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Kurzfassung

In der vorliegenden Arbeit wird die Frage behandelt, welche Eigenschaften die Implementie-
rung von Aktionen autonomer Agenten erfiillen muss um als Elemente relationaler Markov-
Entscheidungsprozesse nutzbar zu sein. Sie formalisieren ein stochastisches Zustandsmodell
als Grundlage des Entscheidungsproblems der Aktionsplanung. Neben der Untersuchung,
wie dieses Modell erweiterbar ist um nebenldufige Aktionsausfithrung zu erméglichen,
werden auch verschiedene Modelle beschrieben die auftretende Ressourcenkonflikte 16sen.
Anhand der theoretischen Untersuchung dieser Frage wird an der praktischen Umsetzung
einer Softwareumgebung zur Implementierung von autonomen Aktionen gearbeitet. Diese
bietet dem Programmierer ein Interface, welches die stabile Umsetzung unterschiedlichster
Prozesse der Robotik ermoglicht, sodass diese einer Aktionsplanung zur Verfiigung ste-
hen. Es wird um eine Ausnahmebehandlung erweitert, sodass an Stellen, die vorher zum
Programmabbruch gefiithrt haben nun eine Fehlerbehandlung greift welche eine addquate
Reaktion des Aktionsplaners ermdglicht. Neben der genauen Beschreibung der Architektur
und einer Anleitung zur Implementierung neuer Aktionen, werden auch die Moglichkeiten
der Software experimentell evaluiert.
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1. Einleitung

Der Umgang mit unvorhersehbarem, stochastischem Verhalten natiirlicher Prozesse ist
eine der vielschichtigen Aufgaben der Aktionsplanung von Roboterverhalten. Damit Ma-
nipulationsaufgaben autonom von Agenten geldst werden konnen, muss ein Formalismus
fir die reale Umgebung gefunden werden, welcher diese Vorginge addquat abstrahieren
kann. Verhaltenserzeugung unter unsicheren Bedingungen ist eine schwierige Aufgabe und
noch immer Gegenstand vieler Forschungsarbeiten [YMSO03, S. 195]. Die vorliegende Arbeit
nimmt sich dieser Problematik an, gibt einen Uberblick iiber die Forschung und entwickelt
ein Konzept, welches es erlaubt, verschiedenste Prozesse autonomer Systeme der Verhal-
tenserzeugung zur Verfiigung zu stellen, welches die Stochastik natiirlicher Umgebungen
beriicksichtigt.

Das folgende Kapitel beschreibt die Problemstellung (S. Kapitel 1.1), das Ziel (S. Kapitel 1.2)
und gibt einen Uberblick iiber die Gliederung dieser Arbeit (S. Kapitel 1.3).

1.1. Problemstellung und Motivation

Manuell gesteuerte bzw. teleoperierte Roboter sind teilweise in der Lage eine beeindruckende
Performance bei der Bewaltigung von Alltagsaufgaben zu erzielen, jedoch haben autonome
Roboter bis heute grofle Probleme selbst die einfachsten Manipulationsaufgaben zu lsen.
Das lasst sich an zwei Videos eindrucksvoll beobachten. Das erste Video zeigt den PRI,
wie er teleoperiert ein Zimmer mit Leichtigkeit aufraumt [BW, S.]. Auf dem zweiten ist
zu sehen, wie ein PR2 autonom Socken faltet jedoch bei dieser Aufgabe auf Hilfsobjekte
und sehr umstindliche Ausfithrung angewiesen ist [WMF™, S.]. Zudem ist die Aufteilung
der Aufgabe in verschieden Teilaktionen Erkennbar, ist. Dies zeigt, dass die Probleme der
autonomen Robotik nicht in der Mechanik sondern in den Steuerungssystemen liegen. Eine
der Herausforderungen ist die Formalisierung eines geeigneten Weltmodells, welches der
abstrakten Reprasentation der Elemente auch entsprechende Bedeutung zuweist. So ist zur
Verhaltenserzeugung die einfache Repréasentation der Objekte nicht ausreichend, sondern
es muss auch ein Verstdndnis iiber die Bedeutung der Objekte vorliegen [Har90, S. 335f].
Auch wird versucht die Eigenschaften einzelner Steuerungsbefehle so zu formulieren, dass
diese direkt auf der Ebene der Objektmanipulation agieren konnen, anstatt sich mit der
Robotermechanik befassen zu miissen [TLJ13, S. 3].



1. Einleitung

Ein MDP - Markov-Entscheidungsprozess ist das Modell eines Entscheidungsproblems, welches
auf die Verhaltenserzeugung autonomer Agenten angewendet werden kann. Es formuliert
stochastische Anderungen des Zustandes durch Roboteraktionen oder durch externe Ein-
fliisse und bildet so ein Modell, welches die natiirliche Unsicherheit realer Umgebungen
beinhaltet. Dadurch kénnen Aktionen unterschiedlichster Art einer Aktionsplanung zur
Verhaltenserzeugung auf hichster Ebene zur Verfiigung gestellt werden. Jedoch ist die Uber-
tragung der MDPs auf vorhandene Anwendungsfille mit ihren vielschichtigen Anspriichen,
wie Parallelisierung oder der Verarbeitung von Fehlern oft schwierig und bedarf ndherer
Untersuchung.

1.2. Zielsetzung der Arbeit

Das Ziel dieser Arbeit ist die Untersuchung der Anwendung von MDPs anhand der Weiter-
entwicklung eines Frameworks, welches verschiedenste Aktionstypen mit ihren unterschied-
lichen Eigenschaften einer Aktionsplanung zur Verfiigung stellt. Dazu werden verschiedene
Methoden zur Parallelisierung von Aktionen in MDPs diskutiert und anhand von Program-
mierumgebungen die Anwendung gezeigt. Um auch auftretende Fehler als mogliche Elemente
von Aktionen nutzbar zu machen, wird an einer Ausnahmebehandlung von Aktionen gear-
beitet und die Anwendung beschrieben.
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1.3. Gliederung

1.3. Gliederung

Die Arbeit ist auf folgende Weise gegliedert:

Kapitel 2 — Aktionsplanung in naturlichen Umgebungen beschreibt das Entscheidungs-
problem der Verhaltenserzeugung als MDPs und erortert verschiedene Moglichkeiten
zu Parallelisierung und Nutzung in zeit-stochastischen Szenarien.

Kapitel 3 — Frameworks zur komplexen Aktionsplanung stellt das Konzept Kognitiver
Robotik vor und beschreibt die Funktionalitat verschiedener Softwareumgebungen
zur Verhaltenserzeugung nach diesem Prinzip. Es vergleicht diese und diskutiert die
Grenzen der Anwendung.

Kapitel 4 — Implementierung autonomer Aktionen als Activities beschreibt die Kon-
zeption eines Frameworks, welches verschiedene Roboteraktivitidten einer Aktionspla-
nung zur Verfiigung stellt und gibt Beispiele der Anwendung.

Kapitel 5 — Experimentelle Evaluierung der Ausnahmebehandlung diskutiert die ge-
wonnenen Ergebnisse kritisch anhand eines Experiments und gibt einen Uberblick
iber Erweiterungsmoglichkeiten.

Kapitel 6 — Zusammenfassung und Ausblick

Anhang A — Anhang - Anleitung zur Implementierung einer neuen Activity ist die
Anleitung zur Erstellung einer neuen Activity, welche die entwickelte Ausnahme-
behandlung integriert.

11






2. Aktionsplanung in naturlichen
Umgebungen

Das vorliegende Kapitel behandelt die Frage, wie natiirliche Umgebungen abstrahiert werden
konnen, damit sie den Formalismen einer Aktionsplanung zur autonomen Verhaltenserzeu-
gung geniigen. Natiirliche Umgebungen, die realen Szenarien in denen ein Agent agiert,
sind in ihrer Natur immer stochastisch, d.h. dass der Effekt eines Vorgangs nur ungenau
vorhersehbar ist. Zudem ist die Modellbildung realer Umgebungen eine Abstraktion und
somit ungenau. Wird ein Entscheidungsproblem zur Losung einer Aufgabe erstellt, muss
ein Formalismus gefunden werden, welcher reale Prozesse mit ihrer Stochastik integrieren
kann. Ein geeignetes Modell ist ein MDP - Markov-Entscheidungsprozess. Er formalisiert das
Entscheidungsproblem der Aktionsplanung und ist in der Lage die stochastischen Zustands-
anderungen der Welt zu formalisieren.

Zuerst wird in Kapitel 2.1 ein MDP als geeignetes Modell zur Aktionsplanung unter stochas-
tischen Bedingungen gezeigt und in Kapitel 2.2 eine geeignete Reprasentation der Umwelt
zur Losung des Entscheidungsproblems der Verhaltenserzeugung beschrieben. In Kapitel
2.3 werden darauf einige Moglichkeiten der Erweiterung von MPDs um Nebenldufigkeit
dargestellt und in Kapitel 2.4 die Problematik von andauernden Prozessen fiir die Aktionspla-
nung gezeigt. Schliellich werden in Kapitel 2.5 verschiedene Modelle verglichen und kritisch
diskutiert.

2.1. Aktionsplanung als Entscheidungsproblem

Die Aktionsplanung zur Erzeugung von Verhalten autonomer Agenten ist ein Entschei-
dungsproblem. Es ist beschrieben durch die Zustandsmenge .S und die Menge der moglichen
Aktionen A. Ein Zustand s € S beschreibt einen moglichen Zustand der Welt und des
Roboters durch seine Variablen. Dagegen beschreibt eine Aktion a € A eine der moglichen
Aktionen des Agenten, welche im Falle der Ausfithrung aus einem Zustand s einen Zustand
s" durch Manipulation der Umwelt oder des Roboterzustandes erzeugt.

Das Entscheidungsproblem selbst ist das Finden einer Strategie m um eine gestellte Manipu-
lationsaufgabe zu losen. Eine Strategie 7 : S — A ist die Auswahl der richtigen Aktionen
a C Ain jedem Zustand s € S, sodass moglichst effizient ein Zielzustand z € G C S

13



2. Aktionsplanung in natdrlichen Umgebungen

Entscheidung
a

v
Zustand - Zustand
) Ubergang y
1

Stochastischer
Einfluss

Abbildung 2.1.: Ablauf eines Zustandsiibergangs im Markov-Entscheidungsprozess

aus der Menge der Zielzustande G erreicht wird. Eine Strategie 7* ist optimal, wenn die
erwarteten Kosten R einer gegebenen Kostenfunktion R : S x A x S — R, welche jedem
Zustandsiibergang Kosten zuordnet, minimal sind.

2.1.1. Markov Entscheidungsprozesse

Ein MDP - Markov-Entscheidungsprozess erweitert die Formulierung des Entscheidungspro-
blems um die stochastischen Eigenschaften natiirlicher Umgebungen [Thr00, S. 306]. Somit
wird der Prozess des Zustandsiibergangs stochastisch. Wird in Zustand s € S eine Aktion
a € A ausgefiuhrt wird mit Wahrscheinlichkeit p Zustand s’ erreicht (S. Abbildung 2.1). Die
Ubergangswahrscheinlichkeit von a zu allen méglichen Zustanden s’ ergibt immer 1.

Ein MDP wird hier definiert als ein Tupel M = (S, A, Ap, P, R, G) nach [MW08, S. 3f] mit
« S, einer endlichen Menge diskreter Zustande.

« A, einer endlichen Menge der Aktionen.

Ap : S — P(A), einer Funktion der anwendbaren Aktionen je Zustand (P ist Potenz-
menge).

« P:SxAxS —]0,1], der Ubergangsfunktion. P(s'|s, a) ist die Wahrscheinlichkeit
Zustand s’ zu erreichen, wenn Aktion a in Zustand s ausgefiithrt wird.

« R: S x AxS — R, der Kostenfunktion. Jedem Zustandsiibergang durch eine Aktion
a werden Kosten zugeordnet.

« G C S, der Menge der Zielzustinde mit z € G einem Zielzustand.

14



2.1. Aktionsplanung als Entscheidungsproblem

Abbildung 2.2.: Beispiel eines einfachen Markov-Entscheidungsprozesses mit drei Zustan-
den und zwei Aktionen

Jedem Zustandsiibergang sind neben der Ubergangswahrscheinlichkeit P auch Kosten R
zugeordnet. Ziel des Aktionsplaners ist es eine Strategie 7 : S — A zu finden, welche
einen Zielzustand z € G erreicht und die erwarteten Kosten #t minimiert. Dadurch konnen
Randbedingungen wie Effizienz in das Modell integriert werden. Es sei J : S — R die
Kostenfunktion, welche jedem Zustand s € S die erwarteten Kosten zu einem Zielzustand
z € (G zuordnet. Eine Strategie m definiert sich wie folgt:

ms(s) = argmin »_ P(s'|s,a) (R(s, a,s’) + J(s’))

ac€Ap(s) 4cg

Somit leitet sich die optimale Strategie 7* von der optimalen Kostenfunktion J* ab, welche
sich tiber folgende beiden Bellmanngleichungen definiert:

J*(s) =0,if s€ G else
J*(s) min Y P(s|s,a) (R(s,a, s') + J*(s’))

acAp(s) s'eS

Ein klassisches MDP ist ein geeignetes Modell fiir die Aktionsplanung unter stochastischen
Bedingungen. Jedoch hat das Modell zwei Schwiachen: Zum einen werden die Aktionen
sequenziell ausgefithrt und zum anderen geschehen alle Aktionen unmittelbar. In der Realitat
jedoch sind diese Annahmen unrealistisch, da Aktionen Zeit brauchen und z.T. eine Parallel-
ausfithrung sinnvoll ist um die Effizienz zu erh6hen [WMO04, S. 2f]. Beispielsweise fiihrt ein
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2. Aktionsplanung in natdrlichen Umgebungen

Roboterarm eine Aktion aus, wahrend der andere sich gerade in einem Zustandsiibergang
befindet und beschaftigt ist.

2.2. Relationale Reprasentation

Neben der Auswahl eines geeigneten Modells fiir das Entscheidungsproblem muss auch
eine geeignete Reprasentation der Umwelt gewahlt werden. Es kann beispielsweise jeder
Zustand explizit S = {21, 23, ..., Zn_1, 2} oder aber durch Funktionen z, = f,(X) mit
ihren Zustandsvariablen X formalisiert werden. Es lisst sich erkennen, dass eine explizite
Reprasentation in hinreichend grofien Bereichen schnell an ihre Grenzen kommt. Objekte und
andere Elemente konnen durch Symbole bzw. Konstanten, welche mit ihren Eigenschaften
verkniipft sind reprasentiert und in Zusammenhang gebracht werden. Diese Art der impliziten
Reprasentation wird unter dem Begriff der Relationalen Reprdisentation zusammengefasst
[LTK12, S. 3732].

Die Symbole, welche neben den Objekten auch fundamentale Eigenschaften der Roboterwelt
reprasentieren, werden mithilfe von Pradikaten in Zusammenhang gesetzt [TMM™15, S.
1f]. Beispielsweise kann so mit dem Pridikat on(obj A, obj B) formalisiert werden, dass ein
Objekt 0obj A auf einem anderen Objekt 0bj B liegt. So ein Pradikat bedeutet mit Variablen
nur die Relation auf. Erst durch das Einsetzen von Konstanten wie Objekten, wird daraus eine
Aussage. Auf diese Weise werden Objekte in einen relationalen Zusammenhang gebracht und
stehen der Pradikatenlogik zur Verfiigung. So beschreibt die Relationale Reprisentation der
Welt nicht nur die Eigenschaften der, sondern auch die Beziehungen zwischen den Objekten.
Mithilfe der Pradikatenlogik konnen nun Aussagen iiber die Eigenschaften der Umgebung
gemacht werden.

2.2.1. STRIPS - Stanford Research Institute Problem Solver

Eine standardisierte relationale Formalisierung eines Problems der Aktionsplanung ist STRIPS
- Stanford Research Institute Problem Solver [FN71, S. 1ff]. Das Entscheidungsproblem wird in
STRIPS durch den Startzustand, der Menge der verfiigbaren Aktionen und deren Zustands-
tiberginge und dem Zielzustand definiert. Der Zustand ist als wohldefinierte Funktion erster
Ordnung definiert. Beispielsweise konnte die Position at(a, b) der Kisten 0bj A und obj B
an posA und posB sowie die Position des Roboter atr(a) an posC' und auf folgende Weise
definiert werden:

atr(posC),at(objA, posA),at(objB, posB)

16



2.2. Relationale Reprasentation

Es wire zusatzlich die Bedingung, dass ein Objekt sich nicht an zwei Orten gleichzeitig
befinden wie folgt beschrieben:

(VuVoVobjB){[at(u,z) A (x # objB)] — at(u,objB)}

Aktionen werden auf ahnliche weise definiert. Beispielsweise bewegt die Aktion goto(a, b)
den Roboter von a nach b:

goto(posA,posB) : atr(posA) — —atr(posA),atr(posB)

Die Implementierung solch einer Aktion beinhaltet Vorbedingungen und die Anderungen
des Zustandes, also Anderung der Menge der Pridikate, welche den Zustand definieren.
Schlief3lich ist auch die Menge der Zielzustdnde wohldefiniert z.B. durch

at(objA, posA) A at(objB, posA)

2.2.2. Probabilistic STRIPS

In Probabilistic STRIPS wird das klassische STRIPS-Modell durch probabilistische Regeln
erweitert [ZPKO05, S. 912]. Dadurch kann der unsichere Ausgang einer Aktion beschrieben
werden. Somit eignet sich die Beschreibung auch fiir stochastische MDPs. Das folgende
Beispiel der Aktion pickup(objA,objB) mit den Vorbedingungen on(objA, objB), dass
obj A sich auf obj B befindet und inhandNil, dass die Hand der Roboters leer ist, hat drei
verschiedene mogliche Ausgange. Mit der Wahrscheinlichkeit p = 0.8 landet das Objekt
obj A in der Hand, mit der Wahrscheinlichkeit p = 0.1 fallt das Objekt 0obj A auf den Tisch T’
und mit der Wahrscheinlichkeit p = 0.1 passiert nichts.

ObjektA(objA),0bjektB(objB), Tisch(T)
pickup(objA,objB) :
on(objA, objB), inhandNil
.80 : —on(obj A, 0bjB),inhand(objA), minhandNil, clear(objB)
— {.10 : —on(objA, 0bjB),on(objA, T), clear(objB)

.10 : no change

Allgemein definiert sich die Regel einer Aktion a € A durch

pr 2 (X)
VX (X)) Aa(X) —

pa U (X)

17



2. Aktionsplanung in natdrlichen Umgebungen

mit X dem Vektor der Zustandsvariablen und dem Kontext 1,der Formel des aktuellen Zustan-
des. ¢]...1}, sind die Ergebnisse der Aktion a. p;...p, sind die Ausgangswahrscheinlichkeiten
und ergeben zusammen 1.

Ein stochastisches MDP lasst sich als Probabilistic STRIPS beschreiben. Alle Aktionen von
Regeln mit der gleichen Vorbedingung beschreiben die Menge Ap. Die Ubergangsfunktion
P:SxAxS —|0,1] ergibt sich durch

n

P(S,|S,CL) = ZP(S,|¢;,S,CL)P(¢Q|S,CL)

=1

mit P(s'[¢}, s,a) der Wahrscheinlichkeit, dass das Ergebnis v} Zustand s’ formuliert und
P(1)!|s, a) der Wahrscheinlichkeit, dass Aktion a das Ergebnis 1] erreicht. Soll eine Strategie
7 gefunden werden, muss noch eine Kostenfunktion hinzugefiigt werden. Jedoch koénn-
te auch eine Regel als reellwertiges Pradikat eine Belohnung R erhalten, dann wiare die
Belohnungsfunktion R aber nur iiber S X A und nicht @iber S x A x S definiert.

2.3. Nebenlaufigkeit in stochastischer Aktionsplanung

Viele Planungsvorgiange beinhalten nebenlaufige Optimierung hierarchisch strukturierter
Teilziele des Problems durch die dynamische Auswahl zuvor gelernter Strategien, welche
die Teilziele optimieren. Die meisten Alltagsaufgaben beinhalten eine Struktur dieser Art.
Beispielsweise ist beim Essen das Kauen eine Teilaufgabe, fiir welche jedoch das Essen
zuerst zum Mund gefithrt werden muss. Allgemein ist die Losung solcher Aufgaben eine
Herausforderung, da Teilziele in Konflikt geraten konnen und mit den begrenzten Ressourcen
umgegangen werden muss. Nebenlaufigkeit in MDPs kann auf mehrere Arten verstanden
werden. Zum einen konnen mehrere MDPs parallel ausgefithrt werden, welche jeweils
Teilziele 16sen oder aber jeweils einen Effektor. Zum anderen kann ein MDP mehrere Aktionen
parallel ausfithren um die Effizienz zu erh6hen [RPMGO04, S. 1137]. Selbstverstandlich sind
auch Kombinationen verschiedener Methoden denkbar.

2.3.1. Nebenlaufigkeit in Markov-Entscheidungsprozessen

Nebenlaufigkeit in MDPs bedeutet die Auswahl mehrerer Aktionen gleichzeitig. So muss
im o.g. Beispiel des Essens nicht immer erst gewartet werden, bis das Kauen beendet ist
um den nachsten Bissen auf die Gabel zu legen. Im Modell der CoMDP - Concurrent Markov
Decision Processes wird das oben beschriebene Modell der MPDs erweitert, sodass meh-
rere Aktionen, sogenannte Multi-Aktionen M € P(A), parallel ausgefithrt werden kon-
nen [MWO08, S. 37f]. Die Eingabe eines CoMDP unterscheidet sich etwas von einem MDP
CoMDP = (S, A, Apy, P, R, G, s0). Die Applikationsfunktion Ap, die Ubergangsfunktion
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2.3. Nebenlaufigkeit in stochastischer Aktionsplanung

Tabelle 2.1.: Probabilistische STRIPS-Definition eines einfachen MDP mit potentieller Paral-
lelisierung, mit den Zustandsvariablen x1, x5, o3, x4, p12 und dem Ziel z; = 1,
o =123 =124 =1[MWO08, S. 33]

Aktionen | Vorbedingung Effekt Wahrscheinlichkeit
toggle(z) —P12 T, — T 1
toggle(zy) D12 Ty — Ty 1
toggle(zs) true T3 — T3 0.9

no change 0.1
toggle(zy) ‘ true Ty — Ty 0.9

no change 0.1
toggle(pi2) ‘ true D12 — D12 1

P und die Belohnungsfunktion 7 beschreiben die Erweiterung von sequenzieller Ausfiih-
rung einzelner Aktionen zur nebenldufiger Ausfithrung einer Menge von Aktionen. Eine
Aktionskombination P(A) C A ist eine Potenzmenge der Aktionen A. Daraus folgen die
neuen Eingaben:

« Ap): S — P(P(A)) definiert die neue Applikationsfunktion. Sie beschreibt die Menge
der Aktionskombinationen, welche je Zustand s € S angewendet werden konnen.

« P/ :SxP(A) xS —[0,1] ist die Ubergangsfunktion. Sie beschreibt die Ubergangs-
wahscheinlichkeit P von s € S nach s’ € S unter P(A).

« Rj:S xP(A) xS — Rist die Belohnungsfunktion. Sie beschreibt die Belohnung R
von s € S nach s’ € S unter P(A).

Sich ausschlieBende Aktionen

Es muss beriicksichtigt werden, dass bei der gleichzeitigen Ausfithrung von Aktionen eventu-
ell Konflikte auftreten konnen. Einerseits konnen zwei Aktionen nicht gleichzeitig ausgefiihrt
werden, wenn deren Vorbedingungen sich widersprechen. Zusétzlich werden im Modell der
CoMDP zwei weitere Kriterien genannt, welche die gleichzeitige Ausfithrung verhindern,
dass es nicht zu Konflikten kommt. Wenn der Effekt einer Aktion den Effekt einer anderen
beeinflusst, konnen sie nicht gleichzeitig gestartet werden. Auch nicht, wenn ein Effekt die
Vorbedingung der anderen beeinflusst. Beispielsweise haben in Tabelle 2.1 toggle(z;) und
toggle(zy) einen Konflikt in der Vorbedingung und der Effekt von toggle(p;2) bedingt die
Vorbedingung von toggle(x;). Dagegen kénnen toggle(z;), toggle(xs) und toggle(zy)
parallel ausgefithrt werden. Am Beispiel des Essens kann der Bissen erst in den Mund
geschoben werden, wenn dieser leer ist.
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2. Aktionsplanung in natdrlichen Umgebungen

2.3.2. Koartikulierende Markov Entscheidungsprozesse

Um die Variabilitat weiter zu steigern, kann ein Problem auf mehrere MDPs aufgeteilt werden.
Das Konzept der koartikulierenden MDP ist ein Ansatz, welcher mehrere MDPs jeweils
ein Teilziel 16sen lasst um das globale Ziel zu erreichen [SPS99, S. 189]. Der Begriff der
Koartikulation, nach dem Prinzip der Lautbildung in der Phonetik unterteilt eine Aufgabe in
Teilziele, welche hierarchisch strukturiert abgearbeitet werden. Im o.g. Beispiel des Essens
wiren die Teilziele Kauen und Essen zum Mund fithren. Selbstverstandlich muss das Essen
zuerst zum Mund gefithrt werden um gekaut werden zu kénnen. Wahrend des Kauens jedoch
kann schon der néachste Bissen vorbereitet werden. So ist die koartikulierende Ausfithrung
beider Teilziele effizienter als die parallele.

Es wird angenommen, dass der Planungsalgorithmus Zugriff auf Controller C' =
{C4,Cy, ..., C,} hat, welche jeweils ein Teilziel w; € (), mit {2 einer hierarchisch struk-
turierten Menge der Teilziele 16sen [RPMGO04, S. 1137ff]. Die tibergeordnete Aufgabe
wird gelost, wenn konkurrierende Teilziele abgearbeitet werden. Ein Controller C' mo-
delliert eine Menge von Optionen (I, 7, 3) mit der Initiationsmenge I C S, der Strategie
m: S x A — [0,1] und der Terminierungsbedingung /5 : St — [0, 1] Giber einem SMDP -
Semi-MDP M. : {S., A, P., R.} mit S. C S, A. C A der Ubergangswahrscheinlichkeit P,
und der Kostenfunktion .. Eine Option kann in einem Zustand s € I gestartet werden und
16st mit 7 ein Teilziel.  wird 1, wenn das Teilziel erfolgreich abgearbeitet wurde.

Jede Aktionsauswahl dndert den Zustand in allen MDPs. Die einzelnen Controller haben
Zugriff auf mehrere Optionen, die jeweils eine Teilaufgabe nahezu optimal 16sen. Dadurch
entsteht eine gewisse Flexibilitdt und dem Planer stehen je Zustand s verschiedene Aktionen a
zur Verfiigung. Ziel ist es nun eine globale Strategie zu finden, welche die Teilziele schrittweise
abarbeitet und Aktionen auswéhlt, welche einen Kompromiss bilden und in allen SMDPs
den Teilzielen w C () ndherkommt. Zusitzlich sind Start- und Terminierungsbedingungen
der einzelnen SMDPs gegeben. Diese beeinflussen die Aktionsauswahl, welche entsprechend
einen Controller C startet oder beendet.

2.4. Das Problem mit der Zeit

Bisher wurde angenommen, dass alle Aktionen in einem Markov-Schritt abgearbeitet wer-
den. Das bedeutet sie haben keine eigentliche Dauer und die Aktionsausfithrung geschieht
unmittelbar. In der Realitét ist dies leider meist nicht der Fall. Folgend werden zwei Methoden
vorgestellt, welche die Gleichzeitigkeit von Aktionen um eine Zeitdauer erweitern. Das CAM -
Concurrent Action Model formuliert die Dauer von Aktionen als diskrete Zeitschritte und RAP
- Relational Activity Processes erweitert dieses Modell um stochastische und reellwertige Zeit,
indem es Aktionen um in das Starten und Beenden dieser Aufteilt. So wird eine Verbindung
zwischen Markov-Schritten und verstrichener Zeit erzeugt.
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Abbildung 2.3.: Terminierungskriterien 75, Ty, und T..optinye fiir die Multi-Aktion M =
{al, a2, a3, a4} [RM02, S. 1620].

2.4.1. CAM - Concurrent Aktion Modell

Im CAM - Concurrent Action Modell [RMO02, S. 1619ff] werden, um der Problematik der
unterschiedlichen Dauer verschiedener Aktionen zu begegnen, die Terminierungsschemata
Tonys Tou und Tiopniinge eingefihrt. Eine Multi-Aktion M € P(A) wird mit solch einem
Schema gekennzeichnet um zu spezifizieren, was passieren soll, wenn eine der Teilaktionen
terminiert

Thny bedeutet, dass alle Aktionen beendet werden, wenn eine terminiert.

T, bedeutet, dass alle Aktionen weiterlaufen, bis die letzte terminiert. Die fertigen Aktionen
verweilen in einem Idle-Zustand.

T.ontinue bedeutet, dass nach der Terminierung einer, eine neue Einzelaktion gestartet
werden kann, welche die anderen nicht beeinflusst.

(S. Abbildung 2.3).

Dadurch kénnen Multi-Aktionen eine diskrete Dauer haben und der Aktionsplaner kann
entsprechend der Schemata eine Strategie finden, welche Aktionen mit unterschiedlicher
Lange parallel ausfithren kann. Am Beispiel des Essens, welches aus drei Aktionen, dem
Kauen, dem Essen zum Mund fithren und dem Beladen der Gabel besteht, konnte eine
Strategie folgendermafien aussehen:

while(!plateEmty){
Tuu(kauen(), gabelFillen())

essenZumMund()

}
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2. Aktionsplanung in natdrlichen Umgebungen

2.4.2. RAP - Relational Activity Processes

RAP - Relational Activity Processes erweitern das CAM um stochastische reellwertige Zeit
[TMM™ 15, S. 2f]. Es ist ein Modell eines SMDP fiir eine Aktionsplanung mit nebenlidufigen
Aktionen. Der Kern dieses Modells ist die Aufteilung dauernder Aktionen in Initiations- und
Terminierungsoperatoren, welche jeweils unmittelbar geschehen. Die Aktionen werden so
Teil der Zustandsmenge. Nebenldufigkeit wird durch das sequentielle Starten oder Beenden
von Aktionen durch diese Operatoren erreicht, anstatt der parallelen Ausfithrung von Multi-
Aktionen. Dadurch konnen die diskreten Zeitschritte, wie in CAM, zu kontinuierlichen
erweitert werden. Jede Aktion erhilt eine deterministische oder stochastische reellwertige
Dauer, welche durch Pradikate in der Zustandsmenge definiert wird. Zudem wird noch ein
wait-Operator eingefiihrt, welcher den zeitlichen Ablauf koordiniert.

Gegeben ist eine relationale Reprdsentation des Weltmodells mit den Pradikaten und Symbolen.
Ein RAP wird durch ein sMDP {S, A, D, P,T, R} definiert mit

S, einer endlichen Menge diskreter Zusténde.
A, einer endlichen Menge der Aktionen.
D(s), einer endlichen Menge der moglichen Entscheidungen d je Zustand s.

P :SxDxS — [0,1], der Ubergangsfunktion. P(s'|s,d) ist die Wahrscheinlichkeit
Zustand s’ zu erreichen, wenn Entscheidung d in Zustand s ausgefihrt wird.

T :SxDxS — R,dem Laufzeitmodell. (s, d, s") — 7 ist die Dauer eines Markov-Schrittes.

R:Sx AxT xS — R, der Kostenfunktion. (s,d, 7,s") — r beschreibt die Kosten fiir
eine Entscheidung respektive der Dauer.

Die Menge der Entscheidungen D ergibt sich aus der Menge der Aktionen A. Der Aktions-
planer kann aus dieser Menge auswéhlen. Fiir jede Aktion a € A gibt es einen oder mehrere
Initiierungs- und Terminierungsoperatoren 0;,,;; und 0;.,,,, welche eine Aktion startet oder
beendet mit

Oinit(aa : preimt(aa X) — gO(CL, X) = Ta, pOStinit(au X)

)
ot@Tm(a’7 )?) : preterm(a’a )?) — —|go(a, X)? pOStterm(a7 )?)

X ist ein Vektor aus Zustandsvariablen, prex(a,)? ) eine Vorbedingung wie in STRIPS,
go(a, X) — R ein spezielles reellwertiges Pradikat, welches die Ausfithrung der Aktion
beschreibt mit 7, ¢ der erwarteten Dauer. post,(a, X) beschreibt den Effekt auf die Zu-

standsmenge durch die Veranderung der Pradikatenmenge. Zu beachten ist das go(a, X )
Pradikat, welches durch o;,,;; erzeugt und durch o;.,,, wieder entfernt wird.
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2.4. Das Problem mit der Zeit

Beispielsweise konnte ein Initiilerungsoperator 0;,,;;(pickup(objA, objB)) fur das Aufheben
eines Objektes obj A von einem Objekt 0bj B durch den Agent wie folgt aussehen:

Oinit(pickup(objA, objB)) :
go(pickup(objA,objB))!, inhandNil, on(objA, objB), busy(objA)!
— go(pickup(objA,0bjB)) = 2.5, busy(objA), busy(objB)

Er hat die Vorbedingungen, dass kein go-Préadikat fur diese Aktion existiert (go(pickup(objA, objB))!),
die Roboterhand leer ist (inhandNil), das Objekt objA auf dem Objekt objB liegt
(on(0bjA,0bjB)) und dass 0bjA nicht in Benutzung ist (busy(objA)). Die Effekte er-

zeugen ein go-Pradikat mit der Zeit 2.5 und erzeugen Pradikaten, welche représentie-

ren, dass obj A und 0obj B in Verwendung sind. Der entsprechende Terminierungoperator
Oterm(pickup(obj A, obj B) konnte wie folgt aussehen:

Oterm(pickup(objA, 0bjB)) :
go(pickup(objA,objB)) = 0, busy(objA)
— —go(pickup(objA, objB)), —busy(objB),~inhandNil, inhand(objA)

Wird eine Entscheidung d € D(s) im Zustand s getroffen, wird ein Zwischenzustand
§ = post, ,(7) o s erzeugt, welcher die Effekte des Operators auf s anwendet. In diesem
Zustand wird durch Vorwiartsverkettung aller Pradikate bis zur Konvergenz ein stabiler
Zustand ¢’ erreicht. Entsprechend miissen fiir alle Vorbedingungen pre,(a, X) die Effekte
post,(a, X) implizit vorliegen.

Zusitzlich ist der Entscheidungsmenge D(s) noch der wait-Operator hinzugefiigt. Er regelt
den zeitlichen Prozess und ist quasi die Schnittstelle zwischen einem Markov-Schritt und der
realen Zeit. Wird er ausgefiihrt, sind alle Operatoren ausgefithrt und es verstreicht Zeit bis
zur nachsten Beendigung einer Aktion. Konkret ist er definiert durch:

1. Finde das go-pradikat mit der kleinsten Restzeit 7,,;,.
2. Verringere alle go-pradikate um 7,,;,.

3. Entferne alle go-pradikate go(a, Z) mit 7 = 0 aus § und fiige entsprechende Terminie-
rungsoperatoren post,(a, Z) ein.

Das definiert den Zwischenzustand §. Der stabile Zustand s’ wird wieder durch Vorwarts-
verkettung der vorhandenen Pradikate erreicht. Hat man anstatt der deterministischen
Dauer von Aktionen eine stochastische P(7, z|s, a, ¥), wird der wait-operator etwas anders
definiert:

1. Nimm 7, z ~ P(7,z|s, a, ¥) fiir alle aktiven Aktionen.

2. Wihle das kleinste 7,,,5,,.
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2. Aktionsplanung in natdrlichen Umgebungen

3. Entferne alle go-priadikate go(a, ¥) mit 7 = 7,,,;,, aus § und fiige entsprechende Termi-
nierungsoperatoren post,(a, ¥) ein.

4. Fur Alle 7, 7 > Ty, verringere den Erwartungswert E(7, z|s, a, 7) aller go(a, Z) um
Tmin

Das Laufzeitmodell T" : (s,d, s’) — 7 ist entsprechend des wait-operators 7,,;,, da ange-
nommen wird, dass fiir die Initiierungs- und Terminierungsoperatoren keine Zeit verstreicht.
Somit héngt es implizit von den go-Pradikaten in o;,;; ab.

2.5. Vergleich der verschiedenen Modelle

Ausgehend von einem MDP wurden verschiedene Erweiterungen zur Parallelisierung be-
schrieben, zudem wurde das Konzept der Koartikulation gezeigt (S. Abbildung 2.4). Im
Folgenden sollen die Eigenschaften der verschiedenen MDP-Modelle verglichen werden.

Ein Grundproblem von nebenldufigen MDPs sind die begrenzten Ressourcen eines Systems,
so kann eine Multi-Aktion M nur ausgefithrt werden, wenn die einzelnen Aktionen sich
nicht widersprechen bzw. nicht in einen Ressourcenkonflikt geraten. Um sich ausschliefSende
Bedingung wie in CoMDP auch auf STRIPS oder RAP anzuwenden, konnen diese in den
Vorbedingungen als negative Literale formuliert werden.

Eine weitere Schwierigkeit ist die Erweiterung von Multi-Aktionen auf mehr als einen
Markov-Schritt um zu formalisieren, sodass einzelne Aktionen unterschiedliche Dauer haben
koénnen. Hierzu wurden in CAM die verschiedenen Terminierungsschemata eingefiihrt.
Jedoch formulieren diese die verstrichene Zeit immer noch als diskrete Zeitschritte. Um von
der diskreten Zeit zur kontinuierlichen Zeit zu kommen, wurde schlief3lich in RAP der Wait-
Operator eingefiihrt, welcher durch ein Laufzeitmodell zwischen zwei Markov-Schritten eine
reellwertige Zeit verstreichen lasst. Diese entspricht der minimalen erwarteten Dauer einer
der aktiven Aktionen. Die verschiedenen Terminierungsschemata von CAM konnen von RAP
simuliert werden. 7,,,, entspricht der Entfernung aller go-Prédikate bei der Ausfithrung eines
wait-Operators. T.ontinue Wird einfach durch das Weiterlaufen aller anderen go-Pradikate
reproduziert. T,; wird durch die Einfithrung eines blocked-Pradikats erreicht, welches die
Initiationsbedingungen undurchfithrbar macht, solange nach einem wait noch Aktionen
vorhanden sind.
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Koartikulierende

MDP

C a C MDPs
a

CoMDP ] ( ) : )

Abbildung 2.4.: Ubersicht iiber die Funktionsweise der verschiedenen MDP-Modelle. MDP,
CoMDP, CAM, RAP und Koartikulierende MDP.
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3. Frameworks zur komplexen
Aktionsplanung

Um vielschichtiges und komplexes Roboterverhalten zu erzeugen ist ein Paradigmenwechsel
noétig um Aktionen auf einer intuitiv verstandlichen Ebene zu formulieren. Jedoch erfordert
diese auch flexible Softwareumgebungen, welche die Implementierung von anspruchsvollen
Bewegungen auf einfache Weise ermdglicht. In Kapitel 2 wurden theoretische Modelle
erortert, welche verschiedene Probleme der Aktionsplanung geschickt formalisieren. So soll
nun eine Softwareumgebung zur Aktionsplanung gezeigt werden, welche diese Probleme
16st und praktisch umsetzt.

Zuerst wird in Kapitel 3.1 das Paradigma der kognitiven Robotik beschrieben. Es bedeutet die
Formulierung und Losung einer Manipulationsaufgabe auf der Ebene der Objektmanipulation.
Darauf wird in Kapitel 3.2 die Softwareumgebung CRAM erértert, welche eine Verhalten-
serzeugung nach diesem Prinzip erlaubt. Schliefilich wir in Kapitel 3.3 die Machtigkeit von
CRAM diskutiert und inwiefern es ein MDP implementiert.

3.1. Kognitive Robotik

Um in der Robotik immer schwieriger werdende Aufgaben l6sen zu kénnen, ist ein Para-
digmenwechsel vom Stellen von Gelenkwinkeln oder Effektorpositionen zu der direkten
Manipulation duflerer Freiheitsgrade notwendig. So kann die Aktionsplanung direkt mit
Objekten interagieren ohne sich mit den mechanischen, inneren Prozessen beschéftigen zu
miissen. Der Begriff der kognitiven Robotik fasst dieses Prinzip zusammen. Er unterscheidet
Regelung auf motorischer Ebene von der Steuerung mittels abstrakter Aktionen [TLJ13, S.
1f]. Um noch einen Schritt weiter zu gehen hat ein kognitives System entsprechend auch
kognitive Fahigkeiten und weif3, was es tut. Schlieflich geht die Entwicklung in der Robotik
in eine Richtung, welche genau diese Fahigkeit anstrebt [BSRT08, S. 1].

Es ergeben sich jedoch einige Schwierigkeiten fiir die Interaktion eines Agenten mit der
Umwelt. Der Zustandsraum &uflerer Freiheitsgrade ist komplex und nur schwer zu for-
malisieren. Auch konnen, im Gegensatz zur direkten Regelung von Stellwinkeln, externe
Freiheitsgrade nur indirekt gesteuert werden. Beispielsweise kann ein Objekt nur bewegt
werden werden, nachdem es gegriffen wurde. So ergibt sich die Notwendigkeit hierarchischer
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Abbildung 3.1.: Die Struktur von CRAM. Der Kernel besteht aus CPL und KnowRob

[BMTR12, S. 3].

Steuerungsmodelle, welche sequenziell Bewegungsroutinen abarbeiten konnen. Zudem ist
die Abbildung der fundamentalen physikalischen und geometrischen Randbedingungen in
Wahrscheinlichkeitsmodellen erforderlich, jedoch immer ein Kompromiss, da nur Teilaspekte
formuliert werden konnen. Schlief3lich soll ein Agent Aufgaben in Szenarien 16sen kénnen,
fir die er nicht explizit trainiert wurde. So sollte ein kognitives System immer von einer
gewissen Flexibilitat und Resilienz gekennzeichnet sein [VMS07, S. 151].

3.2. CRAM - A Cognitive Robot Abstract Machine

Die Erzeugung eines kognitiven Systems ist eine anspruchsvolle Programmieraufgabe und
erfordert spezialisierte Software-Tools. CRAM - A Cognitive Robot Abstract Machine ist ein
Framework fiir das Design, der Entwicklung und der Implementierung der Aktionsplanung
autonomer kognitiver Roboter [BMTR12, S. 1]. Es erweitert Steuerungssysteme wie ROS
[ros, S.] oder Player [G*, S.], die die rudimentiren Prozesse des Roboters regeln, welchen es
jedoch an méchtigen Softwarewerkzeugen zur Verhaltenserzeugung fehlt. CRAM beinhaltet
Datenstrukturen, einfache Kontrollstrukturen, Tools und Bibliotheken, welche speziell fiir die
kognitive Robotersteuerung entwickelt wurden. Es ermdglicht die Erzeugung von komplexen
Kontrollprogrammen, welche Entscheidungen auf Grund der gemachten Wahrnehmung und
der gewonnenen Erkenntnisse treffen. Im Kern besteht CRAM aus der CPL - CRAM Plan
Language und dem Wissensverarbeitungssystem KnowRob (S. Abbildung 3.1).
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3.2. CRAM - A Cognitive Robot Abstract Machine

Algorithmus 3.1 Beispiel-CRAM-plan zum Aufheben des Objektes objA

(def-goal (achieve (object-in-hand objA))
(with-designators

(pickup-place ...)

(grasp-type ...)

(pickup-reaching-traj ...)

(lift-trajectory ...)

(when (and (holds-bel (object-in-hand currObj) now) (obj-equal currObj objA))
(succeed (object-in-hand objA))

)

(at-location pickup-place
(achieve (arm-at pickup-reaching-traj))
(achieve (grasped grasp-type))
(achieve (arm-at lift-trajectory))
(succeed (object-in-hand objA))

)
)
)

3.2.1. CRAM Plans

Der Entwickler erstellt mit CRAM sog. Plane, die ein Ziel verfolgen. Teilziele oder andere
Befehle werden mit dem Weltzustand als Argument definiert. Der Algorithmus 3.1 zeigt
einen Beispielplan zum Aufheben des Objektes objA.

Zu beachten ist die Formulierung des zu erreichenden Zieles durch den gewiinschten Zustand
(object-in-hand objA) anstatt der Formulierung als Funktionsbeschreibung pick-up
objA. So kann diese Art von Zustandsbeschreibung auch fiir andere Routinen verwen-
det werden, wie der Wahrnehmung (perceive(object-in-hand objA)). Dadurch kann
der Roboter einen Zustand tiberpriifen, bevor er erreicht werden soll. Ein zweiter wichti-
ger Aspekt ist die Formulierung verschiedenster Kontrollsysteme wie der Pfadplanung als
Objekte erster Klasse, sodass Entscheidungen dariiber getroffen werden kénnen.

3.2.2. CPL - CRAM Plan Language

CPL ist eine Sprache zur Verhaltenserzeugung von autonomen Robotersystemen. Sie ermog-
licht nicht nur das Ausfithren von, sondern auch das Schlieffen iiber die Kontrollprogramme
und die automatische Manipulation dieser. Dies wird durch die symbolische Reprasentation
der Schliisselaspekte der Kontrollprogramms erméglicht. So kann die Steuerung automatisch
erkennen, warum es gescheitert ist oder wann es falsche Erkenntnisse iiber die Welt hat und
diese entsprechend anpassen. CPL beinhaltet einige Low-Level Kontrollstrukturen, welche
die gleichzeitige Ausfithrung verschiedener Aktivitidten ermoglichen.
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Tabelle 3.1.: Die CPL Kontrollstrukturen und ihre Verwendung [BMTR12, S. 4]

Kontrollstruktur Beispielanwendung ‘

in parallel do p;...p, in parallel do navigate([235, 468))
buildGridMap()

try in parallel p;...p, try in parallel detect DoorWithLaser()

detect DoorWithCamera()
with constraining plan p b | with constraining plan relocalizel f Nec()

deliver Mail()

Plan with name N, p; plan with name S; putOnTable(C)
with name S; putOn(A, B)
with name N,, p, with name S3 putOn(B, C')

order n;, < n; order S; < S3

53 < S

in parallel do fithrt eine Menge von Teilpldnen aus. Es schlie3t erfolgreich, wenn alle
Teilplane erfolgreich sind. Es schldgt fehl, wenn einer der Teilpldne scheitert.

try in parallel fiihrt eine Menge von Teilpldnen aus und schlieft erfolgreich ab, wenn einer
der Teilplane erfolgreich ist.

with contraining plan fiihrt eine Aktivitat aus, welche durch eine zweite beschrénkt ist.

plan fihrt Aktivitaten parallel aus, es sei denn diese beschrénken sich gegenseitig, dann
werden sie in einer gegebenen Reihenfolge abgearbeitet.

(S. Tabelle 3.1)

3.2.3. KnowRob

Dem gegeniiber steht die Wissensverarbeitung KnowRob [TB09, S. 4261f]. Sie wurde speziell
fiir die Sprache CPL entwickelt und reprasentiert Wissen erster Ordnung. KnowRob integriert
enzyklopadisches Wissen, ein Umgebungsmodell, aktionsbasiertes Schlielen und mensch-
liche Beobachtungen und erlaubt den Zugang zu all dieser Information auf einheitliche,
symbolische Weise. Sie stellt Werkzeuge zu aktionsbezogener Wissensreprasentation zur
Verfiigung, welche automatisch durch Beobachtung und Erfahrung akquiriert wird. KnowRob
ist dariiber hinaus in der Lage mit der stochastischen und unsicheren Eigenschaft der Realitat
umzugehen und auf Abfragen effizient zu reagieren (S. Abbildung 3.2).. Sie stellt somit die
Grundlage zum logischen Schlieflen erster Ordnung dar und kann so nach Wahrheitswerden
befragt werden.
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3.2. CRAM - A Cognitive Robot Abstract Machine

Observation
System

H1T

PROLOG

-

Abbildung 3.2.: Struktur von KnowRob. [TB09, S. 4263]

3.2.4. Cognito

Cognito erlaubt die Untersuchung der Ausfithrung des CRAM-Kernel. Der Kernel realisiert
Plane und untersucht die Wahrnehmung der Umwelt, jedoch untersucht Cognito die Austiih-
rung der Plane. So kann untersucht werden, ob diese erfolgreich ausgefiithrt wurden oder ob
Probleme auftraten. CPL erzeugt fiir alle Plane Objekte, welche diese repréasentieren. Cognito
kann tiber diese Objekte schlie3en.

3.2.5. Erweiterungsmodule

Zusatzlich verfiiggt CRAM tiber einige Erweiterungsmodule, welche die Funktionalitat der
CPL und von KnowRob erweitern. Diese konnten verbesserte Wahrnehmung und Objekter-
kennung sein. Auch werden so verbesserte Lernalgorithmen hinzugefiigt wie die Integration
der RoLL - Robot Learning Language.
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3. Frameworks zur komplexen Aktionsplanung

Algorithmus 3.2 Beispiel eines RoLL-Kontrollprogramms

do-continuously
do-in-parallel acquire-experiences re
excecute top-level plan
learn 1p

3.2.6. RoLL - Robot Learning Language

Die RoLL - Robot Learning Language basiert auf dem Konzept von hierarchischen hybriden
Automaten um eine explizite Spezifizierung von Lernproblemen zu erméglichen [Kir09, S. 2ff].
RoLL versucht sich kontinuierlich verbessernde Roboter zu ermdglichen indem sie das Lernen
als zentrales Konzept in die Programmiersprache integriert. Ein typisches Lernproblem
wird spezifiziert und gelost in zwei Schritten. Zuerst wird die notige Erfahrung akquiriert,
dann wird diese zum Lernen und zur Verbesserung des Kontrollprogramms verwendet. Ein
mogliches Programm koénnte aussehen wie in Algorithmus 3.2.

Dieses Programm fiihrt einen top-level plan parallel zur Akquirierung von Erfahrung aus.
Nach dem Ende der Ausfithrung wird die gewonnene Erfahrung fiir einen Lernprozess
verwendet und vor der nachsten Ausfithrung in das Programm integriert.

Eine Erfahrung ist mehr als die gewonnenen Rohdaten einer Episode. Es werden nur
notwendige Parameter zum Lernen aufgezeichnet: Zustandsiibergénge, Steuerungskomman-
dos, interne Annahmen, Entscheidungen sowie Fehler und entsprechende Reaktion. Die
gewonnene Erfahrung wird dann abstrahiert und in einer Datenbank fiir das Offline-Lernen
gespeichert oder direkt verwendet. Aus der rohen Erfahrung wird durch Weiterverarbeitung
der Daten eine Abstraktion der Erfahrung erreicht, welche fiir den nachsten Schritt, das
Lernen verwendet werden kann.

Das Lernen erfolgt durch die Transformation der Daten in ein Format, welches auf den ge-
wiinschten Lernalgorithmus passt. Danach wird der Algorithmus ausgefiihrt und schliefilich
werden die Ergebnisse in das Kontrollprogramm integriert. Dann startet der Prozess von
neuem. (S. Abbildung 3.3).

3.3. Diskussion von CRAM

3.3.1. CRAM als MDP

Ein CRAM-Plan hat ein durch einen Zustand definiertes Ziel. Es definiert eine Menge von Ak-
tionen iiber einem MDP, welche in einem Zielzustand konvergieren. Eine komplexe Aufgabe
hat verschiedene Zwischenschritte, welche hierarchisch gelost werden. Die Kontrollstruktu-
ren der CPL lassen Parallelisierung zu. Beispielsweise ist in parallel do vergleichbar mit
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Y
1. Erfahrung sammeln

Erfahrung aufzeichnen

raw experience: re
Plan observe execution of
ausfuhren plan p
recording variables
(x,y) continuously
\ 4 (a,b,c) in case of

Rohe Erfahrung

Monitoring |«-

success

abstract experience: ae
of class aec

Erfahrung abstrahieren abstract from raw

experience re

Y

2. Lernen
Erfahrung vorbereiten learning problem: lp
learn target function
specified as lps
v using experience of
class lec
Lernen abstracted from
experience ae
v applying learning system
1s
Integrieren

Abbildung 3.3.: Lernprozess von RoLL. Auf der rechten Seite der entsprechende Quelltext,
welcher den Lernprozess definiert. [Kir09, S. 5]
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3. Frameworks zur komplexen Aktionsplanung

dem Terminierungsschema 7;,; von CAM zur Mult-Aktionsausfithrung. try in parallel
implementiert 75,,,. Gleichzeitig konnen mit plan wie in CoMDP Aktionen parallel ausge-
fithrt werden, welche gegenseitig nicht in Konflikt geraten, sonst werden diese entsprechend
sequenziell ausgefiihrt.

3.3.2. Machtigkeit von CRAM

CRAM regelt nicht die unterliegenden Prozesse eines Roboters, sondern stellt nur die Ver-
bindung zwischen dem Agenten, der Planerzeugung und weiterer Software durch die Er-
weiterungsmodule dar. Durch die Erweiterung durch RoLL beispielsweise lasst sich die
Performance des Planungssystems steigern. Es ist auch denkbar, dass durch Cognito gemach-
te Beobachtungen tiber Fehlverhalten des Plans gelernt werden kann und dieser angepasst
wird um Fehler zu vermeiden. So werden neben der Wissensverarbeitung und der Planer-
stellung mittels Pradikaten auch Lernmethoden integriert, dass durch Cognito tiber eigenes
(Fehl-)Verhalten gelernt werden kann. Letztlich versucht CRAM durch flexible und einfache
Formulierung komplexer Steuerungseinheiten und der Integration verschiedener Module
ein Werkzeug zu sein um ein kognitives System zu entwickeln.
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4. Implementierung autonomer
Aktionen als Activities

Im Rahmen dieser Arbeit wird an der Implementierung eines Interfaces fiir Aktionen ge-
arbeitet welches die Verbindung zwischen dem relationalen Planen und Lernen und den
eigentlichen Roboteraktionen bildet der RM - Relational Machine [Tou15, S. 1f]. Die Implemen-
tierung der Aktionen wird folgend Activities genannt, um diese von der vorangegangenen
abstrakten Formulierung von Aktionen zu unterscheiden. Der Kern dieser Arbeit ist die
Untersuchung, welche Eigenschaften notwendig sind, um das Ausfithren dieser Activities
robust und sicher zu gestalten und wie die Formulierung allgemein gehalten werden kann um
héchste Flexibilitat bei der Implementierung unterschiedlichster Activities zu erreichen.

Das folgende Kapitel beschreibt die Implementierung eines Frameworks, welches ein In-
terface implementiert, das verschiedenste Aktionen eines Agenten Planungsalgorithmen
zur Verfiigung stellt. Zuerst wird in Kapitel 4.1 die Relational Machine, das der Arbeit zu-
grundeliegende Framework vorgestellt, dann werden in Kapitel 4.2 verschiedene mogliche
Aktionstypen, welche dem Aktionsplaner zur Verfiigung stehen, beschrieben. In Kapitel 4.3
wird die Implementierung von autonomen Aktionen als Activities dokumentiert. Darauf
wird in Kapitel 4.4 die Ausnahmebehandlung als Element der Aktionsplanung als Teil der
Implementierung des Frameworks erortert. Schlief8lich wird in Kapitel 4.5 umfangreich die
Implementierung einer Beispiel-Activity am Beispiel des Pfadplaners KOMO gezeigt.

4.1. RM - Relational Machine

Das der Arbeit zugrundeliegende Interface zwischen Planungsmethoden und den Aktions-
kontrolle eines Roboters, die RM - Relational Machine implementiert ein Interface, welches
die Schnittstelle zwischen dem Aktionsplaner und der eigentlichen Robotersteuerung dar-
stellt [Toul5, S. 1f]. In einer dieser Arbeit vorausgegangenen Studienarbeit wurde dieses
Framework um ein Interface erweitert, was die interaktive Verhaltenserzeugung durch einen
Benutzer ermoglicht [Bo15, Vgl.]. Die RM reprasentiert zum einen die sequenzielle und
parallele Ausfithrung von Aktionen, hier Activities genannt in einer Weise, dass diese den
Formalismen von Lern- und Planungsmethoden entsprechen. Zum anderen stellt sie ein
flexibles Framework dar, welches es ermoglicht auf einfache Weise manuell Roboterverhalten
zu erzeugen.
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4. Implementierung autonomer Aktionen als Activities

4.1.1. Struktur der RM

Formal ergibt sich die RM aus folgenden Mengen.

« Der Relationale Zustand ist eine Menge aktiver Fakten, den Facts. Die Konjunktion
dieser bilden den aktuellen Zustand. Facts sind Pradikate erster Ordnung und stellen
Informationen tiber die Um- und Roboterwelt dar. Diese konnen Annahmen, Sensor-
oder Aktionsinformationen, Terminierungskriterien o.a. sein.

+ Die Menge der Symbole beschreibt die Objekte der Roboterwelt. Es ist die Menge der
Konstanten, die alle Elemente im Einflussbereich des Agenten beschreibt. Neben Objek-
ten konnen dies auch Aktionssymbole, interne Prozesse, Terminierungsbedingungen
o.d.sein.

« Die Menge der Regeln beschreibt relationale Regeln erster Ordnung. Sie beschreibt
Ubergangswahrscheinlichkeiten, welche durch Aktionen oder extern ausgeldst werden
konnen. Vergleichbar mit dem Ubergangsfunktion von MDPs.

Gesetzte Facts konnen Activities auslosen. Diese haben vollen Zugriff auf den Relationalen
Zustand, welcher dadurch wie bei einem Markov Schritt gedndert werden kann. Eine andere
Moglichkeit der Veranderung ist durch die Vorwartsverkettung der Regeln, bis ein stabiler
Zustand erreicht ist, beispielsweise durch Erfiillung einer Terminierungsbedingung und
entsprechender Beendigung einer Activity. Auf der anderen Seite hat auch der Aktionsplaner
Zugriff auf den Relationalen Zustand und kann diesen manipulieren.

4.2. Activities autonomer Systeme

Aktionen autonomer Agenten konnen in mehrere Kategorien unterteilt werden. Neben
der Manipulation durch Aktoren und der Wahrnehmung der Welt durch Sensoren kénnen
auch innere Prozesse als Activity definiert werden. Diese sind beispielsweise Planungs- oder
Lernalgorithmen oder interne Prozesse der Steuerungssoftware wie das An- und Abschalten
einzelner Sensoren oder Steuerungsroutinen. Diese Aktivitaten konnen entsprechend in
einem Markov-Prozess verwendet werden (S. Abbildung 4.1).

Sensor Activities Die Sensorik des Agenten erfasst die Umwelt und versucht diese zu
sinnvollen Einheiten zu verkniipfen. Das Ergebnis einer Sensoraktivitat konnte das
Erkennen und Verfolgen von Objekten sein, welche der Menge der Symbole hinzugefiigt
werden.

Effektor Activities Der Wahrnehmung steht die Manipulation gegeniiber und ist der Out-
put des Agenten. Durch Bewegung der Effektoren wir so die Umwelt verdndert und
Objekte werden bewegt.
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4.3. Implemetierung autonomer Aktionen als Activities

@ Lernen Q

Y
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A

y
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Abbildung 4.1.: Modularisierte Aktivitaten als Elemente von  Markov-
Entscheidungsprozessen

Planungs-Activities Die Planung von Aktionen ist im Gegensatz zur direkten Manipulation
offline, also nicht unmittelbar. Sie erstellt anhand von Randbedingungen Trajektorien
zur Objektmanipulation und bereitet so Bewegung vor.

Lern Activities Lernalgorithmen koénnen auch als Aktivitaiten modularisiert werden. So
konnen verschiedene Lernalgorithmen an- oder ausgestellt werden entsprechend des
Bedarfs.

Interne Steuerung Auch interne Steuerungsprozesse konnen als Aktionen definiert werden.
Dadurch erhalt der Aktionsplaner Zugriff auf Kontrollstrukturen und Schnittstellen
der Software.

4.3. Implemetierung autonomer Aktionen als Activities

Im Folgenden wird die Implementierung autonomer Aktionen als Activities dokumentiert.
Zuerst wird der Syntax zur Aktionsausfithrung beschrieben, dann das allgemeine Interface,
welches die Activities beschreibt, gezeigt. Schliefllich wird ein Beispielquelltext einer neuen
Activity beschrieben und der Vergleich mit RAP diskutiert.

4.3.1. Syntax der Aktionsausfluihrung
Die Activities sind Teilmenge der Pradikate des Relationalen Zustandes, der Facts. Ist ein

entsprechender Fact gesetzt, wird eine Activity ausgelost, wird er entfernt, die Activity
beendet. Das entspricht dem Formalismus der RAP. Ein Fact besteht aus einem symbolischen
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4. Implementierung autonomer Aktionen als Activities

(Activity) (Activity),
(conv Activity)

Gestartet,
RUNNING

Konvergenz,
CONV

Fehler,
ERROR

(Activity),
(error Activity)

Integer,
243

Interrupt,
ABRT

(Activity),
(243 Activity)

(Activity),
(abrt Activity)

Abbildung 4.2.: Mogliche Zustandsveranderungen des Relationalen Zustandes (hier rechte-
ckig) entsprechend des Zustandes einer Activity (hier rund).

Teil, welcher die Activity definiert und einem parametrischen Teil um ihr Parameter zu
Uibermitteln. Pradikate sind hier in flacher Schreibweise. Das Pradikat pos(endeff, objA)
wire hier (pos endeff objA). Beispielsweise st der Fact

(Control pos endeff objA){ tol=.01 PD=[1,1,1,10] }

eine Activity vom Typ Control, eine Roboterbewegung aus. Diese erhilt das Pradikat
pos(endeff,objA) bzw. (pos endeff objA) welches entsprechend einen Positionscontrol-
ler auslost, welcher den Endeffektor endeff zu der Position des Objektes objA bewegt. Im
parametrischen Teil wird ein PD-Regler und eine Toleranz zur erfolgreichen Ausfithrung
definiert. Da Activities vollen Zugriff auf den relationalen Zustand haben, kann diese bei
erfolgreicher Ausfithrung der Bewegung folgenden Fact erzeugen:

(conv Control pos endeff objA)

Dieses Pradikat conv(Control(pos(endeff,objA))) reprasentiert die erfolgreiche Ausfith-
rung der Activity.

Anstatt dem Symbol conv kénnen auch andere Symbole wie ABORT oder error den Zustand
der Activity beschreiben. Zusétzlich kann jeder Integer als Zustand definiert werden. (S.
Abbildung 4.2). Soll eine Activity bzw. einFact wieder entfernt werden, geht das mit hinten
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4.3. Implemetierung autonomer Aktionen als Activities

angestellten !. Im oberen Beispiel miisste nach erfolgreicher Ausfithrung die Activity beendet
und der Fact iiber die erfolgreiche Ausfithrung entfernt werden. Dies wiirde mit

(Control Control pos endeff objA)!
(conv Control pos endeff objA)!

geschehen. Jedoch ist das Interface der Activities so konzipiert, dass die Zustandsverande-
rungen automatisch passieren, d.h. der Zustand der Activities wird automatisch mit dem
relationalen Zustand synchonisiert.

4.3.2. Allgemeines Interface der Activities

Die Implementierung des Frameworks der RM beinhaltet eine Klasse (diese ist als struct
implementiert, welche jedoch folgend Klasse genannt wird) in C++ zur Implementierung
neuer Activities. Im Kern bestehen Activities aus der Initialisierung, Vergleichbar mit dem
Initialisierungsoperator der RAP 0;,;; einer Step-Funktion, welche in jedem Schritt den
Zustand der Activity iberprift und anpasst und der Terminierung, vergleichbar mit dem
Terminierungsoperator der RAP 04¢;.,,. Der Algorirthmus 4.1 zeigt den Header der Klasse der
Activities in C++

Im folgenden werden einige Elemente des Headers des Interfaces beschrieben.

Node *fact ist der korrespondierende Fact zu der Activity.
double activityTime ist die verstrichene reelle Zeit seit dem Beginn der Activity.

int statenum beschreibt den Zustand der Activity. Dieser kann beispielsweise CONV,
RUNNING, oder ABORT sein. Zudem kann jeder Integer-Wert angenommen und als
Zustand definiert werden. Der Name statenum leitet sich von der Interrupt-Variable
signum ab.

void configure() konfiguriert die Activity. Hier werden die Parameter gesetzt und Ziele
definiert. Diese Funktion wird zu Beginn aufgerufen und stellt die Intitialisierung der
Activities dar.

void interruptHandler(int signum) wird aufgerufen, wenn der Aktionsplaner die Ac-
tivity auflerplanméaflig unterbrechen will, um auf unerwartete Ereignisse zu reagieren.

void activitySpinnerStep(double dt) die Step-Funktion wird in jedem Zeitschritt auf-
gerufen und stellt so den richtigen Rahmen fiir beispielsweise einen PD-Regler zur
Verfiigung.

Activity() und "Activity() der Kon- und Destruktor wird nach Erzeugung bzw. direkt
vor Beendigung der Activity ausgefiihrt.
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4. Implementierung autonomer Aktionen als Activities

Algorithmus 4.1 Header der Klasse der Activities

const int CONFIGURE = -1;
const int RUNNING = 0;
const int CONV = 1;

const int ABORT
const int ERROR =
const int FILEERR = 4;
const int MOVEERR = 5;

2;
3

struct Activity {
Node xfact; ///< pointer to the fact in the state of a KB
double activityTime; ///< for how long is this activity running yet

StringA symbols; ///< for convenience: copies of the fact->parent keys
Graph params; ///< for convenience: a copy of the fact parameters PLUS refX keys for
all symbols

int statenum ///< state of the ongoing Activity

Activity():fact(NULL), activityTime(0.), statenum(CONFIGURE){}
virtual ~Activity(){}

void associateToExistingFact(Node xfact);

void createFactRepresentative(Graph& state);

/// configure yourself from the ’'symbols’ and ’‘params’
virtual void configure(){}

/// interrupt and error-handling
virtual void interruptHandler(int signum){}

/// the activity spinner runs with 100Hz and calls this for all activities -- use only
for

/// non-computational heavy quick updates. Computationally heavy things should be
threaded!

virtual void activitySpinnerStep(double dt){ activityTime += dt; }

void write(ostream& os) const { os <<"Activity (" <<symbols <<"){" <<params <<"} (t="
<<activityTime <<") "; if(fact) os <<xfact; else os <<"()"; }

}i
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4.3. Implemetierung autonomer Aktionen als Activities

Algorithmus 4.2 Step-Funktion einer Beispiel-Activity

void BeispielActivity::activitySpinnerStep(double dt){
activityTime += dt;

doSomethingQuick();

if(activityState == ABORT)
setFact(abort + fact);

else if(activityState == ERROR)
setFact(error + fact);

else if(activityState == 243)
setFact(s243 + fact);

if(converged())
setFact(conv + fact);
else
setFact(conv + fact + "!");

4.3.3. Funktionalitat der Activities anhand eines Beispieles

Eine Activity besteht aus der Konfiguration, der Step-Funktion und der Terminierung. Algo-
rithmus 4.2 ist der Quelltext der Step-Funktion einer Beispiel-Activitiy in Pseudocode. Die
Step-Funktion fithrt etwas Kurzes aus, priift den Zustand der Activity und setzt oder 16scht
Facts, um den Realtionalen Zustand entsprechend zu dndern.

In diesem Fall fiithrt sie die Funktion doSomethingQuick() aus und setzt Pradikate fiir die
Zustande ABORT, ERROR und 243. Zudem iiberpriift sie in jedem Durchlauf, ob die Aktion
konvergiert ist mit converged() und setzt einsprechend den Fact. Folgend werden die
einzelnen Elemente der Step-Funktion genau beschrieben.

activityTime += dt addiert der Activity die verstrichene Zeit.

doSomethingQuick() ist eine Funktion in der schnelle Berechnungen gemacht werden, wie
der schrittweisen Anpassung eines Reglers 0.4..

converged() wird wahr, wenn die textitActivity konvergiert, d.h. das Ziel erreicht hat.

activityState == x ist die Abfrage des Zustandes der Activity nach einem bestimmten
Wert x.

setFact() ist die Funktion, welche auf den Relationalen Zustand zugreift und die Pradikate
entsprechend der Activity anpasst. Beachte: Fact mit hinten angestelltem ! 16scht ein
Pradkat
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4. Implementierung autonomer Aktionen als Activities

4.3.4. Implementierung von Relational Activity Processes

Das oben beschriebene Framework ist in der Lage RAPs zu implementieren. Um das zu zeigen,
missen die Operatoren 0;,s, Oer, Und wait implementierbar sein.

0init besteht aus den Vorbedingungen pre;,,;;, dem go-Pradikat und den Effekten auf den Re-
lationalen Zustand post,,,;;. Durch das Setzen eines Facts wird eine Activity gestartet. pre
kann realisiert werden, wenn in der Funktion config() im Fall nicht erfiillter Vorbedingun-
gen der Fact direkt wieder entfernt wird. Das go-Pradikat entspricht der Reprasentation der
Activity im Relationalen Zustand und post,,;, dem Zugriff auf den Relationalen Zustand in
der Step-Funktion.

init

Oterm implementiert sich auf dhnliche Weise, jedoch mit dem Unterschied, dass post,.,,,, im
Destruktor umgesetzt und das Entfernen des go-Pradikats durch Loschen der Activity aus
dem Relationalen Zustand realisiert wird.

Der wait-Operator, kann durch die Variable activityTime realisiert werden, indem ei-
ner Activity im parametrischen Teil eine erwartete Laufzeit entsprechend eines Timeouts
mitgegeben wird, oder die Activity sich nach erfolgreicher Ausfithrung selber beendet.

Die oben gezeigte Implementierung soll nur ein Beispiel darstellen um die Moglichkeiten zu
zeigen. Eigentlich reagiert der Aktionsplaner auf erfiillte Vorbedingungen und startet oder
beendet Aktionen, welche Teilmenge der Pradikate post;,;; bzw. post,.,,, sind. Der Rest
geschieht auf Planungsebene.

init

4.4. Ausnahmebehandlung als Elemente der
Aktionsplanung

Leider ist Software meistens fehlerbehaftet, was im schlimmsten Fall zum Programmabbruch
fithren kann. Deshalb wird das oben beschriebene Framework um eine Fehlerbehandlung
erganzt welche die Moglichkeiten des Aktionsplaners erweitert. Dadurch wird unerwartetes
Fehlverhalten planbar und der Aktionsplaner kann das Verhalten dahingehend optimieren,
dass Fehlverhalten minimiert wird.

4.4.1. Struktur der Ausnahmebehandiung

Die Ausnahmebehandlung fangt nicht nur Fehler ab und tiberfithrt den Agenten in einen
Fehlerzustand, sondern sie ermoglicht auch die Unterbrechung des normalen Programmab-
laufs durch den Aktionsplaner oder durch die interaktive Steuerung mittels Interruptsignale.
Dadurch kommt entsteht ein neuer Signalfluss, welcher direkt mit den Activities kommuni-
ziert ohne den Umweg tiber den Relationalen Zustand. Im Prinzip werden Fehler der Activities
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Error
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planer
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Interface

Abbildung 4.3.: Systemarchitektur der Activities

abgefangen und ein Fact bzw. ein Pradikat wird erstellt, welches den Fehler im Relationalen
Zustand reprasentiert.

4.4.2. Systemarchitektur der Activities

Grundsitzlich startet und beendet der Aktionsplaner Activities durch das Setzen von ent-
sprechenden Pradikaten bzw. Facts, welche die Activities triggern. Diese haben Zugriff auf
den Relationalen Zustand und verandern diesen entsprechend ihres Zustandes. Neben dieser
Grundfunktionen wurden im Rahmen dieser Arbeit die Activities um verschiedene Ausnah-
mebehandlungen erweitert.

Die Aktionsplanung kann durch ein Interruptsignal Activities ohne Riicksicht auf den Relatio-
nalen Zustand unterbrechen. Es wird dann fiir jede Activity eine Interruptfunktion aufgerufen,
welche jeweils die entsprechenden Anweisungen ausfithrt und den Relationalen Zustand
dariiber informiert. Wird beispielsweise durch das Driicken von ctrl + c ein Interrupt
ausgelost, wird fiir jede aktive Activity eine Interruptfunktion aufgerufen. Diese konnte ein
Interruptpradikat setzen, welches im nachsten Schritt die Activity beendet, oder diese sogar
unmittelbar abbricht.

Zudem gibt es ein Exception-Handling, welches innerhalb der modularisierten Activities
agiert. Wird ein Fehler erzeugt, fihrt das nicht mehr zum Programmabbruch, sondern fiihrt
lediglich eine Fehlerbehandlung aus, beendet evtl. die Activity und informiert wieder den
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4. Implementierung autonomer Aktionen als Activities

Relationalen Zustand tiber den Umgang mit dieser Ausnahme. D.h. die Activity teilt dem
Aktionsplaner mit, dass beispielsweise eine Aktion auflerplanméflig abgebrochen wurde,
oder der Interrupt erfolgreich war (S. Abbildung 4.3). Das Exception-Handling ist mittels
der std: :exception Klasse implementiert. Es lassen sich so eigene Fehler definieren und in
einem try-catch-Block abfangen.

4.5. KOMO eine Beispielactivity mit
Ausnahmebehandlung

Folgend wird eine Beispiel-Activity beschrieben, welche den Pfadplaner KOMO implementiert
und auch mogliches Fehlverhalten abfangt. KOMO ist ein Framework zur Pfadoptimierung
eines der Optimierungsprobleme [Toul4, S. 1f]. Es errechnet offline eine Trajektorie, die eine
gewiinschte Bewegung reprasentiert. Gegeben ist ein Weltmodell und Randbedingungen,
welche bei der Pfadoptimierung eingehalten werden miissen. So kann beispielsweise die
erforderliche Energie minimiert oder aber die Geschwindigkeit der Bewegung maximiert
werden.

Der Algorithmus 4.3 zeigt die Implementierung des KOMO-Frameworks als Activity, der
komo. cpp. In diesem Fall leitet sich die Activity nicht von der Klasse ActivityS, welche die
Klasse Activity und einige Helfer erweitert sondern auch von der Klasse Threat ab, ist
somit ein Thread und ermdoglicht dementsprechend eine zeitintensive Offlineberechnung,
ohne den Hauptprozess zu unterbrechen.

Im Kern besteht KomoActivity aus dem Konstruktor, welcher das KOMO-Objekt initialisiert,
der Funktion open (), welche nebenlaufig KOMO ausfiihrt, dem Destruktor und dem Inter-
rupthandler. Die einzelnen Elemente des Quelltextes werden folgend genau beschrieben.

Im Konstruktor wird das Weltmodell und die Randbedingungen aus der specs.g eingelesen
und ein Komo-Objekt erstellt. Gibt es ein Problem mit der Datei wird der Zustand
FILEERR sonst RUNNING.

In der Funktion void open(), welches die parallele Version von void configure() (s.o.)
darstellt, wird KOMO mit komo->run () ausgefithrt und im Falle der erfolgreichen Aus-
fihrung wird der Zustand der Activity nach CONV gedndert. Zudem wird die erzeugte
Trajektorie in der Datei trajectory.dat gespeichert. Wird ein Fehler erzeugt, wird
der catch-block gestartet und der Zustand in ERROR geédndert.

In der Funktion void interruptHandler(int signum) werden Interrupts abgefangen
und der Zustand statenum entsprechend in den Interruptzustand ABORT geandert.

Die einzelnen Zustandsiibergange sind in Abbildung 5.1 dargestellt.
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4.5. KOMO eine Beispielactivity mit Ausnahmebehandlung

Algorithmus 4.3 Implementierung des Pfadplaners KOMO als Activity

#include "komo.h"

#include <Ors/ors.h>
#include <Motion/komo.h>
#include <Motion/motion.h>
#include <Core/graph.h>

KomoActivity::KomoActivity() : Thread("Komo", .1){

try{
komo = new KOMO(Graph("specs.g"));
changeState (RUNNING) ;

threadLoop();
}catch(FileException &ex){
changeState(FILEERR);
}
}

void KomoActivity::open(){
try{
komo->run();
FILE("trajectory.dat") <<komo->x;
changeState(CONV);
}
catch(SIGSEGVException &ex){
changeState(ERROR) ;
}
}

void KomoActivity::interruptHandler(int signum){
changeState (ABORT) ;
}

KomoActivity: :~KomoActivity(){
threadClose();
}

Die erstellte KOMO-Activity ist somit eine offline Activity, welche ein in der specs. g definier-
tes Optiermungsproblem 16st und als Trajektorie speichert. Die in der trajectory.dat er-
stellte Trajektorie kann daraufin einer anderen Activity, beipieslweise mit runTrajectory () (Vgl.
Anhang A) ausgefiihrt werden. Hierzu muss beachtet werden, dass der Ausgangszustand
derselbe ist, da eine Trajektorie immer relativ zum Zustand gespeichert wird.
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5. Experimentelle Evaluierung der
Ausnahmebehandlung

Die im Rahmen dieser Arbeit erstellte Ausnahmebehandlung soll im folgenden Kapitel
evaluiert werden. Es wird ein Szenario entwickelt, welches die hinzugekommenen Features
zeigen, die Qualitat bewerten und Grenzen aufzeigen soll. Dieses wird darauf umgesetzt und
mit der Umsetzung ohne Fehlerbehandlung verglichen.

Zuerst wird in Kapitel 5.1 ein Anwendungsfall zur Evaluierung entwickelt und dann wird in
Kapitel 5.2 das Experiment durchgefiihrt. Schliellich werden in Kapitel 5.3 die gewonnenen
Ergebnisse ausgewertet und beurteilt.

5.1. Entwicklung eines Anwendungsfalls

Um die Funktionalitat zu testen, sollen als exemplarische Activities der Pfadplaner KOMO und
die Activity runTrajectory zur Ausfithrung von Trajektorien dienen. Daran soll gezeigt
werden wie mit Fehlverhalten umgegangen werden kann. Diese werden im Folgenden
beschrieben.

KOMO Wird der Fact KOMO gesetzt, wird die in Kapitel 4.5 beschriebene Activity zur Pfadopti-
mierung gestartet. Diese liest aus einer Datei das Weltmodell und die Parameter und
erzeugt eine Trajektorie, welche in der Datei trajectory.dat gespeichert wird. Sie
kann folgende Zustinde annehmen:

CONFIGURE ist der Startzustand. Er beschreibt die Konfigurationsphase mit der Datei-
einlesung.

RUNNING représentiert die asynchrone Pfadplanung.
CONV ist der Endzustand der erfolgreichen Planung des Pfades.

FILEERR ist ein Fehlerzustand, welcher auftritt, wenn die Datei specs.g einen Fehler
enthalt und KOMO nicht initialisierbar ist.

ERROR ist ein Fehlerzustand, welcher auftritt, wenn KOMO einen nicht weiter spezifi-
zierten Fehler macht.
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5. Experimentelle Evaluierung der Ausnahmebehandlung

runTrajectory

Abbildung 5.1.: Zustandsiibergangsgraph der Activities KOMO und runTrajectory. Zielzu-
stande sind doppelt umkreist, der Startzustand ist mit einem Pfeil markiert.
Der Zustand ABORT wird mittels eines Interruptsignals erreicht

runTrajectory Wird der Fact runTrajectory gesetzt, wird eine Activity zur Ausfithrung
der in der Datei trajectory.dat gespeicherten Trajektorie gestartet. Sie kann folgen-

de Zustiande haben:

CONFIGURE ist der Startzustand. Er beschreibt die Konfigurationsphase mit der Datei-
einlesung.

RUNNING ist der Zustand wahrend der Trajektorienausfithrung.

FILEERR ist ein Fehlerzustand. Er tritt auf, wenn die Datei trajectory.dat nicht
vorhanden oder leer ist.

MOVEERR ist ein Fehlerzustand. Er entsteht, wenn wéhrend der Trajektorienausfithrung
ein Fehler auftritt. Beispielsweise entsteht der Fehler, wenn der Zustand des
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5.2. Realisierung des Experiments

Algorithmus 5.1 Python Quelltext einer Strategie zur Trajektorienausfithrung

def runKOMOTrajectory():
while True:
fact (" (KOMO)")
waitForActivity (" (KOMO)")
if isTrue("fileerr KOMO"):
fact (" (KOMO)!")
return("Die Datei specs.g ist fehlerhaft!")
elif isTrue("running KOMO"):
waitForActivity("(KOMO)")
if isTrue("error KOMO"):
fact (" (KOMO)!")
return("KOMO ist fehlerhaft!")
elif isTrue("(conv KOMO"):
fact("(KOMO)!'")
fact("(runTrajectory)")
waitForActivity("runTrajectory")
if isTrue("(fileerr runTrajectory)"):
print("KOMO wird erneut ausgefuehrt")
elif isTrue("(running runTrajectory)"):
waitForActivity("runTrajectory")
if isTrue("moveerr runTrajectory"):
print("KOMO wird erneut ausgefuehrt")
elif isTrue("conv runTrajectory"):
fact("(runTrajectory)!"")
return("Trajektorie wurde erfolgreich ausgefuehrt!")

Agenten sich verdndert hat und die geplante Trajektorie nicht ausfithrbar ist oder
ein Objekt im Weg ist.

CONV ist der Endzustand der erfolgreichen Ausfithrung des Pfades.

Abbildung 5.1 ist der Zustandsiibergangsgraph der beiden beschriebenen Activities.

5.2. Realisierung des Experiments

Zur Umsetzung des Experiments wird eine Strategie entwickelt, welche die Berechnung
und Ausfithrung der Trajektorie zum Ziel hat. Algorithmus 5.1 ist eine mogliche Strategie,
welche das in der vorangegangenen Arbeit entwickelte Python-Interface nutzt [B615, Vgl.].
Abbildung 5.2 zeigt den Zustandsiibergangsgraph des Algorithmus.

Die Funktion runKOMOTrajectory () fithrt zuerst KOMO und dann runTrajectory aus. Im
Erfolgsfall gibt sie "Trajektorie wurde erfolgreich ausgefuehrt!" zuriick, sonst "Die Datei specs.g
ist fehlerhaft!" oder "KOMO ist fehlerhaft!". Gibt es bei der Ausfithrung der Trajektorie ein
Problem, wird KOMO erneut gestartet. Der Vorgang ist jederzeit mit ctrl + c unterbrechbar.
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5. Experimentelle Evaluierung der Ausnahmebehandlung

Abbildung 5.2.: Zustandsiibergangsgraph des Algorithmus 5.1. Die Fehlerzustande sind rot,
der Zielzustand ist griin. Blaue Pfeile sind externe Zustandsiibergénge des
Quelltexts.

Die Funktion waitForActivity(X) wartet auf einen Zustandsiibergang der gegebenen
Activity X. Die Funktion isTrue (X) iiberpriift, ob ein gegebener Fact im Relationalen Zustand
vorhanden ist.

An der Abbildung 5.2 ist erkennbar, dass die Zustandsiibergange auch innerhalb der Activites
realisierbar waren. Dann wiirde KOMO im Falle der Konvergenz den Fact runTrajectory
setzen und runTrajectory wiirde in der Fehlerbehandlung bei allen Fehlern KOMO erneut
starten. So wiirde sich Algorithms 5.1 auf Algorithmus 5.2 verkiirzen.
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5.3. Bewertung der Ergebnisse

Algorithmus 5.2 Python Quelltext einer Strategie zur Trajektorienausfithrung mit verbes-
serten Activities
def runKOMOTrajectoryNew():
fact ("KOMO")
while True:
if isTrue("fileerr KOMO"):
return("Die Datei specs.g ist fehlerhaft!")
elif isTrue("error KOMO"):
print("KOMO ist fehlerhaft!")
elif isTrue("conv Trajectory")
print("Trajektorie wurde erfolgreich ausgefuehrt!")

Algorithmus 5.3 Python Quelltext einer Strategie zur Trajektorienausfithrung ohne Fehler-
behandlung

def runKOMOTrajectoryOld():
fact("(KOMO)")
while not isTrue(conv KOMO):
pass
fact (" (KOMO)!")
fact("runTrajectory")
while not isTrue("(conv Trajectory)"):
pass
fact("(runTrajectory)!")
return("Trajektorie wurde erfolgreich ausgefuehrt!")

5.3. Bewertung der Ergebnisse

Vor der Erweiterung des Frameworks um eine Fehlerbehandlung wiirde oben beschriebene
Strategie wie in Algorithmus 5.3 implementiert werden. Die moglichen Fehler wie ein
Dateifehler oder KOMO-Fehler wiirden zum sofortigen Programmabbruch fithren. Auch
kann auf mogliche falsche Trajektorienausfithrung nicht reagiert werden.

Durch die im Rahmen dieser Arbeit entwickelte Ausnahmebehandlung scheitert im schlimms-
ten Fall die Activity aber nicht das Programm.
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6. Zusammenfassung und Ausblick

In der vorliegenden Arbeit wird die Frage behandelt, welche Eigenschaften die Implementie-
rung von Aktionen autonomer Agenten haben muss um als Elemente relationaler, nebenlaufi-
ger Markov-Entscheidungsprozesse nutzbar zu sein. Neben der theoretischen Untersuchung
dieser Frage wird auch an der praktischen Umsetzung einer Softwareumgebung zur Imple-
mentierung von Aktionen gearbeitet. Diese stellt ein Framework zur Verfiigung, welches die
stabile Implementierung unterschiedlichster Prozesse der Robotik ermoglicht.

Im ersten Abschnitt der Arbeit werden verschiedene Varianten verglichen das Entscheidungs-
problem der Aktionsplanung als relationale, nebenlaufige Markov-Entscheidungsprozesse
zu formalisieren. Ausgehend von einem einfachen Markov-Entscheidungsprozess wird eine
Parallelisierung erreicht, wenn der Aktionsplaner mehrere Aktionen gleichzeitig ausfithren
kann. Dadurch koénnen aber Ressourcen- und Zeitkonflikte entstehen. Modelle wie Concur-
rent Markov Decision Processes, Concurrent Action Model oder Relational Activity Processes
l6sen diese Probleme. Darauf werden Programmiersprachen zur Aktionsplanung beschrieben,
welche Verhaltenserzeugung nach dem Paradigma der Kognitiven Robotik ermdglichen und
das maschinelle Lernen in ihrem Kern integrieren. So kann Verhalten auf der Ebene der
Manipulation beschrieben und komplizierte Lernprozesse konnen mit einfachen Funktionen
aufgerufen werden. Insbesondere wird auf die Sprachen CRAM und RoLL eingegangen.

Im darauffolgenden Abschnitt wird ein Framework erweitert, um unterschiedliche Aktionen
implementieren zu kdnnen, dass die Planungs- und Lernprozeduren, welche das Entschei-
dungsproblem der Aktionsplanung losen zur Verfiigung zu stellen. Da in der Realitét Software
meistens fehlerbehaftet ist, wird dieses Interface um eine Fehler- und Signalverarbeitung
erweitert. So konnen Fehler im System erzeugt und abgefangen werden, ohne dass diese
zum Programmabbruch fithren. Zudem kann der Aktionsplaner auf unvorhergesehene durch
das Erzeugen von Interruptsignalen den normalen Programmablauf unterbrechen. Schlief3-
lich wird untersucht, inwieweit sich die verschiedenen Markov-Entscheidungsmodelle auf so
erzeugte Activities anwenden lassen.

Schliefilich wird im dritten Abschnitt durch die beispielhafte Implementierung und Anwen-
dung einiger Activities die Funktionalitdt untersucht. Strategien iiber diese Aktionen kénnen
robust gestaltet werden, jedoch miissen Ausnahmen fiir jede Activity einzeln definiert wer-
den. Erweiterbar wire dieses Framework, wenn es eine zentrale Fehlerbehandlung enthielte,
welche fest in das System integriert wére.
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A. Anhang - Anleitung zur
Implementierung einer neuen
Activity

Der vorliegende Anhang gibt eine Anleitung, wie mittels des neuen Interfaces eine neue
Activity implementiert werden kann, welche die neuen Features zur integrierten Sicherheit
beinhaltet. Eine so erstellte Activity kann mittels ctrl + c abgebrochen werden und hat
ihre eigene Fehler- und Signalbehandlung.

Im Prinzip wird entsprechend des Ereignisses der Zustand der Activity gedndert, welcher
dann mit dem Relationalen Zustand synchronisiert wird bzw. andere Effekte auslost. Die
Funktionalitiat wird anhand der neuen Klassen beschrieben.

Klassen

Es gibt zwei neue Klassen

ActivityS abgeleitet von Activity. Sie erweitert Activity um einige Helfer und dient als
Basisklasse zur Implementierung neuer Activities

ActivityException abgeleitet von std: :exception. Sie bildet die Basisklasse fiir Klassen
zur Fehlerbehandlung.

Die Klasse Acitvity wurde um neue Features erweitert.

Activity.h

Der Algorithmus A.1 zeigt alle Veranderungen der Activity.h. Diese werden folgend naher
beschrieben.

const int X = y definiert Zustandskonstanten. Diese sind bisher

— CONFIGURE fiir Initialisierung der Acitivity.
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A. Anhang - Anleitung zur Implementierung einer neuen Activity

Algorithmus A.1 Neue Elemente in der Activity.h

const
const
const
const
const
const
const

int
int
int
int
int
int
int

CONFIGURE =
RUNNING = 0;
CONV = 1;
ABORT = 2;
ERROR = 3;
FILEERR =
MOVEERR

-1

4;
5;

struct \textit{Activity} {

int statenum; ///< states of the ongoing \textit{Activity}

\textit{Activity}():fact(NULL), \textit{Activity}Time(0.), statenum(RUNNING){};

/// interrupt and error-handling
virtual void interruptHandler(int signum){}

}i

RUNNING fiir die aktive Activity.

CONV fiir die konvergierte Activity.

ABORT fiir den Abbruch durch ein Interruptsignal.
ERROR fiir den Abbruch durch einen Fehler.

FILEERR fiir einen Dateifehler.

MOVEERR fiir einen Fehler bei der Ausfithrung einer Bewegung. Beispielsweise

wenn die aufzuwendende Kraft zu grof3 wird.

Diese sind bisher sehr allgemein gehalten und kénnen erweitert werden.

int statenum beschreibt den aktuellen Zustand der Activity. Der Name leitet sich von
Interrupt-Typ int signum ab.

void interruptHandler (int signum) ist die Interrupthandlerfunktion, welche fir alle
aktiven Activities bei einem Interrupt aufgerufen wird. Fir ctrl + c gilt sigint ==
2 == ABORT.

Activity(): statenum(RUNNING) der Konstruktor Activity()
CONFIGURE. D.h. die Activity wird konfiguriert.
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Algorithmus A.2 ActivityS.h

#pragma once

#include
#include
#include
#include
#include
#include

<0rs/ors.h>
<Core/graph.h>
"\textit{Activity}.h"
<FOL/relationalMachine.h>
<csignal>

<exception>

struct \textit{Activity}S : \textit{Activity} {
ACCESSname (RelationalMachine, RM);
struct TaskControllerModule xtaskController;
struct RelationalMachineModule *xrelationalMachine;
\textit{Activity}S();

void changeState(int newStatenum);
mlr::String getStateString(int statenum);

b
class \textit{Activity}Exception: public std::exception {
private:
const std::string msg;
public:

\textit{Activity}Exception() : msg("\textit{Activity}Error"){};
\textit{Activity}Exception(const std::string& msg) : msg(msg) {};
virtual ~\textit{Activity}Exception() throw() {};
const charx what() const throw() {
return msg.c_str();

}
};

class SIGSEGVException: public \textit{Activity}Exception {};

ActivityS.h

Neu dazugekommen ist die ActivityS.h. Sie beinhaltet die neue von Activty abgeleitete
struct ActivityS und Klassen zur Fehlerbehandlung ActivityException. Der Algorith-
mus A.2 zeigt die Headerdatei ActivityS.h. Die Funktionalitdt wird wie folgt beschrieben.

struct Activity abgeleitet von Activity ist die Erweiterung um Sicherheitsfeatures und
Hilfsfunktionen.

void changeState(int newStatenum) synchronisiert den Relationalen Zustand.
D.h. sie entfernt den aktuellen Zustand und setzt den neuen int newStatenum.
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A. Anhang - Anleitung zur Implementierung einer neuen Activity

mlr::String getStateString(int statenum) erzeugt den String welcher den ak-
tuellen Zustand im Relationalen Zustand reprasentiert. Beispielsweise erzeugt die
Eingabe 2 fiir die Activity KOMO &bort KOMO".

class ActivityException abgeleitet von std::exception ist die Klasse zur Fehlerbehand-
lung der Activities. Neue Fehlerklassen konnen von dieser abgeleitet werden um Fehler
in einem try - catch Block abzufangen.

class SIGSEGVException abgeleitet von ActivityException fangt einen erzeugten
SIGSEGV-Fehler ab.

Implementierung einer neuen Activity

Soll eine neue Activity implementiert werden, ist als Basisklasse ActivityS zu ver-
wenden. Zu Implementieren ist neben dem Konstruktor, void configure(), void
activitySpinnerStep(dt activityTime) und dem Destruktor auch interruptHandler(int
signum). Zur Zustandsveranderung wird empfohlen, void changeState() zu verwenden,
da sie den aktuellen Zustand automatisch aus dem Relationalen Zustand entfernt und den
neuen setzt.
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