Institut fiir Parallele und Verteilte Systeme

Universitat Stuttgart
UniversitatsstraBBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3721

Automatisierte,
Ontologie-basierte
Sensorintegration fir das Internet
der Dinge

Sven Grumbein

Studiengang: Informatik

Prifer/in: PD Dr. rer. nat. habil. Holger Schwarz
Betreuer/in: Dipl.-Inf. Pascal Hirmer

Beginn am: 4. Mai 2015

Beendet am: 3. November 2015

CR-Nummer: C.0,C.24,E.2,H.2.8, H.3.3, H.3.5

Kurzfassung

Das Internet der Dinge (IoT) bezeichnet im Allgemeinen die Vernetzung von technischen
Geraten. Diese Gerate, auch intelligente Objekte genannt, enthalten dabei meist Sensoren,
die Informationen iiber ein Objekt und dessen Umgebung bereitstellen. Derartige vernetzte
Umgebungen werden als intelligente Umgebungen bezeichnet. Die ,Industrie 4.0%Initiative
greift diese technologische Entwicklung auf und wendet sie auf Produktions- und Logistik-
systeme an. Die vernetzten Daten ermdglichen es beispielsweise Prozesse und Workflows
situationsbedingt zu adaptieren.

Das DFG-Forschungsprojekt SitOPT entwickelt ein System zur Optimierung und Adaption
situationsbezogener Anwendungen basierend auf Workflow-Fragmenten. Teil dieses Sys-
tems ist eine Situationserkennung. Sie leitet aus Sensorwerten Situationen ab. Um dies zu
ermoglichen, miissen Sensoren in das System integriert werden.

In dieser Arbeit wird ein Konzept zur automatisierten ad-hoc Sensorintegration entworfen
und entwickelt. Dazu wird eine Ontologie als semantische Wissensbasis entworfen, die
Objekte, Sensoren und ihre Eigenschaften semantisch verkniipft. Uber einen REST-basierten
Service wird die Ontologie bedient und eine Sensorintegration initiiert. Adapter fungieren
als Schnittstelle zwischen Sensoren und der Situationserkennung und werden im Prozess
der Sensorintegration auf das Objekt tibertragen.

Inhaltsverzeichnis

1 Einleitung

2 Hintergrund und Motivation
2.1 SitOPT
2.2 Situationserkennung —SitRS. Lo L.
2.3 Sensorintegration —SeInt oo oL

3 Grundlagen
3.1 InternetderDinge
3.2 Industrie4.0
3.3 Sensoren . . .o e
34 Ontologie e
3.4.1 Ontologie in der Informatik
3.4.2 Resource Description Framework und RDF Schema
3.43 Web Ontology Language -OWL
3.44 Abfragesprache SPARQL
3.5 Representational State Transfer —-REST

4 Verwandte Arbeiten
41 SWEundSensorML
4.2 OntoSensor — ontologische Ubersetzung von SensorML
43 Sensoren und deren Datenstrome als verkniipfte und frei verfiigbare Daten .
44 OpenTOSCA e

13
13
16
18

21
21
22
22
23
24
26
29
32
34

5 Konzept

5.1 Gesamtstruktur
5.2 Zentraler Service —ZS L
5.3 Ontologie als Wissensbasis
54 Klient
5.5 Sensordatenanbindung iiber Adapter L.
56 Optimierung e
5.7 Autonome Sensorintegration 00 oL

5.7.1 Eintrittsankindigung Lo oL

5.7.2 Eintrittsaufforderung oo o oo

5.7.3 Weitere Probleme einer autonomen Sensorintegration
5.8 Sicherheit

6 Implementierung

6.1 Technologieentscheidung fiir die Software
6.2 Ontologie mit Protégé
6.3 Sensorintegration —SeInt L o L.
6.3.1 Ontologie-Schnittstelle
6.3.2 REST-basierte Schnittstelle nachauflen
6.33 KlientfurSeInt

6.3.4 Adapter auf einem Raspberry Pi
7 Zusammenfassung und Ausblick

Literaturverzeichnis

41
41
44
44
49
50
52
53
55
57
57
60

63
63
64
66
66
68
68
72

73

75

Abbildungsverzeichnis

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
35

5.1
5.2
53
54
5.5
5.6
5.7

5.8

6.1
6.2

SitOPT Ubersicht (Quelle: [WSBL15], Fig. 3) . « « . « v v v v v oo e e e e
Workflow Adaption (Quelle: [BHK*])
SitRS Architektur (Quelle: [HWS*15],Fig.2) v v v v v v vt ..
Beispiel eines Situation Template (nach [HWST15], Fig.4)

Ontologie Beispiel
RDF Tripel - Subjekt, Pradikat, Objekt (nach [RDF1.1],Fig. 1)
RDF Graph - Beispiel (nach [RDFX], Fig. 1) o v v oo v v v oo
Beispiel RDF-Schema Graph
OWL Stack (nach [WSEM]),

Konzept Ubersicht
Konzept Sequenzdiagramm einer Sensorintegration
Konzept Ontologie des Objektes
Konzept Ontologie der Sensoren
Konzept Ontologie Relationen
Konzept Adapter Provisionierung
Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsankiindi-

BUNE . . . o
Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsaufforde-

Koordinaten als Klasse oder Wert
Weboberfliche des Klients

Verzeichnis der Listings

3.1
3.2

6.1
6.2
6.3
6.4
6.5
6.6

Beispiel OWL in RDF/XML (vgl. Abbildung 3.4) 33
Beispiel SPARQL-Query 34
OWL Instanz eine Sensors — Ultraschall Messmodul HC-SR04 66
Methode zum direkten Auslesen eines speziellen Wertes einer Instanz 67
Methode zum Auslesen der Sensordaten 67
Beispiel einer REST-Ressource in Jersey 68
Ontologie Sensor-Instanz des Ultraschall Messmodul HC-SR04 69
Quellcodebeispiel des Klient 71

1 Einleitung

Das Internet der Dinge (IoT) ist eine derzeit aufstrebende Technologie [For15]. In ihm werden
stetig mehr werdende technische Gerite in sogenannte intelligente Umgebungen eingebun-
den. Diese Gerate besitzen meist eine Vielzahl Sensoren und liefern entsprechend viele
Sensordaten. All diese Sensorendaten vernetzt in einer intelligenten Umgebung offerieren
eine Menge neuer Moglichkeiten. Zum Beispiel konnen hoherwertige Situationen erkannt
und auf diese automatisiert reagiert werden.

Die Industrie 4.0 versteht sich als technologische Revolution zum bisherigen Stand [BMBF15].
Sie beruht auf der Idee des Internets der Dinge und wendet diese auf Fertigung- und Logis-
tikprozesse an. Diese Prozesse konnen — z. B. als Workflow modelliert — bedarfsorientiert
und situationsbedingt ausgefithrt werden.

Das DFG-Forschungsprojekt SitOPT entwickelt ein System zur Optimierung und Adaption
situationsbezogener Anwendungen basierend auf Workflow-Fragmenten. Eine Situations-
erkennung (SitRS) nimmt sich der Aufgabe an, eine Situation aus ermittelten Sensordaten
abzuleiten. Tritt eine Situation ein, kann SitOPT einen Workflow entsprechend adaptieren.

Sensoren miissen in SitRS integriert werden, um an die Sensordaten zur Situationserkennung
zu kommen. Bisher mussten Sensoren aufwendig manuell in das System integriert werden.

Ziel und Motivation dieser Arbeit ist es, eine automatisierte ad-hoc Sensorintegration zu
schaffen. Uber eine Ontologie erhilt diese Sensorintegration semantisches Wissen iiber
Objekte und Sensoren.

Der Hintergrund und die Motivation werden in Kapitel 2 detailliert vertieft.

1 Einleitung

Gliederung

Diese Diplomarbeit ist in folgender Weise gegliedert:

Kapitel 2 — Hintergrund und Motivation beschreibt SitOPT als Hintergrund dieser Arbeit
und die Motivation einer Sensorintegration.

Kapitel 3 — Grundlagen erklart die Grundlagen der eingesetzten Technologien.

Kapitel 4 — Verwandte Arbeiten weist auf verwandte Arbeiten hin und gibt einen Einbli-
cke in diese.

Kapitel 5 — Konzept zeigt die konzeptionelle Losung.

Kapitel 6 — Implementierung schildert die technische Umsetzung der konzeptionellen
Losung.

Kapitel 7 — Zusammenfassung und Ausblick fasst die Arbeit zusammen und gibt einen
Ausblick wie die Losung weiterentwickelt werden kann.

Begriffserklarung

In dieser Diplomarbeit werden verschiedene Begriffe wiederholt verwendet. An dieser Stelle
wird erklart welche Bedeutung ihnen inne liegt.

Situation - eine Situation ergibt sich aus einer bedingten Zustandsdnderung gemessen
durch Sensoren.

Internet der Dinge - auch Internet of Things bzw. IoT. Die Differenzierung in diesem The-
menbereich ist schwierig und in der Literatur wird dieser und die folgenden Begriffe
(s.u.) teils synonym verwendet. In dieser Diplomarbeit ist mit dem Begriff das Konzept
der Vernetzung und Adressierung verschiedener Objekte iiber das Internet gemeint.
Kapitel 3.1 geht detaillierter auf IoT ein.

Objekt - ein Objekt ist der Gegenstand oder das Gerat respektive das ,Ding” aus dem
Internet der Dinge.

SMART <AUSDRUCK> - <AUSDRUCK> ist eine intelligente Einheit, die mit ihren beinhal-
tenden Elementen bzw. mit seiner Umgebung vernetzt ist. In der Vernetzung findet ein
Informationsaustausch statt, mittels der intelligent agiert wird.

Beispiele: SMART Factory, SMART Environment, SMART Car, SMART Home

10

Uber dieses Dokument

Diese Diplomarbeit wurde mit ETEX mittels der MiKTgX-Distribution gesetzt. Das Dokument
basiert auf der inoffiziellen Vorlage' fiir Diplomarbeiten fiir Informatik an der Universitit

Stuttgart.

Als Texteditoren wurden sowohl Notepad++?, als auch TgXnicCenter® (Version 2.02) einge-

setzt.

Vektorgrafiken, sofern nicht zitiert, wurden mit yEd* und Inkscape’ erstellt.

'https://github.com/latextemplates/uni-stuttgart-computer-science-template
Zhttps://notepad-plus-plus.org/

Shttp://www.texniccenter.org/
*http://www.yworks.com/en/products/yfiles/yed/

Shttps://inkscape.org/

11

https://github.com/latextemplates/uni-stuttgart-computer-science-template
https://notepad-plus-plus.org/
http://www.texniccenter.org/
http://www.yworks.com/en/products/yfiles/yed/
https://inkscape.org/

2 Hintergrund und Motivation

Diese Arbeit entstand vor dem Hintergrund des Forschungsprojektes SitOPT. Einleitend vor
der Motivation dieser Arbeit wird als erstes das Forschungsprojekt SitOPT (2.1) in Grundzii-
gen beschrieben. Danach folgt die Komponente der Situationserkennung (SitRS, 2.2), die ein
Bestandteil von SitOPT darstellt. Anschlieffend wird die Motivation der Sensorintegration
(SeInt, 2.3) — also dieser Diplomarbeit — beschrieben. Diese Sensorintegration kniipft an die
Situationserkennung an.

2.1 SitOPT

Das Internet der Dinge verbreitet sich im derzeitigen Trend' immer stérker. Die zugehorige
Hardware wird giinstiger und die Anzahl der Sensoren und der gewonnenen Sensordaten
wachst. Wirtschaft und Industrie verfolgen unter dem Begriff ,Industrie 4.0° das Ziel Prozesse
automatisch zu steuern [Jas12]. Dazu muss sich ein System seiner Umgebung bewusst sein
und auf Situationen reagieren konnen.

SitOPT als ein universelles situationsbezogenes und adaptives Workflow Management Sys-
tem nimmt sich dieser Entwicklung an. Die gewachsene Informationsmenge moderner
Informationssysteme, des Internets der Dinge und der Industrie 4.0 gestalten eine robuste
Workflow-Modellierung aufwendig und komplex [WSBL15].

Mit der Anzahl der Datenquellen, die ein System erfasst, wachst auch die Anzahl der Zusténde
im System. Aus einer Zustandsdnderung kann sich eine neue Situation ableiten, welche einen
geanderten Workflow notwendig macht.

Beispiel einer Situation:

Die Temperatur einer Maschine steigt iiber einen Grenzwert. Es stellt sich die Situation
ein, dass die Maschine heif$ gelaufen ist. Die Workflow-Anderung ldsst die Maschine
nun langsamer laufen oder pausiert sie gar, damit sie abkiihlen kann.

!Google Trends zu Internet of Things https://www.google.com/trends/explore#g=internet%200f%
20things

13

https://www.google.com/trends/explore#q=internet%20of%20things
https://www.google.com/trends/explore#q=internet%20of%20things

2 Hintergrund und Motivation

: &
; A
3
< ﬁ =
ég O—»C{:(:}O»O ¥ @

o ~ .
S I i\
=0
2 = Situation-Aware Situation-Aware
o Workflow Workflow Management Svstem Situation-Handler
= Modeling Tool g 4
= \

c (—)

o . .

= Situation Model Management .

= ! J
.. 20
N S e \
— GJ . .
%i 'Is'étrlriiﬁﬁcz L Situation Recognition A \::gg”;:l;\::
— 0o A\ AN

= Repository B] e < Repository

= [Sensor Adapter 1] see [Sensor Adapter n

- ° @ J

r .\ T
Physical Sensors . J
Db
Tools Transport Material Machines Production

Abbildung 2.1: SitOPT Ubersicht (Quelle: [WSBL15], Fig. 3)

SitOPT lasst sich in drei Schichten untergliedern (Abb. 2.1). Die Sensorebene (Layer I: Sensing)
erfasst Sensordaten und dient als Datenquelle fiir die dariiber liegende Ebene der Situations-
erkennung (Layer 2: Situation Recognition). Die Situationserkennung bewertet die Daten aus
den Sensoren und signalisiert gegebenenfalls einen Situationseintritt. Die Workflow-Ebene
(Layer 3: Situation-Aware Workflow) adaptiert Workflows anhand von erkannten Situation
mit vordefinierten Workflow-Fragmenten (Abb. 2.2).

SitOPT ist ein durch die Deutsche Forschungsgemeinschaft (DFG) geférdertes Projekt?.

*Deutsche Forschungsgemeinschaft (DFG), Zuwendung 610872
,Optimierung und Adaption situationsbezogener Anwendungen basierend auf Workflow-Fragmenten®
http://gepris.dfg.de/gepris/projekt/252975529

14

http://gepris.dfg.de/gepris/projekt/252975529

2.2 Situationserkennung — SitRS

Write Original Process
Q Invoice
@ 0 Deliver
Product
Retrieve Assemble
Material Product
[Write |
'LQ Invoice J
[; Deliver
@D e)
Retrieve Repair Assemble
Material Machine : Q Product

Adapted Process for Situation ,,Machine fault”

Abbildung 2.2: Workflow Adaption (Quelle: [BHK])

2.2 Situationserkennung — SitRS

Der Situationserkennungs-Service (SitRS) [HWS'15] ist ein cloud-basiertes System. Es
abstrahiert aus systemnahen (,low-level®) Sensordaten eine Situation, die von einer kon-
textsensitiven Anwendung weiterverarbeitet werden kann. In SitOPT beispielsweise ist die
Workflow-Ebene (Abb. 2.1 — Layer 3) eine solche kontextsensitive Anwendung.

Eine Situation ist das Ergebnis einer gegen Bedingungen gepriifte Auswertung von Sensor-
daten.

SitRS besteht aus mehreren Komponenten (sieche Abb. 2.3):

+ Situation Registration Service
Hier wird eine Situation registriert, die erkannt werden soll. Tritt eine solche Situation
ein, wird dieses Ereignis iiber Push- oder Pull-Benachrichtigungen bekannt gegeben.

« Situation Template Repository
Diese Ablage enthélt vorab definierte Modelle einer Situation, sogenannte Situation
Templates (ST). Ein ST ist ein Situation-Aggregation-Tree (SAT) [ZHKLO09]. Abbildung
2.4 zeigt ein Beispiel-ST einer Maschineniiberhitzung. Die Blatter des Baumes enthalten
die Sensordaten und bilden die Kontextknoten, diese werden in den Bedingungsknoten
ausgewertet und bilden, verkniipft iiber Operationsknoten, die ausgewertete Situation
an der Wurzel.

15

2 Hintergrund und Motivation

Situation
s1 cee Sn Objects

Situation
Recognition

Situation

Registration
Service m / — J

Sltuatlon
Template
Repository

- - Resource Management -
Situation Platform
Recognition Rgiztrie
Service \ Sen.sor
P Registry
Sensor Adapter 1 ’ oee (Sensor Adapter n
.0 Sy e /

Physical Objects
with Sensors

Machmes Production

Abbildung 2.3: SitRS Architektur (Quelle: [HWS*15], Fig. 2)

« Situation Recognition System
Die Situationserkennung stellt eine der Kernkomponenten von SitRS dar. Mit der
Situationsregistrierung wird ein ST eingelesen und in eine ausfithrbare Représentation,
z.B. als CEP-Query?, iiberfiihrt. Diese ausfiihrbare Reprisentation wird dem ausfiih-
renden System libergeben. In der derzeitigen prototypischen Implementierung von
SitRS wird hierzu Node-RED* verwendet.

« Resource Management Platform
Die Resource Management Plattform (RMP) ist die andere Kernkomponente. Sie stellt die
Sensordaten als einheitliche REST-Ressourcen zur Verfiigung. Die RMP ist das Thema
einer anderen Diplomarbeit [Jan15].

*complex event processing —

https://en.wikipedia.org/w/index.php?title=Complex_event_processing&oldid=680354106
‘http://nodered.org/

16

https://en.wikipedia.org/w/index.php?title=Complex_event_processing&oldid=680354106
http://nodered.org/

2.3 Sensorintegration — SeInt

P ® Situation

... [Operation

.. ® Bedingung

.. ® Kontext / Sensoren

Temperatur
Sensor 1

Temperatur
Sensor 2

Temperatur
Sensor 3

Abbildung 2.4: Beispiel eines Situation Template (nach [HWS*15], Fig. 4)

« Sensor Registry
Hier werden Sensoren registriert. Sie steht im Verbund mit der RMP und verkniipft das
Objekt, den Sensor und die Sensordaten in einem Kontext miteinander.

Diese Diplomarbeit zur Sensorintegration kniipft direkt an die Resource Management Platform
und die Sensor Registry an.

2.3 Sensorintegration — SeInt

Bisher geschah die Sensorregistrierung manuell. Ebenso mussten bisher die gewonnenen
Sensordaten manuell in das System eingebunden werden. Die manuelle Integration der
Sensoren gestaltet sich komplex. Sie bereitet einen hohen Aufwand und ist zeit- und kosten-
intensiv. Auf manuellem Wege ist sie ist wenig flexibel, wenn es darum geht weitere Objekte
und Sensoren dem System hinzuzufiigen. Dartiber hinaus ist die manuelle Integration der
Sensoren fehleranfillig, da keine Automatismen tiber eine definierte Schnittstelle greifen.

Die Sensorintegration (SeInt) als Ziel dieser Diplomarbeit ermoglicht eine automatisierte
ad-hoc Integration der Sensoren.

17

2 Hintergrund und Motivation

SeInt bietet eine Schnittstelle an die Resource Management Plattform und Sensor Registry
der Situationserkennung, um einen Sensor zu registrieren. Hierzu verwendet SeInt eine
Ontologie als Wissensbasis, um Informationen iiber Objekte und Sensoren zu verwalten.
Zu dieser Wissensbasis gehoren neben Informationen tiber die Lokalisierung insbesondere
Informationen zu Sensoreigenschaften wie z. B. die Messgenauigkeit.

Im Rahmen dieser Diplomarbeit kommen an einen Raspberry Pi°> angebundene Sensoren zum
Einsatz. Um diese Sensoren an die Resource Management Plattform anzubinden, liefert SeInt
einen Mechanismus, der im Zuge der Registrierung an der Sensor Registry einen Adapter
ausliefert. Dieser Adapter hat zwei Aufgaben: zum einen liest er die Sensordaten eines Sensors
aus, zum anderen sendet er die Sensordaten an die Resource Management Plattform.

Die automatisierte ad-hoc Integration der Sensoren reduziert den Aufwand und die Kosten
gegeniiber einer manuellen Integration. Des Weiteren ist die Losung durch SeInt flexibler
und ermoglicht es, weitere Sensoren auf einfache Weise in das System einzubinden.

Motivation und Ziel dieser Diplomarbeit ist es, die hier formulierte Sensorintegration zu
konzipieren und prototypisch zu implementieren.

Raspberry Pi Foundation — https://www.raspberrypi.org/

18

https://www.raspberrypi.org/

3 Grundlagen

Dieses Kapitel beschreibt die notwendigen Grundlagen, die fiir das Verstidndnis dieser Arbeit
erforderlich sind.

3.1 Internet der Dinge

Der Begriff ,Internet of Things” (Internet der Dinge, IoT) geht auf Kevin Ashton zuriick, der
diesen in einer Prasentation 1999 verwendete [Ash09].

Das Konzept des Internets der Dinge wurde bereits 1991 in einer Zukunftsversion von Mark
Weiser beschrieben [Wei91]. In seiner Zukunftsversion vernetzt er unterschiedlichste Gerite
und Computer miteinander, mit dem Begriff Internet der Dinge werden Objekte miteinander
vernetzt. Die Vernetzung ist dabei sowohl kabelgebunden, als auch drahtlos mit mobilen
Geraten und Computern. Die Technologie — Computer — verschwindet in den Objekten.
Diese konnen eine Vielzahl unterschiedlicher Gegenstinde der realen Welt darstellen, z. B.
Lichtschalter, Thermostate, RFID-Systeme, Sensoren. Sie wird auf diesem Wege unsichtbar
fiir den Menschen und verschwindet aus seiner bewussten Wahrnehmung. Sie soll ihn durch
intelligentes Agieren unmerklich bei seinen Tatigkeiten unterstiitzen.

All diese vernetzten Objekte tauschen bestandig Informationen aus bzw. berechnen Daten,
was Mark Weiser als ,,ubiquitous computing“! bezeichnete. Angereichert durch diese ver-
netzten Informationen konnen die Objekte intelligent agieren. Um intelligent agieren zu
konnen benétigen die Objekte eine Kenntnis ihrer Umgebung wie z. B. den Ort an dem sie
sich befinden.

Das Internet der Dinge schlief3t die Liicke zwischen der virtuellen und der realen Welt. Ein
jedes Objekt ist dazu eindeutig in einem Netzwerk identifizierbar und adressierbar. Ein Objekt
kann so seine Daten im Netzwerk mit anderen Objekten austauschen [ITU12]. Als Netzwerk
dient hierbei die Infrastruktur, Technologie und die Protokolle des Internets.

lallgegenwirtige Datenverarbeitung

19

3 Grundlagen

3.2 Industrie 4.0

Das Zukunftsprojekt Industrie 4.0 des Bundesministerium fiir Bildung und Forschung steht
nach der Mechanisierung, der Massenfertigung und der Digitalisierung fiir die vierte indus-
trielle Revolution.

Der Begriff selbst ist unscharf und vage definiert — Ziel ist allerdings die intelligente Fa-
brik (SMART Factory). Sie reagiert mit Produktions- und Logistikprozessen dynamisch und
bedarfsorientiert auf Betriebsbedingungen und Auftrage [BMBF15].

Durch das Internet getrieben wandeln sich heutige Produktionssysteme zu cyber-physischen
Systemen (CPS) auf den gleichen technologischen Grundlagen wie das Internet der Dinge.
CPS beschreibt die Integration von Datenverarbeitung in physikalische Prozesse [LS11].

Heute bestimmen weitestgehend die Produktionssysteme und Produktionsprozesse iiber das
Produkt. Mit der Industrie 4.0 findet ein Paradigmenwechsel statt. Das Produkt nimmt eine
aktive Rolle ein und gibt selbst vor wie mit ihm agiert werden soll [KLW11], [Jas12].

3.3 Sensoren

Das englische Wort sensor wird in DIN 1319-1 als ,(Mef3grofien-)Aufnehmer (4.4)“ bezeichnet.
Er ist ,Teil eines Mefigerates oder einer Mefeinrichtung, der auf eine Me3grofie unmittelbar
anspricht”. Als Beispiel nennt die Norm den Schwimmer eines Flussigkeitsstand-Anzeigers
[1319-1].

In der Literatur finden sich weitere Synonyme fiir Sensor?, z. B. (Mess-)Fiihler oder (Messwert)-
Aufnehmer.

In dieser Diplomarbeit soll als Sensor ein jeder Datengeber dienen, der Daten in einer
datenverarbeitungskompatiblen Form liefert. Die gewonnenen Messdaten physikalischer
Sensoren werden so konvertiert, dass sie in Form von Daten im informationstechnischen
Sinne vorliegen. Auflerdem wird der Begriff dahingehend erweitert, dass als Sensor auch
die Bereitstellung einer Statusinformation eines Objektes gilt. Zum Beispiel ist die Messung
der Rechnerauslastung (CPU load) nicht das direkte Resultat einer physikalischen Messung,
sondern die Auswertung einer Rechnerressource, die den Auslastungsstatus widerspiegelt.

Ein aktuelles Smartphone — Objekt — besitzt diverse Sensoren, z. B. Beschleunigungssensoren,
Helligkeitssensor, Gyroskop, Hohenmesser, GPS und weitere. Auch kann man die Kamera
als optischen Sensor bzw. Sende-/Empfangsmodule wie GSM, LTE oder WLAN als Sensoren
fiir ein Funknetzwerk auffassen.

’Deutschen Nationalbibliothek, Sachbegriff ,Sensor” — http://d-nb.info/gnd/4038824- 4

20

http://d-nb.info/gnd/4038824-4

3.4 Ontologie

Sensoren zeichnen sich durch diverse Merkmale und Eigenschaften aus, die in ihrer Gesamt-
heit einen Sensor beschreiben und die Messergebnisse in ihrer Qualitat quantifizieren.

Jeder Sensor besitzt einen Messbereich fiir den er ausgelegt ist. Messungen auflerhalb dieses
Bereiches fithren zu keinem oder einem unzuverldssigen bzw. génzlich falschen Messergebnis.
Die Messgenauigkeit oder auch Messauflosung bestimmt wie nahe Messwerte beieinander
liegen konnen, bevor sie nicht mehr zu unterscheiden sind. Die Einstelldauer respektive
Einschwingzeit definiert die Dauer bis ein Messwert bestimmt ist, d.h. ein einzelner Mess-
vorgang abgeschlossen ist. Die bisher genannten Merkmale lassen sich im Allgemeinen
durch einfache Zahlenwerte zzgl. Messeinheit beschreiben. Fiir gew6hnlich sind die Werte
innerhalb des Messbereiches auch linear abhangig von der Messgrofie.

Es gibt aber auch komplexe Merkmale wie zum Beispiel die Hysterese. Dabei wird ein
aktueller Messwert durch vorherige Messungen beeinflusst. Dieses Verhalten wird mit einer
Hysteresekurve beschrieben.

Auch kann der Sensor selbst einen signifikanten Einfluss auf die Messung in Abhangigkeit
der Messgrofle haben.

3.4 Ontologie

Ontologie erklart die
Beschaffenheit der Welt

(Heinz von Férster)

Ontologie ist ein Begriff aus der Philosophie und beschéftigt sich mit der ,Natur des allge-
meinen Seins“ [Bra96], sie ist Teilgebiet der Metaphysik, die sich mit der Wesen der Existenz
bzw. des Seienden auseinandersetzt. Sie fragt unter anderem nach dem Warum und den
Ursprung des Seins von allem.

In einem fiktiven Dialog verschiedener wissenschaftlicher Disziplinen beschreiben Busse et
al. den Begriff. Gemeinhin wird Ontologie zur Beschreibung der Welt fiir ein gemeinsames
Verstandnis verwendet, wobei die Informatik den Begriff in einer iibertragenen Bedeutung
verwendet und die Existenz als gegeben hinnimmt [BHL ' 14].

21

3 Grundlagen

3.4.1 Ontologie in der Informatik

Thomas R. Gruber definiert eine Ontologie pragnant mit: ,An ontology is an explicit specifica-
tion of a conceptualization” [Gru93]. In der Literatur wird diese Definition meist erweitert
zitiert:

,» An ontology is a formal, explicit specification of a shared conceptualisation™
Eine Ontologie ist eine formale, explizite Spezifikation einer gemeinsamen Konzep-
tualisierung®

Wobei diese Definition auf Studer et al. zuriick zuriickgeht [SBF98].

Die Konzeptualisierung umfasst Klassen®, Instanzen’ und Relationen® einer Wissensdo-
maéne. Die Klassen und Relationen sind héufig in einer hierarchischen Struktur aufgebaut,
konnen aber allgemein in einem beliebigen gerichteten Graph angeordnet sein. Prinzipiell
werden Klassen in Relationen zueinander gesetzt, womit dem Vokabular eine semanti-
sche Bedeutung zugeordnet wird. Weiterhin kann es Axiome geben, die weitere Regeln und
Einschrankungen enthalten konnen. Formalisiert reprasentieren Ontologien eine maschi-
nenlesbare und teilbare Wissensbasis.

Abbildung 3.1 zeigt ein Beispiel einer einfachen Ontologie. Die Klasse Gemdlde ist der Klasse
Werk untergeordenet. Die Relationen beschreibt die Beziehung dieser beiden Klassen
zueinander. Norwegen ist eine Instanz der Klasse Land.

Formal lasst sich eine Ontologie mit folgenden Tuple beschreiben [Yil06]:
O ={C, R, H’, HR, Tc, Tp, A°}, wobei

C = die Menge aller Klassen (engl. concepts)

R := die Menge der Relationen zwischen Klassen mit r; € R und r; —
CxC

HC .= die Hierarchie der Klassen C mit der Relation H¢ C C x C, wobei
HE (c;; ¢;) mit ¢;,¢; € C ausdriickt, dass ¢; eine Unterklasse von ¢;
ist.

H® = die Hierarchie der Relationen R mit der Relation H® C R x R, wobei
HR(r; r;) mit r;,r; € R ausdriickt, dass r; eine Unterrelation von r;
ist.

Zc = die Menge der Instanzen der Klassen C

Ir := die Menge der Instanzen der Relationen R

A® = die Menge der Axiome der Ontologie O

3Begriffsbildung

%in der Literatur auch Begriff oder Konzept
%in der Literatur auch Individuum
%in der Literatur auch Beziehung, seltener Attribut oder Eigenschaft; engl. auch slot oder role

22

3.4 Ontologie

ist_Kollege

‘ Edvard Munch
‘ Leonardo da Vinci

‘ Der Schrei
‘ Mona Lisa

Gemalde

Kinstler

ausgestellt_in
lebte_in

‘ Norwegen

‘ Italien
‘ Frankreich

Land

Abbildung 3.1: Ontologie Beispiel

Andere formale Beschreibung finden sich z. B. in [GOS09] oder [Men02].

Die einfachste Ontologie — eine zusammenhangslose Sammlung von Klassen — stellt ein
Glossar da. Durch eine hierarchische Ordnung der Klassen eingeschréankt, erhélt man eine
Taxonomie.

Einer Beschreibungslogik folgend erhilt man eine komplexe Ontologiesprache. Schrankt
man die Beschreibungslogik auf SHOZN (D) ein (vgl. z. B. [BN03]), gelangt man zu einer
vollstandig berechenbaren und entscheidbaren Untermenge der Pradikatenlogik erster Stufe.
Dies ermoglicht Inferenz mit der sich Wissen schlussfolgern lasst.

Angenommen man wiisste aus der Ontologie nach Abbildung 3.1 nicht, dass Leonardo da
Vinci (Instanz) ein Kiinstler (Klasse) ist. Dann kann man aus dem Wissen, dass Leonardo
da Vinci (Instanz) das Werk (Klasse) Mona Lisa (Instanz) und das ein Kiinstler (Klasse)

23

3 Grundlagen

ein Werk (Klasse) schuf (Relation), ableiten, dass Leonardo da Vinci (Instanz) ein Kiinstler
(Klasse) sein muss.

Fiir Ontologien gibt es eine Reihe formaler Beschreibungssprachen mit dem Ziel, von Software
verarbeitet und semantisch verstanden werden zu konnen. In dieser Diplomarbeit wird
Web Ontology Language (OWL) verwendet. OWL basiert technisch auf dem im Folgenden
erlauterten Resource Description Framework.

3.4.2 Resource Description Framework und RDF Schema

Das Resource Description Framework (RDF) ist ein abstraktes Datenmodell, um Ressourcen
im Internet in Form eines gerichteten Graphen darzustellen. Es ist computerlesbar und dient
vor allem dem Informationsaustausch zwischen verschiedenen Applikationen.

Das zentrale Element in RDF sind Tripel bestehend aus einem Subjekt, einem Pradikat und
einem Objekt. Aussagen werden mit Hilfe solcher Tripel gebildet. Die Menge aller Tripel
wird RDF-Graph genannt.

Pradikat

Subjekt

Abbildung 3.2: RDF Tripel — Subjekt, Pradikat, Objekt (nach [RDF1.1], Fig. 1)

Subjekt und Pridikat bestehen aus einem IRI’. Das Objekt kann sowohl ein IRI als auch ein
wertbehaftetes Literal sein. Dartiber hinaus konnen Subjekt und Objekt auch durch einen
leeren Knoten reprasentiert werden. Ein IRI in RDF 1.1 ist die verallgemeinerte Version
eines URI® aus RDF 1.0. Beide bezeichnen eine Ressource eindeutig und entsprechen den
Instanzen einer Ontologie.

Es gibt unterschiedlich Serialisierungen von RDF-Graphen, z. B. RDF/XML’ oder Turtle'.
Die Syntax und Konzepte von RDF beschreibt [RDF1.1] detailliert. [RDFSE] beschreibt die
Semantik im Detail.

"Internationalized Resource Identifiers — http://www.ietf.org/rfc/rfc3987.txt
8Uniform Resource Identifier — http://www.ietf.org/rfc/rfc3986.txt

°RDF 1.1 XML Syntax - http://www.w3.0rg/TR/rdf-syntax-grammar/
YRDF 1.1 Turtle - http://www.w3.0rg/TR/turtle/

24

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/turtle/

3.4 Ontologie

http://purl.org/dc/elements/1.1/title

http://www.w3.org/TR/rdf-syntax-grammar » RDF 1.1 XML Syntax

Abbildung 3.3: RDF Graph - Beispiel (nach [RDFX], Fig. 1)

Zu einer Beschreibungssprache fiir eine Ontologie mit Hierarchien wird RDF erst durch
RDF-Schema. RDF-Schema ist eine semantische XML Erweiterung fiir RDF. Es erweitert das
Vokabular von RDF um Klassen und Relationen'!.

Mit folgenden Prafixen werden die Namensraume von RDF und RDF-Schema voneinander
abgegrenzt:

rdfs: http://www.w3.0rg/2000/01/rdf-schema# fir RDF-Schema
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns# fiir RDF

Abbildung 3.4 verdeutlicht einige RDF-Schema Konstrukte am Beispiel von zwei Hierarchien:
Kiinstler-Maler und Kunstwerk-Gemalde.

rdfs:domain rdfs:range

e ———Z

/ |

/ I \
/ |

| |

|

|

\
\

rdfs:subClassOf

I
|
|
|

T 1 /

\ | 1 /

[~ Viler | | (Gomaide |
| 1
I I . I I I
i rdfs:class | | __rdfProperty] I rdfs:class |
R ¥ - AN F———=
~ - /// \\\ ’///
rdfs:domain rdfs:range

Abbildung 3.4: Beispiel RDF-Schema Graph

In [RDFS] und weiterer Literatur ungliicklich als Eigenschaften (property) bezeichnet — verwechselbar mit
der Klasse namens rdf:Property

25

3 Grundlagen

Wichtige Klassen-Konstrukte von RDF-Schema sind:

rdfs:Resource alle RDF Ressourcen sind Instanzen dieser Klasse; alle anderen
Klassen sind der Klasse rdfs:Resource untergeordnet

rdfs:Class weist einer Ressource eine Klasse zu

rdfs:Literal die Klasse aller Literale wie String und Integer-Werte

rdf:Property stammt aus dem RDF Vokabular und zeichnet eine Relation aus

Zu den wichtigen Relations-Konstrukten von RDF-Schema zéhlen:

rdfs:domain gibt die Quelle der gerichteten Relation an
rdfs:range gibt das Ziel der gerichteten Relation an
rdfs:subClassOf ordnet Klassen hierarchisch zueinander, transitive Relation

rdfs:subProperty0Of ordnet Relationen hierarchisch zueinander, transitive Relation
rdf:type gibt an, dass eine Instanz aus einer bestimmten Klasse ist

Eine vollstandige und detaillierte Beschreibung findet sich unter [RDFS].

RDF-Schema liefert notwendige Grundlagen, um eine einfache Ontologie zu entwerfen.
Jedoch fehlen RDF-Schema einige Merkmale fiir eine umfangreiche Beschreibungssprache
fiir Ontologien. Es wird ein erweitertes Vokabular benétigt, um beispielsweise Relationen
starker einzuschréanken. So fehlt RDF-Schema die Moglichkeit Relationen mit einer Kardi-
nalitdt zu versehen. Auch benoétigt es weitere Regeln, um mehr Wissen schlussfolgern zu
konnen wie es beispielsweise disjunkte Klassen boten [Lac05].

Fir umfangreichere Beschreibungsmoglichkeit, leistungsfahigere Inferenz und verfeinerte
semantische Konzepte wurde Web Ontology Language (OWL) entworfen.

3.4.3 Web Ontology Language — OWL

Web Ontology Language (OWL) ist eine Beschreibungssprache fiir das Semantische Web, mit
der sich Wissen iiber Dinge und Beziehungen zwischen Dingen beschreiben lasst. OWL ist
eine formale Beschreibung fiir eine Ontologie. Die Entwicklung von OWL entstammt den
Erfahrungen und Erkenntnissen, die man durch DAML+OIL'? gewann. Technisch setzt OWL
auf RDF und RDF-Schema auf (vgl. Abbildung 3.5) [OWL].

2http://www.w3.0rg/TR/daml+0il- reference

26

http://www.w3.org/TR/daml+oil-reference

3.4 Ontologie

6‘ [OWL
n: J
E \
%) [RDF-Schema

RDF

\. J

r

XML + XML-Schema] [Namespace

IRI] [Unicode

Abbildung 3.5: OWL Stack (nach [WSEM)])

OWL gliedert sich in die drei Untersprachen, die sich tiber erlaubte beziehungsweise einge-
schrankte OWL-Konstrukte definieren:

« OWL Lite
besteht aus der geringsten Menge der OWL-Konstrukte und eignet sich fiir einfa-
che Klassifikationen in Hierarchien mit einfachen Einschrankungen der erlaubten
OWL-Konstrukte. So erlaubt OWL Lite z. B. keine disjunkten Klassen oder schrankt
Kardinalitdten auf Werte von 0 oder 1 ein.

« OWL DL
besteht aus der Menge aller OWL-Konstrukte. Es entspricht einer vollstandig ent-
scheidbaren Beschreibungslogik bei grofitmoglicher Ausdrucksstarke. Dafiir unterlie-
gen OWL-Konstrukte Einschrankungen, so miissen Klassen, Instanzen, Relationen
paarweise verschieden bezeichnet sein. Die Menge aller Objekt-Relationen und
Datentyp-Relationen ist disjunkt, weswegen es z. B. keine inverse Datentyp-Relation
geben darf.

« OWL Full
besitzt die grofite Ausdrucksstirke und erlaubt einschrinkungsfrei alle OWL-
Konstrukte. Es ist aber nicht mehr vollstandig entscheidbar, damit ungeeignet fir
Inferenzsoftware.

OWL Lite ist eine syntaktisch echte Teilmenge von OWL DL und diese wiederum von
OWL FULL.

27

3 Grundlagen

OWL gibt es mittlerweile in der Version OWL 2, wobei eine giiltige Ontologie in OWL auch
eine giiltige Ontologie in OWL 2 ist. OWL 2 hingegen definiert nur zwei Ausdrucksformen -
OWL 2 DL und OWL 2 Full. Diesen liegt das selbe Konzept bzgl. der Entscheidbarkeit wie
bei OWL DL und OWL Full zugrunde [OWL2].

Dariiber hinaus definiert OWL 2 drei verschiedene Sprachprofile. Jedes dieser unabhéngigen
Sprachprofile ist eine syntaktische Teilmenge von OWL 2 DL mit dem Ziel, eine Balance
zwischen Ausdrucksstirke und Rechenaufwand zu schaffen:

« OWL 2 EL
ist fiir Ontologien mit einer Vielzahl Klassen und Relationen gedacht.

- OWL2QL
ist fiir Ontologien mit einer Vielzahl Instanzen mit einem starken Fokus auf Anfragen
(query) gedacht. Es ist mit einer datenbank-zentrierten Sicht entworfen.

« OWL2RL
zielt auf gute Skalierung ab, ohne dabei viel Ausdrucksstirke zu verlieren. Es eignet
sich fiir leichtgewichtige Ontologien mit vielen Instanzen und einer regelbasierten
Implementierung.

Fiir jedes dieser Sprachprofile kann eine Inferenzsoftware implementiert werden, die in
Polynomialzeit zur Ontologiegrofe schlussfolgern kann. Sie unterscheiden sich in den Ein-
schrankungen bzgl. der OWL 2-Konstrukte und sind unter [OWL2b] im Detail beschrieben.

OWL 2 figt OWL weitere Elemente hinzu und definiert neue Syntaxbeschreibungen wie
den funktionellen Stil. Sie fiigt weitere Typen von Relationen hinzu, beispielsweise asym-
metrische oder reflexive Relationen.

Andere Neuerungen machen Beschreibungen bequemer und kiirzer, z. B. konnen mehrere
Klassen in einer Anweisung paarweise disjunkt deklariert werden. In OWL muss jede
Klasse einzeln disjunkt zu anderen Klassen deklariert werden [OWL2a].

In dieser Diplomarbeit wird OWL 2 DL verwendet, aber es wird sich weitestgehend auf den
bereits von OWL gebotenen Umfang beschrankt.

Zu den Sprachkonstrukten von OWL zdhlen unter anderen:

owl:Thing ist die T-Klasse — jede Klasse ist owl:Thing untergeordnet
(rdfs:subClass0f)

owl:Nothing ist die | -Klasse — die leere Klasse und jeder anderen Klasse
untergeordnet

owl:0bjectProperty beschreibt eine Relation zwischen Instanzen
owl:DatatypeProperty verkniipft eine Instanz mit einem Literal
owl:NamedIndividual deklariert eine nicht anonyme Instanz

28

3.4 Ontologie

Einen Uberblick iiber weitere OWL 2-Konstrukte bietet [OWL2c].
Listing 3.1 zeigt das Beispiel aus Abbildung 3.4 in OWL mit einer RDF/XML-Syntax.

Listing 3.1 Beispiel OWL in RDF/XML (vgl. Abbildung 3.4)

<rdf:RDF xmlns="http://www.w3.0rg/2002/07/owl#"

xml:base="http://www.w3.0rg/2002/07/owl"

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.0rg/2002/07/owl#"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

xmlns:kunst="http://localhost/kunst#">

<Ontology rdf:about="http://localhost/kunst"/>

<!-- Object Properties -->

<ObjectProperty rdf:about="&kunst;erschafft">
<rdfs:range rdf:resource="&kunst;Kunstwerk"/>
<rdfs:domain rdf:resource="&kunst;Kinstler"/>

</0ObjectProperty>

<ObjectProperty rdf:about="&kunst;malt">
<rdfs:range rdf:resource="&kunst;Gemalde"/>
<rdfs:domain rdf:resource="&kunst;Maler"/>
<rdfs:subProperty0f rdf:resource="&kunst;erschafft"/>

</ObjectProperty>

<!-- Data properties -->

<DatatypeProperty rdf:about="&kunst;name"/>

<!-- (Classes -->

<Class rdf:about="&kunst;Gemalde">
<rdfs:subClassO0f rdf:resource="&kunst;Kunstwerk"/>

</Class>

<Class rdf:about="&kunst;Kunstwerk">
<disjointWith rdf:resource="&kunst;Kinstler"/>

</Class>

<Class rdf:about="&kunst;Kiinstler"/>

<Class rdf:about="&kunst;Maler">
<rdfs:subClassOf rdf:resource="&kunst;Kinstler"/>

</Class>

<!-- Individuals -->

<NamedIndividual rdf:about="&kunst;munch">
<rdf:type rdf:resource="&kunst;Maler"/>
<kunst:name>Edvard Munch</kunst:name>
<kunst:malt rdf:resource="&kunst;schrei"/>

</NamedIndividual>

<NamedIndividual rdf:about="&Kkunst;schrei">
<rdf:type rdf:resource="&kunst;Gemalde"/>
<kunst:name>Der Schrei</kunst:name>

</NamedIndividual>

</rdf:RDF>

29

3 Grundlagen

3.4.4 Abfragesprache SPARQL

SPARQL ist eine Abfragesprache fiir RDF-Graphen und steht fiir ,SPARQL Protocol and
RDF Query Language®“. Die Syntax ist an SQL'® angelehnt. In der Syntax vorkommende RDF-
Graphen bzw. einzelne RDF-Tripel werden in der [Turtle]-Notation angeben. Variablen, die
als Platzhalter in RDF-Tripel dienen, werden mit einem ,?“ gekennzeichnet. Namensrdume
konnen mit einem Prafix abgekiirzt werden.

Das Listing 3.2 zeigt eine Beispielanfrage fiir die Kunst-Ontologie aus Listing 3.1. Die Anfrage
liefert fiir das Variablenpaar (?kuenstler, ?gemaelde) das Ergebnis (,Edvard Munch®, ,Der
Schrei®).

Listing 3.2 Beispiel SPARQL-Query
PREFIX rdf:

PREFIX owl:

PREFIX rdfs:

PREFIX xsd:

PREFIX kunst:

SELECT ?kuenstler ?gemaelde

WHERE

{
?subject kunst:malt ?object .
?subject kunst:name ?kuenstler .
?object kunst:name ?gemaelde

Die Spezifikation von SPARQL teilt sich in mehrere Teile auf — z. B. [SPA13a] fiir Abfragen
und [SPA13b] zur Datenmanipulation.

3.5 Representational State Transfer — REST

REST leitet sich aus der Architektur des Internets ab und wurde von Roy Thomas Fielding
im Rahmen seiner Dissertation abstrahiert [Fie00].

REST besteht aus einer Reihe Randbedingungen fiir das Architekturdesign. Diese ermoglichen
eine skalierbare und performante Architektur und zeichnet sich durch einfache Schnittstel-
len aus. Auf Grund seines Ursprungs im HTTP-Protokoll eignet sich REST besonders fiir
Webservices.

BStructured Query Language

30

3.5 Representational State Transfer — REST

Zu den Randbedingungen gehdren
« Klient-Server-Architektur

Der Server bietet Services an und wartet auf Anfragen eines Klienten. Der Server
bearbeitet eine Anfrage und sendet eine Antwort an den Klient zuriick.

« Zustandslos

Eine Anfrage muss alle notwendigen Informationen enthalten, die zum Bearbeiten der
Anfrage notwendig sind. Der Server verwaltet keinen Zustand und eine Anfrage ist
unabhingig von vorangegangen Anfragen. Die Zustandsverwaltung bleibt dem Klient
iberlassen.

« Einheitliche Schnittstelle

Jeder Klient und Server bedient sich der selben Methoden, um miteinander kommuni-
zieren zu konnen. Die Service-Implementierung eines Servers ist dadurch von einem
standardisiertem Kommunikationsweg entkoppelt. Diese Schnittstelle definiert sich
wie folgt:

- Adressierung der Ressourcen — jede Ressource ist durch einen eindeutige URI bzw.
IRI bestimmt.

- Reprdsentation der Ressourcen — ein Klient kann eine Ressource in unterschiedli-
chen Reprisentationen anfordern — dem MIME-Type' bzw. Content-Type. Dies
kann z. B. formatiert als XML oder JSON' geschehen.

- Selbstbeschreibende Nachrichten — jede Nachricht enthalt alle notwendigen Infor-
mationen, die zu ihrer Bearbeitung notwendig ist. Bezogen auf Webservices sind
dies z. B. die Operationen gegeben durch die HTTP-Methoden'® wie GET, POST,
PUT, DELETE und weitere.

- Hypermedia as the Engine of Application State (HATEOAS) — mit Ausnahme des
Einstiegspunktes navigiert ein Klient nur zu Ressourcen, die er vom Server mit-
geteilt bekommen hat [Fie08].

« Schichtensystem

Ein Klient weif3t nicht, ob er direkt mit dem Server oder mit einer Zwischenschicht
verbunden ist. Zwischenschichten kénnen die Skalierbarkeit durch Lastenverteilung
verbessern oder einen Zwischenspeicher (Cache) bieten.

"Multipurpose Internet Mail Extensions

BJavaScript Object Notation

18Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content —
https://tools.ietf.org/html/rfc7231

31

https://tools.ietf.org/html/rfc7231

3 Grundlagen

« Zwischenspeicher

Antworten auf Anfragen konnen vom Klient oder einer Zwischenschicht zwischen-
gespeichert werden. Um Zustandsproblemen vorzubeugen, miissen Antworten als
zwischenspeicherbar bzw. nicht zwischenspeicherbar deklariert sein. Dies kann auch
implizit geschehen.

« Code-On-Demand

Der Server uibermittelt einen ausfithrbaren Code an den Klient, um dessen Funktionali-
tat bei Bedarf zu erweitern. Code-On-Demand ist eine optionale Randbedingung.

Sind alle Randbedingungen erfiillt, ergibt das einen RESTful-Service. [Bet] bzw. [Fow] be-
schreiben das Richardson Maturity Model — es klassifiziert wie streng sich ein Webservice an
die REST-Bedingungen halt.

Diese umgeordnete REST-Beschreibung folgt inhaltlich der von [Fie00]. In der Literatur
finden sich dhnliche Beschreibungen, z. B. [RR07].

32

4 Verwandte Arbeiten

In diesem Kapitel werden zum Themengebiet dieser Diplomarbeit verwandte Arbeiten
beschrieben. Diese beschiaftigen sich mit dhnlichen Problemen oder behandeln Teilaspekte
des Themengebietes.

4.1 SWE und SensorML

Das Open Geospatial Consortium (OCG)' als gemeinniitzige Organisation fiir raumbezo-
gene Informationsverarbeitung entwickelt eine Reihe offener Standards zum Zwecke der
Interoperabilitit. Mit der ,Sensor Web Enablement“-Initiative (SWE)? hat es eine Reihe
sensorbezogener Standards entworfen.

Als einer dieser Standards liefert SensorML ein allgemeines Standardmodell, um Sensoren
und in Bezug stehende Prozesse zu beschreiben. Zu diesen Prozessen zéhlen die Messprozesse
eines Sensors, aber auch Prozessanweisungen, um Informationen aus Beobachtungen eines
Sensors ableiten zu kénnen. Die Prozesse und Modelle hinter SensorML sind mit UML3
modelliert. Ein Prozess definiert sich aus seinen Eingaben, Ausgaben, Parametern, Methoden
sowie Metadaten. Er erfasst ein beobachtbares Phianomen und wandelt dieses in Daten um
[Sen14].

Als SWE-Standard steht SensorML in direktem Zusammenhang mit weiteren Standards,
insbesondere Observations & Measurements, Sensor Observation Service und Sensor Planning
Service. Im Zusammenspiel erméglichen diese das Veroffentlichen, Auffinden und Einbinden
von Sensor-bezogenen Daten. Fiir Observations & Measurements hat z.B. Simon Cox eine
Ontologie in OWL implementiert [Cox13].

1Open Geospatial Consortium — http://www.opengeospatial.org/
2Sensor Web Enablement — http://www.opengeospatial.org/ogc/markets-technologies/swe
3Unified Modeling Language — http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

33

http://www.opengeospatial.org/
http://www.opengeospatial.org/ogc/markets-technologies/swe
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

4 Verwandte Arbeiten

Formal besteht SensorML aus einer Reihe XML Schematas. Diese hangen von diversen
weiteren SWE-Standards ab und bauen auf diesen wie z. B. SWE Common Data Model*, GML
3.2° sowie Normen zu Geoinformationen und Geodaten® auf.

Durch GML modellierte Geoinformationen und Geodaten enthalten u.a. prazise Ortsangaben
und sind Bestandteile der durch SensorML definierten Konzepte.

Beispiel Ozeanvermessung:

Die Messungen im Ozean beruhen auf den Messwerten vieler Messbojen. Setzt man
die Messwerte und Positionen der Messbojen in Bezug zueinander, erhdlt man ein Bild
der aktuellen Bedingungen im Ozean. So ergibt sich die Wellenhohe aus Messwerten
von Wellental und Wellenberg verschiedener benachbarter Messbojen. Auch lassen sich
Stromungen erst aus dem Zusammenspiel vieler Messbojen detailliert bestimmen.

SensorML ist eine vorwiegend syntaktische Beschreibung mit einer unterliegenden semanti-
schen Bedeutung. Die Spezifikation referenziert Beispielontologien [Sen14, S. 71], die sich
allerdings auf ein zusammenhangsloses Begriffsworterbuch beschranken bzw. nicht mehr
verfiigbar sind.

4.2 OntoSensor — ontologische Ubersetzung von
SensorML

Russomanno et al. beschreiben in ihrem Artikel die Konstruktion einer Sensor Ontologie
namens OntoSensor in OWL [RKT05]. Dazu gehort auch eine in Prolog implementierte
Inferenzsoftware. Die Konstruktion der Ontologie basiert dabei auf SensorML, IEEE Suggested
Upper Merged Ontology (SUMO) und ISO 19115.

Im ersten Teil ihrer Arbeit beschreiben sie die Unzulanglichkeiten, die SensorML mit sich
bringt. Sie verweisen darauf, dass XML nur ein syntaktisches Konstrukt ist. Auch bemangeln
sie, dass SensorML keine formale Definitionen seiner Klassen und Relationen liefert. Weiter-
hin stellen sie fest, dass SensorML keine logische bzw. axiomatisch fundierte Grundlage fiir
eine gemeinsame Konzeptualisierung nach der Ontologiedefinition durch Gruber [Gru93]
liefert. Positiv bewerten sie, dass SensorML ein generisches Datenmodell fiir Informationen
iber Sensoren ist, und dass SensorML eine wohl-fundierte Grundlage zur Entwicklung einer
Ontologie bietet.

“SWE Common Data Model Encoding Standard -
http://www.opengeospatial.org/standards/swecommon

>Geography Markup Language — http://www.opengeospatial.org/standards/gml

ISO 19103, ISO 19108, ISO 19111, ISO 19115 und weitere

34

http://www.opengeospatial.org/standards/swecommon
http://www.opengeospatial.org/standards/gml

4.3 Sensoren und deren Datenstréme als verknUpfte und frei verfigbare Daten

Zur Kontruktion der Ontologie identifizieren sie als erstes die Konzepte hinter SensorML,
um sie anschliefend in OWL zu implementieren. Als Werkzeug verwenden sie hierfiir
Protégé’, einen Ontologie Editor. Einige der SensorML-Konzepte beruhen auf den durch
GML modellierten Ortsangaben, um Sensordaten lokal einzuordnen oder in Bezug zu anderen
Sensoren zu setzen. OntoSensor wiederverwendet hierzu eine Ontologie der GML-Konzepte,
beruhend auf der Arbeit eines anderen Teams. Die Quelle dieser Arbeit ist nicht mehr

auffindbar.

Am Ende des Artikels priasentieren sie noch eine Beispielinstanz eines Sensors und das
Resultat ihrer eigenen Inferenzsoftware.

4.3 Sensoren und deren Datenstrome als verknupfte
und frei verfugbare Daten

Danh Le-Phuoc und Manfred Hauswirth beschreiben in ihrem Artikel eine Plattform namens
SensorMashup, um Sensordaten allgemein tiber das Internet verfiigbar zu machen und so
der Vision eines Internet der Dinge néher zu kommen [PH09]. Sie folgen dabei dem Konzept
von linked (open) data® als Teil des Semantic Webs.

Eine Verkniipfung aus Sensoren, deren Datenstrome und Metadaten nennen sie Sensor Mas-
hup. Die Plattform ermdglicht es solche Mashups aufzufinden und neue Sensoren sowie
Datenstrome zu verdffentlichen. Mit einem Composer konnen neue Mashups erzeugt wer-
den.

Die Plattform bietet einen Webservice als REST-Schnittstelle an, um definierte Mashups
abzurufen. Sie basiert auf den SWE’-Standard, wobei die Webservice-Beschreibung in WSDL'
mit RDFa'! um semantisches Wissen erginzt wird. Fiir die Sensoren wurde eine Ontologie
mit OWL-DL basierend auf den Konzepten von SensorML entworfen. Thr Entwurf ist dabei
vergleichbar zu dem Ontologieentwurf von [RKT05] (vgl. Kapitel 4.2). Weiterhin bietet sie
noch einen SPARQL-Endpunkt fiir komplexe Mashups an.

Aus Effizienzsgriinden verwalten sie die Mashups als virtuelle RDF-Graphen in einem in-
ternen Speicher. Der virtuelle RDF-Graph wird in einer komprimierten Reprasentation
vorgehalten. Dieser Ansatz ist leistungsfahiger, dennoch sind semantische Anfragen mit
SPARQL weiterhin moglich. Die Plattform bleibt auf diesem Wege kompatibel zu anderen
ontologischen Systemen.

"Protégé Ontologie Editor — http://protege.stanford.edu/

8Linked Data — http://www.w3.0rg/DesignIssues/LinkedData.html
°Sensor Web Enablement

10Web Services Description Language

URDF in Attributes — http://www.w3.0rg/TR/rdfa-primer/

35

http://protege.stanford.edu/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdfa-primer/

4 Verwandte Arbeiten

Ein Schwerpunkt dieses Projektes liegt auf der Verwaltung und der Speicherung der Da-
tenstrome mit einem ,data stream management system“ (DSMS). Im Gegensatz zur Senso-
rintegration dieser Diplomarbeit liegt ihr Fokus darin, Sensoren und ihre Datenstrome im
Internet in einem offenen System verfiigbar zu machen.

4.4 OpenTOSCA

OpenTOSCA' ist ein quelloffenes Okosystem der Universitit Stuttgart fiir den ,,OASIS™
Topology and Orchestration Specification for Cloud Applications“-Standard [TOSCA].

TOSCA ist ein Standard zur portablen Beschreibung von Cloud-Anwendungen. Eine solche
Beschreibung erméglicht eine automatisierte Provisionierung cloud-basierten Anwendung.

Er enthilt eine Anwendungstopologie und deren Orchestration in XML. Unter Orchestration
versteht man die Koordination und das Management von Anwendungen, Middleware und
Computersystemen. Sie wird als Plan hinterlegt und beschreibt die Schritte, die vollzogen
werden miissen, um eine Anwendung in einer Cloud-Umgebung zu installieren. Die Anwen-
dungstopologie (Topology Template) beschreibt die Anwendung und ihre Abhangigkeiten
zu ihrer Umgebung, auf der sie laufen soll. Beispielsweise lauft eine PHP-Anwendung auf
einem Apache-Webserver mit einem PHP-Interpreter auf einem Linux-Betriebssystem in
einer Cloud-Instanz.

Das OpenTOSCA-Okosystem besteht aus drei Komponenten:

« winery - zur graphisch unterstiitzten Modellierung. Das Modell wird in einem Cloud
Service Archive (CSAR) zusammengefasst.

+ OpenTOSCA Container - Laufzeitumgebung, die die im CSAR enthaltende Beschrei-
bung ausfithrt [BBH' 13].

« Vinothek — webbasierter Service, mit dem sich CSAR verwalten und installieren lassen.

OpenTOSCA beschaftigt sich nicht im Speziellen mit Sensoren oder semantischen Beziehun-
gen zwischen Objekten und Sensoren, sondern mit dem Prozess, eine Software auf einem
anderen System zu installieren und zu starten. Die Sensoradapter-Provisionierung dieser
Diplomarbeit ist ein vergleichbarer Prozess.

Zhttp://www.opentosca.org
B3QOrganization for the Advancement of Structured Information Standards —
https://www.o0asis-open.org/

36

http://www.opentosca.org
https://www.oasis-open.org/

5 Konzept

In diesem Kapitel wird das Konzept der Sensorintegration erldutert. Vorab wird die Gesamt-
struktur beschrieben, bevor auf die einzelnen Komponenten eingegangen wird. Abschlieflend
werden noch Optimierungen fiir die Sensorintegration, eine autonome Sensorintegration
und Sicherheitsaspekte konzeptioniert.

5.1 Gesamistruktur

Es wurde eine Sensorintegration (SeInt) geschaffen, mittels welcher sich Objekte und ihre
untergeordneten Sensoren automatisiert und ad-hoc in SitRS (vgl. Kapitel 2.2) integrieren
lassen. Dabei werden die SitRS-Komponenten Resource Management Platform (RMP) und
Sensor Registry integriert.

Abbildung 5.1 zeigt das Architekturkonzept der Sensorintegration und ihre Anbindung
an die Resource Management Platform (RMP) sowie die Sensor Registry von SitRS. S1tRS -
gestrichelt dargestellt — ist nicht Bestandteil dieser Diplomarbeit.

Die Sensorintegration besteht aus zwei Kernkomponenten:

« ein ,Zentraler Service” (ZS), der eigene Schnittstellen bietet bzw. die Schnittstellen von
SitRS bedient

« eine Ontologie, die als Wissensbasis zu Objekten und Sensoren dient. Sie wird tiber
den ZS angesprochen.

Weiterhin gibt es noch ein Adapter-Repository. Es beinhaltet Adapter zu Objekt-Sensor-
Paaren.

Der ZS wird nach auf3en hin iiber einen Klienten gesteuert und vermittelt dessen Anfragen
an die Ontologie. Die Ergebnisse liefert der ZS an den Klienten zuriick.

37

5 Konzept

Clien

e -

Tsteuert

Sensor Integration | SitRS
|
0000 :
(9000) |
Adapter [| e - |
Repository I S
Zentr_aler reg strlert! > Seront P
Service Sensor : I Registr Lo
Ontologie | § OISt |
N [-
- T l
e — I o
L o
. |
\—gﬁ liefert | .
v aus i
N | | Resource | |
\ _| Objekt | | Management| |
AN ! | Platform | |
N It _|_| [sensor-_|__y! il
daten I B
I P
| |
| |

|
|
|
Sensoren I
|
|
\

Abbildung 5.1: Konzept Ubersicht

Das Sequenzdiagramm in Abbildung 5.2 zeigt den Ablauf einer Sensorintegration:
1. der Klient fordert die Integration eines Objektes und dessen Sensoren an
der Zentrale Service (ZS) nimmt die Anfrage des Klienten entgegen und verarbeitet sie

der ZS fragt die Ontologie nach den Informationen tiber das Objekt und die Sensoren

won

die Ontologie sendet die Informationen iiber das Objekt und die Sensoren an den ZS

5. der ZS registriert mittels den Informationen aus der Ontologie das Objekt und die
Sensoren an der Sensor Registry von SitRS und wartet auf das Resultat

6. der ZS provisioniert den Adapter fiir die Sensoren auf dem Objekt

7. der Klient bekommt die Integration vom ZS bestatigt

38

5.2 Zentraler Service — ZS

) Zentraler T Objekt
LC“eth Service ! sitrs | ._'

Objekt + Senso
registrieren

Objekt + Sensor
Informationsabfrage

Objekt + Sensor
Informationen

an Sensor Regqistry registrieren
»

wurde registriert

A

Adapter-Provisionierung

. Objekt + Sensor Sensor-
registriert | daten

Abbildung 5.2: Konzept Sequenzdiagramm einer Sensorintegration

5.2 Zentraler Service — ZS

Am Prozess einer Sensorintegration sind viele Komponenten beteiligt. Jede dieser Kompo-
nenten hat ihre eigenen Schnittstellen. Der ZS kommuniziert mit all diesen Schnittstellen
bzw. steuert die Komponenten tiber deren Schnittstellen.

Der ,ZS* vereinigt diverse Schnittstellen, die sich wie folgt zusammensetzen:

« eine interne Schnittstelle zum Informationsaustausch mit der Ontologie. Der ZS ruft
Informationen zu Objekten und Sensoren ab bzw. legt diese an.

« eine eigene duflere Schnittstelle fiir einen Klienten zur allgemeinen Steuerung. Sie
ermdglicht es dem Klient die Sensorintegration zu steuern. Aulerdem fungiert der ZS
als Vermittler zwischen Klient und Ontologie.

« eine Schnittstelle zu Objekten mit ihren Sensoren. Es wird ein Adapter provisioniert
und somit einem Objekt ermdglicht, seine Sensordaten an die RPM zu senden.

« Schnittstellen zu den Komponenten von SitRS. Sie verbindet sich mit der Sensor
Registry, um dort Objekte und Sensoren zu registrieren. Die Registrierung macht
Objekte und Sensoren fiir SitRS verfiigbar. Schldgt die Registrierung fehl, wird die
Sensorintegration abgebrochen und kein Adapter provisioniert.

39

5 Konzept

Die Schnittstellen zu den Komponenten von SitRS sind vorgegeben. Die weiteren Schnitt-
stellen werden in den folgenden Kapiteln prazisiert.

5.3 Ontologie als Wissensbasis

Die andere zentrale Komponente der Sensorintegration ist die Ontologie als Wissensbasis. In
ihr werden Informationen iiber die Objekte und Sensoren abgelegt.

Die Struktur der Ontologie setzt sich aus zwei Teilen zusammen:
« zum einen das semantische Wissen in Form von Klassen und Relation
« zum anderen konkrete Instanzen von Orten, Objekten und Sensoren

Die folgenden Abbildungen der Ontologien zeigen zur besseren Ubersicht Teilausschnitte.

< Gebaude ID

——— —

AN
< Adapter @)<— = Objekt = }-—————- Sensor \)

N Hierarchie /
7/
< Objekt ID < IP Adresse >

Abbildung 5.3: Konzept Ontologie des Objektes

NS———————

Abbildung 5.3 zeigt das Konzept der Ontologie fiir das Objekt. Die Sensor-Ontologie ist in
dieser Abbildung nur angedeutet. Die Klassen sind in zwei Kategorien eingeteilt. Haupt-
klassen als vorrangige Hierarchie sind in bldulichen Ellipsen gehalten. Instanzen dieser
Hauptklassen repréasentieren Gegenstiande aus der realen Welt, welche durch Nebenklassen

40

5.3 Ontologie als Wissensbasis

naher beschrieben werden. Die Nebenklassen sind als gelbliche Hexagone eingezeichnet.
Sie stehen in Bezug zu Hauptklassen und versehen eine Instanz einer Hauptklasse mit
beschreibenden Informationen.

Die Instanz eines Objekt erhilt auf diesem Wege Informationen zu Objekteigenschaften
wie die Adresse, zugehorige Adapter und Sensoren sowie weitere Informationen.

In Hexagonen sind die Nebenklassen eingezeichnet, die die Informationen zu einer Instanz
aus der vorrangigen Hierarchie tragen. Eine Instanz eines Objektes wird tiber die Informa-
tionen der Nebenklassen detailliert beschrieben.

- -

/; Objekt

S~ -

1
Objekt ID i Sensor ID
|
|
|
|

physikalischer
Sensor

RAM
Auslastung

Temperatur
Sensor

Computer

Sensor
Sensor

Einstellzeit Messgenauigkeit

Y

< Messbereich >

CPU
Auslastung

Ultraschall
Sensor

Abbildung 5.4: Konzept Ontologie der Sensoren

Die Hierarchie fiir Sensoren (Abbildung 5.4) ist analog konzipiert. Sensoren werden in ihre
Unterarten aufgegliedert, z. B. physikalische Sensoren oder Sensoren, die Rechnereigenschat-
ten wie die CPU-Auslastung widerspiegeln. Andere Hierarchien sind denkbar. So kénnen
Sensoren nach Messprinzip in Klassen wie mechanische, optische, elektrische und weitere
Messmethoden geordnet werden.

Jeder Sensor-Klasse sind bestimmte Parameter vorgegeben, die sich iiber Axiome — griine
Oktogone - beschreiben lassen. Der Instanz eines Temperatursensors ist auf diesem Wege
vorgegeben, dass ,°C” ihre physikalische Einheit ist.

41

5 Konzept

Zur Vervollstaindigung der Ontologie werden diverse Relationen hinzugefiigt (vgl. Abbil-
dung 5.5). Sie beschreiben die Beziehungen zwischen den Instanzen der jeweiligen Klassen.
Die Relation ,besitzt(0Objekt, Sensor)” erklart welche Sensoren zu einem Objekt ge-

[43

horen. Die dazugehorige inverse Relation lautet ,gehdrt_zu(0Objekt, Sensor)®.

Koordinaten

-
Se———————

verwendet

Adapter

Abbildung 5.5: Konzept Ontologie Relationen

Zu den weiteren Relationen gehoren:
« ist_bei(Objekt, Koordinaten) zur Geolokalisierung eines Objektes
« verwendet(0Objekt, Adapter), um Objekt und Adapter miteinander zu verkniipfen
« flir(Adapter, Sensor), um anzuzeigen welchen Sensor ein Adapter bedient

Zu jeder Relation kann eine inverse Relation definiert werden. Mit diesen kdnnen
Instanzen aus verschiedenen Blickwinkeln definiert werden. Man kann z.B. von einer
Objekt-Instanz ausgehen und alle ihre Sensoren definieren oder man definiert umgekehrt
Sensor-Instanzen und erklart, zu welchen Objekten sie gehoren.

Die Ontologie wird in einem Speicher — vergleichbar zu einer Datenbank - verwaltet. In
diesem Speicher werden die Informationen und die Struktur als Daten abgelegt. Dartiber
hinaus wird auch die semantische Bedeutung der Daten als formale Beschreibung in Form von
Regeln tiber Daten sowie Beziehungen zwischen Daten gespeichert. Uber diese semantische
Bedeutung der Daten ist es einer Inferenzsoftware méglich, die Daten auf ihre Konsistenz und
Widerspruchsfreiheit hin zu tiberpriifen. Auch kann fehlendes Wissen aus den vorhandenen
Daten riickgeschlossen bzw. erganzt werden.

42

5.4 Klient

Eine solche Inferenzsoftware gehort zu der Schnittstelle der Ontologie. Die Schnittstelle
ermoglicht es Instanzen der Ontologie hinzuzufiigen bzw. abzufragen. Auch kann Wissen
in Form von Klassen und Relationen gedndert oder ergidnzt werden. Die Methoden der
Schnittstelle sind vergleichbar zu den klassischen Datenbankoperationen (CRUD?).

Die Schnittstelle kann Klassen, Relationen und Instanzen
« neu erzeugen,
. vorhandene lesen,
 vorhandene aktualisieren und
« vorhandene entfernen.

Sie wird vom Zentralen Service gesteuert und bedient.

5.4 Klient

Um den zentralen Service abseits einer programmatischen Schnittstelle fiir einen Benutzer
steuerbar und bedienbar zu gestalten, bendtigt es einen Klient.

Der Klient erméoglicht es dem Benutzer
+ Objekte und deren Sensoren zur Sensorintegration auszuwéhlen.

Der Klient bietet dem Benutzer in einem ersten Schritt an, ein Objekt auszuwéhlen. Im
néchsten Schritt bekommt er die zu diesem Objekt gehorenden Sensoren angezeigt.
Er wihlt die gewiinschten Sensoren aus und startet die Sensorintegration. Der Klient
kommuniziert dem ZS die Auswahl und wartet darauf, dass der ZS die Sensorintegration
mit all ihren Schritten vollzogen hat.

« Informationen zu Objekten und Sensoren abzufragen.

Der Klient zeigt dem Benutzer zu gewiinschten Objekten bzw. Sensoren die in der
Ontologie hinterlegten Informationen an. Das Auswahlverfahren gleicht dem der
Sensorintegration, er kann aber auch Informationen iiber Sensoren unabhéngig vom

Objekt abfragen.

Lcreate, read, update, delete

43

5 Konzept

+ Objekte sowie Sensoren der Ontologie hinzufiigen.

Der Benutzer bekommt iiber den Klient eine Eingabemaske angeboten. Uber diese
Maske kann er Objekte zzgl. den notwendigen Informationen zu dem Objekt anlegen.
Weiterhin kann er dem Objekt Sensoren hinzufiigen. Ein so geleiteter Prozess sorgt
dafiir, dass die Daten in der Ontologie konsistent und widerspruchsfrei bleiben.

5.5 Sensordatenanbindung uber Adapter

Im Zuge der Sensorintegration werden Objekte mit ihren Sensoren registriert. Das Objekt
hat nun zwei Aufgaben zu erfiillen:

« es verbindet sich mit dem registrierten Sensor und liest dessen Sensordaten aus.
« es sendet die erfassten Sensordaten an die Resource Management Platform (RMP).

Ein auf dem Objekt ausgefithrter Adapter wird diese Aufgaben iibernehmen. Das Objekt-
Sensor-Paar identifiziert den Adapter eindeutig.

Ontologie

\
i
:< Zentraler
: Service

Adapter
Repository

Abbildung 5.6: Konzept Adapter Provisionierung

Die Vielzahl verschiedener Sensoren bedingen ebenso viele Methoden wie ein Sensor ausge-
lesen werden kann. Deswegen wird fiir jeden konstruktionsgleichen Sensor ein individueller
Adapter bendétigt. Je nach Art des Sensors kann es geniigen, den Messwert iiber die Sen-
sorschnittstelle direkt zu erfassen. Im Allgemeinen wird man den Messwert aber erst noch
einer Transformation unterziehen missen. Diese kann z. B. einer physikalischen Vorschrift
folgen.

44

5.6 Optimierung

Weiterhin muss der Adapter befdhigt sein, die erfassten Sensordaten an die RMP zu senden.
Dazu benétigt der Adapter die Information auf welche Weise die RMP anzusprechen ist. Die
Methode der Schnittstelle zur RMP ist fiir alle Adapter identisch.

Jeder Adapter reprasentiert ein Objekt-Sensor-Paar. In einem Adapter Repository (AR) werden
die Adapter als Vorlage vorgehalten. Die Vorlage eines Adapters ist in einer parametrisierten
Form hinterlegt. Zu den Parametern gehort der URI der RMP sowie eine Objekt-Id und eine
Sensor-Id. Werden die Parameter der Vorlage zugefiihrt, kann der Adapter auf dem Objekt
ausgefiithrt werden.

Im Prozess der Sensorintegration erhalt der ZS Informationen tiber die Art des Objektes und
des Sensors und kann damit den Adapter bestimmen. Der ZS konfiguriert nun den Adapter
mit allen notwendigen Parametern.

Als letzter Schritt wird der Adapter auf das Objekt iibertragen und dort ausgefiihrt.

OpenTosca bietet einen umfassenden Ansatz um ein Objekt ganzlich zu konfigurieren,
Systemumgebung fiir den Adapter schaffen und Adapter ausliefern [BBH" 13].

5.6 Optimierung

Eine Situation in SitRS kann unter Umstanden durch mehrere Sensoren gleichermaflen
bestimmt werden. So kann es alternative Sensoren fiir ein Messdatum geben, wobei sich die
alternativen Sensoren hinsichtlich ihrer Eigenschaften unterscheiden.

Beispiel — Fiillstand in einem Fliissigkeitstank:

Der Fiillstand kann iiber verschiedene physikalische Methoden bestimmt werden. Uber
den Differenzdruck, Gesamtgewicht, elektrische Leitfihigkeit der Fliissigkeit, Ultra-
schallmessung und diverse weitere Messmethoden. Jede Messmethode hat ihre Vor- und
Nachteile bzgl. ihrer Messgenauigkeit und anderer Messeigenschaften.

Ein Sensor kann gegeniiber einem anderen Sensor fiir dieselbe Situation beispielsweise
einen hoheren Energiebedarf, eine geringere Einstelldauer oder eine hohere Messgenau-
igkeit besitzen. Es ergeben sich unterschiedliche Optimierungskriterien nach denen eine
Situationserkennung erfolgen kann:

+ Energetische Optimierung
Sensoren haben einen unterschiedlichen Energiebedarf. Hier gilt es den Sensor mit
dem geringsten Energiebedarf auszuwahlen.

« Zeitliche Optimierung
Sensoren erfassen ihren Messwert mit unterschiedlicher Einstelldauer. Es gilt den
Sensor mit der geringsten Einstelldauer auszuwahlen.

45

5 Konzept

« Prézisionsoptimierung
Sensoren erfassen ihren Messwert mit unterschiedlicher Messgenauigkeit. Es gilt den
Sensor mit der hochsten Messgenauigkeit auszuwahlen.

 Kostenoptimierung
Die Kostenoptimierung kann aus verschiedenen Blickwinkeln betrachtet werden. Ener-
giekosten, Anschaffungskosten in Relation zur Lebensdauer. Es gilt den Sensor mit
den geringsten Kosten auszuwahlen.

+ Ressourcen Optimierung
Damit ist der Umstand gemeint, dass es fiir eine neue Situationserkennung zwei
aquivalente Sensoren gibt. Einer der Sensoren wird bereits fiir eine andere Situati-
onserkennung herangezogen. Statt neue Ressource im Gesamtsystem zu reservieren,
konnen die Messdaten des sich bereits im Einsatz befindlichen Sensors fiir diese neue
Situationserkennung wiederverwendet werden.

Die verschiedenen Optimierungskriterien konnen sich gegenseitig ausschlielen, was sich
allgemein wie folgt darstellt:

+ Sensor A misst mit hoher Messgenauigkeit, benétigt dafiir mehr Energie und hat eine
langere Einstelldauer als Sensor B.

« Sensor B misst mit geringer Messgenauigkeit, dafiir bei geringerem Energiebedarf und
einer kiirzeren Einstelldauer als Sensor A.

Sensor A und Sensor B schlieflen dabei eine zeitgleiche Optimierung nach Messgenauigkeit
und Energiebedarf aus.

Algorithmisch gilt es dabei zu jeder Optimierung die in Frage kommenden Sensoren zu
bestimmen und entsprechend der Art der Optimierung auszuwahlen. Dazu miissen entweder
zueinander alternative Sensoren in der Ontologie vermerkt werden oder tiber die Geolokalisie-
rung und den Sensortyp zueinander alternative Sensoren ermittelt werden, um entsprechend
der Art der Optimierung auswahlen zu konnen. Fiir eine Ressourcenoptimierung sollte
verwaltet werden, welche der alternativen Sensoren bereits im Einsatz sind.

Dariiber hinaus bedarf es einer stetigen Aktualisierung sobald sich eine Sensorenkonfigurati-
on dndert. Wird ein Sensor, der durch eine Optimierung ausgewahlt wurde, entfernt, benétigt
die dahinterliegende Situationserkennung einen entsprechenden alternativen Sensor, um
weiterhin ihren Dienst verrichten zu konnen. Wird ein neuer Sensor hinzugefiigt, kann dieser
in genutzten Optimierungen den Vorzug gegeniiber vorherigen Sensoren erhalten.

46

5.7 Autonome Sensorintegration

5.7 Autonome Sensorintegration

Rein konzeptionell wird eine autonome Sensorintegration beschrieben. Damit ist der Ein-
tritt eines intelligenten Objektes (SMART Object) in eine intelligente Umgebung (SMART
Environment) gemeint.

Prinzipiell kann der Eintritt eines intelligenten Objektes in die intelligente Umgebung an
zwei Stellen registriert und behandelt werden:

« Entweder auf der Seite des intelligenten Objektes, welches selbststandig seine Ankunft
im Netzwerk feststellt,

« oder auf der Seite der intelligenten Umgebung, die die Ankunft einen neuen Objektes
bemerkt.

Es stellt sich das Problem, wie beide Seiten Kenntnis voneinander erlangen konnen. Insbe-
sondere, wenn man davon ausgeht, dass weder das Objekt noch die intelligente Umgebung
Kenntnis von der Adresse des jeweils anderen besitzt. Damit beide Seiten sich finden, um
miteinander kommunizieren zu konnen, ist ein standardisierter und wohldefinierter Prozess
notwendig. Dazu gehort, dass die Nachricht des Eintrittes als solche erkannt werden kann.

Im Zusammenhang mit der Sensordatenanbindung ist das vorangegangene Konzept der
Adapterauslieferung nicht mehr ausreichend und muss durch eine universellere Losung
ersetzt werden. Dazu sind grundsétzlich zwei Wege denkbar:

« Das Objekt stellt seinen eigenen Adapter bereit. Bei Eintritt in das Netzwerk teilt die
intelligente Umgebung dem Objekt die Datensenke fiir die Sensordaten der Resource
Management Platform (RMP) mit. Der Adapter muss vom Objekt selbst entsprechend
konfiguriert werden.

Dieser Weg gibt einen generellen Standard fiir Adapter vor. Die Methode wie ein
Adapter seine Daten an die RMP sendet ist durch die Architektur vorgegeben und jeder
Adapter muss dieser Methode folgen. Eine nachtrégliche und signifikante Anderung
der RMP wiirde samtliche Adapter obsolet gestalten und ein jedes Objekt brauchte ein
eigenes Update seiner Adapter. Anderseits ist die Sensorintegration flexibler, da sie
weder Adapter vorhalten muss, noch detaillierte Kenntnisse iiber technischen Details
der Sensoren eines Objektes benétigt.

47

5 Konzept

« Das Objekt teilt der intelligenten Umgebung alle seine Parameter fiir eine Provisionie-
rung eines Adapter mit. Die intelligente Umgebung generiert aus diesen Parametern
einen auf dem Objekt lauffahigen Adapter, liefert diesen aus und startet ihn auf dem
Objekt.

Dieser Weg ist wesentlich komplexer. Die Sensorintegration benétigt umfangreiches
Wissen iiber diverse Objekte, z.B. in welcher Form ein Adapter vorliegen muss. Mit
einem Raspberry Pi des vorherigen Kapitels 5.5 bestehen Adapter aus Python-Skripten,
denkbar ist aber auch ein Objekt mit einem programmierbaren Mikrocontroller, dem ein
Adapter als Binércode tibermittelt werden muss, z.B. per I’C [NXP14]. Bei signifikanten
Anderungen an der RMP hingegen kénnen samtliche Adapter zentral angepasst werden.

Fir die Eintrittserkennung des Objektes werden in den folgenden Unterkapiteln mehrere
Ansitze und deren Probleme erldutert. Zur besseren Ubersicht werden die Ansitze mit
klassischem IP? und beschrinkt auf ein lokales Netzwerk erlautert. Auch besitzen die Objekte
in den folgenden Ansitzen nur einen Sensor und beherbergen ihren eigenen Adapter.

5.7.1 Eintrittsankliindigung

DHCP? zur automatischen Netzwerkkonfiguration funktioniert iiber Broadcasts auf festge-
legten UDP-Ports. Ein Client sendet an alle im Netzwerk eine Anfrage, ein DHCP-Server
fangt diese auf und beantwortet sie [RFC2131]. Eine vergleichbare Technik lasst sich zur
Eintrittsankiindigung verwenden.

Uber die Broadcast-Zieladresse 255.255.255.255 wird der Eintritt im lokalen Netzwerk
kommuniziert. Die intelligente Umgebung reagiert auf solche Broadcasts und antwortet
darauf mit seiner IP-Adresse.

Das Objekt nimmt eine aktive Rolle ein. Es muss feststellen, wann es in ein Netzwerk eintritt.
Das auslosendes Ereignis kann der Erhalt einer Netzwerkkonfiguration per DHCP darstellen.
Das Objekt tiberwacht aktiv, wann es ein solche Netzwerkkonfiguration erhélt, um daraufhin
seinen Eintritt per Broadcast anzukiindigen.

Abbildung 5.7 zeigt ein Sequenzdiagramm mit dem Ablauf der Kommunikation zwischen
intelligentem Objekt und der intelligenten Umgebung. Das Objekt ist dem Netzwerk bereits
beigetreten und hat seinen eigenen Adapter, der nur noch konfiguriert werden muss.

Um die Anzahl der Nachrichten zu reduzieren, konnte man den Broadcast der Eintrittsan-
kiindigung bereits um die Information iiber die Sensortypen erweitern. Die Grofie eines
UDP-Pakets ist durch IPv4 limitiert und ein einzelnes Paket reicht eventuell nicht aus, um

2 Internet Protocol Version 4 — https://tools.ietf.org/html/rfc791
3Dynamic Host Configuration Protocol

48

https://tools.ietf.org/html/rfc791

5.7 Autonome Sensorintegration

Objekt Sensor Integration

[
[l

Sensoren

Broadcast: Eir!trittsankiindi un
Objekt |p
Service lP
Sensor T en
Objekt ID
Sensor 1D

zu Objekt IP eine
Objekt ID generieren

Objekt ID merken
Sensor Typ senden

Sensor ID erzeugen
Sensor registrieren

Adapter konfigurieren
und starten

Abbildung 5.7: Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsankiin-

digung

alle Information unterzubringen — insbesondere fiir Objekte mit einer Vielzahl Sensoren. Da
die Broadcast-Nachricht an alle Geréte im Netzwerk gesendet wird, sollten solche Pakete
moglichst klein gehalten werden, um die Netzlast gering zu halten.

5.7.2 Eintrittsaufforderung

Eine andere Moglichkeit besteht darin, dass die intelligente Umgebung in periodischen
Abstanden eine Eintrittsaufforderungsnachricht in das Netzwerk absetzt. Neue Objekte
fangen diese Eintrittsaufforderung auf und melden sich an die intelligenten Umgebung
zuriick.

49

5 Konzept

Diese Variante dndert das Sequenzdiagramm wie in Abbildung 5.8 zu sehen ist. Wenn es eine
grofle Anzahl neuer und nicht registrierter Objekte im Netzwerk gibt, wird eine Eintritts-
aufforderung eine entsprechende Anzahl zeitgleicher Antworten auslosen. Die intelligente
Umgebung muss in der Spitzenlast alle Antworten zuverldssig verarbeiten und beantworten
konnen. Dariiber hinaus muss das Netzwerk selbst solche Spitzen verkraften konnen, ohne
dass Nachrichten verloren gehen.

Objekt Sensor Integration

i
[

Sensoren

adcast: Eintr’lttaufforderun

Bro Sorvice IP

Service IP merken
Sensor Typ senden

Sensor T
Objekt [P
Objekt 1D / sensor 1D
RMP P

Objekt ID erzeugen
Sensor ID erzeugen
Sensor registrieren

Adapter konfigurieren
und starten

Abbildung 5.8: Sequenzdiagramm einer autonomen Sensorintegration per Eintrittsauffor-
derung

5.7.3 Weitere Probleme einer autonomen Sensorintegration

Autonome intelligente Objekte miissen komplexer gestaltet sein. Das macht ihre Entwicklung
aufwendiger, zeitintensiver und damit auch teurer. Davon abgesehen ergeben sich noch
weitere Probleme.

Zur erfolgreichen Geolokalisierung muss ein autonomes intelligentes Objekt seinen Ort
bestimmen oder durch die intelligente Umgebung bestimmt werden. Dies kann beispiels-

50

5.7 Autonome Sensorintegration

weise ein GPS-Modul leisten, sofern die Bestimmung unter freiem Himmel stattfindet. In
geschlossene Rdumen schlagt eine GPS-Ortung im Allgemeinen fehl.

Ausgehend von einem intelligenten Objekt, welches per WLAN in das Netzwerk eingebunden
wird, konnte eine Losung in der Auswertung der WLAN-Signalstarke liegen. Bei mehreren
Access Points (AP) kann das intelligente Objekt die jeweiligen Signalstirken messen. Diese
Messwerte teilt das intelligente Objekt der intelligenten Umgebung mit. Diese kann die Posi-
tion des intelligenten Objekts ndherungsweise iiber die Ortskenntnis der AP triangulieren.
Eine aufwendige und vermutlich unprazise Methode, die einen weiteren Kommunikations-
schritt erfordert. Alternativ konnte man auch spezialisierte Signalgeber installieren und das
GPS-Konzept auf Innenrdume tibertragen. Objekte miissten entsprechend mit vermeintlich
teurer Spezialhardware angepasst werden. Bei kabelgebundenen Objekten wird der Ort
niherungsweise iiber die Kabelldnge bestimmt. Uber die Signallaufzeit kénnen moderne
Netzwerkkomponenten die Kabellange bestimmen. Moderne Switches nutzen die Kabell4dn-
generkennung zum Energiemanagement [Cis14].

Eine Geolokalisierung kann technisch gelost werden, ist aber je nach Methode nur in einer
Néherung moglich. Sie benétigt weiteres Wissen iiber die Umgebung, welches von Menschen
zusammengetragen und verwaltet werden muss. Unter Umstdnden wird teurere und weitere
Hardware benétigt.

Ein generelles Problem ergibt sich aus der Erreichbarkeit im Netzwerk. So bilden Router und
Gateways natiirliche Netzwerkgrenzen, die Broadcast-Nachrichten normalerweise nicht tiber
Netzwerkgrenzen hinaus tragen. IPv6* bietet mit dem Multicast eine Losungsmdoglichkeit
[RFC4291].

Gibt es grundlegende Anderungen im gesamten Prozess der Sensorintegration, kann eine
Abwirtskompatibilitat entweder nicht mehr gegeben oder erwiinscht sein. Eine Versionsnum-
mer im Protokoll einer autonomen Sensorintegration hilft zu entscheiden, ob intelligentes
Objekt und intelligente Umgebung miteinander kommunizieren kénnen bzw. eine Integration
moglich ist. Im Fall einer Inkompatibilitat kann dies auf beiden Seiten zur Fehlerdiagnose
protokolliert werden.

“Internet Protocol Version 6 — https://www.ietf.org/rfc/rfc2460.txt

51

5 Konzept

Anderungen an der Schnittstelle kann man mit einer dynamischen Schnittstellenbindung
vorbeugen. Die intelligente Umgebung sendet hierzu seine Schnittstellenbeschreibung dem
intelligen Objekt. Fiir eine solche Beschreibung sind mehrere Wege denkbar. WSDL? ist hier
ein etablierter Standard, fiir REST-basierte gibt es WADL® - beiden fehlt jedoch semantisches
Wissen. Mochte man der Schnittstellenbeschreibung eine semantische Bedeutung verleihen
bieten sich dafiir SAWSDL’, OWL-S? oder WSML? an.

Probleme, die sich aus Sicherheitsaspekten ergeben werden in Kapitel 5.8 gesondert betrach-
tet.

5.8 Sicherheit

Die Pramisse dieser Diplomarbeit ist eine private Cloud. Das gesamte System wird als
geschlossen und somit sicher betrachtet. In der Praxis muss dieser Ansatz jedoch tiberdacht
werden.

Das sogenannte Stuxnet-Schadprogramm'® manipuliert gezielt Industriesteuerungen und
sabotierte z. B. Uranzentrifugen im Iran. Ubertragt man dies auf SitOPT und SitRS, konnen
manipulierte Sensordaten Situationen auslosen, die ungewollte Workflow-Adaptionen nach
sich ziehen.

Beispiel einer manipulierten Situation:

Der Temperatursensor einer Maschine wird manipuliert, so dass die Temperatur immer
iiber dem Grenzwert liegt. Die filschlich erkannte Situation fiihrt zu einem adaptier-
ten Workflow, der die Maschine zum Abkiihlen pausiert bis die Temperatur wieder im
erlaubten Bereich liegt.

Verschiedene Sicherheitsmafinahmen konnen einer (Industrie-)Spionage bzw. Sabotage vor-
beugen oder solche Angriffe erschweren.

Ein erster Schritt sind verschliisselte Kommunikationswege. Dadurch wird verhindert, dass
die Kommunikation zum einen manipuliert, zum anderen ausspioniert werden kann. REST-
Schnittstellen iiber HTTPS!! sichern die Kommunikation kryptographisch gegen ,Man in
the middle”-Angriffe ab.

>Web Services Description Language

®Web Application Description Language

’Semantic Annotations for WSDL and XML Schema
8http://www.w3.0rg/Submission/OWL-S/

*Web Service Modeling Language
Phttps://de.wikipedia.org/w/index.php?title=Stuxnet&oldid=147449547
UHypertext Transfer Protocol Secure — https://tools.ietf.org/html/rfc2818

52

http://www.w3.org/Submission/OWL-S/
https://de.wikipedia.org/w/index.php?title=Stuxnet&oldid=147449547
https://tools.ietf.org/html/rfc2818

5.8 Sicherheit

Eine Benutzer-Authentifizierung — z. B. in Form eines Benutzernamens und Kennwortes —
schiitzt das System vor unberechtigtem Zugriff durch nicht autorisierte Personen. Zusétzlich
kann eine Benutzer-Authentifizierung um ein Rechtesystem ergianzt werden. Mit einem
solchen Rechtesystem kann ein Benutzer beispielsweise auf einen rein lesenden Zugriff
beschrankt werden und kann nur Daten aus der Ontologie abfragen. Einem anderen Benutzer
hingegen kann der volle Zugrift gewéhrt werden.

Eine autonome Sensorintegration (vgl. Kapitel 5.7) erfordert ein komplexeres Sicherheits-
konzept, da die Kontrolle aus der Hand der Benutzer riickt. Ein bosartig konzipiertes Objekt
konnte in das System eingeschleust werden. In ein geschlossenes System eingebracht, kann
so ein bosartiges Objekt eine Schnittstelle nach aufien hin 6ffnen. Uber diese Schnittstelle ist
dann eine Manipulation oder ein Ausspionieren des Systems moglich.

Dem kann z. B. durch ein einfaches Zertifikatssystem vorgebeugt werden. Objekte, welche
kein giiltiges Zertifikat vorweisen konnen, werden abgewiesen. Eine technisch ausgereiftere
und komplexere Losung lisst sich durch den XACML'-Standard erreichen. Mit ihm lassen
sich Sicherheitsrichtlinien wie Authentifizierungsrichtlinien und Autorisierungen zentral
steuern [XACML].

Vollstandige Sicherheit ist allerdings nicht erreichbar. Am Ende bleibt immer der Mensch als
Sicherheitsrisiko bestehen.

2eXtensible Access Control Markup Language

53

6 Implementierung

Always code as if the guy who
ends up maintaining your code
will be a violent psychopath who
knows where you live

(John F. Woods)

Dieses Kapitel beschreibt die prototypische Implementierung der Sensorintegration SeInt.
Es werden dabei einzelne Designentscheidungen, Probleme und deren Losungsmoglichkeiten
diskutiert. Die Implementierung besteht einerseits aus einer Software und andererseits aus
der Ontologie.

6.1 Technologieentscheidung fir die Software

Am Anfang der Software-Implementierung galt es zu entscheiden, welche Technologien sich
empfehlen und geeignet sind, das in Kapitel 5 vorgestellte Konzepte umzusetzen.

Sowohl die Resource Management Platform (RMP) als auch die Sensor Registry bieten REST-
basierte Schnittstellen. Dementsprechend folgt SeInt dem gleichen Schnittstellenkonzept,
um mit den anderen Teilen konform zu bleiben. Als Alternative bote sich z. B. SOAP! an. REST
ist allerdings im Vergleich zu SOAP direkter und weniger umfangreich zu implementieren.
Beide bieten eine umfangreiche Infrastruktur wie Web- bzw. Anwendungsserver (application
server) sowie HTTP als Transportprotokoll.

Aus dem Bereich der Webtechnologien bieten sich diverse Programmiersprachen zur Ent-
wicklung einer REST-basieren Schnittstelle an. Beispiele, zu denen es teilweise Unterstiitzung
fiir Ontologien in Form von Bibliotheken gibt, sind:

« PHP - eine Skriptsprache entworfen fiir dynamische Webanwendungen.

« node.js — JavaScript in einer serverseitigen Laufzeitumgebung, eignet sich vor allem
fiir eine ereignisgesteuerte Entwicklung.

ISimple Object Access Protocol

55

6 Implementierung

« ASP.Net - ist von Microsoft und limitiert damit die Infrastruktur auf der ein Webservice
lauft.

« JAX-RS - Java API for RESTful Web Services als API Spezifikation.
Des Autors Vorkenntnisse praferierten eine Losung in PHP oder node.js.

Allerdings ergaben Recherchen, dass es fiir Java die grofite Unterstiitzung durch Bibliotheken
gibt. Java bietet mit

« Jersey® — als Referenzimplementierung fiir die JAX-RS API Spezifikation
« Jena® - eine Bibliothek u.a. fiir OWL und SPARQL

« jSch* — eine SSH2-Implementierung, kommt bei der Adapter-Provisionierung zum
Einsatz.

die notwendigen Bibliotheken, um SeInt als prototypische Implementierung umzusetzen.
Die Bibliotheken werden mit einer Javadoc-Dokumentation ausgeliefert, diese beschreibt i.A.
jedoch nur die Struktur einer API Bibliothek, erklart aber nicht, wie sie zu verwenden ist.
Weitere Dokumentation zu den API Bibliotheken ist zwar vorhanden, benétigt jedoch ein
tieferes Verstandnis der jeweiligen Bibliothek.

Eine Implementierung in Java bietet die Moglichkeit die gesamte Anwendung in ein porta-
bles Web Application Archive (WAR) zu packen. Ein Anwendungsserver wie z. B. GlassFish®
geniigt, um WAR auszufiihren.

6.2 Ontologie mit Protégeé

Es gibt nicht ,die eine richtige Methode® wie Noy und McGuinness in einer Anleitung
zum Entwurf einer Ontologie betonen [NM01]. Der Ontologie-Entwurf geschah in einem
iterativen Prozess und wurde stetig neu geordnet, erweitert und geandert.

Technisch wurde die Ontologie in OWL-DL implementiert. OWL ist XML-basiert und der han-
dische Entwurf komplexer XML Dokumente ist zeitaufwendig und fehleranfillig. Ontologie-
Editoren sind hierbei eine hilfreiche Unterstiitzung. Es gibt eine Vielzahl Ontologie-Editoren,
z.B. Protégé und weitere®.

2https://jersey.java.net/

Shttp://jena.apache.org/

‘http://www.jcraft.com/jsch/

Shttps://glassfish.java.net/

8Ubersicht verschiedener Ontologie-Editoren — http://www.w3.0rg/wiki/Ontology_editors

56

https://jersey.java.net/
http://jena.apache.org/
http://www.jcraft.com/jsch/
https://glassfish.java.net/
http://www.w3.org/wiki/Ontology_editors

6.2 Ontologie mit Protégé

Protégé war der erste untersuchte Ontologie-Editor. Er erwies sich direkt als machtig und
komfortabel genug, um eine Ontologie zu entwerfen. Weitere Editoren wurden deswegen
nicht untersucht. Protégé macht es sehr einfach Hierarchien graphisch-gestiitzt zu entwer-
fen.

Nach einer ersten Begriffssammlung fiir die Ontologie galt es diese Begriffe in einen Zusam-
menhang zu setzen. Ein Problem war dabei z. B. die Einordnung der Koordinaten. Wie in
Abbildung 6.1 dargestellt, konnen Koordinaten entweder als eigene owl:Class mit einer
owl:0bjectProperty oder als owl:DatatypeProperty zu einer Objekt-Instanz struktu-
riert werden.

Objekt
owl/:Class

Objekt

owl:Class

owl:DatatypeProperty owl:ObjectProperty

_ Koordinaten
< Koordinaten > owl:Class

Abbildung 6.1: Koordinaten als Klasse oder Wert

Koordinaten als eigene owl:Class bieten den Vorteil, dass eine Instanz dieser Klasse
verschiedenen Objekt-Instanzen zugeordnet und damit wiederverwendet werden kann.

Bei der Adapter-Klasse stellte sich die Frage, ob die Adapter in Form eines Python-Skripts
(vgl. Kapitel 6.3.4) selbst oder nur eine Referenz dieser in einem Adapter Repository (AR) in
der Ontologie platziert werden. Das Speichern in der Ontologie hatte den Vorteil, dass alles
zusammen an einem Ort verwaltet werden kann. Sie hatte auch keine Abhéangigkeiten zu
einem AR. Allerdings miisste ein Adapter serialisiert in der Ontologie hinterlegt werden, um
sicher in ein XML-Dokument eingebettet werden zu konnen. Die Datengrofie der Ontologie
ist mit einer Referenz zum AR geringer. Zudem sind Adapter und Ontologie entkoppelt,
wodurch SeInt modularer gestaltet ist.

Bereits vorhandene Sensor-Ontologien (vgl. Kapitel 4.2 und 4.3) sind zu umfangreich und
komplex, um im Zuge dieser Diplomarbeit Verwendung zu finden. Die hier entworfene Sensor-

57

6 Implementierung

Ontologie — inspiriert durch SensorML - beschrénkt sich deswegen auf ein Hierarchiemodell
zur Klassifizierung der Sensortypen.

Instanzen, die mit Protégé erzeugt werden, sind vom Typ owl:NamedIndividual. Sie tragen
ihre Id in der Bezeichnung. Anonyme Instanzen fehlt die Id und eignen sich vorwiegend fiir
einen internen Ontologie-Gebrauch. In dieser Ontologie werden nur owl:NamedIndividual
verwendet.

Listing 6.1 OWL Instanz eine Sensors — Ultraschall Messmodul HC-SR04

<owl:NamedIndividual rdf:about="&seint;HC-SRO4">
<rdf:type rdf:resource="&seint;ultrasonicPulseEcho"/>
<powerConsumption rdf:datatype="&xsd;integer">10</powerConsumption>
<measurelInterval rdf:datatype="&xsd;integer">20</measureInterval>
<rangelowerlLimit rdf:datatype="&xsd;integer">20</rangelLowerLimit>
<measurePrecision rdf:datatype="&xsd;integer">3</measurePrecision>
<rangeUpperLimit rdf:datatype="&xsd;integer">30000</rangeUpperLimit>
<sensorId rdf:datatype="&xsd;integer">5</sensorId>
<unitName>millimeter</unitName>

</owl:NamedIndividual>

Neben der Id des owl:NamedIndividual gibt es fiir jedes Objekt und jeden Sensor noch ein
eigenes Id-Feld, z. B. sensorId (vgl. Listing 6.1). Diese zweite Id ist dafiir gedacht, Objekte und
Sensoren projektweit — getrennt von der Ontologie — eindeutig identifizieren zu konnen.

6.3 Sensorintegration — SeInt

SeInt besteht wie im Konzept beschrieben (vgl. Kapitel 5.1) aus mehreren Komponenten,
deren Implementierung in den folgenden Unterkapiteln erlautert wird.

6.3.1 Ontologie-Schnittstelle

Die Ontologie-Schnittstelle wurde mit Hilfe der Jena-Bibliothek implementiert.

Die Namensrdume innerhalb der Ontologie werden in einem Enum — einem Aufzahlungs-
typen — verwaltet. Dieser Enum enthélt zu jedem Namensraum eine Konstante und eine
Methode, um den Wert einer Konstante auszulesen.

Bestimmte Werte einer Instanz der Ontologie werden direkt iiber die OWL-API von Jena
ausgelesen. Hierzu wurde eine generische Methode entwickelt, um zu einer beliebigen
Instanz eine bestimmte Eigenschaft abzufragen (vgl. Listing 6.2).

58

6.3 Sensorintegration — SeInt

Listing 6.2 Methode zum direkten Auslesen eines speziellen Wertes einer Instanz

public String getPropertyValueOfIndividual(String individualName, String propertyName)
{

Individual individual = ontology.getIndividual(Prefix.SEINT.value() +
— individualName) ;

DatatypeProperty property = ontology.getDatatypeProperty((Prefix.SEINT.value() +
— propertyName));

return individual.getPropertyValue(property).toString();

Geht es um die Abfrage einer gesamten Instanz aus der Ontologie wird die SPARQL-Query-
API von Jena verwendet. Es gibt verschiedene SPARQL-Abfragen, um beispielsweise die
Instanz eines Objekts oder Sensors abzufragen (vgl. Listing 6.3).

Die Jena-Bibliothek bietet verschiedene Ausgabeformate fiir Ontologie-Abfragen. Davon wird
in Kombination mit der REST-basieren Schnittstelle Gebrauch gemacht, um entsprechende
Ausgaben zu generieren.

Die SPARQL-Query-API erlaubt keine Manipulationen der Ontologie. Hierfiir gibt es in dem
sehr speziellen Bibliotheksdesign von Jena eine gesonderte SPARQL-Update-API, die sich
allerdings identisch zur SPARQL-Query-API bedienen l4sst.

Listing 6.5 zeigt die Ausgabe zu einer Beispiel Instanz des ,Ultraschall Messmodul HC-
SR04".

6.3.2 REST-basierte Schnittstelle nach auBBen

Diese Schnittstelle ist mit Jersey implementiert. Jersey bringt eine Menge Annotationen mit,
die den Quellcode sehr klein und iibersichtlich halten.

Listing 6.4 zeigt die Implementierung um alle Sensoren der Ontologie aufzulisten. Bei einem
HTTP-GET auf die REST-Ressource /sensor/1list wird die Methode getSensorListAsText ()
aufgerufen. Auf diese Art und Weise sind samtliche REST-Ressourcen deklariert.

Wie im Konzept erlautert, folgt die Bedienung der Ontologie dem CRUD-Schema (vgl.
Kapitel 5.3). HTTP bietet verschiedene Methoden an, die wie folgt verwendet werden:
PUT Erzeugen neuer Daten in der Ontologie
GET Abfrage der Ontologie
POST Andern von Daten in der Ontologie
DELETE Loschen von Daten in der Ontologie

59

6 Implementierung

Listing 6.3 Methode zum Auslesen der Sensordaten

/ x*
Gets sensor data by its name (owl:NamedIndividual) and outputs in a given format

@param name String owl:NamedIndividual name of a sensor
@param outputFormat String
@return String sensor data in a given format

R R

*/
public String getSensorByName(String name, OutputFormat outputFormat)
{
String queryString =

"SELECT ?sensor ?predicate ?object \n" +
"WHERE {\n" +
" ?class "+Prefix.RDFS.prefix()+":subClassOfx*

— "+Prefix.SEINT.prefix()+":sensor . \n" +
" ?sensor "+Prefix.RDF.prefix()+":type ?class . \n" +

?sensor ?predicate ?object . \n" +

"FILTER (?sensor = "+Prefix.SEINT.prefix()+":"+name+") \n" +

return query(queryString, outputFormat);

Listing 6.4 Beispiel einer REST-Ressource in Jersey

@Path("/sensor")
public class Sensor extends RestResource
{
@GET
@Path("/list")
@Produces ({MediaType.TEXT_PLAIN, MediaType.WILDCARD})
public Response getSensorListAsText()
{
String output = ontology.getSensorList(OntologyManager.OutputFormat.TEXT);
return out(output);

60

6.3 Sensorintegration — SeInt

6.3.3 Klient fiir SeInt

Die Benutzer-Klient zur Bedienung der REST-basierten Schnittstelle wurde als HTML5-
Webseite in Kombination mit JavaScript entworfen. Webbrowser gibt es fiir alle gangigen
Betriebssysteme, auch wenn derzeitig noch nicht alle Webbrowser HTMLS5 in vollem Umfang
unterstiitzen.

Fiir JavaScript wird die jQuery’-Bibliothek verwendet. Sie erleichtert DOM®-Manipulationen
und AJAX® wesentlich.

In HTML5 wurde fiir die einzelnen REST-Ressourcen jeweils ein Formular beschrieben, um
die Parameter eines URI eingeben zu konnen (vgl. Abbildung 6.2). Jedes dieser Formulare
enthalt Buttons zum ausfithren der Anfrage.

HTML5 Formulare erlauben nur POST und GET als HTTP-Methoden. Auf3erdem definiert
der Browser den HTTP Request-Header, insbesondere die MIME-Typen des Accept-Feldes.
Dieses Problem wird mit JavaScript und der AJAX-Technik gelost. Mittels jQuery lassen sie
AJAX-Request sehr einfach gestalten, vor allem kann man das Accept-Feld frei definieren.

Listing 6.6 zeigt eine vollstandige HTML5-Section, inklusive dem Formular und JavaScript,
das die Formularbehandlung ibernimmt. Die Buttons werden auf ein auslésendes Ereignis
— ein Klick oder Tastendruck — hin iiberwacht. Mit dem Ereignis wird die Anfrage an die
REST-Ressource ausgelost. Es werden die Parameter der Ressource mit den Formularfeldern
ausgefiillt. Der Button bestimmt das Ausgabeformat, entsprechend wird im AJAX-Objekt
von jQuery der dataType gesetzt.

Listing 6.5 zeigt die Antwort einer Anfrage im einfachen Textformat.

6.3.4 Adapter auf einem Raspberry Pi

Im Rahmen dieser Diplomarbeit werden die Objekte durch einen Raspberry Pi dargestellt.
An diesen Minicomputer sind die Sensoren iiber die GPIO'*-Schnittstelle angeschlossen. Als
Sensor kam ein Ultraschall Messmodul HC-SR04"' zum Einsatz.

Auf dem Raspberry Pi lduft ein Linux-Betriebsystem, des Weiteren gibt es SSH und einen
Python-Interpreter. Beides wird fiir die Adapter-Provisionierung eingesetzt.

"https://jquery.com/

$Document Object Model

°AsynchronousJavaScriptandXML

General-purpose input/output

H{ltraschall Messmodul HC-SR04 — http://www.mikrocontroller.net/attachment/218122/HC-SR04_
ultraschallmodul_beschreibung_3.pdf

61

https://jquery.com/
Asynchronous JavaScript and XML
http://www.mikrocontroller.net/attachment/218122/HC-SR04_ultraschallmodul_beschreibung_3.pdf
http://www.mikrocontroller.net/attachment/218122/HC-SR04_ultraschallmodul_beschreibung_3.pdf

6 Implementierung

Listing 6.5 Ontologie Sensor-Instanz des Ultraschall Messmodul HC-SR04

| sensor | property | value
seint:HC-SR04 seint:unitName "millimeter"
seint:HC-SR04 | seint:sensorId 5
seint:HC-SR04 seint:rangeUpperLimit 30000
seint:HC-SR04 | seint:measurePrecision 3
seint:HC-SR04 | seint:rangelLowerLimit 20
seint:HC-SR04 seint:measurelnterval 20

I I

I I

I I

I |

I |

I I
seint:HC-SR04 seint:powerConsumption | 10 |
I I
I I
I |
| |
I I

seint:HC-SR04 rdf:type seint:ultrasonicPulseEcho
seint:HC-SR04 rdf:type owl:NamedIndividual
seint:HC-SR04 rdf:type rdfs:Resource
seint:HC-SR04 rdf:type seint:sensor
seint:HC-SR04 rdf:type seint:physicalSensor

Die Adapter sind als Vorlage in einem Adapter Repository (AR) hinterlegt, wobei das AR sich
auf eine einfache Dateiablage beschrankt. Die Vorlage ist ein Python-Skript mit Platzhaltern
fiir die notwendigen Parameter wie die URL der Resource Management Platform (RMP) sowie
Objektld und SensorId.

Das Python-Skript besteht aus zwei Funktionen:

1. eine misst die Signale an der GPIO-Schnittstelle. Dort kommen nur Rechtecksignale
mit den Werten 1 bzw. 0 an. Diese Signale miissen erst noch als Sensorwert interpre-
tiert werden. Beim Beispiel des Ultraschall Messmodul HC-SR04 geniigt es, die Dauer
zwischen dem Ultraschall-Ping und dem Echo zu messen. Aus dieser Zeit lasst sich der
gemessene Abstand als Sensorwert berechnen.

2. der Sensorwert wird als HTTP-POST an die RMP gesendet. Die python-Bibliothek
Requests'® wird zu diesem Zwecke eingesetzt.

Beide Funktionen laufen in einer Endlosschleife.

Im Prozess der Sensorintegration wird die Vorlage in einen String eingelesen und die Platz-
halter durch ihre die entsprechenden Parameter ersetzt. Hierbei wird ein lauffahiges Python-
Skript erzeugt. Im Anschluss wird mit Hilfe der jSch-Bibliothek eine SSH Verbindung zum
Raspberry Pi aufgebaut. Dazu wurden die Verbindungsdaten, bestehend aus IP-Adresse,
Benutzername und Passwort, der Ontologie entnommen. Uber diese Verbindung wird das

12Requests: HTTP for Humans —http://docs.python- requests.org/en/latest/

62

http://docs.python-requests.org/en/latest/

6.3 Sensorintegration — SeInt

Listing 6.6 Quellcodebeispiel des Klient

<!-- section to get a sensor by name -->
<section id="getSensorByName" class="get" tabindex="30">
<h2>GET Sensor by: NAME</h2>
<div>
<fieldset>
<legend>GET /rest/sensor/name/{name}</legend>
<label>Sensor {name}: <input class="getSensorByName" type="search"></label>
<button class="getSensorByName" >search</button>
<button class="getSensorByName json" >search (json)</button>
</fieldset>
<script type="text/javascript">
(function(){
var trigger = '.getSensorByName’;
var path "rest/sensor/name/’;

$(trigger).bind(’keypress click’, function(e){
var value = $('input’+trigger).val();
if (value && (e.keyCode == 13 || $(this).is(’:button’))) {
var outputFormat = ($(this).is(’.json’) ? "json" : "text");
$.ajax({
url: path + value,
dataType: outputFormat,
success: function(data, status, jgXHR){
console.log('ajax success’, arguments);
var w = window.open();
var output = (outputFormat == "json" ? JSON.stringify(data,null,4)
— data);
$(w.document.body) .append("<pre></pre>");
$(w.document).find("pre").text(output);
1
error: function(jgXHR, status, errorThrown){
console.log('ajax error’, arguments);
alert(’ERROR ’'+jgXHR.status+’\n\n’+status+’\n’+errorThrown);
}
1)
}

//update url of fieldset legend
value = value || '{name}’;
$(this).parents(’'fieldset’).find('legend a’).attr('href’, path +
— value).text(path + value);
1)
F0));
</script>
</div>
</section>

63

6 Implementierung

' SEnsor INTegration Web Application

Navigation

GET Sensor: LIST

GET Location: LIST

GET Location by: NAME

GET Sensor by: ID

GET Sensor by: NAME

DELETE Sensor byv: NAME

GET Ontology

POST Upload an ontology replacement

POST Upload an ontology to merge with current ontology

POST sparql
misc Web Application Description as XML (wadl)

Legend

PUT

Creates a resource
GET

Reads a resource

POST (CmplexCET) 47 &7 47 &7

Reads a resource

Updates a resource
DELETE
Deletes a resource
misc
miscellaneous and meta operations

GET Sensor: LIST

list || list (json)

’fGET rest/sensor/list

GET Location: LIST

’, GET /rest/location/list

list || list (json)

Abbildung 6.2: Weboberflache des Klients

Python-Skript auf den Raspberry Pi kopiert. Abschlieffend wird das Python-Skript im Hin-

tergrund gestartet und die SSH-Verbindung beendet.

Das Python-Skript soll nach beenden der SSH-Verbindung noch laufen. Mit jSch ist es nicht
ganz trivial einen Prozess per SSH im Hintergrund zu starten. Die Standardmethode einen
Prozess in einer Shell in den Hintergrund zu legen funktioniert nicht mit jSch. Dazu wird

der sudo-Befehl unter Linux verwendet.

64

7 Zusammenfassung und Ausblick

Ziel dieser Arbeit war es, eine automatisierte ad-hoc Sensorintegration basierend auf einer
Ontologie zu schaffen. Das Konzept und die prototypische Implementierung bieten eine
REST-basierte Schnittstelle. Uber diese lassen sich Objekte und ihre Sensoren auswihlen.
Die Zugehorigkeit wird tiber eine Ontologie ermittelt. Sensoren konnen also dem Ziel dieser
Arbeit entsprechend ad-hoc und automatisiert in das System von SitRS integriert werden.

Am Anfang dieser Arbeit wurde der Hintergrund zu SitOPT erldutert und welche Rolle
SitRS in diesem System besitzt. Die Motivation dieser Arbeit leitet sich aus den Anforderung
einer Sensorintegration in SitRS ab.

Es wurden die notwendigen Grundlagen zum Verstandnis dieser Arbeit erklart. AnschlieBend
wurden verschiedene themenverwandte Arbeiten vorgestellt, die Losungen zu Teilaspekten
dieser Arbeit liefern.

In Kapitel 5 ist ein umfangreiches Konzept zur Sensorintegration entworfen worden. Dieses
Konzept beinhaltet den Entwurf einer Ontologie, um Wissen iiber Objekte und Sensoren
semantisch zu repriasentieren und nutzbar zu machen. Auflerdem wurde ein modularisierte
Softwaresystem fiir interagierende Komponenten konzipiert. Im Zusammenspiel stellen die
Komponenten die Sensorintegration dar.

Abschlieflend wurde die prototypische Implementierung beschrieben und die darin verwen-
deten Technologien und Methoden diskutiert.

65

7 Zusammenfassung und Ausblick

Fazit und Ausblick

Ontologien bieten einen guten Ansatz, um semantisches Wissen tiber die Umgebung zu
reprasentieren. Metadaten tiber Sensoren und Objekte lassen sich gut damit verwalten und die
Bedeutung der Metadaten ist durch die Ontologie gegeben. Uber die vorhandene Schnittstelle
der Sensorintegration konnen sich andere Dienste dieses semantischen Wissens bedienen.

Fur die Zukunft kann die hier vorgestellte Ontologie weiter verfeinert werden. Speziell
die Sensoren kénnen noch feiner granuliert werden. Dazu gehort z. B. die Auffacherung
unterschiedlicher Sensortypen, aber auch der Ausbau der Sensoreigenschaften wie sie in
den Grundlagen angesprochen worden sind. Auch kénnen die Moglichkeiten der Inferenz
in der Ontologie deutlich ausgebaut werden. Beispielweise um Formulierungen der Art
Jintegriere alle Temperatorsensoren die sich einem bestimmten Raum befinden” Folge leisten
zu konnen.

Die Sensorintegration kann in verschiedenen Aspekten gegeniiber der prototypischen Imple-
mentierung erweitert werden. Der Mechanismus der Adapter-Provisionierung wurde iiber
einen speziellen Ansatz gelost. Er definiert sich durch die Infrastruktur der verwendeten
Minicomputer — Raspberry Pi. In Zukuntft ist hier ein allgemeiner Ansatz denkbar, der auch
mit verschiedenen Infrastrukturen funktioniert. Die Konzepte hinter OpenTOSCA kénnen
hier als Vorbild dienen.

Eine autonome Sensorintegration stellt den gesamten Prozess vor grof3e Herausforderungen
und wurde in dieser Arbeit nur konzeptionell beschrieben. Sie geht mit dem Sicherheits-
konzept einher. Generell wurden Sicherheitsaspekte in der Implementierung dieser Arbeit
auflen vor gelassen. Das Konzept vermittelt Ideen und Anhaltspunkte, welche Aspekte hier
angegangen werden konnen.

66

Literaturverzeichnis

[Ash09]

[BBH*13]

[Bet]

[BHK "]

[BHL*14]

[BN03]

[Bra9ge]

[BMBF15]

K. Ashton. That 'Internet of Things’ Thing. RFID Journal, 2009. URL http:
//www.rfidjournal.com/articles/pdf?4986. (Zitiert auf Seite 21)

T. Binz, U. Breitenbiicher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, S. Wagner.
OpenTOSCA - A Runtime for TOSCA-based Cloud Applications. In 11" Interna-
tional Conference on Service-Oriented Computing, LNCS. Springer, 2013. (Zitiert
auf den Seiten 40 und 51)

S.Betten. Richardson Maturity Model. URL http://www.se.uni-hannover.de/
pub/File/kurz-und-gut/ws2011-1labor-restlab/RESTLab-Richardson-
Maturity-Model-Sascha-Betten-kurz-und-gut.pdf. (Zitiert auf Seite 36)

U. Breitenbiicher, P. Hirmer, K. Képes, O. Kopp, F. Leymann, M. Wieland. A
Situation-Aware Workflow Modelling Extension. Sumbitted to the 17th Inter-
national Conference on Information Integration and Web-based Applications &
Services (ITWAS), 2015. (Zitiert auf Seite 15)

J. Busse, B. Humm, C. Lubbert, F. Moelter, A. Reibold, M. Rewald, V. Schliiter,
B. Seiler, E. Tegtmeier, T. Zeh. Was bedeutet eigentlich Ontologie? Informatik-
Spektrum, 37(4):286-297, 2014. doi:10.1007/s00287-012-0619-2. URL http://dx.
doi.org/10.1007/s00287-012-0619-2. (Zitiert auf Seite 23)

F. Baader, W. Nutt. The Description Logic Handbook. Kapitel Basic Description
Logics, S. 43-95. Cambridge University Press, New York, NY, USA, 2003. URL
http://dl.acm.org/citation.cfm?id=885746.885749. (Zitiert auf Seite 25)

C. Braig. Vom Sein. Abrif3 der Ontologie. =~ Herder, Freiburg im Breis-
gau, 1896. URL https://www.freidok.uni-freiburg.de/fedora/objects/
freidok:806/datastreams/FILE1l/content. (Zitiert auf Seite 23)

Bundesministerium fiir Bildung und Forschung. Industrie 4.0 - Innovation fiir
die Produktion von morgen. Bundesministerium fiir Bildung und Forschung, 2.
Auflage, 2015. URL http://www.bmbf.de/pub/Industrie_4.0.pdf. (Zitiert
auf den Seiten 9 und 22)

67

http://www.rfidjournal.com/articles/pdf?4986
http://www.rfidjournal.com/articles/pdf?4986
http://www.se.uni-hannover.de/pub/File/kurz-und-gut/ws2011-labor-restlab/RESTLab-Richardson-Maturity-Model-Sascha-Betten-kurz-und-gut.pdf
http://www.se.uni-hannover.de/pub/File/kurz-und-gut/ws2011-labor-restlab/RESTLab-Richardson-Maturity-Model-Sascha-Betten-kurz-und-gut.pdf
http://www.se.uni-hannover.de/pub/File/kurz-und-gut/ws2011-labor-restlab/RESTLab-Richardson-Maturity-Model-Sascha-Betten-kurz-und-gut.pdf
http://dx.doi.org/10.1007/s00287-012-0619-2
http://dx.doi.org/10.1007/s00287-012-0619-2
http://dl.acm.org/citation.cfm?id=885746.885749
https://www.freidok.uni-freiburg.de/fedora/objects/freidok:806/datastreams/FILE1/content
https://www.freidok.uni-freiburg.de/fedora/objects/freidok:806/datastreams/FILE1/content
http://www.bmbf.de/pub/Industrie_4.0.pdf

Literaturverzeichnis

[Cis14]

[Cox13]

[1319-1]

[RFC2131]

[Fie00]

[Fie08]

[For15]

[Fow]

[GOS09]

[Gru93]

68

Cisco Systems. Cisco Switches der Serie 300 Cisco Small Business, 2014. URL
http://www.cisco.com/c/dam/en/us/products/collateral/switches/
small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.
pdf. (Zitiert auf Seite 57)

S. Cox. An explicit OWL representation of ISO/OGC Observations and Mea-
surements. In Proceedings of the 6th International Workshop on Semantic Sensor
Networks co-located with the 12th International Semantic Web Conference (ISWC
2013), Band 1063, S. 1-18. 2013. URL http://ontolog.cim3.net/file/work/
OntologyBasedStandards/2013-10-17_0Ontologies- for-Geospatial-
Standards/wip/Cox_OM-0WL_20131017b1.pdf. (Zitiert auf Seite 37)

DIN-Normenausschuss Technische Grundlagen (NATG). Grundlagen der Mef3-
technik - Teil 1: Grundbegriffe. Deutsches Institut fiir Normung e. V., Am DIN-
Platz, Burggrafenstrale 6, 10787 Berlin. DIN 1319-1 : 1995-01. (Zitiert auf
Seite 22)

R. Droms. Dynamic Host Configuration Protocol. Technischer Bericht, Network
Working Group, Request for Comments, 1997. URL https://tools.ietf.org/
html/rfc2131. RFC2131. (Zitiert auf Seite 55)

R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. Dissertation, University of California, 2000. URL http://www.1ics.
uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.
(Zitiert auf den Seiten 34 und 36)

R. T. Fielding. @REST APIs must be hypertext-driven. Privater Blog,
2008. URL http://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven. (Zitiert auf Seite 35)

W. E. Forum®. Industrial Internet of Things: Unleashing the Potential of
Connected Products and Services, 2015. URL http://www3.weforum.org/docs/
WEFUSA_IndustrialInternet_Report2015.pdf. (Zitiert auf Seite 9)

M. Fowler. Richardson Maturity Model. URL http://martinfowler.com/
articles/richardsonMaturityModel.html. (Zitiert auf Seite 36)

N. Guarino, D. Oberle, S. Staab. What Is an Ontology?, 2009. URL http://
iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf. (Zitiert
auf Seite 25)

T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisi-
tion, Band 5(Nummer 2):199-220, 1993. URL http://ksl-web.stanford.edu/
KSL_Abstracts/KSL-92-71.html. (Zitiert auf den Seiten 24 und 38)

http://www.cisco.com/c/dam/en/us/products/collateral/switches/small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/switches/small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/switches/small-business-smart-switches/300_Series_Switches_DS_FINAL_2757.pdf
http://ontolog.cim3.net/file/work/OntologyBasedStandards/2013-10-17_Ontologies-for-Geospatial-Standards/wip/Cox_OM-OWL_20131017b1.pdf
http://ontolog.cim3.net/file/work/OntologyBasedStandards/2013-10-17_Ontologies-for-Geospatial-Standards/wip/Cox_OM-OWL_20131017b1.pdf
http://ontolog.cim3.net/file/work/OntologyBasedStandards/2013-10-17_Ontologies-for-Geospatial-Standards/wip/Cox_OM-OWL_20131017b1.pdf
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2131
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf
http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf
http://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html

Literaturverzeichnis

[RFC4291]

[HWS'15]

[ITU12]

[Jan15]

[Jas12]

[KLW11]

[Lac05]

[LS11]

[Men02]

R. Hinden, S. Deering. IP Version 6 Addressing Architecture. RFC 4291, Network
Working Group, Request for Comments, 2006. URL https://tools.ietf.org/
html/rfc4291. (Zitiert auf Seite 59)

P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbiicher, F. Leymann.
SitRS - A Situation Recognition Service based on Modeling and Executing Situa-
tion Templates. In C. Nikolaou, F. Leymann, Herausgeber, Proceedings of the 9th
Symposium and Summer School On Service-Oriented Computing, S. 35-49. IBM,
2015. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-2015-34&engl=. (Zitiert auf den Seiten 16, 17
und 18)

ITU-T Study Group 13. Overview of the Internet of things, 2012. URL http:
//handle.itu.int/11.1002/1000/11559. Recommendation ITU-T Y.2060. (Zi-
tiert auf Seite 21)

P. Jansa. Eine OSLC- Plattform zur Unterstiitzung der Situationserken-
nung in Workflows. Diplomarbeit, Universitdt Stuttgart, Fakultdt Infor-
matik, Elektrotechnik und Informationstechnik, Germany, 2015. URL
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=DIP-3707&engl=0. (Zitiert auf Seite 16)

P. D.-L J. Jasperneite. Internet und Automation — Was hinter Begriffen wie Indus-
trie 4.0 steckt. Computer & AUTOMATION, 2012. URL http://www.computer-
automation.de/steuerungsebene/steuern-regeln/artikel/93559/. (Zi-
tiert auf den Seiten 13 und 22)

H. Kagermann, W.-D. Lukas, W. Wahlster. Industrie 4.0: Mit dem Internet
der Dinge auf dem Weg zur 4. industriellen Revolution. VDI Nachrichten
: Technik, Wirtschaft, Gesellschaft. - [N.F.] 65 (2011), H. 1-17, 13, 2011. URL
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-
40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution. Sammelband
65 (2011), H. 1-17. (Zitiert auf Seite 22)

L. W. Lacy. OWL: representing information using the Web Ontology Language.
Trafford Publishing, 2005. ISBN: 1-4120-3448-5. (Zitiert auf Seite 28)

E. A. Lee, S. A. Seshia. Introduction to Embedded Systems — A Cyber-Physical
Systems Approach. 1. Auflage, 2011. URL http://leeseshia.org/releases/
LeeSeshia DigitalV1l_08.pdf. ISBN 978-0-557-70857-4. (Zitiert auf Seite 22)

C. Menzel. Ontology Theory. In Ontologies and Semantic Interoperability, CEUR
Workshop Proceedings, Band 64. Citeseer, 2002. URL http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.72.7057&rep=repl&type=pdf.
(Zitiert auf Seite 25)

69

https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=
http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3707&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3707&engl=0
http://www.computer-automation.de/steuerungsebene/steuern-regeln/artikel/93559/
http://www.computer-automation.de/steuerungsebene/steuern-regeln/artikel/93559/
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution
http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf
http://leeseshia.org/releases/LeeSeshia_DigitalV1_08.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.7057&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.7057&rep=rep1&type=pdf

Literaturverzeichnis

[NMo1]

[NXP14]

[XACML]

[TOSCA]

[OWL2a]

[OWL2]

[OWL2b]

[OWL2c]

[PH09]

[RDF1.1]

[RDFSE]

70

N. F. Noy, D. L. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology. Technischer Bericht, Stanford University,
2001. URL http://www.ksl.stanford.edu/people/dlm/papers/ontology-
tutorial-noy-mcguinness.pdf. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical Re-
port SMI-2001-0880. (Zitiert auf Seite 64)

NXP Semiconductors. UM10204 - I?C-bus specification and user manual, 2014.
URL http://www.nxp.com/documents/user_manual/UM10204.pdf. Rev. 6.
(Zitiert auf Seite 55)

OASIS TC. eXtensible Access Control Markup Language (XACML) Version
3.0, 2010. URL http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-cs-01-en.pdf. (Zitiert auf Seite 61)

OASIS Standard. Topology and Orchestration Specification for Cloud Applicati-
ons Version 1.0, 2013. URL http://docs.oasis-open.org/tosca/TOSCA/v1.
0/0s/TOSCA-v1.0-o0s.pdf. (Zitiert auf Seite 40)

OWL Working Group. OWL 2 Web Ontology Language — Document Overview
(Second Edition). W3C Recommendation, 2012. URL http://www.w3.0rg/TR/
owl2-overview/. (Zitiert auf Seite 32)

OWL Working Group. OWL 2 Web Ontology Language — Primer (Second
Edition). W3C Recommendation, 2012. URL http://www.w3.0rg/TR/owl2-
primer/. (Zitiert auf Seite 31)

OWL Working Group. OWL 2 Web Ontology Language — Profiles (Second
Edition). W3C Recommendation, 2012. URL http://www.w3.0rg/TR/owl2-
profiles/. (Zitiert auf Seite 32)

OWL Working Group. OWL 2 Web Ontology Language — Quick Reference Guide
(Second Edition). W3C Recommendation, 2012. URL http://www.w3.0rg/TR/
owl2-quick-reference/. (Zitiert auf Seite 32)

D. L. Phuoc, M. Hauswirth. Linked open data in sensor data mashups. Proceedings
of the 2nd International Workshop on Semantic Sensor Networks (SSN09), in con-
junction with ISWC 2009, 522, 2009. URL http://hdl.handle.net/10379/1113.
CEUR. (Zitiert auf Seite 39)

RDF Working Group. RDF 1.1 Concepts and Abstract Syntax. W3C Recommen-
dation, 2014. URL http://www.w3.0rg/TR/rdf1ll-concepts/. (Zitiert auf den
Seiten 26 und 27)

RDF Working Group. RDF 1.1 Semantics. W3C Recommendation, 2014. URL
http://www.w3.0rg/TR/rdfll-mt/. (Zitiert auf Seite 27)

http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-quick-reference/
http://www.w3.org/TR/owl2-quick-reference/
http://hdl.handle.net/10379/1113
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-mt/

Literaturverzeichnis

[Turtle]

[RDFX]

[RDFS]

[RKTO5]

[RRO7]

[SBF98]

[Sen14]

[SPA13a]

[SPA13b]

[OWL]

[Wei91]

[WSEM]

RDF Working Group. RDF 1.1 Turtle. W3C Recommendation, 2014. URL
http://www.w3.0rg/TR/turtle/. (Zitiert auf Seite 32)

RDF Working Group. RDF 1.1 XML Syntax. W3C Recommendation, 2014. URL
http://www.w3.0rg/TR/rdf-syntax-grammar/. (Zitiert auf Seite 27)

RDF Working Group. RDF Schema 1.1. W3C Recommendation, 2014. URL
http://www.w3.0rg/TR/rdf-schema/. (Zitiert auf Seite 28)

D. J. Russomanno, C. R. Kothari, O. A. Thomas. Building a Sensor Ontology: A
Practical Approach Leveraging ISO and OGC Models. In The 2005 International
Conference on Artificial Intelligence, S. 637-643. 2005. URL https://wwwnew.
memphis.edu/eece/cas/docs/ica3194.pdf. Las Vegas, NV. (Zitiert auf den
Seiten 38 und 39)

L. Richardson, S. Ruby. RESTful Web Services, Band 1. O’Reilly Media, 2007. ISBN
978-0-596-52926-0. (Zitiert auf Seite 36)

R. Studer, V. R. Benjamins, D. Fensel. Knowledge Engineering: Principles and
Methods. Data & Knowledge Engineering, 25(1-2):161-197, 1998. d0i:10.1016/
S0169-023X(97)00056-6. URL http://dx.doi.org/10.1016/50169-023X(97)
00056- 6. (Zitiert auf Seite 24)

OGC® SensorML: Model and XML Encoding Standard, 2014. URL https:
//portal.opengeospatial.org/files/?artifact_id=55939. OGC 12-000.
(Zitiert auf den Seiten 37 und 38)

SPARQL Working Group. SPARQL 1.1 Query Language. W3C Recommendation,
2013. URL http://www.w3.0rg/TR/sparqlll-query/. (Zitiert auf Seite 34)

SPARQL Working Group. SPARQL 1.1 Update. W3C Recommendation, 2013.
URL http://www.w3.0rg/TR/sparqlll-update/. (Zitiert auf Seite 34)

Web Ontology Working Group . OWL Web Ontology Language — Overview.
W3C Recommendation, 2004. URL http://www.w3.0rg/TR/owl-features/.
(Zitiert auf Seite 30)

M. Weiser. The computer for the 21st century. Scientific American, 265(3):94-104,
1991. URL https://www.lri.fr/~mbl/Stanford/CS477/papers/Weiser-
SciAm.pdf. Reprint Pervasive Computing 2002. (Zitiert auf Seite 21)

Wikipedia. Semantic Web Stack — Wikipedia, The Free Encyclopedia,
2015. URL https://en.wikipedia.org/w/index.php?title=Semantic_Web_
Stack&o1did=681457479. [Online; accessed 28-October-2015]. (Zitiert auf Sei-
te 30)

71

http://www.w3.org/TR/turtle/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
https://wwwnew.memphis.edu/eece/cas/docs/ica3194.pdf
https://wwwnew.memphis.edu/eece/cas/docs/ica3194.pdf
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
https://portal.opengeospatial.org/files/?artifact_id=55939
https://portal.opengeospatial.org/files/?artifact_id=55939
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/owl-features/
https://www.lri.fr/~mbl/Stanford/CS477/papers/Weiser-SciAm.pdf
https://www.lri.fr/~mbl/Stanford/CS477/papers/Weiser-SciAm.pdf
https://en.wikipedia.org/w/index.php?title=Semantic_Web_Stack&oldid=681457479
https://en.wikipedia.org/w/index.php?title=Semantic_Web_Stack&oldid=681457479

Literaturverzeichnis

[WSBL15] M. Wieland, H. Schwarz, U. Breitenbiicher, F. Leymann. Towards Situation-Aware

[Yilo6]

[ZHKL09]

Adaptive Workflows. In Proceedings of the 13th Annual IEEE Intl. Conference on
Pervasive Computing and Communications Workshops: 11th Workshop on Con-
text and Activity Modeling and Recognition, S. 32-37. IEEE, St. Louis, Missou-
ri, USA, 2015. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=INPROC-2015-24&engl=1. (Zitiert auf den Sei-
ten 13 und 14)

B. Yildiz. Ontology Evolution and Versioning - The state of the art. Vienna
University of Technology, Institute of Software Technology & Interactive Systems
(ISIS), 2006. URL http://publik.tuwien.ac.at/files/pub-inf_4603.pdf.
(Zitiert auf Seite 24)

O. Zweigle, K. Haussermann, U.-P. Kappeler, P. Levi. Supervised learning al-
gorithm for automatic adaption of situation templates using uncertain data.
In Proceedings of the 2nd International Conference on Interaction Sciences: Infor-
mation Technology, Culture and Human, S. 197-200. ACM, New York, NY, USA,
2009. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-2009-137&engl=0. (Zitiert auf Seite 16)

Alle URLs wurden zuletzt am 01. November 2015 geprift.

72

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-24&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-24&engl=1
http://publik.tuwien.ac.at/files/pub-inf_4603.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-137&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-137&engl=0

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf} aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	Kurzfassung
	Inhaltsverzeichnis
	1 Einleitung
	2 Hintergrund und Motivation
	2.1 SitOPT
	2.2 Situationserkennung – SitRS
	2.3 Sensorintegration – SeInt

	3 Grundlagen
	3.1 Internet der Dinge
	3.2 Industrie 4.0
	3.3 Sensoren
	3.4 Ontologie
	3.4.1 Ontologie in der Informatik
	3.4.2 Resource Description Framework und RDF Schema
	3.4.3 Web Ontology Language – OWL
	3.4.4 Abfragesprache SPARQL

	3.5 Representational State Transfer – REST

	4 Verwandte Arbeiten
	4.1 SWE und SensorML
	4.2 OntoSensor – ontologische Übersetzung von SensorML
	4.3 Sensoren und deren Datenströme als verknüpfte und frei verfügbare Daten
	4.4 OpenTOSCA

	5 Konzept
	5.1 Gesamtstruktur
	5.2 Zentraler Service – ZS
	5.3 Ontologie als Wissensbasis
	5.4 Klient
	5.5 Sensordatenanbindung über Adapter
	5.6 Optimierung
	5.7 Autonome Sensorintegration
	5.7.1 Eintrittsankündigung
	5.7.2 Eintrittsaufforderung
	5.7.3 Weitere Probleme einer autonomen Sensorintegration

	5.8 Sicherheit

	6 Implementierung
	6.1 Technologieentscheidung für die Software
	6.2 Ontologie mit Protégé
	6.3 Sensorintegration – SeInt
	6.3.1 Ontologie-Schnittstelle
	6.3.2 REST-basierte Schnittstelle nach außen
	6.3.3 Klient für SeInt
	6.3.4 Adapter auf einem Raspberry Pi

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

