
Institut für Softwaretechnologie

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3535

Ein interaktives Planungssystem
für Ausbildungskurse

Reinhold Rumberger

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Plödereder

Betreuer/in: Prof. Dr. Plödereder, Udo Bufler

Beginn am: 2013-08-14

Beendet am: 2014-05-27

CR-Nummer: H.4.1, H.5.2, I.2.8, J.1

Kurzfassung

Im Rahmen dieser Diplomarbeit wird ein bestehendes Planungssystem namens JVS Planung
komplett überarbeitet, erweitert und modernisiert, um seit der ursprünglichen Implementie-
rung hinzugekommenen Anforderungen gerecht zu werden. Dabei sollen Einschränkungen
an die Planung („Constraints“) automatisch geprüft werden, um den Anwender bei der
Planung zu unterstützen. Am Ende einer erfolgten Planung werden offizielle Dokumente
generiert, die an örtliche Behörden, Ämter und Schulen verteilt werden. Aus diesem Grund
muss die Anwendung nicht nur benutzerfreundlich, sondern auch robust und praxistauglich
sein.

Bei der Planung handelt es sich um die jährliche Planung von Terminen, an denen im
Folge-Schuljahr die Schulklassen von Grund- und Förderschulen eine ihnen zugewiesene Ju-
gendverkehrsschule (JVS) besuchen sollen. An diesen JVS der Kreisverkehrswacht Esslingen
nehmen die Schüler an einer Fahrradausbildung teil.

Die überarbeitete Anwendung – JVS2 – wird dynamisch Benutzereingaben prüfen, das
Speichersystem komplett überarbeiten und die Fähigkeit besitzen, neue Constraints mit
geringem Aufwand zu implementieren und in eine bestehende Anwendung einzufügen.
Zusätzlich wird die Codebasis komplett neu implementiert und modernisiert.

In dieser Ausarbeitung wird beschrieben, wie welche Anforderungen erhoben wurden,
welche Entscheidungen den Entwurf bedingt haben und wie daraus die konkrete Implemen-
tierung entwickelt wurde.

Abstract

In this Diplomarbeit, an exisiting planning software named JVS Planung is completely
reengineered, extended and modernised to be able to fulfill requirements that have surfaced
since the original implementation was finished. It needs to automatically check some
constraints of the resulting plan to support the user in the planning process. The result
of such a process is a set of official documents, which are distributed to local government
offices and schools. This means, that the application has to be not only user friendly, but
robust and usable in real-world scenarios.

The planning process is the yearly allotment of time slots at which school classes of local
elementary schools will visit an assigned Jugendverkehrsschule (JVS) the following school
year. They attend bicycle riding lessons in these JVS of the Kreisverkehrswacht Esslingen.

The reengineered application – JVS2 – will dynamically verify user input, completely
reengineer the saving system and have the ability to implement new constraints and add
them to the application with little effort. Additionally, the code base will be completely
re-implemented and modernised.

This document will describe which requirements were found, which decisions influenced
the design and how the actual implementation was derived from these.

3

Inhaltsverzeichnis

1. Einleitung 9
1.1. Motivation . 9

1.2. Aufgabenstellung . 9

1.3. Gliederung . 10

2. Anforderungen und Ziele 11
2.1. Ermittlung der Anforderungen und Ziele . 11

2.2. Ziele . 12

2.2.1. Bedienung . 12

2.2.2. Sicherheit . 12

2.2.3. Anpassbarkeit . 13

2.3. Anforderungen . 13

2.3.1. Übernommene Anforderungen . 13

2.3.2. Geänderte Anforderungen . 14

2.3.3. Neue Anforderungen . 18

3. Entwurf 21
3.1. Architekturentwurf . 21

3.1.1. Entwurfsmuster . 21

3.1.2. Constraints . 24

3.1.3. Speichersystem . 29

3.1.4. Leitsystem & Phasen . 30

3.1.5. Sprache . 31

3.1.6. Zeitdarstellung . 32

3.2. Entwurf der graphischen Oberfläche . 33

3.2.1. Kalender-Popup . 35

3.2.2. Projektstart . 36

3.2.3. Ferieneingabe . 37

3.2.4. Eingabe geblockter Termine . 38

3.2.5. Belegungsplanung . 40

3.2.6. Leitsystem . 43

3.2.7. Constraints . 45

4. Implementierung 47
4.1. Wahl der Programmiersprache . 47

4.2. Abhängigkeitsauflösung . 47

5

4.3. Allgemein . 48

4.3.1. Anpassung der Schriftgröße . 49

4.3.2. Logging-System . 49

4.3.3. Ladebildschirm . 49

4.3.4. JCalendar . 50

4.4. Speichersystem . 50

4.5. Constraints . 51

5. Tests 53
5.1. Modul- und Integrationstests . 53

5.2. Kundentests . 53

5.2.1. Vollständige Planung: Praxistest . 54

6. Zusammenfassung und Ausblick 57
6.1. Zusammenfassung . 57

6.2. Ausblick . 57

6.2.1. Frequenz der Constraint-Meldungen . 57

6.2.2. Automatische Planung . 57

6.2.3. Umgestaltung zu einer Internetapplikation 58

A. Begriffserklärung 59

B. Protokoll des Kundentests 61

C. Inhalt und Aufbau des beigelegten Datenträgers 67

Literaturverzeichnis 69

6

Abbildungsverzeichnis

2.1. Planung der interaktiven Constraints: ohne interaktive Eingabeprüfung 15

2.2. Planung der interaktiven Constraints: mit interaktiver Eingabeprüfung 15

3.1. Interaktive Constraints: beteiligte Elemente . 27

3.2. JVS Planung: Ansicht nach Öffnen eines Projekts 33

3.3. JVS2: Ansicht nach Öffnen eines Projekts . 34

3.4. JVS Planung: JVS-Auswahl bei kleinerem Fenster 34

3.5. JCalendar . 35

3.6. Microba controls . 35

3.7. Eingabe der Projektdaten . 36

3.8. Ferieneingabe und Anzeige der berechneten Ferien 37

3.9. JVS: Eingabe geblockter Termine . 38

3.10. JVS Planung: Eingabe geblockter JVS-Termine (1. Bildschirm) 39

3.11. JVS Planung: Eingabe geblockter JVS-Termine (2. Bildschirm) 39

3.12. Belegungsplanung: Detailansicht . 40

3.13. JVS Planung: Belegungsplanung-Detailansicht (1. Bildschirm) 41

3.14. JVS Planung: Belegungsplanung-Detailansicht (2. Bildschirm) 41

3.15. Belegungsplanung: Wochenansicht . 42

3.16. JVS2: neue Leitsystem-Übersicht . 43

3.17. JVS Planung: alte Leitsystem-Übersicht . 44

3.18. Constraints: Einrichtungsdialog . 44

3.19. Constraints: interaktive Constraints . 45

3.20. Constraints: kritische Fehlermeldung . 46

3.21. Constraints: Warnungsmeldung . 46

B.1. Testprotokoll Seite 1 . 64

B.2. Testprotokoll Seite 2 . 65

Tabellenverzeichnis

5.1. Kundentest: Fehler-Prioritäten . 54

7

1. Einleitung

Da diese Arbeit auf der Diplomarbeit von Herrn Schwab[19] aufbaut, wird diese als Lektüre
empfohlen.

In dieser Arbeit werden Grund- und Förderschulen als „Schulen“ bezeichnet. „Schulen“
beinhaltet jedoch nicht Jugendverkehrsschulen, die als „Jugendverkehrsschulen“ oder „JVS“
bezeichnet werden. Die im Rahmen dieser Diplomarbeit implementierte Software wird als
JVS2 bezeichnet. Das im Rahmen der Diplomarbeit von Herrn Schwab[19] implementierte
System wird JVS Planung genannt.

1.1. Motivation

Ursprünglich wurde die Planung der Unterrichtstermine an den Jugendverkehrsschulen
von Hand durchgeführt. Um diesen Vorgang zu erleichtern und die Randbedingungen der
Planung zu prüfen, wurde die Software JVS Planung[19] erstellt. Im Betrieb haben sich bei
dieser Software einige geänderte Anforderungen ergeben. Aus diesem Grund soll jetzt eine
neue Version implementiert werden, welche diese Anforderungen erfüllt.

Eine dieser Anforderungen ergibt sich aus dem Fehlen einer einheitlichen Implementierung
der „Constraints“. Dabei handelt es sich um vordefinierte Eigenschaften einer Planung, die
bei deren Erstellung eingehalten werden müssen. Diese Constraints wurden in JVS Planung in
zwei Kategorien unterteilt: „hart“ und „weich“. Diese Unterteilung hat sich als zu unflexibel
erwiesen, weshalb JVS2 eine feingliedrigere Unterteilung erlauben soll. Zusätzlich soll die
Möglichkeit geschaffen werden, Constraints zentral zu implementieren und gegebenenfalls
neue Constraints nachzuladen.

Eine weitere Anforderung ergibt sich aus dem gewählten Speicherformat. Hier wurde ein
auf Javas Serialisierung basierendes Format gewählt. Dies hat zur Folge, dass schon kleinere
Änderungen am Speicherformat oder der Code-Struktur alte Speicherstände unbrauchbar
machen. Um dies zu umgehen, soll JVS2 ein neues Speicherformat verwenden.

1.2. Aufgabenstellung

In dieser Diplomarbeit soll JVS Planung in enger Zusammenarbeit mit den Sachbearbeitern
der Polizeidirektion Esslingen komplett überarbeitet, erweitert und dabei die Planungseffizi-
enz verbessert werden.

9

1. Einleitung

Dabei soll das überarbeitete System auf eine aktuelle Windows-Version portiert werden,
bezüglich der in Esslingen verwendeten Betriebssysteme portabel sein und eine höhere
Robustheit aufweisen. Die Benutzerschnittstelle soll modernisiert werden, was vor allem die
dynamische Rückmeldung der Gültigkeit von Eingaben betrifft. Einige von den Sachbearbei-
tern identifizierte Schwachstellen von JVS Planung sollen vermieden werden.

Nach Möglichkeit soll JVS2 die Fähigkeit besitzen, weitere Constraints einzubinden, ohne
große Eingriffe in den Programmcode vornehmen zu müssen.

Die Implementierung soll qualitativ hochwertig und real einsetzbar sein. Tests der Imple-
mentierung sollen anhand realer Anwendungsdaten aus den vergangenen Jahren erfolgen.

1.3. Gliederung

Die Gliederung dieser Arbeit orientiert sich an den Arbeitsschritten der Projektdurchführung.
So werden zuerst die ermittelten Ziele und Anforderungen beschrieben, dann wird der
Entwurf erläutert und schließlich die Implementierung erklärt. Im Anschluss wird die
Planung und Durchführung der Tests erläutert, sowie deren Resultate vorgestellt.

Abschließend wird die Arbeit kurz zusammengefasst und ein Ausblick auf potentielle
zukünftige Entwicklung gegeben.

Im Anhang A befindet sich eine Begriffserklärung für projektspezifische Fachbegriffe.

10

2. Anforderungen und Ziele

In diesem Kapitel werden die Anforderungen und Ziele an das Programm JVS2 beschrieben.
Wo angebracht, beschränkt sich diese Beschreibung auf die Unterschiede, die sich zu JVS
Planung ergeben.

2.1. Ermittlung der Anforderungen und Ziele

Als erster Schritt wurde probehalber ein minimalistisches Planungsszenario mit JVS Planung
durchgespielt und die beigefügte Dokumentation gelesen, um bisherige Funktionalität zu
ermitteln. Danach wurde der Code analysiert, um das Verständnis für das Programm zu
erhöhen und die Entscheidung treffen zu können, ob vorhandener Code weiterverwendet
werden sollte, oder eine komplette Neuimplementierung stattfinden müsse. Schließlich
wurde der Kunde nach seinen Anforderungen befragt.

Die hier aufgeführten Anforderungen und Ziele wurden während des gesamten Projekts
ermittelt. Deshalb mussten Entwurfs- und Implementierungsdetails während des Projekts
mehrmals angepasst werden. Dies hatte zur Folge, dass Teile der Planung und Implementie-
rung suboptimal verliefen. Die nachträgliche Anpassung betraf indirekt verwandte Stellen,
und es fehlte die Zeit, die komplette Planung und Implementierung zu überarbeiten, um
diese Stellen zu ermitteln.

Der Kunde war an jedem Schritt der Anforderungsanalyse beteiligt, um ermittelte Anforde-
rungen zu verifizieren und zu ergänzen. Daraus ergab sich das Ziel, dass Änderungswün-
schen des Kunden auch kurzfristig entsprochen werden müsste. Um dies zu ermöglichen,
wurde sowohl beim Entwurf als auch bei der Implementierung darauf Wert gelegt, möglichst
flexibel zu bleiben und Teile des Programms, die nicht logisch verwandt waren, voneinander
abzugrenzen. Dies sollte es ermöglichen, für jede Änderung der Funktionalität nur möglichst
kleine Teile des Programmcodes bearbeiten zu müssen und so den Aufwand zu begrenzen.

Hier musste jedoch auch darauf geachtet werden, möglichst große, logisch verwandte
Teile des Programms zusammenzufassen um die Komplexität zu begrenzen und so die
Verständlichkeit und Wartbarkeit von sowohl Entwurf als auch Implementierung möglichst
hoch zu halten.

Um sowohl die möglichst große Anpassbarkeit zu gewährleisten als auch die Komplexität
zu minimieren wurde das Programm schon im Entwurf anhand von Java-Packages in grobe
Bereiche unterteilt. Während der Implementierung wurde dann darauf geachtet, dass die
Menge der Daten, die innerhalb dieser Bereiche geteilt wurden, minimiert wurden. Dies

11

2. Anforderungen und Ziele

führt dazu, dass der Datenaustausch in logisch zusammenhängenden Teilen des Programms
ohne Umwege möglich, jedoch auf das Nötigste beschränkt ist.

Um geänderten Anforderungen entgegenzukommen und neue Konzepte erproben zu kön-
nen, wurde außerdem ein iteratives Entwicklungsmodell verwendet. Hierbei wurde kein
klassisches Modell verwendet, da diese Modelle strenge Anforderungen an den Projekta-
blauf stellen und großteils auf Entwicklerteams ausgelegt und somit auf dieses Projekt nicht
anwendbar sind. Das gewählte Entwicklungsmodell hat keine formellen Einschränkungen
an die Durchführung der einzelnen Projektphasen gemacht. Es wurden lediglich eine Reihe
von zweiwöchigen Planungs- und Implementierungsphasen definiert, in denen angestrebt
wurde, jeweils mindestens ein Kundentreffen zu organisieren, an dem der aktuelle Fort-
schritt vorgestellt und der weitere Projektverlauf geplant werden konnte. Gegen Ende des
Projekts wurde eine große Testphase vorgesehen, für die mehrere Kundentreffen angestrebt
wurden.

2.2. Ziele

2.2.1. Bedienung

Der Kunde wünscht ein Oberflächendesign basierend auf bekannten Bedienkonzepten. Dies
bedeutet vor allem die Verwendung von Menüs, Auswahllisten und Knöpfen, wie sie aus
Büroprogrammen und allgemeinen Windows-Anwendungen bekannt ist.

Allgemein soll das Programm Fehlbedienungen verhindern oder behandeln und „intuitiv“
bedienbar sein. Da diese Ziele abstrakt sind, und sich keine konkreten Anforderungen daraus
ableiten lassen, wurde der Kunde vor und nach der Implementierung neuer Interaktions-
möglichkeiten nach seiner Meinung befragt. Hierbei wurde besonders darauf geachtet, dass
die Bedienung für ihn verständlich und intuitiv sei.

2.2.2. Sicherheit

Programmsicherheit

JVS2 wird vor allem auf einem Laptop ausgeführt, der nur selten für den Download von
Betriebssystem-Updates eine Internetverbindung aufbaut. Da nur eine begrenzte Menge
Anwendungen installiert wird und der Laptop nicht für Internetbenutzung verwendet wird,
ist die Programmsicherheit keine Priorität. Des weiteren hat JVS2 keine Internet-Schnittstelle,
die abgesichert werden müsste.

Eine konkrete Sicherheitslücke wurde, nach Rücksprache mit dem Kunden, als unwichtig
eingestuft und ignoriert. Hierbei handelt es sich um die neue Funktionalität, dass Constraints
durch JAR-Dateien nachgeladen werden können. Diese JAR-Dateien werden ohne Prüfung
oder Benachrichtigung des Benutzers nachgeladen. Die in ihnen enthaltenen Constraints

12

2.3. Anforderungen

können beliebigen Code ausführen und haben somit ein sehr hohes Schadenspotential.
Allerdings ist das Risiko eines Angriffs gering genug, um vernachlässigt werden zu können.

Datensicherheit

Für die auf der Festplatte befindlichen Daten ist der Benutzer verantwortlich. Die Dateninte-
grität wird nicht vom Programm verifiziert. Sofern eine geladene Datei der vom Programm
erwarteten Struktur entspricht, wird sie ohne weiterführende Prüfung verwendet.

Die Sicherung der gespeicherten Daten liegt im Verantwortungsbereich des Benutzers. Da
diese Daten in einem lesbaren XML-Format vorliegen, können sie mit den meisten Backup-
Programmen effizient gesichert werden.

Damit im Falle eines Programmabsturzes möglichst wenig Daten verloren gehen, werden sie
nach jedem vom Benutzer bestätigten Arbeitsschritt auf die Festplatte gespeichert.

2.2.3. Anpassbarkeit

JVS2 soll so implementiert werden, dass geänderte Anforderungen möglichst wenig Code-
Änderungen benötigen. Dies bedeutet für Stellen, an denen Änderungen erwartet werden,
dass ein modularer Entwurf verwendet werden muss. Auch allgemein sollte der Code
möglichst gut dokumentiert und verständlich geschrieben werden.

2.3. Anforderungen

2.3.1. Übernommene Anforderungen

Da ein Teil der Aufgabenstellung die Weiterentwicklung von JVS Planung ist, werden große
Teile der Funktionalität und des Designs übernommen. Der Code wird jedoch komplett
neu implementiert, um den geänderten Anforderungen gerecht zu werden und eine den
geänderten Umständen entsprechende Architektur bereitstellen zu können.

Sofern im Folgenden nicht anders spezifiziert, wird alle Funktionalität unverändert von JVS
Planung übernommen.

Wie auch JVS Planung wird JVS2 dazu verwendet, Ferien-, JVS- und Schuldaten zu erfassen
und mithilfe dieser Informationen einen Belegungsplan für die JVS der Kreisverkehrswacht
Esslingen zu erstellen. Aus diesem Belegungsplan werden schließlich RTF-Dokumente
erstellt, die den Belegungsplan enthalten und ausgedruckt werden können.

Analog zu JVS Planung stehen auch bei JVS2 Benutzerfreundlichkeit, Bedienbarkeit und Ro-
bustheit als Ziele im Vordergrund. Dazu muss vor allem die Benutzerführung gut durchdacht
sein. Portabilität soll auch gewährleistet sein.

13

2. Anforderungen und Ziele

Dem Benutzer ist es wichtig, die Dateneingabe und Planung in kleine Arbeitsschritte zu
unterteilen und deren Fertigstellung zu bestätigen. Nach dieser Bestätigung sollen die
Änderungen sowohl ins Datenmodell übernommen, als auch auf das Dateisystem gespeichert
werden. Um dies zu bewerkstelligen, wird jede Dateneingabemaske mit zwei Knöpfen
ausgestattet: „Zurücksetzen“ und „OK & Speichern“. Dieses Konzept wurde aus JVS Planung
übernommen und ist vom Kunden explizit gewünscht.

2.3.2. Geänderte Anforderungen

Constraint-Warnungen

Es hat sich herausgestellt, dass die Warnungsmarkierungen bei verletzten weichen Cons-
traints für den Benutzer zu kompliziert waren. Deshalb wurde dieses Konzept komplett
verworfen und beim Entwurf der Constraints neu durchdacht.

Geblockte Termine

Im Sprachgebrauch der Verkehrspolizei Esslingen werden Zeitblöcke, die von der Planung
ausgeschlossen werden sollen, als „Blocktermine“ bezeichnet. Da dieser Begriff verwirrend
sein und mit einem „Block an Terminen“ verwechselt werden kann, wurde entschieden,
diese Zeitblöcke als „geblockte Termine“ zu bezeichnen. Somit wird der bisherige Begriff
„Ausschlusstermine“ durch „geblockte Termine“ ersetzt.

Leitsystem-Übersicht

Der Übersichtsdialog des bisherigen Leitsystems war rein informativ und enthielt nur die
Namen und Beschreibungen der Arbeitsschritte. Hier wurde entschieden, dass man aus
diesem Dialog direkt auf einen bestimmten Arbeitsschritt springen können soll.

Teilautomatische Planung

JVS Planung enthält eine rudimentäre Implementierung einer teilautomatischen Planung.
Konkret können mit dieser Funktionalität Klassen und Schulen nach einem First-Come-
First-Served-Prinzip eingeplant werden. Diese Möglichkeit verwendet der Kunde aber nicht,
weshalb sie in JVS2 nicht implementiert werden sollte.

Konkret wünscht der Kunde eine komplett automatische Planung, was aber bei näherer
Betrachtung ein – im Rahmen einer Diplomarbeit – unlösbares Problem darstellt. Da der
Kunde die teilautomatische Planung nicht als sinnvoll erachtet, wurde diese Funktionalität
verworfen.

14

2.3. Anforderungen

Modernisierung der Benutzeroberfläche

Eine der Haupt-Anforderungen war die Modernisierung der Benutzeroberfläche. Hier war
es wichtig zu beachten, dass der Benutzer mit der vorhandenen Oberfläche gut vertraut war
und ihre Bedienung beherrschte. Deshalb durfte das Aussehen und die Handhabung nicht
vollständig neu entworfen werden.

Eine Möglichkeit, die Benutzeroberfläche zu modernisieren ohne ihr Aussehen oder ihre
Bedienung stark zu verändern, war die Bedienelemente interaktiv auf Eingaben reagieren
zu lassen. Das beinhaltet das dynamische (De-)Aktivieren von Schaltflächen und visuel-
les Feedback bei fehlerhaften1 und potentiell fehlerhaften2 Eingaben. Um dies einheitlich
implementieren zu können, wurde ein System benötigt, Constraints auch interaktiv zu
prüfen.

Abbildung 2.1.: Planung der interaktiven Constraints: Dialog aus JVS Planung ohne interak-
tive Eingabeprüfung

Beispielhaft wurde diese Änderung dem Kunden mittels eines Dialogs aus JVS Planung
(Abbildung 2.1) erläutert. Dieser Dialog wurde mit Hilfe einer Graphiksoftware so angepasst,
dass sie einem noch zu entwerfenden entsprechen könnte (Abbildung 2.2). Da dem Kunden
dieses Konzept mit kleineren Änderungen sehr gefiel, wurde es weitestgehend übernommen
(siehe Abbildung 3.19).

Abbildung 2.2.: Planung der interaktiven Constraints: Dialog aus JVS Planung mit interakti-
ver Eingabeprüfung

Eine andere Stelle, an der die Benutzeroberfläche modernisiert werden konnte, war die
Datumseingabe. Hier wurde die Entscheidung getroffen, die Datumseingabe mittels Frei-
texteingabe in einem einfachen Textfeld sowie mittels eines Kalender-Popups – wie es von

1beispielsweise ein Text wo eine Zahl erwartet wird
2Eingaben, die korrekt sein können, es wahrscheinlich aber nicht sind - beispielsweise eine Klassen-Schülerzahl

> 100

15

2. Anforderungen und Ziele

modernen Anwendungen bekannt ist – zu ermöglichen. An dieser Stelle wäre es möglich,
Datumsfelder vom Programm mit Vorschlägen füllen lassen, die der Benutzer dann nur
noch geringfügig anpassen müsste. Der Kunde bevorzugt jedoch leere Eingabefelder, damit
er sehen kann, dass die jeweiligen Felder noch nicht bearbeitet wurden. Außerdem kann
so die interaktive Constraint-Prüfung ermitteln, dass es sich um eine ungültige – da nicht
vorhandene – Eingabe handelt.

Der Kunde wünscht für JVS Planung die Möglichkeit, die Schriftgröße anpassen zu können,
da einige Bearbeiter ein eingeschränktes Sehvermögen aufweisen.

Oberflächensperrung bei Eingaben

JVS Planung hat fast die gesamte Oberfläche bei Eingaben gesperrt, bis der Benutzer entschied,
die Eingaben zu verwerfen oder zu speichern. Leider wurde gesperrt, sobald ein Eingabefeld
aktiviert wurde, auch wenn keine tatsächliche Eingabe stattfand. Dies hat sich im Betrieb als
hinderlich herausgestellt, weshalb JVS2 dieses Prinzip ersetzt. Der Benutzer kann andere
Elemente nach einer Eingabe anwählen, wird aber gefragt, ob er eventuelle Änderungen
verwerfen möchte. Erst wenn er dies bejaht, wird die Eingabemaske gewechselt.

Layout der generierten Dokumente

Bei den generierten Dokumenten gab es öfters Probleme mit den gedruckten Schulnamen, da
diese nicht in den vorgesehenen Platz passten. Dies führte zu Layoutproblemen im Dokument,
die später manuell korrigiert werden mussten. Um dieses Problem zu minimieren, wurden
die gedruckten Schulnamen auf 20 Zeichen begrenzt und das Layout der RTF-Vorlage
verbessert, indem einige überflüssige Leerzeichen entfernt wurden.

Es stellte sich an dieser Stelle heraus, dass das Layout auch mit diesen Modifikationen nicht
korrekt war, da die generierten Seiten größer waren als eine DIN-A4-Seite. Aus diesem
Grund musste die RTF-Vorlage komplett überarbeitet werden.

Inkonsistenzen der Benutzeroberfläche

In JVS Planung ist das Design der Benutzeroberfläche stellenweise inkonsistent und unhand-
lich. So muss bei der Festlegung der JVS-Ausschlusstermine zwischen zwei komplett verschie-
denen Ansichten gewechselt werden, während man bei der Eingabe der JVS-Stammdaten
nur eine Ansicht hat, in der die JVS durch Klick auf eine Liste gewechselt wird. Diese
Inkonsistenz sollte behoben werden.

Bei der Belegungsplanung war eine Ansicht vorgelagert, in der man eine JVS auswählen
konnte, für die man einen Plan bearbeiten bzw. erstellen wollte. Die resultierenden 3 ineinan-
der verschachtelten Ebenen an Oberflächen waren für neue Benutzer schwer nachvollziehbar.
Hier sollten die ersten beiden Ebenen zu einer kondensiert werden.

16

2.3. Anforderungen

Verworfene Constraints

JVS Planung hatte die Fähigkeit, zu melden, wenn Schulen in den gleichen Zeitraum einge-
plant wurden, in dem sie bereits zwei Jahre zuvor die zugewiesene JVS besuchten. Dies hat
sich in der Praxis als nicht sinnvoll erwiesen, weshalb dieser Constraint in JVS2 entfallen
soll.

Die in JVS Planung vorhandene Möglichkeit, zu spezifizieren, dass Schulen vor bzw. nach
den Herbstferien eingeplant werden wollen, wird auf Wunsch des Kunden verworfen. Diese
Funktionalität war nicht flexibel genug, da die Schulen oft spezifischere Wünsche hatten
und wurde adäquat durch den internen Vorplanungsprozess ersetzt.

Schulverwandte Änderung

In JVS Planung konnte die Schulart zwischen Grund- und Förderschule geändert werden.
Der Kunde wünscht, dass diese Funktionalität für JVS2 entfernt wird.

Der Kunde wünscht sich für JVS2 eine farbliche Unterscheidung zwischen Grund- und
Förderschulen. Konkret sollen Grundschulen blau und Förderschulen grün dargestellt
werden.

Wo Listen mit Schulen angezeigt werden, sollen diese durchnummeriert werden. Dies dient
der besseren Übersicht und gibt dem Benutzer eine zusätzliche Möglichkeit zu verifizieren,
dass alle Schulen im Datensatz vorhanden sind, ohne diese selbst zählen zu müssen.

In JVS Planung konnte die Zahl der JVS-Besuche pro Klasse für Förderschulen individuell pro
Schule eingestellt werden. Diese Möglichkeit soll für JVS2 entfallen und durch eine konstante
Anzahl an Klassenbesuchen von 6 Besuchen pro Förderschul-Klasse ersetzt werden.

Schulen sollen in JVS2 nicht nach Schulart sortiert werden. In JVS Planung wurden Schulen
alphabetisch nach ihrer Abkürzung sortiert. Dies hatte zur Folge, dass sie zuerst nach
Schulart und dann nach ihrem Namen sortiert wurden. In JVS2 soll die Schulart bei der
Sortierung ignoriert werden. Da die Abkürzungen der Schulen nach dem Schema „<Schulart-
Abkürzung> <gekürzter Name>“ aufgebaut sind, bedeutet dies konkret, dass die Abkürzung
bis einschließlich dem ersten Leerzeichen für die Sortierung ignoriert werden soll.

Allgemeine Änderungen

JVS Planung zeigte an einigen Stellen - speziell bei der Eingabe von geblockten Terminen -
einen Tab mit einer Kalenderansicht. Diese Kalenderansicht wurde standardmäßig angezeigt,
weshalb man bei jeder Termineingabe vom Kalender-Tab zum Termineingabe-Tab wechseln
musste. Da der Kunde die Kalenderansicht nicht verwendete und JVS2 ein Kalender-Popup
für die Termineingabe bereitstellt, soll die Kalenderansicht in JVS2 entfallen.

17

2. Anforderungen und Ziele

JVS Planung wurde für Java 5 auf Windows XP entwickelt und getestet. JVS2 soll für Java 7

auf Windows 7 entwickelt und getestet werden. Um eine möglichst große Plattformunabhän-
gigkeit zu erreichen, soll JVS2 zusätzlich auf Linux3 entwickelt und getestet werden.

Bei der Belegungsplanung hat JVS Planung bei geblockten Terminen nur die jeweiligen Felder
schwarz gefüllt. Dies machte es schwer, den Grund für den jeweiligen Block zu erfahren.
JVS2 soll hier, wo möglich, die Beschreibung des geblockten Termins anzeigen.

JVS Planung verlangt eine alte Planung, auf der aufgebaut wird, indem die JVS- und
Schuldaten übernommen werden. Während diese Option für JVS2 weiterhin gewünscht ist,
um Arbeit zu sparen, soll die Möglichkeit bestehen, ein neues Planungsprojekt ohne alte
Daten zu beginnen.

Da der Kunde diese Funktionalität nicht wünscht, und ihr Vorhandensein potentiell ge-
fährlich sein kann, sollen einmal erstellte Belegungspläne in JVS2 nicht einfach löschbar
sein.

JVS Planung musste wegen seiner Architektur die parallele Ausführung mehrerer Programm-
instanzen verhindern. Die Architektur von JVS2 soll hingegen die parallele Ausführung
mehrerer Programminstanzen erlauben.

JVS Planung erlaubt die Anpassung der Zeitintervalle der individuellen Unterrichtsstunden.
Diese Funktionalität könnte für den Benutzer verwirrend sein, weshalb sie in JVS2 nicht
vorhanden sein soll.

2.3.3. Neue Anforderungen

Anforderungen aus dem Betrieb

Im Betrieb ist aufgefallen, dass manchmal vergessen wurde, einige Schulklassen fertig ein-
zuplanen. Da die Warnungen teilweise übersehen, teilweise ignoriert wurden, waren sie
ineffektiv. Um dieses Problem zu umgehen, musste dies beim Entwurf der Constraints
berücksichtigt werden. Außerdem wurden beim Einplanen unvollständige verplante Schul-
klassen farblich hervorgehoben.

Obwohl die „Faschingsferien“ keine offiziellen Ferien sind, werden sie doch von allen Schulen
durch bewegliche Ferientage in der gleichen Woche implementiert. Um die Planung hier zu
vereinfachen, wurden die Faschingsferien als einplanbare Ferien zwischen Weihnachts- und
Osterferien vorgesehen.

JVS Planung hatte keine Programmeinstellungen, die über Sitzungen hinaus gespeichert wur-
den. So war einer der ersten Schritte des Benutzers nach dem Öffnen der Anwendung stets
die Maximierung des Programmfensters. JVS2 soll hier Größe und den Maximierungsstatus
des Fensters speichern und beim nächsten Programmstart wieder herstellen. Außerdem
soll bei Speicher- und Ladedialogen der zuletzt geöffnete Ordner vorausgewählt werden,

3ein jeweils aktuelles Debian Testing vom 15.08.2013 bis zum 27.05.2014

18

2.3. Anforderungen

damit der Benutzer nicht jedes Mal manuell zu dem selben Ordner navigieren muss. Die
stellte in JVS Planung kein Problem dar, da die Ordner zum Ausführungsverzeichnis statisch
festgelegt waren – eine Einschränkung, die in JVS2 nicht mehr existieren soll.

Überarbeitung des Speichersystems

JVS Planung verwendet Javas Serialisierung für das Speicher-Subsystem. Der Vorteil dieses
Systems ist die schnelle und einfache Implementierung. Der Haupt-Nachteil ist der Kom-
patibilitätsverlust zwischen Speicherformaten verschiedener Versionen schon bei geringen
Änderungen und jeder strukturellen Anpassung des Codes. Um diesen Kompatibilitätsver-
lust zu umgehen, können bestimmte Methoden implementiert werden, um alte Java-Klassen
einzulesen. Damit sind aber die erwähnten Vorteile nicht mehr vorhanden. Selbst reines
Umbenennen von Klassen oder Umstrukturieren der Paketstruktur machen die Vorteile
zunichte.

Aus diesem Grund wurde entschieden, dass das Speichersystem komplett erneuert werden
müsste, um diese Schwäche zu vermeiden.

Um Speicherstände aus JVS Planung auch in JVS2 verwenden zu können, wird eine Hilfs-
anwendung bereitgestellt, die Projekte aus JVS Planung importieren und in einem für JVS2
lesbaren Format abspeichern kann.

Überarbeitung des Constraint-Handlings

In JVS Planung sind alle Constraints direkt an den Stellen implementiert, an denen sie
verwendet werden. Dies macht es schwer, neue Constraints hinzuzufügen oder vorhandene
Constraints konsistent zu ändern. Deshalb soll das Constraint-Handling für JVS2 komplett
überarbeitet werden, um abstrakter zu sein und die Implementierung der Constraints an
einer zentralen Stelle zu ermöglichen.

Zusätzlich sollen die Constraints in feinere Klassen unterteilt werden, damit nicht mehr nur
zwischen harten und weichen Constraints unterschieden wird. Die ursprüngliche Unter-
scheidung kam durch ein Missverständnis zwischen Kunde und Entwickler zustande. Der
Kunde versteht unter einem „harten“ Constraint etwas, das im Normalfall nicht ignoriert
werden darf. In Ausnahmefällen möchte er jedoch die Möglichkeit haben, auch viele dieser
„harten“ Constraints zu verletzen, was von JVS Planung jedoch nicht zugelassen wurde.

Es gibt jedoch einige Constraints, die nicht verletzt sein dürfen, damit eine sinnvolle Pla-
nung durchgeführt werden kann. Somit muss es auch weiterhin unverletzbare – „harte“ –
Constraints geben. Deren Anzahl soll jedoch minimiert werden.

Um die Modernisierung der Benutzeroberfläche zu ermöglichen – speziell die Anforderung
der interaktiven Eingabeprüfung – müssen verschiedene Constraint-Sorten unterschieden
werden. Es müssen deshalb „interaktive“ Constraints definiert werden, die interaktiv Einga-
ben prüfen und „normale“ Constraints, die komplexere Prüfungen übernehmen.

19

2. Anforderungen und Ziele

Übernommen werden soll die Möglichkeit, Constraints ab- und anschalten zu können.

Um die Möglichkeit bereitzustellen, in Zukunft durch einen unabhängigen Entwickler weitere
Constraints implementieren zu lassen, sollen Constraints aus JAR-Dateien nachgeladen
werden können.

Encoding-Probleme

In JVS Planung wurde die Speicherung der Schulen mittels Serialisierung in Dateien realisiert,
deren Namen die Abkürzung der jeweiligen Schule waren. Da einige Schulen Sonderzeichen
wie „ß“ oder Umlaute im Namen hatten, konnte es beim Übertragen zwischen Dateisystemen
mit verschiedenen Zeichenkodierungen zu Problemen kommen. Beispielsweise konnte es
vorkommen, dass die Dateiverwaltung des Systems mit diesen Namen nicht zurechtkam
oder dass später das Laden alter Speicherstände fehlschlug.

In der Praxis ist dieses Problem nie aufgetreten, da der Anwender alle Planungen auf dem
gleichen Rechner durchgeführt hat.

Um dies zu adressieren, wurde das Speichersystem so konzipiert, dass die Namen in einer
UTF-8-kodierten Datei gespeichert werden. Somit sind Kodierungsprobleme von vornherein
ausgeschlossen. Außerdem wurden bei der Benennung der Java-Klassen alle Sonderzeichen
vermieden.

Eine andere Stelle, an der Kodierungsprobleme auftreten konnten, war der CSV-Import
neuer Grundschuldaten. Hier ist nicht vordefiniert, in welcher Kodierung die CSV-Dateien
eingelesen werden. Da der Benutzer nichts von Zeichenkodierungen weiß, kann diese
Information auch nicht abgefragt werden. Hier verwendet JVS2 eine externe Bibliothek
(ICU4J[18]) um die Kodierung der CSV-Datei zu ermitteln und korrekt zu öffnen.

Dadurch sollte es in Zukunft auf keiner Ebene des Programms zu Kodierungsproblemen
kommen können.

20

3. Entwurf

In diesem Kapitel werden die Entwurfsentscheidungen dieser Diplomarbeit aufgeführt und
erläutert. Dabei wird der Entwurf der graphischen Oberfläche separat behandelt, da sich die
Arten der Entscheidungen hier fundamental unterscheiden.

3.1. Architekturentwurf

Zur Erstellung des UML-Entwurfs wurde Visual Paradigm for UML Community Edition[15]
verwendet. Mit diesem Programm hatte der Entwickler gute Erfahrungen unter Linux, was
Vollständigkeit der UML-Unterstützung und die Bedienung betraft. Andere Programme
wurden auch in Betracht gezogen, jedoch war deren Bedienung zu schwerfällig, ihnen hat
eine vollständige UML-Unterstützung gefehlt oder sie waren nicht kostenfrei verfügbar.

Die erste Implementierung fand auf Basis dieses Entwurfs statt. Jedoch musste aufgrund
von Kundenwünschen und Designschwächen dieser Entwurf oft und umfassend verän-
dert werden, sodass die aktuell vorliegende Software nur noch in Grundzügen diesem
Entwurf gleicht. Aus diesem Grund wird der erste auf UML basierende Entwurf hier nicht
aufgeführt.

3.1.1. Entwurfsmuster

Für JVS2 wurde MVP[12] als Architekturmuster gewählt. Es ist von MVC[11] abgeleitet,
trennt aber strikter zwischen View und Presenter und erlaubt eine engere Kopplung zwischen
Model und Presenter. Diese Eigenschaft erlaubt es, weitreichende Modultests des Presenters
zu erstellen, wenn eine Dummy-View bereitgestellt wird, die vordefinierte Daten liefert.

Die engere Kopplung zwischen Model und Presenter erlaubt es außerdem, viele Interfa-
ces einzusparen und somit Komplexität zu vermeiden. Auf der anderen Seite erlaubt die
Entkopplung von Presenter und View einfachere Programmzustände, da der Großteil des
Zustands in der View zu finden ist. Der Presenter ist lediglich für Zustandsübergänge verant-
wortlich, die zum größten Teil in zwei Teile aufgeteilt werden können: die Behandlung und
Prüfung der eingegebenen Daten, gefolgt von der Initialisierung und Anzeige der nächsten
Oberfläche. Das Datenmodell ist zustandslos.

An manchen Stellen müssen Vorgaben des Architekturmusters ignoriert werden, um die
Übersichtlichkeit des Programms zu wahren. Bei der Implementierung wurden diese Fälle
individuell betrachtet und entschieden.

21

3. Entwurf

Um die View vom Presenter zu entkoppeln, wurde das „Abstract Factory“-Pattern[1] ver-
wendet. Hierbei wird die erste View genutzt, die gefunden wird. Da die Anwendung gezielt
für einen Kunden entwickelt wird, ist nicht zu erwarten, dass sich im Betrieb mehr als eine
View finden wird. Diese Methode erlaubt jedoch, andere Views zu Testzwecken bereitzu-
stellen, oder in Zukunft mit geringem Aufwand eine modernere View zu entwickeln und
bereitzustellen.

MVP gibt eine grobe Trennung der Programmkomponenten vor, weshalb die Anwendung in
drei Haupt-Unterprojekte aufgeteilt wurde: „model“, „view“ und „presenter“. Ein viertes
Unterprojekt – „utils“ – wurde vorgesehen, um nicht-anwendungspezifischen, allgemein
nützlichen Code bereitzustellen.

Um Hauptkomponenten des Programms voneinander abzugrenzen und hervorzuheben,
wurden diese Unterprojekte in Pakete aufgeteilt. Interfaces für bestimmte Pakete werden in
Unterpaketen mit dem Namen „interfaces“ bereitgestellt.

Im folgenden wird die Paketstruktur genauer erläutert.

model

Die Paketstruktur für das model-Unterprojekt sieht wie folgt aus (interfaces-Pakete sind
der Übersichtlichkeit halber nicht aufgeführt):

- constraints

Enthält Constraint-Implementierungen.

- factories

Enthält die Factories, die die Standard-Constraints bereitstellen.

- school

Enthält die Implementierungen der verschiedenen Schularten.

- serialisation

Enthält Implementierungen von Datei Ein-/Ausgaben.

- time

Enthält verschiedene Zeit-Repräsentationen.

Das Model enthält die Geschäftslogik, und insbesondere die Implementierung des Speicherns
und Ladens von Dateien. Dadurch können Erweiterungen und Änderungen, die nur die
Logik betreffen, komplett im Model stattfinden. So braucht das Hinzufügen neuer Constraints
keine projektspezifischen Abhängigkeiten außerhalb des Models.

22

3.1. Architekturentwurf

view

Die Paketstruktur für das view-Unterprojekt sieht wie folgt aus (interfaces-Pakete sind der
Übersichtlichkeit halber nicht aufgeführt):

- adapters

Hier werden die Constraint-Adapters implementiert, wie unten in „3.1.2 Constraints: 3.
Entwurf“ beschrieben.

- main

Hier werden die Haupt-Views implementiert.

- panels

Dieses Unterpaket enthält die Panels, die von den Haupt-Views angezeigt werden.

- message

Implementiert die graphischen Oberflächen für Benachrichtigungsdialoge.

- util

Enthält Klassen, die in der gesamten View verwendet werden.

Die View ist komplett vom Rest des Projekts entkoppelt. Dadurch kann sie leicht komplett
oder teilweise ausgetauscht werden. Sie wurde jedoch auf Swing hin konzipiert, so dass in
nicht Swing-basierten Implementierungen einige Funktionen und Parameter durch Dummy-
Implementierungen bereitgestellt werden müssen. Daraus folgt, dass die Kommunikation
zur View gegen null und andere unerwartete Werte abgesichert werden muss.

presenter

Die Paketstruktur für das presenter-Unterprojekt sieht wie folgt aus (interfaces-Pakete
sind der Übersichtlichkeit halber nicht aufgeführt):

- constraints

Enthält die Programmlogik zum Auffinden und Zugänglich machen der Constraints.

- listeners

Listeners, die auf Events der View hören.

- phase

Implementiert die Steuerung der Phasen, die einzelne Arbeitsschritte im Leitsystem
darstellen.

Im aktuellen Entwurf sind die Listener Swing-spezifisch, und können nicht unbedingt auf
andere GUI-Frameworks angewendet werden. Dies stellt für die aktuelle Implementierung
kein Problem dar, da sie vollständig auf Swing basiert. Der Vorteil dieses Entwurfs besteht in
der Wiederverwendung des Codes, wobei Zeit eingespart und die Wartbarkeit erhöht wird,
indem bekannte Konstrukte verwendet werden. In Zukunft sollte jedoch überlegt werden,
ob eine Abstraktion sinnvoll sein könnte.

23

3. Entwurf

Der Einstiegspunkt der Anwendung befindet sich im Presenter, speziell in der JVS2-Java-
Klasse. Diese Klasse enthält einige statische Methoden und Felder, die den Zustand der
laufenden Anwendung enthalten. Dies erleichtert den Zugriff auf den aktuellen Zustand
durch beliebige Bereiche des Presenters, da sie zentral und einfach zugänglich implementiert
sind. Dieser Entwurf das potentielle Problem, dass keine zwei Anwendungen gleichzeitig in
der gleichen JVM aktiv sein dürfen, da sie auf die selben Zustandsinformationen zugreifen
und sich so gegenseitig beeinflussen würden. Da jedoch pro Anwendung immer eine eigene
JVM gestartet wird, wird dies in der Praxis kein Problem darstellen.

utils

Das utils-Unterprojekt enthält nur ein Paket namens xml. Darin befinden sich Hilfsklassen
für die (De-)Serialisierung. Das Hauptpaket dieses Unterprojekts enthält die eigentlichen
Hilfsklassen, die verschiedene Funktionen implementieren, die im gesamten Projekt von
Nutzen sind und auch in anderen Projekten verwendet werden können.

3.1.2. Constraints

Der Entwurf der Constraint-Unterstützung war eine der großen Herausforderungen dieses
Projekts. Folgende Eigenschaften wurden gefordert:

• Constraints müssen an- und abschaltbar sein.

• Es sollte leicht sein, neue Constraints hinzuzufügen.

• Es gibt die Schweregrade „kritisch“, „Fehler“, „Warnung“ und „Information“.

• Constraints sollten zentral implementiert sein, nicht über den kompletten Code verteilt.

• Einige Constraints müssen während der Eingabe geprüft werden können.

• Die Verletzungen von Constraints muss in verschiedene Schweregrade unterteilbar
sein.

• Verletzte Constraints müssen dem Benutzer den Grund der Verletzung mitteilen und
ihm eine Möglichkeit kommunizieren können, wie die Verletzung behoben werden
kann.

• Die Verletzung eines Constraints muss für einzelne Objekte ignoriert werden können,
sofern die Verletzung nicht vom Schweregrad „kritisch“ ist. So soll der Benutzer
beispielsweise eine Warnung für eine bestimmte JVS endgültig abschalten können.

Die Constraint-Unterstützung durchlief drei Entwurfs-Iterationen, bis ein Entwurf entwickelt
war, der alle geforderten Eigenschaften abdeckte.

24

3.1. Architekturentwurf

Constraints: 1. Entwurf

Der erste Entwurf unterschied nicht zwischen Constraints, deren Resultate interaktiv
während der Eingabe geprüft, angezeigt und aktualisiert wurden („interaktive“ oder
„ondemand“-Constraints) und solchen, die komplexere Verhältnisse prüften und erst bei
der Bestätigung einer Eingabe aufgerufen wurden („normale“ Constraints). Dieses Problem
machte den Entwurf unbrauchbar und und hatte zur Folge, dass die Kommunikation der
Resultate nicht berücksichtigt wurde.

Ein Element des ersten Entwurfs wurde jedoch in den folgenden Iterationen übernommen:
die „ConstraintRegistry“. Diese Klasse sollte darüber Buch führen, welche Constraints
aktiv waren, bzw. für welche Objekte sie deaktiviert wurden. Leider wurde beim Entwurf
dieser Klasse die Serialisierung nicht berücksichtigt, so dass diese Einstellungen im aktuellen
Entwurf nicht gespeichert werden. Der Kunde akzeptierte diese Einschränkung, da sie
Komplexität bei der Constraint-Verwaltung vermeidet: Werden bei einer Ausführung zu
viele Constraints abgeschaltet, muss das Programm nur neu gestartet werden, um den
Ursprungszustand wieder herzustellen.

Der Hauptgrund für den Entwurf der ConstraintRegistry war die Eigenschaft von JVS
Planung, in vielen Situationen mehrfach redundant zu warnen. Die ConstraintRegistry kann
verwendet werden, um bestimmte Constraints für bestimmte Objekte zu deaktivieren. So
kann konzeptionell eine Warnung deaktiviert werden, die für eine Schulklasse bereits
angezeigt wurde. Somit wird diese Warnung für diese Schulklasse in Zukunft nicht mehr
angezeigt, was die Möglichkeit schafft, die Verbosität des Programms zu verringern.

Constraints: 2. Entwurf

Der zweite Entwurf unterschied bereits zwischen interaktiven und normalen Constraints.
Allerdings sah er vor, dass interaktive Constraints mit der View registriert würden. Außer-
dem war eine direkte Kommunikation zwischen Model und View vorgesehen, was dem
MVP-Pattern widerspricht und erfordert hätte, dass die View das Model kennt. Dieses kriti-
sche Problem wurde schnell erkannt und bewirkte den frühzeitigen Abbruch der weiteren
Planung.

Der zweite Entwurf sah auch vor, Javas InputVerifier1 zur interaktiven Constraint-
Validierung zu verwenden. Leider kann dieser Mechanismus jedoch nur zwischen „korrekt“
und „inkorrekt“ unterscheiden, so dass er den Anforderungen nicht entsprach. Außerdem
kann jeder Komponente nur ein InputVerifier zugeordnet werden. Dies hätte es erforder-
lich gemacht, eine weitere Abstraktionsebene einzuführen, um mehrere Constraints an eine
Komponente zu binden.

1siehe http://docs.oracle.com/javase/7/docs/api/javax/swing/InputVerifier.html

25

http://docs.oracle.com/javase/7/docs/api/javax/swing/InputVerifier.html

3. Entwurf

Constraints: 3. Entwurf

An dieser Stelle wurde offensichtlich, dass eine weitere Recherche sinnvoll wäre. Bei dieser
Recherche wurde „JGoodies Validation“[6] gefunden, welches eine interaktive Prüfung von
Eingabedaten ermöglicht. Diese interaktive Prüfung ist sehr vollständig und beinhaltet die
Möglichkeit, Eingabefelder asynchron zu prüfen.

Vom Aufbau her gibt es die Möglichkeit, Constraints zentral zu definieren, und mittels
Validators zu komplexen Gebilden zu verbinden. So kann man angeben, dass nur einer
von mehreren Constraints validieren muss, um eine Prüfung erfolgreich zu beenden (OR-
Verknüpfung). Andere logische Verknüpfungen waren auch verwendbar. Leider gab es keine
Möglichkeit, nicht-interaktive Constraints zu definieren, und auch die Dokumentation war
nicht mehr zugänglich, da die Webseiten-Verknüpfungen nicht mehr gültig waren.

Validierungsergebnisse werden in JGoodies Validation nicht durch einfache boolesche Werte
übertragen, sondern mittels spezieller Validierungsergebnis-Objekte, die auch einen Schwe-
regrad angeben konnten. Leider waren nur die Schweregrade „Fehler“, „Warnung“ und
„Information“ verfügbar. JVS2 benötigte aber zusätzlich den Schweregrad „kritisch“.

Die von JGoodies Validation gebotene Komplexität wurde in JVS2 nicht benötigt, dafür aber
die Möglichkeit, normale Constraints zu implementieren. Das Konzept der Validators war
für die Implementierung der interaktiven Constraints jedoch sehr sinnvoll, und auch die
Validierungsergebnis-Klasse hatte deutliche Vorteile. Aus diesen Gründen wurde entschieden,
zwar eine eigene Implementierung der Constraint-Validierung bereitzustellen, deren Entwurf
jedoch stellenweise an JGoodies Validation anzulehnen.

Der endgültige Entwurf unterscheidet auf oberster Ebene nicht zwischen interaktiven und
normalen Constraints. Dies erlaubt es, beide Constraintarten von einer ConstraintRegistry
zu verwalten, die die (De-)Aktivierung von Constraints auf globaler Ebene erlaubt. Dies ver-
einfacht die Constraint-Verwaltung für den Benutzer. Auf dieser Ebene werden Eigenschaften
definiert, die interaktive und normale Constraints teilen. Das sind ID, Name, Beschreibung
und Priorität. Die Priorität ist eine Ganzzahl, für die gilt: je höher die Zahl desto höher
die Priorität. Sie wird verwendet, um die Reihenfolge der Constraints bei ihrer Ausführung
festzulegen.

Bei der Prüfung wird primär zwischen interaktiven und normalen Constraints unterschie-
den. Interaktive Constraints werden bei der Initialisierung der Anwendung in Executors

zusammengefasst, die die tatsächliche Eingabe-Validierung verwalten. Diese Executors wer-
den mittels eines Bindings an ein oder mehrere Oberflächenelemente gebunden. Bindings
verbinden dabei mehrere einfache Eingabe-Datentypen zu einem komplexen Datentyp, der
validiert wird. So wird es beispielsweise ermöglicht, zwei Datumseingaben zu einem Zeit-
raum zu verbinden, oder auch nur eine String-Eingabe vor der Validierung in einen anderen
Datentyp zu parsen.

Die konkrete Überwachung der Oberflächenelemente ist großteils elementspezifisch. So
werden für die Überwachung von Texteingaben andere Listener benötigt als für die Überwa-
chung einer Liste. Um die Anzahl der nötigen Bindings nicht durch verschiedene Varianten

26

3.1. Architekturentwurf

für verschiedene Listener aufzublähen, wurden Adapters als zusätzliche Abstraktionsebene
eingeführt. Diese Adapters abstrahieren die verschiedenen Listener-Varianten und bieten
den Bindings ein einheitliches Interface um auf Eingaben zu hören.

Der Aufbau einer Datensatzprüfung ist in Abbildung 3.1 dargestellt. Zu beachten ist hier,
dass Adapters mehreren Bindings zugeordnet werden können. Dies erlaubt die Zuordnung
eines Eingabefeldes zu mehreren Prüfungen.

Ein Beispiel hierfür ist die Eingabe des Startdatums eines Ferienzeitraums. Das Datum selbst
muss gültig sein, der Zeitraum von Start- bis Enddatum muss gültig sein, und der Zeitraum
vom Enddatum der vorherigen Ferien bis zum Startdatum des aktuellen Ferienzeitraums
muss ebenfalls gültig sein. Somit ist dieses Startdatum an drei Prüfungen beteiligt und dem
entsprechenden Adapter sollten drei Bindings zugewiesen werden.

Abbildung 3.1.: Interaktive Constraints: Zuweisung der an der Prüfung eines Datensatzes
beteiligten Elemente.

Der Arbeitsablauf einer Eingabeänderung sieht in diesem Modell wie folgt aus:

1. Ein Adapter ermittelt eine Eingabeänderung, normalerweise indem er als Listener ein
Event abfängt.

2. Der Adapter kommuniziert den neuen Feldwert an die ihm zugewiesenen Bindings.

3. Jedes Binding verwendet den neuen Wert, um den zu validierenden Datensatz zu
aktualisieren.

4. Jedes Binding kommuniziert dem ihm zugewiesenen Executor, dass geänderte Daten
vorliegen.

5. Der Executor entscheidet, wann er den neuen Wert prüfen will und fragt zu diesem
Zeitpunkt das Binding nach dem aktuellen Wert seines Datensatzes.

6. Der Executor iteriert über die ihm zugewiesenen interaktiven Constraints, wobei
erst nach Schweregrad und dann nach Priorität sortiert wird. Je nach Executor wird
entweder nach dem ersten Fehlschlag abgebrochen oder alle Constraints werden
geprüft.

7. Der Executor teilt dem Binding das Resultat der Prüfung mit.

8. Das Binding teilt allen seinen Adapters das Resultat der Prüfung mit.

27

3. Entwurf

9. Die Adapters visualisieren das Resultat auf eine Weise, die zu dem überwachten
Oberflächenelement passt.

Dieses Modell hat den Vorteil, dass die Prüfung bei Bedarf asynchron verlaufen kann und
dass die Komplexität auf jeder Ebene minimiert wird, ohne Flexibilität einzubüßen.

Interaktive Constraints müssen sehr schnell reagieren. Konkret bedeutet das, dass die
maximale Ausführungszeit aller Constraints eines Eingabefeldes unter 0,1 s liegen sollte.
Um den Entwickler zu einer entsprechenden Implementierung zu ermutigen, wird bei
den Prüfungergebnissen interaktiver Constraints nur zwischen „gültig“ und „ungültig“
unterschieden. Somit kann der Entwickler keine komplexen Ergebnisse ausdrücken und ist
nicht versucht, mehr als ein Resultat pro Prüfung zu liefern.

Normale Constraints sind einfacher entworfen. Für sie existiert keine direkte Interaktion
mit der View. Dadurch konnte das Konzept der Executors komplett ausgeschlossen werden,
was die Komplexität stark verringert. Normale Constraints konzentrieren sich darauf, die
Eigenschaften eines konkreten Objekts zu prüfen. Konzeptionell werden sie immer dann
ausgeführt, wenn ein Objekt vollständig definiert wurde. In der Realität ist dieses Konzept
nicht durchführbar, da der vorgegebene Arbeitsablauf bestimmte Klassen in mehreren
Arbeitsschritten mit Daten füllt. Somit müssen an manchen Stellen Teilobjekte geprüft
werden können.

Um diesen Gegebenheiten zu entsprechen, stellen alle normalen Constraints eine Methode
bereit, die Eigenschaften eines kompletten Objekts zu prüfen und mehrere Methoden, um
die einzelnen Eigenschaften individuell zu validieren.

Da normale Constraints nicht an bestimmte Oberflächenelemente gebunden sind, werden sie
nicht während der Programminitialisierung einmal erstellt, sondern bei jeder Prüfung erneut
abgerufen und direkt ausgeführt. Da sie immer am Ende eines Arbeitsschritts aufgerufen
werden, müssen sie nicht so schnell reagieren wie interaktive Constraints. Hier ist es kein
Problem, wenn die Ausführungszeit 2 - 3 s beträgt. Dies erlaubt komplexere Prüfungen.

Da der Benutzer an dieser Stelle nicht bei jeder Prüfung mit einem neuen Problem konfron-
tiert werden soll, ist es hier angebracht, alle vorhandenen Probleme zu ermitteln und dem
Benutzer zu präsentieren. Um dem Benutzer an dieser Stelle irrelevante Informationen zu
ersparen, werden die gefundenen Probleme nach Schweregrad gruppiert und präsentiert.
Hier wurde entschieden, pro Schweregrad ein Dialogfeld zu öffnen. So kann der Benutzer
entscheiden, wie er mit den schwereren Problemen umgehen will, ohne von niederen Schwe-
regraden belästigt zu werden. Sollte er entscheiden, die Probleme des höheren Schweregrads
zu ignorieren, werden die des jeweils nächsten Schweregrads angezeigt.

Um nachträglich neue Constraints nachladen zu können, wurde das „Abstract Factory“-
Pattern[1] für das Auffinden der vorhandenen Constraints angewendet.

28

3.1. Architekturentwurf

3.1.3. Speichersystem

Eine in JVS2 vorhandene Funktionalität sollte die Möglichkeit sein, ab einem bestimmten
Punkt der Planung weitere Planungschritte experimentell durchzuführen und bei einem
minderwertigen Ergebnis auf einen früheren Zustand zurückgreifen zu können. Diese
Funktionalität wurde aus Zeitgründen nicht explizit für JVS2 geplant oder implementiert. Sie
lässt sich jedoch emulieren, indem der Benutzer vor Experimenten einen neuen Speicherstand
anlegt und mit diesem weiterarbeitet. Der Kunde ist mit dieser Möglichkeit zufrieden, da er
das Verfahren von anderen Programmen – wie Microsoft Word – bereits kennt.

Die in JVS Planung verwendete Java-Serialisierung erfüllt nicht die Anforderungen an ein
modernes Speichersystem und erschwert die Anpassung des Codes. Das neue Speichersystem
soll diese Schwächen vermeiden.

Es wurden zwei Möglichkeiten ermittelt, das neue Speichersystem zu realisieren: basierend
auf einer Datenbank oder auf einer XML-Repräsentation.

Datenbank

Die Verwendung einer Datenbank zur Datenverwaltung hätte eine Reihe von Vorteilen:

• Teilautomatisierte Aktualisierung des Datenbankschemas um Änderungen im Speicher-
format zu reflektieren: Kleine Änderungen im Speicherformat können von gängigen
Datenbank-Abstraktionsschichten ohne zusätzlichen Aufwand für Entwickler und
Benutzer in die Datenbank übernommen werden.

• Beim Speichern müssen nur geänderte Daten modifiziert werden, was auch bei großen
Projekten extrem schnelles Speichern ermöglicht.

• Transaktionen, um Änderungen atomar abzuarbeiten.

• Bei einigen Datenbanksystemen gehören Undo- und Checkpoint-Funktionalität zum
Funktionsumfang und könnten so ohne zusätzlichen Aufwand angeboten werden.

Sie hätte aber auch den großen Nachteil, dass Datenbanken regelmäßig gewartet werden
sollten, um Leistungs-Verringerung und Datenkorruption zu vermeiden. Dies kann dem
Benutzer aber nicht zugetraut werden, was bedeuten würde, dass die Anwendung diese
Aufgabe automatisieren müsste oder regelmäßige Wartungen durch den Entwickler durch-
geführt werden müssten. Außerdem hat das Aufsetzen und Warten einer Datenbank erst
bei größeren Datenmengen ein positives Preis-Leistungsverhältnis, als sie im Rahmen eines
Planungsprojekts zu erwarten sind.

Die Verwendung einer Datenbank würde auch eine Möglichkeit zum Datenexport benö-
tigen, um die Daten zwischen verschiedenen JVS2-Installationen teilen zu können. Dieser
Datenexport würde wahrscheinlich auf XML basieren.

29

3. Entwurf

XML

Die Verwendung von XML zur Datenserialisierung vermeidet diese Probleme. Da nach
Abschluss eines Projekts keine neuen Daten an eine XML-Datei angehängt werden, bleiben
ihre Größe und die Leistung beim Zugriff auf die Daten konstant. Die zu erwartende
Datenmenge (1 MB - 5 MB) eignet sich gut für eine XML-Datei, da sowohl die Serialisierung
als auch die Deserialisierung sehr schnell verlaufen.

Die Vorteile von XML als Serialisierungsformat sind:

• Die Daten eines Projekts sind an einem Ort gespeichert und können beliebig gesichert
und verschoben werden.

• Das Datenformat eignet sich sehr gut zur Komprimierung, so dass eine CD voraus-
sichtlich für die Datensicherung von mehr als 100 Jahren2 reicht3.

• Projekte sind komplett voneinander getrennt und können sich nicht gegenseitig beein-
flussen.

• Konstante Leistung nach Projektabschluss: Die Leistung verschlechtert sich nicht
dadurch, dass andere Projekte auf dem gleichen Datenträger vorhanden sind.

• Geringer Overhead als bei der Verwendung einer Datenbank, da keine separate An-
wendung zur Bereitstellung der Daten benötigt wird.

Da die Vorteile einer auf XML basierenden Implementierung – verglichen mit der auf einer
Datenbank basierenden – überwogen, fiel die Wahl auf XML.

Als Alternativen für die Bereitstellung der XML-Serialisierungs-Implementierung wurden
JAXB[4] und JiBX[7] identifiziert. Beide Projekte ermöglichen eine Abstraktion der XML-
Darstellung von der tatsächlichen Implementierung. JAXB hatte jedoch den Vorteil, dass
es im JRE4 enthalten ist, von vielen Projekten eingesetzt wird und dem Entwickler bereits
bekannt war.

Aus diesen Gründen fiel die Entscheidung auf JAXB.

3.1.4. Leitsystem & Phasen

Das Leitsystem ist ein aus JVS Planung übernommenes Konzept. Es ermöglicht dem Benutzer
eine Verwendung des Programms, auch wenn er es zuvor noch nicht kannte. Hierbei wurde
der typische Arbeitsablauf in eine Reihe von Arbeitsschritten aufgeteilt, die konzeptionell
nacheinander abgearbeitet werden sollten. Die meisten dieser Arbeitsschritte sind nicht

2unkomprimierte Größe einer Projektdatei < 5 MB, Größe einer CD = 700 MB; 700 ÷ 5 = 140
3Ein nach dem Projektabschluss durchgeführter Test offenbarte eine Dateigröße von 1,4 MB für die unkom-

primierte Form der Projektdatei und eine Größe von 36 KB für eine ZIP-komprimierte Form, was diese
Erwartung untermauert.

4Java Runtime Environment – siehe http://www.oracle.com/technetwork/java/javase/downloads/index.

html

30

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

3.1. Architekturentwurf

direkt voneinander abhängig, weshalb ihre Reihenfolge geändert werden könnte. Der Kunde
wünscht diese Funktionalität jedoch nicht, weshalb die Reihenfolge fest vorgegeben wurde.

Das Leitsystem ermöglicht es dem Anwender, vom aktuellen Arbeitsschritt zum nächsten zu
springen. Hierbei wurden folgende Arbeitsschritte identifiziert:

1. Eingabe der Projekt-Metadaten

2. Eingabe der Feriendaten

3. Eingabe der JVS-Stammdaten

4. Eingabe der geblockten Termine von JVS

5. Eingabe der Grund- und Förderschul-Stammdaten

6. Eingabe der geblockten Termine von Grund- und Förderschulen

7. Durchführung der Terminplanung

8. Generierung des Ausdrucks

Dieses Konzept wurde nicht verändert, lediglich die „Leitsystem-Übersicht“ angepasst. Hier
wurde die Interaktivität erhöht, so dass der Benutzer sie verwenden kann, um zu einem be-
liebigen Arbeitsschritt zu springen. Diese Änderung benötigt eine Kommunikation zwischen
der graphischen Oberfläche der Übersicht und dem Presenter. Sonstige Änderungen sind
oberflächenspezifisch.

Das Leitsystem wird intern durch „Phasen“ repräsentiert, die den Arbeitsablauf unterteilen.
Dabei sind die Phasen untereinander nur lose gekoppelt, so dass ihre Reihenfolge weitgehend
anpassbar ist. Phasen haben weitgehend eine spezielle Ansicht in der Oberfläche. Sie sind
nur in Presenter und View vertreten, und bieten jeweils eine individuelle Sicht auf den
Datenbestand.

Phasen, die nicht in ihrer Reihenfolge verändert werden dürfen, sind die Erfassung der
Projekt-Metadaten und die Generierung der Dokumente. Die Generierung der Dokumente
besitzt außerdem keine spezielle Ansicht, da hier keine Daten dargestellt werden. Bei ihr
handelt es sich deshalb um eine „virtuelle Phase“, die das Ende der Bearbeitung signali-
siert.

3.1.5. Sprache

Der Kunde erwartet eine Anwendung mit einer deutschen Benutzeroberfläche. Somit muss
mindestens deutsch verfügbar sein. Andere Sprachen könnten theoretisch auch unterstützt
werden. Da es sich bei JVS2 jedoch um ein Projekt handelt, dessen Verwendung ausschließlich
in Deutschland geplant ist, wird auf eine Unterstützung weiterer Sprachen oder anders
gearteter Internationalisierung verzichtet.

Da es sich bei diesem Projekt um ein deutsches Projekt mit deutscher Zielgruppe handelt,
das viele Fachbegriffe enthält, die nicht leicht übersetzt werden können, wurde entschieden,

31

3. Entwurf

die Code-Dokumentation in deutscher Sprache zu halten. Der Code selbst soll englisch
geschrieben werden, mit deutschen Begriffen, wo es sich um typisch deutsche Namen und
Konzepte handelt.

3.1.6. Zeitdarstellung

JVS2 benötigt – wie auch JVS Planung – nur eine Darstellung des Datums und des belegten
Unterrichtszeitraums. Somit ist eine Zeitdarstellung mit einer Genauigkeit von Tag, Monat
und Jahr zuzüglich der Information zum Unterrichtszeitraum ausreichend. Um Kompa-
tibilität zu verwendeten Bibliotheken zu wahren, wurde entschlossen Javas Calendar als
Basis der Zeitdarstellung zu verwenden, genauere Informationen als das Datum jedoch
zu ignorieren. Stattdessen wird über eine Enumerationsklasse namens Slot der gewählte
Unterrichtszeitraum dargestellt.

32

3.2. Entwurf der graphischen Oberfläche

3.2. Entwurf der graphischen Oberfläche

Abbildung 3.2.: JVS Planung: Ansicht nach Öffnen eines Projekts

In diesem Unterkapitel wird der Entwurf der graphischen Oberfläche erläutert. Wo an-
gebracht, werden den neu entworfenen Oberflächen ihre Gegenstücke aus JVS Planung
gegenübergestellt, um Ähnlichkeiten und Änderungen hervorzuheben. So lässt sich aus dem
Vergleich von Abbildungen 3.2 und 3.3 erkennen, dass die Schriftgrößen in JVS2 vergrößert
wurden, während die Standard-Fenstergröße verringert wurde. Der Rest des Designs wurde
übernommen.

Der Entwurf der graphischen Oberfläche wurde weitestgehend an JVS Planung angelehnt.
Allerdings wurde konsequenter auf Swing gesetzt, und die interaktive Constraintprüfung
berücksichtigt. An einigen Stellen wurde auch versucht, bereits vorhandene Entwurfskon-
zepte konsequenter einzusetzen. Im Gegensatz zu JVS Planung wird von JVS2 eine minimale
Fenstergröße von 700 x 400 px vorgeschrieben, da kleinere Fenster vom Layout nicht un-
terstützt werden. Dies verhindert, dass der Benutzer eine kleinere Fenstergröße wählt und
durch Layoutprobleme gestört wird.

33

3. Entwurf

Abbildung 3.3.: JVS2: Ansicht nach Öffnen eines Projekts

Abbildung 3.4.: JVS Planung: JVS-Auswahl bei kleinerem Fenster

34

3.2. Entwurf der graphischen Oberfläche

Eine der identifizierten Schwächen von JVS Planung war die Tatsache, dass bei kleinen Fens-
tergrößen teilweise nicht mehr alle Oberflächenelemente sichtbar und erreichbar waren (siehe
Abbildung 3.4). In JVS2 sollen in diesen Situationen konsequent Scrollbalken auftauchen,
damit der Benutzer immer auf alle Elemente zugreifen kann.

3.2.1. Kalender-Popup

Um eine modernere Benutzeroberfläche bereitstellen zu können, soll für Datumseingaben
ein Kalender-Popup eingebunden werden. Eine Voruntersuchung identifizierte die Projekte
„JCalendar“[5] (Abbildung 3.5) und „Microba controls“[9] (Abbildung 3.6) als potentielle
Implementierungen dieser Funktionalität.

Abbildung 3.5.: JCalendar (Quelle: JCalendar-Webseite[5])

Abbildung 3.6.: Microba controls (Quelle: Microba-Screenshot-Webseite[10])

Da JCalendar für den Entwickler einfacher zu verwenden und in der Ausführung schneller
sein soll[17], fiel die Wahl letztendlich auf JCalendar. Außerdem beinhaltet Microba controls
eine Reihe weiterer Bedienelemente, die in JVS2 nicht verwendet werden. Somit würde es
das Programm nur unnötig vergrößern.

35

3. Entwurf

3.2.2. Projektstart

Zum Start des Projekts werden die Projektparameter abgefragt. Da dies in JVS Planung an-
hand einer Reihe von Dialogen geschah, wurde diese Eingabemaske komplett neu entworfen.
So können nun alle relevanten Daten an einer Stelle eingegeben werden, was dem Benutzer
eine bessere Übersicht ermöglicht. Es erzielt auch eine bessere Konsistenz der Bedienung.
Die neue Eingabemaske ist in Abbildung 3.7 dargestellt.

Abbildung 3.7.: Eingabe der Projektdaten

36

3.2. Entwurf der graphischen Oberfläche

3.2.3. Ferieneingabe

Die Eingabe der Sommerferien wurde auf Kundenwunsch mit der Eingabe der restlichen
Ferien in einer Maske zusammengeführt. Die Faschingsferien werden aus dem selben Grund
zusätzlich erfasst. Sonst wurde die Oberfläche komplett von JVS Planung übernommen.

Abbildung 3.8.: Ferieneingabe und Anzeige der berechneten Ferien

37

3. Entwurf

3.2.4. Eingabe geblockter Termine

Die Eingabemasken für geblockte Termine wurden vereinfacht, indem die Termineingabe
und -anzeige in der gleichen Maske realisiert wurde. Zusätzlich können Termine nun auch
gelöscht werden.

Abbildung 3.9.: JVS: Eingabe geblockter Termine

Die Ausnahme zu dieser Regel bildet die Eingabe von beweglichen Ferientagen, da diese mit
anderen Schulen geteilt werden. Die Möglichkeit, bewegliche Ferientage zu löschen, würde
zu viel Komplexität schaffen und deshalb wahrscheinlich zu Eingabefehlern führen. Deshalb
wurde diese Funktionalität in Rücksprache mit dem Kunden an dieser Stelle deaktiviert.

Die Eingabemaske für geblockte Termine der JVS (Abbildung 3.9) wurde auch dahingehend
vereinfacht, dass die JVS-Auswahl nun in der gleichen Maske stattfindet, wie die Anzeige
der geblockten Termine. Dies verringert die Anzahl der ineinander verschachtelten Eingabe-
masken, die der Benutzer kennen muss und vereinheitlicht das Design der Anwendung.

Zum Vergleich enthalten die Abbildungen 3.10 und 3.11 die in JVS Planung verwendete
Oberfläche, die – zusätzlich zu den geschilderten Eigenschaften – für die verschiedenen
Termindarstellungen ein GridLayout als LayoutManager verwendete, was zu visuell wenig
ansprechenden Darstellungen führen und die Übersichtlichkeit behindern konnte.

38

3.2. Entwurf der graphischen Oberfläche

Abbildung 3.10.: JVS Planung: Eingabe geblockter JVS-Termine (1. Bildschirm)

Abbildung 3.11.: JVS Planung: Eingabe geblockter JVS-Termine (2. Bildschirm)

39

3. Entwurf

3.2.5. Belegungsplanung

Schulwahl- und Detailansicht

Abbildung 3.12.: Belegungsplanung: Detailansicht

Analog zu der Einsparung einer verschachtelten Eingabemaske (siehe Abbildung 3.13) bei
der Eingabe geblockter JVS-Termine, wird auch bei der Belegungsplanung die Auswahl der
JVS verändert. Wie in Abbildung 3.12 zu sehen ist, kann die JVS durch einen Tab am oberen
Rand der Maske gewählt werden. Dieses Verfahren hat den Vorteil, dass es ein Bedienelement
verwendet, das von jedem aktuellen Internet-Browser bekannt ist. Somit kann der Benutzer
die Bedienung sofort intuitiv erfassen. Die Implementierung von JVS Planung, die Buttons
für diese Funktionalität verwendete (siehe Abbildungen 3.13 und 3.14), war umständlicher
und unflexibler.

Eine weitere Änderung stellt die Anzeige von lediglich zwei Auswahllisten – eine für
Grund- und eine für Förderschulen – dar. Hier wurde die Unterscheidung zwischen Schulen
mit und ohne verletzten Constraints eingespart, da in reellen Planungen fast alle Schulen
mindestens einen Constraint verletzen. Zusätzlich wurden die Schulnamen eingefärbt, was
eine einfachere Unterscheidung von Grund- und Förderschulen ermöglicht.

Die beschriebenen Änderungen werden durch den Vergleich der Abbildungen 3.14 und 3.12

verdeutlicht.

40

3.2. Entwurf der graphischen Oberfläche

Abbildung 3.13.: JVS Planung: Belegungsplanung-Detailansicht (1. Bildschirm)

Abbildung 3.14.: JVS Planung: Belegungsplanung-Detailansicht (2. Bildschirm)

41

3. Entwurf

Wochenansicht

Abbildung 3.15.: Belegungsplanung: Wochenansicht

Die Wochenansicht, die für die konkrete Terminplanung vorgesehen ist, wurde minimal
geändert. Hier skaliert die Größe der angezeigten Tagesdarstellungen lediglich mit der
ausgewählten Schriftgröße und bei geblockten Terminen wird die Beschreibung dieser
Termine angezeigt. Zusätzlich wird der Listeneintrag „akt. Schule“ (= aktive Schule) nur
angezeigt, wenn aktuell eine Schule eingeplant wird und für diese Schule Termine festgelegt
wurden. Die in JVS Planung vorhandenen Buttons zur teilautomatischen Planung wurden
entfernt, da diese Funktionalität in JVS2 entfernt wurde.

Diese Detailänderungen sind auf den ersten Blick kaum erwähnenswert, erleichtern dem
Benutzer die Arbeit aber sehr, da sie Arbeitsschritte einsparen und die Übersichtlichkeit
erhöhen.

42

3.2. Entwurf der graphischen Oberfläche

3.2.6. Leitsystem

Abbildung 3.16.: JVS2: neue Leitsystem-Übersicht

Das Leitsystem wurde weitestgehend von JVS Planung übernommen. Die größte Änderung
betrifft die Leitsystem-Übersicht (Abbildung 3.16). Dieser Dialog wurde komplett überar-
beitet, um seine Übersichtlichkeit und seinen Nutzen zu erhöhen. In der neuen Fassung
bekommt der Benutzer die Möglichkeit, einen Arbeitsschritt aus einer Liste auszuwählen
und so direkt anzusteuern.

Als Vergleich wird in Abbildung 3.17 die Leitsystem-Übersicht dargestellt, wie sie in JVS
Planung implementiert war.

43

3. Entwurf

Abbildung 3.17.: JVS Planung: alte Leitsystem-Übersicht

Abbildung 3.18.: Constraints: Einrichtungsdialog

44

3.2. Entwurf der graphischen Oberfläche

3.2.7. Constraints

Der Entwurf und die Darstellung der Constraints wurden in JVS2 komplett überarbeitet. Ein
Entwurfselement, das beibehalten wurde, ist die Fähigkeit, Constraints zu (de-)aktivieren
(siehe Abbildung 3.18).

Interaktive Constraints

Interaktive Constraints reagieren auf jede sie betreffende Eingabe. Hierbei wird immer der
höchste Schweregrad für die Visualisierung der Verletzungsanzeige verwendet. Je nach
Eingabefeld können Verletzungen anders visualisiert werden – so werden Text-Eingabefelder
eingefärbt und mit einem Symbol versehen, während Knöpfe deaktiviert werden. Anschau-
lich dargestellt ist dies in Abbildung 3.19. Hier ist bei Eingabefeld 3.19 a ein kritischer
Constraint verletzt, bei Eingabefeld 3.19 b ein wichtiger und in Eingabefeldern 3.19 c wird
vor einer potentielle Fehleingabe gewarnt.

Nicht jede Visualisierung findet direkt an dem Eingabefeld statt, das die Verletzung ausgelöst
hat. So kann der „OK & Speichern“-Knopf bei kritischen Verletzungen ausgegraut werden,
während die Verletzung durch eines der Felder der Eingabemaske verursacht wurde. Bei
Zeitraumeingaben werden die beiden am Zeitraum beteiligten Eingabefelder eingefärbt und
markiert, auch wenn nur eines von ihnen eine Verletzung auslöst.

Abbildung 3.19.: Constraints: interaktive Constraints

45

3. Entwurf

Im Gegensatz zu JVS Planung wird ein Eingabefeld nicht zurückgesetzt, wenn ein Constraint
verletzt wurde. Die Verletzung wird lediglich markiert.

Normale Constraints

Normale Constraints werden immer ausgeführt, wenn eine Eingabe bestätigt wird. Da bei
der Belegungsplanung jede Eingabe, die den Plan ändert, gleichzeitig auch eine Bestätigung
darstellt, wird in diesem Fall nach jeder solchen Eingabe geprüft.

Abbildung 3.20.: Constraints: kritische Fehlermeldung

Wenn mehrere Verletzungen verschiedener Schweregrade gefunden werden, werden diese
nach Schweregrad gruppiert und angezeigt. Dabei wird pro Schweregrad ein Dialog (siehe
Abbildung 3.21) angezeigt, damit sich der Benutzer auf die wesentlichen Informationen
konzentrieren kann. Der Benutzer kann sich dann jeweils entscheiden, die Verletzungen
dieses mal, für das Objekt, das untersucht wurde, oder immer zu ignorieren. Er kann sich
auch entscheiden, die Verletzung zu beheben, indem er auf den „Abbrechen“-Knopf drückt.
In diesem Fall werden keine weiteren Dialoge angezeigt, und die aktuelle Aktion wird
abgebrochen.

Abbildung 3.21.: Constraints: Warnungsmeldung

Bei kritischen Constraint-Verletzungen wird die Option nicht angeboten, diesen Constraint
zu ignorieren (siehe Abbildung 3.20). Hier muss die Verletzung auf jeden Fall behandelt
werden.

46

4. Implementierung

Dieses Kapitel erläutert wichtige Details der Implementierung, sowie Besonderheiten, die im
Laufe der Implementierung aufgefallen sind. Es enthält viele fachliche Details und Begriffe,
weshalb es stärker auf Entwickler ausgerichtet ist als andere Kapitel dieser Arbeit.

Während der Implementierung wurde das aktuelle Zwischenprodukt immer wieder dem
Kunden vorgestellt, um Feedback zu erhalten und Implementierungsentscheidungen zu
verifizieren.

4.1. Wahl der Programmiersprache

Es wurde entschieden, Java als Programmiersprache zu verwenden. Die Gründe hierfür
waren:

• JVS Planung hat bereits Java eingesetzt, was eventuelle Code-Wiederverwendung
vereinfacht.

• Eines der Hauptziele dieser Diplomarbeit war es, ein Programm zu erstellen, das
portabel ist. Dies ist in Java einfacher als in den meisten anderen Programmiersprachen.

• Die graphische Oberfläche sollte möglichst wenige Änderungen aufweisen, was dank
der Verwendung von Swing sowohl in JVS Planung als auch JVS2 einfacher war.

• Java erfüllt alle Anforderungen, die sich aus der Analyse ergaben.

• In Java ist es relativ einfach, schnell kompakten und fehlerarmen Code zu produzieren.

• Der Entwickler hatte bereits viele Jahre Erfahrung mit Java-Entwicklung.

• JVS Planung beweist, dass Java performant genug für die Aufgabenstellung ist.

4.2. Abhängigkeitsauflösung

Zur Auflösung und Bereitstellung der Abhängigkeiten des Projekts wurde Maven[16] ge-
wählt. Um das Projekt möglichst modular aufzubauen, die Implementierung von Constraints
unter Verwendung einer minimalen Anzahl an Abhängigkeiten zu ermöglichen und die
Übersichtlichkeit zu erhöhen, wurde das Projekt in mehrere Maven-Unterprojekte aufge-
teilt.

47

4. Implementierung

Es wurde ein Basisprojekt namens „base“ erstellt, das Informationen und Abhängigkeiten
definiert, die alle Unterprojekte teilen.

Die Unterprojekte „model“, „presenter“ und „view“ leiteten sich aus dem Entwurfsmuster
MVP[12] ab. Zusätzlich wurden alle geteilten Interfaces in ein separates „interfaces“-Projekt
abgespalten, um die Abhängigkeiten zwischen den Unterprojekten zu minimieren. Da es von
den anderen Projekten komplett unabhängig ist, wurde das im Entwurf definierte „utils“-
Unterprojekt nicht von „base“ abgeleitet. Schließlich wurde ein Projekt namens „integration“
definiert, welches die anderen Teilprojekte integriert und die endgültige Anwendung baut.

Da alle externen Abhängigkeiten des Projekts von Maven bereitgestellt werden, musste kein
separates Projekt für externe Abhängigkeiten erstellt werden.

4.3. Allgemein

Das im Entwurf verwendete „Abstract Factory“-Pattern[1] wurde mittels Javas Service-

Loader[2] implementiert. Dies hatte den Vorteil, dass neue Module hinzugefügt werden
konnten, ohne in den Programmcode eingreifen zu müssen. Außerdem wird dieses Frame-
work im JRE mitgeliefert, weshalb es sehr gut getestet und überall verfügbar sein sollte.

JVS2 wurde so implementiert, dass es den ersten Kommandozeilenparameter als Projektdatei
interpretiert und so beim Start direkt ein Projekt laden kann. So wird es möglich, den Dateityp
der Projektdateien mit JVS2 so zu verknüpfen, dass ein Projekt direkt aus dem Dateimanager
heraus geladen wird.

In Java werden unbehandelte Exceptions standardmäßig nur an die Standard-Fehlerausgabe
weitergeleitet, wo sie für den Benutzer unbemerkt bleiben können und auch nicht im
Logging-System vermerkt werden. Dies hat den Effekt, dass das Programm unerklärliches
und unberechenbares Verhalten aufweisen kann, ohne dass für den Benutzer ein Grund
erkennbar ist.

Um dieses Problem zu adressieren, implementiert und registriert JVS2 einen Uncaught-

ExceptionHandler. Dieser protokolliert unbehandelte Exceptions im Logging-System und
weist den Benutzer auf das Problem hin. Zusätzlich bittet er den Benutzer, den Entwickler
zu kontaktieren und ihm alle relevanten Informationen zukommen zu lassen.

Um die vom Kunden gewünschte Sortierung der Schulen zu implementieren, wird von allen
Grund- und Förderschulen das Comparable-Interface implementiert. Zum Vergleichen der
Schulen werden ihre Abkürzungen verwendet. Hier wird im ersten Schritt des Vergleiches die
Abkürzung bis einschließlich des ersten Leerzeichens ignoriert, da dieser Teil der Abkürzung
die Schulart enthält. Erst wenn der Rest der Abkürzung gleich ist, wird der volle Name
verglichen.

Um die Benutzeroberfläche möglichst robust zu implementieren, wurde ein Interface namens
„Resettable“ definiert. Dieses Interface definiert zwei Methoden reset() und resetFocus().
Es wird von allen Hauptansichten implementiert und erlaubt es, die Ansicht vor dem
Laden neuer Informationen in einen definierten Zustand zu bringen. Dies kostet zwar

48

4.3. Allgemein

Rechenleistung, vereinfacht aber den Code und erhöht so dessen Verständlichkeit. Der
benötigte Rechenaufwand ist auf aktuellen Systemen vernachlässigbar gering, so dass die
Vorteile dieser Implementierung überwiegen.

4.3.1. Anpassung der Schriftgröße

Um die Schriftgröße aller Schriften der Anwendung anpassen zu können, iteriert die An-
wendung bei der Initialisierung über alle in Swing bereitgestellten Schriften und ändert
ihre Größe um einen spezifizierten Wert. Da der Benutzer keine Anpassbarkeit zur Lauf-
zeit wünschte, wird diese Einstellung in die Konfigurationsdatei geschrieben, ohne eine
graphische Oberfläche für ihre Anpassung bereitzustellen.

4.3.2. Logging-System

Als Logging-System wurde LOGBack[8] mit SLF4J[14] als Backend eingesetzt. Dies hat den
Vorteil, dass ein einheitliches Logging-System für die gesamte Anwendung bereitsteht, das
ohne Eingriffe in den Code konfiguriert werden kann.

Das Logging-System hat die Funktion, dem Entwickler Details über die Verwendung der
Anwendung zu liefern, die die Fehlersuche erleichtern und eventuell unbemerkte Fehler
offenbaren. Hierbei werden Fehler und potentielle Probleme, die sich nicht auf kritische
Weise auf den Arbeitsablauf auswirken, ausschließlich über das Logging-System protokolliert.
Fehler, die sich auf den Arbeitsablauf auswirken, werden sowohl protokolliert als auch über
die graphische Oberfläche dem Benutzer gemeldet.

Ein Beispiel für eine Meldung, die im Protokoll vermerkt, dem Benutzer jedoch nicht
angezeigt wird: Wird keine Implementierung der Constraints gefunden, wird diese Tatsache
im Protokoll vermerkt. Sie wird dem Benutzer jedoch nicht angezeigt, da das Programm
weiterhin verwendet werden kann und dieser Zustand möglicherweise beabsichtigt ist.

Wie bei modernen Logging-Systemen üblich, unterstützt auch das Verwendete verschiedene
„Loglevels“. So können unwichtige Meldungen leicht von den wichtigen getrennt werden,
und auch für das Debugging relevante Meldungen über das gleiche System ausgegeben
werden.

4.3.3. Ladebildschirm

In JVS Planung war der Ladebildschirm eine reine Attrappe, die dem Benutzer ein Gefühl
von Fortschritt liefern sollte, während das Programm lädt. Da er jedoch selbst erst geladen
wurde, nachdem der Rest der Anwendung schon initialisiert war und dann fest eine Sekunde
angezeigt wurde, hat er lediglich den Start der Anwendung verzögert.

In JVS2 wird die eigentliche Funktion des Ladebildschirms implementiert. Er läuft in einem
separaten Thread, der parallel zur Initialisierung der eigentlichen Anwendung läuft, und

49

4. Implementierung

wird beendet, sobald die Initialisierung abgeschlossen ist. Damit der Benutzer im Falle eines
extrem schnellen Starts das Vorhandensein des Ladebildschirms nicht vermisst, wird er
immer minimal 0,25 s angezeigt. Dies gibt dem Benutzer ein Gefühl von Sicherheit, dass die
Anwendung wie erwartet startet.

Diese Implementierung hat den Effekt, dass die Anwendung 0,75 s - 1 s schneller starten
kann, was im Wahrnehmungsbereich eines Menschen liegt.

4.3.4. JCalendar

Während der Implementierung der Kalender-Popups ist aufgefallen, dass die Popup-Variante,
die einen JSpinner verwendet, um das Datum anzuzeigen und einzugeben, jegliche manuelle
Benutzereingabe ignoriert. Dieses Problem ließ sich umgehen, indem die Variante verwendet
wurde, die ein einfaches JTextField zur Darstellung benutzt.

JCalendar-Popups haben auch die Eigenschaft, dass sie bei leerem Anzeigefeld immer das
aktuelle Datum vorselektieren. Dies macht es unmöglich, dem Benutzer eine sinnvolle
Vorauswahl zu bieten, ohne das Anzeigefeld zu füllen. Der Kunde wünscht jedoch leere
Anzeigefelder, weshalb der Benutzer bei jeder Eingabe zum richtigen Datum navigieren
muss.

4.4. Speichersystem

Bei der Implementierung der Serialisierung wurde entschieden, anstatt den in den Schulen
enthaltenen Referenzen auf JVS, die komplette JVS zu serialisieren. Dies hat den Vorteil,
dass JVS eingelesen werden können, wann immer sie gebraucht werden, ohne einen zweiten
Durchlauf zu benötigen. Es hat aber auch den Nachteil, dass die Dateigröße stark aufgebläht
wird und ein XmlAdapter beim Einlesen benötigt wird, der die verschiedenen JVS-Instanzen
zu einem JVS-Objekt zusammenfasst.

Würden statt der kompletten JVS-Instanzen nur Referenzen auf an anderer Stelle vorhandene
JVS gespeichert, könnte beim Einlesen dieser Referenzen nicht sichergestellt werden, dass
das zugehörige JVS-Objekt bereits eingelesen und initialisiert wurde. So müsste in einem
ersten Durchlauf die XML-Referenz-ID in ein Java-Objekt eingelesen werden und erst in
einem zweiten Durchlauf könnten die Java-Referenzen gesetzt werden. Dies könnte jedoch
potentiell zu ungültigen Zuständen führen, wenn bei zukünftigen Implementierungen die
Möglichkeit einer ungültigen JVS-Referenz nicht berücksichtigt würde.

Im Vergleich dazu ist die Bereitstellung eines Adapters, der beim Einlesen doppelte JVS-
Instanzen konsolidiert, wesentlich einfacher und zukunftssicherer. Der zusätzlich benötigte
Speicherplatz ist relativ gering und bei heutigen Festplatten zu vernachlässigen.

Diese Implementierung kann jedoch in Zukunft ein Problem verursachen, wenn eine Referenz
auf eine ältere Version des Datensatzes in den Daten gesetzt werden soll. Diese Konstellation
kann in der aktuellen Implementierung nicht erfolgreich deserialisiert werden, da die

50

4.5. Constraints

Abkürzungen der JVS zusätzlich als einziges Identifikationsmerkmal dienen. Eine ältere
Version des Datensatzes würde jedoch mit großer Wahrscheinlichkeit die gleichen JVS-
Abkürzungen verwenden, weshalb nach einer Deserialisierung die ältere und die aktuelle
Version des Datensatzes die gleichen JVS teilen würden. Dieser Fehler würde erst auffallen,
wenn in einer Version des Datensatzes die JVS modifiziert würde, da sich diese Modifikation
fälschlicherweise auf alle anderen Versionen auswirken würde.

Dieses Problem kann jedoch leicht umgangen werden, indem ein anderes Identifikations-
merkmal – beispielsweise eine GUID[3] – verwendet wird. Die aktuelle Implementierung
benötigt diese Komplexität nicht, sie kann jedoch mit geringem Aufwand nachgerüstet
werden.

Die Java-Klassen java.awt.Dimension und java.awt.Color lassen sich nicht fehlerfrei
(de-)serialisieren, weshalb eine alternative Implementierung angeboten werden muss.

java.awt.Dimension wurde nicht ausreichend für JAXB annotiert, weshalb die Methode
Dimension.getSize() als separate Eigenschaft „size“ serialisiert wird[13]. Sie gibt jedoch
das aktuelle Dimension-Objekt zurück, so dass beim Serialisieren eine endlose Rekursion
auftritt. Als alternative Implementierung wurde eine Klasse SerialisableDimension imple-
mentiert, die die Dimension-Eigenschaften „width“ und „height“ enthält und serialisiert.
Diese Klasse kann mit einem Dimension-Objekt initialisiert werden und bietet eine Me-
thode public Dimension retrieveDimension() an, so dass sie bei der Serialisierung als
Alternative zu java.awt.Dimension verwendet werden kann.

Die Klasse java.awt.Color wird in ihrer Standardimplementierung von JAXB immer mit
einem leeren Wert serialisiert. Um dieses Problem zu umgehen, wurde ein XmlAdapter

namens ColorAdapter implementiert, der den Farbwert beim Speichern in einen String

kodiert und beim Laden wieder ausliest.

4.5. Constraints

Die Constraints werden konzeptionell über ein Plugin-System angeboten. Jedoch sind die
Constraints, mit denen die Anwendung ausgeliefert wird, im Unterprojekt „model“ enthalten.
So steht immer eine Constraint-Implementierung bereit und es wird ein zusätzliches Unter-
projekt eingespart. Diese Implementierung bedeutet auch, dass das „model“-Unterprojekt
gleichzeitig ein Constraint-Plugin ist.

Die Implementierung sowohl der Constraints als auch des Codes, der Constraints anwendet,
muss gegen null und ungültige Rückgabewerte abgesichert sein. Die aktuelle Implementie-
rung sichert nicht gegen Exceptions, da diese dann – je nach Implementierung – entweder
unbemerkt bleiben oder den Benutzer mit für ihn nichtssagenden Fehlermeldungen beläs-
tigen würden. In beiden Fällen würden Fehler nicht behoben, und wahrscheinlich nicht
gemeldet werden. Die aktuelle Implementierung hat jedoch zur Folge, dass der begonnene
Arbeitsschritt nicht erfolgreich beendet werden kann, was den Benutzer zwingt, das Problem
zu beachten.

51

5. Tests

Ursprünglich wurde geplant, alle möglichen Klassen im Model und Presenter mit Unit-Tests
zu prüfen. Leider wurde im Verlauf des Projekts die Zeit knapp, so dass zugunsten von
System- und Kundentests keine Unit-Tests implementiert wurden. Lediglich die Klassen
Time und TimePeriod wurden von Projektbeginn mittels Unit-Tests getestet.

Von den geplanten drei Kundentests konnte aus Zeitgründen nur einer durchgeführt werden.
Als Ersatz für einen der ausgefallenen Tests musste eine konkrete Planung dienen, die somit
einen Praxistest darstellte. Dies hat den Vorteil, dass die geforderte Praxistauglichkeit des
Systems unter Beweis gestellt wurde.

5.1. Modul- und Integrationstests

Als Framework für Unit-Tests wurde JUnit4 gewählt, und die Tests wurden regelmäßig
als Teil der Continuous-Integration-Builds auf einem Jenkins-Server ausgeführt. Dieser
Server führte im Rahmen dieser Builds auch automatisch Integrationstests durch, indem
die einzelnen Unterprojekte zu einer ausführbaren Applikation verbunden wurden. Die
Builds wurden automatisch angestoßen, sobald neue Änderungen im Projektarchiv gefunden
wurden.

Selbst die vorhandenen Unit-Tests halfen, an kritischen Stellen Fehler schon während der
Implementierung zu finden, was spätere Tests der vollständigen Anwendung erleichterte und
Fehler vermied. Eine umfassendere Implementierung von Unit-Tests wäre wünschenswert
gewesen, musste jedoch aus Zeitgründen unterlassen werden.

5.2. Kundentests

Es wurde ein großer Kundentest durchgeführt, da aus Zeitgründen keine weiteren Kunden-
tests vor dem Einsatz im laufenden Betrieb möglich waren. Bei diesem Test wurde eine kleine
Planung durchgeführt. Konkret bedeutet das, dass Projekt- und Feriendaten vollständig und
mit realen Daten gefüllt wurden. Die JVS-Stammdaten wurden geprüft und einige geblockte
Termine wurden probehalber bei den JVS eingetragen. Im Anschluss wurden die Stamm- und
Anmeldedaten der Grund- und Föderschulen auf verletzte Constraints geprüft und diese
korrigiert. Auch hier wurden probehalber einige geblockte Termine eingetragen. Schießlich
wurden die Klassen einiger Schulen probehalber in den Belegungsplan eingetragen.

53

5. Tests

Während dieses Tests wurden durchgeführte Testfälle mit ihrem Ergebnis protokolliert.
Sofern Fehler außerhalb der Testfälle gefunden wurden, wurden auch diese notiert. Zusätz-
lich wurde jedem positiven Testfall sowie jedem zufällig gefundenen Fehler eine Priorität
von 0 bis 3 zugeteilt. Hierbei hatten die einzelnen Prioritäten die in Tabelle 5.1 gelisteten
Bedeutungen. Tabelle 5.1 listet auch die Anzahl der Vorkommnisse der einzelnen Prioritäten.
Hierbei sei angemerkt, dass zwei der kritischen Fehler falsch positiv waren.

Insgesamt wurden 60 Testfälle identifiziert und geprüft. Es wurden acht Fehler außerhalb
der geprüften Testfälle gefunden für einen Testfall wurden drei verwandte Fehler identifi-
ziert. Insgesamt wurden 23 Fehler identifiziert, zwei davon falsch positiv. Daraus lässt sich
schließen, dass 47 Testfälle negative Ergebnisse hatten.

Priorität Bedeutung Vorkommnisse
1 Kritischer Fehler 14

2 Problematischer Fehler 6

3 Unkritischer Fehler 1

0 Sollte erledigt werden. 2

Tabelle 5.1.: Kundentest: Fehler-Prioritäten

Der Kunde hat diesen Test mit Vorbehalt akzeptiert, unter der Bedingung, dass die gefunde-
nen kritischen Fehler behoben würden. Das Testprotokoll – inklusive der geprüften Testfälle
– ist in Anhang B dargestellt.

5.2.1. Vollständige Planung: Praxistest

Im Rahmen dieser Arbeit wurde die Anwendung zum ersten Mal im laufenden Betrieb
eingesetzt. In diesem Zusammenhang wurde die Planung für das Schuljahr 2014/2015

erstellt und das Programm musste seine Praxistauglichkeit unter Beweis stellen. Zusätzlich
kam bei diesem Test eine Kollegin des Kunden hinzu, die bei der Entwicklung von JVS2
nicht beteiligt war, und die auch keinen Kontakt zu JVS Planung hatte.

Während dieses Praxistests wurden einige weitere Fehler identifiziert, die teilweise nicht
durch den Kundentest offenbart wurden und teilweise durch die Korrektur der dort gefun-
denen Fehler neu hinzukamen. Diese Fehler wurden, soweit möglich, vor Ort behoben.

Desweiteren offenbarte der Praxistest folgendes:

• Die Geschwindigkeit und Funktionalität sind zufriedenstellend, abgesehen von den
noch vorhandenen Fehlern.

• Die Ladezeit der Anwendung ist schneller, auch weil JVS Planung den Ladebalken
auf eine Sekunde hartkodiert hatte, während er in JVS2 nur angezeigt wird, bis die
Oberfläche geladen wurde. Die verkürzte Ladezeit gefällt dem Kunden.

54

5.2. Kundentests

• Die Leitsystem-Übersicht ist in der überarbeiteten Version wesentlich nützlicher, da sie
verwendet werden kann, um zu einem bestimmten Arbeitsschritt zu springen, ohne
den entsprechenden Menüpunkt auswendig lernen zu müssen.

• Die aktuelle Implementierung der Constraints zeigt Warnungen zu häufig und auf-
dringlich an.

• Bei der Einplanung werden schon leichte Mausbewegungen von einem Pixel als Start
einer Drag&Drop-Aktion gewertet, weshalb die Anwendung manchmal nicht auf
Eingaben zu reagieren scheint.

• Die Auslieferung als JAR-Datei macht ein Software-Upgrade wesentlich kundenfreund-
licher als die in JVS Planung verwendete Alternative, den Quellcode auszuliefern und
vor Ort zu kompilieren.

• Die Größe der Projektdatei einer typischen Einplanung der Kreisverkehrswacht Esslin-
gen ist zwischen ein und zwei MB.

• JVS2 ging auch in Fehlerfällen nie in einen undefinierten Zustand über und konnte
somit ohne Neustart weiterverwendet werden.

55

6. Zusammenfassung und Ausblick

6.1. Zusammenfassung

Das Programm JVS2 erfüllt die gestellten Aufgaben und liefert ein befriedigendes Ergebnis.
Das Projekt wurde zur Zufriedenheit des Kunden fertiggestellt, obwohl der Zeitrahmen
knapp bemessen war und es einige unerwartete Schwierigkeiten während der Implementie-
rung gab. Wegen des Zeitmangels konnten nur wenige Tests durchgeführt werden.

Im Betrieb ist aufgefallen, dass bei verletzten Constraints zu viele Warnmeldungen angezeigt
wurden. Außerdem wird nicht gegen fehlerhafte Constraint-Implementierungen abgesichert.
Aus Zeitgründen konnten diese Probleme nicht mehr adressiert werden. Sie stellen aber
auch kein akutes Problem dar, so dass sie im Rahmen dieser Arbeit nicht adressiert werden
mussten.

6.2. Ausblick

Das vorliegende Programm könnte an einigen Stellen ergänzt oder umgestaltet werden, um
den Arbeitsablauf zu vereinfachen und modernisieren.

6.2.1. Frequenz der Constraint-Meldungen

Während eines Tests des Programms ist aufgefallen, dass die Meldungen bei verletzten
Constraints während der Planung zu oft angezeigt werden. Dies ist auf einen Mangel im
Entwurf zurückzuführen, da der nicht vorsieht, einen Constraint nur temporär abzuschalten.
Dieser Mangel ist nicht schwer zu beheben und könnte in einer zukünftigen Progammver-
sion mit geringem Aufwand entfernt werden. Dies hätte eine große Auswirkung auf die
Benutzbarkeit, da Constraint-Warnungen nicht mehr einfach nur weggeklickt würden, wenn
sie nicht mehr ständig angezeigt werden.

6.2.2. Automatische Planung

Eine offensichtliche Möglichkeit, das Programm aufzuwerten, wäre eine qualitativ hochwer-
tige automatische Einplanung der Klassenbesuche. Allerdings handelt es sich hier um ein
sehr schweres Problem, da das Programm selbständig ermitteln müsste, welche Constraints

57

6. Zusammenfassung und Ausblick

in welchen Situationen ignoriert werden sollen. Eine Planung ohne Verletzung einiger Cons-
traints ist mit im verfügbaren Zeitraum bei der Anzahl der einzuplanenden Schulklassen
leider unmöglich. Aus diesem Grund ist diese Funktionalität kaum implementierbar.

Eine Möglichkeit, dem Benutzer wenigstens ein wenig Arbeit abzunehmen, wäre die auto-
matische Planung, soweit sie ohne Verletzung von Constraints machbar ist. Das Ergebnis
dieser Planung wäre unvollständig, könnte aber den ersten Schritt der manuellen Planung
ersetzen, in dem Klassen nach einem Schema in den vorhandenen Zeitraum eingeplant
werden, solange sich keine Konflikte ergeben.

Diese zweite Möglichkeit könnte realisierbar sein, würde aber viel Arbeit und Feinjustierung
benötigen, um ein verwendbares Ergebnis zu liefern. Sie könnte sich als Thema einer
Folgearbeit eignen.

6.2.3. Umgestaltung zu einer Internetapplikation

Ein großer Teil des bisherigen Planungsprozesses wird nicht vom Programm erfasst oder
unterstützt: die Vorplanung. Hier werden die Wünsche und Daten der Schulen auf einem
Formular erfasst, das von den Schulen ausgefüllt und an die Planer geschickt wird. Diese
Formulare werden in der Vorplanung mühsam sortiert und geprüft, ohne dass JVS2 dabei
unterstützen könnte.

Eine Methode, diesen Schritt der Planung zu vereinfachen, wäre ein Online-System. Die
Schulen könnten ihre Daten in dieses System eintragen. Problematische Eintragungen könn-
ten zu großen Teilen automatisch identifiziert werden, und den jeweiligen Parteien mitgeteilt
werden. Fehlende Eingaben könnten automatisch angemahnt werden. Der endgültige Daten-
satz könnte schließlich als Eingabe für das vorliegende Programm dienen, ohne mühsam
manuell erfasst werden zu müssen. Schließlich könnten die relevanten Teile der vollständigen
Planung automatisch an die jeweiligen Empfänger verteilt werden.

Nachträgliche Änderungen könnten außerdem automatisch den betroffenen Stellen mitgeteilt
werden, was in der aktuellen Fassung des Programms ein mühsamer und fehlerträchtiger
Prozess ist.

Außer den offensichtlichen Änderungen müsste bei einem solchen System allerdings beachtet
werden, dass Daten- und Programmsicherheit bei der Planung und Implementierung berück-
sichtigt werden. Es handelt sich bei den Daten teilweise um vertrauliche Informationen, die
nicht frei zugänglich sein dürfen. Es würde somit ein komplexes Authenzifizierungs- und
Rechtevergabesystem benötigt, das in dieser Form bisher nicht existiert. Außerdem müsste
eine Prüfung der Datenintegrität bei der Kommunikation zwischen den Systemkomponenten
ermöglicht und durchgeführt werden.

Wegen der Komplexität einer solchen Plattform ist es fraglich, ob sich dieses Thema für eine
Diplom-, Bachelor- oder Masterarbeit eignet. Es könnte aber möglich sein, das Thema auf
mehrere Arbeiten zu verteilen, um so das gewünschte System zu erstellen.

58

A. Begriffserklärung

Abkürzung von Schulen und JVS Jede Grund-, Förder- und Jugendverkehrsschule besitzt
in JVS2 eine Abkürzung, die diese Schule bzw. JVS eindeutig identifiziert. Diese
Abkürzung kodiert den Namen und bei Grund- und Förderschulen die Schulart.

Constraint Eine Einschränkung an die Planung, die durch JVS2 geprüft wird.

der Ausdruck Die von JVS Planung und JVS2 generierten Dokumente, die der Kunde aus-
drucken kann. Da manchmal Nachbearbeitungen nötig werden, und die Dokumente
teilweise auch per E-Mail verschickt werden sollen, werden keine konkreten Druckauf-
träge erstellt.

Jugendverkehrsschule Ein Ort, an dem Schüler das Fahrradfahren in Theorie und Praxis
erlernen. Befindet sich unter der Verwaltung der Kreisverkehrswacht Esslingen.

JVS Die Abkürzung für „Jugendverkehrsschule“.

Kunde Die Kreisverkehrswacht Esslingen, vertreten durch Herrn Bufler von der Verkehrspo-
lizei Esslingen.

Planungskriterium Ein anderer Begriff für „Constraint“.

Vorplanungsprozess Ein Prozess, der die Belegungsplanung mittels JVS vorbereitet.

59

B. Protokoll des Kundentests

Definierte Testfälle:

0 Allgemein

a) Menüs/OK-Knöpfe werden bei verletzten critical Constraints ausgegraut.

b) In einer Liste auf ein anderes Element wechseln verursacht eine Beschwerde bei
ungespeicherten Daten.

c) Mit OK & Speichern geht es an manchen Stellen im Leitsystem weiter.

d) Über Leitsystem-Menü geht es im Leitsystem weiter.

e) Mit der Leitsystem-Übersicht kann man an beliebige Punkte im Leitsystem springen.

f) Neues Projekt erstellen warnt, wenn bereits ein Projekt geöffnet ist.

g) „Speichern“ und „Speichern unter“ funktionieren wie erwartet.

h) Beim Versuch, ein Projekt zu überschreiben, wird gewarnt.

i) Die Geschwindigkeit der Anwendung ist gut.

1 Neues Schuljahr

a) Ein leerer Projektname wird nicht akzeptiert.

b) Langer Projektname (50+ Zeichen) wird akzeptiert.

1.1 Projekt auf altem Projekt aufbauen

a) Alte Sommerferien werden übernommen.

b) Alle anderen Ferien sind ursprünglich leer.

c) Keine JVS-Blocktermine außer Fr. nachmittags.

d) Keine Schul-Blocktermine.

e) Keine Schul-Ferientage.

f) Keine Belegungen.

2 Ferieneingabe

a) Ferien müssen zwischen d. Sommerferien liegen.

b) Sommerferien müssen plausibel sein.

61

B. Protokoll des Kundentests

c) Ferien müssen im richtigen Jahr liegen.

d) Ferien müssen chronologisch sein.

e) Ferien müssen gültige Zeitintervalle sein.

f) Ungültige Eingaben bei nicht-Sommerferien werden mit Gemecker akzeptiert.

g) Gültige Ferien können eingetragen werden.

3 JVS-Dateneingabe

a) Eine leere Abkürzung wird nicht akzeptiert.

b) Leere JVS-Namen werden akzeptiert, aber nur mit Hinweis (rot).

c) Sonstige leere Felder werden akzeptiert, aber nur mit Hinweis (gelb).

4 JVS-Blocktermin-Eingabe

a) Termine können nur im gültigen Zeitraum eingegeben werden.

b) Alle nötigen Termine können angegeben werden.

c) Termine können (de-)aktiviert werden.

d) Termine können gelöscht werden.

e) Termine erscheinen in dem JVS-Plan, wenn sie nicht deaktiviert/gelöscht sind, aber
nicht in anderen JVS-Plänen.

5 Schuldateneingabe

a) Eine leere Abkürzung wird nicht akzeptiert.

b) Leere Schulnamen werden akzeptiert, aber nur mit Hinweis (rot).

c) Sonstige leere Felder werden akzeptiert, aber nur mit Hinweis (gelb).

d) Schulen löschen/hinzufügen funktioniert.

6 Schul-Anmeldebogeneingabe

a) „keine Klasse“ angeben funktioniert.

b) Kein Klassenname: kritischer Fehler

c) nicht-positive Schülerzahl: Warnung

d) Klassenname > 4 Zeichen: Warnung

e) Schülerzahl 100+: Warnung

6.1 Schul-Blocktermin-Eingabe

a) Termine können nur im gültigen Zeitraum eingegeben werden.

b) Alle nötigen Termine können angegeben werden.

62

c) Termine können (de-)aktiviert werden.

d) Termine können gelöscht werden.

e) Termine erscheinen in dem Schulplan, wenn sie nicht deaktiviert/gelöscht sind,
aber nicht in anderen Schulplänen.

f) Ferientage können (de-)aktiviert, aber nicht gelöscht werden.

g) Neue Ferientage werden in anderen Schulen deaktiviert angezeigt.

7 Belegungsplanung

a) Es können nur 5 oder 6 Klassen eingeplant werden.

b) Alle erwarteten Eigenschaften werden erfüllt.

c) Schulfarbe ändern funktioniert und wird angepasst.

d) Termine verschieben funktioniert.

e) Termine kopieren funktioniert.

f) Termine einplanen funktioniert.

g) März -> Scrollen -> März funktioniert.

h) Zur Schule springen funktioniert.

i) 2 Termine in eine Woche einplanen: Fehlermeldung

j) 2 Nachmittagstermine: Warnung

k) 2 Termine 7 Wochen (Grundschule) bzw. 8 Wochen (Förderschule) auseinander:
Warnung

l) x. Besuche in verschiedenen Wochen: Warnung

63

B. Protokoll des Kundentests

Abbildung B.1.: Testprotokoll Seite 1

64

Abbildung B.2.: Testprotokoll Seite 2

65

C. Inhalt und Aufbau des beigelegten
Datenträgers

Der beigelegte Datenträger ist wie folgt aufgebaut:

ausarbeitung Der Ordner Ausarbeitung enthält dieses Dokument.

programm Die ausführbare JAR-Datei, die das Produkt dieser Arbeit enthält.

quelltext Der Quelltext, der im Rahmen dieser Arbeit entstanden ist.

eclipse Dieser Unterordner enthält komprimierte Archive des Eclipse-Workspace, der
für die Implementierung verwendet wurde. Der Inhalt der Archive ist – soweit
vom Archiv-Format unterstützt – identisch. Unter den enthaltenen Projekten
befindet sich eines namens „JVS“. Dieses Projekt enthält eine modifizierte Version
von JVS Planung, die im Dateimenü einen Eintrag enthält, der ein geladenes
Projekt in das von JVS2 verwendete Format exportiert. Dieses Unterprojekt wird
auf expliziten Kundenwunsch nicht an den Kunden ausgeliefert.

67

Literaturverzeichnis

[1] Abstrakte Fabrik. URL: https://de.wikipedia.org/wiki/Abstrakte_Fabrik [cited
2014-04-03]. (Zitiert auf den Seiten 22, 28 und 48)

[2] Class ServiceLoader<S>. URL: http://docs.oracle.com/javase/7/docs/api/index.
html?java/util/ServiceLoader.html [cited 2014-05-05]. (Zitiert auf Seite 48)

[3] Globally Unique Identifier. URL: https://de.wikipedia.org/wiki/Globally_Unique_
Identifier [cited 2014-05-07]. (Zitiert auf Seite 51)

[4] Java Architecture for XML Binding. URL: https://de.wikipedia.org/wiki/JAXB [cited
2014-05-05]. (Zitiert auf Seite 30)

[5] JCalendar. URL: http://toedter.com/jcalendar/ [cited 2014-05-05]. (Zitiert auf Sei-
te 35)

[6] JGoodies Validation. URL: http://www.jgoodies.com/freeware/libraries/

validation/ [cited 2014-05-23]. (Zitiert auf Seite 26)

[7] JiBX. URL: https://de.wikipedia.org/wiki/JiBX [cited 2014-05-05]. (Zitiert auf Sei-
te 30)

[8] LOGBack. URL: http://logback.qos.ch/ [cited 2014-05-05]. (Zitiert auf Seite 49)

[9] Microba controls. URL: http://microba.sourceforge.net/ [cited 2014-05-05]. (Zitiert
auf Seite 35)

[10] Microba controls screenshots. URL: http://microba.sourceforge.net/screenshots.
html [cited 2014-05-05]. (Zitiert auf Seite 35)

[11] Model View Controller. URL: https://de.wikipedia.org/wiki/Model_View_

Controller [cited 2014-04-03]. (Zitiert auf Seite 21)

[12] Model View Presenter. URL: https://de.wikipedia.org/wiki/Model_View_Presenter
[cited 2014-04-03]. (Zitiert auf den Seiten 21 und 48)

[13] RE: DEFAULT MARSHALLING OF JRE CLASSES. URL: https://java.net/projects/
jaxb/lists/users/archive/2006-10/message/106 [cited 2014-05-05]. (Zitiert auf Sei-
te 51)

[14] Simple Logging Facade for Java (SLF4J). URL: http://www.slf4j.org/ [cited 2014-05-
05]. (Zitiert auf Seite 49)

[15] Visual Paradigm Community Edition. URL: https://www.visual-paradigm.com/

editions/community.jsp [cited 2014-05-05]. (Zitiert auf Seite 21)

69

https://de.wikipedia.org/wiki/Abstrakte_Fabrik
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ServiceLoader.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ServiceLoader.html
https://de.wikipedia.org/wiki/Globally_Unique_Identifier
https://de.wikipedia.org/wiki/Globally_Unique_Identifier
https://de.wikipedia.org/wiki/JAXB
http://toedter.com/jcalendar/
http://www.jgoodies.com/freeware/libraries/validation/
http://www.jgoodies.com/freeware/libraries/validation/
https://de.wikipedia.org/wiki/JiBX
http://logback.qos.ch/
http://microba.sourceforge.net/
http://microba.sourceforge.net/screenshots.html
http://microba.sourceforge.net/screenshots.html
https://de.wikipedia.org/wiki/Model_View_Controller
https://de.wikipedia.org/wiki/Model_View_Controller
https://de.wikipedia.org/wiki/Model_View_Presenter
https://java.net/projects/jaxb/lists/users/archive/2006-10/message/106
https://java.net/projects/jaxb/lists/users/archive/2006-10/message/106
http://www.slf4j.org/
https://www.visual-paradigm.com/editions/community.jsp
https://www.visual-paradigm.com/editions/community.jsp

Literaturverzeichnis

[16] Welcome to Apache Maven. URL: https://maven.apache.org/ [cited 2014-05-23].
(Zitiert auf Seite 47)

[17] What are good Java date-chooser Swing GUI widgets? URL: https://stackoverflow.
com/questions/1339354/what-are-good-java-date-chooser-swing-gui-widgets

[cited 2014-05-05]. (Zitiert auf Seite 35)

[18] International Business Machines Corporation et al. ICU - International Components for
Unicode. URL: http://site.icu-project.org/ [cited 2014-04-03]. (Zitiert auf Seite 20)

[19] Magnus Schwab. Ein Planungssystem für örtlich verteilte Ausbildungskurse. Diploma
thesis, University of Stuttgart, Faculty of Computer Science, Electrical Engineering,
and Information Technology, Germany, August 2005. URL: http://www2.informatik.
uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2307&engl=1. (Zitiert
auf Seite 9)

70

https://maven.apache.org/
https://stackoverflow.com/questions/1339354/what-are-good-java-date-chooser-swing-gui-widgets
https://stackoverflow.com/questions/1339354/what-are-good-java-date-chooser-swing-gui-widgets
http://site.icu-project.org/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2307&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2307&engl=1

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

