
Institut für Technische Informatik
Universität Stuttgart
Pfaffenwaldring 47
D–70569 Stuttgart

Diplomarbeit Nr. 3380

Test Rekonfigurierbarer
Scan-Netzwerke

Marcel Schaal

Studiengang: Informatik

Prüfer: Prof. Dr. rer. nat.
Hans-Joachim Wunderlich

Betreuer: M. Sc. Rafał Baranowski
Dipl. Inf. Michael Kochte

begonnen am: 8. August 2012

beendet am: 7. Februar 2013

CR-Klassifikation: B.7.1, B.8.1, D.2.5, J.6, K.1

Inhaltsverzeichnis

1. Einleitung und Motivation 7

2. Grundlagen des Hardware-Tests 9
2.1. Test und Diagnose . 9

2.2. Testbarer Entwurf . 11

2.3. Abstraktionsebenen in der Modellierung . 16

2.4. Strukturelle Fehlermodelle . 17

2.5. Fehlersimulation . 19

2.6. Automatische Testmustererzeugung . 21

2.7. Erfüllbarkeitsproblem der Aussagenlogik . 21

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke 25
3.1. Aufbau und Struktur . 25

3.2. Modellierung auf Transaktionsebene . 29

3.3. Klassifizierung der Fehlerwirkung und Testbarkeit 31

3.4. Funktionale Fehlermodelle auf Transaktionsebene 34

4. Testalgorithmen für Rekonfigurierbare Scan-Netzwerke 37
4.1. Pseudo-zufällige Testmustererzeugung . 37

4.2. Funktionale Testheuristiken . 39

4.3. Testmustererzeugung auf Transaktionsebene . 40

4.4. Vergleich der Testalgorithmen . 45

5. Implementierung 47
5.1. Übersicht des Testverfahrens . 47

5.2. Zugriffsmustererzeugung – eda1687 . 48

5.3. Einlesen und Verarbeiten von Netzlisten . 49

5.4. Extraktion des Scan-Pfads aus der Netzliste . 51

5.5. Aktivierung von Scan-Pfad-Segmenten . 53

5.6. Fehlerinjektion und -detektion . 55

5.7. Fehlersimulation . 58

6. Ergebnisse und Bewertung 61
6.1. Übersicht der verwendeten Testschaltungen . 61

6.2. Auswertung der Testalgorithmen . 66

6.3. Klassifizierung nicht detektierter Fehler . 71

7. Zusammenfassung und Ausblick 77

3

A. Anhang 81

Literaturverzeichnis 83

4

Abbildungsverzeichnis

2.1. Beispiel eines untestbaren Haftfehlers . 11

2.2. Beispiel einer flankengesteuerten Scan-Zelle . 13

2.3. Beispiel einer Scan-Kette . 13

2.4. Beispiel eines Haftfehlers . 18

2.5. Beispiel eines Brückenfehlers . 18

2.6. Skizzierter Aufbau einer seriellen Fehlersimulation 20

3.1. Beispiel eines Rekonfigurierbaren Scan-Netzwerks 26

3.2. Beispiel eines Scan-Segments . 27

3.3. Beispiel der aktiven Pfade in einem Scan-Segment während der Update-Phase 28

3.4. Beispiel der aktiven Pfade in einem Scan-Segment während der Capture-Phase 29

3.5. Beispiel der aktiven Pfade in einem Scan-Segment während der Scan-Phase . . 29

3.6. Beispiel der Aktivierungsvariablen an Scan-Pfad-Segmenten auf Transaktion-
sebene . 31

3.7. Beispiel eines gebrochenen Scan-Pfads . 35

3.8. Beispiel eines fälschlich aktiven Scan-Pfads . 35

3.9. Beispiel eines instabilen aktiven Scan-Pfads . 36

4.1. Beispiel einer hierarchisch bedingten Zugriffsstruktur 38

4.2. Beispiel eines direkt gebrochenen Scan-Pfads . 41

4.3. Beispiel eines durch fehlerhafte Kontrolllogik gebrochenen Scan-Pfads 42

5.1. Flowchart des Testverfahrens . 48

5.2. Beispielinstanz zur hierarchischen Variablenabbildung 51

5.3. Beispiel einer Scan-Pfad-Rekonvergenz . 52

5.4. Beispiel eines Fehlers auf dem Scan-Pfad . 56

5.5. Beispiel eines Eingangsfehlers des Scan-Pfads 57

6.1. Beispiel einer SIB-basierten Testschaltung . 62

6.2. Struktureller Aufbau eines SIBs . 62

6.3. Struktureller Aufbau einer MUX-Zelle . 63

6.4. Struktureller Aufbau einer Chain-Testschaltungen 64

6.5. Verbleibende Fehler in c499_chain . 72

6.6. Verbleibende Fehler in f2126_mux . 73

6.7. Verbleibende Fehler in f2126_sib . 74

5

Tabellenverzeichnis

2.1. CNF-Äquivalente-Darstellung von Logikprimtiven 24

4.1. Wahrscheinlichkeitstabelle für pseudo-zufälligen Test 39

4.2. Zusammenfassung der Testbarkeit verschiedener Fehlerklassen 45

5.1. Nicht-kontrollierende Werte von Logikgattern 54

5.2. Äquivalente Fehlerklassen . 58

6.1. Übersicht über ISCAS’85 Testschaltungen . 64

6.2. Statistik der Testschaltungen . 65

6.3. Ergebnisse für Fehlerabdeckung und Laufzeit verwendeter Testalgorithmen . 68

6.4. Ergebnisse für die Anzahl und Länge der erzeugten Testmuster 69

Verzeichnis der Algorithmen

4.1. Schreibende funktionale Testheuristik . 40

5.1. Datenstruktur eines Graphknotens . 50

5.2. Datenstruktur der hierarchischen Variablenabbildung 51

5.3. Scan-Pfad-Extraktion . 52

5.4. Modellierung der Boole’schen Differenz . 53

5.5. Pfadaktivierung . 55

5.6. Pessimistische Fehlerdetektion . 57

A.1. ICL-Beispiel . 81

6

1. Einleitung und Motivation

Moderne Mikrochips enthalten zahlreiche Instrumente, die zur Auswertung der Betriebs-
parameter, zum Test oder zur Validierung der Funktionalität genutzt werden. Rekonfig-
urierbare Scan-Netzwerke (RSN) bieten die Möglichkeit eines effizienteren, flexibleren und
skalierbareren Zugriffs auf eingebettete Instrumente gegenüber üblichen statischen Scan-
Ketten.

Durch den Einsatz von Rekonfigurierbaren Scan-Netzwerken nimmt jedoch die Komplexität
der Zugriffsinfrastruktur zu. Während Scan-Ketten im Wesentlichen aus Schieberegistern
bestehen, wodurch ein Defekt im Scan-Pfad relativ einfach festgestellt werden kann, find-
en sich in Rekonfigurierbaren Scan-Netzwerken, neben einfachen Logikelementen, auch
Multiplexer und möglicherweise komplexere Schaltungen. Somit können unterschiedliche
Scan-Pfade und -Hierarchien gebildet werden. Allerdings können bestehende Tests für
Scan-Ketten die komplexere Steuerlogik bei Rekonfigurierbaren Scan-Netzwerken nicht
ausreichend testen. Deshalb ist es notwendig, neuartige Teststrategien zu entwickeln, welche
speziell an die Merkmale von Rekonfigurierbaren Scan-Netzwerken angepasst sind.

In dieser Arbeit werden Strategien für den Test Rekonfigurierbarer Scan-Netzwerke analysiert
und ausgewertet. Es werden mehrere neue Verfahren zur Erzeugung von Testmustern
vorgestellt, welche effizient bezüglich Laufzeit als auch des Speicherplatzbedarfs arbeiten.

Einen Überblick über die notwendigen Grundlagen des Hardware-Tests für den Verlauf
dieser Arbeit wird in Kapitel 2 gegeben werden. Dort wird auf die Notwendigkeit des Tests
bei der Herstellung von Mikrochips eingegangen. Zum besseren Verständnis folgt darauf
ein Überblick über Fehlermodelle und Fehlersimulation als auch über die automatische
Testmustererzeugung.

Aufbau und Arbeitsweise Rekonfigurierbarer Scan-Netzwerke werden im dritten Kapitel
erklärt. Ebenfalls findet sich darin eine Klassifizierung der Fehlerwirkung des Haftfehler-
modells in Rekonfigurierbaren Scan-Netzwerken. Darüber hinaus wird auf die effiziente
Modellierung auf Transaktionsebene eingegangen, da sich eine taktgenaue Modellierung als
zu komplex gestaltet.

Die verwendeten Testalgorithmen für Rekonfigurierbare Scan-Netzwerke werden in Kapi-
tel 4 vorgestellt. Es wird deren Methodik erklärt und eine erste Analyse der Testbarkeit
beschrieben.

Im fünften Kapitel wird die erarbeitete Implementierung näher erläutert. Dabei wird auf die
Modellierung zur Erzeugung von Testmustern auf Transaktionsebene eingegangen. Hierzu
ist es notwendig, eine entsprechende Verhaltensbeschreibung des Rekonfigurierbaren Scan-
Netzwerks mit den notwendigen Erweiterungen zur Testmustererzeugung in ein Modell auf

7

1. Einleitung und Motivation

Transaktionsebene zu überführen, welches ebenfalls Teil des Implementierungskapitels ist.
Abschließend wird die Modellierung von Fehlern und deren Wirkung, als auch Detektion, auf
Transaktionsebene beschrieben, da diese eine Voraussetzung für die Testmustererzeugung
ist.

Die Ergebnisse und Bewertung der Testalgorithmen finden sich in Kapitel 6. Hierbei wird
zuerst der Aufbau der Experimente beschrieben, welche zur Analyse der betrachteten
Algorithmen zur Testmustererzeugung herangezogen wurden. Im restlichen Verlauf des
Kapitels werden die Ergebnisse der Experimente erläutert.

Das abschließende Kapitel 7 fasst die Arbeit und deren Ergebnisse kurz zusammen und gibt
einen Ausblick, welche weiteren Verbesserungen aus Sicht des Autors sinnvoll sind.

8

2. Grundlagen des Hardware-Tests

In diesem Kapitel werden die notwendigen Grundlagen zum Verständnis der weiteren Arbeit
vermittelt. Dabei wird Grundwissen aus der Technischen Informatik, wie sie im Grund-
studium des Studiengangs Diplom Informatik gelehrt werden, vorausgesetzt. Nachgelesen
werden können diese Grundlagen zum Beispiel in [WWW06] oder [PH04]. Da die Imple-
mentierung der Arbeit auf der Gatterebene realisiert ist, werden keine elektrotechnischen
Kenntnisse benötigt. Ein Grundwissen in Theoretischer Informatik, wie es zum Beispiel in
[Sch08] vermittelt wird, ist vorteilhaft, denn die Modellierung des Problems findet in Form
der Aussagenlogik statt.

Der erste Abschnitt erläutert das Problem des Hardware-Tests und der Diagnose, welches
sich bei der Fertigung von integrierten Schaltungen ergibt. Daraufhin werden Verfahren
vorgestellt, um dieses Problem einfacher zu gestalten. Anschließend wird eine Übersicht
über verschiedene Abstraktionsebenen integrierter Schaltungen gegeben. Defekte werden
im Hardware-Test als abstrakte Fehler in Form von Fehlermodellen beschrieben, welche
näher in 2.4 erläutert werden. Zur Überprüfung der Auswirkung eines Fehlers in einer
integrierten Schaltung kann Fehlersimulation genutzt werden, die in Kapitel 2.5 beschrieben
wird. Folgend wird die Erzeugung von Testmustern für den Hardware-Test beschrieben und
auf dessen Komplexität eingegangen. Abschließend wird die Umwandlung einer auf Gat-
terebene modellierten Schaltung in eine Instanz des Erfüllbarkeitsproblem der Aussagenlogik
dargelegt.

2.1. Test und Diagnose

Eine fehlerfreie Herstellung integrierter Schaltkreise ist mit moderner Fertigungstechnik
nicht möglich. Die immer höhere Integrationsdichte, und damit verbundene geringere
Strukturgrößen, führen zu einem stärkeren Einfluss der Prozessschwankung auf die Schal-
tungseigenschaften und damit zu geringerer Ausbeute (engl. yield) [Sta86]. Die Ausbeute
gibt das Verhältnis von funktionsfähigen Chips n f unktional zur Gesamtzahl produzierter Chips
nproduziert an, daher:

(2.1) yield =
n f unktional

nproduziert

Die Ausbeute hängt von vielen Faktoren ab, wie etwa der Ausgereiftheit des Herstellungsver-
fahrens, der geforderten Produktqualität, der Größe der Chips und der Qualität des Tests.
Je früher ein fehlerhafter Chip entdeckt wird, desto geringer sind die Kosten, da unnötige

9

2. Grundlagen des Hardware-Tests

Schritte, wie Verpacken in ein Gehäuse oder im schlimmsten Fall Rückholung des Systems
von einem Kunden, vermieden werden. Deshalb werden Chips in jeder Phase der Fertigung
getestet. Zur Überprüfung, ob ein Mikrochip bestimmte Anforderungen in Form seiner
Spezifikation erfüllt, das heißt funktional ist, existierten unterschiedliche Teststrategien.

Werden Testmuster außerhalb des Chips erzeugt und durch Testsysteme zugeführt, so wird
von externem Test gesprochen. Testverfahren, welche dedizierte Testlogik auf einem Chip zur
Erzeugung von Testmustern voraussetzen, werden als eingebauter Selbsttest (engl. Built-in
self-test, BIST) bezeichnet.

Während es beim Hardware-Test im Wesentlichen lediglich um eine binäre Entscheidung
geht, nämlich ob ein Mikrochip korrekt arbeitet oder nicht, steht bei der Diagnose die Frage
im Vordergrund, warum ein Mikrochip oder Modul nicht richtig funktioniert. Dies kann
unter anderem mit der Fehlerstelle und der Art des Fehlers beantwortet werden.

Die Diagnoseergebnisse können genutzt werden, um den Fertigungsprozess zu opti-
mieren und damit die Ausbeute erhöhen und die Produktionskosten senken. Bestimmte
physikalische Strukturen können zum Beispiel sehr empfindlich auf Schwankungen des Fer-
tigungsprozesses sein und zu einer Häufung von Defekten führen. Diese Strukturen sollten
dann mit dem fortschreitendem Prozess des Herstellungsverfahrens angepasst werden, um
eine höhere Schwankungstoleranz zu gewährleisten, so dass die Defekte reduziert und die
Produktqualität verbessert werden kann.

2.1.1. Fehlerabdeckung

Um eine Aussage über die Güte einer gegebenen Testmustermenge T zu treffen, wird ein
Gütekriterium benötigt. Dazu kann die Fehlerabdeckung CT (engl. fault coverage) genutzt
werden, welche sich aus der Zahl der von T entdeckten Fehler D, geteilt durch die Gesamtzahl
der modellierten Fehler F ergibt:

(2.2) CT =
D
F

Die Fehlerabdeckung gibt daher die relative Zahl der detektierten Fehler an und wird
als Prozentzahl ausgedrückt. Da weder die Anzahl der Testmuster, noch die benötigte
Testzeit in die Aussage der Fehlerabdeckung eingehen, stellt die Fehlerabdeckung nur ein
Effektivtätsmaß und kein Effizienzmaß dar.

Je nach Anwendungsbereich werden unterschiedliche Fehlerabdeckungen gefordert. In
der Automobilindustrie wird von den Herstellern in der Regel eine Fehlerabdeckung von
mindestens 99,999% nach ISO 26262-5 vorgeschrieben [iso12].

2.1.2. Testbarkeit von Fehlern

Ein Fehler ist detektierbar genau dann, wenn eine Folge von Testmustern M existiert,
welche den Fehler aktiviert und zu einer von der fehlerfreien abweichenden Ausgabe an

10

2.2. Testbarer Entwurf

den Primärausgängen führt. Ein Fehler ist nicht detektierbar, falls keine solche Folge von
Testmustern existiert. Abbildung 2.1 zeigt einen untestbaren Fehler. Diese können unter
anderem in fehlertoleranten Strukturen auftreten, da in diesen ein Fehler keine Auswirkung
auf das Ergebnis nehmen soll, sofern keine weiteren Maßnahmen des testbaren Entwurfs
eingesetzt wurden.

A

B

C

D
SA-1

VDD

B1

B2

Abbildung 2.1.: Beispiel eines untestbaren Haftfehlers an Signal B1

Wird ein Fehler F1 ausschließlich durch eine Teilmenge der Testmustermenge eines weiteren
Fehlers F2 detektiert, so dominiert der Fehler F2 den Fehler F1.

Die Fehlerwirkung verschiedener Fehler kann identisch sein, so dass diese nicht voneinander
unterscheidbar sind. In diesem Fall können die Fehler in Äquivalenzklassen zusammenge-
fasst werden und müssen nicht separat behandelt werden. Dadurch kann Rechenzeit bei der
Erzeugung von Testmustern eingespart werden [HKB94].

2.2. Testbarer Entwurf

Die Implementierung einer integrierten Schaltung beeinflusst ihre Testbarkeit und die
entstehenden Testkosten. Testbarer Entwurf umfasst Verfahren und Strategien zum gezielten
Entwurf integrierter Schaltungen mit hoher Testbarkeit.

Je schlechter eine integrierte Schaltung testbar ist, desto aufwendiger ist der benötigte Test
und damit zum Beispiel die Anzahl der benötigten Testmuster. Auf der einen Seite müssen
dann mehr Testmuster erzeugt werden, wodurch die benötigte Vorbereitungszeit für den
Test steigt, um diese zusätzlichen Muster zu berechnen und zu validieren. Dies kann dann
zu einer verlängerten Produkteinführungszeit führen und somit den Gewinn schmälern.
Auf der anderen Seite müssen mehr Testmuster mittels automatischer Testsysteme (engl.
automatic test equipment, ATE) in der gleichen Zeit geprüft werden, so dass entweder
weniger Chips gefertigt werden können, oder weitere automatische Testsysteme benötigt
werden, wodurch die Testkosten steigen.

Ein klassisches Beispiel für schlechte Testbarkeit stellt ein n-Bit-Zähler dar, welcher nur über
zwei Eingänge zum Inkrementieren und Zurücksetzen verfügt und keine Optimierungen für
einen effizienten Test besitzt. Um diesen Zähler vollständig funktional zu testen, müssen dazu
alle 2n Zustände iteriert werden. Unter Annahme, dass der Zähler 64 Bit besitzt, das heißt

11

2. Grundlagen des Hardware-Tests

n = 64 und 25 Millionen Iterationen pro Sekunde durchgeführt und getestet werden können,
so beträgt die Testdauer fast 24.000 Jahre. Eine Möglichkeit des testbaren Entwurfs wäre die
Aufspaltung in kleinere Zähler mit beispielsweise 8-Bit und separaten Reset-Eingängen.

Um den Test integrierter Schaltungen wirtschaftlich zu gestalten, wurden Methoden ent-
wickelt, um die Testbarkeit stark zu verbessern. Eine davon besteht in der Integration einer
zusätzliche Testinfrastruktur in die Schaltung. Scan-Design, welches im Abschnitt 2.2.1 näher
erklärt wird, stellt so eine Testinfrastruktur dar.

Weitere Verfahren des testbaren Entwurf umfassen Prüfpunkte, das heißt das Hinzufügen
von zusätzlichen Dateneingängen, um die Kontrollierbarkeit oder das Hinzufügen von Daten-
ausgängen, um die Observierbarkeit zu erhöhen, sowie BIST und Testdatenkompression.

2.2.1. Scan-Ketten

Mit Scan-Ketten (engl. scan chain) wurde eine Entwurfstechnik eingeführt, welche die
Erzeugung von Testmustern wesentlich vereinfacht. Dies wird erreicht, indem sequentielle
Speicherelemente von außen kontrollier- und observierbar gemacht werden. Dadurch wird
eine wirtschaftliche deterministische Testmustererzeugung auch für große integrierte Schal-
tungen ermöglicht. Scan-Ketten werden seit der Einführung durch [WA73] nahezu überall
im testbaren Entwurf eingesetzt.

Die grundlegende Idee der Scan-Ketten besteht darin, dass sequentielle Speicherelemente
durch Scan-Zellen ersetzt werden. Diese Scan-Zellen bestehen, neben dem ursprünglichen
Daten- und Kontrollpfad des Speicherelements, aus einem weiteren Datenpfad mit zuge-
höriger Kontrolllogik, wie es in der Abbildung 2.2 skizziert ist. Alle Scan-Zellen werden
dann über diesen zusätzliche Datenpfad in einer langen Kette verbunden, wie es in Abbil-
dung 2.3 dargestellt wird. Die offenen Enden der Kette werden als zusätzliche Primärein-
und -ausgänge, sowie deren Kontrollsignale, zur integrierten Schaltung hinzugefügt. Die
zusätzlichen Signale sollen kurz erläutert werden:

Testdatenein- und -ausgänge Die eigentlichen Ein- und Ausgänge zum Transport von Dat-
en vom automatischen Testsystem zum Chip, und vom Chip zum automatischen
Testsystem. Diese bilden den Anfang (TDI) und das Ende (TDO) der Scan-Kette.

Testtakt Ein separates Taktsignal für die Testinfrastruktur kann notwendig sein, falls das
Zeitverhalten im Testbetrieb anders ist, als im funktionalen Betrieb.

Testmodus Spezielles Signal, welches den Modus des Chips zwischen funktionalem Sys-
tembetrieb und Testbetrieb umschaltet.

Test-Reset Die Testinfrastruktur kann optional ein eigenes Signal zum Zurücksetzen aller
Scan-Register besitzen.

Somit können Daten unabhängig von der eigentlichen Systemlogik von außerhalb der
integrierten Schaltung in die Register geschrieben oder ausgelesen werden. Dies führt zur
vollen Observier- und Kontrollierbarkeit der Speicherelemente.

12

2.2. Testbarer Entwurf

1

0

Reg.

Testmodus

Data Out
Data In

Scan OutScan In

Abbildung 2.2.: Beispiel einer flankengesteuerten Scan-Zelle
Die Verbindungen des Scan-Pfads (blau) und der Aktivierung des Test-
modus (rot) wurden hervorgehoben.

1

0

Reg.
1

0

Reg.
1

0

Reg.

Kombinatorische Systemlogik
Primär-
ausgänge

Primär-
eingänge

Testmodus

Takt-
signal

TDI TDO

Abbildung 2.3.: Beispiel einer Scan-Kette
Alle speichernden Elemente der Schaltung wurden durch Scan-Zellen er-
setzt. Die zusätzlichen Verbindungen des Scan-Pfads (rot) und der Ak-
tivierung des Testmodus (blau) wurden hervorgehoben.

Ein Nachteil der Scan-Ketten besteht darin, dass durch das Hinzufügen der Multiplexer
an den Registereingängen und der zusätzlichen Steuerlogik, der Logik- beziehungsweise
Flächenbedarf für die Schaltung um bis zu 30 Prozent erhöht wird [Kun93]. Ein weiterer
Nachteil betrifft das Zeitverhalten, da die Multiplexer unweigerlich auf dem kritischen
Pfad liegen und die Pfadlänge erhöhen beziehungsweise die maximale Betriebsfrequenz
reduzieren können.

13

2. Grundlagen des Hardware-Tests

Beim Entwurf der Testinfrastruktur gibt es hierbei verschiedene Varianten, die im Folgenden
kurz erläutert werden:

Full-Scan-Design Bei einem Full-Scan-Design sind alle Register über die Scan-Ketten
les- und schreibbar, so dass alle sequentiellen Elemente der Schaltung vollständig
kontrollier- und observierbar sind.

Partial-Scan-Design Sofern nur eine Teilmenge der Register direkt durch die Scan-Ketten
zugreifbar ist, handelt es sich um ein Partial-Scan-Design nach [Tri84]. Dies reduziert
die zusätzlich benötigte Logik für die Testinfrastruktur gegenüber einem Full-Scan-
Design und kann bei geeignetem Schaltungsentwurf zu ähnlich hoher Testbarkeit
führen. Insbesondere bei Registern mit ungünstigem kritischem Pfad kann ein Partial-
Scan-Design genutzt werden, um die geforderte Geschwindigkeit einzuhalten.

Parallele Scan-Ketten Durch die Verwendung von mehreren Scan-Ketten kann die Testzeit
entsprechend reduziert werden und damit die Testkosten gesenkt werden [NGB92].
Soll die Zunahme an Primärein- und -ausgängen reduziert werden, so kann die Illinois
Scan-Architektur eingesetzt werden, bei der lediglich ein einzelner Scan-Dateneingang
genutzt wird [HP99].

Test-Kompression Häufig ist die Bandbreite zwischen externem Tester und zu testender
Schaltung auf dem Wafer begrenzt. Deshalb werden die Testdaten vor der Übertragung
komprimiert und auf dem Chip wieder dekomprimiert [VM03]. Dadurch können
Kompressionsraten von 30-500 erreicht werden, was eine entsprechende Reduktion der
Testzeit zur Folge hat [RTKM04].

2.2.2. Boundary Scan/JTAG

Zur Interoperabilität zwischen verschiedenen Herstellern beziehungsweise Anwendern im
Verlauf der Fertigung und damit auch im Herstellungstest, wurde ein Standard zum Zugriff
auf die Testinfrastruktur durch Scan-Ketten geschaffen. Diese Initiative wurde durch die
Firma Philips initiiert und von verschiedenen großen Halbleiter-Herstellern in der Joint Test
Action Group (JTAG) mitgetragen. Das Ziel war es eine standardisierte Schnittstelle zum
Zugriff auf die Testinfrastruktur eines Mikrochips, welche ohne weitere Absprachen inter-
operabel ist, zu schaffen. Eine entsprechende Normierung fand im Rahmen des weltweiten
Berufsverbands der Ingenieure aus Elektro- und Informationstechnik (Institute oft Electrical
and Electronics Engineers, IEEE) unter der Bezeichnung IEEE 1149.1 statt [IEE01].

Verschiedene Erweiterungen wurden seit der ursprünglichen Normierung geschaffen, um
den Einsatzzweck von JTAG zu erweitern. So wurde unter anderem IEEE 1149.6 zum
Test von gemischten differentiellen Hochgeschwindigkeitssignalen oder 1149.4 für analoge
Schaltungsteile erarbeitet.

Bei IEEE 1149/JTAG handelt es sich um eine Standardisierung für den Zugriff auf der
Platinenebene. Ursprünglich entwickelt zum Test der Verbindungen auf der Platine (engl.
boundary test), wird es heute ebenfalls genutzt, um die integrierte Schaltung selbst zu testen.

14

2.2. Testbarer Entwurf

Dafür wurde bei der Entwicklung die Testinfrastruktur als Ganzes betrachtet und entwor-
fen. Jedoch bestehen heutige Mikrochips nicht mehr nur aus einer einzelnen integrierten
Schaltung, sondern setzen sich oft aus mehreren Modulen zu einem ganzen System auf
einem Chip (engl. System-on-a-Chip, SOC) zusammen. Dies ist ohne Weiteres mit JTAG
möglich, dennoch ist der Zugriff auf ein einzelnes Modul, ohne dass der gesamte Chip in
den Testmodus versetzt werden muss, oft wünschenswert.

Um die Entwurfskosten niedrig zu halten, wurde ein Standard zur Wiederverwendung
von Modultests gewünscht, um z.B. die Integration und Test von IP-Cores in SOCs zu
vereinfachen. Ein solcher Standard fand Normierung als IEEE 1500 „Embedded Core Test“.
Des weiteren ermöglicht IEEE 1500 ein Modul auf dem Scan-Pfad zu umgehen und so
einen Bypass zu erzeugen, so dass ein separater Modultest möglich ist. Dabei handelt es
sich allerdings nicht mehr um eine Scan-Kette mit statischer Struktur, sondern um ein
Rekonfigurierbares Scan-Netzwerk, welche in Kapitel 3.1 beschrieben werden.

2.2.3. Test und Diagnose von Scan-Ketten

Eine Scan-Kette kann von einem Defekt betroffen sein und muss getestet werden. Insbeson-
dere für die Diagnose ist es wichtig zu wissen, ob und wo eine Scan-Kette defekt ist. Für den
Produkttest ist die Scan-Kette aufgrund ihrer Test- und Diagnoseeigenschaften essentiell.

Sind Scan-Ketten fehlerbehaftet, dann können diese keine Testantwort liefern. Dadurch
können nur statische Werte am Ende des Scan-Ausgangs gelesen werden. In einem solchen
Fehlerfall ist die Observier- und Kontrollierbarkeit extrem eingeschränkt.

Ein Testverfahren für Scan-Ketten ist der sogenannte Flush-Test. Dieses Testverfahren schreibt
vordefinierte Werte in die Scan-Kette und überprüft, ob diese nach einer berechneten
Zeitspanne an den Ausgängen wieder gelesen werden können.

Charakteristische Sequenzen für verschiedene Fehlermodelle auf Transistorebene wurden
untersucht [MM95]. Das untersuchte Fehlermodell beschränkt sich dabei nicht nur auf
einfache Haftfehler, sondern es werden zum Beispiel auch Setup-/Hold-Zeitfehler getestet,
bei denen ein Datum bei bestimmten Sequenzen einen Takt zu früh beziehungsweise zu
spät übernommen wird. Der so ausgelesene Testvektor weist dann den Verlust oder die
Wiederholung eines Bits auf.

Ein weiteres Verfahren zum Test und zur Diagnose besteht in der Nutzung der Systemlogik.
Dazu werden Testmuster in die Scan-Kette eingeschoben und ein oder mehrere Takte lang
der Systemtakt aktiviert, so dass die Muster auf der Scan-Kette durch das System verar-
beitet werden. Anschließend wird die Scan-Kette ausgelesen und die Testdaten untersucht
[SPM92].

Die Scan-Kette kann um entsprechende Teststrukturen erweitert werden, um die Diagnoseau-
flösung zu erhöhen. Ein solches Verfahren basiert auf dem Hinzufügen von XOR-Gattern auf
dem Scan-Pfad [EE95]. Durch einen zusätzlichen Primäreingang gesteuert können diese bei
Aktivierung alle auf dem Scan-Pfad propagierten Werte invertieren. Werden diese für einen
Takt aktiviert, so sind alle Werte nach der Fehlerstelle invertiert, während alle nachfolgenden

15

2. Grundlagen des Hardware-Tests

Werte weiter von der Fehlerwirkung beeinflusst sind. Aus der Länge der ausgelesenen und
invertierten Werte lässt sich die Fehlerstelle präzise lokalisieren.

2.3. Abstraktionsebenen in der Modellierung

Abstraktion ermöglicht ein einfacheres Verständnis eines Systems durch eine Reduktion der
Komplexität unter Verlust an Genauigkeit. In dieser Arbeit werden verschiedene Abstrak-
tionsebenen integrierter Schaltungen genutzt. Die Zusammenhänge zwischen diesen Ebenen,
sollen im Folgenden kurz erläutert werden.

Es finden zwei Arten der Abstraktion statt. Zum einen die Räumliche, anhand derer die
weitere Modellierung betrachtet werden soll. Bei dieser werden verschiedene einzelne Teile
zu einem größeren Block abstrahiert und dann im weiteren Verlauf gemeinsam behandelt.
Die andere ist die oft mit der räumlichen einhergehende zeitliche Abstraktion. Wurde durch
die räumliche Abstraktion ein System soweit vereinfacht, wie etwa beim Übergang von
kontinuierlichen zu diskreten Modellen, dass eine weitere Betrachtung einer kontinuierlichen
Zeit unnötig erscheint, so sollte diese auch entsprechend abstrahiert werden.

Das Verhalten von Modulen wird häufig in Verilog oder VHDL definiert. Scan-Ketten können
in ihren domänen-spezifischen Sprachen (engl. domain specific language, DSL) beschrieben
werden, wie zum Beispiel BSDL [PO90].

2.3.1. Gatterebene

Die erste für diese Arbeit wichtige Abstraktionsebene, die Gatterebene, betrachtet einzelne
kombinatorische Logikelemente und sequentielle Speicherelemente, sowie deren Interkon-
nektivität. Häufig besteht die Beschreibung eines solchen Netzwerks aus einer Gatternetzliste.
Diese benennt neben jedem Gatter auch die Ein- und Ausgangs- sowie die Verbindungsleitun-
gen und enthält zusätzlich die Angabe, wie jedes Element mit den anderen verbunden ist.

Der Vorteil auf dieser Ebene ist die Observierbarkeit einzelner Signale. Der Aufwand ist
jedoch für die Simulation und Modellierung deutlich höher als in einem abstrakteren
Modell.

2.3.2. Register-Transfer-Ebene

Auf der höher liegenden Register-Transfer-Ebene werden Gatter zu einzelnen Teilmodulen,
beispielsweise eine ALU, zusammengefasst. Die Zeit ist taktgenau modelliert, d.h. die
Kommunikation findet in Form von einzelnen Datenwerten statt.

16

2.4. Strukturelle Fehlermodelle

2.3.3. Transaktionsebene

Auf der Transaktionsebene werden Kommunikationsabläufe in atomare Operationen zusam-
mengefasst. Das bedeutet, dass die Kommunikation in Form von Lese- und Schreibzugriffen,
sowie eventuelle Verarbeitungsschritte, als unteilbare Transaktion stattfindet. Dies abstrahiert
die taktgenaue Kommunikation durch Signale der Register-Transfer- oder Gatterebene und
reduziert so die nötigen Simulationsschritte.

2.4. Strukturelle Fehlermodelle

Fehlermodelle dienen der Abstraktion von Defekten, welche bei der Fertigung von
Mikrochips auftreten. Es existiert eine Vielzahl verschiedener Fehlermodelle für unter-
schiedliche Verwendungszwecke. Diese decken jeweils eine spezifische Untermenge von
physikalischen Defekten ab und sind nicht zwangsläufig disjunkt.

Ein Fehlermodell betrachtet eine Untermenge der spezifischen Fehlerausprägungungen
von Defekten, denn ohne diese Einschränkungen wären alle möglichen auftretenden Fehler
denkbar. Dabei können unter Umständen nicht alle Ausprägungen von Defekten abgedeckt
werden.

Wird ein strukturelles und deterministisches Fehlermodell für eine spezifische integrierte
Schaltung betrachtet, so können alle möglichen Fehler in dieser aufgezählt werden. All diese
Fehler in einer Menge zusammengefasst, ergeben die Fehlermenge für die entsprechende
Schaltung.

Basierend auf einem Fehlermodell können entsprechende Testmuster erzeugt werden, die
Fehler aktivieren und propagieren können. Mit den Testmustern kann geprüft werden, ob
ein produzierter Mikrochip einen Fehler enthält oder fehlerfrei bezüglich des Fehlermodells
ist.

2.4.1. Haftfehler

Ein sehr einfaches und sehr häufig eingesetztes Fehlermodell ist das Haftfehlermodell (engl.
stuck-at fault model), welches auch die Grundlage für diese Arbeit bildet. Hier wird das
Einfach-Haftfehlermodell betrachtet, welches ein Einfach-Fehlermodell ist, das heißt, es
wird angenommen, dass immer nur genau ein einziger Fehler in der gesamten Schaltung
beziehungsweise dem System auftritt.

Im Haftfehlermodell sind die Defekte als Verbindungsfehler zwischen den Gattern modelliert.
Eine Verbindungsleitung ist im Fehlerfall unterbrochen und propagiert statisch entweder
eine logische Null (stuck-at-0, SA-0) oder eine logische Eins (stuck-at-1, SA-1). Physikalisch
lässt sich dies als direkte Verbindung der Fehlerinjektionsstelle zu Masse oder der Ver-
sorgungsspannung erklären. Die Gatter selbst sind nicht von Fehlern betroffen, das heißt die
Logikfunktionen bleiben erhalten.

17

2. Grundlagen des Hardware-Tests

Ein entsprechendes Beispiel ist in Abbildung 2.4 dargestellt. Die Verbindungsleitung am
Eingang A des ODER-Gatters ist unterbrochen und propagiert nun statisch eine logische
Eins.

SA-1
C

A

B

VDD

Abbildung 2.4.: Beispiel eines Haftfehlers
Eingang A weist Haftfehler an 1 auf.

Aufgrund seiner Einfachheit lässt sich dieses Fehlermodell auf Gatterebene taktgenau sehr
effizient simulieren. Ein weiterer Vorteil besteht in der relativ simplen Erzeugung von
Testmustern. Da dieses Fehlermodell am häufigsten eingesetzt wird, stehen entsprechend
viele und ausgereifte Werkzeuge bereit.

Trotz der Einfachheit deckt es dennoch ein großes Spektrum an physikalischen Fehler-
klassen aus anderen Fehlermodellen ab [BARVT82]. Zu großen Teilen trifft dies auch auf
Verzögerungsfehler zu, welche ein anderes Zeitverhaltens besitzen und eine dynamischere
Fehlerwirkung aufweisen.

2.4.2. Brückenfehler

Beim Brückenfehlermodell werden zwei oder mehr Verbindungsleitungen miteinander
verbunden und damit kurzgeschlossen, so dass Daten zwischen unabhängigen Einheiten
sich gegenseitig beeinflussen können. Dies hat zur Folge, dass der Fehler selbst zwar
statisch vorhanden ist, wie beim Haftfehlermodell, aber die Fehlerwirkung abhängig von
der Aktivität an den Verbindungen ist. So können beispielsweise verschiedene Taktdomänen
verbunden werden. Welcher Wert bei Kurzschluss unterschiedlicher Werte resultiert, hängt
von der verwendeten Technologie, Treiberstärke, den Ohmschen Widerstand, etc. ab. Ein
Beispiel ist in Abbildung 2.5 gezeigt.

Brücken-
fehler

Abbildung 2.5.: Beispiel eines Brückenfehlers
Zwei unabhängige Verbindungsleitungen wurden durch einen Brücken-
fehler verbunden

18

2.5. Fehlersimulation

Brückenfehler zur Versorgungsspannung VDD oder zur Masse VSS entsprechen den einfachen
Haftfehlern. Welcher Wert als Ergebnis des Kurzschlusses entsteht, wird in weiteren Unter-
klassen des Brückenfehlermodells definiert. Zum Beispiel ergibt sich beim Wired-AND-
Modell eine Null, sobald eines der beiden Signale eine Null führt, während es beim Wired-
OR zu einer Eins kommt, sobald eines der Signale eine Eins führt. Weitere Brückenfehler-
Klassifikationen für CMOS finden sich in [ESB00].

2.4.3. Weitere Fehlermodelle

Die bisher aufgezählten Fehlermodelle gehen von einer statischen Änderung der Logik-
funktion aus. Jedoch müssen in einer korrekten synchronen Schaltung die Datenworte
auch rechtzeitig zur Abtastung an den Registereingängen zu den Taktflanken anliegen.
Ist dies nicht der Fall, so werden falsche Werte gespeichert. Solche Fehler werden unter
anderem in unterschiedlichen Verzögerungsfehlermodellen betrachtet [MA98]. Jedoch kön-
nen auch solche Fehler teilweise durch das einfache Haftfehlermodell beschrieben werden
[MBAB99].

Das Byzantinische Fehlermodell ist ein allgemeines Fehlermodell und nimmt eine höch-
stmögliche Störung des Systems an. Byzantinische Fehler werden in vielen Bereichen der
Informatik betrachtet und haben ihren eigentlichen Ursprung im Zwei-Generäle-Problem
der Verteilten Systeme [PSL80].

2.5. Fehlersimulation

Zur Berechnung des Verhaltens einer integrierten Schaltung, kommen Simulationsmodelle
zum Einsatz. Während des Entwurfs wird beispielsweise Logiksimulation zur funktionalen
Validierung der Implementierung genutzt. Dahingegen wird bei der Testmustererzeugung
die Fehlersimulation verwendet, welche dazu dient, einen Fehler in das Simulationsmodell
einer Schaltung zu injizieren und dessen Auswirkung zu propagieren, um das Verhalten der
fehlerhaften Schaltung zu untersuchen.

Die Eingabe für eine Fehlersimulation besteht aus einem Schaltungsmodell, Fehler- und
einer Testmustermenge. Die Fehlersimulation untersucht dann für jeden Fehler, ob dieser
von der Testmustermenge detektiert wird.

Fehlersimulation ist eine essentielle Aufgabe im Entwurf von Mikrochips und stellt aus
diesem Grund einen wichtigen Forschungsbereich in der Technischen Informatik dar.
Entsprechend ergiebig wurde dieser bereits untersucht und effiziente Verfahren entwickelt.
Von diesen sollen nun ausgewählte Verfahren kurz vorgestellt werden.

19

2. Grundlagen des Hardware-Tests

2.5.1. Serielle Fehlersimulation

Bei der seriellen Fehlersimulation handelt es sich um ein sehr simples Verfahren: Zuerst wird
die fehlerfreie Schaltung mit den Testmustern als Eingabe simuliert und die erzeugte Ausgabe
gespeichert. Anschließend wird die fehlerbehaftete Schaltung mit den gleichen Eingaben
simuliert und die Ausgabe mit der Gut-Simulation verglichen. Weichen die Ausgaben
voneinander ab, so ist der Fehler durch die Testmuster detektierbar. Abbildung 2.6 zeigt
einen möglichen Aufbau, bei dem Gut- und Fehlersimulation parallel ablaufen.

Fehlerfreie
Schaltung

Fehlerhafte
Schaltung

Primär-
eingänge Vergleich Detektiert?

Abbildung 2.6.: Skizzierter Aufbau einer seriellen Fehlersimulation

Ein Vorteil dieser Methode ist die einfache Implementierung als doppelte Instantiierung,
welche von einem Logiksimulator simuliert werden kann. Dadurch können je nach Fähigkeit-
en des Logiksimulators viele Fehlermodelle abgedeckt werden. Jedoch ist die Simulationszeit
sehr hoch im Vergleich zu effizienten Fehlersimulationsalgorithmen, welche unter anderem
ereignisgesteuert oder bitparallel rechnen.

2.5.2. Parallel Pattern Single Fault Propagation

Die Idee des PPSFP-Algorithmus besteht in der parallelen Simulation mehrere Werte der
Schaltung in einem Datenwort, während gleichzeitig nur ein Fehler betrachtet wird. Darüber
hinaus werden Fehler bei der Gebietsanalyse durch logisches Schließen effizient detektiert
[Sch88].

Der PPSFP-Algorithmus lässt sich effizient auf Many-Core-Architekturen wie GPGPUs
(General Purpose Graphical Processing Units), aufgrund seiner guten Parallelisierbarkeit,
abbilden. Dadurch lässt sich die Simulationszeit bis zu einem Faktor 16 beschleunigen
[KSWZ10].

20

2.6. Automatische Testmustererzeugung

2.5.3. Sequentielle Fehlersimulation

Bei der nebenläufigen Fehlersimulation (engl. concurrent fault simulation) werden die
fehlerfreie, sowie alle fehlerbehafteten Schaltungen gleichzeitig ereignisgesteuert simuliert
[UB73]. Dazu werden alle Gut- und Fehlerereignisse, das heißt eine Signaländerung an
einem Gatter, an den Gattern selbst gespeichert. Die nebenläufige Fehlersimulation kann für
verschiedene Schaltungsmodelle, unter anderem für sequentielle Schaltungen, Fehlermodelle
und Zeitabstraktionen verwendet werden.

Die Differentielle Fehlersimulation bearbeitet ereignisgesteuert für ein Testmuster alle
möglichen Fehler. Zunächst wird eine Gut-Simulation durchgeführt und anschließend Fehler
nacheinander injiziert und simuliert. Bei abweichender Ausgabe wird ein Fehler als detektiert
markiert und aus der Fehlerliste entfernt [LH92].

2.6. Automatische Testmustererzeugung

Automatische Testmustererzeugung (engl. automatic test pattern generation, ATPG) ist ein
Sammelbegriff für Verfahren, welche der Erzeugung von Testmustern für Fehler in einer
integrierten Schaltung dienen. Ein so erzeugtes Testmuster soll bei Anwendung den Fehler
aktivieren, dessen Wirkung propagieren und so zu einem beobachtbaren, abweichenden
Verhalten der fehlerbehafteten Schaltung im Gegensatz zur fehlerfreien Schaltung führen.
Durch das abweichende Verhalten kann eine fehlerbehaftete Schaltung von einer fehlerfreien
unterschieden werden. ATPG für kombinatorische Schaltungen und dem Haftfehlermodell
gehört zur Klasse der NP-vollständigen Probleme, welche in Abschnitt 2.7.1 beschrieben
werden und nach gegenwärtigem Stand der Forschung nicht effizient berechenbar sind.

Ein Beispiel für ATPG stellt der D-Algorithmus dar [Rot66]. Dieser beschreibt ein Ver-
fahren zur Erzeugung von Testmustern für einfache Haftfehler. Der Ansatz basiert auf der
Propagierung des Fehlers durch die Schaltung und Ableitung der daraus entstehenden Bele-
gungen für die Primäreingänge durch logisches Schließen. Da unterschiedliche Belegungen
möglich sind und Konflikte auftreten können, wird Backtracking genutzt, um diese durch
zu probieren. Weitere Verbesserungen des D-Algorithmus stellen PODEM (path oriented
decision making) als auch FAN (fanout-oriented test generation) dar, welche die Laufzeit
reduzieren [GR81], [FS83].

Andere Verfahren reduzieren das Problem des ATPGs auf das Erfüllbarkeitsproblem der
Aussagenlogik, welches in Kapitel 2.7 vorgestellt wird [Lar92], [TED10].

2.7. Erfüllbarkeitsproblem der Aussagenlogik

Das Erfüllbarkeitsproblem der Aussagenlogik (engl.: Boolean satisfiability-problem, SAT)
stellt ein Entscheidungsproblem dar. Es überprüft, ob für die Variablen einer gegebenen

21

2. Grundlagen des Hardware-Tests

Boole’schen Funktion f (v1, . . . , vn) : Bn 7→ B eine Belegung existiert, so dass f eine wahre
Aussage ist [MMZ+

01], [GN02].

Das Erfüllbarkeitsproblem, das klassische Beispiele für NP-Vollständigkeit, diente Stephen
Cook zum Herleiten jener. Nachfolgend soll auf die NP-Vollständigkeit eingegangen werden,
um die Komplexität der beschriebenen Probleme besser zu verstehen.

2.7.1. NP-Vollständigkeit

In der Komplexitätstheorie bezeichnet die Klasse NP alle Entscheidungsprobleme, welche
von einer nichtdeterministischen Turingmaschine in polynomieller Zeit bezüglich der Einga-
belänge n entschieden werden können. Eine besondere Teilmenge in NP bildet die NP-
Vollständigkeit, welche von Stephen A. Cook 1971 beziehungsweise Levin postuliert wurde
[Coo71], [Lev73]. NP-vollständige Entscheidungsprobleme lassen sich untereinander, mittels
sogenannter Polynomialzeitreduktion �p, aufeinander abbilden. Eine Polynomialzeitreduk-
tion r ist eine Abbildung, welche eine Instanz eines Entscheidungsproblems P in eine andere
Instanz des Problems Q transformiert. Die Lösung für die Instanz des Problems in Q ist
dann auch die Lösung für das Problem in P.

Ein Problem L ist NP-schwer (engl. NP-hard), wenn es mindestens so „schwer“ wie alle
anderen Probleme in NP ist. Formal muss dafür jedes Problem K ∈ NP mittels einer
Polynomialzeitreduktion durch L lösbar sein, das heißt:

(2.3) L ∈ NP⇔ ∀K ∈ NP : L �p K

Ist L zusätzlich in NP selbst, dann gehört L zur Klasse der NP-vollständigen Probleme.

2.7.2. Aussagenlogische Normalformen

Für eine gegebene Boole’sche ’Funktion kann es mehrere Repräsentationen gegeben. Im
Laufe der Zeit wurden verschiedene Repräsentationformen, so genannte Normalformen,
mit vorgegebenen Eigenschaften geschaffen. Eine Sonderform der Normalformen bilden
kanonische Normalformen, welche strengeren Kriterien genügen, so dass es eine eindeutige
Repräsentation für jede Funktion gibt.

Eine wesentliche Normalform stellt hierbei die sogenannte konjunktive Normalform (engl.
conjunctive normal form, CNF) dar. Bei dieser setzen sich Formeln aus Konjunktionstermen
zusammen, welche wiederum aus Disjunktionstermen bestehen. Ein Disjunktionsterm wird
aus Literalen, das heißt positive oder negierte Variablen, gebildet. Als Beispiel ist in Gleichung
2.4 das Übertragsbit eines Volladdierers in CNF angegeben.

(2.4)
cout = (a ∧ b ∧ cin) ∨ (a ∧ b ∧ cin) ∨ (a ∧ b ∧ cin) ∨ (a ∧ b ∧ cin)

= (b ∧ cin) ∨ (a ∧ cin) ∨ (a ∧ b)

22

2.7. Erfüllbarkeitsproblem der Aussagenlogik

Als Standard für die Eingabe benutzen die Werkzeuge zum Lösen aussagenlogischer Erfüll-
barkeitsprobleme die konjunktive Normalform, da für diese effiziente Lösungsverfahren
existieren [GZA+

02].

Die Darstellung in konjunktiver Normalform alleine führt nicht zu einer eindeutigen
Repräsentation, sie ist daher nicht kanonisch. Zur Bildung der kanonischen konjunktiven
Normalform werden die Produktterme aus paarweise verschiedenen Maxtermen gebildet.
Ein Maxterm oder Volldisjunktion ist ein Disjunktionsterm, welcher alle Variablen der
Funktion enthält und entsprechend als Literale einbettet.

Jede aussagenlogische Formel kann in eine entsprechende konjunktive Normalform umge-
wandelt werden. Eine händische Möglichkeit besteht in der Aufstellung der Wahrheitstabelle
und das Auslesen der entsprechenden Disjunktionsterme, für welche die Wahrheitstabelle
einen wahren Wert in der Ergebnisspalte enthält. Allerdings benötigt die Aufstellung der
Wahrheitstabelle für n Variablen bereits 2n Einträge und ist damit nicht effizient.

Zur Umwandlung in konjunktive Normalform können Logikäquivalenzumformungen, wie
das Distributiv- oder De Morgan’s-Gesetz genutzt werden. Shannons Aufzählungstheorem
besagt, dass in der Regel kanonische Normalformen exponentiell länger sind als eine
entsprechende freie Form der aussagenlogischen Formel [Sha49]. Es kann also vorkommen,
dass zur Erzeugung der entsprechenden kanonischen Normalform exponentieller Aufwand
benötigt wird und somit nicht effizient berechenbar ist.

Dies soll an folgendem Beispiel verdeutlicht werden. Gegeben sei die Formel f:

(2.5) F ≡
n∨

i=0

(Xi ∧Yi) ≡ (X0 ∧Y0) ∨ . . . ∨ (Xn−1 ∧Yn−1)

Aus F lässt sich die äquivalente Gleichung G mittels Distributivgesetz in konjunktiver
Normalform herleiten:

(2.6)

G ≡ F

≡
n∧

i=0

(
n−i∨
k=0

(Xk)
n∨

k=n−i

(Yk))

≡ (X0 ∨ X1 ∨ . . . ∨ Xn−1) ∧ (X0 ∨ X1 ∨ . . . ∨Yn−1) ∧ . . . ∧ (Y0 ∨Y1 ∨ . . . ∨Yn−1)

Während F lediglich 2n Literale besitzt, gibt es nach Umformung in konjunktive Normalform
nach 2.6 in G 2n Literale. Um diesen Aufwand zu vermeiden, wird die Methode der Erfüll-
barkeitsäquivalenzumformung genutzt. Die Gleichung ist nach einer solchen Umformung
nicht mehr exakt äquivalent, sondern lediglich erfüllbarkeitsäquivalent, das heißt bei gle-
ichen Eingabewerten für korrespondierende Variablen ergibt die Gleichung dieselbe Lösung.
Eine solche Umformung ist die Tseitin-Umformung [Tse68]. Die Größe einer Formel bei den
Tseitin-Umformungen wächst lediglich linear im Verhältnis zur Ausgangsgleichung.

23

2. Grundlagen des Hardware-Tests

2.7.3. Schaltungstransformation in konjunktive Normalform

Die Erzeugung von Zugriffsmustern für Rekonfigurierbare Scan-Netzwerke kann mittels
des Erfüllbarkeitsproblem für aussagenlogische Gleichungen gelöst werden. Dazu wird
die Schaltungsbeschreibung in Form einer Gatternetzliste in eine aussagenlogische Formel
umgeformt.

Die Modellierung kombinatorischer Logik in konjunktiver Normalform lässt sich einfach
durch statische Umformung durchführen. In Tabelle 2.1 sind für die gebräuchlichen Gatter
die entsprechenden Terme in konjunktiver Normalform angegeben. Mit diesen kann der
Schaltungsgraph traversiert und die einzelnen Knoten in einem CNF-Modell aufgebaut
werden. Jeder Primärein- und -ausgang der Schaltung sowie das Ausgangssignal eines
Gatters werden separate Variablen zugeteilt.

Name Operation CNF-Äquivalente Darstellung

Identität C = A (A ∨ C) ∧ (A ∨ C)
Negation C = A (A ∨ C) ∧ (A ∨ C)
Konjunktion C = A ∧ B (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
Disjunktion C = A ∨ B (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
Kontravalenz C = A⊕ B (A ∨ B ∨ C) ∧ (A ∨ B ∨ C) ∧ (A ∨ B ∨ C) ∧ (A ∨ B ∨ C)
Äquivalenz C = A⇔ B (A ∨ B ∨ C) ∧ (A ∨ B ∨ C) ∧ (A ∨ B ∨ C) ∧ (A ∨ B ∨ C)
Sheffer (NAND) C = A ∧ B (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
Peirce (NOR) C = A ∨ B (A ∨ C) ∧ (B ∨ C)
Implikation C = A→ B (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

Tabelle 2.1.: Logikprimitive umgeformt nach konjunktiver Normalform

Für sequentielle Schaltungen müssen die einzelnen Zeitabschnitte, wie zum Beispiel Takte,
modelliert werden. Dies kann durch Ausrollen, das heißt mehrfaches Instantiieren und
durch Erweitern mit zusätzlichen Transitionsklauseln, geschehen. Diese Transitionsklauseln
modellieren dabei den Übergang der Daten einzelner Speicherelemente zwischen zwei
Zeitabschnitten. Die Primäreingänge werden dabei ebenfalls ausgerollt, so dass in jedem
Zeitabschnitt neue Daten an die Schaltung angelegt werden können. Das fiktive Anlegen im
Erfüllbarkeitsproblem geschieht durch Festlegung als positives oder negatives Literal für
die jeweilige Variable des Zeitabschnitts. Ebenso werden Variablen für die Primärausgänge
ausgerollt und sind so in der berechneten Lösung zu finden.

24

3. Grundlagen Rekonfigurierbarer
Scan-Netzwerke

Ohne weitere Optimierungen wächst die Zugriffszeit von Scan-Ketten linear mit der
Länge des Scan-Pfads. Dies ist besonders ineffizient im Zusammenhang mit der stetigen
Verbesserung der Fertigungstechnologie, insbesondere der Integrationsdichte für moderne
Mikrochips. Gordon E. Moore beobachtete die Gesetzmäßigkeit, welche als Moore’s Gesetz
bekannt ist, dass sich seit 1970 die Zahl der Transistoren ungefähr alle zwei Jahre verdop-
pelt [Moo98]. Da es sich dabei um ein exponentielles Wachstum handelt und die Zahl der
Register ebenfalls entsprechend wächst, ist es offensichtlich, dass sich eine reine lineare
Skalierung der Scan-Ketten als nicht effizient erweist. Der Vorteil von Rekonfigurierbaren
Scan-Netzwerken besteht in einer effizienteren Zugriffszeit, welche sich aus der Möglichkeit
des unabhängigen Zugriffs auf Instrumente, wie zum Beispiel Temperatursensoren, ohne das
andere Teilmodule in den Testmodus versetzt oder anderweitig beeinflusst werden, ergibt.

Dieses Kapitel führt die Grundlagen Rekonfigurierbarer Scan-Netzwerke ein. Zu Beginn
wird deren Aufbau und Struktur erläutert und die entsprechende Terminologie erklärt.
Das anschließende Kapitel befasst sich mit der Modellierung eines Rekonfigurierbaren
Scan-Netzwerks auf Transaktionsebene. Abschließend wird die Fehlerwirkung des Haft-
fehlermodells für Rekonfigurierbare Scan-Netzwerke diskutiert und spezielle Fehlermodelle
auf Transaktionsebene betrachtet.

3.1. Aufbau und Struktur

Rekonfigurierbare Scan-Netzwerke bilden einen generischen und skalierbaren Ansatz
für den Zugriff auf Teilmodule und Instrumente integrierter Schaltungen. Wie bei Scan-
Ketten werden sequentielle Speicherelemente durch Scan-Zellen ersetzt und von außen
zugänglich gemacht, um so Kontrollier- und Observierbarkeit zu erreichen. Diese Scan-
Zellen beziehungsweise Scan-Segmente befinden sich auf einer Zugriffsinfrastruktur, welche
als ein gerichteter, azyklischer Graph (engl. directed, acyclic Graph, DAG) dargestellt werden
kann. Durch die flexible Infrastruktur kann der Zugriff auf einzelne Teilmodule effizienter
gestaltet werden als mit einer simplen linearen Verkettung.

In diesem Graphen werden die Scan-Zellen als Knoten dargestellt und Kanten bilden einfache
Scan-Pfade ab. Ein Scan-Pfad stellt einen Pfad durch den Graphen vom Eingangsknoten bis
zum Ausgangsknoten dar.

25

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Zu jedem Zeitpunkt kann es nur einen einzigen Pfad durch den Graphen geben, welcher
dann ähnliche Eigenschaften, wie eine Scan-Kette, aufweist. Um dies zu erreichen, besitzen
Knoten beziehungsweise Scan-Zellen mit mehreren Vorgängern Multiplexer zur Auswahl
eines Vorgängers. Der sich so ergebende Pfad wird als aktiver Scan-Pfad bezeichnet.

Welcher Scan-Pfad aktiv ist, ergibt sich aus der Konfiguration des Rekonfigurierbaren Scan-
Netzwerkes. Abbildung 3.1 zeigt ein Beispiel eines Rekonfigurierbaren Scan-Netzwerks
mit hervorgehobenen aktivem Scan-Pfad. Als Konfiguration wird der Zustand der Register
bezeichnet, welche zur Steuerung der Multiplexer dienen. Diese Konfigurationsregister
liegen auf der Zugriffsinfrastruktur selbst und werden, genau wie der Zugriff auf Module,
durch den Schiebevorgang des Scan-Pfads kontrolliert. Dadurch können sowohl Schreib-
als auch Lesevorgänge ausgeführt werden. Die Ansteuerung der Zugriffsinfrastruktur kann
dabei die gleichen Anschlüsse wie Scan-Ketten nutzen. Bei JTAG wird dies als TAP (test
access port) bezeichnet, womit bestehende Testwerkzeuge weiter genutzt werden können.

0

1

Scan
Seg.

Scan
Seg.

Scan
Seg.TDI TDO

Abbildung 3.1.: Beispiel eines Rekonfigurierbaren Scan-Netzwerks
Der aktive Scan-Pfad (blau) wurde hervorgehoben. Das erste Scan-Segment
entspricht einem Konfigurationsregister, da dessen Wert die Einstellung des
Multiplexers steuert.

Als Scan-Pfad-Segment wird ein Pfad zwischen zwei Scan-Segmenten bezeichnet. Dieses
entspricht einer Kante des DAG.

Ein Scan-Pfad ist symmetrisch zu einem anderen Scan-Pfad genau dann, wenn beide Scan-
Pfade die gleiche Anzahl von Scan-Segmenten aufweisen. Die Scan-Pfade des in Abbildung
3.1 skizzierten Rekonfigurierbaren Scan-Netzwerks sind alle symmetrisch.

Die Berechnung der Stimuli für die Zugriffsinfrastruktur, um die Modulauswahl von einer
Konfiguration in eine vorgegebene Konfiguration zu überführen, wird als Retargeting
bezeichnet. Ein solches Muster zur Rekonfiguration heißt Zugriffsmuster .

Teilmodule können beliebig gewählt werden, allerdings scheint eine Auswahl nach einzelnen
Komponenten, wie beispielsweise die ALU eines Prozessors, die BIST-Steuerung eines Speich-
ers oder eine Gruppe von Instrumenten, als sinnvoll. IP-Cores von SOCs besitzen häufig
bereits eine eigene Testschnittstelle, welche daher als Teilmodule sehr gut geeignet sind.
Tatsächlich findet dies Anwendung in dem in Kapitel 2.2.2 beschriebenen Standard IEEE 1500

26

3.1. Aufbau und Struktur

„Embedded Core Test“. Schaltungen nach diesem Standard können als Rekonfigurierbares
Scan-Netzwerk betrachtet werden. Die Testschnittstelle der einzelnen Module ermöglicht
es, diese durch den Scan-Pfad zugreifbar zu machen oder vom Scan-Pfad abzukoppeln.
Dadurch ist der Scan-Pfad nicht mehr rein statisch, sondern veränderbar und bildet damit
ein Rekonfigurierbares Scan-Netzwerk.

Eine Normierung zum Zugriff auf die Instrumente einer integrierten Schaltung ist derzeit in
der Entstehung als IEEE P1687 „Instrument JTAG“ (IJTAG) [EB06]. In dieser Normierung
wird unter anderem die Nutzung von Rekonfigurierbaren Scan-Netzwerken zum Zugriff auf
die Instrumente vorgeschlagen.

3.1.1. Struktur von Scan-Segmenten

Scan-Segmente, welche als Konfigurationsregister dienen, benötigen ein zusätzliches Schat-
tenregister, welches den gespeicherten Inhalt während des Schiebebetriebs erhält. Ansonsten
würden sich die Steuersignale der Kontrolllogik während des Schiebebetriebs verändern
und dadurch auch der aktive Scan-Pfad anders ausprägen. Eine solche Struktur wird bei
Scan-Ketten als „Enhanced Scan“ bezeichnet. Eine Beispielinstanz ist in Abbildung 3.2
skizziert.

0

1

Schatten-
Reg.

Scan-
Reg.

1

0

Capture-
Enable

1

0

Select AND
Update-Enable

Capture
Pfad

Update
Pfad

Scan
Pfad

Rückkopplung

Rückkopplung

Reset

Select AND
(Capture- OR
Shift-Enable)

Abbildung 3.2.: Beispiel eines Scan-Segments und zugehöriger Daten- und Kontrollpfade
Der Scan-Pfad (blau) wurde hervorgehoben.

Jedes Scan-Segment besitzt eine Aktivierungsbedingung in Form des Select-Signals. Dieses
muss aktiv sein, sofern sich das Scan-Segment auf dem aktiven Scan-Pfad befindet und das

27

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Rekonfigurierbare Scan-Netzwerk eine Operation ausführen soll. Das Select-Signal wird
kombinatorisch aus den Konfigurationsregistern erzeugt.

Die Daten aus einem Scan-Register werden in das Schattenregister übernommen, genau
dann, wenn die Signale Update-Enable und Select aktiv sind. Diese werden in Abbildung 3.3
entsprechend dargestellt. Dazu werden die Multiplexer so getrieben, dass der Update-Pfad
aktiviert wird.

0

1

Schatten-
Reg.

Scan-
Reg.

1

0

Capture-
Enable

1

0

Select AND
Update-Enable

Capture
Pfad

Update
Pfad

Scan
Pfad

Rückkopplung

Rückkopplung

Reset

Select AND
(Capture- OR
Shift-Enable)

Abbildung 3.3.: Beispiel der aktiven Pfade und Signale (grün) in einem Scan-Segment
während der Update-Phase. Der aktive Rückkopplungsdatenpfad des Scan-
Registers wurde nicht explizit hervorgehoben.

Bei einer Capture-Operation wird das Datum des Schattenregisters in das Scan-Register
übertragen und dient damit dem Auslesen des Zustands des Rekonfigurierbaren Scan-
Netzwerks. Die Capture-Operation wird durch setzen des Capture-Enable- sowie Select-
Signals erreicht, wie es in Abbildung 3.4 gezeigt ist.

Der Schiebebetrieb wird durch das Aktivieren des Shift-Enable- und des Select-Signals
erreicht, welches in Abbildung 3.5 skizziert wird. Hierbei übernimmt das Scan-Register die
Daten von seinem Vorgänger auf dem aktiven Scan-Pfad.

3.1.2. Scan-Pfadzugriff (CSU-Zyklus)

Ein Zugriff auf ein Rekonfigurierbares Scan-Netzwerk läuft, wie bei Scan-Ketten nach JTAG,
in CSU-Zyklen ab. Ein CSU-Zyklus umfasst dabei das Übertragen der Werte aus dem
Schattenregister zu den Scan-Registern (Capture) sowie das Herausschieben der Konfig-
urationsdaten und Hineinschieben von Daten in Form einer neuen Konfiguration (Shift).
Wenn die neuen Daten beziehungsweise Konfiguration in die Scan-Register geschoben wur-
den, werden die Daten durch die Update-Operation in die Schattenregister übernommen
(Update).

28

3.2. Modellierung auf Transaktionsebene

0

1

Schatten-
Reg.

Scan-
Reg.

Capture-
Enable

1

0

Select AND
Update-Enable

Capture
Pfad

Update
Pfad

Scan
Pfad

Rückkopplung

Rückkopplung

Reset

Select AND
(Capture- OR
Shift-Enable)

1

0

Abbildung 3.4.: Beispiel der aktiven Pfade und Signale (rot) in einem Scan-Segment während
der Capture-Phase. Der aktive Rückkopplungsdatenpfad des Schatten-
registers wurde nicht explizit hervorgehoben.

0

1

Schatten-
Reg.

Scan-
Reg.

1

0

Capture-
Enable

1

0

Select AND
Update-Enable

Capture
Pfad

Update
Pfad

Scan
Pfad

Rückkopplung

Rückkopplung

Reset

Select AND
(Capture- OR
Shift-Enable)

Abbildung 3.5.: Beispiel der aktiven Pfade und Signale (blau) in einem Scan-Segment
während der Scan-Phase. Der aktive Rückkopplungsdatenpfad des Schatten-
registers wurde nicht explizit hervorgehoben.

3.2. Modellierung auf Transaktionsebene

Die taktgenaue Modellierung eines Rekonfigurierbaren Scan-Netzwerks führt zu einem
hohen Aufwand aufgrund der sequentiellen Tiefe dieser Schaltungen. Deshalb werden
Rekonfigurierbare Scan-Netzwerk hier auf Transaktionsebene modelliert, so dass einzelne

29

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

getaktete Schiebeoperationen nicht notwendig sind und eine Effizienzsteigerung bei der
Rechenzeit erreicht wird.

In dieser Modellierung entspricht eine Transaktion einem vollständigen CSU-Zyklus, wie
er in Kapitel 3.1.2 beschrieben wurde. In einer Transaktion wird der zugreifbare Zustand
eines Rekonfigurierbaren Scan-Netzwerkes, das heißt alle Scan-Elemente auf dem aktiven
Scan-Pfad, neu geschrieben. Damit überführt eine Transaktion die Konfiguration eines
Rekonfigurierbaren Scan-Netzwerks in eine neue Konfiguration, welche sich nur auf dem
aktiven Scan-Pfad unterscheidet. Dabei ändert sich die Ausprägung des aktiven Scan-Pfads
entsprechend der neuen Konfiguration.

Eine CSU-Operation entspricht dabei nur einem Simulationsschritt im Modell auf Transak-
tionsebene, da sowohl die Capture-, Shift- sowie die Update-Operationen nicht explizit
modelliert werden. Hingegen hängt die Anzahl der Schritte im taktgenauen Modell von der
Länge des aktiven Scan-Pfads ab und ist damit variabel, was die Modellierung als Instanz
des Erfüllbarkeitsproblems erschwert. Die Zahl der Zyklen zur Rekonfiguration beträgt n + 2
Schritte, wenn der aktive Scan-Pfad n Scan-Segmente aufweist. Die mögliche Zustandsmenge
kann daher auf Transaktionsebene wesentlich kleiner und damit effizienter in Rechenzeit
und Speicherplatzbedarf simuliert werden.

3.2.1. Modellierung von Scan-Segmenten

Auf Transaktionsebene werden Scan- und Schattenregister als ein speicherndes Element in
Form eines Scan-Segments betrachtet. Es wird angenommen, dass in einer Transaktion aktive
Scan-Segmente gelesen und beschrieben werden können. Hierdurch kann der Zugriff auf
den aktiven Scan-Pfad als ein einzelner Lese- und Schreibzugriff betrachtet werden.

3.2.2. Modellierung der Scan-Pfadaktivierung

Zur Erzeugung von Zugriffsmustern in Rekonfigurierbaren Scan-Netzwerken ist es
notwendig zu gewährleisten, dass ein vollständig konsistenter und aktiver Scan-Pfad existiert.
Dies ergibt sich aus der Konfiguration und der Kontrolllogik, welche auch auf Transaktions-
ebene als Boole’sche Funktion modelliert ist.

Wie auf der Register-Transfer-Ebene, besitzen die Scan-Segmente auf Transaktionsebene
eine Aktivierungsbedingung, welche das Speichern neuer Werte ermöglicht. Diese ist aktiv
oder wahr, sofern sich das Scan-Segment auf dem aktiven Scan-Pfad befindet. Zusätzlich
gilt, dass wenn ein Scan-Segment aktiv ist, dann müssen auch genau ein eingehendes Scan-
Pfad-Segment und genau ein ausgehendes Scan-Pfad-Segment aktiviert sein. Andernfalls
würde kein oder mehr als ein aktiver Scan-Pfad ausgeprägt werden, was verboten ist.
Abbildung 3.6 zeigt die entsprechenden Aktivierungsvariablen an Scan-Pfad-Segmenten in
einem Rekonfigurierbaren Scan-Netzwerk.

30

3.3. Klassifizierung der Fehlerwirkung und Testbarkeit

S1

A2

A1

A3S2

S30

1

Abbildung 3.6.: Beispiel der Aktivierungsvariablen auf Transaktionsebene
Die Aktivierungsbedingungen A1 und A3 der Scan-Pfad-Segmente auf dem
aktiven Scan-Pfad (blau) müssen erfüllt sein. Die Aktivierungsbedingung A2

des Scan-Segments auf einem inaktiven Scan-Pfad-Segment muss hingegen
inaktiv sein.

Die in Kapitel 3.1.1 beschriebenen Aktivierungssignale werden daher als Boole’sche Formel
modelliert. Gleichung 3.1 beschreibt die Aktivierung eines Scan-Segments. Ein Scan-Segment
S ist aktiv, wenn die Boole’sche Aktivierungsbedingung A erfüllt ist und ein Vorgänger V
als auch ein Nachfolger N aktiv sind.

(3.1)
Aktiv(S)⇔ A ist erfüllt ∧

∃V ∈ Vorgänger(S) : Aktiv(V) ∧
∃N ∈ Nachfolger(S) : Aktiv(S)

3.3. Klassifizierung der Fehlerwirkung und Testbarkeit

In diesem Abschnitt werden Fehlerstellen für das einfache Haftfehlermodell klassifiziert und
diese Fehlerklassen mit deren Fehlerwirkung beschrieben.

Scan-Datenpfad Liegt ein Fehler auf dem Datenpfad eines Scan-Pfads, so ist der Fehler
unmittelbar aktiviert, sobald der Scan-Pfad in einer Konfiguration aktiv ist. Mittels eines
Flush-Tests ist die Fehlerwirkung observierbar, da der Scan-Pfad ab einer bestimmten
Stelle nur noch konstante Werte propagiert.

Diese Fehlerklasse kann dazu führen, dass die Schaltung nicht mehr kontrolliert werden
kann, nachdem ein Fehler aktiviert wurde. Dies ist aber von geringer Bedeutung für
den Test, da der Fehler erfolgreich nachgewiesen wurde. Jedoch wird die Diagnose in
solch einem Fall aufgrund der geringen Sichtbarkeit erschwert.

Scan-Steuerung Befindet sich ein Fehler unmittelbar im Eingangskegel eines Scan-
Datenpfads, hat nur Auswirkungen auf diesen und beeinflusst dessen Aktivierung,
dann führt dies zu zwei unterschiedliche Auswirkungen.

Der Fehler kann einen eigentlich inaktiven Pfad sensibilisieren und so die Werte
in einem Scan-Register verändern, was zu Datenverlust führen kann. Um dies zu
detektieren müsste im Scan-Register am Ausgangspunkt des fälschlich aktiven Scan-
Pfads der komplementäre Wert geschrieben werden. Das Scan-Pfad-Segment müsste
daraufhin deaktiviert werden und später wieder ausgelesen werden.

31

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Andernfalls kann ein aktiver Scan-Pfad deaktiviert werden, falls der Fehler einen
kontrollierenden Wert an einem Gatter propagiert, so dass der Pfad gebrochen wird.
Dieser Fall ist äquivalent zum gebrochenen Scan-Datenpfad.

Scan-Adressierung Wirkt sich ein Fehler auf mehrere unterschiedliche Scan-Pfade aus und
beeinflusst deren gemeinsame, wenn auch komplementäre Aktivierung, so kann dies
zur Vertauschung zweier Scan-Pfade führen. Bei unterschiedlichen Scan-Pfad-Längen
kann dies durch den Flush-Test erkannt werden, bereitet aber bei gleicher Scan-Pfad-
Länge Probleme.

In diesem Fall kann es sein, dass beide Scan-Pfade die gleichen Datenwerte enthal-
ten und so nicht direkt voneinander unterschieden werden. Befinden sich Konfig-
urationsregister auf den betroffenen Scan-Segmenten, welche asymmetrische Scan-
Pfade treiben, dann können diese genutzt werden um den eigentlich Fehler in der
Adressierung festzustellen. Dazu müssten entsprechende Testmuster für die kontrol-
lierten Scan-Pfad-Segmente erzeugt werden. Sind jedoch nur Scan-Pfade betroffen,
die keine Kontrollregister ansteuern, so können eventuell angeschlossene Instrumente
oder Systemlogik dazu genutzt werden, um die Scan-Pfad-Segmente voneinander zu
unterscheiden.

Capture-Datenpfad Liegt die Fehlerstelle auf dem Capture-Datenpfad, so können keine
Datenwerte vom Schattenregister zum Scan-Register übertragen werden, sondern nur
ein statischer Wert. Dies lässt sich einfach testen, indem der komplementäre Wert
in einer CSU-Operation O1 in das Scan-Register geschrieben wird und dieser vom
fehlerhaften Wert in der nächsten CSU-Operation O2 überschrieben wird. Die Scan-
Phase von O2 macht den Fehler anschließend an den Primärausgängen sichtbar.

Capture-Steuerung Ein Fehler in der Kontrolllogik des Capture-Pfads führt dazu, dass
entweder der Pfad statisch desensibilisiert oder statisch aktiviert ist. Der erste Fall
entspricht einem Fehler auf dem Capture-Datenpfad selbst. Beim statisch aktivierten
Fall propagiert der Wert aus dem Schattenregister immer auf den Scan-Pfad zum Scan-
Register. Dieser Fall ist testbar, wenn der kontrollierende Wert der Konvergenz der
beiden Datenpfade im Schattenregister gespeichert ist und der nicht-kontrollierende
Wert auf dem Scan-Pfad propagiert.

Update-Datenpfad Liegt der Fehler auf dem Update-Pfad selbst, so wird ein Schreiben eines
abweichenden Wertes verhindert und somit das Erreichen einer bestimmten gewün-
schten Konfiguration verhindert. Dies lässt sich testen, indem der komplementäre Wert
geschrieben und in einer folgenden CSU-Operation ausgelesen wird.

Die sequentielle Fehlerwirkung wird dadurch sichtbar, dass zum Beispiel ein Scan-Pfad
nicht aktiviert wird, weil der entsprechende Wert der Konfiguration nicht gesetzt
werden kann. Der Fehler kann daher durch einen abweichend von dem geforderten
gewählten Scan-Pfad erkannt werden.

Update-Steuerung Ein Fehler in der Ansteuerung eines Update-Pfads kann, wie bei den
bisher betrachteten Kontrolllogiken auch, den entsprechenden Datenpfad statisch ak-
tivieren oder deaktivieren. Bei Deaktivierung lässt sich der fehlerhaft gespeicherte Wert

32

3.3. Klassifizierung der Fehlerwirkung und Testbarkeit

durch eine Update-Operation, welche den komplementären Wert schreibt, aktivieren.
Eine Capture-Operation überführt den Wert in das Scan-Register, von wo aus der
Schiebebetrieb den Fehler ausliest.

Die Fehlerwirkung eines statisch aktiven Update-Pfads ist sehr interessant, da diese
von der Aktivität des Scan-Pfads abhängt. Dabei kann sich der aktive Scan-Pfad ständig
verändern und neu ausprägen.

Rückkopplungsdatenpfad Befindet sich der Fehler auf dem Rückkopplungspfad eines
Registers, so ist die Speicherfähigkeit des Registers reduziert und beschränkt sich
auf einen einzelnen Wert, falls es sich um den nicht-kontrollierenden Wert der Konver-
genz der Datenpfade handelt. Das Register kann, wenn es beschrieben wird, den Wert
nur für einen Takt halten, sofern es nicht erneut beschrieben wird.

Scan-Register können nur getestet werden, indem das Select-Signal während des
Schiebebetriebs deaktiviert wird. Andernfalls wird in der Capture-Phase der fehlerhafte
Wert überschrieben und während dem Schiebebetrieb werden ständig neue Daten
gespeichert, so, dass kein Wert aufgrund des Fehlers verloren gehen würde.

Fehlerhaften Daten können bei Schattenregistern nach einer Capture-Operation aus-
gelesen werden. Jedoch kann dies auch zu einer Veränderung des aktiven Scan-Pfads
führen, wodurch eventuell ein falscher Pfad ausgelesen würde.

Besteht der Fehler aus dem kontrollierenden Wert der Konvergenz, so propagiert kein
anderer Wert zum Register. Daher ist das Register nicht funktional und kann durch
Lese- und Schreibzugriffe einfach getestet werden.

Rückkopplungssteuerung Beeinflusst der Fehler die Kontrolllogik des Rückkopplungspfads
eines Scan- als auch Schattenregisters, so dass der Datenpfad statisch desensibilisiert
ist, dann propagiert über den Rückkopplungsdatenpfad nur noch ein konstanter Wert,
und es handelt sich um die entsprechende statische Fehlerklasse eines Rückkopplungs-
datenpfad.

Wird hingegen ein Rückkopplungsdatenpfad statisch sensibilisiert, so tritt an der
Konvergenz der Datenpfade immer der kontrollierende Wert auf, sobald er einmal
propagierte. Das Register speichert den kontrollierenden Wert und propagiert über
den Rückkopplungsdatenpfad wieder an die Konvergenz. Da es sich um den kontrol-
lierenden Wert handelt, wird er wieder im Register gespeichert. Da die Fehlerwirkung
statisch auftritt, sobald sie einmal aktiviert ist, ist diese Fehlerklasse einfach zu testen.
Die Fehlerwirkung lässt sich durch einfachen Zugriff auf das Scan-Segment sichtbar
machen.

Taktverteilung Fehler, welche die Taktverteilung beeinflussen, führen dazu, dass ein oder
mehrere Register nicht funktional sind und keine Daten speichern oder weiterleit-
en können. Diese Fehlerklasse lässt sich sehr gut testen. Für Scan-Register ist die
Fehlerwirkung äquivalent zu einem Fehler direkt auf dem Scan-Datenpfad und für
Schattenregister äquivalent zum Capture-Datenpfad.

33

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Reset-Steuerung Betrifft ein Fehler die Reset-Steuerung in der Art, dass ein oder mehrere
Register nicht in ihren Initialzustand zurückgesetzt werden können, dann enthalten
diese möglicherweise einen abweichenden Wert. Dieser Fehler wird nur aktiviert, falls
vor dem Reset in den betroffenen Registern der komplementäre Wert gespeichert ist.

Eine Folge der fehlerhaften Konfiguration kann darin bestehen, dass ein inkorrekter
Pfad nach dem Reset als aktiver Scan-Pfad ausgeprägt wird. Befindet sich ein zuge-
höriges Scan-Segment auf dem aktiven Scan-Pfad, so wird der Fehler unmittelbar nach
der ersten CSU-Operation als abweichender Wert sichtbar.

Ebenfalls ist es möglich, dass eine ungültige Konfiguration durch den fehlerhaften
Reset erreicht werden kann. Dies führt zu einem nicht funktionsfähigen oder mehreren
aktiven Scan-Pfaden, welche einfach testbar sein sollten. Jedoch ist es dafür notwendig,
dass das betroffene Modul aktiviert wird.

Scan-Register besitzen keine Steuerung für den Reset, denn durch die erste Capture-
Operation werden gültige Daten aus den Schattenregistern in die Scan-Register
geschrieben. Würden diese zurücksetzbar sein, so wären die Fehler aus diesem Grund
an Scan-Registern nicht detektierbar.

Eine weitere Möglichkeit der Fehlerwirkung besteht im ständig aktiven Reset, wodurch
die betroffenen Register nicht mehr funktional sind. Dies ist ein äquivalenter Fall zu
einem Fehler in der Taktverteilung.

3.4. Funktionale Fehlermodelle auf Transaktionsebene

Das Einfache-Haftfehler-Modell eignet sich gut für Fehler auf Gatterebene, ist jedoch auf
der Transaktionsebene, wie sie bei der CSU-Zyklen-Abstraktion betrachtet wird, schwierig
anwendbar, da einige strukturelle beziehungsweise funktionale Teile der Schaltung nicht be-
trachtet werden. Dies umfasst im Wesentlichen die explizite Modellierung der Capture- und
Update-Pfade, als auch die Rückkopplungsdatenpfade der speichernden Elemente. Daher
sollen in diesem Kapitel drei mögliche funktionale Fehlermodelle beschrieben werden.

Gebrochener Scan-Pfad Besteht die Fehlerwirkung in der Deaktivierung eines Scan-Pfad-
Segments des aktiven Scan-Pfads, so kann ab der Fehlerstelle nur noch der kon-
stante Wert der Fehlerwirkung ausgelesen beziehungsweise in nachfolgende Segmente
geschrieben werden. Ein solcher Fehler kann Zugriffe auf ein Rekonfigurierbares Scan-
Netzwerk so beeinflussen, dass dieses bis zu einem Reset unbrauchbar ist, falls der
Fehler nur noch Konfigurationen zulässt, welche aufgrund der Fehlerwirkung keinen
Scan-Pfad aktivieren. Dies kann relevant für eine spätere Diagnose sein.

34

3.4. Funktionale Fehlermodelle auf Transaktionsebene

0

1

Scan
Seg.

Scan
Seg.

Scan
Seg.TDI TDO

Fehler-
stelle

Abbildung 3.7.: Beispiel eines gebrochenen Scan-Pfads (rot)
Der Scan-Pfad ist an der Fehlerstelle unterbrochen und Werte propagieren
nicht mehr weiter. Stattdessen wird nur noch ein konstanter Wert propagiert.

Falscher Scan-Pfad Beeinflusst die Fehlerwirkung die Ansteuerung eines Scan-Multiplexers,
so besteht die Möglichkeit, dass statt dem eigentlich konfigurierten Scan-Pfad ein
anderer Scan-Pfad aktiviert wird. Auf Transaktionsebene wirkt sich dies als Auswahl
eines anderen Pfads durch den Graphen aus. Dabei sind die Gültigkeitsbedingungen
immer noch erfüllt, das heißt es wird nur ein aktiver Scan-Pfad ausgeprägt.

0

1

Scan
Seg.

Scan
Seg.

Scan
Seg.

Fehler-
stelle

TDI TDO

Abbildung 3.8.: Beispiel eines fälschlich aktiven Scan-Pfads (rot)
Der eigentlich ausgewählte blaue Scan-Pfad ist aufgrund des Fehlers nicht
aktiv. Durch die Fehlerwirkung wurde stattdessen der rote Scan-Pfad ak-
tiviert.

35

3. Grundlagen Rekonfigurierbarer Scan-Netzwerke

Instabiler Scan-Pfad Angenommen die Kontrolllogik eines Update-Pfads auf Gatterebene
sei so betroffen, dass ein Schattenregister in jedem Takt den Wert aus dem Scan-
Register übernehme. Dann basiert die Ausprägung eines aktiven Scan-Pfads auf den
propagierenden Datenwerten auf dem Scan-Pfad und nicht mehr auf den durch CSU
kontrollierten Datenwerten eines Konfigurationsregisters. Dadurch verändert sich
der aktive Scan-Pfad entsprechend der Aktivität auf dem entsprechenden Scan-Pfad-
Segment. Diese Fehlerannahme führt zu einem pseudo-dynamischen Verhalten auf
Transaktionsebene, so dass ab der Fehlerstelle lediglich pseudo-zufällige Daten gelesen
und geschrieben werden können.

0

1

Scan
Seg.

Scan
Seg.

Scan
Seg.

Fehler-
stelle

TDI TDO

Abbildung 3.9.: Beispiel eines instabilen aktiven Scan-Pfads (schraffiert)
Die Kontrolllogik des Scan-Multiplexers wird nicht mehr aus einem stabilen
Konfigurationsregister gesteuert, daher prägt sich der aktive Scan-Pfad
basierend auf der Aktivität des Scan-Pfads aus.

36

4. Testalgorithmen für Rekonfigurierbare
Scan-Netzwerke

In diesem Kapitel wird ein Überblick über unterschiedliche Testalgorithmen für Rekonfig-
urierbare Scan-Netzwerke geben. Zuerst wird die Möglichkeit eines pseudo-zufälligen Tests
diskutiert. Darauf folgen zwei funktionale Testheuristiken, welche zum einen aus einem
einmaligen Zugriff auf alle Scan-Segmente besteht und zum anderen die Funktionalität der
Scan-Segmente betrachtet. Abschließend werden weitere Testalgorithmen vorgeschlagen,
welche insbesondere in Hinblick auf die Bedürfnisse einer schnellen Testmustererzeugung
für Rekonfigurierbare Scan-Netzwerke entwickelt worden sind.

Flush-Test

Ziel des Flush-Tests ist festzustellen, ob der Scan-Pfad Daten unverfälscht schiebt. Dieser
findet in den folgenden Testalgorithmen Anwendung.

Bei einfachen Haftfehlern ist es ausreichend, dass beide Logikwerte 0 und 1 durch den Scan-
Pfad propagieren. Dabei können kombinatorische Fehler aktiviert und deren Fehlerwirkung
propagiert werden, welche auf dem aktiven Scan-Pfad liegen oder dessen Kontrolllogik
beeinflussen.

Zur Validierung, ob ein funktionsfähiger Scan-Pfad ausgeprägt wurde, wird vor jeder
Scan-Phase die Sequenz 01 in den Scan-Pfad geschrieben. Danach werden die Werte der
nächsten Konfiguration geschrieben, welche genau der Länge des fehlerfreien aktiven Scan-
Pfads entsprechen. Wenn die letzten beiden Werte der Konfiguration in den Scan-Pfad
geschrieben werden, wird die Sequenz 01 am Ausgang des Scan-Pfads sichtbar. Wird eine
andere Wertefolge gelesen, so wurde ein Fehler detektiert.

4.1. Pseudo-zufällige Testmustererzeugung

In kombinatorischen Schaltungen können pseudo-zufällig erzeugte Testmuster bereits eine
hohe Fehlerabdeckung gewährleisten [BM82]. Diese Methode hat den Vorteil, dass Test-
muster sehr günstig erzeugt werden können. Allerdings eignet sich diese Methode nicht
für Rekonfigurierbare Scan-Netzwerke, da ungültige Zustände erreicht werden können, die
keine weiteren Zugriffe auf Scan-Segmente mehr erlauben. Auf der anderen Seite ist es

37

4. Testalgorithmen für Rekonfigurierbare Scan-Netzwerke

unwahrscheinlich tiefe Ebenen zu erreichen. Die Wahrscheinlichkeit des Zugriffs auf ein
Teilmodul einer Hierarchie soll im weiteren Verlauf erläutert werden.

Angenommen es existieren in einem Rekonfigurierbaren Scan-Netzwerk Hierarchien so, dass
die Aktivierung eines Teilmoduls m von t unabhängig voneinander gesetzten Konfigura-
tionsbits abhängt und nur in einer Konfiguration aktiviert wird. Für jedes Konfigurationsbit
beträgt die Wahrscheinlichkeit, dass entsprechende Datum zufällig zu erzeugen, 50 Prozent.
Dann liegt die Wahrscheinlichkeit, dass m aktiviert wird, bei:

(4.1) P(maktiviert) ≤ 2−t

Schon für eine geringe Anzahl von Bits, zum Beispiel t = 5, beträgt die Wahrscheinlichkeit,
dass das entsprechende Modul aktiviert wird und damit auf dem aktiven Scan-Pfad liegt,
weniger als 4 Prozent.

Sind die Konfigurationsregister hierarchisch so angeordnet, dass der Zugriff auf Konfigura-
tionsregister i ≤ t nur bei aktiviertem Register i− 1 erfolgen kann, so ergibt sich ein Fall mit
noch geringer Aktivierungswahrscheinlichkeit als in Gleichung 4.1 beschrieben. Eine solche
Struktur wird in Abbildung 4.1 skizziert.

0

1
St-1

m

0

1
0

1
S2

S1

Abbildung 4.1.: Beispiel einer hierarchisch bedingten Zugriffsstruktur

Denn für jede Aktivierung eines Registers i müssen alle Register < i zugreifbar sein. Damit
diese zugreifbar bleiben, muss das entsprechende Datum für einen weiteren Zugriff erhalten
bleiben, weil alle Daten des aktiven Scan-Pfads wieder geschrieben werden. Ansonsten
würde die Hierarchieebene wieder geschlossen werden. Gleichung 4.2 beschreibt die Zugriffs-
wahrscheinlichkeit formal:

(4.2)

P(mzugrei f bar) ≤ 2−(t−1).. ∗ 2−1 =
t−1

∏
n=1

2−n

P(maktiviert ∩mzugrei f bar) = P(maktiviert) ∗ P(mzugrei f bar)

≤ 2−t ∗ 2−(t−1) ∗ . . . ∗ 2−1 =
t

∏
n=1

2−n

38

4.2. Funktionale Testheuristiken

Dieses Produkt strebt sehr schnell gegen den Null so, dass die Wahrscheinlichkeit eines
einmaligen zufälligen Zugriffs auf ein Teilmodul einer Tiefe von 3 schon bei ca. 1 Prozent
liegt. Aus diesem Grund ist ein reiner Zufallstest für Rekonfigurierbare Scan-Netzwerke
nicht effizient realisierbar. Tabelle 4.1 zeigt die Wahrscheinlichkeit für Module bis zur Tiefe 5

für die beiden Gleichungen 4.1 und 4.2.

t 0 1 2 3 4 5

4.1 P(maktiviert) 100% 50% 25% 12,5% 6,25% 3,13%
4.2 P(maktiviert ∩mzugrei f bar) 100% 50% 12,5% 1,56% 0,10% ∼0,00%

Tabelle 4.1.: Wahrscheinlichkeit eines zufälligen Zugriffs auf ein Modul m der Tiefe t

Ein weiteres Problem besteht in der Ermittlung der aktiven Scan-Pfad-Länge. Basierend
darauf, welche zufälligen Muster geschrieben wurden, verändert sich die Konfiguration
und damit die Scan-Pfad-Länge. Damit ein fehlerhaft gespeichertes Datum auf dem aktiven
Scan-Pfad nicht durch eine weitere Capture-Operation überschrieben wird, müssen alle
Daten auf dem aktiven Scan-Pfad ausgelesen werden. Es ist also notwendig den Scan-Pfad
vollständig auszulesen.

Eine Möglichkeit besteht darin, dass immer so viele Bits gelesen werden wie der längst
mögliche aktive Scan-Pfad. Dies ist jedoch ineffizient, das heißt sollen keine Muster unnötig
geschoben werden, muss rechtzeitig die Scan-Phase beendet werden.

Eine andere Herangehensweise besteht in der Erzeugung zufälliger Lese- und Schreibzugriffe
auf die Scan-Segmente. Das später in Kapitel 5.2 beschriebene Werkzeug eda1687 ermöglicht
die Erzeugung von Zugriffsmustern für Lese- und Schreibzugriffe. Da dieses einen voll-
ständigen neuen Zustand auf den aktiven Scan-Pfad schreibt, wird auch automatisch der
Zustand des aktiven Scan-Pfads ausgelesen.

4.2. Funktionale Testheuristiken

In diesem Abschnitt werden zwei funktionale Testheuristiken vorgestellt. Diese haben den
Vorteil, dass sie einfach zu implementieren sind und eine kompakte Menge von Testmustern
erzeugen. Beide Algorithmen können sowohl auf Gatter- als auch auf Register-Transfer-Ebene
eingesetzt werden. Die Erzeugung auf Register-Transfer-Ebene ist der Gatterebene dabei
vorzuziehen, da aufgrund der höheren Abstraktion weniger Elemente zu betrachten sind
und somit ist diese Vorgehensweise in Rechenzeit als auch Speicherverbrauch effizienter.

39

4. Testalgorithmen für Rekonfigurierbare Scan-Netzwerke

4.2.1. Zugriff auf alle Scan-Segmente

Durch den simplen Zugriff auf jedes Scan-Segment können entsprechend einfach Testmuster
erzeugt werden. Dadurch werden alle Scan-Register einmal auf dem aktiven Scan-Pfad
kontrollier- und observierbar. Es ist zu erwarten, dass diese Heuristik ein gutes Verhältnis
von Fehlerabdeckung zu Anzahl der Muster besitzt, da durch eine minimale Anzahl von
Zugriffsmustern sehr viele Gatter sensibilisiert werden. Ebenfalls ist anzunehmen, dass es
sich hierbei um die minimale Anzahl von Testmustern handelt, denn um einen Fehler zu
testen, muss dieser observierbar sein. Für ein Rekonfigurierbares Scan-Netzwerk muss dazu
der Fehler auf den aktiven Scan-Pfad einwirken.

Für jeden CSU-Zyklus wird zusätzlich ein Flush-Test durchgeführt, so dass die Wertesequenz
01 auf dem Scan-Pfad propagiert und mögliche Haftfehler detektiert. Damit werden alle
Haftfehler auf dem Scan-Pfad detektiert.

4.2.2. Lese-/Schreibzugriff auf alle Scan-Segmente

Ein erweitertes, funktionales Verfahren zur Erzeugung von Testmustern stellt die Über-
prüfung des Lese- und Schreibzugriffs aller Scan-Segmente dar. Dieses überprüft, ob alle
Scan-Register durch mindestens einen Scan-Pfad erreichbar sind und ob in der getesteten
Konfiguration sowohl Capture- als auch Update-Pfad korrekt arbeiten.

Angenommen wird, dass sich auf diese Weise ein großer Teil der Fehler detektieren lässt.
Insbesondere sind statische Fehler in der Taktverteilung oder Reset-Ansteuerung einfach zu
entdecken, da ein entsprechend betroffenes Register nicht mehr funktional ist. Algorithmus
4.1 skizziert das Vorgehen.

Algorithmus 4.1 Schreibende funktionale Testheuristik
1 Für jedes Scan-Segment s:
2 Schreibe 1 in Scan-Segment s
3 Lese Scan-Segment s und Schreibe 0 in Scan-Segment s
4 Lese Scan-Segment s

4.3. Testmustererzeugung auf Transaktionsebene

Die deterministische Erzeugung der Testmuster setzt sich aus mehreren Schritten zusammen.
Zuerst werden entsprechende Zugriffsmuster erzeugt, um eine bestimmte Konfiguration
des Rekonfigurierbaren Scan-Netzwerks zu erreichen, in welcher der zu untersuchende
Fehler aktiviert werden kann. Anschließend wird eine Flush-Sequenz geschrieben, so dass
die Fehlerwirkung am Ausgang des Scan-Pfades sichtbar wird.

Folgenden Kapiteln führen Verfahren zur Detektion der Fehlerwirkung ein, welche genutzt
werden, um festzustellen, in welchen Zuständen ein Fehler aktiviert ist.

40

4.3. Testmustererzeugung auf Transaktionsebene

4.3.1. Detektion durch Brechung des Scan-Pfads

Die Ausgangsidee zur Detektion von Fehlern in Rekonfigurierbaren Scan-Netzwerken basiert
auf dem Brechen des Scan-Pfads. Dazu wird ein Zugriffsmuster gesucht, welches in der
fehlerhaften Schaltung den aktiven Scan-Pfad durch Aktivierung des Fehlers unterbricht,
da aufgrund der Fehlerwirkung lediglich konstante Werte propagiert werden. Es gibt zwei
Gruppen von Fehlern, welche eine solche Wirkung verursachen können.

Die erste Gruppe besteht aus Fehlern, welche direkt auf dem Scan-Pfad liegen und diesen
dadurch blockieren. Da ein solcher Fehler durch Aktivierung des entsprechenden Scan-Pfads
observierbar wird, ist es ausreichend auf den Scan-Pfad zuzugreifen und mittels einer Flush-
Sequenz den Fehler zu aktivieren und zu detektieren. Abbildung 4.2 zeigt einen solchen
Fehler.

S2S1

A1 A2

Fehlerstelle

Abbildung 4.2.: Beispiel eines direkt gebrochenen Scan-Pfads
Der Scan-Pfad (blau) zwischen den Scan-Registern S1 und S2 wird durch
die Fehlerwirkung eines Haftfehlers gebrochen.

Bei der anderen Gruppe befindet sich der Fehler nicht auf einem Scan-Pfad, sondern in
der Kontrolllogik und steuert ein oder mehrere Scan-Pfad-Segmente, wie es in Abbildung
4.3 dargestellt wird. Zur Detektion dieses Fehlers im Erfüllbarkeitsproblem, werden die
Pfadaktivierungsklauseln im fehlerfreien und fehlerbehafteten Fall verglichen. Ist ein Scan-
Pfad-Segment im fehlerfreien Fall aktiv, das heißt die Pfadaktivierungklauseln evaluieren zu
wahr, aber im fehlerbehafteten Fall deaktiviert, so ist dieser Pfad ein potentieller Kandidat.
Zusätzlich müssen alle anderen Scan-Pfad-Segmente ihre Aktivierung beibehalten. Andern-
falls könnte ein anderes Scan-Pfad-Segment aktiviert werden und einen funktionsfähigen
aktiven Scan-Pfad ausbilden.

41

4. Testalgorithmen für Rekonfigurierbare Scan-Netzwerke

S2S1

A1 A2

Fehlerstelle

Abbildung 4.3.: Beispiel eines durch fehlerhafte Kontrolllogik gebrochenen Scan-Pfads
Der Scan-Pfad (blau) wird durch einen Haftfehler an 1 am Kontrollsignal
A2 gebrochen.

Gleichung 4.3 drückt die Detektionsbedingung formal aus. Dabei bezeichnet SPS die Menge
aller im Rekonfigurierbaren Scan-Netzwerk vorhandenen Scan-Pfad-Segmente. Für jedes
Scan-Pfad-Segment p ∈ SPS existieren zwei Boole’sche Funktionen. Im fehlerfreien Fall als
pgut und im fehlerbehafteten als psa f bezeichnet. Diese sind wahr genau dann, wenn pgut/sa f
auf dem aktiven Scan-Pfad liegt.

(4.3) ∃p ∈ SPS, ∀q ∈ SPS : (pgut ∧ ¬psa f) ∧ (q 6= p) ∧ (qgut = qsa f)

4.3.2. Detektion durch Deaktivierung des Scan-Pfads

Eine Alternative zum Brechen eines Scan-Pfads besteht darin, dass lediglich ein im fehler-
freien Fall aktiver Scan-Pfad durch den Fehler deaktiviert wird, aber andere Pfade dafür
auch aktiviert werden dürfen. Dies entspricht dem Brechen von Scan-Pfaden, aber ohne die
Bedingung, dass kein anderer Pfad aktiviert werden darf. Somit könnte diese Bedingung
auch als optimistische Detektion bezeichnet werden. Im Gegensatz zur ursprünglichen Idee
der Brechung des Scan-Pfads, kann ein anderer Scan-Pfad aktiviert werden, so dass der
Fehler nicht durch die Flush-Sequenz robust detektierbar ist.

Die Gleichung 4.4 basiert auf der Gleichung 4.3 und ist nur entsprechend um den zweiten
Teil gekürzt. Der Vorteil dieses Verfahrens besteht in der geringen notwendigen Zahl an
Bedingungen.

(4.4) ∃p ∈ SPS : pgut ∧ ¬psa f

4.3.3. Detektion durch Änderung des Scan-Pfad-Präfixes

Ein weiteres optimistisches Verfahren wird vorgestellt, dessen Detektionsbedingung auf der
Änderung der eingehenden Datenpfade an einem Scan-Segment besteht.

Der Ansatz basiert darauf, dass ein eingehender Pfad eines aktiven Scan-Segments eine
Änderung aufweist. Dies kann sowohl die Deaktivierung eines aktiven Scan-Pfads als auch

42

4.3. Testmustererzeugung auf Transaktionsebene

die Aktivierung eines zweiten, aber nicht aktiven Datenpfads, wie zum Beispiel Capture-,
Scan- oder der Rückkopplungsdatenpfad, sein.

Im Wesentlichen wird hierbei die Scan-Pfad-Deaktivierung mit einer möglichen Scan-Pfad-
Aktivierung kombiniert. Wird das aktive Scan-Pfad-Segment deaktiviert, so ist der Scan-Pfad
gebrochen, sofern kein weiterer Pfad aktiviert wird. Aktiviert der Fehler einen weiteren Scan-
Pfad, so kann der Fehler noch detektiert werden, falls dieser nicht gleichlang, das heißt nicht
symmetrisch, ist. Es kann dabei auch der Capture- als auch der Rückkopplungsdatenpfad
aktiviert werden, welche durch eine mögliche Propagierung eines kontrollierenden Werts
den Scan-Pfad bricht.

Die Detektionsbedingung ist in Formel 4.5 gegeben. Darin findet sich der Deaktivierungsteil
der Gleichung 4.4 wieder. Zusätzlich wird die Menge aller im Rekonfigurierbaren Scan-
Netzwerk vorhandenen Scan-Segmente S eingeführt, sowie die Menge aller Eingangspfade
sin eines Scan-Segments s:

(4.5)
∃p ∈ SPS : (pgut ∧ ¬psa f)∨
∃s ∈ S, ∃p ∈ sin, ∃q ∈ sin : pgut ∧ (q 6= p) ∧ (qgut 6= qsa f)

4.3.4. Detektion durch Änderung der Scan-Pfad-Länge

Eine pessimistische Methode besteht in der Beobachtung der Länge des aktiven Scan-Pfads.
Unterscheidet sich die Länge des aktiven Scan-Pfads im fehlerbehafteten vom fehlerfreien
Fall, so kann dies entsprechend mit einer Flush-Sequenz detektiert werden.

Der Nachteil dieser Methode besteht in der Modellierung der Detektionsbedingungen, näm-
lich dem Zählen der aktiven Scan-Pfad-Längen. Denn dieses muss als Boole’sche Funktion
dargestellt beschrieben werden. Die Variablen einer solchen Funktionen können lediglich
Boole’sche Werte annehmen und somit Wahr oder Falsch darstellen. Da nur logische und
keine arithmetischen Operationen direkt unterstützt werden, müssen Binärzahlen sowie
einfache Additions- und Vergleichsoperationen in Klauseln explizit modelliert werden.

Alternativ lässt sich die Detektionsbedingung auch als Pseudo-Boole’sches-Problem
darstellen. Dabei werden Boole’sche Variablen in arithmetischen Ausdrücken genutzt. So
können die Variablen addiert oder multipliziert werden und die Länge der Scan-Pfad-
Segmente im fehlerfreien |sgut| und im fehlerbehafteten |ssa f | Fall dargestellt werden. Die
Detektionsbedingung besteht dann aus der Differenz und dem Vergleich beider Variablen:

(4.6) |sgut| − |ssa f | 6= 0

Pseudo-Boole’sche-Instanzen lassen sich als Instanz des aussagenlogischen Erfüllbarkeit-
sproblems ausdrücken [ES06].

Jedoch kann die Modellierung der Detektionsbedingung zur Erzeugung einer sehr kom-
plexen Boole’schen Funktion führen. Falls die Fehlerwirkung auf viele Scan-Pfad-Segmente
Einfluss hat, müssen entsprechend viele Variablen miteinander kombiniert werden.

43

4. Testalgorithmen für Rekonfigurierbare Scan-Netzwerke

4.3.5. Grenzen des Ansatzes

Folgend sollen bestimmte Bedingungen zusammengefasst werden, für die dieser Ansatz
keine Testmuster deterministisch erzeugen kann.

Die fehlende Modellierung von Daten schließt Fehler aus, welche spezifische Werte an
bestimmten Registern erwarten, um aktiviert werden zu können. Der Fall, wenn bestimmte
Daten auf den Scan-Pfad propagiert werden müssen, damit ein Scan-Pfad von einem anderen
unterschieden werden kann, wie beispielsweise bei symmetrischen Scan-Pfaden, kann dieser
Ansatz ebenfalls nicht abdecken. Die beiden Fehlerklassen, der Fehler in der Taktverteilung
und der Reset-Steuerung, sind aufgrund dessen nicht für dieses Modell geeignet.

In der derzeitigen Implementierung werden die Capture- und Update-Phasen nicht explizit
modelliert, so dass die eigentliche Fehlerwirkung auf diesen Pfaden auch nicht modelliert
werden kann. Es lässt sich das Modell um diese Phasen erweitern, indem die Klauseln
entsprechend öfters ausgerollt und die Eingangssignale passend gesetzt werden.

Eine andere Kategorie sind Fehler, die gar nicht im Rahmen der CSU-Transaktion aktiviert
werden können. Es könnte etwa ein Fehler nur bei gleichzeitig aktivem Capture- und Update-
Enable-Signal aktiviert sein, was den zulässigen Zuständen des CSU-Zyklus widerspricht.
Das Modell könnte um eine entsprechende Phase erweitert werden, indem keine Bedingun-
gen auf die Eingangsvariablen gesetzt werden. Dies hängt jedoch von der Implementierung
des Schaltnetzes ab.

44

4.4. Vergleich der Testalgorithmen

4.4. Vergleich der Testalgorithmen

Tabelle 4.2 zeigt eine Übersicht der Testbarkeit der betrachteten Fehlerklassen durch die
Heuristik zur Erzeugung von Testmustern, als auch durch die Maßnahmen des Scan-Pfad-
Brechens sowie der Beobachtung anhand der Scan-Pfad-Länge.

Klasse AH WH SPB SPL

Scan-Datenpfad + + + -
Scan-Steuerung o o + -

Scan-Adressierung o o - +
Update-Datenpfade o + - -

Update-Steuerung o o - -
Capture-Datenpfade o + - -

Capture-Steuerung o o - -
Rückkopplungsdatenpfad o + o -

Rückkopplungsteuerung o o o -
Taktverteilung o + - -

Reset-Steuerung o o o -

Tabelle 4.2.: Zusammenfassung der Testbarkeit verschiedener Fehlerklassen
+ : gut, - : schlecht, o : unbestimmt
AH: Einfache Heuristik, WH: Schreibende Heuristik, SPB: Scan-Pfad-Brechen,
SPL: Scan-Pfad-Länge

45

5. Implementierung

Dieses Kapitel stellt den Aufbau einer Boole’schen Formel f in konjunktiver Normalform
(CNF) dar. Diese enthält ein Modell des Schaltungsgraphen, sowie die Fehlerinjektion und
-detektion. Die Formel soll genau dann erfüllbar sein, wenn der Fehler detektierbar ist.
Aus der Lösung lassen sich Zugriffsmuster ableiten, welche als Testmuster genutzt werden
können, um den Fehler während des Tests zu detektieren.

Im ersten Kapitel wird eine Übersicht über das entwickelte Testverfahren gegeben. Danach
folgt die Überführung aus der Verhaltensbeschreibung auf Register-Transfer-Ebenen zum
Modell auf Transaktionsebene. Die nachfolgenden Kapitel beschäftigen sich mit der Fehler-
modellierung und abschließend mit der Fehlersimulation.

5.1. Übersicht des Testverfahrens

Ausgang des hier betrachteten Verfahrens ist eine abstrakte Beschreibung des Rekonfigurier-
baren Scan-Netzwerks auf Register-Transfer-Ebene. Diese Beschreibung kann zum Beispiel in
der von IEEE P1687 definierten Sprache „Instrument Connectivty Language“ (ICL) vorliegen
und wird in eine entsprechende Verilog-Verhaltensbeschreibung umgewandelt. Dadurch ist
es möglich das Rekonfigurierbare Scan-Netzwerk mit gängigen Simulationsprogrammen zu
simulieren und zu untersuchen.

Um die Testbarkeit zu untersuchen und Testmuster für das einfache Haftfehlermodell zu
erzeugen, wird die Verhaltensbeschreibung in ein Modell auf Gatterebene übersetzt. Dies
geschieht durch Synthese in eine Gatternetzliste. Diese Netzliste kann mit den gleichen
Werkzeugen wie für die Register-Transfer-Ebene, simuliert und beispielsweise das Verhalten
bei einem vorliegenden Fehler untersucht werden.

Im nächsten Schritt wird die synthetisierte Gatternetzliste eingelesen und ein internes
Graphenmodell erstellt. Das Modell entspricht im Wesentlichen einem Graph der Gatternetz-
liste mit zusätzlichen Informationen, welche zur Erzeugung der Klauseln und Fehlermenge
benötigt werden.

Aus dem Graphenmodell wird das Verhalten der Schaltung als Instanz eines aussagen-
logischen Erfüllbarkeitsproblems modelliert, wobei jedoch der Scan-Pfad separat als Modell
auf Register-Transfer-Ebene gehandhabt wird. Dadurch ist es möglich, das sequentielle
Verhalten auf Transaktionsebene zu beschreiben. Die bestehende Implementierung des
Werkzeugs eda1687, welches in Kapitel 5.2 näher beschrieben wird, konnte entsprechend zur
Erzeugung von Testmustern erweitert werden.

47

5. Implementierung

Konverter

ICL
Abstraktes Modell

Register-Transfer
Verhaltensmodell

Synthese

Gatterebene
Netzliste

Fehlerdetektion
in CNF

Transaktions-
modell in CNF

Fusion

Schaltungsmodell
in CNF

SAT-Solver

Zugriffsmuster

Fehlersimulation

VinylFME

Abbildung 5.1.: Flowchart des Testverfahrens für einen Fehler
FME: Fehlermodellierung, Vinyl: Parser und CNF-Konverter

Des Weiteren wird die Fehlerliste, das heißt die Menge aller Fehler des Fehlermodells die un-
tersucht werden soll, aus dem Graphen erzeugt. Dabei werden nach Möglichkeit äquivalente
Fehler zusammengeführt und gemeinsam betrachtet, um Rechenzeit einzusparen.

5.2. Zugriffsmustererzeugung – eda1687

eda1687 ist ein Programm zur Erzeugung von Zugriffsmustern für Rekonfigurierbare
Scan-Netzwerke. Als Basis dient eine abstrakte Beschreibung des Rekonfigurierbaren Scan-
Netzwerks auf Register-Transfer-Ebene [BKW12], [BKW13].

Das Rekonfigurierbare Scan-Netzwerk wird von eda1687, ähnlich des im Kapitel 3.2
beschriebenen Vorgehens, in eine Instanz des aussagenlogischen Erfüllbarkeitsproblems über-
führt. Dies gestaltet sich in ICL einfacher als auf Gatterebene, da in der domänen-spezifische

48

5.3. Einlesen und Verarbeiten von Netzlisten

Beschreibung Meta-Informationen, wie zum Beispiel die Aktivierungsbedingungen eines
Scan-Segments, explizit ausgeführt sind und nicht extrahiert werden müssen.

5.3. Einlesen und Verarbeiten von Netzlisten

Eine Netzliste ist eine Beschreibung der Verbindung von Gatterelementen eines Schaltungs-
moduls. Diese enthält im Wesentlichen folgende Komponenten:

• Name des Moduls

• Bezeichner der Ein- und Ausgänge

• Bezeichner für Verbindungsleitungen

• Zuweisungen für Ein- oder Ausgänge, Verbindungsleitungen oder Konstanten

• Instanzen von Gatterelementen und welche Verbindungsleitungen angeschlossen sind

Das implementierte ATPG-Programm (Vinyl) liest eine Verilog-Netzliste ein und erzeugt
daraus ein Zwischenmodell, welches anschließend in ein Graphenmodell umgewandelt
wird. Ein Knoten im Graphenmodell kann dabei ein beliebiges Element der Netzliste, das
heißt ein Gatter, Register, Primärein- oder -ausgang sowie eine Verbindungsleitung sein.
Da Verbindungsleitungen ebenfalls als Knoten betrachtet werden, beschreiben Kanten die
Verbindung von Elementen zu anderen Elementen. Dabei besitzen die gerichteten Kanten
Bezeichner, welche den benannten Anschlüssen an den Elementen entsprechen.

5.3.1. Parser – ANTLR

Zum Einlesen und Verarbeiten der Strukturbeschreibung der Schaltung in Form von Verilog-
Netzlisten wurde auf den objektorientierten Parser-Generator ANTLR (ANother Tool for
Language Recognition1) zurück gegriffen [Par07]. Dieser wurde von Professor Terence Parr
als LL*-Parser in Java entwickelt und ist frei unter einer BSD-Lizenz verfügbar. Als Eingabe
dient eine Beschreibung der zu verarbeitenden Grammatik. ANTLR erzeugt daraus Quell-
code für eine vorgegebene Programmiersprache. Eine Grammatik besteht aus Regeln zur
Ableitung einer Sprache. ANTLR kann dabei Lexer, Parser und/oder Tree-Parser erzeugen.

Ein Lexer liest eine Aneinanderreihung von Symbolen ein und zerlegt diese in einzelne,
logisch zusammengehörende Teilstücke, sogenannte Tokens. Ein Token kann zum Beispiel
eine natürliche Zahl oder ein Bezeichner für eine Variable sein. Dieser Schritt wird als
lexikalische Analyse bezeichnet.

Diese Tokens werden dann an einen Parser weitergegeben. Ein Parser analysiert Tokens und
überprüft diese auf syntaktische Korrektheit, das heißt ob die Kombination und Anordnung
den Regeln der Grammatik entsprechen. Parser werden meistens als Automaten realisiert

1http://www.antlr.org/

49

http://www.antlr.org/

5. Implementierung

und leiten ein entsprechendes Modell, beispielsweise in Form eines Abstrakten Syntaxbaums
(engl. abstract syntax tree, AST), ab. In ANTLR kann zu jeder Token-Regel Programm-
code angegeben werden, welcher bei Ableitung des Tokens aufgerufen wird. So kann ein
ereignisbasierter Parser implementiert werden.

Ein abstrakter Syntaxbaum ist die Repräsentation der abstrakten, syntaktischen Struktur
der Instanz einer Grammatik, welcher die inhaltlichen Zusammenhänge wiedergibt. Hierbei
stellen die Knoten des Baums Tokens und deren Werte dar. Da durch die Baumstruktur eine
explizite Reihenfolge vorgegeben wird, können Kontrolltokens, wie zum Beispiel Klammern,
wegfallen.

Die erarbeitete Implementierung nutzt lediglich Lexer und Parser. Der Parser erzeugt ein
objektorientiertes, tabellarisches Zwischenmodell, da dies die spätere Umwandlung in ein
Graphenmodell vereinfacht. Das tabellarische Zwischenmodell ermöglicht es, eine Referenz
auf die Instanz eines Gatter- beziehungsweise Signalobjekts anhand seines Bezeichners zu
erhalten. Dieser Zugriff wäre im Rahmen des Abstrakten Syntaxbaum deutlich schwieriger.

5.3.2. Graphenmodell

Das Graphenmodell dient der Abbildung des azyklischen, gerichteten Graphen des Rekon-
figurierbaren Scan-Netzwerks in der Implementierung. Dazu werden alle Elemente eines
Schaltungsgraphen, das heißt Gatter und Verbindungsleitungen sowie Ein- und Ausgänge als
Knoten betrachtet. Kanten werden implizit über Vorgänger- und Nachfolgerbeziehungen real-
isiert. Die entsprechende Datenstruktur eines Knotens ist in Algorithmus 5.1 dargestellt.

Algorithmus 5.1 Datenstruktur eines Knotens im Graph des RSNs
1 struct {
2 string name;
3 string type;
4 std::map<port_name, Node_Ptr> predecessor;
5 std::map<port_name, Node_Ptr> successor;
6 } Node;

Zur Konvertierung des Schaltungsgraphen in konjunktive Normalform benötigen alle Gatter
eine Variable zur Darstellung ihres Funktionswerts. Die Variablenbezeichner werden als
einfache Ganzzahlen dargestellt. Die Abbildung der Gatter auf Variablen erfolgt durch eine
std::map aus der C++ Standard Template Library (STL).

Allerdings reicht diese einfache Abbildung nicht aus, da in mehreren verschiedenen Arbeits-
schritten der Implementierung unterschiedlicher Variablen für dasselbe Gatter benötigt
werden. So zum Beispiel bei der Unterscheidung zwischen einem fehlerfreien und einem
fehlerhaften Wert. Um den Aufbau der Klauseln möglichst einfach zu gestalten, wurde die
Abbildung von Gatter zu Variable in einer hierarchische Datenstruktur gekapselt, welche in
Abbildung 5.2 dargestellt ist. Auf diese Weise kann eine Variablenzuordnung durch einfaches
Traversieren der Hierarchie gefunden werden.

50

5.4. Extraktion des Scan-Pfads aus der Netzliste

 U32 → 8
 U14 → 9
 n77 → 10

 U32 → 31
 n22 → 32
 U75 → 33

 U32 → 39
 U14 → 40
 n42 → 41

 U32 → 20
 U14 → 21
 n42 → 22

 U32 → 43
 U14 → 44
 n42 → 45

 U32 → 16
 U14 → 17
 n42 → 18

Fehlerfreier
Schaltungsgraph

Teilgraph der
Fehlerwirkung

Boole'sche
Differenz für
ein SPS

Boole'sche
Differenz für
ein SPS

Abbildung 5.2.: Beispielinstanz der Hierarchie der Variablenabbildung
SPS : Scan-Pfad-Segment

Algorithmus 5.2 zeigt die entsprechende Datenstruktur zur Abbildung der Hierarchie der
Variablen. Diese besteht lediglich aus der Abbildungsstruktur sowie einem Zeiger auf den
Vorgänger in der Hierarchie.

Algorithmus 5.2 Datenstruktur der hierarchischen Abbildung von Variablen
1 struct {
2 map<Node_ptr, Var> node_to_var;
3 varmap_ptr parent;
4 } varmap;

5.4. Extraktion des Scan-Pfads aus der Netzliste

Aus der Gatternetzliste müssen die Strukturen des Rekonfigurierbaren Scan-Netzwerks
wieder extrahiert werden, da die Information über deren Aufbau durch die Synthese verloren
gegangen sind. Hierbei werden zuerst die Register im Graphen untersucht. Wird ein Register
von einer steigenden Flanke gesteuert, so kann es sich um ein Scan-Register handeln,
andernfalls um ein Schattenregister. Sollte es sich tatsächlich um ein Scan-Register handeln,
so muss dieses darüber hinaus von den Signalen Capture-Enable, Shift-Enable und Select
abhängen. Für ein Schattenregister sind entsprechend die Signale Update-Enable, Reset und
Select notwendig.

Zur Erkennung der vorhandenen Scan-Segmente wird der Graph von den Scan-Eingängen
(TDI) zu den Scan-Ausgängen (TDO) traversiert, wie es in Algorithmus 5.3 ausgeführt ist.
Liegen dabei in dem kombinatorisch-transitiven Eingangskegel eines Scan-Registers ein

51

5. Implementierung

Testdateneingang oder ein Scan-Register, so wird das entsprechende Element als Scan-Pfad-
Vorgänger vermerkt und der dazugehörige Pfad als Scan-Pfad markiert.

Da es sich bei einem Rekonfigurierbaren Scan-Netzwerk um einen azyklischen Graphen han-
delt, gilt für jedes Scan-Segment, dass der transitive Eingangskegel disjunkt zum transitiven
Ausgangskegel ist, mit Ausnahme des zugehörigen Registers des Scan-Segments sowie sich
selbst. Dies wird zur Erkennung der Scan-Segmente genutzt. Wird die Schnittmenge der
Register des Eingangs- und des Ausgangskegels eines Scan-Registers gebildet, so darf diese
nur aus einem einzelnen Schattenregister bestehen. Dieses ist das zugehörige Schattenregister
zum entsprechenden Scan-Register.

Nachdem ein Scan-Segment erkannt wurde, können nun die obligatorischen Pfade markiert
werden. Der Capture-Pfad entspricht der Schnittmenge des kombinatorischen Eingangskegel
des Scan-Registers und dem kombinatorischen Ausgangskegel des Schattenregisters. Die
Schnittmenge des kombinatorischen Eingangskegels des Schattenregisters und dem kom-
binatorischen Ausgangskegel des Scan-Registers bildet den Update-Pfad. Die jeweilige
Schnittmenge der Ein- und Ausgänge eines Registers bilden die Rückkopplungspfade des
selbigen.

Algorithmus 5.3 Extraktion des Scan-Pfads aus einem Schaltungsgraphen
1 Traversiere iterativ vom Scan-Eingang aus alle Register r:
2 Markiere r als Scan-Register, falls Capture-Enable-, Shift-Enable- und Select-Signal sowie

ein Scan-Element-Vorgänger existieren
3 Markiere r als Update-Register, falls Update-Enable-, Reset- und Select-Signal existieren
4 Für alle Scan-Register s:
5 Schneide Ein- und Ausgangskegel und markiere Schattenregister s und Rückkopplungspfad
6 Schneide Pfade mit Schattenregister und markiere entsprechend Capture- und Updatepfad
7 Schneide Pfade mit weiteren Scan-Registern und markiere Scan-Pfade

Eine Rekonvergenz eines Scan-Pfad-Segments liegt vor, wenn sich ein Datenpfad an einer
Signalverzweigung in separate Teilpfade aufspaltet und diese sich später an einem Gatter
wieder zusammenfügen. Abbildung 5.3 zeigt eine solche Rekonvergenz.

Scan-
Seg.

Scan-
Seg

Scan-Pfad-
Segment

Scan-Pfad-
Segment

Rekonvergenz

0

1

Abbildung 5.3.: Beispiel einer Scan-Pfad-Rekonvergenz
Der Scan-Pfad (blau) spaltet sich auf und rekonvergiert an einem Multi-
plexer.

52

5.5. Aktivierung von Scan-Pfad-Segmenten

5.5. Aktivierung von Scan-Pfad-Segmenten

Zur Modellierung der Aktivierung von Scan-Pfad-Segmenten werden zwei unterschiedliche
Methoden eingesetzt. Eine einfache Variante, sofern sich auf dem Scan-Pfad-Segment keine
Rekonvergenzen befinden und eine Variante basierend auf der Boole’schen Differenz, falls
Rekonvergenzen vorliegen. Für jedes Scan-Pfad-Segment wird eine Variable genutzt, welche
die Aktivierung des Scan-Pfad-Segments widerspiegelt.

5.5.1. Boole’sche Differenz

Die Boole’sche Differenz ∂ f
∂xi

beschreibt die Abhängigkeit einer Boole’schen Funktion f
gegenüber einer Eingangsvariable xi. Die Boole’sche Differenz entspricht der Ableitung der
Funktion f nach xi, wodurch die erzeugte Gleichung unabhängig von xi ist. ∂ f

∂xi
ist genau

dann wahr, wenn eine Wertänderung an xi auch zu einer Änderung am Ergebnis von f führt.
Formal wird diese in Gleichung 5.1 ausgedrückt.

(5.1)
∂ f
∂xi

=
∂ f (x1, . . . , xi, . . . , xn)

∂xi

= f (x1, . . . , xi = 1, . . . , xn)⊕ f (x1, . . . , xi = 0, . . . , xn)

In der Instanz des aussagenlogischen Modells ist S das zu aktivierende Scan-Pfad-Segment.
Zur Modellierung der Pfadaktivierung durch die Boole’sche Differenz wird der Datenpfad
von S jeweils für x = 1 und x = 0 als Sx dupliziert. Dazu wird jedem Gatterelement in
Sx eine Variable zugewiesen und die Gatterelemente mit den neuen Variablen verbunden.
Entsprechend wird eine Variable für x erzeugt und dem Dateneingang von Sx zugewiesen.
Zum Schluss wird eine Variable A für die Aktivierung von S generiert und einer XOR-
Verknüpfung der Gatter am Ausgang von Sx zugewiesen. Algorithmus 5.4 gibt den Code
entsprechend wieder.

Algorithmus 5.4 Modellierung der Boole’schen Differenz
1 Eingabe:
2 S : Scan-Pfad-Segment als Gatterliste
3 Ausgabe:
4 A : Aktivierungsvariable
5

6 Für jeden Wert x aus {0,1}:
7 Dupliziere Pfad S als Px
8 Erzeuge Variable v aus x
9 Setze Dateneingang von Px auf v

10

11 Erzeuge Variable A
12 A = XOR-Verknüpfung der Ausgänge von P0 und P1

Die so erzeugte Variable kann nun genutzt werden um die Instanz des aussagenlogischen
Modells zu erweitern, so dass die Variable implizit evaluiert wird.

53

5. Implementierung

5.5.2. Binäre Entscheidungsdiagramme

Alternativ hätten auch Binäre Entscheidungsdiagramme (engl. binary decision diagram,
BDD) genutzt werden können, um die Boole’sche Differenz zu ersetzen und die Pfadak-
tivierung zu bestimmen [Bry86]. Ein BDD ist ein azyklischer, gerichteter Graph dessen
innere Knoten die Variablen einer Boole’schen Funktion repräsentieren. Jeder Knoten hat
zwei ausgehende Kanten, die einer Zuweisung von Wahr beziehungsweise Falsch an die Var-
iable des Ausgangsknoten entspricht. Der Baum besitzt zwei Blätter, welche die Werte Wahr
und Falsch widerspiegeln. BDDs können damit Boole’sche Funktionen darstellen, wobei
das Traversieren des Baumes dabei der Auswertung der Funktion, unter einer bestimmten
Variablenbelegung, entspricht.

BDDs haben den Nachteil, dass deren Größe abhängig von der Variablenanordnung ist und
sie bei schlechter Wahl der Ordnung exponentiell groß werden können. Bei Multiplizierern
ist das entstehende BDD unabhängig von der Variablenordnung immer exponentiell groß
[Bry91].

5.5.3. Pfadsensibilisierung

Liegen keine Rekonvergenzen auf dem Scan-Pfad vor, so kann eine Methode mit
weniger Klauseln zur Modellierung der Scan-Pfad-Segmentaktivierung genutzt werden.
Ein Datenpfad p ist genau dann sensibilisiert, wenn alle Kontrollsignale des Pfads einen
nicht-kontrollierenden Wert c an den Gattern besitzen. Der kontrollierende Wert cg eines Gat-
ters g bestimmt den Ausgangswert unabhängig von anderen Eingangswerten. Eine Übersicht
der kontrollierenden Werte findet sich in Tabelle 5.1.

Name Operation Kontrollierender Wert cg

Konjunktion C = A ∧ B 0

Disjunktion C = A ∨ B 1

Sheffer (NAND) C = A ∧ B 0

Peirce (NOR) C = A ∨ B 1

Kontravalenz C = A⊕ B -
Äquivalenz C = A⇔ B -

Tabelle 5.1.: Nicht-kontrollierende Werte von Logikgattern

Gleichung 5.2 beschreibt formal die Pfadaktivierung. Ist die Gleichung erfüllt, so kann das
Datum vom Anfang des Pfads durch die jeweiligen Gatter propagieren.

(5.2) Pfad p aktiv ⇔ ∀ Gatter g ∈ p, ∀ eingehenden Signale s ∈ g \ p : s 6= cg

54

5.6. Fehlerinjektion und -detektion

Der einfache Pfadaktivierungsalgorithmus in Algorithmus 5.5 extrahiert zuerst alle Variablen
der eingehenden Signale des Scan-Pfad-Segments. Die entsprechenden positiven oder nega-
tiven Literale werden in einer Liste gespeichert, basierend auf dem kontrollierenden Wert
des auf dem Pfad liegenden Gatters. Anschließend wird eine neue Hilfsvariable erzeugt und
dieser das Ergebnis einer UND-Verknüpfung der zuvor extrahierten Variablen zugewiesen.
Existieren Kontravalenz- oder Äquivalenzgatter auf dem Datenpfad, so können diese nicht
statisch modelliert werden, da sie keine kontrollierenden Werte besitzen. In diesem Fall wird
auf die Boole’sche Differenz zurückgegriffen.

Algorithmus 5.5 Pfadaktivierung
1 Eingabe:
2 P : Scan-Pfad-Segment als Gatterliste
3 Ausgabe:
4 A : Aktivierungsvariable
5 Q: Liste von Variablen
6

7 Für jedes Gatter p in P:
8 Für jeden Vorgänger v von p:
9 Falls v in P:

10 Fahre mit nächstem Vorgänger fort
11 Falls Eins kontrollierender Wert von p:
12 Füge positive Variable von v zu Q hinzu
13 Falls Null kontrollierender Wert von p:
14 Füge negierte Variable von v zu Q hinzu
15

16 Erzeuge Variable A
17 A = UND-Verknüpfung aller Variablen in Q

5.6. Fehlerinjektion und -detektion

Fehlerinjektion und -detektion werden ebenfalls als Klauseln des aussagenlogischen Erfüll-
barkeitsproblems modelliert. Für die Fehlerinjektion und -wirkung wird dazu ein kombi-
natorischer Teilgraph des Schaltungsgraphen dupliziert und der Fehler als Konstante
hinzugefügt. Die Detektion findet an den sequentiellen Scan-Segmenten statt.

5.6.1. Modellierung von Fehlern in der aussagenlogischen Instanz

In der fehlerbehafteten Instanz müssen drei Aspekte eines Fehlers modelliert werden, welches
durch zusätzliche Klauseln in der aussagenlogischen Instanz des Rekonfigurierbaren Scan-
Netzwerks geschieht:

• Fehlerinjektion an der Fehlerstelle

• Fehlerwirkung im Ausgangskegel des Fehlers

• Strukturen zum Erkennen der Fehlerwirkung

55

5. Implementierung

Die Fehlerinjektion entspricht der Modellierung der Fehlerwirkung am Fehlerort. Dazu wird
eine entsprechende Klausel erzeugt, welche das fehlerbehaftete Gatter beschreibt. Befindet
sich der Fehler am Ausgangssignal oder entspricht dem kontrollierenden Wert des Gatters,
so wird das Gatter als neue Konstante modelliert. Andernfalls wird das fehlerbehaftete
Eingangssignal durch eine Konstante ersetzt.

Die Fehlerwirkung beschreibt die Propagierung eines Fehlers durch die Schaltung. Hierzu
werden alle Gatter im Ausgangskegel des Fehlers dupliziert, neue Variablen erzeugt und
den duplizierten Gattern zugewiesen. Ist solch ein Gattereingang mit dem Ausgang eines
anderen Gatters des Fehlerkegels verbunden, so wird die entsprechende fehlerbehaftete
Variable genutzt. Wenn dies nicht der Fall ist, das heißt ein eingehendes Signal in den
Fehlerkegel, wird die entsprechende fehlerfreie Variable verwendet. Hierbei können die in
Kapitel 5.3.2 beschriebenen hierarchischen Variablenabbildungen genutzt werden.

Die Observierung des Fehlers wird durch Vergleich der Gut-Werte mit den fehlerhaften
Werten an jedem Scan-Segment im kombinatorischen Fehlerkegel durchgeführt. Dazu kön-
nen die in Kapitel 4.3 beschriebenen Detektionsbedingungen genutzt werden. Detektions-
bedingungen werden ebenfalls als Klauseln modelliert und derart gestaltet, dass für jedes
Scan-Segment eine Variable erzeugt wird, welche zu wahr evaluiert, wenn der entsprechende
Fehler detektiert wurde. Alle Detektionsvariablen werden anschließend in einer Klausel
zusammengeführt, was einer ODER-Verknüpfung entspricht.

Das so erweiterte aussagenlogische Erfüllbarkeitsproblem enthält sowohl die ursprüngliche
Schaltung als auch den modellierten Fehler und die notwendigen Erweiterungen zur Detek-
tion dessen. Als Einschränkung des Lösungsraums wird nun dem Lösungsprogramm die
Bedingung hinzugefügt, dass mindestens eine der Detektionsklauseln erfüllt sein muss.
Als Ergebnis werden auf diese Weise Zugriffsmuster berechnet, welche die modellierten
Detektionsbedingungen erfüllen.

5.6.2. Modellierung der Fehlerdetektion in der aussagenlogischen Instanz

Für die Fehlerdetektion werden zwei Fälle unterschieden. Liegt ein Fehler auf dem Scan-Pfad
selbst, wie dies Abbildung 5.4 skizziert, wird keine Fehlerdetektion benötigt. Ein Fehler dieser
Art unterbricht bei Aktivierung den Scan-Pfad des entsprechenden Scan-Pfad-Segments.
Daher ist es bereits ausreichend einen Zugriff auf das fehlerhafte Gatter zu erzwingen und
die dadurch erzeugten Zugriffsmuster als Testmuster zu verwenden.

RegScan-Pfad

Fehler-
stelle

Abbildung 5.4.: Scan-Pfad (blau) mit Fehler auf dem Scan-Pfad

56

5.6. Fehlerinjektion und -detektion

Der zweite Fall liegt vor, falls der zu modellierende Fehler ein Kontroll- oder
Adressierungssignal eines Scan-Pfad-Segments beeinflusst, wie es in Abbildung 5.5
dargestellt wird. Dann wird der Fehler, sowie dessen Wirkung, durch zusätzliche Vari-
ablen und Klauseln wie in Kapitel 5.6.1 beschrieben, modelliert.

Scan-Pfad

Fehler-
stelle

Reg

Abbildung 5.5.: Scan-Pfad (blau) mit Fehler an eingehendem Kontrollsignal

Zur Fehlerdetektion wird das in Kapitel 4.3.1 beschriebene Brechen des Scan-Pfads einge-
setzt. Algorithmus 5.6 skizziert die Erzeugung der entsprechenden Klauseln. Die Detek-
tionsbedingungen werden dazu an jedem Scan-Register, welches kombinatorisch von der
Fehlerwirkung betroffen ist, hinzugefügt. Auf diese Weise kann sichergestellt werden, dass
später die Fehlerwirkung ausgelesen werden kann.

Algorithmus 5.6 Pessimistische Fehlerdetektion
1 Eingabe:
2 F : Fehlerinjektionsstelle
3 Ausgabe:
4 D : Detektionsvariable
5 L : Variablenliste
6

7 Für jedes Scan-Register s in der Fehlerwirkung von F:
8 # Aktiver Pfad wird inaktiv
9 Erzeuge Klausel k1 : "s_gut aktiv und s_saf inaktiv"

10 Füge k1 in L ein
11

12 # Inaktiver Pfad bleibt inaktiv
13 Erzeuge Klausel k2 : "s_gut aktiv oder s_saf inaktiv"
14 Füge k2 zu CNF hinzu
15

16 Erzeuge Variable A
17 A = ODER-Verknüpfung aller Variablen in L
18 Füge A zu CNF hinzu

5.6.3. Fehleräquivalenzklassen

Zur Reduktion der Fehlermenge werden Fehler aus äquivalenten Fehlerklassen kollabiert und
damit nur einmal in die Fehlermenge aufgenommen. Beispielhaft sind die entsprechenden
Fehleräquivalenzklassen in Tabelle 5.2 für das Haftfehlermodell dargestellt. An verzweigungs-
freien Verbindungsleitungen ist die Fehlerwirkung per Definition durch die Identität äquiva-

57

5. Implementierung

lent und dementsprechend werden die Fehler auch über die Verbindungsleitungen kolla-
biert.

Name Operation Fehlerklassen

Identität C = A {A0, C0}; {A1, C1}
Negation C = A {A0, C1}; {A1, C0}
Konjunktion C = A ∧ B {A0, B0, C0}; {A1}; {B1}; {C1}
Disjunktion C = A ∨ B {A1, B1, C1}; {A0}; {B0}; {C0}
Kontravalenz C = A⊕ B {A0}; {B0}; {C0}; {A1}; {B1}; {C1}
Äquivalenz C = A⇔ B {A0}; {B0}; {C0}; {A1}; {B1}; {C1}
Sheffer (NAND) C = A ∧ B {A0, B0, C1}; {A1}; {B1}; {C0}
Peirce (NOR) C = A ∨ B {A1, B1, C0}; {A0}; {B0}; {C1}
Implikation C = A→ B {A0, B1, C1}; {A1}; {B0}; {C0}

Tabelle 5.2.: Äquivalente Fehlerklassen
Xy entspricht einem Haftfehler an y am Gatter X

5.7. Fehlersimulation

Zur Validierung und Reduktion der vom ATPG erzeugten Zugriffsmuster werden diese
mittels Fehlersimulation überprüft. Um die Simulation möglichst einfach zu implementieren,
da deren Optimierung kein Kernbestandteil dieser Arbeit bildet, wurde eine einfache serielle
Fehlersimulation realisiert. Die zugehörige Prüfschaltung ist in Kapitel 2.5.1 skizziert worden.
Die Verilog-Netzliste des Rekonfigurierbaren Scan-Netzwerks wird dabei zweimal in der
Prüfschaltung instanziiert, wobei der entsprechende Fehler in der fehlerbehafteten Instanz
hinzugefügt wird. Beide Module werden von den gleichen Eingabemustern getrieben und die
Ausgabemuster werden zu jedem Takt verglichen. Sollte es zu einer Abweichung kommen,
so ist der injizierte Fehler durch diese Testmuster detektierbar.

Als Simulationsumgebung dient hierbei ModelSim von Mentor Graphics, welches über
eine SSH-Verbindung2 und eines dafür entwickelten TCL-Skripts direkt aus dem ATPG-
Programm angesprochen werden kann. Dadurch ist es möglich die erzeugten Testmuster
unmittelbar in der Simulation zu überprüfen. Jedoch entstehen dadurch unerwünschte
Latenzen aufgrund der Kommunikation über den Netzwerk-Stack und der zusätzlichen
Verschlüsselung durch SSH.

Es wurde deshalb zusätzlich eine alternative, stapel-verarbeitende Ansteuerung program-
miert. Dessen Ansteuerung kann durch zwei Dateien erfolgen, wobei eine Datei die Fehler-
menge enthält und die andere die Testmuster. Dies ist die bevorzugte Variante zur Ermittlung

2http://www.libssh.org/

58

http://www.libssh.org/

5.7. Fehlersimulation

der Fehlerabdeckung der funktionalen Testheuristik, da hierbei keinerlei Interaktion benötigt
wird. Die stapel-verarbeitende Ansteuerung kann ebenfalls zur Ermittlung der Fehlerabdeck-
ung der erzeugten Testmustermengen genutzt werden.

Dieser Aufbau bietet ein großes Optimierungspotential bezüglich der Simulations-
geschwindigkeit. Eine Möglichkeit besteht in der parallelen Simulation mehrerer fehlerhaften
Instanzen, so dass mit einer Gut-Simulation mehrere Fehler auf einmal simuliert werden
können. Damit könnte bei der Validierung eines durch das ATPG erzeugten Zugriffsmusters
untersucht werden, ob weitere Fehler durch das Zugriffsmuster entdeckt werden.

Die Fehlerinjektion wird durch den ModelSim-Befehl „force“ an einem Signal realisiert,
welcher einem Signal einen statischen Wert zuweist. Dieser Befehl lässt sich nativ als Haft-
fehler nutzen und kann der Schaltung dynamisch hinzufügt werden.

Nachdem die Simulation mit injiziertem Fehler durchgeführt wurde, wird die Fehlerinjektion
mittels „unforce“ wieder aufgehoben und die Reset-Steuerung des Rekonfigurierbaren Scan-
Netzwerks kann genutzt werden, um die Fehlerwirkung aus der Schaltung zu entfernen.
Jedoch führt eine Fehlerinjektion an einem Register in ModelSim zu einem Programmfehler,
so dass der Fehler nicht mehr aufgehoben wird. Daher muss die Simulationsumgebung neu
gestartet werden, was eine höhere Simulationszeit zur Folge hat.

59

6. Ergebnisse und Bewertung

Im folgenden Kapitel wird ein kommerzielles ATPG-Werkzeug, die beiden funktionalen Test-
heuristiken aus Kapitel 4.2 und das in Kapitel 4.3.1 vorgeschlagene Testverfahren miteinander
verglichen. Hierzu werden die benötigte Rechenzeit zur Erzeugung der Testmuster und die
von den Testmustern erreichte Fehlerabdeckung zur Bewertung herangezogen.

Im ersten Unterkapitel wird eine Übersicht über die verwendeten Testschaltungen, sowie
deren Aufbau gegeben. Anschließenden erfolgt die Auswertung der Testalgorithmen anhand
der beschriebenen Testschaltungen. Abschließend werden die nicht detektierten Fehler für
das vorgeschlagene Verfahren des Scan-Pfad-Brechens näher untersucht.

6.1. Übersicht der verwendeten Testschaltungen

Die Untersuchung der Algorithmen zur deterministischen Erzeugung der Testmuster findet
mittels dreier Klassen von Testschaltungen statt. Deren Aufbau wird in den nächsten drei
Abschnitten betrachtet. Die Testumgebung zur Ermittlung der Rechenzeit bestand aus Intel
Core i7-2600 CPUs mit 20GB Arbeitsspeicher.

Die Klassen „SIB“ und „MUX“ bilden reguläre Zugangsstrukturen zum Aufbau hierarchisch-
er Rekonfigurierbarer Scan-Netzwerke. Diese wurden genutzt, um eine Menge ausgewählter
Testschaltungen für Systems-on-a-Chip als Rekonfigurierbare Scan-Netzwerke aufzubauen
[MIC02]. Schaltungen aus der Klasse „Chain“ bestehen jeweils aus einer kombinatorischen
Schaltung, welche als Kontrolllogik für ein Rekonfigurierbares Scan-Netzwerk dient.

6.1.1. SIB-basierte Testschaltungen

In den ersten Entwürfen zu IEEE P1687 wird das SIB (Segment Insertion Bit) als reguläre
Struktur zum Aufbau hierarchischer Zugriffsinfrastrukturen beschrieben. Ein SIB kann
entweder als Zugangspunkt für tiefer liegende Hierarchien oder als Bypass genutzt werden.
Abbildung 6.1 zeigt ein Rekonfigurierbares Scan-Netzwerk, welches mit SIBs realisiert
wurde.

61

6. Ergebnisse und Bewertung

Module 0

Module 2

Module 1

SIB
SI SO

TO FROM

OUTPUTS

SIB
SI SO

TO FROM

INPUTS

SIB
SI SO

TO FROM

SIB
SI SO

TO FROM

OUTPUTS

SIB
SI SO

TO FROM

INPUTS

SIB
SI SO

TO FROM

CHAIN 1

SIB
SI SO

TO FROM

…

… SCAN
OUT

SCAN
IN

Abbildung 6.1.: Beispiel einer SIB-basierten Testschaltung [BKW12]

Ein SIB besteht aus einem 1-Bit-Konfigurationsregister und einem Scan-Multiplexer, wie
es Abbildung 6.2 dargestellt wird. Die Anschlüsse TDI und TDO sind an den Scan-Pfad
angeschlossen, während TO und FROM eine weitere Hierarchieebene oder weiteres Modul
einbinden. Das Konfigurationsregister steuert den Multiplexer so, dass entweder ein Bypass
gebildet oder die anhängende Hierarchieebene eingebunden wird.

0

1

Scan-
Seg.

TO FROM

TDI
TDO

Module

Abbildung 6.2.: Struktureller Aufbau eines SIBs

Der simple Aufbau der SIB-Struktur bietet verschiedene Vorteile. Die einfache Struktur
regulärer Hierarchien erfordert keine komplexen Aktivierungsbedingungen, wodurch die
Berechnung von Zugriffsmustern effizient erfolgen kann. Der nötige Hardware-Aufwand für
das Scan-Segment und den Multiplexer sind sehr gering, wodurch sich ebenfalls eine geringe
Zahl von möglichen Fehlern ergibt. Aufgrund des Registers auf dem Scan-Pfad, können
keine langen kombinatorischen Pfade bei rekursiver Anwendung entstehen. Nachteilig wirkt
sich das Scan-Register jedoch auf die minimale Scan-Pfad-Länge aus, da diese für jedes
aktivierte SIB-Element erhöht wird.

62

6.1. Übersicht der verwendeten Testschaltungen

6.1.2. MUX-basierte Testschaltungen

MUX-Zellen-basierte Schaltungen sind ähnlich zu SIB-basierten, denn sie binden entweder
eine Hierarchieebene oder ein weiteres Modul ein, oder bilden einen Bypass für dieses.
Jedoch liegen die Scan-Segmente (config, CFG) zur Steuerung der Multiplexer auf einem
separaten Scan-Pfad. Abbildung 6.3 zeigt eine solche Struktur. Der separate Scan-Pfad wird
von einem weiteren Scan-Segment (configuration mode, CM) kontrolliert. Dabei werden
zwei Betriebsmodi unterschieden. Ein Modus zum Zugriff auf die Datenmodule (CM=0)
und einen zur Konfiguration (CM=1), welche Module auf dem Scan-Pfad während des
Datenzugriffs aktiv sein sollen.

0

1

CFG

TO FROM

TDI TDO
CM

1

0
0

1

CFG

TO FROM

Module 1 Module 2 Module 3

0

1

CFG

TO FROM

Abbildung 6.3.: Struktureller Aufbau einer MUX-Zelle

Der separate Scan-Pfad zur Konfiguration der Multiplexer reduziert die minimale Scan-Pfad-
Länge des Rekonfigurierbaren Scan-Netzwerks. MUX-Strukturen können rekursiv genutzt
werden, jedoch entsteht dabei ein Multiplexer-Baum. Jener enthält sehr lange kombina-
torische Pfade, da jedes Modul direkt mit dem Primärausgang (TDO) der Schaltung oder
einer nachfolgenden MUX-Zelle verbunden wird. Zur Reduktion der Länge des kritischen
Pfads kann die Synthese verschiedene Optimierungen vornehmen, wodurch unter anderem
Rekonvergenzen entstehen können. Dies führt zu einer aufwendigeren Modellierung in der
aussagenlogischen Instanz des Erfüllbarkeitsproblems.

6.1.3. Chain-basierte Testschaltungen

Der Aufbau der dritten Klasse der betrachteten Testschaltungen ist in Abbildung 6.4 skizziert.
Diese bestehen aus einer kombinatorischen Schaltung, welche in ein Rekonfigurierbares
Scan-Netzwerk als Kontrolllogik integriert wurde. Die Eingänge der kombinatorischen
Schaltung werden jeweils von einem Scan-Segment getrieben, wodurch eine vollständige

63

6. Ergebnisse und Bewertung

Kontrollierbarkeit der Eingänge erreicht wird. Jeder Ausgang steuert einen Multiplexer,
welcher zwischen einem Bypass und einem Scan-Segment auswählt.

Scan-
Seg.

Scan-
Seg.

Scan-
Seg.

Scan-
Seg.

Scan-
Seg.

Scan-
Seg.

Kombinatorische
Schaltung

Scan-
Seg.

0

1
Scan-
Seg.

0

1
Scan-
Seg.

0

1
Scan-
Seg.

0

1
Scan-
Seg.

0

1
Scan-
Seg.

0

1

Abbildung 6.4.: Struktureller Aufbau einer Chain-Testschaltung
Eingänge der Ursprungsschaltung wurden durch Scan-Segmente ersetzt.
Jeder Ausgang steuert eine Bypass-artige Struktur mit einem Scan-Segment.

Diese Klasse der Schaltungen wurde synthetisiert, um die Effektivität der Testalgorithmen
bei komplexer Steuerlogik in Rekonfigurierbaren Scan-Netzwerken zu untersuchen. Tabelle
6.1 gibt eine Übersicht über die verwendeten kombinatorischen Testschaltungen, die aus den
ISCAS’85 Schaltungen ausgewählt wurden [BF85].

Name Funktion #PI #PO #Gatter #Fehler

C432 Prioritäts-Decoder 36 7 160 524

c499 Fehlertoleranter Decoder 41 32 202 758

C880 Arithmetisch-logische Einheit 60 26 383 942

C1355 Fehlertoleranter Decoder 41 32 546 1574

C1908 Fehlertoleranter Decoder 33 25 880 1879

C3540 Arithmetisch-logische Einheit 50 22 1669 3428

Tabelle 6.1.: Übersicht über ISCAS’85 Testschaltungen
PI: Primäreingänge, PO: Primärausgänge

64

6.1. Übersicht der verwendeten Testschaltungen

6.1.4. Schaltungsstatistiken

Tabelle 6.2 zeigt eine Übersicht der verwendeten Testschaltungen und deren charakter-
istischen Merkmale. Diese wurden von Synopsis Design Compiler D2010.03 für die LSI10k
Bibliothek synthetisiert.

Schaltung Gatter Fehler Scan Scan-Pfad-Länge
Seg. Verzw. Konv. Min. Max. ∅

c432_chain 781 2334 43 13 14 36 43 39

c1908_chain 1702 4918 58 176 239 33 58 45

c880_chain 1894 5584 86 91 118 61 86 73

c499_chain 2016 5968 73 241 329 41 73 57

c1355_chain 2006 5970 73 220 310 41 73 57

c3540_chain 2507 6888 72 43 53 51 72 61

q12710_mux 956 2878 51 55 61 1 26 14

x1331_mux 1218 3644 63 67 73 1 32 16

a586710_mux 1666 4804 79 150 186 1 40 21

f2126_mux 1729 5034 81 185 230 1 41 23

DS9_mux 1860 5448 89 96 113 1 45 21

u226_mux 2061 6092 99 208 269 1 50 27

h953_mux 2081 6188 109 153 173 1 55 28

d281_mux 2363 6952 117 236 293 1 59 32

g1023_mux 3329 9814 159 321 389 1 80 40

p34392_mux 5050 14856 245 568 757 1 123 65

t512505_mux 6779 19880 319 740 953 1 160 78

d695_mux 7070 20312 335 832 1138 1 168 89

p22810_mux 10991 32302 565 1120 1376 1 283 141

q12710_sib 679 2106 46 25 25 4 46 27

x1331_sib 799 2552 56 29 31 6 56 346

a586710_sib 1010 3142 71 34 39 6 71 43

f2126_sib 1057 3316 76 38 40 6 76 47

DS9_sib 1188 3702 80 40 44 5 80 52

u226_sib 1269 3992 89 48 49 11 89 56

h953_sib 1404 4412 100 51 54 10 100 58

d281_sib 1523 4754 108 55 58 8 108 64

g1023_sib 2074 6440 144 78 79 16 144 83

p34392_sib 3157 9920 225 107 122 6 225 130

t512505_sib 4138 12914 287 155 159 33 287 164

d695_sib 4463 13950 324 164 167 10 324 180

p22810_sib 7471 23278 536 271 282 24 536 289

Tabelle 6.2.: Übersicht der charakteristischen Merkmale der betrachteten Testschaltungen
Seg.: Segmente, Verzw.: Verzweigungen, Konv.: Konvergenzen

65

6. Ergebnisse und Bewertung

6.2. Auswertung der Testalgorithmen

Folgend findet sich die Auswertung der betrachteten Testalgorithmen. Die Tabelle 6.3 auf
Seite 68 listet die Fehlerabdeckung und die benötigte Rechenzeit auf. In Tabelle 6.4 auf
Seite 69 findet sich die Anzahl und Länge der erzeugten Scan-Testmustern außer für das
sequentielle ATPG, da es sich dabei nicht um Scan-Testmuster handelt.

6.2.1. Sequentielles ATPG mit kommerziellem Werkzeug

Als erstes Verfahren wird ein kommerzielles ATPG-Werkzeug für sequentielles ATPG be-
trachtet und die Fehlerabdeckung und Rechenzeit ermittelt. Damit soll untersucht werden,
wie effizient für Rekonfigurierbare Scan-Netzwerke mit bereits bestehenden Werkzeugen
Testmuster erzeugt werden können.

Für Testschaltungen mit geringer minimaler Scan-Pfad-Länge und Gatterzahl, wie zum
Beispiel a586710_mux, f2126_mux, q12710_mux oder q12710_sib, lassen sich Fehlerabdeck-
ungen bis zu 93 Prozent erreichen, jedoch beträgt die Laufzeit dabei bereits 22 bis 37

Stunden. Durch Erhöhung der maximalen Zahl an Backtracking-Schritten lässt sich die
Fehlerabdeckung weiter steigern, jedoch steigt dadurch auch die benötigte Laufzeit. Des
Weiteren muss beachtet werden, dass die Scan-Ketten der verwendeten Testschaltungen
lediglich ein Bit lang sind. In einer realen Schaltung ist die Länge der Scan-Ketten deutlich
größer und damit auch der Suchraum beim sequentiellen ATPG.

Schaltungen mit hoher minimaler Scan-Pfad-Länge stellen ein Problem für das kommerzielle
Werkzeug dar. Bei größeren Schaltungen, wie beispielsweise c3540_chain, c880c, DS9_sib
oder p22810_sib, liegt die Fehlerabdeckung bei unter 20 Prozent, bei einer Laufzeit von bis
zu zwei Tagen. Die Erhöhung der möglichen Schritte des Backtrackings würde hierbei zu
einer impraktikabel langen Laufzeit führen.

6.2.2. Funktionale Testmustererzeugung

Die funktionalen Heuristiken unterscheiden sich von den anderen betrachteten Algorithmen
in der Vorgehensweise bei der Erzeugung von Testmustern. Die Heuristiken betrachten
keine individuellen Fehler und Erzeugen dafür Testmustern, sondern es wird findet nur
eine Erzeugung von Zugangsmustern statt, welche als Testmuster verwendet werden. Da-
her beträgt die Laufzeit zur Erzeugung der Muster nur wenige Sekunden. Die erzeugte
Testmustermenge ist dadurch ebenfalls sehr kompakt.

Wie zu erwarten, weist die um Lese- und Schreibzugriffe erweiterte Heuristik eine höhere
Fehlerabdeckung gegenüber der reinen Zugriffsheuristik auf. Die Abweichung der Unter-
schiede liegt etwa zwischen 3 (d295_mux) und 17 Prozent (c432_chain). Im Durchschnitt
ergibt sich eine um 9-10 Prozent gesteigerte Fehlerabdeckung, bei ungefähr vierfacher Menge
von Testmustern.

66

6.2. Auswertung der Testalgorithmen

Die empirischen Daten zeigen eine gute Fehlerabdeckung bei SIB-basierten Strukturen.
Aufgrund des Aufbaus der SIB-Strukturen und der Bedingung, dass alle Scan-Segmente
einmal zugreifbar und aktiv sein müssen, werden alle Scan-Pfad-Segmente durch das iterative
Aktivieren getestet.

Im Gegensatz hierzu gibt es bei MUX-basierten Schaltungen Scan-Pfad-Segmente, die durch
die Zugriffsmuster nicht aktiviert werden. In MUX-basierten Schaltungen kann jedes Modul
mit allen nachfolgenden Verbunden sein, so dass sehr viele mögliche Scan-Pfad-Segmente
entstehen. Die Heuristiken testen jedoch nur einen Bruchteil dieser, wodurch Fehler auf den
Scan-Pfaden und der Steuerlogik nicht detektiert werden.

Die erweiterten ISCAS’85 Schaltungen weisen eine durchschnittliche Fehlerabdeckung auf.
Der erforderte Zugriff durch die Testheuristiken für die Scan-Segmente der Eingänge
entspricht einem Test mit dem Nullvektor (alle Bits 0) und dem Einsvektor (alle Bits 1).
Darüber hinaus erwirkt die Aktivierung der Scan-Segmente, dass alle Primärausgänge
der kombinatorischen Schaltung einmal von einer logischen Null und einer Eins getrieben
werden.

Im Vergleich zum sequentiellen ATPG-Werkzeug zeichnen sich die Heuristiken durch eine
robustere Fehlerabdeckung bei SIB- und MUX-basierten Schaltungen ab und weisen weniger
starke Streuungen auf.

Die Erzeugung der Zugriffsmuster auf Register-Transfer-Ebene ist für große Schaltungen um
bis zu einem Faktor 150 (p22810_mux) schneller als auf Gatterebene. Dies liegt zum Einen
in der größeren Anzahl von Logikelementen, als auch in der aufwendigeren Modellierung
begründet. Aufgrund der Rekonvergenzen in MUX-basierten Schaltungen muss die Ak-
tivierung der Scan-Segmente durch die Boole’sche Differenz modelliert werden und erfordert
daher die Auswertung einer größeren Instanz des aussagenlogischen Erfüllbarkeitsproblems,
wie in Kapitel 5.5.1 beschrieben.

67

6. Ergebnisse und Bewertung

Schaltung Seq. ATPG Heur. TPG BSP WH + BSP
AH WH WH

FA LZ FA FA LZ FA LZ FA LZ

c432_chain 85% 0:22.07 59% 76% <0:00.01 88% 0:00.39 92% 0:00.11

c1908_chain 83% 0:56.21 53% 63% <0:00.01 82% 0:16.47 83% 0:05.32

c880_chain 12% 3:20.54 59% 70% <0:00.01 81% 0:13.00 88% 0:05.00

c499_chain 30% 4:24.47 40% 51% <0:00.01 85% 0:35.22 87% 0:17.14

c1355_chain 29% 4:25.16 39% 47% <0:00.01 78% 0:35.27 81% 0:20.14

c3540_chain 14% 7:12.22 56% 71% <0:00.01 82% 0:11.52 88% 0:03.26

∅ 42% 3:26.58 51% 63% <0:00.01 83% 0:18.51 86% 0:08.36

q12710_mux 94% 0:22.17 70% 79% <0:00.01 81% 0:01.26 86% 0:00.20

x1331_mux 52% 1:15.27 73% 82% <0:00.01 85% 0:01.42 88% 0:00.20

a586710_mux 96% 0:26.32 67% 75% <0:00.01 83% 0:05.55 89% 0:01.13

f2126_mux 94% 37:24.16 62% 71% <0:00.01 82% 0:07.59 89% 0:01.58

DS9_mux 23% 1:10.15 74% 81% <0:00.01 84% 0:05.55 89% 0:01.00

u226_mux 45% 2:13.54 65% 72% <0:00.01 84% 0:12.42 90% 0:04.08

h953_mux 69% 1:20.00 70% 78% <0:00.01 82% 0:10.29 87% 0:02.44

d281_mux 90% 1:08.03 66% 75% <0:00.01 84% 0:15.17 90% 0:03.14

g1023_mux 88% 2:11.46 67% 75% 0:00.02 82% 1:02.43 88% 0:16.28

p34392_mux 74% 5:40.43 64% 72% 0:00.07 2:46.51 0:48.58

t512505_mux 55% 10:28.15 67% 74% 0:00.08 7:08.45 1:34.47

d695_mux 62% 5:09.14 67% 70% 0:00.06 5:12.24 1:41.18

p22810_mux 22% 17:38.49 66% 74% 0:00.50 25:48.23 6:18.28

∅ 64% 7:10.36 67% 75% 0:00.06 83% 3:34.55 89% 0:54.33

q12710_sib 95% 0:23.51 76% 86% <0:00.01 76% 0:00.32 87% 0:00.01

x1331_sib 48% 1:38.12 83% 89% <0:00.01 83% 0:00.49 89% 0:00.02

a586710_sib 58% 3:17.58 78% 87% <0:00.01 77% 0:00.59 88% <0:00.01

f2126_sib 75% 2:23.47 77% 87% <0:00.01 77% 0:01.15 87% <0:00.01

DS9_sib 16% 6:41.03 75% 84% <0:00.01 73% 0:01.58 85% 0:00.18

u226_sib 38% 5:59.01 79% 88% <0:00.01 79% 0:01.36 88% 0:00.05

h953_sib 37% 5:52.55 78% 88% <0:00.01 78% 0:02.09 88% 0:00.03

d281_sib 33% 6:24.02 77% 87% <0:00.01 78% 0:02.20 88% 0:00.02

g1023_sib 17% 11:16.24 78% 88% <0:00.01 76% 0:04.34 88% 0:00.20

p34392_sib 46% 14:03.20 78% 87% <0:00.01 77% 0:12.13 88% 0:00.12

t512505_sib 17% 11:47.22 88% 88% <0:00.01 77% 0:19.45 88% 0:01.33

d695_sib 31% 22:40.55 76% 87% <0:00.01 75% 0:26.32 88% 0:00.09

p22810_sib 12% 47:50.54 77% 87% <0:00.01 1:22.46 88% 0:04.47

∅ 40% 7:35.33 78% 87% <0:00.01 77% 0:12.07 88% 0:00.35

Gesamt ∅ 51% 7:44.06 68% 77% <0:00.01 81% 1:30.44 88% 0:22.52

Tabelle 6.3.: Ergebnisse für Fehlerabdeckung und Laufzeit verwendeter Testalgorithmen
FA: Fehlerabdeckung, LZ: Laufzeit [h:m.s], TPG: Testmustererzeugung, AH:
Einfache Heuristik, WH: Schreibende Heuristik, BSP: Brechung des Scan-Pfads

68

6.2. Auswertung der Testalgorithmen

Schaltung AH WH BSP BSP abzgl. WH
Anzahl Länge Anzahl Länge Anzahl Länge Anzahl Länge

c432_chain 2 79 8 316 269 10060 327 12257

c1908_chain 2 101 8 374 145 7250 103 5131

c880_chain 2 148 8 588 209 14361 221 15019

c499_chain 1 73 8 456 141 8942 163 10443

c1355_chain 1 73 8 456 95 6138 153 9918

c3540_chain 3 181 12 727 93 5498 123 7246

∅ 2 109 9 486 159 8708 182 10002

q12710_mux 5 88 18 321 269 2186 67 454

x1331_mux 9 198 32 680 574 5957 116 1152

a586710_mux 7 191 25 679 748 9854 473 5907

f2126_mux 5 137 18 500 731 9815 578 8081

DS9_mux 1 511 67 1811 2687 31771 684 8046

u226_mux 5 174 18 634 915 16562 619 11376

h953_mux 5 187 18 682 630 9347 269 3605

d281_mux 5 195 18 712 888 14346 504 8093

g1023_mux 5 274 18 999 1122 21238 614 11450

p34392_mux 7 569 25 2053 3122 93151 1798 51311

t512505_mux 5 548 18 1998 3016 119623 1311 49249

d695_mux 5 526 18 1925 4121 163969 3057 117619

p22810_mux 7 1330 25 5137 5272 321995 2714 151365

∅ 7 403 25 1484 1986 68136 1061 35605

q12710_sib 3 75 12 300 42 864 1 4

x1331_sib 5 167 20 572 86 1958 1 6

a586710_sib 4 177 16 544 24 624 3 28

f2126_sib 3 124 12 488 24 529 2 22

DS9_sib 10 348 40 1216 358 8028 67 1059

u226_sib 3 149 12 596 88 1560 0 0

h953_sib 3 166 12 656 20 707 2 30

d281_sib 3 174 12 696 44 1174 0 0

g1023_sib 3 241 12 956 101 4154 0 0

p34392_sib 4 514 16 1780 163 11554 0 0

t512505_sib 3 481 12 1916 267 24235 2 76

d695_sib 3 501 12 2004 50 2993 0 0

p22810_sib 4 1322 16 3660 101 16857 5 154

∅ 4 341 16 1183 105 5787 6 106

Gesamt ∅ 5 310 18 1130 840 30100 447 15726

Tabelle 6.4.: Ergebnisse für die Anzahl und Länge der erzeugten Testmuster
AH: Einfache Heuristik, WH: Schreibende Heuristik,
BSP: Brechung des Scan-Pfads, BSP abzgl. WH: Brechung des Scan-Pfads für
die verbleibende Fehlermenge nach WH

69

6. Ergebnisse und Bewertung

6.2.3. Brechung des Scan-Pfads

Der betrachtete Ansatz des „Brechens des Scan-Pfads“ untersucht unter anderem alle Fehler,
welche sich auf den Scan-Pfad-Segmenten selbst befinden und erzeugt für diese Zugriffs-
muster. Durch die große Anzahl der möglichen Fehler entstehen jedoch sehr viele Testmuster,
wodurch die Testmustermenge ebenfalls groß wird. Die Testmuster können durch Fehlerauf-
gabe reduziert werden.

Sind Testmuster unabhängig, das heißt liegen die Fehler auf unterschiedlichen Scan-Pfad-
Segmenten, welche sich nicht gegenseitig beeinflussen und gleichzeitig aktiv sein können,
dann lassen sich die Testmuster zusammenfassen und so kann die Testmustermenge weiter
reduziert werden. Dies könnte als parallele Modellierung der Fehler in einer aussagen-
logischen Instanz des Erfüllbarkeitsproblems implementiert werden.

Eine höhere Fehlerabdeckung, als bei den heuristischen Verfahren, wird bei den Chain-
Schaltungen erreicht, da für diese die Fehler in der kombinatorischen Logik der Schaltung
explizit betrachtet werden. Hierbei ist zu beachten, dass bei diesen Schaltungen die Scan-
Multiplexer an den Ausgängen der Schaltung ein Brechen des Scan-Pfads verhindern. Ist die
Fehlerwirkung an einem Primärausgang der kombinatorischen Schaltung beobachtbar, dann
wird ein zwar falscher Scan-Pfad gewählt, aber ein aktiver Scan-Pfad bleibt erhalten.

Die einfache Heuristik zur Testmustererzeugung kann bereits alle Fehler des Scan-Pfads in
SIB-basierten Schaltungen detektieren, weshalb sich keine Verbesserung durch das Brechen
des Scan-Pfads ergibt. Die Fehlerabdeckungen sind sehr ähnlich, jedoch unterscheiden sich
die erzeugten Testmustermengen stark voneinander. Denn die Heuristiken erzeugen lediglich
Zugriffsmuster, die einmalig alle Scan-Segmente aktivieren, während bei der Brechung des
Scan-Pfads Testmuster für jeden Fehler separat erzeugt werden.

Bei MUX-basierten Schaltungen ist eine Verbesserung der Fehlerabdeckung gegenüber
den Heuristiken beobachtbar, da Fehler auf den nicht aktivierten Scan-Pfad-Segmenten
detektiert werden. Jedoch sind Testmustermenge als auch die Testschaltungen, wie etwa
bei d695_mux oder p22810_sib, so groß, dass für die Stapel-verarbeitende Fehlersimulation
keine praktikable Laufzeit erreicht und daher keine Ergebnisse ermittelt werden konnten.
Mögliche Verbesserungen werden in Kapitel 7 aufgezeigt.

6.2.4. Kombination aus Heuristik und Brechung des Scan-Pfads

Abschließend wird eine Kombination aus der lesenden und schreibenden Heuristik und der
Brechung des Scan-Pfads betrachtet. Hierbei kombinieren sich die Vorteile beider Verfahren,
indem zuerst alle Fehler von der Heuristik untersucht werden. Anschließend wird für die
übrig gebliebene Fehlermenge das Brechen des Scan-Pfads eingesetzt, so dass die aufwendige
Modellierung jedes einzelnen Fehlers reduziert wird. Dadurch soll die benötigte Laufzeit
reduziert und insgesamt die Fehlerabdeckung verbessert werden. Die Zahl und Länge der
erzeugten Scan-Testmuster halbiert sich ungefähr im Vergleich zum exzessiven Scan-Pfad-
Brechen.

70

6.3. Klassifizierung nicht detektierter Fehler

Für SIB-basierte Schaltungen zeigt sich keine Verbesserung gegenüber der Heuristik. Dies
liegt daran, dass nahezu alle Fehler auf dem Scan-Pfad bereits durch die Zugriffsheuristik
erkannt wurden und die Brechung des Scan-Pfads nur Fehler dieser Klasse betrachtet. Es ist
daher unnötig, das Brechen des Scan-Pfads mit Heuristik für SIB-basierte Schaltungen zu
kombinieren.

Für MUX-basierte und Chain-Schaltungen ergibt sich eine Steigerung der Fehlerabdeckung
durch Detektion von Fehlern auf den nicht durch die Heuristik aktivierten Scan-Pfad-
Segmenten. Durch die Reduktion der zu betrachtenden Fehlermenge nach Nutzung der
Heuristik sinkt die Laufzeit zur Erzeugung der Testmuster.

6.3. Klassifizierung nicht detektierter Fehler

In diesem Kapitel sollen die nicht detektierten Fehler anhand der Ergebnisse von drei
Beispielschaltungen detaillierter untersucht werden. Da die Fehlersimulation in ModelSim
auch „Unbekannte“-Werte modelliert, führen Fehler an diesen Stellen von Registern nur
zu potentiell detektierbaren Fehlern. Ein potentiell detektierbarer Fehler liegt vor, wenn ein
Wert in der fehlerbehafteten Schaltung „Unbekannt“ ist und es somit nicht feststeht, ob der
Wert tatsächlich vom Gutwert abweicht.

Folgende Gründe erklären, warum diese dennoch deterministisch detektiert werden:

• Es ist davon auszugehen, dass Haftfehler an der Taktsteuerung von einer Flush-
Sequenz erkannt werden, da aufgrund der fehlenden Taktflanke keine Datenwerte in
den Registern gespeichert werden. Damit wird nur ein statischer Wert propagiert und
die Flush-Sequenz gestört.

• Haftfehler am aktiven Logikwert der Reset-Steuerung führen ebenfalls zu einem
stationären Verhalten der Schattenregister. Da die Reset-Steuerung an Registern immer
Vorrang vor dem Dateneingang hat, ergibt sich dadurch ebenfalls die Propagierung
eines statischen Werts.

• Kann ein Schattenregister nicht zurückgesetzt werden, weil die Fehlerwirkung das
Reset-Signal blockiert, so lässt sich dies einfach testen. Dazu wird der komplementäre
Wert des Initialzustands in das Schattenregister geschrieben und anschließend ein Reset
ausgeführt. Bei einem ersten Zugriff durch eine CSU-Operation wird das fehlerhafte
Datenwort ausgelesen.

Anhand einer aus jeder Schaltungsklasse ausgewählten Schaltung wird folgend näher auf die
nicht detektierten und potentiell detektierbaren Fehler eingegangen. Bei dem untersuchten
Testmustererzeugungsverfahren handelt es sich um die Kombination aus lesender und
schreibender Heuristik, sowie dem Brechen des Scan-Pfads.

71

6. Ergebnisse und Bewertung

6.3.1. Untersuchung der verbliebenen Fehler in c499_chain

Verbleibende Fehler finden sich vor allem in der Scan-Adressierung, wie es in Abbildung
6.5 gezeigt ist. Im Fall der Chain-Schaltungen sind dies alle Fehler der kombinatorischen
Schaltung. Da diese durch die Brechung des Scan-Pfads nicht detektiert werden können und
die Heuristik diese Fehler nicht explizit betrachtet, ergibt sich eine geringe Fehlerabdeckung.
Weitere undetektierte Fehler auf dem Scan-Datenpfad ergeben sich aus der Erzeugung von
Rekonvergenzen durch die Synthese, welche durch den Aufbau der Scan-Multiplexer nicht
gebrochen werden können.

Capture−Datenpfad

Capture−Steuerung

Reset−Ansteuerung

Rückkopplungsdatenpfad Scan−Reg.

Rückkopplungsdatenpfad Schattenreg.

Rückkopplungssteuerung Scan−Reg.

Rückkopplungssteuerung Schattenreg.

Scan−Addressierung

Scan−Datenpfad

Scan−Steuerung

Taktsteuerung

Update−Datenpfad

Update−Steuerung

0 250 500 750

Abbildung 6.5.: Anzahl verbleibender Fehler in c499_chain
Schwarz: Undetektierte Fehler
Grau: Potentiell detektierbare Fehler
Weiß: Pot. detektierbare Fehler die nach 6.3 detektiert werden

72

6.3. Klassifizierung nicht detektierter Fehler

6.3.2. Untersuchung der verbliebenen Fehler in f2126_mux

Ähnlich zu den Chain-Schaltungen finden sich in MUX-Schaltungen hauptsächlich
verbleibende Fehler auf dem Scan-Datenpfad und der Scan-Adressierung. Abbildung 6.6
zeigt dies anhand von f2126_mux. Aufgrund von Scan-Pfad-Segmenten, die nicht durch
die Fehlerwirkung an der Adressierung des Scan-Multiplexers gebrochen werden können,
werden keine Testmuster erzeugt.

Capture−Datenpfad

Capture−Steuerung

Reset−Ansteuerung

Rückkopplungsdatenpfad Scan−Reg.

Rückkopplungsdatenpfad Schattenreg.

Rückkopplungssteuerung Scan−Reg.

Rückkopplungssteuerung Schattenreg.

Scan−Addressierung

Scan−Datenpfad

Scan−Steuerung

Taktsteuerung

Update−Datenpfad

Update−Steuerung

0 100 200 300

Abbildung 6.6.: Anzahl verbleibender Fehler in f2126_mux
Schwarz: Undetektierte Fehler
Grau: Potentiell detektierbare Fehler
Weiß: Pot. detektierbare Fehler die nach 6.3 detektiert werden

73

6. Ergebnisse und Bewertung

6.3.3. Untersuchung der verbliebenen Fehler in f2126_sib

Beispielhaft für SIB-basierte Schaltungen, lassen sich in f2126_sib alle Fehlerklassen, bis
auf den Rückkopplungsdatenpfad der Schattenregister, durch die lesend und schreibend
zugreifende Heuristik bereits detektieren. Abbildung 6.7 gibt die Fehlerstellen für f2126_sib
entsprechend wieder. Bei den verbleibenden Fehlern auf dem Rückkopplungsdatenpfad
handelt es sich um Aktivierungssignale, welche ständig aktiv sein müssen, um einen aktiven
Scan-Pfad auszuprägen. Die entsprechenden undetektierten Haftfehler propagieren den
gleichen Wert und lassen sich so nicht detektieren.

Capture−Datenpfad

Capture−Steuerung

Reset−Ansteuerung

Rückkopplungsdatenpfad Scan−Reg.

Rückkopplungsdatenpfad Schattenreg.

Rückkopplungssteuerung Scan−Reg.

Rückkopplungssteuerung Schattenreg.

Scan−Addressierung

Scan−Datenpfad

Scan−Steuerung

Taktsteuerung

Update−Datenpfad

Update−Steuerung

0 100 200 300

Abbildung 6.7.: Anzahl verbleibender Fehler in f2126_sib
Schwarz: Undetektierte Fehler
Grau: Potentiell detektierbare Fehler
Weiß: Pot. detektierbare Fehler die nach 6.3 detektiert werden

74

6.3. Klassifizierung nicht detektierter Fehler

6.3.4. Zusammenfassung

Drei Fehlerklassen konnten bei der Untersuchung der verbleibenden Fehler als schlecht test-
bar durch das vorgeschlagenen Verfahren zur Testmustererzeugung ausgemacht werden:

Scan-Adressierung Das Brechen des Scan-Pfads funktioniert nicht bei Fehlern an der An-
steuerung der Scan-Multiplexer. Betrifft die Fehlerwirkung diese, so kann sich dennoch
ein aktiver Scan-Pfad ausprägen, weshalb kein Testmuster erzeugt wird.

Scan-Datenpfad Ein Teil der der Scan-Pfad-Segmente werden nicht getestet, da die Heuristik
nur eine Teilmenge dieser aktiviert. Das Brechen dieser Scan-Pfade ist nicht immer
möglich, wodurch die Fehlerabdeckung sinkt.

Rückkopplungsdatenpfad Schattenregister Müssen an bestimmten Kontrollsignalen Daten-
werte anliegen, welche notwendig sind um einen aktiven Scan-Pfad auszuprägen oder
eine CSU-Operation zu ermöglichen, so können Haftfehler mit gleichem Logikwert
nur schlecht getestet werden.

Weitere Fehlerklassen, wie die Update- und Capture-Steuerung, werden nicht explizit durch
die Modellierung des Verfahrens betrachtet, weshalb keine entsprechenden Testmuster für
diese erzeugt werden.

75

7. Zusammenfassung und Ausblick

Rekonfigurierbare Scan-Netzwerke sind wichtig für die Inbetriebnahme einer integrierten
Schaltung und müssen fehlerfrei arbeiten. Hierzu ist ein Test mit hoher Fehlerabdeck-
ung essentiell. Klassische Testalgorithmen für statische Scan-Ketten sind jedoch nicht aus-
reichend, da die kombinatorische und sequentielle Komplexität von Rekonfigurierbaren Scan-
Netzwerken bedeutend höher ist. Deshalb wurde ein Verfahren zur Testmustererzeugung in
Rekonfigurierbaren Scan-Netzwerken entwickelt, welches speziell an deren Erfordernisse
angepasst ist. Durch die Kombination zweier Verfahren, nämlich einer Heuristik und dem
Brechen des Scan-Pfads, konnte eine durchschnittliche Steigerung der Fehlerabdeckung
gegenüber kommerziellen Werkzeugen von 172 Prozent erreicht werden, bei Reduktion
der Laufzeit um bis zu einem Faktor 20. Weitere Optimierungen werden in den folgenden
Kapiteln aufgezeigt, wodurch sich die Fehlerabdeckung weiter steigern, beziehungsweise
die Laufzeit reduzieren lässt.

Erweiterung der funktionalen Testheuristiken

Die funktionalen Testheuristiken erzeugen lediglich Zugriffsmuster zur Aktivierung aller
Scan-Segmente. Je nach Klasse der Zugriffsinfrastruktur werden dadurch sehr viele Scan-
Pfade bereits aktiviert, wie dies beispielsweise bei SIB-basierten Scan-Netzwerken der Fall
ist. Zur weiteren Optimierung der Heuristiken wäre es wünschenswert, dass sich jedes Scan-
Pfad-Segment mindestens einmal auf dem aktiven Scan-Pfad befindet, da die bisherigen
Heuristiken lediglich den Zugriff auf die Scan-Segmente erfordern. Dadurch können Fehler
auf diesen Scan-Pfad-Segmenten sehr leicht detektiert werden. Darüber hinaus sind die
entsprechenden Bedingungen der aussagenlogischen Instanz zum Zugriff leicht modellier-
und lösbar.

Die Aktivierung eines Scan-Pfad-Segments im Erfüllbarkeitsproblem der Aussagenlogik
wurde als Pfadaktivierung modelliert. Durch die Betrachtung aller möglichen Scan-Pfad-
Segmente zwischen den Scan-Segmenten, kann es bei ungünstigen Zugriffsstrukturen, wie
den MUX-basierten Schaltungen, zu einem Aufblähen der möglichen Pfade kommen. In
MUX-basierten Schaltungen kann jedes Modul mit nahezu jedem anderen Modul verbunden
werden, wodurch es entsprechend viele möglichen Scan-Pfad-Segmente und Kombinationen
gibt. In diesen Fällen ist das Berechnen der Zugriffsmuster aufwändig und wurde deshalb
nicht weiter betrachtet. Eine Lösung dieses Problems könnte in der Aufspaltung der Scan-
Pfad-Segmente an Multiplexern und Verzweigungen bestehen.

77

7. Zusammenfassung und Ausblick

Fehlerdetektierung durch Gebietsanalyse

Ein großes Problem der Laufzeit bei der erarbeiteten Implementierung rührt von der ex-
pliziten Modellierung jedes Fehlers her. Ähnlich wie bei der Gebietsanalyse des PPSFP-
Algorithmus könnte die Detektierbarkeit weiterer Fehler durch logisches Schließen ermittelt
werden. Durch die Testheuristiken sind bereits alle Datenwerte der Register bekannt.

Dabei treten jedoch zwei Probleme hervor:

• Durch die Fehlerwirkung kann es zu abweichenden Datenwerten in den Registern
kommen, welche nicht durch die Testheuristiken detektiert wurden. Dann bliebe ein
eventuell als detektiert berechneter Fehler undetektiert. Eine genauere Untersuchung
des Fehlerverhaltens muss daher in Betracht gezogen werden.

• Im PPSFP-Algorithmus sind während der Fehlersimulation sowohl Gut- als auch
fehlerbehaftete Werte berechnet worden. Diese fehlen jedoch bei der Modellierung im
aussagenlogischen Erfüllbarkeitsproblem.

Partitionierung des Rekonfigurierbaren Scan-Netzwerks

Die Module und Hierarchien in Rekonfigurierbaren Scan-Netzwerken sind oft unabhängig
voneinander. Beispielsweise gilt dies für aneinandergereihte MUX- und SIB-Strukturen,
welche nur über den Scan-Pfad verbunden sind. Lässt sich ein relativ abgeschlossener
Teilgraph finden, so können kleinere Instanzen der modellierten Schaltung betrachtet werden,
was zu einer verbesserten Laufzeit führt. Insbesondere ermöglicht dies einen erschöpfenden
funktionalen Test.

Diagnose

Bei Scan-Ketten schränkt ein Fehler die Observierbarkeit stark ein, falls dieser den Scan-
Pfad bricht. Verschiedene Verfahren zur Diagnose von Scan-Ketten wurden in Kapitel 2.2.3
beschrieben, welche in der Regel zu zusätzlichem Hardware-Aufwand führen.

Im Gegensatz dazu verlieren Rekonfigurierbare Scan-Netzwerke ihre Observierbarkeit nur
bei bestimmten Fehlern, wie etwa auf dem Taktbaum oder in der ersten Hierarchie. Hierdurch
lassen sich allerdings schon erste Schlüsse auf die Fehlerursache ziehen.

Ein Verfahren zur Lokalisierung eines Fehlers kann in der iterativen Freischaltung einzelner
Module oder Hierarchien bestehen. Wird ein Fehler detektiert, so kann beispielsweise ein
Reset durchgeführt oder wieder versucht werden, die Hierarchie zu schließen. In der nächsten
Phase kann die Hierarchie dann vorübergehend ausgesetzt und weitere Hierarchien getestet
werden.

78

Full-Scan-Design für Schattenregister

Scan-Register sind in Rekonfigurierbaren Scan-Netzwerken durch ihre Lage auf dem aktiven
Scan-Pfad observier- und kontrollierbar. Dahingegen kann auf Schattenregister nicht direkt
zugegriffen werden, sondern nur über die zugehörigen Scan-Register. Eine Möglichkeit des
direkten Zugriffs kann durch Hinzufügen der Schattenregister zu einem Scan-Pfad erreicht
werden, um diese von außen observier- und kontrollierbar zu machen.

Hierdurch lässt sich auch das Problem der Diagnose einfacher lösen, da auch bei ge-
brochenem Scan-Pfad Zugriff auf die Konfigurationsregister besteht. So können eventuelle
Übertragungsfehler in die Konfigurationsregister gefunden werden. Durch CSU Operatio-
nen mit nur einer einzelnen Scan-Operation pro Scan-Phase kann der Schiebebetrieb exakt
verfolgt werden.

Eventuell besitzt die integrierte Schaltung bereits einen Scan-Pfad für den Test, wodurch
keine weiteren Primärein- und -ausgänge benötigt werden. Der Verzicht auf die Reset-Logik
könnte den zusätzlich Hardware-Aufwand reduzieren, da die Initialisierung durch Scan
durchgeführt werden kann.

79

A. Anhang

Algorithmus A.1 ICL-Beispiel: Zwei Konfigurationsregister zur Steuerung eines Multiplexers
mit einem Register oder Beipass

1 Module SelReg1 {
2 ResetPort reset;
3 ScanInPort scanIn;
4 ScanOutPort scanOut { Source reg; Enable select; }
5 SelectPort select;
6 ShiftEnPort shiftEn;
7 DataOutPort dataOut { Source reg; }
8 ScanRegister reg {
9 ScanInSource scanIn;

10 } }
11 Module ICL_Example {
12 ResetPort reset;
13 ScanInPort scanIn;
14 ScanOutPort scanOut { Source mux; }
15 SelectPort select;
16 ShiftEnPort shiftEn;
17 Instance cfg1 Of SelReg1 {
18 InputPort reset = reset;
19 InputPort select = select;
20 InputPort shiftEn = shiftEn;
21 InputPort scanIn = scanIn;
22 }
23 Instance cfg2 Of SelReg1 {
24 InputPort reset = reset;
25 InputPort select = select;
26 InputPort shiftEn = shiftEn;
27 InputPort scanIn = cfg1.scanOut;
28 }
29 LogicSignal reg_en {
30 cfg1.dataOut, cfg2.dataOut == ’b11;
31 }
32 Instance reg Of SelReg1 {
33 InputPort scanIn = cfg2.scanOut;
34 InputPort reset = reset;
35 InputPort select = reg_en;
36 InputPort shiftEn = shiftEn;
37 }
38 ScanMux mux reg_en {
39 0 : cfg2.scanOut;
40 1 : reg.scanOut;
41 } }

81

Literaturverzeichnis

[BARVT82] C. C. Beh, K. H. Arya, C. E. Radke, E. K. Vida-Torku. Do Stuck Fault Models
Reflect Manufacturing Defects? In Proc. of IEEE International Test Conference, S.
35–42. IEEE, 1982. (Zitiert auf Seite 18)

[BF85] F. Brglez, H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In Proc. of International Symposium
Circuits and Systems (ISCAS 85), S. 677–692. IEEE, 1985. (Zitiert auf Seite 64)

[BKW12] R. Baranowski, M. A. Kochte, H.-J. Wunderlich. Modeling, Verification and Pat-
tern Generation for Reconfigurable Scan Networks. In Proc. of IEEE International
Test Conference. IEEE, 2012. (Zitiert auf den Seiten 48 und 62)

[BKW13] R. Baranowski, M. A. Kochte, H.-J. Wunderlich. Optimal Scan Pattern Generation
for Reconfigurable Scan Networks. Submitted for Review ETS 2013. (Zitiert auf
Seite 48)

[BM82] P. H. Bardell, W. H. McAnney. Self-testing of multiple logic modules. In Proc. of
IEEE International Test Conference, S. 200–204. IEEE, 1982. (Zitiert auf Seite 37)

[Bry86] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677 –691, 1986. (Zitiert auf Seite 54)

[Bry91] R. Bryant. On the complexity of VLSI implementations and graph represen-
tations of Boolean functions with application to integer multiplication. IEEE
Transactions on Computers, 40(2):205 –213, 1991. (Zitiert auf Seite 54)

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proc. of the third
annual ACM symposium on Theory of computing, STOC ’71, S. 151–158. ACM, 1971.
(Zitiert auf Seite 22)

[EB06] B. Eklow, B. Bennetts. New Techniques for Accessing Embedded Instrumentation:
IEEE P1687 (IJTAG). In Proc. of Eleventh IEEE European Test Symposium, S. 253

–254. IEEE, 2006. (Zitiert auf Seite 27)

[EE95] S. Edirisooriya, G. Edirisooriya. Diagnosis of scan path failures. In Proc. of VLSI
Test Symposium, S. 250–255. IEEE, 1995. (Zitiert auf Seite 15)

[ES06] N. Eén, N. Sörensson. Translating Pseudo-Boolean Constraints into SAT. JSAT,
2(1-4):1–26, 2006. (Zitiert auf Seite 43)

83

Literaturverzeichnis

[ESB00] J. Emmert, C. Stroud, J. Bailey. A new bridging fault model for more accurate
fault behavior. In Proc. of AUTOTESTCON, S. 481 –485. IEEE, 2000. (Zitiert auf
Seite 19)

[FS83] H. Fujiwara, T. Shimono. On the Acceleration of Test Generation Algorithms.
IEEE Transactions on Computers, C-32(12):1137 –1144, 1983. (Zitiert auf Seite 21)

[GN02] E. Goldberg, Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proc. of
Design, Automation and Test in Europe Conference (DATE), S. 142 –149. 2002. (Zitiert
auf Seite 22)

[GR81] P. Goel, B. Rosales. PODEM-X: An Automatic Test Generation System for VLSI
Logic Structures. In Proc. of 18th Conference on Design Automation, S. 260 – 268.
IEEE, 1981. (Zitiert auf Seite 21)

[GZA+
02] M. Ganai, L. Zhang, P. Ashar, A. Gupta, S. Malik. Combining strengths of

circuit-based and CNF-based algorithms for a high-performance SAT solver. In
Proc. of IEEE/ACM Design Automation Conference, S. 747 – 750. IEEE/ACM, 2002.
(Zitiert auf Seite 23)

[HKB94] R. Hahn, R. Krieger, B. Becker. A hierarchical approach to fault collapsing. In
Proc. of European Design and Test Conference (EDAC), S. 171 –176. 1994. (Zitiert
auf Seite 11)

[HP99] I. Hamzaoglu, J. Patel. Reducing test application time for full scan embedded
cores. In Proc. of International Symposium on Fault-Tolerant Computing, S. 260 –267.
1999. (Zitiert auf Seite 14)

[IEE01] IEEE. Standard Test Access Port and Boundary - Scan Architecture. IEEE Std
1149.1-2001, 2001. (Zitiert auf Seite 14)

[iso12] ISO 26262-5:2012 Road vehicles - Functional safety - Part 5: Product development:
hardware level, 2012. (Zitiert auf Seite 10)

[KSWZ10] M. Kochte, M. Schaal, H.-J. Wunderlich, C. Zoellin. Efficient fault simulation
on many-core processors. In Proc. of IEEE/ACM Design Automation Conference
(DAC), S. 380 –385. IEEE/ACM, 2010. (Zitiert auf Seite 20)

[Kun93] S. Kundu. On diagnosis of faults in a scan-chain. In Proc. of VLSI Test Symposium,
S. 303 –308. 1993. (Zitiert auf Seite 13)

[Lar92] T. Larrabee. Test pattern generation using Boolean satisfiability. Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 11(1):4 –15, 1992. (Zitiert
auf Seite 21)

[Lev73] L. A. Levin. Universal sorting problems. Problems of Information Transmission,
9:265–266, 1973. (Zitiert auf Seite 22)

[LH92] H. Lee, D. Ha. HOPE: an efficient parallel fault simulator. In Proc. of IEEE/ACM
Design Automation Conference (DAC), S. 336 –340. IEEE/ACM, 1992. (Zitiert auf
Seite 21)

84

Literaturverzeichnis

[MA98] A. Majhi, V. Agrawal. Delay fault models and coverage. In Proc. of IEEE
International Test Conference, S. 364 –369. IEEE, 1998. (Zitiert auf Seite 19)

[MBAB99] S. Majumder, B. Bhattacharya, V. Agrawal, M. Bushnell. In Proc. of International
Conference On VLSI Design, S. 492 –497. 1999. (Zitiert auf Seite 19)

[MIC02] E. Marinissen, V. Iyengar, K. Chakrabarty. A set of benchmarks for modular
testing of SOCs. In Proc. of IEEE International Test Conference, S. 519 – 528. 2002.
(Zitiert auf Seite 61)

[MM95] S. Makar, E. McCluskey. Functional tests for scan chain latches. In Proc. IEEE
International Test Conference, S. 606–615. IEEE, 1995. (Zitiert auf Seite 15)

[MMZ+
01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: engineering an

efficient SAT solver. In Proc. of Design Automation Conference (DAC), S. 530 – 535.
2001. (Zitiert auf Seite 22)

[Moo98] G. Moore. Cramming More Components Onto Integrated Circuits. In Proc. of
the IEEE, 86(1):82 –85, 1998. (Zitiert auf Seite 25)

[NGB92] S. Narayanan, R. Gupta, M. Breuer. Configuring multiple scan chains for
minimum test time. In Proc. of IEEE/ACM International Conference on Computer-
Aided Design, S. 4 –8. IEEE/ACM, 1992. (Zitiert auf Seite 14)

[Par07] T. Parr. The Definitive ANTLR Reference Guide. Oreilly and Associate Series.
O’Reilly Vlg. GmbH & Company, 2007. (Zitiert auf Seite 49)

[PH04] D. A. Patterson, J. Hennessy. Computer Organization and Design. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2004. (Zitiert auf Seite 9)

[PO90] K. Parker, S. Oresjo. A language for describing boundary-scan devices. In Proc.
of IEEE International Test Conference, S. 222 –234. 1990. (Zitiert auf Seite 16)

[PSL80] M. Pease, R. Shostak, L. Lamport. Reaching Agreement in the Presence of Faults.
J. ACM, 27(2):228–234, 1980. (Zitiert auf Seite 19)

[Rot66] J. P. Roth. Diagnosis of Automata Failures: A Calculus and a Method. IBM
Journal of Research and Development, 10(4):278 –291, 1966. (Zitiert auf Seite 21)

[RTKM04] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee. Embedded deterministic test. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(5):776

– 792, 2004. (Zitiert auf Seite 14)

[Sch88] M. H. Schulz. Testmustergenerierung und Fehlersimulation in digitalen Schaltungen
mit hoher Komplexität, Band 173 von Informatik-Fachberichte. Springer, 1988. (Zitiert
auf Seite 20)

[Sch08] U. Schöning. Theoretische Informatik - kurz gefasst. Spektrum Hochschultaschen-
bücher. Spektrum Akademischer Verlag, 2008. (Zitiert auf Seite 9)

[Sha49] C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems
Technical Journal, 28:59–98, 1949. (Zitiert auf Seite 23)

85

Literaturverzeichnis

[SPM92] J. Schafer, F. Policastri, R. McNulty. Partner SRLs for improved shift register
diagnostics. In Digest of Papers VLSI Test Symposium, 1992, S. 198 –201. IEEE,
1992. (Zitiert auf Seite 15)

[Sta86] C. H. Stapper. On yield, fault distributions, and clustering of particles. IBM
Journal of Research and Development, 30(3):326 –338, 1986. (Zitiert auf Seite 9)

[TED10] D. Tille, S. Eggersgluss, R. Drechsler. Incremental Solving Techniques for SAT-
based ATPG. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(7):1125 –1130, 2010. (Zitiert auf Seite 21)

[Tri84] E. Trischler. Design for Testability Using Incomplete Scan Path and Testability
Analysis. In Siemens Forsch.- u. Entwickl.- Ber. Bd. 13, Nr2. 1984. (Zitiert auf
Seite 14)

[Tse68] G. S. Tseitin. On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234–259, 1968. (Zitiert auf Seite 23)

[UB73] E. G. Ulrich, T. Baker. The concurrent simulation of nearly identical digital
networks. In Proc. of IEEE/ACM Design Automation Conference (DAC), S. 145–150.
IEEE/ACM, 1973. (Zitiert auf Seite 21)

[VM03] E. Volkerink, S. Mitra. Efficient seed utilization for reseeding based compression.
In Proc. of VLSI Test Symposium, S. 232 – 237. IEEE, 2003. (Zitiert auf Seite 14)

[WA73] M. Williams, J. Angell. Enhancing Testability of Large-Scale Integrated Circuits
via Test Points and Additional Logic. Transactions on Computers, 22(1):46–60,
1973. (Zitiert auf Seite 12)

[WWW06] L. Wang, C. Wu, X. Wen. VLSI Test Principles and Architectures: Design for
Testability. Systems on Silicon. Elsevier Science, 2006. (Zitiert auf Seite 9)

Alle URLs wurden zuletzt am 02. 02. 2013 geprüft.

86

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Marcel Schaal)

	1 Einleitung und Motivation
	2 Grundlagen des Hardware-Tests
	2.1 Test und Diagnose
	2.2 Testbarer Entwurf
	2.3 Abstraktionsebenen in der Modellierung
	2.4 Strukturelle Fehlermodelle
	2.5 Fehlersimulation
	2.6 Automatische Testmustererzeugung
	2.7 Erfüllbarkeitsproblem der Aussagenlogik

	3 Grundlagen Rekonfigurierbarer Scan-Netzwerke
	3.1 Aufbau und Struktur
	3.2 Modellierung auf Transaktionsebene
	3.3 Klassifizierung der Fehlerwirkung und Testbarkeit
	3.4 Funktionale Fehlermodelle auf Transaktionsebene

	4 Testalgorithmen für Rekonfigurierbare Scan-Netzwerke
	4.1 Pseudo-zufällige Testmustererzeugung
	4.2 Funktionale Testheuristiken
	4.3 Testmustererzeugung auf Transaktionsebene
	4.4 Vergleich der Testalgorithmen

	5 Implementierung
	5.1 Übersicht des Testverfahrens
	5.2 Zugriffsmustererzeugung – eda1687
	5.3 Einlesen und Verarbeiten von Netzlisten
	5.4 Extraktion des Scan-Pfads aus der Netzliste
	5.5 Aktivierung von Scan-Pfad-Segmenten
	5.6 Fehlerinjektion und -detektion
	5.7 Fehlersimulation

	6 Ergebnisse und Bewertung
	6.1 Übersicht der verwendeten Testschaltungen
	6.2 Auswertung der Testalgorithmen
	6.3 Klassifizierung nicht detektierter Fehler

	7 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

