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Zusammenfassung

In modernen Intralogistikanlagen ist optimale Materialflusssteuerung die wichtigste Funktion ne-
ben der Verwaltung der eingelagerten Waren. Um eine kostspielige Konfiguration der oft sehr
komplexen Anlagen zu vermeiden, ist es notwendig, den Konfigurationsprozess zu automatisie-
ren.

Das Ziel dieser Arbeit soll ein Prototyp zur Ermittlung der optimalen Konfiguration, im
Hinblick auf Leistung und Verschleil3, von intralogistischen Materialflissen sein.

Hierzu werden im Rahmen dieser Diplomarbeit zun&chst Inhouse-Experten zu den un-
terschiedlichen Konfigurationsparametern befragt. Auf Basis der gewonnen Daten soll ein abs-
traktes Modell zur Modellierung der verschiedenen Intralogistikanlagen erstellt werden.

Des Weiteren sollen die unterschiedlichen Methoden zur automatisierten Optimierung
der Lagerflisse untersucht und die Methode der kiinstlichen neuronalen Netze in einem Proto-
typ, unter Verwendung des abstrakten Modells, umgesetzt werden.

Der Prototyp soll in der Lage sein, eine optimale Konfiguration fiir ein gegebenes Modell
eines intralogistischen Materialflusssystems zu ermitteln.

Die ermittelte Konfiguration soll in einem néchsten Schritt gegen eine Standardinstalla-
tion der Software viadat und gegen eine Simulation in der Simulations- und Emulationssoftware
Emulate 3D validiert werden kénnen.

Fur eine spatere Automatisierung der Validierung soll die Software Emulate 3D auf vor-
handene Programmierschnittstellen untersucht werden. Des Weiteren sollen die Méglichkeiten
der Anbindung der Modelllésung an die Standardsoftware viadat evaluiert werden.



Abstract

In modern intralogistics systems, the optimized material flow control is the most important func-
tion, along with the management of the stored goods. To avoid the expensive configuration of
the facilities, most of which are highly complex, it is required to automate the configuration pro-
cess.

The goal of this diploma thesis is to generate a prototype used to identify the optimum
configuration of intralogistic material flows with regard to performance and wear.

In the context of this diploma thesis, first of all in-house experts are to be questioned
concerning the different configuration parameters. On the basis of the obtained data, an ab-
stract model used to model intralogistics facilities of different types is to be generated.

Moreover, different methods of automated optimization of the material flows are to be
examined, and the method of artificial neural networks is to be implemented in a prototype, on
the basis of the abstract model.

The prototype must be able to identify the optimum configuration for a given model of an
intralogistic material flow system.

In the next step, it is intended to validate the identified configuration against a standard
installation of the viadat software and against a simulation in the simulation and emulation soft-
ware Emulate 3D.

With regard to the automation of the validation at a later time, the software Emulate 3D
is to be examined for existing programming interfaces. Another task is to evaluate the option of
connecting the model solution to the standard software viadat.
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1 EINLEITUNG

Im Folgenden werden die Kooperationspartner, Problemstellung, die konkrete Aufgabenstellung
sowie die genaue Gliederung der vorliegenden Arbeit erlautert.

1.1 Kooperationspartner

Diese Arbeit wird vom Institut fir Rechnergestitzte Ingenieursysteme (IRIS) der Universitat
Stuttgart betreut und geprift. Durchgefihrt wird die vorliegende Arbeit in Zusammenarbeit mit
der viastore Gruppe, bestehend aus viastore SYSTEMS GmbH und viastore SOFTWARE
GmbH, und dem Institut fir Rechnergestitzte Ingenieursysteme (IRIS).

1.2 Danksagung

Ich mdchte mich bei Univ-Prof. Hon-Prof. Dr. Dieter Roller fir die Betreuung und fir hilfreiche
Hinweise zur Durchfiihrung dieser Arbeit bedanken.

Weiterhin méchte ich mich bei Dirk Gehlich fur die Erlauterungen zum Materialfluss sowie
Michael Tophinke, Carsten R6hl und Thomas Jetter fiir unterstiitzende Beitrage zu dieser Arbeit
bedanken. Ebenso danke ich Harald Metzger flr seine Einfihrung in die Funktionsweise der
Kommunikation zwischen der Software viadat und der SPS der Fordertechnik.

Dariiber hinaus bedanke ich mich bei Dr. Martin Krebs fir die Mdglichkeit der Realisierung
dieser Arbeit.

1.3 Problemstellung

In modernen Logistiksystemen ist die Optimierung der internen Ablaufe von hoher Bedeutung
fur die Funktion des gesamten Logistiksystems. Hierzu wird der Materialfluss innerhalb solcher
Logistiksysteme durch den Einsatz von Lagerverwaltungssystemen (LVS) gesteuert, diese be-
sitzen i. d. R. eine zentrale Materialflusssteuerungseinheit. Die Materialflusssteuerungseinheit
Ubernimmt die Koordination aller im Logistiksystem anfallenden Materialflussprozesse. Zur
Steuerung der Materialfliisse innerhalb eines Logistiksystems wird im Kontext dieser Arbeit die
Warehousemanagementsoftware viadat, im Folgenden als ,Software viadat“ bezeichnet, der
Firma viastore SOFTWARE GmbH eingesetzt. Abbildung 1-1 zeigt das Funktionsprinzip der
Steuerung der Logistikprozesse durch den Einsatz eines LVS.

[ viadat

pesd] o] e

Abbildung 1-1: Das LVS viadat als zentrale Steuereinheit des Logistiksystems [vial5]
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Das Logistiksystem wird durch das LVS-Modul von der Software viadat (1) gesteuert. Das LVS
Uberwacht alle Ablaufe innerhalb eines Logistiksystems und speichert hierzu eine Fille an Da-
ten um die Materialflussprozesse optimal steuern zu kénnen. Dariiber hinaus kommuniziert es
mit sog. Host-Systemen, auch Enterprise Ressource Planning System (ERP) genannt.

Ein Logistiksystem kann in mehrere Standorte (2) unterteilt sein, die alle ihre eigenen Material-
flussprozesse haben. Die verschiedenen Standorte kénnen in unterschiedliche Lagertypen (3),
wie z. B. automatische oder manuelle Lager, unterteilt werden.

Hierbei wird das System zur Steuerung von Materialflissen auch als Materialflusssys-
tem (MFS) bezeichnet. Die Konfiguration eines Materialflusssystems (MFS) und der darin ent-
haltenen Fliisse geschieht momentan auf Basis von Erfahrungswerten der entsprechenden Ex-
perten und ist ein sehr langwieriger und auch kostspieliger Prozess. Die Konfiguration eines
MFS wird i. d. R. in mehreren lterationsschritten vollzogen. Am Anfang steht je nach Komplexi-
tat des MFS die Simulation der Materialflussprozesse durch die Simulationssoftware Emulate
3D. [Dem15]

Im Anschluss werden auf Basis der durch die Simulation gewonnenen Erkenntnisse die
ersten Parameter zur Konfiguration des MFS, wie etwa die Anzahl der gleichzeitig in einer Stre-
cke A befindlichen Fordereinheiten, definiert und das MFS vorkonfiguriert. Danach folgen
i. d. R. mehrere Testreihen im laufenden Betrieb der Anlage, bis die geforderte Leistung erreicht
ist, in jedem dieser Teilschritte missen durch den Kunden Ressourcen in Form von Bedienern,
FEs, etc. bereitgestellt werden. Jeder Teilschritt ist ein langwieriger Prozess, da eine Parame-
terénderung nur durch Beobachtungen und Vergleiche mit den Vorgaben verifiziert werden
kann. Die durch dieses iterative Verfahren gewonnenen Parameter sind eine rein statische Kon-
figuration und kdnnen nur schwer an neue Gegebenheiten angepasst werden. Die Analyse der
Ausgangssituation verdeutlicht die Notwendigkeit fur ein MFS, das sich auch neuen Situationen
anpassen kann.

Hierzu sollen kiinstliche neuronale Netze, auch neuronale Netze genannt, auf ihnre Anwend-
barkeit zur Analyse und Steuerung von intralogistischen Materialflissen untersucht werden.
Hierbei spielen vor allem Kosteneffizienz und Schnelligkeit bei der Entscheidungsfindung eine
wichtige Rolle. Diese Arbeit stiitzt sich auf die Validierung eines geeigneten Systems und arbei-
tet unabhangig von der Software viadat der Firma viastore SOFTWARE GmbH. [vial5]

1.4 Aufgabenstellung

Das Ziel dieser Arbeit besteht darin, die Anforderungen aktueller Materialflusssysteme zu unter-
suchen und ein Konzept zu entwickeln, das Materialfliisse durch die Verwendung neuronaler
Netze analysiert und ggf. optimiert. Dabei soll das Hauptaugenmerk auf dem Durchsatz in Ab-
hangigkeit des Verschleil3es liegen.

Das Konzept soll in Form eines Prototyps durch die Simulation mittels der Software Emu-
late 3D [Dem15] und durch Simulation mit der Software viadat validiert werden. Hierbei spielt
die Umsetzbarkeit und Leistung des Prototyps eine wichtige Rolle. Die zu verwendende Pro-
grammiersprache spielt eine untergeordnete Rolle.

1.5 Gliederung

Die vorliegende Arbeit gliedert sich in vier Teile, die dem Vorgehen bei der Erstellung und Aus-
wertung eines ereignisorientierten Simulators zur Bewertung und Analyse eines Multiagenten-
Reinforcement-Learning-Systems entsprechen.

Im ersten Teil werden das Materialflusssystem und seine Komponenten eingeftihrt und
erlautert. Im Anschluss werden die aktuellen Methoden zur Analyse und Steuerung von MFS
auf ihre praktische Anwendbarkeit und den Komplexitéatsgrad untersucht.

Im zweiten Teil der Arbeit wird ausgehend von einer Referenzanlage der Firma viastore
SYSTEMS ein abstraktes Materialflussmodell zur Verwendung eines Multiagentensystems er-
stellt. Aufbauend auf dem abstrakten Materialflussmodell wird ein Lésungsansatz skizziert.

Der dritte Teil der Arbeit beschreibt die konkrete Anwendung neuronaler Netze auf das
im ersten Teil definierte Materialflussmodell. Hierzu wird ein geeignetes neuronales Netz zur
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Anwendung ausgewahlt und anhand eines Prototyps am Beispiel eines automatischen Lager-
systems umgesetzt. Das Ergebnis des Prototyps soll eine optimale Parametrierung der Anlage
sein.

Im letzten Teil der Arbeit soll untersucht werden, inwiefern der Prototyp an die Software
viadat gekoppelt werden kann. Hierbei soll insbesondere die Ankopplung des Prototyps an den
Livebetrieb der Anlage erértert werden. AbschlieBend soll ein Ausblick Uber die Méglichkeit des
Einsatzes von neuronalen Netzen im Hinblick auf Predictive Maintenance bzw. Predictive Ana-
Iytics gegeben werden.
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Materialfluss

2 MATERIALFLUSS

Im nachfolgenden Kapitel werden die grundlegenden Begriffe des Materialflusses beschrieben.

2.1 Materialflusssystem

Der typische Verlauf eines Materialflusses in intralogistischen Materialflusssystemen (MFS) ge-
staltet sich vom Wareneingang (WE) bis zum Warenausgang (WA). I. d. R. werden der WE und
der WA durch verschiedene Lagerbereiche, zumeist verteilt iber unterschiedliche Standorte,
voneinander getrennt. Dies setzt wiederum ein System zur Verteilung der Materialien in den
einzelnen Bereichen voraus. Ein Materialflusssystem gliedert sich in die folgenden fiinf Grund-
funktionen:

e Bearbeiten (B)

e Fordern (F)

o Verteilen (V)

¢ Warten (W)

e Zusammenfihren (Z)

Mit den oben genannten Grundfunktionen kénnen alle Vorgange innerhalb eines Materialfluss-
systems dargestellt werden. [Arn09]

Somit kann jedes Materialflusssystem Uber ein Flussdiagramm dargestellt werden. Ab-
bildung 2-1 zeigt eine vereinfachte Darstellung des Materialflusses vom Wareneingang hin zum
Warenausgang.

A
F F
F F F F
Wi— V " Z » B W
A
Waren- F Waren-
; F
eingang ausgang
" W
Lager

Abbildung 2-1: Materialflussdiagramm

Fir den Durchlauf des Materials in Abbildung 2-1 ergeben sich nhach Warenannahme zwei mog-
liche Materialflisse:

a) Im Falle einer Einlagerung wird die Foérdereinheit (FE) in das Lager beférdert und wartet
auf eine Auslagerungsanforderung. Danach wird die FE zurtick auf das MFS befordert,
bearbeitet, in den Warenausgang beférdert und wartet abschliel3end im Warenausgang
auf einen Weitertransport.

b) Wird die FE sofort bearbeitet, so wird die FE nach dem Wareneingang direkt zur Bear-
beitung, danach in den Warenausgang beférdert und wartet abschlieRend im Waren-
ausgang auf einen Weitertransport.
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2.1.1 Komponenten eines Materialflusssystems

Ein MFS besteht typischerweise aus verschiedenen Komponenten. Abbildung 2-2 zeigt am Bei-
spiel einer fiktiven Anlage den Materialfluss und dessen Komponenten innerhalb eines MFS.

Legende:

. Aufsetzpunkt

Kommissionierplatz
. Loop

. Regalbediengerat und Regal

/ Férdertechnik

@ Fordereinheit

Abbildung 2-2: Materialflusssystem [vial51]

In einem MFS sind i. A. die folgenden Komponenten zu finden:

e Fordertechnik (grau)

Die Fordertechnik ist die Verbindung unterschiedlicher Komponenten innerhalb eines
Materialflusssystems, sie wird durch den Einsatz einer speicherprogrammierbaren Steu-
erung (SPS) gesteuert. Ublicherweise werden die Fordereinheiten mit einer festen Ge-
schwindigkeit durch die einzelnen Fordertechnikelemente bewegt. In der Férdertechnik
sind i. A. Scanner verbaut mit deren Hilfe die Bewegungen der FE aufgezeichnet wer-
den kénnen. Mit den durch die Scanner erfassten Daten kann der Materialfluss gesteu-
ert werden. [vial5]

e Regal und Regalbediengerat (rot)
Regalbediengerate (RBGs) dienen zur Enthahme von Material aus den Regalen im La-

ger. RBGs haben eine feste Ein- und Ausgangsleistung und sind durch eine begrenzte
Aufnahmekapazitat gekennzeichnet.

e Loop (blau)

Ein Loop ist eine Fordertechnikkomponente und dient zur Steuerung des Materialflus-
ses. Seine primare Funktion ist das Verteilen der Fordereinheiten auf die Kommissio-
nierplatze. Ferner wird durch den Einsatz eines oder mehrerer Loops der gesamte Ma-
terialfluss fliissig gehalten.

e Aufsetzpunkt (grun)

Ein Aufsetzpunkt dient zur Einbringung von Férdereinheiten in das automatische Lager-
system.
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e Kommissionierplatz (gelb)

An einem Kommissionierplatz (K-Platz) wird die Ware aus den Fordereinheiten entnom-
men und anschlieBend zum Versand beférdert.

e Fordereinheit

Eine Férdereinheit (FE) ist die kleinste beférderbare Einheit innerhalb eines MFS. In ei-
ner Férdereinheit wird die Ware vom Lager zu den K-Platzen beférdert. Jede Forderein-
heit ist durch eine eindeutige Nummer gekennzeichnet, so kann das MFS den Zustand
einer FE zu jeder Zeit eindeutig feststellen.

e Transportauftrag

Durch die Anforderung eines Behélters aus dem Lager wird dieser nach Enthahme aus
dem Lager zur Fordereinheit (FE). Ein Transportauftrag (TA) definiert den Start und das
Ziel einer FE. Diese kénnen nach der Erstellung des Transportauftrags nicht mehr ge-
andert werden.

e Fordertechnikplatze

Die einzelnen Fordertechnikplétze, auch Wegpunkte genannt, innerhalb der Fordertech-
nik sind i. d. R. durch eine eindeutige Adresse, in Form einer Nummer z. B. 4711, ge-
kennzeichnet. Innerhalb eines MFS sind die Fordertechnikplatze mit einem Scanner zur
Identifikation der FE mittels eines angebrachten Barcodes ausgerustet.

e Speicherprogrammierbare Steuerung (SPS)

Durch den Einsatz einer speicherprogrammierbaren Steuerung (SPS) kdnnen die Bau-
teile der Fordertechnik gesteuert werden. Die SPS besteht aus einer Eingabeeinheit,
einem Steuerwerk, Programmspeicher, Merker, Zeitgeber, einer Ausgabeeinheit und
einer Schnittstelle zum Programmiergerat. Die Funktionalitéat einer SPS wird von aul3en
durch einen klar definierten Ablauf im Programmspeicher abgelegt. [Her05]

Zur Steuerung der Fordertechnik verwendet viastore SYSTEMS GmbH i. A. Produkte
der Reihe Siemens Simatic S7. [Siel6]

Das Zusammenspiel der Komponenten wird im kommenden Absatz, in Abhéngigkeit des
Vorgangs bzw. der Aktion, kurz skizziert.

2.1.2 Aktionen in einem Materialflusssystem

In Abhéngigkeit der Aktion entstehen unterschiedliche Wege, die eine FE im MFS nehmen
kann.

e Auslagerung

Im Lager (rot) werden die Lagereinheiten (LEs) vom Regalbediengerat (RBG) ent-
nommen und Uber eine Forderstrecke als Fordereinheit (FE) zum Loop (blau) trans-
portiert. Die FEs durchkreisen so lange das Loop, bis das entsprechende Ziel, der
Kommissionierplatz (blau) frei ist. Nach Abschluss der Kommissionierung werden
die Behélter entweder als Leerbehdlter oder Ruicklagerung zurlick ins Lager ge-
speist.

e Ricklagerung

Nach der Entnahme der gewiinschten Menge werden die FEs tber den Aufsetz-
punkt (grin) neben den Kommissionierungspléatzen zuriick ins Lager geschleust.
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e Einlagerung

Uber die Aufsetzpunkte (griin) werden neue Leerbehalter als FE in das Lager ein-
gespeist. Die leeren FE flieRen ebenfalls Gber das Loop (blau) in das Lager zurtick.
2.1.3 Materialstréme
Aus den soeben eingeflihrten Aktionen lassen sich die folgenden Stréme ableiten:

e Auslagerstrom

Fur FEs, die aus dem Lager zu den Kommissionierplatzen flieen.

¢ Ricklagerstrom

Fir FEs, die von den Kommissionierpléatzen zuruck ins Lager flie3en.

e Einlagerstrom

Fir neu einzulagernde FEs, die von den Aufsetzpunkten zuriick ins Lager flieRen.

e Leerbehéalterstrom

Fur leere FEs, die nach Abschluss der Kommission von den Aufsetzpunkten zuriick
ins Lager flie3en.

2.2  Materialflusssteuerung

Ein Materialflusssystem hat zur Aufgabe, gleichzeitig den Fluss vieler Férdereinheiten effizient
zu gestalten, mit dem Ziel den Durchsatz an Férdereinheiten zu optimieren. Der Materialfluss
muss getaktet werden, um Kapazitatsengpéasse zu vermeiden. Hierfur ist es wichtig, dass alle
Engpasse eines MFS bekannt sind, da sie die tatsachliche Geschwindigkeit des gesamten Ma-
terialflusses bestimmen. Damit der Materialfluss an Engpassen nicht zum Stocken kommt, ms-
sen Staus vermieden werden. Das Ziel der Materialflusssteuerung ist ein ruhiger, kontinuierli-
cher Durchlauf von Fordereinheiten. [Dic09]

Abbildung 2-3 zeigt die Unterschiede in der Geschwindigkeit in gleichméaRig getaktetem
bzw. geregeltem und ungetaktetem bzw. ungeregeltem Materialfluss.

A
- Getaktet

Geschwindigkeit

~ <

Bewegungsrichtung

Abbildung 2-3: Verhaltnis von Geschwindigkeit zu Bewegungsrichtung [Dic09]

Es ist zu erkennen, dass es bei ungeregeltem bzw. ungetaktetem Materialfluss haufiger zu
Staus im Materialfluss kommen kann. Bei einer Regelung des Materialflusses nimmt die Ge-
schwindigkeit des Materialflusses bis zum Erreichen des Engpasses stetig ab.
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Im Zuge der Materialflusssteuerung ist es von immenser Bedeutung, dass das System die
Information Gber den Standort einer jeden Fordereinheit zu jeder Zeit abrufen kann, um so zu-
sammen mit dem gegebenen Ziel der FE einen optimalen Materialflussprozess zu gestalten.
[Arn09]

2.2.1 Ziele in der Materialflusssteuerung

Wie jeder Prozess wird auch die Materialflusssteuerung betrieben, um gewisse Ziele zu errei-
chen. Die Ziele der Materialflusssteuerung kénnen Tabelle 2-1 enthommen werden.

Tabelle 2-1: Ziele in der Materialflusssteuerung nach [Gud121]

Ziel Beispiel
Auslastung Maximale Auslastung des MFS
Leistung Maximaler Durchsatz in allen Richtungen

Maximaler Durchsatz am Kommissionierplatz

Zeit Minimale Auftragsdurchlaufzeit in allen Richtungen
Stau Minimale Warteschlangen
Sicherheit Minimale Ausfallwahrscheinlichkeit

Da sich, nach [Gud121], diese Ziele nicht vereinen lassen, muss eine Rangfolge fur die Ziele
definiert werden.

2.3 Materialflussprozess

Moderne Intralogistikanlagen bestehen aus verschiedenen Komponenten. Durch das Zusam-
menspiel aller Komponenten entsteht ein Materialflussprozess ahnlich eines Netzwerkflusses in
vernetzten Systemen. Im Allgemeinen besteht dieser Prozess aus drei Komponenten:

e Quellen (Q)
e Senken (S)
e Vorgéangen (V) [Arn09]

Abbildung 2-4 zeigt einen exemplarischen Materialflussprozess auf Basis des Netzwerkflusses.

V3 Vi Vj

D

Abbildung 2-4: Netzwerkstruktur des Materialflussprozesses [Arn09]

Das Material innerhalb eines Materialflussprozesses lauft in Fordereinheiten (FE) von einer
Quelle Gber einen oder mehrere Vorgénge hin zu einer Senke. Die Vorgange innerhalb des Ma-
terialflussprozesses kénnen sowohl seriell als auch parallel ablaufen, da z. B. das gleiche Mate-
rial innerhalb eines Materialflusses verschiedene Vorgénge beanspruchen kann.
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Mit Erhdhung der Flexibilitat einer Anlage steigt auch der Vernetzungsgrad. Da durch die zu
Grunde liegende Netzwerkstruktur Vorfahrtsregeln, auf Basis der Prioritaten der Férdereinhei-
ten, definiert und das Fassungsvermogens der Warteraume des Netzwerks beachtet werden
mussen. [Arn09]

2.4  Kennzahlen von Materialflusssystemen

Die Leistung eines MFS wird i. d. R. mit der Hilfe der folgenden zwei Kennzahlen beurteilt.

2.4.1 Durchsatz
Der Durchsatz A wird durch die Summe n der pro Zeiteinheit (ZE) beférderten FE beschrieben
[ten11]:

- (2.1)
A= ZE

2.4.2 Durchlaufzeit

Die Durchlaufzeit t;,; beschreibt die Zeitspanne vom Zeitpunkt der Einspeisung tz einer FE bis
zum Zeitpunkt der Entnahme ¢, [Nyh12]:

tpr =ta — tg (2.2)

2.4.3 Fullstand

Der Fllstand bzw. Auslastungsgrad p beschreibt das Verhaltnis von momentanem Durchsatz 4
zu Grenzdurchsatz y und ist definiert als: [Arn09]

p= f* 100 % (2.3)

In den nachfolgenden Abschnitten werden in einem ersten Schritt die aktuellen Metho-
den zur Analyse und Steuerung von MFS vorgestellt. Im Anschluss wird auf Grundlage der in
dieser Arbeit betrachteten Referenzanlage ein allgemeiner Ansatz zur Modellierung von MFS
vorgestellt. Daraufhin wird der im Verlauf dieser Arbeit erarbeitete Lésungsansatz vorgestellt
und in einem ereignisbasierten Simulator auf seine Anwendbarkeit untersucht, abschliel3end
wird ein Integrationsansatz des Lésungsansatzes in die Software viadat vorgestellt.
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3 METHODEN ZUR ANALYSE UND STEUERUNG VON MATERIALFLUSS-
SYSTEMEN

Zur Analyse und Steuerung von intralogistischen MFS haben sich verschiedene Ansétze etab-
liert. In diesem Kapitel werden die klassischen Ansétze sowie Anséatze aus dem Internet der
Dinge und aus dem Bereich des maschinellen Lernens vorgestellt.

3.1 Graphen und Diagramme

Zur systematischen Darstellung von MFS und ihren zugehdrigen Prozessen eignen sich die in
2.3 eingefiihrten Graphen und Diagramme. Sollen in der Analyse der Prozesse auch Aktivitaten
oder Nebenlaufigkeiten dargestellt werden, so miissen andere Darstellungsmaoglichkeiten in Be-
tracht gezogen werden. Die SADT-Methode, Materialflussgraphen und die Petri-Netze [Arn09]
werden im Folgenden als klassische Beispiele fur die Analyse und Beschreibung von MFS kurz
erlautert.

3.1.1 Materialflussgraph
Nach [Arn09] ist Materialflussgraph ein gerichteter Graph G mit:

G = (V,E) (3.1)
den Knoten:
V={12,..n} (3.2)

wobei |V| = n der Anzahl an Elementen im MFS entspricht. Und den Kanten:

E= {pl' b2, ""pm} (33)

Um die Vorgange innerhalb eines MFS besser quantifizieren zu kénnen, bendétigen die Kanten
und Knoten Bewertungen, wie z. B.

e Grenzdurchsatze y;;
e Betriebliche Durchsatze y;;
e Allgemeine Kosten der Ubergange c;j [Arn09]

Um auch die Knoten quantifizieren zu kénnen, kann nach [Arn09] der Graph G um die Be-
schrénkung fur Knoten, z. B. Kapazitaten 8 der einzelnen Warteschlangen, erweitert werden.
[Arn09]

3.1.2 SADT-Diagramm

Die SADT*-Methode stammt urspriinglich aus dem Softwareengineering und ist eine formale
Beschreibung von Aktivitdten und den dazu bendétigten oder entstehenden Datenfliissen. Durch
den Einsatz der SADT-Diagrammsprache kdnnen komplexe Sachverhalte einfach und ver-
sténdlich in Diagrammen dargestellt werden. [Arn09] Abbildung 3-1 zeigt exemplarisch einen
Auszug aus einem SADT-Diagramm.

1 SADT (Engl.) = Structured Analysis and Design Technique

10
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Abbildung 3-1: SADT-Diagramm-Auszug nach [Arn09]

Die in Abbildung 3-1 gezeigten Aktivitaten sind in den Kasten abgebildet. Auf der linken Seite
der Kasten stehen die bendtigten Daten bzw. Objekte, die zur Durchfihrung der Aktivitat not-
wendig sind und werden als Input (I) bezeichnet. Die, als Output (O) bezeichneten, Pfeile auf
der rechten Seite symbolisieren die durch die Aktivitat erzeugten Objekte. Steuerinformationen,
sog. Controls (C), werden von oben und die dazu bendtigten Mittel (M) von unten an die Aktivi-
tat gelegt. [Arn09]

Durch die Verknupfung der Diagramme aller am MF-Prozess beteiligten Gruppen entsteht
nach [Arn09] ein komplettes Diagramm des Materialflusses. Wobei die Outputs des einen Dia-
gramms zu Inputs des anderen werden kénnen.

Ferner sind durch die Darstellung als SADT-Diagramm sowohl der MF-Prozess als auch
der dazugehorige Datenfluss gemeinsam abgebildet. [Arn09]

3.1.3 Petri-Netze

Durch die Verwendung von Petri-Netzen kdnnen inshesondere die sich &ndernden Situationen
und Ereignisse innerhalb eines MFS dargestellt werden. Durch die Verwendung der Petri-Netze
kann der Entwurf der Steuerung des MFS stark vereinfacht werden. [Arn09]

Petri-Netze sind gerichtete Graphen, deren Knoten aus zwei Teilmengen, den Ereignis-
sen und Situationen, bestehen. Ereignisse, bzw. Transitionen, beschreiben Zeitpunkte im Pro-
zessablauf und werden als Rechtecke dargestellt. Situationen, bzw. Bedingungen, sind zeitver-
brauchende Vorgange oder Zustande und sind als kreisférmige Knoten dargestellt. In Petri-Net-
zen ist nur die Verbindung von Ereignissen und Situationen gestattet. [Arn09]

Um von einer statischen zu einer dynamischen Prozessbeschreibung zu wechseln,
empfiehlt [Arn09] die Verwendung von Marken in den Situationen des Petri-Netzes. Die Marken
haben dabei die Funktion einer Schaltung mit fest vorgegebenen Regeln. In Abbildung 3-2 ist
der Schaltvorgang abgebildet. Links ist der Ausgangszustand und rechts der Zustand nach dem
Schalten dargestellt.

€1 €1

U4 U4
21 V1
Vs o Vs
) )

Ve ° Vs
vy e v,

Abbildung 3-2: Transition — Ausgangszustand (links) und Zustand nach der Schaltung (rechts)
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Damit der Eintritt eines Ereignisses stattfindet, miissen samtliche Vorgéngersituationen mit ei-
ner Marke versehen werden. So wird beim Schaltvorgang bei jeder Vorgéangersituation eine
Marke entfernt und bei den Nachfolgesituationen eine Marke erzeugt. Um Konflikte in den
Schaltungen zu vermeiden, kénnen z. B. zusétzliche Situationen eingefiihrt werden. [Arn09]

3.2 Simulation und Emulation

Das Hauptwerkzeug zur Beurteilung von MFS ist die Simulation der Anlage. Hierzu gibt es
verschiedene Anséatze. Um die Idee hinter einer Simulation zu verstehen, wird hier zuerst der
allgemeine Begriff der Simulation erlautert. Im Anschluss werden Methoden zur Simulation von
Anlagen vorgestellt.

Unter Simulation wird i. A. die Nachbildung eines Systems mit der Darstellung von dy-
namischen Prozessen in experimentierbaren Modellen zur Simulierung verstanden. Die so er-
langten Resultate kdnnen im Anschluss auf die Realitat Gbertragen werden. [Chr13]

Grundlage fur eine Simulation ist ein abstraktes Simulationsmodell. Der Simulationsprozess bil-
det nach [Chr13] den in Abbildung 3-3 abgebildeten Kreislauf.

-

. Reales
Fazit System
Ergebnisse S'mnh’(l)%t'e?lns'

Abbildung 3-3: Simulationskreislauf nach [Chr13]

Zu Beginn der Simulation steht immer das reale System. Aus diesem wird im néchsten Schritt
durch Abstraktion ein Simulationsmodell erstellt. Auf Basis des Simulationsmodells werden Ex-
perimente durchgefiihrt. Die so gewonnenen Ergebnisse werden ausgewertet, interpretiert und
auf das Ausgangssystem Ubertragen. Der hier abgebildete Kreislauf wird so oft durchlaufen, bis
die Ergebnisse den Vorgaben entsprechen.

Die Simulation von Systemen wird in diskrete und kontinuierliche Simulation unterschie-
den. [Chr13]

Die Eigenschaften der beiden Simulationsarten nach [Chr13] kénnen Tabelle 3-1 ent-
nommen werden.

Tabelle 3-1: Vergleich diskrete und kontinuierliche Simulation

Simulation | Diskret Kontinuierlich
Eigenschaft
Zeitabstande veranderlich aquidistant
Ablauf ereignisorientiert stetige Veranderung in der
Zeit
Ereignisse abhangig von vorangegan- kontinuierlich
gen Ereignissen
Systemzustande Abhéngig von vorangegan- Abhangig von Eingabepara-
gen Ereignissen und Einga- metern
beparametern

12
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Die Unterscheidung von diskreter und kontinuierlicher Simulation wird hier nur der Vollstandig-
keit halber aufgefiihrt. Die im Folgenden beschriebenen numerischen Simulationen beruhen alle
auf der Simulation von diskreten Ereignissen. [Chrl3]

3.2.1 Diskrete numerische Simulation

Im Kontext der numerischen Simulation kann durch den Einsatz von Simulationswerkzeugen
das Verhalten eines Prozesses simuliert und somit Gesetzmafigkeiten abgeleitet werden. Die
diskrete numerische Simulation wird dabei unterschieden in:

e Ereignisorientierte
e Prozessorientierte
e Periodenorientierte Simulation [Hed13]

Zur Durchfiihrung von numerischen Simulationen gibt es verschiedene Werkzeuge wie z. B.
MATLAB [Mat15] oder Analytica [Lum15]. Auf die genaue Verwendung dieser Werkzeuge wird
hier jedoch nicht eingegangen.

Ereignisorientierte Simulation

Bei der ereignisorientierten Simulation werden alle Ereignisse, die bei der Durchflihrung eines
diskreten Prozesses auftreten, simuliert. Die Zeit wird nach [Mar03] als abzahlbare Menge T =
{t1, t5, ..., t,} abgebildet, somit entspricht jedem Ereignis eineindeutig ein t € T.
Bei der Simulation eines bestimmten Ereignisses wird die von diesem Ereignis abhangige Er-
eignisroutine ausgefuhrt.

Die Ereignisroutine ist nach [Hed13] ein Quellcode als Teil der Simulationssoftware, der
die folgenden Aufgaben bearbeitet:

1. Neuen Zustand berechnen
2. Planung neuer zukinftiger Ereignisse
3. Statistische Auswertung

Ereignisroutinen werden ausschlieRlich fur unabhéngige Ereignisse erstellt. In der aktuellen Er-
eignisroutine werden alle Berechnungen, die fur die abhangigen Ereignisse notwendig sind, be-
reits ausgefihrt. Abbildung 3-4 skizziert den Ablauf einer diskreten Simulation.

Setze Simulationsuhr
auf nachstes Ereignis

Ende? e
nein
ja
Auswertung

Abbildung 3-4: Ablauf der diskreten Simulation [Mar03]

Beim Start der Simulation wird die Simulation mit dem ersten Ereignis 7 = {t,} begonnen. Fir
jeden Ereigniszeitpunkt t € T werden durch das Ausfiihren der Ereignisroutine fur ein Objekt

13
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o € 0 dessen Zustand X, (A(0)) neu berechnet und ggf. neue Ereignisse zur Menge der Ereig-
nisse T hinzugefugt. Ist die Simulation noch nicht beendet, wird die Simulationsuhr mit t =
min(7") auf das nachste Ereignis gesetzt. Weiter gibt [Mar03] an, dass durch den Einsatz der

diskreten Simulation eine beliebige genaue Approximation des Zielsystems erreicht werden
kann. Jedoch steigt mit der Genauigkeit auch der Berechnungsaufwand. Haufig wird die dis-
krete Simulation fir den Leistungsnachweis eines Systems oder flr Prognosen zu Echtzeit ver-
wendet. [Mar03]

Prozessorientierte Simulation

Die prozessorientierte Simulation beruht auf dem Ansatz der ereignisorientierten Simulation, bei
der Prozesse durch gewisse Ereignisse ausgeldst werden. Im Gegensatz zur ereignisgesteuer-
ten Simulation werden hier jedoch zuséatzlich zu den zuklnftigen Ereignissen auch die aktuel-
len, eventuell parallel laufenden, Ereignisse betrachtet. Hierbei werden die Objekte als dynami-
sche Einheiten, die sich durch ein System bewegen, betrachtet. Die Wege des einzelnen Ob-
jekts werden als Prozess abgebildet, wodurch es zu quasi-parallelen Prozessen kommen kann.
Um eine Parallelisierung zu verhindern, werden Regeln definiert, die die Ausfihrung der Pro-
zesse durch die Bildung von Warteschlangen sequenzieren. Dafir werden fur jeden Prozess
die folgenden Zusténde definiert:

e Aktiv mit Kontrolle

Der Prozess erhélt die Kontrolle Giber die Simulation, wenn sein nachstes Ereignis das
global néchste ist und er in der aktiven Phase ist. Es wird der Zustand aller sich andern-
den Objekte berechnet und Folgeereignisse werden geplant.

e Aktiv ohne Kontrolle

Das Ereignis ist schon geplant, der Prozess wartet aber noch auf die Abarbeitung der
Ereignisse vorhergehender Prozesse.

e Passiv

Der Prozess wartet auf das ihn auslésende Ereignis. [Hed13]

Periodenorientierte Simulation

Bei der periodenorientierten Simulation werden die Zustandsanderungen eines Systems erst
nach gegebenen aquidistanten Zeitintervallen At betrachtet. Die Simulationsuhr wird nach Aus-
fuhrung aller Berechnungen zu einem Zeitpunkt t; auf

ti+1 = ti + At (34)

gestellt. Im Gegensatz zur ereignisorientierten Simulation kann die Zustandsénderung auch un-
abhéngig vom Ereignis betrachtet werden, die Zustandséanderung folgt in der Regel durch die
Vorgabe eines konkreten Algorithmus. [Hed13]

Ferner gibt [Hed13] an, dass zur Simulierung von ,realen® zufallig verteilten Ereignissen,
diese mithilfe von stochastisch verteilten Zufallsvariablen beschrieben werden kénnen.

3.2.2 3D-Simulationssoftware

Durch den Einsatz von 3D-Simulationssoftware kann der Materialfluss in Echtzeit simuliert und
analysiert werden. Hierzu muss jedoch das gesamte Anlagenbild in die virtuelle Umgebung
Ubertragen werden. Die meisten Werkzeuge liefern hierzu ein sog. Baukastensystem, mit dem
die einzelnen Bestandteile des Materialflusssystems abgebildet werden kénnen. Hier kdnnen
die einzelnen Parameter der jeweiligen Objekte eingestellt werden.

14
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Durch den Einsatz von Simulationssoftware kénnen jedoch meist schon sehr detaillierte
Aussagen Uber Engpasse, Durchsatze und Auswirkungen von Stérungen getroffen werden. Ty-
pische Beispiel fir Simulationssoftware sind Sim3D von Emulate 3D [Dem15], aber auch das
von [Ben12] genannte ISG virtuos.

3.2.3 Emulation

[GUN10] beschreibt die Emulation als Spezialfall der Simulation, erweitert um reale Funktions-
komponenten. Im Gegensatz zur Simulation wird die Emulation jedoch zur Voraussage des Ver-
haltens eines bestimmten Systems unter Realbedingungen verwendet.

Meist wird das Simulationsmodell um die Funktionalitdten des zu verwendenden Steue-
rungssystems erweitert. Durch diese Erweiterung wird die Laufzeit der Emulation meist auf die
Echtzeit beschrankt, da z. B. Taktzeiten von Schaltungen nicht verkurzt werden kdnnen.

Die Emulation wird meist als Werkzeug zur Entwicklung und Inbetriebnahme von Anlagen
eingesetzt, sie ersetzt damit kostspielige Tests der Anlage im Realbetrieb. Die Emulation kann
im Gegensatz zur Simulation nur durch den Einsatz von Emulationssoftware wie z. B. Emu-
late3D von Emulate 3D [Dem15] realisiert werden.

3.3 Internet der Dinge

Der Ansatz des Internets der Dinge beschreibt im Wesentlichen die vollstandige Vernetzung al-
ler Komponenten und den Austausch ihrer Kontextinformationen Gber das Internet. [Baul4]
Ferner agieren die einzelnen Objekte des Systems als eigenstandige Einheiten und tauschen
ihre Daten in Echtzeit aus. Die benétigten Daten werden lokal gespeichert und die Entscheidun-
gen vor Ort gefallt. [GUNn10]

Auf Basis des Internets der Dinge schlagt [GUn10] die Verwendung von Agentensystemen
zur Steuerung von intralogistischen Materialfliissen vor. Dartiber hinaus tUbertragt er die in 3.1
beschriebenen Simulations- und Emulationsverfahren auf das Internet der Dinge.

3.3.1 Agentensysteme

Wie eingangs beschrieben, eignen sich Agentensysteme zur Steuerung von intralogistischen
MFS. Zur Realisierung eines Agentensystems werden die Bestandteile eines MFS entspre-
chend ihrer Eigenschaften und Fahigkeiten in Funktionseinheiten, sog. Entitaten, zerlegt. Entita-
ten sind die kleinste nicht mehr weiter zerlegbare Einheit und besitzen die folgenden drei
Grundfunktionen:

e Kommunikation mit anderen Entitaten

¢ Mitteilung eigener Fahigkeiten und Eigenschaften

¢ Administration des eigenen Zustands und Abschicken von Rick- und Statusmeldungen
[GUn10]

Je nach Funktionalitat der entsprechenden Entitat kann diese noch um weitere Fahigkeiten er-
weitert werden. Jeder Entitat wird zur Bearbeitung ihrer Aufgabe ein Agent zugeordnet. Tabelle
3-2 zeigt die Entitaten eines Agentensystems fiir ein MFS mit exemplarischen Eigenschaften.
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Tabelle 3-2: Entitaten eines Agentensystems nach [Giin10]

Entitat Allgemeine Eigenschaften Beispiel

Forder- Kleinste einzeln bewegbare Menge im MFS Identifi-

einheit kation mittels Autoidenttechnologien Behalter, Palette

Autonom agierende Fordertechnikelemente erfillen

Modul logistische Funktionen der Férdereinheiten an Ent- Regalbediengerdte,

scheidungspunkten Rollenbahn
. Reine Software o Visualisierungssoftware,
Software- | pienen zur Visualisierung, Optimierung, etc. Schnittstellen zu ande-
dienst Oft Schnittstellen zu anderen Programmen ren Systemen

Die hier eingefuihrten Module kénnen gemalR den in Abschnitt 2.1 eingefuhrten Grundbestand-
teilen eines MFS klassifiziert werden.

Agentensysteme kommen mittlerweile schon bei der dezentralen Ermittlung des kirzesten We-
ges unter Verwendung des Dijkstra-Algorithmus? zum Einsatz. Hier wird bei jedem Entschei-
dungspunkt die Verfiigbarkeit der aktuellen Route geprift und ggf. eine neue Route unter Ver-
wendung des Dijkstra-Algorithmus berechnet. [GlUn10] [G6h13]

3.3.2 Simulation und Emulation

[GUNn10] schlagt vor, den klassischen Ansatz fiir die Simulation und Emulation eines MFS so zu
erweitern, dass die im vorherigen Abschnitt beschriebenen Agenten in das Materialflussmodell
integriert werden kénnen. Hierzu muss das diskrete Simulationsmodell so erweitert werden,
dass die Antwortzeiten, Nachrichtenverluste, etc. der Agenten simuliert werden kénnen.

Ferner schlagt [GUn10] vor, die oft sehr komplexen und groRen Simulationsmodelle zu
partitionieren und auf mehreren Rechnern parallel auszufiihren, um so die Ausfiihrungsge-
schwindigkeit zu erhéhen.

Um die Emulation durch den Einsatz von Agentensystem zu beschleunigen wird ein
standardisierter Baukasten eingeftihrt. Die Einfihrung eines solchen Baukastens erleichtert die
Gestaltung eines Simulationsmodells. Hierzu muss fir jede Funktion des Systems ein entspre-
chender Baukasten in Form eines Steuerungsagenten vorhanden sein.

Des Weiteren wird das Konzept so erweitert, dass fir jeden Steuerungsagent ein Emu-
latoragent vorhanden ist, der die Funktion auf Maschinenebene abbildet. Dieses Vorgehen legt
die Erstellung eines Baukastens fur Emulationsagenten nahe. [GUn10]

Somit kann das Verhalten eines Systems komplett nachgebildet werden.

3.3.3 Cloudbasierte Materialflusssteuerung

Um den steigenden Anforderungen an MFS-Systeme zu begegnen, kann die Steuerung modul-
arisiert und als Cloud-Service zur Verfiigung gestellt werden. Durch die Verlagerung der Steue-
rungsfunktion entféllt die Notwendigkeit der Verwendung von Hardwareschnittstellen zur Kom-
munikation zwischen den einzelnen Steuerungselementen. [Baul4]

Auf Basis des Software-as-a-Service-Konzepts [Clo15] der Cloud-Technologie kann die
Steuerung kontinuierlich an die jeweiligen Bedurfnisse angepasst werden.
[Baul4] schlagt zur Umsetzung einer cloudbasierten Materialflusssteuerung den in Abbildung
3-5 skizzierten Ansatz vor.

2 Zur genauen Funktionsweise des Dijkstra-Algorithmus vgl. [Geh07]
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Abbildung 3-5: Cloudbasierte Materialflusssteuerung

In dem hier gezeigten Ansatz werden alle zur Steuerung benétigten Module wie COM, HMI, NC,
PC und zusétzliche Services in die Cloud verlagert. Die Aktoren und Sensoren des MFS sind
Uber eine Netzwerkschnittstelle mit der Cloud verbunden und kénnen die entsprechenden Mo-
dule bei Bedarf in Echtzeit abrufen. Die einzelnen Module werden tber ein in der Cloud vorhan-
denes Betriebssystem gruppiert. Die Steuerung Uber ein Betriebssystem ermdglicht auch die
mehrmalige Instanziierung eines gleichen Moduls. Das Betriebssystem ist auch fiir die Skalie-
rung der Rechenleistung verantwortlich. [Baul4]

Des Weiteren gibt [Baul4] die folgenden durch den Einsatz von Cloud-Technologie entste-
henden Vorteile an:

e Skalierbare Steuerung

e Langere Verfugbarkeit der Steuerungsplattform

e Steigerung der Flexibilitat

o Effizientere Analyse und Simulation der Systeme
e Erh6hung der Datensicherheit

e Erhohung der Verflgbarkeit

e Bessere Darstellung der Informationen

3.4 Maschinelles Lernen

Um qualifizierte Aussagen Uber den Betriebszustand einer Anlage, insbesondere ihrer kriti-
schen Komponenten, treffen zu kdnnen, missen die Betriebsdaten der Komponenten gesam-
melt und ausgewertet werden. Hierzu z. B. kénnen durch den Einsatz von Algorithmen aus dem
Bereich des Datamining wie z. B. Predictive Analytics Aussagen Uber den Zustand einer Anlage
getroffen werden. [Alp08]

3.4.1 Datamining

Durch den Einsatz von Dataminingtechniken kann mittels der Erkennung von Mustern im Ver-
halten einer Komponente, wie z. B. der Temperaturveranderung, eine Aussage Uber den Zu-
stand der Komponente getroffen werden, Wartungen werden planbar und die Ausfélle von Anla-
gen minimiert, da Ersatzteile schon im Voraus bestellt werden kdnnen. [Baul4]

So kann z. B. der von [Alz15] eingefuhrte Ansatz zur Analyse von Einschreibungen in Kur-
sen mithilfe von Assoziationsregeln problemlos auf die Analyse des Betriebszustandes und der
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Voraussage von Ausféllen tUbertragen werden. So kénnen in der Analyse und Steuerung von
MFS auch die von [Alz15] vorgestellten Methoden zur Mustererkennung in groRen Datenmen-
gen angewandt werden.

Um den bendétigten Datenstrom zu reduzieren, eignet sich das Vorgehen mittels Big Data.

3.4.2 Big Data

Die fiir die im Bereich Predictive Analytics benétigten Datenmengen wachsen exponentiell mit
dem Betrieb der Anlage an. Um die auszuwertende Datenmenge zu reduzieren, werden die Da-
ten bezlglich der sog. ,3V* (Volume, Variety, Velocity) verdichtet, d. h. es werden ,Ausreiler” in
den Daten gesucht. Um die Verdichtung effizient zu betreiben, wird die komplexe Ereignisana-
lyse (CEP) eingesetzt. [Baul4]

Mittels der komplexen Ereignisanalyse werden die Betriebsdaten verdichtet, um relevante
Informationen zu gewinnen. Hierzu werden die folgenden Funktionen auf den Betriebsdaten
ausgefihrt:

o Identifizierung von
o Ausreilzern
o Trends
¢ Bildung von
o Summen
o Minima
o Maxima
o Durchschnittswerten Uber festgelegte Zeiteinheiten

und ausschlief3lich das Ergebnis dieser Funktionen weitergeleitet. Auf Basis dieser Daten wer-
den dann Aussagen uber das Verhalten von Maschinen bzw. Komponenten getroffen. [Baul4]

In den folgenden Kapiteln wird die in dieser Arbeit vorliegende Referenzanlange analy-
siert und auf Grundlage dieser Analyse ein allgemeiner Modellierungsansatz fir MFS vorge-
stellt. AnschlieRend wird der im Verlauf dieser Arbeit erarbeitete Lésungsansatz erlautert und in
einem ereignisbasiertem Simulator umgesetzt und auf seine Anwendbarkeit zur Optimierung
von MFS untersucht. Abschliel3end wird ein Vorschlag zur Integration des erarbeiteten L6-
sungsansatzes in die Software viadat vorgestellt.
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4 ANALYSE DER REFERENZANLAGE UND LOSUNGSANSATZ

Zur Identifikation der Einflussparameter auf den Materialfluss wird eine Referenzanlage der
Firma viastore SYSTEMS GmbH [vial52] auf mégliche Optimierungsmdglichkeiten untersucht.
Hierzu werden die ausschlaggebenden Bestandteile der Referenzanlage einzeln erlautert und
danach im Gesamtkontext der Referenzanlage dargestellt. Im Anschluss werden die aus der
Referenzanlage abgeleiteten Modellelemente vorgestellt. Daraufhin werden die Modellelemente
im Kontext der in Abschnitt 2.1 eingefiihrten Materialflisse betrachtet und die Referenzanlage
als daraus entstehendes Gesamtmodell dargestellt. AbschlieRend wird auf Basis der Analyse
des vorliegenden Modells der zugrunde liegende Lésungsansatz grob skizziert.

4.1 Analyse der Referenzanlage

Das zugrunde liegende Schaubild der Referenzanlage der Firma viastore SYSTEMS GmbH be-
steht aus drei Auslagerbereichen, die Gber eine Férdertechnik mit den entsprechenden Entnah-
mezonen verbunden sind. Des Weiteren besitzt die Referenzanlage einen Wareneingang und
Aufnahmeplatze fur Leerbehélter in festgelegten Bereichen.

Die Funktionalitat sowie der Ablauf der einzelnen Bereiche wird im Kommenden ausge-
hend von Abbildung 4-1 erlautert.

RBG 1 o7 RBG Produktion

Be

puesiaA OgY

Leer- Leer-
behalter behalter

Abbildung 4-1: Schematische Darstellung der Referenzanlage

Waren-
eingang

Die Quellen und Senken eines MFS werden in interne (rot) und externe (griin) Quellen und
Senken unterschieden. Interne Quellen und Senken kdnnen als eine Art Black-Box interpretiert
werden, deren Ein- und Ausgangsleistung nicht optimiert werden kann. Die Leistung von exter-
nen Quellen und Senken hingegen kann optimiert werden.
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Auf eine detaillierte Darstellung der in 2.1 vorgestellten Férdertechnikplatze wird hier aus Uber-
sichtsgriinden verzichtet. Abbildung 4-2 zeigt zur Veranschaulichung die in Loop 1 vorhandenen
Platze der Fordertechnik.

Eingang
RBG 2

Eingang
RBG 1

Abbildung 4-2: Auszug aus dem Gesamtschaubild von Loop 1

Die roten Knoten symbolisieren einen Férdertechnikplatz mit Scanner zur Erfassung von FEs
und Ruckmeldung der erfassten Scanner-Daten an die Software viadat, schwarze Knoten re-
prasentieren Knoten innerhalb der Fordertechnik ohne Scanner.

Im obigen Beispiel fliel3t eine FE vom Ausgang eines RBG Uber die entsprechenden
Knoten innerhalb der Férdertechnik zum Zielknoten. Bei den rot markierten Knoten wird jeweils
eine Ankunftsmeldung von der Fordertechnik an die Software viadat geschickt.

4.1.1 Bestandteile und Besonderheiten der Referenzanlage

Im Folgenden werden die Bestandteile und Besonderheiten der Referenzanlage erlautert. Zu
allererst werden die Eigenschaften der Quellen und Senken erlautert und im Anschluss die Be-
sonderheiten beschrieben. Alle angegebenen Leistungen sowie Fillstandsbeschrankungen
wurden [vial55] und [vial54] entnommen.

4.1.2 Eingange
Die Eingange, auch Quellen genannt, sind

e dasRBG1

e das RBG 2

e das RBG ,Produktion®

e das RBG ,Versand®

e der Wareneingang

o die Aufsetzpunkte fiir Leerbehélter und Ricktransport an den K-Platzen und
o der Aufsetzpunkt fir LEs aus der Produktion.

Durch die oben aufgefiihrten Quellen gelangen neue FEs in das MFS. Die Leistung der einzel-
nen Quellen kann Tabelle 4-1 entnommen werden. [vial52]
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Tabelle 4-1: Maximale betriebliche Leistung der Quellen

Quelle Leistung
RBG 1 112,5 FE/h
RBG 2 112,5 FE/h
RBG ,Produktion® 102 FE/h
RBG ,Versand” 212 FE/h
Wareneingang 76 FE/h

Aufsetzpunkt K-Platz 1 und 2 100 FE/h

Aufsetzpunkt K-Platz 3 und 4 100 FE/h

Zwischenlagerplatz K-Platz 1 28 FE/h

Zwischenlagerplatz K-Platz 2 28 FE/h

Zwischenlagerplatz K-Platz 3 28 FE/h

Zwischenlagerplatz K-Platz 4 28 FE/h

Die in Tabelle 4-1 aufgeflihrten Leistungen beschreiben die Frequenz, mit der FEs in das MFS
eingeschleust werden kénnen. Die Quellen werden in interne Quellen z. B. RBG 1 und externe
Quellen z. B. Wareneingang unterschieden. Externe Quellen zeichnen sich durch eine Interak-
tion mit einem Bediener innerhalb des MFS aus. Interne Quelle sind i. d. R. automatische Ein-
heiten z. B. Regalbediengeréate mit einer fixen betrieblichen Ausgangsleistung.

4.1.3 Ausgange

Die Ausgange, auch Senken genannt, der Referenzanlage sind die K-Platze, mit insgesamt vier
Ausgangen, und die Versandplatze, mit insgesamt 20 Platzen. Tabelle 4-2 zeigt die Leistung
der Senken der Referenzanlage.

Tabelle 4-2: Maximale betriebliche Leistung der Senken

Senke Leistung
K-Platz 1 50 FE/h
K-Platz 2 50 FE/h
K-Platz 3 50 FE/h
K-Platz 4 50 FE/h

RBG 1 141,5 FE/h
RBG 2 141,5 FE/h
RBG ,Produktion® 116 FE/h
RBG ,Versand* 331 FE/h
Verpackungsplatz 1 bis 7 jeweils 8 FE/h
Verpackungsplatz 8 bis 10 jeweils 5 FE/h
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Die Leistung an den entsprechenden Senken héangt einzig von der Leistung der in Abschnitt 2.1
beschriebenen Fordertechnik ab. Wie auch die Quellen werden die Senken ebenfalls in externe
und interne Senken unterschieden. Die Ausgangsleistung von externen Senken kann nicht opti-
miert werden, da sie durch die entsprechende Geréateleistung beschrankt ist. Es kdnnen auch
hier ausschlie3lich die Leistungen externer Senken in Abhangigkeit der Leistung der entspre-
chenden Quellenleistung optimiert werden.

Die hier aufgefuhrten Leistungen der Quellen und Senken gelten fiir die spatere Betrach-
tung des Modells als die zu erreichenden Zielvorgaben.

4.1.4 Leistungsbeschrankende Fullmengen

Fir die letzten Abschnitte von Loop zu RBG bzw. Loop zu K-Platz gelten die in Tabelle 4-3 auf-
gelisteten maximalen Fillmengen.

Tabelle 4-3: Materialflusselemente und ihre Fillmengen

Materialflusselement | Fillmenge

RBG 1 Max. 7 FEs eingehend und ausgehend
RBG 2 Max. 7 FEs eingehend und ausgehend
RBG ,Produktion® Max. 7 FEs eingehend und ausgehend
K-Platz 1 Max. 7 FEs eingehend

K-Platz 1 und 2 Max. 7 FEs ausgehend

K-Platz 2 Max. 7 FEs eingehend

K-Platz 3 Max. 7 FEs eingehend

K-Platz 3 und 4 Max. 7 FEs ausgehend

K-Platz 4 Max. 7 FEs eingehend

Loop 1 Max. 28 FEs gleichzeitig

Loop 2 Max. 18 FEs gleichzeitig

Loop 3 Max. 28 FEs gleichzeitig

Loop 4 Keine Beschréankung vorhanden

Durch die maximalen Staukapazitaten der einzelnen RBGs und K-Platze ergibt sich eine Ein-
schrankung der Leistung der Referenzanlage. So kann z. B. ein Stau in allen K-Platzen einen
Stau in den vorhergehenden Loops, im Extremfall in den RBGs, verursachen und das komplette
MFS zum Erliegen bringen.

4.1.5 Auftragsreine Transportauftrage

Ein Kundenauftrag kann aus beliebig vielen Positionen bestehen. Jede Position generiert eine
Warenanforderung im Lager, die aus mehreren Transportauftragen bestehen kann. Um eine
Vermischung von verschiedenen Kundenauftragen bzw. Positionen zu vermeiden, missen
Transportauftrage auftragsrein bearbeitet werden, d. h. sobald eine FE mit einer Auftragsnum-
mer einen K-Platz betritt, ist dieser Auftrag, bis zu seiner Fertigstellung, fest mit dem K-Platz
verknupft und es kann kein anderer Transportauftrag an diesem K-Platz bearbeitet werden.
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4.1.6 Materialflisse

Um das Geschehen und die Abhangigkeiten innerhalb eines komplexen Materialflusses zu ver-
stehen, ist es notwendig, den Materialfluss in die in 2.1 eingefihrten Materialstrome zu zerle-
gen. Die auftretenden Stréme sowie ihre jeweiligen Abhé&ngigkeiten werden in den kommenden
Abschnitten erlautert.

Auslagerfluss

Abbildung 4-3 zeigt die schematische Darstellung des Auslagerflusses der Referenzanlage.

K-Platze

Abbildung 4-3: Schematische Darstellung des Auslagerflusses

Die FEs aus den RBG 1 und RBG 2 (griin) flieBen Gber Loop 1 und Loop 3 (blau) zu den Kom-
missionierplatzen (K-Platzen, rot). Nach Ankunft an den K-Platzen wird der Kommissioniervor-
gang gestartet und die FEs bleiben bis zum Abschluss des Kommissioniervorgangs durch den
Bediener im K-Platz.

Rucklagerfluss

Abbildung 4-4 zeigt den Ablauf des Rucklagerflusses in der Referenzanlage.

Abbildung 4-4: Schematische Darstellung des Ricklagerflusses

Nach Abschluss der Kommission werden nicht leere FEs von den K-Platzen tber Loop 3 und
Loop 1 zuriick zum entsprechenden RBG beférdert. Von den RBGs werden sie am Ziellager-
platz eingelagert.
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Umlagerflisse

Durch den Einsatz der RBG ,Versand“ und RBG ,Produktion ergeben sich die in Abbildung 4-5
dargestellten roten und griinen Umlagerflisse.

RBG
,Produktion”

Produktion

RBG
»Versand“

Versand K-Platze

Abbildung 4-5: Schematische Darstellung der Umlagerfliisse
e Roter Umlagerfluss
Die FEs werden nach Abschluss des Kommissioniervorgangs von den K-Platzen tber
Loop 3 und Loop 1 zum RBG ,Versand® transportiert. Ist der Kommissionierauftrag ab-

geschlossen, werden die entsprechenden FEs vom RBG ,Versand® (iber Loop 1 und
Loop 3 zu den Versandplatzen beférdert.

e Gruner Umlagerfluss

Die fertig produzierten Waren werden in FEs aus der Produktion tber Loop 2 und
Loop 1 zu den RBG 1 und RBG 2 ins Lager befdrdert.

Einlagerfluss

In Abbildung 4-6 ist der Einlagerfluss abgebildet. Neue Ware wird in FEs tiber Loop 3 und
Loop 1 zu den RBG 1 und 2 oder tber Loop 3, Loop 1 und Loop 2 zum RBG ,Produktion* befor-
dert.
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Waren-
eingang

Abbildung 4-6: Schematische Darstellung des Einlagerflusses

Leerbehalterfluss

In Abbildung 4-7 ist der Leerbehalterfluss der Referenzanlage dargestellt. Leere FEs werden
Uber eine spezielle Bahn zu Loop 4 befdrdert, von wo aus sie zuriick zu den RBG 1 und 2 be-
fordert werden. Ebenso wird uber den Leerbehélterausgang an Loop 4 der Wareneingang konti-
nuierlich mit leeren Behdltern versorgt.

Leer-
behalter

Abbildung 4-7: Schematische Darstellung des Leerbehalterflusses

Fur einen besseren Uberblick tiber die vorhandene Problematik wird zuerst der momentane
Optimierungsprozess beschrieben. Im Anschluss wird das Modell der Referenzanlage einge-
fuhrt. Danach wird ein grober Lésungsansatz skizziert.

4.2 Modellierungsansatz der Referenzanlage

Durch die Analyse der Referenzanlage ergab sich ein Ansatz zur Darstellung des Materialflus-
ses innerhalb eines komplexen MFS. So kann der Fluss von FEs innerhalb eines MFS als der in
3.1 eingefuihrte Materialflussgraph von einer Quelle hin zu einer oder mehreren Senken darge-
stellt werden. Der klassische Materialflussgraph (vgl. Abbildung 4-2) wird hierbei in einer leicht
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abgewandelten Form betrachtet. Die Knoten innerhalb des Graphs werden als Materialflussele-
mente bezeichnet und die Kanten symbolisieren den Ubergang von einem Materialflusselement
zum néchsten. Das hieraus entstehende Materialflussmodell wird im Kommenden néher erlau-

tert.

4.2.1 Materialflusselemente

Die einzelnen Elemente (vgl. 2.1) innerhalb eines MFS werden zu Materialflusselementen
(MFEs) zusammengefasst. Die FEs bewegen sich von Materialflusselement (MFE) zu Material-
flusselement und verbleiben mit einer gewissen Transportdauer innerhalb des entsprechenden
MFE. Materialflusselemente werden anhand ihrer Gibergeordneten Funktion in beférdernde, er-
zeugende und verbrauchende MFEs unterschieden.

Die genaue technische Funktionalitéat, wie z. B. Senkrechtférdern oder manuelle Befor-
derung durch den Einsatz von Staplern, ist in dieser Betrachtung nicht relevant. So kénnen zu-
sammenhangende Bestandteile eines MFS, wie z. B. Senkrechtférderanlagen oder Loops, zu
einem ubergeordneten Materialflusselement zusammengefasst werden. Abbildung 4-8 zeigt die
Materialflusselemente des hier vorgeschlagenen Modells.

Abbildung 4-8: Beférderndes (links), erzeugendes (Mitte) und verbrauchendes (rechts) MFE

Die Kapazitat ¢ der hier vorgestellten MFEs kann durch physische Gegebenheiten, wie z. B.
maximal férderbare FEs pro Stunde oder auch der maximalen Aufnahmekapazitét, beschrankt
werden.

Beforderndes Materialflusselement

Die in Richtung des beférdernden Materialflusselements gerichteten Pfeile symbolisieren einge-
hende Verbindungen von vorhergehenden MFEs und die ausgehenden Pfeile reprasentieren
ausgehende Verbindungen zu nachfolgenden MFEs. Des Weiteren verdeutlicht Abbildung 4-8
das komplexe n:m-Verhaltnis von Eingangen zu Ausgangen, da i. d. R. ein MFE mit mehreren
MFEs verbunden sein kann.

Erzeugendes Materialflusselement

Das erzeugende Materialflusselement hat genau einen Eingang und kann mehrere Ausgange
besitzen. Es erzeugt mit einer vorgegebenen Leistung neue FEs, die in das MFS eingeschleust
werden. Die Eigenschaft eines erzeugenden MFE hangt in erster Linie von seiner genauen
Funktion ab, so kann z. B. ein K-Platz durchaus als erzeugendes MFE gesehen werden, wenn
er die kommissionierte Ware nach Abschluss des Vorgangs in neue FEs packt und diese in das
MFS einschleust.

Verbrauchendes Materialflusselement

Das verbrauchende Materialflusselement hat mehrere Eingdnge und genau einen Ausgang.
FEs die das verbrauchende MFE verlassen, werden nicht wieder in das MFS eingeschleust.
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4.2.2 Verbindungen

Verbindungen zwischen den einzelnen MFEs symbolisieren den Ubergang von MFE; zu
MFE;, . Die Leistung von Verbindungen ist durch Kundenwiinsche oder physische Gegeben-
heiten eindeutig festgelegt. Abbildung 4-9 zeigt exemplarisch ein RBG und Loop 1 als MFESs mit
Verbindungen und ihren Leistungen.

142 FE/!

c=20

112 FE/h

Abbildung 4-9: RBG-Element und Loop-Element mit festen Leistungen

Die festgelegte Ausgangsleistung liegt bei 112 Behéltern pro Stunde, die Eingangsleistung bei
142 Behaéltern pro Stunde. Des Weiteren kann das RBG 1 aufgrund seiner Kapazitat c = 2 ma-
ximal 2 FEs gleichzeitig beférdern und das Loop 1 bedingt durch seine Kapazitat ¢ = 20 maxi-
mal 20 FEs aufnehmen.

4.3 Modell der Referenzanlage

Auf Basis der in den Abschnitten 2.1 und 4.2 eingefiihrten Modellelemente und Materialfliisse
wird das Referenzschaubild fir den Auslager- und Ricklagerfluss exemplarisch modelliert. Im
Anschluss wird das Gesamtmodell der Referenzanlage angegeben.

4.3.1 Auslager-und Rucklagerfluss

Abbildung 4-11 zeigt die Modelle fur den Auslager- und den Rucklagerfluss. In den Verbindun-
gen der einzelnen Materialflusselemente sind die geforderten Ein- bzw. Ausgangsleistungen
eingetragen.
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Abbildung 4-10: Auslagerflussmodell

Abbildung 4-11 zeigt den Materialfluss von den RBGs zu den entsprechenden K-Platzen, hier
reprasentieren die K-Platze Senken fir die RBGs.

[a]

=
N
)
mal
iy ~
S~
>
[0
=]
\ T
m
S~
>
(e}
1 I
~

c=7

50 FE/h

142 FE/h 50/FE/h

n
~

RBG
Produkt-
ion

116 FE/h

0lo

Abbildung 4-11: Ricklagerflussmodell

Abbildung 4-11 zeigt den Ricklagerfluss von den K-Platzen als Quellen zu den entsprechenden
RBGs als Senken. Wie in Abschnitt 4.1.1 beschrieben, flie3en die FEs Uber die entsprechenden
Loops zu den K-Platzen und zuriick. Die RBGs und K-Platze besitzen jeweils eine Kapazitat
von maximal 7 gleichzeitig darin befindlichen FEs und die Loops kénnen jeweils maximal
28 FEs gleichzeitig aufnehmen.

Um einen optimalen Materialfluss zu erreichen, muss zum einen eine Blockade der MFEs
Loop 1, Loop 2 und Loop 3 und zum anderen ein unnétig langer Aufenthalt in den MFEs Loop
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1, Loop 2 und Loop 3 vermieden werden, da diese MFE die Transportdauer einer FE am meis-

ten beeinflussen.
Eine Zusammenfuhrung aller Teilmodelle in ein Gesamtmodell verdeutlicht die Komplexitat

der Referenzanlage und die damit verbundenen Optimierungsmaglichkeiten.

4.3.2 Gesamtmodell der Referenzanlage

Abbildung 4-12 zeigt das Gesamtmodell aller Teilflisse der Referenzanlage.
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Abbildung 4-12: Gesamtmodell der Referenzanlage

Das Gesamtmodell der Referenzanlage birgt einige Besonderheiten. So bedeutet die Kapazitat
von insgesamt 100 FEs fur den Versand, dass maximal 100 FEs an allen 20 Versandsenken
aufgenommen werden kénnen.

Aus der Gesamtbetrachtung aller Teilflisse wird deutlich, dass der Auslagerfluss die gréR3te
Prioritat im MFS besitzt, anschlieRend folgen Einlager- und Riicklagerfluss. Daher zielen die

30



(RIS

Institut fUr RechnergestUtzte Ingenieursysteme Analyse der Referenzanlage Und Lbsungsansatz

meisten Optimierungen eines MFS in erster Linie auf die Optimierung des Auslagerflusses ab,
dieser zieht die Optimierungen der anderen Fliisse nach sich. Ferner wird die hohe Komplexitat
deutlich, die mit der Optimierung des Materialflusses einhergeht. So sind bspw. zur Beantwor-
tung der Frage, ob eine FE von RBG 1 das Loop 1 betreten kann, die momentanen Zusténde
des Loop 1, Loop 3 und jedes einzelnen K-Platzes notwendig.

4.4 Losungsansatz

Zur Losung des soeben beschriebenen Optimierungsproblems soll ein System erstellt werden,
das mit der hohen Dimension umgehen kann und zusatzlich in der Lage ist, dynamisch auf
Schwankungen im Materialfluss zu reagieren. Ferner soll das System die Zusammenhénge in-
nerhalb des MFS selbststandig erlernen und so den Materialfluss optimal gestalten.

Konkret soll das System die folgenden primaren Optimierungsziele erfillen:

e Selbststandige Optimierung der Leistung von Quellen und Senken mit externem Bedie-
ner

e Selbststandige Optimierung der internen Quellen und Senken in Abh&angigkeit von den
externen Quellen und Senken

Aus diesen beiden primaren Optimierungszielen lassen sich folgende sekundére Ziele ableiten:

e Einhaltung der vorgegebenen Gerateleistung

¢ Um die Auftragszeiten zu minimieren, darf keine FE Ubermafig lange in den MFEs ver-
weilen

e Keine Blockade der MFEs durch sog. Deadlocks?

Zur Lésung der beschriebenen Anforderungen wurden verschiedene Ansétze aus dem Bereich
der kinstlichen Intelligenz auf ihre Anwendbarkeit untersucht. Da im Regelfall keine Betriebsda-
ten Uber die Anlage vorliegen, scheiden die meisten Ansatze, wie etwa das in 3.4 beschriebene
maschinelle Lernen oder auch der starre Einsatz von neuronalen Netzen wie von [Heu97] be-
schrieben, zur Optimierung der Anlage im Live-Betrieb aus.

Um kontinuierlich aus den Live-Daten lernen zu kdnnen, soll das System mittels des
Reinforcement-Learning-Ansatzes in der Q-Learning-Variante umgesetzt werden. Der Rein-
forcement-Learning-Ansatz, seine Komponenten und dessen Umsetzung werden in den kom-
menden Abschnitten beschrieben. AbschlieRend wird ein Ansatz zur Integration des Reinforce-
ment-Learning-Ansatzes in die Software viadat vorgestellt.

3 Die klassische Deadlock-Situation in einem MFS entsteht, wenn alle Senken durch FEs blockiert sind und zusétzlich
alle MFEs ausgelastet sind.
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5 BESCHREIBUNG DES LOSUNGSANSATZES

Wie schon in 4.4 erlautert, soll das MFS durch den Einsatz von Reinforcement-Learning in der
Q-Variante optimiert werden. Der Hintergrund des Losungsansatzes sowie die einzelnen Bau-
steine des Lésungsansatzes werden im Kommenden néher erlautert.

5.1 Reinforcement-Learning

Das Lernen durch Verstarkung* stammt urspriinglich aus der Robotik. Das Ziel ist es, den Ro-
boter ohne Uberwachung von einem Ausgangszustand zu einem Endzustand, z. B. das Greifen
eines Gegenstands, zu bringen. Hierzu erhlt der Roboter eine Belohnung flr eine gute Aktion
und eine Bestrafung fir eine schlechte Aktion. [Ert13]

Die genaue Funktionalitdt des Reinforcement-Learning wird im Folgenden erlautert.

5.1.1 Allgemeine Funktionsweise

Beim Reinforcement-Learning wird zwischen dem Agenten und der Umwelt unterschieden. Ab-
bildung 5-1 veranschaulicht die Funktionsweise des Reinforcement-Learning.

Aktion a

Belohnung r

Zustand s

Abbildung 5-1: Der Agent und seine Interaktion mit der Umwelt [Ert13]

Der Agent fuhrt im aktuellen Zustand s, eine Aktion a, aus, die ihn die den Folgezustand s, ,
bringt. Fir das Ausfiihren der Aktion a, erhalt der Agent eine Belohnung r; = (s;, a;). Die Beloh-
nung kann positiv fur ,gute“ Aktionen und negativ fir ,schlechte” Aktionen sein. Hierbei ist auch
der Wert Null eine giltige Belohnung, der lediglich besagt, dass die aktuelle Aktion nicht sofort
belohnt wird. In diesem Fall spricht man von einer verzégerten Belohnung. Durch die Belohnun-
gen soll der Agent eine optimale Strategie zur Losung des vorgegebenen Problems erlernen.
Eine Strategie gilt als optimal, wenn sie langfristig Uber viele Schritte hinweg die Belohnung ma-
ximiert. [Ert13]

Die Modellierungen der Umwelt des Agenten basieren meist auf der sog. Markov-Eigen-
schaft. Die Markov-Eigenschaft sagt aus, dass der Folgezustand des Agenten ausschliel3lich
vom aktuellen Zustand und der momentan ausgefiihrten Aktion abhangt. [Kra09]

Q-Learning-Variante

Bei der Q-Learning-Variante liegt dem Agenten kein Modell seiner Umwelt vor, der Agent lernt
seine Umwelt durch die von ihm ausgefihrten Aktionen kennen. [Kra09] Hierzu werden mittels
der sog. Q-Funktion Q(s;, a;) die aktuelle Aktion sowie der Zustand bewertet. Auf Basis dieser
Bewertung erfolgt die Auswahl der optimalen Strategie nach der rekursiven Vorschrift: [Sutl5]

5.1
Q(seyar) = Qc(se ap) + a * (7t+1 +y* Znax Q¢ (Ses1, Apy1) — Qe (s, at)) (5-1)

Die Vorschrift zur Bewertung des aktuellen Zustands Q(s;, a;) gliedert sich in die folgenden
sechs Bestandteile:

e Q(s; a;) Bewertung des aktuellen Zustands

4 Engl. Reinforcement-Learning
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o (0 <ac<1)reprasentiert die Lernrate (Einflussfaktor des zukulnftig Gelernten auf das
jetzt Gelernte)

e 1., Belohnung fir die aktuell ausgefiihrte Situation

e y (0 < y<1)istder Einflussfaktor der zukinftigen Belohnungen

e max Q:(st41,a:41) Vorausgesagte zukiinftige Bewertung [Sut15]

I. d. R.wird mit einer konstanten Lernrate @ und einem konstanten Einflussfaktor y gearbeitet.
[Ert13]

Varianten zur Berechnung der Q-Funktion

In der klassischen Variante des Q-Learning werden zwei Tabellen zur Reprasentation der Q-
Funktion und den daraus resultierenden Belohnungen erstellt und bei jedem Besuch der ent-
sprechenden State-Action-Paare aktualisiert, bis der Agent den Endzustand erreicht. [Kra09]

Neuere Anséatze des Q-Learning benutzen neuronale Netze zur Approximation der Q-
Funktion, da diese sich aufgrund ihrer Effizienz sehr gut fir diese Problemstellung eignen. Auch
stellen neuronale Netze eine Art Gedéachtnis des Agenten dar. Bei der Approximation durch
neuronale Netze werden die Zustédnde und die aktuelle Aktion als Eingange an das Netz ange-
legt und das neuronale Netz gibt als Ergebnis die approximierte Q-Funktion aus. [Ert13]

Auswahl einer Aktion

Der Agent fuhrt verschiedene Aktionen innerhalb des Systems aus. Hierzu hat er zwei Moglich-
keiten: Er kann Teile seiner — ihm unbekannten — Umwelt entdecken (Engl. Exploration) oder
auf Grundlage des bereits Gelernten (Engl. Exploitation) Entscheidungen treffen. [Ert13]

Die Idee hinter diesen beiden Konzepten wird im Folgenden kurz erlautert.

Entdeckung der Umwelt (Exploration)

Um seine Umwelt kennenzulernen, muss der Agent zu Beginn die Umwelt erforschen, da noch
nicht ausreichend Informationen Uber die Umwelt und ihre Abhéngigkeiten vorhanden sind.
Hierzu muss der Agent neue Verhaltensweisen ausprobieren, um sich einen Eindruck Uber das
optimale Verhalten zu verschaffen (Engl. Exploration). Dazu fuhrt der Agent zu Beginn mit einer
gewissen Wabhrscheinlichkeit eine zuféllige Aktion aus, um die Abhéangigkeiten seiner Umwelt
zu verstehen. [Ert13]

Nutzung des bereits Gelernten (Exploitation)

Je mehr der Agent seine Umwelt kennenlernt, desto geringer wird die Wahrscheinlichkeit fur die
Erforschung der Umwelt und er entscheidet auf Grundlage der gelernten Zustande (Engl. Explo-
itation). Zur Entscheidungsfindung legt der Agent jedes mdgliche Zustands-Aktions-Paar an das
neuronale Netz an, approximiert den Q-Wert und die Aktion mit dem héchsten Q-Wert aus. In
der Literatur wird eine Kombination aus Exploration und Exploitation empfohlen, die zu Beginn
mit einer hohen Wahrscheinlichkeit das System erforscht und im spéateren Verlauf die Wahr-
scheinlichkeit fur die Exploration immer weiter senkt. Durch diese Strategie soll die Approxima-
tion einer optimalen Strategie gewahrleistet werden. [Ert13]

Das Konzept hinter neuronalen Netzen, die Funktionsweise des verwendeten Netzes sowie
das Umsetzungswerkzeug werden im kommenden Abschnitt erlautert. Im Anschluss wird die Q-
Learning-Variante mit dem Einsatz von neuronalen Netzen néher beschrieben.

5.2 Kinstliche neuronale Netze

Neuronale Netze sind ein Teilgebiet der kiinstlichen Intelligenz. [Krull] beschreibt ein neurona-
les Netz als ein ,informationsverarbeitendes System, dessen Aufbau und Funktionsweise dem
Nervensystem und vor allem dem Gehirn eines Menschen nachempfunden ist” [Krul1l].
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Ein neuronales Netz besteht aus einer endlichen Menge an einfachen, parallel arbeiten-
den Prozessoren, den Neuronen. Die Neuronen eines neuronalen Netzes ,senden sich Informa-
tionen in Form von Aktivierungssignalen tber gerichtete Verbindungen zu® [Krul1l]. [Ert13]

Die Grundeigenschaft eines neuronalen Netzes ist die Fahigkeit zu lernen. So finden neuronale
Netze Uberall dort Einsatz, wo kein konkretes mathematisches Modell zur Beschreibung eines
Problems vorhanden ist, wie z. B. zur Erkennung von Fingerabdriicken, zur Risikobewertung
von Bankkunden und sogar schon zur Voraussage von Lottozahlen. [Liv08]

Im Anschluss wird das Konzept hinter neuronalen Netzen beschrieben und die Funkti-
onsweise des in dieser Arbeit eingesetzten neuronalen Netzes beschrieben.

5.2.1 Bestandteile eines neuronalen Netzes

Ein neuronales Netz ist ein gerichteter Graph ¢ = (U, C), dessen Knoten u € U als Neuronen
und dessen Kanten ¢ € C als Verbindungen bezeichnet werden. [Krull]
Grundsatzlich besteht jedes neuronale Netz aus drei Komponenten:

¢ Neuronen: Die Eigenschaften eines Knotens bzw. Neurons bestimmen die Art der Ver-
arbeitung der Signale, wie etwa die Anzahl an Ein- und Ausgangen, die Gewichtsfunk-
tion der Ein- und Ausgéange und die Aktivierungsfunktion.

o Netzwerktopologie: Die Netzwerktopologie beschreibt die Art der Kanten zwischen
den Knoten.

e Lernregeln: Die Lernregeln legen fest, wie die Gewichte initialisiert und ausgerichtet
werden. [Liv08]

Die folgenden Abschnitte erlautern die soeben eingeflihrten Komponenten.

Neuronen

Wie bereits im vorherigen Abschnitt beschrieben, kann ein Neuron auch als Knoten eines ge-
richteten Graphen verstanden werden. Der grundsétzliche Aufbau eines Neurons ist in Abbil-
dung 5-2 dargestellt.

Abbildung 5-2: Aufbau eines Neurons nach [Liv08]

An einem Neuron liegen die Eingange x, bis x,, mit ihren dazugehdérigen Gewichten w, bis w,
an, jeder Eingang ist der Ausgang eines vorhergehenden Neurons. In den Gewichten der aus-
gehenden Kante wird das erlernte Wissen des Neurons gespeichert. [Liv08]

Aktivierungsfunktion

Zur Aktivierung eines Neurons werden die gewichteten Eingangswerte x,, x5, ..., x,, [Ert13]

n
j=1

aufsummiert und im Anschluss wird die Aktivierungsfunktion f auf das Ergebnis angewendet
und das Ergebnis an die nachfolgenden Neuronen Uber die Kantengewichte weitergegeben.

[Ert13]

Zur Berechnung der Aktivierungsfunktion f bieten sich eine Reihe von Funktionen an, [Ert13]
nennt hier die Identitatsfunktion

(5.2)
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flx)=x (5.3)

oder auch eine sigmoide Funktion wie z. B.

Fx) = (5.4)

1+e*

Um Konvergenzprobleme und Unstetigkeiten in der Aktivierungsfunktion zu umgehen, empfiehlt
[Ert13] die Verwendung einer sigmoiden Aktivierungsfunktion.

Netzwerktopologie

Die Netzwerktopologie beschreibt die Art der Verbindung zwischen den Neuronen. Die Neuro-
nen sind in linearen Vektoren, den sog. Schichten, organisiert. Die Schichten werden in Ein-
gabe-, Ausgabe- und versteckten Schichten unterteilt. Entsprechend werden die Neuronen in
Eingabe-, Ausgabe- bzw. versteckte Neuronen, die nur Kontakt mit anderen Neuronen im Netz
haben, unterschieden. [Liv08]

[Krull] klassifiziert die neuronalen Netze anhand der Kanteneigenschaften des Gra-
phen in Vorwartsbetriebe und rekurrente Netze.
Abbildung 5-3 zeigt exemplarisch den Aufbau der Netzwerktopologien neuronaler Netze.

Abbildung 5-3: Vorwartsbetriebenes (links) und rekurrentes (rechts) neuronales Netz

In vorwartsbetriebenen Netzen (links) werden die Informationen immer in einer festen Richtung
vom Eingang zum Ausgang weitergeleitet.

In rekurrenten Netzen hingegen sind Schleifen (griin) oder auch Zyklen (rot) erlaubt. Die
Funktionsweise beider Netztopologien ist jedoch dieselbe.

Funktionsweise

An den Eingabeneuronen (blau) in Abbildung 5-3 liegen die Eingangssignale fir das Netzwerk
an. Hier werden die entsprechenden Ausgangsfunktionen der Neuronen, nach Erreichen des
Schwellwertes, berechnet. Sobald alle Eingabeneuronen ihr Ergebnis ermittelt haben, wird das
Ergebnis an die versteckten Neuronen (orange) weitergegeben. Die versteckten Neuronen be-
rechnen wiederum ihre Funktion und geben das Ergebnis nach Abschluss aller Berechnungen
an die Ausgabeneuronen (grau) weiter. Diese geben das entsprechende Ergebnis an die Um-
welt ab. Die Weitergabe der Ergebnisse erfolgt immer schichtweise. [Krull]

Lernregeln

Der Kernpunkt der neuronalen Netze sind die Lernregeln. Sie bestimmen die Art der Wissens-
generierung. Der Lernprozess kann in Uberwachtes und unuberwachtes Lernen unterteilt wer-
den.

Uberwachtes Lernen

Beim Uberwachten Lernen wird dem System eine Menge an Trainingsdaten T =
{(x;,d)]i = 1,2, ...n}, als Menge an Eingabevektoren x, und Ausgabevektoren d, bereitgestellt,
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auf deren Basis das System trainiert wird. Die einzelnen Gewichte der Kanten des neuronalen
Netzes werden so ausgerichtet, dass der Fehler zwischen der Ausgabe des neuronalen Netzes
und der tatsachlichen Ausgabe minimal wird. Zur Erstellung der Trainingsdaten wird i. d. R. spe-
zielles Expertenwissen bendtigt. Ferner missen die Trainingsdaten reprasentativ fir das vorlie-
gende Modell sein. Mit den vorliegenden Trainingsdaten wird das System zuerst trainiert. So-
bald das neuronale Netz die gewiinschten Ausgabeparameter produziert, werden die Kantenge-
wichte fest eingestellt und das System geht in den Produktivmodus. [Liv08]

UnlUberwachtes Lernen

Im Gegensatz zum Uberwachten Lernen liegen dem Netz beim uniiberwachten Lernen keine
Zielparameter vor. Das neuronale Netz versucht das Muster in den Trainingsdaten selbststan-
dig zu erkennen. [Liv08]

5.2.2 Resilient Backpropagation

Der Resilient-Backpropagation-Algorithmus (RProp) basiert auf dem Standard-Backpropaga-
tion-Algorithmus und gehoért zur Klasse des Uberwachten Lernens. Der RProp besteht aus zwei
Durchlaufen: dem Vorwarts- und Rickwartsdurchlauf. [Rie93]

Auf den genauen Ablauf sowie die Eigenschaften des RProp wird im Folgenden eingegangen.

Trainingsablauf

Zu Beginn erhélt der RProp eine Menge T an Trainingsdaten. Danach werden die Gewichte mit
zufalligen, moglichst niedrigen Werten initialisiert.

Abbildung 5-4 illustriert den Ablauf des RProp mit seinem Vorwartsdurchlauf (links) und Ruck-
wartsdurchlauf (rechts).

Abbildung 5-4: Vorwartsdurchlauf im RProp (links) und Ruckwartsdurchlauf im RProp (rechts)

Vorwartsdurchlauf

Im ersten Durchlauf wird fiir ein Trainingsbeispiel {(x;,d;)| t € T} das Netz von den Eingabeneu-
ronen (blau) Uber die versteckten Neuronen (orange) zu den Ausgabeneuronen (grau) durch-
laufen. Hier wird, ab der ersten versteckten Schicht, fur jedes Neuron in der aktuellen Schicht
die Aktivierungsfunktion berechnet. Nach dem Durchlauf aller versteckten Schichten wird die
Netzausgabe sowie der Approximationsfehler fur das gewéahlte Trainingsbeispiel {(x;, d.)| t € T}
berechnet. [Ert13]

Ruckwartsdurchlauf

Im Anschluss wird das Netz von hinten nach vorne (roter Pfeil), in entgegengesetzter Reihen-
folge des Vorwartsdurchlaufs, fur den Satz {(x;,d.)| t € T} bis zur letzten versteckten Schicht
durchlaufen. Im Gegensatz zum Vorwartsdurchlauf wird hier jedoch der Approximationsfehler
durch das Netz propagiert. Unter dessen Verwendung dann Schicht fiir Schicht die Kantenge-
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wichte neu berechnet werden. Der hier beschriebene Ablauf wird nach dem Durchlauf des Sat-
zes {(x;,d;)| t € T} auf die gesamte Menge der vorhandenen Trainingsdaten angewandt. Der
Algorithmus terminiert, sobald sich die Gewichte nicht mehr andern oder eine voreingestellte
Zeit erreicht ist. Der komplette Durchlauf aller Trainingsdaten wird Epoche genannt. [Ert13]

Besonderheiten

Im Gegensatz zum Standard-Backpropagation-Algorithmus werden beim RProp-Ansatz die ein-
zelnen Kantengewichte nicht durch das Netzwerk propagiert, sondern jedes Gewicht besitzt sei-
nen individuellen sich entfaltenden Aktualisierungswert. Die Gewichtung der Kante wird aus-
schlief3lich durch ihren Aktualisierungswert und das Vorzeichen des Gradienten bestimmit.
[Rie93]

5.2.3 Auswahl des Umsetzungswerkzeugs

Zur Umsetzung von neuronalen Netzen steht eine grof3e Bandbreite an Werkzeugen und Biblio-
theken bereit. In diesem Abschnitt werden die fur diese Arbeit naher betrachteten Umsetzungs-
moglichkeiten kurz beschrieben, bewertet und ein Werkzeug auf Basis der Bewertung ausge-
wahlt.

Stuttgart Neural Network Simulator

Der Stuttgart Neural Network Simulator (SNNS) ist ein Kooperationsprojekt der Universitaten
Stuttgart und Tlbingen. Entwickelt wurde der SNNS in Stuttgart, gewartet wird er in Tlbingen.
Mittlerweile ist die Weiterentwicklung jedoch eingestellt worden. Der SNNS besitzt eine GUI und
ist in C programmiert. Der Kern des Simulators kann auch in externe Programme eingebettet
und durch eigene Funktionen erweitert werden. Der SNNS bietet im Standard die folgenden
Netzwerktopologien und Lernregeln® an:

e Backpropagation

e Counterpropagation

e  Quickprop

e Backpercolation 1

¢ Resilient Backpropagation (RProp)

o Generalisierte radiale Basisfunktionen (RBF)
e ART1und ART2

e ARTMAP

e Cascade Correlation

e Recurrent Cascade Correlation

¢ Dynamic LVQ

e Backpropagation durch die Zeit

e Quickprop durch die Zeit

e Selbstorganisierende Karten

o Zeitverzogerte Netzwerke mit Backpropagation
e Jordan und Elman Netzwerke

e Assoziative Speicher

Zusatzlich kénnen tber die GUI die Netze analysiert werden. Zur Ausfiihrung der GUI des
SNNS wird eine X-GUI fur Windows oder ein Linux-System benétigt. Zusatzlich kdnnen die er-
stellten Netze durch ein mitgeliefertes Werkzeug in C-Quellcode lbersetzt werden. Der SNNS
ist unter der GNU GPLS lizensiert. [Zel151]

® Eine genaue Erlauterung der hier aufgefuihrten Algorithmen kann u. a. [Alp08] entnommen werden..
6 Vgl. [GNU151] fiir eine genaue Beschreibung der GNU GPL.
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Java Neural Network Simulator

Der Java Neural Network Simulator (Java NNS) ist der Nachfolge des SNNS. Er basiert auf
dem Kern des SNNS und wurde mit einer neuen GUI in Java erweitert. Er bietet die gleichen
Lernregeln und Netzwerktopologien wie sein Vorganger an, jedoch kann der JavaNNS keinen
C-Quellcode erstellen. Er kann ohne eine zusatzliche Installation von X-GUI betrieben werden.
Zur Ausfuhrung wird jedoch eine aktuelle Version der Java-Bibliothek bendtigt. Des Weiteren
bietet Java NNS mehr Moglichkeiten zur Analyse und Darstellung der neuronalen Netze. Das
Java NNS darf verandert werden, unterliegt jedoch keiner speziellen GNU Lizenz. [Zel15]

Open Neural Networks Library

Das Open Neural Networks Library (Open NN) ist eine offene Bibliothek erstellt in C++ zur Im-
plementierung von neuronalen Netzen. Open NN bietet im Standard die folgenden Netzwerkto-
pologien und Lernregeln” an:

e 1-D Optimierung

¢ Multidimensionale Optimierung
¢ Gradientenabstiegsverfahren

e Newton-Methode

¢ Konjugierte Gradienten

¢ Quasi-Newton-Methode

e Zufallssuche

e Evolutionare Algorithmen

Die Bibliothek ist in C++ erstellt und kann in C++-Quellcode implementiert werden. Ferner wird
die Bibliothek sténdig weiterentwickelt. Das Open NN ist unter der GNU LGPL2 lizenziert und
kann kommerziell verwendet werden. [Rob15]

MemBrain NN

Das MemBrain NN ist ein Simulator fir neuronale Netze, der zusatzlich die Mdglichkeit bietet,
Netze selbst zu erstellen und diese nach C zu exportieren. Dartber hinaus kann in MemBrain
mithilfe von selbst erstellen Skripten das Verhalten des neuronalen Netzes komplett vom Bedie-
ner gesteuert werden. Zusatzlich kénnen die Funktionen von MemBrain mittels einer DLL in alle
géangigen sowie in selbst erstellte Programme integriert werden. MemBrain bietet im Standard
die folgenden Lernregeln an:

e Backpropagation

e Backpropagation mit Riickkopplung

e Resilient Backpropagation (RProp)

e Cascade Correlation

e Trial and Error

e Unterstiitzung von Self Organizing Maps mittels ,Winner takes it all*-Ansatz

MemBrain kann fir Forschungszwecke kostenlos eingesetzt werden. Fur die kommerzielle Nut-
zung fallen je nach Nutzungsgrad unterschiedliche Lizenzgebiihren an. [Thol6]

" Die genaue Funktionsweise der aufgelisteten Algorithmen kann [Rob15] entnommen werden.
8 vgl. [GNU15] fiir eine genau Beschreibung der GNU LGPL.
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Auswahl des Umsetzungswerkzeugs

Zur Auswahl des geeigneten Werkzeugs werden die vorgestellten Werkzeuge in die Bewer-
tungsmatrix in Tabelle 5-1 eingetragen und anhand der Kriterien verglichen. Hierzu werden den
einzelnen Bewertungskriterien unterschiedliche Gewichtungen (g) entsprechend der Wichtigkeit
zugeordnet. Des Weiteren erhdlt jedes Werkzeug eine Punktzahl (n) zwischen 0 und 9 entspre-
chend seiner Bedeutung. Die Summe aller gewichteten Teilkriterien (n*g) ergibt den Rang des
jeweiligen Werkzeugs.

Tabelle 5-1: Bewertungsmatrix der Werkzeuge

g SNNS-Kern | Java NNS Open NN MemBrain

Kriterium
n n*g n n*g n n*g n n*g

Lizenzierung 5 7 35 5 25 7 35 3 15
Verfligbare Netze 10 |9 90 9 90 3 30 9 90
Implementierbarkeit 30 |9 270 0 0 9 270 9 270
Weiterentwicklung 20 | O 0 0 0 9 180 9 180
Plattformunabhangig- 10 |9 90 9 90 9 90 9 90
keit
Dokumentation 5 9 45 9 45 9 45 9 45
Grafischer 5 6 30 8 40 8 40 9 45
Editor
Testmdglichkeiten 5 8 40 8 40 5 25 9 45
Kombinierbarkeit meh- | 5 9 45 0 0 9 45 9 45
rerer Netze
Summe 95 | 645 330 760 825
Rang 3 4 2 1

Aufgrund des in Tabelle 5-1 festgelegten Ranges der Werkzeuge wird zur Realisierung des
neuronalen Netzes das MemBrain-Werkzeug ausgewahlt.
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5.3 Q-Learning mit neuronalen Netzen

Wie in 5.1.1 beschrieben, eignen sich neuronale Netze zur Approximation der Q-Funktion. Ab-
bildung 5-5 illustriert die Verwendung von neuronalen Netzen zur Approximation der Q-Funktion
innerhalb eines Agenten.

Q ish
Neuronales Netz Traningsdatensatze

Wiederhole bis Endzustand erreicht

Aktueller Zustand :

Aktueller Zustand, ausgewshlte Aktion

_ Approximation von Q(s.a)

i
: Erreichen des Folgezustands :

Meuer Zustand, mogliche Aktionen

Y

_ Approximation von QMax(s.a)

| Berechnung der aktuellen Q-Funktion B]

Aktueller Zustand, ausgefihrte Aktion, aktuelle Q-Funktion

:Erreichen des Endzustands :

¥

‘ Berechnung der aktuellen Q-Funktion %

Aktueller Zustand, ausgefiihrte Aktion, aktuelle Q-Funktion

¥

Training des Netzes

L.
>

_ Werwendung der Traningsdatensétze zum Training

-«

Agent I MNeuronales Netz Traningsdatensatze

Q

Abbildung 5-5: Ablauf des Q-Learning mit neuronalen Netzen

Hierzu werden die aktuelle Aktion und die Zustande an das neuronale Netz als Eingdnge ange-

legt und die daraus resultierende Q-Funktion approximiert. Im Anschluss wird durch das gleiche

Vorgehen die Bewertung des Folgezustandes max Q.(s;4+1,a;+1) durch das neuronale Netz ap-
a

proximiert. Die Approximation der Bewertung des jetzigen und des Folgezustands wird solange
wiederholt, bis der Endzustand erreicht ist. Nach Erreichen des Endzustands werden die Trai-
ningsdaten den bereits vorhandenen Trainingsdaten hinzugefiigt und das neuronale Netz wird
mit den vorhandenen Trainingsdaten trainiert. Um die Berechnungszeit der Approximation der
Q-Funktion zu reduzieren, wird die Anzahl der Trainingsdatensatze des neuronalen Netzes auf
z. B. 10000 begrenzt. [Kra09]

Das genaue Vorgehen zur Auswahl einer Aktion, Bewertung der Zustande und dem Trai-
ning des Agenten wird im Folgenden néher erlautert.

5.3.1 Auswahl einer Aktion

Der Agent wahlt, wie in 5.1.1 beschrieben, seine auszufilhrende Aktion entweder zuféllig (Engl.
Exploration) oder auf Grundlage des bereits Gelernten (Engl. Exploitation) aus. [Krull]
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Entdeckung der Umwelt

In der Exploration-Phase wird die Q-Funktion fiir das Zustands-Aktions-Paar einer zuféllig ge-
wahlten Aktion approximiert. In beiden Fallen werden die Werte der Zustande, die Aktion und
der approximierte Wert der Q-Funktion fur das spatere Training des Netzes durch den Agent in
der Menge der Trainingsdatenséatze abgelegt. [Ert13]

Nutzung des bereits Gelernten

Um eine Aktion in der Exploitation-Phase auszuwahlen, legt der Agent fur jede Aktion das Zu-
stands-Aktions-Paar an das neuronale Netz als Eingangsvariablen an und approximiert die Q-
Funktion. Nach der Approximation aller méglichen Zustands-Aktions-Paare wahlt der Agent das
Zustands-Aktions-Paar mit der hchsten Bewertung der Q-Funktion aus und speichert das Zu-
stands-Aktions-Paar zusammen mit dem approximierten Q-Wert in den Trainingsdaten des neu-
ronalen Netzes fur das spatere Training ab. [Ert13]

In beiden Fallen wird der vorausgesagte Gewinn max Q:(St41, ar+1) aus (5.1) nach Er-

reichen des Folgezustands durch das neuronale Netz des Agenten approximiert und das Ergeb-
nis wird dem aktuellen Trainingsdatensatz hinzugefugt. [Krul1]

Zusatzlich ist darauf zu achten, dass die Exploration-Phase nicht zu friih verlassen wird,
da es sonst zu einer nicht optimalen oder schlechten Approximation einer optimalen Strategie
kommen kann. [Ert13]

5.3.2 Training des neuronalen Netzes des Agenten

Erreicht der Agent einen Endzustand, werden die entsprechenden Werte der Q-Funktion nach
der Vorschrift aus (5.1) berechnet. AnschlieRend wird das neuronale Netz mit den aktualisierten
Trainingsdatensatzen trainiert. [Ert13]
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5.4 Das Agentensystem

Vor der Umsetzung des Losungsansatzes werden an dieser Stellte noch einige Voriiberlegun-
gen bzgl. des Agentensystems angestellt. Aufgrund der hohen Komplexitét des vorliegenden
Problems empfiehlt sich zur Losung des Problems der Einsatz eines Multiagentensystems, da
im Betrieb eines MFS die jeweiligen Entscheidungen in Sekundenbruchteilen getroffen werden
missen. Durch den Einsatz von mehreren Agenten kann die Rechenzeit minimiert werden, da
mehrere Agenten auch parallel trainiert und befragt werden kénnen. In einem Multiagentensys-
tem ist jeder Agent fir seinen Bereich zustandig und agiert unabhangig von den anderen Agen-
ten. [Ert13]

5.4.1 Einsatz des Agentensystems

Wie in Kapitel 4 beschrieben, existieren in einem MFS unterschiedliche Fliisse. Eine sich im
MFS bewegende FE folgt immer einem dieser Fliisse. Abhangig von Quelle, Ziel und Fluss wer-
den unterschiedliche MFEs besucht. Um die MFEs auf der Route der FE nicht zu Uberlasten
und den Materialfluss konstant zu halten, muss mdglichst frih die Entscheidung getroffen wer-
den, ob die aktuelle FE das MFE wechseln kann. Ausgehend von den mdglichen Aktionen des
Agenten ist der Einsatz von Agenten Uberall da sinnvoll, wo die Frage beantwortet werden
muss, ob das nachste MFE betreten werden kann. Somit ergeben sich die ein- und ausgehen-
den Verbindungen der einzelnen MFEs als mdgliche Agentenposition.

Abbildung 5-6 zeigt am Beispiel eines fiktiven MFS, bestehend aus einem RBG, Loop,
zwei K-Platzen, einem Wareneingangsplatz und einem Versandplatz die Position der zugehdori-
gen Agenten, markiert durch einen blauen gestrichelten Pfeil.

Abbildung 5-6: Agentenposition in einem fiktiven Modell

Zur besseren Ubersicht wurden in Abbildung 5-6 die Agenten durch ein blaues Sechseck darge-
stellt. Das hier abgebildete Modell eines fiktiven MFS besteht aus insgesamt sechs MFEs und
acht zur Steuerung des Materialflusses bendtigten Agenten.
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Die einzelnen MFEs des Modells besitzen alle eine beschrankte Aufnahmekapazitat ¢
und die ein- und ausgehenden Verbindungen der MFEs sind durch eine maximale Férderkapa-
zitat pro Stunde beschrankt. Der Wareneingang ist das FEs-erzeugende und der Versand das
FEs-verbrauchende MFE des Modells.

Die FEs flieRen nach Erzeugung vom Wareneingang tber das Loop zum RBG, dort verblei-
ben sie bis zum Abruf durch einen der K-Platze. Nach Abruf einer FE fliel3t diese vom RBG Uber
das Loop zum anfordernden K-Platz. Dort wird durch den Benutzer der Kommissioniervorgang
gestartet und nach Abschluss des Vorgangs fliel3t die FE Uber das Loop zuriick in das RBG, zu-
satzlich kann eine neue FE auch tber das Loop zum Versand fliel3en.

Im hier dargestellten Modell steuern die Agenten (blau) die Ubergange der folgenden
MFEs:

e Agent A: Ubergang von Loop zu RBG

e Agent B: Ubergang von RBG zu Loop

e Agent C: Ubergang von K-Platz 1 zu Loop

e Agent D: Ubergang von Loop zu K-Platz 1

e Agent E: Ubergang von K-Platz 2 zu Loop

e Agent F: Ubergang von Loop zu K-Platz 2

e Agent G: Ubergang von Loop zum Versandplatz
e Agent H: Ubergang von WE zu Loop

Ausgehend vom hier vorgestellten Losungsansatz wird im folgenden Kapitel die konkrete
Umsetzung des vorgestellten Losungsansatzes in einem ereignisbasierten Simulator beschrie-
ben. Anschlielend wird der Lésungsansatz auf seine praktische Anwendbarkeit untersucht und
es wird ein Ansatz zur Integration des Losungsvorschlags in die Software viadat vorgestellt.
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6 UMSETZUNG DES LOSUNGSANSATZES

Zur Analyse der Umsetzbarkeit des in Kapitel 5 vorgestellten Losungsansatzes wurde ein Simu-
lator in C++ auf Basis der Modellierung der Referenzanlage erstellt. Das Vorgehen zur Erstel-
lung des Simulators und die Integration des Lésungsansatzes in einen selbst erstellten Simula-
tor werden im Folgenden naher erlautert.

6.1 Der ereignisorientierte Simulator

Zur Simulation des Verhaltens der Referenzanlage und zur Analyse des Losungsansatzes
wurde in C++ ein ereignisorientierter Simulator erstellt, der auf einem von viastore SOFTWARE
GmbH erstellten Framework basiert und tber die Kommandozeile gestartet werden kann. Eine
grafische Reprasentation des Materialflusses ist in der momentanen Version des Simulators
nicht vorgesehen.

Die Transporte von FEs werden als diskrete Ereignisse abgebildet, wobei das Auslésen
eines Ereignisses als Ankunft an einem Fordertechnikplatz innerhalb des MFS gewertet wird.

6.1.1 Besonderheiten des Simulators

Der Simulator wurde so konzipiert, dass einzelne Bereiche durch eine externe Konfiguration vor
Beginn der Simulation aktiviert bzw. deaktiviert werden konnen. So kénnen ohne Anderungen
des Quellcodes des Simulators mehrere Simulationen parallel betrieben werden.

Da physikalische Gegebenheiten im erstellten Simulator nicht von Belang sind, bietet
der Simulator die Moéglichkeit, einen Zeitraffer zu konfigurieren. Somit kann das zeitliche Verhal-
ten einer realen Anlage in einem Bruchteil der Echtzeit, sechs Simulationsminuten entsprechen
hier einer Stunde in Echtzeit, nachempfunden werden.

Zusatzlich kénnen alle Parameter, die fir die Implementierung des Reinforcement-Lear-
ning-Ansatzes bendétigt werden, wahrend der Laufzeit der Simulation angepasst werden. Eine
Anderung der Variablen der Q-Funktion kann bspw. einfach per IPC°-Nachricht an den Simula-
tor geschickt werden.

Zusatzlich bietet der Simulator die Mdglichkeit, die trainierten neuronalen Netze und die da-
mit verbundenen Trainingsdaten als MemBrain-Dateien auszugeben. Ferner wird in regelmafi-
gen Abstanden der aktuelle Zustand der Simulation als CSV-Dateien, bestehend aus:

e Liste der aktiven Transporte

e Liste der durchschnittlichen Transportzeiten der letzten zehn Minuten von allen Quellen
zu den Senken

e Liste der durchschnittlichen Transportzeiten der letzten Stunde von allen Quellen zu
den Senken

e Liste der Durchsétze der letzten zehn Minuten an allen MFEs, Quellen und Senken

e Liste der Durchsatze der letzten Stunde an allen MFEs, Quellen und Senken

e Trainingsdaten der einzelnen Agenten

fur die Verarbeitung in Excel ausgegeben. Zusatzlich kénnen die soeben beschriebenen Daten
auch auf Anforderung per IPC-Nachricht ausgegeben werden.

Darlber hinaus kdnnen wahrend der Simulation im Zeitraum von 10 Simulationsminuten die
gemessenen Durchsétze als Diagramme durch den Einsatz des Werkzeugs Gnu Plot [Ghul6]
ausgegeben werden. Durch die regelméafiige Ausgabe der Daten als CSV und grafische Dar-
stellung konnte in den einzelnen Erstellungsschritten das Verhalten des Simulators tberprift
und die korrekte Funktion validiert werden.

® Engl. Interprocesscommunication (IPC): Kommunikation von verschiedenen Prozessen mit getrenntem Speicherbe-
reich. [Fis11]
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6.1.2 Abbildung der Transportzeiten

Zur Abbildung der Transportzeiten innerhalb des Simulators wurden die Transportzeiten der Re-
ferenzanlage im laufenden Betrieb erfasst und durch eine geeignete Abbildung als diskrete Er-
eignisse in den Simulator Ubertragen. Im Folgenden wird die detaillierte Vorgehensweise zur
Abbildung der Transportzeiten innerhalb des Simulators beschrieben.

Erfassung der Transportzeiten

Fur eine moglichst exakte Abbildung der Transportzeiten innerhalb des Simulators wurden
durch eine Auswertung der Transportzeiten der Referenzanlage im laufenden Betrieb die Trans-
portzeiten ermittelt. Hierzu wurde aus den vorhandenen Transportzeiten der jeweiligen Strecke
ein Mittelwert Gber jeweils 100 erfasste Daten genommen. Ein Auszug der ermittelten Trans-
portzeiten der Referenzanlage kann Tabelle 6-1 enthommen werden.

Tabelle 6-1: Ermittelte Transportzeiten der Referenzanlage

Strecke Transportdauer
Von Nach in ms
RBG 1 Eingang RBG 1 Loop 1 5000
RBG 2 Eingang RBG 2 Loop 1 5000
Eingang Loop 1 Ubergang Loop 1 zu Loop 2 54000
Eingang Loop 2 Eingang K-Platz 1 38000
Eingang Loop 2 Eingang K-Platz 2 39000
Eingang Loop 2 Eingang K-Platz 3 40000
Eingang Loop 2 Eingang K-Platz 4 41000
Eingang K-Platz 1 K-Platz 1 1000
Eingang K-Platz 2 K-Platz 2 1000
Eingang K-Platz 3 K-Platz 3 1000
Eingang K-Platz 4 K-Platz 4 1000
Ubergang Loop 1 zu Loop 2 Ubergang Loop 1 zu Loop 2 | 118000
Eingang Loop 2 Eingang Loop 2 115000
Ausgang K-Platz 1 Ubergang Loop 2 zu Loop 1 148000
Ausgang K-Platz 2 Ubergang Loop 2 zu Loop 1 147000
Ausgang K-Platz 3 Ubergang Loop 2 zu Loop 1 146000
Ausgang K-Platz 4 Ubergang Loop 2 zu Loop 1 145000
Eingang Loop 1 Eingang RBG 1 Loop 1 46000
Eingang Loop 1 Eingang RBG 2 Loop 1 49000
Eingang RBG 1 Loop 1 RBG 1 5000
Eingang RBG 2 Loop 1 RBG 2 5000

Die Zeiten von Ubergang Loop 1 zu Loop 2 nach Ubergang Loop 1 zu Loop 2 und von Eingang
Loop 2 nach Eingang Loop 2 représentieren eine vollstdndige Umkreisung des entsprechenden
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Loops. Die hier ermittelten Zeiten der Strecken kénnen so dem Gesamtmodell aus Abbildung
4-12 zugeordnet werden.

Transportzeiten in beférdernden Materialflusselementen

Beim Betreten eines MFE wird der Timer mit der entsprechenden Transportdauer gestartet, ist
der Timer abgelaufen, gilt die FE als am Ende des aktuellen MFE angekommen. Vor dem Be-
treten des nachsten MFE wird dessen Kapazitéat geprift, ist noch Kapazitat vorhanden, betritt
die FE das nachfolgende MFE. Ist keine Restkapazitat vorhanden, verweilt die FE fiir eine zu-
satzliche Runde im aktuellen MFE.

Die Motoren innerhalb der Foérdertechnik zeichnen sich durch einen konstanten Vortrieb
der FEs aus. Mit der Zunahme von FEs innerhalb einer Strecke sinkt die Férdergeschwindigkeit
innerhalb des MFE. Um ein mdglichst reales Verhalten der Transportzeiten zu erreichen, wird
die Abnahme der Fordergeschwindigkeit durch die Zunahme von FEs in den Loops durch eine
zunehmende Transportzeit abgebildet. Hierbei soll durch einen Sprung in den Transportzeiten,
bedingt durch eine hohe Anzahl an FEs innerhalb eines MFE, ein Staueffekt simuliert werden.
Hierzu wurde die Transportzeit t.,, um einen Faktor t;,., = 5 und eine Stufenfunktion

Anzahl FE im FME “t, Falls Anzahl FE < x
. T+
ty = maximal erlaubte MFE (6.1)
Sk tery sonst

erweitert. Mit der Annahme x = 20 ergibt sich mit (6.1) die in Abbildung 6-1 dargestellte Kurve
fur fullstandsabhéngige Transportzeit in den MFE Loop 1 und Loop 3.

&

24 - Fillstandsabhingige Transportzeit
22 + |
20 [
18 - |
16 |
14 - |
12 I|
10 [

Zusatliche Transportzeit in Sekunden

[T S R N« (<
T
|
|
|

Anzahl FE im MFE

Abbildung 6-1: Verlauf der Transportzeit fur die MFE Loop 1 und Loop 3

In Abbildung 6-1 ist der stufenartige Verlauf der fullstandsabhdngigen Transportzeit in den
Loop 1 und Loop 3 zu erkennen. Bis zu einer Fillmenge von 19 FEs im Loop steigt die zusatzli-
che Transportdauer linear an, danach bleibt sie konstant bei 25 Sekunden.

Die Wahl der Stufenfunktion als fiillstandsabhéngige Transportzeit soll im spateren Ver-
lauf der vorliegenden Arbeit zur Beurteilung der Qualitat der Agentenentscheidungen dienen.
Hier soll untersucht werden, inwiefern sich die Transportzeit auf die Fillstande der einzelnen

Loops im Agentensystem auswirken kann.
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Bearbeitungszeiten in den K-Platzen

Zusatzlich zu den Transportzeiten zu den Scannern wird in den K-Platzen eine fiktive Bearbei-
tungszeit der FE, ausgel6st durch den Kommissioniervorgangs des Bedieners von 30 Sekun-
den pro FE im K-Platz angenommen. Als weitere Beschrankung wird im Simulator maximal eine
zu bearbeitende FE pro K-Platzangenommen.

6.1.3 Auslagerfluss des Simulators

Im optimierten Fall transportieren die RBG 1 und RBG 2 im Betrieb der vorliegenden Referenz-
anlage 2 FEs gleichzeitig. Dartiber hinaus kann fir den optimierten Fall der maximal erreich-
bare Durchsatz der einzelnen MFEs auf 120 % erhdht werden, da hier der technisch maximal
erreichbare Durchsatz angenommen werden kann.

Dazu werden RBG 1 und RBG 2 der Referenzanlage als diskrete Ereignisse abgebildet.
Um den optimierten Fall zu simulieren, erzeugen die RBG 1 und RBG 2 jeweils alle 30 Sekun-
den maximal zwei FEs mit dem gleichen Ziel und schleusen diese auf die entsprechende Stre-
cke von RBG zu Loop 1 ein.

Ist die maximale Kapazitat der entsprechenden Strecke erreicht, kénnen keine neuen FEs
mehr erzeugt werden, bis die Strecke wieder freie Kapazitaten hat.

6.1.4 Einlagerflisse des Simulators

Der Fluss des Wareneingangs an Loop 3 unterliegt uhrzeitabhéngigen Schwankungen. Zur
moglichst realitéatsgetreuen Abbildung wurden hierzu die Wareneingange von insgesamt

434 Stunden erfasst und in den Simulator tbertragen. Tabelle 6-2 zeigt einen Auszug aus den
Wareneingangsdaten.

Tabelle 6-2: Auszug aus den Wareneingangen

Stunde Anzahl erfasste FE
0 57
1 81
2 28
3 60

Wie bei den RBGs kann auch bei den Wareneingangsplatzen der technisch erreichbare Durch-
satz von 120 % der Normalleistung als Optimum angenommen werden. Daher erzeugen die
Wareneingangsplatze abhangig von der Streckenkapazitat jeweils alle 60 Sekunden und 112,5
Sekunden jeweils eine FE und schleusen diese auf die Strecke von WE-Platz zu Loop 3.

Zusatzlich erzeugt die Produktion an Loop 2 jeweils alle 29,5 Sekunden eine FE und das
RBG ,Produktion” alle 59 Sekunden jeweils 2 FEs mit dem gleichen Ziel.

6.1.5 Rucklagerfluss des Simulators

Nach der Ankunft im K-Platz wird die ankommende FE wieder zurtick zu ihrer Quelle transpor-
tiert. Hierbei kénnen sich aufgrund der maximalen Streckenkapazitat maximal sieben FEs
gleichzeitig in der jeweiligen Strecke von K-Platz zu Loop 3 befinden. Zuséatzlich kénnen an den
K-Platzen nur FEs aus Loop 3 in die K-Platze ausgeschleust werden, wenn auch FEs aus den
K-Platzen in Loop 3 eingeschleust werden.
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6.1.6 Testdaten des Simulators

Zur Simulation von Materialflissen wurden fir die Quellen Testdaten in Abhangigkeit der Funk-
tion der Quellen erzeugt. So wurden fir die RBG jeweils immer zwei LEs mit der gleichen Ziel-
senke erstellt, fir die WE-Platze wurden fortlaufend FE-Nummern mit jeweils wechselnden Ziel-
senken erzeugt. Tabelle 6-3 zeigt einen Auszug der erzeugten Testdaten.

Tabelle 6-3: Auszug der Testdaten

FE-Nummer Quelle Ziel

FE1 RBG 1 K-Platz 1
FE2 RBG 1 K-Platz 1
FE3 RBG 2 K-Platz 2
FE4 RBG 2 K-Platz 2
FES RBG 1 K-Platz 3
FE6 RBG 1 K-Platz 4
FE7 WE-Platz 1 RBG 1
FES8 WE-Platz 2 RBG 2

Insgesamt wurden fiir einen Langzeittest des Simulators 50000 Testdatensatze erzeugt. Der Si-
mulator liest zu Beginn alle Testdatensétze ein, speichert diese im Arbeitsspeicher und arbeitet
die Daten sequenziell ab.

6.1.7 Validierung des Simulators

Zur Validierung des korrekten Verhaltens des Simulators sowie seiner Komponenten wurden in
jedem Schritt der Erweiterung des Simulators die Ausgaben in den Log-Dateien des Simulators
sowie die Ubergebenen Trainingsdaten an die jeweiligen neuronalen Netze nach Ende eines Si-
mulationslaufs tberprift. Im Fehlerfall wurde der Quellcode des Simulators angepasst und der
Simulationsprozess erneut gestartet.

6.2 Definition des Agenten

Vor der Umsetzung des Simulators wurden die Zustédnde, Aktionen und die Belohnung des
Agenten definiert. Das genaue Vorgehen zur Definition des Verhaltens des Agenten wird im
Kommenden naher erlautert.

6.2.1 Position der Agenten

Da die in 5.4 eingefuhrten Agenten oft redundante Zustandsrdume abbilden und die neuronalen
Netze der entsprechenden Agenten somit oft gleich sind, werden in der konkreten Umsetzung
des Agentensystems in der Simulation Agenten zusammengefasst. Des Weiteren werden in der
vorliegenden Umsetzung des Agentensystems die Agenten fur das Ausschleusen von FEs von
den Loops in die K-Platze nicht umgesetzt. Abbildung 6-2 illustriert die umzusetzenden Agen-
tenpositionen im Simulator.
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Abbildung 6-2: Agentenpositionen im Simulator

Es ergeben sich somit die folgenden Agenten im Simulator:

e Agent A: Einfahrt von den RBG 1, RBG 2 und RBG ,Versand® zu Loop 1

e Agent B: Uberfahrt von Loop 1 zu Loop 2

e Agent C: Einfahrt von Loop 2 vom Aufsetzpunkt in der Produktion und RBG ,Produk-
tion*

e Agent D: Uberfahrt von Loop 2 zu Loop 1

e Agent E: Uberfahrt von Loop 1 zu Loop 3

e Agent F: Uberfahrt von Loop 3 zu Loop 1

e Agent G: Einfahrt von den K-Platzen zu Loop 3

e Agent H: Einfahrt von den Wareneingangsplatzen zu Loop 3

e Agent I: Uberfahrt von Loop 4 zu Loop 3

e Agent J: Einfahrt von den Leerbehalteraufsetzpunkten zu Loop 4

6.2.2 Zustande und Aktionen

Zur Ermittlung der Eingangsvariablen des Agenten wurden die mdglichen Aktionen und Zu-
stande auf Basis der Modelle aus 4.3 bestimmt.

Aktionen des Agenten

Die moglichen Aktionen des Agenten beschranken sich auf zwei Mdglichkeiten: ,fahren® und
L,hicht fahren®.
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Zustande des Auslager- und Ricklagerflusses

Aus der Modellierung der Rucklager- und Auslagerfliisse in Abbildung 4-11 lassen sich die un-
ten aufgefiihrten Zusténde ableiten:

e Anzahl der FEsin RBG 1

e Anzahl der FEs in RBG 2

e Anzahl der FEs in RBG 3

e Anzahl der FEs in Loop 1

e Anzahl der FEs in Loop 2

e Anzahl der FEs in Loop 3

e Anzahl der FEs in K-Platz 1 eingehend

e Anzahl der FEs in K-Platz 2 eingehend

e Anzahl der FEs in K-Platz 3 eingehend

e Anzahl der FEs in K-Platz 4 eingehend

e Anzahl der FEs in K-Platz 1 ausgehend

e Anzahl der FEs in K-Platz 2 ausgehend

e Anzahl der FEs in K-Platz 3 ausgehend

e Anzahl der FEs in K-Platz 4 ausgehend

e Anzahl der ausgehenden FEs aus dem Wareneingangsplatz 1
e Anzahl der ausgehenden FEs aus dem Wareneingangsplatz 2
e Anzahl aller FEs im MFS mit dem aktuellen Ziel

Hinzu kommt die l&angste Verweildauer aus allen im aktuellen MFE befindlichen FEs. Dieser Zu-
stand soll dem Agenten eine gewisse Zielprioritat vermitteln und ihn zusatzlich fir unnétig lange
Aufenthalte bestrafen.

Um die Dimension des Problems und die damit verbundenen Eingénge des Agenten zu ver-
ringern, kénnen die mdglichen Zusténde zu

e Summe der FEs in dem RBG 1 und 2

e Anzahl der FEs in RBG 3

e Anzahlder FEsin Loop 1

e Anzahl der FEs in Loop 2

e Anzahl der FEs in Loop 3

e Summe der ausgehenden FEs in allen K-Platzen

e Summe der eingehenden FEs in allen K-Platzen

e Summer der ausgehenden FEs aus dem Wareneingang

e Anzahl aller FEs im MFS mit dem aktuellen Ziel

o Langste Verweildauer aus allen im aktuellen MFE befindlichen FEs

zusammengefasst werden. Die Zustande der RBG 1 und RBG 2 lassen sich zusammenfassen,
da sie am gleichen Folge-MFE angeschlossen sind. Ferner sind sie aufgrund der gleichen Tak-
tung gleichberechtigt. Die Zustdnde der K-Platze kdnnen zusammengefasst werden, da durch
die physische Verbindung der K-Platze mit Loop 3 lediglich der Zustand aller K-Platze von Inte-
resse ist.

Zustande des Einlagerflusses

Der Einlagerfluss verhalt sich &hnlich wie der Riicklagerfluss, er weicht nur in der Startposition
ab. Daher kénnen die meisten Zustande tbernommen werden. Es kommt lediglich der Zustand
des Wareneingangs hinzu. Und es ergeben sich die folgenden Zustande:

e Summe der FEs in dem RBG 1 und 2
e Anzahl der FEs in RBG 3
e Anzahl der FEs in Loop 1
e Anzahl der FEs in Loop 2
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Anzahl der FEs in Loop 3

Summe der ausgehenden FEs aus dem Wareneingang

Summe der ausgehenden FEs in allen K-Platzen

Summe der eingehenden FEs in allen K-Platzen

Anzahl aller FEs im MFS mit dem aktuellen Ziel

Langste Verweildauer aus allen im aktuellen MFE befindlichen FEs

Auch die Zustande des Einlagerflusses konnen zusammengefasst werden, da hier ebenso der
Gesamtzustand aller Ein- bzw. Ausgénge fir die Bewertung des aktuellen Zustands ausrei-
chend ist.

6.2.3 Eingangsvariablen der Agenten

Auf Grundlage der in 6.2.1 eingefuihrten Zustande der einzelnen Materialfliisse lassen sich fiir
die einzelnen Agenten aus 5.4.1 die Eingangsvariablen zur Approximation der Q-Funktion ablei-
ten. Alle Agenten erhalten als Standardeingangsvariablen

die auszufiihrende Aktion

die langste Verweildauer aus allen im aktuellen MFE befindlichen FEs
die Anzahl aller FEs im MFS mit dem aktuellen Ziel und

die Anzahl der FEs im aktuellen MFE.

Nachfolgend werden die zusétzlich benétigten Eingangsvariablen der einzelnen Agenten aufge-

fahrt.

Agent A: Einfahrt von den RBG 1, RBG 2 und RBG ,,Versand“ zu Loop 1
o Anzahl der FEs in Loop 1

Anzahl der FEs in Loop 2

Anzahl der FEs in Loop 3

Summe der ausgehenden FEs in allen K-Platzen

Summe der eingehenden FEs in allen K-Platzen

Summe der ausgehenden FEs aus dem Wareneingang

O O O O O

Agent B: Uberfahrt von Loop 1 zu Loop 2
o Anzahl der FEs in Loop 1
o Anzahl der FEs in Loop 2
o Summe der ausgehenden FEs aus der Produktion
o Summe der eingehenden FEs in den RBG 1 und RBG 2

Agent C: Einfahrt von Loop 2 vom Aufsetzpunkt in der Produktion und RBG ,,Pro-
duktion“
o Anzahl der FEs in Loop 1
Anzahl der FEs in Loop 2
Summe der eingehenden FEs in die Produktion
Summe der ausgehenden FEs aus der Produktion
Summe der eingehenden FEs in den RBG 1 und RBG 2

o O O O

Agent D: Uberfahrt von Loop 2 zu Loop 1
o Anzahl der FEs in Loop 1
o Summe der eingehenden FEs in den RBG 1 und RBG 2
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e Agent E: Uberfahrt von Loop 1 zu Loop 3
o Anzahl der FEs in Loop 3
o Summe der ausgehenden FEs in allen K-Platzen
o Summe der eingehenden FEs in allen K-Platzen
o Summe der ausgehenden FEs aus dem Wareneingang

e Agent F: Uberfahrt von Loop 3 zu Loop 1

o Anzahl der FEs in Loop 1
Anzahl der FEs in Loop 2
Summe der ausgehenden FEs aus der Produktion
Summe der eingehenden FEs in den RBG 1 und RBG 2
Summe der ausgehenden FEs aus den RBG 1 und RBG 2

O O O O

e Agent G: Einfahrt von den K-Platzen zu Loop 3

o Anzahl der FEs in Loop 1
Anzahl der FEs in Loop 2
Anzahl der FEs in Loop 3
Summe der ausgehenden FEs in allen K-Platzen
Summe der eingehenden FEs in allen K-Platzen
Summe der ausgehenden FEs aus dem Wareneingang
Summe der eingehenden FEs in den RBG 1 und RBG 2

O 0O O O O ©°

e Agent H: Einfahrt von den Wareneingangsplatzen zu Loop 3
o Anzahlder FEsin Loop 1

Anzahl der FEs in Loop 2

Anzahl der FEs in Loop 3

Summe der ausgehenden FEs in allen K-Platzen

Summe der eingehenden FEs in allen K-Platzen

Summe der ausgehenden FEs aus dem Wareneingang

Summe der eingehenden FEs in den RBG 1 und RBG 2

O 0O O O O ©°

e Agent I: Uberfahrt von Loop 4 zu Loop 3
o Anzahlder FEsin Loop 1
o Anzahl der FEs in Loop 3
o Summe der eingehenden FEs in den RBG 1 und RBG 2

e Agent J: Einfahrt von den Leerbehélteraufsetzpunkten zu Loop 4
o Anzahl der FEs in Loop 4
o Anzahlder FEs in Loop 3
o Anzahlder FEsin Loop 1
o Summe der eingehenden FEs in den RBG 1 und RBG 2
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6.2.4 Belohnung des Agenten

Der Agent soll nach Ankunft der FE in der Zielsenke fur seine mit der FE verbundenen Ent-
scheidungen und Aktionen belohnt bzw. bestraft werden. Hierzu wurden verschiedene Ansétze
entworfen, die an dieser Stelle diskutiert werden sollen. Die Transportzeiten sind, falls nicht an-
ders angegeben, in Sekunden zu verstehen.

e Belohnung auf Basis des Durchsatzes der letzten Stunde

Der Agent wird nach Ankunft einer FE auf Basis des Durchsatzes der letzten Stunde
belohnt. Eine Belohnung des Agenten auf Basis des Durchsatzes an den Senken ist als
Belohnung nicht ausreichend. Der Agent wird zwar fur die Ankunft von moglichst vielen
FEs pro Stunde belohnt, jedoch wird die eigentliche Transportzeit einer FE nicht in Be-
tracht gezogen. Der Agent kann zwar viel Durchsatz produzieren, jedoch kénnen sich
einzelne FEs unendlich lange in den MFEs aufhalten.

e Belohnung auf Basis der Transportdauer der FE und der theoretisch erreichbaren
Transportzeit

Der Agent wird nach Ankunft einer FE in der Zielsenke mittels der Belohnung

1 o aktuelle Transportdauer 6.2)
"= ter it b = theoretisch erreichbare Zeit '

belohnt. Diese Art der Belohnung setzt einen gewissen Kenntnisstand des Agenten
Uber seine Umwelt voraus. Hierzu missten dem Agenten spezielle Kontextinformatio-
nen mitgeteilt werden, die vorab experimentell bestimmt werden mussen.

e Belohnung auf Basis der Transportdauer der FE und des Durchsatzes der letzten
Stunde an der Zielsenke

Der Agent wird nach Ankunft einer FE in der Zielsenke durch die Belohnung

1

r= * Durchsatz der letzten Stunde an der Zielsenke (6.3)
Transportdauer

belohnt. Diese Belohnung verspricht eine bessere Art der Belohnung des Agenten, da
er hier in Abhangigkeit der Transportdauer und des Durchsatzes an der entsprechen-
den Zielsenke belohnt wird.

Durch erste Experimente konnte gezeigt werden, dass der Agent fiir das Verlassen von
Loop 1 und Loop 3 eine zuséatzliche Belohnung r;, erhalten soll. Hierzu wurden die
nachfolgenden vier Experimente mit unterschiedlichen Werten fir r;,, und (6.3) erweitert
um r;,,Zu

1
* Durchsatz der letzten Stunde an der Zielsenke + 1y, (6.4)

T =
Transportdauer

durchgefuhrt.
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Zur Beurteilung der unterschiedlichen Faktoren fiir r;,, aus (6.4) wurde die zusatzliche Beloh-
nung ry, fur:

e Testlaufl:r;,, =0
o Testlauf2:r,, =1
e Testlauf3:r;, =5
e Testlauf 4: r,, =10

festgelegt. Abbildung 6-3 zeigt einen Vergleich der soeben beschriebenen zusatzlichen Beloh-
nungen r;, fir die in 6.2.1eingeflihrten Agenten A ,Einfahrt von den RBG 1 und RBG 2 in Loop1*,
E ,Uberfahrt von Loop 1 nach Loop 3“, F ,Uberfahrt von Loop 3 nach Loop 1“und G ,Einfahrt
von den K-Platzen zu Loop 3“.

300 -

250

200

Anzahl ankemmende FEs pro Stunde

150
/""-\-\__
100
fin =0
50 fin =1
fin =5
Fin = 1[]I E—

0 | | | | | | | | | | | | | | | | | | | | | -

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
Zeit in Stunden

Abbildung 6-3: Vergleich der Auswirkung von unterschiedlichen Belohnungen auf den Gesamt-
durchsatz an den K-Platzen

Hierbei wurden bei allen Testlaufen insgesamt 10000 FEs an den K-Platzen abgenommen. Die
Exploration-Wahrscheinlichkeit wurde initial auf 50 %, der Parameter « = 0,1 und der Parame-
ter y = 0,6 gesetzt. Die Exploration-Wahrscheinlichkeit wurde bei allen Testfallen ab 1000 an
den K-Platzen ankommenden FEs nach jeweils 100 weiter ankommenden FEs um 1 % ge-
senkt. Alle Testlaufe erreichen den Zieldurchsatz an den K-Platzen von 240 FEs pro Stunde
(vgl. Tabelle 4-2).

Jedoch kann, wie in den Testlaufen 3 und 4 gezeigt, durch eine Definition einer zusétzli-
chen Belohnung r;,, der Agent schneller in fir ihn interessante Zustéande gefihrt und der ge-
winschte Zieldurchsatz schneller erreicht werden. Da die Durchséatze der Testlaufe 3 und 4 ein
ahnliches Verhalten zeigen, wird fur das weitere Vorgehen in dieser Arbeit die zuséatzliche Be-
lohnung r;, auf den Wert 5 festgelegt.
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6.2.5 Neuronales Netz des Agenten

Wie in Kapitel 5 beschrieben, sollen neuronale Netze zur Approximation der Q-Funktion einge-
setzt werden. Die neuronalen Netze wurden in der aktuellen Umsetzung alle manuell mit dem
grafischen Editor des MemBrain-Werkzeugs erstellt. Abbildung 6-4 zeigt exemplarisch das neu-
ronale Netz zur Bewertung des Agenten A.

= = ) = = A = —= o
Lingste Verweiaier . NFE Summe FE inlosp | SummeFEinLoom Summe FEinLaopd SUMMeFEInKPimen  SummeFE KPlie asghend Summe FE Pl ausghend  Summe FEImMES fir Ziel  SummeFEWE asgehend  Summe FE im sk MFE

Abbildung 6-4: Beispiel fur ein neuronales Netz eines Agenten

Die Neuronen sind als Vierecke und die Verbindungen als Linien zwischen den Neuronen dar-
gestellt. Die schwarzen Zahlen unterhalb der Neuronen stellen die Normalisierungsgrenzen dar.
Bei der Erstellung der Neuronen und Verbindungen wurden die vom MemBrain-Werkzeug vor-
geschlagenen Standardwertel® verwendet. Die neuronalen Netze der anderen Agenten besit-
zen alle eine &hnliche Topologie wie das Netz aus Abbildung 6-4, daher wird an dieser Stelle
auf eine Abbildung der restlichen Netze verzichtet.

Das neuronale Netz aus Abbildung 6-4 besteht aus einer Eingabeschicht mit elf Eingangen, ei-
ner versteckten Schicht mit drei Neuronen und einer Ausgabeschicht mit einem Ausgabeneuron
fur die Ausgabe des Q-Wertes.

Die Anzahl der Neuronen in der Eingabeschicht resultiert aus der Anzahl der Eingabevari-
ablen des Agenten.

Fur die Anzahl der Neuronen in der versteckten Schicht wurden drei Neuronen gewahlt, da
hier ein Kompromiss zwischen dem Over Fitting, bei dem das neuronale Netz die Ubergebenen
Werte aufgrund von zu vielen versteckten Neuronen einfach auswendig lernt, und dem Under
Fitting, bei dem das Netz die gewiinschte Funktion aufgrund von zu wenig vorhandenen Infor-
mationen innerhalb des Netzes nicht ausreichend approximieren kann, eines Netzes gefunden
werden muss.

6.2.6 Normalisierung der Neuronen des neuronalen Netzes

Um Fehler in der Ein- und Ausgabe des neuronalen Netzes zu vermeiden, missen die Ein-
gangs- und Ausgangswerte vor der Ubergabe an das neuronale Netz normalisiert werden.
Hierzu kdnnen im grafischen Netzeditor von MemBrain die Normalisierungsgrenzen vergeben
werden.

Normalisierungsgrenzen der Eingabeneuronen

Die Werte der Eingangsneuronen werden vor der Ubergabe an das neuronale Netz auf den
Wertebereich der entsprechen Aktvierungsfunktion normalisiert. Tabelle 6-4 zeigt die Eingangs-
neuronen und ihre Wertebereiche fir die Normalisierung.

10 Vgl. [Tho16] fur Standardeinstellungen der einzelnen Neuronen.
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Tabelle 6-4: Eingangsneuronen und ihre Minima und Maxima

Eingangsneuron Minimum Maximum
Fahren 0 1
Langste Verweildauer im aktuellen MFE 0 5« Transportdauer aktuelles MFE
Summe FEs in Loop 1 0 28
Summe FEs in Loop 2 0 18
Summe FEs in Loop 3 0 28
Summe FEs in den RBGs eingehend 0 20
Summe FEs in den RBGs ausgehend 0 20
Summe FEs in den K-Platzen 0 28
eingehend

Summe FEs in den K-Platzen 0 28
ausgehend

Summe FEs im MFS fir Ziel 0 28
Summe FEs im aktuellen MFE 0 56

Mit Ausnahme der langsten Verweildauer konnen alle Maxima statisch, durch eine Ableitung
der Maxima aus den technischen Vorgaben des MFS, bestimmt werden. Das Maximum der

Transportdauer im aktuellen MFE muss dynamisch wahrend der Laufzeit angepasst werden,
hierzu bietet die MemBrain-DLL-Schnittstelle eine einfache Mdglichkeit.

Normalisierungsgrenze des Ausgabeneurons

Das zur Approximation der Q-Funktion verwendete Netz besteht lediglich aus einem einzigen
Ausgabeneuron. Erste Versuche haben gezeigt, dass auch hier die Grenzen dynamisch zur
Laufzeit angepasst werden missen, da es sonst zu fehlerhaften Approximationen der Q-Funk-
tion kommen kann.

Zur ersten Abschatzung der Normalisierungsgrenzen wurde, fir das im Folgenden dargestellte
Experiment, fir das Maximum der Normalisierungsgrenze des Ausgabeneurons der Wert 10 ge-
wahlt. Abbildung 6-5 illustriert den Unterschied im Verlauf der Q-Funktion zwischen dem tat-
sachlichen und dem durch das neuronale Netz approximierten Ergebnis der Q-Funktion Uber
insgesamt 2524 Trainingsdatensatze des Agenten A.
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Abbildung 6-5: Verlauf der tatsachlichen (blau) und approximierten Q-Funktion (rot)

Aus Abbildung 6-5 ist eine Konvergenz des approximierten Q-Werts des Ausgabeneurons um
die obere Grenze von zehn zu erkennen. Bei einem Vergleich der tatsachlich berechneten
Werte mit den approximierten Werten fallt jedoch die starke Streuung der tatsdchlichen Werte
auf. Da die approximierten Werte sehr haufig um das Maximum der Normalisierungsgrenze
konvergieren, kann es im Verlauf der Simulation zu Fehlbewertungen des Zustand-Aktions-Paa-
res durch das neuronale Netz und zu Fehlentscheidungen des Agenten kommen. Auf Grund-
lage des hier dargestellten Experiments werden die Normalisierungsgrenzen des Ausgabeneu-
rons initial auf

e Minimum: O
e Maximum: 30

festgelegt. Durch das hohe Maximum von 30 soll eine zu haufige Neujustierung der oberen Nor-
malisierungsgrenze verhindert werden. Durch eine Normalisierung der entsprechenden Werte
direkt vor der Ubergabe an das neuronale Netz bleiben diese unberiihrt und kénnen im Falle ei-
ner Anpassung einfach erneut normalisiert werden. Um den neuen Definitionsbereich anzuler-
nen, kann das neuronale Netz mit den vorhandenen Trainingsdaten im neuen Wertebereich
trainiert werden. [Tho16]

6.2.7 Training des Agenten

Der Agent wird immer nach Ankunft der FE in der Zielsenke mit den vorhandenen Trainingsda-
tensatzen trainiert. Zusatzlich werden die Trainingsdatensatze des Agenten nach dem FIFO-
Prinzip aktualisiert. Hierzu wurde zu Beginn die maximale Anzahl an Trainingsdatensatzen im
Fundus des Agenten auf maximal 50000 festgelegt, nach Erreichen der Obergrenze wird je-
weils der élteste Trainingsdatensatz geloscht.

6.3 Beschreibung der MemBrain-DLL

Um mit den Funktionen der MemBrain-DLL zu arbeiten, muss diese zuerst in den Quellcode in-
tegriert werden. Hierzu kann die MemBrain-DLL in den Quellcode des Simulators eingebunden
werden. Danach kénnen alle Funktionen der MemBrain-DLL verwendet werden. Sowohl die in
der vorliegenden Arbeit verwendeten Befehle zum Ausfihren der MemBrain-DLL als auch der
grundsatzliche Aufbau der MemBrain-DLL werden im kommenden Abschnitt Schritt fur Schritt
kurz erlautert. Genauere Beschreibungen aller Befehle und der MemBrain-DLL kénnen [Tho16]
enthommen werden.
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6.3.1 Aufbau der MemBrain-DLL

Mit der MemBrain-DLL kdnnen beliebig viele Netze, Trainingsdatensatze und die von MemBrain
unterstitzen Lernregeln verwaltet und benutzt werden. MemBrain unterscheidet hierzu die
Netzverwaltung, Trainingsdatensatzverwaltung und die globale Verwaltung der Lernregeln.

Die von der MemBrain-DLL verwalteten neuronalen Netze werden Uber ihre eindeutige
Nummer durch die MemBrain-DLL angesprochen.

Die Trainingsdatensétze werden zu sog. Lessons gruppiert und kénnen durch ihre eindeu-
tige Kennung einem passenden Netz zum Training vorgelegt werden. Die Sammlung der ver-
figbaren Lernregeln wird zu Beginn des Programms einmalig geladen, danach kann die ge-
wiinschte Lernregel geladen werden.

6.3.2 Verwendung der MemBrain-DLL

Die MemBrain-DLL kann als externe DLL in ein Programm eingebunden werden. Zur Bedie-
nung und Administration von neuronalen Netzen bietet die MemBrain-DLL u. a. die folgenden
Funktionen:

Tabelle 6-5: Auszug der Befehle der MemBrain-DLL

Funktion Befehl

Laden eines neuronalen Netzes _MB_LoadNet(“myNet.mbn*);

Hinzufligen eines Netzes _MB_AddNet();

Randomisieren eines Netzes _MB_RandomizeNet();

Zuricksetzen eines Netzes _MB_ResetNet();

Laden der Lernregeln _MB_LoadTeacherFile(“‘myTeacher.mbn®);

Eine detaillierte Beschreibung der Befehle zur Verwendung von neuronalen Netzen durch Ein-
satz der MemBrain-DLL kann Anhang A-1 entnommen werden.

Auf Basis der hier beschriebenen Umsetzung des Losungsansatzes werden im folgen-
den Kapitel die einzelnen Simulations- und Analyseschritte ndher erlautert. AbschlieRend wird
ein Integrationsvorschlag des Losungsansatzes in die Software viadat diskutiert.
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7 ANALYSE DES LOSUNGSANSATZES

Fir eine erste Bewertung der Anwendung des Agentensystems werden in den folgenden Ab-
schnitten verschiedene Materialflisse und die damit verbundenen Agenten genauer betrachtet.
In einem ersten Schritt soll die generelle Fahigkeit des Agentensystems zur Steuerung des Aus-
lagerflusses betrachtet werden.

Im nachsten Schritt werden der Auslager- und Rucklagerfluss néher betrachtet. Hierbei soll
in jedem Schritt die generelle Adaption des Losungsvorschlags an die gegebene Problemstel-
lung naher untersucht werden.

Im ersten Schritt wurde die Anwendbarkeit des Reinforcement-Learning-Ansatzes auf die
Optimierung des Materialflusses untersucht. Im Anschluss wurde die Simulation iterativ um wei-
tere Bestandteile und ggf. Agenten erweitert.

Zur Beurteilung der Leistung des Agentensystems wurden zum einen der Durchsatz und
zum anderen die Transportzeiten analysiert.

7.1 Risiken des Losungsansatzes

Durch die Verwendung von zufalligen Entscheidungen in allen Agenten kann es zu einer Blo-
ckade des kompletten MFS, dem sog. Deadlock, kommen. Ein Beispiel fir einen Deadlock ist
die Belegung von Loop 1 und Loop 3 mit FEs, die als Ziel die K-Platze 1 bis 4 haben. Zusatzlich
sind alle K-Platze mit ein- und ausgehenden FEs belegt und kénnen somit keine neuen FEs
mehr abnehmen und auch keine FEs mehr in Loop 3 einschleusen. Im bisherigen Stand der Si-
mulation kann dieser Situation nur durch einen Neustart der Simulation entgegengewirkt wer-
den. Ein besserer Ansatz ware hier, direkt den entsprechenden Agenten fir die zur Blockade
fihrenden Entscheidungen Uber eine negative Belohnung p zu bestrafen. Somit sollte der Agent
lernen die entsprechenden Zustande zu vermeiden.

7.1.1 Verfrihte Anpassung der Exploration-Wahrscheinlichkeit

Durch eine zu frlhe Anpassung der Exploration-Wahrscheinlichkeit kann es zu einer Approxi-
mation einer schlechten Strategie im Hinblick auf Optimierung des Materialflusses kommen. Ab-
bildung 7-1 zeigt exemplarisch den Verlauf des Gesamtdurchsatzes an allen vier K-Platzen bei
einer Senkung der Exploration-Wahrscheinlichkeit um 1 % ab 20 an den K-Platzen ankommen-
den FEs in Schritten von jeweils 10 FEs. In dem in Abbildung 7-1 gezeigten Experiment wurde
die Anfangswahrscheinlichkeit fiir die Exploration auf 50 % gesetzt und die Parameter a = 0,1
und y = 0,6 gewahlt, insgesamt wurden 2412 FEs an den RBG 1 und RBG 2 erzeugt, durch die
K-Platze abgenommen und zurlick an das entsprechende Quell-RBG geschickt.
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Abbildung 7-1: Verlauf des Durchsatzes bei zu friher Anpassung der Exploration-Wahrscheinlich-
keit

Die erste rot gestrichelte Linie markiert den ersten Zeitpunkt der Reduzierung der Exploration-

Wahrscheinlichkeit, die zweite das Erreichen von 0 % Exploration-Wahrscheinlichkeit, die blau
gestrichelte Linie den Zieldurchsatz von 240 FE/h an allen K-Platzen (vgl. Tabelle 4-2).

Aus dem Graphen der hier gezeigten Simulation ist zu erkennen, dass das zu friihe Herab-
setzen der Exploration-Wahrscheinlichkeit zu einem kompletten Einbruch des Durchsatzes an
den K-Platzen fuihren kann. Die Analyse des hier dargestellten Testfalls ergab, dass der fiir das
Einschleusen von FEs in Loop 1 verantwortliche Agent A (vgl. 5.4.1) die zu bewertenden Zu-
stéande und Aktionen falsch approximierte. Aufgrund dessen filhrte der Agent einfach immer die
Aktionen ,fahren” und ,nicht fahren“ nacheinander aus. Dieses Vorgehen des Agenten fiihrte zu
einem kompletten Durchsatzeinbruch an den Senken.

7.2 Trainingszeiten des neuronalen Netzes

Fur die Verwendung des Agentensystems im Live-Betrieb eines MFS ist die effiziente Funktion
des MemBrain-Werkzeugs unabdingbar. Hierzu wurden die Trainingszeiten fiir jeweils eine
Epoche?!! durch Verwendung der MemBrain-DLL im Simulator mit verschiedener Anzahl an
Trainingsdatensatzen gemessen. Das Ergebnis der Analyse kann Tabelle 7-1 enthommen wer-
den.

Tabelle 7-1: Trainingszeiten des MemBrain-Werkzeugs

Anzahl Trainingsdatensétze Trainingszeit pro Epoche
50000 1ms~10ms
75000 14 ms ~ 544 ms
100000 14 ms ~ 600 ms

1Epoche: Kompletter Durchlauf aller Trainingsdaten (vgl. 5.2.2)

60



(RIS

Institut fOr Rechnergestuizte Ingenieursysteme Analyse deS Lbsungsansatzes

Als Ergebnis der Trainingszeitenanalyse werden fiir den folgenden Verlauf der vorliegenden Ar-
beit 50000 Trainingsdatensatze als Obergrenze fiir die maximale Anzahl an fur den Agenten
verfligharen Trainingsdaten festgelegt, da die Trainingszeiten von maximal 10 ms fir eine Epo-
che in den geforderten Reaktionszeiten von maximal 50 ms liegen.

7.3 Analyse des Auslagerflusses

Im ersten Schritt wurden zur Uberpriifung der Funktionalitat des Lésungsansatzes die fiir die
Einfahrt in Loop 1 und die Uberfahrt von Loop 1 zur Loop 3 zustandigen Agenten A und E im-
plementiert. Zusatzlich wurde fir die zwei implementierten Agenten die erweiterte Belohnung

1 .
r = ———  x Durchsatz der letzten Stunde an der Zielsenke + 713,
Transportdauer

aus (6.4) verwendet. Zur Beurteilung der Qualitat der beiden Agenten werden in den kommen-
den Abschnitten

e der Durchsatz pro K-Platz
e die Transportzeiten sowie
e die Auslastung der Loop 1 und Loop 3

untersucht.
In allen Simulationen markiert die blau gestrichelte Linie den Zieldurchsatz von 60 FE/h
(vgl. Abschnitt 6.1.3) pro K-Platz.

7.3.1 Anpassung der Exploration-Wahrscheinlichkeit

Da sich ein konkreter Zeitwert fur die Anpassung der Exploration-Wahrscheinlichkeit, wie von
[Ert13] vorgeschlagen, nicht ohne Weiteres festlegen lasst, wird in dem vorgeschlagenen Lo-
sungsansatz die Ankunft einer noch genauer zu bestimmenden Anzahl an FEs an den K-Plat-
zen als zeitliches Ereignis fur die Herabsenkung der Exploration-Wahrscheinlichkeit verwendet.
Zur Definition eines Startwertes fiir das Senken der Exploration-Wahrscheinlichkeit wurden ver-
schiedene Startparameter in der Simulation getestet.

Bei der Simulation des Auslagerflusses wurde ab 500 an den K-Platzen ankommenden FEs
in Schritten von jeweils 100 zusatzlich an den K-Platzen ankommenden FEs die Exploration-
Wabhrscheinlichkeit um 1 % gesenkt. Der Anfang und das Ende der Anderungen der Explora-
tion-Wahrscheinlichkeit sind in den entsprechenden Abbildungen durch senkrechte rot gepunk-
tete Linien markiert.

7.3.2 Durchsatzanalyse

Zur Beurteilung der Qualitat des Agentensystems wurden zwei Simulationen durchgefthrt. Si-
mulation 1 wurde als idealisierte Referenzsimulation ohne das Agentensystem durchgeftihrt.
Die idealisierte Referenzsimulation dient zum einen als Referenz fir die spatere Bewertung der
Qualitat des Agentensystems, zum anderen gibt sie Anhaltspunkte fur das allgemeine Verhalten
des Simulators. Die Referenzsimulation lasst, da sie ohne andere Materialfliisse ausgeftihrt
wird, schon Rickschlisse auf das gewilinschte Zielverhalten des Losungsansatzes zu.

Die Referenzsimulation ohne Agentensystem wurde mit 10000 FEs und Uber einen Zeit-
raum von insgesamt 38 Simulationsstunden ausgefihrt.

Die Simulationen mit Agentensystem wurden mit den in 6.3 eingefiihrten Startparame-
tern und schrittweiser Anpassung der Exploration-Wahrscheinlichkeit ausgefiihrt. Beide Simula-
tionen mit Agentensystem wurden jeweils mit und ohne fillstandsabhéngiger Transportzeit er-
stellt und erstrecken sich Uber einen Zeitraum von jeweils 38 Stunden bzw. 10000 beférderte
FEs.

Abbildung 7-2 zeigt den Verlauf des Durchsatzes an den K-Platzen ohne Einsatz des
Agentensystems.
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Abbildung 7-2: Verlauf des Durchsatzes an den K-Platzen ohne Einsatz des Agentensystems

Der weitestgehend konstante Verlauf des Durchsatzes an allen vier K-Platzen ist aus Abbildung
7-2 ersichtlich. Die minimalen Schwankungen des Durchsatzes an den K-Platzen in Abbildung
7-2 sind durch ein nicht deterministisches Verhalten innerhalb des Simulators zu erklaren. Ab-
bildung 7-3 zeigt den Verlauf des Durchsatzes an den K-Platzen mit Einsatz des Agentensys-
tems.
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Abbildung 7-3: Verlauf des Durchsatzes mit Einsatz des Agentensystems ohne fullstandsabhéan-
gige Transportzeit

Aus Abbildung 7-3 ist die Lernkurve des Agenten ersichtlich. In der Exploration-Phase der Si-
mulation oszillieren die einzelnen Durchséatze noch um den maximal erreichbaren Durchsatz.
Nach Erreichen der Exploitation-Phase sind die Schwankungen jedoch konstant und lassen
sich ebenfalls durch Varianzen in der Abbildung der einzelnen Ereignisse im Simulator erklaren.
Zum Vergleich zeigt Abbildung 7-4 den Verlauf des Durchsatzes an den K-Platzen mit fill-
standsabhéngiger Transportzeit.
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Abbildung 7-4: Verlauf des Durchsatzes mit Einsatz des Agentensystems mit flillstandsabhéngiger
Transportzeit

Ein Vergleich der Durchsatze aus Abbildung 7-3 und Abbildung 7-4 zeigt keine signifikanten Un-
terschiede in den Durchsatzen an den K-Platzen. In beiden Versuchen oszilliert der Durchsatz
in den K-Platzen wahrend der Exploration-Phase um den maximal méglichen Durchsatz.

7.3.3 Analyse der Transportzeiten

Zusatzlich zur Durchsatzanalyse sollen an dieser Stelle die Transportzeiten von den RBG 1 und
RBG 2 zu den K-Platzen betrachtet werden. Zur Analyse der Transportzeiten werden die durch-
schnittlichen Transportzeiten der ersten Simulation mit denen der zweiten Simulation vergli-
chen. Abbildung 7-5 zeigt den Verlauf der durchschnittlichen Transportzeiten ohne Agentensys-
tem.
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Abbildung 7-5: Verlauf der durchschnittlichen Transportzeiten an den K-Platzen ohne Agentensys-
tem
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Die Transportzeiten in Abbildung 7-5 bleiben konstant, da noch kein anderer Fluss die im MFS
befindlichen FEs behindern kénnen und die FEs ungehindert von den RBGs zu den K-Platzen
flieBen kdnnen. Abbildung 7-6 zeigt zum Vergleich die durchschnittlichen Transportzeiten mit
Agentensystem. Die erste rot gestrichelte Linie markiert den Beginn und die zweite rot gestri-
chelte Linie das Ende der Reduzierung der Exploration-Wahrscheinlichkeit, die blau gestrichelte
waagrechte Linie markiert die durchschnittliche Transportzeit von 102,5 Sekunden aus der Si-
mulation ohne Agentensystem.
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Abbildung 7-6: Verlauf der durchschnittlichen Transportzeiten an den K-Platzen mit Agentensys-
tem ohne fullstandsabhéngige Transportzeit
Die Konvergenz der Transportzeiten in der Simulation mit Agentensystem aus Abbildung 7-6
gegen die Transportzeiten der Simulation ohne Agentensystem aus Abbildung 7-5 ist ersicht-
lich. Zum Vergleich zeigt Abbildung 7-7 das Ergebnis der Simulation mit Agentensystem und
flllstandsabhangiger Transportzeit.
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Abbildung 7-7: Verlauf der durchschnittlichen Transportzeiten an den K-Platzen mit Agentensys-
tem mit fullstandsabhéngiger Transportzeit
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Der Vergleich der Simulationen mit fullstandsabhéngiger und fullstandsunabh&ngiger Transport-
zeit ist hier noch nicht relevant, da der Auslastungsgrad der Loop 1und Loop 3 durch den Ein-
satz eines Materialflusses noch zu gering ist.

Die durchschnittlichen Transportzeiten beider Simulationen konvergieren gegen einen Wert
von ca. 150 s. Es ist jedoch auch zu erkennen, dass mit der Laufzeit der Simulation die durch-
schnittlichen Transportzeiten weiter abnehmen.

Fur eine genauere Beurteilung der Leistungsfahigkeit des Lésungsansatzes missen jedoch
Langzeitsimulationen durchgefihrt werden.

7.3.4 Analyse des Auslastungsgrads der Loop 1 und Loop 3

Von Interesse ist fur eine erste Beurteilung des Agentensystems die Auslastung der beteiligten
Loop 1 und Loop 3. Auch hier wurden der Beginn und das Ende der Reduzierung der Explora-
tion-Wahrscheinlichkeit durch rot gestrichelte Linien markiert. Die schwarz gestrichelte Linie
markiert den Auslastungsgrad fir den Sprung in der fillstandsabhangigen Transportzeit.
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Abbildung 7-8: Verlauf des Auslastungsgrads der Loop 1 und Loop 3 mit und ohne flllstandsab-
hangiger Transportzeit

Aus Abbildung 7-8 geht hervor, dass sich die beiden Simulationen &hnlich verhalten. Das Agen-
tensystem ist bemuiht, die Auslastung der Loop 1 und Loop 3 konstant zu halten. Eine Entlas-
tung von Loop 1 fuhrt in beiden Fallen zu einer Belastung von Loop 3. Der Fillstand von beiden
Simulationen bewegt sich nach der Absenkung der Exploration-Wahrscheinlichkeit auf 0 % im
Bereich von 0 % bis 35 %.

Als Referenz zeigt Abbildung 7-9 die Fullstande der Loop 1 und Loop 3 Uber einen Zeit-
raum von ebenfalls 38 Stunden ohne Einsatz eines Agentensystems.
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Abbildung 7-9: Verlauf des Auslastungsgrads der Loop 1 (griin) und Loop 3 (rot) ohne Agentensys-
tem

Beim Vergleich der Simulationen mit Agentensystem und ohne Agentensystem wird deutlich,
dass die Simulation mit Agentensystem eine @hnliche Auslastung der Loop 1 und Loop 3 wie
die Simulation ohne Agentensystem erreicht.

Falls nicht anders angegeben, wird in den nachfolgenden Simulationen immer die full-
standsabhéngige Transportzeit verwendet.

7.4  Analyse des Auslager- und Rucklagerflusses

Im n&chsten Schritt wurde die Simulation um die Rickflisse aus den K-Platzen zu den RBGs
und die entsprechenden Agenten erweitert. Zur Beurteilung der Qualitat des Agentensystems
im Umgang mit einem weiteren Materialfluss werden in diesem Abschnitt die gleichen Analysen
wie in Abschnitt 7.3 durchgefiihrt. Zusatzlich wurden die in diesem Abschnitt beschriebenen Si-
mulationen alle mit der in 6.1.2 beschriebenen flillstandsabhangigen Transportzeit t,, durchge-
fahrt. FUr die in diesem Abschnitt dargestellten Testfalle gelten die folgenden Startparameter:

e a=0,1
e y=06
hd Tin=5

e Exploration-Wahrscheinlichkeit: 50 %

Dariiber hinaus wurde fiir die Agenten A ,Einfahrt von RBG 1 und RBG 2 zu Loop 3% E ,Uber-
fahrt von Loop 1 zu Loop 3% F ,Uberfahrt von Loop 3 zu Loop 1“und G ,Einfahrt von den K-
Platzen in Loop 3“die erweiterte Belohnung

1

r = ————  * Durchsatz der letzten Stunde an der Zielsenke + 17,
Transportdauer

aus (6.4) verwendet.

7.4.1 Anpassung der Exploration-Wahrscheinlichkeit

Zur Ermittlung eines Startwertes fur den Beginn der Absenkung der Exploration-Wahrschein-
lichkeit wurden unterschiedliche Simulationen mit verschiedenen Startwerten fiir das Absenken
der Exploration-Wahrscheinlichkeit durchgefuhrt. Im Folgenden wird das Ergebnis von drei
exemplarischen Testlaufen vorgestellt.
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Um eine bessere Einschétzung fur einen optimalen Startwert fiir das Absenken der Ex-
ploration-Wahrscheinlichkeit zu bekommen, wurde die zusétzliche Belohnung r;, fur die Test-
laufe 1 und 2 auf 0 festgelegt. Fur Testlauf 3 wurde die zuséatzliche Belohnung r;,, auf den Wert
5 festgelegt.

Hierzu wurde fur Testlauf 1 als Startwert fir das Heruntersetzen der Exploration-Wahr-
scheinlichkeit 1000 an den K-Platzen ankommende FEs und fur Testlauf 2 und Testlauf 3 als
Startwert fur das Reduzieren der Exploration-Wahrscheinlichkeit 500 an den K-Pléatzen ankom-
mende FEs gewahlt. In allen Testféllen wurde die Exploration-Wahrscheinlichkeit in Schritten
von 100 an den K-Platzen ankommenden FE um 1 % gesenkt. Abbildung 7-10 zeigt den Verlauf
des Gesamtdurchsatzes an allen K-Platzen. Die blau gestrichelte Linie markiert den Zieldurch-
satz von 240 FEs pro Stunde an den K-Platzen (vgl. 6.1.3). Die rot gestrichelten Linien markie-
ren den Beginn und das Ende der Anderung der Exploration-Wahrscheinlichkeit bei Testlauf 1.
Die griin gestrichelten Linien markieren zum einen den Beginn der Anderung der Exploration-
Wabhrscheinlichkeit und zum anderen das letzte Herabsetzen der Exploration-Wahrscheinlich-
keit auf 30 %, bevor der Durchsatz bei Testlauf 2 komplett einbricht. Auch bei Testlauf 3 bricht
der Durchsatz nach dem letztmaligen Absenken der Exploration-Wahrscheinlichkeit auf 1 %
komplett ein.
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Abbildung 7-10: Verlauf des Gesamtdurchsatzes an den K-Platzen mit den Startwerten 500 FEs und
1000 FEs fur das Herabsetzen der Exploration-Wahrscheinlichkeit

Aus Abbildung 7-10 ist ersichtlich, dass 1000 an den K-Platzen ankommende FEs als guter
Startwert flr das Herabsetzen der Exploration-Wahrscheinlichkeit angenommen werden kén-
nen, da der Agent bei einer gré3eren Anzahl an ankommenden FEs eine bessere Méglichkeit
hat, seine Umwelt und deren Bedingungen besser kennenzulernen.

Testlauf 2 zeigt keine Konvergenz gegen den Zieldurchsatz, hier wird sogar eine schlechte
Strategie erreicht. Testlauf 1 hingegen zeigt sogar ohne Verwendung der zusatzlichen Beloh-
nung aus 6.2.4 das Finden einer guten Strategie zur Maximierung des Durchsatzes.

Testlauf 3 ist schnell auf dem gewiinschten Niveau tber dem Zieldurchsatz. Jedoch werden
auch hier nicht ausreichend zuféllige Zustande fur das optimale Training des Agenten erzeugt
und der Durchsatz konvergiert nach der letzten Anderung der Exploration-Wahrscheinlichkeit
gegen O.

Auf Grundlage der Ergebnisse von Testlauf 1 werden 1000 an den K-Platzen ankommende
FEs als Startwert fiir das Herabsetzen der Exploration-Wahrscheinlichkeit mit einer Schrittweite
von jeweils 100 an den K-Platzen ankommenden FEs gewahlt.
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7.4.2 Durchsatzanalyse
Abbildung 7-11 zeigt den Verlauf der Durchsatze an den K-Platzen Uber einen Zeitraum von 38
Stunden.
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Abbildung 7-11: Verlauf des Durchsatzes an den K-Platzen mit Rucklagerfluss

In der Exploration-Phase des in Abbildung 7-11 dargestellten Testlaufs ist eine hdhere Oszilla-
tion der Kurven der Durchsétze zu beobachten. Nach Absenkung der Exploration-Wahrschein-
lichkeit auf 0 % ist eine nahezu konstante Kurve der Durchséatze in Abhangigkeit der Einschleu-
sungen der RBG 1 und RBG 2 zu beobachten (vgl. 6.1.3). Auch hier sind die Schwankungen in
den Durchsatzen durch die Abbildung der Transportzeiten als Ereignisse innerhalb des Simula-
tors zu erklaren.

7.4.3 Analyse der Transportzeiten

Zusatzlich zu den Durchséatzen an den K-Platzen wurde der Verlauf der durchschnittlichen
Transportzeiten von den RBG 1 und RBG 2 zu den K-Platzen n&her betrachtet. Abbildung 7-12
zeigt den Verlauf der durchschnittlichen Transportzeiten von den RBG zu den K-Platzen ohne
Wareneingang Uber einen Zeitraum von 38 Stunden. Die rot gestrichelten Linien markieren den
Beginn und das Ende der Reduzierung der Exploration-Wahrscheinlichkeit.
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Abbildung 7-12: Verlauf der durchschnittlichen Transportzeiten von den RBGs zu den K-Platzen

Zu Beginn der Simulation oszillieren die Transportzeiten noch stark, jedoch nehmen sie mit sin-
kender Exploration-Wahrscheinlichkeit weiter ab.

Der weitere Verlauf der durchschnittlichen Transportzeiten kann jedoch auch hier nur durch
Langzeitexperimente gezeigt werden.

7.4.4 Analyse des Auslastungsgrads der Loop 1 und Loop 3

Um die Qualitat der fur die Loop 1 und Loop 3 zustandigen Agenten zu beurteilen, wird auch an
dieser Stelle wieder der Auslastungsgrad der Loop 1 und Loop 3 betrachtet. Abbildung 7-13
zeigt den Verlauf des Fillstandes der Loop 1 und Loop 3.
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Abbildung 7-13: Verlauf der Fiillstdnde der Loop 1 und Loop 3

Aus dem in Abbildung 7-13 dargestellten Verlauf der Fullstéande der Loop 1 und Loop 3 ist zu
erkennen, dass die fir die Loop 1 und Loop 3 zustandigen Agenten in der Lage sind, die Loop 1
und Loop 3 kontinuierlich mit FEs zu versorgen. Der Auslastungsgrad von Loop 3 oszilliert zu
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Beginn der Simulation, bedingt durch die hohe Exploration-Wahrscheinlichkeit, sogar im Be-
reich der fullstandsabhangigen Transportzeit.

Durch die spatere Oszillation des Auslastungsgrads unterhalb der Grenze der fillstandsab-
héngigen Transportzeit lI&sst sich die Annahme treffen, dass das Agentensystem versucht, die
Zusténde mit hohen Transportzeiten und einer dadurch sinkenden Belohnung zu vermeiden.

Des Weiteren ist erkennbar, dass die Fiillstande der Loop 1 und Loop 3 in der Exploitation-
Phase in einem konstanten Intervall oszillieren, zeitweise sind sie sogar konstant.

Durch das hier dargestellte Experiment konnte gezeigt werden, dass das Agentensystem
grundsatzlich in der Lage ist, mehrere Materialfliisse innerhalb eines MFS zu optimieren.

7.5 Abschlieliende Bewertung des Losungsansatzes

Um qualitative Aussagen Uber das Verhalten eines, durch den in dieser Arbeit vorgestellten L6-
sungsansatzes, zu optimierenden MFS treffen zu kénnen, muss das Verhalten des MFS lber
einen langeren Zeitraum untersucht werden. Abbildung 7-14 zeigt exemplarisch den Verlauf des
Gesamtdurchsatzes uber einen Zeitraum von insgesamt 38 Simulationsstunden bzw. 6 Echt-
zeitstunden. Die gepunktete griine Linie markiert hier das Erreichen der Exploitation-Phase.
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Abbildung 7-14: Verlauf des Gesamtdurchsatzes an allen K-Platzen

Aus Abbildung 7-14 ist der zu Beginn der Simulation gute Durchsatzverlauf ersichtlich. Jedoch
wurde die Exploration-Phase zu friih verlassen und das Agentensystem konnte die MFS-Zu-
stande nicht mehr ausreichend bewerten. Deshalb ist es i. A. nicht ausreichend, das System di-
rekt nach Erreichen der Exploitation-Phase und Erreichen des Zieldurchsatzes als optimiert zu
betrachten. Im Verlauf der Exploitation-Phase der Simulation kann es zu noch nicht erreichten
Zustanden des Agentensystems kommen, was zu einem Fehlverhalten des Agentensystems
fihren kann.

Wie in den hier gezeigten Ergebnisses der Experimente mit Agentensystem muss die
Simulation tber mdéglichst lange Zeitraume, z. B. 38 Simulationsstunden ausgefuhrt werden, um
eine Optimierung des MFS beobachten zu kdnnen.

Durch den Einsatz eines Zeitraffers konnte die tatsachliche Simulationszeit jedoch auf
ca. 6 Echtzeitstunden reduziert werden. Jedoch kann auch hier eine Analyse des simulierten
MES erst nach Abschluss der Simulation getéatigt werden. Bei der Verwendung eines Zeitraffers
in einer Simulation ist zu beachten, dass dieser nicht beliebig klein eingestellt werden kann, da
das Training eines neuronalen Netzes nicht im Zeitraffer ausgefuhrt werden kann, da die Trai-
ningsoperationen in Echtzeit ausgefuhrt werden.
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8 ZUSAMMENFASSUNG UND AUSBLICK

Die Steuerung von Materialflusssystemen existiert momentan als statisches Element in einer
zentralen Steuerungseinheit. Die Optimierung einer solchen Steuerung ist ein sehr zeitintensi-
ver Prozess, der auf dem Wissen und den Erfahrungen des Materialflussingenieurs beruht.

Zu Beginn der vorliegenden Arbeit wurde eine Auswahl an vorhandenen Methoden zur Analyse
und Steuerung von Materialflusssystemen vorgestellt. Die vorgestellten Wege zur Analyse von
intralogistischen Materialflissen ermdglichen jedoch i. d. R. nur eine statische Sicht auf den
Materialfluss.

Durch den Einsatz von Algorithmen aus dem Bereich der kiinstlichen Intelligenz kann
der Optimierungsprozess jedoch automatisiert werden. Hierzu wurde in der vorliegenden Arbeit
die Machbarkeit einer automatisierten Materialflusssteuerung durch den Einsatz eines Rein-
forcement-Learning-Ansatzes in der Q-Variante unter Verwendung von neuronalen Netzen zur
Approximation der Q-Funktion untersucht. Es wurde ein Multiagentensystem entworfen, das
grundsatzlich in der Lage ist, hochkomplexe Materialflusssysteme im Betrieb auf Grundlage der
vorhandenen Informationen zu optimieren. Das Multiagentensystem wurde durch eine selbst er-
stellte Simulation einer vorhandenen Referenzanlage auf seine Qualitat und Leistungsféahigkeit
untersucht. Hierzu wurde die Simulation der Referenzanlage in drei Schritten um jeweils einen
weiteren Bereich der Referenzanlage und die bendtigten Agenten erweitert. In jedem Erweite-
rungsschritt wurden verschiedene Simulationen mit unterschiedlichen Start- und Zeitparametern
des Reinforcement-Learning-Ansatzes ausgefuhrt und analysiert. Das Resultat der verschiede-
nen Analysen ist die Bestatigung einer Mdglichkeit zur Optimierung von Materialflusssystemen
durch den Einsatz von Reinforcement-Learning und Multiagentensystemen.

8.1 Ausblick

In den folgenden Abschnitten soll ein Ausblick zur Integration des Lésungsansatzes in die Soft-
ware viadat gegeben werden. Im Vordergrund stehen hierbei die Topologie des Agentensys-
tems sowie die Kommunikation zwischen dem Agentensystem und der Software viadat.

8.1.1 Weiterentwicklung des Simulators

In den in Kapitel 7 dargestellten Experimenten konnte die grundsétzliche Eignung des Lésungs-
ansatzes zur Optimierung mehrerer konkurrierender Materialflisse gezeigt werden.

Zur besseren Bewertung des Losungsansatzes sollten noch zusatzliche MFE in die Si-
mulation integriert werden. Hierbei sollte der Fokus auf MFE mit unterschiedlichen Funktionali-
taten liegen, da so das Verhalten von Agenten fur unterschiedliche MFE untersucht werden
kann. So ist es bspw. nicht mehr ratsam, den Simulator nochmals um ein RBG-MFE zu erwei-
tern. An dieser Stelle wéare die Erweiterung des Simulators um bspw. einen Wareneingangs-
platz und mehrere Versandplatze sinnvoller.

Durch die Hinzunahme zuséatzlicher MFEs steigt jedoch die Komplexitat innerhalb der
Simulation. Dies erhéht die Anforderungen an den Ersteller der Simulation, da in jedem Schritt
der Erweiterung des hier vorgestellten Simulators die einzelnen Abhangigkeiten eines echten
MFS auf den Simulator Ubertragen werden mussen.

Des Weiteren sollte in einem nachsten Schritt eine automatisierte Deadlock-Erkennung
innerhalb des Simulators zur Bestrafung des Agentensystems implementiert werden. So muss
im Fehlerfall die Simulation nicht neu gestartet werden und das Agentensystem kann besser
aus den Daten des Simulators lernen.

Zur vollstédndigen Validierung des vorgestellten Losungsansatzes sollte dieser in einer
weiteren Arbeit auf eine bestehende Anlage transferiert werden. Hierzu muss allerdings ein all-
gemeingultigerer Ansatz zur Anpassung der Exploration-Wahrscheinlichkeit als der im Verlauf
dieser Arbeit vorgeschlagene gefunden werden. Der in der vorliegenden Arbeit vorgeschlagene
Ansatz zu Anpassung der Exploration-Wahrscheinlichkeit basiert in erster Linie auf einer Be-
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obachtung des Durchsatzes an den K-Platzen, was sehr stark an den momentanen Konfigurati-
onsprozess eines MFS erinnert. Ein besserer Ansatz fur die Wahl des Zeitpunkts der Anpas-
sung der Exploration-Wahrscheinlichkeit kénnte die Festlegung einer Zeitspanne sein, in der
sich der Durchsatz an den Zielsenken nicht mehr &ndert, bzw. die Oszillation konstant bleibt.
Somit kdnnte der Agent die Optimierungen selbsténdig ohne Eingriffe durch einen MF-Ingenieur
durchfihren.

8.1.2 Integration des Losungsansatzes in die Software viadat

In diesem Abschnitt werden die nétigen Schritte zur Umsetzung des Lésungsansatzes in der
Software viadat kurz skizziert. Hierzu wird in einem ersten Schritt die Idee der Kommunikation
des Agentensystems mit der SPS diskutiert. Im Anschluss werden die Mdglichkeiten zur Trai-
ning des Agentensystems in einer virtuellen Umgebung erortert.

Das Agentensystem

Das Agentensystem kann zum einen als zentrale Einheit, in der jeder Agent als eigenstandiger
Prozess behandelt wird und seine eigene ausgehende Verbindung zur SPS besitzt erstellt wer-
den. Zum anderen kann jeder Agent als eine eigene Einheit mit eigenen Verbindungen zur SPS
implementiert werden. Abbildung 8-1 zeigt exemplarisch die beiden Mdglichkeiten zur Imple-
mentierung des Agentensystems.

viadat

Abbildung 8-1: Zentrales Agentensystem (links) und dezentrales Agentensystem (rechts)

Die Zylinder symbolisieren jeweils einen Agenten, die griinen Pfeile stehen fur Verbindungen,
das rote Viereck stellt die Software viadat und die blaue Wolke eine SPS dar.

Zentrales Agentensystem

In einem zentralen Agentensystem (links) muss nur eine bidirektionale Verbindung von SPS zu
Agentensystem aufgebaut werden. Zusétzlich wird nur eine Verbindung von Agentensystem zur
Software viadat bendtigt. Hier kdnnen die Agenten in eigenstandigen Prozessen trainiert wer-
den und jeder Agent kann Uber einen eigenen ausgehenden Kanal mit der SPS kommunizieren.

Dezentrales Agentensystem

Bei einem dezentralen Agentensystem (rechts) hat jeder Agent eine eigene bidirektionale Ver-
bindung zur SPS. Hier kann die SPS entweder eine Art Broadcast 2 an alle Agenten schicken

2 Broadcast (Engl.) : Nachricht an alle Teilnehmer eines Netzwerks. [Fis11]
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um einen einzelnen Agenten anzusprechen oder es muss die Logik zum Ansprechen eines ge-
zielten Agenten in die SPS integriert werden. Ferner verfugt jeder Agent Uiber eine eigene Ver-
bindung zur Software viadat. Auch hier kann jeder Agent eigenstandig trainiert und befragt wer-
den. Darliber hinaus kdnnen die Agenten sogar verteilt auf mehreren PCs eingesetzt werden,
was die Antwortzeit eines Agenten erheblich reduzieren kann.

Um den Datenverkehr minimal zu halten und aus Ubersichtsgriinden, wird in der vorliegen-
den Arbeit das zentrale Agentensystem als Implementierungsansatz vorgeschlagen. Daher be-
ziehen sich in den kommenden Abschnitten alle weiteren Vorschlage auf das hier vorgestellte
zentrale Agentensystem.

Kommunikation mit der SPS

Zur Kommunikation des Agentensystems mit der SPS gibt es zwei Losungsansétze. Zum einen
kann das Agentensystem direkt mit der SPS kommunizieren. Zum anderen kann das Agenten-
system aber auch in die Umgebung der SPS integriert werden.

Direkte Kommunikation mit der SPS

Damit die Entscheidungen des Agentensystems so friih wie moglich einen Einfluss auf den Ma-
terialfluss haben und um die Kosten in der Anlagenplanung auf einem akzeptablen Niveau zu
halten, missen die Agenten so frith wie mdglich Zugriff auf einzelne Komponenten der Forder-
technik besitzen.

So sollten die fur das Verlassen eines MFE zustandigen Agenten schon vor dem Ver-
lassen des aktuellen MFE der SPS die mdgliche Aktion mitteilen. Abbildung 8-2 veranschaulicht
am Beispiel eines Loops mit verbundenem RBG die Position der Signale an die SPS.

RBG

Einschleusstrecke ----
Loop zu RBG

”_,,Einschleusstrecke
RBG zu Loop

Signalposition::‘

Abbildung 8-2: Beispiel fur die Position der Signale an die SPS

Der rote Stern zeigt zum einen die Position des Einschleusstoppsignals am RBG-MFE vor Be-
treten der Verbindung zum Loop und zum anderen die Position des Einschleusstoppsignals vor
dem Verlassen des Loops an. Die grau gestrichelten Linien veranschaulichen die Richtung des
Materialflusses. Fir das RBG bedeutet dies, dass die Staustrecke von Abgabeplatz zu Loop be-
reits zur maximalen Kapazitat des Loops gezahlt werden muss. Analog gilt fur das Verlassen
eines Loops, dass die Kapazitéat Einschleusstrecke von Loop zu RBG bereits zur Kapazitat des
RBG gehort.

Der hier vorgestellte Ansatz zur Positionierung der Signale an die SPS kann ohne Weiteres
auf alle MFEs Ubertragen werden.

Wird das Einschleusstoppsignal erst an der Kreuzung von Staustrecke zu Loop positioniert,
missten an den entsprechenden Kreuzungen zusétzliche Scanner zur Erfassung der FE an
den Fordertechnikplatzen installiert werden.
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Direkte Einbettung des Agentensystems in die SPS

Um im Hinblick auf Hochleistungsmateriaflusssysteme mit Férdergeschwindigkeiten von mehr
als 2 m/s eine effiziente Kommunikation der SPS mit dem Agentensystem zu gewahrleisten
kénnte das Agentensystem direkt in die SPS-Umgebung der Fordertechnik integriert werden.
Hierzu bietet der Hersteller der SPS-Steuerung Siemens einen Software PLC, den sog. Simatic
WInAC RTX, mit dem die Steuerung der SPS auf einem normalen Industrie-PC mit héherer
Leistung und Speicherkapazitat in Echtzeit ausgefihrt werden kann. Der WinAC RTX kann auf
allen gangigen Windows-PC-Systemen verwendet werden. Zusatzlich unterstiitzt er die Imple-
mentierung selbst erstellter Sofwaremodule in den momentan géangigen Programmiersprachen,
wie z.B. C++ oder C#. [Siel61]

Das genaue Vorgehen zur Implementierung des Agentensystems in einem Software-PLC
ist nicht Gegenstand der vorliegenden Arbeit und kann in einer Folgearbeit naher untersucht
werden.

Vorabtraining des Agentensystems

Um dem Agentensystem vorab schon Grundkenntnisse tber die physikalische Topologie eines
Zielmaterialflusssystems zu vermitteln, kann das Agentensystem schon vor der Inbetriebnahme
trainiert werden. Da vorab die genauen Anforderungen, wie z. b. die genaue Auftragsstruktur
des jeweiligen Kunden an das MFS noch nicht bekannt sind, muss das Agentensystem im An-
schluss lediglich an die speziellen Kundenanforderungen wie z. B. Auftragsreihenfolgen im lau-
fenden Betrieb des MFS angepasst werden.

Zum Vorabtraining des Agentensystems werden an dieser Stelle die virtuelle Inbetrieb-
nahme inklusive einer Einbettung des Agentensystems und die Verwendung eines selbst entwi-
ckelten Simulators diskutiert.

Virtuelle Inbetriebnahme

Reale Materialflusssysteme kdnnen mit einem Zeitaufwand von ca. zwei Tagen bis hin zu drei
Wochen in der Simulations- und Emulationssoftware Demo 3D vollstandig, inklusive aller physi-
schen Abhangigkeiten, modelliert werden.

Zusétzlich kann das Agentensystem per TCP/IP Verbindung an die Software Demo 3D
angebunden werden. So kénnte das Agentensystem schon vorab, virtuell, die physikalischen
Abhangigkeiten des realen Materialflusssystems kennenlernen.

Durch eine Simulation eines MFS in der Software Demo 3D kann momentan aus-
schlieBlich das Echtzeitverhalten simuliert werden, da der Einsatz eines Zeitraffers die interne
Physik-Engine der Software Demo 3D uberfordert. In der Anfangsphase einer Simulation muss
zusatzlich immer ein Materialflussingenieur anwesend sein, um im Fehlerfall die Simulation an-
passen und neu starten zu kdnnen, da wie bei einem realen System Fehler innerhalb der ein-
zelnen Fordertechnikelemente auftreten kénnen.

Somit muss vor realer Inbetriebnahme einer Anlage ein relativ grof3er Aufwand zur Vor-
konfiguration des Agentensystems und virtuellen Modellierung eines Materialflusssystems be-
trieben werden.

Jedoch kann durch eine virtuelle Inbetriebnahme und einer Vorkonfiguration des Agen-
tensystems der Aufwand einer realen Inbetriebnahme eines Materialflusssystems minimiert wer-
den.

Selbst entwickelter Simulator

Jedem realen Materialflusssystem geht eine Planung des MFS voraus. Aus dieser Planung kon-
nen die Transportzeiten, Leistungen der Quellen und Senken sowie die Beschrankungen der
MFE abgeleitet werden.

Somit kann auf Grundlage des in dieser Arbeit entwickelten Simulators ein rudimentérer
Simulator erstellt werden, der als Eingabewerte die abgeleiteten Werte des Zielmaterialflusssys-
tems erhdlt. Hierzu muss die Simulation vorab so erstellt werden, dass die Agenten und neuro-
nalen Netze aus den Eingabewerten abgeleitet werden kénnen.
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Durch den Einsatz eines einfachen Simulators kann das Zielagentensystem im Zeitraf-
fer trainiert werden, da physische Gegebenheiten ignoriert werden kénnen.

Hierzu kdnnen die bereits vorhandenen Simulatoren in der Software viadat an das
Agentensystem angepasst werden. So kann im Gegensatz zu einer Modellierung in der Soft-
ware Demo 3D das Zielmaterialflusssystem mit relativ geringem Aufwand abgebildet werden.

8.1.3 Weitere Anwendungsgebiete des Losungsansatzes und neuronaler
Netze

Der in der vorliegenden Arbeit vorgeschlagene Lésungsansatz kann durch eine geeignete Mo-
dellierung auch ohne Weiteres auf die Leistungsoptimierung von Regalbediengeraten Ubertra-
gen werden. Hier kdnnten bspw. die Ein- und Auslagerungen eines RBG durch einen geeigne-
ten Ansatz optimiert werden. Somit kdnnte die momentan starre Konfiguration der RBG dynami-
scher gestaltet werden. Die genaue Anwendung von Reinforcement-Learning-Systemen zur
Optimierung der Leistung von Regalbediengeraten kann in Folgearbeiten weiter untersucht wer-
den und ist nicht Gegenstand der vorliegenden Arbeit.

Zukunftige Arbeiten konnen die Anwendung von neuronalen Netzen in puncto Predic-
tive Maintenance naher betrachten. Hierzu haben bspw. [Jav01] gezeigt, dass durch den Ein-
satz von geeigneten neuronalen Netzen die Symptome, die zum Ausfall einer Komponente fih-
ren, erkannt werden kdnnen.

[Sze07] gehen hier sogar noch einen Schritt weiter und entwerfen in ihrer Arbeit ein
System zur Entscheidungsunterstiitzung im Hinblick auf das Erstellen einer optimalen Erset-
zungsrichtlinie von Komponenten innerhalb eines Systems. Der Fokus der Arbeit von [Sze07]
liegt auf der Optimierung der Kosten, die durch den Ausfall und das Ersetzen einer Komponente
entstehen kénnen.
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14 ANHANG

A-1 Verwendung der MemBrain-DLL

Die MemBrain-DLL kann u. a. als externe in C++ Bibliothek verwendet werden. Im folgenden
Abschnitt wird eine kurze Einfuhrung in die wichtigsten Befehle gegeben.
Laden eines neuronalen Netzes

In der vorliegenden Arbeit wurden statische Netze, die vorab unter Zuhilfenahme des grafischen
Editors des MemBrain-Werkzeugs erzeugt wurden, verwendet. Diese kénnen mit

_MB_LoadNet (netLocation_.c_str());

geladen werden. Wichtig ist hier, dass bei der Verwendung von mehr als einem Netz dynamisch
Platz fir neue Netze im Speicher mit

_MB_AddNet();

vor dem Hinzufuigen von neuen Netzen allokiert werden muss. Nach dem Laden des Netzes
mussen der Speicherplatz fur die Trainingsdaten sowie die Eigenschaften der mit dem Netz ver-
knlpften Trainingsdaten definiert werden. Im Anschluss missen das Netz beim erstmaligen La-
den zurtickgesetzt und die Gewichte der Kanten randomisiert werden.

int lessonSize = _MB_GetInputCount();
if (_MB_SetLessonCount(trainingLessonPos_ + 1) == MEMBRAIN_ERR)
return false;

if (_MB_SetLessonInputCount(lessonSize) == MEMBRAIN_ERR)
return false;

if (_MB_NamesFromNet() == MEMBRAIN_ERR)
return false;

if (_MB_SelectLesson(traininglLessonPos_) == MEMBRAIN_ERR)
return false;

if (_MB_SetLessonInputCount(lessonSize) == MEMBRAIN_ERR)
return false;

_MB_ResetNet();

_MB_RandomizeNet();

Laden der Lernregeln

Sind alle Netze und Trainingsdaten geladen, missen die vorhandenen Lernregeln geladen wer-
den. Wichtig ist hier, dass die Lernregeln nur einmal geladen werden missen. Die Datei mit den

A
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Lernregeln beinhaltet alle verfligbaren Lernregeln, die spezielle Lernregel kann Uber die genaue
Spezifizierung des Namens geladen werden.

_MB_LoadTeacherFile(teacherFile_.c_str());
if (_MB_SelectTeacher(teacherName_.c_str()) == MEMBRAIN_ERR)

return false;

return true;

Eingangswerte direkt an das neuronale Netz anlegen

Mit der MemBrain-DLL kénnen dynamisch einzelne Eingangswerte an das neuronale Netz an-
gelegt und der dazugehdrige Ausgabewert erzeugt werden. Hierzu missen das aktive Netz
ausgewabhlt und die Eingangswerte an das Netz tibergeben werden. Im Anschluss kann die

Ausgabe des Netzes erzeugt werden.

_MB_SelectNet(netNumber_);
for (int i = @; i < currentSet.size(); i++)

{
if (_MB_ApplyInputAct(i, currentSet[i]) == MEMBRAIN_ERR)
{
success = false;
break;
}
}

double retvVal = 0.0;
_MB_ThinkStep();

_MB_GetOutputAct(@, &retVval);

Das Anlegen von neuen Datenséatzen an das neuronale Netz, ohne sie einer Lesson hinzuzufu-
gen, ist bei der Beurteilung von zufallig ausgewahlten Aktionen und ihren zugehdrigen Zustan-
den von immenser Bedeutung, da so nicht immer neue Trainingsmuster teuer hinzugefigt und

geldscht werden miussen.
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Ablegen von Trainingsdatensétzen

Um das neuronale Netz zu trainieren, missen die Trainingsdatensétze in Lessons gespeichert
werden. Zum Hinzufligen eines neuen Trainingsdatensatzes zu einer speziellen Lesson muss
diese ausgewahlt und die neuen Datensatze missen zu den bereits existierenden hinzugefiigt
werden.

if (_MB_SelectlLesson(traininglLessonPos_) == MEMBRAIN_ERR)
return false;

_MB_AddPattern();
if (_MB_SelectPattern(actPos) == MEMBRAIN_ERR)
return false;

for (int i = @; 1 < currentSet.size(); i++)

{
if (_MB_SetPatternInput(i, currentSet[i]) == MEMBRAIN_ERR)
{
success = false;
break;
}
}
if (_MB_SetPatternOutput(@, mylesson.getNormalizedResult()) == MEM-
BRAIN_ERR)

success = false;

Die entsprechenden Werte des neuen Trainingsdatensatzes missen einzeln in die ausgewahlte
Lesson eingefugt werden. Ebenso muss der Zielausgabewert an die gewiinschte Position der
Ausgabe geschrieben werden.

Trainieren eines neuronalen Netzes

Fur das Training eines neuronalen Netzes missen das gewinschte Netz ausgewahlt und die
zum Netz gehérenden Trainingsdatensatze geladen werden. Im Anschluss muss das Netz mit
den Trainingsdatenséatzen synchronisiert werden.

_MB_SelectNet(netNumber_);
_MB_EnablelLessonOutData(1);
_MB_SetLessonOutputCount(1);

if (_MB_SelectLesson(traininglLessonPos_) == MEMBRAIN_ERR)
return false;

lessonSize = _MB_GetLessonSize();
_MB_NamesFromNet();
int teachResult = _MB_TeachStep();
if (teachResult != MB_TR_OK)
{
_MB_StopTeaching();
throw ViaError(VIAERROR_LOCATION, ViaErrId::HardError, agentId_ + "
COULD NOT TRAIN NET error code[" + to_string(teachResult) + "]1");

}
_MB_StopTeaching();
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Nach Ende eines Trainingsschritts muss das Training durch _MB_StopTeaching() beendet wer-
den. Ferner sollte das Training eines Netzes durch einen kontrollierten Programmabbruch be-
endet werden, um Fehler durch ein nicht trainiertes Netz zu vermeiden.

Anderung der Normalisierungsgrenzen von Eingangsneuronen

Um die Normalisierungsgrenzen eines Eingangsneurons zu andern, muss dieses ausgewahlt
werden. Im Anschluss werden die Eigenschaften des Neurons abgefragt, die gewiinschten
Werte neu gesetzt und der MemBrain-DLL wieder mitgeteilt.

if (_MB_SelectInput(pos, FALSE) == MEMBRAIN_ERR)
throw ViaError(VIAERROR_LOCATION, ViaErrId::HardError, "COULD NOT
SELECT NEURON FOR MAX AGE!!");

SMBNeuronProp* prop = new SMBNeuronProp();
_MB_GetSelectedNeuronProp(prop);
prop->normRangeHigh = maxTimeValue_;
if (_MB_SetSelectedNeuronProp(prop) == MEMBRAIN_ERR)

throw ViaError(VIAERROR_LOCATION, ViaErrId::HardError, "COULD NOT
SET NEW MAX AGE!");

_MB_ClearSelection();

Um Fehler im Programmfluss zu vermeiden, empfiehlt es sich, das Programm durch einen kon-
trollierten Abbruch durch Ausldsen eines definierten Fehlers (ViaError) zu beenden.
Anderung der Normalisierungsgrenzen des Ausgabeneurons

Die Auswahl eines Ausgabeneurons erfolgt analog zur Auswahl eines Eingabeneurons tber die
entsprechenden Anweisungen der MemBrain-DLL.

if (_MB_SelectOutput(®@, FALSE) == MEMBRAIN_ERR)
throw ViaError(VIAERROR_LOCATION, ViaErrId::HardError, "COULD NOT
SELECT OUTPUT NEURON!™");

SMBNeuronProp* prop = new SMBNeuronProp();
_MB_GetSelectedNeuronProp(prop);
prop->normRangeHigh = maxOutValue_;
if (_MB_SetSelectedNeuronProp(prop) == MEMBRAIN_ERR)

throw ViaError(VIAERROR_LOCATION, ViaErrId::HardError, "COULD NOT
SET NEW OUTPUT VALUE!");

_MB_ClearSelection();

Im obigen Beispiel existiert lediglich ein Ausgabeneuron, daher wird hier das Ausgabeneuron
an der Position null ausgewahlt. Auch hier ist der kontrollierte Programmabbruch durch das
Ausldsen eines definierten Fehlers empfehlenswert, da falsche Normalisierungsgrenzen des
Ausgabeneurons zu einem kompletten Fehlverhalten des Agenten fiihren kénnen.
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