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1 Einleitung

Duplizierter Quellcode, Codeklone, sind ein alltagliches Nebenprodukt der regelméfiiigen
Programmierarbeit. Insbesondere in groRen Teams ist es nicht maglich, den Detailblick
fiir jede Komponente des Systems zu bewahren. An anderer Stelle ist aus es
programmarchitektonischer Sicht nicht méglich, die vorliegende Abstraktion zu
verwenden und sie muss absichtlich dupliziert werden. In einigen Fallen kann es sogar
von Vorteil sein, duplizierten Code an einigen wenigen Stellen in seinem Programm
einzusetzen.

Doch ungeachtet der Historie und des Bewusstseins, ist die Kenntnis ber die Stellen des
Programms wichtig, in denen duplizierter Code verwendet wird. Nur durch diese
Information kdnnen Uberlegte Entscheidungen im Programmieralltag, oder in einem
Forschungsumfeld groRere Systemanalysen durchgefiihrt werden.

Es sind bereits einige Verfahren etabliert, diese beschranken sich in aller Regel jedoch auf
die syntaktischen Klone. Um zusatzlich semantische Klone zu erkennen, sind bisher keine
skalierbaren Verfahren bekannt. DECKARD von Jiang et al, und darauf aufbauend Gabel
et al haben ein Klonerkennungsverfahren entworfen, das einerseits stark in der
syntaktischen Klonerkennung ist, aber auch in einigen Teilen semantische Klone
erkennen kann.

Diese Diplomarbeit fiihrt zunéchst in alle relevanten Themen dieses Verfahrens ein.
AnschlieRend wird im Detail die Implementierung namens Bryant! vorgestellt, die
abschlieRend analysiert und ausgewertet wird.

L In dieser Arbeit wird sowohl die Implementierung dieser Diplomarbeit, als auch die theoretischen Vorarbeiten durch
Gabel et al einheitlich ,,Bryant* genannt, da das Verfahren von Gabel et al keine eigene Bezeichnung besitzt.
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2 Grundlagen und Motivation

Duplizierter Programmcode kann auf vielfaltige Weise entstehen. Die offensichtlichste ist
sicherlich Copy & Paste, das heif3t der Autor hat den betroffenen Quellcodeabschnitt aus
einem anderen Teil des Programms direkt kopiert. Aber auch mehrfach benétigte
Funktionalitat gepaart mit der Unkenntnis, dass das vorliegende Problem bereits im
Programm an anderer Stelle gel6st ist, fuhrt zu mehrfacher Implementierung &hnlicher
Losungen. Diese auf unterschiedlichem Wege erreichten Losungen geben einen Einblick
in die Struktur und die Wachstumshistorie des Programms und kénnen fir weiterfiihrende
Analysen verwendet werden. So kénnen aus der Betrachtung grof3er Softwaresysteme und
Programmierteams in Kombination mit der Auswertung von Codeklonen Ruckschliisse
uber die Arbeitsweise und Denkstrukturen typischer Softwareteams gezogen werden.

Neben der theoretischen Betrachtung ist duplizierter Code insbesondere fiir die Wartung
von Software interessant. So sind Programme, die nicht die angemessenen
Abstraktionswerkzeuge der Sprache verwenden, in aller Regel langer, was die Anzahl
von potenziellen Programmfehlern erhoht. AuRerdem miissen nun bei Anderungen am
Programm die duplizierten Stellen manuell nachverfolgt und ebenfalls (und identisch)
angepasst werden. Bei dieser manuellen Arbeit konnen sich Programmfehler
einschleichen, die dann in der Anwendung nur auftreten, wenn man die Funktion genau
auf diesem einen Wege ausfiihrt?.

Auch rechtliche Fragen kénnen mit Codeklonerkennern beantwortet werden.
Programmcode oder nur Teile von diesem kénnen unter Copyright stehen. So kann ein
Klonerkenner bei der Entdeckung von unerlaubten Kopien urheberrechtlich geschiitzten
Programmcodes behilflich sein. Ein prominentes Beispiel ist die Klage von Oracle
America, Inc. gegen Google, Inc., bei der es um die Frage ging, ob Google in Android
ohne Genehmigung Java-APIs verwendet und implementiert hat®.

In der Optimierung von Programmen kann duplizierter Code ebenfalls von Bedeutung
sein. Webanwendungen transportieren ihr HTML, CSS und JavaScript bei jedem
Seitenaufruf an den Client. Es ist daher vorteilhaft, wenn die GréRe dieser Datenmenge so
klein wie mgdglich gehalten wird, insbesondere auf Mobilgeréten, die oftmals mit einer
langsameren Datenverbindung und hoherer Latenz mit dem Internet verbunden sind. Hier
fiihrt die Deduplikation zu einer verringerten Ladezeit.*

Jedoch ist nicht jeder Klon negativ zu bewerten. Automatisch generierter Code ist in
erheblichem Male repetitiv, dies wird jedoch akzeptiert, da der generierte Code nicht
aktiv bearbeitet wird (sondern im Zweifelsfall schlicht neu generiert wird). Darlber

2 Ein haufiges Beispiel fur duplizierten Code bei einer Shopsoftware ist das Einlésen von Coupons. So kann es bei
Duplizierung zu unterschiedlichem Verhalten kommen, je nachdem ob man den Coupon im Warenkorb oder auf der
Bestellabschlussseite einldst.

3 Siehe [10].

4 Genau in diesem speziellen Fall ist eine tibermaRige Deduplikation jedoch nicht immer von groRem Nutzen. Da bei
vielen Anwendungen die Daten vor Ubertragung mit GZIP komprimiert werden, wird der Einfluss der Duplikate auf die
Dateigrofe bereits durch das Kompressionsverfahren minimiert.
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hinaus gibt es Félle, in denen Codeklone notwendig sind. Bei Fehlern in externen
Bibliotheken wird oftmals der externe Code kopiert und angepasst. Auerdem kénnen
auch Performanceoptimierungen durch duplizierten Code erreicht werden. Unterstitzt ein
Compiler beispielsweise kein automatisches Aufrollen von Schleifen®, kann es je nach
Anwendungsfall notwendig sein, die Schleife selbst aufzuldsen und die Blocke manuell
zu kopieren.

2.1 Auspragungen von Codeklonen

Wahrend bei der Analyse einzelner Klone feinstufige Unterscheidungen definiert werden
konnen, teilt sich die Menge aller Codeklone zunéchst in zwei Variationen. Auf der einen
Seite die syntaktischen Klone und auf der anderen Seite die semantischen Klone.

Syntaktische Klone sind Programmfragmente, die bereits in textueller Form grolie
Ahnlichkeit aufweisen. So sind die grundlegenden Strukturen identisch und nur einige
Teilaspekte werden abstrahiert oder die Sortierung von Programmanweisungen
vereinheitlicht.

++ 2 duplicates, Cost: 84in 2 files » 4 b | Ignore whitespace: |.|?\|I -

—I- 2 duplicates, Cost: 54 in 2 fil
upicates, Los N < hes #1 Database.php {C:/IdeaProjectstest) #2 DatabasePostgres, php (C:/IdeaProjects test)

I‘T%% if ( 'is array( soption=z ) ) | 1 1 if { !'is array( soptiomnsz ) ) |
&3l #2DatabasePostgres.ph - Soptions = array({ & 2 2 - Zoptions = array( &
+ 2 duplicates, Cost: 49 in DatabasePo: } 3 3 1
+ 2 duplicates, Cost: 45 in Database.pk 1 1
- 2 duplicates, Cost: 41in 2 files if ( isset{ $a[0] ) &si ¥ 5: 5« if ( isset{ sargs[0] )
+ 2 duplicates, Cost: 35 in Database.ph smulti = true; & & tmulti = true;
+- 2 duplicates, Cost: 27 in DatabasePo: tkeys = array kevs{ ¥ 7 7k fkeys = array keys|
+ 2 duplicates, Cost: 25in 2 files ] else | el = } else |
+- 2 duplicates, Cost: 24 in DatabasePo: fmulti = false; 9 9 trulti = false;
+- 3 duplicates, Cost: 23 in Database.pt tkeys = array keys{ ¥ 10:10 « skeys = array keys|
++ 2 duplicates, Cost: 23in 2 files 1 11 11 }
+- 2duplicates, Cost: 23 in DatabasePo:
+ 2 duplicates, Cost: 20 in Database.pk
+- 3 duplicates, Cost: 20 in DatabasePo:
+- 2 duplicates, Cost: 19 in Database.pk 3 differences |  Deleted | Changed Inserted

Abbildung 1: Syntaktische Klonerkennung in der Code Duplication Analysis der Programmierumgebung PhpStorm
(Screenshot von [11]).

Syntaktische Klonerkennungsprogramme verwenden unterschiedliche Grade von
Abstraktion®. Die stringbasierten Tools teilen zunéchst das Programm in Zeilen auf und
operieren anschlieBend auf Programmcodezeilen. Hierbei wird ein parametrisierter
Stringvergleich verwendet, der gegen marginaler Unterscheidungen resistent ist’. Token-
basierte Tools bauen auf den Lexer und vergleichen generierte Tokenstreams. Diese
Tools sind in der Regel robuster gegeniiber Codeformatierung und Spacing®. Die

5 Bei dieser Optimierung wird die Schleife entweder komplett aufgelost und durch passend untereinander kopierte
Codebldcke ersetzt oder zumindest soweit umgebaut, dass der Schleifenrumpf zugunsten einer geringeren Iterationszahl
langer wird. Hierdurch wird die Anzahl der Spriinge in der Kontrollanweisung und dem Sprung zum Beginn des
Schleifenrumpfes optimiert. Fir Details siehe [11].

6 Die Abgrenzung der Abstraktionsgrade ist aus [7].

7 Beispielsweise die Arbeiten von Baker in [13] und [14].

8 Beispielsweise CCFinder [8] und CP-Miner [9].
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baumbasierten Tools arbeiten entweder auf dem Parsebaum oder AST und vergleichen
Syntaxbaume oder Fingerprints® der Baume°.

Semantische Klone sind Programmcodeabschnitte, die auf einer syntaktischen Ebene
maoglicherweise unterschiedliche Struktur besitzen, jedoch die gleiche Funktion
implementieren. Ein triviales Beispiel hierfir sind for- und while-Schleifen. Diese sehen
syntaktisch zwar unterschiedlich aus, konnen in der Regel aber in die jeweils andere Form
uberfiihrt werden. Programmcode der die eine Variante implementiert, kann also
funktional identisch zu Programmcode sein, der die andere Variante verwendet.

Echte semantische Gleichheit im Allgemeinen (Programmaquivalenz) ist
unentscheidbar!l. Daher wurden einige Verfahren entwickelt, die zwar keine echte
Aquivalenz entscheiden kénnen, jedoch zumindest ein Teilwissen tiber die semantischen
Details haben'2,

Fast alle referenzierten Verfahren der syntaktischen Klonerkennung haben gezeigt, dass
sie auch fiir sehr groRe Programme skalieren kdnnen. Tools, die semantische Analysen
anwenden konnten bisher noch nicht skalierbar implementiert werden.

2.2 Verwendetes Verfahren

Die Effektivitat von Klonerkennungsverfahren ist mafigeblich abhéngig von der
zugrundeliegenden Definition eines Codeklons. Ausgehend von dieser wird das
Verfahren modelliert. Die verwendete Definition muss also fundiert, theoretisch gesichert
und berechenbar sein.

Die Implementierung in dieser Diplomarbeit baut auf der Arbeit von Gabel et al.*? auf.
Diese wiederum basiert auf dem im Klonerkenner DECKARD?!!® verwendeten
Verfahren, mit einer Erweiterung um eine semantische Analyse mithilfe des PDGs?.
DECKARD ist ein gegentber Quellcodeformatierung robuster syntaktischer
Klonerkenner aus der Familie der baumbasierten VVerfahren.

9 Hierbei werden die Bdume in einen Hashwert tiberfihrt, der Riickschluss auf die Struktur der Badume zulésst. Die
Fingerprints sind erheblich effizienter zu vergleichen als die Baumstruktur.

10 Die Arbeiten von Baxter et al ([15], [2]) und Wahler et al ([16]) vergleichen Parse- oder Syntaxbaume. Die Arbeiten
[17] und [18] verwenden Fingerprinting.

11 Dies geht direkt aus dem Satz von Rice hervor.

12 Komondoor und Horwitz haben einen Codeklonerkenner entwickelt, der unter Zuhilfenahme des PDG und Program
Slicing grundlegende semantische Analysen durchfiihren kann [19].

13 Siehe [5].

14 Siehe [7].

15 Das Verfahren wurde benannt nach der Hauptfigur des Films Blade Runner (1982). Dieser muss ebenfalls ,,Klone*
(Replikanten) erkennen.

16 program Dependence Graphs (PDGs) werden in [4] naher beschrieben.
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return a + b;

}

Codebeispiel 1: Beispielfunktion mit Addition zweier konstanter Zahlen.

Daher sind die Definition und das Verfahren direkt aus den beiden Arbeiten
ubernommen, alle Details werden im Folgenden jedoch noch einmal ausfiihrlich erklart.
DECKARD arbeitet auf Parsebaumen, Bryant arbeitet jedoch mit ASTs. Die folgenden
Kapitel besprechen daher direkt ASTs.

IIIHHHEIEIII
Statement_Sequence
IIHHHHEHHHHHHII

‘ Int_Literal ‘

Int_Literal |

Return_With_Value

Arithmetic_Add

Entity_L_Value

Entity_L_Value

Entity_L_Value Entity_L_Value

Abbildung 2: AST zum Codebeispiel 1, ab Beginn der Routine ().

2.3 Definition von Codeklonen

Ein Programm wird bei der Ubersetzung in aller Regel in einen Syntaxbaum tiberfihrt.
Die Knoten dieses Baumes stehen fiir ein Sprachkonstrukt, das im Programmcode
verwendet wird. Abstrakte Syntaxbdume unterscheiden sich von Parsebdumen dadurch,
dass einige Bereiche bereits abstrahiert wurden, wie beispielsweise Klammersetzung, und
die Daten in strukturierter Form vorliegen®é.

17 Der AST ist eine vereinfachte Darstellung, daher wurden fiir das Verstandnis unwichtige Knoten ausgeblendet.

18 S0 sind in einer if-Anweisung beispielsweise die Aspekte Condition, If-Zweig und Else-Zweig bereits semantisch
strukturiert und gruppiert in einem Knoten (mit Unterknoten) und nicht mehr wie im Parsebaum eine Abfolge von
mehreren Knoten.
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By g

Remove Insert @ RenameC-> G

Abbildung 3: Beispielhafter Ablauf einer Tree-Edit-Sequenz.

Ein Codeklon wird ausgehend von ASTs wie folgt definiert: man wahlt zwei
Programmabschnitte aus, erstellt die ASTs (bzw. Unterbdume®®) und vergleicht diese. Die
verwendete Metrik des Vergleichs ist hierbei die minimale Edit-Distanz §%. Die Edit-
Distanz reprasentiert die Menge der Anderungen?! (Einfiigen, Umbenennen, Léschen) die
notig ist, um den einen in den anderen Baum zu Uberfiihren. Intuitiv kann daher
festgestellt werden, dass zwei Baume umso ahnlicher sind, je geringer die Edit-Distanz
ist.

Definition 1: Zwei Baume T; und T, sind a-ahnlich fur ein gegebenes o, wenn flr ihre
Edit-Distanz §(Ty, T,) < o gilt.??

Ausgehend von dieser Definition kénnen nun Codeklone definiert werden.

Definition 2: Zwei Code-Fragmente C; und C, gelten als Klonpaar, wenn ihre
zugehorigen Baumreprasentationen T; und T, a-dhnlich fir ein spezifiziertes o sind.?

Diese Definition ist zwar theoretisch valide und fundiert, birgt allerdings ein praktisches
Problem. Die Berechnung der Edit-Distanz ist nicht effizient moglich?*. AuRerdem

1% Die folgenden Abschnitte arbeiten nie auf ,,vollsténdigen* ASTs, da dies ein intraprozedurales Verfahren ist und
daher nur ASTs innerhalb einer Routine bearbeitet werden. Im Folgenden wird zur Vereinfachung nur von ,,ASTs*
gesprochen — die Verfahren funktionieren prinzipiell fur jede Art von Syntaxbaum.

20 Die Edit-Distanz ist nicht eindeutig, da es mehrere Abfolgen von Anweisungen geben kann, um einen Baum in einen
anderen Baum zu Uberfiihren. Diese kénnen beliebig groR werden (durch Einfligen und L&schen unbenutzter Knoten).
Daher wird die minimale Edit-Distanz verwendet, die kurzmdglichste Abfolge darstellt.

2 In den meisten Verfahren werden die ,,Kosten* der moglichen Anderungen (Einfiigen, Umbenennen, Léschen)
unterschiedlich gewichtet, so kann ein Einfuigen teurer (in Bezug auf die Metrik) als ein Umbenennen sein. Dieses
Detail ist in dieser Hinflihrung allerdings nicht relevant.

2 Siehe [7].

2 Siehe [7].

24 Die Komplexitat ist O(|Ty| x |T,| x d; X d;), wobei |T;| die GroRe von T; ist und d; das Minimum aus der Tiefe
von T; und der Anzahl der Bléatter von T;. (siehe [7]).
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miussen alle Baume miteinander verglichen werden, was im schlechtesten Fall
quadratischen Aufwand bedeutet.

2.4 Alternative Darstellung von Codefragmenten

Die Codeklon-Definition aus dem vorigen Kapitel ist theoretisch fundiert, besitzt aber
ungunstige Laufzeiteigenschaften. Daher wird in diesem Kapitel zundchst eine alternative
Reprasentation der ASTs eingefihrt, die eine effizientere Implementierung ermdglichen.
AnschlieBend wird das Berechnungsproblem der Baum-Edit-Distanz auf eine
Distanzberechnung in der neuen Darstellung reduziert. Diese Reduktion ist wichtig, da
nur dadurch gewahrleistet werden kann, dass ein gefundenes Ergebnis in der neuen
Darstellung auch ein korrektes Ergebnis in der Darstellung als Edit-Distanz ist. Und da im
verwendeten Verfahren Codeklone uber die Edit-Distanz definiert sind, kann ohne diese
Ruckfuhrung keine Aussage getroffen werden.

2.4.1 Atomic Tree Patterns?> und charakteristische

Vektoren

Gegeben sei ein Binarbaum. Man definiert eine Familie an Atomic Tree Patterns,
parametrisiert mit der Hohe des Bindrbaums gq.

Ein g-level Atomic Pattern ist ein vollstandiger Bindarbaum der Héhe g. Die Knoten
dieses Binarbaums entstammen aus einer Knotenmenge £ (diese Menge beinhaltet auch
das leere Label ). Es existieren insgesamt | £]2~ mégliche Binarbaume der Hohe g,
dies sind alle mdglichen Permutationen der Knotenelemente auf die 29 — 1 Knoten eines
vollstdndigen Binarbaumes der Hohe q. Diese Menge an Baumen wird
durchnummeriert?®. Nun wird ein Vektor der Lange | £]2?~ erstellt, wobei das i-te
Element die Anzahl der Vorkommen des i-ten Baumes im Ursprungsbaum darstellt.

% Siehe [7].
% Die tatsachliche Sortierung ist irrelevant, so lange sie identisch tiber die gesamte Vektorgenerierung ist.
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Abbildung 4: Beispielhafte Vorschau einiger g-Atomic Patterns der Hohe 2 fir die angegebene Knotenmenge
(insgesamt gibt fur diese Knotenmenge und Hohe 27 Permutationen).

Dieser Vektor ist ein Fingerprint des urspriinglichen Baumes und wird der
charakteristische Vektor des Baumes genannt (gekennzeichnet durch v, (T)). Die
Abbildung von Baum auf Vektor ist surjektiv: identische Baume ergeben identische
Vektoren, identische VVektoren wiederum missen aber nicht identische B&ume ergeben.
Dies ist allerdings eine erwinschte Eigenschaft, da im Hinblick auf ASTs die Reihenfolge
der Knoten keine Rolle spielen soll. Das Verfahren soll robust gegeniiber Umsortierung
des Programmcodes sein, was durch diese Eigenschaft erfillt wird.

Zur vereinfachten Berechnung der Ahnlichkeit von ASTs werden charakteristische
Vektoren verwendet. Hierzu werden die ASTs in die charakteristischen VVektoren
umgewandelt, die Hohe der Pattern ist g = 1, die Knotenmenge sind alle Knotentypen
des ASTs. Durch diese Definition reprasentiert der charakteristische Vektor eines ASTs
ein Konstrukt, in dem die Anzahl jedes Knotentypen innerhalb dieses ASTs aufgelistet
ist.
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Im néchste Schritt wird (nach der alternativen Darstellung der ASTs) die euklidische
Distanz der Vektoren?’ zu berechnet. Wenn zwei Vektoren sehr nahe sind, soll die Edit-
Distanz zwischen den Ursprungsbdumen gering sein. Nur durch diese Eigenschaft ist die
Reduktion valide. Ihr Beweis wird daher im Folgenden anskizziert.

Theorem 1: Fiir zwei beliebige Baume T; und T, mit Edit-Distanz §(Ty,T,) = k
ist die [;-Norm der zugehérigen g-level Vektoren fir T, und T, H (vq (Ty), v, (Tz))
nicht groRer als (4q — 3)k.?®

Wie in obigem Theorem beschrieben, existiert eine Verbindung zwischen der I;-Norm
(Hamming-Distanz) der Vektoren und der Edit-Distanz der zugehtrigen Baume. Nun
muss noch eine Verbindung zwischen der I, und I,-Norm (euklidische Distanz)?® gezeigt
werden, dann ist durch den transitiven Abschluss die Reduktion theoretisch bestatigt.

Theorem 2: Fir zwei beliebige Ganzzahl-Vektoren gilt \/H (v4,v;) < D(vq,v,) <
H (v1,v7).%°

Durch Verknupfung von Theorem 1 mit Theorem 2 folgt direkt:

Korollar 1: Fur zwei beliebige Baume T; und T, mit Edit-Distanz § (T, T,) = k ist die [,-
Norm der g-level Vektoren dieser Baume D (v, (Ty), v, (T,)) nicht groRer als (4q — 3)k
und nicht kleiner als die Quadratwurzel der [;-Norm. Dies bedeutet:

JH @2, T) < D (0,1, v (1) < (4 = 3)k

Da in dieser Arbeit die Hohe der Atomic Patterns g = 1 gilt, sind entweder die
euklidische Distanz, oder die Quadratwurzel der Hamming-Distanz eine untere Schranke
fiir die Edit-Distanz. So gilt: wenn die Distanz zweier Vektoren groRer als ein vorher
definiertes o ist, konnen die zugehorigen ASTs nicht g-&hnlich sein. Andersherum ist es
sehr wahrscheinlich, dass wenn die untere Schranke kleiner als ein definiertes o ist, der
tatséchliche Wert ebenfalls kleiner als o ist3.

Durch diese Reduktion kann das Problem der Edit-Distanz zweier ASTs also auf die
euklidische Distanz zweier charakteristischer VVektoren vereinfacht werden. Fir die
Implementierung ist noch wichtig, dass diese Herleitung auch fiir Abstract Syntax

27 Die Vektoren konnen als Punkte dargestellt werden, wobei der Vektor die Strecke zwischen Punkt und dem Ursprung
des Koordinatensystems darstellt. Im Folgenden wird allerdings weiterhin von der ,,Distanz zweier Vektoren*
gesprochen, auch wenn im Grunde die Entfernung zweier Punkte berechnet wird.

28 Siehe Theorem 3.3 in [19].

29 Fuir genaue Definition zur I, und I,-Norm sind im Appendix (Kapitel 7.1) zu finden.
%0 Siehe [6].
31 Nach [6].
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Forests®? gilt, da diese durch Hinzufiigen eines gemeinsamen Eltern-Knoten zu einem
einzelnen Baum umgewandelt werden kénnen.

2.4.2 Vektorgenerierung

Nachdem das theoretische Fundament gesichert ist, verschiebt sich nun der Fokus der
Avrbeit auf die tatséchliche Generierung der Vektoren. Die Phase der Vektorerstellung teilt
sich in zwei Abschnitte auf: zundchst die direkt aus AST-Knoten erstellten VVektoren und
anschlieBend in Kapitel 2.4.3 die zusammengesetzten Vektoren.

Mit Einstieg in eine Routine werden alle Knoten des AST in Postorder-Reihenfolge
durchlaufen. Bei jedem Vektor werden zunéchst die Vektoren der Kinder summiert. Dann
wird der Eintrag an dem Index des AST-Knotens im Vektor um 1 erhoht, falls der VVektor
relevant ist. Falls der Vektor zusatzlich signifikant ist, wird der Vektor in die globale
Liste aller erstellten Vektoren hinzugeflgt.

<2,4,0,2,2>

<1,0,0,1,0> <0,3,0,1,0> <1,0,0,0,2>

Abbildung 5: Annotation der AST-Knoten mit den charakteristischen Vektoren (der obere Knoten ist relevant und
erhéht den zweiten Eintrag im Vektor um 1).

Die Relevanz eines Knoten gibt an, ob dieser Knoten in den charakteristischen Vektoren
gezahlt werden soll®. Durch die Verwendung des ASTs entfallen viele ,,technische
Knoten* eines Parsebaums wie Klammern und Semikola bevor der Algorithmus startet.
Aber auch Casts oder andere strukturierende Knoten kdnnen fur das Zéhlen nicht
interessant sein. Insbesondere wird tUber die Relevanz die Granularitat der Klonerkennung
gesteuert. So kdnnen Unterschiede im AST ,,ignoriert* oder absichtlich gleich gezahlt
werden. Ein Beispiel explizit zusammengefasster Knoten kdnnen Schleifen sein — so
werden unterschiedliche Schleifenvarianten explizit auf den gleichen Eintrag im Vektor
indexiert, wodurch der Klonerkenner diese als identisch erkennt.

%2 Eine Menge an ASTs.
3 Die fur diese Arbeit getroffene Auswahl an relevanten IML-Knoten findet sich in Kapitel 3.43.2.1.
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Die Signifikanz eines Knotens gibt an, wie wahrscheinlich dieser ein Kandidat fir die
Klonerkennung ist. Der Hintergrund ist, dass die so gefundenen Kandidaten eine
MindestgroRe tberschreiten sollen. Ohne diese Mindestgrofie wirde sonst jede
Initialisierung einer Variable als Klon erkannt:

int i = 1;

Codebeispiel 2: Beispielprogramm mit Variableninitialisierung

Vor dem Hinzufuigen eines Knotens wird zunéchst tberpriift, ob dessen Vektor gentigend
fur die Signifikanz interessante Knoten enthélt. Nicht alle Knotentypen sind fiir diese
Eigenschaft interessant, sondern nur eine Auswahl von Knotentypen, die sehr
wahrscheinlich der Ausgangspunkt eines Codeklons sein kénnten.

Den numerischen Mindestwert fur die Signifikanzbestimmung festzulegen ist nicht
trivial. Wéhrend in der Originalimplementierung von DECKARD 30 Token (der
Standardwert) in der Regel zu etwa 3 Statements gehdren, ist dies bei AST-Knoten nicht
der Fall. Hier kdnnen die 30 Knoten entweder zu weniger (mdglicherweise weniger als
einem vollen Statement), oder erheblich mehr Statements gehéren. Daher wird von einer
rein numerischen Betrachtung des Vektors abgesehen, sondern das zuséatzliche Wissen
dahingehend miteinbezogen, dass eine gewichtete Summe des Vektors fur die
Signifikanzberechnung verwendet wird.

Die Relevanz gibt also an, welche Knoten gezéhlt werden und die Signifikanz gibt an, von
welchen Knoten die Vektoren in die Klon-Kandidatenliste aufgenommen werden.

2.4.3 Vector Merging (Vektor-Kombinationen)

Mit den Klon-Kandidaten, die direkt aus einzelnen AST-Knoten erzeugt werden, sind im
Programmcode einzelne Statements abgedeckt. Viele interessante Klone werden sich
jedoch tiber mehrere Zeilen Programmcode, Uber mehrere Statements erstrecken. Daher
werden im zweiten Abschnitt der Vektorgenerierung aus mehreren benachbarten AST-
Knoten zusammengefasste Vektoren erzeugt.

Der Algorithmus fur das Zusammenfassen der Knoten ist simpel. Es wird die Liste aller
Kindknoten als Basis verwendet, anschlieRend wird ein sogenanntes Sliding Window
erstellt und tber die Liste der Kindknoten verschoben. Fir jeden Knoten in der Liste wird
entschieden, ob dieser Teil einer Fragmentkombination sein kann, oder nicht. Falls der
Knoten nicht kombinierbar ist, wird er aus der Liste der Kindknoten herausgefiltert.
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Abbildung 6: Veranschaulichung des iterativ verschobenen und vergrof3erten Sliding Windows.

Das Sliding Window betrachtet einige aufeinanderfolgende Knoten. Aus diesen wird ein
summierter Vektor erzeugt. Falls dieser signifikant ist, wird er der Liste der
Klonkandidaten hinzugeflgt. AnschlieBend wird das Sliding Window um eine Position
weiter geschoben*.

34 Die Originalimplementierung von DECKARD (siehe [6]) hat keine automatische VergroRerung des Sliding Windows
verwendet, dafiir aber die Schrittweite konfigurierbar gemacht. Dies ist bei der erweiterten Implementierung nicht mehr
notwendig.
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[ [ ~ N =< TN

<2,2,0,1> <1,2,2,0> <1,0,2,1> <0,1,2,3>

Abbildung 7: Neue Codefragmente aus Knoten mit zugehdrigen Vektoren, die durch das Vector Merging erstellt
wurden.

Die GroRe des Sliding Windows wird iterativ vergroBert. Die Arbeit von Gabel et al®® hat
herausgefunden, dass es sinnvoll ist, die GroRe des Sliding Windows initial auf 3 zu
setzen und nach jedem Durchlauf multiplikativ um den Faktor 1,5 zu vergroRern. Dieser
Abschnitt der Vektorgenerierung endet, wenn die GroRe des Sliding Windows grof3er als
die Anzahl der benachbarten Vektoren ist.

2.5 Locality-Sensitive-Hashing36

Nach der Generierung der VVektoren miissen nun effizient benachbarte VVektoren gefunden
werden. Hierbei wird zundchst die Datenstruktur erstellt, anschlielend wird fiir jeden
Vektor in der Kandidatenliste die Liste der benachbarten Vektoren gesucht. Intuitiv hat
dieses Verfahren in etwa quadratischen Aufwand, da jeder Vektor mit jedem anderen
Vektor verglichen werden muss®’. Deshalb wird ein Verfahren eingefiihrt, das die
Vektoren in einer VVorverarbeitung clustert, sodass die Distanzberechnungen auf ein
Minimum reduziert werden kénnen®e,

Fir eine Minimierung der Zahl der Vektorvergleiche wird Locality-Sensitive-Hashing®
verwendet. In diesem Verfahren wird zu jedem Vektor ein Hash-Wert berechnet. Die
zugrundeliegende Hashfunktion ist so konstruiert, dass fir nahe Vektoren mit hoher
Wahrscheinlichkeit gleiche Hash-Werte berechnet werden. Bei der Suche nach nahen
Knoten werden von einem Anfragevektor aus alle VVektoren mit dem gleichen Hashwert

3 Siehe [4].

3 Die Definitionen und Beweise fiir diese Kapitel stammen aus [5].

37 Dies ist also eine quadratische Menge an Vektorvergleichen, wobei die Vektorvergleiche (Distanzberechnungen)
selbst ebenfalls einen Beitrag zur Laufzeit leisten.

3 Die Zahl der Vektorvergleiche ist quadratisch in der Anzahl der Klonkandidaten. Ein einzelner Vektorvergleich
(Distanzberechnung) selbst ist linear in der Anzahl der Dimensionen eines charakteristischen Vektors. LSH minimiert
nur die Zahl der Vektorvergleiche.

3% Wie beschrieben in [5].
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gesucht und nur fir diese kleine Teilmenge werden konkrete Distanzberechnungen
durchgefunhrt.

2.5.1 Verwendete Hashfunktion

Die zugrundeliegende Hashfunktion muss die folgende Eigenschaft erfiillen, dass sie fir
eine LSH-Berechnung verwendet werden kann:

Definition 3%°: Eine Familie an Hashfunktionen h : V — U heift (p4, p, R, ¢)-sensitiv
(mitc = 1),fallsvVu,v € V gilt:

falls  D(u,v) <R dann Problh(u) = h(v)] = p,
falls D(u,v) > cR dann Prob[h(u) = h(v)] < p,

Um als LSH-Hashfunktion sinnvoll zu sein, sollte fur die gegebene Funktionsfamilie
p1 > p und ¢ > 1 gelten.

Abbildung 8: Der Raum wird in die Kugel um den Punkt und den restlichen Raum aufgeteilt.

40 Aus [2], Definition 1 bzw. dessen Adaption in [6], Definition 3.9.
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Datar et al*! haben gezeigt, dass die folgende Hashfunktion diese Eigenschaft erfillt:

hep: R >N

mitw € R, b € [0,w] und a € R? als zufallig gewahlten Vektor.

2.5.2 Vorbereitung der LSH-Datenstruktur

Als grundlegende Datenstruktur bei der LSH-Berechnung wird eine Hashmap verwendet.
Jeder Eintrag in dieser Hashmap (,,Bucket®) ist eine Liste von in diesen Bucket gehashten
Vektoren.

Der Ablauf der LSH-Berechnung ist wie folgt: zundchst wird jeder Punkt nicht nur
einmal gehasht, sondern es werden mehrere Hashfunktionen (insgesamt k
Hashberechnungen) nacheinander ausgefuhrt. Dies verringert intuitiv mit jedem weiteren
Hashing die Wahrscheinlichkeit, dass zwei Punkte die weit entfernt sind, den gleichen
Hashwert erhalten. Diese Kette an h;-Funktionen werden fortan g; genannt.
Anschliefend wahlt man eine Zahl L, die die Zahl der unterschiedlichen Hash-Buckets
angibt, in die der Vektor gehasht wird.

Bildlich gesprochen projiziert die Hashfunktion den zufélligen Vektor a und den Vektor
v auf einen Punkt auf der reellen Achse. Diese Projektion erhlt die Distanzeigenschaft*?.
Dies bedeutet, dass Vektoren, die vorher weit entfernt waren, mit hoher
Wahrscheinlichkeit nach der Projektion ebenfalls als Punkte auf der reellen Achse weit
entfernt sind (und umgekehrt). Das wiederholte Hashing verringert die
Wabhrscheinlichkeit, dass zwei weit entfernte Vektoren tber einen ungiinstig liegenden a-
Vektor den gleichen Hashwert erhalten®:.

4 Siehe [2].
42 Wie gezeigt in [2].
43 Veranschaulicht vergroRert es die Kluft zwischen Punkten im Intervall [0; R] und den Punkten im Intervall (R, o).
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Abbildung 9: Veranschaulichung der Projektion der Vektoren auf die reelle Achse (der dickere Vektor ist a). Ebenfalls
sieht man hier die gleichmaRige Aufteilung der reellen Achse in Segmente mit Breite w.

Nachdem der Vektor auf einen Punkt auf der reellen Achse projiziert wurde, wird die
reelle Achse gleichmaRig in Segmente aufgeteilt, mit Breite w. Die Hashfunktion

berechnet durch die Division und das Abrunden den Segmentindex. Der Segmentindex
dient anschlieRend als Index fiir die Hashmap.

Nicht nur die Wahrscheinlichkeit, dass zwei weit entfernte Vektoren in den gleichen

Bucket gehasht werden (falsch positive Treffer), sondern auch die Wahrscheinlichkeit,
dass zwei nahe Vektoren nicht in den gleichen Bucket gehasht werden (falsch negative
Treffer) ist interessant. Wahrend die erste Variante nur das Laufzeitverhalten negativ
beeinflusst, beeintrachtig die zweite Variante das Ergebnis. Wenn zwei nahe Vektoren in
unterschiedliche Buckets gehasht werden, wird der Klonerkenner diese nicht als Klone
erkennen.

Um dieses Problem zu umgehen, werden die Vektoren in mehrere Buckets gehasht.
Insgesamt in L unterschiedliche Buckets.
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Abbildung 10: Gesamtiberblick aller Hashing-Vorgange in LSH.

Der Ablauf in der Gesamtbetrachtung ist wie folgt: als Eingabe erhélt LSH einen Vektor
mit d Eintrédgen. Dieser Vektor wird k-mal mit unterschiedlichen Hashfunktionen gehasht
(die Funktion, die k-mal mit unterschiedlichen Hashfunktionen hasht heif3t g; (wobei i =
1...L)). Das Ergebnis ist ein neuer, k-dimensionaler Vektor, in dem im i-ten Eintrag das
Ergebnis der i-ten Hashfunktion h; steht. Dieser Vektor wiederum wird mit L reguldren
Hashfunktionen zu Bucketindizes der Hashmap umgerechnet. In jeden dieser Buckets
wird der Vektor eingefiigt.

Bei der Abfrage nach der Menge der nahen Nachbarn eines Punktes wird der
Abfragepunkt ebenfalls gehasht und in Bucketindizes umgerechnet. Alle Vektoren in
diesen Buckets werden anschlielend direkt mit dem Abfragepunkt verglichen.

Relevante Parameter in diesem Verfahren sind die Zufallsfunktion, mit der die a- und b-
Parameter der Hashingfunktionen generiert werden. AulRerdem ist die Zahl der
konkatenierten Hashfunktionen (k) und die Anzahl der Buckets, in die die Vektoren
gespeichert werden (L), interessant. Der Parameter ¢ aus Definition 3 wird auf 1 gesetzt,
wodurch der Raum in Punkte innerhalb der Radiuskugel um den Punkt und alle restlichen
Punkte aufgeteilt wird. Die Kollissionswahrscheinlichkeiten p; und p,, sowie der Radius
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R sind zwei Parameter, die nicht fest im System vorgegeben sein miissen, sondern bei
denen der Benutzer der implementierten Klonerkennung die Genauigkeit gegeniiber der
Laufzeit abwégen kann.

Die wichtigste Eigenschaft der Hashfunktion ist, dass die Verteilung stabil Uber der [,-
Norm* ist. Dies ist zum Beispiel bei der GauB-Verteilung gewahrleistet. Dariiber hinaus
ist bekannt, dass man eine unter der [,-Norm stabile Zufallsvariable aus zwei
unabhangigen, normalverteilten Zufallsvariablen aus dem Intervall [0; 1] erzeugen
kann®.

Die zwei undefinierten internen Parameter k und L werden fiir ein theoretisch optimales
Ergebnis wie folgt definiert*®:

k =log1(n)
P2

L=nF mit p=—F

wobei n die Anzahl aller Vektoren ist.

Diese Definition halt die beiden Faktoren k und L so klein wie mdglich (fir ein
theoretisch optimales Laufzeitverhalten), aber so gro3 wie nétig um die vorgegebenen
Erfolgswahrscheinlichkeiten zu erhalten.

2.6 Erweiterung um PDG-Codefragmente#”

DECKARD ist im Grunde eine Art Framework fur Codeklonerkennung. Als Eingabe
dienen unterschiedlichste Verfahren um Code-Fragmente (Mengen aus AST-Knoten und
zugehorige charakteristische VVektoren) zu erzeugen, aus denen im weiteren Verlauf die
Klone gefiltert werden. Diese Verfahren kdnnen variieren, es kdnnen neue hinzugefgt,
existierende ausgetauscht oder entfernt werden.

Bryant“® fuigt ein neues Verfahren zur Erstellung von Code-Fragmenten hinzu. Da nur
weitere VVektorerzeuger hinzugefiigt werden, ist die Menge der mit dem abgewandelten
Verfahren gefundenen Klone eine echte Obermenge von DECKARD. Das heil3t es
werden auf jeden Fall alle Klone gefunden, die DECKARD auch findet. Dariiber hinaus
flgt Bryant einen neuen Schritt der VVektorgenerierung hinzu, der aus dem PDG heraus
Klonkandidaten erstellt. Durch die Zuhilfenahme des PDG bringt das Verfahren ein
gewisses semantisches Bewusstsein in die Klonerkennung ein, da der PDG grundlegende
Aussagen ber die Semantik eines Programms treffen kann.

44 Die Verteilung muss ,,2-stable sein, siche [2].

4 Siehe [20].

46 Aus [2].

47 Dieses Kapitel baut zu weiten Teilen auf dem Kapitel 3.3 aus [4] auf, da dort dieses Verfahren eingefiihrt wurde.
48 Nach [4].

27



Zunéchst wird die Definition eines Codeklons leicht erweitert. Die bisherige
Arbeitsdefinition eines Codeklon ist wie folgt:

Definition 4 (Syntaktische Codeklone)*®: Zwei disjunkte, zusammenh&ngende
Programmsequenzen S, und S, sind Codeklone, genau dann wenn §(S,, S,)

Wobei & eine Ahnlichkeitsmetrik darstellt. In Bezug auf DECKARD ist das die in Kapitel
2.3 vorgestellte Edit-Distanz. Diese Definition wird nun um semantische Klone erweitert.

Definition 5 (Semantische Codeklone)>°: Zwei disjunkte, méglicherweise nicht-
zusammenhangende Programmsequenzen S; und S, sind semantische Codeklone, genau
dann wenn S; und S, syntaktische Codeklone sind oder u(S;) isomorph ist zu u(S,).

In dieser Funktion wird eine neue Abbildung u verwendet, das sogenannte syntaktische
Abbild. Diese Abbildung ist nétig, da bisher noch kein performanter und skalierbarer
Algorithmus existiert, um semantische Klone zu erkennen. Die direkte Implementierung
fiihrt zu einer kombinatorischen Explosion an neuen méglichen Klonkandidaten, sowie zu
einer sehr aufwandigen Berechnung der Graphisomorphie®®. Bryant macht sich die
Tatsache zunutze, dass sowohl der AST, als auch der PDG auf dem Programmcode
basieren. Daher wird eine Funktion definiert, die zu einem gegebenen PDG den
zugehorigen Quellcode findet.

Definition 6 (Syntaktisches Abbild)®?: Das syntaktische Abbild eines PDG Teilgraphen
G, genannt u(G), ist die maximale Menge an AST-Teilbdumen, die zu der konkreten
Syntax der Knoten in G gehdren. Diese Menge ist dominierend, d.h. fir jedes Paar von
Baumen T,T' € u(G) gitT < T'.

Durch die Abbildung von PDG auf AST-Knoten reduziert sich das komplexe
Graphahnlichkeitsproblem zu einem Bauméhnlichkeitsproblem. Weiterfiihrend kann die
Ahnlichkeit der Baume bereits mit den charakteristischen Vektoren und dem LSH-
Verfahren gel6st werden.

Damit schlieRBen die durch PDG erzeugten Klonkandidaten nahtlos an die durch
DECKARD erzeugten Klonkandidaten an. Den gesamten PDG als einen Kandidaten zu
verwenden ist allerdings nicht sinnvoll, daher werden nur Teilbereich des PDG als
Klonkandidat verwendet. Die richtige Auswahl dieser Kandidaten ist nicht trivial und
wird im folgenden Kapitel beschrieben.

49 Siehe [4].

%0 Siehe [4],

51 Graphisomorphie liegt in NP und es ist keine effiziente Implementierung bekannt. Obwohl die Zahl der PDG-Knoten
in aller Regel relativ gering sein wird, ist es trotzdem im Allgemeinen eine sehr aufwéndige Berechnung.

52 Siehe [4].
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2.6.1 Auswahl der PDG-Teilgraphen®3

Der Algorithmus muss fir eine bestmdgliche Klonerkennung eine (endliche) Menge an
interessanten Teilgraphen des PDG erzeugen. Diese Teilgraphen gehen dann in die
Klonerkennung als Kandidaten ein und werden im weiteren Verlauf mit anderen
Kandidaten verglichen. Gabel et al stellen zwei Varianten der Teilgraph-Auswahl vor.
Beide Varianten werden in diesem Kapitel besprochen.

int func (int i, int j) {
int k = 10;

while (i < k) {
i++;

}
jo=2%*Kk;
printf(“i=%d, j=%d\n“, i, j);

return k;

}

Codebeispiel 3: Basis fur den folgenden PDGS54.

53 Das Verfahren wurde tibernommen von [4], Kapitel 3.3. Da in dieser Arbeit alle Grundlagen fir diese Diplomarbeit

geschaffen wurden, halt sich die folgende Beschreibung eng an die Vorlage.
54 Ubernommen aus [4], Figure 1, Seite 322.
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Abbildung 11: Beispielhafter PDGS5

Ein PDG besitzt viele technische Basisknoten, wie in Abbildung 11 zu sehen ist (,,body*,
»exit®, ,entry). Diese Knoten werden, wie in der Abbildung angedeutet, von der
Erstellung der Codefragmente ausgenommen, da diese keine Relevanz fir das Verfahren
haben und wie im Beispiel des ,,entry“-Knoten zu einer unnétig hohen Uberdeckung der
Teilgraphen flhren.

(Schwache) Zusammenhangskomponentes®
Die einfachste und konservativste Implementierung ist sicherlich mittels
Zusammenhangskomponenten. Hierbei werden alle gerichteten Kanten des PDG durch
ungerichtete Kanten ersetzt und die Zusammenhangskomponenten gesucht.

Der Hintergrund ist, dass zwei voneinander unabhéngige Statements, wie beispielsweise
Zeile 5 (increment) und 8 (Zuweisung) in Codebeispiel 3, keine direkte Verbindung
haben, durch den Aufruf von printf aber trotzdem verbunden sind. Zwei Statements
sind nur dann unabhdngig voneinander, wenn sie in unterschiedlichen
Zusammenhangskomponenten stehen.

Die Implementierung der Erkennung von schwachen Zusammenhangskomponenten ist
mit einer Tiefensuche mit linearem Aufwand moglich.

% Das Bild stammt aus [4], Figure 3, Seite 322.
5 Siehe das Kapitel 7.2 im Appendix fir eine kurze Definition von Zusammenhangskomponenten.
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Semantic Threads

Obwohl Zusammenhangskomponenten bereits interessante Ergebnisse in der
Klonerkennung liefern, wird eine feingranularere Graphselektion ben6tigt. Folgendes
Codebeispiel veranschaulicht das allgemeine Problem mit einem Verbot jeglicher
Uberlappung der Teilgraphen®’:

struct coordinates *generate_example_point () {
struct coordinates *point = malloc(sizeof(struct coordinates));

int x = 0;
int y = 0;
int z = 0;

// aufwdndige Berechnung von x

/]

// aufwandige Berechnung von y
/.

// aufwandige Berechnung von z
/]

point->x = Xx;

point->y = y;

point->z = z;

return point;

}

Codebeispiel 4: Das Problem mit Zusammenhangskomponentens®

Durch die Zusammenfuhrung der komplett separaten Berechnungen von x, y und z am
Ende der Funktion wird in den letzten vier Zeilen die gesamte Funktion zu einer einzigen,
grol’en Zusammenhangskomponente — und das obwohl die Funktion offensichtlich drei
separate Berechnungszweige hat.

Ein Weg dieses Problem zu umgehen, ist die Verwendung von Forward Slices®. Ein
Forward Slice ist das Ergebnis einer speziellen Form des Program Slicing®. Die Arbeit
von Gabel et al verwendet eine leicht vereinfachte Definition. Hierbei werden von einer
Variablen an einem Punkt in einem Programm aus alle folgenden Programmabschnitte
gesammelt, die direkt oder indirekt von dem Wert dieser Variablen abhangen. Wenn
bereits ein PDG vorliegt, ist die Berechnung eines Forward Slices trivial:

57 Zusammenhangskomponenten verbieten per Definition jegliche Uberlappung.
%8 Frei adaptiert von [4], Figure 6, Seite 325.

59 Beschrieben in [21].

60 Beschrieben in [22].
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Definition 7 (Forward Slice)®!: Sei G ein PDG der Prozedur P, und sei s ein Statement
in P. Der statische intraprozedurale Forward Slice von s (iber P ist definiert als die
Menge aller von s in G erreichbaren Knoten.

Im obigen Beispiel der Koordinatenberechnung ergeben die drei Initialisierungen von x, y
und z drei separate Forward Slices, die erst in den letzten vier Zeilen eine Uberlappung
haben. Diese Datenfliisse werden fortan als semantische Threads bezeichnet.

Definition 8 (Semantischer Thread)®?: Ein semantischer Thread einer Prozedur P ist
entweder ein Forward Slice oder die Vereinigung mehrerer Forward Slices.

Diese semantischen Threads haben in der Regel einen Grad an Uberlappung mit anderen
semantischen Threads. Im obigen Beispiel ist die Uberlappung relativ gering, daher ist
anzunehmen, dass die unterschiedlichen Datenfliisse unterschiedliche Berechnungen und
Programmaspekte darstellen. Ist die Uberlappung zweier semantischer Threads allerdings
zu hoch, ist davon auszugehen, dass die zwei einzelnen Threads zu einer héheren,
groReren Berechnung gehoren. Daher werden diese stark berlappenden Threads zu
einem zusammenfassenden Thread gruppiert.

int example () {
int a = 1;
int b = 2;

for (int j = 0; j < b; j++) {
// umfangreiche Berechnung mit j, a und b

}

/]
}

Codebeispiel 5: Beispiel fur stark Uberlappende semantische Threads.

In Codebeispiel 5 ist direkt ersichtlich, dass obwohl die Initialisierungen von a und b
mehrere semantische Threads erzeugen, diese in Wirklichkeit zu einer grof3eren
Berechnung im Rumpf der Schleife gehoren. Dies als getrennte Threads anzusehen wird
nicht nur redundante Codeklone erzeugen, sondern kdnnte auch die Sicht auf groRere
Zusammenhange verwehren. Daher werden die interessanten y-tberlappenden
semantischen Threads®® IST (P, y) definiert, die eine Auswahl von semantischen Threads
treffen, die moglichst gute Kandidaten fur semantische Klone erzeugen.

61 Aus [4], Definition 3.4.
62 Aus [4], Definition 3.5.
63 Fortan kurz ,,ISTs*.
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Definition 9 (interessante semantische Klone)®*: die Menge der interessanten, -
uberlappenden semantischen Threads ist eine endliche Menge von semantischen Threads
mit folgenden Eigenschaften:

1. Die Menge ist vollstandig, ihre Vereinigung entspricht dem PDG.
2. Die Menge darf keine Threads enthalten, die vollstandigen in anderen Threads
enthalten sind.

Asl,sl' € IST(P,y):sl' S sl

3.Zwei beliebige Threads in der Menge diirfen sich in maximal y Knoten Gberschneiden:
vsl,sl' € IST(P,y):|sinsl'| <y

4.IST(P,y) ist maximal, d.h. es hat die maximale GroRe aller Mengen, die Eigenschaft
1-3 erflllen.

Mit einer maximalen Uberdeckung von y = 1 werden fiir das Codebeispiel 5 drei
separate, semantische Threads erzeugt. Ein Spezialfall stellt y = 0 dar, denn dann werden
genau die Zusammenhangskomponenten erzeugt.

Einen Algorithmus fir die Berechnung der IST (P, y) stellen Gabel et al vor®®. Der
vorgestellte Algorithmus ist simpel in der Implementierung und hat im schlechtesten Fall
kubische Laufzeit. Dies stellt allerdings kein Problem dar, da in der Regel die Anzahl der
Knoten in den semantischen Threads gering ist. Darlber hinaus skaliert der Algorithmus
auch gut fur groRere Programme, da dort eher die Zahl der Prozeduren steigt, aber nicht
zwangslaufig deren Lénge.

2.7 Ergebnisfilterung

Die in den vorangegangenen Schritten erzeugten Codefragmente kénnen, je nach
Anforderung an die zugehdrigen Generator mit unterschiedlichen Ansétzen erstellt
worden sein. Eine Variante ist, dass moglichst viele Fragmente erstellt werden, die
anschlieBend gefiltert werden, eine anderen Alternative ist ein aufwéandigeres
Erzeugungsverfahren, das feiner hinsichtlich der erzeugten oder ausgelassenen Vektoren
entscheidet.

Die Ergebnisfilterung ist dahingehend trivial, dass das Ergebnis der LSH-Queries eine
Liste an Klonpaaren sind, die paarweise verglichen werden mussen. Diese Paare bestehen
aus zwei Codefragmenten, die die unterschiedlichen Stellen im Quellcode markieren.

64 Aus [4], Definition 3.6.
8 Siehe [4], Algorithm 1.
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Die redundanten Eintrége der Liste der Klonpaare miissen fur ein aussagekréftiges
Ergebnis ausgefiltert werden. Dies schlief3t ein:

e Klonpaare, bei denen beide Fragmente auf den gleichen Code zeigen.

e Klonpaare, bei denen das eine Fragment ein Teilstiick des anderen Fragments ist.

e Und abschlieend die Filterung zwischen den unterschiedlichen Klonpaaren, mit
der Uberpriifung, ob die beinhalteten Fragmente entweder dquivalent oder in den
anderen Fragmenten enthalten sind.

Diese Uberpriifung muss performant umgesetzt werden, da die Zahl der erstellten
Klonkandidaten sehr grof3 werden kann.
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3 Implementierung

Nachdem das theoretische Fundament gesichert ist, wird die Implementierung mit
Anbindung an das Bauhaus-Framework besprochen. Hierbei wurde ein Programm
namens Bryant® implementiert, dass an das Framework andockt und die
Codeklonerkennung implementiert. Bryant, sowie der gréfte Teil von Bauhaus, sind in
Ada geschrieben®’.

3.1 Bauhaus®8

Das Projekt Bauhaus, eine Kooperation der Universitat Stuttgart, der Universitat Bremen
und der Firma Axivion GmbH ist ein Analyseframework fur Softwaresysteme. Es kann
auf unterschiedlichen Ebenen eingesetzt werden, wie beispielsweise zur Beobachtung von
Softwarearchitektur, zur Ermittlung geklonter Quelltexte oder fur die automatische
Generierung von Qualitatsmetriken. Ein weiterer Schwerpunkt ist die automatische
Identifikation von Programmierfehlern, mit speziellem Fokus auf Synchronisationsfehler
nebenlaufiger Programme.

Programmverhaltensanalysen

kommerziellerlh l“

T, 3
Vertrieb l Rorversioat il
\ Axivion GmbH / Bremen u
2 Fachbereich 3
Arbeitsgruppe
Softwaretechnik

Stuttgart

Institut fir  Prof. Dr. rer.nat/
Softwaretechnologie Harvard Univ.
Erhard Plddereder,

Architektur-
analysen

Prof. Dr. rer. nat.
Rainer Koschke

Abbildung 12: Aufteilung der Fachbereiche bei Bauhaus®s.

Im Zentrum von Bauhaus steht der IML-Graph, der ein Abbild der Programmstruktur,
inklusive des ASTs, aller Typdeklaration und der darauf aufbauenden Daten gibt. Die
IML ist eine sprachlbergreifende Zwischendarstellung, in die Bauhaus jedes Programm
nach der Kompilierung tberfuhrt. In dieser Zwischendarstellung kénnen einheitliche
Analysen durchgefuhrt werden, die unabhangig vom verwendeten Frontend funktionieren
— neu hinzugeftigte Sprachen im Frontend kdnnen direkt von den bereits existierenden
Analysen profitieren.

Durch den IML kann mittels unterschiedlicher Sichten navigiert werden. Diese Sichten
stellen eine Fragestellung dar, die der Anwender im Graph beantworten will, wie

8 Auch dieser Name ist — wie DECKARD — dem Film Blade Runner (1982) entliehen. Harry Bryant ist der Vorgesetzte
von Rick Deckard und ist sozusagen fir dessen Funktionieren im gréReren Gesamtgefiige zusténdig.

67 Codebeispiele werden sich daher an Ada orientieren — in aller Regel wird dies aus Platzgriinden aber kein
vollstandiger, lauffahiger Programmcode sein.

% Die Einfilhrung basiert auf der Selbstbeschreibung der offiziellen Website der Universitat Stuttgart zu Bauhaus, siehe
[23].

8 Von [23].
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beispielsweise den Verlauf von Datenflussanalysen oder zugehdrige Klongruppen eines
AST-Knotens.

Bauhaus ist aus mehreren separaten Programmen aufgebaut’®, die fiir die Durchfiihrung
der Analysen nacheinander ausgefiihrt werden. Die Analyseprogramme erwarten als
Eingabegraph immer den Ergebnisgraph des vorigen Schrittes. Die unterschiedlichen
Programme annotieren und erweitern den IML-Graphen immer weiter, so dass dieser
stetig reicher an Information wird. Dadurch kénnen spétere Programme auf den
Ergebnissen voriger Schritte aufbauen.

Auch die Implementierung von Bryant erzeugt eine eigenstandige Binary, die als Eingabe
einen in einer Datei gespeicherten IML-Graph erwartet. Die einzige Bedingung eines
korrekten Durchlaufs ist, dass die PDG-Analyse erfolgreich durchgefuhrt werden kann.
Dies bedeutet, die Voraussetzungen sind identisch mit denen der PDG-Analyse, was die
gesamte Analysekette inklusive der SSA-Form einschlief3t.

3.2 Uberblick iiber Bryant

Einige essenzielle Parameter des Programms sind (ber einen Konfigurations-Record
steuerbar. Dieser ist aktuell statisch, einzelne (oder alle) Parameter davon kdnnen jedoch
uber das Kommandozeileninterface (CLI) verfiighar gemacht werden.

Der Programmablauf hélt sich eng an den in Kapitel 2 beschriebenen Ablauf des
Verfahrens. Die einzelnen Elemente sind in eigene Module ausgelagert. Diese sind
voneinander komplett unabh&ngig und kénnen einfach aktiviert oder deaktiviert werden,
separat weiterentwickelt und getrennt betrieben werden. Die folgende Abbildung gibt
einen Uberblick Gber die Programmstruktur.

0 Die Tools erzeugen zwar unterschiedliche Binaries, verwenden intern aber die gleichen Bibliotheken aus allgemeinen
Funktionen und Typdeklarationen.
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Abbildung 13: Ubersicht Uber die verschiedenen Komponenten von Bryant. Die Pfeile kennzeichnen die
Abhéangigkeiten. Die Komponenten Bryant_Debug und Bryant_Reporting sind hier ausgenommen, da sie fur die
generelle Funktionalitat des Tools nicht relevant sind.

Das System besteht aus den folgenden Komponenten:
(Core) ! Main-Funktion und die Konfigurationsdateien.

Bryant_Code: Logik flr die Generierung der AST- und PDG-basierten Codefragmente
(ein Fragment ist eine Kombination aus IML-Knoten und dem zugehérigen
charakteristischen Vektor).

Bryant_Debug: Hilfsfunktion um einige essenzielle Datenstrukturen auf dem CLI
darzustellen.

Bryant_Filter: Ergebnisfilterung, die doppelte Klone oder Klone, die eine Untermenge
anderer Klone sind, entfernt.

Bryant_IML: Ein Grof3teil des Adaptercodes zu IML. Dies umfasst den Code fur die
Indexierung der IML-Knoten und die Funktion um alle Routinen im gegebenen
Programm zu finden.

Bryant_LSH: Berechnung der LSH-Parameter und das komplette LSH-Hashing und
dessen Berechnungen.

Bryant_Math: Hilfsfunktionen zu mathematischen Berechnungen, fur die Erstellung von
Zufallszahlen und die Typ-Definition fur die charakteristischen Vektoren.

"1 Diese Dateien liegen im Hauptverzeichnis.
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Bryant_Reporting: Auswertungsdaten wie Laufzeit, Anzahl der Vektoren und
Routinen. Hiermit kénnen nach Durchlauf des Programms Auswertungen erstellt werden.

Im Folgenden wird das Zusammenspiel der einzelnen Komponenten beschrieben.
AuRerdem werden einige Implementierungsdetails erwéhnt, die bei der Funktion des
Klonerkenners eine wichtige Rolle spielen.

Bryant_AST

Routine Collection

D—> Bauhaus CLI @ Bryant_IML

IML File

Bryant_PDG

. Code Fragment

Store in IML Graph

——={ (Filtered) Clone List Bryant_Storage \

Store dump in File

Abbildung 14: Uberblick Uber den Programmfluss und die Zwischenergebnisse in Bryant. Die K&sten kennzeichnen
Komponenten, die Kreise und Ellipsen kennzeichnen Zwischenergebnisse (also Daten).

Zunéchst wird Uber die CLI durch Bauhaus der IML bereitgestellt. Dies ist der
Einstiegspunkt der eigentlichen Implementierung. AnschlieRend werden aus dem IML-
Graphen alle Routinen extrahiert. Uber diese Routinenliste wird iteriert und jede Routine
ist Eingabe aller Code-Fragment-Generatoren. Am Ende dieser Phase ist das
Zwischenergebnis eine Liste mit allen Code-Fragmenten. Diese wiederum sind erst
Eingabe um die LSH-Datenstruktur zu beftllen, anschlieBend wird mit jedem Fragment
aus der Liste nach den benachbarten Vektoren gesucht. Die gefundene Klonliste wird
abschliel’end noch gefiltert.

An diesem Punkt ist die eigentliche Klonsuche abgeschlossen, das Ergebnis sollte
allerdings noch persistiert werden. Hierflr gibt es Storage-Adapter, die fir die
Speicherung im IML oder flr anderweitige Speicherziele verantwortlich sind.
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3.2.1 Adaption der Referenzimplementierung

Die Originalimplementierung von DECKARD? liegt unter einer Open-Source-Lizenz vor
und dient teilweise als VVorlage fir die Implementierung von Bryant. Die
Originalimplementierung ist eine Mischung aus C, C++, Python, Shell-Programmen und
einigen anderen Sprachen. Der Kern ist jedoch in den ersten drei Sprachen implementiert,
Shell dient hauptséachlich fiir die Erstellung komfortabler ausfiihrbarer Dateien, die den
Kern in korrekter Reihenfolge aufrufen.

Von einer direkten Anbindung der Originalimplementierung (beispielsweise via FFI)
wurde abgesehen, da einzig die AST-Vektorgenerierung und LSH adaptierbar gewesen
waére. Die Menge des eingesparten Codes ware durch die notwendige Umformatierung
der Daten nahezu annulliert worden.

Bei enger Betrachtung ist die einzig tatsachlich interessante Bibliothek fiir eine externe
Einbindung LSH. Hier spricht gegen eine Adaption aber, dass die Grol3e der Bibliothek
relativ klein ist (und daher schnell nachprogrammiert ist), und dass die Bibliothek seit der
Originalimplementierung von 2005 nicht weiterentwickelt wird. Wenn in der Bibliothek
in Zukunft rege Entwicklungsarbeit stattfindet, lohnt sich hier allerdings eine
Neubewertung.

Ein rechtlicher Aspekt der gegen eine Adaption der LSH-Implementierung E2LSH"3
spricht ist, dass die Implementierung zwischenzeitlich unter GPL steht. Die
Implementierung von E2LSH, die in DECKARD eingebettet ist, steht noch unter der
MIT-Lizenz, DECKARD selbst unter der Three-Clause-BSD Lizenz. Aber die aktuellste
LSH-Implementierung, von den urspriinglichen Autoren, steht inzwischen unter GPL,
eine Lizenz die durch ihr Copyleft nicht kompatibel mit der Lizenz von Bauhaus ist.

3.3 Extraktion der Routine

-—-- Bryant_IML Routine Collection

Abbildung 15: Phase in der Implementierung: IML / Routinen.

Der erste Schritt in Bryant ist, alle Routinen im IML zu finden. Die Implementierung ist
relativ kurz, da Bauhaus eine Komponente bereitstellt, mit der man mittels des Visitor-

72 Zu finden unter [24].
3 Die Originalimplementierung, unter [26] zu finden.
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Pattern auf allen Knoten des IML-Graphen Aktionen ausfiihren kann. Die hier
implementierte Aktion ist einfach eine Liste an Routinen mitzugeben, an die bei jedem
Routinen-Knoten der aktuelle Knoten angehangt wird.

Besondere Beachtung gilt in dieser Phase totem Code, insbesondere Routinen, die nie
verwendet werden. Einige Analysen folgen den Aufrufen aus der main-Prozedur, sodass
diese nie aufgerufenen Routinen nicht analysiert werden. Dies wird bei der Suche nach
Routinen berlcksichtigt. Bei jeder Routine wird tiberpriift, ob das ,,Pattern“-Attribute des
zugehorigen IML-Knotens leer ist. Falls nicht, wird davon ausgegangen, dass diese
Routine analysiert wurde und sie wird zur globalen Routinenliste hinzugefugt.

3.4 Vektorgenerierung

Routine Collection

Bryant_AST

--->

Code Fragment
Collection

Bryant_PDG

Abbildung 16: Phase in der Implementierung: Vektorgenerierung.

Die Vektorgenerierung aus der theoretischen Betrachtung wird zu einer Codefragment-
Generierung in der Implementierung. Ein Codefragment ist eine Liste an IML-Knoten
inklusive des zugehorigen charakteristischen Vektors.

Die Codefragmente sind die zentrale Datenstruktur der Implementierung. Ein
Codefragment-Generator kann einfach in das System eingehéngt werden, solange er das
Interface erfullt, er einen Routinen-Knoten erwartet und an die Vektorliste die
ausgewdhlten Codefragmente anhéngt. Durch diese wenig restriktive Bedingung kdnnen
einfach neue, ausgefeiltere Klongeneratoren in das Verfahren eingebracht werden.

In der Implementierung bisher sind die zwei Generatoren flr die Knoten direkt aus dem
AST nach DECKARD und fir die PDG Slices vorhanden.

3.4.1 Relevante und signifikante charakteristische

Vektoren

Bevor die konkreten Algorithmen fiir das Auswahlen der Codefragmente vorgestellt
werden, missen noch die Begriffe relevanter Knoten und signifikanter Knoten aus der
theoretischen Betrachtung fur die Implementierung definiert werden.
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Relevante Knoten

Die relevanten Knoten definieren die IML-Knotentypen, die einen Einfluss auf den
charakteristischen Vektor haben. Die Implementierung ist hierbei losgeltst von der
Typstruktur des Bauhaus-IML-Moduls, um BRYANT als komplett eigenstandiges Paket
zu etablieren. Die wesentliche Aufgabe des Bryant_IML-Pakets besteht darin, einem
IML-Knoten einen Index im charakteristischen Vektor zuzuweisen. Falls ein solcher
Index gefunden wird, ist der Knoten automatisch als relevant definiert. Falls kein Index
gefunden wird, ist der Knoten nicht relevant. Dies ist schnell ersichtlich in der
zugehorigen Implementierung:

function Node_Index_Is_Relevant (Index : Integer) return Boolean is
begin

return Index > -1;
end Node_Index_Is_Relevant;

Codebeispiel 6: Relevanz-Uberprifung eines Knotenindizes?s.

Die erwéhnte Unabhangigkeit vom Kern von Bauhaus erkennt man daran, dass die
Spezifikation der IML-Knoten nicht beriihrt wird. Ein gangbarer Weg ware das
Hinzufiigen eines neuen Attributes an jeden IML-Knoten gewesen, der den Index
zuriickgibt. Dies hat aber mehrere Nachteile: zunéchst tragt nun jeder Knoten
Informationen Gber BRYANT, auch wenn das Tool selbst mdglicherweise gar nicht
verwendet wird. AuBerdem ist es bei direkter Attributierung nicht trivial die Index-
Zuweisung auszutauschen, was gerade bei der Evaluierung unterschiedlicher
Relevanzkriterien interessant sein kann.

Daher verwendet die Implementierung eine Hashmap, die einem Tag’® in Ada einen
Index zuordnet. Eine alternative Implementierung wére ein Test auf den ‘Class-Typ (pro
Test also 0(d)7¢ Vergleiche), was den Vorteil hétte, dass die Erkennung die
Typhierarchie ausnutzen kénnte. Aus Performancegriinden aber wurde der Weg der
direkten Typvergleiche auf die Ada-Tags mit O (1)-Zugriff in der Hashmap implementiert
—auch wenn fiir alle Untertypen ein eigener Eintrag hinzugefuigt werden musste. Da die
Typhierarchie der IML-Knoten aber keinem konstanten Wandel unterliegt, ist der
Wartungsaufwand fur diese Implementierung im vertretbaren Rahmen.

Mit der Zuweisung von IML-Knoten auf Index wird auch ein weiterer Aspekt abgebildet.
Einige IML-Knoten sollen explizit vereinheitlicht werden, so dass diese als Duplikate
erkannt werden.

Die Conditionals werden als separate Eintrdge gehandhabt:

74 Der Fehlerfall, dass ein zu groRer Index zuriickgegeben wird muss durch das Typsystem abgefangen werden.
s Der konkrete Objekttyp.
76 d ist die Lange des charakteristischen Vektors.
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And_Then

—E Conditional Operator
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Abbildung 17: Conditionals in der IML-Spezifikation.77

Der zugehorige Initialisierungscode weist jedem Knoten einen unterschiedlichen Eintrag
Zu:

Mapping.Insert (Catch_Blocks.Catch_Block Class'Tag, 1);
Mapping.Insert (And_Thens.And_Then_Class'Tag, 2);
Mapping.Insert (Case_Branchs.Case_Branch_Class'Tag, 3);
Mapping.Insert (Conditional_Operators.Conditional_Operator_Class'Tag, 4);
Mapping.Insert (If_Statements.If_Statement_Class'Tag, 5);
Mapping.Insert (Or_Elses.Or_Else_Class'Tag, 6);

Codebeispiel 7: Indexierung der unterschiedlichen Typen von Conditionals in Bryant.

Bei den unterschiedlichen Typen von Zuweisungen soll allerdings nicht unterschieden
werden:

& Assignment Initialize|
Shortcut_Assignment —Prefix_Operator|

Abbildung 18: Assignments in der IML-Spezifikation.?®

Sondern es sollen alle Zuweisungen explizit einheitlich behandelt werden. Zwei
Codeabschnitte, die sich folglich einzig in der Art der Zuweisung unterscheiden werden
als identisch erkannt.

Mapping.Insert (Assignments.Assignment_Class'Tag, 23);
Mapping.Insert (Initializes.Initialize_Class'Tag, 23);
Mapping.Insert (Shortcut_Assignments.Shortcut_Assignment_Class'Tag, 23);
Mapping.Insert (Prefix_Operators.Prefix_Operator_Class'Tag, 23);

Codebeispiel 8: Indexierung der unterschiedlichen Typen von Assignments in Bryant.

Durch diese bewusste Vereinheitlichung kann die Genauigkeit, also im Grunde das
semantische Hintergrundwissen des Klonerkenners, kalibriert werden. Mit zu vielen
identischen Indizes werden Programmabschnitte als identisch angesehen, die nicht

7 Aus der Visualisierung der Spezifikation der Bauhaus-Dokumentation tibernommen.
8 Aus der Visualisierung der Spezifikation der Bauhaus-Dokumentation iibernommen.
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identisch sind. Mit zu vielen unterschiedlichen Indizes werden nur sehr (auch syntaktisch)
ahnliche Programmabschnitte erkannt.

Signifikante Vektoren

Die relevanten Knoten definieren die IML-Knoten, die Einfluss auf den
charakteristischen Vektor haben. Aber nicht jeder der relevanten Knoten ist ein geeigneter
Kandidat um als AST-Waurzel fir einen Klonkandidaten zu fungieren. Literale sind ein
relevanter Knoten, jedoch ist ein Literal kein geeigneter Ursprungsknoten fur einen Klon.

Daher wurden in Kapitel 2.4 signifikante VVektoren definiert. Dies sind Vektoren die
geeignete Kandidaten flr Klone sind — weil der Knoten vom richtigen Typ ist oder weil
der Knoten ausreichend Kindknoten besitzt. Diese Einschrankung senkt nicht die Zahl der
erkannten Klone: bei der AST-Generierung kénnen trotzdem Kindknoten eines nicht-
signifikanten Vektors zu einem Kandidatenfragment vereint werden, durch das Vector
Merging.

Die getroffene Auswahl signifikanter Knoten basiert auf manuellen Tests, die eine
maoglichst gute Balance zwischen genug Vektoren und korrektem Ergebnis liefern. Die
folgende Liste betrifft die Typhierarchie, es sind also immer der konkrete Typ selbst, als
auch alle abgeleiteten Typen enthalten.

e Assignments

e Conditionals

e Loop_Statments

e Routine_Calls

e Unconditional_Branch

Diese Auswahl sollte in zukiinftigen Anpassungen der Implementierung weiter Gberprift
und gegebenenfalls optimiert werden.

Um in die globale Liste aller Codefragmente (mdgliche Klonkandidaten) aufgenommen
zu werden, muss das Fragment nicht nur relevant und signifikant sein, sondern es muss
auch eine ausreichende Grolie besitzen. So sollen selbst fiir signifikante Knoten, die zu
einer sehr geringen Menge an Quellcode gehoren, keine Vektoren erstellt werden, da
sonst die Gefahr von aulRerordentlich vielen Duplikaten besteht.

Daher wird eine MindestgroRe’® des Vektors eingefiihrt, die festlegt, ob fiir diesen Vektor
ein Fragment erstellt wird oder nicht. Diese MindestgroRe gilt fiir alle Vektoren —
unabhdangig davon, wie viel konkrete IML-Knoten in diesem Code-Fragment enthalten
sind. Die Langenberechnung kann nicht ungewichtet sein. Intuitiv ist eine Initialisierung
eines Arrays (5 Literale) weniger geeignet als Klonkandidat, als eine ganze Routine mit
mehreren Assignments und If-Conditions (die insgesamt ebenfalls 5 Knoten sein kénnen).

 Die GroRe ist hier definiert als die Summe aller Eintrage.
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int[] example = {1, 2, 3, 4, 5};

Codebeispiel 9: Array-Initialisierung mit 5 Eintragen.

Der Code in Codebeispiel 9 erzeugt fiir die gesamte Zuweisung einen Vektor der Grole 7
(1x L_value, 1x Assignment, 5x Literal). Unabhéngig von der Lange ist der Vektor
dennoch nicht als Wurzel eines Klonkandidaten geeignet. Aus diesem Grund zahlt die
aktuelle Implementierung momentan die Zahl der signifikanten Knoten. Es wurde eine
Mindestzahl von 3 festgelegt — diese Zahl, aber auch die gesamte Logik um einen Knoten
als mogliche Klonkandidatenwurzel festzulegen, kann einfach erweitert und getestet
werden.

3.4.2 Codefragment-Generierung im AST

Die Implementierung der AST-basierten Codefragment-Generierung halt sich nahe an die
Beschreibung des Algorithmus im zugehérigen Artikel®. Grob gesagt ist es ein
Baumdurchlauf, bei dem in jedem Schritt ,,on-the-fly* die Vektoren fiir den aktuellen
Knoten erstellt werden. Hierfir ist nur ein einmaliger Durchlauf aller AST-Knoten des
Baumes notig.

Die AST-Knoten® werden in Post-Order-Reihenfolge durchlaufen, da die Vektoren von
den Bléattern des Baumes aufwarts erstellt werden mussen. Jeder Vektor eines Knoten ist
die Summe aller Vektoren der Kinder, inklusive der Erhéhung des Eintrages im
Knotenindex, falls der Knoten relevant ist.

Beim Vector Merging in DECKARD wird zundchst fur jeden Knoten festgelegt, ob dieser
zulassig fur solch eine Kombination ist. Da DECKARD auf dem Parsebaum arbeitet, ist
diese Unterscheidung wichtig, um unvollstandige oder nicht sinnvolle Kombinationen
von Knoten zu unterbinden. So sollen keine Knoten die tiber Block-Grenzen
hinausreichen verbunden werden (das letzte Statement eines while-Bodys, mit dem
darauffolgenden Statement). Dieses Problem findet sich in dieser Form nicht in einer auf
einer AST-basierenden Implementierung. Nichtsdestotrotz konnen an dieser Stelle
zusatzliche Uberpriifungen hinzugefiigt werden, die ungewollte®? Kombinationen
verhindern.

Bei dem Durchlauf der Kindknoten werden alle Kindknoten in einer Liste
zwischengespeichert, aus der dann die zusammengesetzten Vektoren mehrerer IML-
Knoten erzeugt werden. Hierbei wird ein Sliding Window tber die Liste der Vektoren
verschoben, ein neues Code-Fragment aus diesen IML-Knoten erstellt und der
charakteristische Vektor erzeugt. Wenn dieser Vektor die Signifikanzkriterien erftllt,
wird er zur Liste der Klonkandidaten hinzugeftigt. Die Relevanz wird fiir die

8 Siehe [6].
81 Syntactic Children* in IML.
82 Welche Kombinationen im Detail ungewollt sind, muss vorher festgelegt werden.
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kombinierten Fragmente nicht gepriift, da es eine Kombination aus mehreren Elementen
ist.

Dieses Sliding Window wird nach jedem Durchlauf um den Faktor 1,5 vergroRert
(abgerundet) und das Vector Merging beginnt erneut. Dieser VVorgang endet, wenn das
Sliding Window langer als die Gesamtlanger der benachbarten Knoten ist. DECKARD
implementiert in der Parsebaum-Umsetzung die besondere Bedingung, dass wenn sowohl
der Elternknoten, als auch der Kindknoten zu einem Merge kombinierbar sind, der
Kindknoten aus dem Sliding Window herausgenommen wird. Auf diese Weise sollen
groRere Klone favorisiert werden. Es ist noch unklar, wie sich diese Eigenschaft auf die
Verwendung des ASTs Ubertragt. Gabel et al erwéhnen diese Beschrankung nicht. In der
Implementierung wurde diese Beschrankung so umgesetzt, dass wenn der Elternknoten
signifikant ist, alle signifikanten Kindknoten aus dem Sliding Window entfernt werden.

3.4.3 Codefragment-Generierung im PDG

Die Implementierung der Fragmenterzeugung mithilfe des PDG ist in einigen Bereichen
nur ein dunner Adapter um die Bauhaus-interne PDG-Komponente. So wird die PDG-
Erzeugung und der zugehdrige intraprozedurale Backward Slicer verwendet. Dieser Slicer
unterstitzt bereits die automatische Auftrennung strukturierter Rickgabewerte — so wird
das in Codebeispiel 4 beschriebene Problem umgangen.

Ausgehend von der Liste der Backward Slices werden die ISTs erzeugt. Diese ISTs
werden anschlieBend umgewandelt zu Codefragmenten. Dazu werden alle IML-Knoten
der Slices zu einer Liste zusammengefihrt und der charakteristische VVektor berechnet.
Hier ist darauf zu achten, den charakteristischen Vektor fiir jeden IML-Knoten aus dem
Slice inklusive der AST-Kindknoten zu berechnen. Nur so kdnnen die Vektoren
letztendlich korrekt verglichen werden.

In der Implementierung wird von jeder Routine der sogenannte Link_Out_Use-Knoten
geladen, der Informationen Uber Riickgabewerte und ausgehende Seiteneffektvariablen
bindelt. Ausgehend von diesen Verbindungen in den umliegenden Code werden die
Backward Slices erstellt.

Ein Problem dieser Implementierung ist, dass Code, der nicht zu den ausgehenden
Verbindungen beitrdgt nicht in den Slices auftritt. Dies ist Code, der eigentlich
Seiteneffekte besitzt, diese von Bauhaus im Moment aber nicht als solche erkannt
werden. Dies betrifft meist Funktionen und Prozeduren der Laufzeitumgebung. So wird
Timing-Code (der als Seiteneffekt das Laden der aktuellen Uhrzeit besitzt) und
Ausgabecode wie printf (der als Seiteneffekt die Ausgabe auf stdout besitzt) nicht
korrekt markiert. Hierdurch entfallen einige mogliche Threads, da diese in den
Link_Out_Use-Listen nicht auftauchen.
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int func (int i, int j) {
int k = 10;

long start = get_time_millis();
long finish;

while (i < k) {
i++;

}

finish = get_time_millis();
printf(“loop took %dms\n“, finish - start);
J=2%*k;

printf(“i=%d, j=%d\n*“, i, j);
return k;

}

Codebeispiel 10: Beispielcode, der sich von Codebeispiel 3 nur durch zusatzlich hinzugefigten Timing-Code
unterscheidet.

Obenstehendes Beispiel wird durch die aktuelle PDG-Implementierung korrekt als Klon
erkannt. Der Thread um den Timing-Code und um die Variablen start und finish,
zusammen mit dem abschlieBenden printf()-Aufruf wird in der Betrachtung nicht
auftauchen. Dies fuhrt in diesem Beispiel weiterhin zu einem korrekten Ergebnis, kann
aber beispielsweise doppelten Timing-Code oder alternative Félle nicht korrekt erkennen.

Ein Spezialfall dieses Problems ist toter Code. Auch dieser wird nicht in den Backward
Slices erscheinen. Hier gilt jedoch, dass dieser nicht relevant fiir diese Untersuchung ist
und besser durch eine daflir ausgerichtete Toter-Code-Analyse gefunden und entfernt
werden sollte.

Die Implementierung von Gabel et al umgeht dieses Problem, in dem sie Forward Slices
fiir jeden Knoten im AST in aufsteigender Reihenfolge der Quellcode-Zeilennummern
erzeugt. Durch dieses Verfahren wird auf jeden Fall jeder AST-Knoten der Routine zu
mindestens einem IST hinzugefugt. Mdglicherweise konnte diese Erweiterung bei der
Bauhaus-PDG-Implementierung ebenfalls unterstiitzt werden®?.

Eine wichtige Abweichung zur Original-lmplementierung von Gabel et al ist, dass
Backward Slices anstelle von Forward Slices verwendet werden. Diese erstellen die
Datenflisse nicht vorwarts ausgehend von deklarierten und initialisierten Variablen,
sondern riickwarts starten bei Rickgabewerten und Schreibzugriffe auf externe
Ressourcen. Dies hat zundchst praktische Grunde (Backward Slices sind in dem zu dieser
Arbeit externen Modul implementiert), aber auch kleine praktische Vorteile.

Wahrend sich Timing-Code wie toter Code verhalt, im Hinblick darauf, dass beide
Varianten in aller Regel keine Datenabhangigkeiten in den aktiven Code haben, agiert

8 Wobei dies eine Designentscheidung ist, da die Aussagekraft von Codeklonen in Timing-Code, Debug-Code und
totem Code diskutiert werden kann.
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Debug-Code anders. Wie beispielhaft im Codebeispiel 3 an dem printf()-Aufruf zu
sehen ist, muss Debug-Code fir eine sinnvolle Ausgabe zwangslaufig die existierenden
Variablen verwenden. Dies erzeugt eine Datenabhé&ngigkeit, die in einem Forward Slice
korrekt erkannt wird. Durch diesen zusatzlichen Eintrag kann ein vorhandener Klon
maoglicherweise unerkannt bleiben, da der zusétzliche Debug-Aufruf die Vektoren zu weit
auseinanderschiebt. Hier sind Backward Slices im Vorteil, da in diesen nur Code
auftaucht, der zum ,,Endergebnis* der Funktion (sei es eine Zuweisung an eine externe
Variable oder ein Riickgabewert) fuhrt. Das schlie3t reinen Debug-Code aus.

Hier herrscht nun allerdings offensichtlich ein Widerspruch zwischen dem Wunsch auf
der einen Seite, seiteneffektbeladenen Laufzeitsumgebungs-Code in den Slices zu finden
und der praktischen Eigenschaft auf der anderen Seite, dass Debug-Code in den Slices
nicht auftaucht. Diese Entscheidung und Diskussion wird einer zukilnftigen Optimierung
Uberlassen, diese Implementierung verbleibt auf dem Stand eines diinnen Adapters um die
bestehende PDG-Bibliothek, da die Erstellung von PDGs nicht Kernstiick dieser
Implementierung ist, sondern nur eine Komponente.

3.5LSH

Code Frag.ment Bryant_LSH >
Collection

Abbildung 19: Phase in der Implementierung: Locality Sensitive Hashing.

LSH ist — zusammen mit dem Konzept der charakteristischen Vektoren — das Kernstiick
der Implementierung und des Verfahrens. Diese Kombination ist der Fortschritt, der
dieses Verfahren erst praktikabel, performant und skalierbar macht.

3.5.1 Parametergenerierung

Das LSH-Verfahren bendétigt eine Menge an Vorverarbeitung. Zunachst werden die LSH-
Parameter berechnet, die die Kerneigenschaften des Verfahrens steuern. In dieser
Implementierung werden die Parameter L und k statisch nach dem theoretischen
Optimum aus Effektivitat und geringer Laufzeit berechnet (siehe Kapitel 2.5.2 fiir die
konkreten Formeln), es existieren jedoch alternative Ansatze. Im Ausblick (Kapitel 6)
wird eine solche Alternative beschrieben.

Vor der Verwendung von LSH selbst wird (iber die Bryant_LSH_Parameters-
Komponente die Konfiguration erstellt, die spater als Eingabe in die Hauptfunktion des
LSH eingeht. Diese Konfiguration beinhaltet alle fir LSH wichtigen Parameter:
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e Die Wahrscheinlichkeit, dass zwei kollidierende Hashes zu nahen Vektoren
gehoren p;.

¢ Die Wahrscheinlichkeit, dass zwei kollidierende Hashes nicht zu nahen Vektoren
gehdren p,.

e Die maximale Vektor-Entfernung von Codeklonen R.

e Die Breite der Segmente auf der reellen Achse w.

e Die Anzahl der Vektoren n (diese Zahl ist Eingabe fur einige der anderen
Parameter).

¢ Die Anzahl, wie oft ein Vektor hintereinander gehasht wird k.

e Die Anzahl, in wie viele Buckets der Vektor maximal gehasht wird L.

e Die Hashfunktionen g;.

e Die Hashfunktion, die den durch g() berechneten Vektoren den Bucketindex
zuweist.

e Die Hashmap, in der die Vektoren gespeichert werden.

Wie bereits am Parameter n ersichtlich ist, sind diese Parameter spezifisch fiir eine
Codefragment-Liste. Wenn an diese Liste neue Elemente hinzugefugt oder entfernt
werden, sollte die Datenstruktur neu erstellt werden. Die Hashmap selbst wird ebenfalls
in den Parametern gespeichert. Dies spiegelt die Tatsache wider, dass die restlichen
Parameter zu den Vektoren in der Hashmap gehdren.

3.5.2 Beftlillung der Hashmap

Nachdem die Parameter erstellt wurden, muss in einem einmaligen Durchlauf jedes
Codefragment in die LSH-Struktur eingefligt werden. Dabei wird der Vektor in die L
unterschiedlichen Buckets gehasht.

Die Verwendung einer Hashmapstruktur (im Gegensatz zu einem Vektor oder einem
Array) ist eine bewusste Entscheidung: der Schlisselraum der Hashmap ist nicht sehr
dicht besiedelt, was bei Verwendung eines Arrays zu einem unndétig grof3en
Speicherbedarf fihren wiirde. Fur solch einen Schlisselraum ist die Verwendung einer
Hashmap ideal.
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Abbildung 20: Zum besseren Verstandnis noch einmal Abbildung 10 aus Kapitel 24, das den Ablauf des Hashings
visualisiert.

Bei diesem Hashing wird zun&chst ein neuer Float-Vektor mit k Eintrdgen erstellt. Jeder
dieser Eintrége ist das Ergebnis des h;-Hashings (i = 1 ... k)84. Diesem neuen Vektor
wird mittels der Hashmap-Hashfunktion ein Bucketindex zugewiesen. Diese Hashmap-
Hashfunktion besteht abermals aus einem Skalarprodukt mit einem zufalligen Vektor,
Modulo einer grof3en Primzahl (um die Zahl der Kollisionen zu minimieren), Modulo der
Hashmap-GroRe (die auf die Anzahl der Vektoren gesetzt wird). Dadurch wird
sichergestellt, dass auch fiir kleine Vektormengen keine weit verstreuten Bucketindizes
errechnet werden.

Der Parameter L gibt die maximale Zahl der Buckets an, in die ein Vektor eingefuigt wird.
Fir jedes i = 1 ... L gibt es eine eigene Hashfunktion g;, das bedeutet es gibt insgesamt
k * [ unterschiedliche Hashfunktionen h.

8 Die gesamte Hashingfunktion, die den d-dimensionalen charakteristischen Vektor auf den mehrfach gehashten k-
dimensionalen Vektor Uberfilhrt, heillt g (wie in Kapitel 2.5.2 beschrieben).
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In jedem Bucket ist eine Liste an Pointern zu in diesen Bucket gehashten Codefragmenten
gespeichert.

3.5.3 Benachbarte Vektoren eines Vektors finden

Nachdem alle Punkte einmalig in die LSH-Datenstruktur eingeftigt wurden, kdnnen nun
Anfragen nach benachbarten VVektoren beantwortet werden.

Hierzu werden zu einem Anfragevektor durch die beiden Hashingfunktionen alle
Bucketindizes berechnet. Zwischen dem Anfragevektor und allen Vektoren in diesen
Buckets wird die tatséchliche Distanz (euklidische Distanzmetrik) berechnet. Alle
Vektoren, zu denen die Distanz geringer als die definierte Maximaldistanz R ist, werden
als Ergebnisliste zurtickgegeben.

Eine kleine Optimierung ist hier verbaut: die Definition der euklidischen Distanz sieht am
Ende der Berechnung vor, die Quadratwurzel aus der restlichen Berechnung zu ziehen®,
Dies ist in aller Regel eine relativ teure Berechnung. Die Berechnung der Quadratwurzel
kann hier ausgelassen werden, wenn das Ergebnis zum Quadrat der Maximaldistanz R?
verglichen wird. R? wird einmalig bei der Berechnung der restlichen LSH-Parameter
gespeichert und muss anschlieffend nicht neu berechnet werden.

3.6 Grofdensensitive Klonerkennung

Code Frag.ment Bryant_LSH >
Collection

Abbildung 21: Phase in der Implementierung: grof3ensensitive Klonerkennung.

Eine weitere Optimierung, die in DECKARD vorgestellt wird, ist ,,Size Sensitive Clone
Detection“®, Bei diesem Verfahren werden nicht alle Vektoren zusammen durch LSH
verglichen, sondern es wird eine zusatzliche Gruppierung vorgeschalten.

Dies hat zwei Grunde. Zunédchst kann durch ein simples Abschatzen der Lange eines
charakteristischen Vektors moglicherweise entschieden werden, ob dieser ein Klon mit
einem anderen Vektor sein kann. Wenn man errechnet, dass die Langen zweier Vektoren
um mehr als R auseinanderliegen, ist es unmoglich, dass diese zwei Vektoren Klone
reprasentieren.

8 Siehe Kapitel 7.1.
8 Aus [6], Kapitel 3.4.
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Ein weiterer VVorteil der VVorverarbeitung ist, dass unterschiedliche LSH-Parameter
verwendet werden kdnnen. Bei Codefragmenten die zu groReren Quellcode-Abschnitten
gehoren, kann die maximale Edit-Distanz im Vergleich zu Fragmenten, die sehr kurze
Abschnitte reprasentieren, vergrolRert werden. Dies ermdglicht es, die Klonerkennung
adaptiv an die GroRe der zugrundeliegenden Code-Abschnitte anzupassen.

Beide zuséatzlichen Faktoren (Lange des Vektors und Anzahl Zeilen im Quellcode) lassen
sich einmalig in der VVektorgenerierung erzeugen und kénnen als zusétzliche Eintrage im
Code-Fragment gespeichert werden. Die Gruppierungssegmente konnen frei definiert
werden, jedoch sollten sich diese um mindestens R Uberschneiden, so dass gesichert ist,
dass weiterhin alle Klone korrekt erkannt werden.

In Bryant ist diese Optimierung nicht verbaut. Bei der Evaluierung wurde festgestellt,
dass die vorliegende Implementierung aus reinen Laufzeiteigenschaften die Optimierung
im Moment nicht bendtigt. Bei mehreren Tests wurde gemessen, dass die aktuelle
Implementierung (fir Initialisierung und Querying fur alle Vektoren) etwa 500.000 bis
1,5 Millionen Vektoren pro Sekunde schafft. Dies ist flr das Laufzeitverhalten
ausreichend, sodass die zuséatzliche Komplexitét explizit nicht in das System
aufgenommen wurde.

3.7 Nachbearbeitung der Ergebnisliste

---- Bryant_Filter (Filtered) Clone List --->

Abbildung 22: Phase in der Implementierung: Ergebnisfilterung.

Nachdem in der Initialisierung von LSH mit allen Codefragmenten die zugehdrigen
Buckets gefillt wurden, kénnen anschliellend wieder mit einer Iteration Gber alle
Codefragmente die zugehorigen Klone erfragt werden. Diese unbearbeitete Klonliste
kann doppelte Ergebnisse enthalten, sowie Ergebnisse mit IML-Knoten, die vollstandig in
einem anderen Ergebnis enthalten sind. Beispielsweise konnte der Rumpf einer Schleife
ein Klon zu einem anderen Fragment sein, die Schleife selbst wurde allerdings ebenfalls
als Klon erkannt. In diesem Fall ist immer der groRtmogliche Klon interessant, das heif3t
Duplikate und Teilergebnisse kénnen aus der Liste entfernt werden.

Dies geschieht in der Implementierung in einem Zweipass-Verfahren. Im ersten
Durchlauf werden exakte Duplikate aus der Klonliste entfernt. Dies sind Codefragmente,
bei denen alle zugehérigen IML-Knoten identisch in einem anderen Fragment enthalten
sind.
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Im zweiten Durchlauf werden die Typhierarchien betrachtet. Nun werden alle Fragmente
entfernt, deren IML-Knoten Kinder der IML-Knoten des anderen Fragments sind. So
wird das oben erwéhnte Beispiel mit der Schleife entdeckt und herausgefiltert.

Das Ergebnis ist eine Liste an Klonen, die die maximale Anzahl eindeutiger Klone mit
maximaler GroRe enthalt. Dieser Durchgang ist wichtig. Im Regelfall liegt bei naiver
Vektorgenerierung der Anteil der redundante (da doppelt vorhanden oder ein AST-
Unterbaum eines anderen Unterbaums) bei 70-80%.

3.8 Speicherung der Ergebnisse

(Filtered) Clone List

/ Store in IML Graph

Store dump in File

Bryant_Storage

Abbildung 23: Phase in der Implementierung: Speicherung der Ergebnisse.

Die Ergebnisse werden als neue Knoten an den IML-Graphen angehangt und erzeugen
damit eine neue Sicht innerhalb des Graphen. Dadurch kénnen in Zukunft die
Klongruppen auch in Hilfsprogrammen wie dem IML-Navigator angesehen werden.

Zusitzlich dazu bietet Bryant eine weitere ,,Speicherart* an: die Ausgabe auf die
Kommandozeile. Hierzu wird von jedem Klonpaar die jeweiligen Dateien inklusive aller
im IML verknUpften Zeilennummern angezeigt. Mit Hilfe dieser Ansicht kénnen schnell
die Ergebnisse validiert werden.

3.9 Weitere Details der Implementierung

Eine fur die Korrektheit von LSH wichtige Eigenschaft wurde in der Theorie zwar
beschrieben, blieb im Kapitel tiber die Implementierung bisher allerdings unerwahnt. Die
zugrundeliegende Verteilung der Zufallsvariablen ist essenziell. Wie in Kapitel 2.5.2
beschrieben ist es moglich, eine unter der [,-Norm stabile Zufallsvariable aus zwei
unabhangigen, normalverteilten Zufallsvariablen aus dem Intervall [0; 1] zu erzeugen.
Die zugehérige Implementierung wurde direkt von E2LSH® adaptiert und sieht wie folgt
aus:

87 Siehe [26].
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function Generate_Gaussian_Random return Float is
X1 : Float;
X2 : constant Float := Generate_Uniform_Random (0.0, 1.0);
begin
loop
X1 := Generate_Uniform_Random (0.0, 1.0);
exit when X1 > 0.0;
end loop;

return Math.Sqrt (-2.0 * Math.Log (X1)) * Math.Cos (2.0 * Ada.Numerics.Pi * X2);
end Generate_Gaussian_Random;

Codebeispiel 11: Erzeugung einer unter der [,-Norm stabilen Zufallsvariablen.

Eine kleine Optimierung ist, dass die Anzahl der in einem Codefragment enthaltenen
signifikanten Knoten direkt aus dem charakteristischen Vektor abgelesen werden kann. Je
nach Zuordnung der Indizes der Knotentypen kdnnen alle signifikanten Vektoren eigene
Eintrége erhalten. Die Summe dieser Eintrage ist dann die Anzahl der signifikanten
Vektoren. Diese Implementierung stellt diese Bedingung an die Indizierungsfunktion
allerdings nicht, hier wird die Anzahl der signifikanten Knoten in einem separaten Feld
des Codefragments gespeichert.

Eine weitere Entscheidung war es, die charakteristischen Vektoren als Float-Vektoren zu
implementieren und nicht, wie vermutlich intuitiv angenommen, als Natural-Vektoren.
Dies hat den Hintergrund, dass die Eintrage der Hashing-Vektoren in den Hashfunktionen
hy . ebenfalls Floats sind (es sind Zufallszahlen im Intervall [—1; 1]) und daher die
haufige Umwandlung der Typen beim Hashing nicht notwendig ist. Dies fuhrt jedoch
dazu, dass flr das Addieren der Vektoren die im Vergleich zu Integern langsamere Float-
Berechnung verwendet wird. Auf modernen CPUs sollte dieser Unterschied jedoch im
Vergleich zu den haufigen Umwandlungen nicht relevant sein.

Die gewahlte Konstante in der L Bucketindex-Hashing-Funktion sollte zwei wichtige
Eigenschaften besitzen. Sie sollte mdglichst hoch sein, dass selbst bei vielen Vektoren der
Schlisselraum nicht unnétig verkleinert wird. AuRerdem sollte sie eine Primzahl sein, um
die Zahl der Kollisionen zu minimieren. Aus diesem Grund wahlt E2LSH die Zahl 232 —

588 die in dieser Implementierung tbernommen wurde.

Die Eintrage des Hashingvektors im Bucketindex-Hashing sind Zufallszahlen zwischen 0
und 22°. Dieser Wert wurde ebenfalls von der E2LSH-Implementierung tibernommen.
Dort wurde dieser Wert empirisch bestatigt.

8 Ein weiterer wichtiger Grund fiir die Wahl dieser Zahl in der Originalimplementierung ist, dass sich der Modulo mit
dieser Zahl effizient mit Bitshifts berechnen I&sst. Fir die Details sei auf die Referenzimplementierung unter [26]
verwiesen.

53




4 Evaluierung und Optimierung

Die Tests wurden manuell vorbereitet und durchgefiihrt. Die Analysen wurden mit
frozen®® durchgefiihrt, eine kleinere Codebasis (727 LLOC), jedoch mit etwa 100
kleineren und groReren Klonen.

Die wichtigsten Kriterien bei der Analyse der Parameter sind:

e Die Anzahl der Vektorvergleiche.

e Die Anzahl der Buckets.

e Die Laufzeit.

e Die Treffer-Rate in LSH (Anzahl der nahen Vektoren geteilt durch die Anzahl
aller Vektorvergleiche).

e Die Anzahl der Klonkandidaten (vor der Filterung).

e Der Speicherbedarf.

Diese Eigenschaften und wie diese mit den Parametern zusammenhéngen wird in diesem
Kapitel erlautert.

4.1 Problem der fehlenden kanonischen

Klontestsuite

Die unklare Beschreibung und Modellierung von Codeklonen macht es schwierige eine
allgemeingltige Definition zu treffen. Dies ist der Grund, weshalb fast alle verwandten
Arbeiten die Codeklone neu definiert haben. Meist hangt diese eng mit dem in diesem
Zug neu eingefiihrten Verfahren zusammen.

Dadurch bedingt existiert auch keine kanonische Klontestsuite, in der die Anzahl und die
genaue Position von Klonen definiert ist. Dies macht ein automatisiertes Testen praktisch
unmaoglich, ebenso wie das Erstellen einer allgemeingltigen Testsuite.

4.2 Qualitative Bewertung der Klone

Eine qualitative Bewertung der Klone kann nur stichprobenhaft und manuell erfolgen.
Jeder gefundene Klon muss im Quellcode durch einen Programmierer validiert werden.
Dies wurde bei allen Testprogrammen durchgefihrt.

Dieser Schritt ist wichtig um Parameter, wie die Relevanz- und Signifikanzkriterien zu
kalibrieren. Durch die Feinjustierung kann das Verfahren gegebenenfalls sogar auf
einzelne Programme feinjustiert werden, um eine optimale Erkennungsrate zu erreichen.
Die hier getroffene Definition ist so gewéhlt, dass sie fiir fast alle Programme sehr gut
funktionieren.

8 Siehe [27].
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int f1

{
int a, b;
a = 10;
b = 5;
return a + b;
}
int f2 ()
{
int a, b;
a = 100;
b = 50;
return a + b;
}

Codebeispiel 12: Trivialer Codeklon

Das Problem der qualitativen Tests ist, dass diese schlecht skalieren. Da sie weiterhin
manuelle Uberpriifung erfordern, kann zwar die Testumgebung so komfortabel wie
maoglich gemacht werden (man kénnte bei der Analyse direkt die betroffenen Quellcode-
Abschnitte des Klons in einer Vergleichsansicht anzeigen, um die direkte Bewertung zu
ermdoglichen). Dies ist aber weit von der Skalierbarkeit einer automatischen Testsuite
entfernt.

4.3 Quantitative Bewertung der Klone

Fir die quantitative Bewertung wurde eine eigene Reporting-Komponente entwickelt, die
viele Metriken aus dem Verfahren extrahiert. Dazu gehdéren:

Anzahl der gefundenen Routinen, der besuchten AST-Knoten, der besuchten
AST-Sliding Windows und der besuchten Discriminated_Ref (eine zentrale
Datenstruktur der PDG-Erstellung).

Anzahl der durch direkte AST-Knoten, durch Sliding Window und durch PDG
erstellten Fragmente.

Anzahl der Fragmente, die mindestens einen Klon besitzen (kann auch ein
redundanter Klon sein).

Anzahl der gefundenen Klone, vor und nach Filterung.

Anzahl der LSH-Vektorvergleiche.

Diverse Timings zu Routinen-Suche, Vektorerstellung, LSH-Initialisierung, LSH-
Abfrage und Filterung.

Neben der quantitativen Bewertung muss immer zusétzlich eine qualitative Bewertung
erfolgen, um abzusichern, dass die Ergebnisse nicht durch beispielsweise viele falsch-
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positiven Klone verfélscht sind. Dies kann aufgrund der Menge nur durch Stichproben
geschehen, wurde jedoch bei der folgenden Analyse jedes Mal bestatigt.

4.4 LSH-Evaluierung

Als besondere Belastungsprobe wurden einige C++-Programme analysiert, mit
absichtlich ungtnstig gewahlten Parametern, um die Leistungsfahigkeit von LSH zu
messen.

Die Analyse erzeugte insgesamt 42.686 Code-Fragmente. Bei einer zu geringen
MindestgroRe der charakteristischen Vektoren (in diesem Fall 4 signifikante Knoten)
erkannte der Quellcode fir fast jedes einzelne Fragmente Klone. Das liegt darin
begrlindet, dass die Programme wenig, aber ausgesprochen lange und tief verzweigte
Routinen implementiert. Dies fiihrt dazu, dass fast alle Knoten signifikant sind.
AuBerdem erzeugen lange und stark verzweigte Routinen sehr viele Backslices.

Bei der Analyse werden nur 181 Routinen besucht, allerdings tiber 43.000 AST-Knoten
besucht. Uber die PDG-Backward-Slices wurden 38.686 Code-Fragmente erzeugt. Diese
hohe Anzahl der Knoten mit gepaart mit einem stark verzweigten Programmcode flhrt zu
uber 580 Millionen Klonkandidaten, die durch LSH gehasht werden mussen.

Doch selbst diese 580 Millionen gehashten Vektoren (Uber 1,2 Milliarden
Vektorvergleiche) fiihren nur zu einer Laufzeit von etwa 7 Minuten. Dies zeigt, dass LSH
auBerordentlich effizient ist. Die Initialisierung von LSH (nur das mehrfache Hashen und
Anhéngen an die Buckets) dauerte trotz der mehr als einer halben Milliarde Vektoren
gerade einmal 0,1 Sekunden.

Da das LSH-Verfahren nicht deterministisch ist, schwanken die Zahlen der
Vektorvergleiche erheblich. In einigen Tests kamen Schwankungen um Gber 20%
zustande.
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Abbildung 24: Schwankungen der Vektorvergleiche innerhalb einer Messung mit identischen Parametern.

Von der Zahl der Vektorvergleiche abhangig ist die Zahl der Trefferrate der
Vektorvergleiche. Dies ist die Zahl der Vektorvergleiche, die zu einem Klon gefiihrt
haben. Ein ideales Ergebnis wéren keine unnétigen Vektorvergleiche, um eine moglichst
optimale Laufzeit zu erhalten.

Eine Optimierung die von den Parametern unabhangig steht, ist es, wenn ein Vektor in L
Buckets gehasht wird, dass unter Umstanden der Vektor zufallig mehrfach in den
gleichen Bucket gehasht wird. Bei Tests mit unterschiedlichen Projekten® hat sich
herausgestellt, dass die Chance auf solche eine Kollision unter 1% liegt. Weniger als 1%
der Fragmente werden in den gleichen Bucket gehasht. Bryant hat diese Optimierung
daher nicht implementiert, um die Komplexitat der Implementierung flr solch einen
marginalen Gewinn nicht zu erhéhen.

441 Parameter: P;

Der Parameter P; ist in der theoretischen Betrachtung sehr wichtig, in der
Implementierung ist die einzige Verwendung jedoch die Eingabe zur Berechnung von L
und k. Daher erfolgt hier keine gesonderte Betrachtung.

4.4.2 Parameter: R

Der Radius entspricht der maximalen Edit-Distanz der ASTs bzw. AST-Waélder. Er
beschreibt die maximale (euklidische) Distanz zu einem anderen Vektor, so dass die
zugehorigen Codefragmente als Klone angesehen werden.

9 Kleinen Projekten, bei denen die Wahrscheinlichkeit einer doppelten Bucketzuordnung héher als bei einer groRen
Zahl an Fragmente ist.
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Eine Betrachtung der gefilterten Klonlisten Uber dem Radius l&sst sich ein Rickschluss
ziehen:

Anzahl gefundener Klone (gefiltert)
300

225

150

75

Abbildung 25: Anzahl der (gefilterten) Klone Gber R (die Konstante bei 295 ist die Gerade).

Die Cluster der sehr ahnlichen Vektoren sind relativ eng bestiickt, so dass friih die Klone
gefunden werden. Die Cluster sind voneinander allerdings relativ weit entfernt. Es scheint
also relativ viele sehr ahnlich Muster in der Codebasis zu finden, die Struktur des Codes
ist nicht sehr durchmischt.

4.4.3 Parameter: w

Der Parameter w ist fir die Segmentzuweisung verantwortlich, in das ein gehashter
Vektor zugewiesen wird. Ist w grof3, werden viele unterschiedliche Vektoren in den
gleichen Bucket gehasht, die Zahl der VVektorvergleiche steigt also. Ist w hingegen sehr
klein, besteht die Hashmap aus sehr vielen, leeren Buckets.

Fur diese Messung galt: R = 4.0,L = 2,k = 2.
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— Buckets
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Abbildung 26: Anzahl Buckets Gber w.

Durch die geringere Anzahl der Buckets steigt die Anzahl der Vektorvergleiche, da mehr
entfernte Vektoren in die gleichen Buckets gehasht werden.

— Vektorvergleiche
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Abbildung 27: Anzahl Vektorvergleiche Gber w.

Die Laufzeit steigt mit der erhdhten Anzahl der Vektorvergleiche, wobei diese Erh6hung
minimal ist. Die gesamte LSH-Berechnung ist selbst im schlechtesten Fall in 0,3
Sekunden abgeschlossen.
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— Laufzeit
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Abbildung 28: Laufzeit Gber w.

Analog zu den erhéhten Vektorvergleichen sinkt die Trefferrate im LSH, da auch weit

entfernte Vektoren in den gleichen Bucket gehasht werden:

— LSH Hit Rate
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Abbildung 29: LSH-Trefferrate Gber w.

Der Speicherbedarf wird von w, auf3er den tiblichen Schwankungen, nicht maRgeblich

beeinflusst.
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— Speicherbedarf
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Abbildung 30: Speicherbedarf Gber w.

Bei der Anzahl der Klonkandidaten erkennt man den Zusammenhang von L und w. Da
jeder Vektor in diesem Test fest in 2 Buckets gehasht wird, verdoppelt sich die Zahl der
Klonkandidaten, sobald sich die Anzahl der Buckets immer mehr 1 anndhert. Ab diesem
Punkt enden die 2 Eintrage pro Vektor im gleichen Bucket— die Zahl der Klonkandidaten
verdoppelt sich.

— Klonkandidaten (ungefiltert)
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Abbildung 31: Anzahl Klonkandidaten Gber w.

4.4.4 Parameter: L

Der Parameter L gibt die Anzahl der Buckets an, in die ein Vektor gehasht wird. Der
Hintergrund ist, dass es durch die Zufallsverteilung der h-Hashingfunktionen passieren
kann, dass der Referenzvektor a zufélligerweise so liegt, dass nahe Vektoren trotzdem in
getrennte Buckets gehasht werden.
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— Klonkandidaten (ungefiltert)
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Abbildung 32: Anzahl Klonkandidaten Uber L.

Die Zahl der erzeugten Klonkandidaten steigt mit steigendem L. Dies ist erwartet, da
wenn der Vektor in mehrere Buckets gehasht wird, zwangslaufig die Chance steigt, dass
er auch in Buckets gehasht wird, in die seine Klone bereits sind. Die Zahl der steigenden
Klonkandidaten sind also keine neuen Klone, sondern nur die erhéhte Anzahl redundanter
Klonkandidaten.

— Speicherbedarf
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Abbildung 33: Speicherbedarf Gber L.

Da mit steigendem L mehr Pointer zu den Codefragmenten in den Buckets gehalten
werden miissen, steigt der Speicherbedarf entsprechend®?.

9 Die absolute Menge an zusétzlich bendtigtem Speicher ist allerdings trotzdem gering.
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— Vektorvergleiche
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Abbildung 34: Vektorvergleiche GberL.

Auch bei L trifft der Zusammenhang zwischen der Anzahl der Vektorvergleiche und der
Anzahl der Klonkandidaten zu.

— Verwendete Buckets
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Abbildung 35: Anzahl Buckets Uber L.

Da insgesamt mehr Vektoren in die Hashmap eingefligt werden, steigt auch die Anzahl
der verwendeten Buckets.
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Abbildung 36: Laufzeit Gber L.

Durch die erhohte Zahl der Buckets wird die zusétzliche Anzahl der VVektorvergleiche
allerdings abgemildert. Diese steigt langsamer als die Zahl der zusétzlichen Vektoren in
der Hashmap. Dadurch bleibt die Laufzeit nahezu konstant.

= LSH Hit Rate

/\
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Abbildung 37: LSH-Trefferrate GberL.

Da die zusétzlichen Vektoren in den Buckets nur Duplikate anderer Vektoren sind, bleibt
die Trefferrate nahezu konstant. Es sind insgesamt mehr Vektoren in den Buckets, es
werden aber auch mehr Klonkandidaten gefunden.

445 Parameter: k

Der Parameter k beschreibt die Anzahl der Hashvorgénge, mit der konkateniert der
gleiche Vektor gehasht wird. Dies wird implementiert, indem es insgesamt k
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Hashfunktionen h;, gibt. Dies verringert die Wahrscheinlichkeit, dass durch ungtinstig
liegende a-Referenzvektoren zwei weit entfernte VVektoren in die gleiche Bucket gehasht
werden.

— Vektorvergleiche
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Abbildung 38: Anzahl Vektorvergleiche Gber k.

Passend zur Theorie ist auch an den Vektorvergleichen ersichtlich, dass deren Anzahl
rapide mit steigendem k sinkt. Es ist jedoch relativ schnell ein Plateau erreicht, ab dem
der zusatzliche Berechnungsaufwand keinen Mehrwert bringt.

= Verwendete Buckets

160

120

Abbildung 39: Anzahl Buckets Uber k.

Da die Vektoren durch das zusétzliche Hashing besser voneinander getrennt werden (falls
sie unterschiedlich sind), steigt die Anzahl der verwendeten Buckets mit steigendem k.
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Die Anzahl ist jedoch begrenzt durch die Codefragmente, die keine Klone in der
Codebasis besitzen®.

— LSH Hit Rate

24

Abbildung 4o0: LSH-Trefferrate Gber k.

Die bessere Separierung der Vektoren in mehr, daflr jedoch kleinere Buckets sorgt fir
eine steigende Trefferrate. Diese hat jedoch, wie auch die Anzahl der Vektorvergleiche
ein Plateau, begrenzt durch die Zahl der unabhéngigen Vektoren.

— Klonkandidaten (ungefiltert)
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Abbildung 41: Anzahl Klonkandidaten (ungefiltert) Gber k.

Die gegenlaufigen Trends sorgen fiir keine signifikanten Anderungen bei den
Klonkandidaten.

92 Und durch L.

66



— Speicherbedarf
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Abbildung 42: Speicherbedarf Gber k.

Der Speicherbedarf steigt mit zunehmenden k, da die Vektoren der Hashingfunktionen
zusétzlichen Speicher benétigen. Dieser Anstieg ist jedoch absolut gesehen
vernachlassigbar.

= Lauizeit

01

Abbildung 43: Laufzeit Gber k.

Da die Berechnung der Hashingfunktionen und Hashingwerte in LSH sehr schnell geht,
bleibt die Laufzeit auch mit zusétzlichem Rechenaufwand unveréndert. Der zusétzlichen
Berechnungen des Hashings werden durch weniger Vektorvergleiche eingespart.
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4.5 Auswertungen unterschiedlicher Open-Source-
Projekte

Es wurden mehrere Open-Source-Programme® herausgesucht, die kompatibel mit den
Tools von Bauhaus ist. Darliber hinaus wurden einige kleine Testprogramme entwickelt,
um bestimmte Erkennungsmuster zu Gberprifen. Eine im folgenden verwendete Metrik,
um die Grofie von Programm zu beschreiben ist die LLOC (,,Logical Lines of Code®).
Diese gibt die Anzahl der Zeilen Programmcode, die Logik beinhalten (zu ,,Logik*
gehoren Statements, nicht jedoch Kommentare, Leerzeilen oder Zeilen, die nur
strukturierende Zeichen enthalten®).

Unabhéngig von einer Klonanalyse wurde festgestellt, dass mit steigender LLOC die
Anzahl der Routinen sinkt. Dies kann bei Bryant zu einer schnell wachsenden Menge an
Sliding-Window-Fragmenten und PDG-Fragmenten flihren. Das ist darauf
zuriickzufuhren, dass die Zahl der AST-Knoten stark mit der Zahl der Zeilen steigen
kann.

200000000
180000000
160000000
140000000
120000000
100000000
80000000
60000000
40000000

20000000

5000 10000 15000 20000 25000

——Vektorvergleiche

Abbildung 44: Vektorvergleiche Gber LLOC.

Es ist naheliegend, dass mit steigender LLOC die Zahl der Codefragmente steigt und mit
ihr auch die Zahl der Vektorvergleiche.

9 Unter anderem [27], [28], [29] und [30], sowie einige Test aus einer internen Test-Bibliothek der Universitat
Stuttgart.
9 Wie Semikola oder geschweifte Klammern.
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Abbildung 45: Anzahl Vektorvergleiche Gber die Anzahl der Klonkandidaten.
Ebenfalls I&sst sich aus den Daten ablesen, dass die Zahl der VVektorvergleiche linear mit

der Zahl der Klonkandidaten steigt. Dies wird durch die automatisch berechneten
Parameter gesichert.
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Abbildung 46: Laufzeit LSH Uber Vektorvergleiche.

Eine triviale Einsicht ist, dass die Laufzeit der LSH-Implementierung linear mit der Zahl
der Vektorvergleiche steigt. Dies ist offensichtlich, da die Laufzeit im Grunde einzig von
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der Zahl der Vektorvergleiche abhangt. Dies bestétigt allerdings, dass die
Implementierung von Bryant hier jedoch zumindest aus Laufzeitsicht valide erscheint.
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Abbildung 47: Anzahl Klonkandidaten (ungefiltert) Gber Anzahl Codefragmente.

Die letzte Ubergreifende Analyse zeigt einen Zusammenhang zwischen der Anzahl der
Codefragmente und der Anzahl der erzeugten (ungefilterten) Klonkandidaten. Dies zeigt
die Verbindung, dass groliere Programme eine hthere Chance besitzen, tiber die Zeit
Codeklone anzuh&ufen.

AbschlieBend zu den Analysen noch ein wichtiger Hinweis bezuglich Laufzeit. Gerade
wenn man keine besonders strengen Anforderungen an Codefragment-Generatoren stellen
will und lieber mehr als komplizierte Fragmente erzeugen will, ist die korrekte
Implementierung des Filters essentiell. In der ersten, rudimentéren Implementierung
benotigte nur der Filter Gber 99% der Gesamtlaufzeit. Dies gilt insbesondere fur den Fall,
dass dieser moglichst wenig Duplikate zulassen und auch Code-Teilbereiche erkennen
soll.
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5 Zusammenfassung

Bryant bietet eine sehr gute Basis flr die Erkennung von Codeklonen. Das Verfahren ist
performant, besitzt eine Uberzeugende Erkennungsrate und minimiert die Zahl der
redundanten Klone.

Durch den Aufbau in gréitenteils isolierte Teilkomponenten ist das System leicht
erweiterbar. Ein weiterer Vorteil ist, dass Teilkomponenten einfach ausgetauscht oder in
Isolation optimiert werden konnen. So kann beispielsweise LSH durch eine komplexere
Parameterberechnung (siehe Kapitel 6) erweitert werden, ohne dass die anderen Bereiche
ebenfalls Anderungen benétigen.

Die Implementierung basiert aktuell auf der bestehenden PDG-Implementierung in
Bauhaus. Hier kann also durch feinere Abstufung, wie die jungst hinzugefligte
Erweiterung der Auftrennung strukturierter Rlickgabewerte, eine bessere Identifizierung
von ISTs erreicht werden, was insgesamt zu einem besseren Ergebnis fiihrt. Auch diese
Anderung ist ohne Anpassungen in Bryant selbst méglich.

Neue Verfahren zur Vektorgenerierung kénnen einfach hinzugefugt und evaluiert werden.
Das Tool ist robust gegenuber einer groRen Menge an Vektoren, dank des Einsatzes von
LSH, das abschlieende Filtern und moéglicher Erweiterung um gréRensensitive
Klonerkennung.

Durch diese Kombination der verwendeten Verfahren und den internen Aufbau ist das
System eher ein Framework fiir Codeklonerkennung als ein abgeschlossenes Verfahren.
Es bietet eine sehr gute Basis um weitere, elaboriertere Methoden der Klonerkennung zu
implementieren.
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6 Ausblick

Obwohl die vorliegende Implementierung robust ist und bereits im Praxiseinsatz
funktioniert, gibt es dennoch einige Optimierungsmadglichkeiten. Diese teilen sich auf
zwei Bereiche auf: Performance und noch mehr, ,,bessere* Codefragmente.

Im Hinblick auf Performance gibt es insbesondere zwei Aspekte, die von grofiem
Interesse sind. Die Vektorgenerierung fiir die Routinen ist frei von Seiteneffekten®®, ist
also ein idealer Kandidat fur Parallelisierung. Hier wurde sich eine Implementierung
anbieten, die einen Pool von Agenten einsetzt, die die Routinen unter sich aufteilen.

Der zweite interessante Bereich ist LSH, hier beinhaltet E2LSH® einige zusatzliche
Erweiterungen. Hinter einer der Optimierungen steht, dass bei Tests bemerkt wurde, dass
die theoretisch optimalen Werte fiir L und k nicht diejenigen sind, die auch im
praktischen Einsatz hinsichtlich Performance optimal sind. Anstatt die Parameter
theoretisch zu berechnen, wird eine Stichprobe der VVektoren gewéhlt, die mit
unterschiedlichen Werten fiir L und k durchgerechnet werden. AnschlieRend werden die
aus Sicht der Laufzeit optimalen Werte genommen. Dies bendtigt einige Vorsicht
hinsichtlich Timing-Genauigkeit und paralleler externer Aktivitat auf der Testmaschine,
kann aber zu besserem Laufzeitverhalten fiihren.

Eine weitere Zusatzfunktion in E2LSH ist, dass ein alternativer Modus verwendet werden
kann, in dem die Hashfunktionen g; nicht mehr unabhangig voneinander sind, sondern
neue, kombinierte Hashfunktionen verwendet werden. Hierdurch kann die Laufzeit
abermals reduziert werden, da ein Teil der Hashergebnisse vorberechnet werden kann und
die Hashberechnungen dadurch beschleunigt werden®’.

Auf Seite der besseren Codefragmente kénnen neue Verfahren entwickelt werden, die
mehr oder andere Codefragmente erzeugen. Die Architektur der Implementierung erlaubt
solche Verfahren mit wenig Aufwand hinzuzufligen oder bestehende Verfahren zu
ersetzen. Aullerdem konnen die existierenden AST- und PDG-basierten Verfahren
verfeinert werden, sodass sie moglicherweise noch bessere Kandidaten erzeugen.

Im Hinblick auf das Gesamtsystem sind weitere Experimente und Tests méglich, um
interne Parameter und Definitionen, wie Relevanz und Signifikanz der Vektoren, zu
verfeinern.

% Die aktuelle Implementierung manipuliert direkt die Vektorliste. Der Umbau, dass die erzeugten Vektoren
zuriickgegeben werden und daher die Liste nicht mehr direkt bearbeitet wird, ist trivial.

% Siehe [26].

97 Siehe Kapitel 3.4.1 in [25].
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7 Appendix

7.11; und [, Norm von Vektoren?®
Seien v; = (x4, X3, ..., Xp) UNd v, = (Vq, V3, ..., Yn) ZWei n-dimensionale Vektoren.

Die Hamming-Distanz von v, und v,, H (v4, v,) ist ihre [;-Norm, das heil3t
HWy,v2) = |lvy — valls = Xitqlx — yil.

Die euklidische Distanz von v, und v,, D(v4, v,) ist ihre [,-Norm, das heif3t
D(wy,v;) = vy — vall; = \/Z?:l(xi — ¥i)2.

7.2 (Schwache) Zusammenhangskomponenten

Ein ungerichteter Graph G = (V, E) heillt zusammenhdngend, wenn es fr jede beliebige
Knotenkombination u und v einen ungerichteten Weg durch G mit u als Startknoten und
v als Endknoten gibt.

[Bild Zusammenhangskomponente mit G, Start- und Endpunkt und zwei Teilgraphen]

Eine Zusammenhangskomponente ist ein maximaler, zusammenhangender Teilgraph.

9% Aus [6], Definition 3.4.
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