
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3718

Entwicklung eines
Situationsmodells als Schnittstelle

zwischen Situationserkennung
und Workflows

Mathias Mormul

Studiengang: Informatik

Prüfer/in: Prof. Dr. ing. habil. Bernhard Mitschang

Betreuer/in: Dr. rer. nat. Matthias Wieland

Beginn am: 04. März 2015

Beendet am: 03. September 2015

CR-Nummer: D.2.2, D.2.11, D.4.4, H.2.1, H.2.4

Kurzfassung

Neue Paradigmen wie das Internet of Things und Industrie 4.0 erwecken das Interesse vieler Unterneh-
men und ermöglichen das Erstellen von Smart Factories, Smart Homes und vielen weiteren autonom
agierenden Umgebungen. Grundlage hierfür sind Sensoren, die Umweltdaten der sich dynamisch
ändernden Umgebungen ermitteln. Die große Anzahl von Sensorwerten und deren Verarbeitung
stellen die IT-Welt vor neue Herausforderungen. Zusätzlich werden auf Anwendungsseite Mechanis-
men benötigt, die autonom und situationsbezogen agieren, um sich an die Umgebung anzupassen.
Es existiert bereits eine Reihe von Anwendungen, die auf Situationen reagieren, wobei die Sensoren
allerdings fest in die Anwendung integriert sind und sich deshalb nur für spezielle Anwendungsfälle
eignen. In dieser Arbeit wird das Forschungsprojekt SitOPT vorgestellt und entwickelt, dessen Ziel
es ist, ein General-Purpose-System für eine effiziente Situationserkennung als Voraussetzung für
die Verwendung von adaptiven situationsbezogenen Workflows zu ermöglichen. Die vorgestellten
Methoden und Konzepte sollen ein flexibles und leicht erweiterbares System gewährleisten und durch
die Entkopplung derWorkflowdomäne von der Situationserkennung auf beiden Seiten zur einfacheren
und voneinander unabhängigen Entwicklung beitragen.

3

Inhaltsverzeichnis

1. Einleitung 9
1.1. Problembeschreibung . 10
1.2. Einführendes Beispiel . 11
1.3. Anforderungen an diese Arbeit & SitOPT . 11
1.4. Gliederung dieser Arbeit . 13

2. Grundlagen und verwandte Arbeiten 15
2.1. Situationsbezogene Workflows . 15
2.2. Kontext - Grundlagen und Definition . 15
2.3. Systeme zur Verwaltung von Kontext . 17
2.4. Situation - Grundlagen und Definition . 18
2.5. Situationstemplates - Grundlagen und Definition . 19
2.6. Systeme zur Situationserkennung . 21

3. Stand der Technik 23
3.1. NoSQL . 23
3.2. Cloud Computing . 24
3.3. Complex Event Processing (CEP) . 26

4. Konzept und Architektur von SitOPT 29
4.1. Situationserkennungssystem . 30
4.2. Transformation Mapper . 31
4.3. Situationsverwaltung . 32
4.4. Situation Handler . 34
4.5. Situation Dashboard . 34
4.6. Funktionsweise . 35
4.7. Datenmodell . 37

5. Implementierung des Prototyps 41
5.1. Datenbank . 41
5.2. Situationsverwaltung . 43
5.3. Transformation Mapper . 49
5.4. Situationserkennung . 49
5.5. Situation Dashboard . 51
5.6. Setup . 53

6. Evaluation 57
6.1. Testumgebung . 57

5

6.2. Erfüllung der Anforderungen . 57
6.3. Ergebnisse . 58

7. Zusammenfassung und Ausblick 61
7.1. Zusammenfassung dieser Arbeit . 61
7.2. Skalierung von SitOPT . 62
7.3. Erstellung von Situationstemplates . 64
7.4. Verwendung weiterer Situationserkennungssysteme 64

A. Anhang 67
A.1. Listenressource situations . 67
A.2. Listenressource situationtemplates . 68
A.3. Listenressource things . 69
A.4. Listenressource sensors . 69
A.5. Listenressource sensorvalues . 70

Literaturverzeichnis 71

6

Abbildungsverzeichnis

1.1. Industrie 4.0 - Autonom organisiertes System [GSL14, p. 526] 10

2.1. Situationstemplate . 20

3.1. CEP-Zyklus [RB15, pp. 6] . 26

4.1. Gesamtarchitektur von SitOPT . 29
4.2. Message Queue als Situationsbereitstellung - vereinfachte Darstellung 33
4.3. Ablauf für das Erkennen und Erhalten von Situationen 36
4.4. ER-Diagramm der Ressourcen . 38

5.1. Swagger Spezifikation - GET /situations/byID (1) . 44
5.2. Swagger Spezifikation - GET /situations/byID(2) . 45
5.3. API Kommunikation . 47
5.4. Transformation Mapper . 49
5.5. Node-RED Flow . 50
5.6. Situation Dashboard - Things . 52
5.7. CouchDB Replicator Tool . 53

A.1. Funktionen der Listenressource situations . 67
A.2. Funktionen der Listenressource situationtemplates . 68
A.3. Funktionen der Listenressource things . 69
A.4. Funktionen der Listenressource sensors . 69
A.5. Funktionen der Listenressource sensorvalues . 70

Tabellenverzeichnis

1.1. Anforderungen an SitOPT . 12

2.1. Kontext als Situation . 19
2.2. Mehrere Situationen in einem Situationstemplate . 21

6.1. Verschiedene Laufzeiten von SitOPT . 59

7

Verzeichnis der Listings

5.1. CouchDB Views mit 2 Attributen . 42
5.2. Aufruf in Node.js mit cradle . 42
5.3. Swagger Spezifikation . 43
5.4. Situationsobjekt . 48
5.5. Situationstemplate in XML . 50

7.1. Situationstemplate in Esper . 64
7.2. CEP Konfiguration . 65
7.3. Situationserkennung . 65

A.1. CouchDB View _design/situations/existing . 67
A.2. CouchDB View _design/situations/all . 67
A.3. CouchDB View _design/situations/byName . 67
A.4. CouchDB View _design/situations/byThingAndTemplate 68
A.5. CouchDB View _design/situations/monitoring . 68
A.6. CouchDB View _design/situationtemplates/all . 68
A.7. CouchDB View _design/situationtemplates/byName 68
A.8. CouchDB View _design/situationtemplates/idAndRev 68
A.9. CouchDB View _design/things/all . 69
A.10. CouchDB View _design/things/byName . 69
A.11. CouchDB View _design/sensors/all . 69
A.12. CouchDB View _design/sensors/byName . 69
A.13. CouchDB View _design/sensorvalues/all . 70
A.14. CouchDB View _design/sensorvalues/existing . 70

8

1. Einleitung

Internet of Things ist ein neues Paradigma aus der Informationsbranche. Es beschreibt die fortschrei-
tende Vernetzung von Dingen (Things) über das Internet miteinander. Hierbei werden physische
Objekte mit ihren jeweils virtuellen Repräsentationen verknüpft. Um eine virtuelle Repräsentation zu
ermöglichen, wird eine große Anzahl von Informationen über das Objekt benötigt. Einige Information
wie Bezeichnung und Größe sind bereits bei der Produktion bekannt und verändern sich über die
Lebenszeit des Objekts nicht. Andere Informationen, wie z.B. die Position eines Autos hingegen
ändern sich häufig und bedürfen einer ständigen Überwachung des Objekts. Solch eine Überwachung
kann mit verschiedenartigen Sensoren durchgeführt werden. Die Verbreitung von Sensoren in allen
Bereichen des Lebens ist am Beispiel der RFID (radio-frequency identification)-Technik zu sehen, die
verwendet wird, um das Identifizieren und Lokalisieren mittels Radiowellen durchzuführen. Bereits
im Jahr 2006 prognostizierte [Hen06] das Marktwachstum für RFID-Systeme zwischen 2004 und 2010
global von EUR 1,5 Mrd. auf 22 Mrd. Die Informationslücke, die sich zwischen physischen Objekten
und deren virtueller Repräsentation befindet, soll auf diese Weise geschlossen werden und daraus ein
cyber-physisches Objekt entstehen. Der Zusammenschluss von cyber-physischen Objekte führt zu
einem cyber-physischen System (CPS). Mittels einer Machine-to-Machine Kommunikation können In-
formationen untereinander ausgetauscht werden und auf Basis dieser Informationen Entscheidungen
getroffen oder Operationen ausgeführt werden. Beispiele für CPS sind unter anderem ein intelligentes
Stromnetz und Industrie 4.0.

Industrie 4.0 beschreibt das Zukunftsprojekt der deutschen Bundesregierung und der Industrie. Das
Ziel dieses Projekts ist die Erstellung einer intelligenten Fabrik, die sich autonom an ihre dynamischen
Umgebungen anpassen und Änderungen im Produktionsablauf veranlassen kann. Die fortschrei-
tende Informatisierung im Fertigungsbereich ermöglicht diesen Schritt, indem es für ein größeres
Vorkommen an Sensoren (z.B. RFID-Chips) sorgt. Zusätzlich werden Aktoren benötigt, die auf Basis
der Sensorwerte Entscheidungen treffen können. Eine mögliche Wahl für Aktoren ist der Einsatz von
Workflows. Workflows sind heutzutage ein Grundbaustein in der Orchestrierung von Arbeitsabläufen
im Geschäftsprozessbereich und werden zum Schlüsselelement für den Erfolg einer Firma gezählt
[MGP+11]. Die Koordinierung von Geschäftsprozessen führte zu deren Modularisierung, was wieder-
um dazu führte, dass einzelne Prozesse leichter ausgetauscht werden konnten, um Optimierungen des
Gesamtsystems vorzunehmen. Die logische Konsequenz ist der Einsatz von Workflows in anderen
Bereichen wie der Fertigungsbranche, um auch dort von deren Vorteile zu profitieren. Dadurch
entstehen allerdings neue Herausforderungen, die es zu bewältigen gilt.

9

1. Einleitung

1.1. Problembeschreibung

Sich ständig ändernde Anforderungen und Umgebungszustände erschweren den geplanten Ablauf
eines Workflows. Zusätzlich gestaltet sich die Modellierung eines Workflows, der alle möglichen
Umgebungszustände beachtet und mögliche Alternativabläufe beinhaltet, als eine Aufgabe, deren
Komplexität mit der immer weiter steigenden Anzahl von verfügbaren Sensorwerten weiterhin steigt
[WSBL15]. In Abbildung 1.1 ist der Ablauf zu sehen, um ein auf Informationen basiertes, autonom
organisiertes System zu erstellen.

Erfassung aktueller und

umfassender Informationen

Aggregation und Aufbereitung

der Informationen

Interpretation der

Informationen
Intervention

Anpassung der Produktionsstrategie

Abbildung 1.1.: Industrie 4.0 - Autonom organisiertes System [GSL14, p. 526]

Es wäre vorteilhaft, wenn Workflows nur den letzten Schritt Intervention durchführen müssten. Die
Auslagerung der ersten drei Aufgaben führt zu einer Vereinfachung der Modellierung von Workflows.
Das in dieser Arbeit vorgestellte Projekt SitOPT ermöglicht diese Auslagerung, indem es die Punkte
Erfassung aktueller und umfassender Informationen, Aggregation und Aufbereitung der Informationen
sowie Interpretation der Informationen in einem System vereint. Dem Interpretationsschritt folgt die
Erstellung einer Situation, welche alle benötigten Informationen enthält. Diese Situationen können
von Workflows verwendet werden, um entsprechende Änderungen im Ablauf durchzuführen. Die
Ziele von SitOPT sind [WSBL15]:

1. Verringerung der Komplexität bei der Erstellung von Workflow-Modellen

2. Laufzeitadaption von Workflows an von SitOPT erkannten Situationen

3. Beliebiges Austauschen, Ändern und Optimieren von Situationserkennungssystemen

4. Verwendung von Situationen durch mehrere Workflows

Im Rahmen dieser Arbeit und des Projekts SitOPT wird eine Schnittstelle zwischen der Situations-
erkennung und Workflows erzeugt. Es muss ermittelt werden, welche Information ein Workflow
benötigt, um ein Situationsmodell zu erstellen. Des Weiteren wird erforscht, wie Situationen mit Hilfe
von Situationstemplates modelliert werden können.

10

1.2. Einführendes Beispiel

1.2. Einführendes Beispiel

Als einführendes Beispiel wird die Überwachung von Computern gewählt. Ist ein Computer überlastet
oder nicht verfügbar, soll der Benutzer darüber informiert werden, um Schritte zur Behebung des
Problems einleiten zu können. Je mehr Informationen der Benutzer über den jeweiligen Computer
und dessen Zustand erhält, desto durchdachter können dessen Entscheidungen sein. Ist beispiels-
weise bekannt, dass jeden Tag zu einem bestimmten Zeitpunkt die Auslastung eines Computers
einen Hochpunkt erreicht, können die jeweiligen Prozesse identifiziert werden, die zu dieser hohen
Auslastung führen. Ist der Standort aller Computer bekannt, kann das Personal eines ausgefallenen
zum am nächsten stehenden Computer geführt werden, vorausgesetzt der Computer entspricht den
Anforderungen, die für die aktuelle Aufgabe des Personals benötigt werden. Um diesen Vorgang
mithilfe eines Workflows zu automatisieren, sind folgende Bedingungen zu erfüllen.

Wie an dem vorgestellten Beispiel zu erkennen ist, wird eine Großzahl verschiedenartiger Sensoren
benötigt. Die Auslastung eines Computers wird über die prozentuale Auslastung der CPU sowie
der Größe des verfügbaren Arbeitsspeichers definiert. Zusätzlich wird überwacht, ob der Computer
aktiv ist, indem periodisch ein Ping gesendet wird. Der Standort eines Computers und des Personals
wird mit einem GPS-Sensor ermittelt werden. Die derzeitige Aufgabe des Personals sowie deren
Anforderung an einen Computer muss ebenfalls bekannt sein . Gleichzeitig muss Hintergrundwissen
vorhanden sein, z.B. ob die Anforderungen des Computers der Aufgabe des Personals genügen. Die
Anforderungen einer Aufgabe müssen spezifiziert werden und dem Benutzer zugänglich sein, um sie
mit der Systemspezifikation des Computers zu vergleichen. Stimmen die Spezifikationen nicht überein,
müssen Alternativpläne vorhanden sein, die dem Personal die Bearbeitung ihrer Aufgabe ermöglichen.
Um dem Personal Anweisungen geben zu können, müssen die Kommunikationsmöglichkeiten sowie
Kommunikationsprotokolle bekannt sein. All diese Informationen müssen dem Workflow mitgeteilt
werden, wofür ein Netzwerk, z.B. das Internet, benötigt wird.

Dieses kleine Beispiel zeigt, wie komplex die Überwachung von Computern mit nur einem An-
wendungsfall ist. Je größer die Anzahl überwachter Maschinen, desto größer die Anzahl möglicher
Situationen und benötigter Alternativpläne. Heute bereits vorhandene Anwendungsfälle sind bei-
spielsweise ortsbezogene Werbungen auf mobilen Endgeräten, welche auf den Standort des Benutzers
zugreifen. Die meisten Anwendungsfälle beschränken sich auf eine überschaubare Anzahl von Si-
tuationen. Die Automatisierung einer gesamten Fabrik mit Hunderten Maschinen und Tausenden
von Sensorwerten stellt dagegen ein hoch komplexes System mit weitaus höheren Anforderungen
dar. Um diesen Herausforderungen entgegenzutreten, müssen bestimmte Anforderungen von SitOPT
erfüllt werden.

1.3. Anforderungen an diese Arbeit & SitOPT

Das Ziel ist es, ein System zu entwickeln, dass für verschiedene Anwendungsfälle verwendet wer-
den kann und situationsbezogenen Workflows Situationsdaten effizient und anforderungsgerecht
bereitstellt. Hierfür soll ein Situationsmodell erstellt werden, dass als Schnittstelle zwischen einer
Situationserkennung und situationsbezogenen Workflows dient. Anhand dieses Situationsmodells
soll ermittelt werden, wie sich Situationen mithilfe sogenannter Situationstemplates modellieren

11

1. Einleitung

Anforderungen Beschreibung

A1: Schnittstelle Die Hauptaufgabe dieser Arbeit besteht in der Bereitstellung
einer Schnittstelle, um die Interaktion zwischen einem Situati-
onserkennungssystem und situationsbezogenen Workflows zu
ermöglichen. Auf diese Weise werden die verschiedenen Domä-
nen entkoppelt, was die Modellierung vonWorkflows vereinfacht
und die Verwendung und Optimierung verschiedener Situations-
erkennungssysteme ermöglicht. Zusätzlich muss die Schnittstelle
alle benötigten Funktionen bereitstellen, um die Interaktion aller
beteiligten Module zu ermöglichen.

A2: Flexibilität Der prototypische Charakter der Implementierung erfordert, dass
darauf aufbauende Arbeiten möglichst einfach zu gestalten sind.
Das Austauschen oder Hinzufügen von Modulen soll einfach
sein, weshalb in allen Bereichen der Implementierung auf eine
modulare Bauweise geachtet werden soll.

A3: Skalierbarkeit Abhängig von der Anzahl der überwachten Objekte sowie der
Anzahl der zugrundeliegenden Sensorwerte können bei der Über-
wachung große Datenmengen entstehen. Gleichzeitig stellt die
Überwachung selbst einen ressourcenintensiven Prozess dar. Die
zugrundeliegenden Systeme zur Datenverwaltung und Situations-
erkennung müssen einfach und effizient skalierbar sein. Sowohl
die verwendeten Technologien als auch die implementierungs-
spezifischenMethoden sollen einfach Skalierbarkeit ermöglichen.

A4: Benutzerfreundlichkeit Die Verwendung von SitOPT soll möglichst einfach gestaltet wer-
den, dass eine einfache und intuitive Schnittstellenbenutzung
ermöglicht wird. Darüber hinaus soll eine detaillierte Dokumen-
tation der Schnittstellenfunktionen erfolgen, um die Benutzung
zusätzlich zu vereinfachen.

A5: Verschiedenartige Sensor-
daten

Wie im einführenden Beispiel zu sehen ist, müssen verschiedene
Sensordaten mit SitOPT integriert werden. Diese unterscheiden
sich in verschiedene Datentypen, Qualitätswerten, usw. Um ein
anwendungsunabhängiges System zu erstellen, muss SitOPT mit
allen möglichen Sensordaten interagieren können.

Tabelle 1.1.: Anforderungen an SitOPT

lassen. Die Verwaltung der erkannten Situationen sowie der Situationstemplates soll mit Hilfe ei-
nes Repository stattfinden, um deren Wiederverwendung zu ermöglichen. Die funktionalen sowie
nichtfunktionalen Anforderungen an SitOPT werden in Tabelle 1.1 dargestellt.

12

1.4. Gliederung dieser Arbeit

1.4. Gliederung dieser Arbeit

Im folgenden Kapitel 2 werden die Grundlagen und Begriffsdefinitionen für diese Arbeit vorgestellt.
Des Weiteren werden verwandte Arbeiten vorgestellt, auf denen manche Bereiche von SitOPT auf-
bauen. Kapitel 3 beschreibt die in SitOPT verwendeten Technologien. In Kapitel 4 wird das Konzept
und die Architektur von SitOPT vorgestellt. Zusätzlich werden alternative Methoden aufgezeigt, die
im Laufe der prototypischen Implementierung zur Wahl standen. In Kapitel 5 werden Details der
Implementierung gezeigt, um die in Kapitel 5 vorgestellten Konzepte umzusetzen. Kapitel 6 zeigt
die Evaluation des implementierten Prototyps. Die Anforderungen aus Tabelle 1.1 werden hier im
Hinblick auf ihre Erfüllung evaluiert. Kapitel 7 enthält offene Punkte, die sich im weiteren Projektver-
lauf für die Implementierung anbieten. Kapitel 7 weist darüber hinaus eine Zusammenfassung dieser
Arbeit auf.

13

2. Grundlagen und verwandte Arbeiten

2.1. Situationsbezogene Workflows

Die Workflow Management Coalition [wmc] definiert den Begriff Workflow als computergesteuerte
Unterstützung oder Automatisierung von Geschäftsprozessen, ganz oder teilweise. Geschäftsprozesse
und deren Ausführung werden modelliert und bieten Unternehmen eine bessere Übersicht über
den Prozessablauf. Diese Transparenz erleichtert es, Optimierungen im Prozessablauf zu erkennen.
Zusätzlich führt die Modellierung der einzelnen Prozesse zur Modularisierung des Gesamtsystems.
Einzelne Prozesse können ausgetauscht werden, ohne dass Veränderungen an anderen Prozessen
notwendig sind (unter der Voraussetzung, dass die Schnittstellen nicht verändert werden). Im Fer-
tigungsbereich ist die Verwendung von Workflows hingegen selten verbreitet. Stattdessen werden
PPS-Systeme (Produktionsplanungs- und Steuerungssysteme) verwendet, um kurze Durchlaufzeiten,
Termineinhaltung, optimale Bestandshöhen und die wirtschaftliche Nutzung der Betriebsmittel zu
ermöglichen [WKNL07]. Die Durchsetzung vonWorkflows im Fertigungsbereich würde zu den selben
Vorteilen führen wie bei Geschäftsprozessen. Fertigungsprozesse sind stärker auf physische Ereignisse
(Maschine überhitzt, Materialknappheit, usw.) fokussiert als Geschäftsprozesse. Die Umsetzung von
Industrie 4.0 führt zusätzlich zu einem stetigen Ausbau von Sensortechnologien im Fertigungsbereich,
wodurch Workflows mehr und mehr Informationen über den derzeitigen Status von Maschinen
mitgeteilt werden können. Diese Informationen - auch Kontext genannt - führen dazu, dass aus
statischen Workflows kontextbezogene Workflows entstehen. Kontextbezogenene Workflows verar-
beiten den erhaltenen Kontext, um höherwertigen Kontext abzuleiten. Mit immer größer steigender
Anzahl von Kontextdaten entsteht dadurch eine hohe Komplexität für Workflowdesigner. Verschie-
dene Kontextdaten müssen erfasst werden können und darauf folgende Abläufe integriert werden.
Situationsbezogene Workflows dagegen lagern die Verarbeitung der Kontextdaten aus. Um die Model-
lierung zu vereinfachen, wird zuerst ein Standard-Workflow modelliert, der bei Nichtauftreten von
Situationen ausgeführt wird. Um eine Adaption an erkannte Situationen zu ermöglichen, werden alle
möglichen Ausnahmen und die dazugehörigen alternativen Abläufe des Workflows definiert. Diese
sogenannten Workflow-Fragmente werden gestartet, sobald die entsprechende Situation erkannt
wird. Zur Vereinfachung wird im Folgenden der Begriff Worfklow für situationsbezogene adaptive
Workflows verwendet [WSBL15].

2.2. Kontext - Grundlagen und Definition

Es existieren mehrere Definitionen für den Begriff Kontext. In [Zwe11] wird strikt zwischen dem
Begriff Sensordaten, welcher für reine Messdaten ohne logische Zusammenhänge steht, und Kontext,
welcher die Relationen zwischen den gegebenen Sensordaten darstellt, unterschieden. Nach [ADB+99]

15

2. Grundlagen und verwandte Arbeiten

dagegen ist Kontext jegliche Information, welche die Situation einer Entität charakterisiert. Eine Entität ist
eine Person, ein Ort oder Objekt, welche relevant für die Interaktion zwischen Benutzer und Anwendung,
einschließlich des Benutzers und der Anwendung selbst . Im Rahmen dieser Arbeit ist die zweite
allgemeinere Definition ausreichend.

Um zu verstehen, welche Schwierigkeiten im Umgang mit Kontext zu meistern sind, müssen zuerst
die Eigenschaften analysiert werden. Eine sehr allgemeine Gliederung teilt Kontext in statischen und
dynamischen Kontext auf [GBH+05].

• Statischer Kontext bleibt immer gleich (je nach Definition auch nur über einen sehr langen
Zeitraum). Als Beispiel gelten personenbezogene Daten wie Geburtsdatum oder Geburtsort.
Als statischer Kontext, welcher sich, falls überhaupt, nur sehr selten ändert, kann der Name
einer Person betrachtet werden. Der Verlust dieser Daten ist sehr schwerwiegend.

• Dynamischer Kontext dagegen ändert sich häufig. Hierbei lassen sich zusätzlich weniger
dynamischer Kontext (Beruf einer Person) sowie hochdynamischer Kontext (GPS-Position einer
Person) unterscheiden. Der Verlust dieser Daten ist bei der nächsten Aktualisierung bereits
unwichtig.

Um die Qualität des bereitgestellten Kontexts wiederzugeben, müssen weitere Merkmale betrachtet
werden. Die obige Grobgliederung wird durch drei Untergruppen ergänzt.

• Sensordaten stellen dynamischen Kontext bereit. Je nach Bereich und verwendetem Sensor
ist eine gewisse Fehlermarge zu erwarten. Auch Übertragungsfehler können zu verfälschten Er-
gebnissen führen. Mit einer immer größer werdenden Anzahl von Sensoren - ob physikalischen
oder virtuellen - ist dies die Grundlage für die autonome Bereitstellung von Kontext.

• Abgeleiteter Kontext beschreibt die Verarbeitung von bereits vorhandenem Kontext (bei-
spielsweise Sensordaten mehrerer Sensoren), um neue Informationen daraus zu gewinnen
(Durchschnittswert aller Sensoren). Zu beachten ist, dass Fehler durch bestimmte Operationen
(Abstand von zwei Smartphones) aufgrund einzelner fehlerhafter Sensordaten (GPS-Position ei-
nes Smartphones) vergrößert werden können. Geben in diesem Szenario die einzelnen Sensoren
einen Fehler von einem Meter in entgegengesetzter Richtung, so entsteht durch die Operation
Abstand berechnen ein Fehler von zwei Metern.

• Vom Benutzer bereitgestellter Kontext ist sehr zuverlässig, allerdings wird dieser bei Ver-
änderungen selten aktualisiert. Ohnehin sollte diese Art von Kontext wenn möglich eine
Ausnahme bleiben. Kontextbezogene Anwendungen, welche ausschließlich auf Sensordaten
beruhen, sind völlig autonom.

Auch mit dieser Unterteilung sind keine genauen Angaben zur Qualität von Kontext (QvK) gegeben.
Ergänzend müssen weitere Metadaten angegeben werden, um zuverlässige Aussagen über den Kontext
treffen zu können. Da vom Benutzer bereitgestellter Kontext fehlerfrei sein sollte und abgeleiteter
Kontext nur Fehler weiterführen kann, werden im Folgenden nur noch Sensordaten betrachtet.
Wichtige Metadaten sind [WKL+09]

• Genauigkeit beschreibt die exakte Fehlermarge, die aufgrund der physikalischen Gegebenhei-
ten eines Sensors gegeben sind (ist bei Produktion bekannt).

16

2.3. Systeme zur Verwaltung von Kontext

• Aktualität steht für den Zeitraum zwischen der Erfassung von Sensordaten und deren Verar-
beitung. Je höher dieser Wert ist, desto geringer die QvK (Zeitstempel bei Erfassung wird mit
Zeitstempel bei Verarbeitung verglichen - synchrone Uhren erforderlich).

• Durchschnittliche Lebenszeit beschreibt die durchschnittliche Zeit, in welcher die Sens-
ordaten korrekt sind und ist speziell in Abhängigkeit der Aktualität zu betrachten. Ist die
Lebenszeit höher, ist ein höherer Wert der Aktualität akzeptabel, ohne eine Verringerung der
QvK herbeizuführen.

• Korrektheit beschreibt die Wahrscheinlichkeit, dass Sensordaten korrekt sind. Für diesen
Wert müssen über einen gewissen Zeitraum diese speziellen Sensordaten beobachtet werden
und anschließend eine Evaluation durchgeführt werden, die angibt, wie oft die gelieferten
Sensordaten korrekte bzw. fehlerhafte Information lieferten.

• Zuverlässigkeit des Kontext-Provider charakterisiert den Provider im Hinblick auf die
Korrektheit seiner Kontextdaten. Je öfter der Provider nicht korrekte Daten liefert, desto weiter
sinkt dessen Zuverlässigkeit und die QvK seiner Daten.

• Deduktionsgeschichte ist speziell im Hinblick auf abgeleiteten Kontext zu betrachten. Je
mehr Sensordaten oder andere abgeleitete Kontextdaten einem Kontext zugrunde liegen, desto
niedriger ist seine QvK.

Die Kombination all dieser Metadaten ermöglicht eine qualitative Aussage über die QvK. Diese lässt
sich nun beispielsweise als numerischer Wert zwischen 0 und 1 darstellen, wobei 1 für sehr hoch-
wertig und 0 für sehr unzuverlässig stehen könnte. Des Weiteren können prozentuale oder absolute
Abweichungen vom Normwert angegeben werden. Mit einer Standardisierung der QvK ist die Erstel-
lung von Kontext-Providern möglich, die als Kontextbasis für viele verschiedene kontextbezogene
Anwendungen dienen.

2.3. Systeme zur Verwaltung von Kontext

Das im Jahr 1999 gestartete Nexus-Projekt der Universität Stuttgart hat zum Ziel, eine dem Internet
ähnliche Struktur namens World Wide Space zu erzeugen - eine globale Plattform von Kontextprovi-
dern, die Umgebungsmodelle für mobile kontextbezogene Anwendungen bereitstellt. Die Architektur
von Nexus ist in drei Ebenen unterteilt [LCG+09]:

• Context Information Layer. Auf dieser Ebene wird Kontext von Datenbanken mehrerer
Anbieter bereitgestellt. Abhängig davon, welche Art von Kontext bereitgestellt wird, soll eine
geeignete Datenbank verwendet werden. Zum Beispiel soll der Verlauf von sich bewegenden
Objekten in speziellen History Servern abgelegt sein. Um die Datenmenge auf den Servern zu
reduzieren, werden Kompressionsalgorithmen vorgeschlagen.

• Federation Layer. Der Federation Layer beinhaltet von Nexus bereitgestellte Services. Diese
werden in Core Service (von Nexus benötigte Services) und Platform Services (optionale Services)
unterteilt. Der Platform ServiceContext Reasoning ermöglicht die Deduktion von höherwertigem
Kontext aus low-level-Kontext mithilfe von Situationstemplates (siehe Kap. 2.5), welche im Core

17

2. Grundlagen und verwandte Arbeiten

Service Situation Repository gespeichert sind. Context Reasoning erfolgt mittels klassischer
Logik und Bayes’schen Netzen.

• Application & Middleware Layer. Die Anwendungsebene besteht aus kontextbezogenen
Anwendungen undWorkflows sowie zusätzlicher Middleware. Middleware Services können bei-
spielsweise verwendet werden, um Anwendungslogik auszulagern und somit deren wiederholte
Verwendung zu ermöglichen.

In [WKL+09] wird das Augenmerk auf unsichere Sensordaten und deren Verwendung in kontextbe-
zogenen Workflows gelegt. Die Arbeit ist Teil des Nexus-Projekts und baut somit auf der vorgestellten
Architektur auf. Um die QvK für kontextbezogene Workflows zu beachten, müssen dem Kontext
auf dem Context Information Layer Metadaten über die verwendeten Sensoren hinzugefügt werden.
Um stochastische Fehler zu verringern, werden Sensorwerte zu einem bestimmten Ereignis von
mehreren Sensoren gemessen und anschließend miteinander vereint. Zusätzlich werden Bewertun-
gen über die Sensoren und deren Qualität abgegeben, die mithilfe der Verwendung der normalized
weighted arithmetic mean method [KBZ+08] und darauf aufbauendem Fuzzy Clustering dazu führen,
dass abweichende Sensorwerte herausgefiltert werden können. Kontextbezogene Workflows können
anschließend mit Context Quality Policies versehen werden. Bei jeder Anfrage für Kontextdaten
wird die Policy mitgegeben, um sicherzustellen, dass nur Kontextdaten verwendet werden, die den
Qualitätsansprüchen des Workflows genügen.

2.4. Situation - Grundlagen und Definition

Am Beispiel einer beliebigen Maschine A in einer Fertigungsfabrik soll der Nutzen der Deduktion von
Kontext und einer daraus entstehenden Situation verdeutlicht werden. Maschine A produziert ein
Produkt, welches von Maschine B weiterverwendet wird. Bei Ausfall von Maschine A ist zugleich die
Produktion von Maschine B und möglichen weiter folgenden Maschinen eingeschränkt. Ein Workflow
muss dieses Problem erkennen und alternative Prozesse starten beziehungsweise die nötigen Schrit-
te zur Wiederinstandsetzung von Maschine A durchführen. Bezogen auf das Konzept Industrie 4.0
sollte jede Komponente, die zu einem Fehler der Maschine führen könnte, mit Sensoren ausgestattet
sein. Beispiele sind Temperatursensoren, die vor Überhitzung warnen sollen, Spannungssensoren,
die bei Überspannung eine Notfallabschaltung einleiten und viele weitere. Ein situationsbezogener
Workflow, der die gesamte Produktion überwacht, ist an diesen einzelnen Werten (z.B. der Werte
aller Temperatursensoren) nicht interessiert. Wichtig ist der allgemeine Zustand einer Maschine,
der sich beispielsweise in die Situationen funktionsfähig, kritisch und funktionsunfähig einteilen
lässt. Die Deduktion zu diesen Situationen ist oftmals maschinenspezifisch und obliegt nicht der
Workflow-Domäne. Das Ziel ist es somit, einen situationsbezogenen Workflow direkt mit den benö-
tigten Situationen zu versorgen. Die zugrundeliegenden Kontextdaten sind jedoch nicht gänzlich zu
vernachlässigen, da die Wiederherstellung der Funktionsfähigkeit einer Maschine davon abhängt.

[HHL+10] definiert eine Situation als die Charakterisierung eines spezifischen, wiederkehrenden Um-
stands oder einer Konstellation in der realen Welt, die 1) idealisiert beschrieben werden könnte und 2)
als Evaluationsbasis für die Adaption und Reaktion von kontextbezogenen Anwendungen dient. Es gibt
dabei keine klare Definitionsgrenze zwischen Kontext und Situationen. Vielmehr stellt eine Situation

18

2.5. Situationstemplates - Grundlagen und Definition

Situation Benötigter Kontext

Fabrik 100% funktionsfähig Alle Maschinen funktionsfähig
Maschine funktionsfähig Werkzeug funktionsfähig, Material vorhanden, Maschine nicht

überhitzt
Werkzeug funktionsfähig Benutzungsdauer des Werkzeug nicht überschritten, Werkzeug

zeigt keine Mängel
Material vorhanden Maschine besitzt ausreichendes Material
Maschine nicht überhitzt Sensorwerte von Temperatursensoren unter kritischem Niveau

Tabelle 2.1.: Kontext als Situation

eine Abstraktion mehrerer Kontextdaten dar, wobei diese gleichzeitig auch Situationen sein können,
was in Tabelle 2.1 beispielhaft dargestellt ist. Die Eigenschaften einer Situation hängen dabei stark
von dem zugrundeliegenden Kontext ab, welcher zur Deduktion verwendet wurde.

2.4.1. Situationsmodell & Situationsobjekt

Die im Beispiel genannten Situationen sind stark vereinfacht. Erhält ein Workflow als Situation nur
den String kritisch, fehlen wichtiger Kontext, um darauf basierend agieren zu können.

• Auf welche Maschine bezieht sich die Situation?

• Wann ist die Situation erkannt worden?

• Was bedeutet diese Situation?

• Wie wahrscheinlich ist es, dass bei der Erkennung der Situation kein Fehler aufgetreten ist?

Um diese und weitere Fragen zu beantworten, wird ein Situationsmodell gefordert, das alle vom
Workflow benötigten Informationen beinhaltet. Des Weiteren besteht die Notwendigkeit, diese In-
formationen an den Workflow übergeben zu können. Das Situationsmodell dient als standardisierte
Grundlage für die Erzeugung von Situationsobjekten. Diese Situationsobjekte können weitergegeben,
gespeichert und von einem Workflow verstanden werden.

2.5. Situationstemplates - Grundlagen und Definition

Das Aufstellen der Konditionen sowie Interpretationen von Kontext stellen ab einer gewissen Größe
einen großen Aufwand dar und erfordern domänenspezifisches Wissen der Sensoren. Um Konditionen
an die Sensorwerte stellen zu können, muss bekannt sein, welcher Datentyp produziert wird (z.B
Strings oder Zahlen, weiter unterteilt in Floats oder Integers), in welchem Format die Sensorwerte
dargestellt werden (wird die Auslastung des Arbeitsspeichers prozentual angegeben oder die Anzahl
verfügbarer Megabyte beziehungsweise Gigabyte dargestellt) und welche Qualitätsmerkmale vor-
handen sind (z.B. um Toleranzabweichungen bestimmen zu können). Workflowentwickler können
und sollten von diesem Prozess abgekoppelt werden. Dies führt zu einer neuen Entwicklungsebene

19

2. Grundlagen und verwandte Arbeiten

- dem Erstellen von Situationstemplates. Workflowentwickler geben an, welche Situationen von
Interesse sind und welche Konditionen an die Sensorwerte gestellt werden. Die Details werden von
Situationstemplatedesignern übernommen, die über sensorspezifisches Wissen verfügen.

1

2

3

Sensorebene

cond 1,2

cond 2,2

op 3,2

op 1,3

cond 2,3

op 1,4

Operationsebene Situationsebene

SituationSituationSituation

Abbildung 2.1.: Situationstemplate

Ein Situationstemplate stellt die Gesamtheit an benötigten Sensoren und den Konditionen, welche
an die von den Sensoren gelieferten Sensorwerten gestellt werden, dar. Des Weiteren werden alle
Operationen, dargestellt als logische Ausdrücke, die zur Deduktion des Kontexts benötigt werden,
definiert. Werden alle Konditionen erfüllt und alle Operationen erfolgreich ausgeführt, ist eine
Situation gültig, andernfalls ungültig. In dieser Variante definiert ein Situationstemplate genau eine
Situation. Bildlich kann ein solches Situationstemplate wie in Abbildung 2.1 dargestellt werden. Die
Sensorebene beinhaltet alle Sensoren und stellt den low-level-Kontext bereit. In der Operationsebene
werden alle Konditionen überprüft (das Überprüfen einer Kondition stellt auch eine Operation dar)
sowie Operationen zur Deduktion des low-level-Kontext durchgeführt, wodurch mid-level-Kontext
entsteht. Die Zusammenführung des mid-level-Kontexts in der Situationsebene führt zum höchsten
Abstraktionsgrad - dem high-level-Kontext. Diese Situation wird, wie in Kapitel 2.4 beschrieben,
über ein Situationsmodell in ein Situationsobjekt transformiert. Die fertigen Situationstemplates
können in einer Datenbank gespeichert werden und bei Bedarf in einem Situationserkennungssystem
instanziiert werden, um Situationen zu erkennen.

Eine Alternative ist, mehrere Situationen in einem Situationstemplate zu definieren. Angenommen es
existieren die Situationen Maschine voll funktionsfähig, Maschine teilweise funktionsfähig, Maschine
im kritischen Zustand undMaschine überlastet und alle diese Situationen benötigen dieselben Kontext-
daten. In diesem Fall ist es denkbar, diese vier Situationen in einem einzigen Situationstemplate zu
definieren. Das Beispiel in Tabelle 2.2 zeigt, dass bei einer CPU- und RAM-Auslastung von beispiels-
weise 90% die Konditionen der Situationen S2 und S3 erfüllt sind. Um zu verhindern, dass mehrere
Situationen gleichzeitig gültig sind, müssen den Situationen zusätzlich Prioritäten zugewiesen werden.
Um in diesem Beispiel die wichtigere Situation S3 zu erkennen, würde diese eine höhere Priorität
als Situation S2 erhalten. Gleichzeitig gilt, dass wenn eine Situation als gültig erkannt wird, alle
anderen Situationen automatisch ungültig sind. Die Vorteile dieser Alternative sind die vielschichtige
Unterteilung mehrerer Situationen. Allerdings nimmt mit der Anzahl von Situationen und zuge-
höriger Kontextdaten die logische Komplexität eines Situationstemplates stark zu, was wiederum

20

2.6. Systeme zur Situationserkennung

Situation Konditionen

S1: Maschine voll funktionsfähig CPU- und RAM-Auslastung unter 50% Auslastung.
S2: Maschine teilweise ausgelastet CPU- und RAM-Auslastung über 50% Auslastung.
S3: Maschine im kritischen Zustand CPU- und RAM-Auslastung über 80% Auslastung.
S4: Maschine überlastet CPU- und RAM-Auslastung bei 100% Auslastung.

Tabelle 2.2.: Mehrere Situationen in einem Situationstemplate

die Erstellung von Situationstemplates erschwert. Im Rahmen dieser Arbeit werden deshalb vorerst
Situationstemplates verwendet, die genau eine Situation definieren.

2.6. Systeme zur Situationserkennung

Es besteht bereits eine große Anzahl kontextbezogener Applikationen. Die Bereitstellung des Kontexts
geschieht in der Regel mittels eine Adhoc-Variante. Alle Module sind stark miteinander gekoppelt. Die
Weiterverwendung durch andere Applikationen beziehungsweise Workflows ist auf diese Weise nicht
realisierbar. Bei Neuerstellung einer solchen Anwendung muss das gesamte Kontexterfassungssystem,
alle Sensoren, Server und diverse Middleware neu implementiert werden. Der Grund dafür ist, dass die
Entwicklung einzelner Anwendungen auf diese Art deutlich einfacher und schneller abläuft. Hierbei
werden die Sensorentreiber direkt in der Applikation verwendet. Die Deduktion der Kontextdaten zu
Situationen erfolgt auf Anwendungsseite. Die Alternative ist die Modularisierung aller beteiligten
Systeme. Sensoren, Middleware und Applikation sind streng voneinander getrennt, wodurch deren
Weiterverwendung ermöglicht wird. Neu erstellte Anwendungen können die bereits vorhandenen
Module über Schnittstellen ansprechen [DAS00].

In [DAS00] wird auf dieser Basis ein Smart Environment am Beispiel eines intelligenten Hauses
vorgestellt. Die Architektur der Kontextbereitstellung wird in drei Bereiche eingeteilt - Context
Widgets, Context Servers und Context Interpreters. Context Widgets sind die direkte Schnittstelle zu
den Sensoren. Anwendungen können sich direkt bei Context Widgets un/subscriben. Der Kontext
kann entweder durch Polling oder Notifikationen bereitgestellt werden. Context Server stellen eine
Subklasse der Context Widgets dar. Bei der Instanziierung eines Context Servers wird angegeben, bei
welchen Context Widgets sich dieser anmelden soll. Die Anwendung kann sich daraufhin bei einem
Context Server subscriben, anstatt sich bei allen einzelnen Context Widgets anmelden zu müssen.
Die Speicherung von Daten obliegt den jeweiligen Modulen. Auf diese Weise kann eine Historie
erstellt werden, die Verlaufsinformationen der jeweiligen Context Widgets beziehungsweise Context
Server ermöglicht. Auf Basis dieser Informationen sind Anwendungen möglich, die Kontext sowie
deduzierten Kontext mit gewissen Wahrscheinlichkeiten vorhersagen können, um noch intelligentere
Systeme zu entwickeln. Context Interpreter sind optional und können zur Deduktion von low-level-
Kontext (reine Sensorwerte) in higher-level-Kontext (Zustand) verwendet werden.

Problematisch ist die fehlende Verwaltung der einzelnen Module. Im Falle einer Vielzahl großer
Anwendungen basierend auf vielen Sensorwerten entsteht eine enorm große Anzahl von Context
Widgets. Trotz der Aggregation durch einen Context Server müssen die Context Widgets bei der

21

2. Grundlagen und verwandte Arbeiten

Instanziierung des Context Servers bekannt sein. Hierfür muss eine zusätzliche Verwaltungsebene
erstellt werden, die alle Context Widgets sowie Context Server enthält, sodass Anwendungsentwickler
auf einfache Weise benötigte Module finden können, ohne domänenspezifische Details zu kennen. Die
Konditionen, die an die von den Context Widgets und Servers gestellt werden, stellen im Gegenzug
einen unerwünschten Verwaltungsaufwand dar. Anstatt, dass sich eine Anwendung bei jedem einzel-
nen Modul, ob Context Widget oder aggregiert bei einem Context Server, anmeldet, ist aufwändig
und unübersichtlich. Gleichzeitig wird zusätzlich ein Context Interpreter benötigt, welcher für die
Deduzierung des Kontexts verwendet wird. Ein simpler logischer Ausdruck wie if (Sensorwert1>10 &
Sensorwert2>50) then Sensorwert3 = 30; wird mit dieser Variante auf zwei Context Widgets und einen
Context Interpreter aufgeteilt.

In [Zwe11] wird am Beispiel des RoboCup Szenarios das Verhalten von Robotern mithilfe von Si-
tuationen gesteuert. Hierbei spielen mehrere Roboter Fußball gegeneinander, weshalb Reaktionen
im Millisekundenbereich verlangt werden, was eine effiziente Situationserkennung voraussetzt. Im
Gegensatz zu [DAS00] werden Situationstemplates verwendet, um aufgestellte Konditionen zu verei-
nen. Ein Situationstemplate besteht aus einer SituationsID und einem Situationsschema. Zur Laufzeit
werden mit einem Erkennungsalgorithmus, beispielsweise Bayes’schen Netzen, Situationsobjekte aus
dem Situationstemplate mit Umweltdaten (Kontextdaten) instanziiert. Im Situationsschema sind alle
Konditionen definiert, die für die Gültigkeit einer Situation benötigt werden. Mit einem Matching-
Algorithmus wird das Situationsobjekt mit dem Situationsschema verglichen und falls alle Konditionen
erfüllt sind, als gültig deklariert. Darüber hinaus ist auch die Schachtelung von Situationstempla-
tes möglich, so dass ein Situationsobjekt mit mehreren Situationstemplates verglichen wird. Eine
Möglichkeit zur Persistierung der Situationsobjekte ist nicht vorhanden.

22

3. Stand der Technik

3.1. NoSQL

NoSQL-Datenbanken stellen eine Alternative zu herkömmlichen relationalen Datenbanken dar. Der
größte Unterschied besteht darin, dass NoSQL-Datenbanken kein Schema für die Strukturierung von
Daten erfordern. Müssen bei relationalen Datenbanken zwei Elemente derselben Tabelle dieselben
Attribute enthalten, können Elemente von NoSQL-Datenbanken komplett unterschiedlich aufgebaut
sein. Diese Schemafreiheit bietet für Anwendungen mit heterogenen Datensätzen eine sinnvolle
Alternative. Laut des CAP-Theorems [GL12] können Datenbanken nur zwei der drei folgenden Ei-
genschaften Konsistenz (Consistency), Verfügbarkeit (Availability) und Partitionstoleranz (Partition
Tolerance) erfüllen. NoSQL-Datenbanken konzentrieren sich dabei auf Verfügbarkeit und Partitions-
toleranz, im Gegenteil zu relationalen Datenbanksystemen, die statt Partitionstoleranz Konsistenz
bevorzugen. Die bekanntesten Systeme, die (zumindest teilweise) auf NoSQL-Datenbanksystemen
basierten, sind Facebook [FB] und Twitter [TWT]. Dies sind stark verteilte Systeme, die immer ver-
fügbar sein müssen. Wann eine Benutzernachricht bei einem Facebook-Nutzer eintrifft, ist dagegen
kein zeitkritischer Prozess und kann in dieser Hinsicht vernachlässigt werden. Trotzdem bieten einige
NoSQL-Datenbanken (z.B. MongoDB [MDb]) die Möglichkeit an, den Konsistenzlevel auf Kosten der
Partitionstoleranz selbst zu bestimmen.

3.1.1. Skalierbarkeit

Das beste Argument für die Verwendung von NoSQL-Datenbanksystemen liegt in deren Skalierbarkeit.
Um die verbesserte Skalierbarkeit zu erklären, müssen die zugrundeliegenden Datenbankparadigmen
ACID und BASE verglichen werden. Das Akronym ACID ist transaktionsbasiert, wird von relationalen
Datenbanksystemen verwendet und beschreibt die folgenden Eigenschaften [Pri08]:

• Atomicity. Atomarität beschreibt die Eigenschaft, dass eine Transaktion entweder ganz oder
gar nicht erfolgt. Wenn Teile der Transaktion nicht durchgeführt werden können (z.B. weil eine
Datenbank nicht erreichbar ist), so müssen alle bereits erfolgten Änderungen wieder rückgängig
gemacht werden. Dies erhöht den Verwaltungsaufwand und erschwert somit die Skalierung.

• Consistency.Konsistenz (in diesem Sinne strong consistency) beschreibt, dass bei einem Schreib-
vorgang die Änderungen an jeden weiteren Knoten weitergeleitet und durchgeführt werden
müssen. Ein darauffolgender Lesevorgang auf einem beliebigen Knoten gibt jeweils das selbe
Ergebnis zurück. Bei stark verteilten Datenbanksystemen, bei denen zwischenzeitlich Kno-
ten ausgefallen sein könnten oder nicht erreichbar sind (keine Internetverbindung), ist die
Einhaltung eines konsistenten Zustands nur schwer zu erreichen.

23

3. Stand der Technik

• Isolation. Isolation beschreibt, dass Transaktionen isoliert voneinander ablaufen. Daraus folgt,
dass das gleichzeitige Ausführen von Transaktionen zu dem gleichen Ergebnis kommt wie
deren sequentielle Ausführung.

• Durability. Dauerhaftigkeit besagt, dass sobald eine Transaktion erfolgreich abgeschlossen
wurde, der neu herbeigeführte Zustand dauerhaft bestehen bleibt, auch nach Fehlern oder
Systemausfällen, weswegen die Daten nach einem Schreibvorgang auf ein sicheres Speicherme-
dium geflusht werden müssen. Im Gegensatz dazu basieren einige NoSQL-Datenbanken wie
Redis oder Memcache auf Cache-basierten Speichersystemen, um die Zugriffszeiten deutlich zu
verringern.

Hauptsächlich wurde BASE (dt. Lauge) als Akronym verwendet, um den Gegensatz zu ACID (dt.
Säure) darzustellen und steht für Basically Available, Soft State, Eventually Consistent. Es bestehen
keine eindeutigen Definitionen für Basically Available und Soft State. Eventually Consistent beschreibt
die Eigenschaft, dass nach einem Schreibvorgang irgendwann alle Daten wieder in einem konsistenten
Zustand sind, dieser Zeitpunkt allerdings nicht genauer spezifiziert werden kann. Somit ist es in
Ordnung, veraltete Daten zu verwenden, Diese Abschwächung des Konsistenzlevels ermöglicht
deutlich schnellere Schreibvorgänge, da nicht zuerst auf die Erfüllung der in ACID beschriebenen
Eigenschaften gewartet werden muss [Pri08].

Systeme, bei denen Skalierbarkeit und Geschwindigkeit wichtiger ist als die Konsistenz der Daten,
finden in NoSQL-Datenbanken eine sinnvolle Alternative zu relationalen Datenbanken.

3.2. Cloud Computing

Herkömmliche Rechnerinfrastrukturen von Unternehmen sind darauf ausgelegt, das Maximum an
benötigten Kapazitäten bereitzustellen. Dieses Maximum wird oftmals durch kurzzeitige Kapazitätss-
pitzen definiert. In der restlichen Zeit werden die bereitgestellten Kapazitäten nicht benötigt, obwohl
trotzdem Kosten für die Verwaltung, Instandhaltung und den Lagerplatz entstehen. Die Bereitstellung
neuer Kapazitäten kann mehrere Wochen dauern und muss zusätzlich in das bestehende System
integriert werden [AFG+10].

Cloud Computing beschreibt das Konzept, IT-Infrastrukturen virtualisiert zur Verfügung zu stellen.
Hierbei werden die physischen Ressourcen einer Maschine in logische Ressourcen unterteilt. Von-
einander unabhängige virtuelle Maschinen greifen auf die logischen Ressourcen zu, wodurch der
Nutzungsgrad um ein Vielfaches gesteigert werden kann. Auf diese Weise können Benutzern und
Prozessen virtuelle Maschinen zugeteilt werden, die optimal auf die ausgeführten Prozesse abgestimmt
ist [Ley09].

Die Bereitstellung einer Cloud lässt sich allgemein in vier Service-Modelle einteilen [MG09]:

1. Public Cloud. Eine Public Cloud beschreibt das Konzept, das eine Cloud öffentlich bereitgestellt
wird und von jedem verwendet werden kann. Virtuelle Maschinen können gebührenpflichtig
bei einem Cloud Provider (z.B. Amazon AWS [aws]) für die Dauer der Benutzung gemietet
werden und bieten die einfachste Möglichkeit, eine anforderungsgerechte Infrastruktur zu
erzeugen. Zusätzlich werden Funktionalitäten wie Load Balancing (gleichmäßige Verteilung

24

3.2. Cloud Computing

der Last auf alle gemieteten virtuellen Maschinen) oder Auto Scaling, dass bei Auslastung der
Maschinen automatisch weitere Maschinen mietet. Die Verwaltung und Instandhaltung der
Infrastruktur sowie die Erfüllung nicht funktionaler Anforderungen wie Sicherheitsrichtlinien
obliegt dem Cloud Provider, was dem Benutzer zusätzliche Kosten einspart. Kapazitätsspitzen
können durch Mieten weiterer virtueller Maschinen innerhalb von Minuten abgefangen werden.
Nicht benötigte Maschinen können entfernt werden, um Kosten zu sparen. Vor allem schnell
wachsende Startup-Unternehmen profitieren von der schnellen Bereitstellung und dem Pay-as-
you-go Konzept.

2. Private Cloud. Die Private Cloud ermöglicht die exklusive Nutzung für einzelne Organisatio-
nen. Das Managen dieser Cloud kann durch ein Drittunternehmen stattfinden. Der Zugang
findet über das Intranet des Unternehmens statt. Hier wird meist das firmeneigene Rechen-
zentrum zur Bereitstellung verwendet, wodurch nur eine indirekte Kosteneinsparung erfolgt,
dafür allerdings die Sicherheitsrichtlinien selbst gesetzt werden können. Dies ist das meist
verwendete Modell, da das Unternehmen die gesamte Kontrolle über die Cloud behält. Die
Verwaltung einer Private Cloud kann von einem Drittunternehmen übernommen werden.

3. Hybrid Cloud. Deutsche Unternehmen sind über das Datenschutzgesetzes dazu verpflichtet,
personenbezogene Daten innerhalb Deutschlands aufzubewahren. Weitere Gründe wie der
Patriot Act [pa] bewegen deutsche Unternehmen dazu, amerikanische Cloud Provider zumeiden
und entweder eine Private Cloud oder deutsche Cloud Provider zu verwenden. Eine Alternative
ist die Verwendung einer Hybrid Cloud, die eine Kombination der Modelle Public und Private
Cloud darstellt, wobei die einzelnen Clouds über Schnittstellen miteinander verbunden sind.

4. Community Cloud. Die Community Cloud ist eine Private Cloud, die von mehreren Organi-
sationen gemeinsam genutzt wird. Beispielsweise können Firmen und deren Zulieferer dieselbe
Cloud verwenden, um die Kommunikation untereinander zu vereinfachen. Wie auch die Private
Cloud kann die Community Cloud von einem Drittunternehmen verwaltet werden.

Insgesamt wird die Kosteneinsparung durch Nutzung von Cloud Computing zwischen den Jahren 2010
und 2015 auf etwa 50 Milliarden US-Dollar geschätzt [ceb10]. Für den Einsatz in SitOPT ist vor allem
die Eigenschaft der Elastizität von Interesse. Elastizität beschreibt, dass Kapazitäten dem Benutzer
immer verfügbar sind und sich die Menge verwendeter Kapazitäten an die aktuellen Anforderungen
anpasst. Diese Eigenschaften werden als Verfügbarkeit und Skalierbarkeit definiert [Ley09]:

1. Skalierbarkeit.Anwendungen in der Cloud können vor allem bei der Verwendung einer Public
Cloud vergleichsweise schnell und beliebig hoch skalieren. Durch unterstützende Funktiona-
litäten wie Auto Scaling wird die Skalierung automatisiert. Voraussetzung dafür ist, dass die
Anwendung parallelisierbar ist und somit auf verschiedenen Maschinen gleichzeitig ausgeführt
werden kann.

2. Verfügbarkeit. Verfügbarkeit beschreibt die Eigenschaft, wie oft es zu Ausfallzeiten der Rech-
nerinfrastruktur kommt. Hochverfügbare Systeme sollten Ausfallzeiten von höchstens wenigen
Minuten im Jahr besitzen. Bei der Verwendung einer Cloud können ausgefallene Maschinen
sofort durch neue Maschinen ersetzt werden, wodurch die Ausfallzeiten für den Benutzer
zusätzlich minimiert werden.

25

3. Stand der Technik

Für den Anwendungsfall einer Situationserkennung sind die Voraussetzungen optimal. Will der
Benutzer eine Situationserkennung starten, stehen immer ausreichend Kapazitäten zur Verfügung.
Werden die überwachten Objekte ausgeschaltet und die Situationserkennung gestoppt, werden
die gemieteten Kapazitäten wieder entfernt. Hochsensiblen Produktionsabläufen wird durch die
Minimierung von Ausfallzeiten eine durchgehend zuverlässige Situationsüberwachung gewährleistet.
Die Verwendung einer Private Cloud bietet vor allem für den Prototyp von SitOPT die Vorteile einer
schnellen und ressourcensparenden Bereitstellung.

3.3. Complex Event Processing (CEP)

CEP - das Verarbeiten komplexer Ereignisse - beschreibt das Verfahren, auf einer Menge logisch
verknüpfter Ereignisse höherwertige Informationen zu gewinnen. Ein Ereignis ist hierbei ein Objekt,
dass eine Aktivität in einem System darstellt. Ereignisse sind voneinander abhängig und können in
Folge ihrer Verarbeitung neue Ereignisse produzieren [Rob10]. Zu den wichtigsten Anwendungsgebie-
ten zählen das Business Activity Monitoring, der Einsatz in Sensornetzwerken sowie die Erforschung
von Marktdaten. Vor allem der Einsatz in Sensornetzwerken entspricht dem Anwendungsfall einer
Situationsüberwachung. Der Ablauf eines CEP-Systems wird in Abbildung 3.1 gezeigt. Im Folgenden
werden die einzelnen Schritte am Beispiel einer Situationserkennung vorgestellt.

Abbildung 3.1.: CEP-Zyklus [RB15, pp. 6]

• Erkennen. Das Erkennen von Ereignissen (Situationen) erfolgt über das Bereitstellen von
Sensorwerten durch Sensoren. Gleichzeitig werden statischer Kontext über Wissensdatenban-
ken bereitgestellt. Mithilfe dieses Kontext soll der Zustand eines virtuellen oder physischen
Objekts abgeleitet werden. Von hoher Bedeutung ist die Geschwindigkeit, mit der dynamischer
Kontext erkannt und weiterverarbeitet wird, um einen aktuellen Zustand zu erkennen. Bei
Sensorwerten, die sich beispielsweise jede Sekunde ändern, ist eine Situation, die auf fünf
Minuten alten Sensorwerten basiert, längst obsolet.

• Verarbeiten. Bei der Verarbeitung wird zuerst eine Analyse der Kontextdaten durchgeführt.
Hierbei können beispielsweise die von einem Situationstemplate definierten Konditionen an

26

3.3. Complex Event Processing (CEP)

die Sensorwerte überprüft werden. Darauf folgend können beliebige Operationen auf den
Kontextdaten durchgeführt werden.

• Reagieren. Abhängig davon, welche Ergebnisse in der Verarbeitungsphase entstanden sind,
können vorab definierte Aktionen durchgeführt werden, beispielsweise die Benachrichtigung
von Personal oder das Weitersenden der deduzierten Kontextdaten an weitere Services.

CEP verwendet SQL ähnliche EPL (Event Processing Language) Statements, um zu überprüfen, ob
der Kontext die definierten Konditionen erfüllt. Das folgende Statement

EPStatement cepStatement = cepAdm.createEPL("select * from Situation having cpu > 80.0 AND ram >

600.0");

cepStatement.addListener(new CEPListener());

überprüft Objekte der Klasse Situation im Hinblick auf die Werte cpu und ram und vergleicht diese
mit den angegebenen Schwellenwerten. Anschließend wird dem Statement ein Listener hinzugefügt,
um neue Situationen zu erkennen.

27

4. Konzept und Architektur von SitOPT

Im Folgenden werden die Module von SitOPT konzeptionell beschrieben. Zusätzlich wird der Ablauf
von der Situationsüberwachung bis hin zur Situationsbereitstellung an einen Workflow demonstriert.
Abbildung 4.1 demonstriert einen Gesamtüberblick über die einzelnen Module von SitOPT. Diese
werden in den folgenden Kapiteln detailliert vorgestellt.

 Situationserkennungssystem (SES)

 Situation Dashboard Situation Handler

 Situations-

 verwaltung
Datenbank

Registriert sich für
Änderungen

Schnittstelle zwischen
SES und Situation Handler
bzw. Situation Dashboard

Computer Computer Computer Computer Computer

Zeigt überwachte Objekte an

...

Benachrichtigung
an registrierte

Workflows

Startet
Situations-
erkennung

Sendet Daten an
Website

Sendet
Situationsobjekte

Transformation
Mapper

Leitet
Transformation

ein

1

2

3

Sensor-
ebene

cond 1,2

cond 2,2

op 3,2

op 1,3

cond 2,3

op 1,4

Operationsebene
Situations-

ebene

SituationSituationSituation

Ressource
Management

Platform

Schnittstelle zu
adaptiven Workflows

Abbildung 4.1.: Gesamtarchitektur von SitOPT

Bei der Architektur wurde auf eine modulare Bauweise geachtet, um SitOPT flexibel zu gestalten und
zugrundeliegende Module oder Technologien erweitern beziehungsweise austauschen zu können.

29

4. Konzept und Architektur von SitOPT

Dabei sind die Module Ressource Management Platform, Transformation Mapper und Situation Handler
nur indirekt Teil dieser Arbeit und werden dementsprechend weniger detailliert beschrieben. In der
Abbildung 4.1 ist die Schnittstellenfunktion des Datenbanksystems zwischen den Modulen des Situati-
onserkennungssystems sowie der adaptiven Workflows beziehungsweise des Situation Dashboards zu
erkennen. Um die entstandenen Situationen an das Workflowsystem weiterleiten zu können, werden
diese in einer Document-Based Datenbank gespeichert sowie nötige Veränderungen vorgenommen,
um die Spezifikationen der Datenmodelle zu erfüllen. Daraufhin können die Workflows die von ihnen
benötigten Daten aus der Datenbank auslesen. Das Situationserkennungssystem sowie die Datenbank
befinden sich in einer Cloud und sind somit von überall zugreifbar und skalierbar. Im Folgenden wird
ein detaillierter Überblick über die wichtigsten Komponenten von SitOPT geliefert.

4.1. Situationserkennungssystem

Um die Abkopplung der Situationserkennung von der Workflow-Ebene zu ermöglichen, werden
Situationserkennungssysteme (SES) vorgestellt. Hier werden auf Basis des verwendeten Situations-
templates Situationen erkannt, die im späteren Verlauf Workflows zur Verfügung gestellt werden.
Des Weiteren ermöglicht die Modularisierung die Verwendung verschiedener SES, ohne Änderungen
an anderen Modulen vornehmen zu müssen. Wichtige Eigenschaften eines SES sind unter anderem
Effizienz, Skalierbarkeit und Parallelisierung. Die Visualisierung eines SES kann von Vorteil sein, um
Abläufe in der Situationserkennung zu betrachten und zu verstehen. Die Abläufe innerhalb eines SES
können in folgende Bereiche gegliedert werden:

1. Kontext erfassen: Die Erfassung von Kontext dient als Grundlage für das Erkennen von Situa-
tionen. Die im Situationstemplate definierten Sensoren werden in der Sensorebene ausgelesen.
Beim Start einer Situationserkennung muss dem SES mitgeteilt werden, wo die benötigten
Sensorwerte vorliegen (z.B. URL des Sensors). Dies erfolgt über das überwachte Objekt, dass
vorhandene Sensoren referenziert.

2. Kontext verarbeiten: In der Operationsebene werden zuerst die im Situationstemplate de-
finierten Konditionen an die Sensorwerte überprüft. Wird mindestens eine Kondition nicht
erfüllt, wird die Situation als ungültig betrachtet. Des Weiteren können beliebige Operationen
auf dem Kontext durchgeführt werden. Werden alle Konditionen erfüllt und alle Operationen
erfolgreich ausgeführt, gilt eine Situation als gültig.

3. Situationsobjekt erstellen: Unabhängig davon, ob eine Situation gültig oder ungültig ist,
wird auf der Situationsebene ein Situationsobjekt erstellt, dass alle im Verlauf der Situationser-
kennung verwendeten Daten enthält.

Wie zu sehen ist, entspricht diese Vorgehensweise den beiden Punkten Erkennen und Verarbeiten aus
dem in Kapitel 3.1 vorgestellten CEP-Zyklus. Workflows, die auf Basis erkannter Situationen reagieren,
vervollständigen den CEP-Zyklus. Somit können beliebige CEP-Systeme für eine Situationserkennung
verwendet werden. Die anschließende Verarbeitung des Situationsobjekts kann auf zweiMöglichkeiten
realisiert werden:

30

4.2. Transformation Mapper

1. Die erste Möglichkeit beschreibt die Vorgehensweise, dass Situationsobjekte nur dann gespei-
chert werden, wenn sich die Gültigkeit ändert. Solange alle Situationen ungültig sind, wird der
Standard-Workflow ausgeführt. Erst sobald eine Situation erkannt wird, muss das entsprechen-
de Workflow-Fragment initialisiert werden. Wird dieselbe Situation im Anschluss nochmals
als gültig erkannt, ist dies für den Workflow nicht von Interesse, da das Workflow-Fragment
bereits ausgeführt wird und somit keine weiteren Schritte eingeleitet werden müssen. Sobald
daraufhin die Situation wieder als ungültig erkannt wird, kann der Workflow die Ausführung
des Workflow-Fragments wieder beenden.

2. Obwohl Workflows keinen direkten Nutzen aus nacheinander mehrfach erkannten Situationen
mit derselben Gültigkeit haben, kann es von Vorteil sein, diese in der Datenbank zu speichern.
Die Speicherung aller Situation führt zu einer Erstellung einer Historie von Situationen. Mo-
nitoringsysteme können diese Historie auswerten und mögliche Optimierungen im Ablauf
aufweisen. Die Speicherung aller Situationen kann zu einem großen Overhead bezüglich des
gespeicherten Datenvolumens führen.

Resource Management Platform (RSM)

Die im SES verwendeten Sensordaten können über die Resource Management Platform, die auf dem
Konzept des OSLC (Spezifikation für die Integration von Werkzeugen) basiert, ausgelesen werden.
Die RSM verwendet eine Push&Pull Methode. Um jederzeit eine Situationserkennung durchführen
zu können, werden spezielle OSLC-Adapter verwendet, um die Sensorwerte von den Sensoren in
einen Data Cache der RSM zu pushen und zu speichern. Anderenfalls sind möglicherweise keine
Sensorwerte vorhanden, um Situationen abzuleiten. Zu beachten ist, dass mit der Lebenszeit von
Sensorwerten die Qualität enorm sinken kann. Wird eine Situationserkennung durchgeführt, werden
die benötigten Sensorwerte von einem OSLC Service aus dem Data Cache gepullt und können somit
dem SES als REST Ressource zur Verfügung gestellt werden [HWS+15]. Die Implementierung der
RSM ist nicht Teil dieser Arbeit.

4.2. Transformation Mapper

Situationstemplates liegen in einem XML-Format vor. Die Verwendung mehrerer Systeme zur Si-
tuationserkennung fordert daher eine Transformation eines Situationstemplates in ein ausführbares
Situationstemplate für das gewählte SES. Der Transformation Mapper enthält alle Mappingalgorith-
men verfügbarer SES und wird beim Start einer Situationserkennung durch das Situation Dashboard
aufgerufen. Nach erfolgreicher Transformation startet der Transformation Mapper das SES mit dem
ausführbaren Situationstemplate. Die Implementierung des Transformation Mappers ist nicht Teil
dieser Arbeit.

31

4. Konzept und Architektur von SitOPT

4.3. Situationsverwaltung

Die Situationsverwaltung dient in erster Linie dazu, Workflows und dem Situation Dashboard Situatio-
nen bereitzustellen. Darüber hinaus stellt dieses Modul die Schnittstelle zur Datenbank dar. Auf diese
Weise können von der Datenbank nicht vorhandene Funktionen durch die Situationsverwaltung be-
reitgestellt werden. Zusätzlich müssen alle von SitOPT benötigten Funktionen implementiert werden.
Da kein direkter Datenbankzugriff möglich ist, stellt die Situationsverwaltung die grundlegenden
Funktionen Erstellen, Lesen, Ändern sowie Löschen von Ressourcen zur Verfügung. Eine Ressource
stellt im Kontext von REST ein einzelnes Dokument dar, eine Listenressource eine Menge von Res-
sourcen. Im Rahmen dieser Arbeit ist eine Listenressource eine Menge von Ressourcen desselben
Typs (z.B. nur Situationen). Im Folgenden werden Anforderungen an die bereitgestellten Funktionen
beschrieben:

• Erstellen von Ressourcen. Diese Funktion ermöglicht dem SES das Speichern von Situati-
onsobjekten und den dazugehörigen Sensorwerten innerhalb der Datenbank. Des Weiteren
ermöglicht sie Benutzern die Erstellung von Sensoren, Things und Situationtemplates, welche
anschließend von SitOPT verwendet werden können. Um zu überprüfen, ob die erzeugte Res-
source alle von SitOPT benötigten Attribute enthält, wird eine Schemavalidierung mithilfe der
in Kapitel 4.7 gezeigten Datenmodelle durchgeführt. Zusätzlich fügt die Situationsverwaltung
eigenständig Metadaten hinzu. Beispielsweise ist dem SES der Name einer erkannten Situation
nicht bekannt, welcher allerdings im Situationstemplate definiert ist. Da dem SES das ausge-
führte Situationstemplate bekannt ist, wird beim Einfügen einer Situation über das referenzierte
Situationstemplate der Name der Situation ausgelesen und dem Situationsobjekt hinzugefügt.

• Ändern von Ressourcen. Um die Verwaltung von Situationen zu vereinfachen, soll das konti-
nuierliche Erkennen einer einzigen Situation nicht zur Erstellung multipler Ressourcen führen.
Stattdessen wird eine Ressource geändert, wobei ältere Versionen beibehalten werden. Des Wei-
teren muss es möglich sein, statische Ressourcen wie Sensoren, Things und Situationstemplates
zu verändern.

• Lesen von Ressourcen. Das Lesen von Ressourcen soll dem Benutzer die Möglichkeit geben,
Ressourcen zu erhalten. Hierfür sollen neben der ID einer Ressource weitere Attribute als
Abfragekriterium möglich sein. Beispielsweise lässt sich eine Situation neben der ID eindeutig
als Kombination eines Things mit einem Situationstemplate definieren.

• Löschen von Ressourcen. Um die referenzielle Integrität von Ressourcen zu gewährleisten,
muss ein kaskadierender Löschvorgang gestartet werden. Dies bedeutet, dass wenn eine Res-
source A gelöscht werden soll, alle Ressourcen, die Ressource A referenzieren, ebenso gelöscht
werden müssen.

Um Fehlverhalten von Benutzern zu vermeiden, soll zusätzlich eine Benutzerverwaltung integriert
werden, die die Sicherheit und Funktionsweise von SitOPT gewährleisten soll. Auf diese Weise kann
beispielsweise sichergestellt werden, dass nur ein SES die Möglichkeit besitzt, Situationsobjekte zu
erzeugen.

32

4.3. Situationsverwaltung

4.3.1. Situationsbereitstellung

In Abbildung 4.2 ist die anfängliche Methode zur Situationsbereitstellung zu sehen. Statt jeden Zugriff
über eine Datenbank durchzuführen, werden alle Situationen des SES an eine Messaging Queue
gesendet. Eine Queue kann mehrere Topics enthalten, auf welchen Situationen bereitgestellt werden
können. Der TopicMaschine1/sitTemp1 enthält alle Situationsobjekte, die bei der Situationserkennung
für die Maschine Maschine1 mit dem Situationstemplate sitTemp1 erkannt wurden. Um über erkannte
Situationen informiert zu werden, muss sich der Situation Handler bei einem Topic subscriben. Das
Messaging-System published bei jeder Änderung auf diesem Topic die neuen Situationen an alle
Subscriber. Bei dieser Variante fehlen Funktionalitäten wie z.B. die oben angesprochene Methode, nur
Situationen zu speichern (und damit auch an den Situation Handler weiterzuleiten), die sich geändert
haben. Der Vorteil dieser Methode ist eine höhere Geschwindigkeit der Situationsbereitstellung im
Vergleich zur zweiten Methode, da keine Datenbankzugriffe benötigt werden. Das SES sendet zwecks
Historienerstellung weiterhin Situationsobjekte an die Datenbank.

 Messaging Queue

 Situationserkennungssystem (SES)

 Situation Handler

Datenbank

 Situation Dashboard

Subscribe Subscribe

Sendet Situationsobjekte
an Queue

Publish
Publish

Transf.
Mapper

Sendet Situationsobjekte
an Datenbank

Abbildung 4.2.:Message Queue als Situationsbereitstellung - vereinfachte Darstellung

Die in SitOPT derzeit verwendete Methode, ist die Situationsbereitstellung mittels der Situationsver-
waltung, wie es in Abbildung 4.1 zu sehen ist. Alle Situationsobjekte werden zuerst in einer Datenbank
gespeichert. Daraufhin kann sich der Situation Handler bei der Situationsverwaltung auf spezifische
Situationen anmelden. Des Weiteren ist es möglich, sich auf alle möglichen Situationen anzumelden.
Bei einer Veränderung oder Neuentstehung einer Situation wird überprüft, ob auf dieser Situation
Registrierungen vorhanden sind. Falls ja, wird die Situation an eine von dem Situation Handler
bei der Registrierung angegebene URL gesendet. Der Situation Handler kann bei der Anmeldung

33

4. Konzept und Architektur von SitOPT

angeben, ob fortlaufend Benachrichtigungen gesendet werden sollen oder nur beim erstmaligen
Auftreten einer Situation. Bei Angabe der letzteren Variante wird die Anmeldung im Anschluss an die
Benachrichtigung gelöscht. Soll ein Workflow nicht weiterhin über Situationen informiert werden,
muss der Situation Handler eine Abmeldung bei der Situationsverwaltung durchführen.

4.3.2. Datenbank

Die Datenbank verwaltet alle von SitOPT benötigten und daraus entstehenden Daten. Aufgrund der
Situationsverwaltung sind die Anforderungen an die Funktionalitäten der Datenbank geringer. Sicher-
heitsspezifische Funktionen wie Benutzerverwaltung können beispielsweise von der Situationsver-
waltung übernommen werden. Nichtsdestotrotz ist es von Vorteil, bereits bestehende Funktionalitäten
übernehmen zu können. Das Hauptaugenmerk liegt deshalb auf den Eigenschaften der Datenbank.
Vor allem die Skalierung der Datenbank ist für SitOPT von größter Wichtigkeit. Angenommen alle 5
Sekunden wird eine Situation für ein Objekt erkannt und jede erkannte Situation des SES wird gespei-
chert. Werden in diesem Szenario 20 Objekte über einen Zeitraum von einem Tag überwacht mit einer
Datengröße von 5 Kilobyte pro Situationsobjekt, so entsteht in diesem Zeitraum eine Datengröße von
1,728 Gigabyte. Zu entscheiden ist, wie die Daten sinnvoll auf verschiedene Datenbanken aufgeteilt
werden können, um Zugriffszeiten zu minimieren, die Anzahl der Datenbanken möglichst gering
zu halten und ein ausfallsicheres System ohne Single Point of Failure zu gewährleisten. Gleichzeitig
müssen Sicherungskopien der vorhandenen Daten erstellt werden.

4.4. Situation Handler

Wie bereits in Kapitel 2.1 beschrieben, ist die Komplexität von Workflows für industrielle Prozesse
enorm hoch. Das Erzeugen von Situationsobjekten abseits der Workflow-Ebene erleichtert den Um-
gang mit erkannten Situationen. Wird ein Workflow über eine neu erkannte Situation informiert,
können auf dieser Basis Workflow Fragmente ausgeführt werden, um die Situation zu handhaben.
Der Situation Handler dient als Komponente für den Umgang mit erkannten Situationen als Schnitt-
stelle zwischen SitOPT und einzelnen Workflows. Dazu meldet sich der Situation Handler bei der
Situationsverwaltung an und wird über Änderungen und neu erkannte Situationen informiert. Die
Implementierung des Situation Handlers ist nicht Teil dieser Arbeit.

4.5. Situation Dashboard

Das Situation Dashboard stellt eine visuelle webbasierte Möglichkeit dar, die von SitOPT verwendeten
Informationen darzustellen. Jeder Ressourcentyp soll auf einer eigenen Seite aufgelistet werden.
Hierbei ist vor allem die Überwachung der Things von Interesse. Der Benutzer soll auf einfache und
übersichtliche Weise über alle überwachten Objekte und deren derzeitige Situationen informiert
werden. Neben der Auflistung aller Objekte sollen zugehörige Situationen mit Icons intuitiv dargestellt
werden.

34

4.6. Funktionsweise

Des Weiteren besteht die Möglichkeit, die Situationserkennung zu starten. Eine Situationserkennung
wird mit folgenden Optionen gestartet:

• Objekt. Der Benutzer wählt das Objekt, das überwacht werden soll. Es können nur Objekte
überwacht werden, die in der Datenbank gespeichert sind. Objekte können mehrfach überwacht
werden.

• Situationstemplate. Situationstemplates definieren, welche Situationen für ein Objekt erkannt
werden können. Zu beachten ist, dass nicht jedes Situationstemplate für jedes Objekt verwendet
werden kann. Das Objekt muss die im Situationstemplate definierten Sensoren enthalten. Um
die Benutzung zu vereinfachen, sollen dem Benutzer deshalb nur Situationstemplates angezeigt
werden, die für das ausgewählte Objekt möglich sind.

• SES. Der Benutzer soll bei jeder neu gestarteten Situationserkennung zwischen den durch
SitOPT unterstützten SES wählen können. Unterschiede verschiedener SES sind beispielsweise
bezüglich Skalierbarkeit, Effizienz und Parallelisierung zu finden. Zugleich bieten manche SES
eine Visualisierung der Situationserkennung und somit eine Visualisierung des Situationstem-
plates bereit.

• Speichermodus. In Kapitel 4.1 wurden zwei Möglichkeiten besprochen, wann Situationsob-
jekte gespeichert werden sollen. Per Angabe des Speichermodus soll der Benutzer bei jeder
individuellen Situationserkennung selbst entscheiden, ob alle erkannten Situation gespeichert
werden sollen oder nur jede, deren Gültigkeit sich geändert hat und bestimmt den Kompromiss
zwischen Monitoring und geringerem Datenvolumen.

Des Weiteren sollen Objekte in ihrer Umgebung dargestellt werden können. Über Positionsangaben
soll eine interaktive Karte mit allen Objekten und Situationen angezeigt werden, um einen schnellen
Überblick über alle überwachten Objekte zu erhalten.

Zusätzlich sollen alle von der Situationsverwaltung bereitgestellen Funktionen angezeigt werden. Um
den Umgang mit SitOPT erheblich zu vereinfachen, soll neben der Dokumentation der Funktionen die
Möglichkeit bestehen, über das Situation Dashboard alle Funktionen der Situationsverwaltung zu tes-
ten, ohne einen eigenen Client implementieren zu müssen. Hierbei werden zugleich die Datenmodelle
der einzelnen Ressourcen sichtbar.

Visualisierbare SES sollen über das Situation Dashboard aufgerufen werden können, um laufende
Situationserkennungen anzeigen zu lassen. Wird eine Situationserkennung mit einem visualisier-
baren SES gestartet, soll der Aufruf automatisch erfolgen, um die aktuelle und bereits laufende
Situationserkennungen anzuzeigen.

4.6. Funktionsweise

Nachdem alle beteiligten Module vorgestellt worden sind, wird im Folgenden der Gesamtablauf
demonstriert, der zum Erstellen von Situationsobjekten führt. In Abbildung 4.3 ist das Zusammenspiel
aller Module zu erkennen. Die Datenbank enthält die Objekte und Situationstemplates, die für eine
Situationsüberwachung verwendet werden können.

35

4. Konzept und Architektur von SitOPT

 Situations-
 verwaltung

 Situations-
 verwaltung

 SES

 Situation
 Dashboard

Start

Eingabe:
Situations-

template (ST)

Eingabe:
resource

Registrierung auf
Ressource

Notifikation über
Änderungen der

Ressource

Benutzer Workflow

Stop

Start

Stop

Eingabe:
Speichermodus

Eingabe:
SES

Eingabe:
thing

Transformation:
ST -> ausführbares ST

Situationserkennung

Speicherung von
Situationsobjekten

 Transformation
 Mapper

Abbildung 4.3.: Ablauf für das Erkennen und Erhalten von Situationen

Der Benutzer greift über das Situation Dashboard auf die Daten zu und kann über die Eingabe des zu
überwachenden Things, des verwendeten Situationstemplates und SES sowie des Speichermodus die
Situationserkennung starten. Zuvor transformiert der Transformation Mapper das Situationstemplate
in ein ausführbares Situationstemplate auf Basis des verwendeten SES. Daraufhin erkennt das SES
kontinuierlich Situationen und erstellt Situationsobjekte, die an die Situationsverwaltung gesendet

36

4.7. Datenmodell

werden. Die Situationsverwaltung validiert das Situationsobjekt, überprüft Referenzen und fügt
weitere Metadaten hinzu.

Parallel dazu führt der Situation Handler eine Anmeldung bei der Situationsverwaltung durch. Hierbei
gibt der Situation Handler an, beim Auftreten welcher Situationen eine Benachrichtigung erfolgen soll.
Die Situationsverwaltung wird über jede neu erkannte Situation informiert und überprüft sämtliche
Anmeldungen. Wenn eine neu erkannte Situation Anmeldungen enthält, wird das Situationsobjekt an
eine von dem Situation Handler spezifizierte URL gesendet.

4.7. Datenmodell

Die in Kapitel 4.3 erwähnte Schemavalidierung legt ein Datenmodell aller verwendeten Ressourcen
zu Grunde. Abbildung 4.4 zeigt die verschiedenen Ressourcen, ihre Attribute sowie Relationen zu-
einander auf. Die Datenmodelle beschreiben, wie die Ressourcen in der Datenbank vorliegen. Diese
unterscheiden sich von den Datenmodellen, die für die Eingabe der jeweiligen Ressourcen verwendet
werden. Beispielsweise besitzt jede Situation das Attribut Name. Das SES ruft hierbei die Funktion
der Situationsverwaltung zum Erstellen einer Situationsressource auf, gibt den Namen allerdings
nicht an, da dieser dem SES nicht bekannt ist. Stattdessen fügt die Situationsverwaltung den Namen
selbstständig hinzu, damit das im folgenden aufgezeigte Datenmodell einer Situation erfüllt ist.

Im Folgenden werden die Datenmodelle jeder Ressource ausführlich erklärt. Hierbei werden die
einzelnen Attribute beschrieben sowie deren Ursprung. Jeder Ressource wird eine eindeutige ID
(wahlweise vom Benutzer definiert) sowie eine Revisionsnummer zugewiesen. Die Revisionsnummer
wird zur Konfliktbehandlung bei nebenläufigen Schreibzugriffen benötigt.

4.7.1. Situation

Das Datenmodell einer Situation muss alle Attribute aufweisen, die für die Weiterverarbeitung durch
Workflows benötigt werden. Des Weiteren sollen Metadaten vorhanden sein, um schnell und intuitiv
Situationen im Situation Dashboard erkennen zu können.

• Name. Der Name dient neben der ID zur intuitiven Identifikation der Situation. Dieser wird im
Situationstemplate definiert. Verschiedene Situationstemplates können den selben Namen für
Situationen definieren. Als Richtlinie sollte darauf geachtet werden, dass Namen nicht doppelt
existieren.

• Thing. Das Attribut Thing referenziert die ID des überwachten Objekts. Bei der Instanziie-
rung wird die ID des Objekts dem SES übergeben und bei Erkennung einer Situation dem
Situationsobjekt hinzugefügt.

• Timestamp. Der Zeitstempel beschreibt den Zeitpunkt, an dem die Situation erkannt wurde.
Der Zeitstempel wird durch das SES zum Zeitpunkt der Situationserkennung gesetzt. Dieser
kann verwendet werden, um die Aktualität einer Situation zu beschreiben. Zusätzlich lässt sich
der Situationsverlauf einzelner Situationen zeitlich darstellen.

37

4. Konzept und Architektur von SitOPT

_id

_rev

_rev

_rev

_rev

_rev

name

name
name

name

quality

timestamp

coordinates

erstellt enthält

*

* *

*

*

1

1

1 1

quality
quality

time-
stamp

value

occured

_id

_id

_id

_id

description

description

description

description

url

url

situation

xml

sensors

Thing

Sensor Sensorwert Situation

Situations-
template

Instanz von

gehört
zu

Abbildung 4.4.: ER-Diagramm der Ressourcen

• Sensorwerte.Die Sensorwerte, die bei der Erkennung der Situation verwendet wurden, werden
dem Situationsobjekt innerhalb des SES hinzugefügt. Die Situationsverwaltung extrahiert die
Sensorwerte und ersetzt sie durch Referenzen auf die jeweiligen Sensorwerte. Als Referenz
wird die ID des separat gespeicherten Sensorwerts verwendet.

• Beschreibung. Um Situationen verständlicher darzustellen, wird eine kurze Beschreibung
über die Bedeutung der Situation hinzugefügt. Diese wird im Situation Dashboard angezeigt.
Diese Beschreibung wird im Situationstemplate definiert und durch die Situationsverwaltung
anhand der referenzierten ID des Situationstemplates ausgelesen und dem Situationsobjekt
hinzugefügt.

• Situationstemplate. Beim Aufruf einer Situationserkennung erhält das SES die ID des Situati-
onstemplates. Beim Erstellen des Situationsobjekts wird diese ID als Referenz hinzugefügt.

• Occured. Die Gültigkeit einer Situation wird über das Attribut Occured als Wahrheitswert
angegeben. Ob eine Situation gültig ist oder nicht, wird im SES erfasst.

• Qualität. In Abhängigkeit der verwendeten Sensoren und Sensorwerten soll die Qualität einer
Situation bestimmt werden. Das SES besitzt die verwendeten Sensorwerte, jedoch keine näheren
Informationen über die verwendeten Sensoren. Daher wird die Qualitätsbestimmung einer
Situation in der Situationsverwaltung durchgeführt.

38

4.7. Datenmodell

4.7.2. Situationstemplate

Ein Situationstemplate liegt als XML-Datei vor, in welcher alle Konditionen und Operationen definiert
sind, die für das Erkennen einer Situation benötigt werden. Zusätzlich enthält es wichtige Metadaten
einer Situation. Zur besseren Übersichtlichkeit wird der Inhalt der XML-Datei nicht als Attribut
gespeichert, sondern als Anhang dem jeweiligen Dokument beigefügt.

• Name. Der Name dient neben der ID zur intuitiven Identifikation des Situationstemplates.
Verschiedene Situationstemplates können den selben Namen besitzen. Als Richtlinie sollte
darauf geachtet werden, dass Namen nicht doppelt existieren.

• Situation. Dieses Attribut enthält den Namen der Situation, die durch das Situationtemplate
erzeugt werden kann. Es sollte Wert auf eine ausdrucksstarke und intuitive Namensgebung
gelegt werden.

• Beschreibung. Hier wird eine kurze Beschreibung der Situation angegeben, welche im Situati-
on Dashboard angezeigt wird.

4.7.3. Sensor

Sensoren besitzen eine Großzahl an Spezifikationen. Die hier aufgezählten Attribute schränken diese
Spezifikationen deutlich ein, um ein standardisiertes Sensormodell zu erzeugen und verschiedenartige
Sensortypen zu unterstützen.

• Name. Der Name dient neben der ID zur intuitiven Identifikation des Sensors. Verschiedene
Sensoren können den selben Namen besitzen. Als Richtlinie sollte darauf geachtet werden, dass
Namen nicht doppelt existieren.

• URL. Unter dieser URL sind die vom Sensor bereitgestellten Sensorwerte zu finden.

• Beschreibung. Hier wird eine kurze Beschreibung des Sensors und möglichen Sensorwerten
geliefert.

• Qualität.Umdie Qualität einer Situation zu bestimmen, werden die Qualitäten der verwendeten
Sensoren benötigt. Die Qualität lässt sich zwischen 0 (sehr unzuverlässig) und 1 (keine Fehler)
einordnen.

• Datentyp beschreibt den Datentyp der Sensorwerte, die durch den Sensor entstehen.

4.7.4. Sensorwert

Sensorwerte werden ausschließlich dann gespeichert, wenn das Situationsobjekt, denen die Sensor-
werte zugrunde liegen, gespeichert wird. Analog zum Speichern von Situationsobjekten ist es denkbar,
alle Sensorwerte zu speichern, um weitere Informationen über das überwachte Objekt zu erhalten,
was erneut zu einem Anstieg des gespeicherten Datenvolumens führt.

39

4. Konzept und Architektur von SitOPT

• Sensor. Das Attribut Sensor enthält eine Referenz auf den Sensor, der diesen Sensorwert
produziert hat. Dem SES ist die ID des Sensors bekannt.

• Wert. Hier wird der eigentliche Sensorwert angezeigt. Um verschiedenartige Sensortypen zu
unterstützen, dürfen keine Einschränkungen an den Datentyp gesetzt werden. Der Wert wird
durch das SES erfasst.

• Timestamp. Durch einen Zeitstempel wird definiert, wann ein Sensorwert entstanden ist. Der
Zeitstempel muss bereits vor der Situationserkennung durch das SES gesetzt werden.

• Qualität. Neben der Qualität des Sensors kann auch jeder Sensorwert einen zusätzlich defi-
nierten Qualitätswert besitzen. Dieser liegt zwischen 0 und 1.

4.7.5. Things

Things stellen die virtuelle Repräsentation eines physischen Objekts dar, um diese anschließend
überwachen zu können. Dabei gibt es keinerlei Einschränkungen bezüglich des Objekts, solange es
Sensoren besitzt.

• Name. Der Name dient neben der ID zur intuitiven Identifikation des Sensors. Verschiedene
Sensoren können den selben Namen besitzen. Als Richtlinie sollte darauf geachtet werden, dass
Namen nicht doppelt existieren.

• URL. Dieses Attribut beschreibt die URL, unter welcher das Objekt verfügbar ist.

• Koordinaten. Um im Situation Dashboard eine Karte aller überwachten Objekte anzeigen zu
können, muss jedes Objekt Koordinaten besitzen, die den Standort spezifizieren.

• Sensor. Ein Objekt kann mehrere Sensoren besitzen. Diese werden innerhalb eines Arrays über
die jeweilige ID referenziert.

40

5. Implementierung des Prototyps

In diesem Kapitel wird eine prototypische Implementierung der im vorangegangenen Kapitel vorge-
stellten Konzepte entwickelt. Zunächst wird die von SitOPT verwendete Datenbank vorgestellt, im
Anschluss die darauf aufbauende Situationsverwaltung. Es werden Details der implementierten Funk-
tionen dargestellt sowie das Framework Swagger, welches zum Dokumentieren und Implementieren
der Situationsverwaltung verwendet wurde. Zusätzlich wird in Kapitel 5.6 das Setup dieses Prototyps
ausführlich beschrieben.

5.1. Datenbank

SitOPT verwendet die dokumentenorientierte Datenbank CouchDB [CDbb]. Zu beachten ist, dass
im Rahmen des Projekts auch andere Arten von Datenhaltungssystemen zum Einsatz kommen.
Beispielsweise werden die Sensoren in ihrer nativen Form als Ontologien gespeichert, die Daten auf
der Workflowebene innerhalb eines SQL-Datenbanksystems.

CouchDB (Couch für "cluster of unreliable commodity hardware") ist seit 2005 unter der Apache-Lizenz
verfügbar und eine in Erlang von Damien Katz entwickelte dokumentenorientierte NoSQL-Datenbank
[SSK11]. In CouchDB werden die Daten in JSON-Dokumenten gespeichert. Die Dokumente können
in verschiede Databases untergliedert werden. Dabei werden die Daten innerhalb des Dokuments
in Schlüssel-Wert-Paaren geordnet. Zusätzlich wird der Schlüssel _id für eine eindeutige Identifizie-
rung hinzugefügt. Das Feld _rev enthält die Revisionsnummer, welche zur Versionsverwaltung der
Dokumente verwendet wird. Um bei gleichzeitigem Schreibzugriff auf ein Dokument Konflikte zu
vermeiden, muss die Revisionsnummer bei einem Schreibvorgang mitangegeben werden. CouchDB
verwendet Optimistic Locking, d.h. der Nutzer, der zuerst einen Schreibvorgang beendet, ist privi-
legiert, dem zweiten Benutzer wird ein Konflikt gemeldet [ALS10, pp. 39-40]. Dokumente können
Referenzen zu anderen Dokumenten aufweisen, allerdings wird die referenzielle Integrität nicht
überprüft, was dazu führen kann, dass ein referenziertes Dokument bereits gelöscht oder verschoben
wurde [SSK11].

5.1.1. Views

Einzelne Dokumente können direkt per Angabe der ID angefordert werden. Werden andere Attribute
des Dokuments für die Suche verwendet, müssen Views verwendet werden. Views werden mittels
Map/Reduce erzeugt. Die Map-Funktion iteriert über alle Dokumente und gibt die Ergebnisse zurück,
die durch eine Funktion gefiltert worden sind. Das Ergebnis wird als Array von Key-Value-Paaren
zurückgegeben. Die Reduce-Funktion ist optional und dient dem Zusammenfassen vonWerten, die bei

41

5. Implementierung des Prototyps

der Map-Funktion entstanden sind. Wird eine View das erste Mal mittels der Map-Funktion erstellt,
wird ein B-Baum erstellt, der diese View enthält. Jeder weitere Zugriff auf Daten, die in dieser View
enthalten sind, erfolgen deutlich schneller, da direkt auf den B-Baum zugegriffen wird [ALS10, pp.
53-55].

function(doc){

emit([doc.thing, doc.situationtemplate], doc._id);

}

Listing 5.1: CouchDB Views mit 2 Attributen

Dieser View geht über alle Dokumente und enthält als key ein Array mit den Inhalten thing und
situationtemplate und als value die ID des Dokuments. Dieser View wird verwendet, um zu überprüfen,
ob eine vom SES gelieferte Situation bereits vorhanden ist oder nicht. Eine Situation lässt sich
eindeutig über die ID identifizieren. Das SES besitzt diese ID nicht. Stattdessen lässt sich eine Situation
auch eindeutig über die Kombination von Objekt und Situationstemplate identifizieren, welche dem
SES bekannt sind. Der obere View ermöglicht die Suche nach dieser Kombination und gibt, wenn
vorhanden, die ID des Dokuments als Value zurück. Mit dieser ID wird die neue Situation in der
Datenbank gespeichert - es wird ein Update durchgeführt. Ansonsten wird ein neues Dokument mit
einer neuen ID für die Situation angelegt. Ein Aufruf dieses Views in Node.js sieht wie folgt aus:

var database = conn.database(’situations’);

database.view(’situations/existing,

{key: [req.body.thing, req.body.situationtemplate]},

function(err,doc)

// doc == Array mit dem gesuchten Dokument

...

Listing 5.2: Aufruf in Node.js mit cradle

Views existieren für bestimmte Databases. Wie zu sehen ist, wird zuerst eine Verbindung zu der
Database situations aufgebaut und anschließend der View existing abgefragt. Views werden in Desi-
gndokumenten, im Beispiel mit Namen situations, untergeordnet, um die Verwaltung von Views zu
vereinfachen (ähnlich einer Ordnerstruktur). Als key wird das referenzierte Thing und Situationtem-
plate übergeben. Im Anhang werden alle von der Situationsverwaltung verwendeten CouchDB Views
aufgelistet.

5.1.2. Changes Feed

CouchDBs API besitzt eine Ressource namens _changes. Angewendet auf eine Listenressource liefert
_changes jede bis dahin erfolgte Veränderung an den Benutzer. Das wiederholte Anfragen nach
Veränderungen - genannt Polling - ist unerwünscht. Bei jeder Abfrage würde eine neue Verbindung
aufgebaut werden müssen, auch wenn es zu keiner Veränderung kam. Die Einstellung feed=continuous
umgeht dieses Problem, indem die Verbindung so lange bestehen bleibt, bis sie entweder explizit
geschlossen wird oder nachdem nach einem benutzerdefiniertem Intervall keine Veränderungen
eingetreten sind. Solange die Verbindung offen ist, wird jede Veränderung an den Benutzer gesendet.
Wird das Attribut include_docs gesetzt, wird das Dokument, das die Veränderung herbeigeführt hat,
mitgesendet [CDba].

42

5.2. Situationsverwaltung

5.1.3. Replikation

CouchDB verwendet eine Peer-to-Peer-Architektur. Der Benutzer kann selbst definieren, zwischen
welchen Knoten Replikationen stattfinden sollen. Da dies für jeden Knoten im System erfolgen muss,
entsteht bei hoher Anzahl von Knoten ein erheblicher Aufwand, weshalb man in der Praxis bei
größerer Anzahl von Knoten schließlich auf eine Master-Slave-Replikation zurückgreift [Kra].

Um Daten zu replizieren, müssen die Quelldatenbank und die Zieldatenbank bestimmt werden.
Die Replikation kann unidirektional oder bidirektional erfolgen. CouchDB überprüft daraufhin die
Unterschiede der Datenbanken und repliziert die Dokumente der Quelldatenbank, die nicht in der
Zieldatenbank enthalten sind. Sind in beiden Datenbanken jeweils Dokumente mit der selben _id, so
lässt sich mittels der Versionsnummer _rev herausfinden, welches das aktuellere Dokument ist. Die
Replikation ist inkrementell. Sollte also durch einen Netzwerkfehler die Replikation unterbrochen
werden, kann CouchDB genau an der Stelle weitermachen, wo es unterbrochen wurde. Mittels der
Eigenschaft continuous überprüft CouchDB stets die Unterschiede der Datenbanken und repliziert
bei auftretenden Änderungen automatisch [CDbd].

5.2. Situationsverwaltung

CouchDB besitzt bereits eine REST-konforme HTTP Schnittstelle [CDbc]. Im Rahmen dieser Ar-
beit fehlen der Schnittstelle jedoch essentielle Funktionalitäten wie das Überprüfen referenzieller
Integrität und Schemavalidierung, was dazu führte, dass auf Basis der CouchDB API die Situations-
verwaltung implementiert wurde. Alle an die Datenbank gerichteten Anfragen gehen zuerst an die
Situationsverwaltung, welche anschließend an CouchDB weitergeleitet werden. Da großer Wert auf
die Weiterentwicklung dieser Arbeit gesetzt wird, wurde Swagger verwendet - ein Framework für
Schnittstellen, welches eine einfache Möglichkeit darstellt, die Funktionalitäten einer Schnittstelle
visuell darzustellen und zu dokumentieren. Zusätzlich lassen sich alle Funktionen ohne Implemen-
tierung eines Clients testen, was für die Entwicklung eines Prototyps von Vorteil ist. Der Swagger
Editor dient der Erstellung einer von Swagger lesbaren Schnittstellenspezifikation. Standardmäßig
wird YAML (wahlweise JSON) als Auszeichungssprache verwendet. An folgendem Beispiel soll die
Vorgehensweise zur Erstellung einer mittels Swagger spezifizierten Funktion erläutert werden:

...

/situations/byID:

x-swagger-router-controller: situations

get:

tags:

- situation

summary: Get situation by ID

description: Get the specified situation. Returns a document.

operationId: situationByID

parameters:

- name: ID

in: query

description: ID of situation

required: true

43

5. Implementierung des Prototyps

type: string

responses:

"200":

description: Situation found

schema:

$ref: "#/definitions/Situation

"404":

description: Not found

schema:

$ref: "#/definition/ErrorResponse

...

Listing 5.3: Swagger Spezifikation

Abbildung 5.1.: Swagger Spezifikation - GET /situations/byID (1)

Das Modul SwaggerUI erstellt auf Basis dieser Spezifikation die in Abbildung 5.1 zu sehende Darstel-
lung. Der Codeausschnitt erstellt den HTTP-Request GET /situations/byID. x-swagger-router-controller
definiert, in welchem Modul die unter operationID spezifizierte Funktion situationByID zu finden ist,
um den HTTP GET Request auszuführen. summary wird für eine kurze Beschreibung (in Abbildung
5.1 oben rechts) verwendet, description für eine ausführlichere Beschreibung und weitere Details

44

5.2. Situationsverwaltung

Abbildung 5.2.: Swagger Spezifikation - GET /situations/byID(2)

(beides optional). parameters definiert die Benutzereingabe und zugehörige Eigenschaften, in diesem
Fall die ID, die zur Identifikation der Situation verwendet werden soll. Unter responses werden alle
möglichen Statuscodes angegeben, die von der Situationsverwaltung zurückgegeben werden kön-
nen. Das zugehörige Attribut schema definiert das Modell der Antwort. Hierfür werden Referenzen
auf (auch in der YAML Spezifikation) vordefinierte Modelle gesetzt. Unter #/definition/Situation ist
das in Kapitel 4.7.1 beschriebene Situationsmodell definiert. Unter Angabe einer ID und dem Klick
auf den Button Try it out! wird die in Abbildung A.5 zu sehende Ansicht ausgefahren. Es wird ein
äquivalenter HTTP GET Request mit dem Kommandozeilentool cURL angezeigt sowie die Request
URL. Der Response Body enthält die Antwort auf den Request und zeigt die gesuchte Situation an.
Zusätzlich werden die Metadaten der Antwort - der Response Code 200 und der Content-Type (das
Datenformat der Antwort) application/json. Der gesendete und erhaltene Content-Type wurde zu
Beginn der YAML-Datei (nicht im Listing enthalten) spezifiziert und gilt somit für alle Funktionen.
Es ist möglich, einzelnen Funktionen andere Content-Types zuzuweisen beziehungsweise mehrere
Content-Types zuzulassen.

45

5. Implementierung des Prototyps

5.2.1. Funktionen

Im Folgenden werden Details zu den von der Situationsverwaltung bereitgestellten Funktionen
vorgestellt. Die Funktionen jeder Ressource, dargestellt in Swagger, sind im Anhang dieser Arbeit zu
finden.

• GET. Jede Ressource enthält verschiedene HTTP GET Request Methoden. Wird die ID als
Suchparameter angegebenen, wird das jeweilige Dokument zurückgegeben. Wird der Name
verwendet, wird ein Array mit allen Dokumenten zurückgegeben, die den Namen enthält,
mit Ausnahme der Ressource sensorvalues, die keinen Namen enthält. Ein weiterer HTTP
GET Request ermöglicht, die gesamte Listenressource zu erhalten. Die Ressource situation
enthält zudem einen HTTP GET Request, dessen Suchparameter thing und situationtemplate
sind (Kombination identifiziert Situation eindeutig). Des Weiteren kann der Benutzer mittels
GET situations/changes alle derzeitigen Anmeldungen des Situation Handlers erhalten. Bei
der Ressource situationtemplates ist ein HTTP GET Request vorgesehen, der den XML-Inhalt
zurückgibt (nicht implementiert).

• POST. Jede Ressource enthält eine HTTP POST Request Methode, mit der es möglich ist, eine
neue Ressource zu erstellen. Mittels POST /situations/changes können Anmeldungen durchge-
führt werden. Mit POST /situationtemplates/{id}/{templatename} kann der Benutzer die XML-
Datei des Situationstemplates als Anhang an das jeweilige Dokument hinzufügen.

• DELETE. Ein Löschvorgang einer Ressource erfolgt über deren ID. Hierbei findet kein kaska-
dierender Löschvorgang statt. Über DELETE /situations/changes können Anmeldungen gelöscht
werden.

• PUT. Im Prototyp ist es derzeit nicht möglich, Ressource mit einem HTTP PUT Request
zu verändern. Die einzige HTTP PUT Request Methode ist PUT /situations/occured, mittels
derer das occured-Attribut einer Situation zu Testzwecken verändert werden kann, ohne eine
Situationserkennung starten zu müssen.

5.2.2. Changes Feed

Der in Kapitel 5.1.2 vorgestellte Changes Feed von CouchDB stellt die Grundlage für den Changes Feed
der Situationsverwaltung dar. Folgende Herausforderungen an den Changes Feed der Situationsver-
waltung sind zu erfüllen. Die Anfrage an die CouchDB changes-Ressource liefert alle Änderungen aller
Situationen, was selten erwünscht ist. Workflows sind nur an Situationen interessiert, deren Gültigkeit
sich ändert (occured-Attribut wechselt von true auf false beziehungsweise umgekehrt). Zusätzlich
benötigt nicht jeder Workflow alle Situationsänderungen. Demnach muss es möglich sein, sich nur
auf bestimmte Situationen registrieren zu können und nur benachrichtigt zu werden, wenn sich die
Gültigkeit dieser Situation verändert. Ein weiterer Nachteil ist, dass CouchDB die Veränderungen
direkt an den Benutzer zurücksendet. Da es sinnvoller ist, die Situationen direkt an die angemeldeten
Workflows zu senden, muss bei der Anmeldung die Möglichkeit bestehen, eine Callback URL anzuge-
ben. Ändert sich die Gültigkeit einer Situationen, wird überprüft, ob Anmeldungen für diese Situation
bestehen. Falls ja, wird die Situation an alle angegebenen Callback URLs gesendet. Wie in Abbildung
5.3 zu sehen ist, fragt die Situationsverwaltung bei CouchDB die changes-Ressource an. Benutzer und

46

5.2. Situationsverwaltung

Situation Handler CouchDB API
Situationsverwaltung

- speichert Anmeldungen
- filtert Ergebnisse

Registrierung auf
/situations/situationID

sendet gefilterte
Ergebnisse

sendet alle
Veränderungen

Registrierung auf
jede Veränderung

Abbildung 5.3.: API Kommunikation

Workflows registrieren sich bei der Situationsverwaltung. Jede Veränderung von CouchDB wird an
die Situationsverwaltung gesendet, welche die Dokumente filtert und an die entsprechenden Callback
URLs sendet.

Die von der Situationsverwaltung bereitgestellten Operationen sind:

• POST situations/changes. Die Anmeldung erfolgt über einen HTTP POST Request. Da die
ID der Situation dem Benutzer im Normalfall nicht bekannt ist, werden als Parameter die ID
des Situationstemplates und die ID des things angegeben, um sich auf eine bestimmte Situation
anzumelden. Werden diese Parameter nicht angegeben, erfolgt die Anmeldung auf alle neu
erkannten Situationen. Die Angabe einer Callback URL ist obligatorisch. Der Boolean-Parameter
once gibt an, ob Situationsänderungen dauerhaft an die Callback URL gesendet werden sollen
oder nur einmalig. Beim Setzen des Parameters auf true wird die nächste auftretende Situati-
onsänderung an die Callback URL gesendet und daraufhin die Anmeldung gelöscht. Meldet
sich ein Benutzer auf alle Situationsänderungen an, werden alle vorherigen Anmeldungen
dieses Benutzers gelöscht und durch die neue Anmeldung ersetzt. Mögliche Fehlermeldungen
sind 404, falls eine vom Benutzer spezifizierte Situation nicht gefunden werden konnte und
400, falls nur einer der beiden Parameter ThingID und SituationtemplateID angegeben wurde.
Sendet CouchDB Veränderungen an die Situationsverwaltung, wird ermittelt, ob diese Situation
Anmeldungen enthält. Falls ja, wird diese an die hinterlegte Callback URL mittels eines HTTP
POST Requests gesendet.

• GET situations/changes. Diese Funktion gibt alle bestehenden Anmeldungen zurück. Der
optionale Parameter Callback URL wird angegeben, wenn nur Anmeldungen, welche die spezifi-
zierte Callback URL verwenden, zurückgegeben werden sollen. Mögliche Fehlermeldung ist 404,
wenn unter der angegebenen Callback URL keine Anmeldungen gefunden werden konnten.

• DELETE situations/changes. Um nicht weiterhin über Situationsänderungen benachrichtigt
zu werden, können mit dieser Funktion Anmeldungen gelöscht werden. Soll eine bestimmte
Anmeldung gelöscht werden, erfolgt dies unter der Angabe der Parameter ThingID, Situationtem-
plateID sowie CallbackURL. Wird nur die Callback URL angegeben, werden alle Anmeldungen,
die diese Callback URL enthalten, gelöscht. Die Fehlermeldungen sind analog zur Funktion
POST situations/changes.

47

5. Implementierung des Prototyps

5.2.3. Situationsobjekt

Um zu überprüfen, ob alle benötigten Attribute eines Dokuments bei einem POST-Request vorhanden
sind, führt Swagger eine Schemavalidierung anhand des definierten Situationsobjekts durch. Ein
Situationsobjekt, das von einem SES an die Situationsverwaltung geschickt wird, sieht wie folgt aus:

{

"thing": "ThingID",

"situationtemplate": "SitTempID",

"timestamp": "string",

"occured": true,

"sensorvalues": [

{

"sensor": "SensorID",

"value": 0,

"timestamp": "string",

"quality": 0

}

]

}

Listing 5.4: Situationsobjekt

Zu beachten ist, dass dieses Situationsobjekt nicht mit dem Datenmodell aus Kapitel 4.7.1 überein-
stimmt. Metadaten wie z.B. der Name der Situation werden über das referenzierte Situationstemplate
ausgelesen und dem Situationsobjekt in der Situationsverwaltung hinzugefügt. Die Attribute thing
und situationtemplate referenzieren die IDs des überwachten things sowie das verwendete Situati-
onstemplate. Diese sind zum Zeitpunkt der Instanziierung bekannt und müssen dem Situationsob-
jekt hinzugefügt werden, um eine Situation eindeutig zu definieren. Die ID einer Situation ist dem
SES nicht bekannt, zumal neu erkannte Situationen noch keine ID besitzen. Mittels der Funktion
checkID(documentID, databaseID, callback) wird zuerst überprüft, ob die ID des things vorhanden ist,
um fehlerhafte Referenzen zu verhindern. Da nur überprüft werden muss, ob diese ID vorhanden
ist, ist es von Vorteil, nur die Metadaten des Dokuments mittels der documentID abzufragen, um die
Geschwindigkeit zu erhöhen und die Bandbreite weniger zu belasten. Um den Namen der Situation
zu bestimmen, wird das referenzierte Situationstemplate mittels einer GET Abfrage unter Angabe
der ID gelesen. Werden beide IDs gefunden, wird überprüft, ob sich die Gültigkeit der Situation
(occured-Attribut) geändert hat. Falls ja, werden zuerst die Sensorwerte der Situation sensorvalues mit
der Funktion SaveSV eingefügt, um diese anschließend im Situationsobjekt referenzieren zu können.
Anhand des sensor-Attributs eines Sensorwerts wird erkannt, ob bereits Sensorwerte dieses Sensors in
der Datenbank vorhanden sind. Falls ja, wird ein Update dieses Sensorwerts durchgeführt. Ansonsten
wird ein neues Dokument für diesen Sensorwert erstellt und eine neue ID zugewiesen. Die IDs der
Sensorwerte sind nicht bekannt, weshalb der View sensorvalues/existing verwendet wird, welcher als
key die Sensor-ID sensor enthält und das als value das Dokument. Der Callback der Funktion SaveSV
enthält alle IDs der Sensorwerte der einzufügenden Situation, so dass diese referenziert werden kön-
nen. Anschließend wird überprüft, ob Situationen dieses Typs (selbe ID) bereits bestehen. Wie bereits
beschrieben, lässt sich eine Situation neben der ID über die Kombination der IDs des überwachten
things und des verwendeten Situationstemplates identifizieren. Der View situations/existing enthält
diese Kombination als key und als value das Dokument. Wird eine bestehende Situation identifiziert,
wird ein Update ausgeführt, anderenfalls ein neues Dokument erstellt. Mögliche HTTP Statuscodes

48

5.3. Transformation Mapper

Abbildung 5.4.: Transformation Mapper

sind Reference Errors (404), wenn die IDs des things und des Situationstemplates nicht gefunden wer-
den. Kann keine Verbindung zu CouchDB aufgebaut werden, entsteht der Fehlercode 504. Wird eine
neue Situation erstellt, wird 201, bei Updaten einer Situation der Statuscode 200 zurückgesendet.

5.3. Transformation Mapper

Der Transformation Mapper verwaltet alle Transformationen von Situationstemplates. Da im Rahmen
dieser Arbeit nur Node-RED als SES zur Verfügung steht, wird das Situationstemplate in ein Node-
RED-spezifisches Format transformiert. Dazu wird der in Java geschriebene Transformation Mapper
als .jar-Datei im Situation Dashboard aufgerufen, wenn eine Situationserkennung gestartet wird. Der
beigefügte XML Inhalt des Situationstemplates wird ausgelesen und als Argument beim Aufruf des
Transformation Mappers verwendet. Zusätzlich wird die URL des Sensors mitgegeben. In Zukunft
soll die URL des Sensors angegeben werden, die über das Attribut sensor des zu überwachenden
Things und anschließend über das Attribut url des Sensors referenziert ist. Das Boolean-Argument
doOverwrite gibt an, ob bereits laufende Situationserkennungen überschrieben werden sollen. Wie in
Abbildung 5.3 zu sehen ist, soll der Transformation Mapper in Zukunft eine Vielzahl unterschiedlicher
SES unterstützen.

5.4. Situationserkennung

Node-RED [nr] stellt auf Basis von Node.js ein visuelles Tool bereit, um das Internet Of Things darzu-
stellen. Node-RED bietet die Möglichkeit, verschiedene things (z.B. Hardwaregeräte, Schnittstellen

49

5. Implementierung des Prototyps

Abbildung 5.5.: Node-RED Flow

oder Onlinedienste) als Knoten zu verbinden und deren Interaktion zu ermöglichen (siehe Abbildung
5.5). Ein Inject-Knoten wird als Startpunkt gesetzt und definiert die Intervallgröße der Situationserken-
nung. Zusätzlich ist spezifizierbar, dass die Situationserkennung nur zu bestimmten Zeitpunkten oder
Zeiträumen durchgeführt werden soll (z.B. müssen nachts stillgelegte Maschinen nicht überwacht
werden). Die Sensorwerte werden über eine URL bereitgestellt, welche bei der Instanziierung der
Überwachung angegeben wird. Mittels HTTP Request Knoten werden anschließend die Sensorwerte
von RAM und CPU ausgelesen. Zusätzlich wurde ein Watchdog eingesetzt, der überprüft, ob die
überwachte Maschine verfügbar ist. Funktionsknoten können für die Erstellung von in JavaScript
geschriebenen Funktionen verwendet werden, um aus den Sensorwerten deduzierten Kontext zu
erstellen. Zusätzlich werden Metadaten wie der Zeitstempel der Situationserkennung erstellt. Der
Prototyp verwendet die Funktionsknoten hauptsächlich zur Generierung des Situationsobjekts. Der
Funktionsknoten combine Sensors wird verwendet, um die im Situationstemplate definierten Kondi-
tionen an die Sensorwerte zu überprüfen und anschließend festzulegen, ob die Situation gültig oder
ungültig ist. Ein weiterer HTTP Request Knoten wird benötigt, um einen HTTP POST Request an die
Situationsverwaltung zu senden. Im body des Requests befindet sich das Situationsobjekt mit allen
Sensorwerten. Grüne Knoten dienen ausschließlich Debug-Zwecken. Folgendes Listing 5.5 zeigt das
zur Abbildung 5.5 zugehörige Situationstemplate im XML-Format.

<?xml version="1.0" encoding="UTF-8"?>

<SituationTemplate id="A0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="situation_template_draft01.xsd"

name="SystemObservation">

<Situation id="A1" name="SystemFailure">

<operationNode id="A3" name="combine Sensors">

<type>or</type>

<parent parentID="A10"/>

</operationNode>

<conditionNode id="A4" name="% CPU load">

<type>type</type>

<measureName>measureName</measureName>

<opType>greaterThan</opType>

<condValue>

<value>70</value>

</condValue>

<parent parentID="A3"/>

</conditionNode>

<conditionNode id="A8" name="MB RAM free">

50

5.5. Situation Dashboard

<type>type</type>

<measureName>measureName</measureName>

<opType>lowerThan</opType>

<condValue>

<value>10</value>

</condValue>

<parent parentID="A3"/>

</conditionNode>

<conditionNode id="A9" name="StatusCodeChecker">

<type>type</type>

<measureName>measureName</measureName>

<opType>notEquals</opType>

<condValue>

<value>200</value>

</condValue>

<parent parentID="A3"></parent>

</conditionNode>

<contextNode id="A5" name="memorySensor">

<parent parentID="A8"></parent>

</contextNode>

<contextNode id="A6" name="cpuSensor">

<parent parentID="A4"></parent>

</contextNode>

<contextNode id="A7" name ="watchdogSensor">

<parent parentID="A9"/>

</contextNode>

<situationNode name="machine_failed" id="A10"/>

</Situation>

</SituationTemplate>

Listing 5.5: Situationstemplate in XML

Das Situationstemplate SystemObservation definiert die Situation SystemFailure. Alle Funktionsknoten
von Node-RED sind in der XML-Datei spezifiziert. Inject-, Debug-, und HTTP Request-Knoten sind
Node-RED-spezifisch und werden bei der Transformation erzeugt. Die Konditionen für die einzelnen
Sensorwerte sind in den jeweiligen conditionNodes enthalten. Wenn der CPU load größer als 70(%) ist,
weniger als 10 MB RAM free sind, und der StatusCodeChecker einen anderen HTTP-StatusCode als
200 (200 = OK) liefert, ist die Situation gültig, anderenfalls ungültig. Die Javascript-Funktionen sind
ebenfalls Node-RED-spezifisch und werden im Transformation Mapper deklariert. Die contextNodes
definieren die benötigten Sensorwerte.

Node-RED unterstützt zudem benutzerspezifizierte Knoten. Direktverbindungen mit Datenbanken
(z.B. MongoDB) oder Messaging Services (MQTT) verringern den Entwicklungsaufwand erheblich. In
Zukunft sollen weitere SES wie Esper oder Odyseus unterstützt werden. Dementsprechend muss der
Transformation Mapper die zugehörigen Transformationen implementieren.

5.5. Situation Dashboard

Das Situation Dashboard stellt die Benutzerschnittstelle zu SitOPT dar. Für das Situation Dashboard
wurde das asynchrone Event-basierte Framework Node.js verwendet. In Kombination mit dem darauf

51

5. Implementierung des Prototyps

Abbildung 5.6.: Situation Dashboard - Things

aufbauenden Web-Framework Express.js lässt sich auf einfache Weise eine Website mit zahlreichen
Middlewares und externen Bibliotheken aufbauen. Aufgabe des Situation Dashboards ist es, dem
Benutzer eine visuelle Darstellung der Datenbank ohne direkten Datenbankzugriff zu ermöglichen.
Abbildung 5.6 zeigt einen Ausschnitt der Seite Things. Zu sehen ist ein Thing und dessen Attribute.
Ob das Thing derzeit überwacht wird, gibt das Attribut monitored an. Über einen Klick auf die
Koordinaten des Things wird eine Google Maps Seite mit diesen Koordinaten geöffnet. Genauere
Koordinaten und Umgebungen können ein Bild von Maschinen innerhalb einer Fabrik anzeigen, was
die Übersicht und Verwaltung der Things erleichtert. Über zwei Dropdown Boxes kann das zum
Überwachen verwendete Situationstemplate und SES ausgewählt werden. Wird der Button Starte
Situationserkennung betätigt, startet die Situationserkennung und eine neue Seite mit einer Instanz
von Node-RED wird geöffnet. Voraussetzung dafür ist, dass Node-RED gestartet wurde. Zusätzlich
wird eine Liste aller Situationen des Things angezeigt. Ein Icon stellt die Situation bildlich dar.

Um entscheiden zu können, welches Situationstemplate verwendet werden soll, werden alle Situation-
stemplates auf der Seite Situationstemplates aufgelistet. Eine kurze Beschreibung soll erklären, welche
Situationen aus dem entsprechenden Situationstemplate deduziert werden können. Unter API Refe-
rence wird die bereits besprochene Swagger-Dokumentation detailliert angezeigt. Zusätzlich lassen
sich auf dieser Seite alle Funktionen testen. Der Reiter NodeRed öffnet eine Instanz von Node-RED

52

5.6. Setup

und zeigt alle laufenden Situationsüberwachungen an. Beim Starten einer Situationserkennung wird
Node-RED automatisch geöffnet.

5.6. Setup

Im Folgenden werden die notwendigen Schritte für das Setup von SitOPT beschrieben. Alle benötigten
Module werden im Repository mormulms/SitOPT bereitgestellt. Das Setup wurde auf einer virtuellen
Maschine von OpenStack mit dem 32-Bit Betriebssystem Windows 7.0 Professional mit Service Pack
1 getestet.

Die Basis aller Module ist das Framework Node.js 1. Nach der Installation können mittels des Komman-
dozeilenaufrufs node mit Node.js erstellte Anwendungen gestartet werden. Sollte das Kommando node
nicht erkannt werden, muss Node.js dem Systempfad hinzugefügt werden. Als Kommandozeilentool
wird die Windowskonsole cmd verwendet.

5.6.1. CouchDB

Die Installation der Datenbank CouchDB 2 erfolgt über den Windows (x86) Installer der Version
1.6.1. Nach erfolgreicher Installation startet CouchDB und wird auch bei Neustart der Maschine
automatisch gestartet. Unter 127.0.0.1:5984/_utils (alternativ localhost:5984/_utils) wird die grafische
Oberfläche Futon angezeigt. Wird der Port, unter dem CouchDB bereitgestellt wird, verändert, müssen
entsprechende Änderungen in der Situationsverwaltung und dem Situation Dashboard vorgenommen
werden. Um einen Remotezugriff auf CouchDB zu ermöglichen, müssen Veränderungen an der
Konfiguration durchgeführt werden. Über Futon kann die Konfiguration angezeigt werden. Unter
dem Feld bind_address muss der Wert (standardmäßig 127.0.0.1) in 0.0.0.0 geändert werden, um
allen IPs den Zugriff zu ermöglichen. Zusätzlich muss der Port 5984 in der Windows Firewall unter
Eingehende Regeln als neue Regel definiert werden. Der Remotezugriff ermöglicht die Replikation
von Datenbanken. Auf diese Weise können die benötigten Views aus der Datenbank, die unter
192.168.209.246:5984 definiert sind und für die Verwendung von SitOPT benötigt werden, repliziert
werden. Abbildung 5.7 zeigt das über Futon erreichbare Replicator Tool.

Abbildung 5.7.: CouchDB Replicator Tool

Unter 192.168.209.246 wird der Prototyp von SitOPT ausgeführt. Die dortige CouchDB Instanz enthält
alle benötigten Views und Daten, um das in dieser Arbeit vorgestellte Beispiel zu demonstrieren. Die

1https://nodejs.org/
2http://couchdb.apache.org/

53

5. Implementierung des Prototyps

Replikation funktioniert nur für einzelne Databases (in Abbildung 5.7 am Beispiel von things darge-
stellt), weshalb diese für jede Database things, situations, sensors, sensorvalues und situationtemplates
separat durchzuführen ist.

5.6.2. Node-RED

Node-RED kann über den Package Manager npm von Node.js installiert werden. Dieser wird stan-
dardmäßig bei der Installation von Node.js installiert. Über npm install node-red wird Node-RED
heruntergeladen und im aktuell befindlichen Ordner installiert. Fehler bei der Installation bezüglich
node-gyp schränken die benötigten Funktionen für SitOPT nicht ein und können ignoriert werden
[NRi]. Nach erfolgreicher Installation befindet sich das ausführbare Skript red.js im Unterordner
node_modules/node-red und kann in diesem Ordner mittels node red gestartet werden. Standardmäßig
wird der Port 1880 verwendet, somit kann unter 127.0.0.1:1880 die gestartete Node-RED Instanz
erreicht werden.

5.6.3. Situation Dashboard

Im Ordner Situation Dashboard wird mit dem Kommando node server.js das Situation Dashboard
gestartet und unter 127.0.0.1:3001 aufrufbar. Über das Kommando npm install innerhalb des Ordners
werden die in der Datei package.json definierten Module installiert. Sollte es zu Problemen bei der
Installation kommen, ist auf GitHub zusätzlich der Ordner als .rar-Datei vorhanden, in welchem alle
Module bereits installiert sind. Beim Start der Situationserkennung wird der Transformation Mapper
aufgerufen. Dieser ist als .jar-Datei mappingString.jar als GitHub-Release bereitgestellt und ist im
Unterordner /public/mapper/nodeRed einzufügen. Die alternative mapping.jar-Datei ermöglicht den
Aufruf des Transformation Mappers mit einer XML-Datei statt des XML-Inhalts. Da ein Java-Aufruf
benötigt wird, muss das Java Runtime Environment (JRE 3) installiert sein.

5.6.4. Situationsverwaltung

Wie bei dem Situation Dashboard erfolgt zuerst die Installation der benötigten Node.js-Module über
das Kommando npm install. Da die Situationsverwaltung mit Swagger implementiert worden ist, muss
das Node.js spezifische Modul swagger-node 4 installiert werden. Dies kann ebenfalls über den Package
Manager mit npm install -g swagger installiert werden. Unter Umständen wird die Umgebungsvariable
nicht definiert. In diesem Fall muss der Pfad %Username%/AppData/Roaming/npm dem Systempfad
manuell hinzugefügt werden. Im Ordner Situationsverwaltung kann daraufhin mit dem Kommando
swagger project start die Situationsverwaltung gestartet werden und die API Dokumentation, die auf
dem Situation Dashboard verlinkt wird, ist zugänglich. Das Kommando swagger project edit startet
den webbasierten Swagger Editor, der die .yaml-Datei und die entsprechende Visualisierung mittels

3https://www.java.com/de/download/
4https://github.com/swagger-api/swagger-node

54

5.6. Setup

SwaggerUI anzeigt. SwaggerUI ist bereits integriert und muss nicht zusätzlich installiert werden. Die
Situationsverwaltung ist unter 192.168.209.246:10010 erreichbar.

5.6.5. Sensoren

Die Sensoren, die Node-RED als Eingabe erhält, werden durch das Node.js Skript app.js im Ordner
ComputeSensor bereitgestellt. Nachdem die benötigten Module mit npm install installiert worden sind,
wird mit dem Kommando node app.js ein Server gestartet, der HTTP GET Requests über den Port
8080 und den entsprechenden Zusatz /cpuusage, /ramusage und /ping entgegennimmt und Node-RED
die Werte liefert.

55

6. Evaluation

6.1. Testumgebung

Als Testumgebung wurde eine 64 Bit Version von Windows 8.1 Professional verwendet. Das zu-
grunde liegende System besteht aus einer Intel Core i5-4300 CPU @ 1.90 GHz und einem 8 GB
Arbeitsspeicher.

6.2. Erfüllung der Anforderungen

Im Folgenden wird überprüft, ob die in Tabelle 1.1 definierten Anforderungen erfüllt werden.

A1: Erstellung einer Schnittstelle

Die Situationsverwaltung ist als Schnittstelle zwischen einem SES und situationsbezogenen Work-
flows erfolgreich implementiert worden. Die Entkopplung dieser beiden Module führt auf beiden
Seiten zu deutlichen Vorteilen. Die Erstellung von situationsbezogenen Workflows wird aufgrund der
geringeren Komplexität durch den Wegfall der Kontextverarbeitung vereinfacht. Gleichzeitig ist es
möglich, beliebige SES zu verwenden, ohne Änderungen an den Workflows vornehmen zu müssen.
Die Implementierung des Situation Handlers kann ohne Kenntnisse von SitOPT durchgeführt werden
und ist derzeit Teil anderer Arbeiten. Über die in Kapitel 5.2.1 vorgestellten Funktionen der Situati-
onsverwaltung können SES Situationsobjekte speichern und Workflows Situationen beziehen.

A2: Flexibilität

Die Erstellung der Situationsverwaltung als Schnittstelle ermöglicht gleichzeitig die Modularisierung
aller beteiligten Systeme. Das SES und die situationsbezogenen Workflows agieren unabhängig
voneinander. Die Verwendung alternativer SES wie z.B. Esper ist damit einfach zu bewerkstelligen.
Der Transformation Mapper liegt dem Situation Dashboard als separate Bibliothek bei und kann
somit beliebig erweitert beziehungsweise verändert werden.

57

6. Evaluation

A3: Skalierbarkeit

Die zugrunde liegende Systemarchitektur der Cloud Computing Plattform Openstack bietet die
Möglichkeit für ein leicht skalierbares System. Darüber hinaus wird die NoSQL-Datenbank CouchDB
verwendet, die gegenüber relationalen Datenbanken besser skaliert. Zusätzlich werden in Kapitel 7.1
die Bereiche von SitOPT beschrieben, die Skalierbarkeit erfordern, sowie mögliche Lösungsvorschläge,
die in späteren Arbeiten implementiert werden können.

A4: Benutzerfreundlichkeit

Das Situation Dashboard dient Benutzern als übersichtliches Interface zur Interaktion mit SitOPT. Der
Benutzer kann von hieraus alle Things überwachen. Es wurde Wert auf die Übersichtlichkeit gelegt,
dass ein schneller Überblick über aktuelle Situationen eines Objekts möglich ist. Die Instanziierung ei-
ner Situationsüberwachung ist dahingehend automatisiert, sodass keine Fehlbedienung des Benutzers
möglich ist. Der direkte Zugriff auf die Datenbank wurde verhindert und stattdessen die Bedienung
über die Situationsverwaltung ermöglicht. Somit können Benutzer nur zugelassene Funktionen ver-
wenden und nicht beispielsweise benötigte Ressourcen wie Views aus der Datenbank löschen. Die
Funktionen der Situationsverwaltung wurden mit Swagger bereitgestellt und dokumentiert. Über
die auf dem Situation Dashboard bereitgestellte Swagger-Dokumentation kann der Benutzer alle
möglichen Funktionen einsehen und direkt testen, ohne einen Client zu implementieren.

A5: Verschiedenartige Sensordaten

Das in SitOPT verwendete Sensormodell beschränkt sich auf die benötigten Attribute eines Sen-
sors beziehungsweise Sensorwertes. Auf diese Weise ist die Verwendung und Weiterverarbeitung
verschiedenartiger Sensordaten möglich.

6.3. Ergebnisse

Das in der Einleitung vorgestellte Szenario wurde als Testszenario verwendet, um Laufzeit und
Datenverbrauch des Prototyps zu ermitteln. Im ersten Testlauf wurde über einen Zeitraum von 60
Minuten eine Situationserkennung durchgeführt, wobei 63 Situationen erkannt worden sind. Die
Situationserkennung wurde hierbei lokal durchgeführt. Eine allgemeine qualitative Aussage über
die Häufigkeit einer gültigen Situationserkennung ist meist irrelevant, da diese vom verwendeten
Situationstemplate abhängig ist. Der erste Testlauf dient zur differenzierten Laufzeiterkennung, dessen
Ergebnisse in Tabelle 6.1 aufgelistet werden. Die Zeile Gesamt beschreibt den Zeitraum zwischen einer
Situationserkennung durch Node-RED und dem erfolgreichen Einfügen des Situationsobjekts durch
die Situationsverwaltung in CouchDB. Die Gesamtzeit lässt sich aufteilen in die Zeit, die der HTTP
POST Request benötigt (Erkennen der Situation durch Node-RED bis Empfangen des Requests durch
die Situationsverwaltung) und der Zeit, die die Situationsverwaltung benötigt, um das Situationsobjekt
zu speichern. Wie zu sehen ist, benötigt die Situationsverwaltung im Durchschnitt 216,13 ms. Der
Großteil der Zeit wird für den HTTP POST Request verwendet, welcher durchschnittlich 680,07 ms in

58

6.3. Ergebnisse

Laufzeiten Durchschnitt Max Min

Gesamt 896.21 ms 1199 ms 221 ms
Situationsverwaltung 216,13 ms 300 ms 124 ms
HTTP POST 680,07 ms 1003 ms 12 ms
CouchDB changes 4,6 ms 8 ms 1 ms

Tabelle 6.1.: Verschiedene Laufzeiten von SitOPT

Bezug nimmt. Hierbei handelt es sich offensichtlich um Verzögerungen bei Node-RED und hat nichts
mit der Situationsverwaltung zu tun. Des Weiteren wurde gemessen, wie lange CouchDB benötigt, um
die Veränderungen über die _changes-Ressource wieder an die Situationsverwaltung zu senden.Wie in
der Zeile CouchDB changes zu sehen ist, benötigt dieser Vorgang mit einer durchschnittlichen Laufzeit
von 4,6 ms einen unerheblichen Anteil an der Gesamtzeit. Der Zeitpunkt, an welchem die Situationen
bei dem Situation Handler ankommen, wird durch einen weiteren HTTP POST Request bestimmt und
ist für die Evaluation des Prototyps nicht von Bedeutung. Mit der Annahme, dass ein weiterer HTTP
POST Request die selbe Laufzeit wie der vorherige besitzt, benötigt eine Situationsbereitstellung
von dem Zeitpunkt, an dem die Situation erkannt wurde und dem Eintreffen der Situation bei dem
Situation Handler mindestens 149 ms (Minimalzeiten addiert, HTTP POST x 2) und maximal 2,134
Sekunden (Maximalzeiten addiert, HTTP POST x 2).

Ein Situationsobjekt ist 4 KB groß, ein Sensorwertobjekt je etwa 2,6 KB. In diesem Szenario besitzt
eine Situation drei verschiedene Sensorwerte, was bedeutet, dass die Sensorwerte circa 66 Prozent
des Datenvolumens erzeugen. Szenarien, in denen mehr Sensorwerte verwendet werden, erhöhen
den Anteil am Gesamtvolumen drastisch. Bei der Überwachung von 20 Maschinen mit jeweils drei
Sensorwerten über einen Zeitraum von einer Woche mit einem Intervall von einer Sekunden entsteht
somit ein Datenvolumen von etwa 6,97 Gigabyte. Erhöht sich die Sensoranzahl auf 10, erhöht sich
das Datenvolumen auf etwa 17,7 Gigabyte, wobei die Sensorwerte 86,6 Prozent des Datenvolumens
erzeugen.

59

7. Zusammenfassung und Ausblick

7.1. Zusammenfassung dieser Arbeit

Die vorliegende Arbeit hat Konzepte vorgestellt, mit denen das General-Purpose-System SitOPT wei-
terentwickelt wurde. Es wurde gezeigt, wie die Erstellung einer Schnittstelle die Situationserkennung
von der Anwendungsebene abgekoppelt hat, um eine anwendungsunabhängige Situationsbereitstel-
lung gewährleisten zu können. Auf Basis eines Situationsmodells können Situationsobjekte erzeugt
werden, die von adaptiven situationsbezogenen Workflows verwendet werden können. Des Weiteren
eröffnet die Speicherung der Situationsobjekte die Möglichkeit, Situationsverläufe zu erstellen und
damit detaillierte Informationen über die überwachte Umgebung zu erhalten.

Zunächst wurden in Kapitel 2 die Grundlagen und Definitionen der zugrundeliegenden Begriffe
erklärt. Es wurde gezeigt, welche Eigenschaften von Kontext von Bedeutung sind und wie sich diese
auf die Qualität des Kontexts auswirken. Anschließend wurde eine zusätzliche Abstraktionsebene
hinzugefügt, um aus den Kontextdaten Situationen zu deduzieren. Es wurde vorgestellt, wie mithilfe
von Situationstemplates Situationen definiert werden können.

In Kapitel 3 wurde der Stand der Technik, der für diese Arbeit relevant ist, vorgestellt. Hier ist gezeigt
worden, welche Vorteile SitOPT aus den Technologien NoSQL und Cloud Computing erschließen
kann. Des Weiteren wurde das Complex Event Processing vorgestellt, die Grundlage vieler Systeme,
die für eine Situationserkennung verwendet werden können.

Kapitel 4 stellt die erarbeiteten Konzepte und Architektur von SitOPT dar. Es ist zu sehen, dass großer
Wert auf die Modularisierung aller beteiligten Systeme gelegt wurde, um SitOPT flexibel und erweiter-
bar zu gestalten. Die Grundlage dazu stellt die Situationsverwaltung als Schnittstelle zwischen der
Situationserkennung und Workflows dar. Des Weiteren wurden die Datenmodelle beschrieben, die in
SitOPT zum Einsatz kommen. Vor allem das Situationsmodell trägt dazu bei, Situationsobjekte erzeu-
gen zu können und eine anwendungsunabhängige Situationsbereitstellung zu ermöglichen. Durch
die Beschränkung auf wenige Sensorattribute wird die Verwendung verschiedenartiger Sensoren
ermöglicht.

In Kapitel 5 wurde die prototypische Implementierung der in Kapitel 4 vorgeschlagenen Konzepte
durchgeführt. Es wurde näher auf die zugrundeliegende Datenbank CouchDB und deren Funktionali-
täten eingegangen. Insbesondere wurde der Blick auf den Changes Feed von CouchDB vorgestellt,
welcher die Basis für die Situationsbereitstellung an Workflows dient. Weiterhin wurden die Funktio-
nen und Implementierung der Situationsverwaltungmittels Node.js und Swagger detailliert präsentiert.
Die Verwendung von Swagger trägt maßgeblich zur einfachen Benutzung und Dokumentation der
implementierten Funktionen bei. Bezüglich der Situationserkennung wurde das von SitOPT verwen-
dete Situationserkennungssystem Node-RED und die Transformation eines Situationstemplates in

61

7. Zusammenfassung und Ausblick

ein Node-RED kompatibles und äquivalentes Format vorgestellt. Anschließend wurde das Situation
Dashboard - der visuelle Einstiegspunkt des Benutzers in SitOPT - und dessen Funktionalitäten vor-
gestellt. Von hoher Bedeutung war die schnelle Übersicht über alle überwachten Objekte und deren
aktuelle Situationen. Abschließend wurde das Setup des Prototyps an einem Beispielsetup auf einer
virtuellen Maschine in OpenStack vorgestellt, um weitere Arbeiten an SitOPT zu vereinfachen.

Die Evaluation des Prototyps wird in Kapitel 6 vorgestellt. Es wurde festgestellt, dass die in der Einlei-
tung definierten Anforderungen erfüllt worden sind. Anschließend wurden multiple Testdurchläufe
durchgeführt, um die Effizienz von SitOPT zu überprüfen und vorgeschlagen, welche Methodiken
implementiert werden könnten, um die Effizienz weiterhin zu verbessern.

Der Prototyp von SitOPT ist derzeit Teil weiterer Arbeiten an der Universität Stuttgart:

• Situationserkennung basierend auf Complex Event Processing. In dieser Masterarbeit
wird SitOPT um weitere Situationserkennungssysteme auf Basis von CEP erweitert. Zusätz-
lich wird der Transformation Mapper um die entsprechende Transformation erweitert, um
Situationstemplates zu äquivalenten CEP Queries umzuwandeln [MCE].

• Konzept und Implementierung eines Situation Handlers. Die Masterarbeit für das In-
stitut für Architektur von Anwendungssystemen hat die Implementierung eines Situation
Handlers zum Ziel, um einerseits die Anmeldungen bei der Situationsverwaltung zu verwalten,
und andererseits auf Basis erkannter Situationen die Ausführung von Workflow Fragmenten
einzuleiten.

• Flexible Modellierung und Ausführung von Datenverarbeitungs- und Integrations-
flüssen. In dieser Dissertation wird der Einsatz von Situationserkennungssystemen in SitOPT
erforscht und dient als Grundlage für die in dieser Arbeit vorgestellt Situationserkennung. Des
Weiteren werden die RSM erforscht sowie die Verwendung und Entwicklung der vorgestellten
Situationstemplates und deren Transformation mittels des Transformation Mappers.

• CupCake. Cupcake ist ein Studienprojekt der Universität Stuttgart. Aufgabe ist es, die Situati-
onserkennung von SitOPT auf die Lernfabrik umzusetzen. Des Weiteren soll die Integratrion
weiterer, meist unstrukturierter Datenquellen stattfinden [cc].

In den folgenden Kapiteln werden Vorschläge und Ideen für zukünftige Arbeiten an SitOPT vorge-
stellt

7.2. Skalierung von SitOPT

SitOPT baut auf Technologien auf, die einfache Skalierbarkeit erlauben. Im Rahmen der Entwicklung
des Prototyps ist die funktionale Skalierung nicht implementiert worden. Stattdessen werden in diesem
Kapitel Ideen sowie mögliche Alternativen angesprochen, mit denen ein skalierbares System ohne
Single Point Of Failure (SPOF) entstehen kann. Die zwei Hauptbereiche, aufgrund derer Skalierbarkeit
verlangt wird, ist die Situationserkennung und die Datenbank.

Die durch das SES entstehende CPU-Auslastung liegt einerseits an der Anzahl gleichzeitig ausgeführter
Situationstemplates, andererseits durch die gewählte Intervallgröße (wie oft werden Situationen

62

7.2. Skalierung von SitOPT

erkannt). Hochsensible Systeme benötigen eine möglichst geringe Intervallgröße, um über jede
Situationsänderung so schnell wie möglich informiert werden und darauf folgendeMaßnahmen treffen
zu können. Große Fertigungsanlagen müssen unbedingt gleichzeitig alle Maschinen überwachen, um
ein autonomes System erstellen zu können. Daraus folgt, dass weder die Anzahl noch die Intervallgröße
begrenzt werden darf. Aus diesemGrund verwendet SitOPTCloud Computing als Infrastruktur. Bereits
der Prototyp wird auf einer virtuellen Maschine einer OpenStack Instanz bereitgestellt. Ist das SES
ausgelastet, kann eine zweite virtuelle Maschine gestartet werden und die Arbeitslast unter diesen
beiden Maschinen aufgeteilt werden. Sinkt die Auslastung, kann eine virtuelle Maschine wieder
beendet und die frei gewordenen Kapazitäten anderweitig genutzt werden. Auf diese Weise lässt
sich SitOPT (in Abhängigkeit der zugrundeliegenden Rechnerinfrastruktur) beliebig hoch skalieren.
Funktionalitäten wie Load-Balancing können diesen Prozess automatisieren, um eine bestmögliche
Auslastung der Infrastruktur zu erreichen und kontinuierlich eine ausreichende Anzahl von virtuellen
Maschinen bereitzustellen.

Je ausgelasteter das SES ist, desto mehr Daten werden produziert. Wie bei der Evaluation zu sehen
war, kann es zu großen Datenmengen kommen, wenn alle erkannten Situationen gespeichert werden.
Das Speichern aller Situationen hat allerdings gewisse Vorteile. Monitoring-Systeme können auf
diese Weise genauere Schlüsse ziehen, um Systeme effizienter zu gestalten. Neuronale Netze kön-
nen mit genügend großer Anzahl an Daten Voraussagen über auftretende Situationen treffen. Auf
diese Weise wird (in bestimmten Anwendungsfällen) nicht erst bei Auftreten einer unerwünschten
Situation gehandelt, sondern bereits zuvor, damit das Auftreten verhindert wird. Die Skalierung der
Datenbank folgt demselben Prinzip wie die Skalierung des SES. Bei Bedarf werden weitere virtuelle
Maschinen mit einer Datenbank gestartet. Zu jeder neuen Datenbank wird auch eine neue Instanz
der Situationsverwaltung gestartet. Das hierbei entstehende Problem ist die Verwaltung der Daten.
Wird ein Datum abgefragt, ist vorerst nicht bekannt, auf welcher Datenbank sich dieses befindet. Es
gibt drei mögliche Lösungen für dieses Problem:

1. Die einfachsteMethode ist, die Anfrage an jede Datenbank zu senden. Hierbei ist nicht garantiert,
dass zwei Dokumente auf verschiedenen Datenbanken die gleiche ID zugewiesen bekommen
haben. Zugleich entsteht bei vielen Anfragen ein großer Overhead auf allen Datenbanksystemen.

2. Jede Anfrage geht zuerst an einen Föderationslayer. Der Föderationslayer beinhaltet einen Index
über alle vorhandenen Daten und deren Speicherorte. Der Vorteil ist, dass nur eine einzige
Anfrage gesendet werden muss. Ein Nachteil ist, dass bei dieser Methode ein SPOF entsteht.
Gegenmaßnahmen sind das Erstellen von Backup-Datenbanken, die im Falle eines Ausfalls in
Kraft treten. Diese Methode profitiert von CouchDBs inkrementellen Replikationsmechanismus.
Replikationen können zwischen mehreren Datenbanken automatisch erfolgen. Sollte eine
Datenbank zeitweise offline sein, wird, sobald die Datenbank wieder online ist, die Replikation
fortgesetzt. Somit ist sichergestellt, dass die Datenbank im Föderationslayer und alle Backups
denselben Index besitzen (Eventual Consistency)(Master-Slave). Ein weiteres Problem ist, dass
der Föderationslayer einen Flaschenhals darstellt und bei einer großen Anzahl von Anfragen
für Ineffizienz sorgt.

3. Um das Flaschenhalsproblem der zweiten Möglichkeit zu beseitigen, besitzt jede Situationsver-
waltung einen Index. Jede Anfrage kann an jede beliebige Instanz gesendet werden. Auch diese
Methode profitiert von CouchDBs Replikationsmechanismus. Hierbei entsteht ein größeres

63

7. Zusammenfassung und Ausblick

Datenvolumen, da auch der Index ein großes Datenvolumen besitzen kann. Zusätzlich ist auf-
grund von Eventual Consistency nicht sichergestellt, dass alle Datenbanken zu einem beliebigen
Zeitpunkt über denselben Index verfügen.

Nützlich bei der Reduzierung des Datenvolumens ist die CouchDB Funktion Compaction. Bei Aufruf
dieser Funktion auf einer Listenressource werden alle früheren Versionen eines Dokuments gelöscht
und nur die aktuellste Version beibehalten. Auf diese Weise behalten alle Dokumente ihre ursprüngli-
che ID. Würden alle Dokumente gelöscht werden, würden neu erkannte Situationen, die bereits zuvor
in der Datenbank vorhanden waren, neue IDs erhalten. Situationsbezogene Workflows, die bereits
auf Situationen angemeldet sind (über die ID), würden aufgrund der neuen ID dieser Situation nicht
mehr über Veränderungen informiert werden.

7.3. Erstellung von Situationstemplates

Wie in Kapitel 5.3 zu sehen war, ist bereits ein kleines Situationstemplate aufwändig und mühselig
zu schreiben. Am Beispiel von Node-RED ist zu sehen, wie eine visuelle Darstellung eines Situati-
onstemplates benutzerfreundlicher und einfacher zu verstehen ist. Mit diesem Ansatz sollten Tools
bereitgestellt werden, um die Erstellung von Situationstemplates visuell zu unterstützen. Nur auf
diese Weise ist die Erstellung weitaus komplexerer Situationstemplates sinnvoll. Zugleich sollte es
möglich sein, bereits bestehende Situationstemplates einzulesen und auf einfache Art und Weise zu
ändern, erweitern oder kombinieren.

Durch Verwendung eines Tools und der damit geringeren Komplexität können Situationstemplates
erstellt werden, die mehrere Situationen enthalten. Auf diese Weise kann die Situationserkennung
effizienter und ressourcenschonender ablaufen. Die daraus resultierenden .xml-Dateien können mit
einem bereits bestehenden XML-Schema validiert werden.

Abschnitt: Relation zwischen Things und Templates definieren! nicht jedes Thing kann mit jedem
beliebigen Template instanziiert werden. weil sensoren fehlen.

7.4. Verwendung weiterer Situationserkennungssysteme

Die Situationserkennung wurde dahingehend gestaltet, sodass verschiedene SES und verschiedene
Sensordatenquellen wie Events, Streams und Messages verwendet werden können . Neben Node-RED
sollen in Zukunft Datenstromverarbeitungssysteme (z.B. Odysseus [od]) und CEP Systeme (z.B. Esper
[esp]) unterstützt werden. Je nach Sensordatentyp kann verglichen werden, welches SES am besten
geeignet ist. Im Folgenden wird die grobe Funktionsweise einer einfachen Situationserkennung mittels
Esper dargestellt.

//Definition des Situationsobjekts

public static class Situation {

Float cpu;

Float ram;

String name;

Date timestamp;

64

7.4. Verwendung weiterer Situationserkennungssysteme

public Situation(Float sCpu, Float sRam, Date sTimestamp){

cpu = sCpu;

ram = sRam;

timestamp = sTimestamp;

name = "MachineFailure"

}

public float getCpu() {return cpu;}

public float getRam() {return ram;}

}

//Abfrage des Situationsobjekts auf Gueltigkeit

EPStatement cepStatement = cepAdm.createEPL("select * from Situation having cpu > 80.0 AND ram >

600.0");

//Methode des Sensors

public static Float GetCPU() throws IOException{

URL ram = new URL("http://localhost:1338/");

...

}

public static Float GetRAM() throws IOException{

URL ram = new URL("http://localhost:1337/");

...

}

Listing 7.1: Situationstemplate in Esper

Ein Situationstemplate wird hierbei in drei Bereiche aufgeteilt. Die Java-Klasse Situation definiert
das Situationsobjekt. Eine EPL Statement vergleicht die Situationsobjekte mit den Konditionen cpu >
80.0 und ram > 600.0. Über die Methoden getCpu() und getRam() hat das Statement Zugriff auf die
Sensorwerte. Die Sensoren werden als Methoden GetCPU() und GetRAM() implementiert.

Configuration cepConfig = new Configuration();

cepConfig.addEventType("Situation", Situation.class.getName());

EPRuntime cepRT = cep.getEPRuntime();

Listing 7.2: CEP Konfiguration

Die Klasse Situation muss als EventType registriert werden. Zusätzlich wird ein Objekt cepRT instan-
ziiert, das zur Laufzeit Events erzeugen kann.

Situation situation = new Situation(GetCPU(), GetRAM(), new

Timestamp(date.getTime()));

cepRT.sendEvent(situation);

Listing 7.3: Situationserkennung

In einer while-Schleife können anschließend kontinuierlich Objekte der Klasse Situation mit den
Sensormethoden als Attribute instanziiert werden und als Events an die CEP-Engine gesendet werden.
Ein Listener, der dem in Listing 7.1 definierten Statement hinzugefügt ist, erkennt jedes neue Event
und führt das Statement aus.

65

A. Anhang

CouchDB Views sind ausschließlich in einer CouchDB Instanz vorzufinden. Um beim Ausfall einer
virtuellen Maschine weiterhin Zugriff auf die implementierten Views zu haben, werden diese im
Folgenden, unterteilt in die jeweiligen Ressourcen, aufgelistet. DesWeiterenwerden zu jeder Ressource
die jeweiligen Funktionen anhand der Swagger-Repräsentation gezeigt.

A.1. Listenressource situations

Abbildung A.1.: Funktionen der Listenressource situations

function(doc){

emit([doc.thing, doc.situationtemplate], doc);

}

Listing A.1: CouchDB View _design/situations/existing

function(doc){

emit(null, doc);

}

Listing A.2: CouchDB View _design/situations/all

function(doc){

emit(doc.name, doc);

67

A. Anhang

}

Listing A.3: CouchDB View _design/situations/byName

function(doc){

emit([doc.thing, doc.situationtemplate], doc);

}

Listing A.4: CouchDB View _design/situations/byThingAndTemplate

function(doc){

emit(doc.thing, doc);

}

Listing A.5: CouchDB View _design/situations/monitoring

A.2. Listenressource situationtemplates

Abbildung A.2.: Funktionen der Listenressource situationtemplates

function(doc){

emit(null, doc);

}

Listing A.6: CouchDB View _design/situationtemplates/all

function(doc){

emit(doc.name, doc);

}

Listing A.7: CouchDB View _design/situationtemplates/byName

function(doc){

emit(doc._id, doc._rev);

}

Listing A.8: CouchDB View _design/situationtemplates/idAndRev

68

A.3. Listenressource things

A.3. Listenressource things

Abbildung A.3.: Funktionen der Listenressource things

function(doc){

emit(null, doc);

}

Listing A.9: CouchDB View _design/things/all

function(doc){

emit(doc.name, doc);

}

Listing A.10: CouchDB View _design/things/byName

A.4. Listenressource sensors

Abbildung A.4.: Funktionen der Listenressource sensors

function(doc){

emit(null, doc);

}

Listing A.11: CouchDB View _design/sensors/all

function(doc){

emit(doc.name, doc);

}

Listing A.12: CouchDB View _design/sensors/byName

69

A. Anhang

A.5. Listenressource sensorvalues

Abbildung A.5.: Funktionen der Listenressource sensorvalues

function(doc){

emit(null, doc);

}

Listing A.13: CouchDB View _design/sensorvalues/all

function(doc){

emit(doc.sensor, doc._id);

}

Listing A.14: CouchDB View _design/sensorvalues/existing

70

Literaturverzeichnis

[ADB+99] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P. Steggles. Towards a better
understanding of context and context-awareness. In Handheld and ubiquitous computing,
S. 304–307. Springer, 1999. (Zitiert auf Seite 15)

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of the ACM,
53(4):50–58, 2010. (Zitiert auf Seite 24)

[ALS10] J. C. Anderson, J. Lehnardt, N. Slater. CouchDB: the definitive guide. Ö’Reilly Media, Inc.",
2010. (Zitiert auf den Seiten 41 und 42)

[aws] Amazon Web Services. URL https://aws.amazon.com/de/. (Zitiert auf Seite 24)

[cc] Esper. URL https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/

lehrveranstaltungen/studienprojekte/SS15/Stupro.CUPCAKE.html. (Zitiert auf
Seite 62)

[CDba] CouchDB changes. URL http://docs.couchdb.org/en/latest/api/database/

changes.html. (Zitiert auf Seite 42)

[CDbb] A Database for the Web. URL http://couchdb.apache.org/. (Zitiert auf Seite 41)

[CDbc] HTTP API Reference. URL http://docs.couchdb.org/en/latest/http-api.html.
(Zitiert auf Seite 43)

[CDbd] Replication. URL http://wiki.apache.org/couchdb/Replication. (Zitiert auf Sei-
te 43)

[ceb10] cebr. THE CLOUD DIVIDEND: Part One The economic benefits of cloud computing to
business and the wider EMEA economy. Technischer Bericht, centre for economics and
business research ltd, 2010. (Zitiert auf Seite 25)

[DAS00] A. K. Dey, G. D. Abowd, D. Salber. A context-based infrastructure for smart environments.
In Managing Interactions in Smart Environments, S. 114–128. Springer, 2000. (Zitiert auf
den Seiten 21 und 22)

[esp] Esper. URL http://www.espertech.com/products/esper.php. (Zitiert auf Seite 64)

[FB] Facebook. URL https://www.facebook.com. (Zitiert auf Seite 23)

71

https://aws.amazon.com/de/
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/lehrveranstaltungen/studienprojekte/SS15/Stupro.CUPCAKE.html
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/lehrveranstaltungen/studienprojekte/SS15/Stupro.CUPCAKE.html
http://docs.couchdb.org/en/latest/api/database/changes.html
http://docs.couchdb.org/en/latest/api/database/changes.html
http://couchdb.apache.org/
http://docs.couchdb.org/en/latest/http-api.html
http://wiki.apache.org/couchdb/Replication
http://www.espertech.com/products/esper.php
https://www.facebook.com

Literaturverzeichnis

[GBH+05] M. Grossmann, M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, T. Schwarz. Efficiently
managing context information for large-scale scenarios. In Pervasive Computing and
Communications, 2005. PerCom 2005. Third IEEE International Conference on, S. 331–340.
IEEE, 2005. (Zitiert auf Seite 16)

[GL12] S. Gilbert, N. A. Lynch. Perspectives on the CAP Theorem. Institute of Electrical and
Electronics Engineers, 2012. (Zitiert auf Seite 23)

[GSL14] D. Gorecky, M. Schmitt, M. Loskyll. Mensch-Maschine-Interaktion im Industrie 4.0-
Zeitalter. In Industrie 4.0 in Produktion, Automatisierung und Logistik, S. 525–542. Springer,
2014. (Zitiert auf den Seiten 7 und 10)

[Hen06] S. Heng. Rfid Chips: Future Technology on Everyone’s Lips. Deutsche Bank Research,
E-conomics, 2006. (Zitiert auf Seite 9)

[HHL+10] K. Häussermann, C. Hubig, P. Levi, F. Leymann, O. Simoneit, M. Wieland, O. Zweigle.
Understanding and designing situation-aware mobile and ubiquitous computing systems.
In Proc. of intern. Conf. on Mobile, Ubiquitous and Pervasive Computing, S. 329–339. 2010.
(Zitiert auf Seite 18)

[HWS+15] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher, F. Leymann.
SitRS - A Situation Recognition Service based on Modeling and Executing Situa-
tion Templates. In C. Nikolaou, F. Leymann, Herausgeber, Proceedings of the
9th Symposium and Summer School On Service-Oriented Computing, S. 35–49. IBM,
2015. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=INPROC-2015-34&engl=0. (Zitiert auf Seite 31)

[KBZ+08] U.-P. Käppeler, R. Benkmann, O. Zweigle, R. Lafrenz, P. Levi. Resolving Inconsistencies
in Shared Context Models using Multiagent Systems. Intelligent Autonomous Systems 10:
IAS-10, S. 298, 2008. (Zitiert auf Seite 18)

[Kra] M. Kramer. NoSQL-Datenbanken. (Zitiert auf Seite 43)

[LCG+09] R. Lange, N. Cipriani, L. Geiger, M. Grossmann, H. Weinschrott, A. Brodt, M. Wieland,
S. Rizou, K. Rothermel. Making the world wide space happen: New challenges for the
nexus context platform. In Pervasive Computing and Communications, 2009. PerCom 2009.
IEEE International Conference on, S. 1–4. IEEE, 2009. (Zitiert auf Seite 17)

[Ley09] F. Leymann. Cloud Computing: The Next Revolution in IT. In Photogrammetric Week ’09,
S. 3–12. Wichmann Verlag, 2009. (Zitiert auf den Seiten 24 und 25)

[MCE] Masterarbeit - Situationserkennung basierend auf Complex Event Processing. URL
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/studentische_

arbeiten/masterarbeiten/MA_SitRec_CEP.html. (Zitiert auf Seite 62)

[MDb] MongoDB. URL https://www.mongodb.org/. (Zitiert auf Seite 23)

[MG09] P. Mell, T. Grance. The NIST definition of cloud computing. National Institute of Standards
and Technology, 53(6):50, 2009. (Zitiert auf Seite 24)

72

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-34&engl=0
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/studentische_arbeiten/masterarbeiten/MA_SitRec_CEP.html
https://www.ipvs.uni-stuttgart.de/abteilungen/as/lehre/studentische_arbeiten/masterarbeiten/MA_SitRec_CEP.html
https://www.mongodb.org/

Literaturverzeichnis

[MGP+11] S. Mitsch, W. Gottesheim, F. H. Pommer, B. Pröll, W. Retschitzegger, W. Schwinger,
R. Hutter, G. Rossi, N. Baumgartner. Making workflows situation aware: an ontology-
driven framework for dynamic spatial systems. In Proceedings of the 13th International
Conference on Information Integration and Web-based Applications and Services, S. 182–188.
ACM, 2011. (Zitiert auf Seite 9)

[nr] Node-RED. URL http://nodered.org/. (Zitiert auf Seite 49)

[NRi] Installation. URL http://nodered.org/docs/getting-started/installation.html.
(Zitiert auf Seite 54)

[od] Odysseus. URL http://odysseus.informatik.uni-oldenburg.de/. (Zitiert auf Sei-
te 64)

[pa] Patriot Act. URL http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:.
(Zitiert auf Seite 25)

[Pri08] D. Pritchett. Base: An acid alternative. Queue, 6(3):48–55, 2008. (Zitiert auf den Seiten 23
und 24)

[RB15] J. D. Ralf Bruns. Complex Event Processing: Komplexe Analyse von massiven Datenströmen
mit CEP. Springer, 2015. Seite 6. (Zitiert auf den Seiten 7 und 26)

[Rob10] D. Robins. Complex event processing. In Second International Workshop on Education
Technology and Computer Science. Wuhan. 2010. (Zitiert auf Seite 26)

[SSK11] C. Strauch, U.-L. S. Sites, W. Kriha. NoSQL databases. Lecture Notes, Stuttgart Media
University, 2011. (Zitiert auf Seite 41)

[TWT] Twitter. URL https://twitter.com/?lang=de. (Zitiert auf Seite 23)

[WKL+09] M. Wieland, U.-P. Käppeler, P. Levi, F. Leymann, D. Nicklas. Towards Integration of
Uncertain Sensor Data into Context-aware Workflows. In GI Jahrestagung, S. 2029–2040.
Citeseer, 2009. (Zitiert auf den Seiten 16 und 18)

[WKNL07] M. Wieland, O. Kopp, D. Nicklas, F. Leymann. Towards context-aware workflows. In
CAiSE07 Proc. of the Workshops and Doctoral Consortium, Band 2, S. 25. 2007. (Zitiert auf
Seite 15)

[wmc] Workflow Management Coalition. URL http://www.wfmc.org/. (Zitiert auf Seite 15)

[WSBL15] M. Wieland, H. Schwarz, U. Breitenbucher, F. Leymann. Towards situation-aware adaptive
workflows: SitOPT—A general purpose situation-aware workflow management system.
In Pervasive Computing and Communication Workshops (PerCom Workshops), 2015 IEEE
International Conference on, S. 32–37. IEEE, 2015. (Zitiert auf den Seiten 10 und 15)

[Zwe11] O. G. Zweigle. Erweiterung kognitiver Fähigkeiten in Multiagentensystemen durch Kommu-
nikation, Rollenverteilung und Situationsanalyse. Shaker, 2011. (Zitiert auf den Seiten 15
und 22)

Alle URLs wurden zuletzt am 02. 09. 2015 geprüft.

73

http://nodered.org/
http://nodered.org/docs/getting-started/installation.html
http://odysseus.informatik.uni-oldenburg.de/
http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:
https://twitter.com/?lang=de
http://www.wfmc.org/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Problembeschreibung
	1.2 Einführendes Beispiel
	1.3 Anforderungen an diese Arbeit & SitOPT
	1.4 Gliederung dieser Arbeit

	2 Grundlagen und verwandte Arbeiten
	2.1 Situationsbezogene Workflows
	2.2 Kontext - Grundlagen und Definition
	2.3 Systeme zur Verwaltung von Kontext
	2.4 Situation - Grundlagen und Definition
	2.5 Situationstemplates - Grundlagen und Definition
	2.6 Systeme zur Situationserkennung

	3 Stand der Technik
	3.1 NoSQL
	3.2 Cloud Computing
	3.3 Complex Event Processing (CEP)

	4 Konzept und Architektur von SitOPT
	4.1 Situationserkennungssystem
	4.2 Transformation Mapper
	4.3 Situationsverwaltung
	4.4 Situation Handler
	4.5 Situation Dashboard
	4.6 Funktionsweise
	4.7 Datenmodell

	5 Implementierung des Prototyps
	5.1 Datenbank
	5.2 Situationsverwaltung
	5.3 Transformation Mapper
	5.4 Situationserkennung
	5.5 Situation Dashboard
	5.6 Setup

	6 Evaluation
	6.1 Testumgebung
	6.2 Erfüllung der Anforderungen
	6.3 Ergebnisse

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung dieser Arbeit
	7.2 Skalierung von SitOPT
	7.3 Erstellung von Situationstemplates
	7.4 Verwendung weiterer Situationserkennungssysteme

	A Anhang
	A.1 Listenressource situations
	A.2 Listenressource situationtemplates
	A.3 Listenressource things
	A.4 Listenressource sensors
	A.5 Listenressource sensorvalues

	Literaturverzeichnis

