Institut fiir Softwaretechnologie
Universitdt Stuttgart

Universititsstrafse 38
D-70569 Stuttgart

Diplomarbeit Nr. 3535

Ein interaktives Planungssystem
fiir Ausbildungskurse

Reinhold Rumberger
Studiengang: Softwaretechnik
Priifer/in: Prof. Dr. Plodereder
Betreuer/in: Prof. Dr. Plodereder, Udo Bufler
Beginn am: 2013-08-14
Beendet am: 2014-05-27

CR-Nummer: H.4.1,H52,128,].1

Kurzfassung

Im Rahmen dieser Diplomarbeit wird ein bestehendes Planungssystem namens VS Planung
komplett tiberarbeitet, erweitert und modernisiert, um seit der urspriinglichen Implementie-
rung hinzugekommenen Anforderungen gerecht zu werden. Dabei sollen Einschrankungen
an die Planung (,,Constraints”) automatisch gepriift werden, um den Anwender bei der
Planung zu unterstiitzen. Am Ende einer erfolgten Planung werden offizielle Dokumente
generiert, die an ortliche Behorden, Amter und Schulen verteilt werden. Aus diesem Grund
muss die Anwendung nicht nur benutzerfreundlich, sondern auch robust und praxistauglich
sein.

Bei der Planung handelt es sich um die jdhrliche Planung von Terminen, an denen im
Folge-Schuljahr die Schulklassen von Grund- und Forderschulen eine ihnen zugewiesene Ju-
gendverkehrsschule (JVS) besuchen sollen. An diesen JVS der Kreisverkehrswacht Esslingen
nehmen die Schiiler an einer Fahrradausbildung teil.

Die tiberarbeitete Anwendung — JVS2 — wird dynamisch Benutzereingaben priifen, das
Speichersystem komplett tiberarbeiten und die Fahigkeit besitzen, neue Constraints mit
geringem Aufwand zu implementieren und in eine bestehende Anwendung einzuftigen.
Zusétzlich wird die Codebasis komplett neu implementiert und modernisiert.

In dieser Ausarbeitung wird beschrieben, wie welche Anforderungen erhoben wurden,
welche Entscheidungen den Entwurf bedingt haben und wie daraus die konkrete Implemen-
tierung entwickelt wurde.

Abstract

In this Diplomarbeit, an exisiting planning software named JVS Planung is completely
reengineered, extended and modernised to be able to fulfill requirements that have surfaced
since the original implementation was finished. It needs to automatically check some
constraints of the resulting plan to support the user in the planning process. The result
of such a process is a set of official documents, which are distributed to local government
offices and schools. This means, that the application has to be not only user friendly, but
robust and usable in real-world scenarios.

The planning process is the yearly allotment of time slots at which school classes of local
elementary schools will visit an assigned Jugendverkehrsschule (JVS) the following school
year. They attend bicycle riding lessons in these JVS of the Kreisverkehrswacht Esslingen.

The reengineered application — JVS2 — will dynamically verify user input, completely
reengineer the saving system and have the ability to implement new constraints and add
them to the application with little effort. Additionally, the code base will be completely
re-implemented and modernised.

This document will describe which requirements were found, which decisions influenced
the design and how the actual implementation was derived from these.

Inhaltsverzeichnis

1. Einleitung

4. Implementierung

1.1. Motivation
1.2. Aufgabenstellung L
1.3. Gliederung
2. Anforderungen und Ziele
2.1. Ermittlung der Anforderungen und Ziele
22, Ziele ... e
22.1. Bedienung
2.2.2. Sicherheit o
2.2.3. Anpassbarkeit. o Lo oo o
2.3. Anforderungen
2.3.1. Ubernommene Anforderungen
2.3.2. Gednderte Anforderungen
2.3.3. Neue Anforderungen
3. Entwurf
3.1. Architekturentwurf Lo Lo
3.1.1. Entwurfsmuster. L
3.1.2. Constraints L
3.1.3. Speichersystem L0
3.1.4. Leitsystem & Phasen 0L
3.1.5. Sprache
3.1.6. Zeitdarstellung oo
3.2. Entwurf der graphischen Oberflache
3.2.1. Kalender-Popup
3.2.2. Projektstart Lo
3.2.3. Ferieneingabe o oo
3.2.4. Eingabe geblockter Termine,
3.2.5. Belegungsplanung 0 ..
3.2.6. Leitsystem
3.2.7. Constraints

4.1. Wahl der Programmiersprache

4.2. Abhidngigkeitsauflosung

10

11
11
12
12
12
13
13
13
14
18

21
21
21
24
29
30
31
32
33
35
36
37
38
40
43
45

47

47
47

43. Allgemein
4.3.1. Anpassung der Schriftgrofie L
4.3.2. Logging-System
4.3.3. Ladebildschirm
4.3.4. JCalendar

4.4. Speichersystem

45. Constraints L

. Tests

5.1. Modul- und Integrationstests L L.
52. Kundentests
5.2.1. Vollstindige Planung: Praxistest

. Zusammenfassung und Ausblick

6.1. Zusammenfassung

6.2. Ausblick
6.2.1. Frequenz der Constraint-Meldungen
6.2.2. Automatische Planung
6.2.3. Umgestaltung zu einer Internetapplikation

. Begriffserklarung
. Protokoll des Kundentests

. Inhalt und Aufbau des beigelegten Datentragers

Literaturverzeichnis

61

67

69

Abbildungsverzeichnis

2.1.
2.2,

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.

B.1.
B.2.

Planung der interaktiven Constraints: ohne interaktive Eingabepriifung 15
Planung der interaktiven Constraints: mit interaktiver Eingabepriifung 15
Interaktive Constraints: beteiligte Elemente 27
JVS Planung: Ansicht nach Offnen eines Projekts 33
JVS2: Ansicht nach Offnen eines Projekts 34
JVS Planung: JVS-Auswahl bei kleinerem Fenster 34
JCalendar e 35
Microba controls 35
Eingabe der Projektdaten 36
Ferieneingabe und Anzeige der berechneten Ferien 37
JVS: Eingabe geblockter Termine 38
JVS Planung: Eingabe geblockter JVS-Termine (1. Bildschirm) 39
JVS Planung: Eingabe geblockter JVS-Termine (2. Bildschirm) 39
Belegungsplanung: Detailansicht 40
JVS Planung: Belegungsplanung-Detailansicht (1. Bildschirm) 41
JVS Planung: Belegungsplanung-Detailansicht (2. Bildschirm) 41
Belegungsplanung: Wochenansicht 42
JVS2: neue Leitsystem-Ubersicht 43
JVS Planung: alte Leitsystem-Ubersicht 44
Constraints: Einrichtungsdialog, 44
Constraints: interaktive Constraints 45
Constraints: kritische Fehlermeldung 46
Constraints: Warnungsmeldung 46
Testprotokoll Seite 1 Lo 64
Testprotokoll Seite2 65

Tabellenverzeichnis

5.1.

Kundentest: Fehler-Prioritdten 54

1. Einleitung

Da diese Arbeit auf der Diplomarbeit von Herrn Schwab[19] aufbaut, wird diese als Lektiire
empfohlen.

In dieser Arbeit werden Grund- und Forderschulen als ,,Schulen” bezeichnet. ,Schulen”
beinhaltet jedoch nicht Jugendverkehrsschulen, die als , Jugendverkehrsschulen” oder ,JVS”
bezeichnet werden. Die im Rahmen dieser Diplomarbeit implementierte Software wird als
JVS2 bezeichnet. Das im Rahmen der Diplomarbeit von Herrn Schwab[19] implementierte
System wird JVS Planung genannt.

1.1. Motivation

Urspriinglich wurde die Planung der Unterrichtstermine an den Jugendverkehrsschulen
von Hand durchgefiihrt. Um diesen Vorgang zu erleichtern und die Randbedingungen der
Planung zu priifen, wurde die Software JVS Planung[19] erstellt. Im Betrieb haben sich bei
dieser Software einige gednderte Anforderungen ergeben. Aus diesem Grund soll jetzt eine
neue Version implementiert werden, welche diese Anforderungen erfiillt.

Eine dieser Anforderungen ergibt sich aus dem Fehlen einer einheitlichen Implementierung
der , Constraints”. Dabei handelt es sich um vordefinierte Eigenschaften einer Planung, die
bei deren Erstellung eingehalten werden miissen. Diese Constraints wurden in JVS Planung in
zwei Kategorien unterteilt: ,hart” und ,weich”. Diese Unterteilung hat sich als zu unflexibel
erwiesen, weshalb JVS2 eine feingliedrigere Unterteilung erlauben soll. Zusétzlich soll die
Moglichkeit geschaffen werden, Constraints zentral zu implementieren und gegebenenfalls
neue Constraints nachzuladen.

Eine weitere Anforderung ergibt sich aus dem gewdhlten Speicherformat. Hier wurde ein
auf Javas Serialisierung basierendes Format gewéahlt. Dies hat zur Folge, dass schon kleinere
Anderungen am Speicherformat oder der Code-Struktur alte Speicherstinde unbrauchbar
machen. Um dies zu umgehen, soll JVS2 ein neues Speicherformat verwenden.

1.2. Aufgabenstellung

In dieser Diplomarbeit soll JVS Planung in enger Zusammenarbeit mit den Sachbearbeitern
der Polizeidirektion Esslingen komplett {iberarbeitet, erweitert und dabei die Planungseffizi-
enz verbessert werden.

1. Einleitung

Dabei soll das iiberarbeitete System auf eine aktuelle Windows-Version portiert werden,
beztiglich der in Esslingen verwendeten Betriebssysteme portabel sein und eine hohere
Robustheit aufweisen. Die Benutzerschnittstelle soll modernisiert werden, was vor allem die
dynamische Riickmeldung der Giiltigkeit von Eingaben betrifft. Einige von den Sachbearbei-
tern identifizierte Schwachstellen von JVS Planung sollen vermieden werden.

Nach Moglichkeit soll JVS2 die Fahigkeit besitzen, weitere Constraints einzubinden, ohne
grofe Eingriffe in den Programmcode vornehmen zu miissen.

Die Implementierung soll qualitativ hochwertig und real einsetzbar sein. Tests der Imple-
mentierung sollen anhand realer Anwendungsdaten aus den vergangenen Jahren erfolgen.

1.3. Gliederung

Die Gliederung dieser Arbeit orientiert sich an den Arbeitsschritten der Projektdurchfithrung.
So werden zuerst die ermittelten Ziele und Anforderungen beschrieben, dann wird der
Entwurf erldutert und schliefslich die Implementierung erkldrt. Im Anschluss wird die
Planung und Durchfiihrung der Tests erldutert, sowie deren Resultate vorgestellt.

Abschlieffend wird die Arbeit kurz zusammengefasst und ein Ausblick auf potentielle
zukiinftige Entwicklung gegeben.

Im Anhang A befindet sich eine Begriffserklarung fiir projektspezifische Fachbegriffe.

10

2. Anforderungen und Ziele

In diesem Kapitel werden die Anforderungen und Ziele an das Programm JVS2 beschrieben.
Wo angebracht, beschrédnkt sich diese Beschreibung auf die Unterschiede, die sich zu JVS
Planung ergeben.

2.1. Ermittlung der Anforderungen und Ziele

Als erster Schritt wurde probehalber ein minimalistisches Planungsszenario mit JVS Planung
durchgespielt und die beigefiigte Dokumentation gelesen, um bisherige Funktionalitidt zu
ermitteln. Danach wurde der Code analysiert, um das Verstdndnis fiir das Programm zu
erhohen und die Entscheidung treffen zu kénnen, ob vorhandener Code weiterverwendet
werden sollte, oder eine komplette Neuimplementierung stattfinden miisse. Schliefdlich
wurde der Kunde nach seinen Anforderungen befragt.

Die hier aufgefiihrten Anforderungen und Ziele wurden wéhrend des gesamten Projekts
ermittelt. Deshalb mussten Entwurfs- und Implementierungsdetails wihrend des Projekts
mehrmals angepasst werden. Dies hatte zur Folge, dass Teile der Planung und Implementie-
rung suboptimal verliefen. Die nachtrégliche Anpassung betraf indirekt verwandte Stellen,
und es fehlte die Zeit, die komplette Planung und Implementierung zu {iberarbeiten, um
diese Stellen zu ermitteln.

Der Kunde war an jedem Schritt der Anforderungsanalyse beteiligt, um ermittelte Anforde-
rungen zu verifizieren und zu ergidnzen. Daraus ergab sich das Ziel, dass Anderungswiin-
schen des Kunden auch kurzfristig entsprochen werden miisste. Um dies zu ermoglichen,
wurde sowohl beim Entwurf als auch bei der Implementierung darauf Wert gelegt, moglichst
flexibel zu bleiben und Teile des Programms, die nicht logisch verwandt waren, voneinander
abzugrenzen. Dies sollte es ermdoglichen, fiir jede Anderung der Funktionalitit nur moglichst
kleine Teile des Programmcodes bearbeiten zu miissen und so den Aufwand zu begrenzen.

Hier musste jedoch auch darauf geachtet werden, moglichst grofie, logisch verwandte
Teile des Programms zusammenzufassen um die Komplexitdt zu begrenzen und so die
Verstandlichkeit und Wartbarkeit von sowohl Entwurf als auch Implementierung moglichst
hoch zu halten.

Um sowohl die moglichst grofle Anpassbarkeit zu gewéhrleisten als auch die Komplexitat
zu minimieren wurde das Programm schon im Entwurf anhand von Java-Packages in grobe
Bereiche unterteilt. Wahrend der Implementierung wurde dann darauf geachtet, dass die
Menge der Daten, die innerhalb dieser Bereiche geteilt wurden, minimiert wurden. Dies

11

2. Anforderungen und Ziele

fithrt dazu, dass der Datenaustausch in logisch zusammenhéngenden Teilen des Programms
ohne Umwege moglich, jedoch auf das Notigste beschrankt ist.

Um gednderten Anforderungen entgegenzukommen und neue Konzepte erproben zu kon-
nen, wurde aufserdem ein iteratives Entwicklungsmodell verwendet. Hierbei wurde kein
klassisches Modell verwendet, da diese Modelle strenge Anforderungen an den Projekta-
blauf stellen und grofiteils auf Entwicklerteams ausgelegt und somit auf dieses Projekt nicht
anwendbar sind. Das gewdhlte Entwicklungsmodell hat keine formellen Einschrankungen
an die Durchfiihrung der einzelnen Projektphasen gemacht. Es wurden lediglich eine Reihe
von zweiwOchigen Planungs- und Implementierungsphasen definiert, in denen angestrebt
wurde, jeweils mindestens ein Kundentreffen zu organisieren, an dem der aktuelle Fort-
schritt vorgestellt und der weitere Projektverlauf geplant werden konnte. Gegen Ende des
Projekts wurde eine grofle Testphase vorgesehen, fiir die mehrere Kundentreffen angestrebt
wurden.

2.2. Ziele

2.2.1. Bedienung

Der Kunde wiinscht ein Oberfldchendesign basierend auf bekannten Bedienkonzepten. Dies
bedeutet vor allem die Verwendung von Meniis, Auswahllisten und Knopfen, wie sie aus
Biiroprogrammen und allgemeinen Windows-Anwendungen bekannt ist.

/

Allgemein soll das Programm Fehlbedienungen verhindern oder behandeln und , intuitiv”
bedienbar sein. Da diese Ziele abstrakt sind, und sich keine konkreten Anforderungen daraus
ableiten lassen, wurde der Kunde vor und nach der Implementierung neuer Interaktions-
moglichkeiten nach seiner Meinung befragt. Hierbei wurde besonders darauf geachtet, dass
die Bedienung fiir ihn verstdandlich und intuitiv sei.

2.2.2. Sicherheit
Programmsicherheit

JVS2 wird vor allem auf einem Laptop ausgefiihrt, der nur selten fiir den Download von
Betriebssystem-Updates eine Internetverbindung aufbaut. Da nur eine begrenzte Menge
Anwendungen installiert wird und der Laptop nicht fiir Internetbenutzung verwendet wird,
ist die Programmsicherheit keine Prioritdt. Des weiteren hat [V S2 keine Internet-Schnittstelle,
die abgesichert werden miisste.

Eine konkrete Sicherheitsliicke wurde, nach Riicksprache mit dem Kunden, als unwichtig
eingestuft und ignoriert. Hierbei handelt es sich um die neue Funktionalitdt, dass Constraints
durch JAR-Dateien nachgeladen werden konnen. Diese JAR-Dateien werden ohne Priifung
oder Benachrichtigung des Benutzers nachgeladen. Die in ihnen enthaltenen Constraints

12

2.3. Anforderungen

konnen beliebigen Code ausfithren und haben somit ein sehr hohes Schadenspotential.
Allerdings ist das Risiko eines Angriffs gering genug, um vernachléssigt werden zu kénnen.

Datensicherheit

Fiir die auf der Festplatte befindlichen Daten ist der Benutzer verantwortlich. Die Dateninte-
gritdt wird nicht vom Programm verifiziert. Sofern eine geladene Datei der vom Programm
erwarteten Struktur entspricht, wird sie ohne weiterfiihrende Priifung verwendet.

Die Sicherung der gespeicherten Daten liegt im Verantwortungsbereich des Benutzers. Da
diese Daten in einem lesbaren XML-Format vorliegen, kénnen sie mit den meisten Backup-
Programmen effizient gesichert werden.

Damit im Falle eines Programmabsturzes moglichst wenig Daten verloren gehen, werden sie
nach jedem vom Benutzer bestatigten Arbeitsschritt auf die Festplatte gespeichert.

2.2.3. Anpassbarkeit

JVS2 soll so implementiert werden, dass gednderte Anforderungen moglichst wenig Code-
Anderungen benotigen. Dies bedeutet fiir Stellen, an denen Anderungen erwartet werden,
dass ein modularer Entwurf verwendet werden muss. Auch allgemein sollte der Code
moglichst gut dokumentiert und verstandlich geschrieben werden.

2.3. Anforderungen

2.3.1. Ubernommene Anforderungen

Da ein Teil der Aufgabenstellung die Weiterentwicklung von JVS Planung ist, werden grofse
Teile der Funktionalitdt und des Designs tibernommen. Der Code wird jedoch komplett
neu implementiert, um den gednderten Anforderungen gerecht zu werden und eine den
gednderten Umstdnden entsprechende Architektur bereitstellen zu konnen.

Sofern im Folgenden nicht anders spezifiziert, wird alle Funktionalitdt unverandert von JVS
Planung tibernommen.

Wie auch JVS Planung wird JVS2 dazu verwendet, Ferien-, JVS- und Schuldaten zu erfassen
und mithilfe dieser Informationen einen Belegungsplan fiir die JVS der Kreisverkehrswacht
Esslingen zu erstellen. Aus diesem Belegungsplan werden schliefilich RTF-Dokumente
erstellt, die den Belegungsplan enthalten und ausgedruckt werden konnen.

Analog zu JVS Planung stehen auch bei JVS2 Benutzerfreundlichkeit, Bedienbarkeit und Ro-
bustheit als Ziele im Vordergrund. Dazu muss vor allem die Benutzerfithrung gut durchdacht
sein. Portabilitdt soll auch gewdhrleistet sein.

13

2. Anforderungen und Ziele

Dem Benutzer ist es wichtig, die Dateneingabe und Planung in kleine Arbeitsschritte zu
unterteilen und deren Fertigstellung zu bestdtigen. Nach dieser Bestitigung sollen die
Anderungen sowohl ins Datenmodell iibernommen, als auch auf das Dateisystem gespeichert
werden. Um dies zu bewerkstelligen, wird jede Dateneingabemaske mit zwei Knopfen
ausgestattet: ,Zuriicksetzen” und ,,OK & Speichern”. Dieses Konzept wurde aus JVS Planung
iibernommen und ist vom Kunden explizit gewiinscht.

2.3.2. Geanderte Anforderungen
Constraint-Warnungen

Es hat sich herausgestellt, dass die Warnungsmarkierungen bei verletzten weichen Cons-
traints fiir den Benutzer zu kompliziert waren. Deshalb wurde dieses Konzept komplett
verworfen und beim Entwurf der Constraints neu durchdacht.

Geblockte Termine

Im Sprachgebrauch der Verkehrspolizei Esslingen werden Zeitblocke, die von der Planung
ausgeschlossen werden sollen, als , Blocktermine” bezeichnet. Da dieser Begriff verwirrend
sein und mit einem ,,Block an Terminen” verwechselt werden kann, wurde entschieden,
diese Zeitblocke als ,,geblockte Termine” zu bezeichnen. Somit wird der bisherige Begriff
,Ausschlusstermine” durch ,geblockte Termine” ersetzt.

Leitsystem-Ubersicht

Der Ubersichtsdialog des bisherigen Leitsystems war rein informativ und enthielt nur die
Namen und Beschreibungen der Arbeitsschritte. Hier wurde entschieden, dass man aus
diesem Dialog direkt auf einen bestimmten Arbeitsschritt springen konnen soll.

Teilautomatische Planung

JVS Planung enthalt eine rudimentidre Implementierung einer teilautomatischen Planung.
Konkret konnen mit dieser Funktionalitidt Klassen und Schulen nach einem First-Come-
First-Served-Prinzip eingeplant werden. Diese Moglichkeit verwendet der Kunde aber nicht,
weshalb sie in JVS2 nicht implementiert werden sollte.

Konkret wiinscht der Kunde eine komplett automatische Planung, was aber bei ndherer
Betrachtung ein — im Rahmen einer Diplomarbeit — unlésbares Problem darstellt. Da der
Kunde die teilautomatische Planung nicht als sinnvoll erachtet, wurde diese Funktionalitat
verworfen.

14

2.3. Anforderungen

Modernisierung der Benutzeroberflache

Eine der Haupt-Anforderungen war die Modernisierung der Benutzeroberflache. Hier war
es wichtig zu beachten, dass der Benutzer mit der vorhandenen Oberfliche gut vertraut war
und ihre Bedienung beherrschte. Deshalb durfte das Aussehen und die Handhabung nicht
vollstandig neu entworfen werden.

Eine Moglichkeit, die Benutzeroberfliche zu modernisieren ohne ihr Aussehen oder ihre
Bedienung stark zu verdndern, war die Bedienelemente interaktiv auf Eingaben reagieren
zu lassen. Das beinhaltet das dynamische (De-)Aktivieren von Schaltflichen und visuel-
les Feedback bei fehlerhaften' und potentiell fehlerhaften® Eingaben. Um dies einheitlich
implementieren zu kénnen, wurde ein System bendtigt, Constraints auch interaktiv zu
priifen.

E - Eingabe des Ausschlusstermins)) X

Schulungsfreie Tageshalfte

Bezeichnung: [Tageshilftenausschluss| Zeitraum: der 0l |. |10]. |20lg| | ® wormittag > Nachmittag

| OK || Abbrechen |

Abbildung 2.1.: Planung der interaktiven Constraints: Dialog aus JVS Planung ohne interak-
tive Eingabepriifung

Beispielhaft wurde diese Anderung dem Kunden mittels eines Dialogs aus JVS Planung
(Abbildung 2.1) erldutert. Dieser Dialog wurde mit Hilfe einer Graphiksoftware so angepasst,
dass sie einem noch zu entwerfenden entsprechen konnte (Abbildung 2.2). Da dem Kunden
dieses Konzept mit kleineren Anderungen sehr gefiel, wurde es weitestgehend {ibernommen
(siehe Abbildung 3.19).

E - Eingabe des Ausschlusstermins W e

Schulungsfreie Tageshalfte

Bezeichnung: [Tageshilftenausschluss| Zeitraum: der ,@ ,@ 201eg] |2 ® Vormittag _ Nachmittag

| oK || Abbrechen |

Abbildung 2.2.: Planung der interaktiven Constraints: Dialog aus JVS Planung mit interakti-
ver Eingabepriifung

Eine andere Stelle, an der die Benutzeroberfliche modernisiert werden konnte, war die
Datumseingabe. Hier wurde die Entscheidung getroffen, die Datumseingabe mittels Frei-
texteingabe in einem einfachen Textfeld sowie mittels eines Kalender-Popups — wie es von

Tbeispielsweise ein Text wo eine Zahl erwartet wird
2Eingaben, die korrekt sein kénnen, es wahrscheinlich aber nicht sind - beispielsweise eine Klassen-Schiilerzahl
> 100

15

2. Anforderungen und Ziele

modernen Anwendungen bekannt ist — zu ermoglichen. An dieser Stelle wére es moglich,
Datumsfelder vom Programm mit Vorschldgen fiillen lassen, die der Benutzer dann nur
noch geringfiigig anpassen miisste. Der Kunde bevorzugt jedoch leere Eingabefelder, damit
er sehen kann, dass die jeweiligen Felder noch nicht bearbeitet wurden. Aufierdem kann
so die interaktive Constraint-Priifung ermitteln, dass es sich um eine ungiiltige — da nicht
vorhandene — Eingabe handelt.

Der Kunde wiinscht fiir JVS Planung die Moglichkeit, die Schriftgrofse anpassen zu kénnen,
da einige Bearbeiter ein eingeschrinktes Sehvermogen aufweisen.

Oberflachensperrung bei Eingaben

JVS Planung hat fast die gesamte Oberflache bei Eingaben gesperrt, bis der Benutzer entschied,
die Eingaben zu verwerfen oder zu speichern. Leider wurde gesperrt, sobald ein Eingabefeld
aktiviert wurde, auch wenn keine tatsachliche Eingabe stattfand. Dies hat sich im Betrieb als
hinderlich herausgestellt, weshalb JVS2 dieses Prinzip ersetzt. Der Benutzer kann andere
Elemente nach einer Eingabe anwéhlen, wird aber gefragt, ob er eventuelle Anderungen
verwerfen mochte. Erst wenn er dies bejaht, wird die Eingabemaske gewechselt.

Layout der generierten Dokumente

Bei den generierten Dokumenten gab es 6fters Probleme mit den gedruckten Schulnamen, da
diese nicht in den vorgesehenen Platz passten. Dies fiihrte zu Layoutproblemen im Dokument,
die spadter manuell korrigiert werden mussten. Um dieses Problem zu minimieren, wurden
die gedruckten Schulnamen auf 20 Zeichen begrenzt und das Layout der RTF-Vorlage
verbessert, indem einige tiberfliissige Leerzeichen entfernt wurden.

Es stellte sich an dieser Stelle heraus, dass das Layout auch mit diesen Modifikationen nicht
korrekt war, da die generierten Seiten grofler waren als eine DIN-A4-Seite. Aus diesem
Grund musste die RTF-Vorlage komplett iiberarbeitet werden.

Inkonsistenzen der Benutzeroberflache

In JVS Planung ist das Design der Benutzeroberfliche stellenweise inkonsistent und unhand-
lich. So muss bei der Festlegung der JVS-Ausschlusstermine zwischen zwei komplett verschie-
denen Ansichten gewechselt werden, wahrend man bei der Eingabe der JVS-Stammdaten
nur eine Ansicht hat, in der die JVS durch Klick auf eine Liste gewechselt wird. Diese
Inkonsistenz sollte behoben werden.

Bei der Belegungsplanung war eine Ansicht vorgelagert, in der man eine JVS auswéhlen
konnte, fiir die man einen Plan bearbeiten bzw. erstellen wollte. Die resultierenden 3 ineinan-
der verschachtelten Ebenen an Oberflichen waren fiir neue Benutzer schwer nachvollziehbar.
Hier sollten die ersten beiden Ebenen zu einer kondensiert werden.

16

2.3. Anforderungen

Verworfene Constraints

JVS Planung hatte die Fahigkeit, zu melden, wenn Schulen in den gleichen Zeitraum einge-
plant wurden, in dem sie bereits zwei Jahre zuvor die zugewiesene JVS besuchten. Dies hat
sich in der Praxis als nicht sinnvoll erwiesen, weshalb dieser Constraint in JVS2 entfallen
soll.

Die in JVS Planung vorhandene Moglichkeit, zu spezifizieren, dass Schulen vor bzw. nach
den Herbstferien eingeplant werden wollen, wird auf Wunsch des Kunden verworfen. Diese
Funktionalitiat war nicht flexibel genug, da die Schulen oft spezifischere Wiinsche hatten
und wurde addquat durch den internen Vorplanungsprozess ersetzt.

Schulverwandte Anderung

In JVS Planung konnte die Schulart zwischen Grund- und Forderschule gedndert werden.
Der Kunde wiinscht, dass diese Funktionalitat fiir [VS2 entfernt wird.

Der Kunde wiinscht sich fiir [VS2 eine farbliche Unterscheidung zwischen Grund- und
Forderschulen. Konkret sollen Grundschulen blau und Forderschulen griin dargestellt
werden.

Wo Listen mit Schulen angezeigt werden, sollen diese durchnummeriert werden. Dies dient
der besseren Ubersicht und gibt dem Benutzer eine zuséatzliche Moglichkeit zu verifizieren,
dass alle Schulen im Datensatz vorhanden sind, ohne diese selbst zdhlen zu miissen.

In JVS Planung konnte die Zahl der JVS-Besuche pro Klasse fiir Forderschulen individuell pro
Schule eingestellt werden. Diese Moglichkeit soll fiir JVS2 entfallen und durch eine konstante
Anzahl an Klassenbesuchen von 6 Besuchen pro Forderschul-Klasse ersetzt werden.

Schulen sollen in JVS2 nicht nach Schulart sortiert werden. In JVS Planung wurden Schulen
alphabetisch nach ihrer Abkiirzung sortiert. Dies hatte zur Folge, dass sie zuerst nach
Schulart und dann nach ihrem Namen sortiert wurden. In JVS2 soll die Schulart bei der
Sortierung ignoriert werden. Da die Abkiirzungen der Schulen nach dem Schema , <Schulart-
Abkiirzung> <gekiirzter Name>" aufgebaut sind, bedeutet dies konkret, dass die Abkiirzung
bis einschliefilich dem ersten Leerzeichen fiir die Sortierung ignoriert werden soll.

Aligemeine Anderungen

JVS Planung zeigte an einigen Stellen - speziell bei der Eingabe von geblockten Terminen -
einen Tab mit einer Kalenderansicht. Diese Kalenderansicht wurde standardméfsig angezeigt,
weshalb man bei jeder Termineingabe vom Kalender-Tab zum Termineingabe-Tab wechseln
musste. Da der Kunde die Kalenderansicht nicht verwendete und JVS2 ein Kalender-Popup
fur die Termineingabe bereitstellt, soll die Kalenderansicht in JVS2 entfallen.

17

2. Anforderungen und Ziele

JVS Planung wurde fiir Java 5 auf Windows XP entwickelt und getestet. JVS2 soll fiir Java 7
auf Windows 7 entwickelt und getestet werden. Um eine moglichst grofie Plattformunabhéan-
gigkeit zu erreichen, soll JVS2 zusitzlich auf Linux3 entwickelt und getestet werden.

Bei der Belegungsplanung hat JVS Planung bei geblockten Terminen nur die jeweiligen Felder
schwarz gefiillt. Dies machte es schwer, den Grund fiir den jeweiligen Block zu erfahren.
JVS2 soll hier, wo moglich, die Beschreibung des geblockten Termins anzeigen.

JVS Planung verlangt eine alte Planung, auf der aufgebaut wird, indem die JVS- und
Schuldaten tibernommen werden. Wahrend diese Option fiir JVS2 weiterhin gewtinscht ist,
um Arbeit zu sparen, soll die Moglichkeit bestehen, ein neues Planungsprojekt ohne alte
Daten zu beginnen.

Da der Kunde diese Funktionalitdt nicht wiinscht, und ihr Vorhandensein potentiell ge-
tahrlich sein kann, sollen einmal erstellte Belegungspldne in JVS2 nicht einfach 16schbar
sein.

JVS Planung musste wegen seiner Architektur die parallele Ausfiihrung mehrerer Programm-
instanzen verhindern. Die Architektur von JVS2 soll hingegen die parallele Ausfithrung
mehrerer Programminstanzen erlauben.

JVS Planung erlaubt die Anpassung der Zeitintervalle der individuellen Unterrichtsstunden.
Diese Funktionalitdt konnte fiir den Benutzer verwirrend sein, weshalb sie in JV 52 nicht
vorhanden sein soll.

2.3.3. Neue Anforderungen
Anforderungen aus dem Betrieb

Im Betrieb ist aufgefallen, dass manchmal vergessen wurde, einige Schulklassen fertig ein-
zuplanen. Da die Warnungen teilweise iibersehen, teilweise ignoriert wurden, waren sie
ineffektiv. Um dieses Problem zu umgehen, musste dies beim Entwurf der Constraints
berticksichtigt werden. Aufierdem wurden beim Einplanen unvollstindige verplante Schul-
klassen farblich hervorgehoben.

Obwohl die ,Faschingsferien” keine offiziellen Ferien sind, werden sie doch von allen Schulen
durch bewegliche Ferientage in der gleichen Woche implementiert. Um die Planung hier zu
vereinfachen, wurden die Faschingsferien als einplanbare Ferien zwischen Weihnachts- und
Osterferien vorgesehen.

JVS Planung hatte keine Programmeinstellungen, die iiber Sitzungen hinaus gespeichert wur-
den. So war einer der ersten Schritte des Benutzers nach dem Offnen der Anwendung stets
die Maximierung des Programmfensters. [VSz soll hier Grofse und den Maximierungsstatus
des Fensters speichern und beim néchsten Programmstart wieder herstellen. Auflerdem
soll bei Speicher- und Ladedialogen der zuletzt getffnete Ordner vorausgewéahlt werden,

3ein jeweils aktuelles Debian Testing vom 15.08.2013 bis zum 27.05.2014

18

2.3. Anforderungen

damit der Benutzer nicht jedes Mal manuell zu dem selben Ordner navigieren muss. Die
stellte in JVS Planung kein Problem dar, da die Ordner zum Ausfithrungsverzeichnis statisch
festgelegt waren — eine Einschrdankung, die in JVS2 nicht mehr existieren soll.

Uberarbeitung des Speichersystems

JVS Planung verwendet Javas Serialisierung fiir das Speicher-Subsystem. Der Vorteil dieses
Systems ist die schnelle und einfache Implementierung. Der Haupt-Nachteil ist der Kom-
patibilitdtsverlust zwischen Speicherformaten verschiedener Versionen schon bei geringen
Anderungen und jeder strukturellen Anpassung des Codes. Um diesen Kompatibilititsver-
lust zu umgehen, konnen bestimmte Methoden implementiert werden, um alte Java-Klassen
einzulesen. Damit sind aber die erwdhnten Vorteile nicht mehr vorhanden. Selbst reines
Umbenennen von Klassen oder Umstrukturieren der Paketstruktur machen die Vorteile
zunichte.

Aus diesem Grund wurde entschieden, dass das Speichersystem komplett erneuert werden
miisste, um diese Schwiche zu vermeiden.

Um Speicherstdande aus JVS Planung auch in JVS2 verwenden zu kénnen, wird eine Hilfs-
anwendung bereitgestellt, die Projekte aus JVS Planung importieren und in einem fiir JVS2
lesbaren Format abspeichern kann.

Uberarbeitung des Constraint-Handlings

In JVS Planung sind alle Constraints direkt an den Stellen implementiert, an denen sie
verwendet werden. Dies macht es schwer, neue Constraints hinzuzuftigen oder vorhandene
Constraints konsistent zu dndern. Deshalb soll das Constraint-Handling fiir JVS2 komplett
iiberarbeitet werden, um abstrakter zu sein und die Implementierung der Constraints an
einer zentralen Stelle zu ermoglichen.

Zusitzlich sollen die Constraints in feinere Klassen unterteilt werden, damit nicht mehr nur
zwischen harten und weichen Constraints unterschieden wird. Die urspriingliche Unter-
scheidung kam durch ein Missverstdndnis zwischen Kunde und Entwickler zustande. Der
Kunde versteht unter einem , harten” Constraint etwas, das im Normalfall nicht ignoriert
werden darf. In Ausnahmeféllen mochte er jedoch die Moglichkeit haben, auch viele dieser
,/harten” Constraints zu verletzen, was von JVS Planung jedoch nicht zugelassen wurde.

Es gibt jedoch einige Constraints, die nicht verletzt sein diirfen, damit eine sinnvolle Pla-
nung durchgefiihrt werden kann. Somit muss es auch weiterhin unverletzbare — , harte” —
Constraints geben. Deren Anzahl soll jedoch minimiert werden.

Um die Modernisierung der Benutzeroberfliche zu ermoglichen — speziell die Anforderung
der interaktiven Eingabepriifung — miissen verschiedene Constraint-Sorten unterschieden
werden. Es miissen deshalb ,interaktive” Constraints definiert werden, die interaktiv Einga-
ben priifen und ,normale” Constraints, die komplexere Priifungen iibernehmen.

19

2. Anforderungen und Ziele

Ubernommen werden soll die Moglichkeit, Constraints ab- und anschalten zu konnen.

Um die Moglichkeit bereitzustellen, in Zukunft durch einen unabhéngigen Entwickler weitere
Constraints implementieren zu lassen, sollen Constraints aus JAR-Dateien nachgeladen
werden konnen.

Encoding-Probleme

In JVS Planung wurde die Speicherung der Schulen mittels Serialisierung in Dateien realisiert,
deren Namen die Abkiirzung der jeweiligen Schule waren. Da einige Schulen Sonderzeichen
wie ,8” oder Umlaute im Namen hatten, konnte es beim Ubertragen zwischen Dateisystemen
mit verschiedenen Zeichenkodierungen zu Problemen kommen. Beispielsweise konnte es
vorkommen, dass die Dateiverwaltung des Systems mit diesen Namen nicht zurechtkam
oder dass spéter das Laden alter Speicherstande fehlschlug.

In der Praxis ist dieses Problem nie aufgetreten, da der Anwender alle Planungen auf dem
gleichen Rechner durchgefiihrt hat.

Um dies zu adressieren, wurde das Speichersystem so konzipiert, dass die Namen in einer
UTEF-8-kodierten Datei gespeichert werden. Somit sind Kodierungsprobleme von vornherein
ausgeschlossen. Auflerdem wurden bei der Benennung der Java-Klassen alle Sonderzeichen
vermieden.

Eine andere Stelle, an der Kodierungsprobleme auftreten konnten, war der CSV-Import
neuer Grundschuldaten. Hier ist nicht vordefiniert, in welcher Kodierung die CSV-Dateien
eingelesen werden. Da der Benutzer nichts von Zeichenkodierungen weifd, kann diese
Information auch nicht abgefragt werden. Hier verwendet JVS2 eine externe Bibliothek
(ICU4J[18]) um die Kodierung der CSV-Datei zu ermitteln und korrekt zu 6ffnen.

Dadurch sollte es in Zukunft auf keiner Ebene des Programms zu Kodierungsproblemen
kommen koénnen.

20

3. Entwurf

In diesem Kapitel werden die Entwurfsentscheidungen dieser Diplomarbeit aufgefiihrt und
erlautert. Dabei wird der Entwurf der graphischen Oberfldche separat behandelt, da sich die
Arten der Entscheidungen hier fundamental unterscheiden.

3.1. Architekturentwurf

Zur Erstellung des UML-Entwurfs wurde Visual Paradigm for UML Community Edition[15]
verwendet. Mit diesem Programm hatte der Entwickler gute Erfahrungen unter Linux, was
Vollstandigkeit der UML-Unterstiitzung und die Bedienung betraft. Andere Programme
wurden auch in Betracht gezogen, jedoch war deren Bedienung zu schwerfillig, ihnen hat
eine vollstaindige UML-Unterstiitzung gefehlt oder sie waren nicht kostenfrei verfiigbar.

Die erste Implementierung fand auf Basis dieses Entwurfs statt. Jedoch musste aufgrund
von Kundenwiinschen und Designschwéchen dieser Entwurf oft und umfassend verdn-
dert werden, sodass die aktuell vorliegende Software nur noch in Grundziigen diesem
Entwurf gleicht. Aus diesem Grund wird der erste auf UML basierende Entwurf hier nicht
aufgefiihrt.

3.1.1. Entwurfsmuster

Fir JVS2 wurde MVP[12] als Architekturmuster gewahlt. Es ist von MVC[11] abgeleitet,
trennt aber strikter zwischen View und Presenter und erlaubt eine engere Kopplung zwischen
Model und Presenter. Diese Eigenschaft erlaubt es, weitreichende Modultests des Presenters
zu erstellen, wenn eine Dummy-View bereitgestellt wird, die vordefinierte Daten liefert.

Die engere Kopplung zwischen Model und Presenter erlaubt es aufserdem, viele Interfa-
ces einzusparen und somit Komplexitidt zu vermeiden. Auf der anderen Seite erlaubt die
Entkopplung von Presenter und View einfachere Programmzustidnde, da der Grofsteil des
Zustands in der View zu finden ist. Der Presenter ist lediglich fiir Zustandsiibergdnge verant-
wortlich, die zum grofsten Teil in zwei Teile aufgeteilt werden kénnen: die Behandlung und
Priifung der eingegebenen Daten, gefolgt von der Initialisierung und Anzeige der ndchsten
Oberflache. Das Datenmodell ist zustandslos.

An manchen Stellen miissen Vorgaben des Architekturmusters ignoriert werden, um die
Ubersichtlichkeit des Programms zu wahren. Bei der Implementierung wurden diese Fille
individuell betrachtet und entschieden.

21

3. Entwurf

Um die View vom Presenter zu entkoppeln, wurde das ,, Abstract Factory”-Pattern[1] ver-
wendet. Hierbei wird die erste View genutzt, die gefunden wird. Da die Anwendung gezielt
fiir einen Kunden entwickelt wird, ist nicht zu erwarten, dass sich im Betrieb mehr als eine
View finden wird. Diese Methode erlaubt jedoch, andere Views zu Testzwecken bereitzu-
stellen, oder in Zukunft mit geringem Aufwand eine modernere View zu entwickeln und
bereitzustellen.

MVP gibt eine grobe Trennung der Programmkomponenten vor, weshalb die Anwendung in
drei Haupt-Unterprojekte aufgeteilt wurde: ,model”, ,,view” und , presenter”. Ein viertes
Unterprojekt — ,,utils” — wurde vorgesehen, um nicht-anwendungspezifischen, allgemein
niitzlichen Code bereitzustellen.

Um Hauptkomponenten des Programms voneinander abzugrenzen und hervorzuheben,
wurden diese Unterprojekte in Pakete aufgeteilt. Interfaces fiir bestimmte Pakete werden in
Unterpaketen mit dem Namen , interfaces” bereitgestellt.

Im folgenden wird die Paketstruktur genauer erlautert.

model
Die Paketstruktur fiir das model-Unterprojekt sieht wie folgt aus (interfaces-Pakete sind
der Ubersichtlichkeit halber nicht aufgefiihrt):

- constraints
Enthélt Constraint-Implementierungen.

- factories
Enthilt die Factories, die die Standard-Constraints bereitstellen.

school
Enthélt die Implementierungen der verschiedenen Schularten.

- serialisation
Enthélt Implementierungen von Datei Ein-/Ausgaben.

- time
Enthélt verschiedene Zeit-Reprasentationen.
Das Model enthilt die Geschéftslogik, und insbesondere die Implementierung des Speicherns
und Ladens von Dateien. Dadurch kénnen Erweiterungen und Anderungen, die nur die

Logik betreffen, komplett im Model stattfinden. So braucht das Hinzuftigen neuer Constraints
keine projektspezifischen Abhédngigkeiten aufierhalb des Models.

22

3.1. Architekturentwurf

view

Die Paketstruktur fiir das view-Unterprojekt sieht wie folgt aus (interfaces-Pakete sind der
Ubersichtlichkeit halber nicht aufgefiihrt):

- adapters
Hier werden die Constraint-Adapters implementiert, wie unten in ,,3.1.2 Constraints: 3.
Entwurf” beschrieben.

- main
Hier werden die Haupt-Views implementiert.

- panels
Dieses Unterpaket enthélt die Panels, die von den Haupt-Views angezeigt werden.

- message
Implementiert die graphischen Oberfldchen fiir Benachrichtigungsdialoge.

- util
Enthilt Klassen, die in der gesamten View verwendet werden.

Die View ist komplett vom Rest des Projekts entkoppelt. Dadurch kann sie leicht komplett
oder teilweise ausgetauscht werden. Sie wurde jedoch auf Swing hin konzipiert, so dass in
nicht Swing-basierten Implementierungen einige Funktionen und Parameter durch Dummy-
Implementierungen bereitgestellt werden miissen. Daraus folgt, dass die Kommunikation
zur View gegen null und andere unerwartete Werte abgesichert werden muss.

presenter

Die Paketstruktur fiir das presenter-Unterprojekt sieht wie folgt aus (interfaces-Pakete
sind der Ubersichtlichkeit halber nicht aufgefiihrt):

- constraints
Enthilt die Programmlogik zum Auffinden und Zugéanglich machen der Constraints.

- listeners
Listeners, die auf Events der View horen.

- phase
Implementiert die Steuerung der Phasen, die einzelne Arbeitsschritte im Leitsystem
darstellen.

Im aktuellen Entwurf sind die Listener Swing-spezifisch, und kénnen nicht unbedingt auf
andere GUI-Frameworks angewendet werden. Dies stellt fiir die aktuelle Implementierung
kein Problem dar, da sie vollstindig auf Swing basiert. Der Vorteil dieses Entwurfs besteht in
der Wiederverwendung des Codes, wobei Zeit eingespart und die Wartbarkeit erhoht wird,
indem bekannte Konstrukte verwendet werden. In Zukunft sollte jedoch tiberlegt werden,
ob eine Abstraktion sinnvoll sein kdnnte.

23

3. Entwurf

Der Einstiegspunkt der Anwendung befindet sich im Presenter, speziell in der JVS2-Java-
Klasse. Diese Klasse enthilt einige statische Methoden und Felder, die den Zustand der
laufenden Anwendung enthalten. Dies erleichtert den Zugriff auf den aktuellen Zustand
durch beliebige Bereiche des Presenters, da sie zentral und einfach zugénglich implementiert
sind. Dieser Entwurf das potentielle Problem, dass keine zwei Anwendungen gleichzeitig in
der gleichen JVM aktiv sein diirfen, da sie auf die selben Zustandsinformationen zugreifen
und sich so gegenseitig beeinflussen wiirden. Da jedoch pro Anwendung immer eine eigene
JVM gestartet wird, wird dies in der Praxis kein Problem darstellen.

utils

Das utils-Unterprojekt enthdlt nur ein Paket namens xml. Darin befinden sich Hilfsklassen
fur die (De-)Serialisierung. Das Hauptpaket dieses Unterprojekts enthélt die eigentlichen
Hilfsklassen, die verschiedene Funktionen implementieren, die im gesamten Projekt von
Nutzen sind und auch in anderen Projekten verwendet werden konnen.

3.1.2. Constraints
Der Entwurf der Constraint-Unterstiitzung war eine der grofien Herausforderungen dieses
Projekts. Folgende Eigenschaften wurden gefordert:
e Constraints miissen an- und abschaltbar sein.
e Es sollte leicht sein, neue Constraints hinzuzuftigen.
e Es gibt die Schweregrade , kritisch”, , Fehler”, ,Warnung” und , Information”.
o Constraints sollten zentral implementiert sein, nicht tiber den kompletten Code verteilt.
e Einige Constraints miissen wahrend der Eingabe gepriift werden konnen.

e Die Verletzungen von Constraints muss in verschiedene Schweregrade unterteilbar
sein.

o Verletzte Constraints miissen dem Benutzer den Grund der Verletzung mitteilen und
ihm eine Moglichkeit kommunizieren kénnen, wie die Verletzung behoben werden
kann.

e Die Verletzung eines Constraints muss fiir einzelne Objekte ignoriert werden konnen,
sofern die Verletzung nicht vom Schweregrad ,kritisch” ist. So soll der Benutzer
beispielsweise eine Warnung fiir eine bestimmte JVS endgiiltig abschalten konnen.

Die Constraint-Unterstiitzung durchlief drei Entwurfs-Iterationen, bis ein Entwurf entwickelt
war, der alle geforderten Eigenschaften abdeckte.

24

3.1. Architekturentwurf

Constraints: 1. Entwurf

Der erste Entwurf unterschied nicht zwischen Constraints, deren Resultate interaktiv
wahrend der Eingabe gepriift, angezeigt und aktualisiert wurden (,interaktive” oder
,ondemand”-Constraints) und solchen, die komplexere Verhéltnisse priiften und erst bei
der Bestdtigung einer Eingabe aufgerufen wurden (,normale” Constraints). Dieses Problem
machte den Entwurf unbrauchbar und und hatte zur Folge, dass die Kommunikation der
Resultate nicht berticksichtigt wurde.

Ein Element des ersten Entwurfs wurde jedoch in den folgenden Iterationen iibernommen:
die ,ConstraintRegistry”. Diese Klasse sollte dartiber Buch fiihren, welche Constraints
aktiv waren, bzw. fiir welche Objekte sie deaktiviert wurden. Leider wurde beim Entwurf
dieser Klasse die Serialisierung nicht berticksichtigt, so dass diese Einstellungen im aktuellen
Entwurf nicht gespeichert werden. Der Kunde akzeptierte diese Einschrankung, da sie
Komplexitdt bei der Constraint-Verwaltung vermeidet: Werden bei einer Ausfithrung zu
viele Constraints abgeschaltet, muss das Programm nur neu gestartet werden, um den
Ursprungszustand wieder herzustellen.

Der Hauptgrund fiir den Entwurf der ConstraintRegistry war die Eigenschaft von JVS
Planung, in vielen Situationen mehrfach redundant zu warnen. Die ConstraintRegistry kann
verwendet werden, um bestimmte Constraints fiir bestimmte Objekte zu deaktivieren. So
kann konzeptionell eine Warnung deaktiviert werden, die fiir eine Schulklasse bereits
angezeigt wurde. Somit wird diese Warnung fiir diese Schulklasse in Zukunft nicht mehr
angezeigt, was die Moglichkeit schafft, die Verbositdt des Programms zu verringern.

Constraints: 2. Entwurf

Der zweite Entwurf unterschied bereits zwischen interaktiven und normalen Constraints.
Allerdings sah er vor, dass interaktive Constraints mit der View registriert wiirden. Aufler-
dem war eine direkte Kommunikation zwischen Model und View vorgesehen, was dem
MVP-Pattern widerspricht und erfordert hatte, dass die View das Model kennt. Dieses kriti-
sche Problem wurde schnell erkannt und bewirkte den friihzeitigen Abbruch der weiteren
Planung.

Der zweite Entwurf sah auch vor, Javas InputVerifier' zur interaktiven Constraint-
Validierung zu verwenden. Leider kann dieser Mechanismus jedoch nur zwischen , korrekt”
und ,inkorrekt” unterscheiden, so dass er den Anforderungen nicht entsprach. Aufierdem
kann jeder Komponente nur ein InputVerifier zugeordnet werden. Dies hitte es erforder-
lich gemacht, eine weitere Abstraktionsebene einzufiihren, um mehrere Constraints an eine
Komponente zu binden.

Tsiehe http://docs.oracle.com/javase/7/docs/api/javax/swing/InputVerifier.html

25

http://docs.oracle.com/javase/7/docs/api/javax/swing/InputVerifier.html

3. Entwurf

Constraints: 3. Entwurf

An dieser Stelle wurde offensichtlich, dass eine weitere Recherche sinnvoll wire. Bei dieser
Recherche wurde , JGoodies Validation”[6] gefunden, welches eine interaktive Priifung von
Eingabedaten ermdoglicht. Diese interaktive Priifung ist sehr vollstindig und beinhaltet die
Moglichkeit, Eingabefelder asynchron zu priifen.

Vom Aufbau her gibt es die Moglichkeit, Constraints zentral zu definieren, und mittels
Validators zu komplexen Gebilden zu verbinden. So kann man angeben, dass nur einer
von mehreren Constraints validieren muss, um eine Priifung erfolgreich zu beenden (OR-
Verkniipfung). Andere logische Verkniipfungen waren auch verwendbar. Leider gab es keine
Moglichkeit, nicht-interaktive Constraints zu definieren, und auch die Dokumentation war
nicht mehr zuganglich, da die Webseiten-Verkniipfungen nicht mehr giiltig waren.

Validierungsergebnisse werden in JGoodies Validation nicht durch einfache boolesche Werte
iibertragen, sondern mittels spezieller Validierungsergebnis-Objekte, die auch einen Schwe-
regrad angeben konnten. Leider waren nur die Schweregrade , Fehler”, ,, Warnung” und
,Information” verfiigbar. JVS2 benotigte aber zuséatzlich den Schweregrad , kritisch”.

Die von JGoodies Validation gebotene Komplexitdt wurde in JVS2 nicht benétigt, dafiir aber
die Moglichkeit, normale Constraints zu implementieren. Das Konzept der Validators war
fir die Implementierung der interaktiven Constraints jedoch sehr sinnvoll, und auch die
Validierungsergebnis-Klasse hatte deutliche Vorteile. Aus diesen Griinden wurde entschieden,
zwar eine eigene Implementierung der Constraint-Validierung bereitzustellen, deren Entwurf
jedoch stellenweise an JGoodies Validation anzulehnen.

Der endgiiltige Entwurf unterscheidet auf oberster Ebene nicht zwischen interaktiven und
normalen Constraints. Dies erlaubt es, beide Constraintarten von einer ConstraintRegistry
zu verwalten, die die (De-)Aktivierung von Constraints auf globaler Ebene erlaubt. Dies ver-
einfacht die Constraint-Verwaltung fiir den Benutzer. Auf dieser Ebene werden Eigenschaften
definiert, die interaktive und normale Constraints teilen. Das sind ID, Name, Beschreibung
und Prioritét. Die Prioritit ist eine Ganzzahl, fiir die gilt: je hoher die Zahl desto hoher
die Prioritét. Sie wird verwendet, um die Reihenfolge der Constraints bei ihrer Ausfiihrung
festzulegen.

Bei der Priifung wird primér zwischen interaktiven und normalen Constraints unterschie-
den. Interaktive Constraints werden bei der Initialisierung der Anwendung in Executors
zusammengefasst, die die tatsdchliche Eingabe-Validierung verwalten. Diese Executors wer-
den mittels eines Bindings an ein oder mehrere Oberflichenelemente gebunden. Bindings
verbinden dabei mehrere einfache Eingabe-Datentypen zu einem komplexen Datentyp, der
validiert wird. So wird es beispielsweise ermoglicht, zwei Datumseingaben zu einem Zeit-
raum zu verbinden, oder auch nur eine String-Eingabe vor der Validierung in einen anderen
Datentyp zu parsen.

Die konkrete Uberwachung der Oberflichenelemente ist grofiteils elementspezifisch. So
werden fiir die Uberwachung von Texteingaben andere Listener benétigt als fiir die Uberwa-
chung einer Liste. Um die Anzahl der nétigen Bindings nicht durch verschiedene Varianten

26

3.1. Architekturentwurf

fiir verschiedene Listener aufzubldhen, wurden Adapters als zusitzliche Abstraktionsebene
eingefiihrt. Diese Adapters abstrahieren die verschiedenen Listener-Varianten und bieten
den Bindings ein einheitliches Interface um auf Eingaben zu horen.

Der Aufbau einer Datensatzpriifung ist in Abbildung 3.1 dargestellt. Zu beachten ist hier,
dass Adapters mehreren Bindings zugeordnet werden konnen. Dies erlaubt die Zuordnung
eines Eingabefeldes zu mehreren Priifungen.

Ein Beispiel hierfiir ist die Eingabe des Startdatums eines Ferienzeitraums. Das Datum selbst
muss giiltig sein, der Zeitraum von Start- bis Enddatum muss giiltig sein, und der Zeitraum
vom Enddatum der vorherigen Ferien bis zum Startdatum des aktuellen Ferienzeitraums
muss ebenfalls giiltig sein. Somit ist dieses Startdatum an drei Priifungen beteiligt und dem
entsprechenden Adapter sollten drei Bindings zugewiesen werden.

Constraint
\ ’/ Adapter

Constraint ~—# Executor =—s= Binding

.

“ Adapter
Canstraint -

Abbildung 3.1.: Interaktive Constraints: Zuweisung der an der Priifung eines Datensatzes
beteiligten Elemente.
Der Arbeitsablauf einer Eingabednderung sieht in diesem Modell wie folgt aus:

1. Ein Adapter ermittelt eine Eingabednderung, normalerweise indem er als Listener ein
Event abfangt.

2. Der Adapter kommuniziert den neuen Feldwert an die ihm zugewiesenen Bindings.

3. Jedes Binding verwendet den neuen Wert, um den zu validierenden Datensatz zu
aktualisieren.

4. Jedes Binding kommuniziert dem ihm zugewiesenen Executor, dass gednderte Daten
vorliegen.

5. Der Executor entscheidet, wann er den neuen Wert priifen will und fragt zu diesem
Zeitpunkt das Binding nach dem aktuellen Wert seines Datensatzes.

6. Der Executor iteriert iiber die ihm zugewiesenen interaktiven Constraints, wobei
erst nach Schweregrad und dann nach Prioritét sortiert wird. Je nach Executor wird
entweder nach dem ersten Fehlschlag abgebrochen oder alle Constraints werden
gepriift.

7. Der Executor teilt dem Binding das Resultat der Priifung mit.

8. Das Binding teilt allen seinen Adapters das Resultat der Priifung mit.

27

3. Entwurf

9. Die Adapters visualisieren das Resultat auf eine Weise, die zu dem tiberwachten
Oberflachenelement passt.

Dieses Modell hat den Vorteil, dass die Priifung bei Bedarf asynchron verlaufen kann und
dass die Komplexitdt auf jeder Ebene minimiert wird, ohne Flexibilitdt einzubiifsen.

Interaktive Constraints miissen sehr schnell reagieren. Konkret bedeutet das, dass die
maximale Ausfiithrungszeit aller Constraints eines Eingabefeldes unter o,1 s liegen sollte.
Um den Entwickler zu einer entsprechenden Implementierung zu ermutigen, wird bei
den Priifungergebnissen interaktiver Constraints nur zwischen , giiltig” und ,,ungiiltig”
unterschieden. Somit kann der Entwickler keine komplexen Ergebnisse ausdriicken und ist
nicht versucht, mehr als ein Resultat pro Priifung zu liefern.

Normale Constraints sind einfacher entworfen. Fiir sie existiert keine direkte Interaktion
mit der View. Dadurch konnte das Konzept der Executors komplett ausgeschlossen werden,
was die Komplexitit stark verringert. Normale Constraints konzentrieren sich darauf, die
Eigenschaften eines konkreten Objekts zu priifen. Konzeptionell werden sie immer dann
ausgefiihrt, wenn ein Objekt vollstandig definiert wurde. In der Realitét ist dieses Konzept
nicht durchfiihrbar, da der vorgegebene Arbeitsablauf bestimmte Klassen in mehreren
Arbeitsschritten mit Daten fiillt. Somit miissen an manchen Stellen Teilobjekte gepriift
werden koénnen.

Um diesen Gegebenheiten zu entsprechen, stellen alle normalen Constraints eine Methode
bereit, die Eigenschaften eines kompletten Objekts zu priifen und mehrere Methoden, um
die einzelnen Eigenschaften individuell zu validieren.

Da normale Constraints nicht an bestimmte Oberflachenelemente gebunden sind, werden sie
nicht wihrend der Programminitialisierung einmal erstellt, sondern bei jeder Priifung erneut
abgerufen und direkt ausgefiihrt. Da sie immer am Ende eines Arbeitsschritts aufgerufen
werden, miissen sie nicht so schnell reagieren wie interaktive Constraints. Hier ist es kein
Problem, wenn die Ausfithrungszeit 2 - 3 s betrédgt. Dies erlaubt komplexere Priifungen.

Da der Benutzer an dieser Stelle nicht bei jeder Priifung mit einem neuen Problem konfron-
tiert werden soll, ist es hier angebracht, alle vorhandenen Probleme zu ermitteln und dem
Benutzer zu préasentieren. Um dem Benutzer an dieser Stelle irrelevante Informationen zu
ersparen, werden die gefundenen Probleme nach Schweregrad gruppiert und prasentiert.
Hier wurde entschieden, pro Schweregrad ein Dialogfeld zu 6ffnen. So kann der Benutzer
entscheiden, wie er mit den schwereren Problemen umgehen will, ohne von niederen Schwe-
regraden beléstigt zu werden. Sollte er entscheiden, die Probleme des hoheren Schweregrads
zu ignorieren, werden die des jeweils ndachsten Schweregrads angezeigt.

Um nachtréglich neue Constraints nachladen zu koénnen, wurde das , Abstract Factory”-
Pattern[1] fiir das Auffinden der vorhandenen Constraints angewendet.

28

3.1. Architekturentwurf

3.1.3. Speichersystem

Eine in JVS2 vorhandene Funktionalitét sollte die Moglichkeit sein, ab einem bestimmten
Punkt der Planung weitere Planungschritte experimentell durchzufiihren und bei einem
minderwertigen Ergebnis auf einen fritheren Zustand zuriickgreifen zu konnen. Diese
Funktionalitdt wurde aus Zeitgriinden nicht explizit fiir JVS2 geplant oder implementiert. Sie
lasst sich jedoch emulieren, indem der Benutzer vor Experimenten einen neuen Speicherstand
anlegt und mit diesem weiterarbeitet. Der Kunde ist mit dieser Moglichkeit zufrieden, da er
das Verfahren von anderen Programmen — wie Microsoft Word - bereits kennt.

Die in JVS Planung verwendete Java-Serialisierung erfiillt nicht die Anforderungen an ein
modernes Speichersystem und erschwert die Anpassung des Codes. Das neue Speichersystem
soll diese Schwachen vermeiden.

Es wurden zwei Moglichkeiten ermittelt, das neue Speichersystem zu realisieren: basierend
auf einer Datenbank oder auf einer XML-Reprasentation.

Datenbank

Die Verwendung einer Datenbank zur Datenverwaltung hitte eine Reihe von Vorteilen:

e Teilautomatisierte Aktualisierung des Datenbankschemas um Anderungen im Speicher-
format zu reflektieren: Kleine Anderungen im Speicherformat konnen von gangigen
Datenbank-Abstraktionsschichten ohne zusitzlichen Aufwand fiir Entwickler und
Benutzer in die Datenbank tibernommen werden.

e Beim Speichern miissen nur gednderte Daten modifiziert werden, was auch bei grofien
Projekten extrem schnelles Speichern ermoglicht.

e Transaktionen, um Anderungen atomar abzuarbeiten.

e Bei einigen Datenbanksystemen gehoren Undo- und Checkpoint-Funktionalitdt zum
Funktionsumfang und kénnten so ohne zusitzlichen Aufwand angeboten werden.

Sie hatte aber auch den groflen Nachteil, dass Datenbanken regelmafSig gewartet werden
sollten, um Leistungs-Verringerung und Datenkorruption zu vermeiden. Dies kann dem
Benutzer aber nicht zugetraut werden, was bedeuten wiirde, dass die Anwendung diese
Aufgabe automatisieren miisste oder regelmafliige Wartungen durch den Entwickler durch-
geftihrt werden miissten. Aufierdem hat das Aufsetzen und Warten einer Datenbank erst
bei grofseren Datenmengen ein positives Preis-Leistungsverhéltnis, als sie im Rahmen eines
Planungsprojekts zu erwarten sind.

Die Verwendung einer Datenbank wiirde auch eine Moglichkeit zum Datenexport beno-
tigen, um die Daten zwischen verschiedenen JVSz-Installationen teilen zu konnen. Dieser
Datenexport wiirde wahrscheinlich auf XML basieren.

29

3. Entwurf

XML

Die Verwendung von XML zur Datenserialisierung vermeidet diese Probleme. Da nach
Abschluss eines Projekts keine neuen Daten an eine XML-Datei angehdangt werden, bleiben
ihre Grofie und die Leistung beim Zugriff auf die Daten konstant. Die zu erwartende
Datenmenge (1 MB - 5 MB) eignet sich gut fiir eine XML-Datei, da sowohl die Serialisierung
als auch die Deserialisierung sehr schnell verlaufen.

Die Vorteile von XML als Serialisierungsformat sind:

e Die Daten eines Projekts sind an einem Ort gespeichert und konnen beliebig gesichert
und verschoben werden.

e Das Datenformat eignet sich sehr gut zur Komprimierung, so dass eine CD voraus-
sichtlich fiir die Datensicherung von mehr als 100 Jahren? reicht3.

e Projekte sind komplett voneinander getrennt und konnen sich nicht gegenseitig beein-
flussen.

e Konstante Leistung nach Projektabschluss: Die Leistung verschlechtert sich nicht
dadurch, dass andere Projekte auf dem gleichen Datentrager vorhanden sind.

e Geringer Overhead als bei der Verwendung einer Datenbank, da keine separate An-
wendung zur Bereitstellung der Daten benotigt wird.

Da die Vorteile einer auf XML basierenden Implementierung — verglichen mit der auf einer
Datenbank basierenden — tiberwogen, fiel die Wahl auf XML.

Als Alternativen fiir die Bereitstellung der XML-Serialisierungs-Implementierung wurden
JAXB[4] und JiBX[7] identifiziert. Beide Projekte ermoglichen eine Abstraktion der XML-
Darstellung von der tatsdchlichen Implementierung. JAXB hatte jedoch den Vorteil, dass
es im JRE#* enthalten ist, von vielen Projekten eingesetzt wird und dem Entwickler bereits
bekannt war.

Aus diesen Griinden fiel die Entscheidung auf JAXB.

3.1.4. Leitsystem & Phasen

Das Leitsystem ist ein aus JVS Planung tibernommenes Konzept. Es ermdglicht dem Benutzer
eine Verwendung des Programms, auch wenn er es zuvor noch nicht kannte. Hierbei wurde
der typische Arbeitsablauf in eine Reihe von Arbeitsschritten aufgeteilt, die konzeptionell
nacheinander abgearbeitet werden sollten. Die meisten dieser Arbeitsschritte sind nicht

2unkomprimierte GroBe einer Projektdatei < 5 MB, Gro8e einer CD = 700 MB; 700 +~ 5 = 140

3Ein nach dem Projektabschluss durchgefiihrter Test offenbarte eine Dateigroie von 1,4 MB fiir die unkom-
primierte Form der Projektdatei und eine Grofie von 36 KB fiir eine ZIP-komprimierte Form, was diese
Erwartung untermauert.

4Java Runtime Environment — siehe http://www.oracle.com/technetwork/java/javase/downloads/index.
html

30

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

3.1. Architekturentwurf

direkt voneinander abhéngig, weshalb ihre Reihenfolge gedndert werden konnte. Der Kunde
wiinscht diese Funktionalitdt jedoch nicht, weshalb die Reihenfolge fest vorgegeben wurde.

Das Leitsystem ermoglicht es dem Anwender, vom aktuellen Arbeitsschritt zum ndchsten zu
springen. Hierbei wurden folgende Arbeitsschritte identifiziert:

1. Eingabe der Projekt-Metadaten

2. Eingabe der Feriendaten

Eingabe der JVS-Stammdaten

Eingabe der geblockten Termine von JVS

Eingabe der Grund- und Forderschul-Stammdaten

Eingabe der geblockten Termine von Grund- und Forderschulen

Durchfiihrung der Terminplanung

® N o AW

Generierung des Ausdrucks

Dieses Konzept wurde nicht verdndert, lediglich die ,,Leitsystem-Ubersicht” angepasst. Hier
wurde die Interaktivitdt erhoht, so dass der Benutzer sie verwenden kann, um zu einem be-
liebigen Arbeitsschritt zu springen. Diese Anderung benétigt eine Kommunikation zwischen
der graphischen Oberflache der Ubersicht und dem Presenter. Sonstige Anderungen sind
oberflachenspezifisch.

Das Leitsystem wird intern durch ,Phasen” représentiert, die den Arbeitsablauf unterteilen.
Dabei sind die Phasen untereinander nur lose gekoppelt, so dass ihre Reihenfolge weitgehend
anpassbar ist. Phasen haben weitgehend eine spezielle Ansicht in der Oberfldche. Sie sind
nur in Presenter und View vertreten, und bieten jeweils eine individuelle Sicht auf den
Datenbestand.

Phasen, die nicht in ihrer Reihenfolge verdndert werden diirfen, sind die Erfassung der
Projekt-Metadaten und die Generierung der Dokumente. Die Generierung der Dokumente
besitzt auflerdem keine spezielle Ansicht, da hier keine Daten dargestellt werden. Bei ihr
handelt es sich deshalb um eine ,virtuelle Phase”, die das Ende der Bearbeitung signali-
siert.

3.1.5. Sprache

Der Kunde erwartet eine Anwendung mit einer deutschen Benutzeroberflache. Somit muss
mindestens deutsch verfiigbar sein. Andere Sprachen konnten theoretisch auch unterstiitzt
werden. Da es sich bei JVS2 jedoch um ein Projekt handelt, dessen Verwendung ausschliefilich
in Deutschland geplant ist, wird auf eine Unterstiitzung weiterer Sprachen oder anders
gearteter Internationalisierung verzichtet.

Da es sich bei diesem Projekt um ein deutsches Projekt mit deutscher Zielgruppe handelt,
das viele Fachbegriffe enthilt, die nicht leicht tibersetzt werden kénnen, wurde entschieden,

31

3. Entwurf

die Code-Dokumentation in deutscher Sprache zu halten. Der Code selbst soll englisch
geschrieben werden, mit deutschen Begriffen, wo es sich um typisch deutsche Namen und
Konzepte handelt.

3.1.6. Zeitdarstellung

JVS2 benotigt — wie auch JVS Planung — nur eine Darstellung des Datums und des belegten
Unterrichtszeitraums. Somit ist eine Zeitdarstellung mit einer Genauigkeit von Tag, Monat
und Jahr zuziiglich der Information zum Unterrichtszeitraum ausreichend. Um Kompa-
tibilitdt zu verwendeten Bibliotheken zu wahren, wurde entschlossen Javas Calendar als
Basis der Zeitdarstellung zu verwenden, genauere Informationen als das Datum jedoch
zu ignorieren. Stattdessen wird iiber eine Enumerationsklasse namens Slot der gewéhlte
Unterrichtszeitraum dargestellt.

32

3.2. Entwurf der graphischen Oberflache

3.2. Entwurf der graphischen Oberflache

RI=TE

Datei Leitsystem Schuljghr VS G5 &F65 Flanung Dokumente Einstellungen Hilfe

Abbildung 3.2.: JVS Planung: Ansicht nach Offnen eines Projekts

In diesem Unterkapitel wird der Entwurf der graphischen Oberfldche erldutert. Wo an-
gebracht, werden den neu entworfenen Oberflichen ihre Gegenstiicke aus JVS Planung
gegeniibergestellt, um Ahnlichkeiten und Anderungen hervorzuheben. So lisst sich aus dem
Vergleich von Abbildungen 3.2 und 3.3 erkennen, dass die Schriftgroflen in JVS2 vergrofert
wurden, wahrend die Standard-Fenstergrofse verringert wurde. Der Rest des Designs wurde
iibernommen.

Der Entwurf der graphischen Oberfliche wurde weitestgehend an JVS Planung angelehnt.
Allerdings wurde konsequenter auf Swing gesetzt, und die interaktive Constraintpriifung
berticksichtigt. An einigen Stellen wurde auch versucht, bereits vorhandene Entwurfskon-
zepte konsequenter einzusetzen. Im Gegensatz zu VS Planung wird von JVS2 eine minimale
Fenstergrofie von 700 x 400 px vorgeschrieben, da kleinere Fenster vom Layout nicht un-
tersttitzt werden. Dies verhindert, dass der Benutzer eine kleinere Fenstergrofie wahlt und
durch Layoutprobleme gestort wird.

33

3. Entwurf

Einplanung 2014/2015

Abbildung 3.3.: JVS2: Ansicht nach Offnen eines Projekts

Belegungsplanung beginnen Schuljahr 2013/2014

’7—

Abbildung 3.4.: JVS Planung: JVS-Auswahl bei kleinerem Fenster

34

3.2. Entwurf der graphischen Oberflache

Eine der identifizierten Schwachen von JVS Planung war die Tatsache, dass bei kleinen Fens-
tergroflen teilweise nicht mehr alle Oberfléchenelemente sichtbar und erreichbar waren (siehe
Abbildung 3.4). In JVS2 sollen in diesen Situationen konsequent Scrollbalken auftauchen,
damit der Benutzer immer auf alle Elemente zugreifen kann.

3.2.1. Kalender-Popup

Um eine modernere Benutzeroberfldche bereitstellen zu konnen, soll fiir Datumseingaben
ein Kalender-Popup eingebunden werden. Eine Voruntersuchung identifizierte die Projekte
,JCalendar”[5] (Abbildung 3.5) und ,Microba controls“[9] (Abbildung 3.6) als potentielle
Implementierungen dieser Funktionalitat.

May - 20062
Sun Mon Tue Wed Thu Fri Sak
15 1 z] 4 5 a]

19(7 i 9 | 10 || 11 | 1Z || 13
200 14 || 15 | hegy 17 | 18 (| 19] 20
21 21 || 22 | 23 || 24 [| 25 || 26 || 27

22 28 || 29 || 30 || 31

Abbildung 3.5.: JCalendar (Quelle: JCalendar-Webseite[5])

ol

Decermber || 2005 -

-

Sun Mon Tue Wed Thu Fri Sat
1 2 3

4 o & 7 3 e 10
11 12 13 14 15 1e 17
15 19 20 21 22 23 24
25 26 27 023 29 30 l%

today: Dec 25, 2005 nnne@l

Abbildung 3.6.: Microba controls (Quelle: Microba-Screenshot-Webseite[10])

Da JCalendar fiir den Entwickler einfacher zu verwenden und in der Ausfiihrung schneller
sein soll[17], fiel die Wahl letztendlich auf JCalendar. Auflerdem beinhaltet Microba controls
eine Reihe weiterer Bedienelemente, die in [V S2 nicht verwendet werden. Somit wiirde es
das Programm nur unnétig vergrofiern.

35

3. Entwurf

3.2.2. Projektstart

Zum Start des Projekts werden die Projektparameter abgefragt. Da dies in JVS Planung an-
hand einer Reihe von Dialogen geschah, wurde diese Eingabemaske komplett neu entworfen.
So kénnen nun alle relevanten Daten an einer Stelle eingegeben werden, was dem Benutzer
eine bessere Ubersicht ermoglicht. Es erzielt auch eine bessere Konsistenz der Bedienung.
Die neue Eingabemaske ist in Abbildung 3.7 dargestellt.

_Ioix

Datel Leitsystem Schufjahr VS GS & F35 Planung Dokumente Einstelungen Hife
~Schuljahr
Bitte wahlen Sie das Schuljahr aus, fir das Sie planen mochten:

IZD 14/2015 = |

" Projektname

Bitte geben Sie der neuen Planung einen Namen:
Einplanung 2014/2015

~alte Planung

Wahlen Sie eine alte Planung zwecks Dateniibernahme aus:
Gewahiter Dateiname:

Schuljahr auswahlen |

Abbrechen | OK & Speichern

Abbildung 3.7.: Eingabe der Projektdaten

3.2. Entwurf der graphischen Oberflache

3.2.3. Ferieneingabe

Die Eingabe der Sommerferien wurde auf Kundenwunsch mit der Eingabe der restlichen
Ferien in einer Maske zusammengefiihrt. Die Faschingsferien werden aus dem selben Grund
zusétzlich erfasst. Sonst wurde die Oberfléche komplett von JVS Planung tibernommen.

IR
Datel Leftsystem Schuljahr WS GS & F3S Planung Dokumente Einstelungen Hilfe
VVETTTTJCTTISTETTET ﬂ

VOIm |2U.12.2[]l4 3| bis zum IDS.DI.EUIS E

- Faschingsferien

vom IMIE bis zum Mg
- Osterferien

vom Imr_?ﬂ bis zum Imgl
- Pfingstferien

vom |23.05.2[115 [bis zum ID?.06.2015 E

- Feiertage in diesem Schuljahr

Tag der Deutschen Einheit: 03.10.2014 Karfreitag: 03.04.2015

Allerheiigen: 01.11.2014 Ostermontag: 06.04.2015

1. Weihnachtsfeiertaq: 25.12.2014 Maifeiertaq: 01.05.2015 Ll
Zuriicksetzen OK & Speichern

Abbildung 3.8.: Ferieneingabe und Anzeige der berechneten Ferien

37

3. Entwurf

3.2.4. Eingabe geblockter Termine

Die Eingabemasken fiir geblockte Termine wurden vereinfacht, indem die Termineingabe
und -anzeige in der gleichen Maske realisiert wurde. Zusétzlich konnen Termine nun auch
geloscht werden.

1Tk
Datei Leitsystem Schuljahr WS GS & FGS Planung Dokumente Einstellungen Hife
~IVS— 1 Schulungsfreie Tageshadlften =
m Bezeichung: ITageshEilﬁenI:rbcl{
Ajtbach .
Dettingen | Elo |‘u’0rmrttag =]
Essingen Zuriicksetzen | oK |
Nirtingen

Sielmingen | - schylungsfrele Ganztage
15.09.2014 (nach SoFe)

<«

26.11.2014 (Olympiade)

X
X
18.12.2014 (RefTreff) x|
X
X
|
|

EUREY

11.02.2015 (PAD)

=]

22.04.2015 (VST/Bespr.)

1

P T - . LY

Zuriicksetzen OK & Speichern

Abbildung 3.9.: JVS: Eingabe geblockter Termine

Die Ausnahme zu dieser Regel bildet die Eingabe von beweglichen Ferientagen, da diese mit
anderen Schulen geteilt werden. Die Moglichkeit, bewegliche Ferientage zu l6schen, wiirde
zu viel Komplexitdt schaffen und deshalb wahrscheinlich zu Eingabefehlern fiihren. Deshalb
wurde diese Funktionalitdt in Riicksprache mit dem Kunden an dieser Stelle deaktiviert.

Die Eingabemaske fiir geblockte Termine der JVS (Abbildung 3.9) wurde auch dahingehend
vereinfacht, dass die JVS-Auswahl nun in der gleichen Maske stattfindet, wie die Anzeige
der geblockten Termine. Dies verringert die Anzahl der ineinander verschachtelten Eingabe-
masken, die der Benutzer kennen muss und vereinheitlicht das Design der Anwendung.

Zum Vergleich enthalten die Abbildungen 3.10 und 3.11 die in JVS Planung verwendete
Oberflache, die — zusétzlich zu den geschilderten Eigenschaften — fiir die verschiedenen
Termindarstellungen ein GridLayout als LayoutManager verwendete, was zu visuell wenig
ansprechenden Darstellungen fithren und die Ubersichtlichkeit behindern konnte.

38

3.2. Entwurf der graphischen Oberflache

Ausschlusstermine der Jugendverkehrsschulen Schuljahr 2013/2014

’;

Abbildung 3.10.: JVS Planung: Eingabe geblockter JVS-Termine (1. Bildschirm)

JVs-Ausschlusstermine von Esslingen Schuljahr 2013/2014

Abbildung 3.11.: J[VS Planung: Eingabe geblockter JVS-Termine (2. Bildschirm)

39

3. Entwurf

3.2.5. Belegungsplanung

Schulwahl- und Detailansicht

== Belegungsplanung -- Einplanung 20142015 - |I:I|£|

Datei Leitsystem Schuljahr WS GS & FOS Planung Dokumente Einstelungen Hife

Altbach| Dettingen Essingenl NE]rIjngenl Slelm'|ngen|
rGrundschulen———————rName der Schule——————— -

1. GHS E.Kastner Nelg. | || |

GHS Katharinen-ES

: GS Klosterh MNeling. Farbe diese Schule Wahlen... |

. GHS Lerchendck.ES =]

2. G5 Eichendorff ES 5

3. Evang.Sch.ES Klassenbesuche

4, G5 Hegens.-Liebbr. (keine Klassen)

Z' GHS Herder £5 rVisualisierungsfarbe der Schule
7

8

- Aktionen fiir den Belegungsplan

~Forderschulen Schulbesuche eintragen | Plan anzeigen |

1. ERZHIL.Bonhoef. ES
2. FO Linden Nellgn.
3. FO Rohrdck. ES

4, GEIST Rohrack. ES -
4 | ;I_I

Abbildung 3.12.: Belegungsplanung: Detailansicht

Analog zu der Einsparung einer verschachtelten Eingabemaske (siehe Abbildung 3.13) bei
der Eingabe geblockter JVS-Termine, wird auch bei der Belegungsplanung die Auswahl der
JVS verdndert. Wie in Abbildung 3.12 zu sehen ist, kann die JVS durch einen Tab am oberen
Rand der Maske gewdhlt werden. Dieses Verfahren hat den Vorteil, dass es ein Bedienelement
verwendet, das von jedem aktuellen Internet-Browser bekannt ist. Somit kann der Benutzer
die Bedienung sofort intuitiv erfassen. Die Implementierung von JVS Planung, die Buttons
fiir diese Funktionalitdt verwendete (siehe Abbildungen 3.13 und 3.14), war umstandlicher
und unflexibler.

Eine weitere Anderung stellt die Anzeige von lediglich zwei Auswahllisten — eine fiir
Grund- und eine fiir Forderschulen — dar. Hier wurde die Unterscheidung zwischen Schulen
mit und ohne verletzten Constraints eingespart, da in reellen Planungen fast alle Schulen
mindestens einen Constraint verletzen. Zusatzlich wurden die Schulnamen eingefdrbt, was
eine einfachere Unterscheidung von Grund- und Foérderschulen ermdoglicht.

Die beschriebenen Anderungen werden durch den Vergleich der Abbildungen 3.14 und 3.12
verdeutlicht.

40

3.2. Entwurf der graphischen Oberflache

Belegungsplanung beginnen Schuljahr 20132014

’;

Abbildung 3.13.: JVS Planung: Belegungsplanung-Detailansicht (1. Bildschirm)

JVS Dettingen: Schuleniibersicht Schuljahr 2013/2014

Abbildung 3.14.: VS Planung: Belegungsplanung-Detailansicht (2. Bildschirm)

41

3. Entwurf

Wochenansicht

=loix
Datei Leitsystem Schuljahr VS GS&F65 Planung Dokumente Einstelungen Hife
r Aktive Schule

GS Hegens.-Liebbr. & 4a (5/5) 4b (5/5)

Ausblenden L LEEIEr
[r——— IGS Hegens.-Liebbr.
Springe zu... 1. Besuch

September
Oktober
November
Dezember Mo, 27.10.2014 Di, 28.10.2014 Mi, 29.10.2014 Do, 30.10.2014 Fr, 31.10.2014
Januar
Februar
Marz
April
Mai
Juni
Jui

Herbstferien

Mo, 03.11.2014

Di, 04.11.2014

Mi, 05.11.2014 Do, 06.11.2014 Fr, 07.11.2014
GS St.Bernhard ES
1. Besuch

IGS Hegens.-Liebbr. GS St.Bernhard ES

2. Besuch 4b| 1. Besuch

IGS Hegens.-Liebbr. GS St.Bernhard ES

2. Besuch 4a 2. Besuch

Mo, 10.11.2014

Di, 11.11.2014 M|, 12.11.2014 Do, 13.11.2014 Fr, 14.11.2014
IGS Hegens.-Liebbr. GS St.Bernhard ES
3. Besuch 4b| Besuch

IGS Hegens.-Liebbr. t.Bernhard ES
3. Besuch =l

&

GS St.Bernhard ES
<< Auswahl 2. Besuch

Abbildung 3.15.: Belegungsplanung: Wochenansicht

Die Wochenansicht, die fiir die konkrete Terminplanung vorgesehen ist, wurde minimal
gedndert. Hier skaliert die Grofie der angezeigten Tagesdarstellungen lediglich mit der
ausgewdhlten Schriftgrofie und bei geblockten Terminen wird die Beschreibung dieser
Termine angezeigt. Zuséatzlich wird der Listeneintrag ,akt. Schule” (= aktive Schule) nur
angezeigt, wenn aktuell eine Schule eingeplant wird und fiir diese Schule Termine festgelegt
wurden. Die in JVS Planung vorhandenen Buttons zur teilautomatischen Planung wurden
entfernt, da diese Funktionalitit in J[VS2 entfernt wurde.

Diese Detaildnderungen sind auf den ersten Blick kaum erwdhnenswert, erleichtern dem
Benutzer die Arbeit aber sehr, da sie Arbeitsschritte einsparen und die Ubersichtlichkeit
erhohen.

42

3.2. Entwurf der graphischen Oberflache

3.2.6. Leitsystem

x
Aktueller Arbeitsschritt: 6 - GS & FOS Anmeldedaten

Verfligbare Arbeitsschritte:

Arbeitsschritt 1 - Neues Schuljahr (Datel —-> Neues =l

Schuljahr):

Einrichtung eines neuen Schuljahres (Jahresauswahl, ...)

Arbeitsschritt 2 — Ferien (Schuljahr -> Ferien):

Festlegung der Ferien.

Arbeitsschritt 3 — JVES Stammdaten (JVS —-»> Stammdaten) :
Fontrolle der Stammdaten (MName, Adresse, ...) der
Jugendverkehrsschulen.

Arbeitsschritt 4 — geblockte JVS-Termine (JVS —-> geblockte|
Termine) :

Festlegung der Blocktermine der Jugendverkehrsschulen.
Arbeitsschritt 5 — 38 & FOS Stammdaten (58 & FOs ->
Stammdaten) : Springe zu Schritt

Fontrolle der Stammdaten (Name, Adresse, JVS-Zuordnundg,
A Arr Criimde 1ind TArdoaeohaa]l o LI

Abbildung 3.16.: JVS2: neue Leitsystem-Ubersicht

Das Leitsystem wurde weitestgehend von JVS Planung iibernommen. Die grote Anderung
betrifft die Leitsystem-Ubersicht (Abbildung 3.16). Dieser Dialog wurde komplett iiberar-
beitet, um seine Ubersichtlichkeit und seinen Nutzen zu erhéhen. In der neuen Fassung
bekommt der Benutzer die Moglichkeit, einen Arbeitsschritt aus einer Liste auszuwéahlen
und so direkt anzusteuern.

Als Vergleich wird in Abbildung 3.17 die Leitsystem-Ubersicht dargestellt, wie sie in JVS
Planung implementiert war.

43

3. Entwurf

== (ibersicht der Arbeitsschritte x|

S5ie befinden =sich beim Arbeitsschrict Nummer 8.

Arbeitsschritte 1-5: (Datei -> MNeues Schuljahr)
Einrichtung eines neuen Schuljahres (Jahresauswahl,...)

Arbheitsschritt &6: (S5chuljahr -»> Weitere Ferien)
Festlegung der weiteren Ferien (Herbst-, Winter-, Cster- und Pfingstferien)

Arbeitsschritt T7: (JV3 —-> Stammdaten)
Eontrolle der Stammdaten (Name, Adresse,...) der Jugendverkehrsschulen

Arbeitszschrict 8: (JVS -» husschlusstermine)
Festlegung der Ausschlusstermine der Jugendverkehrsschulen

Arbheitsschritt 9: (G5 & F45 -»> Stammdaten -» Manuelle Eingabe)
Kontrolle der Stammdaten (Name, Adresse, JV5-Zuordnung,...) der Grund- und Firderschulen

Arbeitsschritt 10: (G5 & FG53 -» Anmeldedaten)
Ubertragung der Anmeldebéigen der Grund- und Férderschulen

Arbeitsschritt 11: (Planung -> Belegungsplanung)
Belegungsplanung (Einplanung der Schulklassen in die EKalender der Jugendverkehrsschulen)

Arbeitsschritt 12: (Dokumente -> Erstellen...)
Dokumentenerstellung (Generierung der Belegungspline zum Drucken und Verteilen)

oK

Abbildung 3.17.: JVS Planung: alte Leitsystem-Ubersicht

x
B =

 Pro-Tag-belegte-JVS-Validierer
v Prift, dass nur 4 JVS pro Tag belegt sind.

- Klassenbesuchszahl-Validierer
¥ Priift, dass ale Klassen ihre vorgesehene Anzahl Besuche einhalten.

~ Nachmittagsbesuche-Validierer
¥ Prift, dass alle Schulen genau einen Nachmittagsbesuch haben, sofern nicht anders gewiinscht.

- Besuche-pro-Woche-Validierer —
¥ Priift, dass jede Schule nur einen Besuch pro Woche zugewiesen bekommt.

~Waochentliche-Klassenbesuche-Validierer
I Prift, dass jeder x. Klassenbesuch einer Schule in der gleichen Woche stattfindet.

 Besuchszeitraum-Validierer
¥ Priift, dass ale Schulbesuche in einem méglichst kleinen Zeitraum stattfinden. =|

Abbildung 3.18.: Constraints: Einrichtungsdialog

44

3.2. Entwurf der graphischen Oberflache

3.2.7. Constraints

Der Entwurf und die Darstellung der Constraints wurden in JVS2 komplett tiberarbeitet. Ein
Entwurfselement, das beibehalten wurde, ist die Fahigkeit, Constraints zu (de-)aktivieren
(siehe Abbildung 3.18).

Interaktive Constraints

Interaktive Constraints reagieren auf jede sie betreffende Eingabe. Hierbei wird immer der
hochste Schweregrad fiir die Visualisierung der Verletzungsanzeige verwendet. Je nach
Eingabefeld konnen Verletzungen anders visualisiert werden — so werden Text-Eingabefelder
eingefarbt und mit einem Symbol versehen, wihrend Knopfe deaktiviert werden. Anschau-
lich dargestellt ist dies in Abbildung 3.19. Hier ist bei Eingabefeld 3.19 a ein kritischer
Constraint verletzt, bei Eingabefeld 3.19 b ein wichtiger und in Eingabefeldern 3.19 ¢ wird
vor einer potentielle Fehleingabe gewarnt.

Nicht jede Visualisierung findet direkt an dem Eingabefeld statt, das die Verletzung ausgelost
hat. So kann der ,,OK & Speichern”-Knopf bei kritischen Verletzungen ausgegraut werden,
wihrend die Verletzung durch eines der Felder der Eingabemaske verursacht wurde. Bei
Zeitraumeingaben werden die beiden am Zeitraum beteiligten Eingabefelder eingefarbt und
markiert, auch wenn nur eines von ihnen eine Verletzung auslost.

mm G5 & FiS Stammdaten - Einplanung 20142015 - |I:I|1|

Datel Leftsystem Schuljahr WS GS & F3S Planung Dokumente Einstelungen Hilfe

Grundschulen | Forderschuien |
~Schulen - Offizieller Name der Schule
/4GS Raﬂwangeln o I @ a
78. GHS Rauner Kirchh.
79. GS Reudern - Abkiirzung der Schule
80. GS RoBdorf NT I)
81. GS Ruit
82. GHS Sch.i.Prk Nellg. ~Strafe
83. GHS Schiller ES Bkh I

84, G5 Schlaitdorf

85. GHS SchioBg.Wernau -ort C
86. GS Schopfloch I

87 neuersehul =
~Welche IVS muss diese Schule besuchen?

Neue Schule L

Srhiile | Aerhen I'Mtba':h jv LI

Zuriicksetzen | OK & Speichern |

|

Abbildung 3.19.: Constraints: interaktive Constraints

45

3. Entwurf

Im Gegensatz zu JVS Planung wird ein Eingabefeld nicht zuriickgesetzt, wenn ein Constraint
verletzt wurde. Die Verletzung wird lediglich markiert.

Normale Constraints

Normale Constraints werden immer ausgefiihrt, wenn eine Eingabe bestitigt wird. Da bei
der Belegungsplanung jede Eingabe, die den Plan dndert, gleichzeitig auch eine Bestdtigung
darstellt, wird in diesem Fall nach jeder solchen Eingabe gepriift.

114 Di, 28.10.2014 Mi, 29.10.2014 Do, 30.10.2014

. |
mm Kritische Fehler der Belegungsplanung 5[

Die Priifung der Planungskriterien hat folgende Probleme ergeben:

P Anzahl Klassenbesuche:
a 4a: Diese Klasse hat zu viele Besuche!

= Fiir G5 Hegens.-Liebbr. ignorieren Abschalten ||: Abbrechen :

Ignorieren

Abbildung 3.20.: Constraints: kritische Fehlermeldung

Wenn mehrere Verletzungen verschiedener Schweregrade gefunden werden, werden diese
nach Schweregrad gruppiert und angezeigt. Dabei wird pro Schweregrad ein Dialog (siehe
Abbildung 3.21) angezeigt, damit sich der Benutzer auf die wesentlichen Informationen
konzentrieren kann. Der Benutzer kann sich dann jeweils entscheiden, die Verletzungen
dieses mal, fiir das Objekt, das untersucht wurde, oder immer zu ignorieren. Er kann sich
auch entscheiden, die Verletzung zu beheben, indem er auf den ,, Abbrechen”-Knopf driickt.
In diesem Fall werden keine weiteren Dialoge angezeigt, und die aktuelle Aktion wird
abgebrochen.

== Warnungen der Belegungsplanung |

Die Prifung der Planungskriterien hat folgende Probleme ergeben:

Zeitraum der Klassenbesuche:

l Y a 4a: Die Besuche dieser Klasse solten innerhalb von & Wochen stattfinden!
= = 4b: Die Besuche dieser Klasse solten innerhalb von & Wochen stattfinden!

Fiir G5 Hegens.-Liebbr. ignorieren Abschalten Abbrechen

Abbildung 3.21.: Constraints: Warnungsmeldung
Bei kritischen Constraint-Verletzungen wird die Option nicht angeboten, diesen Constraint

zu ignorieren (siehe Abbildung 3.20). Hier muss die Verletzung auf jeden Fall behandelt
werden.

46

4. Implementierung

Dieses Kapitel erldutert wichtige Details der Implementierung, sowie Besonderheiten, die im
Laufe der Implementierung aufgefallen sind. Es enthilt viele fachliche Details und Begriffe,
weshalb es starker auf Entwickler ausgerichtet ist als andere Kapitel dieser Arbeit.

Wihrend der Implementierung wurde das aktuelle Zwischenprodukt immer wieder dem
Kunden vorgestellt, um Feedback zu erhalten und Implementierungsentscheidungen zu
verifizieren.

4.1. Wahl der Programmiersprache

Es wurde entschieden, Java als Programmiersprache zu verwenden. Die Griinde hierfiir
waren:

e VS Planung hat bereits Java eingesetzt, was eventuelle Code-Wiederverwendung
vereinfacht.

e Eines der Hauptziele dieser Diplomarbeit war es, ein Programm zu erstellen, das
portabel ist. Dies ist in Java einfacher als in den meisten anderen Programmiersprachen.

Die graphische Oberfliche sollte moglichst wenige Anderungen aufweisen, was dank
der Verwendung von Swing sowohl in JVS Planung als auch JVS2 einfacher war.

Java erfiillt alle Anforderungen, die sich aus der Analyse ergaben.

In Java ist es relativ einfach, schnell kompakten und fehlerarmen Code zu produzieren.
e Der Entwickler hatte bereits viele Jahre Erfahrung mit Java-Entwicklung.

o JVS Planung beweist, dass Java performant genug fiir die Aufgabenstellung ist.

4.2. Abhangigkeitsauflosung

Zur Aufldsung und Bereitstellung der Abhédngigkeiten des Projekts wurde Maven[16] ge-
wihlt. Um das Projekt moglichst modular aufzubauen, die Implementierung von Constraints
unter Verwendung einer minimalen Anzahl an Abhéngigkeiten zu ermoglichen und die
Ubersichtlichkeit zu erhdhen, wurde das Projekt in mehrere Maven-Unterprojekte aufge-
teilt.

47

4. Implementierung

Es wurde ein Basisprojekt namens ,base” erstellt, das Informationen und Abhéangigkeiten
definiert, die alle Unterprojekte teilen.

Die Unterprojekte ,model”, ,presenter” und ,view” leiteten sich aus dem Entwurfsmuster
MVP[12] ab. Zusétzlich wurden alle geteilten Interfaces in ein separates , interfaces”-Projekt
abgespalten, um die Abhédngigkeiten zwischen den Unterprojekten zu minimieren. Da es von
den anderen Projekten komplett unabhéngig ist, wurde das im Entwurf definierte , utils”-
Unterprojekt nicht von , base” abgeleitet. Schliefilich wurde ein Projekt namens , integration”
definiert, welches die anderen Teilprojekte integriert und die endgiiltige Anwendung baut.

Da alle externen Abhéangigkeiten des Projekts von Maven bereitgestellt werden, musste kein
separates Projekt fiir externe Abhédngigkeiten erstellt werden.

4.3. Allgemein

Das im Entwurf verwendete , Abstract Factory”-Pattern[1] wurde mittels Javas Service-
Loader[2] implementiert. Dies hatte den Vorteil, dass neue Module hinzugefiigt werden
konnten, ohne in den Programmcode eingreifen zu miissen. Aufierdem wird dieses Frame-
work im JRE mitgeliefert, weshalb es sehr gut getestet und {iberall verfiigbar sein sollte.

JVS2 wurde so implementiert, dass es den ersten Kommandozeilenparameter als Projektdatei
interpretiert und so beim Start direkt ein Projekt laden kann. So wird es moglich, den Dateityp
der Projektdateien mit [VS2 so zu verkniipfen, dass ein Projekt direkt aus dem Dateimanager
heraus geladen wird.

In Java werden unbehandelte Exceptions standardméfsig nur an die Standard-Fehlerausgabe
weitergeleitet, wo sie fiir den Benutzer unbemerkt bleiben kénnen und auch nicht im
Logging-System vermerkt werden. Dies hat den Effekt, dass das Programm unerkldrliches
und unberechenbares Verhalten aufweisen kann, ohne dass fiir den Benutzer ein Grund
erkennbar ist.

Um dieses Problem zu adressieren, implementiert und registriert JVS2 einen Uncaught-
ExceptionHandler. Dieser protokolliert unbehandelte Exceptions im Logging-System und
weist den Benutzer auf das Problem hin. Zusétzlich bittet er den Benutzer, den Entwickler
zu kontaktieren und ihm alle relevanten Informationen zukommen zu lassen.

Um die vom Kunden gewiinschte Sortierung der Schulen zu implementieren, wird von allen
Grund- und Forderschulen das Comparable-Interface implementiert. Zum Vergleichen der
Schulen werden ihre Abkiirzungen verwendet. Hier wird im ersten Schritt des Vergleiches die
Abkiirzung bis einschliefdlich des ersten Leerzeichens ignoriert, da dieser Teil der Abkiirzung
die Schulart enthélt. Erst wenn der Rest der Abkiirzung gleich ist, wird der volle Name
verglichen.

Um die Benutzeroberflache moglichst robust zu implementieren, wurde ein Interface namens
,Resettable” definiert. Dieses Interface definiert zwei Methoden reset () und resetFocus().
Es wird von allen Hauptansichten implementiert und erlaubt es, die Ansicht vor dem
Laden neuer Informationen in einen definierten Zustand zu bringen. Dies kostet zwar

48

4.3. Aligemein

Rechenleistung, vereinfacht aber den Code und erhoht so dessen Verstandlichkeit. Der
benoétigte Rechenaufwand ist auf aktuellen Systemen vernachldssigbar gering, so dass die
Vorteile dieser Implementierung iiberwiegen.

4.3.1. Anpassung der SchriftgroBe

Um die Schriftgrofie aller Schriften der Anwendung anpassen zu konnen, iteriert die An-
wendung bei der Initialisierung tiber alle in Swing bereitgestellten Schriften und dndert
ihre Grofie um einen spezifizierten Wert. Da der Benutzer keine Anpassbarkeit zur Lauf-
zeit wiinschte, wird diese Einstellung in die Konfigurationsdatei geschrieben, ohne eine
graphische Oberfldche fiir ihre Anpassung bereitzustellen.

4.3.2. Logging-System

Als Logging-System wurde LOGBack[8] mit SLF4J[14] als Backend eingesetzt. Dies hat den
Vorteil, dass ein einheitliches Logging-System fiir die gesamte Anwendung bereitsteht, das
ohne Eingriffe in den Code konfiguriert werden kann.

Das Logging-System hat die Funktion, dem Entwickler Details iiber die Verwendung der
Anwendung zu liefern, die die Fehlersuche erleichtern und eventuell unbemerkte Fehler
offenbaren. Hierbei werden Fehler und potentielle Probleme, die sich nicht auf kritische
Weise auf den Arbeitsablauf auswirken, ausschliefSlich tiber das Logging-System protokolliert.
Fehler, die sich auf den Arbeitsablauf auswirken, werden sowohl protokolliert als auch tiber
die graphische Oberfliche dem Benutzer gemeldet.

Ein Beispiel fiir eine Meldung, die im Protokoll vermerkt, dem Benutzer jedoch nicht
angezeigt wird: Wird keine Implementierung der Constraints gefunden, wird diese Tatsache
im Protokoll vermerkt. Sie wird dem Benutzer jedoch nicht angezeigt, da das Programm
weiterhin verwendet werden kann und dieser Zustand moglicherweise beabsichtigt ist.

Wie bei modernen Logging-Systemen iiblich, unterstiitzt auch das Verwendete verschiedene
,Loglevels”. So konnen unwichtige Meldungen leicht von den wichtigen getrennt werden,
und auch fiir das Debugging relevante Meldungen iiber das gleiche System ausgegeben
werden.

4.3.3. Ladebildschirm

In JVS Planung war der Ladebildschirm eine reine Attrappe, die dem Benutzer ein Gefiihl
von Fortschritt liefern sollte, wahrend das Programm 1ddt. Da er jedoch selbst erst geladen
wurde, nachdem der Rest der Anwendung schon initialisiert war und dann fest eine Sekunde
angezeigt wurde, hat er lediglich den Start der Anwendung verzogert.

In JVS2 wird die eigentliche Funktion des Ladebildschirms implementiert. Er lduft in einem
separaten Thread, der parallel zur Initialisierung der eigentlichen Anwendung lauft, und

49

4. Implementierung

wird beendet, sobald die Initialisierung abgeschlossen ist. Damit der Benutzer im Falle eines
extrem schnellen Starts das Vorhandensein des Ladebildschirms nicht vermisst, wird er
immer minimal 0,25 s angezeigt. Dies gibt dem Benutzer ein Gefiihl von Sicherheit, dass die
Anwendung wie erwartet startet.

Diese Implementierung hat den Effekt, dass die Anwendung 0,75 s - 1 s schneller starten
kann, was im Wahrnehmungsbereich eines Menschen liegt.

4.3.4. JCalendar

Wihrend der Implementierung der Kalender-Popups ist aufgefallen, dass die Popup-Variante,
die einen JSpinner verwendet, um das Datum anzuzeigen und einzugeben, jegliche manuelle
Benutzereingabe ignoriert. Dieses Problem liefs sich umgehen, indem die Variante verwendet
wurde, die ein einfaches JTextField zur Darstellung benutzt.

JCalendar-Popups haben auch die Eigenschaft, dass sie bei leerem Anzeigefeld immer das
aktuelle Datum vorselektieren. Dies macht es unmoglich, dem Benutzer eine sinnvolle
Vorauswahl zu bieten, ohne das Anzeigefeld zu fiillen. Der Kunde wiinscht jedoch leere
Anzeigefelder, weshalb der Benutzer bei jeder Eingabe zum richtigen Datum navigieren
muss.

4.4. Speichersystem

Bei der Implementierung der Serialisierung wurde entschieden, anstatt den in den Schulen
enthaltenen Referenzen auf JVS, die komplette JVS zu serialisieren. Dies hat den Vorteil,
dass JVS eingelesen werden konnen, wann immer sie gebraucht werden, ohne einen zweiten
Durchlauf zu benotigen. Es hat aber auch den Nachteil, dass die Dateigrofie stark aufgebldht
wird und ein XmlAdapter beim Einlesen benétigt wird, der die verschiedenen JVS-Instanzen
zu einem JVS-Objekt zusammenfasst.

Wiirden statt der kompletten JVS-Instanzen nur Referenzen auf an anderer Stelle vorhandene
JVS gespeichert, konnte beim Einlesen dieser Referenzen nicht sichergestellt werden, dass
das zugehorige JVS-Objekt bereits eingelesen und initialisiert wurde. So miisste in einem
ersten Durchlauf die XML-Referenz-ID in ein Java-Objekt eingelesen werden und erst in
einem zweiten Durchlauf konnten die Java-Referenzen gesetzt werden. Dies konnte jedoch
potentiell zu ungtiltigen Zustanden fithren, wenn bei zukiinftigen Implementierungen die
Moglichkeit einer ungiiltigen JVS-Referenz nicht berticksichtigt wiirde.

Im Vergleich dazu ist die Bereitstellung eines Adapters, der beim Einlesen doppelte JVS-
Instanzen konsolidiert, wesentlich einfacher und zukunftssicherer. Der zusétzlich benétigte
Speicherplatz ist relativ gering und bei heutigen Festplatten zu vernachldssigen.

Diese Implementierung kann jedoch in Zukunft ein Problem verursachen, wenn eine Referenz
auf eine dltere Version des Datensatzes in den Daten gesetzt werden soll. Diese Konstellation
kann in der aktuellen Implementierung nicht erfolgreich deserialisiert werden, da die

50

4.5. Constraints

Abkiirzungen der JVS zusitzlich als einziges Identifikationsmerkmal dienen. Eine dltere
Version des Datensatzes wiirde jedoch mit grofier Wahrscheinlichkeit die gleichen JVS-
Abkiirzungen verwenden, weshalb nach einer Deserialisierung die dltere und die aktuelle
Version des Datensatzes die gleichen JVS teilen wiirden. Dieser Fehler wiirde erst auffallen,
wenn in einer Version des Datensatzes die JVS modifiziert wiirde, da sich diese Modifikation
falschlicherweise auf alle anderen Versionen auswirken wiirde.

Dieses Problem kann jedoch leicht umgangen werden, indem ein anderes Identifikations-
merkmal — beispielsweise eine GUID[3] — verwendet wird. Die aktuelle Implementierung
benotigt diese Komplexitdt nicht, sie kann jedoch mit geringem Aufwand nachgeriistet
werden.

Die Java-Klassen java.awt.Dimension und java.awt.Color lassen sich nicht fehlerfrei
(de-)serialisieren, weshalb eine alternative Implementierung angeboten werden muss.

java.awt.Dimension wurde nicht ausreichend fiir JAXB annotiert, weshalb die Methode
Dimension.getSize() als separate Eigenschaft ,size” serialisiert wird[13]. Sie gibt jedoch
das aktuelle Dimension-Objekt zurtick, so dass beim Serialisieren eine endlose Rekursion
auftritt. Als alternative Implementierung wurde eine Klasse SerialisableDimension imple-
mentiert, die die Dimension-Eigenschaften ,width” und ,height” enthdlt und serialisiert.
Diese Klasse kann mit einem Dimension-Objekt initialisiert werden und bietet eine Me-
thode public Dimension retrieveDimension() an, so dass sie bei der Serialisierung als
Alternative zu java.awt.Dimension verwendet werden kann.

Die Klasse java.awt.Color wird in ihrer Standardimplementierung von JAXB immer mit
einem leeren Wert serialisiert. Um dieses Problem zu umgehen, wurde ein XmlAdapter
namens ColorAdapter implementiert, der den Farbwert beim Speichern in einen String
kodiert und beim Laden wieder ausliest.

4.5. Constraints

Die Constraints werden konzeptionell iiber ein Plugin-System angeboten. Jedoch sind die
Constraints, mit denen die Anwendung ausgeliefert wird, im Unterprojekt ,model” enthalten.
So steht immer eine Constraint-Implementierung bereit und es wird ein zusitzliches Unter-
projekt eingespart. Diese Implementierung bedeutet auch, dass das ,,model”-Unterprojekt
gleichzeitig ein Constraint-Plugin ist.

Die Implementierung sowohl der Constraints als auch des Codes, der Constraints anwendet,
muss gegen null und ungiiltige Riickgabewerte abgesichert sein. Die aktuelle Implementie-
rung sichert nicht gegen Exceptions, da diese dann — je nach Implementierung — entweder
unbemerkt bleiben oder den Benutzer mit fiir ihn nichtssagenden Fehlermeldungen belés-
tigen wiirden. In beiden Fallen wiirden Fehler nicht behoben, und wahrscheinlich nicht
gemeldet werden. Die aktuelle Implementierung hat jedoch zur Folge, dass der begonnene
Arbeitsschritt nicht erfolgreich beendet werden kann, was den Benutzer zwingt, das Problem
zu beachten.

51

5. Tests

Urspriinglich wurde geplant, alle moglichen Klassen im Model und Presenter mit Unit-Tests
zu priifen. Leider wurde im Verlauf des Projekts die Zeit knapp, so dass zugunsten von
System- und Kundentests keine Unit-Tests implementiert wurden. Lediglich die Klassen
Time und TimePeriod wurden von Projektbeginn mittels Unit-Tests getestet.

Von den geplanten drei Kundentests konnte aus Zeitgriinden nur einer durchgefiihrt werden.
Als Ersatz fiir einen der ausgefallenen Tests musste eine konkrete Planung dienen, die somit
einen Praxistest darstellte. Dies hat den Vorteil, dass die geforderte Praxistauglichkeit des
Systems unter Beweis gestellt wurde.

5.1. Modul- und Integrationstests

Als Framework fiir Unit-Tests wurde JUnit4 gewdhlt, und die Tests wurden regelmifiig
als Teil der Continuous-Integration-Builds auf einem Jenkins-Server ausgefiihrt. Dieser
Server fiihrte im Rahmen dieser Builds auch automatisch Integrationstests durch, indem
die einzelnen Unterprojekte zu einer ausfiihrbaren Applikation verbunden wurden. Die
Builds wurden automatisch angestofen, sobald neue Anderungen im Projektarchiv gefunden
wurden.

Selbst die vorhandenen Unit-Tests halfen, an kritischen Stellen Fehler schon wihrend der
Implementierung zu finden, was spétere Tests der vollstindigen Anwendung erleichterte und
Fehler vermied. Eine umfassendere Implementierung von Unit-Tests wire wiinschenswert
gewesen, musste jedoch aus Zeitgriinden unterlassen werden.

5.2. Kundentests

Es wurde ein grofler Kundentest durchgefiihrt, da aus Zeitgriinden keine weiteren Kunden-
tests vor dem Einsatz im laufenden Betrieb moglich waren. Bei diesem Test wurde eine kleine
Planung durchgefiihrt. Konkret bedeutet das, dass Projekt- und Feriendaten vollstindig und
mit realen Daten gefiillt wurden. Die JVS-Stammdaten wurden gepriift und einige geblockte
Termine wurden probehalber bei den JVS eingetragen. Im Anschluss wurden die Stamm- und
Anmeldedaten der Grund- und Foderschulen auf verletzte Constraints gepriift und diese
korrigiert. Auch hier wurden probehalber einige geblockte Termine eingetragen. Schiefllich
wurden die Klassen einiger Schulen probehalber in den Belegungsplan eingetragen.

53

5. Tests

Wihrend dieses Tests wurden durchgefiihrte Testfdlle mit ihrem Ergebnis protokolliert.
Sofern Fehler aufierhalb der Testfille gefunden wurden, wurden auch diese notiert. Zusétz-
lich wurde jedem positiven Testfall sowie jedem zufillig gefundenen Fehler eine Prioritat
von o bis 3 zugeteilt. Hierbei hatten die einzelnen Prioritaten die in Tabelle 5.1 gelisteten
Bedeutungen. Tabelle 5.1 listet auch die Anzahl der Vorkommnisse der einzelnen Prioritédten.
Hierbei sei angemerkt, dass zwei der kritischen Fehler falsch positiv waren.

Insgesamt wurden 60 Testfdlle identifiziert und gepriift. Es wurden acht Fehler aufierhalb
der gepriiften Testfdlle gefunden fiir einen Testfall wurden drei verwandte Fehler identifi-
ziert. Insgesamt wurden 23 Fehler identifiziert, zwei davon falsch positiv. Daraus lédsst sich
schlieflen, dass 47 Testfdlle negative Ergebnisse hatten.

Prioritit Bedeutung Vorkommnisse
1 Kritischer Fehler 14
2 Problematischer Fehler 6
3 Unkritischer Fehler 1
0 Sollte erledigt werden. 2

Tabelle 5.1.: Kundentest: Fehler-Prioritaten

Der Kunde hat diesen Test mit Vorbehalt akzeptiert, unter der Bedingung, dass die gefunde-
nen kritischen Fehler behoben wiirden. Das Testprotokoll — inklusive der gepriiften Testfélle
—ist in Anhang B dargestellt.

5.2.1. Vollstandige Planung: Praxistest

Im Rahmen dieser Arbeit wurde die Anwendung zum ersten Mal im laufenden Betrieb
eingesetzt. In diesem Zusammenhang wurde die Planung fiir das Schuljahr 2014/2015
erstellt und das Programm musste seine Praxistauglichkeit unter Beweis stellen. Zusitzlich
kam bei diesem Test eine Kollegin des Kunden hinzu, die bei der Entwicklung von JVS2
nicht beteiligt war, und die auch keinen Kontakt zu JVS Planung hatte.

Wihrend dieses Praxistests wurden einige weitere Fehler identifiziert, die teilweise nicht
durch den Kundentest offenbart wurden und teilweise durch die Korrektur der dort gefun-
denen Fehler neu hinzukamen. Diese Fehler wurden, soweit moglich, vor Ort behoben.

Desweiteren offenbarte der Praxistest folgendes:

e Die Geschwindigkeit und Funktionalitét sind zufriedenstellend, abgesehen von den
noch vorhandenen Fehlern.

e Die Ladezeit der Anwendung ist schneller, auch weil JVS Planung den Ladebalken
auf eine Sekunde hartkodiert hatte, wahrend er in JVS2 nur angezeigt wird, bis die
Oberfldche geladen wurde. Die verkiirzte Ladezeit gefdllt dem Kunden.

54

5.2. Kundentests

Die Leitsystem-Ubersicht ist in der iiberarbeiteten Version wesentlich niitzlicher, da sie
verwendet werden kann, um zu einem bestimmten Arbeitsschritt zu springen, ohne
den entsprechenden Mentipunkt auswendig lernen zu miissen.

Die aktuelle Implementierung der Constraints zeigt Warnungen zu hdufig und auf-
dringlich an.

Bei der Einplanung werden schon leichte Mausbewegungen von einem Pixel als Start
einer Drag&Drop-Aktion gewertet, weshalb die Anwendung manchmal nicht auf
Eingaben zu reagieren scheint.

Die Auslieferung als JAR-Datei macht ein Software-Upgrade wesentlich kundenfreund-
licher als die in JVS Planung verwendete Alternative, den Quellcode auszuliefern und
vor Ort zu kompilieren.

Die Grofse der Projektdatei einer typischen Einplanung der Kreisverkehrswacht Esslin-
gen ist zwischen ein und zwei MB.

JVS2 ging auch in Fehlerfédllen nie in einen undefinierten Zustand tiber und konnte
somit ohne Neustart weiterverwendet werden.

55

6. Zusammenfassung und Ausblick

6.1. Zusammenfassung

Das Programm [VS2 erfiillt die gestellten Aufgaben und liefert ein befriedigendes Ergebnis.
Das Projekt wurde zur Zufriedenheit des Kunden fertiggestellt, obwohl der Zeitrahmen
knapp bemessen war und es einige unerwartete Schwierigkeiten wiahrend der Implementie-
rung gab. Wegen des Zeitmangels konnten nur wenige Tests durchgefiihrt werden.

Im Betrieb ist aufgefallen, dass bei verletzten Constraints zu viele Warnmeldungen angezeigt
wurden. Aufierdem wird nicht gegen fehlerhafte Constraint-Implementierungen abgesichert.
Aus Zeitgriinden konnten diese Probleme nicht mehr adressiert werden. Sie stellen aber
auch kein akutes Problem dar, so dass sie im Rahmen dieser Arbeit nicht adressiert werden
mussten.

6.2. Ausblick

Das vorliegende Programm konnte an einigen Stellen ergdnzt oder umgestaltet werden, um
den Arbeitsablauf zu vereinfachen und modernisieren.

6.2.1. Frequenz der Constraint-Meldungen

Wiéhrend eines Tests des Programms ist aufgefallen, dass die Meldungen bei verletzten
Constraints wahrend der Planung zu oft angezeigt werden. Dies ist auf einen Mangel im
Entwurf zuriickzufiihren, da der nicht vorsieht, einen Constraint nur temporar abzuschalten.
Dieser Mangel ist nicht schwer zu beheben und konnte in einer zukiinftigen Progammver-
sion mit geringem Aufwand entfernt werden. Dies hitte eine grofie Auswirkung auf die
Benutzbarkeit, da Constraint-Warnungen nicht mehr einfach nur weggeklickt wiirden, wenn
sie nicht mehr standig angezeigt werden.

6.2.2. Automatische Planung
Eine offensichtliche Moglichkeit, das Programm aufzuwerten, wire eine qualitativ hochwer-

tige automatische Einplanung der Klassenbesuche. Allerdings handelt es sich hier um ein
sehr schweres Problem, da das Programm selbstdndig ermitteln miisste, welche Constraints

57

6. Zusammenfassung und Ausblick

in welchen Situationen ignoriert werden sollen. Eine Planung ohne Verletzung einiger Cons-
traints ist mit im verfiigbaren Zeitraum bei der Anzahl der einzuplanenden Schulklassen
leider unmoglich. Aus diesem Grund ist diese Funktionalitdt kaum implementierbar.

Eine Moglichkeit, dem Benutzer wenigstens ein wenig Arbeit abzunehmen, wire die auto-
matische Planung, soweit sie ohne Verletzung von Constraints machbar ist. Das Ergebnis
dieser Planung wire unvollstindig, konnte aber den ersten Schritt der manuellen Planung
ersetzen, in dem Klassen nach einem Schema in den vorhandenen Zeitraum eingeplant
werden, solange sich keine Konflikte ergeben.

Diese zweite Moglichkeit konnte realisierbar sein, wiirde aber viel Arbeit und Feinjustierung
benétigen, um ein verwendbares Ergebnis zu liefern. Sie konnte sich als Thema einer
Folgearbeit eignen.

6.2.3. Umgestaltung zu einer Internetapplikation

Ein grofler Teil des bisherigen Planungsprozesses wird nicht vom Programm erfasst oder
unterstiitzt: die Vorplanung. Hier werden die Wiinsche und Daten der Schulen auf einem
Formular erfasst, das von den Schulen ausgefiillt und an die Planer geschickt wird. Diese
Formulare werden in der Vorplanung miihsam sortiert und gepriift, ohne dass JVS2 dabei
unterstiitzen konnte.

Eine Methode, diesen Schritt der Planung zu vereinfachen, wére ein Online-System. Die
Schulen konnten ihre Daten in dieses System eintragen. Problematische Eintragungen konn-
ten zu grofien Teilen automatisch identifiziert werden, und den jeweiligen Parteien mitgeteilt
werden. Fehlende Eingaben konnten automatisch angemahnt werden. Der endgiiltige Daten-
satz konnte schliefilich als Eingabe fiir das vorliegende Programm dienen, ohne miithsam
manuell erfasst werden zu miissen. Schlieflich kénnten die relevanten Teile der vollstandigen
Planung automatisch an die jeweiligen Empfianger verteilt werden.

Nachtrigliche Anderungen kénnten auferdem automatisch den betroffenen Stellen mitgeteilt
werden, was in der aktuellen Fassung des Programms ein miihsamer und fehlertrachtiger
Prozess ist.

AuBer den offensichtlichen Anderungen miisste bei einem solchen System allerdings beachtet
werden, dass Daten- und Programmsicherheit bei der Planung und Implementierung bertick-
sichtigt werden. Es handelt sich bei den Daten teilweise um vertrauliche Informationen, die
nicht frei zugédnglich sein diirfen. Es wiirde somit ein komplexes Authenzifizierungs- und
Rechtevergabesystem bendtigt, das in dieser Form bisher nicht existiert. AufSerdem mdisste
eine Priifung der Datenintegritit bei der Kommunikation zwischen den Systemkomponenten
ermoglicht und durchgefiihrt werden.

Wegen der Komplexitit einer solchen Plattform ist es fraglich, ob sich dieses Thema fiir eine
Diplom-, Bachelor- oder Masterarbeit eignet. Es konnte aber moglich sein, das Thema auf
mehrere Arbeiten zu verteilen, um so das gewiinschte System zu erstellen.

58

A. Begriffserklarung

Abkiirzung von Schulen und JVS Jede Grund-, Forder- und Jugendverkehrsschule besitzt
in JVS2 eine Abkiirzung, die diese Schule bzw. JVS eindeutig identifiziert. Diese
Abkiirzung kodiert den Namen und bei Grund- und Foérderschulen die Schulart.

Constraint Eine Einschrankung an die Planung, die durch JVS2 gepriift wird.

der Ausdruck Die von JVS Planung und JVS2 generierten Dokumente, die der Kunde aus-
drucken kann. Da manchmal Nachbearbeitungen notig werden, und die Dokumente
teilweise auch per E-Mail verschickt werden sollen, werden keine konkreten Druckauf-
trdge erstellt.

Jugendverkehrsschule Ein Ort, an dem Schiiler das Fahrradfahren in Theorie und Praxis
erlernen. Befindet sich unter der Verwaltung der Kreisverkehrswacht Esslingen.

JVS Die Abkiirzung fiir ,Jugendverkehrsschule”.

Kunde Die Kreisverkehrswacht Esslingen, vertreten durch Herrn Bufler von der Verkehrspo-
lizei Esslingen.

Planungskriterium Ein anderer Begriff fiir , Constraint”.

Vorplanungsprozess Ein Prozess, der die Belegungsplanung mittels JVS vorbereitet.

59

B.

Protokoll des Kundentests

Definierte Testfille:

o Allgemein

1.1

a) Meniis/OK-Knopfe werden bei verletzten critical Constraints ausgegraut.

b) In einer Liste auf ein anderes Element wechseln verursacht eine Beschwerde bei
ungespeicherten Daten.

¢) Mit OK & Speichern geht es an manchen Stellen im Leitsystem weiter.
d) Uber Leitsystem-Menii geht es im Leitsystem weiter.

e) Mit der Leitsystem-Ubersicht kann man an beliebige Punkte im Leitsystem springen.
f) Neues Projekt erstellen warnt, wenn bereits ein Projekt geoffnet ist.

g) ,Speichern” und ,Speichern unter” funktionieren wie erwartet.

h) Beim Versuch, ein Projekt zu iiberschreiben, wird gewarnt.

i) Die Geschwindigkeit der Anwendung ist gut.

Neues Schuljahr

a) Ein leerer Projektname wird nicht akzeptiert.

b) Langer Projektname (50+ Zeichen) wird akzeptiert.

Projekt auf altem Projekt aufbauen

a) Alte Sommerferien werden iibernommen.

b) Alle anderen Ferien sind urspriinglich leer.

¢) Keine JVS-Blocktermine aufSer Fr. nachmittags.

d) Keine Schul-Blocktermine.

e) Keine Schul-Ferientage.

f) Keine Belegungen.

Ferieneingabe

a) Ferien miissen zwischen d. Sommerferien liegen.

b) Sommerferien miissen plausibel sein.

61

B. Protokoll des Kundentests

¢) Ferien miissen im richtigen Jahr liegen.

d) Ferien miissen chronologisch sein.

e) Ferien miissen giiltige Zeitintervalle sein.

f) Ungiiltige Eingaben bei nicht-Sommerferien werden mit Gemecker akzeptiert.

g) Giiltige Ferien konnen eingetragen werden.
3 JVS-Dateneingabe

a) Eine leere Abkiirzung wird nicht akzeptiert.

b) Leere JVS-Namen werden akzeptiert, aber nur mit Hinweis (rot).

c) Sonstige leere Felder werden akzeptiert, aber nur mit Hinweis (gelb).
4 JVS-Blocktermin-Eingabe

a) Termine konnen nur im giiltigen Zeitraum eingegeben werden.

b) Alle nétigen Termine kdnnen angegeben werden.

¢) Termine konnen (de-)aktiviert werden.

d) Termine konnen geldscht werden.

e) Termine erscheinen in dem JVS-Plan, wenn sie nicht deaktiviert/geldscht sind, aber
nicht in anderen JVS-Planen.

5 Schuldateneingabe
a) Eine leere Abkiirzung wird nicht akzeptiert.
b) Leere Schulnamen werden akzeptiert, aber nur mit Hinweis (rot).
¢) Sonstige leere Felder werden akzeptiert, aber nur mit Hinweis (gelb).
d) Schulen 16schen/hinzuftigen funktioniert.

6 Schul-Anmeldebogeneingabe
a) ,keine Klasse” angeben funktioniert.
b) Kein Klassenname: kritischer Fehler
¢) nicht-positive Schiilerzahl: Warnung
d) Klassenname > 4 Zeichen: Warnung
e) Schiilerzahl 100+: Warnung

6.1 Schul-Blocktermin-Eingabe

a) Termine konnen nur im giiltigen Zeitraum eingegeben werden.

b) Alle nétigen Termine kdnnen angegeben werden.

62

¢) Termine kdonnen (de-)aktiviert werden.
d) Termine konnen geldscht werden.

e) Termine erscheinen in dem Schulplan, wenn sie nicht deaktiviert/geldscht sind,
aber nicht in anderen Schulplanen.

f) Ferientage konnen (de-)aktiviert, aber nicht geloscht werden.
g) Neue Ferientage werden in anderen Schulen deaktiviert angezeigt.
Belegungsplanung

a) Es kdnnen nur 5 oder 6 Klassen eingeplant werden.

b) Alle erwarteten Eigenschaften werden erfiillt.

¢) Schulfarbe dndern funktioniert und wird angepasst.

d) Termine verschieben funktioniert.

e) Termine kopieren funktioniert.

f) Termine einplanen funktioniert.

g) Mairz -> Scrollen -> Marz funktioniert.

h) Zur Schule springen funktioniert.

i) 2 Termine in eine Woche einplanen: Fehlermeldung

j) 2 Nachmittagstermine: Warnung

k) 2 Termine 7 Wochen (Grundschule) bzw. 8 Wochen (Forderschule) auseinander:
Warnung

1) x. Besuche in verschiedenen Wochen: Warnung

63

B. Protokoll des Kundentests

1E3 Profomw]l IV, Uk L0Tg V5 cqrtdea
- f/lv (,‘lf» /Jn”f‘(
Tester: Udeo Buf \er Fellewprionitig & A= keifick
Geleskt: [Vs2. 9w v
A T ey
909 Tesfb;j;m F
q:09 X Pfothfm-\mc wird | Gbersdaciein nagh /')w(xrv\y 2
95 Oc
14 a ‘//
[14b 4
' | 4
9i¢ (24 /
9127 |2 «i v
0« 3
; Ob 2
43¢ | Mg, g wind fafsch visvalisiot Qe selelhemd wid gk v
“abey nilf g, 3:2@?-85 NS “ﬁ 4 MTMJ i
L'SJO 4
| a,ut 6az¢lLLnuu“J Voun Noc,é‘l'fmmu. [‘[llél.n Sa(#(5{.‘“10'11‘8&1“[\"1/3 2.
Osceiq
9194 X S/'e[rc\am ZExfefﬁ'on | wthn Startzetrivim Anfm ,,fm[? assaesel (osm | A v
w;/& j
#0. v
4043 0. | wacdh Rvie vou Plan]lu.‘,(%mm'ef* wieh! (0K . S/r.'nJe... 722) V’ff
0.k 2
X Fefl‘ey‘ L@ﬂ\L\'\ul\:S A Q/‘«mo.mﬁlj '/4/ oyﬂl[\ navi I‘Sf]L()ll,\ 1 /
X \]S 1 ﬂ(oc/(fe/m{ue; Mam[‘ um(sﬁn«mwv L k LAA 2y Lf
Julocrein [Pes Alle 3"\/3 > Alth.ds -3/4//35'\33 b/e[zg bei A”éwL]
144 v
Ze v
2h v
Sec v
N4t ¢ | /
b slebe Gc 4¢
cAc Siehe &c v
J ,
X Sche fkonbrast fuu\ kfgace.t niclht &)
¥ :
v/
2d Y
f i
7 J v
Ge v

Abbildung B.1.: Testprotokoll Seite 1

64

Lot AL vl 4
m&ﬂe
7.k

B ot (o et 1 T

| Fellty

! W:Vl}l ;ywrf“* fl/ ff)
?.S v
E—S >o((¢m 2inzelne JVj Jrv«uxw Seth 0
0 vl
og Vv
O —2T
Md v
11e v,
14f ’/\/
7
¢ 1/
0: |V
V4
b | 4
¥ |t Pogkt =5 Bt 1A D ke aegiaf |2 v
Selar (um)é. Dateina e \ircthen sf.?'/scl\m.jud nich? 52 u‘[}w‘ h |V
2 v
e v
Zf Sammu/‘flte-. e asloaintk \uit Ouzlmw(S5 Gm‘/fﬂ.’né ,4 4
bt\(L;;a’-\(\h
3¢ v
% v
3¢ | v
X5 Neve Schole! allel Biugals /Ucl [ee | 2 /
A ve v 4 {hagaln 2 P ’

)(gg‘l N&Ue Sc‘wle Y7 '0L l) vl Po inle. 1 \/
X Schullikun &+ O ‘wuf eheler Elammt salle wild scrolon 1V
Sa v
Sb ;i
Be | v
7] 7

£ I

: .. ‘/

¢ gl IEREEN Iy
6T w-mm.w ’4{

be 4
3 A
7b v
|

behaft

Abbildung B.2.: Testprotokoll Seite 2

C. Inhalt und Aufbau des beigelegten
Datentragers

Der beigelegte Datentrédger ist wie folgt aufgebaut:

ausarbeitung Der Ordner Ausarbeitung enthilt dieses Dokument.

programm Die ausfiihrbare JAR-Datei, die das Produkt dieser Arbeit enthalt.
quelltext Der Quelltext, der im Rahmen dieser Arbeit entstanden ist.

eclipse Dieser Unterordner enthilt komprimierte Archive des Eclipse-Workspace, der
fiir die Implementierung verwendet wurde. Der Inhalt der Archive ist — soweit
vom Archiv-Format unterstiitzt — identisch. Unter den enthaltenen Projekten
befindet sich eines namens ,JVS”. Dieses Projekt enthilt eine modifizierte Version
von JVS Planung, die im Dateimenti einen Eintrag enthilt, der ein geladenes
Projekt in das von JVS2 verwendete Format exportiert. Dieses Unterprojekt wird
auf expliziten Kundenwunsch nicht an den Kunden ausgeliefert.

67

Literaturverzeichnis

[1] Abstrakte Fabrik. URL: https://de.wikipedia.org/wiki/Abstrakte_Fabrik [cited
2014-04-03]. (Zitiert auf den Seiten 22, 28 und 48)

[2] Class ServiceLoader<S>. URL: http://docs.oracle.com/javase/7/docs/api/index.
html?java/util/ServiceLoader.html [cited 2014-05-05]. (Zitiert auf Seite 48)

[3] Globally Unique Identifier. URL: https://de.wikipedia.org/wiki/Globally_Unique_
Identifier [cited 2014-05-07]. (Zitiert auf Seite 51)

[4] Java Architecture for XML Binding. URL: https://de.wikipedia.org/wiki/JAXB [cited
2014-05-05]. (Zitiert auf Seite 30)

[5] JCalendar. URL: http://toedter.com/jcalendar/ [cited 2014-05-05]. (Zitiert auf Sei-
te 35)

[6] JGoodies Validation. URL: http://www.jgoodies.com/freeware/libraries/
validation/ [cited 2014-05-23]. (Zitiert auf Seite 26)

[7] JiBX. URL: https://de.wikipedia.org/wiki/JiBX [cited 2014-05-05]. (Zitiert auf Sei-
te 30)

[8] LOGBack. URL: http://logback.qos.ch/ [cited 2014-05-05]. (Zitiert auf Seite 49)

[9] Microba controls. URL: http://microba.sourceforge.net/ [cited 2014-05-05]. (Zitiert
auf Seite 35)

[10] Microba controls screenshots. URL: http://microba.sourceforge.net/screenshots.
html [cited 2014-05-05]. (Zitiert auf Seite 35)

[11] Model View Controller. URL: https://de.wikipedia.org/wiki/Model_View_
Controller [cited 2014-04-03]. (Zitiert auf Seite 21)

[12] Model View Presenter. URL: https://de.wikipedia.org/wiki/Model_View_Presenter
[cited 2014-04-03]. (Zitiert auf den Seiten 21 und 48)

[13] RE: DEFAULT MARSHALLING OF JRE CLASSES. URL: https://java.net/projects/
jaxb/lists/users/archive/2006-10/message/106 [cited 2014-05-05]. (Zitiert auf Sei-
te 51)

[14] Simple Logging Facade for Java (SLF4J). URL: http://www.s1f4j.org/ [cited 2014-05-
o5]. (Zitiert auf Seite 49)

[15] Visual Paradigm Community Edition. URL: https://www.visual-paradigm.com/
editions/community.jsp [cited 2014-05-05]. (Zitiert auf Seite 21)

69

https://de.wikipedia.org/wiki/Abstrakte_Fabrik
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ServiceLoader.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ServiceLoader.html
https://de.wikipedia.org/wiki/Globally_Unique_Identifier
https://de.wikipedia.org/wiki/Globally_Unique_Identifier
https://de.wikipedia.org/wiki/JAXB
http://toedter.com/jcalendar/
http://www.jgoodies.com/freeware/libraries/validation/
http://www.jgoodies.com/freeware/libraries/validation/
https://de.wikipedia.org/wiki/JiBX
http://logback.qos.ch/
http://microba.sourceforge.net/
http://microba.sourceforge.net/screenshots.html
http://microba.sourceforge.net/screenshots.html
https://de.wikipedia.org/wiki/Model_View_Controller
https://de.wikipedia.org/wiki/Model_View_Controller
https://de.wikipedia.org/wiki/Model_View_Presenter
https://java.net/projects/jaxb/lists/users/archive/2006-10/message/106
https://java.net/projects/jaxb/lists/users/archive/2006-10/message/106
http://www.slf4j.org/
https://www.visual-paradigm.com/editions/community.jsp
https://www.visual-paradigm.com/editions/community.jsp

Literaturverzeichnis

[16] Welcome to Apache Maven. URL: https://maven.apache.org/ [cited 2014-05-23].
(Zitiert auf Seite 47)

[17] What are good Java date-chooser Swing GUI widgets? URL: https://stackoverflow.
com/questions/1339354/what-are-good-java-date-chooser-swing-gui-widgets
[cited 2014-05-05]. (Zitiert auf Seite 35)

[18] International Business Machines Corporation et al. ICU - International Components for
Unicode. URL: http://site.icu-project.org/ [cited 2014-04-03]. (Zitiert auf Seite 20)

[19] Magnus Schwab. Ein Planungssystem fiir ortlich verteilte Ausbildungskurse. Diploma
thesis, University of Stuttgart, Faculty of Computer Science, Electrical Engineering,
and Information Technology, Germany, August 2005. URL: http://www2.informatik.
uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2307&engl=1. (Zitiert
auf Seite 9)

70

https://maven.apache.org/
https://stackoverflow.com/questions/1339354/what-are-good-java-date-chooser-swing-gui-widgets
https://stackoverflow.com/questions/1339354/what-are-good-java-date-chooser-swing-gui-widgets
http://site.icu-project.org/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2307&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2307&engl=1

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

