
Erkennung
semantischer Klone

mittels
Locality-Sensitive-Hashing

charakteristischer
Vektoren

Universität Stuttgart

Institut für Softwaretechnik, Abteilung Programmiersprachen

Diplomarbeit

2016

Jannik Zschiesche

II

III

Inhaltsverzeichnis
Abkürzungsverzeichnis V

Abbildungsverzeichnis VI

Codebeispiele IX

1 Einleitung 10

2 Grundlagen und Motivation 11

2.1 Ausprägungen von Codeklonen 12

2.2 Verwendetes Verfahren 13

2.3 Definition von Codeklonen 14

2.4 Alternative Darstellung von Codefragmenten 16

2.4.1 Atomic Tree Patterns und charakteristische Vektoren 16

2.4.2 Vektorgenerierung 19

2.4.3 Vector Merging (Vektor-Kombinationen) 20

2.5 Locality-Sensitive-Hashing 22

2.5.1 Verwendete Hashfunktion 23

2.5.2 Vorbereitung der LSH-Datenstruktur 24

2.6 Erweiterung um PDG-Codefragmente 27

2.6.1 Auswahl der PDG-Teilgraphen 29

2.7 Ergebnisfilterung 33

3 Implementierung 35

3.1 Bauhaus 35

3.2 Überblick über Bryant 36

3.2.1 Adaption der Referenzimplementierung 39

3.3 Extraktion der Routine 39

3.4 Vektorgenerierung 40

3.4.1 Relevante und signifikante charakteristische Vektoren 40

3.4.2 Codefragment-Generierung im AST 44

3.4.3 Codefragment-Generierung im PDG 45

3.5 LSH 47

3.5.1 Parametergenerierung 47

3.5.2 Befüllung der Hashmap 48

3.5.3 Benachbarte Vektoren eines Vektors finden 50

3.6 Größensensitive Klonerkennung 50

IV

3.7 Nachbearbeitung der Ergebnisliste 51

3.8 Speicherung der Ergebnisse 52

3.9 Weitere Details der Implementierung 52

4 Evaluierung und Optimierung 54

4.1 Problem der fehlenden kanonischen Klontestsuite 54

4.2 Qualitative Bewertung der Klone 54

4.3 Quantitative Bewertung der Klone 55

4.4 LSH-Evaluierung 56

4.4.1 Parameter: P1 57

4.4.2 Parameter: R 57

4.4.3 Parameter: w 58

4.4.4 Parameter: L 61

4.4.5 Parameter: k 64

4.5 Auswertungen unterschiedlicher Open-Source-Projekte 68

5 Zusammenfassung 71

6 Ausblick 72

7 Appendix 73

7.1 𝑙1 und 𝑙2 Norm von Vektoren 73

7.2 (Schwache) Zusammenhangskomponenten 73

8 Literaturverzeichnis 74

V

Abkürzungsverzeichnis
API Application Programming Interface

AST Abstract Syntax Tree

BSD Berkeley Software Distribution

CLI Command Line Interface

FFI Foreign Function Interface

(GNU) GPL (GNU) General Public License

IML InterMediate Language

IST Interesting Semantic Thread

LLOC Logical Lines Of Code

LSH Locality Sensitive Hashing

MIT Massachusetts Institute of Technology

PDG Program Dependence Graph

SSA Static Single Assignment

VI

Abbildungsverzeichnis
Abbildung 1: Syntaktische Klonerkennung in der Code Duplication Analysis der

Programmierumgebung PhpStorm (Screenshot von [11]). 12

Abbildung 2: AST zum Codebeispiel 1, ab Beginn der Routine f(). 14

Abbildung 3: Beispielhafter Ablauf einer Tree-Edit-Sequenz. 15

Abbildung 4: Beispielhafte Vorschau einiger q-Atomic Patterns der Höhe 2 für die

angegebene Knotenmenge (insgesamt gibt für diese Knotenmenge und Höhe 27

Permutationen)... 17

Abbildung 5: Annotation der AST-Knoten mit den charakteristischen Vektoren (der

obere Knoten ist relevant und erhöht den zweiten Eintrag im Vektor um 1). ... 19

Abbildung 6: Veranschaulichung des iterativ verschobenen und vergrößerten Sliding

Windows. ... 21

Abbildung 7: Neue Codefragmente aus Knoten mit zugehörigen Vektoren, die durch

das Vector Merging erstellt wurden. ... 22

Abbildung 8: Der Raum wird in die Kugel um den Punkt und den restlichen Raum

aufgeteilt. ... 23

Abbildung 9: Veranschaulichung der Projektion der Vektoren auf die reelle Achse

(der dickere Vektor ist 𝛼). Ebenfalls sieht man hier die gleichmäßige Aufteilung

der reellen Achse in Segmente mit Breite 𝑤. .. 25

Abbildung 10: Gesamtüberblick aller Hashing-Vorgänge in LSH. 26

Abbildung 11: Beispielhafter PDG ... 30

Abbildung 12: Aufteilung der Fachbereiche bei Bauhaus. 35

Abbildung 13: Übersicht über die verschiedenen Komponenten von Bryant. Die

Pfeile kennzeichnen die Abhängigkeiten. Die Komponenten Bryant_Debug

und Bryant_Reporting sind hier ausgenommen, da sie für die generelle

Funktionalität des Tools nicht relevant sind. ... 37

Abbildung 14: Überblick über den Programmfluss und die Zwischenergebnisse in

Bryant. Die Kästen kennzeichnen Komponenten, die Kreise und Ellipsen

kennzeichnen Zwischenergebnisse (also Daten). .. 38

Abbildung 15: Phase in der Implementierung: IML / Routinen. 39

Abbildung 16: Phase in der Implementierung: Vektorgenerierung. 40

Abbildung 17: Conditionals in der IML-Spezifikation. .. 42

file:///C:/Users/Jannik/Dropbox%20(Privat)/Diplomarbeit/_Ausarbeitung/Diplomarbeit.docx%23_Toc446427066
file:///C:/Users/Jannik/Dropbox%20(Privat)/Diplomarbeit/_Ausarbeitung/Diplomarbeit.docx%23_Toc446427066

VII

Abbildung 18: Assignments in der IML-Spezifikation. .. 42

Abbildung 19: Phase in der Implementierung: Locality Sensitive Hashing. 47

Abbildung 20: Zum besseren Verständnis noch einmal Abbildung 10 aus Kapitel 24,

das den Ablauf des Hashings visualisiert. .. 49

Abbildung 21: Phase in der Implementierung: größensensitive Klonerkennung. 50

Abbildung 22: Phase in der Implementierung: Ergebnisfilterung. 51

Abbildung 23: Phase in der Implementierung: Speicherung der Ergebnisse. 52

Abbildung 24: Schwankungen der Vektorvergleiche innerhalb einer Messung mit

identischen Parametern. ... 57

Abbildung 25: Anzahl der (gefilterten) Klone über 𝑅 (die Konstante bei 295 ist die

Gerade). .. 58

Abbildung 26: Anzahl Buckets über 𝑤. .. 59

Abbildung 27: Anzahl Vektorvergleiche über 𝑤. ... 59

Abbildung 28: Laufzeit über 𝑤. .. 60

Abbildung 29: LSH-Trefferrate über 𝑤. ... 60

Abbildung 30: Speicherbedarf über 𝑤... 61

Abbildung 31: Anzahl Klonkandidaten über 𝑤. .. 61

Abbildung 32: Anzahl Klonkandidaten über 𝐿.. 62

Abbildung 33: Speicherbedarf über 𝐿. .. 62

Abbildung 34: Vektorvergleiche über𝐿. .. 63

Abbildung 35: Anzahl Buckets über 𝐿. ... 63

Abbildung 36: Laufzeit über 𝐿. ... 64

Abbildung 37: LSH-Trefferrate über𝐿. ... 64

Abbildung 38: Anzahl Vektorvergleiche über 𝑘. .. 65

Abbildung 39: Anzahl Buckets über 𝑘. ... 65

Abbildung 40: LSH-Trefferrate über 𝑘. .. 66

Abbildung 41: Anzahl Klonkandidaten (ungefiltert) über 𝑘. 66

Abbildung 42: Speicherbedarf über 𝑘. .. 67

VIII

Abbildung 43: Laufzeit über 𝑘.. 67

Abbildung 44: Vektorvergleiche über LLOC. .. 68

Abbildung 45: Anzahl Vektorvergleiche über die Anzahl der Klonkandidaten. 69

Abbildung 46: Laufzeit LSH über Vektorvergleiche. ... 69

Abbildung 47: Anzahl Klonkandidaten (ungefiltert) über Anzahl Codefragmente. . 70

IX

Codebeispiele
Codebeispiel 1: Beispielfunktion mit Addition zweier konstanter Zahlen. 14

Codebeispiel 2: Beispielprogramm mit Variableninitialisierung 20

Codebeispiel 3: Basis für den folgenden PDG. ... 29

Codebeispiel 4: Das Problem mit Zusammenhangskomponenten 31

Codebeispiel 5: Beispiel für stark überlappende semantische Threads. 32

Codebeispiel 6: Relevanz-Überprüfung eines Knotenindizes. 41

Codebeispiel 7: Indexierung der unterschiedlichen Typen von Conditionals in

Bryant. .. 42

Codebeispiel 8: Indexierung der unterschiedlichen Typen von Assignments in

Bryant. .. 42

Codebeispiel 9: Array-Initialisierung mit 5 Einträgen. ... 44

Codebeispiel 10: Beispielcode, der sich von Codebeispiel 3 nur durch zusätzlich

hinzugefügten Timing-Code unterscheidet. ... 46

Codebeispiel 11: Erzeugung einer unter der 𝑙2-Norm stabilen Zufallsvariablen. 53

Codebeispiel 12: Trivialer Codeklon. .. 55

10

1 Einleitung
Duplizierter Quellcode, Codeklone, sind ein alltägliches Nebenprodukt der regelmäßigen

Programmierarbeit. Insbesondere in großen Teams ist es nicht möglich, den Detailblick

für jede Komponente des Systems zu bewahren. An anderer Stelle ist aus es

programmarchitektonischer Sicht nicht möglich, die vorliegende Abstraktion zu

verwenden und sie muss absichtlich dupliziert werden. In einigen Fällen kann es sogar

von Vorteil sein, duplizierten Code an einigen wenigen Stellen in seinem Programm

einzusetzen.

Doch ungeachtet der Historie und des Bewusstseins, ist die Kenntnis über die Stellen des

Programms wichtig, in denen duplizierter Code verwendet wird. Nur durch diese

Information können überlegte Entscheidungen im Programmieralltag, oder in einem

Forschungsumfeld größere Systemanalysen durchgeführt werden.

Es sind bereits einige Verfahren etabliert, diese beschränken sich in aller Regel jedoch auf

die syntaktischen Klone. Um zusätzlich semantische Klone zu erkennen, sind bisher keine

skalierbaren Verfahren bekannt. DECKARD von Jiang et al, und darauf aufbauend Gabel

et al haben ein Klonerkennungsverfahren entworfen, das einerseits stark in der

syntaktischen Klonerkennung ist, aber auch in einigen Teilen semantische Klone

erkennen kann.

Diese Diplomarbeit führt zunächst in alle relevanten Themen dieses Verfahrens ein.

Anschließend wird im Detail die Implementierung namens Bryant1 vorgestellt, die

abschließend analysiert und ausgewertet wird.

1 In dieser Arbeit wird sowohl die Implementierung dieser Diplomarbeit, als auch die theoretischen Vorarbeiten durch

Gabel et al einheitlich „Bryant“ genannt, da das Verfahren von Gabel et al keine eigene Bezeichnung besitzt.

11

2 Grundlagen und Motivation
Duplizierter Programmcode kann auf vielfältige Weise entstehen. Die offensichtlichste ist

sicherlich Copy & Paste, das heißt der Autor hat den betroffenen Quellcodeabschnitt aus

einem anderen Teil des Programms direkt kopiert. Aber auch mehrfach benötigte

Funktionalität gepaart mit der Unkenntnis, dass das vorliegende Problem bereits im

Programm an anderer Stelle gelöst ist, führt zu mehrfacher Implementierung ähnlicher

Lösungen. Diese auf unterschiedlichem Wege erreichten Lösungen geben einen Einblick

in die Struktur und die Wachstumshistorie des Programms und können für weiterführende

Analysen verwendet werden. So können aus der Betrachtung großer Softwaresysteme und

Programmierteams in Kombination mit der Auswertung von Codeklonen Rückschlüsse

über die Arbeitsweise und Denkstrukturen typischer Softwareteams gezogen werden.

Neben der theoretischen Betrachtung ist duplizierter Code insbesondere für die Wartung

von Software interessant. So sind Programme, die nicht die angemessenen

Abstraktionswerkzeuge der Sprache verwenden, in aller Regel länger, was die Anzahl

von potenziellen Programmfehlern erhöht. Außerdem müssen nun bei Änderungen am

Programm die duplizierten Stellen manuell nachverfolgt und ebenfalls (und identisch)

angepasst werden. Bei dieser manuellen Arbeit können sich Programmfehler

einschleichen, die dann in der Anwendung nur auftreten, wenn man die Funktion genau

auf diesem einen Wege ausführt2.

Auch rechtliche Fragen können mit Codeklonerkennern beantwortet werden.

Programmcode oder nur Teile von diesem können unter Copyright stehen. So kann ein

Klonerkenner bei der Entdeckung von unerlaubten Kopien urheberrechtlich geschützten

Programmcodes behilflich sein. Ein prominentes Beispiel ist die Klage von Oracle

America, Inc. gegen Google, Inc., bei der es um die Frage ging, ob Google in Android

ohne Genehmigung Java-APIs verwendet und implementiert hat3.

In der Optimierung von Programmen kann duplizierter Code ebenfalls von Bedeutung

sein. Webanwendungen transportieren ihr HTML, CSS und JavaScript bei jedem

Seitenaufruf an den Client. Es ist daher vorteilhaft, wenn die Größe dieser Datenmenge so

klein wie möglich gehalten wird, insbesondere auf Mobilgeräten, die oftmals mit einer

langsameren Datenverbindung und höherer Latenz mit dem Internet verbunden sind. Hier

führt die Deduplikation zu einer verringerten Ladezeit.4

Jedoch ist nicht jeder Klon negativ zu bewerten. Automatisch generierter Code ist in

erheblichem Maße repetitiv, dies wird jedoch akzeptiert, da der generierte Code nicht

aktiv bearbeitet wird (sondern im Zweifelsfall schlicht neu generiert wird). Darüber

2 Ein häufiges Beispiel für duplizierten Code bei einer Shopsoftware ist das Einlösen von Coupons. So kann es bei

Duplizierung zu unterschiedlichem Verhalten kommen, je nachdem ob man den Coupon im Warenkorb oder auf der

Bestellabschlussseite einlöst.
3 Siehe [10].
4 Genau in diesem speziellen Fall ist eine übermäßige Deduplikation jedoch nicht immer von großem Nutzen. Da bei

vielen Anwendungen die Daten vor Übertragung mit GZIP komprimiert werden, wird der Einfluss der Duplikate auf die

Dateigröße bereits durch das Kompressionsverfahren minimiert.

12

hinaus gibt es Fälle, in denen Codeklone notwendig sind. Bei Fehlern in externen

Bibliotheken wird oftmals der externe Code kopiert und angepasst. Außerdem können

auch Performanceoptimierungen durch duplizierten Code erreicht werden. Unterstützt ein

Compiler beispielsweise kein automatisches Aufrollen von Schleifen5, kann es je nach

Anwendungsfall notwendig sein, die Schleife selbst aufzulösen und die Blöcke manuell

zu kopieren.

2.1 Ausprägungen von Codeklonen
Während bei der Analyse einzelner Klone feinstufige Unterscheidungen definiert werden

können, teilt sich die Menge aller Codeklone zunächst in zwei Variationen. Auf der einen

Seite die syntaktischen Klone und auf der anderen Seite die semantischen Klone.

Syntaktische Klone sind Programmfragmente, die bereits in textueller Form große

Ähnlichkeit aufweisen. So sind die grundlegenden Strukturen identisch und nur einige

Teilaspekte werden abstrahiert oder die Sortierung von Programmanweisungen

vereinheitlicht.

Syntaktische Klonerkennungsprogramme verwenden unterschiedliche Grade von

Abstraktion6. Die stringbasierten Tools teilen zunächst das Programm in Zeilen auf und

operieren anschließend auf Programmcodezeilen. Hierbei wird ein parametrisierter

Stringvergleich verwendet, der gegen marginaler Unterscheidungen resistent ist7. Token-

basierte Tools bauen auf den Lexer und vergleichen generierte Tokenstreams. Diese

Tools sind in der Regel robuster gegenüber Codeformatierung und Spacing8. Die

5 Bei dieser Optimierung wird die Schleife entweder komplett aufgelöst und durch passend untereinander kopierte

Codeblöcke ersetzt oder zumindest soweit umgebaut, dass der Schleifenrumpf zugunsten einer geringeren Iterationszahl

länger wird. Hierdurch wird die Anzahl der Sprünge in der Kontrollanweisung und dem Sprung zum Beginn des

Schleifenrumpfes optimiert. Für Details siehe [11].
6 Die Abgrenzung der Abstraktionsgrade ist aus [7].
7 Beispielsweise die Arbeiten von Baker in [13] und [14].
8 Beispielsweise CCFinder [8] und CP-Miner [9].

Abbildung 1: Syntaktische Klonerkennung in der Code Duplication Analysis der Programmierumgebung PhpStorm
(Screenshot von [11]).

13

baumbasierten Tools arbeiten entweder auf dem Parsebaum oder AST und vergleichen

Syntaxbäume oder Fingerprints9 der Bäume10.

Semantische Klone sind Programmcodeabschnitte, die auf einer syntaktischen Ebene

möglicherweise unterschiedliche Struktur besitzen, jedoch die gleiche Funktion

implementieren. Ein triviales Beispiel hierfür sind for- und while-Schleifen. Diese sehen

syntaktisch zwar unterschiedlich aus, können in der Regel aber in die jeweils andere Form

überführt werden. Programmcode der die eine Variante implementiert, kann also

funktional identisch zu Programmcode sein, der die andere Variante verwendet.

Echte semantische Gleichheit im Allgemeinen (Programmäquivalenz) ist

unentscheidbar11. Daher wurden einige Verfahren entwickelt, die zwar keine echte

Äquivalenz entscheiden können, jedoch zumindest ein Teilwissen über die semantischen

Details haben12.

Fast alle referenzierten Verfahren der syntaktischen Klonerkennung haben gezeigt, dass

sie auch für sehr große Programme skalieren können. Tools, die semantische Analysen

anwenden konnten bisher noch nicht skalierbar implementiert werden.

2.2 Verwendetes Verfahren
Die Effektivität von Klonerkennungsverfahren ist maßgeblich abhängig von der

zugrundeliegenden Definition eines Codeklons. Ausgehend von dieser wird das

Verfahren modelliert. Die verwendete Definition muss also fundiert, theoretisch gesichert

und berechenbar sein.

Die Implementierung in dieser Diplomarbeit baut auf der Arbeit von Gabel et al.13 auf.

Diese wiederum basiert auf dem im Klonerkenner DECKARD1415 verwendeten

Verfahren, mit einer Erweiterung um eine semantische Analyse mithilfe des PDGs16.

DECKARD ist ein gegenüber Quellcodeformatierung robuster syntaktischer

Klonerkenner aus der Familie der baumbasierten Verfahren.

9 Hierbei werden die Bäume in einen Hashwert überführt, der Rückschluss auf die Struktur der Bäume zulässt. Die

Fingerprints sind erheblich effizienter zu vergleichen als die Baumstruktur.
10 Die Arbeiten von Baxter et al ([15], [2]) und Wahler et al ([16]) vergleichen Parse- oder Syntaxbäume. Die Arbeiten

[17] und [18] verwenden Fingerprinting.
11 Dies geht direkt aus dem Satz von Rice hervor.
12 Komondoor und Horwitz haben einen Codeklonerkenner entwickelt, der unter Zuhilfenahme des PDG und Program

Slicing grundlegende semantische Analysen durchführen kann [19].
13 Siehe [5].
14 Siehe [7].
15 Das Verfahren wurde benannt nach der Hauptfigur des Films Blade Runner (1982). Dieser muss ebenfalls „Klone“

(Replikanten) erkennen.
16 Program Dependence Graphs (PDGs) werden in [4] näher beschrieben.

14

Codebeispiel 1: Beispielfunktion mit Addition zweier konstanter Zahlen.

Daher sind die Definition und das Verfahren direkt aus den beiden Arbeiten

übernommen, alle Details werden im Folgenden jedoch noch einmal ausführlich erklärt.

DECKARD arbeitet auf Parsebäumen, Bryant arbeitet jedoch mit ASTs. Die folgenden

Kapitel besprechen daher direkt ASTs.

Abbildung 2: AST zum Codebeispiel 1, ab Beginn der Routine f()17.

2.3 Definition von Codeklonen
Ein Programm wird bei der Übersetzung in aller Regel in einen Syntaxbaum überführt.

Die Knoten dieses Baumes stehen für ein Sprachkonstrukt, das im Programmcode

verwendet wird. Abstrakte Syntaxbäume unterscheiden sich von Parsebäumen dadurch,

dass einige Bereiche bereits abstrahiert wurden, wie beispielsweise Klammersetzung, und

die Daten in strukturierter Form vorliegen18.

17 Der AST ist eine vereinfachte Darstellung, daher wurden für das Verständnis unwichtige Knoten ausgeblendet.
18 So sind in einer if-Anweisung beispielsweise die Aspekte Condition, If-Zweig und Else-Zweig bereits semantisch

strukturiert und gruppiert in einem Knoten (mit Unterknoten) und nicht mehr wie im Parsebaum eine Abfolge von

mehreren Knoten.

int f ()

{

 int a, b;

 a = 10;

 b = 5;

 return a + b;

}

15

Abbildung 3: Beispielhafter Ablauf einer Tree-Edit-Sequenz.

Ein Codeklon wird ausgehend von ASTs wie folgt definiert: man wählt zwei

Programmabschnitte aus, erstellt die ASTs (bzw. Unterbäume19) und vergleicht diese. Die

verwendete Metrik des Vergleichs ist hierbei die minimale Edit-Distanz 𝛿20. Die Edit-

Distanz repräsentiert die Menge der Änderungen21 (Einfügen, Umbenennen, Löschen) die

nötig ist, um den einen in den anderen Baum zu überführen. Intuitiv kann daher

festgestellt werden, dass zwei Bäume umso ähnlicher sind, je geringer die Edit-Distanz

ist.

Definition 1: Zwei Bäume 𝑇1 und 𝑇2 sind 𝜎-ähnlich für ein gegebenes 𝜎, wenn für ihre

Edit-Distanz 𝛿(𝑇1, 𝑇2) < 𝜎 gilt.22

Ausgehend von dieser Definition können nun Codeklone definiert werden.

Definition 2: Zwei Code-Fragmente 𝐶1 und 𝐶2 gelten als Klonpaar, wenn ihre

zugehörigen Baumrepräsentationen 𝑇1 und 𝑇2 𝜎-ähnlich für ein spezifiziertes 𝜎 sind.23

Diese Definition ist zwar theoretisch valide und fundiert, birgt allerdings ein praktisches

Problem. Die Berechnung der Edit-Distanz ist nicht effizient möglich24. Außerdem

19 Die folgenden Abschnitte arbeiten nie auf „vollständigen“ ASTs, da dies ein intraprozedurales Verfahren ist und

daher nur ASTs innerhalb einer Routine bearbeitet werden. Im Folgenden wird zur Vereinfachung nur von „ASTs“

gesprochen – die Verfahren funktionieren prinzipiell für jede Art von Syntaxbaum.
20 Die Edit-Distanz ist nicht eindeutig, da es mehrere Abfolgen von Anweisungen geben kann, um einen Baum in einen

anderen Baum zu überführen. Diese können beliebig groß werden (durch Einfügen und Löschen unbenutzter Knoten).

Daher wird die minimale Edit-Distanz verwendet, die kurzmöglichste Abfolge darstellt.
21 In den meisten Verfahren werden die „Kosten“ der möglichen Änderungen (Einfügen, Umbenennen, Löschen)

unterschiedlich gewichtet, so kann ein Einfügen teurer (in Bezug auf die Metrik) als ein Umbenennen sein. Dieses

Detail ist in dieser Hinführung allerdings nicht relevant.
22 Siehe [7].
23 Siehe [7].
24 Die Komplexität ist 𝑂(|𝑇1| × |𝑇2| × 𝑑1 × 𝑑2), wobei |𝑇𝑖| die Größe von 𝑇𝑖 ist und 𝑑𝑖 das Minimum aus der Tiefe

von 𝑇𝑖 und der Anzahl der Blätter von 𝑇𝑖. (siehe [7]).

16

müssen alle Bäume miteinander verglichen werden, was im schlechtesten Fall

quadratischen Aufwand bedeutet.

2.4 Alternative Darstellung von Codefragmenten
Die Codeklon-Definition aus dem vorigen Kapitel ist theoretisch fundiert, besitzt aber

ungünstige Laufzeiteigenschaften. Daher wird in diesem Kapitel zunächst eine alternative

Repräsentation der ASTs eingeführt, die eine effizientere Implementierung ermöglichen.

Anschließend wird das Berechnungsproblem der Baum-Edit-Distanz auf eine

Distanzberechnung in der neuen Darstellung reduziert. Diese Reduktion ist wichtig, da

nur dadurch gewährleistet werden kann, dass ein gefundenes Ergebnis in der neuen

Darstellung auch ein korrektes Ergebnis in der Darstellung als Edit-Distanz ist. Und da im

verwendeten Verfahren Codeklone über die Edit-Distanz definiert sind, kann ohne diese

Rückführung keine Aussage getroffen werden.

2.4.1 Atomic Tree Patterns25 und charakteristische

Vektoren
Gegeben sei ein Binärbaum. Man definiert eine Familie an Atomic Tree Patterns,

parametrisiert mit der Höhe des Binärbaums 𝑞.

Ein q-level Atomic Pattern ist ein vollständiger Binärbaum der Höhe 𝑞. Die Knoten

dieses Binärbaums entstammen aus einer Knotenmenge ℒ (diese Menge beinhaltet auch

das leere Label 𝜀). Es existieren insgesamt |ℒ|2𝑞−1 mögliche Binärbäume der Höhe 𝑞,

dies sind alle möglichen Permutationen der Knotenelemente auf die 2𝑞 − 1 Knoten eines

vollständigen Binärbaumes der Höhe 𝑞. Diese Menge an Bäumen wird

durchnummeriert26. Nun wird ein Vektor der Länge |ℒ|2𝑞−1 erstellt, wobei das 𝑖-te

Element die Anzahl der Vorkommen des 𝑖-ten Baumes im Ursprungsbaum darstellt.

25 Siehe [7].
26 Die tatsächliche Sortierung ist irrelevant, so lange sie identisch über die gesamte Vektorgenerierung ist.

17

Abbildung 4: Beispielhafte Vorschau einiger q-Atomic Patterns der Höhe 2 für die angegebene Knotenmenge
(insgesamt gibt für diese Knotenmenge und Höhe 27 Permutationen).

Dieser Vektor ist ein Fingerprint des ursprünglichen Baumes und wird der

charakteristische Vektor des Baumes genannt (gekennzeichnet durch 𝑣𝑞(𝑇)). Die

Abbildung von Baum auf Vektor ist surjektiv: identische Bäume ergeben identische

Vektoren, identische Vektoren wiederum müssen aber nicht identische Bäume ergeben.

Dies ist allerdings eine erwünschte Eigenschaft, da im Hinblick auf ASTs die Reihenfolge

der Knoten keine Rolle spielen soll. Das Verfahren soll robust gegenüber Umsortierung

des Programmcodes sein, was durch diese Eigenschaft erfüllt wird.

Zur vereinfachten Berechnung der Ähnlichkeit von ASTs werden charakteristische

Vektoren verwendet. Hierzu werden die ASTs in die charakteristischen Vektoren

umgewandelt, die Höhe der Pattern ist 𝑞 = 1, die Knotenmenge sind alle Knotentypen

des ASTs. Durch diese Definition repräsentiert der charakteristische Vektor eines ASTs

ein Konstrukt, in dem die Anzahl jedes Knotentypen innerhalb dieses ASTs aufgelistet

ist.

18

Im nächste Schritt wird (nach der alternativen Darstellung der ASTs) die euklidische

Distanz der Vektoren27 zu berechnet. Wenn zwei Vektoren sehr nahe sind, soll die Edit-

Distanz zwischen den Ursprungsbäumen gering sein. Nur durch diese Eigenschaft ist die

Reduktion valide. Ihr Beweis wird daher im Folgenden anskizziert.

Theorem 1: Für zwei beliebige Bäume 𝑇1 und 𝑇2 mit Edit-Distanz 𝛿(𝑇1, 𝑇2) = 𝑘

ist die 𝑙1-Norm der zugehörigen 𝑞-level Vektoren für 𝑇1 und 𝑇2 ℋ (𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2))

nicht größer als (4𝑞 − 3)𝑘.28

Wie in obigem Theorem beschrieben, existiert eine Verbindung zwischen der 𝑙1-Norm

(Hamming-Distanz) der Vektoren und der Edit-Distanz der zugehörigen Bäume. Nun

muss noch eine Verbindung zwischen der 𝑙1 und 𝑙2-Norm (euklidische Distanz)29 gezeigt

werden, dann ist durch den transitiven Abschluss die Reduktion theoretisch bestätigt.

Theorem 2: Für zwei beliebige Ganzzahl-Vektoren gilt √ℋ(𝑣1, 𝑣2) ≤ 𝒟(𝑣1, 𝑣2) ≤

 ℋ(𝑣1, 𝑣2).30

Durch Verknüpfung von Theorem 1 mit Theorem 2 folgt direkt:

Korollar 1: Für zwei beliebige Bäume 𝑇1 und 𝑇2 mit Edit-Distanz 𝛿(𝑇1, 𝑇2) = 𝑘 ist die 𝑙2-

Norm der 𝑞-level Vektoren dieser Bäume 𝒟(𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2)) nicht größer als (4𝑞 − 3)𝑘

und nicht kleiner als die Quadratwurzel der 𝑙1-Norm. Dies bedeutet:

√ℋ(𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2)) ≤ 𝒟 (𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2)) ≤ (4𝑞 − 3)𝑘

Da in dieser Arbeit die Höhe der Atomic Patterns 𝑞 = 1 gilt, sind entweder die

euklidische Distanz, oder die Quadratwurzel der Hamming-Distanz eine untere Schranke

für die Edit-Distanz. So gilt: wenn die Distanz zweier Vektoren größer als ein vorher

definiertes 𝜎 ist, können die zugehörigen ASTs nicht 𝜎-ähnlich sein. Andersherum ist es

sehr wahrscheinlich, dass wenn die untere Schranke kleiner als ein definiertes 𝜎 ist, der

tatsächliche Wert ebenfalls kleiner als 𝜎 ist31.

Durch diese Reduktion kann das Problem der Edit-Distanz zweier ASTs also auf die

euklidische Distanz zweier charakteristischer Vektoren vereinfacht werden. Für die

Implementierung ist noch wichtig, dass diese Herleitung auch für Abstract Syntax

27 Die Vektoren können als Punkte dargestellt werden, wobei der Vektor die Strecke zwischen Punkt und dem Ursprung

des Koordinatensystems darstellt. Im Folgenden wird allerdings weiterhin von der „Distanz zweier Vektoren“

gesprochen, auch wenn im Grunde die Entfernung zweier Punkte berechnet wird.
28 Siehe Theorem 3.3 in [19].

29 Für genaue Definition zur 𝑙1 und 𝑙2-Norm sind im Appendix (Kapitel 7.1) zu finden.
30 Siehe [6].
31 Nach [6].

19

Forests32 gilt, da diese durch Hinzufügen eines gemeinsamen Eltern-Knoten zu einem

einzelnen Baum umgewandelt werden können.

2.4.2 Vektorgenerierung
Nachdem das theoretische Fundament gesichert ist, verschiebt sich nun der Fokus der

Arbeit auf die tatsächliche Generierung der Vektoren. Die Phase der Vektorerstellung teilt

sich in zwei Abschnitte auf: zunächst die direkt aus AST-Knoten erstellten Vektoren und

anschließend in Kapitel 2.4.3 die zusammengesetzten Vektoren.

Mit Einstieg in eine Routine werden alle Knoten des AST in Postorder-Reihenfolge

durchlaufen. Bei jedem Vektor werden zunächst die Vektoren der Kinder summiert. Dann

wird der Eintrag an dem Index des AST-Knotens im Vektor um 1 erhöht, falls der Vektor

relevant ist. Falls der Vektor zusätzlich signifikant ist, wird der Vektor in die globale

Liste aller erstellten Vektoren hinzugefügt.

Abbildung 5: Annotation der AST-Knoten mit den charakteristischen Vektoren (der obere Knoten ist relevant und
erhöht den zweiten Eintrag im Vektor um 1).

Die Relevanz eines Knoten gibt an, ob dieser Knoten in den charakteristischen Vektoren

gezählt werden soll33. Durch die Verwendung des ASTs entfallen viele „technische

Knoten“ eines Parsebaums wie Klammern und Semikola bevor der Algorithmus startet.

Aber auch Casts oder andere strukturierende Knoten können für das Zählen nicht

interessant sein. Insbesondere wird über die Relevanz die Granularität der Klonerkennung

gesteuert. So können Unterschiede im AST „ignoriert“ oder absichtlich gleich gezählt

werden. Ein Beispiel explizit zusammengefasster Knoten können Schleifen sein – so

werden unterschiedliche Schleifenvarianten explizit auf den gleichen Eintrag im Vektor

indexiert, wodurch der Klonerkenner diese als identisch erkennt.

32 Eine Menge an ASTs.
33 Die für diese Arbeit getroffene Auswahl an relevanten IML-Knoten findet sich in Kapitel 3.43.2.1.

20

Die Signifikanz eines Knotens gibt an, wie wahrscheinlich dieser ein Kandidat für die

Klonerkennung ist. Der Hintergrund ist, dass die so gefundenen Kandidaten eine

Mindestgröße überschreiten sollen. Ohne diese Mindestgröße würde sonst jede

Initialisierung einer Variable als Klon erkannt:

Codebeispiel 2: Beispielprogramm mit Variableninitialisierung

Vor dem Hinzufügen eines Knotens wird zunächst überprüft, ob dessen Vektor genügend

für die Signifikanz interessante Knoten enthält. Nicht alle Knotentypen sind für diese

Eigenschaft interessant, sondern nur eine Auswahl von Knotentypen, die sehr

wahrscheinlich der Ausgangspunkt eines Codeklons sein könnten.

Den numerischen Mindestwert für die Signifikanzbestimmung festzulegen ist nicht

trivial. Während in der Originalimplementierung von DECKARD 30 Token (der

Standardwert) in der Regel zu etwa 3 Statements gehören, ist dies bei AST-Knoten nicht

der Fall. Hier können die 30 Knoten entweder zu weniger (möglicherweise weniger als

einem vollen Statement), oder erheblich mehr Statements gehören. Daher wird von einer

rein numerischen Betrachtung des Vektors abgesehen, sondern das zusätzliche Wissen

dahingehend miteinbezogen, dass eine gewichtete Summe des Vektors für die

Signifikanzberechnung verwendet wird.

Die Relevanz gibt also an, welche Knoten gezählt werden und die Signifikanz gibt an, von

welchen Knoten die Vektoren in die Klon-Kandidatenliste aufgenommen werden.

2.4.3 Vector Merging (Vektor-Kombinationen)
Mit den Klon-Kandidaten, die direkt aus einzelnen AST-Knoten erzeugt werden, sind im

Programmcode einzelne Statements abgedeckt. Viele interessante Klone werden sich

jedoch über mehrere Zeilen Programmcode, über mehrere Statements erstrecken. Daher

werden im zweiten Abschnitt der Vektorgenerierung aus mehreren benachbarten AST-

Knoten zusammengefasste Vektoren erzeugt.

Der Algorithmus für das Zusammenfassen der Knoten ist simpel. Es wird die Liste aller

Kindknoten als Basis verwendet, anschließend wird ein sogenanntes Sliding Window

erstellt und über die Liste der Kindknoten verschoben. Für jeden Knoten in der Liste wird

entschieden, ob dieser Teil einer Fragmentkombination sein kann, oder nicht. Falls der

Knoten nicht kombinierbar ist, wird er aus der Liste der Kindknoten herausgefiltert.

int i = 1;

21

Abbildung 6: Veranschaulichung des iterativ verschobenen und vergrößerten Sliding Windows.

Das Sliding Window betrachtet einige aufeinanderfolgende Knoten. Aus diesen wird ein

summierter Vektor erzeugt. Falls dieser signifikant ist, wird er der Liste der

Klonkandidaten hinzugefügt. Anschließend wird das Sliding Window um eine Position

weiter geschoben34.

34 Die Originalimplementierung von DECKARD (siehe [6]) hat keine automatische Vergrößerung des Sliding Windows

verwendet, dafür aber die Schrittweite konfigurierbar gemacht. Dies ist bei der erweiterten Implementierung nicht mehr

notwendig.

22

Abbildung 7: Neue Codefragmente aus Knoten mit zugehörigen Vektoren, die durch das Vector Merging erstellt
wurden.

Die Größe des Sliding Windows wird iterativ vergrößert. Die Arbeit von Gabel et al35 hat

herausgefunden, dass es sinnvoll ist, die Größe des Sliding Windows initial auf 3 zu

setzen und nach jedem Durchlauf multiplikativ um den Faktor 1,5 zu vergrößern. Dieser

Abschnitt der Vektorgenerierung endet, wenn die Größe des Sliding Windows größer als

die Anzahl der benachbarten Vektoren ist.

2.5 Locality-Sensitive-Hashing36
Nach der Generierung der Vektoren müssen nun effizient benachbarte Vektoren gefunden

werden. Hierbei wird zunächst die Datenstruktur erstellt, anschließend wird für jeden

Vektor in der Kandidatenliste die Liste der benachbarten Vektoren gesucht. Intuitiv hat

dieses Verfahren in etwa quadratischen Aufwand, da jeder Vektor mit jedem anderen

Vektor verglichen werden muss37. Deshalb wird ein Verfahren eingeführt, das die

Vektoren in einer Vorverarbeitung clustert, sodass die Distanzberechnungen auf ein

Minimum reduziert werden können38.

Für eine Minimierung der Zahl der Vektorvergleiche wird Locality-Sensitive-Hashing39

verwendet. In diesem Verfahren wird zu jedem Vektor ein Hash-Wert berechnet. Die

zugrundeliegende Hashfunktion ist so konstruiert, dass für nahe Vektoren mit hoher

Wahrscheinlichkeit gleiche Hash-Werte berechnet werden. Bei der Suche nach nahen

Knoten werden von einem Anfragevektor aus alle Vektoren mit dem gleichen Hashwert

35 Siehe [4].
36 Die Definitionen und Beweise für diese Kapitel stammen aus [5].
37 Dies ist also eine quadratische Menge an Vektorvergleichen, wobei die Vektorvergleiche (Distanzberechnungen)

selbst ebenfalls einen Beitrag zur Laufzeit leisten.
38 Die Zahl der Vektorvergleiche ist quadratisch in der Anzahl der Klonkandidaten. Ein einzelner Vektorvergleich

(Distanzberechnung) selbst ist linear in der Anzahl der Dimensionen eines charakteristischen Vektors. LSH minimiert

nur die Zahl der Vektorvergleiche.
39 Wie beschrieben in [5].

23

gesucht und nur für diese kleine Teilmenge werden konkrete Distanzberechnungen

durchgeführt.

2.5.1 Verwendete Hashfunktion
Die zugrundeliegende Hashfunktion muss die folgende Eigenschaft erfüllen, dass sie für

eine LSH-Berechnung verwendet werden kann:

Definition 340: Eine Familie an Hashfunktionen ℎ ∶ 𝒱 ⟶ 𝒰 heißt (𝑝1, 𝑝2, 𝑅, 𝑐)-sensitiv

(mit 𝑐 ≥ 1), falls ∀ 𝑢, 𝑣 ∈ 𝒱 gilt:

falls 𝒟(𝑢, 𝑣) < 𝑅 dann 𝑃𝑟𝑜𝑏[ℎ(𝑢) = ℎ(𝑣)] ≥ 𝑝1

falls 𝒟(𝑢, 𝑣) > 𝑐𝑅 dann 𝑃𝑟𝑜𝑏[ℎ(𝑢) = ℎ(𝑣)] ≤ 𝑝2

Um als LSH-Hashfunktion sinnvoll zu sein, sollte für die gegebene Funktionsfamilie

𝑝1 > 𝑝2 und 𝑐 ≥ 1 gelten.

Abbildung 8: Der Raum wird in die Kugel um den Punkt und den restlichen Raum aufgeteilt.

40 Aus [2], Definition 1 bzw. dessen Adaption in [6], Definition 3.9.

24

Datar et al41 haben gezeigt, dass die folgende Hashfunktion diese Eigenschaft erfüllt:

ℎ𝛼,𝑏 ∶ ℝ𝑑 → ℕ

ℎ𝛼,𝑏(𝑣) = ⌊
𝛼 ⋅ 𝑣 + 𝑏

𝑤
⌋

mit 𝑤 ∈ ℝ, 𝑏 ∈ [0, 𝑤] und 𝛼 ∈ ℝ𝑑 als zufällig gewählten Vektor.

2.5.2 Vorbereitung der LSH-Datenstruktur
Als grundlegende Datenstruktur bei der LSH-Berechnung wird eine Hashmap verwendet.

Jeder Eintrag in dieser Hashmap („Bucket“) ist eine Liste von in diesen Bucket gehashten

Vektoren.

Der Ablauf der LSH-Berechnung ist wie folgt: zunächst wird jeder Punkt nicht nur

einmal gehasht, sondern es werden mehrere Hashfunktionen (insgesamt 𝑘

Hashberechnungen) nacheinander ausgeführt. Dies verringert intuitiv mit jedem weiteren

Hashing die Wahrscheinlichkeit, dass zwei Punkte die weit entfernt sind, den gleichen

Hashwert erhalten. Diese Kette an ℎ𝑖-Funktionen werden fortan 𝑔𝑗 genannt.

Anschließend wählt man eine Zahl 𝐿, die die Zahl der unterschiedlichen Hash-Buckets

angibt, in die der Vektor gehasht wird.

Bildlich gesprochen projiziert die Hashfunktion den zufälligen Vektor 𝛼 und den Vektor

𝑣 auf einen Punkt auf der reellen Achse. Diese Projektion erhält die Distanzeigenschaft42.

Dies bedeutet, dass Vektoren, die vorher weit entfernt waren, mit hoher

Wahrscheinlichkeit nach der Projektion ebenfalls als Punkte auf der reellen Achse weit

entfernt sind (und umgekehrt). Das wiederholte Hashing verringert die

Wahrscheinlichkeit, dass zwei weit entfernte Vektoren über einen ungünstig liegenden 𝛼-

Vektor den gleichen Hashwert erhalten43.

41 Siehe [2].
42 Wie gezeigt in [2].
43 Veranschaulicht vergrößert es die Kluft zwischen Punkten im Intervall [0; 𝑅] und den Punkten im Intervall (𝑅, ∞).

25

Abbildung 9: Veranschaulichung der Projektion der Vektoren auf die reelle Achse (der dickere Vektor ist 𝛼). Ebenfalls
sieht man hier die gleichmäßige Aufteilung der reellen Achse in Segmente mit Breite 𝑤.

Nachdem der Vektor auf einen Punkt auf der reellen Achse projiziert wurde, wird die

reelle Achse gleichmäßig in Segmente aufgeteilt, mit Breite 𝑤. Die Hashfunktion

berechnet durch die Division und das Abrunden den Segmentindex. Der Segmentindex

dient anschließend als Index für die Hashmap.

Nicht nur die Wahrscheinlichkeit, dass zwei weit entfernte Vektoren in den gleichen

Bucket gehasht werden (falsch positive Treffer), sondern auch die Wahrscheinlichkeit,

dass zwei nahe Vektoren nicht in den gleichen Bucket gehasht werden (falsch negative

Treffer) ist interessant. Während die erste Variante nur das Laufzeitverhalten negativ

beeinflusst, beeinträchtig die zweite Variante das Ergebnis. Wenn zwei nahe Vektoren in

unterschiedliche Buckets gehasht werden, wird der Klonerkenner diese nicht als Klone

erkennen.

Um dieses Problem zu umgehen, werden die Vektoren in mehrere Buckets gehasht.

Insgesamt in 𝐿 unterschiedliche Buckets.

26

Abbildung 10: Gesamtüberblick aller Hashing-Vorgänge in LSH.

Der Ablauf in der Gesamtbetrachtung ist wie folgt: als Eingabe erhält LSH einen Vektor

mit 𝑑 Einträgen. Dieser Vektor wird 𝑘-mal mit unterschiedlichen Hashfunktionen gehasht

(die Funktion, die 𝑘-mal mit unterschiedlichen Hashfunktionen hasht heißt 𝑔𝑖 (wobei 𝑖 =

1 … 𝐿)). Das Ergebnis ist ein neuer, 𝑘-dimensionaler Vektor, in dem im 𝑖-ten Eintrag das

Ergebnis der 𝑖-ten Hashfunktion ℎ𝑖 steht. Dieser Vektor wiederum wird mit 𝐿 regulären

Hashfunktionen zu Bucketindizes der Hashmap umgerechnet. In jeden dieser Buckets

wird der Vektor eingefügt.

Bei der Abfrage nach der Menge der nahen Nachbarn eines Punktes wird der

Abfragepunkt ebenfalls gehasht und in Bucketindizes umgerechnet. Alle Vektoren in

diesen Buckets werden anschließend direkt mit dem Abfragepunkt verglichen.

Relevante Parameter in diesem Verfahren sind die Zufallsfunktion, mit der die 𝛼- und 𝑏-

Parameter der Hashingfunktionen generiert werden. Außerdem ist die Zahl der

konkatenierten Hashfunktionen (𝑘) und die Anzahl der Buckets, in die die Vektoren

gespeichert werden (𝐿), interessant. Der Parameter 𝑐 aus Definition 3 wird auf 1 gesetzt,

wodurch der Raum in Punkte innerhalb der Radiuskugel um den Punkt und alle restlichen

Punkte aufgeteilt wird. Die Kollissionswahrscheinlichkeiten 𝑝1 und 𝑝2, sowie der Radius

27

𝑅 sind zwei Parameter, die nicht fest im System vorgegeben sein müssen, sondern bei

denen der Benutzer der implementierten Klonerkennung die Genauigkeit gegenüber der

Laufzeit abwägen kann.

Die wichtigste Eigenschaft der Hashfunktion ist, dass die Verteilung stabil über der 𝑙2-

Norm44 ist. Dies ist zum Beispiel bei der Gauß-Verteilung gewährleistet. Darüber hinaus

ist bekannt, dass man eine unter der 𝑙2-Norm stabile Zufallsvariable aus zwei

unabhängigen, normalverteilten Zufallsvariablen aus dem Intervall [0; 1] erzeugen

kann45.

Die zwei undefinierten internen Parameter 𝑘 und 𝐿 werden für ein theoretisch optimales

Ergebnis wie folgt definiert46:

𝑘 = 𝑙𝑜𝑔 1
𝑝2

(𝑛)

𝐿 = 𝑛𝜌 mit 𝜌 =
𝑙𝑛 (

1

𝑝1
)

𝑙𝑛 (
1

𝑝2
)

wobei 𝑛 die Anzahl aller Vektoren ist.

Diese Definition hält die beiden Faktoren 𝑘 und 𝐿 so klein wie möglich (für ein

theoretisch optimales Laufzeitverhalten), aber so groß wie nötig um die vorgegebenen

Erfolgswahrscheinlichkeiten zu erhalten.

2.6 Erweiterung um PDG-Codefragmente47
DECKARD ist im Grunde eine Art Framework für Codeklonerkennung. Als Eingabe

dienen unterschiedlichste Verfahren um Code-Fragmente (Mengen aus AST-Knoten und

zugehörige charakteristische Vektoren) zu erzeugen, aus denen im weiteren Verlauf die

Klone gefiltert werden. Diese Verfahren können variieren, es können neue hinzugefügt,

existierende ausgetauscht oder entfernt werden.

Bryant48 fügt ein neues Verfahren zur Erstellung von Code-Fragmenten hinzu. Da nur

weitere Vektorerzeuger hinzugefügt werden, ist die Menge der mit dem abgewandelten

Verfahren gefundenen Klone eine echte Obermenge von DECKARD. Das heißt es

werden auf jeden Fall alle Klone gefunden, die DECKARD auch findet. Darüber hinaus

fügt Bryant einen neuen Schritt der Vektorgenerierung hinzu, der aus dem PDG heraus

Klonkandidaten erstellt. Durch die Zuhilfenahme des PDG bringt das Verfahren ein

gewisses semantisches Bewusstsein in die Klonerkennung ein, da der PDG grundlegende

Aussagen über die Semantik eines Programms treffen kann.

44 Die Verteilung muss „2-stable“ sein, siehe [2].
45 Siehe [20].
46 Aus [2].
47 Dieses Kapitel baut zu weiten Teilen auf dem Kapitel 3.3 aus [4] auf, da dort dieses Verfahren eingeführt wurde.
48 Nach [4].

28

Zunächst wird die Definition eines Codeklons leicht erweitert. Die bisherige

Arbeitsdefinition eines Codeklon ist wie folgt:

Definition 4 (Syntaktische Codeklone)49: Zwei disjunkte, zusammenhängende

Programmsequenzen 𝑆1 und 𝑆2 sind Codeklone, genau dann wenn 𝛿(𝑆1, 𝑆2)

Wobei 𝛿 eine Ähnlichkeitsmetrik darstellt. In Bezug auf DECKARD ist das die in Kapitel

2.3 vorgestellte Edit-Distanz. Diese Definition wird nun um semantische Klone erweitert.

Definition 5 (Semantische Codeklone)50: Zwei disjunkte, möglicherweise nicht-

zusammenhängende Programmsequenzen 𝑆1 und 𝑆2 sind semantische Codeklone, genau

dann wenn 𝑆1 und 𝑆2 syntaktische Codeklone sind oder 𝜇(𝑆1) isomorph ist zu 𝜇(𝑆2).

In dieser Funktion wird eine neue Abbildung 𝜇 verwendet, das sogenannte syntaktische

Abbild. Diese Abbildung ist nötig, da bisher noch kein performanter und skalierbarer

Algorithmus existiert, um semantische Klone zu erkennen. Die direkte Implementierung

führt zu einer kombinatorischen Explosion an neuen möglichen Klonkandidaten, sowie zu

einer sehr aufwändigen Berechnung der Graphisomorphie51. Bryant macht sich die

Tatsache zunutze, dass sowohl der AST, als auch der PDG auf dem Programmcode

basieren. Daher wird eine Funktion definiert, die zu einem gegebenen PDG den

zugehörigen Quellcode findet.

Definition 6 (Syntaktisches Abbild)52: Das syntaktische Abbild eines PDG Teilgraphen

G, genannt 𝜇(𝐺), ist die maximale Menge an AST-Teilbäumen, die zu der konkreten

Syntax der Knoten in G gehören. Diese Menge ist dominierend, d.h. für jedes Paar von

Bäumen 𝑇, 𝑇′ ∈ 𝜇(𝐺) gilt 𝑇 ⊆ 𝑇′.

Durch die Abbildung von PDG auf AST-Knoten reduziert sich das komplexe

Graphähnlichkeitsproblem zu einem Baumähnlichkeitsproblem. Weiterführend kann die

Ähnlichkeit der Bäume bereits mit den charakteristischen Vektoren und dem LSH-

Verfahren gelöst werden.

Damit schließen die durch PDG erzeugten Klonkandidaten nahtlos an die durch

DECKARD erzeugten Klonkandidaten an. Den gesamten PDG als einen Kandidaten zu

verwenden ist allerdings nicht sinnvoll, daher werden nur Teilbereich des PDG als

Klonkandidat verwendet. Die richtige Auswahl dieser Kandidaten ist nicht trivial und

wird im folgenden Kapitel beschrieben.

49 Siehe [4].
50 Siehe [4],
51 Graphisomorphie liegt in NP und es ist keine effiziente Implementierung bekannt. Obwohl die Zahl der PDG-Knoten

in aller Regel relativ gering sein wird, ist es trotzdem im Allgemeinen eine sehr aufwändige Berechnung.
52 Siehe [4].

29

2.6.1 Auswahl der PDG-Teilgraphen53
Der Algorithmus muss für eine bestmögliche Klonerkennung eine (endliche) Menge an

interessanten Teilgraphen des PDG erzeugen. Diese Teilgraphen gehen dann in die

Klonerkennung als Kandidaten ein und werden im weiteren Verlauf mit anderen

Kandidaten verglichen. Gabel et al stellen zwei Varianten der Teilgraph-Auswahl vor.

Beide Varianten werden in diesem Kapitel besprochen.

Codebeispiel 3: Basis für den folgenden PDG54.

53 Das Verfahren wurde übernommen von [4], Kapitel 3.3. Da in dieser Arbeit alle Grundlagen für diese Diplomarbeit

geschaffen wurden, hält sich die folgende Beschreibung eng an die Vorlage.
54 Übernommen aus [4], Figure 1, Seite 322.

int func (int i, int j) {

 int k = 10;

 while (i < k) {

 i++;

 }

 j = 2 * k;

 printf(“i=%d, j=%d\n“, i, j);

 return k;

}

30

Abbildung 11: Beispielhafter PDG55

Ein PDG besitzt viele technische Basisknoten, wie in Abbildung 11 zu sehen ist („body“,

„exit“, „entry“). Diese Knoten werden, wie in der Abbildung angedeutet, von der

Erstellung der Codefragmente ausgenommen, da diese keine Relevanz für das Verfahren

haben und wie im Beispiel des „entry“-Knoten zu einer unnötig hohen Überdeckung der

Teilgraphen führen.

 (Schwache) Zusammenhangskomponente56
Die einfachste und konservativste Implementierung ist sicherlich mittels

Zusammenhangskomponenten. Hierbei werden alle gerichteten Kanten des PDG durch

ungerichtete Kanten ersetzt und die Zusammenhangskomponenten gesucht.

Der Hintergrund ist, dass zwei voneinander unabhängige Statements, wie beispielsweise

Zeile 5 (increment) und 8 (Zuweisung) in Codebeispiel 3, keine direkte Verbindung

haben, durch den Aufruf von printf aber trotzdem verbunden sind. Zwei Statements

sind nur dann unabhängig voneinander, wenn sie in unterschiedlichen

Zusammenhangskomponenten stehen.

Die Implementierung der Erkennung von schwachen Zusammenhangskomponenten ist

mit einer Tiefensuche mit linearem Aufwand möglich.

55 Das Bild stammt aus [4], Figure 3, Seite 322.
56 Siehe das Kapitel 7.2 im Appendix für eine kurze Definition von Zusammenhangskomponenten.

31

 Semantic Threads
Obwohl Zusammenhangskomponenten bereits interessante Ergebnisse in der

Klonerkennung liefern, wird eine feingranularere Graphselektion benötigt. Folgendes

Codebeispiel veranschaulicht das allgemeine Problem mit einem Verbot jeglicher

Überlappung der Teilgraphen57:

Codebeispiel 4: Das Problem mit Zusammenhangskomponenten58

Durch die Zusammenführung der komplett separaten Berechnungen von x, y und z am

Ende der Funktion wird in den letzten vier Zeilen die gesamte Funktion zu einer einzigen,

großen Zusammenhangskomponente – und das obwohl die Funktion offensichtlich drei

separate Berechnungszweige hat.

Ein Weg dieses Problem zu umgehen, ist die Verwendung von Forward Slices59. Ein

Forward Slice ist das Ergebnis einer speziellen Form des Program Slicing60. Die Arbeit

von Gabel et al verwendet eine leicht vereinfachte Definition. Hierbei werden von einer

Variablen an einem Punkt in einem Programm aus alle folgenden Programmabschnitte

gesammelt, die direkt oder indirekt von dem Wert dieser Variablen abhängen. Wenn

bereits ein PDG vorliegt, ist die Berechnung eines Forward Slices trivial:

57 Zusammenhangskomponenten verbieten per Definition jegliche Überlappung.
58 Frei adaptiert von [4], Figure 6, Seite 325.
59 Beschrieben in [21].
60 Beschrieben in [22].

struct coordinates *generate_example_point () {

 struct coordinates *point = malloc(sizeof(struct coordinates));

 int x = 0;

 int y = 0;

 int z = 0;

 // aufwändige Berechnung von x

 // …

 // aufwändige Berechnung von y

 // …

 // aufwändige Berechnung von z

 // …

 point->x = x;

 point->y = y;

 point->z = z;

 return point;

}

32

Definition 7 (Forward Slice)61: Sei 𝐺 ein PDG der Prozedur 𝑃, und sei 𝑠 ein Statement

in 𝑃. Der statische intraprozedurale Forward Slice von 𝑠 über 𝑃 ist definiert als die

Menge aller von 𝑠 in 𝐺 erreichbaren Knoten.

Im obigen Beispiel der Koordinatenberechnung ergeben die drei Initialisierungen von x, y

und z drei separate Forward Slices, die erst in den letzten vier Zeilen eine Überlappung

haben. Diese Datenflüsse werden fortan als semantische Threads bezeichnet.

Definition 8 (Semantischer Thread)62: Ein semantischer Thread einer Prozedur 𝑃 ist

entweder ein Forward Slice oder die Vereinigung mehrerer Forward Slices.

Diese semantischen Threads haben in der Regel einen Grad an Überlappung mit anderen

semantischen Threads. Im obigen Beispiel ist die Überlappung relativ gering, daher ist

anzunehmen, dass die unterschiedlichen Datenflüsse unterschiedliche Berechnungen und

Programmaspekte darstellen. Ist die Überlappung zweier semantischer Threads allerdings

zu hoch, ist davon auszugehen, dass die zwei einzelnen Threads zu einer höheren,

größeren Berechnung gehören. Daher werden diese stark überlappenden Threads zu

einem zusammenfassenden Thread gruppiert.

Codebeispiel 5: Beispiel für stark überlappende semantische Threads.

In Codebeispiel 5 ist direkt ersichtlich, dass obwohl die Initialisierungen von a und b

mehrere semantische Threads erzeugen, diese in Wirklichkeit zu einer größeren

Berechnung im Rumpf der Schleife gehören. Dies als getrennte Threads anzusehen wird

nicht nur redundante Codeklone erzeugen, sondern könnte auch die Sicht auf größere

Zusammenhänge verwehren. Daher werden die interessanten 𝛾-überlappenden

semantischen Threads63 𝐼𝑆𝑇(𝑃, 𝛾) definiert, die eine Auswahl von semantischen Threads

treffen, die möglichst gute Kandidaten für semantische Klone erzeugen.

61 Aus [4], Definition 3.4.
62 Aus [4], Definition 3.5.
63 Fortan kurz „ISTs“.

int example () {

 int a = 1;

 int b = 2;

 for (int j = 0; j < b; j++) {

 // umfangreiche Berechnung mit j, a und b

 }

 // …

}

33

Definition 9 (interessante semantische Klone)64: die Menge der interessanten, 𝛾-

überlappenden semantischen Threads ist eine endliche Menge von semantischen Threads

mit folgenden Eigenschaften:

1. Die Menge ist vollständig, ihre Vereinigung entspricht dem PDG.

2. Die Menge darf keine Threads enthalten, die vollständigen in anderen Threads

enthalten sind.

∄𝑠𝑙, 𝑠𝑙′ ∈ 𝐼𝑆𝑇(𝑃, 𝛾): 𝑠𝑙′ ⊆ 𝑠𝑙

3.Zwei beliebige Threads in der Menge dürfen sich in maximal 𝛾 Knoten überschneiden:

∀𝑠𝑙, 𝑠𝑙′ ∈ 𝐼𝑆𝑇(𝑃, 𝛾): |𝑠𝑙 ∩ 𝑠𝑙′| ≤ 𝛾

4. 𝐼𝑆𝑇(𝑃, 𝛾) ist maximal, d.h. es hat die maximale Größe aller Mengen, die Eigenschaft

1-3 erfüllen.

Mit einer maximalen Überdeckung von 𝛾 = 1 werden für das Codebeispiel 5 drei

separate, semantische Threads erzeugt. Ein Spezialfall stellt 𝛾 = 0 dar, denn dann werden

genau die Zusammenhangskomponenten erzeugt.

Einen Algorithmus für die Berechnung der 𝐼𝑆𝑇(𝑃, 𝛾) stellen Gabel et al vor65. Der

vorgestellte Algorithmus ist simpel in der Implementierung und hat im schlechtesten Fall

kubische Laufzeit. Dies stellt allerdings kein Problem dar, da in der Regel die Anzahl der

Knoten in den semantischen Threads gering ist. Darüber hinaus skaliert der Algorithmus

auch gut für größere Programme, da dort eher die Zahl der Prozeduren steigt, aber nicht

zwangsläufig deren Länge.

2.7 Ergebnisfilterung
Die in den vorangegangenen Schritten erzeugten Codefragmente können, je nach

Anforderung an die zugehörigen Generator mit unterschiedlichen Ansätzen erstellt

worden sein. Eine Variante ist, dass möglichst viele Fragmente erstellt werden, die

anschließend gefiltert werden, eine anderen Alternative ist ein aufwändigeres

Erzeugungsverfahren, das feiner hinsichtlich der erzeugten oder ausgelassenen Vektoren

entscheidet.

Die Ergebnisfilterung ist dahingehend trivial, dass das Ergebnis der LSH-Queries eine

Liste an Klonpaaren sind, die paarweise verglichen werden müssen. Diese Paare bestehen

aus zwei Codefragmenten, die die unterschiedlichen Stellen im Quellcode markieren.

64 Aus [4], Definition 3.6.
65 Siehe [4], Algorithm 1.

34

Die redundanten Einträge der Liste der Klonpaare müssen für ein aussagekräftiges

Ergebnis ausgefiltert werden. Dies schließt ein:

 Klonpaare, bei denen beide Fragmente auf den gleichen Code zeigen.

 Klonpaare, bei denen das eine Fragment ein Teilstück des anderen Fragments ist.

 Und abschließend die Filterung zwischen den unterschiedlichen Klonpaaren, mit

der Überprüfung, ob die beinhalteten Fragmente entweder äquivalent oder in den

anderen Fragmenten enthalten sind.

Diese Überprüfung muss performant umgesetzt werden, da die Zahl der erstellten

Klonkandidaten sehr groß werden kann.

35

3 Implementierung
Nachdem das theoretische Fundament gesichert ist, wird die Implementierung mit

Anbindung an das Bauhaus-Framework besprochen. Hierbei wurde ein Programm

namens Bryant66 implementiert, dass an das Framework andockt und die

Codeklonerkennung implementiert. Bryant, sowie der größte Teil von Bauhaus, sind in

Ada geschrieben67.

3.1 Bauhaus68
Das Projekt Bauhaus, eine Kooperation der Universität Stuttgart, der Universität Bremen

und der Firma Axivion GmbH ist ein Analyseframework für Softwaresysteme. Es kann

auf unterschiedlichen Ebenen eingesetzt werden, wie beispielsweise zur Beobachtung von

Softwarearchitektur, zur Ermittlung geklonter Quelltexte oder für die automatische

Generierung von Qualitätsmetriken. Ein weiterer Schwerpunkt ist die automatische

Identifikation von Programmierfehlern, mit speziellem Fokus auf Synchronisationsfehler

nebenläufiger Programme.

Abbildung 12: Aufteilung der Fachbereiche bei Bauhaus69.

Im Zentrum von Bauhaus steht der IML-Graph, der ein Abbild der Programmstruktur,

inklusive des ASTs, aller Typdeklaration und der darauf aufbauenden Daten gibt. Die

IML ist eine sprachübergreifende Zwischendarstellung, in die Bauhaus jedes Programm

nach der Kompilierung überführt. In dieser Zwischendarstellung können einheitliche

Analysen durchgeführt werden, die unabhängig vom verwendeten Frontend funktionieren

– neu hinzugefügte Sprachen im Frontend können direkt von den bereits existierenden

Analysen profitieren.

Durch den IML kann mittels unterschiedlicher Sichten navigiert werden. Diese Sichten

stellen eine Fragestellung dar, die der Anwender im Graph beantworten will, wie

66 Auch dieser Name ist – wie DECKARD – dem Film Blade Runner (1982) entliehen. Harry Bryant ist der Vorgesetzte

von Rick Deckard und ist sozusagen für dessen Funktionieren im größeren Gesamtgefüge zuständig.
67 Codebeispiele werden sich daher an Ada orientieren – in aller Regel wird dies aus Platzgründen aber kein

vollständiger, lauffähiger Programmcode sein.
68 Die Einführung basiert auf der Selbstbeschreibung der offiziellen Website der Universität Stuttgart zu Bauhaus, siehe

[23].
69 Von [23].

36

beispielsweise den Verlauf von Datenflussanalysen oder zugehörige Klongruppen eines

AST-Knotens.

Bauhaus ist aus mehreren separaten Programmen aufgebaut70, die für die Durchführung

der Analysen nacheinander ausgeführt werden. Die Analyseprogramme erwarten als

Eingabegraph immer den Ergebnisgraph des vorigen Schrittes. Die unterschiedlichen

Programme annotieren und erweitern den IML-Graphen immer weiter, so dass dieser

stetig reicher an Information wird. Dadurch können spätere Programme auf den

Ergebnissen voriger Schritte aufbauen.

Auch die Implementierung von Bryant erzeugt eine eigenständige Binary, die als Eingabe

einen in einer Datei gespeicherten IML-Graph erwartet. Die einzige Bedingung eines

korrekten Durchlaufs ist, dass die PDG-Analyse erfolgreich durchgeführt werden kann.

Dies bedeutet, die Voraussetzungen sind identisch mit denen der PDG-Analyse, was die

gesamte Analysekette inklusive der SSA-Form einschließt.

3.2 Überblick über Bryant
Einige essenzielle Parameter des Programms sind über einen Konfigurations-Record

steuerbar. Dieser ist aktuell statisch, einzelne (oder alle) Parameter davon können jedoch

über das Kommandozeileninterface (CLI) verfügbar gemacht werden.

Der Programmablauf hält sich eng an den in Kapitel 2 beschriebenen Ablauf des

Verfahrens. Die einzelnen Elemente sind in eigene Module ausgelagert. Diese sind

voneinander komplett unabhängig und können einfach aktiviert oder deaktiviert werden,

separat weiterentwickelt und getrennt betrieben werden. Die folgende Abbildung gibt

einen Überblick über die Programmstruktur.

70 Die Tools erzeugen zwar unterschiedliche Binaries, verwenden intern aber die gleichen Bibliotheken aus allgemeinen

Funktionen und Typdeklarationen.

37

Abbildung 13: Übersicht über die verschiedenen Komponenten von Bryant. Die Pfeile kennzeichnen die
Abhängigkeiten. Die Komponenten Bryant_Debug und Bryant_Reporting sind hier ausgenommen, da sie für die
generelle Funktionalität des Tools nicht relevant sind.

Das System besteht aus den folgenden Komponenten:

(Core)71: Main-Funktion und die Konfigurationsdateien.

Bryant_Code: Logik für die Generierung der AST- und PDG-basierten Codefragmente

(ein Fragment ist eine Kombination aus IML-Knoten und dem zugehörigen

charakteristischen Vektor).

Bryant_Debug: Hilfsfunktion um einige essenzielle Datenstrukturen auf dem CLI

darzustellen.

Bryant_Filter: Ergebnisfilterung, die doppelte Klone oder Klone, die eine Untermenge

anderer Klone sind, entfernt.

Bryant_IML: Ein Großteil des Adaptercodes zu IML. Dies umfasst den Code für die

Indexierung der IML-Knoten und die Funktion um alle Routinen im gegebenen

Programm zu finden.

Bryant_LSH: Berechnung der LSH-Parameter und das komplette LSH-Hashing und

dessen Berechnungen.

Bryant_Math: Hilfsfunktionen zu mathematischen Berechnungen, für die Erstellung von

Zufallszahlen und die Typ-Definition für die charakteristischen Vektoren.

71 Diese Dateien liegen im Hauptverzeichnis.

38

Bryant_Reporting: Auswertungsdaten wie Laufzeit, Anzahl der Vektoren und

Routinen. Hiermit können nach Durchlauf des Programms Auswertungen erstellt werden.

Im Folgenden wird das Zusammenspiel der einzelnen Komponenten beschrieben.

Außerdem werden einige Implementierungsdetails erwähnt, die bei der Funktion des

Klonerkenners eine wichtige Rolle spielen.

Abbildung 14: Überblick über den Programmfluss und die Zwischenergebnisse in Bryant. Die Kästen kennzeichnen
Komponenten, die Kreise und Ellipsen kennzeichnen Zwischenergebnisse (also Daten).

Zunächst wird über die CLI durch Bauhaus der IML bereitgestellt. Dies ist der

Einstiegspunkt der eigentlichen Implementierung. Anschließend werden aus dem IML-

Graphen alle Routinen extrahiert. Über diese Routinenliste wird iteriert und jede Routine

ist Eingabe aller Code-Fragment-Generatoren. Am Ende dieser Phase ist das

Zwischenergebnis eine Liste mit allen Code-Fragmenten. Diese wiederum sind erst

Eingabe um die LSH-Datenstruktur zu befüllen, anschließend wird mit jedem Fragment

aus der Liste nach den benachbarten Vektoren gesucht. Die gefundene Klonliste wird

abschließend noch gefiltert.

An diesem Punkt ist die eigentliche Klonsuche abgeschlossen, das Ergebnis sollte

allerdings noch persistiert werden. Hierfür gibt es Storage-Adapter, die für die

Speicherung im IML oder für anderweitige Speicherziele verantwortlich sind.

39

3.2.1 Adaption der Referenzimplementierung
Die Originalimplementierung von DECKARD72 liegt unter einer Open-Source-Lizenz vor

und dient teilweise als Vorlage für die Implementierung von Bryant. Die

Originalimplementierung ist eine Mischung aus C, C++, Python, Shell-Programmen und

einigen anderen Sprachen. Der Kern ist jedoch in den ersten drei Sprachen implementiert,

Shell dient hauptsächlich für die Erstellung komfortabler ausführbarer Dateien, die den

Kern in korrekter Reihenfolge aufrufen.

Von einer direkten Anbindung der Originalimplementierung (beispielsweise via FFI)

wurde abgesehen, da einzig die AST-Vektorgenerierung und LSH adaptierbar gewesen

wäre. Die Menge des eingesparten Codes wäre durch die notwendige Umformatierung

der Daten nahezu annulliert worden.

Bei enger Betrachtung ist die einzig tatsächlich interessante Bibliothek für eine externe

Einbindung LSH. Hier spricht gegen eine Adaption aber, dass die Größe der Bibliothek

relativ klein ist (und daher schnell nachprogrammiert ist), und dass die Bibliothek seit der

Originalimplementierung von 2005 nicht weiterentwickelt wird. Wenn in der Bibliothek

in Zukunft rege Entwicklungsarbeit stattfindet, lohnt sich hier allerdings eine

Neubewertung.

Ein rechtlicher Aspekt der gegen eine Adaption der LSH-Implementierung E²LSH73

spricht ist, dass die Implementierung zwischenzeitlich unter GPL steht. Die

Implementierung von E²LSH, die in DECKARD eingebettet ist, steht noch unter der

MIT-Lizenz, DECKARD selbst unter der Three-Clause-BSD Lizenz. Aber die aktuellste

LSH-Implementierung, von den ursprünglichen Autoren, steht inzwischen unter GPL,

eine Lizenz die durch ihr Copyleft nicht kompatibel mit der Lizenz von Bauhaus ist.

3.3 Extraktion der Routine

Abbildung 15: Phase in der Implementierung: IML / Routinen.

Der erste Schritt in Bryant ist, alle Routinen im IML zu finden. Die Implementierung ist

relativ kurz, da Bauhaus eine Komponente bereitstellt, mit der man mittels des Visitor-

72 Zu finden unter [24].
73 Die Originalimplementierung, unter [26] zu finden.

40

Pattern auf allen Knoten des IML-Graphen Aktionen ausführen kann. Die hier

implementierte Aktion ist einfach eine Liste an Routinen mitzugeben, an die bei jedem

Routinen-Knoten der aktuelle Knoten angehängt wird.

Besondere Beachtung gilt in dieser Phase totem Code, insbesondere Routinen, die nie

verwendet werden. Einige Analysen folgen den Aufrufen aus der main-Prozedur, sodass

diese nie aufgerufenen Routinen nicht analysiert werden. Dies wird bei der Suche nach

Routinen berücksichtigt. Bei jeder Routine wird überprüft, ob das „Pattern“-Attribute des

zugehörigen IML-Knotens leer ist. Falls nicht, wird davon ausgegangen, dass diese

Routine analysiert wurde und sie wird zur globalen Routinenliste hinzugefügt.

3.4 Vektorgenerierung

Abbildung 16: Phase in der Implementierung: Vektorgenerierung.

Die Vektorgenerierung aus der theoretischen Betrachtung wird zu einer Codefragment-

Generierung in der Implementierung. Ein Codefragment ist eine Liste an IML-Knoten

inklusive des zugehörigen charakteristischen Vektors.

Die Codefragmente sind die zentrale Datenstruktur der Implementierung. Ein

Codefragment-Generator kann einfach in das System eingehängt werden, solange er das

Interface erfüllt, er einen Routinen-Knoten erwartet und an die Vektorliste die

ausgewählten Codefragmente anhängt. Durch diese wenig restriktive Bedingung können

einfach neue, ausgefeiltere Klongeneratoren in das Verfahren eingebracht werden.

In der Implementierung bisher sind die zwei Generatoren für die Knoten direkt aus dem

AST nach DECKARD und für die PDG Slices vorhanden.

3.4.1 Relevante und signifikante charakteristische

Vektoren
Bevor die konkreten Algorithmen für das Auswählen der Codefragmente vorgestellt

werden, müssen noch die Begriffe relevanter Knoten und signifikanter Knoten aus der

theoretischen Betrachtung für die Implementierung definiert werden.

41

 Relevante Knoten
Die relevanten Knoten definieren die IML-Knotentypen, die einen Einfluss auf den

charakteristischen Vektor haben. Die Implementierung ist hierbei losgelöst von der

Typstruktur des Bauhaus-IML-Moduls, um BRYANT als komplett eigenständiges Paket

zu etablieren. Die wesentliche Aufgabe des Bryant_IML-Pakets besteht darin, einem

IML-Knoten einen Index im charakteristischen Vektor zuzuweisen. Falls ein solcher

Index gefunden wird, ist der Knoten automatisch als relevant definiert. Falls kein Index

gefunden wird, ist der Knoten nicht relevant. Dies ist schnell ersichtlich in der

zugehörigen Implementierung:

Codebeispiel 6: Relevanz-Überprüfung eines Knotenindizes74.

Die erwähnte Unabhängigkeit vom Kern von Bauhaus erkennt man daran, dass die

Spezifikation der IML-Knoten nicht berührt wird. Ein gangbarer Weg wäre das

Hinzufügen eines neuen Attributes an jeden IML-Knoten gewesen, der den Index

zurückgibt. Dies hat aber mehrere Nachteile: zunächst trägt nun jeder Knoten

Informationen über BRYANT, auch wenn das Tool selbst möglicherweise gar nicht

verwendet wird. Außerdem ist es bei direkter Attributierung nicht trivial die Index-

Zuweisung auszutauschen, was gerade bei der Evaluierung unterschiedlicher

Relevanzkriterien interessant sein kann.

Daher verwendet die Implementierung eine Hashmap, die einem Tag75 in Ada einen

Index zuordnet. Eine alternative Implementierung wäre ein Test auf den ‘Class-Typ (pro

Test also 𝑂(𝑑)76 Vergleiche), was den Vorteil hätte, dass die Erkennung die

Typhierarchie ausnutzen könnte. Aus Performancegründen aber wurde der Weg der

direkten Typvergleiche auf die Ada-Tags mit 𝑂(1)-Zugriff in der Hashmap implementiert

– auch wenn für alle Untertypen ein eigener Eintrag hinzugefügt werden müsste. Da die

Typhierarchie der IML-Knoten aber keinem konstanten Wandel unterliegt, ist der

Wartungsaufwand für diese Implementierung im vertretbaren Rahmen.

Mit der Zuweisung von IML-Knoten auf Index wird auch ein weiterer Aspekt abgebildet.

Einige IML-Knoten sollen explizit vereinheitlicht werden, so dass diese als Duplikate

erkannt werden.

Die Conditionals werden als separate Einträge gehandhabt:

74 Der Fehlerfall, dass ein zu großer Index zurückgegeben wird muss durch das Typsystem abgefangen werden.
75 Der konkrete Objekttyp.
76 𝑑 ist die Länge des charakteristischen Vektors.

function Node_Index_Is_Relevant (Index : Integer) return Boolean is

begin

 return Index > -1;

end Node_Index_Is_Relevant;

42

Abbildung 17: Conditionals in der IML-Spezifikation.77

Der zugehörige Initialisierungscode weist jedem Knoten einen unterschiedlichen Eintrag

zu:

Codebeispiel 7: Indexierung der unterschiedlichen Typen von Conditionals in Bryant.

Bei den unterschiedlichen Typen von Zuweisungen soll allerdings nicht unterschieden

werden:

Abbildung 18: Assignments in der IML-Spezifikation.78

Sondern es sollen alle Zuweisungen explizit einheitlich behandelt werden. Zwei

Codeabschnitte, die sich folglich einzig in der Art der Zuweisung unterscheiden werden

als identisch erkannt.

Codebeispiel 8: Indexierung der unterschiedlichen Typen von Assignments in Bryant.

Durch diese bewusste Vereinheitlichung kann die Genauigkeit, also im Grunde das

semantische Hintergrundwissen des Klonerkenners, kalibriert werden. Mit zu vielen

identischen Indizes werden Programmabschnitte als identisch angesehen, die nicht

77 Aus der Visualisierung der Spezifikation der Bauhaus-Dokumentation übernommen.
78 Aus der Visualisierung der Spezifikation der Bauhaus-Dokumentation übernommen.

Mapping.Insert (Catch_Blocks.Catch_Block_Class'Tag, 1);

Mapping.Insert (And_Thens.And_Then_Class'Tag, 2);

Mapping.Insert (Case_Branchs.Case_Branch_Class'Tag, 3);

Mapping.Insert (Conditional_Operators.Conditional_Operator_Class'Tag, 4);

Mapping.Insert (If_Statements.If_Statement_Class'Tag, 5);

Mapping.Insert (Or_Elses.Or_Else_Class'Tag, 6);

Mapping.Insert (Assignments.Assignment_Class'Tag, 23);

Mapping.Insert (Initializes.Initialize_Class'Tag, 23);

Mapping.Insert (Shortcut_Assignments.Shortcut_Assignment_Class'Tag, 23);

Mapping.Insert (Prefix_Operators.Prefix_Operator_Class'Tag, 23);

43

identisch sind. Mit zu vielen unterschiedlichen Indizes werden nur sehr (auch syntaktisch)

ähnliche Programmabschnitte erkannt.

 Signifikante Vektoren
Die relevanten Knoten definieren die IML-Knoten, die Einfluss auf den

charakteristischen Vektor haben. Aber nicht jeder der relevanten Knoten ist ein geeigneter

Kandidat um als AST-Wurzel für einen Klonkandidaten zu fungieren. Literale sind ein

relevanter Knoten, jedoch ist ein Literal kein geeigneter Ursprungsknoten für einen Klon.

Daher wurden in Kapitel 2.4 signifikante Vektoren definiert. Dies sind Vektoren die

geeignete Kandidaten für Klone sind – weil der Knoten vom richtigen Typ ist oder weil

der Knoten ausreichend Kindknoten besitzt. Diese Einschränkung senkt nicht die Zahl der

erkannten Klone: bei der AST-Generierung können trotzdem Kindknoten eines nicht-

signifikanten Vektors zu einem Kandidatenfragment vereint werden, durch das Vector

Merging.

Die getroffene Auswahl signifikanter Knoten basiert auf manuellen Tests, die eine

möglichst gute Balance zwischen genug Vektoren und korrektem Ergebnis liefern. Die

folgende Liste betrifft die Typhierarchie, es sind also immer der konkrete Typ selbst, als

auch alle abgeleiteten Typen enthalten.

 Assignments

 Conditionals

 Loop_Statments

 Routine_Calls

 Unconditional_Branch

Diese Auswahl sollte in zukünftigen Anpassungen der Implementierung weiter überprüft

und gegebenenfalls optimiert werden.

Um in die globale Liste aller Codefragmente (mögliche Klonkandidaten) aufgenommen

zu werden, muss das Fragment nicht nur relevant und signifikant sein, sondern es muss

auch eine ausreichende Größe besitzen. So sollen selbst für signifikante Knoten, die zu

einer sehr geringen Menge an Quellcode gehören, keine Vektoren erstellt werden, da

sonst die Gefahr von außerordentlich vielen Duplikaten besteht.

Daher wird eine Mindestgröße79 des Vektors eingeführt, die festlegt, ob für diesen Vektor

ein Fragment erstellt wird oder nicht. Diese Mindestgröße gilt für alle Vektoren –

unabhängig davon, wie viel konkrete IML-Knoten in diesem Code-Fragment enthalten

sind. Die Längenberechnung kann nicht ungewichtet sein. Intuitiv ist eine Initialisierung

eines Arrays (5 Literale) weniger geeignet als Klonkandidat, als eine ganze Routine mit

mehreren Assignments und If-Conditions (die insgesamt ebenfalls 5 Knoten sein können).

79 Die Größe ist hier definiert als die Summe aller Einträge.

44

Codebeispiel 9: Array-Initialisierung mit 5 Einträgen.

Der Code in Codebeispiel 9 erzeugt für die gesamte Zuweisung einen Vektor der Größe 7

(1x L_Value, 1x Assignment, 5x Literal). Unabhängig von der Länge ist der Vektor

dennoch nicht als Wurzel eines Klonkandidaten geeignet. Aus diesem Grund zählt die

aktuelle Implementierung momentan die Zahl der signifikanten Knoten. Es wurde eine

Mindestzahl von 3 festgelegt – diese Zahl, aber auch die gesamte Logik um einen Knoten

als mögliche Klonkandidatenwurzel festzulegen, kann einfach erweitert und getestet

werden.

3.4.2 Codefragment-Generierung im AST
Die Implementierung der AST-basierten Codefragment-Generierung hält sich nahe an die

Beschreibung des Algorithmus im zugehörigen Artikel80. Grob gesagt ist es ein

Baumdurchlauf, bei dem in jedem Schritt „on-the-fly“ die Vektoren für den aktuellen

Knoten erstellt werden. Hierfür ist nur ein einmaliger Durchlauf aller AST-Knoten des

Baumes nötig.

Die AST-Knoten81 werden in Post-Order-Reihenfolge durchlaufen, da die Vektoren von

den Blättern des Baumes aufwärts erstellt werden müssen. Jeder Vektor eines Knoten ist

die Summe aller Vektoren der Kinder, inklusive der Erhöhung des Eintrages im

Knotenindex, falls der Knoten relevant ist.

Beim Vector Merging in DECKARD wird zunächst für jeden Knoten festgelegt, ob dieser

zulässig für solch eine Kombination ist. Da DECKARD auf dem Parsebaum arbeitet, ist

diese Unterscheidung wichtig, um unvollständige oder nicht sinnvolle Kombinationen

von Knoten zu unterbinden. So sollen keine Knoten die über Block-Grenzen

hinausreichen verbunden werden (das letzte Statement eines while-Bodys, mit dem

darauffolgenden Statement). Dieses Problem findet sich in dieser Form nicht in einer auf

einer AST-basierenden Implementierung. Nichtsdestotrotz können an dieser Stelle

zusätzliche Überprüfungen hinzugefügt werden, die ungewollte82 Kombinationen

verhindern.

Bei dem Durchlauf der Kindknoten werden alle Kindknoten in einer Liste

zwischengespeichert, aus der dann die zusammengesetzten Vektoren mehrerer IML-

Knoten erzeugt werden. Hierbei wird ein Sliding Window über die Liste der Vektoren

verschoben, ein neues Code-Fragment aus diesen IML-Knoten erstellt und der

charakteristische Vektor erzeugt. Wenn dieser Vektor die Signifikanzkriterien erfüllt,

wird er zur Liste der Klonkandidaten hinzugefügt. Die Relevanz wird für die

80 Siehe [6].
81 „Syntactic Children“ in IML.
82 Welche Kombinationen im Detail ungewollt sind, muss vorher festgelegt werden.

int[] example = {1, 2, 3, 4, 5};

45

kombinierten Fragmente nicht geprüft, da es eine Kombination aus mehreren Elementen

ist.

Dieses Sliding Window wird nach jedem Durchlauf um den Faktor 1,5 vergrößert

(abgerundet) und das Vector Merging beginnt erneut. Dieser Vorgang endet, wenn das

Sliding Window länger als die Gesamtlänger der benachbarten Knoten ist. DECKARD

implementiert in der Parsebaum-Umsetzung die besondere Bedingung, dass wenn sowohl

der Elternknoten, als auch der Kindknoten zu einem Merge kombinierbar sind, der

Kindknoten aus dem Sliding Window herausgenommen wird. Auf diese Weise sollen

größere Klone favorisiert werden. Es ist noch unklar, wie sich diese Eigenschaft auf die

Verwendung des ASTs überträgt. Gabel et al erwähnen diese Beschränkung nicht. In der

Implementierung wurde diese Beschränkung so umgesetzt, dass wenn der Elternknoten

signifikant ist, alle signifikanten Kindknoten aus dem Sliding Window entfernt werden.

3.4.3 Codefragment-Generierung im PDG
Die Implementierung der Fragmenterzeugung mithilfe des PDG ist in einigen Bereichen

nur ein dünner Adapter um die Bauhaus-interne PDG-Komponente. So wird die PDG-

Erzeugung und der zugehörige intraprozedurale Backward Slicer verwendet. Dieser Slicer

unterstützt bereits die automatische Auftrennung strukturierter Rückgabewerte – so wird

das in Codebeispiel 4 beschriebene Problem umgangen.

Ausgehend von der Liste der Backward Slices werden die ISTs erzeugt. Diese ISTs

werden anschließend umgewandelt zu Codefragmenten. Dazu werden alle IML-Knoten

der Slices zu einer Liste zusammengeführt und der charakteristische Vektor berechnet.

Hier ist darauf zu achten, den charakteristischen Vektor für jeden IML-Knoten aus dem

Slice inklusive der AST-Kindknoten zu berechnen. Nur so können die Vektoren

letztendlich korrekt verglichen werden.

In der Implementierung wird von jeder Routine der sogenannte Link_Out_Use-Knoten

geladen, der Informationen über Rückgabewerte und ausgehende Seiteneffektvariablen

bündelt. Ausgehend von diesen Verbindungen in den umliegenden Code werden die

Backward Slices erstellt.

Ein Problem dieser Implementierung ist, dass Code, der nicht zu den ausgehenden

Verbindungen beiträgt nicht in den Slices auftritt. Dies ist Code, der eigentlich

Seiteneffekte besitzt, diese von Bauhaus im Moment aber nicht als solche erkannt

werden. Dies betrifft meist Funktionen und Prozeduren der Laufzeitumgebung. So wird

Timing-Code (der als Seiteneffekt das Laden der aktuellen Uhrzeit besitzt) und

Ausgabecode wie printf (der als Seiteneffekt die Ausgabe auf stdout besitzt) nicht

korrekt markiert. Hierdurch entfallen einige mögliche Threads, da diese in den

Link_Out_Use-Listen nicht auftauchen.

46

Codebeispiel 10: Beispielcode, der sich von Codebeispiel 3 nur durch zusätzlich hinzugefügten Timing-Code
unterscheidet.

Obenstehendes Beispiel wird durch die aktuelle PDG-Implementierung korrekt als Klon

erkannt. Der Thread um den Timing-Code und um die Variablen start und finish,

zusammen mit dem abschließenden printf()-Aufruf wird in der Betrachtung nicht

auftauchen. Dies führt in diesem Beispiel weiterhin zu einem korrekten Ergebnis, kann

aber beispielsweise doppelten Timing-Code oder alternative Fälle nicht korrekt erkennen.

Ein Spezialfall dieses Problems ist toter Code. Auch dieser wird nicht in den Backward

Slices erscheinen. Hier gilt jedoch, dass dieser nicht relevant für diese Untersuchung ist

und besser durch eine dafür ausgerichtete Toter-Code-Analyse gefunden und entfernt

werden sollte.

Die Implementierung von Gabel et al umgeht dieses Problem, in dem sie Forward Slices

für jeden Knoten im AST in aufsteigender Reihenfolge der Quellcode-Zeilennummern

erzeugt. Durch dieses Verfahren wird auf jeden Fall jeder AST-Knoten der Routine zu

mindestens einem IST hinzugefügt. Möglicherweise könnte diese Erweiterung bei der

Bauhaus-PDG-Implementierung ebenfalls unterstützt werden83.

Eine wichtige Abweichung zur Original-Implementierung von Gabel et al ist, dass

Backward Slices anstelle von Forward Slices verwendet werden. Diese erstellen die

Datenflüsse nicht vorwärts ausgehend von deklarierten und initialisierten Variablen,

sondern rückwärts starten bei Rückgabewerten und Schreibzugriffe auf externe

Ressourcen. Dies hat zunächst praktische Gründe (Backward Slices sind in dem zu dieser

Arbeit externen Modul implementiert), aber auch kleine praktische Vorteile.

Während sich Timing-Code wie toter Code verhält, im Hinblick darauf, dass beide

Varianten in aller Regel keine Datenabhängigkeiten in den aktiven Code haben, agiert

83 Wobei dies eine Designentscheidung ist, da die Aussagekraft von Codeklonen in Timing-Code, Debug-Code und

totem Code diskutiert werden kann.

int func (int i, int j) {

 int k = 10;

 long start = get_time_millis();

 long finish;

 while (i < k) {

 i++;

 }

 finish = get_time_millis();

 printf(“loop took %dms\n“, finish – start);

 j = 2 * k;

 printf(“i=%d, j=%d\n“, i, j);

 return k;

}

47

Debug-Code anders. Wie beispielhaft im Codebeispiel 3 an dem printf()-Aufruf zu

sehen ist, muss Debug-Code für eine sinnvolle Ausgabe zwangsläufig die existierenden

Variablen verwenden. Dies erzeugt eine Datenabhängigkeit, die in einem Forward Slice

korrekt erkannt wird. Durch diesen zusätzlichen Eintrag kann ein vorhandener Klon

möglicherweise unerkannt bleiben, da der zusätzliche Debug-Aufruf die Vektoren zu weit

auseinanderschiebt. Hier sind Backward Slices im Vorteil, da in diesen nur Code

auftaucht, der zum „Endergebnis“ der Funktion (sei es eine Zuweisung an eine externe

Variable oder ein Rückgabewert) führt. Das schließt reinen Debug-Code aus.

Hier herrscht nun allerdings offensichtlich ein Widerspruch zwischen dem Wunsch auf

der einen Seite, seiteneffektbeladenen Laufzeitsumgebungs-Code in den Slices zu finden

und der praktischen Eigenschaft auf der anderen Seite, dass Debug-Code in den Slices

nicht auftaucht. Diese Entscheidung und Diskussion wird einer zukünftigen Optimierung

überlassen, diese Implementierung verbleibt auf dem Stand eines dünnen Adapters um die

bestehende PDG-Bibliothek, da die Erstellung von PDGs nicht Kernstück dieser

Implementierung ist, sondern nur eine Komponente.

3.5 LSH

Abbildung 19: Phase in der Implementierung: Locality Sensitive Hashing.

LSH ist – zusammen mit dem Konzept der charakteristischen Vektoren – das Kernstück

der Implementierung und des Verfahrens. Diese Kombination ist der Fortschritt, der

dieses Verfahren erst praktikabel, performant und skalierbar macht.

3.5.1 Parametergenerierung
Das LSH-Verfahren benötigt eine Menge an Vorverarbeitung. Zunächst werden die LSH-

Parameter berechnet, die die Kerneigenschaften des Verfahrens steuern. In dieser

Implementierung werden die Parameter 𝐿 und 𝑘 statisch nach dem theoretischen

Optimum aus Effektivität und geringer Laufzeit berechnet (siehe Kapitel 2.5.2 für die

konkreten Formeln), es existieren jedoch alternative Ansätze. Im Ausblick (Kapitel 6)

wird eine solche Alternative beschrieben.

Vor der Verwendung von LSH selbst wird über die Bryant_LSH_Parameters-

Komponente die Konfiguration erstellt, die später als Eingabe in die Hauptfunktion des

LSH eingeht. Diese Konfiguration beinhaltet alle für LSH wichtigen Parameter:

48

 Die Wahrscheinlichkeit, dass zwei kollidierende Hashes zu nahen Vektoren

gehören 𝑝1.

 Die Wahrscheinlichkeit, dass zwei kollidierende Hashes nicht zu nahen Vektoren

gehören 𝑝2.

 Die maximale Vektor-Entfernung von Codeklonen 𝑅.

 Die Breite der Segmente auf der reellen Achse 𝑤.

 Die Anzahl der Vektoren 𝑛 (diese Zahl ist Eingabe für einige der anderen

Parameter).

 Die Anzahl, wie oft ein Vektor hintereinander gehasht wird 𝑘.

 Die Anzahl, in wie viele Buckets der Vektor maximal gehasht wird 𝐿.

 Die Hashfunktionen 𝑔𝑖.

 Die Hashfunktion, die den durch g() berechneten Vektoren den Bucketindex

zuweist.

 Die Hashmap, in der die Vektoren gespeichert werden.

Wie bereits am Parameter 𝑛 ersichtlich ist, sind diese Parameter spezifisch für eine

Codefragment-Liste. Wenn an diese Liste neue Elemente hinzugefügt oder entfernt

werden, sollte die Datenstruktur neu erstellt werden. Die Hashmap selbst wird ebenfalls

in den Parametern gespeichert. Dies spiegelt die Tatsache wider, dass die restlichen

Parameter zu den Vektoren in der Hashmap gehören.

3.5.2 Befüllung der Hashmap
Nachdem die Parameter erstellt wurden, muss in einem einmaligen Durchlauf jedes

Codefragment in die LSH-Struktur eingefügt werden. Dabei wird der Vektor in die 𝐿

unterschiedlichen Buckets gehasht.

Die Verwendung einer Hashmapstruktur (im Gegensatz zu einem Vektor oder einem

Array) ist eine bewusste Entscheidung: der Schlüsselraum der Hashmap ist nicht sehr

dicht besiedelt, was bei Verwendung eines Arrays zu einem unnötig großen

Speicherbedarf führen würde. Für solch einen Schlüsselraum ist die Verwendung einer

Hashmap ideal.

49

Abbildung 20: Zum besseren Verständnis noch einmal Abbildung 10 aus Kapitel 24, das den Ablauf des Hashings
visualisiert.

Bei diesem Hashing wird zunächst ein neuer Float-Vektor mit 𝑘 Einträgen erstellt. Jeder

dieser Einträge ist das Ergebnis des ℎ𝑖-Hashings (𝑖 = 1 … 𝑘)84. Diesem neuen Vektor

wird mittels der Hashmap-Hashfunktion ein Bucketindex zugewiesen. Diese Hashmap-

Hashfunktion besteht abermals aus einem Skalarprodukt mit einem zufälligen Vektor,

Modulo einer großen Primzahl (um die Zahl der Kollisionen zu minimieren), Modulo der

Hashmap-Größe (die auf die Anzahl der Vektoren gesetzt wird). Dadurch wird

sichergestellt, dass auch für kleine Vektormengen keine weit verstreuten Bucketindizes

errechnet werden.

Der Parameter 𝐿 gibt die maximale Zahl der Buckets an, in die ein Vektor eingefügt wird.

Für jedes 𝑖 = 1 … 𝐿 gibt es eine eigene Hashfunktion 𝑔𝑖, das bedeutet es gibt insgesamt

𝑘 ∗ 𝑙 unterschiedliche Hashfunktionen ℎ.

84 Die gesamte Hashingfunktion, die den 𝑑-dimensionalen charakteristischen Vektor auf den mehrfach gehashten 𝑘-

dimensionalen Vektor überführt, heißt 𝑔 (wie in Kapitel 2.5.2 beschrieben).

50

In jedem Bucket ist eine Liste an Pointern zu in diesen Bucket gehashten Codefragmenten

gespeichert.

3.5.3 Benachbarte Vektoren eines Vektors finden
Nachdem alle Punkte einmalig in die LSH-Datenstruktur eingefügt wurden, können nun

Anfragen nach benachbarten Vektoren beantwortet werden.

Hierzu werden zu einem Anfragevektor durch die beiden Hashingfunktionen alle

Bucketindizes berechnet. Zwischen dem Anfragevektor und allen Vektoren in diesen

Buckets wird die tatsächliche Distanz (euklidische Distanzmetrik) berechnet. Alle

Vektoren, zu denen die Distanz geringer als die definierte Maximaldistanz 𝑅 ist, werden

als Ergebnisliste zurückgegeben.

Eine kleine Optimierung ist hier verbaut: die Definition der euklidischen Distanz sieht am

Ende der Berechnung vor, die Quadratwurzel aus der restlichen Berechnung zu ziehen85.

Dies ist in aller Regel eine relativ teure Berechnung. Die Berechnung der Quadratwurzel

kann hier ausgelassen werden, wenn das Ergebnis zum Quadrat der Maximaldistanz 𝑅2

verglichen wird. 𝑅2 wird einmalig bei der Berechnung der restlichen LSH-Parameter

gespeichert und muss anschließend nicht neu berechnet werden.

3.6 Größensensitive Klonerkennung

Abbildung 21: Phase in der Implementierung: größensensitive Klonerkennung.

Eine weitere Optimierung, die in DECKARD vorgestellt wird, ist „Size Sensitive Clone

Detection“86. Bei diesem Verfahren werden nicht alle Vektoren zusammen durch LSH

verglichen, sondern es wird eine zusätzliche Gruppierung vorgeschalten.

Dies hat zwei Gründe. Zunächst kann durch ein simples Abschätzen der Länge eines

charakteristischen Vektors möglicherweise entschieden werden, ob dieser ein Klon mit

einem anderen Vektor sein kann. Wenn man errechnet, dass die Längen zweier Vektoren

um mehr als 𝑅 auseinanderliegen, ist es unmöglich, dass diese zwei Vektoren Klone

repräsentieren.

85 Siehe Kapitel 7.1.
86 Aus [6], Kapitel 3.4.

51

Ein weiterer Vorteil der Vorverarbeitung ist, dass unterschiedliche LSH-Parameter

verwendet werden können. Bei Codefragmenten die zu größeren Quellcode-Abschnitten

gehören, kann die maximale Edit-Distanz im Vergleich zu Fragmenten, die sehr kurze

Abschnitte repräsentieren, vergrößert werden. Dies ermöglicht es, die Klonerkennung

adaptiv an die Größe der zugrundeliegenden Code-Abschnitte anzupassen.

Beide zusätzlichen Faktoren (Länge des Vektors und Anzahl Zeilen im Quellcode) lassen

sich einmalig in der Vektorgenerierung erzeugen und können als zusätzliche Einträge im

Code-Fragment gespeichert werden. Die Gruppierungssegmente können frei definiert

werden, jedoch sollten sich diese um mindestens 𝑅 überschneiden, so dass gesichert ist,

dass weiterhin alle Klone korrekt erkannt werden.

In Bryant ist diese Optimierung nicht verbaut. Bei der Evaluierung wurde festgestellt,

dass die vorliegende Implementierung aus reinen Laufzeiteigenschaften die Optimierung

im Moment nicht benötigt. Bei mehreren Tests wurde gemessen, dass die aktuelle

Implementierung (für Initialisierung und Querying für alle Vektoren) etwa 500.000 bis

1,5 Millionen Vektoren pro Sekunde schafft. Dies ist für das Laufzeitverhalten

ausreichend, sodass die zusätzliche Komplexität explizit nicht in das System

aufgenommen wurde.

3.7 Nachbearbeitung der Ergebnisliste

Abbildung 22: Phase in der Implementierung: Ergebnisfilterung.

Nachdem in der Initialisierung von LSH mit allen Codefragmenten die zugehörigen

Buckets gefüllt wurden, können anschließend wieder mit einer Iteration über alle

Codefragmente die zugehörigen Klone erfragt werden. Diese unbearbeitete Klonliste

kann doppelte Ergebnisse enthalten, sowie Ergebnisse mit IML-Knoten, die vollständig in

einem anderen Ergebnis enthalten sind. Beispielsweise könnte der Rumpf einer Schleife

ein Klon zu einem anderen Fragment sein, die Schleife selbst wurde allerdings ebenfalls

als Klon erkannt. In diesem Fall ist immer der größtmögliche Klon interessant, das heißt

Duplikate und Teilergebnisse können aus der Liste entfernt werden.

Dies geschieht in der Implementierung in einem Zweipass-Verfahren. Im ersten

Durchlauf werden exakte Duplikate aus der Klonliste entfernt. Dies sind Codefragmente,

bei denen alle zugehörigen IML-Knoten identisch in einem anderen Fragment enthalten

sind.

52

Im zweiten Durchlauf werden die Typhierarchien betrachtet. Nun werden alle Fragmente

entfernt, deren IML-Knoten Kinder der IML-Knoten des anderen Fragments sind. So

wird das oben erwähnte Beispiel mit der Schleife entdeckt und herausgefiltert.

Das Ergebnis ist eine Liste an Klonen, die die maximale Anzahl eindeutiger Klone mit

maximaler Größe enthält. Dieser Durchgang ist wichtig. Im Regelfall liegt bei naiver

Vektorgenerierung der Anteil der redundante (da doppelt vorhanden oder ein AST-

Unterbaum eines anderen Unterbaums) bei 70-80%.

3.8 Speicherung der Ergebnisse

Abbildung 23: Phase in der Implementierung: Speicherung der Ergebnisse.

Die Ergebnisse werden als neue Knoten an den IML-Graphen angehängt und erzeugen

damit eine neue Sicht innerhalb des Graphen. Dadurch können in Zukunft die

Klongruppen auch in Hilfsprogrammen wie dem IML-Navigator angesehen werden.

Zusätzlich dazu bietet Bryant eine weitere „Speicherart“ an: die Ausgabe auf die

Kommandozeile. Hierzu wird von jedem Klonpaar die jeweiligen Dateien inklusive aller

im IML verknüpften Zeilennummern angezeigt. Mit Hilfe dieser Ansicht können schnell

die Ergebnisse validiert werden.

3.9 Weitere Details der Implementierung
Eine für die Korrektheit von LSH wichtige Eigenschaft wurde in der Theorie zwar

beschrieben, blieb im Kapitel über die Implementierung bisher allerdings unerwähnt. Die

zugrundeliegende Verteilung der Zufallsvariablen ist essenziell. Wie in Kapitel 2.5.2

beschrieben ist es möglich, eine unter der 𝑙2-Norm stabile Zufallsvariable aus zwei

unabhängigen, normalverteilten Zufallsvariablen aus dem Intervall [0; 1] zu erzeugen.

Die zugehörige Implementierung wurde direkt von E²LSH87 adaptiert und sieht wie folgt

aus:

87 Siehe [26].

53

Codebeispiel 11: Erzeugung einer unter der 𝑙2-Norm stabilen Zufallsvariablen.

Eine kleine Optimierung ist, dass die Anzahl der in einem Codefragment enthaltenen

signifikanten Knoten direkt aus dem charakteristischen Vektor abgelesen werden kann. Je

nach Zuordnung der Indizes der Knotentypen können alle signifikanten Vektoren eigene

Einträge erhalten. Die Summe dieser Einträge ist dann die Anzahl der signifikanten

Vektoren. Diese Implementierung stellt diese Bedingung an die Indizierungsfunktion

allerdings nicht, hier wird die Anzahl der signifikanten Knoten in einem separaten Feld

des Codefragments gespeichert.

Eine weitere Entscheidung war es, die charakteristischen Vektoren als Float-Vektoren zu

implementieren und nicht, wie vermutlich intuitiv angenommen, als Natural-Vektoren.

Dies hat den Hintergrund, dass die Einträge der Hashing-Vektoren in den Hashfunktionen

ℎ𝑘,𝐿 ebenfalls Floats sind (es sind Zufallszahlen im Intervall [−1; 1]) und daher die

häufige Umwandlung der Typen beim Hashing nicht notwendig ist. Dies führt jedoch

dazu, dass für das Addieren der Vektoren die im Vergleich zu Integern langsamere Float-

Berechnung verwendet wird. Auf modernen CPUs sollte dieser Unterschied jedoch im

Vergleich zu den häufigen Umwandlungen nicht relevant sein.

Die gewählte Konstante in der L Bucketindex-Hashing-Funktion sollte zwei wichtige

Eigenschaften besitzen. Sie sollte möglichst hoch sein, dass selbst bei vielen Vektoren der

Schlüsselraum nicht unnötig verkleinert wird. Außerdem sollte sie eine Primzahl sein, um

die Zahl der Kollisionen zu minimieren. Aus diesem Grund wählt E²LSH die Zahl 232 −

588, die in dieser Implementierung übernommen wurde.

Die Einträge des Hashingvektors im Bucketindex-Hashing sind Zufallszahlen zwischen 0

und 229. Dieser Wert wurde ebenfalls von der E²LSH-Implementierung übernommen.

Dort wurde dieser Wert empirisch bestätigt.

88 Ein weiterer wichtiger Grund für die Wahl dieser Zahl in der Originalimplementierung ist, dass sich der Modulo mit

dieser Zahl effizient mit Bitshifts berechnen lässt. Für die Details sei auf die Referenzimplementierung unter [26]

verwiesen.

function Generate_Gaussian_Random return Float is

 X1 : Float;

 X2 : constant Float := Generate_Uniform_Random (0.0, 1.0);

begin

 loop

 X1 := Generate_Uniform_Random (0.0, 1.0);

 exit when X1 > 0.0;

 end loop;

 return Math.Sqrt (-2.0 * Math.Log (X1)) * Math.Cos (2.0 * Ada.Numerics.Pi * X2);

end Generate_Gaussian_Random;

54

4 Evaluierung und Optimierung
Die Tests wurden manuell vorbereitet und durchgeführt. Die Analysen wurden mit

frozen89 durchgeführt, eine kleinere Codebasis (727 LLOC), jedoch mit etwa 100

kleineren und größeren Klonen.

Die wichtigsten Kriterien bei der Analyse der Parameter sind:

 Die Anzahl der Vektorvergleiche.

 Die Anzahl der Buckets.

 Die Laufzeit.

 Die Treffer-Rate in LSH (Anzahl der nahen Vektoren geteilt durch die Anzahl

aller Vektorvergleiche).

 Die Anzahl der Klonkandidaten (vor der Filterung).

 Der Speicherbedarf.

Diese Eigenschaften und wie diese mit den Parametern zusammenhängen wird in diesem

Kapitel erläutert.

4.1 Problem der fehlenden kanonischen

Klontestsuite
Die unklare Beschreibung und Modellierung von Codeklonen macht es schwierige eine

allgemeingültige Definition zu treffen. Dies ist der Grund, weshalb fast alle verwandten

Arbeiten die Codeklone neu definiert haben. Meist hängt diese eng mit dem in diesem

Zug neu eingeführten Verfahren zusammen.

Dadurch bedingt existiert auch keine kanonische Klontestsuite, in der die Anzahl und die

genaue Position von Klonen definiert ist. Dies macht ein automatisiertes Testen praktisch

unmöglich, ebenso wie das Erstellen einer allgemeingültigen Testsuite.

4.2 Qualitative Bewertung der Klone
Eine qualitative Bewertung der Klone kann nur stichprobenhaft und manuell erfolgen.

Jeder gefundene Klon muss im Quellcode durch einen Programmierer validiert werden.

Dies wurde bei allen Testprogrammen durchgeführt.

Dieser Schritt ist wichtig um Parameter, wie die Relevanz- und Signifikanzkriterien zu

kalibrieren. Durch die Feinjustierung kann das Verfahren gegebenenfalls sogar auf

einzelne Programme feinjustiert werden, um eine optimale Erkennungsrate zu erreichen.

Die hier getroffene Definition ist so gewählt, dass sie für fast alle Programme sehr gut

funktionieren.

89 Siehe [27].

55

Codebeispiel 12: Trivialer Codeklon.

Das Problem der qualitativen Tests ist, dass diese schlecht skalieren. Da sie weiterhin

manuelle Überprüfung erfordern, kann zwar die Testumgebung so komfortabel wie

möglich gemacht werden (man könnte bei der Analyse direkt die betroffenen Quellcode-

Abschnitte des Klons in einer Vergleichsansicht anzeigen, um die direkte Bewertung zu

ermöglichen). Dies ist aber weit von der Skalierbarkeit einer automatischen Testsuite

entfernt.

4.3 Quantitative Bewertung der Klone
Für die quantitative Bewertung wurde eine eigene Reporting-Komponente entwickelt, die

viele Metriken aus dem Verfahren extrahiert. Dazu gehören:

 Anzahl der gefundenen Routinen, der besuchten AST-Knoten, der besuchten

AST-Sliding Windows und der besuchten Discriminated_Ref (eine zentrale

Datenstruktur der PDG-Erstellung).

 Anzahl der durch direkte AST-Knoten, durch Sliding Window und durch PDG

erstellten Fragmente.

 Anzahl der Fragmente, die mindestens einen Klon besitzen (kann auch ein

redundanter Klon sein).

 Anzahl der gefundenen Klone, vor und nach Filterung.

 Anzahl der LSH-Vektorvergleiche.

 Diverse Timings zu Routinen-Suche, Vektorerstellung, LSH-Initialisierung, LSH-

Abfrage und Filterung.

Neben der quantitativen Bewertung muss immer zusätzlich eine qualitative Bewertung

erfolgen, um abzusichern, dass die Ergebnisse nicht durch beispielsweise viele falsch-

int f1 ()

{

 int a, b;

 a = 10;

 b = 5;

 return a + b;

}

int f2 ()

{

 int a, b;

 a = 100;

 b = 50;

 return a + b;

}

56

positiven Klone verfälscht sind. Dies kann aufgrund der Menge nur durch Stichproben

geschehen, wurde jedoch bei der folgenden Analyse jedes Mal bestätigt.

4.4 LSH-Evaluierung
Als besondere Belastungsprobe wurden einige C++-Programme analysiert, mit

absichtlich ungünstig gewählten Parametern, um die Leistungsfähigkeit von LSH zu

messen.

Die Analyse erzeugte insgesamt 42.686 Code-Fragmente. Bei einer zu geringen

Mindestgröße der charakteristischen Vektoren (in diesem Fall 4 signifikante Knoten)

erkannte der Quellcode für fast jedes einzelne Fragmente Klone. Das liegt darin

begründet, dass die Programme wenig, aber ausgesprochen lange und tief verzweigte

Routinen implementiert. Dies führt dazu, dass fast alle Knoten signifikant sind.

Außerdem erzeugen lange und stark verzweigte Routinen sehr viele Backslices.

Bei der Analyse werden nur 181 Routinen besucht, allerdings über 43.000 AST-Knoten

besucht. Über die PDG-Backward-Slices wurden 38.686 Code-Fragmente erzeugt. Diese

hohe Anzahl der Knoten mit gepaart mit einem stark verzweigten Programmcode führt zu

über 580 Millionen Klonkandidaten, die durch LSH gehasht werden müssen.

Doch selbst diese 580 Millionen gehashten Vektoren (über 1,2 Milliarden

Vektorvergleiche) führen nur zu einer Laufzeit von etwa 7 Minuten. Dies zeigt, dass LSH

außerordentlich effizient ist. Die Initialisierung von LSH (nur das mehrfache Hashen und

Anhängen an die Buckets) dauerte trotz der mehr als einer halben Milliarde Vektoren

gerade einmal 0,1 Sekunden.

Da das LSH-Verfahren nicht deterministisch ist, schwanken die Zahlen der

Vektorvergleiche erheblich. In einigen Tests kamen Schwankungen um über 20%

zustande.

57

Abbildung 24: Schwankungen der Vektorvergleiche innerhalb einer Messung mit identischen Parametern.

Von der Zahl der Vektorvergleiche abhängig ist die Zahl der Trefferrate der

Vektorvergleiche. Dies ist die Zahl der Vektorvergleiche, die zu einem Klon geführt

haben. Ein ideales Ergebnis wären keine unnötigen Vektorvergleiche, um eine möglichst

optimale Laufzeit zu erhalten.

Eine Optimierung die von den Parametern unabhängig steht, ist es, wenn ein Vektor in 𝐿

Buckets gehasht wird, dass unter Umständen der Vektor zufällig mehrfach in den

gleichen Bucket gehasht wird. Bei Tests mit unterschiedlichen Projekten90 hat sich

herausgestellt, dass die Chance auf solche eine Kollision unter 1% liegt. Weniger als 1%

der Fragmente werden in den gleichen Bucket gehasht. Bryant hat diese Optimierung

daher nicht implementiert, um die Komplexität der Implementierung für solch einen

marginalen Gewinn nicht zu erhöhen.

4.4.1 Parameter: P1

Der Parameter 𝑃1 ist in der theoretischen Betrachtung sehr wichtig, in der

Implementierung ist die einzige Verwendung jedoch die Eingabe zur Berechnung von 𝐿

und 𝑘. Daher erfolgt hier keine gesonderte Betrachtung.

4.4.2 Parameter: R
Der Radius entspricht der maximalen Edit-Distanz der ASTs bzw. AST-Wälder. Er

beschreibt die maximale (euklidische) Distanz zu einem anderen Vektor, so dass die

zugehörigen Codefragmente als Klone angesehen werden.

90 Kleinen Projekten, bei denen die Wahrscheinlichkeit einer doppelten Bucketzuordnung höher als bei einer großen

Zahl an Fragmente ist.

58

Eine Betrachtung der gefilterten Klonlisten über dem Radius lässt sich ein Rückschluss

ziehen:

Abbildung 25: Anzahl der (gefilterten) Klone über 𝑅 (die Konstante bei 295 ist die Gerade).

Die Cluster der sehr ähnlichen Vektoren sind relativ eng bestückt, so dass früh die Klone

gefunden werden. Die Cluster sind voneinander allerdings relativ weit entfernt. Es scheint

also relativ viele sehr ähnlich Muster in der Codebasis zu finden, die Struktur des Codes

ist nicht sehr durchmischt.

4.4.3 Parameter: w
Der Parameter 𝑤 ist für die Segmentzuweisung verantwortlich, in das ein gehashter

Vektor zugewiesen wird. Ist 𝑤 groß, werden viele unterschiedliche Vektoren in den

gleichen Bucket gehasht, die Zahl der Vektorvergleiche steigt also. Ist 𝑤 hingegen sehr

klein, besteht die Hashmap aus sehr vielen, leeren Buckets.

Für diese Messung galt: 𝑅 = 4.0, 𝐿 = 2, 𝑘 = 2.

59

Abbildung 26: Anzahl Buckets über 𝑤.

Durch die geringere Anzahl der Buckets steigt die Anzahl der Vektorvergleiche, da mehr

entfernte Vektoren in die gleichen Buckets gehasht werden.

Abbildung 27: Anzahl Vektorvergleiche über 𝑤.

Die Laufzeit steigt mit der erhöhten Anzahl der Vektorvergleiche, wobei diese Erhöhung

minimal ist. Die gesamte LSH-Berechnung ist selbst im schlechtesten Fall in 0,3

Sekunden abgeschlossen.

60

Abbildung 28: Laufzeit über 𝑤.

Analog zu den erhöhten Vektorvergleichen sinkt die Trefferrate im LSH, da auch weit

entfernte Vektoren in den gleichen Bucket gehasht werden:

Abbildung 29: LSH-Trefferrate über 𝑤.

Der Speicherbedarf wird von 𝑤, außer den üblichen Schwankungen, nicht maßgeblich

beeinflusst.

61

Abbildung 30: Speicherbedarf über 𝑤.

Bei der Anzahl der Klonkandidaten erkennt man den Zusammenhang von 𝐿 und 𝑤. Da

jeder Vektor in diesem Test fest in 2 Buckets gehasht wird, verdoppelt sich die Zahl der

Klonkandidaten, sobald sich die Anzahl der Buckets immer mehr 1 annähert. Ab diesem

Punkt enden die 2 Einträge pro Vektor im gleichen Bucket– die Zahl der Klonkandidaten

verdoppelt sich.

Abbildung 31: Anzahl Klonkandidaten über 𝑤.

4.4.4 Parameter: L
Der Parameter 𝐿 gibt die Anzahl der Buckets an, in die ein Vektor gehasht wird. Der

Hintergrund ist, dass es durch die Zufallsverteilung der ℎ-Hashingfunktionen passieren

kann, dass der Referenzvektor 𝛼 zufälligerweise so liegt, dass nahe Vektoren trotzdem in

getrennte Buckets gehasht werden.

62

Abbildung 32: Anzahl Klonkandidaten über 𝐿.

Die Zahl der erzeugten Klonkandidaten steigt mit steigendem 𝐿. Dies ist erwartet, da

wenn der Vektor in mehrere Buckets gehasht wird, zwangsläufig die Chance steigt, dass

er auch in Buckets gehasht wird, in die seine Klone bereits sind. Die Zahl der steigenden

Klonkandidaten sind also keine neuen Klone, sondern nur die erhöhte Anzahl redundanter

Klonkandidaten.

Abbildung 33: Speicherbedarf über 𝐿.

Da mit steigendem L mehr Pointer zu den Codefragmenten in den Buckets gehalten

werden müssen, steigt der Speicherbedarf entsprechend91.

91 Die absolute Menge an zusätzlich benötigtem Speicher ist allerdings trotzdem gering.

63

Abbildung 34: Vektorvergleiche über𝐿.

Auch bei 𝐿 trifft der Zusammenhang zwischen der Anzahl der Vektorvergleiche und der

Anzahl der Klonkandidaten zu.

Abbildung 35: Anzahl Buckets über 𝐿.

Da insgesamt mehr Vektoren in die Hashmap eingefügt werden, steigt auch die Anzahl

der verwendeten Buckets.

64

Abbildung 36: Laufzeit über 𝐿.

Durch die erhöhte Zahl der Buckets wird die zusätzliche Anzahl der Vektorvergleiche

allerdings abgemildert. Diese steigt langsamer als die Zahl der zusätzlichen Vektoren in

der Hashmap. Dadurch bleibt die Laufzeit nahezu konstant.

Abbildung 37: LSH-Trefferrate über𝐿.

Da die zusätzlichen Vektoren in den Buckets nur Duplikate anderer Vektoren sind, bleibt

die Trefferrate nahezu konstant. Es sind insgesamt mehr Vektoren in den Buckets, es

werden aber auch mehr Klonkandidaten gefunden.

4.4.5 Parameter: k
Der Parameter 𝑘 beschreibt die Anzahl der Hashvorgänge, mit der konkateniert der

gleiche Vektor gehasht wird. Dies wird implementiert, indem es insgesamt 𝑘

65

Hashfunktionen ℎ𝑘 gibt. Dies verringert die Wahrscheinlichkeit, dass durch ungünstig

liegende 𝛼-Referenzvektoren zwei weit entfernte Vektoren in die gleiche Bucket gehasht

werden.

Abbildung 38: Anzahl Vektorvergleiche über 𝑘.

Passend zur Theorie ist auch an den Vektorvergleichen ersichtlich, dass deren Anzahl

rapide mit steigendem 𝑘 sinkt. Es ist jedoch relativ schnell ein Plateau erreicht, ab dem

der zusätzliche Berechnungsaufwand keinen Mehrwert bringt.

Abbildung 39: Anzahl Buckets über 𝑘.

Da die Vektoren durch das zusätzliche Hashing besser voneinander getrennt werden (falls

sie unterschiedlich sind), steigt die Anzahl der verwendeten Buckets mit steigendem 𝑘.

66

Die Anzahl ist jedoch begrenzt durch die Codefragmente, die keine Klone in der

Codebasis besitzen92.

Abbildung 40: LSH-Trefferrate über 𝑘.

Die bessere Separierung der Vektoren in mehr, dafür jedoch kleinere Buckets sorgt für

eine steigende Trefferrate. Diese hat jedoch, wie auch die Anzahl der Vektorvergleiche

ein Plateau, begrenzt durch die Zahl der unabhängigen Vektoren.

Abbildung 41: Anzahl Klonkandidaten (ungefiltert) über 𝑘.

Die gegenläufigen Trends sorgen für keine signifikanten Änderungen bei den

Klonkandidaten.

92 Und durch 𝐿.

67

Abbildung 42: Speicherbedarf über 𝑘.

Der Speicherbedarf steigt mit zunehmenden k, da die Vektoren der Hashingfunktionen

zusätzlichen Speicher benötigen. Dieser Anstieg ist jedoch absolut gesehen

vernachlässigbar.

Abbildung 43: Laufzeit über 𝑘.

Da die Berechnung der Hashingfunktionen und Hashingwerte in LSH sehr schnell geht,

bleibt die Laufzeit auch mit zusätzlichem Rechenaufwand unverändert. Der zusätzlichen

Berechnungen des Hashings werden durch weniger Vektorvergleiche eingespart.

68

4.5 Auswertungen unterschiedlicher Open-Source-

Projekte
Es wurden mehrere Open-Source-Programme93 herausgesucht, die kompatibel mit den

Tools von Bauhaus ist. Darüber hinaus wurden einige kleine Testprogramme entwickelt,

um bestimmte Erkennungsmuster zu überprüfen. Eine im folgenden verwendete Metrik,

um die Größe von Programm zu beschreiben ist die LLOC („Logical Lines of Code“).

Diese gibt die Anzahl der Zeilen Programmcode, die Logik beinhalten (zu „Logik“

gehören Statements, nicht jedoch Kommentare, Leerzeilen oder Zeilen, die nur

strukturierende Zeichen enthalten94).

Unabhängig von einer Klonanalyse wurde festgestellt, dass mit steigender LLOC die

Anzahl der Routinen sinkt. Dies kann bei Bryant zu einer schnell wachsenden Menge an

Sliding-Window-Fragmenten und PDG-Fragmenten führen. Das ist darauf

zurückzuführen, dass die Zahl der AST-Knoten stark mit der Zahl der Zeilen steigen

kann.

Abbildung 44: Vektorvergleiche über LLOC.

Es ist naheliegend, dass mit steigender LLOC die Zahl der Codefragmente steigt und mit

ihr auch die Zahl der Vektorvergleiche.

93 Unter anderem [27], [28], [29] und [30], sowie einige Test aus einer internen Test-Bibliothek der Universität

Stuttgart.
94 Wie Semikola oder geschweifte Klammern.

69

Abbildung 45: Anzahl Vektorvergleiche über die Anzahl der Klonkandidaten.

Ebenfalls lässt sich aus den Daten ablesen, dass die Zahl der Vektorvergleiche linear mit

der Zahl der Klonkandidaten steigt. Dies wird durch die automatisch berechneten

Parameter gesichert.

Abbildung 46: Laufzeit LSH über Vektorvergleiche.

Eine triviale Einsicht ist, dass die Laufzeit der LSH-Implementierung linear mit der Zahl

der Vektorvergleiche steigt. Dies ist offensichtlich, da die Laufzeit im Grunde einzig von

70

der Zahl der Vektorvergleiche abhängt. Dies bestätigt allerdings, dass die

Implementierung von Bryant hier jedoch zumindest aus Laufzeitsicht valide erscheint.

Abbildung 47: Anzahl Klonkandidaten (ungefiltert) über Anzahl Codefragmente.

Die letzte übergreifende Analyse zeigt einen Zusammenhang zwischen der Anzahl der

Codefragmente und der Anzahl der erzeugten (ungefilterten) Klonkandidaten. Dies zeigt

die Verbindung, dass größere Programme eine höhere Chance besitzen, über die Zeit

Codeklone anzuhäufen.

Abschließend zu den Analysen noch ein wichtiger Hinweis bezüglich Laufzeit. Gerade

wenn man keine besonders strengen Anforderungen an Codefragment-Generatoren stellen

will und lieber mehr als komplizierte Fragmente erzeugen will, ist die korrekte

Implementierung des Filters essentiell. In der ersten, rudimentären Implementierung

benötigte nur der Filter über 99% der Gesamtlaufzeit. Dies gilt insbesondere für den Fall,

dass dieser möglichst wenig Duplikate zulassen und auch Code-Teilbereiche erkennen

soll.

71

5 Zusammenfassung
Bryant bietet eine sehr gute Basis für die Erkennung von Codeklonen. Das Verfahren ist

performant, besitzt eine überzeugende Erkennungsrate und minimiert die Zahl der

redundanten Klone.

Durch den Aufbau in größtenteils isolierte Teilkomponenten ist das System leicht

erweiterbar. Ein weiterer Vorteil ist, dass Teilkomponenten einfach ausgetauscht oder in

Isolation optimiert werden können. So kann beispielsweise LSH durch eine komplexere

Parameterberechnung (siehe Kapitel 6) erweitert werden, ohne dass die anderen Bereiche

ebenfalls Änderungen benötigen.

Die Implementierung basiert aktuell auf der bestehenden PDG-Implementierung in

Bauhaus. Hier kann also durch feinere Abstufung, wie die jüngst hinzugefügte

Erweiterung der Auftrennung strukturierter Rückgabewerte, eine bessere Identifizierung

von ISTs erreicht werden, was insgesamt zu einem besseren Ergebnis führt. Auch diese

Änderung ist ohne Anpassungen in Bryant selbst möglich.

Neue Verfahren zur Vektorgenerierung können einfach hinzugefügt und evaluiert werden.

Das Tool ist robust gegenüber einer großen Menge an Vektoren, dank des Einsatzes von

LSH, das abschließende Filtern und möglicher Erweiterung um größensensitive

Klonerkennung.

Durch diese Kombination der verwendeten Verfahren und den internen Aufbau ist das

System eher ein Framework für Codeklonerkennung als ein abgeschlossenes Verfahren.

Es bietet eine sehr gute Basis um weitere, elaboriertere Methoden der Klonerkennung zu

implementieren.

72

6 Ausblick
Obwohl die vorliegende Implementierung robust ist und bereits im Praxiseinsatz

funktioniert, gibt es dennoch einige Optimierungsmöglichkeiten. Diese teilen sich auf

zwei Bereiche auf: Performance und noch mehr, „bessere“ Codefragmente.

Im Hinblick auf Performance gibt es insbesondere zwei Aspekte, die von großem

Interesse sind. Die Vektorgenerierung für die Routinen ist frei von Seiteneffekten95, ist

also ein idealer Kandidat für Parallelisierung. Hier würde sich eine Implementierung

anbieten, die einen Pool von Agenten einsetzt, die die Routinen unter sich aufteilen.

Der zweite interessante Bereich ist LSH, hier beinhaltet E²LSH96 einige zusätzliche

Erweiterungen. Hinter einer der Optimierungen steht, dass bei Tests bemerkt wurde, dass

die theoretisch optimalen Werte für 𝐿 und 𝑘 nicht diejenigen sind, die auch im

praktischen Einsatz hinsichtlich Performance optimal sind. Anstatt die Parameter

theoretisch zu berechnen, wird eine Stichprobe der Vektoren gewählt, die mit

unterschiedlichen Werten für 𝐿 und 𝑘 durchgerechnet werden. Anschließend werden die

aus Sicht der Laufzeit optimalen Werte genommen. Dies benötigt einige Vorsicht

hinsichtlich Timing-Genauigkeit und paralleler externer Aktivität auf der Testmaschine,

kann aber zu besserem Laufzeitverhalten führen.

Eine weitere Zusatzfunktion in E²LSH ist, dass ein alternativer Modus verwendet werden

kann, in dem die Hashfunktionen 𝑔𝑖 nicht mehr unabhängig voneinander sind, sondern

neue, kombinierte Hashfunktionen verwendet werden. Hierdurch kann die Laufzeit

abermals reduziert werden, da ein Teil der Hashergebnisse vorberechnet werden kann und

die Hashberechnungen dadurch beschleunigt werden97.

Auf Seite der besseren Codefragmente können neue Verfahren entwickelt werden, die

mehr oder andere Codefragmente erzeugen. Die Architektur der Implementierung erlaubt

solche Verfahren mit wenig Aufwand hinzuzufügen oder bestehende Verfahren zu

ersetzen. Außerdem können die existierenden AST- und PDG-basierten Verfahren

verfeinert werden, sodass sie möglicherweise noch bessere Kandidaten erzeugen.

Im Hinblick auf das Gesamtsystem sind weitere Experimente und Tests möglich, um

interne Parameter und Definitionen, wie Relevanz und Signifikanz der Vektoren, zu

verfeinern.

95 Die aktuelle Implementierung manipuliert direkt die Vektorliste. Der Umbau, dass die erzeugten Vektoren

zurückgegeben werden und daher die Liste nicht mehr direkt bearbeitet wird, ist trivial.
96 Siehe [26].
97 Siehe Kapitel 3.4.1 in [25].

73

7 Appendix

7.1 𝑙1 und 𝑙2 Norm von Vektoren98
Seien 𝑣1 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉 und 𝑣2 = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 zwei 𝑛-dimensionale Vektoren.

Die Hamming-Distanz von 𝑣1 und 𝑣2, ℋ(𝑣1, 𝑣2) ist ihre 𝑙1-Norm, das heißt

ℋ(𝑣1, 𝑣2) = ‖𝑣1 − 𝑣2‖1 = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 .

Die euklidische Distanz von 𝑣1 und 𝑣2, 𝒟(𝑣1, 𝑣2) ist ihre 𝑙2-Norm, das heißt

𝒟(𝑣1, 𝑣2) = ‖𝑣1 − 𝑣2‖2 = √ ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 .

7.2 (Schwache) Zusammenhangskomponenten
Ein ungerichteter Graph 𝐺 = (𝑉, 𝐸) heißt zusammenhängend, wenn es für jede beliebige

Knotenkombination 𝑢 und 𝑣 einen ungerichteten Weg durch G mit 𝑢 als Startknoten und

𝑣 als Endknoten gibt.

[Bild Zusammenhangskomponente mit G, Start- und Endpunkt und zwei Teilgraphen]

Eine Zusammenhangskomponente ist ein maximaler, zusammenhängender Teilgraph.

98 Aus [6], Definition 3.4.

74

8 Literaturverzeichnis

[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna und L. Bier, „Clone Detection

Using Abstract Syntax Trees,“ Software Maintenance, 1998. Proceedings.,

International Conference, pp. pp. 368-377, November 1998.

[2] M. Datar, P. Indyk, N. Immorlica und V. S. Mirrokni, „Locality-Sensitive Hashing

Scheme Based on p-Stable Distributions,“ Proceedings of the twentieth annual

symposium on Computational geometry, pp. pp. 253-262, June 2004.

[3] J. Ferrante, K. J. Ottenstein und J. D. Warren, „The program dependence graph and

its use in optimization,“ ACM Transactions on Programming Languages and

Systems (TOPLAS), Bd. 9, Nr. 3, pp. pp. 319-349, 1987.

[4] M. Gabel, L. Jiang und Z. Su, „Scalable Detection of Semantic Clones,“ Gabel, M.,

Jiang, L., & Su, Z. (2008, May). Scalable detection of semantic clones. In Software

Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference, pp. pp.

321-330, May 2008.

[5] A. Gionis, P. Indyk und R. Motwani, „Similarity Search in High Dimensions via

Hashing,“ Nr. Vol. 99, No. 6, pp. pp. 518-529, September 1999.

[6] L. Jiang, G. Misherghi, Z. Su und S. Glondu, „DECKARD: Scalable and accurate

tree-based detection of code clones,“ Proceedings of the 29th international

conference on Software Engineering, pp. pp. 96-105, May 2007.

[7] T. Kamiya, S. Kusumoto und K. Inoue, „CCFinder: a multilinguistic token-based

code clone detection system for large scale source code,“ Software Engineering,

IEEE Transactions, Bd. 28, Nr. 7, pp. 654-670, 2002.

[8] Z. Li, S. Lu, S. Myagmar und Y. Zhou, „CP-Miner: A Tool for Finding Copy-paste

and Related Bugs in Operating System Code,“ OSDI, Nr. Vol. 4, No. 19, pp. pp.

289-302, December 2004.

[9] „Oracle America, Inc. v. Google, Inc.,“ 20 Februar 2016. [Online]. Available:

https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.. [Zugriff am

18 März 2016].

[10] J. C. Huang und T. Leng, „Generalized Loop-Unrolling: a Method for Program

Speed-Up [PDF],“ The University of Houston, Department of Computer Science,

18 März 2016. [Online]. Available: http://web.cs.uh.edu/~jhuang/JCH/JC/loop.pdf.

[Zugriff am 18 März 2016].

75

[11] „Search for code duplicates in WebStorm/PhpStorm,“ 28 September 2011. [Online].

Available: http://blog.jetbrains.com/webide/2011/09/search-for-code-duplicates-in-

phpstorm/. [Zugriff am 18 März 2016].

[12] B. S. Baker, „On finding duplication and near-duplication in large software

systems,“ WCRE, pp. 85-95, 1995.

[13] B. S. Baker, „Parameterized duplication in strings: Algorithms and an application to

software maintenance,“ SICOMP, Bd. 26, Nr. 5, pp. 1343-1362, 1997.

[14] I. D. Baxter, C. Pidgeon und M. Mehlich, „Detecting higher-level similiarity

patterns in programs,“ ESEC/FSE, pp. 156-165, 2005.

[15] V. Wahler, D. Seipel, J. W. von Gudenberg und G. Fischer, „Clone detection in

source code by frequent itemset techniques,“ SCAM, pp. 128-135, 2004.

[16] K. Kontogiannis, R. de Mori, E. Merlo und J. P. Hudepohl, „Pattern matching for

clone and concept detection,“ Automated Soft. Eng., Bd. 3, Nr. 1/2, pp. 77-108,

1996.

[17] J. Mayrand, C. Leblanc und E. Merlo, „Experiment on the automatic detection of

function clones in a software system using metrics,“ ICSM, pp. 244-254, 1996.

[18] R. Komondoor und S. Horwitz, „Using slicing to identify duplication in source

code,“ SAS, pp. 40-56, 2001.

[19] R. Yang, P. Kalnis und A. K. H. Tung, „Similarity evaluation on tree-structured

data,“ SIGMOD, pp. 754-765, 2005.

[20] J. M. Chambers, C. L. Mallows und B. W. Stuck, „A method for simulating stable

random variables,“ Journal of the american statistical association, Bd. 71, Nr. 354,

pp. 340-344, 1976.

[21] S. Horwitz, T. Reps und D. Binkley, „Interprocedural slicing using dependence

graphs,“ ACM Transactions on Programming Languages and Systems (TOPLAS),

Bd. 12, Nr. 1, pp. 26-60, 1990.

[22] M. Weiser, „Program slicing,“ Proceedings of the 5th international conference on

Software engineering (IEEE Press), pp. 439-449, 1981.

[23] „Projekt Bauhaus,“ 6 Dezember 2012. [Online]. Available: http://www.iste.uni-

stuttgart.de/ps/projekt-bauhaus.html. [Zugriff am 18 März 2016].

76

[24] „GitHub - skyhover/Deckard: Code clone detection; clone-related bug detection;

sematic clone analysis,“ [Online]. Available: https://github.com/skyhover/Deckard.

[Zugriff am 18 März 2016].

[25] A. Andoni und P. Indyk, „E²LSH 0.1 - User Manual,“ 21 Juni 2005. [Online].

Available: http://www.mit.edu/~andoni/LSH/manual.pdf. [Zugriff am 16 März

2016].

[26] „LSH Algorithm and Implementation (E2LSH),“ [Online]. Available:

http://www.mit.edu/~andoni/LSH/. [Zugriff am 18 März 2016].

[27] „GitHub - cesanta/frozen: JSON parser and generator for C/C++,“ [Online].

Available: https://github.com/cesanta/frozen. [Zugriff am 18 März 2016].

[28] „bc - GNU Project - Free Software Foundation,“ [Online]. Available:

https://www.gnu.org/software/bc/bc.html. [Zugriff am 18 März 2016].

[29] „GitHub - antirez/smaz: Small strings compression library,“ [Online]. Available:

https://github.com/antirez/smaz. [Zugriff am 18 März 2016].

[30] „time - GNU Project - Free Software Foundation (FSF),“ [Online]. Available:

https://www.gnu.org/software/time/time.html. [Zugriff am 18 März 2016].

