
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart

Universitätsstraße 38

70569 Stuttgart

Diplomarbeit Nr. 3698

Entwurf einer zentralen und generischen

Schnittstelle für das intuitive Auffinden

verteilter Funktionalität in föderierten

Informationssystemen

Philipp Pirrung

Matrikel-Nr.:

Studiengang:

Prüfer:

Betreuer:

Beginn:

Ende:

CR-Klassifikation:

2526016

Softwaretechnik

Prof. Dr. Albrecht Schmidt

Doris Janssen, M. Sc.

Dipl.-Inf. (FH) Jörg Metzler

Dipl.-Inf. Uli Held

10.11.2014

12.05.2015

H.5.2

Kurzfassung

Bei der Dr. Ing. h.c. F. Porsche AG wird seit vielen Jahren ein föderiertes Informations-
system verwendet, welches verschiedene, verteilte und autonome Datenquellen zusam-
menführt und an einer zentralen Stelle verfügbar macht. Das System wird täglich von
einer Vielzahl an Benutzern verwendet um auf die bereitgestellten Daten zuzugreifen
und diese für die tägliche Arbeit aufzubereiten und auszuwerten. Die Funktionalitäten
sind dabei im ganzen System verteilt und an den zugehörigen Datenobjekten bereitge-
stellt. Da die Benutzer in den meisten Fällen wissen, welche Funktionalitäten sie benöti-
gen, ist eventuell eine zentrale Anlaufstelle zur Bereitstellung dieser sinnvoll.

Im Rahmen einer Neuentwicklung des föderierten Informationssystems sollen in dieser
Diplomarbeit Teile der Anwendung im Hinblick auf ihre Benutzbarkeit untersucht und
verbessert werden. Hierfür sollen zunächst Probleme der Benutzbarkeit analysiert und
Lösungsansätze zu ihnen erstellt und bewertet werden. Die vielversprechendsten Lö-
sungsansätze sollen im Anschluss umgesetzt und das entstandene System evaluiert
werden.

Abstract

For many years, the Dr. Ing. h.c. F. Porsche AG has been using a federated database
system to consolidate numerous, distributed and autonomous data sources and make
them available in one centralized place. The system is in daily use by many users to
access, edit and evaluate the provided data. All functionality is spread out over the whole
system and is only available for use at the site of the associated data objects. Since
users typically know which functionality they’re looking for when using the system, a
centralized interface for accessing that functionality may be more fitting.

The goal of this diploma thesis is to analyse and improve the usability of parts within the
scope of a re-development of the system. For this purpose, problems in the usability
must first be analysed and suitable approaches to resolving them must be found and
evaluated. The most promising approaches shall then be implemented and the usability
of the resulting system evaluated.

Sperrvermerk

Die vorliegende Abschlussarbeit enthält zum Teil Informationen, die nicht für die

Öffentlichkeit bestimmt sind. Alle Rechte an der Abschlussarbeit, einschließlich

der Verbreitung auf elektronischen Medien, liegen bei der Softwarehelden GmbH

& Co. KG.

Abweichend hiervon darf der Inhalt der Abschlussarbeit während einer Sperrzeit

von 5 Jahren ab dem Abgabedatum nur mit der ausdrücklichen schriftlichen Ge-

nehmigung der Softwarehelden GmbH & Co. KG an Dritte weitergegeben wer-

den. Nach Ablauf der Sperrzeit ist diese Genehmigung nicht mehr erforderlich.

i

Inhaltsverzeichnis

1 Einleitung.. 1

1.1 Problemdarstellung, Ziele und Aufgaben ... 1

1.2 Gliederung ... 2

2 Grundlagen ... 4

2.1 Föderierte Informationssysteme .. 4

2.1.1 Architektur ... 4

2.1.2 Benutzeroberfläche ... 6

2.2 Usability Engineering ... 9

2.2.1 Ermittlung von Anforderungen ... 9

2.2.2 Konzeptentwurf ... 12

2.2.3 Prototyping .. 13

2.2.4 Usability Evaluation ... 15

2.2.5 Evaluation des konzeptionellen Entwurfs .. 20

2.2.6 Screen Design Standards .. 21

2.2.7 Detaillierter Entwurf der Benutzeroberfläche 22

2.2.8 Semantisches Differential .. 23

2.2.9 NASA Task Load Index ... 24

2.3 Natural Language Processing ... 26

2.3.1 Damerau-Levenshtein-Distanz zur Einstufung der Qualität von
Resultaten .. 26

2.3.2 N-Gramme ... 27

2.3.3 Part of Speech Tagging ... 31

3 Analyse ... 38

3.1 Usability Spezifikation .. 38

3.1.1 Anforderungen der Nutzer ... 38

3.1.2 Anforderungen der Entwickler ... 42

3.2 Anwendungsfälle ... 45

4 Lösungsansätze/Konzepte .. 50

4.1 Filtern von Objekten ... 50

4.2 Navigation und Darstellungen innerhalb des Systems............................. 50

4.3 Schnellnavigation innerhalb des Systems ... 51

4.4 Navigieren zu Objekten ... 52

ii

4.5 Generische Oberfläche .. 52

4.6 Generische Aktionen ... 53

4.7 Schnittstelle zur Lokalisierung von Funktionalität 53

4.8 Bewertung ... 54

5 Evaluation anhand einer prototypischen Umsetzung 55

5.1 Vorgehen ... 55

5.2 Aufbau der Nutzergruppen .. 57

5.3 Prototypische Umsetzung der Lösungsansätze 58

5.3.1 Generische Oberfläche.. 59

5.3.2 Navigation innerhalb des Systems .. 62

5.3.3 Schnellnavigation innerhalb des Systems ... 63

5.3.4 Generische Aktionen ... 64

5.3.5 Schnittstelle zur Lokalisierung von Funktionalitäten 65

5.4 Ergebnisse von informellen Evaluationen der ersten Iteration 66

5.4.1 Navigation/Schnellnavigation und Darstellung innerhalb des Systems
 ... 66

5.4.2 TellMe-Auswahl ... 67

5.5 Umsetzung der Ergebnisse der ersten informellen Evaluation 67

5.5.1 Navigation/Schnellnavigation und Darstellung innerhalb des Systems
 ... 67

5.5.2 TellMe-Eingabeleiste ... 69

5.6 Ergebnisse von informellen Evaluationen der zweiten Iteration 70

5.6.1 Navigation/Schnellnavigation und Darstellung innerhalb des Systems
 ... 70

5.6.2 TellMe-Eingabeleiste ... 71

5.7 Umsetzung der Ergebnisse der zweiten informellen Evaluation 72

5.7.1 Schnellnavigation innerhalb des Systems ... 72

5.7.2 TellMe-Eingabeleiste ... 72

5.8 Ergebnisse der abschließenden Evaluation ... 74

5.8.1 Allgemeine Ergebnisse .. 74

5.8.2 Erlernbarkeit der Anwendung .. 76

5.8.3 Belastung der Anwendung nach NASA-TLX 76

5.8.4 Eindruck des getesteten Systems ... 77

5.8.5 Ergebnisse der Evaluation mit Entwicklern .. 79

6 Fazit ... 81

7 Anhang ... 83

8 Literaturverzeichnis ... 143

iii

Abbildungsverzeichnis

Abbildung 1 Architektur von Cleverle (nach (Held, 2009)) 5

Abbildung 2 Wireframe der Cleverle-Navigation (Teil 1) 7

Abbildung 3 Wireframe der Cleverle-Navigation (Teil 2) 8

Abbildung 4 Damerau-Levenshtein-Distanz am Beispiel der Wörter "Fahrzeug"

und "Fhareuzfg" .. 27

Abbildung 5 Zeile eines Fahrzeugs in Cleverle (Vereinfacht) 41

Abbildung 6 Visualisierte Block-Metapher ... 51

Abbildung 7 Altersverteilung von aktiven Cleverle-Benutzern 58

Abbildung 9 Datenmodell der Navigation mit Anwendungen und

Navigationsknoten .. 62

Abbildung 10 Datenmodell der Favoriten .. 63

Abbildung 11 Datenmodell der Aktionen ... 64

Abbildung 12 Objektansicht in Cluu als Wireframe ... 68

Abbildung 13 Navigationselemente in Cluu als Wireframe 69

Abbildung 14 Klassenmodell der TellMe-Textevaluation 73

Abbildung 15 TellMe-Popup für Eingabetext "eine Abteilung"........................... 75

Abbildung 16 NASA-TLX von Benutzern ohne vorherige Erfahrungen mit Cleverle

 .. 77

Abbildung 17 Bewertung von Cleverle (links) und Cluu (rechts) aller Testnutzer

 .. 78

Abbildung 18 Bewertung von Cluu von Benutzern ohne vorherige Erfahrungen

mit Cleverle ... 78

Abbildung 19 NASA-TLX von Entwicklern .. 80

file:///D:/Privat/Diplomarbeit/Diplomarbeit%20Philipp%20Pirrung.docx%23_Toc419103025
file:///D:/Privat/Diplomarbeit/Diplomarbeit%20Philipp%20Pirrung.docx%23_Toc419103026

iv

Tabellenverzeichnis

Tabelle 1 Für semantisches Differential verwendete Gegensatzpaare 24

Tabelle 2 Bewertungskriterien des NASA-TLX ... 25

Tabelle 3 Anwendungsfall "Funktionalität ändern" .. 46

Tabelle 4 Anwendungsfall „Personalliste exportieren“ 47

Tabelle 5 Anwendungsfall "Fahrzeug reservieren" ... 48

Tabelle 6 Anwendungsfall "Anwendungsstruktur erstellen" 49

Tabelle 7 Bewertung von Lösungsansätzen ... 54

Tabelle 8 Verwendete Hauptansichten ... 60

Tabelle 9 Verwendete Unteransichten .. 61

file:///D:/Privat/Diplomarbeit/Diplomarbeit%20Philipp%20Pirrung.docx%23_Toc419103050
file:///D:/Privat/Diplomarbeit/Diplomarbeit%20Philipp%20Pirrung.docx%23_Toc419103051

1

1 Einleitung

 Anwendungslandschaften in Unternehmen stellen heute das Resultat jahre-

lang gewachsener Strukturen dar. Die eingesetzten Anwendungen sind dabei

häufig ohne eine architektonische Gesamtplanung im Sinne eines Bottom-Up-

Prozesses auf Abteilungsebene entstanden. Das Resultat sind heterogene und

meist isolierte Systeme, die unterschiedliche Bedienoberflächen haben und zwi-

schen denen keine standardisierte Kommunikation existiert. Die Zusammenfüh-

rung von Anwendungen zur optimalen Unterstützung der Firmenprozesse stellt

darum heutzutage eine wesentliche Herausforderung in größeren Unternehmen

dar.

1.1 Problemdarstellung, Ziele und Aufgaben

 Durch die Vereinheitlichung und Zusammenführung der unterschiedlichen

Teilsysteme entsteht jedoch ein neues Problem. Dem Benutzer stehen riesige

Mengen an Daten zur Verfügung, die alle ihre eigenen Interaktionsmöglichkeiten

bieten. Da diese Interaktionsmöglichkeiten über die einzelnen Teilsysteme ver-

teilt sind, ist es für den Benutzer nur schwer möglich, alle für ihn relevanten Funk-

tionalitäten des Systems zu kennen und folglich zu nutzen. Auch wenn der Be-

nutzer zu Beginn seiner Sitzung schon weiß, welche Funktionalitäten des Sys-

tems er verwenden möchte, so muss er diese dennoch jedes Mal lokalisieren und

an der entsprechenden Stelle ausführen. Durch dieses Vorgehen entstehen dem

Benutzer ein deutlich höherer zeitlicher Aufwand, sowie eine höhere mentale Be-

lastung bei der Verwendung des Systems. Wäre es für den Benutzer jedoch mög-

lich, die gesuchte Funktionalität an einer zentralen Stelle gebündelt abzurufen,

so könnte er die Anwendung möglicherweise effizienter und mit weniger Aufwand

benutzen.

 Für eine Untersuchung der beschriebenen Probleme wird in dieser Diplomar-

beit das bei der Dr. Ing. h.c. F. Porsche AG eingesetzte föderierte Informations-

system Cleverle verwendet. Bei Porsche wurde die Notwendigkeit einer Integra-

tionsplattform schon frühzeitig erkannt. Bereits vor mehreren Jahren wurde ein

2

serviceorientiertes Integrationssystem entwickelt, mit welchem verteilte und he-

terogene Datenbanken und Anwendungen strukturiert zusammengeführt werden

können.

 Im Rahmen einer grundlegenden Neuentwicklung des föderierten Informati-

onssystems soll auch die Benutzbarkeit analysiert und überarbeitet werden. Das

bietet die Möglichkeit, in einer neuen, generischen Benutzeroberfläche die be-

schriebene zentrale Schnittstelle zur Auffindung von verteilten Funktionalitäten

zu integrieren.

 Ziel der Diplomarbeit ist es, eine weitgehend generische Benutzerschnittstelle

zu entwerfen, welche sowohl den zentralen, als auch den klassischen, verteilten

Ansatz unterstützt.

 Die besondere Herausforderung besteht darin, diese Schnittstelle möglichst

intuitiv, evtl. sogar mit natürlich sprachlichen Elementen zu gestalten, Benutzer-

eingaben zu interpretieren und auf vorhandene Businessfunktionalität abzubil-

den.

 Zuerst sollen die existierenden Probleme der Benutzer und Entwickler des

Systems erfasst und analysiert werden. Auf Basis dieser Ergebnisse werden an-

schließend Lösungsansätze erarbeitet, die diese Probleme beheben und eine

bessere Benutzbarkeit des Systems ermöglichen sollen. Die so entstandenen

Konzepte zum Aufbau der Oberfläche sollen iterativ umgesetzt, bewertet und

kontinuierlich verbessert werden. Abschließend sollen die umgesetzten Kon-

zepte evaluiert und eine Empfehlung für weitere Verbesserungen der Benutzbar-

keit gegeben werden.

1.2 Gliederung

 Die Gliederung dieser Diplomarbeit ist an die Vorgehensweise bei deren

Durchführung angelehnt.

 Das folgende Kapitel befasst sich mit den Grundlagen die einen Einfluss auf

die Durchführung und Ergebnisse dieser Diplomarbeit hatten. Zuerst erhält der

Leser einen Überblick über die Besonderheiten von föderierten Informationssys-

temen. Neben der grundlegenden Vorgehensweise im Usability Engineering,

werden verschiedene Aspekte des Natural Language Processing erläutert.

3

 Die genauere Analyse von vorhandenen benutzbarkeitsbezogenen Probleme

und Wünsche von Benutzern wird in Kapitel 3 beschrieben. Es werden sowohl

die Anforderungen von Benutzern, als auch Entwicklern erfasst.

 Die erarbeiteten Lösungsansätze zur Optimierung der Benutzbarkeit werden

im darauffolgenden Kapitel erläutert und anschließend anhand eines Kosten-Nut-

zen-Verhältnisses bewertet.

 In Kapitel 5 werden die vielversprechendsten Lösungsansätze weiter verfolgt

und prototypisch umgesetzt. Der so entstandene Prototyp wird während des Ent-

wicklungsprozesses iterativ evaluiert und mithilfe der so gesammelten Erkennt-

nisse und Ergebnisse kontinuierlich verbessert. Abschließend wird eine formale

Evaluation des resultierenden Systems durchgeführt und die Ergebnisse analy-

siert.

 Das letzte inhaltliche Kapitel zieht ein Fazit aus dem Verlauf der Diplomarbeit.

Es werden die Erkenntnisse und Ergebnisse zusammengefasst und bewertet,

sowie eine Empfehlung für zukünftige Optimierungsmaßnahmen gegeben.

 Nach den Ergebnissen der Evaluation wird die verwendete Literatur aufge-

führt.

4

2 Grundlagen

 Diese Diplomarbeit befasst sich im Wesentlichen mit drei Themen. Die Grund-

lage aller Überlegungen und Ergebnisse sind dabei föderierte Informationssys-

teme. Für diese soll eine zentrale Schnittstelle zur Auffindung der verteilten Funk-

tionalitäten entworfen und entwickelt werden. Um eine gute Benutzbarkeit zu ge-

währleisten wird die Entwicklung der Schnittstelle, sowie der restlichen Oberflä-

che nach den Konzepten des Usability Engineering durchgeführt. Für die Umset-

zung der Funktionalität der Schnittstelle werden des Weiteren Vorgehensweisen

aus dem Natural Language Processing angewandt. Die Grundlagen der erwähn-

ten Themen sind in diesem Kapitel beschrieben.

2.1 Föderierte Informationssysteme

 Ziel und Aufgabe von föderierten Informationssystemen ist die Zusammenfüh-

rung von verteilten, heterogenen und autonomen Datenquellen um diese an einer

einzigen, zentralen Stelle zur Verfügung zu stellen (Busse, et al., 1999). Die Ent-

wickler und Benutzer müssen sich demnach nicht um den Aufbau der angebun-

denen Teilsysteme kümmern, sondern können auf die verfügbaren Daten über

eine vereinheitlichte Schnittstelle zugreifen.

 Anhand des bei der Dr. Ing. h.c. F. Porsche AG entwickelten und eingesetzten

föderierten Informationssystems Cleverle werden die grundlegenden, für diese

Diplomarbeit relevanten Konzepte im Folgenden beschrieben.

2.1.1 Architektur

 Cleverle ist ein bei der Dr. Ing. h.c. F. Porsche AG eingesetztes föderiertes

Informationssystem. Es wurde seit 1998 von Ulrich Held privat entwickelt um un-

terschiedliche und verteilte Datenquellen zusammenzuführen und somit an einer

zentralen Stelle vereinheitlicht bereitzustellen. Eine vereinfachte Darstellung der

Architektur von Cleverle ist in Abbildung 1 veranschaulicht.

5

Fahrzeuge Versuche
Diagnose-

daten

SAP-Provider Oracle-Provider MSSQL-Provider

Cleverle Backbone

Cleverle
Information

Explorer

CarPad
Tablet-Anwendung

Weitere
Client-Systeme

Service-
Schnittstelle

Abbildung 1 Architektur von Cleverle (nach (Held, 2009))

 Im Wesentlichen besteht das System Cleverle aus zwei Komponenten (Held,

2009):

Cleverle Information Backbone (CIB)

 Das Backbone des föderierten Informationssystems Cleverle bietet Basisope-

rationen zum Erstellen, Lesen, Bearbeiten und Löschen (CRUD) von Datenob-

jekten. Über diese Operationen können beliebige Daten, welche über eine Viel-

zahl von unabhängigen Datenquellen angebunden sind, verwaltet werden. Sie

stehen somit für andere Systeme an einer zentralen Stelle zur Verfügung. Erwei-

terte Funktionalität wie das Erstellen von Berichten kann nur mittels einer Ver-

wendung der CRUD-Operationen umgesetzt werden, was eine separate Imple-

mentierung für jedes Client-System bedeutet. Um dieselbe Funktionalität auf un-

terschiedlichen Client-Systemen zu verwenden, muss diese wegen der Abtren-

nung der Funktionalität vom Backend separat implementiert oder eingebunden

werden.

6

Cleverle Information Explorer (CIE)

 Der CIE ist eine Webanwendung welche die für den Benutzer ersichtliche

Schnittstelle zum CIB darstellt. Über sie kann der Benutzer auf alle angebunde-

nen Datenquellen zugreifen, die darin hinterlegten Daten einsehen, bearbeiten

und löschen. Die Benutzeroberfläche des CIE ist in 2.1.2 beschrieben.

2.1.2 Benutzeroberfläche

 Die in Cleverle dargestellten Daten werden im System als Klassen verwaltet.

Dieses Datenmodell wird verwendet um die Einsicht in die verfügbaren Daten zu

ermöglichen, indem es vorgibt welche Eigenschaften für die jeweiligen Klassen

in einem gewissen Kontext angezeigt werden sollen. Für die Darstellung der an-

gebundenen Daten verwendet Cleverle hierbei zwei grundlegende Ansichten.

Die Listenansicht stellt alle zu einer Klasse gehörenden Datenobjekte in tabella-

rischer Form dar. Durch ein Öffnen der einzelnen Datenobjekte wird die Objek-

tansicht des entsprechenden Datenobjekts geöffnet. In dieser Objektansicht wer-

den sowohl die detaillierten Eigenschaften, als auch Relationen der Datenobjekte

dargestellt. Diese Relationen verbinden verschiedene Datenobjekte ähnlich wie

in relationalen Datenbanken mittels Primär- und Fremdschlüssel und können als

1:1, 1:n und n:m-Beziehungen angegeben werden. Für die Navigation innerhalb

des Systems werden sogenannte SiteMap-Knoten verwendet (siehe Abbildung

2). Diese verweisen mittels URL auf andere SiteMap-Knoten, Listen- oder Objek-

tansichten.

 Die Benutzeroberfläche verfügt über verschiedene Kopfzeilen, die jeweils

Funktionalitäten unterschiedlicher Art bieten (siehe Abbildung 2). Die oberste

Kopfzeile dient als Darstellung der Anwendungsinformationen. Hier werden der

Name der Anwendung, die verwendete Version, sowie Benutzername und Ab-

meldefunktion angezeigt. Unter der ersten Kopfzeile wird der Navigationspfad bis

zu den derzeitig dargestellten Daten angezeigt. Mittels dieser Information kann

der Benutzer zu einer der aufgelisteten Stellen in der Navigationshierarchie sprin-

gen. Die nächste Kopfzeile bietet einige Funktionen zur Personalisierung der An-

wendung (Speichern, Ändern, Zurücksetzen), sowie eine Hilfs- und eine Such-

funktion. Die nächste Kopfzeile gibt die derzeitige Position des Benutzers in der

Navigationshierarchie als Überschrift wieder. Sobald der Benutzer auf eine In-

stanz eines Datenobjekts oder in eine Listenansicht einer Klasse navigiert (siehe

7

Abbildung 3), kommt eine weitere Kopfzeile hinzu. Diese bietet eine Auswahl von

Aktionen auf den einzelnen, ausgewählten Datenobjekt-Instanzen an. Zusätzlich

wird in der Listenansicht der Klassen eine Liste an möglichen Filtern eingeblen-

det, die es dem Benutzer ermöglichen, die angezeigten Daten einzuschränken.

In der Objektansicht einer Datenobjekt-Instanz wird des Weiteren eine Aufzäh-

lung an Registern angezeigt, welche im ersten dargestellten Register die Details

Abbildung 2 Wireframe der Cleverle-Navigation (Teil 1)

8

der geöffneten Datenobjekt-Instanz enthält. Die übrigen Register beinhalten an-

dere, zu der Datenobjekt-Instanz in Relation stehende Datenobjekte. Innerhalb

der Detailübersicht werden die Eigenschaften des Datenobjekts in einer unterge-

ordneten Liste an Registern gruppiert.

Abbildung 3 Wireframe der Cleverle-Navigation (Teil 2)

9

 Um Anwendungsfälle von Fachabteilungen realisieren zu können, wird das

System kontinuierlich ausgebaut. Hierfür werden einzelne Anwendungen mit ei-

ner gleichbleibenden Anwendungsstruktur geplant, entwickelt und im CIE einge-

bunden. Die so entstandenen Anwendungen (siehe Abbildung 2) werden den Be-

nutzern an einer zentralen Stelle auf der Hauptseite des Systems angeboten.

Innerhalb einer Anwendung befinden sich zu dem jeweiligen Themengebiet ge-

hörende Daten, welche durch Navigationsknoten der gleichen Darstellung visua-

lisiert werden.

 Die Metadaten der Anwendungen, welche die angezeigten Daten beschrei-

ben, können zur Laufzeit verwaltet werden, wodurch neue Anwendungen mit re-

lativ geringem Aufwand erstellt werden können. Ein großer Vorteil der konsisten-

ten Darstellung der Daten ist, dass Benutzer aus allen Themenbereichen auch

die Anwendungen anderer Themenbereiche verwenden können ohne sich in die

Bedienung der Anwendung einarbeiten zu müssen. Problematisch ist jedoch die

durch das Datenmodell vorgegebene Bindung der erweiterten, über einfaches

Einsehen und Bearbeiten hinausgehenden, Funktionalitäten.

2.2 Usability Engineering

 Anwendungen so zu gestalten, dass sie eine gute Benutzbarkeit haben ist ein

Problem das bei jeder Entwicklung eine Rolle spielt. Eine Anwendung, die den

späteren Benutzer frustriert, oder mit der er seine Aufgaben nur langsamer lösen

kann als mit anderen Mitteln, hat ihr eigentliches Ziel verfehlt. Anwendungen soll-

ten daraufhin ausgelegt sein die Arbeit ihrer Benutzer zu vereinfachen und weni-

ger belastend zu gestalten.

 Das Usability Engineering befasst sich mit dieser Thematik, indem die Benutz-

barkeit der entwickelten Anwendung strukturiert entworfen, umgesetzt und ge-

testet wird. Hierbei ist eine direkte Einbindung der Benutzer wünschenswert und

von zentraler Bedeutung.

2.2.1 Ermittlung von Anforderungen

 Um die Benutzbarkeit einer Anwendung überhaupt angemessen gestalten zu

können, ist es für das Entwicklungsteam von großem Interesse, die Anforderun-

gen, welche an die Benutzbarkeit gestellt werden, zu erfassen. Hierbei gilt es zu

10

entscheiden, inwiefern die Anwendung auf Ease-Of-Use oder Ease-Of-Learning

ausgelegt werden soll. Ease-Of-Learning, d.h. wenig Lernaufwand, oder einfache

Erlernbarkeit bei der Verwendung der Anwendung, ist speziell dann von Rele-

vanz, wenn der Benutzer eine Anwendung benutzen soll ohne vorher eine Ein-

weisung in diese erhalten zu haben. Dies ist beispielsweise bei Anwendungen

wie Fahrkarten- oder Getränkeautomaten der Fall, die einen einfachen Vorgang

automatisieren sollen. Wenn die Anwendung jedoch eine komplexere Aufgabe

erledigen soll, ist womöglich eine Fokussierung auf Ease-Of-User, d.h. eine kom-

fortable, bzw. einfache Benutzung der Anwendung von höherer Bedeutung

(Mayhew, 1999). Gleiches gilt, wenn vorausgesetzt werden kann, dass der Be-

nutzer eine Einarbeitung in die Anwendung erhält, oder Vorkenntnisse über de-

ren Benutzung hat. Für die Erfassung der Anforderungen gibt es unterschiedliche

Möglichkeiten (Wixon, et al., 1997):

Analyse von Konkurrenzsystemen

 Eigenschaften, die bei der Verwendung von Konkurrenzsystemen eine gute

Benutzbarkeit gewähren, können auch in der eigenen Anwendung für eine gute

Benutzbarkeit eingesetzt werden.

Informationen des technischen Supports

 Dem technischen Support – speziell bei einer Weiter- oder Neuentwicklung

von Vorgängersystemen – stehen große Mengen an Informationen darüber zur

Verfügung, wie die Benutzer über die Anwendung denken. Sie können Auskunft

darüber geben, wo sich in der aktuellen Anwendung die größten Probleme bei

der Benutzung befinden.

Erfahrungswerte

 Aus der Entwicklung von anderen Anwendungen können Erfahrungen, deren

Erkenntnisse zur besseren Benutzbarkeit beitragen, eingebracht werden.

11

Benutzerbefragungen

 Die Wünsche der Benutzer können auch während der Analysephase direkt

erfragt werden. Während der Evaluationsphasen des Usability Engineerings wer-

den die Wünsche der Benutzer aber ohnehin durch die direkte Einbindung in der

Evaluation berücksichtigt.

 Außer als Entwurfsgrundlage können die Anforderungen gleichzeitig auch als

Grundlage für die Evaluation dienen, indem die Benutzbarkeit anhand der Spe-

zifikationen überprüft und eingestuft wird. Bei Nichterfüllung von Anforderungen

können diese gezielt angegangen und verbessert werden, wodurch die Entwick-

lungskapazitäten auf die Behebung der Inkonsistenzen zwischen Spezifikation

und Evaluationsergebnissen gelegt werden können. Dies spielt speziell bei itera-

tiven Entwicklungsvorgehen eine zentrale Rolle, da hier in jeder Iteration die Re-

sultate bewertet und in der nächsten Iteration verbessert werden.

 Anforderungen an die Anwendung können grob in Kategorien aufgeteilt wer-

den:

 Qualitative Usability-Anforderungen geben eine grundsätzliche Richtung vor,

in die sich die Anwendung entwickeln soll. Beispielsweise soll eine zu entwi-

ckelnde Anwendung den Benutzer bei der Einarbeitung unterstützen. Da diese

Anforderungen jedoch nicht durch exakt messbare Faktoren beschrieben wer-

den, kann deren Erfüllungsgrad nur schwer bestimmt werden.

 Quantitative Usability-Anforderungen geben genaue, objektive und messbare

Ziele vor, die von der Anwendung erfüllt werden sollen. Wenn beispielsweise ein

erfahrener Benutzer maximal 20 Sekunden benötigen soll um zu einem gewissen

Punkt in der Anwendung zu navigieren, so kann dies in der späteren Evaluation

genau überprüft werden. Speziell für die Weiterentwicklung von Anwendungen

ist es sinnvoll, zusätzlich zu absolut quantifizierten Anforderungen auch relativ

quantifizierte Anforderungen zu definieren. Durch diese, auf Erfahrungswerten

basierenden Anforderungen wird definiert, wie gut der Benutzer die neu entwi-

ckelte Anwendung im Vergleich zur vorhergehenden Anwendung, oder Konkur-

renzprodukten benutzen können soll. Weiter gilt zu unterscheiden, ob eine An-

forderung die Performanz oder die Zufriedenheit von Benutzern beschreibt. Per-

formanz-Anforderungen geben an, wie effizient die Anwendung von Benutzern

verwendet werden soll. Sie quantifizieren hierzu beispielsweise den Navigations-

aufwand oder die getätigten Fehler bei der Ausführung einer Aufgabe. Ziele die

12

die Zufriedenheit von Benutzern angeben, sollen bestimmte Eigenschaften der

Anwendung mittels der subjektiven Eindrücke der Benutzer bewerten. Hierbei

kann beispielsweise festgelegt werden, dass Benutzer auf einer Skala mit den

Extrema Gut und Schlecht, ihre Zufriedenheit mit einem Teil der Anwendung im

Mittel mit vier von fünf möglichen Punkten angeben.

 Bevor die Anforderungen an die Benutzbarkeit der Anwendung spezifiziert

werden, ist es sinnvoll den Umfang und die Art der Anforderungen festzulegen.

Im Gegensatz zu neu entwickelten Anwendungen, ist es bei der Weiterentwick-

lung von Anwendungen wichtiger die geänderten Merkmale auf ihre Nutzbarkeit

hin zu überprüfen, als die Verwendung der kompletten Anwendung. Anders ist

es bei der Neuentwicklung ohne vorherigen Stand umso wichtiger, die Nutzbar-

keit der kompletten Anwendung bewerten zu können (Mayhew, 1999).

 Um die Eingewöhnungszeit von Nutzern zu reduzieren, wenn sie anfangen

mit der neuen oder weiterentwickelten Anwendung zu arbeiten, ist es von Nutzen,

die Benutzeroberfläche auf Grundlage von bisherigem Nutzungsverhalten zu ent-

werfen. Hierzu sind vor allem Anwendungsfälle, wie sie am Anfang der Entwick-

lung existieren, wichtig um einen Einblick zu erhalten, wie die Benutzer ihre Auf-

gaben derzeit erledigen. Diese Anwendungsfälle können im Folgenden dazu ver-

wendet werden, um Vorgaben für den Entwurf der Benutzeroberfläche zu erstel-

len. Hierbei ist allerdings zu beachten, dass diese Vorgaben keine Vorgaben für

die visuelle Gestaltung sind, sondern vorgeben wie die jeweilige Funktionalität

dem Benutzer bereitgestellt werden soll. Durch Anpassungen der visuellen Ge-

staltung an die Bedürfnisse der Benutzer ist es möglich deren Effektivität und

Zufriedenheit mit der Anwendung zu erhöhen.

2.2.2 Konzeptentwurf

 Der Entwurf der Benutzeroberfläche ist nach (Mayhew, 1999) in drei Ab-

schnitte unterteilt, die jeweils iterativ durchlaufen werden. Im ersten Schritt, dem

Konzeptentwurf wird festgelegt wie der Benutzer die gesamte Anwendung wahr-

nehmen soll, das heißt wie die Anwendung die Realität modellieren soll. Im da-

rauffolgenden Schritt werden sogenannte Screen Design Standards entworfen,

die angeben wie die einzelnen Ansichten der Anwendung auszusehen haben.

Die Details der Benutzeroberflächen werden im dritten und letzten Schritt be-

schrieben.

13

 Der Konzeptentwurf verwendet die aus der Analyse verfügbaren Spezifikatio-

nen und gibt ein Modell vor, mit dessen Hilfe der Benutzer die Anwendung wahr-

nehmen soll. Da Nutzer bei der Benutzung von Anwendungen nach einem ein-

heitlichen Modell suchen, welches das Verhalten der Anwendung repräsentiert

(Mayhew, 1991), ist es von essentieller Bedeutung, das Konzept so zu entwerfen,

dass es dieses mentale Modell unterstützt. Dadurch ist es für die Benutzer einfa-

cher, sich in die Anwendung hineinzuversetzen und die Funktionalitäten zu erler-

nen. Eine effektivere und effizientere Nutzung der Anwendung ist die Folge.

 Überlegungen, welche für den Entwurf des Anwendungskonzepts relevant

sind, betreffen beispielsweise die Darstellung von Objekten und Funktionalitäten,

sowie einen groben Entwurf der Hauptansichten und der Navigation. Diese Über-

legungen gehen von einigen wenigen, aber repräsentativen Funktionalitäten aus,

modellieren diese und haben Entwurfsgrundlagen auf hohen Abstraktionsebenen

zur Folge. Diese Entwurfsgrundlagen sind meist Metaphern, mit deren Hilfe die

Benutzer die modellierte Funktionalität besser in die Realität abbilden und sich in

die Anwendung hineinversetzen können.

 Es ist wichtig, schon beim Entwurf des konzeptuellen Modells die zu Anfangs

erstellten Anwendungsfälle zu berücksichtigen, mit in die Überlegungen einflie-

ßen zu lassen und auch durchzuspielen, da es dadurch einfacher wird, die ge-

troffenen Entscheidungen schon frühzeitig zu validieren.

 Um eine Evaluation des konzeptuellen Entwurfs zu ermöglichen, ist es not-

wendig dem Benutzer eine Repräsentation der Anwendung zur Verfügung zu

stellen um – zumindest ansatzweise – damit zu interagieren (Mayhew, 1999). Es

muss abgeschätzt werden, ob für eine Darstellung der Entwurfsentscheidungen

einfache Zeichnungen (Mock-Ups) ausreichen, oder ob es sinnvoll ist Prototypen

der Anwendung mit eingeschränkter Funktionalität zu entwickeln. Dies kann vor

allem bei Weiterentwicklungen von Anwendungen, wenn schon eine gewisse

funktionale Basis vorhanden ist, interessant sein und hat den Vorteil, dass die

begleitenden Personen des Tests nicht so häufig in den Testablauf eingreifen

müssen.

2.2.3 Prototyping

 Usability Engineering bietet sich besonders bei iterativen Entwicklungsprozes-

sen an, da die bei der Entwicklung entstehenden Zwischenstände als Prototypen

14

bei der Evaluation von Oberflächenentwürfen verwendet werden können. Diese

Prototypen implementieren zu jeder Iteration unterschiedliche Funktionalitäten o-

der verändern die vorhandene Funktionalität (Rosson, et al., 2001). Die gleiche

Verfeinerung kann auch simultan für die Oberflächen erfolgen, wodurch die Be-

nutzbarkeit während des gesamten Entwicklungszeitraums kontinuierlich verbes-

sert werden kann. Je nach Komplexität der Anwendung muss entschieden wer-

den, welche Art von Prototyp für die Entwicklung in Frage kommt. Die Prototypen

können, wenn sie wenig Funktionalität benötigen, mit wenig Aufwand erstellt wer-

den, oder als funktionierende Teilsysteme kostenintensiver in der Herstellung

sein.

 Es muss überlegt werden, wie detailliert und mit welchem Funktionsumfang

die Prototypen den Benutzern präsentiert werden sollen. Je mehr Details ein Pro-

totyp darstellt, desto höher wird die Aussagekraft der mit ihm durchgeführten

Usability-Tests. Zu detaillierte Darstellungen können allerdings bewirken, dass

die visualisierten Komponenten schon frühzeitig als etabliert angesehen werden.

Dies hat die Auswirkung, dass sich sowohl Benutzer, als auch Entwickler an die

gewählte Darstellung gewöhnen und gebunden fühlen. Danach ist es nur schwer

möglich, große Änderungen durchzusetzen, da sich die betroffenen Personen

nicht mehr von dem Gewöhnten lösen wollen (Rosson, et al., 2001).

 Detailärmere (unscharfe) Prototypen haben jedoch bei der Präsentation vor

den Benutzern das Problem, dass ihre Wahrnehmung stark von der Präsentati-

onsgabe der präsentierenden Personen beeinflusst wird. Da sie eine große

Menge an Erklärungen zur abgebildeten Funktionalität benötigen, hängt auch die

Qualität der Rückmeldungen stark von der Präsentation ab. Können sich Benut-

zer nichts oder nur wenig unter den Erklärungen vorstellen, fällt es ihnen schwer,

Überlegungen dazu zu tätigen und zu formulieren. Allerdings bieten unscharfe

Prototypen auch wichtige Vorteile: Zum einen sind die Benutzer und Entwickler

bei einfachen Zeichnungen eher auf demselben Stand was die Präsentations-

technik betrifft. Dadurch spielt das Fachwissen, welches in dem besprochenen

Teil der Anwendung modelliert wird eine größere Rolle und die Entwickler müs-

sen ihre Vorstellungen nicht von der verwendeten Technik beeinflussen lassen.

Dies ist speziell hilfreich, wenn Benutzer auf den verwendeten Zeichnungen ein-

fach mit Hilfe von Stiften ihre Ideen einzeichnen können, und somit das Doku-

ment in gemeinsamer Arbeit verändert wird. Zum anderen können mit unscharfen

15

Prototypen schon frühzeitig Evaluationen mit Benutzern durchgeführt werden um

sicherzustellen, dass die Vorstellungen der Entwickler auch mit den Vorstellun-

gen der Benutzer übereinstimmen (Rosson, et al., 2001).

 Der Funktionsumfang kann durch horizontales Prototyping entweder breit ge-

fächert dargestellt werden, wobei die Funktionalität nur oberflächlich umgesetzt

wird. Oder er kann im vertikalen Prototyping auf wenige Funktionalitäten spezifi-

ziert sein, allerdings dadurch andere Funktionalitäten unberücksichtigt lassen.

Beim horizontalen Prototyping können dabei Details der Anwendung verloren ge-

hen, beim vertikalen Prototyping hingegen kann der Gesamtüberblick der Benut-

zer verloren gehen. Wenn mit einem iterativen Prozess entwickelt wird, können

die horizontal aufgesetzten Prototypen weiterentwickelt werden und somit auch

mehr Details darstellen.

 Prototypen sind auch schon vor der Evaluationsphase der Iterationen nützlich,

wenn es beispielsweise zu Unstimmigkeiten bei der Entscheidungsfindung

kommt. In diesen Fällen ist es meist hilfreich, wenn die zur Entscheidung stehen-

den Möglichkeiten in einem Prototyp dargestellt werden (Rosson, et al., 2001).

Auch können Prototypen verwendet werden um spezielle Fragen zu Auswirkun-

gen von Entscheidungen auf die Benutzbarkeit der Anwendung zu beantworten.

Beim Durchspielen der Anwendungsfälle mit den Entwicklern können schlechte

Ideen somit schon frühzeitig, noch bevor sie mit den Benutzern besprochen wer-

den, erkannt und verworfen werden.

2.2.4 Usability Evaluation

Das wichtigste Instrument des Usability Engineering ist die Usability Evaluation.

Während dieser Phase werden die zum durchgeführten Zeitpunkt verfügbaren

Ergebnisse von Testnutzern verwendet und Reaktionen und Meinungen gesam-

melt und ausgewertet. Sie ist eine Analyse oder Empirische Untersuchung, wel-

che die Benutzbarkeit von Prototypen eines Systems einstufen und Feedback für

den iterativen Entwicklungsprozess geben soll (Gould, et al., 1985). Durch das

gesammelte Feedback können die Entwickler Fehler in den Entwürfen erkannt

und behoben werden.

 (Scriven, 1967) unterscheidet zwischen verschiedenen Arten der Evaluation:

 Die gestaltende Evaluation findet während des gesamten Entwicklungspro-

zesses statt. Ihre Ergebnisse fließen in den Entwicklungsprozess ein, indem sie

16

bei weiteren Entwurfsentscheidungen berücksichtigt werden. Dies ist speziell bei

iterativen Entwicklungsmodellen zutreffend.

 Abschließende Evaluationen finden am Ende eines Projekts statt um das ent-

wickelte System zu bewerten und Aussagen darüber treffen zu können, inwieweit

die getroffenen Entscheidungen korrekt waren und die Anforderungen erfüllen.

 Die empirische Evaluation untersucht die Benutzbarkeit des Systems durch

eine Beobachtung reeller Nutzer bei der Benutzung des Systems. Sie liefert da-

bei Daten darüber, wie gut oder schlecht sich das System von den testenden

Benutzern verwenden lässt und auf welche Probleme diese stoßen. Aussagen

über den Ursprung der Probleme können mittels empirischer Evaluationen aller-

dings nur schwer getroffen werden, da sie über keine Informationen über die Aus-

wirkungen der unterschiedlichen Systemeigenschaften verfügen.

 In der analytischen Evaluation werden Systemeigenschaften objektiv unter-

sucht, um festzustellen wie diese die Benutzbarkeit des Systems beeinflussen.

 Um aussagekräftige Evaluationen zu ermöglichen, ist es gegebenenfalls sinn-

voll, auf eine Mischung von analytischen und empirischen Evaluationen zu set-

zen. Hierbei sollen die analytischen Evaluationen Grundlagen schaffen, mit deren

Hilfe entschieden werden kann, welche Stellen des Systems mittels empirischer

Evaluation untersucht werden müssen (Rosson, et al., 2001).

 Als Grundlage von Usability Evaluationen muss die Nutzbarkeit des Systems

oder der Anwendung zu Beginn spezifiziert werden. Hierfür werden die allgemei-

nen Anforderungen an die Nutzbarkeit untersucht und daraus Aufgaben für die

Testnutzer in den Evaluationen hergeleitet. Diese Aufgaben werden immer weiter

verfeinert, bis sie die einzelnen Schritte beschreiben, die der Nutzer während der

Ausführung der Aufgabe tätigt. Für diese Schritte können nachfolgend messbare

Ziele definiert werden, welche Aufschluss darüber geben, wie gut die Anwendung

verwendet werden kann. Die Anwendung kann abschließend darauf untersucht

werden, bis zu welchem Grad die spezifizierten Punkte erfüllt werden.

 Als Beispiele analytischer Evaluationsmethoden nennt (Rosson, et al., 2001)

neben Usability Inspektionen, bei denen Usability-Experten die entwickelte An-

wendung auf Schwachstellen hin untersuchen, die modellbasierte Analyse. In der

modellbasierten Analyse erstellen die Entwickler als Grundlage ein Modell, wel-

ches die Interaktion eines Nutzers simuliert. Hierbei soll abgeschätzt werden, wie

lange ein Nutzer für das Ausführen einer Aufgabe benötigt. Um die aufgewendete

17

Zeit gut approximieren zu können, müssen die Aufgaben so weit in Unteraufga-

ben unterteilt werden, bis einzelne Interaktionen mit der Anwendung, wie bei-

spielsweise das Betätigen der Maustaste oder die Bewegung des Mauszeigers,

berücksichtigt werden können. Diesen Interaktionen können im Anschluss ge-

schätzte Zeitaufwände zugewiesen werden, wodurch sich eine Gesamtzeit für

die übergeordneten Aufgaben ergibt.

 Für empirische Evaluationen werden in (Rosson, et al., 2001) drei wesentliche

Arten an Evaluationsmethoden unterschieden:

Usability Tests

 Bei der Durchführung von Usability Tests in Usability-Laboren werden die

Evaluationen, unabhängig von der späteren Arbeitsumgebung, in abgetrennten

Räumen durchgeführt. Diese Tests werden von Testnutzern unter Beobachtung

und gegebenenfalls Begleitung von Usability-Experten durchgeführt. Durch die

Trennung von Arbeitsumgebung und Testumgebung können störende Einflüsse

weitestgehend vermieden werden und die Nutzer können sich komplett auf die

Untersuchung der Anwendung konzentrieren. Die testenden Personen sind bei

dieser Art von Evaluation meist keine echten Endbenutzer der entwickelten An-

wendung. Um die Ergebnisse dennoch aussagekräftig zu halten, müssen die

ausgesuchten Testnutzer die Zielgruppe der Endbenutzer ausreichend genau re-

präsentieren. Hierbei sind vor allem Faktoren wie Alter, Ausbildung und Fähig-

keiten der Nutzer ausschlaggebend.

 Ein Risiko bei dieser Vorgehensweise ist, dass die Aufgaben nicht mit den

tatsächlichen Aufgaben der Endnutzer übereinstimmen und dies nicht erkannt

wird. Bei einer Durchführung unter Einbeziehung der späteren Nutzer der An-

wendung ist es wahrscheinlicher, dass Fehler in den entworfenen Aufgabenstel-

lungen erkannt werden. Da die Testnutzer jedoch keine echte Erfahrung mit der

realen Arbeitsweise haben, fallen diese weniger häufig auf.

 Ein weiteres Problem ist, dass durch die nur simulierte Arbeitsumgebung

wichtige Hilfsmittel und Einflussfaktoren fehlen. Hierzu zählen beispielsweise der

Umgang mit und die Hilfe von Kollegen, die Gestaltung der Arbeitsumgebung und

der Leistungsdruck. Zwar können sich die Test-Beobachter dadurch auf die ei-

gentlichen Auswirkungen der Entwurfsentscheidungen auf die Benutzbarkeit der

Anwendung konzentrieren, andererseits fehlt der Bezug zur Gesamtsituation.

18

 Außer den Bearbeitungszeiten der festgelegten Aufgaben und der Vorge-

hensweise der Testnutzer sind neben Fehlerraten bei der Durchführung auch

Daten interessant und zu erfassen, die nicht direkt messbar sind. Diese beziehen

sich auf Gedanken und Empfinden der Testnutzer. Hierzu zählen zum einen die

geplante Vorgehensweise bei der Lösung von Aufgaben, sowie Meinungen über

das Aussehen der Anwendung. Speziell Gedanken die mit der Interaktion zu tun

haben sind für die Auswertung interessant und können mittels lautem Denken

der Testnutzer erfasst werden. Bei der lauten Äußerung des eigenen geplanten

Vorgehens kann dieses Vorgehen jedoch beeinflusst werden, da die Nutzer dazu

verleitet werden, darüber nachzudenken ob die Planungen sinnvoll sind. Die sub-

jektiven Eindrücke können auch direkt vor und nach den Tests mittels geeigneten

Verfahren, wie dem semantischen Differential (2.2.8) oder dem NASA Task Load

Index (2.2.9), erfasst werden.

Feldstudien

 Feldstudien untersuchen die Benutzung der entwickelten Anwendung in rea-

len Arbeitsumgebungen und mittels Beobachtung der Benutzer bei ihrer regulä-

ren Arbeit. Durch die fehlende Beeinflussung der Nutzer durch Test-Beobachter

ist es möglich, die entworfenen Testaufgaben für andere Evaluationsmethoden

zu validieren und zu verfeinern. Da Feldstudien typischerweise mit einer großen

Anzahl an Benutzern durchgeführt werden, ist die Auswertung der Ergebnisse,

wie zum Beispiel die Nachvollziehung des Vorgehens von Benutzern und deren

Arbeitsweise, sehr kostenintensiv. Ein Mittel zur Verringerung dieser Kosten ist

die Durchführung von Nutzerbefragungen zu einigen, von ihnen als auffällig ein-

gestuften Nutzungsfällen. Diese Fälle müssen von den Nutzern dann jedoch aus

ihrem Gedächtnis wiedergegeben werden, was meist mit Ungenauigkeiten der

Beschreibungen verbunden ist. Durch die Durchführung in der produktiven Ar-

beit, ist eine wichtige Voraussetzung von Feldstudien, dass die Anwendung

schon über ein gewisses Maß an Funktionalität verfügt, oder im Idealfall schon

funktionell fertiggestellt ist.

19

Storefront Tests

 Die von (Rosson, et al., 2001) erwähnten Storefront Tests sind ein Kompro-

miss aus Usability Tests und Feldstudien und sollen die positiven Eigenschaften

der beiden Vorgehen vereinen. Die Durchführung in der finalen Arbeitsumgebung

und die damit verbundene Validität der Evaluation sind genauso wichtiger Be-

standteil wie die Begleitung der Benutzer bei ihrer Testdurchführung. Zur Durch-

führung von Storefront Tests wird ein System mit der zu testenden Anwendung

an einer hinreichend zugänglichen Stelle in der Arbeitsumgebung platziert, an

der die Benutzer die Anwendung testen und sofortige Rückmeldung dazu geben

können. Durch die freie Zugänglichkeit und unkompliziertere Teilnahme an Tests

ist es möglich, schon frühzeitig Entwurfsentscheidungen zu bewerten und ver-

wendete Prototypen iterativ zu testen und zu verbessern.

Kontrollierte Experimente

 Um bei Unentschlossenheit bezüglich Entwurfsentscheidungen, verschiede-

nen Möglichkeiten zu testen, bieten sich kontrollierte Experimente an, die unter

gleichen Voraussetzungen unterschiedliche Ansätze bewerten. Für diese Art der

Evaluation muss zuerst festgelegt werden, welche unabhängigen Faktoren ge-

testet werden und welche von ihnen abhängig und für die Beobachtung der Aus-

wirkungen relevant sind. Jede Kombination an unabhängigen Faktoren wird im

Anschluss in separaten Testläufen ausgewertet.

 Die Testläufe werden jeweils mit einer Gruppe an Testnutzern durchgeführt,

wobei deren Zusammensetzungen repräsentativ zu der Zusammensetzung der

Zielbenutzergruppe sein sollten. Es gilt zu überlegen, wie die unterschiedlichen

Ansätze unter den Benutzergruppen aufgeteilt werden sollen. Bei Within-Subject

Tests werden alle zu testenden Ansätze von der gleichen Benutzergruppe eva-

luiert, wodurch zusätzliche Benutzergruppen eingespart werden können. Gleich-

zeitig können die Einflüsse der Fähigkeiten der Benutzer vernachlässigt werden,

wenn die verschiedenen Ansätze verglichen werden, da diese nicht von Benut-

zergruppe zu Benutzergruppe variieren. Allerdings bringt diese Methode den

Nachteil mit sich, dass Testnutzer über die unterschiedlichen Testläufe hinweg

Erfahrungen mit dem System sammeln und somit das Ergebnis verfälscht wer-

den kann. Im Gegensatz zu Within-Subject können Tests auch Between-Subject

20

durchgeführt werden, wobei die Ansätze jeweils von unterschiedlichen Nutzer-

gruppen evaluiert werden. Es ist meist vorteilhaft einen Kompromiss aus den bei-

den Methoden zu wählen um die jeweiligen Vorteile zu erhalten und die Nachteile

auszugleichen. Hierfür werden einige der unabhängigen Variablen innerhalb der

Benutzergruppen geändert, andere zwischen den Benutzergruppen.

 Für die Aussagekraft der kontrollierten Experimente ist eine repräsentative

Zusammensetzung der ausgesuchten Benutzer von hoher Bedeutung. Gleichzei-

tig ist es jedoch wichtig, diese Benutzer gleichmäßig auf die Gruppen zu verteilen.

Während es bei einer großen Anzahl an ausgewählten Testnutzern durchaus

plausibel ist, die Benutzer per Zufall auf die Benutzergruppen zu verteilen, kann

dies bei kleineren Anzahlen zu einer ungleichmäßigen Verteilung kommen. In

solchen Fällen ist es sinnvoller die Verteilung anhand einiger Variablen, welche

eine Auswirkung auf die Ergebnisse haben könnten, gleichmäßig zu verteilen

ohne auf die anderen Variablen zu achten. Wenn solche Variablen, wie beispiels-

weise das Benutzeralter gleichmäßig über die Benutzergruppen verteilt sind, kön-

nen sie als Ursache von Ungenauigkeiten ausgeschlossen werden.

2.2.5 Evaluation des konzeptionellen Entwurfs

 Die Evaluation des konzeptionellen Entwurfs dient in erster Linie der frühzei-

tigen Erkennung grober Fehler. Wenn diese schon früh erkannt werden, können

sie im nächsten Iterationsschritt des konzeptionellen Entwurfs berücksichtigt wer-

den und es entfallen kostspielige Verbesserungen zu späten Zeitpunkten in der

Entwicklung. Gleichzeitig können durch die Evaluation verschiedene Entwürfe

verglichen und die passendsten Ansätze für die weitere Entwicklung ausgewählt

werden. Die Einbindung der Endnutzer in dieser frühen Phase der Anwendungs-

entwicklung ist ein wichtiger Bestand der Evaluation, da sich die Entwickler mehr

Zeit haben um sich an die Mitarbeiter der Nutzer zu gewöhnen (Mayhew, 1999).

Dies gestaltet vor allem die iterative Entwicklung viel agiler und effektiver.

 Je nachdem welche Entscheidungen bei der Erstellung der Anforderungen an

die Benutzbarkeit getroffen wurden, muss der Fokus auch bei der Evaluation auf

Ease-Of-Learning oder Ease-Of-Use gelegt werden. Dadurch ergeben sich un-

terschiedliche Vorgehensweisen bei der Durchführung der Evaluation. Soll die

Anwendung auf Ease-Of-Learning ausgelegt sein, so ist es wichtig, dass die

Testnutzer vor Beginn des Tests keine Kenntnisse über die Anwendung besitzen.

21

Aus diesem Grund ist es wichtig, die Einweisungen knapp zu halten und nur eine

kurze Anleitung über die generelle Benutzung der Anwendung zur Verfügung zu

stellen. Wenn der Faktor Ease-Of-Use für die Entwicklung wichtiger ist, dann soll-

ten die Testnutzer nach Möglichkeit wie erfahrene Nutzer agieren. Hierfür sind

eine ausführlichere Einweisung und eine angemessene Einarbeitungszeit in die

Anwendung nötig. Um aussagekräftige Ergebnisse zu erhalten, ist es wichtig,

Tests mit einer ausreichenden Anzahl an repräsentativen Nutzern durchzufüh-

ren. Je nach Komplexität der getesteten Eigenschaften genügen laut (Mayhew,

1999) drei bis zehn Nutzer.

 Für die Durchführung der Tests werden verschiedene Dokumente benötigt.

Neben den Dokumenten, auf denen das Vorgehen und die Kommentare der Nut-

zer vermerkt werden, sind dies beispielsweise eine Einweisung in die Funktions-

weise der Anwendung, sowie Fragebögen zu den Grundkenntnissen und Eigen-

schaften der Testnutzer. Nach der Ausführung können die Tests ausgewertet und

deren Ergebnisse in der nächsten Iterationsphase berücksichtigt werden.

2.2.6 Screen Design Standards

 Der zweite Schritt des Benutzeroberflächenentwurfs nach (Mayhew, 1999) ist

der Entwurf von Screen Design Standards, welche vorgeben wie die unterschied-

lichen Bereiche und Seiten der Anwendung aufgebaut sein sollen. Dies ist wichtig

um eine gewisse Konsistenz des Aussehens der Anwendung zu erreichen, da

diese von Benutzern erwartet wird (Mayhew, 1991) und bei Nichtvorhandensein

zu Fehlern führen kann. Durch die Vorgabe von zu verwendenden Elementen

können diese zentral entwickelt werden und an den jeweiligen Stellen ohne er-

neuten Entwicklungsaufwand eingebunden werden.

 Die in diesem Schritt entstehenden Styleguides geben den Entwicklern Vor-

gaben zu den zu verwendenden Farben, Positionen von Elementen (bspw. Be-

stätigungsbuttons unten rechts), Schriftarten, Layout usw. Bei einer an diese Sty-

leguides angelehnten Entwicklung wird die Benutzung der Anwendung komfor-

tabler gestaltet.

 Die Evaluation der Screen Design Standards unterscheidet sich zu der des

konzeptionellen Entwurfs im Wesentlichen dadurch, dass in diesem Schritt ver-

mehrt Prototypen verwendet werden. Diese Prototypen implementieren jedoch

22

nur ein geringes Maß an Funktionalität um die getroffenen Entwurfsentscheidun-

gen ausreichend testen zu können. Obwohl anstelle von Prototypen auch Tech-

niken wie Wireframes verwendet werden können, ist es zu diesem Zeitpunkt sinn-

voll auf Prototypen zu setzen, da diese für eine realitätsnähere Darstellung der

Anwendung und der umgesetzten Eigenschaften sorgen, sowie eine minimale

Bewertung der dargestellten Funktionalität ermöglichen. Ein großes Problem bei

der Verwendung von Prototypen ist jedoch, dass diese meist nur mit geringem

Aufwand entwickelt werden und somit nicht über eine so hohe Qualität verfügen

wie es von der resultierenden Anwendung erwünscht ist. Da die für die Prototy-

pen entwickelten Elemente aber schon zu einem gewissen Grad verwendbar

sind, werden diese meist in der eigentlichen Anwendung selbst übernommen.

Dadurch ergibt sich auch ein weiteres Problem, da die Entwickler bei bereits be-

stehenden Implementierungen Hemmungen haben, diese grundlegend zu än-

dern. Daher kann es sinnvoll sein, auf Prototypen zu setzen, bei denen von vorne

herein klar ist, dass sie nach den Evaluationen verworfen und nicht in der weite-

ren Entwicklung verwendet werden.

 Wie schon im vorherigen Schritt, geht es bei der Evaluation um die Bewertung

der für die Screen Design Standards getroffenen Entscheidungen. Da die Evalu-

ation zu einem Zeitpunkt stattfindet, zu dem der für die Entwicklung aufgebrachte

Aufwand noch gering ist, können Änderungen die sich ergeben noch mit gerin-

geren Kosten durchgesetzt werden. Die Durchführung der Tests ist im Allgemei-

nen gleich wie in 2.2.5 beschrieben, jedoch können zu diesem Zeitpunkt die für

die Ausführung der gestellten Aufgaben benötigten Zeiten schon grob erfasst

werden. Aus diesem Grund müssen die Testaufgaben, die aus den Anwendungs-

fällen hergeleitet werden, genauer spezifiziert sein als in der vorherigen Evalua-

tion.

2.2.7 Detaillierter Entwurf der Benutzeroberfläche

 Auf Grundlage des konzeptionellen Entwurfs und der Screen Design Stan-

dards werden im dritten und letzten Schritt nach (Mayhew, 1999) die Details der

Benutzeroberfläche entworfen. Hierfür werden beispielsweise die verwendeten

Kontrollelemente im Detail entworfen, Inhalte für Dialoge und andere Interakti-

onselemente festgelegt und die detaillierte Darstellung der Navigation umgesetzt.

23

Die Ergebnisse aus den vorherigen Schritten werden nun in der finalen Anwen-

dung umgesetzt und mit den neuen Entscheidungen verfeinert.

 Um die Details des Benutzeroberflächendesigns zu bewerten und anschlie-

ßend zu verbessern wird auch in diesem Schritt in jeder Iteration eine Evaluation

der Ergebnisse durchgeführt. Da zu diesem Zeitpunkt nur noch kleinere Ände-

rungen am Design evaluiert werden und die gröberen Aspekte schon zufrieden-

stellend verbessert wurden, hält sich der Aufwand zur Anpassung der Benutzer-

oberfläche in Grenzen. Durch die Umsetzung der Entwürfe ist in dieser Evaluati-

onsphase bereits eine fertige Anwendung verfügbar die getestet werden kann,

wodurch keine Entwicklung von Prototypen oder ähnlichen Hilfsmitteln mehr nö-

tig ist.

 Um die fertige Anwendung auch angemessen zu evaluieren, müssen die Auf-

gaben für die Testnutzer detailliert beschrieben werden. Diese Aufgaben sollten,

da bereits Teile der Anwendung evaluiert wurden, andere Anwendungsfälle be-

schreiben wie die Aufgaben die zu Anfangs verwendet wurden. Bei der Auswer-

tung der Tests sollte der Schwerpunkt auf die Ausführungszeit der Aufgaben ge-

legt werden, um festzustellen, ob die Anwendung die Arbeit der Nutzer genügend

erleichtert, unterstützt und effektiver gestaltet. Die Entscheidungen zu Fokussie-

rung auf Ease-Of-Learning und Ease-Of-Use, sowie die Durchführung der Tests

geschehen analog zu 2.2.5 und 2.2.6.

2.2.8 Semantisches Differential

 Mit dem semantischen Differential (Osgood, 1952) können Eindrücke des Nut-

zers zum verwendeten System erfasst werden. Hierzu wird dem Testnutzer eine

Liste von gegensätzlichen Begriffen („Warm“ – „Kalt“, „Kompliziert“ – „Einfach“)

vorgelegt, auf der er das System jeweils einem der Begriffe, mehr oder weniger

stark ausgeprägt, zuordnen muss. Je nach Auswahl der Begriffe können unter-

schiedliche Aspekte des Systems ermittelt werden. Gegensatzpaare wie „Über-

laden“ – „Aufgeräumt“ bewerten beispielsweise eher die Benutzbarkeit eines

Systems, Gegensatzpaare wie „Hässlich“ – „Schön“ bewerten hingegen ästheti-

sche Aspekte. Um die Bewertungen nicht vom Gesamteindruck des Systems be-

einflussen zu lassen werden die Positiva der Gegensatzpaare zufallsbasiert auf

die rechte oder linke Seite der Bewertungsskala gelegt.

24

 Für eine Bewertung des entwickelten Systems wird in dieser Arbeit der in Ta-

belle 1 dargestellte Auszug von (UEQ-Online) verwendet.

 Für eine Aussage zur Benutzbarkeit werden die Gegensatzpaare zu Über-

sichtlichkeit, Geschwindigkeit, Güte, Stabilität, Aufgeräumtheit, Voraussagbar-

keit, Einfachheit und Erlernbarkeit verwendet. Eine Aussage zum ästhetischen

Eindruck wird anhand der Gegensatzpaaren Güte, Innovation, Attraktivität,

Schönheit, Freude, Aufgeräumtheit und Behaglichkeit getroffen.

Verwirrend Übersichtlich

Langsam Schnell

Schlecht Gut

Konservativ Innovativ

Unattraktiv Attraktiv

Instabil Stabil

Hässlich Schön

Unerfreulich Erfreulich

Überladen Aufgeräumt

Unberechenbar Voraussagbar

Kompliziert Einfach

Unangenehm Angenehm

Schwer erlernbar Leicht erlernbar

Tabelle 1 Für semantisches Differential verwendete Gegensatzpaare

2.2.9 NASA Task Load Index

 Der NASA Task Load Index (NASA-TLX) (Hart, et al., 1988) wird verwendet

um die Belastung der Benutzer bei der Ausführung von Aufgaben einzustufen

und zu bewerten. Hierfür erhält der Benutzer die Möglichkeit, die gestellten Auf-

gaben nach deren Ausführung subjektiv zu bewerten. Dadurch kann im Hinblick

auf die Benutzbarkeit festgestellt werden, inwiefern sich eine Entwurfsentschei-

dung auf die Durchführbarkeit für den Benutzer auswirkt.

 Die verschiedenen Bewertungskriterien (Tabelle 2) können auf einer normali-

sierten Skala (0 – 100) dargestellt und verglichen werden. Hierbei ist hervorzu-

heben, dass ein niedriger Wert eher positiv zu werten ist, als ein hoher Wert. Im

Anschluss an die Bewertung der einzelnen Kriterien wird dem Nutzer die Mög-

lichkeit gegeben, die Kriterien zu gewichten. Hierzu kann er zwischen gegebenen

25

Paarungen an Kriterien diejenigen auswählen, die für ihn die größeren Auswir-

kungen bei der Durchführung der Aufgaben hatten. Durch diese Einstufungen

kann eine Gewichtung der jeweiligen Kriterien ermittelt und auf die Bewertungen

angewandt werden. Daraufhin wird ein Mittelwert errechnet, welcher die allge-

meine Belastung des Nutzers angibt. Nach (Hart, 2006) stellte sich bei der Studie

von verwendeten NASA-TLX heraus, dass eine Verwendung der Gewichtung

nicht zwangsweise eine verbesserte Aussagekraft bedeutet. Die Resultate der

Befragungen ohne anschließende Gewichtung der Kriterien waren sowohl

schlechter, besser als auch gleich gut wie die Resultate der Befragungen nach

dem standardmäßigen Vorgehen.

Kriterium Skala Bedeutung

Mentaler Anspruch Niedrig – Hoch Wie stark musste sich der Nutzer bei

der Durchführung der Aufgabe men-

tal anstrengen? Hierzu zählen Dinge

wie Nachdenken, Entscheiden, Su-

chen und ähnliche mentale Tätigkei-

ten.

Physischer Anspruch Niedrig – Hoch Wie viel körperliche Arbeit musste

der Benutzer aufbringen um die Auf-

gabe durchzuführen? Hierbei sind

alle körperlichen Tätigkeiten, wie das

Betätigen von Tasten und das Bewe-

gen der Maus relevant.

Zeitlicher Anspruch Niedrig – Hoch Wie war der zeitliche Druck während

der Durchführung der Aufgabe?

Erfolg Perfekt erfolgreich – Erfolg-

los

Wie erfolgreich empfand der Nutzer

seine Durchführung der Aufgabe?

Aufwand Niedrig – Hoch Wie viel Aufwand musste der Nutzer

für die Durchführung der Aufgabe

aufbringen, um auf sein Erfolgslevel

zu erreichen?

Frustration Niedrig – Hoch Wie stark wurde der Nutzer während

der Durchführung der Aufgabe von

negativen Faktoren beeinflusst?

Tabelle 2 Bewertungskriterien des NASA-TLX

26

2.3 Natural Language Processing

 Das folgende Kapitel beschreibt einige Konzepte die bei der Auswertung von

natürlich sprachlichen Eingaben eine Rolle spielen. Für eine Korrektur von Fehl-

eingaben kann die in 2.3.1 beschriebene Damerau-Levenshtein-Distanz verwen-

det werden. 2.3.2 erläutert die Funktionsweise von N-Grammen, die beispiels-

weise bei der automatischen Vervollständigung von Texteingaben eingesetzt

werden können. Das in 2.3.3 beschriebene Part-Of-Speech-Tagging wird dazu

verwendet, Wörtern in einem gegebenen Text ihre Wortarten zuzuweisen und

diesen Text somit für weitere folgende Schritte vorzubereiten.

2.3.1 Damerau-Levenshtein-Distanz zur Einstufung der Qualität von Resultaten

 Um den Benutzer bei eventuell auftretenden Tipp- und Rechtschreibfehlern

zu unterstützen, ist es wichtig den eingegebenen Text mit dem Resultat zu ver-

gleichen und zu bewerten. Hierfür ist die Levenshtein-Distanz gut geeignet. Sie

gibt an, mit wie vielen Operationen aus einer gegebenen Zeichenfolge eine wei-

tere gegebene Zeichenfolge gebildet werden kann. Speziell werden hierbei die

Operationen „Einfügen“, „Löschen“ und „Ersetzen“ betrachtet, welche bei jedem

Einsatz die resultierende Distanz um eins erhöhen.

 Nach (Damerau, 1964) ist es weiter möglich, vertauschte Zeichen zu erken-

nen und diese mit einer angepassten Gewichtung zu berücksichtigen.

 Die Distanz muss schlussendlich nur noch mit der Länge der verglichenen

Wörter in Bezug gesetzt werden um eine prozentuale Übereinstimmung zu erhal-

ten. Mit einer Länge 𝑙𝑤1
 des ersten Wortes, des zweiten Wortes 𝑙𝑤2

 und einer

Damerau-Levenshtein-Distanz 𝑑𝑤1𝑤2
 kann die Übereinstimmung folgenderma-

ßen ausgedrückt werden:

𝑚(𝑤1, 𝑤2) =
max(𝑙𝑤1

, 𝑙𝑤2
) − 𝑑𝑤1𝑤2

max⁡(𝑙𝑤1
, 𝑙𝑤2

)

Mit dieser Übereinstimmung ist es möglich, eine Aussage über die Qualität der

Ergebnisse und der anfänglichen Eingabe zu machen.

 Am Beispiel der beiden Wörter „Fahrzeug“ und „Fhareuzfg“ ist die Berechnung

der Damerau-Levenshtein-Distanz in Abbildung 4 dargestellt. Die getätigten

Schritte sind rot gekennzeichnet. Die Buchstaben „F“ und „F“ unterscheiden sich

27

nicht, weshalb keine Aktion notwendig ist. Nach einer Vertauschung der Buch-

staben „ha“ stimmen die Teilwörter „Fhar“ und „Fahr“ nach einem Schritt überein.

Ein Hinzufügen des Buchstaben „z“ nach „Fahr“ und ein anschließendes Löschen

des überflüssigen „z“ würden den gleichen Aufwand benötigen wie ein Verschie-

ben des Buchstaben an die korrekte Stelle. Nach dem Löschen des Buchstaben

„f“ stimmen die beiden Zeichenketten überein.

Abbildung 4 Damerau-Levenshtein-Distanz am Beispiel der Wörter "Fahrzeug" und "Fhareuzfg"

Die Damerau-Levenshtein-Distanz der beiden Wörter kann somit mit 4 berechnet

werden. Die Übereinstimmung zwischen den beiden Wörtern ist folglich:

𝑚(𝐹𝑎ℎ𝑟𝑧𝑒𝑢𝑔, 𝐹ℎ𝑎𝑟𝑒𝑢𝑧𝑓𝑔) =
9 − 4

9
= 0, 5̅

2.3.2 N-Gramme

 N-Gramme sind Wortfolgen mit N Wörtern und ein wichtiges Werkzeug des

Natural Language Processing. Sie werden erstellt indem ein vorgegebener Text

in Wortfolgen der Länge N aufgeteilt wird. Je nach Häufigkeit der vorkommenden

N-Gramme kann später ermittelt werden, welches Wort am wahrscheinlichsten

auf einen bestimmten Text folgen wird. Je nach Anforderungen und Gegebenhei-

ten muss entschieden werden, welche Art von N-Grammen verwendet werden

soll. N-Gramme mit einer großen Anzahl an Worten bieten zwar eine hohe Ge-

nauigkeit bei der Vorhersage der nächsten Wörter, müssen aber auf größeren

Korpussen aufbauen um eine Vorhersage zu treffen die auch allgemein gültig

sein kann (Jurafsky, et al., 2009). Typischerweise werden N-Gramme mit einer

F h a r e u z f g

1 2 3 4 5 6 7 8 9

F 1 0 1 2 3 4 5 6 7 8

a 2 1 1 1 2 3 4 5 6 7

h 3 2 1 1 2 3 4 5 6 7

r 4 3 2 2 1 2 3 4 5 6

z 5 4 3 3 2 2 3 3 4 5

e 6 5 4 4 3 2 3 4 4 5

u 7 6 5 5 4 3 2 3 4 5

g 8 7 6 6 5 4 3 3 4 4

28

Länge von 2 (Bi-Gramme) oder 3 (Tri-Gramme) verwendet, um je nach Voraus-

setzungen eine Kompromiss zwischen Genauigkeit und Größe der verwendeten

Korpusse zu finden.

 N-Gramme sind vor allem dann nützlich, wenn sich die Eingaben durch einen

hohen Grad an Rauschen auszeichnen, wie dies unter anderem bei gesproche-

ner Sprache und Übersetzungen der Fall ist. Gleichzeitig sind N-Gramme auch

ein nützliches Werkzeug um Fehleingaben der Nutzer zu erkennen und gegebe-

nenfalls zu beseitigen. Gibt der Benutzer ein Wort ein, das durch eine lexikalische

Fehlererkennung nicht erkannt werden kann, da es sich um ein korrekt geschrie-

benes Wort handelt, kann mittels N-Grammen festgestellt werden, dass die somit

entstandene Wortfolge nur äußerst selten auftritt. Ein weiteres Einsatzszenario

für N-Gramme ist die Eingabevorhersage. Aus vorherigen Eingaben kann ermit-

telt werden, welche Eingabe am wahrscheinlichsten ist. Bei jedem eingegebenen

Wort kann nachfolgend die Vorhersage verbessert und somit dem Nutzer eine

passende Eingabe vorgeschlagen werden (Jurafsky, et al., 2009).

 Die Wahrscheinlichkeiten, mittels derer die Vorhersagen getroffen werden,

basieren wie schon erwähnt, auf sogenannten Korpussen. Ein Korpus ist eine

Ansammlung an Texten, die einen möglichst großen Teil einer verwendeten

Sprache modellieren soll. Je nach Auswahl der Texte können unterschiedliche

Teilgebiete einer Sprache modelliert werden. Werden beispielsweise Artikel aus

Fachzeitschriften des Bereichs Informatik verwendet um einen Korpus zu erstel-

len, so existieren darin N-Gramme die sich zu einem Korpus auf Basis von Ta-

geszeitungen deutlich unterscheiden können. Um Wahrscheinlichkeiten für Wort-

folgen zu bestimmen, werden beim Anlernen alle Vorkommen der N-Gramme

gezählt und in einer Matrix notiert.

 Für eine Wortfolge 𝑤1
𝑛 wird die Anzahl der Vorkommen dieser Wortfolge im

Folgenden mit 𝐶(𝑤1
𝑛) bezeichnet. Die Wahrscheinlichkeit, dass ein Wort 𝑤𝑛 auf

die vorherige Wortfolge 𝑤1
𝑛−1 folgt, ist somit:

𝑃(𝑤𝑛|𝑤1
𝑛−1) =

𝐶(𝑤1
𝑛)

𝐶(𝑤1
𝑛−1)

 Die Verwendung von Bi-Grammen und Tri-Grammen resultieren in einer Ab-

schätzung der Wahrscheinlichkeit des nächsten Wortes:

𝑃(𝑤𝑛|𝑤1
𝑛−1) ≈ 𝑃(𝑤𝑛|𝑤𝑛−2𝑤𝑛−1) =

𝐶(𝑤𝑛−2𝑤𝑛−1𝑤𝑛)

𝐶(𝑤𝑛−2𝑤𝑛−1)

29

 Die Wahrscheinlichkeit für einen kompletten Satz ist, darauf aufbauend, das

Produkt aller in diesem Satz unter Berücksichtigung der vorherigen Wortfolge

auftretenden Wörter:

𝑃(𝑤1
𝑛) = 𝑃(𝑤1) ∙ 𝑃(𝑤2|𝑤1

1) ∙ …⁡∙ 𝑃(𝑤𝑛|𝑤1
𝑛−1) =∏𝑃(𝑤𝑖|𝑤1

𝑖−1)

𝑛

𝑖=1

 Nach den von Bi- und Tri-Grammen angenommenen Vereinfachungen ergibt

sich eine geschätzte Satzwahrscheinlichkeit:

𝑃(𝑤1
𝑛) ≈∏𝑃(𝑤𝑘|𝑤𝑘−2𝑤𝑘−1)

𝑛

𝑘=1

 Um die Genauigkeit von gelernten N-Grammen einzustufen, wird die Wahr-

scheinlichkeit, eine Test-Wortfolge aus den N-Grammen herzuleiten, bestimmt.

Würde diese Testfolge aus dem gelernten Korpus genommen, wäre die dadurch

errechnete Wahrscheinlichkeit fälschlicherweise hoch. Deshalb müssen die N-

Gramme mit einer Wortfolge getestet werden, die nicht bei deren Erstellung ver-

wendet wurde. Hierzu wird der verwendete Korpus in zwei Teile unterteilt. Mit

dem ersten, größeren Teil wird die Wahrscheinlichkeitsmatrix der N-Gramme er-

stellt und mit dem zweiten Korpus-Teil die erstellten N-Gramme getestet.

 Die Genauigkeit wird mittels der Perplexität 𝑃𝑃(𝑊) angegeben:

𝑃𝑃(𝑊) = 𝑃(𝑤1
𝑁)−

1
𝑁

 Die Perplexität normalisiert somit die Wahrscheinlichkeit, die gegebene Wort-

folge mittels der verfügbaren N-Gramme aufzubauen, mit der Länge der Wort-

folge. Das Ergebnis ist eine positive Zahl, welche, je niedriger sie ist, für eine

höhere Genauigkeit steht. Durch Umformung und Verwendung von Tri-Grammen

erhält man:

𝑃𝑃(𝑊) ≈ √∏
1

𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1)

𝑁

𝑖=1

𝑁

 Durch 𝑃(𝑤1
𝑛) ergibt sich, dass eine Wortfolge, die eine Teilfolge enthält, wel-

che nicht aus den N-Grammen hergeleitet werden kann, eine Wahrscheinlichkeit

von 0 hat. Da ein Korpus aber niemals alle möglichen Sätze einer Sprache mo-

dellieren kann, muss dies in der Erstellung der Wahrscheinlichkeitsmatrix berück-

30

sichtigt werden und den nicht vorkommenden N-Grammen eine gewissen Grund-

wahrscheinlichkeit zugewiesen werden. Um diese Grundwahrscheinlichkeit zu

ermitteln gibt es einige Vorgehensweisen (Jurafsky, et al., 2009):

Laplace-Glättung

 Die Laplace-Glättung basiert auf der intuitiven Lösung des Problems, die An-

zahl der Vorkommen aller N-Gramme um 1 zu erhöhen. Durch dieses Verfahren

wird die restliche Matrix gefüllt und es existiert eine Wahrscheinlichkeit für jedes

N-Gram. Bei der Verwendung von Tri-Grammen wird die Wahrscheinlichkeit fol-

gendermaßen angegeben:

𝑃𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑤𝑛|𝑤𝑛−1) = ⁡
𝐶(𝑤𝑛−2𝑤𝑛−1𝑤𝑛) ⁡+ ⁡1

𝐶(𝑤𝑛−2𝑤𝑛−1) ⁡+ ⁡𝑉

 Allerdings ergibt sich ein Problem, da eine sehr hohe Masse an Vorkommen

hinzugefügt werden. Speziell N-Gramme mit eigentlich hohen Vorkommen büßen

einen Großteil ihrer Wahrscheinlichkeit ein, wodurch die Wahrscheinlichkeitsver-

teilung verfälscht wird.

Good-Turing-Glättung

 Die Good-Turing-Glättung geht davon aus, dass die N-Gramme die 0 Vorkom-

men in der Wahrscheinlichkeitsmatrix haben, mit etwa derselben Wahrschein-

lichkeit wie die N-Gramme die einmal vorkommen, auftreten. Mit 𝑁𝑐 als Anzahl

an Objekten die 𝑐-mal vorkommen, lässt sich die korrigierte Wahrscheinlichkeit

𝑃∗ folgendermaßen darstellen:

𝑃𝐺𝑇
∗ (𝑂𝑏𝑗𝑒𝑘𝑡𝑒⁡𝑚𝑖𝑡⁡𝐻ä𝑢𝑓𝑖𝑔𝑘𝑒𝑖𝑡⁡0) =

𝑁0
𝑁

 Jedes Objekt mit 0 Vorkommen erhält nun die korrigierte Wahrscheinlichkeit

geteilt durch 𝑁0. Die Häufigkeiten aller anderen Objekte werden daraufhin ange-

passt um die gesamte Wahrscheinlichkeit nicht zu verfälschen:

𝑐∗ = (𝑐 + 1)
𝑁𝑐+1
𝑁𝑐

Interpolation

 Durch die Verwendung von N-Grammen bietet es sich auch an, die Eigen-

schaft auszunützen, dass sie mit abnehmender Länge zwar ungenauer werden

jedoch mehr Wortfolgen modellieren können. Wird beispielsweise ein Tri-Gramm

für 𝑤𝑛−2𝑤𝑛−1𝑤𝑛 nicht gefunden, so ist es dennoch möglich, dass ein Bi-Gramm

31

für 𝑤𝑛−1𝑤𝑛 existiert. Dies lässt sich bis zur absoluten Wahrscheinlichkeit 𝑃(𝑤𝑛)

der Einzelnen Wörter durchführen. Die N-Gramme werden im Anschluss gewich-

tet zusammengesetzt, wodurch sich im Falle von Tri-Grammen, die folgende kor-

rigierte Wahrscheinlichkeit ergibt:

𝑃̂(𝑤𝑛|𝑤𝑛−2𝑤𝑛−1) = λ1𝑃(𝑤𝑛|𝑤𝑛−2𝑤𝑛−1) + 𝜆2𝑃(𝑤𝑛|𝑤𝑛−1) + 𝜆3𝑃(𝑤𝑛)

2.3.3 Part of Speech Tagging

 Part of Speech Tagging (POS-Tagging) ist ein wesentlicher Bestandteil der

Verarbeitung von natürlicher Sprache. POS-Tagger werden dafür verwendet,

Worten in einer Wortfolge die Wortarten zuzuweisen die sie repräsentieren.

Diese Zuweisung wird auf Basis eines Tagsets durchgeführt, das alle relevanten

Wortarten beinhaltet. Im Deutschen wird meist das Stuttgart-Tübingen-Tagset

(STTS) verwendet, welches neben Wortarten für Infinitivverben (VVINF, VVIZU,

VAINF, VMINF), Satzzeichen ($., $(, $,) und Eigennamen (NE) über 46 weitere

Wortarten verfügt (Schiller, et al., 1999).

 Da Wörter in verschiedenen Kontexten unterschiedliche Wortarten darstellen

können, ist die intuitive Lösung, den Wörtern ihre wahrscheinlichste Wortart zu-

zuweisen, meist nicht ausreichend. Im Satz „Die Musik war laut.“ ist das Wort

„laut“ ein die „Musik“ beschreibendes Adjektiv. Im Satz „Laut ersten Forschungs-

ergebnissen sind Bananen meist krumm.“ ist dasselbe Wort hingegen eine Prä-

position. Um diese Wörtern korrekt zu markieren, ist es in solchen Fällen nötig

eine erweiterte Logik zu verwenden, welche von POS-Taggern umgesetzt wer-

den.

 Regelbasierte POS-Tagger versuchen, die korrekten Wortarten mittels vorher

vom Entwickler festgelegten Regeln zuzuweisen. Hierfür erhalten die zu markie-

renden Wörter alle für sie möglichen Wortarten, welche in den nächsten Schritten

nach und nach eliminiert werden, bis nur noch eine einzige Wortart pro Wort übrig

ist. Durch die Vielfältigkeit der natürlichen Sprache ist es für ein genaues Arbeiten

der POS-Tagger notwendig, ihnen eine große Menge an Regeln zur Verfügung

zu stellen.

 Wahrscheinlichkeitsbasierte Tagger weisen den Wörtern aufgrund von vorher

berechneten Wahrscheinlichkeiten die am besten zu ihnen passenden Wortarten

zu. Hierzu wird die Sequenz an Wortarten gewählt die, je nach Voraussetzungen

32

des Taggers, die höchste Wahrscheinlichkeit hat. Die verwendeten Wahrschein-

lichkeiten basieren, je nach POS-Tagger, auf unterschiedlichen Faktoren. Wäh-

rend der Hidden Markov Model-Tagger von den Wahrscheinlichkeiten von Wort-

artfolgen und deren Repräsentationen als Wörter beeinflusst wird, werden Maxi-

mum Entropy Markov Model-Tagger von zusätzlichen Daten, wie Groß- und

Kleinschreibung beeinflusst.

Hidden Markov Model-Tagger

 Hidden Markov Model (HMM)-Tagger versuchen die Wahrscheinlichkeit der

ausgewählten Wortartsequenz für den vorgegebenen Text zu maximieren. Dabei

wird allerdings nicht die Wahrscheinlichkeit verwendet, dass ein Wort 𝑤 die Wort-

art 𝑡 repräsentiert, sondern durch Anwendung der Bayes-Formel die Wahrschein-

lichkeiten der Wortartsequenz und der Repräsentation als das vorgegebene

Wort:

𝑃(𝑡1
𝑛|𝑤1

𝑛) =
𝑃(𝑤1

𝑛|𝑡1
𝑛)𝑃(𝑡1

𝑛)

𝑃(𝑤1
𝑛)

 Da der eingegebene Text sich während der Ermittlung der korrekten Wortart-

folge nicht ändert, ist die Wahrscheinlichkeit die vorgegebene Wortsequenz zu

erhalten konstant. Deshalb ist nur der Term 𝑃(𝑤1
𝑛|𝑡1

𝑛)𝑃(𝑡1
𝑛) relevant. Durch Ver-

wendung von Tri-Grammen ergibt sich:

𝑃(𝑡1
𝑛|𝑤1

𝑛) ≈∏𝑃(𝑤𝑖|𝑡𝑖)𝑃(𝑡𝑖|𝑡𝑖−2𝑡𝑖−1)

𝑛

𝑖=1

 Für die Glättung der Tri-Gramme wird meist eine einfache Interpolation ver-

wendet:

𝑃∗(𝑡𝑖|𝑡𝑖−2𝑡𝑖−1) = 𝜆1𝑃(𝑡𝑖|𝑡𝑖−2𝑡𝑖−1) + 𝜆2𝑃(𝑡𝑖|𝑡𝑖−1) + 𝜆3𝑃(𝑡𝑖)

 Für die Maximierung dieses Ausdrucks werden von HMM-Taggern Hidden

Markov Modelle verwendet. Diese basieren auf Markov-Ketten, welche als ge-

wichtete endliche Automaten angesehen werden können. Markov-Ketten verfü-

gen über eine Menge an Zuständen die reale Beobachtungen darstellen. Die

Übergänge von einem Zustand in einen anderen Zustand werden von den 𝑛 vor-

herigen Zuständen beeinflusst, wodurch eine Vorhersage von zukünftigen oder

eine Herleitung von früheren Zuständen ermöglicht wird.

 Zusätzlich zu den beobachteten Zuständen in Markov-Ketten, werden in Hid-

den Markov Modellen noch nicht-beobachtete Zustände verwendet um beeinflus-

sende Faktoren zu berücksichtigen, die nicht beobachtet werden können, und

33

somit versteckt sind. In der Verarbeitung von natürlicher Sprache werden die

Wörter des gegebenen Textes als Beobachtungen und die zugehörigen Wortar-

ten als versteckte Zustände behandelt. Mit dem HMM werden durch Übergangs-

wahrscheinlichkeiten zwischen den versteckten und Beobachtungswahrschein-

lichkeiten der beobachteten Zustände die Wahrscheinlichkeiten errechnet, dass

sich das Modell zu einem gegebenen beobachteten Zustand in einem speziellen,

versteckten Zustand befindet. HMM können als 5-Tupel (𝑄, 𝐴, 𝑂, 𝐵, π) angegeben

werden (Jurafsky, et al., 2009):

 𝑄 = 𝑞1, 𝑞2, … , 𝑞𝑁 – Menge aller versteckten Zustände

 𝐴 = 𝑎11, 𝑎12, … , 𝑎1𝑛, … , 𝑎𝑛𝑛 – Matrix mit den Übergangswahrscheinlichkei-

ten der versteckten Zuständen 𝑞𝑖 nach 𝑞𝑗

 𝑂 = 𝑜1, 𝑜2, … , 𝑜𝑇 – Menge aller Beobachtungen, welche Rückschlüsse auf

die verstecken Zustände ermöglichen

 𝐵 = 𝑏𝑖(𝑜𝑡) – Matrix mit Beobachtungswahrscheinlichkeiten, also von Zu-

stand 𝑏𝑖 ausgehend die Beobachtung 𝑜𝑡 zu machen

 𝜋 = 𝜋1, 𝜋2, … , 𝜋𝑛 – Verteilung der Wahrscheinlichkeiten, welche Zustände

zu Anfangs gültig sind

 Wie schon in Markov-Ketten, ist die Wahrscheinlichkeit sich in einem versteck-

ten Zustand zu befinden abhängig von den 𝑛 vorherigen versteckten Zuständen.

Die Wahrscheinlichkeiten der Beobachtungen basieren hingegen ausschließlich

auf dem Zustand der die jeweilige Beobachtung verursacht hat. Um die Sequenz

an versteckten Zuständen zu ermitteln, die der gegebenen Beobachtungsse-

quenz entspricht, muss die maximale Wahrscheinlichkeit der möglichen Sequen-

zen berechnet werden. Dies erfolgt nach (Jurafsky, et al., 2009) mittels Viterbi-

Algorithmus, der sich die wahrscheinlichsten Übergänge zwischen den versteck-

ten Zuständen merkt und nach erfolgtem Durchlauf der Beobachtungen ausgibt.

Hierzu werden vom ersten Zustand 𝑣1(𝑗) ausgehend alle Übergangswahrschein-

lichkeiten in den nächsten Zustand berechnet. Der Ausgangszustand wird dann

als 𝑏𝑡𝑡(𝑗) notiert und in der nächsten Iteration mit dem dann aktuellen Zustand

𝑣𝑡(𝑗) gleich vorgegangen. Folgende Funktionen sind für die Auswertung der bes-

ten Zustandssequenz relevant:

𝑣1(𝑗) = 𝜋𝑗𝑏𝑗(𝑜1); ⁡⁡1 < 𝑗 ≤ 𝑁

𝑏𝑡1(𝑗) = 0

34

𝑣𝑡(𝑗) = max𝑖=1
𝑁 𝑣𝑡−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡) ; ⁡⁡1 < 𝑗 ≤ 𝑁, 1 < 𝑡 ≤ 𝑇

𝑏𝑡𝑡(𝑗) = argmax𝑖=1
𝑁 𝑣𝑡−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡) ; ⁡⁡1 < 𝑗 ≤ 𝑁, 1 < 𝑡 ≤ 𝑇

 Um die bestmögliche Sequenz der Wortarten zu ermitteln müssen zum

Schluss nur noch die 𝑏𝑡𝑡(𝑗) ausgewertet werden, welche den verwendeten Pfad

bis zum Ende der Beobachtungen beschreiben.

 Damit ein HMM-Tagger eine Wortsequenz markieren kann, müssen zuerst die

Übergangswahrscheinlichkeitsmatrizen 𝐴 und 𝐵 gelernt werden. Dieses Anler-

nen wird mittels Forward-Backward Algorithmus iterativ in zwei Schritten durch-

geführt. Anhand einer ersten Schätzung werden die Wahrscheinlichkeiten so-

lange verbessert, bis keine merkliche Verbesserung mehr festgestellt werden

kann. Die Zelle 𝑎𝑖𝑗 der Übergangsmatrix 𝐴 werden ermittelt indem die erwarteten

Übergänge von Zustand 𝑖 nach 𝑗 in Relation zu allen Übergängen von Zustand 𝑖

zu beliebigen anderen Zuständen gesetzt wird. Der folgende Ausdruck gibt dabei

die Wahrscheinlichkeit an, sich zu einem Zeitpunkt 𝑡 in Zustand 𝑖 und zum Zeit-

punkt 𝑡 + 1 in Zustand 𝑗 zu befinden.

𝜉𝑡(𝑖, 𝑗) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗)

𝑃(𝑂|𝜆)

 𝛼𝑡(𝑖) gibt in diesem Zusammenhang die Wahrscheinlichkeit der vorherigen

Zustände, 𝛽𝑡+1(𝑗) die Wahrscheinlichkeit der nachfolgenden Zustände an. 𝑃(𝑂|𝜆)

ist die Wahrscheinlichkeit, die Beobachtungsfolge 𝑂 mit den definierten Matrizen

zu beobachten. Durch eine Summierung der 𝜉𝑡(𝑖, 𝑗) über alle Zeitschritte erhält

man die Übergänge von Zustand 𝑖 nach 𝑗 und durch eine Summierung über alle

Zustände 𝑗 die Übergänge von Zustand 𝑖 zu anderen Zuständen.

â𝑖𝑗 =
∑ 𝜉𝑡(𝑖, 𝑗)
𝑇−𝑖
𝑡=1

∑ ∑ 𝜉𝑡(𝑖, 𝑗)
𝑁
𝑗=1

𝑇−1
𝑡=1

 Um die Matrix 𝐵 der Beobachtungswahrscheinlichkeiten neu zu berechnen

werden die erwarteten Beobachtungen des Symbols 𝑣𝑘 von Zustand 𝑗 in Bezug

zu der erwarteten Häufigkeit von Zustand 𝑗 gesetzt. Die Wahrscheinlichkeit, sich

zu Zeitpunkt 𝑡 in Zustand 𝑗 zu befinden ist dabei:

𝛾𝑡(𝑗) =
𝛼𝑡(𝑗)𝛽𝑡(𝑗)

𝑃(𝑂|𝜆)

 Die Beobachtungswahrscheinlichkeiten werden folglich berechnet

(∑ 𝛾𝑡(𝑗)
𝑇
𝑡=1⁡𝑠.𝑡.𝑂𝑡=𝑣𝑘

 steht für die Summe über 𝑡 wenn Beobachtung 𝑂𝑡 𝑣𝑘 war):

35

𝑏̂𝑗(𝑣𝑘) =
∑ 𝛾𝑡(𝑗)
𝑇
𝑡=1⁡𝑠.𝑡.𝑂𝑡=𝑣𝑘

∑ 𝛾𝑡(𝑗)
𝑇
𝑡=1

Maximum Entropy Markov Model

 Im Markov Modell der maximalen Entropie (MEMM) wird die Wahrscheinlich-

keit, dass ein Wort eine spezielle Wortart repräsentiert durch gewichtete Eigen-

schaften der Wortarten modelliert. Diese Eigenschaften beschreiben, welche

Faktoren eine Beeinflussung auf das Zutreffen der jeweiligen Wortarten haben.

Im Gegensatz zu HMM können MEMM mittels Eigenschaften auch Dinge wie

Groß- und Kleinschreibung modellieren, die somit in die Auswertung des Textes

miteinfließen. Die Gewichtungen der Eigenschaften geben an, wie stark diese

Beeinflussung ausfällt (Jurafsky, et al., 2009).

∑𝑤𝑐𝑖𝑓𝑖

𝑁

𝑖=0

(𝑐, 𝑥)

 Ein Problem mit diesem Ansatz ist, dass dadurch keine realistische Wahr-

scheinlichkeit ausgedrückt wird – die Summe aller gewichteten Eigenschaften

wird nicht 1 sein. Somit ist keine gleichmäßige Verteilung der Wahrscheinlichkei-

ten gegeben. Hierfür wird in dem Konzept des MEMM die logistische Regression

angewandt. Die logistische Regression verwendet das Verhältnis der Wahr-

scheinlichkeit, dass ein Ereignis eintritt zu dessen Gegenwahrscheinlichkeit um

daraus die eigentliche Wahrscheinlichkeit zu ermitteln. Die Summe der Eigen-

schaften der Wortarten und ihre Gewichtungen werden hierbei als dieses Ver-

hältnis betrachtet.

𝑃(𝑐|𝑥)

1 − 𝑃(𝑐|𝑥)
=∑𝑤𝑐𝑖𝑓𝑖

𝑁

𝑖=0

(𝑐, 𝑥)

 Da die beiden Seiten unterschiedliche Wertebereiche haben, müssen diese

mittels natürlichem Logarithmus angepasst werden:

ln (
𝑃(𝑐|𝑥)

1 − 𝑃(𝑐|𝑥)
) =∑𝑤𝑐𝑖𝑓𝑖

𝑁

𝑖=0

(𝑐, 𝑥)

 Durch Umformungen kommt man auf eine Gleichung für die Wahrscheinlich-

keit, dass ein Wort 𝑥 die Wortart 𝑐 hat:

𝑃(𝑐|𝑥) =
𝑒∑ 𝑤𝑐𝑖𝑓𝑖

𝑁
𝑖=0 (𝑐,𝑥)

1 − 𝑒∑ 𝑤𝑐𝑖𝑓𝑖
𝑁
𝑖=0 (𝑐,𝑥)

36

 Da die Gegenwahrscheinlichkeit zur Wahrscheinlichkeit, dass ein Wort x die

Wortart c hat als Summe aller Wahrscheinlichkeiten, dass dieses Wort eine an-

dere Wortart hat ausgedrückt werden kann, folgt:

𝑃(𝑐|𝑥) =
𝑒∑ 𝑤𝑐𝑖𝑓𝑖(𝑐,𝑥)

𝑁
î=0

∑ 𝑒∑ 𝑤𝑐′𝑖𝑓𝑖(𝑐
′,𝑥)𝑁

𝑖=0
𝑐′∈𝐶

 Die wahrscheinlichste Wortart für das zugrunde liegende Wort wird nachfol-

gend als Treffer ausgewählt:

𝑐̂ = argmax
𝑐∈𝐶

𝑃(𝑐|𝑥)

Gemischte (Transformationsbasierte) Tagger

 Neben Regel- und Wahrscheinlichkeitsbasierten POS-Taggern existieren

auch noch Mischformen der beiden Arten. Diese POS-Tagger weisen dem ein-

gegebenen Text zuerst mittels Wahrscheinlichkeiten die plausibelsten Wortarten

zu und verfeinern diese Wortartsequenzen anschließend mit automatisch gene-

rierten Regeln. Diese Regeln werden durch Vorlagen – beispielsweiße in der

Form „Ändere Wortart a zu b, wenn das folgende Wort Wortart z hat.“ – vorgege-

ben und vom POS-Tagger für die verschiedenen Wortarten und Wörter generiert.

Der Tagger wählt dazu die Transformationsregeln aus allen möglichen Regeln

aus, die die höchste Genauigkeit bewirken.

 Für die Evaluation von POS-Taggern ist es, wie in bei N-Grammen (2.3.2)

wichtig, dass diese nicht auf dem gleichen Korpus ausgeführt werden, der für das

Anlernen verwendet wurde. Typischerweise wird hierfür der gesamte Korpus in

drei Teile aufgeteilt: 80% werden verwendet um den POS-Tagger anzulernen,

10% um Feinabstimmungen zu treffen und die letzten 10% um den POS-Tagger

zu evaluieren. Da durch eine solche Aufteilung ein erheblicher Anteil an Daten

für das Anlernen verloren gehen und es auch wünschenswert ist, einen POS-

Tagger auf dem gesamten Korpus zu testen, kann ein alternatives Verfahren ver-

wendet werden. In der x-fachen Cross-Validation wird der Korpus zuerst per Zu-

fall in die drei relevanten Teile unterteilt. Im Anschluss wird der Tagger angelernt,

angepasst und evaluiert. Danach wird der Korpus neu aufgeteilt um den Tagger

erneut zu evaluieren. Dies wird x-mal durchgeführt um eine möglichst hohe Ab-

deckung des gesamten Korpus zu gewährleisten.

 POS-Tagger werden anhand ihrer Fehlerraten bewertet, wobei ein Fehler ge-

nau dann auftritt, wenn ein Wort der Wortart 𝑥 fälschlicherweise mit der Wortart

37

𝑦 markiert wurde. Hierbei muss beachtet werden, dass menschliche Experten in

den besten Fällen eine Fehlerrate von 3%-4% erreichen (Marcus, et al., 1993),

was als Ziel für einen POS-Tagger gesehen werden kann. Als Maximum für die

Fehlerrate eines POS-Tagger kann die Fehlerrate einer einfachen Zuweisung der

wahrscheinlichsten Wortarten für jedes Wort angenommen werden, welche zwi-

schen 6% und 7% liegt (Gale, et al., 1992) (Toutanova, et al., 2003).

38

3 Analyse

 Dieses Kapitel beschreibt die Probleme welche von Benutzern bei der Ver-

wendung des föderierten Informationssystems Cleverle wahrgenommen werden.

Aus diesen Problemen werden anschließend konkretere Anforderungen an die

neu zu entwickelnde Oberfläche formuliert. Die Analyse der Probleme fokussiert

sich speziell auf den in 1.1 beschriebenen problematischen Aufbau der Naviga-

tion in föderierten Informationssystemen.

3.1 Usability Spezifikation

 Für die Erfassung der Benutzeranforderungen wurden hauptsächlich Mitar-

beiter des Cleverle-Supports befragt, da sie einen guten Einblick in die größten

Probleme der Benutzer bei der Verwendung von Cleverle haben. Für einen ge-

naueren Einblick in die Arbeitsweise und die Probleme im täglichen Arbeitsalltag

wurden zusätzlich Benutzer bei ihrer Arbeit mit dem System beobachtet. Weitere

Anforderungen an die Benutzbarkeit, speziell auch für die Verwaltung des Sys-

tems, wurden bei Gesprächen mit den Betreuern deutlich.

3.1.1 Anforderungen der Nutzer

 Aus Sicht der Benutzer ist der erhebliche Navigationsaufwand um verschie-

dene Funktionen zu finden und auszuführen ein Problem bei der Benutzung von

Cleverle. Befindet sich ein Benutzer beispielsweise auf der Ansichtsseite eines

Hybridfahrzeugs und möchte diesem eine Batterie zuweisen die noch nicht im

System erfasst ist, muss er im ersten Schritt auf die Listenansicht der Batterien

navigieren. Im nächsten Schritt muss der Benutzer die gewünschte Batterie an-

legen um anschließend wieder auf die Objektseite des Hybridfahrzeugs zu wech-

seln um dort die nun existierende Batterie einzutragen. Dieser Vorgang ist, ob-

wohl recht simpel, von einem hohen Navigationsaufwand geprägt, der den Be-

nutzer beansprucht und unnötig Zeit kostet. Ein weiteres Problem ist das erstma-

lige Auffinden der verfügbaren Funktionalität. Wenn ein Benutzer einen Artikel –

beispielsweise ein für Tests benötigtes Werkzeug – reservieren will, kann er dies

nicht über Funktionen des Artikels durchführen, sondern muss sich zuerst in die

39

Reservierungsverwaltung begeben um dort eine Artikelreservierung anzulegen.

Der Kontext der Funktionalität ist somit nicht auf die Bedürfnisse des Benutzers

ausgelegt, sondern wird stark von dem verwendeten Datenmodell beeinflusst.

Speziell aus diesen Problemschilderungen ergaben sich einige wesentliche An-

forderungen an die Benutzbarkeit des Systems:

Auffinden von Funktionalität

 Die Oberfläche von Cleverle ist stark von den Vorstellungen der Entwickler

geprägt. Für sie ist die Anbindung der Methoden an die betroffenen Objekte von

der objektorientierten Programmierung her intuitiv verständlich. Der typische Be-

nutzer hat hiermit jedoch ein erhebliches Problem, da er die Konzepte der objekt-

orientierten Programmierung nicht kennt. Dass ein Fahrzeug nicht über eine Me-

thode zum Reservieren desselbigen verfügt, sondern in einer anderen Anwen-

dung des Systems eine Fahrzeugreservierung erstellt werden muss, ist für den

Benutzer nicht ersichtlich. Dies fiel besonders durch Benutzer auf, die sich bei

der Support-Hotline nach fehlenden Funktionalitäten erkundigten. Aussagen wie

„Ich will doch nur ein Fahrzeug reservieren!“ sind für dieses Problem bezeich-

nend.

 Gleichzeitig wurde in Benutzergesprächen deutlich, dass der Navigationsauf-

wand bei der normalen, täglichen Arbeit zu hoch ist. Es kam mehrfach vor, dass

ein Benutzer während der Arbeit in einer Anwendung einen Anruf erhielt, der eine

Aufgabe in einer anderen Anwendung des Systems bedeutete. Um diese Auf-

gabe zu erledigen, musste der Benutzer die derzeitige Anwendung verlassen und

zu den betroffenen Daten navigieren. Neben einem nicht unerheblichen zeitli-

chen Aufwand bedeutet dies für den Benutzer, dass er den derzeitigen Zustand

des Systems verliert. Technisch versiertere Benutzer konnten dieses Problem

einigermaßen umgehen, indem sie das System in einem neuen Register ihres

Webbrowsers öffneten. Allerdings spricht auch dies nicht für eine gute Benutz-

barkeit. Um diese Probleme anzugehen ist eine Schnittstelle für die Funktionali-

täten nötig, welche den aktuellen Zustand der Anwendung nicht verändert und

von jedem Zustand aus alle Funktionalitäten bereitstellen kann.

 Um weitere Anforderungen zu erhalten, wurden Nutzerbefragungen durchge-

führt. Hierzu wurden Benutzer bei der alltäglichen Verwendung von Cleverle be-

obachtet und sollten gleichzeitig ihre Gedanken über Probleme bei der Verwen-

dung laut formulieren. Durch das so ermittelte Nutzerverhalten konnten Probleme

40

in der Benutzbarkeit identifiziert werden, die nicht durch eine Meldung bei der

Support-Hotline von Cleverle erfasst wurden:

Grundfunktionalitäten ohne Aufwand erreichbar

 In Cleverle ist jede für ein bestimmtes Datenobjekt verfügbare Methode nur

über ein Dropdown-Menü erreichbar, dass bei jeder Ausführung neu geöffnet

werden muss. Hierbei werden häufig benötigte Methoden gleich behandelt wie

solche die nur sehr selten aufgerufen werden. Durch eine gewisse Verzögerung

bei der Generierung der Auswahlliste benötigt der Benutzer eine nicht unerhebli-

che Zeit um die gewünschte Funktionalität zu lokalisieren. Um diesem entgegen-

zuwirken sollten Funktionalitäten die von Benutzern häufig verwendet werden –

speziell Hinzufügen, Bearbeiten und Löschen – mit nur einem einzigen Klick er-

reichbar sein.

Filtern von Objekten

 Um in Cleverle Objekte auszufiltern, muss der Benutzer in der aufklappbaren

Filteransicht die für ihn wichtigen Eigenschaften der Objekte einschränken. Das

Vorgehen bei der Auswahl der zu filternden Eigenschaften ist je nach Benutzer-

und Aufgabenart unterschiedlich. Benutzer mit simplen Aufgaben filtern typi-

scherweise nach Hauptmerkmalen der Objekte. Beispielsweise filtert ein Benut-

zer der sich hauptsächlich mit der Verwaltung von personenbezogenen Daten

beschäftigt nach Personennamen und nicht nach Geburtsdatum oder Wohnort.

Benutzer mit komplexeren Aufgaben verwenden hingegen auch Eingabefelder

mit erweiterten Eigenschaften der Objekte. Ein Benutzer der mit der Verwaltung

von Fahrzeugversuchen betraut ist, filtert beispielsweise vermehrt nach der Art

eines Versuchs. Gleichzeitig ist aufgefallen, dass Benutzer aus unterschiedlichen

Nutzergruppen auch unterschiedliche Eigenschaften der Objekte als aussage-

kräftig erachten. Ein Produktionsmitarbeiter arbeitet in der Regel mit den Produk-

tionsnummern von Fahrzeugen, wohingegen ein Ingenieur seine Fahrzeuge an-

hand der intern verwendeten Bezeichnung verfolgt. Benutzer ohne Erfahrungen

mit den speziellen Anwendungen in denen sie sich zum Zeitpunkt des Filtervor-

gangs befanden, hatten teilweise Probleme die richtigen Eingabefelder für die

Filter zu finden. Dies ist bei der Fahrzeugverwaltung deutlich zu erkennen, da

beispielsweise die intern verwendete Bezeichnung der Fahrzeuge der globalen

41

Bezeichnung ähnlich sieht, aber im Detail anders aufgebaut ist. Es sollte eine

Möglichkeit gefunden werden, alle dieser Nutzerverhalten zu unterstützen.

 Die gleiche Thematik findet sich auch bei der Auswahl von Objekten wieder.

Objekte die in anderen Objekten als Fremdschlüssel angegeben werden können,

sollen mittels Eingabe ihrer Bezeichnung ausgewählt werden können. Aus obig

genannten Gründen ist es jedoch für einen Benutzer nötig, ein Objekt mittels ihm

bekannten Daten auszuwählen. Um dies zu unterstützen, sollten sowohl die Fil-

ter, als auch Auswahlelemente auf die unterschiedlichen Benutzerarten ange-

passt werden.

Navigation und Darstellungen innerhalb des Systems

 Ein weiteres Problem in der Benutzbarkeit das erkannt werden konnte ist,

dass die Anwender sich in ihnen unbekannten Anwendungen nicht ohne Prob-

leme zurechtfinden. Vor allem durch die konsistente Gestaltung aller Sitemap-

Knoten in der Anwendung verliert der Benutzer den Überblick über seinen der-

zeitigen Standpunkt im System. Eine visuelle Unterscheidung zwischen verschie-

denen Knotentypen wäre hier sinnvoll.

 Gleichzeitig fiel auf, dass Anwender mit der verwendeten Navigationsweise

um ein Objekt zu öffnen nicht umgehen können. Um in Cleverle ein Objekt zu

öffnen muss der Benutzer in der Listenansicht in der sich das jeweilige Objekt

befindet auf das Objektsymbol (siehe Abbildung 5) – also die visuelle Darstellung

des Objekts – klicken.

Abbildung 5 Zeile eines Fahrzeugs in Cleverle (Vereinfacht)

 Viele Benutzer versuchen stattdessen auf die identifizierenden Eigenschaften

des Objekts zu klicken und sind überrascht, dass dies keine Auswirkungen hat.

Hierfür sollte ein geeignetes Vorgehen ausgewählt werden.

 Weiterhin stellte sich heraus, dass die Benutzer mit der Darstellung der Daten

eines einzelnen Objekts wenig anfangen konnten. Die Darstellung ist in Cleverle

derzeitig eine einfache Auflistung der verfügbaren, verknüpften Eigenschaften

des jeweiligen Objekts, welche in entsprechenden Reiter aufgeteilt werden. Dies

ist für den Benutzer nicht sofort ersichtlich und sorgte bei der Verwendung für

einige Verwirrung. Aus diesem Grund wäre eine Metapher, welche die Auflistung

42

der Daten zu einem Objekt beschreibt, ein für das Verständnis der Benutzer wich-

tiger Punkt.

 Aus den genannten Punkten wurden die folgenden Anforderungen von Benut-

zern erstellt:

Auffinden von verteilten Funktionalitäten

 Der Benutzer soll sich mit möglichst geringem Aufwand über die Funktio-

nalitäten informieren können, die für ein beliebiges Objekt existieren.

 Der Benutzer soll sich mit möglichst geringem Aufwand über die Funktio-

nalitäten informieren können, die in dem derzeitigen Zustand der Anwen-

dung verfügbar sind.

Zentrale Benutzerschnittstelle für das Ausführen von Funktionen

 Der Benutzer soll alle Funktionalitäten des Systems aufrufen können,

ohne zu einem speziellen Punkt in der Anwendung navigieren zu müssen.

 Der entstehende zeitliche Aufwand eines erfahrenen Benutzers bei der

Auswahl der Funktionalität soll gering gehalten werden.

Verringerung des Navigationsaufwands

 Ein geübter Benutzer soll ohne großen zeitlichen Aufwand zu für ihn wich-

tige Punkte in der Anwendung gelangen können.

Umstieg von Cleverle mit geringem Lernaufwand

 Ein geübter Cleverle-Benutzer soll ohne großen Lernaufwand die neue

Benutzeroberfläche verwenden können. Er soll die Erlernbarkeit auf einer

Skala von „Schwer erlernbar“ bis „Leicht erlernbar“ mit einer Tendenz zu

„Leicht erlernbar“ bewerten.

3.1.2 Anforderungen der Entwickler

 Bei Gesprächen mit den Entwicklern von Cleverle stellte sich heraus, dass es

speziell bei der Bereitstellung von Funktionalitäten große Schwächen gibt. Hat

ein Entwickler die Aufgabe, eine Funktionalität auch nur geringfügig zu ändern,

muss er den Quellcode der Hauptanwendung anpassen. Da die entwickelte

43

Funktionalität aus diesem Grund nicht selbstständig ausgeliefert werden kann,

muss das komplette System neu veröffentlicht werden. In den Vorgaben des Un-

ternehmens ist hierfür festgelegt, dass dies monatlich geschieht, weshalb die

Funktionalität gegebenenfalls erst nach einer Zeit von einem Monat für den Be-

nutzer verfügbar ist.

 Als Mangel an der Verwaltung von Cleverle wurde auf den hohen Konfigura-

tionsaufwand verwiesen, der nötig ist um simple Darstellungen von Objekten zu

ermöglichen. Möchte ein Entwickler eine Einsicht in die Objekte einer Klasse be-

reitstellen, so muss er zuerst alle anzuzeigenden Ansichten erstellen und diesen

die relevanten Eigenschaften zuweisen. Tut er dies nicht, gibt es keine Möglich-

keit die Daten einzusehen. Hierfür wären automatisch generierte Daten mit sinn-

vollen Standards eine denkbare Lösung.

 Weiter ist die Erstellung von Navigationsstrukturen für neue Anwendungen ein

Aufwand, der von den Entwicklern als zu hoch eingestuft wird. Die Entwickler

müssen für diese Tätigkeit zuerst in die Administrationsanwendung navigieren,

um dort in einer untergliederten Ansicht die nötigen Elemente anzulegen. In die-

ser Ansicht müssen sie die Anwendungsstruktur als Baumstruktur anlegen und

die Inhalte der einzelnen Knoten mittels fester URL angeben.

 Eine von den Entwicklern konkret gestellte Anforderung war die einfache Än-

derung von Bestandteilen wie den Eingabemasken ohne diese Änderungen für

jede betroffene Klasse einzeln durchzuführen. Speziell bei den Dialogen für Me-

thoden ist es in Cleverle heute nicht möglich gewisse Bestandteile wie beispiels-

weise die verwendeten Eingabeboxen auszutauschen. Hierfür müssen die Ent-

wickler durch alle Methodendialoge hinweg die Dialoge anpassen, was bei einer

Anzahl von über 400 erweiterten Methoden einen erheblichen Aufwand bedeutet.

 Aus den von Entwicklern genannten Wünschen und Problemen wurden fol-

gende Anforderungen erstellt:

Generische Oberfläche mit sinnvollen Standards

 Um eine standardmäßige Einsicht in angebundene Datenquellen zu er-

möglichen, soll keine Konfiguration der Daten der Oberfläche nötig sein.

44

Einfacheres Erstellen von Anwendungsstrukturen

 Anwendungsstrukturen sollen direkt in der Hauptansicht der Anwendung

wie jegliche andere Objekte angelegt werden können.

 Ein erfahrener Entwickler soll zum Anlegen einer Anwendungsstruktur mit

einer Hauptanwendung und drei Unterpunkten nicht länger als zehn Minu-

ten benötigen.

Einfacheres Bereitstellen von Funktionalität

 Neu entwickelte oder geänderte Funktionalität soll zur Laufzeit bereitge-

stellt werden können.

 Nach erfolgreicher Änderung der Funktionalität soll ein erfahrener Ent-

wickler höchstens fünf Minuten benötigen um diese bereitzustellen.

45

3.2 Anwendungsfälle

 Die in 3.1.1 und 3.1.2 genannten Probleme bei der Verwendung des Systems

sind im Folgenden anhand vier typischer Anwendungsfälle beschrieben. Diese

Anwendungsfälle treten täglich auf und zeigen den nötigen Aufwand und die

problematischen Stellen bei der Durchführung der von ihnen beschriebenen Tä-

tigkeiten. Auffallend ist, dass die Anwendungsfälle einen sehr hohen Anteil an

Navigationsschritten beinhalten, was auch als das Hauptproblem des Systems

gesehen wird.

 Der Anwendungsfall „Personalliste exportieren“ (Tabelle 4) wird von Perso-

nalverwaltern häufig ausgeführt wenn sie die aktuell angestellten Personen einer

speziellen Abteilung als Bericht benötigen. Dieser Bericht wird von der Business-

Logik der an Abteilungen hängenden Methode „CreateReport“ generiert und dem

Benutzer anschließend als Download angeboten. Um den Bericht zu exportieren

muss der Benutzer zuerst zu der gewünschten Abteilung navigieren und dort an-

schließend die entsprechende Aktion auswählen.

 Im Anwendungsfall „Fahrzeug reservieren“ (Tabelle 5) ist das typische Ver-

fahren beschrieben um ein beliebiges Fahrzeug zu reservieren. Hier ist auffal-

lend, dass die Funktionalität nicht an der Stelle existiert an der sie ein Benutzer

erwarten würde. Anstelle einer Aktion „reservieren“ auf einem Fahrzeug muss

der Benutzer die Aktion „Neu“ auf einer Reservierung ausführen. Dies ist dem

Datenmodell anzurechnen, da dort Reservierungen als eigenständige Klasse

modelliert sind, die Fahrzeugen zugewiesen werden können. Diese Unstimmig-

keit zwischen Erwartungen der Benutzer und realem Verhalten des Systems ist

problematisch.

 Um eine Änderung an Funktionalitäten durchzuführen müssen die im Anwen-

dungsfall „Funktionalität ändern“ (Tabelle 3) beschriebenen Schritte getätigt wer-

den. Der entstehende Aufwand ist für den Entwickler hierbei eher gering, da er

seine Änderungen nur in der Versionsverwaltung registrieren muss und für ihn

danach keine weiteren Schritte nötig sind. Jedoch muss für eine Bereitstellung

der Funktionalität die gesamte Webapplikation neu aufgestellt und veröffentlicht

werden. Diese Veröffentlichung ist durch Unternehmensrichtlinien geregelt und

wird nur monatlich durchgeführt. Es ist dem Entwickler nicht möglich, den Benut-

zern die Funktionalität zu einem früheren Zeitpunkt bereitzustellen.

46

 Der in Tabelle 6 beschriebene Anwendungsfall „Anwendungsstruktur erstel-

len“ beschreibt die Durchführung einer typischen Aufgabe bei der Erstellung einer

neuen Teilanwendung in Cleverle. Hierbei wird die für den Benutzer sichtbare

Darstellung der Anwendung erstellt und konfiguriert. Für die Navigation werden

sogenannte SiteMap-Knoten verwendet, die hierarchisch strukturiert sind. Auf

oberster Ebene existiert ein Knoten „Anwendungen“ der alle verfügbaren Anwen-

dungen darstellt. Die zu diesem Knoten gehörigen Unterknoten repräsentieren

folglich einzelne Anwendungen für die jeweiligen Themenbereiche. Um die Struk-

tur einer neuen Anwendung anzulegen muss ein Entwickler in den entsprechen-

den Administrationsbereich navigieren und ausgehend von der obersten Ebene

die SiteMap-Knoten erstellen. Bei der Erstellung der jeweiligen Knoten muss der

Entwickler im nächsten Schritt Titel, Beschreibung und eine URL angeben. Diese

URL gibt den durch einen Klick auf den Knoten anzuzeigenden Inhalt an. Um

eine Übersicht der untergeordneten SiteMap-Knoten anzuzeigen muss beispiels-

weise eine andere URL angegeben werden als wenn eine Liste an Objekten einer

speziellen Klasse angezeigt werden sollte. Die Parametrisierung der Inhalte er-

folgt hierbei auch direkt über die URL und kann nicht als Eigenschaften der Kno-

ten angegeben werden.

 Die Anwendungsfälle sind nach (Ludewig, et al., 2007) aufgebaut.

Name Funktionalität ändern

Ziel Entwickler möchte bestehende Funktionalität ändern und den Be-

nutzern verfügbar machen

Vorbedingung Entwickler hat einen Fehler in einer bestehenden Funktionalität

gefunden

Nachbedingung Die Änderungen an der Funktionalität sind in der Versionsverwal-

tung registriert. Durch festgelegte Veröffentlichungstermine wird

sie den Benutzern erst später zur Verfügung gestellt.

Akteure Entwickler

Normalablauf 1. Entwickler setzt seine Änderungen im Quellcode der We-

banwendung um

2. Entwickler lädt die Änderungen in die Versionsverwaltung

hoch

Tabelle 3 Anwendungsfall "Funktionalität ändern"

47

Name Personalliste exportieren

Ziel Benutzer möchte eine Personalliste zu einer speziellen Abteilung

exportieren

Vorbedingung Benutzer befindet sich in der Anwendungsübersicht

Nachbedingung Bericht wurde generiert und wird dem Benutzer als Download an-

geboten

Nachbedingung

im Sonderfall

Bericht wurde nicht generiert

Akteure Benutzer, System

Normalablauf 1. Benutzer sucht die Anwendung „Personen- & Organisati-

onsverwaltung“ und klickt auf die Schaltfläche zum Öffnen

2. System öffnet die Ansichtsseite der Anwendung

3. Benutzer sucht den Unterknoten „Organisationseinheiten“

und klickt auf die Schaltfläche zum Öffnen

4. System öffnet die Ansichtsseite der „Organisationseinhei-

ten“

5. Benutzer klickt auf Schaltfläche „Filtern“

6. System zeigt Filterliste an

7. Benutzer gibt den Namen der gesuchten Abteilung ein

8. Benutzer klickt auf die Schaltfläche „Filtern“

9. System zeigt alle Abteilungen mit dem eingegebenen Na-

men an

10. Benutzer klickt auf das Abteilungssymbol, welches die ge-

suchte Abteilung repräsentiert, um diese zu öffnen

11. System öffnet die Ansichtsseite der Abteilung

12. Benutzer klickt auf die Schaltfläche „Aktionen“

13. System öffnet ein Dropdown-Menü mit den verfügbaren

Aktionen

14. Benutzer klickt auf die Schaltfläche „Bericht erstellen“

15. System zeigt Popup zur Berichterstellung an

16. Benutzer wählt den Bericht „Personalbericht“ aus und gibt

die relevanten Daten ein

17. Benutzer klickt auf „Bericht erstellen“

Sonderfälle 8. Die gesuchte Abteilung existiert nicht

a. System zeigt keine Daten an

Tabelle 4 Anwendungsfall „Personalliste exportieren“

48

Name Fahrzeug reservieren

Ziel Benutzer möchte ein Fahrzeug reservieren

Vorbedingung Benutzer befindet sich in der Anwendungsübersicht

Nachbedingung Die Reservierung wurde angelegt und wird dem Benutzer ange-

zeigt

Nachbedingung

im Sonderfall

Die Reservierung wurde nicht erstellt

Akteure Benutzer, System

Normalablauf 1. Benutzer sucht die Anwendung „Reservierungsverwal-

tung“ und klickt auf die Schaltfläche zum Öffnen

2. System öffnet die Ansichtsseite der Anwendung

3. Benutzer sucht den Unterknoten „Reservierungen“ und

klickt auf die Schaltfläche zum Öffnen

4. System öffnet die Ansichtsseite der Reservierungen

5. Benutzer klickt auf die Schaltfläche „Aktionen“

6. System öffnet ein Dropdown-Menü mit den verfügbaren

Aktionen

7. Benutzer fährt mit der Maus über die Schaltfläche „Neu“

8. System öffnet ein weiteres Dropdown-Menü mit den ver-

fügbaren Reservierungsarten

9. Benutzer klickt auf die Schaltfläche „Fahrzeug-Reservie-

rung“

10. System öffnet ein Popup zur Erstellung von Reservierun-

gen

11. Benutzer gibt die relevanten Daten ein

12. Benutzer klickt auf die Schaltfläche „Weiter“

13. System zeigt eine Liste zur Auswahl der zu reservierenden

Fahrzeuge an

14. Benutzer filtert die angezeigten Fahrzeuge

15. Benutzer wählt die zu reservierenden Fahrzeuge aus

16. Benutzer klickt auf die Schaltfläche „OK (Schließen)“

Sonderfälle 14. Das gesuchte Fahrzeug existiert nicht

a. System zeigt keine Daten an

16. Der Benutzer hat keine Berechtigungen das Fahrzeug zu

reservieren

a. System zeigt eine Fehlermeldung an

Tabelle 5 Anwendungsfall "Fahrzeug reservieren"

49

Name Anwendungsstruktur erstellen

Ziel Entwickler möchte eine App mit untergeordneten Knoten anlegen

Vorbedingung Entwickler befindet sich in der Anwendungsübersicht

Nachbedingung Die Anwendungsstruktur wurde erstellt und ist verfügbar

Akteure Entwickler, System

Normalablauf 1. Entwickler sucht die Anwendung „Administration“ und

klickt auf die Schaltfläche zum Öffnen

2. System zeigt die Ansichtsseite der Anwendung an

3. Entwickler sucht den Unterknoten „Repository-Konfigura-

tion“ und klickt auf die Schaltfläche zum Öffnen

4. System zeigt die Ansichtsseite des Unterknoten an

5. Entwickler sucht den Unterknoten „SiteMap-Knoten“ und

klickt auf die Schaltfläche zum Öffnen

6. System zeigt die Ansichtsseite der SiteMap-Knoten an

7. Entwickler markiert in der angezeigten, hierarchischen

Liste der SiteMap-Knoten den Knoten „Anwendungen“

8. System zeigt die Details des ausgewählten Knoten an

9. Entwickler klickt auf den Reiter „Kinderknoten“

10. System zeigt die untergeordneten Knoten in einer Liste an

11. Entwickler klickt auf die Schaltfläche „Aktionen“

12. System öffnet Dropdown-Menü mit verfügbaren Aktionen

13. Entwickler klickt auf die Schaltfläche „Neu“

14. System öffnet Popup zum Erstellen von SiteMap-Knoten

15. Entwickler gibt die relevanten Daten ein

16. Entwickler klickt auf die Schaltfläche „Anlegen“

17. System erstellt SiteMap-Knoten mit den eingegebenen

Daten und aktualisiert die untergeordneten Knoten

18. Entwickler navigiert zu dem neu erstellten SiteMap-Knoten

und wiederholt Schritte 8-18 bis die Struktur angelegt ist

19. Entwickler klickt auf Schaltfläche für Administrationstools

20. System öffnet ein Dropdown-Menü mit Möglichkeiten

21. Entwickler klickt auf die Schaltfläche „Zustandsinformatio-

nen zurücksetzen“

22. System öffnet Popup zur Auswahl der Informationen

23. Entwickler markiert nur den Eintrag „Sitemap neu laden“

24. Entwickler klickt auf die Schaltfläche „Markierte neu laden“

Tabelle 6 Anwendungsfall "Anwendungsstruktur erstellen"

50

4 Lösungsansätze/Konzepte

 Durch die eingeschränkt verfügbare Zeit zur Durchführung der Diplomarbeit

musste entschieden werden, sich auf einige in der Analyse erkannte Probleme

zu fokussieren. Im Folgenden werden Lösungsansätze zu den erkannten Prob-

lemen beschrieben und diese anschließend anhand eines Kosten-Nutzen-Ver-

hältnisses bewertet. Aufgrund dieser Bewertung werden die Lösungsansätze

ausgesucht, die im Rahmen dieser Arbeit weiter verfolgt werden. Andere Prob-

leme mit der Benutzbarkeit werden im weiteren Verlauf der Arbeit nicht behan-

delt.

4.1 Filtern von Objekten

 In der Analyse zeigte sich, dass ein Teil der Benutzer die Objekte nach ihren

Haupteigenschaften wie Anzeigenamen filtert, ein anderer Teil jedoch auch an-

dere Eigenschaften zur Einschränkung verwendet. Eine generelle Auflistung aller

filterbaren Eigenschaften ist für einen Großteil der Benutzer somit verwirrend,

wohingegen eine Reduzierung auf wichtige Eigenschaften für andere Benutzer

gewünschte Funktionalitäten entfernen würde. Es sollte aus diesen Gründen für

jede der beiden Benutzergruppen eine Möglichkeit geben, nach den gewünsch-

ten Kriterien zu filtern. Ein Vorschlag hierzu wäre eine einfache Suchleiste zum

Filtern nach den wichtigsten Eigenschaften der Objekte und eine gleichzeitig an-

gebotene erweiterte Filterauswahl. Zur schnellen Einschränkung der angezeigten

Daten können bei diesem Vorgehen über die Suchleiste Stichworte eingegeben

werden. Werden hingegen spezifischere Filter wie eine Einschränkung eines Er-

stelldatums auf einen speziellen Zeitraum benötigt, können diese über eine se-

parat zu öffnende Liste an Filterkriterien angegeben werden.

4.2 Navigation und Darstellungen innerhalb des Systems

 Um von Cleverle auf das neue System umsteigenden Benutzern keinen ho-

hen Lernaufwand zuzumuten, soll das alte Navigationskonzept beibehalten wer-

den. Dieses sieht vor, alle Navigationselemente als Kacheln darzustellen. Diese

51

Kacheln sollen ansprechender entworfen werden um der Anwendung ein attrak-

tiveres Aussehen zu verleihen.

 Für ein besseres Verständnis der dargestellten Daten sollen diese Daten wie

auf Blöcken geschrieben dargestellt werden (siehe Abbildung 6). Ein einzelnes

Objekt hat hierbei in seiner Standardansicht als erstes Blatt des dargestellten

Blocks seine zugehörigen Details aufgelistet. Über an dem Block angeordnete

Register kann der Benutzer zwischen den Seiten des Blocks wechseln und so

die zu dem Objekt gehörenden Relationen einsehen. Für eine möglichst realisti-

sche Darstellung der Blockansicht sollen an der oberen Kante des Blocks Ringe

als Ringbindung dargestellt, und an der unteren Kante die existierenden Register

angezeigt werden.

Ich möchte z.B. ein Fahrzeug reservieren

991 4S

Hauptgruppe

Fahrgestellnummer:

Equipmentnummer:

Bezeichnung:

Aktuelle Zulassung:

ABC123DEF456GHI78

00012469204

991 4S

LB-IE 5324

Modelljahr:

Hersteller:

Typ:

2018

Porsche

991

Motor

Motorbezeichnung:

Motornummer:

991

1234567

Kraftstoff:

Abgas:

Super Plus

EURO 4

Getriebe

Getriebenummer: 1234567 Getriebeart: Automatik

Fahrzeug Stammdaten Fahrzeugkonfiguration / Ausstattung Versuche Reifenprofil-Messungen

Abbildung 6 Visualisierte Block-Metapher

4.3 Schnellnavigation innerhalb des Systems

 Für die schnelle und unkomplizierte Navigation zwischen für den Benutzer

wichtige Anwendungen oder Datenobjekte soll eine Schnellnavigation eingeführt

werden. In dieser Schnellnavigation soll der Benutzer die Möglichkeit haben, ihm

wichtige Positionen im System zu hinterlegen und später mit wenig Aufwand wie-

52

der zu öffnen. Der Benutzer soll jede Art von angezeigten Objekten als Schnell-

navigationsobjekt definieren, sowie die angelegten Schnellnavigationsobjekte

priorisieren und löschen können.

4.4 Navigieren zu Objekten

 Das Öffnen von Objektseiten mittels in den Listen angezeigten Symbolen

wurde in der Analyse als unverständlich und nicht intuitiv erkennbar eingestuft.

Um dem entgegenzuwirken sollte eine andere Art der Interaktion gewählt werden

um auf Objekte zu navigieren. Denkbare Alternativen wären hierbei ein Öffnen

mittels Klick auf den Anzeigenamen, sowie ein Klick auf die komplette Zeile die

das relevante Objekt repräsentiert. Je nach Kontext des Objekts sollte dies un-

terschiedlich ausgewählt werden. Objekte die im Kontext eines anderen Objekts,

also mittels eines Anzeigenamens dargestellt werden, bieten sich schon von vor-

neherein für eine Navigation mittels Klick auf den Anzeigenamen an. Wird jedoch

eine Liste mit den zu öffnenden Objekten angezeigt, ist ein solcher Anzeigename

nicht zwangsweise vorhanden. In diesen Fällen würde sich eine Navigation über

einen Klick auf die Zeile welche die jeweiligen Objekte repräsentieren anbieten.

4.5 Generische Oberfläche

 Eine beim Entwurf der Benutzerschnittstelle technologiebedingte Besonder-

heit von föderierten Informationssystemen ist, dass Objekte verschiedenster Ar-

ten und mit unterschiedlichsten Eigenschaften angezeigt werden müssen. Für

jedes Objekt die Oberflächenelemente wie Eingabe- und Editiermasken, Objek-

tansichten, Ansichten zum Löschen und Listenansichten einzeln anzulegen, wäre

bei der enormen Datenmenge ein nicht vertretbarer Aufwand. In Cleverle werden

zum Zeitpunkt der Verfassung dieser Arbeit 1983 Klassen verwaltet, für welche

jeweils die genannten Ansichten erstellt werden müssten. Dies ist in vielen Un-

ternehmen der Fall, wenn die entwickelten Anwendungen nicht durch ein föde-

riertes Informationssystem zusammengefasst, sondern je nach Bedarf von den

Fachbereichen selbst entwickelt werden. Die Anwendungen sind dadurch unter-

schiedlich aufgebaut und verfügen somit über unterschiedliche Benutzeroberflä-

chen, wodurch sich die Benutzer nie an eine Bedienungsart gewöhnen können.

53

Um eine gute Benutzbarkeit der verschiedenen Anwendungen zu gewähren, soll-

ten deren Benutzeroberflächen jedoch gleich gehalten werden. Aus diesen Grün-

den ist ein generischer Entwurf der Oberfläche sinnvoll, da dieser für alle ange-

legten Objekte verwendet werden kann und ein konsistentes Aussehen hat.

4.6 Generische Aktionen

 In Cleverle werden sowohl die Oberfläche von aufgerufenen Methoden, als

auch deren Funktionalität fest im Quellcode des Systems implementiert. Dies re-

sultiert in starren Vorgehensweise bei der Entwicklung oder Veränderung von

Funktionalitäten. Möchte ein Entwickler eine neue Methode einführen, so muss

er zuerst die Methode in den Metadaten von Cleverle definieren. Anschließend

muss er die Funktionalität und die Oberfläche der Methode implementieren und

in den Quellcode von Cleverle einbinden. Nach der Entwicklung besteht für den

Entwickler keine Möglichkeit, dem Benutzer die Funktionalität verfügbar zu ma-

chen, da eine neue Version von Cleverle nur zu festgelegten Zeitpunkten veröf-

fentlicht wird. Diese Veröffentlichung findet typischerweise monatlich statt, wes-

halb der anfordernde Benutzer unnötig lange Wartezeiten bei der Bereitstellung

seiner gewünschten Funktionalitäten in Kauf nehmen muss. Besser wäre es,

wenn die Funktionalität vom Quellcode der Basisanwendung getrennt wäre und

somit schon während der Laufzeit bereitgestellt werden könnte. Um dies zu er-

möglichen, ist es notwendig die Funktionalität in den Daten zu modellieren und

zu verwalten.

4.7 Schnittstelle zur Lokalisierung von Funktionalität

 Die Schnittstelle zur Lokalisierung der Funktionalitäten – im Folgenden

TellMe-Eingabeleiste genannt – soll als Auswahl der betreffenden Klasse und der

zugehörigen Aktion realisiert werden. Die Schnittstelle soll den Benutzern in der

Kopfleiste der Anwendung zu jedem Zeitpunkt zur Verfügung stehen, damit diese

von jeder Stelle im System aus die benötigten Funktionalitäten aufrufen können.

Um das gleichzeitige Ausführen von unterschiedlichen Tätigkeiten nicht zu be-

hindern soll sich das System nach Ausführung der Aktion in demselben Zustand

befinden wie zuvor.

54

4.8 Bewertung

 Um eine Bewertung der Lösungsansätze zu erhalten wird ein Kosten-Nutzen-

Verhältnis erstellt. Hierfür wird anhand drei Kriterien und einem geschätzten be-

nötigten Aufwand 𝐴𝑇 in Tagen für die Umsetzung der Themen ein Kosten-Nut-

zen-Verhältnis (𝐾𝑁𝑉) errechnet. Die Kriterien Bedeutung (𝐾𝐵), Häufigkeit (𝐾𝐻)

sowie Aufwand (𝐾𝐴) sind im Folgenden beschrieben:

Bedeutung

 Welchen geschätzten Einfluss hätte eine Umsetzung des Konzepts auf die

Benutzbarkeit des Systems, beziehungsweise wie stark werden Benutzer in Cle-

verle durch die Probleme des bewerteten Themas belastet? Die Bewertungs-

skala geht hierbei von „Kein Einfluss/Keine Beeinträchtigung“ bis „Sehr großer

Einfluss/Unzumutbar“.

Häufigkeit

 Wie häufig tritt ein Problem auf, beziehungsweise wie häufig würde der Be-

nutzer oder Entwickler durch eine Umsetzung profitieren? Die Bewertungsskala

geht bei diesem Kriterium von „Auftreten unwahrscheinlich“ bis „Tritt immer auf“.

Aufwand

 Wieviel Mehraufwand hat der Benutzer durch die beschriebenen Probleme,

oder wieviel Aufwand könnte dem Benutzer oder Entwickler durch eine Umset-

zung erspart werden? Die Bewertung des Kriteriums liegt zwischen „Kein Auf-

wand/Kein Einsparungspotential“ und „Konzept hinfällig/Sehr hohes Einspa-

rungspotential“.

 In Tabelle 7 wird das Kosten-Nutzen-Verhältnis der beschriebenen Themen

bewertet. Die grau hinterlegten Themen wurden für eine Umsetzung und Evalu-

ation im Rahmen dieser Diplomarbeit ausgewählt.

Thema 𝑨𝑻 𝑲𝑩 𝑲𝑯 𝑲𝑨 𝑲𝑵𝑽

Schnellnavigation innerhalb des Systems 5 6 8 6 57,60

Generische Oberfläche 20 8 7 9 25,20

Schnittstelle zur Lokalisierung von Funktionalitäten 25 8 8 9 23,04

Generische Aktionen 15 7 6 8 22,40

Navigation innerhalb des Systems 10 4 9 6 21,60

Filtern von Objekten 7 5 6 4 17,14

Navigieren zu Objekten 2 2 8 2 16,00
Tabelle 7 Bewertung von Lösungsansätzen

55

5 Evaluation anhand einer prototypischen Umsetzung

 In diesem Kapitel wird beschrieben, wie die in 4.8 ausgewählten Lösungsan-

sätze umgesetzt werden. Hierzu wird zunächst beschrieben, wie bei der Umset-

zung und Validierung der Ergebnisse vorgegangen wird. Um bei den Evaluatio-

nen über eine möglichst repräsentative Auswahl an Testnutzern zu verfügen,

werden die aktiven Cleverle-Benutzer nachfolgend analysiert und die Verteilung

verschiedener Kriterien ermittelt. Anschließend wird die erstmalige Umsetzung

der Lösungsansätze beschrieben. In den folgenden untergeordneten Kapiteln

wird die iterative Bewertung und Verbesserung der Benutzeroberfläche erläutert.

Zuletzt wird die abschließende Evaluation des Prototyps durchgeführt und die

erhaltenen Ergebnisse zusammengefasst und analysiert.

5.1 Vorgehen

 Da schon zu Beginn dieser Diplomarbeit ein gewisser Stand des neu zu ent-

wickelnden föderierten Informationssystems Cluu verfügbar war, bot es sich an,

die Oberfläche nach dem Konzept des Prototyping zu entwickeln. Während der

Umsetzung der Ideen zum Entwurf der Oberfläche war stets eine Version des

Systems verfügbar, mit der die getroffenen Entscheidungen evaluiert werden

konnten. Diese Evaluationen erfolgten zum größten Teil informell mittels interner

Tests, welche mit Cleverle-Anwendern durchgeführt wurden. Da Cluu intern

schon zu einem frühen Entwicklungsstand zur Zeiterfassung genutzt wurde, war

ein Feedback zu neu umgesetzten Ideen schnell vorhanden.

 Für die abschließende Evaluation des Systems werden Usability Tests einge-

setzt bei deren Durchführung die Testnutzer die Benutzbarkeit des Systems tes-

ten können. Sie werden hierbei von vier gestellten Aufgaben geleitet, die gleich-

zeitig dazu dienen, Ausführungszeiten und Vorgehensweisen zu ermitteln. Die

gestellten Aufgaben haben außerdem den Nutzen, dass ermittelt werden kann,

wie häufig Benutzer die TellMe-Eingabeleiste anstelle der bisherigen Vorgehens-

weise verwenden. Speziell diese Erkenntnis gibt Aufschluss über die Nützlichkeit

und Akzeptanz der Nutzer für eine solche zentrale Schnittstelle zur Auffindung

56

der Funktionalität. Für die Vergleichbarkeit der Testergebnisse werden diese ab-

schließenden Tests mit jedem Benutzer mit demselben Stand der Anwendung

und einer gleichbleibenden Testdatenbank ausgeführt. Durch diese Vorkehrun-

gen können die Tests unter den gleichen Voraussetzungen durchgeführt werden

und es kommt zu keiner Beeinträchtigung der Tests durch veränderte Daten.

 Die vier verwendeten Aufgaben orientieren sich an den Anwendungsfällen

und sind in zwei Kategorien aufgeteilt: Die ersten beiden Aufgaben sollen von

allen Testern ausgeführt werden um die Benutzbarkeit des Systems bei allgemei-

nen Nutzungsszenarien zu ermitteln. Die letzten beiden Aufgaben dienen der Er-

mittlung der Benutzbarkeit bei Tätigkeiten der Entwicklung und Verwaltung.

 Die Aufgaben und deren Szenarien sind wie folgt definiert:

1. Der Benutzer benötigt eine exportierte Personalliste für seine Abteilung

„TST4“. Er soll die nötigen Schritte durchführen um diese zu erstellen.

Nach einer Überprüfung der Liste fällt ihm auf, dass der Name eines Mit-

arbeiters inkorrekt ist und eine Mitarbeiterin nicht in der Liste auftaucht. Er

soll die nötigen Schritte tätigen um diese fehlerhaften Daten zu korrigieren.

2. Der Benutzer muss Tests an einem Fahrzeug durchführen und dieses

Fahrzeug hierfür reservieren. Hierzu soll der Benutzer zuerst überprüfen,

wann das Fahrzeug als nächstes verfügbar ist und es anschließend reser-

vieren.

3. Der Entwickler hat einige Fehler in der Implementierung einer Funktiona-

lität korrigiert und möchte diese nun den Benutzern verfügbar machen.

Hierzu soll er die Implementierung der betroffenen Aktion austauschen

und sich anschließend versichern, dass die Funktionalität nun korrekt ist.

4. Der Entwickler erstellt eine neue Anwendung für die Benutzer. Hierzu soll

er die Navigationsstruktur mit Anwendung und Unterknoten anlegen. Da

für die Anwendung und Navigationsknoten Bilder hinzugefügt werden

müssen, kann speziell die Verwendung der TellMe-Eingabeleiste beo-

bachtet werden. Mithilfe dieser könnte der Entwickler die Bilder, ohne die

Ansicht zu wechseln hinzufügen.

 Während der Durchführung der Aufgaben werden sowohl die benötigte Zeit,

als auch die begangenen Fehler notiert. Um eine Aussage über die Nützlichkeit

der TellMe-Eingabeleiste treffen zu können, wird außerdem festgehalten, ob der

Benutzer diese für seine Tätigkeiten verwendet. Des Weiteren wird der Benutzer

57

aufgefordert, seine Gedanken laut zu äußern und sich mit der Darstellung der

Elemente auseinanderzusetzen. Nach der Bearbeitung jeder Aufgabe erhält der

Benutzer ein Formular des NASA-TLX welches die Belastung des Benutzers

während der Ausführung erfasst. Die Ergebnisse dieser Tests können im An-

schluss mit den spezifizierten Nutzer- und Entwickleranforderungen verglichen

werden und eine Aussage über die Güte der Benutzbarkeit getroffen werden.

 Im Anschluss an die Aufgaben soll der Benutzer die Verwendung des Systems

bewerten. Hierzu werden ihm einige Fragen gestellt die seine Meinung der An-

wendung, auch im Vergleich zum Vorgängersystem Cleverle erfassen sollen. Zu-

sätzlich soll er mittels eines semantischen Differentials sein Empfinden anhand

der in 2.2.8 beschriebenen Gegensatzpaaren einstufen.

5.2 Aufbau der Nutzergruppen

 In Cleverle sind zum Zeitpunkt dieser Diplomarbeit 5341 Benutzer registriert.

Von diesen 5341 haben sich 1782 innerhalb des vorletzten Monats dieser Diplo-

marbeit angemeldet und das System verwendet. In Cleverle werden für automa-

tisierte Abläufe sogenannte technische Benutzer verwendet, welche keinen rea-

len Personen zugeordnet sind. Die Anzahl dieser technischen Benutzer beläuft

sich auf 20, womit Cleverle von insgesamt 1762 konkreten Personen aktiv ver-

wendet wird.

 Um eine Verteilung des Benutzeralters zu erhalten, wurden die Geburtsdaten

der aktiven Benutzer ausgewertet. Von den 1762 aktiven Benutzern hatten 175,

also etwa 10% ihr Geburtsdatum angegeben. Da die Geburtsdaten von Abtei-

lungsverwaltern und nicht den Benutzern selbst eingetragen wird, können Ein-

flüsse der Benutzer auf das Vorhandensein des Geburtsdatums ausgeschlossen

werden. Die Altersverteilung ist wie in Abbildung 7 dargestellt. Der Großteil der

Benutzer (51%) ist zwischen 26 und 34 Jahren alt, der nächstkleinere Teil (18%)

zwischen 35 und 40 Jahren. Neben einer weiteren ausschlaggebenden Gruppe

der 43-47-Jährigen (13%), verteilen sich die restlichen 18% relativ gleichmäßig,

mit dem Alter abfallend auf die übrigen Jahrgänge.

58

Abbildung 7 Altersverteilung von aktiven Cleverle-Benutzern

 Das Verhältnis von Männern zu Frauen kann in Cleverle einfach ausgewertet

werden, da bei den gespeicherten Personen auch das Geschlecht hinterlegt ist.

Aus diesen Daten geht hervor, dass das Verhältnis bei 4:1 (82% zu 18%) liegt.

 Für eine abschließende Evaluation der Umsetzungen mit repräsentativen

Testnutzern, werden diese anhand der ermittelten Zusammensetzung der Cle-

verle-Benutzer ausgewählt. Die Evaluation wird mit insgesamt fünf Testnutzern

durchgeführt, die einen Hochschul- oder Fachhochschulabschluss in einer Inge-

nieurswissenschaft besitzen. Für eine Unterscheidung des Ease-of-Learning und

des Ease-of-Use wurde das System mit Testnutzern mit unterschiedlichen Vor-

kenntnissen getestet. Drei der ausgewählten Testnutzer hatten noch nie mit Cle-

verle gearbeitet wohingegen die anderen zwei es für ihre tägliche Arbeit verwen-

den. Drei der Testnutzer stufen ihre Kenntnisse mit Computern als sehr hoch,

zwei weitere als mittel bis hoch. Die Altersverteilung der Testnutzer liegt innerhalb

der ermittelten Schwerpunkte zwischen 26 und 40 Jahren.

5.3 Prototypische Umsetzung der Lösungsansätze

 Für eine Evaluation der Lösungsansätze werden diese anhand eines Proto-

typs umgesetzt. Dieser Prototyp wird durch die Evaluationen hinweg kontinuier-

lich verbessert und die in den Lösungsansätzen beschriebenen Konzepte über-

arbeitet.

0%

2%

4%

6%

8%

10%

12%

14%

59

5.3.1 Generische Oberfläche

 Die Oberfläche des Prototyps wurde im Vergleich zum Vorgängersystem

deutlich reduziert (siehe Abbildung 8). Es existieren nur noch drei Bereiche in-

nerhalb der Anwendung. Eine einzige Kopfzeile stellt Interaktionsmöglichkeit mit

den Daten zur Verfügung. Eine Seitenleiste bietet hingegen Interaktionsmöglich-

keiten an, welche die Darstellung der Daten, sowie das System an sich betreffen.

Neben der Schnittstelle zum Auffinden der Funktionalitäten werden in der Kopf-

zeile die grundlegenden Aktionen (Erstellen, Bearbeiten, Löschen) des aktuell

angezeigten Objekts dargestellt. Als weiteres Element wird eine Suchleiste an-

geboten, die es dem Benutzer später ermöglichen soll, alle angezeigten Daten

zu durchsuchen. In der Seitenleiste des Systems befindet sich als oberstes Ele-

ment die Schnellnavigation auf die Hauptseite der Anwendung. Unterhalb dieser

Schaltfläche werden die Navigation innerhalb der Anwendungshierarchie, sowie

Filtermöglichkeiten angeboten. Neben einer Aktualisierung und einer Auswahl

der Darstellung der angezeigten Daten, erhält der Benutzer die Möglichkeit, seine

Anmeldung am System zu verwalten. Weiterhin werden in der Seitenleiste die

Favoriten des angemeldeten Benutzers dargestellt. Die vom Benutzer gewünsch-

ten Daten werden innerhalb des Content-Bereichs angezeigt. Die Darstellung der

Daten kann hierbei in den Daten des Systems beschrieben und zur Laufzeit ver-

waltet werden.

Ich möchte z.B. ein Fahrzeug reservieren

Content

Abbildung 8 Aufteilung der Oberfläche

60

 Um Objekte in unterschiedlichen Situationen darzustellen, werden zwei Ebe-

nen an Ansichten definiert. Die untere Ebene an Ansichten (Hauptansichten) ge-

ben an, wie die Objekte in eigenständigen Kontexten dargestellt werden. Die vier

Hauptansichten sind in Tabelle 8 beschrieben. Neben den Hauptansichten wer-

den die 7 in Tabelle 9 beschriebenen Unteransichten verwendet, um festzulegen,

mit welchen Eigenschaften die verschiedenen Objekte dargestellt werden sollen.

Um trotz der generischen Oberfläche eine Entwicklung von speziellen Oberflä-

chenelementen zu ermöglichen, verfügen die Ansichten über die Möglichkeit eine

Komponente anzugeben, die sie abweichend vom Standard darstellt. Die Ob-

jectRendering-Ansicht stellt beispielsweise Objekte standardmäßig als Seite mit

Reitern dar, in denen sich zum einen die Details des Objekts und zum anderen

die Relationen des Objekts befinden. Welche Eigenschaften des Objekts ange-

zeigt werden wird in der Details-Ansicht, die angezeigten Relationen in der Rela-

tion-Ansicht beschrieben.

Name Zweck

ObjectRendering Gibt an, wie ein Objekt dargestellt werden soll, wenn

der Benutzer sich genau dieses Objekt ansieht

CollectionRendering Gibt an, wie eine Liste an Objekten dargestellt wer-

den soll

SelectRendering Gibt an, wie ein Objekt dargestellt wird, wenn es zur

Auswahl bereit gestellt wird

EditRendering Gibt an, wie ein Objekt dargestellt wird, wenn es be-

arbeitet wird

Tabelle 8 Verwendete Hauptansichten

61

 Zur Veranschaulichung der Ansichten ist die Navigation von Cluu geeignet,

da sie diese auch mit gesonderten Darstellungen verwendet. Die Navigations-

struktur von Cluu besteht aus zwei Ebenen: Anwendungen und Navigationskno-

ten. Die Anwendungen sind die oberste Ebene und beinhalten beliebig viele Na-

vigationsknoten. Diese Navigationsknoten können unterschiedliche Funktionen

haben. Sie können auf eine weitere Unterseite der Navigation, eine Liste an Ob-

jekten, ein einzelnes Objekt oder eine beliebige URL verweisen. Damit die Navi-

gation durch die Anwendungsstrukturen übersichtlich gestaltet wird, können die

verwendeten Objekte nicht mit ihren Standardansichten dargestellt werden. Für

die Navigation in der Basisanwendung werden deshalb spezielle Renderer ange-

geben, die die relevanten Daten entsprechend darstellen. Die ObjectRenderer-

Ansicht von Anwendungen gibt einen Renderer an, der nicht die Eigenschaften

und Relationen der Anwendung, sondern eine Liste aller untergeordneten Navi-

gationsknoten darstellt. Die Collection-Ansicht der Navigationsknoten gibt wiede-

rum einen Renderer an, der die Navigationsknoten als Kacheln mit Bild, Über-

schrift und Beschreibung darstellt.

Name Zweck

New Gibt an, welche Eigenschaften eines Objekts in der Eingabe-

maske zum Erstellen des Objekts angezeigt werden sollen

Edit Gibt an, welche Eigenschaften eines Objekts in der Eingabe-

maske zum Bearbeiten des Objekts angezeigt werden sollen

Collection Gibt an, welche Eigenschaften eines Objekts anzeigt werden

sollen, wenn dieses in einer Liste dargestellt wird

Details Gibt an, welche Eigenschaften eines Objekts angezeigt wer-

den sollen, wenn die Objektseite des Objekts geöffnet ist

Select Gibt an, welche Eigenschaften eines Objekts angezeigt wer-

den sollen, wenn das Objekt zur Auswahl durch den Benutzer

aufgelistet wird

Relation Gibt an, welche Beziehungen zu anderen Objekten angezeigt

werden sollen, wenn die Objektseite eines Objekts geöffnet

ist

Friendly Gibt an, wie ein Objekt dargestellt werden soll, wenn es im

Kontext eines anderen Objekts angezeigt wird

Tabelle 9 Verwendete Unteransichten

62

5.3.2 Navigation innerhalb des Systems

 Um die Darstellung der Navigation ähnlich wie in Cleverle zu halten, wurde

entschieden auf eine ähnliche Struktur zu setzen wie sie bereits verwendet wird.

Logisch sind die einzelnen Elemente in der Navigation in Anwendungen und in

Navigationsknoten aufgeteilt, für die unterschiedliche Eigenschaften relevant

sind. Das Datenmodell der Anwendungen und Navigationsknoten ist in Abbildung

9 dargestellt. Anwendungen verfügen nur über Daten die für deren Verständnis

interessant sind wie Titel, Beschreibung und anzuzeigendes Bild. Für Navigati-

onsknoten sind jedoch weitere Eigenschaften relevant. Als Hauptmerkmal haben

Navigationsknoten eine Typenbeschreibung, welche die Art der von dem jeweili-

gen Knoten angezeigten Daten angibt. Navigationsknoten können in der geplan-

ten Struktur entweder eine Auflistung der Objekte einer angegebenen Klasse,

eine Objektansicht eines angegebenen Objekts oder weitere Navigationsknoten

enthalten.

Image NavigationNode

App

Icon

Superior

1 n

n

1

Parent

n

1

Id
Caption

Descrition

ImageId

Id
AppId

Caption

Description

Cluu-

ClassName

ImageId

ObjectId

Type-

Descriptor

URL

Id

ContentData

ContentType

Icon

n

1
Parent-

NodeId

Abbildung 9 Datenmodell der Navigation mit Anwendungen und Navigationsknoten

 Um auch Spezialfälle und externe Seiten anzeigen zu können, können Navi-

gationsknoten auch eine beliebige URL enthalten auf die bei einem Öffnen des

Navigationsknoten navigiert wird. Je nach Typ des Navigationsknoten müssen

die benötigten Daten wie Klassenname, Objekt oder URL angegeben werden.

Für eine Sortierung der Navigationsknoten wird eine Ordinalzahl verwendet.

63

 Die Hauptseite des Systems besteht aus einer einfachen Auflistung aller an-

gelegten Anwendungen. In der Objektansicht einer speziellen Anwendung kann

der Benutzer alle untergeordneten Navigationsknoten als Liste einsehen und sich

weiter durch die Anwendungsstruktur bewegen. Für die Visualisierung der Navi-

gation werden sowohl Anwendungen als auch Navigationsknoten als Kacheln

dargestellt, die das angegebene Bild und die angegebene Überschrift und Be-

schreibung beinhalten. Somit wird eine Konsistenz bei der Darstellung von allen

Navigationselementen erreicht.

5.3.3 Schnellnavigation innerhalb des Systems

 Für eine schnellere und einfachere Navigation zu für Benutzer wichtige

Punkte in der Anwendung, werden Favoriten verwendet. In diesen Favoriten sind

ein Klassenname, ein Verweis auf das zu öffnende Objekt, sowie eine für die

Sortierung relevante Ordinalzahl hinterlegt. Um die Favoriten für jeden Benutzer

konfigurierbar zu gestalten wird außerdem der Benutzername des anlegenden

Benutzers gespeichert. Bei einem Klick auf einen der angelegten Favoriten wird

die Objektansicht des verwiesenen Objekts angezeigt. Mittels dieser Struktur

kann jedes in Cluu dargestellte Objekt als Favorit angelegt werden, was auch

Navigationsknoten und Anwendungen einschließt. Das verwendete Datenmodell

ist in Abbildung 10 dargestellt.

Favorite UserIsFavorite
n 1

IdUserName

ClassName

ObjectId

Id UserName

FirstName

LastNameOrdinal

Abbildung 10 Datenmodell der Favoriten

 Favoriten werden Benutzer in der Seitenleiste der Anwendung als einfache

Kacheln mit Bild angezeigt. Die Verwaltung der Favoriten findet in einer Favori-

tenverwaltung in der Benutzer diese über Basisfunktionalitäten hinzufügen und

löschen können statt.

64

5.3.4 Generische Aktionen

 Für eine von der Oberfläche getrennte Verwaltung der Aktionen werden diese

mit allen relevanten Eigenschaften als normale Klasse in den Metadaten des

Systems angelegt (siehe Abbildung 11). Diese Klassen – ActionData genannt –

beinhalten alle für die Ausführung der Aktion relevanten Eigenschaften. Jede

Ausführung der Aktion ist somit ein Objekt der Aktionsdatenklasse und kann dem-

entsprechend eingesehen und nachvollzogen werden. Für die Unterscheidung

zwischen normalen Klassen wird jede Aktion in den Metadaten noch separat mit

zusätzlichen Daten beschrieben. Diese Daten definieren zum einen die Semantik

einiger Eigenschaften – solche die für Aktionsstatus, Fortschritt und Ergebnis ste-

hen – zum anderen die Implementierung der Funktionalität und die zugehörige

Aktionsdatenklasse. Eine Ausführung der Aktion besteht in dieser Struktur aus

zwei Schritten: Als erstes wird ein Objekt der Aktionsdatenklasse mit allen für die

Aktion relevanten Parametern angelegt.

ActionInfo

Actiondata-

ClassInfoId

ActionImple-

mentationId

Id

Name

Progress-

FieldName
Result-

FieldName

StatusText-

FieldName

Action-

Implementation

Id

ClassInfo

Id

ContentData

Content-

FileName

ContentType

ClassName

Mapping-

Expression

ActionUIInfoClassUIInfo

Service-

InfoId

Id

Caption

Cluu-

ClassName
ImageId

Id

CaptionDescription

IconId

Type-

Descriptor

n Action-

Assignment

m

1

Representation

1

1

Representation

1

1
Implementation

1

Darstellungsdaten

Metadaten

n
ActionData

1

Abbildung 11 Datenmodell der Aktionen

 Nachdem die Aktionsdaten erstellt wurden, wird die Aktion auf dem Cluu-Ba-

ckend aufgerufen. Das Backend wurde hierfür um eine Invoke-Methode erweitert,

die als Parameter ein Objekt einer Aktionsklasse, sowie ein Objekt einer Aktions-

datenklasse nimmt und anschließend die beschriebene Aktion mit den in den Ak-

tionsdaten beschriebenen Parametern ausführt.

65

 Auf Seiten der Oberfläche wird nur noch eine Zuweisung der Aktionen benö-

tigt, die beschreibt im Kontext welcher Klassen die jeweilige Aktion angezeigt

werden soll. Des Weiteren werden die Aktionen mit für den Benutzer relevanten

Daten, beispielsweise einer Bezeichnung und einer Beschreibung, versehen.

 Die Darstellung der CRUD-Operationen Hinzufügen, Bearbeiten und Löschen

wird mittels Standarddialogen für alle Objekte generisch geregelt. Durch die Mo-

dellierung von erweiterten Aktionen in den Daten des Systems können Ausfüh-

rungen dieser Aktionen als das Anlegen des entsprechenden Datensatzes ange-

sehen werden. Durch diese Abstraktion können für erweiterte Aktionen die Stan-

dard-Neu-Dialoge verwendet werden, in denen alle Eigenschaften der Aktions-

daten angezeigt werden. Um die Entwicklung von speziellen Aktionseingabemas-

ken zu unterstützen, können diese als Systemerweiterungen eingebunden und

bei Vorhandensein anstelle des Standard-Neu-Dialogs angezeigt werden. Über

eine am Backbone implementierte Invoke-Methode können die Aktionen nachfol-

gend aufgerufen werden. Hierzu erhält die Invoke-Methode als Parameter sowohl

die ID der auszuführenden Aktion, als auch Klassenname und ID des Aktionsda-

tenobjekts. Über die Metadaten der auszuführenden Aktion kann im nächsten

Schritt die Implementierung aus der Datenquelle geladen und anschließend mit

den in den Aktionsdaten beschriebenen Eigenschaften ausgeführt werden.

5.3.5 Schnittstelle zur Lokalisierung von Funktionalitäten

 Die TellMe genannte Schnittstelle zur Lokalisierung wird als Eingabeleiste in

der Kopfleiste des Systems angebracht. Durch die ständige Darstellung der Kopf-

leiste in jedem Teil des Systems steht sie dem Benutzer somit zu jedem Zeitpunkt

zur Verfügung. Funktional wird die Eingabeleiste durch zwei Auswahlelemente

umgesetzt. In der ersten Auswahlbox kann der Benutzer die zu bearbeitende

Klasse auswählen und anschließend in der zweiten Auswahlbox die zu der aus-

gewählten Klasse verfügbaren Aktionen auswählen und ausführen. Für die Aus-

führung wird dem Benutzer zuerst eine nach 5.3.4 beschriebene Eingabemaske

der ausgesuchten Aktion angezeigt und diese Daten im Anschluss an das Cluu-

Backend zur Verarbeitung weitergegeben.

66

5.4 Ergebnisse von informellen Evaluationen der ersten Iteration

 Nach der erstmaligen Umsetzung der Lösungsansätze werden diese in einer

ersten Bewertung von Cleverle-Nutzern getestet. Die so erhaltenen Rückmeldun-

gen werden anschließend eingebracht und die Benutzeroberfläche entsprechend

angepasst um eine bessere Benutzbarkeit zu erhalten. Im Folgenden sind die in

der Bewertung bemängelten Aspekte des Systems beschrieben.

5.4.1 Navigation/Schnellnavigation und Darstellung innerhalb des Systems

 Die Darstellung von einem Objekt als Block erwies sich als durchaus nach-

vollziehbar. Es konnte dadurch einfacher realisiert werden, dass sich in den Re-

gistern andere zu dem angezeigten Objekt gehörende Daten befinden. Allerdings

stellte sich heraus, dass die Positionierung der Register am unteren Bildschirm-

rand für die Benutzer nicht hilfreich ist. Viele der testenden Benutzer übersahen

die Register komplett und gingen fälschlicherweise davon aus, dass das ange-

sehene Objekt über keinerlei Relationen verfügt. Andere Benutzer beschwerten

sich nach dieser Umsetzung über erhöhten Bewegungsaufwand mit der Maus,

da sie diese ständig vom oberen an den unteren Bildschirmrand manövrieren

mussten.

 Die Navigation durch die Anwendung gestaltete sich nach der einfachen Um-

setzung mit Anwendungen und Navigationsknoten fast identisch wie die des Vor-

gängersystems Cleverle. Um von der Ansicht eines Objekts in die Ansicht eines

Objekts in einer anderen Anwendung zu wechseln muss der Benutzer weiterhin

die gleichen Navigationsschritte durchführen. Als Erleichterung bei der Naviga-

tion wurde hierbei die umgesetzte Schnellnavigation angesehen, die es dem Be-

nutzer nach einem Anlegen der relevanten Favoriten ermöglichte die umfangrei-

che Navigation zu überspringen und direkt zu den für ihn wichtigen Objekten zu

navigieren. Jedoch waren insbesondere dieses Anlegen und auch die komplette

Verwaltung der Favoriten nicht komfortabel durchzuführen, da der Benutzer zu-

erst in die Favoritenverwaltung navigieren musste. Nachfolgend konnte er seine

persönlichen Favoriten einsehen, neue erstellen und bestehende bearbeiten und

löschen. Da er sich aber für jeden Favoriten sowohl die zugehörige Klasse und

Objekt-ID merken musste, war eine hohe mentale Belastung deutlich zu erken-

nen.

67

 Als weiteres Problem ergab sich die identische Darstellung von Anwendungen

und Navigationsknoten. Durch eine fehlende optische Unterscheidung zwischen

den beiden Knotentypen konnten die testenden Benutzer nicht zu jedem Zeit-

punkt sagen, an welcher Stelle des Systems sie sich befanden.

5.4.2 TellMe-Auswahl

 Das TellMe-Eingabefeld als einfache Auswahl der Klasse und der zugehöri-

gen Aktion wurde als nicht intuitiv bedienbar und zu unübersichtlich bewertet.

Schon bei einem geringen, grundlegenden Funktionsumfang des Systems exis-

tieren bereits 44 Klassen mit je drei verfügbaren Aktionen. Aus dieser Menge

ohne Möglichkeiten zur Einschränkung der Ergebnisse eine Aktion auszuwählen

erwies sich bei internen Tests als frustrierend, da alle nicht benötigten Klassen

von den Benutzern ausgeschlossen werden mussten. Eine für die weitere Ent-

wicklung relevante Beobachtung war jedoch, dass Funktionalitäten entdeckt wur-

den die von den Benutzern nicht direkt gesucht wurden.

5.5 Umsetzung der Ergebnisse der ersten informellen Evaluation

 Die Ergebnisse der ersten informellen Evaluation zeigen einige Probleme bei

der Verwendung des Systems. Mit welchen Maßnahmen diese Probleme beho-

ben werden, ist im Folgenden beschrieben.

5.5.1 Navigation/Schnellnavigation und Darstellung innerhalb des Systems

 Die größte Änderung an der Block-Darstellung ist die Rotation der visualisier-

ten Blöcke. Um den Bewegungsaufwand der Benutzer zu reduzieren und die Er-

kennungsrate zu erhöhen, werden die Registerkarten der Blöcke nun an der obe-

ren Blockkante und die Blockringe an der linken Blockkante dargestellt. Dies soll

den Block als vor dem Benutzer aufgeschlagen, beschreib- und lesbar visualisie-

ren. Dabei wird, um die Metapher eines echten Blockes zu wahren das Verhältnis

zwischen Breite und Höhe realistisch gehalten. Ist die Seite jedoch nur zum Teil

gefüllt, wird der übrige Platz auf der Seite durch nicht vorhandene Ränder an der

unteren Seite des Blocks visualisiert.

68

Ich möchte z.B. ein Fahrzeug reservieren

Fahrzeug Stammdaten Reifenprofil-MessungenVersucheFahrzeugkonfiguration / Ausstattung991 4S

Hauptgruppe

Fahrgestellnummer:

Equipmentnummer:

Bezeichnung:

Aktuelle Zulassung:

ABC123DEF456GHI78

00012469204

991 4S

LB-IE 5324

Modelljahr:

Hersteller:

Typ:

2018

Porsche

991

Motor

Motorbezeichnung:

Motornummer:

991

1234567

Kraftstoff:

Abgas:

Super Plus

EURO 4

Getriebe

Getriebenummer:

Antrieb:

1234567

Allrad

Getriebeart:

Schaltstufen:

Automatik

8

Karosserie

Abbildung 12 Objektansicht in Cluu als Wireframe

 Um die Navigationselemente nachvollziehbar zu gestalten, wurde eine visu-

elle Unterscheidung zwischen Anwendungsknoten und untergeordneten Naviga-

tionsknoten in den einzelnen Anwendungen eingeführt. Diese unterschiedliche

Darstellung soll es den Benutzern erleichtern, ihre aktuelle Position im System

zu erkennen. Um die Block-Metapher auch in die Navigation miteinzubeziehen

sollen untergeordnete Navigationsknoten die auf eine Objekt- oder Listenansicht

verweisen fortfolgend als aufrecht dargestellte Blöcke visualisiert werden. Navi-

gationsknoten die wiederrum über untergeordnete Navigationsknoten verfügen

sollen als Mappe dargestellt werden (siehe Abbildung 13).

 Für eine einfachere Verwendung der Favoriten wird auf die Verwaltung in ei-

ner separaten Liste verzichtet. Stattdessen wird es dem Benutzer ermöglicht, alle

Objekte mittels Drag-n-Drop als Favoriten in der Seitenleiste aufzunehmen. Die

Sortierung der einzelnen Favoriten wird in der Seitenleiste ebenfalls mittels Drag-

n-Drop ermöglicht. Um Favoriten zu löschen, erhält der Benutzer beim Überfah-

ren der Favoriten mit der Maus eine Schaltfläche die den jeweiligen Favoriten

aus der Seitenleiste entfernt.

69

Ich möchte z.B. ein Fahrzeug reservieren

Content

Administration Barcodeverwaltung Batterieverwaltung Budgetverwaltung

CarPad-Verwaltung Diagnoseverwaltung Fahrzeugverwaltung Inbetriebnahme

Inbetriebnahme

Ich möchte z.B. ein Fahrzeug reservieren

Content

Anzeigen der
Fahrzeug-
stammdaten

Fahrzeuge

Verwaltung von
Fahrzeugflotten

Flotten

Verwalten von
Bauteilinstanzen

Bauteilinstanzen

Anzeigen von
Motoren

Motoren

Administration

Abbildung 13 Navigationselemente in Cluu als Wireframe

5.5.2 TellMe-Eingabeleiste

 Für eine übersichtlichere Gestaltung der Auswahl von Aktionen wird die Dar-

stellung auf ein einziges Text-Eingabefeld reduziert. In diesem Feld soll der Be-

nutzer die gesuchte Funktionalität, vorerst auf Klassenname und Aktionsname

beschränkt, eingeben können. Nach der Eingabe soll das System die Eingabe

70

auswerten und alle relevanten Ergebnisse anzeigen. Aus diesen Ergebnissen

kann der Benutzer anschließend auswählen um die gewünschte Aktion auszu-

führen. Ohne Eingabe eines Textes sollen dem Benutzer die am häufigsten aus-

geführten Aktionen angezeigt werden.

 Für die Umsetzung dieser Eingabe werden die existierenden Klassen- und

Aktionsnamen nach den eingegebenen Wörtern durchsucht. Um Tippfehler be-

rücksichtigen zu können, wird das in 2.3.1 beschriebene Verfahren verwendet

um eine prozentuale Übereinstimmung der eingegebenen Wörter mit den verfüg-

baren Klassennamen zu erhalten. Die Treffer mit einer gewissen Übereinstim-

mung werden für die weitere Auswertung verwendet. Ein nachfolgender Abgleich

mit den Aktionszuweisungen ergibt die Kombinationen an Klassen und Aktionen

die für den eingegebenen Text verfügbar sind. Diese Kombinationen werden dem

Benutzer als Dropdown-Menü unterhalb der Eingabeleiste eingeblendet und er

kann mittels Tastatur oder Maus die jeweilige Aktion auswählen.

5.6 Ergebnisse von informellen Evaluationen der zweiten Iteration

 Nach der Änderung einiger Eigenschaften der Oberfläche müssen diese im

nächsten Schritt getestet und validiert werden. Hierzu werden wieder Bewertun-

gen des Systems mit Cleverle-Benutzern durchgeführt. Die erkannten Probleme

mit der Benutzbarkeit werden im Folgenden aufgelistet.

5.6.1 Navigation/Schnellnavigation und Darstellung innerhalb des Systems

 Die hochkant dargestellten Blöcke konnten von den Testnutzern ähnlich gut

in Bezug mit der Realität gesetzt werden wie die horizontale orientierten. Positiv

konnte festgestellt werden, dass der Bewegungsaufwand der Maus deutlich re-

duziert wurde. Auch wurden die Register der Blöcke schneller und einfacher

wahrgenommen als in der vorherigen Iteration. Von einigen Benutzern wurde je-

doch weiterhin bemängelt, dass der Bewegungsaufwand weiterhin zu hoch sei,

wenn verschiedene Tätigkeiten wie das Filtern von Daten und das Wechseln zwi-

schen Reitern durchgeführt werden. Um die Block-Metapher jedoch nicht zu weit

zu reduzieren wurde entschieden die Register an der aktuellen Position zu be-

lassen und somit einen Kompromiss zwischen Wahrnehmung der Block-Meta-

pher und Bewegungsaufwand einzugehen.

71

 Durch die Unterscheidung zwischen den unterschiedlichen Navigationsele-

menten konnte beobachtet werden, dass sich Benutzer besser im System zu-

recht finden konnten. Speziell konnten sie einfacher unterscheiden auf welcher

Ebene der Navigation sie sich zu einem gewissen Zeitpunkt befanden und auf

welche Art von Seite ein dargestelltes Objekt verweist. Die Darstellung der Navi-

gationselemente konnte somit wie umgesetzt belassen werden.

 Die Schnellnavigation mittels Favoriten war durch die Umstellung auf eine

Verwaltung direkt in der Seitenleiste besser bedienbar. Benutzer kamen mit der

Erstellung, dem Sortieren und Löschen besser zurecht als dies mit einer separa-

ten Favoritenverwaltung der Fall war. Jedoch wurde durch die einfachere Ver-

waltung der Favoriten deutlich, dass eine Platzierung dieser direkt in der Seiten-

leiste zu einer schnellen Überladung der dort dargestellten Informationen führte.

Da in der Seitenleiste auch andere Elemente wie die Filterfunktion untergebracht

waren, konnten diese nicht mehr ausreichend einfach lokalisiert und verwendet

werden.

5.6.2 TellMe-Eingabeleiste

 Die Verwendung der TellMe-Eingabeleiste gestaltete sich in der zweiten Ite-

ration als deutlich übersichtlicher und einfacherer. Ein Mangel der bei der Benut-

zung festgestellt wurde war jedoch, dass das Aufrufen von Funktionalitäten in

einem gegebenen Kontext zu aufwändig war. Will ein Benutzer eine Aktion auf

dem derzeitig angezeigten Objekt ausführen, werden ihm diese nicht sofort an-

gezeigt, sondern er sieht die global am häufigsten ausgeführten Aktionen. Er

muss zuerst den Eingabetext mit Klassenname und Aktionsname eingeben um

die angezeigten Aktionen einzuschränken. Weiterhin wurde die fehlende Flexibi-

lität bei der Eingabe von Texten bemängelt. Durch die Beschränkung auf den

Klassennamen, beziehungsweise die benutzerfreundliche Bezeichnung der

Klasse war die Eingabemöglichkeit um auf eine bestimmte Aktion einer bestimm-

ten Klasse zu kommen stark eingeschränkt. Der Benutzer konnte beispielsweise

Aktionen der Klasse „Person“ nur über Eingabe des Namens „Person“ finden.

Andere gleichbedeutende Begriffe hatten keine Treffer zur Folge.

 Als weiteres Problem mit der TellMe-Eingabeleiste wurde die starre Eingabe-

folge genannt. Für die Benutzer war es nicht möglich Texte einzugeben die eine

72

andere Form als „*Klasse* *Aktion*“ hatten. Allerdings ist es speziell für Anwen-

dungsfälle in denen der Benutzer eine Aktion auf ein spezielles Objekt ausführen

will nützlich, wenn er dieses direkt in der TellMe-Eingabeleiste eingeben kann.

5.7 Umsetzung der Ergebnisse der zweiten informellen Evaluation

 Auf Basis der Erkenntnisse der vorherigen Bewertung können weitere Ver-

besserungen an der Oberfläche des Prototyps vorgenommen werden. Die um-

gesetzten Änderungen sind im Folgenden beschrieben.

5.7.1 Schnellnavigation innerhalb des Systems

 Für eine übersichtlichere Darstellung von vielen Favoriten wird ein einziges

Element in der Seitenleiste angebracht, welches bei einem Klick eine Erweite-

rung der Seitenleiste mit den existierenden Favoriten anzeigt.

5.7.2 TellMe-Eingabeleiste

 Um das Aufrufen der kontextbezogenen Aktionen zu vereinfachen werden die

angezeigten Ergebnisse künftig in kontextbezogene und globale Aktionen unter-

teilt. In der kontextbezogenen Liste werden alle Aktionen angezeigt die für das

derzeitig angezeigte Objekt verfügbar sind. Bei einem Aufruf der jeweiligen kon-

textbezogenen Aktion wird das Objekt standardmäßig in der Ansicht der Aktion

eingetragen. In der globalen Liste werden zusätzliche Aktionen aufgelistet die

nicht zu dem derzeitigen Kontext gehören. Bei deren Ausführung werden keine

kontextbezogenen Daten eingetragen. Ohne eine vorhandene Eingabe sollen

dem Benutzer alle im Kontext vorhandenen Aktionen, sowie die am häufigsten

ausgeführten Aktionen angezeigt werden.

 Für erweiterte Eingabemöglichkeiten wird die Eingabefolge „*Klasse* *Ak-

tion*“ verworfen. Stattdessen wird ein Part-Of-Speech-Tagger verwendet, der

den eingegebenen Wörtern ihre zugehörigen Wortarten zuweist. Aus diesen

Wortarten kann nachfolgend ein Schluss gezogen werden, welche Klasse und

Aktion der Benutzer aufrufen möchte. Hierbei ist anzumerken, dass die Umset-

zung eines kompletten Part-Of-Speech-Tagger den Umfang dieser Diplomarbeit

um weites übersteigen würde. Da aus Kostengründen ein bereits existierender

Part-Of-Speech-Tagger für die spätere Verwendung nicht in Frage kommt, wird

73

für die TellMe-Eingabeleiste eine vereinfachte Version umgesetzt. Diese Umset-

zung basiert auf den vorhandenen Klassen- und Aktionsnamen sowie Synony-

men. Diese Daten können als ein bereits getaggter Korpus betrachtet werden, da

jedem Synonym, beziehungsweise Klassen- und Aktionsname seine Wortart zu-

gewiesen werden kann. Namen und Synonyme die Klassen beschreiben, werden

hierbei als Nomen betrachtet, wohingegen solche die eine Aktion beschreiben

als Verb eingestuft werden. Im Satz „Ich möchte ein Fahrzeug reservieren“ würde

dementsprechend „Fahrzeug“ als Nomen markiert und „reservieren“ als Verb.

Um Eingaben mit Bezug auf ein spezielles Objekt zu berücksichtigen, werden

Schlüsselwörter wie „für“, „zu“, „von“ und weitere als Präposition markiert. Der

zwischen einer Präposition und einem Verb stehende Text wird anschließend als

Einschränkung der Aktion interpretiert. Die für die Auswertung der Texte verwen-

dete Komponente ist in Abbildung 14 als UML-Klassendiagramm dargestellt.

Abbildung 14 Klassenmodell der TellMe-Textevaluation

74

Die Eingabe der Begriffe für Klassen und Aktionen wird um erstellbare Synonyme

für diese erweitert. Diese Synonyme können für jede Klasse oder Aktion angelegt

werden und werden bei der Zuweisung der Wortarten und Auswertung der Sem-

antik berücksichtigt.

5.8 Ergebnisse der abschließenden Evaluation

 Für eine Einstufung der Tauglichkeit der umgesetzten Maßnahmen zur Ver-

besserung der Benutzbarkeit des Systems werden abschließend formale Evalu-

ationen mit den in 5.2 beschriebenen Testnutzern durchgeführt. Die Ergebnisse

dieser Evaluation geben Aufschluss über die Güte der Benutzbarkeit des Sys-

tems. Für einen Vergleich zum Vorgängersystem werden weitere Cleverle-Be-

nutzer nach ihrem Empfinden von Cleverle befragt. In diesem Kapitel werden die

erhaltenen Ergebnisse analysiert und zusammengefasst.

5.8.1 Allgemeine Ergebnisse

 Durch die Evaluationen hinweg gab es einige Dinge die bei mehreren Test-

nutzern zu Verwirrung führten.

 Die Darstellung von m-n-Relationen ist für den Benutzer nicht ausreichend

verständlich dargestellt. Dies ist im konkreten Fall der ersten Testaufgabe deut-

lich zu erkennen, da mehrere Testnutzer die Mitarbeiter-Relation der inkorrekt

erfassten Person bearbeiten wollten um den Namen entsprechend zu ändern.

Diese Änderung muss allerdings auf dem Objekt der eigentlichen Person durch-

geführt werden, was für die Testnutzer nicht gleich erkennbar war.

 In einigen Fällen ergibt die Darstellung der TellMe-Aktionsresultate keinen für

den Benutzer ersichtlichen Sinn. Im Kontext einer Abteilung erhält der Benutzer

beispielsweise das Resultat „Abteilung Personalliste“ (siehe Abbildung 15), was

keine korrekte Formulierung der eigentlichen Funktionalität darstellt. Dies führte

in der ersten Testaufgabe dazu, dass einige Testnutzer die verfügbare Aktion auf

der Ansichtsseite der Abteilung übersahen und somit die Aufgabe nur mit einem

gewissen Zeitverlust lösen konnten.

75

Abbildung 15 TellMe-Popup für Eingabetext "eine Abteilung"

 Als ein großes Problem bei der testweisen Benutzung des Prototyps konnte

die Verwendung von modalen Popups für Eingabemasken erkannt werden.

Diese Popups überlagern die komplette Anwendung und verhindern jegliche In-

teraktion mit ihr. Speziell bei Eingabemasken welche die Auswahl eines Objekts

benötigen kann dies hinderlich sein. Existiert das gewünschte Objekt in diesem

Fall nicht, so muss es vom Benutzer zuerst angelegt werden. Um dies zu tun,

muss der Benutzer entweder die Anwendung in einem anderen Fenster neu öff-

nen oder das Popup schließen. Vor allem durch letzteres wird der Benutzer aus

seiner aktuellen Tätigkeit gerissen und muss sich folglich neu orientieren um

diese nach der Erstellung der benötigten Objekte fortzusetzen. Dieses Problem

trat hauptsächlich in der dritten zu erledigenden Aufgabe auf, da für deren Aus-

führung die kulturneutralen Texte, sowie Bilder für jedes Navigationselement er-

stellt werden mussten. Die Testnutzer benötigten in diesen Fällen erheblich mehr

Zeit um die Aufgabe zu lösen, als wenn sie die Texte und Bilder direkt während

der Erstellung hätten anlegen können.

 Ein fehlendes Feature der TellMe-Eingabeleiste wurde mit der Navigation zu

Objekten erkannt. Alle Testnutzer versuchten während der Ausführung der Tests

ein Objekt mittels einer Eingabe der Art „Abteilung TST4 ansehen“ zu öffnen.

Diese Möglichkeit existiert im zum Zeitpunkt der Evaluationen verwendeten

Stand des Systems jedoch noch nicht. Durch diese Eingabe hätten die Testnut-

zer bei der Ausführung ihrer Tätigkeiten einen Teil der aufgewendeten Zeit spa-

ren können, auch ohne sich mit der Navigationsstruktur der einzelnen Anwen-

dungen auseinanderzusetzen.

 Von mehreren Testnutzern wurde auch die Funktionalität der Filter bemängelt.

Da diese nicht im Rahmen dieser Arbeit entworfen wurden, verfügen sie nur über

eine Grundfunktionalität, die es erlaubt einzelne Eigenschaften der Objekte ein-

zuschränken. Die Filter befinden sich in einem über die Seitenleiste erreichbaren

76

Menü und beziehen sich jeweils auf die in den Listenansichten angezeigten Da-

ten. Da die Filter visuell von den dargestellten Daten getrennt sind, geht der Be-

zug zu diesen verloren, weshalb einige Benutzer Probleme damit hatten die Ein-

schränkung der Eigenschaften in den richtigen Feldern einzugeben. Die in den

Eingabefeldern angezeigte Bezeichnung der zugehörigen Spalte ist für eine Zu-

ordnung nicht ausreichend, da sie für einige Testnutzer nicht ersichtlich und somit

nicht hilfreich war. Weiterhin ist es für die Benutzer nicht möglich die Filter zu-

rückzusetzen, ohne dass sie alle eingetragenen Filter von Hand entfernen und

die Daten erneut Filtern. Durch ein erneutes Laden der Seite konnten einige der

Testnutzer dieses Problem umgehen, was jedoch zu einem Verlust des aktuellen

Kontextes – beispielsweise des zu diesem Zeitpunkt geöffneten Reiters – führte.

5.8.2 Erlernbarkeit der Anwendung

 Nach der Durcharbeitung der Testaufgaben stuften alle Testnutzer ohne Cle-

verle-Erfahrungen die Erlernbarkeit von Cluu als sehr einfach ein. Dies zeigt,

dass auch unerfahrene Benutzer ohne größeren Lernaufwand gut mit der An-

wendung umgehen können. Auch die für die Ausführung der Aufgaben benötigte

Zeit und die dabei getätigten Fehler bestätigen diese Eindrücke der Testnutzer.

Diese Gruppe erledigte Aufgaben 1 und 2 in durchschnittlich 8:55, respektive

6:40 Minuten und war somit ähnlich schnell oder nur unwesentlich langsamer als

die Gruppe mit Cleverle-Erfahrung. Mit durchschnittlich 0 Fehlern für die erste

und 0,33 Fehlern für die zweite Aufgabe waren die Anzahlen der getätigten Feh-

ler ebenfalls gering.

5.8.3 Belastung der Anwendung nach NASA-TLX

 In den Formularen zum NASA-Task-Load-Index (2.2.9) ist zu erkennen, dass

die Belastung bei der Verwendung von Cluu mittelmäßig hoch ist, was bei einer

erstmaligen Verwendung ohne vorherige Erfahrungen mit ähnlichen Systemen

durchaus nachvollziehbar ist. Nach der ersten Aufgabe war die Durchführung der

zweiten Ausgabe im Vergleich weniger belastend, wobei gleichzeitig der gefühlte

Erfolg anstieg und die Frustration mit dem System sank. Die Durchschnittswerte

der ausgefüllten NASA-TLX-Formulare – Aufgabe 1 in Rot, Aufgabe 2 in Blau –

sind in Abbildung 16 zu sehen.

77

Abbildung 16 NASA-TLX von Benutzern ohne vorherige Erfahrungen mit Cleverle

5.8.4 Eindruck des getesteten Systems

 Insgesamt wurde Cluu von den Testnutzern durchweg positiv bewertet. Im

Vergleich zum Vorgängersystem Cleverle schnitt es in einigen Punkten deutlich

besser ab. Cleverle wurde von Anwendern durchschnittlich mit 0.98 Punkten auf

einer Skala von -3 bis 3 bewertet, wobei die Bewertung von benutzbarkeitsrele-

vanten Kriterien bei 0.97 Punkten lag. Cluu wurde insgesamt im Vergleich zu

Cleverle mit 1.30 Punkten um 0.32 Punkte besser bewertet. Die benutzbarkeits-

relevanten Kriterien wurden in Cluu um 0.37 Punkte besser mit 1.34 Punkten

bewertet. Ein Vergleich der Bewertungen der beiden Systeme ist in Abbildung 17

zu sehen. Im Punkt Voraussagbarkeit schnitt Cluu im Vergleich zu Cleverle deut-

lich schlechter ab, was durch die Verwendung eines sich noch in der Entwicklung

befindlichen Prototypen erklärt werden kann. Da noch nicht alle Funktionalität

umgesetzt und ausführlich getestet ist, kann es zu Fehlern und unerwarteten

Rückmeldungen während der Benutzung kommen.

78

Abbildung 17 Bewertung von Cleverle (links) und Cluu (rechts) aller Testnutzer

 Testnutzer ohne Cleverle-Erfahrung stuften Cluu wie in Abbildung 18 darge-

stellt ein. Ohne Beeinflussung von vorherigen Systemen ist eine Tendenz zu ei-

ner positiven Bewertung ersichtlich. Durchschnittlich wurde das System auf der

verwendeten Skala von -3 bis 3 mit 1,25 Punkten bewertet. Hierbei wurden spe-

ziell benutzbarkeitsrelevante Kriterien mit durchschnittlich 1,33 Punkten gut be-

wertet. Am stärksten zeichneten sich hierbei die gute Erlernbarkeit des Systems,

die aufgeräumte Oberfläche, sowie die hohe Stabilität aus. Eher negativ wurden

Dinge wie die mittelmäßige Geschwindigkeit und Komplexität des Systems be-

wertet.

Abbildung 18 Bewertung von Cluu von Benutzern ohne vorherige Erfahrungen mit Cleverle

Verwirrend Übersichtlich

Langsam Schnell

Schlecht Gut

Konservativ Innovativ

Unattraktiv Attraktiv

Instabil Stabil

Hässlich Schön

Unerfreulich Erfreulich

Überladen Aufgeräumt

Unberechenbar Voraussagbar

Kompliziert Einfach

Unangenehm Angenehm

Schwer erlernbar Leicht erlernbar

Verwirrend Übersichtlich

Langsam Schnell

Schlecht Gut

Konservativ Innovativ

Unattraktiv Attraktiv

Instabil Stabil

Hässlich Schön

Unerfreulich Erfreulich

Überladen Aufgeräumt

Unberechenbar Voraussagbar

Kompliziert Einfach

Unangenehm Angenehm

Schwer erlernbar Leicht erlernbar

79

5.8.5 Ergebnisse der Evaluation mit Entwicklern

 Bei den Evaluationen mit Entwicklern stellte sich heraus, dass das Anlegen

von neuen Anwendungsstrukturen noch nicht ausreichend einfach zu bewerk-

stelligen ist. Durchschnittlich benötigten die Testnutzer 13:35 Minuten zum Aus-

führen der entsprechenden Aufgabe. Auffallend war vor allem die Verwirrung um

das Eintragen der Überschriften und Beschreibungen der Anwendung und der

Unterknoten. Aufgrund von Lokalisierungen werden diese Texte als Kulturneut-

rale Texte angegeben, die als Objekte der entsprechenden Klasse im System

existieren. Neue Texte lassen sich somit nur über die Funktionalitäten des Sys-

tems (CRUD-Operationen) erstellen und anschließend bei der Erstellung der Na-

vigationselemente auswählen. Eine direkte Erstellung in der Eingabemaske für

neue Navigationselemente ist derzeit nicht möglich. Die Testnutzer wollten die

Überschriften und Beschreibungen eintragen ohne vorher die entsprechenden

kulturneutralen Texte erstellt zu haben. Sie benötigten einige Zeit um die Struktur

hinter den kulturneutralen Texten zu verstehen, was für eine höhere zur Ausfüh-

rung benötigte Zeit, sowie höhere mentale Belastungen und Frustration sorgte.

Es ist jedoch anzumerken, dass nachdem die Benutzer ein gewisses Verständnis

für die Struktur der Texteingabe erlangt hatten, die restlichen Schritte der Auf-

gabe deutlich schneller durchgeführt werden konnten. Die durchschnittliche Zeit

für das Erstellen der Anwendung und dem damit verbundenen Anlegen der be-

nötigten Texte lag bei 8:50 Minuten, die benötigte Zeit für das Erstellen der drei

untergeordneten Knoten bei 4:45 Minuten. Bei der Ausführung dieser Aufgabe

wurde auch die Bedeutung der zentralen Schnittstelle für das Auffinden der Funk-

tionalitäten deutlich. Da die Benutzer keine Kenntnis über die Positionierung der

kulturneutralen Texte innerhalb des Systems hatten, hätte eine Suche nach der

gewünschten Funktionalität einen großen zeitlichen Aufwand bedeutet. Jedoch

konnte dieser Aufwand durch die Verwendung der Eingabeleiste mit Eingabetex-

ten wie „Text erstellen“ stark reduziert werden, da durch dieses Vorgehen der

benötigte Text ohne einen Verlust des derzeitigen Kontexts erstellt werden

konnte.

80

Abbildung 19 NASA-TLX von Entwicklern

 Beim Austausch von Funktionalität konnte in den Tests mit Entwicklern fest-

gestellt werden, dass die Verwendung der TellMe-Eingabeleiste einen großen

Einfluss auf die benötigte Zeit für die Ausführung der Aufgabe hatte. Die Aufgabe

konnte unter Zuhilfenahme der TellMe-Eingabeleiste von einem der testenden

Entwickler innerhalb von 2:30 Minuten gelöst werden. Da sich die Verwaltung der

Aktionsimplementierung jedoch unter den Systemmetadaten befindet, war die

entsprechende Auflistung der Daten nur schwer ohne vorherige Kenntnisse zu

finden. Mit dem hierfür nötigen Suchen der Funktionalität benötigte ein anderer

Entwickler zur Lösung der Aufgabe insgesamt 12:30 Minuten. Dementsprechend

wurde auch die empfundene Belastung der Aufgabe entweder sehr niedrig oder

sehr hoch eingestuft, wodurch sich im Durchschnitt ein eher mittelhohes Belas-

tungsniveau ergibt.

 Die Durchschnittswerte der ausgefüllten NASA-TLX-Formulare – Aufgabe 3

in Grün, Aufgabe 4 in Gelb – sind in Abbildung 19 zu sehen.

81

6 Fazit

 Wie in diesem Dokument deutlich wird, ist die Einbeziehung von Benutzern

während der Entwicklung von Oberflächen eine wichtige Voraussetzung für eine

gute Benutzbarkeit. Sowohl bei der Erfassung von Anforderungen, als auch bei

der Evaluation der entstehenden Komponenten sind die von realen Benutzern

gegebenen Rückmeldungen wertvoll und nicht zu unterschätzen. Während die-

ser Diplomarbeit wurden mehrere Probleme und Wünsche bezüglich der Benutz-

barkeit erkannt. Diese wurden nach ihrer Wichtigkeit und ihrem Nutzen bewertet

und die vielversprechendsten Lösungsansätze weiter verfolgt und umgesetzt. Es

konnte eine zentrale Schnittstelle zum Auffinden der verteilten Funktionalitäten in

föderierten Informationssystemen implementiert werden, die dem Benutzer er-

laubt, anhand von Klassen- und Aktionsnamen beliebige Funktionalitäten an al-

len Stellen des Systems aufzurufen. Weiterhin konnte das Verständnis und die

Navigation innerhalb des Systems durch Umsetzung einer Block-Metapher ver-

bessert werden.

 Bei der abschließenden Evaluation der entwickelten Benutzeroberfläche

konnte festgestellt werden, dass diese, speziell im Vergleich zum Vorgängersys-

tem, über eine gute, aber dennoch verbesserungsfähige Benutzbarkeit verfügt.

Selbst Benutzer ohne Erfahrung mit dem Vorgängersystem konnten die gestell-

ten Testaufgaben meist erfolgreich lösen und empfanden den benötigten Lern-

aufwand als gering. Jedoch ist für die weitere Entwicklung eine weiterführende

Zusammenarbeit mit den Endbenutzern wichtig, um die Oberfläche auf eine gute

Benutzbarkeit hin abzustimmen. Das erarbeitete Evaluationsvorgehen kann hier-

für als Grundlage für zukünftig durchzuführende Evaluationen mit Testnutzern

verwendet werden.

 Es konnte beobachtet werden, dass eine zentrale Positionierung der Funktio-

nalitäten den zeitlichen Aufwand bei der Verwendung eines föderierten Informa-

tionssystems reduzieren kann. Weiterhin wirkt sich diese Schnittstelle bei geeig-

neter Umsetzung positiv auf die Erlernbarkeit der Anwendung aus, da Benutzer

sich bei einer natürlich sprachlichen Suche der gewünschten Funktionalitäten

nicht mit der grundlegenden Architektur des Systems und der eingebundenen

Anwendungen auskennen müssen.

82

 Die Funktionalitäten der Schnittstelle sollten daher eingesetzt, kontinuierlich

verbessert und ausgebaut werden. Vor allem die Auswertung der Eingabe befin-

det sich noch nicht in einem Stand der beliebige Texte erkennt. Auch können

gewisse Komfortfunktionen, wie eine automatische Vervollständigung der Ein-

gabe, mit den in dieser Diplomarbeit beschriebenen Methoden umgesetzt wer-

den.

 Da in dieser Diplomarbeit nicht alle erkannten Probleme behandelt und gelöst

werden konnten, sollten während der weiteren Entwicklung die erarbeiteten Lö-

sungsansätze überprüft, umgesetzt und evaluiert werden.

83

7 Anhang

 Folgend sind die Ergebnisse der Evaluationen mit Testnutzern angehängt.

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

8 Literaturverzeichnis

Busse Susanne [et al.] Federated Information Systems: Concepts, Terminology

and Architectures [Buch]. - [s.l.] : Technische Universität Berlin, 1999.

Damerau Fred J. A technique for computer detection and correction of spelling

errors [Journal] // Communcations of the ACM. - 1964. - 3 : Bd. 7. - S. 171-176.

Gale William, Church Kenneth Ward und Yarowsky David Estimating the

upper and lower bounds on the performance of word-sense disambiguation

programs [Konferenz] // Proceedings of the 30th Annual Meeting on Association

for Computational Linguistics. - Newark, Delaware : [s.n.], 1992. - S. 249-256.

Gould John D und Lewis Clayton Designing for Usability: Key Principles and

What Designers Think [Artikel] // Communications of the ACM / Hrsg. ACM. -

1985. - 3. - 28. - S. 300-311.

Hart Sandra G NASA-Task Load Index (NASA-TLX); 20 Years Later

[Konferenz] // Proceedings of the the human factors and ergonomics society

annual meeting. - 2006. - Bd. 50. - S. 904-908.

Hart Sandra G und Staveland Lowell E Development of NASA-TLX (Task Load

Index): Results of Empirical and Theoretical Research [Journal] // Advances in

psychology. - [s.l.] : Elsevier, 1988. - Bd. 52. - S. 139-183.

Held Uli Cleverle Schnelleinstieg. - Weissach : [s.n.], 2009.

Jurafsky Daniel und Martin James H Speech and language processing - An

Introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition [Buch]. - Upper Saddle River, NJ : Prentice-Hall, Pearson

Education International, 2009.

Ludewig Jochen und Lichter Horst Software Engineering - Grundlagen,

Menschen, Prozesse, Techniken [Buch]. - [s.l.] : dpunkt.verlag, 2007.

Marcus Mitchell P, Marcinkiewicz Mary Ann und Santorini Beatrice Building

a large annotated corpus of English: The Penn Treebank [Journal] //

Computational linguistics. - [s.l.] : MIT Press, 1993. - 2 : Bd. 19. - S. 313-330.

Mayhew Deborah J Principles and Guidelines in Software User Interface Design

[Buch]. - [s.l.] : Prentice-Hall, Inc., 1991.

Mayhew Deborah J The Usability Engineering Lifecycle: A Practitioner's Guide

to User Interface Design [Buch]. - [s.l.] : Morgan Kaufmann Publishers, 1999.

144

Osgood Charles E The nature and measurement of meaning [Journal] //

Psychological Bulletin. - 5 1952. - 3 : Bd. 49. - S. 197-237.

Rosson Mary Beth und Carroll John M Usability Engineering: Scenario-based

development of human-computer-interaction [Buch]. - [s.l.] : Elsevier, 2001.

Schiller Anne [et al.] Guidelines für das Tagging deutscher Textcorpora mit

STTS [Bericht] / Institut für Maschinelle Sprachverarbeitung, Universität

Stuttgart. - 1999.

Scriven Michael S The methodology of evaluation [Buchabschnitt] //

Perspectives of curriculum evaluation. - [s.l.] : Chicago: Rand McNally, 1967.

Toutanova Kristina [et al.] Feature-rich Part-of-speech Tagging with a Cyclic

Dependency Network [Konferenz] // Proceedings of the 2003 Conference of the

North American Chapter of the Association for Computational Linguistics on

Human Language Technology. - Edmonton, Canada : Association for

Computational Linguistics, 2003. - S. 173-180.

UEQ-Online UEQ-Online User Experience Questionaire [Online]. - UEQ-

Online. - 23. 4 2015. - http://www.ueq-online.org.

Wixon Dennis und Wilson Chauncey The usability engineering framework for

product design and evaluation [Journal] // Handbook of Human-Computer

Interaction. - [s.l.] : North-Holland Amsterdam, 1997. - Bd. 2. - S. 653-68.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich

oder sinngemäß aus anderen Werken übernommene Aussagen als solche ge-

kennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand ei-

nes anderen Prüfungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Stuttgart, 12.05.2015

Philipp Pirrung

