Institut fiir Parallele und Verteilte Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr.3718

Entwicklung eines
Situationsmodells als Schnittstelle
zwischen Situationserkennung
und Workflows

Mathias Mormul

Studiengang: Informatik

Prufer/in: Prof. Dr. ing. habil. Bernhard Mitschang
Betreuer/in: Dr. rer. nat. Matthias Wieland

Beginn am: 04. Marz 2015

Beendet am: 03. September 2015

CR-Nummer: D.2.2,D.2.11,D.4.4,H2.1,H.2.4

Kurzfassung

Neue Paradigmen wie das Internet of Things und Industrie 4.0 erwecken das Interesse vieler Unterneh-
men und ermoglichen das Erstellen von Smart Factories, Smart Homes und vielen weiteren autonom
agierenden Umgebungen. Grundlage hierfiir sind Sensoren, die Umweltdaten der sich dynamisch
dndernden Umgebungen ermitteln. Die gro3e Anzahl von Sensorwerten und deren Verarbeitung
stellen die IT-Welt vor neue Herausforderungen. Zusétzlich werden auf Anwendungsseite Mechanis-
men bendtigt, die autonom und situationsbezogen agieren, um sich an die Umgebung anzupassen.
Es existiert bereits eine Reihe von Anwendungen, die auf Situationen reagieren, wobei die Sensoren
allerdings fest in die Anwendung integriert sind und sich deshalb nur fiir spezielle Anwendungsfille
eignen. In dieser Arbeit wird das Forschungsprojekt SitOPT vorgestellt und entwickelt, dessen Ziel
es ist, ein General-Purpose-System fiir eine effiziente Situationserkennung als Voraussetzung fiir
die Verwendung von adaptiven situationsbezogenen Workflows zu ermdglichen. Die vorgestellten
Methoden und Konzepte sollen ein flexibles und leicht erweiterbares System gewéhrleisten und durch
die Entkopplung der Workflowdomane von der Situationserkennung auf beiden Seiten zur einfacheren
und voneinander unabhéngigen Entwicklung beitragen.

Inhaltsverzeichnis

1. Einleitung

1.1. Problembeschreibung
1.2. Einfihrendes Beispiel L
1.3. Anforderungen an diese Arbeit & SitOPT
1.4. Gliederung dieser Arbeit
2. Grundlagen und verwandte Arbeiten
2.1. Situationsbezogene Workflows L
2.2. Kontext - Grundlagen und Definition L.
2.3. Systeme zur Verwaltung von Kontext
2.4. Situation - Grundlagen und Definition Lo L.
2.5. Situationstemplates - Grundlagen und Definition
2.6. Systeme zur Situationserkennung Lo Lo
3. Stand der Technik
3.1, NOSQL .« o
3.2. Cloud Computing
3.3. Complex Event Processing (CEP),
4. Konzept und Architektur von SitOPT
4.1. Situationserkennungssystem oL o
4.2. Transformation Mapper L
4.3. Situationsverwaltung
4.4. SitvationHandler L
4.5. Situation Dashboard
4.6. Funktionsweise
47. Datenmodell
5. Implementierung des Prototyps
51. Datenbank
5.2. Situationsverwaltung
5.3. Transformation Mapper L L
5.4. Situationserkennung
5.5. Situation Dashboard
5.6 SetUp

6. Evaluation
6.1. Testumgebung

10
11
11
13

15
15
15
17
18
19
21

23
23
24
26

29
30
31
32
34
34
35
37

41
41
43
49
49
51
53

57
57

6.2. Erfullung der Anforderungen
6.3. Ergebnisse

Zusammenfassung und Ausblick

7.1. Zusammenfassung dieser Arbeit L L o

7.2. Skalierung von SitOPT . . .

7.3. Erstellung von Situationstemplates L L L L L
7.4. Verwendung weiterer Situationserkennungssysteme

A. Anhang
A.1. Listenressource situations . .

A.2. Listenressource situationtemplates Lo oo

A3. Listenressource things . . .
A.4. Listenressource sensors . . .
A.5. Listenressource sensorvalues

Literaturverzeichnis

61
61
62
64
64

67
67
68
69
69
70

71

Abbildungsverzeichnis

1.1.

2.1.

3.1.

4.1.
4.2.
4.3.
4.4.

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.

Al
A2
A3.
A4
A5,

Industrie 4.0 - Autonom organisiertes System [GSL14, p.526] 10
Situationstemplate 20
CEP-Zyklus [RB15,pp. 6] . . .« o o o i 26
Gesamtarchitektur von SHOPT Lo 29
Message Queue als Situationsbereitstellung - vereinfachte Darstellung 33
Ablauf fiir das Erkennen und Erhalten von Situationen 36
ER-Diagramm der Ressourcen 38
Swagger Spezifikation - GET /situations/byID (1) 44
Swagger Spezifikation - GET /situations/byID(2) 45
API Kommunikation. 47
Transformation Mapper L 49
Node-RED Flow 50
Situation Dashboard - Things 52
CouchDB Replicator Tool 53
Funktionen der Listenressource situations 67
Funktionen der Listenressource situationtemplates 68
Funktionen der Listenressource things. 69
Funktionen der Listenressource sensors 69
Funktionen der Listenressource sensorvalues 70

Tabellenverzeichnis

1.1.

2.1.
2.2.

6.1.

Anforderungen an SitOPT 12
Kontext als Situation L 19
Mehrere Situationen in einem Situationstemplate 21
Verschiedene Laufzeiten von SitOPT 59

Verzeichnis der Listings

5.1. CouchDB Views mit 2 Attributen,
5.2. Aufrufin Nodejsmit cradle
5.3. Swagger Spezifikation
5.4. Situationsobjekt
5.5. Situationstemplate in XMLo

7.1. Situationstemplatein Esper L
7.2. CEPKonfiguration.
7.3. Situationserkennung

A.1. CouchDB View _design/situations/existing
A.2. CouchDB View _design/situations/all
A.3. CouchDB View _design/situations/byName

A.4. CouchDB View _design/situations/byThingAndTemplate

A.5. CouchDB View _design/situations/monitoring
A.6. CouchDB View _design/situationtemplates/all
A.7. CouchDB View _design/situationtemplates/byName
A.8. CouchDB View _design/situationtemplates/idAndRev
A9. CouchDB View _design/things/all
A.10. CouchDB View _design/things/byName
A.11. CouchDB View _design/sensors/all
A.12. CouchDB View _design/sensors/byName
A.13. CouchDB View _design/sensorvalues/all
A.14. CouchDB View _design/sensorvalues/existing

1. Einleitung

Internet of Things ist ein neues Paradigma aus der Informationsbranche. Es beschreibt die fortschrei-
tende Vernetzung von Dingen (Things) iiber das Internet miteinander. Hierbei werden physische
Objekte mit ihren jeweils virtuellen Repréasentationen verkniipft. Um eine virtuelle Représentation zu
ermoglichen, wird eine grofie Anzahl von Informationen tiber das Objekt benétigt. Einige Information
wie Bezeichnung und Grofe sind bereits bei der Produktion bekannt und verandern sich iiber die
Lebenszeit des Objekts nicht. Andere Informationen, wie z.B. die Position eines Autos hingegen
andern sich haufig und bediirfen einer standigen Uberwachung des Objekts. Solch eine Uberwachung
kann mit verschiedenartigen Sensoren durchgefithrt werden. Die Verbreitung von Sensoren in allen
Bereichen des Lebens ist am Beispiel der RFID (radio-frequency identification)-Technik zu sehen, die
verwendet wird, um das Identifizieren und Lokalisieren mittels Radiowellen durchzufithren. Bereits
im Jahr 2006 prognostizierte [Hen06] das Marktwachstum fiir RFID-Systeme zwischen 2004 und 2010
global von EUR 1,5 Mrd. auf 22 Mrd. Die Informationsliicke, die sich zwischen physischen Objekten
und deren virtueller Reprasentation befindet, soll auf diese Weise geschlossen werden und daraus ein
cyber-physisches Objekt entstehen. Der Zusammenschluss von cyber-physischen Objekte fithrt zu
einem cyber-physischen System (CPS). Mittels einer Machine-to-Machine Kommunikation kénnen In-
formationen untereinander ausgetauscht werden und auf Basis dieser Informationen Entscheidungen
getroffen oder Operationen ausgefiithrt werden. Beispiele fiir CPS sind unter anderem ein intelligentes
Stromnetz und Industrie 4.0.

Industrie 4.0 beschreibt das Zukunftsprojekt der deutschen Bundesregierung und der Industrie. Das
Ziel dieses Projekts ist die Erstellung einer intelligenten Fabrik, die sich autonom an ihre dynamischen
Umgebungen anpassen und Anderungen im Produktionsablauf veranlassen kann. Die fortschrei-
tende Informatisierung im Fertigungsbereich erméglicht diesen Schritt, indem es fiir ein gréf3eres
Vorkommen an Sensoren (z.B. RFID-Chips) sorgt. Zusatzlich werden Aktoren benétigt, die auf Basis
der Sensorwerte Entscheidungen treffen konnen. Eine mogliche Wahl fiir Aktoren ist der Einsatz von
Workflows. Workflows sind heutzutage ein Grundbaustein in der Orchestrierung von Arbeitsabldufen
im Geschéftsprozessbereich und werden zum Schliisselelement fiir den Erfolg einer Firma gez&hlt
[MGP*11]. Die Koordinierung von Geschiftsprozessen fithrte zu deren Modularisierung, was wieder-
um dazu fithrte, dass einzelne Prozesse leichter ausgetauscht werden konnten, um Optimierungen des
Gesamtsystems vorzunehmen. Die logische Konsequenz ist der Einsatz von Workflows in anderen
Bereichen wie der Fertigungsbranche, um auch dort von deren Vorteile zu profitieren. Dadurch
entstehen allerdings neue Herausforderungen, die es zu bewiltigen gilt.

1. Einleitung

1.1. Problembeschreibung

Sich stindig dndernde Anforderungen und Umgebungszustinde erschweren den geplanten Ablauf
eines Workflows. Zusatzlich gestaltet sich die Modellierung eines Workflows, der alle mdglichen
Umgebungszustinde beachtet und mogliche Alternativabldufe beinhaltet, als eine Aufgabe, deren
Komplexitat mit der immer weiter steigenden Anzahl von verfiigbaren Sensorwerten weiterhin steigt
[WSBL15]. In Abbildung 1.1 ist der Ablauf zu sehen, um ein auf Informationen basiertes, autonom
organisiertes System zu erstellen.

Anpassung der Produktionsstrategie

| Erfassung aktueller und) Aggregation und Aufbereitung) f Interpretation der) [‘
o 5 a Intervention
umfassender Informationen der Informationen Informationen
.4

Abbildung 1.1.: Industrie 4.0 - Autonom organisiertes System [GSL14, p. 526]

Es ware vorteilhaft, wenn Workflows nur den letzten Schritt Intervention durchfuhren mussten. Die
Auslagerung der ersten drei Aufgaben fiithrt zu einer Vereinfachung der Modellierung von Workflows.
Das in dieser Arbeit vorgestellte Projekt SitOPT erméoglicht diese Auslagerung, indem es die Punkte
Erfassung aktueller und umfassender Informationen, Aggregation und Aufbereitung der Informationen
sowie Interpretation der Informationen in einem System vereint. Dem Interpretationsschritt folgt die
Erstellung einer Situation, welche alle benétigten Informationen enthalt. Diese Situationen kénnen
von Workflows verwendet werden, um entsprechende Anderungen im Ablauf durchzufiihren. Die
Ziele von SitOPT sind [WSBL15]:

1. Verringerung der Komplexitat bei der Erstellung von Workflow-Modellen
2. Laufzeitadaption von Workflows an von SitOPT erkannten Situationen
3. Beliebiges Austauschen, Andern und Optimieren von Situationserkennungssystemen

4. Verwendung von Situationen durch mehrere Workflows

Im Rahmen dieser Arbeit und des Projekts SitOPT wird eine Schnittstelle zwischen der Situations-
erkennung und Workflows erzeugt. Es muss ermittelt werden, welche Information ein Workflow
benétigt, um ein Situationsmodell zu erstellen. Des Weiteren wird erforscht, wie Situationen mit Hilfe
von Situationstemplates modelliert werden kénnen.

10

1.2. Einfiihrendes Beispiel

1.2. Einfihrendes Beispiel

Als einfihrendes Beispiel wird die Uberwachung von Computern gewahlt. Ist ein Computer tiberlastet
oder nicht verfiigbar, soll der Benutzer dariiber informiert werden, um Schritte zur Behebung des
Problems einleiten zu kénnen. Je mehr Informationen der Benutzer iiber den jeweiligen Computer
und dessen Zustand erhélt, desto durchdachter konnen dessen Entscheidungen sein. Ist beispiels-
weise bekannt, dass jeden Tag zu einem bestimmten Zeitpunkt die Auslastung eines Computers
einen Hochpunkt erreicht, konnen die jeweiligen Prozesse identifiziert werden, die zu dieser hohen
Auslastung fiihren. Ist der Standort aller Computer bekannt, kann das Personal eines ausgefallenen
zum am nichsten stehenden Computer gefithrt werden, vorausgesetzt der Computer entspricht den
Anforderungen, die fur die aktuelle Aufgabe des Personals benétigt werden. Um diesen Vorgang
mithilfe eines Workflows zu automatisieren, sind folgende Bedingungen zu erfiillen.

Wie an dem vorgestellten Beispiel zu erkennen ist, wird eine Grofzahl verschiedenartiger Sensoren
benotigt. Die Auslastung eines Computers wird tiber die prozentuale Auslastung der CPU sowie
der Grofle des verfiigbaren Arbeitsspeichers definiert. Zusétzlich wird iiberwacht, ob der Computer
aktiv ist, indem periodisch ein Ping gesendet wird. Der Standort eines Computers und des Personals
wird mit einem GPS-Sensor ermittelt werden. Die derzeitige Aufgabe des Personals sowie deren
Anforderung an einen Computer muss ebenfalls bekannt sein . Gleichzeitig muss Hintergrundwissen
vorhanden sein, z.B. ob die Anforderungen des Computers der Aufgabe des Personals geniigen. Die
Anforderungen einer Aufgabe miissen spezifiziert werden und dem Benutzer zugénglich sein, um sie
mit der Systemspezifikation des Computers zu vergleichen. Stimmen die Spezifikationen nicht iiberein,
miissen Alternativplidne vorhanden sein, die dem Personal die Bearbeitung ihrer Aufgabe ermdglichen.
Um dem Personal Anweisungen geben zu kdnnen, miissen die Kommunikationsmoglichkeiten sowie
Kommunikationsprotokolle bekannt sein. All diese Informationen miissen dem Workflow mitgeteilt
werden, wofiir ein Netzwerk, z.B. das Internet, benétigt wird.

Dieses kleine Beispiel zeigt, wie komplex die Uberwachung von Computern mit nur einem An-
wendungsfall ist. Je groler die Anzahl iberwachter Maschinen, desto grofier die Anzahl méglicher
Situationen und benétigter Alternativplane. Heute bereits vorhandene Anwendungsfille sind bei-
spielsweise ortsbezogene Werbungen auf mobilen Endgeriten, welche auf den Standort des Benutzers
zugreifen. Die meisten Anwendungsfille beschranken sich auf eine iiberschaubare Anzahl von Si-
tuationen. Die Automatisierung einer gesamten Fabrik mit Hunderten Maschinen und Tausenden
von Sensorwerten stellt dagegen ein hoch komplexes System mit weitaus héheren Anforderungen
dar. Um diesen Herausforderungen entgegenzutreten, miissen bestimmte Anforderungen von SitOPT
erfiillt werden.

1.3. Anforderungen an diese Arbeit & SitOPT

Das Ziel ist es, ein System zu entwickeln, dass fiir verschiedene Anwendungsfille verwendet wer-
den kann und situationsbezogenen Workflows Situationsdaten effizient und anforderungsgerecht
bereitstellt. Hierfur soll ein Situationsmodell erstellt werden, dass als Schnittstelle zwischen einer
Situationserkennung und situationsbezogenen Workflows dient. Anhand dieses Situationsmodells
soll ermittelt werden, wie sich Situationen mithilfe sogenannter Situationstemplates modellieren

11

1. Einleitung

Anforderungen Beschreibung

A1: Schnittstelle Die Hauptaufgabe dieser Arbeit besteht in der Bereitstellung
einer Schnittstelle, um die Interaktion zwischen einem Situati-
onserkennungssystem und situationsbezogenen Workflows zu
ermoglichen. Auf diese Weise werden die verschiedenen Domé-
nen entkoppelt, was die Modellierung von Workflows vereinfacht
und die Verwendung und Optimierung verschiedener Situations-
erkennungssysteme ermoglicht. Zusétzlich muss die Schnittstelle
alle benoétigten Funktionen bereitstellen, um die Interaktion aller
beteiligten Module zu erméglichen.

A2: Flexibilitat Der prototypische Charakter der Implementierung erfordert, dass
darauf aufbauende Arbeiten moglichst einfach zu gestalten sind.
Das Austauschen oder Hinzufiigen von Modulen soll einfach
sein, weshalb in allen Bereichen der Implementierung auf eine
modulare Bauweise geachtet werden soll.

A3: Skalierbarkeit Abhangig von der Anzahl der iberwachten Objekte sowie der
Anzahl der zugrundeliegenden Sensorwerte kénnen bei der Uber-
wachung grofie Datenmengen entstehen. Gleichzeitig stellt die
Uberwachung selbst einen ressourcenintensiven Prozess dar. Die
zugrundeliegenden Systeme zur Datenverwaltung und Situations-
erkennung missen einfach und effizient skalierbar sein. Sowohl
die verwendeten Technologien als auch die implementierungs-
spezifischen Methoden sollen einfach Skalierbarkeit erméglichen.

A4: Benutzerfreundlichkeit Die Verwendung von SitOPT soll moglichst einfach gestaltet wer-
den, dass eine einfache und intuitive Schnittstellenbenutzung
ermoglicht wird. Dariiber hinaus soll eine detaillierte Dokumen-
tation der Schnittstellenfunktionen erfolgen, um die Benutzung
zusétzlich zu vereinfachen.

A5: Verschiedenartige Sensor- | Wie im einfithrenden Beispiel zu sehen ist, miissen verschiedene
daten Sensordaten mit SitOPT integriert werden. Diese unterscheiden
sich in verschiedene Datentypen, Qualitidtswerten, usw. Um ein
anwendungsunabhéngiges System zu erstellen, muss SitOPT mit
allen moglichen Sensordaten interagieren konnen.

Tabelle 1.1.: Anforderungen an SitOPT

lassen. Die Verwaltung der erkannten Situationen sowie der Situationstemplates soll mit Hilfe ei-
nes Repository stattfinden, um deren Wiederverwendung zu erméglichen. Die funktionalen sowie
nichtfunktionalen Anforderungen an SitOPT werden in Tabelle 1.1 dargestellt.

12

1.4. Gliederung dieser Arbeit

1.4. Gliederung dieser Arbeit

Im folgenden Kapitel 2 werden die Grundlagen und Begriffsdefinitionen fiir diese Arbeit vorgestellt.
Des Weiteren werden verwandte Arbeiten vorgestellt, auf denen manche Bereiche von SitOPT auf-
bauen. Kapitel 3 beschreibt die in SitOPT verwendeten Technologien. In Kapitel 4 wird das Konzept
und die Architektur von SitOPT vorgestellt. Zusitzlich werden alternative Methoden aufgezeigt, die
im Laufe der prototypischen Implementierung zur Wahl standen. In Kapitel 5 werden Details der
Implementierung gezeigt, um die in Kapitel 5 vorgestellten Konzepte umzusetzen. Kapitel 6 zeigt
die Evaluation des implementierten Prototyps. Die Anforderungen aus Tabelle 1.1 werden hier im
Hinblick auf ihre Erfiillung evaluiert. Kapitel 7 enthélt offene Punkte, die sich im weiteren Projektver-
lauf fiir die Implementierung anbieten. Kapitel 7 weist dariiber hinaus eine Zusammenfassung dieser
Arbeit auf.

13

2. Grundlagen und verwandte Arbeiten

2.1. Situationsbezogene Workflows

Die Workflow Management Coalition [wmc] definiert den Begriff Workflow als computergesteuerte
Unterstiitzung oder Automatisierung von Geschdftsprozessen, ganz oder teilweise. Geschéftsprozesse
und deren Ausfithrung werden modelliert und bieten Unternehmen eine bessere Ubersicht tiber
den Prozessablauf. Diese Transparenz erleichtert es, Optimierungen im Prozessablauf zu erkennen.
Zusétzlich fiithrt die Modellierung der einzelnen Prozesse zur Modularisierung des Gesamtsystems.
Einzelne Prozesse konnen ausgetauscht werden, ohne dass Verdnderungen an anderen Prozessen
notwendig sind (unter der Voraussetzung, dass die Schnittstellen nicht verandert werden). Im Fer-
tigungsbereich ist die Verwendung von Workflows hingegen selten verbreitet. Stattdessen werden
PPS-Systeme (Produktionsplanungs- und Steuerungssysteme) verwendet, um kurze Durchlaufzeiten,
Termineinhaltung, optimale Bestandshohen und die wirtschaftliche Nutzung der Betriebsmittel zu
ermoglichen [WKNLO07]. Die Durchsetzung von Workflows im Fertigungsbereich wiirde zu den selben
Vorteilen fithren wie bei Geschiftsprozessen. Fertigungsprozesse sind stirker auf physische Ereignisse
(Maschine tiberhitzt, Materialknappheit, usw.) fokussiert als Geschiftsprozesse. Die Umsetzung von
Industrie 4.0 fihrt zusétzlich zu einem stetigen Ausbau von Sensortechnologien im Fertigungsbereich,
wodurch Workflows mehr und mehr Informationen tiber den derzeitigen Status von Maschinen
mitgeteilt werden kénnen. Diese Informationen - auch Kontext genannt - fithren dazu, dass aus
statischen Workflows kontextbezogene Workflows entstehen. Kontextbezogenene Workflows verar-
beiten den erhaltenen Kontext, um hoherwertigen Kontext abzuleiten. Mit immer grofier steigender
Anzahl von Kontextdaten entsteht dadurch eine hohe Komplexitat fiir Workflowdesigner. Verschie-
dene Kontextdaten miissen erfasst werden konnen und darauf folgende Ablaufe integriert werden.
Situationsbezogene Workflows dagegen lagern die Verarbeitung der Kontextdaten aus. Um die Model-
lierung zu vereinfachen, wird zuerst ein Standard-Workflow modelliert, der bei Nichtauftreten von
Situationen ausgefiihrt wird. Um eine Adaption an erkannte Situationen zu erméglichen, werden alle
moglichen Ausnahmen und die dazugehorigen alternativen Ablaufe des Workflows definiert. Diese
sogenannten Workflow-Fragmente werden gestartet, sobald die entsprechende Situation erkannt
wird. Zur Vereinfachung wird im Folgenden der Begriff Worfklow fiir situationsbezogene adaptive
Workflows verwendet [WSBL15].

2.2. Kontext - Grundlagen und Definition

Es existieren mehrere Definitionen fiir den Begriff Kontext. In [Zwel1] wird strikt zwischen dem
Begrift Sensordaten, welcher fiir reine Messdaten ohne logische Zusammenhénge steht, und Kontext,
welcher die Relationen zwischen den gegebenen Sensordaten darstellt, unterschieden. Nach [ADB99]

15

2. Grundlagen und verwandte Arbeiten

dagegen ist Kontext jegliche Information, welche die Situation einer Entitdt charakterisiert. Eine Entitdt ist
eine Person, ein Ort oder Objekt, welche relevant fiir die Interaktion zwischen Benutzer und Anwendung,
einschlief3lich des Benutzers und der Anwendung selbst . Im Rahmen dieser Arbeit ist die zweite
allgemeinere Definition ausreichend.

Um zu verstehen, welche Schwierigkeiten im Umgang mit Kontext zu meistern sind, miissen zuerst
die Eigenschaften analysiert werden. Eine sehr allgemeine Gliederung teilt Kontext in statischen und
dynamischen Kontext auf [GBH105].

« Statischer Kontext bleibt immer gleich (je nach Definition auch nur tiber einen sehr langen
Zeitraum). Als Beispiel gelten personenbezogene Daten wie Geburtsdatum oder Geburtsort.
Als statischer Kontext, welcher sich, falls iiberhaupt, nur sehr selten &dndert, kann der Name
einer Person betrachtet werden. Der Verlust dieser Daten ist sehr schwerwiegend.

« Dynamischer Kontext dagegen édndert sich haufig. Hierbei lassen sich zusétzlich weniger
dynamischer Kontext (Beruf einer Person) sowie hochdynamischer Kontext (GPS-Position einer
Person) unterscheiden. Der Verlust dieser Daten ist bei der nachsten Aktualisierung bereits
unwichtig.

Um die Qualitét des bereitgestellten Kontexts wiederzugeben, miissen weitere Merkmale betrachtet
werden. Die obige Grobgliederung wird durch drei Untergruppen ergianzt.

» Sensordaten stellen dynamischen Kontext bereit. Je nach Bereich und verwendetem Sensor
ist eine gewisse Fehlermarge zu erwarten. Auch Ubertragungsfehler konnen zu verfalschten Er-
gebnissen fiithren. Mit einer immer gréf3er werdenden Anzahl von Sensoren - ob physikalischen
oder virtuellen - ist dies die Grundlage fiir die autonome Bereitstellung von Kontext.

+ Abgeleiteter Kontext beschreibt die Verarbeitung von bereits vorhandenem Kontext (bei-
spielsweise Sensordaten mehrerer Sensoren), um neue Informationen daraus zu gewinnen
(Durchschnittswert aller Sensoren). Zu beachten ist, dass Fehler durch bestimmte Operationen
(Abstand von zwei Smartphones) aufgrund einzelner fehlerhafter Sensordaten (GPS-Position ei-
nes Smartphones) vergréfBert werden konnen. Geben in diesem Szenario die einzelnen Sensoren
einen Fehler von einem Meter in entgegengesetzter Richtung, so entsteht durch die Operation
Abstand berechnen ein Fehler von zwei Metern.

« Vom Benutzer bereitgestellter Kontext ist sehr zuverlissig, allerdings wird dieser bei Ver-
anderungen selten aktualisiert. Ohnehin sollte diese Art von Kontext wenn mdoglich eine
Ausnahme bleiben. Kontextbezogene Anwendungen, welche ausschlieflich auf Sensordaten
beruhen, sind v6llig autonom.

Auch mit dieser Unterteilung sind keine genauen Angaben zur Qualitit von Kontext (QvK) gegeben.
Ergénzend miissen weitere Metadaten angegeben werden, um zuverlassige Aussagen iber den Kontext
treffen zu konnen. Da vom Benutzer bereitgestellter Kontext fehlerfrei sein sollte und abgeleiteter
Kontext nur Fehler weiterfithren kann, werden im Folgenden nur noch Sensordaten betrachtet.
Wichtige Metadaten sind [WKL " 09]

+ Genauigkeit beschreibt die exakte Fehlermarge, die aufgrund der physikalischen Gegebenhei-
ten eines Sensors gegeben sind (ist bei Produktion bekannt).

16

2.3. Systeme zur Verwaltung von Kontext

« Aktualitit steht fir den Zeitraum zwischen der Erfassung von Sensordaten und deren Verar-
beitung. Je hoher dieser Wert ist, desto geringer die QvK (Zeitstempel bei Erfassung wird mit
Zeitstempel bei Verarbeitung verglichen - synchrone Uhren erforderlich).

« Durchschnittliche Lebenszeit beschreibt die durchschnittliche Zeit, in welcher die Sens-
ordaten korrekt sind und ist speziell in Abhéngigkeit der Aktualitdt zu betrachten. Ist die
Lebenszeit hoher, ist ein hoherer Wert der Aktualitéit akzeptabel, ohne eine Verringerung der
QvK herbeizufithren.

« Korrektheit beschreibt die Wahrscheinlichkeit, dass Sensordaten korrekt sind. Fiir diesen
Wert miissen iiber einen gewissen Zeitraum diese speziellen Sensordaten beobachtet werden
und anschlieflend eine Evaluation durchgefiithrt werden, die angibt, wie oft die gelieferten
Sensordaten korrekte bzw. fehlerhafte Information lieferten.

« Zuverlassigkeit des Kontext-Provider charakterisiert den Provider im Hinblick auf die
Korrektheit seiner Kontextdaten. Je 6fter der Provider nicht korrekte Daten liefert, desto weiter
sinkt dessen Zuverlassigkeit und die QvK seiner Daten.

» Deduktionsgeschichte ist speziell im Hinblick auf abgeleiteten Kontext zu betrachten. Je
mehr Sensordaten oder andere abgeleitete Kontextdaten einem Kontext zugrunde liegen, desto
niedriger ist seine QvK.

Die Kombination all dieser Metadaten ermoglicht eine qualitative Aussage tiber die QvK. Diese lasst
sich nun beispielsweise als numerischer Wert zwischen 0 und 1 darstellen, wobei 1 fiir sehr hoch-
wertig und 0 fiir sehr unzuverldssig stehen konnte. Des Weiteren kénnen prozentuale oder absolute
Abweichungen vom Normwert angegeben werden. Mit einer Standardisierung der QvK ist die Erstel-
lung von Kontext-Providern moéglich, die als Kontextbasis fiir viele verschiedene kontextbezogene
Anwendungen dienen.

2.3. Systeme zur Verwaltung von Kontext

Das im Jahr 1999 gestartete Nexus-Projekt der Universitét Stuttgart hat zum Ziel, eine dem Internet
ghnliche Struktur namens World Wide Space zu erzeugen - eine globale Plattform von Kontextprovi-
dern, die Umgebungsmodelle fiir mobile kontextbezogene Anwendungen bereitstellt. Die Architektur
von Nexus ist in drei Ebenen unterteilt [LCG109]:

« Context Information Layer. Auf dieser Ebene wird Kontext von Datenbanken mehrerer
Anbieter bereitgestellt. Abhéngig davon, welche Art von Kontext bereitgestellt wird, soll eine
geeignete Datenbank verwendet werden. Zum Beispiel soll der Verlauf von sich bewegenden
Objekten in speziellen History Servern abgelegt sein. Um die Datenmenge auf den Servern zu
reduzieren, werden Kompressionsalgorithmen vorgeschlagen.

+ Federation Layer. Der Federation Layer beinhaltet von Nexus bereitgestellte Services. Diese
werden in Core Service (von Nexus benétigte Services) und Platform Services (optionale Services)
unterteilt. Der Platform Service Context Reasoning ermoglicht die Deduktion von hoherwertigem
Kontext aus low-level-Kontext mithilfe von Situationstemplates (siehe Kap. 2.5), welche im Core

17

2. Grundlagen und verwandte Arbeiten

Service Situation Repository gespeichert sind. Context Reasoning erfolgt mittels klassischer
Logik und Bayes’schen Netzen.

« Application & Middleware Layer. Die Anwendungsebene besteht aus kontextbezogenen
Anwendungen und Workflows sowie zusitzlicher Middleware. Middleware Services kénnen bei-
spielsweise verwendet werden, um Anwendungslogik auszulagern und somit deren wiederholte
Verwendung zu erméglichen.

In [WKL*09] wird das Augenmerk auf unsichere Sensordaten und deren Verwendung in kontextbe-
zogenen Workflows gelegt. Die Arbeit ist Teil des Nexus-Projekts und baut somit auf der vorgestellten
Architektur auf. Um die QvK fiir kontextbezogene Workflows zu beachten, miissen dem Kontext
auf dem Context Information Layer Metadaten iiber die verwendeten Sensoren hinzugefiigt werden.
Um stochastische Fehler zu verringern, werden Sensorwerte zu einem bestimmten Ereignis von
mehreren Sensoren gemessen und anschlieffend miteinander vereint. Zusatzlich werden Bewertun-
gen iiber die Sensoren und deren Qualitat abgegeben, die mithilfe der Verwendung der normalized
weighted arithmetic mean method [KBZ*08] und darauf aufbauendem Fuzzy Clustering dazu fiihren,
dass abweichende Sensorwerte herausgefiltert werden konnen. Kontextbezogene Workflows kénnen
anschlielend mit Context Quality Policies versehen werden. Bei jeder Anfrage fiir Kontextdaten
wird die Policy mitgegeben, um sicherzustellen, dass nur Kontextdaten verwendet werden, die den
Qualitatsanspriichen des Workflows geniigen.

2.4. Situation - Grundlagen und Definition

Am Beispiel einer beliebigen Maschine A in einer Fertigungsfabrik soll der Nutzen der Deduktion von
Kontext und einer daraus entstehenden Situation verdeutlicht werden. Maschine A produziert ein
Produkt, welches von Maschine B weiterverwendet wird. Bei Ausfall von Maschine A ist zugleich die
Produktion von Maschine B und méglichen weiter folgenden Maschinen eingeschrinkt. Ein Workflow
muss dieses Problem erkennen und alternative Prozesse starten beziehungsweise die nétigen Schrit-
te zur Wiederinstandsetzung von Maschine A durchfithren. Bezogen auf das Konzept Industrie 4.0
sollte jede Komponente, die zu einem Fehler der Maschine fithren kénnte, mit Sensoren ausgestattet
sein. Beispiele sind Temperatursensoren, die vor Uberhitzung warnen sollen, Spannungssensoren,
die bei Uberspannung eine Notfallabschaltung einleiten und viele weitere. Ein situationsbezogener
Workflow, der die gesamte Produktion tiberwacht, ist an diesen einzelnen Werten (z.B. der Werte
aller Temperatursensoren) nicht interessiert. Wichtig ist der allgemeine Zustand einer Maschine,
der sich beispielsweise in die Situationen funktionsfihig, kritisch und funktionsunfihig einteilen
lasst. Die Deduktion zu diesen Situationen ist oftmals maschinenspezifisch und obliegt nicht der
Workflow-Domaéne. Das Ziel ist es somit, einen situationsbezogenen Workflow direkt mit den beno-
tigten Situationen zu versorgen. Die zugrundeliegenden Kontextdaten sind jedoch nicht génzlich zu
vernachlissigen, da die Wiederherstellung der Funktionsfahigkeit einer Maschine davon abhéngt.

[HHL™"10] definiert eine Situation als die Charakterisierung eines spezifischen, wiederkehrenden Um-
stands oder einer Konstellation in der realen Welt, die 1) idealisiert beschrieben werden kénnte und 2)
als Evaluationsbasis fiir die Adaption und Reaktion von kontextbezogenen Anwendungen dient. Es gibt
dabei keine klare Definitionsgrenze zwischen Kontext und Situationen. Vielmehr stellt eine Situation

18

2.5. Situationstemplates - Grundlagen und Definition

Situation Benotigter Kontext

Fabrik 100% funktionsfahig Alle Maschinen funktionsfahig

Maschine funktionsfahig Werkzeug funktionsfihig, Material vorhanden, Maschine nicht
iiberhitzt

Werkzeug funktionsfahig Benutzungsdauer des Werkzeug nicht tiberschritten, Werkzeug
zeigt keine Méangel

Material vorhanden Maschine besitzt ausreichendes Material

Maschine nicht tiberhitzt Sensorwerte von Temperatursensoren unter kritischem Niveau

Tabelle 2.1.: Kontext als Situation

eine Abstraktion mehrerer Kontextdaten dar, wobei diese gleichzeitig auch Situationen sein konnen,
was in Tabelle 2.1 beispielhaft dargestellt ist. Die Eigenschaften einer Situation hiangen dabei stark
von dem zugrundeliegenden Kontext ab, welcher zur Deduktion verwendet wurde.

2.4.1. Situationsmodell & Situationsobjekt

Die im Beispiel genannten Situationen sind stark vereinfacht. Erhélt ein Workflow als Situation nur
den String kritisch, fehlen wichtiger Kontext, um darauf basierend agieren zu kénnen.

« Auf welche Maschine bezieht sich die Situation?
« Wann ist die Situation erkannt worden?
« Was bedeutet diese Situation?

« Wie wahrscheinlich ist es, dass bei der Erkennung der Situation kein Fehler aufgetreten ist?

Um diese und weitere Fragen zu beantworten, wird ein Situationsmodell gefordert, das alle vom
Workflow benétigten Informationen beinhaltet. Des Weiteren besteht die Notwendigkeit, diese In-
formationen an den Workflow iibergeben zu kénnen. Das Situationsmodell dient als standardisierte
Grundlage fiir die Erzeugung von Situationsobjekten. Diese Situationsobjekte konnen weitergegeben,
gespeichert und von einem Workflow verstanden werden.

2.5. Situationstemplates - Grundlagen und Definition

Das Aufstellen der Konditionen sowie Interpretationen von Kontext stellen ab einer gewissen Grofie
einen groflen Aufwand dar und erfordern doménenspezifisches Wissen der Sensoren. Um Konditionen
an die Sensorwerte stellen zu kénnen, muss bekannt sein, welcher Datentyp produziert wird (z.B
Strings oder Zahlen, weiter unterteilt in Floats oder Integers), in welchem Format die Sensorwerte
dargestellt werden (wird die Auslastung des Arbeitsspeichers prozentual angegeben oder die Anzahl
verfiigbarer Megabyte beziehungsweise Gigabyte dargestellt) und welche Qualitdtsmerkmale vor-
handen sind (z.B. um Toleranzabweichungen bestimmen zu kénnen). Workflowentwickler kénnen
und sollten von diesem Prozess abgekoppelt werden. Dies fithrt zu einer neuen Entwicklungsebene

19

2. Grundlagen und verwandte Arbeiten

- dem Erstellen von Situationstemplates. Workflowentwickler geben an, welche Situationen von
Interesse sind und welche Konditionen an die Sensorwerte gestellt werden. Die Details werden von
Situationstemplatedesignern iibernommen, die iber sensorspezifisches Wissen verfiigen.

o

" 1,4

Sensorebene Operationsebene Situationsebene

cond2,2

Abbildung 2.1.: Situationstemplate

Ein Situationstemplate stellt die Gesamtheit an benétigten Sensoren und den Konditionen, welche
an die von den Sensoren gelieferten Sensorwerten gestellt werden, dar. Des Weiteren werden alle
Operationen, dargestellt als logische Ausdriicke, die zur Deduktion des Kontexts benotigt werden,
definiert. Werden alle Konditionen erfiillt und alle Operationen erfolgreich ausgefiihrt, ist eine
Situation giiltig, andernfalls ungiiltig. In dieser Variante definiert ein Situationstemplate genau eine
Situation. Bildlich kann ein solches Situationstemplate wie in Abbildung 2.1 dargestellt werden. Die
Sensorebene beinhaltet alle Sensoren und stellt den low-level-Kontext bereit. In der Operationsebene
werden alle Konditionen tiberpriift (das Uberpriifen einer Kondition stellt auch eine Operation dar)
sowie Operationen zur Deduktion des low-level-Kontext durchgefiihrt, wodurch mid-level-Kontext
entsteht. Die Zusammenfithrung des mid-level-Kontexts in der Situationsebene fithrt zum héchsten
Abstraktionsgrad - dem high-level-Kontext. Diese Situation wird, wie in Kapitel 2.4 beschrieben,
iiber ein Situationsmodell in ein Situationsobjekt transformiert. Die fertigen Situationstemplates
konnen in einer Datenbank gespeichert werden und bei Bedarf in einem Situationserkennungssystem
instanziiert werden, um Situationen zu erkennen.

Eine Alternative ist, mehrere Situationen in einem Situationstemplate zu definieren. Angenommen es
existieren die Situationen Maschine voll funktionsfihig, Maschine teilweise funktionsfihig, Maschine
im kritischen Zustand und Maschine iiberlastet und alle diese Situationen benétigen dieselben Kontext-
daten. In diesem Fall ist es denkbar, diese vier Situationen in einem einzigen Situationstemplate zu
definieren. Das Beispiel in Tabelle 2.2 zeigt, dass bei einer CPU- und RAM-Auslastung von beispiels-
weise 90% die Konditionen der Situationen S2 und S3 erfullt sind. Um zu verhindern, dass mehrere
Situationen gleichzeitig giiltig sind, miissen den Situationen zusatzlich Priorititen zugewiesen werden.
Um in diesem Beispiel die wichtigere Situation S3 zu erkennen, wiirde diese eine héhere Prioritat
als Situation S2 erhalten. Gleichzeitig gilt, dass wenn eine Situation als giiltig erkannt wird, alle
anderen Situationen automatisch ungiltig sind. Die Vorteile dieser Alternative sind die vielschichtige
Unterteilung mehrerer Situationen. Allerdings nimmt mit der Anzahl von Situationen und zuge-
horiger Kontextdaten die logische Komplexitét eines Situationstemplates stark zu, was wiederum

20

2.6. Systeme zur Situationserkennung

Situation Konditionen

$1: Maschine voll funktionsfahig CPU- und RAM-Auslastung unter 50% Auslastung.
$2: Maschine teilweise ausgelastet CPU- und RAM-Auslastung iiber 50% Auslastung.
$3: Maschine im kritischen Zustand | CPU- und RAM-Auslastung iiber 80% Auslastung.
S$4: Maschine tiberlastet CPU- und RAM-Auslastung bei 100% Auslastung,.

Tabelle 2.2.: Mehrere Situationen in einem Situationstemplate

die Erstellung von Situationstemplates erschwert. Im Rahmen dieser Arbeit werden deshalb vorerst
Situationstemplates verwendet, die genau eine Situation definieren.

2.6. Systeme zur Situationserkennung

Es besteht bereits eine grofle Anzahl kontextbezogener Applikationen. Die Bereitstellung des Kontexts
geschieht in der Regel mittels eine Adhoc-Variante. Alle Module sind stark miteinander gekoppelt. Die
Weiterverwendung durch andere Applikationen beziehungsweise Workflows ist auf diese Weise nicht
realisierbar. Bei Neuerstellung einer solchen Anwendung muss das gesamte Kontexterfassungssystem,
alle Sensoren, Server und diverse Middleware neu implementiert werden. Der Grund dafiir ist, dass die
Entwicklung einzelner Anwendungen auf diese Art deutlich einfacher und schneller ablauft. Hierbei
werden die Sensorentreiber direkt in der Applikation verwendet. Die Deduktion der Kontextdaten zu
Situationen erfolgt auf Anwendungsseite. Die Alternative ist die Modularisierung aller beteiligten
Systeme. Sensoren, Middleware und Applikation sind streng voneinander getrennt, wodurch deren
Weiterverwendung ermoéglicht wird. Neu erstellte Anwendungen kénnen die bereits vorhandenen
Module tiber Schnittstellen ansprechen [DAS00].

In [DAS00] wird auf dieser Basis ein Smart Environment am Beispiel eines intelligenten Hauses
vorgestellt. Die Architektur der Kontextbereitstellung wird in drei Bereiche eingeteilt - Context
Widgets, Context Servers und Context Interpreters. Context Widgets sind die direkte Schnittstelle zu
den Sensoren. Anwendungen konnen sich direkt bei Context Widgets un/subscriben. Der Kontext
kann entweder durch Polling oder Notifikationen bereitgestellt werden. Context Server stellen eine
Subklasse der Context Widgets dar. Bei der Instanziierung eines Context Servers wird angegeben, bei
welchen Context Widgets sich dieser anmelden soll. Die Anwendung kann sich daraufhin bei einem
Context Server subscriben, anstatt sich bei allen einzelnen Context Widgets anmelden zu miissen.
Die Speicherung von Daten obliegt den jeweiligen Modulen. Auf diese Weise kann eine Historie
erstellt werden, die Verlaufsinformationen der jeweiligen Context Widgets beziehungsweise Context
Server ermoglicht. Auf Basis dieser Informationen sind Anwendungen moéglich, die Kontext sowie
deduzierten Kontext mit gewissen Wahrscheinlichkeiten vorhersagen konnen, um noch intelligentere
Systeme zu entwickeln. Context Interpreter sind optional und kénnen zur Deduktion von low-level-
Kontext (reine Sensorwerte) in higher-level-Kontext (Zustand) verwendet werden.

Problematisch ist die fehlende Verwaltung der einzelnen Module. Im Falle einer Vielzahl grofier
Anwendungen basierend auf vielen Sensorwerten entsteht eine enorm grofie Anzahl von Context
Widgets. Trotz der Aggregation durch einen Context Server missen die Context Widgets bei der

21

2. Grundlagen und verwandte Arbeiten

Instanziierung des Context Servers bekannt sein. Hierfiir muss eine zusétzliche Verwaltungsebene
erstellt werden, die alle Context Widgets sowie Context Server enthélt, sodass Anwendungsentwickler
auf einfache Weise benétigte Module finden kénnen, ohne doménenspezifische Details zu kennen. Die
Konditionen, die an die von den Context Widgets und Servers gestellt werden, stellen im Gegenzug
einen unerwiinschten Verwaltungsaufwand dar. Anstatt, dass sich eine Anwendung bei jedem einzel-
nen Modul, ob Context Widget oder aggregiert bei einem Context Server, anmeldet, ist aufwindig
und untibersichtlich. Gleichzeitig wird zusatzlich ein Context Interpreter benétigt, welcher fir die
Deduzierung des Kontexts verwendet wird. Ein simpler logischer Ausdruck wie if (Sensorwert1>10 &
Sensorwert2>50) then Sensorwert3 = 30; wird mit dieser Variante auf zwei Context Widgets und einen
Context Interpreter aufgeteilt.

In [Zwel1] wird am Beispiel des RoboCup Szenarios das Verhalten von Robotern mithilfe von Si-
tuationen gesteuert. Hierbei spielen mehrere Roboter Fufiball gegeneinander, weshalb Reaktionen
im Millisekundenbereich verlangt werden, was eine effiziente Situationserkennung voraussetzt. Im
Gegensatz zu [DAS00] werden Situationstemplates verwendet, um aufgestellte Konditionen zu verei-
nen. Ein Situationstemplate besteht aus einer SituationsID und einem Situationsschema. Zur Laufzeit
werden mit einem Erkennungsalgorithmus, beispielsweise Bayes’schen Netzen, Situationsobjekte aus
dem Situationstemplate mit Umweltdaten (Kontextdaten) instanziiert. Im Situationsschema sind alle
Konditionen definiert, die fiir die Giiltigkeit einer Situation benétigt werden. Mit einem Matching-
Algorithmus wird das Situationsobjekt mit dem Situationsschema verglichen und falls alle Konditionen
erfillt sind, als giiltig deklariert. Dartiber hinaus ist auch die Schachtelung von Situationstempla-
tes moglich, so dass ein Situationsobjekt mit mehreren Situationstemplates verglichen wird. Eine
Moglichkeit zur Persistierung der Situationsobjekte ist nicht vorhanden.

22

3. Stand der Technik

3.1. NoSQL

NoSQL-Datenbanken stellen eine Alternative zu herkdmmlichen relationalen Datenbanken dar. Der
grofite Unterschied besteht darin, dass NoSQL-Datenbanken kein Schema fiir die Strukturierung von
Daten erfordern. Miissen bei relationalen Datenbanken zwei Elemente derselben Tabelle dieselben
Attribute enthalten, kénnen Elemente von NoSQL-Datenbanken komplett unterschiedlich aufgebaut
sein. Diese Schemafreiheit bietet fiilr Anwendungen mit heterogenen Datensitzen eine sinnvolle
Alternative. Laut des CAP-Theorems [GL12] kénnen Datenbanken nur zwei der drei folgenden Ei-
genschaften Konsistenz (Consistency), Verfiigbarkeit (Availability) und Partitionstoleranz (Partition
Tolerance) erfiillen. NoSQL-Datenbanken konzentrieren sich dabei auf Verfiigbarkeit und Partitions-
toleranz, im Gegenteil zu relationalen Datenbanksystemen, die statt Partitionstoleranz Konsistenz
bevorzugen. Die bekanntesten Systeme, die (zumindest teilweise) auf NoSQL-Datenbanksystemen
basierten, sind Facebook [FB] und Twitter [TWT]. Dies sind stark verteilte Systeme, die immer ver-
fiigbar sein miissen. Wann eine Benutzernachricht bei einem Facebook-Nutzer eintrifft, ist dagegen
kein zeitkritischer Prozess und kann in dieser Hinsicht vernachldssigt werden. Trotzdem bieten einige
NoSQL-Datenbanken (z.B. MongoDB [MDb]) die Méglichkeit an, den Konsistenzlevel auf Kosten der
Partitionstoleranz selbst zu bestimmen.

3.1.1. Skalierbarkeit

Das beste Argument fiir die Verwendung von NoSQL-Datenbanksystemen liegt in deren Skalierbarkeit.
Um die verbesserte Skalierbarkeit zu erkléren, miissen die zugrundeliegenden Datenbankparadigmen
ACID und BASE verglichen werden. Das Akronym ACID ist transaktionsbasiert, wird von relationalen
Datenbanksystemen verwendet und beschreibt die folgenden Eigenschaften [Pri08]:

« Atomicity. Atomaritit beschreibt die Eigenschaft, dass eine Transaktion entweder ganz oder
gar nicht erfolgt. Wenn Teile der Transaktion nicht durchgefithrt werden kénnen (z.B. weil eine
Datenbank nicht erreichbar ist), so miissen alle bereits erfolgten Anderungen wieder riickgéngig
gemacht werden. Dies erhoht den Verwaltungsaufwand und erschwert somit die Skalierung.

« Consistency. Konsistenz (in diesem Sinne strong consistency) beschreibt, dass bei einem Schreib-
vorgang die Anderungen an jeden weiteren Knoten weitergeleitet und durchgefithrt werden
miussen. Ein darauffolgender Lesevorgang auf einem beliebigen Knoten gibt jeweils das selbe
Ergebnis zuriick. Bei stark verteilten Datenbanksystemen, bei denen zwischenzeitlich Kno-
ten ausgefallen sein konnten oder nicht erreichbar sind (keine Internetverbindung), ist die
Einhaltung eines konsistenten Zustands nur schwer zu erreichen.

23

3. Stand der Technik

« Isolation. Isolation beschreibt, dass Transaktionen isoliert voneinander ablaufen. Daraus folgt,
dass das gleichzeitige Ausfithren von Transaktionen zu dem gleichen Ergebnis kommt wie
deren sequentielle Ausfithrung.

« Durability. Dauerhaftigkeit besagt, dass sobald eine Transaktion erfolgreich abgeschlossen
wurde, der neu herbeigefithrte Zustand dauerhaft bestehen bleibt, auch nach Fehlern oder
Systemausfillen, weswegen die Daten nach einem Schreibvorgang auf ein sicheres Speicherme-
dium geflusht werden miissen. Im Gegensatz dazu basieren einige NoSQL-Datenbanken wie
Redis oder Memcache auf Cache-basierten Speichersystemen, um die Zugriffszeiten deutlich zu
verringern.

Hauptsédchlich wurde BASE (dt. Lauge) als Akronym verwendet, um den Gegensatz zu ACID (dt.
Séaure) darzustellen und steht fiir Basically Available, Soft State, Eventually Consistent. Es bestehen
keine eindeutigen Definitionen fiir Basically Available und Soft State. Eventually Consistent beschreibt
die Eigenschaft, dass nach einem Schreibvorgang irgendwann alle Daten wieder in einem konsistenten
Zustand sind, dieser Zeitpunkt allerdings nicht genauer spezifiziert werden kann. Somit ist es in
Ordnung, veraltete Daten zu verwenden, Diese Abschwichung des Konsistenzlevels ermoglicht
deutlich schnellere Schreibvorginge, da nicht zuerst auf die Erfiilllung der in ACID beschriebenen
Eigenschaften gewartet werden muss [Pri08].

Systeme, bei denen Skalierbarkeit und Geschwindigkeit wichtiger ist als die Konsistenz der Daten,
finden in NoSQL-Datenbanken eine sinnvolle Alternative zu relationalen Datenbanken.

3.2. Cloud Computing

Herkommliche Rechnerinfrastrukturen von Unternehmen sind darauf ausgelegt, das Maximum an
benoétigten Kapazititen bereitzustellen. Dieses Maximum wird oftmals durch kurzzeitige Kapazitatss-
pitzen definiert. In der restlichen Zeit werden die bereitgestellten Kapazititen nicht benétigt, obwohl
trotzdem Kosten fiir die Verwaltung, Instandhaltung und den Lagerplatz entstehen. Die Bereitstellung
neuer Kapazitaten kann mehrere Wochen dauern und muss zusétzlich in das bestehende System
integriert werden [AFG10].

Cloud Computing beschreibt das Konzept, IT-Infrastrukturen virtualisiert zur Verfiigung zu stellen.
Hierbei werden die physischen Ressourcen einer Maschine in logische Ressourcen unterteilt. Von-
einander unabhéngige virtuelle Maschinen greifen auf die logischen Ressourcen zu, wodurch der
Nutzungsgrad um ein Vielfaches gesteigert werden kann. Auf diese Weise konnen Benutzern und
Prozessen virtuelle Maschinen zugeteilt werden, die optimal auf die ausgefiihrten Prozesse abgestimmt
ist [Ley09].
Die Bereitstellung einer Cloud lisst sich allgemein in vier Service-Modelle einteilen [MG09]:
1. Public Cloud. Eine Public Cloud beschreibt das Konzept, das eine Cloud 6ffentlich bereitgestellt
wird und von jedem verwendet werden kann. Virtuelle Maschinen konnen gebithrenpflichtig
bei einem Cloud Provider (z.B. Amazon AWS [aws]) firr die Dauer der Benutzung gemietet

werden und bieten die einfachste Moglichkeit, eine anforderungsgerechte Infrastruktur zu
erzeugen. Zusatzlich werden Funktionalitidten wie Load Balancing (gleichméafiige Verteilung

24

3.2. Cloud Computing

der Last auf alle gemieteten virtuellen Maschinen) oder Auto Scaling, dass bei Auslastung der
Maschinen automatisch weitere Maschinen mietet. Die Verwaltung und Instandhaltung der
Infrastruktur sowie die Erfiilllung nicht funktionaler Anforderungen wie Sicherheitsrichtlinien
obliegt dem Cloud Provider, was dem Benutzer zusitzliche Kosten einspart. Kapazititsspitzen
konnen durch Mieten weiterer virtueller Maschinen innerhalb von Minuten abgefangen werden.
Nicht benétigte Maschinen konnen entfernt werden, um Kosten zu sparen. Vor allem schnell
wachsende Startup-Unternehmen profitieren von der schnellen Bereitstellung und dem Pay-as-
you-go Konzept.

2. Private Cloud. Die Private Cloud erméglicht die exklusive Nutzung fiir einzelne Organisatio-
nen. Das Managen dieser Cloud kann durch ein Drittunternehmen stattfinden. Der Zugang
findet iiber das Intranet des Unternehmens statt. Hier wird meist das firmeneigene Rechen-
zentrum zur Bereitstellung verwendet, wodurch nur eine indirekte Kosteneinsparung erfolgt,
dafiir allerdings die Sicherheitsrichtlinien selbst gesetzt werden konnen. Dies ist das meist
verwendete Modell, da das Unternehmen die gesamte Kontrolle iiber die Cloud behilt. Die
Verwaltung einer Private Cloud kann von einem Drittunternehmen iibernommen werden.

3. Hybrid Cloud. Deutsche Unternehmen sind iiber das Datenschutzgesetzes dazu verpflichtet,
personenbezogene Daten innerhalb Deutschlands aufzubewahren. Weitere Griinde wie der
Patriot Act [pa] bewegen deutsche Unternehmen dazu, amerikanische Cloud Provider zu meiden
und entweder eine Private Cloud oder deutsche Cloud Provider zu verwenden. Eine Alternative
ist die Verwendung einer Hybrid Cloud, die eine Kombination der Modelle Public und Private
Cloud darstellt, wobei die einzelnen Clouds tiber Schnittstellen miteinander verbunden sind.

4. Community Cloud. Die Community Cloud ist eine Private Cloud, die von mehreren Organi-
sationen gemeinsam genutzt wird. Beispielsweise konnen Firmen und deren Zulieferer dieselbe
Cloud verwenden, um die Kommunikation untereinander zu vereinfachen. Wie auch die Private
Cloud kann die Community Cloud von einem Drittunternehmen verwaltet werden.

Insgesamt wird die Kosteneinsparung durch Nutzung von Cloud Computing zwischen den Jahren 2010
und 2015 auf etwa 50 Milliarden US-Dollar geschétzt [ceb10]. Fiir den Einsatz in SitOPT ist vor allem
die Eigenschaft der Elastizitat von Interesse. Elastizitat beschreibt, dass Kapazititen dem Benutzer
immer verfiigbar sind und sich die Menge verwendeter Kapazitiaten an die aktuellen Anforderungen
anpasst. Diese Eigenschaften werden als Verfiigbarkeit und Skalierbarkeit definiert [Ley09]:

1. Skalierbarkeit. Anwendungen in der Cloud kénnen vor allem bei der Verwendung einer Public
Cloud vergleichsweise schnell und beliebig hoch skalieren. Durch unterstiitzende Funktiona-
litdten wie Auto Scaling wird die Skalierung automatisiert. Voraussetzung dafiir ist, dass die
Anwendung parallelisierbar ist und somit auf verschiedenen Maschinen gleichzeitig ausgefiithrt
werden kann.

2. Verfiigbarkeit. Verfiigbarkeit beschreibt die Eigenschaft, wie oft es zu Ausfallzeiten der Rech-
nerinfrastruktur kommt. Hochverfiigbare Systeme sollten Ausfallzeiten von héchstens wenigen
Minuten im Jahr besitzen. Bei der Verwendung einer Cloud kénnen ausgefallene Maschinen
sofort durch neue Maschinen ersetzt werden, wodurch die Ausfallzeiten fiir den Benutzer
zusatzlich minimiert werden.

25

3. Stand der Technik

Fir den Anwendungsfall einer Situationserkennung sind die Voraussetzungen optimal. Will der
Benutzer eine Situationserkennung starten, stehen immer ausreichend Kapazititen zur Verfiigung.
Werden die iiberwachten Objekte ausgeschaltet und die Situationserkennung gestoppt, werden
die gemieteten Kapazitidten wieder entfernt. Hochsensiblen Produktionsabldufen wird durch die
Minimierung von Ausfallzeiten eine durchgehend zuverlédssige Situationsiiberwachung gewahrleistet.
Die Verwendung einer Private Cloud bietet vor allem fiir den Prototyp von SitOPT die Vorteile einer
schnellen und ressourcensparenden Bereitstellung.

3.3. Complex Event Processing (CEP)

CEP - das Verarbeiten komplexer Ereignisse - beschreibt das Verfahren, auf einer Menge logisch
verkniipfter Ereignisse hoherwertige Informationen zu gewinnen. Ein Ereignis ist hierbei ein Objekt,
dass eine Aktivitat in einem System darstellt. Ereignisse sind voneinander abhangig und kénnen in
Folge ihrer Verarbeitung neue Ereignisse produzieren [Rob10]. Zu den wichtigsten Anwendungsgebie-
ten zdhlen das Business Activity Monitoring, der Einsatz in Sensornetzwerken sowie die Erforschung
von Marktdaten. Vor allem der Einsatz in Sensornetzwerken entspricht dem Anwendungsfall einer
Situationsiiberwachung. Der Ablauf eines CEP-Systems wird in Abbildung 3.1 gezeigt. Im Folgenden
werden die einzelnen Schritte am Beispiel einer Situationserkennung vorgestellt.

. CEP |
Verar-
beiten

Reagieren/'_ _h\ Erkennen
\

Abbildung 3.1.: CEP-Zyklus [RB15, pp. 6]

« Erkennen. Das Erkennen von Ereignissen (Situationen) erfolgt iiber das Bereitstellen von
Sensorwerten durch Sensoren. Gleichzeitig werden statischer Kontext tiber Wissensdatenban-
ken bereitgestellt. Mithilfe dieses Kontext soll der Zustand eines virtuellen oder physischen
Objekts abgeleitet werden. Von hoher Bedeutung ist die Geschwindigkeit, mit der dynamischer
Kontext erkannt und weiterverarbeitet wird, um einen aktuellen Zustand zu erkennen. Bei
Sensorwerten, die sich beispielsweise jede Sekunde dndern, ist eine Situation, die auf fiinf
Minuten alten Sensorwerten basiert, langst obsolet.

« Verarbeiten. Bei der Verarbeitung wird zuerst eine Analyse der Kontextdaten durchgefiihrt.
Hierbei konnen beispielsweise die von einem Situationstemplate definierten Konditionen an

26

3.3. Complex Event Processing (CEP)

die Sensorwerte iiberpriift werden. Darauf folgend konnen beliebige Operationen auf den
Kontextdaten durchgefithrt werden.

« Reagieren. Abhingig davon, welche Ergebnisse in der Verarbeitungsphase entstanden sind,
konnen vorab definierte Aktionen durchgefithrt werden, beispielsweise die Benachrichtigung
von Personal oder das Weitersenden der deduzierten Kontextdaten an weitere Services.

CEP verwendet SQL dhnliche EPL (Event Processing Language) Statements, um zu iiberprifen, ob
der Kontext die definierten Konditionen erfillt. Das folgende Statement

EPStatement cepStatement = cepAdm.createEPL("select * from Situation having cpu > 80.0 AND ram >
600.0");
cepStatement.addListener(new CEPListener());

iberpriift Objekte der Klasse Situation im Hinblick auf die Werte cpu und ram und vergleicht diese
mit den angegebenen Schwellenwerten. Anschlieend wird dem Statement ein Listener hinzugefiigt,
um neue Situationen zu erkennen.

27

4. Konzept und Architektur von SitOPT

Im Folgenden werden die Module von SitOPT konzeptionell beschrieben. Zusatzlich wird der Ablauf
von der Situationsiiberwachung bis hin zur Situationsbereitstellung an einen Workflow demonstriert.
Abbildung 4.1 demonstriert einen Gesamtiiberblick iiber die einzelnen Module von SitOPT. Diese
werden in den folgenden Kapiteln detailliert vorgestellt.

Situation Dashboard Situation Handler

Zeigt iiberwachte Objekte an
Schnittstelle zu

E % adaptiven Workflows

Computer Computer Computer Computer Computer
Leitet Sendet Daten an
Transformati Website o
rans Zi:"a fon Registriert sich fir
v . . Anderungen
Situations- =
Trar:;formatlon Verwaltung <
apper
Schnittstelle zwischen Datenbank | >
SES und Situation Handler Benachrichtigung
Startet bzw. Situation Dashboard an registrierte
Situations- A Workflows
erkennung Sendet
v Situationsobjekte

Situationserkennungssystem (SES)

Ressource

Management ‘-'.._ . —_
Platform R >’{Sntuatuonm

Sensor- Situations-

Operationsebene

ebene ebene

Abbildung 4.1.: Gesamtarchitektur von SitOPT

Bei der Architektur wurde auf eine modulare Bauweise geachtet, um SitOPT flexibel zu gestalten und
zugrundeliegende Module oder Technologien erweitern beziehungsweise austauschen zu kénnen.

29

4. Konzept und Architektur von SitOPT

Dabei sind die Module Ressource Management Platform, Transformation Mapper und Situation Handler
nur indirekt Teil dieser Arbeit und werden dementsprechend weniger detailliert beschrieben. In der
Abbildung 4.1 ist die Schnittstellenfunktion des Datenbanksystems zwischen den Modulen des Situati-
onserkennungssystems sowie der adaptiven Workflows beziehungsweise des Situation Dashboards zu
erkennen. Um die entstandenen Situationen an das Workflowsystem weiterleiten zu kénnen, werden
diese in einer Document-Based Datenbank gespeichert sowie notige Verdnderungen vorgenommen,
um die Spezifikationen der Datenmodelle zu erfiillen. Darauthin kénnen die Workflows die von ihnen
benétigten Daten aus der Datenbank auslesen. Das Situationserkennungssystem sowie die Datenbank
befinden sich in einer Cloud und sind somit von iiberall zugreifbar und skalierbar. Im Folgenden wird
ein detaillierter Uberblick tiber die wichtigsten Komponenten von SitOPT geliefert.

4.1. Situationserkennungssystem

Um die Abkopplung der Situationserkennung von der Workflow-Ebene zu ermdglichen, werden
Situationserkennungssysteme (SES) vorgestellt. Hier werden auf Basis des verwendeten Situations-
templates Situationen erkannt, die im spateren Verlauf Workflows zur Verfiigung gestellt werden.
Des Weiteren erméglicht die Modularisierung die Verwendung verschiedener SES, ohne Anderungen
an anderen Modulen vornehmen zu miissen. Wichtige Eigenschaften eines SES sind unter anderem
Effizienz, Skalierbarkeit und Parallelisierung. Die Visualisierung eines SES kann von Vorteil sein, um
Abl4ufe in der Situationserkennung zu betrachten und zu verstehen. Die Ablaufe innerhalb eines SES
konnen in folgende Bereiche gegliedert werden:

1. Kontext erfassen: Die Erfassung von Kontext dient als Grundlage fiir das Erkennen von Situa-
tionen. Die im Situationstemplate definierten Sensoren werden in der Sensorebene ausgelesen.
Beim Start einer Situationserkennung muss dem SES mitgeteilt werden, wo die bendtigten
Sensorwerte vorliegen (z.B. URL des Sensors). Dies erfolgt iiber das iiberwachte Objekt, dass
vorhandene Sensoren referenziert.

2. Kontext verarbeiten: In der Operationsebene werden zuerst die im Situationstemplate de-
finierten Konditionen an die Sensorwerte tiberpriift. Wird mindestens eine Kondition nicht
erfullt, wird die Situation als ungiltig betrachtet. Des Weiteren konnen beliebige Operationen
auf dem Kontext durchgefithrt werden. Werden alle Konditionen erfiillt und alle Operationen
erfolgreich ausgefiihrt, gilt eine Situation als giiltig.

3. Situationsobjekt erstellen: Unabhingig davon, ob eine Situation giiltig oder ungiiltig ist,
wird auf der Situationsebene ein Situationsobjekt erstellt, dass alle im Verlauf der Situationser-
kennung verwendeten Daten enthalt.

Wie zu sehen ist, entspricht diese Vorgehensweise den beiden Punkten Erkennen und Verarbeiten aus
dem in Kapitel 3.1 vorgestellten CEP-Zyklus. Workflows, die auf Basis erkannter Situationen reagieren,
vervollstindigen den CEP-Zyklus. Somit kénnen beliebige CEP-Systeme fiir eine Situationserkennung
verwendet werden. Die anschliefende Verarbeitung des Situationsobjekts kann auf zwei Méglichkeiten
realisiert werden:

30

4.2. Transformation Mapper

1. Die erste Moglichkeit beschreibt die Vorgehensweise, dass Situationsobjekte nur dann gespei-
chert werden, wenn sich die Giiltigkeit dndert. Solange alle Situationen ungiiltig sind, wird der
Standard-Workflow ausgefiihrt. Erst sobald eine Situation erkannt wird, muss das entsprechen-
de Workflow-Fragment initialisiert werden. Wird dieselbe Situation im Anschluss nochmals
als giltig erkannt, ist dies fiir den Workflow nicht von Interesse, da das Workflow-Fragment
bereits ausgefithrt wird und somit keine weiteren Schritte eingeleitet werden miissen. Sobald
daraufhin die Situation wieder als ungiiltig erkannt wird, kann der Workflow die Ausfithrung
des Workflow-Fragments wieder beenden.

2. Obwohl Workflows keinen direkten Nutzen aus nacheinander mehrfach erkannten Situationen
mit derselben Giiltigkeit haben, kann es von Vorteil sein, diese in der Datenbank zu speichern.
Die Speicherung aller Situation fiithrt zu einer Erstellung einer Historie von Situationen. Mo-
nitoringsysteme konnen diese Historie auswerten und moégliche Optimierungen im Ablauf
aufweisen. Die Speicherung aller Situationen kann zu einem grofien Overhead beziiglich des
gespeicherten Datenvolumens fiithren.

Resource Management Platform (RSM)

Die im SES verwendeten Sensordaten konnen iiber die Resource Management Platform, die auf dem
Konzept des OSLC (Spezifikation fiir die Integration von Werkzeugen) basiert, ausgelesen werden.
Die RSM verwendet eine Push&Pull Methode. Um jederzeit eine Situationserkennung durchfithren
zu kénnen, werden spezielle OSLC-Adapter verwendet, um die Sensorwerte von den Sensoren in
einen Data Cache der RSM zu pushen und zu speichern. Anderenfalls sind moéglicherweise keine
Sensorwerte vorhanden, um Situationen abzuleiten. Zu beachten ist, dass mit der Lebenszeit von
Sensorwerten die Qualitdt enorm sinken kann. Wird eine Situationserkennung durchgefiihrt, werden
die benétigten Sensorwerte von einem OSLC Service aus dem Data Cache gepullt und kénnen somit
dem SES als REST Ressource zur Verfiigung gestellt werden [HWS™ 15]. Die Implementierung der
RSM ist nicht Teil dieser Arbeit.

4.2. Transformation Mapper

Situationstemplates liegen in einem XML-Format vor. Die Verwendung mehrerer Systeme zur Si-
tuationserkennung fordert daher eine Transformation eines Situationstemplates in ein ausfiithrbares
Situationstemplate fiir das gewahlte SES. Der Transformation Mapper enthalt alle Mappingalgorith-
men verfiigbarer SES und wird beim Start einer Situationserkennung durch das Situation Dashboard
aufgerufen. Nach erfolgreicher Transformation startet der Transformation Mapper das SES mit dem
ausfithrbaren Situationstemplate. Die Implementierung des Transformation Mappers ist nicht Teil
dieser Arbeit.

31

4. Konzept und Architektur von SitOPT

4.3. Situationsverwaltung

Die Situationsverwaltung dient in erster Linie dazu, Workflows und dem Situation Dashboard Situatio-
nen bereitzustellen. Dariiber hinaus stellt dieses Modul die Schnittstelle zur Datenbank dar. Auf diese
Weise konnen von der Datenbank nicht vorhandene Funktionen durch die Situationsverwaltung be-
reitgestellt werden. Zusétzlich miissen alle von SitOPT benétigten Funktionen implementiert werden.
Da kein direkter Datenbankzugriff moglich ist, stellt die Situationsverwaltung die grundlegenden
Funktionen Erstellen, Lesen, Andern sowie Loschen von Ressourcen zur Verfiigung. Eine Ressource
stellt im Kontext von REST ein einzelnes Dokument dar, eine Listenressource eine Menge von Res-
sourcen. Im Rahmen dieser Arbeit ist eine Listenressource eine Menge von Ressourcen desselben
Typs (z.B. nur Situationen). Im Folgenden werden Anforderungen an die bereitgestellten Funktionen
beschrieben:

« Erstellen von Ressourcen. Diese Funktion ermdglicht dem SES das Speichern von Situati-
onsobjekten und den dazugehorigen Sensorwerten innerhalb der Datenbank. Des Weiteren
ermoglicht sie Benutzern die Erstellung von Sensoren, Things und Situationtemplates, welche
anschlieend von SitOPT verwendet werden konnen. Um zu tiberpriifen, ob die erzeugte Res-
source alle von SitOPT benotigten Attribute enthalt, wird eine Schemavalidierung mithilfe der
in Kapitel 4.7 gezeigten Datenmodelle durchgefiihrt. Zusétzlich fugt die Situationsverwaltung
eigenstindig Metadaten hinzu. Beispielsweise ist dem SES der Name einer erkannten Situation
nicht bekannt, welcher allerdings im Situationstemplate definiert ist. Da dem SES das ausge-
fithrte Situationstemplate bekannt ist, wird beim Einfiigen einer Situation tiber das referenzierte
Situationstemplate der Name der Situation ausgelesen und dem Situationsobjekt hinzugefiigt.

« Andern von Ressourcen. Um die Verwaltung von Situationen zu vereinfachen, soll das konti-
nuierliche Erkennen einer einzigen Situation nicht zur Erstellung multipler Ressourcen fiihren.
Stattdessen wird eine Ressource geandert, wobei <ere Versionen beibehalten werden. Des Wei-
teren muss es moglich sein, statische Ressourcen wie Sensoren, Things und Situationstemplates
zu verandern.

+ Lesen von Ressourcen. Das Lesen von Ressourcen soll dem Benutzer die Moglichkeit geben,
Ressourcen zu erhalten. Hierfiir sollen neben der ID einer Ressource weitere Attribute als
Abfragekriterium moglich sein. Beispielsweise lasst sich eine Situation neben der ID eindeutig
als Kombination eines Things mit einem Situationstemplate definieren.

« Loschen von Ressourcen. Um die referenzielle Integritit von Ressourcen zu gew#hrleisten,
muss ein kaskadierender Loschvorgang gestartet werden. Dies bedeutet, dass wenn eine Res-
source A geldscht werden soll, alle Ressourcen, die Ressource A referenzieren, ebenso geloscht
werden missen.

Um Fehlverhalten von Benutzern zu vermeiden, soll zusatzlich eine Benutzerverwaltung integriert
werden, die die Sicherheit und Funktionsweise von SitOPT gewahrleisten soll. Auf diese Weise kann
beispielsweise sichergestellt werden, dass nur ein SES die Moglichkeit besitzt, Situationsobjekte zu
erzeugen.

32

4.3. Situationsverwaltung

4.3.1. Situationsbereitstellung

In Abbildung 4.2 ist die anfangliche Methode zur Situationsbereitstellung zu sehen. Statt jeden Zugriff
iiber eine Datenbank durchzufithren, werden alle Situationen des SES an eine Messaging Queue
gesendet. Eine Queue kann mehrere Topics enthalten, auf welchen Situationen bereitgestellt werden
konnen. Der Topic Maschinel/sitTemp1 enthalt alle Situationsobjekte, die bei der Situationserkennung
fiir die Maschine Maschinel mit dem Situationstemplate sitTemp1 erkannt wurden. Um tiber erkannte
Situationen informiert zu werden, muss sich der Situation Handler bei einem Topic subscriben. Das
Messaging-System published bei jeder Anderung auf diesem Topic die neuen Situationen an alle
Subscriber. Bei dieser Variante fehlen Funktionalititen wie z.B. die oben angesprochene Methode, nur
Situationen zu speichern (und damit auch an den Situation Handler weiterzuleiten), die sich geandert
haben. Der Vorteil dieser Methode ist eine héhere Geschwindigkeit der Situationsbereitstellung im
Vergleich zur zweiten Methode, da keine Datenbankzugriffe benétigt werden. Das SES sendet zwecks
Historienerstellung weiterhin Situationsobjekte an die Datenbank.

. Situation Dashboard . Situation Handler }
A
Publish
Subscribe Subscribe Publish
} v
\ 4
Transf. o
‘ Mapper ‘ Datenbank I\Messaglng Queue m
A
Sendet Situationsobjekte Sendet Situationsobjekte
v | an Datenbank an Queue

‘ Situationserkennungssystem (SES)

Abbildung 4.2.: Message Queue als Situationsbereitstellung - vereinfachte Darstellung

Die in SitOPT derzeit verwendete Methode, ist die Situationsbereitstellung mittels der Situationsver-
waltung, wie es in Abbildung 4.1 zu sehen ist. Alle Situationsobjekte werden zuerst in einer Datenbank
gespeichert. Daraufhin kann sich der Situation Handler bei der Situationsverwaltung auf spezifische
Situationen anmelden. Des Weiteren ist es moglich, sich auf alle méglichen Situationen anzumelden.
Bei einer Veranderung oder Neuentstehung einer Situation wird tiberpriift, ob auf dieser Situation
Registrierungen vorhanden sind. Falls ja, wird die Situation an eine von dem Situation Handler
bei der Registrierung angegebene URL gesendet. Der Situation Handler kann bei der Anmeldung

33

4. Konzept und Architektur von SitOPT

angeben, ob fortlaufend Benachrichtigungen gesendet werden sollen oder nur beim erstmaligen
Auftreten einer Situation. Bei Angabe der letzteren Variante wird die Anmeldung im Anschluss an die
Benachrichtigung geloscht. Soll ein Workflow nicht weiterhin {iber Situationen informiert werden,
muss der Situation Handler eine Abmeldung bei der Situationsverwaltung durchfiihren.

4.3.2. Datenbank

Die Datenbank verwaltet alle von SitOPT benétigten und daraus entstehenden Daten. Aufgrund der
Situationsverwaltung sind die Anforderungen an die Funktionalitiaten der Datenbank geringer. Sicher-
heitsspezifische Funktionen wie Benutzerverwaltung kénnen beispielsweise von der Situationsver-
waltung tibernommen werden. Nichtsdestotrotz ist es von Vorteil, bereits bestehende Funktionalitaten
tibernehmen zu kénnen. Das Hauptaugenmerk liegt deshalb auf den Eigenschaften der Datenbank.
Vor allem die Skalierung der Datenbank ist fiir SitOPT von grofiter Wichtigkeit. Angenommen alle 5
Sekunden wird eine Situation fiir ein Objekt erkannt und jede erkannte Situation des SES wird gespei-
chert. Werden in diesem Szenario 20 Objekte iiber einen Zeitraum von einem Tag iiberwacht mit einer
Datengrofle von 5 Kilobyte pro Situationsobjekt, so entsteht in diesem Zeitraum eine Datengrofie von
1,728 Gigabyte. Zu entscheiden ist, wie die Daten sinnvoll auf verschiedene Datenbanken aufgeteilt
werden koénnen, um Zugriffszeiten zu minimieren, die Anzahl der Datenbanken moglichst gering
zu halten und ein ausfallsicheres System ohne Single Point of Failure zu gewéhrleisten. Gleichzeitig
miissen Sicherungskopien der vorhandenen Daten erstellt werden.

4.4. Situation Handler

Wie bereits in Kapitel 2.1 beschrieben, ist die Komplexitat von Workflows fiir industrielle Prozesse
enorm hoch. Das Erzeugen von Situationsobjekten abseits der Workflow-Ebene erleichtert den Um-
gang mit erkannten Situationen. Wird ein Workflow tiber eine neu erkannte Situation informiert,
koénnen auf dieser Basis Workflow Fragmente ausgefithrt werden, um die Situation zu handhaben.
Der Situation Handler dient als Komponente fiir den Umgang mit erkannten Situationen als Schnitt-
stelle zwischen SitOPT und einzelnen Workflows. Dazu meldet sich der Situation Handler bei der
Situationsverwaltung an und wird tiber Anderungen und neu erkannte Situationen informiert. Die
Implementierung des Situation Handlers ist nicht Teil dieser Arbeit.

4.5. Situation Dashboard

Das Situation Dashboard stellt eine visuelle webbasierte Moglichkeit dar, die von SitOPT verwendeten
Informationen darzustellen. Jeder Ressourcentyp soll auf einer eigenen Seite aufgelistet werden.
Hierbei ist vor allem die Uberwachung der Things von Interesse. Der Benutzer soll auf einfache und
tibersichtliche Weise iiber alle iiberwachten Objekte und deren derzeitige Situationen informiert
werden. Neben der Auflistung aller Objekte sollen zugehorige Situationen mit Icons intuitiv dargestellt
werden.

34

4.6. Funktionsweise

Des Weiteren besteht die Moglichkeit, die Situationserkennung zu starten. Eine Situationserkennung
wird mit folgenden Optionen gestartet:

« Objekt. Der Benutzer wihlt das Objekt, das iiberwacht werden soll. Es konnen nur Objekte
iberwacht werden, die in der Datenbank gespeichert sind. Objekte konnen mehrfach tiberwacht
werden.

« Situationstemplate. Situationstemplates definieren, welche Situationen fiir ein Objekt erkannt
werden konnen. Zu beachten ist, dass nicht jedes Situationstemplate fiir jedes Objekt verwendet
werden kann. Das Objekt muss die im Situationstemplate definierten Sensoren enthalten. Um
die Benutzung zu vereinfachen, sollen dem Benutzer deshalb nur Situationstemplates angezeigt
werden, die fiir das ausgewahlte Objekt moglich sind.

« SES. Der Benutzer soll bei jeder neu gestarteten Situationserkennung zwischen den durch
SitOPT unterstiitzten SES wahlen konnen. Unterschiede verschiedener SES sind beispielsweise
beziiglich Skalierbarkeit, Effizienz und Parallelisierung zu finden. Zugleich bieten manche SES
eine Visualisierung der Situationserkennung und somit eine Visualisierung des Situationstem-
plates bereit.

« Speichermodus. In Kapitel 4.1 wurden zwei Moglichkeiten besprochen, wann Situationsob-
jekte gespeichert werden sollen. Per Angabe des Speichermodus soll der Benutzer bei jeder
individuellen Situationserkennung selbst entscheiden, ob alle erkannten Situation gespeichert
werden sollen oder nur jede, deren Giiltigkeit sich geandert hat und bestimmt den Kompromiss
zwischen Monitoring und geringerem Datenvolumen.

Des Weiteren sollen Objekte in ihrer Umgebung dargestellt werden konnen. Uber Positionsangaben
soll eine interaktive Karte mit allen Objekten und Situationen angezeigt werden, um einen schnellen
Uberblick iiber alle iiberwachten Objekte zu erhalten.

Zusétzlich sollen alle von der Situationsverwaltung bereitgestellen Funktionen angezeigt werden. Um
den Umgang mit SitOPT erheblich zu vereinfachen, soll neben der Dokumentation der Funktionen die
Moglichkeit bestehen, iiber das Situation Dashboard alle Funktionen der Situationsverwaltung zu tes-
ten, ohne einen eigenen Client implementieren zu miissen. Hierbei werden zugleich die Datenmodelle
der einzelnen Ressourcen sichtbar.

Visualisierbare SES sollen tiber das Situation Dashboard aufgerufen werden kénnen, um laufende
Situationserkennungen anzeigen zu lassen. Wird eine Situationserkennung mit einem visualisier-
baren SES gestartet, soll der Aufruf automatisch erfolgen, um die aktuelle und bereits laufende
Situationserkennungen anzuzeigen.

4.6. Funktionsweise

Nachdem alle beteiligten Module vorgestellt worden sind, wird im Folgenden der Gesamtablauf
demonstriert, der zum Erstellen von Situationsobjekten fiihrt. In Abbildung 4.3 ist das Zusammenspiel
aller Module zu erkennen. Die Datenbank enthalt die Objekte und Situationstemplates, die fiir eine
Situationsiiberwachung verwendet werden kénnen.

35

4. Konzept und Architektur von SitOPT

Benutzer Workflow

A 4) 4

Eingabe: Eingabe:
thing resource
Eingabe: v
Situations- Registrierung auf
Situation template (ST) Ressource Situations-
Dashboard v verwaltung
Eingabe:
SES 4
¢ Notifikation tiber
Anderungen der
Eingabe: Ressource
Speichermodus
Transformation Transformation:
Mapper ST -> ausfiihrbares ST
I
v
SES Situationserkennung
v
Situations- Speicherung von
verwaltung Situationsobjekten
A4 \ 4

Abbildung 4.3.: Ablauf fiir das Erkennen und Erhalten von Situationen

Der Benutzer greift tiber das Situation Dashboard auf die Daten zu und kann iiber die Eingabe des zu
iiberwachenden Things, des verwendeten Situationstemplates und SES sowie des Speichermodus die
Situationserkennung starten. Zuvor transformiert der Transformation Mapper das Situationstemplate
in ein ausfithrbares Situationstemplate auf Basis des verwendeten SES. Daraufthin erkennt das SES
kontinuierlich Situationen und erstellt Situationsobjekte, die an die Situationsverwaltung gesendet

36

4.7. Datenmodell

werden. Die Situationsverwaltung validiert das Situationsobjekt, tiberpriift Referenzen und fugt
weitere Metadaten hinzu.

Parallel dazu fithrt der Situation Handler eine Anmeldung bei der Situationsverwaltung durch. Hierbei
gibt der Situation Handler an, beim Auftreten welcher Situationen eine Benachrichtigung erfolgen soll.
Die Situationsverwaltung wird iiber jede neu erkannte Situation informiert und iiberpriift samtliche
Anmeldungen. Wenn eine neu erkannte Situation Anmeldungen enthalt, wird das Situationsobjekt an
eine von dem Situation Handler spezifizierte URL gesendet.

4.7. Datenmodell

Die in Kapitel 4.3 erwahnte Schemavalidierung legt ein Datenmodell aller verwendeten Ressourcen
zu Grunde. Abbildung 4.4 zeigt die verschiedenen Ressourcen, ihre Attribute sowie Relationen zu-
einander auf. Die Datenmodelle beschreiben, wie die Ressourcen in der Datenbank vorliegen. Diese
unterscheiden sich von den Datenmodellen, die fiir die Eingabe der jeweiligen Ressourcen verwendet
werden. Beispielsweise besitzt jede Situation das Attribut Name. Das SES ruft hierbei die Funktion
der Situationsverwaltung zum Erstellen einer Situationsressource auf, gibt den Namen allerdings
nicht an, da dieser dem SES nicht bekannt ist. Stattdessen fiigt die Situationsverwaltung den Namen
selbststandig hinzu, damit das im folgenden aufgezeigte Datenmodell einer Situation erfiillt ist.

Im Folgenden werden die Datenmodelle jeder Ressource ausfiihrlich erklart. Hierbei werden die
einzelnen Attribute beschrieben sowie deren Ursprung. Jeder Ressource wird eine eindeutige ID
(wahlweise vom Benutzer definiert) sowie eine Revisionsnummer zugewiesen. Die Revisionsnummer
wird zur Konfliktbehandlung bei nebenldufigen Schreibzugriffen benétigt.

4.7.1. Situation

Das Datenmodell einer Situation muss alle Attribute aufweisen, die fiir die Weiterverarbeitung durch
Workflows benétigt werden. Des Weiteren sollen Metadaten vorhanden sein, um schnell und intuitiv
Situationen im Situation Dashboard erkennen zu kénnen.

« Name. Der Name dient neben der ID zur intuitiven Identifikation der Situation. Dieser wird im
Situationstemplate definiert. Verschiedene Situationstemplates konnen den selben Namen fiir
Situationen definieren. Als Richtlinie sollte darauf geachtet werden, dass Namen nicht doppelt
existieren.

« Thing. Das Attribut Thing referenziert die ID des iiberwachten Objekts. Bei der Instanziie-
rung wird die ID des Objekts dem SES iibergeben und bei Erkennung einer Situation dem
Situationsobjekt hinzugefiigt.

« Timestamp. Der Zeitstempel beschreibt den Zeitpunkt, an dem die Situation erkannt wurde.
Der Zeitstempel wird durch das SES zum Zeitpunkt der Situationserkennung gesetzt. Dieser
kann verwendet werden, um die Aktualitit einer Situation zu beschreiben. Zusitzlich lasst sich
der Situationsverlauf einzelner Situationen zeitlich darstellen.

37

4. Konzept und Architektur von SitOPT

(N Cameerioto)

(quality descnptmn }
N / \ / TN \/quallty\ /descnptlon
- (_id
i) N/ -
J J o 4 time\‘
1 . . 1 \gtame
— Sensor erstellt Sensorwert enthalt
~ €D
T ~
(\name e\‘
- _/
- - Instanz von
o un D)
scnptl n (wurl)
NG
o)
xml)
/

Abbil

38

Situations-

template

[_rev ~ — i
N e \/ — \\se,'jtrs/ _rev) \SITTQ
(name) :oordmates\ — - _—
NG s Crame) (a ~

— (name)

e
/ﬁ
\é

dung 4.4.: ER-Diagramm der Ressourcen

Sensorwerte. Die Sensorwerte, die bei der Erkennung der Situation verwendet wurden, werden
dem Situationsobjekt innerhalb des SES hinzugefiigt. Die Situationsverwaltung extrahiert die
Sensorwerte und ersetzt sie durch Referenzen auf die jeweiligen Sensorwerte. Als Referenz
wird die ID des separat gespeicherten Sensorwerts verwendet.

Beschreibung. Um Situationen verstandlicher darzustellen, wird eine kurze Beschreibung
iiber die Bedeutung der Situation hinzugefiigt. Diese wird im Situation Dashboard angezeigt.
Diese Beschreibung wird im Situationstemplate definiert und durch die Situationsverwaltung
anhand der referenzierten ID des Situationstemplates ausgelesen und dem Situationsobjekt
hinzugefiigt.

Situationstemplate. Beim Aufruf einer Situationserkennung erhalt das SES die ID des Situati-
onstemplates. Beim Erstellen des Situationsobjekts wird diese ID als Referenz hinzugefiigt.

Occured. Die Giiltigkeit einer Situation wird tiber das Attribut Occured als Wahrheitswert
angegeben. Ob eine Situation giiltig ist oder nicht, wird im SES erfasst.

Qualitit. In Abhangigkeit der verwendeten Sensoren und Sensorwerten soll die Qualitat einer
Situation bestimmt werden. Das SES besitzt die verwendeten Sensorwerte, jedoch keine niheren
Informationen tiber die verwendeten Sensoren. Daher wird die Qualitdtsbestimmung einer
Situation in der Situationsverwaltung durchgefiihrt.

4.7. Datenmodell

4.7.2. Situationstemplate

Ein Situationstemplate liegt als XML-Datei vor, in welcher alle Konditionen und Operationen definiert
sind, die fiir das Erkennen einer Situation benétigt werden. Zusétzlich enthilt es wichtige Metadaten
einer Situation. Zur besseren Ubersichtlichkeit wird der Inhalt der XML-Datei nicht als Attribut
gespeichert, sondern als Anhang dem jeweiligen Dokument beigefiigt.

« Name. Der Name dient neben der ID zur intuitiven Identifikation des Situationstemplates.
Verschiedene Situationstemplates konnen den selben Namen besitzen. Als Richtlinie sollte
darauf geachtet werden, dass Namen nicht doppelt existieren.

« Situation. Dieses Attribut enthilt den Namen der Situation, die durch das Situationtemplate
erzeugt werden kann. Es sollte Wert auf eine ausdrucksstarke und intuitive Namensgebung
gelegt werden.

+ Beschreibung. Hier wird eine kurze Beschreibung der Situation angegeben, welche im Situati-
on Dashboard angezeigt wird.

4.7.3. Sensor

Sensoren besitzen eine Grofizahl an Spezifikationen. Die hier aufgezahlten Attribute schranken diese
Spezifikationen deutlich ein, um ein standardisiertes Sensormodell zu erzeugen und verschiedenartige
Sensortypen zu unterstiitzen.

+ Name. Der Name dient neben der ID zur intuitiven Identifikation des Sensors. Verschiedene
Sensoren konnen den selben Namen besitzen. Als Richtlinie sollte darauf geachtet werden, dass
Namen nicht doppelt existieren.

+ URL. Unter dieser URL sind die vom Sensor bereitgestellten Sensorwerte zu finden.

+ Beschreibung. Hier wird eine kurze Beschreibung des Sensors und méglichen Sensorwerten
geliefert.

+ Qualitat. Um die Qualitét einer Situation zu bestimmen, werden die Qualitiaten der verwendeten
Sensoren benoétigt. Die Qualitit lasst sich zwischen 0 (sehr unzuverlissig) und 1 (keine Fehler)
einordnen.

« Datentyp beschreibt den Datentyp der Sensorwerte, die durch den Sensor entstehen.
4.7.4. Sensorwert
Sensorwerte werden ausschliefilich dann gespeichert, wenn das Situationsobjekt, denen die Sensor-
werte zugrunde liegen, gespeichert wird. Analog zum Speichern von Situationsobjekten ist es denkbar,

alle Sensorwerte zu speichern, um weitere Informationen iiber das tiberwachte Objekt zu erhalten,
was erneut zu einem Anstieg des gespeicherten Datenvolumens fiihrt.

39

4. Konzept und Architektur von SitOPT

« Sensor. Das Attribut Sensor enthalt eine Referenz auf den Sensor, der diesen Sensorwert
produziert hat. Dem SES ist die ID des Sensors bekannt.

« Wert. Hier wird der eigentliche Sensorwert angezeigt. Um verschiedenartige Sensortypen zu
unterstiitzen, diirfen keine Einschrankungen an den Datentyp gesetzt werden. Der Wert wird
durch das SES erfasst.

+ Timestamp. Durch einen Zeitstempel wird definiert, wann ein Sensorwert entstanden ist. Der
Zeitstempel muss bereits vor der Situationserkennung durch das SES gesetzt werden.

+ Qualitit. Neben der Qualitéit des Sensors kann auch jeder Sensorwert einen zusétzlich defi-
nierten Qualitatswert besitzen. Dieser liegt zwischen 0 und 1.

4.7.5. Things

Things stellen die virtuelle Représentation eines physischen Objekts dar, um diese anschlieflend
tiberwachen zu konnen. Dabei gibt es keinerlei Einschrankungen beziiglich des Objekts, solange es
Sensoren besitzt.

« Name. Der Name dient neben der ID zur intuitiven Identifikation des Sensors. Verschiedene
Sensoren konnen den selben Namen besitzen. Als Richtlinie sollte darauf geachtet werden, dass
Namen nicht doppelt existieren.

« URL. Dieses Attribut beschreibt die URL, unter welcher das Objekt verfiigbar ist.

« Koordinaten. Um im Situation Dashboard eine Karte aller iiberwachten Objekte anzeigen zu
konnen, muss jedes Objekt Koordinaten besitzen, die den Standort spezifizieren.

« Sensor. Ein Objekt kann mehrere Sensoren besitzen. Diese werden innerhalb eines Arrays tiber
die jeweilige ID referenziert.

40

5. Implementierung des Prototyps

In diesem Kapitel wird eine prototypische Implementierung der im vorangegangenen Kapitel vorge-
stellten Konzepte entwickelt. Zunichst wird die von SitOPT verwendete Datenbank vorgestellt, im
Anschluss die darauf aufbauende Situationsverwaltung. Es werden Details der implementierten Funk-
tionen dargestellt sowie das Framework Swagger, welches zum Dokumentieren und Implementieren
der Situationsverwaltung verwendet wurde. Zusétzlich wird in Kapitel 5.6 das Setup dieses Prototyps
ausfiihrlich beschrieben.

5.1. Datenbank

SitOPT verwendet die dokumentenorientierte Datenbank CouchDB [CDbb]. Zu beachten ist, dass
im Rahmen des Projekts auch andere Arten von Datenhaltungssystemen zum Einsatz kommen.
Beispielsweise werden die Sensoren in ihrer nativen Form als Ontologien gespeichert, die Daten auf
der Workflowebene innerhalb eines SQL-Datenbanksystems.

CouchDB (Couch fiir "cluster of unreliable commodity hardware") ist seit 2005 unter der Apache-Lizenz
verfiigbar und eine in Erlang von Damien Katz entwickelte dokumentenorientierte NoSQL-Datenbank
[SSK11]. In CouchDB werden die Daten in JSON-Dokumenten gespeichert. Die Dokumente kénnen
in verschiede Databases untergliedert werden. Dabei werden die Daten innerhalb des Dokuments
in Schliissel-Wert-Paaren geordnet. Zusétzlich wird der Schliissel _id fiir eine eindeutige Identifizie-
rung hinzugefiigt. Das Feld _rev enthélt die Revisionsnummer, welche zur Versionsverwaltung der
Dokumente verwendet wird. Um bei gleichzeitigem Schreibzugriff auf ein Dokument Konflikte zu
vermeiden, muss die Revisionsnummer bei einem Schreibvorgang mitangegeben werden. CouchDB
verwendet Optimistic Locking, d.h. der Nutzer, der zuerst einen Schreibvorgang beendet, ist privi-
legiert, dem zweiten Benutzer wird ein Konflikt gemeldet [ALS10, pp. 39-40]. Dokumente kénnen
Referenzen zu anderen Dokumenten aufweisen, allerdings wird die referenzielle Integritit nicht
uberprift, was dazu fithren kann, dass ein referenziertes Dokument bereits geloscht oder verschoben
wurde [SSK11].

5.1.1. Views

Einzelne Dokumente kénnen direkt per Angabe der ID angefordert werden. Werden andere Attribute
des Dokuments fiir die Suche verwendet, mussen Views verwendet werden. Views werden mittels
Map/Reduce erzeugt. Die Map-Funktion iteriert iiber alle Dokumente und gibt die Ergebnisse zuriick,
die durch eine Funktion gefiltert worden sind. Das Ergebnis wird als Array von Key-Value-Paaren
zuriickgegeben. Die Reduce-Funktion ist optional und dient dem Zusammenfassen von Werten, die bei

41

5. Implementierung des Prototyps

der Map-Funktion entstanden sind. Wird eine View das erste Mal mittels der Map-Funktion erstellt,
wird ein B-Baum erstellt, der diese View enthalt. Jeder weitere Zugriff auf Daten, die in dieser View
enthalten sind, erfolgen deutlich schneller, da direkt auf den B-Baum zugegriffen wird [ALS10, pp.
53-55].

function(doc){
emit([doc.thing, doc.situationtemplate], doc._id);

}
Listing 5.1: CouchDB Views mit 2 Attributen

Dieser View geht tiber alle Dokumente und enthalt als key ein Array mit den Inhalten thing und
situationtemplate und als value die ID des Dokuments. Dieser View wird verwendet, um zu iiberpriifen,
ob eine vom SES gelieferte Situation bereits vorhanden ist oder nicht. Eine Situation lasst sich
eindeutig uiber die ID identifizieren. Das SES besitzt diese ID nicht. Stattdessen lasst sich eine Situation
auch eindeutig tiber die Kombination von Objekt und Situationstemplate identifizieren, welche dem
SES bekannt sind. Der obere View ermdglicht die Suche nach dieser Kombination und gibt, wenn
vorhanden, die ID des Dokuments als Value zuriick. Mit dieser ID wird die neue Situation in der
Datenbank gespeichert - es wird ein Update durchgefiihrt. Ansonsten wird ein neues Dokument mit
einer neuen ID fiir die Situation angelegt. Ein Aufruf dieses Views in Node.js sieht wie folgt aus:

var database = conn.database(’situations’);
database.view(’'situations/existing,
{key: [req.body.thing, req.body.situationtemplatel]},
function(err,doc)
// doc == Array mit dem gesuchten Dokument

Listing 5.2: Aufruf in Node.js mit cradle

Views existieren fiir bestimmte Databases. Wie zu sehen ist, wird zuerst eine Verbindung zu der
Database situations aufgebaut und anschlieflend der View existing abgefragt. Views werden in Desi-
gndokumenten, im Beispiel mit Namen situations, untergeordnet, um die Verwaltung von Views zu
vereinfachen (dhnlich einer Ordnerstruktur). Als key wird das referenzierte Thing und Situationtem-
plate iibergeben. Im Anhang werden alle von der Situationsverwaltung verwendeten CouchDB Views
aufgelistet.

5.1.2. Changes Feed

CouchDBs API besitzt eine Ressource namens _changes. Angewendet auf eine Listenressource liefert
_changes jede bis dahin erfolgte Verdnderung an den Benutzer. Das wiederholte Anfragen nach
Verdnderungen - genannt Polling - ist unerwiinscht. Bei jeder Abfrage wiirde eine neue Verbindung
aufgebaut werden miissen, auch wenn es zu keiner Verianderung kam. Die Einstellung feed=continuous
umgeht dieses Problem, indem die Verbindung so lange bestehen bleibt, bis sie entweder explizit
geschlossen wird oder nachdem nach einem benutzerdefiniertem Intervall keine Veranderungen
eingetreten sind. Solange die Verbindung offen ist, wird jede Verdnderung an den Benutzer gesendet.
Wird das Attribut include_docs gesetzt, wird das Dokument, das die Verdnderung herbeigefiithrt hat,
mitgesendet [CDba].

42

5.2. Situationsverwaltung

5.1.3. Replikation

CouchDB verwendet eine Peer-to-Peer-Architektur. Der Benutzer kann selbst definieren, zwischen
welchen Knoten Replikationen stattfinden sollen. Da dies fiir jeden Knoten im System erfolgen muss,
entsteht bei hoher Anzahl von Knoten ein erheblicher Aufwand, weshalb man in der Praxis bei
groflerer Anzahl von Knoten schliellich auf eine Master-Slave-Replikation zuriickgreift [Kra].

Um Daten zu replizieren, miissen die Quelldatenbank und die Zieldatenbank bestimmt werden.
Die Replikation kann unidirektional oder bidirektional erfolgen. CouchDB iiberpriift daraufthin die
Unterschiede der Datenbanken und repliziert die Dokumente der Quelldatenbank, die nicht in der
Zieldatenbank enthalten sind. Sind in beiden Datenbanken jeweils Dokumente mit der selben _id, so
lasst sich mittels der Versionsnummer _rev herausfinden, welches das aktuellere Dokument ist. Die
Replikation ist inkrementell. Sollte also durch einen Netzwerkfehler die Replikation unterbrochen
werden, kann CouchDB genau an der Stelle weitermachen, wo es unterbrochen wurde. Mittels der
Eigenschaft continuous tiberpriift CouchDB stets die Unterschiede der Datenbanken und repliziert
bei auftretenden Anderungen automatisch [CDbd].

5.2. Situationsverwaltung

CouchDB besitzt bereits eine REST-konforme HTTP Schnittstelle [CDbc]. Im Rahmen dieser Ar-
beit fehlen der Schnittstelle jedoch essentielle Funktionalititen wie das Uberpriifen referenzieller
Integritit und Schemavalidierung, was dazu fiithrte, dass auf Basis der CouchDB API die Situations-
verwaltung implementiert wurde. Alle an die Datenbank gerichteten Anfragen gehen zuerst an die
Situationsverwaltung, welche anschliefend an CouchDB weitergeleitet werden. Da grofler Wert auf
die Weiterentwicklung dieser Arbeit gesetzt wird, wurde Swagger verwendet - ein Framework fiir
Schnittstellen, welches eine einfache Moglichkeit darstellt, die Funktionalititen einer Schnittstelle
visuell darzustellen und zu dokumentieren. Zusitzlich lassen sich alle Funktionen ohne Implemen-
tierung eines Clients testen, was fiir die Entwicklung eines Prototyps von Vorteil ist. Der Swagger
Editor dient der Erstellung einer von Swagger lesbaren Schnittstellenspezifikation. Standardmafig
wird YAML (wahlweise JSON) als Auszeichungssprache verwendet. An folgendem Beispiel soll die
Vorgehensweise zur Erstellung einer mittels Swagger spezifizierten Funktion erldutert werden:

/situations/byID:

X-swagger-router-controller: situations

get:
tags:

- situation

summary: Get situation by ID
description: Get the specified situation. Returns a document.
operationId: situationByID

parameters:
- name: ID
in: query
description: ID of situation
required: true

43

5. Implementierung des Prototyps

type: string

responses:
"200":
description: Situation found
schema:
$ref: "#/definitions/Situation
"404":
description: Not found
schema:
$ref: "#/definition/ErrorResponse

Listing 5.3: Swagger Spezifikation

/situations/bylD Get situation by 1D

Implementation Notes
Get the specified situation. Returns a document.

Response Class (Status 200)
Model Schema

“thing": "string",
"situationtemplate™: "string",
"occured”: true,
"name”: "string",
"sensorvalues": [
{
“sensor”: "string”,

LIPES PP

Response Content Type | application/json ¥

Parameters
Parameter Value Description Parameter Type Data Type
1D ID of situation query string

Response Messages

HTTP Status Code Reason Response Model Headers
484 Not found Model Schema
{
"message": "string”
}
Try it out!

Abbildung 5.1.: Swagger Spezifikation - GET /situations/byID (1)

Das Modul SwaggerUI erstellt auf Basis dieser Spezifikation die in Abbildung 5.1 zu sehende Darstel-
lung. Der Codeausschnitt erstellt den HTTP-Request GET /situations/byID. x-swagger-router-controller
definiert, in welchem Modul die unter operationID spezifizierte Funktion situationByID zu finden ist,
um den HTTP GET Request auszufithren. summary wird fiir eine kurze Beschreibung (in Abbildung
5.1 oben rechts) verwendet, description fiir eine ausfithrlichere Beschreibung und weitere Details

44

5.2. Situationsverwaltung

Curl

curl -X GET --header "Accept: application/json" "http://192.168.209.200:18018/situations/byID?ID=523ba6c5472935c580c74026720@chb5F"

»
Request URL

http://192.168.2@89.200:10818/situations/byID?ID=523ba6c5472935c588c740267280ch5f

Response Body

{

"_id": "523babc5472935c580c748267200ch5f",

"_rev": "278-acl5883cfab800e6963194cBad318a41",

"thing": "1",

"timestamp”: “1",

"situationtemplate”: "A@",

"occured”: true,

"name": "SystemFailure”,

"sensorvalues™: [
"523ba6c5472935c588c740267208c 86",
"523babc5472935c588c7402672808aa49" ,
"523babc5472935c58@c740267 288b%e "

1
}

Response Code

208

Response Headers

"content-type": "application/json"

Abbildung 5.2.: Swagger Spezifikation - GET /situations/byID(2)

(beides optional). parameters definiert die Benutzereingabe und zugehorige Eigenschaften, in diesem
Fall die ID, die zur Identifikation der Situation verwendet werden soll. Unter responses werden alle
moglichen Statuscodes angegeben, die von der Situationsverwaltung zuriickgegeben werden kon-
nen. Das zugehorige Attribut schema definiert das Modell der Antwort. Hierfiir werden Referenzen
auf (auch in der YAML Spezifikation) vordefinierte Modelle gesetzt. Unter #/definition/Situation ist
das in Kapitel 4.7.1 beschriebene Situationsmodell definiert. Unter Angabe einer ID und dem Klick
auf den Button Try if out! wird die in Abbildung A.5 zu sehende Ansicht ausgefahren. Es wird ein
aquivalenter HTTP GET Request mit dem Kommandozeilentool cURL angezeigt sowie die Request
URL. Der Response Body enthilt die Antwort auf den Request und zeigt die gesuchte Situation an.
Zusitzlich werden die Metadaten der Antwort - der Response Code 200 und der Content-Type (das
Datenformat der Antwort) application/json. Der gesendete und erhaltene Content-Type wurde zu
Beginn der YAML-Datei (nicht im Listing enthalten) spezifiziert und gilt somit fir alle Funktionen.
Es ist moglich, einzelnen Funktionen andere Content-Types zuzuweisen beziehungsweise mehrere
Content-Types zuzulassen.

45

5. Implementierung des Prototyps

5.2.1. Funktionen

Im Folgenden werden Details zu den von der Situationsverwaltung bereitgestellten Funktionen
vorgestellt. Die Funktionen jeder Ressource, dargestellt in Swagger, sind im Anhang dieser Arbeit zu

finden.

« GET. Jede Ressource enthilt verschiedene HTTP GET Request Methoden. Wird die ID als
Suchparameter angegebenen, wird das jeweilige Dokument zuriickgegeben. Wird der Name
verwendet, wird ein Array mit allen Dokumenten zuriickgegeben, die den Namen enthalt,
mit Ausnahme der Ressource sensorvalues, die keinen Namen enthalt. Ein weiterer HTTP
GET Request ermoglicht, die gesamte Listenressource zu erhalten. Die Ressource situation
enthilt zudem einen HTTP GET Request, dessen Suchparameter thing und situationtemplate
sind (Kombination identifiziert Situation eindeutig). Des Weiteren kann der Benutzer mittels
GET situations/changes alle derzeitigen Anmeldungen des Situation Handlers erhalten. Bei
der Ressource situationtemplates ist ein HTTP GET Request vorgesehen, der den XML-Inhalt
zuriickgibt (nicht implementiert).

« POST. Jede Ressource enthilt eine HTTP POST Request Methode, mit der es moglich ist, eine
neue Ressource zu erstellen. Mittels POST /situations/changes konnen Anmeldungen durchge-
fuhrt werden. Mit POST /situationtemplates/{id}/{templatename} kann der Benutzer die XML-
Datei des Situationstemplates als Anhang an das jeweilige Dokument hinzufiigen.

« DELETE. Ein Loschvorgang einer Ressource erfolgt iiber deren ID. Hierbei findet kein kaska-
dierender Loschvorgang statt. Uber DELETE /situations/changes konnen Anmeldungen geloscht
werden.

« PUT. Im Prototyp ist es derzeit nicht moglich, Ressource mit einem HTTP PUT Request
zu verandern. Die einzige HTTP PUT Request Methode ist PUT /situations/occured, mittels
derer das occured-Attribut einer Situation zu Testzwecken verandert werden kann, ohne eine
Situationserkennung starten zu miissen.

5.2.2. Changes Feed

Der in Kapitel 5.1.2 vorgestellte Changes Feed von CouchDB stellt die Grundlage fiir den Changes Feed
der Situationsverwaltung dar. Folgende Herausforderungen an den Changes Feed der Situationsver-
waltung sind zu erfiillen. Die Anfrage an die CouchDB changes-Ressource liefert alle Anderungen aller
Situationen, was selten erwiinscht ist. Workflows sind nur an Situationen interessiert, deren Giltigkeit
sich dndert (occured-Attribut wechselt von true auf false beziehungsweise umgekehrt). Zusitzlich
benétigt nicht jeder Workflow alle Situationsdnderungen. Demnach muss es méglich sein, sich nur
auf bestimmte Situationen registrieren zu kénnen und nur benachrichtigt zu werden, wenn sich die
Giltigkeit dieser Situation verandert. Ein weiterer Nachteil ist, dass CouchDB die Verdnderungen
direkt an den Benutzer zuriicksendet. Da es sinnvoller ist, die Situationen direkt an die angemeldeten
Workflows zu senden, muss bei der Anmeldung die Moglichkeit bestehen, eine Callback URL anzuge-
ben. Andert sich die Giiltigkeit einer Situationen, wird iiberpriift, ob Anmeldungen fiir diese Situation
bestehen. Falls ja, wird die Situation an alle angegebenen Callback URLs gesendet. Wie in Abbildung
5.3 zu sehen ist, fragt die Situationsverwaltung bei CouchDB die changes-Ressource an. Benutzer und

46

5.2. Situationsverwaltung

Registrierung auf Registrierung auf
Ve ~ /situations/situationID - jede Verdnderung -
(_— _ >

Situationsverwaltung

Situation Handler CouchDB API

- speichert Anmeldungen
(4—L - filtert Ergebnisse]
A sendet gefilterte sendet alle

Ergebnisse Veranderungen

Abbildung 5.3.: API Kommunikation

Workflows registrieren sich bei der Situationsverwaltung. Jede Verdnderung von CouchDB wird an
die Situationsverwaltung gesendet, welche die Dokumente filtert und an die entsprechenden Callback
URLs sendet.

Die von der Situationsverwaltung bereitgestellten Operationen sind:

« POST situations/changes. Die Anmeldung erfolgt iiber einen HTTP POST Request. Da die
ID der Situation dem Benutzer im Normalfall nicht bekannt ist, werden als Parameter die ID
des Situationstemplates und die ID des things angegeben, um sich auf eine bestimmte Situation
anzumelden. Werden diese Parameter nicht angegeben, erfolgt die Anmeldung auf alle neu
erkannten Situationen. Die Angabe einer Callback URL ist obligatorisch. Der Boolean-Parameter
once gibt an, ob Situationsdnderungen dauerhaft an die Callback URL gesendet werden sollen
oder nur einmalig. Beim Setzen des Parameters auf true wird die néchste auftretende Situati-
onsanderung an die Callback URL gesendet und daraufhin die Anmeldung geldscht. Meldet
sich ein Benutzer auf alle Situationsdnderungen an, werden alle vorherigen Anmeldungen
dieses Benutzers geloscht und durch die neue Anmeldung ersetzt. Mogliche Fehlermeldungen
sind 404, falls eine vom Benutzer spezifizierte Situation nicht gefunden werden konnte und
400, falls nur einer der beiden Parameter ThingID und SituationtemplatelD angegeben wurde.
Sendet CouchDB Veréinderungen an die Situationsverwaltung, wird ermittelt, ob diese Situation
Anmeldungen enthélt. Falls ja, wird diese an die hinterlegte Callback URL mittels eines HTTP
POST Requests gesendet.

« GET situations/changes. Diese Funktion gibt alle bestehenden Anmeldungen zuriick. Der
optionale Parameter Callback URL wird angegeben, wenn nur Anmeldungen, welche die spezifi-
zierte Callback URL verwenden, zuriickgegeben werden sollen. Mogliche Fehlermeldung ist 404,
wenn unter der angegebenen Callback URL keine Anmeldungen gefunden werden konnten.

- DELETE situations/changes. Um nicht weiterhin tiber Situationséinderungen benachrichtigt
zu werden, konnen mit dieser Funktion Anmeldungen gel6scht werden. Soll eine bestimmte
Anmeldung geloscht werden, erfolgt dies unter der Angabe der Parameter ThingID, Situationtem-
platelD sowie CallbackURL. Wird nur die Callback URL angegeben, werden alle Anmeldungen,
die diese Callback URL enthalten, geloscht. Die Fehlermeldungen sind analog zur Funktion
POST situations/changes.

47

5. Implementierung des Prototyps

5.2.3. Situationsobjekt

Um zu iiberpriifen, ob alle benétigten Attribute eines Dokuments bei einem POST-Request vorhanden
sind, fithrt Swagger eine Schemavalidierung anhand des definierten Situationsobjekts durch. Ein
Situationsobjekt, das von einem SES an die Situationsverwaltung geschickt wird, sieht wie folgt aus:

{
"thing": "ThingID",
"situationtemplate": "SitTempID",
"timestamp": "string",
"occured": true,
"sensorvalues": [

{
"sensor": "SensorID",
"value": 0,
"timestamp": "string",
"quality": ©

}

]
}

Listing 5.4: Situationsobjekt

Zu beachten ist, dass dieses Situationsobjekt nicht mit dem Datenmodell aus Kapitel 4.7.1 iiberein-
stimmt. Metadaten wie z.B. der Name der Situation werden tiber das referenzierte Situationstemplate
ausgelesen und dem Situationsobjekt in der Situationsverwaltung hinzugefiigt. Die Attribute thing
und situationtemplate referenzieren die IDs des iiberwachten things sowie das verwendete Situati-
onstemplate. Diese sind zum Zeitpunkt der Instanziierung bekannt und miissen dem Situationsob-
jekt hinzugefiigt werden, um eine Situation eindeutig zu definieren. Die ID einer Situation ist dem
SES nicht bekannt, zumal neu erkannte Situationen noch keine ID besitzen. Mittels der Funktion
checkID(documentID, databaselD, callback) wird zuerst tiberprift, ob die ID des things vorhanden ist,
um fehlerhafte Referenzen zu verhindern. Da nur iberpriift werden muss, ob diese ID vorhanden
ist, ist es von Vorteil, nur die Metadaten des Dokuments mittels der documentID abzufragen, um die
Geschwindigkeit zu erh6hen und die Bandbreite weniger zu belasten. Um den Namen der Situation
zu bestimmen, wird das referenzierte Situationstemplate mittels einer GET Abfrage unter Angabe
der ID gelesen. Werden beide IDs gefunden, wird iiberpriift, ob sich die Giiltigkeit der Situation
(occured-Attribut) gedndert hat. Falls ja, werden zuerst die Sensorwerte der Situation sensorvalues mit
der Funktion SaveSV eingefiigt, um diese anschlieffend im Situationsobjekt referenzieren zu konnen.
Anhand des sensor-Attributs eines Sensorwerts wird erkannt, ob bereits Sensorwerte dieses Sensors in
der Datenbank vorhanden sind. Falls ja, wird ein Update dieses Sensorwerts durchgefithrt. Ansonsten
wird ein neues Dokument fiir diesen Sensorwert erstellt und eine neue ID zugewiesen. Die IDs der
Sensorwerte sind nicht bekannt, weshalb der View sensorvalues/existing verwendet wird, welcher als
key die Sensor-ID sensor enthilt und das als value das Dokument. Der Callback der Funktion SaveSV
enthalt alle IDs der Sensorwerte der einzufiigenden Situation, so dass diese referenziert werden kon-
nen. Anschlielend wird tiberpriift, ob Situationen dieses Typs (selbe ID) bereits bestehen. Wie bereits
beschrieben, lasst sich eine Situation neben der ID iiber die Kombination der IDs des iiberwachten
things und des verwendeten Situationstemplates identifizieren. Der View situations/existing enthalt
diese Kombination als key und als value das Dokument. Wird eine bestehende Situation identifiziert,
wird ein Update ausgefiihrt, anderenfalls ein neues Dokument erstellt. Mogliche HT TP Statuscodes

48

5.3. Transformation Mapper

NodeRed
(JSON —
Situations- Transformation Esper
Template — Maboer —
(XML / JSON) PP
Weitere

CEP-Systeme

Abbildung 5.4.: Transformation Mapper

sind Reference Errors (404), wenn die IDs des things und des Situationstemplates nicht gefunden wer-
den. Kann keine Verbindung zu CouchDB aufgebaut werden, entsteht der Fehlercode 504. Wird eine
neue Situation erstellt, wird 201, bei Updaten einer Situation der Statuscode 200 zuriickgesendet.

5.3. Transformation Mapper

Der Transformation Mapper verwaltet alle Transformationen von Situationstemplates. Da im Rahmen
dieser Arbeit nur Node-RED als SES zur Verfiigung steht, wird das Situationstemplate in ein Node-
RED-spezifisches Format transformiert. Dazu wird der in Java geschriebene Transformation Mapper
als .jar-Datei im Situation Dashboard aufgerufen, wenn eine Situationserkennung gestartet wird. Der
beigefiigte XML Inhalt des Situationstemplates wird ausgelesen und als Argument beim Aufruf des
Transformation Mappers verwendet. Zusatzlich wird die URL des Sensors mitgegeben. In Zukunft
soll die URL des Sensors angegeben werden, die iiber das Attribut sensor des zu iiberwachenden
Things und anschlieend tiber das Attribut url des Sensors referenziert ist. Das Boolean-Argument
doOverwrite gibt an, ob bereits laufende Situationserkennungen iiberschrieben werden sollen. Wie in
Abbildung 5.3 zu sehen ist, soll der Transformation Mapper in Zukunft eine Vielzahl unterschiedlicher
SES unterstiitzen.

5.4. Situationserkennung

Node-RED [nr] stellt auf Basis von Node.js ein visuelles Tool bereit, um das Internet Of Things darzu-
stellen. Node-RED bietet die Moglichkeit, verschiedene things (z.B. Hardwaregerite, Schnittstellen

49

5. Implementierung des Prototyps

cpuSensor —_— % CPU load
inject o memorySensor — MB RAM free [= combing Sensors [J===() Situation
watchdogSensor — StatusCodeChecker

Abbildung 5.5.: Node-RED Flow

oder Onlinedienste) als Knoten zu verbinden und deren Interaktion zu erméglichen (sieche Abbildung
5.5). Ein Inject-Knoten wird als Startpunkt gesetzt und definiert die Intervallgré3e der Situationserken-
nung. Zusatzlich ist spezifizierbar, dass die Situationserkennung nur zu bestimmten Zeitpunkten oder
Zeitraumen durchgefiithrt werden soll (z.B. miissen nachts stillgelegte Maschinen nicht iiberwacht
werden). Die Sensorwerte werden iiber eine URL bereitgestellt, welche bei der Instanziierung der
Uberwachung angegeben wird. Mittels HT TP Request Knoten werden anschlieflend die Sensorwerte
von RAM und CPU ausgelesen. Zusitzlich wurde ein Watchdog eingesetzt, der uberpriift, ob die
iiberwachte Maschine verfiigbar ist. Funktionsknoten konnen fiir die Erstellung von in JavaScript
geschriebenen Funktionen verwendet werden, um aus den Sensorwerten deduzierten Kontext zu
erstellen. Zusitzlich werden Metadaten wie der Zeitstempel der Situationserkennung erstellt. Der
Prototyp verwendet die Funktionsknoten hauptsichlich zur Generierung des Situationsobjekts. Der
Funktionsknoten combine Sensors wird verwendet, um die im Situationstemplate definierten Kondi-
tionen an die Sensorwerte zu tiberpriifen und anschlieflend festzulegen, ob die Situation giiltig oder
ungiiltig ist. Ein weiterer HT TP Request Knoten wird benétigt, um einen HTTP POST Request an die
Situationsverwaltung zu senden. Im body des Requests befindet sich das Situationsobjekt mit allen
Sensorwerten. Griine Knoten dienen ausschliefllich Debug-Zwecken. Folgendes Listing 5.5 zeigt das
zur Abbildung 5.5 zugehorige Situationstemplate im XML-Format.

<?xml version="1.0" encoding="UTF-8"?7>
<SituationTemplate id="A0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="situation_template_draft0l.xsd"
name="SystemObservation">
<Situation id="Al" name="SystemFailure">
<operationNode id="A3" name="combine Sensors">
<type>or</type>
<parent parentID="A10"/>
</operationNode>
<conditionNode id="A4" name="% CPU load">
<type>type</type>
<measureName>measureName</measureName>
<opType>greaterThan</opType>
<condValue>
<value>70</value>
</condValue>
<parent parentID="A3"/>
</conditionNode>
<conditionNode id="A8" name="MB RAM free">

50

5.5. Situation Dashboard

<type>type</type>
<measureName>measureName</measureName>
<opType>lowerThan</opType>
<condValue>
<value>10</value>
</condValue>
<parent parentID="A3"/>
</conditionNode>
<conditionNode id="A9" name="StatusCodeChecker">
<type>type</type>
<measureName>measureName</measureName>
<opType>notEquals</opType>
<condValue>
<value>200</value>
</condValue>
<parent parentID="A3"></parent>
</conditionNode>
<contextNode id="A5" name="memorySensor">
<parent parentID="A8"></parent>
</contextNode>
<contextNode id="A6" name="cpuSensor">
<parent parentID="A4"></parent>
</contextNode>
<contextNode id="A7" name ="watchdogSensor">
<parent parentID="A9"/>
</contextNode>
<situationNode name="machine_failed" id="A10"/>
</Situation>
</SituationTemplate>

Listing 5.5: Situationstemplate in XML

Das Situationstemplate SystemObservation definiert die Situation SystemFailure. Alle Funktionsknoten
von Node-RED sind in der XML-Datei spezifiziert. Inject-, Debug-, und HTTP Request-Knoten sind
Node-RED-spezifisch und werden bei der Transformation erzeugt. Die Konditionen fiir die einzelnen
Sensorwerte sind in den jeweiligen conditionNodes enthalten. Wenn der CPU load gré8er als 70(%) ist,
weniger als 10 MB RAM free sind, und der StatusCodeChecker einen anderen HTTP-StatusCode als
200 (200 = OK) liefert, ist die Situation giiltig, anderenfalls ungiiltig. Die Javascript-Funktionen sind
ebenfalls Node-RED-spezifisch und werden im Transformation Mapper deklariert. Die contextNodes
definieren die benétigten Sensorwerte.

Node-RED unterstiitzt zudem benutzerspezifizierte Knoten. Direktverbindungen mit Datenbanken
(z.B. MongoDB) oder Messaging Services (MQTT) verringern den Entwicklungsaufwand erheblich. In
Zukunft sollen weitere SES wie Esper oder Odyseus unterstiitzt werden. Dementsprechend muss der
Transformation Mapper die zugehorigen Transformationen implementieren.

5.5. Situation Dashboard

Das Situation Dashboard stellt die Benutzerschnittstelle zu SitOPT dar. Fiir das Situation Dashboard
wurde das asynchrone Event-basierte Framework Node.js verwendet. In Kombination mit dem darauf

51

5. Implementierung des Prototyps

Mame: Virtual Machine

Monitored: true

Location: 48.745578, 9.106802

ID: 1

URL: 192.168.209.200

Description: OpenStack Machine located at University of Stuttgart, IPVS

Situation Templates: | SystemObservation AD ¥
Situation Recognition System: | ModeR ed v
Starte Situationserkennung

Situations:

4 SystemFailure: - Situation is valid

Derived from situation template "AD"

Cluality: 1

Recognized at "01:28:21 CEST Sonntag, 16. August 2015"

Abbildung 5.6.: Situation Dashboard - Things

aufbauenden Web-Framework Express.js lasst sich auf einfache Weise eine Website mit zahlreichen
Middlewares und externen Bibliotheken aufbauen. Aufgabe des Situation Dashboards ist es, dem
Benutzer eine visuelle Darstellung der Datenbank ohne direkten Datenbankzugriff zu erméglichen.
Abbildung 5.6 zeigt einen Ausschnitt der Seite Things. Zu sehen ist ein Thing und dessen Attribute.
Ob das Thing derzeit tiberwacht wird, gibt das Attribut monitored an. Uber einen Klick auf die
Koordinaten des Things wird eine Google Maps Seite mit diesen Koordinaten get6ffnet. Genauere
Koordinaten und Umgebungen konnen ein Bild von Maschinen innerhalb einer Fabrik anzeigen, was
die Ubersicht und Verwaltung der Things erleichtert. Uber zwei Dropdown Boxes kann das zum
Uberwachen verwendete Situationstemplate und SES ausgewihlt werden. Wird der Button Starte
Situationserkennung betétigt, startet die Situationserkennung und eine neue Seite mit einer Instanz
von Node-RED wird geoffnet. Voraussetzung dafiir ist, dass Node-RED gestartet wurde. Zusétzlich
wird eine Liste aller Situationen des Things angezeigt. Ein Icon stellt die Situation bildlich dar.

Um entscheiden zu kénnen, welches Situationstemplate verwendet werden soll, werden alle Situation-
stemplates auf der Seite Situationstemplates aufgelistet. Eine kurze Beschreibung soll erkldren, welche
Situationen aus dem entsprechenden Situationstemplate deduziert werden kénnen. Unter API Refe-
rence wird die bereits besprochene Swagger-Dokumentation detailliert angezeigt. Zusétzlich lassen
sich auf dieser Seite alle Funktionen testen. Der Reiter NodeRed 6ffnet eine Instanz von Node-RED

52

5.6. Setup

und zeigt alle laufenden Situationstiberwachungen an. Beim Starten einer Situationserkennung wird
Node-RED automatisch gedfinet.

5.6. Setup

Im Folgenden werden die notwendigen Schritte fiir das Setup von SitOPT beschrieben. Alle benétigten
Module werden im Repository mormulms/SitOPT bereitgestellt. Das Setup wurde auf einer virtuellen
Maschine von OpenStack mit dem 32-Bit Betriebssystem Windows 7.0 Professional mit Service Pack
1 getestet.

Die Basis aller Module ist das Framework Node.js !. Nach der Installation kénnen mittels des Komman-
dozeilenaufrufs node mit Node.js erstellte Anwendungen gestartet werden. Sollte das Kommando node
nicht erkannt werden, muss Node.js dem Systempfad hinzugefiigt werden. Als Kommandozeilentool
wird die Windowskonsole cmd verwendet.

5.6.1. CouchDB

Die Installation der Datenbank CouchDB 2 erfolgt iiber den Windows (x86) Installer der Version
1.6.1. Nach erfolgreicher Installation startet CouchDB und wird auch bei Neustart der Maschine
automatisch gestartet. Unter 127.0.0.1:5984/_utils (alternativ localhost:5984/_utils) wird die grafische
Oberfliache Futon angezeigt. Wird der Port, unter dem CouchDB bereitgestellt wird, verdndert, miissen
entsprechende Anderungen in der Situationsverwaltung und dem Situation Dashboard vorgenommen
werden. Um einen Remotezugriff auf CouchDB zu erméglichen, miissen Verdnderungen an der
Konfiguration durchgefithrt werden. Uber Futon kann die Konfiguration angezeigt werden. Unter
dem Feld bind_address muss der Wert (standardmaflig 127.0.0.1) in 0.0.0.0 geédndert werden, um
allen IPs den Zugriff zu ermoglichen. Zuséatzlich muss der Port 5984 in der Windows Firewall unter
Eingehende Regeln als neue Regel definiert werden. Der Remotezugriff erméglicht die Replikation
von Datenbanken. Auf diese Weise konnen die benétigten Views aus der Datenbank, die unter
192.168.209.246:5984 definiert sind und fiir die Verwendung von SitOPT benoétigt werden, repliziert
werden. Abbildung 5.7 zeigt das iiber Futon erreichbare Replicator Tool.

Replicate changes from: to:
Local Database:| _replicator v ®' Local database: /things
® Remote database: |http://192.168.209.200:5984/things - Remote database: |http://

Abbildung 5.7.: CouchDB Replicator Tool

Unter 192.168.209.246 wird der Prototyp von SitOPT ausgefiihrt. Die dortige CouchDB Instanz enthalt
alle benotigten Views und Daten, um das in dieser Arbeit vorgestellte Beispiel zu demonstrieren. Die

'https://nodejs.org/
*http://couchdb.apache.org/

53

5. Implementierung des Prototyps

Replikation funktioniert nur fiir einzelne Databases (in Abbildung 5.7 am Beispiel von things darge-
stellt), weshalb diese fiir jede Database things, situations, sensors, sensorvalues und situationtemplates
separat durchzufihren ist.

5.6.2. Node-RED

Node-RED kann iiber den Package Manager npm von Node.js installiert werden. Dieser wird stan-
dardmiBig bei der Installation von Node.js installiert. Uber npm install node-red wird Node-RED
heruntergeladen und im aktuell befindlichen Ordner installiert. Fehler bei der Installation beziiglich
node-gyp schrianken die benétigten Funktionen fiir SitOPT nicht ein und kénnen ignoriert werden
[NRi]. Nach erfolgreicher Installation befindet sich das ausfithrbare Skript red.js im Unterordner
node_modules/node-red und kann in diesem Ordner mittels node red gestartet werden. Standardmafig
wird der Port 1880 verwendet, somit kann unter 127.0.0.1:1880 die gestartete Node-RED Instanz
erreicht werden.

5.6.3. Situation Dashboard

Im Ordner Situation Dashboard wird mit dem Kommando node server.js das Situation Dashboard
gestartet und unter 127.0.0.1:3001 aufrufbar. Uber das Kommando npm install innerhalb des Ordners
werden die in der Datei package.json definierten Module installiert. Sollte es zu Problemen bei der
Installation kommen, ist auf GitHub zusitzlich der Ordner als .rar-Datei vorhanden, in welchem alle
Module bereits installiert sind. Beim Start der Situationserkennung wird der Transformation Mapper
aufgerufen. Dieser ist als .jar-Datei mappingString.jar als GitHub-Release bereitgestellt und ist im
Unterordner /public/mapper/nodeRed einzufiigen. Die alternative mapping.jar-Datei ermoglicht den
Aufruf des Transformation Mappers mit einer XML-Datei statt des XML-Inhalts. Da ein Java-Aufruf
benétigt wird, muss das Java Runtime Environment (JRE ?) installiert sein.

5.6.4. Situationsverwaltung

Wie bei dem Situation Dashboard erfolgt zuerst die Installation der benétigten Node.js-Module iiber
das Kommando npm install. Da die Situationsverwaltung mit Swagger implementiert worden ist, muss
das Node.js spezifische Modul swagger-node * installiert werden. Dies kann ebenfalls iiber den Package
Manager mit npm install -g swagger installiert werden. Unter Umstanden wird die Umgebungsvariable
nicht definiert. In diesem Fall muss der Pfad %Username%/AppData/Roaming/npm dem Systempfad
manuell hinzugefiigt werden. Im Ordner Situationsverwaltung kann daraufthin mit dem Kommando
swagger project start die Situationsverwaltung gestartet werden und die API Dokumentation, die auf
dem Situation Dashboard verlinkt wird, ist zugénglich. Das Kommando swagger project edit startet
den webbasierten Swagger Editor, der die .yaml-Datei und die entsprechende Visualisierung mittels

*https://www.java.com/de/download/
*https://github.com/swagger-api/swagger-node

54

5.6. Setup

SwaggerUI anzeigt. SwaggerUl ist bereits integriert und muss nicht zusatzlich installiert werden. Die
Situationsverwaltung ist unter 192.168.209.246:10010 erreichbar.

5.6.5. Sensoren

Die Sensoren, die Node-RED als Eingabe erhélt, werden durch das Node.js Skript app.js im Ordner
ComputeSensor bereitgestellt. Nachdem die benétigten Module mit npm install installiert worden sind,
wird mit dem Kommando node app.js ein Server gestartet, der HTTP GET Requests iiber den Port
8080 und den entsprechenden Zusatz /cpuusage, /ramusage und /ping entgegennimmt und Node-RED
die Werte liefert.

55

6. Evaluation

6.1. Testumgebung

Als Testumgebung wurde eine 64 Bit Version von Windows 8.1 Professional verwendet. Das zu-
grunde liegende System besteht aus einer Intel Core i5-4300 CPU @ 1.90 GHz und einem 8 GB
Arbeitsspeicher.

6.2. Erflillung der Anforderungen

Im Folgenden wird tiberpriift, ob die in Tabelle 1.1 definierten Anforderungen erfiillt werden.

A1: Erstellung einer Schnittstelle

Die Situationsverwaltung ist als Schnittstelle zwischen einem SES und situationsbezogenen Work-
flows erfolgreich implementiert worden. Die Entkopplung dieser beiden Module fithrt auf beiden
Seiten zu deutlichen Vorteilen. Die Erstellung von situationsbezogenen Workflows wird aufgrund der
geringeren Komplexitit durch den Wegfall der Kontextverarbeitung vereinfacht. Gleichzeitig ist es
mdglich, beliebige SES zu verwenden, ohne Anderungen an den Workflows vornehmen zu miissen.
Die Implementierung des Situation Handlers kann ohne Kenntnisse von SitOPT durchgefiithrt werden
und ist derzeit Teil anderer Arbeiten. Uber die in Kapitel 5.2.1 vorgestellten Funktionen der Situati-
onsverwaltung konnen SES Situationsobjekte speichern und Workflows Situationen beziehen.

A2: Flexibilitat

Die Erstellung der Situationsverwaltung als Schnittstelle ermoglicht gleichzeitig die Modularisierung
aller beteiligten Systeme. Das SES und die situationsbezogenen Workflows agieren unabhingig
voneinander. Die Verwendung alternativer SES wie z.B. Esper ist damit einfach zu bewerkstelligen.
Der Transformation Mapper liegt dem Situation Dashboard als separate Bibliothek bei und kann
somit beliebig erweitert beziehungsweise verandert werden.

57

6. Evaluation

A3: Skalierbarkeit

Die zugrunde liegende Systemarchitektur der Cloud Computing Plattform Openstack bietet die
Moglichkeit fiir ein leicht skalierbares System. Dariiber hinaus wird die NoSQL-Datenbank CouchDB
verwendet, die gegeniiber relationalen Datenbanken besser skaliert. Zusatzlich werden in Kapitel 7.1
die Bereiche von SitOPT beschrieben, die Skalierbarkeit erfordern, sowie mogliche Losungsvorschlige,
die in spiteren Arbeiten implementiert werden konnen.

A4: Benutzerfreundlichkeit

Das Situation Dashboard dient Benutzern als iibersichtliches Interface zur Interaktion mit SitOPT. Der
Benutzer kann von hieraus alle Things iberwachen. Es wurde Wert auf die Ubersichtlichkeit gelegt,
dass ein schneller Uberblick iiber aktuelle Situationen eines Objekts moglich ist. Die Instanziierung ei-
ner Situationsiiberwachung ist dahingehend automatisiert, sodass keine Fehlbedienung des Benutzers
moglich ist. Der direkte Zugriff auf die Datenbank wurde verhindert und stattdessen die Bedienung
iber die Situationsverwaltung ermoglicht. Somit kénnen Benutzer nur zugelassene Funktionen ver-
wenden und nicht beispielsweise benétigte Ressourcen wie Views aus der Datenbank 16schen. Die
Funktionen der Situationsverwaltung wurden mit Swagger bereitgestellt und dokumentiert. Uber
die auf dem Situation Dashboard bereitgestellte Swagger-Dokumentation kann der Benutzer alle
moglichen Funktionen einsehen und direkt testen, ohne einen Client zu implementieren.

A5: Verschiedenartige Sensordaten

Das in SitOPT verwendete Sensormodell beschrankt sich auf die benétigten Attribute eines Sen-
sors beziehungsweise Sensorwertes. Auf diese Weise ist die Verwendung und Weiterverarbeitung
verschiedenartiger Sensordaten moglich.

6.3. Ergebnisse

Das in der Einleitung vorgestellte Szenario wurde als Testszenario verwendet, um Laufzeit und
Datenverbrauch des Prototyps zu ermitteln. Im ersten Testlauf wurde {iber einen Zeitraum von 60
Minuten eine Situationserkennung durchgefiihrt, wobei 63 Situationen erkannt worden sind. Die
Situationserkennung wurde hierbei lokal durchgefiihrt. Eine allgemeine qualitative Aussage tiber
die Haufigkeit einer giltigen Situationserkennung ist meist irrelevant, da diese vom verwendeten
Situationstemplate abhéngig ist. Der erste Testlauf dient zur differenzierten Laufzeiterkennung, dessen
Ergebnisse in Tabelle 6.1 aufgelistet werden. Die Zeile Gesamt beschreibt den Zeitraum zwischen einer
Situationserkennung durch Node-RED und dem erfolgreichen Einfiigen des Situationsobjekts durch
die Situationsverwaltung in CouchDB. Die Gesamtzeit lésst sich aufteilen in die Zeit, die der HTTP
POST Request benétigt (Erkennen der Situation durch Node-RED bis Empfangen des Requests durch
die Situationsverwaltung) und der Zeit, die die Situationsverwaltung benétigt, um das Situationsobjekt
zu speichern. Wie zu sehen ist, benétigt die Situationsverwaltung im Durchschnitt 216,13 ms. Der
Grofteil der Zeit wird fiir den HTTP POST Request verwendet, welcher durchschnittlich 680,07 ms in

58

6.3. Ergebnisse

Laufzeiten Durchschnitt Max Min
Gesamt 896.21 ms 1199 ms 221 ms
Situationsverwaltung 216,13 ms 300 ms 124 ms
HTTP POST 680,07 ms 1003 ms 12 ms
CouchDB changes 4,6 ms 8 ms 1 ms

Tabelle 6.1.: Verschiedene Laufzeiten von SitOPT

Bezug nimmt. Hierbei handelt es sich offensichtlich um Verzégerungen bei Node-RED und hat nichts
mit der Situationsverwaltung zu tun. Des Weiteren wurde gemessen, wie lange CouchDB benétigt, um
die Verdnderungen iiber die _changes-Ressource wieder an die Situationsverwaltung zu senden. Wie in
der Zeile CouchDB changes zu sehen ist, benotigt dieser Vorgang mit einer durchschnittlichen Laufzeit
von 4,6 ms einen unerheblichen Anteil an der Gesamtzeit. Der Zeitpunkt, an welchem die Situationen
bei dem Situation Handler ankommen, wird durch einen weiteren HTTP POST Request bestimmt und
ist fiir die Evaluation des Prototyps nicht von Bedeutung. Mit der Annahme, dass ein weiterer HTTP
POST Request die selbe Laufzeit wie der vorherige besitzt, benétigt eine Situationsbereitstellung
von dem Zeitpunkt, an dem die Situation erkannt wurde und dem Eintreffen der Situation bei dem
Situation Handler mindestens 149 ms (Minimalzeiten addiert, HTTP POST x 2) und maximal 2,134
Sekunden (Maximalzeiten addiert, HTTP POST x 2).

Ein Situationsobjekt ist 4 KB grof3, ein Sensorwertobjekt je etwa 2,6 KB. In diesem Szenario besitzt
eine Situation drei verschiedene Sensorwerte, was bedeutet, dass die Sensorwerte circa 66 Prozent
des Datenvolumens erzeugen. Szenarien, in denen mehr Sensorwerte verwendet werden, erh6hen
den Anteil am Gesamtvolumen drastisch. Bei der Uberwachung von 20 Maschinen mit jeweils drei
Sensorwerten iiber einen Zeitraum von einer Woche mit einem Intervall von einer Sekunden entsteht
somit ein Datenvolumen von etwa 6,97 Gigabyte. Erhoht sich die Sensoranzahl auf 10, erh6ht sich
das Datenvolumen auf etwa 17,7 Gigabyte, wobei die Sensorwerte 86,6 Prozent des Datenvolumens
erzeugen.

59

7. Zusammenfassung und Ausblick

7.1. Zusammenfassung dieser Arbeit

Die vorliegende Arbeit hat Konzepte vorgestellt, mit denen das General-Purpose-System SitOPT wei-
terentwickelt wurde. Es wurde gezeigt, wie die Erstellung einer Schnittstelle die Situationserkennung
von der Anwendungsebene abgekoppelt hat, um eine anwendungsunabhéngige Situationsbereitstel-
lung gewihrleisten zu kénnen. Auf Basis eines Situationsmodells konnen Situationsobjekte erzeugt
werden, die von adaptiven situationsbezogenen Workflows verwendet werden kénnen. Des Weiteren
eroffnet die Speicherung der Situationsobjekte die Moglichkeit, Situationsverlaufe zu erstellen und
damit detaillierte Informationen tiber die iiberwachte Umgebung zu erhalten.

Zuniachst wurden in Kapitel 2 die Grundlagen und Definitionen der zugrundeliegenden Begriffe
erklart. Es wurde gezeigt, welche Eigenschaften von Kontext von Bedeutung sind und wie sich diese
auf die Qualitat des Kontexts auswirken. Anschlieflend wurde eine zusétzliche Abstraktionsebene
hinzugefiigt, um aus den Kontextdaten Situationen zu deduzieren. Es wurde vorgestellt, wie mithilfe
von Situationstemplates Situationen definiert werden kénnen.

In Kapitel 3 wurde der Stand der Technik, der fiir diese Arbeit relevant ist, vorgestellt. Hier ist gezeigt
worden, welche Vorteile SitOPT aus den Technologien NoSQL und Cloud Computing erschlieffen
kann. Des Weiteren wurde das Complex Event Processing vorgestellt, die Grundlage vieler Systeme,
die fiir eine Situationserkennung verwendet werden konnen.

Kapitel 4 stellt die erarbeiteten Konzepte und Architektur von SitOPT dar. Es ist zu sehen, dass grofier
Wert auf die Modularisierung aller beteiligten Systeme gelegt wurde, um SitOPT flexibel und erweiter-
bar zu gestalten. Die Grundlage dazu stellt die Situationsverwaltung als Schnittstelle zwischen der
Situationserkennung und Workflows dar. Des Weiteren wurden die Datenmodelle beschrieben, die in
SitOPT zum Einsatz kommen. Vor allem das Situationsmodell trigt dazu bei, Situationsobjekte erzeu-
gen zu kénnen und eine anwendungsunabhingige Situationsbereitstellung zu erméglichen. Durch
die Beschriankung auf wenige Sensorattribute wird die Verwendung verschiedenartiger Sensoren
ermoglicht.

In Kapitel 5 wurde die prototypische Implementierung der in Kapitel 4 vorgeschlagenen Konzepte
durchgefiihrt. Es wurde naher auf die zugrundeliegende Datenbank CouchDB und deren Funktionali-
titen eingegangen. Insbesondere wurde der Blick auf den Changes Feed von CouchDB vorgestellt,
welcher die Basis fiir die Situationsbereitstellung an Workflows dient. Weiterhin wurden die Funktio-
nen und Implementierung der Situationsverwaltung mittels Node.js und Swagger detailliert prasentiert.
Die Verwendung von Swagger tragt mafigeblich zur einfachen Benutzung und Dokumentation der
implementierten Funktionen bei. Beziiglich der Situationserkennung wurde das von SitOPT verwen-
dete Situationserkennungssystem Node-RED und die Transformation eines Situationstemplates in

61

7. Zusammenfassung und Ausblick

ein Node-RED kompatibles und dquivalentes Format vorgestellt. Anschlieend wurde das Situation
Dashboard - der visuelle Einstiegspunkt des Benutzers in SitOPT - und dessen Funktionalititen vor-
gestellt. Von hoher Bedeutung war die schnelle Ubersicht {iber alle iiberwachten Objekte und deren
aktuelle Situationen. Abschlielend wurde das Setup des Prototyps an einem Beispielsetup auf einer
virtuellen Maschine in OpenStack vorgestellt, um weitere Arbeiten an SitOPT zu vereinfachen.

Die Evaluation des Prototyps wird in Kapitel 6 vorgestellt. Es wurde festgestellt, dass die in der Einlei-
tung definierten Anforderungen erfiillt worden sind. Anschliefend wurden multiple Testdurchlaufe
durchgefiihrt, um die Effizienz von SitOPT zu tiberpriifen und vorgeschlagen, welche Methodiken
implementiert werden kénnten, um die Effizienz weiterhin zu verbessern.

Der Prototyp von SitOPT ist derzeit Teil weiterer Arbeiten an der Universitat Stuttgart:

« Situationserkennung basierend auf Complex Event Processing. In dieser Masterarbeit
wird SitOPT um weitere Situationserkennungssysteme auf Basis von CEP erweitert. Zusétz-
lich wird der Transformation Mapper um die entsprechende Transformation erweitert, um
Situationstemplates zu dquivalenten CEP Queries umzuwandeln [MCE].

+ Konzept und Implementierung eines Situation Handlers. Die Masterarbeit fiir das In-
stitut fir Architektur von Anwendungssystemen hat die Implementierung eines Situation
Handlers zum Ziel, um einerseits die Anmeldungen bei der Situationsverwaltung zu verwalten,
und andererseits auf Basis erkannter Situationen die Ausfithrung von Workflow Fragmenten
einzuleiten.

+ Flexible Modellierung und Ausfithrung von Datenverarbeitungs- und Integrations-
flisssen. In dieser Dissertation wird der Einsatz von Situationserkennungssystemen in SitOPT
erforscht und dient als Grundlage fiir die in dieser Arbeit vorgestellt Situationserkennung. Des
Weiteren werden die RSM erforscht sowie die Verwendung und Entwicklung der vorgestellten
Situationstemplates und deren Transformation mittels des Transformation Mappers.

+ CupCake. Cupcake ist ein Studienprojekt der Universitat Stuttgart. Aufgabe ist es, die Situati-
onserkennung von SitOPT auf die Lernfabrik umzusetzen. Des Weiteren soll die Integratrion
weiterer, meist unstrukturierter Datenquellen stattfinden [cc].

In den folgenden Kapiteln werden Vorschlage und Ideen fiir zukiinftige Arbeiten an SitOPT vorge-
stellt

7.2. Skalierung von SitOPT

SitOPT baut auf Technologien auf, die einfache Skalierbarkeit erlauben. Im Rahmen der Entwicklung
des Prototyps ist die funktionale Skalierung nicht implementiert worden. Stattdessen werden in diesem
Kapitel Ideen sowie mogliche Alternativen angesprochen, mit denen ein skalierbares System ohne
Single Point Of Failure (SPOF) entstehen kann. Die zwei Hauptbereiche, aufgrund derer Skalierbarkeit
verlangt wird, ist die Situationserkennung und die Datenbank.

Die durch das SES entstehende CPU-Auslastung liegt einerseits an der Anzahl gleichzeitig ausgefiihrter
Situationstemplates, andererseits durch die gewihlte Intervallgrole (wie oft werden Situationen

62

7.2. Skalierung von SitOPT

erkannt). Hochsensible Systeme benétigen eine moglichst geringe Intervallgrofle, um tiber jede
Situationsanderung so schnell wie moglich informiert werden und darauf folgende Mafinahmen treffen
zu konnen. Grofie Fertigungsanlagen miissen unbedingt gleichzeitig alle Maschinen tiberwachen, um
ein autonomes System erstellen zu kénnen. Daraus folgt, dass weder die Anzahl noch die Intervallgrofie
begrenzt werden darf. Aus diesem Grund verwendet SitOPT Cloud Computing als Infrastruktur. Bereits
der Prototyp wird auf einer virtuellen Maschine einer OpenStack Instanz bereitgestellt. Ist das SES
ausgelastet, kann eine zweite virtuelle Maschine gestartet werden und die Arbeitslast unter diesen
beiden Maschinen aufgeteilt werden. Sinkt die Auslastung, kann eine virtuelle Maschine wieder
beendet und die frei gewordenen Kapazititen anderweitig genutzt werden. Auf diese Weise lasst
sich SitOPT (in Abhangigkeit der zugrundeliegenden Rechnerinfrastruktur) beliebig hoch skalieren.
Funktionalitaten wie Load-Balancing konnen diesen Prozess automatisieren, um eine bestmogliche
Auslastung der Infrastruktur zu erreichen und kontinuierlich eine ausreichende Anzahl von virtuellen
Maschinen bereitzustellen.

Je ausgelasteter das SES ist, desto mehr Daten werden produziert. Wie bei der Evaluation zu sehen
war, kann es zu groflen Datenmengen kommen, wenn alle erkannten Situationen gespeichert werden.
Das Speichern aller Situationen hat allerdings gewisse Vorteile. Monitoring-Systeme konnen auf
diese Weise genauere Schliisse ziehen, um Systeme effizienter zu gestalten. Neuronale Netze kon-
nen mit geniigend grof3er Anzahl an Daten Voraussagen iiber auftretende Situationen treffen. Auf
diese Weise wird (in bestimmten Anwendungsfillen) nicht erst bei Auftreten einer unerwiinschten
Situation gehandelt, sondern bereits zuvor, damit das Auftreten verhindert wird. Die Skalierung der
Datenbank folgt demselben Prinzip wie die Skalierung des SES. Bei Bedarf werden weitere virtuelle
Maschinen mit einer Datenbank gestartet. Zu jeder neuen Datenbank wird auch eine neue Instanz
der Situationsverwaltung gestartet. Das hierbei entstehende Problem ist die Verwaltung der Daten.
Wird ein Datum abgefragt, ist vorerst nicht bekannt, auf welcher Datenbank sich dieses befindet. Es
gibt drei mogliche Losungen fiir dieses Problem:

1. Die einfachste Methode ist, die Anfrage an jede Datenbank zu senden. Hierbei ist nicht garantiert,
dass zwei Dokumente auf verschiedenen Datenbanken die gleiche ID zugewiesen bekommen
haben. Zugleich entsteht bei vielen Anfragen ein grofler Overhead auf allen Datenbanksystemen.

2. Jede Anfrage geht zuerst an einen Féderationslayer. Der Foderationslayer beinhaltet einen Index
iiber alle vorhandenen Daten und deren Speicherorte. Der Vorteil ist, dass nur eine einzige
Anfrage gesendet werden muss. Ein Nachteil ist, dass bei dieser Methode ein SPOF entsteht.
Gegenmafinahmen sind das Erstellen von Backup-Datenbanken, die im Falle eines Ausfalls in
Kraft treten. Diese Methode profitiert von CouchDBs inkrementellen Replikationsmechanismus.
Replikationen kénnen zwischen mehreren Datenbanken automatisch erfolgen. Sollte eine
Datenbank zeitweise offline sein, wird, sobald die Datenbank wieder online ist, die Replikation
fortgesetzt. Somit ist sichergestellt, dass die Datenbank im Foderationslayer und alle Backups
denselben Index besitzen (Eventual Consistency)(Master-Slave). Ein weiteres Problem ist, dass
der Foderationslayer einen Flaschenhals darstellt und bei einer grofien Anzahl von Anfragen
fiir Ineffizienz sorgt.

3. Um das Flaschenhalsproblem der zweiten Moglichkeit zu beseitigen, besitzt jede Situationsver-
waltung einen Index. Jede Anfrage kann an jede beliebige Instanz gesendet werden. Auch diese
Methode profitiert von CouchDBs Replikationsmechanismus. Hierbei entsteht ein groleres

63

7. Zusammenfassung und Ausblick

Datenvolumen, da auch der Index ein grof3es Datenvolumen besitzen kann. Zusatzlich ist auf-
grund von Eventual Consistency nicht sichergestellt, dass alle Datenbanken zu einem beliebigen
Zeitpunkt tiber denselben Index verfiigen.

Niitzlich bei der Reduzierung des Datenvolumens ist die CouchDB Funktion Compaction. Bei Aufruf
dieser Funktion auf einer Listenressource werden alle fritheren Versionen eines Dokuments geloscht
und nur die aktuellste Version beibehalten. Auf diese Weise behalten alle Dokumente ihre urspriingli-
che ID. Wiirden alle Dokumente geloscht werden, wiirden neu erkannte Situationen, die bereits zuvor
in der Datenbank vorhanden waren, neue IDs erhalten. Situationsbezogene Workflows, die bereits
auf Situationen angemeldet sind (iiber die ID), wiirden aufgrund der neuen ID dieser Situation nicht
mehr iiber Veranderungen informiert werden.

7.3. Erstellung von Situationstemplates

Wie in Kapitel 5.3 zu sehen war, ist bereits ein kleines Situationstemplate aufwandig und miihselig
zu schreiben. Am Beispiel von Node-RED ist zu sehen, wie eine visuelle Darstellung eines Situati-
onstemplates benutzerfreundlicher und einfacher zu verstehen ist. Mit diesem Ansatz sollten Tools
bereitgestellt werden, um die Erstellung von Situationstemplates visuell zu unterstiitzen. Nur auf
diese Weise ist die Erstellung weitaus komplexerer Situationstemplates sinnvoll. Zugleich sollte es
moglich sein, bereits bestehende Situationstemplates einzulesen und auf einfache Art und Weise zu
andern, erweitern oder kombinieren.

Durch Verwendung eines Tools und der damit geringeren Komplexitat konnen Situationstemplates
erstellt werden, die mehrere Situationen enthalten. Auf diese Weise kann die Situationserkennung
effizienter und ressourcenschonender ablaufen. Die daraus resultierenden .xml-Dateien kénnen mit
einem bereits bestehenden XML-Schema validiert werden.

Abschnitt: Relation zwischen Things und Templates definieren! nicht jedes Thing kann mit jedem
beliebigen Template instanziiert werden. weil sensoren fehlen.

7.4. Verwendung weiterer Situationserkennungssysteme

Die Situationserkennung wurde dahingehend gestaltet, sodass verschiedene SES und verschiedene
Sensordatenquellen wie Events, Streams und Messages verwendet werden konnen . Neben Node-RED
sollen in Zukunft Datenstromverarbeitungssysteme (z.B. Odysseus [od]) und CEP Systeme (z.B. Esper
[esp]) unterstiitzt werden. Je nach Sensordatentyp kann verglichen werden, welches SES am besten
geeignet ist. Im Folgenden wird die grobe Funktionsweise einer einfachen Situationserkennung mittels
Esper dargestellt.

//Definition des Situationsobjekts
public static class Situation {
Float cpu;
Float ram;
String name;
Date timestamp;

64

7.4. Verwendung weiterer Situationserkennungssysteme

public Situation(Float sCpu, Float sRam, Date sTimestamp){

cpu = sCpu;
ram = sRam;
timestamp = sTimestamp;
name = "MachineFailure"

public float getCpu() {return cpu;}
public float getRam() {return ram;}
}

//Abfrage des Situationsobjekts auf Gueltigkeit
EPStatement cepStatement = cepAdm.createEPL("select * from Situation having cpu > 80.0 AND ram >
600.0");

//Methode des Sensors
public static Float GetCPU() throws IOException{
URL ram = new URL("http://localhost:1338/");

}
public static Float GetRAM() throws IOException{
URL ram = new URL("http://localhost:1337/");

}
Listing 7.1: Situationstemplate in Esper

Ein Situationstemplate wird hierbei in drei Bereiche aufgeteilt. Die Java-Klasse Situation definiert
das Situationsobjekt. Eine EPL Statement vergleicht die Situationsobjekte mit den Konditionen cpu >
80.0 und ram > 600.0. Uber die Methoden getCpu() und getRam() hat das Statement Zugriff auf die
Sensorwerte. Die Sensoren werden als Methoden GetCPU() und GetRAM() implementiert.

Configuration cepConfig = new Configuration();
cepConfig.addEventType("Situation", Situation.class.getName());
EPRuntime cepRT = cep.getEPRuntime();

Listing 7.2: CEP Konfiguration

Die Klasse Situation muss als EventType registriert werden. Zusatzlich wird ein Objekt cepRT instan-
ziiert, das zur Laufzeit Events erzeugen kann.

Situation situation = new Situation(GetCPU(), GetRAM(), new
Timestamp(date.getTime()));
cepRT.sendEvent(situation);

Listing 7.3: Situationserkennung

In einer while-Schleife konnen anschliefend kontinuierlich Objekte der Klasse Situation mit den
Sensormethoden als Attribute instanziiert werden und als Events an die CEP-Engine gesendet werden.
Ein Listener, der dem in Listing 7.1 definierten Statement hinzugefiigt ist, erkennt jedes neue Event
und fithrt das Statement aus.

65

A. Anhang

CouchDB Views sind ausschlief3lich in einer CouchDB Instanz vorzufinden. Um beim Ausfall einer
virtuellen Maschine weiterhin Zugriff auf die implementierten Views zu haben, werden diese im
Folgenden, unterteilt in die jeweiligen Ressourcen, aufgelistet. Des Weiteren werden zu jeder Ressource
die jeweiligen Funktionen anhand der Swagger-Reprisentation gezeigt.

A.1. Listenressource situations

wv
-
c
+1)
=
o
=

Show/Hide = List Operations = Expand Operations
m fsituations/occured Change "occured-attribute
/situations/byName Get situation by name
/situations/ByThingAndTemplate Get situation by thing and situation template
/situations/bylD Delete situation by ID
/situations/bylD Get situation by ID
/situations/changes Deletes registration
w /situations/changes Registrate for changes
/situations Get all situations
w /situations Store situation

Abbildung A.1.: Funktionen der Listenressource situations

function(doc){
emit([doc.thing, doc.situationtemplate], doc);

-

Listing A.1: CouchDB View _design/situations/existing

function(doc){
emit(null, doc);

}
Listing A.2: CouchDB View _design/situations/all

function(doc){
emit(doc.name, doc);

67

A. Anhang

}
Listing A.3: CouchDB View _design/situations/byName

function(doc){
emit([doc.thing, doc.situationtemplate], doc);

}

Listing A.4: CouchDB View _design/situations/byThingAndTemplate

function(doc){
emit(doc.thing, doc);

}
Listing A.5: CouchDB View _design/situations/monitoring

A.2. Listenressource situationtemplates

situation template
/situationtemplates/ByName

NN /situationtemplates/ByID

/situationtemplates/BylD

/situationtemplates/{ID}/{templatename}

/situationtemplates

m /situationtemplates/{ID}/{templatename}

m /situationtemplates

Show/Hide List Operations = Expand Operations

Get situation template by name

Delete situation template by [D

Get situation template by ID

Returns situationtemplate - not fully implemented

Stores situationtemplates

Get all situation templates

Stores situationtemplates

Abbildung A.2.: Funktionen der Listenressource situationtemplates

function(doc){
emit(null, doc);

}
Listing A.6: CouchDB View _design/situationtemplates/all

function(doc){
emit(doc.name, doc);

}
Listing A.7: CouchDB View _design/situationtemplates/byName

function(doc){
emit(doc._id, doc._rev);

}

Listing A.8: CouchDB View _design/situationtemplates/id AndRev

68

A.3. Listenressource things

A.3. Listenressource things

thing

/things/ByName
/things/ByID
2R /vings/pyin
Iliil /things

IEEII /things

Abbildung A.3.: Funktionen der Listenressource things

function(doc){
emit(null, doc);

}
Listing A.9: CouchDB View _design/things/all

function(doc){
emit(doc.name, doc);

}
Listing A.10: CouchDB View _design/things/byName

A.4. Listenressource sensors

sensor

/sensors/ByName

LTl /sensors/ByID

Abbildung A.4.: Funktionen der Listenressource sensors

function(doc){
emit(null, doc);

}
Listing A.11: CouchDB View _design/sensors/all

function(doc){
emit(doc.name, doc);

}
Listing A.12: CouchDB View _design/sensors/byName

Show/Hide List Operations Expand Operations

Get thing by name
Delete thing by ID
Get thing by 1D
Get all things

Save thing

Show/Hide | List Operations = Expand Operations

Get sensors by name
Delete sensor by 1D
Get sensor by ID
Get all sensors

Stores sensors

69

A. Anhang

A.5. Listenressource sensorvalues

sensor value

/sensorvalues/bylD
/sensorvalues/bylD
/sensorvalues
m /sensorvalues

Abbildung A.5.: Funktionen der Listenressource sensorvalues

function(doc){
emit(null, doc);

}
Listing A.13: CouchDB View _design/sensorvalues/all

function(doc){
emit(doc.sensor, doc._id);

}

Listing A.14: CouchDB View _design/sensorvalues/existing

70

Show/Hide

List Operations = Expand Operations

Delete specific sensorvalues

Get all sensorvalues

Get all sensorvalues

Store sensorvalue

Literaturverzeichnis

[ADBT99] G.D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P. Steggles. Towards a better

[AFG'10]

[ALS10]

[CDba]

[CDbb]
[CDbc]

[CDbd]

[ceb10]

[DAS00]

[esp]
(FB]

understanding of context and context-awareness. In Handheld and ubiquitous computing,
S. 304-307. Springer, 1999. (Zitiert auf Seite 15)

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I Stoica, et al. A view of cloud computing. Communications of the ACM,
53(4):50-58, 2010. (Zitiert auf Seite 24)

J. C. Anderson, J. Lehnardt, N. Slater. CouchDB: the definitive guide. O’Reilly Media, Inc.,
2010. (Zitiert auf den Seiten 41 und 42)

Amazon Web Services. URL https://aws.amazon.com/de/. (Zitiert auf Seite 24)

Esper. URL https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/
lehrveranstaltungen/studienprojekte/SS15/Stupro.CUPCAKE.html. (Zitiert auf
Seite 62)

CouchDB changes. URL http://docs.couchdb.org/en/latest/api/database/
changes.html. (Zitiert auf Seite 42)

A Database for the Web. URL http://couchdb.apache.org/. (Zitiert auf Seite 41)

HTTP API Reference. URL http://docs.couchdb.org/en/latest/http-api.html.
(Zitiert auf Seite 43)

Replication. URL http://wiki.apache.org/couchdb/Replication. (Zitiert auf Sei-
te 43)

cebr. THE CLOUD DIVIDEND: Part One The economic benefits of cloud computing to
business and the wider EMEA economy. Technischer Bericht, centre for economics and
business research Itd, 2010. (Zitiert auf Seite 25)

A.K. Dey, G.D. Abowd, D. Salber. A context-based infrastructure for smart environments.
In Managing Interactions in Smart Environments, S. 114-128. Springer, 2000. (Zitiert auf
den Seiten 21 und 22)

Esper. URL http://www.espertech.com/products/esper.php. (Zitiert auf Seite 64)

Facebook. URL https://www.facebook. com. (Zitiert auf Seite 23)

71

https://aws.amazon.com/de/
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/lehrveranstaltungen/studienprojekte/SS15/Stupro.CUPCAKE.html
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/lehrveranstaltungen/studienprojekte/SS15/Stupro.CUPCAKE.html
http://docs.couchdb.org/en/latest/api/database/changes.html
http://docs.couchdb.org/en/latest/api/database/changes.html
http://couchdb.apache.org/
http://docs.couchdb.org/en/latest/http-api.html
http://wiki.apache.org/couchdb/Replication
http://www.espertech.com/products/esper.php
https://www.facebook.com

Literaturverzeichnis

[GBH'05]

[GL12]

[GSL14]

[Hen06]

[HHL*10]

[HWST15]

[KBZ"08]

[Kra]
[LCGT09]

[Ley09]

[MCE]

[MDb]
[MG09]

72

M. Grossmann, M. Bauer, N. Honle, U.-P. Képpeler, D. Nicklas, T. Schwarz. Efficiently
managing context information for large-scale scenarios. In Pervasive Computing and
Communications, 2005. PerCom 2005. Third IEEE International Conference on, S. 331-340.
IEEE, 2005. (Zitiert auf Seite 16)

S. Gilbert, N. A. Lynch. Perspectives on the CAP Theorem. Institute of Electrical and
Electronics Engineers, 2012. (Zitiert auf Seite 23)

D. Gorecky, M. Schmitt, M. Loskyll. Mensch-Maschine-Interaktion im Industrie 4.0-
Zeitalter. In Industrie 4.0 in Produktion, Automatisierung und Logistik, S. 525-542. Springer,
2014. (Zitiert auf den Seiten 7 und 10)

S. Heng. Rfid Chips: Future Technology on Everyone’s Lips. Deutsche Bank Research,
E-conomics, 2006. (Zitiert auf Seite 9)

K. Hiussermann, C. Hubig, P. Levi, F. Leymann, O. Simoneit, M. Wieland, O. Zweigle.
Understanding and designing situation-aware mobile and ubiquitous computing systems.
In Proc. of intern. Conf. on Mobile, Ubiquitous and Pervasive Computing, S. 329-339. 2010.
(Zitiert auf Seite 18)

P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbiicher, F. Leymann.
SitRS - A Situation Recognition Service based on Modeling and Executing Situa-
tion Templates. In C. Nikolaou, F. Leymann, Herausgeber, Proceedings of the
9th Symposium and Summer School On Service-Oriented Computing, S. 35-49. IBM,
2015. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2015-34&engl=0. (Zitiert auf Seite 31)

U.-P. Képpeler, R. Benkmann, O. Zweigle, R. Lafrenz, P. Levi. Resolving Inconsistencies
in Shared Context Models using Multiagent Systems. Intelligent Autonomous Systems 10:
IAS-10, S. 298, 2008. (Zitiert auf Seite 18)

M. Kramer. NoSQL-Datenbanken. (Zitiert auf Seite 43)

R. Lange, N. Cipriani, L. Geiger, M. Grossmann, H. Weinschrott, A. Brodt, M. Wieland,
S. Rizou, K. Rothermel. Making the world wide space happen: New challenges for the
nexus context platform. In Pervasive Computing and Communications, 2009. PerCom 2009.
IEEE International Conference on, S. 1-4. IEEE, 2009. (Zitiert auf Seite 17)

F. Leymann. Cloud Computing: The Next Revolution in IT. In Photogrammetric Week *09,
S. 3-12. Wichmann Verlag, 2009. (Zitiert auf den Seiten 24 und 25)

Masterarbeit - Situationserkennung basierend auf Complex Event Processing. URL
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/studentische_
arbeiten/masterarbeiten/MA_SitRec_CEP.html. (Zitiert auf Seite 62)

MongoDB. URL https://www.mongodb.org/. (Zitiert auf Seite 23)

P. Mell, T. Grance. The NIST definition of cloud computing. National Institute of Standards
and Technology, 53(6):50, 2009. (Zitiert auf Seite 24)

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=0
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/studentische_arbeiten/masterarbeiten/MA_SitRec_CEP.html
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/studentische_arbeiten/masterarbeiten/MA_SitRec_CEP.html
https://www.mongodb.org/

Literaturverzeichnis

[MGP*11]

[nr]
[NRi]

[od]

[Rob10]

[SSK11]

[TWT]
[WKL*'09]

[WKNLO07]

[wmc]

[WSBL15]

[Zwell]

S. Mitsch, W. Gottesheim, F. H. Pommer, B. Proll, W. Retschitzegger, W. Schwinger,
R. Hutter, G. Rossi, N. Baumgartner. Making workflows situation aware: an ontology-
driven framework for dynamic spatial systems. In Proceedings of the 13th International
Conference on Information Integration and Web-based Applications and Services, S. 182-188.
ACM, 2011. (Zitiert auf Seite 9)

Node-RED. URL http://nodered.org/. (Zitiert auf Seite 49)

Installation. URL http://nodered.org/docs/getting-started/installation.html.
(Zitiert auf Seite 54)

Odysseus. URL http://odysseus.informatik.uni-oldenburg.de/. (Zitiert auf Sei-
te 64)

Patriot Act. URL http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:.
(Zitiert auf Seite 25)

D. Pritchett. Base: An acid alternative. Queue, 6(3):48-55, 2008. (Zitiert auf den Seiten 23
und 24)

J. D. Ralf Bruns. Complex Event Processing: Komplexe Analyse von massiven Datenstromen
mit CEP. Springer, 2015. Seite 6. (Zitiert auf den Seiten 7 und 26)

D. Robins. Complex event processing. In Second International Workshop on Education
Technology and Computer Science. Wuhan. 2010. (Zitiert auf Seite 26)

C. Strauch, U.-L. S. Sites, W. Kriha. NoSQL databases. Lecture Notes, Stuttgart Media
University, 2011. (Zitiert auf Seite 41)

Twitter. URL https://twitter.com/?lang=de. (Zitiert auf Seite 23)

M. Wieland, U.-P. Képpeler, P. Levi, F. Leymann, D. Nicklas. Towards Integration of
Uncertain Sensor Data into Context-aware Workflows. In GI Jahrestagung, S. 2029-2040.
Citeseer, 2009. (Zitiert auf den Seiten 16 und 18)

M. Wieland, O. Kopp, D. Nicklas, F. Leymann. Towards context-aware workflows. In
CAiSEO7 Proc. of the Workshops and Doctoral Consortium, Band 2, S. 25. 2007. (Zitiert auf
Seite 15)

Workflow Management Coalition. URL http://www.wfmc.org/. (Zitiert auf Seite 15)

M. Wieland, H. Schwarz, U. Breitenbucher, F. Leymann. Towards situation-aware adaptive
workflows: SitOPT—A general purpose situation-aware workflow management system.
In Pervasive Computing and Communication Workshops (PerCom Workshops), 2015 IEEE
International Conference on, S. 32-37. IEEE, 2015. (Zitiert auf den Seiten 10 und 15)

O. G. Zweigle. Erweiterung kognitiver Fihigkeiten in Multiagentensystemen durch Kommu-
nikation, Rollenverteilung und Situationsanalyse. Shaker, 2011. (Zitiert auf den Seiten 15
und 22)

Alle URLs wurden zuletzt am 02. 09. 2015 gepriift.

73

http://nodered.org/
http://nodered.org/docs/getting-started/installation.html
http://odysseus.informatik.uni-oldenburg.de/
http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:
https://twitter.com/?lang=de
http://www.wfmc.org/

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Problembeschreibung
	1.2 Einführendes Beispiel
	1.3 Anforderungen an diese Arbeit & SitOPT
	1.4 Gliederung dieser Arbeit

	2 Grundlagen und verwandte Arbeiten
	2.1 Situationsbezogene Workflows
	2.2 Kontext - Grundlagen und Definition
	2.3 Systeme zur Verwaltung von Kontext
	2.4 Situation - Grundlagen und Definition
	2.5 Situationstemplates - Grundlagen und Definition
	2.6 Systeme zur Situationserkennung

	3 Stand der Technik
	3.1 NoSQL
	3.2 Cloud Computing
	3.3 Complex Event Processing (CEP)

	4 Konzept und Architektur von SitOPT
	4.1 Situationserkennungssystem
	4.2 Transformation Mapper
	4.3 Situationsverwaltung
	4.4 Situation Handler
	4.5 Situation Dashboard
	4.6 Funktionsweise
	4.7 Datenmodell

	5 Implementierung des Prototyps
	5.1 Datenbank
	5.2 Situationsverwaltung
	5.3 Transformation Mapper
	5.4 Situationserkennung
	5.5 Situation Dashboard
	5.6 Setup

	6 Evaluation
	6.1 Testumgebung
	6.2 Erfüllung der Anforderungen
	6.3 Ergebnisse

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung dieser Arbeit
	7.2 Skalierung von SitOPT
	7.3 Erstellung von Situationstemplates
	7.4 Verwendung weiterer Situationserkennungssysteme

	A Anhang
	A.1 Listenressource situations
	A.2 Listenressource situationtemplates
	A.3 Listenressource things
	A.4 Listenressource sensors
	A.5 Listenressource sensorvalues

	Literaturverzeichnis

