2 for similarity, 1 for result that are
neither similarity nor diversity and o for diversity. Different weights are at least possible.

62

6 Conclusion and Outlook

The aim of this diploma thesis was to conceptualize a method for Security Breach Detection
using File Access Monitoring and Pattern Recognition. For the implementation of this
concept, a novel Breach Detection System (BDS) was designed and implemented in form of a
prototype.

The focus of this thesis was to examine file operations at the Unix-like operating system,
and derive patterns from the system behavior in order to determine the legitimacy of the
file operations. Therefore, as a first step, a brief overview was given on the underlying file
concept, as well as on basic knowledge about computer security, pattern recognition and
pattern matching technologies.

Currently existing protection mechanisms for detecting, analyzing, and handling security
breaches were analyzed, and implementation examples were presented. Typical implementa-
tion examples are Intrusion Prevention Systems (IPS) and Intrusion Detection Systems (IDS),
which aim to monitor the network and the computer system against malicious vulnerabilities,
thus ensuring the security and confidential information of organizations, private persons,
and governments.

The aforementioned concept is based on the idea of determining whether it is possible to
derive, through a pattern recognition algorithm, patterns about the system behavior of file
operations. A pattern consists of various events, and describes the allocation of system
behavior on patterns that are generated at a file access event. An event denotes the properties
of a process that is executed by a user or a running program. This means that each pattern
represents a certain system function of an underlying operating system. Based on these
patterns, it should be identified on which files processes are accessed, in order to determine
the legitimacy of the file operations.

The proposed BDS prototype was implemented in Java, and web service was used for the
client-server communication, which provides an application-to-application communication.
In a learning phase, the system behavior was monitored continuously in a controlled state,
and patterns were constructed and defined from the information on system behavior. In an
application phase, the current system behavior was recorded while the system was running
in a normal environment (not secured) and compared against existing patterns, in order to
initiate countermeasures if necessary, when detecting illegal system behavior.

As examined in the evaluation chapter, the first version of the prototype has some imple-
mentation limitations as well as performance problems which depend on that the fact that
the development time of a thesis is restricted, and not all of the intended functions could
be completely implemented. Currently, the prototype supports only one pattern that is

63

6 Conclusion and Outlook

examined. In order to efficiently detect and analyze security breaches, the prototype has to
be improved in a way that multiple patterns are supported. It must be noted that the pattern
recognition algorithm and the underlying data structures have to be changed.

The computation of the distance function is currently explicit as a cartesian product of all
events. The drawback of this approach is that computation for a large amount of events is too
time-consuming and not efficient enough at the moment. Therefore, an implicit approach for
the computation of the density function would increase the efficiency. The density function
could be created as a polynomial function during the learning phase.

A sub algorithm of the distance function, the weighting function compares each parameter
of a new event with each parameter of the events in the point cloud. As already mentioned
in the evaluation chapter, the approach of the weighting function could perhaps not be
applicable for every approach. Therefore, a more general weighting function has to be
improved and implemented. A further improvement for the weighting function would be
the use of Dewey Decimal System (DDC) which is an international widespread universal
classification system® and would enable content-based semantically correct comparison of
the path parameters of an event.

To generate a pattern, information about the system behavior is required. Lsof (List open
files) is a tool which provides this knowledge by listing all information about files that are
currently opened by a process or a user. The difficulty with Isof is that not all open files
can be found, because during examination of the process table, the state of some processes
with files open might have changed, without Isof being able to recognize it*>. Therefore, in
this first version of the prototype, Isof is used only as a provisional solution. For further
implementations, the prototype should communicate directly with the kernel.

The evaluation chapter has shown, that the current approach with the usage of fields, has
some limitations. A limitation is the issue that the definition of the current approach which
only covers one area, does not enable relations between events and representations of events
as a sequence of file operations. Therefore, an idea for a further development regarding the
limitations of the current approach would be the use of a vector in a multidimensional space.
A vector would enable to define a pattern not only as an area in the point cloud, but as a
sequence of file operations in various directions and a new event has to match within this
vectors. One of the five parameters of an event is the date parameter and represents one
dimension in the multidimensional space. A vector would enable to define the temporal
behavior of events as a direction between events and to depict where the event starts and
ends. A deviation of the direction of the vector or if an event goes beyond the vector would
lead to a breach.

Figure 6.1 shows at the left side a point cloud with a sequence of events in which all events
would be in the point cloud and at the right side two vectors with sequences of events in
which each vector covers a sequence of events.

Thttp:/ /www.oclc.org/dewey.en.html
*ftp:/ /1sof.itap.purdue.edu/pub/tools/unix/lsof /FAQ

64

Ce 3) \}(/

u) o 9
\" * O// ‘\\— / “\O N

\/\0 P —

Figure 6.1: Point Cloud with a sequence of operations (left) and two vectors with sequences
of operations (right)

In order to provide an effective complex pattern recognition engine, other mathematical
constructs have to be used instead of a field and even vectors would not be enough. For this
purpose, an approach is required that consider possible probabilities and state transitions
and give the opportunity to enable coherences in events.

The positive side effect of this implementation is that properties of a system can be recognized
which are not obvious to figure out, for example how precisely enough should the SELinux
rules be defined or how should be the access permissions of a directory or how many users
should exist in order to determine the access permissions accurate enough. In a pattern
database, it is possible to see how the system behaves, which files are opened, and which
files are written.

This could be a good basis to implement prevention mechanisms and set file permissions that
could possibly not be easy to determine. Rather than its use as a Breach Detection System, an
expanded possibility could be its use as a support system for configuring prevention mecha-
nisms and file permissions. Additionally, it could be helpful for security administrators to
recognize the system behavior in order to subsequently determine preventive mechanisms.

65

Bibliography

[A.Wo06]

[BHo2]

[Bieos]

[CSI11]

[CSO11]

[Deboz]

[Den87]

[Drao4]

[EBo9]

[Eckiz]

S. A.Walberg. Finding open files with lsof. IBM developerWorks, 2006. URL
http://www.ibm.com/developerworks/aix/library/au-1sof .html. (Cited on
pages 13 and 14)

J. M. N. M. Benjamin Hoherz, Silvio Krueger. Intrusion Detection Systeme
in Firewalls. Master’s thesis, Fachbereich Informatik Universitit Hamburg,
2002. URL http://agn-www.informatik.uni-hamburg.de/papers/doc/bacarb_
hoherz_krueger_menne_michaelsen.pdf. (Cited on pages 19, 20 and 31)

T. Biege. Intrusion Detection Systeme Ein Uberblick. 2005. URL
http://users.suse.com/ thomas/papers/IDS/Intrusion/Detection/
Systeme-EinUberblick.pdf. (Cited on pages 27 and 28)

Computer Crime and Security Survey 2010/2011. Technical report, Computer
Security Institute, 2010/2011. URL http://gatton.uky.edu/FACULTY/PAYNE/
ACC324/CSISurvey2010.pdf. (Cited on page 15)

D. CSO, CERT. Cybersecurity Watch Survey: Organizations need more skilled
cyber professionals to stay secure. Technical report, CSO, CERT, Deloitte, 2011.
URL http://www.sei.cmu.edu/newsitems/cybersecurity_watch_survey_2011.
cfm. (Cited on page 15)

H. Debar. An Introduction to Intrusion-Detection Systems. 2002.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.
74334rep=repl&type=pdf. (Cited on pages 24 and 25)

D. Denning. An Intrusion-Detection Model. Software Engineering,
IEEE Transactions on, SE-13(2):222-232, 1987. doi:10.1109/TSE.1987.
232894. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
1702202&isnumber=35884&tag=1. (Cited on pages 23 and 24)

O. Dragon. The What and Why of Intrusion Detection Systems. 2004. URL http:
//wwwé4.ncsu.edu/"kksivara/sfwr4c03/projects/01iDragon-Project.pdf.
(Cited on page 23)

M. Eckert, F. cois Bry. Aktuelles Schlagwort "Complex Event Processing (CEP)",
2009. URL http://epub.ub.uni-muenchen.de/14902/. (Cited on page 46)

C. Eckert. IT-Sicherheit: Konzepte - Verfahren - Protokolle. Oldenbourg, Miinchen,
7., Uberarb. und erw. aufl. edition, 2012. URL http://swbplus.bsz-bw.de/
bsz350724911inh.htm. (Cited on pages 17, 28 and 29)

http://www.ibm.com/developerworks/aix/library/au-lsof.html
http://agn-www.informatik.uni-hamburg.de/papers/doc/bacarb_hoherz_krueger_menne_michaelsen.pdf
http://agn-www.informatik.uni-hamburg.de/papers/doc/bacarb_hoherz_krueger_menne_michaelsen.pdf
http://users.suse.com/~thomas/papers/IDS/Intrusion/Detection/Systeme-Ein�berblick.pdf
http://users.suse.com/~thomas/papers/IDS/Intrusion/Detection/Systeme-Ein�berblick.pdf
http://gatton.uky.edu/FACULTY/PAYNE/ACC324/CSISurvey2010.pdf
http://gatton.uky.edu/FACULTY/PAYNE/ACC324/CSISurvey2010.pdf
http://www.sei.cmu.edu/newsitems/cybersecurity_watch_survey_2011.cfm
http://www.sei.cmu.edu/newsitems/cybersecurity_watch_survey_2011.cfm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.7433&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.7433&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1702202&isnumber=35884&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1702202&isnumber=35884&tag=1
http://www4.ncsu.edu/~kksivara/sfwr4c03/projects/OliDragon-Project.pdf
http://www4.ncsu.edu/~kksivara/sfwr4c03/projects/OliDragon-Project.pdf
http://epub.ub.uni-muenchen.de/14902/
http://swbplus.bsz-bw.de/bsz350724911inh.htm
http://swbplus.bsz-bw.de/bsz350724911inh.htm

Bibliography

[Garo8]

[GW]

[Hilo1]

[Kapo7]

[Krig8]

[LB12]

[Ley11]

[Meio7]

[MPB*12]

[Peto8]

[SBo8]

68

M. Garrels. Introduction to Linux- A Hands on Guide, 1.27 edition, 2008. URL
http://www.tldp.org/LDP/intro-linux/intro-1linux.pdf. (Cited on page 11)

K. S. Gabriel Welsche. Grundlagen Sicherheit. Technical Report Revision:
1.1.2.11. URL http://www.linux-services.org/selflinux/html/grundlagen_
sicherheit.html. (Cited on page 34)

M. Hildebrandt. Intrusion ~ Detection = am Beispiel = von
Snort. 2001. URL http://www.pro-linux.de/artikel/2/1121/
intrusion-detection-am-beispiel-von-snort-teil-1.html. (Cited on
page 23)

M. Kappes. Netzwerk- und Datensicherheit: Eine praktische Einfithrung. Teub-
ner, Wiesbaden, 2007. URL http://nbn-resolving.de/urn/resolver.pl?urn=
10.1007/978-3-8351-9202-7. (Cited on pages 16, 17, 20 and 21)

R. Krienke. UNIX fiir Einsteiger: eine praxisorientierte Einfiihrung. Hanser, Miinchen,
2., verb. aufl. edition, 1998. (Cited on page 11)

M. L.R.S. M. S. B.S. B. F. Lars Baumgaertner, Pablo Graubner. Mastering Security
Anomalies in Virtualized Computing Environments via Complex Event Process-
ing. The Fourth International Conference on Information, Process, and Knowledge
Management, 2012. URL http://www.accept-projekt.de/publications.html.
(Cited on page 30)

P. D. E Leymann. The Web as Platform - lecture notes of University of Stuttgart
(IAAS), 2011. (Cited on pages 41 and 42)

M. Meier. Intrusion Detection effektiv!: Modellierung und Analyse von Angriffs-
mustern. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. URL http://
nbn-resolving.de/urn/resolver.pl?urn=10.1007/978-3-540-48258-1. (Cited
on pages 23 and 25)

C. Modi, D. Patel, B. Borisanya, A. Patel, M. Rajarajan. A novel framework for
intrusion detection in cloud. In Proceedings of the Fifth International Conference on
Security of Information and Networks, SIN "12, pp. 67-74. ACM, New York, NY,
USA, 2012. doi:10.1145/2388576.2388585. URL http://doi.acm.org/10.1145/
2388576.2388585. (Cited on page 21)

H. Peterreins. Mustererkennung. In Grundsitze soliden Investierens, pp. 20—22.
Gabler, 2008. doi:10.1007/978-3-8349-8144-8_4. URL http://dx.doi.org/10.
1007/978-3-8349-8144-8_4. (Cited on page 17)

W. Stallings, L. Brown. Computer security: principles and practice. Pearson
Prentice Hall, Upper Saddle River, NJ, 2008. URL http://bvbr.bib-bvb.de:
8991/F?func=service&doc_library=BVBO1&doc_number=015782366&1line_
number=0002&func_code=DB_RECORDS&service_type=MEDIA. (Cited on pages 16,
20, 23, 27, 28 and 29)

http://www.tldp.org/LDP/intro-linux/intro-linux.pdf
http://www.linux-services.org/selflinux/html/grundlagen_sicherheit.html
http://www.linux-services.org/selflinux/html/grundlagen_sicherheit.html
http://www.pro-linux.de/artikel/2/1121/intrusion-detection-am-beispiel-von-snort-teil-1.html
http://www.pro-linux.de/artikel/2/1121/intrusion-detection-am-beispiel-von-snort-teil-1.html
http://nbn-resolving.de/urn/resolver.pl?urn=10.1007/978-3-8351-9202-7
http://nbn-resolving.de/urn/resolver.pl?urn=10.1007/978-3-8351-9202-7
http://www.accept-projekt.de/publications.html
http://nbn-resolving.de/urn/resolver.pl?urn=10.1007/978-3-540-48258-1
http://nbn-resolving.de/urn/resolver.pl?urn=10.1007/978-3-540-48258-1
http://doi.acm.org/10.1145/2388576.2388585
http://doi.acm.org/10.1145/2388576.2388585
http://dx.doi.org/10.1007/978-3-8349-8144-8_4
http://dx.doi.org/10.1007/978-3-8349-8144-8_4
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015782366&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015782366&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=015782366&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA

Bibliography

[SB10] M. A. S. M. Saira Beg, Umair Naru. Feasibility of Intrusion Detection System
with High Performance Computing: A Survey. International Journal of Advances
in Computer Science, 2010. (Cited on page 21)

[SFSF11] M. Schmidt, S. Fahl, R. Schwarzkopf, B. Freisleben. TrustBox: A Security Archi-
tecture for Preventing Data Breaches. In Parallel, Distributed and Network-Based
Processing (PDP), 2011 19th Euromicro International Conference on, pp. 635-639. 2011.
doi:10.1109/PDP.2011.44. (Cited on page 22)

[SPo4] R. Stevens, H. Pohl. Honeypots und Honeynets. Informatik-Spektrum, 277(3):260—
264, 2004. do0i:10.1007/500287-004-0404-y. URL http://dx.doi.org/10.1007/
500287-004-0404-y. (Cited on page 30)

[ST13] P. E. Schukat-Talamazzini. Mustererkennung Vorlesung im Sommersemester 2013,
2013. URL http://www.minet.uni-jena.de/fakultaet/schukat/ME/Scriptum/
lectOl-intro.pdf. (Cited on page 18)

[Thriz] ThreatMatrix. Cybercrime Battle Basics Online Account, Transaction and Device
Protection. Technical report, ThreatMatrix, 2012. URL http://www.threatmetrix.
com/docs/Whitepaper-Cybercrime-Defender.pdf. (Cited on page 21)

[Upa11] S. Upadhyaya. Mandatory Access Control. In H. van Tilborg, S. Jajodia,
editors, Encyclopedia of Cryptography and Security, pp. 756—758. Springer US,
2011. d0i:10.1007/978-1-4419-5906-5_784. URL http://dx.doi.org/10.1007/
978-1-4419-5906-5_784. (Cited on page 22)

[Ver1is] Verizon. Data Breach Investigations Report 2013. Technical report, Veri-
zon, 2013. URL http://www.verizonenterprise.com/resources/reports/rp_
data-breach-investigations-report-2013_en_xg.pdf. (Cited on page 9)

Alle URLs wurden zuletzt am 12.11.2013 gepriift.

http://dx.doi.org/10.1007/s00287-004-0404-y
http://dx.doi.org/10.1007/s00287-004-0404-y
http://www.minet.uni-jena.de/fakultaet/schukat/ME/Scriptum/lect01-intro.pdf
http://www.minet.uni-jena.de/fakultaet/schukat/ME/Scriptum/lect01-intro.pdf
http://www.threatmetrix.com/docs/Whitepaper-Cybercrime-Defender.pdf
http://www.threatmetrix.com/docs/Whitepaper-Cybercrime-Defender.pdf
http://dx.doi.org/10.1007/978-1-4419-5906-5_784
http://dx.doi.org/10.1007/978-1-4419-5906-5_784
http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigations-report-2013_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigations-report-2013_en_xg.pdf

Declaration

I hereby declare that the work presented in this
thesis is entirely my own. I did not use any
other sources and references that the listed
ones. I have marked all direct or indirect
statements from other sources contained
therein as quotations. Neither this work nor
significant parts of it were part of another
examination procedure. I have not published
this work in whole or in part before. The
electronic copy is consistent with all submitted
copies.

(Zeynep Oztiirk)

	1 Introduction
	1.1 File System
	1.2 LSOF - List Open Files
	1.3 Computer Security
	1.4 Pattern Recognition and Pattern Matching

	2 Related Work
	2.1 Intrusion
	2.2 Intrusion Prevention System (IPS)
	2.3 Intrusion Detection System (IDS)
	2.4 Alternative Approaches

	3 Motivation and Concept of a Breach Detection System (BDS)
	3.1 Motivation
	3.2 Concept Overview
	3.3 Description of the Key Terms
	3.4 BDS - A Breach Detection System

	4 Implementation
	4.1 Client-Server Model
	4.2 Components of the proposed Architecture
	4.3 Functionality

	5 Evaluation
	5.1 Evaluation of the concept
	5.2 Evaluation of the prototype

	6 Conclusion and Outlook
	Bibliography

