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1 Einleitung 
Duplizierter Quellcode, Codeklone, sind ein alltägliches Nebenprodukt der regelmäßigen 

Programmierarbeit. Insbesondere in großen Teams ist es nicht möglich, den Detailblick 

für jede Komponente des Systems zu bewahren. An anderer Stelle ist aus es 

programmarchitektonischer Sicht nicht möglich, die vorliegende Abstraktion zu 

verwenden und sie muss absichtlich dupliziert werden. In einigen Fällen kann es sogar 

von Vorteil sein, duplizierten Code an einigen wenigen Stellen in seinem Programm 

einzusetzen. 

Doch ungeachtet der Historie und des Bewusstseins, ist die Kenntnis über die Stellen des 

Programms wichtig, in denen duplizierter Code verwendet wird. Nur durch diese 

Information können überlegte Entscheidungen im Programmieralltag, oder in einem 

Forschungsumfeld größere Systemanalysen durchgeführt werden. 

Es sind bereits einige Verfahren etabliert, diese beschränken sich in aller Regel jedoch auf 

die syntaktischen Klone. Um zusätzlich semantische Klone zu erkennen, sind bisher keine 

skalierbaren Verfahren bekannt. DECKARD von Jiang et al, und darauf aufbauend Gabel 

et al haben ein Klonerkennungsverfahren entworfen, das einerseits stark in der 

syntaktischen Klonerkennung ist, aber auch in einigen Teilen semantische Klone 

erkennen kann. 

Diese Diplomarbeit führt zunächst in alle relevanten Themen dieses Verfahrens ein. 

Anschließend wird im Detail die Implementierung namens Bryant1 vorgestellt, die 

abschließend analysiert und ausgewertet wird. 

  

                                                 
1 In dieser Arbeit wird sowohl die Implementierung dieser Diplomarbeit, als auch die theoretischen Vorarbeiten durch 

Gabel et al einheitlich „Bryant“ genannt, da das Verfahren von Gabel et al keine eigene Bezeichnung besitzt. 
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2 Grundlagen und Motivation 
Duplizierter Programmcode kann auf vielfältige Weise entstehen. Die offensichtlichste ist 

sicherlich Copy & Paste, das heißt der Autor hat den betroffenen Quellcodeabschnitt aus 

einem anderen Teil des Programms direkt kopiert. Aber auch mehrfach benötigte 

Funktionalität gepaart mit der Unkenntnis, dass das vorliegende Problem bereits im 

Programm an anderer Stelle gelöst ist, führt zu mehrfacher Implementierung ähnlicher 

Lösungen. Diese auf unterschiedlichem Wege erreichten Lösungen geben einen Einblick 

in die Struktur und die Wachstumshistorie des Programms und können für weiterführende 

Analysen verwendet werden. So können aus der Betrachtung großer Softwaresysteme und 

Programmierteams in Kombination mit der Auswertung von Codeklonen Rückschlüsse 

über die Arbeitsweise und Denkstrukturen typischer Softwareteams gezogen werden. 

Neben der theoretischen Betrachtung ist duplizierter Code insbesondere für die Wartung 

von Software interessant. So sind Programme, die nicht die angemessenen 

Abstraktionswerkzeuge der Sprache verwenden, in aller Regel länger, was die Anzahl 

von potenziellen Programmfehlern erhöht. Außerdem müssen nun bei Änderungen am 

Programm die duplizierten Stellen manuell nachverfolgt und ebenfalls (und identisch) 

angepasst werden. Bei dieser manuellen Arbeit können sich Programmfehler 

einschleichen, die dann in der Anwendung nur auftreten, wenn man die Funktion genau 

auf diesem einen Wege ausführt2. 

Auch rechtliche Fragen können mit Codeklonerkennern beantwortet werden. 

Programmcode oder nur Teile von diesem können unter Copyright stehen. So kann ein 

Klonerkenner bei der Entdeckung von unerlaubten Kopien urheberrechtlich geschützten 

Programmcodes behilflich sein. Ein prominentes Beispiel ist die Klage von Oracle 

America, Inc. gegen Google, Inc., bei der es um die Frage ging, ob Google in Android 

ohne Genehmigung Java-APIs verwendet und implementiert hat3. 

In der Optimierung von Programmen kann duplizierter Code ebenfalls von Bedeutung 

sein. Webanwendungen transportieren ihr HTML, CSS und JavaScript bei jedem 

Seitenaufruf an den Client. Es ist daher vorteilhaft, wenn die Größe dieser Datenmenge so 

klein wie möglich gehalten wird, insbesondere auf Mobilgeräten, die oftmals mit einer 

langsameren Datenverbindung und höherer Latenz mit dem Internet verbunden sind. Hier 

führt die Deduplikation zu einer verringerten Ladezeit.4 

Jedoch ist nicht jeder Klon negativ zu bewerten. Automatisch generierter Code ist in 

erheblichem Maße repetitiv, dies wird jedoch akzeptiert, da der generierte Code nicht 

aktiv bearbeitet wird (sondern im Zweifelsfall schlicht neu generiert wird). Darüber 

                                                 
2 Ein häufiges Beispiel für duplizierten Code bei einer Shopsoftware ist das Einlösen von Coupons. So kann es bei 

Duplizierung zu unterschiedlichem Verhalten kommen, je nachdem ob man den Coupon im Warenkorb oder auf der 

Bestellabschlussseite einlöst. 
3 Siehe [10].  
4 Genau in diesem speziellen Fall ist eine übermäßige Deduplikation jedoch nicht immer von großem Nutzen. Da bei 

vielen Anwendungen die Daten vor Übertragung mit GZIP komprimiert werden, wird der Einfluss der Duplikate auf die 

Dateigröße bereits durch das Kompressionsverfahren minimiert. 
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hinaus gibt es Fälle, in denen Codeklone notwendig sind. Bei Fehlern in externen 

Bibliotheken wird oftmals der externe Code kopiert und angepasst. Außerdem können 

auch Performanceoptimierungen durch duplizierten Code erreicht werden. Unterstützt ein 

Compiler beispielsweise kein automatisches Aufrollen von Schleifen5, kann es je nach 

Anwendungsfall notwendig sein, die Schleife selbst aufzulösen und die Blöcke manuell 

zu kopieren. 

2.1 Ausprägungen von Codeklonen 
Während bei der Analyse einzelner Klone feinstufige Unterscheidungen definiert werden 

können, teilt sich die Menge aller Codeklone zunächst in zwei Variationen. Auf der einen 

Seite die syntaktischen Klone und auf der anderen Seite die semantischen Klone. 

Syntaktische Klone sind Programmfragmente, die bereits in textueller Form große 

Ähnlichkeit aufweisen. So sind die grundlegenden Strukturen identisch und nur einige 

Teilaspekte werden abstrahiert oder die Sortierung von Programmanweisungen 

vereinheitlicht.  

Syntaktische Klonerkennungsprogramme verwenden unterschiedliche Grade von 

Abstraktion6. Die stringbasierten Tools teilen zunächst das Programm in Zeilen auf und 

operieren anschließend auf Programmcodezeilen. Hierbei wird ein parametrisierter 

Stringvergleich verwendet, der gegen marginaler Unterscheidungen resistent ist7. Token-

basierte Tools bauen auf den Lexer und vergleichen generierte Tokenstreams. Diese 

Tools sind in der Regel robuster gegenüber Codeformatierung und Spacing8. Die 

                                                 
5 Bei dieser Optimierung wird die Schleife entweder komplett aufgelöst und durch passend untereinander kopierte 

Codeblöcke ersetzt oder zumindest soweit umgebaut, dass der Schleifenrumpf zugunsten einer geringeren Iterationszahl 

länger wird. Hierdurch wird die Anzahl der Sprünge in der Kontrollanweisung und dem Sprung zum Beginn des 

Schleifenrumpfes optimiert. Für Details siehe [11]. 
6 Die Abgrenzung der Abstraktionsgrade ist aus [7]. 
7 Beispielsweise die Arbeiten von Baker in [13] und [14]. 
8 Beispielsweise CCFinder [8] und CP-Miner [9]. 

Abbildung 1: Syntaktische Klonerkennung in der Code Duplication Analysis der Programmierumgebung PhpStorm 
(Screenshot von [11]). 
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baumbasierten Tools arbeiten entweder auf dem Parsebaum oder AST und vergleichen 

Syntaxbäume oder Fingerprints9 der Bäume10. 

Semantische Klone sind Programmcodeabschnitte, die auf einer syntaktischen Ebene 

möglicherweise unterschiedliche Struktur besitzen, jedoch die gleiche Funktion 

implementieren. Ein triviales Beispiel hierfür sind for- und while-Schleifen. Diese sehen 

syntaktisch zwar unterschiedlich aus, können in der Regel aber in die jeweils andere Form 

überführt werden. Programmcode der die eine Variante implementiert, kann also 

funktional identisch zu Programmcode sein, der die andere Variante verwendet. 

Echte semantische Gleichheit im Allgemeinen (Programmäquivalenz) ist 

unentscheidbar11. Daher wurden einige Verfahren entwickelt, die zwar keine echte 

Äquivalenz entscheiden können, jedoch zumindest ein Teilwissen über die semantischen 

Details haben12. 

Fast alle referenzierten Verfahren der syntaktischen Klonerkennung haben gezeigt, dass 

sie auch für sehr große Programme skalieren können. Tools, die semantische Analysen 

anwenden konnten bisher noch nicht skalierbar implementiert werden. 

2.2 Verwendetes Verfahren 
Die Effektivität von Klonerkennungsverfahren ist maßgeblich abhängig von der 

zugrundeliegenden Definition eines Codeklons. Ausgehend von dieser wird das 

Verfahren modelliert. Die verwendete Definition muss also fundiert, theoretisch gesichert 

und berechenbar sein. 

Die Implementierung in dieser Diplomarbeit baut auf der Arbeit von Gabel et al.13 auf. 

Diese wiederum basiert auf dem im Klonerkenner DECKARD1415 verwendeten 

Verfahren, mit einer Erweiterung um eine semantische Analyse mithilfe des PDGs16. 

DECKARD ist ein gegenüber Quellcodeformatierung robuster syntaktischer 

Klonerkenner aus der Familie der baumbasierten Verfahren. 

                                                 
9 Hierbei werden die Bäume in einen Hashwert überführt, der Rückschluss auf die Struktur der Bäume zulässt. Die 

Fingerprints sind erheblich effizienter zu vergleichen als die Baumstruktur. 
10 Die Arbeiten von Baxter et al ([15], [2]) und Wahler et al ([16]) vergleichen Parse- oder Syntaxbäume. Die Arbeiten 

[17] und [18] verwenden Fingerprinting. 
11 Dies geht direkt aus dem Satz von Rice hervor. 
12 Komondoor und Horwitz haben einen Codeklonerkenner entwickelt, der unter Zuhilfenahme des PDG und Program 

Slicing grundlegende semantische Analysen durchführen kann [19]. 
13 Siehe [5]. 
14 Siehe [7]. 
15 Das Verfahren wurde benannt nach der Hauptfigur des Films Blade Runner (1982). Dieser muss ebenfalls „Klone“ 

(Replikanten) erkennen. 
16 Program Dependence Graphs (PDGs) werden in [4] näher beschrieben. 
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Codebeispiel 1: Beispielfunktion mit Addition zweier konstanter Zahlen. 

Daher sind die Definition und das Verfahren direkt aus den beiden Arbeiten 

übernommen, alle Details werden im Folgenden jedoch noch einmal ausführlich erklärt. 

DECKARD arbeitet auf Parsebäumen, Bryant arbeitet jedoch mit ASTs. Die folgenden 

Kapitel besprechen daher direkt ASTs. 

 

Abbildung 2: AST zum Codebeispiel 1, ab Beginn der Routine f()17. 

2.3 Definition von Codeklonen 
Ein Programm wird bei der Übersetzung in aller Regel in einen Syntaxbaum überführt. 

Die Knoten dieses Baumes stehen für ein Sprachkonstrukt, das im Programmcode 

verwendet wird. Abstrakte Syntaxbäume unterscheiden sich von Parsebäumen dadurch, 

dass einige Bereiche bereits abstrahiert wurden, wie beispielsweise Klammersetzung, und 

die Daten in strukturierter Form vorliegen18. 

                                                 
17 Der AST ist eine vereinfachte Darstellung, daher wurden für das Verständnis unwichtige Knoten ausgeblendet. 
18 So sind in einer if-Anweisung beispielsweise die Aspekte Condition, If-Zweig und Else-Zweig bereits semantisch 

strukturiert und gruppiert in einem Knoten (mit Unterknoten) und nicht mehr wie im Parsebaum eine Abfolge von 

mehreren Knoten. 

int f () 

{ 

   int a, b; 

 

   a = 10; 

   b = 5; 

 

   return a + b; 

} 
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Abbildung 3: Beispielhafter Ablauf einer Tree-Edit-Sequenz. 

Ein Codeklon wird ausgehend von ASTs wie folgt definiert: man wählt zwei 

Programmabschnitte aus, erstellt die ASTs (bzw. Unterbäume19) und vergleicht diese. Die 

verwendete Metrik des Vergleichs ist hierbei die minimale Edit-Distanz 𝛿20. Die Edit-

Distanz repräsentiert die Menge der Änderungen21 (Einfügen, Umbenennen, Löschen) die 

nötig ist, um den einen in den anderen Baum zu überführen. Intuitiv kann daher 

festgestellt werden, dass zwei Bäume umso ähnlicher sind, je geringer die Edit-Distanz 

ist. 

Definition 1: Zwei Bäume 𝑇1 und 𝑇2 sind 𝜎-ähnlich für ein gegebenes 𝜎, wenn für ihre 

Edit-Distanz  𝛿(𝑇1, 𝑇2) <  𝜎 gilt.22 

Ausgehend von dieser Definition können nun Codeklone definiert werden. 

Definition 2: Zwei Code-Fragmente 𝐶1 und 𝐶2 gelten als Klonpaar, wenn ihre 

zugehörigen Baumrepräsentationen 𝑇1 und 𝑇2 𝜎-ähnlich für ein spezifiziertes 𝜎 sind.23 

Diese Definition ist zwar theoretisch valide und fundiert, birgt allerdings ein praktisches 

Problem. Die Berechnung der Edit-Distanz ist nicht effizient möglich24. Außerdem 

                                                 
19 Die folgenden Abschnitte arbeiten nie auf „vollständigen“ ASTs, da dies ein intraprozedurales Verfahren ist und 

daher nur ASTs innerhalb einer Routine bearbeitet werden. Im Folgenden wird zur Vereinfachung nur von „ASTs“ 

gesprochen – die Verfahren funktionieren prinzipiell für jede Art von Syntaxbaum. 
20 Die Edit-Distanz ist nicht eindeutig, da es mehrere Abfolgen von Anweisungen geben kann, um einen Baum in einen 

anderen Baum zu überführen. Diese können beliebig groß werden (durch Einfügen und Löschen unbenutzter Knoten). 

Daher wird die minimale Edit-Distanz verwendet, die kurzmöglichste Abfolge darstellt. 
21 In den meisten Verfahren werden die „Kosten“ der möglichen Änderungen (Einfügen, Umbenennen, Löschen) 

unterschiedlich gewichtet, so kann ein Einfügen teurer (in Bezug auf die Metrik) als ein Umbenennen sein. Dieses 

Detail ist in dieser Hinführung allerdings nicht relevant. 
22 Siehe [7]. 
23 Siehe [7]. 
24 Die Komplexität ist 𝑂(|𝑇1|  ×  |𝑇2|  ×  𝑑1  ×  𝑑2), wobei |𝑇𝑖| die Größe von 𝑇𝑖 ist und 𝑑𝑖 das Minimum aus der Tiefe 

von 𝑇𝑖 und der Anzahl der Blätter von 𝑇𝑖. (siehe [7]). 
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müssen alle Bäume miteinander verglichen werden, was im schlechtesten Fall 

quadratischen Aufwand bedeutet. 

2.4 Alternative Darstellung von Codefragmenten 
Die Codeklon-Definition aus dem vorigen Kapitel ist theoretisch fundiert, besitzt aber 

ungünstige Laufzeiteigenschaften. Daher wird in diesem Kapitel zunächst eine alternative 

Repräsentation der ASTs eingeführt, die eine effizientere Implementierung ermöglichen. 

Anschließend wird das Berechnungsproblem der Baum-Edit-Distanz auf eine 

Distanzberechnung in der neuen Darstellung reduziert. Diese Reduktion ist wichtig, da 

nur dadurch gewährleistet werden kann, dass ein gefundenes Ergebnis in der neuen 

Darstellung auch ein korrektes Ergebnis in der Darstellung als Edit-Distanz ist. Und da im 

verwendeten Verfahren Codeklone über die Edit-Distanz definiert sind, kann ohne diese 

Rückführung keine Aussage getroffen werden.  

2.4.1 Atomic Tree Patterns25 und charakteristische 

Vektoren 
Gegeben sei ein Binärbaum. Man definiert eine Familie an Atomic Tree Patterns, 

parametrisiert mit der Höhe des Binärbaums 𝑞. 

Ein q-level Atomic Pattern ist ein vollständiger Binärbaum der Höhe 𝑞. Die Knoten 

dieses Binärbaums entstammen aus einer Knotenmenge ℒ (diese Menge beinhaltet auch 

das leere Label 𝜀). Es existieren insgesamt |ℒ|2𝑞−1 mögliche Binärbäume der Höhe 𝑞, 

dies sind alle möglichen Permutationen der Knotenelemente auf die 2𝑞 − 1 Knoten eines 

vollständigen Binärbaumes der Höhe 𝑞. Diese Menge an Bäumen wird 

durchnummeriert26. Nun wird ein Vektor der Länge |ℒ|2𝑞−1 erstellt, wobei das 𝑖-te 

Element die Anzahl der Vorkommen des 𝑖-ten Baumes im Ursprungsbaum darstellt. 

                                                 
25 Siehe [7]. 
26 Die tatsächliche Sortierung ist irrelevant, so lange sie identisch über die gesamte Vektorgenerierung ist. 
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Abbildung 4: Beispielhafte Vorschau einiger q-Atomic Patterns der Höhe 2 für die angegebene Knotenmenge 
(insgesamt gibt für diese Knotenmenge und Höhe 27 Permutationen). 

Dieser Vektor ist ein Fingerprint des ursprünglichen Baumes und wird der 

charakteristische Vektor des Baumes genannt (gekennzeichnet durch 𝑣𝑞(𝑇)). Die 

Abbildung von Baum auf Vektor ist surjektiv: identische Bäume ergeben identische 

Vektoren, identische Vektoren wiederum müssen aber nicht identische Bäume ergeben. 

Dies ist allerdings eine erwünschte Eigenschaft, da im Hinblick auf ASTs die Reihenfolge 

der Knoten keine Rolle spielen soll. Das Verfahren soll robust gegenüber Umsortierung 

des Programmcodes sein, was durch diese Eigenschaft erfüllt wird. 

Zur vereinfachten Berechnung der Ähnlichkeit von ASTs werden charakteristische 

Vektoren verwendet. Hierzu werden die ASTs in die charakteristischen Vektoren 

umgewandelt, die Höhe der Pattern ist 𝑞 = 1, die Knotenmenge sind alle Knotentypen 

des ASTs. Durch diese Definition repräsentiert der charakteristische Vektor eines ASTs 

ein Konstrukt, in dem die Anzahl jedes Knotentypen innerhalb dieses ASTs aufgelistet 

ist. 
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Im nächste Schritt wird (nach der alternativen Darstellung der ASTs) die euklidische 

Distanz der Vektoren27 zu berechnet. Wenn zwei Vektoren sehr nahe sind, soll die Edit-

Distanz zwischen den Ursprungsbäumen gering sein. Nur durch diese Eigenschaft ist die 

Reduktion valide. Ihr Beweis wird daher im Folgenden anskizziert. 

Theorem 1: Für zwei beliebige Bäume 𝑇1 und 𝑇2 mit Edit-Distanz 𝛿(𝑇1, 𝑇2) = 𝑘  

ist die 𝑙1-Norm der zugehörigen 𝑞-level Vektoren für 𝑇1 und 𝑇2 ℋ (𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2))  

nicht größer als (4𝑞 − 3)𝑘.28 

Wie in obigem Theorem beschrieben, existiert eine Verbindung zwischen der 𝑙1-Norm 

(Hamming-Distanz) der Vektoren und der Edit-Distanz der zugehörigen Bäume. Nun 

muss noch eine Verbindung zwischen der 𝑙1 und 𝑙2-Norm (euklidische Distanz)29 gezeigt 

werden, dann ist durch den transitiven Abschluss die Reduktion theoretisch bestätigt. 

Theorem 2: Für zwei beliebige Ganzzahl-Vektoren gilt √ℋ(𝑣1, 𝑣2)  ≤  𝒟(𝑣1, 𝑣2) ≤

 ℋ(𝑣1, 𝑣2).30 

Durch Verknüpfung von Theorem 1 mit Theorem 2 folgt direkt: 

Korollar 1: Für zwei beliebige Bäume 𝑇1 und 𝑇2 mit Edit-Distanz 𝛿(𝑇1, 𝑇2) = 𝑘 ist die 𝑙2-

Norm der 𝑞-level Vektoren dieser Bäume 𝒟(𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2)) nicht größer als (4𝑞 − 3)𝑘 

und nicht kleiner als die Quadratwurzel der 𝑙1-Norm. Dies bedeutet: 

 

√ℋ(𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2))  ≤  𝒟 (𝑣𝑞(𝑇1), 𝑣𝑞(𝑇2)) ≤ (4𝑞 − 3)𝑘 

Da in dieser Arbeit die Höhe der Atomic Patterns 𝑞 = 1 gilt, sind entweder die 

euklidische Distanz, oder die Quadratwurzel der Hamming-Distanz eine untere Schranke 

für die Edit-Distanz. So gilt: wenn die Distanz zweier Vektoren größer als ein vorher 

definiertes 𝜎 ist, können die zugehörigen ASTs nicht 𝜎-ähnlich sein. Andersherum ist es 

sehr wahrscheinlich, dass wenn die untere Schranke kleiner als ein definiertes 𝜎 ist, der 

tatsächliche Wert ebenfalls kleiner als 𝜎 ist31. 

Durch diese Reduktion kann das Problem der Edit-Distanz zweier ASTs also auf die 

euklidische Distanz zweier charakteristischer Vektoren vereinfacht werden. Für die 

Implementierung ist noch wichtig, dass diese Herleitung auch für Abstract Syntax 

                                                 
27 Die Vektoren können als Punkte dargestellt werden, wobei der Vektor die Strecke zwischen Punkt und dem Ursprung 

des Koordinatensystems darstellt. Im Folgenden wird allerdings weiterhin von der „Distanz zweier Vektoren“ 

gesprochen, auch wenn im Grunde die Entfernung zweier Punkte berechnet wird. 
28 Siehe Theorem 3.3 in [19]. 

29 Für genaue Definition zur 𝑙1 und 𝑙2-Norm sind im Appendix (Kapitel 7.1) zu finden. 
30 Siehe [6]. 
31 Nach [6]. 
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Forests32 gilt, da diese durch Hinzufügen eines gemeinsamen Eltern-Knoten zu einem 

einzelnen Baum umgewandelt werden können. 

2.4.2 Vektorgenerierung 
Nachdem das theoretische Fundament gesichert ist, verschiebt sich nun der Fokus der 

Arbeit auf die tatsächliche Generierung der Vektoren. Die Phase der Vektorerstellung teilt 

sich in zwei Abschnitte auf: zunächst die direkt aus AST-Knoten erstellten Vektoren und 

anschließend in Kapitel 2.4.3 die zusammengesetzten Vektoren. 

Mit Einstieg in eine Routine werden alle Knoten des AST in Postorder-Reihenfolge 

durchlaufen. Bei jedem Vektor werden zunächst die Vektoren der Kinder summiert. Dann 

wird der Eintrag an dem Index des AST-Knotens im Vektor um 1 erhöht, falls der Vektor 

relevant ist. Falls der Vektor zusätzlich signifikant ist, wird der Vektor in die globale 

Liste aller erstellten Vektoren hinzugefügt. 

 

Abbildung 5: Annotation der AST-Knoten mit den charakteristischen Vektoren (der obere Knoten ist relevant und 
erhöht den zweiten Eintrag im Vektor um 1). 

Die Relevanz eines Knoten gibt an, ob dieser Knoten in den charakteristischen Vektoren 

gezählt werden soll33. Durch die Verwendung des ASTs entfallen viele „technische 

Knoten“ eines Parsebaums wie Klammern und Semikola bevor der Algorithmus startet. 

Aber auch Casts oder andere strukturierende Knoten können für das Zählen nicht 

interessant sein. Insbesondere wird über die Relevanz die Granularität der Klonerkennung 

gesteuert. So können Unterschiede im AST „ignoriert“ oder absichtlich gleich gezählt 

werden. Ein Beispiel explizit zusammengefasster Knoten können Schleifen sein – so 

werden unterschiedliche Schleifenvarianten explizit auf den gleichen Eintrag im Vektor 

indexiert, wodurch der Klonerkenner diese als identisch erkennt. 

                                                 
32 Eine Menge an ASTs. 
33 Die für diese Arbeit getroffene Auswahl an relevanten IML-Knoten findet sich in Kapitel 3.43.2.1. 
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Die Signifikanz eines Knotens gibt an, wie wahrscheinlich dieser ein Kandidat für die 

Klonerkennung ist. Der Hintergrund ist, dass die so gefundenen Kandidaten eine 

Mindestgröße überschreiten sollen. Ohne diese Mindestgröße würde sonst jede 

Initialisierung einer Variable als Klon erkannt: 

Codebeispiel 2: Beispielprogramm mit Variableninitialisierung 

Vor dem Hinzufügen eines Knotens wird zunächst überprüft, ob dessen Vektor genügend 

für die Signifikanz interessante Knoten enthält. Nicht alle Knotentypen sind für diese 

Eigenschaft interessant, sondern nur eine Auswahl von Knotentypen, die sehr 

wahrscheinlich der Ausgangspunkt eines Codeklons sein könnten. 

Den numerischen Mindestwert für die Signifikanzbestimmung festzulegen ist nicht 

trivial. Während in der Originalimplementierung von DECKARD 30 Token (der 

Standardwert) in der Regel zu etwa 3 Statements gehören, ist dies bei AST-Knoten nicht 

der Fall. Hier können die 30 Knoten entweder zu weniger (möglicherweise weniger als 

einem vollen Statement), oder erheblich mehr Statements gehören. Daher wird von einer 

rein numerischen Betrachtung des Vektors abgesehen, sondern das zusätzliche Wissen 

dahingehend miteinbezogen, dass eine gewichtete Summe des Vektors für die 

Signifikanzberechnung verwendet wird. 

Die Relevanz gibt also an, welche Knoten gezählt werden und die Signifikanz gibt an, von 

welchen Knoten die Vektoren in die Klon-Kandidatenliste aufgenommen werden. 

2.4.3 Vector Merging (Vektor-Kombinationen) 
Mit den Klon-Kandidaten, die direkt aus einzelnen AST-Knoten erzeugt werden, sind im 

Programmcode einzelne Statements abgedeckt. Viele interessante Klone werden sich 

jedoch über mehrere Zeilen Programmcode, über mehrere Statements erstrecken. Daher 

werden im zweiten Abschnitt der Vektorgenerierung aus mehreren benachbarten AST-

Knoten zusammengefasste Vektoren erzeugt. 

Der Algorithmus für das Zusammenfassen der Knoten ist simpel. Es wird die Liste aller 

Kindknoten als Basis verwendet, anschließend wird ein sogenanntes Sliding Window 

erstellt und über die Liste der Kindknoten verschoben. Für jeden Knoten in der Liste wird 

entschieden, ob dieser Teil einer Fragmentkombination sein kann, oder nicht. Falls der 

Knoten nicht kombinierbar ist, wird er aus der Liste der Kindknoten herausgefiltert. 

int i = 1; 
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Abbildung 6: Veranschaulichung des iterativ verschobenen und vergrößerten Sliding Windows. 

Das Sliding Window betrachtet einige aufeinanderfolgende Knoten. Aus diesen wird ein 

summierter Vektor erzeugt. Falls dieser signifikant ist, wird er der Liste der 

Klonkandidaten hinzugefügt. Anschließend wird das Sliding Window um eine Position 

weiter geschoben34. 

                                                 
34 Die Originalimplementierung von DECKARD (siehe [6]) hat keine automatische Vergrößerung des Sliding Windows 

verwendet, dafür aber die Schrittweite konfigurierbar gemacht. Dies ist bei der erweiterten Implementierung nicht mehr 

notwendig. 
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Abbildung 7: Neue Codefragmente aus Knoten mit zugehörigen Vektoren, die durch das Vector Merging erstellt 
wurden. 

Die Größe des Sliding Windows wird iterativ vergrößert. Die Arbeit von Gabel et al35 hat 

herausgefunden, dass es sinnvoll ist, die Größe des Sliding Windows initial auf 3 zu 

setzen und nach jedem Durchlauf multiplikativ um den Faktor 1,5 zu vergrößern. Dieser 

Abschnitt der Vektorgenerierung endet, wenn die Größe des Sliding Windows größer als 

die Anzahl der benachbarten Vektoren ist. 

2.5 Locality-Sensitive-Hashing36 
Nach der Generierung der Vektoren müssen nun effizient benachbarte Vektoren gefunden 

werden. Hierbei wird zunächst die Datenstruktur erstellt, anschließend wird für jeden 

Vektor in der Kandidatenliste die Liste der benachbarten Vektoren gesucht. Intuitiv hat 

dieses Verfahren in etwa quadratischen Aufwand, da jeder Vektor mit jedem anderen 

Vektor verglichen werden muss37. Deshalb wird ein Verfahren eingeführt, das die 

Vektoren in einer Vorverarbeitung clustert, sodass die Distanzberechnungen auf ein 

Minimum reduziert werden können38. 

Für eine Minimierung der Zahl der Vektorvergleiche wird Locality-Sensitive-Hashing39 

verwendet. In diesem Verfahren wird zu jedem Vektor ein Hash-Wert berechnet. Die 

zugrundeliegende Hashfunktion ist so konstruiert, dass für nahe Vektoren mit hoher 

Wahrscheinlichkeit gleiche Hash-Werte berechnet werden. Bei der Suche nach nahen 

Knoten werden von einem Anfragevektor aus alle Vektoren mit dem gleichen Hashwert 

                                                 
35 Siehe [4]. 
36 Die Definitionen und Beweise für diese Kapitel stammen aus [5]. 
37 Dies ist also eine quadratische Menge an Vektorvergleichen, wobei die Vektorvergleiche (Distanzberechnungen) 

selbst ebenfalls einen Beitrag zur Laufzeit leisten. 
38 Die Zahl der Vektorvergleiche ist quadratisch in der Anzahl der Klonkandidaten. Ein einzelner Vektorvergleich 

(Distanzberechnung) selbst ist linear in der Anzahl der Dimensionen eines charakteristischen Vektors. LSH minimiert 

nur die Zahl der Vektorvergleiche. 
39 Wie beschrieben in [5]. 
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gesucht und nur für diese kleine Teilmenge werden konkrete Distanzberechnungen 

durchgeführt. 

2.5.1 Verwendete Hashfunktion 
Die zugrundeliegende Hashfunktion muss die folgende Eigenschaft erfüllen, dass sie für 

eine LSH-Berechnung verwendet werden kann: 

Definition 340: Eine Familie an Hashfunktionen ℎ ∶ 𝒱 ⟶ 𝒰 heißt (𝑝1, 𝑝2, 𝑅, 𝑐)-sensitiv 

(mit 𝑐 ≥ 1), falls ∀ 𝑢, 𝑣 ∈  𝒱 gilt: 

 

falls  𝒟(𝑢, 𝑣) < 𝑅  dann 𝑃𝑟𝑜𝑏[ℎ(𝑢) = ℎ(𝑣)]  ≥  𝑝1 

falls 𝒟(𝑢, 𝑣) > 𝑐𝑅  dann 𝑃𝑟𝑜𝑏[ℎ(𝑢) = ℎ(𝑣)]  ≤  𝑝2 

Um als LSH-Hashfunktion sinnvoll zu sein, sollte für die gegebene Funktionsfamilie 

𝑝1 > 𝑝2 und 𝑐 ≥ 1 gelten. 

 

Abbildung 8: Der Raum wird in die Kugel um den Punkt und den restlichen Raum aufgeteilt. 

                                                 
40 Aus [2], Definition 1 bzw. dessen Adaption in [6], Definition 3.9. 
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Datar et al41 haben gezeigt, dass die folgende Hashfunktion diese Eigenschaft erfüllt: 

ℎ𝛼,𝑏 ∶  ℝ𝑑 → ℕ 

ℎ𝛼,𝑏(𝑣) =  ⌊
𝛼 ⋅ 𝑣 + 𝑏

𝑤
⌋ 

mit 𝑤 ∈ ℝ, 𝑏 ∈ [0, 𝑤] und 𝛼 ∈ ℝ𝑑 als zufällig gewählten Vektor. 

2.5.2 Vorbereitung der LSH-Datenstruktur 
Als grundlegende Datenstruktur bei der LSH-Berechnung wird eine Hashmap verwendet. 

Jeder Eintrag in dieser Hashmap („Bucket“) ist eine Liste von in diesen Bucket gehashten 

Vektoren. 

Der Ablauf der LSH-Berechnung ist wie folgt: zunächst wird jeder Punkt nicht nur 

einmal gehasht, sondern es werden mehrere Hashfunktionen (insgesamt 𝑘 

Hashberechnungen) nacheinander ausgeführt. Dies verringert intuitiv mit jedem weiteren 

Hashing die Wahrscheinlichkeit, dass zwei Punkte die weit entfernt sind, den gleichen 

Hashwert erhalten. Diese Kette an ℎ𝑖-Funktionen werden fortan 𝑔𝑗 genannt. 

Anschließend wählt man eine Zahl 𝐿, die die Zahl der unterschiedlichen Hash-Buckets 

angibt, in die der Vektor gehasht wird. 

Bildlich gesprochen projiziert die Hashfunktion den zufälligen Vektor 𝛼 und den Vektor 

𝑣 auf einen Punkt auf der reellen Achse. Diese Projektion erhält die Distanzeigenschaft42. 

Dies bedeutet, dass Vektoren, die vorher weit entfernt waren, mit hoher 

Wahrscheinlichkeit nach der Projektion ebenfalls als Punkte auf der reellen Achse weit 

entfernt sind (und umgekehrt). Das wiederholte Hashing verringert die 

Wahrscheinlichkeit, dass zwei weit entfernte Vektoren über einen ungünstig liegenden 𝛼-

Vektor den gleichen Hashwert erhalten43. 

                                                 
41 Siehe [2]. 
42 Wie gezeigt in [2]. 
43 Veranschaulicht vergrößert es die Kluft zwischen Punkten im Intervall [0; 𝑅] und den Punkten im Intervall (𝑅, ∞). 
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Abbildung 9: Veranschaulichung der Projektion der Vektoren auf die reelle Achse (der dickere Vektor ist 𝛼). Ebenfalls 
sieht man hier die gleichmäßige Aufteilung der reellen Achse in Segmente mit Breite 𝑤. 

Nachdem der Vektor auf einen Punkt auf der reellen Achse projiziert wurde, wird die 

reelle Achse gleichmäßig in Segmente aufgeteilt, mit Breite 𝑤. Die Hashfunktion 

berechnet durch die Division und das Abrunden den Segmentindex. Der Segmentindex 

dient anschließend als Index für die Hashmap. 

Nicht nur die Wahrscheinlichkeit, dass zwei weit entfernte Vektoren in den gleichen 

Bucket gehasht werden (falsch positive Treffer), sondern auch die Wahrscheinlichkeit, 

dass zwei nahe Vektoren nicht in den gleichen Bucket gehasht werden (falsch negative 

Treffer) ist interessant. Während die erste Variante nur das Laufzeitverhalten negativ 

beeinflusst, beeinträchtig die zweite Variante das Ergebnis. Wenn zwei nahe Vektoren in 

unterschiedliche Buckets gehasht werden, wird der Klonerkenner diese nicht als Klone 

erkennen. 

Um dieses Problem zu umgehen, werden die Vektoren in mehrere Buckets gehasht. 

Insgesamt in 𝐿 unterschiedliche Buckets. 
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Abbildung 10: Gesamtüberblick aller Hashing-Vorgänge in LSH. 

Der Ablauf in der Gesamtbetrachtung ist wie folgt: als Eingabe erhält LSH einen Vektor 

mit 𝑑 Einträgen. Dieser Vektor wird 𝑘-mal mit unterschiedlichen Hashfunktionen gehasht 

(die Funktion, die 𝑘-mal mit unterschiedlichen Hashfunktionen hasht heißt 𝑔𝑖 (wobei 𝑖 =

1 … 𝐿)). Das Ergebnis ist ein neuer, 𝑘-dimensionaler Vektor, in dem im 𝑖-ten Eintrag das 

Ergebnis der 𝑖-ten Hashfunktion ℎ𝑖 steht. Dieser Vektor wiederum wird mit 𝐿 regulären 

Hashfunktionen zu Bucketindizes der Hashmap umgerechnet. In jeden dieser Buckets 

wird der Vektor eingefügt. 

Bei der Abfrage nach der Menge der nahen Nachbarn eines Punktes wird der 

Abfragepunkt ebenfalls gehasht und in Bucketindizes umgerechnet. Alle Vektoren in 

diesen Buckets werden anschließend direkt mit dem Abfragepunkt verglichen. 

Relevante Parameter in diesem Verfahren sind die Zufallsfunktion, mit der die 𝛼- und 𝑏-

Parameter der Hashingfunktionen generiert werden. Außerdem ist die Zahl der 

konkatenierten Hashfunktionen (𝑘) und die Anzahl der Buckets, in die die Vektoren 

gespeichert werden (𝐿), interessant. Der Parameter 𝑐 aus Definition 3 wird auf 1 gesetzt, 

wodurch der Raum in Punkte innerhalb der Radiuskugel um den Punkt und alle restlichen 

Punkte aufgeteilt wird. Die Kollissionswahrscheinlichkeiten 𝑝1 und 𝑝2, sowie der Radius 
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𝑅 sind zwei Parameter, die nicht fest im System vorgegeben sein müssen, sondern bei 

denen der Benutzer der implementierten Klonerkennung die Genauigkeit gegenüber der 

Laufzeit abwägen kann. 

Die wichtigste Eigenschaft der Hashfunktion ist, dass die Verteilung stabil über der 𝑙2-

Norm44 ist. Dies ist zum Beispiel bei der Gauß-Verteilung gewährleistet. Darüber hinaus 

ist bekannt, dass man eine unter der 𝑙2-Norm stabile Zufallsvariable aus zwei 

unabhängigen, normalverteilten Zufallsvariablen aus dem Intervall [0; 1] erzeugen 

kann45. 

Die zwei undefinierten internen Parameter 𝑘 und 𝐿 werden für ein theoretisch optimales 

Ergebnis wie folgt definiert46:  

𝑘 = 𝑙𝑜𝑔 1
𝑝2

(𝑛) 

𝐿 = 𝑛𝜌 mit 𝜌 =
𝑙𝑛 (

1

𝑝1
)

𝑙𝑛 (
1

𝑝2
)
 

wobei 𝑛 die Anzahl aller Vektoren ist. 

Diese Definition hält die beiden Faktoren 𝑘 und 𝐿 so klein wie möglich (für ein 

theoretisch optimales Laufzeitverhalten), aber so groß wie nötig um die vorgegebenen 

Erfolgswahrscheinlichkeiten zu erhalten. 

2.6 Erweiterung um PDG-Codefragmente47 
DECKARD ist im Grunde eine Art Framework für Codeklonerkennung. Als Eingabe 

dienen unterschiedlichste Verfahren um Code-Fragmente (Mengen aus AST-Knoten und 

zugehörige charakteristische Vektoren) zu erzeugen, aus denen im weiteren Verlauf die 

Klone gefiltert werden. Diese Verfahren können variieren, es können neue hinzugefügt, 

existierende ausgetauscht oder entfernt werden. 

Bryant48 fügt ein neues Verfahren zur Erstellung von Code-Fragmenten hinzu. Da nur 

weitere Vektorerzeuger hinzugefügt werden, ist die Menge der mit dem abgewandelten 

Verfahren gefundenen Klone eine echte Obermenge von DECKARD. Das heißt es 

werden auf jeden Fall alle Klone gefunden, die DECKARD auch findet. Darüber hinaus 

fügt Bryant einen neuen Schritt der Vektorgenerierung hinzu, der aus dem PDG heraus 

Klonkandidaten erstellt. Durch die Zuhilfenahme des PDG bringt das Verfahren ein 

gewisses semantisches Bewusstsein in die Klonerkennung ein, da der PDG grundlegende 

Aussagen über die Semantik eines Programms treffen kann. 

                                                 
44 Die Verteilung muss „2-stable“ sein, siehe [2]. 
45 Siehe [20]. 
46 Aus [2]. 
47 Dieses Kapitel baut zu weiten Teilen auf dem Kapitel 3.3 aus [4] auf, da dort dieses Verfahren eingeführt wurde. 
48 Nach [4]. 
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Zunächst wird die Definition eines Codeklons leicht erweitert. Die bisherige 

Arbeitsdefinition eines Codeklon ist wie folgt: 

Definition 4 (Syntaktische Codeklone)49: Zwei disjunkte, zusammenhängende 

Programmsequenzen 𝑆1 und 𝑆2 sind Codeklone, genau dann wenn 𝛿(𝑆1, 𝑆2) 

Wobei 𝛿 eine Ähnlichkeitsmetrik darstellt. In Bezug auf DECKARD ist das die in Kapitel 

2.3 vorgestellte Edit-Distanz. Diese Definition wird nun um semantische Klone erweitert. 

Definition 5 (Semantische Codeklone)50: Zwei disjunkte, möglicherweise nicht-

zusammenhängende Programmsequenzen 𝑆1 und 𝑆2 sind semantische Codeklone, genau 

dann wenn 𝑆1 und 𝑆2 syntaktische Codeklone sind oder 𝜇(𝑆1) isomorph ist zu 𝜇(𝑆2). 

In dieser Funktion wird eine neue Abbildung 𝜇 verwendet, das sogenannte syntaktische 

Abbild. Diese Abbildung ist nötig, da bisher noch kein performanter und skalierbarer 

Algorithmus existiert, um semantische Klone zu erkennen. Die direkte Implementierung 

führt zu einer kombinatorischen Explosion an neuen möglichen Klonkandidaten, sowie zu 

einer sehr aufwändigen Berechnung der Graphisomorphie51. Bryant macht sich die 

Tatsache zunutze, dass sowohl der AST, als auch der PDG auf dem Programmcode 

basieren. Daher wird eine Funktion definiert, die zu einem gegebenen PDG den 

zugehörigen Quellcode findet. 

Definition 6 (Syntaktisches Abbild)52: Das syntaktische Abbild eines PDG Teilgraphen 

G, genannt 𝜇(𝐺), ist die maximale Menge an AST-Teilbäumen, die zu der konkreten 

Syntax der Knoten in G gehören. Diese Menge ist dominierend, d.h. für jedes Paar von 

Bäumen 𝑇, 𝑇′ ∈  𝜇(𝐺) gilt 𝑇 ⊆ 𝑇′. 

Durch die Abbildung von PDG auf AST-Knoten reduziert sich das komplexe 

Graphähnlichkeitsproblem zu einem Baumähnlichkeitsproblem. Weiterführend kann die 

Ähnlichkeit der Bäume bereits mit den charakteristischen Vektoren und dem LSH-

Verfahren gelöst werden. 

Damit schließen die durch PDG erzeugten Klonkandidaten nahtlos an die durch 

DECKARD erzeugten Klonkandidaten an. Den gesamten PDG als einen Kandidaten zu 

verwenden ist allerdings nicht sinnvoll, daher werden nur Teilbereich des PDG als 

Klonkandidat verwendet. Die richtige Auswahl dieser Kandidaten ist nicht trivial und 

wird im folgenden Kapitel beschrieben. 

                                                 
49 Siehe [4]. 
50 Siehe [4], 
51 Graphisomorphie liegt in NP und es ist keine effiziente Implementierung bekannt. Obwohl die Zahl der PDG-Knoten 

in aller Regel relativ gering sein wird, ist es trotzdem im Allgemeinen eine sehr aufwändige Berechnung. 
52 Siehe [4]. 
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2.6.1 Auswahl der PDG-Teilgraphen53 
Der Algorithmus muss für eine bestmögliche Klonerkennung eine (endliche) Menge an 

interessanten Teilgraphen des PDG erzeugen. Diese Teilgraphen gehen dann in die 

Klonerkennung als Kandidaten ein und werden im weiteren Verlauf mit anderen 

Kandidaten verglichen. Gabel et al stellen zwei Varianten der Teilgraph-Auswahl vor. 

Beide Varianten werden in diesem Kapitel besprochen. 

Codebeispiel 3: Basis für den folgenden PDG54. 

                                                 
53 Das Verfahren wurde übernommen von [4], Kapitel 3.3. Da in dieser Arbeit alle Grundlagen für diese Diplomarbeit 

geschaffen wurden, hält sich die folgende Beschreibung eng an die Vorlage. 
54 Übernommen aus [4], Figure 1, Seite 322. 

int func (int i, int j) { 

  int k = 10; 

 

  while (i < k) { 

    i++; 

  } 

 

  j = 2 * k; 

 

  printf(“i=%d, j=%d\n“, i, j); 

  return k; 

} 
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Abbildung 11: Beispielhafter PDG55 

Ein PDG besitzt viele technische Basisknoten, wie in Abbildung 11 zu sehen ist („body“, 

„exit“, „entry“). Diese Knoten werden, wie in der Abbildung angedeutet, von der 

Erstellung der Codefragmente ausgenommen, da diese keine Relevanz für das Verfahren 

haben und wie im Beispiel des „entry“-Knoten zu einer unnötig hohen Überdeckung der 

Teilgraphen führen. 

 (Schwache) Zusammenhangskomponente56 
Die einfachste und konservativste Implementierung ist sicherlich mittels 

Zusammenhangskomponenten. Hierbei werden alle gerichteten Kanten des PDG durch 

ungerichtete Kanten ersetzt und die Zusammenhangskomponenten gesucht. 

Der Hintergrund ist, dass zwei voneinander unabhängige Statements, wie beispielsweise 

Zeile 5 (increment) und 8 (Zuweisung) in Codebeispiel 3, keine direkte Verbindung 

haben, durch den Aufruf von printf aber trotzdem verbunden sind. Zwei Statements 

sind nur dann unabhängig voneinander, wenn sie in unterschiedlichen 

Zusammenhangskomponenten stehen. 

Die Implementierung der Erkennung von schwachen Zusammenhangskomponenten ist 

mit einer Tiefensuche mit linearem Aufwand möglich. 

                                                 
55 Das Bild stammt aus [4], Figure 3, Seite 322. 
56 Siehe das Kapitel 7.2 im Appendix für eine kurze Definition von Zusammenhangskomponenten. 
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 Semantic Threads 
Obwohl Zusammenhangskomponenten bereits interessante Ergebnisse in der 

Klonerkennung liefern, wird eine feingranularere Graphselektion benötigt. Folgendes 

Codebeispiel veranschaulicht das allgemeine Problem mit einem Verbot jeglicher 

Überlappung der Teilgraphen57: 

Codebeispiel 4: Das Problem mit Zusammenhangskomponenten58 

Durch die Zusammenführung der komplett separaten Berechnungen von x, y und z am 

Ende der Funktion wird in den letzten vier Zeilen die gesamte Funktion zu einer einzigen, 

großen Zusammenhangskomponente – und das obwohl die Funktion offensichtlich drei 

separate Berechnungszweige hat. 

Ein Weg dieses Problem zu umgehen, ist die Verwendung von Forward Slices59. Ein 

Forward Slice ist das Ergebnis einer speziellen Form des Program Slicing60. Die Arbeit 

von Gabel et al verwendet eine leicht vereinfachte Definition. Hierbei werden von einer 

Variablen an einem Punkt in einem Programm aus alle folgenden Programmabschnitte 

gesammelt, die direkt oder indirekt von dem Wert dieser Variablen abhängen. Wenn 

bereits ein PDG vorliegt, ist die Berechnung eines Forward Slices trivial: 

                                                 
57 Zusammenhangskomponenten verbieten per Definition jegliche Überlappung. 
58 Frei adaptiert von [4], Figure 6, Seite 325. 
59 Beschrieben in [21]. 
60 Beschrieben in [22]. 

struct coordinates *generate_example_point () { 

  struct coordinates *point = malloc(sizeof(struct coordinates)); 

  int x = 0; 

  int y = 0; 

  int z = 0; 

 

  // aufwändige Berechnung von x 

  // … 

 

  // aufwändige Berechnung von y 

  // … 

 

  // aufwändige Berechnung von z 

  // … 

 

  point->x = x; 

  point->y = y; 

  point->z = z; 

  return point; 

} 
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Definition 7 (Forward Slice)61: Sei 𝐺 ein PDG der Prozedur 𝑃, und sei 𝑠 ein Statement 

in 𝑃. Der statische intraprozedurale Forward Slice von 𝑠 über 𝑃 ist definiert als die 

Menge aller von 𝑠 in 𝐺 erreichbaren Knoten. 

Im obigen Beispiel der Koordinatenberechnung ergeben die drei Initialisierungen von x, y 

und z drei separate Forward Slices, die erst in den letzten vier Zeilen eine Überlappung 

haben. Diese Datenflüsse werden fortan als semantische Threads bezeichnet. 

Definition 8 (Semantischer Thread)62: Ein semantischer Thread einer Prozedur 𝑃 ist 

entweder ein Forward Slice oder die Vereinigung mehrerer Forward Slices. 

Diese semantischen Threads haben in der Regel einen Grad an Überlappung mit anderen 

semantischen Threads. Im obigen Beispiel ist die Überlappung relativ gering, daher ist 

anzunehmen, dass die unterschiedlichen Datenflüsse unterschiedliche Berechnungen und 

Programmaspekte darstellen. Ist die Überlappung zweier semantischer Threads allerdings 

zu hoch, ist davon auszugehen, dass die zwei einzelnen Threads zu einer höheren, 

größeren Berechnung gehören. Daher werden diese stark überlappenden Threads zu 

einem zusammenfassenden Thread gruppiert. 

Codebeispiel 5: Beispiel für stark überlappende semantische Threads. 

In Codebeispiel 5 ist direkt ersichtlich, dass obwohl die Initialisierungen von a und b 

mehrere semantische Threads erzeugen, diese in Wirklichkeit zu einer größeren 

Berechnung im Rumpf der Schleife gehören. Dies als getrennte Threads anzusehen wird 

nicht nur redundante Codeklone erzeugen, sondern könnte auch die Sicht auf größere 

Zusammenhänge verwehren. Daher werden die interessanten 𝛾-überlappenden 

semantischen Threads63 𝐼𝑆𝑇(𝑃, 𝛾) definiert, die eine Auswahl von semantischen Threads 

treffen, die möglichst gute Kandidaten für semantische Klone erzeugen. 

                                                 
61 Aus [4], Definition 3.4. 
62 Aus [4], Definition 3.5. 
63 Fortan kurz „ISTs“. 

int example () { 

  int a = 1; 

  int b = 2;  

 

  for (int j = 0; j < b; j++) { 

    // umfangreiche Berechnung mit j, a und b 

  } 

 

  // … 

} 
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Definition 9 (interessante semantische Klone)64: die Menge der interessanten, 𝛾-

überlappenden semantischen Threads ist eine endliche Menge von semantischen Threads 

mit folgenden Eigenschaften: 

 

1. Die Menge ist vollständig, ihre Vereinigung entspricht dem PDG. 

 

2. Die Menge darf keine Threads enthalten, die vollständigen in anderen Threads 

enthalten sind. 

∄𝑠𝑙, 𝑠𝑙′ ∈ 𝐼𝑆𝑇(𝑃, 𝛾): 𝑠𝑙′ ⊆ 𝑠𝑙 

 

3.Zwei beliebige Threads in der Menge dürfen sich in maximal 𝛾 Knoten überschneiden: 

∀𝑠𝑙, 𝑠𝑙′ ∈ 𝐼𝑆𝑇(𝑃, 𝛾): |𝑠𝑙 ∩ 𝑠𝑙′| ≤ 𝛾 

 

4. 𝐼𝑆𝑇(𝑃, 𝛾) ist maximal, d.h. es hat die maximale Größe aller Mengen, die Eigenschaft 

1-3 erfüllen. 

Mit einer maximalen Überdeckung von 𝛾 = 1 werden für das Codebeispiel 5 drei 

separate, semantische Threads erzeugt. Ein Spezialfall stellt 𝛾 = 0 dar, denn dann werden 

genau die Zusammenhangskomponenten erzeugt. 

Einen Algorithmus für die Berechnung der 𝐼𝑆𝑇(𝑃, 𝛾) stellen Gabel et al vor65. Der 

vorgestellte Algorithmus ist simpel in der Implementierung und hat im schlechtesten Fall 

kubische Laufzeit. Dies stellt allerdings kein Problem dar, da in der Regel die Anzahl der 

Knoten in den semantischen Threads gering ist. Darüber hinaus skaliert der Algorithmus 

auch gut für größere Programme, da dort eher die Zahl der Prozeduren steigt, aber nicht 

zwangsläufig deren Länge. 

2.7 Ergebnisfilterung 
Die in den vorangegangenen Schritten erzeugten Codefragmente können, je nach 

Anforderung an die zugehörigen Generator mit unterschiedlichen Ansätzen erstellt 

worden sein. Eine Variante ist, dass möglichst viele Fragmente erstellt werden, die 

anschließend gefiltert werden, eine anderen Alternative ist ein aufwändigeres 

Erzeugungsverfahren, das feiner hinsichtlich der erzeugten oder ausgelassenen Vektoren 

entscheidet. 

Die Ergebnisfilterung ist dahingehend trivial, dass das Ergebnis der LSH-Queries eine 

Liste an Klonpaaren sind, die paarweise verglichen werden müssen. Diese Paare bestehen 

aus zwei Codefragmenten, die die unterschiedlichen Stellen im Quellcode markieren. 

                                                 
64 Aus [4], Definition 3.6. 
65 Siehe [4], Algorithm 1. 
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Die redundanten Einträge der Liste der Klonpaare müssen für ein aussagekräftiges 

Ergebnis ausgefiltert werden. Dies schließt ein: 

 Klonpaare, bei denen beide Fragmente auf den gleichen Code zeigen. 

 Klonpaare, bei denen das eine Fragment ein Teilstück des anderen Fragments ist. 

 Und abschließend die Filterung zwischen den unterschiedlichen Klonpaaren, mit 

der Überprüfung, ob die beinhalteten Fragmente entweder äquivalent oder in den 

anderen Fragmenten enthalten sind. 

Diese Überprüfung muss performant umgesetzt werden, da die Zahl der erstellten 

Klonkandidaten sehr groß werden kann. 
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3  Implementierung 
Nachdem das theoretische Fundament gesichert ist, wird die Implementierung mit 

Anbindung an das Bauhaus-Framework besprochen. Hierbei wurde ein Programm 

namens Bryant66 implementiert, dass an das Framework andockt und die 

Codeklonerkennung implementiert. Bryant, sowie der größte Teil von Bauhaus, sind in 

Ada geschrieben67. 

3.1 Bauhaus68 
Das Projekt Bauhaus, eine Kooperation der Universität Stuttgart, der Universität Bremen 

und der Firma Axivion GmbH ist ein Analyseframework für Softwaresysteme. Es kann 

auf unterschiedlichen Ebenen eingesetzt werden, wie beispielsweise zur Beobachtung von 

Softwarearchitektur, zur Ermittlung geklonter Quelltexte oder für die automatische 

Generierung von Qualitätsmetriken. Ein weiterer Schwerpunkt ist die automatische 

Identifikation von Programmierfehlern, mit speziellem Fokus auf Synchronisationsfehler 

nebenläufiger Programme. 

 

Abbildung 12: Aufteilung der Fachbereiche bei Bauhaus69. 

Im Zentrum von Bauhaus steht der IML-Graph, der ein Abbild der Programmstruktur, 

inklusive des ASTs, aller Typdeklaration und der darauf aufbauenden Daten gibt. Die 

IML ist eine sprachübergreifende Zwischendarstellung, in die Bauhaus jedes Programm 

nach der Kompilierung überführt. In dieser Zwischendarstellung können einheitliche 

Analysen durchgeführt werden, die unabhängig vom verwendeten Frontend funktionieren 

– neu hinzugefügte Sprachen im Frontend können direkt von den bereits existierenden 

Analysen profitieren. 

Durch den IML kann mittels unterschiedlicher Sichten navigiert werden. Diese Sichten 

stellen eine Fragestellung dar, die der Anwender im Graph beantworten will, wie 

                                                 
66 Auch dieser Name ist – wie DECKARD – dem Film Blade Runner (1982) entliehen. Harry Bryant ist der Vorgesetzte 

von Rick Deckard und ist sozusagen für dessen Funktionieren im größeren Gesamtgefüge zuständig. 
67 Codebeispiele werden sich daher an Ada orientieren – in aller Regel wird dies aus Platzgründen aber kein 

vollständiger, lauffähiger Programmcode sein. 
68 Die Einführung basiert auf der Selbstbeschreibung der offiziellen Website der Universität Stuttgart zu Bauhaus, siehe 

[23]. 
69 Von [23]. 
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beispielsweise den Verlauf von Datenflussanalysen oder zugehörige Klongruppen eines 

AST-Knotens. 

Bauhaus ist aus mehreren separaten Programmen aufgebaut70, die für die Durchführung 

der Analysen nacheinander ausgeführt werden. Die Analyseprogramme erwarten als 

Eingabegraph immer den Ergebnisgraph des vorigen Schrittes. Die unterschiedlichen 

Programme annotieren und erweitern den IML-Graphen immer weiter, so dass dieser 

stetig reicher an Information wird. Dadurch können spätere Programme auf den 

Ergebnissen voriger Schritte aufbauen. 

Auch die Implementierung von Bryant erzeugt eine eigenständige Binary, die als Eingabe 

einen in einer Datei gespeicherten IML-Graph erwartet. Die einzige Bedingung eines 

korrekten Durchlaufs ist, dass die PDG-Analyse erfolgreich durchgeführt werden kann. 

Dies bedeutet, die Voraussetzungen sind identisch mit denen der PDG-Analyse, was die 

gesamte Analysekette inklusive der SSA-Form einschließt. 

3.2 Überblick über Bryant 
Einige essenzielle Parameter des Programms sind über einen Konfigurations-Record 

steuerbar. Dieser ist aktuell statisch, einzelne (oder alle) Parameter davon können jedoch 

über das Kommandozeileninterface (CLI) verfügbar gemacht werden. 

Der Programmablauf hält sich eng an den in Kapitel 2 beschriebenen Ablauf des 

Verfahrens. Die einzelnen Elemente sind in eigene Module ausgelagert. Diese sind 

voneinander komplett unabhängig und können einfach aktiviert oder deaktiviert werden, 

separat weiterentwickelt und getrennt betrieben werden. Die folgende Abbildung gibt 

einen Überblick über die Programmstruktur. 

                                                 
70 Die Tools erzeugen zwar unterschiedliche Binaries, verwenden intern aber die gleichen Bibliotheken aus allgemeinen 

Funktionen und Typdeklarationen. 
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Abbildung 13: Übersicht über die verschiedenen Komponenten von Bryant. Die Pfeile kennzeichnen die 
Abhängigkeiten. Die Komponenten Bryant_Debug und Bryant_Reporting sind hier ausgenommen, da sie für die 
generelle Funktionalität des Tools nicht relevant sind. 

Das System besteht aus den folgenden Komponenten: 

(Core)71: Main-Funktion und die Konfigurationsdateien. 

Bryant_Code: Logik für die Generierung der AST- und PDG-basierten Codefragmente 

(ein Fragment ist eine Kombination aus IML-Knoten und dem zugehörigen 

charakteristischen Vektor). 

Bryant_Debug: Hilfsfunktion um einige essenzielle Datenstrukturen auf dem CLI 

darzustellen. 

Bryant_Filter: Ergebnisfilterung, die doppelte Klone oder Klone, die eine Untermenge 

anderer Klone sind, entfernt. 

Bryant_IML: Ein Großteil des Adaptercodes zu IML. Dies umfasst den Code für die 

Indexierung der IML-Knoten und die Funktion um alle Routinen im gegebenen 

Programm zu finden. 

Bryant_LSH: Berechnung der LSH-Parameter und das komplette LSH-Hashing und 

dessen Berechnungen. 

Bryant_Math: Hilfsfunktionen zu mathematischen Berechnungen, für die Erstellung von 

Zufallszahlen und die Typ-Definition für die charakteristischen Vektoren. 

                                                 
71 Diese Dateien liegen im Hauptverzeichnis. 
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Bryant_Reporting: Auswertungsdaten wie Laufzeit, Anzahl der Vektoren und 

Routinen. Hiermit können nach Durchlauf des Programms Auswertungen erstellt werden. 

Im Folgenden wird das Zusammenspiel der einzelnen Komponenten beschrieben. 

Außerdem werden einige Implementierungsdetails erwähnt, die bei der Funktion des 

Klonerkenners eine wichtige Rolle spielen. 

 

Abbildung 14: Überblick über den Programmfluss und die Zwischenergebnisse in Bryant. Die Kästen kennzeichnen 
Komponenten, die Kreise und Ellipsen kennzeichnen Zwischenergebnisse (also Daten). 

Zunächst wird über die CLI durch Bauhaus der IML bereitgestellt. Dies ist der 

Einstiegspunkt der eigentlichen Implementierung. Anschließend werden aus dem IML-

Graphen alle Routinen extrahiert. Über diese Routinenliste wird iteriert und jede Routine 

ist Eingabe aller Code-Fragment-Generatoren. Am Ende dieser Phase ist das 

Zwischenergebnis eine Liste mit allen Code-Fragmenten. Diese wiederum sind erst 

Eingabe um die LSH-Datenstruktur zu befüllen, anschließend wird mit jedem Fragment 

aus der Liste nach den benachbarten Vektoren gesucht. Die gefundene Klonliste wird 

abschließend noch gefiltert. 

An diesem Punkt ist die eigentliche Klonsuche abgeschlossen, das Ergebnis sollte 

allerdings noch persistiert werden. Hierfür gibt es Storage-Adapter, die für die 

Speicherung im IML oder für anderweitige Speicherziele verantwortlich sind. 
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3.2.1 Adaption der Referenzimplementierung 
Die Originalimplementierung von DECKARD72 liegt unter einer Open-Source-Lizenz vor 

und dient teilweise als Vorlage für die Implementierung von Bryant. Die 

Originalimplementierung ist eine Mischung aus C, C++, Python, Shell-Programmen und 

einigen anderen Sprachen. Der Kern ist jedoch in den ersten drei Sprachen implementiert, 

Shell dient hauptsächlich für die Erstellung komfortabler ausführbarer Dateien, die den 

Kern in korrekter Reihenfolge aufrufen. 

Von einer direkten Anbindung der Originalimplementierung (beispielsweise via FFI) 

wurde abgesehen, da einzig die AST-Vektorgenerierung und LSH adaptierbar gewesen 

wäre. Die Menge des eingesparten Codes wäre durch die notwendige Umformatierung 

der Daten nahezu annulliert worden. 

Bei enger Betrachtung ist die einzig tatsächlich interessante Bibliothek für eine externe 

Einbindung LSH. Hier spricht gegen eine Adaption aber, dass die Größe der Bibliothek 

relativ klein ist (und daher schnell nachprogrammiert ist), und dass die Bibliothek seit der 

Originalimplementierung von 2005 nicht weiterentwickelt wird. Wenn in der Bibliothek 

in Zukunft rege Entwicklungsarbeit stattfindet, lohnt sich hier allerdings eine 

Neubewertung. 

Ein rechtlicher Aspekt der gegen eine Adaption der LSH-Implementierung E²LSH73 

spricht ist, dass die Implementierung zwischenzeitlich unter GPL steht. Die 

Implementierung von E²LSH, die in DECKARD eingebettet ist, steht noch unter der 

MIT-Lizenz, DECKARD selbst unter der Three-Clause-BSD Lizenz. Aber die aktuellste 

LSH-Implementierung, von den ursprünglichen Autoren, steht inzwischen unter GPL, 

eine Lizenz die durch ihr Copyleft nicht kompatibel mit der Lizenz von Bauhaus ist. 

3.3 Extraktion der Routine 

 

Abbildung 15: Phase in der Implementierung: IML / Routinen. 

Der erste Schritt in Bryant ist, alle Routinen im IML zu finden. Die Implementierung ist 

relativ kurz, da Bauhaus eine Komponente bereitstellt, mit der man mittels des Visitor-

                                                 
72 Zu finden unter [24]. 
73 Die Originalimplementierung, unter [26] zu finden. 
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Pattern auf allen Knoten des IML-Graphen Aktionen ausführen kann. Die hier 

implementierte Aktion ist einfach eine Liste an Routinen mitzugeben, an die bei jedem 

Routinen-Knoten der aktuelle Knoten angehängt wird. 

Besondere Beachtung gilt in dieser Phase totem Code, insbesondere Routinen, die nie 

verwendet werden. Einige Analysen folgen den Aufrufen aus der main-Prozedur, sodass 

diese nie aufgerufenen Routinen nicht analysiert werden. Dies wird bei der Suche nach 

Routinen berücksichtigt. Bei jeder Routine wird überprüft, ob das „Pattern“-Attribute des 

zugehörigen IML-Knotens leer ist. Falls nicht, wird davon ausgegangen, dass diese 

Routine analysiert wurde und sie wird zur globalen Routinenliste hinzugefügt. 

3.4 Vektorgenerierung 

 

Abbildung 16: Phase in der Implementierung: Vektorgenerierung. 

Die Vektorgenerierung aus der theoretischen Betrachtung wird zu einer Codefragment-

Generierung in der Implementierung. Ein Codefragment ist eine Liste an IML-Knoten 

inklusive des zugehörigen charakteristischen Vektors. 

Die Codefragmente sind die zentrale Datenstruktur der Implementierung. Ein 

Codefragment-Generator kann einfach in das System eingehängt werden, solange er das 

Interface erfüllt, er einen Routinen-Knoten erwartet und an die Vektorliste die 

ausgewählten Codefragmente anhängt. Durch diese wenig restriktive Bedingung können 

einfach neue, ausgefeiltere Klongeneratoren in das Verfahren eingebracht werden. 

In der Implementierung bisher sind die zwei Generatoren für die Knoten direkt aus dem 

AST nach DECKARD und für die PDG Slices vorhanden. 

3.4.1 Relevante und signifikante charakteristische 

Vektoren 
Bevor die konkreten Algorithmen für das Auswählen der Codefragmente vorgestellt 

werden, müssen noch die Begriffe relevanter Knoten und signifikanter Knoten aus der 

theoretischen Betrachtung für die Implementierung definiert werden. 
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 Relevante Knoten 
Die relevanten Knoten definieren die IML-Knotentypen, die einen Einfluss auf den 

charakteristischen Vektor haben. Die Implementierung ist hierbei losgelöst von der 

Typstruktur des Bauhaus-IML-Moduls, um BRYANT als komplett eigenständiges Paket 

zu etablieren. Die wesentliche Aufgabe des Bryant_IML-Pakets besteht darin, einem 

IML-Knoten einen Index im charakteristischen Vektor zuzuweisen. Falls ein solcher 

Index gefunden wird, ist der Knoten automatisch als relevant definiert. Falls kein Index 

gefunden wird, ist der Knoten nicht relevant. Dies ist schnell ersichtlich in der 

zugehörigen Implementierung: 

Codebeispiel 6: Relevanz-Überprüfung eines Knotenindizes74. 

Die erwähnte Unabhängigkeit vom Kern von Bauhaus erkennt man daran, dass die 

Spezifikation der IML-Knoten nicht berührt wird. Ein gangbarer Weg wäre das 

Hinzufügen eines neuen Attributes an jeden IML-Knoten gewesen, der den Index 

zurückgibt. Dies hat aber mehrere Nachteile: zunächst trägt nun jeder Knoten 

Informationen über BRYANT, auch wenn das Tool selbst möglicherweise gar nicht 

verwendet wird. Außerdem ist es bei direkter Attributierung nicht trivial die Index-

Zuweisung auszutauschen, was gerade bei der Evaluierung unterschiedlicher 

Relevanzkriterien interessant sein kann. 

Daher verwendet die Implementierung eine Hashmap, die einem Tag75 in Ada einen 

Index zuordnet. Eine alternative Implementierung wäre ein Test auf den ‘Class-Typ (pro 

Test also 𝑂(𝑑)76 Vergleiche), was den Vorteil hätte, dass die Erkennung die 

Typhierarchie ausnutzen könnte. Aus Performancegründen aber wurde der Weg der 

direkten Typvergleiche auf die Ada-Tags mit 𝑂(1)-Zugriff in der Hashmap implementiert 

– auch wenn für alle Untertypen ein eigener Eintrag hinzugefügt werden müsste. Da die 

Typhierarchie der IML-Knoten aber keinem konstanten Wandel unterliegt, ist der 

Wartungsaufwand für diese Implementierung im vertretbaren Rahmen. 

Mit der Zuweisung von IML-Knoten auf Index wird auch ein weiterer Aspekt abgebildet. 

Einige IML-Knoten sollen explizit vereinheitlicht werden, so dass diese als Duplikate 

erkannt werden. 

Die Conditionals werden als separate Einträge gehandhabt: 

                                                 
74 Der Fehlerfall, dass ein zu großer Index zurückgegeben wird muss durch das Typsystem abgefangen werden. 
75 Der konkrete Objekttyp. 
76 𝑑 ist die Länge des charakteristischen Vektors. 

function Node_Index_Is_Relevant (Index : Integer) return Boolean is 

begin 

  return Index > -1; 

end Node_Index_Is_Relevant; 
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Abbildung 17: Conditionals in der IML-Spezifikation.77 

Der zugehörige Initialisierungscode weist jedem Knoten einen unterschiedlichen Eintrag 

zu: 

Codebeispiel 7: Indexierung der unterschiedlichen Typen von Conditionals in Bryant. 

Bei den unterschiedlichen Typen von Zuweisungen soll allerdings nicht unterschieden 

werden: 

 

Abbildung 18: Assignments in der IML-Spezifikation.78 

Sondern es sollen alle Zuweisungen explizit einheitlich behandelt werden. Zwei 

Codeabschnitte, die sich folglich einzig in der Art der Zuweisung unterscheiden werden 

als identisch erkannt. 

Codebeispiel 8: Indexierung der unterschiedlichen Typen von Assignments in Bryant. 

Durch diese bewusste Vereinheitlichung kann die Genauigkeit, also im Grunde das 

semantische Hintergrundwissen des Klonerkenners, kalibriert werden. Mit zu vielen 

identischen Indizes werden Programmabschnitte als identisch angesehen, die nicht 

                                                 
77 Aus der Visualisierung der Spezifikation der Bauhaus-Dokumentation übernommen. 
78 Aus der Visualisierung der Spezifikation der Bauhaus-Dokumentation übernommen. 

Mapping.Insert (Catch_Blocks.Catch_Block_Class'Tag,                   1); 

Mapping.Insert (And_Thens.And_Then_Class'Tag,                         2); 

Mapping.Insert (Case_Branchs.Case_Branch_Class'Tag,                   3); 

Mapping.Insert (Conditional_Operators.Conditional_Operator_Class'Tag, 4); 

Mapping.Insert (If_Statements.If_Statement_Class'Tag,                 5); 

Mapping.Insert (Or_Elses.Or_Else_Class'Tag,                           6); 

Mapping.Insert (Assignments.Assignment_Class'Tag,                   23); 

Mapping.Insert (Initializes.Initialize_Class'Tag,                   23); 

Mapping.Insert (Shortcut_Assignments.Shortcut_Assignment_Class'Tag, 23); 

Mapping.Insert (Prefix_Operators.Prefix_Operator_Class'Tag,         23); 
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identisch sind. Mit zu vielen unterschiedlichen Indizes werden nur sehr (auch syntaktisch) 

ähnliche Programmabschnitte erkannt. 

 Signifikante Vektoren 
Die relevanten Knoten definieren die IML-Knoten, die Einfluss auf den 

charakteristischen Vektor haben. Aber nicht jeder der relevanten Knoten ist ein geeigneter 

Kandidat um als AST-Wurzel für einen Klonkandidaten zu fungieren. Literale sind ein 

relevanter Knoten, jedoch ist ein Literal kein geeigneter Ursprungsknoten für einen Klon. 

Daher wurden in Kapitel 2.4 signifikante Vektoren definiert. Dies sind Vektoren die 

geeignete Kandidaten für Klone sind – weil der Knoten vom richtigen Typ ist oder weil 

der Knoten ausreichend Kindknoten besitzt. Diese Einschränkung senkt nicht die Zahl der 

erkannten Klone: bei der AST-Generierung können trotzdem Kindknoten eines nicht-

signifikanten Vektors zu einem Kandidatenfragment vereint werden, durch das Vector 

Merging. 

Die getroffene Auswahl signifikanter Knoten basiert auf manuellen Tests, die eine 

möglichst gute Balance zwischen genug Vektoren und korrektem Ergebnis liefern. Die 

folgende Liste betrifft die Typhierarchie, es sind also immer der konkrete Typ selbst, als 

auch alle abgeleiteten Typen enthalten. 

 Assignments 

 Conditionals 

 Loop_Statments 

 Routine_Calls 

 Unconditional_Branch 

Diese Auswahl sollte in zukünftigen Anpassungen der Implementierung weiter überprüft 

und gegebenenfalls optimiert werden. 

Um in die globale Liste aller Codefragmente (mögliche Klonkandidaten) aufgenommen 

zu werden, muss das Fragment nicht nur relevant und signifikant sein, sondern es muss 

auch eine ausreichende Größe besitzen. So sollen selbst für signifikante Knoten, die zu 

einer sehr geringen Menge an Quellcode gehören, keine Vektoren erstellt werden, da 

sonst die Gefahr von außerordentlich vielen Duplikaten besteht. 

Daher wird eine Mindestgröße79 des Vektors eingeführt, die festlegt, ob für diesen Vektor 

ein Fragment erstellt wird oder nicht. Diese Mindestgröße gilt für alle Vektoren – 

unabhängig davon, wie viel konkrete IML-Knoten in diesem Code-Fragment enthalten 

sind. Die Längenberechnung kann nicht ungewichtet sein. Intuitiv ist eine Initialisierung 

eines Arrays (5 Literale) weniger geeignet als Klonkandidat, als eine ganze Routine mit 

mehreren Assignments und If-Conditions (die insgesamt ebenfalls 5 Knoten sein können). 

 

                                                 
79 Die Größe ist hier definiert als die Summe aller Einträge. 
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Codebeispiel 9: Array-Initialisierung mit 5 Einträgen. 

Der Code in Codebeispiel 9 erzeugt für die gesamte Zuweisung einen Vektor der Größe 7 

(1x L_Value, 1x Assignment, 5x Literal). Unabhängig von der Länge ist der Vektor 

dennoch nicht als Wurzel eines Klonkandidaten geeignet. Aus diesem Grund zählt die 

aktuelle Implementierung momentan die Zahl der signifikanten Knoten. Es wurde eine 

Mindestzahl von 3 festgelegt – diese Zahl, aber auch die gesamte Logik um einen Knoten 

als mögliche Klonkandidatenwurzel festzulegen, kann einfach erweitert und getestet 

werden. 

3.4.2 Codefragment-Generierung im AST 
Die Implementierung der AST-basierten Codefragment-Generierung hält sich nahe an die 

Beschreibung des Algorithmus im zugehörigen Artikel80. Grob gesagt ist es ein 

Baumdurchlauf, bei dem in jedem Schritt „on-the-fly“ die Vektoren für den aktuellen 

Knoten erstellt werden. Hierfür ist nur ein einmaliger Durchlauf aller AST-Knoten des 

Baumes nötig. 

Die AST-Knoten81 werden in Post-Order-Reihenfolge durchlaufen, da die Vektoren von 

den Blättern des Baumes aufwärts erstellt werden müssen. Jeder Vektor eines Knoten ist 

die Summe aller Vektoren der Kinder, inklusive der Erhöhung des Eintrages im 

Knotenindex, falls der Knoten relevant ist. 

Beim Vector Merging in DECKARD wird zunächst für jeden Knoten festgelegt, ob dieser 

zulässig für solch eine Kombination ist. Da DECKARD auf dem Parsebaum arbeitet, ist 

diese Unterscheidung wichtig, um unvollständige oder nicht sinnvolle Kombinationen 

von Knoten zu unterbinden. So sollen keine Knoten die über Block-Grenzen 

hinausreichen verbunden werden (das letzte Statement eines while-Bodys, mit dem 

darauffolgenden Statement). Dieses Problem findet sich in dieser Form nicht in einer auf 

einer AST-basierenden Implementierung. Nichtsdestotrotz können an dieser Stelle 

zusätzliche Überprüfungen hinzugefügt werden, die ungewollte82 Kombinationen 

verhindern. 

Bei dem Durchlauf der Kindknoten werden alle Kindknoten in einer Liste 

zwischengespeichert, aus der dann die zusammengesetzten Vektoren mehrerer IML-

Knoten erzeugt werden. Hierbei wird ein Sliding Window über die Liste der Vektoren 

verschoben, ein neues Code-Fragment aus diesen IML-Knoten erstellt und der 

charakteristische Vektor erzeugt. Wenn dieser Vektor die Signifikanzkriterien erfüllt, 

wird er zur Liste der Klonkandidaten hinzugefügt. Die Relevanz wird für die 

                                                 
80 Siehe [6]. 
81 „Syntactic Children“ in IML. 
82 Welche Kombinationen im Detail ungewollt sind, muss vorher festgelegt werden. 

int[] example = {1, 2, 3, 4, 5}; 
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kombinierten Fragmente nicht geprüft, da es eine Kombination aus mehreren Elementen 

ist. 

Dieses Sliding Window wird nach jedem Durchlauf um den Faktor 1,5 vergrößert 

(abgerundet) und das Vector Merging beginnt erneut. Dieser Vorgang endet, wenn das 

Sliding Window länger als die Gesamtlänger der benachbarten Knoten ist. DECKARD 

implementiert in der Parsebaum-Umsetzung die besondere Bedingung, dass wenn sowohl 

der Elternknoten, als auch der Kindknoten zu einem Merge kombinierbar sind, der 

Kindknoten aus dem Sliding Window herausgenommen wird. Auf diese Weise sollen 

größere Klone favorisiert werden. Es ist noch unklar, wie sich diese Eigenschaft auf die 

Verwendung des ASTs überträgt. Gabel et al erwähnen diese Beschränkung nicht. In der 

Implementierung wurde diese Beschränkung so umgesetzt, dass wenn der Elternknoten 

signifikant ist, alle signifikanten Kindknoten aus dem Sliding Window entfernt werden. 

3.4.3 Codefragment-Generierung im PDG 
Die Implementierung der Fragmenterzeugung mithilfe des PDG ist in einigen Bereichen 

nur ein dünner Adapter um die Bauhaus-interne PDG-Komponente. So wird die PDG-

Erzeugung und der zugehörige intraprozedurale Backward Slicer verwendet. Dieser Slicer 

unterstützt bereits die automatische Auftrennung strukturierter Rückgabewerte – so wird 

das in Codebeispiel 4 beschriebene Problem umgangen. 

Ausgehend von der Liste der Backward Slices werden die ISTs erzeugt. Diese ISTs 

werden anschließend umgewandelt zu Codefragmenten. Dazu werden alle IML-Knoten 

der Slices zu einer Liste zusammengeführt und der charakteristische Vektor berechnet. 

Hier ist darauf zu achten, den charakteristischen Vektor für jeden IML-Knoten aus dem 

Slice inklusive der AST-Kindknoten zu berechnen. Nur so können die Vektoren 

letztendlich korrekt verglichen werden. 

In der Implementierung wird von jeder Routine der sogenannte Link_Out_Use-Knoten 

geladen, der Informationen über Rückgabewerte und ausgehende Seiteneffektvariablen 

bündelt. Ausgehend von diesen Verbindungen in den umliegenden Code werden die 

Backward Slices erstellt. 

Ein Problem dieser Implementierung ist, dass Code, der nicht zu den ausgehenden 

Verbindungen beiträgt nicht in den Slices auftritt. Dies ist Code, der eigentlich 

Seiteneffekte besitzt, diese von Bauhaus im Moment aber nicht als solche erkannt 

werden. Dies betrifft meist Funktionen und Prozeduren der Laufzeitumgebung. So wird 

Timing-Code (der als Seiteneffekt das Laden der aktuellen Uhrzeit besitzt) und 

Ausgabecode wie printf (der als Seiteneffekt die Ausgabe auf stdout besitzt) nicht 

korrekt markiert. Hierdurch entfallen einige mögliche Threads, da diese in den 

Link_Out_Use-Listen nicht auftauchen. 



46 

Codebeispiel 10: Beispielcode, der sich von Codebeispiel 3 nur durch zusätzlich hinzugefügten Timing-Code 
unterscheidet. 

Obenstehendes Beispiel wird durch die aktuelle PDG-Implementierung korrekt als Klon 

erkannt. Der Thread um den Timing-Code und um die Variablen start und finish, 

zusammen mit dem abschließenden printf()-Aufruf wird in der Betrachtung nicht 

auftauchen. Dies führt in diesem Beispiel weiterhin zu einem korrekten Ergebnis, kann 

aber beispielsweise doppelten Timing-Code oder alternative Fälle nicht korrekt erkennen. 

Ein Spezialfall dieses Problems ist toter Code. Auch dieser wird nicht in den Backward 

Slices erscheinen. Hier gilt jedoch, dass dieser nicht relevant für diese Untersuchung ist 

und besser durch eine dafür ausgerichtete Toter-Code-Analyse gefunden und entfernt 

werden sollte. 

Die Implementierung von Gabel et al umgeht dieses Problem, in dem sie Forward Slices 

für jeden Knoten im AST in aufsteigender Reihenfolge der Quellcode-Zeilennummern 

erzeugt. Durch dieses Verfahren wird auf jeden Fall jeder AST-Knoten der Routine zu 

mindestens einem IST hinzugefügt. Möglicherweise könnte diese Erweiterung bei der 

Bauhaus-PDG-Implementierung ebenfalls unterstützt werden83. 

Eine wichtige Abweichung zur Original-Implementierung von Gabel et al ist, dass 

Backward Slices anstelle von Forward Slices verwendet werden. Diese erstellen die 

Datenflüsse nicht vorwärts ausgehend von deklarierten und initialisierten Variablen, 

sondern rückwärts starten bei Rückgabewerten und Schreibzugriffe auf externe 

Ressourcen. Dies hat zunächst praktische Gründe (Backward Slices sind in dem zu dieser 

Arbeit externen Modul implementiert), aber auch kleine praktische Vorteile. 

Während sich Timing-Code wie toter Code verhält, im Hinblick darauf, dass beide 

Varianten in aller Regel keine Datenabhängigkeiten in den aktiven Code haben, agiert 

                                                 
83 Wobei dies eine Designentscheidung ist, da die Aussagekraft von Codeklonen in Timing-Code, Debug-Code und 

totem Code diskutiert werden kann. 

int func (int i, int j) { 

  int k = 10; 

 

  long start = get_time_millis(); 

  long finish; 

 

  while (i < k) { 

    i++; 

  } 

 

  finish = get_time_millis(); 

  printf(“loop took %dms\n“, finish – start); 

  j = 2 * k; 

 

  printf(“i=%d, j=%d\n“, i, j); 

  return k; 

} 
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Debug-Code anders. Wie beispielhaft im Codebeispiel 3 an dem printf()-Aufruf zu 

sehen ist, muss Debug-Code für eine sinnvolle Ausgabe zwangsläufig die existierenden 

Variablen verwenden. Dies erzeugt eine Datenabhängigkeit, die in einem Forward Slice 

korrekt erkannt wird. Durch diesen zusätzlichen Eintrag kann ein vorhandener Klon 

möglicherweise unerkannt bleiben, da der zusätzliche Debug-Aufruf die Vektoren zu weit 

auseinanderschiebt. Hier sind Backward Slices im Vorteil, da in diesen nur Code 

auftaucht, der zum „Endergebnis“ der Funktion (sei es eine Zuweisung an eine externe 

Variable oder ein Rückgabewert) führt. Das schließt reinen Debug-Code aus. 

Hier herrscht nun allerdings offensichtlich ein Widerspruch zwischen dem Wunsch auf 

der einen Seite, seiteneffektbeladenen Laufzeitsumgebungs-Code in den Slices zu finden 

und der praktischen Eigenschaft auf der anderen Seite, dass Debug-Code in den Slices 

nicht auftaucht. Diese Entscheidung und Diskussion wird einer zukünftigen Optimierung 

überlassen, diese Implementierung verbleibt auf dem Stand eines dünnen Adapters um die 

bestehende PDG-Bibliothek, da die Erstellung von PDGs nicht Kernstück dieser 

Implementierung ist, sondern nur eine Komponente. 

3.5 LSH 

 

Abbildung 19: Phase in der Implementierung: Locality Sensitive Hashing. 

LSH ist – zusammen mit dem Konzept der charakteristischen Vektoren – das Kernstück 

der Implementierung und des Verfahrens. Diese Kombination ist der Fortschritt, der 

dieses Verfahren erst praktikabel, performant und skalierbar macht. 

3.5.1 Parametergenerierung 
Das LSH-Verfahren benötigt eine Menge an Vorverarbeitung. Zunächst werden die LSH-

Parameter berechnet, die die Kerneigenschaften des Verfahrens steuern. In dieser 

Implementierung werden die Parameter 𝐿 und 𝑘 statisch nach dem theoretischen 

Optimum aus Effektivität und geringer Laufzeit berechnet (siehe Kapitel 2.5.2 für die 

konkreten Formeln), es existieren jedoch alternative Ansätze. Im Ausblick (Kapitel 6) 

wird eine solche Alternative beschrieben. 

Vor der Verwendung von LSH selbst wird über die Bryant_LSH_Parameters-

Komponente die Konfiguration erstellt, die später als Eingabe in die Hauptfunktion des 

LSH eingeht. Diese Konfiguration beinhaltet alle für LSH wichtigen Parameter: 
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 Die Wahrscheinlichkeit, dass zwei kollidierende Hashes zu nahen Vektoren 

gehören 𝑝1. 

 Die Wahrscheinlichkeit, dass zwei kollidierende Hashes nicht zu nahen Vektoren 

gehören 𝑝2. 

 Die maximale Vektor-Entfernung von Codeklonen 𝑅. 

 Die Breite der Segmente auf der reellen Achse 𝑤. 

 Die Anzahl der Vektoren 𝑛 (diese Zahl ist Eingabe für einige der anderen 

Parameter). 

 Die Anzahl, wie oft ein Vektor hintereinander gehasht wird 𝑘. 

 Die Anzahl, in wie viele Buckets der Vektor maximal gehasht wird 𝐿. 

 Die Hashfunktionen 𝑔𝑖. 

 Die Hashfunktion, die den durch g() berechneten Vektoren den Bucketindex 

zuweist. 

 Die Hashmap, in der die Vektoren gespeichert werden. 

Wie bereits am Parameter 𝑛 ersichtlich ist, sind diese Parameter spezifisch für eine 

Codefragment-Liste. Wenn an diese Liste neue Elemente hinzugefügt oder entfernt 

werden, sollte die Datenstruktur neu erstellt werden. Die Hashmap selbst wird ebenfalls 

in den Parametern gespeichert. Dies spiegelt die Tatsache wider, dass die restlichen 

Parameter zu den Vektoren in der Hashmap gehören. 

3.5.2 Befüllung der Hashmap 
Nachdem die Parameter erstellt wurden, muss in einem einmaligen Durchlauf jedes 

Codefragment in die LSH-Struktur eingefügt werden. Dabei wird der Vektor in die 𝐿 

unterschiedlichen Buckets gehasht. 

Die Verwendung einer Hashmapstruktur (im Gegensatz zu einem Vektor oder einem 

Array) ist eine bewusste Entscheidung: der Schlüsselraum der Hashmap ist nicht sehr 

dicht besiedelt, was bei Verwendung eines Arrays zu einem unnötig großen 

Speicherbedarf führen würde. Für solch einen Schlüsselraum ist die Verwendung einer 

Hashmap ideal. 
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Abbildung 20: Zum besseren Verständnis noch einmal Abbildung 10 aus Kapitel 24, das den Ablauf des Hashings 
visualisiert. 

Bei diesem Hashing wird zunächst ein neuer Float-Vektor mit 𝑘 Einträgen erstellt. Jeder 

dieser Einträge ist das Ergebnis des ℎ𝑖-Hashings (𝑖 = 1 … 𝑘)84. Diesem neuen Vektor 

wird mittels der Hashmap-Hashfunktion ein Bucketindex zugewiesen. Diese Hashmap-

Hashfunktion besteht abermals aus einem Skalarprodukt mit einem zufälligen Vektor, 

Modulo einer großen Primzahl (um die Zahl der Kollisionen zu minimieren), Modulo der 

Hashmap-Größe (die auf die Anzahl der Vektoren gesetzt wird). Dadurch wird 

sichergestellt, dass auch für kleine Vektormengen keine weit verstreuten Bucketindizes 

errechnet werden. 

Der Parameter 𝐿 gibt die maximale Zahl der Buckets an, in die ein Vektor eingefügt wird. 

Für jedes 𝑖 = 1 … 𝐿 gibt es eine eigene Hashfunktion 𝑔𝑖, das bedeutet es gibt insgesamt 

𝑘 ∗ 𝑙 unterschiedliche Hashfunktionen ℎ. 

                                                 
84 Die gesamte Hashingfunktion, die den 𝑑-dimensionalen charakteristischen Vektor auf den mehrfach gehashten 𝑘-

dimensionalen Vektor überführt, heißt 𝑔 (wie in Kapitel 2.5.2 beschrieben). 
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In jedem Bucket ist eine Liste an Pointern zu in diesen Bucket gehashten Codefragmenten 

gespeichert. 

3.5.3 Benachbarte Vektoren eines Vektors finden 
Nachdem alle Punkte einmalig in die LSH-Datenstruktur eingefügt wurden, können nun 

Anfragen nach benachbarten Vektoren beantwortet werden. 

Hierzu werden zu einem Anfragevektor durch die beiden Hashingfunktionen alle 

Bucketindizes berechnet. Zwischen dem Anfragevektor und allen Vektoren in diesen 

Buckets wird die tatsächliche Distanz (euklidische Distanzmetrik) berechnet. Alle 

Vektoren, zu denen die Distanz geringer als die definierte Maximaldistanz 𝑅 ist, werden 

als Ergebnisliste zurückgegeben. 

Eine kleine Optimierung ist hier verbaut: die Definition der euklidischen Distanz sieht am 

Ende der Berechnung vor, die Quadratwurzel aus der restlichen Berechnung zu ziehen85. 

Dies ist in aller Regel eine relativ teure Berechnung. Die Berechnung der Quadratwurzel 

kann hier ausgelassen werden, wenn das Ergebnis zum Quadrat der Maximaldistanz 𝑅2 

verglichen wird. 𝑅2 wird einmalig bei der Berechnung der restlichen LSH-Parameter 

gespeichert und muss anschließend nicht neu berechnet werden. 

3.6 Größensensitive Klonerkennung 

 

Abbildung 21: Phase in der Implementierung: größensensitive Klonerkennung. 

Eine weitere Optimierung, die in DECKARD vorgestellt wird, ist „Size Sensitive Clone 

Detection“86. Bei diesem Verfahren werden nicht alle Vektoren zusammen durch LSH 

verglichen, sondern es wird eine zusätzliche Gruppierung vorgeschalten. 

Dies hat zwei Gründe. Zunächst kann durch ein simples Abschätzen der Länge eines 

charakteristischen Vektors möglicherweise entschieden werden, ob dieser ein Klon mit 

einem anderen Vektor sein kann. Wenn man errechnet, dass die Längen zweier Vektoren 

um mehr als 𝑅 auseinanderliegen, ist es unmöglich, dass diese zwei Vektoren Klone 

repräsentieren. 

                                                 
85 Siehe Kapitel 7.1. 
86 Aus [6], Kapitel 3.4. 
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Ein weiterer Vorteil der Vorverarbeitung ist, dass unterschiedliche LSH-Parameter 

verwendet werden können. Bei Codefragmenten die zu größeren Quellcode-Abschnitten 

gehören, kann die maximale Edit-Distanz im Vergleich zu Fragmenten, die sehr kurze 

Abschnitte repräsentieren, vergrößert werden. Dies ermöglicht es, die Klonerkennung 

adaptiv an die Größe der zugrundeliegenden Code-Abschnitte anzupassen. 

Beide zusätzlichen Faktoren (Länge des Vektors und Anzahl Zeilen im Quellcode) lassen 

sich einmalig in der Vektorgenerierung erzeugen und können als zusätzliche Einträge im 

Code-Fragment gespeichert werden. Die Gruppierungssegmente können frei definiert 

werden, jedoch sollten sich diese um mindestens 𝑅 überschneiden, so dass gesichert ist, 

dass weiterhin alle Klone korrekt erkannt werden. 

In Bryant ist diese Optimierung nicht verbaut. Bei der Evaluierung wurde festgestellt, 

dass die vorliegende Implementierung aus reinen Laufzeiteigenschaften die Optimierung 

im Moment nicht benötigt. Bei mehreren Tests wurde gemessen, dass die aktuelle 

Implementierung (für Initialisierung und Querying für alle Vektoren) etwa 500.000 bis 

1,5 Millionen Vektoren pro Sekunde schafft. Dies ist für das Laufzeitverhalten 

ausreichend, sodass die zusätzliche Komplexität explizit nicht in das System 

aufgenommen wurde. 

3.7 Nachbearbeitung der Ergebnisliste 

 

Abbildung 22: Phase in der Implementierung: Ergebnisfilterung. 

Nachdem in der Initialisierung von LSH mit allen Codefragmenten die zugehörigen 

Buckets gefüllt wurden, können anschließend wieder mit einer Iteration über alle 

Codefragmente die zugehörigen Klone erfragt werden. Diese unbearbeitete Klonliste 

kann doppelte Ergebnisse enthalten, sowie Ergebnisse mit IML-Knoten, die vollständig in 

einem anderen Ergebnis enthalten sind. Beispielsweise könnte der Rumpf einer Schleife 

ein Klon zu einem anderen Fragment sein, die Schleife selbst wurde allerdings ebenfalls 

als Klon erkannt. In diesem Fall ist immer der größtmögliche Klon interessant, das heißt 

Duplikate und Teilergebnisse können aus der Liste entfernt werden. 

Dies geschieht in der Implementierung in einem Zweipass-Verfahren. Im ersten 

Durchlauf werden exakte Duplikate aus der Klonliste entfernt. Dies sind Codefragmente, 

bei denen alle zugehörigen IML-Knoten identisch in einem anderen Fragment enthalten 

sind. 
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Im zweiten Durchlauf werden die Typhierarchien betrachtet. Nun werden alle Fragmente 

entfernt, deren IML-Knoten Kinder der IML-Knoten des anderen Fragments sind. So 

wird das oben erwähnte Beispiel mit der Schleife entdeckt und herausgefiltert. 

Das Ergebnis ist eine Liste an Klonen, die die maximale Anzahl eindeutiger Klone mit 

maximaler Größe enthält. Dieser Durchgang ist wichtig. Im Regelfall liegt bei naiver 

Vektorgenerierung der Anteil der redundante (da doppelt vorhanden oder ein AST-

Unterbaum eines anderen Unterbaums) bei 70-80%. 

3.8 Speicherung der Ergebnisse 

 

Abbildung 23: Phase in der Implementierung: Speicherung der Ergebnisse. 

Die Ergebnisse werden als neue Knoten an den IML-Graphen angehängt und erzeugen 

damit eine neue Sicht innerhalb des Graphen. Dadurch können in Zukunft die 

Klongruppen auch in Hilfsprogrammen wie dem IML-Navigator angesehen werden. 

Zusätzlich dazu bietet Bryant eine weitere „Speicherart“ an: die Ausgabe auf die 

Kommandozeile. Hierzu wird von jedem Klonpaar die jeweiligen Dateien inklusive aller 

im IML verknüpften Zeilennummern angezeigt. Mit Hilfe dieser Ansicht können schnell 

die Ergebnisse validiert werden. 

3.9 Weitere Details der Implementierung 
Eine für die Korrektheit von LSH wichtige Eigenschaft wurde in der Theorie zwar 

beschrieben, blieb im Kapitel über die Implementierung bisher allerdings unerwähnt. Die 

zugrundeliegende Verteilung der Zufallsvariablen ist essenziell. Wie in Kapitel 2.5.2 

beschrieben ist es möglich, eine unter der 𝑙2-Norm stabile Zufallsvariable aus zwei 

unabhängigen, normalverteilten Zufallsvariablen aus dem Intervall [0; 1] zu erzeugen. 

Die zugehörige Implementierung wurde direkt von E²LSH87 adaptiert und sieht wie folgt 

aus: 

                                                 
87 Siehe [26]. 
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Codebeispiel 11: Erzeugung einer unter der 𝑙2-Norm stabilen Zufallsvariablen. 

Eine kleine Optimierung ist, dass die Anzahl der in einem Codefragment enthaltenen 

signifikanten Knoten direkt aus dem charakteristischen Vektor abgelesen werden kann. Je 

nach Zuordnung der Indizes der Knotentypen können alle signifikanten Vektoren eigene 

Einträge erhalten. Die Summe dieser Einträge ist dann die Anzahl der signifikanten 

Vektoren. Diese Implementierung stellt diese Bedingung an die Indizierungsfunktion 

allerdings nicht, hier wird die Anzahl der signifikanten Knoten in einem separaten Feld 

des Codefragments gespeichert. 

Eine weitere Entscheidung war es, die charakteristischen Vektoren als Float-Vektoren zu 

implementieren und nicht, wie vermutlich intuitiv angenommen, als Natural-Vektoren. 

Dies hat den Hintergrund, dass die Einträge der Hashing-Vektoren in den Hashfunktionen 

ℎ𝑘,𝐿 ebenfalls Floats sind (es sind Zufallszahlen im Intervall [−1; 1]) und daher die 

häufige Umwandlung der Typen beim Hashing nicht notwendig ist. Dies führt jedoch 

dazu, dass für das Addieren der Vektoren die im Vergleich zu Integern langsamere Float-

Berechnung verwendet wird. Auf modernen CPUs sollte dieser Unterschied jedoch im 

Vergleich zu den häufigen Umwandlungen nicht relevant sein. 

Die gewählte Konstante in der L Bucketindex-Hashing-Funktion sollte zwei wichtige 

Eigenschaften besitzen. Sie sollte möglichst hoch sein, dass selbst bei vielen Vektoren der 

Schlüsselraum nicht unnötig verkleinert wird. Außerdem sollte sie eine Primzahl sein, um 

die Zahl der Kollisionen zu minimieren. Aus diesem Grund wählt E²LSH die Zahl 232 −

588, die in dieser Implementierung übernommen wurde. 

Die Einträge des Hashingvektors im Bucketindex-Hashing sind Zufallszahlen zwischen 0 

und 229. Dieser Wert wurde ebenfalls von der E²LSH-Implementierung übernommen. 

Dort wurde dieser Wert empirisch bestätigt. 

  

                                                 
88 Ein weiterer wichtiger Grund für die Wahl dieser Zahl in der Originalimplementierung ist, dass sich der Modulo mit 

dieser Zahl effizient mit Bitshifts berechnen lässt. Für die Details sei auf die Referenzimplementierung unter [26] 

verwiesen. 

function Generate_Gaussian_Random return Float is 

  X1 : Float; 

  X2 : constant Float := Generate_Uniform_Random (0.0, 1.0); 

begin 

  loop 

    X1 := Generate_Uniform_Random (0.0, 1.0); 

    exit when X1 > 0.0; 

  end loop; 

 

  return Math.Sqrt (-2.0 * Math.Log (X1)) * Math.Cos (2.0 * Ada.Numerics.Pi * X2); 

end Generate_Gaussian_Random; 
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4 Evaluierung und Optimierung 
Die Tests wurden manuell vorbereitet und durchgeführt. Die Analysen wurden mit 

frozen89 durchgeführt, eine kleinere Codebasis (727 LLOC), jedoch mit etwa 100 

kleineren und größeren Klonen. 

Die wichtigsten Kriterien bei der Analyse der Parameter sind: 

 Die Anzahl der Vektorvergleiche. 

 Die Anzahl der Buckets. 

 Die Laufzeit. 

 Die Treffer-Rate in LSH (Anzahl der nahen Vektoren geteilt durch die Anzahl 

aller Vektorvergleiche). 

 Die Anzahl der Klonkandidaten (vor der Filterung). 

 Der Speicherbedarf. 

Diese Eigenschaften und wie diese mit den Parametern zusammenhängen wird in diesem 

Kapitel erläutert. 

4.1 Problem der fehlenden kanonischen 

Klontestsuite 
Die unklare Beschreibung und Modellierung von Codeklonen macht es schwierige eine 

allgemeingültige Definition zu treffen. Dies ist der Grund, weshalb fast alle verwandten 

Arbeiten die Codeklone neu definiert haben. Meist hängt diese eng mit dem in diesem 

Zug neu eingeführten Verfahren zusammen. 

Dadurch bedingt existiert auch keine kanonische Klontestsuite, in der die Anzahl und die 

genaue Position von Klonen definiert ist. Dies macht ein automatisiertes Testen praktisch 

unmöglich, ebenso wie das Erstellen einer allgemeingültigen Testsuite. 

4.2 Qualitative Bewertung der Klone 
Eine qualitative Bewertung der Klone kann nur stichprobenhaft und manuell erfolgen. 

Jeder gefundene Klon muss im Quellcode durch einen Programmierer validiert werden. 

Dies wurde bei allen Testprogrammen durchgeführt. 

Dieser Schritt ist wichtig um Parameter, wie die Relevanz- und Signifikanzkriterien zu 

kalibrieren. Durch die Feinjustierung kann das Verfahren gegebenenfalls sogar auf 

einzelne Programme feinjustiert werden, um eine optimale Erkennungsrate zu erreichen. 

Die hier getroffene Definition ist so gewählt, dass sie für fast alle Programme sehr gut 

funktionieren. 

                                                 
89 Siehe [27]. 
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Codebeispiel 12: Trivialer Codeklon. 

Das Problem der qualitativen Tests ist, dass diese schlecht skalieren. Da sie weiterhin 

manuelle Überprüfung erfordern, kann zwar die Testumgebung so komfortabel wie 

möglich gemacht werden (man könnte bei der Analyse direkt die betroffenen Quellcode-

Abschnitte des Klons in einer Vergleichsansicht anzeigen, um die direkte Bewertung zu 

ermöglichen). Dies ist aber weit von der Skalierbarkeit einer automatischen Testsuite 

entfernt. 

4.3 Quantitative Bewertung der Klone 
Für die quantitative Bewertung wurde eine eigene Reporting-Komponente entwickelt, die 

viele Metriken aus dem Verfahren extrahiert. Dazu gehören: 

 Anzahl der gefundenen Routinen, der besuchten AST-Knoten, der besuchten 

AST-Sliding Windows und der besuchten Discriminated_Ref (eine zentrale 

Datenstruktur der PDG-Erstellung). 

 Anzahl der durch direkte AST-Knoten, durch Sliding Window und durch PDG 

erstellten Fragmente. 

 Anzahl der Fragmente, die mindestens einen Klon besitzen (kann auch ein 

redundanter Klon sein). 

 Anzahl der gefundenen Klone, vor und nach Filterung. 

 Anzahl der LSH-Vektorvergleiche. 

 Diverse Timings zu Routinen-Suche, Vektorerstellung, LSH-Initialisierung, LSH-

Abfrage und Filterung. 

Neben der quantitativen Bewertung muss immer zusätzlich eine qualitative Bewertung 

erfolgen, um abzusichern, dass die Ergebnisse nicht durch beispielsweise viele falsch-

int f1 () 

{ 

   int a, b; 

 

   a = 10; 

   b = 5; 

 

   return a + b; 

} 

 

int f2 () 

{ 

   int a, b; 

 

   a = 100; 

   b = 50; 

 

   return a + b; 

} 
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positiven Klone verfälscht sind. Dies kann aufgrund der Menge nur durch Stichproben 

geschehen, wurde jedoch bei der folgenden Analyse jedes Mal bestätigt. 

4.4 LSH-Evaluierung 
Als besondere Belastungsprobe wurden einige C++-Programme analysiert, mit 

absichtlich ungünstig gewählten Parametern, um die Leistungsfähigkeit von LSH zu 

messen. 

Die Analyse erzeugte insgesamt 42.686 Code-Fragmente. Bei einer zu geringen 

Mindestgröße der charakteristischen Vektoren (in diesem Fall 4 signifikante Knoten) 

erkannte der Quellcode für fast jedes einzelne Fragmente Klone. Das liegt darin 

begründet, dass die Programme wenig, aber ausgesprochen lange und tief verzweigte 

Routinen implementiert. Dies führt dazu, dass fast alle Knoten signifikant sind. 

Außerdem erzeugen lange und stark verzweigte Routinen sehr viele Backslices. 

Bei der Analyse werden nur 181 Routinen besucht, allerdings über 43.000 AST-Knoten 

besucht. Über die PDG-Backward-Slices wurden 38.686 Code-Fragmente erzeugt. Diese 

hohe Anzahl der Knoten mit gepaart mit einem stark verzweigten Programmcode führt zu 

über 580 Millionen Klonkandidaten, die durch LSH gehasht werden müssen. 

Doch selbst diese 580 Millionen gehashten Vektoren (über 1,2 Milliarden 

Vektorvergleiche) führen nur zu einer Laufzeit von etwa 7 Minuten. Dies zeigt, dass LSH 

außerordentlich effizient ist. Die Initialisierung von LSH (nur das mehrfache Hashen und 

Anhängen an die Buckets) dauerte trotz der mehr als einer halben Milliarde Vektoren 

gerade einmal 0,1 Sekunden. 

Da das LSH-Verfahren nicht deterministisch ist, schwanken die Zahlen der 

Vektorvergleiche erheblich. In einigen Tests kamen Schwankungen um über 20% 

zustande. 
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Abbildung 24: Schwankungen der Vektorvergleiche innerhalb einer Messung mit identischen Parametern. 

Von der Zahl der Vektorvergleiche abhängig ist die Zahl der Trefferrate der 

Vektorvergleiche. Dies ist die Zahl der Vektorvergleiche, die zu einem Klon geführt 

haben. Ein ideales Ergebnis wären keine unnötigen Vektorvergleiche, um eine möglichst 

optimale Laufzeit zu erhalten. 

Eine Optimierung die von den Parametern unabhängig steht, ist es, wenn ein Vektor in 𝐿 

Buckets gehasht wird, dass unter Umständen der Vektor zufällig mehrfach in den 

gleichen Bucket gehasht wird. Bei Tests mit unterschiedlichen Projekten90 hat sich 

herausgestellt, dass die Chance auf solche eine Kollision unter 1% liegt. Weniger als 1% 

der Fragmente werden in den gleichen Bucket gehasht. Bryant hat diese Optimierung 

daher nicht implementiert, um die Komplexität der Implementierung für solch einen 

marginalen Gewinn nicht zu erhöhen. 

4.4.1 Parameter: P1 

Der Parameter 𝑃1 ist in der theoretischen Betrachtung sehr wichtig, in der 

Implementierung ist die einzige Verwendung jedoch die Eingabe zur Berechnung von 𝐿 

und 𝑘. Daher erfolgt hier keine gesonderte Betrachtung. 

4.4.2 Parameter: R 
Der Radius entspricht der maximalen Edit-Distanz der ASTs bzw. AST-Wälder. Er 

beschreibt die maximale (euklidische) Distanz zu einem anderen Vektor, so dass die 

zugehörigen Codefragmente als Klone angesehen werden. 

                                                 
90 Kleinen Projekten, bei denen die Wahrscheinlichkeit einer doppelten Bucketzuordnung höher als bei einer großen 

Zahl an Fragmente ist. 
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Eine Betrachtung der gefilterten Klonlisten über dem Radius lässt sich ein Rückschluss 

ziehen: 

 

Abbildung 25: Anzahl der (gefilterten) Klone über 𝑅 (die Konstante bei 295 ist die Gerade). 

Die Cluster der sehr ähnlichen Vektoren sind relativ eng bestückt, so dass früh die Klone 

gefunden werden. Die Cluster sind voneinander allerdings relativ weit entfernt. Es scheint 

also relativ viele sehr ähnlich Muster in der Codebasis zu finden, die Struktur des Codes 

ist nicht sehr durchmischt. 

4.4.3 Parameter: w 
Der Parameter 𝑤 ist für die Segmentzuweisung verantwortlich, in das ein gehashter 

Vektor zugewiesen wird. Ist 𝑤 groß, werden viele unterschiedliche Vektoren in den 

gleichen Bucket gehasht, die Zahl der Vektorvergleiche steigt also. Ist 𝑤 hingegen sehr 

klein, besteht die Hashmap aus sehr vielen, leeren Buckets. 

Für diese Messung galt: 𝑅 = 4.0, 𝐿 = 2, 𝑘 = 2. 
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Abbildung 26: Anzahl Buckets über 𝑤. 

Durch die geringere Anzahl der Buckets steigt die Anzahl der Vektorvergleiche, da mehr 

entfernte Vektoren in die gleichen Buckets gehasht werden. 

 

Abbildung 27: Anzahl Vektorvergleiche über 𝑤. 

Die Laufzeit steigt mit der erhöhten Anzahl der Vektorvergleiche, wobei diese Erhöhung 

minimal ist. Die gesamte LSH-Berechnung ist selbst im schlechtesten Fall in 0,3 

Sekunden abgeschlossen. 
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Abbildung 28: Laufzeit über 𝑤. 

Analog zu den erhöhten Vektorvergleichen sinkt die Trefferrate im LSH, da auch weit 

entfernte Vektoren in den gleichen Bucket gehasht werden: 

 

Abbildung 29: LSH-Trefferrate über 𝑤. 

Der Speicherbedarf wird von 𝑤, außer den üblichen Schwankungen, nicht maßgeblich 

beeinflusst. 
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Abbildung 30: Speicherbedarf über 𝑤. 

Bei der Anzahl der Klonkandidaten erkennt man den Zusammenhang von 𝐿 und 𝑤. Da 

jeder Vektor in diesem Test fest in 2 Buckets gehasht wird, verdoppelt sich die Zahl der 

Klonkandidaten, sobald sich die Anzahl der Buckets immer mehr 1 annähert. Ab diesem 

Punkt enden die 2 Einträge pro Vektor im gleichen Bucket– die Zahl der Klonkandidaten 

verdoppelt sich. 

 

Abbildung 31: Anzahl Klonkandidaten über 𝑤. 

4.4.4 Parameter: L 
Der Parameter 𝐿 gibt die Anzahl der Buckets an, in die ein Vektor gehasht wird. Der 

Hintergrund ist, dass es durch die Zufallsverteilung der ℎ-Hashingfunktionen passieren 

kann, dass der Referenzvektor 𝛼 zufälligerweise so liegt, dass nahe Vektoren trotzdem in 

getrennte Buckets gehasht werden. 
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Abbildung 32: Anzahl Klonkandidaten über 𝐿. 

Die Zahl der erzeugten Klonkandidaten steigt mit steigendem 𝐿. Dies ist erwartet, da 

wenn der Vektor in mehrere Buckets gehasht wird, zwangsläufig die Chance steigt, dass 

er auch in Buckets gehasht wird, in die seine Klone bereits sind. Die Zahl der steigenden 

Klonkandidaten sind also keine neuen Klone, sondern nur die erhöhte Anzahl redundanter 

Klonkandidaten. 

 

Abbildung 33: Speicherbedarf über 𝐿. 

Da mit steigendem L mehr Pointer zu den Codefragmenten in den Buckets gehalten 

werden müssen, steigt der Speicherbedarf entsprechend91. 

                                                 
91 Die absolute Menge an zusätzlich benötigtem Speicher ist allerdings trotzdem gering. 
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Abbildung 34: Vektorvergleiche über𝐿. 

Auch bei 𝐿 trifft der Zusammenhang zwischen der Anzahl der Vektorvergleiche und der 

Anzahl der Klonkandidaten zu. 

 

Abbildung 35: Anzahl Buckets über 𝐿. 

Da insgesamt mehr Vektoren in die Hashmap eingefügt werden, steigt auch die Anzahl 

der verwendeten Buckets. 
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Abbildung 36: Laufzeit über 𝐿. 

Durch die erhöhte Zahl der Buckets wird die zusätzliche Anzahl der Vektorvergleiche 

allerdings abgemildert. Diese steigt langsamer als die Zahl der zusätzlichen Vektoren in 

der Hashmap. Dadurch bleibt die Laufzeit nahezu konstant. 

 

Abbildung 37: LSH-Trefferrate über𝐿. 

Da die zusätzlichen Vektoren in den Buckets nur Duplikate anderer Vektoren sind, bleibt 

die Trefferrate nahezu konstant. Es sind insgesamt mehr Vektoren in den Buckets, es 

werden aber auch mehr Klonkandidaten gefunden. 

4.4.5 Parameter: k 
Der Parameter 𝑘 beschreibt die Anzahl der Hashvorgänge, mit der konkateniert der 

gleiche Vektor gehasht wird. Dies wird implementiert, indem es insgesamt 𝑘 
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Hashfunktionen ℎ𝑘 gibt. Dies verringert die Wahrscheinlichkeit, dass durch ungünstig 

liegende 𝛼-Referenzvektoren zwei weit entfernte Vektoren in die gleiche Bucket gehasht 

werden. 

 

Abbildung 38: Anzahl Vektorvergleiche über 𝑘. 

Passend zur Theorie ist auch an den Vektorvergleichen ersichtlich, dass deren Anzahl 

rapide mit steigendem 𝑘 sinkt. Es ist jedoch relativ schnell ein Plateau erreicht, ab dem 

der zusätzliche Berechnungsaufwand keinen Mehrwert bringt. 

 

Abbildung 39: Anzahl Buckets über 𝑘. 

Da die Vektoren durch das zusätzliche Hashing besser voneinander getrennt werden (falls 

sie unterschiedlich sind), steigt die Anzahl der verwendeten Buckets mit steigendem 𝑘. 
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Die Anzahl ist jedoch begrenzt durch die Codefragmente, die keine Klone in der 

Codebasis besitzen92. 

 

Abbildung 40: LSH-Trefferrate über 𝑘. 

Die bessere Separierung der Vektoren in mehr, dafür jedoch kleinere Buckets sorgt für 

eine steigende Trefferrate. Diese hat jedoch, wie auch die Anzahl der Vektorvergleiche 

ein Plateau, begrenzt durch die Zahl der unabhängigen Vektoren. 

 

Abbildung 41: Anzahl Klonkandidaten (ungefiltert) über 𝑘. 

Die gegenläufigen Trends sorgen für keine signifikanten Änderungen bei den 

Klonkandidaten. 

                                                 
92 Und durch 𝐿. 
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Abbildung 42: Speicherbedarf über 𝑘. 

Der Speicherbedarf steigt mit zunehmenden k, da die Vektoren der Hashingfunktionen 

zusätzlichen Speicher benötigen. Dieser Anstieg ist jedoch absolut gesehen 

vernachlässigbar. 

 

Abbildung 43: Laufzeit über 𝑘. 

Da die Berechnung der Hashingfunktionen und Hashingwerte in LSH sehr schnell geht, 

bleibt die Laufzeit auch mit zusätzlichem Rechenaufwand unverändert. Der zusätzlichen 

Berechnungen des Hashings werden durch weniger Vektorvergleiche eingespart. 
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4.5 Auswertungen unterschiedlicher Open-Source-

Projekte 
Es wurden mehrere Open-Source-Programme93 herausgesucht, die kompatibel mit den 

Tools von Bauhaus ist. Darüber hinaus wurden einige kleine Testprogramme entwickelt, 

um bestimmte Erkennungsmuster zu überprüfen. Eine im folgenden verwendete Metrik, 

um die Größe von Programm zu beschreiben ist die LLOC („Logical Lines of Code“). 

Diese gibt die Anzahl der Zeilen Programmcode, die Logik beinhalten (zu „Logik“ 

gehören Statements, nicht jedoch Kommentare, Leerzeilen oder Zeilen, die nur 

strukturierende Zeichen enthalten94). 

Unabhängig von einer Klonanalyse wurde festgestellt, dass mit steigender LLOC die 

Anzahl der Routinen sinkt. Dies kann bei Bryant zu einer schnell wachsenden Menge an 

Sliding-Window-Fragmenten und PDG-Fragmenten führen. Das ist darauf 

zurückzuführen, dass die Zahl der AST-Knoten stark mit der Zahl der Zeilen steigen 

kann. 

 

Abbildung 44: Vektorvergleiche über LLOC. 

Es ist naheliegend, dass mit steigender LLOC die Zahl der Codefragmente steigt und mit 

ihr auch die Zahl der Vektorvergleiche. 

                                                 
93 Unter anderem [27], [28], [29] und [30], sowie einige Test aus einer internen Test-Bibliothek der Universität 

Stuttgart. 
94 Wie Semikola oder geschweifte Klammern. 
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Abbildung 45: Anzahl Vektorvergleiche über die Anzahl der Klonkandidaten. 

Ebenfalls lässt sich aus den Daten ablesen, dass die Zahl der Vektorvergleiche linear mit 

der Zahl der Klonkandidaten steigt. Dies wird durch die automatisch berechneten 

Parameter gesichert. 

 

Abbildung 46: Laufzeit LSH über Vektorvergleiche. 

Eine triviale Einsicht ist, dass die Laufzeit der LSH-Implementierung linear mit der Zahl 

der Vektorvergleiche steigt. Dies ist offensichtlich, da die Laufzeit im Grunde einzig von 
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der Zahl der Vektorvergleiche abhängt. Dies bestätigt allerdings, dass die 

Implementierung von Bryant hier jedoch zumindest aus Laufzeitsicht valide erscheint. 

 

Abbildung 47: Anzahl Klonkandidaten (ungefiltert) über Anzahl Codefragmente. 

Die letzte übergreifende Analyse zeigt einen Zusammenhang zwischen der Anzahl der 

Codefragmente und der Anzahl der erzeugten (ungefilterten) Klonkandidaten. Dies zeigt 

die Verbindung, dass größere Programme eine höhere Chance besitzen, über die Zeit 

Codeklone anzuhäufen. 

Abschließend zu den Analysen noch ein wichtiger Hinweis bezüglich Laufzeit. Gerade 

wenn man keine besonders strengen Anforderungen an Codefragment-Generatoren stellen 

will und lieber mehr als komplizierte Fragmente erzeugen will, ist die korrekte 

Implementierung des Filters essentiell. In der ersten, rudimentären Implementierung 

benötigte nur der Filter über 99% der Gesamtlaufzeit. Dies gilt insbesondere für den Fall, 

dass dieser möglichst wenig Duplikate zulassen und auch Code-Teilbereiche erkennen 

soll. 
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5 Zusammenfassung 
Bryant bietet eine sehr gute Basis für die Erkennung von Codeklonen. Das Verfahren ist 

performant, besitzt eine überzeugende Erkennungsrate und minimiert die Zahl der 

redundanten Klone. 

Durch den Aufbau in größtenteils isolierte Teilkomponenten ist das System leicht 

erweiterbar. Ein weiterer Vorteil ist, dass Teilkomponenten einfach ausgetauscht oder in 

Isolation optimiert werden können. So kann beispielsweise LSH durch eine komplexere 

Parameterberechnung (siehe Kapitel 6) erweitert werden, ohne dass die anderen Bereiche 

ebenfalls Änderungen benötigen. 

Die Implementierung basiert aktuell auf der bestehenden PDG-Implementierung in 

Bauhaus. Hier kann also durch feinere Abstufung, wie die jüngst hinzugefügte 

Erweiterung der Auftrennung strukturierter Rückgabewerte, eine bessere Identifizierung 

von ISTs erreicht werden, was insgesamt zu einem besseren Ergebnis führt. Auch diese 

Änderung ist ohne Anpassungen in Bryant selbst möglich. 

Neue Verfahren zur Vektorgenerierung können einfach hinzugefügt und evaluiert werden. 

Das Tool ist robust gegenüber einer großen Menge an Vektoren, dank des Einsatzes von 

LSH, das abschließende Filtern und möglicher Erweiterung um größensensitive 

Klonerkennung. 

Durch diese Kombination der verwendeten Verfahren und den internen Aufbau ist das 

System eher ein Framework für Codeklonerkennung als ein abgeschlossenes Verfahren. 

Es bietet eine sehr gute Basis um weitere, elaboriertere Methoden der Klonerkennung zu 

implementieren. 
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6 Ausblick 
Obwohl die vorliegende Implementierung robust ist und bereits im Praxiseinsatz 

funktioniert, gibt es dennoch einige Optimierungsmöglichkeiten. Diese teilen sich auf 

zwei Bereiche auf: Performance und noch mehr, „bessere“ Codefragmente. 

Im Hinblick auf Performance gibt es insbesondere zwei Aspekte, die von großem 

Interesse sind. Die Vektorgenerierung für die Routinen ist frei von Seiteneffekten95, ist 

also ein idealer Kandidat für Parallelisierung. Hier würde sich eine Implementierung 

anbieten, die einen Pool von Agenten einsetzt, die die Routinen unter sich aufteilen. 

Der zweite interessante Bereich ist LSH, hier beinhaltet E²LSH96 einige zusätzliche 

Erweiterungen. Hinter einer der Optimierungen steht, dass bei Tests bemerkt wurde, dass 

die theoretisch optimalen Werte für 𝐿 und 𝑘 nicht diejenigen sind, die auch im 

praktischen Einsatz hinsichtlich Performance optimal sind. Anstatt die Parameter 

theoretisch zu berechnen, wird eine Stichprobe der Vektoren gewählt, die mit 

unterschiedlichen Werten für 𝐿 und 𝑘 durchgerechnet werden. Anschließend werden die 

aus Sicht der Laufzeit optimalen Werte genommen. Dies benötigt einige Vorsicht 

hinsichtlich Timing-Genauigkeit und paralleler externer Aktivität auf der Testmaschine, 

kann aber zu besserem Laufzeitverhalten führen. 

Eine weitere Zusatzfunktion in E²LSH ist, dass ein alternativer Modus verwendet werden 

kann, in dem die Hashfunktionen 𝑔𝑖 nicht mehr unabhängig voneinander sind, sondern 

neue, kombinierte Hashfunktionen verwendet werden. Hierdurch kann die Laufzeit 

abermals reduziert werden, da ein Teil der Hashergebnisse vorberechnet werden kann und 

die Hashberechnungen dadurch beschleunigt werden97. 

Auf Seite der besseren Codefragmente können neue Verfahren entwickelt werden, die 

mehr oder andere Codefragmente erzeugen. Die Architektur der Implementierung erlaubt 

solche Verfahren mit wenig Aufwand hinzuzufügen oder bestehende Verfahren zu 

ersetzen. Außerdem können die existierenden AST- und PDG-basierten Verfahren 

verfeinert werden, sodass sie möglicherweise noch bessere Kandidaten erzeugen.  

Im Hinblick auf das Gesamtsystem sind weitere Experimente und Tests möglich, um 

interne Parameter und Definitionen, wie Relevanz und Signifikanz der Vektoren, zu 

verfeinern. 

  

                                                 
95 Die aktuelle Implementierung manipuliert direkt die Vektorliste. Der Umbau, dass die erzeugten Vektoren 

zurückgegeben werden und daher die Liste nicht mehr direkt bearbeitet wird, ist trivial. 
96 Siehe [26]. 
97 Siehe Kapitel 3.4.1 in [25]. 
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7 Appendix 

7.1 𝑙1 und 𝑙2 Norm von Vektoren98 
Seien 𝑣1 =  〈𝑥1, 𝑥2, … , 𝑥𝑛〉 und 𝑣2 =  〈𝑦1, 𝑦2, … , 𝑦𝑛〉 zwei 𝑛-dimensionale Vektoren. 

Die Hamming-Distanz von 𝑣1 und 𝑣2, ℋ(𝑣1, 𝑣2) ist ihre 𝑙1-Norm, das heißt 

ℋ(𝑣1, 𝑣2) =  ‖𝑣1 −  𝑣2‖1 =  ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 . 

Die euklidische Distanz von 𝑣1 und 𝑣2, 𝒟(𝑣1, 𝑣2) ist ihre 𝑙2-Norm, das heißt 

𝒟(𝑣1, 𝑣2) =  ‖𝑣1 −  𝑣2‖2 =  √ ∑ (𝑥𝑖 −  𝑦𝑖)2𝑛
𝑖=1 . 

7.2 (Schwache) Zusammenhangskomponenten 
Ein ungerichteter Graph 𝐺 = (𝑉, 𝐸) heißt zusammenhängend, wenn es für jede beliebige 

Knotenkombination 𝑢 und 𝑣 einen ungerichteten Weg durch G mit 𝑢 als Startknoten und 

𝑣 als Endknoten gibt. 

[Bild Zusammenhangskomponente mit G, Start- und Endpunkt und zwei Teilgraphen] 

Eine Zusammenhangskomponente ist ein maximaler, zusammenhängender Teilgraph. 

  

                                                 
98 Aus [6], Definition 3.4. 
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