Institut fr Technische Informatik
Universitat Stuttgart
Pfaffenwaldring 47
D-70569 Stuttgart

Diplomarbeit Nr. 3380

Test Rekonfigurierbarer
Scan-Netzwerke

Marcel Schaal

Studiengang: Informatik

Prifer: Prof. Dr. rer. nat.
Hans-Joachim Wunderlich

Betreuer: M. Sc. Rafat Baranowski
Dipl. Inf. Michael Kochte

begonnen am: 8. August 2012

beendet am: 7.Februar 2013

CR-Klassifikation: B.7.1,B.8.1, D.2.5, J.6, K.1

Inhaltsverzeichnis

. Einleitung und Motivation

. Grundlagen des Hardware-Tests

2.1. Testund Diagnose
2.2. Testbarer Entwurf
2.3. Abstraktionsebenen in der Modellierung
2.4. Strukturelle Fehlermodelle.
2.5. Fehlersimulation
2.6. Automatische Testmustererzeugung
2.7. Erfillbarkeitsproblem der Aussagenlogik

. Grundlagen Rekonfigurierbarer Scan-Netzwerke

3.1. Aufbau und Strukturo
3.2. Modellierung auf Transaktionsebene
3.3. Klassifizierung der Fehlerwirkung und Testbarkeit
3.4. Funktionale Fehlermodelle auf Transaktionsebene

. Testalgorithmen fiir Rekonfigurierbare Scan-Netzwerke
4.1. Pseudo-zufillige Testmustererzeugung
4.2. Funktionale Testheuristiken
4.3. Testmustererzeugung auf Transaktionsebene . . .
4.4. Vergleich der Testalgorithmen

. Implementierung

5.1. Ubersicht des Testverfahrens
5.2. Zugriffsmustererzeugung —edai168y
5.3. Einlesen und Verarbeiten von Netzlisten
5.4. Extraktion des Scan-Pfads aus der Netzliste . . .
5.5. Aktivierung von Scan-Pfad-Segmenten
5.6. Fehlerinjektion und -detektion
5.7. Fehlersimulation

. Ergebnisse und Bewertung

6.1. Ubersicht der verwendeten Testschaltungen . . .
6.2. Auswertung der Testalgorithmen
6.3. Klassifizierung nicht detektierter Fehler

. Zusammenfassung und Ausblick

11
16
17
19
21
21

25
25
29
31
34

37

37
39
40
45

47

47
48
49
51
53

55
58

61
61
66

71

77

A. Anhang

Literaturverzeichnis

81

83

Abbildungsverzeichnis

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.
33
3.4.
3-5
3.6.

3.7
3.8.

39

4.1.
4.2.
4.3

5.1.
5.2.
53
5.4.
55

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

Beispiel eines untestbaren Haftfehlers 11
Beispiel einer flankengesteuerten Scan-Zelle 13
Beispiel einer Scan-Kette o oL 13
Beispiel eines Haftfehlers 18
Beispiel eines Briickenfehlers 18
Skizzierter Aufbau einer seriellen Fehlersimulation 20
Beispiel eines Rekonfigurierbaren Scan-Netzwerks 26
Beispiel eines Scan-Segments o L oL L oL 27
Beispiel der aktiven Pfade in einem Scan-Segment wiahrend der Update-Phase 28

Beispiel der aktiven Pfade in einem Scan-Segment wihrend der Capture-Phase 29

Beispiel der aktiven Pfade in einem Scan-Segment wihrend der Scan-Phase . . 29
Beispiel der Aktivierungsvariablen an Scan-Pfad-Segmenten auf Transaktion-

sebene L 31
Beispiel eines gebrochenen Scan-Pfads 35
Beispiel eines félschlich aktiven Scan-Pfads 35
Beispiel eines instabilen aktiven Scan-Pfads 36
Beispiel einer hierarchisch bedingten Zugriffsstruktur. 38
Beispiel eines direkt gebrochenen Scan-Pfads 41
Beispiel eines durch fehlerhafte Kontrolllogik gebrochenen Scan-Pfads 42
Flowchart des Testverfahrens 48
Beispielinstanz zur hierarchischen Variablenabbildung 51
Beispiel einer Scan-Pfad-Rekonvergenz 52
Beispiel eines Fehlers auf dem Scan-Pfad 56
Beispiel eines Eingangsfehlers des Scan-Pfads 57
Beispiel einer SIB-basierten Testschaltung 62
Struktureller AufbaueinesSIBs o oL 62
Struktureller Aufbau einer MUX-Zelle 63
Struktureller Aufbau einer Chain-Testschaltungen 64
Verbleibende Fehler in c499_chain 72
Verbleibende Fehler in f2126_mux 73
Verbleibende Fehler in f2126_sib, . 74

Tabellenverzeichnis

4.1.
4.2.

5.1.
5.2.

6.1.
6.2.
6.3.

. CNF-Aquivalente-Darstellung von Logikprimtiven 24
Wahrscheinlichkeitstabelle fiir pseudo-zufdlligen Test 39
Zusammenfassung der Testbarkeit verschiedener Fehlerklassen 45
Nicht-kontrollierende Werte von Logikgattern 54
Aquivalente Fehlerklassen 58
Ubersicht {iber ISCAS’85 Testschaltungen 64
Statistik der Testschaltungen 65
Ergebnisse fiir Fehlerabdeckung und Laufzeit verwendeter Testalgorithmen . 68

. Ergebnisse fiir die Anzahl und Lange der erzeugten Testmuster 69

Verzeichnis der Algorithmen

4.1. Schreibende funktionale Testheuristik 40
5.1. Datenstruktur eines Graphknotens, 50
5.2. Datenstruktur der hierarchischen Variablenabbildung 51
5.3. Scan-Pfad-Extraktion o o L. 52
5.4. Modellierung der Boole’schen Differenz 53
5.5. Pfadaktivierung 55
5.6. Pessimistische Fehlerdetektion 57
A1 ICL-Beispiel 81

1. Einleitung und Motivation

Moderne Mikrochips enthalten zahlreiche Instrumente, die zur Auswertung der Betriebs-
parameter, zum Test oder zur Validierung der Funktionalitit genutzt werden. Rekonfig-
urierbare Scan-Netzwerke (RSN) bieten die Moglichkeit eines effizienteren, flexibleren und
skalierbareren Zugriffs auf eingebettete Instrumente gegentiber tiblichen statischen Scan-
Ketten.

Durch den Einsatz von Rekonfigurierbaren Scan-Netzwerken nimmt jedoch die Komplexitat
der Zugriffsinfrastruktur zu. Wahrend Scan-Ketten im Wesentlichen aus Schieberegistern
bestehen, wodurch ein Defekt im Scan-Pfad relativ einfach festgestellt werden kann, find-
en sich in Rekonfigurierbaren Scan-Netzwerken, neben einfachen Logikelementen, auch
Multiplexer und moglicherweise komplexere Schaltungen. Somit konnen unterschiedliche
Scan-Pfade und -Hierarchien gebildet werden. Allerdings konnen bestehende Tests fiir
Scan-Ketten die komplexere Steuerlogik bei Rekonfigurierbaren Scan-Netzwerken nicht
ausreichend testen. Deshalb ist es notwendig, neuartige Teststrategien zu entwickeln, welche
speziell an die Merkmale von Rekonfigurierbaren Scan-Netzwerken angepasst sind.

In dieser Arbeit werden Strategien fiir den Test Rekonfigurierbarer Scan-Netzwerke analysiert
und ausgewertet. Es werden mehrere neue Verfahren zur Erzeugung von Testmustern
vorgestellt, welche effizient beziiglich Laufzeit als auch des Speicherplatzbedarfs arbeiten.

Einen Uberblick tiber die notwendigen Grundlagen des Hardware-Tests fiir den Verlauf
dieser Arbeit wird in Kapitel 2 gegeben werden. Dort wird auf die Notwendigkeit des Tests
bei der Herstellung von Mikrochips eingegangen. Zum besseren Verstdandnis folgt darauf
ein Uberblick iiber Fehlermodelle und Fehlersimulation als auch {iber die automatische
Testmustererzeugung.

Aufbau und Arbeitsweise Rekonfigurierbarer Scan-Netzwerke werden im dritten Kapitel
erkldrt. Ebenfalls findet sich darin eine Klassifizierung der Fehlerwirkung des Haftfehler-
modells in Rekonfigurierbaren Scan-Netzwerken. Dartiiber hinaus wird auf die effiziente
Modellierung auf Transaktionsebene eingegangen, da sich eine taktgenaue Modellierung als
zu komplex gestaltet.

Die verwendeten Testalgorithmen fiir Rekonfigurierbare Scan-Netzwerke werden in Kapi-
tel 4 vorgestellt. Es wird deren Methodik erkldrt und eine erste Analyse der Testbarkeit
beschrieben.

Im fiinften Kapitel wird die erarbeitete Implementierung naher erldutert. Dabei wird auf die
Modellierung zur Erzeugung von Testmustern auf Transaktionsebene eingegangen. Hierzu
ist es notwendig, eine entsprechende Verhaltensbeschreibung des Rekonfigurierbaren Scan-
Netzwerks mit den notwendigen Erweiterungen zur Testmustererzeugung in ein Modell auf

1. Einleitung und Motivation

Transaktionsebene zu tiberfiihren, welches ebenfalls Teil des Implementierungskapitels ist.
Abschliefiend wird die Modellierung von Fehlern und deren Wirkung, als auch Detektion, auf
Transaktionsebene beschrieben, da diese eine Voraussetzung fiir die Testmustererzeugung
ist.

Die Ergebnisse und Bewertung der Testalgorithmen finden sich in Kapitel 6. Hierbei wird
zuerst der Aufbau der Experimente beschrieben, welche zur Analyse der betrachteten
Algorithmen zur Testmustererzeugung herangezogen wurden. Im restlichen Verlauf des
Kapitels werden die Ergebnisse der Experimente erldutert.

Das abschliefiende Kapitel 7 fasst die Arbeit und deren Ergebnisse kurz zusammen und gibt
einen Ausblick, welche weiteren Verbesserungen aus Sicht des Autors sinnvoll sind.

2. Grundlagen des Hardware-Tests

In diesem Kapitel werden die notwendigen Grundlagen zum Verstandnis der weiteren Arbeit
vermittelt. Dabei wird Grundwissen aus der Technischen Informatik, wie sie im Grund-
studium des Studiengangs Diplom Informatik gelehrt werden, vorausgesetzt. Nachgelesen
werden konnen diese Grundlagen zum Beispiel in [WWWo06] oder [PHo4]. Da die Imple-
mentierung der Arbeit auf der Gatterebene realisiert ist, werden keine elektrotechnischen
Kenntnisse benotigt. Ein Grundwissen in Theoretischer Informatik, wie es zum Beispiel in
[Scho8] vermittelt wird, ist vorteilhaft, denn die Modellierung des Problems findet in Form
der Aussagenlogik statt.

Der erste Abschnitt erldutert das Problem des Hardware-Tests und der Diagnose, welches
sich bei der Fertigung von integrierten Schaltungen ergibt. Darauthin werden Verfahren
vorgestellt, um dieses Problem einfacher zu gestalten. Anschliefend wird eine Ubersicht
tiber verschiedene Abstraktionsebenen integrierter Schaltungen gegeben. Defekte werden
im Hardware-Test als abstrakte Fehler in Form von Fehlermodellen beschrieben, welche
niher in 2.4 erlautert werden. Zur Uberpriifung der Auswirkung eines Fehlers in einer
integrierten Schaltung kann Fehlersimulation genutzt werden, die in Kapitel 2.5 beschrieben
wird. Folgend wird die Erzeugung von Testmustern fiir den Hardware-Test beschrieben und
auf dessen Komplexitit eingegangen. Abschliefiend wird die Umwandlung einer auf Gat-
terebene modellierten Schaltung in eine Instanz des Erfiillbarkeitsproblem der Aussagenlogik
dargelegt.

2.1. Test und Diagnose

Eine fehlerfreie Herstellung integrierter Schaltkreise ist mit moderner Fertigungstechnik
nicht moglich. Die immer hohere Integrationsdichte, und damit verbundene geringere
Strukturgrofien, fithren zu einem starkeren Einfluss der Prozessschwankung auf die Schal-
tungseigenschaften und damit zu geringerer Ausbeute (engl. yield) [Sta86]. Die Ausbeute
gibt das Verhiltnis von funktionsfahigen Chips 7 ¢y uktionar zur Gesamtzahl produzierter Chips
Nyroduziert a1y, daher:

(2.1) yield = Luktionat

Nyroduziert

Die Ausbeute hdangt von vielen Faktoren ab, wie etwa der Ausgereiftheit des Herstellungsver-
fahrens, der geforderten Produktqualitédt, der Grofle der Chips und der Qualitat des Tests.
Je friiher ein fehlerhafter Chip entdeckt wird, desto geringer sind die Kosten, da unnétige

2. Grundlagen des Hardware-Tests

Schritte, wie Verpacken in ein Gehduse oder im schlimmsten Fall Riickholung des Systems
von einem Kunden, vermieden werden. Deshalb werden Chips in jeder Phase der Fertigung
getestet. Zur Uberpriifung, ob ein Mikrochip bestimmte Anforderungen in Form seiner
Spezifikation erfiillt, das heifdt funktional ist, existierten unterschiedliche Teststrategien.

Werden Testmuster aufserhalb des Chips erzeugt und durch Testsysteme zugefiihrt, so wird
von externem Test gesprochen. Testverfahren, welche dedizierte Testlogik auf einem Chip zur
Erzeugung von Testmustern voraussetzen, werden als eingebauter Selbsttest (engl. Built-in
self-test, BIST) bezeichnet.

Wihrend es beim Hardware-Test im Wesentlichen lediglich um eine bindre Entscheidung
geht, namlich ob ein Mikrochip korrekt arbeitet oder nicht, steht bei der Diagnose die Frage
im Vordergrund, warum ein Mikrochip oder Modul nicht richtig funktioniert. Dies kann
unter anderem mit der Fehlerstelle und der Art des Fehlers beantwortet werden.

Die Diagnoseergebnisse konnen genutzt werden, um den Fertigungsprozess zu opti-
mieren und damit die Ausbeute erhohen und die Produktionskosten senken. Bestimmte
physikalische Strukturen konnen zum Beispiel sehr empfindlich auf Schwankungen des Fer-
tigungsprozesses sein und zu einer Haufung von Defekten fiihren. Diese Strukturen sollten
dann mit dem fortschreitendem Prozess des Herstellungsverfahrens angepasst werden, um
eine hohere Schwankungstoleranz zu gewihrleisten, so dass die Defekte reduziert und die
Produktqualitit verbessert werden kann.

2.1.1. Fehlerabdeckung

Um eine Aussage tiiber die Giite einer gegebenen Testmustermenge T zu treffen, wird ein
Giitekriterium bendtigt. Dazu kann die Fehlerabdeckung Cr (engl. fault coverage) genutzt
werden, welche sich aus der Zahl der von T entdeckten Fehler D, geteilt durch die Gesamtzahl
der modellierten Fehler F ergibt:

D
(2.2) Cr = 7
Die Fehlerabdeckung gibt daher die relative Zahl der detektierten Fehler an und wird
als Prozentzahl ausgedriickt. Da weder die Anzahl der Testmuster, noch die benotigte
Testzeit in die Aussage der Fehlerabdeckung eingehen, stellt die Fehlerabdeckung nur ein
Effektivtatsmafl und kein Effizienzmaf3 dar.

Je nach Anwendungsbereich werden unterschiedliche Fehlerabdeckungen gefordert. In
der Automobilindustrie wird von den Herstellern in der Regel eine Fehlerabdeckung von
mindestens 99,999% nach ISO 26262-5 vorgeschrieben [iso12].

2.1.2. Testbarkeit von Fehlern

Ein Fehler ist detektierbar genau dann, wenn eine Folge von Testmustern M existiert,
welche den Fehler aktiviert und zu einer von der fehlerfreien abweichenden Ausgabe an

10

2.2. Testbarer Entwurf

den Primédrausgangen fiihrt. Ein Fehler ist nicht detektierbar, falls keine solche Folge von
Testmustern existiert. Abbildung 2.1 zeigt einen untestbaren Fehler. Diese kdnnen unter
anderem in fehlertoleranten Strukturen auftreten, da in diesen ein Fehler keine Auswirkung
auf das Ergebnis nehmen soll, sofern keine weiteren Mafinahmen des testbaren Entwurfs
eingesetzt wurden.

VDD

By
B —DE_
B
Abbildung 2.1.: Beispiel eines untestbaren Haftfehlers an Signal B;

Wird ein Fehler F1 ausschliefilich durch eine Teilmenge der Testmustermenge eines weiteren
Fehlers F2 detektiert, so dominiert der Fehler F2 den Fehler F1.

Die Fehlerwirkung verschiedener Fehler kann identisch sein, so dass diese nicht voneinander
unterscheidbar sind. In diesem Fall kénnen die Fehler in Aquivalenzklassen zusammenge-
fasst werden und miissen nicht separat behandelt werden. Dadurch kann Rechenzeit bei der
Erzeugung von Testmustern eingespart werden [HKBo4].

2.2. Testbarer Entwurf

Die Implementierung einer integrierten Schaltung beeinflusst ihre Testbarkeit und die
entstehenden Testkosten. Testbarer Entwurf umfasst Verfahren und Strategien zum gezielten
Entwurf integrierter Schaltungen mit hoher Testbarkeit.

Je schlechter eine integrierte Schaltung testbar ist, desto aufwendiger ist der benotigte Test
und damit zum Beispiel die Anzahl der benotigten Testmuster. Auf der einen Seite miissen
dann mehr Testmuster erzeugt werden, wodurch die benottigte Vorbereitungszeit fiir den
Test steigt, um diese zusatzlichen Muster zu berechnen und zu validieren. Dies kann dann
zu einer verldngerten Produkteinfithrungszeit fithren und somit den Gewinn schmalern.
Auf der anderen Seite miissen mehr Testmuster mittels automatischer Testsysteme (eng]l.
automatic test equipment, ATE) in der gleichen Zeit gepriift werden, so dass entweder
weniger Chips gefertigt werden konnen, oder weitere automatische Testsysteme benétigt
werden, wodurch die Testkosten steigen.

Ein klassisches Beispiel fiir schlechte Testbarkeit stellt ein n-Bit-Zahler dar, welcher nur iiber
zwei Eingdnge zum Inkrementieren und Zurticksetzen verfiigt und keine Optimierungen fiir
einen effizienten Test besitzt. Um diesen Zahler vollstiandig funktional zu testen, miissen dazu
alle 2" Zustande iteriert werden. Unter Annahme, dass der Zahler 64 Bit besitzt, das heifst

11

2. Grundlagen des Hardware-Tests

n = 64 und 25 Millionen Iterationen pro Sekunde durchgefiihrt und getestet werden konnen,
so betrdgt die Testdauer fast 24.000 Jahre. Eine Moglichkeit des testbaren Entwurfs wire die
Aufspaltung in kleinere Zahler mit beispielsweise 8-Bit und separaten Reset-Eingdngen.

Um den Test integrierter Schaltungen wirtschaftlich zu gestalten, wurden Methoden ent-
wickelt, um die Testbarkeit stark zu verbessern. Eine davon besteht in der Integration einer
zusitzliche Testinfrastruktur in die Schaltung. Scan-Design, welches im Abschnitt 2.2.1 ndher
erklart wird, stellt so eine Testinfrastruktur dar.

Weitere Verfahren des testbaren Entwurf umfassen Priifpunkte, das heifst das Hinzufiigen
von zusédtzlichen Dateneingédngen, um die Kontrollierbarkeit oder das Hinzuftigen von Daten-
ausgadngen, um die Observierbarkeit zu erhdhen, sowie BIST und Testdatenkompression.

2.2.1. Scan-Ketten

Mit Scan-Ketten (engl. scan chain) wurde eine Entwurfstechnik eingefiihrt, welche die
Erzeugung von Testmustern wesentlich vereinfacht. Dies wird erreicht, indem sequentielle
Speicherelemente von aufien kontrollier- und observierbar gemacht werden. Dadurch wird
eine wirtschaftliche deterministische Testmustererzeugung auch fiir grofe integrierte Schal-
tungen ermoglicht. Scan-Ketten werden seit der Einfithrung durch [WA73] nahezu tiberall
im testbaren Entwurf eingesetzt.

Die grundlegende Idee der Scan-Ketten besteht darin, dass sequentielle Speicherelemente
durch Scan-Zellen ersetzt werden. Diese Scan-Zellen bestehen, neben dem urspriinglichen
Daten- und Kontrollpfad des Speicherelements, aus einem weiteren Datenpfad mit zuge-
horiger Kontrolllogik, wie es in der Abbildung 2.2 skizziert ist. Alle Scan-Zellen werden
dann iiber diesen zusitzliche Datenpfad in einer langen Kette verbunden, wie es in Abbil-
dung 2.3 dargestellt wird. Die offenen Enden der Kette werden als zusédtzliche Primarein-
und -ausgéinge, sowie deren Kontrollsignale, zur integrierten Schaltung hinzugefiigt. Die
zusatzlichen Signale sollen kurz erldutert werden:

Testdatenein- und -ausgédnge Die eigentlichen Ein- und Ausgédnge zum Transport von Dat-
en vom automatischen Testsystem zum Chip, und vom Chip zum automatischen
Testsystem. Diese bilden den Anfang (TDI) und das Ende (TDO) der Scan-Kette.

Testtakt Ein separates Taktsignal fiir die Testinfrastruktur kann notwendig sein, falls das
Zeitverhalten im Testbetrieb anders ist, als im funktionalen Betrieb.

Testmodus Spezielles Signal, welches den Modus des Chips zwischen funktionalem Sys-
tembetrieb und Testbetrieb umschaltet.

Test-Reset Die Testinfrastruktur kann optional ein eigenes Signal zum Zuriicksetzen aller
Scan-Register besitzen.

Somit konnen Daten unabhidngig von der eigentlichen Systemlogik von aufserhalb der
integrierten Schaltung in die Register geschrieben oder ausgelesen werden. Dies fiihrt zur
vollen Observier- und Kontrollierbarkeit der Speicherelemente.

12

2.2. Testbarer Entwurf

Scan In Testmodus Sian Out

Data Out

Reg.
Data In Aeg >

Abbildung 2.2.: Beispiel einer flankengesteuerten Scan-Zelle
Die Verbindungen des Scan-Pfads (blau) und der Aktivierung des Test-
modus (rot) wurden hervorgehoben.

Testmodus [
TDID——— >TDo

Takt-

signal|:> l J
O— —

Primar- :) : Primar-
Kombinat he Systemlogik A
eingéngeD_D ombinatorische Systemlogi —> ausgange

D— —D

Abbildung 2.3.: Beispiel einer Scan-Kette
Alle speichernden Elemente der Schaltung wurden durch Scan-Zellen er-
setzt. Die zusitzlichen Verbindungen des Scan-Pfads (rot) und der Ak-
tivierung des Testmodus (blau) wurden hervorgehoben.

Ein Nachteil der Scan-Ketten besteht darin, dass durch das Hinzufligen der Multiplexer
an den Registereingdngen und der zusédtzlichen Steuerlogik, der Logik- beziehungsweise
Flachenbedarf fiir die Schaltung um bis zu 30 Prozent erhoht wird [Kungs]. Ein weiterer
Nachteil betrifft das Zeitverhalten, da die Multiplexer unweigerlich auf dem kritischen
Pfad liegen und die Pfadldnge erhohen beziehungsweise die maximale Betriebsfrequenz
reduzieren konnen.

13

2. Grundlagen des Hardware-Tests

Beim Entwurf der Testinfrastruktur gibt es hierbei verschiedene Varianten, die im Folgenden
kurz erldutert werden:

Full-Scan-Design Bei einem Full-Scan-Design sind alle Register tiber die Scan-Ketten
les- und schreibbar, so dass alle sequentiellen Elemente der Schaltung vollstandig
kontrollier- und observierbar sind.

Partial-Scan-Design Sofern nur eine Teilmenge der Register direkt durch die Scan-Ketten
zugreifbar ist, handelt es sich um ein Partial-Scan-Design nach [Tri84]. Dies reduziert
die zusétzlich benotigte Logik fiir die Testinfrastruktur gegeniiber einem Full-Scan-
Design und kann bei geeignetem Schaltungsentwurf zu dhnlich hoher Testbarkeit
fiihren. Insbesondere bei Registern mit ungiinstigem kritischem Pfad kann ein Partial-
Scan-Design genutzt werden, um die geforderte Geschwindigkeit einzuhalten.

Parallele Scan-Ketten Durch die Verwendung von mehreren Scan-Ketten kann die Testzeit
entsprechend reduziert werden und damit die Testkosten gesenkt werden [NGBog2].
Soll die Zunahme an Primérein- und -ausgidngen reduziert werden, so kann die Illinois
Scan-Architektur eingesetzt werden, bei der lediglich ein einzelner Scan-Dateneingang
genutzt wird [HPg9].

Test-Kompression Haufig ist die Bandbreite zwischen externem Tester und zu testender
Schaltung auf dem Wafer begrenzt. Deshalb werden die Testdaten vor der Ubertragung
komprimiert und auf dem Chip wieder dekomprimiert [VMo3]. Dadurch konnen
Kompressionsraten von 30-500 erreicht werden, was eine entsprechende Reduktion der
Testzeit zur Folge hat [RTKMog4].

2.2.2. Boundary Scan/JTAG

Zur Interoperabilitdt zwischen verschiedenen Herstellern beziehungsweise Anwendern im
Verlauf der Fertigung und damit auch im Herstellungstest, wurde ein Standard zum Zugriff
auf die Testinfrastruktur durch Scan-Ketten geschaffen. Diese Initiative wurde durch die
Firma Philips initiiert und von verschiedenen grofien Halbleiter-Herstellern in der Joint Test
Action Group (JTAG) mitgetragen. Das Ziel war es eine standardisierte Schnittstelle zum
Zugriff auf die Testinfrastruktur eines Mikrochips, welche ohne weitere Absprachen inter-
operabel ist, zu schaffen. Eine entsprechende Normierung fand im Rahmen des weltweiten
Berufsverbands der Ingenieure aus Elektro- und Informationstechnik (Institute oft Electrical
and Electronics Engineers, IEEE) unter der Bezeichnung IEEE 1149.1 statt [[EEo1].

Verschiedene Erweiterungen wurden seit der urspriinglichen Normierung geschaffen, um
den Einsatzzweck von JTAG zu erweitern. So wurde unter anderem IEEE 1149.6 zum
Test von gemischten differentiellen Hochgeschwindigkeitssignalen oder 1149.4 fiir analoge
Schaltungsteile erarbeitet.

Bei IEEE 1149/]JTAG handelt es sich um eine Standardisierung fiir den Zugriff auf der
Platinenebene. Urspriinglich entwickelt zum Test der Verbindungen auf der Platine (engl.
boundary test), wird es heute ebenfalls genutzt, um die integrierte Schaltung selbst zu testen.

14

2.2. Testbarer Entwurf

Dafiir wurde bei der Entwicklung die Testinfrastruktur als Ganzes betrachtet und entwor-
fen. Jedoch bestehen heutige Mikrochips nicht mehr nur aus einer einzelnen integrierten
Schaltung, sondern setzen sich oft aus mehreren Modulen zu einem ganzen System auf
einem Chip (engl. System-on-a-Chip, SOC) zusammen. Dies ist ohne Weiteres mit JTAG
moglich, dennoch ist der Zugriff auf ein einzelnes Modul, ohne dass der gesamte Chip in
den Testmodus versetzt werden muss, oft wiinschenswert.

Um die Entwurfskosten niedrig zu halten, wurde ein Standard zur Wiederverwendung
von Modultests gewiinscht, um z.B. die Integration und Test von IP-Cores in SOCs zu
vereinfachen. Ein solcher Standard fand Normierung als IEEE 1500 ,Embedded Core Test”.
Des weiteren ermoglicht IEEE 1500 ein Modul auf dem Scan-Pfad zu umgehen und so
einen Bypass zu erzeugen, so dass ein separater Modultest moglich ist. Dabei handelt es
sich allerdings nicht mehr um eine Scan-Kette mit statischer Struktur, sondern um ein
Rekonfigurierbares Scan-Netzwerk, welche in Kapitel 3.1 beschrieben werden.

2.2.3. Test und Diagnose von Scan-Ketten

Eine Scan-Kette kann von einem Defekt betroffen sein und muss getestet werden. Insbeson-
dere fiir die Diagnose ist es wichtig zu wissen, ob und wo eine Scan-Kette defekt ist. Fiir den
Produkttest ist die Scan-Kette aufgrund ihrer Test- und Diagnoseeigenschaften essentiell.

Sind Scan-Ketten fehlerbehaftet, dann konnen diese keine Testantwort liefern. Dadurch
konnen nur statische Werte am Ende des Scan-Ausgangs gelesen werden. In einem solchen
Fehlerfall ist die Observier- und Kontrollierbarkeit extrem eingeschréankt.

Ein Testverfahren fiir Scan-Ketten ist der sogenannte Flush-Test. Dieses Testverfahren schreibt
vordefinierte Werte in die Scan-Kette und tiberpriift, ob diese nach einer berechneten
Zeitspanne an den Ausgidngen wieder gelesen werden konnen.

Charakteristische Sequenzen fiir verschiedene Fehlermodelle auf Transistorebene wurden
untersucht [MMgs]. Das untersuchte Fehlermodell beschrankt sich dabei nicht nur auf
einfache Haftfehler, sondern es werden zum Beispiel auch Setup-/Hold-Zeitfehler getestet,
bei denen ein Datum bei bestimmten Sequenzen einen Takt zu frith beziehungsweise zu
spat tibernommen wird. Der so ausgelesene Testvektor weist dann den Verlust oder die
Wiederholung eines Bits auf.

Ein weiteres Verfahren zum Test und zur Diagnose besteht in der Nutzung der Systemlogik.
Dazu werden Testmuster in die Scan-Kette eingeschoben und ein oder mehrere Takte lang
der Systemtakt aktiviert, so dass die Muster auf der Scan-Kette durch das System verar-
beitet werden. Anschlieflend wird die Scan-Kette ausgelesen und die Testdaten untersucht
[SPMo2].

Die Scan-Kette kann um entsprechende Teststrukturen erweitert werden, um die Diagnoseau-
flosung zu erhohen. Ein solches Verfahren basiert auf dem Hinzuftigen von XOR-Gattern auf
dem Scan-Pfad [EEg5]. Durch einen zusédtzlichen Priméareingang gesteuert konnen diese bei
Aktivierung alle auf dem Scan-Pfad propagierten Werte invertieren. Werden diese fiir einen
Takt aktiviert, so sind alle Werte nach der Fehlerstelle invertiert, wahrend alle nachfolgenden

15

2. Grundlagen des Hardware-Tests

Werte weiter von der Fehlerwirkung beeinflusst sind. Aus der Lange der ausgelesenen und
invertierten Werte lédsst sich die Fehlerstelle préazise lokalisieren.

2.3. Abstraktionsebenen in der Modellierung

Abstraktion ermoglicht ein einfacheres Verstandnis eines Systems durch eine Reduktion der
Komplexitidt unter Verlust an Genauigkeit. In dieser Arbeit werden verschiedene Abstrak-
tionsebenen integrierter Schaltungen genutzt. Die Zusammenhange zwischen diesen Ebenen,
sollen im Folgenden kurz erldutert werden.

Es finden zwei Arten der Abstraktion statt. Zum einen die Rdumliche, anhand derer die
weitere Modellierung betrachtet werden soll. Bei dieser werden verschiedene einzelne Teile
zu einem grofieren Block abstrahiert und dann im weiteren Verlauf gemeinsam behandelt.
Die andere ist die oft mit der rdumlichen einhergehende zeitliche Abstraktion. Wurde durch
die rdumliche Abstraktion ein System soweit vereinfacht, wie etwa beim Ubergang von
kontinuierlichen zu diskreten Modellen, dass eine weitere Betrachtung einer kontinuierlichen
Zeit unnotig erscheint, so sollte diese auch entsprechend abstrahiert werden.

Das Verhalten von Modulen wird hdufig in Verilog oder VHDL definiert. Scan-Ketten konnen
in ihren doménen-spezifischen Sprachen (engl. domain specific language, DSL) beschrieben
werden, wie zum Beispiel BSDL [POgo].

2.3.1. Gatterebene

Die erste fiir diese Arbeit wichtige Abstraktionsebene, die Gatterebene, betrachtet einzelne
kombinatorische Logikelemente und sequentielle Speicherelemente, sowie deren Interkon-
nektivitat. Haufig besteht die Beschreibung eines solchen Netzwerks aus einer Gatternetzliste.
Diese benennt neben jedem Gatter auch die Ein- und Ausgangs- sowie die Verbindungsleitun-
gen und enthdlt zusatzlich die Angabe, wie jedes Element mit den anderen verbunden ist.

Der Vorteil auf dieser Ebene ist die Observierbarkeit einzelner Signale. Der Aufwand ist
jedoch fiir die Simulation und Modellierung deutlich hoher als in einem abstrakteren
Modell.

2.3.2. Register-Transfer-Ebene

Auf der hoher liegenden Register-Transfer-Ebene werden Gatter zu einzelnen Teilmodulen,
beispielsweise eine ALU, zusammengefasst. Die Zeit ist taktgenau modelliert, d.h. die
Kommunikation findet in Form von einzelnen Datenwerten statt.

16

2.4. Strukturelle Fehlermodelle

2.3.3. Transaktionsebene

Auf der Transaktionsebene werden Kommunikationsabldufe in atomare Operationen zusam-
mengefasst. Das bedeutet, dass die Kommunikation in Form von Lese- und Schreibzugriffen,
sowie eventuelle Verarbeitungsschritte, als unteilbare Transaktion stattfindet. Dies abstrahiert
die taktgenaue Kommunikation durch Signale der Register-Transfer- oder Gatterebene und
reduziert so die nétigen Simulationsschritte.

2.4. Strukturelle Fehlermodelle

Fehlermodelle dienen der Abstraktion von Defekten, welche bei der Fertigung von
Mikrochips auftreten. Es existiert eine Vielzahl verschiedener Fehlermodelle fiir unter-
schiedliche Verwendungszwecke. Diese decken jeweils eine spezifische Untermenge von
physikalischen Defekten ab und sind nicht zwangslaufig disjunkt.

Ein Fehlermodell betrachtet eine Untermenge der spezifischen Fehlerauspragungungen
von Defekten, denn ohne diese Einschrankungen wéren alle moglichen auftretenden Fehler
denkbar. Dabei konnen unter Umstdanden nicht alle Auspragungen von Defekten abgedeckt
werden.

Wird ein strukturelles und deterministisches Fehlermodell fiir eine spezifische integrierte
Schaltung betrachtet, so konnen alle moglichen Fehler in dieser aufgezdhlt werden. All diese
Fehler in einer Menge zusammengefasst, ergeben die Fehlermenge fiir die entsprechende
Schaltung.

Basierend auf einem Fehlermodell konnen entsprechende Testmuster erzeugt werden, die
Fehler aktivieren und propagieren kénnen. Mit den Testmustern kann gepriift werden, ob
ein produzierter Mikrochip einen Fehler enthilt oder fehlerfrei beziiglich des Fehlermodells
ist.

2.4.1. Haftfehler

Ein sehr einfaches und sehr hédufig eingesetztes Fehlermodell ist das Haftfehlermodell (engl.
stuck-at fault model), welches auch die Grundlage fiir diese Arbeit bildet. Hier wird das
Einfach-Haftfehlermodell betrachtet, welches ein Einfach-Fehlermodell ist, das heifdt, es
wird angenommen, dass immer nur genau ein einziger Fehler in der gesamten Schaltung
beziehungsweise dem System auftritt.

Im Haftfehlermodell sind die Defekte als Verbindungsfehler zwischen den Gattern modelliert.
Eine Verbindungsleitung ist im Fehlerfall unterbrochen und propagiert statisch entweder
eine logische Null (stuck-at-o, SA-0) oder eine logische Eins (stuck-at-1, SA-1). Physikalisch
lasst sich dies als direkte Verbindung der Fehlerinjektionsstelle zu Masse oder der Ver-
sorgungsspannung erkldren. Die Gatter selbst sind nicht von Fehlern betroffen, das heifit die
Logikfunktionen bleiben erhalten.

17

2. Grundlagen des Hardware-Tests

Ein entsprechendes Beispiel ist in Abbildung 2.4 dargestellt. Die Verbindungsleitung am
Eingang A des ODER-Gatters ist unterbrochen und propagiert nun statisch eine logische
Eins.

VDD

SA-1
—_ A C

Abbildung 2.4.: Beispiel eines Haftfehlers
Eingang A weist Haftfehler an 1 auf.

Aufgrund seiner Einfachheit ldsst sich dieses Fehlermodell auf Gatterebene taktgenau sehr
effizient simulieren. Ein weiterer Vorteil besteht in der relativ simplen Erzeugung von
Testmustern. Da dieses Fehlermodell am hdufigsten eingesetzt wird, stehen entsprechend
viele und ausgereifte Werkzeuge bereit.

Trotz der Einfachheit deckt es dennoch ein grofies Spektrum an physikalischen Fehler-
klassen aus anderen Fehlermodellen ab [BARVT82]. Zu grofSen Teilen trifft dies auch auf
Verzogerungsfehler zu, welche ein anderes Zeitverhaltens besitzen und eine dynamischere
Fehlerwirkung aufweisen.

2.4.2. Briuckenfehler

Beim Briickenfehlermodell werden zwei oder mehr Verbindungsleitungen miteinander
verbunden und damit kurzgeschlossen, so dass Daten zwischen unabhéngigen Einheiten
sich gegenseitig beeinflussen konnen. Dies hat zur Folge, dass der Fehler selbst zwar
statisch vorhanden ist, wie beim Haftfehlermodell, aber die Fehlerwirkung abhidngig von
der Aktivitit an den Verbindungen ist. So konnen beispielsweise verschiedene Taktdoménen
verbunden werden. Welcher Wert bei Kurzschluss unterschiedlicher Werte resultiert, hangt
von der verwendeten Technologie, Treiberstiarke, den Ohmschen Widerstand, etc. ab. Ein

Beispiel ist in Abbildung 2.5 gezeigt.

N
L~

Briicken-
—
fehler

Abbildung 2.5.: Beispiel eines Briickenfehlers
Zwei unabhingige Verbindungsleitungen wurden durch einen Briicken-
fehler verbunden

18

2.5. Fehlersimulation

Briickenfehler zur Versorgungsspannung Vpp oder zur Masse Vss entsprechen den einfachen
Haftfehlern. Welcher Wert als Ergebnis des Kurzschlusses entsteht, wird in weiteren Unter-
klassen des Briickenfehlermodells definiert. Zum Beispiel ergibt sich beim Wired-AND-
Modell eine Null, sobald eines der beiden Signale eine Null fiihrt, wahrend es beim Wired-
OR zu einer Eins kommt, sobald eines der Signale eine Eins fiihrt. Weitere Briickenfehler-
Klassifikationen fiir CMOS finden sich in [ESBoo].

2.4.3. Weitere Fehlermodelle

Die bisher aufgezihlten Fehlermodelle gehen von einer statischen Anderung der Logik-
funktion aus. Jedoch miissen in einer korrekten synchronen Schaltung die Datenworte
auch rechtzeitig zur Abtastung an den Registereingdngen zu den Taktflanken anliegen.
Ist dies nicht der Fall, so werden falsche Werte gespeichert. Solche Fehler werden unter
anderem in unterschiedlichen Verzégerungsfehlermodellen betrachtet [MAg8]. Jedoch kén-
nen auch solche Fehler teilweise durch das einfache Haftfehlermodell beschrieben werden
[MBABg9].

Das Byzantinische Fehlermodell ist ein allgemeines Fehlermodell und nimmt eine hoch-
stmogliche Storung des Systems an. Byzantinische Fehler werden in vielen Bereichen der
Informatik betrachtet und haben ihren eigentlichen Ursprung im Zwei-Generale-Problem
der Verteilten Systeme [PSL80].

2.5. Fehlersimulation

Zur Berechnung des Verhaltens einer integrierten Schaltung, kommen Simulationsmodelle
zum Einsatz. Wahrend des Entwurfs wird beispielsweise Logiksimulation zur funktionalen
Validierung der Implementierung genutzt. Dahingegen wird bei der Testmustererzeugung
die Fehlersimulation verwendet, welche dazu dient, einen Fehler in das Simulationsmodell
einer Schaltung zu injizieren und dessen Auswirkung zu propagieren, um das Verhalten der
fehlerhaften Schaltung zu untersuchen.

Die Eingabe fiir eine Fehlersimulation besteht aus einem Schaltungsmodell, Fehler- und
einer Testmustermenge. Die Fehlersimulation untersucht dann fiir jeden Fehler, ob dieser
von der Testmustermenge detektiert wird.

Fehlersimulation ist eine essentielle Aufgabe im Entwurf von Mikrochips und stellt aus
diesem Grund einen wichtigen Forschungsbereich in der Technischen Informatik dar.
Entsprechend ergiebig wurde dieser bereits untersucht und effiziente Verfahren entwickelt.
Von diesen sollen nun ausgewdhlte Verfahren kurz vorgestellt werden.

19

2. Grundlagen des Hardware-Tests

2.5.1. Serielle Fehlersimulation

Bei der seriellen Fehlersimulation handelt es sich um ein sehr simples Verfahren: Zuerst wird
die fehlerfreie Schaltung mit den Testmustern als Eingabe simuliert und die erzeugte Ausgabe
gespeichert. Anschlieffend wird die fehlerbehaftete Schaltung mit den gleichen Eingaben
simuliert und die Ausgabe mit der Gut-Simulation verglichen. Weichen die Ausgaben
voneinander ab, so ist der Fehler durch die Testmuster detektierbar. Abbildung 2.6 zeigt
einen moglichen Aufbau, bei dem Gut- und Fehlersimulation parallel ablaufen.

Fehlerfreie
™ Schaltung
A
Primar- .)
>— 1> ?
eingange \ergleich Detektlert>
[
Fehlerhafte
™ Schaltung

Abbildung 2.6.: Skizzierter Aufbau einer seriellen Fehlersimulation

Ein Vorteil dieser Methode ist die einfache Implementierung als doppelte Instantiierung,
welche von einem Logiksimulator simuliert werden kann. Dadurch kénnen je nach Fahigkeit-
en des Logiksimulators viele Fehlermodelle abgedeckt werden. Jedoch ist die Simulationszeit
sehr hoch im Vergleich zu effizienten Fehlersimulationsalgorithmen, welche unter anderem
ereignisgesteuert oder bitparallel rechnen.

2.5.2. Parallel Pattern Single Fault Propagation

Die Idee des PPSFP-Algorithmus besteht in der parallelen Simulation mehrere Werte der
Schaltung in einem Datenwort, wahrend gleichzeitig nur ein Fehler betrachtet wird. Dartiber
hinaus werden Fehler bei der Gebietsanalyse durch logisches Schliefien effizient detektiert
[Sch88].

Der PPSFP-Algorithmus ldsst sich effizient auf Many-Core-Architekturen wie GPGPUs
(General Purpose Graphical Processing Units), aufgrund seiner guten Parallelisierbarkeit,
abbilden. Dadurch lédsst sich die Simulationszeit bis zu einem Faktor 16 beschleunigen

[KSWZ1o0].

20

2.6. Automatische Testmustererzeugung

2.5.3. Sequentielle Fehlersimulation

Bei der nebenldufigen Fehlersimulation (engl. concurrent fault simulation) werden die
fehlerfreie, sowie alle fehlerbehafteten Schaltungen gleichzeitig ereignisgesteuert simuliert
[UB73]. Dazu werden alle Gut- und Fehlerereignisse, das heifst eine Signaldnderung an
einem Gatter, an den Gattern selbst gespeichert. Die nebenldufige Fehlersimulation kann fiir
verschiedene Schaltungsmodelle, unter anderem fiir sequentielle Schaltungen, Fehlermodelle
und Zeitabstraktionen verwendet werden.

Die Differentielle Fehlersimulation bearbeitet ereignisgesteuert fiir ein Testmuster alle
moglichen Fehler. Zundchst wird eine Gut-Simulation durchgefiihrt und anschliefiend Fehler
nacheinander injiziert und simuliert. Bei abweichender Ausgabe wird ein Fehler als detektiert
markiert und aus der Fehlerliste entfernt [LHg2].

2.6. Automatische Testmustererzeugung

Automatische Testmustererzeugung (engl. automatic test pattern generation, ATPG) ist ein
Sammelbegriff fiir Verfahren, welche der Erzeugung von Testmustern fiir Fehler in einer
integrierten Schaltung dienen. Ein so erzeugtes Testmuster soll bei Anwendung den Fehler
aktivieren, dessen Wirkung propagieren und so zu einem beobachtbaren, abweichenden
Verhalten der fehlerbehafteten Schaltung im Gegensatz zur fehlerfreien Schaltung fiithren.
Durch das abweichende Verhalten kann eine fehlerbehaftete Schaltung von einer fehlerfreien
unterschieden werden. ATPG fiir kombinatorische Schaltungen und dem Haftfehlermodell
gehort zur Klasse der NP-vollstandigen Probleme, welche in Abschnitt 2.7.1 beschrieben
werden und nach gegenwirtigem Stand der Forschung nicht effizient berechenbar sind.

Ein Beispiel fiir ATPG stellt der D-Algorithmus dar [Rot66]. Dieser beschreibt ein Ver-
fahren zur Erzeugung von Testmustern fiir einfache Haftfehler. Der Ansatz basiert auf der
Propagierung des Fehlers durch die Schaltung und Ableitung der daraus entstehenden Bele-
gungen fiir die Priméareingédnge durch logisches Schlieflen. Da unterschiedliche Belegungen
moglich sind und Konflikte auftreten konnen, wird Backtracking genutzt, um diese durch
zu probieren. Weitere Verbesserungen des D-Algorithmus stellen PODEM (path oriented
decision making) als auch FAN (fanout-oriented test generation) dar, welche die Laufzeit
reduzieren [GR81], [FS83].

Andere Verfahren reduzieren das Problem des ATPGs auf das Erfiillbarkeitsproblem der
Aussagenlogik, welches in Kapitel 2.7 vorgestellt wird [Largz], [TED1o0].

2.7. Erfillbarkeitsproblem der Aussagenlogik

Das Erfiillbarkeitsproblem der Aussagenlogik (engl.: Boolean satisfiability-problem, SAT)
stellt ein Entscheidungsproblem dar. Es tiberpriift, ob fiir die Variablen einer gegebenen

21

2. Grundlagen des Hardware-Tests

Boole’schen Funktion f(vy,...,v,) : B" — B eine Belegung existiert, so dass f eine wahre
Aussage ist [MMZ"o01], [GNoz].

Das Erfiillbarkeitsproblem, das klassische Beispiele fiir NP-Vollstandigkeit, diente Stephen
Cook zum Herleiten jener. Nachfolgend soll auf die NP-Vollstandigkeit eingegangen werden,
um die Komplexitdt der beschriebenen Probleme besser zu verstehen.

2.7.1. NP-Vollstandigkeit

In der Komplexitatstheorie bezeichnet die Klasse NP alle Entscheidungsprobleme, welche
von einer nichtdeterministischen Turingmaschine in polynomieller Zeit beztiglich der Einga-
beldnge n entschieden werden konnen. Eine besondere Teilmenge in NP bildet die NP-
Vollstandigkeit, welche von Stephen A. Cook 1971 beziehungsweise Levin postuliert wurde
[Coo71], [Levy3]. NP-vollstaindige Entscheidungsprobleme lassen sich untereinander, mittels
sogenannter Polynomialzeitreduktion <, aufeinander abbilden. Eine Polynomialzeitreduk-
tion r ist eine Abbildung, welche eine Instanz eines Entscheidungsproblems P in eine andere
Instanz des Problems Q transformiert. Die Losung fiir die Instanz des Problems in Q ist

dann auch die Losung fiir das Problem in P.

Ein Problem L ist NP-schwer (engl. NP-hard), wenn es mindestens so ,schwer” wie alle
anderen Probleme in NP ist. Formal muss dafiir jedes Problem K € NP mittels einer
Polynomialzeitreduktion durch L losbar sein, das heifst:

(23) LENP < VKeNP:L=,K

Ist L zusétzlich in NP selbst, dann gehort L zur Klasse der NP-vollstindigen Probleme.

2.7.2. Aussagenlogische Normalformen

Fiir eine gegebene Boole’sche 'Funktion kann es mehrere Reprasentationen gegeben. Im
Laufe der Zeit wurden verschiedene Reprasentationformen, so genannte Normalformen,
mit vorgegebenen Eigenschaften geschaffen. Eine Sonderform der Normalformen bilden
kanonische Normalformen, welche strengeren Kriterien gentigen, so dass es eine eindeutige
Reprasentation fiir jede Funktion gibt.

Eine wesentliche Normalform stellt hierbei die sogenannte konjunktive Normalform (engl.
conjunctive normal form, CNF) dar. Bei dieser setzen sich Formeln aus Konjunktionstermen
zusammen, welche wiederum aus Disjunktionstermen bestehen. Ein Disjunktionsterm wird
aus Literalen, das heifst positive oder negierte Variablen, gebildet. Als Beispiel ist in Gleichung
2.4 das Ubertragsbit eines Volladdierers in CNF angegeben.

Cout = (@AbACiy)V(aAbAcy)V(aAbACy)V (aAbAcy,)

(2.4) = (bAciu)V(aNcy)V(anb)

22

2.7. Erfiillbarkeitsproblem der Aussagenlogik

Als Standard fiir die Eingabe benutzen die Werkzeuge zum Losen aussagenlogischer Erfiill-
barkeitsprobleme die konjunktive Normalform, da fiir diese effiziente Losungsverfahren
existieren [GZA " 02].

Die Darstellung in konjunktiver Normalform alleine fiithrt nicht zu einer eindeutigen
Représentation, sie ist daher nicht kanonisch. Zur Bildung der kanonischen konjunktiven
Normalform werden die Produktterme aus paarweise verschiedenen Maxtermen gebildet.
Ein Maxterm oder Volldisjunktion ist ein Disjunktionsterm, welcher alle Variablen der
Funktion enthélt und entsprechend als Literale einbettet.

Jede aussagenlogische Formel kann in eine entsprechende konjunktive Normalform umge-
wandelt werden. Eine handische Moglichkeit besteht in der Aufstellung der Wahrheitstabelle
und das Auslesen der entsprechenden Disjunktionsterme, fiir welche die Wahrheitstabelle
einen wahren Wert in der Ergebnisspalte enthilt. Allerdings bendtigt die Aufstellung der
Wahrheitstabelle fiir n Variablen bereits 2" Eintrdge und ist damit nicht effizient.

Zur Umwandlung in konjunktive Normalform kénnen Logikdquivalenzumformungen, wie
das Distributiv- oder De Morgan’s-Gesetz genutzt werden. Shannons Aufzdhlungstheorem
besagt, dass in der Regel kanonische Normalformen exponentiell linger sind als eine
entsprechende freie Form der aussagenlogischen Formel [Sha49]. Es kann also vorkommen,
dass zur Erzeugung der entsprechenden kanonischen Normalform exponentieller Aufwand
benotigt wird und somit nicht effizient berechenbar ist.

Dies soll an folgendem Beispiel verdeutlicht werden. Gegeben sei die Formel f:

(25) F= \/(Xz A Yl) = (X() A YQ) V...V (Xn—l A Yn—l)
i=0

Aus F lasst sich die dquivalente Gleichung G mittels Distributivgesetz in konjunktiver
Normalform herleiten:

G=F

n—i

AV)V ()

i=0 k=0 k i
E(Xo\/Xl\/...\/anl)/\(X()\/X1\/...\/Ynfl)/\.../\(Yo\/Yl\/...\/Yn,ﬂ

(2.6)

Wihrend F lediglich 2n Literale besitzt, gibt es nach Umformung in konjunktive Normalform
nach 2.6 in G 2" Literale. Um diesen Aufwand zu vermeiden, wird die Methode der Erfiill-
barkeitsdquivalenzumformung genutzt. Die Gleichung ist nach einer solchen Umformung
nicht mehr exakt dquivalent, sondern lediglich erfiillbarkeitsdquivalent, das heifst bei gle-
ichen Eingabewerten fiir korrespondierende Variablen ergibt die Gleichung dieselbe Losung.
Eine solche Umformung ist die Tseitin-Umformung [Tse68]. Die Grofie einer Formel bei den
Tseitin-Umformungen wéchst lediglich linear im Verhdltnis zur Ausgangsgleichung.

23

2. Grundlagen des Hardware-Tests

2.7.3. Schaltungstransformation in konjunktive Normalform

Die Erzeugung von Zugriffsmustern fiir Rekonfigurierbare Scan-Netzwerke kann mittels
des Erfuillbarkeitsproblem fiir aussagenlogische Gleichungen gelost werden. Dazu wird
die Schaltungsbeschreibung in Form einer Gatternetzliste in eine aussagenlogische Formel
umgeformt.

Die Modellierung kombinatorischer Logik in konjunktiver Normalform lasst sich einfach
durch statische Umformung durchfiihren. In Tabelle 2.1 sind fiir die gebrdauchlichen Gatter
die entsprechenden Terme in konjunktiver Normalform angegeben. Mit diesen kann der
Schaltungsgraph traversiert und die einzelnen Knoten in einem CNF-Modell aufgebaut
werden. Jeder Primérein- und -ausgang der Schaltung sowie das Ausgangssignal eines
Gatters werden separate Variablen zugeteilt.

Name Operation =~ CNF-Aquivalente Darstellung

Identitat C=A (AVC)A(AVC)

Negation C=A (AVC)A(AVC)

Konjunktion C=AAB (AVBVC)A(AVC)A(BVC)

Disjunktion C=AVB (AVBVC)A(AVC)A(BVC)

Kontravalenz C=A®B (AVBVC)A(AVBVC)A(AVBVC)A(AVBVC)
Aquivalenz C=A<B (AVBVC)A(AVBVC)A(AVBVC)A(AVBVC)
Sheffer NAND) C=AAB (AVBVC)A(AVC)A(BVC)

Peirce (NOR) C=AVB (AVC)A(BVC)

Implikation C=A—B (AVBVC)A(AVC)A(BVC)

Tabelle 2.1.: Logikprimitive umgeformt nach konjunktiver Normalform

Fiir sequentielle Schaltungen miissen die einzelnen Zeitabschnitte, wie zum Beispiel Takte,
modelliert werden. Dies kann durch Ausrollen, das heif$t mehrfaches Instantiieren und
durch Erweitern mit zusétzlichen Transitionsklauseln, geschehen. Diese Transitionsklauseln
modellieren dabei den Ubergang der Daten einzelner Speicherelemente zwischen zwei
Zeitabschnitten. Die Primédreingédnge werden dabei ebenfalls ausgerollt, so dass in jedem
Zeitabschnitt neue Daten an die Schaltung angelegt werden konnen. Das fiktive Anlegen im
Erfiillbarkeitsproblem geschieht durch Festlegung als positives oder negatives Literal fiir
die jeweilige Variable des Zeitabschnitts. Ebenso werden Variablen fiir die Primdrausgange
ausgerollt und sind so in der berechneten Losung zu finden.

24

3. Grundlagen Rekonfigurierbarer
Scan-Netzwerke

Ohne weitere Optimierungen wéachst die Zugriffszeit von Scan-Ketten linear mit der
Lange des Scan-Pfads. Dies ist besonders ineffizient im Zusammenhang mit der stetigen
Verbesserung der Fertigungstechnologie, insbesondere der Integrationsdichte fiir moderne
Mikrochips. Gordon E. Moore beobachtete die Gesetzméfiigkeit, welche als Moore’s Gesetz
bekannt ist, dass sich seit 1970 die Zahl der Transistoren ungefihr alle zwei Jahre verdop-
pelt [Moog8]. Da es sich dabei um ein exponentielles Wachstum handelt und die Zahl der
Register ebenfalls entsprechend wichst, ist es offensichtlich, dass sich eine reine lineare
Skalierung der Scan-Ketten als nicht effizient erweist. Der Vorteil von Rekonfigurierbaren
Scan-Netzwerken besteht in einer effizienteren Zugriffszeit, welche sich aus der Moglichkeit
des unabhéngigen Zugriffs auf Instrumente, wie zum Beispiel Temperatursensoren, ohne das
andere Teilmodule in den Testmodus versetzt oder anderweitig beeinflusst werden, ergibt.

Dieses Kapitel fiihrt die Grundlagen Rekonfigurierbarer Scan-Netzwerke ein. Zu Beginn
wird deren Aufbau und Struktur erldutert und die entsprechende Terminologie erklart.
Das anschliefiende Kapitel befasst sich mit der Modellierung eines Rekonfigurierbaren
Scan-Netzwerks auf Transaktionsebene. AbschlieSend wird die Fehlerwirkung des Haft-
fehlermodells fiir Rekonfigurierbare Scan-Netzwerke diskutiert und spezielle Fehlermodelle
auf Transaktionsebene betrachtet.

3.1. Aufbau und Struktur

Rekonfigurierbare Scan-Netzwerke bilden einen generischen und skalierbaren Ansatz
fir den Zugriff auf Teilmodule und Instrumente integrierter Schaltungen. Wie bei Scan-
Ketten werden sequentielle Speicherelemente durch Scan-Zellen ersetzt und von aufien
zugdnglich gemacht, um so Kontrollier- und Observierbarkeit zu erreichen. Diese Scan-
Zellen beziehungsweise Scan-Segmente befinden sich auf einer Zugriffsinfrastruktur, welche
als ein gerichteter, azyklischer Graph (engl. directed, acyclic Graph, DAG) dargestellt werden
kann. Durch die flexible Infrastruktur kann der Zugriff auf einzelne Teilmodule effizienter
gestaltet werden als mit einer simplen linearen Verkettung.

In diesem Graphen werden die Scan-Zellen als Knoten dargestellt und Kanten bilden einfache
Scan-Pfade ab. Ein Scan-Pfad stellt einen Pfad durch den Graphen vom Eingangsknoten bis
zum Ausgangsknoten dar.

25

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Zu jedem Zeitpunkt kann es nur einen einzigen Pfad durch den Graphen geben, welcher
dann dhnliche Eigenschaften, wie eine Scan-Kette, aufweist. Um dies zu erreichen, besitzen
Knoten beziehungsweise Scan-Zellen mit mehreren Vorgiangern Multiplexer zur Auswahl
eines Vorgangers. Der sich so ergebende Pfad wird als aktiver Scan-Pfad bezeichnet.

Welcher Scan-Pfad aktiv ist, ergibt sich aus der Konfiguration des Rekonfigurierbaren Scan-
Netzwerkes. Abbildung 3.1 zeigt ein Beispiel eines Rekonfigurierbaren Scan-Netzwerks
mit hervorgehobenen aktivem Scan-Pfad. Als Konfiguration wird der Zustand der Register
bezeichnet, welche zur Steuerung der Multiplexer dienen. Diese Konfigurationsregister
liegen auf der Zugriffsinfrastruktur selbst und werden, genau wie der Zugriff auf Module,
durch den Schiebevorgang des Scan-Pfads kontrolliert. Dadurch kénnen sowohl Schreib-
als auch Lesevorgdnge ausgefiihrt werden. Die Ansteuerung der Zugriffsinfrastruktur kann
dabei die gleichen Anschliisse wie Scan-Ketten nutzen. Bei JTAG wird dies als TAP (test
access port) bezeichnet, womit bestehende Testwerkzeuge weiter genutzt werden konnen.

Scan
g Seg.
DI >—p{ 3 B »TDO
L Scan
Seg.

Abbildung 3.1.: Beispiel eines Rekonfigurierbaren Scan-Netzwerks
Der aktive Scan-Pfad (blau) wurde hervorgehoben. Das erste Scan-Segment
entspricht einem Konfigurationsregister, da dessen Wert die Einstellung des
Multiplexers steuert.

Als Scan-Pfad-Segment wird ein Pfad zwischen zwei Scan-Segmenten bezeichnet. Dieses
entspricht einer Kante des DAG.

Ein Scan-Pfad ist symmetrisch zu einem anderen Scan-Pfad genau dann, wenn beide Scan-
Pfade die gleiche Anzahl von Scan-Segmenten aufweisen. Die Scan-Pfade des in Abbildung
3.1 skizzierten Rekonfigurierbaren Scan-Netzwerks sind alle symmetrisch.

Die Berechnung der Stimuli fiir die Zugriffsinfrastruktur, um die Modulauswahl von einer
Konfiguration in eine vorgegebene Konfiguration zu tiiberfiihren, wird als Retargeting
bezeichnet. Ein solches Muster zur Rekonfiguration heifit Zugriffsmuster .

Teilmodule konnen beliebig gewahlt werden, allerdings scheint eine Auswahl nach einzelnen
Komponenten, wie beispielsweise die ALU eines Prozessors, die BIST-Steuerung eines Speich-
ers oder eine Gruppe von Instrumenten, als sinnvoll. IP-Cores von SOCs besitzen hdufig
bereits eine eigene Testschnittstelle, welche daher als Teilmodule sehr gut geeignet sind.
Tatséchlich findet dies Anwendung in dem in Kapitel 2.2.2 beschriebenen Standard IEEE 1500

26

3.1. Aufbau und Struktur

,Embedded Core Test”. Schaltungen nach diesem Standard koénnen als Rekonfigurierbares
Scan-Netzwerk betrachtet werden. Die Testschnittstelle der einzelnen Module ermoglicht
es, diese durch den Scan-Pfad zugreifbar zu machen oder vom Scan-Pfad abzukoppeln.
Dadurch ist der Scan-Pfad nicht mehr rein statisch, sondern verdnderbar und bildet damit
ein Rekonfigurierbares Scan-Netzwerk.

Eine Normierung zum Zugriff auf die Instrumente einer integrierten Schaltung ist derzeit in
der Entstehung als IEEE P1687 ,Instrument JTAG” (IJTAG) [EBo6]. In dieser Normierung
wird unter anderem die Nutzung von Rekonfigurierbaren Scan-Netzwerken zum Zugriff auf
die Instrumente vorgeschlagen.

3.1.1. Struktur von Scan-Segmenten

Scan-Segmente, welche als Konfigurationsregister dienen, benotigen ein zusitzliches Schat-
tenregister, welches den gespeicherten Inhalt wihrend des Schiebebetriebs erhélt. Ansonsten
wiirden sich die Steuersignale der Kontrolllogik wahrend des Schiebebetriebs verdndern
und dadurch auch der aktive Scan-Pfad anders ausprédgen. Eine solche Struktur wird bei
Scan-Ketten als ,,Enhanced Scan” bezeichnet. Eine Beispielinstanz ist in Abbildung 3.2
skizziert.

Reset Select AND
I Update-Enable

Schatten- 1
Reg.
0
A
Capture Rickkopplung Update
Pfad Pfad

Rickkopplung

Scan-
>
. Reg.
- A

Capture- Select AND
Enable (Capture- OR
Shift-Enable)

Abbildung 3.2.: Beispiel eines Scan-Segments und zugehoriger Daten- und Kontrollpfade
Der Scan-Pfad (blau) wurde hervorgehoben.

Jedes Scan-Segment besitzt eine Aktivierungsbedingung in Form des Select-Signals. Dieses
muss aktiv sein, sofern sich das Scan-Segment auf dem aktiven Scan-Pfad befindet und das

27

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Rekonfigurierbare Scan-Netzwerk eine Operation ausfiihren soll. Das Select-Signal wird
kombinatorisch aus den Konfigurationsregistern erzeugt.

Die Daten aus einem Scan-Register werden in das Schattenregister {ibernommen, genau
dann, wenn die Signale Update-Enable und Select aktiv sind. Diese werden in Abbildung 3.3
entsprechend dargestellt. Dazu werden die Multiplexer so getrieben, dass der Update-Pfad
aktiviert wird.

Reset AND
I -Enable
Schatten- <
Reg.
A
Capture Rickkopplung

Pfad
Ruckkopplung

Scan- |

—
Reg. Scan
A Pfad

Capture- Select AND
Enable (Capture- OR
Shift-Enable)

Abbildung 3.3.: Beispiel der aktiven Pfade und Signale (griin) in einem Scan-Segment
wiahrend der Update-Phase. Der aktive Riickkopplungsdatenpfad des Scan-
Registers wurde nicht explizit hervorgehoben.

Bei einer Capture-Operation wird das Datum des Schattenregisters in das Scan-Register
tibertragen und dient damit dem Auslesen des Zustands des Rekonfigurierbaren Scan-
Netzwerks. Die Capture-Operation wird durch setzen des Capture-Enable- sowie Select-
Signals erreicht, wie es in Abbildung 3.4 gezeigt ist.

Der Schiebebetrieb wird durch das Aktivieren des Shift-Enable- und des Select-Signals
erreicht, welches in Abbildung 3.5 skizziert wird. Hierbei iibernimmt das Scan-Register die
Daten von seinem Vorganger auf dem aktiven Scan-Pfad.

3.1.2. Scan-Pfadzugriff (CSU-Zyklus)

Ein Zugriff auf ein Rekonfigurierbares Scan-Netzwerk lduft, wie bei Scan-Ketten nach JTAG,
in CSU-Zyklen ab. Ein CSU-Zyklus umfasst dabei das Ubertragen der Werte aus dem
Schattenregister zu den Scan-Registern (Capture) sowie das Herausschieben der Konfig-
urationsdaten und Hineinschieben von Daten in Form einer neuen Konfiguration (Shift).
Wenn die neuen Daten beziehungsweise Konfiguration in die Scan-Register geschoben wur-
den, werden die Daten durch die Update-Operation in die Schattenregister iibernommen
(Update).

28

3.2. Modellierung auf Transaktionsebene

Reset Select AND
I Update-Enable

Schatten-
Reg.
A

Capture Ruckkopplung Update
Pfad Pfad

Rickkopplung

Scan-
Reg. Scan
A Pfad

Capture- Select AND
Enable (Capture- OR
Shift-Enable)

Abbildung 3.4.: Beispiel der aktiven Pfade und Signale (rot) in einem Scan-Segment wiahrend
der Capture-Phase. Der aktive Riickkopplungsdatenpfad des Schatten-
registers wurde nicht explizit hervorgehoben.

Reset Select AND

I Update-Enable
Schatten-
Reg.
A
Capture Rickkopplung Update
Pfad Pfad

Rickkopplung

Scan-
. Reg.
> A

Capture- AND
Enable (Capture- OR
-Enable)

Abbildung 3.5.: Beispiel der aktiven Pfade und Signale (blau) in einem Scan-Segment
wahrend der Scan-Phase. Der aktive Riickkopplungsdatenpfad des Schatten-
registers wurde nicht explizit hervorgehoben.

3.2. Modellierung auf Transaktionsebene

Die taktgenaue Modellierung eines Rekonfigurierbaren Scan-Netzwerks fiihrt zu einem
hohen Aufwand aufgrund der sequentiellen Tiefe dieser Schaltungen. Deshalb werden
Rekonfigurierbare Scan-Netzwerk hier auf Transaktionsebene modelliert, so dass einzelne

29

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

getaktete Schiebeoperationen nicht notwendig sind und eine Effizienzsteigerung bei der
Rechenzeit erreicht wird.

In dieser Modellierung entspricht eine Transaktion einem vollstindigen CSU-Zyklus, wie
er in Kapitel 3.1.2 beschrieben wurde. In einer Transaktion wird der zugreitbare Zustand
eines Rekonfigurierbaren Scan-Netzwerkes, das heifst alle Scan-Elemente auf dem aktiven
Scan-Pfad, neu geschrieben. Damit iiberfiihrt eine Transaktion die Konfiguration eines
Rekonfigurierbaren Scan-Netzwerks in eine neue Konfiguration, welche sich nur auf dem
aktiven Scan-Pfad unterscheidet. Dabei d@ndert sich die Auspragung des aktiven Scan-Pfads
entsprechend der neuen Konfiguration.

Eine CSU-Operation entspricht dabei nur einem Simulationsschritt im Modell auf Transak-
tionsebene, da sowohl die Capture-, Shift- sowie die Update-Operationen nicht explizit
modelliert werden. Hingegen hédngt die Anzahl der Schritte im taktgenauen Modell von der
Lange des aktiven Scan-Pfads ab und ist damit variabel, was die Modellierung als Instanz
des Erfiillbarkeitsproblems erschwert. Die Zahl der Zyklen zur Rekonfiguration betrdgt n + 2
Schritte, wenn der aktive Scan-Pfad n Scan-Segmente aufweist. Die mogliche Zustandsmenge
kann daher auf Transaktionsebene wesentlich kleiner und damit effizienter in Rechenzeit
und Speicherplatzbedarf simuliert werden.

3.2.1. Modellierung von Scan-Segmenten

Auf Transaktionsebene werden Scan- und Schattenregister als ein speicherndes Element in
Form eines Scan-Segments betrachtet. Es wird angenommen, dass in einer Transaktion aktive
Scan-Segmente gelesen und beschrieben werden konnen. Hierdurch kann der Zugriff auf
den aktiven Scan-Pfad als ein einzelner Lese- und Schreibzugriff betrachtet werden.

3.2.2. Modellierung der Scan-Pfadaktivierung

Zur Erzeugung von Zugriffsmustern in Rekonfigurierbaren Scan-Netzwerken ist es
notwendig zu gewdhrleisten, dass ein vollstindig konsistenter und aktiver Scan-Pfad existiert.
Dies ergibt sich aus der Konfiguration und der Kontrolllogik, welche auch auf Transaktions-
ebene als Boole’sche Funktion modelliert ist.

Wie auf der Register-Transfer-Ebene, besitzen die Scan-Segmente auf Transaktionsebene
eine Aktivierungsbedingung, welche das Speichern neuer Werte ermoglicht. Diese ist aktiv
oder wabhr, sofern sich das Scan-Segment auf dem aktiven Scan-Pfad befindet. Zusatzlich
gilt, dass wenn ein Scan-Segment aktiv ist, dann miissen auch genau ein eingehendes Scan-
Pfad-Segment und genau ein ausgehendes Scan-Pfad-Segment aktiviert sein. Andernfalls
wiirde kein oder mehr als ein aktiver Scan-Pfad ausgeprdgt werden, was verboten ist.
Abbildung 3.6 zeigt die entsprechenden Aktivierungsvariablen an Scan-Pfad-Segmenten in
einem Rekonfigurierbaren Scan-Netzwerk.

30

3.3. Klassifizierung der Fehlerwirkung und Testbarkeit

S1 Al
A |
D 53
2L T L A
> ATZ A3

Abbildung 3.6.: Beispiel der Aktivierungsvariablen auf Transaktionsebene
Die Aktivierungsbedingungen A1 und A3 der Scan-Pfad-Segmente auf dem
aktiven Scan-Pfad (blau) miissen erfiillt sein. Die Aktivierungsbedingung A2
des Scan-Segments auf einem inaktiven Scan-Pfad-Segment muss hingegen
inaktiv sein.

Die in Kapitel 3.1.1 beschriebenen Aktivierungssignale werden daher als Boole’sche Formel
modelliert. Gleichung 3.1 beschreibt die Aktivierung eines Scan-Segments. Ein Scan-Segment
S ist aktiv, wenn die Boole’sche Aktivierungsbedingung A erfiillt ist und ein Vorgéanger V
als auch ein Nachfolger N aktiv sind.

Aktiv(S) & Aist erfillt A
(3.1) 3V € Vorganger(S) : Aktiv(V) A
3N € Nachfolger(S) : Aktiv(S)

3.3. Klassifizierung der Fehlerwirkung und Testbarkeit

In diesem Abschnitt werden Fehlerstellen fiir das einfache Haftfehlermodell klassifiziert und
diese Fehlerklassen mit deren Fehlerwirkung beschrieben.

Scan-Datenpfad Liegt ein Fehler auf dem Datenpfad eines Scan-Pfads, so ist der Fehler
unmittelbar aktiviert, sobald der Scan-Pfad in einer Konfiguration aktiv ist. Mittels eines
Flush-Tests ist die Fehlerwirkung observierbar, da der Scan-Pfad ab einer bestimmten
Stelle nur noch konstante Werte propagiert.

Diese Fehlerklasse kann dazu fiihren, dass die Schaltung nicht mehr kontrolliert werden
kann, nachdem ein Fehler aktiviert wurde. Dies ist aber von geringer Bedeutung fiir
den Test, da der Fehler erfolgreich nachgewiesen wurde. Jedoch wird die Diagnose in
solch einem Fall aufgrund der geringen Sichtbarkeit erschwert.

Scan-Steuerung Befindet sich ein Fehler unmittelbar im Eingangskegel eines Scan-
Datenpfads, hat nur Auswirkungen auf diesen und beeinflusst dessen Aktivierung,
dann fiihrt dies zu zwei unterschiedliche Auswirkungen.

Der Fehler kann einen eigentlich inaktiven Pfad sensibilisieren und so die Werte
in einem Scan-Register verdndern, was zu Datenverlust fithren kann. Um dies zu
detektieren miisste im Scan-Register am Ausgangspunkt des féalschlich aktiven Scan-
Pfads der komplementdre Wert geschrieben werden. Das Scan-Pfad-Segment miisste
daraufhin deaktiviert werden und spéter wieder ausgelesen werden.

31

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Andernfalls kann ein aktiver Scan-Pfad deaktiviert werden, falls der Fehler einen
kontrollierenden Wert an einem Gatter propagiert, so dass der Pfad gebrochen wird.
Dieser Fall ist dquivalent zum gebrochenen Scan-Datenpfad.

Scan-Adressierung Wirkt sich ein Fehler auf mehrere unterschiedliche Scan-Pfade aus und

beeinflusst deren gemeinsame, wenn auch komplementdre Aktivierung, so kann dies
zur Vertauschung zweier Scan-Pfade fiihren. Bei unterschiedlichen Scan-Pfad-Langen
kann dies durch den Flush-Test erkannt werden, bereitet aber bei gleicher Scan-Pfad-
Lénge Probleme.

In diesem Fall kann es sein, dass beide Scan-Pfade die gleichen Datenwerte enthal-
ten und so nicht direkt voneinander unterschieden werden. Befinden sich Konfig-
urationsregister auf den betroffenen Scan-Segmenten, welche asymmetrische Scan-
Pfade treiben, dann kdnnen diese genutzt werden um den eigentlich Fehler in der
Adressierung festzustellen. Dazu miissten entsprechende Testmuster fiir die kontrol-
lierten Scan-Pfad-Segmente erzeugt werden. Sind jedoch nur Scan-Pfade betroffen,
die keine Kontrollregister ansteuern, so konnen eventuell angeschlossene Instrumente
oder Systemlogik dazu genutzt werden, um die Scan-Pfad-Segmente voneinander zu
unterscheiden.

Capture-Datenpfad Liegt die Fehlerstelle auf dem Capture-Datenpfad, so konnen keine

Datenwerte vom Schattenregister zum Scan-Register iibertragen werden, sondern nur
ein statischer Wert. Dies ldsst sich einfach testen, indem der komplementare Wert
in einer CSU-Operation O; in das Scan-Register geschrieben wird und dieser vom
fehlerhaften Wert in der ndchsten CSU-Operation O; iiberschrieben wird. Die Scan-
Phase von O, macht den Fehler anschlieffend an den Primédrausgangen sichtbar.

Capture-Steuerung Ein Fehler in der Kontrolllogik des Capture-Pfads fiihrt dazu, dass

entweder der Pfad statisch desensibilisiert oder statisch aktiviert ist. Der erste Fall
entspricht einem Fehler auf dem Capture-Datenpfad selbst. Beim statisch aktivierten
Fall propagiert der Wert aus dem Schattenregister immer auf den Scan-Pfad zum Scan-
Register. Dieser Fall ist testbar, wenn der kontrollierende Wert der Konvergenz der
beiden Datenpfade im Schattenregister gespeichert ist und der nicht-kontrollierende
Wert auf dem Scan-Pfad propagiert.

Update-Datenpfad Liegt der Fehler auf dem Update-Pfad selbst, so wird ein Schreiben eines

abweichenden Wertes verhindert und somit das Erreichen einer bestimmten gewtiin-
schten Konfiguration verhindert. Dies ldsst sich testen, indem der komplementadre Wert
geschrieben und in einer folgenden CSU-Operation ausgelesen wird.

Die sequentielle Fehlerwirkung wird dadurch sichtbar, dass zum Beispiel ein Scan-Pfad
nicht aktiviert wird, weil der entsprechende Wert der Konfiguration nicht gesetzt
werden kann. Der Fehler kann daher durch einen abweichend von dem geforderten
gewdhlten Scan-Pfad erkannt werden.

Update-Steuerung Ein Fehler in der Ansteuerung eines Update-Pfads kann, wie bei den

32

bisher betrachteten Kontrolllogiken auch, den entsprechenden Datenpfad statisch ak-
tivieren oder deaktivieren. Bei Deaktivierung lasst sich der fehlerhaft gespeicherte Wert

3.3. Klassifizierung der Fehlerwirkung und Testbarkeit

durch eine Update-Operation, welche den komplementdren Wert schreibt, aktivieren.
Eine Capture-Operation tiberfithrt den Wert in das Scan-Register, von wo aus der
Schiebebetrieb den Fehler ausliest.

Die Fehlerwirkung eines statisch aktiven Update-Pfads ist sehr interessant, da diese
von der Aktivitdt des Scan-Pfads abhdngt. Dabei kann sich der aktive Scan-Pfad standig
verdndern und neu ausprégen.

Riickkopplungsdatenpfad Befindet sich der Fehler auf dem Riickkopplungspfad eines
Registers, so ist die Speicherfihigkeit des Registers reduziert und beschrédnkt sich
auf einen einzelnen Wert, falls es sich um den nicht-kontrollierenden Wert der Konver-
genz der Datenpfade handelt. Das Register kann, wenn es beschrieben wird, den Wert
nur fiir einen Takt halten, sofern es nicht erneut beschrieben wird.

Scan-Register konnen nur getestet werden, indem das Select-Signal wahrend des
Schiebebetriebs deaktiviert wird. Andernfalls wird in der Capture-Phase der fehlerhafte
Wert tiberschrieben und wihrend dem Schiebebetrieb werden stindig neue Daten
gespeichert, so, dass kein Wert aufgrund des Fehlers verloren gehen wiirde.

Fehlerhaften Daten konnen bei Schattenregistern nach einer Capture-Operation aus-
gelesen werden. Jedoch kann dies auch zu einer Verdnderung des aktiven Scan-Pfads
fithren, wodurch eventuell ein falscher Pfad ausgelesen wiirde.

Besteht der Fehler aus dem kontrollierenden Wert der Konvergenz, so propagiert kein
anderer Wert zum Register. Daher ist das Register nicht funktional und kann durch
Lese- und Schreibzugriffe einfach getestet werden.

Riickkopplungssteuerung Beeinflusst der Fehler die Kontrolllogik des Riickkopplungspfads
eines Scan- als auch Schattenregisters, so dass der Datenpfad statisch desensibilisiert
ist, dann propagiert iiber den Riickkopplungsdatenpfad nur noch ein konstanter Wert,
und es handelt sich um die entsprechende statische Fehlerklasse eines Riickkopplungs-
datenpfad.

Wird hingegen ein Riickkopplungsdatenpfad statisch sensibilisiert, so tritt an der
Konvergenz der Datenpfade immer der kontrollierende Wert auf, sobald er einmal
propagierte. Das Register speichert den kontrollierenden Wert und propagiert tiber
den Riickkopplungsdatenpfad wieder an die Konvergenz. Da es sich um den kontrol-
lierenden Wert handelt, wird er wieder im Register gespeichert. Da die Fehlerwirkung
statisch auftritt, sobald sie einmal aktiviert ist, ist diese Fehlerklasse einfach zu testen.
Die Fehlerwirkung lasst sich durch einfachen Zugriff auf das Scan-Segment sichtbar
machen.

Taktverteilung Fehler, welche die Taktverteilung beeinflussen, fithren dazu, dass ein oder
mehrere Register nicht funktional sind und keine Daten speichern oder weiterleit-
en konnen. Diese Fehlerklasse ldsst sich sehr gut testen. Fiir Scan-Register ist die
Fehlerwirkung dquivalent zu einem Fehler direkt auf dem Scan-Datenpfad und fiir
Schattenregister dquivalent zum Capture-Datenpfad.

33

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Reset-Steuerung Betrifft ein Fehler die Reset-Steuerung in der Art, dass ein oder mehrere
Register nicht in ihren Initialzustand zuriickgesetzt werden kénnen, dann enthalten
diese moglicherweise einen abweichenden Wert. Dieser Fehler wird nur aktiviert, falls
vor dem Reset in den betroffenen Registern der komplementare Wert gespeichert ist.

Eine Folge der fehlerhaften Konfiguration kann darin bestehen, dass ein inkorrekter
Pfad nach dem Reset als aktiver Scan-Pfad ausgepréagt wird. Befindet sich ein zuge-
horiges Scan-Segment auf dem aktiven Scan-Pfad, so wird der Fehler unmittelbar nach
der ersten CSU-Operation als abweichender Wert sichtbar.

Ebenfalls ist es moglich, dass eine ungiiltige Konfiguration durch den fehlerhaften
Reset erreicht werden kann. Dies fiihrt zu einem nicht funktionsfahigen oder mehreren
aktiven Scan-Pfaden, welche einfach testbar sein sollten. Jedoch ist es dafiir notwendig,
dass das betroffene Modul aktiviert wird.

Scan-Register besitzen keine Steuerung fiir den Reset, denn durch die erste Capture-
Operation werden giiltige Daten aus den Schattenregistern in die Scan-Register
geschrieben. Wiirden diese zurticksetzbar sein, so wéren die Fehler aus diesem Grund
an Scan-Registern nicht detektierbar.

Eine weitere Moglichkeit der Fehlerwirkung besteht im standig aktiven Reset, wodurch
die betroffenen Register nicht mehr funktional sind. Dies ist ein dquivalenter Fall zu
einem Fehler in der Taktverteilung.

3.4. Funktionale Fehlermodelle auf Transaktionsebene

Das Einfache-Haftfehler-Modell eignet sich gut fiir Fehler auf Gatterebene, ist jedoch auf
der Transaktionsebene, wie sie bei der CSU-Zyklen-Abstraktion betrachtet wird, schwierig
anwendbar, da einige strukturelle beziehungsweise funktionale Teile der Schaltung nicht be-
trachtet werden. Dies umfasst im Wesentlichen die explizite Modellierung der Capture- und
Update-Pfade, als auch die Riickkopplungsdatenpfade der speichernden Elemente. Daher
sollen in diesem Kapitel drei mogliche funktionale Fehlermodelle beschrieben werden.

Gebrochener Scan-Pfad Besteht die Fehlerwirkung in der Deaktivierung eines Scan-Pfad-
Segments des aktiven Scan-Pfads, so kann ab der Fehlerstelle nur noch der kon-
stante Wert der Fehlerwirkung ausgelesen beziehungsweise in nachfolgende Segmente
geschrieben werden. Ein solcher Fehler kann Zugriffe auf ein Rekonfigurierbares Scan-
Netzwerk so beeinflussen, dass dieses bis zu einem Reset unbrauchbar ist, falls der
Fehler nur noch Konfigurationen zulésst, welche aufgrund der Fehlerwirkung keinen
Scan-Pfad aktivieren. Dies kann relevant fiir eine spatere Diagnose sein.

34

3.4. Funktionale Fehlermodelle auf Transaktionsebene

Scan
FehIer—I Seg.
stelle

Scan
DI > o L —>TDO>

Scan
Seg.

Abbildung 3.7.: Beispiel eines gebrochenen Scan-Pfads (rot)

Der Scan-Pfad ist an der Fehlerstelle unterbrochen und Werte propagieren
nicht mehr weiter. Stattdessen wird nur noch ein konstanter Wert propagiert.

Falscher Scan-Pfad Beeinflusst die Fehlerwirkung die Ansteuerung eines Scan-Multiplexers,
so besteht die Moglichkeit, dass statt dem eigentlich konfigurierten Scan-Pfad ein
anderer Scan-Pfad aktiviert wird. Auf Transaktionsebene wirkt sich dies als Auswahl
eines anderen Pfads durch den Graphen aus. Dabei sind die Giiltigkeitsbedingungen
immer noch erfiillt, das heifst es wird nur ein aktiver Scan-Pfad ausgepragt.

Scan Fehler-
g Seg. stelle
DI >—p 2 B MTDO>
Scan
Seg.

Abbildung 3.8.: Beispiel eines fdlschlich aktiven Scan-Pfads (rot)

Der eigentlich ausgewdhlte blaue Scan-Pfad ist aufgrund des Fehlers nicht

aktiv. Durch die Fehlerwirkung wurde stattdessen der rote Scan-Pfad ak-
tiviert.

35

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Instabiler Scan-Pfad Angenommen die Kontrolllogik eines Update-Pfads auf Gatterebene

sei so betroffen, dass ein Schattenregister in jedem Takt den Wert aus dem Scan-
Register tibernehme. Dann basiert die Auspragung eines aktiven Scan-Pfads auf den
propagierenden Datenwerten auf dem Scan-Pfad und nicht mehr auf den durch CSU
kontrollierten Datenwerten eines Konfigurationsregisters. Dadurch verdndert sich
der aktive Scan-Pfad entsprechend der Aktivitdt auf dem entsprechenden Scan-Pfad-
Segment. Diese Fehlerannahme fiihrt zu einem pseudo-dynamischen Verhalten auf
Transaktionsebene, so dass ab der Fehlerstelle lediglich pseudo-zufillige Daten gelesen
und geschrieben werden konnen.

Scan
Fehler- > Seg.
stelle
Scan .
TDI)= seq | B » TDO
: Scan .
e Seq.

Abbildung 3.9.: Beispiel eines instabilen aktiven Scan-Pfads (schraffiert)

36

Die Kontrolllogik des Scan-Multiplexers wird nicht mehr aus einem stabilen
Konfigurationsregister gesteuert, daher pragt sich der aktive Scan-Pfad
basierend auf der Aktivitdt des Scan-Pfads aus.

4. Testalgorithmen fur Rekonfigurierbare
Scan-Netzwerke

In diesem Kapitel wird ein Uberblick {iber unterschiedliche Testalgorithmen fiir Rekonfig-
urierbare Scan-Netzwerke geben. Zuerst wird die Moglichkeit eines pseudo-zufélligen Tests
diskutiert. Darauf folgen zwei funktionale Testheuristiken, welche zum einen aus einem
einmaligen Zugriff auf alle Scan-Segmente besteht und zum anderen die Funktionalitdt der
Scan-Segmente betrachtet. Abschlieffend werden weitere Testalgorithmen vorgeschlagen,
welche insbesondere in Hinblick auf die Bedtirfnisse einer schnellen Testmustererzeugung
fiir Rekonfigurierbare Scan-Netzwerke entwickelt worden sind.

Flush-Test

Ziel des Flush-Tests ist festzustellen, ob der Scan-Pfad Daten unverfilscht schiebt. Dieser
findet in den folgenden Testalgorithmen Anwendung.

Bei einfachen Haftfehlern ist es ausreichend, dass beide Logikwerte o und 1 durch den Scan-
Pfad propagieren. Dabei konnen kombinatorische Fehler aktiviert und deren Fehlerwirkung
propagiert werden, welche auf dem aktiven Scan-Pfad liegen oder dessen Kontrolllogik
beeinflussen.

Zur Validierung, ob ein funktionsfdhiger Scan-Pfad ausgeprdgt wurde, wird vor jeder
Scan-Phase die Sequenz 01 in den Scan-Pfad geschrieben. Danach werden die Werte der
ndchsten Konfiguration geschrieben, welche genau der Lange des fehlerfreien aktiven Scan-
Pfads entsprechen. Wenn die letzten beiden Werte der Konfiguration in den Scan-Pfad
geschrieben werden, wird die Sequenz 01 am Ausgang des Scan-Pfads sichtbar. Wird eine
andere Wertefolge gelesen, so wurde ein Fehler detektiert.

4.1. Pseudo-zufallige Testmustererzeugung

In kombinatorischen Schaltungen kénnen pseudo-zufillig erzeugte Testmuster bereits eine
hohe Fehlerabdeckung gewihrleisten [BM82]. Diese Methode hat den Vorteil, dass Test-
muster sehr giinstig erzeugt werden konnen. Allerdings eignet sich diese Methode nicht
fiir Rekonfigurierbare Scan-Netzwerke, da ungiiltige Zustdnde erreicht werden konnen, die
keine weiteren Zugriffe auf Scan-Segmente mehr erlauben. Auf der anderen Seite ist es

37

4. Testalgorithmen fiir Rekonfigurierbare Scan-Netzwerke

unwahrscheinlich tiefe Ebenen zu erreichen. Die Wahrscheinlichkeit des Zugriffs auf ein
Teilmodul einer Hierarchie soll im weiteren Verlauf erldutert werden.

Angenommen es existieren in einem Rekonfigurierbaren Scan-Netzwerk Hierarchien so, dass
die Aktivierung eines Teilmoduls m von t unabhéngig voneinander gesetzten Konfigura-
tionsbits abhdngt und nur in einer Konfiguration aktiviert wird. Fiir jedes Konfigurationsbit
betrdgt die Wahrscheinlichkeit, dass entsprechende Datum zufillig zu erzeugen, 50 Prozent.
Dann liegt die Wahrscheinlichkeit, dass m aktiviert wird, bei:

(4'1) P(maktiviert) S Z_t

Schon fiir eine geringe Anzahl von Bits, zum Beispiel t = 5, betrdgt die Wahrscheinlichkeit,
dass das entsprechende Modul aktiviert wird und damit auf dem aktiven Scan-Pfad liegt,
weniger als 4 Prozent.

Sind die Konfigurationsregister hierarchisch so angeordnet, dass der Zugriff auf Konfigura-
tionsregister i < t nur bei aktiviertem Register i — 1 erfolgen kann, so ergibt sich ein Fall mit
noch geringer Aktivierungswahrscheinlichkeit als in Gleichung 4.1 beschrieben. Eine solche
Struktur wird in Abbildung 4.1 skizziert.

S1 _’
S;

Abbildung 4.1.: Beispiel einer hierarchisch bedingten Zugriffsstruktur

Denn fiir jede Aktivierung eines Registers i miissen alle Register < i zugreifbar sein. Damit
diese zugreifbar bleiben, muss das entsprechende Datum fiir einen weiteren Zugriff erhalten
bleiben, weil alle Daten des aktiven Scan-Pfads wieder geschrieben werden. Ansonsten
wiirde die Hierarchieebene wieder geschlossen werden. Gleichung 4.2 beschreibt die Zugriffs-
wahrscheinlichkeit formal:

H
|
—_

P(mzugreifbar) < G = 21

3
Il
—_

(4-2) P(maktiviert N mzugreifbar) = P(maktiviert> * P(mzugreifbar)

<ty (=) ot =

~
N

3
Il
—_

38

4.2. Funktionale Testheuristiken

Dieses Produkt strebt sehr schnell gegen den Null so, dass die Wahrscheinlichkeit eines
einmaligen zufélligen Zugriffs auf ein Teilmodul einer Tiefe von 3 schon bei ca. 1 Prozent
liegt. Aus diesem Grund ist ein reiner Zufallstest fiir Rekonfigurierbare Scan-Netzwerke
nicht effizient realisierbar. Tabelle 4.1 zeigt die Wahrscheinlichkeit fiir Module bis zur Tiefe 5
fiir die beiden Gleichungen 4.1 und 4.2.

t o) 1 2 3 4 5

4.1 P(Masiviert) 100% 50% 25% 12,5% 6,25% 3,13%
42 P(Mativiers N\ Maugreifpar) 100% 50% 12,5% 1,56% 0,10% ~0,00%

Tabelle 4.1.: Wahrscheinlichkeit eines zufdlligen Zugriffs auf ein Modul m der Tiefe t

Ein weiteres Problem besteht in der Ermittlung der aktiven Scan-Pfad-Lange. Basierend
darauf, welche zufilligen Muster geschrieben wurden, verdndert sich die Konfiguration
und damit die Scan-Pfad-Lange. Damit ein fehlerhaft gespeichertes Datum auf dem aktiven
Scan-Pfad nicht durch eine weitere Capture-Operation iiberschrieben wird, miissen alle
Daten auf dem aktiven Scan-Pfad ausgelesen werden. Es ist also notwendig den Scan-Pfad
vollstandig auszulesen.

Eine Moglichkeit besteht darin, dass immer so viele Bits gelesen werden wie der langst
mogliche aktive Scan-Pfad. Dies ist jedoch ineffizient, das heifst sollen keine Muster unnotig
geschoben werden, muss rechtzeitig die Scan-Phase beendet werden.

Eine andere Herangehensweise besteht in der Erzeugung zufélliger Lese- und Schreibzugriffe
auf die Scan-Segmente. Das spiter in Kapitel 5.2 beschriebene Werkzeug eda1687 ermdoglicht
die Erzeugung von Zugriffsmustern fiir Lese- und Schreibzugriffe. Da dieses einen voll-
stindigen neuen Zustand auf den aktiven Scan-Pfad schreibt, wird auch automatisch der
Zustand des aktiven Scan-Pfads ausgelesen.

4.2. Funktionale Testheuristiken

In diesem Abschnitt werden zwei funktionale Testheuristiken vorgestellt. Diese haben den
Vorteil, dass sie einfach zu implementieren sind und eine kompakte Menge von Testmustern
erzeugen. Beide Algorithmen kénnen sowohl auf Gatter- als auch auf Register-Transfer-Ebene
eingesetzt werden. Die Erzeugung auf Register-Transfer-Ebene ist der Gatterebene dabei
vorzuziehen, da aufgrund der hoheren Abstraktion weniger Elemente zu betrachten sind
und somit ist diese Vorgehensweise in Rechenzeit als auch Speicherverbrauch effizienter.

39

A W N R

4. Testalgorithmen fiir Rekonfigurierbare Scan-Netzwerke

4.2.1. Zugriff auf alle Scan-Segmente

Durch den simplen Zugriff auf jedes Scan-Segment konnen entsprechend einfach Testmuster
erzeugt werden. Dadurch werden alle Scan-Register einmal auf dem aktiven Scan-Pfad
kontrollier- und observierbar. Es ist zu erwarten, dass diese Heuristik ein gutes Verhiltnis
von Fehlerabdeckung zu Anzahl der Muster besitzt, da durch eine minimale Anzahl von
Zugriffsmustern sehr viele Gatter sensibilisiert werden. Ebenfalls ist anzunehmen, dass es
sich hierbei um die minimale Anzahl von Testmustern handelt, denn um einen Fehler zu
testen, muss dieser observierbar sein. Fiir ein Rekonfigurierbares Scan-Netzwerk muss dazu
der Fehler auf den aktiven Scan-Pfad einwirken.

Fiir jeden CSU-Zyklus wird zusitzlich ein Flush-Test durchgefiihrt, so dass die Wertesequenz
o1 auf dem Scan-Pfad propagiert und mogliche Haftfehler detektiert. Damit werden alle
Haftfehler auf dem Scan-Pfad detektiert.

4.2.2. Lese-/Schreibzugriff auf alle Scan-Segmente

Ein erweitertes, funktionales Verfahren zur Erzeugung von Testmustern stellt die Uber-
prifung des Lese- und Schreibzugriffs aller Scan-Segmente dar. Dieses tiberpriift, ob alle
Scan-Register durch mindestens einen Scan-Pfad erreichbar sind und ob in der getesteten
Konfiguration sowohl Capture- als auch Update-Pfad korrekt arbeiten.

Angenommen wird, dass sich auf diese Weise ein grofser Teil der Fehler detektieren lasst.
Insbesondere sind statische Fehler in der Taktverteilung oder Reset-Ansteuerung einfach zu
entdecken, da ein entsprechend betroffenes Register nicht mehr funktional ist. Algorithmus
4.1 skizziert das Vorgehen.

Algorithmus 4.1 Schreibende funktionale Testheuristik

Fir jedes Scan-Segment s:
Schreibe 1 in Scan-Segment s
Lese Scan-Segment s und Schreibe O in Scan-Segment s
Lese Scan-Segment s

4.3. Testmustererzeugung auf Transaktionsebene

Die deterministische Erzeugung der Testmuster setzt sich aus mehreren Schritten zusammen.
Zuerst werden entsprechende Zugriffsmuster erzeugt, um eine bestimmte Konfiguration
des Rekonfigurierbaren Scan-Netzwerks zu erreichen, in welcher der zu untersuchende
Fehler aktiviert werden kann. AnschliefSend wird eine Flush-Sequenz geschrieben, so dass
die Fehlerwirkung am Ausgang des Scan-Pfades sichtbar wird.

Folgenden Kapiteln fiihren Verfahren zur Detektion der Fehlerwirkung ein, welche genutzt
werden, um festzustellen, in welchen Zustinden ein Fehler aktiviert ist.

40

4.3. Testmustererzeugung auf Transaktionsebene

4.3.1. Detektion durch Brechung des Scan-Pfads

Die Ausgangsidee zur Detektion von Fehlern in Rekonfigurierbaren Scan-Netzwerken basiert
auf dem Brechen des Scan-Pfads. Dazu wird ein Zugriffsmuster gesucht, welches in der
fehlerhaften Schaltung den aktiven Scan-Pfad durch Aktivierung des Fehlers unterbricht,
da aufgrund der Fehlerwirkung lediglich konstante Werte propagiert werden. Es gibt zwei
Gruppen von Fehlern, welche eine solche Wirkung verursachen kénnen.

Die erste Gruppe besteht aus Fehlern, welche direkt auf dem Scan-Pfad liegen und diesen
dadurch blockieren. Da ein solcher Fehler durch Aktivierung des entsprechenden Scan-Pfads
observierbar wird, ist es ausreichend auf den Scan-Pfad zuzugreifen und mittels einer Flush-
Sequenz den Fehler zu aktivieren und zu detektieren. Abbildung 4.2 zeigt einen solchen
Fehler.

Fehlerstelle

%

Al A2

Abbildung 4.2.: Beispiel eines direkt gebrochenen Scan-Pfads
Der Scan-Pfad (blau) zwischen den Scan-Registern S1 und S2 wird durch
die Fehlerwirkung eines Haftfehlers gebrochen.

Bei der anderen Gruppe befindet sich der Fehler nicht auf einem Scan-Pfad, sondern in
der Kontrolllogik und steuert ein oder mehrere Scan-Pfad-Segmente, wie es in Abbildung
4.3 dargestellt wird. Zur Detektion dieses Fehlers im Erfiillbarkeitsproblem, werden die
Pfadaktivierungsklauseln im fehlerfreien und fehlerbehafteten Fall verglichen. Ist ein Scan-
Pfad-Segment im fehlerfreien Fall aktiv, das heifst die Pfadaktivierungklauseln evaluieren zu
wabhr, aber im fehlerbehafteten Fall deaktiviert, so ist dieser Pfad ein potentieller Kandidat.
Zusitzlich miissen alle anderen Scan-Pfad-Segmente ihre Aktivierung beibehalten. Andern-
falls konnte ein anderes Scan-Pfad-Segment aktiviert werden und einen funktionsfahigen
aktiven Scan-Pfad ausbilden.

41

4. Testalgorithmen fiir Rekonfigurierbare Scan-Netzwerke

Al A2

Fehlerstelle

Abbildung 4.3.: Beispiel eines durch fehlerhafte Kontrolllogik gebrochenen Scan-Pfads
Der Scan-Pfad (blau) wird durch einen Haftfehler an 1 am Kontrollsignal
A2 gebrochen.

Gleichung 4.3 driickt die Detektionsbedingung formal aus. Dabei bezeichnet SPS die Menge
aller im Rekonfigurierbaren Scan-Netzwerk vorhandenen Scan-Pfad-Segmente. Fiir jedes
Scan-Pfad-Segment p € SPS existieren zwei Boole’sche Funktionen. Im fehlerfreien Fall als
pgut und im fehlerbehafteten als pg,r bezeichnet. Diese sind wahr genau dann, wenn pgy /¢
auf dem aktiven Scan-Pfad liegt.

(4.3) dp € SPS,Vq € SPS: (pgut N =Psar) N (g # P) N (Ggut = Gsaf)

4.3.2. Detektion durch Deaktivierung des Scan-Pfads

Eine Alternative zum Brechen eines Scan-Pfads besteht darin, dass lediglich ein im fehler-
freien Fall aktiver Scan-Pfad durch den Fehler deaktiviert wird, aber andere Pfade dafiir
auch aktiviert werden diirfen. Dies entspricht dem Brechen von Scan-Pfaden, aber ohne die
Bedingung, dass kein anderer Pfad aktiviert werden darf. Somit kénnte diese Bedingung
auch als optimistische Detektion bezeichnet werden. Im Gegensatz zur urspriinglichen Idee
der Brechung des Scan-Pfads, kann ein anderer Scan-Pfad aktiviert werden, so dass der
Fehler nicht durch die Flush-Sequenz robust detektierbar ist.

Die Gleichung 4.4 basiert auf der Gleichung 4.3 und ist nur entsprechend um den zweiten
Teil gekiirzt. Der Vorteil dieses Verfahrens besteht in der geringen notwendigen Zahl an
Bedingungen.

(4-4) 3p € SPS: pout N =psas

4.3.3. Detektion durch Anderung des Scan-Pfad-Préfixes

Ein weiteres optimistisches Verfahren wird vorgestellt, dessen Detektionsbedingung auf der
Anderung der eingehenden Datenpfade an einem Scan-Segment besteht.

Der Ansatz basiert darauf, dass ein eingehender Pfad eines aktiven Scan-Segments eine
Anderung aufweist. Dies kann sowohl die Deaktivierung eines aktiven Scan-Pfads als auch

42

4.3. Testmustererzeugung auf Transaktionsebene

die Aktivierung eines zweiten, aber nicht aktiven Datenpfads, wie zum Beispiel Capture-,
Scan- oder der Riickkopplungsdatenpfad, sein.

Im Wesentlichen wird hierbei die Scan-Pfad-Deaktivierung mit einer moglichen Scan-Pfad-
Aktivierung kombiniert. Wird das aktive Scan-Pfad-Segment deaktiviert, so ist der Scan-Pfad
gebrochen, sofern kein weiterer Pfad aktiviert wird. Aktiviert der Fehler einen weiteren Scan-
Pfad, so kann der Fehler noch detektiert werden, falls dieser nicht gleichlang, das heifdt nicht
symmetrisch, ist. Es kann dabei auch der Capture- als auch der Riickkopplungsdatenpfad
aktiviert werden, welche durch eine mogliche Propagierung eines kontrollierenden Werts
den Scan-Pfad bricht.

Die Detektionsbedingung ist in Formel 4.5 gegeben. Darin findet sich der Deaktivierungsteil
der Gleichung 4.4 wieder. Zusitzlich wird die Menge aller im Rekonfigurierbaren Scan-
Netzwerk vorhandenen Scan-Segmente S eingefiihrt, sowie die Menge aller Eingangspfade
Sin eines Scan-Segments s:

dp € SPS : (pgut N ﬁpsaf)\/

(4.5)
ds €S, EIP € Sin, 317 € Sin * Pgut A (q 7é P) A (qut 7é %af)

4.3.4. Detektion durch Anderung der Scan-Pfad-Liange

Eine pessimistische Methode besteht in der Beobachtung der Lange des aktiven Scan-Pfads.
Unterscheidet sich die Lange des aktiven Scan-Pfads im fehlerbehafteten vom fehlerfreien
Fall, so kann dies entsprechend mit einer Flush-Sequenz detektiert werden.

Der Nachteil dieser Methode besteht in der Modellierung der Detektionsbedingungen, nam-
lich dem Zahlen der aktiven Scan-Pfad-Langen. Denn dieses muss als Boole’sche Funktion
dargestellt beschrieben werden. Die Variablen einer solchen Funktionen konnen lediglich
Boole’sche Werte annehmen und somit Wahr oder Falsch darstellen. Da nur logische und
keine arithmetischen Operationen direkt unterstiitzt werden, miissen Bindrzahlen sowie
einfache Additions- und Vergleichsoperationen in Klauseln explizit modelliert werden.

Alternativ ldsst sich die Detektionsbedingung auch als Pseudo-Boole’sches-Problem
darstellen. Dabei werden Boole’sche Variablen in arithmetischen Ausdriicken genutzt. So
konnen die Variablen addiert oder multipliziert werden und die Liange der Scan-Pfad-
Segmente im fehlerfreien [sg,| und im fehlerbehafteten |s,, f\ Fall dargestellt werden. Die
Detektionsbedingung besteht dann aus der Differenz und dem Vergleich beider Variablen:

(4.6) |sgut| — ‘Ssaf‘ #0

Pseudo-Boole’sche-Instanzen lassen sich als Instanz des aussagenlogischen Erfiillbarkeit-
sproblems ausdriicken [ESo6].

Jedoch kann die Modellierung der Detektionsbedingung zur Erzeugung einer sehr kom-
plexen Boole’schen Funktion fiihren. Falls die Fehlerwirkung auf viele Scan-Pfad-Segmente
Einfluss hat, miissen entsprechend viele Variablen miteinander kombiniert werden.

43

4. Testalgorithmen fiir Rekonfigurierbare Scan-Netzwerke

4.3.5. Grenzen des Ansatzes

Folgend sollen bestimmte Bedingungen zusammengefasst werden, fiir die dieser Ansatz
keine Testmuster deterministisch erzeugen kann.

Die fehlende Modellierung von Daten schliefst Fehler aus, welche spezifische Werte an
bestimmten Registern erwarten, um aktiviert werden zu konnen. Der Fall, wenn bestimmte
Daten auf den Scan-Pfad propagiert werden miissen, damit ein Scan-Pfad von einem anderen
unterschieden werden kann, wie beispielsweise bei symmetrischen Scan-Pfaden, kann dieser
Ansatz ebenfalls nicht abdecken. Die beiden Fehlerklassen, der Fehler in der Taktverteilung
und der Reset-Steuerung, sind aufgrund dessen nicht fiir dieses Modell geeignet.

In der derzeitigen Implementierung werden die Capture- und Update-Phasen nicht explizit
modelliert, so dass die eigentliche Fehlerwirkung auf diesen Pfaden auch nicht modelliert
werden kann. Es lasst sich das Modell um diese Phasen erweitern, indem die Klauseln
entsprechend oOfters ausgerollt und die Eingangssignale passend gesetzt werden.

Eine andere Kategorie sind Fehler, die gar nicht im Rahmen der CSU-Transaktion aktiviert
werden konnen. Es konnte etwa ein Fehler nur bei gleichzeitig aktivem Capture- und Update-
Enable-Signal aktiviert sein, was den zulédssigen Zustdnden des CSU-Zyklus widerspricht.
Das Modell konnte um eine entsprechende Phase erweitert werden, indem keine Bedingun-
gen auf die Eingangsvariablen gesetzt werden. Dies hingt jedoch von der Implementierung
des Schaltnetzes ab.

44

4.4. Vergleich der Testalgorithmen

4.4. Vergleich der Testalgorithmen

Tabelle 4.2 zeigt eine Ubersicht der Testbarkeit der betrachteten Fehlerklassen durch die
Heuristik zur Erzeugung von Testmustern, als auch durch die Mafinahmen des Scan-Pfad-
Brechens sowie der Beobachtung anhand der Scan-Pfad-Lange.

Klasse AH WH SPB SPL

Scan-Datenpfad
Scan-Steuerung
Scan-Adressierung
Update-Datenpfade
Update-Steuerung
Capture-Datenpfade
Capture-Steuerung
Riickkopplungsdatenpfad
Riickkopplungsteuerung
Taktverteilung
Reset-Steuerung

© 0O 00 O o0 o0 C o0 O +
©c + o0 + 0 + 0 + O O +
1
1

Tabelle 4.2.: Zusammenfassung der Testbarkeit verschiedener Fehlerklassen
+ : gut, - : schlecht, o : unbestimmt
AH: Einfache Heuristik, WH: Schreibende Heuristik, SPB: Scan-Pfad-Brechen,
SPL: Scan-Pfad-Lange

45

5. Implementierung

Dieses Kapitel stellt den Aufbau einer Boole’schen Formel f in konjunktiver Normalform
(CNF) dar. Diese enthélt ein Modell des Schaltungsgraphen, sowie die Fehlerinjektion und
-detektion. Die Formel soll genau dann erfiillbar sein, wenn der Fehler detektierbar ist.
Aus der Losung lassen sich Zugriffsmuster ableiten, welche als Testmuster genutzt werden
konnen, um den Fehler wihrend des Tests zu detektieren.

Im ersten Kapitel wird eine Ubersicht {iber das entwickelte Testverfahren gegeben. Danach
folgt die Uberfithrung aus der Verhaltensbeschreibung auf Register-Transfer-Ebenen zum
Modell auf Transaktionsebene. Die nachfolgenden Kapitel beschéftigen sich mit der Fehler-
modellierung und abschliefsend mit der Fehlersimulation.

5.1. Ubersicht des Testverfahrens

Ausgang des hier betrachteten Verfahrens ist eine abstrakte Beschreibung des Rekonfigurier-
baren Scan-Netzwerks auf Register-Transfer-Ebene. Diese Beschreibung kann zum Beispiel in
der von IEEE P1687 definierten Sprache , Instrument Connectivty Language” (ICL) vorliegen
und wird in eine entsprechende Verilog-Verhaltensbeschreibung umgewandelt. Dadurch ist
es moglich das Rekonfigurierbare Scan-Netzwerk mit gangigen Simulationsprogrammen zu
simulieren und zu untersuchen.

Um die Testbarkeit zu untersuchen und Testmuster fiir das einfache Haftfehlermodell zu
erzeugen, wird die Verhaltensbeschreibung in ein Modell auf Gatterebene {iibersetzt. Dies
geschieht durch Synthese in eine Gatternetzliste. Diese Netzliste kann mit den gleichen
Werkzeugen wie fiir die Register-Transfer-Ebene, simuliert und beispielsweise das Verhalten
bei einem vorliegenden Fehler untersucht werden.

Im nédchsten Schritt wird die synthetisierte Gatternetzliste eingelesen und ein internes
Graphenmodell erstellt. Das Modell entspricht im Wesentlichen einem Graph der Gatternetz-
liste mit zusétzlichen Informationen, welche zur Erzeugung der Klauseln und Fehlermenge
benotigt werden.

Aus dem Graphenmodell wird das Verhalten der Schaltung als Instanz eines aussagen-
logischen Erfiillbarkeitsproblems modelliert, wobei jedoch der Scan-Pfad separat als Modell
auf Register-Transfer-Ebene gehandhabt wird. Dadurch ist es moglich, das sequentielle
Verhalten auf Transaktionsebene zu beschreiben. Die bestehende Implementierung des
Werkzeugs eda1687, welches in Kapitel 5.2 ndher beschrieben wird, konnte entsprechend zur
Erzeugung von Testmustern erweitert werden.

47

5. Implementierung

ICL
Abstraktes Modell

v

‘Konverter‘

v

Register-Transfer
Verhaltensmodell

v

‘Synthese‘

e e T v |

Fehlerdetektion Fusion ‘ Transaktions-
in CNF ¢ modell in CNF

Schaltungsmodell
in CNF

v

‘SAT-SoIver‘

v

Zugriffsmuster

v

‘ Fehlersimulation ‘

Abbildung 5.1.: Flowchart des Testverfahrens fiir einen Fehler
FME: Fehlermodellierung, Vinyl: Parser und CNF-Konverter

Des Weiteren wird die Fehlerliste, das heifst die Menge aller Fehler des Fehlermodells die un-
tersucht werden soll, aus dem Graphen erzeugt. Dabei werden nach Mdoglichkeit dquivalente
Fehler zusammengefiihrt und gemeinsam betrachtet, um Rechenzeit einzusparen.

5.2. Zugriffsmustererzeugung — eda1687

eda168y ist ein Programm zur Erzeugung von Zugriffsmustern fiir Rekonfigurierbare
Scan-Netzwerke. Als Basis dient eine abstrakte Beschreibung des Rekonfigurierbaren Scan-
Netzwerks auf Register-Transfer-Ebene [BKW12], [BKW13].

Das Rekonfigurierbare Scan-Netzwerk wird von eda1687, dhnlich des im Kapitel 3.2
beschriebenen Vorgehens, in eine Instanz des aussagenlogischen Erfiillbarkeitsproblems iiber-
fithrt. Dies gestaltet sich in ICL einfacher als auf Gatterebene, da in der doméanen-spezifische

48

5.3. Einlesen und Verarbeiten von Netzlisten

Beschreibung Meta-Informationen, wie zum Beispiel die Aktivierungsbedingungen eines
Scan-Segments, explizit ausgefiihrt sind und nicht extrahiert werden miissen.

5.3. Einlesen und Verarbeiten von Netzlisten

Eine Netzliste ist eine Beschreibung der Verbindung von Gatterelementen eines Schaltungs-
moduls. Diese enthélt im Wesentlichen folgende Komponenten:

e Name des Moduls

e Bezeichner der Ein- und Ausgénge

e Bezeichner fiir Verbindungsleitungen

e Zuweisungen fiir Ein- oder Ausginge, Verbindungsleitungen oder Konstanten

e Instanzen von Gatterelementen und welche Verbindungsleitungen angeschlossen sind

Das implementierte ATPG-Programm (Vinyl) liest eine Verilog-Netzliste ein und erzeugt
daraus ein Zwischenmodell, welches anschlieflend in ein Graphenmodell umgewandelt
wird. Ein Knoten im Graphenmodell kann dabei ein beliebiges Element der Netzliste, das
heifit ein Gatter, Register, Primédrein- oder -ausgang sowie eine Verbindungsleitung sein.
Da Verbindungsleitungen ebenfalls als Knoten betrachtet werden, beschreiben Kanten die
Verbindung von Elementen zu anderen Elementen. Dabei besitzen die gerichteten Kanten
Bezeichner, welche den benannten Anschliissen an den Elementen entsprechen.

5.3.1. Parser — ANTLR

Zum Einlesen und Verarbeiten der Strukturbeschreibung der Schaltung in Form von Verilog-
Netzlisten wurde auf den objektorientierten Parser-Generator ANTLR (ANother Tool for
Language Recognition®) zuriick gegriffen [Paroy]. Dieser wurde von Professor Terence Parr
als LL*-Parser in Java entwickelt und ist frei unter einer BSD-Lizenz verfiigbar. Als Eingabe
dient eine Beschreibung der zu verarbeitenden Grammatik. ANTLR erzeugt daraus Quell-
code fiir eine vorgegebene Programmiersprache. Eine Grammatik besteht aus Regeln zur
Ableitung einer Sprache. ANTLR kann dabei Lexer, Parser und/oder Tree-Parser erzeugen.

Ein Lexer liest eine Aneinanderreihung von Symbolen ein und zerlegt diese in einzelne,
logisch zusammengehorende Teilstiicke, sogenannte Tokens. Ein Token kann zum Beispiel
eine natiirliche Zahl oder ein Bezeichner fiir eine Variable sein. Dieser Schritt wird als
lexikalische Analyse bezeichnet.

Diese Tokens werden dann an einen Parser weitergegeben. Ein Parser analysiert Tokens und
tiberpriift diese auf syntaktische Korrektheit, das heifit ob die Kombination und Anordnung
den Regeln der Grammatik entsprechen. Parser werden meistens als Automaten realisiert

Thttp://www.antlr.org/

49

http://www.antlr.org/

AUl B W N R

5. Implementierung

und leiten ein entsprechendes Modell, beispielsweise in Form eines Abstrakten Syntaxbaums
(engl. abstract syntax tree, AST), ab. In ANTLR kann zu jeder Token-Regel Programm-
code angegeben werden, welcher bei Ableitung des Tokens aufgerufen wird. So kann ein
ereignisbasierter Parser implementiert werden.

Ein abstrakter Syntaxbaum ist die Repréasentation der abstrakten, syntaktischen Struktur
der Instanz einer Grammatik, welcher die inhaltlichen Zusammenhénge wiedergibt. Hierbei
stellen die Knoten des Baums Tokens und deren Werte dar. Da durch die Baumstruktur eine
explizite Reihenfolge vorgegeben wird, kénnen Kontrolltokens, wie zum Beispiel Klammern,
wegfallen.

Die erarbeitete Implementierung nutzt lediglich Lexer und Parser. Der Parser erzeugt ein
objektorientiertes, tabellarisches Zwischenmodell, da dies die spatere Umwandlung in ein
Graphenmodell vereinfacht. Das tabellarische Zwischenmodell ermoglicht es, eine Referenz
auf die Instanz eines Gatter- beziehungsweise Signalobjekts anhand seines Bezeichners zu
erhalten. Dieser Zugriff wére im Rahmen des Abstrakten Syntaxbaum deutlich schwieriger.

5.3.2. Graphenmodell

Das Graphenmodell dient der Abbildung des azyklischen, gerichteten Graphen des Rekon-
figurierbaren Scan-Netzwerks in der Implementierung. Dazu werden alle Elemente eines
Schaltungsgraphen, das heifst Gatter und Verbindungsleitungen sowie Ein- und Ausgénge als
Knoten betrachtet. Kanten werden implizit iiber Vorgidnger- und Nachfolgerbeziehungen real-
isiert. Die entsprechende Datenstruktur eines Knotens ist in Algorithmus 5.1 dargestellt.

Algorithmus 5.1 Datenstruktur eines Knotens im Graph des RSNs

struct {
string name;
string type;
std: :map<port_name, Node_Ptr> predecessor;
std: :map<port_name, Node_Ptr> successor;
} Node;

Zur Konvertierung des Schaltungsgraphen in konjunktive Normalform benétigen alle Gatter
eine Variable zur Darstellung ihres Funktionswerts. Die Variablenbezeichner werden als
einfache Ganzzahlen dargestellt. Die Abbildung der Gatter auf Variablen erfolgt durch eine
std: :map aus der C++ Standard Template Library (STL).

Allerdings reicht diese einfache Abbildung nicht aus, da in mehreren verschiedenen Arbeits-
schritten der Implementierung unterschiedlicher Variablen fiir dasselbe Gatter benotigt
werden. So zum Beispiel bei der Unterscheidung zwischen einem fehlerfreien und einem
fehlerhaften Wert. Um den Aufbau der Klauseln moglichst einfach zu gestalten, wurde die
Abbildung von Gatter zu Variable in einer hierarchische Datenstruktur gekapselt, welche in
Abbildung 5.2 dargestellt ist. Auf diese Weise kann eine Variablenzuordnung durch einfaches
Traversieren der Hierarchie gefunden werden.

50

A W N R

5.4. Extraktion des Scan-Pfads aus der Netzliste

U32 - 8| Fehlerfreier
Ul4 » 9| Schaltungsgraph

n77 - 10

U32 - 16 U32 - 20 BQOIe'sche"
Ul4 -» 17 Uld - 21 D'lfferenz far
n42 -» 18 n42 - 22| ein SPS

U32 — 31| Teilgraph der
n22 - 32| Fehlerwirkung

U75 - 33

N

U322 - 39 U32 - 43] Boole'sche
Ul4d - 40 Ul4 - 44| Differenz fur
n42 - 41 n42 - 45| ein SPS

Abbildung 5.2.: Beispielinstanz der Hierarchie der Variablenabbildung
SPS : Scan-Pfad-Segment

Algorithmus 5.2 zeigt die entsprechende Datenstruktur zur Abbildung der Hierarchie der
Variablen. Diese besteht lediglich aus der Abbildungsstruktur sowie einem Zeiger auf den
Vorgénger in der Hierarchie.

Algorithmus 5.2 Datenstruktur der hierarchischen Abbildung von Variablen

struct {
map<Node_ptr, Var> node_to_var;
varmap_ptr parent;

} varmap;

5.4. Extraktion des Scan-Pfads aus der Netzliste

Aus der Gatternetzliste miissen die Strukturen des Rekonfigurierbaren Scan-Netzwerks
wieder extrahiert werden, da die Information tiber deren Aufbau durch die Synthese verloren
gegangen sind. Hierbei werden zuerst die Register im Graphen untersucht. Wird ein Register
von einer steigenden Flanke gesteuert, so kann es sich um ein Scan-Register handeln,
andernfalls um ein Schattenregister. Sollte es sich tatsdchlich um ein Scan-Register handeln,
so muss dieses dartiber hinaus von den Signalen Capture-Enable, Shift-Enable und Select
abhdngen. Fiir ein Schattenregister sind entsprechend die Signale Update-Enable, Reset und
Select notwendig.

Zur Erkennung der vorhandenen Scan-Segmente wird der Graph von den Scan-Eingédngen
(TDI) zu den Scan-Ausgédngen (TDO) traversiert, wie es in Algorithmus 5.3 ausgefiihrt ist.
Liegen dabei in dem kombinatorisch-transitiven Eingangskegel eines Scan-Registers ein

51

N

N o~ W

5. Implementierung

Testdateneingang oder ein Scan-Register, so wird das entsprechende Element als Scan-Pfad-
Vorginger vermerkt und der dazugehorige Pfad als Scan-Pfad markiert.

Da es sich bei einem Rekonfigurierbaren Scan-Netzwerk um einen azyklischen Graphen han-
delt, gilt fiir jedes Scan-Segment, dass der transitive Eingangskegel disjunkt zum transitiven
Ausgangskegel ist, mit Ausnahme des zugehorigen Registers des Scan-Segments sowie sich
selbst. Dies wird zur Erkennung der Scan-Segmente genutzt. Wird die Schnittmenge der
Register des Eingangs- und des Ausgangskegels eines Scan-Registers gebildet, so darf diese
nur aus einem einzelnen Schattenregister bestehen. Dieses ist das zugehorige Schattenregister
zum entsprechenden Scan-Register.

Nachdem ein Scan-Segment erkannt wurde, konnen nun die obligatorischen Pfade markiert
werden. Der Capture-Pfad entspricht der Schnittmenge des kombinatorischen Eingangskegel
des Scan-Registers und dem kombinatorischen Ausgangskegel des Schattenregisters. Die
Schnittmenge des kombinatorischen Eingangskegels des Schattenregisters und dem kom-
binatorischen Ausgangskegel des Scan-Registers bildet den Update-Pfad. Die jeweilige
Schnittmenge der Fin- und Ausgidnge eines Registers bilden die Riickkopplungspfade des
selbigen.

Algorithmus 5.3 Extraktion des Scan-Pfads aus einem Schaltungsgraphen

Traversiere iterativ vom Scan-Eingang aus alle Register r:
Markiere r als Scan-Register, falls Capture-Enable-, Shift-Enable- und Select-Signal sowie
ein Scan-Element-Vorgdnger existieren
Markiere r als Update-Register, falls Update-Enable-, Reset- und Select-Signal existieren
Fir alle Scan-Register s:
Schneide Ein- und Ausgangskegel und markiere Schattenregister s und Riickkopplungspfad
Schneide Pfade mit Schattenregister und markiere entsprechend Capture- und Updatepfad
Schneide Pfade mit weiteren Scan-Registern und markiere Scan-Pfade

Eine Rekonvergenz eines Scan-Pfad-Segments liegt vor, wenn sich ein Datenpfad an einer
Signalverzweigung in separate Teilpfade aufspaltet und diese sich spiter an einem Gatter
wieder zusammenfiigen. Abbildung 5.3 zeigt eine solche Rekonvergenz.

Scan-Pfad-

Segment Rekonvergenz
Scan- Scan-
Seg. Seg
A A

Scan-Pfad-
Segment

Abbildung 5.3.: Beispiel einer Scan-Pfad-Rekonvergenz
Der Scan-Pfad (blau) spaltet sich auf und rekonvergiert an einem Multi-
plexer.

52

OO O Ul A~ W N R

R R
N R

5.5. Aktivierung von Scan-Pfad-Segmenten

5.5. Aktivierung von Scan-Pfad-Segmenten

Zur Modellierung der Aktivierung von Scan-Pfad-Segmenten werden zwei unterschiedliche
Methoden eingesetzt. Eine einfache Variante, sofern sich auf dem Scan-Pfad-Segment keine
Rekonvergenzen befinden und eine Variante basierend auf der Boole’schen Differenz, falls
Rekonvergenzen vorliegen. Fiir jedes Scan-Pfad-Segment wird eine Variable genutzt, welche
die Aktivierung des Scan-Pfad-Segments widerspiegelt.

5.5.1. Boole’sche Differenz

Die Boole’sche Differenz af beschreibt die Abhdngigkeit einer Boole’schen Funktion f
gegeniiber einer Emgangsvarlable x;. Die Boole’sche Differenz entspricht der Ableitung der

Funktion f nach x;, wodurch die erzeugte Gleichung unabhédngig von x; ist. gf;_ ist genau

dann wahr, wenn eine Wertanderung an x; auch zu einer Anderung am Ergebnis von f fiihrt.
Formal wird diese in Gleichung 5.1 ausgedriickt.

ﬂ_af(xl,...,xi,...,xn)
(5.1) 9x; 0x;
=f(x1,...,xi=1,...,%) B f(x1,...,x,=0,...,%)

In der Instanz des aussagenlogischen Modells ist S das zu aktivierende Scan-Pfad-Segment.
Zur Modellierung der Pfadaktivierung durch die Boole’sche Differenz wird der Datenpfad
von S jeweils fiir x = 1 und x = 0 als Sy dupliziert. Dazu wird jedem Gatterelement in
Sy eine Variable zugewiesen und die Gatterelemente mit den neuen Variablen verbunden.
Entsprechend wird eine Variable fiir x erzeugt und dem Dateneingang von S, zugewiesen.
Zum Schluss wird eine Variable A fiir die Aktivierung von S generiert und einer XOR-
Verkniipfung der Gatter am Ausgang von S, zugewiesen. Algorithmus 5.4 gibt den Code
entsprechend wieder.

Algorithmus 5.4 Modellierung der Boole’schen Differenz

Eingabe:

S : Scan-Pfad-Segment als Gatterliste
Ausgabe:

A : Aktivierungsvariable

Fir jeden Wert x aus {0,1}:
Dupliziere Pfad S als Px
Erzeuge Variable v aus x
Setze Dateneingang von Px auf v

Erzeuge Variable A
A = XOR-Verkniipfung der Ausgéinge von PO und P1

Die so erzeugte Variable kann nun genutzt werden um die Instanz des aussagenlogischen
Modells zu erweitern, so dass die Variable implizit evaluiert wird.

53

5. Implementierung

5.5.2. Binare Entscheidungsdiagramme

Alternativ hitten auch Bindre Entscheidungsdiagramme (engl. binary decision diagram,
BDD) genutzt werden konnen, um die Boole’sche Differenz zu ersetzen und die Pfadak-
tivierung zu bestimmen [Bry86]. Ein BDD ist ein azyklischer, gerichteter Graph dessen
innere Knoten die Variablen einer Boole’schen Funktion reprasentieren. Jeder Knoten hat
zwei ausgehende Kanten, die einer Zuweisung von Wahr beziehungsweise Falsch an die Var-
iable des Ausgangsknoten entspricht. Der Baum besitzt zwei Blitter, welche die Werte Wahr
und Falsch widerspiegeln. BDDs kénnen damit Boole’sche Funktionen darstellen, wobei
das Traversieren des Baumes dabei der Auswertung der Funktion, unter einer bestimmten
Variablenbelegung, entspricht.

BDDs haben den Nachteil, dass deren Grofie abhdangig von der Variablenanordnung ist und
sie bei schlechter Wahl der Ordnung exponentiell grofs werden kénnen. Bei Multiplizierern
ist das entstehende BDD unabhéngig von der Variablenordnung immer exponentiell grofs

[Bryo1].

5.5.3. Pfadsensibilisierung

Liegen keine Rekonvergenzen auf dem Scan-Pfad vor, so kann eine Methode mit
weniger Klauseln zur Modellierung der Scan-Pfad-Segmentaktivierung genutzt werden.
Ein Datenpfad p ist genau dann sensibilisiert, wenn alle Kontrollsignale des Pfads einen
nicht-kontrollierenden Wert ¢ an den Gattern besitzen. Der kontrollierende Wert c, eines Gat-
ters ¢ bestimmt den Ausgangswert unabhéingig von anderen Eingangswerten. Eine Ubersicht
der kontrollierenden Werte findet sich in Tabelle 5.1.

Name Operation Kontrollierender Wert c,
Konjunktion C=AANB 0
Disjunktion C=AVB 1
Sheffer NAND) C=AAB 0
Peirce (NOR) C=AVB 1

Kontravalenz C=A%B
Aquivalenz C=A<8B -

Tabelle 5.1.: Nicht-kontrollierende Werte von Logikgattern

Gleichung 5.2 beschreibt formal die Pfadaktivierung. Ist die Gleichung erfiillt, so kann das
Datum vom Anfang des Pfads durch die jeweiligen Gatter propagieren.

(5.2) Pfad p aktiv < V Gatter ¢ € p,V eingehenden Signales € g\ p:s # ¢

54

OO O Ul A~ W N R

R R R R R R R R
N Uk~ W N R

5.6. Fehlerinjektion und -detektion

Der einfache Pfadaktivierungsalgorithmus in Algorithmus 5.5 extrahiert zuerst alle Variablen
der eingehenden Signale des Scan-Pfad-Segments. Die entsprechenden positiven oder nega-
tiven Literale werden in einer Liste gespeichert, basierend auf dem kontrollierenden Wert
des auf dem Pfad liegenden Gatters. Anschlieffend wird eine neue Hilfsvariable erzeugt und
dieser das Ergebnis einer UND-Verkniipfung der zuvor extrahierten Variablen zugewiesen.
Existieren Kontravalenz- oder Aquivalenzgatter auf dem Datenpfad, so kénnen diese nicht
statisch modelliert werden, da sie keine kontrollierenden Werte besitzen. In diesem Fall wird
auf die Boole’sche Differenz zuriickgegriffen.

Algorithmus 5.5 Pfadaktivierung

Eingabe:

P : Scan-Pfad-Segment als Gatterliste
Ausgabe:

A : Aktivierungsvariable
Q: Liste von Variablen

Fir jedes Gatter p in P:
Fir jeden Vorgédnger v von p:

Falls v in P:
Fahre mit ndchstem Vorgédnger fort

Falls Eins kontrollierender Wert von p:
Fiige positive Variable von v zu Q hinzu

Falls Null kontrollierender Wert von p:
Fiige negierte Variable von v zu Q hinzu

Erzeuge Variable A
A = UND-Verkniipfung aller Variablen in Q

5.6. Fehlerinjektion und -detektion

Fehlerinjektion und -detektion werden ebenfalls als Klauseln des aussagenlogischen Erfiill-
barkeitsproblems modelliert. Fiir die Fehlerinjektion und -wirkung wird dazu ein kombi-
natorischer Teilgraph des Schaltungsgraphen dupliziert und der Fehler als Konstante
hinzugefiigt. Die Detektion findet an den sequentiellen Scan-Segmenten statt.

5.6.1. Modellierung von Fehlern in der aussagenlogischen Instanz

In der fehlerbehafteten Instanz miissen drei Aspekte eines Fehlers modelliert werden, welches
durch zusétzliche Klauseln in der aussagenlogischen Instanz des Rekonfigurierbaren Scan-
Netzwerks geschieht:

e Fehlerinjektion an der Fehlerstelle
e Fehlerwirkung im Ausgangskegel des Fehlers

e Strukturen zum Erkennen der Fehlerwirkung

55

5. Implementierung

Die Fehlerinjektion entspricht der Modellierung der Fehlerwirkung am Fehlerort. Dazu wird
eine entsprechende Klausel erzeugt, welche das fehlerbehaftete Gatter beschreibt. Befindet
sich der Fehler am Ausgangssignal oder entspricht dem kontrollierenden Wert des Gatters,
so wird das Gatter als neue Konstante modelliert. Andernfalls wird das fehlerbehaftete
Eingangssignal durch eine Konstante ersetzt.

Die Fehlerwirkung beschreibt die Propagierung eines Fehlers durch die Schaltung. Hierzu
werden alle Gatter im Ausgangskegel des Fehlers dupliziert, neue Variablen erzeugt und
den duplizierten Gattern zugewiesen. Ist solch ein Gattereingang mit dem Ausgang eines
anderen Gatters des Fehlerkegels verbunden, so wird die entsprechende fehlerbehaftete
Variable genutzt. Wenn dies nicht der Fall ist, das heifst ein eingehendes Signal in den
Fehlerkegel, wird die entsprechende fehlerfreie Variable verwendet. Hierbei konnen die in
Kapitel 5.3.2 beschriebenen hierarchischen Variablenabbildungen genutzt werden.

Die Observierung des Fehlers wird durch Vergleich der Gut-Werte mit den fehlerhaften
Werten an jedem Scan-Segment im kombinatorischen Fehlerkegel durchgefiihrt. Dazu kon-
nen die in Kapitel 4.3 beschriebenen Detektionsbedingungen genutzt werden. Detektions-
bedingungen werden ebenfalls als Klauseln modelliert und derart gestaltet, dass fiir jedes
Scan-Segment eine Variable erzeugt wird, welche zu wahr evaluiert, wenn der entsprechende
Fehler detektiert wurde. Alle Detektionsvariablen werden anschlieffend in einer Klausel
zusammengefiihrt, was einer ODER-Verkniipfung entspricht.

Das so erweiterte aussagenlogische Erfiillbarkeitsproblem enthélt sowohl die urspriingliche
Schaltung als auch den modellierten Fehler und die notwendigen Erweiterungen zur Detek-
tion dessen. Als Einschrankung des Losungsraums wird nun dem Losungsprogramm die
Bedingung hinzugefiigt, dass mindestens eine der Detektionsklauseln erfiillt sein muss.
Als Ergebnis werden auf diese Weise Zugriffsmuster berechnet, welche die modellierten
Detektionsbedingungen erfiillen.

5.6.2. Modellierung der Fehlerdetektion in der aussagenlogischen Instanz

Fiir die Fehlerdetektion werden zwei Fille unterschieden. Liegt ein Fehler auf dem Scan-Pfad
selbst, wie dies Abbildung 5.4 skizziert, wird keine Fehlerdetektion benotigt. Ein Fehler dieser
Art unterbricht bei Aktivierung den Scan-Pfad des entsprechenden Scan-Pfad-Segments.
Dabher ist es bereits ausreichend einen Zugriff auf das fehlerhafte Gatter zu erzwingen und
die dadurch erzeugten Zugriffsmuster als Testmuster zu verwenden.

Scan-Pfad

}

Fehler-
stelle

ng

Abbildung 5.4.: Scan-Pfad (blau) mit Fehler auf dem Scan-Pfad

56

OO O Ul A~ W N R

H R R R R R R KRR
Oy U~ W N R

5.6. Fehlerinjektion und -detektion

Der zweite Fall liegt vor, falls der zu modellierende Fehler ein Kontroll- oder
Adressierungssignal eines Scan-Pfad-Segments beeinflusst, wie es in Abbildung 5.5
dargestellt wird. Dann wird der Fehler, sowie dessen Wirkung, durch zusitzliche Vari-
ablen und Klauseln wie in Kapitel 5.6.1 beschrieben, modelliert.

Scan-Pfad
D

Fehler-
stelle

Abbildung 5.5.: Scan-Pfad (blau) mit Fehler an eingehendem Kontrollsignal

Zur Fehlerdetektion wird das in Kapitel 4.3.1 beschriebene Brechen des Scan-Pfads einge-
setzt. Algorithmus 5.6 skizziert die Erzeugung der entsprechenden Klauseln. Die Detek-
tionsbedingungen werden dazu an jedem Scan-Register, welches kombinatorisch von der
Fehlerwirkung betroffen ist, hinzugefiigt. Auf diese Weise kann sichergestellt werden, dass
spdter die Fehlerwirkung ausgelesen werden kann.

Algorithmus 5.6 Pessimistische Fehlerdetektion

Eingabe:

F : Fehlerinjektionsstelle
Ausgabe:

D : Detektionsvariable
L : Variablenliste

Fir jedes Scan-Register s in der Fehlerwirkung von F:
Aktiver Pfad wird inaktiv
Erzeuge Klausel k1 : "s_gut aktiv und s_saf inaktiv"
Fige k1 in L ein

Inaktiver Pfad bleibt inaktiv
Erzeuge Klausel k2 : "s_gut aktiv oder s_saf inaktiv"
Fige k2 zu CNF hinzu

Erzeuge Variable A
A = ODER-Verkniipfung aller Variablen in L
Fiige A zu CNF hinzu

5.6.3. Fehleraquivalenzklassen

Zur Reduktion der Fehlermenge werden Fehler aus dquivalenten Fehlerklassen kollabiert und
damit nur einmal in die Fehlermenge aufgenommen. Beispielhaft sind die entsprechenden
Fehlerdquivalenzklassen in Tabelle 5.2 fiir das Haftfehlermodell dargestellt. An verzweigungs-
freien Verbindungsleitungen ist die Fehlerwirkung per Definition durch die Identitdt dquiva-

57

5. Implementierung

lent und dementsprechend werden die Fehler auch {iber die Verbindungsleitungen kolla-
biert.

Name Operation Fehlerklassen

Identitit C=A {Ao,Co};{A1,C1}

Negation C=A {Ao,C1};{A1,Co}

Konjunktion C=ANB {AoBo,Co};{A1};{B1};{Ci}
Disjunktion C=AVB {A1,B1,C};{Ao};{Bo};{Co}
Kontravalenz C=A®B {Ao}{Bo};{Co};{A1};{B1};{Ci}
Aquivalenz C=A<B {Ao};{Bo};{Co};{A1};{B1};{C1}

Sheffer NAND) C=AAB {Ay, Bo,C1}; {A1};{B1};{Co}
Peirce (NOR) C=AVB {A1,B1,Co};{Ao}; {Bo}; {C1}
Implikation C=A—B {AyBi,Ci};{A1};{Bo};{Co}

Tabelle 5.2.: Aquivalente Fehlerklassen
X, entspricht einem Haftfehler an y am Gatter X

5.7. Fehlersimulation

Zur Validierung und Reduktion der vom ATPG erzeugten Zugriffsmuster werden diese
mittels Fehlersimulation tiberpriift. Um die Simulation moglichst einfach zu implementieren,
da deren Optimierung kein Kernbestandteil dieser Arbeit bildet, wurde eine einfache serielle
Fehlersimulation realisiert. Die zugehorige Priifschaltung ist in Kapitel 2.5.1 skizziert worden.
Die Verilog-Netzliste des Rekonfigurierbaren Scan-Netzwerks wird dabei zweimal in der
Priifschaltung instanziiert, wobei der entsprechende Fehler in der fehlerbehafteten Instanz
hinzugefiigt wird. Beide Module werden von den gleichen Eingabemustern getrieben und die
Ausgabemuster werden zu jedem Takt verglichen. Sollte es zu einer Abweichung kommen,
so ist der injizierte Fehler durch diese Testmuster detektierbar.

Als Simulationsumgebung dient hierbei ModelSim von Mentor Graphics, welches {iiber
eine SSH-Verbindung?® und eines dafiir entwickelten TCL-Skripts direkt aus dem ATPG-
Programm angesprochen werden kann. Dadurch ist es moglich die erzeugten Testmuster
unmittelbar in der Simulation zu tiberpriifen. Jedoch entstehen dadurch unerwiinschte
Latenzen aufgrund der Kommunikation tiber den Netzwerk-Stack und der zusatzlichen
Verschliisselung durch SSH.

Es wurde deshalb zusétzlich eine alternative, stapel-verarbeitende Ansteuerung program-
miert. Dessen Ansteuerung kann durch zwei Dateien erfolgen, wobei eine Datei die Fehler-
menge enthdlt und die andere die Testmuster. Dies ist die bevorzugte Variante zur Ermittlung

2http://www.libssh.org/

58

http://www.libssh.org/

5.7. Fehlersimulation

der Fehlerabdeckung der funktionalen Testheuristik, da hierbei keinerlei Interaktion benotigt
wird. Die stapel-verarbeitende Ansteuerung kann ebenfalls zur Ermittlung der Fehlerabdeck-
ung der erzeugten Testmustermengen genutzt werden.

Dieser Aufbau bietet ein grofses Optimierungspotential beziiglich der Simulations-
geschwindigkeit. Eine Moglichkeit besteht in der parallelen Simulation mehrerer fehlerhaften
Instanzen, so dass mit einer Gut-Simulation mehrere Fehler auf einmal simuliert werden
konnen. Damit konnte bei der Validierung eines durch das ATPG erzeugten Zugriffsmusters
untersucht werden, ob weitere Fehler durch das Zugriffsmuster entdeckt werden.

Die Fehlerinjektion wird durch den ModelSim-Befehl ,,force” an einem Signal realisiert,
welcher einem Signal einen statischen Wert zuweist. Dieser Befehl lasst sich nativ als Haft-
fehler nutzen und kann der Schaltung dynamisch hinzufiigt werden.

Nachdem die Simulation mit injiziertem Fehler durchgefiihrt wurde, wird die Fehlerinjektion
mittels ,, unforce” wieder aufgehoben und die Reset-Steuerung des Rekonfigurierbaren Scan-
Netzwerks kann genutzt werden, um die Fehlerwirkung aus der Schaltung zu entfernen.
Jedoch fiihrt eine Fehlerinjektion an einem Register in ModelSim zu einem Programmfehler,
so dass der Fehler nicht mehr aufgehoben wird. Daher muss die Simulationsumgebung neu
gestartet werden, was eine hohere Simulationszeit zur Folge hat.

59

6. Ergebnisse und Bewertung

Im folgenden Kapitel wird ein kommerzielles ATPG-Werkzeug, die beiden funktionalen Test-
heuristiken aus Kapitel 4.2 und das in Kapitel 4.3.1 vorgeschlagene Testverfahren miteinander
verglichen. Hierzu werden die bendtigte Rechenzeit zur Erzeugung der Testmuster und die
von den Testmustern erreichte Fehlerabdeckung zur Bewertung herangezogen.

Im ersten Unterkapitel wird eine Ubersicht iiber die verwendeten Testschaltungen, sowie
deren Aufbau gegeben. Anschlieffenden erfolgt die Auswertung der Testalgorithmen anhand
der beschriebenen Testschaltungen. Abschlieffend werden die nicht detektierten Fehler fiir
das vorgeschlagene Verfahren des Scan-Pfad-Brechens ndher untersucht.

6.1. Ubersicht der verwendeten Testschaltungen

Die Untersuchung der Algorithmen zur deterministischen Erzeugung der Testmuster findet
mittels dreier Klassen von Testschaltungen statt. Deren Aufbau wird in den nédchsten drei
Abschnitten betrachtet. Die Testumgebung zur Ermittlung der Rechenzeit bestand aus Intel
Core i7-2600 CPUs mit 20GB Arbeitsspeicher.

Die Klassen ,,SIB” und ,MUX" bilden reguldre Zugangsstrukturen zum Aufbau hierarchisch-
er Rekonfigurierbarer Scan-Netzwerke. Diese wurden genutzt, um eine Menge ausgewédhlter
Testschaltungen fiir Systems-on-a-Chip als Rekonfigurierbare Scan-Netzwerke aufzubauen
[MICoz2]. Schaltungen aus der Klasse , Chain” bestehen jeweils aus einer kombinatorischen
Schaltung, welche als Kontrolllogik fiir ein Rekonfigurierbares Scan-Netzwerk dient.

6.1.1. SIB-basierte Testschaltungen

In den ersten Entwiirfen zu IEEE P1687 wird das SIB (Segment Insertion Bit) als reguldre
Struktur zum Aufbau hierarchischer Zugriffsinfrastrukturen beschrieben. Ein SIB kann
entweder als Zugangspunkt fiir tiefer liegende Hierarchien oder als Bypass genutzt werden.
Abbildung 6.1 zeigt ein Rekonfigurierbares Scan-Netzwerk, welches mit SIBs realisiert
wurde.

61

6. Ergebnisse und Bewertung

SCAN SCAN
O T S5 SIE S5 < our
TIO FROIM TIO FROIM TO FRO TIO FROIM
|—{ INPUTS ;—' L{OUTPUTS}—' C -
Module 2
|—SIS SO SIS SO SISIBSO—I
TIO FRO;VI TIO FRO;VI TIO FRO;VI
|—| INPUTS IJ |—|OUTPUTS|J |—| CHAIN 1 IJ
Module 1
Module 0O

Abbildung 6.1.: Beispiel einer SIB-basierten Testschaltung [BKW12]

Ein SIB besteht aus einem 1-Bit-Konfigurationsregister und einem Scan-Multiplexer, wie
es Abbildung 6.2 dargestellt wird. Die Anschltisse TDI und TDO sind an den Scan-Pfad
angeschlossen, wihrend TO und FROM eine weitere Hierarchieebene oder weiteres Modul
einbinden. Das Konfigurationsregister steuert den Multiplexer so, dass entweder ein Bypass
gebildet oder die anhdngende Hierarchieebene eingebunden wird.

TDI

Scan-] TDO
Segq.

TO FROM
v
Module

Abbildung 6.2.: Struktureller Aufbau eines SIBs

Der simple Aufbau der SIB-Struktur bietet verschiedene Vorteile. Die einfache Struktur
reguldrer Hierarchien erfordert keine komplexen Aktivierungsbedingungen, wodurch die
Berechnung von Zugriffsmustern effizient erfolgen kann. Der notige Hardware-Aufwand fiir
das Scan-Segment und den Multiplexer sind sehr gering, wodurch sich ebenfalls eine geringe
Zahl von moglichen Fehlern ergibt. Aufgrund des Registers auf dem Scan-Pfad, konnen
keine langen kombinatorischen Pfade bei rekursiver Anwendung entstehen. Nachteilig wirkt
sich das Scan-Register jedoch auf die minimale Scan-Pfad-Linge aus, da diese fiir jedes
aktivierte SIB-Element erhoht wird.

62

6.1. Ubersicht der verwendeten Testschaltungen

6.1.2. MUX-basierte Testschaltungen

MUX-Zellen-basierte Schaltungen sind dhnlich zu SIB-basierten, denn sie binden entweder
eine Hierarchieebene oder ein weiteres Modul ein, oder bilden einen Bypass fiir dieses.
Jedoch liegen die Scan-Segmente (config, CFG) zur Steuerung der Multiplexer auf einem
separaten Scan-Pfad. Abbildung 6.3 zeigt eine solche Struktur. Der separate Scan-Pfad wird
von einem weiteren Scan-Segment (configuration mode, CM) kontrolliert. Dabei werden
zwei Betriebsmodi unterschieden. Ein Modus zum Zugriff auf die Datenmodule (CM=0)
und einen zur Konfiguration (CM=1), welche Module auf dem Scan-Pfad wéhrend des
Datenzugriffs aktiv sein sollen.

—P| CFG P1 CFG P| CFG

TDI TDO
—pl CM 0 0 0 B —
1 1 1

TO FROM TO FROM TO FROM

\ 4 \ 4 \ 4
Module 1 Module 2 Module 3

Abbildung 6.3.: Struktureller Aufbau einer MUX-Zelle

Der separate Scan-Pfad zur Konfiguration der Multiplexer reduziert die minimale Scan-Pfad-
Lange des Rekonfigurierbaren Scan-Netzwerks. MUX-Strukturen konnen rekursiv genutzt
werden, jedoch entsteht dabei ein Multiplexer-Baum. Jener enthélt sehr lange kombina-
torische Pfade, da jedes Modul direkt mit dem Priméarausgang (TDO) der Schaltung oder
einer nachfolgenden MUX-Zelle verbunden wird. Zur Reduktion der Lange des kritischen
Pfads kann die Synthese verschiedene Optimierungen vornehmen, wodurch unter anderem
Rekonvergenzen entstehen konnen. Dies fiihrt zu einer aufwendigeren Modellierung in der
aussagenlogischen Instanz des Erfiillbarkeitsproblems.

6.1.3. Chain-basierte Testschaltungen

Der Aufbau der dritten Klasse der betrachteten Testschaltungen ist in Abbildung 6.4 skizziert.
Diese bestehen aus einer kombinatorischen Schaltung, welche in ein Rekonfigurierbares
Scan-Netzwerk als Kontrolllogik integriert wurde. Die Eingédnge der kombinatorischen
Schaltung werden jeweils von einem Scan-Segment getrieben, wodurch eine vollstandige

6. Ergebnisse und Bewertung

Kontrollierbarkeit der Eingédnge erreicht wird. Jeder Ausgang steuert einen Multiplexer,
welcher zwischen einem Bypass und einem Scan-Segment auswéhlt.

Scan-
Seg.

Scan-|
Seg.

Scan-
Seg.

Scan-|
Seg.

Scan-

Jt Seg.

Scan-|
Seg.

AN

AN
E——
AN
 —]
AN
 —]
AN
 —]
AN
E——

Kombinatorische
Schaltung

Abbildung 6.4.: Struktureller Aufbau einer Chain-Testschaltung
Eingdnge der Ursprungsschaltung wurden durch Scan-Segmente ersetzt.
Jeder Ausgang steuert eine Bypass-artige Struktur mit einem Scan-Segment.

Diese Klasse der Schaltungen wurde synthetisiert, um die Effektivitdt der Testalgorithmen
bei komplexer Steuerlogik in Rekonfigurierbaren Scan-Netzwerken zu untersuchen. Tabelle
6.1 gibt eine Ubersicht tiber die verwendeten kombinatorischen Testschaltungen, die aus den
ISCAS’85 Schaltungen ausgewihlt wurden [BF85].

Name ‘ Funktion ‘ #PI #PO #Gatter #Fehler
C432 | Prioritdts-Decoder 36 7 160 524
c499 | Fehlertoleranter Decoder 41 32 202 758
C880 | Arithmetisch-logische Einheit | 60 26 383 942
C1355 | Fehlertoleranter Decoder 41 32 546 1574
C1908 | Fehlertoleranter Decoder 33 25 880 1879
C3540 | Arithmetisch-logische Einheit | 50 22 1669 3428

Tabelle 6.1.: Ubersicht iiber ISCAS’85 Testschaltungen
PI: Priméreingidnge, PO: Primdrausginge

64

6.1. Ubersicht der verwendeten Testschaltungen

6.1.4. Schaltungsstatistiken

Tabelle 6.2 zeigt eine Ubersicht der verwendeten Testschaltungen und deren charakter-
istischen Merkmale. Diese wurden von Synopsis Design Compiler D2010.03 fiir die LSIzok
Bibliothek synthetisiert.

Schaltung | Gatter Fehler Scan Scan-Pfad-Lange
Seg. Verzw. Konv. | Min. Max. 1%}

c432_chain 781 2334 | 43 13 14 36 43 39
c1908_chain 1702 4918 58 176 239 33 58 45
c880_chain 1894 5584 86 91 118 61 86 73
¢499_chain 2016 5968 73 241 329 41 73 57
c1355_chain 2006 5970 73 220 310 41 73 57
¢3540_chain 2507 6888 72 43 53 51 72 61
q12710_mux 956 2878 51 55 61 1 26 14
X1331_mux 1218 3644 63 67 73 1 32 16
a586710_mux 1666 4804 79 150 186 1 40 21
f2126_mux 1729 5034 81 185 230 1 41 23
DSg9_mux 1860 5448 89 96 113 1 45 21
u226_mux 2061 6092 99 208 269 1 50 27
hg53_mux 2081 6188 | 109 153 173 1 55 28
d281_mux 2363 6952 | 117 236 293 1 59 32
g1023_mux 3329 9814 | 159 321 389 1 8o 40
P34392_mux | 5050 14856 | 245 568 757 1 123 65
t512505_mux 6779 19880 | 319 740 953 1 160 78
d695_mux 7070 20312 | 335 832 1138 1 168 89
p228io_mux | 10991 32302 | 565 1120 1376 1 283 141
q12710_sib 679 2106 46 25 25 4 46 27
x1331_sib 799 2552 56 29 31 6 56 346
a586710_sib 1010 3142 71 34 39 6 71 43
f2126_sib 1057 3316 76 38 40 6 76 47
DSg_sib 1188 3702 8o 40 44 5 80 52
u226_sib 1269 3992 89 48 49 11 89 56
hogs3_sib 1404 4412 | 100 51 54 10 100 58
d281_sib 1523 4754 | 108 55 58 8 108 64
g1023_sib 2074 6440 | 144 78 79 16 144 83
P34392_sib 3157 9920 | 225 107 122 6 225 130
t512505_sib 4138 12914 | 287 155 159 33 287 164
d69g5_sib 4463 13950 | 324 164 167 10 324 180
p22810_sib 7471 23278 | 536 271 282 24 536 289

Tabelle 6.2.: Ubersicht der charakteristischen Merkmale der betrachteten Testschaltungen
Seg.: Segmente, Verzw.: Verzweigungen, Konv.: Konvergenzen

65

6. Ergebnisse und Bewertung

6.2. Auswertung der Testalgorithmen

Folgend findet sich die Auswertung der betrachteten Testalgorithmen. Die Tabelle 6.3 auf
Seite 68 listet die Fehlerabdeckung und die benétigte Rechenzeit auf. In Tabelle 6.4 auf
Seite 69 findet sich die Anzahl und Lange der erzeugten Scan-Testmustern aufer fiir das
sequentielle ATPG, da es sich dabei nicht um Scan-Testmuster handelt.

6.2.1. Sequentielles ATPG mit kommerziellem Werkzeug

Als erstes Verfahren wird ein kommerzielles ATPG-Werkzeug fiir sequentielles ATPG be-
trachtet und die Fehlerabdeckung und Rechenzeit ermittelt. Damit soll untersucht werden,
wie effizient fiir Rekonfigurierbare Scan-Netzwerke mit bereits bestehenden Werkzeugen
Testmuster erzeugt werden konnen.

Fiir Testschaltungen mit geringer minimaler Scan-Pfad-Linge und Gatterzahl, wie zum
Beispiel a586710_mux, f2126_mux, q12710_mux oder q12710_sib, lassen sich Fehlerabdeck-
ungen bis zu 93 Prozent erreichen, jedoch betragt die Laufzeit dabei bereits 22 bis 37
Stunden. Durch Erhéhung der maximalen Zahl an Backtracking-Schritten ldsst sich die
Fehlerabdeckung weiter steigern, jedoch steigt dadurch auch die benétigte Laufzeit. Des
Weiteren muss beachtet werden, dass die Scan-Ketten der verwendeten Testschaltungen
lediglich ein Bit lang sind. In einer realen Schaltung ist die Lange der Scan-Ketten deutlich
grofier und damit auch der Suchraum beim sequentiellen ATPG.

Schaltungen mit hoher minimaler Scan-Pfad-Lange stellen ein Problem fiir das kommerzielle
Werkzeug dar. Bei grofieren Schaltungen, wie beispielsweise ¢3540_chain, c88oc, DSg_sib
oder p22810_sib, liegt die Fehlerabdeckung bei unter 20 Prozent, bei einer Laufzeit von bis
zu zwei Tagen. Die Erhohung der moglichen Schritte des Backtrackings wiirde hierbei zu
einer impraktikabel langen Laufzeit fiithren.

6.2.2. Funktionale Testmustererzeugung

Die funktionalen Heuristiken unterscheiden sich von den anderen betrachteten Algorithmen
in der Vorgehensweise bei der Erzeugung von Testmustern. Die Heuristiken betrachten
keine individuellen Fehler und Erzeugen dafiir Testmustern, sondern es wird findet nur
eine Erzeugung von Zugangsmustern statt, welche als Testmuster verwendet werden. Da-
her betrdgt die Laufzeit zur Erzeugung der Muster nur wenige Sekunden. Die erzeugte
Testmustermenge ist dadurch ebenfalls sehr kompakt.

Wie zu erwarten, weist die um Lese- und Schreibzugriffe erweiterte Heuristik eine hohere
Fehlerabdeckung gegeniiber der reinen Zugriffsheuristik auf. Die Abweichung der Unter-
schiede liegt etwa zwischen 3 (d295_mux) und 17 Prozent (c432_chain). Im Durchschnitt
ergibt sich eine um 9-10 Prozent gesteigerte Fehlerabdeckung, bei ungeféhr vierfacher Menge
von Testmustern.

66

6.2. Auswertung der Testalgorithmen

Die empirischen Daten zeigen eine gute Fehlerabdeckung bei SIB-basierten Strukturen.
Aufgrund des Aufbaus der SIB-Strukturen und der Bedingung, dass alle Scan-Segmente
einmal zugreifbar und aktiv sein miissen, werden alle Scan-Pfad-Segmente durch das iterative
Aktivieren getestet.

Im Gegensatz hierzu gibt es bei MUX-basierten Schaltungen Scan-Pfad-Segmente, die durch
die Zugriffsmuster nicht aktiviert werden. In MUX-basierten Schaltungen kann jedes Modul
mit allen nachfolgenden Verbunden sein, so dass sehr viele mogliche Scan-Pfad-Segmente
entstehen. Die Heuristiken testen jedoch nur einen Bruchteil dieser, wodurch Fehler auf den
Scan-Pfaden und der Steuerlogik nicht detektiert werden.

Die erweiterten ISCAS’85 Schaltungen weisen eine durchschnittliche Fehlerabdeckung auf.
Der erforderte Zugriff durch die Testheuristiken fiir die Scan-Segmente der Eingdnge
entspricht einem Test mit dem Nullvektor (alle Bits 0) und dem Einsvektor (alle Bits 1).
Dartiber hinaus erwirkt die Aktivierung der Scan-Segmente, dass alle Primdrausgédnge
der kombinatorischen Schaltung einmal von einer logischen Null und einer Eins getrieben
werden.

Im Vergleich zum sequentiellen ATPG-Werkzeug zeichnen sich die Heuristiken durch eine
robustere Fehlerabdeckung bei SIB- und MUX-basierten Schaltungen ab und weisen weniger
starke Streuungen auf.

Die Erzeugung der Zugriffsmuster auf Register-Transfer-Ebene ist fiir grofse Schaltungen um
bis zu einem Faktor 150 (p22810_mux) schneller als auf Gatterebene. Dies liegt zum Einen
in der grofieren Anzahl von Logikelementen, als auch in der aufwendigeren Modellierung
begriindet. Aufgrund der Rekonvergenzen in MUX-basierten Schaltungen muss die Ak-
tivierung der Scan-Segmente durch die Boole’sche Differenz modelliert werden und erfordert
daher die Auswertung einer grofleren Instanz des aussagenlogischen Erfiillbarkeitsproblems,
wie in Kapitel 5.5.1 beschrieben.

67

6. Ergebnisse und Bewertung

Schaltung Seq. ATPG Heur. TPG BSP WH + BSP
AH WH WH
FA LZ FA FA LZ FA LZ FA LZ

c432_chain | 85% 0:22.07 | 59% 76% <0:00.01 | 88% 0:00.39 | 92% 0:00.11
c1908_chain | 83% 0:56.21 | 53% 63% <0:00.01 | 82% 0:16.47 | 83% 0:05.32
c880_chain | 12% 3:20.54 | 59% 70% <0:00.01 | 81% 0:13.00 | 88% 0:05.00
c499_chain | 30% 4:24.47 | 40% 51% <0:00.01 | 85% 0:35.22 | 87% 0:17.14
c1355_chain | 29% 4:25.16 | 39% 47% <0:00.01 | 78% 0:35.27 | 81% 0:20.14
c3540_chain | 14% 7:12.22 | 56% 71% <0:00.01 | 82% 0:11.52 | 88% 0:03.26
I | 42% 312658 | 51% 63% <0:00.01 | 83% 0:18.51 | 86% 0:08.36

qi2yio_mux | 94% 0:22.17 | 70% 79% <0:00.01 | 81% 0:01.26 | 86% 0:00.20
x1331_mux | 52% 1:15.27 | 73% 82% <0:00.01 | 85% 0:01.42 | 88% 0:00.20
a58671io_mux | 96% 0:26.32 | 67% 75% <0:00.01 | 83% 0:05.55 | 89% 0:01.13
f2126_mux | 94% 37:24.16 | 62% 71% <0:00.01 | 82% 0:07.59 | 89% 0:01.58
DSg_mux | 23% 1:10.15 | 74% 81% <0:00.01 | 84% 0:05.55 | 89% 0:01.00
u226_mux | 45% 2:13.54 | 65% 72% <0:00.01 | 84% 0:12.42 | 90% 0:04.08
ho53_mux | 69% 1:20.00 | 70% 78% <o0:00.01 | 82% 0:10.29 | 87% 0:02.44
d281_mux | 90% 1:08.03 | 66% 75% <0:00.01 | 84% 0:15.17 | 90% 0:03.14
g1o23_mux | 88% 2:11.46 | 67% 75% 0:00.02 | 82% 1:02.43 | 88% 0:16.28

pP34392_mux | 74% 5:40.43 | 64% 72% 0:00.07 2:46.51 0:48.58
ts12505_mux | 55% 10:28.15 | 67% 74% 0:00.08 7:08.45 1:34.47

d6gs5_mux | 62% 5:09.14 | 67% 70% 0:00.06 5:12.24 1:41.18
p22810_mux | 22% 17:38.49 | 66% 74% 0:00.50 25:48.23 6:18.28

I | 64% 7:10.36 | 67% 75% 0:00.06 | 83% 3:34.55 | 89% 0:54.33

qi2y10o_sib | 95% 0:23.51 | 76% 86% <o0:00.01 | 76% 0:00.32 | 87% 0:00.01
x1331_sib | 48% 1:38.12 | 83% 89% <0:00.01 | 83% 0:00.49 | 89% 0:00.02
a586710_sib | 58% 3:17.58 | 78% 87% <0:00.01 | 77% 0:00.59 | 88% <0:00.01
f2126_sib | 75% 2:23.47 | 77% 87% <0:00.01 | 77% 0:01.15 | 87% <0:00.01
DSg_sib | 16% 6:41.03 | 75% 84% <o0:00.01 | 73% 0:01.58 | 85% 0:00.18
u226_sib | 38% 5:59.01 | 79% 88% <0:00.01 | 79% 0:01.36 | 8% 0:00.05
hos3_sib | 37% 5:52.55 | 78% 88% <o0:00.01 | 78% 0:02.09 | 8% 0:00.03
d281_sib | 33% 6:24.02 | 77% 87% <o0:00.01 | 78% 0:02.20 | 8% 0:00.02
g1023_sib | 17% 11:16.24 | 78% 88% <0:00.01 | 76% 0:04.34 | 88% 0:00.20
P34392_sib | 46% 14:03.20 | 78% 87% <o0:00.01 | 77% 0:12.13 | 88% 0:00.12
tsi2505_sib | 17% 11:47.22 | 88% 88% <0:00.01 | 77% 0:19.45 | 88% 0:01.33
d69s5_sib | 31% 22:40.55 | 76% 87% <o0:00.01 | 75% 0:26.32 | 88% 0:00.09
p22810_sib | 12% 47:50.54 | 77% 87% <0:00.01 1:22.46 | 88% 0:04.47
& | 40% 73533 | 78% 87% <0:00.01 | 77% o0:12.07 | 8% 0:00.35

Gesamt @ ‘ 51% 7:44.06 ‘ 68% 77% <0:00.01 ‘ 81% 1:30.44 ‘ 88% 0122.52

Tabelle 6.3.: Ergebnisse fiir Fehlerabdeckung und Laufzeit verwendeter Testalgorithmen
FA: Fehlerabdeckung, LZ: Laufzeit [h:m.s], TPG: Testmustererzeugung, AH:
Einfache Heuristik, WH: Schreibende Heuristik, BSP: Brechung des Scan-Pfads

68

6.2. Auswertung der Testalgorithmen

Schaltung AH WH BSP BSP abzgl. WH
Anzahl Léange | Anzahl Léinge | Anzahl Lange | Anzahl Linge
c432_chain 2 79 8 316 269 10060 327 12257
c1908_chain 2 101 8 374 145 7250 103 5131
¢880_chain 2 148 8 588 209 14361 221 15019
c499_chain 1 73 8 456 141 8942 163 10443
c1355_chain 1 73 8 456 95 6138 153 9918
¢3540_chain 3 181 12 727 93 5498 123 7246
%] 2 109 9 486 159 8708 182 10002
qi2710_mux 5 88 18 321 269 2186 67 454
X1331_mux 9 198 32 680 574 5957 116 1152
a586710_mux 7 191 25 679 748 9854 473 5907
f2126_mux 5 137 18 500 731 9815 578 8081
DSg_mux 1 511 67 1811 2687 31771 684 8046
u226_mux 5 174 18 634 915 16562 619 11376
hg53_mux 5 187 18 682 630 9347 269 3605
d281_mux 5 195 18 712 888 14346 504 8093
g£1023_mux 5 274 18 999 1122 21238 614 11450
P34392_mux 7 569 25 2053 3122 93151 1798 51311
t512505_mux 5 548 18 1998 3016 119623 1311 49249
d695_mux 5 526 18 1925 4121 163969 3057 117619
p22810_mux 7 1330 25 5137 5272 321995 2714 151365
%) 7 403 25 1484 1986 68136 1061 35605
qi2y10_sib 3 75 12 300 42 864 1 4
x1331_sib 5 167 20 572 86 1958 1 6
a586710_sib 4 177 16 544 24 624 3 28
f2126_sib 3 124 12 488 24 529 2 22
DSg_sib 10 348 40 1216 358 8028 67 1059
u226_sib 3 149 12 596 88 1560 o o}
hogs53_sib 3 166 12 656 20 707 2 30
d281_sib 3 174 12 696 44 1174 0 o}
g1023_sib 3 241 12 956 101 4154 0 0
P34392_sib 4 514 16 1780 163 11554 0 0
t512505_sib 3 481 12 1916 267 24235 2 76
d6gs_sib 3 501 12 2004 50 2993 0 o}
p22810_sib 4 1322 16 3660 101 16857 5 154
1%} 4 341 16 1183 105 5787 6 106
Gesamt @ ‘ 5 310 ‘ 18 1130 ‘ 840 30100 ‘ 447 15726

Tabelle 6.4.: Ergebnisse fiir die Anzahl und Lange der erzeugten Testmuster
AH: Einfache Heuristik, WH: Schreibende Heuristik,
BSP: Brechung des Scan-Pfads, BSP abzgl. WH: Brechung des Scan-Pfads fiir
die verbleibende Fehlermenge nach WH

69

6. Ergebnisse und Bewertung

6.2.3. Brechung des Scan-Pfads

Der betrachtete Ansatz des , Brechens des Scan-Pfads” untersucht unter anderem alle Fehler,
welche sich auf den Scan-Pfad-Segmenten selbst befinden und erzeugt fiir diese Zugriffs-
muster. Durch die grofle Anzahl der moglichen Fehler entstehen jedoch sehr viele Testmuster,
wodurch die Testmustermenge ebenfalls groff wird. Die Testmuster konnen durch Fehlerauf-
gabe reduziert werden.

Sind Testmuster unabhingig, das heifst liegen die Fehler auf unterschiedlichen Scan-Pfad-
Segmenten, welche sich nicht gegenseitig beeinflussen und gleichzeitig aktiv sein konnen,
dann lassen sich die Testmuster zusammenfassen und so kann die Testmustermenge weiter
reduziert werden. Dies kdnnte als parallele Modellierung der Fehler in einer aussagen-
logischen Instanz des Erfiillbarkeitsproblems implementiert werden.

Eine hohere Fehlerabdeckung, als bei den heuristischen Verfahren, wird bei den Chain-
Schaltungen erreicht, da fiir diese die Fehler in der kombinatorischen Logik der Schaltung
explizit betrachtet werden. Hierbei ist zu beachten, dass bei diesen Schaltungen die Scan-
Multiplexer an den Ausgangen der Schaltung ein Brechen des Scan-Pfads verhindern. Ist die
Fehlerwirkung an einem Primédrausgang der kombinatorischen Schaltung beobachtbar, dann
wird ein zwar falscher Scan-Pfad gewdhlt, aber ein aktiver Scan-Pfad bleibt erhalten.

Die einfache Heuristik zur Testmustererzeugung kann bereits alle Fehler des Scan-Pfads in
SIB-basierten Schaltungen detektieren, weshalb sich keine Verbesserung durch das Brechen
des Scan-Pfads ergibt. Die Fehlerabdeckungen sind sehr dhnlich, jedoch unterscheiden sich
die erzeugten Testmustermengen stark voneinander. Denn die Heuristiken erzeugen lediglich
Zugriffsmuster, die einmalig alle Scan-Segmente aktivieren, wihrend bei der Brechung des
Scan-Pfads Testmuster fiir jeden Fehler separat erzeugt werden.

Bei MUX-basierten Schaltungen ist eine Verbesserung der Fehlerabdeckung gegeniiber
den Heuristiken beobachtbar, da Fehler auf den nicht aktivierten Scan-Pfad-Segmenten
detektiert werden. Jedoch sind Testmustermenge als auch die Testschaltungen, wie etwa
bei d695_mux oder p22810_sib, so grof3, dass fiir die Stapel-verarbeitende Fehlersimulation
keine praktikable Laufzeit erreicht und daher keine Ergebnisse ermittelt werden konnten.
Mogliche Verbesserungen werden in Kapitel 7 aufgezeigt.

6.2.4. Kombination aus Heuristik und Brechung des Scan-Pfads

Abschliefsend wird eine Kombination aus der lesenden und schreibenden Heuristik und der
Brechung des Scan-Pfads betrachtet. Hierbei kombinieren sich die Vorteile beider Verfahren,
indem zuerst alle Fehler von der Heuristik untersucht werden. AnschliefSend wird fiir die
tibrig gebliebene Fehlermenge das Brechen des Scan-Pfads eingesetzt, so dass die aufwendige
Modellierung jedes einzelnen Fehlers reduziert wird. Dadurch soll die benétigte Laufzeit
reduziert und insgesamt die Fehlerabdeckung verbessert werden. Die Zahl und Léange der
erzeugten Scan-Testmuster halbiert sich ungefahr im Vergleich zum exzessiven Scan-Pfad-
Brechen.

70

6.3. Klassifizierung nicht detektierter Fehler

Fiir SIB-basierte Schaltungen zeigt sich keine Verbesserung gegeniiber der Heuristik. Dies
liegt daran, dass nahezu alle Fehler auf dem Scan-Pfad bereits durch die Zugriffsheuristik
erkannt wurden und die Brechung des Scan-Pfads nur Fehler dieser Klasse betrachtet. Es ist
daher unnotig, das Brechen des Scan-Pfads mit Heuristik fiir SIB-basierte Schaltungen zu
kombinieren.

Fiir MUX-basierte und Chain-Schaltungen ergibt sich eine Steigerung der Fehlerabdeckung
durch Detektion von Fehlern auf den nicht durch die Heuristik aktivierten Scan-Pfad-
Segmenten. Durch die Reduktion der zu betrachtenden Fehlermenge nach Nutzung der
Heuristik sinkt die Laufzeit zur Erzeugung der Testmuster.

6.3. Klassifizierung nicht detektierter Fehler

In diesem Kapitel sollen die nicht detektierten Fehler anhand der Ergebnisse von drei
Beispielschaltungen detaillierter untersucht werden. Da die Fehlersimulation in ModelSim
auch ,Unbekannte”-Werte modelliert, fithren Fehler an diesen Stellen von Registern nur
zu potentiell detektierbaren Fehlern. Ein potentiell detektierbarer Fehler liegt vor, wenn ein
Wert in der fehlerbehafteten Schaltung , Unbekannt” ist und es somit nicht feststeht, ob der
Wert tatsdchlich vom Gutwert abweicht.

Folgende Griinde erkldren, warum diese dennoch deterministisch detektiert werden:

e Es ist davon auszugehen, dass Haftfehler an der Taktsteuerung von einer Flush-
Sequenz erkannt werden, da aufgrund der fehlenden Taktflanke keine Datenwerte in
den Registern gespeichert werden. Damit wird nur ein statischer Wert propagiert und
die Flush-Sequenz gestort.

e Haftfehler am aktiven Logikwert der Reset-Steuerung fiihren ebenfalls zu einem
stationdren Verhalten der Schattenregister. Da die Reset-Steuerung an Registern immer
Vorrang vor dem Dateneingang hat, ergibt sich dadurch ebenfalls die Propagierung
eines statischen Werts.

e Kann ein Schattenregister nicht zuriickgesetzt werden, weil die Fehlerwirkung das
Reset-Signal blockiert, so ldsst sich dies einfach testen. Dazu wird der komplementére
Wert des Initialzustands in das Schattenregister geschrieben und anschliefiend ein Reset
ausgefiihrt. Bei einem ersten Zugriff durch eine CSU-Operation wird das fehlerhafte
Datenwort ausgelesen.

Anhand einer aus jeder Schaltungsklasse ausgewihlten Schaltung wird folgend néher auf die
nicht detektierten und potentiell detektierbaren Fehler eingegangen. Bei dem untersuchten
Testmustererzeugungsverfahren handelt es sich um die Kombination aus lesender und
schreibender Heuristik, sowie dem Brechen des Scan-Pfads.

71

6. Ergebnisse und Bewertung

6.3.1. Untersuchung der verbliebenen Fehler in c499_chain

Verbleibende Fehler finden sich vor allem in der Scan-Adressierung, wie es in Abbildung
6.5 gezeigt ist. Im Fall der Chain-Schaltungen sind dies alle Fehler der kombinatorischen
Schaltung. Da diese durch die Brechung des Scan-Pfads nicht detektiert werden kénnen und
die Heuristik diese Fehler nicht explizit betrachtet, ergibt sich eine geringe Fehlerabdeckung.
Weitere undetektierte Fehler auf dem Scan-Datenpfad ergeben sich aus der Erzeugung von
Rekonvergenzen durch die Synthese, welche durch den Aufbau der Scan-Multiplexer nicht
gebrochen werden kénnen.

Update-Steuerung -

Update—Datenpfad 4

Taktsteuerung -

Scan-Steuerung -

Scan-Datenpfad -

Scan—-Addressierung

D.D..-,“.H-

Ruckkopplungssteuerung Schattenreg.

Ruckkopplungssteuerung Scan—-Reg. -

Ruckkopplungsdatenpfad Schattenreg.

Ruckkopplungsdatenpfad Scan—-Reg.

Reset-Ansteuerung -

Capture—Steuerung -

Capture—Datenpfad -

I I I
250 500 750

o -

Abbildung 6.5.: Anzahl verbleibender Fehler in c499_chain
Schwarz: Undetektierte Fehler
Grau: Potentiell detektierbare Fehler
Weifs: Pot. detektierbare Fehler die nach 6.3 detektiert werden

72

6.3. Klassifizierung nicht detektierter Fehler

6.3.2. Untersuchung der verbliebenen Fehler in 2126_mux

Ahnlich zu den Chain-Schaltungen finden sich in MUX-Schaltungen hauptséchlich
verbleibende Fehler auf dem Scan-Datenpfad und der Scan-Adressierung. Abbildung 6.6
zeigt dies anhand von f2126_mux. Aufgrund von Scan-Pfad-Segmenten, die nicht durch
die Fehlerwirkung an der Adressierung des Scan-Multiplexers gebrochen werden kénnen,
werden keine Testmuster erzeugt.

Update—Steuerung -

Update—Datenpfad -

Taktsteuerung -

Scan-Steuerung

Scan-Datenpfad -

Scan—-Addressierung -

Ruckkopplungssteuerung Schattenreg. -

Ruckkopplungssteuerung Scan—-Reg. -

Ruickkopplungsdatenpfad Schattenreg. -

|D-|||II|=||

Ruckkopplungsdatenpfad Scan—-Reg.

Reset-Ansteuerung -

Capture—Steuerung -

Capture—Datenpfad -

(@ X
|

I I I
100 200 300

Abbildung 6.6.: Anzahl verbleibender Fehler in f2126_mux
Schwarz: Undetektierte Fehler
Grau: Potentiell detektierbare Fehler
Weif3: Pot. detektierbare Fehler die nach 6.3 detektiert werden

73

6. Ergebnisse und Bewertung

6.3.3. Untersuchung der verbliebenen Fehler in 2126_sib

Beispielhaft fiir SIB-basierte Schaltungen, lassen sich in f2126_sib alle Fehlerklassen, bis
auf den Riickkopplungsdatenpfad der Schattenregister, durch die lesend und schreibend
zugreifende Heuristik bereits detektieren. Abbildung 6.7 gibt die Fehlerstellen fiir f2126_sib
entsprechend wieder. Bei den verbleibenden Fehlern auf dem Riickkopplungsdatenpfad
handelt es sich um Aktivierungssignale, welche stindig aktiv sein miissen, um einen aktiven
Scan-Pfad auszuprédgen. Die entsprechenden undetektierten Haftfehler propagieren den
gleichen Wert und lassen sich so nicht detektieren.

Update-Steuerung -

Update—Datenpfad 4

Taktsteuerung -

Scan-Steuerung -

Scan-Datenpfad -

Scan—-Addressierung

IDII'II'I:II

Ruckkopplungssteuerung Schattenreg.
Ruckkopplungssteuerung Scan—-Reg. -

Ruckkopplungsdatenpfad Schattenreg.

Ruckkopplungsdatenpfad Scan—-Reg.
Reset-Ansteuerung -

Capture—Steuerung -

Capture—Datenpfad -

I I I
100 200 300

o -

Abbildung 6.7.: Anzahl verbleibender Fehler in f2126_sib
Schwarz: Undetektierte Fehler
Grau: Potentiell detektierbare Fehler
Weifs: Pot. detektierbare Fehler die nach 6.3 detektiert werden

74

6.3. Klassifizierung nicht detektierter Fehler

6.3.4. Zusammenfassung

Drei Fehlerklassen konnten bei der Untersuchung der verbleibenden Fehler als schlecht test-
bar durch das vorgeschlagenen Verfahren zur Testmustererzeugung ausgemacht werden:

Scan-Adressierung Das Brechen des Scan-Pfads funktioniert nicht bei Fehlern an der An-
steuerung der Scan-Multiplexer. Betrifft die Fehlerwirkung diese, so kann sich dennoch
ein aktiver Scan-Pfad ausprdgen, weshalb kein Testmuster erzeugt wird.

Scan-Datenpfad Ein Teil der der Scan-Pfad-Segmente werden nicht getestet, da die Heuristik
nur eine Teilmenge dieser aktiviert. Das Brechen dieser Scan-Pfade ist nicht immer
moglich, wodurch die Fehlerabdeckung sinkt.

Riickkopplungsdatenpfad Schattenregister Miissen an bestimmten Kontrollsignalen Daten-
werte anliegen, welche notwendig sind um einen aktiven Scan-Pfad auszupriagen oder
eine CSU-Operation zu ermoglichen, so konnen Haftfehler mit gleichem Logikwert
nur schlecht getestet werden.

Weitere Fehlerklassen, wie die Update- und Capture-Steuerung, werden nicht explizit durch
die Modellierung des Verfahrens betrachtet, weshalb keine entsprechenden Testmuster fiir
diese erzeugt werden.

75

7. Zusammenfassung und Ausblick

Rekonfigurierbare Scan-Netzwerke sind wichtig fiir die Inbetriebnahme einer integrierten
Schaltung und miissen fehlerfrei arbeiten. Hierzu ist ein Test mit hoher Fehlerabdeck-
ung essentiell. Klassische Testalgorithmen fiir statische Scan-Ketten sind jedoch nicht aus-
reichend, da die kombinatorische und sequentielle Komplexitdt von Rekonfigurierbaren Scan-
Netzwerken bedeutend hoher ist. Deshalb wurde ein Verfahren zur Testmustererzeugung in
Rekonfigurierbaren Scan-Netzwerken entwickelt, welches speziell an deren Erfordernisse
angepasst ist. Durch die Kombination zweier Verfahren, ndmlich einer Heuristik und dem
Brechen des Scan-Pfads, konnte eine durchschnittliche Steigerung der Fehlerabdeckung
gegeniiber kommerziellen Werkzeugen von 172 Prozent erreicht werden, bei Reduktion
der Laufzeit um bis zu einem Faktor 20. Weitere Optimierungen werden in den folgenden
Kapiteln aufgezeigt, wodurch sich die Fehlerabdeckung weiter steigern, beziehungsweise
die Laufzeit reduzieren lasst.

Erweiterung der funktionalen Testheuristiken

Die funktionalen Testheuristiken erzeugen lediglich Zugriffsmuster zur Aktivierung aller
Scan-Segmente. Je nach Klasse der Zugriffsinfrastruktur werden dadurch sehr viele Scan-
Pfade bereits aktiviert, wie dies beispielsweise bei SIB-basierten Scan-Netzwerken der Fall
ist. Zur weiteren Optimierung der Heuristiken wére es wiinschenswert, dass sich jedes Scan-
Pfad-Segment mindestens einmal auf dem aktiven Scan-Pfad befindet, da die bisherigen
Heuristiken lediglich den Zugriff auf die Scan-Segmente erfordern. Dadurch kénnen Fehler
auf diesen Scan-Pfad-Segmenten sehr leicht detektiert werden. Dariiber hinaus sind die
entsprechenden Bedingungen der aussagenlogischen Instanz zum Zugriff leicht modellier-
und losbar.

Die Aktivierung eines Scan-Pfad-Segments im Erfiillbarkeitsproblem der Aussagenlogik
wurde als Pfadaktivierung modelliert. Durch die Betrachtung aller moglichen Scan-Pfad-
Segmente zwischen den Scan-Segmenten, kann es bei ungiinstigen Zugriffsstrukturen, wie
den MUX-basierten Schaltungen, zu einem Aufbldhen der moglichen Pfade kommen. In
MUX-basierten Schaltungen kann jedes Modul mit nahezu jedem anderen Modul verbunden
werden, wodurch es entsprechend viele moglichen Scan-Pfad-Segmente und Kombinationen
gibt. In diesen Féllen ist das Berechnen der Zugriffsmuster aufwandig und wurde deshalb
nicht weiter betrachtet. Eine Losung dieses Problems konnte in der Aufspaltung der Scan-
Pfad-Segmente an Multiplexern und Verzweigungen bestehen.

77

7. Zusammenfassung und Ausblick

Fehlerdetektierung durch Gebietsanalyse

Ein grofies Problem der Laufzeit bei der erarbeiteten Implementierung riihrt von der ex-
pliziten Modellierung jedes Fehlers her. Ahnlich wie bei der Gebietsanalyse des PPSFP-
Algorithmus konnte die Detektierbarkeit weiterer Fehler durch logisches Schliefien ermittelt
werden. Durch die Testheuristiken sind bereits alle Datenwerte der Register bekannt.

Dabei treten jedoch zwei Probleme hervor:

e Durch die Fehlerwirkung kann es zu abweichenden Datenwerten in den Registern
kommen, welche nicht durch die Testheuristiken detektiert wurden. Dann bliebe ein
eventuell als detektiert berechneter Fehler undetektiert. Eine genauere Untersuchung
des Fehlerverhaltens muss daher in Betracht gezogen werden.

e Im PPSFP-Algorithmus sind wédhrend der Fehlersimulation sowohl Gut- als auch
fehlerbehaftete Werte berechnet worden. Diese fehlen jedoch bei der Modellierung im
aussagenlogischen Erfiillbarkeitsproblem.

Partitionierung des Rekonfigurierbaren Scan-Netzwerks

Die Module und Hierarchien in Rekonfigurierbaren Scan-Netzwerken sind oft unabhéangig
voneinander. Beispielsweise gilt dies fiir aneinandergereihte MUX- und SIB-Strukturen,
welche nur iiber den Scan-Pfad verbunden sind. Lidsst sich ein relativ abgeschlossener
Teilgraph finden, so konnen kleinere Instanzen der modellierten Schaltung betrachtet werden,
was zu einer verbesserten Laufzeit fithrt. Insbesondere ermdoglicht dies einen erschopfenden
funktionalen Test.

Diagnose

Bei Scan-Ketten schriankt ein Fehler die Observierbarkeit stark ein, falls dieser den Scan-
Pfad bricht. Verschiedene Verfahren zur Diagnose von Scan-Ketten wurden in Kapitel 2.2.3
beschrieben, welche in der Regel zu zusédtzlichem Hardware-Aufwand fiihren.

Im Gegensatz dazu verlieren Rekonfigurierbare Scan-Netzwerke ihre Observierbarkeit nur
bei bestimmten Fehlern, wie etwa auf dem Taktbaum oder in der ersten Hierarchie. Hierdurch
lassen sich allerdings schon erste Schliisse auf die Fehlerursache ziehen.

Ein Verfahren zur Lokalisierung eines Fehlers kann in der iterativen Freischaltung einzelner
Module oder Hierarchien bestehen. Wird ein Fehler detektiert, so kann beispielsweise ein
Reset durchgefiihrt oder wieder versucht werden, die Hierarchie zu schliefSen. In der nachsten
Phase kann die Hierarchie dann voriibergehend ausgesetzt und weitere Hierarchien getestet
werden.

78

Full-Scan-Design flir Schattenregister

Scan-Register sind in Rekonfigurierbaren Scan-Netzwerken durch ihre Lage auf dem aktiven
Scan-Pfad observier- und kontrollierbar. Dahingegen kann auf Schattenregister nicht direkt
zugegriffen werden, sondern nur iiber die zugehorigen Scan-Register. Eine Moglichkeit des
direkten Zugriffs kann durch Hinzufiigen der Schattenregister zu einem Scan-Pfad erreicht
werden, um diese von aufsen observier- und kontrollierbar zu machen.

Hierdurch ldsst sich auch das Problem der Diagnose einfacher 16sen, da auch bei ge-
brochenem Scan-Pfad Zugriff auf die Konfigurationsregister besteht. So konnen eventuelle
Ubertragungsfehler in die Konfigurationsregister gefunden werden. Durch CSU Operatio-
nen mit nur einer einzelnen Scan-Operation pro Scan-Phase kann der Schiebebetrieb exakt
verfolgt werden.

Eventuell besitzt die integrierte Schaltung bereits einen Scan-Pfad fiir den Test, wodurch
keine weiteren Primdrein- und -ausgédnge benotigt werden. Der Verzicht auf die Reset-Logik
konnte den zusitzlich Hardware-Aufwand reduzieren, da die Initialisierung durch Scan
durchgefiihrt werden kann.

79

O 0O VU1l A~ W N R

RoR
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

A. Anhang

Algorithmus A.1 ICL-Beispiel: Zwei Konfigurationsregister zur Steuerung eines Multiplexers

mit einem Register oder Beipass

Module SelRegl {
ResetPort reset;
ScanInPort scanln;

ScanOutPort scanOut { Source reg; Enable select; }

SelectPort select;

ShiftEnPort shiftEn;

DataOutPort dataOut { Source reg; }

ScanRegister reg {

ScanInSource scanln;
1,
Module ICL_Example {

ResetPort reset;

ScanInPort scanln;

ScanOutPort scanOut { Source mux; }

SelectPort select;

ShiftEnPort shiftEn;

Instance cfgl Of SelRegl {
InputPort reset = reset;
InputPort select = select;
InputPort shiftEn = shiftEn;
InputPort scanIn = scanln;

}

Instance cfg2 Of SelRegl {
InputPort reset = reset;
InputPort select = select;
InputPort shiftEn = shiftEn;
InputPort scanIn = cfgl.scanOut;

3

LogicSignal reg_en {
cfgl.dataOut, cfg2.datalut == ’bll

}

Instance reg 0f SelRegl {
InputPort scanIn = cfg2.scanOut;
InputPort reset = reset;
InputPort select = reg_en;
InputPort shiftEn = shiftEn;

}

ScanMux mux reg_en {

0 : cfg2.scanOut;
1 : reg.scanQut;

3

81

Literaturverzeichnis

[BARVTS2] C. C. Beh, K. H. Arya, C. E. Radke, E. K. Vida-Torku. Do Stuck Fault Models

[BE85]

[BKW12]

[BKW13]

[BMS2]

[Bry86]

[Bry91]

[Coo71]

[EBo6]

[EE95]

[ESo6]

Reflect Manufacturing Defects? In Proc. of IEEE International Test Conference, S.
35—-42. IEEE, 1982. (Zitiert auf Seite 18)

E. Brglez, H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In Proc. of International Symposium
Circuits and Systems (ISCAS 85), S. 677-692. IEEE, 1985. (Zitiert auf Seite 64)

R. Baranowski, M. A. Kochte, H.-]. Wunderlich. Modeling, Verification and Pat-
tern Generation for Reconfigurable Scan Networks. In Proc. of IEEE International
Test Conference. IEEE, 2012. (Zitiert auf den Seiten 48 und 62)

R. Baranowski, M. A. Kochte, H.-J]. Wunderlich. Optimal Scan Pattern Generation
for Reconfigurable Scan Networks. Submitted for Review ETS 2013. (Zitiert auf
Seite 48)

P. H. Bardell, W. H. McAnney. Self-testing of multiple logic modules. In Proc. of
IEEE International Test Conference, S. 200—204. IEEE, 1982. (Zitiert auf Seite 37)

R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677 —691, 1986. (Zitiert auf Seite 54)

R. Bryant. On the complexity of VLSI implementations and graph represen-
tations of Boolean functions with application to integer multiplication. IEEE
Transactions on Computers, 40(2):205 —213, 1991. (Zitiert auf Seite 54)

S. A. Cook. The complexity of theorem-proving procedures. In Proc. of the third
annual ACM symposium on Theory of computing, STOC 71, S. 151-158. ACM, 1971.
(Zitiert auf Seite 22)

B. Eklow, B. Bennetts. New Techniques for Accessing Embedded Instrumentation:
IEEE P1687 (IJTAG). In Proc. of Eleventh IEEE European Test Symposium, S. 253
—254. IEEE, 2006. (Zitiert auf Seite 27)

S. Edirisooriya, G. Edirisooriya. Diagnosis of scan path failures. In Proc. of VLSI
Test Symposium, S. 250-255. IEEE, 1995. (Zitiert auf Seite 15)

N. Eén, N. Sorensson. Translating Pseudo-Boolean Constraints into SAT. JSAT,
2(1-4):1-26, 2006. (Zitiert auf Seite 43)

Literaturverzeichnis

[ESBoo]

[FS83]

[GNoz]

[GR81]

[GZAT02]

[HKBo4]

[HP99]

[IEEo1]

[iso12]

[KSWZ10]

[Kung3]

[Largz2]

[Lev73]

[LH92]

J. Emmert, C. Stroud, J. Bailey. A new bridging fault model for more accurate
fault behavior. In Proc. of AUTOTESTCON, S. 481 —485. IEEE, 2000. (Zitiert auf
Seite 19)

H. Fujiwara, T. Shimono. On the Acceleration of Test Generation Algorithms.
IEEE Transactions on Computers, C-32(12):1137 —1144, 1983. (Zitiert auf Seite 21)

E. Goldberg, Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proc. of
Design, Automation and Test in Europe Conference (DATE), S. 142 —149. 2002. (Zitiert
auf Seite 22)

P. Goel, B. Rosales. PODEM-X: An Automatic Test Generation System for VLSI
Logic Structures. In Proc. of 18th Conference on Design Automation, S. 260 — 268.
IEEE, 1981. (Zitiert auf Seite 21)

M. Ganai, L. Zhang, P. Ashar, A. Gupta, S. Malik. Combining strengths of
circuit-based and CNF-based algorithms for a high-performance SAT solver. In
Proc. of IEEE/ACM Design Automation Conference, S. 747 — 750. IEEE/ACM, 2002.
(Zitiert auf Seite 23)

R. Hahn, R. Krieger, B. Becker. A hierarchical approach to fault collapsing. In
Proc. of European Design and Test Conference (EDAC), S. 171 —176. 1994. (Zitiert
auf Seite 11)

I. Hamzaoglu, J. Patel. Reducing test application time for full scan embedded
cores. In Proc. of International Symposium on Fault-Tolerant Computing, S. 260 —267.
1999. (Zitiert auf Seite 14)

IEEE. Standard Test Access Port and Boundary - Scan Architecture. IEEE Std
1149.1-2001, 2001. (Zitiert auf Seite 14)

ISO 26262-5:2012 Road vehicles - Functional safety - Part 5: Product development:
hardware level, 2012. (Zitiert auf Seite 10)

M. Kochte, M. Schaal, H.-J. Wunderlich, C. Zoellin. Efficient fault simulation
on many-core processors. In Proc. of IEEE/ACM Design Automation Conference
(DAC), S. 380 —385. IEEE/ ACM, 2010. (Zitiert auf Seite 20)

S. Kundu. On diagnosis of faults in a scan-chain. In Proc. of VLSI Test Symposium,
S. 303 —308. 1993. (Zitiert auf Seite 13)

T. Larrabee. Test pattern generation using Boolean satisfiability. Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 11(1):4 —15, 1992. (Zitiert
auf Seite 21)

L. A. Levin. Universal sorting problems. Problems of Information Transmission,
9:265—266, 1973. (Zitiert auf Seite 22)

H. Lee, D. Ha. HOPE: an efficient parallel fault simulator. In Proc. of [IEEE/ACM
Design Automation Conference (DAC), S. 336 —340. IEEE/ACM, 1992. (Zitiert auf
Seite 21)

Literaturverzeichnis

[MAg8]

[MBABg9]

[MICo2]

[MMos]

[MMZ*01]

[Moo09g8]

[NGBg2]

[Paroy]

[PHo4]

[POgo]

[PSL8o]

[Rot66]

[RTKMog4]

[Sch88]

[Scho8]

[Shag9]

A. Majhi, V. Agrawal. Delay fault models and coverage. In Proc. of IEEE
International Test Conference, S. 364 —369. IEEE, 1998. (Zitiert auf Seite 19)

S. Majumder, B. Bhattacharya, V. Agrawal, M. Bushnell. In Proc. of International
Conference On VLSI Design, S. 492 —497. 1999. (Zitiert auf Seite 19)

E. Marinissen, V. Iyengar, K. Chakrabarty. A set of benchmarks for modular
testing of SOCs. In Proc. of IEEE International Test Conference, S. 519 — 528. 2002.
(Zitiert auf Seite 61)

S. Makar, E. McCluskey. Functional tests for scan chain latches. In Proc. IEEE
International Test Conference, S. 606—-615. IEEE, 1995. (Zitiert auf Seite 15)

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: engineering an
efficient SAT solver. In Proc. of Design Automation Conference (DAC), S. 530 — 535.
2001. (Zitiert auf Seite 22)

G. Moore. Cramming More Components Onto Integrated Circuits. In Proc. of
the IEEE, 86(1):82 -85, 1998. (Zitiert auf Seite 25)

S. Narayanan, R. Gupta, M. Breuer. Configuring multiple scan chains for
minimum test time. In Proc. of IEEE/ACM International Conference on Computer-
Aided Design, S. 4 -8. IEEE/ACM, 1992. (Zitiert auf Seite 14)

T. Parr. The Definitive ANTLR Reference Guide. Oreilly and Associate Series.
O'Reilly Vlg. GmbH & Company, 2007. (Zitiert auf Seite 49)

D. A. Patterson, J. Hennessy. Computer Organization and Design. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2004. (Zitiert auf Seite 9)

K. Parker, S. Oresjo. A language for describing boundary-scan devices. In Proc.
of IEEE International Test Conference, S. 222 —234. 1990. (Zitiert auf Seite 16)

M. Pease, R. Shostak, L. Lamport. Reaching Agreement in the Presence of Faults.
J. ACM, 27(2):228-234, 1980. (Zitiert auf Seite 19)

J. P. Roth. Diagnosis of Automata Failures: A Calculus and a Method. IBM
Journal of Research and Development, 10(4):278 —291, 1966. (Zitiert auf Seite 21)

J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee. Embedded deterministic test. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(5):776
— 792, 2004. (Zitiert auf Seite 14)

M. H. Schulz. Testmustergenerierung und Fehlersimulation in digitalen Schaltungen
mit hoher Komplexitit, Band 173 von Informatik-Fachberichte. Springer, 1988. (Zitiert
auf Seite 20)

U. Schoning. Theoretische Informatik - kurz gefasst. Spektrum Hochschultaschen-
bticher. Spektrum Akademischer Verlag, 2008. (Zitiert auf Seite 9)

C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems
Technical Journal, 28:59—-98, 1949. (Zitiert auf Seite 23)

Literaturverzeichnis

[SPMoz2]

[Sta86]

[TED10]

[Tri84]

[Tse68]

[UBy3]

[VMo3]

[WA73]

[WWWo6]

J. Schafer, E. Policastri, R. McNulty. Partner SRLs for improved shift register
diagnostics. In Digest of Papers VLSI Test Symposium, 1992, S. 198 —201. IEEE,
1992. (Zitiert auf Seite 15)

C. H. Stapper. On yield, fault distributions, and clustering of particles. IBM
Journal of Research and Development, 30(3):326 —338, 1986. (Zitiert auf Seite 9)

D. Tille, S. Eggersgluss, R. Drechsler. Incremental Solving Techniques for SAT-
based ATPG. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(7):1125 —1130, 2010. (Zitiert auf Seite 21)

E. Trischler. Design for Testability Using Incomplete Scan Path and Testability
Analysis. In Siemens Forsch.- u. Entwickl.- Ber. Bd. 13, Nr2. 1984. (Zitiert auf
Seite 14)

G. S. Tseitin. On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234-259, 1968. (Zitiert auf Seite 23)

E. G. Ulrich, T. Baker. The concurrent simulation of nearly identical digital
networks. In Proc. of IEEE/ACM Design Automation Conference (DAC), S. 145-150.
IEEE/ACM, 1973. (Zitiert auf Seite 21)

E. Volkerink, S. Mitra. Efficient seed utilization for reseeding based compression.
In Proc. of VLSI Test Symposium, S. 232 — 237. IEEE, 2003. (Zitiert auf Seite 14)

M. Williams, J. Angell. Enhancing Testability of Large-Scale Integrated Circuits
via Test Points and Additional Logic. Transactions on Computers, 22(1):46—60,
1973. (Zitiert auf Seite 12)

L. Wang, C. Wu, X. Wen. VLSI Test Principles and Architectures: Design for
Testability. Systems on Silicon. Elsevier Science, 2006. (Zitiert auf Seite 9)

Alle URLs wurden zuletzt am 02. 02. 2013 gepriift.

86

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Marcel Schaal)

	1 Einleitung und Motivation
	2 Grundlagen des Hardware-Tests
	2.1 Test und Diagnose
	2.2 Testbarer Entwurf
	2.3 Abstraktionsebenen in der Modellierung
	2.4 Strukturelle Fehlermodelle
	2.5 Fehlersimulation
	2.6 Automatische Testmustererzeugung
	2.7 Erfüllbarkeitsproblem der Aussagenlogik

	3 Grundlagen Rekonfigurierbarer Scan-Netzwerke
	3.1 Aufbau und Struktur
	3.2 Modellierung auf Transaktionsebene
	3.3 Klassifizierung der Fehlerwirkung und Testbarkeit
	3.4 Funktionale Fehlermodelle auf Transaktionsebene

	4 Testalgorithmen für Rekonfigurierbare Scan-Netzwerke
	4.1 Pseudo-zufällige Testmustererzeugung
	4.2 Funktionale Testheuristiken
	4.3 Testmustererzeugung auf Transaktionsebene
	4.4 Vergleich der Testalgorithmen

	5 Implementierung
	5.1 Übersicht des Testverfahrens
	5.2 Zugriffsmustererzeugung – eda1687
	5.3 Einlesen und Verarbeiten von Netzlisten
	5.4 Extraktion des Scan-Pfads aus der Netzliste
	5.5 Aktivierung von Scan-Pfad-Segmenten
	5.6 Fehlerinjektion und -detektion
	5.7 Fehlersimulation

	6 Ergebnisse und Bewertung
	6.1 Übersicht der verwendeten Testschaltungen
	6.2 Auswertung der Testalgorithmen
	6.3 Klassifizierung nicht detektierter Fehler

	7 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

