Institut fiir Parallele und Verteilte Systeme
Abteilung Anwendersoftware
Universitat Stuttgart
UniversitatsstraBBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3740

Regelbasiertes Pattern-Mapping
von Mashup Plans

Baris Kalyoncu

Studiengang: Informatik

Prifer/in: PD Dr.B.Mitschang
Betreuer/in: Dipl.-Inf. Pascal Hirmer
Beginn am: 15. Februar 2016
Beendet am: 16. August 2016

CR-Nummer: D.2.13,H.2.5, H.2.8,1.6.7

Inhaltsverzeichnis

1

Einleitung
1.1 Zielsetzung L e
Grundlagen
2.1 Datenbanksysteme
2.1.1 Vorteile von Datenbankmanagementsystemen
2.1.2 Relationales Datenmodell
213 SOL © ot
2.1.4 Transaktionsmanagement,
22 Patterns.
221 Definition
2.2.2 Solution Implementations L.
2.2.3 Patternhierarchien oo
23 Workflows
2.3.1 Die Workflow-Technologie
2.3.2 Workflow Management
233 Workflow Sprachen L
234 Workflow-Klassen
2.3.5 Business Process Execution Language
2.4 Service Oriented Architecture
24.1 SOADefinition
2.4.2 Grundlegende Merkmale einer SOA,
243 DasSOADreieck
244 WebServices
2.4.5 Die Bestandteile von Web Services
2.5 Pipes And Filters-Architektur oL
26 DataMashups
261 Mashups
2.6.2 Eigenschaften von Data Mashups,
263 DataMashupTools
2.6.4 Vorteile und Nachteile von Data Mashups
27 MashupPlans L
2.7.1 Extended Data Mashup Ansatz
2.7.2 Mashup Plan Modellierung L.
2.7.3 Patternbasierte Transformation
274 FlexMash

11
11
12
13
14
15
16
16
17
17
19
19
20
23
24
24
27
27
27
28
30
30
32
35
35
35
36
37
38
38
38
40
43

Grundkonzept einer Fragment-Repository

3.1 Funktion des Fragment-Repositories . . .
3.2 Architektur eines Fragment-Repositories
3.3 Verwendete Technologien
3.3.1 Spring Framework
332 MongoDB
333 MySOL.
3.4 Regelbasiertes Mapping
3.4.1 Regelbasierte Transformation . .
3.4.2 Patternhierarchie im Beispiel . .
Patternbeispiele
4.1 Source-to-Source Pattern
42 FilterPattern
43 DataSplitPattern
4.4 Data Merge Pattern
4.5 DataIteration Pattern
4.6 Sequentielles Data Iteration Pattern . . .
Implementierung
5.1 Verwendete Technologien
5.2 Datenebene
5.3 Datenzugriffsebene
5.3.1 DieKlasse Fragment
5.3.2 Der Repository-Dienst
5.3.3 Die Funktionen des Repository-Dienstes
5.4 Transformation von Mashup-Flows . . .
54.1 Bestandsaufnahme
5.4.2 Konzept der Transformation . . .
5.4.3 Ablauf der Methode transformFlow
5.4.4 Die Methode mapPattern
5.4.5 Die neue Methode convert
Related Work

Zusammenfassung und Ausblick

7.1
7.2

Zusammenfassung

Ausblick

Literaturverzeichnis

45
45
46
49
50
54
57
57
58
59

63
63
63
63
65
65
66

69
69
70
71
72
73
74
79
79
80
31
83
84

85

91
91
93

95

Abbildungsverzeichnis

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
34
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

5.1

Der Pattern-Graph [HM16] 18
Workflow-Dimensionen (leymanet.al) 20
Funktionsbereiche innerhalb eines WEMS o L. 21
Workflow-Referenzmodell [Mil06] 22
Workflow Metamodell [Mal06] 23
Klassifizierung von Workflows [RSM11] 25
Das SOA-Dreieck 29
Struktur einer SOAP-Nachricht 31
lineares Pipes and Filter Architekturmodell [RHJNO4] 33
Pipes and Filters Beispiel [AZ05] 34
DataMashup 36
Extended Mashup Ansatz [HRWMI15] 39
Mashup Plan [HRWMI15]. 40
Komponenten der Mashup Plan Transformation [HRWM15] 43
Fragment-Repository o o L 47
Architektur der Fragment-Repository 49
Die Architektur des Spring Framworks [JHDT04] 51
Normales System ohne AOP 52
Ansatzmit AOP e 53
Pattern Transformer [LROO] 59
Transformation eines Mashup Plans mit Patterns 60
Source-to-Source Pattern oo L 64
DataFilter Pattern 64
Data Split Pattern 65
Data Merge Pattern o 66
Data Iteration Pattern 67
Sequentielles Data Iteration Pattern 67
Die zwei Phasen der Transformation 83

Verzeichnis der Listings

5.1 Beispiel fiir JSON-Objekt fiir die Registrierung eines Fragments 72
5.2 Java-Klasse zur Reprasentation eines Fragments 73
5.3 Die Klasse FragmentRepository o 74
5.4 Eine Methode der Klasse FragmentRepository 75
5.5 DieKlasse FlowNode 80
5.6 Beispiel fiir JSON-Knoten des Typs Pattern 82

1 Einleitung

Der Einsatz von Mashup Applikationen hat in den letzten Jahren zunehmend an Bedeutung gewonnen.
Unternehmen bedienen sich Anwendungen wie Yahoo Pipes, IBM MashupHub oder Intel Mas-
hmaker, um unternehmensbezogene heterogene Daten und Anwendungen aus einer Vielzahl von
Datenquellen zusammenzufithren, kombinieren, zu verarbeiten, anzureichern und das Ergebnis als
Visualisierung zu préasentieren. Aufgrund der heutzutage stetig steigenden und oftmals verteilten Da-
tenmengen (Big Data) ist eine moglichst generische, automatisierte Zusammenfithrung und Analyse
(semi-) strukturierter und unstrukturierter Daten notwendig. Dieser Prozess der ad-hoc Zusammen-
filhrung mehrerer Datenquellen ist auch unter dem Begriff Data Mashup oder Enterprise Mashup
bekannt. Ein Data Mashup kombiniert, manipuliert und verbindet unterschiedliche Datenquellen fiir
eine einheitliche Visualisierung und erlaubt Anwendern ohne technischen Kenntnisse aus bestehen-
den Daten in unterschiedlichen Systemen ad-hoc eine neue Anwendung zu erstellen. Um derartige
Mashups zu realisieren wurden Technologien geschaffen, die jedoch hohe technische Anforderungen
erfordern und aus diesem Grund lediglich von Experten mit entsprechenden technischen Fertigkeiten
verwendet werden konnen. Dies hat zur Folge, dass diese Technologien ausschlieB8lich von einem stark
eingegrenzten Nutzerkreis benutzt werden konnen. Des Weiteren sind bestehende Losungen in ihrer
Flexibilitat eingeschrankt, d.h. sie unterstiitzen nur eine einzelne Art der Ausfithrung und erfiillen
somit auch nur bestimmte Nutzeranforderungen (z.B. bzgl. Robustheit, Effizienz, Skalierbarkeit etc.)

Um diese Einschriankungen zu beseitigen wurde an der Universitat Stuttgart das Data Mashup Tool
FlexMash entwickelt, welches eine einfache Modellierung von Data Mashups durch Doménenex-
perten sowie eine flexible (d.h. anforderungsabhangige) Ausfithrung erméglicht. Um eine moglichst
abstrakte Modellierung von Data Mashups zu erméglichen, werden doméanenspezifische Mashup
Plans verwendet. Ein Mashup Plan ist ein nicht-ausfithrbares Format zur abstrakten Modellierung
und Verkniipfung von Datenquellen, sogenannten Data Source Descriptions (DSDs) und Datenope-
rationen, sogenannten Data Processing Descriptions (DPDs). Diese nicht ausfithrbaren Mashup
Plans konnen anschlieend, entsprechend der Nutzeranforderungen, auf verschiedene ausfiithrbare
Formate transformiert werden. So kann fiir eine robuste Ausfithrung des Mashup Plans eine BPEL
Workflow Engine zum Einsatz kommen.

1.1 Zielsetzung

Die Transformation von Mashup Plans in eine ausfithrbare Darstellung, dem sogenannten ausfiihr-
baren Mashup Plan (z.B. ein BPEL Workflow), wurde bereits in vorangegangenen Arbeiten erortert
und gel6st. Im Rahmen dieser Diplomarbeit wird die Bereitstellung von Code-Fragmenten, die als
ausfiithrbare Bausteine vom Mashup Plan aufgerufen werden (in BPEL z.B. : Web Services) beschrieben.
Dabei stellen Code-Fragemente die konkreten Implementierungen von DSDs und DPDs dar, wobei es

1 Einleitung

mehrere Implementierungen fiir DSDs und DPDs geben kann. DPDs und DSDs sind allgemein als
Pattern, Muster zu betrachten, also als abstrakte Losung eines Problems.

Patterns sind bewihrte Losungsmuster fiir haufig auftretende Problemfille und ihre Verwendung
ermoglicht Abstraktion und eine hohe Flexibilitat. Fur die konkrete Umsetzung von abstrakten
Patterns existieren meist eine Vielzahl an Implementierungen. Diese sind jeweils abhéngig vom
Kontext, in dem das Pattern angewendet wird. Das Finden einer geeigneten Implementierung zu
einem verwendeten Pattern, genannt Mapping, stellt jedoch eine grof3e Herausforderung dar, da in
den meisten Féllen mehr als eine mogliche Implementierung existiert und folglich eine Auswahl
anhand geeigneter Kriterien erfolgen muss. Dieses Problem soll im Rahmen dieser Diplomarbeit
mittels eines Konzeptes sowie einer prototypischen Implementierung gelost werden.

Grundlegendes Ziel dieser Arbeit ist die automatische Bereitstellung von geeigneten Code-Fragmenten
mit Hilfe eines Fragment-Verzeichnisses, welche die in Mashup Plans modellierten, abstrakten DSDs
und DPDs durch konkrete Implementierungen ersetzen. Diese konnen anschliefend von ausfiithr-
baren Mashup Plans aufgerufen werden. Die Auswahl einer passenden Implementierung soll dabei
regelbasiert durch Parametrisierung der Patterns erfolgen. Das regelbasierte Pattern Mapping von
Mashup Plans wird in den Kapiteln genauer erldutert.

Fiir die Entwicklung eines solchen Fragmente-Verzeichnisses zur Bereitstellung von konkreten DSD-
und DPD-Implementierungen, soll in dieser Arbeit zunichst ein Konzept erstellt werden, welches
spéter prototypisch umgesetzt werden soll. Hierbei soll untersucht werden, in welcher Form Code-
Fragmente der DSDs und DPDs als Vorlagen (Templates) abgespeichert werden kénnen. Das Ver-
zeichnis soll als Repositorium eine effektive Verwaltung der Code-Fragmente anhand verschiedener
Funktionen erméglichen. Des Weiteren sollen fiir ein effizientes Retrieval von Codefragmenten aus
dem Verzeichnis Metadaten verwendet. Diese sollen in abstrakter Weise die Funktionalititen und
weitere charakteristische (z.B. Eingabe- und Ausgabeparameter etc.) Eigenschaften der gespeicherten
Fragmente beschreiben. Um einen schnellen und effizienten Ablauf der Suche im Repositorium zu
gewihrleisten, muss die Verwendung einer geeigneten Datenbanktechnologie wie z.B. relationale oder
NoSQL-Technologien bzw. einer Kombination verschiedener Technologien ermittelt werden, wodurch
die Nachteile der jeweiligen Datenbankansatze verringert bzw vermieden und die positiven Merkmale
der Ansitze fiir eine effizientere Losung ausgenutzt bzw. zusammengefithrt werden. Ferner soll auf
die Fragestellungen eingegangen werden, wie entsprechende Templates instantiiert, d.h. ausfithrbar
gemacht und wie eine passende Implementierung fiir DSDs und DPDs gefunden werden kann. Hierzu
kann beispielsweise eine baum-basierte Patternhierarchie herangezogen werden, die es erméglicht,
Patterns, also abstrakte Losungsansitze auf der hochsten Hierarchieebene, in kleinere Bestandteile,
sogenannte Subpatterns, bis hin zu ausfithrbaren Codefragmenten der niedrigsten Hierarchieebene
zu zerlegen. Basierend auf dieser Hierarchie konnen mittels eines regelbasierten Transformationsan-
satzes fiir DSDs und DPDs passende, ausfithrbare Codefragmente (z.B. BPEL Web Services) bestimmt
werden. Zur Veranschaulichung eines solchen Transformationsprozesses sollen ein oder mehrere
konkrete Anwendungsszenarien definiert und eine prototypische Implementierung erstellt werden,
welche spéter in das bestehende Data Mashup Tool FlexMash integriert werden soll bzw. kann.

1.1 Zielsetzung

Gliederung

Die Arbeit ist in folgender Weise gegliedert:
Kapitel 2 — Grundlagen: Hier werden werden die Grundlagen dieser Arbeit beschrieben.

Kapitel 3 — Grundkonzept einer Fragment-Repository: In diesem Kapitel wird das Konzept fiir
das Repository-Verzeichnis vorgestellt. Dazu wird der Aufbau und die Funktion des Repository-
Dienstes beschrieben.

Kapitel 4 — Patternbeispiele: Dieses Kapitel beschiftigt sich mit Patternbeispielen, die in einem
Mashup Plan vorkommen kénnen.

Kapitel 5 — Implementierung: In diesem Kapitel wird die technische Umsetzung (Implementie-
rung)des Konzepts erldutert vorgestellt.

Kapitel 6 — Related Work: Hier werden dhnliche Ansatze von Fragmente-Repositories aufgelistet

Kapitel 7 — Zusammenfassung und Ausblick: fasst die Ergebnisse der Arbeit zusammen und gibt
einen kurzen Ausblick.

2 Grundlagen

In diesem Kapitel werden grundlegende, informationstechnische Begriffe und Inhalte erklart, die im
weiteren Verlauf dieser Arbeit verwendet werden und fiir das Versténdnis der Thematik dieser Arbeit
notwendig sind.

2.1 Datenbanksysteme

Dieser Abschnitt basiert auf [RGO00].

Ein Datenbanksystem(DBS) setzt sich aus zwei Komponenten zusammen:

o der Datenbank (DB), die die Menge der zu verwaltenden Daten enthilt und

« dem Datenbankmanagementsystem (DBMS), der Software, die zur Verwaltung der DB benétigt
wird

Eine Datenbank(DB) ist eine Sammlung von Daten, die typischerweise die Aktivititen einer oder
mehrerer verwandter Organisationen beschreibt. Eine Universitatsdatenbank kann beispielsweise
folgende Informationen enthalten: Entitdten wie Studenten, Fakultdit, Kurse und Klassenzimmer so-
wie Beziehungen zwischen diesen Entititen (Studenten-Kurswahl, angebotene Kurse der Universitit,
Nutzung der bestehenden Klassenzimmer etc.)

Ein Datenbankmanagementsystem(DBMS) ist eine Software, die der Verwaltung und Verarbeitung
von groflen Datenansammlungen dient. Die Verwendung von Datenbankmanagementsystemen bringt
viele Vorteile mit sich.

Die Menge an Daten, die heutzutage verarbeitet, extrahiert und weitergeleitet und gespeichert
werden, steigt stetig. Dabei ist der Wert bzw. die Bedeutung von Daten als wirtschaftliches Gut allseits
anerkannt. Ohne eine geeignete Verwaltung dieser grofien Menge an Daten, kann der Mehrwert
einer Information nicht ausgeschopft werden. Zudem kann die effiziente Suche und das schnelle
Auffinden nach der passenden Information in Bezug auf eine bestehende Anfrage bzw. Problemstellung
bei einer gleichzeitig ansteigenden Menge an Informationen ohne ein leistungsstarkes und flexibles
Datenverwaltungssystem nicht gewahrleistet werden. Um den gréf3tmoglichen Nutzen aus grofien und
komplexen Datensatzen ziehen zu konnen, miissen Unternehmen tiber Systeme bzw. Tools verfiigen,
die ein einfaches Verwalten und das effiziente Extrahieren niitzlicher Informationen erméglichen.
Der Nutzen, der aus der Verwendung der extrahierten Information entsteht, sollte hoher sein als die
Kosten und der Aufwand zur Verwaltung und Suche dieser Daten.

Seit 1980 befestigte das relationale Model seine Position als dominierendes Datenbankmanagemen-
system, DBMS. Die von IBM im Rahmen eines Projekts entwickelte Query-Sprache fiir relationale

11

2 Grundlagen

Datenbanken, SQL, ist mittlerweile die fithrende Standard-Sprache. SQL wurde in den spéten 80er
Jahren standardisiert und der Standard durch das American National Standards Institute (ANSI) und
International Standards Organizations (ISO) ibernommen.

Seit dem Einzug ins Internetzeitalter spielen Datenbankmanagementsysteme eine bedeutende Rolle
fiir die Speicherung von Daten, auf welche mittels eines Web Browsers zugegriffen werden kann. Sie
ersetzen die bis dahin iibliche Speicherung von Daten in Operating System Files.

2.1.1 Vorteile von Datenbankmanagementsystemen

Die Verwendung von Datenbankmanagementsystemen fiir die Verwaltung von Daten bietet zahlreiche
Vorteile:

« Datenunabhingigkeit: Anwendungsprogramme sollten moglichst unabhéngig von Details
der Datenreprisentation und -Speicherung sein. Ein DBMS bietet eine abstrakte Sicht auf Daten
und trennt somit Anwendungscode von derartigen Details.

- Effizienter Datenzugriff: Ein DBMS bedient sich einer Vielzahl an Techniken, um Daten
effizient speichern und auffinden zu kénnen. Dieses Merkmal eignet sich hauptsachlich bei
Daten, welche in externen Speichergeriten werden

» Datenintegritit und Sicherheit: Erfolgt der Datenzugriff stets mittels des DBMS, kann die
DBMS Integritatsbeschriankungen geltend festlegen. So tiberpriift das DBMS beispielsweise, ob
das Budget der Abteilung tiberschritten ist, bevor die Gehaltsinformation eines Mitarbeiters
eingegeben wird. Des Weiteren kann ein DBMS bestimmen mittels eine Zugriffskontrolle,
welche Daten fiir welchen Klasse von Benutzer sichtbar bzw. verfiigbar sind.

« Datenverwaltung: Bei einer Vielzahl von Benutzern, die Daten teilen, bringt eine zentralisierte
Datenverwaltung bedeutende Verbesserungen. Erfahrene Experten konnen die Verantwortung
fiir die Organisation der Datendarstellung tibernehmen. Dadurch wir zum Einen die Redundanz
verringert und zum Anderen die Datenspeicherung fiir eine effizientere Suche verfeinert.

« Simultaner Zugriff und Crash Recovery: Ein DBMS verwaltet simultane Zugriffe auf Daten,
so dass dem Benutzer der Zustand suggeriert wird, dass lediglich jeweils ein Benutzer auf die
Daten zugreift. Zudem schiitzt das DBMS Benutzer vor den Auswirkungen eines Systemausfalls.

+ Verringerte Entwicklungszeit fiir Anwendungen: Datenbankmanagementsysteme unter-
stiitzen wichtige Funktionen, welche gebréauchlich sind fiir zahlreiche Anwendungen, die auf
die Daten eines DBMSs zugreifen. Dies erlaubt in Verbindung mit einem High-Level Interface
fiir Daten eine vereinfachte, schnellere Entwicklung von Anwendungen. Diese sind tiberdies
mit héherer Wahrscheinlichkeit robuster als Anwendungen, welche von Grund auf erstellt
werden, da wichtige Aufgaben, anstelle der Anwendungen selbst, vom DBMS bewaltigt werden

Neben den genannten Vorteilen gibt es jedoch auch Anwendungsfalle, in denen sich der Einsatz von
DBMS nicht eignen. DBMS sind optimiert auf ein bestimmtes Arbeitspensum und ihre Leistung kann
bei einigen spezialisierten Anwendungen nicht adaquat sein. Dies konnen Anwendungen mit strengen
Echtzeitbeschrankungen sein oder Anwendungen mit genau festgelegten kritischen Operationen,

12

2.1 Datenbanksysteme

fiir die speziell angefertigte effiziente Codes geschrieben werden miissen. Ein weiterer Grund dafiir,
ein DBMS nicht zu verwenden, kann eine Anwendung sein, welche Daten in einer von der Query
Language eines DBMS nicht unterstiitzten Weise manipulieren muss. Hier kann die abstrakte Sicht
eines DBMS auf Daten den Anforderungen der Anwendung nicht gerecht werden und hinderlich
sein.

Ein Grofiteil der Datenbankmanagementsysteme basieren auf dem relationalen Datenmodell.

2.1.2 Relationales Datenmodell

Das Zentrale Konstrukt beim relationalen Datenmodell zur Bechreibung von Daten ist eine Relati-
on, welches man sich bildlich in Form einer Tabelle vorstellen kann. Das relationale Datenmodell
beschreibt Tabellen und ihre Beziehung zu anderen Tabellen.

Eine relationale Datenbank beschreibt eine Sammlung von Tabellen (den Relationen), in welchen
Datensitze abgespeichert werden. Dabei entspricht jede Zeile (Tupel) in einer Tabelle einem Datensatz
(Record). Des Weiteren setzt sich jedes Tupel aus einer Reihe von Attributwerten (Eigenschaften)
zusammen, welche die Spalten der Tabelle darstellen. Eine Relation kann als eine Menge von Tupeln
(Records) verstanden werden. Im Bereich der Datenmodellierung wird die Beschreibung von Daten
Schema genannt. Ein Schema fiir eine Relation bestimmt in einem relationalen Modell den Namen der
Relation, den Namen jedes einzelnen Felds (Attribut oder Spalte) und den Typ des Felds. Den Attributen
einer Tabelle konnen Werte aus einer festgelegten Doméane zugewiesen werden. Dementsprechend
kann die Information beziiglich eines Studenten beispielsweise in einer Universitats-Datenbank in
einer Relation wie folgt als Schema gespeichert werden:

Students(sid: string, Name: string, login: string, Alter: integer, gpa: real)

Aus dem obigen Schema kann bestimmt werden, dass jeder Tupel in der Tabelle Student aus funf
Spalten besteht und jedem Attribut der Datentyp mitgegeben wird. In der folgenden Abbildung wird
eine Instanz der Tabelle Student dargestellt.

Jede Zeile in der Relation Student ist ein Datensatz (Record), welches einen Studenten beschreibt. Jede
Zeile ist hierbei nach dem festgelegten Schema angelegt, welches auch als ein Template betrachtet
werden kann. Diese kann durch Integritatsbedingungen weiter verfeinert werden, die jedes Tupel
der Tabelle erfiillen muss. So kann festgelegt werden, dass jeder Student eine eindeutige ID-Nummer
(sid)besitzt.

Tabellen werden mithilfe von Primir- und Fremdschliisseln miteinander verkniipft. Wie bereits
erwéhnt, identifizieren Priméarschliissel, also eine Menge von Attributen einer Relation, die Tupel einer
Relation eindeutig. Im Gegensatz dazu stellen Fremdschliissel eine Menge von Attributen innerhalb
einer Relation dar, welche die Primarschliissel derselben oder einer anderen Relation referenzieren.
Mithilfe dieser Fremdschliissel-Primarschliissel-Beziehungen kénnen mengenorientierte Operationen
auf Relationen ausgefithrt werden. Dementsprechend lassen sich Datensatze durch Schnitt-, Selektion-
und Vereinigungsoperationen auf mehrere Datensétze, abfragen bzw. erstellen. Fiir die Formulierung
dieser Abfragen wird eine spezielle Abfragesprache benétigt. Die dominierende Abfragesprache fiir
relationale Datenmodelle ist SQL, Structured Query Language.

13

2 Grundlagen

Zu den Starken des relationalen Modells gehort zum Einen ihre einfache Handhabung und zum
Anderen die Moglichkeit fiir die Verwendung von simplen High-Level-Sprachen fiir die Abfrage von
Daten. Zudem erlaubt die einfache tabellarische Darstellung selbst Anfangern beim besseren Verstind-
nis der Inhalte von Datenbanken. Zusammengefasst sind die wesentlichen Vorteile des relationalen
Datenmodells ihre verstandliche und simple Datendarstellung sowie die leichte Formulierbarkeit von
Abfragen.

2.1.3 SQL

Structured Query Language, SQL ist eine deklarative Sprache fiir die Verwaltung und Bearbeitung
von Daten in relationalen Tabellen. Das American National Standards Institute (ANSI) veroffentlichte
1986 den ersten Standard fiir SQL, welches mit der Zeit mit zusétzlichen Features verfeinert wurde
(z.B. objektorientierte Funktionalitit). Ferner konzentriert man sich seit 2006 auf die Integration
von SQL und XML. Hierzu wurde XQuerydefiniert, welches die Abfrage von Daten aus XML-
Dokumenten erméglicht. Das Ergebnis einer SQL-Abfrage ist eine Tabelle(Ergebnismenge), wobei
diese wiederum als permanente Tabelle in einer relationalen Datenbank angelegt werden oder als
Eingabe anderer Abfragen genutzt werden. SQL ist eine nicht-prozedurale Sprache. Diese definieren die
gewiinschten Ergebnisse, iberlassen jedoch den Prozess, iiber den diese Ergebnisse generiert werden,
einer externe Instanz. Dementsprechend lassen sich mit SQL keine vollstindigen Anwendungen
schreiben [Bea09].

SQL-Anweisungen
SQL besteht aus mehreren getrennten Teilen :

» SQL-Schemaanweisungen, mit welchen die in der Datenbank gespeicherten Datenstrukturen
definiert werden

« SQL-Datenanweisungen, welche die Bearbeitung von zuvor angelegten Datenstrukuren ermog-
lichen

« SQL-Transaktionsanweisungen, mit denen Transaktionen gestartet, beendet oder zuriickgerollt
werden konnen

Eine SQL-Datenanweisung sieht wie folgt aus:
SELECTcustom ID FROM customers WHERE lastname = Kalyoncu

Die FROM-Klausel bestimmt hierbei, aus welcher Tabelle Daten benétigt werden. Mithilfe der SE-
LECT-Klausel wird festgelegt, welche Spalten aus der Tabelle abgefragt werden sollen und anschlie-
Bend mit der WHERE-Klausel Bedingungen hinzugefiigt, um bestimmte Daten zu filtern. Im Beispiel
oben werden aus der Tabelle customers diejenigen customID-Nummern entnommen, welche den
Nachnamen Kalyoncu besitzen.

Neben dem relationalen Datenmodell, existieren weitere Modelle wie das hierarchische Modell (z.B.
verwendet in IBMs IMS DBMS), das Network Modell, das objektorientierte Modell, sowie das objekt-
relationale Modell. Das relationale Datenmodell ist jedoch eine der dominantesten Modelle.

14

2.1 Datenbanksysteme

Datenbankmanagementsysteme konnen anhand von sogenannten Queries nach bestimmten Daten
abgefragt werden. Dazu stellt ein DBMS eine spezialisierte Sprache, die Query Language bereit. Das
relationale Modell unterstiitzt leistungsstarke Query Languages.

Mithilfe einer Datenmanipulationssprache (Data Manipulation Language, DML) kann ein Benutzer
die Daten eines DBMS modifizieren, neue Daten erstellen und die Datenbank nach bestimmten Daten
abfragen. Die Query Language ist eines von mehreren Komponeten einer DML, welches Konstrukte
fiir das Hinzufligen, Entfernen und Modifzieren von Daten anbietet.

2.1.4 Transaktionsmanagement

Greifen mehrere Benutzer gleichzeitig auf eine Datenbank zugreifen, kann es zu Konflikten kommen.
Als Beispiel kann ein Szenario aus dem Bankwesen betrachtet werden. Wahrend die Anwendung
eines Benutzers die Deposit-Betrage berechnet, kann eine andere Anwendung einen bestimmten
Geldbetrag von einem Konto auf ein anderes Konto transferieren, welches die Deposit-Anwendung
nicht nicht registriert hat. Daraus ergibt sich schliellich ein Gesamtdeposit-Betrag, der deutlich héher
ausfallt, als es eigentlich sein sollte [RG00]. Das DBMS muss Benutzer vor den Auswirkungen eines
Systemausfalls schiitzen, indem gewahrleistet wird, dass alle Daten, sowie der Status aller aktiven
Anwendungen, bei einem System-Neustart auf einen konsistenten Zustand zuriickgesetzt werden.

Demnach ist es erwiinscht, dass bei einer durch das DBMS bereits bestétigten Reisebuchung, im Falle
eines Systemausfalls, die Reservierung nicht verlorengeht. Falls das DBMS die Bestitigung bzw. die
Antwort auf eine Benutzeranfrage jedoch noch nicht verschickt hat, und zum Zeitpunkt eines Ausfalls,
mitten im Prozess war, die notwendigen Anderungen am Datenbestand durchzufiihren, sollten diese
bei einem System-Neustart riickgingig gemacht werden.

Ein wichtiger Teil fiir die Datensicherheit ist das Transaktionskonzept. Eine Transaktion entspricht
hierbei einer Sequenz von Programmschritten, die auf die Daten der DB ausgefiihrt werden. Um die
Konsistenz der Datenbank zu gewahrleisten, werden sdmtliche Aktionsschritte einer Transaktion als
eine logische Einheit betrachtet. Demnach wird eine Transaktion entweder vollstindig und fehlerfrei
oder gar nicht ausgefiihrt. Nach erfolgreicher Ausfithrung der Transaktion wird der Datenbestand in
einem konsistenten Zustand hinterlassen. Greifen mehrere Anwender gleichzeitig auf eine Datenbank
zu und modifizieren dabei moglicherweise die darin befindlichen Daten, kann es zu Konflikten
kommen, welche Anomalien in der Datenbank verursachen konnen. So kann es vorkommen, dass
ein Benutzer die Modifikationen an Daten wieder zuriicksetzt. Diese sogenannte Dirty data kann
jedoch, bevor sie vom Benutzer zuriickgesetzt werden, von anderen Benutzern bzw. Prozessen bereits
gelesen und verwendet worden sein. Daraus resultieren Anomalien, die zu schwerwiegenderen
Problemen fithren konnen. Um das Auftreten von Anomalien zu vermeiden, muss das DBMS die
jeweiligen Anfragen der Benutzer sorgfaltig anordnen. Dadurch wird verhindert, dass mehrere
Benutzer gleichzeitig Daten dndern konnen [HR83].

Bei der Ausfithrung von Transaktionen miissen die sogenannten ACID-Eigenschaften eingehalten
werden. Jede Transaktion muss folgende Eigenschaften erfiillen:

« Atomicity: Eine Transaktion wird entweder vollstdndig oder gar nicht ausgefiihrt.

15

2 Grundlagen

» Consistency: Nach erfolgreicher Ausfithrung der Transaktion muss sich der Datenbestand
in einem konsisten Zustand befinden. Diese Eigenschaft ist Voraussetzung fiir die Durability-
Eigenschaft

« Isolation: Bei gleichzeitiger Ausfithrung mehrerer Transaktionen diirfen diese sich nicht
gegenseitig beeinflussen.

+ Durability: Die Auswirkungen einer Transaktion auf einen Datenbestand sind dauerhaft.

Gemifl dem ACID-Paradigma ist eine Datenbank nur dann konsistent, wenn es Daten beinhaltet, die
aus erfolgreichen Transaktionen entstanden sind.

2.2 Patterns

Patterns sind ein bekanntes und oft verwendetes Konzept im Bereich der Computerwissenschaften.
Sie beschreiben bewiahrte Losungsansitze bzw. Losungswege fiir haufig auftretende Problemfille
in einem spezifischen Kontext und in generischer Art und Weise. Dementsprechend sind Patterns
vielseitig einsetzbar in unterschiedlichsten, spezifischen Anwendungsfillen. Das wesentliche Ziel
des Konzepts der Patterns ist die Generalisierung und Abstraktion von Wissen zur Lésung von
Problemfallen.

2.2.1 Definition

Patterns und Patternbasierte Sprachen sind etablierte Konzepte in verschiedenen Anwendungsbe-
reichen der Informatik und Informationstechnologie. Urspriinglich in der Architektur eingefiihrt,
setzte sich das Konzept der Patterns mit zunehmender Beliebtheit auch in vielen anderen Bereichen
(Bildung, Design, Cloudanwendungen etc.) durch.

Patterns sind menschenlesbare Artefakte, welche Problemwissen mit generischen Losungsansitzen
kombinieren. Das Muster, welches ein Pattern beschreibt, enthélt Losungsbereiche, die Solution
Knowledg in Textform darstellen [Ale77] . Diese Form der Wissensdarstellung beinhaltet den we-
sentlichen Kern der Losung in abstrakter Weise. Allgemeine Losungsbereiche des Pattern verkorpern
keine konkreten Losungsinstanzen des Pattern. Sie dienen dem Leser lediglich als Anleitung fiir die
Implementierung einer Losung, welche seinen Anforderungen geniigt [FBB*14].

Ansitze fiir eine iterative Pattern-Formulierung von [Reil2]und Falkenthal et al. [FJZ" 12]ermdglichen
es, konkretes Losungswissen bei der Erstellung bzw Formulierung von Patterns zu verwenden. Pattern
sind nicht nur finale Artefakte, sondern werden, basierend auf initialen Ideen, innerhalb eines iterati-
ven Prozesses formuliert, um den Status eines Pattern zu erlangen. In diesen Ansitzen unterstiitzt
konkretes Losungswissen lediglich den Formulierungprozess von Patterns, wird jedoch nicht explizit
gespeichert, um im Falle eines Einsatzes des Pattern erneut verwendet werden zu kdnnen. (Porter
et al.) belegen, dass die Auswahl von Patterns aus einer Patternsprache eine Frage der zeitlichen
Reihenfolge der gewihlten Patterns ist. Demnach ist die Kombination und Aggregation von Patterns
abhéangig von der Reihenfolge, in der die Patterns eingesetzt werden miissen. Diese Erkenntnis fithrt
zu den sogenannten Patternsequenzen, welche teilweise geordnete Pattermengen darstellen und die

16

2.2 Patterns

temporale Reihenfolge, in der die Patterns eingesetzt werden veranschaulichen. Der Fokus hierbei
liegt jedoch in der Kombinierbarkeit von Patterns und nicht in der Kombinierbarkeit von konkreten
Losungen.

Zahlreiche Patternsammlungen und Patternsprachen werden in digitalen Patternverzeichnissen
gespeichert. Obgleich diese den Benutzer bei der Navigation durch das Verzeichnis behilflich sind,
verkniipfen sie Patterns nicht mit konkreten Losungsansétzen. Folglich sind Benutzer gezwungen
konkrete Losungen manuell wiederherzustellen, wann immer ein Pattern verwendet wird.

2.2.2 Solution Implementations

Solution Implementations sind Buildings Blocks fiir den Einsatz und die Aggregation konkreter
Losungen aus Patterns.

Wie bereits oben erwiéhnt, gibt es keine Ansitze, die sich mit der Aggregation von konkreten Losungen
auseinandersetzen, wenn mehrere Patterns zusammen angewendet werden. Zudem sind konkrete
Losungsansitze weder mit Patterns verkniipft noch werden sie mit den Patterns zusammen abge-
speichert. Um diese Problemstellung aufzugreifen und zu entgegnen schlagen Falkenthal, Michael,
et al. vor, konkretes, implementiertes Losungswissen als wiederverwendbare Bausteine (Building
Blocks) zu definieren, die konkrete Losungen mit Patterns verkniipft und die Komposition dieser
ermoglicht.

2.2.3 Patternhierarchien

Der folgende Abschnitt basiert auf [HM16]. Damit Patterns strukturiert und mit entsprechenden
Implementierungen verkniipft werden kénnen, werden sogenannte Pattern Graphen verwendet. Ein
Pattern Graph ist ein baum-basierter, gerichteter Graph, welcher sich aus Knoten und Kanten
zusammensetzt. Die Knoten eines solchen Graphen reprisentieren entweder ein Pattern oder eine
Implementierung. Die Kanten, welche die Knoten miteinander verbinden, stellt eine sogenannte
Spezialisierung dar. Es gibt zwei verschiedene Formen von Kanten:

. consist of-Kanten : Diese Kanten verbinden Patterns miteinander und deuten darauf hin,
dass ein Pattern aus mehreren Sub-Patterns zusammengesetzt ist. Dementsprechend kann die
Problemstellung, welches das Pattern beschreibt, nur dann gelost werden, falls alle Sub-Patterns
dieses Pattern-Knoten ausgefithrt werden.

« implemented by-Kanten: Diese Kanten werden zur Verkniipfung von Implementierungskno-
ten Kanten verwendet. Ist ein Pattern-Knoten mit mehr als einem Implementierungsknoten
verbunden, bedeutet dies, dass diese durch eine diese Implementierungen realisiert werden
kann. Welche dieser Implementierungen schlieflich verwendet wird, kann entweder manuell
oder automatisch bestimmt werden.

In Abbildung 2.1 ist ein Pattern-Graph dargestellt. Im Wesentlichen wird ein generisches Pattern,
welches dem Wurzelknoten des Pattern-Baumes entspricht, immer weiter konkretisiert, indem es in
Sub-Patterns aufgeteilt wird, bis diese wiederum nicht mehr weiter in weitere Sub-Patterns unterteilt

17

2 Grundlagen

——

Robust parameters Patterns
Mashup

Error Handling Logging Data Persistence Sub-Patterns
0 w) [»
BPEL & Apache e BPEL & Oracle %
BPEL & WSO g
i 2 WF Engine Implementations

...... consists of
—e implemented by

Abbildung 2.1: Der Pattern-Graph [HM16]

werden konnen und schlie8lich durch Implementierungsfragmente ersetzt werden. Folglich kann ein
Pattern mithilfe von unterschiedlichen Abstraktionsgraden hierarchisch strukturiert werden. Zudem
kann ein einziges Pattern durch mehrere Implementierungen realisiert werden. Demnach entspricht
der Wurzelknoten des Baumes dem Pattern mit dem hochsten Abstraktionsgrad. Dies ist der Pattern,
der im Patternkatalog beschrieben wird. Somit existiert fiir jeden Eintrag im Patternkatalog ein jeweils
anderer Pattern Graph.

Die Parameter des Patterns im Wurzelknoten bestimmen mafigeblich, welcher Pfad im Pattern-
Graphen durchlaufen wird, um die Implementierungen in den Blattknoten zu erreichen. Dies Auswahl
des Pfades ist abhéingig von Regeln, welche beim Durchlaufen des Pattern Graphen angewendet
werden. Sie vergleichen die Parameter des Patterns mit vordefinierten Eigenschaften der Implemen-
tierungen, um die geeignetste Implementierung bestimmen zu kénnen. Der Ansatz von [HM16] geht
dabei davon aus, dass stets eine Implementierung gefunden werden kann, auch wenn dabei nicht alle
Benutzeranforderungen erfiillt werden kénnen. In diesem Fall obliegt es dem Benutzer dariiber zu
entscheiden, ob die gew#hlte Implementierung auch angewendet werden soll oder nicht.

Zu beachten ist, dass dieser regelbasierte Transformationsansatz fiir ein einziges Pattern ohne Weiteres
durchgefiihrt werden kann. Werden jedoch mehrere Patterns kombiniert, ist die Bestimmung einer
geeigneten Pattern Implementierung weitaus komplexer.

18

2.3 Workflows

Sobald eine passende Implementierung gefunden wird, kann die Transformation des Mashup Plans
zu einer geeigneten ausfithrbaren Darstellung beginnen. Fiir die Erstellung des ausfithrbaren Modells
werden vordefinierte modularisierte Implementierungsfragmente verwendet. Soll beispielsweise die
Ausfithrung mithilfe einer Workflow Engine erfolgen, wird der ausfithrbare Workflow automatisch
erzeugt. So werden die Operationen, die im Mashup Plan definiert werden, anhand von BPEL Invoke-
Knoten ausgefiihrt. Die Programmier- Logik der DSDs und DPDs wird in Codefragmenten (z.B. als
Java Web Services) abgespeichert, welche vom Workflow ausgefithrt werden. Wird anstelle einer
Workflow Engine die Node-Red Engine verwendet, verlauft der Transformationsprozess dhnlich ab-
Hier werden vordefinierte JavaScript-Codefragmente miteinander verkniipft.

2.3 Workflows

Ein Workflow (Arbeitsablauf) beschreibt eine definierte Abfolge von Arbeitsschritten in einem
Arbeitssystem. Konkret ausgedriickt bezeichnet ein Workflow mehrere dynamische abteilungsiiber-
greifende Aktivitaten, welche in zeitlicher oder logischer Abhiangigkeit zueinander stehen. Demnach
ist ein Workflow die informationstechnische Realisierung eines Geschiftsprozesses. Dabei sind die
einzelnen Arbeitsschritte als Aktivititen zu verstehen, welche oftmals zu gréfieren Komponenten
zusammengesetzt werden konnen. Daraus resultiert eine erh6hte Wiederverwendbarkeit und Flexibi-
litat. Wird der definierte Arbeitsablauf einer neuen Situation angepasst und verandert, konnen die
Komponenten neu zusammengesetzt werden. Ziel ist die (Teil-)Automatisierung von Workflow. Ur-
spriinglich wurden Workflows im unternehmerischem Umfeld eingesetzt, finden jedoch mittlerweile
auch Einsatz im wissenschaftlichem Bereich.

2.3.1 Die Workflow-Technologie

Die rechnergestiitzte Ausfithrung von Arbeitsabldufen kann anhand von drei Dimensionen beschrie-
ben werden: WHO, WHAT und WITH:

« WHO : Diese Dimension legt fest, welche Mitarbeiter oder Abteilungen einer Organisation
eine konkrete Aktivitat ausfithren diirfen. Hierzu konnen mithilfe von Anfragen bestimmt
werden, welcher Mitarbeiter bzw. welche Abteilung fiir die Ausfithrung geeignet ist. Durch
die Vergabe von Rollen an Abteilungen und Mitarbeiter , kann die Struktur eine Organisation
umfassender beschrieben werden.

« WHAT: In der WHAT-Dimension wird definiert, welche Aktivitdten in welcher Reihenfolge
ausgefiithrt werden. Sowohl die parallele als auch die sequentielle Ausfithrung von Aktivititen
ist moglich.

« WITH: Mithilfe der WITH-Dimension wird beschrieben, welche Ressourcen aus der IT-
Infrastruktur verwendet werden, um die Aktivitaten ausfuhren zu konnen.

Abbildung 2.2 stellt diese drei Dimensionen im dreidimensionalen Raum dar. Die Ausfithrung eines
Workflows setzt sich hierbei aus einer Abfolge von Punkten zusammen. Der Treffpunkt dieser drei

19

2 Grundlagen

Process Logic

]
w |

IT Infrastructure

Abbildung 2.2: Workflow-Dimensionen (leyman et. al)

Dimensionen beschreibt, welche konkrete Aktivitit von welcher Abteilung bzw. welchem Programm
unter Verwendung welcher Ressource ausgefithrt wird.

2.3.2 Workflow Management

Nach [Mil06] umfasst das Workflow Management alle Aufgaben, welche bei der Analyse, der
Modellierung, der Simulation, der Reorganisation sowie bei der Ausfithrung und Steuerung von
Workflows benétigt werden. Es stellt die einzelnen obligatorschen Arbeitssschritte und Ablaufe
zur Verfiigung. Diese entsprechen einem Lebenszyklus (Lifecycle) eines Workflow. Ein Workflow
Management System (WfMS) beschreibt ein System, welches die Phasen des Prozess-Lifecycles,
durch IT-Werkzeuge unterstiitzt. Diese entsprechen Software, welche Komponenten fiir die Analyse,
Modellierung, die Steuerung, die Administration, die Simulation und das Monitoring von Workflows
enthalten.

Architektur eines WfMS

Nach [LR00] setzt sich die Architektur eines WfMS gemafl WIMC aus folgendenen drei funktionalen
Bereichen zusammen. Diese Bereiche orientieren sich an der Erstellung, dem Betrieb und der Kontrolle

20

Business Process Modeling
Workflow Definition Tool

il

Prozess-Modell

10

Build Time
Workflow Management
Run Time System
Benutzer 2\ Anwendungen
& IT-Tools

Abbildung 2.3: Funktionsbereiche innerhalb eines WfMS

Datenquelle

2.3 Workflows

eines Prozesses. Abbildung 2.3 stellt die Funktionsbereiche innerhalb der Architektur eines WfMS

dar.

 Build Time : dieser Funktionsbereich umfasst alle Komponenten, die zur Verwaltung von
Ressourcen, der Erstellung und Modellierung von Workflows dienen.

« Run Time: enthélt alle Komponenten, die fiir die Ausfithrung von Workflows zustandig sind.

+ Data Base: beinhaltet alle Daten, welche zur Build und Run Time abgelegt werden.

Workflow Management Coalition (WfMC)

Metamodell: [LRO00] fiigt einen weiteren Funktionsbereich hinzu, welche alle Strukturen
umfassen, die von einem WIMS unterstiitzt werden.

In Abbildung 2.4 wird das Workflow Referenzmodell veranschaulicht, welches von der WfMC
entwickelt wurde, mit dem Ziel herstellerunabhéngige Module eines WEMS miteinander verkntipfen

21

2 Grundlagen

Process
Definition

Interface 1

Workflow APl and Interchange

<
2 L © ’ Workflow
Administration & S éV°ka'°W g Engine(s)
Monitoring Tools b= ngine(s) E
‘2 § Other Workflow
- Workflow Enactment Service Enactment Services

Interface 2 Interface 3
Wg::::::w Invoked
Applicati
Application pRiceI.

Abbildung 2.4: Workflow-Referenzmodell [Miil06]

und betreiben zu konnen. Dabei beschreibt das Referenzmodell die Architektur mitsamt den Haupt-
komponenten und Standardschnittstellen. Diese dienen dazu, zwischen den WIMS und den einzelnen

Komponenten und Werkzeugtools zu kommunizieren. Ziel ist es grofitmogliche Systemunabhangigkeit
und Interoperabilitat zu erméglichen.

Workflow Reference Model

Im Workflow Reference Model wird der Aufbau eines WEMS beschrieben. Das Referenzmodel setzt
sich aus den folgenden Komponenten zusammen : Process Definition, Workflow Engine, Workflow
Client Application, Invoked Applications, Other Workflow Enactment Services, Administration and

Monitoring Tool.Die genauere Beschreibung dieser Komponenten kénnen in [Miil06] nachgeschlagen
werden.

22

2.3 Workflows

Workflow
Type Definition \
‘ . has
consists
of \
refer to .. Workflow
Rol - i
}“{* Activity Relevant Data
v
“‘/uses
may £
have Invoked may
Application el 6
Transition | S
Conditions

Abbildung 2.5: Workflow Metamodell [Miil06]

Metamodell eines Workflows

Das Metamodell eines Workflows, welches von WIMC entwickelt wurde, beschreibt die Grund-
struktur eines Workflows. Wie in Abbildung 2.5 veranschaulicht wird, zeigt es die Zusammenhéange
zwischen den Objekten und die Mindestanforderungen der Objektbeschreibungen des Prozesses. Da-
bei ist das Metamodell an die Software-Architektur eines WEMS angelehnt. Die Attribute beschreiben,
welche Daten zwischen den WfMS-Komponenten ausgetauscht werden.

2.3.3 Workflow Sprachen
Workflowsprachen dienen zur Beschreibung der Struktur von Workflows. Dabei unterscheidet man
zwischen den Kontrollflussorientierten und den Datenflussorientierten Sprachen

Kontrollflussorientierte Sprachen : Kontrollflussorientierte Sprachen beschreiben den Kontroll-
fluss. Dieser entspricht der logischen Ausfithrungsreihenfolge der einzelnen Aktivitidten und kann in
Form eines azyklischen, gerichteten Graphen dargestellt werden. Dabei sind die Knoten des Graphen

23

2 Grundlagen

mit den einzelnen Aktivititen und die Kanten mit kausalen Abhangigkeiten zwischen diesen Aktivi-
taten gleichzusetzen. Es ist zu beachten, dass die Aktivitit eines Knotens lediglich nach vollstandiger
und erfolgreicher Ausfithrung der Aktivititen seiner Vorganger-Knoten im Graphen ausgefiihrt wer-
den kann. Des Weiteren kann eine prozedurale Logik, wie z.B. eine while-Schleife, realisiert werden,
indem ein Knoten einen zusitzlichen Graphen als Subgraph enthilt.

Datenflussorientierte Sprachen: Datenflussorientierte Sprachen beschreiben den Datenfluss eines
Workflows. Dabei entspricht der Datenfluss den Datenabhangigkeiten zwischen den einzelnen Akti-
vitaten. Aktivitdten besitzen sogenannte Input-Queues, die mit eingehenden Daten befiillt werden.
Diese Daten werden von jeder Aktivitit entsprechend ihrer Aufgabe im Workflow bearbeitet und die
Ausgabedaten anschlieflend an die Input-Queues der Nachfolger-Knoten weitergeleitet. Aufgrund
ihrer Fokussierung auf den Datenfluss eines Workflows eignen sich datenflussorientierte Sprachen
besonders fiir datenintensive Workflow-Sprachen.

2.3.4 Workflow-Klassen

Die folgenden Abschnitte basieren, soweit nicht anders angegeben, auf [Wag11] und[RSM11]. Abbil-
dung 2.6 stellt unterschiedliche Workflow-Klassen in einem Diagramm dar. Dabei werden Workflows
nach Kriterien, wie Datenintensitit und ihrer Funktionalitat in Klassen unterteilt. Datenintensive
Workflowsverarbeiten zumeist grofe Datenmengen, welche verteilt vorliegen kénnen. Zur Klas-
se der datenintensiven Workflows zihlen ETL Workflows, Data Modeling Workflowsund Data
Analysis Workflows. Orchestration Workflowshingegen verbinden heterogene Anwendungen.
Das Ziel hierbei ist es, Geschaftsprozesse zu realisieren bzw. zu automatisieren. Sowohl Business
Workflows als auch Simulations Management Workflows gehoren zu den Orchestration Work-
flows. Simulations Management Workflows, Data Analysis Workflows sowie Data Modeling Workflows
bilden die Komponenten einer weiteren Klasse: die Klasse der Scientific Workflows.

2.3.5 Business Process Execution Language

BPEL, welches auch unter dem Namen WS-BPEL bekannt ist, ist eine XML-basierte Sprache zur
Beschreibung von Workflows [JEAT07]. Sie dient als Standard zur Steuerung und Koordination
von geschaftsbasierten Web Services. Ziel ist die Standardisierung des Automatisierungsprozesses
zwischen Web Services. BPEL erlaubt das Definieren von Business-Prozessen, die andere Dienst- und
Business-Prozesse integrieren, welche ihre Funktionalitét als Dienste anbieten.

WS-BPEL reprisentiert die Konvergenz der Workflow-Sprachen WSFL(Web Services Flow Langua-
ge) und XLANG. WSFL basiert auf dem Konzept direkter Graphen, wahrend XLANG eine block-
strukturierte Sprache ist. BPEL kombiniert beide Ansétze und stellt ein reichhaltiges Vokabular fiir
die Beschreibung von Business-Prozessen zur Verfiigung.

WS-BPEL ist eine kontrollflussorientierte Sprache, welches die Orchestrierung von Web Services
ermoglicht. Dabei konnen Web Services in Workflows eingebunden werden, indem fiir die Knoten des
Workflows Web Service-Implementierungen erstellt werden. Aus diesem Prozess resultiert ein Work-
flow, der selbst als ein Web Service betrachtet werden kann und eventuell als eine Komponente eines
grofieren Workflows fungieren kann. Dementsprechend konnen Workflows aus bereits bestehenden

24

Workflows

Orchestration

Business
Workflows \

Simulation
Management

N Workflows

Data-Intensive

Workflows

Data Modeling %

Business
Process

Bone
Remodeling
Simulation

Abbildung 2.6: Klassifizierung von Workflows [RSM11]

Data Analysis EfL
Workflows Workflows | /' | Workflows
Pattem :
Recognition Nl|3 rgte';iln | tDatz:i
in Matorials odelin ntegration

2.3 Workflows

Workflows zusammengesetzt werden. Dabei ist es moglich einzelne Komponenten des Workflows
durch andere zu ersetzen oder die Anordnung dieser zu dndern. Daraus resultiert eine groflerer
Wiederverwendbarkeitswert des Workflows sowie eine hohere Flexibilitdt. So konnen Workflows
flexibler auf Verdnderungen reagieren.

BPEL basiert auf WSDL, XML Schema und XPath. WSDL dient hierbei der Beschreibung der Schnitt-
stellen zu den Web Services. Daten werden mithilfe von Variablen abgespeichert, welche unterschied-
liche Typen besitzen konnen. Dabei kann eine Variable entweder vom Typ XML Schema Element,
simpleType oder complexType sein.

Die Hauptbestandteile in WS-BPEL sind Aktivitdten. Diese entsprechen den einzelnen Arbeitsschritten
in einem Workflow, d.h. Workflows setzen sich aus einzelnen Aktivititen zusammen. Es werden
zwischen zwei Typen von Aktivitidten unterschieden:

« Strukturierte Aktivititen

- Basisaktivititen

Strukturierte Aktivititen:

25

2 Grundlagen

Strukturierte Aktivitaten sind Aktivitaten, welche sich aus anderen Aktivitaten zusammensetzen.
Durch die Kombination mehrere Aktivititen konnen komplexere Aktivititen erstellt werden, welche
die den Kontrollfluss von Prozessen bschreiben. Folgende Aktivititen gehoéren zu dieser Kategorie:

» Sequence : Die Sequence-Aktivitat ermoglicht die sequentielle Ausfithrung von Aktivitaten
eines Workflows

« For Each : Bei einer For Each-Aktivitat wird der Rumpf einer Schleife solange ausgefiihrt, bis
eine zuvor bestimmte Anzahl an Durchlaufen erreicht wird.

« While : Die While-Aktivitit ist der For Each-Aktivitit sehr ahnlich, unterscheidet sich jedoch
dadurch, dass eine Aktivitat solange ausgefiihrt bis eine Bedingung nicht mehr erfullt ist.

« If : Bei einer If-Aktivitat wird die Aktivitit nur dann ausgefiihrt, wenn einen Bedingung erfiillt
ist.

« Flow : Die Flow-Aktivitat ermdglicht die parallele Ausfithrung von Aktivitaten bzw. die Aus-
fuhrung von Aktivitidten abhéngig von einem definiertem Ablaufgraph

+ ONALARM/Wait : Hier wird der Prozessablauf solange angehalten, bis ein gewisser Zeitraum
iiberschritten wird oder ein Ereignis eintritt.

» Repeat Until : Hier wird lediglich nach dem Durchlauf des Schleifenrumpfes evaluiert. Der
Schleifenrumpf wird daher mindestens einmal ausgefiihrt.

Basisaktivititen: Basisaktivititen sind atomare Operationen, die sich nicht aus mehreren Aktivitaten
zusammensetzen, Folgende Aktivititen gehoren zu dieser Kategorie

+ Assign : Die Assign-Aktivitat weist einer oder mehreren Variablen Werte zu

» Receive: Die Receive-Aktivitat ermoglicht es, dass ein Prozess den Start oder die Fortfithrung
eines Prozess hinauszdgern kann, bis eine Antwort des Web Services eintrifft.

» Reply : Mithilfe einer Reply-Aktivitat kann eine Nachricht an einen Empfinger geschickt
werden.

» Invoke : Eine Invoke-Aktivitit ermdglicht den asynchronen bzw. synchronen Aufruf eines
Web Services.

Ein BPEL-Prozess setzt sich aus unterschiedlichen Komponenten zusammen. Web Services, die von
einem BPEL-Prozess aufgerufen werden konnen mithilfe von Partner Linkseingebunden werden. Jede
Aktivitit, die einen Web Service aufruft, verfiigt iiber einen Partner Link. BPEL nutzt das Konzept von
sogenannten Roles und Partner Link Types. Partner Link Types beschreiben, wie zwei tiber WSDL
definierte Partner miteinander agieren konnen und was diese zur Verfiigung stellen. Partner Link
Types sind WSDL-Erweiterungen, die sich aus einem Typ, einen Namen und einen oder mehreren
Roles zusammensetzen. Dabei kann jede Role bestimmte Operationen unterstiitzen. Diese werden
durch Port-Types dargestellt.

WS-BPEL trennt dabei abstrakte Informationen von konkreten technischen Details. Dies wird durch
abstrakte WSDL-Schnittstellen erreicht, welche keinerlei Informationen dariiber ausgeben, wie die

26

2.4 Service Oriented Architecture

Bindings konkret aussehen und welche konkreten Services seitens der Prozessinstanzen verwendet
werden.

2.4 Service Oriented Architecture

Der Begriff Service oriented Architecture wurde erstmals im Jahr 1996 vom Marktforschungsunter-
nehmen Gartner erwahnt bzw. verwendet [SN96]. Service-orientierte Architekturen, bezeichnen keine
konkrete Architektur oder Technologie, sondern ein abstraktes Konzept einer Software-Architektur,
in welchen das Anbieten, Suchen und Nutzen von Diensten (Services) iiber ein Netzwerk im Vor-
dergrund steht. Dienste werden dabei hauptsédchlich von Anwendungen oder anderen Diensten in
Anspruch genommen. Hierbei ist es unerheblich, welche Hard- oder Software, Programmierspra-
che oder Betriebssystem die einzelnen Beteiligten verwenden. Services sind kleine, lose gekoppelte
und eigenstindige Softwarekomponenten, welche zu einem Anwendungssystem kombiniert werden
konnen. Dieses Anwendungssystem ist wiederum leicht anpassbar und dnderbar. Einheitliche Stan-
dards erlauben es, Dienste durch entsprechende Suchfunktionen zu finden, welche von Anbietern
gleichermafien problemlos publiziert werden konnen.

2.4.1 SOA Definition

Da es eine Vielzahl von Definitionen fiir Service-orientierte Architekturen gibt, ist es schwierig sich
auf eine Standard-Definition festzulegen. Es bestehen bei diesen Definitionen Ueberlappungen, jedoch
fehlen allerdings haufig Aspekte, die von einer anderen Definition als entscheidend betrachtet werden.
Es existiert keine allgemein einheitliche Definition einer SOA. [Mel10]definiert SOA wie folgt:

sunter einer SOA versteht man eine Systemarchitektur, die vielfaltige, verschiedene und eventuell
inkompatible Methoden oder Applikationen als wiederverwendbare und offen zugreifbare Dienste
reprasentiert und dadurch eine von Plattformen und Programmiersprachen unabhéngige Nutzung
und Wiederverwendbarkeit ermoglicht”

Eine weitere Definition von OASIS aus dem Jahr 2006 [MLM*06]:

»S0A ist ein Paradigma fiir die Strukturierung und Nutzung verteilter Funktionalitit, die von unter-
schiedlichen Besitzern verantwortet wird"

2.4.2 Grundlegende Merkmale einer SOA

Im Vergleich zu Ansétzen wie Remote Method Invocation und Remote Procedure Call reprisen-
tiert eine Service-orientierte Architektur keine konkrete Technik, sondern abstrahiert unwesentliche
Aspekte und stellt widerum wesentliche Apekte in den Vordergrund.

Ein wesentlicher Vorteil von SOA-Architekturen ist die Unabhingigkeit von den Details der je-
weiligen Implementierung. SOA beschreibt losgelost von konkreten Implementierungsdetails ein
Architekturstil. Dadurch ist eine prozessorientierte Betrachtungsweise sowie eine funktionale Zerle-
gung der Anwendungen moglich. Dienste stellen ihre Funktionen tiber 6ffentliche Schnittstellen zur

27

2 Grundlagen

Verfiigung und konnen selbst Funktionen anderer Dienste {iber das Netzwerk in Anspruch nehmen.
Gegebenenfalls ist auch die Integration ganzer Anwendungen moglich.

Dienste sind kleine, loose gekoppelte (Loose Coupling) und eigenstiandige Softwarekomponenten,
welche zu grofleren Anwendungssystemen kombiniert werden kénnen. Diese sind flexibel und
anpassbar. Dienste werden von Anwendungen oder anderen Diensten bei Bedarf dynamisch, d.h. zur
Laufzeit gesucht, gefunden und eingebunden. Diese lose Kopplung der Dienste hat zur Folge, dass
zum Zeitpunkt der Ubersetzung des Programms zumeist nicht bekannt ist, wer oder was zur Laufzeit
aufgerufen wird. Ferner erlaubt das dynamische Einbinden von Diensten, dass Dienste miteinander
ausgewechselt werden konnen. Des Weiteren konnen mehrere Dienste miteinander kombiniert
und somit grofiere Dienste wie z.B. Geschaftsprozesse aufgebaut werden (Orchestrierung), was die
Wiederverwendbarkeit von Diensten erhoht. Derart gekapselte Dienste konnen in verschiedenen
Umgebungen mehrfach und ohne Aufwand wiederverwendet werden.

Damit ein Benutzer geeignete Anwendungen und Dienste finden und verwenden kann, wird das
Prinzip der gelben Seiten bei der Umsetzung einer SOA angewandt. Alle verfiigbaren und publi-
zierten Dienste sind in einem Verzeichnisdienst oder Repository (Service Registry) registriert.
Anwendungen konnen bei Bedarf im Verzeichnisdienst nach Diensten suchen und diese mithilfe der
Informationen, die von der Repository zuriickgeliefert werden, dynamisch einbinden. Nachdem ein
geeigneter Dienst nach erfolgreicher Suche gefunden wurde, sollte der Aufrufer in der Lage sein, sich
mit diesem zu unterhalten. Dies setzt jedoch voraus, dass alle Schnittstellen in maschinenlesbarer
Form beschrieben sind und offene Standards verwendet werden, damit der Nutzer den Dienst eines
unbekannten Anbieters auch verstehen kann.

2.4.3 Das SOA Dreieck

Die Abbildung 2.7 stellt alle Komponenten einer Software-orientierten Architektur und die Be-
ziehungsstruktur zwischen diesen dar. Das SOA-Dreieck setzt sich aus den drei Komponenten
Dienstverzeichnis(Service Registry), Dienstanbieter (Service Provider) und Dienstnutzer (Service
Consumer) zusammen.

Hierbei wird ein Dienst (Service) als ein eigenstandiges und tiber ein Netzwerk durch nachrichtenba-
sierte Kommunikation nutzbares Softwareelement bezeichnet, das Funktionen nach auf3en anbietet
und dessen exportierte Schnittstelle durch eine eindeutige Spezifikation beschrieben ist, die 6ffentlich
oder fiir eine Zielgruppe zugénglich ist.

Der Dienstanbieter beschreibt seinen angebotenen Dienst in einer maschinenlesbaren Service-
Beschreibung und registriert diesen im Verzeichnisdienst. Dieser Vorgang wird auch publish-Prozess
genannt. Zusitzlich werden Metadaten hinzugefiigt, welche Informationen, wie z.B. die IP-Adresse,
die angebotene, 6ffentliche Schnittstelle und eine abstrakte Beschreibung fiir das Auffinden und
Aufrufen des angebotenen Dienstes, beinhalten. Der Dienstanbieter ist verantwortlich fiir die Bereit-
stellung der notwendigen Infrastruktur, das Deployment, die Sicherung des Quality-of-Service und
Datensicherheit. Diese Informationen kénnen als Bedienungsanleitung betrachtet werden, welche
dem Dienstnutzer beschreiben, wie der Dienst in Anspruch genommen werden kann.

28

2.4 Service Oriented Architecture

Dienstverzeichnis
\/
Y.y
C
L

uDDI
3. Verweis auf Dienst

2. suchen

SOAP

WSDL

4. Abfrage der Beschreibung

SOAP %

5. Nutzung
Dienstanbieter Dienstnutzer

Abbildung 2.7: Das SOA-Dreieck

Der Dienstnutzer kann nun im Verzeichnis nach einem geeigneten Dienst suchen, indem dieser
eine Beschreibung des angeforderten bzw. gesuchten Dienstes an das Verzeichnisdienst schickt. Der
Verzeichnisdienst sucht daraufhin nach einem geeigneten Dienst und tibergibt bei erfolgreicher Suche
die ID des Dienstanbieters an den Dienstnutzer. Dieser fordert anschlieffend die Schnittstellenbe-
schreibung des Dienstanbieters an und kann mithilfe der darin enthalten Informationen den Dienst
verwenden.

Ein Anbieter, der einen Dienst in Form eines Web Service anbieten mochte, erstellt von diesem
zunichst eine Schnittstellenbeschreibung in Form eines entsprechenden XML-Dokuments. Dieses so
genannte WSDL(Web Service Definition Language)-Dokument wird veroffentlicht, indem es ganz oder
in definierten Teilen zu einem UDDI-basierten Verzeichnisdienst transferiert wird.(siehe Abbildung 2.7,
Schritt 1). Anschlieffend wartet der Dienstanbieter bis ein Dienstnutzer einen entsprechenden Dienst
sucht (Schritt 2). Laut Spezifikation miissen UDDI-Implementierungen zu diesem Zweck eine SOAP-
Schnittstelle zur Verfiigung stellen, die vom UDDI-Gremium mittels WSDL-Dokumenten beschrieben
ist. Hat der Dienstnutzer einen fiir sich geeigneten Web Service gefunden, fordert er das WSDL-
Dokument an. Der Verzeichnisdienst liefert hierzu eine Referenz (URI) auf das WSDL-Dokument,
das der Dienstnutzer in einem weiteren Schritt anfordert (Schritt 4). Anschlieflend werden mit Hilfe
der WSDL-Beschreibung die Programmiteile erzeugt, welche die Anwendung des Dienstnutzers in

29

2 Grundlagen

die Lage versetzen mit der Anwendung des Dienstanbieters mit Hilfe von SOAP zu kommunizieren
(Schritt 5).

2.4.4 Web Services

Web Services sind ein moglicher Implementierungsansatz der Konzepte einer Service-orientierten
Architektur. Wie auch beim Begriff SOA-Architektur existiert keine einheitliche, standardisierte und
konsistente Begriffsdefinition fiir Web Services. Web Services konnen als Softwarekomponenten
oder unabhingige, modulare Dienste aufgefasst werden, welche wohldefinierte Funktionen ueber
standardisierte Schnittstellen anderen Softwarekomponenten oder Anwendungen zur Verfuegung
stellen [Bet01]. Nach [ABFGO04]lassen sich Web Services wie folgt beschreiben:

“A Web service is a software application identified by a URIL, whose interface and bindings are capable
of being defined, described, and discovered as XML artifacts. A Web service supports direct interactions
with other software agents using XML-based Messages exchanged via internet-based protocols. (October
2002)”

Die Gartner Forschungsgruppe definiert Web Services folgendermafien:

“Web services are software technologies, making it possible to build bridges between IT systems that
otherwise would require extensive development efforts.”

Die Standardisierung der Schnittstellen ermdglicht die lose Kopplung von Web Services untereinander
beziehungsweise von Web Services und anderen Anwendungen. Falls sich die Schnittstellensignatur
der Dienste nicht unterscheidet, kann der Nutzer die Softwarekomponenten problemlos austau-
schen.

2.4.5 Die Bestandteile von Web Services

Der folgende Abschnitt basiert auf [Lan03].

Das Simple Object Access Protocol (SOAP) ist ein Netzwerkprotokoll, welches das Format festlegt,
mit der Nachrichten zwischen Web Services ausgetauscht werden. Es basiert auf der XML-Syntax
und kann daher von Standard-Parsern eingelesen werden, ohne dass hierfiir eigene Lésungen defi-
niert werden miissen. Aufgrund seiner Unabhingigkeit von Transportprotokollen kann SOAP mit
anderen Transportprotokollen wie SMTP oder HTML eingesetzt werden. SOAP umfasst lediglich die
Formatierung von Daten, nicht jedoch, wie die Datentibertragung von A nach B technisch realisiert
werden kann.

Eine SOAP-Nachricht entspricht einem geméaff dem SOAP-Format codierte Information und &hnelt
bildlich dargestellt einem Brief. Der Envelope enthilt als Briefumschlag die zu versendende Nach-
richt. Diese Nachricht entspricht einem Container, der aus einem oder mehreren Headern (Kopfzeile)
und einem Body-Teil (Nachrichtentext) besteht. Im Header sind Absenderinformationen unterge-
bracht und im Body befindet sich der eigentliche Nachrichtentext, der die Informationen tiber die zu
versendenden Daten enthilt. Dabei sind die Header optional und enthalten Informationen fiir den
Empfinger oder wichtige Informationen, die fiir die Weiterverarbeitung durch Zwischenstationen auf

30

2.4 Service Oriented Architecture

/ Briefumschlag (engl.: .Envelope®)

[Kopfzeile (engl.: ,Header") }

Nachrichtenblock (engl.: .Body")

Abbildung 2.8: Struktur einer SOAP-Nachricht

dem Transportweg zwischen Absender und dem Empfanger der Nachricht notwendig sind. Demnach
kann mithilfe des Attributs mustUnderstand, welches auf true gesetzt wurde, festgelegt werden, dass
der Empfangerknoten das erhaltende Header-Element verarbeiten muss, bevor die Nachricht weiter-
geleitet beziehungsweise weiterverarbeitet werden kann. Ferner konnen durch Attribute Konditionen
fur die Authentifizierung oder Datenverschliisselung definiert werden. Im Gegensatz zum Header
ist der Body einer SOAP-Nachricht nicht optional. Abbildung 2.8 stellt die Analogie zwischen einer
SOAP-Nachricht und einem Brief dar.

WSDL ist die Kurzform fiir Web Services Description Language und umfasst eine auf XML basierende,
programmiersprachen-, protokoll- und plattformunabhéangige Sprache, mit der das Dienstangebot
eines Servers beschrieben werden kann. Mit WSDL kann definiert werden, welche Operationen bzw.
Methoden der Serverkomponente vom Client ausgefithrt werden kénnen, sowie welche Parameter
iibergeben und welchen Riickgabewert die einzelnen Methoden liefern. Ein Web Service wird hierbei
auf zwei Ebenen betrachtet und beschrieben. Folglich kann ein WSDL-Dokument in zwei Teile
aufgeteilt werden. Zum Einen existiert eine abstrakte und wiederverwendbare Definition, welche
die Funktionalitaten, die vom Web Service bereitgestellt werden, beschreiben und zum anderen eine
implementationsabhangige konkrete Definition, welches alle technischen Details umfasst, mit deren
Hilfe ein Web Service zur Verfigung gestellt wird.

Ein WSDL-Dokument beschreibt anhand von folgenden Elementen einen Web Service:

« types fiir die Definition von Datentypen, die verwendet werden

31

2 Grundlagen

» message abstrakte Definition der zu iibertragenden Daten

« port type (Schnittstellentypen)abstrakte Menge von Operationen, die von einem oder mehreren
Endpunkten (ports) unterstiitzt werden

+ binding eine konkrete Protokoll- und Formatspezifikation fiir einen bestimmten port type

« port ein einzelner end point definiert mithilfe einer Kombination von einem binding und einer
Netzwerkadresse

« service umfasst alle ports eines port types

Diese Elemente lassen sich unterteilen in eine Menge von abstrakten Definitionen und eine weitere
Menge von konkreten Definitionen. Zu den abstrakten Definitionen werden types, messages und port
type gezahlt, wihrend konkrete Definitionen sich zusammensetzen aus bindings, endpoints (ports)
und services. Der abstrakte Teil eines WSDL-Dokuments ist unabhiangig vom jeweils verwendeten
Transportprotokoll. Dieser wird innerhalb eines Binding-Flements untergebracht, wodurch der Web
Service als solches technologieunabhingig ist.

UDDI steht fiir Universal Description, Discovery and Integration und ist ein standardisierter Verzeich-
nisdienst fur samtliche Web Services. Nachdem ein Web Service mittels WSDL definiert wurde, muss
es verdffentlicht werden. WSDL enthailt bereits alle Informationen, mit denen ein Dienstnutzer die
Dienstleistung in Anspruch nehmen kann. UDDI ist ein Standard, der diese Informationen zugénglich
macht. Ein Dienstanbieter kann tiber eine WSDL-Information hinaus weitere Informationen innerhalb
einer UDDI Registry ablegen. So kénnen zusatzlich noch Business-, Service- und Technikinformatio-
nen untergebracht werden, welche auch mit den Namen White Pages, Yellow Pages und Green Pages
bezeichnet werden.

Die White Pages dhneln einem Telefonbuch und enthalten Informationen iiber den Dienstanbieter.
Dazu gehoren Angaben iiber den Geschiftsbereich, Kontaktdaten und eine eindeutige Unternehmens-
ID-Nummer. Die Yellow Pages dagegen beschreiben den eigentlichen Dienst, der zur Verfiigung
gestellt wird. Diese entspricht einem Branchenverzeichnis, in der alle registrierten Dienste gemaf3
internationaler Standards kategorisiert werden. Die Schnittstellenbeschreibungen der Web Services
werden in den Green Pages bereitgestellt.

2.5 Pipes And Filters-Architektur

Der Pipes and Filter Architekturstil ist ein Architekturmuster, welches ein System als eine Reihe von
Filteroperationen auf Eingabedaten betrachtet. Es eignet sich demnach fiir Systeme, die Datenstrome
verarbeiten. Jeder Verarbeitungsschritt ist in einem Filter gekapselt. Daten werden tiber Komponenten
weitergeleitet und erreichen einen Endpunkt. Filter sind iiber Kanéle (Pipes) miteinander verbunden,
welche den Datentransfer zwischen zwei Komponenten erméglicht.

Die Filter lassen sich beliebig neu anordnen, hintereinander schalten und austauschen. Dies ermdglicht
es Familien von verwandten Systemen zu erzeugen.Da mehrere Filter auch parallel Daten verarbeiten
konnen und jede Filterkomponente stufenweise Daten konsumiert und weiterleitet, steigt dadurch der

32

2.5 Pipes And Filters-Architektur

Pipe[0] = | Pipe[1] Pipe[2] Pipe[n-1] Pipe[n]
—»I Filter[1] Filter[2] f——» ———— | Filter[n]

Y

Abbildung 2.9: lineares Pipes and Filter Architekturmodell [RHJN04]

Durchsatz einer einzelnen Komponente. Pipes agieren als Zwischenspeicher zwischen benachbarten
Filterkomponenten.

Eine Form dieses Architekturstils ist die lineare Pipeline. Hier verfiigt eine Filterkomponente tiber
genau eine Eingangs-Pipe und eine Ausgangs-Pipe. In Abbildung 2.9 wird ein lineares Pipes and Filter
Architekturmodell veranschaulicht. Ausgereiftere Formen des Pipes and Filter Architekturmodells
konnen im Gegensatz dazu mit datenzentierten Architekturen wie Shared Repository, Blackboard oder
Active Repository kombiniert werden, um den Datenaustausch zwischen Filtern zu gewahrleisten
[AZo05].

Der Pipes and Filter Architekturstil bietet zwei wesentliche Vorteile :

» Modularitit: jeder Filter kann modifiziert oder neu platziert werden, ohne dabei alle anderen
Filter zu beeintrachtigen

« Wiederverwendbarkeit: zahlreiche Filter existieren bereits und konnen wiederverwendet
werden

Weitere Vorteile sind, dass Rapid Prototyping von Pipeline Prototypen erméglicht wird und Zwischen-
dateien nicht notwendig sind aber so gewiinscht ermoglicht werden. Nachteile sind, dass die Kosten
der Dateniibertragung zwischen den Filtern je nach Pipe sehr hoch sein kénnen und dass haufig
tberfliissige Datentransformationen zwischen den einzelnen Filterstufen notwendig sind. Zudem ist
die Fehlerbehandlung tiber Filterstufen hinweg teilweise schwierig.

In einer Pipes and Filters Architektur wird eine komplexe Aufgabe in mehrere sequentielle Teilaufga-
ben aufgeteilt. Diese werden von einer separaten, unabhéngigen Komponente, der Filter-Komponente,
implementiert, welches sich nur auf diese eine Teilaufgabe konzentriert. Dariiber hinaus besitzt jede
Filter-Komponente eine Reihe von Input-Eingingen und Output-Ausgéingen. Filter konnen flexibel
mithilfe von sogenannten Pipes verbunden werden, iiber welche Daten transportiert werden. Ei-
ne Pipe realisiert demnach den Datenstrom zwischen zwei Komponenten. Da mehrere Filter auch

33

2 Grundlagen

pipe

pipe ——=> Filter 2 Filter 4 [—output =

] L

pipe

—input —=>{ Filter 1

pipe
Filter 3

Abbildung 2.10: Pipes and Filters Beispiel [AZ05]

parallel Daten verarbeiten werden kénnen und jede Filterkomponente stufenweise Daten konsu-
miert und weiterleitet, steigt dadurch der Durchsatz einer einzelnen Komponente. Pipes agieren als
Zwischenspeicher zwischen benachbarten Filterkomponenten.

Die Anwendung des Pipes and Filters Architekturmodells eignet sich besonders in Anwendungsfillen,
in denen zwischen Filterkomponenten geringe Kontextinformationen bewahrt bzw.ausgetauscht
werden und Filter keine Statuszustidnde zwischen den Aufrufen speichern miissen. Pipes und Filter
konnen flexibel miteinander kombiniert werden. Der Austausch von Daten zwischen den einzelnen
Komponenten kann jedoch teuer und unflexibel sein. Ferner gibt es Leistungsiiberlastungen bei der
Ubertragung von Daten in Pipes und Datentransformationen und die Fehlerbehandlung ist relativ
schwierig.

Abbildung 2.10 stellt ein Pipes and Filter Beispiel grafisch dar.

Im Gegensatz zu Batch Sequential, in welcher es keine explizite Abstraktion fiir Konnektoren gibt,
kommen beim Pipes and Filter Architekturstil dem Pipe-Konnektor héchste Bedeutung fiir die Uber-
tragung von Datenstrémen zugute. Das Hauptmerkmal ist die Flexibilitat bei der Verkniipfung von
Filtern mithilfe von Pipes. Dadurch lassen sich anwendungsspezifische Konfigurationen erstellen,
die spezifische Problemfille 16sen. In der puren Form konnen lediglich zwei adjazent angeordnete
Filter-Komponenten Daten untereinander austauschen.

Ausgereifte Formen des Pipes and Filter Architekturmodells kénnen im Gegensatz dazu mit datenzen-
tierten Architekturen wie Shared Repository, Blackboard oder Active Repository kombiniert werden,
um den Datenaustausch zwischen Filtern zu gewéhrleisten [AZ05].

34

2.6 Data Mashups

2.6 Data Mashups

In diesem Kapitel wird der Begriff Mashup erlautert und die Funktion von Mashup-Anwendungen
beschrieben. Mashup ist eine relativ neuer Ansatz, welche es dem Nutzer ermdoglicht, mehrere Dienste
zu kombinieren, um daraus einen vollstindig neuen Dienst mit einer anderen Funktionalitit erstellen
zu konnen. Eine Form von Mashups sind sogenannte Data Mashups. Da diese Arbeit hauptsachlich
auf Data Mashup fokussiert, wird der Begriff Data Mashup vorgestellt und einige Beispiele fir Data
Mashup Tools aufgelistet.

2.6.1 Mashups

Der Begriff Mashup umfasst eine Web-Technologie, welches die einfache Erstellung von web-
basierten Anwendungen durch Endnutzer ermdglicht. Mashup sind Datenaggregations-Anwendungen,
welche Daten von verrschiedenen Datenquellen kombinieren, um verwertbare Informationen zu
erstellen. [DVXB'09]

Mashup-Anwendungen werden aus mehreren User-Interface-Komponenten oder Artefakten und dem
Inhalt multipler Datenquellen zusammengesetzt. Im Bereich des Software Engineering beschreibt
ein Mashup die Kombination von bestehenden User Interface-Artefakten- Prozessen, Diensten und
Daten fiir die Erzeugung von neuen Web-Seiten, Anwendungen, Prozessen und Datensitzen. In
einer Mashup-Umgebung konnen Benutzer durch die Wiederverwendung von Artefakten bereits
bestehender User Interfaces(UI), neue Uls mithilfe von High-Level Scripting-Sprachen wie HTML
oder JavaScript erstellen.

2.6.2 Eigenschaften von Data Mashups

Data Mashups, welche auch unter dem Namen Enterprise Mashups bekannt sind, sind Technologien,
die von Unternehmen verwendet werden, um auf Daten (semi-) strukturierter und unstrukturierter
Datenquellen zugreifen, extrahieren und integrieren zu kénnen.

[HSSJS08] beschreibt ein Enterprise Mashup wie folgt:

~An enterprise mashup is a Web-based resource that combines existing resources, be it content, data or
application functionality, from more than one resource by empowering end users to create individual
information centric and situational applications®

Data Mashups automatisieren die Extraktion von Web-Daten und erméglichen die Strukturierung von
unstrukturierten Daten, welche schlieBlich mit unternehmensbezogenen Daten verkniipft werden
koénnen. Im Gegensatz zu Web Mashups sind Enterprise Mashups informations- und datenzentriert.
Dabei werden Transformationen und Semantiken verwendet, um unstrukturierte Daten zu struktu-
rieren und mit anderen Datenquellen in Verbindung zu bringen. Dadurch unterstiitzen Enterprise
Mashups die Integration in Unternehmen und End-User Mashups.

Ziel von Data Mashup Plattformen ist die flexible ad-hoc Integration von heterogenen Datenquellen.
Im Gegensatz zu Applicaton Mashups, liegt ihr Fokus auf dem Data-Layer. Data Mashups werden durch

35

2 Grundlagen

Mashup Modeling Mashup Execution
Static, Non Domain-Specific Modeling Automated Execution

'\. ’/' N /—
fa S
I g S c(’l;\ri
~ ﬂ c\u,"?” 1,‘
L N
. o # 2 e s -
Selection of Selection of Data Extraction and

Data Sources Data Operations Execution of
Data Operations

i

Y

Visualization

Abbildung 2.11: Data Mashup

mithilfe von Datenoperationen wie Filter und Join definiert. Das Ergebnis ist eine Datenquelle, welche
alle integrierten Daten enthélt. Der Benutzer legt fest welche Daten extrahiert und zusammengesetzt
werde, bevor der Mashup ausgefiithrt wird.

In Abbildung 2.11 werden die einzelnen Stufen der Mashup Modellierung dargestellt.

Zunichst bestimmt der Benutzer die Datenquellen und welche Daten extrahiert werden sollen.
Anschlielend werden die Datenoperationen und ihre Reihenfolge bestimmt. Danach werden die
automatisierten Schritte des Data Mashups ausgefiihrt. In Schritt drei erhilt die Mashup Applikation
die Benutzereingaben, extrahiert die Daten und fithrt die Operationen in der definierten Reihenfolge
aus. Danach wird das Ergebnis visualisiert oder abgespeichert [HRWM15].

2.6.3 Data Mashup Tools

Es existieren zahlreiche Data Mashup Tools. Zu den beliebtesten gehoren folgende [DLHPBO09]:

« Damia: Damia wurde von IBM erstellt und erlaubt dem Benutzer Data Feeds aus unterschiedli-
chen Quellen, wie Internet und aus dem Geschiftsbereich zu sammeln. Es legt den Fokus auf
Data Feed Aggregation und Transformation in Unternehmensumgebungen. Zusétzliche Tools
wie beispielsweis QEDWiki und Feed Reader, welche Atom und RSS verwenden, kénnen in der
Prasentationsschicht fiir den Data Feed verwendet werden, der von Damia bereitgestellt wird.

36

2.6 Data Mashups

» Yahoo Pipes: Yahoo Pipes ist eine web-basierter Tool von Yahoo, welcher die Erstellung von
Mashup-Anwendungen durch die Aggregation und Manipulation von Daten aus Web Feeds,
Web-Seiten und anderen Diensten ermdglicht. Dabei setzt sich eine Pipe aus mindestens einem
Modul zusammen, wobei jedes Modul eine einzelne Aufgabe ausfiihrt. Der Output einer Pipe
kann anschlieend entweder von einem Client mithilfe einer eindeutigen URL als RSS or JSON
aufgerufen werden oder wird in YahooMap visualisiert.

« MashMaker: Intel MashMaker ist ein weiteres web-basiertes Tool fir die das Abfragen und
die Manipulation von Web-Daten. Im Gegensatz zu anderen Tools arbeitet MashMaker jedoch
direkt auf den Web-Seiten, d.h. es ermoglicht Nutzern Mashups durch das Browsen und Kom-
binieren von unterschiedlichen Web-Seiten zu erstellen. Ziel dabei ist es, Nutzern eventuelle
Verbesserungen in Form von Mashups oder Widgets fiir besuchte Web-Seiten bereitzustellen.

+ Google Mashup Editor: Google Mashup Editor, GME, ist eine Umgebung von Google fiir die
Entwicklung, den Einsatz und die Verteilung von Mashups. Dabei kann ein Mashup mithilfe
von Technologien wie HTML, JavaScript, CSS verkniipft mit GM XML Tags und Java Script
API erstellt werden, welche zudem Nutzern erlauben die Darstellung von Mashup Outputs
individuell zu gestalten.

2.6.4 Vorteile und Nachteile von Data Mashups

Auch wenn Mashup-Ansitze neue Moglichkeiten fiir Daten- bzw. Service-Nutzer eréffnen, erfordert
der Entwicklungsprozess jedoch nicht nur, dass Nutzer technisches Wissen mitbringen,um mithilfe
von Programmiersprachen Code schreiben zu kénnen, sondern auch die Fahigkeit und das Wissen
dariiber, wie die unterschiedlichen Web APIs der zahlreichen Dienste zu verwenden sind. Tools konnen
hierbei bis zu einem gewissen Grad behilflich sein, da sie mit dem Ziel entwickelt worden sind, jene
Benutzer mit wenig Programmierkenntnissen im Bereich der Entwicklung von Mashup-Anwendungen
zu unterstiitzen.

Mashup Tools verarbeiten hauptsichlich Web-Daten. Dies ist vorteilhaft, da dadurch der Zugriff und
die Verwaltung von Daten, die nur iiber das Web zuganglich sind, erméglicht wird. Es ist jedoch zu
beachten, dass Daten, die sich auf den einzelnen Desktops befinden nicht gleichermaflen verwendet
werden konnen. Lokale Daten, welche eventuell auch eine wichtige Bedeutung haben kénnen, werden
dadurch nicht beachtet.

Der Grof3teil der angebotenen Tools besitzen ein internes Datenmodell, welches auf XML basiert.
Dies ist bedingt durch die Tatsache, dass Daten im Web hauptséchlich im XML-Format vorliegen.
Ferner verwenden Kommunikations-Protokolle fiir den Datenaustausch zumeist XML-Nachrichten.
Neben dem XML-basierten internen Datenmodell iibernimmt das objekt-basierte Datenmodell eine
wichtige Rolle. Fiir die Verwaltung von Daten (Daten-Integration und -Manipulation) stellen Tools
lediglich eine kleine Menge von Operationen zur Verfiigung. Dabei wurden diese Operatoren mit
dem Fokus auf die Zielfunktion des Tools entwickelt. Dadurch sind diese nicht leicht verwendbar
und kénnen beispielsweise keine komplexeren Anfragen realisieren. Mashup Tools sind erweiterbar,
wobei neue Operatoren, Datenschemata entwickelt und aufgerufen bzw. in das Tool integriert werden.
Die meisten Tools unterstiitzen jedoch nicht die Wiederverwendung von bereits erstellten Mashups.
Ferner sind dies angebotenen Tools in vielen Bereichen eingeschrankt und Nutzer kénnen ihre

37

2 Grundlagen

Anforderungen durch die Verwendung eines einzelnen Tools nicht realisieren. Eine der grofiten
Nachteile von Mashup Tools ist jedoch, dass obwohl Nutzer mit geringen technischen Kenntnissen
diese nutzen konnen, gewisse Programmierkenntnisse vorausgesetzt werden. Benutzern werden
grafische Benutzeroberflachen zur Verfiigung gestellt, um Operationen ausfithren zu kénnen.

2.7 Mashup Plans

In diesem Abschnitt wird der Ansatz von Mashup Plans beschrieben. Dieser Ansatz basiert auf dem
Pipes and Filter-Ansatz aus Kapitel2.5. Auf diesem Mashup Plan basiert das Mashup Tool FlexMash.
Im Folgenden werden Mashup Plans beschrieben und erldutert, wie diese modelliert und in ein
ausfiihrbares Format transformiert werden. Mashup Plans sind ein wesentlicher Bestandteil dieser
Arbeit. Die folgenden Abschnitte basieren auf [HRWM15] und [HM16].

2.7.1 Extended Data Mashup Ansatz

[HM16] prasentiert in seiner Arbeit den Extended Data Mashup Ansatz. Dieser bietet eine hohere
Flexiblitat fir die Modellierung und Ausfithrung von Data Mashups als der herkémmliche Data
Mashup-Ansatz und ist in drei Stufen eingeteilt:

+ Modellierungsstufe
« Transformationsstufe

« Ausfithrungsstufe

Ein Doméanenexperte definiert die Datenquellen und die Datenoperationen mithilfe eines domanen-
spezifischen Modells, dem Mashup Plan. Danach werden Transformationspatterns ausgewahlt, um
eine Implementierung finden zu konnen, die die Anforderungen erfiillt (z.B. robust oder zeitkritisch).
AnschlieBend wird der Mashup Plan, abhéngig vom gew&hlten Transformationspattern, in ein ausfiihr-
bares Model transformiert. Dieser wird danach auf einer geeigneten Engine ausgefiihrt. Das Ergebnis
wird in einer Datenbank gespeichert und ist fir Visualisierung, Datenanalyse etc. zuganglich.

2.7.2 Mashup Plan Modellierung

Bei der Modellierung eines Mashup Plans miissen diverse Beschrankungen beachtet werden:

Jeder Mashup Plan beinhaltet genau einen Startknoten, mindestens einen DSD und DPD und einen
Endknoten. Die technischen Details und Eigenschaften von DPDs und DSDs, die zur Modellierung
von Mashup Plans verwendet werden, werden von IT-Experten erstellt und in den entsprechenden
Repositories abgelegt. Dadurch wird es Doménen-experten erméglicht, bei der Erstellung von Mashup
Plans auf diese Repositories zuzugreifen, ohne die technischen Details bestimmen zu miissen.

38

2.7 Mashup Plans

Mashup Plan Modeling Mashup Plan Transformation Mashup Plan Execution
Domain-specific Modeling Pattern-based Transformation Automated execution

Executable

Mashup Plan - Mashup Plan

Critical |

Time- |
a N7) \ 'a ™ J i R 4 g "
ot | 7 = T 3 -
= : H S ~— (3 12
e) e OB —— % I B »
L l \ 9 s — - L
o e~ |] 06’ e -6’
Definition of Definition of | =) Transformation Data Extraction and Result Storage Result Utilization
Data Sources Data Operations = T Execution of
(Domain-specific) Transformation- Data Operations

Pattern Selection

Abbildung 2.12: Extended Mashup Ansatz [HRWM15]

Mashup Plan

Mashup Plans sind verwandt mit dem Ansatz der Pipes and Filter und werden von Doménenexperten
erstellt, welche wenig technisches Wissen und Programmierkenntnisse besitzen. Ein Mashup Plan ist
ein gerichteter, zusammenhingender und nicht ausfithrbarer Flussgraph bestehend aus Knoten und
Kanten. Die Kanten beschreiben den Daten- und Kontrolfluss zwischen den Knoten, welche unterteilt
werden konnen in DSDs (Data Source Descriptions) und DPDs (Data Processing Descriptions. DSDs
basieren auf Business Objects, den sogenannten Artefakten und erméglichen Nutzern, ohne Kenntnisse
iiber technische Details, Datenquellen zu modellieren.

Ein Mashup Plan enthélt mindestens eine DSD und eine DPD. Eine DSD bildet den Startknoten eines
Mashup Plans, wobei jeder Mashup Plan einen Endpunkt hat. Die verwendeten DPDs und DSDs
werden in entsprechen Verzeichnissen gespeichert, auf die der Nutzer bei der Modellierung zugreifen
kann.

Abbildung 2.13 stellt einen Mashup Plan grafisch dar.

DPD und DSD Modellierung

Jede DSD enthélt Informationen tiber die Lokation der Datenquelle und ihre Zugriffsinformation
(z.B. database port, URL etc.). DSDs bestimmen die zu integrierenden Daten in fiir Doménenexperten
lesbaren Formaten. Dazu konnen Artefakte verwendet werden, welche die Daten reprisentieren.
Diese Artefakte entsprechen geschiftsrelevanten Objekten und abstrahieren von den spezifischen
Daten. Dies konnen beispielsweise Produktionsmaschinen sein, Informationssysteme usw. Diese
Artefakte verwalten relevante Informationen tiber diese Geschéftsobjekte und ihre Lebenszyklen in
abstrake Form. Diese Artefakte erleichtern Doméanenexperten die Modellierung von Datenquellen.

39

2 Grundlagen

Domain Expert

models

Data Processing
Data Source Descriptions
Descriptions

I"‘i IT Expert Mashup Plan
\ -
¢ Data Source Description (DSD
creates 'F Y ki ()
g D Data Processing Description (DPD)

Abbildung 2.13: Mashup Plan [HRWM15]

Parametrisierte und abstrakte DPDs beschreiben Datenoperationen eines Mashups ohne dabei die
technischen Details zu verwenden. DPDs konnen in Data Selection und Data Combination DPDs
unterteilt werden. Ein DPD beschreibt im Gegensatz zu einem DSD, wie Daten verarbeitet bzw.
modifiziert werden. Demnach entspricht ein DPD einer Operation, d.h. einem Code, der Daten
verarbeitet. Die Implementierung eines DPD ist dabei kontextabhidngig und es konnen mehrere
Implementierungen fiir eine einzelne DPD existieren, abhingig von Datentypen, Datenstrukturen
etc. Fiir die Umwandlung von DPDs und DSDs zu den entsprechenden Implementierungen kann der
Ansatz von [RSM14] verwendet werden.

2.7.3 Patternbasierte Transformation

Der nicht ausfithrbare Mashup Plan muss in ein ausfiithrbares Format tiberfithrt werden. Das Ergebnis
der Transformation ist ein ausfithrbarer Mashup Plan. Dieser ist ein gerichteter Graph, der ausschlie3-
lich aus executable data processing nodes (eDPN) und Datenkontrolfluss-Kanten besteht. Ein eDPN
enspricht einer Implementierung, einem Stiick Code, welches aufgerufen wird. Informationen iiber
den Datenzugriff und die Eingabeparameter eines eDPNs befinden sich im eDPN-Verzeichnis.

Die patternbasierte Transformation besteht aus 5 Ausfithrungsschrittegliedern:

« Modellierung des Mashup Plans
« Auswahl der Transformationspattern

« patternbasierte Transformation des Mashup Plans in ausfithrbares Format

40

2.7 Mashup Plans

+ cloud-basierte Data Mashup Ausfithrung, abhéngig von Benutzeranforderungen

+ Speicherung/ Visualisierung des abgeleiteten Resultats

Ausfithrungsschritt 1 Die Erstellung des Mashup Plans wurde in 2.7.2 ausfiihrlich erlautert und
wird darum hier nicht ndher beschrieben.

Auswahl des Transformation Patterns

Transformations Patterns enthalten zuséatzliche Information iiber das Szenario, in dem ein Mashup
Plan ausgefithrt wird. Fiir jedes Szenario gibt es ein Transformations Pattern. Das Transformation
Pattern Time-Critical Mashup beschreibt beispielsweise Anwendungsfille, in denen die Zeit ein
wichtiger Faktor. Die dazu ausgesuchte Implementierng sollte effizient sein. Der Transformation
Pattern Robust Mashup hingegen verlangt eine robuste Ausfithrung, d.h. daten-persistent, mit hoher
Verfiigbarkeit und Fehlerbehandlung.

Fiir Patterns wird ein erweiterbares Patternkatalog eingesetzt, welches Informationen tiber Patterns
zur Verfiigung stellt. So gibt es Einsicht iiber alle existierenden Pattern, wie diese miteinander
kombiniert werden kénnen und welche Defizite und Einschrankungen sie haben. Jeder Eintrag im
Katalog beschreibt eine einzelnes Transformation Pattern und besteht aus mehreren Bestandteilen:

 Beschreibung der Problemstellung, das mithilfe des Patterns gelost wird
« vom Pattern bereitgestellte Losung des beschriebenen Problems
« Fallbeispiel, wie der Pattern verwendet werden kann

« Evaluierung

Information, ob und wie das Pattern mit anderen Transformationspatterns kombiniert werden
kann

Der Benutzer muss bei der Auswahl des Patterns zumeist zusatzliche Parameter festlegen, die fiir das
Auffinden der entsprechenden Implementierung erforderlich sind. Demnach muss der Benutzer, die
maximale Laufzeit der Ausfithrung bestimmen, wenn er beispielsweise den zeitkritischen Mashup
Pattern ausgesucht hat. Wahlt der Nutzer im Gegensatz dazu das Robust Mashup Pattern, muss
festgelegt werden, ob Fehlerbehandlung notwendig ist oder Logging unterstiitzt wird.

Die ausgewihlten Patterns beeinflussen, wie das Mashups ausgefiithrt wird. Das Robust Mashup
Pattern z.B. erfordert eine robuste Ausfithrung des Mashups. Folglich wird eine Workflow Engine als
Execution Engine verwendet.

41

2 Grundlagen

Patternbasierte Transformation

Im dritten Ausfithrungsschritt wird der nicht ausfithrbare Mashup Plan anhand der zuvor gew#hl-
ten Patterns in ein ausfithrbares Format gebracht. Sowohl Abbildung des Mashup Plans auf ein
ausfithrbares Modell als auch Auswahl der geeigneten Ausfithrungs-Engine werden mithilfe eines
regelbasierten Transformationsansatzes, dhnlich dem Ansatz von [RSM14] ausgesucht. Patterns
werden strukturiert und zu einer Implementierung verbunden. Dazu wird ein sogennanter Pattern
Graph benutzt. Ein Pattern Graph ist ein baumbasierter, direkter Graph, bestehend aus Knoten und
Kanten. Die Knoten stellen entweder ein Pattern oder eine Implementierung dar, Kanten dagegen
beschreiben Spezialisierungen. Es gibt zwei Kantentypen:

« consists of- Kanten

+ implemented by-Kanten

Die consists of-Kante verbindet Patterns miteinander und deutet darauf hin, dass ein Pattern aus
mehreren Sub-Patterns besteht. Demnach kann die bestehende Problemldsung nur gelést werden,
wenn alle Sub-Patterns ausgefiithrt werden. Die Implemented by-Kante verkniipft Implementierungs-
knoten miteinander. Ist ein Pattern mit mehreren Implementierungen verbunden, bedeutet dies, dass
es von einer dieser Implementierungen realisiert werden kann. Ist dies der Fall, wird die realisierende
Implementierung entweder manuell ausgesucht oder automatisch. Im Wesentlichen wird ein anfangs
generisches Pattern im Wurzelknoten des Baumgraphen schrittweise konkretisiert und aufgeteilt
in Subpatterns bis schliellich in der letzten Stufe diese durch Implementierungsfragmente ersetzt
werden.

Patterns konnen demzufolge tiber mehrere Abstraktionsstufen hierarchisch strukturiert werden,
wobei jedes Pattern durch mehrere Implementierungen realisiert werden kann. Der Wurzelknoten im
Patterngraphen entspricht hierbei dem Pattern mit dem hochsten Abstraktionsgrad. Es handelt sich
demnach um das Pattern, welches im Patternkatalog beschrieben wird.

Fiir jeden Eintrag im Patterkatalog exisitiert ein Pattern Graph. Die Parametrisierung des Patterns
bestimmt, welcher Pfad im Patterngraphen eingeschlagen wird, um die Implementierungen in den
Blattknoten zu erreichen. Diese Entscheidung wird anhand von Regeln festgelegt, die beim Durchlau-
fen des Patterngraphen ausgewertet werden. Diese Regeln vergleichen die Parameter des Pattern mit
vordefinierten Eigenschaften der Implementierungen, um somit die geeignetesten Implementierungen
bestimmen zu konnen. Obgleich keine Implementierung gefunden werden kann, die alle Anforde-
rungen erfiillt, wird letztlich eine Implementierung ausgewéhlt. Der Benutzer entscheidet daraufhin,
ob diese verwendet wird oder nicht. Sobald eine geeignete Implementierung gefunden wurde, wird
der Mashup Plan in eine ausfithrbare Darstellung tiberfithrt. Hirmer et al. benutzen modularisierte
Implementierungsfragmente, die zusammengescriptet werden und somit das ausfithrbare Modell
erstellen. Wird beispielsweise die Ausfithrung mittels einer Workfow Engine durchgefiihrt, kann der
ausfithrbare Workflow automatisch generiert werden, indem Knoten der Business Process Execution
Language (BPEL) aufgerufen werden , um die Operationen des definierten Mashup Plans ausfiihren zu
konnen. Die Programmierlogik von DSDs und DPDs wird in Codefragmenten gespeichert, z.B. als Java
Web Services, die vom Workflow ausgefiihrt werden. Die Transformation lauft bei Ausfithrung auf
einer Node-RED Engine dhnlich ab. Hier werden vordefinierte JavaScript Codefragmente miteinander
verbunden.

42

2.7 Mashup Plans

Pattern-based
Mashup Plan
Transformation

=

Mashup Plan Executable
Pattern Trans- Mashup Plan
Selection formation

Abbildung 2.14: Komponenten der Mashup Plan Transformation [HRWM15]

TOSCA-basierter Einsatz und Ausfiihrung

Um Data Mashups ausfithren zu kénnen, sind mehrere Softwarekomponenten erforderlich, die den
Datenfluss bewerkstelligen, die Programmierlogik fiir DSDs und DPDs bereitstellen und das Ergebnis
in einer Datenbank beziehungsweise Data Warehouse visualisieren oder abspeichern. Hirmer et al.
setzen sich als Ziel, diese Komponenten lediglich bei Initiierung eines Data Mashups On-Demand
bereitzustellen. Diese Komponenten werden einmalig bei der ersten Ausfithrung des Mashup Flows zur
Verfiigung gestellt. Wird der Mashup nicht mehr gebraucht, kénnen die bereitgestellen Komponenten
wieder abgeriistet werden, um Kosten zu sparen. Hirmer et al. nutzen aus diesem Grund Cloud-
Computing-Technologien, den OASIS Standard TOSCA und die Ergebnisse ihrer vorangegangenen
Arbeit. Die Komponenten, die bereitgestellt werden sollen, werden beim Durchlaufen des Pattern
Graphen ermittelt. Ausgehend von dieser Information kann automatisch eine TOSCA Topologie
erstellt werden, die alle erforderlichen Komponenten enthalt und Informationen beinhaltet, wie diese
miteinander verbunden sind. Dies kann durch das Konzept der Node Templates und Relationship
Templates, die im TOSCA Standard beschrieben sind, erreicht werden.

2.7.4 FlexMash

FLexMash ist ein Data Mashup Tool, welches an der Universitat Stttgart entwickelt wurde. Es ermog-
licht die grafische und doménenspezifische Modellierung von Mashup Plans und ihre Ausfithrung.
Dabei kann der Benutzer (Doméanenexperte)seine Anforderungen eingeben, welche die Art der Aus-
fithrung bestimmen. Dadurch wird einerseits eine hohere Flexibilitat bei der Ausfithrung gewahrleistet

43

2 Grundlagen

und andererseits der Benutzerkreis vergréflert, da Doméanenexperten, ohne technisches Wissen, in
der Lage sind mit FlexMash Data Mashups zu erstellen

FlexMash wird, wie die meisten Mashup Tools, online bereitgestellt und kann iiber einen Webbrowser
verwendet werden. Da FlexMash in einer Cloud Computing Infrastruktur als Dienst angeboten wird,
ermdglicht es einen leichten Zugriff, einfachen Einsatz und bessere Skalierbarkeit. Die Architektur
lasst sich in vier Hauptbestandteile zerteilen.

Der Mashup Plan Modeler bietet dem Benutzer die Moglichkeit, festzulegen, wie Daten schrittweise
verarbeitet werden sollen. Desweiteren konnen hier Patterns betrachtet und ausgewahlt werden. Die
patternbasierte Model Transformation-Komponente (PbMT) enthélt den Pattern-Implentation
Selector, der,wie zuvor beschrieben, automatisch eine geeignete Implementierung fiir die parame-
trisierten Patterns auswéhlt. Dieser Prozess wird mittels eines Patterngraphen und einem regelba-
sierten Ansatz realisiert. Aus Griinden der Ubersichtlichkeit wird die Abbildung des Patterns auf
eine Implementierung moglichst einfach gehalten. Folglich existieren fiir jedes Pattern genau eine
Implementierung. Die PbMT enthilt zudem die Logik fiir die Abbildung des Mashup Plans in ein
ausfiithrbares Format, sowie die Logik fiir die Ausfithrung des Modells auf der geeigneten Engine.

Die Komponente Utils stellt hierzu Methoden bereit, die diese Funktionalitit unterstiitzen. Die
Ausfithrungsengines, die die umgewandelten Modelle ausfiihren sollen, sind nicht Bestandteil von
FlexMash, sondern cloud-basierte externe Dienste. Die letzte Komponente in der Architektur ist fiir
die Visualisierung des Outputs aus der Ausfithrung zustandig.

44

3 Grundkonzept einer Fragment-Repository

In diesem Kapitel wird das Konzept fir ein Fragment-Repository, welches fiir die einzelnen Kompo-
nenten eines Mashup Plans automatisch Code-Fragmente sucht und zur Verfiigung stellt, beschrieben.
Die gefundenen Code-Fragmente aus diesem Verzeichnis ersetzen anschlieend die entsprechenden
DSDs und DPDs im Mashup Plan.

Dabei wird in 3.1 die Funktion des Repository-Dienstes in abstrakter Form beschrieben. Dariiber
hinaus wird erlautert, welche Eingabewerte an das Verzeichnis tibergeben werden und welche Ausgabe
daraus resultiert.

In 3.2 die Architektur des Repository-Dienstes erklart. Des Weiteren wird erldutert, wie die drei
Ebenen der Architektur funktionieren und auf welche Weise diese miteinander agieren, um die
Grundfunktionen des Repository-Dienstes zu bewerkstelligen. Zudem wird beschrieben, wie ein
Benutzer des Repository-Dienstes Anfragen schicken kann und wie die Ergebnisse ausgegeben
werden.

In 3.3 werden die unterschiedlichen Technologien, die bei diesem Konzept zum Einsatz kommen,
niher betrachtet. Dabei wird erwahnt, welche Vorteile die Verwendung dieser Technologien mit sich
bringen und welche wesentlichen Merkmale sie aufweisen. Das in dieser Arbeit beschriebene Konzept
kombiniert verschiedene Datenbanken fiir die Realisierung des Repository-Dienstes.

Zu den Kernpunkten dieser Arbeit gehort das Auffinden einer geeigneten Implementierung fiir ein
verwendetes Pattern. Diese Prozedur wird auch Mapping gennannt. Da fiir ein Pattern durchaus
mehr als nur eine Implementierung vorhanden sein kann, muss dieses Mapping-Problem durch ein
Konzept gelost werden. Dazu wird das Regelbasierte Mapping verwendet. In 3.4 wird beschrieben,
wie eine geeignete Implementierung regelbasiert durch Parametrisierung der Patterns gefunden wird.
Anschlieend wird ein regelbasierter Ansatz vorgestellt, auf dem Regelbasierte Mapping dieser Arbeit
basiert.

Zuletzt wird in 3.4.2 an einem Beispiel die Aufteilung eines verschachtelten Patterns innerhalb
der Patternhierarchie Schritt fiir Schritt beschrieben. Hierbei entspricht ein verschachteltes Pattern
einem Knoten des Mashup Plans, welches selbst Knoten enthilt, die selbst Pattern sind. Dieser muss
stufenweise in seine einzelne Bestandteile zerlegt werden.

3.1 Funktion des Fragment-Repositories

In diesem Abschnitt wird zusammengefasst, welche Funktion der Repository-Dienst haben soll.
Abbildung 3.1 stellt die Funktion des Repository-Dienstes grafisch dar. Wie bereits erwdhnt wurde,
ist Ziel des Repository-Dienstes konkrete Implementierungen fiir die Knoten eines Mashup Plans

45

3 Grundkonzept einer Fragment-Repository

automatisch zur Verfiigung zu stellen. Diese sogenannte Mapping von Patterns soll dabei regelbasiert
umgesetzt werden.

Der Repository-Dienst erhalt als Eingabe einen Mashup Plan. Dieser wird, angefangen beim Startkno-
ten bis zum Endknoten traversiert. Dabei wird fiir jeden Knoten, welches nicht ausfiithrbar ist, im
Repository-Dienst nach der geeigneten Implementierung gesucht. Da fiir jedes Pattern, d.h. jeden
Knoten des Mashup Plans, mehr als eine Implementierung in der Datenbank des Verzeichnisses
vorhanden sein kann (Mapping-Problem) wird ein regelbasiertes Mapping verwendet. Diese wird
in 3.4 genauer beschrieben. Jeder Knoten des Mashup Plans tibergibt als Eingabe ein JSON-Objekt
an das Verzeichnis. Mithilfe der darin enthaltenen Informationen kann, die Lookup-Funktion des
Verzeichnisses nach der geeigneten konkreten Implementierung suchen und diese zur Verfiigung
stellen. Sind alle nicht ausfithrbaren Knoten durch Code-Fragmente aus dem Verzeichnis ersetzt
worden und der Endknoten erreicht, wird als Ausgabe ein ausfithrbarer Mashup Plan ibergeben.
Dies kann beispielsweise, abhangig von den Nutzeranforderungen des Benutzers, ein BPEL-Workflow
sein.

Neben der Verwaltung der Code-Fragmente, bietet der Repository-Dienst unterschiedliche Funk-
tionen an. So kann ein Benutzer neue Code-Fragmente in die Datenbank einpflegen, bestehende
Code-Fragmente andern und updaten, 16schen oder nach bestimmten Implementierungen mithilfe
verschiedener Kriterein suchen.

3.2 Architektur eines Fragment-Repositories

In diesem Abschnitt wird die grundlegende Architektur des in dieser Arbeit entworfenen Konzepts
einer Repository fiir Code-Fragmente beschrieben. In Abbildung 3.2 ist diese Architektur des Entwurfs
abgebildet. Es handelt sich dabei um ein System, das aus insgesamt drei Ebenen besteht. Zwischen
den drei Ebenen findet ein Informations- und Datenfluss sowohl von der obersten Ebene bis runter in
die unterste Ebene als auch umgekehrt von der untersten Ebene hinauf zur obersten Ebene statt. Im
Folgenden werden die einzelnen Ebenen niher beschrieben.

o Prdsentations-Schicht: Auf der obersten Ebene, welche die Prasentationsschicht bildet, wird der
Datenaustausch initiiert. Sie stellt die Schnittstelle zwischen den Benutzern bzw. Anwendungen
und dem Repository-Dienst dar, iber die mit dem Repository-Dienst interagiert werden kann.

Unterschieden wird hier momentan zwischen zwei verschiedenen Formen der Interaktion. Bei
der ersten Interaktionsform, verwendet der Benutzer einen Web-Browser oder Client-Dienst
um Anfragen an die Repository zu senden. Zuriickgelieferte Resultate werden wiederum im
Browser bzw. Client angezeigt. Da es sich bei dem Repository-Dienst um einen REST-Dienst
handelt, erfolgen die Anfragen in Form von HTTP-Anfragen iiber das HTTP-Protokoll, welches
die Methoden Put, Post, Get und Delete unterstutzt.

Im zweiten Szenario wird der Repository-Dienst programmatisch aufgerufen, d.h. der Pro-
grammcode bestimmter Repository-Funktionen wird durch Methodenaufrufe in die Anwen-
dung eingebunden. Konkret handelt es sich hier um die an der Universitit Stuttgart entwickelte
Anwendung Flex-Mash, welche als Grundlage fir diese Arbeit gedient hat. Flex-Mash ruft eine

46

3.2 Architektur eines Fragment-Repositories

MASHUP PLAN
(nicht ausfuhrbar)

—»
7 - - S
7 = —
ANFRAGE
FRAGMENT REPOSITORY
SERVICE
TRANSFORMATION /
SELEKTION

Node-Red-Workflow

[N
[{"id":"11b032a3.e
S"type":"inject","na \
"Tick" "topic"™ "pal .

" repeat”:™ "crontab": |

wejg * o
*" "once":false,"x":161,"
y":828,"z":"6480e14.f9b
72" ,"wires":
[["a2b3542e.5d4ca8"]},
{"id":"a2b3542e.5d4ca8"

MASHUP PLAN
(ausfihrbar)

BPEL-Workflow

[N
<bpel:process N
name=\"DataMash| .
cess\" — N\
targetNamespace=\"http:
/lbpel.data_mashup.as.i
pvs.informatik.uni_stuttg
art.de\"
suppressJoinFailure=\"y
es\" xmins:tns=\"http

Abbildung 3.1: Fragment-Repository

47

3 Grundkonzept einer Fragment-Repository

Transform-Methode des Repository-Dienstes auf und tibergibt ihm hierfiir einen JSON-Flow
als Eingabeparameter. Nach der Ausfithrung der Methode liefert der Repository-Dienst einen
transformierten JSON-Flow als Ausgabe zuriick, welcher dann in der Flex-Mash-Anwendung
weiterverarbeitet wird.

« Datenzugriffs-Ebene: Die zweite Ebene der Architektur bildet die Datenzugriffs-Schicht. Sie stellt
eine intermediare Schicht zwischen dem Benutzer bzw. Anwendungen und der Datenschicht
dar. Alle Anfragen der ersten Ebene werden hier entgegengenommen und an die Datenschicht
weitergeleitet. Umgekehrt werden Daten von der Datenebene bezogen und an die Préasentati-
onsschicht weitergeleitet.

Die gesamte ,business logic“ findet auf dieser Ebene statt. Ein Rest-Controller nimmt alle
Rest-Anfragen und ihre Eingabeparameter an den Repository-Dienst entgegen und ruft interne
Methoden auf, welche die Eingabedaten verarbeiten und auf der Datenebene entsprechen-
de Datenmanipulations-Operationen bzw. Datenanfragen einleiten. Des Weiteren wird auf
der Datenzugriffs-Ebene eine Pattern-Transformer-Funktion bereitgestellt, welche von der
Fex-Mash-Anwendung aufgerufen wird. Diese iibergibt der Transformer-Funktion einen Mash-
Flow, welcher ein oder mehrere Patterns als Knoten enthilt und somit unausfuhrbar ist. Der
Pattern-Transformer wandelt den Ausgangs-Workflow Schritt fiir Schritt, gegebenenfalls re-
kursiv, um, indem es regelbasiert Transformationsschritte ausfithrt, welche Patternknoten
mit Code-Fragmenten und oder weiteren Pattern-Knoten ersetzt. Als Endresultat liefert der
Pattern-Transformer einen ausfithrbaren JSON-Workflow zuriick, der keine Pattern-Knoten
mehr enthilt.

Diese zusitzliche Ebene verhindert den direkten Zugriff auf die Datenebene und die gesam-
te Logik, d.h. die Implementierungdetails der Funktionen des Repositiories, welche auf den
relevanten Daten der Datenebene arbeiten, werden vor dem Benutzer verborgen.

+ Daten-Ebene: Die dritte Ebene bildet die Daten-Ebene bzw. das Datenmodell. Hier werden
alle Daten bereitgestellt, welche durch den Repository-Dienst verwaltet werden. Die Daten
werden in drei verschiedenen Datenquellen vorgehalten. Der Grof3teil der Daten, der durch die
Fragmente représentiert wird, ist in einer NoSQL-Datenbank abgelegt. Da NoSQL-Datenbanken
fir den Umgang mit groflen Datenmengen ausgelegt sind (Big Data), gewéhrleistet der Einsatz
einer solchen Datenbank hier gute Zugriffszeiten und eine hohe Verfiigbarkeit. Die zu den
Fragmenten gehorenden Metadaten werden in einer relationalen Datenbank abgelegt. In einer
dritten Datenbank bzw. NoSQL-Tabelle werden die Web-Services gespeichert, welche von den
Fragmenten aufgerufen werden.

Durch die Aufteilung in verschiedene Ebene wird der Grundsatz eines ,separation of concerns®
realisiert. D.h. Aufgabenbereiche werden voneinander getrennt. Dadurch ist die Architektur tiber-
sichtlicher strukturiert und die Gesamtkomplexitit des Systems wird niedrig gehalten. Dies erlaubt
eine einfache Erweiterbarkeit des Systems (z.B. Erweiterung der Benutzerschnittstelle durch eine
Benutzeroberfliche, Hinzufiigen neuer Logik in Datenzugriffsebene etc.). Des Weiteren wird eine
Trennung von fachlicher und technischer Ebene erzielt, indem Anfragen and die Repository als
fachliche Abstraktionen von ihren konkreten, technischen Umsetzungen getrennt werden.

48

3.3 Verwendete Technologien

Flex-Mash

\ggﬂ URL: https://localhost:8080/RepoService
@ HTTP: Post, Put, Delete, Get

[Rest API

Presentation Layer

Pattern-Transformer

Repository

Data Access Layer

[C(reate)] [R(etrieve)] [U(pdate)

\ sort filter rank

metadata Data Model/Data Layer

webServices

Abbildung 3.2: Architektur der Fragment-Repository

Die Interaktion mit der Repository erfolgt auf dem gegenwirtigen Implementierungsstand iiber die
Verwendung von Rest-Anfragen in Form von HTTP-Befehlen an die Deployment-URL des Repository-
Dienstes. Da momentan keine Benutzeroberflache implementiert ist, muss ein REST-Client verwendet
oder die Eingabe iiber die Adresszeile eines Web-Browser erfolgen. Die erfordert jedoch technisches
Know-How und Doménenwissen, insbesondere bei der Formulierung der Eingabeparameter und
beim Auslesen der Ausgabeparameter im JSON-Format.

3.3 Verwendete Technologien

In diesem Abschnitt werden die zur Realisierung des Konzepts fiir das Code-Fragmente-Verzeichnis
verwendete Technologien beschrieben. Dazu gehéren die NoSQL-Datenbank MongoDB und das
relationale Datenbanksystem MySQL. Des Weiteren wird das verwendete Open-Source Framework

49

3 Grundkonzept einer Fragment-Repository

Spring beschrieben und ihre Vorteile genannt. Dazu wird das die Architektur von Spring mit den
wichtigsten Komponenten aufgelistet. Ferner werden die wesentliche Merkmale dieses Open-Source
Rahmenwerks vorgestellt und anschlieend die Vorteile genannt, die eine Verwendung von Spring mit
sich bringt. In 3.3.2 wird die fiir dieses Konzept verwendete NoSQL-Datenbank MongoDB beschrieben.
Dabei wird erlautert, in welcher Form Daten in MongoDB gespeichert werden und welches die
charakteristischen Merkmale dieser Datenbank sind. Ferner werden neben den Vorteilen auch die
Unterschiede zu SQL-Datenbanken erwahnt. MongoDB wird in dieser Arbeit fiir die Speicherung der
Code-Fragmente und der damit verbundenen Web Services verwendet.

3.3.1 Spring Framework

Fir die Implementierung dieser Abschlussarbeit wurde unter Anderem das Spring Rahmenwerk
verwendet. In diesem Abschnitt wird daher das Spring Framework genauer beschrieben.

Spring ist ein java-basiertes Open-Source Rahmenwerk und dient dazu die Entwicklung von Java-
EE-Appikationen zu vereinfachen. Hauptbestandteile sind die Dependency Injection (DI) und das
aspektorientierte Programmieren (aspect-oriented programming, AOP). Das Spring Rahmenwerk
zeichnet sich dadurch aus, dass einfache Java-Objekte, sogenannte Plain Old Java Objects (POJO), als
Java-Beans verwaltet werden. Neben Spring MVC gehoren der Inversion of Control-Container und
das Aspect oriented Programming zu den wesentlichen Hauptfunktionen dieses Rahmenwerks.

Das Spring Framework erfreut sich einer wachsender Beliebtheit in der Java Community, da sie eine
Alternative, ein Ersatz, als auch als Erweiterung des JavaBeans-Modells betrachet werden kann. JavaEE
ist weitverbreitet, hat allerdings Einschrankungen in Bezug auf Reusability von Code. Verwendet
man das Spring Framework gemeinsam mit JavaEE erleichtert es die Entwicklung von Applikationen.
Die wesentlichen Funktionen des Spring Frameworks sind [Wal12]:

« Verkniipfungen durch Dependency Injection iiber den Inversion-of-Control Container
« auf Plain Old Java Objects basierendes Programmiermodell

+ Querschnittsthemen werden durch Aspect orientend Programming (AOP) bereitgestellt
Spring griindet seinen Angriff auf die Komplexitit von Java auf vier Kernstrategien:

« Leichtgewichtige und minimal invasive Entwicklung mit POJOs (Plain Old Java Objects)
+ Lockere Kopplung durch Injizieren von Abhéngigkeiten und Interface-Orientierung
+ Deklarative Programmierung durch Aspekte und iibliche Konventionen

» Reduzierung von Boilerplate-Code durch Aspekte und Vorlagen

Spring besitzt eine mehrschichtige Architektur. Wird eine E-Commerce-Applikation entwickelt, er-
folgt eine Trennung der Schichten. Der Benutzer kann selbst entscheiden, welchen Komponenten
er verwenden mdchte. Spring tibernimmt Infrastruktur und Benutzer kann sich auf die Anwen-
dung konzentrieren .Demnach ergeben sich mit der Benutzung von Spring folgende Vorteile. Ein
Anwendungs-entwickler kann eine Java-Method bei einer Datenbanktransaktion ausfithren, ohne
sich dabei mit der Transaktions-API beschiftigen zu miissen. Desweiteren kann beispielsweise eine

50

3.3 Verwendete Technologien

Abbildung 3.3: Die Architektur des Spring Framworks [JHD'04]

lokale Java-Method eine Remote Procedure ausfithren, wobei die Auseinandersetzung des Benutzers
mit einer Remote API entfallt [BSKM12].

Architektur von Spring

Die Architektur von Spring lésst sich in 7 Kernbestandteile zusammenfassen:

« Core Container

« Spring Context

Spring DAO

Spring ORM

Spring Web Module

Spring MVC framework

51

3 Grundkonzept einer Fragment-Repository

Student Service Loggin Module

~

Librarian Service Security Module

/
\

Transaction
Module

Staff Service

Abbildung 3.4: Normales System ohne AOP

Aspect oriented Programming, AOP, ermoéglicht die Trennung verschiedener Themengebiete
in einem System. Aspekte konnen mithilfe von Spring XML-Files miteinander verkniipft werden.
Anhand des folgenden Beispieles wird dies dies veranschaulicht. In einem Biicherei-System bendtigen
diverse Diensttypen, wie z.B. ein Studentenservice etc., Funktionalititen, die von Modulen fiir das
Logging, Security und Transaktionen bereitgestellt werden. Das urspriingliche Modell wiirde wie
folgt aussehen:

Dasselbe Szenario wiirde mithilfe der AOP-Funktionalitiat von Spring folgendes Resultat ergeben.
Jede der drei Funktionen werden allen Diensten zur Verfiigung gestellt.

Inversion of Control ruft nicht die Applikation das Framework auf, sondern das Rahmenwerk die
Komponenten, die von der Applikation bestimmt werden. Die Abhéngigkeiten werden dynamisch
zur Laufzeit injiziert.

Spring MVC Modell

Das Spring Rahmenwerk stellt sein eigenes MVC Modell zur Verfiigung. Die Hauptkomponenten sind

52

3.3 Verwendete Technologien

ﬁransaction Module \

Staff Service

™

Librarian

Service

Student Service

N Y,

\\Logging Module /
\\ Security Module /

Abbildung 3.5: Ansatz mit AOP

» DispatcherServlet: empfingt den Request, welches durch ein web.xml file an ihn iibergeben
wird.

« Controller: Es bearbeitet die Anfrage und wird vom Benutzer erstellt. Controller sind Objekte,
die auf Benutzeraktionen reagieren.

« View: visualisiert dem Endnutzern das Endresultat

+ ModelAndView: assoziiert Anfrage mit der View; wird von Controller erstellt und gibt bei
Ausfithrung Daten und Namen der View an

« ViewResolver: 16st View auf, basierend auf Ausgabe des ModelandView; wahlt das Ausgabe-
medium

+ HandlerMapping: Mithilfe dieses Komponents assoziiert DispatcherServlet ankommende
Anfragen mit individuellen Controllern.

53

3 Grundkonzept einer Fragment-Repository

Spring und XML

XML (Extensible Markup Language) wird bei eine hohen Anzahl von Frameworks fiir die Behandlung
von Konfigurationsinformationen verwendet. Die in einer XML-Datei abgespeicherten Informationen
kénnen modifiziert und die Anderungen kénnen tiber die Applikation sichtbar gemacht werden. XML-
Dateien vereinfachen den Entwicklungsprozess und damit verkiirzt sich auch die Entwicklungszeit.
Es gibt drei Typen von XML-Dateien:

+ web.xml file
« applicationContext.xml file

« DispatcherServlet.xml file

Vorteile von Spring

Der Einsatz von Spring bietet vielzahlige Vorteile. So kann das Rahmenwerk effektiv genutzt wer-
den in Kombination mit anderen Frameworks,wie Hibernate und Struts. Des Weiteren bietet Spring
vereinfachten Zugriff auf die Datenbank, durch die Verwendung vom Hibernate Framework und die
Vermeidung der Behandlung von Fehlermechanismen. Anwendungen, die mithilfe von Spring erstellt
wurden, sind lediglich von wenigen APIs abhangig. Aufgrund seiner mehrschichtigen Architektur,
kann der Benutzer selbst entscheiden, welche Komponenten verwendet werden sollen. Ferner ver-
kiirzt die Inversion of Control-Eigenschaft von Spring die Zeit fiir das Testen des Codes und das
Spring Web MVC Rahmenwerk ist robust, flexibel und eignet sich gut fiir sich schnell entwickelnde
Webapplikationen.

3.3.2 MongoDB

Die Codefragmente werden in einer NoSQL-Datenbank abgespeichert. Diese enthélt zwei Tabel-
len (Collections). In einer Collection werden Codefragmente abgelegt. Dies kénnen beispielsweise
BPEL-Codefragmente sein. Diese wiederum rufen mit invoke-Knoten Web Services auf, welche die
angeforderte Aufgabe ausfithren. Diese Web Services werden in einer weiteren Collection abgespei-
chert. Alle Datenséitze in den unterschiedlichen Datenbanksysteme werden tber eine eindeutige
ID-Nummer miteinander verbunden. Somit kann klar zugeordnet werden, welches Codefragment
zu welchen Metadaten gehort. Es ist zu beachten, dass ein Knoten des Mashup Plans durch mehrere
Implementierungen realisiert werden kann. Dies hat zur Folge, dass es fiir ein Knoten in der entspre-
chenden Datenbank mehrere Codefragmente vorliegen kénnen, welche dieselbe Aufgabenstellung
16sen, jedoch technisch unterschiedlich realisiert sind.

Mongo DB ist eine leistungsstarke und effiziente Datenbank, welche zur Klasse der dokumentori-
entierten NoSQL-Datenbanksystemen gehort . Die Firma 10g entwickelte Mongo DB mithilfe der
Programmiersprache C++ und veroéffentlichte diese im Jahr 2009. Mongo ist die Abkiirzung fiir ,Hu-
mongous", welches enorm bedeutet und lasst darauf schlieflen, was eine der wichtigsten Eigenschaften
der MongoDB Datenbank ist: die performante Verarbeitung von groflen Datenmengen. Der Aufbau

54

3.3 Verwendete Technologien

und die Datenstruktur eignen sich insbesondere fiir die Verwendung in Webapplikationen und dem
Internet [Mon12].

MongoDB bietet Features wie consistency fault tolerance, persistance, aggregation, ad hoc queries,
indexingund auto sharding. Daten werden in MongoDB in Dokumenten abgespeichert. Diese setzen
sich aus einem sortierten Satz von Eigenschaften zusammen, die aus einem Namen und einem Wert
bestehen. Werte konnen einfache Felder, Datentypen oder andere Dokumente sein. Dokumente sind
schemalos, d.h. sie besitzen keinen festen Aufbau, sondern werden dynamisch mit Daten befillt, die
benotigt werden. MongoDB eignet sich insbesondere fiir Anwendungen wie Content Management
Systems, Archivierung, Real Time Analytics etc.

Bei der Erstellung von MongoDB standen vier Kernziele im Mittelpunkt:
« Michtigkeit

Flexibilitat

Geschwindigkeit/Skalierbarkeit

« einfache Benutzbarkeit

Maéchtigkeit wird erreicht durch Bereitstellung einer machtigen Abfragesprache, Index-Strukturen,
und vielen weiteren Funktionen. Hierbei wird jedoch nicht auf Funktionalitat verzichtet, die Benutzer
von SQL gewohnt sind. Die Flexibilitat ergibt sich aus einem schemalosen Datenmodell, welches
mit der Datenbankanwendung wéchst und sich verandern kann. Ferner ist der Zugang zum Da-
tenbanksystem fiir Programmierer moglichst einfach gehalten. Eine grofie Geschwindigkeit und
Skalierbarkeit wird durch die Verwendung von Key-Value-Stores erlangt. Zudem bietet MongoDB
schnelle Antwortzeiten und eine weitgehend einfache Erweiterbarkeit der Speicherkapazitit des
Systems im Online-Betrieb. Zusétzliche Performance-Steigerung wird dadurch erreicht, dass die
Kommunikation zwischen Server und Client iber einem leichtgewichtigem TCP/IP-Protokoll 1duft
und somit weniger Overhead erzeugt als HTTP/REST. MongoDB verzichtet auf einige Features von
relationalen Datenbanken, wie z.B. Join-Operationen und Transaktionskontrolle und erzielt damit
hoéhere Geschwindigkeiten.

Dokumente in MongoDB

Dokumente in MongoDB werden im BSON-Format, binéres JSON abgespeichert, welches sich durch
seine Effizienz und Platzersparnis auszeichnet. Ferner kann BSON aufgrund seiner auf C basierenden
Reprasentation von Typen performant codiert und decodiert werden. Dokumente werden in soge-
nannten Collections zusammengefasst, wobei jede Collection eine benannte Menge von Dokumenten
ist. Jeder Collection ist in einer Datenbank abgespeichert und jedes MongoDB-System enthilt eine
Menge von Datenbanken. Analog zu relationalen Datenbanken stellen Dokumente das Gegenstiick zu
Spalten dar, wihrend Collections den Tabellen einer relationalen Datenbank entsprechen. Collections
kénnen Dokumente mit unterschiedlichem Aufbau beinhalten. Des Weiteren bekommt jedes Doku-
ment automatisch einen Priméarschliissel zugeordnet, welches den eigenen Bediirfnissen angepasst
werden kann. [NPP13].

55

3 Grundkonzept einer Fragment-Repository

Vorteile von MongoDB

MongoDB wird mittlerweile bevorzugt gegeniiber relationalen Datenbanken bei Projekten, die grofle
Datenmengen verarbeiten missen. Einige wichtige Eigenschaften sind [HHLD11]:

« MongoDB unterstiitzt die Verwendung von komplexen Datentypen. Das Datenformat BSON
erlaubt die Speicherung von komplexen Datentypen

« leistungsstarke Abfrage-Sprache erlaubt nahezu alle Funktionen wie beispielsweise Abfragen
in Single-Tables relationaler Datenbanken und unterstiitzt Indexing

+ High-Speed-Zugriff auf grofie Datenmengen: ab einem Datenvolumen von 50 GB ist die Zu-
griffsgeschwindigkeit von MongoDB zehn mal schneller als MySQL.

Unterschiede MongoDB und SQL

Es gibt viele Diskussionen dariiber, ob NoSQL-Datenbanken anstelle von relationalen Datenbanken
eingesetzt werden sollten. Ist die Datenbank nicht-strukturiert und sehr grof3, empfiehlt es sich eine
NoSQL-Datenbank zu verwenden. Diese Frage lasst sich in Bezug auf eine durchschnittlich grof3e
Datenbank mit strukturierten Daten nicht so einfach beantworten. Daten in einem relationalen
Datenmodell werden in einem Datenbank-Schema dargestellt, wobei die Daten in den Zeilen und
Spalten einer Tabelle abgelegt werden. Es ist zu beachten, dass jede Zeile dieselbe Anzahl an Spalten
mit dem demselben Typ besitzt.

Tabellen in relationalen Datenbanken liegen normalisiert vor, was dazu fithrt, dass mehrere Tabel-
len erzeugt werden. Eine Anfrage auf diese Tabellen erfordert das Abrufen und Kombinieren von
Informationen aus diesen unterschiedlichen Tabellen. Dazu werden Join-Operationen verwendet.
Je grofler das Schema und die Anzahl der Tabellen ist, umso ldnger Zeit nimmt die Abfrage auf die
relationale Datenbank in Anspruch, um bestimmte Informationen zu beziehen. NoSQL vereinfacht die
Bearbeitung von nicht-strukturierten Daten. Daten konnen semi-strukturiert vorliegen, so dass dhnli-
che Datenobjekte mit unterschiedlichen Eigenschaften gruppiert werden koennen. Unstrukturierte
Daten koénnen unterschiedlichen Typs sein und kein Format besitzen. Diese Daten konnen durch kein
Schema-Typ dargestellt werden.

Die typischen Eigenschaften von SQL-Datenbanken, wie z.B. die ACID-Eigenschaften, erzeugen einen
Overhead, welcher in NoSQL-Datenbanken teilweise vollstindig eliminiert wird, um die Leistung zu
vergroflern. Der Grofiteil an NoSQL-Datenbanken legen ihre Daten in Key-Value-Paaren ab. Dabei
kann der Value ein Wort, eine Zahl oder eine komplexere Struktur sein. Die Erzeugung von Abfragen
(Queries) ist jedoch relativ schwierig, da es keine Standard-Abfrage-Sprache gibt und die Operationen
begrenzt eingesetzt werden konnen. Ferner gibt es keine Join-Operation. Im Wesentlichen ist die
Verarbeitung bzw. Bearbeitung von Daten einfacher, erschwinglicher und flexibler.

MongoDB erlaubt mit Autosharding Datenbankserver automatisch auf verschiedene physikalische
Maschinen aufzuteilen. Diese horizontale Skalierung verteilt die Arbeits- und Datenlast. Ferner werden
Daten auf mehrere Server verteilt, wobei mithilfe von Replikation die Verfiigbarkeit des Services
erhoht wird. Die horizontale Skalierung ist bei SQL-Datenbanken nicht méglich, da Operationen wie
Join sehr viel Zeit beanspruchen wiirden.

56

3.4 Regelbasiertes Mapping

3.3.3 MySQL

Fir die Speicherung der Metadaten, welche alle notwendigen Informationen tiber die Codefrag-
mente enthalten, wird eine SQL Datenbank verwendet. Die Metadaten beinhalten eine einheitliche
ID-Nummer und weitere Informationen, fiir die Beschreibung der Funktionalitit und Eigenschaf-
ten der Codefragmente. Die Eigenschaften einer relationalen Datenbank wurden in 2.1.2 genauer
beschrieben.

3.4 Regelbasiertes Mapping

Das Regelbasierte Mapping von Patterns basiert auf dem Ansatz von [RSM14]. Der Repository-Dienst
erhalt als Eingabe einen Mashup Plan. Dieser wird von Starknoten bis Endknoten traversiert. Dabei
wird fiir jeden Knoten ein geeignetes Code-Fragment aus dem Verzeichnis gesucht und tibergeben.
Jeder Knoten entspricht einem Pattern. Fiir dieses Pattern werden vom Benutzer Parameter mitgegeben.
Diese Parameter werden in Form eines JSON-Objekts an das Verzeichnis weitergeleitet. Dieser enthilt
folgende Komponenten in Form von Key-Value-Paaren:

« Namen des Knotens : Database

« Typ : MySQL/Pattern

Pattern-Typ : robust

« Operations-Typ : extract

Property-Feld : Eingabe-, Ausgabeparameter, Filter Criteria....

Der Name beschreibt die Funktion des Knotens, der Typ gibt an ob es sich hierbei um ein Pattern
handelt,der weitere Knoten enhalten kann, die wiederum auch Patterns sein konnen, oder ein Knoten
ist, der keine weiteren Patterns enthalt.

Des Weiteren gibt der Operations-Typ die Funktion des Knoten an und das Property-Feld ist ein
JSON-Objekt, welches alle Eingabe- und Ausgabeparameter und alle weiteren Parameter des Knotens
enthalt. Sollte der Knoten ein Pattern sein, der weitere Knoten enthilt, werden diese Knoten mit ihren
Parametern im Property-Feld gespeichert. Der Pattern-Typ gibt an, welches Transformations Pattern
vom Benutzer ausgesucht wurde.

Anhand dieser Informationen kann das Repository-Dienst nun nach den geeigneten Implementierun-
gen suchen und bei erfolgreicher Suche diese iibergeben. Dabei werden die mitgegeben Informationen
mit den Metadaten der Code-Fragmente im Verzeichnis verglichen.

Handelt es sich bei dem Knoten um ein Pattern, d.h. typ hat den Wert Pattern, muss dieser in der
Patternhierarchie so lange in seine Bestandteile zerlegt werden, bis in der untersten Ebene der
Hierarchie keine Patterns mehr vorzufinden sind.

Dabei ist zu beachten, dass alle Parameter vollstindig in der Anzahl und fehlerfrei iibergeben werden
miissen, damit das Verzeichnis das passende Code-Fragment finden kann. Ist dies nicht der Fall und
es wurden zu wenige Parameter iibergeben oder Parameter in einem falschen Format eingegeben,

57

3 Grundkonzept einer Fragment-Repository

ist eine erfolgreiche Suche von Implementierungen nicht méglich und es wird eine Fehlermeldung
ausgegeben. Werden beispielsweise zwei Datenbanken-Namen als Parameter erwartet und es wird
lediglich eine angegeben, hat dies zur Folge, dass die Suche nicht durchgefiihrt werden kann. Wurden
alle erforderlichen Parameter hingegen angegeben und ein Pattern in der Patterhierarchie bis zur
letzten Blattebene gelangt ist und somit auf die kleinsten Bestandteile aufgeteilt wurde, wird der
Pattern-Typ-Eintrag Giberpriift. Dieser ist ausschlaggebend, dafiir welche mogliche Implementierung
ausgewahlt wird. Besitzt der Eintrag Pattern im JSON-Objekt den Wert Robust, wird dementsprechend
das Code-Fragment selektiert, welches in seinem JSON-Object fiir den Schiissel Pattern denselben
Wert Robust hat. Dieses Code-Fragment enthalt fiir den Schliissel Fragment einen Wert in Form eines
BPEL-Strings.

Zusammengefasst ist das Auffinden des geeigneten Code-Fragments abhangig von den eingegeben
Parametern und dem Wert des Eintrags Pattern im ibergegeben JSON-Object eines Knotens. So-
mit konnen die Anforderungen des Benutzers bei der Suche nach konkreten Implementierungen
berticksichtigt werden.

3.4.1 Regelbasierte Transformation

In diesem Abschnitt wird die regelbasierte Transformation naher beschrieben. Dabei wird Bezug auf
den Ansatz von [RSM14] genommen. In Abbildung 3.6 wird das Verarbeitungsmodell der Pattern-
transformation grafisch dargestellt.

Der regelbasierte Pattern Transformer wandelt nicht ausfithrbare Workflows, welche mehrere Pattern
enthalten, in ausfithrbare Workflows um. Dies wird anhand einer erweiterbaren Menge von Transfor-
mationsregeln und der Pattern Transformation Engine durchgefithrt. Wie aus der Abbildung zu sehen
ist, erhalt der Pattern Transformer einen nicht ausfithrbaren Workflow. Dieser wird Knoten fiir Knoten
durchlaufen und bei Auffinden von einem Pattern nach einer geeigneten Transformationsregel gesucht.
Eine Transformationsregel setzt sich aus einem Bedingungs-, einem Fragment- und einem Aktionsteil
zusammen. Eine Transformationsregel tritt lediglich dann in Kraft, wenn die Bedingungen im Bedin-
gungsteil erfiillt werden. Werden alle Anforderungen erfiillt, bestimmt die Fragmente-Komponente
aus einer Workflow Fragment Library ein Template fiir ein Workflow-Fragment, welches verwendet
werden soll.

Anschlieffend figt die Aktions-Komponente dem zu verwendenen Fragment alle notwendigen Im-
plementierungsdetails hinzu. Ferner werden hierbei Parameter mit hoherem Abstraktionsgrad auf
Parameter niedrigeren Abstraktionsgrads abgebildet. Das Pattern wird somit zu einem Workflow-
Fragment iiberfithrt, Dieser kann eventuell weitere Patterns enthalten und ist folglich weiterhin
nicht ausfithrbar. Dementsprechend wird der Transformationsvorgang solange rekursiv durchge-
fithrt, bis keine Pattern im Eingabe-Workflow vorhanden sind und der daraus resultierende und aus
Workflow-Fragmenten zusammengesetzte neue Workflow ausfithrbar ist. Patterns kénnen einem
Abstraktionslevel zugeordnet werden. So lésst sich eine Patternhierarchie erzeugen, welches einer
besseren Strukturierung und Klassifizierung dient und aus mehreren Ebenen aufgebaut ist.

Fiir jede Ebene dieser Patternhierarchie existiert eine Rule Sequence. Diese ordnet jedem Pattern einer
Ebene Transformationsregeln zu und bestimmt die Reihenfolge, in welcher Transformationsregeln

58

3.4 Regelbasiertes Mapping

Rule-based Pattern Transformer

Rewrite Rule Rule
Workflow including Sequence Executable Workflow

=

T = B
\ 4 5 Pattern
i 3 @ . Transformation

e Engine

() Parameterized Pattern (M Executable Workflow Activity

Patterns _ Fragment| —_ — -
0-0~-0 | |cEmm |l | E~E o@o

Abbildung 3.6: Pattern Transformer [LR0O]

ausgefithrt werden. Die erste Regel der Rule Sequence, deren Bedingungen erfillt sind, wird ausgefiihrt,
wobei die restlichen Regeln im Gegensatz dazu nicht eingesetzt werden.

3.4.2 Patternhierarchie im Beispiel

In diesem Abschnitt wird anhand eines Beispieles ein Mashup Plan, welches nicht ausfithrbar ist, in
ein ausfithrbares Format gebracht und dabei die Patternhierarchie naher erlautert.

In der Abbildung ist ein Mashup Plan gegeben. Dieser besteht aus einem Startknoten, einem Endknoten
und einem weiteren Knoten, mit dem Namen Multiple Source Filter Pattern. Es ist zu beachten, dass ein
Mashup Plan weitaus komplexer aufgebaut sein kann, im Beispiel jedoch moglichst simple strukturiert
ist, damit es fiir den Leser besser verstdndlich ist.

Der vorliegende Mashup Plan ist nicht ausfiihrbar, da das Pattern Multiple Source Filter Pattern selbst
nicht ausfithrbar ist. Der Doménenexperte, welcher den Mashup Plan erstellt, muss alle benétigten
Parameter mitgeben. Diese sind fir die spatere Ausfithrung des Mashup Plans erforderlich. So
erfordert das Multiple Source Filter Pattern die Angabe von mehreren Data Source-Parametern,
wie beispielsweise Twitter, Google etc. Des Weiteren miissen fiir eine Filterung der definierten
Datenquellen Suchbegriffe mitgegeben werden. Die Transformation von Patterns basiert auf Regeln.

59

3 Grundkonzept einer Fragment-Repository

60

Patterntransformation
Hierarchie- Pattern Transformation in weitere Patterns bzw. Code-Fragmente
Ebene
Mashup
Plan- Parameter:
* Datenquellen:
Ebene '/; (z.B. Google, Twitter etc.)
* Filter: Keywords
Doménen-
experte
erstellt Multiple Source Filter Pattern
Mashup
Plan, welcher
nicht /
ausfihrbarist Startknoten Endknoten

nicht ausfiihrbarer Mashup Plan

2.
Hierarchie- / Multiple Source Filter Pattern \
ebene
Filter Pattern
Transformati .)
yon Patterns | (: >——’ Eilter Pattern Merge Operation ’ "(:)
enthalten in
Mashup Plan zu 5 ' Endk
kleineren tartknoten . ndknoten
Patterns Filter Pattern
i v
Ausfiihrbarer)
Workflow DataSource | | Pattern-frei
Operation Operation
Blatteb:
(eitt;eéf " DataSource | | Mer«_e
lediglich Operation Operation Operation
ausfihrbare
Code-
Fragmente) Startknoten DataSource Endknoten
Operation Operation
ausfiihrbarer Mashup Plan
Ausfihrbarer
‘ Pattern ’ ‘

Code-Fragment

[e

3.4 Regelbasiertes Mapping

Diese Regeln miissen erfiillt werden, damit ein Pattern in weitere Komponenten zerlegt werden kann.
Werden Parameter jedoch fehlerhaft eingegeben oder wird die Anzahl der erforderlichen Parameter
nicht eingehalten, kann die regelbasierte Transformation nicht ausgefithrt werden. Im Beispielfall ist
es erforderlich, dass der Benutzer mehrere Datenquellen angeben muss, aus denen bestimmte Daten
extrahiert werden sollen. Dazu werden Suchbegriffe, sogenannte Keywords, angegeben, mit deren
Hilfe die erwiinschten Daten aus den zuvor bestimmten Datenquellen gefiltert werden kénnen. Sind
alle Parameter angegeben und somit die Konditions-Klausel der regelbasierten Transformation erfiillt,
kann das Pattern, welches nicht ausfithrbar ist in seine Bestandteile aufgeteilt werden.

Das hier vorhandene Multiple Source Filter Pattern setzt sich aus kleineren Komponenten zusammen,
welche alle zur Gesamtfunktion des Pattern beitragen. Alle dieser Komponenten miissen ausfithrbar
sein, damit das Pattern selbst auch ausgefiihrt werden kann. Diese gilt auch fiir den Mashup Plan, der
aus Komponenten zusammengesetzt ist, welche ausfithrbar sowie unausfithrbar sein kénnen. Solange
nicht alle Bestandteile in ein ausfithrbares Format iiberfithrt werden, ist eine Ausfithrung des Mashup
Plans nicht méglich. Das Multiple Source Filter Pattern besteht aus mehreren Filter Patterns und
einer Merge Operation. Die Merge Operation ist ausfithrbar und ruft einen beispielsweise einen Web
Service auf, der diese Funktionalitit anbietet und durchfiihrt. Die Filter Patterns sind dagegen nicht
ausfithrbar und miissen weiter in ihre wesentlichen Bestandteile zerlegt werden. Das Filter Pattern
selbst setzt sich aus den Komponenten Data Source Operation und Filter Operation zusammen. Im
Schritt zwei aus der Abbildung 3.7 werden diese Patterns unterteilt in jeweils eine Filter und ein
Data Source Operation. Mit diesem Transformationschritt ist auch die unterste Hierarchieebene,
die Blattebene in der Patternhierarchie erreicht. Auf dieser Ebene ist der Mashup Plan vollstindig
transformiert und in ein ausfithrbares Format tiberfithrt worden. Dementsprechend setzt sich der
Mashup Plan aus Bestandteilen zusammen, die keine Patterns sind und somit alle Knoten im Mashup
Plan, beginnend beim Startknoten S bis zum Endknoten E, einzeln ausfithrbar sind. Dieser nach dem
Ansatz des regelbasierten Mapping von Patterns umgewandelte Mashup Plan kann anschlielend
von einer beliebigen Engine ausgefiihrt werden, welche zuvor vom Benutzer durch die Auswahl des
Transformationspattern bestimmt wurde.

Ein Mashup Plan kann aus zahlreichen Patterns bestehen, welche in ein ausfithrbares Format ge-
bracht werden miissen. Jedes einzelne Pattern muss innerhalb der Patterhierarchie in seine kleinsten
Bestandteile aufgelost werden, fiir welche wiederum aus dem Code-Fragmente-Verzeichnis die entspre-
chenden Implementierungen gesucht und eingesetzt werden. Dabei kdnnen Patterns selbst Patterns
enthalten, d.h. Patterns konnen verschachtelt vorkommen. Umso grofer der Verschachtelungsgrad
in einem Pattern ist, desto langer ist der Pfad im Pattern Graphen von der Mashup-Ebene bis zur
untersten Ebene, der Blatt-Ebene, um dieses Pattern in seine kleinsten ausfithrbaren Komponenten zu
uiberfithren.

61

4 Patternbeispiele

In diesem Abschnitt werden nun einige Patternbeispiele vorgestellt. Diese konnen als Grundbau-
steine in Mashup Plans verwendet werden oder auch als Baustein eines anderen Patterns fungieren.
Im Folgenden werden das Source-to-SourcePattern, FilterPattern, SplitPattern, MergePattern néher
beschrieben. Des Weiteren wird das Data IterationPattern in paralleler als auch in sequentieller Form
erlautert.

4.1 Source-to-Source Pattern

Das Source-to-Source Pattern(S2SP) ist ein relativ simples Pattern, welches in Abbildung 4.1 grafisch
dargestellt wird. Bei diesem Pattern werden aus einer Datenquelle (Datenquelle 1) Datensatze mithilfe
eines Filters extrahiert und anschliefend durch eine Data Operation transformiert. Der transformierte
Datensatz wird anschlieffend in einer anderen Datenbank abgespeichert. Der Benutzer muss hierbei
Parameter fiir die Filter Operation und die Data Operation eingeben, sowie die Datenquelle nennen,
aus der die Datensitze extrahiert werden sollen. Werden diese Parameter nicht eingegeben, kann
das Pattern nicht ordnungsgemaf ausgefithrt werden. Dieses Pattern gehort zu den Basispattern,
welche sehr hiufig in grofieren Pattern zum Einsatz kommen. Ferner kann eine Data Operation
unterschiedlichen ETL-Operationen entsprechen. Diese sind in diesem Pattern unire Operationen,
welche nur eine Eingabemenge erwarten.

4.2 Filter Pattern

Ein weiteres simples Basispattern ist das Filter Pattern (DFP). Wie in Abbildung 4.2 zu sehen ist,
setzt sich dieses Pattern aus einer Datenquelle (Datenquellel) und einer Filter Operation zusammen.
Die Funktion dieses Patterns besteht darin, Datensétze aus einer gegebenen Datenbank mithilfe
einer Filter Operation zu extrahieren. Der Benutzer dieses Patterns muss lediglich die Datenquelle
bestimmen, aus der Daten entnommen werden sollen und nach welchen Kriterien diese gefiltert
werden sollen.

4.3 Data Split Pattern

Das Data Split Pattern (DSP) dient dazu, eine Datenmenge aus einer Datenquelle (Datenquelle1) zu
extrahieren und diese in n kleinere Teilmengen aufzuteilen. Abbildung 4.3 stellt diese Pattern grafisch
dar. Der Benutzer gibt hier als Parameter eine Datenquelle und einen Filterkriterium an. Hierbei kann

63

4 Patternbeispiele

Parameter:
/ *Datenquelle
Source-to-Source Pattern wFilter Keyword

Datenquelle 2

Datenquelle 1

Filter Operation —'» Data Operation

Abbildung 4.1: Source-to-Source Pattern

/ Data Filter Pattern Parameter:
*Datenquelle
Y

*Filter Keyword
Datenquelle

Filter Operation

Abbildung 4.2: Data Filter Pattern

64

4.4 Data Merge Pattern

/ , Data Split Pattern \
Parameter:

*Datenquellen Y

*Filter Keyword

A

Filter Operation > Datenquelle 1
)

N
(7

Filter Operation > Datenquelle 2
7 c————

Y

Datenquelle

T
(—

Filter Operation ™ Datenquelle n

A

Abbildung 4.3: Data Split Pattern

der Benutzer beispielsweise einen Wert fiir die Filteroperation eingeben, die einen sogenannten Range
bildet. Handelt es sich bei der Datenbank beispielsweise um eine Datenbank, die bestimmte Produkte
mit Preisen enthélt, kann durch ein Range-Wert = 100 diese Datenbank aufgeteilt werden in kleinere
Datenbanken. Diese enthalten jeweils alle Produkte teuer als 100, giinstiger als 100 und alle Produkte,
deren Wert 100 betrégt.

4.4 Data Merge Pattern

Das Data Merge Pattern(DMP) bildet das Gegenstiick zum zuvor vorgestellten Data Split Pattern.
Abbildung 4.4 stellt diese grafisch dar. Bei diesem Pattern werden n Datenmengen zu einer Datenmenge
zusammengefasst. Der Benutzer muss dabei alle Datenmengen als Parameter mitgeben und zusétzlich
die Filter-Operation festlegen, mit welcher die Datensétze extrahiert werden kénnen.

4.5 Data lteration Pattern

Das Data Iteration Pattern(DIP) ist ein weiteres Pattern, welches jedoch im Gegensatz zu den bereits
vorgestellten Patterns etwas komplexer aufgebaut ist. Abbildung 4.5 zeigt eine grafische Darstellung
dieses Patterns. Hier werden mehrere Prozesse parallel ausgefithrt. Daher handelt es sich hierbei um
das Parallele Data Iteration Pattern. Das Gegenstiick dazu ist das Sequentielle Data Iteration Pattern.

65

4 Patternbeispiele

/ Data Merge Pattern Parameter \

<y *Datenquellen

*Filter Keyword

Datenquelle

Datenquelle 1
\J

Ty
f—

Filter Operation

Datenquelle 2
v

T
o A

\\Datenquelle n
/

Abbildung 4.4: Data Merge Pattern

Das Parallele Data Iteration Pattern bekommt als Eingabe eine Datenmenge aus einer Datenbank,
welche mithilfe einer Filter-Operation in 1...n Teilmengen aufgeteilt wird. Anschlieffend werden auf
diese Teilmengen Operationen ausgefiihrt. Ziel ist es eine definierte Operation auf n Teilmengen
parallel auszufithren. Aus diesen Operationen resultieren die Teilmengen 1*...n", welche schliefSlich
diese zu einer neuen Datenmenge in einer Datenbank zusammenfasst.

4.6 Sequentielles Data Iteration Pattern

Das Sequentielle Data Iteration Pattern (SDIP), welches in Abbildung 4.6 grafisch dargestellt
ist,erwartet, wie auch beim Parallelen Data Iteration Pattern, eine Datemenge S als Eingabe. Hierbei
wird diese jedoch nicht in kleinere Teilmengen aufgeteilt und es werden keine n Teilprozesse parallel
ausgefiihrt. Die n Teilprozesse werden stattdessen nacheinander ausgefiihrt. Bei jedem Iterationsschritt
wird mithilfe einer Filter-Operation eine Teilmenge T bestimmt, auf welches anschliefend eine
Operation ausgefiithrt wird. Diese Operation tiberfiihrt die Teilmenge T in T*. Diese wird im nachsten
Verarbeitungschritt in die Datenmenge S in der Zieldatenbank integriert. Die daraus resultierende
Datenmenge S* dient schliefilich als Eingabe fiir den nichsten Iterationsschritt. Die Anzahl der
Iterationsschritte bestimmt der Benutzer bei der Eingabe der Parameter.

Die vorgestellten Patterns sind lediglich Beispiele. Es konnen weitaus komplexere Patterns fiir ein
Mashup Plan erstellt werden. Dabei konnen Pattern verschachtelt vorkommen, d.h. Pattern kénnen

66

4.6 Sequentielles Data lteration Pattern

Data Iteration Pattern Foametr \
| atenque len

*Filter Keyword
- X - Operation
Filter Operation - Data Operation
Datenquelle - Filter Operation - - Data Operation - - Merge Operation Datenquelle
———— X
Filter Operation - Data Operation eilmenge n’|

Abbildung 4.5: Data Iteration Pattern

/ Parameter:

*Datenquellen

Sequentielles Data Iteration Pattern e

*Operation

Datenquelle

Filter Operation - Data Operation '—> - Merge Operation ——*|

Datenquelle

Abbildung 4.6: Sequentielles Data Iteration Pattern

67

4 Patternbeispiele

selbst Patterns enthalten. Diese lassen sich dann anhand des regelbasiertes Mappings von Patterns
innerhalb der Patternhierarchie auflgsen bis in der untersten Ebene der Hierarchie lediglich ausfiihr-
bare Knoten vorhanden sind. Besteht ein Mashup Plan aus zahlreichen komplexen Patterns, ist der
Zeitaufwand fiir die Transformation dieses nicht ausfithrbaren Mashup Plans in ein ausfithrbares
Format deutlich hoher.

68

5 Implementierung

Dieses Kapitel beschiftigt sich mit der konkreten Implementierung des in den vorangegangenen
Kapiteln beschriebenen Konzepts einer Fragment-Repository. Abschnitt 5.1 bietet eine kurze Auflis-
tung aller Technologien, die zum Einsatz kamen um das Konzept umzusetzen. Anschlie8end wird
in den darauf folgenden Kapiteln jeweils fur jede Ebene der Architektur beschrieben, wie diese
konkret implementiert wurde. In Abschnitt 5.2 werden zunéachst die in der Datenebene verwendeten
Technologien erklart und das Datenmodell beschrieben, welche zur Umsetzung von Fragmenten und
Patterns verwendet wurde.

Anschlielend wird in 5.3 erklért, welche Technologien die business logic des Repositories umsetzen
und wie die grundsétzlichen Methoden, die vom Repository bereitstellt werden, realisiert wurden.

In Abschnitt 5.4 wird separat anschlieBend die Funktionsweise der Methode transformFragment
genauer erklért, welche die Transformation eines nicht ausfithrbaren Workflows, welches Patterns
enthilt, in einen ausfithrbaren Workflow ausfiihrt. Da fuer die Prasentationsschicht keine Benutze-
roberflache erstellt wurde und lediglich mit REST-Clients und Browser gearbeitet wurde, wird die
Prasentationsschicht hier nicht weiter ausgefiihrt.

5.1 Verwendete Technologien

Fir die Umsetzung des Konzepts wurden folgende Technologien eingesetzt.

+ JSON: ist ein kompaktes, leicht-gewichtiges Datenformat fiir den Datenaustausch zwischen
Anwendungen in einfacher, lesbarer Textform. Die unausfithrbaren Ausgangs-Workflows des
Flex-Mash-Tools werden in JSON iibersetzt.

» Jackson: Java-basierte Bibliothek zum Serialisieren von Java in JSON und umgekehrt

« REST/HTTP : REST-Paradigma zur Erstellung von Web-Services unter Bereitstellung einer
einfachen API, basierend auf HTTP-Befehlen Post, Get, Put, Delete. Wurde als Paradigma fiir
die Entwicklung des Repository-Dienstes verwendet

+ Spring Framework: Rahmenwerk zur Entwicklung von mehr-stufigen Applikationen unter
Verwendung von einfachen Java-Klassen und Features wie Dependence Injektion und Annota-
tionen. Spring Tool und Framework wurde als Editor verwendet und fiir die Erzeugung der
mehrstufigen Architektur der Repository, insbesondere der Repository-Funktionalidten

« MongoDB: NoSQL-Datenbank im Bereich Big Data, welches ein JSON-ahnliches Format BSON
verwendet. Die Fragmente und der Hauptteil der dazugehoérenden Informationen werden in
MongoDB Collections gespeichert.

69

5 Implementierung

« MySQL: Die zu den Fragmenten gehdrenden Metadaten werden in eine relationalen Datenbank
MySQL gespeichert.

« PostMan: Front-End-Werkzeug zur Adressierung und zum Testen von REST-Web-Services.

5.2 Datenebene

Auf der Datenebene werden alle relevanten Informationen und Daten fiir das Repository bereitgestellt.
Dieser Abschnitt beschreibt kurz die Organisation der Daten in verschiedenen Datenbanken und
Tabellen sowie das verwendete Datenmodell.

Bei den auf dieser Ebene verwalteten Daten handelt es sich um die Fragment-Daten, ihre Metadaten
und weitere Informationen wie z.B. Informationen beziiglich der Web-Services, welche innerhalb der
Fragmente aufgerufen werden. Alle diese Daten, aufler dem eigentlichen Fragment-Code werden durch
das Flex-Mash-Tool bereitgestellt und werden bei der Registrierung von neuen Fragmenten in die
Repository beriicksichtigt. Wahrend die Fragment-Daten und die Namen der von ihnen aufgerufenen
Web Services in zwei verschiedenen Collections ,fragments® und ,fragmentWebServices® in einer
MongoDB-Datenbank gespeichert werden, werden alle zu den Fragmenten gehdrenden Metadaten
in einer Tabelle ,fragmentMetadata® innerhalb einer MySQL-Datenbank gespeichert. Diese Art der
Datenaufteilung kann damit begriindet werden, dass der Grof3teil der Daten in diesem Kontext von den
Fragmenten ausgemacht werden und NoSQL-Datenbanken im Bereich Big Data Vorteile gegeniiber
den relationalen Datenbanken bieten.

So kénnen komplexere Strukturen bis hin zu vollstindigen Objekte, welche beispielsweise verschach-
telt, weiteren Kinds-Objekte enthalten, einfacher in NoSQL-Datenbanken wie MongoDB gehand-
habt werden als dies in relationalen Datenbanken der Fall ist. Der Grund hierfir ist, dass NoSQL-
Datenbanken wie MongoDB kein Datenschema erfordern und somit flexibler sich den &ndernden
Anspriichen unterschiedlicher Datenformate gerecht werden. Im Rahmen des Flex-Mash-Projektes
werden Daten unterschiedlicher Quellen und unterschiedlicher Formate innerhalb eines Mashup-
Flows integriert.

Fiir komplexer aufgebaute Objekte wie dem Fragment-Objekt(vergleiche Abschnitt 5.3.1 mit mehreren
moglichen Verschachtelungen, miissten in einer relationalen Datenbank mit normalisierten Tabellen,
multiple Tabellen erstellt und diese tiber Primérschliissel-Fremdschliissel-Paare miteinander verkniipft
werden. Bei einer Abfrage der Daten miissten umgekehrt mehrere JOIN-Operationen ausgefiihrt
werden, um alle Informationen bzgl. eines Fragments zu erhalten. Dies ist zeitaufwendig und kann
im Big Data- Kontext wie Twitter und Google zu langen Wartezeiten fithren. Werden die relevanten
Daten verteilt in einem verteilten Datenbanksystemen gehalten, kann dies zusatzlich die Wartezeit
der Anfragen erhohen. Aus genannten Griinden wurde entschieden, den Grof3teil der Daten in einer
NoSQL-Datenbank zu speichern. Somit enthilt die Collection ,fragmentsélle Fragmente. Das Json-
Objekt, das einem Fragment entspricht, besitzt eine eindeutige ID, welche bei der Registrierung des
Fragments durch MongoDB automatisch erzeugt und vergeben wird. Das eigentliche Fragment, d.h.
der in einer bestimmten Workflow-Sprache formulierte Code-Schnipsel, welcher ausfithrbar ist, wird
in Form eines Strings vorgehalten. Dabei kann es sich beispielsweise um den Programmcode fiir
eine Aktivitdt in einem BPEL- oder Node-Red-Workflow handeln. Dieser Code-String ist als Wert

70

5.3 Datenzugriffsebene

einem Schlisselwert ,fragment” zugeordnet. Gemeinsam mit der internen ID eines Fragments bildet
dieser Schliisselwert-Wert-Paar einen Eintrag in der Collection ,fragments®. Jedes Fragment besitzt
Metadaten, welche diesen genauer beschreiben. Diese sind fiir den Repository-Dienst essentiell, da sie
bei Anfragen, die an die Repository gestellt werden als Suchkriterien verwendet werden. Innerhalb
der Repository wird die intern vergebene ID zur eindeutigen Identifizierung der Fragmente verwendet.
Da diese ID’s jedoch den Benutzern des Repository-Dienstes nicht bekannt sind, miissen Fragmente
tiber ihre Metadaten gesucht und identifiziert werden.

Zu den Metadaten gehoren:

« Name: der Name des Fragments ist informationstragend, so dass es bereits die Funktion oder
den Einsatzbereich des Fragments andeutet (z.b. database)

« Typ: diese Metainformation gibt an, ob es sich bei dem Fragment um ein Pattern handelt oder
nicht. Im Falle eines Patterns wird der Wert ,pattern® verwendet. Ansonsten wird die Art der
von dem Fragment ausgefithrten Operation angegeben (z.B. ,MySQL®)

« Operation: diese Metainformation benennt die ausgefithrte Operation (z.B. ,extract®)

«+ Property: bei dieser Metainformation handelt es sich um ein eigenes JSON-Array, welches
verschachtelt im JSON-Object fiir Metadata enthalten ist. Es enthélt Werte fiir die Schliisselwerte
Eingabe- und Ausgabeparameter, welche bei Pattern-Fragmenten eine Rolle spielen, sowie ,filter
criteria®, welche z.B. bei der Extraktion und Filterung von Daten aus Datenquellen angegeben
werden mussen. Innerhalb von Workflows werden oft externe Web-Services aufgerufen. Diesen
werden Eingabe-Parameter ibergeben und die vom Web-Service zuriickgelieferte Ausgabe dann
in Ausgabeparametern abgespeichert und im weiteren Verlauf des Workflows weiterverarbeitet.
Bei der Transformation von Mashup-Flows in BPEL-Workflows werden im Flex-Mash-Tool z.B.
BPEL-Fragmente erstellt, welche die Web-Services SQLFilter, SQLExtractor, TwitterFilter oder
TwitterExtractor aufrufen. Die Informationen iiber diese Web-Services sind fiir die Ausfithrung
des Fragments von Bedeutung und miissen ebenso in der Repository abgespeichert werden. In
einer Collection ,fragmentWebServices® wird die Zuordnung von Fragmenten und Web-Services
festgehalten, wobei ein Eintrag der Collection jeweils einen Schliisselwert-Wert-Paar fur die Id
des Fragments und eines fiir den Namen des im Fragment aufgerufenen WebServices enthalt.
Die Gesamtheit der Daten beziiglich eines Fragments, welche verteilt iiber zwei verschiedene
Datenbanken in zwei Collections und einer Tabelle abgelegt ist, wird iiber die intern eindeutige
ID des Fragments ,zusammengehalten®, d.h. die Verkniipfung und korrekte Zuordnung der
zusammengehorenden Daten erfolgt iiber die Fragment-ID .

5.3 Datenzugriffsebene

Nachdem in Abschnitt 5.2 das Datenmodell und die Organisation der Daten in der Datenzugriffsebene
beschrieben wurden, werden in diesem Abschnitt die implementierten Funktionen und die fiir diese
Funktionen verwendeten Datenformate im Detail beschrieben. Die Umsetzung dieser Ebene stellte
den Hauptteil bei der Implementierung des Repository-Dienstes dar. In 5.3.1 wird das Datenformat
Fragment erklart, welches bei der Registrierung eines Fragments verwendet wird. Auf die einzelnen
Funktionen des Repositories, welche die ,business logic“ realisieren, wird in 5.3.3 eingegangen.

71

5 Implementierung

Listing 5.1 Beispiel fiir JSON-Objekt fiir die Registrierung eines Fragments
{

fragment: <bpel:invoke name=\"InvokeNYTExtractor\"
partnerLink=\"SQLExtractorParnterLink\"
operation=\"extract\" portType=\"ns:SQLExtractor
\" inputVariable=\"SQLExtractorParnterLinkRequest\" outputVariable=
\"SQLExtractorParnterLinkResponse\"></bpel:invoke>";
metadata: [{
name : MysqQL ,
type: MySQLv1.0
op: extract
property: [{
inputVariable: SQLExtractorParnterLinkRequest,
outputVariable:SQLExtractorParnterLinkResponse,
filter criteria: someFilter
1
1

Schliesslich wird die Umsetzung der Transformation von Workflows durch die Funktion transformFlow
in Abschnitt 5.4.3 naher erklart.

5.3.1 Die Klasse Fragment

Das wichtigste Element bei der Erzeugung von ausfithrbaren Workflows aus Mashup-Flows bildet
das Fragment. Es stellt den grundlegenden Baustein dar, aus welchen die ausfithrbaren Workflows
zusammengesetzt werden. Neben dem eigentlichen Fragment bzw. Fragment-Code werden innerhalb
der Repository die zum Fragment gehdrenden Metadaten und Informationen iiber die vom Fragment
aufgerufenen Web-Services abgespeichert (vergleiche Abschnitt Abschnitt 5.2). Intern entspricht
die Gesamtheit aller dieser Daten, welche tiber eine eindeutige Fragment-ID verkniipft sind, einem
Fragment. Dementsprechend muss der Benutzer bei der Registrierung eines Fragments alle notwendi-
gen Daten angeben. Hierfiir wird der in Abschnitt Abschnitt 5.3.3 nidher beschriebenen Methode
LregisterFragment” als Eingabeparameter ein einzelnes JSON-Objekt iibergeben. Der Aufbau dieses
JSON-Objekts wird in Listing 5.1 anhand eines Beispiels dargestellt.

Um dieses JSON-Objekt intern weiterzuverarbeiten wurde eine Java-Klasse Fragment erstellt, welche
den Aufbau des JSON-Objekts widerspiegelt. Den Schliisselwerten des JSON-Objekts entsprechend,
wurden Felder mit getter- und Setter-methoden fiir die Klasse erstellt. Diese Klasse ist in Listing 5.2
dargestellt. Der Ubersichtlichkeit halber werden die importierte Java-Klassen nicht angezeigt. Das
Feld ,fragment® ist ein String, der als Wert den Programm-Code fiir das Fragment enthélt. Das Feld
,metadata“ ist vom Typ JSONODbject und enthélt die Metadaten fur das Fragment. Dieses JSON-Object
muss dem in Listing 5.1 gezeigten Wert des Schliisselwertes entsprechend aufgebaut sein. Bei der
Registrierung des Fragments wird programmatisch auf Existenz bestimmen Schliisselwert-Wert-Paare
hin geprueft. Bei fehlenden Werten wird eine Fehlermeldung ausgegeben. Prinzipiell hitte das Feld
metadata ebenso als eine Inner-Class in Java implementiert werden kénnen, da das Metadaten-Objekt
eng an die Fragment-Klasse gekoppelt ist. Beim letzten Feld ,creation date” handelt es sich um einen

72

5.3 Datenzugriffsebene

Listing 5.2 Java-Klasse zur Représentation eines Fragments

package repoFragments;
@Document
public class Fragment {
@NotNull
private String fragment;
@NotNull
private JSONObject metadata = new JSONObject();
@NotNull
private Date creationDate;

public String getFragment() {
return fragment;

}

public void setFragment(String fragment) {
this.fragment = fragment;

}

public JSONObject getMetadata() {
return metadata;

}

public void setMetadata(JSONObject metadata) {
this.metadata = metadata;

}

public Date getCreationDate() {
return creationDate;

}

Zeitstempel der bei der erstmaligen Registrierung des Fragments mit dem Registrierungszeitpunkt als
Wert belegt wird. Dieser Zeitstempel wird spéter beispielsweise bei der Sortierung von Fragmenten
verwendet. Alle Felder besitzen die Annotation ,,@NotNull®, da sie unbedingt mit Werten belegt sein
miissen damit eine erfolgreiche Registrierung erfolgen kann. Die gesamte Klasse Fragment besitzt die
Annotation ,document®, welches eine Spring-Annotation ist, die die Java-Klasse als Eintrag in einer
Collection innerhalb einer MongoDB-Datenbank spezifiziert.

5.3.2 Der Repository-Dienst

Die business logic in der Datenebene wird von der Repository bereitgestellt. Um eine Repository
programmtechnisch zu realisieren, wurde das Spring Framework verwendet (vergleiche Abschnitt
Abschnitt 5.2). Durch Verwendung von Spring kénnen mehrstufige Applikationen unter Verwendung
einfacher Java-Klassen (,POJOS-Plain Old Java Objects) und Features wie Annotationen und Depen-
dency Injection erstellt werden. Durch Annotationen wird die Verwendung von XML-Konfigurations-
Dateien, welche z.B. die Beziehungen zwischen den verschiedenen Java-Klassen festlegen, ueberflues-
sig. Zudem liefert Spring eine MongoDB-Repository-Schnittstelle, welche Standard-Funktionen, wie

73

5 Implementierung

Listing 5.3 Die Klasse FragmentRepository

package myFragments;

@RepositoryRestResource(collectionResourceRel = "fragments", path = "fragments")

public interface FragmentRepository extends MongoRepository<Fragment, Integer> {
List<Fragment> findByFragmentId(@Param("fragmentId") int fragment_id);

public void deleteByFragmentId(@Param("fragmentId") int fragment_id);

@Query(value="{ }", fields="{'creationDate’: false})
List<Fragment> findAllFragments(Sort sort);

z.B. Anfragen zum Finden aller Elemente (findAll()) automatisch bereitstellt. Weitere Funktionen
konnen einfach hinzugefiigt werden, indem die Anfrage mit Hilfe von Annotationen formuliert
werden kann. Das Grundgeriist der Repository-Klasse ist in Listing 5.3 gezeigt.

Es handelt sich dabei um eine Schnittstellendefinition, welche die vom Spring-Framework bereitge-
stellte Repository-Schnittstelle MongoRepository beerbt. In diesem Beispiel wurde eine zusatzliche
Funktion findallFragments zu den Standard-Funktionen deleteByFragmentld und findByFragmentld
hinzugefuegt. FindAllFragments liefert alle Fragmente zurueck, sortiert diese jedoch. Zudem wird
mit Hilfe der Annotation ,Query” eine Projektion definiert, so dass das Schluisselwert-Wert- Paare
creationdate nicht im Anfrageergebnis angezeigt wird. Uber die Annotation @RepositoryRestResour-
ce wird der Name der Collection in MongoDB spezifiziert und iiber welchen Pfad dieser Methode
des Repositories aufgerufen werden kann. Da iiber diese Schnittstelle jedoch nur Signaturen von
Methoden definiert werden kénnen und somit die Moglichkeiten bei der Implementierung von Me-
thoden eingeschrankt sind, wurde eine weitere Klasse FragmentRestController definiert, welche den
Hauptteil der Funktionalitdten des Repositories bereitstellt. Diese Klasse agiert wie ein klassischer
Controller in einer Model-View-Controller-Architektur (MVC), d.h. alle Anfragen an die Repository
werden von dieser Klasse entgegengenommen und weiterverarbeitet. Es werden Operationen auf der
zu Grunde liegenden Datenebene ausgefiihrt und Anfrageergebnisse an den Benutzer zurueckgeliefert.
In Listing 5.4 wird ein Beispiel einer Methode updateMetadata des FragmentRestControllers gezeigt,
mit der die Metadaten eines Fragments aktualisiert werden konnen.

Mit Hilfe der Annotation @RequestMapping wird der URL-Pfad festgelegt, tiber den die Methode des
REST-Services aufgerufen werden kann. Die geschweiften Klammern im URL-Pfad kennzeichnen
die Parameter, die dann mit Hilfe der Annotation @PathVariable in der Signatur der Methode adres-
siert werden konnen. Die Annotation @ResponseBody legt schliesslich fest, dass das Ergebnis des
Methodenaufrufs dem Benutzer zuriickgeliefert wird. Die restlichen Methoden der Klasse werden im
folgenden Abschnitt beschrieben.

5.3.3 Die Funktionen des Repository-Dienstes
Im folgenden Abschnitt werden die Methoden, die vom REST-Controller des Repository-Service

bereitgestellt werden, ndher beschrieben. Diese bilden die Schnittstelle, Giber die der Repository-
Dienst angesprochen werden kann. Fiir jede Methode wird kurz ihre Funktion erklart und angegeben,

74

5.3 Datenzugriffsebene

Listing 5.4 Eine Methode der Klasse FragmentRepository

@RequestMapping(value="/updateMetadata/{fragmentIdParam}/{metadataParam}",
method=RequestMethod.POST)

@ResponseBody

public void updateMetadata(@PathVariable("fragmentIdParam") int fragmentIdParam,

@PathVariable("metadataParam") String metadataParam) throws SQLException{

List<Fragment> resultFragments = new ArraylList<Fragment>();

String sql = "UPDATE fragmentMetaDataTable SET metadata='" + metadataParam + "’ WHERE
fragmentId="" + fragmentIdParam + "’';";

resultFragments = repo.findByFragmentId(fragmentIdParam);

if (resultFragments.isEmpty()) {

System.out.println("There is not fragment with ID :" + fragmentIdParam);
}
else {
executeDMDBOperation(sql);
System.out.println("Metadata for fragment with fragmenIld " + fragmentIdParam + " has
been updated");
}

welche Eingabe- und welche Ausgabeparameter sie besitzt und welches Format bzw. Struktur diese
Parameter haben muessen.

Die Gesamtheit der hier beschriebenen Methoden dienen der Verwaltung der Fragment-Repository und
werden iiber eine REST-Schnittstelle bereitgestellt. Es liegt jedoch momentan keine Benutzeroberflache
vor, d.h. der Aufruf der Methoden erfolgt iiber einen REST-Client (wie z.b. Postman) oder einen Web-
Browser. Dariiber hinaus erfordert die Verwendung technisches Wissen wie z.B. iiber Datei-Formate
wie JSON. Dadurch ist diese Schnittstelle weniger fiir den Gebrauch durch Benutzer ohne IT-Know-
How gedacht, sondern eher fiir Benutzer, die iiber Doménen- und technisches Wissen verfiigen und
den Repository-Service bereitstellen bzw. in ihre Anwendung einbinden wollen.

Die Menge der aufgefithrten Methoden stellt den aktuellen Stand des Funktionsumfangs der Repository
dar und kann in zukiinftigen Arbeiten (auch hinsichtlich der Eingabe- und Ausgabeparameter der
einzelnen Methoden) erweitert bzw. angepasst werden.

1temize

findByMetaData: Mit Hilfe dieser Funktion kann der Benutzer Fragmente innerhalb des Repositories
anhand ihrer Metadaten suchen und finden. Bei der Suche muss als Eingabeparameter ein JSON-
Objekt mit Paaren von Schliisselwerten und ihren Werten iibergeben werden. Die Suche nach dem
passenden Fragment in der Repository erfolgt dann in Form eines Abgleichs. Schliisselwerte, die im
Eingabeparameter angegeben wurden, werden bei der Suchanfrage nur dann berticksichtigt, falls
Fragmente in der Repository existieren, welche diesen Schliisselwert in der Metadaten-Tabelle als
Spalte aufweisen. Ist dies der Fall, wird im zweiten Schritt geprueft, ob der Wert in der Tabelle mit
dem im Eingabeparameter angegebenen Wert iibereinstimmt.

Stimmen die Werte bei keinem Fragment tiberein, wird eine Benachrichtigung ausgegeben, dass kein
passendes Fragment mit geforderten Eigenschaften in der Repository gefunden wurde. Andernfalls

75

5 Implementierung

werden alle Fragmente zurueckgeliefert, welche fiir gegebene Schliisselwerte, die passenden Werte
aufweisen. Anzumerken ist, dass Fragmente ebenfalls in der Antwortmenge ausgegeben werden, falls
sie fiir gewisse geforderte Schliisselwerte keinen Wert in der Tabelle aufweisen, d.h. nur fiir existie-
rende Schliisselwerte miissen die Werte uebereinstimmen. Der Eingabeparameter dieser Methode
muss ein JSON-Obkekt mit Schliissel-Wert-Wert-Paaren sein, ansonsten aber keinem vorgegebenem
Format folgen.

« EingabeParameter: JSONObject mit Key-Value-Paaren

» Ausgabe: vollstindiges Fragment mit ID, Fragment-Code und Metadata

updateMetaData:

Mit Hilfe dieser Funktion kann der Nutzer die Metadaten fiir Fragmente innerhalb des Repositories
aktualisieren. Hierbei muss als Eingabeparameter nicht ein vollstindiges JSON-Objekt iibergeben
werden, d.h. es miissen nicht fiir alle méglichen Spalten in der Metadaten-Tabelle entsprechende neue
Key-Value-Paare angegeben werden, sondern nur jene, deren Werte aktualisiert werden sollen. Falls
ein angegebener Schliisselwert nicht existiert, wird eine Fehlermeldung ausgegeben.

Um das Fragment eindeutig zu identifizeren, dessen Metainformationen aktualisiert werden sollen,
muss zudem eine Fragment-ID angegeben werden. Dies bedingt, dass dem Benutzer im Vornherein
die Fragment-ID bekannt ist. Diese kann durch die Methoden showFragments bzw. listFragments in
Erfahrung gebracht werden.

Anzumerken ist fiir diese Methode, dass Metadaten normalerweise relativ selten verandert werden, da
sie eine beschreibende Funktion besitzen und eng an das beschriebene Objekt gebunden sind. Da diese
Methode bis auf Dateiformatskontrollen keine weiteren Bedingungen prueft, sollten Anderungen nur
von Benutzern mit Domadnenwissen vorgenommen werden.

+ EingabeParameter: Fragmentld, neue Metadaten als JSON-Objekt mit zu dndernden
Schliisselwert-Wert-Paaren:

« Ausgabe: Bestitigung tiber erfolgreiche Operation oder Fehlermeldung

updateFragment: Ahnlich der Methode updateMetadata konnen auch hier Fragment-Daten aktuali-
siert werden. Im Gegensatz dazu kann hier jedoch ein vollstandiges Fragment aktualisiert werden. Als
Eingabeparameter erwartet die Methode ein JSON-Objekt, welches alles Schliisselwert-Werte-Paare
enthalt, die aktualisiert werden sollen. Ist als Schliisselwert die Fragment-ID nicht angegeben, wird
eine Fehlermeldung ausgegeben. Falls dariiber hinaus ein angegebener Schliisselwert nicht gefunden
werden kann, wird ebenso eine Fehlermeldung ausgegeben.

Das JSON-Objekt, das als Parameter iibergeben wird, darf nur Schliisselwerte enthalten, die auch in
der Klasse Fragment(vgl. Abschnitt 5.3.1)zu finden sind. Um das Fragment eindeutig zu identifizeren,
dessen Metainformationen aktualisiert werden sollen, muss insbesondere eine Fragment-ID angegeben
werden. Dies bedingt, dass dem Benutzer im Vornherein die Fragment-ID bekannt ist. Diese kann
durch die Methoden showFragments bzw. listFragments in Erfahrung gebracht werden.

76

5.3 Datenzugriffsebene

Die Methode kann Anderungen in allen Datenquellen vornehmen. D.h. je nachdem welcher Schliissel-
wert angegeben wurde, wird entsprechend in der Metadaten-Tabelle bzw. in der Collection Fragments
bzw. der Collection fragmentWebServices Daten manipuliert.

« EingabeParameter: Fragmentld, neue Daten als JSON-Objekt mit zu d&ndernden Schliisselwert-
Wert-Paaren

+ Ausgabe: Bestatigung iiber erfolgreiche Operation oder Fehlermeldung oder Fehlermeldung

registerFragment:

Diese Methode stellt eine der wichtigsten Methoden der Repository dar. Sie ermdglicht dem Benutzer
die Erzeugung bzw. das Abspeichern von neuen Fragmenten in der Repository. Die Eingabe des Benut-
zers muss dabei der Java-Klasse eines Fragments entsprechend aufgebaut sein (sieche Abschnitt 5.3.1),
d.h. es muss ein JSON-Objekt tibergeben werden, in dem insbesondere jene Schliissel-Werte, deren
Wertebereich im Datenmodell als Not-Null festgelegt ist, mit Werten belegt sein muessen.

Bei der Registrierung eines Fragments ist die gleichzeitige Registrierung von Metadaten und Ei-
genschaften(Properties), welche das Fragment niher beschreiben, obligatorisch. Dies ist notwendig,
um spéter bei Suchanfragen Fragmente eindeutig identifizieren und das Suchergebnis anhand von
Suchkriterien einschrianken zu kénnen. Da die Suche in Form eines Metadaten-Abgleichs ablauft,
missen die Schliisselwerte fiir metadata und properties im tibergebenen JSON-Objekt dementspre-
chend zwingend Werte enthalten. Insbesondere der Wert fiir den Schliissel ,pattern® ist wichtig, um
das Fragment richtig zu kategorisieren, so dass bei einer Transformation die Fragmente nach ihrer
Eigenschaft ,robust® oder ,time-critical® selektiert werden kénnen.

Anzumerken ist, dass jedes Fragment, das erfolgreich in der Repository abgelegt werden kann, eine
eindeutige ID besitzt. Diese wird jedoch nicht als Eingabeparameter vom Benutzer festgelegt, sondern
automatisch vom System zugeordnet. Unter dieser intern eindeutigen Fragment-ID wird das Fragment
in einer Tabelle Fragments in einer NoSQL-Datenbank abgespeichert. Gleichzeitig wird der Aufruf
einer weiteren Methode getriggert, welche in einer relationalen Datenbank die zu dem Fragment
gehorenden Metadaten unter derselben ID abspeichert. Des Weiteren werden in einem zweiten
Methodenaufruf die Namen der Web Services, welche im gespeicherten Code-Fragment aufgerufen
werden, in einer Tabelle in der NoSQL-Datenbank festgehalten.

« EingabeParameter: JSON-Object, welches der Klasse Fragment entspricht

» Ausgabe: Bestiatigung tiber erfolgreiche Operation oder Fehlermeldung oder Fehlermeldung

deleteFragment: Diese Methode stellt das Gegenstiick zur oben beschriebenen Methode register-
Fragement dar. Mit Hilfe dieser Methode kann ein Fragment aus der Repository geldscht werden.
Hierzu muss lediglich die ID des zu 16schenden Fragments als Parameter iibergeben werden. Da die
Fragment-ID bei der erstmaligen Registrierung des Fragments in die Repository intern vergeben wird,
muss diese seitens des Benutzers zunéchst in Erfahrung gebracht werden, falls diese nicht vorher
bekannt ist. Hierfiir bieten sich die Methode showFragments oder listFragments an, welche weiter
unten beschrieben werden.

Falls die eingegebene ID nicht existiert, wird eine Fehlermeldung ausgegeben. Die Ausfithrung dieser
Methode entfernt das Fragment mit der entsprechenden ID aus der Fragment-Tabelle bzw. -Collection

77

5 Implementierung

in der NoSQL-Datenbank. Zusétzlich miissen alle mit diesem Fragment verbundenen Daten aus
den weiteren Datenbanken bzw. Tabellen entfernt werden, da sie keine weitere Verwendung mehr
finden. Hierzu werden intern entsprechende weitere Methoden getriggert, welche die zum Fragment
gehorenden Metadaten aus der Metadaten-Tabelle sowie den Eintrag aus der Fragment-Web-Service-
Tabelle entfernen, welche den im Fragment aufgerufenen Web-Service gespeichert hat.

» EingabeParameter: Fragment-ID

« Ausgabe: Bestitigung iiber erfolgreiche Operation oder Fehlermeldung oder Fehlermeldung

Bei der Registrierung von hoherrangigen Pattern-Fragmenten in der Repository miissen im Gegen-
satz zur Registrierung einfacher Fragmente bzw. Patterns folgende Aspekte beriicksichtigt werden:
Hoherrangige Patterns reprasentieren mindestens einen Knoten, in der Regel jedoch mehrere Knoten
im Workflow. Dies bedeutet, dass diese Fragmente spéter durch den Transformationsprozess im
Patterntransformer in ein oder mehrere Fragmente bzw. JSON-Knoten umgewandelt werden. Als Ein-
gabeparameter muss hier ein JSON-Objekt ibergeben werden, welches verschachtelt alle relevanten
Knoten enthilt. Dabei muss jeder enthaltene Knoten wiederum der Klasse Fragment entsprechend
aufgebaut sein.

showFragments: Diese Methode erlaubt es, alle Fragmente in der Collection Fragments aufzulisten.
Dabei werden die Fragmente momentan vollstandig als JSON-Objekte aufgefiihrt, d.h. die Fragment-
ID, der Schlusselwerte Fragment mit dem eigentlichen Fragment-Code als Wert, der Schlisselwert
metadata mit dem JSON-Objekt, welches die Metadaten enthlt.

In zuktnftigen Arbeiten konnte die Methode so abgedndert werden, dass fur ein Fragment jeweils
komplett alle im Repository vorliegenden Daten angezeigt werden, d.h. alle seine Metadaten und die
Namen von ihm aufgerufenen WebServices. Des Weiteren konnten durch Angabe von Parametern ge-
wisse Werte aus dem Resultat ausgeschlossen werden, dhnlich einer Projektion bei SQL-Datenbanken,
so dass beispielsweise nur die Fragment-ID aller Fragmente in der Ergebnismenge aufgelistet wird.
Die Auflistung folgt keinerlei Reihenfolge oder Sortierung.

+ EingabeParameter: keine

« Ausgabe: Auflistung aller Fragment-JSON-Objekte aus der Collection fragments.

listFragments: Mit Hilfe dieser Methode kdnnen wie bei der Methode showFragments alle Frag-
mente aus der Collection Fragments aufgelistet werden. Im Gegensatz dazu erfolgt hier jedoch eine
Auflistung aller Fragmente sortiert nach ihrem Zeitstempel, welcher belegt, wann ein Fragment
in der Repository registriert wurde. Als Eingabeparameter erwartet die Methode einen Wert, der
die Sortierreihenfolge angibt. Zuldssige Werte sind hier ,Ascending” bzw ,Descending” fir eine
aufsteigende bzw. absteigende Reihenfolge.

In zukiinftigen Arbeiten kénnte die Methode so abgedndert werden, dass fiir ein Fragment jeweils
komplett alle im Repository vorliegenden Daten angezeigt werden, d.h. alle seine Metadaten und die
Namen von ihm aufgerufenen WebServices. Des Weiteren konnten durch Angabe von Parametern ge-
wisse Werte aus dem Resultat ausgeschlossen werden, dhnlich einer Projektion bei SQL-Datenbanken,
so dass beispielsweise nur die Fragment-ID aller Fragmente in der Ergebnismenge aufgelistet wird.
Zudem konnte der Wert, nach dem sortiert werden soll als Parameter angegeben werden. Dieser

78

5.4 Transformation von Mashup-Flows

Wert muss zwangslaufig einem Spaltenwert einer Tabelle bzw. einem Schliisselwert einer Collection
entsprechen.

« EingabeParameter: Wert fiir aufsteigende bzw. absteigende Sortierung

« Ausgabe: Auflistung aller Fragment-JSON-Objekte aus der Collection Fragments absteigend
sortiert nach creation time.

5.4 Transformation von Mashup-Flows

Die Transformation von Mashup-Flows wandelt einen unausfithrbaren, abstrakten JSON-Flow in
ausfithrbaren Code um. Eine solche Transformation wurde bereits in der vorangegangenen Arbeit im
Rahmen des Flex-Mash-Projekts implementiert. Um den Bezug zu diesem bereits existierenden Trans-
formationsprozess herzustellen und somit den Ankniipfungspunkt dieser Arbeit zu verdeutlichen,
folgt in Abschnitt 5.4.1 eine kurze Bestandsaufnahme bzgl. der Transformation von Mashup-Flows.
Anschlieflend wird in Abschnitt 5.4.3 die fiir diese Arbeit erstellte Methode zur Transformation
erklart.

5.4.1 Bestandsaufnahme

Der folgende Abschnitt bezieht sich auf den letzten Stand der Implementierung des Tools FlexMash
zum Zeitpunkt der Anfertigung dieser Arbeit. FlexMash bietet dem Benutzer die Moglichkeit einen
Data Mashup Flow zu transformieren. Bei dem Mashup Flow handelt es sich um einen Workflow, der
iber die Benutzeroberflache des Tools modelliert wurde. Dieser ist nicht ausfiihrbar, da er lediglich
aus abstrakten, Plattform-unabhéingigen Knoten zusammengesetzt ist, denen kein konkreter Code-
Fragment in einer spezifischen Programmiersprache zugeordnet ist. Uber die Benutzeroberflache
kann der Benutzer die Transformation des Workflows anstoflen.

Hierzu wird eine HTTP-Anfrage an das Flex-Mash-Tool gesendet. Diese enthélt als Parameter das
bestimmende Kriterium fiir die Transformation, welche die Haupteigenschaft des zu erzeugenden
Workflows festlegt. Je nachdem ob als Parameter ,,robust” oder , time-critical“ gewahlt wurde, wird
eine entsprechende Workflow-Sprache ausgewihlt, in der die ausfithrbare Version des Ausgangs-
workflows umgesetzt bzw. in welche sie transformiert werden soll. Somit bestimmt dieser Parameter
die Transformationsmethode, welche verwendet werden muss, um einen Workflow zu erhalten, der
dem vom Benutzer geforderten Kriterium entspricht. Hierzu wird der modellierte Workflow zunéchst
in einen JSON-Flow umgewandelt und liegt als JSON-Array vor, in welchem jedes Feld einen JSON-
Knoten enthalt (siche Abbildung ??). Jeder JSON-Knoten wiederum enthalt ein Array targets, in
welchem die Namen aller seine Nachfolger-Knoten, mit denen er verbunden ist, abgespeichert sind.

Bei der Transformation wird jeder JSON-Knoten in einer for-Schleife durchlaufen und fiir jeden Knoten
jeweils ein Objekt der Klasse FlowNode erstellt. Diese Klasse ist eine vordefinierte Java-Klasse, welche
alle notwendigen Felder besitzt um intern einen Workflow-Knoten zu représentieren (siehe Listing
5.5). Dies beinhaltet beispielsweise die Namen aller Nachbarknoten in Form eines Arrays ,target”.
SchlieBllich liegt der Ausgangs-Workflow als interne Représentation in Form von lose gekoppelten

79

5 Implementierung

Listing 5.5 Die Klasse FlowNode

package de.unistuttgart.ipvs.as.flexmash.utils.transformation_utils;

import java.util.ArraylList;

/*x
* Data model of a flow node
*/
public class FlowNode {
public String name;
public String type;
public String source;
public ArrayList<String> target;
public String criteria;
public String adress;
public String user;
public String password;
public String table;
public String hashtag;
public String database_name;
public String filter_criteria;
public String category;

public FlowNode() {
target = new ArrayList<>();

}

Knoten des Formats FlowNode vor. Beginnend mit dem Startknoten wird nun eine Queue erstellt, in
der fiir den aktuell betrachteten Knoten die Transformationsmethode aufgerufen wird. Diese ordnet
jedem Knoten anhand seines Typs einen String zu, welcher den Programmcode bzw. Code-Fragment
fir den Knoten darstellt. Diese Zuordnung von Code zu Knoten erfolgt momentan hart-codiert, d.h.
alle moglichen Code-Strings sind im Programm-Code von Flex-Mash integriert. Nach der Bearbeitung
des aktuellen Knotens, wird dieser aus der Queue entfernt und seine Nachfolge-Knoten aus seinem
Array target in die Queue eingereiht. Dies wird wiederholt bis keine Knoten mehr enthalten sind.
Als Endresultat der Transformation wird ein String zuriickgegeben, der durch Konkatenation der
Code-Strings der einzelnen Knoten erzeugt wird.

5.4.2 Konzept der Transformation

Der in dieser Arbeit entwickelte Repository-Dienst wird zwei Aspekte der Transformation von
relevanten JSON- Workflows abdecken. Zum Einen werden in der Repository alle in Frage kommenden
Code-Fragmente gespeichert und Suchfunktionen bereitgestellt, so dass bei der Transformation
das geeignete Fragment gesucht und gefunden werden kann. Dadurch wird vermieden, dass Code-
Fragmente hart-kodiert im eigentlichen Programm-Code integriert werden miissen. Zum Anderen
wird der Repository-Dienst einen Pattern-Transformer bereitstellen, der die Transformation von nicht-
ausfithrbaren Workflows mit Patterns in ausfithrbare, pattern-freie Workflows bewerkstelligt. Die

80

5.4 Transformation von Mashup-Flows

vom Repository-Dienst bereitgestellte Methode transformFlow kniipft an genau der Stelle an, an der
der Ausgangs-Workflow durchlaufen wurde und in Form eines Arrays von JSON-Knoten vorliegt.

Die Methode transformFlow wird vom Repository bereitgestellt und ermoéglicht die Transformation
eines Work-Flows. Die Transformation bezeichnet hier die Umwandlung eines Workflows, welcher
anfanglich nicht ausfithrbar ist, in einen ausfiirbaren Workflow. Die Ausfiihrbarkeit des Workflows
wiederum bedeutet in diesem Kontext, dass der Workflow in einer konkreten Workflow-Sprache
vorliegt, welche ausgefithrt werden kann, wie z.B. BPEL oder NodeRed. In Bezug auf die Ausfithrbarkeit
und den Transformationsprozess, bietet es sich an, die Hierarchie von Workflow-Patterns nochmals
zu betrachten (vergleiche ??). Der Ausgangs-Workflow ist nicht ausfithrbar, da er aus abstrakten
Bestandteilen zusammengesetzt ist welchen keine konkreten Implementierungcodes zugeordnet sind.
Dabei handelt es sich entweder um einfache Workflow-Knoten oder Patterns, welche zusatzlich iiber
mindestens einen Workflow-Knoten abstrahieren.

Wihrend einfache Workflow-Knoten Elemente der ersten Hierarchie-Ebene von abstrakten Workflow-
Bestandteilen oberhalb der Blattebene darstellen, gehoren Patterns den héheren Hierarchie-Ebenen
an. Man kann einfache Workflow-Knoten ebenso als ,einfache Patterns” und eigentliche Patterns als
,hoher-rangige Patterns® betrachten. Die eigentlichen Patterns miissen durch Transformationen Schritt
fiir Schritt zunéchst auf die Elemente der einfachen Workflow-Elemente abgebildet werden. Bei den
Elementen der Blattebene, d.h. auf der untersten Hierarchie-Ebene unterhalb der abstrakten Workflow-
Elemente, handelt es sich nicht mehr um abstrakte Bestandteile, sondern konkrete Implementierungen,
welche ausgefithrt werden konnen. Ziel der Transformations-Methode ist es, alle abstrakten Workflow-
Bestandteile, sowohl einfache Knoten, als auch Patterns, von oben in Richtung nach unten in der
Pattern-Hierarchie umzuwandeln, so dass nur noch ausfithrbare Elemente der Blatt-Ebene vorliegen.

Die Methode transformFlow soll nun genau dort ansetzen, wo im FlexMash-Tool aus dem in der
Benutzeroberfliche modellierten Workflow ein JSON-Flow ,,mashupFlowAsJSON* erstellt wurde. Statt
nun den mit Hilfe einer for-Schleife iiber das Array(aus dem JSON-Flow wurde in einem vorigen
Schritt ein Array mit allen Knoten extrahiert) zu iterieren und fur jeden JSON-Knoten eine Methode
aufzurufen, welche das JSON-Objekt in ein Code-Fragment in der geeigneten Workflow-Sprache
umwandelt (hart-codiert), wird der gesamte JSON-Flow als Eingabe-Parameter einer Methode trans-
formFlow tibergeben. Als Ausgabe gibt diese schliesslich einen vollstandig ausfithrbaren Workflow
zurick.

5.4.3 Ablauf der Methode transformFlow

In Abschnitt 3.4.1 wurde bereits der Ablauf der Pattern-Transformation néher erklart. Der folgende
Abschnitt soll sich mehr auf den technischen Aspekt beziehen. Da zum Zeitpunkt der Anfertigung
dieser Teil der Implementierung noch nicht vollstandig bereitstand, werden die folgenden Sachverhalte
konzeptionell und unter Vorbehalt erklart. Die Methode transformFlow erhélt einen JSON-Flow als
Eingabe und extrahiert aus diesem das JSON-Array nodes. Die folgenden Ausfithrungen basieren auf
der Grundlage, dass JSON-Knoten, insbesondere JSON-Knoten des Typs Pattern die in Listing 5.6
dargestellte Struktur haben. Anzumerken ist, dass ein Pattern-Knoten alle Knoten, auf die es bei einer
Transformation abgebildet wird, verschachtelt in einem JSON-Array nodes innerhalb des JSON-Arrays
properties enthélt.

81

5 Implementierung

Listing 5.6 Beispiel fiir JSON-Knoten des Typs Pattern

{
"name" : "dataFilterPattern",
"type": "Pattern"
"operation": "filter"
"table": ""
"source": ""
"property": [{
"inputVariables": ["NYT"]
"outputVariables": [1],
"filter criteria": "someFilter"
"nodes" [
{
"name" : "dataSource_NYT2625",
"type": "Pattern"
"operation": "extract"
"table": ""
"source": ""
"property": [{"inputVariables": [{"input":"sourceName"}]
"outputVariables": [1,
"filter criteria": ""
"targets": [{ "target": "filter3478"}]
"nodes" []
1
}
{
"name" : "filter3478",
"type": "Pattern"
"operation": "filter"
"table": ""
"source": ""
"property": [{"inputVariables": ["sourceName"]
"outputVariables": [1,
"filter criteria": "someFilter"
"nodes" []
3
I
}l
1}

Die Methode lauft in zwei Phasen ab. Diese sind in Abbildung 5.1 dargestellt.

« Bereinigungs-Phase: Ziel dieser Phase ist es einen JSON-Array von Patterns zu ,bereinigen®,
d.h. aus einem JSON-Array, welcher Knoten des Typs ,pattern” enthélt, ein JSON-Array zu
erzeugen, welches keine Patterns mehr enthalt und nur noch aus Knoten besteht, welche nicht
vom Typ ,patternBind. Hierfiir wird zunéchst tiber das Array nodes iteriert und jeweils fiir
jeden im aktuellen Array-Feld enthaltenen JSON-Knoten der Typ tiberpriift. Solange der Typ
des Knotens nicht ,pattern® ist, wird mit dem néchsten Knoten fortgefahren. Andernfalls, liegt
ein Pattern-Knoten vor und dieser muss entsprechend weiterverarbeitet werden. Hierfiir wird
die Methode mapPattern aufgerufen, welche das Pattern eventuell rekursiv auf ein Fragment

82

5.4 Transformation von Mashup-Flows

JSON-Array mit

node 1 node2 node4 node3
MySql* JPattern” »analytics* MySql* Pattern-Knoten
Bereinigung
node2
node 1 _dataSource node4) node5u JSON-Array
,MySq| NYT* »analytics ,MySql ohne Pattern-
- Knoten
Transformation “robust* - BPEL
Bpel: Bpel: Bpel: Bpel: Bpel: BPEL-Workflow
Invoke Invoke Invoke Invoke Invoke executable

Abbildung 5.1: Die zwei Phasen der Transformation

der nichst-niedrigeren Hierarchiestufe abbildet, bis im bearbeiteten Fragment keine Knoten
des Typs Fragment mehr vorhanden sind. Die Methode wird in Abschnitt?? naher erldutert.

» Transformations-Phase: Die Transformations-Phase lauft dann entsprechend der in Flex-
Mash existierenden Implementierung ab. Je nachdem, ob der Schliissel Pattern mit dem Wert
s<robust® oder ,time-critical” belegt ist, wird eine Konvertierungs-Funktion aufgerufen, welche
den Workflow entweder in BPEL oder Node-Red transformiert. Diese Methoden wurden im
Vergleich zu den urspriinglichen Methoden im Flex-Mash-Tool um eine Methode erweitert,
welche bei der Auswahl des geeigneten Fragments nicht mehr hart-codiert einen Code-String
einfiigt, sondern in der Repository nach einem geeigneten Fragment sucht.

5.4.4 Die Methode mapPattern

Die Methode mapPattern erhilt ein JSON-Object als Eingabe, welche fiir den Schliisselwert type
den Wert ,pattern® besitzt. Da es sich bei diesem JSON-Knoten um ein Pattern handelt, muss diese
in ein Fragment der nichst-niedrigeren Hierarchie-Ebene umgewandelt werden, welche ausfithrbar
ist oder weiter Patterns enthalt. Ist das Letztere der Fall, wird die Methode rekursiv erneut fiir diese
Patterns aufgerufen, bis nur noch Fragmente iibrig bleiben, welche nicht vom Typ Pattern sind. Jeder

83

5 Implementierung

mapPattern-Aufruf liefert als Ausgabe einen JSON-Array mit ein oder mehreren enthaltenen JSON-
Knoten. Die in jedem mapPattern-Aufruf JSON-Arrays werden anschliessend zu einem JSON-Array
zusammengefasst und dieses Array bildet schliesslich die Gesamtausgabe.

In jedem mapPattern-Aufruf wird aus dem JSON-Object fiir das Pattern das im Wert des Schliissel-
wertes ,properties” enthaltene, verschachtelte JSON-Array ,nodeséxtrahiert. Dieses Array enthalt
alle JSON-Knoten, auf die das Pattern abgebildet werden muss. Jeder dieser JSON-Knote entspricht in
ihrem Aufbau dem Aufbau der Flex-Mash-uiblichen JSON-Knoten. D.h. die iiblichen Schliisselwerte
,name®, ,type®, ,pattern®, ,properties” usw. sind enthalten und zudem verschachtelt ein Array ,targets®,
welches die Namen der Nachfolgeknoten enthalt.

Die Abbildung erfolgt regelbasiert. D.h.bevor die mapPattern-Methode die Abbildung vornimmt, prift
sie ob alle fiir das Pattern notwendige Parameter im Array properties enthalten sind und dem gefor-
derten Format entsprechen. Erst wenn dies der Fall ist, wird die Transformation durchgefiihrt. Bei der
Transformation werden die Eingabeparameter eventuell an die entsprechenden Fragmente ,weiterge-
reicht®. Dies bedeutet, dass Schlusselwerte der Fragmente mit geeigneten Werten programmatisch
belegt werden.

5.4.5 Die neue Methode convert

Diese Methode convert ist angelehnt an die Methode convert der Klassen MashupPlanToBPELCon-
verter und MashupPlanToNodeREDFlowConverter im Flex-Mash-Tool. Anstatt jedoch den Fragmenten
hart-codierte Code-Strings zuzuordnen, ruft die neue Methode eine weitere Methode fragmentLoo-
kup auf. Diese Methode gleicht bei der Suche nach dem geeigneten Fragment im Repository die im
Array ,properties"des aktuellen JSON-Knotens enthaltenen Ein- und Ausgabe-Parameter mit den im
Array Metadata enthaltenen Werten der Fragmente im Repository ab. Hier muss sowohl die Anzahl
der Parameter uibereinstimmen, als auch das Format ihrer Werte. Zudem muss die Metainformation
spattern” mit dem Wert des Schliisselwertes ,pattern” iibereinstimmen um eine geeignete Konvertie-
rungsmethode fiir BPEL bzw. Node-Red aufzurufen. Hier kommen momentan entweder ,,robust“ oder
stime-critical“ als mogliche Werte in Frage.

84

6 Related Work

In diesem Abschnitt werden Ansétze prasentiert und beschrieben, die eine vergleichbare Funktionalitat
anbieten. Dabei wird insbesondere der Verzeichnis-Dienst Fragmento genatir beschrieben.

Fragmento

Fragmento ist ein Open-Source-Verzeichnis-Dienst, dessen Fokus auf dem Konzept von Prozess-
Fragmenten im Bereich von Compliance Management in prozess-basierten Anwendungen liegt.
Ziel ist die Verwaltung von Prozessen und Prozess-Fragmenten im Bereich der Compliance. Dabei
werden Compliance Controls als wiederverwendbare (reusable) Prozess-Fragmente betrachtet. Ein
Prozessfragment beschreibt [SKLS11] wie folgt :

We understand a process fragment as a connected, possibly incomplete process graph which may also
contain additional artifacts like the fragment context. A process fragment is not necessarily directly
executable as some parts may be explicitly stated as opagqii in order to mark points of variability.

Eine weitere detaillierte Beschreibung des Begriffs Prozess-Fragment ist in [SLM*10] gegeben:

textitA process fragment is defined as a connected graph with significantly relaxed completeness
and consistency criteria compared to an executable process graph

Dementsprechend besteht ein Prozess-Fragment aus Aktivitaten, Platzhaltern, den sogennanten
Regions- und Kontroll-Kanten, welche Abhangigkeiten zwischen diesen beschreiben. Ferner kann
ein Prozess-Fragment einen Kontext (z.B. Variablen) definieren und einen Prozess-Start- und einen
Prozess-End-Knoten. Dariiber hinaus kann es iiber mehrere eingehende und ausgehende Kanten
verfiigen und besteht aus mindestens einer Aktivitat. Zudem sollte es moglich sein es zu einem
ausfithrbaren Prozess-Graph tiberfithren zu konnen, da ein Prozess-Fragment nicht unbedingt direkt
ausfithrbar ist und teilweise undefiniert sein kann.

Fragmento ist demnach ein Verzeichnis fiir Prozess-Artefakte, welche die Speicherung und das
Auffinden, sowie die Verwaltung von Versionen von allen Artefakten, die mit Prozessen verbunden
sind, ermoglicht. Es unterstiitzt die CRUD-Operationen: Create, Read, Update und Delete.

Das Verzeichnis vergibt eindeutige ID-Nummern fiir jedes Artefakt, dass darin abgelegt wird. Mithilfe
dieser eindeutigen Nummern konnen Relationen zwischen den Artefakten erzeugt werden. Ferner
ermoglicht Fragmento die Verwaltung dieser Relationen und die Annotation von Prozess-Fragmenten
fir bestimmte Prozesse, um damit Bedingungen beschreiben zu kénnen. Da Artefakte in das XML-
Format serialisiert werden konnen, erlaubt Fragmento zudem die Speicherung von XML-Artefakten.
Wie auch in dem Ansatz fiir ein Fragmente-Repository, welches in dieser Diplomarbeit beschrieben
wird, verwendet Fragmento Metadaten, um die Artefakte beschreiben zu kénnen.

Ein Artefakt in Fragmento setzt sich aus folgenden Komponenten zusammen:

85

6 Related Work

eine eindeutige ID-Nummer
« Metadaten (Name, Beschreibung, Keywords etc.)
+ XML-Dokument

Typ (Fragment, WSDL etc.)

« Relation zu anderen Artefakten

Die erfolgreiche Suche nach bestimmten Artifakten in Fragmento kann unterschiedlich durchgefiihrt
werden. So kann kann beispielweise nach iibereinstimmungen (Matches) in der Beschreibung oder
im Inhalt oder mithilfe der Angabe eines Intervalls nach der dem Erstellungsdatum gesucht werden.
Ferner ist es m?glich nach einem bestimmten Artefakt-Typ auszurichten oder die Suche auf jene
Artefakte zu reduzieren, welche in Relation zu einem bestimmten Artefakt stehen.

Eine weitere wichtige Funktionalitit, die Fragmento anbietet, ist die Verwaltung der im Verzeichnis
abgelegten Artefakte, sowie der Relationen zwischen den Artefakten. Neii Artefakte konnen erstellt
und im Verzeichnis gespeichert werden. Dabei kénnen mehrere Versionen eines Artefakts vorhanden
sein, nach welchen anhand der Versions-Historie gesucht werden kann. Dementsprechend ist es
m?glich die neiiste Version eines Artefakts oder auch eine beliebige Version zu benutzen. Ferner
konnen Relationen verwaltet werden, indem diese geldscht, upgedatet oder neu erstellt werden.
Relationen beschreiben, welche Artefakte ziiinander geh?ren und erméglichen es Annotationen
eines Artefakts an andere Artefakte, beispielsweise die Annotation eines Prozess-Fragments an ein
Prozess.

Fragmento wird als ein Web Service angeboten, wobei die zur Verfiigung gestellten Operationen
tiber ein SOAP/HTTP Binding bereitgestellt werden. Die Operationen, welche zum Auffinden von
Artefakten verwendet werden, werden als REST-Funktionen (z.B. HTTP/GET) realisiert. Dadurch
wird die Integration von anderen Tools erleichtert.

Erstellung eines Artefakts

Wird ein neues Artefakt erstellt, erzeugt das Verzeichnis ein neues textitversioniertes Objekt. Diese
Objekt enthalt alle Versionen des Artefakts und stellt eine Versions Historie bereit. Damit kann
man auf die erste Version eines Artefakts, die sogenannte textitroot version sowie auf die aktuelle
Version, die textitbase version zugreifen. Das Version Descriptor Object ist ein weiteres Objekt,
welches der internen Représentation der Version eines Artefakts entspricht. Dieser enthilt neben
dem Erstellungsdatum Metadaten und einen Verweis auf das XML-Dokument des Artefakts. Es ist
moglich Relationen zwischen diesen Version Descriptor Objekten zu erzeugen.

Erweiterbarkeit

Fragmento kann durch zahlreiche Funktionalititen erweitert werden, welche hilfreich sind in Bezug
auf die Verwaltung von Prozessen, Prozess-Fragmenten und damit verbundenen Artefakten. Dazu
gehoren Validators, Custom Query Functions und View Transformations.

Design und Implementierung

Fragmento wurde mit der Programmiersprache Java geschrieben. Das Backend von Fragmento
basiert auf einem Technologie-Stack. Die Repository-Anwendung lauft auf einem Tomcat Server

86

und Hibernate dient als Data Abstraction Layer. Ferner dient das Spring Framework fiir das Object
Lifecycle Management sowie PostgreSQL als Datenbank fiir die Speicherung der Daten. Fiir die
Erstellung der Web Service Schnittstelle kommen Axis 2 Libraries zum Einsatz. Der Web Client
wurde mithilfe von Java Server Pages (JSP) erstellt, Tag Libraries fiir die View und Servlets fir die
Bearbeitung von Client-Anfragen verwendet.

Neben Fragmento gibt viele weiter kommerzielle und nicht-kommerzielle Verzeichnisdienste, die den
Ansatz des Software Reuse verfolgen. Im Folgenden werden einige kommerzielle Beispiele genannt
und beschrieben.

+1Reuse Repository

Das +1Reuse System wurde von +1 Software Engineering Co. in Kalifornien entwickelt und lauft
auf der Sun Workstation Plattform. Es unterstiitzt Reuse Repositories, die vom Benutzer erstellt
und verwaltet werden und das sogenannte Selectives Reuse. Selective Reuse verbessert in hohem
Ma?e die Fahigkeit des Benutzers Quellcode und Dokumentationen von fritheren Projekten mit
beliebiger Granularituet wiederzuverwenden. Folglich stellt jedes vorangegangene Projekt eine Reuse
Library dar, deren Submodelle wiederverwendet werden kénnen. Es konnen Design, Dokumentation,
Qiillcode, Header Files, Test Cases etc. wiederverwendet werden. +1Reuse erlaubt 3 Formen der
Wiederverwendung:

« User-Defined Reuse Library
« Filtered Reuse Library und

« Selective Reuse

Da durch den Reuse von existierendem Code und Dokumentationen die Produktivitit des Program-
mierers erhoht werden kann, erméglicht +1Reuse jeglichen Quellcode, Dokumentationen, Header-
und Testdateien wiederzuverwenden, indem der Ansatz von Submodellen unterstiitzt wird. Nachdem
ein Submodell ausgesucht wurde, werden das Submodell und die damit verbundenen Dateien in das
neu Projekt kopiert und erméglichen dadurch die Lésung von aufkommenden Problemfallen.

Software Asset Library Management System

SALMS ist ein System zur Klassifizierung, Beschreibung und Auffindung von wiederverwendbaren
Assets[Mor98]. Der Reuse von Software Assets in allen Phasen des Software Engineering Life Cycles
fihrt neben der Steigerung der Produktivitat auch zu Qualitatsverbesserungen. SALMS bietet eine
zentrale Repository an, die Mechanismen zur Klassifizierung und Speicherung von Software Assets als
auch Techniken fiir das Auffinden von wiederverwendbaren Assets bereitstellt. Mithilfe von SALMS
schlief3t sich die Liicke zwischen der Entwicklung von wiederverwendbaren Komponenten und der
Erstellung von einer Software durch den Einsatz von Reusable Software. Des Weiteren werden Features
fiir die Anforderungsverwaltungs-Aktivitat und fiir die Erstellung und Verwaltung einer technischen
Bibiliothek des Unternehmens bereitgestellt. SALMS kann tiber PC oder UNIX Workstations im
Unternehmensnetzwerk verteilt werden und ist somit fiir jeden Entwickler zuginglich. Das User
Interface basiert auf der WEB Technologie. Ein Asset ist hierbei eine Sammlung von Artefakten, die
wihrend des Life-Cycles erstellt werden. Demnach verkérpern Anforderungen, Architekturmodelle,
Design Spezifikationen, Source Code oder Test Skripte ein Asset.

87

6 Related Work

Automated Software Reuse Repository

ASRR ist ein Verzeichnis, welches aus zwei Hauptkomponenten aufgebaut ist: dem Administrations-
Tool und der Reuse Repository. Das Administrations-Tool iibernimmt administrative Funktionen, wie
das Hinzufiigen, Loschen oder Modifizieren von Benutzern und ihren Attributen. Attribute beschreiben
den Sicherheitsgrad, Gruppen- und Sicherheitspermissionen fiir das Hinzufligen, Bearbeiten und
Loschen von Modulen. Die Reuse Repository erméglicht dem Benutzer Module in das Verzeichnis
hochzuladen und sie in einer Repository abzulegen, die nach bestimmten Komponenten abgesucht
werden kann. Zusatzliche Funktionen verwalten die Login-Prozedur des ASRR (Program Control),
begrenzen die Funktionsmoglichkeiten des Benutzers Module zu bearbeiten, 16schen, hinzufiigen,
hochladen, betrachten oder runterzuladen (Program Control) oder erhéhen die Sicherheit, indem
inaktive Benutzer nach einer bestimmten Zeitperiode automatisch ausgeloggt werden. Zudem gewahrt
ASRR dem Benutzer einfachen Zugriff auf das Verzeichnis, fiir die Suche nach Reuse Komponenten.
Die Suche ist flexibel, da der Benutzer nach Wortketten (Strings) suchen und dabei die Wortbegriffe
not, or oder and verwenden kann. Spezifische Informationen tiber das Reuse Modul beinhalten Details
iiber die Plattform, die genutzt wird, Erleichterungen fiir die Wiederverwendung und zusétzliche
Informationen werden dem Benutzer zur Verfiigung gestellt.

AIRS

AIRS ist eine Al-basierende Library-System fiir Software Reuse. Es wurde von E.J. Ostertag, J.A.
Hender, C.Braun und R. Prieto-Diaz entwickelt und erméglicht Benutzern eine Software Verzeichnis
nach Komponenten zu durchsuchen, die vom Benutzer bestimmten Anforderungen erfiillen miis-
sen [GR91]. Eine Komponente wird hierbei als ein (Feature, Term)- Paar beschrieben. Das Feature
stellt ein Klassifizierungs-Kriterium dar und wird definiert anhand von damit verbundenen Begrif-
fen (Terms)[EMD94]. Komponenten kénnen widerum zu sogenannten Packages zusammengefasst
werden. Diese sind logische Einheiten, die aus eine Menge von dhnlichen Komponenten bestehen.
Packages werden ebenfalls, wie auch die Komponenten selbst, anhand von Features beschrieben.
Sie enthalten jedoch, im Gegensatz zur Beschreibung einer Komponente, eine Menge von Mitglieds-
Komponenten. Ausgehend von einer Zielbeschreibung werden die Reuse Komponenten und Packages,
deren Beschreibung einen hohen Ahnlichkeitsgrad zur Zielbeschreibung aufweisen, als Kandidaten
aus dem Verzeichnis ausgew&hlt [JC94].

Der Ahnlichkeitsgrad wird bestimmt mittels einer Kennzahl, die sogannte Distance, welches den
erwartenden Aufwand zur Erreichung des angestrebten Zieles, bei einer gegebenen Komponente als
Kandidat, darstellt. Der Distance-Wert wird berechnet durch bestimmte Funktionen, den Compara-
tors. Beispiele hierfiir sind die SubSumption-, Closeness- und Package Comparators-Funktionen. Die
AIRS Klassifizierungsansatz basiert auf der Formalisierung von Konzepten und dhnelt dem Ansatz
der Faceted Classification [PD91]. Die Implementierung vom Prototyps des AIRS Systems wurde
auf zwei unterschiedliche Software Libraries angewandt, um die Funktionalitat des Systems dar-
zustellen. Es wurden eine Menge von Ada Packages fiir die Datenstrukturmanipulation und eine
Menge von Komponenten der Programmiersprache C fiir dein Einsatz in Command, Control und
Informationssystemen verwendet.

Vergleich

Neben kommerziellen Reusable Component Repositories kommen auch sogenannteGovernment Reposi-
tories zum Einsatz. Kommerzielle Ansatze werden in Case Environments integriert. Einige groflere

88

Repositories benutzen web-basierte Techologien fir die Bereitstellung von Diensten. Sie nutzen
flache Dateien, welche in HyperTextMarkup Language (HTML) geschrieben sind. Electronic Library
Services and Applications (ELSA) erweitern den Ansatz, indem sie Multimedia Oriented Repository
Environment (MORE) nutzen.

89

7 Zusammenfassung und Ausblick

7.1 Zusammenfassung

In Anbetracht der heutzutage grofien Datenmengen, die in Unternehmen oder im wissenschaftlichen
Bereich enstehen konnen, kommen immer haufiger Mashup-Applikationen wie Intel Mashmaker,
Yahoo Pipes oder IBM Mashup Hub zum Einsatz, welche die Erstellung, Bearbeitung und Visualisierung
von Daten aus diesen heterogenen Datenmengen erleichtern. Da diese Datenmengen stetig ansteigen
und oftmals verteilt sind (Big Data), ist es erforderlich (semi-) strukturierte und unstrukturierte
Daten weitgehend automatisiert und generisch zusammenzufithren und zu analysieren. Der Prozess
der ad-hoc Zusammenfuehrung multipler Datenquellen ist auch unter den Namen Data Mashup,
usiness Mashup oder nterprise Mashup bekannt. Es existieren zahlreiche Tools, welche die Erstellung
solcher Mashups ermégichen. Diese weisen jedoch Nachteile in Bezug auf das technische Wissen des
Nutzerkreises und der Flexiblitat auf. So erfordern derartige Tools hohe technische Anforderungen
und kénnen dadurch nicht von jedem beliebigem Benutzer verwendet werden. Lediglich solche Nutzer,
die das nétige technische Wissen mitbringen, sind in der Lage diese Tools zu nutzen. Ein weiterer
Nachteil ist die eingeschrankte Flexibilitat, die bestehende Losungsansiatze aufweisen, da diese nur
eine Form der Ausfithrung unterstiitzen. Folglich konnen auf unterschiedliche Anforderungen von
Benutzerkreisen nicht direkt eingegangen werden und dadurch Ergebnisse erzielt werden, welche nicht
dem erwiinschten Resultat entsprechen. Wihrend fiir eine bestimmte Benutzergruppe beispielsweise
die robuste Ausfithrung von Datenverarbeitungsprozessen im Vordergrund steht, setzt im Gegensatz
dazu ein anderer Benutzerkreis die zeitlich effiziente Ausfithrung voraus.

An der Universitat Stuttgart wurde das Data Mashup Tool FlexMash entwickelt, mit dem Ziel die
Nachteile und Einschrankungen von Data Mashup-Ansétzen zu beseitigen. FlexMash erméglicht Do-
ménenexperten die Modellierung von Data Mashups, wobei die Ausfithrung an die unterschiedlichen
Anforderungen der Benutzer angepasst wird. Dadurch wird einerseits eine hohere Flexibilitat bei
der Ausfithrung gewihrleistet und andererseits die Benutzerkreis vergrofert, da Doméanenexperten,
ohne technisches Wissen, in der Lage sind mit FlexMash Data Mashups zu erstellen. Dazu muss der
Benutzer lediglich ein sogenannten Mashup Plan erstellen. Dieser Mashup Plan entspricht einem
abstraktem Modell eines Data Mashups und setzt sich aus Datenquellen, sogenannten Data Source
Descriptions (DSDs) und Datenoperationen (DPDs) zusammen. Der Doménenexperte modelliert
solch ein Mashup Plan, indem er DSDs und DPDs miteinander verkniipft. Der erstellte Mashup
Plan ist nicht ausfithrbar und moglichst abstrakt gehalten. Der Mashup Plan kann anschlief3end,
abhéngig von den unterschiedlichen Nutzeranforderungen in unterschiedliche ausfithrbare Formate
tberfithrt werden. Dabei ist zu beachten, dass die Bereitstellung von konkreten Implementierungen
in FlexMash momentan lediglich hardcodiert ist. Diese sollte automatisiert und das Mapping-Problem
gelost werden.

91

7 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konzept fiir ein Verzeichnisdienst erstellt, welches die automatisierte
Bereitstellung von Implementierungen der einzelnen Komponenten des erstellten Mashup Plans
(DSDs und DPDs) ermdglicht. Dazu wurde zunéchst ein Konzept fiir das Verzeichnisdienst erstellt, die
beschreibt wie der Dienst aufgebaut ist und welche Funktionen zur Verfiigung gestellt werden.Des
Weiteren wurde ein Konzept entwickelt, die das Mapping-Problem, basierend auf der regelbasierten
Transformation, 19st.

In 3.2 wurde der Aufbau des Verzeichnisdienstes mit den einzelnen Komponenten und ihren Relationen
zueinander beschrieben. Dabei wurden die drei Ebenen des Verzeichnisdienstes naher betrachtet,
ihre Funktion in der Gesamtstruktur und die Interaktion dieser Ebenen zueinander erldutert. Zudem
wurde geklart, wie ein Benutzer mit dem Verzeichnis-Dienst kommunizieren, d.h. Anfragen schicken
kann und in welcher Form die Ergebnisse ausgegeben werden.

In 3.3 wurden anschlieend die unterschiedlichen Technologien vorgestellt, die verwendet werden,
um das Verzeichnis-Dienst zu realisieren. Dabei wurden auf die charakteristischen Merkmale dieser
Technologien eingegangen. Des Weiteren wurde die Architektur der NoSQL-Datenbank, welche die
konkreten Implementierungen fiir die DPDs und DSDs in einem Mashup Plan enthalten und bei
Anfrage zur Verfiigung stellen, ndher betrachtet.

Im nachfolgenden Kapitel 4 wurden Beispiele fiir Patterns vorgestellt. Dabei wurden Basispattern
beschrieben, welche nicht komplex aufgebaut sind und als Komponenten grofierer und komplexerer
Patterns zum Einsatz kommen koénnen. Neben dem Aufbau dieser Patterns wurde auch erwihnt,
wie diese Funktionieren, aus welchen Komponenten sie bestehen. Ferner wurde erlautert, welche
Parameter eingegeben werden miissen.

Kapitel 5 beschéftigt sich mit der technischen Umsetzung des zuvor erstellten Konzepts. Zunachst
wurde in 5.2 beschrieben, wie die Daten in der Datenebene verwaltet werden. Dabei wurde wurde das
Datenmodell und die Organisation der Daten in der Datenzugriffsebene beschrieben. AnschlieBend
wurden die implementierten Funktionen und die fiir diese Funktionen verwendeten Datenformate im
Detail beschrieben. Zudem wurde erwéhnt, wie der Repository-Dienst technisch mithilfe des Spring
Rahmenwerks realisiert. Im darauf folgenden Abschnitt wurden die von dem Repository-Dienst
angebotenen Funktionen vorgestellt. Im niachsten Abschnitt wurde die momentane Transformation
von Mashup-Flows des FlexMash-Projekts beschrieben. Dabei wird ein JSON-Flow in ein ausfiihrbares
Format transformiert. Nach einer Bestandsaufnahme, welche die Umsetzung der Transformation im
FlexMash-Projekt beschreibt, wurde die Transformation fiir das Konzept des Repository-Dienstes fiir
diese Arbeit vorgestellt. Im Kapitel 5 wurde anschlieend die technische Realisierung der Architektur
des Dienstes beschrieben. Dabei wurde beschrieben, auf welchen Technologien der Repository-
Dienst basiert und das Datenformat fiir die Code-Fragmente detailliert beschrieben. Ferner wurde
die Hauptfunktion des Dienstes, die Transformation eines unausfithrbaren Mashup Plan in ein
ausfithrbares Format besprochen. Im letzten Kapitel 6 wurden schlief3lich dhnliche Konzepte von
Code-Fragmente-Diensten vorgestellt und naher betrachtet.

92

7.2 Ausblick

7.2 Ausblick

Fir diese Arbeit wurde ein Konzept fiir ein Code-Fragmente-Verzeichnis erstellt. Dabei wurden
Grundfunktionen implementiert, welche das Verzeichnis einem Benutzer zur Verfiigung stellen soll.
In zukiinftigen Arbeiten konnten diesbeziiglich weitere komplexere Funktionen erstellt werden.

Ferner wurde fiir die Speicherung der Code-Fragmente eine NoSQL-Datenbank MongoDB verwendet.
Da die Zahl der darin enthaltenen Code-Fragmente im Einsatz relativ hoch sein kann, ist es erforderlich
diese Code-Fragmente zu kategorisieren. Diese Kategorisierung bzw. Klassifizierung von Fragmenten
wiirde die Suche nach geeigneten Komponenten erheblich verkiirzen. Statt alle vorhandenen Code-
Fragmente abzusuchen, kénnte man bei Angabe einer bestimmten Kategorie des Code-Fragments
direkt in dieser die Suche starten. Diese Klassifizierung konnte in zukiinftigen Arbeiten thematisiert
werden.

Des Weiteren wire eine grafische Benutzeroberfliache, dhnlich der GUI von Fragmento denkbar, da
momentan auf die Dienste des Repository iiber einen REST-Client(Postman) oder tiber die Adress-Zeile
des Web-Browsers zugegriffen wird.

Zudem kann es vorkommen, dass es fiir einen Knoten im Mashup Plan mehrere ausfithrbare Co-
defragmente gibt, welche alle gegeben Anforderungen erfiillen. In diesem Fall kénnten zukinftige
Arbeiten versuchen eine Metrik zu erstellen, anhand welcher es méglich ist, alle in Frage kommen-
den Code-Fragmente miteinander zu vergleichen. Diese Metrik, welches sich aus unterschiedlichen
Kriterien zusammensetzt, wiirde anschlieBend alle Code-Fragmente, die sich als Implementierung
fiir einen Knoten im Mashup Plan eignen, in Form einer Ranking-Liste ausgeben. Somit kénnte das
Code-Fragment ausgewiahlt werden, welches das hochste Ranking aufweist und damit die meisten
Anforderungen erfiillt.

Der Verzeichnisdienst sollte auflerdem in der Lage sein, stets eine Losung bereitzustellen. Werden alle
erforderlichen Parameter beispielsweise nicht vollstandig eingegeben bzw. fehlerhaft eingegeben, wird
dennoch das Code-Fragment ausgesucht, dass die hochste Priorisierung hat. Dadurch ist gewéhrleistet,
dass das Verzeichnis sogar dann Losungen zur Verfiigung stellt, wenn die Kriterien nicht alle erfiillt
sind. Diese Thematik kénnte in weiteren Arbeiten erdrtert werden.

Die Versionverwaltung von bestehenden Code-Fragmenten ist ein weiteres Feld, welches sich fiir
zukiinftige Arbeiten eignet. Ahnlich der Versionsverwaltung von Fragmento, sollte das Verzeichnis
eine Versions-Historie aufweisen. Diese enthilt, angefangen bei der ersten Version, alle bisherigen
Versionen einschlie8lich der aktuellen Version. Sobald eine Version aktualisiert wird, wird dieser
automatisch die um die Zahl eins erhohte Versionnummer zugewiesen. Dadurch wird gewahrleistet,
dass Benutzer auch in der Lage sind, auf die Codefragmente zuzugreifen, welche nicht aktuell sind,
jedoch ihren Anforderungen geniigen.

Eine weitere zukiinftige Arbeit kénnte die Implementierung ein Authorisierungsprozesses sein, wel-
cher die Benutzer in ihrer Interaktion mit dem Verzeichnis kontrolliert. Dadurch wiirde beispielsweise
festgelegt werden, welcher Benutzer die Erlaubnis erhilt, neue Code-Fragmente in das Verzeichnis zu
registrieren, bereits bestehende Code-Fragmente zu aktualisieren oder zu 16schen.

93

Literaturverzeichnis

[ABFG04]

[Ale77]

[AZ05]

[Bea09]
[Bet01]
[BSKM12]

[DLHPB09]

[DVXBT09]

[EMD94]

[FBB'14]

[FJZ*12]

[GR91]

[HHLD11]

D. Austin, A. Barbir, C. Ferris, S. Garg. Web services architecture requirements. W3C
Working Group Notes, S. 22, 2004. (Zitiert auf Seite 30)

C. Alexander. A pattern language: towns, buildings, construction. Oxford University Press,
1977. (Zitiert auf Seite 16)

P. Avgeriou, U. Zdun. Architectural patterns revisited—a pattern. 2005. (Zitiert auf den
Seiten 5, 33 und 34)

A. Beaulieu. Einfiithrung in SQL. O’Reilly Germany, 2009. (Zitiert auf Seite 14)
U. Bettag. Web-services. Informatik-Spektrum, 24(5):302-304, 2001. (Zitiert auf Seite 30)

A. Bawiskar, P. Sawant, V. Kankate, B. Meshram. Spring Framework: A Companion to
JavaFEE. International Journal of Computational Engineering and Management IJCEM,
1(15):41-49, 2012. (Zitiert auf Seite 51)

G. Di Lorenzo, H. Hacid, H.-y. Paik, B. Benatallah. Data integration in mashups. ACM
Sigmod Record, 38(1):59-66, 2009. (Zitiert auf Seite 36)

P.De Vrieze, L. Xu, A. Bouguettaya, J. Yang, J. Chen. Process-oriented enterprise mashups.
In Grid and Pervasive Computing Conference, 2009. GPC’09. Workshops at the, S. 64-71.
IEEE, 2009. (Zitiert auf Seite 35)

D. Eichmann, T. McGregor, D. Danley. Integrating structured databases into the web:
The MORE system. Computer Networks and ISDN Systems, 27(2):281-288, 1994. (Zitiert
auf Seite 88)

M. Falkenthal, J. Barzen, U. Breitenbiicher, C. Fehling, F. Leymann. From pattern langua-
ges to solution implementations. In Proceedings of the Sixth International Conferences
on Pervasive Patterns and Applications (PATTERNS 2014), Venice, Italy. 2014. (Zitiert auf
Seite 16)

M. Falkenthal, D. Jugel, A. Zimmermann, R. Reiners, W. Reimann, M. Pretz. Matu-
rity Assessments of Service-oriented Enterprise Architectures with Iterative Pattern
Refinement. In GI-Jahrestagung, S. 1095-1101. Citeseer, 2012. (Zitiert auf Seite 16)

A. Guillermo, P.-D. Ruben. Domain analysis concepts and research directions, 1991.
(Zitiert auf Seite 88)

J. Han, E. Haihong, G. Le, J. Du. Survey on NoSQL database. In Pervasive computing
and applications (ICPCA), 2011 6th international conference on, S. 363-366. IEEE, 2011.
(Zitiert auf Seite 56)

95

Literaturverzeichnis

[HM16]

[HRS83]

[HRWM15]

[HSSJS08]

[JC94]

[JEAT07]

[JHD " 04]

[Lan03]
[LR0O]

[Mel10]

[MLMT06]

[Mon12]

[Mor98]

[Miil06]

[NPP13]

[PD91]

96

P. Hirmer, B. Mitschang. FlexMash-Flexible Data Mashups Based on Pattern-Based
Model Transformation. In Rapid Mashup Development Tools, S. 12-30. Springer, 2016.
(Zitiert auf den Seiten 5, 17, 18 und 38)

T. Haerder, A. Reuter. Principles of transaction-oriented database recovery. ACM
Computing Surveys (CSUR), 15(4):287-317, 1983. (Zitiert auf Seite 15)

P. Hirmer, P. Reimann, M. Wieland, B. Mitschang. Extended Techniques for Flexible
Modeling and Execution of Data Mashups. In DATA, S. 111-122. 2015. (Zitiert auf den
Seiten 5, 36, 38, 39, 40 und 43)

V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, C. Schroth. Enterprise mashups: Design
principles towards the long tail of user needs. In Services Computing, 2008. SCC’08. IEEE
International Conference on, Band 2, S. 601-602. IEEE, 2008. (Zitiert auf Seite 35)

J.-J. Jeng, B. H. Cheng. A formal approach to reusing more general components. In
Knowledge-Based Software Engineering Conference, 1994. Proceedings., Ninth, S. 90-97.
IEEE, 1994. (Zitiert auf Seite 88)

D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,
M. Ford, Y. Goland, et al. Web services business process execution language version 2.0.
OASIS standard, 11(120):5, 2007. (Zitiert auf Seite 24)

R. Johnson, J. Hoeller, K. Donald, Sampaleanu, et al. The Spring Framework-Reference
Documentation. Interface, 21, 2004. (Zitiert auf den Seiten 5 und 51)

T. Langner. Web Services mit Java. Markt+ Technik, 2003. (Zitiert auf Seite 30)

F. Leymann, D. Roller. Production workflow: concepts and techniques. 2000. (Zitiert auf
den Seiten 5, 20, 21 und 59)

I. Melzer. Service-orientierte Architekturen mit Web Services: Konzepte-Standards-Praxis.
Springer-Verlag, 2010. (Zitiert auf Seite 27)

C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, B. A. Hamilton. Reference
model for service oriented architecture 1.0. OASIS standard, 12, 2006. (Zitiert auf Seite 27)

I. MongoDB. MongoDB, 2012. (Zitiert auf Seite 55)

E. Morandin. SALMS v5. 1: A System for Classifying, Describing, and Querying about
Reusable Software Assets. In The Proceedings of 5th International Conference on Software
Reuse (ICSR’98). 1998. (Zitiert auf Seite 87)

J. Miller. Workflow-based integration: grundlagen, technologien, management. Springer-
Verlag, 2006. (Zitiert auf den Seiten 5, 20, 22 und 23)

A. Nayak, A. Poriya, D. Poojary. Type of NOSQL databases and its comparison with
relational databases. International Journal of Applied Information Systems, 5(4):16-19,
2013. (Zitiert auf Seite 55)

R. Prieto-Diaz. Implementing faceted classification for software reuse. Communications
of the ACM, 34(5):88-97, 1991. (Zitiert auf Seite 88)

Literaturverzeichnis

[Rei12] R. Reiners. A Pattern Evolution Process-From Ideas to Patterns. In Informatiktage, S.
115-118. 2012. (Zitiert auf Seite 16)

[RGOO] R. Ramakrishnan, J. Gehrke. Database management systems. McGraw-Hill, 2000. (Zitiert
auf den Seiten 11 und 15)

[RHJN04] L. Rapanotti, J. G. Hall, M. Jackson, B. Nuseibeh. Architecture-driven problem decompo-
sition. In Requirements Engineering Conference, 2004. Proceedings. 12th IEEE International,
S. 80-89. IEEE, 2004. (Zitiert auf den Seiten 5 und 33)

[RSM11] P. Reimann, H. Schwarz, B. Mitschang. Design, implementation, and evaluation of a
tight integration of database and workflow engines. Journal of Information and Data
Management, 2(3):353, 2011. (Zitiert auf den Seiten 5, 24 und 25)

[RSM14] P. Reimann, H. Schwarz, B. Mitschang. A pattern approach to conquer the data complexi-
ty in simulation workflow design. In OTM Confederated International ConferencesOn the
Move to Meaningful Internet Systems", S. 21-38. Springer, 2014. (Zitiert auf den Seiten 40,
42, 57 und 58)

[SKLS11] D. Schumm, D. Karastoyanova, F. Leymann, S. Strauch. Fragmento: advanced process
fragment library. In Information Systems Development, S. 659-670. Springer, 2011. (Zitiert
auf Seite 85)

[SLMT10] D.Schumm, F. Leymann, Z. Ma, T. Scheibler, S. Strauch. Integrating compliance into
business processes. Multikonferenz Wirtschaftsinformatik 2010, S. 421, 2010. (Zitiert auf
Seite 85)

[SN96] R. W. Schulte, Y. V. Natis. Service oriented architectures, part 1. Gartner, SSA Research
Note SPA-401-068, 1996. (Zitiert auf Seite 27)

[Wag11] F. Wagner. Nutzung einer integrierten Datenbank zur effizienten Ausfithrung von
Workflows. In BTW Workshops, S. 145-149. 2011. (Zitiert auf Seite 24)

[Wal12] C. Walls. Spring im Einsatz. Carl Hanser Verlag GmbH Co KG, 2012. (Zitiert auf Seite 50)

Alle URLs wurden zuletzt am 15.01. 2015 gepriift.

97

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Zielsetzung

	2 Grundlagen
	2.1 Datenbanksysteme
	2.1.1 Vorteile von Datenbankmanagementsystemen
	2.1.2 Relationales Datenmodell
	2.1.3 SQL
	2.1.4 Transaktionsmanagement

	2.2 Patterns
	2.2.1 Definition
	2.2.2 Solution Implementations
	2.2.3 Patternhierarchien

	2.3 Workflows
	2.3.1 Die Workflow-Technologie
	2.3.2 Workflow Management
	2.3.3 Workflow Sprachen
	2.3.4 Workflow-Klassen
	2.3.5 Business Process Execution Language

	2.4 Service Oriented Architecture
	2.4.1 SOA Definition
	2.4.2 Grundlegende Merkmale einer SOA
	2.4.3 Das SOA Dreieck
	2.4.4 Web Services
	2.4.5 Die Bestandteile von Web Services

	2.5 Pipes And Filters-Architektur
	2.6 Data Mashups
	2.6.1 Mashups
	2.6.2 Eigenschaften von Data Mashups
	2.6.3 Data Mashup Tools
	2.6.4 Vorteile und Nachteile von Data Mashups

	2.7 Mashup Plans
	2.7.1 Extended Data Mashup Ansatz
	2.7.2 Mashup Plan Modellierung
	2.7.3 Patternbasierte Transformation
	2.7.4 FlexMash

	3 Grundkonzept einer Fragment-Repository
	3.1 Funktion des Fragment-Repositories
	3.2 Architektur eines Fragment-Repositories
	3.3 Verwendete Technologien
	3.3.1 Spring Framework
	3.3.2 MongoDB
	3.3.3 MySQL

	3.4 Regelbasiertes Mapping
	3.4.1 Regelbasierte Transformation
	3.4.2 Patternhierarchie im Beispiel

	4 Patternbeispiele
	4.1 Source-to-Source Pattern
	4.2 Filter Pattern
	4.3 Data Split Pattern
	4.4 Data Merge Pattern
	4.5 Data Iteration Pattern
	4.6 Sequentielles Data Iteration Pattern

	5 Implementierung
	5.1 Verwendete Technologien
	5.2 Datenebene
	5.3 Datenzugriffsebene
	5.3.1 Die Klasse Fragment
	5.3.2 Der Repository-Dienst
	5.3.3 Die Funktionen des Repository-Dienstes

	5.4 Transformation von Mashup-Flows
	5.4.1 Bestandsaufnahme
	5.4.2 Konzept der Transformation
	5.4.3 Ablauf der Methode transformFlow
	5.4.4 Die Methode mapPattern
	5.4.5 Die neue Methode convert

	6 Related Work
	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	Literaturverzeichnis

