
 Institut für Softwaretechnologie
Abteilung Software Engineering

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit

Software Repositories Mining von
Issue Tasks und Coupled File Changes

Deniz Alakus

Studiengang: Informatik

Prüfer: Prof. Dr. rer. nat. Stefan Wagner

Betreuer: M. Sc Jasmin Ramadani

Begonnen am: 29. September 2016

Beendet am: 31. März 2017

CR-Nummer: D.2.7, H.2.8

Inhaltsverzeichnis
1 Einleitung..5

1.1 Gliederung...6
2 Grundlagen..7

2.1 Pattern Mining...7
2.1.1 Frequent Itemset Mining..7
2.1.2 Sequential Pattern Mining..9
2.1.3 Vergleich der Methoden...10

2.2 CSV-Dateien..10
2.2.1 Aufbau einer CSV-Datei..10

2.3 Eclipse Rich Client Platform...11
2.3.1 Dependency Injection..12
2.3.2 Annotationen..13

2.4 SPMF...14
3 Verwandte Arbeiten...15

3.1 Release History Database..15
3.2 Automatische Transformation von Daten aus Software Repositories.....................18

3.2.1 Input- und Outputformat..18
3.3 SRM Plugin...19

4 Anforderungen und Analyse..21
4.1 Anforderungen an das Tool..21
4.2 Analyse..22

5 Konzept und Architektur...23
5.1 Lösungsansatz zum Erzeugen von Coupled Changes für Issue Tasks.....................23
5.2 Workflow...23
5.3 Framework...24
5.4 Input und Output Objekte für das Data Mining...25

5.4.1 Data Mining Input Objekt..25
5.4.2 Data Mining Result Objekt..25

5.5 Format der Output-Tabelle..27
5.5.1 Schreiben des Output Objekts in die Output-Tabelle......................................27

5.6 Prefixspan in SPMF...27
5.6.1 Input von Prefixspan..28
5.6.2 Auswahl der Implementierung...29

6 Implementierung...30
6.1 CommitTableData..30
6.2 Integrierung von Prefixspan in das Framework..30

6.2.1 Transformation der Input-Daten für Prefixspan...30
6.2.2 Laden von transformierten Input-Daten...31
6.2.3 Transformation der gefundenen Sequential Patterns.......................................32
6.2.4 Konstruktor und Ausführung des Algorithmus..34

6.3 Generierung von Coupled Changes für Issue Tasks..35
6.3.1 Filterung von Commits die im Zusammenhang mit Issues stehen..................35
6.3.2 Bestimmung der Commitspaltenanzahl...36
6.3.3 Auslesen der Data Mining Resultate aus der Datenbank.................................37
6.3.4 Zusammenfassung..39

6.4 Implementierung der Benutzeroberfläche...39
6.4.1 IssuesPart...40

2

6.4.2 IssueInformationsPart..40
6.4.3 CoupledChangesPart..41

6.5 Kommunikation zwischen den Komponenten...43
6.5.1 Events...43
6.5.2 EventHandler...44
6.5.3 EventHandler IssuesPart..44
6.5.4 EventHandler IssueInformationsPart...45
6.5.5 EventHandler CoupledChangesPart...46

6.6 Export von Coupled Changes..48
6.7 Änderungen am Wizard...50

6.7.1 Auswahlmöglichkeit zwischen den Data Mining Algorithmen.......................50
6.7.2 Durchführung des Data Minings..51

6.8 Programmstart...53
7 Evaluierung...55

7.1 Vorbereitungen und Testumgebung...55
7.2 Testaufbau..55
7.3 Testdurchführung...56
7.4 Auswertung..57
7.5 Ergebnisse..57

8 Zusammenfassung...61
8.1 Weitere Schritte..61

 Literaturverzeichnis..63

3

Abkürzungsverzeichnis

CLI Command Line Interface

IDE Integrated Development Environment

GUI Graphical User Interface

SRM Software-Repository Mining

SQL Structured Query Language

SWT Standard Widget Toolkit

RCP Rich Client Platform

VCS Version Control System

CVS Concurrent Versions System

DMIO Data Mining Input Objekt

DMRO Data Mining Result Objekt

4

1 Einleitung

Immer mehr Softwareprojekte werden über Versionsverwaltungssysteme (VCS)

wie CVS und Git verwaltet. Mit der Zeit häufen sich viele Daten in einem durch

VCS verwalteten Software-Repository an. Bugtracker wie Bugzilla sind ebenfalls

Software-Repositories, die zusammen mit ihrer zugehörigen Software wachsen,

aber sie sind trotzdem getrennte Entitäten. SRM (Software Repository Mining)

kann helfen, um aus diesen Daten nützliche Informationen zu gewinnen. In

diesem Zusammenhang sind Coupled Changes [1] besonders interessant. Indem

Data Mining, wie Frequent Pattern Mining, auf den Software-Repositories

ausgeführt wird, können Dateien identifiziert werden, die oft miteinander

geändert wurden. Diese Dateien stellen Coupled Changes dar und basieren auf

der Software-Historie einer Software. Coupled Changes können unerfahrenen

Entwicklern bei immer komplexer werdender Software helfen, ihre

Wartungsaufgaben durchzuführen.

Im Rahmen dieser Arbeit soll ein auf Eclipse basierendes Tool erstellt werden,

welches die „Maintenance Task Issues“ eines Software-Projekts anzeigen und

Coupled Changes auf Basis der Issues extrahieren kann. Als Data Mining

Algorithmen kommen der Frequent Itemset Mining Algorithmus FPGrowth und

der Sequential Pattern Mining Algorithmus Prefixspan zum Einsatz.

5

1.1 Gliederung

Diese Arbeit ist wie folgt gegliedert:

Kapitel 1 – Einleitung:

Einführung in das Themengebiet

Kapitel 2 – Grundlagen:

Erläuterung der Grundlagen

Kapitel 3 – Verwandte Arbeiten:

Beschreibung von Arbeiten mit Bezug auf das Themengebiet

Kapitel 4 – Anforderungen und Analyse:

Anforderungen an das Tool und Analyse

Kapitel 5 – Konzept und Architektur:

Konzept und Architektur des zu erstellenden Tools

Kapitel 6 – Implementierung:

Beschreibung der Implementierung des Tools

Kapitel 7 – Evaluierung:

Evaluierung des erstellten Tools

Kapitel 8 – Zusammenfassung:

Abschließende Worte und Ausblick

6

2 Grundlagen

In diesem Kapitel werden die Grundlagen und verwendeten Technologien

erläutert.

2.1 Pattern Mining

Data Mining beschäftigt sich mit dem Sammeln, Verarbeiten und Analysieren von

Daten, um nützliche Einsichten zu gewinnen [2]. Ein Teilbereich des Data Minings

ist Pattern Mining, welches sich mit interessanten, nützlichen und unerwarteten

Mustern in Datenbanken beschäftigt. Mit Hilfe dieser Technik können versteckte

Muster in großen Datenbanken zum Vorschein gebracht werden [3].

In diesem Kapitel werden die Pattern Mining Techniken Frequent Itemset Mining

und Sequential Pattern Mining erläutert und verglichen.

2.1.1 Frequent Itemset Mining

Frequent Itemset Mining berechnet häufig vorkommende Itemsets in einer

Transaktionsdatenbank. Eine Transaktionsdatenbank DB setzt sich zusammen aus

einer Menge von Tupeln (tid, T), wobei T für eine Transaktion steht und aus einer

Menge von Items besteht (ein sogenanntes Itemset). Die Transaktions ID dient der

eindeutigen Identifikation der Transaktion. Ein Itemset A kommt dann häufig in

einer Transaktionsdatenbank DB vor, wenn die Anzahl der Transaktionen, in

denen A enthalten ist (entspricht dem Support-Wert), einen vorbestimmten Wert,

den Minimum-Support-Wert, übersteigt. In diesem Fall ist A ein Frequent Pattern.

[4]

Um die Frequent Patterns einer Transationsdatenbank DB effizient zu berechnen,

benutzt FPGrowth eine kompakte Datenstruktur mit dem Namen FP-tree.

7

Die Konstruktion des FP-tree wird durch zwei Durchläufe von DB bewerkstelligt.

Im ersten Durchlauf wird der Support aller Items gezählt. Es entsteht eine Liste

FList aus Items und ihrem Support. Items mit einem Support kleiner als

Minimum-Support werden nicht in die Liste aufgenommen. Anschließend wird

die Liste absteigend nach Support sortiert.

Im zweiten Durchlauf wird der FP-tree aus den Transaktionen in DB erzeugt. Dies

wird anhand des Beispiel FP-trees in Abbildung 2.1 erläutert. Nicht häufig

vorkommende Items werden aus den Transaktionen aussortiert. Frequent Items

werden nach den Vorkommen der Items in FList sortiert. Werden als Frequent

Items z.B. die Items in Abbildung 2.1 angenommen, bedeutet dies für eine

Transaktion mit Items <b, c, p> eine Sortierung nach <c, b, p>. Die sortierten

Transaktionen werden anschließend der Reihe nach in den Baum eingefügt.

Transaktionen, welche einen Prefix einer bereits im Baum vorhandenen

Transaktion enthalten, werden entlang des Prefixes in den Baum eingefügt. An der

Stelle, wo sie sich unterscheiden, entsteht ein neuer Ast im Baum und der Rest der

Items der Transaktion werden in den Ast eingefügt.

Damit die Frequent Itemsets berechnet werden können, wird eine Zeiger-Tabelle

für die Frequent Items aufgebaut. Sie zeigen zu den ersten im FP-tree

vorkommenden Items mit demselben Namen. Dies ist in Abbildung 2.1 gut zu

sehen. Der Zeiger für das Item f z.B. zeigt auf das erste hinzugefügte Item f in

FP-tree. Dasselbe gilt für die anderen Frequent Items. Die Knoten im FP-tree

zeigen mit ihren Zeigern ebenfalls auf neu hinzugefügte Items mit demselben

Namen.

8

Abbildung 2.1: Beispiel für ein FP-tree [4]

Um die Frequent Patterns, an denen ein Frequent Item beteiligt ist, zu berechnen,

wird zunächst über die Zeiger-Tabelle alle Transaktionen im FP-tree verfolgt, in

denen das Frequent Item vorkommt. Daraufhin werden nur die Prefixpfade ohne

das Item und dem Suffix betrachtet. Aus diesen wird ein neuer sogenannter

Conditional FP-tree erzeugt und es werden die in diesem Baum vorkommenden

Frequent Itemsets berechnet. Dies wird rekursiv solange wiederholt, bis alle

Frequent Patterns gefunden sind. [4]

2.1.2 Sequential Pattern Mining

Für Daten, in denen die Reihenfolge eine wichtige Rolle spielt wie z.B. DNA-

Sequenzen [5], ist Sequential Pattern Mining das bevorzugte Tool, denn es wurde

für die Entdeckung von sequenziellen Mustern entworfen.

Sequential Pattern Mining nutzt eine sogenannte Sequenzdatenbank als Input.

Eine Sequenzdatenbank besteht aus einer Menge von Tupeln <sid, s>, wobei sid

eine eindeutige Sequenz ID ist und s eine Sequenz darstellt. Eine Sequenz besteht

aus einer Liste von Itemsets (vgl. Kapitel 2.1.1) [5]. Aus dem Namen Sequenz lässt

sich ableiten, dass die Reihenfolge, in der die Itemsets vorkommen, von äußerster

Wichtigkeit sind.

Eine Sequenz α=⟨a1a2...an⟩ ist eine Subsequenz von einer Sequenz

β=⟨b1b2...bm⟩ , falls alle Itemsets in α als Untermenge von Itemsets in β in einer

Sequenz vorkommen. Formal bedeutet dies, falls Zahlen 1≤ j1< j2< ...< jn≤m

existieren, sodass a1⊆b j1,a2⊆b j2, ... , an⊆b jn gilt, dann ist α eine Subsequenz von β.

Wenn die Anzahl der Sequenzen (in der Sequenzdatenbank), in denen α als

Subsequenz vorkommt, mindestens dem Minimum-Support-Wert entspricht,

dann ist α ein Sequential Pattern. [5]

Das Ziel des Sequential Pattern Mining ist bei gegebenem Minimum-Support-Wert

alle Sequential Patterns einer Sequenzdatenbank zu finden.

Prefixspan ist ein schneller Algorithmus designt zum Mining von Sequential

Patterns. Der Mining Prozess findet statt, indem zuerst alle frequent length-1

Sequential Patterns gesucht werden. Hierzu wird die Datenbank einmal komplett

gescannt. Danach wird der Suchraum nach den gefundenen length-1 Sequential

Patterns partitioniert. Die Subsequenzen der Sequential Pattern können dann

9

gemint werden, indem ihre projizierten Datenbanken erstellt und rekursiv gemint

werden [5].

2.1.3 Vergleich der Methoden

Sequential Pattern Mining und Frequent Itemset Mining haben unterschiedliche

Ziele. Frequent Itemset Mining versucht die häufig vorkommenden Pattern einer

Transaktionsdatenbank zu finden. Transaktionen bestehen aus Itemmengen, was

bedeutet, dass Items jeweils nur einmal in einer Transaktion vorkommen können.

Sequential Pattern Mining versucht hingegen häufig vorkommende Sequential

Patterns in einer Sequenzdatenbank zu finden. Im Gegensatz zu Frequent Pattern

Mining besteht eine Sequenz aus einer Folge von Itemsets. Das bedeutet, dass

Items auch mehrfach in einer Sequenz vorkommen können. Des Weiteren ist die

Reihenfolge der Itemsets in einer Sequenz wichtig. Prefixspan und FPGrowth als

Repräsentanten ihrer Klassen haben gemeinsam, dass sie beide Pattern-Growth

Methoden ohne Kandidatengenerierung sind [4][5].

2.2 CSV-Dateien

CSV steht für „comma seperated values“ [6] und ist ein Format zur Speicherung

von Tabellen, Datenbanken u.ä. Datensätze. So lassen sich mit diesem Format

beispielsweise Tabellen aus Tabellenkalkulationsprogrammen auf einfache Art

exportieren, um diese anderen Personen zur Verfügung zu stellen. Auch Kontakte

aus E-Mail-Programmen lassen sich auf diese Weise exportieren und sichern.

CSV-Dateien sind simple Textdateien, die sich mit herkömmlichen Texteditoren

öffnen und bearbeiten lassen. Auch Tabellenkalkulationsprogramme wie Microsoft

Excel sind in der Lage sie zu öffnen. Excel zeigt die Dateien dabei in tabellarischer

Form an. Im Gegensatz dazu werden CSV-Dateien von Texteditoren in ihrer

eigentlichen Form angezeigt.

2.2.1 Aufbau einer CSV-Datei

Obwohl der Aufbau einer CSV-Datei meist recht einfach ist, gibt es für CSV-

Dateien keinen einheitlichen Standard. Programme können die Struktur von

CSV-Dateien frei bestimmen, was dadurch zu Inkompatibilitäten bei Software

führen kann, welche eine andere Struktur erwarten. Trotz dieser Vielzahl von

10

möglichen Formaten hat sich ein allgemeiner Aufbau durchgesetzt, so wie sie von

einer großen Mehrheit von Software akzeptiert wird. Der allgemeine Aufbau, ist in

RFC 4180 [6] von der IETF (Internet Engineering Task Force) dokumentiert

worden. In Listing 2.1 wird der Aufbau von CSV-Dateien als ABNF Grammatik

beschrieben.

 file = [header CRLF] record *(CRLF record) [CRLF]
 header = name *(COMMA name)
 record = field *(COMMA field)
 name = field
 field = (escaped / non-escaped)
 escaped = DQUOTE *(TEXTDATA / COMMA / CR / LF / 2DQUOTE) DQUOTE
 non-escaped = *TEXTDATA

Listing 2.1: ABNF Grammatik von CSV-Dateien [6]

Eine CSV-Datei besteht also aus einem optionalem Header, welcher die Spalten

der Datei beschreibt. Jede darauf folgende Zeile ist ein Record. Die Records selbst

sind in Felder unterteilt, welche Text enthalten. Das Trennzeichen, das die Felder

voneinander trennt, ist das Komma. Die Anzahl der Felder pro Record muss

einheitlich sein und auch mit der Anzahl der Felder im Header (falls vorhanden)

übereinstimmen.

Als Trennzeichen kommen neben dem Komma oft auch Doppelpunkte oder

Semikola vor.

2.3 Eclipse Rich Client Platform

Eclipse RCP ist eine Software Plattform für die Entwicklung von Desktop

Anwendungen. Hierfür bietet RCP ein Grundgerüst aus Komponenten, welche

beliebig erweitert werden können.

Das wohl bekannteste Anwendungsbeispiel von Eclipse RCP ist die Eclipse IDE.

Sie demonstriert die Mächtigkeit von RCP, mit ihrer Erweiterbarkeit und

sinnvollen Nutzung von Eclipse Plugins und Komponenten.

Mit RCP lassen sich in kurzer Zeit komplexe Anwendungen realisieren, die zudem

Plattformunabhängig sind [7]. Die bereitgestellten grafischen Komponenten

entsprechen den grundlegenden Bedürfnissen einer Benutzeroberfläche. RCP

11

Anwendungen lassen sich über die Eclipse IDE einfach programmieren, da sie

Plugins für ihre Erstellung bereitstellt. Diese nehmen dem Programmierer einen

großen Teil der Entwicklungslast ab.

Es gibt eine große Community, die Eclipse basierende Plugins und Tools

entwickeln und diese der Allgemeinheit zur Verfügung stellen. Entwickler können

sich auf diese Weise um die eigentliche Software kümmern, ohne sich um die

Implementation dieser Funktionalitäten kümmern zu müssen.

2.3.1 Dependency Injection

Eines der größten und wichtigsten Neuerungen in RCP 4 ist die Einführung eines

serviceorientierten Programmiermodells [8]. Im Gegensatz zu RCP 3, wird in RCP

4 bevorzugt Dependency Injection (DI) verwendet.

BundleContext ctx=FrameworkUtil.getBundle(Eventsender.class)
.getBundleContext();
ServiceReference<EventAdmin> sref =
ctx.getServiceReference(EventAdmin.class);
EventAdmin eventAdmin = ctx.getService(sref);
Map<String,Object> properties = new HashMap<String, Object>();
properties.put("date", new Date());
Event event = new Event("dateEvent", properties);
eventAdmin.postEvent(event);

Listing 2.2: Beispiel zum Senden von Events in RCP 3

Um ein EventAdmin Objekt zu erhalten ist es in RCP 3 erforderlich, einen Umweg

über mehrere Klassen zu machen. Erst muss über die FrameworkUtil ein

BundleContext erlangt werden. Über diesen und einer ServiceReference auf die

EventAdmin Klasse kann schließlich ein EventAdmin Objekt erhalten werden. Das

gewünschte Event kann nun über das EventAdmin Objekt versendet werden. In

Listing 2.3 ist der Code abgebildet, der dasselbe Ergebnis mit RCP 4 erreicht.

@Inject
IEventBroker eventBroker;
eventBroker.postEvent("date", new Date());

Listing 2.3: Beispiel zum Senden von Events in RCP 4

Im Vergleich zu RCP 3 wird in RCP 4 ein IEventBroker Objekt verwendet. Auf den

ersten Blick fällt auf, dass dieselbe Funktionalität, die in Listing 2.3 abgebildet ist,

mit RCP 4 in nur 3 Zeilen ausgedrückt werden kann. Der Umweg über die

12

FramworkUtil und dem BundleContext fällt weg. Erreicht wird dies über die

„@Inject“ Annotation, welche dem Eclipse Framework die Bürde des Auffindens

des IEventBroker Objekts auflädt. Sobald es gefunden ist, wird es in die

eventBroker Variable „injiziert“. Das Senden eines Events erfolgt schließlich über

den Aufruf der postEvent Methode mit den zugehörigen Parametern.

2.3.2 Annotationen

In RCP 4 existieren verschiedene Annotationen, die von der Plattform für

Dependency Injection und Callbacks eingesetzt werden. In Tabelle 2.1 ist eine

Auswahl der von RCP 4 unterstützten Annotationen aufgelistet.

Annotation Beschreibung

@Inject Zur Injektion von Feldern, Methoden und Konstruktoren

@Optional Markiert Felder, Methoden und Parameter als Optional

@UIEventTopic("TOPIC") Registriert eine Methode für den Empfang von bestimmten Ereignissen

@PostConstruct Methoden die mit @PostConstruct markiert sind, werden aufgerufen
nachdem alle ausstehenden DI auf dem Objekt durchgelaufen sind

@PreDestroy Methoden die mit @PreDestroy markiert sind, werden bei Zerstörung eines
Objekts aufgerufen

Tabelle 2.1: Auswahl an von RCP 4 unterstützten Annotationen [9]

In Kapitel 2.3.1 wurde bereits der Einsatz von Annotationen im Zusammenhang

von Events anhand eines Beispiels (siehe Listing 2.3) geschildert. In diesem

Beispiel wurde ein Event mit dem Topic „date“ versendet. Um auf dieses Event

reagieren zu können ist es erforderlich, eine Methode zu registrieren, die bei

Empfangen des Events aufgerufen wird. Dies kann über ein IEventBroker Objekt

erreicht werden oder über die Annotation einer Methode mit der

@UIEventTopic("date") Annotation.

Die @Optional Annotation hat je nach Definierungsort unterschiedliches Verhalten

und wird zusammen mit der @Inject Annotation verwendet. Sie kommt überall

zum Einsatz, wo eine erfolgreiche Injektion von Seiten des Frameworks nicht

immer garantiert werden kann. So wird bei einer nicht erfolgreichen Injektion bei

• Feldern die gewünschten Objekte nicht injiziert

• Methoden, der Aufruf übersprungen

• Parametern, der „null“ Wert übergeben

Dadurch lassen sich beispielsweise unnötige NullPointer Exceptions vermeiden.

13

Für das Management des Lebenszyklus sind Annotationen wie @PostConstruct

und @PreDestroy zuständig, wie sich auch aus Tabelle 2.1 entnehmen lässt.

Die Eclipse Plattform beherbergt noch etliche weitere Annotationen mit

verschiedensten Einsatzzwecken.

2.4 SPMF

SPMF ist eine Open Source Data Mining Software mit dem Fokus auf Pattern

Mining [10]. Es sind 129 Data Mining Algorithmen aus verschiedenen Kategorien

implementiert. Darunter befinden sich z.B. Itemset Mining und Sequential Pattern

Mining. Die Algorithmen können über eine Benutzeroberfläche oder über die

Kommandozeile ausgeführt werden.

Für die Ausführung der Algorithmen werden algorithmenspezifische

Input-Dateien und Parameter benötigt. Ein solcher Parameter kann z.B. ein

Minimum-Support-Wert sein. Nachdem der Benutzer die Parameter gesetzt und

eine Output-Textdatei definiert hat, werden die Ergebnisse in diese geschrieben.

Durch die modulare Art der Software ist es möglich die Algorithmen ohne GUI in

anderer Software zu verwenden und für eigene Zwecke anzupassen.

14

3 Verwandte Arbeiten

In diesem Abschnitt werden Arbeiten vorgestellt, die der Funktionalität des zu

erstellenden Tools ähnlich sind. Die Arbeiten die in Kapitel 3.2 und 3.3 vorgestellt

werden, stellen ein großes Fundament für das Tool dar, da das Tool in weiten

Zügen auf diesen Arbeiten aufbaut.

3.1 Release History Database

Von Fischer et. al [11] wurde eine „Release History Database“ entwickelt, mit

dessen Hilfe die Evolution einer Software analysiert werden kann. Das System

kombiniert dabei die Informationen, die in CVS Version Control Systemen und im

Bugzilla Bugtracker vorhanden sind. Um die Daten aus CVS und Bugzilla zu

extrahieren, verwenden sie verschiedene Skripte.

Wie aus dem Namen des Systems abzuleiten ist, wird eine SQL Datenbank zur

Speicherung der Daten verwendet. In Abbildung 3.1 ist ein UML-Diagramm der

Datenbank zu sehen.

In der Datenbank werden die CVS Informationen aller Dateien abgespeichert. Die

15

Abbildung 3.1: Release History Database [11]

Informationen werden aus den CVS Log-Dateien gewonnen. Dabei besitzt jede

Datei in CVS Log-Informationen. Ändert sich die Revision einer Datei, nachdem

Veränderungen an ihr durchgeführt wurden, wird dies in der Log-Datei

protokolliert. Zu den protokollierten Daten gehören z.B. Autor, der die Änderung

durchgeführt hat, und das Datum, an dem die Änderung stattgefunden hat. Auch

eine textuelle Beschreibung, welche die Änderungen kurz zusammenfasst, werden

erfasst. Diese Daten werden jeweils in die author, date und description Felder der

cvsitemlog Tabelle geschrieben.

Jeder Eintrag in cvsitemlog gehört zu einem Eintrag in cvsitem. Sie stellt die zentrale

Einheit der Datenbank dar. Für jede Datei im Software-Repository wird ein

Eintrag in csvitem erstellt, welches u.a. den Pfad zur Datei im Feld rcsfile

abspeichert. Die Beziehung zwischen cvsitem und cvsitemlog ist dabei eine 1-zu-n-

Beziehung, da jede Datei in CVS mehrere Revisionen und damit Log-

Informationen besitzt.

Wie aus Abbildung 3.1 ersichtlich ist, sind die Informationen aus den Bugreports

in Bugzilla ebenfalls in der Datenbank vertreten. Die Bugreports werden über die

Tabelle cvsitemlogbugreport mit der cvsitemlog Tabelle verknüpft. Erfasst werden

u.a. Bug ID, Bug Status und Bug Severity als Bugreportdaten. Damit die

Datenbank gefüllt werden kann, müssen die notwendigen Informationen aus

einem CVS Repository und zugehörigem Bugzilla ausgelesen werden.

Der Importprozess von CVS Daten und Bugreports ist in Abbildung 3.2

dargestellt.

16

Abbildung 3.2: Database History Database
Importprozess[11]

Damit die Daten in einem CVS Repository extrahiert werden können, muss das

CVS Repository z.B. durch auschecken des Repositories heruntergeladen werden.

Daraufhin können die Log-Informationen der Dateien im Repository mithilfe des

CVS Programms extrahiert und in die Datenbank geschrieben werden. Der

nächste Schritt ist Bugreports aus Bugzilla herunterzuladen und sie mit den

zugehörigen cvsitems zu verknüpfen. Hierzu wird zunächst versucht, aus den Log-

Informationen der Dateien die Bug ID ausfindig zu machen. Diese haben kein

festes Format und das System versucht deshalb über einen regulären Ausdruck die

Bug ID zu finden. Ist sie gefunden, wird sie in die Tabelle cvsitemlogbugreport

geschrieben. Dieselbe Bug ID wird nun verwendet, um den Bugreport von

Bugzilla herunterzuladen. Die so erhaltenen Bugreports werden daraufhin in die

Datenbank geschrieben.

Mit der erstellten „Release History Database“ können Evulotionäre Aspekte einer

Software, wie z.B. Systemwachstum oder Änderungsrate des Systems analysiert

werden. Ebenso ist es möglich, logisch gekoppelte Dateien über die Release

Historie ausfindig zu machen. Die gekoppelten Dateien hängen auch oft mit

Bugreports zusammen und so lassen sich Gruppen von Bugreports finden, welche

ein ähnliches Problem beschreiben. [11]

3.2 Automatische Transformation von Daten aus Software

Repositories

Die Software ATSR [12] hat die Funktion, die in Software-Repositories

gespeicherten Metadaten zu extrahieren und in einer Datenbank zu speichern. Die

so gespeicherten Daten können von anderen Programmen eingelesen und

weiterverarbeitet werden. Als Software-Repository kommen bei ATSR Git

Repositories in Frage.

Das Tool bietet dem Benutzer eine Benutzeroberfläche, welche hauptsächlich in

Java Swing entwickelt wurde. Zur Speicherung der Transformationsdaten in der

Datenbank verwendet es als SQL-Backend das MySQL-Datenbanksystem.

Die GUI enthält Felder, über die der Benutzer die gewünschte Transformation

durchführen kann. Darüber hinaus können Einstellungen bezüglich der

Datenbank vorgenommen werden.

17

3.2.1 Input- und Outputformat

Metadata Datenquelle Format

Issue CSV Parameter 1;Parameter 2;…;Parameter 22

Docu CSV Parameter 1;Parameter 2;Parameter 3

Commit Kommandozeilen-

output

<Hash>#<Urheber>#<Uhrzeit+Datum>#<Commit-Titel>

<Dateiliste>

Tabelle 3.1: Datenquellen und -format [13]

Als Input nutzt ATSR Issue- und Docudaten, welche jeweils im CSV Format

vorliegen müssen. Die Commitdaten werden aus der Terminalausgabe des Git

Kommandozeilenprogramms ausgelesen und transformiert. Die Commitausgabe

umfasst dabei wichtige Daten wie den Commithash bzw. Commit ID, Committitel

und eine Liste der Dateien, welche in dem Commit enthalten sind.

Die CSV Dateien werden zeilenweise geparst und die Daten werden Zeile für

Zeile in ihre jeweiligen Datenbanktabellen geschrieben. Für Issuedaten ist es die

„issuetable“, für Docudaten ist es die „docutable“.

Da die Commitdaten die umfangreichsten Daten beinhaltet, ist das

Datenbankformat dementsprechend komplex. In Abbildung 3.3 ist das

Outputformat für die Commitdaten dargestellt.

Die Commitdaten werden in drei Tabellen gespeichert: committable, usage,

filetable. „Hash“, „Urheber“, „Datum“ und „Committitel“ aus Tabelle 3.1 werden

in dieser Reihenfolge in die committable geschrieben. Die Dateien werden in der

filetable gespeichert. Die filetable speichert alle Dateien, die in allen Commits

vorkommen. Keine Datei kommt doppelt vor. Die Commits werden mit der

filetable über die usage Tabelle verbunden. Sie verknüpft die Commits und die in

ihnen enthaltenen Dateien.

18

Abbildung 3.3: Tabellen für die Commit-Metadaten [13]

filetable
<<pk>> id: INT
path: VARCHAR(255)

committable
<<pk>> id: VARCHAR(12)
author: VARCHAR(255)
date: DATE
message: LONGTEXT

usage1..* 0..*

3.3 SRM Plugin

SRMP [14][15] ist ein Tool, welches entwickelt wurde, um Data Mining auf Basis

der Metadaten eines Software Repositories zu betreiben und auf Basis dieses Data

Minings Coupled Changes zu identifizieren. Die Metadaten liegen in

Datenbanken im Format der ATSR Software vor. Genauer sind es die Commit

Metadaten, welche für das Data Mining verwendet werden. Als Data Mining

Algorithmus kommt FPGrowth zum Einsatz, was zum Ziel hat, die Frequent

Itemsets aus der Commitdatenbank zu extrahieren und diese wiederum in einer

Datenbank zu speichern, um weitere Zugriffe zu beschleunigen. Diese Frequent

Itemsets werden benutzt um Coupled Changes zu identifizieren. Der Benutzer legt

die Identifikation in Gang, indem er eine Datei in der GUI auswählt und das

SRMP startet daraufhin eine Suche in der für die Frequent Itemsets angelegten

Datenbank. Es werden alle Frequent Itemsets ausgelesen, die die ausgewählte

Datei beinhalten und alle Dateien dieser Frequent Itemsets werden in der GUI

gelistet. Diese Menge an Dateien definiert sich als Coupled Changes, denn es sind

die Dateien, welche zusammen mit der ausgewählten Datei geändert wurden.

In der aktuellsten Fassung des SRMP [13] wurden die ATSR Funktionen in das

Plugin in Form eines Wizards integriert. Dem Benutzer wurde es damit

ermöglicht, direkt im Plugin die notwendigen Datenbanktabellen für das Data

Mining zu generieren. Der Minimum-Support-Wert kann nun über den Wizard

eingestellt werden. Falls gewünscht, kann die Größe der Input-Daten für das Data

Mining über die Auswahl eines Committers eingeschränkt werden. Hierfür

werden die Committer mit den meisten Commits im Wizard aufgelistet. Durch

Auswahl eines Committers werden lediglich die Commits dieses Committers für

die Frequent Itemset Analyse in Betracht gezogen. Das MySQL-Backend wurde

für eine besser integrierte, eingebettete Datenbank ausgetauscht. Der Benutzer des

Plugins muss sich dank dieser Änderung nicht auch noch um das Aufsetzen eines

SQL Servers kümmern, womit die Installation des Plugins erleichtert wurde.

19

4 Anforderungen und Analyse

In diesem Kapitel wird erläutert, was die Anforderungen am Tool sind und es

wird analysiert, wie diese Anforderungen durchgesetzt werden können.

4.1 Anforderungen an das Tool

Das Tool hat folgende Anforderungen zu erfüllen:

1. Eclipse basierend: Eine Eclipse basierende Anwendung erleichtert das

Design einer GUI und vereinfacht die Wiederverwendung von

Komponenten aus anderen Eclipse Produkten oder Nutzung von

vorhanden GUI Komponenten entwickelt für die Eclipse Plattform. Ein

weiterer Bonus ist, dass das Tool ohne viel Aufwand auf anderen

Plattformen benutzt werden kann.

2. Import von Issuedaten: Für die Arbeit des Tools sind Issuedaten eine

Voraussetzung. Einlesen von Issuedaten im CSV Format muss möglich sein.

3. Import von Git Logs in eine Datenbank: Commit-Daten gehören zu den

wichtigsten Daten und erfordern eine persistente Speicherung in einer

Datenbank. Über Anwendungsneustarts können so dieselben Daten ohne

Neuberechnung wiederverwendet werden.

4. Nutzung von Frequent Itemsets Mining Algorithmus FPGrowth: Data

Mining Algorithmus benötigt für die Generierung von Coupled Changes.

5. Nutzung von Sequence Pattern Mining Algorithmus Prefixspan:

Alternative Data Mining Methode für die Generierung von Coupled

Changes.

6. Anzeigen von Issues: Die Issues sind im Tool passend aufzulisten.

20

7. Anzeigen von Coupled Changes in Relation zu Issues und zugehörige

Attribute: Die generierten Coupled Changes sollen im Tool mit ihren

Attributen wie beispielsweise Commit ID, Commit message und Autor

angezeigt werden.

8. Export der generierten Coupled Changes: Es soll möglich sein, generierte

Coupled Changes über die Benutzeroberfläche zu exportieren.

9. Coupled Changes nach Zeit, Committer und anderen Commit Attributen

filtrieren.

4.2 Analyse

Werden die Anforderungen analysiert, lassen sich gewisse Parallelitäten zwischen

dem Tool und SRMP aufzeigen, welche bei der Entwicklung des Tools ausgenutzt

werden können. Anforderungen zwei, drei und vier sind in ähnlicher Form bereits

in SRMP integriert und können mit minimalen Änderungen wiederverwendet

werden. Die Nutzung von Prefixspan im Tool (Punkt 5) lässt sich in das

bestehende Framework SRMPs integrieren, da mit FPGrowth bereits der

Grundpfeiler für weitere Data Mining Algorithmen gelegt wurde. SRMP hat auch

Funktionen integriert, welche zum Anzeigen von Issues und Coupled Changes

verwendet werden. Diese sind jedoch SRMP spezifisch und deshalb nicht auf das

Tool anwendbar.

21

5 Konzept und Architektur

In diesem Kapitel wird neben dem Lösungsansatz zur Erzeugung von Coupled

Changes für Issue Tasks auch das Workflow und die Architektur des Tools

beschrieben.

5.1 Lösungsansatz zum Erzeugen von Coupled Changes für Issue

Tasks

Der Ansatz, der von der Release History Database (siehe Kapitel 3) genutzt wird,

um Bugreport IDs aus den CVS Log-Dateien zu extrahieren, kann auch für das

Finden von Issue IDs in Git-Logs genutzt werden. Extrahiere hierzu erst alle

Commit IDs, die eine Referenz zu einer bestimmten Issue besitzen. Die erstellte

Liste kann dann zur Erzeugung von Coupled Changes für die Issue genutzt

werden. Dieser Prozess wird in Kapitel 6.3 ausführlich beschrieben.

5.2 Workflow

In Abbildung 5.1 ist der Workflow des Tools abgebildet.

Über den Wizard werden die Commits und danach die Issues importiert. Die

Daten werden in die Datenbank geschrieben. Daraufhin wird das Data Mining mit

22

Abbildung 5.1: Workflow des Tools

den Input-Daten, die aus der Datenbank ausgelesen werden, gestartet. Die

Output-Daten des Mining-Prozesses werden zurück in die Datenbank

geschrieben.

Durch Auswahl einer Issue wird dessen ID in die Datenbank übergeben und es

werden Coupled Changes mit Referenz zur ID ausgegeben.

5.3 Framework

Wie bereits in Abschnitt 4.2 erwähnt, enthält SRMP einen Unterbau für die

Verwendung von FPGrowth, welches sich eignet, um weitere Data Mining

Algorithmen, wie Prefixspan, zu integrieren. Prefixspan lässt sich durch Nutzung

dieses Unterbaus in das Framework integrieren. Das resultierende Framework ist

in Abbildung 5.2 abgebildet.

Über das Framework kann das Tool die Metadaten für die Commits, welche in

einer Datenbank abgespeichert sind, auslesen und weiterverwenden. Die dabei

verwendeten Tabellen sind die committable und filetable (vgl. Abbildung 3.3).

Damit der Data Mining Algorithmus die Daten verwenden kann, werden diese

aus den Tabellen ausgelesen und in ein Data Mining Input Objekt (DMIO)

umgeformt (siehe Kapitel 5.4.1). Als Output wird ein Data Mining Result Objekt

23

Wizard

committable filetable

FPGrowth

Prefixspan

Result Objekt

outputtable

Data Mining
Input Objekt

Abbildung 5.2: Framework für das Data-Mining

(DMRO) von den Algorithmen erzeugt. Dieses Objekt wird im letzten Schritt in

eine Output-Tabelle geschrieben. Durch diese Tabelle sind die Ergebnisse des Data

Minings für die Berechnung von Coupled Changes zugänglich.

5.4 Input und Output Objekte für das Data Mining

Sowohl das Data Mining Input Objekt als auch das Data Mining Result Objekt sind

Objekte, welche für beide Algorithmen ein identisches Format haben. Dies

erleichtert die Integration von Prefixspan in das bestehende Framework, da keine

algorithmenspezifische Funktionen und Pfade implementiert werden müssen.

5.4.1 Data Mining Input Objekt

Das DMIO speichert alle relevanten Informationen, die für das Arbeiten der Data

Mining Algorithmen notwendig sind. Die Informationen werden vom Wizard

(siehe Kapitel 3.3) in Form der committable und filetable bereitgestellt (siehe

Abbildung 3.3).

Commit ID i, Itemi 1, …., Itemi l

Commit ID j, Itemj 1, …., Itemj m

Commit ID k, Itemk 1, …., Itemk n

….

Tabelle 5.1: Format eines Data Mining Input Objekts

Die aus den Datenbanktabellen extrahierten Daten sind eine Liste aller Commits

und die ihnen zugehörigen, in den Commits geänderten Dateien (siehe Tabelle

5.1). Die Data Mining Algorithmen nutzen nun dieses Objekt als

Transaktionsdatenbank im Fall FPGrowth und als Sequenzdatenbank im Falle

Prefixspans.

5.4.2 Data Mining Result Objekt

Die Resultate der Data Mining Algorithmen müssen in einer Form vorliegen,

welche die Berechnung von Coupled Changes vereinfacht und eine persistente

Speicherung möglich macht.

Das DMRO speichert hierzu die Ergebnisse der Data Mining Algorithmen als

24

Vorbereitung für die persistente Speicherung in einer Datenbank ab. Die

Algorithmen geben die Ergebnisse als Liste zurück, deren Format in Tabelle 5.2 zu

sehen ist.

Supporti , Lengthi , Commit IDi 1 , .. , Commit IDi l1 , Itemi 1 , … Itemi l2

Supportj , Lengthj , Commit IDj 1 , .. , Commit IDj m1 , Itemj 1 , … Itemj m2

Supportk , Lengthk , Commit IDk 1 , .. , Commit IDk n1 , Itemk 1 , … Itemk n2

….

Tabelle 5.2: Format eines Data Mining Result Objekts

Es ist zu erkennen, dass ein jeder Eintrag in der Liste mit Support und Length

beginnt, welche beide Zahlen sind. Die erste Zahl stellt den Support dieses

Eintrags dar. Die Interpretation dieser Zahl ist sowohl bei FPGrowth als auch bei

Prefixspan ähnlich. In FPGrowth bedeutet die Zahl, in wievielen Transaktionen

die gefundenen Frequent Pattern vorkommen. In Prefixspan bedeutet sie, in

wievielen Sequenzen die gefundenen Pattern vorkommen. Die zweite Zahl

beschreibt jeweils die Anzahl der gefundenen Pattern. Auf diese beiden Zahlen

folgt eine Liste von Commit IDs, der Länge von der ersten Zahl Support. Die

Commit IDs entsprechen der Transaktions ID bzw. Sequenz ID von FPGrowth

und Prefixspan. Sie bekräftigen die Zugehörigkeit der Patterns zu den

entsprechenden Commits. Ist diese Relation nicht vorhanden, ist eine Berechnung

der Coupled Changes nicht möglich. Dies ist der Grund, weshalb die Liste der

Commit IDs zwingend für jeden Eintrag in der Ergebnismenge vorhanden sein

muss. Auf die Liste der Commit IDs folgt die Liste der gefundenen Pattern. Diese

Liste hat die Länge der zweiten Zahl, also der Anzahl der gefundenen Pattern. Die

ersten zwei Zahlen dienen somit als Index und beschreiben die Position und

Länge von Commit IDs und Patterns.

Weitere wichtige Variablen, die von dem DMRO bereitgestellt werden, sind

maxsupport und maxlength. Sie definieren, wie aus dem Namen abgeleitet

werden kann, den größten Support und Länge, welche in der Ergebnismenge

gefunden werden konnte. Sie werden für die Erzeugung der Output-Tabelle

benötigt.

25

5.5 Format der Output-Tabelle

Das DMRO, welches durch die Anwendung der Data Mining Algorithmen auf das

DMIO entsteht, wird zur persistenten Speicherung in eine Datenbank geschrieben.

Die entstehende Output-Tabelle beinhaltet die vollständigen Informationen des

DMRO.

Da die Einträge im DMRO jeweils eine variable Anzahl von Commit IDs und

Patterns besitzen können, muss die Output-Tabelle in Anbetracht dieser

Variabilität erstellt werden. Hier kommen die maxsupport und maxlength

Variablen des DMRO zum Einsatz (siehe Abschnitt 5.4.2). Der maxsupport Wert

bestimmt die Anzahl der Commit ID Spalten, wohingegen der Wert von

maxlength die Anzahl der Spalten für die gefundenen Items, also den Dateien,

bestimmt. Dadurch können die Einträge im DMRO in die Output-Tabelle

abgebildet werden.

5.5.1 Schreiben des Output Objekts in die Output-Tabelle

Jeder Datensatz der Output-Tabelle entspricht einem Eintrag im DMRO. Es

werden zuerst der Support und Length Wert in die Tabelle geschrieben. Darauf

folgen Commit IDs und Items.

Wie bereits beschrieben, enthält nicht jeder Eintrag die volle Anzahl von Commit

IDs und Items, deshalb werden die Commit IDs nach der Reihe in die Commit ID

Spalten der Output-Tabelle geschrieben. Falls die Anzahl der Commit IDs geringer

ist als maxsupport, werden die restlichen Commit ID Spalten der Tabelle mit null

Werten beschrieben, um kenntlich zu machen, dass diese Spalten leer sind und

nicht verwendet werden sollen. Dasselbe Vorgehen wird analog für die Items

angewandt, nur werden sie in die Item Spalten geschrieben und nicht in die

Commit ID Spalten.

Nachdem jeder Eintrag im DMRO in einem Datensatz der Output-Tabelle

gespeichert ist, ist das Schreiben in die Tabelle beendet.

5.6 Prefixspan in SPMF

Als Implementation für Sequential Pattern Mining wurde eine Implementation

26

von Prefixspan aus dem SPMF Framework (siehe Kapitel 2.4) ausgewählt. In

SPMF sind verschiedene Implementationen des Algorithmus integriert. Die erste

basiert auf einem Input aus Zahlen und die zweite auf einem Input von Strings.

Im Folgenden soll diskutiert werden, wie der Input für Prefixspan (SPMF)

aufgebaut ist und auf Basis dieser Erkenntnisse, die Auswahl der Implementation

begründet werden.

5.6.1 Input von Prefixspan

Wie bereits in Kapitel 2.4 beschrieben, benutzt das SPMF Framework als Input für

die implementierten Daten herkömmliche Textdateien. Das Format und der Inhalt

der Textdateien sind je nach Algorithmus unterschiedlich. Für Prefixspan gilt das

in Tabelle 5.3 definierte Format.

<Itemset 1> -1 <Itemset 2> -1 <Itemset i-1> -1 <Itemset i> -1 -2

<Itemset 1> -1 <Itemset 2> -1 <Itemset j-1> -1 <Itemset j> -1 -2

<Itemset 1> -1 <Itemset 2> -1 <Itemset k-1> -1 <Itemset k> -1 -2

….

Tabelle 5.3: Prefixspan Input-Textdateiformat

Die Textdatei besteht aus einer Sequenzdatenbank mit je einer Sequenz pro Zeile.

Jede Sequenz besteht aus einem oder mehreren Itemsets. Itemsets wiederum

bestehen aus mindestens einem Item. Die Items werden mit einem Leerzeichen

voneinander getrennt. Bei Prefixspan_int bestehen Items ausschließlich aus

positiven Zahlen, wohingegen bei Prefixspan_string die Items aus einer

Zeichenkette bestehen. Jedoch gilt bei beiden, dass Items in Itemsets mit

Leerzeichen voneinander getrennt werden. Würde man Itemsets auch mit einem

Leerzeichen voneinander trennen, gäbe es keine Möglichkeit die verschiedenen

Itemsets voneinander zu unterscheiden. Deshalb werden sie mit einer Zahl

getrennt, die nicht in Itemsets vorkommen kann oder vorkommen sollte. Da

Itemsets in Prefixspan_int aus positiven Zahlen bestehen, wird zur Trennung eine

negative Zahl, „-1“, verwendet. Damit der Algorithmus weiß, wann eine Sequenz

beendet ist, erwartet es eine weitere negative Zahl, „-2“.

Die Trennzeichen für Itemsets („-1“) und Sequenzen („-2“) gelten sowohl für

Prefixspan_int als auch Prefixspan_string.

27

5.6.2 Auswahl der Implementierung

Da Prefixspan als Input mit Dateipfaden arbeiten muss und diese als

Zeichenketten vorliegen, ist eine Verwendung von Prefixspan basierend auf Items

mit Strings naheliegend.

Bei der Verwendung von Prefixspan_int müssten alle Dateipfade, die dem

Algorithmus als Input übergeben werden, auf positive Zahlen abgebildet werden.

Ist das Data Mining durchgelaufen, müssen diese Dateien wieder von Zahlen

zurück in Strings umgewandelt werden, damit die Daten im Rest des Tools

weiterverwendet werden können. Dies stellt einen unnötigen Mehraufwand dar,

der mit Strings wegfällt. Außerdem stellt die Translation von Strings in Integers

und wieder zurück eine weitere potenzielle Fehlerquelle dar.

28

6 Implementierung

In diesem Kapitel wird die Implementierung des Tools unter Berücksichtigung

des angestrebten Konzepts und der Architektur beschrieben.

6.1 CommitTableData

Die CommitTableData wird mit dem Lesen der Input-Datenbank erzeugt und

bildet das Format der Input-Datenbank in einer Instanzvariable res ab (siehe

Tabelle 5.1). Zusätzlich besitzt sie ein Feld (list_commitID) zum seperaten

abspeichern einer Commit ID Liste für den Data Mining Algorithmus Prefixspan.

Eine weitere Funktion dieser Klasse ist, das Objekt res für die Verwendung als

Sequenzdatenbank vorzubereiten (siehe 6.2.1).

6.2 Integrierung von Prefixspan in das Framework

Da Prefixspan ein bestimmtes Input-Format besitzt (vgl. Kapitel 5.6.1), müssen die

Input-Daten vor der Übergabe an Prefixspan transformiert werden und Prefixspan

bringt die Daten dann in sein internes Format. Die gefundenen Pattern müssen

ebenfalls transformiert werden, um die Ergebnisse im Rest des Frameworks

nutzen zu können.

6.2.1 Transformation der Input-Daten für Prefixspan

Die DMIO Daten des CommitTableData Objekts, können im Gegensatz zu

FPGrowth nicht direkt verwendet werden. Wie in Kapitel 5.4.1 beschrieben,

besteht ein Eintrag im DMIO aus einer Commit ID und den im Commit

geänderten Dateien. FPGrowth nimmt die Daten des CommitTableData Objekts

ohne Veränderung an. Bei Prefixspan ist dies nicht ohne weiteres möglich, da

Prefixspan das in Tabelle 5.3 beschriebene Inputformat erwartet.

Um die Daten in das gewünschte Format zu bringen ist es zunächst nur nötig eine

neue Liste zu generieren, bei dem jeweils alle Commit IDs fehlen. Die zuständige

29

Methode der CommitTableData get_fileIDs() ist in Listing 6.1 abgebildet.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

public List<List<String>> get_fileIDs() {
List<List<String>> ret = new ArrayList<>(res.size());
list_commitID = new ArrayList<>();
for(List<String> it : res) {

ArrayList<String> t = new ArrayList<>();
for(int i=0; i<it.size(); i++) {

if(i==0)
list_commitID.add(it.get(0));

else
t.add(it.get(i));

}
ret.add(t);

}
return ret;

}

Listing 6.1: Transformation der Input-Daten für Prefixspan

Die Variable ret speichert die transformierten Input-Daten, welche wie oben

beschrieben umgewandelt werden. In Zeile 8 werden die zu einem Commit

gehörende Commit ID in einer seperaten Instanzvariable list_commitID

gespeichert. Die restlichen Daten werden in Zeile 12 der Variablen ret übergeben.

Somit sind in ret nur noch Listen aus Dateipfaden gespeichert. Die Instanzvariable

list_commitID ist von besonderer Wichtigkeit, denn sie ist erforderlich um den

berechneten Sequential Patterns die zugehörigen Commit IDs hinzuzufügen. Dies

ist erforderlich, damit sich Prefixspan in das in Kapitel 5.3 beschriebene

Framework integrieren kann.

6.2.2 Laden von transformierten Input-Daten

In Kapitel 5.6.1 wurde das Input-Format für Prefixspan und in Kapitel 6.2.1 die

Transformation der Input-Daten für Prefixspan erläutert. In der ursprünglichen

SPMF Implementation unterstützt Prefixspan lediglich das Einlesen von

Textdateien. Die Input-Daten liegen jedoch als DMIO vor, welche nicht von

Prefixspan verstanden werden. Deshalb wurde Prefixspan um eine Methode

erweitert, welche die transformierten Input-Daten laden und diese in das

Prefixspan Input-Format überführen kann.

Die SequenceDatabase Klasse ist unter anderem für das Laden von Textdateien

zuständig. Sie wurde um die Methode load_files() erweitert, welche die

transformierten Input-Daten akzeptiert (siehe Listing 6.2).

30

1
2
3
4
5
6

public void load_files(List<List<String>> files) {
for(List<String> lfiles : files) {

String[] tokens = format_files(lfiles);
addSequence(tokens);

}
}

Listing 6.2: Laden und Umwandeln der Prefixspan Input-Daten

Für jede Liste aus Dateipfaden (Zeilen 2-5) wird eine Methode format_files()

aufgerufen. Die format_files() Methode überführt die in lfiles beinhalteten Strings in

das von Prefixspan erwartete Format. Nach jedem Item/ Dateipfad wird ein „-1“

String hinzugefügt um das Itemset als beendet zu markieren. Am Schluss wird

zusätzlich noch eine „-2“ angehängt, um das Ende der Sequenz zu markieren.

Nachdem format_files() die Überführung beendet hat, gibt er die umgewandelte

Sequenz als String Array tokens zurück. Die Sequenz wird zum Schluss an die

SequenceDatabase hinzugefügt (Zeile 4).

Ist die Methode load_files() durchgelaufen, sind die Input-Daten in der

Sequenzdatenbank von Prefixspan im benötigten Format vorliegend.

6.2.3 Transformation der gefundenen Sequential Patterns

Nachdem Prefixspan über die runAlgorithm() Methode ausgeführt wurde, werden

die gefundenen Sequential Patterns von der Methode als SequentialPatterns

Objekt zurückgegeben.

Für die Berechnung der Coupled Changes ist es erforderlich zu Wissen, aus

welcher Sequenz der Sequenzdatenbank die gefundenen Sequential Patterns

stammen. Prefixspan etikettiert jede Sequenz in einer Sequenzdatenbank mit einer

eindeutigen internen Nummer. Angefangen bei Null, welches der ersten Sequenz

entspricht, wird so jede Sequenz durchnummeriert. Diese Nummer wird auch

Sequenz ID genannt. Sie ist vergleichbar mit der Transaktions ID FPGrowths.

Für jedes gefundene Pattern wird gespeichert in welchen Sequenzen es jeweils

vorkommt. Somit besitzt jedes Pattern eine Liste aus Sequenz IDs über die der

Ursprung des Patterns in der Sequenzdatenbank ersichtlich ist. Da jedoch für die

Berechnung der Coupled Changes ein Objekt benötigt wird, welches dem Format

eines DMRO entspricht, müssen die Patterns angepasst werden.

31

In Kapitel 6.2.1 wurde beschrieben, welche Form die Input-Daten für Prefixspan

haben. Bevor sie für Prefixspan transformiert werden, besteht jede Liste in den

Input-Daten aus einer Commit ID und Dateipfaden. Nach der Transformation

fehlt jeder Liste die Commit ID. Die Listen stellen Sequenzen der

Sequenzdatenbank dar und werden wie beschrieben durchnummeriert. Wie aus

Listing 6.1 ersichtlich ist, werden die Commit IDs der Sequenzen in die ArrayList

list_commitID kopiert. Somit herrscht eine Eins-zu-eins-Beziehung zwischen

Position der Commit ID in list_commitID und der Sequenz ID der Sequenz. Dieser

Umstand wird ausgenutzt, um aus der Sequenz ID die zugehörige Commit ID

zurückzugewinnen.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

public List<List<String>> getPatterns(){
List<List<String>> patterns = new ArrayList<>();
maximum_support = 0;
maximum_item_length = 0;
for(List<SequentialPattern> level : levels) {

for(SequentialPattern sequence : level) {
List<String> subp = new LinkedList<>();
subp.add(Integer.toString(sequence.getAbsoluteSupport()));
subp.add(Integer.toString(sequence.size()));
Set<Integer> sequenceIDs = sequence.getSequencesID();
List<Itemset> itemset = sequence.getItemsets();
List<String> items_string = new ArrayList<>(itemset.size());
itemset.forEach(set -> set.getItems().forEach(item ->

items_string.add(item)));
List<String> sequenceIDs_string =

new ArrayList<>(sequenceIDs.size());
if(mapSeqIDtoCommitID != null)

for(int i : sequenceIDs) {
sequenceIDs_string

.add(mapSeqIDtoCommitID.get(i));
}

subp.addAll(sequenceIDs_string);
subp.addAll(items_string);
if(maximum_support < sequence.getAbsoluteSupport())

maximum_support =
sequence.getAbsoluteSupport();

if(maximum_item_length < itemset.size())
maximum_item_length = itemset.size();

patterns.add(subp);
}

}
return patterns;

}

Listing 6.3: Transformation der Sequential Patterns

In Listing 6.3 ist der Quellcode abgebildet der aus den gefundenen Sequential

Patterns des SequentialPatterns Objekts ein DMRO generiert. Es wird über jedes

Pattern iteriert und für diese ein Eintrag für das DMRO zusammengebaut. Hierfür

wird der Support-Wert und die Anzahl der Items im Pattern in der Liste subp

gespeichert. Daraufhin müssen laut dem DMRO-Format die Commit IDs und die

Items folgen.

32

Wie beschrieben sind die Commit IDs als Zahl codiert. Die Codierung wird in den

Zeilen 18-21 mit Hilfe der Instanzvariable mapSeqIDtoCommitID rückgangig

gemacht. Die Instanzvariable entspricht der list_commitID Liste. Durch

Ausnutzung der Eins-zu-eins-Beziehung wird aus den Sequenz IDs zugehörige

Commit IDs gewonnen und der Liste subp hinzugefügt (Zeile 22).

Die Items werden aus den Itemsets über den Ausdruck in Zeile 13-14 gewonnen.

Es wird über alle Itemsets iteriert und die Items der Reihe nach in die Liste

items_string kopiert. Die items in items_string werden nach den Commit IDs in die

Liste subp eingefügt. Dadurch ist ein vollständiger Eintrag für das DMRO

zusammengebaut, welcher dann in die patterns Liste eingefügt wird. Ist die

Iteration beendet enthält patterns das fertige DMRO und wird mit Beendigung der

Methode getPatterns() zurückgegeben.

Neben der Erzeugung der Einträge wird während der Iteration der maximale

Support (Zeile 24-26) und die maximale Item-Anzahl (Zeile 27-28) in den

gefundenen Sequential Patterns berechnet. Diese werden für die Erstellung und

das Beschreiben der Output-Datenbank benötigt (siehe Kapitel 6.7.2).

6.2.4 Konstruktor und Ausführung des Algorithmus

Wie in Kapitel 6.2.3 beschrieben, wird eine Liste der Commit IDs benötigt um die

Codierung der Sequenz IDs rückgangig zu machen. Die Liste wird bei Erzeugung

eines Prefixspan Objekts dem Konstruktor als Parameter übergeben und in der

Instanzvariable mapSeqIDtoCommitID gespeichert (Listing 6.4, Zeile 2).

Der Algorithmus wird über die runAlgorithm() Methode gestartet. Als Parameter

erhält sie transformierte Input-Daten (Variable files) und ein Minimum-Support-

Wert. Die SequenceDatabase wiederum transformiert files in das Prefixspan

Format und der Algorithmus wird mit der SequenceDatabase ausgeführt (Zeile

10).

33

1
2
3
4
5
6
7
8
9
10
11
12
13

public AlgoPrefixSpan_with_Strings(ArrayList<String> mapSeqIDtoCommitID) {
this.mapSeqIDtoCommitID = mapSeqIDtoCommitID;

}

public SequentialPatterns runAlgorithm(List<List<String>> files,
double minsupRelative) throws IOException {

SequenceDatabase sequenceDatabase = new SequenceDatabase();
sequenceDatabase.load_files(files);
...
prefixSpan(sequenceDatabase, null);
...
return patterns;

}

Listing 6.4: Prefixspan – Konstruktor und runAlgorithm()

6.3 Generierung von Coupled Changes für Issue Tasks

Im SRMP existiert eine Implementation zur Generierung von Coupled Changes

(siehe Kapitel 3.3). Die Coupled Changes werden jedoch über Quellcodepfade im

Eclipse Package Explorer generiert und derselbe Prozess ist deshalb nicht für das

Tool geeignet. Die Generierung der Coupled Changes von Issue Tasks besteht aus

einer Folge von Schritten, die aufeinander aufbauen. In diesem Abschnitt werden

diese Schritte und ihre Implementation erläutert.

6.3.1 Filterung von Commits die im Zusammenhang mit Issues stehen

Da eine Verbindung zwischen Issues und Commits hergestellt werden muss, um

Coupled Changes zu generieren, ist der erste Schritt folglich das Herausfiltern der

Commits, welche im Zusammenhang mit Issues stehen. Die Commitdaten sind in

der Datenbank abgespeichert und müssen auch von dort abgefragt werden.

Ein Commit hängt mit einem Issue zusammen, falls sich in der Commitmessage

ein Hinweis auf eine Issue finden lässt. Ein solcher Hinweis ist meistens die Issue

ID der Issue. Die Commitmessage lässt sich in der Datenbanktabelle committable

finden und über eine SQL-Abfrage lassen sich die Commits aus der Tabelle

herausfiltern. Die SQL-Abfrage ist in Listing 6.5 dargestellt.

1
2
3

SELECT id
FROM committable
WHERE message LIKE '%#<Issue ID>%'
OR message LIKE '%refs <Issue ID>%'

Listing 6.5: Auslesen von Commits die in Relation zu Issues stehen

34

Über die SQL-Abfrage werden aus der committable alle Commit IDs selektiert,

welche in ihrem message Feld eine Issue ID referenzieren. Hierzu wird der LIKE

Operator verwendet mit dessen Hilfe sich Muster in Feldern finden lassen. Kommt

eine Issue ID in der Form „#<Issue ID>“, oder „refs <Issue ID>“ im message Feld

der Tabelle vor, dann referenziert der Commit eine Issue. Das in der

Where-Klausel vorkommende „<Issue ID>“ stellt offensichtlich eine Zahl dar, die

eine Issue referenziert.

6.3.2 Bestimmung der Commitspaltenanzahl

Die Bestimmung der Commitspaltenanzahl ist erforderlich, da eine SQL-Abfrage

über alle CommitID Spalten der Output-Tabelle für das weitere Vorgehen nötig

sind. Hierfür wird zuerst lediglich eine Zeile mit allen Feldern aus der Output-

Tabelle ausgelesen. Dies wird über die SQL-Abfrage „SELECT * FROM

outputtable LIMIT 1“ bewerkstelligt. Das zurückgegebene ResultSet wird an die

buildWhereClause() (siehe Listing 6.6) Methode der DBConnection Klasse

übergeben. Diese Methode baut aus dem ResultSet, welches wie beschrieben aus

lediglich einem Record besteht.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

private String buildWhereClause(String val, int[] icount, ResultSet
result) throws SQLException {

ResultSetMetaData metaData = result.getMetaData();
...
int count = 0;
for (int i = 4; i <= metaData.getColumnCount(); i++) {

if (metaData.getColumnName(i).contains(val))
count++;

}
...
for (int i = 1; i < count; i++)

whereclause.append(val + i + " LIKE ? OR ");
whereclause.append(val + count + " LIKE ?");
...
return whereclause.toString();}

Listing 6.6: Aufbau der WHERE-Klausel zur Auslesung von Commit IDs

Der Parameter val entspricht „CommitID“. Aus dem ResultSet werden nach

CommitID Spalten gesucht und die Anzahl gezählt (Listing 6.6). Mit diesen

Informationen kann die WHERE-Klausel gebaut werden. Hierfür sind die Zeilen

11-13 zuständig. Es entsteht eine WHERE-Klausel die das Format „CommitID1

LIKE ? OR … CommitIDN LIKE ?“, je nachdem wie viele Commit ID Spalten in

35

der Output-Tabelle existieren.

6.3.3 Auslesen der Data Mining Resultate aus der Datenbank

Als Vorschritt zur Generierung von Coupled Changes, müssen nun die Ergebnisse

des Data Mining Prozesses aus der Datenbank ausgelesen werden, in die sie

geschrieben wurden (vgl. Kapitel 5.5 & 5.5.1). Da das DMRO (vgl. Kapitel 5.4.2) in

die Output-Tabelle geschrieben wird, müssen die Daten auch wieder von dort

ausgelesen werden.

Im vorigen Kapitel(6.3.2) wurde die WHERE-Klausel für die benötigte Abfrage

gebaut. Der WHERE-Klausel fehlen jedoch noch die notwendigen Parameter für

die SQL-Abfrage. Eine Beispielhafte SQL-Abfrage ist in Listing 6.7 abgebildet. Die

Parameter ersetzen die Fragezeichen in der Abfrage.

1
2
3
4
5

SELECT *
FROM outputtable
WHERE CommitID1 LIKE ?
OR CommitID2 LIKE ?
OR CommitID3 LIKE ?

Listing 6.7: Beispiel SQL-Abrage zum Auslesen der Output-Tabelle

In diesem Beispiel hat die Output-Tabelle lediglich drei Commit ID Spalten,

welche von eins bis drei durchnummeriert sind. Selektiert werden alle Felder der

Datenbanktabelle, welche die gesuchten Parameter enthalten. Die Commit IDs,

welche über die SQL-Abfrage in Listing 6.5 bereitgestellt werden, stellen die

benötigten Parameter dar.

1
2
3
4
5

SELECT *
FROM outputtable
WHERE CommitID1 LIKE ?
...
OR CommitIDN LIKE ?

Listing 6.8: SQL-Abrage zum Auslesen der Output-Tabelle

Die SQL-Abfrage in Listing 6.7 ist, wie bereits dargelegt, ein Beispiel. Im

Allgemeinen hängt die genau Form der SQL-Abfrage von der WHERE-Klausel ab.

Im Beispiel besteht sie aus einer Abfrage über drei Commit ID Spalten. Im

allgemeinen Fall wird sie wie in Kapitel 6.3.2 beschrieben zusammengestellt und

36

hat eine, wie in Listing 6.8 abgebildete Form. Die Form ist bedingt durch den

Minimum-Support-Wert. Verschiedene Minimum-Support-Werte bedeuten

unterschiedliche Output Tabellen und unterschiedliche Output Tabellen bedeuten

eine unterschiedliche Anzahl an Commit ID Spalten.

Um nun die mit den Issues gekoppelten Dateiänderungen aus der Output-Tabelle

zu berechnen, ist es erforderlich, die in Listing 6.8 abgebildete SQL-Abfrage mit

Commit ID Parametern zu bestücken. Wie beschrieben werden diese über die in

Listing 6.5 abgebildete SQL-Abfrage erhalten. Da die SQL-Abfrage eine Liste von

Commit IDs zurückgibt, muss über diese Liste iteriert werden und die Parameter

der SQL-Abfrage in jeder Iteration angepasst werden. Der zuständige Quellcode

ist in Listing 6.9 zu sehen.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

while (commit_result.next()) {
String commitID = commit_result.getString(1);
for (int i = 1; i <= itemcount[0]; i++)

output_statement.setString(i, commitID);
output_statement.executeQuery();
output_result = output_statement.getResultSet();
ResultSetMetaData data = output_result.getMetaData();
int numcols = data.getColumnCount();
while (output_result.next()) {

List<String> row = new ArrayList<>(numcols); int i = 2;
while (i <= numcols) {

if (output_result.getString(i) != null && !
output_result.getString(i).equals("null"))

row.add(output_result.getString(i));
i++;

}
res.add(row);}}

Listing 6.9: Erzeugung der Coupled Changes

Die äußerste While-Schleife iteriert, wie beschrieben, über die Commit IDs. In den

Zeilen 3-4 werden die Parameter zur SQL-Abfrage (Listing 6.8) gesetzt. Alle

Parameter der SQL-Abfrage werden auf den aktuellen Wert der iterierten gesetzt.

Nach diesem Schritt ist die Abfrage vollständig und kann dem Datenbanksystem

zum ausführen übergeben werden (Zeile 5). Das Resultat der Abfrage wird in der

Variablen output_result gespeichert. Es besteht aus allen Datensätzen der Output-

Tabelle, welche die aktuelle Commit ID in einer ihrer Commit ID Spalten enthält.

In den Zeilen 9-17 wird über das Ergebnis der Abfrage bzw. output_result iteriert.

Die Daten der Records werden in der Variablen row gespeichert (Zeile 14). Da die

Felder der Output-Tabelle nicht alle mit validen, brauchbaren Daten beschrieben

37

sind, werden nur diejenigen Felder gespeichert, welche nicht null sind. Schließlich

wird row in der Liste res gespeichert und die Iteration fährt wieder in Zeile 9 fort,

solange bis alle Datensätze von output_result kopiert sind.

Die Tatsache, dass über mehrere Commit IDs iteriert wird und mit diesen Commit

IDs jeweils SQL-Abfragen in der Output-Tabelle getätigt werden, kann zu

Duplikaten in res führen. Es kann nicht ausgeschlossen werden, dass ein Teil der

Datensätze identisch ist. Um Duplikate zu vermeiden, ist die Variable res vom

Datentyp Set, denn es können keine zwei identischen Objekte in ihr vorkommen.

Die Variable res ist ein Teil des DMRO, da es dasselbe Format besitzt (vgl. Tabelle

5.2). Die in res gespeicherten Datensätze aus der Output-Tabelle repräsentieren die

Coupled Changes die zu einer Issue gehören. Um auf die berechneten Coupled

Changes von anderen Klassen zugreifen zu können, wird die Instanzvariable

sqlprocedureInput der DBConnection Klasse auf die Referenz der lokalen Variable

res gesetzt.

6.3.4 Zusammenfassung

Zur Erzeugung von Coupled Changes für Issue Tasks sind mehrere aufeinander

aufbauende Schritte erforderlich. Die erforderlichen Schritte wurden in den

Kapiteln 6.3.1-6.3.3 erläutert. Diese Schritte sind Teil der ReadOutputTable2()

Methode der DBConnection Klasse. Als Input erhält sie die Issue ID einer Issue,

die zur Generierung einer Liste von Commits aus der Datenbank benutzt wird.

Die Commits stehen dabei im Zusammenhang mit der Issue. Die Commit IDs der

Commits wird benutzt, um in der Output-Tabelle alle Sequenzen bzw.

Transaktionen herauszufiltern, an denen sie beteiligt sind. Das Ergebnis ist ein

DMRO, dass die Informationen über die Coupled Changes beherbergt.

6.4 Implementierung der Benutzeroberfläche

Das Design der Bedienoberfläche folgt den Anforderungen an das Tool. Die

Oberfläche wurde in drei verschiedene Bereiche unterteilt:

• Bereich zur Anzeige von Issues

• Bereich zur Anzeige von Informationen zur ausgewählten Issue

• Bereich zur Anzeige von Coupled Changes und zugehörigen Informationen

Für die Repräsentation von verschiedenen Informationen werden SWT-Table

38

Objekte verwendet. Die Implementierung der Oberfläche und den Änderungen

am Wizard werden in den nächsten Kapiteln beschrieben.

6.4.1 IssuesPart

Die Issues, welche über die Wizard Komponente des SRMPs in die Datenbank

geschrieben werden, werden in der IssuesPart Part-Komponente angezeigt. Zur

Repäsentation der Daten wird eine SWT Tabelle verwendet, welche zwei Spalten

besitzt. Die erste Spalte trägt den Namen „ID“, die zweite „Issue Title“. Jede

vollständige Zeile in der Tabelle beinhaltet ein Paar aus einer Issue ID und dem

zugehörigen Issue Titel.

Wird eine Zeile vom Benutzer selektiert, dann wird der SelectionListener der

Tabelle ausgeführt. Dieser ist in Listing 6.10 abgebildet.

1
2
3
4
5
6
7

tableIssue.addSelectionListener(new SelectionAdapter() {
@Override
public void widgetSelected(SelectionEvent e) {

broker.post("DisplayIssues",
issues.get(tableIssue.getSelectionIndex()));

}
});

Listing 6.10: IssuesPart - SelectionListener der Tabelle

Die Instanzvariable issues beinhaltet eine Liste aus allen Issue-Informationen. Die

zugehörigen Issue-Informationen der ausgewählten Tabellenzeile werden über ein

Ereignis mit dem Topic „DisplayIssues“ versendet (Zeile 4). Da eine Eins-zu-eins-

Beziehung zwischen dem Tabellenindex und der Position der Issue in der

Instanzvariable issues besteht, wird dieser Index verwendet um die zugehörigen

Issue-Informationen aus issues zu extrahieren.

6.4.2 IssueInformationsPart

In der IssueInformationsPart werden Issue-Informationen detailliert aufgelistet.

Um die Informationen anzuzeigen, wird wieder eine SWT Tabelle verwendet. Die

Tabelle hat fünf Spalten mit den Namen:

• Issue ID

• Issue Status

• Issue Type

• Issue Date

39

• Issue Description

Des Weiteren ist im IssueInformationsPart ein Button mit der Aufschrift „SRM

Settings“ enthalten, über den der SRMP-Wizard aufgerufen werden kann. Wird

der Button ausgewählt, wird der in Listing 6.11 abgebildete SelectionListener

ausgeführt.

1
2
3
4
5
6
7
8
9
10
11
12
13

btn_srmsettings.addSelectionListener(new SelectionAdapter() {
@Override
public void widgetSelected(SelectionEvent e) {

SRMSettings.project_name = "maint_tools";
DBConnection.getDBConnection()

.setDatabase(SRMSettings.project_name);
Wizard w = new Wizard(ctx);
NWizardDialog wizardDialog = new NWizardDialog(shell,w);
ContextInjectionFactory.inject(wizardDialog, ctx);
...
wizardDialog.open();

}
});

Listing 6.11: IssueInformationsPart - SelectionListener von Button „SRM Settings“

Zunächst wird der Projektname in Zeile 4 auf „maint_tools“ gesetzt. Die

DBConnection wird daraufhin aufgefordert eine Verbindung zu der Datenbank

mit dem gesetzten Projektnamen aufzubauen. Die Instanzvariable ctx ist vom Typ

IEclipseContext und wird für Dependency Injection im Wizard benötigt (Zeile 7).

Im Wizard wird zur Kommunikation mit der IssuesPart ein IEventBroker benötigt.

Dieser kann ohne den IEclipseContext nicht direkt in den Wizard injiziert werden.

Ist die Konfiguration des Wizards beendet, wird der Wizard-Dialog geöffnet (Zeile

11).

6.4.3 CoupledChangesPart

Für Issue Tasks berechnete Coupled Changes werden in der CoupledChangesPart

angezeigt. Dieser Part ist in zwei Tabellen unterteilt. Die erste Tabelle dient der

Anzeige von Coupled Changes, die zweite zur Anzeige von Commit-Information.

Dies sind die Commit-Informationen zu allen Commit IDs, die in der aktuell

ausgewählten Coupled-Changes-Gruppe vorkommen. Die Coupled-Changes-

Gruppen bestehen aus den Daten welche über die ReadOutputTable2() Methode der

DBConnection Klasse bereitgestellt werden (vgl. Kapitel 6.3). Jede Gruppe wird

über eine Liste von gekoppelten Dateipfaden definiert. Da die Gruppen jeweils zu

einem Coupled Change gehören, sind die Commit-Informationen für die Einträge

40

in einer Gruppe identisch. Gruppen sind durch leere Zeilen voneinander getrennt.

Die in der Commit Tabelle enthaltenen Spalten sind:

• Commit ID

• Commit Author

• Commit Date

• Commit Message

Des Weiteren enthält die CoupledChangesPart ein Button zum Export der

Coupled Changes (siehe Kapitel 6.6).

1
2
3
4
5
6
7
8
9
10

List<String> commit_ids = (List<String>) item.getData();
DBConnection db = DBConnection.getDBConnection();
String where_clause="WHERE id IN ("+buildWhereClause(commit_ids+")";
List<List<String>> commit_data=

db.ReadTable("committable",where_clause);
for(List<String> l : commit_data) {

TableItem ti = new TableItem(tableCommitData, SWT.NONE);
for(int i=0; i<tableCommitData.getColumnCount(); i++)

ti.setText(i, l.get(i));
}

Listing 6.12: CoupledChangesPart – Ausschnitt SelectionListener

Ist keine Tabellenzeile in der Coupled-Changes-Tabelle ausgewählt, dann ist die

Commit Tabelle leer, da nichts anzuzeigen ist. Wird eine Zeile ausgewählt, dann

wird in jedem Fall die Commit Tabelle geleert. Ansonsten würde die Tabelle bei

hinzufügen von neuen Elementen ständig wachsen und alte Elemente wären

immer noch vorhanden.

Weiterhin wird überprüft ob die Zeile ein Daten-Objekt besitzt (vgl. Kapitel 6.5.5),

falls nicht dann ist die Zeile leer und es wird nichts gemacht (außer dem Leeren

der Tabelle). Ein Daten-Objekt ist hierbei eine Liste von Commit IDs. Besitzt die

Zeile jedoch ein Daten-Objekt, dann wird der in Quellcode in Listing 6.12

ausgeführt. Das Daten-Objekt wird aus dem aktuell ausgewählten Tabellenzeile

entnommen und in die commit_ids Variable gespeichert (Zeile 1). Die

buildWhereClause() Methode baut aus der commit_ids Variablen einen String, in

dem die Commit IDs mit Kommas getrennt sind. Dieser String wird als Parameter

für die WHERE-Klausel in Zeile 3 eingefügt. Die WHERE-Klausel selektiert alle

Commit IDs, welche in der Variablen commit_ids vorkommen. Zusammen mit dem

Aufruf von db.ReadTable() (Zeile 5) entsteht eine SQL-Anweisung welche aus der

committable alle Commit-Informationen zurückgibt, welche die Commit IDs

41

enthalten. Die so erhaltenen Commit-Daten, werden Zeilenweise in die Commit

Tabelle eingefügt (Zeilen 6-10).

6.5 Kommunikation zwischen den Komponenten

In Kapitel 6.4 wurde die Benutzeroberfläche beschrieben und wie die

verschiedenen Parts ihre Komponenten mit Daten füllen, aber nicht woher sie

diese Daten erhalten. Dies wird in den nachfolgenden Kapitel erläutert.

6.5.1 Events

Die Parts reagieren auf Events die von dem Tool versendet werden. Die Events

und von welcher Komponente sie versendet werden, sind in Abbildung 6.1 zu

sehen.

Wie aus der Abbildung erkennbar ist, wird von dem Wizard ein Event mit dem

Topic „UpdateIssuePart“ an die IssuesPart Komponente versendet. Dieses Event

wird von dem Wizard in dem Zeitpunkt versendet, wenn die Transformation

einer Issue-CSV-Datei in die Datenbank beendet ist. Das Event signalisiert also,

dass die Issue-Daten in der Datenbank gespeichert sind und das auf diese über

SQL-Abfragen zugegriffen werden kann. Es wird auch von der E4LifeCycle

Klasse, beim Start der Anwendung versendet.

42

IssuesPart

IssueInformationsPart

CoupledChangesPart

E4LifeCycle

Wizard

UpdateIssuePart

DisplayIssues

DisplayCoupledChanges

Abbildung 6.1: Von den Komponenten gesendete und empfangene Events

Von der IssuesPart wird ein Event beim Auswählen einer Tabellenzeile versendet

(vgl. Listing 6.10). Das Topic lautet bei diesem Event „DisplayIssues“. Zusammen

mit dem Event werden die Issue-Informationen des ausgewählten Elements

versendet.

Die IssueInformationsPart versendet ein „DisplayCoupledChanges“ Event, mit

einem Coupled Changes Objekt als Parameter.

6.5.2 EventHandler

Die von der Anwendung versendeten Events werden über EventHandler-

Methoden empfangen. Jede EventHandler-Methode registriert sich hierfür, für die

Events, die für sie von Belang sind. Im Tool existieren EventHandler in den

IssuesPart, IssueInformationsPart und CoupledChangesPart Klassen. Über

Annotationen werden diese in der Eclipse Platform als EventHandler markiert.

Dependency Injection kümmert sich dann um die Injektion der zu empfangenden

Parameter. In Tabelle 6.1 sind die im Tool benutzten EventHandler gelistet.

Klasse EventHandler

IssuesPart @Inject @Optional

void updateListing(

@UIEventTopic("UpdateIssuePart") String obj)

IssueInformationsPart @Inject @Optional

void updateIssueInformationTable(

@UIEventTopic("DisplayIssues") List<String> issue)

CoupledChangesPart @Inject @Optional

void UpdateCoupledChanges(@UIEventTopic("DisplayCoupledChanges")

List<List<String>> output)

Tabelle 6.1: EventHandler

Über die Annotation UIEeventTopic() wird die Klasse

• IssuesPart zum Empfang von „UpdateIssuePart“ Events,

• IssueInformationsPart zum Empfang von „DisplayIssues“ Events,

• CoupledChangesPart zum Empfang von „DisplayCoupledChanges“ Events

registriert.

6.5.3 EventHandler IssuesPart

Der EventHandler updateListing() (siehe Listing 6.13) empfängt „UpdateIssuePart“

43

Events und ein String Objekt obj. Es wird überprüft, ob das Objekt ein valides

Objekt ist (Zeile 3). Trifft dies zu, dann wird der Rest des EventHandlers

ausgeführt.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

@Inject @Optional
private void updateListing(@UIEventTopic("UpdateIssuePart") String obj) {

if(obj != null) {
DBConnection conn = DBConnection.getDBConnection();
conn.setDatabase(SRMSettings.project_name);
issues = conn.ReadTable("issuetable", null);
tableIssue.removeAll();
for (List<String> issue : issues) {

TableItem ti = new TableItem(
tableIssue, SWT.NONE);

ti.setText(new String[] {
issue.get(0), issue.get(5)});

}
}

}

Listing 6.13: EventHandler updateListing()

In Kapitel 6.5.1 wurde beschrieben, dass dieses Event nach dem Schreiben der

Issue-Daten aus einer CSV-Datei versendet wird. Ausgelöst wird das Schreiben

durch den Benutzer. Nachdem er im Wizard eine CSV-Datei ausgewählt und diese

mit einem Klick auf den Transformationsbutton in die Datenbank geschrieben hat,

müssen die Issues auch in der Benutzeroberfläche im IssuesPart angezeigt werden.

Diese Aufgabe übernimmt der updateListint() EventHandler.

Der EventHandler setzt den Datenbanknamen und verbindet sich mit der

Datenbank (Zeile 5). Die in der Datenbank gespeicherten Issue-Daten werden über

die ReadTable() Methode ausgelesen und in die Instanzvariable issues gespeichert.

Als Parameter erhält diese den Namen der Issue Tabelle „issuetable“ (Zeile 6).

Schließlich werden eventuell in der Tabelle vorhandene Issues gelöscht, da sie mit

neuen ersetzt werden sollen (Zeile 7). In der For-Schleife (Zeile 8-13) wird die Issue

SWT-Tabelle der Benutzeroberfläche mit Issue IDs und Issue Titeln der Issues

gefüllt (vgl. Kapitel 6.4.1).

6.5.4 EventHandler IssueInformationsPart

Die Issue-Daten, welche von der IssuesPart gesendet werden nachdem ein

Element in der Issue Tabelle ausgewählt wurde, werden über den EventHandler

updateIssueInformationTable() (siehe Listing 6.14) im IssueInformationsPart

empfangen. Das Event auf das gewartet wird, ist das „DisplayIssues“ Event und

44

als Parameter wird per Dependency Injection die Issue-Daten issue in den

EventHandler injiziert.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

@Inject @Optional
private void updateIssueInformationTable(@UIEventTopic("DisplayIssues")

List<String> issue) {
if (issue != null) {

tableIssue.removeAll();
TableItem ti = new TableItem(tableIssue, SWT.NONE);
for (String s : issue) {

...
ti.setText(i++, s);
...

}
DBConnection.getDBConnection()

.ReadOutputTable2(issue.get(0));
List<List<String>> sqlprocedureInput =

DBConnection.getDBConnection().sqlprocedureInput;
broker.send("DisplayCoupledChanges", sqlprocedureInput);

}}

Listing 6.14: EventHandler updateIssueInformationTable()

Bevor die Issue-Daten übernommen werden, wird die Tabelle geleert (Zeile 5). In

den Zeilen 7-11 werden die Issue-Daten nacheinander in die Tabelle eingefügt. Das

Resultat ist nach dem Einfügen eine Zeile in der Tabelle, die die Issue-Daten

enthält.

Der EventHandler hat auch die Aufgabe die Coupled Changes über die Issue ID

zu beschaffen (siehe Kapitel 6.3). Hierfür übergibt er der ReadOutputTable2()

Methode der DBConnection Klasse die Issue ID der im IssuesPart ausgewählten

Issue (Zeile 12-13). Die Coupled Changes werden von der Instanzvariable

sqlprocedureInput der DBConnection Klasse ausgelesen (Zeile 14-15), welche nach

Beendigung der ReadOutputTable2() Methode gesetzt wird.

Der EventHandler wiederum sendet selber ein Event mit dem Topic

„DisplayCoupledChanges“ und den zuvor generierten Coupled Changes Daten.

6.5.5 EventHandler CoupledChangesPart

Die von dem EventHandler updateIssueInformationTable() versendeten

„DisplayIssues“ Events kommen im EventHandler updateCoupledChanges() (siehe

Listing 6.15) der CoupledChangesPart an. Wie in Kapitel 6.5.4 dargelegt wurde,

werden zusammen mit dem Event die Coupled Changes Daten gesendet. Diese

werden in den Methodenparameter output per Dependency Injection eingefügt.

45

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

@Inject @Optional
private void updateCoupledChanges(@UIEventTopic("DisplayCoupledChanges")

List<List<String>> output) {
if(output != null) {
tableCoupledChanges.removeAll();
tableCommitData.removeAll();
cchanges = new ArrayList<>();
for(List<String> l : output) {

TableItem ti = null;
int support = Integer.valueOf(l.get(0));
int length = Integer.valueOf(l.get(1));
int index_commits = 2;
int index_files = index_commits + support;
cchanges.add(l.subList(index_files, l.size()));
List<String> commit_ids = new ArrayList<>(support);
for(int i=0; i<support; i++)

commit_ids.add(l.get(index_commits++));
for(int i=0; i<length; i++) {

String s = l.get(index_files++);
ti = new TableItem(tableCoupledChanges, SWT.NONE);
ti.setText(0, s);
ti.setData(commit_ids);

}
new TableItem(tableCoupledChanges, SWT.NONE);

}}}

Listing 6.15: EventHandler updateCoupledChanges()

Bei Ankommen eines Events mit Eventdaten output, werden die Coupled Changes

und Commit-Informationen Tabellen geleert (Zeile 5 und 6). Die Instanzvariable

cchanges speichert die Dateipfade aus dem Inputparameter output.

Aus jeder Coupled-Changes-Gruppe (vgl. Format in Tabelle 5.2) im output Objekt

werden zunächst der Supportwert und die Anzahl der Items bzw. Dateipfade

extrahiert (Zeile 10 und 11). Die Variable l repräsentiert hierbei die Coupled-

Changes-Gruppe. Die Variablen index_commits und index_files sind Zeiger auf den

Start der Commit-Daten und Dateipfaden in den Coupled-Changes-Gruppen. Die

Variable index_commits hat den Anfangswert von zwei, da die ersten beiden

Elemente der Gruppe support und length sind und die Liste von Commits nach

ihnen beginnt.

Es werden die Commit IDs aus den Coupled-Changes-Gruppen über

index_commits in die Liste commit_ids kopiert (Zeile 16-17). Danach folgen die

Dateipfade. Jedoch werden diese nicht in eine Variable kopiert wie bei den

Commit IDs, sondern sie werden in die Coupled Changes Tabelle geschrieben.

Dabei werden Dateipfade die zu einer Coupled-Changes-Gruppe gehören

untereinander in die Tabelle eingefügt. Ist das Einfügen für eine Gruppe von

46

Dateipfaden beendet, werden diese von anderen Gruppen mit einer leeren

Tabellenzeile getrennt (Zeile 24). Zusätzlich erhalten die in einer Gruppe

vorkommenden Coupled Changes die zuvor aus der Variablen output kopierten

Commit IDs, indem die Liste commit_ids in die Tabellenzeilen eingebettet wird

(Zeile 22). Somit besitzt jede Gruppe aus Dateipfaden in der Tabelle dasselbe

commit_ids Objekt. Leere Tabellenzeilen erhalten hingegen kein Daten-Objekt.

Das Einbetten der Commit-Informationen in die Tabellenzeilen der Coupled

Changes Tabelle ist erforderlich, um sie in der Commit Tabelle anzeigen zu

können. Die Commit-Informationen werden nämlich über den SelectionListener

der Coupled Changes Tabelle in die Commit Tabelle geschrieben (siehe Kapitel

6.4.3).

6.6 Export von Coupled Changes

In Kapitel 6.4.3 wurde die Oberfläche der CoupledChangesPart beschrieben.

Neben der Anzeige von Coupled Changes und Commit-Informationen in

SWT-Tabellen existiert auch eine Schaltfläche für den Export der in der

Benutzeroberfläche angezeigten Coupled Changes. Der SelectionListener für den

Button ist in Listing 6.16 zu sehen.

1
2
3
4
5
6
7
8
9
10

btn_exportcchanges.addSelectionListener(new SelectionAdapter() {
@Override
public void widgetSelected(SelectionEvent e) {

FileDialog select_file = new FileDialog(shell,SWT.SAVE);
select_file.setFilterExtensions(new String[] {".txt"});
String path = select_file.open();
if(path != null)

writeCoupledChanges(path);
}

});

Listing 6.16: SelectionListener für den Export von Coupled Changes

Beim Auswählen des Buttons wird ein SWT-FileDialog mit der Option SWT.SAVE

initialisiert (Zeile 4). Wie der Name vermuten lässt, konfiguriert dies den

FileDialog sich im Speichermodus zu öffnen. Dies ermöglicht neben der

Navigation durch Ordner, auch die Eingabe eines Dateinamens für die zu

exportierenden Coupled Changes. Als Dateiendung sind Dateien mit der

Dateiendung „txt“ zugelassen.

47

Ist die Konfiguration des Speicherdialogs beendet, wird er geöffnet und der

Benutzer kann zu dem Verzeichnis navigieren, in der er die Datei abspeichern

möchte. Ist ein Dateiname gewählt, kann der Speicherdialog beendet werden.

Mit Beendigung des Speicherdialogs wird der Pfad, welcher den Dateinamen

enthält, zurückgegeben (Zeile 6). Nun ist es auch möglich, dass der Benutzer den

Speicherdialog abgebrochen hat. In diesem Fall wird „null“ zurückgegeben.

Die Coupled Changes werden nur dann in eine Datei geschrieben, wenn der Pfad

im Speicherdialog gesetzt wurde. Trifft dies zu wird die writeCoupledChanges()

Methode (siehe Listing 6.17) mit dem Pfad als Parameter aufgerufen (Zeile 8).

1
2
3
4
5
6
7
8
9
10
11
12

private void writeCoupledChanges(String path) {
try (BufferedWriter bw =

Files.newBufferedWriter(Paths.get(path),
StandardOpenOption.CREATE,
StandardOpenOption.TRUNCATE_EXISTING)) {

for(List<String> l : cchanges) {
for(String s : l)

bw.write(s+"\n");
bw.write("\n");

}
}

}

Listing 6.17: Schreiben der Coupled Changes in eine Datei

Der übergebene Pfad wird von einem BufferedWriter geöffnet. Existiert die Datei

nicht wird sie erstellt. Die Datei kann von einem vorigen Export stammen, deshalb

ist es wichtig etwaige vorhandene Daten zu löschen. Dies geschieht mit der

StandardOpenOption.TRUNCATE_EXISTING.

Wurde die Datei erfolgreich für das Beschreiben geöffnet, können die Coupled

Changes Daten in die Datei geschrieben werden. Hiefür wird die zuvor vom

EventHandler updateCoupledChanges() befüllte cchanges Instanzvariable (vgl.

Listing 6.15) verwendet.

Die Struktur der exportierten Datei ist der Struktur der Coupled Changes Tabelle

im CoupledChangesPart ähnlich. Dies folgt aus der Tatsache, dass die Coupled

Changes als Liste von Dateipfaden in cchanges abgelegt sind. Dateipfade die in

48

einer Liste enthalten sind, werden Zeile für Zeile in die Datei geschrieben

(Zeile 7-8). Sind jeweils alle Elemente in einer Liste in die Datei geschrieben, wird

eine leere Zeile eingefügt (Zeile 9). In der Coupled Changes Tabelle wird ähnlich

vorgegangen. Der Unterschied ist, dass leere Tabellenzeilen statt leeren Zeilen

eingefügt werden. Am Ende des Vorgans entspricht die Datei der angezeigten

Coupled Changes in der Coupled Changes Tabelle.

6.7 Änderungen am Wizard

Durch Integrierung von Prefixspan in das Framework muss der bestehende

Wizard mit Prefixspan erweitert werden.

6.7.1 Auswahlmöglichkeit zwischen den Data Mining Algorithmen

Der Wizard im SRMP hatte bisher nur mit einem Data Mining Algorithmus zu

tun. In dieser Form genügt der Wizard nicht den Anforderungen. Er muss in der

Lage sein auch mit Prefixspan umzugehen. Hierzu wurde der Wizard in der

SelectCommitersPage um eine Auswahlmöglichkeit zwischen den Algorithmen

erweitert. Hierfür wurde der WizardPage eine SWT-ToolBar eingefügt. In diese

ToolBar können ToolItems eingefügt werden. Es wird ein ToolItem für FPGrowth

und ein weiteres für Prefixspan eingefügt. Sie tragen die Aufschrift „FPGrowth“

und „Prefixspan“.

Mit Auswahl eines ToolItems wird dessen SelectionListener ausgeführt. Dieser

setzt den Data Mining Algorithmus in der SRMSettings Klasse des Wizards.

Hierzu wurde die SRMSettings Klasse um ein Enum DataMiningAlgorithm

erweitert (siehe Listing 6.18).

1
2
3
4
5
6
7
8

public class SRMSettings {
public static enum DataMiningAlgorithm {

FPGrowth, PrefixSpan
}
...
public static DataMiningAlgorithm data_mining_algorithm =

DataMiningAlgorithm.FPGrowth;
}

Listing 6.18: SRMSettings Enum für verwendeten Data Mining Algorithmus

Die Elemente im Enum sind FPGrowth und Prefixspan. Standardmäßig, falls noch

49

kein Data Mining Algorithmus gesetzt wurde, wird als Algorithmus FPGrowth

vorgegeben (Zeile 6-7).

Wenn das FPGrowths ToolItem ausgewählt wird, dann wird

data_mining_algorithm auf FPGrowth gesetzt. Bei Prefixspans ToolItem wird es

wiederum auf Prefixspan gesetzt. Beim Öffnen des Wizards, wird automatisch das

ToolItem ausgewählt, welches in der Variable data_mining_algorithm gesetzt ist.

Wird im Wizard z.B. FPGrowth ausgewählt, dann bleibt dieses solange in der

ToolBar automatisch ausgewählt, bis FPGrowth ausgewählt wird.

6.7.2 Durchführung des Data Minings

Nach Auswahl des Data Mining Algorithmus und des Minimum-Support-Werts

kann der Wizard abgeschlossen werden. Daraufhin werden der ausgewählte

Minimum-Support-Wert und Data Mining Algorithmus im Configuration Scope

des Eclipse Preference Service gespeichert (siehe Listing 6.19).

1
2
3
4
5
6

IEclipsePreferences node =
ConfigurationScope.INSTANCE.getNode("com.maint_tools");

node.put("Algorithm", SRMSettings.data_mining_algorithm.toString());
node.putDouble("minimum_support", SRMSettings.minsupport);
...
node.flush();

Listing 6.19: Speichern der Wizard-Daten

Der Ausgewählte Data Mining Algorithmus wird als String mit dem Schlüssel

„Algorithm“ abgelegt. Der Minimum-Support-Wert hingegen wird, da es eine

reelle Zahl ist, als Double mit dem Schlüssel „minimum_support“ abgelegt.

Nachdem die Daten geschrieben sind folgt die Durchführung des Data Minings.

Dieser Prozess folgt dem im Framework (vgl. Abbildung 5.2) vorgegebenen

Ablauf. Aus der „committable“ und „filetable“ wird ein DMIO erzeugt, welches

den Algorithmen als Input dient. Diese wiederum produzieren ein DMRO,

welches in die Datenbanktabelle „outputtable“ geschrieben wird.

Die Schritte im Quellcode, die dem Vorgang im Framework entsprechen, sind für

FPGrowth und Prefixspan sehr ähnlich (siehe Listing 6.20).

50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

commit_data = dataBaseConn.ReadInputTable(null);
switch(SRMSettings.data_mining_algorithm) {
case FPGrowth :

FPGrowthAlgorithmus.input = commit_data.get_res();
fpgaAlg.runAlgorithm(SRMSettings.minsupport);
output = FPGrowthAlgorithmus.output;
maxsupport = FPGrowthAlgorithmus.maxSupport;
maxlength = FPGrowthAlgorithmus.maxLength;
break;

case PrefixSpan :
List<List<String>> files = commit_data.get_fileIDs();
AlgoPrefixSpan_with_Strings prefixspan =
new AlgoPrefixSpan_with_Strings(commit_data.get_list_commitID());
SequentialPatterns patterns = null;
patterns = prefixspan.runAlgorithm(files, SRMSettings.minsupport);
output = patterns.getPatterns();
maxsupport = patterns.get_maximum_support();
maxlength = patterns.get_maximum_item_length();
break;

}
dataBaseConn.CreateOutputTable("outputtable",maxsupport,maxlength);
dataBaseConn.WriteIntoOutputTable("outputtable",output,maxsupport,maxlength)

Listing 6.20: Ausführung der Data Mining Algorithmen

Als Erstes wird die Input Tabelle ausgelesen und der Inhalt wird in commit_data

vom Typ CommitTableData gespeichert. Der Inhalt repräsentiert die Daten, die

den Data Mining Algorithmen als Input dienen. Danach werden die Input-

Parameter für die Algorithmen vorbereitet und der Algorithmus, mit dem im

Wizard ausgewählten Minimum-Support-Wert, ausgeführt. Als Resultat

generieren die Algorithmen Output Objekte in Form eines DMRO. Das Format der

Output Objekte ist für beide Algorithmen identisch. Wie im Framework ersichtlich

ist, wird das DMRO zur persistenten Speicherung in die Datenbanktabelle

„outputtable“ geschrieben.

Zusätzlich zu den generierten Output Objekten, berechnen die Data Mining

Algorithmen den maximalen Support-Wert und die maximale Länge eines im

Output Objekt vorkommenden Patterns. Der maximale Support-Wert ist die

maximale Anzahl von Commit IDs in allen Patterns. Die maximale Länge

hingegen bezeichnet die maximale Anzahl an Dateipfaden in allen Patterns. Diese

Informationen werden für die Erstellung der Output-Tabelle und dem Schreiben

des Output Objekts in selbiges benötigt (siehe Kapitel 5.5 & 5.5.1). Der Wert von

maxsupport stellt die obere Grenze für die Commit ID Spalten dar und maxlength

die obere Grenze für die Item Spalten.

Die Vorbereitung der Input-Parameter erfolgt für die Algorithmen auf

51

unterschiedliche Weise. FPGrowth erhält das DMIO so wie es ist (Zeile 4) (siehe

Kapitel 5.4.1). Bei Prefixspan müssen die in commit_data gespeicherten Input-Daten

zuerst transformiert werden (siehe Kapitel 6.2.1). Die Transformation wird über

commit_data.get_fileIDs() (Zeile 11) bewerkstelligt. In der Variablen files sind nur

noch Dateipfade des DMIO enthalten. Um nach Durchführung von Prefixspan

wieder ein vollständiges DMRO zu erhalten, wird dem Algorithmus eine Liste der

Commit IDs übergeben. Somit sind die Vorbereitungen beendet und der

Algorithmus kann mit files als Sequenzdatenbank und dem Minimum-Support-

Wert gestartet werden. Das DMRO wird über die getPatterns() Methode mit Hilfe

der Commit ID Liste zusammengebaut und in output gespeichert (Zeile 16).

6.8 Programmstart

Beim Öffnen des Tools wird die in der E4LifeCycle Klasse definierten Methoden

ausgeführt. Diese sind je nach zu erfüllender Funktion mit bestimmten

Annotationen annotiert. Damit der Benutzer bei Neustart des Tools nicht immer

dieselben Vorschritte zum Berechnen der Coupled Changes durchführen muss,

sollen diese nach Programmstart automatisch ausgeführt werden. Diese

Vorschritte sind alle Schritte, die zur Erzeugung und Befüllung der Output-Tabelle

führen (siehe Kapitel 6.7.2).

Die Methode processAdditions() mit der Annotation @ProcessAdditions wird

aufgerufen nachdem das Applikationsmodell, also alle Komponenten welche die

Benutzeroberfläche darstellen, geladen wurde [16]. Nicht nur die Schritte bis zur

Befüllung der Output-Tabelle sollen durchgeführt werden, sondern auch die

Anzeige der Issue-Daten im IssuesPart. Deshalb ist es erforderlich diese

Änderungen in der processAdditions() Methode durchzuführen.

1
2
3
4
5
6

@ProcessAdditions
void processAdditions(IEclipseContext workbenchContext) {

broker.subscribe(UIEvents.UILifeCycle.APP_STARTUP_COMPLETE,event -> {
//Durchführung des Data Minings
}

}

Listing 6.21: Warten auf den vollständigen Programmstart

Damit die erforderlichen Schritte durchgeführt werden können, muss auf den

vollständigen Programmstart gewartet werden. Hierzu wird ein IEventBroker

52

registriert, welcher auf das zugehörige UIEvent (APP_STARTUP_COMPLETE,

Listing 6.21, Zeile 3) wartet.

Damit die IssuesPart mit Issue-Daten befüllt werden kann, muss erst überprüft

werden, ob die Datenbanktabelle „issuetable“ existiert. Nur dann kann davon

ausgegangen werden, dass zuvor eine Issue CSV-Datei über den Wizard

transformiert und in die Datenbank geschrieben wurde. Wurde in der Datenbank

eine „issuetable“ gefunden, muss nur noch ein „UpdateIssuePart“ Event gesendet

werden. Der EventHandler der IssuesPart, der für dieses Event registriert ist,

kümmert sich dann um die Befüllung der Tabelle für die Issue-Daten (siehe

Kapitel 6.5.3).

Da zur Durchführung des Data Minings Commit-Daten vorhanden sein müssen

wird überprüft, ob die „committable“ Datenbanktabelle existiert. Ist dies der Fall

wird versucht den in der Configuration Scope gesicherten Minimum-Support-

Wert und den ausgewählten Data Mining Algorithmus (siehe Listing 6.19) über

die Schlüssel „minimum_support“ und „Algorithm“ zu laden. Diese werden

dann, wenn sie existieren, in die zugehörigen Instanzvariablen der SRMSettings

Klasse kopiert. Andernfalls werden Standardwerte für die Instanzvariablen

angenommen. Es folgen daraufhin die Schritte zur Ausführung der Data Mining

Algorithmen (vgl. Listing 6.20).

53

7 Evaluierung

In diesem Kapitel wird die Evaluation des Tools beschrieben. An der Evaluation

haben insgesamt acht Personen teilgenommen: Fünf Informatik Studenten und

drei Absolventen des Studiengangs Informatik.

7.1 Vorbereitungen und Testumgebung

Als Testumgebung wurde ein Windows-Laptop mit vorinstallierter Eclipse IDE

bereitgestellt. Damit das Tool arbeiten kann, muss seine Datenbank mit den Daten

eines Git-Repositories gefüllt werden. Für diesen Zweck wurde die Software

A-STPA [17] und dessen Git-Repository ausgewählt. Neben dem Git-Repository

wird eine zugehörige CSV-Datei mit Issue-Daten benötigt. Damit die Berechnung

der Coupled Changes funktionieren kann, müssen die Issue-Daten offensichtlich

dem Git-Repository zugehörig sein. Die Issue-Daten wurden für diesen Zweck

bereitgestellt, da sie nicht öffentlich zugänglich sind. Die Datenbank des Tools

wurde befüllt, indem das Git-Repository und die Issue-Datei über den Wizard

importiert wurden.

Weiterhin wurde die A-STPA Software in Eclipse importiert und Eclipse so

konfiguriert, dass die Software auch kompiliert und ausgeführt werden kann.

Dadurch sind die Teilnehmer in der Lage ihre Änderungen am Quellcode direkt

zu testen.

7.2 Testaufbau

Für die Evaluation des Tools wurden die Teilnehmer in zwei gleich große

Gruppen unterteilt. Beide Gruppen haben zwei gleiche Aufgaben (Tasks)

bekommen, die sie mithilfe des Tools lösen sollten. Zwar sind die Tasks gleich,

aber die Parameter, die im Tool gesetzt werden müssen, sind jeweils

unterschiedlich.

Die zu lösenden Tasks sind:

54

• Task 1: Ändern der Shortcuts zum Hinzufügen von neuen Items für die

CommonTableViewer Klassen von Keycode „n“ in Keycode „i“.

• Task 2: Anfügen des Strings „_EditPart“ an die Tooltips für die

Komponenten-Elemente der Control Structure.

Die Tasks sind so konstruiert, dass die Lösung der Tasks eine Änderung an der

Benutzeroberfläche hervorruft. Dadurch ist kein tiefgehendes Verständnis des

A-STPA Quellcodes erforderlich und es müssen keine gravierenden Änderungen

von den Teilnehmern durchgeführt werden.

Gruppe 1 führt für Task 1 das Data Mining mit dem Frequent Pattern Mining

Algorithmus FPGrowth durch und für Task 2 wird der Sequential Pattern Mining

Algorithmus Prefixspan verwendet. Für Gruppe 2 gilt das Gegenteil: Task 1 wird

mit Prefixspan und Task 2 mit FPGrowth durchgeführt. Dadurch lassen sich die

Ergebnisse zur Lösung der Tasks mit beiden Algorithmen vergleichen. Der

Minimum-Support-Wert für Task 1 und Task 2 ist vorgegeben und ist für beide

Algorithmen identisch. Für Task 1 wurde ein Minimum-Support-Wert von vier

Prozent und für Task 2 ein Minimum-Support-Wert von zwei Prozent festgelegt.

Es wird ein identischer Wert vorgegeben um die Vergleichbarkeit der Algorithmen

zu gewährleisten.

Damit Coupled Changes generiert werden können, werden für Task 1 und Task 2

Issues vorgegeben, die mit der zu lösenden Issue-Task zusammenhängen.

Die Issue-Tasks und der Testaufbau orientieren sich an denen, die in [18]

angegeben sind.

7.3 Testdurchführung

Die Teilnehmer erhalten einen Zettel mit der Aufgabenbeschreibung und welche

Schritte sie durchführen müssen. Diese Schritte sind wie sie die Einstellungen

bezüglich der Data Mining Algorithmen im Tool vorzunehmen haben und welche

Issue sie im Tool auswählen müssen (Issue 854 für Task 1 und Issue 834 für Task

2), um Coupled Changes für die zu lösende Aufgabe zu erstellen.

Fragen bei Unklarheiten bezüglich der Aufgabenstellung und der

durchzuführenden Schritte wurden bei Anfragen beantwortet.

55

Die Teilnehmer haben nun die Aufgabe beide Tasks zu lösen, indem sie die

Anleitung benutzen, um Coupled Changes für die Tasks zu generieren. Unter

Zuhilfenahme dieser Coupled Changes sollen die Tasks gelöst werden. Im

Anschluss füllen die Teilnehmer einen Fragebogen aus (siehe Tabelle 7.1).

Fragen

Programmiererfahrung in Java*

Erfahrung mit Issue-Tracking-Systemen (bsp. Jira, Bugzilla, launchpad)

Die Bedienung des Tools ist verständlich

Die Anordnung der Views in der Benutzeroberfläche ist gut strukturiert

Die dargestellten Informationen sind

übersichtlicht

Issue- & Commit-Informationen

Coupled Changes

Das Tool war bei Lösung der Tasks hilfreich mit Frequent Patterns

Sequential Patterns

Nützlichkeit von Coupled Changes

Tabelle 7.1: Fragebogen

7.4 Auswertung

Die Zeit, die ein Teilnehmer für das Lösen einer Task benötigt, wird festgehalten.

Des Weiteren wird überprüft, ob eine korrekte Lösung gefunden wurde indem der

vom Teilnehmer veränderte Quellcode analysiert wird. Es wird gezählt, wie viele

der notwendigen Veränderungen vom Teilnehmer umgesetzt wurden.

7.5 Ergebnisse

In Abbildung 7.1 sind die Umfrageergebnisse abgebildet.

56

Aus der ersten Frage kann die Verteilung der Programmiererfahrung in Java

abgelesen werden. Es herrscht beinahe eine homogene Verteilung. Die Legende ist

hier als 1 Jahr, 1-2 Jahre, 2-3 Jahre, 3-4 Jahre und 5+ Jahre zu interpretieren.

Ein großer Prozentsatz (37,5%) hat keinerlei Erfahrung mit Issue-Tracking

Systemen, wobei der Mehrheit (62,5%) Issue-Tracking Systeme zumindest ein

Begriff ist. Dies zeigt, dass sie mit der Thematik von Issues-Tracking Systemen

vertraut sind und eventuell mit den im Tool angezeigten Issue- und Commit-

Informationen besser umgehen können. Die Fragen drei bis sechs betreffen das

Design des Tools. Die Bedienung des Tools ist für die Mehrheit verständlich, aber

es gibt auch Teilnehmer, die diesen Punkt negativ bewertet haben. Die restlichen

Fragen bezüglich des Designs wurden positiv bewertet.

Mit den Fragen sieben und acht wurde ermittelt, ob die Teilnehmer die Nutzung

der Data Mining Algorithmen zur Lösung der Tasks und somit die von ihnen

generierten Coupled Changes als hilfreich empfunden haben. Aus Abbildung 7.1

kann leicht abgelesen werden, dass beide Data-Mining-Algorithmen ein sehr

hilfreiche Rolle bei der Lösung der Tasks gespielt haben. In Abbildung 7.2 ist

Frage sieben und acht nach den Gruppen aufgeschlüsselt.

57

Abbildung 7.1: Umfrageergebnisse

Wie zu sehen ist, wurde von Gruppe 2 die Nutzung von sowohl Sequential Pattern

Mining als auch Frequent Pattern Mining insgesamt sehr positiv bewertet. In

Gruppe 1 wurde Frequent Pattern Mining von neutral bis positiv bewertet, wobei

der positive Anteil bei Sequential Pattern Mining identisch ist. Jedoch wurde es

von 25% der Teilnehmer eher negativ bewertet. Die letzte Frage betrachtet die

Bewertung der Nützlichkeit von Coupled Changes insgesamt, also für beide

Algorithmen. Das Ergebnis zeigt, dass die Teilnehmer Coupled Changes als

nützlich bis sehr nützlich bewerten.

Durchschnittliche benötigte Zeit Standardabweichung

Gruppe Task 1 Task 2 Task 1 Task 2

1 12:42 15:39 1:53 5:07

2 13:45 15:09 7:19 4:18

Tabelle 7.2: Durchschnittlich benötigte Zeit für Tasks

In Tabelle 7.2 ist die durchschnittliche Zeit dargestellt, die jede Gruppe für Task 1

und Task 2 benötigten. Gruppe 1 benötigte für Task 1 weniger Zeit als Gruppe 2

und mit geringerer Abweichung zwischen den Teilnehmern. Bei Task 2 sind beide

Gruppen praktisch gleich schnell gewesen.

58

Abbildung 7.2: Frage 7 und 8 nach Gruppen aufgeschlüsselt

Korrektheit Standardabweichung

Gruppe Task 1 Task 2 Task 1 Task 2

1 83,3% 93,75% 13,61% 12,5%

2 83,3% 100% 0% 0%

Tabelle 7.3: Durchschnittliche Korrektheit für Tasks

Aus der Tabelle 7.3 lässt sich ableiten, dass für die Lösung von Task 1 beide

Gruppen insgesamt denselben Korrektheitsgrad erreichen. Während in Gruppe 2

jeder Teilnehmer dasselbe Ergebnis erreicht (Standardabweichung 0%), ist die

Korrektheit bei Gruppe 1 nicht uniform (Standardabweichung 13,61%).

Bei Task 2 erreicht jeder Teilnehmer in Gruppe 2 die vollständige Lösung,

während Gruppe 1 hier mit 93,75% trotzdem einen sehr hohen Korrektheitsgrad

erreicht.

Sowohl die Ergebnisse aus Tabelle 7.3 als auch den Umfrageergebnissen sind ein

Indiz dafür, dass es keinen großen Unterschied macht, welcher Data-Mining-

Algorithmus für die Generierung der Coupled Changes verwendet wird,

zumindest für dieses Paar an Tasks.

Im allgemeinen könnte Sequential Pattern Mining bessere Ergebnisse aufgrund

der sequentiellen Natur der Input-Daten bieten, denn in Git werden die

Dateipfade eines Commits lexikographisch ausgegeben. Dies bedeutet, dass

potenziel viele Subsequenzen in der Sequenzdatenbank als Muster auftauchen

können.

59

8 Zusammenfassung

Das Ziel dieser Arbeit war, ein Eclipse basierendes Tool zu entwickeln welches in

der Lage ist „Maintenance Tasks Issues“ eines Softwareprojekts anzuzeigen und

zugehörige Coupled Changes zu extrahieren. Dafür muss das Tool die Daten in

seine Datenbank importieren, zusätzlich zu dem Git-Repository, zu dem die Issue

Tasks gehören. Mit der internen Repräsentation der Daten können die Git-Logs in

Verbindung mit Issue IDs gebracht und Coupled Changes berechnet werden. Die

Anforderungen an das Tool wurden bis auf Punkt neun (vgl. Kapitel 4.1)

vollständig umgesetzt, da für diesen Punkt leider keine Zeit mehr übrig blieb.

Durch Wegfall von Punkt neun sind keine negativen Auswirkungen auf die

Evaluation des Tools zu erwarten, denn es hätte keinen Einfluss auf die erzeugten

Coupled Changes.

Um die Maintenance-Aufgaben von Software Projekten zu koordinieren, werden

Issue Tracking Systeme eingesetzt. Um die Issues zu bearbeiten, sind meist

mehrere Änderungen am Quellcode durchzuführen. Für Issue Tasks, die sich

ähnlich sind, müssen oft dieselbe Menge an Dateien geändert werden, da sie

logisch miteinander gekoppelt sind. Zur Durchführung von neuen Maintenance

Tasks kann mit dem Tool durch Auswahl einer ähnlichen Issue Task (falls

vorhanden) Coupled Changes bezüglich diesem Task gefunden und die Arbeit des

Entwicklers vereinfacht werden. Die Evaluation des Tools hat gezeigt, dass die

Lösung von Maintenance Tasks durch Nutzung des Tools mit einem hohen

Korrektheitsgrad durchgeführt werden kann.

8.1 Weitere Schritte

Um eine Verbindung zwischen den Issue-Daten und den Git-Logs herzustellen,

wurde in den Logs nach Hinweisen für eine Issue gesucht. Als Hinweis dienten

Strings wie „#<IssueID>“ und „refs <IssueID>“. Dies hat für die Issues von A-STPA

gut funktioniert, denn es wurden hauptsächlich solche Verweise auf Issues in den

Commit-Logs verwendet. Doch kann diese Annahme nicht für alle möglichen

Issue CSV-Dateien gelten, die dem Tool als Import dienen. Eine Verbesserung

60

wäre es, die Suchkriterien nach einer IssueID mit regulären Ausdrücken zu

erweitern, um eine bessere Trefferquote zu erreichen. Doch ist es meist auch nicht

möglich alle Referenzen zu finden, da Entwickler u.a. oft vergessen, beim

Committen eine Referenz zu einer Issue ID zu setzen und es gehen somit viele

mögliche Referenzen verloren [19].

Das Tool kann zudem mit einer Suchleiste erweitert werden, mit der nach Issues

gesucht werden kann, indem Stichwörter eingegeben werden. Denkbar wäre auch

der Einsatz von Methoden der maschinellen Sprachverarbeitung um semantisch

ähnliche Issues vorzuschlagen.

61

Literaturverzeichnis

[1] Hassan, A.E., The Road Ahead for Mining Software Repositories, Queen’s

University, Canada, 2008

[2] Aggarwal, C. C., Data Mining: The Textbook, 2015

[3] Fournier-Viger, P., Lin, C. W., Kiran, R. U., Koh, Y. S., Thomas, R., A Survey of

Sequential Pattern Mining, Ubiquitous International, vol. 1, no. 1, 2017

[4] Han, J., Pei, J., Yin, Y., Mao, R., Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge

Discovery, vol. 8(1), pp. 53–87, 2004

[5] Pei, J., Han, J., Mortazavi-Asl, B., Dayal, U., Hsu, M.-C., Mining Sequential Patterns

by Pattern-Growth: The PrefixSpan Approach, IEEE Transactions on knowledge

and data engineering, vol. 16, no. 10, 2004

[6] Common Format and MIME Type for Comma-Separated Values (CSV) Files

URL: https://tools.ietf.org/html/rfc4180

[7] Rich Client Platform/FAQ URL: https://wiki.eclipse.org/Rich_Client_Platform/FAQ

[8] White Paper: e4 Technical Overview

URL: https://www.eclipse.org/e4/resources/e4-whitepaper-20090729.pdf

[9] Eclipse4/RCP/Dependency Injection

URL: https://wiki.eclipse.org/Eclipse4/RCP/Dependency_Injection

[10] Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam,

H. T. (2016). The SPMF Open-Source Data Mining Library Version 2. Proc. 19th

European Conference on Principles of Data Mining and Knowledge Discovery

(PKDD 2016) Part III, Springer LNCS 9853, pp. 36-40.

[11] Fischer, M., Pinziger, M., Gall, H., Populating a Release History Database from

Version Control and Bug Tracking Systems, Vienna University of Technology

[12] Lehmann, S., Automatisierte Transformation von Daten aus Software Repositories

und ihre Vorbereitung für Data Mining, Universität Stuttgart, 2015

[13] Alakus, D., Integration von Data Mining in einem Eclipse Plugin, Universität

Stuttgart, 2016

[14] Cicek, M. F., Präsentation von Software Repository in Eclipse, Universität Stuttgart,

2015

[15] Demir, Y., Visualisierungsoptimierung von Repository Data Mining in Eclipse,

Universität Stuttgart, 2015

[16] Eclipse4/RCP/Lifecycle URL: https://wiki.eclipse.org/Eclipse4/RCP/Lifecycle

62

https://wiki.eclipse.org/Eclipse4/RCP/Lifecycle
https://wiki.eclipse.org/Eclipse4/RCP/Dependency_Injection
https://www.eclipse.org/e4/resources/e4-whitepaper-20090729.pdf
https://wiki.eclipse.org/Rich_Client_Platform/FAQ
https://tools.ietf.org/html/rfc4180

[17] A-STPA URL: https://sourceforge.net/projects/astpa/

[18] Ramadani, J., Wagner, S., Are coupled file changes suggestions useful?, 2016

URL: https://doi.org/10.7287/peerj.preprints.2492v1

[19] Ayari, K., Meshkinfam, P., Antoniol, G., Di Penta, M., Threats on Building Models

from CVS and Bugzilla Repositories: the Mozilla Case Study. In Proceedings of the

2007 conference of the center for advanced studies on Collaborative research

(CASCON '07), Bruce Spencer, Margaret-Anne Storey, and Darlene Stewart (Eds.).

IBM Corp., Riverton, NJ, USA, 215-228., 2007

Alle Links wurden zuletzt am 27.03.17 besucht

63

https://sourceforge.net/projects/astpa/
https://doi.org/10.7287/peerj.preprints.2492v1

Erklärung:

Ich versichere, diese Arbeit selbstständig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich

oder sinngemäß aus anderen Werken übernommene Aussagen als solche

gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines

anderen Prüfungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

64

	1 Einleitung
	1.1 Gliederung

	2 Grundlagen
	2.1 Pattern Mining
	2.1.1 Frequent Itemset Mining
	2.1.2 Sequential Pattern Mining
	2.1.3 Vergleich der Methoden

	2.2 CSV-Dateien
	2.2.1 Aufbau einer CSV-Datei

	2.3 Eclipse Rich Client Platform
	2.3.1 Dependency Injection
	2.3.2 Annotationen

	2.4 SPMF

	3 Verwandte Arbeiten
	3.1 Release History Database
	3.2 Automatische Transformation von Daten aus Software Repositories
	3.2.1 Input- und Outputformat

	3.3 SRM Plugin

	4 Anforderungen und Analyse
	4.1 Anforderungen an das Tool
	4.2 Analyse

	5 Konzept und Architektur
	5.1 Lösungsansatz zum Erzeugen von Coupled Changes für Issue Tasks
	5.2 Workflow
	5.3 Framework
	5.4 Input und Output Objekte für das Data Mining
	5.4.1 Data Mining Input Objekt
	5.4.2 Data Mining Result Objekt

	5.5 Format der Output-Tabelle
	5.5.1 Schreiben des Output Objekts in die Output-Tabelle

	5.6 Prefixspan in SPMF
	5.6.1 Input von Prefixspan
	5.6.2 Auswahl der Implementierung

	6 Implementierung
	6.1 CommitTableData
	6.2 Integrierung von Prefixspan in das Framework
	6.2.1 Transformation der Input-Daten für Prefixspan
	6.2.2 Laden von transformierten Input-Daten
	6.2.3 Transformation der gefundenen Sequential Patterns
	6.2.4 Konstruktor und Ausführung des Algorithmus

	6.3 Generierung von Coupled Changes für Issue Tasks
	6.3.1 Filterung von Commits die im Zusammenhang mit Issues stehen
	6.3.2 Bestimmung der Commitspaltenanzahl
	6.3.3 Auslesen der Data Mining Resultate aus der Datenbank
	6.3.4 Zusammenfassung

	6.4 Implementierung der Benutzeroberfläche
	6.4.1 IssuesPart
	6.4.2 IssueInformationsPart
	6.4.3 CoupledChangesPart

	6.5 Kommunikation zwischen den Komponenten
	6.5.1 Events
	6.5.2 EventHandler
	6.5.3 EventHandler IssuesPart
	6.5.4 EventHandler IssueInformationsPart
	6.5.5 EventHandler CoupledChangesPart

	6.6 Export von Coupled Changes
	6.7 Änderungen am Wizard
	6.7.1 Auswahlmöglichkeit zwischen den Data Mining Algorithmen
	6.7.2 Durchführung des Data Minings

	6.8 Programmstart

	7 Evaluierung
	7.1 Vorbereitungen und Testumgebung
	7.2 Testaufbau
	7.3 Testdurchführung
	7.4 Auswertung
	7.5 Ergebnisse

	8 Zusammenfassung
	8.1 Weitere Schritte

	Literaturverzeichnis

