
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3721

Automatisierte,
Ontologie-basierte

Sensorintegration für das Internet
der Dinge

Sven Grumbein

Studiengang: Informatik

Prüfer/in: PD Dr. rer. nat. habil. Holger Schwarz

Betreuer/in: Dipl.-Inf. Pascal Hirmer

Beginn am: 4. Mai 2015

Beendet am: 3. November 2015

CR-Nummer: C.0, C.2.4, E.2, H.2.8, H.3.3, H.3.5

Kurzfassung

Das Internet der Dinge (IoT) bezeichnet im Allgemeinen die Vernetzung von technischen
Geräten. Diese Geräte, auch intelligente Objekte genannt, enthalten dabei meist Sensoren,
die Informationen über ein Objekt und dessen Umgebung bereitstellen. Derartige vernetzte
Umgebungen werden als intelligente Umgebungen bezeichnet. Die „Industrie 4.0“-Initiative
greift diese technologische Entwicklung auf und wendet sie auf Produktions- und Logistik-
systeme an. Die vernetzten Daten ermöglichen es beispielsweise Prozesse und Workflows
situationsbedingt zu adaptieren.

Das DFG-Forschungsprojekt SitOPT entwickelt ein System zur Optimierung und Adaption
situationsbezogener Anwendungen basierend auf Workflow-Fragmenten. Teil dieses Sys-
tems ist eine Situationserkennung. Sie leitet aus Sensorwerten Situationen ab. Um dies zu
ermöglichen, müssen Sensoren in das System integriert werden.

In dieser Arbeit wird ein Konzept zur automatisierten ad-hoc Sensorintegration entworfen
und entwickelt. Dazu wird eine Ontologie als semantische Wissensbasis entworfen, die
Objekte, Sensoren und ihre Eigenschaften semantisch verknüpft. Über einen REST-basierten
Service wird die Ontologie bedient und eine Sensorintegration initiiert. Adapter fungieren
als Schnittstelle zwischen Sensoren und der Situationserkennung und werden im Prozess
der Sensorintegration auf das Objekt übertragen.

3

Inhaltsverzeichnis

1 Einleitung 9

2 Hintergrund und Motivation 13
2.1 SitOPT . 13
2.2 Situationserkennung – SitRS . 16
2.3 Sensorintegration – SeInt . 18

3 Grundlagen 21
3.1 Internet der Dinge . 21
3.2 Industrie 4.0 . 22
3.3 Sensoren . 22
3.4 Ontologie . 23

3.4.1 Ontologie in der Informatik . 24
3.4.2 Resource Description Framework und RDF Schema 26
3.4.3 Web Ontology Language – OWL . 29
3.4.4 Abfragesprache SPARQL . 32

3.5 Representational State Transfer – REST . 34

4 Verwandte Arbeiten 37
4.1 SWE und SensorML . 37
4.2 OntoSensor – ontologische Übersetzung von SensorML 38
4.3 Sensoren und deren Datenströme als verknüpfte und frei verfügbare Daten . 39
4.4 OpenTOSCA . 40

5

5 Konzept 41
5.1 Gesamtstruktur . 41
5.2 Zentraler Service – ZS . 44
5.3 Ontologie als Wissensbasis . 44
5.4 Klient . 49
5.5 Sensordatenanbindung über Adapter . 50
5.6 Optimierung . 52
5.7 Autonome Sensorintegration . 53

5.7.1 Eintrittsankündigung . 55
5.7.2 Eintrittsaufforderung . 57
5.7.3 Weitere Probleme einer autonomen Sensorintegration 57

5.8 Sicherheit . 60

6 Implementierung 63
6.1 Technologieentscheidung für die Software 63
6.2 Ontologie mit Protégé . 64
6.3 Sensorintegration – SeInt . 66

6.3.1 Ontologie-Schnittstelle . 66
6.3.2 REST-basierte Schnittstelle nach außen 68
6.3.3 Klient für SeInt . 68
6.3.4 Adapter auf einem Raspberry Pi . 72

7 Zusammenfassung und Ausblick 73

Literaturverzeichnis 75

6

Abbildungsverzeichnis

2.1 SitOPT Übersicht (Quelle: [WSBL15], Fig. 3) . 14
2.2 Workflow Adaption (Quelle: [BHK+]) . 15
2.3 SitRS Architektur (Quelle: [HWS+15], Fig. 2) . 17
2.4 Beispiel eines Situation Template (nach [HWS+15], Fig. 4) 18

3.1 Ontologie Beispiel . 25
3.2 RDF Tripel – Subjekt, Prädikat, Objekt (nach [RDF1.1], Fig. 1) 26
3.3 RDF Graph - Beispiel (nach [RDFX], Fig. 1) . 27
3.4 Beispiel RDF-Schema Graph . 29
3.5 OWL Stack (nach [WSEM]) . 30

5.1 Konzept Übersicht . 42
5.2 Konzept Sequenzdiagramm einer Sensorintegration 43
5.3 Konzept Ontologie des Objektes . 45
5.4 Konzept Ontologie der Sensoren . 46
5.5 Konzept Ontologie Relationen . 48
5.6 Konzept Adapter Provisionierung . 51
5.7 Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsankündi-

gung . 56
5.8 Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsaufforde-

rung . 58

6.1 Koordinaten als Klasse oder Wert . 65
6.2 Weboberfläche des Klients . 70

7

Verzeichnis der Listings

3.1 Beispiel OWL in RDF/XML (vgl. Abbildung 3.4) 33
3.2 Beispiel SPARQL-Query . 34

6.1 OWL Instanz eine Sensors – Ultraschall Messmodul HC-SR04 66
6.2 Methode zum direkten Auslesen eines speziellen Wertes einer Instanz 67
6.3 Methode zum Auslesen der Sensordaten . 67
6.4 Beispiel einer REST-Ressource in Jersey . 68
6.5 Ontologie Sensor-Instanz des Ultraschall Messmodul HC-SR04 69
6.6 Quellcodebeispiel des Klient . 71

8

1 Einleitung

Das Internet der Dinge (IoT) ist eine derzeit aufstrebende Technologie [For15]. In ihm werden
stetig mehr werdende technische Geräte in sogenannte intelligente Umgebungen eingebun-
den. Diese Geräte besitzen meist eine Vielzahl Sensoren und liefern entsprechend viele
Sensordaten. All diese Sensorendaten vernetzt in einer intelligenten Umgebung offerieren
eine Menge neuer Möglichkeiten. Zum Beispiel können höherwertige Situationen erkannt
und auf diese automatisiert reagiert werden.

Die Industrie 4.0 versteht sich als technologische Revolution zum bisherigen Stand [BMBF15].
Sie beruht auf der Idee des Internets der Dinge und wendet diese auf Fertigung- und Logis-
tikprozesse an. Diese Prozesse können – z. B. als Workflow modelliert – bedarfsorientiert
und situationsbedingt ausgeführt werden.

Das DFG-Forschungsprojekt SitOPT entwickelt ein System zur Optimierung und Adaption
situationsbezogener Anwendungen basierend auf Workflow-Fragmenten. Eine Situations-
erkennung (SitRS) nimmt sich der Aufgabe an, eine Situation aus ermittelten Sensordaten
abzuleiten. Tritt eine Situation ein, kann SitOPT einen Workflow entsprechend adaptieren.

Sensorenmüssen in SitRS integriert werden, um an die Sensordaten zur Situationserkennung
zu kommen. Bisher mussten Sensoren aufwendig manuell in das System integriert werden.

Ziel und Motivation dieser Arbeit ist es, eine automatisierte ad-hoc Sensorintegration zu
schaffen. Über eine Ontologie erhält diese Sensorintegration semantisches Wissen über
Objekte und Sensoren.
Der Hintergrund und die Motivation werden in Kapitel 2 detailliert vertieft.

9

1 Einleitung

Gliederung

Diese Diplomarbeit ist in folgender Weise gegliedert:

Kapitel 2 – Hintergrund und Motivation beschreibt SitOPT als Hintergrund dieser Arbeit
und die Motivation einer Sensorintegration.

Kapitel 3 – Grundlagen erklärt die Grundlagen der eingesetzten Technologien.

Kapitel 4 – Verwandte Arbeiten weist auf verwandte Arbeiten hin und gibt einen Einbli-
cke in diese.

Kapitel 5 – Konzept zeigt die konzeptionelle Lösung.

Kapitel 6 – Implementierung schildert die technische Umsetzung der konzeptionellen
Lösung.

Kapitel 7 – Zusammenfassung und Ausblick fasst die Arbeit zusammen und gibt einen
Ausblick wie die Lösung weiterentwickelt werden kann.

Begriffserklärung

In dieser Diplomarbeit werden verschiedene Begriffe wiederholt verwendet. An dieser Stelle
wird erklärt welche Bedeutung ihnen inne liegt.

Situation – eine Situation ergibt sich aus einer bedingten Zustandsänderung gemessen
durch Sensoren.

Internet der Dinge – auch Internet of Things bzw. IoT. Die Differenzierung in diesem The-
menbereich ist schwierig und in der Literatur wird dieser und die folgenden Begriffe
(s.u.) teils synonym verwendet. In dieser Diplomarbeit ist mit dem Begriff das Konzept
der Vernetzung und Adressierung verschiedener Objekte über das Internet gemeint.
Kapitel 3.1 geht detaillierter auf IoT ein.

Objekt – ein Objekt ist der Gegenstand oder das Gerät respektive das „Ding“ aus dem
Internet der Dinge.

SMART <AUSDRUCK> – <Ausdruck> ist eine intelligente Einheit, die mit ihren beinhal-
tenden Elementen bzw. mit seiner Umgebung vernetzt ist. In der Vernetzung findet ein
Informationsaustausch statt, mittels der intelligent agiert wird.
Beispiele: SMART Factory, SMART Environment, SMART Car, SMART Home

10

Über dieses Dokument

Diese Diplomarbeit wurde mit LATEX mittels der MiKTEX-Distribution gesetzt. Das Dokument
basiert auf der inoffiziellen Vorlage1 für Diplomarbeiten für Informatik an der Universität
Stuttgart.

Als Texteditoren wurden sowohl Notepad++2, als auch TEXnicCenter3 (Version 2.02) einge-
setzt.

Vektorgrafiken, sofern nicht zitiert, wurden mit yEd4 und Inkscape5 erstellt.

1https://github.com/latextemplates/uni-stuttgart-computer-science-template
2https://notepad-plus-plus.org/
3http://www.texniccenter.org/
4http://www.yworks.com/en/products/yfiles/yed/
5https://inkscape.org/

11

https://github.com/latextemplates/uni-stuttgart-computer-science-template
https://notepad-plus-plus.org/
http://www.texniccenter.org/
http://www.yworks.com/en/products/yfiles/yed/
https://inkscape.org/

2 Hintergrund und Motivation

Diese Arbeit entstand vor dem Hintergrund des Forschungsprojektes SitOPT. Einleitend vor
der Motivation dieser Arbeit wird als erstes das Forschungsprojekt SitOPT (2.1) in Grundzü-
gen beschrieben. Danach folgt die Komponente der Situationserkennung (SitRS, 2.2), die ein
Bestandteil von SitOPT darstellt. Anschließend wird die Motivation der Sensorintegration
(SeInt, 2.3) – also dieser Diplomarbeit – beschrieben. Diese Sensorintegration knüpft an die
Situationserkennung an.

2.1 SitOPT

Das Internet der Dinge verbreitet sich im derzeitigen Trend1 immer stärker. Die zugehörige
Hardware wird günstiger und die Anzahl der Sensoren und der gewonnenen Sensordaten
wächst. Wirtschaft und Industrie verfolgen unter dem Begriff „Industrie 4.0“ das Ziel Prozesse
automatisch zu steuern [Jas12]. Dazu muss sich ein System seiner Umgebung bewusst sein
und auf Situationen reagieren können.

SitOPT als ein universelles situationsbezogenes und adaptives Workflow Management Sys-
tem nimmt sich dieser Entwicklung an. Die gewachsene Informationsmenge moderner
Informationssysteme, des Internets der Dinge und der Industrie 4.0 gestalten eine robuste
Workflow-Modellierung aufwendig und komplex [WSBL15].

Mit der Anzahl der Datenquellen, die ein System erfasst, wächst auch die Anzahl der Zustände
im System. Aus einer Zustandsänderung kann sich eine neue Situation ableiten, welche einen
geänderten Workflow notwendig macht.

Beispiel einer Situation:
Die Temperatur einer Maschine steigt über einen Grenzwert. Es stellt sich die Situation
ein, dass die Maschine heiß gelaufen ist. Die Workflow-Änderung lässt die Maschine
nun langsamer laufen oder pausiert sie gar, damit sie abkühlen kann.

1Google Trends zu Internet of Things https://www.google.com/trends/explore#q=internet%20of%
20things

13

https://www.google.com/trends/explore#q=internet%20of%20things
https://www.google.com/trends/explore#q=internet%20of%20things

2 Hintergrund und Motivation

Situation Model Management

Situation Recognition

Sensor Adapter 1 Sensor Adapter n

Physical Sensors

Tools Transport Material Machines Production

Situation
Template

Repository

…

Situation-Handler
Situation-Aware

Workflow Management System

Workflow
Fragment

Repository

Situation-Aware
Workflow

Modeling Tool

La
ye

r
1

:
Se

n
si

n
g

La
ye

r
2

:
Si

tu
at

io
n

 R
ec

o
gn

it
io

n

La
ye

r
3

: S
it

u
at

io
n

-A
w

ar
e

W
o

rk
fl

o
w

Abbildung 2.1: SitOPT Übersicht (Quelle: [WSBL15], Fig. 3)

SitOPT lässt sich in drei Schichten untergliedern (Abb. 2.1). Die Sensorebene (Layer 1: Sensing)
erfasst Sensordaten und dient als Datenquelle für die darüber liegende Ebene der Situations-
erkennung (Layer 2: Situation Recognition). Die Situationserkennung bewertet die Daten aus
den Sensoren und signalisiert gegebenenfalls einen Situationseintritt. Die Workflow-Ebene
(Layer 3: Situation-Aware Workflow) adaptiert Workflows anhand von erkannten Situation
mit vordefinierten Workflow-Fragmenten (Abb. 2.2).

SitOPT ist ein durch die Deutsche Forschungsgemeinschaft (DFG) gefördertes Projekt2.

2Deutsche Forschungsgemeinschaft (DFG), Zuwendung 610872
„Optimierung und Adaption situationsbezogener Anwendungen basierend auf Workflow-Fragmenten“
http://gepris.dfg.de/gepris/projekt/252975529

14

http://gepris.dfg.de/gepris/projekt/252975529

2.2 Situationserkennung – SitRS

Retrieve
Material

Assemble
Product

Write
Invoice

Deliver
Product

Original Process

Retrieve
Material

Assemble
Product

Write
Invoice

Deliver
Product

Adapted Process for Situation „Machine fault“

Repair
Machine

Occuring situation

Abbildung 2.2:Workflow Adaption (Quelle: [BHK+])

2.2 Situationserkennung – SitRS

Der Situationserkennungs-Service (SitRS) [HWS+15] ist ein cloud-basiertes System. Es
abstrahiert aus systemnahen („low-level“) Sensordaten eine Situation, die von einer kon-
textsensitiven Anwendung weiterverarbeitet werden kann. In SitOPT beispielsweise ist die
Workflow-Ebene (Abb. 2.1 – Layer 3) eine solche kontextsensitive Anwendung.

Eine Situation ist das Ergebnis einer gegen Bedingungen geprüfte Auswertung von Sensor-
daten.

SitRS besteht aus mehreren Komponenten (siehe Abb. 2.3):

• Situation Registration Service
Hier wird eine Situation registriert, die erkannt werden soll. Tritt eine solche Situation
ein, wird dieses Ereignis über Push- oder Pull-Benachrichtigungen bekannt gegeben.

• Situation Template Repository
Diese Ablage enthält vorab definierte Modelle einer Situation, sogenannte Situation
Templates (ST). Ein ST ist ein Situation-Aggregation-Tree (SAT) [ZHKL09]. Abbildung
2.4 zeigt ein Beispiel-ST einer Maschinenüberhitzung. Die Blätter des Baumes enthalten
die Sensordaten und bilden die Kontextknoten, diese werden in den Bedingungsknoten
ausgewertet und bilden, verknüpft über Operationsknoten, die ausgewertete Situation
an der Wurzel.

15

2 Hintergrund und Motivation

Resource Management
Platform

Situation Recognition System

Physical Objects
with Sensors

Tools Transport Material Machines Production

Situation
Template

Repository

…

Situation
Registration

Service

Service Service

1 2 3 4

Mapping
fID

oID+ST

S1 Sn…

Situation
Recognition

Sensor
Registry

Create
Resource

R
egister

Sen
so

r

Sensor Adapter 1 Sensor Adapter n

Situation
Objects

Situation
Recognition

Service

Situation Model

Abbildung 2.3: SitRS Architektur (Quelle: [HWS+15], Fig. 2)

• Situation Recognition System
Die Situationserkennung stellt eine der Kernkomponenten von SitRS dar. Mit der
Situationsregistrierung wird ein ST eingelesen und in eine ausführbare Repräsentation,
z. B. als CEP-Query3, überführt. Diese ausführbare Repräsentation wird dem ausfüh-
renden System übergeben. In der derzeitigen prototypischen Implementierung von
SitRS wird hierzu Node-RED4 verwendet.

• Resource Management Platform
Die Resource Management Plattform (RMP) ist die andere Kernkomponente. Sie stellt die
Sensordaten als einheitliche REST-Ressourcen zur Verfügung. Die RMP ist das Thema
einer anderen Diplomarbeit [Jan15].

3complex event processing –
https://en.wikipedia.org/w/index.php?title=Complex_event_processing&oldid=680354106

4http://nodered.org/

16

https://en.wikipedia.org/w/index.php?title=Complex_event_processing&oldid=680354106
http://nodered.org/

2.3 Sensorintegration – SeInt

Critical

OR

> 60°C > 81°C > 53°C

Temperatur
Sensor 1

Temperatur
Sensor 2

Temperatur
Sensor 3

Situation

Operation

Bedingung

Kontext / Sensoren

Abbildung 2.4: Beispiel eines Situation Template (nach [HWS+15], Fig. 4)

• Sensor Registry
Hier werden Sensoren registriert. Sie steht im Verbund mit der RMP und verknüpft das
Objekt, den Sensor und die Sensordaten in einem Kontext miteinander.

Diese Diplomarbeit zur Sensorintegration knüpft direkt an die Resource Management Platform
und die Sensor Registry an.

2.3 Sensorintegration – SeInt

Bisher geschah die Sensorregistrierung manuell. Ebenso mussten bisher die gewonnenen
Sensordaten manuell in das System eingebunden werden. Die manuelle Integration der
Sensoren gestaltet sich komplex. Sie bereitet einen hohen Aufwand und ist zeit- und kosten-
intensiv. Auf manuellem Wege ist sie ist wenig flexibel, wenn es darum geht weitere Objekte
und Sensoren dem System hinzuzufügen. Darüber hinaus ist die manuelle Integration der
Sensoren fehleranfällig, da keine Automatismen über eine definierte Schnittstelle greifen.

Die Sensorintegration (SeInt) als Ziel dieser Diplomarbeit ermöglicht eine automatisierte
ad-hoc Integration der Sensoren.

17

2 Hintergrund und Motivation

SeInt bietet eine Schnittstelle an die Resource Management Plattform und Sensor Registry
der Situationserkennung, um einen Sensor zu registrieren. Hierzu verwendet SeInt eine
Ontologie als Wissensbasis, um Informationen über Objekte und Sensoren zu verwalten.
Zu dieser Wissensbasis gehören neben Informationen über die Lokalisierung insbesondere
Informationen zu Sensoreigenschaften wie z. B. die Messgenauigkeit.

Im Rahmen dieser Diplomarbeit kommen an einen Raspberry Pi5 angebundene Sensoren zum
Einsatz. Um diese Sensoren an die Resource Management Plattform anzubinden, liefert SeInt
einen Mechanismus, der im Zuge der Registrierung an der Sensor Registry einen Adapter
ausliefert. Dieser Adapter hat zwei Aufgaben: zum einen liest er die Sensordaten eines Sensors
aus, zum anderen sendet er die Sensordaten an die Resource Management Plattform.

Die automatisierte ad-hoc Integration der Sensoren reduziert den Aufwand und die Kosten
gegenüber einer manuellen Integration. Des Weiteren ist die Lösung durch SeInt flexibler
und ermöglicht es, weitere Sensoren auf einfache Weise in das System einzubinden.

Motivation und Ziel dieser Diplomarbeit ist es, die hier formulierte Sensorintegration zu
konzipieren und prototypisch zu implementieren.

5Raspberry Pi Foundation – https://www.raspberrypi.org/

18

https://www.raspberrypi.org/

3 Grundlagen

Dieses Kapitel beschreibt die notwendigen Grundlagen, die für das Verständnis dieser Arbeit
erforderlich sind.

3.1 Internet der Dinge

Der Begriff „Internet of Things“ (Internet der Dinge, IoT) geht auf Kevin Ashton zurück, der
diesen in einer Präsentation 1999 verwendete [Ash09].

Das Konzept des Internets der Dinge wurde bereits 1991 in einer Zukunftsversion von Mark
Weiser beschrieben [Wei91]. In seiner Zukunftsversion vernetzt er unterschiedlichste Geräte
und Computer miteinander, mit dem Begriff Internet der Dinge werden Objekte miteinander
vernetzt. Die Vernetzung ist dabei sowohl kabelgebunden, als auch drahtlos mit mobilen
Geräten und Computern. Die Technologie – Computer – verschwindet in den Objekten.
Diese können eine Vielzahl unterschiedlicher Gegenstände der realen Welt darstellen, z. B.
Lichtschalter, Thermostate, RFID-Systeme, Sensoren. Sie wird auf diesem Wege unsichtbar
für den Menschen und verschwindet aus seiner bewussten Wahrnehmung. Sie soll ihn durch
intelligentes Agieren unmerklich bei seinen Tätigkeiten unterstützen.

All diese vernetzten Objekte tauschen beständig Informationen aus bzw. berechnen Daten,
was Mark Weiser als „ubiquitous computing“1 bezeichnete. Angereichert durch diese ver-
netzten Informationen können die Objekte intelligent agieren. Um intelligent agieren zu
können benötigen die Objekte eine Kenntnis ihrer Umgebung wie z. B. den Ort an dem sie
sich befinden.

Das Internet der Dinge schließt die Lücke zwischen der virtuellen und der realen Welt. Ein
jedes Objekt ist dazu eindeutig in einem Netzwerk identifizierbar und adressierbar. Ein Objekt
kann so seine Daten im Netzwerk mit anderen Objekten austauschen [ITU12]. Als Netzwerk
dient hierbei die Infrastruktur, Technologie und die Protokolle des Internets.

1allgegenwärtige Datenverarbeitung

19

3 Grundlagen

3.2 Industrie 4.0

Das Zukunftsprojekt Industrie 4.0 des Bundesministerium für Bildung und Forschung steht
nach der Mechanisierung, der Massenfertigung und der Digitalisierung für die vierte indus-
trielle Revolution.

Der Begriff selbst ist unscharf und vage definiert – Ziel ist allerdings die intelligente Fa-
brik (SMART Factory). Sie reagiert mit Produktions- und Logistikprozessen dynamisch und
bedarfsorientiert auf Betriebsbedingungen und Aufträge [BMBF15].

Durch das Internet getrieben wandeln sich heutige Produktionssysteme zu cyber-physischen
Systemen (CPS) auf den gleichen technologischen Grundlagen wie das Internet der Dinge.
CPS beschreibt die Integration von Datenverarbeitung in physikalische Prozesse [LS11].

Heute bestimmen weitestgehend die Produktionssysteme und Produktionsprozesse über das
Produkt. Mit der Industrie 4.0 findet ein Paradigmenwechsel statt. Das Produkt nimmt eine
aktive Rolle ein und gibt selbst vor wie mit ihm agiert werden soll [KLW11], [Jas12].

3.3 Sensoren

Das englische Wort sensor wird in DIN 1319-1 als „(Meßgrößen-)Aufnehmer (4.4)“ bezeichnet.
Er ist „Teil eines Meßgerätes oder einer Meßeinrichtung, der auf eine Meßgröße unmittelbar
anspricht“. Als Beispiel nennt die Norm den Schwimmer eines Flüssigkeitsstand-Anzeigers
[1319-1].
In der Literatur finden sichweitere Synonyme für Sensor2, z. B. (Mess-)Fühler oder (Messwert)-
Aufnehmer.

In dieser Diplomarbeit soll als Sensor ein jeder Datengeber dienen, der Daten in einer
datenverarbeitungskompatiblen Form liefert. Die gewonnenen Messdaten physikalischer
Sensoren werden so konvertiert, dass sie in Form von Daten im informationstechnischen
Sinne vorliegen. Außerdem wird der Begriff dahingehend erweitert, dass als Sensor auch
die Bereitstellung einer Statusinformation eines Objektes gilt. Zum Beispiel ist die Messung
der Rechnerauslastung (CPU load) nicht das direkte Resultat einer physikalischen Messung,
sondern die Auswertung einer Rechnerressource, die den Auslastungsstatus widerspiegelt.

Ein aktuelles Smartphone – Objekt – besitzt diverse Sensoren, z. B. Beschleunigungssensoren,
Helligkeitssensor, Gyroskop, Höhenmesser, GPS und weitere. Auch kann man die Kamera
als optischen Sensor bzw. Sende-/Empfangsmodule wie GSM, LTE oder WLAN als Sensoren
für ein Funknetzwerk auffassen.

2Deutschen Nationalbibliothek, Sachbegriff „Sensor“ – http://d-nb.info/gnd/4038824-4

20

http://d-nb.info/gnd/4038824-4

3.4 Ontologie

Sensoren zeichnen sich durch diverse Merkmale und Eigenschaften aus, die in ihrer Gesamt-
heit einen Sensor beschreiben und die Messergebnisse in ihrer Qualität quantifizieren.

Jeder Sensor besitzt einen Messbereich für den er ausgelegt ist. Messungen außerhalb dieses
Bereiches führen zu keinem oder einem unzuverlässigen bzw. gänzlich falschenMessergebnis.
Die Messgenauigkeit oder auch Messauflösung bestimmt wie nahe Messwerte beieinander
liegen können, bevor sie nicht mehr zu unterscheiden sind. Die Einstelldauer respektive
Einschwingzeit definiert die Dauer bis ein Messwert bestimmt ist, d.h. ein einzelner Mess-
vorgang abgeschlossen ist. Die bisher genannten Merkmale lassen sich im Allgemeinen
durch einfache Zahlenwerte zzgl. Messeinheit beschreiben. Für gewöhnlich sind die Werte
innerhalb des Messbereiches auch linear abhängig von der Messgröße.

Es gibt aber auch komplexe Merkmale wie zum Beispiel die Hysterese. Dabei wird ein
aktueller Messwert durch vorherige Messungen beeinflusst. Dieses Verhalten wird mit einer
Hysteresekurve beschrieben.
Auch kann der Sensor selbst einen signifikanten Einfluss auf die Messung in Abhängigkeit
der Messgröße haben.

3.4 Ontologie

Ontologie erklärt die
Beschaffenheit der Welt

(Heinz von Förster)

Ontologie ist ein Begriff aus der Philosophie und beschäftigt sich mit der „Natur des allge-
meinen Seins“ [Bra96], sie ist Teilgebiet der Metaphysik, die sich mit der Wesen der Existenz
bzw. des Seienden auseinandersetzt. Sie fragt unter anderem nach dem Warum und den
Ursprung des Seins von allem.

In einem fiktiven Dialog verschiedener wissenschaftlicher Disziplinen beschreiben Busse et
al. den Begriff. Gemeinhin wird Ontologie zur Beschreibung der Welt für ein gemeinsames
Verständnis verwendet, wobei die Informatik den Begriff in einer übertragenen Bedeutung
verwendet und die Existenz als gegeben hinnimmt [BHL+14].

21

3 Grundlagen

3.4.1 Ontologie in der Informatik

Thomas R. Gruber definiert eine Ontologie prägnant mit: „An ontology is an explicit specifica-
tion of a conceptualization“ [Gru93]. In der Literatur wird diese Definition meist erweitert
zitiert:

„ An ontology is a formal, explicit specification of a shared conceptualisation“
Eine Ontologie ist eine formale, explizite Spezifikation einer gemeinsamen Konzep-
tualisierung3

Wobei diese Definition auf Studer et al. zurück zurückgeht [SBF98].

Die Konzeptualisierung umfasst Klassen4, Instanzen5 und Relationen6 einer Wissensdo-
mäne. Die Klassen und Relationen sind häufig in einer hierarchischen Struktur aufgebaut,
können aber allgemein in einem beliebigen gerichteten Graph angeordnet sein. Prinzipiell
werden Klassen in Relationen zueinander gesetzt, womit dem Vokabular eine semanti-
sche Bedeutung zugeordnet wird. Weiterhin kann es Axiome geben, die weitere Regeln und
Einschränkungen enthalten können. Formalisiert repräsentieren Ontologien eine maschi-
nenlesbare und teilbare Wissensbasis.

Abbildung 3.1 zeigt ein Beispiel einer einfachenOntologie. Die KlasseGemälde ist der Klasse
Werk untergeordenet. Die Relationen beschreibt die Beziehung dieser beiden Klassen

zueinander. Norwegen ist eine Instanz der Klasse Land.

Formal lässt sich eine Ontologie mit folgenden Tuple beschreiben [Yil06]:
O =

{
C, R, HC, HR, IC, IR, AO

}
, wobei

C := die Menge aller Klassen (engl. concepts)
R := die Menge der Relationen zwischen Klassen mit ri ∈ R und ri →

C × C
HC := die Hierarchie der Klassen C mit der Relation HC ⊆ C × C, wobei

HC(ci; cj) mit ci, cj ∈ C ausdrückt, dass ci eine Unterklasse von cj

ist.
HR := die Hierarchie der RelationenRmit der RelationHR ⊆ R × R, wobei

HR(ri; rj) mit ri, rj ∈ R ausdrückt, dass ri eine Unterrelation von rj

ist.
IC := die Menge der Instanzen der Klassen C
IR := die Menge der Instanzen der Relationen R
AO := die Menge der Axiome der Ontologie O

3Begriffsbildung
4in der Literatur auch Begriff oder Konzept
5in der Literatur auch Individuum
6in der Literatur auch Beziehung, seltener Attribut oder Eigenschaft; engl. auch slot oder role

22

3.4 Ontologie

Abbildung 3.1: Ontologie Beispiel

Andere formale Beschreibung finden sich z. B. in [GOS09] oder [Men02].

Die einfachste Ontologie – eine zusammenhangslose Sammlung von Klassen – stellt ein
Glossar da. Durch eine hierarchische Ordnung der Klassen eingeschränkt, erhält man eine
Taxonomie.

Einer Beschreibungslogik folgend erhält man eine komplexe Ontologiesprache. Schränkt
man die Beschreibungslogik auf SHOIN (D) ein (vgl. z. B. [BN03]), gelangt man zu einer
vollständig berechenbaren und entscheidbaren Untermenge der Prädikatenlogik erster Stufe.
Dies ermöglicht Inferenz mit der sich Wissen schlussfolgern lässt.

Angenommen man wüsste aus der Ontologie nach Abbildung 3.1 nicht, dass Leonardo da
Vinci (Instanz) ein Künstler (Klasse) ist. Dann kann man aus dem Wissen, dass Leonardo
da Vinci (Instanz) dasWerk (Klasse) Mona Lisa (Instanz) und das ein Künstler (Klasse)

23

3 Grundlagen

einWerk (Klasse) schuf (Relation), ableiten, dass Leonardo da Vinci (Instanz) ein Künstler
(Klasse) sein muss.

Für Ontologien gibt es eine Reihe formaler Beschreibungssprachenmit demZiel, von Software
verarbeitet und semantisch verstanden werden zu können. In dieser Diplomarbeit wird
Web Ontology Language (OWL) verwendet. OWL basiert technisch auf dem im Folgenden
erläuterten Resource Description Framework.

3.4.2 Resource Description Framework und RDF Schema

Das Resource Description Framework (RDF) ist ein abstraktes Datenmodell, um Ressourcen
im Internet in Form eines gerichteten Graphen darzustellen. Es ist computerlesbar und dient
vor allem dem Informationsaustausch zwischen verschiedenen Applikationen.

Das zentrale Element in RDF sind Tripel bestehend aus einem Subjekt, einem Prädikat und
einem Objekt. Aussagen werden mit Hilfe solcher Tripel gebildet. Die Menge aller Tripel
wird RDF-Graph genannt.

Abbildung 3.2: RDF Tripel – Subjekt, Prädikat, Objekt (nach [RDF1.1], Fig. 1)

Subjekt und Prädikat bestehen aus einem IRI7. Das Objekt kann sowohl ein IRI als auch ein
wertbehaftetes Literal sein. Darüber hinaus können Subjekt und Objekt auch durch einen
leeren Knoten repräsentiert werden. Ein IRI in RDF 1.1 ist die verallgemeinerte Version
eines URI8 aus RDF 1.0. Beide bezeichnen eine Ressource eindeutig und entsprechen den
Instanzen einer Ontologie.

Es gibt unterschiedlich Serialisierungen von RDF-Graphen, z. B. RDF/XML9 oder Turtle10.
Die Syntax und Konzepte von RDF beschreibt [RDF1.1] detailliert. [RDFSE] beschreibt die
Semantik im Detail.

7Internationalized Resource Identifiers – http://www.ietf.org/rfc/rfc3987.txt
8Uniform Resource Identifier – http://www.ietf.org/rfc/rfc3986.txt
9RDF 1.1 XML Syntax – http://www.w3.org/TR/rdf-syntax-grammar/
10RDF 1.1 Turtle – http://www.w3.org/TR/turtle/

24

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/turtle/

3.4 Ontologie

Abbildung 3.3: RDF Graph - Beispiel (nach [RDFX], Fig. 1)

Zu einer Beschreibungssprache für eine Ontologie mit Hierarchien wird RDF erst durch
RDF-Schema. RDF-Schema ist eine semantische XML Erweiterung für RDF. Es erweitert das
Vokabular von RDF um Klassen und Relationen11.

Mit folgenden Präfixen werden die Namensräume von RDF und RDF-Schema voneinander
abgegrenzt:

rdfs: http://www.w3.org/2000/01/rdf-schema# für RDF-Schema
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# für RDF

Abbildung 3.4 verdeutlicht einige RDF-Schema Konstrukte am Beispiel von zwei Hierarchien:
Künstler-Maler und Kunstwerk-Gemälde.

Abbildung 3.4: Beispiel RDF-Schema Graph

11In [RDFS] und weiterer Literatur unglücklich als Eigenschaften (property) bezeichnet – verwechselbar mit
der Klasse namens rdf:Property

25

3 Grundlagen

Wichtige Klassen-Konstrukte von RDF-Schema sind:

rdfs:Resource alle RDF Ressourcen sind Instanzen dieser Klasse; alle anderen
Klassen sind der Klasse rdfs:Resource untergeordnet

rdfs:Class weist einer Ressource eine Klasse zu
rdfs:Literal die Klasse aller Literale wie String und Integer-Werte
rdf:Property stammt aus dem RDF Vokabular und zeichnet eine Relation aus

Zu den wichtigen Relations-Konstrukten von RDF-Schema zählen:

rdfs:domain gibt die Quelle der gerichteten Relation an
rdfs:range gibt das Ziel der gerichteten Relation an
rdfs:subClassOf ordnet Klassen hierarchisch zueinander, transitive Relation
rdfs:subPropertyOf ordnet Relationen hierarchisch zueinander, transitive Relation
rdf:type gibt an, dass eine Instanz aus einer bestimmten Klasse ist

Eine vollständige und detaillierte Beschreibung findet sich unter [RDFS].

RDF-Schema liefert notwendige Grundlagen, um eine einfache Ontologie zu entwerfen.
Jedoch fehlen RDF-Schema einige Merkmale für eine umfangreiche Beschreibungssprache
für Ontologien. Es wird ein erweitertes Vokabular benötigt, um beispielsweise Relationen
stärker einzuschränken. So fehlt RDF-Schema die Möglichkeit Relationen mit einer Kardi-
nalität zu versehen. Auch benötigt es weitere Regeln, um mehr Wissen schlussfolgern zu
können wie es beispielsweise disjunkte Klassen böten [Lac05].

Für umfangreichere Beschreibungsmöglichkeit, leistungsfähigere Inferenz und verfeinerte
semantische Konzepte wurdeWeb Ontology Language (OWL) entworfen.

3.4.3 Web Ontology Language – OWL

Web Ontology Language (OWL) ist eine Beschreibungssprache für das Semantische Web, mit
der sich Wissen über Dinge und Beziehungen zwischen Dingen beschreiben lässt. OWL ist
eine formale Beschreibung für eine Ontologie. Die Entwicklung von OWL entstammt den
Erfahrungen und Erkenntnissen, die man durch DAML+OIL12 gewann. Technisch setzt OWL
auf RDF und RDF-Schema auf (vgl. Abbildung 3.5) [OWL].

12http://www.w3.org/TR/daml+oil-reference

26

http://www.w3.org/TR/daml+oil-reference

3.4 Ontologie

Abbildung 3.5: OWL Stack (nach [WSEM])

OWL gliedert sich in die drei Untersprachen, die sich über erlaubte beziehungsweise einge-
schränkte OWL-Konstrukte definieren:

• OWL Lite
besteht aus der geringsten Menge der OWL-Konstrukte und eignet sich für einfa-
che Klassifikationen in Hierarchien mit einfachen Einschränkungen der erlaubten
OWL-Konstrukte. So erlaubt OWL Lite z. B. keine disjunkten Klassen oder schränkt
Kardinalitäten auf Werte von 0 oder 1 ein.

• OWL DL
besteht aus der Menge aller OWL-Konstrukte. Es entspricht einer vollständig ent-
scheidbaren Beschreibungslogik bei größtmöglicher Ausdrucksstärke. Dafür unterlie-
gen OWL-Konstrukte Einschränkungen, so müssen Klassen, Instanzen, Relationen
paarweise verschieden bezeichnet sein. Die Menge aller Objekt-Relationen und
Datentyp-Relationen ist disjunkt, weswegen es z. B. keine inverse Datentyp-Relation
geben darf.

• OWL Full
besitzt die größte Ausdrucksstärke und erlaubt einschränkungsfrei alle OWL-
Konstrukte. Es ist aber nicht mehr vollständig entscheidbar, damit ungeeignet für
Inferenzsoftware.

OWL Lite ist eine syntaktisch echte Teilmenge von OWL DL und diese wiederum von
OWL FULL.

27

3 Grundlagen

OWL gibt es mittlerweile in der Version OWL 2, wobei eine gültige Ontologie in OWL auch
eine gültige Ontologie in OWL 2 ist. OWL 2 hingegen definiert nur zwei Ausdrucksformen –
OWL 2 DL und OWL 2 Full. Diesen liegt das selbe Konzept bzgl. der Entscheidbarkeit wie
bei OWL DL und OWL Full zugrunde [OWL2].

Darüber hinaus definiert OWL 2 drei verschiedene Sprachprofile. Jedes dieser unabhängigen
Sprachprofile ist eine syntaktische Teilmenge von OWL 2 DL mit dem Ziel, eine Balance
zwischen Ausdrucksstärke und Rechenaufwand zu schaffen:

• OWL 2 EL
ist für Ontologien mit einer Vielzahl Klassen und Relationen gedacht.

• OWL 2 QL
ist für Ontologien mit einer Vielzahl Instanzenmit einem starken Fokus auf Anfragen
(query) gedacht. Es ist mit einer datenbank-zentrierten Sicht entworfen.

• OWL 2 RL
zielt auf gute Skalierung ab, ohne dabei viel Ausdrucksstärke zu verlieren. Es eignet
sich für leichtgewichtige Ontologien mit vielen Instanzen und einer regelbasierten
Implementierung.

Für jedes dieser Sprachprofile kann eine Inferenzsoftware implementiert werden, die in
Polynomialzeit zur Ontologiegröße schlussfolgern kann. Sie unterscheiden sich in den Ein-
schränkungen bzgl. der OWL 2-Konstrukte und sind unter [OWL2b] im Detail beschrieben.

OWL 2 fügt OWL weitere Elemente hinzu und definiert neue Syntaxbeschreibungen wie
den funktionellen Stil. Sie fügt weitere Typen von Relationen hinzu, beispielsweise asym-
metrische oder reflexive Relationen.

Andere Neuerungen machen Beschreibungen bequemer und kürzer, z. B. können mehrere
Klassen in einer Anweisung paarweise disjunkt deklariert werden. In OWL muss jede
Klasse einzeln disjunkt zu anderen Klassen deklariert werden [OWL2a].

In dieser Diplomarbeit wird OWL 2 DL verwendet, aber es wird sich weitestgehend auf den
bereits von OWL gebotenen Umfang beschränkt.

Zu den Sprachkonstrukten von OWL zählen unter anderen:

owl:Thing ist die ⊤-Klasse – jede Klasse ist owl:Thing untergeordnet
(rdfs:subClassOf)

owl:Nothing ist die ⊥-Klasse – die leere Klasse und jeder anderen Klasse

untergeordnet
owl:ObjectProperty beschreibt eine Relation zwischen Instanzen

owl:DatatypeProperty verknüpft eine Instanz mit einem Literal
owl:NamedIndividual deklariert eine nicht anonyme Instanz

28

3.4 Ontologie

Einen Überblick über weitere OWL 2-Konstrukte bietet [OWL2c].

Listing 3.1 zeigt das Beispiel aus Abbildung 3.4 in OWL mit einer RDF/XML-Syntax.

Listing 3.1 Beispiel OWL in RDF/XML (vgl. Abbildung 3.4)
<rdf:RDF xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://www.w3.org/2002/07/owl"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:kunst="http://localhost/kunst#">

<Ontology rdf:about="http://localhost/kunst"/>
<!-- Object Properties -->
<ObjectProperty rdf:about="&kunst;erschafft">

<rdfs:range rdf:resource="&kunst;Kunstwerk"/>
<rdfs:domain rdf:resource="&kunst;Künstler"/>

</ObjectProperty>
<ObjectProperty rdf:about="&kunst;malt">

<rdfs:range rdf:resource="&kunst;Gemälde"/>
<rdfs:domain rdf:resource="&kunst;Maler"/>
<rdfs:subPropertyOf rdf:resource="&kunst;erschafft"/>

</ObjectProperty>
<!-- Data properties -->
<DatatypeProperty rdf:about="&kunst;name"/>
<!-- Classes -->
<Class rdf:about="&kunst;Gemälde">

<rdfs:subClassOf rdf:resource="&kunst;Kunstwerk"/>
</Class>
<Class rdf:about="&kunst;Kunstwerk">

<disjointWith rdf:resource="&kunst;Künstler"/>
</Class>
<Class rdf:about="&kunst;Künstler"/>
<Class rdf:about="&kunst;Maler">

<rdfs:subClassOf rdf:resource="&kunst;Künstler"/>
</Class>
<!-- Individuals -->
<NamedIndividual rdf:about="&kunst;munch">

<rdf:type rdf:resource="&kunst;Maler"/>
<kunst:name>Edvard Munch</kunst:name>
<kunst:malt rdf:resource="&kunst;schrei"/>

</NamedIndividual>
<NamedIndividual rdf:about="&kunst;schrei">

<rdf:type rdf:resource="&kunst;Gemälde"/>
<kunst:name>Der Schrei</kunst:name>

</NamedIndividual>
</rdf:RDF>

29

3 Grundlagen

3.4.4 Abfragesprache SPARQL

SPARQL ist eine Abfragesprache für RDF-Graphen und steht für „SPARQL Protocol and
RDF Query Language“. Die Syntax ist an SQL13 angelehnt. In der Syntax vorkommende RDF-
Graphen bzw. einzelne RDF-Tripel werden in der [Turtle]-Notation angeben. Variablen, die
als Platzhalter in RDF-Tripel dienen, werden mit einem „?“ gekennzeichnet. Namensräume
können mit einem Präfix abgekürzt werden.

Das Listing 3.2 zeigt eine Beispielanfrage für die Kunst-Ontologie aus Listing 3.1. Die Anfrage
liefert für das Variablenpaar (?kuenstler, ?gemaelde) das Ergebnis („Edvard Munch“, „Der
Schrei“).

Listing 3.2 Beispiel SPARQL-Query
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX kunst: <http://localhost/kunst#>

SELECT ?kuenstler ?gemaelde
WHERE
{

?subject kunst:malt ?object .
?subject kunst:name ?kuenstler .
?object kunst:name ?gemaelde

}

Die Spezifikation von SPARQL teilt sich in mehrere Teile auf – z. B. [SPA13a] für Abfragen
und [SPA13b] zur Datenmanipulation.

3.5 Representational State Transfer – REST

REST leitet sich aus der Architektur des Internets ab und wurde von Roy Thomas Fielding
im Rahmen seiner Dissertation abstrahiert [Fie00].

REST besteht aus einer Reihe Randbedingungen für das Architekturdesign. Diese ermöglichen
eine skalierbare und performante Architektur und zeichnet sich durch einfache Schnittstel-
len aus. Auf Grund seines Ursprungs im HTTP-Protokoll eignet sich REST besonders für
Webservices.

13Structured Query Language

30

3.5 Representational State Transfer – REST

Zu den Randbedingungen gehören

• Klient-Server-Architektur

Der Server bietet Services an und wartet auf Anfragen eines Klienten. Der Server
bearbeitet eine Anfrage und sendet eine Antwort an den Klient zurück.

• Zustandslos

Eine Anfrage muss alle notwendigen Informationen enthalten, die zum Bearbeiten der
Anfrage notwendig sind. Der Server verwaltet keinen Zustand und eine Anfrage ist
unabhängig von vorangegangen Anfragen. Die Zustandsverwaltung bleibt dem Klient
überlassen.

• Einheitliche Schnittstelle

Jeder Klient und Server bedient sich der selben Methoden, um miteinander kommuni-
zieren zu können. Die Service-Implementierung eines Servers ist dadurch von einem
standardisiertem Kommunikationsweg entkoppelt. Diese Schnittstelle definiert sich
wie folgt:

· Adressierung der Ressourcen – jede Ressource ist durch einen eindeutige URI bzw.
IRI bestimmt.

· Repräsentation der Ressourcen – ein Klient kann eine Ressource in unterschiedli-
chen Repräsentationen anfordern – dem MIME-Type14 bzw. Content-Type. Dies
kann z. B. formatiert als XML oder JSON15 geschehen.

· Selbstbeschreibende Nachrichten – jede Nachricht enthält alle notwendigen Infor-
mationen, die zu ihrer Bearbeitung notwendig ist. Bezogen auf Webservices sind
dies z. B. die Operationen gegeben durch die HTTP-Methoden16 wie GET, POST,
PUT, DELETE und weitere.

· Hypermedia as the Engine of Application State (HATEOAS) – mit Ausnahme des
Einstiegspunktes navigiert ein Klient nur zu Ressourcen, die er vom Server mit-
geteilt bekommen hat [Fie08].

• Schichtensystem

Ein Klient weißt nicht, ob er direkt mit dem Server oder mit einer Zwischenschicht
verbunden ist. Zwischenschichten können die Skalierbarkeit durch Lastenverteilung
verbessern oder einen Zwischenspeicher (Cache) bieten.

14Multipurpose Internet Mail Extensions
15JavaScript Object Notation
16Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content –

https://tools.ietf.org/html/rfc7231

31

https://tools.ietf.org/html/rfc7231

3 Grundlagen

• Zwischenspeicher

Antworten auf Anfragen können vom Klient oder einer Zwischenschicht zwischen-
gespeichert werden. Um Zustandsproblemen vorzubeugen, müssen Antworten als
zwischenspeicherbar bzw. nicht zwischenspeicherbar deklariert sein. Dies kann auch
implizit geschehen.

• Code-On-Demand

Der Server übermittelt einen ausführbaren Code an den Klient, um dessen Funktionali-
tät bei Bedarf zu erweitern. Code-On-Demand ist eine optionale Randbedingung.

Sind alle Randbedingungen erfüllt, ergibt das einen RESTful-Service. [Bet] bzw. [Fow] be-
schreiben das Richardson Maturity Model – es klassifiziert wie streng sich ein Webservice an
die REST-Bedingungen hält.

Diese umgeordnete REST-Beschreibung folgt inhaltlich der von [Fie00]. In der Literatur
finden sich ähnliche Beschreibungen, z. B. [RR07].

32

4 Verwandte Arbeiten

In diesem Kapitel werden zum Themengebiet dieser Diplomarbeit verwandte Arbeiten
beschrieben. Diese beschäftigen sich mit ähnlichen Problemen oder behandeln Teilaspekte
des Themengebietes.

4.1 SWE und SensorML

Das Open Geospatial Consortium (OCG)1 als gemeinnützige Organisation für raumbezo-
gene Informationsverarbeitung entwickelt eine Reihe offener Standards zum Zwecke der
Interoperabilität. Mit der „Sensor Web Enablement“-Initiative (SWE)2 hat es eine Reihe
sensorbezogener Standards entworfen.

Als einer dieser Standards liefert SensorML ein allgemeines Standardmodell, um Sensoren
und in Bezug stehende Prozesse zu beschreiben. Zu diesen Prozessen zählen die Messprozesse
eines Sensors, aber auch Prozessanweisungen, um Informationen aus Beobachtungen eines
Sensors ableiten zu können. Die Prozesse und Modelle hinter SensorML sind mit UML3
modelliert. Ein Prozess definiert sich aus seinen Eingaben, Ausgaben, Parametern, Methoden
sowie Metadaten. Er erfasst ein beobachtbares Phänomen und wandelt dieses in Daten um
[Sen14].

Als SWE-Standard steht SensorML in direktem Zusammenhang mit weiteren Standards,
insbesondere Observations & Measurements, Sensor Observation Service und Sensor Planning
Service. Im Zusammenspiel ermöglichen diese das Veröffentlichen, Auffinden und Einbinden
von Sensor-bezogenen Daten. Für Observations & Measurements hat z. B. Simon Cox eine
Ontologie in OWL implementiert [Cox13].

1Open Geospatial Consortium – http://www.opengeospatial.org/
2Sensor Web Enablement – http://www.opengeospatial.org/ogc/markets-technologies/swe
3Unified Modeling Language – http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

33

http://www.opengeospatial.org/
http://www.opengeospatial.org/ogc/markets-technologies/swe
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

4 Verwandte Arbeiten

Formal besteht SensorML aus einer Reihe XML Schematas. Diese hängen von diversen
weiteren SWE-Standards ab und bauen auf diesen wie z. B. SWE Common Data Model4, GML
3.25 sowie Normen zu Geoinformationen und Geodaten6 auf.

Durch GML modellierte Geoinformationen und Geodaten enthalten u.a. präzise Ortsangaben
und sind Bestandteile der durch SensorML definierten Konzepte.

Beispiel Ozeanvermessung:
Die Messungen im Ozean beruhen auf den Messwerten vieler Messbojen. Setzt man
die Messwerte und Positionen der Messbojen in Bezug zueinander, erhält man ein Bild
der aktuellen Bedingungen im Ozean. So ergibt sich die Wellenhöhe aus Messwerten
vonWellental undWellenberg verschiedener benachbarter Messbojen. Auch lassen sich
Strömungen erst aus dem Zusammenspiel vieler Messbojen detailliert bestimmen.

SensorML ist eine vorwiegend syntaktische Beschreibung mit einer unterliegenden semanti-
schen Bedeutung. Die Spezifikation referenziert Beispielontologien [Sen14, S. 71], die sich
allerdings auf ein zusammenhangsloses Begriffswörterbuch beschränken bzw. nicht mehr
verfügbar sind.

4.2 OntoSensor – ontologische Übersetzung von
SensorML

Russomanno et al. beschreiben in ihrem Artikel die Konstruktion einer Sensor Ontologie
namens OntoSensor in OWL [RKT05]. Dazu gehört auch eine in Prolog implementierte
Inferenzsoftware. Die Konstruktion der Ontologie basiert dabei auf SensorML, IEEE Suggested
Upper Merged Ontology (SUMO) und ISO 19115.

Im ersten Teil ihrer Arbeit beschreiben sie die Unzulänglichkeiten, die SensorML mit sich
bringt. Sie verweisen darauf, dass XML nur ein syntaktisches Konstrukt ist. Auch bemängeln
sie, dass SensorML keine formale Definitionen seiner Klassen und Relationen liefert. Weiter-
hin stellen sie fest, dass SensorML keine logische bzw. axiomatisch fundierte Grundlage für
eine gemeinsame Konzeptualisierung nach der Ontologiedefinition durch Gruber [Gru93]
liefert. Positiv bewerten sie, dass SensorML ein generisches Datenmodell für Informationen
über Sensoren ist, und dass SensorML eine wohl-fundierte Grundlage zur Entwicklung einer
Ontologie bietet.

4SWE Common Data Model Encoding Standard –
http://www.opengeospatial.org/standards/swecommon

5Geography Markup Language – http://www.opengeospatial.org/standards/gml
6ISO 19103, ISO 19108, ISO 19111, ISO 19115 und weitere

34

http://www.opengeospatial.org/standards/swecommon
http://www.opengeospatial.org/standards/gml

4.3 Sensoren und deren Datenströme als verknüpfte und frei verfügbare Daten

Zur Kontruktion der Ontologie identifizieren sie als erstes die Konzepte hinter SensorML,
um sie anschließend in OWL zu implementieren. Als Werkzeug verwenden sie hierfür
Protégé7, einen Ontologie Editor. Einige der SensorML-Konzepte beruhen auf den durch
GMLmodellierten Ortsangaben, um Sensordaten lokal einzuordnen oder in Bezug zu anderen
Sensoren zu setzen. OntoSensor wiederverwendet hierzu eine Ontologie der GML-Konzepte,
beruhend auf der Arbeit eines anderen Teams. Die Quelle dieser Arbeit ist nicht mehr
auffindbar.

Am Ende des Artikels präsentieren sie noch eine Beispielinstanz eines Sensors und das
Resultat ihrer eigenen Inferenzsoftware.

4.3 Sensoren und deren Datenströme als verknüpfte
und frei verfügbare Daten

Danh Le-Phuoc und Manfred Hauswirth beschreiben in ihrem Artikel eine Plattform namens
SensorMashup, um Sensordaten allgemein über das Internet verfügbar zu machen und so
der Vision eines Internet der Dinge näher zu kommen [PH09]. Sie folgen dabei dem Konzept
von linked (open) data8 als Teil des Semantic Webs.

Eine Verknüpfung aus Sensoren, deren Datenströme und Metadaten nennen sie Sensor Mas-
hup. Die Plattform ermöglicht es solche Mashups aufzufinden und neue Sensoren sowie
Datenströme zu veröffentlichen. Mit einem Composer können neue Mashups erzeugt wer-
den.

Die Plattform bietet einen Webservice als REST-Schnittstelle an, um definierte Mashups
abzurufen. Sie basiert auf den SWE9-Standard, wobei dieWebservice-Beschreibung inWSDL10
mit RDFa11 um semantisches Wissen ergänzt wird. Für die Sensoren wurde eine Ontologie
mit OWL-DL basierend auf den Konzepten von SensorML entworfen. Ihr Entwurf ist dabei
vergleichbar zu dem Ontologieentwurf von [RKT05] (vgl. Kapitel 4.2). Weiterhin bietet sie
noch einen SPARQL-Endpunkt für komplexe Mashups an.

Aus Effizienzsgründen verwalten sie die Mashups als virtuelle RDF-Graphen in einem in-
ternen Speicher. Der virtuelle RDF-Graph wird in einer komprimierten Repräsentation
vorgehalten. Dieser Ansatz ist leistungsfähiger, dennoch sind semantische Anfragen mit
SPARQL weiterhin möglich. Die Plattform bleibt auf diesem Wege kompatibel zu anderen
ontologischen Systemen.

7Protégé Ontologie Editor – http://protege.stanford.edu/
8Linked Data – http://www.w3.org/DesignIssues/LinkedData.html
9Sensor Web Enablement
10Web Services Description Language
11RDF in Attributes – http://www.w3.org/TR/rdfa-primer/

35

http://protege.stanford.edu/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdfa-primer/

4 Verwandte Arbeiten

Ein Schwerpunkt dieses Projektes liegt auf der Verwaltung und der Speicherung der Da-
tenströme mit einem „data stream management system“ (DSMS). Im Gegensatz zur Senso-
rintegration dieser Diplomarbeit liegt ihr Fokus darin, Sensoren und ihre Datenströme im
Internet in einem offenen System verfügbar zu machen.

4.4 OpenTOSCA

OpenTOSCA12 ist ein quelloffenes Ökosystem der Universität Stuttgart für den „OASIS13
Topology and Orchestration Specification for Cloud Applications“-Standard [TOSCA].

TOSCA ist ein Standard zur portablen Beschreibung von Cloud-Anwendungen. Eine solche
Beschreibung ermöglicht eine automatisierte Provisionierung cloud-basierten Anwendung.

Er enthält eine Anwendungstopologie und deren Orchestration in XML. Unter Orchestration
versteht man die Koordination und das Management von Anwendungen, Middleware und
Computersystemen. Sie wird als Plan hinterlegt und beschreibt die Schritte, die vollzogen
werden müssen, um eine Anwendung in einer Cloud-Umgebung zu installieren. Die Anwen-
dungstopologie (Topology Template) beschreibt die Anwendung und ihre Abhängigkeiten
zu ihrer Umgebung, auf der sie laufen soll. Beispielsweise läuft eine PHP-Anwendung auf
einem Apache-Webserver mit einem PHP-Interpreter auf einem Linux-Betriebssystem in
einer Cloud-Instanz.

Das OpenTOSCA-Ökosystem besteht aus drei Komponenten:

• winery – zur graphisch unterstützten Modellierung. Das Modell wird in einem Cloud
Service Archive (CSAR) zusammengefasst.

• OpenTOSCA Container – Laufzeitumgebung, die die im CSAR enthaltende Beschrei-
bung ausführt [BBH+13].

• Vinothek – webbasierter Service, mit dem sich CSAR verwalten und installieren lassen.

OpenTOSCA beschäftigt sich nicht im Speziellen mit Sensoren oder semantischen Beziehun-
gen zwischen Objekten und Sensoren, sondern mit dem Prozess, eine Software auf einem
anderen System zu installieren und zu starten. Die Sensoradapter-Provisionierung dieser
Diplomarbeit ist ein vergleichbarer Prozess.

12http://www.opentosca.org
13Organization for the Advancement of Structured Information Standards –

https://www.oasis-open.org/

36

http://www.opentosca.org
https://www.oasis-open.org/

5 Konzept

In diesem Kapitel wird das Konzept der Sensorintegration erläutert. Vorab wird die Gesamt-
struktur beschrieben, bevor auf die einzelnen Komponenten eingegangen wird. Abschließend
werden noch Optimierungen für die Sensorintegration, eine autonome Sensorintegration
und Sicherheitsaspekte konzeptioniert.

5.1 Gesamtstruktur

Es wurde eine Sensorintegration (SeInt) geschaffen, mittels welcher sich Objekte und ihre
untergeordneten Sensoren automatisiert und ad-hoc in SitRS (vgl. Kapitel 2.2) integrieren
lassen. Dabei werden die SitRS-Komponenten Resource Management Platform (RMP) und
Sensor Registry integriert.

Abbildung 5.1 zeigt das Architekturkonzept der Sensorintegration und ihre Anbindung
an die Resource Management Platform (RMP) sowie die Sensor Registry von SitRS. SitRS –
gestrichelt dargestellt – ist nicht Bestandteil dieser Diplomarbeit.

Die Sensorintegration besteht aus zwei Kernkomponenten:

• ein „Zentraler Service“ (ZS), der eigene Schnittstellen bietet bzw. die Schnittstellen von
SitRS bedient

• eine Ontologie, die als Wissensbasis zu Objekten und Sensoren dient. Sie wird über
den ZS angesprochen.

Weiterhin gibt es noch ein Adapter-Repository. Es beinhaltet Adapter zu Objekt-Sensor-
Paaren.

Der ZS wird nach außen hin über einen Klienten gesteuert und vermittelt dessen Anfragen
an die Ontologie. Die Ergebnisse liefert der ZS an den Klienten zurück.

37

5 Konzept

SitRS

Objekt
ObjektObjekt

Sensor Integration

Ontologie

Zentraler
Service

Client

Sensoren

Resource
Management
Platform

Sensor
Registry

A
d
a
p
te
r

Adapter
Repository

steuert

registriert
Sensor

Sensor-
daten

liefert
aus

Abbildung 5.1: Konzept Übersicht

Das Sequenzdiagramm in Abbildung 5.2 zeigt den Ablauf einer Sensorintegration:

1. der Klient fordert die Integration eines Objektes und dessen Sensoren an

2. der Zentrale Service (ZS) nimmt die Anfrage des Klienten entgegen und verarbeitet sie

3. der ZS fragt die Ontologie nach den Informationen über das Objekt und die Sensoren

4. die Ontologie sendet die Informationen über das Objekt und die Sensoren an den ZS

5. der ZS registriert mittels den Informationen aus der Ontologie das Objekt und die
Sensoren an der Sensor Registry von SitRS und wartet auf das Resultat

6. der ZS provisioniert den Adapter für die Sensoren auf dem Objekt

7. der Klient bekommt die Integration vom ZS bestätigt

38

5.2 Zentraler Service – ZS

Client
Zentraler
Service

Ontologie

SitRS

Objekt

Objekt + Sensor
Informationsabfrage

Objekt + Sensor
Informationen

an Sensor Registry registrieren

wurde registriert

Objekt + Sensor
registrieren

Objekt + Sensor
registriert

Adapter-Provisionierung

Sensor-
daten

Abbildung 5.2: Konzept Sequenzdiagramm einer Sensorintegration

5.2 Zentraler Service – ZS

Am Prozess einer Sensorintegration sind viele Komponenten beteiligt. Jede dieser Kompo-
nenten hat ihre eigenen Schnittstellen. Der ZS kommuniziert mit all diesen Schnittstellen
bzw. steuert die Komponenten über deren Schnittstellen.

Der „ZS“ vereinigt diverse Schnittstellen, die sich wie folgt zusammensetzen:

• eine interne Schnittstelle zum Informationsaustausch mit der Ontologie. Der ZS ruft
Informationen zu Objekten und Sensoren ab bzw. legt diese an.

• eine eigene äußere Schnittstelle für einen Klienten zur allgemeinen Steuerung. Sie
ermöglicht es dem Klient die Sensorintegration zu steuern. Außerdem fungiert der ZS
als Vermittler zwischen Klient und Ontologie.

• eine Schnittstelle zu Objekten mit ihren Sensoren. Es wird ein Adapter provisioniert
und somit einem Objekt ermöglicht, seine Sensordaten an die RPM zu senden.

• Schnittstellen zu den Komponenten von SitRS. Sie verbindet sich mit der Sensor
Registry, um dort Objekte und Sensoren zu registrieren. Die Registrierung macht
Objekte und Sensoren für SitRS verfügbar. Schlägt die Registrierung fehl, wird die
Sensorintegration abgebrochen und kein Adapter provisioniert.

39

5 Konzept

Die Schnittstellen zu den Komponenten von SitRS sind vorgegeben. Die weiteren Schnitt-
stellen werden in den folgenden Kapiteln präzisiert.

5.3 Ontologie als Wissensbasis

Die andere zentrale Komponente der Sensorintegration ist die Ontologie als Wissensbasis. In
ihr werden Informationen über die Objekte und Sensoren abgelegt.

Die Struktur der Ontologie setzt sich aus zwei Teilen zusammen:

• zum einen das semantische Wissen in Form von Klassen und Relation

• zum anderen konkrete Instanzen von Orten, Objekten und Sensoren

Die folgenden Abbildungen der Ontologien zeigen zur besseren Übersicht Teilausschnitte.

Abbildung 5.3: Konzept Ontologie des Objektes

Abbildung 5.3 zeigt das Konzept der Ontologie für das Objekt. Die Sensor-Ontologie ist in
dieser Abbildung nur angedeutet. Die Klassen sind in zwei Kategorien eingeteilt. Haupt-
klassen als vorrangige Hierarchie sind in bläulichen Ellipsen gehalten. Instanzen dieser
Hauptklassen repräsentieren Gegenstände aus der realen Welt, welche durch Nebenklassen

40

5.3 Ontologie als Wissensbasis

näher beschrieben werden. Die Nebenklassen sind als gelbliche Hexagone eingezeichnet.
Sie stehen in Bezug zu Hauptklassen und versehen eine Instanz einer Hauptklasse mit
beschreibenden Informationen.

Die Instanz eines Objekt erhält auf diesem Wege Informationen zu Objekteigenschaften
wie die Adresse, zugehörige Adapter und Sensoren sowie weitere Informationen.

In Hexagonen sind die Nebenklassen eingezeichnet, die die Informationen zu einer Instanz
aus der vorrangigen Hierarchie tragen. Eine Instanz eines Objektes wird über die Informa-
tionen der Nebenklassen detailliert beschrieben.

Abbildung 5.4: Konzept Ontologie der Sensoren

Die Hierarchie für Sensoren (Abbildung 5.4) ist analog konzipiert. Sensoren werden in ihre
Unterarten aufgegliedert, z. B. physikalische Sensoren oder Sensoren, die Rechnereigenschaf-
ten wie die CPU-Auslastung widerspiegeln. Andere Hierarchien sind denkbar. So können
Sensoren nach Messprinzip in Klassen wie mechanische, optische, elektrische und weitere
Messmethoden geordnet werden.

Jeder Sensor-Klasse sind bestimmte Parameter vorgegeben, die sich über Axiome – grüne
Oktogone – beschreiben lassen. Der Instanz eines Temperatursensors ist auf diesem Wege
vorgegeben, dass „°C“ ihre physikalische Einheit ist.

41

5 Konzept

Zur Vervollständigung der Ontologie werden diverse Relationen hinzugefügt (vgl. Abbil-
dung 5.5). Sie beschreiben die Beziehungen zwischen den Instanzen der jeweiligen Klassen.
Die Relation „besitzt(Objekt, Sensor)“ erklärt welche Sensoren zu einem Objekt ge-
hören. Die dazugehörige inverse Relation lautet „gehört_zu(Objekt, Sensor)“.

Abbildung 5.5: Konzept Ontologie Relationen

Zu den weiteren Relationen gehören:

• ist_bei(Objekt, Koordinaten) zur Geolokalisierung eines Objektes

• verwendet(Objekt, Adapter), um Objekt und Adapter miteinander zu verknüpfen

• für(Adapter, Sensor), um anzuzeigen welchen Sensor ein Adapter bedient

Zu jeder Relation kann eine inverse Relation definiert werden. Mit diesen können
Instanzen aus verschiedenen Blickwinkeln definiert werden. Man kann z. B. von einer
Objekt-Instanz ausgehen und alle ihre Sensoren definieren oder man definiert umgekehrt
Sensor-Instanzen und erklärt, zu welchen Objekten sie gehören.

Die Ontologie wird in einem Speicher – vergleichbar zu einer Datenbank – verwaltet. In
diesem Speicher werden die Informationen und die Struktur als Daten abgelegt. Darüber
hinaus wird auch die semantische Bedeutung der Daten als formale Beschreibung in Form von
Regeln über Daten sowie Beziehungen zwischen Daten gespeichert. Über diese semantische
Bedeutung der Daten ist es einer Inferenzsoftware möglich, die Daten auf ihre Konsistenz und
Widerspruchsfreiheit hin zu überprüfen. Auch kann fehlendes Wissen aus den vorhandenen
Daten rückgeschlossen bzw. ergänzt werden.

42

5.4 Klient

Eine solche Inferenzsoftware gehört zu der Schnittstelle der Ontologie. Die Schnittstelle
ermöglicht es Instanzen der Ontologie hinzuzufügen bzw. abzufragen. Auch kann Wissen
in Form von Klassen und Relationen geändert oder ergänzt werden. Die Methoden der
Schnittstelle sind vergleichbar zu den klassischen Datenbankoperationen (CRUD1).

Die Schnittstelle kann Klassen, Relationen und Instanzen

• neu erzeugen,

• vorhandene lesen,

• vorhandene aktualisieren und

• vorhandene entfernen.

Sie wird vom Zentralen Service gesteuert und bedient.

5.4 Klient

Um den zentralen Service abseits einer programmatischen Schnittstelle für einen Benutzer
steuerbar und bedienbar zu gestalten, benötigt es einen Klient.

Der Klient ermöglicht es dem Benutzer

• Objekte und deren Sensoren zur Sensorintegration auszuwählen.

Der Klient bietet dem Benutzer in einem ersten Schritt an, ein Objekt auszuwählen. Im
nächsten Schritt bekommt er die zu diesem Objekt gehörenden Sensoren angezeigt.
Er wählt die gewünschten Sensoren aus und startet die Sensorintegration. Der Klient
kommuniziert dem ZS die Auswahl undwartet darauf, dass der ZS die Sensorintegration
mit all ihren Schritten vollzogen hat.

• Informationen zu Objekten und Sensoren abzufragen.

Der Klient zeigt dem Benutzer zu gewünschten Objekten bzw. Sensoren die in der
Ontologie hinterlegten Informationen an. Das Auswahlverfahren gleicht dem der
Sensorintegration, er kann aber auch Informationen über Sensoren unabhängig vom
Objekt abfragen.

1create, read, update, delete

43

5 Konzept

• Objekte sowie Sensoren der Ontologie hinzufügen.

Der Benutzer bekommt über den Klient eine Eingabemaske angeboten. Über diese
Maske kann er Objekte zzgl. den notwendigen Informationen zu dem Objekt anlegen.
Weiterhin kann er dem Objekt Sensoren hinzufügen. Ein so geleiteter Prozess sorgt
dafür, dass die Daten in der Ontologie konsistent und widerspruchsfrei bleiben.

5.5 Sensordatenanbindung über Adapter

Im Zuge der Sensorintegration werden Objekte mit ihren Sensoren registriert. Das Objekt
hat nun zwei Aufgaben zu erfüllen:

• es verbindet sich mit dem registrierten Sensor und liest dessen Sensordaten aus.

• es sendet die erfassten Sensordaten an die Resource Management Platform (RMP).

Ein auf dem Objekt ausgeführter Adapter wird diese Aufgaben übernehmen. Das Objekt-
Sensor-Paar identifiziert den Adapter eindeutig.

Objekt

Sensor

A
d
a
p
te
r

Zentraler
Service

Adapter
Repository

Ontologie

Abbildung 5.6: Konzept Adapter Provisionierung

Die Vielzahl verschiedener Sensoren bedingen ebenso viele Methoden wie ein Sensor ausge-
lesen werden kann. Deswegen wird für jeden konstruktionsgleichen Sensor ein individueller
Adapter benötigt. Je nach Art des Sensors kann es genügen, den Messwert über die Sen-
sorschnittstelle direkt zu erfassen. Im Allgemeinen wird man den Messwert aber erst noch
einer Transformation unterziehen müssen. Diese kann z. B. einer physikalischen Vorschrift
folgen.

44

5.6 Optimierung

Weiterhin muss der Adapter befähigt sein, die erfassten Sensordaten an die RMP zu senden.
Dazu benötigt der Adapter die Information auf welche Weise die RMP anzusprechen ist. Die
Methode der Schnittstelle zur RMP ist für alle Adapter identisch.

Jeder Adapter repräsentiert ein Objekt-Sensor-Paar. In einem Adapter Repository (AR) werden
die Adapter als Vorlage vorgehalten. Die Vorlage eines Adapters ist in einer parametrisierten
Form hinterlegt. Zu den Parametern gehört der URI der RMP sowie eine Objekt-Id und eine
Sensor-Id. Werden die Parameter der Vorlage zugeführt, kann der Adapter auf dem Objekt
ausgeführt werden.

Im Prozess der Sensorintegration erhält der ZS Informationen über die Art des Objektes und
des Sensors und kann damit den Adapter bestimmen. Der ZS konfiguriert nun den Adapter
mit allen notwendigen Parametern.

Als letzter Schritt wird der Adapter auf das Objekt übertragen und dort ausgeführt.

OpenTosca bietet einen umfassenden Ansatz um ein Objekt gänzlich zu konfigurieren,
Systemumgebung für den Adapter schaffen und Adapter ausliefern [BBH+13].

5.6 Optimierung

Eine Situation in SitRS kann unter Umständen durch mehrere Sensoren gleichermaßen
bestimmt werden. So kann es alternative Sensoren für ein Messdatum geben, wobei sich die
alternativen Sensoren hinsichtlich ihrer Eigenschaften unterscheiden.

Beispiel – Füllstand in einem Flüssigkeitstank:
Der Füllstand kann über verschiedene physikalische Methoden bestimmt werden. Über
den Differenzdruck, Gesamtgewicht, elektrische Leitfähigkeit der Flüssigkeit, Ultra-
schallmessung und diverse weitere Messmethoden. Jede Messmethode hat ihre Vor- und
Nachteile bzgl. ihrer Messgenauigkeit und anderer Messeigenschaften.

Ein Sensor kann gegenüber einem anderen Sensor für dieselbe Situation beispielsweise
einen höheren Energiebedarf, eine geringere Einstelldauer oder eine höhere Messgenau-
igkeit besitzen. Es ergeben sich unterschiedliche Optimierungskriterien nach denen eine
Situationserkennung erfolgen kann:

• Energetische Optimierung
Sensoren haben einen unterschiedlichen Energiebedarf. Hier gilt es den Sensor mit
dem geringsten Energiebedarf auszuwählen.

• Zeitliche Optimierung
Sensoren erfassen ihren Messwert mit unterschiedlicher Einstelldauer. Es gilt den
Sensor mit der geringsten Einstelldauer auszuwählen.

45

5 Konzept

• Präzisionsoptimierung
Sensoren erfassen ihren Messwert mit unterschiedlicher Messgenauigkeit. Es gilt den
Sensor mit der höchsten Messgenauigkeit auszuwählen.

• Kostenoptimierung
Die Kostenoptimierung kann aus verschiedenen Blickwinkeln betrachtet werden. Ener-
giekosten, Anschaffungskosten in Relation zur Lebensdauer. Es gilt den Sensor mit
den geringsten Kosten auszuwählen.

• Ressourcen Optimierung
Damit ist der Umstand gemeint, dass es für eine neue Situationserkennung zwei
äquivalente Sensoren gibt. Einer der Sensoren wird bereits für eine andere Situati-
onserkennung herangezogen. Statt neue Ressource im Gesamtsystem zu reservieren,
können die Messdaten des sich bereits im Einsatz befindlichen Sensors für diese neue
Situationserkennung wiederverwendet werden.

Die verschiedenen Optimierungskriterien können sich gegenseitig ausschließen, was sich
allgemein wie folgt darstellt:

• Sensor A misst mit hoher Messgenauigkeit, benötigt dafür mehr Energie und hat eine
längere Einstelldauer als Sensor B.

• Sensor B misst mit geringer Messgenauigkeit, dafür bei geringerem Energiebedarf und
einer kürzeren Einstelldauer als Sensor A.

Sensor A und Sensor B schließen dabei eine zeitgleiche Optimierung nach Messgenauigkeit
und Energiebedarf aus.

Algorithmisch gilt es dabei zu jeder Optimierung die in Frage kommenden Sensoren zu
bestimmen und entsprechend der Art der Optimierung auszuwählen. Dazu müssen entweder
zueinander alternative Sensoren in der Ontologie vermerkt werden oder über die Geolokalisie-
rung und den Sensortyp zueinander alternative Sensoren ermittelt werden, um entsprechend
der Art der Optimierung auswählen zu können. Für eine Ressourcenoptimierung sollte
verwaltet werden, welche der alternativen Sensoren bereits im Einsatz sind.

Darüber hinaus bedarf es einer stetigen Aktualisierung sobald sich eine Sensorenkonfigurati-
on ändert. Wird ein Sensor, der durch eine Optimierung ausgewählt wurde, entfernt, benötigt
die dahinterliegende Situationserkennung einen entsprechenden alternativen Sensor, um
weiterhin ihren Dienst verrichten zu können. Wird ein neuer Sensor hinzugefügt, kann dieser
in genutzten Optimierungen den Vorzug gegenüber vorherigen Sensoren erhalten.

46

5.7 Autonome Sensorintegration

5.7 Autonome Sensorintegration

Rein konzeptionell wird eine autonome Sensorintegration beschrieben. Damit ist der Ein-
tritt eines intelligenten Objektes (SMART Object) in eine intelligente Umgebung (SMART
Environment) gemeint.

Prinzipiell kann der Eintritt eines intelligenten Objektes in die intelligente Umgebung an
zwei Stellen registriert und behandelt werden:

• Entweder auf der Seite des intelligenten Objektes, welches selbstständig seine Ankunft
im Netzwerk feststellt,

• oder auf der Seite der intelligenten Umgebung, die die Ankunft einen neuen Objektes
bemerkt.

Es stellt sich das Problem, wie beide Seiten Kenntnis voneinander erlangen können. Insbe-
sondere, wenn man davon ausgeht, dass weder das Objekt noch die intelligente Umgebung
Kenntnis von der Adresse des jeweils anderen besitzt. Damit beide Seiten sich finden, um
miteinander kommunizieren zu können, ist ein standardisierter und wohldefinierter Prozess
notwendig. Dazu gehört, dass die Nachricht des Eintrittes als solche erkannt werden kann.

Im Zusammenhang mit der Sensordatenanbindung ist das vorangegangene Konzept der
Adapterauslieferung nicht mehr ausreichend und muss durch eine universellere Lösung
ersetzt werden. Dazu sind grundsätzlich zwei Wege denkbar:

• Das Objekt stellt seinen eigenen Adapter bereit. Bei Eintritt in das Netzwerk teilt die
intelligente Umgebung dem Objekt die Datensenke für die Sensordaten der Resource
Management Platform (RMP) mit. Der Adapter muss vom Objekt selbst entsprechend
konfiguriert werden.

Dieser Weg gibt einen generellen Standard für Adapter vor. Die Methode wie ein
Adapter seine Daten an die RMP sendet ist durch die Architektur vorgegeben und jeder
Adapter muss dieser Methode folgen. Eine nachträgliche und signifikante Änderung
der RMP würde sämtliche Adapter obsolet gestalten und ein jedes Objekt bräuchte ein
eigenes Update seiner Adapter. Anderseits ist die Sensorintegration flexibler, da sie
weder Adapter vorhalten muss, noch detaillierte Kenntnisse über technischen Details
der Sensoren eines Objektes benötigt.

47

5 Konzept

• Das Objekt teilt der intelligenten Umgebung alle seine Parameter für eine Provisionie-
rung eines Adapter mit. Die intelligente Umgebung generiert aus diesen Parametern
einen auf dem Objekt lauffähigen Adapter, liefert diesen aus und startet ihn auf dem
Objekt.

Dieser Weg ist wesentlich komplexer. Die Sensorintegration benötigt umfangreiches
Wissen über diverse Objekte, z.B. in welcher Form ein Adapter vorliegen muss. Mit
einem Raspberry Pi des vorherigen Kapitels 5.5 bestehen Adapter aus Python-Skripten,
denkbar ist aber auch ein Objekt mit einem programmierbarenMikrocontroller, dem ein
Adapter als Binärcode übermittelt werden muss, z.B. per I2C [NXP14]. Bei signifikanten
Änderungen an der RMP hingegen können sämtliche Adapter zentral angepasst werden.

Für die Eintrittserkennung des Objektes werden in den folgenden Unterkapiteln mehrere
Ansätze und deren Probleme erläutert. Zur besseren Übersicht werden die Ansätze mit
klassischem IP2 und beschränkt auf ein lokales Netzwerk erläutert. Auch besitzen die Objekte
in den folgenden Ansätzen nur einen Sensor und beherbergen ihren eigenen Adapter.

5.7.1 Eintrittsankündigung

DHCP3 zur automatischen Netzwerkkonfiguration funktioniert über Broadcasts auf festge-
legten UDP-Ports. Ein Client sendet an alle im Netzwerk eine Anfrage, ein DHCP-Server
fängt diese auf und beantwortet sie [RFC2131]. Eine vergleichbare Technik lässt sich zur
Eintrittsankündigung verwenden.

Über die Broadcast-Zieladresse 255.255.255.255 wird der Eintritt im lokalen Netzwerk
kommuniziert. Die intelligente Umgebung reagiert auf solche Broadcasts und antwortet
darauf mit seiner IP-Adresse.

Das Objekt nimmt eine aktive Rolle ein. Es muss feststellen, wann es in ein Netzwerk eintritt.
Das auslösendes Ereignis kann der Erhalt einer Netzwerkkonfiguration per DHCP darstellen.
Das Objekt überwacht aktiv, wann es ein solche Netzwerkkonfiguration erhält, um daraufhin
seinen Eintritt per Broadcast anzukündigen.

Abbildung 5.7 zeigt ein Sequenzdiagramm mit dem Ablauf der Kommunikation zwischen
intelligentem Objekt und der intelligenten Umgebung. Das Objekt ist dem Netzwerk bereits
beigetreten und hat seinen eigenen Adapter, der nur noch konfiguriert werden muss.

Um die Anzahl der Nachrichten zu reduzieren, könnte man den Broadcast der Eintrittsan-
kündigung bereits um die Information über die Sensortypen erweitern. Die Größe eines
UDP-Pakets ist durch IPv4 limitiert und ein einzelnes Paket reicht eventuell nicht aus, um

2Internet Protocol Version 4 – https://tools.ietf.org/html/rfc791
3Dynamic Host Configuration Protocol

48

https://tools.ietf.org/html/rfc791

5.7 Autonome Sensorintegration

Abbildung 5.7: Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsankün-
digung

alle Information unterzubringen – insbesondere für Objekte mit einer Vielzahl Sensoren. Da
die Broadcast-Nachricht an alle Geräte im Netzwerk gesendet wird, sollten solche Pakete
möglichst klein gehalten werden, um die Netzlast gering zu halten.

5.7.2 Eintrittsaufforderung

Eine andere Möglichkeit besteht darin, dass die intelligente Umgebung in periodischen
Abständen eine Eintrittsaufforderungsnachricht in das Netzwerk absetzt. Neue Objekte
fangen diese Eintrittsaufforderung auf und melden sich an die intelligenten Umgebung
zurück.

49

5 Konzept

Diese Variante ändert das Sequenzdiagramm wie in Abbildung 5.8 zu sehen ist. Wenn es eine
große Anzahl neuer und nicht registrierter Objekte im Netzwerk gibt, wird eine Eintritts-
aufforderung eine entsprechende Anzahl zeitgleicher Antworten auslösen. Die intelligente
Umgebung muss in der Spitzenlast alle Antworten zuverlässig verarbeiten und beantworten
können. Darüber hinaus muss das Netzwerk selbst solche Spitzen verkraften können, ohne
dass Nachrichten verloren gehen.

Abbildung 5.8: Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsauffor-
derung

5.7.3 Weitere Probleme einer autonomen Sensorintegration

Autonome intelligente Objekte müssen komplexer gestaltet sein. Das macht ihre Entwicklung
aufwendiger, zeitintensiver und damit auch teurer. Davon abgesehen ergeben sich noch
weitere Probleme.

Zur erfolgreichen Geolokalisierung muss ein autonomes intelligentes Objekt seinen Ort
bestimmen oder durch die intelligente Umgebung bestimmt werden. Dies kann beispiels-

50

5.7 Autonome Sensorintegration

weise ein GPS-Modul leisten, sofern die Bestimmung unter freiem Himmel stattfindet. In
geschlossene Räumen schlägt eine GPS-Ortung im Allgemeinen fehl.

Ausgehend von einem intelligenten Objekt, welches perWLAN in das Netzwerk eingebunden
wird, könnte eine Lösung in der Auswertung der WLAN-Signalstärke liegen. Bei mehreren
Access Points (AP) kann das intelligente Objekt die jeweiligen Signalstärken messen. Diese
Messwerte teilt das intelligente Objekt der intelligenten Umgebung mit. Diese kann die Posi-
tion des intelligenten Objekts näherungsweise über die Ortskenntnis der AP triangulieren.
Eine aufwendige und vermutlich unpräzise Methode, die einen weiteren Kommunikations-
schritt erfordert. Alternativ könnte man auch spezialisierte Signalgeber installieren und das
GPS-Konzept auf Innenräume übertragen. Objekte müssten entsprechend mit vermeintlich
teurer Spezialhardware angepasst werden. Bei kabelgebundenen Objekten wird der Ort
näherungsweise über die Kabellänge bestimmt. Über die Signallaufzeit können moderne
Netzwerkkomponenten die Kabellänge bestimmen. Moderne Switches nutzen die Kabellän-
generkennung zum Energiemanagement [Cis14].

Eine Geolokalisierung kann technisch gelöst werden, ist aber je nach Methode nur in einer
Näherung möglich. Sie benötigt weiteres Wissen über die Umgebung, welches von Menschen
zusammengetragen und verwaltet werden muss. Unter Umständen wird teurere und weitere
Hardware benötigt.

Ein generelles Problem ergibt sich aus der Erreichbarkeit im Netzwerk. So bilden Router und
Gateways natürliche Netzwerkgrenzen, die Broadcast-Nachrichten normalerweise nicht über
Netzwerkgrenzen hinaus tragen. IPv64 bietet mit dem Multicast eine Lösungsmöglichkeit
[RFC4291].

Gibt es grundlegende Änderungen im gesamten Prozess der Sensorintegration, kann eine
Abwärtskompatibilität entweder nicht mehr gegeben oder erwünscht sein. Eine Versionsnum-
mer im Protokoll einer autonomen Sensorintegration hilft zu entscheiden, ob intelligentes
Objekt und intelligente Umgebung miteinander kommunizieren können bzw. eine Integration
möglich ist. Im Fall einer Inkompatibilität kann dies auf beiden Seiten zur Fehlerdiagnose
protokolliert werden.

4Internet Protocol Version 6 – https://www.ietf.org/rfc/rfc2460.txt

51

5 Konzept

Änderungen an der Schnittstelle kann man mit einer dynamischen Schnittstellenbindung
vorbeugen. Die intelligente Umgebung sendet hierzu seine Schnittstellenbeschreibung dem
intelligen Objekt. Für eine solche Beschreibung sind mehrere Wege denkbar. WSDL5 ist hier
ein etablierter Standard, für REST-basierte gibt es WADL6 – beiden fehlt jedoch semantisches
Wissen. Möchte man der Schnittstellenbeschreibung eine semantische Bedeutung verleihen
bieten sich dafür SAWSDL7, OWL-S8 oder WSML9 an.

Probleme, die sich aus Sicherheitsaspekten ergeben werden in Kapitel 5.8 gesondert betrach-
tet.

5.8 Sicherheit

Die Prämisse dieser Diplomarbeit ist eine private Cloud. Das gesamte System wird als
geschlossen und somit sicher betrachtet. In der Praxis muss dieser Ansatz jedoch überdacht
werden.

Das sogenannte Stuxnet-Schadprogramm10 manipuliert gezielt Industriesteuerungen und
sabotierte z. B. Uranzentrifugen im Iran. Überträgt man dies auf SitOPT und SitRS, können
manipulierte Sensordaten Situationen auslösen, die ungewollte Workflow-Adaptionen nach
sich ziehen.

Beispiel einer manipulierten Situation:
Der Temperatursensor einer Maschine wird manipuliert, so dass die Temperatur immer
über dem Grenzwert liegt. Die fälschlich erkannte Situation führt zu einem adaptier-
ten Workflow, der die Maschine zum Abkühlen pausiert bis die Temperatur wieder im
erlaubten Bereich liegt.

Verschiedene Sicherheitsmaßnahmen können einer (Industrie-)Spionage bzw. Sabotage vor-
beugen oder solche Angriffe erschweren.

Ein erster Schritt sind verschlüsselte Kommunikationswege. Dadurch wird verhindert, dass
die Kommunikation zum einen manipuliert, zum anderen ausspioniert werden kann. REST-
Schnittstellen über HTTPS11 sichern die Kommunikation kryptographisch gegen „Man in
the middle“-Angriffe ab.

5Web Services Description Language
6Web Application Description Language
7Semantic Annotations for WSDL and XML Schema
8http://www.w3.org/Submission/OWL-S/
9Web Service Modeling Language
10https://de.wikipedia.org/w/index.php?title=Stuxnet&oldid=147449547
11Hypertext Transfer Protocol Secure – https://tools.ietf.org/html/rfc2818

52

http://www.w3.org/Submission/OWL-S/
https://de.wikipedia.org/w/index.php?title=Stuxnet&oldid=147449547
https://tools.ietf.org/html/rfc2818

5.8 Sicherheit

Eine Benutzer-Authentifizierung – z. B. in Form eines Benutzernamens und Kennwortes –
schützt das System vor unberechtigtem Zugriff durch nicht autorisierte Personen. Zusätzlich
kann eine Benutzer-Authentifizierung um ein Rechtesystem ergänzt werden. Mit einem
solchen Rechtesystem kann ein Benutzer beispielsweise auf einen rein lesenden Zugriff
beschränkt werden und kann nur Daten aus der Ontologie abfragen. Einem anderen Benutzer
hingegen kann der volle Zugriff gewährt werden.

Eine autonome Sensorintegration (vgl. Kapitel 5.7) erfordert ein komplexeres Sicherheits-
konzept, da die Kontrolle aus der Hand der Benutzer rückt. Ein bösartig konzipiertes Objekt
könnte in das System eingeschleust werden. In ein geschlossenes System eingebracht, kann
so ein bösartiges Objekt eine Schnittstelle nach außen hin öffnen. Über diese Schnittstelle ist
dann eine Manipulation oder ein Ausspionieren des Systems möglich.

Dem kann z. B. durch ein einfaches Zertifikatssystem vorgebeugt werden. Objekte, welche
kein gültiges Zertifikat vorweisen können, werden abgewiesen. Eine technisch ausgereiftere
und komplexere Lösung lässt sich durch den XACML12-Standard erreichen. Mit ihm lassen
sich Sicherheitsrichtlinien wie Authentifizierungsrichtlinien und Autorisierungen zentral
steuern [XACML].

Vollständige Sicherheit ist allerdings nicht erreichbar. Am Ende bleibt immer der Mensch als
Sicherheitsrisiko bestehen.

12eXtensible Access Control Markup Language

53

6 Implementierung

Always code as if the guy who
ends up maintaining your code
will be a violent psychopath who
knows where you live

(John F. Woods)

Dieses Kapitel beschreibt die prototypische Implementierung der Sensorintegration SeInt.
Es werden dabei einzelne Designentscheidungen, Probleme und deren Lösungsmöglichkeiten
diskutiert. Die Implementierung besteht einerseits aus einer Software und andererseits aus
der Ontologie.

6.1 Technologieentscheidung für die Software

Am Anfang der Software-Implementierung galt es zu entscheiden, welche Technologien sich
empfehlen und geeignet sind, das in Kapitel 5 vorgestellte Konzepte umzusetzen.

Sowohl die Resource Management Platform (RMP) als auch die Sensor Registry bieten REST-
basierte Schnittstellen. Dementsprechend folgt SeInt dem gleichen Schnittstellenkonzept,
ummit den anderen Teilen konform zu bleiben. Als Alternative böte sich z. B. SOAP1 an. REST
ist allerdings im Vergleich zu SOAP direkter und weniger umfangreich zu implementieren.
Beide bieten eine umfangreiche Infrastruktur wie Web- bzw. Anwendungsserver (application
server) sowie HTTP als Transportprotokoll.

Aus dem Bereich der Webtechnologien bieten sich diverse Programmiersprachen zur Ent-
wicklung einer REST-basieren Schnittstelle an. Beispiele, zu denen es teilweise Unterstützung
für Ontologien in Form von Bibliotheken gibt, sind:

• PHP – eine Skriptsprache entworfen für dynamische Webanwendungen.

• node.js – JavaScript in einer serverseitigen Laufzeitumgebung, eignet sich vor allem
für eine ereignisgesteuerte Entwicklung.

1Simple Object Access Protocol

55

6 Implementierung

• ASP.Net – ist vonMicrosoft und limitiert damit die Infrastruktur auf der einWebservice
läuft.

• JAX-RS – Java API for RESTful Web Services als API Spezifikation.

Des Autors Vorkenntnisse präferierten eine Lösung in PHP oder node.js.

Allerdings ergaben Recherchen, dass es für Java die größte Unterstützung durch Bibliotheken
gibt. Java bietet mit

• Jersey2 – als Referenzimplementierung für die JAX-RS API Spezifikation

• Jena3 – eine Bibliothek u.a. für OWL und SPARQL

• jSch4 – eine SSH2-Implementierung, kommt bei der Adapter-Provisionierung zum
Einsatz.

die notwendigen Bibliotheken, um SeInt als prototypische Implementierung umzusetzen.
Die Bibliotheken werden mit einer Javadoc-Dokumentation ausgeliefert, diese beschreibt i.A.
jedoch nur die Struktur einer API Bibliothek, erklärt aber nicht, wie sie zu verwenden ist.
Weitere Dokumentation zu den API Bibliotheken ist zwar vorhanden, benötigt jedoch ein
tieferes Verständnis der jeweiligen Bibliothek.

Eine Implementierung in Java bietet die Möglichkeit die gesamte Anwendung in ein porta-
bles Web Application Archive (WAR) zu packen. Ein Anwendungsserver wie z. B. GlassFish5
genügt, um WAR auszuführen.

6.2 Ontologie mit Protégé

Es gibt nicht „die eine richtige Methode“ wie Noy und McGuinness in einer Anleitung
zum Entwurf einer Ontologie betonen [NM01]. Der Ontologie-Entwurf geschah in einem
iterativen Prozess und wurde stetig neu geordnet, erweitert und geändert.

Technisch wurde die Ontologie in OWL-DL implementiert. OWL ist XML-basiert und der hän-
dische Entwurf komplexer XML Dokumente ist zeitaufwendig und fehleranfällig. Ontologie-
Editoren sind hierbei eine hilfreiche Unterstützung. Es gibt eine Vielzahl Ontologie-Editoren,
z. B. Protégé und weitere6.

2https://jersey.java.net/
3http://jena.apache.org/
4http://www.jcraft.com/jsch/
5https://glassfish.java.net/
6Übersicht verschiedener Ontologie-Editoren – http://www.w3.org/wiki/Ontology_editors

56

https://jersey.java.net/
http://jena.apache.org/
http://www.jcraft.com/jsch/
https://glassfish.java.net/
http://www.w3.org/wiki/Ontology_editors

6.2 Ontologie mit Protégé

Protégé war der erste untersuchte Ontologie-Editor. Er erwies sich direkt als mächtig und
komfortabel genug, um eine Ontologie zu entwerfen. Weitere Editoren wurden deswegen
nicht untersucht. Protégé macht es sehr einfach Hierarchien graphisch-gestützt zu entwer-
fen.

Nach einer ersten Begriffssammlung für die Ontologie galt es diese Begriffe in einen Zusam-
menhang zu setzen. Ein Problem war dabei z. B. die Einordnung der Koordinaten. Wie in
Abbildung 6.1 dargestellt, können Koordinaten entweder als eigene owl:Class mit einer
owl:ObjectProperty oder als owl:DatatypeProperty zu einer Objekt-Instanz struktu-
riert werden.

Abbildung 6.1: Koordinaten als Klasse oder Wert

Koordinaten als eigene owl:Class bieten den Vorteil, dass eine Instanz dieser Klasse
verschiedenen Objekt-Instanzen zugeordnet und damit wiederverwendet werden kann.

Bei der Adapter-Klasse stellte sich die Frage, ob die Adapter in Form eines Python-Skripts
(vgl. Kapitel 6.3.4) selbst oder nur eine Referenz dieser in einem Adapter Repository (AR) in
der Ontologie platziert werden. Das Speichern in der Ontologie hätte den Vorteil, dass alles
zusammen an einem Ort verwaltet werden kann. Sie hätte auch keine Abhängigkeiten zu
einem AR. Allerdings müsste ein Adapter serialisiert in der Ontologie hinterlegt werden, um
sicher in ein XML-Dokument eingebettet werden zu können. Die Datengröße der Ontologie
ist mit einer Referenz zum AR geringer. Zudem sind Adapter und Ontologie entkoppelt,
wodurch SeInt modularer gestaltet ist.

Bereits vorhandene Sensor-Ontologien (vgl. Kapitel 4.2 und 4.3) sind zu umfangreich und
komplex, um imZuge dieser Diplomarbeit Verwendung zu finden. Die hier entworfene Sensor-

57

6 Implementierung

Ontologie – inspiriert durch SensorML – beschränkt sich deswegen auf ein Hierarchiemodell
zur Klassifizierung der Sensortypen.

Instanzen, die mit Protégé erzeugt werden, sind vom Typ owl:NamedIndividual. Sie tragen
ihre Id in der Bezeichnung. Anonyme Instanzen fehlt die Id und eignen sich vorwiegend für
einen internen Ontologie-Gebrauch. In dieser Ontologie werden nur owl:NamedIndividual
verwendet.

Listing 6.1 OWL Instanz eine Sensors – Ultraschall Messmodul HC-SR04
<owl:NamedIndividual rdf:about="&seint;HC-SR04">
<rdf:type rdf:resource="&seint;ultrasonicPulseEcho"/>
<powerConsumption rdf:datatype="&xsd;integer">10</powerConsumption>
<measureInterval rdf:datatype="&xsd;integer">20</measureInterval>
<rangeLowerLimit rdf:datatype="&xsd;integer">20</rangeLowerLimit>
<measurePrecision rdf:datatype="&xsd;integer">3</measurePrecision>
<rangeUpperLimit rdf:datatype="&xsd;integer">30000</rangeUpperLimit>
<sensorId rdf:datatype="&xsd;integer">5</sensorId>
<unitName>millimeter</unitName>

</owl:NamedIndividual>

Neben der Id des owl:NamedIndividual gibt es für jedes Objekt und jeden Sensor noch ein
eigenes Id-Feld, z. B. sensorId (vgl. Listing 6.1). Diese zweite Id ist dafür gedacht, Objekte und
Sensoren projektweit – getrennt von der Ontologie – eindeutig identifizieren zu können.

6.3 Sensorintegration – SeInt

SeInt besteht wie im Konzept beschrieben (vgl. Kapitel 5.1) aus mehreren Komponenten,
deren Implementierung in den folgenden Unterkapiteln erläutert wird.

6.3.1 Ontologie-Schnittstelle

Die Ontologie-Schnittstelle wurde mit Hilfe der Jena-Bibliothek implementiert.

Die Namensräume innerhalb der Ontologie werden in einem Enum – einem Aufzählungs-
typen – verwaltet. Dieser Enum enthält zu jedem Namensraum eine Konstante und eine
Methode, um den Wert einer Konstante auszulesen.

Bestimmte Werte einer Instanz der Ontologie werden direkt über die OWL-API von Jena
ausgelesen. Hierzu wurde eine generische Methode entwickelt, um zu einer beliebigen
Instanz eine bestimmte Eigenschaft abzufragen (vgl. Listing 6.2).

58

6.3 Sensorintegration – SeInt

Listing 6.2 Methode zum direkten Auslesen eines speziellen Wertes einer Instanz
public String getPropertyValueOfIndividual(String individualName, String propertyName)
{

Individual individual = ontology.getIndividual(Prefix.SEINT.value() +
individualName);↪→

DatatypeProperty property = ontology.getDatatypeProperty((Prefix.SEINT.value() +
propertyName));↪→

return individual.getPropertyValue(property).toString();
}

Geht es um die Abfrage einer gesamten Instanz aus der Ontologie wird die SPARQL-Query-
API von Jena verwendet. Es gibt verschiedene SPARQL-Abfragen, um beispielsweise die
Instanz eines Objekts oder Sensors abzufragen (vgl. Listing 6.3).

Die Jena-Bibliothek bietet verschiedene Ausgabeformate für Ontologie-Abfragen. Davon wird
in Kombination mit der REST-basieren Schnittstelle Gebrauch gemacht, um entsprechende
Ausgaben zu generieren.

Die SPARQL-Query-API erlaubt keine Manipulationen der Ontologie. Hierfür gibt es in dem
sehr speziellen Bibliotheksdesign von Jena eine gesonderte SPARQL-Update-API, die sich
allerdings identisch zur SPARQL-Query-API bedienen lässt.

Listing 6.5 zeigt die Ausgabe zu einer Beispiel Instanz des „Ultraschall Messmodul HC-
SR04“.

6.3.2 REST-basierte Schnittstelle nach außen

Diese Schnittstelle ist mit Jersey implementiert. Jersey bringt eine Menge Annotationen mit,
die den Quellcode sehr klein und übersichtlich halten.

Listing 6.4 zeigt die Implementierung um alle Sensoren der Ontologie aufzulisten. Bei einem
HTTP-GET auf die REST-Ressource /sensor/listwird dieMethode getSensorListAsText()
aufgerufen. Auf diese Art und Weise sind sämtliche REST-Ressourcen deklariert.

Wie im Konzept erläutert, folgt die Bedienung der Ontologie dem CRUD-Schema (vgl.
Kapitel 5.3). HTTP bietet verschiedene Methoden an, die wie folgt verwendet werden:
PUT Erzeugen neuer Daten in der Ontologie
GET Abfrage der Ontologie
POST Ändern von Daten in der Ontologie
DELETE Löschen von Daten in der Ontologie

59

6 Implementierung

Listing 6.3Methode zum Auslesen der Sensordaten
/**
* Gets sensor data by its name (owl:NamedIndividual) and outputs in a given format

*
* @param name String owl:NamedIndividual name of a sensor

* @param outputFormat String

* @return String sensor data in a given format

*/
public String getSensorByName(String name, OutputFormat outputFormat)
{

String queryString =
"SELECT ?sensor ?predicate ?object \n" +
"WHERE {\n" +
" ?class "+Prefix.RDFS.prefix()+":subClassOf*

"+Prefix.SEINT.prefix()+":sensor . \n" +↪→

" ?sensor "+Prefix.RDF.prefix()+":type ?class . \n" +
" ?sensor ?predicate ?object . \n" +
"FILTER (?sensor = "+Prefix.SEINT.prefix()+":"+name+") \n" +
"}";

return query(queryString, outputFormat);
}

Listing 6.4 Beispiel einer REST-Ressource in Jersey
@Path("/sensor")
public class Sensor extends RestResource
{

@GET
@Path("/list")
@Produces({MediaType.TEXT_PLAIN, MediaType.WILDCARD})
public Response getSensorListAsText()
{

String output = ontology.getSensorList(OntologyManager.OutputFormat.TEXT);
return out(output);

}

60

6.3 Sensorintegration – SeInt

6.3.3 Klient für SeInt

Die Benutzer-Klient zur Bedienung der REST-basierten Schnittstelle wurde als HTML5-
Webseite in Kombination mit JavaScript entworfen. Webbrowser gibt es für alle gängigen
Betriebssysteme, auch wenn derzeitig noch nicht alle Webbrowser HTML5 in vollem Umfang
unterstützen.

Für JavaScript wird die jQuery7-Bibliothek verwendet. Sie erleichtert DOM8-Manipulationen
und AJAX9 wesentlich.

In HTML5 wurde für die einzelnen REST-Ressourcen jeweils ein Formular beschrieben, um
die Parameter eines URI eingeben zu können (vgl. Abbildung 6.2). Jedes dieser Formulare
enthält Buttons zum ausführen der Anfrage.

HTML5 Formulare erlauben nur POST und GET als HTTP-Methoden. Außerdem definiert
der Browser den HTTP Request-Header, insbesondere die MIME-Typen des Accept-Feldes.
Dieses Problem wird mit JavaScript und der AJAX-Technik gelöst. Mittels jQuery lassen sie
AJAX-Request sehr einfach gestalten, vor allem kann man das Accept-Feld frei definieren.

Listing 6.6 zeigt eine vollständige HTML5-Section, inklusive dem Formular und JavaScript,
das die Formularbehandlung übernimmt. Die Buttons werden auf ein auslösendes Ereignis
– ein Klick oder Tastendruck – hin überwacht. Mit dem Ereignis wird die Anfrage an die
REST-Ressource ausgelöst. Es werden die Parameter der Ressource mit den Formularfeldern
ausgefüllt. Der Button bestimmt das Ausgabeformat, entsprechend wird im AJAX-Objekt
von jQuery der dataType gesetzt.

Listing 6.5 zeigt die Antwort einer Anfrage im einfachen Textformat.

6.3.4 Adapter auf einem Raspberry Pi

Im Rahmen dieser Diplomarbeit werden die Objekte durch einen Raspberry Pi dargestellt.
An diesen Minicomputer sind die Sensoren über die GPIO10-Schnittstelle angeschlossen. Als
Sensor kam ein Ultraschall Messmodul HC-SR0411 zum Einsatz.

Auf dem Raspberry Pi läuft ein Linux-Betriebsystem, des Weiteren gibt es SSH und einen
Python-Interpreter. Beides wird für die Adapter-Provisionierung eingesetzt.

7https://jquery.com/
8Document Object Model
9AsynchronousJavaScriptandXML
10General-purpose input/output
11Ultraschall Messmodul HC-SR04 – http://www.mikrocontroller.net/attachment/218122/HC-SR04_

ultraschallmodul_beschreibung_3.pdf

61

https://jquery.com/
Asynchronous JavaScript and XML
http://www.mikrocontroller.net/attachment/218122/HC-SR04_ultraschallmodul_beschreibung_3.pdf
http://www.mikrocontroller.net/attachment/218122/HC-SR04_ultraschallmodul_beschreibung_3.pdf

6 Implementierung

Listing 6.5 Ontologie Sensor-Instanz des Ultraschall Messmodul HC-SR04
--
| sensor | property | value |
==
seint:HC-SR04	seint:unitName	"millimeter"
seint:HC-SR04	seint:sensorId	5
seint:HC-SR04	seint:rangeUpperLimit	30000
seint:HC-SR04	seint:measurePrecision	3
seint:HC-SR04	seint:rangeLowerLimit	20
seint:HC-SR04	seint:measureInterval	20
seint:HC-SR04	seint:powerConsumption	10
seint:HC-SR04	rdf:type	seint:ultrasonicPulseEcho
seint:HC-SR04	rdf:type	owl:NamedIndividual
seint:HC-SR04	rdf:type	rdfs:Resource
seint:HC-SR04	rdf:type	seint:sensor
seint:HC-SR04	rdf:type	seint:physicalSensor
--

Die Adapter sind als Vorlage in einem Adapter Repository (AR) hinterlegt, wobei das AR sich
auf eine einfache Dateiablage beschränkt. Die Vorlage ist ein Python-Skript mit Platzhaltern
für die notwendigen Parameter wie die URL der Resource Management Platform (RMP) sowie
ObjektId und SensorId.

Das Python-Skript besteht aus zwei Funktionen:

1. eine misst die Signale an der GPIO-Schnittstelle. Dort kommen nur Rechtecksignale
mit den Werten 1 bzw. 0 an. Diese Signale müssen erst noch als Sensorwert interpre-
tiert werden. Beim Beispiel des Ultraschall Messmodul HC-SR04 genügt es, die Dauer
zwischen dem Ultraschall-Ping und dem Echo zu messen. Aus dieser Zeit lässt sich der
gemessene Abstand als Sensorwert berechnen.

2. der Sensorwert wird als HTTP-POST an die RMP gesendet. Die python-Bibliothek
Requests12 wird zu diesem Zwecke eingesetzt.

Beide Funktionen laufen in einer Endlosschleife.

Im Prozess der Sensorintegration wird die Vorlage in einen String eingelesen und die Platz-
halter durch ihre die entsprechenden Parameter ersetzt. Hierbei wird ein lauffähiges Python-
Skript erzeugt. Im Anschluss wird mit Hilfe der jSch-Bibliothek eine SSH Verbindung zum
Raspberry Pi aufgebaut. Dazu wurden die Verbindungsdaten, bestehend aus IP-Adresse,
Benutzername und Passwort, der Ontologie entnommen. Über diese Verbindung wird das

12Requests: HTTP for Humans –http://docs.python-requests.org/en/latest/

62

http://docs.python-requests.org/en/latest/

6.3 Sensorintegration – SeInt

Listing 6.6 Quellcodebeispiel des Klient
<!-- section to get a sensor by name -->
<section id="getSensorByName" class="get" tabindex="30">

<h2>GET Sensor by: NAME</h2>
<div>

<fieldset>
<legend>GET /rest/sensor/name/{name}</legend>
<label>Sensor {name}: <input class="getSensorByName" type="search"></label>
<button class="getSensorByName" >search</button>
<button class="getSensorByName json" >search (json)</button>

</fieldset>
<script type="text/javascript">

(function(){
var trigger = ’.getSensorByName’;
var path = ’rest/sensor/name/’;

$(trigger).bind(’keypress click’,function(e){
var value = $(’input’+trigger).val();
if (value && (e.keyCode == 13 || $(this).is(’:button’))) {
var outputFormat = ($(this).is(’.json’) ? "json" : "text");
$.ajax({

url: path + value,
dataType: outputFormat,
success: function(data, status, jqXHR){
console.log(’ajax success’, arguments);
var w = window.open();
var output = (outputFormat == "json" ? JSON.stringify(data,null,4) :

data);↪→

$(w.document.body).append("<pre></pre>");
$(w.document).find("pre").text(output);

},
error: function(jqXHR, status, errorThrown){
console.log(’ajax error’, arguments);
alert(’ERROR ’+jqXHR.status+’\n\n’+status+’\n’+errorThrown);

}
});

}

//update url of fieldset legend
value = value || ’{name}’;
$(this).parents(’fieldset’).find(’legend a’).attr(’href’, path +

value).text(path + value);↪→

});
}());

</script>
</div>

</section>

63

6 Implementierung

Abbildung 6.2:Weboberfläche des Klients

Python-Skript auf den Raspberry Pi kopiert. Abschließend wird das Python-Skript im Hin-
tergrund gestartet und die SSH-Verbindung beendet.

Das Python-Skript soll nach beenden der SSH-Verbindung noch laufen. Mit jSch ist es nicht
ganz trivial einen Prozess per SSH im Hintergrund zu starten. Die Standardmethode einen
Prozess in einer Shell in den Hintergrund zu legen funktioniert nicht mit jSch. Dazu wird
der sudo-Befehl unter Linux verwendet.

64

7 Zusammenfassung und Ausblick

Ziel dieser Arbeit war es, eine automatisierte ad-hoc Sensorintegration basierend auf einer
Ontologie zu schaffen. Das Konzept und die prototypische Implementierung bieten eine
REST-basierte Schnittstelle. Über diese lassen sich Objekte und ihre Sensoren auswählen.
Die Zugehörigkeit wird über eine Ontologie ermittelt. Sensoren können also dem Ziel dieser
Arbeit entsprechend ad-hoc und automatisiert in das System von SitRS integriert werden.

Am Anfang dieser Arbeit wurde der Hintergrund zu SitOPT erläutert und welche Rolle
SitRS in diesem System besitzt. Die Motivation dieser Arbeit leitet sich aus den Anforderung
einer Sensorintegration in SitRS ab.

Es wurden die notwendigen Grundlagen zum Verständnis dieser Arbeit erklärt. Anschließend
wurden verschiedene themenverwandte Arbeiten vorgestellt, die Lösungen zu Teilaspekten
dieser Arbeit liefern.

In Kapitel 5 ist ein umfangreiches Konzept zur Sensorintegration entworfen worden. Dieses
Konzept beinhaltet den Entwurf einer Ontologie, um Wissen über Objekte und Sensoren
semantisch zu repräsentieren und nutzbar zu machen. Außerdem wurde ein modularisierte
Softwaresystem für interagierende Komponenten konzipiert. Im Zusammenspiel stellen die
Komponenten die Sensorintegration dar.

Abschließend wurde die prototypische Implementierung beschrieben und die darin verwen-
deten Technologien und Methoden diskutiert.

65

7 Zusammenfassung und Ausblick

Fazit und Ausblick

Ontologien bieten einen guten Ansatz, um semantisches Wissen über die Umgebung zu
repräsentieren. Metadaten über Sensoren und Objekte lassen sich gut damit verwalten und die
Bedeutung der Metadaten ist durch die Ontologie gegeben. Über die vorhandene Schnittstelle
der Sensorintegration können sich andere Dienste dieses semantischen Wissens bedienen.

Für die Zukunft kann die hier vorgestellte Ontologie weiter verfeinert werden. Speziell
die Sensoren können noch feiner granuliert werden. Dazu gehört z. B. die Auffächerung
unterschiedlicher Sensortypen, aber auch der Ausbau der Sensoreigenschaften wie sie in
den Grundlagen angesprochen worden sind. Auch können die Möglichkeiten der Inferenz
in der Ontologie deutlich ausgebaut werden. Beispielweise um Formulierungen der Art
„integriere alle Temperatorsensoren die sich einem bestimmten Raum befinden“ Folge leisten
zu können.

Die Sensorintegration kann in verschiedenen Aspekten gegenüber der prototypischen Imple-
mentierung erweitert werden. Der Mechanismus der Adapter-Provisionierung wurde über
einen speziellen Ansatz gelöst. Er definiert sich durch die Infrastruktur der verwendeten
Minicomputer – Raspberry Pi. In Zukunft ist hier ein allgemeiner Ansatz denkbar, der auch
mit verschiedenen Infrastrukturen funktioniert. Die Konzepte hinter OpenTOSCA können
hier als Vorbild dienen.

Eine autonome Sensorintegration stellt den gesamten Prozess vor große Herausforderungen
und wurde in dieser Arbeit nur konzeptionell beschrieben. Sie geht mit dem Sicherheits-
konzept einher. Generell wurden Sicherheitsaspekte in der Implementierung dieser Arbeit
außen vor gelassen. Das Konzept vermittelt Ideen und Anhaltspunkte, welche Aspekte hier
angegangen werden können.

66

Literaturverzeichnis

[Ash09] K. Ashton. That ’Internet of Things’ Thing. RFID Journal, 2009. URL http:

//www.rfidjournal.com/articles/pdf?4986. (Zitiert auf Seite 21)

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wagner.
OpenTOSCA – A Runtime for TOSCA-based Cloud Applications. In 11th Interna-
tional Conference on Service-Oriented Computing, LNCS. Springer, 2013. (Zitiert
auf den Seiten 40 und 51)

[Bet] S. Betten. RichardsonMaturityModel. URL http://www.se.uni-hannover.de/
pub/File/kurz-und-gut/ws2011-labor-restlab/RESTLab-Richardson-

Maturity-Model-Sascha-Betten-kurz-und-gut.pdf. (Zitiert auf Seite 36)

[BHK+] U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp, F. Leymann, M. Wieland. A
Situation-Aware Workflow Modelling Extension. Sumbitted to the 17th Inter-
national Conference on Information Integration and Web-based Applications &
Services (IIWAS), 2015. (Zitiert auf Seite 15)

[BHL+14] J. Busse, B. Humm, C. Lübbert, F. Moelter, A. Reibold, M. Rewald, V. Schlüter,
B. Seiler, E. Tegtmeier, T. Zeh. Was bedeutet eigentlich Ontologie? Informatik-
Spektrum, 37(4):286–297, 2014. doi:10.1007/s00287-012-0619-2. URL http://dx.

doi.org/10.1007/s00287-012-0619-2. (Zitiert auf Seite 23)

[BN03] F. Baader, W. Nutt. The Description Logic Handbook. Kapitel Basic Description
Logics, S. 43–95. Cambridge University Press, New York, NY, USA, 2003. URL
http://dl.acm.org/citation.cfm?id=885746.885749. (Zitiert auf Seite 25)

[Bra96] C. Braig. Vom Sein. Abriß der Ontologie. Herder, Freiburg im Breis-
gau, 1896. URL https://www.freidok.uni-freiburg.de/fedora/objects/

freidok:806/datastreams/FILE1/content. (Zitiert auf Seite 23)

[BMBF15] Bundesministerium für Bildung und Forschung. Industrie 4.0 - Innovation für
die Produktion von morgen. Bundesministerium für Bildung und Forschung, 2.
Auflage, 2015. URL http://www.bmbf.de/pub/Industrie_4.0.pdf. (Zitiert
auf den Seiten 9 und 22)

67

http://www.rfidjournal.com/articles/pdf?4986
http://www.rfidjournal.com/articles/pdf?4986
http://www.se.uni-hannover.de/pub/File/kurz-und-gut/ws2011-labor-restlab/RESTLab-Richardson-Maturity-Model-Sascha-Betten-kurz-und-gut.pdf
http://www.se.uni-hannover.de/pub/File/kurz-und-gut/ws2011-labor-restlab/RESTLab-Richardson-Maturity-Model-Sascha-Betten-kurz-und-gut.pdf
http://www.se.uni-hannover.de/pub/File/kurz-und-gut/ws2011-labor-restlab/RESTLab-Richardson-Maturity-Model-Sascha-Betten-kurz-und-gut.pdf
http://dx.doi.org/10.1007/s00287-012-0619-2
http://dx.doi.org/10.1007/s00287-012-0619-2
http://dl.acm.org/citation.cfm?id=885746.885749
https://www.freidok.uni-freiburg.de/fedora/objects/freidok:806/datastreams/FILE1/content
https://www.freidok.uni-freiburg.de/fedora/objects/freidok:806/datastreams/FILE1/content
http://www.bmbf.de/pub/Industrie_4.0.pdf

Literaturverzeichnis

[Cis14] Cisco Systems. Cisco Switches der Serie 300 Cisco Small Business, 2014. URL
http://www.cisco.com/c/dam/en/us/products/collateral/switches/

small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.

pdf. (Zitiert auf Seite 57)

[Cox13] S. Cox. An explicit OWL representation of ISO/OGC Observations and Mea-
surements. In Proceedings of the 6th International Workshop on Semantic Sensor
Networks co-located with the 12th International Semantic Web Conference (ISWC
2013), Band 1063, S. 1–18. 2013. URL http://ontolog.cim3.net/file/work/

OntologyBasedStandards/2013-10-17_Ontologies-for-Geospatial-

Standards/wip/Cox_OM-OWL_20131017b1.pdf. (Zitiert auf Seite 37)

[1319-1] DIN-Normenausschuss Technische Grundlagen (NATG). Grundlagen der Meß-
technik - Teil 1: Grundbegriffe. Deutsches Institut für Normung e. V., Am DIN-
Platz, Burggrafenstraße 6, 10787 Berlin. DIN 1319-1 : 1995-01. (Zitiert auf
Seite 22)

[RFC2131] R. Droms. Dynamic Host Configuration Protocol. Technischer Bericht, Network
Working Group, Request for Comments, 1997. URL https://tools.ietf.org/

html/rfc2131. RFC2131. (Zitiert auf Seite 55)

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. Dissertation, University of California, 2000. URL http://www.ics.

uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.
(Zitiert auf den Seiten 34 und 36)

[Fie08] R. T. Fielding. REST APIs must be hypertext-driven. Privater Blog,
2008. URL http://roy.gbiv.com/untangled/2008/rest-apis-must-be-

hypertext-driven. (Zitiert auf Seite 35)

[For15] W. E. Forum©. Industrial Internet of Things: Unleashing the Potential of
Connected Products and Services, 2015. URL http://www3.weforum.org/docs/
WEFUSA_IndustrialInternet_Report2015.pdf. (Zitiert auf Seite 9)

[Fow] M. Fowler. Richardson Maturity Model. URL http://martinfowler.com/

articles/richardsonMaturityModel.html. (Zitiert auf Seite 36)

[GOS09] N. Guarino, D. Oberle, S. Staab. What Is an Ontology?, 2009. URL http://

iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf. (Zitiert
auf Seite 25)

[Gru93] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisi-
tion, Band 5(Nummer 2):199–220, 1993. URL http://ksl-web.stanford.edu/

KSL_Abstracts/KSL-92-71.html. (Zitiert auf den Seiten 24 und 38)

68

http://www.cisco.com/c/dam/en/us/products/collateral/switches/small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/switches/small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/switches/small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.pdf
http://ontolog.cim3.net/file/work/OntologyBasedStandards/2013-10-17_Ontologies-for-Geospatial-Standards/wip/Cox_OM-OWL_20131017b1.pdf
http://ontolog.cim3.net/file/work/OntologyBasedStandards/2013-10-17_Ontologies-for-Geospatial-Standards/wip/Cox_OM-OWL_20131017b1.pdf
http://ontolog.cim3.net/file/work/OntologyBasedStandards/2013-10-17_Ontologies-for-Geospatial-Standards/wip/Cox_OM-OWL_20131017b1.pdf
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2131
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf
http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf
http://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html

Literaturverzeichnis

[RFC4291] R. Hinden, S. Deering. IP Version 6 Addressing Architecture. RFC 4291, Network
Working Group, Request for Comments, 2006. URL https://tools.ietf.org/

html/rfc4291. (Zitiert auf Seite 59)

[HWS+15] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher, F. Leymann.
SitRS - A Situation Recognition Service based on Modeling and Executing Situa-
tion Templates. In C. Nikolaou, F. Leymann, Herausgeber, Proceedings of the 9th
Symposium and Summer School On Service-Oriented Computing, S. 35–49. IBM,
2015. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/

NCSTRL_view.pl?id=INPROC-2015-34&engl=. (Zitiert auf den Seiten 16, 17
und 18)

[ITU12] ITU-T Study Group 13. Overview of the Internet of things, 2012. URL http:

//handle.itu.int/11.1002/1000/11559. Recommendation ITU-T Y.2060. (Zi-
tiert auf Seite 21)

[Jan15] P. Jansa. Eine OSLC- Plattform zur Unterstützung der Situationserken-
nung in Workflows. Diplomarbeit, Universität Stuttgart, Fakultät Infor-
matik, Elektrotechnik und Informationstechnik, Germany, 2015. URL
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=DIP-3707&engl=0. (Zitiert auf Seite 16)

[Jas12] P. D.-I. J. Jasperneite. Internet und Automation – Was hinter Begriffen wie Indus-
trie 4.0 steckt. Computer & AUTOMATION, 2012. URL http://www.computer-

automation.de/steuerungsebene/steuern-regeln/artikel/93559/. (Zi-
tiert auf den Seiten 13 und 22)

[KLW11] H. Kagermann, W.-D. Lukas, W. Wahlster. Industrie 4.0: Mit dem Internet
der Dinge auf dem Weg zur 4. industriellen Revolution. VDI Nachrichten
: Technik, Wirtschaft, Gesellschaft. - [N.F.] 65 (2011), H. 1-17, 13, 2011. URL
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-

40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution. Sammelband
65 (2011), H. 1-17. (Zitiert auf Seite 22)

[Lac05] L. W. Lacy. OWL: representing information using the Web Ontology Language.
Trafford Publishing, 2005. ISBN: 1-4120-3448-5. (Zitiert auf Seite 28)

[LS11] E. A. Lee, S. A. Seshia. Introduction to Embedded Systems – A Cyber-Physical
Systems Approach. 1. Auflage, 2011. URL http://leeseshia.org/releases/

LeeSeshia_DigitalV1_08.pdf. ISBN 978-0-557-70857-4. (Zitiert auf Seite 22)

[Men02] C. Menzel. Ontology Theory. In Ontologies and Semantic Interoperability, CEUR
Workshop Proceedings, Band 64. Citeseer, 2002. URL http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.72.7057&rep=rep1&type=pdf.
(Zitiert auf Seite 25)

69

https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=
http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3707&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3707&engl=0
http://www.computer-automation.de/steuerungsebene/steuern-regeln/artikel/93559/
http://www.computer-automation.de/steuerungsebene/steuern-regeln/artikel/93559/
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution
http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf
http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.7057&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.7057&rep=rep1&type=pdf

Literaturverzeichnis

[NM01] N. F. Noy, D. L. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology. Technischer Bericht, Stanford University,
2001. URL http://www.ksl.stanford.edu/people/dlm/papers/ontology-

tutorial-noy-mcguinness.pdf. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical Re-
port SMI-2001-0880. (Zitiert auf Seite 64)

[NXP14] NXP Semiconductors. UM10204 – I2C-bus specification and user manual, 2014.
URL http://www.nxp.com/documents/user_manual/UM10204.pdf. Rev. 6.
(Zitiert auf Seite 55)

[XACML] OASIS TC. eXtensible Access Control Markup Language (XACML) Version
3.0, 2010. URL http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-

spec-cs-01-en.pdf. (Zitiert auf Seite 61)

[TOSCA] OASIS Standard. Topology and Orchestration Specification for Cloud Applicati-
ons Version 1.0, 2013. URL http://docs.oasis-open.org/tosca/TOSCA/v1.

0/os/TOSCA-v1.0-os.pdf. (Zitiert auf Seite 40)

[OWL2a] OWL Working Group. OWL 2 Web Ontology Language – Document Overview
(Second Edition). W3C Recommendation, 2012. URL http://www.w3.org/TR/

owl2-overview/. (Zitiert auf Seite 32)

[OWL2] OWL Working Group. OWL 2 Web Ontology Language – Primer (Second
Edition). W3C Recommendation, 2012. URL http://www.w3.org/TR/owl2-

primer/. (Zitiert auf Seite 31)

[OWL2b] OWL Working Group. OWL 2 Web Ontology Language – Profiles (Second
Edition). W3C Recommendation, 2012. URL http://www.w3.org/TR/owl2-

profiles/. (Zitiert auf Seite 32)

[OWL2c] OWLWorking Group. OWL 2Web Ontology Language – Quick Reference Guide
(Second Edition). W3C Recommendation, 2012. URL http://www.w3.org/TR/

owl2-quick-reference/. (Zitiert auf Seite 32)

[PH09] D. L. Phuoc, M. Hauswirth. Linked open data in sensor data mashups. Proceedings
of the 2nd International Workshop on Semantic Sensor Networks (SSN09), in con-
junction with ISWC 2009, 522, 2009. URL http://hdl.handle.net/10379/1113.
CEUR. (Zitiert auf Seite 39)

[RDF1.1] RDF Working Group. RDF 1.1 Concepts and Abstract Syntax. W3C Recommen-
dation, 2014. URL http://www.w3.org/TR/rdf11-concepts/. (Zitiert auf den
Seiten 26 und 27)

[RDFSE] RDF Working Group. RDF 1.1 Semantics. W3C Recommendation, 2014. URL
http://www.w3.org/TR/rdf11-mt/. (Zitiert auf Seite 27)

70

http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-quick-reference/
http://www.w3.org/TR/owl2-quick-reference/
http://hdl.handle.net/10379/1113
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-mt/

Literaturverzeichnis

[Turtle] RDF Working Group. RDF 1.1 Turtle. W3C Recommendation, 2014. URL
http://www.w3.org/TR/turtle/. (Zitiert auf Seite 32)

[RDFX] RDF Working Group. RDF 1.1 XML Syntax. W3C Recommendation, 2014. URL
http://www.w3.org/TR/rdf-syntax-grammar/. (Zitiert auf Seite 27)

[RDFS] RDF Working Group. RDF Schema 1.1. W3C Recommendation, 2014. URL
http://www.w3.org/TR/rdf-schema/. (Zitiert auf Seite 28)

[RKT05] D. J. Russomanno, C. R. Kothari, O. A. Thomas. Building a Sensor Ontology: A
Practical Approach Leveraging ISO and OGC Models. In The 2005 International
Conference on Artificial Intelligence, S. 637–643. 2005. URL https://wwwnew.

memphis.edu/eece/cas/docs/ica3194.pdf. Las Vegas, NV. (Zitiert auf den
Seiten 38 und 39)

[RR07] L. Richardson, S. Ruby. RESTful Web Services, Band 1. O’Reilly Media, 2007. ISBN
978-0-596-52926-0. (Zitiert auf Seite 36)

[SBF98] R. Studer, V. R. Benjamins, D. Fensel. Knowledge Engineering: Principles and
Methods. Data & Knowledge Engineering, 25(1-2):161–197, 1998. doi:10.1016/
S0169-023X(97)00056-6. URL http://dx.doi.org/10.1016/S0169-023X(97)

00056-6. (Zitiert auf Seite 24)

[Sen14] OGC© SensorML: Model and XML Encoding Standard, 2014. URL https:

//portal.opengeospatial.org/files/?artifact_id=55939. OGC 12-000.
(Zitiert auf den Seiten 37 und 38)

[SPA13a] SPARQL Working Group. SPARQL 1.1 Query Language. W3C Recommendation,
2013. URL http://www.w3.org/TR/sparql11-query/. (Zitiert auf Seite 34)

[SPA13b] SPARQL Working Group. SPARQL 1.1 Update. W3C Recommendation, 2013.
URL http://www.w3.org/TR/sparql11-update/. (Zitiert auf Seite 34)

[OWL] Web Ontology Working Group . OWL Web Ontology Language – Overview.
W3C Recommendation, 2004. URL http://www.w3.org/TR/owl-features/.
(Zitiert auf Seite 30)

[Wei91] M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–104,
1991. URL https://www.lri.fr/~mbl/Stanford/CS477/papers/Weiser-

SciAm.pdf. Reprint Pervasive Computing 2002. (Zitiert auf Seite 21)

[WSEM] Wikipedia. Semantic Web Stack — Wikipedia, The Free Encyclopedia,
2015. URL https://en.wikipedia.org/w/index.php?title=Semantic_Web_
Stack&oldid=681457479. [Online; accessed 28-October-2015]. (Zitiert auf Sei-
te 30)

71

http://www.w3.org/TR/turtle/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
https://wwwnew.memphis.edu/eece/cas/docs/ica3194.pdf
https://wwwnew.memphis.edu/eece/cas/docs/ica3194.pdf
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
https://portal.opengeospatial.org/files/?artifact_id=55939
https://portal.opengeospatial.org/files/?artifact_id=55939
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/owl-features/
https://www.lri.fr/~mbl/Stanford/CS477/papers/Weiser-SciAm.pdf
https://www.lri.fr/~mbl/Stanford/CS477/papers/Weiser-SciAm.pdf
https://en.wikipedia.org/w/index.php?title=Semantic_Web_Stack&oldid=681457479
https://en.wikipedia.org/w/index.php?title=Semantic_Web_Stack&oldid=681457479

Literaturverzeichnis

[WSBL15] M.Wieland, H. Schwarz, U. Breitenbücher, F. Leymann. Towards Situation-Aware
Adaptive Workflows. In Proceedings of the 13th Annual IEEE Intl. Conference on
Pervasive Computing and Communications Workshops: 11th Workshop on Con-
text and Activity Modeling and Recognition, S. 32–37. IEEE, St. Louis, Missou-
ri, USA, 2015. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/

NCSTRL/NCSTRL_view.pl?id=INPROC-2015-24&engl=1. (Zitiert auf den Sei-
ten 13 und 14)

[Yil06] B. Yildiz. Ontology Evolution and Versioning - The state of the art. Vienna
University of Technology, Institute of Software Technology & Interactive Systems
(ISIS), 2006. URL http://publik.tuwien.ac.at/files/pub-inf_4603.pdf.
(Zitiert auf Seite 24)

[ZHKL09] O. Zweigle, K. Häussermann, U.-P. Käppeler, P. Levi. Supervised learning al-
gorithm for automatic adaption of situation templates using uncertain data.
In Proceedings of the 2nd International Conference on Interaction Sciences: Infor-
mation Technology, Culture and Human, S. 197–200. ACM, New York, NY, USA,
2009. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/

NCSTRL_view.pl?id=INPROC-2009-137&engl=0. (Zitiert auf Seite 16)

Alle URLs wurden zuletzt am 01. November 2015 geprüft.

72

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-24&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-24&engl=1
http://publik.tuwien.ac.at/files/pub-inf_4603.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-137&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-137&engl=0

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	Kurzfassung
	Inhaltsverzeichnis
	1 Einleitung
	2 Hintergrund und Motivation
	2.1 SitOPT
	2.2 Situationserkennung – SitRS
	2.3 Sensorintegration – SeInt

	3 Grundlagen
	3.1 Internet der Dinge
	3.2 Industrie 4.0
	3.3 Sensoren
	3.4 Ontologie
	3.4.1 Ontologie in der Informatik
	3.4.2 Resource Description Framework und RDF Schema
	3.4.3 Web Ontology Language – OWL
	3.4.4 Abfragesprache SPARQL

	3.5 Representational State Transfer – REST

	4 Verwandte Arbeiten
	4.1 SWE und SensorML
	4.2 OntoSensor – ontologische Übersetzung von SensorML
	4.3 Sensoren und deren Datenströme als verknüpfte und frei verfügbare Daten
	4.4 OpenTOSCA

	5 Konzept
	5.1 Gesamtstruktur
	5.2 Zentraler Service – ZS
	5.3 Ontologie als Wissensbasis
	5.4 Klient
	5.5 Sensordatenanbindung über Adapter
	5.6 Optimierung
	5.7 Autonome Sensorintegration
	5.7.1 Eintrittsankündigung
	5.7.2 Eintrittsaufforderung
	5.7.3 Weitere Probleme einer autonomen Sensorintegration

	5.8 Sicherheit

	6 Implementierung
	6.1 Technologieentscheidung für die Software
	6.2 Ontologie mit Protégé
	6.3 Sensorintegration – SeInt
	6.3.1 Ontologie-Schnittstelle
	6.3.2 REST-basierte Schnittstelle nach außen
	6.3.3 Klient für SeInt
	6.3.4 Adapter auf einem Raspberry Pi

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

