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Abstract

Robots tasked with the autonomous interaction of objects, such as assembly and disas-
sembly tasks, in a dynamic environment require the ability to explore their environment
and detect objects for interactions. State-of-the-art methods exist which can handle these
tasks separately. This work describes a method for combining both tasks and therefor
reduce the amount of costly operations like motion and sensing. A next-best-view system
is developed which incrementally builds a map of the environment and enables the
selection of view poses for an eye-in-hand robot system. The system and the performance
of the selected view poses is evaluated on a robotic system. The evaluations showed that
the method selected view poses which explored the environment and detected objects.
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1 Introduction

In order to manipulate objects in the environment, a robot requires knowledge of the
environment and the object. Planning motions to interact with an object in the envi-
ronment have to be safe, i.e. avoid any collisions of the robot with the environment,
to avoid damaging the robot or the environment. As robots are employed in dynamic
environments, where the location of objects can change or they are exposed to new
environments, an automatic exploration of the environment is required. As the envi-
ronment in which a robot acts can change, algorithms used for the exploration need to
be able to explore with a minimal amount of a priori knowledge. Robots tasked with
the assembly or disassembly of objects in the environment require an object recognition
system to correctly classify objects which need to be assembled or disassembled in the
environment. Modern object classification algorithms still suffer from misclassification
of objects, either due to inaccurate sensor measurements or the limitation of a single
view of the object. As an object can be occluded during the single view or the view does
not provide a sufficient amount of features to classify an object unambiguously, multiple
views of an object are required [DCB04]. State-of-the-art methods exist which can
explore the environment or plan views for an object recognition task. As measuring the
environment and motions of the robot are considered expensive operations, this work
formulates an approach which combines both tasks into one view. With this, views of the
environment and the object are provided and the overall amount of views and motions
required to accomplish both tasks is reduced. The problem of finding a view pose which
provides information for a task is known as the Next-Best-View (NBV) problem and was
introduced by Connolly [Con85]. In this work, the exploration and object recognition
tasks are formulated as NBV problems and solved with a local optimization algorithm.
An environment map is build from sensor measurements and a mapping framework.
The environment is used for the evaluation of view poses for solving the NBV problem.
The approach is evaluated with an eye-in-hand robot system. The evaluations show that
the combination of both tasks leads to view poses of the robot system which can explore
the environment and provide relevant image data for the object recognition task.
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1 Introduction

Outline

The outline of this work is given below:

Chapter 2 — Background: The background chapter discusses relevant mathematical
methods and related background information. It also provides an overview of view
planning methods.

Chapter 3 — Related work: This chapter presents related work and gives a short dis-
cussion.

Chapter 4 — Next-best-view system: Gives details of the approach presented in this
work and developed system.

Chapter 5 — Experiments Presents the hardware used in the experiments, evaluates
the approach and discusses the results of the experiments.

Chapter 6 — Discussion and conclusion Gives a discussion of the complete work and
discusses limitations and improvements for the presented approach.
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2 Background

The following chapter presents background information and methods used in this
work.

2.1 Optimization Problem

In general, a mathematical optimization problem has the form:
Letz €¢R", f:R*" - R, g:R* = R™ h:R*”— R Find

mxin f(z) s.t. g(x) <0, h(z) =0. 2.1)
Vector z is the optimization variable, f(z) the objective function, ¢g(z) are inequality
constraints and h(x) are equality constraints.
An optimization variable x* is called optimal, if it has the smallest objective value among

all possible optimization variables x; which satisfy the constraints, i.e. for all x; with
g(x;) < 0and h(x;) =0: f(x;) > f(z¥).

Optimization methods which try to solve the optimization problem can be roughly
categorized by the information of f(x) they use:

Gradient-based methods: Use V f(z) to find an optimal solution.
2nd order methods: Use V?f(x) to find an optimal solution.

Convex optimization: f(x) is a convex function, i.e. it holds that

flax+ (1 —a)y) <af(x)+ (1 —a)f(y), forall x,y € R" and a € [0, 1].

Black Box optimization: Only f(x) can be evaluated.

These methods can be further categorized by the optimal solution they find:

17



2 Background

X
-
camera z
y coordinate system m
M

image plane

Figure 2.1: Pinhole camera model with a 3D Point M projected on the image plane as
point m [Stul4].

Local optimization: Instead of seeking a solution over all feasible optimization variables,
local optimization is concerned with finding a solution which is locally optimal,
i.e. it is the minimal solution among feasible points which are near the minimal
solution. This does not guarantee that there exists a better solution among all
feasible points.

Global optimization: Global optimization considers all feasible optimization variables
and finds the optimal solution. Usually, the trade-off to local optimization is
efficiency. This trade-off is worth in situations where the value of an optimal global
solution is higher than computation costs (e.g. for high value or safety-critical
systems).

2.2 Pinhole Camera Model

The pinhole camera model (see Figure 2.1) describes the projection of a 3D point onto
the image plane. The image plane is set at a distance f (called focal length) in front
of the center of project C' (also called optical center) of the camera coordinate system.
A 3D point M = (X,Y, Z) is projected onto the image plane as image point m = (x,y).
The coordinates of m can be computed with the following equations:

f

= (2.2)

| &
~<
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2.2 Pinhole Camera Model

_ X
y="— (2.3)
T = fZY 2.4)

With homogeneous coordinates for m this relationship can be described with

X
u f 000
m=|v| =10 f 00 Ak with scaling factor w # 0, u := wx and v := wy.
w 0 010 )

(2.5)

The occurring matrix is called the projection matrix P.

The assumption of an ideal image plane are not present for real sensor and several
properties might be differ more the ideal assumption. If the principle point ¢ does not lie
on the intersection of Z and the image plane, point m has to be translated to the shifted
image plane center (ug, vg). The pixel dimensions h, and h, might be scaled. The image
axes r and y might not be orthogonal to each other and have a skew angle 6. These
five parameters are called the intrinsic camera parameters and can be described in the
intrinsic matrix H.

h, —hycotl wuy
H=1{0 hy/sinf v (2.6)
0 0 1

If the camera coordinate system does not coincide with the world coordinate system, an
additional rotation R and translation ¢ has to be considered. This can be expressed with
the extrinsic matrix F.

ri1 T2 T3 b
E=[R|t]= |ra 1y re t 2.7)

r31 Tz T3z 13
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2 Background
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hy

Figure 2.2: Illustration of skewed pixel and the related angle a.

The full projective mapping can then be expressed as:

X
u hu —hu cot 6 Uo f 0 0 0 11 Ti12 T13 tl Yy
vl =10 hv/ sin 6 Vo 0 f 00 T21 To2 To3 tz 7 (28)
w 0 0 1 0 010 31 T32 T33 t3 1

For camera calibration the project matrix P and the intrinsic matrix H are concatenated
to form a matrix /.

fu S Ug
I = 0 fv Vo (29)
0 0 1

Here s = f, tan« is called the skew parameter (see Figure 2.2) and f, and f, are the
focal distance parameters in pixel dimensions. Note o = 7 — 6 (with 6 being the skew
angle of the intrinsic matrix H, refer to equation (2.6)).

Another property of a real sensor are lens distortions (see Figure 2.3). The curvature
of a lens leads to a distortion of the ray between a 3D point M and the optical center
C'. To compensate for this distortion in the projection, the distortion can be modeled as
radial and tangential distortion:

6p = B(kyr® 4 kor® + kar® ) 4 [pr(r? + 28%) + 2po2 9] (1 + par? +--+) (2.10)

20



2.3 View Planning Methods

(a) Barrel distortion. (b) Pincushion distortion.

Figure 2.3: Two common lens distortion models [Hug10].

6y = G(kir® + kar® + kar® + ) + 2p129 + po(r® + 207)] (L + psr® + - - +) (2.11)

The radial distance r can be computed with r = /22 + {2, k; are the radial distortion
coefficients and p; are the tangential coefficients (also called decentering coefficients).
With the distortion corrections (d,, d,) and the distorted image coordinates (Z.7) the
undistorted image coordinates (z,y) can be calculated via:

v =i +4, (2.12)

y=G+6, (2.13)

2.3 View Planning Methods

This section provides an overview of different view planning methods. Generally, these
can be categorized into model-based and non-model-based methods. Model-based
methods use a priori knowledge of an object or the environment to compute a view plan
offline. This leads to a faster execution of taking sensor measurements as no new views
have to be computed between view poses. Non-model-based methods use minimal to no
a priori knowledge and select a view based on observed properties of the environment
or an object. The advantage of non-model-based methods is their application to provide
views in unknown environments. This summary is based on the paper of Scott et al.
[SRRO3].

21



2 Background

Model-Based
View Planning Algorithms

I

Set Theory Graph Theory Cognputat:onal
eometry

Visibility Matrix L Aspect Graphs LAH Gallery Problem

Figure 2.4: Overview of model-based view planning methods [SRRO3].

2.3.1 Model-Based View Planning

Model-based view planning can be categorized based on the representations used for the
model. Generally, model-based view planning methods compute a complete sequence
of view poses with the model as a priori knowledge. The effort required for the model
creation is usually compensated by shorter view plans, i.e. smaller amount of different
view poses are required to achieve a task compared to non-model-based methods.
Usually, these approaches are used for high fidelity scanning of multiple similar objects
with complex geometries e.g. for quality inspection [MBND10].

Set Theory - Visibility Matrices

A discrete space around the object is encoded with some visibility metric in a single data
structure (visibilty matrix) for each pose in a quantized viewpoint space. This visibility
metric can be generalized to a measurability metric, which encodes measurement quality
for each element in the discrete space. In “Performance-Oriented View Planning for
Model Acquisition” [SRROO0], the view planning task to find a set of viewpoints measuring
the object surface is formulated in a set-theoretic manner as:

Find {Uj} S. t. {Sj} D) S. (214)

Here v; are viewpoint positions of the viewpoint space V" and S; is a set of object surface
elements measurable by a viewpoint v,. S; is a subset of the object surface space S. In
[TG95] this problem was identified to be isomorphic to the set covering problem, which
makes the view planning problem a NP-complete problem.

This method requires an accurate object model for the computation of a visibility matrix
before any view-planning algorithm can be used.

22



2.3 View Planning Methods

Graph Theory Method - Aspect Graphs

Aspect graphs provide a complete enumeration of all possible “distinct” views of an
object in a defined viewpoint space. The aspect graph is commonly defined as follows
[EBD92]:

* A node represents a view of the object which is part of the viewpoint space and

* an arc represents a transition between two neighboring views.

Algorithms for aspect graphs differ in their definition of the viewpoint space and, what a
“distinct” view of the object is and how the transition between views is defined. The two
basic models for viewpoint space are the viewing sphere and a general model of poses in
3D space. In the viewing sphere model, a unit sphere is placed in the center of the object
and a point on the sphere defines a viewpoint direction toward the object origin. In
the general 3D space model, a viewpoint is defined through its position and orientation
in 3D space. In [HK89], S. Hutchinson and A. Kak define an aspect, or distinct view,
of an object as an edge or multiple edges of the object. Arcs in their graph represent
adjacent viewpoints. Views which see the same features are grouped in the same node.
To determine the best sensing strategy, S. Hutchinson and A. Kak use the aspect graph
to search for the minimal amount of views which will see all aspects of an object. To
compute the aspect graph for an object requires either an exhaustive examination of the
object or an analytical approach.

As aspect graphs encode a large amount data for complex object geometries, the com-
putational complexity of finding a next-best-view is a major disadvantage. The offline
calculation of the view-planning strategy allows for no reactive action of the view
planning system in uncertain or dynamic environments.

Figure 2.5: An aspect graph (left) with nodes being viewpoints gazing at edges of the
object (right) and arcs connecting nodes representing viewpoint adjacency
[HK89].
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2 Background

Computational Geometry Methods - Art gallery problem

Figure 2.6: An “art gallery” with a guard (red dot) and the area it can view (shaded
area).

The question: "Given the complete geometry of a scene, what are the “best” viewpoints
for data acquisition?" is a well-known problem in two dimensions, namely the art gallery
problem (also called museum problem or watchmen problem). The art gallery problem
states: “Given a polygon P (floor plan of an art gallery), what is the upper bound on the
number of ‘guards’ and their pose represented as points such that all interior walls of P
are visible.” Solving this problem for 3D and a CAD model of an object can be used to
acquire view poses which can see the complete surface of an object.

In the general art gallery problem there is no measure of visibility, no modeling of the
view capabilities of the “guard” and the problem is restricted to 2D polygons. Even
though view poses can be computed which would see the complete surface of an object,
the problem lacks a measure to assess the quality of such view poses.

2.3.2 Non-Model-Based View Planning

Non-model-based view planning methods can be classified by their domain of reasoning
of viewpoints (see Figure 2.7). These are: surface-based, volumetric and global [SRR03].
The following section will give an overview of these categories and approaches which
use the different domains.

Surface-based Methods

Surface-based methods use features and properties of the surface of the object of interest
for view-planning. In the following paragraphs, three methods will be introduced which

24



2.3 View Planning Methods

Volumetric:
__—- Voxel occupancy
- Space carving

Imaging space

Surface-based:

- Occlusion edges
—|- Contour following
- Parametric surfaces

Object surface Global:

- Mass vector chain
- Intermediate surface

Figure 2.7: Overview of non-model-based view planning methods [SRR0O3].

use different properties of features of the surface of an object to compute a view of the
object.

Occlusion Edge Methods An occlusion edge method utilizes geometric jump edges.
These are caused by volumes which obstruct the view of other volumes. As such, they
can be used as an indicator for the next-best-view pose to position the view in such a
pose as to expose the obstructed volume in the next view. Another kind of edge are
boundary (occlusion) edges, which represent the boundary of a volume (see Figure 2.8).
This approach requires an extensive computation of visibility and a correct and reliable
classification of edges as boundary edges or geometric jump edges. Occlusion edge
methods can be included in extensive view-planning methods to, for example, penalize
views which lead to occlusion. This can be seen in the work “Occlusion-free path
planning with a probabilistic roadmap” [BDL+08].

Contour Following Having located boundary edges of an object, a contour following
method will follow the contour of the object by keeping a certain distance between the
camera and the object (see Figure 2.9).

One of the major drawbacks of this method is the requirement of a collision-free
environment for the camera as there is no direct way in the method to detect collisions.
The second major drawback is execution time for acquiring a complete view of the
object. The advantage is the simplicity of the method.

Parametric Surface Representation - Superquadric model Superquadric models can be
used to represent observed object surfaces. Given the view of an object, the parameters
of the superquadric model can be iteratively improved by selecting views where the
current superquadric model does not fit the image data very well. This process continues
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Figure 2.8: Example of an occlusion edge caused by the obstruction of the view with
another volume and boundary edges which represent the boundary of a

volume [SRRO3].

until the superquadric model represents the sensed object with a satisfactory quality.
The approach requires a segmentation of the object data and the fitting of superquadric
models to the segmentated parts, as computing a superquadric model for object with

complex geometries is not feasible.

Volumetric-based Methods

Volumetric-based methods use their knowledge of the imaging space to plan the next-
best-view. The goal is to choose the next-best-view which provides the greatest reduction

in uncertainty about the imaging space.

Voxel Occupancy Methods Space occupancy is encoded by a voxel occupancy grid (see
Figure 2.11) or an octree (see Figure 2.12). A next-best-view method can utilize the
occupancy representation of seen and unseen space to determine the next view.

26



2.3 View Planning Methods

Camera

Object SN/

Figure 2.9: Setup for a contour following method, where the camera keeps a certain
distance d from the surface of the object.

Figure 2.10: Three superquadrics (white wireframe models) fitted to a segmented part
of a range image [LJS97].

It’s suitable for a coarse representation of surfaces but not useful for high-precision
modeling. Grid occupancy storage can have high memory requirement for a small voxel
size and big grid dimensions but this can be reduced when using an octree structure to
store voxel occupancy. Due to the discretization of the space, one should be aware of
misalignment errors.

27



2 Background

Figure 2.11: Voxel occupancy grid encoding different occupancy probability of voxel in
the “L”-shape which might occur for a rotated L-shape [Gre02].

Figure 2.12: Octomap which uses the octree data structure for voxel occupancy map-
ping. Three octomaps with different resolutions are displayed in different
colors [HWB+13].

Space Carving Using a preplanned search pattern (see Figure 2.13), the vision sensor
is moved through the imaging space while taking measurements.

The pattern has to include a preplanned collision avoidance or an active collision
avoidance as the search pattern is preplanned. Through continuous movement in the
pattern this generates views with a high degree of overlap.

Global-based Methods

Global-based methods derive a view-planning strategy from global characteristics of the
geometric data of the object.

28



2.3 View Planning Methods

scanning from an
EMPTY layer

Scanning irom a layer
containing an obstacle

the object fo digitize
itself s an obsiachs

o furiher digitization

Figure 2.13: Spacecarving with a preplanned search pattern (zig-zag pattern) as well
as collision avoidance [PS97].

Mass Vector Chain A mass vector chain is a series of weighted vectors. In [Yua95], X.
Yuan represents surface areas as such weighted vectors. For closed surface boundaries,
a mass vector chain form a closed chain. A next-best-view direction can be selected as
the negative of the computed mass vector chain, which will eventually lead to a closed
chain (see Figure 2.14).

Although this method only estimates a view direction, it can be used as a coarse
initialization step or a cue for a viewing direction for more refined view-planning

strategies.
\ Camera

~

Seen surfaces ~

|
|
I
I
I
I
I
|
I
I Unseen surfaces
|

Figure 2.14: Exemplary calculation for a NBV using the mass vector chain. [SRR0O3].

Intermediate Space Representation An intermediate space representation encodes
information of visibility of an object surface related to a sensor placement in a virtual
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2 Background

surface positioned in the imaging space. With the help of such an intermediate represen-
tation of visibility, unseen surfaces of the object are chosen for the next-best-view.

An advantage of this approach is the decoupling of computational complexity of visibility
measure from the size of the viewpoint space.

Figure 2.15: Intermediate surface representation of a partially observed coffee mug
[Pit95].

For this work, a volumetric method is used. As the environment is assumed to be dynamic,
a non-model-based approach is required which uses minimal a priori knowledge of the
environment for view planning. AS the task of exploration requires the knowledge and
representation of unknown space to determine a view which would see such unknown
space. Another advantage of a volumetric method for this work, is the representation of
occupied space, which a collision avoidance process can utilize to compute safe motions
of a robotic system in the environment.

2.4 Robot Operating System - ROS

The Robot Operating System (ROS) is a “meta” operating system for robots and is
currently maintained by Willow Garage®. It provides a collection of algorithms relevant
for robotic applications and software building tools. Various sensors and actuators are
supported through drivers. It is open source software and software is developed by
the robotic community. It provides an architecture for inter-process communication to

lwillow Garage, Willow Garage, [Online] Available: http://www.willowgarage.com/ [Accessed:
14.08.2016]
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2.4 Robot Operating System - ROS

/pcd_to_pointcloud ‘matlab_global_node_49412

Figure 2.16: Three ROS nodes (displayed as oval nodes) communicate with each other
over two topics (rectangular nodes). The directed edges connecting the
nodes and topics indicate the direction of the data flow.

enable the sharing of data between software components. The communication is realized
as asynchronous RPC-style communication and synchronous message communication
with services. The communication is handled in a peer-to-peer network, called the
Computation Graph (see Figure 2.16). The basic components of the Computation
Graph are nodes, Master, Parameter Server, messages, services, topics and bags. Their
functionality will be briefly summarized.

Nodes: Nodes are the essential computation unit of the network. Usually, a system has
many nodes which exchange data and execute computations. For example, one
node can provide vision sensor measurements as point clouds which are used by
another node for point cloud specific computations.

Master: The ROS Master acts as a nameservice and provides registration and lookup for
the rest of the Computation Graph.

Parameter Server: Nodes use the parameter server to store and access parameters at
runtime. Its intended use is to provide global access to configuration parameters
and is executed as part of the ROS Master.

Messages: Messages are simple data structures containing typed fields. Primitive types
(like integers, boolean, etc.) as well as array of primitive types are supported.
Nodes use messages for data exchange with other nodes.

Topics: Topics are named buses for transporting messages between nodes. They utilize
the publish-subscribe pattern. Nodes can publish data on a named topic and nodes
which require that data can subscribe to the named topic. The ROS Master keeps
track of these topics and enables nodes which publish/subscribe to a topic, to
communicate with each other. Topics support multiple subscribers and publishers.
Communication with topics is one-way, from publisher to subscriber.

Services: As an alternative to the asynchronous one-way communication of topics,
services provide a synchronous request-reply communication style. Requests and
replies are defined as message structures. Nodes provide a named service and
other nodes can send a request to that named service and wait for a reply message.

Bags: Bags store ROS message data. They can be played back and used for developing
and testing algorithms.
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In [DDNO3] an active object recognition approach is presented which selects viewpoints
based on reinforcement learning approach. In reinforcement learning, the goal is to
select an action a given a state s to increase a reward r. F. Deinzer et al. formulate the
state s as a series of images and camera poses, actions a as the execution of a camera
movement and the reward r is given by the object recognition which measures the
quality of a given viewpoint. The NBV problem is then formulated as choosing an action
a; at a given time ¢ which will maximize the accumulated future rewards, called the
return R. As these future rewards can not be observed at time ¢, an action-value function
is trained which estimates the expected return for a given state and action at time ¢. The
viewpoint selection is done in two steps. First, the training of the action-value function
and then in the second step for an observed state s, an action is chosen which maximizes
the action-value function. In the experiments, the training of the action-value function
took around 600 pairs of state and actions for the classification of two types of cups.
Camera movements were restricted to a circular motion. It could be shown that given
the autonomously trained action-value function, the NBV component chose a sequence
of viewpoints which were near a theoretical optimal viewpoint sequence.

The approach has shown that a sequence of viewpoints for object recognition could be
chosen with no prior knowledge of the object classifier or the objects. Although, a short
sequence of viewpoints could be chosen which is near a theoretic optimum, the trade-off
is the training of an action-value function which requires a large amount of training
data.

In the approach of M. Trummer et al., presented in [TMD10], view poses are chosen
by uncertain feature point poses. The goal of their work is to produce an accurate 3D
reconstruction of unknown objects. They combine the 3D reconstruction process with a
guided KLT (GKLT) feature tracker. For each feature detected by the GKLT, the pose of
the feature is computed and the covariance matrix for the feature pose is determined. A
view pose is determined which is perpendicular to eigenvector v with the corresponding
largest eigenvalue \ of the covariance matrix. This approach is an extension to the
statistical E-Criterion. With this approach, the largest eigenvalue ) is reduced. As the
largest eigenvalue is an estimation of the uncertainty of a feature point pose, a view
perpendicular reduces this uncertainty. A camera is moved towards this view pose while
continuously taking pictures of the object. In the experiments an eye-in-hand robot
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setup was used with an intensity camera. During an initialization step, five pictures of
the object were taken from random view poses to receive an initial set of feature points
and their 3D pose. It could be shown that compared to random view pose selection,
the NBV planning of a view pose with respect to the extended E-Criterion reduced the
reconstruction error faster and produced overall a smaller reconstruction error.

The approach shows the selection of viewpoint direction based on the uncertainty of
feature point poses but gives no method for handling reachability of the viewpoint or
handling occlusions in the viewpoint pose. Camera movement is restricted to a dynamic
spherical motion model, which allows for changes in the sphere size and position. The
camera is always directed at the center of the sphere.

The thesis of S. Wenhardt [Wen13] presents an approach for 3D reconstruction which
utilizes an extended Kalman filter to formulate the 3D reconstruction process as a state
estimation problem. A state z is defined as a set of 3D reconstructed points with an
observation o defined as 2D points observed with a camera. The method reduces the
estimated quadratic error of an estimated state Z and the actual state 2. The estimated
quadratic error was identified as the trace of the a posteriori covariance matrix of
the state z. Using D-,T- or modified E-Criterion of covariance matrices, an optimal
view pose is determined which reduces the estimated quadratic error. The modified
E-Criterion is formulated as the minimization of the average maximal eigenvalues of
the 3D points. Furthermore, the optimization formulation considered viewability of
points with a sensor and occlusions in the scene. The set of candidate viewpoints is
determined by the reachable workspace of the robotic system, which is described with
the Denavit-Hartenberg matrix. An optimal viewpose D-,T- or modified E-Criterion is
determined by a global evaluation of the candidate viewpoint set. With this approach,
the global optimal viewpoint can be determined. For an initial estimation of the state
variable, the camera is moved to predefined positions. During the experiments various
objects with increasing geometric complexity were used to compare the D-,T- and E-
Criterions for the reduction of the 3D reconstruction error. These were also compared
to an approach which put the camera at random positions and one with uniformly
sampled camera positions. The experiments showed that the three optimal criterions
outperformed the random camera position process and the uniformly sampled camera
position approach. Among the three optimal criterions, the modified E-Criterion showed
the best performance regarding complex geometric objects.

The use of the Denavit-Hartenberg matrix allows this approach to formulate a reachable
workspace. This is an important consideration for eye-in-hand robotic systems, as
only view poses which can be reached can be sensed. No information regarding the
computation time for the selection of the viewpoint was given.

An approach for environment exploration was presented in [MAC16]. The environment
for view planning was determined as a sphere around a point of interest. The point
of interest represents the location an object in the environment which was removed

34



from the environment, placed at a new location or a new object was introduced to
the environment through human interaction. The location of these points of interest
was determined by using a hand-tracking system. To determine the next view pose,
an approach was used which is based on the approaches presented in [BWDAOO] and
[Con85]. Here, a spherical sensor motion model is used, with the sensor viewpoint
directed at the centre of the sphere. The environment is modeled as a 3D volumetric
voxel grid. The voxels can have occupancy states which are determined by a truncated
signed distance function. After a sphere of interest is determined, the voxels contained
in the sphere are set to the occupancy state unknown. View poses were evaluated
by the amount of unknown voxel which are in the field of view of the sensor and
inside the sphere of interest. Furthermore, the NBV uses the GPU for a more time
efficient computation of raycasts in the voxel map. The experiments showed a significant
computation time improvement, around 200%, of the NBV computation using a GPU
versus a CPU for evaluation.

This approach is similar in formulation of the information gain of a view pose to this
work. The area of exploration is determined dynamically due to detected changes in the
environment. In this work, the complete environment is considered to be unknown and
sensor motions are not restricted to a sphere. Furthermore, no collision avoidance for
reachability of view poses is considered.

In the thesis of M. Suppa [Sup07] the exploration of configuration space (C-space)
and the environment is combined in one exploration system. The goal of C-space
exploration is to increase the knowledge of manoeuvrability of a robot in a partially
unknown environment. From vision sensor measurements the environment is sensed
and robot configurations are identified which can be in a collision state or in a collision-
free state. The exploration of the environment is concerned with the task of object
modelling. Additional tasks include object tracking and object recognition, which are
mentioned in the work but no explicit method for achieving these objectives is given. To
combine the different tasks for the selection of a sensor pose s, each task computes a
task-specific information gain / based on a world model which all tasks use. Entropy of
the information gain is used as an indicator for the NBV selection. Each information gain
and therefore each task can be weighted for NBV selection. Resulting in the formulation
of the NBYV, for the different tasks 7 and task-specific weights w;

Smax = argmax Z w;1; (3.1)

8 i
This results in a viewpose spax, Which is optimal with regard to weighted information gain
metrics. For a viewpose acquired from the NBV component, a robot configuration g is
determined and verified that it is a collision-free configuration. In case the configuration
is in a collision state, the measurement can not be taken and no further strategy is given
in such a case. If the configuration is in an unknown space with no known configuration
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state, a C-space exploration at that viewpose is required. In case the configuration is
collision-free, a motion planner seeks a path between the current configuration and the
goal configuration. If a path is found then the robot moves to the goal configuration and
continues the exploration process. If no path is found due to obstacles, the execution
is stopped. The C-space exploration and environment exploration were tested in a
simulation framework and further evaluated on a real robot system. The experiments
showed an increase of the knowledge of the configuration space but could not explore
the complete C-space.

This is an interesting approach and is, to the authors best knowledge, the first approach
to combine multiple tasks into one view for view planning. The approach requires
task-specific information gains which can be combined to an overall information gain of
a pose. This is not the case in this work and different tasks can have different metrics for
the evaluation of a pose. The combination of a of task-specific view poses is independent
of the task-specific evaluations. Furthermore, the task-specific weights in the approach of
M. Suppa are fixed and do not adapt to the state of the environment or the task-specific
goals. Although object recognition is mentioned in this work and an architecture is given
for the incorporation of the object recognition task, no further details were given. An
interesting part of this approach is the exploration of the configuration space.
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The following chapter will present the approach and gives an overview of the system
architecture.

4.1 General overview

Autonomous exploration of the environment is achieved through a non-model-based
view planning approach which uses a volumetric representation of the environment. To
combine the task of object recognition and autonomous exploration of the environment,
a next-best-view system is developed. A next-best-view component computes view poses
based on a volumetric environment map, which is derived from a volumetric mapping
system. The next-best-view system consists of a RGB-D sensor (see Section 4.2), an

Transformation
sensor location to
world coordinate frame

RGB-D sensor Point cloud OctoMap Voxels Environment
server Map
RGB image +
Point cloud
Object Recognition Environment map
system
| Object state + belief of object state
Position control View pose Next-Best-View
unit component

Figure 4.1: Basic overview of the next-best-view system.

environment mapping system (see Section 4.3), an environment map (see Section 4.4)
derived from the environment mapping system and the next-best-view component (see
Section 4.5). Additionally, an object recognition system and a position control unit for
the robotic system are present, but were not developed in this work. The RGB-D sensor
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sends its depth measurement as a point cloud to the mapping framework OctoMap
which computes occupied and free voxels based on the provided point cloud. Given the
transformation of the sensor location to world coordinate frame, the OctoMap server
computes the location of the voxels in world coordinates. With the resolution and
location of the occupied and free voxels, an environment map is updated with the new
measurements (see Figure 4.1). Based on this map, a new sensor pose is computed
in the next-best-view component to explore the environment and improve the object
recognition. This pose is given to a position control unit, which moves the robotic
hand with the mounted RGB-D sensor to the given pose. From the new view pose,
new measurements of the environment are made. The position control unit for the
positioning of the robotic arm in the workspace already exists and was implemented in
MATLAB. An object recognition system is also provided in the available robotic system.
The environment map and next-best-view component are implemented in MATLAB,
while the communication with the RGB-D sensor is achieved through a ROS node as
well as the OctoMap server.

The following tasks were done to implement the next-best-view system:

* Integration of Kinect v2 in the existing system with the IAI Kinect2 package
(kinect2 bridge ROS node) [Wiel5].

* Camera calibration of Kinect v2.
* Hand-Eye calibration for Kinect v2 and robotic arm.
* Integration of OctoMap by using octomap_server package available in ROS.

* Implementing 3D grid map (environment map) in MATLAB and validating commu-
nication between kinect2 bridge, octomap server and MATLAB.

* Implementation of next-best-view component in MATLAB which provides a view-
point pose for the Kinect v2 mounted on the robotic arm.

* Validation of the complete system and experiments regarding exploration.
* Integration of object recognition metric into next-best-view system.

* Validation and experiments of next-best-view system with object recognition met-
ric.
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Color Infrared Infrared
camera camera illuminator

Figure 4.2: Kinect v2 sensor with the front panel removed. The location of the RGB
camera (color camera) and the depth sensor (Infrared camera) are shown
[BR14].

4.2 RGB-D Camera - Kinect v2

For the acquisition of depth measurements the second generation of the Kinect sensor,
following called Kinect v2 (also called Kinect for Xbox One), was used. It is equipped
with an RGB sensor, IR emitter and receiver for depth measurements and a microphone
array. The technical specifications can be seen in Table 4.1 !. Compared to the first
generation of the Kinect, Kinect v1 (also called Kinect for Xbox 360), the Kinect v2
has a larger RGB and depth resolution, with a larger field of view as well as a smaller
minimal depth range and higher maximal depth range by default [Zen14]. This enables
the Kinect v2 to sense a larger space with a higher resolution. For measuring depth,
the Kinect v2 employs the Time-of-Flight (ToF) method. The ToF method is based on
measuring the time a light, emitted by an illumination unit, requires to travel from
the illumination unit to an object where it is reflected and received by a sensor (see
Figure 4.3). For further technical details, please refer to “The Xbox One System on a
Chip and Kinect Sensor” [SO14]. The sensor exhibits an oscillating depth distortion
error of =6 mm [BR14] and requires a pre-heating phase of around 20 minutes for
reliable depth measurements [LMM+15].

Microsoft, Kinect hardware, [Online] Available: https://developer.microsoft.com/en-us/windows/
kinect/hardware [Accessed: 25.06.2016]
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RGB resolution [px] 1920 x 1080
Depth resolution [px] 512 x 424
Depth FOV (h x v) [°] 70 x 60
Depth range [m] 0.5-45
Minimum latency [ms] 20
Dimensions (Il x wx h) [mm] | 249 x 66 x 67 (+/- 0,3175)
Weight [kg] (approx.) 1.4
Connection Type USB 3.0

Table 4.1: Summarized technical specification of Kinect v2.
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Figure 4.3: Basic concept of the ToF method [Esp12] with phase modulation which is
internally used by the Kinect v2 sensor.

4.2.1 Kinect v2 connection to ROS

To connect the Kinect v2 into ROS, the package IAI Kinect 2 [Wiel5] developed T.
Wiedermeyer was used. It consists of a camera calibration tool for the RGB and IR sensor,
a bridge (kinect2 bridge) for publishing relevant Kinect v2 data (e.g. point clouds, RGB
images or camera info) on ROS topics, a viewer for the RGB image data and point cloud
data and a library for the registration of depth measurements and RGB data.

Registered point clouds are provided in Full HD resolution (1920 x 1080 px) and quarter
Full HD (QHD) resolution (960 x 540 px). The raw depth images from the sensor are
also available with a resolution of 512 x 424 px. The raw depth data requires no further
calibration as internal sensor data is used for registration of RGB and IR data. Full
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HD and QHD point clouds require a camera calibration for a correct registration of
RGB and IR data. The point clouds are published as ’sensor msgs/PointCloud2’ ROS
messages 2. The kinect2_bridge has several parameters which influence the properties of
the registration process and properties of the point cloud. For this work, the relevant
parameters are:

publish_tf = [ bool ] Publishes the static transformation frames kinect2_link,
kinect2 rgb optical frame and kinect2 ir optical frame. The
kinect2 rgb optical frame corresponds to the location of the RGB sensor of the
Kinect v2 and kinect2_ir_optical_frame corresponds to the location of the IR receiver.
The kinect2 link is used as the camera base link and is located at the same location
as kinect2 _rgb_optical frame.

fps_limit = [ double ] Defines the limit on the frames per second (fps) for publishing
the point cloud data. If no value is set, the kinect2 bridge tries to publish the point
cloud as fast as possible which puts a heavy load on the CPU.

max_depth = [ double ] Sets the maximal depth [meters] for the depth measurement.
It can be used to clip the range of the depth measurement to a relevant maximal
depth and remove data not relevant for point cloud processing.

4.3 OctoMap

OctoMap is a 3D mapping framework which utilizes octrees to generate 3D volumetric
models of the environment. It is available as a C++ library® as well as a ROS package*
and is presented in the work “OctoMap: an efficient probabilistic 3D mapping framework
based on octrees” [HWB+13].

An octree is a graph-based hierarchical data structure. Each node in an octree represents
a cubic volume, usually called voxel. These voxels are recursively divided into eight
children until a given minimum voxel size is reached (see Figure 4.4). The minimum
voxel size determines the resolution of the octree (see Figure 4.5). Voxels are marked as
occupied according to the measurements acquired from a range sensor. Free voxels are
determined as the area between the sensor origin and measurement end points. Any
area not marked as free or occupied is implicitly modelled as unknown area.

2ROS, sensor_msgs/PointCloud2, [Online] Available: http://docs.ros.org/api/sensor_msgs/html/msg/
PointCloud2.html [Accessed: 25.06.2016]

3K.M. Wurm, A. Hornung, OctoMap, [Online] Available: http://octomap.github.io/ [Accessed:
25.06.2016]

4ROS, octomap, [Online] Available: http://wiki.ros.org/octomap [Accessed: 25.06.2016]

41


 http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
 http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://octomap.github.io/
http://wiki.ros.org/octomap

4 Next-best-view system

Figure 4.5: Octree representations once in a volumetric representation (left) and the
corresponding tree structure (right). Occupied voxels are shaded black and
free voxels are shaded white [HWB+13].

Occupancy in the OctoMap is represented probabilistically. Volumetric elements (Voxels)
can have three states: unknown, occupied and free. This is a useful classification for this
work as it enables to restrict movement of a robotic system to only free space to avoid
collisions with objects in the environment, which have been measured and mapped as
occupied. Furthermore, unknown space can be avoided as it can contain objects not yet
sensed by the sensor and therefor avoid collisions with those objects. Additionally, the
representation of unknown space is of special interest for visual exploration tasks as
the task involves the planning of actions which reduce the amount of unknown space.
As the next-best-view component in the system only provides a pose for the sensor
in a free voxel, the collision avoidance with the environment can only be guaranteed
for this component and not the whole geometry of the robotic arm. The probabilistic
representation of occupancy is an important property of the OctoMap as sensor mea-
surements are afflicted by different error sources. The noisy sensor measurements can
be taken into account as underlying uncertainties. By fusing multiple measurements, a
robust estimation of the true state of the environment can be made. The sensor fusion is
implemented as log-odds for numerical stability. Given previous sensor measurements
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2141 and the current sensor measurement z;, the occupancy for voxel n given z;,, can
be formulated with log-odds as:

L(n [ 214) = L(n | z14-2) + L(n | 2) (4.1)

The inverse sensor model L(n | z;) depends on the specific sensor used for making
measurements in the environment. In [HWB+13], the sensor is assumed to be beam-
based, i.e. endpoints of a measurement correspond with objects in the environment
that reflect the beam. This is also true for the Kinect v2 sensor used in this work. The
traversed voxels by a beam are determined by a ray-casting algorithm. For a voxel n and
a measurement 2, the inverse sensor model can be described as:

l,.. if beam is reflected in voxel n
Ln|z)= { (4.2)

lfrec if beam traversed voxel n

4.3.1 OctoMap in ROS

In this work the octomap_server ROS package is used, which computes OctoMaps and pub-
lishes them as octomap _msgs/Octomap’ ROS messages®. In the ‘octomap msgs/Octomap’
message the OctoMap is serialized for data transportation and can be deserialized to a
OctoMap with functions in the C+ + library or with the ROS package ‘octomap msgs™®.
The octomap_server subscribes to the topic ’cloud in’ with message type ’sen-
sor_msgs/PointCloud2’. This is provided by the kinect2 bridge node. The octomap_server
also requires a transformation from the sensor data frame to a static map frame. With
this transformation the point cloud received from the sensor can be transformed into
world coordinates frames for the proper computation of the voxels center points in world
coordinates in the OctoMap. In this work the map frame is set to be equal with the
world frame. The world frame is located at the base of robotic arm and is in the same
plane as the objects of interest. The location of the sensor data frame (kinect2_link, see
Subsection 4.2.1) in world coordinates is determined by a hand-eye calibration (see
Section 5.3).

The octomap_server publishes the following topics:

octomap_binary as 'octomap_msgs/Octomap’: The compact binary version of the Oc-

toMap which stores only free and occupied voxel states.

SROS, octomap_msgs/Octomap, [Online] Available: http://docs.ros.org/api/octomap_msgs/html/msg/
Octomap.html [Accessed: 25.06.2016]
6ROS, octomap_msgs, [Online] Available: http://wiki.ros.org/octomap msgs [Accessed: 25.06.2016]
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octomap_full as octomap msgs/Octomap’: Publishes the full state of the OctoMap.

occupied_cells vis_array as visualization_msgs/MarkerArray’: The center of all occu-
pied voxels as box markers with different scaling. It is used for visualization
of occupied voxels in RViz.

free cells vis_array as visualization msgs/MarkerArray’: The center of all free voxels
as box markers. By default, this is not published but can be enabled with the
publish_free_space parameter.

octomap point_cloud_centers as sensor_msgs/PointCloud2’: The center points of all oc-
cupied voxels as a point cloud. As points in a point cloud have no volume (opposed
to the box markers used in occupied_cells vis_array), the visualization will contain
gaps between voxel center points. The gaps vary in size with the different voxel
size resolutions.

projected_map as 'nav_msgs/OccupancyGrid’: A 2D downprojected occupancy map of
the 3D OctoMap.

The following parameters are of special interest for this work:
resolution = [ float ] Defines the minimal resolution (in meters) of voxels in the map.

sensor_model/max_range = [ float ] Maximum range of measurements integrated into
the map from the provided point cloud in the topic ’cloud in’. This can be set to a
value relevant for the mapping area.

sensor_model/( hit | miss) = [ float ] Probabilities for the inverse sensor model for
hitting (occupied voxel) and missing (free voxel). The default values are 0.7 for
hit and 0.4 for a miss which correspond to [,.. = 0.85 and l,.. = —0.4 (refer to
equation (4.2))

publish_free space = [ bool ] Enables the publishing of free voxels on the topic
free_cells vis_array’.

4.4 Environment Map

The environment map is implemented as a 3D grid map with evenly spaced voxels with a
constant voxel resolution (see Figure 4.6). A voxel in the map can have three occupancy
states, namely unknown, free and occupied. A voxel, not yet sensed by the RGB-D sensor
has the state unknown. Voxels which have been sensed by the RGB-D sensor are marked
occupied and voxels between the sensor viewpoint and occupied voxels are marked as
free voxels. Their location is given by the OctoMap server. The states of occupied voxels
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and free voxels is also given by the OctoMap server. The environment map is initialized
with voxels in the unknown state. The environment map is implemented in MATLAB
to be utilized not only for the next-best-view system but also for the object recognition
system and a collision avoidance system.

0.01 0.03 X
0.02

Voxel

resolution

Figure 4.6: Center points for voxel in a grid map (displayed in 2D) with a voxel resolu-
tion of 0.02 meters.

Although, MATLAB has support for the ’octomap msgs/Octomap’ ROS message and
can receive those messages, MATLAB has no direct way of accessing the data in the
OctoMap as they are serialized. No direct way of deserializing the data in MATLAB
was found. The topic octomap_point_cloud_centers publishes the location of occupied
voxels as a ’sensor_msgs/PointCloud2’ ROS message, but no information of free voxels
can be received through this message and would require a computation of these free
voxels. With these difficulties present, it was chosen to use the visualization markers
occupied_cells vis_array and free_cells vis_array, which provide the location of occupied
and free voxels on two topics. These topics provide no information regarding the
probabilistic occupancy value of the voxels, which could be useful for next-best-view
algorithms which utilize these values. As the proposed approach makes only use of the
occupancy state of voxels, this was considered an acceptable loss of information.

4.5 Next-best-view component

To choose a new sensor pose, a possible new pose has to be evaluated regarding its
capability to gain additional information about the environment and provide useful data
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for the object recognition task. For this purpose an evaluation function is formulated. To
evaluate a pose for exploration of the map, a voxel raycast is performed from the pose
to raycast endpoints. These endpoints are determined by the sensor view frustum. With
this design, the computed rays represent the possible measurements of a sensor in a
pose. For a ray being cast from a position to a raycast endpoint, each voxel traversed by
that ray is evaluated. A voxel is evaluated with the environment map and represents the
state of the voxel in the environment map. If along a traversed ray an occupied voxel
is encountered, the traversal is stopped and the next ray is cast and evaluated. Each
traversed voxel which is evaluated as unknown is added to the total sum of unknown
voxels revealed by the given position. This sum represents the function value of the
evaluation function.
Let M be the set of all voxels v in the sensor view frustum for a pose p. Let EM be an
evaluation function of the environment map which returns the state of a voxel in the
environment map. Then the evaluation function for exploration f for a given pose p can
be written as:
n=|M]|
f(p) = > [EM(v;) = unknown] (4.3)
i=1

For computing the traversed voxels by a ray, a 3D grid implementation of the Bresenham
algorithm was used which is based on the work “A Fast Voxel Traversal Algorithm for
Ray Tracing” of J. Amantides and A. Woo [AW87].

A possible new sensor pose has to fulfill the following three constraints before it is
evaluated:

Free: A possible new pose should only be in a location marked in the map as free.
This avoids possible collisions of the sensor in its new pose. As this can not be
guaranteed for unknown space, unknown marked voxels are excluded as possible
new poses.

Reachable: The reachability is defined as a pose which can be reached by the robotic
system without a self-collision.

Distance to object: As the sensor system should always be able to view the object for
the object recognition task, the view range of the used sensor has to be considered.
For the Kinect v2 sensor the minimal distance for the depth sensor is 0.5m. This
minimal distance also avoids any collision of the sensor hardware with the object.

With the evaluation function given in equation (4.3), the next-best-view problem of
finding a sensor pose p;,, which maximizes the information gain /G in all possible sensor
placements P

Pexp = argmax [G(p) 4.4)

peEP
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can be rewritten as

Dexp = arg max f(p) (4.5)
peEP

To find a solution for equation (4.5) the twiddle algorithm (see Algorithm 4.1) is used.
Given an initial pose, the twiddle algorithm will choose a local optimal pose, i.e. a pose
locally near the initial pose which will view the most unknown voxels in the map.

The twiddle algorithm is given an initial position in environment map coordinates
pyv = (Ta,yn, 2zu) and a stepsize «; for each map dimension. Starting at the initial
pose pys, a new pose p', is computed by once adding and subtracting the stepsize for
one dimension and evaluating the new pose p),. If a step taken in a dimension is an
improvement, the stepsize is increased, otherwise the stepsize is decreased. The twiddle
algorithm then continues to evaluate positions in the voxel map in the direction which
have a higher evaluation function value. The algorithm terminates in a position where
locally no other position has a higher evaluation function value.

Algorithm 4.1 Twiddle algorithm

Input: Initial pose p); € Map, initial stepsize «; for the n Map dimensions
Output: local optimal pose p}, € Map
repeat

fori=1:ndo

Py = ATGMAX e (1~ par par+oi} f ()

end for

Increase «; if py; changed; decrease «o; otherwise
until p,, converges

4.5.1 Object recognition system

The object recognition system uses a CAD model of the object to express the state of
the model in the environment. As the environment can be dynamic and parts of the
object can be occluded or not present, a formulation of the belief of the state of the
object o in the environment is required. To increase the belief of the object state in the
environment, sensor measurements z of the object in the environment are required to
confirm or refute the object state. These sensor measurements are used together with
an object recognition algorithm to classify parts of an object in an image and determine
their location. The information provided by the CAD model and the measurements are
fused to a belief of the object state in the environment. It is assumed that the object
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4 Next-best-view system

state does not change over time in the environment. The belief over the object state is
expressed with a binary bayes filter with static state [Thr02].

bel;(0) = p(0|z1.) (4.6)

Here the belief bel; of the object state depends on a series of ¢ sensor measurements
z. Using log odds ratio to express the belief, reduces the computational effort. The log
odds ratio is defined as the logarithm of the probability of an object state divided by its
negate

p(0) p(0)
(o) =1o =log ——~— “4.7)
() =108 ) ~ 1B T p(0]
The belief can be computed from the log odds ratio with the following equation:
bel; =1— b (4.8)
o 1+ep(l) '

Here [, denotes the log odds ratio of the object state at time ¢ and can be computed with

plelze) o, PlO)

—_— 4.9
1 — p(x|z) 1 —p(o) (4.9

lt<0) = lt_l(O) + 10g
P(0) is the prior probability of the state of the object and is derived from the CAD model
of the object.

4.5.2 Combining exploration task and object recognition task

The combination of the exploration task and the object recognition task is achieved
through a weighting of the view poses selected by each task. This requires an evaluation
of a view pose for the object recognition task. In this approach, a view pose is considered
“good” in case the sensor can see the location of the objects recognized in the object
recognition system. The object recognition system keeps a database of recognized objects
and their location throughout all views. These locations are used with the sensor model
to determine if and how many objects a potential view pose can see. This is determined
through ray tracing in the environment. If a ray cast from the potential view poses
traverses a voxel which is located near an object location, it is assumed that the view
pose can see the object location. If the ray traverses an occupied voxel and that occupied
voxel is not near an object location, it is assumed that this ray can not see the object. If
no ray for a view pose can see an object, then the view pose is considered a “bad” view
pose. These considerations are in effect a visibility measure of the object location for a
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4.5 Next-best-view component

view pose. The goal of the visibility measure ¢(s) is to find a sensor pose p which can see
as many objects present in the object database as possible. This can be formulated as

Pyis = argmax g(p) (4.10)
peEP

To solve the optimization problem in equation (4.10), the Twiddle algorithm is used.
A view pose for exploration can have a low visibility metric and the same can be true for
a view pose for the object recognition task for the exploration metric. A combined view
pose is acquired by dynamic weights for both view poses. As more of the environment
map is explored, less focus has to be given to an exploration view pose and more focus
can be given to the object recognition view pose

The weight e € [0... 1] for the exploration pose depends on the amount of remaining
unknown voxel in the environment map. It can be determined with the amount of free
voxel | vgee | and the amount of occupied voxel | vy | in the following formulation

_ |Ufree | + | Voce |

’ Utotal |

e—1 (4.11)

For the object recognition task a threshold P, for the object state belief is used. If
an object state belief is higher than the threshold Py, the object state is considered
true. For the weight o € [0. .. 1] of the object recognition task, this is considered in the
following formulation

s &'Mz

Il
A

P;(05]2)

(4.12)

o=1-—
Pmax,i

1

Given the weights e and o, the exploration view pose p;,, and the object recognition view
pose pf;, a combined view pose p} ., can be computed with the following equation:

. e o,
Deomb = Hiopexp + mpvis (413)
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5 Experiments

This chapter will give a brief description of the robotic arm used during the experiments,
camera calibration results required for the RGB-D sensor, the hand-eye calibration which
is required for the correct estimation of the sensor pose as well as experiments for the
evaluation of the developed NBV system.

5.1 Robotic arm

(a) Top view of the robotic arm. (b) Side view of the robotic arm.

Figure 5.1: Technical drawing of the Schunk IWA 4P with dimensions of links and
visualization of work space. [Sch16].

The robotic arm used in the experiments is the Schunk LWA 4P!. It consists of three
links, one of which is grounded, and three joints with two degrees of freedom (DOF)
each. From it’s ground point, it can reach a height of 0.8692 meters and has a horizontal
reach of 0.6549 meters [Sch16]. As can be seen in Figure 5.1, the robotic arm can not
make a full circular motion but only one of 340° degrees. This motions restrictions are
considered in the selection of candidate view poses which are reachable.

1Schunk, Powerball Lightweight Arm LWA 4P [Online], Available: http://mobile.schunk-microsite.com/
en/produkte/products/powerball-lightweight-arm-Ilwa-4p.html [Accessed: 16.07.2016]
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5 Experiments

5.2 Camera calibration

The process of camera calibration is concerned with the estimation of the intrinsic
and/or the extrinsic camera parameters (refer to Section 2.2). It is required to accurately
identify 3D world points sensed in the camera to their corresponding 2D image points.
For a 3D world point M = (X,Y, Z,1)T the corresponding 2D image point m = (u,v,1)”
can be computed with the equation:

Ju 5 wo| |T11 T2 T3 1
m=1EM= 1|0 f, vol| |ro1 1o 793 to
0 0 1] [rs1 732 733 I3

X
Y

5.1
7 (5.1
1

intrinsic matrix I extrinsic matrix E

Lets assume that all sensed world points M are on a plane with Z = 0 in world
coordinates. Then equation (5.1) with Z =0

X
u fu 8 uo| |1 Ti2 T3 t v
vl =10 fu vol| |r2a1 Ta2 T3 2 0 (5.2)
]. O O 1 31 T32 T33 t3 1

can be reduced to

u Ju 8 uo| |Tin T2 1| |X
vl = O fv Vo T21 T22 t2 Y (53)
1 0 0 1 31 T32 t3 1

Homography H

As image point m and world point M = [X Y 1] " both lie on planes, they are related
by a homography H.

m=HM (5.4)

Let hy, ho and hz be the column vectors of H and with equation (5.3) follows:

fu s up| |t Ti2 t
H = [h1 ho hs} =10 fu vl [rar T2 to (5.5)
0 0 1 31 T32 t3

! [Tl T2 t}
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5.2 Camera calibration

This can be further simplified with 7, 7, and ¢ being the column vectors of the extrinsic
matrix:

[hl ho h3} =J[r1 - t} (5.6)

As {7"1 To rg} form an orthonormal basis, following conditions hold true:

TITTQ =0, [|ri| = |r2]| = 1 (5.7)

With these two conditions, the following two equations can be formulated. With rTr, = 0,
r = [_1h1 and o = I_th :

RIT-TT'hy =0, (5.8)
and with ||r,|| = ||r2|| = 1 follows:
RITTT hy — WA "I hy =0 (5.9)

Each homography provides two equations, which can be used to solve a linear system of
equations for the intrinsic parameters. Acquiring a homography in camera calibration is
done with a special calibration object, usually a chessboard pattern. For a chessboard
pattern the amount of squares and their dimensions are known. The corners of the
squares of the chessboard are detected and they are assumed to all lie on a plane
(see Figure 5.2 and Figure 5.3). The plane is further assumed to have a Z = 0 world
coordinate. With this setup, the chessboard plane and the image plane are related by a
homography H as described above and the intrinsic camera parameters can be estimated
through a linear system of equations. To acquire multiple homographies to solve the
linear system of equations, the chessboard is moved into different poses in the view of
the camera.

The camera calibration in this work was done with the kinect2 calibration ROS package
provided in the IAI Kinect 2 project. Internally it uses the calibration method used
in OpenCV which is based on the method of Tsai [TL89]. The process estimates the
intrinsic parameters for the RGB and IR camera separately as well as the tangential and
radial distortion parameters. The intrinsic skew parameter s is not estimated during
the calibration. After the intrinsic camera parameters are estimated for RGB and IR
camera, the extrinsic parameters between both cameras are estimated which is required
for the registration of RGB images to depth measurements (point cloud). The estimated
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This work | Lachat | Microsoft SDK | Sarbolandi | IAI Kinect
fz[px] 364.4 364.7 366.0 370.8 366.9
filpz] | 362.7 366.1 366.0 370.2 364.8
. [pr] 250.3 255.8 258.6 263.4 243.0
cy[p] 202.5 203.7 206.5 202.6 207.7
kq 0.07370 | 0.08708 0.09357 0.09497 0.09656
ko -0.29259 | -0.16515 -0.27394 -0.24260 -0.28298
ks 0.12608 | -0.00321 0.09288 0 0.10524
p1 -0.00088 | -0.00345 n.a. 0.00076 0.00016
D2 0.00286 0 n.a. -0.00017 | -0.00051

Table 5.1: IR camera parameters determined with IR camera parameters from other
works. Lachat refers to the work of Lachat et al.[LMM+15]. The Microsoft
SDK values were also determined in the work of Lachat [LMM+15]. Sar-
bolandi refers to the work of Sarbolandi et al.[SLK15] and IAI Kinect refers
to the work of Wiedemeyer [Wiel5]

Table 5.2: RGB camera parameters determined in this work and the work of Wiedemeyer
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This work | IAI Kinect
fzlpx] | 1554.4 1059.9
flpr] | 14159 | 1053.9
c[px 957.9 954.8
¢y [pr] 537.4 523.7
kq -0.04159 | 0.05627
ko 0.08877 | -0.07419
ks -1.8435 0.02411
D1 -0.005523 | 0.00143
D2 -0.00852 | -0.00169

[Wiel5], refered to as IAI Kinect in the table.



5.2 Camera calibration

Figure 5.2: Identification of the corners of the chessboard pattern with the IR camera.

Figure 5.3: Identification of the corners of the chessboard pattern with the RGB camera.

camera parameters are similar to parameters estimated in other works. The IR camera
parameters can be seen in Table 5.1 and the RGB camera parameters in Table 5.2.
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The transformation of IR camera pose to the RGB camera pose was estimated as well.
The transformation matrix is expressed with its rotation matrix R and the translation ¢
separately.

0.997 —0.0167 —0.0107
R = 10.0166 0.998 0.0018 (5.10)
0.0108 —0.0019 0.999

—0.05213
t = [—0.00034 (5.11)
0.00085

This places the IR sensor about 5.2 centimeters to the side of the RGB sensor. This
correlates to manual measurements done at the physical sensor and the estimated
parameters in the work [Wiel5].

5.3 Hand-Eye calibration

The hand-eye calibration problem is the determination of the relative position and
orientation of a camera, which is rigidly mounted on the robotic hand, to the hand
frame. It is required for the mapping and manipulation task as location of objects and
the environment sensed in the camera frame can be transformed into the robot base
frame. For the octomap_server ROS node it is important as it is required to compute the
transformation from the camera frame to the world frame.

Acquiring the solution of the hand-eye calibration problem, leads to solving a homoge-
neous transformation equation of the form:

AX =XB (5.12)

Here X is the unknown transformation between sensor frame and hand frame and has
to be determined. The general approach is, where the camera is mounted rigidly on
the robotic arm and the robot executes movements to different positions in the robot
workspace. The transformation between two hand positions 7 and j is the transformation
A (see Figure 5.4). The transformation from robot hand to robot base can be used
to compute A. Let H; be the transformation from robot hand frame to robot base
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5.3 Hand-Eye calibration

Li

Calibration
object
Robot
base

Figure 5.4: Schematic hand-eye setup with relevant transformations for two hand posi-
tions 7 and j. Adapted from [RDLD97].

frame for hand position 7 and H, the same transformation for hand position j, then the
transformation A can be computed as:

A= (H)™\(H;) (5.13)

In every position of the hand, the camera is sensing a calibration object which does
not change its location during the hand-eye calibration process. The transformation
B is the transformation between two camera locations. It can be determined with
the transformation L from the calibration object frame to camera frame (also known
as extrinsic camera calibration in literature). For two hand positions i and j, the
transformation B can be determined from the two transformations L; and Lj;:

B = (L;)(L;)™" (5.14)

With A, B and equation (5.12), the parameters of the transformation matrix X can be
estimated. At least three different robot motions are required [TL89].

To solve the hand-eye calibration problem in this work, the project aruco_hand_eye? was
used. The project is based on the aruco_ros® ROS package which can estimate 3D poses
of fiducial markers in the camera frame [GMMM14], i.e. it provides the transformation
L from camera frame to calibration object frame. Transformation H is provided by the
available robotic system (see Figure 5.5 and Figure 5.6). With these transformations

2JHU Laboratory for Computational Sensing and Robotics, aruco_hand_eye, [Online] Available: https:
//github.com/jhu-lcsr/aruco_hand eye [Accessed: 30.06.2016]
3ROS, aruco_ros, [Online] Available: http://wiki.ros.org/aruco_ros [Accessed: 30.06.2016]
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5 Experiments

the ROS package visp_handZ2eye_calibration* is employed to estimate the parameters
of transformation X with the method of R. Tsai and R. Lenz presented in their work
“A new technique for fully autonomous and efficient 3D robotics hand/eye calibration”
[TL89]. The method by R. Tsai and R. Lenz first computes the rotational parameters and
then the translational parameters of the transformation X (called closed-form solution).
The quality of the solution depends on the quality of the sensor measurements and on a
sufficiently accurate intrinsic camera calibration.

Kinegiz, '

m_3 ~link

Figure 5.5: A scene showing the transformations H, L and X. The transformation L is
estimated by aruco_hand_eye package. The camera is oriented towards the
fiducial marker on a table in front of the robotic arm. Several frames of the
robotic arm are displayed as well as the camera frame and the calibration
object frame.

5.4 Experiments

During the experiments two objects were used for exploration and object recognition.
One is a plate fixed onto a box with two screws (see Figure 5.7), henceforth referred to
as plate object, and the other is a pressure valve with a pressure cylinder (see Figure 5.8),
henceforth referred to as valve object. Both of the objects are placed on a tabletop in
front of the robot. These objects were used as they resemble objects in a (dis)assembly

4ROS, visp_hand2eye_calibration, [Online] Available: http://wiki.ros.org/aruco_ros [Accessed:
30.06.2016]
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Figure 5.6: Showing the same scene as in Figure 5.5 from an “outside” view.

task of an industrial robot. The experiments consisted of evaluating the exploration
approach and the combined approach for their ability to reduce the amount of unknown
voxel in the environment map and the time required to determine a new viewpose. The
experiments were evaluated on a Ubuntu 14.04 64-bit system with a Intel i7-4790k
4.00 GHz processor and 16 GB memory. The distribution version ROS Indigo Igloo was
used.

(a) Plate object seen from RGB sensor. (b) Plate object modeled as occupied

voxel in the OctoMap.

Figure 5.7: Plate object on a tabletop in front of the robot.

During the experiments the robot was moved into random starting positions which were
oriented towards the tabletop scene. The orientation toward the tabletop scene is a
requirement of the object recognition system to correctly execute. An unknown box-
shaped area which contains the tabletop scene was defined. It contains 3500 unknown
voxel at initialization.

The impact of different step sizes in the Twiddle algorithm were evaluated. The step
size has impact on the selection of a view pose and therefore an impact on the amount
of unknown voxel revealed by that view pose. Figure 5.9 shows the average amount of
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(b) Valve object as occupied voxel in
(a) Valve object as RGB image. OctoMap.

Figure 5.8: Pressure valve with cylinder on tabletop in front of the robot.

unknown voxel remaining in the environment map after four view poses for different
step sizes with the plate object. The average amount of unknown voxel for the valve
object can be seen in Figure 5.10. The biggest reduction of unknown voxel in the
environment map is achieved in the first view pose. Further view poses reduce the
amount of unknown voxel to a lesser and lesser degree. The amount of unknown voxel
could not be totally reduced with any approach. This is due to the orientation of the
sensor towards the tabletop scene and the reachable points of the robot. Most of these
unknown voxel are located above the tabletop scene and on the far side of the box-
shaped unknown region. The Twiddle algorithm with step size 3 and 5 performed equally
well. A step size of 3 provided on average the least amount of remaining unknown voxel.
With a step size of 1 the Twiddle algorithm was in some cases incapable of finding a
local optimum. This occurs when the immediate neighbors for an initial starting pose
do not improve upon the objective function. If no improve on the objective function is
found, the step size is reduced to 0 and the Twiddle algorithm terminates and returns
the initial random pose.

This behavior is also responsible for the Twiddle algorithm to terminate the fastest with
a step size of 1. This can be seen in Figure 5.11, which depicts the average amount of
time the Twiddle algorithm required to find a local optimum with different step sizes.
In general, the Twiddle algorithm has no consistent execution time which can be seen
in the relative high standard deviation among all step sizes. A global search for the
optimum took on average 35.12 seconds. This is approximately 2.6 times slower than
the maximal Twiddle execution time of 13.15 seconds, which was measured during the
experiments.

The time needed to update the environment map depends on the amount of occupied
and free voxel in the OctoMap. As the amount of these increases with each view
pose, the time required to update the environment also increases. This can be seen in
Figure 5.12.
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Figure 5.9: Average amount of unknown voxel remaining in the environment map after
viewing the tabletop scene with the plate object from view poses determined
by the exploration method.
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Figure 5.10: Average amount of unknown voxel remaining in the enivronment map for
the valve object

The method of combining the environment exploration with the visibility measure for
the object recognition was validated in two scenarios. In the first the plate object was
placed in front of the robot and in the second an obstacle was placed between the
plate object and the robot which partly occluded the plate object from one side (see
Figure 5.13). The valve object could not be used during these experiments as the object
recognition system was not trained for the valve object at the time of the experiments.
The method was compared against the sole exploration method for its ability to explore
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Figure 5.11: Average execution time with standard deviation of the twiddle algorithm
with different step sizes.
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Figure 5.12: Average amount of time required to update the map increases with each
new view pose.

the environment. The average amount of unknown voxel remaining in the environment
can be seen in Figure 5.14.

The combined approach only was only slightly worse in exploring the environment as
compared to the sole exploration approach. This is expected as the combined approach
does not solely focus on exploration.
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(b) Plate object with obstacle dis-
played as occupied voxel in Oc-
toMap.

(a) Plate object with obstacle as RGB image.

Figure 5.13: Plate object on tabletop with an occlusion object placed between the plate
object and robot which partly obstructs the visibility of the plate object.
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Figure 5.14: Average amount of unknown voxel remaining in the environment map after
four view poses. Depicted are the exploration method (EXP), exploration
with visibility for object recognition (EXP+ORS) and the exploration with
visibility method with on occlusion object (EXP+ORS+0OCC).

During the experiments with the visibility measure the object recognition system was
running to compute the weights for the view pose selection. Its task was the recognition
of screws of the plate object. A correctly recognized scene can be seen in Figure 5.15.
The bracket to the right of the plate object in Figure 5.15 got misclassified as a screw in
some cases, this can be seen in Figure 5.16.

During the experiments with the occlusion object, a view pose can lose vision of parts
of the object. During these view poses no update can be made in the object belief.
Figure 5.17 depicts the object belief of the screws recognized in the scene with an
occlusion object. During the second view pose a new object was recognized, which was
not recognized during subsequent view poses. In the third view pose the second screw
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Figure 5.15: The object recognition system correctly identifies both screws on the plate
object.

Figure 5.16: A misclassification of the bracket to the right of the plate object as a screw.

could not be correctly recognized and therefore had no update of the object belief. In
subsequent views the second screw was again viewable and was recognized.

Finding a local optimal pose with the Twiddle algorithm for the visibility measure of
the object recognition took on average 2.00 seconds. This increases the average time to
find a local optimum view pose to 9.15 seconds. The average times for finding a local
optimum are summarized in Table 5.3.
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Figure 5.17: Object belief of the screws on the plate object over four view poses during
one experiment with occlusion object.

Method Avg. time [s]

Global search 35.12
EXP 7.15
EXP+ORS 9.15

Table 5.3: Average time required to compute a new view pose across view pose can-
didates for a global search, sole exploration method (EXP) and exploration
with visibility measure (EXP+ORS).

5.5 Discussion of experiments

During the experiments the Twiddle algorithm performed as expected in finding local
optimal view poses in varying time. It was expected that a step size of 1 in the Twiddle
algorithm would terminate fast and not improve on the initial start pose. This was
surprisingly often not the case and local optimal view poses were found relative far from
the initial starting pose. To cope with the limitation of a local optimal algorithm to get
stuck in local optima, the Twiddle algorithm was initialized with five random starting
view poses. Among the five computed local optimal view poses, the view pose which
provided the most expected reduction in unknown voxel was chosen as the next view
pose for the robot. Although these runs were executed consecutively, they can be easily
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parallelized as the Twiddle algorithm does not change the content of the environment
map or the set of candidate view poses.

To avoid collisions with the robot itself, the system required constant supervision during
motion executions from one view pose to the next view pose. Collisions could as
there was no active collision avoidance active during the execution of the movements.
Movements which could lead to collision occurred in some cases. These occurred as
the Kinect v2 sensor was mounted on a mounting block which was attached to the end
effector of the robot. As the Kinect was always oriented towards the tabletop scene, the
mounting block and the robot would come into collision the moving robotic system for
some movements without human intervention. For a fully autonomous system an active
collision avoidance which includes the full robot geometry has to be included during the
robot motions.

The orientation towards the tabletop scene of the RGB-D sensor enabled the object
recognition system to receive relevant image data with each view pose. With this
approach only four view poses are required to increase the object belief above a threshold
of 0.9. The disadvantage of the fixed orientation can be seen in the exploration, as not the
whole scene could be explored. Although with a wider range of reachable poses of the
robot, it can be possible to observe the whole scene. A variable orientation of the sensor
pose can allow the sensor to view more of the environment and observe the tabletop
scene from different orientations. View poses with a variable orientation can also view
scenes in the environment which do not contain the tabletop scene, which would not
improve the object recognition task. So this is a trade-off; with a fixed orientation of
the sensor towards the tabletop scene, each view has the potential to provide relevant
information for the object recognition task and with a variable orientation of the sensor
each view pose can explore more of the environment with potential useless information
for the object recognition task.

During the experiments a voxel resolution of 0.05m was used. The voxel size has a direct
impact on the amount of voxel available in OctoMap. With a smaller voxel resolution,
the OctoMap represents the environment to a finer degree which would also increase
the time required to update the environment map and the evaluation of a view pose
with a ray traversal algorithm. With a voxel resolution of 0.01m a map update took
around 2 minutes on average. This was deemed an unacceptable time as a map update
is required for each new view pose. The disadvantage of a larger voxel resolution is a
less accurate representation of the state of the environment. An object with dimensions
smaller than the voxel resolution is represented as an occupied voxel with the dimensions
of the voxel resolution. This can especially be of concern in cases where unknown space
and occupied space are close to each other. As the occupied space in the environment
will be mapped to occupied voxel, all unknown space contained in the occupied voxel
are not known in the environment as they get “swallowed” by the occupied voxel. The
information of the unknown space gets lost and can not be used in the exploration
method. This is another trade-off; a smaller voxel resolution for a finer representation
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of the environment and an increased computation time or a loss of information in the
environment map for faster computation times in the exploration. The choice for this
trade-off depends on the application. The approach developed in this work can be
adapted to lower or higher voxel resolution without losing the ability to explore the
environment but one should be aware of the trade-off.

During the experiments, a typical error of Time-of-Flight cameras could be observed: so
called “flying pixel”. They occur due to depth inhomogeneities [KBKL10]. These cause
wrong distance values for measured points. This leads to a false representation of the
environment in the environment map and causes an overestimation of the amount of
occupied voxel in the environment map (see Figure 5.18).

Figure 5.18: Flying pixels in the sensor measurements lead to a false representation
(green voxel) of occupied space in the environment map. Scene shows a
side view of the OctoMap of the tabletop scene.
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6 Discussion and conclusion

This work presented a method for next-best-view computation combining exploration of
the environment with an object recognition task. The Kinect v2 sensor together with
OctoMap was used to create an environment map. This map was used for the evaluation
of a set of candidate view poses. To efficiently determine the next-best-view, a local
optimization algorithm was used to determine view poses for the exploration and object
recognition task. These were combined with dynamic weights to acquire a view pose
which can explore the environment and provide image data for the object recognition
task. The experiments showed a decrease of unknown environment could be achieved
while also providing image data required for the object recognition task. The usage of a
local optimization algorithm computed view poses much faster than a global search for
the optimal pose.

Although the approach in this work fulfills the requirements posed for this work, several
possible adjustments can be made to improve the approach. The set of view pose
candidates can be expanded by sampling the complete workspace of the robot. With this
bigger set, the full motion capabilities of the robot can be used to acquire view poses
which were not present during this work. This can have the potential to improve upon
the reduction of the unknown environment as well as provide view poses which can view
the object for the object recognition task. As these view poses can lead to self-collision, a
collision test for each pose would be required which includes the geometry of the robot,
similar to the work of S.Kriegel [Kril5].

The evaluation of a view pose in this work is a rather simple metric and can be further
enhanced with more sophisticated evaluation algorithms as presented in [BST15].
Although these algorithms would have a higher computation time compared to the
approach in this work, they would be able to estimate the expected amount of reduced
unknown voxel more accurately. As these algorithms depend on probabilistic occupancy
maps, the environment map developed in this work would need to be adjusted to include
occupancy probabilities. This could be achieved by including the OctoMap directly into
our approach. During this work, a ROS node was developed which was able acquire this
information from the OctoMap ROS node and communicating this information to the
MatLab ROS node. This approach was abandoned, as the location of some voxels was
incorrect and the cause for these false locations could not be identified.

The execution time of the system can be further improved by using parallelization for
the map update and the ray traversal algorithm, similar to the work [MAC16]. The
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6 Discussion and conclusion

registration process for the RGB and depth image data, puts a heavy load on the CPU.
This can be reduced by using the graphic card for the depth registration. The Kinect v2
ROS node is able to utilize CUDA for this. Although it was tried to enable this feature,
the author was not able to get this feature to work.
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