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Kurzfassung

In der vorliegenden Arbeit wird die Frage behandelt, welche Eigenschaften die Implementie-
rung von Aktionen autonomer Agenten erfüllen muss um als Elemente relationaler Markov-
Entscheidungsprozesse nutzbar zu sein. Sie formalisieren ein stochastisches Zustandsmodell
als Grundlage des Entscheidungsproblems der Aktionsplanung. Neben der Untersuchung,
wie dieses Modell erweiterbar ist um nebenläufige Aktionsausführung zu ermöglichen,
werden auch verschiedene Modelle beschrieben die auftretende Ressourcenkonflikte lösen.
Anhand der theoretischen Untersuchung dieser Frage wird an der praktischen Umsetzung
einer Softwareumgebung zur Implementierung von autonomen Aktionen gearbeitet. Diese
bietet dem Programmierer ein Interface, welches die stabile Umsetzung unterschiedlichster
Prozesse der Robotik ermöglicht, sodass diese einer Aktionsplanung zur Verfügung ste-
hen. Es wird um eine Ausnahmebehandlung erweitert, sodass an Stellen, die vorher zum
Programmabbruch geführt haben nun eine Fehlerbehandlung greift welche eine adäquate
Reaktion des Aktionsplaners ermöglicht. Neben der genauen Beschreibung der Architektur
und einer Anleitung zur Implementierung neuer Aktionen, werden auch die Möglichkeiten
der Software experimentell evaluiert.
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1. Einleitung

Der Umgang mit unvorhersehbarem, stochastischem Verhalten natürlicher Prozesse ist
eine der vielschichtigen Aufgaben der Aktionsplanung von Roboterverhalten. Damit Ma-
nipulationsaufgaben autonom von Agenten gelöst werden können, muss ein Formalismus
für die reale Umgebung gefunden werden, welcher diese Vorgänge adäquat abstrahieren
kann. Verhaltenserzeugung unter unsicheren Bedingungen ist eine schwierige Aufgabe und
noch immer Gegenstand vieler Forschungsarbeiten [YMS03, S. 195]. Die vorliegende Arbeit
nimmt sich dieser Problematik an, gibt einen Überblick über die Forschung und entwickelt
ein Konzept, welches es erlaubt, verschiedenste Prozesse autonomer Systeme der Verhal-
tenserzeugung zur Verfügung zu stellen, welches die Stochastik natürlicher Umgebungen
berücksichtigt.

Das folgende Kapitel beschreibt die Problemstellung (S. Kapitel 1.1), das Ziel (S. Kapitel 1.2)
und gibt einen Überblick über die Gliederung dieser Arbeit (S. Kapitel 1.3).

1.1. Problemstellung und Motivation

Manuell gesteuerte bzw. teleoperierte Roboter sind teilweise in der Lage eine beeindruckende
Performance bei der Bewältigung von Alltagsaufgaben zu erzielen, jedoch haben autonome
Roboter bis heute große Probleme selbst die einfachsten Manipulationsaufgaben zu lösen.
Das lässt sich an zwei Videos eindrucksvoll beobachten. Das erste Video zeigt den PR1,
wie er teleoperiert ein Zimmer mit Leichtigkeit aufräumt [BW, S.]. Auf dem zweiten ist
zu sehen, wie ein PR2 autonom Socken faltet jedoch bei dieser Aufgabe auf Hilfsobjekte
und sehr umständliche Ausführung angewiesen ist [WMF+, S.]. Zudem ist die Aufteilung
der Aufgabe in verschieden Teilaktionen Erkennbar, ist. Dies zeigt, dass die Probleme der
autonomen Robotik nicht in der Mechanik sondern in den Steuerungssystemen liegen. Eine
der Herausforderungen ist die Formalisierung eines geeigneten Weltmodells, welches der
abstrakten Repräsentation der Elemente auch entsprechende Bedeutung zuweist. So ist zur
Verhaltenserzeugung die einfache Repräsentation der Objekte nicht ausreichend, sondern
es muss auch ein Verständnis über die Bedeutung der Objekte vorliegen [Har90, S. 335f].
Auch wird versucht die Eigenschaften einzelner Steuerungsbefehle so zu formulieren, dass
diese direkt auf der Ebene der Objektmanipulation agieren können, anstatt sich mit der
Robotermechanik befassen zu müssen [TLJ13, S. 3].
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1. Einleitung

EinMDP - Markov-Entscheidungsprozess ist das Modell eines Entscheidungsproblems, welches
auf die Verhaltenserzeugung autonomer Agenten angewendet werden kann. Es formuliert
stochastische Änderungen des Zustandes durch Roboteraktionen oder durch externe Ein-
flüsse und bildet so ein Modell, welches die natürliche Unsicherheit realer Umgebungen
beinhaltet. Dadurch können Aktionen unterschiedlichster Art einer Aktionsplanung zur
Verhaltenserzeugung auf höchster Ebene zur Verfügung gestellt werden. Jedoch ist die Über-
tragung der MDPs auf vorhandene Anwendungsfälle mit ihren vielschichtigen Ansprüchen,
wie Parallelisierung oder der Verarbeitung von Fehlern oft schwierig und bedarf näherer
Untersuchung.

1.2. Zielsetzung der Arbeit

Das Ziel dieser Arbeit ist die Untersuchung der Anwendung von MDPs anhand der Weiter-
entwicklung eines Frameworks, welches verschiedenste Aktionstypen mit ihren unterschied-
lichen Eigenschaften einer Aktionsplanung zur Verfügung stellt. Dazu werden verschiedene
Methoden zur Parallelisierung von Aktionen in MDPs diskutiert und anhand von Program-
mierumgebungen die Anwendung gezeigt. Um auch auftretende Fehler als mögliche Elemente
von Aktionen nutzbar zu machen, wird an einer Ausnahmebehandlung von Aktionen gear-
beitet und die Anwendung beschrieben.

10



1.3. Gliederung

1.3. Gliederung

Die Arbeit ist auf folgende Weise gegliedert:

Kapitel 2 – Aktionsplanung in natürlichen Umgebungen beschreibt das Entscheidungs-
problem der Verhaltenserzeugung als MDPs und erörtert verschiedene Möglichkeiten
zu Parallelisierung und Nutzung in zeit-stochastischen Szenarien.

Kapitel 3 – Frameworks zur komplexen Aktionsplanung stellt das Konzept Kognitiver
Robotik vor und beschreibt die Funktionalität verschiedener Softwareumgebungen
zur Verhaltenserzeugung nach diesem Prinzip. Es vergleicht diese und diskutiert die
Grenzen der Anwendung.

Kapitel 4 – Implementierung autonomer Aktionen als Activities beschreibt die Kon-
zeption eines Frameworks, welches verschiedene Roboteraktivitäten einer Aktionspla-
nung zur Verfügung stellt und gibt Beispiele der Anwendung.

Kapitel 5 – Experimentelle Evaluierung der Ausnahmebehandlung diskutiert die ge-
wonnenen Ergebnisse kritisch anhand eines Experiments und gibt einen Überblick
über Erweiterungsmöglichkeiten.

Kapitel 6 – Zusammenfassung und Ausblick

Anhang A – Anhang - Anleitung zur Implementierung einer neuen Activity ist die
Anleitung zur Erstellung einer neuen Activity, welche die entwickelte Ausnahme-
behandlung integriert.
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2. Aktionsplanung in natürlichen
Umgebungen

Das vorliegende Kapitel behandelt die Frage, wie natürliche Umgebungen abstrahiert werden
können, damit sie den Formalismen einer Aktionsplanung zur autonomen Verhaltenserzeu-
gung genügen. Natürliche Umgebungen, die realen Szenarien in denen ein Agent agiert,
sind in ihrer Natur immer stochastisch, d.h. dass der Effekt eines Vorgangs nur ungenau
vorhersehbar ist. Zudem ist die Modellbildung realer Umgebungen eine Abstraktion und
somit ungenau. Wird ein Entscheidungsproblem zur Lösung einer Aufgabe erstellt, muss
ein Formalismus gefunden werden, welcher reale Prozesse mit ihrer Stochastik integrieren
kann. Ein geeignetes Modell ist ein MDP - Markov-Entscheidungsprozess. Er formalisiert das
Entscheidungsproblem der Aktionsplanung und ist in der Lage die stochastischen Zustands-
änderungen der Welt zu formalisieren.

Zuerst wird in Kapitel 2.1 ein MDP als geeignetes Modell zur Aktionsplanung unter stochas-
tischen Bedingungen gezeigt und in Kapitel 2.2 eine geeignete Repräsentation der Umwelt
zur Lösung des Entscheidungsproblems der Verhaltenserzeugung beschrieben. In Kapitel
2.3 werden darauf einige Möglichkeiten der Erweiterung von MPDs um Nebenläufigkeit
dargestellt und in Kapitel 2.4 die Problematik von andauernden Prozessen für die Aktionspla-
nung gezeigt. Schließlich werden in Kapitel 2.5 verschiedene Modelle verglichen und kritisch
diskutiert.

2.1. Aktionsplanung als Entscheidungsproblem

Die Aktionsplanung zur Erzeugung von Verhalten autonomer Agenten ist ein Entschei-
dungsproblem. Es ist beschrieben durch die Zustandsmenge S und die Menge der möglichen
Aktionen A. Ein Zustand s ∈ S beschreibt einen möglichen Zustand der Welt und des
Roboters durch seine Variablen. Dagegen beschreibt eine Aktion a ∈ A eine der möglichen
Aktionen des Agenten, welche im Falle der Ausführung aus einem Zustand s einen Zustand
s′ durch Manipulation der Umwelt oder des Roboterzustandes erzeugt.

Das Entscheidungsproblem selbst ist das Finden einer Strategie π um eine gestellte Manipu-
lationsaufgabe zu lösen. Eine Strategie π : S → A ist die Auswahl der richtigen Aktionen
a ⊆ A in jedem Zustand s ∈ S, sodass möglichst effizient ein Zielzustand z ∈ G ⊆ S

13



2. Aktionsplanung in natürlichen Umgebungen

Zustand 
s

Zustand 
s’

Entscheidung
a

Stochastischer 
Einfluss

Übergang

Abbildung 2.1.: Ablauf eines Zustandsübergangs im Markov-Entscheidungsprozess

aus der Menge der Zielzustände G erreicht wird. Eine Strategie π∗ ist optimal, wenn die
erwarteten Kosten ℜ einer gegebenen Kostenfunktion R : S × A× S → ℜ, welche jedem
Zustandsübergang Kosten zuordnet, minimal sind.

2.1.1. Markov Entscheidungsprozesse

Ein MDP - Markov-Entscheidungsprozess erweitert die Formulierung des Entscheidungspro-
blems um die stochastischen Eigenschaften natürlicher Umgebungen [Thr00, S. 306]. Somit
wird der Prozess des Zustandsübergangs stochastisch. Wird in Zustand s ∈ S eine Aktion
a ∈ A ausgeführt wird mit Wahrscheinlichkeit p Zustand s′ erreicht (S. Abbildung 2.1). Die
Übergangswahrscheinlichkeit von a zu allen möglichen Zuständen s′ ergibt immer 1.

EinMDP wird hier definiert als ein TupelM = (S,A,Ap, P,R,G) nach [MW08, S. 3f] mit

• S, einer endlichen Menge diskreter Zustände.

• A, einer endlichen Menge der Aktionen.

• Ap : S → P(A), einer Funktion der anwendbaren Aktionen je Zustand (P ist Potenz-
menge).

• P : S × A× S → [0, 1], der Übergangsfunktion. P (s′|s, a) ist die Wahrscheinlichkeit
Zustand s′ zu erreichen, wenn Aktion a in Zustand s ausgeführt wird.

• R : S ×A× S → ℜ, der Kostenfunktion. Jedem Zustandsübergang durch eine Aktion
a werden Kosten zugeordnet.

• G ⊆ S, der Menge der Zielzustände mit z ∈ G einem Zielzustand.
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2.1. Aktionsplanung als Entscheidungsproblem
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Abbildung 2.2.: Beispiel eines einfachen Markov-Entscheidungsprozesses mit drei Zustän-
den und zwei Aktionen

Jedem Zustandsübergang sind neben der Übergangswahrscheinlichkeit P auch Kosten ℜ
zugeordnet. Ziel des Aktionsplaners ist es eine Strategie π : S → A zu finden, welche
einen Zielzustand z ∈ G erreicht und die erwarteten Kosten ℜ minimiert. Dadurch können
Randbedingungen wie Effizienz in das Modell integriert werden. Es sei J : S → ℜ die
Kostenfunktion, welche jedem Zustand s ∈ S die erwarteten Kosten zu einem Zielzustand
z ∈ G zuordnet. Eine Strategie π definiert sich wie folgt:

πJ(s) = arg min
a∈Ap(s)

∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + J(s′)

)

Somit leitet sich die optimale Strategie π∗ von der optimalen Kostenfunktion J∗ ab, welche
sich über folgende beiden Bellmanngleichungen definiert:

J∗(s) = 0, if s ∈ G else

J∗(s) min
a∈Ap(s)

∑
s′∈S

P (s′|s, a)
(
R(s, a, s′) + J∗(s′)

)

Ein klassisches MDP ist ein geeignetes Modell für die Aktionsplanung unter stochastischen
Bedingungen. Jedoch hat das Modell zwei Schwächen: Zum einen werden die Aktionen
sequenziell ausgeführt und zum anderen geschehen alle Aktionen unmittelbar. In der Realität
jedoch sind diese Annahmen unrealistisch, da Aktionen Zeit brauchen und z.T. eine Parallel-
ausführung sinnvoll ist um die Effizienz zu erhöhen [WM04, S. 2f]. Beispielsweise führt ein
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2. Aktionsplanung in natürlichen Umgebungen

Roboterarm eine Aktion aus, während der andere sich gerade in einem Zustandsübergang
befindet und beschäftigt ist.

2.2. Relationale Repräsentation

Neben der Auswahl eines geeigneten Modells für das Entscheidungsproblem muss auch
eine geeignete Repräsentation der Umwelt gewählt werden. Es kann beispielsweise jeder
Zustand explizit S = {z1, z2, ..., zn−1, zn} oder aber durch Funktionen zx = fx(X⃗) mit
ihren Zustandsvariablen X⃗ formalisiert werden. Es lässt sich erkennen, dass eine explizite
Repräsentation in hinreichend großen Bereichen schnell an ihre Grenzen kommt. Objekte und
andere Elemente können durch Symbole bzw. Konstanten, welche mit ihren Eigenschaften
verknüpft sind repräsentiert und in Zusammenhang gebracht werden. Diese Art der impliziten
Repräsentation wird unter dem Begriff der Relationalen Repräsentation zusammengefasst
[LTK12, S. 3732].

Die Symbole, welche neben den Objekten auch fundamentale Eigenschaften der Roboterwelt
repräsentieren, werden mithilfe von Prädikaten in Zusammenhang gesetzt [TMM+15, S.
1f]. Beispielsweise kann so mit dem Prädikat on(objA, objB) formalisiert werden, dass ein
Objekt objA auf einem anderen Objekt objB liegt. So ein Prädikat bedeutet mit Variablen
nur die Relation auf. Erst durch das Einsetzen von Konstanten wie Objekten, wird daraus eine
Aussage. Auf diese Weise werden Objekte in einen relationalen Zusammenhang gebracht und
stehen der Prädikatenlogik zur Verfügung. So beschreibt die Relationale Repräsentation der
Welt nicht nur die Eigenschaften der, sondern auch die Beziehungen zwischen den Objekten.
Mithilfe der Prädikatenlogik können nun Aussagen über die Eigenschaften der Umgebung
gemacht werden.

2.2.1. STRIPS - Stanford Research Institute Problem Solver

Eine standardisierte relationale Formalisierung eines Problems der Aktionsplanung ist STRIPS
- Stanford Research Institute Problem Solver [FN71, S. 1ff]. Das Entscheidungsproblem wird in
STRIPS durch den Startzustand, der Menge der verfügbaren Aktionen und deren Zustands-
übergänge und dem Zielzustand definiert. Der Zustand ist als wohldefinierte Funktion erster
Ordnung definiert. Beispielsweise könnte die Position at(a, b) der Kisten objA und objB
an posA und posB sowie die Position des Roboter atr(a) an posC und auf folgende Weise
definiert werden:

atr(posC), at(objA, posA), at(objB, posB)

16



2.2. Relationale Repräsentation

Es wäre zusätzlich die Bedingung, dass ein Objekt sich nicht an zwei Orten gleichzeitig
befinden wie folgt beschrieben:

(∀u∀v∀objB){[at(u, x) ∧ (x ̸= objB)] → at(u, objB)}

Aktionen werden auf ähnliche weise definiert. Beispielsweise bewegt die Aktion goto(a, b)
den Roboter von a nach b:

goto(posA, posB) : atr(posA) → ¬atr(posA), atr(posB)

Die Implementierung solch einer Aktion beinhaltet Vorbedingungen und die Änderungen
des Zustandes, also Änderung der Menge der Prädikate, welche den Zustand definieren.
Schließlich ist auch die Menge der Zielzustände wohldefiniert z.B. durch

at(objA, posA) ∧ at(objB, posA)

2.2.2. Probabilistic STRIPS

In Probabilistic STRIPS wird das klassische STRIPS-Modell durch probabilistische Regeln
erweitert [ZPK05, S. 912]. Dadurch kann der unsichere Ausgang einer Aktion beschrieben
werden. Somit eignet sich die Beschreibung auch für stochastische MDPs. Das folgende
Beispiel der Aktion pickup(objA, objB) mit den Vorbedingungen on(objA, objB), dass
objA sich auf objB befindet und inhandNil, dass die Hand der Roboters leer ist, hat drei
verschiedene mögliche Ausgänge. Mit der Wahrscheinlichkeit p = 0.8 landet das Objekt
objA in der Hand, mit der Wahrscheinlichkeit p = 0.1 fällt das Objekt objA auf den Tisch T
und mit der Wahrscheinlichkeit p = 0.1 passiert nichts.

ObjektA(objA), ObjektB(objB), Tisch(T )
pickup(objA, objB) :
on(objA, objB), inhandNil

→


.80 : ¬on(objA, objB), inhand(objA),¬inhandNil, clear(objB)
.10 : ¬on(objA, objB), on(objA, T ), clear(objB)
.10 : no change

Allgemein definiert sich die Regel einer Aktion a ∈ A durch

∀X : ψ(X⃗) ∧ a(X⃗) →


p1 : ψ′

1(X⃗)
...

pn : ψ′
n(X⃗)
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2. Aktionsplanung in natürlichen Umgebungen

mit X⃗ demVektor der Zustandsvariablen und demKontextψ,der Formel des aktuellen Zustan-
des. ψ′

1...ψ
′
n sind die Ergebnisse der Aktion a. p1...pn sind die Ausgangswahrscheinlichkeiten

und ergeben zusammen 1.

Ein stochastisches MDP lässt sich als Probabilistic STRIPS beschreiben. Alle Aktionen von
Regeln mit der gleichen Vorbedingung beschreiben die Menge Ap. Die Übergangsfunktion
P : S × A× S → [0, 1] ergibt sich durch

P (s′|s, a) =
n∑

i=1
P (s′|ψ′

i, s, a)P (ψ′
i|s, a)

mit P (s′|ψ′
i, s, a) der Wahrscheinlichkeit, dass das Ergebnis ψ′

i Zustand s′ formuliert und
P (ψ′

i|s, a) der Wahrscheinlichkeit, dass Aktion a das Ergebnis ψ′
i erreicht. Soll eine Strategie

π gefunden werden, muss noch eine Kostenfunktion hinzugefügt werden. Jedoch könn-
te auch eine Regel als reellwertiges Prädikat eine Belohnung ℜ erhalten, dann wäre die
Belohnungsfunktion R aber nur über S × A und nicht über S × A× S definiert.

2.3. Nebenläufigkeit in stochastischer Aktionsplanung

Viele Planungsvorgänge beinhalten nebenläufige Optimierung hierarchisch strukturierter
Teilziele des Problems durch die dynamische Auswahl zuvor gelernter Strategien, welche
die Teilziele optimieren. Die meisten Alltagsaufgaben beinhalten eine Struktur dieser Art.
Beispielsweise ist beim Essen das Kauen eine Teilaufgabe, für welche jedoch das Essen
zuerst zum Mund geführt werden muss. Allgemein ist die Lösung solcher Aufgaben eine
Herausforderung, da Teilziele in Konflikt geraten können und mit den begrenzten Ressourcen
umgegangen werden muss. Nebenläufigkeit in MDPs kann auf mehrere Arten verstanden
werden. Zum einen können mehrere MDPs parallel ausgeführt werden, welche jeweils
Teilziele lösen oder aber jeweils einen Effektor. Zum anderen kann einMDP mehrere Aktionen
parallel ausführen um die Effizienz zu erhöhen [RPMG04, S. 1137]. Selbstverständlich sind
auch Kombinationen verschiedener Methoden denkbar.

2.3.1. Nebenläufigkeit in Markov-Entscheidungsprozessen

Nebenläufigkeit in MDPs bedeutet die Auswahl mehrerer Aktionen gleichzeitig. So muss
im o.g. Beispiel des Essens nicht immer erst gewartet werden, bis das Kauen beendet ist
um den nächsten Bissen auf die Gabel zu legen. Im Modell der CoMDP - Concurrent Markov
Decision Processes wird das oben beschriebene Modell der MPDs erweitert, sodass meh-
rere Aktionen, sogenannte Multi-Aktionen M ∈ P(A), parallel ausgeführt werden kön-
nen [MW08, S. 37f]. Die Eingabe eines CoMDP unterscheidet sich etwas von einem MDP
CoMDP = (S,A,Ap∥, P∥, R∥, G, s0). Die Applikationsfunktion Ap∥, die Übergangsfunktion
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2.3. Nebenläufigkeit in stochastischer Aktionsplanung

Tabelle 2.1.: Probabilistische STRIPS-Definition eines einfachen MDP mit potentieller Paral-
lelisierung, mit den Zustandsvariablen x1, x2, x3, x4, p12 und dem Ziel x1 = 1,
x2 = 1, x3 = 1, x4 = 1 [MW08, S. 33]

.

Aktionen Vorbedingung Effekt Wahrscheinlichkeit
toggle(x1) ¬p12 x1 → ¬x1 1
toggle(x2) p12 x2 → ¬x2 1
toggle(x3) true x3 → ¬x3 0.9

no change 0.1
toggle(x4) true x4 → ¬x4 0.9

no change 0.1
toggle(p12) true p12 → ¬p12 1

P∥ und die Belohnungsfunktion R∥ beschreiben die Erweiterung von sequenzieller Ausfüh-
rung einzelner Aktionen zur nebenläufiger Ausführung einer Menge von Aktionen. Eine
Aktionskombination P(A) ⊆ A ist eine Potenzmenge der Aktionen A. Daraus folgen die
neuen Eingaben:

• Ap∥ : S → P(P(A)) definiert die neue Applikationsfunktion. Sie beschreibt die Menge
der Aktionskombinationen, welche je Zustand s ∈ S angewendet werden können.

• P∥ : S × P(A) × S → [0, 1] ist die Übergangsfunktion. Sie beschreibt die Übergangs-
wahscheinlichkeit P von s ∈ S nach s′ ∈ S unter P(A).

• R∥ : S × P(A) × S → ℜ ist die Belohnungsfunktion. Sie beschreibt die Belohnung ℜ
von s ∈ S nach s′ ∈ S unter P(A).

Sich ausschließende Aktionen

Es muss berücksichtigt werden, dass bei der gleichzeitigen Ausführung von Aktionen eventu-
ell Konflikte auftreten können. Einerseits können zwei Aktionen nicht gleichzeitig ausgeführt
werden, wenn deren Vorbedingungen sich widersprechen. Zusätzlich werden im Modell der
CoMDP zwei weitere Kriterien genannt, welche die gleichzeitige Ausführung verhindern,
dass es nicht zu Konflikten kommt. Wenn der Effekt einer Aktion den Effekt einer anderen
beeinflusst, können sie nicht gleichzeitig gestartet werden. Auch nicht, wenn ein Effekt die
Vorbedingung der anderen beeinflusst. Beispielsweise haben in Tabelle 2.1 toggle(x1) und
toggle(x2) einen Konflikt in der Vorbedingung und der Effekt von toggle(p12) bedingt die
Vorbedingung von toggle(x1). Dagegen können toggle(x1), toggle(x3) und toggle(x4)
parallel ausgeführt werden. Am Beispiel des Essens kann der Bissen erst in den Mund
geschoben werden, wenn dieser leer ist.
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2.3.2. Koartikulierende Markov Entscheidungsprozesse

Um die Variabilität weiter zu steigern, kann ein Problem auf mehrereMDPs aufgeteilt werden.
Das Konzept der koartikulierenden MDP ist ein Ansatz, welcher mehrere MDPs jeweils
ein Teilziel lösen lässt um das globale Ziel zu erreichen [SPS99, S. 189]. Der Begriff der
Koartikulation, nach dem Prinzip der Lautbildung in der Phonetik unterteilt eine Aufgabe in
Teilziele, welche hierarchisch strukturiert abgearbeitet werden. Im o.g. Beispiel des Essens
wären die Teilziele Kauen und Essen zum Mund führen. Selbstverständlich muss das Essen
zuerst zumMund geführt werden um gekaut werden zu können. Während des Kauens jedoch
kann schon der nächste Bissen vorbereitet werden. So ist die koartikulierende Ausführung
beider Teilziele effizienter als die parallele.

Es wird angenommen, dass der Planungsalgorithmus Zugriff auf Controller C =
{C1, C2, ..., Cn} hat, welche jeweils ein Teilziel ωi ∈ Ω, mit Ω einer hierarchisch struk-
turierten Menge der Teilziele lösen [RPMG04, S. 1137ff]. Die übergeordnete Aufgabe
wird gelöst, wenn konkurrierende Teilziele abgearbeitet werden. Ein Controller C mo-
delliert eine Menge von Optionen ⟨I, π, β⟩ mit der Initiationsmenge I ⊆ S, der Strategie
π : S × A → [0, 1] und der Terminierungsbedingung β : S+ → [0, 1] über einem SMDP -
Semi-MDP Mc : {Sc, Ac, Pc, Rc} mit Sc ⊆ S, Ac ⊆ A der Übergangswahrscheinlichkeit Pc

und der Kostenfunktion Rc. Eine Option kann in einem Zustand s ∈ I gestartet werden und
löst mit π ein Teilziel. β wird 1, wenn das Teilziel erfolgreich abgearbeitet wurde.

Jede Aktionsauswahl ändert den Zustand in allen MDPs. Die einzelnen Controller haben
Zugriff auf mehrere Optionen, die jeweils eine Teilaufgabe nahezu optimal lösen. Dadurch
entsteht eine gewisse Flexibilität und dem Planer stehen je Zustand s verschiedene Aktionen a
zur Verfügung. Ziel ist es nun eine globale Strategie zu finden, welche die Teilziele schrittweise
abarbeitet und Aktionen auswählt, welche einen Kompromiss bilden und in allen SMDPs
den Teilzielen ω ⊆ Ω näherkommt. Zusätzlich sind Start- und Terminierungsbedingungen
der einzelnen SMDPs gegeben. Diese beeinflussen die Aktionsauswahl, welche entsprechend
einen Controller C startet oder beendet.

2.4. Das Problem mit der Zeit

Bisher wurde angenommen, dass alle Aktionen in einem Markov-Schritt abgearbeitet wer-
den. Das bedeutet sie haben keine eigentliche Dauer und die Aktionsausführung geschieht
unmittelbar. In der Realität ist dies leider meist nicht der Fall. Folgend werden zwei Methoden
vorgestellt, welche die Gleichzeitigkeit von Aktionen um eine Zeitdauer erweitern. Das CAM -
Concurrent Action Model formuliert die Dauer von Aktionen als diskrete Zeitschritte und RAP
- Relational Activity Processes erweitert dieses Modell um stochastische und reellwertige Zeit,
indem es Aktionen um in das Starten und Beenden dieser Aufteilt. So wird eine Verbindung
zwischen Markov-Schritten und verstrichener Zeit erzeugt.
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t t t t+kt+k t+k
a1 beendet alle beendet a1 beendet

unterbrochen

laufen 
weiter

a1
a2
a3
a4

a1
a2
a3
a4

a1
a2
a3
a4

   M    M   M

Tany Tall

a1

Tcontine

Abbildung 2.3.: Terminierungskriterien Tany, Tall und Tcontinue für die Multi-AktionM =
{a1, a2, a3, a4} [RM02, S. 1620].

2.4.1. CAM - Concurrent Aktion Modell

Im CAM - Concurrent Action Modell [RM02, S. 1619ff] werden, um der Problematik der
unterschiedlichen Dauer verschiedener Aktionen zu begegnen, die Terminierungsschemata
Tany, Tall und Tcontinue eingeführt. Eine Multi-Aktion M ∈ P(A) wird mit solch einem
Schema gekennzeichnet um zu spezifizieren, was passieren soll, wenn eine der Teilaktionen
terminiert

Tany bedeutet, dass alle Aktionen beendet werden, wenn eine terminiert.

Tall bedeutet, dass alle Aktionen weiterlaufen, bis die letzte terminiert. Die fertigen Aktionen
verweilen in einem Idle-Zustand.

Tcontinue bedeutet, dass nach der Terminierung einer, eine neue Einzelaktion gestartet
werden kann, welche die anderen nicht beeinflusst.

(S. Abbildung 2.3).

Dadurch können Multi-Aktionen eine diskrete Dauer haben und der Aktionsplaner kann
entsprechend der Schemata eine Strategie finden, welche Aktionen mit unterschiedlicher
Länge parallel ausführen kann. Am Beispiel des Essens, welches aus drei Aktionen, dem
Kauen, dem Essen zum Mund führen und dem Beladen der Gabel besteht, könnte eine
Strategie folgendermaßen aussehen:

while(!plateEmty){
Tall(kauen(), gabelFüllen())
essenZumMund()

}
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2.4.2. RAP - Relational Activity Processes

RAP - Relational Activity Processes erweitern das CAM um stochastische reellwertige Zeit
[TMM+15, S. 2f]. Es ist ein Modell eines SMDP für eine Aktionsplanung mit nebenläufigen
Aktionen. Der Kern dieses Modells ist die Aufteilung dauernder Aktionen in Initiations- und
Terminierungsoperatoren, welche jeweils unmittelbar geschehen. Die Aktionen werden so
Teil der Zustandsmenge. Nebenläufigkeit wird durch das sequentielle Starten oder Beenden
von Aktionen durch diese Operatoren erreicht, anstatt der parallelen Ausführung von Multi-
Aktionen. Dadurch können die diskreten Zeitschritte, wie in CAM, zu kontinuierlichen
erweitert werden. Jede Aktion erhält eine deterministische oder stochastische reellwertige
Dauer, welche durch Prädikate in der Zustandsmenge definiert wird. Zudem wird noch ein
wait-Operator eingeführt, welcher den zeitlichen Ablauf koordiniert.

Gegeben ist eine relationale Repräsentation desWeltmodells mit den Prädikaten und Symbolen.
Ein RAP wird durch ein sMDP {S,A,D, P, T,R} definiert mit

S, einer endlichen Menge diskreter Zustände.

A, einer endlichen Menge der Aktionen.

D(s), einer endlichen Menge der möglichen Entscheidungen d je Zustand s.

P : S × D × S → [0, 1], der Übergangsfunktion. P (s′|s, d) ist die Wahrscheinlichkeit
Zustand s′ zu erreichen, wenn Entscheidung d in Zustand s ausgeführt wird.

T : S×D×S → R, dem Laufzeitmodell. (s, d, s′) → τ ist die Dauer eines Markov-Schrittes.

R : S × A × T × S → ℜ, der Kostenfunktion. (s, d, τ, s′) → r beschreibt die Kosten für
eine Entscheidung respektive der Dauer.

Die Menge der Entscheidungen D ergibt sich aus der Menge der Aktionen A. Der Aktions-
planer kann aus dieser Menge auswählen. Für jede Aktion a ∈ A gibt es einen oder mehrere
Initiierungs- und Terminierungsoperatoren oinit und oterm, welche eine Aktion startet oder
beendet mit

oinit(a, X⃗) : preinit(a, X⃗) → go(a, X⃗) = τa, postinit(a, X⃗)
oterm(a, X⃗) : preterm(a, X⃗) → ¬go(a, X⃗), postterm(a, X⃗)

X⃗ ist ein Vektor aus Zustandsvariablen, prex(a, X⃗) eine Vorbedingung wie in STRIPS,
go(a, X⃗) → R ein spezielles reellwertiges Prädikat, welches die Ausführung der Aktion
beschreibt mit τa,X⃗ der erwarteten Dauer. postx(a, X⃗) beschreibt den Effekt auf die Zu-
standsmenge durch die Veränderung der Prädikatenmenge. Zu beachten ist das go(a, X⃗)
Prädikat, welches durch oinit erzeugt und durch oterm wieder entfernt wird.
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Beispielsweise könnte ein Initiierungsoperator oinit(pickup(objA, objB)) für das Aufheben
eines Objektes objA von einem Objekt objB durch den Agent wie folgt aussehen:

oinit(pickup(objA, objB)) :
go(pickup(objA, objB))!, inhandNil, on(objA, objB), busy(objA)!
→ go(pickup(objA, objB)) = 2.5, busy(objA), busy(objB)

Er hat die Vorbedingungen, dass kein go-Prädikat für diese Aktion existiert (go(pickup(objA, objB))!),
die Roboterhand leer ist (inhandNil), das Objekt objA auf dem Objekt objB liegt
(on(objA, objB)) und dass objA nicht in Benutzung ist (busy(objA)). Die Effekte er-
zeugen ein go-Prädikat mit der Zeit 2.5 und erzeugen Prädikaten, welche repräsentie-
ren, dass objA und objB in Verwendung sind. Der entsprechende Terminierungoperator
oterm(pickup(objA, objB) könnte wie folgt aussehen:

oterm(pickup(objA, objB)) :
go(pickup(objA, objB)) = 0, busy(objA)
→ ¬go(pickup(objA, objB)),¬busy(objB),¬inhandNil, inhand(objA)

Wird eine Entscheidung d ∈ D(s) im Zustand s getroffen, wird ein Zwischenzustand
ŝ = postx,a(x⃗) ◦ s erzeugt, welcher die Effekte des Operators auf s anwendet. In diesem
Zustand wird durch Vorwärtsverkettung aller Prädikate bis zur Konvergenz ein stabiler
Zustand s′ erreicht. Entsprechend müssen für alle Vorbedingungen prex(a, X⃗) die Effekte
postx(a, X⃗) implizit vorliegen.

Zusätzlich ist der Entscheidungsmenge D(s) noch der wait-Operator hinzugefügt. Er regelt
den zeitlichen Prozess und ist quasi die Schnittstelle zwischen einem Markov-Schritt und der
realen Zeit. Wird er ausgeführt, sind alle Operatoren ausgeführt und es verstreicht Zeit bis
zur nächsten Beendigung einer Aktion. Konkret ist er definiert durch:

1. Finde das go-prädikat mit der kleinsten Restzeit τmin.

2. Verringere alle go-prädikate um τmin.

3. Entferne alle go-prädikate go(a, x⃗) mit τ = 0 aus ŝ und füge entsprechende Terminie-
rungsoperatoren postx(a, x⃗) ein.

Das definiert den Zwischenzustand ŝ. Der stabile Zustand s′ wird wieder durch Vorwärts-
verkettung der vorhandenen Prädikate erreicht. Hat man anstatt der deterministischen
Dauer von Aktionen eine stochastische P (τa,x⃗|s, a, x⃗), wird der wait-operator etwas anders
definiert:

1. Nimm τa,x⃗ ∼ P (τa,x⃗|s, a, x⃗) für alle aktiven Aktionen.

2. Wähle das kleinste τmin.
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3. Entferne alle go-prädikate go(a, x⃗) mit τ = τmin aus ŝ und füge entsprechende Termi-
nierungsoperatoren postx(a, x⃗) ein.

4. Für Alle τa,x⃗ > τmin verringere den Erwartungswert E(τa,x⃗|s, a, x⃗) aller go(a, x⃗) um
τmin

Das Laufzeitmodell T : (s, d, s′) → τ ist entsprechend des wait-operators τmin, da ange-
nommen wird, dass für die Initiierungs- und Terminierungsoperatoren keine Zeit verstreicht.
Somit hängt es implizit von den go-Prädikaten in oinit ab.

2.5. Vergleich der verschiedenen Modelle

Ausgehend von einem MDP wurden verschiedene Erweiterungen zur Parallelisierung be-
schrieben, zudem wurde das Konzept der Koartikulation gezeigt (S. Abbildung 2.4). Im
Folgenden sollen die Eigenschaften der verschiedenen MDP-Modelle verglichen werden.

Ein Grundproblem von nebenläufigen MDPs sind die begrenzten Ressourcen eines Systems,
so kann eine Multi-AktionM nur ausgeführt werden, wenn die einzelnen Aktionen sich
nicht widersprechen bzw. nicht in einen Ressourcenkonflikt geraten. Um sich ausschließende
Bedingung wie in CoMDP auch auf STRIPS oder RAP anzuwenden, können diese in den
Vorbedingungen als negative Literale formuliert werden.

Eine weitere Schwierigkeit ist die Erweiterung von Multi-Aktionen auf mehr als einen
Markov-Schritt um zu formalisieren, sodass einzelne Aktionen unterschiedliche Dauer haben
können. Hierzu wurden in CAM die verschiedenen Terminierungsschemata eingeführt.
Jedoch formulieren diese die verstrichene Zeit immer noch als diskrete Zeitschritte. Um von
der diskreten Zeit zur kontinuierlichen Zeit zu kommen, wurde schließlich in RAP der Wait-
Operator eingeführt, welcher durch ein Laufzeitmodell zwischen zwei Markov-Schritten eine
reellwertige Zeit verstreichen lässt. Diese entspricht der minimalen erwarteten Dauer einer
der aktiven Aktionen. Die verschiedenen Terminierungsschemata von CAM können von RAP
simuliert werden. Tany entspricht der Entfernung aller go-Prädikate bei der Ausführung eines
wait-Operators. Tcontinue wird einfach durch das Weiterlaufen aller anderen go-Prädikate
reproduziert. Tall wird durch die Einführung eines blocked-Prädikats erreicht, welches die
Initiationsbedingungen undurchführbar macht, solange nach einem wait noch Aktionen
vorhanden sind.
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Koartikulierende
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Abbildung 2.4.: Übersicht über die Funktionsweise der verschiedenen MDP-Modelle. MDP,
CoMDP, CAM, RAP und Koartikulierende MDP.
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3. Frameworks zur komplexen
Aktionsplanung

Um vielschichtiges und komplexes Roboterverhalten zu erzeugen ist ein Paradigmenwechsel
nötig um Aktionen auf einer intuitiv verständlichen Ebene zu formulieren. Jedoch erfordert
diese auch flexible Softwareumgebungen, welche die Implementierung von anspruchsvollen
Bewegungen auf einfache Weise ermöglicht. In Kapitel 2 wurden theoretische Modelle
erörtert, welche verschiedene Probleme der Aktionsplanung geschickt formalisieren. So soll
nun eine Softwareumgebung zur Aktionsplanung gezeigt werden, welche diese Probleme
löst und praktisch umsetzt.

Zuerst wird in Kapitel 3.1 das Paradigma der kognitiven Robotik beschrieben. Es bedeutet die
Formulierung und Lösung einerManipulationsaufgabe auf der Ebene der Objektmanipulation.
Darauf wird in Kapitel 3.2 die Softwareumgebung CRAM erörtert, welche eine Verhalten-
serzeugung nach diesem Prinzip erlaubt. Schließlich wir in Kapitel 3.3 die Mächtigkeit von
CRAM diskutiert und inwiefern es ein MDP implementiert.

3.1. Kognitive Robotik

Um in der Robotik immer schwieriger werdende Aufgaben lösen zu können, ist ein Para-
digmenwechsel vom Stellen von Gelenkwinkeln oder Effektorpositionen zu der direkten
Manipulation äußerer Freiheitsgrade notwendig. So kann die Aktionsplanung direkt mit
Objekten interagieren ohne sich mit den mechanischen, inneren Prozessen beschäftigen zu
müssen. Der Begriff der kognitiven Robotik fasst dieses Prinzip zusammen. Er unterscheidet
Regelung auf motorischer Ebene von der Steuerung mittels abstrakter Aktionen [TLJ13, S.
1f]. Um noch einen Schritt weiter zu gehen hat ein kognitives System entsprechend auch
kognitive Fähigkeiten und weiß, was es tut. Schließlich geht die Entwicklung in der Robotik
in eine Richtung, welche genau diese Fähigkeit anstrebt [BSR+08, S. 1].

Es ergeben sich jedoch einige Schwierigkeiten für die Interaktion eines Agenten mit der
Umwelt. Der Zustandsraum äußerer Freiheitsgrade ist komplex und nur schwer zu for-
malisieren. Auch können, im Gegensatz zur direkten Regelung von Stellwinkeln, externe
Freiheitsgrade nur indirekt gesteuert werden. Beispielsweise kann ein Objekt nur bewegt
werden werden, nachdem es gegriffen wurde. So ergibt sich die Notwendigkeit hierarchischer
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Abbildung 3.1.: Die Struktur von CRAM. Der Kernel besteht aus CPL und KnowRob
[BMTR12, S. 3].

Steuerungsmodelle, welche sequenziell Bewegungsroutinen abarbeiten können. Zudem ist
die Abbildung der fundamentalen physikalischen und geometrischen Randbedingungen in
Wahrscheinlichkeitsmodellen erforderlich, jedoch immer ein Kompromiss, da nur Teilaspekte
formuliert werden können. Schließlich soll ein Agent Aufgaben in Szenarien lösen können,
für die er nicht explizit trainiert wurde. So sollte ein kognitives System immer von einer
gewissen Flexibilität und Resilienz gekennzeichnet sein [VMS07, S. 151].

3.2. CRAM - A Cognitive Robot Abstract Machine

Die Erzeugung eines kognitiven Systems ist eine anspruchsvolle Programmieraufgabe und
erfordert spezialisierte Software-Tools. CRAM - A Cognitive Robot Abstract Machine ist ein
Framework für das Design, der Entwicklung und der Implementierung der Aktionsplanung
autonomer kognitiver Roboter [BMTR12, S. 1]. Es erweitert Steuerungssysteme wie ROS
[ros, S.] oder Player [G+, S.], die die rudimentären Prozesse des Roboters regeln, welchen es
jedoch an mächtigen Softwarewerkzeugen zur Verhaltenserzeugung fehlt. CRAM beinhaltet
Datenstrukturen, einfache Kontrollstrukturen, Tools und Bibliotheken, welche speziell für die
kognitive Robotersteuerung entwickelt wurden. Es ermöglicht die Erzeugung von komplexen
Kontrollprogrammen, welche Entscheidungen auf Grund der gemachten Wahrnehmung und
der gewonnenen Erkenntnisse treffen. Im Kern besteht CRAM aus der CPL - CRAM Plan
Language und dem Wissensverarbeitungssystem KnowRob (S. Abbildung 3.1).
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3.2. CRAM - A Cognitive Robot Abstract Machine

Algorithmus 3.1 Beispiel-CRAM-plan zum Aufheben des Objektes objA
(def-goal (achieve (object-in-hand objA))
(with-designators
(pickup-place ...)
(grasp-type ...)
(pickup-reaching-traj ...)
(lift-trajectory ...)
(when (and (holds-bel (object-in-hand currObj) now) (obj-equal currObj objA))
(succeed (object-in-hand objA))

)
(at-location pickup-place
(achieve (arm-at pickup-reaching-traj))
(achieve (grasped grasp-type))
(achieve (arm-at lift-trajectory))
(succeed (object-in-hand objA))

)
)

)

3.2.1. CRAM Plans

Der Entwickler erstellt mit CRAM sog. Pläne, die ein Ziel verfolgen. Teilziele oder andere
Befehle werden mit dem Weltzustand als Argument definiert. Der Algorithmus 3.1 zeigt
einen Beispielplan zum Aufheben des Objektes objA.

Zu beachten ist die Formulierung des zu erreichenden Zieles durch den gewünschten Zustand
(object-in-hand objA) anstatt der Formulierung als Funktionsbeschreibung pick-up

objA. So kann diese Art von Zustandsbeschreibung auch für andere Routinen verwen-
det werden, wie der Wahrnehmung (perceive(object-in-hand objA)). Dadurch kann
der Roboter einen Zustand überprüfen, bevor er erreicht werden soll. Ein zweiter wichti-
ger Aspekt ist die Formulierung verschiedenster Kontrollsysteme wie der Pfadplanung als
Objekte erster Klasse, sodass Entscheidungen darüber getroffen werden können.

3.2.2. CPL - CRAM Plan Language

CPL ist eine Sprache zur Verhaltenserzeugung von autonomen Robotersystemen. Sie ermög-
licht nicht nur das Ausführen von, sondern auch das Schließen über die Kontrollprogramme
und die automatische Manipulation dieser. Dies wird durch die symbolische Repräsentation
der Schlüsselaspekte der Kontrollprogramms ermöglicht. So kann die Steuerung automatisch
erkennen, warum es gescheitert ist oder wann es falsche Erkenntnisse über die Welt hat und
diese entsprechend anpassen. CPL beinhaltet einige Low-Level Kontrollstrukturen, welche
die gleichzeitige Ausführung verschiedener Aktivitäten ermöglichen.
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3. Frameworks zur komplexen Aktionsplanung

Tabelle 3.1.: Die CPL Kontrollstrukturen und ihre Verwendung [BMTR12, S. 4]
Kontrollstruktur Beispielanwendung
in parallel do p1...pn in parallel do navigate([235, 468])

buildGridMap()
try in parallel p1...pn try in parallel detectDoorWithLaser()

detectDoorWithCamera()
with constraining plan p b with constraining plan relocalizeIfNec()

deliverMail()
Plan with name N1 p1 plan with name S1 putOnTable(C)

... with name S2 putOn(A,B)
with name Nn pn with name S3 putOn(B,C)

order ni < nj order S1 < S3
S3 < S2

in parallel do führt eine Menge von Teilplänen aus. Es schließt erfolgreich, wenn alle
Teilpläne erfolgreich sind. Es schlägt fehl, wenn einer der Teilpläne scheitert.

try in parallel führt eine Menge von Teilplänen aus und schließt erfolgreich ab, wenn einer
der Teilpläne erfolgreich ist.

with contraining plan führt eine Aktivität aus, welche durch eine zweite beschränkt ist.

plan führt Aktivitäten parallel aus, es sei denn diese beschränken sich gegenseitig, dann
werden sie in einer gegebenen Reihenfolge abgearbeitet.

(S. Tabelle 3.1)

3.2.3. KnowRob

Dem gegenüber steht die Wissensverarbeitung KnowRob [TB09, S. 4261f]. Sie wurde speziell
für die Sprache CPL entwickelt und repräsentiert Wissen erster Ordnung. KnowRob integriert
enzyklopädisches Wissen, ein Umgebungsmodell, aktionsbasiertes Schließen und mensch-
liche Beobachtungen und erlaubt den Zugang zu all dieser Information auf einheitliche,
symbolische Weise. Sie stellt Werkzeuge zu aktionsbezogener Wissensrepräsentation zur
Verfügung, welche automatisch durch Beobachtung und Erfahrung akquiriert wird. KnowRob
ist darüber hinaus in der Lage mit der stochastischen und unsicheren Eigenschaft der Realität
umzugehen und auf Abfragen effizient zu reagieren (S. Abbildung 3.2).. Sie stellt somit die
Grundlage zum logischen Schließen erster Ordnung dar und kann so nach Wahrheitswerden
befragt werden.

30



3.2. CRAM - A Cognitive Robot Abstract Machine

Abbildung 3.2.: Struktur von KnowRob. [TB09, S. 4263]

3.2.4. Cognito

Cognito erlaubt die Untersuchung der Ausführung des CRAM-Kernel. Der Kernel realisiert
Pläne und untersucht die Wahrnehmung der Umwelt, jedoch untersucht Cognito die Ausfüh-
rung der Pläne. So kann untersucht werden, ob diese erfolgreich ausgeführt wurden oder ob
Probleme auftraten. CPL erzeugt für alle Pläne Objekte, welche diese repräsentieren. Cognito
kann über diese Objekte schließen.

3.2.5. Erweiterungsmodule

Zusätzlich verfügt CRAM über einige Erweiterungsmodule, welche die Funktionalität der
CPL und von KnowRob erweitern. Diese könnten verbesserte Wahrnehmung und Objekter-
kennung sein. Auch werden so verbesserte Lernalgorithmen hinzugefügt wie die Integration
der RoLL - Robot Learning Language.
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3. Frameworks zur komplexen Aktionsplanung

Algorithmus 3.2 Beispiel eines RoLL-Kontrollprogramms
do-continuously
do-in-parallel acquire-experiences re

excecute top-level plan
learn lp

3.2.6. RoLL - Robot Learning Language

Die RoLL - Robot Learning Language basiert auf dem Konzept von hierarchischen hybriden
Automaten um eine explizite Spezifizierung von Lernproblemen zu ermöglichen [Kir09, S. 2ff].
RoLL versucht sich kontinuierlich verbessernde Roboter zu ermöglichen indem sie das Lernen
als zentrales Konzept in die Programmiersprache integriert. Ein typisches Lernproblem
wird spezifiziert und gelöst in zwei Schritten. Zuerst wird die nötige Erfahrung akquiriert,
dann wird diese zum Lernen und zur Verbesserung des Kontrollprogramms verwendet. Ein
mögliches Programm könnte aussehen wie in Algorithmus 3.2.

Dieses Programm führt einen top-level plan parallel zur Akquirierung von Erfahrung aus.
Nach dem Ende der Ausführung wird die gewonnene Erfahrung für einen Lernprozess
verwendet und vor der nächsten Ausführung in das Programm integriert.

Eine Erfahrung ist mehr als die gewonnenen Rohdaten einer Episode. Es werden nur
notwendige Parameter zum Lernen aufgezeichnet: Zustandsübergänge, Steuerungskomman-
dos, interne Annahmen, Entscheidungen sowie Fehler und entsprechende Reaktion. Die
gewonnene Erfahrung wird dann abstrahiert und in einer Datenbank für das Offline-Lernen
gespeichert oder direkt verwendet. Aus der rohen Erfahrung wird durch Weiterverarbeitung
der Daten eine Abstraktion der Erfahrung erreicht, welche für den nächsten Schritt, das
Lernen verwendet werden kann.

Das Lernen erfolgt durch die Transformation der Daten in ein Format, welches auf den ge-
wünschten Lernalgorithmus passt. Danach wird der Algorithmus ausgeführt und schließlich
werden die Ergebnisse in das Kontrollprogramm integriert. Dann startet der Prozess von
neuem. (S. Abbildung 3.3).

3.3. Diskussion von CRAM

3.3.1. CRAM als MDP

Ein CRAM-Plan hat ein durch einen Zustand definiertes Ziel. Es definiert eine Menge von Ak-
tionen über einem MDP, welche in einem Zielzustand konvergieren. Eine komplexe Aufgabe
hat verschiedene Zwischenschritte, welche hierarchisch gelöst werden. Die Kontrollstruktu-
ren der CPL lassen Parallelisierung zu. Beispielsweise ist in parallel do vergleichbar mit
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1. Erfahrung sammeln

Erfahrung aufzeichnen

Monitoring Plan 
ausführen

Erfahrung abstrahieren

Rohe Erfahrung

2. Lernen

Erfahrung vorbereiten

Lernen

Integrieren

raw experience: re
   observe execution of 
plan p
   recording variables
      (x,y) continuously
      (a,b,c) in case of 
success

abstract experience: ae
   of class aec
   abstract from raw 
experience re

learning problem: lp
   learn target function
      specified as lps
   using experience of 
class lec
      abstracted from 
experience ae
   applying learning system 
ls

Abbildung 3.3.: Lernprozess von RoLL. Auf der rechten Seite der entsprechende Quelltext,
welcher den Lernprozess definiert. [Kir09, S. 5]
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3. Frameworks zur komplexen Aktionsplanung

dem Terminierungsschema Tall von CAM zur Mult-Aktionsausführung. try in parallel

implementiert Tany. Gleichzeitig können mit plan wie in CoMDP Aktionen parallel ausge-
führt werden, welche gegenseitig nicht in Konflikt geraten, sonst werden diese entsprechend
sequenziell ausgeführt.

3.3.2. Mächtigkeit von CRAM

CRAM regelt nicht die unterliegenden Prozesse eines Roboters, sondern stellt nur die Ver-
bindung zwischen dem Agenten, der Planerzeugung und weiterer Software durch die Er-
weiterungsmodule dar. Durch die Erweiterung durch RoLL beispielsweise lässt sich die
Performance des Planungssystems steigern. Es ist auch denkbar, dass durch Cognito gemach-
te Beobachtungen über Fehlverhalten des Plans gelernt werden kann und dieser angepasst
wird um Fehler zu vermeiden. So werden neben der Wissensverarbeitung und der Planer-
stellung mittels Prädikaten auch Lernmethoden integriert, dass durch Cognito über eigenes
(Fehl-)Verhalten gelernt werden kann. Letztlich versucht CRAM durch flexible und einfache
Formulierung komplexer Steuerungseinheiten und der Integration verschiedener Module
ein Werkzeug zu sein um ein kognitives System zu entwickeln.
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4. Implementierung autonomer
Aktionen als Activities

Im Rahmen dieser Arbeit wird an der Implementierung eines Interfaces für Aktionen ge-
arbeitet welches die Verbindung zwischen dem relationalen Planen und Lernen und den
eigentlichen Roboteraktionen bildet der RM - Relational Machine [Tou15, S. 1f]. Die Implemen-
tierung der Aktionen wird folgend Activities genannt, um diese von der vorangegangenen
abstrakten Formulierung von Aktionen zu unterscheiden. Der Kern dieser Arbeit ist die
Untersuchung, welche Eigenschaften notwendig sind, um das Ausführen dieser Activities
robust und sicher zu gestalten und wie die Formulierung allgemein gehalten werden kann um
höchste Flexibilität bei der Implementierung unterschiedlichster Activities zu erreichen.

Das folgende Kapitel beschreibt die Implementierung eines Frameworks, welches ein In-
terface implementiert, das verschiedenste Aktionen eines Agenten Planungsalgorithmen
zur Verfügung stellt. Zuerst wird in Kapitel 4.1 die Relational Machine, das der Arbeit zu-
grundeliegende Framework vorgestellt, dann werden in Kapitel 4.2 verschiedene mögliche
Aktionstypen, welche dem Aktionsplaner zur Verfügung stehen, beschrieben. In Kapitel 4.3
wird die Implementierung von autonomen Aktionen als Activities dokumentiert. Darauf
wird in Kapitel 4.4 die Ausnahmebehandlung als Element der Aktionsplanung als Teil der
Implementierung des Frameworks erörtert. Schließlich wird in Kapitel 4.5 umfangreich die
Implementierung einer Beispiel-Activity am Beispiel des Pfadplaners KOMO gezeigt.

4.1. RM - Relational Machine

Das der Arbeit zugrundeliegende Interface zwischen Planungsmethoden und den Aktions-
kontrolle eines Roboters, die RM - Relational Machine implementiert ein Interface, welches
die Schnittstelle zwischen dem Aktionsplaner und der eigentlichen Robotersteuerung dar-
stellt [Tou15, S. 1f]. In einer dieser Arbeit vorausgegangenen Studienarbeit wurde dieses
Framework um ein Interface erweitert, was die interaktive Verhaltenserzeugung durch einen
Benutzer ermöglicht [Bö15, Vgl.]. Die RM repräsentiert zum einen die sequenzielle und
parallele Ausführung von Aktionen, hier Activities genannt in einer Weise, dass diese den
Formalismen von Lern- und Planungsmethoden entsprechen. Zum anderen stellt sie ein
flexibles Framework dar, welches es ermöglicht auf einfache Weise manuell Roboterverhalten
zu erzeugen.
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4. Implementierung autonomer Aktionen als Activities

4.1.1. Struktur der RM

Formal ergibt sich die RM aus folgenden Mengen.

• Der Relationale Zustand ist eine Menge aktiver Fakten, den Facts. Die Konjunktion
dieser bilden den aktuellen Zustand. Facts sind Prädikate erster Ordnung und stellen
Informationen über die Um- und Roboterwelt dar. Diese können Annahmen, Sensor-
oder Aktionsinformationen, Terminierungskriterien o.ä. sein.

• DieMenge der Symbole beschreibt die Objekte der Roboterwelt. Es ist die Menge der
Konstanten, die alle Elemente im Einflussbereich des Agenten beschreibt. Neben Objek-
ten können dies auch Aktionssymbole, interne Prozesse, Terminierungsbedingungen
o.ä.sein.

• DieMenge der Regeln beschreibt relationale Regeln erster Ordnung. Sie beschreibt
Übergangswahrscheinlichkeiten, welche durch Aktionen oder extern ausgelöst werden
können. Vergleichbar mit dem Übergangsfunktion von MDPs.

Gesetzte Facts können Activities auslösen. Diese haben vollen Zugriff auf den Relationalen
Zustand, welcher dadurch wie bei einem Markov Schritt geändert werden kann. Eine andere
Möglichkeit der Veränderung ist durch die Vorwärtsverkettung der Regeln, bis ein stabiler
Zustand erreicht ist, beispielsweise durch Erfüllung einer Terminierungsbedingung und
entsprechender Beendigung einer Activity. Auf der anderen Seite hat auch der Aktionsplaner
Zugriff auf den Relationalen Zustand und kann diesen manipulieren.

4.2. Activities autonomer Systeme

Aktionen autonomer Agenten können in mehrere Kategorien unterteilt werden. Neben
der Manipulation durch Aktoren und der Wahrnehmung der Welt durch Sensoren können
auch innere Prozesse als Activity definiert werden. Diese sind beispielsweise Planungs- oder
Lernalgorithmen oder interne Prozesse der Steuerungssoftware wie das An- und Abschalten
einzelner Sensoren oder Steuerungsroutinen. Diese Aktivitäten können entsprechend in
einem Markov-Prozess verwendet werden (S. Abbildung 4.1).

Sensor Activities Die Sensorik des Agenten erfasst die Umwelt und versucht diese zu
sinnvollen Einheiten zu verknüpfen. Das Ergebnis einer Sensoraktivität könnte das
Erkennen undVerfolgen vonObjekten sein, welche derMenge der Symbole hinzugefügt
werden.

Effektor Activities Der Wahrnehmung steht die Manipulation gegenüber und ist der Out-
put des Agenten. Durch Bewegung der Effektoren wir so die Umwelt verändert und
Objekte werden bewegt.
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Wahr- 
nehmung

Mani- 
pulation

Lernen

Planen

Markov 
Entscheidung

Abbildung 4.1.:Modularisierte Aktivitäten als Elemente von Markov-
Entscheidungsprozessen

Planungs-Activities Die Planung vonAktionen ist imGegensatz zur direktenManipulation
offline, also nicht unmittelbar. Sie erstellt anhand von Randbedingungen Trajektorien
zur Objektmanipulation und bereitet so Bewegung vor.

Lern Activities Lernalgorithmen können auch als Aktivitäten modularisiert werden. So
können verschiedene Lernalgorithmen an- oder ausgestellt werden entsprechend des
Bedarfs.

Interne Steuerung Auch interne Steuerungsprozesse können als Aktionen definiert werden.
Dadurch erhält der Aktionsplaner Zugriff auf Kontrollstrukturen und Schnittstellen
der Software.

4.3. Implemetierung autonomer Aktionen als Activities

Im Folgenden wird die Implementierung autonomer Aktionen als Activities dokumentiert.
Zuerst wird der Syntax zur Aktionsausführung beschrieben, dann das allgemeine Interface,
welches die Activities beschreibt, gezeigt. Schließlich wird ein Beispielquelltext einer neuen
Activity beschrieben und der Vergleich mit RAP diskutiert.

4.3.1. Syntax der Aktionsausführung

Die Activities sind Teilmenge der Prädikate des Relationalen Zustandes, der Facts. Ist ein
entsprechender Fact gesetzt, wird eine Activity ausgelöst, wird er entfernt, die Activity
beendet. Das entspricht dem Formalismus der RAP. Ein Fact besteht aus einem symbolischen
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(Activity)

Gestartet, 
RUNNING

(Activity),
(243 Activity)

(Activity),
(error Activity)Activity

(Activity),
(abrt Activity)

Konvergenz, 
CONV

(Activity),
(conv Activity)

Interrupt,
ABRT

Fehler, 
ERROR

Integer,
243

Abbildung 4.2.: Mögliche Zustandsveränderungen des Relationalen Zustandes (hier rechte-
ckig) entsprechend des Zustandes einer Activity (hier rund).

Teil, welcher die Activity definiert und einem parametrischen Teil um ihr Parameter zu
übermitteln. Prädikate sind hier in flacher Schreibweise. Das Prädikat pos(endeff, objA)
wäre hier (pos endeff objA). Beispielsweise löst der Fact

(Control pos endeff objA){ tol=.01 PD=[1,1,1,10] }

eine Activity vom Typ Control, eine Roboterbewegung aus. Diese erhält das Prädikat
pos(endeff, objA) bzw. (pos endeff objA) welches entsprechend einen Positionscontrol-
ler auslöst, welcher den Endeffektor endeff zu der Position des Objektes objA bewegt. Im
parametrischen Teil wird ein PD-Regler und eine Toleranz zur erfolgreichen Ausführung
definiert. Da Activities vollen Zugriff auf den relationalen Zustand haben, kann diese bei
erfolgreicher Ausführung der Bewegung folgenden Fact erzeugen:

(conv Control pos endeff objA)

Dieses Prädikat conv(Control(pos(endeff, objA))) repräsentiert die erfolgreiche Ausfüh-
rung der Activity.

Anstatt dem Symbol conv können auch andere Symbole wie ABORT oder error den Zustand
der Activity beschreiben. Zusätzlich kann jeder Integer als Zustand definiert werden. (S.
Abbildung 4.2). Soll eine Activity bzw. einFact wieder entfernt werden, geht das mit hinten
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4.3. Implemetierung autonomer Aktionen als Activities

angestellten !. Im oberen Beispiel müsste nach erfolgreicher Ausführung die Activity beendet
und der Fact über die erfolgreiche Ausführung entfernt werden. Dies würde mit

(Control Control pos endeff objA)!
(conv Control pos endeff objA)!

geschehen. Jedoch ist das Interface der Activities so konzipiert, dass die Zustandsverände-
rungen automatisch passieren, d.h. der Zustand der Activities wird automatisch mit dem
relationalen Zustand synchonisiert.

4.3.2. Allgemeines Interface der Activities

Die Implementierung des Frameworks der RM beinhaltet eine Klasse (diese ist als struct
implementiert, welche jedoch folgend Klasse genannt wird) in C++ zur Implementierung
neuer Activities. Im Kern bestehen Activities aus der Initialisierung, Vergleichbar mit dem
Initialisierungsoperator der RAP oinit einer Step-Funktion, welche in jedem Schritt den
Zustand der Activity überprüft und anpasst und der Terminierung, vergleichbar mit dem
Terminierungsoperator der RAP oterm. Der Algorirthmus 4.1 zeigt den Header der Klasse der
Activities in C++

Im folgenden werden einige Elemente des Headers des Interfaces beschrieben.

Node *fact ist der korrespondierende Fact zu der Activity.

double activityTime ist die verstrichene reelle Zeit seit dem Beginn der Activity.

int statenum beschreibt den Zustand der Activity. Dieser kann beispielsweise CONV,
RUNNING, oder ABORT sein. Zudem kann jeder Integer-Wert angenommen und als
Zustand definiert werden. Der Name statenum leitet sich von der Interrupt-Variable
signum ab.

void configure() konfiguriert die Activity. Hier werden die Parameter gesetzt und Ziele
definiert. Diese Funktion wird zu Beginn aufgerufen und stellt die Intitialisierung der
Activities dar.

void interruptHandler(int signum) wird aufgerufen, wenn der Aktionsplaner die Ac-
tivity außerplanmäßig unterbrechen will, um auf unerwartete Ereignisse zu reagieren.

void activitySpinnerStep(double dt) die Step-Funktion wird in jedem Zeitschritt auf-
gerufen und stellt so den richtigen Rahmen für beispielsweise einen PD-Regler zur
Verfügung.

Activity() und ˜Activity() der Kon- und Destruktor wird nach Erzeugung bzw. direkt
vor Beendigung der Activity ausgeführt.
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Algorithmus 4.1 Header der Klasse der Activities
const int CONFIGURE = -1;
const int RUNNING = 0;
const int CONV = 1;
const int ABORT = 2;
const int ERROR = 3;
const int FILEERR = 4;
const int MOVEERR = 5;

struct Activity {
Node *fact; ///< pointer to the fact in the state of a KB
double activityTime; ///< for how long is this activity running yet

StringA symbols; ///< for convenience: copies of the fact->parent keys
Graph params; ///< for convenience: a copy of the fact parameters PLUS refX keys for

all symbols

int statenum ///< state of the ongoing Activity

Activity():fact(NULL), activityTime(0.), statenum(CONFIGURE){}
virtual ~Activity(){}
void associateToExistingFact(Node *fact);
void createFactRepresentative(Graph& state);

/// configure yourself from the ’symbols’ and ’params’
virtual void configure(){}

/// interrupt and error-handling
virtual void interruptHandler(int signum){}

/// the activity spinner runs with 100Hz and calls this for all activities -- use only
for

/// non-computational heavy quick updates. Computationally heavy things should be
threaded!

virtual void activitySpinnerStep(double dt){ activityTime += dt; }

void write(ostream& os) const { os <<"Activity (" <<symbols <<"){" <<params <<"} (t="
<<activityTime <<") "; if(fact) os <<*fact; else os <<"()"; }

};
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Algorithmus 4.2 Step-Funktion einer Beispiel-Activity

void BeispielActivity::activitySpinnerStep(double dt){
activityTime += dt;

doSomethingQuick();

if(activityState == ABORT)
setFact(abort + fact);

else if(activityState == ERROR)
setFact(error + fact);

else if(activityState == 243)
setFact(s243 + fact);

if(converged())
setFact(conv + fact);

else
setFact(conv + fact + "!");

}

4.3.3. Funktionalität der Activities anhand eines Beispieles

Eine Activity besteht aus der Konfiguration, der Step-Funktion und der Terminierung. Algo-
rithmus 4.2 ist der Quelltext der Step-Funktion einer Beispiel-Activitiy in Pseudocode. Die
Step-Funktion führt etwas Kurzes aus, prüft den Zustand der Activity und setzt oder löscht
Facts, um den Realtionalen Zustand entsprechend zu ändern.

In diesem Fall führt sie die Funktion doSomethingQuick() aus und setzt Prädikate für die
Zustände ABORT, ERROR und 243. Zudem überprüft sie in jedem Durchlauf, ob die Aktion
konvergiert ist mit converged() und setzt einsprechend den Fact. Folgend werden die
einzelnen Elemente der Step-Funktion genau beschrieben.

activityTime += dt addiert der Activity die verstrichene Zeit.

doSomethingQuick() ist eine Funktion in der schnelle Berechnungen gemacht werden, wie
der schrittweisen Anpassung eines Reglers o.ä..

converged() wird wahr, wenn die textitActivity konvergiert, d.h. das Ziel erreicht hat.

activityState == x ist die Abfrage des Zustandes der Activity nach einem bestimmten
Wert x.

setFact() ist die Funktion, welche auf den Relationalen Zustand zugreift und die Prädikate
entsprechend der Activity anpasst. Beachte: Fact mit hinten angestelltem ! löscht ein
Prädkat
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4.3.4. Implementierung von Relational Activity Processes

Das oben beschriebene Framework ist in der Lage RAPs zu implementieren. Um das zu zeigen,
müssen die Operatoren oinit, oterm und wait implementierbar sein.

oinit besteht aus den Vorbedingungen preinit, dem go-Prädikat und den Effekten auf den Re-
lationalen Zustand postinit. Durch das Setzen eines Facts wird eine Activity gestartet. preinit

kann realisiert werden, wenn in der Funktion config() im Fall nicht erfüllter Vorbedingun-
gen der Fact direkt wieder entfernt wird. Das go-Prädikat entspricht der Repräsentation der
Activity im Relationalen Zustand und postinit dem Zugriff auf den Relationalen Zustand in
der Step-Funktion.

oterm implementiert sich auf ähnliche Weise, jedoch mit dem Unterschied, dass postterm im
Destruktor umgesetzt und das Entfernen des go-Prädikats durch Löschen der Activity aus
dem Relationalen Zustand realisiert wird.

Der wait-Operator, kann durch die Variable activityTime realisiert werden, indem ei-
ner Activity im parametrischen Teil eine erwartete Laufzeit entsprechend eines Timeouts
mitgegeben wird, oder die Activity sich nach erfolgreicher Ausführung selber beendet.

Die oben gezeigte Implementierung soll nur ein Beispiel darstellen um die Möglichkeiten zu
zeigen. Eigentlich reagiert der Aktionsplaner auf erfüllte Vorbedingungen und startet oder
beendet Aktionen, welche Teilmenge der Prädikate postinit bzw. postterm sind. Der Rest
geschieht auf Planungsebene.

4.4. Ausnahmebehandlung als Elemente der
Aktionsplanung

Leider ist Software meistens fehlerbehaftet, was im schlimmsten Fall zum Programmabbruch
führen kann. Deshalb wird das oben beschriebene Framework um eine Fehlerbehandlung
ergänzt welche die Möglichkeiten des Aktionsplaners erweitert. Dadurch wird unerwartetes
Fehlverhalten planbar und der Aktionsplaner kann das Verhalten dahingehend optimieren,
dass Fehlverhalten minimiert wird.

4.4.1. Struktur der Ausnahmebehandlung

Die Ausnahmebehandlung fängt nicht nur Fehler ab und überführt den Agenten in einen
Fehlerzustand, sondern sie ermöglicht auch die Unterbrechung des normalen Programmab-
laufs durch den Aktionsplaner oder durch die interaktive Steuerung mittels Interruptsignale.
Dadurch kommt entsteht ein neuer Signalfluss, welcher direkt mit den Activities kommuni-
ziert ohne den Umweg über den Relationalen Zustand. Im Prinzip werden Fehler der Activities
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4.4. Ausnahmebehandlung als Elemente der Aktionsplanung
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Abbildung 4.3.: Systemarchitektur der Activities

abgefangen und ein Fact bzw. ein Prädikat wird erstellt, welches den Fehler im Relationalen
Zustand repräsentiert.

4.4.2. Systemarchitektur der Activities

Grundsätzlich startet und beendet der Aktionsplaner Activities durch das Setzen von ent-
sprechenden Prädikaten bzw. Facts, welche die Activities triggern. Diese haben Zugriff auf
den Relationalen Zustand und verändern diesen entsprechend ihres Zustandes. Neben dieser
Grundfunktionen wurden im Rahmen dieser Arbeit die Activities um verschiedene Ausnah-
mebehandlungen erweitert.

Die Aktionsplanung kann durch ein Interruptsignal Activities ohne Rücksicht auf den Relatio-
nalen Zustand unterbrechen. Es wird dann für jedeActivity eine Interruptfunktion aufgerufen,
welche jeweils die entsprechenden Anweisungen ausführt und den Relationalen Zustand
darüber informiert. Wird beispielsweise durch das Drücken von ctrl + c ein Interrupt
ausgelöst, wird für jede aktive Activity eine Interruptfunktion aufgerufen. Diese könnte ein
Interruptprädikat setzen, welches im nächsten Schritt die Activity beendet, oder diese sogar
unmittelbar abbricht.

Zudem gibt es ein Exception-Handling, welches innerhalb der modularisierten Activities
agiert. Wird ein Fehler erzeugt, führt das nicht mehr zum Programmabbruch, sondern führt
lediglich eine Fehlerbehandlung aus, beendet evtl. die Activity und informiert wieder den

43



4. Implementierung autonomer Aktionen als Activities

Relationalen Zustand über den Umgang mit dieser Ausnahme. D.h. die Activity teilt dem
Aktionsplaner mit, dass beispielsweise eine Aktion außerplanmäßig abgebrochen wurde,
oder der Interrupt erfolgreich war (S. Abbildung 4.3). Das Exception-Handling ist mittels
der std::exception Klasse implementiert. Es lassen sich so eigene Fehler definieren und in
einem try-catch-Block abfangen.

4.5. KOMO eine Beispielactivity mit
Ausnahmebehandlung

Folgend wird eine Beispiel-Activity beschrieben, welche den PfadplanerKOMO implementiert
und auch mögliches Fehlverhalten abfängt. KOMO ist ein Framework zur Pfadoptimierung
eines der Optimierungsprobleme [Tou14, S. 1f]. Es errechnet offline eine Trajektorie, die eine
gewünschte Bewegung repräsentiert. Gegeben ist ein Weltmodell und Randbedingungen,
welche bei der Pfadoptimierung eingehalten werden müssen. So kann beispielsweise die
erforderliche Energie minimiert oder aber die Geschwindigkeit der Bewegung maximiert
werden.

Der Algorithmus 4.3 zeigt die Implementierung des KOMO-Frameworks als Activity, der
komo.cpp. In diesem Fall leitet sich die Activity nicht von der Klasse ActivityS, welche die
Klasse Activity und einige Helfer erweitert sondern auch von der Klasse Threat ab, ist
somit ein Thread und ermöglicht dementsprechend eine zeitintensive Offlineberechnung,
ohne den Hauptprozess zu unterbrechen.

Im Kern besteht KomoActivity aus dem Konstruktor, welcher das KOMO-Objekt initialisiert,
der Funktion open(), welche nebenläufig KOMO ausführt, dem Destruktor und dem Inter-
rupthandler. Die einzelnen Elemente des Quelltextes werden folgend genau beschrieben.

Im Konstruktor wird das Weltmodell und die Randbedingungen aus der specs.g eingelesen
und ein Komo-Objekt erstellt. Gibt es ein Problem mit der Datei wird der Zustand
FILEERR sonst RUNNING.

In der Funktion void open(), welches die parallele Version von void configure() (s.o.)
darstellt, wird KOMO mit komo->run() ausgeführt und im Falle der erfolgreichen Aus-
führung wird der Zustand der Activity nach CONV geändert. Zudem wird die erzeugte
Trajektorie in der Datei trajectory.dat gespeichert. Wird ein Fehler erzeugt, wird
der catch-block gestartet und der Zustand in ERROR geändert.

In der Funktion void interruptHandler(int signum) werden Interrupts abgefangen
und der Zustand statenum entsprechend in den Interruptzustand ABORT geändert.

Die einzelnen Zustandsübergänge sind in Abbildung 5.1 dargestellt.
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4.5. KOMO eine Beispielactivity mit Ausnahmebehandlung

Algorithmus 4.3 Implementierung des Pfadplaners KOMO als Activity
#include "komo.h"
#include <Ors/ors.h>
#include <Motion/komo.h>
#include <Motion/motion.h>
#include <Core/graph.h>

KomoActivity::KomoActivity() : Thread("Komo", .1){
try{
komo = new KOMO(Graph("specs.g"));
changeState(RUNNING);
threadLoop();

}catch(FileException &ex){
changeState(FILEERR);

}
}

void KomoActivity::open(){
try{
komo->run();
FILE("trajectory.dat") <<komo->x;
changeState(CONV);

}
catch(SIGSEGVException &ex){
changeState(ERROR);

}
}

void KomoActivity::interruptHandler(int signum){
changeState(ABORT);

}

KomoActivity::~KomoActivity(){
threadClose();

}

Die erstellte KOMO-Activity ist somit eine offline Activity, welche ein in der specs.g definier-
tes Optiermungsproblem löst und als Trajektorie speichert. Die in der trajectory.dat er-
stellte Trajektorie kann darauf in einer anderenActivity, beipieslweisemit runTrajectory()(Vgl.
Anhang A) ausgeführt werden. Hierzu muss beachtet werden, dass der Ausgangszustand
derselbe ist, da eine Trajektorie immer relativ zum Zustand gespeichert wird.
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5. Experimentelle Evaluierung der
Ausnahmebehandlung

Die im Rahmen dieser Arbeit erstellte Ausnahmebehandlung soll im folgenden Kapitel
evaluiert werden. Es wird ein Szenario entwickelt, welches die hinzugekommenen Features
zeigen, die Qualität bewerten und Grenzen aufzeigen soll. Dieses wird darauf umgesetzt und
mit der Umsetzung ohne Fehlerbehandlung verglichen.

Zuerst wird in Kapitel 5.1 ein Anwendungsfall zur Evaluierung entwickelt und dann wird in
Kapitel 5.2 das Experiment durchgeführt. Schließlich werden in Kapitel 5.3 die gewonnenen
Ergebnisse ausgewertet und beurteilt.

5.1. Entwicklung eines Anwendungsfalls

Um die Funktionalität zu testen, sollen als exemplarische Activities der Pfadplaner KOMO und
die Activity runTrajectory zur Ausführung von Trajektorien dienen. Daran soll gezeigt
werden wie mit Fehlverhalten umgegangen werden kann. Diese werden im Folgenden
beschrieben.

KOMO Wird der Fact KOMO gesetzt, wird die in Kapitel 4.5 beschriebene Activity zur Pfadopti-
mierung gestartet. Diese liest aus einer Datei das Weltmodell und die Parameter und
erzeugt eine Trajektorie, welche in der Datei trajectory.dat gespeichert wird. Sie
kann folgende Zustände annehmen:

CONFIGURE ist der Startzustand. Er beschreibt die Konfigurationsphase mit der Datei-
einlesung.

RUNNING repräsentiert die asynchrone Pfadplanung.

CONV ist der Endzustand der erfolgreichen Planung des Pfades.

FILEERR ist ein Fehlerzustand, welcher auftritt, wenn die Datei specs.g einen Fehler
enthält und KOMO nicht initialisierbar ist.

ERROR ist ein Fehlerzustand, welcher auftritt, wenn KOMO einen nicht weiter spezifi-
zierten Fehler macht.
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5. Experimentelle Evaluierung der Ausnahmebehandlung
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Abbildung 5.1.: Zustandsübergangsgraph der Activities KOMO und runTrajectory. Zielzu-
stände sind doppelt umkreist, der Startzustand ist mit einem Pfeil markiert.
Der Zustand ABORT wird mittels eines Interruptsignals erreicht

runTrajectory Wird der Fact runTrajectory gesetzt, wird eine Activity zur Ausführung
der in der Datei trajectory.dat gespeicherten Trajektorie gestartet. Sie kann folgen-
de Zustände haben:

CONFIGURE ist der Startzustand. Er beschreibt die Konfigurationsphase mit der Datei-
einlesung.

RUNNING ist der Zustand während der Trajektorienausführung.

FILEERR ist ein Fehlerzustand. Er tritt auf, wenn die Datei trajectory.dat nicht
vorhanden oder leer ist.

MOVEERR ist ein Fehlerzustand. Er entsteht, wenn während der Trajektorienausführung
ein Fehler auftritt. Beispielsweise entsteht der Fehler, wenn der Zustand des
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5.2. Realisierung des Experiments

Algorithmus 5.1 Python Quelltext einer Strategie zur Trajektorienausführung
def runKOMOTrajectory():
while True:
fact("(KOMO)")
waitForActivity("(KOMO)")
if isTrue("fileerr KOMO"):
fact("(KOMO)!")
return("Die Datei specs.g ist fehlerhaft!")

elif isTrue("running KOMO"):
waitForActivity("(KOMO)")
if isTrue("error KOMO"):
fact("(KOMO)!")
return("KOMO ist fehlerhaft!")

elif isTrue("(conv KOMO"):
fact("(KOMO)!")
fact("(runTrajectory)")
waitForActivity("runTrajectory")
if isTrue("(fileerr runTrajectory)"):
print("KOMO wird erneut ausgefuehrt")

elif isTrue("(running runTrajectory)"):
waitForActivity("runTrajectory")
if isTrue("moveerr runTrajectory"):
print("KOMO wird erneut ausgefuehrt")

elif isTrue("conv runTrajectory"):
fact("(runTrajectory)!"")

return("Trajektorie wurde erfolgreich ausgefuehrt!")

Agenten sich verändert hat und die geplante Trajektorie nicht ausführbar ist oder
ein Objekt im Weg ist.

CONV ist der Endzustand der erfolgreichen Ausführung des Pfades.

Abbildung 5.1 ist der Zustandsübergangsgraph der beiden beschriebenen Activities.

5.2. Realisierung des Experiments

Zur Umsetzung des Experiments wird eine Strategie entwickelt, welche die Berechnung
und Ausführung der Trajektorie zum Ziel hat. Algorithmus 5.1 ist eine mögliche Strategie,
welche das in der vorangegangenen Arbeit entwickelte Python-Interface nutzt [Bö15, Vgl.].
Abbildung 5.2 zeigt den Zustandsübergangsgraph des Algorithmus.

Die Funktion runKOMOTrajectory() führt zuerst KOMO und dann runTrajectory aus. Im
Erfolgsfall gibt sie "Trajektorie wurde erfolgreich ausgefuehrt!" zurück, sonst "Die Datei specs.g
ist fehlerhaft!" oder "KOMO ist fehlerhaft!". Gibt es bei der Ausführung der Trajektorie ein
Problem, wird KOMO erneut gestartet. Der Vorgang ist jederzeit mit ctrl + c unterbrechbar.
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Abbildung 5.2.: Zustandsübergangsgraph des Algorithmus 5.1. Die Fehlerzustände sind rot,
der Zielzustand ist grün. Blaue Pfeile sind externe Zustandsübergänge des
Quelltexts.

Die Funktion waitForActivity(X) wartet auf einen Zustandsübergang der gegebenen
Activity X. Die Funktion isTrue(X) überprüft, ob ein gegebener Fact im Relationalen Zustand
vorhanden ist.

An der Abbildung 5.2 ist erkennbar, dass die Zustandsübergänge auch innerhalb der Activites
realisierbar wären. Dann würde KOMO im Falle der Konvergenz den Fact runTrajectory
setzen und runTrajectory würde in der Fehlerbehandlung bei allen Fehlern KOMO erneut
starten. So würde sich Algorithms 5.1 auf Algorithmus 5.2 verkürzen.
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5.3. Bewertung der Ergebnisse

Algorithmus 5.2 Python Quelltext einer Strategie zur Trajektorienausführung mit verbes-
serten Activities
def runKOMOTrajectoryNew():
fact("KOMO")
while True:
if isTrue("fileerr KOMO"):
return("Die Datei specs.g ist fehlerhaft!")

elif isTrue("error KOMO"):
print("KOMO ist fehlerhaft!")

elif isTrue("conv Trajectory")
print("Trajektorie wurde erfolgreich ausgefuehrt!")

Algorithmus 5.3 Python Quelltext einer Strategie zur Trajektorienausführung ohne Fehler-
behandlung
def runKOMOTrajectoryOld():
fact("(KOMO)")
while not isTrue(conv KOMO):

pass
fact("(KOMO)!")
fact("runTrajectory")
while not isTrue("(conv Trajectory)"):

pass
fact("(runTrajectory)!")
return("Trajektorie wurde erfolgreich ausgefuehrt!")

5.3. Bewertung der Ergebnisse

Vor der Erweiterung des Frameworks um eine Fehlerbehandlung würde oben beschriebene
Strategie wie in Algorithmus 5.3 implementiert werden. Die möglichen Fehler wie ein
Dateifehler oder KOMO-Fehler würden zum sofortigen Programmabbruch führen. Auch
kann auf mögliche falsche Trajektorienausführung nicht reagiert werden.

Durch die im Rahmen dieser Arbeit entwickelte Ausnahmebehandlung scheitert im schlimms-
ten Fall die Activity aber nicht das Programm.
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6. Zusammenfassung und Ausblick

In der vorliegenden Arbeit wird die Frage behandelt, welche Eigenschaften die Implementie-
rung von Aktionen autonomer Agenten haben muss um als Elemente relationaler, nebenläufi-
ger Markov-Entscheidungsprozesse nutzbar zu sein. Neben der theoretischen Untersuchung
dieser Frage wird auch an der praktischen Umsetzung einer Softwareumgebung zur Imple-
mentierung von Aktionen gearbeitet. Diese stellt ein Framework zur Verfügung, welches die
stabile Implementierung unterschiedlichster Prozesse der Robotik ermöglicht.

Im ersten Abschnitt der Arbeit werden verschiedene Varianten verglichen das Entscheidungs-
problem der Aktionsplanung als relationale, nebenläufige Markov-Entscheidungsprozesse
zu formalisieren. Ausgehend von einem einfachen Markov-Entscheidungsprozess wird eine
Parallelisierung erreicht, wenn der Aktionsplaner mehrere Aktionen gleichzeitig ausführen
kann. Dadurch können aber Ressourcen- und Zeitkonflikte entstehen. Modelle wie Concur-
rent Markov Decision Processes, Concurrent Action Model oder Relational Activity Processes
lösen diese Probleme. Darauf werden Programmiersprachen zur Aktionsplanung beschrieben,
welche Verhaltenserzeugung nach dem Paradigma der Kognitiven Robotik ermöglichen und
das maschinelle Lernen in ihrem Kern integrieren. So kann Verhalten auf der Ebene der
Manipulation beschrieben und komplizierte Lernprozesse können mit einfachen Funktionen
aufgerufen werden. Insbesondere wird auf die Sprachen CRAM und RoLL eingegangen.

Im darauffolgenden Abschnitt wird ein Framework erweitert, um unterschiedliche Aktionen
implementieren zu können, dass die Planungs- und Lernprozeduren, welche das Entschei-
dungsproblem der Aktionsplanung lösen zur Verfügung zu stellen. Da in der Realität Software
meistens fehlerbehaftet ist, wird dieses Interface um eine Fehler- und Signalverarbeitung
erweitert. So können Fehler im System erzeugt und abgefangen werden, ohne dass diese
zum Programmabbruch führen. Zudem kann der Aktionsplaner auf unvorhergesehene durch
das Erzeugen von Interruptsignalen den normalen Programmablauf unterbrechen. Schließ-
lich wird untersucht, inwieweit sich die verschiedenen Markov-Entscheidungsmodelle auf so
erzeugte Activities anwenden lassen.

Schließlich wird im dritten Abschnitt durch die beispielhafte Implementierung und Anwen-
dung einiger Activities die Funktionalität untersucht. Strategien über diese Aktionen können
robust gestaltet werden, jedoch müssen Ausnahmen für jede Activity einzeln definiert wer-
den. Erweiterbar wäre dieses Framework, wenn es eine zentrale Fehlerbehandlung enthielte,
welche fest in das System integriert wäre.
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A. Anhang - Anleitung zur
Implementierung einer neuen
Activity

Der vorliegende Anhang gibt eine Anleitung, wie mittels des neuen Interfaces eine neue
Activity implementiert werden kann, welche die neuen Features zur integrierten Sicherheit
beinhaltet. Eine so erstellte Activity kann mittels ctrl + c abgebrochen werden und hat
ihre eigene Fehler- und Signalbehandlung.

Im Prinzip wird entsprechend des Ereignisses der Zustand der Activity geändert, welcher
dann mit dem Relationalen Zustand synchronisiert wird bzw. andere Effekte auslöst. Die
Funktionalität wird anhand der neuen Klassen beschrieben.

Klassen

Es gibt zwei neue Klassen

ActivityS abgeleitet von Activity. Sie erweitert Activity um einige Helfer und dient als
Basisklasse zur Implementierung neuer Activities

ActivityException abgeleitet von std::exception. Sie bildet die Basisklasse für Klassen
zur Fehlerbehandlung.

Die Klasse Acitvity wurde um neue Features erweitert.

Activity.h

Der Algorithmus A.1 zeigt alle Veränderungen der Activity.h. Diese werden folgend näher
beschrieben.

const int X = y definiert Zustandskonstanten. Diese sind bisher

– CONFIGURE für Initialisierung der Acitivity.
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A. Anhang - Anleitung zur Implementierung einer neuen Activity

Algorithmus A.1 Neue Elemente in der Activity.h
const int CONFIGURE = -1
const int RUNNING = 0;
const int CONV = 1;
const int ABORT = 2;
const int ERROR = 3;
const int FILEERR = 4;
const int MOVEERR = 5;

struct \textit{Activity} {

int statenum; ///< states of the ongoing \textit{Activity}

\textit{Activity}():fact(NULL), \textit{Activity}Time(0.), statenum(RUNNING){};

/// interrupt and error-handling
virtual void interruptHandler(int signum){}

};

– RUNNING für die aktive Activity.

– CONV für die konvergierte Activity.

– ABORT für den Abbruch durch ein Interruptsignal.

– ERROR für den Abbruch durch einen Fehler.

– FILEERR für einen Dateifehler.

– MOVEERR für einen Fehler bei der Ausführung einer Bewegung. Beispielsweise
wenn die aufzuwendende Kraft zu groß wird.

Diese sind bisher sehr allgemein gehalten und können erweitert werden.

int statenum beschreibt den aktuellen Zustand der Activity. Der Name leitet sich von
Interrupt-Typ int signum ab.

void interruptHandler (int signum) ist die Interrupthandlerfunktion, welche für alle
aktiven Activities bei einem Interrupt aufgerufen wird. Für ctrl + c gilt sigint ==

2 == ABORT.

Activity(): statenum(RUNNING) der Konstruktor Activity() setzt für statenum

CONFIGURE. D.h. die Activity wird konfiguriert.
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Algorithmus A.2 ActivityS.h
#pragma once
#include <Ors/ors.h>
#include <Core/graph.h>
#include "\textit{Activity}.h"
#include <FOL/relationalMachine.h>
#include <csignal>
#include <exception>

struct \textit{Activity}S : \textit{Activity} {
ACCESSname(RelationalMachine, RM);
struct TaskControllerModule *taskController;
struct RelationalMachineModule *relationalMachine;
\textit{Activity}S();

void changeState(int newStatenum);
mlr::String getStateString(int statenum);

};

class \textit{Activity}Exception: public std::exception {
private:
const std::string msg;

public:
\textit{Activity}Exception() : msg("\textit{Activity}Error"){};
\textit{Activity}Exception(const std::string& msg) : msg(msg) {};

virtual ~\textit{Activity}Exception() throw() {};
const char* what() const throw() {
return msg.c_str();

}
};

class SIGSEGVException: public \textit{Activity}Exception {};

ActivityS.h

Neu dazugekommen ist die ActivityS.h. Sie beinhaltet die neue von Activty abgeleitete
struct ActivityS und Klassen zur Fehlerbehandlung ActivityException. Der Algorith-
mus A.2 zeigt die Headerdatei ActivityS.h. Die Funktionalität wird wie folgt beschrieben.

struct Activity abgeleitet von Activity ist die Erweiterung um Sicherheitsfeatures und
Hilfsfunktionen.

void changeState(int newStatenum) synchronisiert den Relationalen Zustand.
D.h. sie entfernt den aktuellen Zustand und setzt den neuen int newStatenum.
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A. Anhang - Anleitung zur Implementierung einer neuen Activity

mlr::String getStateString(int statenum) erzeugt den String welcher den ak-
tuellen Zustand im Relationalen Zustand repräsentiert. Beispielsweise erzeugt die
Eingabe 2 für die Activity KOMO äbort KOMO".

class ActivityException abgeleitet von std::exception ist die Klasse zur Fehlerbehand-
lung der Activities. Neue Fehlerklassen können von dieser abgeleitet werden um Fehler
in einem try - catch Block abzufangen.

class SIGSEGVException abgeleitet von ActivityException fängt einen erzeugten
SIGSEGV-Fehler ab.

Implementierung einer neuen Activity

Soll eine neue Activity implementiert werden, ist als Basisklasse ActivityS zu ver-
wenden. Zu Implementieren ist neben dem Konstruktor, void configure(), void

activitySpinnerStep(dt activityTime) und demDestruktor auch interruptHandler(int
signum). Zur Zustandsveränderung wird empfohlen, void changeState() zu verwenden,
da sie den aktuellen Zustand automatisch aus dem Relationalen Zustand entfernt und den
neuen setzt.
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