
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diploma Thesis No. 3728

Utility-based Analysis of Evolving
Cloud Application Topologies

Florian Hannes Frech

Course of Study: Computer Science

Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Dipl.-Inf. Santiago Gómez Sáez
Commenced: July 13, 2015
Completed: January 19, 2015

CR-Classification: C.2.4, C.4, D.2.8

Abstract

Today, Cloud consumers have access to a wide spectrum of Cloud offerings. On the one
hand, this is a profitable situation, since there is a larger spectrum of possibilities to migrate
the application to the Cloud. However, on the other hand, consumers face the challenge
of selecting the offering that promises the highest benefit. The challenge even grows larger
when taking into consideration the possibility to distribute the application components. Ap-
proaches like TOSCA support developers in in the portable description of composite Cloud
applications and tools provide the selection of the most cost-effective Cloud offerings that
fulfill a set of requirements. Besides that, there is a lack of decision support that goes beyond
the mere look on Cloud offerings’ technical data and operational costs. Developers should be
supported with the necessary mechanisms and tools towards evaluating and analysing the
trade-off between different aspects and involve different stakeholders’ interests. Moreover
not only isolated Cloud offerings should be evaluated, but also the outcome of applications
under a distributed deployment with respect to evolving workloads. Since utility functions
facilitate the analysis of users’ satisfaction, i.e. performing the trade-off between different
aspects, this thesis presents a concept that uses utility functions in order to evaluate appli-
cations’ topologies. This concept makes application distribution alternatives comparable.
Based on this concept, a utility calculation framework is specified. The framework provides
support for creating customized utility functions, calculates the utility of alternative topolo-
gies, and offers decision support. Furthermore, this thesis presents a prototypical imple-
mentation of the utility calculation framework, which is further evaluated using a realistic
application and data.

Contents

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Research Challenges . 2
1.3 Definitions and Conventions . 2
1.4 Outline . 5

2 Fundamentals 7
2.1 Cloud Computing . 7

2.1.1 Actors . 7
2.1.2 Service Models . 8
2.1.3 Cloud Models . 8
2.1.4 Migration Types . 9
2.1.5 Payment Models . 9

2.2 Cloud Application Topologies . 10
2.2.1 Specifications and Existing Approaches 10

2.3 Application Workload . 11
2.4 Cloud Application Distribution . 12

2.4.1 Optimizing the Distribution . 12
2.4.2 Application Topology Fundamentals 13

2.5 Cloud Consumers’ Requirements . 14
2.6 Service-orientated Architecture and Computing 16

2.6.1 Service-oriented Computing . 16
2.6.2 Service-oriented Architecture . 17

2.7 Utility Theory . 18
2.7.1 Definitions . 18
2.7.2 Usage in Economics . 19

2.8 REST . 21
2.8.1 Resources . 21
2.8.2 Constraints . 21
2.8.3 HTTP commands . 22

2.9 Nefolog and MiDSuS Cost Calculation Framework 23
2.9.1 Nefolog . 23
2.9.2 MiDSuS . 23

3 Related Works 25
3.1 Approaches in Cloud Computing . 25

3.1.1 Utility-based Resource Allocation for Virtual Machines 25

iii

Contents

3.1.2 Price and QoS Competition in Cloud Market 26
3.1.3 Service Measurement Index . 27

3.2 Approaches in Service Oriented Architecture 27
3.2.1 QBroker . 28
3.2.2 Agent-Based Trust Model . 29
3.2.3 Adaptive Service Selection Framework 32

3.3 Approach in Provision Storage Systems . 33
3.4 Conclusion . 34

4 Concept and Specification 37
4.1 Utility Functions . 37

4.1.1 Concept . 37
4.1.2 Example . 40

4.2 Requirements . 42
4.2.1 Functional Requirements . 42
4.2.2 Non-Functional Requirements . 44

4.3 Use Cases . 46
4.3.1 Use Cases Description . 47

4.4 System Overview . 55
4.4.1 Topology Modeler . 55
4.4.2 Utility Calculation Framework . 55
4.4.3 Provisioning Engine . 56

5 Design 57
5.1 Architecture . 57
5.2 Resource Model . 58

5.2.1 Application-specific Topology . 58
5.2.2 Application-specific Component . 58
5.2.3 Requirement . 59
5.2.4 Application Topology . 59
5.2.5 Application Subgraph . 59
5.2.6 Performance . 60
5.2.7 Function . 60
5.2.8 Parameter . 60
5.2.9 Utility Function . 60
5.2.10 Utility Function Sub-Function . 60
5.2.11 Types . 61

5.3 Kereta Repository . 61
5.3.1 Nesting . 62
5.3.2 Identifiers . 63
5.3.3 Methods . 63
5.3.4 Representation . 65
5.3.5 Repository Functionality . 65

5.4 Kereta Database . 68
5.5 Kereta Calculation . 68

iv

Contents

5.5.1 Syntax and Semantic . 70
5.5.2 Parser . 75
5.5.3 Calculation . 78

6 Implementation 81
6.1 Kereta . 81

6.1.1 Resources . 81
6.1.2 Functionality . 94
6.1.3 Kereta Database . 99

7 Evaluation 105
7.1 Workflow . 105
7.2 Practical Use . 106

7.2.1 Workload . 107
7.2.2 Revenue . 110
7.2.3 Resource Modeling . 110
7.2.4 Decision Support . 117

7.3 Discussion . 120

8 Outcome and Future Work 123

Bibliography 125

v

Contents

vi

List of Figures

2.1 Web Shop Application Topology . 14
2.2 CSMIC Framework, v2.1 . 15
2.3 Positive Exponential Utility Function . 20
2.4 Iso-Elastic Utility Function . 20

3.1 Sigmoid Utility Function . 30
3.2 Gaussian Utility Function . 33

4.1 Utility Function: Concept Overview . 38
4.2 Example: Revenue per Month . 39
4.3 Web Shop: Revenue per Month . 42
4.4 Use Case Diagram . 46
4.5 System Overview . 55

5.1 Design Overview . 57
5.2 Resource model . 58
5.3 MediaWiki: α-Topology and Requirements . 59
5.4 Resource Nesting . 62
5.5 Kereta Database - Entity-Relationship Diagram 69
5.6 Calculation Process . 70
5.7 Tree Representation of lk

k! e
−l . 78

5.8 Integral approximation . 80

7.1 Decision Workflow . 105
7.2 MediaWiki Application, Alternative Distributions 106
7.3 Wikipedia, Deviation from the Average Article Edits 108

vii

List of Figures

viii

List of Tables

4.1 Assumptions, T0
µ . 41

4.2 Assumptions, T1
µ . 41

4.3 Description of Use Case: Browse Repository for Applications 47
4.4 Description of Use Case: Browse Repository of Utility Functions 48
4.5 Description of Use Case: Browse Function Repository 49
4.6 Description of Use Case: Create a Reusable Function 50
4.7 Description of Use Case: Create a Application Description 51
4.8 Description of Use Case: Create Utility Function 52
4.9 Description of Use Case: Calculate Utility . 53
4.10 Description of Use Case: Rank Distributions 54

5.1 Terminology in the Design . 62
5.2 HTTP status codes - HTTP/1.1 standard . 63
5.3 Basic Operators . 71
5.4 Boolean Operators . 72
5.5 Function Operators . 73
5.6 Function Call Operator . 74

6.1 Kereta URIs and the related representation. 82
6.2 kereta_application columns . 99
6.3 kereta_distribution columns . 100
6.4 kereta_distribution columns . 100
6.5 kereta_offeringTier columns . 101
6.6 kereta_requirement columns . 101
6.7 kereta_performance columns . 102
6.8 kereta_function columns . 102
6.9 kereta_parameter columns . 103
6.10 kereta_utilityFunction columns . 103
6.11 kereta_subFunction columns . 103
6.12 kereta type-tables columns . 104

7.1 Ranking based on the Utility . 120

ix

List of Tables

x

List of Listings

5.1 Error Message - XML representation . 64
5.2 XML parameter assignment storage file . 67
5.3 Regular Expression for Value . 70
5.4 Regular Expression for Parameter . 71
5.5 Example: Expression for Einstein’s Mass–Energy Equivalence 71
5.6 Example: Expression for Logical Consequence 72
5.7 Example: Expression for Integral over x . 73
5.8 Example: Expression for a Sum . 73
5.9 Example: Expression for Nested Sums . 74
5.10 Example: Expression for an IF-ELSE Statement 74
5.11 Example: Quadratic Formula . 74
5.12 Example: Function Calls . 75
5.13 Node Class . 76
5.14 Example: Poisson Distribution . 77
5.15 Parsing Process - Step 1 . 77
5.16 Parsing Process - Reverse Polish Notation . 77

6.1 Links - Snippet from Resources’ XML Representation 81
6.2 XML Representation: Function Resource . 83
6.3 XML Representation: Parameter Resource . 84
6.4 XML Representation: Application Resource . 85
6.5 XML Representation: Tier Resource . 86
6.6 XML Representation: Requirement Resource 86
6.7 XML Representation: Distribution Resource . 87
6.8 XML Representation: Offering Resource . 88
6.9 XML Representation: Performance Resource 89
6.10 XML Representation: Utility Function Resource 90
6.11 Integration: Nefolog Cost Calculation . 90
6.12 XML Representation: Sub-Function Resource 91
6.13 XML Representation: Nefolog Parameter . 91
6.14 XML Representation: Type Resources . 92
6.15 XML Representation: Data Type Resource . 92
6.16 XML Representation: Function Type Resource 93
6.17 XML Representation: Application Type Resource 93
6.18 XML Representation: Requirement Type Resource 94
6.19 XML Representation: Function Calculation . 95
6.20 XML Representation: Sub-Function Calculation 96

xi

List of Listings

6.21 XML Representation: Utility Function Calculation 96
6.22 XML Representation: Select Distribution . 97
6.23 XML Representation: Compare Distribution . 97
6.24 XML Representation: Check Requirements . 98

7.1 Expression: Workload Probability . 110
7.2 Expression: Average Number of Users . 111
7.3 Expression: Average Number of Transactions 111
7.4 Expression: Average Revenue per Transaction 111
7.5 Expression: Average User Satisfaction . 111
7.6 Expression: Average Availability . 112
7.7 XML Representation: Revenue Function Resource 112
7.8 XML Representation: Parameter Resources . 113
7.9 XML Representation: Cost Function Resource 114
7.10 XML Representation: Utility Function Resource for T0

µ 115
7.11 XML Representation: Sub-Function Resources for T0

µ 115
7.12 XML Representation: Nefolog Sub-Function Resource for T1

µ 116
7.13 XML Representation: Nefolog Sub-Function Resource for T2

µ 116
7.14 XML Representation: Nefolog Parameters for T1

µ 118
7.15 XML Representation: Nefolog Parameters for T2

µ 118
7.16 XML Representation: Compare Alternative Distributions 119

xii

1 Introduction

This chapter includes the motivation and problem statement, research challenges, the acronyms
which occur in the thesis and the thesis’ structure.

1.1 Motivation and Problem Statement

Cloud Computing has rapidly gaining popularity, the number of Cloud services has in-
creased and a wide spectrum of Cloud offerings is available. Business expenses are the
main driver for this development. Cloud Computing scores in particular thanks to its bene-
fits of reduced infrastructural cost and dynamic access to computational resources [ASL13].
Today, a number of Cloud providers offer a range of various Cloud services with individ-
ual performance attributes and pricing models. As a result, the decision for a certain Cloud
offering has an impact on both, the operational expenses and the information system’s per-
formance.

The study in [GSAGL14] separates an application topology into application specific compo-
nents and application independent sub-topologies. [GSAGL14] argues that there are multi-
ple deployment alternatives for the application components, hence the application topology
is only an element from the set of application topology alternatives. When going from mi-
grations of type III (Migrate the whole software stack) to type IV (Cloudify) [ABLt13], the
exploitation of the potential in Cloud Computing increases. However, the issue of selecting
the optimal deployment gains in complexity. Heterogeneous distributed components are
combined to provide applications’ functionality [BBKL14]. Each component’s performance
is influenced by the specific deployment and the application’s performance comes from the
interplay of these components. When questioning the fulfilment of requirements defined for
the application, these dependencies must be suggested. It is essential to point out that the
application’s workload has a fundamental role to play. The determination of the optimal
distribution requires the consideration of workload and is made difficult by the fact that the
application workload may oscillate over time [Sáe14].

Certain standards and tools support developers in designing topologies, choosing Cloud
offerings and deploying applications in the Cloud. The TOSCA standard allows for the stan-
dardized and portable description of composite Cloud applications and their management
[BBKL14]. Other standards for describing applications and there topologies are the Gener-
alized Topology Language (GENTL) [ARSL14] and Blueprints [PvdH11]. The TOSCA mod-
elling tool Winery supports the graph-bases modelling of application topologies. The main
components are the Element Manager and the Topology Modeller [KBBL13]. Finally, a TOSCA

1

1 Introduction

Container enables the automation of provisioning, management and termination of applica-
tions based on these descriptions [BBKL14, KBBL13]. The Nefolog system offers a knowledge
base and a decision support system [XA13]. The knowledge base contains different Cloud
providers, offerings and various configurations. A REST interface allows for the candidate
search and the cost calculation. MiDSuS utilizes the Nefolog system and provides its function-
alities through a graphical user interface. The GENTL Environment [ARSL14] also utilizes
the Nefolog system. The environment provides the visualization of topology data, an anno-
tation model and a transformation application, which allows for the import of TOSCA and
Blueprint models [ARSL14].

1.2 Research Challenges

The approach in [AGSLW14] provides a method to explore the space of alternative deploy-
ments for application specific components. Furthermore, it suggests utility functions for the
evaluation of these alternatives. Utility functions have the ability to consider multiple di-
mensions [STFG08]. This allows for the evaluation of topologies taking into account various
requirements and interests from different stakeholders.The first research challenges are to
examine approaches for using utility theory in software architectures and derive the concept
and specification for enabling the utility based analysis of Cloud application distributions.

Besides the tools and standards mentioned above, there is a lack of decision support that
goes beyond the mere look on Cloud offerings’ technical data and operational costs. Others
aspects can be e.g. the fulfilment of specified functional and non-functional requirements un-
der the applications’ workload, the end-users’ satisfaction and the generated revenue. De-
cision makers should be supported in the formulation of utility functions which break all
relevant aspects into one axis. A decision support tool should also enable the calculation of
utility of topologies based on these utility functions. Therefore, further research challenges
are the definition of the architecture, the specification and the design of a loosely coupled,
RESTful framework which closes the gap in decision support.

The last research challenges are the prototypical implementation of the framework and the
necessary evaluation whether the implementation provides the intended decision support.

1.3 Definitions and Conventions

This section covers abbreviations occurring in this work and definitions which are necessary
to understand this thesis.

Definitions

2

1.3 Definitions and Conventions

3

1 Introduction

List of Abbreviations

API Application Programming Interface
AWS Amazon Web Services
Amazon EC2 Amazon Elastic Compute Cloud
B2B Business-to-Business
B2C Business-to-Consumer
BPEL WS-Business Process Execution Language
BPEL4WS BPEL for Web Services
DBaaS Database-as-a-Service
DMS Database Management System
FK Foreign Key
GENTL Generalized Topology Language
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTML Hypertext Markup Language
IaaS Infrastructure-as-a-Service
JAXB Java Architecture for XML Binding
JAX-RS Java API for RESTful Web Services
Java EE Java Platform, Enterprise Edition
JSON JavaScript Object Notation - Data-interchange format
KPI Key Performance Indicator
NIST National Institute of Standards and Technology
PaaS Platform-as-a-Service
PHP PHP: Hypertext Preprocessor - Server side scripting language
PK Private Key
POJO Plain Old Java Object
QoS Quality of Service
REST Representational state transfer - software architectural style
RESTful Characteristic that expresses a system’s conformity to the constraints of REST
RPN Reverse Polish Notation
RDBMS Relational Database Management System
SaaS Software-as-a-Service
SLA Service Level Agreement
SOAP (originally) Simple Object Access Protocol
SOA Service-oriented Architecture
SOC Service-oriented Computing
SQL Structured Query Language
TOSCA Topology and Orchestration Specification for Cloud Applications
UDDI Universal Description, Discovery and Integration
URI Uniform Resource Identifier
URL Uniform Resource Locator
UUID Universally Unique Identifier
WS Web Services
WSDL Web Services Description Language
XML Extensible Markup Language

4

1.4 Outline

1.4 Outline

The document’s structure is described below:

Chapter 1 - Introduction Includes the motivation and problem statement, research chal-
lenges, the acronyms which occur in the thesis and the thesis’ structure.

Chapter 2 - Fundamentals Concepts and technologies in the thesis’ sphere.

Chapter 3 - Related Works Existing approaches for using utility theory in software architec-
tures and a comparative analysis.

Chapter 4 - Concept and Specification A Concept which enables utility theory based anal-
ysis of Cloud application distributions. Furthermore, requirements, use cases and system
overview for the RESTful framework.

Chapter 5 - Design Description of the RESTful framework’s design and discussions about
attempts and utilized algorithms.

Chapter 6 - Implementation This chapter contains a description of the prototypical imple-
mentation of the RESTful framework.

Chapter 7 - Evaluation Evaluation of concept and implementation based on a decision prob-
lem.

Chapter 8 - Outcome and Future Work In the final chapter, a conclusion of the work is given
and a outlook for further development is presented.

5

1 Introduction

6

2 Fundamentals

This chapter summarizes concepts, technologies and approaches this thesis relies on.

2.1 Cloud Computing

Cloud Computing is a model for enabling access to a shared pool of computing resources
[MG11]. These resources are delivered on-demand to the consumer as services, comparable
to the delivery of water and gas [GVB11]. [JM12]. Cloud Computing is characterized by
(1) the provision of computing capabilities on demand, (2) the access to its capabilities over
network, (3) the pooling of different physical and virtual resources to serve multiple con-
sumers dynamically according to their demands, (4) the consumers’ possibility to elasticity
provision, release and scale Cloud capabilities in a rapid manner and (5) the transparency
generated by the monitoring, controlling and reporting of resource usage [MG11].

Strong arguments for Cloud Computing are decreased costs and higher flexibility. The shar-
ing of resources and costs among many consumers allow the better utilization of infrastruc-
tures [JM12]. Cloud Computing improves the use of distributed resources and solves scala-
bility problems in distributed computing [RCL09]. As a result infrastructural costs decrease
while flexibility increases [ASL13].

Another advantage for the consumers of computing resources arises from the available on
demand and corresponding payment models. The risks in long-term resource planning are
minimized. Consumers increase or even decrease their resources with respect to their de-
mand on a short-term basis [AFG+10]. Using-based payment schemes ensures that con-
sumers pay as their demand increase or decrease [RCL09].

2.1.1 Actors

Cloud providers make their services accessible through internet based interfaces [VRMCL08a].
Providers serve multiple consumers based on a multi-tenant model [MG11]. Furthermore,
consultings support consumers to select and implement relevant services. [LRBK10]

[LRBK10] distinguishes different kind of Cloud providers: (1) Infrastructure providers sup-
ply the scalable computing and storage services needed to run applications within the cloud,
(2) service providers develop applications that are offered to consumers and access hard-
ware and infrastructure of infrastructure providers, (3) platform providers provide an en-
vironment within which cloud applications can be deployed and (4) aggregators offering

7

2 Fundamentals

services which are created by the combination of already existing services. Aggregators are
customers and providers at the same time.

2.1.2 Service Models

The most prominent service models in cloud computing are Software as a Service (SaaS), Plat-
form as a Service (PaaS) and textitInfrastructure as a Service (IaaS). Furthermore, Database as
a Service (DBaaS) will be introduced in this section.

Infrastructure as a Service IaaS offers services like storage, CPU and memory. These re-
sources are delivered as storage and virtual machines of different size (combinations of CPU,
memory and local storage) [LWW+10]. Consumers have no control over the underlying in-
frastructure but have control over operating systems and storage [MG11]. IaaS consumers
profit especially from flexibility and the usage-based payments [RCL09].

Platform as a Service PaaS provides developers a platform for the deployment of appli-
cations based on programming languages, libraries, services and tools supported by the
provider [MG11]. Developers can develop, test and deploy their applications on these plat-
forms [RCL09] without operating and managing the underlying infrastructure [MG11]. PaaS
providers utilizes IaaS offers by requesting virtual machines and storage and deploying ap-
plication containers in the virtual machines [LWW+10].

Software as a Service SaaS uses common resources and a single instance of an application
to server multiple consumers simultaneous [RCL09] (economics-of-scale principle [LS10]).
The offered application is hosted run and administrated in large web data centers and pro-
vided as a service [LWW+10]. Consumers use the application remotely over the internet
without controlling the underlying infrastructure. Consumers have at most control about
user-specific application settings [MG11].

Database as a Service Early SaaS applications were build on relational database technolo-
gies. The gap between the applications’ functional requirements (e.g. multi-tendency) and
the limited suitable of classic database systems leads to complex infrastructures and exten-
sive maintenance [LS10]. The need for easy to use persistence layer with classic database
features results in Data Base as a Service (DBaaS) offerings [LS10]. The structure of Cloud
databases is still complex, since Cloud databases hold the data on different data centres
while consumers are provided with a easy and complete access over services. [AS13]

2.1.3 Cloud Models

Cloud models can be defined by four types: (1) Private Cloud, (2) Public Cloud, (3) Community
Cloud and (4) Hybrid Cloud [MG11].

8

2.1 Cloud Computing

Private Cloud A private Cloud is provisioned only for the use by consumers of a single organ-
isation [MG11]. This model offers the highest degree of control over performance, reliability
and security [Sin15].

Public Cloud In a public Cloud services are offered for open use by general public [MG11].
Consumers’ benefit of the public Cloud model is the elimination of initial investments in the
underlying Cloud infrastructure [Sin15]. The downside of this model is the deficient in fine
grained control over data, network and security settings [Sin15].

Hybrid Cloud Hybrid Clouds are mixtures of the previous introduced models [MG11]. Some
services can run in a Private Cloud while other services run in a Public Cloud. Hybrid Clouds
can provide a more fine-grained control than public Clouds, while still exploit on-demand
service expansion and payment models [Sin15].

Community Cloud Community Cloud consumers belonging to organisations with shared con-
cerns [MG11]. Computing resources are shared within a community [Sin15].

2.1.4 Migration Types

[ABLt13] describes four migration types for applications: (1) Type I - replace one or more com-
ponent with Cloud offerings. Such a migration type could require configurations, rewriting
and adaptations to cope with incompatibilities. Type II - migrate application functionality to
the Cloud. One or more application layers are migrated in order to provide selected func-
tionality from the Cloud. Type III - migrate the software stack of the application to the Cloud,
often by VMs. Type IV - the application functionality is served by a composition of services
running on the Cloud.

2.1.5 Payment Models

The common payment model is the pay-per-use model [VRMCL08b]. Users have only to
pay for what they use. The disadvantage is a lack of acceptance when users want to control
their budget [PZJ14]. In contrast, subscription pricing is billing a lumpsum payment on
a recurring basis and will not impose additional costs per unit [PZJ14]. A two-part tariff
combines recurring lumpsum payments with additional costs per unit [PZJ14].

9

2 Fundamentals

2.2 Cloud Application Topologies

Different cloud providers offering similar services in different manners. As a result develop-
ers are often locked to a specific platform environment because of the expense of migrate
applications to other platforms [BSW14]. Enterprise applications are often composed of
multiple components. The components functionalities are orchestrated into more complex
applications [BBKL14]. In order to create portable cloud applications, developers need a
machine-readable format for modelling application topologies [BBKL14]. The management
of the components inside topologies (e.g. deployment, configuration, communication to
other components) should also be covered by an topology language [BBKL14].

2.2.1 Specifications and Existing Approaches

[ARSL14] identifies a set of common fundamental concepts in different topology languages.
All approaches use a graph-based view of application topologies. Components are mod-
elled as nodes and connectors as edges. Components can be assembled into groups, mark-
ing subgraphs. Furthermore, components and connectors can be described by attributes.
[AGSLW14] notes that different approaches describe application topologies, middleware
components and cloud offerings involved using the typed graph model.

GENTL

The GENeralized Topology Language (GENTL) is a extensible and technology-independent
language based on four concepts common in topology languages [XA13]. (1) Topology
model - The graph model represents components (software artefacts and services) by nodes
and connectors (relationships between components, e.g. hosted on, connected to) by edges.
(2) Groups - Components and connectors can form sub-topologies. These sub-topologies
are represented by groups. (3) Attributes - Attributes store related informations for compo-
nents, connectors, groups or even the whole topology. Simple (name-value) and composed
attributes are supported. (4) Annotations - GENTL allows the annotation of components,
groups and the whole topology. [XA13] utilizes annotations of the whole topology to store
projected costs (cost-annotated topologies).

A GENTL model begins with a topology element. The topology element composes com-
ponents, groups and topology attributes. Thereby groups enables the organisation in sub-
graphs. Connectors represents relationships between a source- and a target-component
in topologies. Attributes are either simple attributes or composite attributes which allows
nested attribute composition. Topology attributes capture informations regarding the whole
topology, while attributes of components, groups and connectors capture the informations
in their respective spher [XA13].

10

2.3 Application Workload

TOSCA

The purpose of the "OASIS Topology and Orchestration Specification for Cloud Applica-
tions" (TOSCA) are portable cloud applications and the automation of their deployment and
management [BSW14]. [BBKL14], [BSW14] explains how TOSCA addresses the following
main challenges in cloud computing: (1) Automated management, (2) portability of appli-
cations and (3) interoperability and reusability of application components. Since, in gen-
eral the creator of a IT solution has the knowledge how to manage the solution, TOSCA
faces challenge (1) by management plans. Management plans are workflows included in
the topology. They are portable and executed automated and thereby providing automated
self-service management. Basically challenge (2) results from vendor lock-ins. TOSCA for-
malizes the application topology and its management. The description of topologies is stan-
dardized and management plans rely on portable workflow languages. TOSCA defines
components in a reusable and interoperable manner. These components can be combined
vendor-independent and thereby simplifying challenge (3).

As mentioned previously, TOSCA compromises two main concepts: (1) Application topolo-
gies and (2) management plans. TOSCA is using a XML-based modelling language to de-
scribe (1) as typed topology graphs and workflows to describe (2) [BBKL14].

Winery

Winery is a graph-based modelling tool for TOSCA-based Cloud applications. The environ-
ment provides the a graph based modelling of topologies and the definition of components
and relationship types [KBBL13]. Winery contains two GUI-based components (HTML5-
based). First, the Topology Modeler allows for the convenient modelling of application
topologies with the graphical visualization of elements and their combinations. Second, the
Element Manager can be used to provide and configure node types and relationship types
[KBBL13]. Both components utilizes the Repository component which is responsible to store
and provide data [KBBL13].

2.3 Application Workload

[GSAGL14] defines application workload a "description of a set of business transactions which
are probabilistically distributed for a time interval, have an impact on the application state and define
the behavioural characteristics of its corresponding users". The application workload profile is
compromised of workload samples; each sample includes a usage profile, a workload mix
and a behavioural model [GSAGL14]. The usage profile describes the end user in terms of
the evolution of arrival rates and the specification of their requests, the workload mix is a
set of transactions that can be preformed on the application and the behavioural model de-
fines the distribution of the workload mixes transactions over time based e.g. on popularity,
probability of occurrence, etc. [GSAGL14].

11

2 Fundamentals

The performance of an application depends on the distribution of the application topology
[GSALS14]. Specified performance requirements are affected [GSAGL14]. It is therefore
necessary to carry out preliminary compliance tasks, e.g. specifying required resources
[GSALS14]. To this end, it can be essential to achieve knowledge about the application’s
performance under the expected application workload. Since application workload can fluc-
tuate over time, it may be necessary to adapt the application topology to secure the fulfilment
of predefined performance requirements[GSAGL14].

A fundamental aspect in considering a Cloud application’s performance is the evolution of
the application workload behavior [GSAGL14].

2.4 Cloud Application Distribution

Cloud computing brings the opportunity for applications partially or completely composed
of cloud offerings [AGSLW14]. Offered services like Database as a Service can be integrated
as a part of new applications or existing applications migrated to the cloud [AGSLW14].

Standards like TOSCA enable developers to build portable and interoperable topology mod-
els of application stacks. These models can be used for the distributed deployment of appli-
cations across cloud providers [AGSLW14], [ARXL14].

2.4.1 Optimizing the Distribution

TOSCA et al. describe application topologies and middleware components and cloud offer-
ings involved, but that’s a limited view. The description is only a possible instantiation of the
application, it doesn’t contains alternative instantiations [AGSLW14]. Although developers
using TOSCA et al. for the portable and interoperable modelling of applications and their
distributed deployment, their is still a lack of support that will facilitate the search for e.g.
cost-optimal design and distributions for these applications. Numerous cloud service offer-
ings with different pricing models and various performance characteristics make it difficult
to identifying the optimal distribution of an applications in the cloud [ARSL14]. [ARXL14]
identifies a need for guidance and support in identifying the most cost efficient distribution
in the set of available cloud offerings. Thus support should facilitate two main challenges:
(1) how applications should be distributed among cloud solutions and (2) which cloud of-
fering (and configuration) should be used [ARXL14]. While [ARXL14] aims at cost-efficient,
[AGSLW14] aims at the fulfilment of a more comprehensive set of characteristics. The main
challenges are still similar: (1) infer possible topologies for a given application and (2) select
the optimal topology for a given set of characteristics.

The selection and configuration of cloud offerings for the deployment of a application has a
direct impact on the applications operating costs. Developers can optimize these operating
costs both in the design of new applications and the re-engineering of existing applications
[ARXL14]. The suggested process contains 4 stages: (1) Application modelling - In a first
step the developer models the application topology independent of specific cloud offerings,

12

2.4 Cloud Application Distribution

typically using a directed acyclic graph. (2) Mapping offering - The model from (1) is used
to identify cloud offerings in which the application can be deployed. The result is a set
of so-called enriched topologies. Analogous to [AGSLW14], a single enriched topology con-
tains only offers from one cloud provider. [AGSLW14] explains this constraint with expected
latencies between providers. (3) Cost calculation - Projected costs are calculated for the en-
riched topologies and added as an annotation based an a presumed usage profile and public
available informations about cloud offers. The result is a set of so-called cost-annotated
topologies. (4) Optimal topology selection - The set of cost-annotated topologies displays
the operating cost optimal enriched topology with respect to a usage profile. Different usage
profiles can be evaluated by looping back to (3).

The approach in [AGSLW14] also provides support in identifying the optimal distribution
from possible distributions of the application stack across cloud offerings. As distinct from
[ARXL14], this approach not only aims for an operating cost optimal distribution. Different
criteria allow the selection of a optimal distribution in a more comprehensive context.

Figure 2.1 shows a distributed deployed application. The front-end tier is deployed on an-
other infrastructure solution then back-end and persistence tiers. The figure indicates alter-
native topologies (dotted lines). It’s possible to choose other infrastructure solutions, uti-
lize other PaaS-offers or even separate back-end and persistence tier by switching from a
database server deployed on a platform to a DBaaS offer. It’s possible to deploy the basic
application with different topologies. The application’s appearance can be different, indeed.
Essential characteristics of the application like e.g. deployment time, performance and op-
erational expense depend on the (cloud) offers in the respective topology. Furthermore, dif-
ferent topologies can include different pricing models [AGSLW14]. All these factors can be
relevant when determining the value of the application. Anyway, the evaluation process is
similarly constructed to [ARXL14]. First, based on a model of the application’s topology al-
ternative distributed scenarios are generated. Second, these alternatives are evaluated. The
difference is the evaluation with respect to multiple criteria.

2.4.2 Application Topology Fundamentals

The approach in [AGSLW14] lists definitions for central terms in the context of application
topologies. These definitions are summarized in this section.

Application Topology The labeled graph G = (NL, EL, s, t) with N as a set of nodes, E a set
of edges, L a set of labels and source and target functions s, t defines the application topology.
If L only contains elements < name : type > of nodes and elements < type > for edges, the
topology graph is called typed [AGSLW14].

Standards like TOSCA use the typed typed topology graph model to describe applications,
middleware components and cloud offerings under a unified model [AGSLW14].

13

2 Fundamentals

Figure 2.1: Web Shop Application Topology

From [AGSLW14]

Viable Topology In order to manage the above mentioned challenge of inferring possible
topologies for a given application [AGSLW14] extends the typed graph model towards a
typed graph with inheritance model. This approach is following [BEDL+03]. This graph
model reports abstract nodes (e.g. web server) and contains inheritance clan relations for
nodes. The clan morphism clan(n)I = {n′ ∈ N|∃path n′ →∗ n} defines the inheritance clan
relations. By navigating through the inheritance-type edges in the graph and using the clan
relations, alternative typed topology graphs can be found. These typed topologies are called
viable topologies (w.r.t. a typed graph with inheritance) [AGSLW14].

µ-, α- and γ-Topology The typed graph with inheritance for a viable topology is defined
as its µ-topology. The α-topology denotes the application-specific sub-graph and the γ-
topology the non application-specific and reusable sub-graph [AGSLW14].

The division into α- and γ-topology is functional and guided by the applications particular
need [AGSLW14].

2.5 Cloud Consumers’ Requirements

Cloud costumers challenging the fact that distributed solutions have specific requirements
that need to be met by integrated cloud services [GVB11]. With the increasing number of
cloud offerings it becomes more difficult for consumers to decide which offering can fulfil

14

2.5 Cloud Consumers’ Requirements

Figure 2.2: CSMIC Framework, v2.1

From [CSM14]

these requirements. Furthermore, these decisions require trade-offs between different re-
quirements [GVB11]. Thereby the most appropriate cloud offers with respect to the complete
solution should be selected [YMBD14].

There are two types of requirements: functional and non-functional. Functional require-
ments describe what the service is supposed to do, while non-functional requirements de-
scribe how the service is supposed to be. The term quality of service (QoS) is is synony-
mous with non-functional requirements. In cloud computing various cloud providers offer
functionally equivalent services but these services differ in their non-functional qualities
[KDM13]. Usually developers select cloud services as partial solution to their requirements
[GGS10]. Cloud consumers aim should be the selection of offers that fulfil functional and
non-functional requirements.

The Service Measurement Index (SMI) framework addressing the need for industry-wide,
globally accepted measures for calculating the benefits and risks of cloud computing ser-
vices [SP12]. The SMI framework (current version 2.1 [CSM14]) includes 7 major character-
istics and their sets of attributes. These characteristics are (1) Accountability, (2) Agility, (3)
Assurance, (4) Financial, (5) Performance, (6) Security and Privacy and (7) Usability. Fig-
ure 2.2 displays theses characteristics and their attributes. The attributes are functional and
non-functional requirements.

[GVB11] outlines the meaning of the seven categories: The attributes in (1) determine the
trust consumers build on cloud providers. Since agility is one of the outstanding charac-
teristic in cloud computing, the attributes in (2) reveal a provider’s ability to provide this
fundamental opportunity by its offers. Characteristic (3) refers to the compliance of cloud
services’ expected or promised performance. Costs are a strong argument when comparing
alternatives, thereby attributes from category (4) have a strong influence. Attributes in (5)

15

2 Fundamentals

describe features and functions of cloud services. Hosting data in other organisations con-
trol is a critical issue, thereby attributes in category (6) are vital in several domains. The ease
which a service can be used is described with attributes in (7). These attributes determines
how fast cloud consumers can switch to cloud services.

The SMI framework categories and included attributes summarize the potentially relevant
functional and non-functional requirements. Cloud consumers can select a set of attributes
relevant their particular solutions. [GVB11] also lists metrics for the usually relevant quanti-
tative attributes in the context of IaaS clouds: These attributes are (1) Service Response Time,
(2) Sustainability, (3) Suitability, (4) Accuracy, (5) Transparency, (6) Interoperability, (7) Inter-
operability, (8) Availability, (9) Reliability, (10) Cost, (11) Adaptability, (12) Elasticity and (13)
Usability.

[KDM13] lists some QoS and how to determine their values: (1) Availability - The users’
reachability of the service. The percentage of availability is determined based on the mean
time to fail (MTTF) and the mean time to repair (MTTR) by MTTF

MTTF+MTTR . (2) Reliability - The
service’s ability to function according to performance requirements in SLA. [KDM13] uses
defects per million (DPM) to determine the percentage of a services’ reliability: 1,000,000−DPM

1,000,000 .
(3) Response time - The time between sending a request and receiving a response. (4) Usabil-
ity - Rating for the easiness of using, learning and installing a service. The rating is based
on the users’ feedback and reflect the degree of satisfaction regarding this facet. (5) Secu-
rity - Characteristic of being secure regarding applications, hardware components and users’
data. [KDM13] determines security with the fulfilment of expected security and security
provided by a service. (6) Cost - The monetary expense of accessing and using a service. The
measurement unit is money (US dollar) and its tendency is low.

2.6 Service-orientated Architecture and Computing

SOA emerged in response to a shift in business organizations after the 1990s which re-
quires flexible and responsive IT environments [EAA+04]. Seamless connections with par-
ticipants (with heterogeneous systems and applications) in the supply chain demands new
approaches in software architecture [EAA+04].

2.6.1 Service-oriented Computing

Service-oriented Computing (SOC) is a paradigm "that utilizes services as fundamental elements
for developing applications" [PG03]. These services are autonomous, platform-independent en-
tities [PTDL07]. SOC eliminates the dependence of programming languages and operating
systems and any application component can transformed into a reusable, network-available
service [PTDL07].

16

2.6 Service-orientated Architecture and Computing

2.6.2 Service-oriented Architecture

Heterogeneity, interoperability and variable requirements are easier manageable in a loosely
coupled, location transparent and protocol independent architecture [EAA+04]. [Org06]
summarizes SOA as a "paradigm for organizing and utilizing distributed capabilities that may
be under the control of different ownership domains". Putting this paradigm into practice brings
more value from the use of self-owned and foreign controlled capabilities.

Roles

SOA services deliver application functionality to end-users, applications or other services in
distributes systems [EAA+04]. Following [EAA+04] these services are handled by entities
of three different roles, whereby entities can play different roles side by side: (1) Service con-
sumer, (2) Service provider and (3) Service registry. Entities of (1) are applications, software
modules ore other services that require a service. Entities of (2) are network-addressable
and handling requests from (1). Entities of (3) enables service discovery. Service providers
publish its service and interfaces contracts to service registries. Service registries contain
repositories of available services and can be queried for provisioning service providers in-
terfaces. Thus service consumers enquire services from service registries and execute these
services according to the interface contract of the respective service provider.

Operations

Beside these three roles, there are tree operations in SOA [EAA+04]: (1) publish, (2) find
and (3) bind and invoke. Service providers providers publish service descriptions with the
help of service registries in order to make them accessible to service consumers. With find-
operations service consumers locate services by querying service registries and finally bind
and invoke the services according to the received service descriptions.

Concept

[Org06] identifies three key concepts in the SOA paradigm: (1) visability, (2) interaction and
(3) effect. (1) refers to the possibilities matching needs to capabilities, typically by widely ac-
cessible and understandable descriptions for e.g. functions, requirements, constraints, mech-
anisms and policies. (2) refers to the use of capabilities, usually by messages for information
exchange and invoking actions. The result of interactions is referred by (3). This could be
e.g. the return of informations or the change in the state off entities.

SOA provides scalability and evolving by making the fewest possible assumptions about
the network. That also leads to more agile and responsive infrastructures and simplifies the
integration of functionalities over ownership boundaries [Org06].

17

2 Fundamentals

Web Services

In a nutshell the web service approach is an enabler for the programming language inde-
pendent integration of heterogeneous applications over the internet [EAA+04]. [OMN+04]
provides a definition of web services: "A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network." Web services use open Internet-
based standards. The Simple Object Access Protocol (SOAP) is used for transmitting data, the
Web Service Description Language (WSDL) for service definition and the Business Process Execu-
tion Language for Web Services (BPEL4WS) for service orchestration [PTDL07]. The Universal
Description, Discovery, and Integration standard (UDDI) enables the location of web services
and the discovery of their details [PG03]. SOA is commonly implemented with the use of
web services [EAA+04].

2.7 Utility Theory

A fundamental cornerstone of this thesis is utility functions’ capability to combine the evalu-
ation of different objectives into one axis [STFG08]. This section presents definitions of utility
functions and provides an insight into the their usage in economics.

2.7.1 Definitions

Different approaches provide deviating definitions for utility functions. [Fis70, JR01] pro-
vides a mathematically attempt, [Nor99], [Joh07] a more business-orientated attempt.

The approaches in [Fis70, JR01] using binary relations on the countable set of X. Relations
are preference relation, strict preference relation and indifference relation.

� preference relation ∀x1, x2 ∈ X : x1 � x2 ∨ x2 � x1

∀x1, x2, x3 ∈ X : x1 � x2 ∧ x2 � x3 ⇒ x1 � x3

� strict preference relation ∀x1, x2 ∈ X : x1 � x2 ⇒ x1 � x2 ∧ x2 � x1

∼ indifference realtion ∀x1, x2 ∈ X : x1 ∼ x2 ⇒ x1 � x2 ∧ x2 � x1

With the binary relation strict preference� on the countable set of X [Fis70] describes a basic
property of utility functions u : Rn

+ → R

x � y⇔ u(x) > u(y) (2.1)

This equivalence expresses that the utility of x is higher than y if and only if x � y.

[JR01] notes that a utility function is a device for summarising the informations contained
in a consumer’s preference relation. Therefore, [JR01] defines a utility function as follows,
essentially utility function u : Rn

+ → R representing the preference relation.

u(x) ≥ u(y)⇔ u � y (2.2)

18

2.7 Utility Theory

[Nor99], [Joh07] considers utility functions from the perspective of an investor. Utility func-
tions are functions of wealth U(w) with w > 0. Thereby two characteristics are important:
(1) non-satiation and (2) risk aversion. Basically (1) means more wealth is always better, the
investor is never satisfied. This characteristic of U(w) is secured if U′(w) > 0 for all w. Char-
acteristic (2) describes the decreasing marginal utility of U(w). The difference of the utility of
1 $ and 2 $ should be bigger than the difference of the utility of 1000$ and 1001$. (2) is secured
if U′′(w) < 0 for all w. Following [Nor99], [Joh07], utility functions are twice-differentiable
functions of wealth U(w) with U′(w) > 0 and U′′(w) < 0.

Positive Affine Transformations

� is a preference relation on Rn
+ and utility function u(x) represents it. Then v(x) also

represents the relation if and only if v(x) = f (u(x)), where f : R → R is strictly increasing
[JR01]. The less mathematical approach is that it is possible to scale a utility function by
multiplying or translate it with any positive constant [Nor99].

2.7.2 Usage in Economics

Chapter 3 analyses the utilization of utility theory in various software architectures. First, the
utilization of utility theory in financial risk-management is considered. [Joh07] lists common
utility functions for this purpose. Among others: (1) exponential, (2) logarithm and (3) iso-
elastic functions. [Nor99] gives a more detailed description of these utility functions. These
functions are explained below.

Exponential Utility Function

Since the definition of utility functions in [Nor99, Joh07] requires U′(w) > 0 and U′′(w) < 0
the basic form of the (negative) exponential utility function (1) is

U(w) = −e−Aw (2.3)

with constant A > 0. The upper boundary of U(w) is obviously 0 and the coefficient of risk
aversion A determines how fast the function approximates to 0. U′′(w) = −A2e−Aw, thereby
A has an exponentially impact on the marginal utility. With e.g. u(x) = 1− e−Aw positive
exponential utility functions can be formalized [Joh07]. Figure 2.3 shows the characteristic
of a positive exponential utility functions with different risk aversions A.

Logarithm Utility Functions

The natural logarithm
U(w) = ln(w) (2.4)

19

2 Fundamentals

Figure 2.3: Positive Exponential Utility Function

Figure 2.4: Iso-Elastic Utility Function

20

2.8 REST

distinguishes from the (negative) exponential function. Logarithmic functions growing with-
out boundaries.

Iso-Elastic Utility Functions

U(w) =

{
wλ−1

λ λ < 0, λ 6= 0

ln(w) λ = 0
(2.5)

Logarithm utility functions are obviously a special case of iso-elastic utility functions. The
special character of iso-elastic utility functions is the constant attitude towards risk regard-
less the current wealth [Nor99]. If a iso-elastic utility function is used to determine the opti-
mal amount of money to invest in a risky investment, the same percentage of the available
amount of money will come up. This characteristic is unique within the classes of utility
functions.

2.8 REST

Representational State Transfer (REST) is a software architectural style and was first dis-
cussed in Roy T. Fielding’s dissertation [Fie00]. The only mandatory implementation details
are the use of HTTP verbs (GET, PUT, POST and DELETE), naming of resources using nouns
(e.g. URI) and the interconnection of resources with URIs [otSS11]. REST is a set of design
criteria and not a architecture [RR07].

2.8.1 Resources

"A resource is everything that’s important enough to be referenced as a thing in itself" [RR07]. A
resource can represent physical or abstract objects. A resource can be stored and represented
as a stream of bits. That addresses e.g. a document or even the result of an algorithm [RR07].
The minimum requirement for being a resource, is having one URI [RR07].

URI

REST relies on uniform named resources. Uniform Resource Identifiers (URI) are used to
meet this requirement [otSS11]. A URI is name and address of a resource [RR07].

2.8.2 Constraints

REST combines constraints of already existing network-based architectural styles with addi-
tional constraints that define a uniform interface [Fie00].

21

2 Fundamentals

Separation of concerns This constraint demands the separation of concerns of user inter-
face and data storage. The constraint improves the portability of user interfaces, increases
scalability and allows for the independent development of components [Fie00].

Stateless The server doesn’t store any application state [RR07]. Session state is completely
covered by clients [Fie00], if necessary the client must send the application state as part of
the request [RR07].

Cacheable A cache acts as a mediator between client and server [Fie00]. Responses define
themselves as cacheable or not (implicitly or explicitly) [Fie00].

Uniform interface [Fie00] names four constraints in order to abtain a uniform interface: (1)
identification of resources, (2) manipulation of resources through representations, (3) self-
descriptive messages and (4) hypermedia as the engine of application state (HATEOAS).
[RR07] explains HATEOAS as followed: The server does not store application states, but
guides the client’s path by serving links and forms inside hypertext representations.

Layered System Each layer provides services to the layer above it and using services of
the layer below it [Fie00]. This architectural style improves evolvability and reusability, but
comes with the costs of additional overhead [Fie00].

2.8.3 HTTP commands

A fundamental tenet of REST is the utilization of the HTTP commands GET, PUT, POST,
DELETE [otSS11]. All Interactions between clients and resources are mediated through this
set of verbs [RR07]. In addition the HEAD command can be used.

GET The GET command is used to receive a resource’s representation. GET commands
shouldn’t cause side-effects [otSS11]. Therefore, GET commands has to be implemented in
the way that resources aren’t altered. Thus it guaranteed that the GET command is idempo-
tent.

PUT PUT commands are used to update, replace or create a resource [otSS11]. PUT should
only be used to create a resource if clients can decide the resources URI. If that were not the
case, the definition of PUT as an idempotent method [FGM+99] would be undermined.

POST POST commands are used to change, update or replace a resource [otSS11]. In con-
trast to PUT commands, POST commands are not defined as idempotent [FGM+99]. This
allows for the creation of resources without the resources’ URI in the request [otSS11].

22

2.9 Nefolog and MiDSuS Cost Calculation Framework

DELETE DELETE commands removing a resource. The server should confirm the success-
fully or failed removal with the response [otSS11]. This command is also idempotent.

HEAD The HEAD command is identical to the GET command except that the server must
only return the message header [FGM+99]. The HEAD command can be used to obtain
resources’ meta data or check for the existence of a certain resource [otSS11].

2.9 Nefolog and MiDSuS Cost Calculation Framework

Since various cloud providers offer cloud services with similar features, there is a need for
support in selecting cost-efficient offers. [XA13] introduces Nefolog, a decision support sys-
tem for selection offering candidates and calculating costs. Furthermore MiDSuS, a decision
support system for different migration types based on Nefolog, is introduced.

2.9.1 Nefolog

Nefolog provides two main decision support services: (1) Candidate search and (2) cost
calculation. (1) provides the search for suitable cloud offerings by the comparison of user
demands and the data in a knowledge base. The knowledge base contains necessary infor-
mation for the offerings of several providers (Google, Amazon Web Service, et al.) including
available configurations with different performance characteristics and costs. Offerings are
divided in 6 different service types, e.g. web service, SQL DB and infrastructure. (2) cal-
culates total costs based on upfront costs, data transfer costs and service costs. Nefolog
provides corresponding cost functions for cloud offers. The services are offered in a RESTful
manner. XML and JSON data format is supported.

2.9.2 MiDSuS

MiDSuS is a decision support system for finding the best cost cloud offers for different mi-
gration types. The system has a graphical user interface and utilizes the Nefolog services.
First, users select their migration type. Second, candidate offerings are found based on the
users demand. Then MiDSuS calculates costs for user selected offerings and last, the results
are presented.

23

2 Fundamentals

24

3 Related Works

This chapter presents different approaches which are utilizing utility functions. Approaches
from Cloud computing, Service-oriented architecture and the provisioning of storage sys-
tems are presented. The approaches are subsequently compared.

3.1 Approaches in Cloud Computing

Two approaches [MF11, KM14] utilizes utility functions to break different aspects into one
axis. Another work [SP12] doesn’t utilizes utility but provides a valuable approach.

3.1.1 Utility-based Resource Allocation for Virtual Machines

The approach in [MF11] addresses the trade-off between quality of service constraints and
the minimization of operational cost in the field of IaaS Clouds. The challenge is to dynami-
cally allocate resources to virtual machines (VMs) considering this problem. [MF11] tackles
the problem on two tiers. (1) Local controllers using utility functions to allocate CPU shares
to VMs in a way that maximizes the local node’s utility and (2) a global controller maxi-
mizes the result of a global system utility function by initiating live migrations of VMs to
other nodes. Local nodes are optimized by giving higher CPU shares to VMs with higher
priorities. The global controller periodically collects VMs’ CPU requirements from the lo-
cal nodes and migrates (if appropriate) selected VMs to other physical machines in order to
maximise the global utility function’s result.

Consumers run their applications on VMs offered by a Cloud provider. The Cloud provider’s
objective should be maximizing his profit. In this case profit is determined by the amount
of money earned from consumers minus the operating costs of the infrastructure for a given
time interval. This preference should be represented by the utility function.

A VM’s utility function represents the amount of money paid by the consumer for using the
VM in a control interval. [MF11] defines this utility function as a linear function of CPU
resources the VM gets from the provider, but also mentioned that it can also be the function
of performance metrics laid down in SLAs. A local nodes utility function calculates the profit
by a single node in a control interval. Finally, the global system utility function represent the
profit produced by the entire system in a control interval.

25

3 Related Works

Utility Functions

Uj,i is the utility function for VM i on node j. With node j’s costs Cj and a total number of m
VMs hosting on the node, the node’s utility function is defined by:

Nj = Uj1 + Uj2 + ... + Ujm − Cj (3.1)

Uji is defined by Uji = αjiSji where αji is the amount of money paid per unit of CPU resource
allocated and Sji is number of allocated VM units.

The global system utility function Ug is given by:

Ug = N1 + N2 + ... + Nn (3.2)

The global system contains n nodes.

Practical Application

Each local node controller maximizes his node utility function. A monitoring component
measures the average CPU utilization of VMs in every control interval. If the total CPU
capacity is not enough to supply all VMs, the node utility function is maximized by first
satisfying requests of VMs that offers a higher utility per unit of CPU resource. VMs with
lower utility per unit of CPU resource will never get CPU resources.

The global controller queries the local node controllers in each control interval for all VMs’
CPU requirements and CPU shares. The problem of finding the VM mapping which max-
imizes the global system utility function is NP-hard. Therefore, [MF11] uses a heuristic al-
gorithm that suggests, if available, a list of live migrations that increases the global system
utility.

3.1.2 Price and QoS Competition in Cloud Market

Cloud providers set different prices for each configuration of there services. A user’s de-
mand may be met by a number of providers. It is supposed, that the user chooses a service
(and thereby a provider) that maximizes the utility obtained by choosing the service minus
the payment for the service [KM14].

The approach in [KM14] understands that providers facing the challenge to set a price that
maximizing their profit in a competitive cloud market. Therefore, providers determine
Cloud users’ utility. A user’s utility is determined by the benefit the user receives by fin-
ishing his task (importance) and how quickly the user wants this task to be finished (ur-
gency).

Utility function Ui
j calculates user j’s utility by choosing cloud provider i. Ui

j is calculated
with respect to the request rate at cloud user j λj, a benefit factor d, a waiting cost factor w

26

3.2 Approaches in Service Oriented Architecture

and the expected finish time for user j’s request when choosing provider i f i
j (this ratio is a

simplification of the actual concept in [KM14]).

Ui
j = d ∗ λj − w ∗ f i

j (3.3)

The approach assumes that users will choose a provider if utility minus the payment is
higher than a value R. With pi (usage price per resource unit at cloud provider i) this can be
expressed by:

Ui
j − pi ∗ λj ≥ R (3.4)

This approach is characterised by the fact of using factors to value importance and urgency. It
is necessary to assign appropriate values to d, w and R to meet the users’ actual behavioural
with Ui

j − pi ∗ λj ≥ R. However, this makes it possible to solve the trade-off between a
monetary facet (pi ∗ λj) and the utility achieved with respect to importance and urgency.

3.1.3 Service Measurement Index

The Service Measurement Index (SMI) framework addressing the need for industry-wide,
globally accepted measures for calculating the benefits and risks of cloud computing ser-
vices [SP12]. Since the SMI framework is intended for decision makers who considering
moving services to cloud providers, there is a service evaluation method given. This method
is based on measures for the attributes inside the SMI categories (see section 2.5) defined by
the framework-user. These measures needs to be clearly and relatively simple defined for
each (or each selected) attribute [C, 2012]. The SMI framework supports some customiza-
tions of the relative importance of each measure. First the 7 categories can be ranked by per-
centage weights and second it’s possible to assign relative weights to the attributes within
the categories (see section 2.5). While the SMI framework (version 2.1) contains 51 attributes
distributed among 7 categories, it isn’t necessary to use measures for all attributes. Typically
users will select the most important categories in their decision-making process and declare
a small number of measures within. Attributes are valued, e.g. on a scale from 0 to 5. This
procedure makes it possible to trade-off different aspects.

This approach could be useful in the trade-off between e.g. quality of service constraints and
the minimization of operational cost. Therefore, this approach is mentioned, even it is not
the explicit utilization of utility theory.

3.2 Approaches in Service Oriented Architecture

Three approaches are presented. The approaches [YZL07, Max05, HS10] utilizes utility func-
tions. From our perspective, the first approach requires some adjustments. These adjust-
ments are also presented. The last approach is interesting because it calculates not only
utility but also the expected utility. Thus, the probability of a certain quality is also consid-
ered.

27

3 Related Works

3.2.1 QBroker

[YZL07] takes a look at QBroker and clarifies the need for such approaches. In Service Ori-
ented Architecture (SOA) composite services can be created by integrating atomic services
based on standardised protocols. Since various potential atomic services with similar and
compatible functionality may be offered at different QoS levels, the necessary selections af-
fects the performance of composite services. Thus performance management is an important
challenge for distributed SOA systems. Besides economic factors, the integrated services
have to fulfil appropriate QoS levels. [YZL07] indicates four factors in charge of the com-
plexity of service selection: (1) various services with different QoS levels are candidates for
one functionality, (2) composite services could require various performance constraints, (3)
there may exist more ways to build a service and (4) actual QoS may differ from promised
QoS.

[YZL07] presents the description of composite services based on service classes connected by
different structures (Sequential, AND split, XOR split, Loop, AND join, XOR join). For every
service class Si exists a one-to-many relationship between Si and atomic services sij from
class Si. In summary, the QBroker compute the best choice of atomic services for a described
composite service. If there are XOR-connections, QBroker also compute the best alternative.
In this context "best choice" means the composite service (determined by chosen alternatives
and chosen atomic services) fulfils QoS requirements and achieves the highest utility in the
set of possible choices. QBroker computes the solution either by solving a multidimensional
multi choice knapsack problem or by multi-constrained optimal path selection. But that part
is out of focus of this thesis. However it’s worthwhile to examine how QBroker calculates
the utility of composite services and included atomic services based on QoS.

In [YZL07] utility calculation is based on the user-defined utility function F . Since QBroker
uses service classes and atomic services, Fij is the utility function for atomic service j of ser-
vice class i where x QoS attributes to be maximized and y QoS attributes to be minimized:

Fij =
x

∑
α=1

(ωα ∗ (
qα

ij − µα

σα
)) +

y

∑
β=1

(ωβ ∗ (1−
qβ

ij − µβ

σβ
)) (3.5)

where (0 < wα, wβ < 1) are the weights for each QoS attribute, and µ, σ are the average and
standard deviation of the QoS values for all candidates in the service class. Together with
∑x

α=1 ωα + ∑x
β=1 ωβ = 1 the utility function is normalized and will not be biased by attributes

with large values.

Improvement

The approach shows problems but it seems to be paying off, to improve the utility function.
Fij provides a unusual dealing with negative QoS values (e.g. the cost attribute). The utility
function in [YZL07] separates QoS attributes to be minimized from QoS attributes to be max-
imized and evaluate them different. First, there seems to be an inconsistency. For example if

28

3.2 Approaches in Service Oriented Architecture

a QoS attribute to be maximized gα
ij is equal to the average µα then ωα ∗ (

qα
ij−µα

σα) = 0 while the

same situation for QoS attributes to be minimized (qβ
ij = µβ) results in ωβ ∗ (1−

qβ
ij−µβ

σβ) = ωβ.
Since both cases should be rated the same, F〉| should be adjusted. Meeting the average will
be evaluated with zero, therefore the minimization handling will be adjusted.

F ∗ij =
x

∑
α=1

(ωα ∗ (
qα

ij − µα

σα
)) +

y

∑
β=1

(ωβ ∗ (−
qβ

ij − µβ

σβ
)) (3.6)

However, providing the attributes with minus-signs could avoid different evaluations. E.g.
a atomic service’s cost attribute is then specified with minus-sign. In Fij the average of the
QoS attribute in service class i would also appear with switched sign while the standard

deviation leave unchanged (square root of the variance). Whereas (−
qβ

ij−µβ

σβ) =
−qβ

ij+µβ

σβ , F ∗ij
can be simplified to

F ∗∗ij =
x+y

∑
α=1

(ωα ∗ (
qα

ij − µα

σα
)) (3.7)

3.2.2 Agent-Based Trust Model

In [Max05] a framework for web service selection based on consumer’s QoS preferences
is discussed. Since WSDL-based service description hasn’t the capabilities of representing
non-functional service attributes, [Max05] discusses a trust model rested on a shared con-
ceptualization of QoS. In this context trust is the aggregation of historical levels of quality
and the conformity between the providers quality advertisement and the consumers qual-
ity needs. The trust-concept extents the utility-concept or more precisely is build around
consumers utility.

With Is as the set of all service implementations of service s, selection of the ’best’ service
implementation is defined by

i = argmaxi∈Is{trust(i, φd)} (3.8)

With φd as the set of qualities applicable to the application domain d, the equation identifies
the implementation with the highest trust value for domain d.

Whereas the meaning of the trust function is obvious, the function’s structure is more com-
plicated. First, the aggregation of historical levels of quality - the Service Quality Reputation
RQi - with respect to quality Q for service implementation i is calculated by

RQi =
1
n

n

∑
k=0

qkδ−t(qk) (3.9)

where {q0...qn} is the set of quality values collected from agents that previously selected
implementation i, δ ∈ R is the quality Q’s damping factor and t(q) depends on the time

29

3 Related Works

Figure 3.1: Sigmoid Utility Function

Derived from [Max05]

for which q was collected (t(q) = 1 for the latest collected value and t(q) > 1 for all other
values). Values q expressing a quality level between 0 and 1.

For every quality Q in φd (the set of all qualities in domain d) [Max05] defines a vector
πQ = (πmin, πpre f erred, πmax) representing the consumers preferences for quality Q by the
minimum acceptable, preferred and maximum acceptable value. A similar vector is given
by the advertisement of implementation i’s provider. αQ = (αmin, αtypical , αmax) represents
the providers information about i’s quality Q.

Determining the preferred value for qualities requires qualitative analysis. In [Max05] util-
ity functions are used to transfer the value of a specific quality into utility. Thereby values
becomes comparable, utility indicates with quality’s value provides better utility in the ser-
vice’s domain. [Max05] considers only two different kinds of utility functions. The first kind
is a linear shaped utility function. The utility is linear with the quality’s value. The second
kind is the sigmoid utility function. The s-shaped curve describes qualities with insufficient
utility up to a certain threshold value. The utility increases rapidly after the threshold and
flatten out again. Figure 3.1 shows a sigmoid utility function. The definition of the function
is given by:

u(q) =
1

1 + e−αq+β
(3.10)

Constants α and β are used to express consumers utility.

[Max05] evaluates the conformity of the users preferences, the advertisement and the repu-
tation of quality q for an implementation i based on the vector
~Qi = 〈Qmin, αtypical , πpre f erred, Qmax, R(i)

Q 〉
, where Qmin = min(αmin, πmin), Qmax = max(αmax, πmax) and R(i)

Q is the service quality rep-
utation regarding quality Q in implementation i. With

moment(~x, a) =
1

n− 1

n

∑
i=1

(a− xi)
2 (3.11)

30

3.2 Approaches in Service Oriented Architecture

(~x = 〈x1, x2, ..., xn〉) the conformity can be calculated by moment(~Qi, qpre f erred), hence the
quality Q’s trust in implementation i can be calculated by

qTrust(~Qi, qpre f errred) = moment(~Qi, qpre f errred)
− 1

2 (3.12)

At last [Max05] utilizes relationships between different qualities. ρ(Qa, Qb) maps two differ-
ent qualities to [−1, 1]. ρ(Qa, Qb) rates the correlation from Qa to Qb from oppositely (smaller
value) to positively (higher value). With

Qx ∗Qy = { 1 dir(Qx) = dir(Qy)

−1 otherwise
(3.13)

(direction dir(Q) indicates if the higher or lower values for quality Q are preferred) the aver-
age quality relationship can be calculated by:

$(Qj) =
1

n− j

n

∑
m=j+1

ρ(Qj, Qm)× (Qj ∗Qm) (3.14)

where 〈Q1, ..., Qn〉 is the set of qualities the user has preferences for, ordered descending by
their importance.
In a coarse-grained describing $(Qj) handles three cases. (1) if ρ(Qj, Qm) ≈ 0 then Qm

has no (significant) influence on the average quality relationship. (2) if (Qj ∗ Qm) = 1 and
ρ(Qj, Qm) > 0 or (Qj ∗ Qm) = −1 and ρ(Qj, Qm) < 0 the average quality relationship is
increasing. In this case a higher value for quality Qj comes with higher values for the less
important quality Qm. (3) if (Qj ∗ Qm) = 1 and ρ(Qj, Qm) < 0 or (Qj ∗ Qm) = −1 and
ρ(Qj, Qm) > 0 the average quality relationship is decreasing. In this case a higher value for
Qj comes with a smaller value for Qm.
Robustness and availability is a example for (2). Higher robustness normally comes with
better availability. Cost and capacity is also a example for (2). A more expensive service
likely provides higher capacity. The utility of the first quality (cost) decreases while the
seconds quality utility increases.

Finally the trust function for service implementations can be formulated:

trust(ip) =
1
n

n

∑
j=0

wj × qTrust(Qj, qpre f)× [1 + $(Qj)] (3.15)

1 ≥ wj > 0 weights the important of quality Qi. All qualities of implementation ip fulfil
the users requirements and for all qualities Q0...Qn the user has preferred values, minimum
acceptable values and maximal acceptable values.

On the one side trust(ip) utilizes several aspects. The first term (wj) rates the importance of
quality Qj in the service’s domain and tunes the impact on the overall result. In [Max05] a
simple sequence like 1, 1

2 , ..., 1
n−1 , 1

n is suggested. Since 〈Q1, ..., Qn〉 is ordered descending by
importance for the service’s domain, the sequence at least fulfil this order of qualities. The
[1 + $(Qj)]-term takes the correlations between different qualities into account and increase

31

3 Related Works

the impact of qualities with higher average quality relationships (visa versa). The third term
(qTrust(Qj, qpre f)) doesn’t distinguishes between qualities with different directions. qTrust
just evaluates the conformance between the quality’s advertisement, the user’s demand and
the implementation’s service quality reputation.

On the other side [Max05] requires some assumptions. Users need ratings in [0, 1] for qual-
ities and knowledge about preferred, minimum and maximum acceptable values. Also
providers advertisements have to contain typical, minimum and maximum achieved val-
ues for all in the evaluation included qualities. Besides that, correlations have to be defined
and qualities have to ranked.

3.2.3 Adaptive Service Selection Framework

While [Max05] addresses atomic service-selection, [HS10] also addresses service selection
for composited applications. [HS10] detects three main challenges in service selection in
service orientated computing: (1) Collecting informations about QoS offered by services, (2)
defining the consumers preferences for QoS and (3) making decisions based in the collected
informations and the defined preferences for QoS.

The service orientated environment is modelled by a set of providers P = {P1, ..., Pm} and
a set of consumers C = {C1, ..., Cn}. In [HS10] providers are synonymic with service imple-
mentations. Providers offers services with the same functionality than other providers but
provides different levels of qualities. Q = {Q1, ..., Ql} represents the levels for the provider-
specific qualities.

This approach takes account of consumers preferences of qualities and the providers’ quality
distribution. A utility functions and the quality distributions determine the expected utilities
for providers.

While [Max05] only mentioned monotonic increasing functions, [HS10] emphasizes the need
for other functions. E.g. utility functions should also reflect qualities where consumers pre-
fer medium values over small or low values. Generally any utility function should be used.
Three examples are given: (1) logistic functions - a special case of sigmoid functions with
rapid increase close to the desired value, (2) logarithm functions - characterized by dimin-
ishing return and (3) Gaussian functions - describe qualities with decreasing utility beside
a maximum point. Figure 3.2 shows a Gaussian utility function. The consumer prefers a
medium high quality value. Both, higher and lower values decreases the consumers utility.

The second factor for the expected utility is the quality distribution. Qk(xj) is the probability
density function of the probability distribution that controls the quality xj of Qk for provider
Pj. The quality distribution can be learned by probabilistic trust models based experience,
referrals or composition.

32

3.3 Approach in Provision Storage Systems

Figure 3.2: Gaussian Utility Function

Derived from [HS10]

The expected utility regarding only quality Qk for consumer Ci with utility function Uk(x)
and providers Pj’s quality distribution Qk(xj) is

EUi
k(Pj) =

∫
xj

Uk(xj)Qk(xj)dxj (3.16)

3.3 Approach in Provision Storage Systems

[STFG08] suggests the usage of utility functions in provisioning storage systems. Coming up
with the offer meeting predefined requirements at the lowest price is wasting the potentials
in trade-off. Most requirements are flexible based on the costs to implement them. Replacing
fixed requirements with utility functions provides a way to balancing quality and benefits
of services against the costs required to provide them.

Choosing the alternative with the most value requires appropriate trade-offs among com-
peting objectives. Utility functions comply with this requirement. Utility functions collapse
multiple axis of interest into a single utility value. Thus complex alternatives can be com-
pared, even by automated tools.

Various metrics must be combined with respect to their relative importance. Utility functions
uses system metrics to rank potential configurations. Metrics must be normalized to each
other. An appropriate normalization is the use of a common scale. If all metrics have an
business impact, a monetary unit presents such a scale.

[STFG08] uses an online retailer as example. This company determine its online transaction
processing (OLTP) workload generates on average 0.1$per I/O. The companies annualized

33

3 Related Works

revenue thereby is

Revenue = $0.01 ∗ IOPSWL ∗ AVDS ∗
3.2 ∗ 107s

1yr
(3.17)

where IOPSWL is the throughput of workload (in I/O per second) and AVDS is the fractional
availability of the dataset. Together with the annualized costs of repair during downtime
(e.g. $10000 per hour)

Costdowntime =
$10000

hr
∗ (1− AVDS) ∗

8766
1yr

(3.18)

and the cost of losing the dataset (e.g. $100M) scaled by the annual failure rate

Costdataloss = $100M ∗ AFRDS (3.19)

the utility can be calculated by

Utility = Revenue− Costdowntime − Costdataloss (3.20)

or with costs represented as negative utility (Costdataloos, Costdowntime have to be adjusted):

Utility = Revenue + Costdowntime + Costdataloss (3.21)

While this example is quite simple [STFG08] discusses more complex scenarios. In case of in-
dependent applications, the systems utility function could be summarize the utility of these
applications. But with applications depending on each other, simple summation may not be
appropriate. Instead the costs and benefits of the combined service could be examined.

3.4 Conclusion

The analysis of presented approaches shows two main strategies. The work in [MF11],
[KM14] and [STFG08] faces the problem of breaking different aspect into one axis by cal-
culating their financial impact. By contrast, [SP12], [YZL07], [Max05] and [Max05] calculates
a ration for each aspect and expressing utility with a number that makes alternatives compa-
rable.

[KM14] stands out because of the attempt to evaluate the users satisfaction with a monetary
value. Formula 3.3 multiplies the request rate with benefit factor d and the expected finish
time with waiting cost factor w. These factors must not address a actual financial impact.
This only ensures the comparability of an actual payment and the users rating in forula 3.4.
[KM14] developed a method that enables the trade-off between e.g. cost and performance.
The success of this approach strongly depends on the quality of the factors.

The approach in [MF11] only suggests factors with an comprehensible financial impact. It
seems difficult to take non-financial factors into account. In this particular application, it’s

34

3.4 Conclusion

not necessary. However [STFG08] shows that it is possible to value e.g. data safety with an
amount of money by calculating the costs of data loss and the probability of data loss. This
approach can be expanded to other requirements.

The approach in [SP12] doesn’t utilize utility functions. However, the basic idea can be
reused in utility functions. Each category gets a weight which expresses its impact on the
decision. The same goes for attributes within the categories. Attributes are values within a
easy scale. This makes different aspects comparable, surely not necessarily in a transparent,
objective manner.

[YZL07], [Max05] and [HS10] doesn’t calculate financial impacts. [YZL07] sidesteps the prob-
lem by subtracting the average value from every QoS attributes value and dividing the result
with the standard deviation. Using the weights allows for a customized evaluation of alter-
natives. However, it is not possible to express the demand for the fulfilment of certain re-
quirements with this utility function. Furthermore, the approach relies on already collected
data (average and standard deviation for each QoS attribute).

[HS10] deals with the problem of uncertainty by including every possible outcome and the
corresponding probabilities. Formula 3.16 calculates the expected value which taking all
possible outcomes into account. This approach relies on a knowledge base, too. As with
[YZL07], it is necessary to perform observations. [HS10] requires informations about the
probability of different outcomes for each attribute and [YZL07] requires data to calculate
the average and the standard deviation for each QoS attribute.

[Max05] and [HS10] using utility functions to transfer a quality’s value into utility. What
these utility functions all have in common is: U(q) → [0, 1]. A special characteristic of
[Max05] is the handling of relationships between different QoS.

35

3 Related Works

36

4 Concept and Specification

The aim of this chapter is to provide the conceptual foundations towards enabling the utility-
based evaluation of the different deployment alternatives for cloud applications. Business
and IT experts should be provided with decision support tools which aims at the selection
of the optimal distribution of applications from the point of view of utility. For this purpose
the framework must be able to handle at least application specific sub-graphs, regarded non-
application specific sub-graphs and utility functions.

A concept for utility functions in the context of distributed computing is presented in sec-
tion 4.1. Section 4.2 lists functional and non-functional requirements of the utility calculation
framework. The following section 4.3 presents the framework’s use cases. Finally, the com-
prehensive system in which the utility calculation framework is embedded is summarized in
4.4.

4.1 Utility Functions

The comprehensive range of Cloud offerings creates a set of alternative topologies for ap-
plications partially or completely hosted in the cloud. Each alternative provides different
satisfaction for both, developers and business. Their satisfaction depends on the fulfilment
of operational or business requirements. Utility functions can be used to value the satisfac-
tion over time in order to compare the alternatives in an objective manner. Furthermore, the
characteristics of the application workload can have a strong impact on the applications per-
formance. The following concept includes these different factors to form the base for utility
functions.

4.1.1 Concept

Calculating the utility of a viable topology determines the satisfaction created by the applica-
tion under a certain distribution. Utility functions have the ability to combine the evaluation
of different objectives (requirements) into one axis [STFG08].

Utility functions U(Ti
µ, W, R, T) depends on four parameters in this concept:

• Ti
µ a concrete µ-distribution for the regarded application

• W = {w0...wm} a set of workloads, either generated for time interval T or observed
during this interval.

• R = {r0...rn} a set of requirements

37

4 Concept and Specification

Figure 4.1: Utility Function: Concept Overview

• T = [tmin, tmax] a time interval

The concept is focussed on the profitability of business applications, and therefore is based
on the determination of the expected revenue revexp(W, T) and the occurring cost
cost(Ti

µ, W, R, T). The utility is the expected revenue minus the cost. Figure 4.1 shows an
overview over the concept.

U(Ti
µ, W, R, T) = revexp(Ti

µ, W, T)− cost(Ti
µ, W, R, T) (4.1)

Revenue

The application’s revenue depend on various factors which may vary over time. The ap-
proach here is to define a function for each factor which calculates the factor’s value with
respect to a time interval (e.g. month 1 of the application). Thus, it becomes possible to de-
fine a function rev<unit> which calculates the application’s revenue per specified time unit
with respect to a time interval t. unit has to be replaced with a time unit, e.g. rev<month> or
rev<day>. If rev<unit> is integrable, the definite integral on interval [tmin, tmax] corresponds
with the application’s revenue in the same interval. Figure 4.2 shows the connection.

The revenue per unit rev<unit> can be calculated by:

rev<unit>(Ti
µ, W, t) =

j=m

∑
j=0

p(wj, t) ∗USER(t) ∗ TPU(wj) ∗ RPT(t) ∗ sat(Ti
µ, t) ∗ AV(Ti

µ, t)
(4.2)

revunit is using the following factors and their functions:

38

4.1 Utility Functions

Figure 4.2: Example: Revenue per Month

Revenue per month and the revenue for a time interval

• p(wj, t) - probability of receiving workload wj at time t

• TPU(wj) - average number of transactions per user for workload wj

• RPT(t) - average revenue per transactions at time t

• USER(t) - average number of users at time t (e.g. users
month , or users

day)

• sat(Ti
µ, t) - average user satisfaction at time t of Ti

µ

• AV(Ti
µ, t) - average availability at time t of Ti

µ

sat(Ti
µ, t) returns the percentage of transactions which are aborted by users due to their dis-

satisfied experience under distribution Ti
µ.

The integral over rev<unit> for a time interval [tmin, tmax] defines revexp(Ti
µ, W, T) from equa-

tion 4.1:

revexp(Ti
µ, W, T) =

∫ tmax

tmin

rev<unit>(Ti
µ, W, t) dt (4.3)

Cost

Costs cost(Ti
µ, W, R, T) in 4.1 are calculated by the aggregation of costs for distribution Ti

µ

for time interval T and the adaptation costs to ensure the fulfilment of requirements R =

39

4 Concept and Specification

{r0...rn} for time intervals Tk in [tmin, tmax].

cost(Ti
µ, W, R, T) =

cost f ixed(Ti
µ, T)

+[
o

∑
k=1

costadaptation(Ti,k
µ , W, R, Tk)]

(4.4)

The first part cost f ixed(Ti
µ, T) can be evaluated with a tool like Nefolog. This corresponds

with the sum of costs for Cloud offerings in Ti
µ for time interval T and the defined hours of

usage.

The second part is based on observations and/or predictions of workloads {w0...wm}. The
assurance of the fulfilment of requirements {r0...rn}may demand e.g. the horizontal or verti-
cal scaling of Cloud instances, replicas, etc.. These adaptations occur costs at sub-intervals of
T. Tk represents one of these intervals. Ti,k

µ is the topology which arises from the adaptation
of Ti

µ in time interval Tk.

4.1.2 Example

This example is based on assumptions. Two topologies T0
µ, T1

µ come into consideration for
hosting a web-shop application. T0

µ relies on a Amazon EC2 m4.large instance, T1
µ on a

Amazon EC2 m4.xlarge instance. Both, a PHP application and a database is hosted on the
respective instance with Ubuntu LTS 14.04 and a DMS.

General assumptions are:

• W = {w0}

• p(w0, t) = 0.5

• R = {r1, r2}

• Application is running from September till the end of the next January.
Months: M8, M9, M10, M11, M12.
T = [M8, M12]

• Hours of usage: 3600 (24/7)

Assumptions regarding T0
µ and T1

µ are summarized in tables and . The amounts for
cost f ixed(AV(T0

µ), T) and cost f ixed(AV(T1
µ), T) are assumed and only coarse orientated at the

actual costs1.

The next assumption is that business experts have noted that average revenue per transaction
varies over the year. From January till the May it is 0.10$ in average, the rest of the year it is

1https://aws.amazon.com/de/ec2/pricing/

40

4.1 Utility Functions

sat(T0
µ, t) 0.9

AV(T0
µ) 0.99

cost f ixed(AV(T0
µ), T) 600$

∑o
k=1 costadaptation(T

0,k
µ , W, R, Tk) 390$

Table 4.1: Assumptions, T0
µ

sat(T1
µ, t) 0.85

AV(T1
µ) 0.95

cost f ixed(AV(T1
µ), T) 700$

∑o
k=1 costadaptation(T

1,k
µ , W, R, Tk) 50$

Table 4.2: Assumptions, T1
µ

0.15$.

RPT(t) =

{
0.10 $

trans. t mod 12 < 5

0.15 $
trans. t mod 12 ≥ 5

(4.5)

From November till the end of December 1000 users arrives per month in average, the rest
of the year 700 users arrives per month.

USER(t) =

{
700 users

month t mod 12 < 10

1000 users
month t mod 12 ≥ 10

(4.6)

Revenue

Figure 4.3 shows revmonth(T0
µ, W, t) and the area which corresponds with the revenue over

time interval [M8, M12]. revmonth(T0
µ, W, t) and revmonth(T1

µ, W, t) aren’t continuous functions.
The definite integral may still be calculated. The integral can e.g. be approximated by step
functions.

revexp(T0
µ, W, T) =

∫ 13

8
revmonth(T0

µ, W, t) = 2067.12$ (4.7)

revexp(T1
µ, W, T) =

∫ 13

8
revmonth(T1

µ, W, t) = 1873.40$ (4.8)

Cost

The example already includes the numbers for cost f ixed(T0
µ, T), cost f ixed(T1

µ, T),

∑o
k=1 costadaptation(T

0,k
µ , W, R, Tk), and ∑o

k=1 costadaptation(T
1,k
µ , W, R, Tk). Section 7.2 provides

an example where these numbers are obtained by the analysis of occurring workload and
the calculation with the use of the Nefolog cost-calculation framework.

cost(T0
µ, W, R, T) = 600.00$ + 390.00$ = 990.00$ (4.9)

41

4 Concept and Specification

Figure 4.3: Web Shop: Revenue per Month

revenue per month for T0
µ and the revenue for time interval [8, 13] (striped)

cost(T1
µ, W, R, T) = 700.00$ + 50.00$ = 750.00$ (4.10)

Utility

Distribution T0
µ’s and T1

µ’s utility can be calculated with function 4.1:

U(T0
µ, W, R, T) = 2067.12$− 990.00$ = 1077.12$ (4.11)

U(T1
µ, W, R, T) = 1873.40$− 750.00$ = 1123.40$ (4.12)

Topology T0
µ is promising the higher revenue and lower fixed costs for the distribution. Nev-

ertheless, adaptation costs T0
µ lead to higher utility under T1

µ.

4.2 Requirements

Based on the previous developed formalization of the utility-based approach, we focus in
this section on analysing and extracting the requirements for the development of a frame-
work capable of automating such calculations.

4.2.1 Functional Requirements

This section presents the functional requirements that the framework developed as part of
this thesis should follow. More specifically, we extract the requirements and organize them
based on the most relevant functionalities that these should support.

42

4.2 Requirements

Repository

• FR1: The framework must provide a repository of applications, viable distributions,
utility functions, functions and requirements (hereinafter called "resources").

• FR2: Framework users must be able to add resources, update existing resources, ex-
pand resources with meta-data which describes the resource in more detail and delete
existing resources from the repository.

• FR3: Users must be able to browse the repository, locate existing resources, look at
resources’ representations, meta-data, identifiers and relationships to other resources.

• FR4: The repository must provide a pool of reusable utility functions.

• FR5: The repository must provide a pool of reusable functions of different types (cost-
and revenue-functions) to compose customized utility functions.

Resources

• FR6: It shall be possible to add, update and delete relationships between different
resources.

• FR7: Each resource must be provided with a Universally Unique IDentifier (hereinafter
called UUID).

• FR8: Each resource can be clearly identified based on a Uniform Resource Identifier
(URI).

• FR9: Distribution resources must be support a common topology language. The frame-
work must be able to collect included Cloud offerings automatically. Therefore the
framework must have knowledge about Cloud providers and their offerings (includ-
ing pricing models).

• FR10: The repository must support meta-data for parameters occurring in (utility)
functions.

• FR11: Users can request a list of parameters which occurs in a utility function and the
describing meta-data.

Utility

• FR12: The framework has the ability to calculate the result of a (utility) function in the
repository based on a given parameter assignment.

• FR13: The framework must offer the possibility to calculate the utility of different vi-
able distributions and thereby provide decision support.

• FR14: The framework should be able to select the optimal distribution among alterna-
tives based on utility functions.

43

4 Concept and Specification

Operability

• FR15: Users must be able to define functions for the system without the need for a
certain machine-readable format.

• FR16: The framework should provide a loosely coupled application programming in-
terface to the repository.

• FR17: The framework should include a authorisation procedure to lock unauthorized
users from operations which have an impact on resources.

4.2.2 Non-Functional Requirements

The taxonomy suggested in [GB08] contains 16 non-functional requirements (C3.1 - C3.16)
and corresponding metrics. This taxonomy serves as a basis for the definition of non-functional
requirements.

Usability The framework should provide well documented, uniform interfaces. Users should
be informed about operating errors to increase the number of functions understood. Graph-
ical user interfaces should be understandable and intuitive to use.

Reliability The framework should keeping operating over time. Therefore, the framework
should run on a proven environment, reliable infrastructure and utilizing Cloud services
from reliable providers. Program logic should be transparency and well proven.

Performance Services should provide a acceptable response time (with respect to the users’
perception).

Safety If services are used improperly or program logic is incorrect, then calculations could
harm business (wrong decisions based on wrong numbers). Therefore, the system must
provide high usability and program logic should be transparency and well proven.

Security The framework should protect data privacy, should prevent the unauthorized ac-
cess to resources and the unauthorized modification of stored data.

Accessibility The framework should provide clearly defined interfaces tailored to a wide
target group. Functionality should be offered over different interfaces.

Interoperability The system should support common data formats to increase interoperabil-
ity.

44

4.2 Requirements

Availability Unplanned downtime should be prevented. Therefore, the system should rely
on components with high availability. At least Availability Environment Classification AEC-2
should be aimed.

Extensibility System components should be extended without effecting other components.
The design should support extensibility.

Testability Services should support the measurement of test criteria.

Modifiability Services should be modified without effecting other services.

45

4 Concept and Specification

4.3 Use Cases

Two kinds of actors using the Utility Calculation Framework. These are IT experts and busi-
ness experts. The Utility Calculation Framework provides the utility-based evaluation of the
different deployment alternatives for cloud applications. The use of the system requires the
access to other systems. These are the Cost Calculation Framework and the Topology Modeler.
Both systems are describes in 4.4. Eight use cases are identified, which are described in the
following section. Figure 4.4 given an overview over the mentioned use cases.

Browse
Repository

for Applications

Browse
Function

Repository

Create a
Reusable
Function

Create
Utility

Function

Create a
Application
Description

Rank
Distributions

Utility Calculation Framework

Topology Modeler

Create
Topology

Model

Cost Calc. Framework

Calculate
Costs

Browse
Offering

Repository

Calculate
Utility

IT
Expert

Business
Expert

Legend:

Browse
Repository

of Utility Functions

Figure 4.4: Use Case Diagram

46

4.3 Use Cases

4.3.1 Use Cases Description

Name Browse Repository for Applications

Goal The IT expert is getting an overview over existing applications, requirements,
possible viable distributions and utility functions.

Actor IT expert

Pre-Condition

Post-Condition The system retrieves and provides the knowledge about existing applications in
the repository, requirements, possible viable distributions and utility functions.

Post-Condition in
Special Case

Normal Case 1. The actor requests for a list of existing applications. The actor can also
request for applications of a specific type.

2. The system delivers a list with the applications.

3. The actors goes through the listed applications and request for related re-
quirements, viable distributions and utility functions.

4. The system delivers the connected resources.

Special Cases 2a. The repository doesn’t contain any application.

a) The system returns empty list.

b) Terminate

4a. The repository doesn’t contain related resources.

a) The system returns empty list.

Table 4.3: Description of Use Case Browse Repository for Applications.

47

4 Concept and Specification

Name Browse Repository of Utility Functions

Goal The actor is getting an overview over existing utility functions and their compo-
sition.

Actor Business expert

Pre-Condition

Post-Condition The system retrieves and provides the knowledge about existing utility func-
tions and their composition.

Post-Condition in
Special Case

Normal Case 1. The actor requests for a list of existing utility functions. The actor can also
request for utility functions which are already in use for a application of a
specific application type.

2. The system delivers a list with the utility functions.

3. The actors goes through the listed utility functions and requests for their
sub-functions.

4. The system delivers the sub-functions.

5. The actor examines the sub-functions, identifies reused functions, parame-
ters and concepts.

Special Cases 2a. The repository doesn’t contain any utility function.

a) The system returns empty list.

b) Terminate

Table 4.4: Description of Use Case Browse Repository of Utility Functions.

48

4.3 Use Cases

Name Browse Function Repository

Goal The actor is getting an overview over existing functions, their parameters and
type (e.g. revenue or cost).

Actor Business expert

Pre-Condition

Post-Condition The system retrieves and provides the knowledge about existing functions.

Post-Condition in
Special Case

Normal Case 1. The actor requests for a list of existing function. The actor can request for
functions of a specific function type.

2. The system delivers a list with the requested functions.

3. The actors goes through the listed function and request for their parame-
ters.

4. The system delivers the parameters.

Special Cases 2a. The repository doesn’t contain any function.

a) The system returns empty list.

b) Terminate

4a. The repository doesn’t contain related resources.

a) The system returns empty list.

Table 4.5: Description of Use Case Browse Function Repository.

49

4 Concept and Specification

Name Create a Reusable Function

Goal The actor has developed a function and wants to add this function to the repos-
itory for reuse in customized utility functions.

Actor Business expert

Pre-Condition

Post-Condition The repository contains a new function, additional meta-data and the set of oc-
curring parameters.

Post-Condition in
Special Case

The system returns a meaningful error message.

Normal Case 1. The user passing the function, meta-data and the list of occurring parame-
ters to the system.

2. The system is checking the consistency of function and parameters.

3. The system persists function and parameters.

4. The system delivers the URI of the created function to the actor.

Special Cases 2a. The input isn’t consistent, e.g. missing parameters.

a) System returns a meaningful error message.

b) Terminate

3a. The persistence of function and/or parameters failed.

a) System returns a meaningful error message.

b) Terminate

Table 4.6: Description of Use Case Create a Reusable Function.

50

4.3 Use Cases

Name Create a Application Description

Goal Application resources are wide-ranging. The use case includes the creation of
the application resource and also the creation of requirement resources and re-
sources for viable distributions.

Actor IT expert

Pre-Condition

Post-Condition The repository contains a new application which representing the application,
containing additional meta-data, connected requirements and viable distribu-
tions.

Post-Condition in
Special Case

Normal Case 1. The actor requests for the creation of a new application.

2. The system creates the resource and returns the regarded URI.

3. The actor requests for the creation of requirements.

4. The system creates the requirements and returns the regarded URIs.

5. The actor is using the topology modeler to get models of the viable distribu-
tions.

6. The actor requests for the creation of viable distributions.

7. The system creates the viable distributions and returns the regarded URIs.

Special Cases 2a. The creation fails.

a) The system returns a meaningful error message.

b) Terminate.

4a. The creation fails.

a) The system returns a meaningful error message.

b) Terminate.

7a. he creation fails.

a) The system returns a meaningful error message.

b) Terminate.

Table 4.7: Description of Use Case Create a Application Description.

51

4 Concept and Specification

Name Create Utility Function

Goal The actor has developed a utility function and wants to add this utility function
to the repository and connect it to a existing viable distribution (or more than
one).

Actor Business expert

Pre-Condition The reused functions are already stored in the repository.

Post-Condition The repository contains a new utility function.

Post-Condition in
Special Case

Normal Case 1. The actor browses the application repository to identify the regarded vi-
able distribution(s).

2. The actor browses the function repository to identify reusable functions.

3. The actor browses the offering repository of the cost calculation framework
to identify in the distribution contained offerings and configurations.

4. The actor passes the utility-function and meta-data to the system.

5. The system persists the utility function.

6. The system delivers the URI of the created utility function.

Special Cases 1a. The repository is misses the distribution.

a) The actor creates the missing topology resources and repeats.

2a. The actor misses a function.

a) The actor creates the missing function resources and repeats.

3a. The cost calculation framework doesn’t contain the offering or configuration.

a) The actor can not use the functionalities of the system and have to
calculate distribution costs based on his own functions.

5a. The storage of the resource failed.

a) The system returns a meaningful error message.

b) Terminate

Table 4.8: Description of Use Case Create Utility Function.

52

4.3 Use Cases

Name Calculate Utility

Goal The actor wants to calculate the utility of a viable distribution

Actor Business and it experts

Pre-Condition Utility functions and the application description are stored in the repository

Post-Condition Parameter assignments are stored for further use.

Post-Condition in
Special Case

Missing application description and/or distribution are created.

Normal Case 1. Actor browses the application repository to identify the regarded distribu-
tion.

2. Actor browses the repository to identify the regarded utility function.

3. Actor assigns values to parameters occurring in the utility function.

4. The system collects the stored assignments.

5. The system proofs if the assignment fits to the utility function.

6. The system uses the collected assignments to calculate the utility.

Special Cases 1a. The repository is missing the application.

a) The IT expert has to create the application.

1b. The application resource doesn’t contain the distribution.

a) The IT expert has to create the distribution.

2a. The repository is missing the utility function.

a) The Business expert has to create the utility function.

4a. No assignment found.

a) The system returns a meaningful error message.

b) Terminate

5a. The assignment contains incorrect values or is incomplete.

a) The system returns a meaningful error message.

b) Terminate

6a. The calculation fails.

a) The system returns a meaningful error message.

b) Terminate

Table 4.9: Description of Use Case Calculate Utility.

53

4 Concept and Specification

Name Rank Distributions

Goal The actors want a list of possible distributions ranked by the utility

Actor Business and IT expert

Pre-Condition Necessary values are already stored (assignment of values to occurring parame-
ters)

Post-Condition

Post-Condition in
Special Case

Missing application description and/or connected distributions and utility func-
tions are created.

Normal Case 1. The actor browses the application repository to identify the application
and possible distributions.

2. The actor is browsing the repository to identify the regarded utility func-
tions.

3. The system collects already stored assignments (pre-condition) for each
distribution.

4. The system proofs if the assignments fits to the utility functions.

5. The system uses the collected assignments to calculate the utility for each
distribution.

6. The system ranks the distributions with respect to their utility and returns
the result.

Special Cases 1a. The repository is missing the application.

a) The IT expert has to create the application.

1b. The application doesn’t contain viable distributions.

a) The IT expert has to create the distributions.

b) terminate

2a. The repository is missing the utility function.

a) The business expert has to create the utility function.

3a. No assignment found.

a) The system returns a meaningful error message.

b) Terminate

4a. The assignment contains incorrect values or is incomplete.

a) The system returns a meaningful error message.

b) Terminate

Table 4.10: Description of Use Case Rank Distributions.

54

4.4 System Overview

Topology
Modeler

Cost
Calculation
Framework

Provisioning
Engine

Utility Function
Repository

Utility Calculation

Viable Distribution Ranker

Requirement Evaluator

Workload Evaluator

Utility Calculation
Framework

Performance
Analysis

Framework

Requirements

Utility Functions

Ranked Topology Models

S
el

ec
te

d
To

po
lo

gyRequirements

IT
Expert

Business
Expert

Legend:

Modeling Analysis Deployment

Figure 4.5: System Overview

4.4 System Overview

Figure 4.5 outlines the system in which business and IT experts acts to deploy a distributed
application in the way which creates the highest utility.

4.4.1 Topology Modeler

IT experts using the Topology Modeler component to create models in a topology language
(e.g. TOSCA) and related management plans. Thereby, several viable distributions for the
same application held ready and can be deployed. The Utility Calculation Framework also
uses these models.

4.4.2 Utility Calculation Framework

Both, business and IT experts, uses the Utility Calculation Framework to formulate functional
and non-functional requirements for the application and components of the application.

55

4 Concept and Specification

The Workload Evaluator component evaluates available viable distributions under already
observed or predicted workload using the Performance Analysis Framework. The Requirement
Evaluator component uses the results to show how requirements are fulfilled. The need for
(temporarily) adaptations of topologies can be determined.

Business experts use the Utility Function Repository to add new utility functions or select al-
ready existing utility functions for evaluations. The fixed costs of a regarded distributions
can be determined with the Cost Calculation Framework. With the results of the workload eval-
uator, calculation of the expected revenue, the already calculated costs, the knowledge about
necessary adaptations, known or predicted ratios, the utility of different viable distributions
can be determined. The Viable Distribution Ranker component uses the Utility Calculation
component to create a ranking of possible distributions with respect to their utility.

4.4.3 Provisioning Engine

The Utility Calculation Framework’s ranking allows for the deployment of an application un-
der the optimal distribution (among evaluated viable distributions with respect to their util-
ity). Application can be deployed by IT experts or even automatically in the Provisioning
Engine.

56

5 Design

This chapter describes the design for the implementation of the Utility Calculation Framework.
The architecture, the resource model, the components of the framework and the database’s
entity-relationship model are presented.

5.1 Architecture

Figure 5.1: Design Overview

The previous introduced system overview (see section 4.4) contains the Viable Distribution
Ranker, the Utility Calculation and the Utility Function Repository. These components of the
Utility Calculation Framework are the parts of the framework which is designed in this chap-
ter.

Figure 5.1 gives the design overview. The first module is Kereta. Kereta contains the Repos-
itory and the Calculation component. The repository allows for the management of resources
described in the resource model (see section 5.2) and the calculation component extends the
repository to enable the calculation of utility. Kereta uses a MySQL database to persist re-
sources. The database is described in section 6.1.3. A REST API provides a standardized
interface to the Repository and the utility calculation.

The Winery modeling tool has to be extended. The extension provides a convenient graph-
ical user interface to the Kereta module and embeds its functionalities into the larger scope
of Winery.

57

5 Design

Application
α-Topology

Requirement

Application
Tier

Viable
Distribution

Cloud
Offering

Utility
Function

Utility Function

Sub-
Function

Function Parameter

Function
Type

Data
Type

refers to1 1

1

contains

*

1

contributed by

*

has *1

has

*

1

1*

*1

1

1

has* 1

**

Application
Type

1

*

1

*

*

* has a

has a

has a

*

contributed by

1

has

Performance

has

* 1

has a
*

1

has a

Requirement
Type

*

has a

1

has a* 1

Figure 5.2: Resource model

5.2 Resource Model

The resource model (figure 5.2) summarizes the resources which are relevant to the utility
based decision support. The resources’ meaning and description is explained below.

5.2.1 Application-specific Topology

The Application-specific Topology is a description of the application independent of a concrete
distribution. Possible viable topologies are represented by connected Application Topologies.
Requirements which addressing the outcome of the comprehensive application are also con-
nected. Different tiers of the application are represented by Application-specific Components.

One point to note is that [AGSLW14] mentioned that it is possible to move the whole sub-
graph of a Application-specific Component to the α-topology. This indicates that the implemen-
tation requires a concrete hosting. This case is not considered in order to ease the resource
model. This does not rise to restrictions in the utility calculation framework.

5.2.2 Application-specific Component

Multi-tiered applications can be seen as the aggregation of application-specific components
[AGSLW14]. Figure 5.3 contains the MediaWiki’s α-topology. MWiki_Front and MWiki_-
DB are application-specific components of the topology. These components are support by
middleware solutions [AGSLW14] in the γ-topology of possible viable topologies.

58

5.2 Resource Model

Figure 5.3: MediaWiki: α-Topology and Requirements

Not only Application-specific Topologies can have Requirements. Tiers can have Requirements,
too. Therefore, a Application-specific Component can be linked to Requirements. This enables
the evaluation of the fulfilment of tier-specific requirements.

5.2.3 Requirement

Requirements can be either of type functional or non-functional. Requirements addressing the
entire application or a specific tier. Requirements have a value and the the information how
to interpret it. In the utility calculation framework interpretation can be equal, lower or higher.
For instance: "location equal to EU", latency lower than 2000ms or availability higher than
99.99%.

5.2.4 Application Topology

A Application-specific Topology is restricted to the application’s α-topology. However, the Ap-
plication Topology summarized the α-topology and the reusable γ-topology in the µ-topology.

Application Topologies contains Application Subgraphs. Existing Utility Functions are linked to
Application Topologies.

5.2.5 Application Subgraph

A Application Subgraph contains the middleware solution which supports a Application-specific
Component and the infrastructure in which it is deployed and provisioned [AGSLW14].

59

5 Design

The Performance of Application Subgraphs can be measured or assumed. The resource model
allows for the comparison of Requirements and Performance. For this purpose Application
Subgraphs can be linked to a Application-specific Component.

5.2.6 Performance

Application Subgraphs have functional and non-functional performance attributes. Perfor-
mance attributes can be compared with requirements like mentioned before. Performance
includes a value and a interpretation analogous to Requirements.

5.2.7 Function

The resource model defines a Function as a reusable component of a Utility Function or an-
other Function. Functions can be reused by different Utility Functions and called from various
Functions. Links to Utility Functions are defined as Utility Function Sub-Functions.

Functions have a Function Type and join a set of Parameters.

5.2.8 Parameter

Functions are connected to the set of Parameters which occur in the function. These parame-
ters are restricted to a defined set of Data Types.

5.2.9 Utility Function

A concept for Utility Functions is defined in 4.1. The concept includes a revenue and a cost
function. The cost function itself is composed by a function for the fixed costs of the distribu-
tion and a function for adaptation costs. The resource model allows for the definition of Utility
Functions with any number of sub-functions. In order to achieve reusability, Functions are in-
dependent of a concrete Utility Functions and can be linked by Utility Function Sub-Functions
to Utility Functions.

5.2.10 Utility Function Sub-Function

Utility Function Sub-Functions connect Utility Functions to Functions.

60

5.3 Kereta Repository

5.2.11 Types

Application Type

Users can define application types. This ease the search for applications of the same type,
their utility functions and function resources.

Requirement Type

Requirements can be either of type functional or non-functional.

Function Type

The utility function concept (see 4.1.1) suggests two function types: revenue and cost. Another
type is predefined: misc (miscellaneous). Users are allowed to define additional function
types.

The resource model shows that Utility Function Sub-Functions refer to Functions. These refer-
ences are only work as intended in the utility calculation framework when the function type is
revenue or cost.

As also indicated in the resource model, Functions can call Functions. In doing so, the function
type doesn’t matter.

Data Type

Requirement, performance and parameter resources have a Data Type. Predefined Data Types
are string, number, array of strings, array of numbers and array of arrays.

The array types allow for values like, e.g. [1,−2, 1.2], [”a”, ”abc”, ””] or even nested construc-
tions like [[1,−2, 1.2], [3, 2], [−45, 97, 0, 1.1]]

5.3 Kereta Repository

The resources from the model in figure 5.2 should be managed by the repository. For easy
handling the resources have shorter names in the repository. The REST API uses the shorter
names. Table 5.1 shows the names from the resource model and the names actually used in
the repository. The table also shows which database tables are used to persist the resources.
Resource names in the repository are singular and written in camel case (hereafter: resource-
nouns).

61

5 Design

Resource Model REST API Database Table
Application-specific Topology Application kereta_application
Application-specific Component Tier kereta_application
Application Distribution Distribution kereta_distribution
Application Subgraph Offering kereta_offering
Requirement Requirement kereta_requirement
Performance Performance kereta_performance
Function Function kereta_function
Parameter Parameter kereta_parameter
Utility Function UtilityFunction kereta_utilityFunction
Utility Function Sub-Function SubFunction kereta_subFunction
ApplicationType ApplicationType kereta_applicationType
RequirementType RequirementType kereta_requirementType
FunctionType FunctionType kereta_functionType
DataType DataType kereta_dataType

Table 5.1: Terminology in the Design

Relations between the terminology in the resource model, the REST API and database
tables.

5.3.1 Nesting

Figure 5.4: Resource Nesting

The repository should provide a convenient and intuitive REST-API to its resources and func-
tionalities. A fundamental decision is the nesting of resources. The repository is nesting re-
sources under four root resources and the category Type. Figure 5.4 shows the structure: Ap-
plication, Distribution, UtilityFunction and Function are root resources of the repository. Other
resources are accessible inside the superior resource. The nesting doesn’t reflect all relation-
ships, e.g. a Distribution resource is related to an Application resource. To avoid lengthy URIs,
the HATEOAS constraint is used to reflect relationships not covered by the nesting. Each
resource representation contains a links-section for these relations.

62

5.3 Kereta Repository

5.3.2 Identifiers

Root resources are provided with an 36 character long universally unique identifier (UUID).
The remaining resources are nested within these root resources and are clearly addressable
via the combination of the root resource’s UUID and the identifier of the nested resource,
e.g. /Function/0195448d-424e-4aca-b0ea-cb8442f4adf2/Parameter/a. The root resources’ UUIDs
are assigned by the system.

When creating a root resource it isn’t possible to force a specific UUID. In contrast, identifiers
of nested resources must be defined by the API users. These user-defined identifiers must
be unique within the nested resources (of the same type) of a specific root resource. The aim
is a taxonomy which achieves both, clearly identified resources and provides human-user
friendly and intuitive understandable URIs.

Since human users may struggle with 36 characters long UUIDs, it is possible to define a at
most 8 character long alias for root resources. Aliases must be unique within the resource of
the same type (siblings). Aliases allows for URIs like /Function/myFct or even /Function/myFc-
t/Parameter/a. It is allowed to use letters (lower and upper case), numbers, "" and "_" in aliases.
Function resources’ aliases are restricted to letters (lower and upper case) and "_", otherwise
mathematical expressions including function-calls may be misinterpreted.

5.3.3 Methods

The REST API provides the HTTP-methods GET, POST, PUT and DELETE without exception
for each resource type. The methods act in a standard manner which is defined below. GET-,
POST and PUT-methods response with a XML-representation of the suggested resource and
a status code. DELETE-methods response only with a status code.

The REST-API uses HTTP status codes following the HTTP/1.1 standard1. Table 5.2 contains
the status codes which can be returned.

status code description
200 OK
201 Created
204 No Content
403 Forbidden
404 Not Found
405 Method not Allowed
406 Not Acceptable
409 Conflict
500 Internal Server Error

Table 5.2: HTTP status codes - HTTP/1.1 standard

1RFC 7231, 8.2.3. Registrations

63

5 Design

For a more convenient debugging the REST API returns 4xx-codes with a XML-representation
of the error-message. For instance, the following XML-document is returned if a resource is
not found.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <error >

3 <message >resource not found </message >

4 </error >

Listing 5.1: Error Message - XML representation

Status codes can be evaluated in embedded solutions but human users may prefer textual
content, especially when debugging in case of failures.

GET

The GET-method returns a set of resources, a specific resource or the result of a function
(see section 5.3.5). If the URI identifies a specific resource, the REST API returns the XML-
representation of the resource (e.g. /Function/myFct or /Function/myFct/Parameter/a). If the
URI doesn’t aim at a specific resource, a XML-document is returned which document ele-
ment contains the set of regarded resources (e.g. /Function or /Function/myFct/Parameter).

Functions return their result in XML-documents, too. The structure of these documents is
shown in section 6.1.2. URL parameters are used to pass parameters to functions supported
by the REST API. The usage is defined in 5.3.5).

POST

The specification of the usage of UUIDs and user-defined identifiers has an impact on how
different resources are created. Root resources are created by calling the POST-method for
URI /{ressource-noun}. The REST-API creates a resource and returns the XML-representation
of this resource, which contains the automatically assigned UUID. Nested resources are cre-
ated by calling the POST-method for the URI which includes the user-assigned identifier, e.g.
/Function/myFct/Parameter/a. If the identifier isn’t unique within its siblings, the creation of
the resource fails.

POST-methods neither expect nor proceed any input. POST-calls just result in the creation
of a resource with the automatically assigned UUID or the user-defined identifier and the
UUID of the primary root resource. In the single case where a resource is nested within in a
nested resource, the identifier of the resource directly above and the root resource’s UUID is
stored.

64

5.3 Kereta Repository

PUT

PUT-methods expect a (partially) XML-representation of the addressed resource. PUT-methods
are not authorized to change properties, which have an impact on the resources URIs. POST-
methods finally specify these parameters.

The document-element of the passed XML-representation must have the tag-name core-
sponding to the resource type (small letters and camel-case, e.g. subFunction). The same
also goes for properties.

As stated in 4.2 each resource must be provided with an UUID and consequently clearly
identified with this UUID. This functional requirement has been weakened to get more com-
fortable URIs. Resources of selected types (hereinafter called root resources) are still provided
with an UUID, but every other resource is identified with respect to a root resource. For
instance, a function resource is a root resource, parameter resources

DELETE

To limit the damaging consequences of incorrect use, the DELETE-method is only imple-
mented for single resources. It isn’t possible to call the DELETE-method for a set of resource,
e.g. ".../Application". The only way to delete sets of resources is to delete each resource sep-
arately, e.g..../Application/{application-id}. Deleting a resource triggers the deletion of nested
resources.

DELETE-methods neither expect nor proceed any input. DELETE-calls just result in the
deletion of the identified resource and its nested resources.

5.3.4 Representation

The REST API returns XML-representations of resources. Section 6.1 contains the representa-
tions for all resource. The GET-method for the root directory .../ returns a HTML document
which contains a short description of the repository and an URI-overview.

5.3.5 Repository Functionality

The repository provides the management of resources. Besides that additional functionality
must be implemented. On the one hand it serves for the evaluation of application distribu-
tions and on the other hand it increases the repository’s reusability.

65

5 Design

Reusability

Users can profit from already created resources, if the REST API provides functions which
allow for the targeted search. In order to ease the reuse of function resources and the re-
production of utility function resources, it should be possible to search for these resources.
In addition the repository should provide functionality to clone utility functions. The REST
API provides these functions with URIs /Search/... and /Clone/....

/Search?resource=Application&applicationType=[appType] The URI parameter specifies the
applications’ type. The function returns all applications in the repository if [appType] is
empty - otherwise only applications with the passed type are returned. The regarded appli-
cation type must be exist.

/Search?resource=UtilityFunction&applicationType=[appType] The function returns all util-
ity functions in the repository if [appType] is empty - otherwise only utility functions from
applications with the passed type are returned. The regarded application type must be exist.

/Search?resource=Function&applicationType=[appType]&functionType=[fctType] It may help-
ful to see which functions are reused in utility functions of a specific application type. To
allow for a targeted search, the function type (typically revenue or cost) is part of the URL
parameters.

/Search?resource=Function&functionType=[fctType] The function allows for the search of
function resources with a specific function type (typically revenue or cost).

/UtilityFunction/myUF/clone?query

/UtilityFunction/{uf-id-or-alias}/clone?distributionId=[distr-id-or-alias] The function clones the
identified utility function resource and nested (utility function) sub-function resources and con-
nect these resources to the identified distribution resource.

Evaluation

Evaluation aims at different resource types. It must be possible to evaluate function, sub-
function and utility function resources for a defined parameter assignment. In cases of func-
tion resources, parameter assignment is done by a JSON object. Sub-function resources must
allow the persistence of assignments. Calculation for sub-function and utility function re-
sources must be provided by referencing a persisted assignment.

Assigned values are not stored in the database. A folder parms is create in the applications
server’s domain. The repository creates a XML file for a utility function resource (at the

66

5.3 Kereta Repository

moment of the first assignment). The following XML document shows a example for these
files:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <assignments

3 utilityFunction ="ea324fa8 -3aa2 -49b6 -9437 -951 df829a321">

4 <subfunction number ="1">

5 <parms id="key1">

6 <t>[4,10]</t>

7 <j>[0,2]</j>

8 </parms >

9 <parms id="key2">

10 <t>[1,3]</t>

11 <j>[0,2]</j>

12 </parms >

13 </subfunction >

14 <subfunction number ="2">

15 <parms id="key1">

16 <Month >6</Month >

17 <Hour >3000 </Hour >

18 <location_zone >EU </ location_zone >

19 </parms >

20 </subfunction >

21 </assignments >

Listing 5.2: XML parameter assignment storage file

Users can assign values under different keys for the same sub-function of a utility function.
The assignments can be reused be referencing the key.

/Function/[fct-id-or-alias]/calc?[assignment] This function calculates the result for a given
assignment. [assignment] contains a URL parameter for each parameter occurring in the
identified function resource. The usage is shown in section 6.1.2.

/UtilityFunction/[uf-id-or-alias]/SubFunction/[sf-nbr]/assign?key=[key]&[assignment] The func-
tion persists the assignment for the identified (utility function) sub-function resource under the
defined key. The usage is shown in section 6.1.2.

/UtilityFunction/[uf-id-or-alias]/SubFunction/[sf-nbr]/calc?key=[key] The function requests the
persistent assignment for for the identified (utility function) sub-function resource under key.
The function calculates and returns the result. The usage is shown in section 6.1.2.

67

5 Design

/UtilityFunction/[uf-id-or-alias]/calc?key=[key] The function requests the persistent assignment
for each (utility function) sub-function resource of the identified utility function resource under
key. The function determines each sub-result and function type (revenue or cost), then the
function calculates and returns the utility.

Decision Support

Application-specific topoplogy resources can offer several viable distributions. Users should re-
quest decision support and get the application distribution resource which promises the high-
est utility or a overview about distributions and their expected utilities.

/Application/[app-id-or-alias]/select?[query] String [query] contains all suggested distribu-
tions and utility functions identifiers the keys for assignments for each distribution. The
concrete construction is explained in section 6.1.2. The function determines each distribu-
tions utility and returned the distribution which promises the highest utility.

/Application/[app-id-or-alias]/rank?[query] This Function behaves like the previous select-function
except the fact that it returns the ranked list of all suggested distributions.

5.4 Kereta Database

Kereta is using a MySQL database. Figure 5.5 shows the entity-relationship model of the
database. Tables are named starting with "kereta_" and a name that identifies the reflected re-
source type, e.g. kereta_utilityFunction. Column names don’t contain a prefix and composed
names are separated by "_", e.g. application_id.

There is table for each resource type of the repository with one exception. Requirement re-
sources can be related to application or tier resources (see 5.2.3). Thus, application specific
topology and application specific component resources are stored in the same table (kereta_appli-
cation). In cases of a application specific topology resources the application_tier attribute is 0. In
cases of tier resources this attribute is ∈N∗.

Table kereta_o f f eringTier isn’t reflected by a resource of the repository. This table stores the
relationships between offering and tier resources.

5.5 Kereta Calculation

The calculation module enables the evaluation of functions. The module parses string rep-
resentations of formulas into a tree representation and enables the calculation of results for
different parameter assignments. Figure 5.6 shows the process in more detail. first, the parser
detects tokens, transfers the formula into the reverse polish notation and then determine the

68

5.5 Kereta Calculation

kereta_applicationType

kereta_requirement

kereta_requirementType

kereta_dataType kereta_distribution kereta_offering

kereta_performance

kereta_functionkereta_parameter kereta_utilityFunction

kereta_subFunctionkereta_functionType

has

kereta_offeringTier

relates_to

relates_to

relates_to relates_to

relates_to

relates_to

contains connects

characterizes

connects

hosted_on

evaluates

consists_ofrefers_torelates_to

contains

contains

kereta_application

contains

1

n

1

1

1

n

n 1

1

n

1

n

1

n

1 n

1

n

1

n
1

1

n

n

1

n

1

n

1

n

1 n

1

n

Figure 5.5: Kereta Database - Entity-Relationship Diagram

For reasons of clarity, columns have been omitted.

69

5 Design

Figure 5.6: Calculation Process

tree representation. Section 5.5.2 handles the parsing process, section 5.5.3 the structure of
the tree representation and the evaluation process. First, section 5.5.1 defines syntax and
semantic for string representations of formulas.

5.5.1 Syntax and Semantic

The parser can’t handle implicit multiplication and signs. Boolean expression (e.g. as part of
if-statements) has to be surrounded with brackets and the combination of characters which
identifies operators (e.g. SUM, AND, MIN, etc.) are not allowed inside parameter-names.
All operators are identified by 1 or 3 characters. Thus the if-operator is called IFF and the
or-operator ORR. INT (integral) and SUM operators are followed by a appendix "_{c}". {c}
must be a single letter. Operator- and parameter-names are case-sensitive. Commas can be
used, but are unnecessary. For instance ROT(a,b) is the same as ROT(a b).

Values and Parameters

Values can be formed following this regular expression:

1 [0 -9]+[[.][0 -9]+]?

Listing 5.3: Regular Expression for Value

Signs are not allowed. The parser handles signs (+,-) as binary operation. Negative signs can
be avoided by subtracting the number from zero, e.g. −10 = (0− 10)

Parameter names can be formed following this regular expression:

70

5.5 Kereta Calculation

1 [a-z,A-Z][a-z,A-T,0 -9]*[[_][a-z,A-Z]+]?

Listing 5.4: Regular Expression for Parameter

Each letters behind the "_" is a single index, e.g. A1x,y,z is expressed by A1_xyz.

Constants

Expressions can contain constants. If there occurs a parameter without a value assignment,
Kereta checks if it is a known constant. Implemented constants are:

• e = limn→∞(1 + 1
n)

n ≈ 2.71828 (Euler’s number e)

• pi = π ≈ 3.14159 (Pi)

Parenthesis

The parser supports two kinds of brackets: [] and (). Human users can use different kinds
of brackets to make functions more readable. The parser itself doesn’t distinguish different
kinds of brackets.

Basic Operators

The parser handles the following basic operators: a and b can be parameters, variables or

function use syntax description precedence associativity
addition + a + b adding a to b 1 left
subtraction - a - a subtracting b from a 1 left
multiplication * a * b multiply a with b 2 left
division / a / b dividing a through b 2 left
exponentiation ^ a ^b ab 3 right

Table 5.3: Basic Operators

any statement that can be evaluated.

Example Mass–energy equivalence: E = mc2:

1 m*c^2

Listing 5.5: Example: Expression for Einstein’s Mass–Energy Equivalence

71

5 Design

Boolean Operators

The parser handles the following boolean expressions: a and b can be parameters, variables

function use syntax description

or ORR ORR(a,b)

{
1 a 6= 0 or b 6= 0
0 else

xor XOR XOR(a,b)

{
1 a 6= 0 xor b 6= 0
0 else

and AND AND(a,b)

{
1 a 6= 0 and b 6= 0
0 else

lower than < <(a,b)

{
1 a < b
0 else

bigger than > >(a,b)

{
1 a > b
0 else

equal EQU EQU(a,b)

{
1 a = b
0 else

lower or equal LEQ ESM(a,b)

{
1 a <= b
0 else

bigger or equal BEQ EBG(a,b)

{
1 a >= b
0 else

not NOT NOT(a)

{
1 a = 0
0 else

Table 5.4: Boolean Operators

or any statement that can be evaluated.

Example Logical consequence: ¬A ∨ B:

1 ORR(NOT(A), B)

Listing 5.6: Example: Expression for Logical Consequence

Functions

The parser handles the following functions: a, b and d can be parameters, variables or any
statement that can be evaluated. Index c must be a single letter (lower or upper case).

72

5.5 Kereta Calculation

function use syntax description
square SQU SQU(a) a2

square root SQR SQR(a)
√

a
root ROT ROT(a, b) b

√
a

if IFF IFF(d, a)

{
a d 6= 0
0 else

if ... else ... IFE IFE(d, a, b)

{
a d 6= 0
b else

minimum MIN MIN(a, b)

{
a a ≤ b
b else

maximum MAX MAX(a, b)

{
a a ≥ b
b else

sine SIN SIN(a) sine of a (2π)
cosine COS COS(a) cosine of a (2π)
tangent TAN TAN(a) tangent of a (2π)
factorial FAC FAC(a) a!, factorial of a
sum SUM SUM_c(a) ∑cmax

c=cmin
(a)

product PCT PCT_c(a) ∏cmax
c=cmin

(a)
definite integral IGR IGR_c(a)

∫ cmax
cmin

(a)dc

Table 5.5: Function Operators

Definite Integrals Integrals can be defined by IGR_c, where c must be a single letter (lower
or upper case). For instance,

∫ xmax
xmin

3x dx is notated by IGR_x(3 ^ x).The parameter assignment
for x must be an array with two values [xmin, xmax] when evaluating the function.

Index c can be used as parameter:

1 IGR_x(x)

Listing 5.7: Example: Expression for Integral over x

Sum and Product Sums can be defined by SUM_c, where c must be a single letter (lower or
upper case). E.g. ∑xmax

x=xmin
x + ax is notated by SUM_x(x+a_x). The parameter assignment for

x must be an array with two values [xmin, xmax] when evaluating the function.

Index c can be used as parameter and parameter index.
For instance, ∑xmax

x=xmin
(x + ax)

1 SUM_x(x + a_x)

Listing 5.8: Example: Expression for a Sum

73

5 Design

It is even possible to use parameters with more than one index.
For instance, ∑xmax

x=xmin ∑
ymax
y=ymin(x ∗ y + axy)

1 SUM_x(SUM_y(x * y + a_xy))

Listing 5.9: Example: Expression for Nested Sums

Example if (a > b) { a2 } else { a
b }:

1 IFE((a>b), a^2, a/b)

Listing 5.10: Example: Expression for an IF-ELSE Statement

Quadratic formula: x = −b+
√

b2−4ac
2a :

1 (0 - b + SQR(SQU(b) - 4*a*c)) / (2*a)

Listing 5.11: Example: Quadratic Formula

Function Calls

In the repository stored function resources can have a alias (see 6.1.1). Function resources
which have a alias can be called from other functions.

function use syntax alt. syntax description
function call FCT FCT(alias, assignment) calls a function with a given

parameter assignment

Table 5.6: Function Call Operator

The assignment is binding a variable or parameter to each parameter of the called function.
Individual parameter assignments are separated by "$" and a ":" divides the parameter from
the called function from the assigned value or parameter.

Example Called function:

• alias = remote

• formula = a + b / 2

The called function has two parameters a and b. The function can be called in different
variants. For instance:

74

5.5 Kereta Calculation

1 FCT(remote , a:1.5$b:3)

2 FCT(remote , a:7$b:b)

3 FCT(remote , a:c_1$b:var)

Listing 5.12: Example: Function Calls

5.5.2 Parser

In the first step, the parser detects tokens from the input string (infix expression). Tokens can
be of kind operand, operator, parenthesis or comma. The list of tokens is the input for Dijkstra’s
Shunting-Yard Algorithm [UK12].

Shunting-Yard Algorithm

Dijkstra’s Shunting-Yard Algorithm is using a stack, the initially empty result list and is pro-
cessing the input list’s tokens from left to right. The algorithm in [UK12] is modified to
handle operators from table 5.3, 5.4 and 5.5 in parallel. Table 5.3 contains the precedence
and the associativity. Operators from the other tables are handled with precedence 6 and
associativity left.

• If the token is of type operand, append the token to the result list.

• If the token is of type comma, pop tokens from the stack and append them to the re-
sult list until a token of type parenthesis arises. Reject the comma token and leave the
parenthesis token on the stack.

• If the token (token A) is of type operator:

– If the stack is empty or the stack’s top token is of type parenthesis or from table 5.4
or 5.5, push token A to the stack.

– If token A is left associated and the stack’s top token’s precedence is lower then
token A’s precedence, push token A to the top of the stack.

– Else if token A is right associated and the stack’s top token’s precedence is lower
or equal then token A’s precedence, push token A to the top of the stack.

– Else pop tokens from the stack and append them to the result list until the stack is
empty or a token of type parenthesis is at the top of the stack. Finally, push token
A to the top of the stack.

• If the token is of type parenthesis:

– If the token is a opening parenthesis, push it to the stack.

75

5 Design

– If the token is a closing parenthesis, pop tokens from the stack and append them to
the result list until a token of type parenthesis arises. Reject both, token A and the
parenthesis token from the stack.

After all tokens from the input list are processed, pop tokens from the stack and append
them to the result list until the stack is empty. The result list complies with the reverse
polish notation.

Tree Representation

The calculation module is using the previous generated list of tokens to generate a tree repre-
sentation of the function. The tree consists of objects of type Node. A Node object has private
members operator, children, value, parameter, referencedFunction and referencedParameters. Fur-
thermore, it has a public method calc(Json variables) which returns a number. Depending on
the operator member, some of the other members are actually used.

1 Class Node {

2 Operator operator;

3 Node[] children;

4 Double value;

5 String parameter;

6 String referencedFunction

7 HashMap <String ,String > referencedParameters

8

9 public Double calc(Json variables)

10 }

Listing 5.13: Node Class

The algorithm is using a stack and processes the list of tokens (in postfix order) from left to
right.

• If the token’s type is operand:

– If the token represents a number A, create a Node object with VALUE as member
operator and set value to the A. Push the object to the stack.

– If the token represents a parameter P, create a Node object with PARM as member
operator and set parameter to P. Push the created object on the stack.

• If the token’s type is operator

– If the operators kind is function call, create a Node object. Set member operator to
FUNCTION. Pop two objects from the stack. These objects should have operator
PARM by mistake. Actually, it is the identifier of the called function and the re-
garded parameter assignment. Determine both and set member referencedFunction
and referencedParameters to these values. Push the created object on the stack.

76

5.5 Kereta Calculation

– Else if the operators kind is sum, product or definite integral, create a Node object.
Set member operator to the kind of operation. Set member children to an array of
size 1. Pop 1 object from the top of the stack and assign it to the one position of
children. Push the created object on the stack.

– Else create a Node object. Set member operator to the kind of operation (e.g. ADD)
and determine the operations arity N. Set member children to an array of size N.
Pop N objects from the top of the stack and assign them to children’s positions in
reverse order. Push the created object on the stack.

The algorithm terminates with one object on the stack. This object is the tree representation
of the function.

Example

Function Pλ(k) calculates the probability of random variable k in a Poisson distribution with
average rate of success λ.

Pλ(k) =
λk

k!
∗ e−λ (5.1)

For the simplified representation λ is expressed by l in the infix expression:

1 l^k / FAC(k) * e^(0 - l)

Listing 5.14: Example: Poisson Distribution

In a first step unnecessary spaces are eliminated and tokens are separated.

1 [l, ^, k, /, FAC , (, k,), *, e, ^, (, 0, -, l,)]

Listing 5.15: Parsing Process - Step 1

The algorithm determines the reverse polish notation.

1 [l, k, ^, k, FAC , /, e, 0, l, -, ^, *]

Listing 5.16: Parsing Process - Reverse Polish Notation

The parser uses the postfix expression to create a object-based tree representation of the
function. Figure 5.7 shows the tree.

77

5 Design

Figure 5.7: Tree Representation of lk

k! e
−l

5.5.3 Calculation

Each Node object has an operator member. The member determines the size of array children.
There are three operators defined which haven’t child nodes. These operators represents
parameters, values and referenced functions.

Method calc(Json variables) calculate the result of the tree starting with the node which calc-
method is called. The input parameter is a Json-object, for instance {”l” : 3, ”k” : 2}. If the
node is a leaf, there are three options:

• The operator is of type VALUE:
The method returns the value of member value.

• The operator is of type PARM:
The method returns the value of the variable with name parameter from method input
variables.

• The operator is of type FUNCTION (function reference):
The method selects values from method input variables to assemble the assignment
given in member referencedParameters. Then the function given by member referenced-
Function is called with the assigned values. The result is returned.

In Node objects with any other operator the calc-method calls the calc-method of its children
and execute the defined operation with the received values. Three operations have addi-
tional functionality. These operators are sum ∑, product ∏ and definite integral

∫
.

78

5.5 Kereta Calculation

Sum and Product

The calc-function of nodes with operator sum or product need boundaries xmin and xmax

(∑
xxmax
x=xmin or ∏

xxmax
x=xmin). The nodes’ parameter attribute contains the name of the value in the

input parameter variables. The value must be an array with entries x = [xmin, xmax]. The
method calls the calc-method of the only child for each value xi from xmin to xmax. The func-
tion input is adapted in each loop: x = [xmin, xmax] is replaced with x = xi. Each value with
index x in the function input is also replaced with the xi-th entry.

• node.operator = SUM

• node.parameter = a

• function input = { "a":[0,3], "x_a":[3,5,8,13] }

In this example the calculation is:

node.children[0].calc({”a” : 0, ”x_a” : 3})+
node.children[0].calc({”a” : 1, ”x_a” : 5})+
node.children[0].calc({”a” : 2, ”x_a” : 8})+
node.children[0].calc({”a” : 3, ”x_a” : 13})

(5.2)

Products are evaluated analogue.

Definite Integral

The interval [xmin, xmax] of definite integrals
∫ xmax

xmin
is handled analogous to the boundaries of

sum and product nodes.

Definite Integrals are approximated by dividing the interval [xmin, xmax] in n equally sized
intervals and adding the area shown in figure 5.8.

∫ xmax

xmin

f (x)dx ≈ h ∗
n

∑
i=1

f (xi) (5.3)

with
h =

xmax − xmin

n
(5.4)

and
xi = xmin −

h
2
+ i ∗ h (5.5)

The number of slices n is set to 1000 by default. The node class contains a method to change
this number.

The evaluation is implemented as loop from i = 1 to n. Inside the loop h and xi = xmin − h
2 +

i ∗ h is calculated. The method calls the calc-method of the only child for xi . The function
input is adapted in each loop: x = [xmin, xmax] is replaced with x = xi.

79

5 Design

x_m x_(m
+1)

f((x_m + x_(m+1)) /
2)

Figure 5.8: Integral approximation

Example

• node.operator = INTEGRAL

• node.parameter = a

• function input = { "a":[1,3]}

In this example the calculation is:

h ∗ (
node.parameter[0].calc({”a” : a1})
node.parameter[0].calc({”a” : a2})
...
node.parameter[0].calc({”a” : an})
)

(5.6)

80

6 Implementation

The repository is developed under the name Kereta. Kereta provides a REST-API, manages
resources and offers functionalities which allow for the design of utility functions, and the
calculation and comparing of distributed application deployments. Kereta is developed for
Java Runtime Environment v1.8 and using the JAX-RS reference implementation Jersey, fur-
thermore JAXB and the ASM1 and Gson2 libraries are utilized. Kereta is running in the devel-
opment process on Oracle’s Java EE 7 reference implementation Glassfish 4.0.

Data persistence relies an a MySQL database. Kereta using the JDBC driver Connector/J 5.1.6.
In order to promote safety, only prepared statements are used.

6.1 Kereta

Table 6.1 shows the URIs of the repository and responded formats. The following sections
covering the resources implementation and the realization of further logic (table 6.1, g.0 - g.2
and h.0 - h.1). In addition section 6.1.1 provides the XML representation of each resource.

6.1.1 Resources

The API provides XML-representations for resources contained in the repository. These rep-
resentations include the resources properties which value isn’t null3.

Each XML-representation contains a links-element. Following the HATEOAS constraint, this
element contains link-elements which has a rel-attribute and the corresponding inner text
property. A function-resource’s links element is given as an example:

1 <links >

2 <link rel=" parameters">

3 /Function /0195448d-424e-4aca -b0ea -cb8442f4adf2/Parameter

4 </link >

5 <link rel="this">

6 /Function /0195448d-424e-4aca -b0ea -cb8442f4adf2

7 </link >

1ObjectWeb ASM: API for decomposing, modifying, and recomposing binary Java classes developed by the
OW2 Consortium

2Gson: Library to serialize and deserialize Java objects from an to JSON devolped by Google
3JAXB standard behaviour

81

6 Implementation

Nbr. Resource-URI Repr.
a.0 / HTML
b.0 /Function XML
b.1 /Function/{fct-id} XML
b.2 /Function/{fct-id}/Parameter XML
b.3 /Function/{fct-id}/Parameter/{parm-name} XML
c.0 /Application XML
c.1 /Application/{app-id} XML
c.2 /Application/{app-id}/Tier XML
c.3 /Application/{app-id}/Tier/{tier-nbr} XML
c.4 /Application/{app-id}/Distribution XML
c.5 /Application/{app-id}/Requirement XML
c.6 /Application/{app-id}/Requirement/{req-name} XML
c.7 /Application/{app-id}/Tier/{tier-nbr}/Requirement XML
c.8 /Application/{app-id}/Tier/{tier-nbr}/Requirement/{req-name} XML
d.0 /Distribution XML
d.1 /Distribution/{dstr-id} XML
d.2 /Distribution/{dstr-id}/UtilityFunction XML
d.3 /Distribution/{dstr-id}/Offering XML
d.4 /Distribution/{dstr-id}/Offering/{of-nbr} XML
d.5 /Distribution/{dstr-id}/Offering/{of-nbr}/Performance XML
d.6 /Distribution/{dstr-id}/Offering/{of-nbr}/Performance/{prf-name} XML
e.0 /UtilityFunction XML
e.1 /UtilityFunction/{uf-id} XML
e.2 /UtilityFunction/{uf-id}/SubFunction XML
e.3 /UtilityFunction/{uf-id} /SubFunction/{sf-nbr} XML
e.4 /UtilityFunction/{uf-id} /SubFunction/{sf-nbr}/NefologParameter XML
f.0 /Type XML
f.1 /Type/ApplicationType XML
f.2 /Type/FunctionType XML
f.3 /Type/DataType XML
f.4 /Type/RequirementType XML
g.0 /Function/{fct-id}/calc?[assignment] XML
g.1 /UtilityFunction/{uf-id}/calc?key=[key] XML
g.2 /UtilityFunction/{uf-id}/SubFunction/{sf-nbr} XML

/assign?key=[key]&[assignment]
g.3 /UtilityFunction/{uf-id}/SubFunction/{sf-nbr}/calc?key=[key] XML
g.4 /Application/{app-id}/select?[query] XML
g.5 /Application/{app-id}/compare?[query] XML
g.6 /Distribution/{dstr-id}/check XML
h.0 /Search?[query] XML
h.1 /UtilityFunction/{uf-id} /clone?[query] XML

Table 6.1: Kereta URIs and the related representation.

82

6.1 Kereta

8 </links >

Listing 6.1: Links - Snippet from Resources’ XML Representation

Each resource contains at least a link-element with rel-attribute "this" which provides the URI
of the resource. Relations not covered by the URI are expressed link-elements.

Function

Existing Function resources are accessible via URIs:

• /Function/

• /Function/{fct-id}

• /Function/{fct-alias}

The first option returns a XML-document with document-element functions. This element
contains the XML-representations of each Function resource in the repository. The other op-
tions return the XML-representation of the identified resource. Their representation is build
like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <function >

3 <id/>

4 <alias/>

5 <formula/>

6 <description/>

7 <functionType/>

8 <author/>

9 <create/>

10 <links >

11 <link rel=" parameters "/>

12 <link rel="this"/>

13 </links >

14 </function >

Listing 6.2: XML Representation: Function Resource

The link sections of function resources provide the URI of nested Parameter resources.

83

6 Implementation

Parameter

Existing Parameter resources are accessible via URIs:

• /Function/{fct-id-or-alias}/Parameter

• /Function/{fct-id-or-alias}/Parameter/{name}

The first option returns a XML-document with document-element parameters. This element
contains the XML-representations of each Parameter resource in the repository. The second
options return the XML-representation of the identified resource. Their representation is
build like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <parameter >

3 <name/>

4 <dataType/>

5 <defaultValue/>

6 <description/>

7 <functionId/>

8 <author/>

9 <create/>

10 <links >

11 <link rel="this">/>

12 </links >

13 </parameter >

Listing 6.3: XML Representation: Parameter Resource

Application

Existing Application resources are accessible via URIs:

• /Application

• /Application/{app-id}

• /Application/{app-alias}

The first option returns a XML-document with document-element applications. This element
contains the XML-representations of each Application resource in the repository. The other
options return the XML-representation of the identified resource. Their representation is
build like:

84

6.1 Kereta

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <application >

3 <id/>

4 <alias/>

5 <name/>

6 <description/>

7 <applicationType/>

8 <author/>

9 <create/>

10 <links >

11 <link rel="this"/>

12 <link rel="tiers"/>

13 <link rel=" requirements "/>

14 <link rel=" distributions "/>

15 </links >

16 </application >

Listing 6.4: XML Representation: Application Resource

The link sections of Application resources provide the URIs to overviews about nested re-
sources. These are Tier and Requirement resources. Another link provides the URI to the set
of related Distribution resources.

• /Application/{app-id-or-alias}/Distribution

Since Distribution resources are root resources, this URI returning a XML-document with doc-
ument element distributions which contains the XML-representations of all Distribution re-
sources related to the identified Application resource. A specific resource must be identified
with URI /Distribution{dstr-id-or-alias}. For easier operation, the nested URI allows the POST-
method (actually Distribution resources are created with URI /Distribution). This method
creates a new resource and set the value for attribute applicationId.

Tier

The purpose of Tier resources is to provide a way to assign requirements to a specific tier of
the application. Requirements can be assigned to the superior Application resource and to
Tier resources. Existing Tier resources are accessible via URIs:

• .../Application/{app-id-or-alias}/Tier

• .../Application/{app-id-or-alias}/Tier/{tierNbr}

Identifier tierNbr can be any natural number (tierNbr ∈ {1, 2, 3, ...}). The first option returns
a XML-document with document-element tiers. This element contains the XML-representations

85

6 Implementation

of each Tier resource within the Application resource. The other options return the XML-
representation of the identified resource. Their representation is build like:

1 <tier >

2 <applicationId/>

3 <tierNbr/>

4 <name/>

5 <description/>

6 <author/>

7 <create/>

8 <links >

9 <link rel="this"/>

10 <link rel=" requirements "/>

11 </links >

12 </tier >

Listing 6.5: XML Representation: Tier Resource

The requirement link contains a URI to the tier’s requirements. These Requirement resources
differ from the superior Application resource’s Requirement resources.

Requirement

Requirement resources can be related to an Application or an Tier resource. Existing tier re-
sources are accessible via URIs:

• Application/{app-id-or-alias}/Requirement

• Application/{app-id-or-alias}/Requirement/{name}

• Application/{app-id-or-alias}//Tier/{tierNbr}/Requirement

• Application/{app-id-or-alias}//Tier/{tierNbr}/Requirement/{name}

Identifier name can be any string, but must be unique within its siblings. The first and third
option returns a XML-document with document-element requirements. This element contains
the XML-representations of each Requirement resource within the identified Application or
Tier resource. The other options return the XML-representation of the identified Requirement
resource. The representation is build like:

1 <requirement >

2 <applicationId/>

3 <applicationTier/>

4 <name/>

5 <value/>

6 <demand/>

86

6.1 Kereta

7 <dataType/>

8 <requirementType/>

9 <author/>

10 <create/>

11 <links >

12 <link rel="this"/>

13 </links >

14 </requirement >

Listing 6.6: XML Representation: Requirement Resource

Two cases can be distinguished: XML-element applicationTier’s inner text property is empty
(related to a Application resource) or contains a natural number (related to a tier resource).

Distribution

Existing Distribution resources are accessible via URIs:

• /Distribution

• /Distribution/{dstr-id}

• /Distribution/{dstr-alias}

The first option returns a XML-document with document-element distributions. This element
contains the XML-representations of each Distribution resource in the repository. The other
options return the XML-representation of the identified resource. Their representation is
build like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <distribution >

3 <id/>

4 <alias/>

5 <applicationId/>

6 <representation/>

7 <language/>

8 <langVersion/>

9 <author/>

10 <create/>

11 <links >

12 <link rel=" utilityFunctions "/>

13 <link rel=" application "/>

14 <link rel=" offerings"/>

15 <link rel="this"/>

16 </links >

17 </distribution >

87

6 Implementation

Listing 6.7: XML Representation: Distribution Resource

The link section of Distribution resources provides the URI of the set of nested Offering re-
sources. Additional links provide the URIs of the related Application and UtilityFunction
resources.

Offering

Offering resources represent Cloud offerings with a specific configuration. Since Nefolog2.9.1
provides a repository of Cloud providers, Cloud offerings and their configurations, Offering
resources identifies the related resources in the Nefolog repository.

Existing Offering resources are accessible via URIs:

• .../Distribution/{dstr-id-or-alias}/Offering/

• .../Distribution/{dstr-id-or-alias}/Offering/{offeringNbr}

The first option returns a XML-document with document-element offerings. This element
contains the XML-representations of each Offering resource in the repository. The other op-
tions return the XML-representation of the identified resource. The representation is build
like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <offering >

3 <number/>

4 <distributionId/>

5 <nefologConfiguration/>

6 <nefologConfigurationId/>

7 <nefologOfferingName/>

8 <nefologServiceType/>

9 <nefologProvider/>

10 <author/>

11 <create/>

12 <links >

13 <link rel="this"/>

14 <link rel=" performances "/>

15 </links >

16 </offering >

Listing 6.8: XML Representation: Offering Resource

The performance link contains a URI to the offering’s Performance resources.

88

6.1 Kereta

Performance

Performance resources can be used to evaluate the fulfilment of requirements. These resource
are similar to Requirement resources, except they nested within a Offering resource and ex-
press what is fulfilled (in contrast to what has to be fulfilled).

Existing Performance resources are accessible via URIs:

• .../Distribution/{dstr-id-or-alias}/Offering/{offeringNbr}/Performance

• .../Distribution/{dstr-id-or-alias}/Offering/{offeringNbr}/Performance{name}

The first option returns a XML-document with document-element performances. This element
contains the XML-representations of each Performance resource in the repository. The other
options return the XML-representation of the identified resource. The representation is build
like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <performance >

3 <distributionId/>

4 <offeringNumber/>

5 <name/>

6 <value/>

7 <fulfilment/>

8 <dataType/>

9 <requirementType/>

10 <author/>

11 <create/>

12 <links >

13 <link rel="this"/>

14 </links >

15 </performance >

Listing 6.9: XML Representation: Performance Resource

UtilityFunction

Utility function resources nesting a set of SubFunction(utility function) resources. In a nutshell,
SubFunction resources are links to Function resources of function type revenue or cost (see
5.2.11).

Existing utility function resources are accessible via URIs:

• UtilityFunction

• UtilityFunction/{uf-id}

89

6 Implementation

• UtilityFunction/{uf-alias}

The first option returns a XML-document with document-element utilityFunctions. This ele-
ment contains the XML-representations of each utilityFunction resource in the repository. The
other options return the XML-representation of the identified resource. Their representation
is build like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <utilityFunction >

3 <alias/>

4 <author/>

5 <create/>

6 <description/>

7 <id/>

8 <distributionId/>

9 <links >

10 <link rel=" subFunctions/>

11 <link rel=" distribution/>

12 <link rel="this">

13 </links >

14 </utilityFunction >

Listing 6.10: XML Representation: Utility Function Resource

The link section of utility function resources provides the URI of the set of nested SubFunction
resources and the related Distribution resource.

SubFunction

SubFunction resources are linking a reusable Function resource to a UtilityFunction resource.
The linked Function resource can have parameters, thus values must be assigned before cal-
culating utility. The API provides the parameter assignment to SubFunction resources. When
calculating utility, the system uses the assignment to calculate the result of the linked Func-
tion resource.

Not only Function resources can be linked. SubFunction resources can be linked to the Ne-
folog cost-calculation functionality. This is done by setting the functionId attribute to:

1 nefolog$ <nefolog -configuration -id>

Listing 6.11: Integration: Nefolog Cost Calculation

<nefolog-configruation-id> must be replaced with the id of the Nefolog offering configuration’s
id. Thereby, Nefolog cost-calculation can be used like a function resource.

90

6.1 Kereta

Existing sub-function resources are accessible via URIs:

• UtilityFunction/{uf-id-or-alias}/SubFunction/{sf-nbr}

• UtilityFunction/{uf-id-or-alias}/SubFunction/{sf-nbr}

The first option returns a XML-document with document-element subFunctions. This ele-
ment contains the XML-representations of each SubFunction resource in the repository. The
second options return the XML-representation of the identified resource. The representation
is build like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <subFunction >

3 <utilityFunctionId/>

4 <number/>

5 <functionId/>

6 <author/>

7 <create/>

8 <links >

9 <link rel="this/>

10 <link rel=" function/>

11 <link rel=" parameters "/>

12 </links >

13 </subFunction >

Listing 6.12: XML Representation: Sub-Function Resource

The function link the URI of the linked Function resource (this XML element is missing if the
resource is referring to Nefolog). The parameter link contains the URI of the set of parame-
ters in the connected Function resource.

NefologParameter

• UtilityFunction/{uf-id-or-alias}/SubFunction/{sf-nbr}/NefologParameter

In cases where the SubFunction resource is referring to Nefolog, this URI returns a XML doc-
ument with document-element parameters which contains a element parameter for each (pos-
sible) parameter of the Nefolog cost-calculation for the Nefolog-configuration-id specified in
the sub-function resource. For instance (Nefolog-configuration-id: 290):

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <parameters >

3 <parameter >Hour </parameter >

4 <parameter >Month </parameter >

5 <parameter >GBExternalNetworkEgress </parameter >

91

6 Implementation

6 <parameter >location_zone </parameter >

7 <parameter >usage_pattern </parameter >

8 </parameters >

Listing 6.13: XML Representation: Nefolog Parameter

Type

The type URI returns links to each kind of types.

• /Type

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <types >

3 <links >

4 <link rel="this"/>

5 <link rel=" dataTypes"/>

6 <link rel=" functionTypes "/>

7 <link rel=" applicationTypes "/>

8 <link rel=" requirementTypes "/>

9 </links >

10 </types >

Listing 6.14: XML Representation: Type Resources

DataType

Users are able to create customized DataType resources. This is reached by calling the POST-
method for /Type/DataType/<dataType-name>. <dataType-name> has to be replaced with the
name of the DataType resource. The DELETE-method deletes a customized type.

• /Type/DataType

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <types >

3 <type >number </type >

4 <type >string </type >

5 <type >array of strings </type >

6 <type >array of numbers </type >

7 <type >array of arrays </type >

8 </types >

Listing 6.15: XML Representation: Data Type Resource

92

6.1 Kereta

FunctionType

Users are able to create customized FunctionType resources. This is reached by calling the
POST-method for /Type/FunctionType<functionType-name>. <functionType-name> has to be re-
placed with the name of the FunctionType resource. The DELETE-method deletes a cus-
tomized type.

• /Type/FunctionType

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <types >

3 <type >revenue </type >

4 <type >cost </type >

5 <type >misc </type >

6 </types >

Listing 6.16: XML Representation: Function Type Resource

ApplicationType

Users are able to create customized ApplicationType resources. This is reached by calling the
POST-method for /Type/ApplicationType<applicationType-name>. <applicationType-name> has
to be replaced with the name of the ApplicationType resource. The DELETE-method deletes a
customized type.

• /Type/ApplicationType

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <types >

3 </types >

Listing 6.17: XML Representation: Application Type Resource

RequirementType

Users are not allowd to create customized RequirementType resources. The initial set of re-
sources (functional, non-functional) is not editable.

• /Type/RequirementType

93

6 Implementation

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <types >

3 <type >functional </type >

4 <type >non -functional </type >

5 </types >

Listing 6.18: XML Representation: Requirement Type Resource

6.1.2 Functionality

The Kereta repository manages resources. Furthermore, there are functionalities to evaluate
functions, sub-functions and utility functions, rank or select distributions based on their
utility, search for existing resources and reuse solutions.

Function Calculation

API-users can get knowledge about parameter resources nested within a function resource.
For instance, if a Function resource’s alias is myFct, the GET-method for URI /Function/myFc-
t/Parameter returns a XML document containing a XML representation of each Parameter re-
source. Thereby, users get also knowledge about data types and default values (see section
6.1.1).

The REST API enables the evaluation of Function resources by URI (see table 6.1, g.0):

• /Function/{fct-id}/calc?[assignment]

The query string includes a key-value pair for each parameter a value has to be assigned
to. Different data types are allowed (see section 6.1.1)). Types number is straightforward:
<parameter-name>:<parameter-value>. URI parameters are separated by &. Arrays are ex-
pressed according to JSON (square bracket notation and separate elements with commas).
The type array of arrays is generic. The arrays inside the array can be of type array of numbers
or even array of arrays.

Example The considered Function resources has alias myFct. Formula is

n

∑
x=0

m

∑
y=0

ax,y

b
(6.1)

1 SUM_x(SUM_y(a_xy/b))

94

6.1 Kereta

Parameters are x, y, ax,y and b. x, y are arrays containing two numbers (see section 5.5.1), b
is a number and ax,y is obviously a array of arrays of numbers. For instance, x = [0, 1], y =

[0, 2], ax,y = [[−1, 2.2], [1, 2], [−1.6, 4]], b = 0.777.

• /Function/myFct/calc?x=[0,2]&y=[0,1]&a_xy=[[-1,2.2],[1,2],[-1.6,4]]&b=0.777

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <calculation >

3 <result >8.49 </ result >

4 <formula >SUM_x(SUM_y(a_xy/b))</formula >

5 <toks >[SUM_x , (, SUM_y , (, a_xy , /, b,),)]</toks >

6 <rpn >[a_xy , b, /, SUM_y , SUM_x]</rpn >

7 <parameters >

8 { "a_xy": [[-1,2.2],[1,2],[-1.6,4]], "b": 0.777, "x": [0,2],

"y": [0,1] }

9 </parameters >

10 </calculation >

Listing 6.19: XML Representation: Function Calculation

The GET-method returns a XML document containing the result, the formulas tokens, re-
verse polish notation and parameter assignments. tokens and reverse polish notation can
be used for debugging. Kereta doesn’t round, however, returned values are rounded to two
decimal places.

SubFunction Calculation

In contrast to the calculation of Function resources, the calculation of SubFunction resources
is based on two steps. The first step is to assign values and a key, the second step is the
evaluation (see table 6.1, g.2 and g.3).

The assignment works analogous to the calculation of Function resources, except the addi-
tional key parameter in the query string. The value for key can be any string.

• /UtilityFunction/myUF/SubFunction/1/assign?key=myKey&x=1&y=2

The evaluation requires only the previously defined key:

• /UtilityFunction/myUF/SubFunction/1/calc?key=myKey

The GET-method for the assignment returns a XML document with document element key
and the defined key as text content. The GET-method for the evaluation returns a XML-
document similar to the calculation of Function resources. The calculation element contains
attributes for class, the identifier of the SubFunction resource within the superior UtilityFunc-
tion resource and the function type of the referred Function resource (revenue or cost). The
first part inside the document element looks exactly the same, but parameters are listed sep-
arated.

95

6 Implementation

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <calculation class=" subfunction" number ="" type="">

3 <result/>

4 <formula/>

5 <toks/>

6 <rpn/>

7 <parameters >

8 <parameter name ="" />

9 ...

10 </parameters >

11 </calculation >

Listing 6.20: XML Representation: Sub-Function Calculation

UtilityFunction Calculation

The evaluation of a UtilityFunction resources is easy to operate, but previously values must
be assigned for each SubFunction resource within using a single key. The Evaluation only
requires the GET-method for the defined URI (table 6.1, g.1) with the specified key. The
evaluation requires only the previously defined key:

• /UtilityFunction/myUF/calc?key=myKey

The method returns a XML document containing a result element as child of the document
element. This element contains the calculated utility. The identifier of the related Distribution
resources is also contained, just like the sub-calculations (the representations of SubFunction
calculations). The class attribute distinguish the calculation element of UtilityFunction calcu-
lation from SubFunction calculation.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <calculation class=" utilityFunction">

3 <result/>

4 <distributionId/>

5 <subCalculations >

6 <calculation class=" subfunction" number ="" type ="" />

7 ...

8 </subCalculations >

9 </calculation >

Listing 6.21: XML Representation: Utility Function Calculation

96

6.1 Kereta

Decision Support

Three URIs provides decision support (table 6.1, g.4, g.5 and g.6). myApp is an Application
resource’s alias and myDstr is an Distribution resource’s alias.

• /Application/myApp/select?query

• /Application/myApp/compare?query

• /Distribution/myDstr/check

The first two URIs are similar, except the first returns only the distribution promising the
highest utility and the second returns a list of all available distributions and the expected
utility. The query string looks the same. There must be a parameter for each considered
Distribution resource separated by &. The parameter is build like:
<dstr-id-or-alias>=<uf-id-or-alias>:<key>
Parameter assignments must be performed before using the GET-method for the two URIs.
This requires the assignment URI from SubFunction calculation.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <listing >

3 <calculation class=" utilityFunction">

4 <result/>

5 <distributionId/>

6 <subCalculations >

7 <calculation class=" subfunction" number ="" type="">

8 ...

9 </subCalculations >

10 <calculation >

11 ...

12 <listing >

Listing 6.22: XML Representation: Select Distribution

The GET-method for the compare URI returns a XML document with document element
listing. This element contains a calculation element for each suggested Distribution resource.
These elements are the same as the document element of the UtilityFunction calculation.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <selection >

3 <calculation class=" utilityFunction">

4 ...

5 <calculation >

6 <selection >

Listing 6.23: XML Representation: Compare Distribution

97

6 Implementation

The GET-method for the select URI returns a XML document with document element selec-
tion. In contrast to the compare URI, this element contains only the calculation element for
the Distribution resource which promises the highest utility.

The check URI returns a comparison of requirements and performances for a Distribution re-
source. The GET-method returns a XML-document with document element comparison and
a element check for each Requirement resource connected to the related Application resource
and its Tier resources. Requirements related to the Application resource are nested within
the global, Requirements related to a specific Tier resource are organized within the tier ele-
ment.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <comparison distributionId ="">

3 <global >

4 <check >

5 <name/>

6 <dataType/>

7 <requirementType/>

8 <requirement >

9 <value/>

10 <demand/>

11 </requirement >

12 <performance >

13 <value/>

14 <fulfilment/>

15 </performance >

16 </check >

17 ...

18 </global >

19 <tiers >

20 <tier tierNbr ="">

21 <check/>

22 ...

23 </tier >

24 ...

25 </tiers >

26 <comparison >

Listing 6.24: XML Representation: Check Requirements

Reusability

Two URIs offering functionality to increase Kereta’s reusability. myApp is an Application re-
source’s alias and myUF an UtilityFunction resource’s alias, of course, the resources IDs can

98

6.1 Kereta

be used instead.

• /Search/myApp/select?query

• /UtilityFunction/myUF/clone?query

Kereta allows for the search for Application, UtilityFunction and Function resources. String
query’s parameters are resource, applicationType and functionType. The later two are optional
and the last one only makes sense when searching for Function resources. Values for param-
eter resource can be Application, UtilityFunction or Function, values for parameter application-
Type can be any user defined application type and values for parameter functionType can be
revenue, cost, misc or any user defined function type. The method returns a XML document
with document element selection. This element contains the XML representations of each
selected resource.

UtilityFunction resources are complicated in structure. The are related to an Distribution re-
source, several SubFunction resources are nested and related to Function resource. The second
URI’s GET-method offloads to work to create all these resources and establish relationships.
If an UtilityFunction resource already exists, the method creates a copy of the resource and
nested SubFunction resources and automatically change their relationships. The string query
must contain parameter distribution. The parameter’s value is the targeted Distribution re-
source’s ID or alias. The method returns the new UtilityFunction resource’s XML representa-
tion.

6.1.3 Kereta Database

This section presents the database tables. The following table shows the database tables’
columns, their name, data type and a description. Private keys are indicated with PK and
foreign keys with FK.

kereta_application

key field data type description
PK id VARCHAR(36) UUID
PK tier INT 0 or the identifying number of the

application specific component
alias VARCHAR(8) at most 8 character long alias
name VARCHAR(128) application name
description TEXT description of the application
application_type VARCHAR(128) application type, see 5.2.11
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.2: kereta_application columns

99

6 Implementation

Table kereta_application persists application-specific topologies and application-specific components
from the resource model. The tier property is 0 for application-specific topologies and ∈ N∗ for
application-specific components.

kereta_distribution

key field data type description
PK id VARCHAR(36) UUID

alias VARCHAR(8) at most 8 character long alias
application_id VARCHAR(36) the associated application’s id
topology TEXT the viable topology in the

specified language
topology_language VARCHAR(128) the topology language in use
topology_language_version VARCHAR(128) Version of the

specified topology language
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.3: kereta_distribution columns

Table kereta_distribution persists application distribution resources. The tier property is 0 for
application-specific topologies and ∈ N∗ for application-specific components. Attribute topology
allows for the storage of the topology model in a topology language. The topology language
in use can be specified with attributes topology_language and topology_language_version.

kereta_offering

key field data type description
FK distribution_id VARCHAR(36) the superior distribution’s id
PK number INT the offering’s identifier within the

distribution resource
nefolog_configuration VARCHAR(128) nefolog-name of the corresponding

configuration
nefolog_configuration_id INT nefolog-id of the corresponding

configuration
nefolog_offering_name VARCHAR(128) nefolog-name of the offering
nefolog_service_type VARCHAR(128) nefolog-service type of the offering
nefolog_provider VARCHAR(128) nefolog-provider of the offering
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.4: kereta_distribution columns

100

6.1 Kereta

The resource model contains application subgraphs. The repository reduces the resource to the
included Cloud offering. The table persists informations about the Cloud offering from the
Nefolog framework.

kereta_offeringTier

key field data type description
FK application_id VARCHAR(36) application_id and application_tier

identifies the connected tier resource
FK application_tier INT
FK offering_number INT distribution_id and offering_number

identifies the connected offering resource
FK distribution_id VARCHAR(36)

create Timestamp timestamp of connection creation

Table 6.5: kereta_offeringTier columns

Table kereta_offeringTier persists relationships between application-specific component and appli-
cation subgraph resources. The table stores the two by two attributes to identify the connected
resources.

kereta_requirement

field data type description
application_id VARCHAR(36) the superior application’s id
application_tier INT 0 if associated to the application, else the

tier’s identifier within the application resource
name VARCHAR(128) resource identifier and the requirement’s name
value VARCHAR(128) the requirements value
demand VARCHAR(1) value is ’<’, ’>’ or ’=’
data type VARCHAR(128) data type, see 5.2.11
requirement_type VARCHAR(36) value is ’functional’ or

’non-functional’, see 5.2.11
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.6: kereta_requirement columns

Table kereta_requirement persists requirement resources for application-specific topologies and
application-specific components from the resource model. The application_tier property is 0 for
application-specific topologies and ∈N∗ for application-specific components.

101

6 Implementation

key field data type description
FK distribution_id VARCHAR(36) the superior distribution’s id
FK offering_number INT identifier of the offering within the

superior distribution resource
PK name VARCHAR(128) resource identifier and

the performance’s name
value VARCHAR(128) the performance value
fulfilment VARCHAR(1) value is ’<’, ’>’ or ’=’
data_type VARCHAR(128) data type, see 5.2.11
requirement_type VARCHAR(36) value is ’functional’

or ’non-functional’, see 5.2.11
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.7: kereta_performance columns

kereta_performance

Table kereta_performance persists performance resources for subgraphs from the resource model.

kereta_function

key field data type description
PK id VARCHAR(36) UUID

alias VARCHAR(8) at most 8 character long alias
formula TEXT textual representation of the function
description TEXT description of the function
function_type VARCHAR(128) function type, see 5.2.11
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.8: kereta_function columns

Function resources are persisted in table kereta_function. Attribute formula contains the text-
representation of the function.

kereta_parameter

Parameter resources are persisted in table kereta_parameter.

kereta_utilityFunction

Table kereta_utilityFunction persists utility functions from the resource model.

102

6.1 Kereta

key field data type description
FK function_id VARCHAR(36) the superior function resource’s identifier
PK name VARCHAR(128) the parameter’s name and identifier

within the function resource
default_value VARCHAR(128) default value of the parameter
description TEXT description of the parameter
data_type VARCHAR(128) data type, see 5.2.11
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.9: kereta_parameter columns

key field data type description
PK id VARCHAR(36) UUID

alias VARCHAR(8) at most 8 character long alias
distribution_id VARCHAR(36) the associated distribution’s id
description TEXT description of the utility function
author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.10: kereta_utilityFunction columns

kereta_subFunction

key field data type description
FK utility_function_id VARCHAR(36) the superior utility function’s id
PK number INT identifier of the sub-function within

the superior function resource
function_id VARCHAR(36) the identifier of the

called function ressource
or the nefolog-configuration id

author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.11: kereta_subFunction columns

Table kereta_subFunction persists (utility function) sub-functions from the resource model. Re-
sources are identified by the utilty_function_id and the number attribute.

Types

The four type-tables are build in a uniform manner. kereta_requirementType and kereta_func-
tionType have a initial set of rows. Users can’t add rows to kereta_requirementType. In all other
cases users can define customized types.

• kereta_requirementType

103

6 Implementation

• kereta_applicationType

• kereta_functionType

• kereta_dataType

key field data type description
PK name VARCHAR(128) name of the type and identifier

author VARCHAR(128) author of the resource
create TIMESTAMP timestamp of resource creation

Table 6.12: kereta type-tables columns

104

7 Evaluation

Section 7.2 validates the implementation of Kereta by running the workflow described in
Section 7.1 on a concrete example. The example revolves around the question if a partially
redeployment of the MediaWiki application in the Cloud increases the utility of the alterna-
tive deployment.

Figure 7.1: Decision Workflow

Calculating utility and selecting the viable topology which offers the highest utility

7.1 Workflow

The workflow shows in 7.1 combine the work of business and IT experts. IT experts have to
create resources regarding the technical aspects of the suggested application and its possible
distributions. This includes Application, Tier, Requirement, Distribution, Offering and Perfor-
mance resources. The analysis of the defined workload also requires IT experts.

Meanwhile, business experts have to analyse the application’s financial aspects, especially
by creating the corresponding business model. Business experts are also responsible to de-
liver utility functions. Kereta offer a variety of possibilities to find a utility function: Users
can start from scratch, create their own Function resources (e.g. customized revenue or cost
functions) and assemble a customized utility function. Users can also search the repository

105

7 Evaluation

Figure 7.2: MediaWiki Application, Alternative Distributions

Derived from [SALS14].

for already created Function resources and assemble them in a new way (e.g. combine a rev-
enue and a cost function from different utility functions). A mixture between the possibilities
is also possible. Finally, users can reuse already existing UtilityFunction resources.

7.2 Practical Use

The MediaWiki application is hosted on a physical server. Both, the PHP-based frontend
and the database are hosted on this machine (topology T0

µ). The question that arises is which
advantages could other distributions offer. The PHP application should stay on the machine,
the database can be either provided by a database server running on a IaaS Cloud offering
or by a DbaaS Cloud offering. Two Cloud services are selected. First, a AWS EC2 m1.xlarge
instance running a database server on a Linux operating system (topology T1

µ) and second,
a Amazon RDS db.m1.xlarge for MySQL offering (topology T2

µ). Figure 7.2 shows the orig-
inal and the alternative distributions. At the core, it’s about weighting the higher costs of
the alternative deployments against the potentially gained advantages. The utility function
concept from section 4.1.1 takes on the task of trade of these different aspects.

Only two non-functional requirements are suggested:

• Location: European Union

• Throughput: At least 15 Req./s.

106

7.2 Practical Use

M0 represents the first month of the first year, M12 the first month the second year and so
on. The example suggests the time period from February 1, 2015 to April 31, 2016, thus, time
period T is defined by T = [M1, M15].

7.2.1 Workload

IT experts identified three different workloads. This evaluation is orientated on [SALS14].
The work in [SALS14] is based on 1 GB representative database content and a set of tool-
generated database queries. These 23 queries are categorized in three categories: (1) com-
pute low (CL), (2) compute medium (CM) and (3) compute high (CH). The paper includes mea-
surement results for the distribution and alternative distributions suggested in this chapter.
These numbers are used to get the workload for the evaluation. Workload is observed and
predicted for the time period from the 1. January to the 31. December of a representative
year.

Workload w0’s (normal utilization) usage profile includes a composition of the 23 database
queries. CL queries are selected with probability 0.714, CM and CH queries with probability
0.143. Thus, the probability for CL queries is about five time higher then the probability for
CM or CH queries. The calculated average throughput is:

• On-Premise: 18.2 Req./s.

• IaaS: 13.3 Req./s.

• DBaaS: 19.4 Req./s.

For workload w1 (high utilization) CH queries are selected with probability 0.714, CL and
CM queries with probability 0.143. Therefore, the calculated average throughput is:

• On-Premise: 4.2 Req./s.

• IaaS: 3.0 Req./s.

• DBaaS: 6.9 Req./s.

The average number of transactions per user is defined by:

TPU(wj) =

{
5 wj = w0

12 wj = w1
(7.1)

The Wikimedia Foundation, Inc. provides statistics about the Internet encyclopedia Wikipedia1

There are records about edits per month2. The analysis of edits per month for German articles
in the years 2011, 2012 and 2014 shows a repetitive pattern. Figure 7.3 presents that there
is a unusually large deviation in January. February and March shows a smaller positive
deviation. The other months lie between the average (approximately) and −5%.

1https://stats.wikimedia.org/EN/Sitemap.htm
2https://stats.wikimedia.org/EN/TablesDatabaseEdits.htm

107

7 Evaluation

Figure 7.3: Wikipedia, Deviation from the Average Article Edits

Based on the records for German articles in 2011, 2012 and 2014.

Following this observation, we assume, that there is a high average number of users in January.
The ratio is smaller in February and March and additional smaller in the rest of the year. We
assume this pattern matches the user behaviour for the MediaWiki application.

Thus, average number of users is assumed by:

USER(t) =


5000 users

month 0 ≤ (t mod 12) < 1

3200 users
month 1 ≤ (t mod 12) < 3

2000 users
month 3 ≤ (t mod 12) < 12

(7.2)

Workload w0’s average probability of occurrence is 70%, w1’s 30%.

p(wj) =

{
70% wj = w0

30% wj = w1
(7.3)

The Amazon EC2 Service Level Agreement3 contains a service commitment to a monthly avail-
ability of at least 99.95%. This ratio is used for both, the DBaaS and the IaaS Cloud service. IT
estimates one hour per month downtime for updates and maintenance of the physical server.
As experience shows the physical server is also unavailable due to failures for half an hour
per month in average. It can therefore be assumed that the physical server’s availability is

3As at June 1, 2013

108

7.2 Practical Use

99,80%. The average availability at time t of Ti
µ is defined by:

AV(Ti
µ, t) =


99.80% Ti

µ = T0
µ

99.80% ∗ 99.95% ≈ 99.75% Ti
µ = T1

µ

99.80% ∗ 99.95% ≈ 99.75% Ti
µ = T2

µ

(7.4)

We assume that the users’ satisfaction is lower in January. The pattern in figure 7.3 displays
more edits in January. The assumption is that this will lead to lower satisfaction. This ratio
corresponds with the percentage of aborted transactions due to unfulfilled requirements.
The satisfaction under T0

µ is significant lower then under T1
µ and T2

µ. The reason is to be seen
in the lack of possibilities to react to rapid load variations. Both Cloud services provide the
advantage of vertical and horizontal scaling on demand.

SAT(T0
µ, t) =

{
71.0% 0 ≤ (t mod 12) < 1

82.0% 1 ≤ (t mod 12) < 12
(7.5)

SAT(T1
µ, t) =

{
96.0% 0 ≤ (t mod 12) < 1

97.0% 1 ≤ (t mod 12) < 12
(7.6)

SAT(T2
µ, t) =

{
98.0% 0 ≤ (t mod 12) < 1

99.9% 1 ≤ (t mod 12) < 12
(7.7)

adaptation costs April till December requires less adaptations than the rest of the year (fol-
lowing figure 7.3). We assume Mondays, Tuesdays, Wednesdays and Thursdays requires
vertical scaling of T1

µ for five hours per day in this time span. The adaptation costs are 0.50$
per hour. The resulting costs sum up to 42.00$ per month.

We assume more adaptations are necessary for January till March. T1
µ requires vertical scal-

ing for three hours per day at weekends (0.50$ per hour). The fulfilment of requirements
requires vertical scaling for six hours per workday (0.50$ per hour) and a replica inside
the persistence tier for 2 hours (1.20$ per hour). The resulting costs sum up to 125.00$ per
month.
T2

µ requires a replica of the database in another location inside the European Union for 2
hours on Tuesdays and Wednesdays (3.50$ per hour). The resulting costs sum up to 120.00$
per month.

adapT0
µ
(t) = 0 (7.8)

adapT1
µ
(t) =

{
125.00 $

month (t mod 12) < 3

42.00 $
month 3 ≤ (t mod 12) < 12

(7.9)

adapT2
µ
(t) =

{
120.00 $

month (t mod 12) < 3

0.00 $
month 6 ≤ (t mod 12) < 12

(7.10)

109

7 Evaluation

7.2.2 Revenue

With equations 4.2 and 4.3 the expected revenue is:

revexp(Ti
µ, W, T) =∫ tmax

tmin

j=m

∑
j=0

p(wj, t) ∗USER(t) ∗ TPU(wj) ∗ RPT(t) ∗ sat(Ti
µ, t) ∗ AV(Ti

µ, t)
(7.11)

In order to enable the calculation of utility, the subfunctions contained in 7.11 have to be de-
fined. p(wj), USER(t), TPU(wj), AV(Ti

µ, t) and SAT(T0
µ, t) are already defined (see section

7.2.1).

The considered MediaWiki application is funded exclusively by donations. Without influ-
ences, we assume there is a constant willingness to donate. The company is running a cam-
paign from November till December to increase donations. The pattern repeats every year.
The average revenue per transaction is assumed by:

RPT(t) =

{
0.18$ (t mod 12) < 10

0.35$ 10 ≤ (t mod 12) < 12
(7.12)

7.2.3 Resource Modeling

In order to enable Kereta’s decision-support, resources have to be created. The following
sections cover the creation of the resources which are necessary to use Kereta’s decision
support.

Revenue Function

In order to simplify the revenue expression six Function resources are created . These re-
sources are reused by the Function resource that represents revexp(Ti

µ, W, T). The resources
for p(wj, t), USER(t), TPU(wj), RPT(t), SAT(Ti

µ, t) and AV(t) are outlined below. Ratios
are hard-coded. It is possible to replace values (e.g. AV(t): 99.80%, 99.75% and 99.75%) with
parameters. That increases reusability but leads to more complex evaluations (e.g. more
parameter assignments).

workload w’s probability of occurrence
alias: pt_pro
parameter: w (identifier of workload, data type: number)
expression:

1 IFF(EQU(w,0), 0.7) + IFF(EQU(w,1), 0.3)

Listing 7.1: Expression: Workload Probability

110

7.2 Practical Use

average number of users
alias: pt_users
parameter: t (time period, data type: number)
expression:

1 IFE(

2 <(MOD(t,12), 1), 5000,

3 IFE(<(MOD(t,12) ,3), 3200, 2000)

4)

Listing 7.2: Expression: Average Number of Users

average number of transactions per user
alias: pt_tpu
parameter: w (identifier of workload, data type: number)
expression:

1 IFF(EQU(w,0) ,5) + IFF(EQU(w,1) ,12)

Listing 7.3: Expression: Average Number of Transactions

average revenue per transaction
alias: pt_rpt
parameter: t (time period, data type: number)
expression:

1 IFE(<(MOD(t,12), 10) ,0.10, 0.25)

Listing 7.4: Expression: Average Revenue per Transaction

average user satisfaction
alias: pt_sat
parameter: t (time period, data type: number)
parameter: T (identifier of the topology, data type: number)
expression:

1 IFF(

2 EQU(T, 0),

3 IFE(<(MOD(t,12) ,1), 0.71, 0.82)) +

4 IFF(

5 EQU(T, 1),

6 IFE(<(MOD(t,12) ,1), 0.96, 0.97)) +

7 IFF(

8 EQU(T, 2),

111

7 Evaluation

9 IFE(<(MOD(t,12) ,1), 0.98, 0.999))

Listing 7.5: Expression: Average User Satisfaction

average availability
alias: pt_av
parameter: t (point in time, data type: number)
expression:

1 IFF(EQU(T,0), 0.998) +

2 IFF(EQU(T,1), 0.9975) +

3 IFF(EQU(T,2), 0.9975)

Listing 7.6: Expression: Average Availability

It is now easy to create the Function resource which represents formula 7.11. The XML repre-
sentation is:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <function >

3 <id >4c5f5308 -c1f4 -49e7-b50f -1 c36edd14ac4 </id>

4 <alias >pt_rev </alias >

5 <formula >

6 IGR_t(

7 SUM_w(

8 FCT(pt_pro , w:w) *

9 FCT(pt_users , t:t) *

10 FCT(pt_tpu , w:w) *

11 FCT(pt_rpt , t:t) *

12 FCT(pt_sat , t:t$T:To) *

13 FCT(pt_av , T:To)

14)

15)

16 </formula >

17 <description >

18 Prototype , revenue function;

19 t: time interval ,

20 To: topology numbering ,

21 w: workload numbering

22 </description >

23 <functionType >revenue </ functionType >

24 <author >mackfn </author >

25 <create >2016 -01 -08 T17 :10:21+01:00 </ create >

26 <links >

112

7.2 Practical Use

27 <link rel=" parameters">

28 /Function /4c5f5308 -c1f4 -49e7-b50f -1 c36edd14ac4/Parameter

29 </link >

30 <link rel="this">

31 /Function /4c5f5308 -c1f4 -49e7-b50f -1 c36edd14ac4

32 </link >

33 </links >

34 </function >

Listing 7.7: XML Representation: Revenue Function Resource

Parameter resources allow for the definition of default values, descriptions and data types.
These resources increase the usability.

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <Parameters >

3 <parameter >

4 <name >t</name >

5 <dataType >array of numbers </dataType >

6 <defaultValue >[0,0]</ defaultValue >

7 <description >length: 2; [t_min , t_max]</description >

8 ...

9 </parameter >

10 <parameter >

11 <name >To </name >

12 <dataType >number </dataType >

13 <defaultValue >0</ defaultValue >

14 <description >Topology numbering </ description >

15 ...

16 </parameter >

17 <parameter >

18 <name >w</name >

19 <dataType >array of numbers </dataType >

20 <defaultValue >[0,0]</ defaultValue >

21 <description >

22 length: 2;

23 [w_0 , w_n]

24 numbering of the first and last workload

25 </description >

26 ...

27 </parameter >

28 </Parameters >

Listing 7.8: XML Representation: Parameter Resources

113

7 Evaluation

Cost Function

Equation 4.4 defines function cost(Ti
µ, W, R, T). The first term cost f ixed(Ti

µ, T) doesn’t require
a Function resource. The Nefolog framework is utilized to calculate the costs of viable topol-
ogy Ti

µ over time interval T. The second term ∑o
k=1 costadaptation(T

i,k
µ , W, R, Tk) requires the ob-

servation and/or prediction of the execution of workload. Section 7.2.1 includes the results
of the workload analysis. The concept in section 4.1.1 calculates the sum over all adaptation
costs in the suggested time interval. In this example the sum is calculated by evaluating the
following function: ∫ tmax

tmin

adapTi
µ
(t) (7.13)

adapTi
µ
(t) is defined by formula 7.9 and 7.10. The corresponding Function resource’s repre-

sentation (in part) is:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <function >

3 <id >2929801b-edd0 -427b-bffe -5 c6470af492b </id>

4 <alias >pt_adap </alias >

5 <formula >

6 IGR_t(

7 IFF(

8 EQU(To ,1),

9 IFE(<(MOD(t,12) ,3), 125, 42)

10) +

11 IFF(

12 EQU(To ,2),

13 IFE(<(MOD(t,12) ,3), 120, 0)

14))

15 </formula >

16 <description >

17 Prototype , cost function;

18 t: time interval ,

19 To: topology numbering

20 </description >

21 <functionType >cost </ functionType >

22 ...

23 </function >

Listing 7.9: XML Representation: Cost Function Resource

Nested Parameter resources looks like the Parameter resources of the revenue Function re-
source (without the resource for parameter w).

114

7.2 Practical Use

Application and Topology Resources

Next, a Application resource and nested Tier and Requirement resources has to be created. Fur-
thermore Distribution, Offering and Performance resource has to be created for each alternative
distribution.

The Application resources alias is pt_app, the Distribution resources’ pt_Prms, pt_IaaS and pt_-
DBaaS.

Utility Function Resource

It is possible to create the Utility Function resource and nested SubFunction resources for one
Distribution resource and then clone them for the other Distribution resources.

The costs for the physical server are ignored. Each distribution contains this matter of ex-
pense. Thus, it will not have an impact on the decision. Distribution pt_Prms’s Utility Func-
tion resource’s alias is pt_uf-0. SubFunction resources represent links to the already created
cost and revenue Function resources.

The Utility Function and SubFunction resources’ representations (in part) looks like:

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <utilityFunction >

3 <id >282 b087f -7939 -4a13 -bfcd -87 b8a684b98b </id>

4 <alias >pt_uf -0</alias >

5 <description >

6 Prototyp Utility Function for pt_Prms

7 </description >

8 <distributionId >

9 9a2194ff -eaa4 -4d0e -890a-8 f898de73e53

10 </distributionId >

11 ...

12 </utilityFunction >

Listing 7.10: XML Representation: Utility Function Resource for T0
µ

1 <?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

2 <subfunctions >

3 <subFunction >

4 <functionId >4c5f5308 -c1f4 -49e7-b50f -1 c36edd14ac4 </functionId >

5 <number >1</number >

6 <utilityFunctionId >

7 282b087f -7939 -4a13 -bfcd -87 b8a684b98b

8 </utilityFunctionId >

115

7 Evaluation

9 ...

10 </subFunction >

11 <subFunction >

12 <functionId >2929801b-edd0 -427b-bffe -5 c6470af492b </functionId >

13 <number >2</number >

14 <utilityFunctionId >

15 282b087f -7939 -4a13 -bfcd -87 b8a684b98b

16 </utilityFunctionId >

17 ...

18 </subFunction >

Listing 7.11: XML Representation: Sub-Function Resources for T0
µ

This resources are cloned for the other Distribution resources, but both Distribution resources
(pt_IaaS and pt_DBaaS) requires a third SubFunction resource. The additional resource en-
ables the cost calculation by the Nefolog framework. The Nefolog configuration-IDs are 289
(IaaS) and 187 (DBaaS). The resource’s XML representations are (in part):

pt_IaaS:

1 <subFunction

2 <functionId >nefolog$289 </functionId >

3 <number >3</number >

4 <utilityFunctionId >

5 687b5a5f -74e1 -41ac-a6c8 -e6f350c14274

6 </utilityFunctionId >

7 <links >

8 <link rel=" parameters">

9 /UtilityFunction /687 b5a5f -74e1 -41ac-a6c8 -e6f350c14274/

SubFunction /3/ NefologParameter

10 </link >

11 </links >

12 </subFunction >

Listing 7.12: XML Representation: Nefolog Sub-Function Resource for T1
µ

pt_DBaaS:

1 <subFunction >

2 <functionId >nefolog$187 </functionId >

3 <number >3</number >

4 <utilityFunctionId >

5 a00bc6d5 -6b77 -4ce3 -9807- c162e41be21a

6 </utilityFunctionId >

7 <links >

116

7.2 Practical Use

8 <link rel=" parameters">

9 /UtilityFunction/a00bc6d5 -6b77 -4ce3 -9807- c162e41be21a/

SubFunction /3/ NefologParameter

10 </link >

11 </links >

12 </subFunction >

Listing 7.13: XML Representation: Nefolog Sub-Function Resource for T2
µ

7.2.4 Decision Support

All necessary resources have been created, but SubFunction resources still missing parameter
assignments. After the assignments the decision support is operational.

The application should run for 15 month from February 1, 2015 to April 31, 2016, thus,
T = [1, 16]. Two workloads are suggested (w = [0, 1]) and To corresponds with the viable
topology’s numbering (0, 1, or 2).

Parameter Assignments

The UtiltyFunction resource for pt_Prms has two nested SubFunction resources, the Utilty-
Function resources for pt_IaaS and pt_DBaaS have the additional resource for the Nefolog
cost calculation.

Revenue

• /UtilityFunction/pt_uf-0/SubFunction/1/assign?key=pt&w=[0,1]&t=[1,16]&To=0

• /UtilityFunction/pt_uf-1/SubFunction/1/assign?key=pt&w=[0,1]&t=[1,16]&To=1

• /UtilityFunction/pt_uf-2/SubFunction/1/assign?key=pt&w=[0,1]&t=[1,16]&To=2

Cost

• /UtilityFunction/pt_uf-1/SubFunction/2/assign?key=pt&w=[0,1]&t=[1,16]&To=0

• /UtilityFunction/pt_uf-2/SubFunction/2/assign?key=pt&w=[0,1]&t=[1,16]&To=1

• /UtilityFunction/pt_uf-3/SubFunction/2/assign?key=pt&w=[0,1]&t=[1,16]&To=2

Nefolog
URIs

• /UtilityFunction/pt_uf-1/SubFunction/3/NefologParameter

• /UtilityFunction/pt_uf-2/SubFunction/3/NefologParameter

provides XML documents which contains parameters for the cost calculation.

117

7 Evaluation

1 <parameters >

2 <parameter >Hour </parameter >

3 <parameter >Month </parameter >

4 <parameter >GBExternalNetworkEgress </parameter >

5 <parameter >location_zone </parameter >

6 <parameter >usage_pattern </parameter >

7 </parameters >

Listing 7.14: XML Representation: Nefolog Parameters for T1
µ

1 <parameters >

2 <parameter >Hour </parameter >

3 <parameter >i/oOperation </parameter >

4 <parameter >GBStorage </parameter >

5 <parameter >Month </parameter >

6 <parameter >GBExternalNetworkEgress </parameter >

7 <parameter >location_zone </parameter >

8 <parameter >usage_pattern </parameter >

9 </parameters >

Listing 7.15: XML Representation: Nefolog Parameters for T2
µ

These Cloud services should run 24/7 for 15 month. Location must be inside the European
Union. Parameter GBStorage has a strong influence on the result. Missing the assignment for
GBStorage results in excessive costs for the DBaaS service. Therefore, the parameter is set to
1000 (1 terrabyte).

• /UtilityFunction/pt_uf-2/SubFunction/3/assign?key=pt&
Hour=10800&Month=15&location_zone=EU

• /UtilityFunction/pt_uf-3/SubFunction/3/assign?key=pt&
Hour=10800&Month=15&location_zone=EU&GBStorage=1000

Evaluation

Two URIs provide decision support. Kereta can create a list with the evaluation of each
suggested viable topology or just select the fittest topology.

• /Application/pt_app/compare?
pt_Prms=pt_uf-0:pt&pt_IaaS=pt_uf-1:pt&pt_DBaaS=pt_uf-2:pt

• /Application/pt_app/select?
pt_Prms=pt_uf-0:pt&pt_IaaS=pt_uf-1:pt&pt_DBaaS=pt_uf-2:pt

The first URI returns the following XML representation:

118

7.2 Practical Use

1 <listing >

2 <calculation class=" utilityFunction">

3 <result >34824.82 </ result >

4 <distributionId >

5 6617d158 -da36 -4913-a60e -cb986d9461a2

6 </distributionId >

7 <subCalculations >

8 <calculation class=" subfunction" number ="1" type=" revenue">

9 <result >52741.32 </ result >

10 ...

11 </calculation >

12 <calculation class=" subfunction" number ="2" type="cost">

13 <result >594.00 </ result >

14 ...

15 </calculation >

16 <calculation class=" subfunction" number ="3" type="cost">

17 <result >17322.50 </ result >

18 ...

19 </calculation >

20 <subCalculations >

21 </calculation >

22

23 <calculation class=" utilityFunction">

24 <result >44531.99 </ result >

25 <distributionId >

26 5831e0d0 -3a8b -453c-a963 -fc1ec3bfd681

27 </distributionId >

28 <subCalculations >

29 <calculation class=" subfunction" number ="1" type=" revenue">

30 <result >51266.84 </ result >

31 ...

32 </calculation >

33 <calculation class=" subfunction" number ="2" type="cost">

34 <result >1040.85 </ result >

35 ...

36 </calculation >

37 <calculation class=" subfunction" number ="3" type="cost">

38 <result >5694.00 </ result >

39 ...

40 </calculation >

41 </subCalculations >

42 </calculation >

43

44 <calculation class=" utilityFunction">

119

7 Evaluation

45 <result >42680.74 </ result >

46 <distributionId >

47 9a2194ff -eaa4 -4d0e -890a-8 f898de73e53

48 </distributionId >

49 <subCalculations >

50 <calculation class=" subfunction" number ="1" type=" revenue">

51 <result >42680.74 </ result >

52 ...

53 </calculation >

54 <calculation class=" subfunction" number ="2" type="cost">

55 <result >0.00 </ result >

56 ...

57 </calculation >

58 </subCalculations >

59 </calculation >

60 </listing >

Listing 7.16: XML Representation: Compare Alternative Distributions

Rank Alias Distribution Utility Revenue Cost
1 pt_IaaS T1

µ 44,531.99$ 51,266.84$ 6,734.85$
2 pt_Prms T0

µ 42,680.74$ 42,680.74$ 0.00$
3 pt_DBaaS T2

µ 34,824.82$ 52,741.32$ 17,916.50$

Table 7.1: Ranking based on the Utility

The ranking is: T1
µ > T0

µ > T2
µ. The summarized results (table 7.1) shows that Distribution

pt_IaaS provides the highest utility (44,531.99$). Furthermore, users can read, that pt_DBaaS
generates the highest revenue (52,741.32$) but also comes with the highest costs (17.916,50$).
The main cost driver is the DBaaS offering. This distributed deployment promises the best
end-user experience (measured on the basis of revenue), it is nevertheless not the best choice.
Utility breaks different aspects into one axis [STFG08]. Higher end-user experience could not
equal higher costs in this particular case. Between pt_IaaS and pt_Prms the reverse is true.
Thus, pt_IaaS is the best choice.

7.3 Discussion

The example in section 7.1 shows that the concept presented in section 4.1.1 can be used
to calculate the expected utility of different viable topologies. The connection to Nefolog
enables a convenient calculation of distributions’ fixed costs. The task of keeping data up-to-
date can be left to the Nefolog vendor. The process of parameter assignments is a little bit
complicated and surly violated the REST constraint stateless. On the other hand, usability is
improved and error-prone, extensive long string queries are prevented.

120

7.3 Discussion

Decision support not only delivers the topology which promises the highest utility, but also
provides numbers that support a analysis of the cause. In this way, it is possible to evaluate
which changes will alter the decision. The implementation of the parser and the expression
evaluator fulfil their purpose. There occurs no limitations for the descriptions of formulas in
section 7.2.

121

7 Evaluation

122

8 Outcome and Future Work

Chapter 2 presents concepts and technologies which are necessary as a basis for this the-
sis. The chapter also introduces the Winery Modeling Tool and the Nefolog system. Both tools
are utilized in the following concept for the Utility Calculation Framework. The framework fol-
lows the also mentioned architectural style REST. Chapter 3 presents existing approaches for
using utility theory in software architectures. The comparison shows that there are different
ways to handle the trade-off between e.g. cost and performance. The two main identified
concepts are (1) focussing on the financial impact and value each aspect with an amount of
money and (2) defining for each aspect a mapping that transfers a quality (e.g. availability,
costs, CPUs) into a uniform scale (e.g. U(q)→ [0, 1]). The utility function concept in Chapter
4 is focussing on the profitability of business applications, and therefore is based on concept
(1). The analysis of existing approach carried out a way to handle uncertainties with respect
to the actual perceived QoS.

The utility function concept determines a viable distribution’s utility by calculating the ex-
pected revenue, the distribution’s fixed costs and the adaptation costs. Chapter 4 contains
the exemplary application of the utility function concept. Furthermore, requirements, use
cases and the system overview provides the foundations towards a framework which al-
lows for the utility-based evaluation of the different deployment alternatives for cloud ap-
plications. Chapter 5 is based on this work and describes the design of the Utility Calculation
Framework. Central components are a repository, a module that enables the evaluation of
functions and a RESTful Interface. The repository manages resources like Application Descrip-
tions, Distributions, Utility Functions and reusable Functions. A major focus lies on providing
reusable Functions that allows for the simplify development of customized utility functions.
Users also have the possibility to create their own Function resources. Therefore, Chapter
5 defines the mandatory syntax and semantic for mathematical expressions. The RESTful
API should provide a uniform interface to the system’s functionality. The design follows the
REST constraints outlined in Chapter 2.

Chapter 6 presents the actual implementation of the framework designed in Chapter 5. Key
points are the overview of resources URIs (table 6.1), resources’ XML representation and
the implementation’s functionality, e.g. calculation and decision support. The name of the
prototypical implementation is Kereta. Kereta implements the repository, the module that
evaluates functions and the RESTful Interface. Finally, Kereta and the utility function concept
is evaluated by performing a decision process from scratch in Chapter 7.

The utility function concept in Chapter 4 strongly addresses applications in B2B and B2C
scenarios. A future research could be focussed on other scenarios and it may be necessary
to think about other concepts then suggesting the profitability of applications. Furthermore,

123

8 Outcome and Future Work

the concept does not adapt the above mentioned handling of uncertainties. This could im-
prove the decision support in cases where decisions rely on probabilistic forecasts. One ad-
ditional, interesting challenge is the seamless integration of the Utility Calculation Framework
in the value chain from specifying an application till the application’s deployment and dy-
namically redeployment. Forecasts could influence earlier decisions and the back coupling
of business reports and the results of repeated workload analysis could improve further de-
cision.

124

Bibliography

[ABLt13] V. Andrikopoulos, T. Binz, F. Leymann, and S. trauch. How to Adapt Applica-
tions for the Cloud Environment. Computing, 95:493–535, 2013.

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud Comput-
ing. Commun. ACM, 53(4):50–58, April 2010.

[AGSLW14] V. Andrikopoulos, S. Gómez Sáez, F. Leymann, and J. Wettinger. Optimal
Distribution of Applications in the Cloud. In M. Jarke, J. Mylopoulos, C. Quix,
C. Rolland, Y. Manolopoulos, H. Mouratidis, and J. Horkoff, editors, Advanced
Information Systems Engineering, volume 8484 of Lecture Notes in Computer Sci-
ence, pages 75–90. Springer International Publishing, 2014.

[ARSL14] V. Andrikopoulos, A. Reuter, S. G. Sáez, and F. Leymann. A GENTL Approach
for Cloud Application Topologies. In Proceedings of the Third European Confer-
ence on Service-Oriented and Cloud Computing (ESOCC 2014), Lecture Notes in
Computer Science (LNCS), pages 1–11. Springer, September 2014.

[ARXL14] V. Andrikopoulos, A. Reuter, M. Xiu, and F. Leymann. Design Support for
Cost-Efficient Application Distribution in the Cloud. In Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, pages 697–704, June 2014.

[AS13] W. Al Shehri. CLOUD DATABASE DATABASE AS A Service. International
Journal of Database Management Systems, 5(2):1–12, 2013.

[ASL13] V. Andrikopoulos, Z. Song, and F. Leymann. Supporting the Migration of
Applications to the Cloud through a Decision Support System. In Proceedings
of the 6th IEEE International Conference on Cloud Computing (CLOUD 2013), June
27-July 2, 2013, Santa Clara Marriott, CA, USA, pages 565–572. IEEE Computer
Society, July 2013.

[BBKL14] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. TOSCA: Portable Au-
tomated Deployment and Management of Cloud Applications, chapter TOSCA:
Portable Automated Deployment and Management of Cloud Applications,
pages 527–549. Springer, New York, January 2014.

[BEDL+03] R. Bardohl, H. Ehrig, J. De Lara, O. Runge, G. Taentzer, and I. Weinhold. Node
type inheritance concept for typed graph transformation. Technische Universität
Berlin, Fakultät IV-Elektrotechnik und Informatik, 2003.

125

Bibliography

[BSW14] A. Brogi, J. Soldani, and P. Wang. TOSCA in a Nutshell: Promises and Perspec-
tives. In M. Villari, W. Zimmermann, and K.-K. Lau, editors, Service-Oriented
and Cloud Computing, volume 8745 of Lecture Notes in Computer Science, pages
171–186. Springer Berlin Heidelberg, 2014.

[CSM14] CSMIC. Service Measurement Index Framework 2.1. http://csmic.org/

downloads/SMI_Overview_TwoPointOne.pdf, July 2014.

[EAA+04] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, D. M. Luo,
and T. Newling. Patterns: Service-Oriented Architecture and Web Services. IBM
Redbooks, 2004.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, Internet
Engineering Task Force, June 1999.

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, 2000. AAI9980887.

[Fis70] P. Fishburn. Utility theory for decision making. Publications in operations re-
search. Wiley, 1970.

[GB08] M. Galster and E. Bucherer. A Taxonomy for Identifying and Specifying Non-
Functional Requirements in Service-Oriented Development. In Services - Part
I, 2008. IEEE Congress on, pages 345–352, July 2008.

[GGS10] J. Gutierrez-Garcia and K.-M. Sim. Self-Organizing Agents for Service Compo-
sition in Cloud Computing. In Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on, pages 59–66, Nov 2010.

[GSAGL14] S. Gómez Sáez, V. Andrikopoulos, K. Ganguly, and F. Leymann. Enrich-
ing Cloud Application Topologies with Evolving Performance and Workload
Models. In TODO, page TODO, 2014.

[GSALS14] S. Gomez Saez, V. Andrikopoulos, F. Leymann, and S. Strauch. Towards Dy-
namic Application Distribution Support for Performance Optimization in the
Cloud. In Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on, pages 248–255, June 2014.

[GVB11] S. Garg, S. Versteeg, and R. Buyya. SMICloud: A Framework for Compar-
ing and Ranking Cloud Services. In Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pages 210–218, Dec 2011.

[HS10] C.-W. Hang and M. Singh. From Quality to Utility: Adaptive Service Selection
Framework. In P. P. Maglio, M. Weske, J. Yang, and M. Fantinato, editors,
Service-Oriented Computing, volume 6470 of Lecture Notes in Computer Science,
pages 456–470. Springer Berlin Heidelberg, 2010.

[JM12] Y. Jadeja and K. Modi. Cloud computing - concepts, architecture and chal-
lenges. In Computing, Electronics and Electrical Technologies (ICCEET), 2012 In-
ternational Conference on, pages 877–880, March 2012.

126

http://csmic.org/downloads/SMI_Overview_TwoPointOne.pdf
http://csmic.org/downloads/SMI_Overview_TwoPointOne.pdf

Bibliography

[Joh07] T. Johnson. Utility Theory. C2922 Economics, 2007.

[JR01] G. Jehle and P. Reny. Advanced Microeconomic Theory. Addison-Wesley series
in economics. Addison-Wesley, 2001.

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery – Modeling
Tool for TOSCA-based Cloud Applications. In 11th International Conference
on Service-Oriented Computing, LNCS. Springer, 2013.

[KDM13] R. Karim, C. Ding, and A. Miri. An End-to-End QoS Mapping Approach
for Cloud Service Selection. In Services (SERVICES), 2013 IEEE Ninth World
Congress on, pages 341–348, June 2013.

[KM14] S. Kheradmand and M. Meybodi. Price and QoS competition in cloud market
by using cellular learning automata. In Computer and Knowledge Engineering
(ICCKE), 2014 4th International eConference on, pages 340–345, Oct 2014.

[LRBK10] S. Leimeister, C. Riedl, M. Böhm, and H. Krcmar. The Business Perspective of
Cloud Computing: Actors, Roles, and Value Networks. In Proceedings of 18th
European Conference on Information Systems (ECIS 2010), Pretoria, South Africa,
2010.

[LS10] W. Lehner and K.-U. Sattler. Database as a service (DBaaS). In Data Engineering
(ICDE), 2010 IEEE 26th International Conference on, pages 1216–1217, March
2010.

[LWW+10] M. Litoiu, M. Woodside, J. Wong, J. Ng, and G. Iszlai. A business driven cloud
optimization architecture. In in SAC, 2010, pages 380–385, 2010.

[Max05] E. M. Maximilien. Agent-based trust model involving multiple qualities. In
In Proc. of the 4th Int. Joint Conf. on Autonomous Agents and Multiagent Systems,
pages 519–526. AAMAS, ACM, 2005.

[MF11] D. Minarolli and B. Freisleben. Utility-based resource allocation for virtual
machines in Cloud computing. In Computers and Communications (ISCC), 2011
IEEE Symposium on, pages 410–417. IEEE, 2011.

[MG11] P. M. Mell and T. Grance. SP 800-145. The NIST Definition of Cloud Comput-
ing. Technical report, National Institute of Standards & Technology, Gaithers-
burg, MD, United States, 2011.

[Nor99] J. Norstad. An introduction to utility theory. Unpublished manuscript at
http://homepage. mac. com/j. norstad, 1999.

[OMN+04] D. Orchard, F. McCabe, E. Newcomer, H. Haas, C. Ferris, D. Booth, and
M. Champion. Web Services Architecture. W3C note, W3C, February 2004.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[Org06] Organization for the Advancement of Structured Information Standards. Ref-
erence Model for Service Oriented Architecture 1.0. OASIS, July 2006.

127

Bibliography

[otSS11] E. A. D. of the Systems and N. A. C. (SNAC). Guidelines for Implementation
of REST. Report I73-015R-2011, National Security Agency, 9800 Savage Rd.
Suite 6704 Ft. Meade, MD 20755-6704, mar 11.

[PG03] M. Papazoglou and D. Georgakopoulos. Service-oriented computing. Com-
mun. ACM, 46(10):24–28, 2003.

[PTDL07] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented
Computing: State of the Art and Research Challenges. Computer, 40(11):38–45,
Nov 2007.

[PvdH11] M. Papazoglou and W. van den Heuvel. Blueprinting the Cloud. Internet
Computing, IEEE, 15(6):74–79, Nov 2011.

[PZJ14] J. Park, A. Zomaya, and H. Jeong. Frontier and Innovation in Future Computing
and Communications. Springer, 2014.

[RCL09] B. Rimal, E. Choi, and I. Lumb. A Taxonomy and Survey of Cloud Computing
Systems. In INC, IMS and IDC, 2009. NCM ’09. Fifth International Joint Confer-
ence on, pages 44–51, Aug 2009.

[RR07] L. Richardson and S. Ruby. Restful Web Services. O’Reilly, first edition, 2007.

[Sáe14] S. G. Sáez. Design Support for Performance-aware Cloud Application (Re-
)Distribution. In Proceedings of the PhD Symposium at the 3rd European Confer-
ence on Service-Oriented and Cloud Computing (ESOCC 2014), pages 6–11. Jenaer
Schriften zur Mathematik und Informatik, September 2014.

[SALS14] S. G. Sáez, V. Andrikopoulos, F. Leymann, and S. Strauch. Design Support
for Performance Aware Dynamic Application (Re-)Distribution in the Cloud.
IEEE Transactions on Service Computing, pages 1–14, December 2014.

[Sin15] M. Singh. Study on cloud computing and cloud database. In Computing, Com-
munication Automation (ICCCA), 2015 International Conference on, pages 708–
713, May 2015.

[SP12] J. Siegel and J. Perdue. Cloud Services Measures for Global Use: The Service
Measurement Index (SMI). In SRII Global Conference (SRII), 2012 Annual, pages
411–415, July 2012.

[STFG08] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R. Ganger. Using Utility to
Provision Storage Systems. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies, FAST’08, pages 21:1–21:16, Berkeley, CA, USA, 2008.
USENIX Association.

[UK12] G. Ucoluk and S. Kalkan. Introduction to Programming Concepts with Case Stud-
ies in Python. SpringerLink : Bücher. Springer Vienna, 2012.

[VRMCL08a] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the
clouds: towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1):50–55, 2008.

128

Bibliography

[VRMCL08b] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A Break in
the Clouds: Towards a Cloud Definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, December 2008.

[XA13] M. Xiu and V. Andrikopoulos. The Nefolog & MiDSuS Systems for Cloud
Migration Support. Technischer Bericht Informatik 2013/08, Universität
Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Ger-
many, Universität Stuttgart, Institut für Architektur von Anwendungssyste-
men, November 2013.

[YMBD14] Z. Ye, S. Mistry, A. Bouguettaya, and H. Dong. Long-term QoS-aware Cloud
Service Composition using Multivariate Time Series Analysis. Services Com-
puting, IEEE Transactions on, PP(99):1–1, 2014.

[YZL07] T. Yu, Y. Zhang, and K.-J. Lin. Efficient Algorithms for Web Services Selection
with End-to-end QoS Constraints. ACM Trans. Web, 1(1), May 2007.

All links were last followed on January 18, 2016

129

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any other sources and references that the
listed ones. I have marked all direct or indirect statements from
other sources contained therein as quotations. Neither this work
nor significant parts of it were part of another examination proce-
dure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

Stuttgart, January 18, 2016 ——————————–
(Name)

	Introduction
	Motivation and Problem Statement
	Research Challenges
	Definitions and Conventions
	Outline

	Fundamentals
	Cloud Computing
	Actors
	Service Models
	Cloud Models
	Migration Types
	Payment Models

	Cloud Application Topologies
	Specifications and Existing Approaches

	Application Workload
	Cloud Application Distribution
	Optimizing the Distribution
	Application Topology Fundamentals

	Cloud Consumers' Requirements
	Service-orientated Architecture and Computing
	Service-oriented Computing
	Service-oriented Architecture

	Utility Theory
	Definitions
	Usage in Economics

	REST
	Resources
	Constraints
	HTTP commands

	Nefolog and MiDSuS Cost Calculation Framework
	Nefolog
	MiDSuS

	Related Works
	Approaches in Cloud Computing
	Utility-based Resource Allocation for Virtual Machines
	Price and QoS Competition in Cloud Market
	Service Measurement Index

	Approaches in Service Oriented Architecture
	QBroker
	Agent-Based Trust Model
	Adaptive Service Selection Framework

	Approach in Provision Storage Systems
	Conclusion

	Concept and Specification
	Utility Functions
	Concept
	Example

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Use Cases
	Use Cases Description

	System Overview
	Topology Modeler
	Utility Calculation Framework
	Provisioning Engine

	Design
	Architecture
	Resource Model
	Application-specific Topology
	Application-specific Component
	Requirement
	Application Topology
	Application Subgraph
	Performance
	Function
	Parameter
	Utility Function
	Utility Function Sub-Function
	Types

	Kereta Repository
	Nesting
	Identifiers
	Methods
	Representation
	Repository Functionality

	Kereta Database
	Kereta Calculation
	Syntax and Semantic
	Parser
	Calculation

	Implementation
	Kereta
	Resources
	Functionality
	Kereta Database

	Evaluation
	Workflow
	Practical Use
	Workload
	Revenue
	Resource Modeling
	Decision Support

	Discussion

	Outcome and Future Work
	Bibliography

