Studiengang:
Priifer:

Betreuer:

Begonnen am:

Beendet am:

CR-Nummer:

Institut fiir Softwaretechnologie
Abteilung Software Engineering
Universitit Stuttgart
Universitétsstral3e 38
D-70569 Stuttgart

Diplomarbeit

Software Repositories Mining von
Issue Tasks und Coupled File Changes

Deniz Alakus

Informatik

Prof. Dr. rer. nat. Stefan Wagner
M. Sc Jasmin Ramadani

29. September 2016

31. Mérz 2017

D.2.7,H.2.8



Inhaltsverzeichnis

1

2

EINICIEUNG. ... eieeiiiee ettt et e et e et e e e e staeeennsbaeeeeennnnseaeesannns 5
Lol GLEACTUNG . ...ctieiie ettt ettt ettt ettt e e st e e snbeeeenaeeeenneeas 6
GIUNAIAZEN......eiiiiiieeiieeee ettt et e e e e e steeessteeesaeeesaaeensneesennsaeeeesannnes 7
2.1 Pattern MINING.....ccueeiiieiieeiieiie ettt ettt ettt et e st e et esabeensbe e e ennbeeeennaeas 7
2.1.1 Frequent Itemset MINING.........ccccuvieriieeiiieeiieeeieeeieeeeieeeereeesreeesereesseaee s e 7
2.1.2 Sequential Pattern MINING.........ccceeruieriieniieeiieiieeie ettt 9
2.1.3 Vergleich der Methoden............occuvieeiiieiiiieiiecee e e 10
2.2 CSV-DaALBICI c..ceueeitieiieteeteeit ettt sttt ettt st b e et sbe et s sate e nateesanee e 10
2.2.1 Aufbau einer CSV-Datel.........ccoceiiiiiiiiiiiiiiiiieeeeeeeeeee e 10
2.3 Eclipse Rich Client P1atform............ccoocuieiiiniiiiiieiiieeeeeee e 11
2.3.1 Dependency INJECtION......c.eeeviiieiiieeiiie ettt e e e eeaeaee e e 12
2.3.2 ANNOTATIONEL. .. .eeutienieriteieeteeite ettt ettt ettt et e st e sbeesbe et e sbeebesaeesbaeenbeeenaeees 13
2.4 SPME ...ttt et sttt et e st e enneeens 14
Verwandte ATDEILEN. ......cc.eeuiiriiiiiiierieeieet ettt 15
3.1 Release History Database..........cccuviiiiiieiiiiieiiiecciie ettt e e 15
3.2 Automatische Transformation von Daten aus Software Repositories..................... 18
3.2.1 Input- und OUtPULTOIMAL.........eeeiiiieeiiieeiiee e e e e e 18
3.3 SRM PIUGIN. ..ottt ettt et e e et e e e ntee e e 19
Anforderungen Und ANALYSE........cccveiiuiiiriiieiiie et 21
4.1 Anforderungen an das TOOL.........cccuiiiiiiiiiiiiiiiee e 21
4.2 ANALYSC....evieieiie ettt e e e et e e et te e e bt e e e e e nebraeeeennnraaaeenn 22
Konzept und ArchiteKtur........c.oiiiiiiiiiiieee e e 23
5.1 Losungsansatz zum Erzeugen von Coupled Changes fiir Issue Tasks..................... 23
5.2 WOTKEIOW ..ottt et 23
5.3 FrameWOTK.....couiiiiiiiie et 24
5.4 Input und Output Objekte fiir das Data Mining..........ccceeeeverienerienieneenienienneens 25
5.4.1 Data Mining Input ObjeKt.........coooviiriiiiiiiieriieeeiee e 25
5.4.2 Data Mining Result Objekt..........cooiiiiriiniiiiiiiiiiiccceceec e 25
5.5 Format der Output-Tabelle..........cccoieriiiiiiiiiiieeeeee e 27
5.5.1 Schreiben des Output Objekts in die Output-Tabelle.............cccceeeniiiniiennnne 27
5.6 Prefixspan 1N SPME ...ttt 27
5.6.1 Input von PrefiXSPpan........ccocieiiienieiiieieeeee et 28
5.6.2 Auswahl der Implementierung...........cceeeevereriireniieeeiieeeeee e e e e eiee e e 29
IMPIEMENTICIUNG.....coutiiiiiiiieiie ettt ettt et et e e st e et e e eenbeeesenbaeesnseeeenns 30
6.1 CommitTableData.........cc.coviiiiiiiiiiii e 30
6.2 Integrierung von Prefixspan in das Framework............ccccoooeiiiiiniiiiiniiiniiieeee, 30
6.2.1 Transformation der Input-Daten fiir Prefixspan.........ccccceevvieeiiieniieeniieenee, 30
6.2.2 Laden von transformierten Input-Daten.............cccceeviiriiiniieiienieeiiesieeeene 31
6.2.3 Transformation der gefundenen Sequential Patterns............c.ccceevvevvveeerennnnnne. 32
6.2.4 Konstruktor und Ausfithrung des Algorithmus..........c.ccoovviiiiiiniiiiiiniiieeee, 34
6.3 Generierung von Coupled Changes fiir Issue Tasks.........c.cceocvieevieencieenniiiieeeees 35
6.3.1 Filterung von Commits die im Zusammenhang mit Issues stehen.................. 35
6.3.2 Bestimmung der Commitspaltenanzahl.................cccooviieiiiiiniiiiiiiiee e, 36
6.3.3 Auslesen der Data Mining Resultate aus der Datenbank.............cccccevceennenne 37
6.3.4  ZUSAMMENTASSUNG........veieiiieiiiieeiieeeiteeeiee e st e e steeesteeesaeeeseaeeesaeeesaeeessaeennns 39
6.4 Implementierung der Benutzeroberflache...........ccocevviriiniiiiniiniiiiiicicee 39
0.4.1  ISSUESPAIt.....coiiiiiiiiiie e 40



6.4.2 ISSUEINTOIMAtIONSPATIT. ... oo e e e eeeeeeeeaes 40

6.4.3 CoupledChangesPart.............ccociiieiiieeiieeeee e e 41
6.5 Kommunikation zwischen den Komponenten.............ccoecveeiienienieenienieenienineenns 43
0.5.1  BVENLS....eiiiieeiiiee ettt et e e et e e e e et e e et r e e e e anaaaeeeeannn 43
6.5.2 EventHandIer.........ccooiiiiiiiiiieiceeeee e 44
6.5.3 EventHandler ISSUESPaArt..........cc.cooiiiiiiiiiciieee e 44
6.5.4 EventHandler IssuelnformationsPart............ccccceevuieviiiiiiniiiiiiieeiee e, 45
6.5.5 EventHandler CoupledChangesPart.............ccccoveviiieniiiiniiieiie e, 46
6.6 Export von Coupled Changes..........cccveeiieriieeiieniieeiieiie et eie et esveee e 48
6.7 Anderungen am WizZard............o.ooouiuiiuieieeeeeeeeeeeee e 50
6.7.1 Auswahlmoglichkeit zwischen den Data Mining Algorithmen....................... 50
6.7.2 Durchfiihrung des Data MInings..........ccccveeeeiieeiieesiieeeiieeeieeesieeesveeesveeennens 51
6.8  PrOGrammSTATIT.........oeviuiieiiiieiiiee ettt ettt e et e et e e e e sata e e e e s s nenreeeeeennns 53
EVAIUICTUN.....oeiiiieeeiee et et et e e et e e et e e s taeesara e e e e e snsssaeeeeennnnnaeaeeas 55
7.1 Vorbereitungen und TeStUMEEDUNG..........cccuieriieriieriieeiieiieeie et e e 55
7.2 TeStAUTDAU. ......viiiiiiieciee ettt e et e et e et e e e tae e e taeesssaeenabeeenaraeeaeeanns 55
7.3 TestdurchflIUNg.........c.cooiiiiiiiiciiee et e e e 56
T4 AUSWETTUINE. ..cceeeiiiieeeiiiieeeeiiteeeeettteeeeettaeeeestaeeeessaeeeeasnssaeesesssseeeeassseeesssssssnseeneees 57
7.5 EIZEDIISSE....uviiiiiiiieiieeieeete ettt ettt ettt et e st e et e s tbeeteesabe e beesnbeeseesnbeenraeeens 57
ZUSAMMENTASSUNE . ....cccuviieeiiieeeiieesteeerieeesteeetaeeetreesseeesseeesssaeessseeessseeessseeenssaseesesnsssees 61
8.1 WEIEre SCRITHE. ...ccueieiiiiieiieiee ettt st 61
LteraturVerZEICHNIS. .. .ceuiiiiieiie ettt ettt sttt e st e e 63



Abkiirzungsverzeichnis

CLI
IDE
GUI
SRM
SQL
SWT
RCP
VCS
CVS
DMIO
DMRO

Command Line Interface
Integrated Development Environment
Graphical User Interface
Software-Repository Mining
Structured Query Language
Standard Widget Toolkit
Rich Client Platform
Version Control System
Concurrent Versions System
Data Mining Input Objekt
Data Mining Result Objekt



1 Einleitung

Immer mehr Softwareprojekte werden iiber Versionsverwaltungssysteme (VCS)
wie CVS und Git verwaltet. Mit der Zeit haufen sich viele Daten in einem durch
VCS verwalteten Software-Repository an. Bugtracker wie Bugzilla sind ebenfalls
Software-Repositories, die zusammen mit ihrer zugehorigen Software wachsen,
aber sie sind trotzdem getrennte Entitaiten. SRM (Software Repository Mining)
kann helfen, um aus diesen Daten niitzliche Informationen zu gewinnen. In
diesem Zusammenhang sind Coupled Changes [1] besonders interessant. Indem
Data Mining, wie Frequent Pattern Mining, auf den Software-Repositories
ausgefithrt wird, konnen Dateien identifiziert werden, die oft miteinander
geandert wurden. Diese Dateien stellen Coupled Changes dar und basieren auf
der Software-Historie einer Software. Coupled Changes konnen unerfahrenen
Entwicklern bei immer komplexer werdender Software helfen, ihre

Wartungsaufgaben durchzufiihren.

Im Rahmen dieser Arbeit soll ein auf Eclipse basierendes Tool erstellt werden,
welches die ,Maintenance Task Issues” eines Software-Projekts anzeigen und
Coupled Changes auf Basis der Issues extrahieren kann. Als Data Mining
Algorithmen kommen der Frequent Itemset Mining Algorithmus FPGrowth und

der Sequential Pattern Mining Algorithmus Prefixspan zum Einsatz.



1.1 Gliederung

Diese Arbeit ist wie folgt gegliedert:
Kapitel 1 - Einleitung;:

Einfiihrung in das Themengebiet
Kapitel 2 - Grundlagen:

Erlauterung der Grundlagen
Kapitel 3 - Verwandte Arbeiten:

Beschreibung von Arbeiten mit Bezug auf das Themengebiet
Kapitel 4 - Anforderungen und Analyse:

Anforderungen an das Tool und Analyse
Kapitel 5 - Konzept und Architektur:

Konzept und Architektur des zu erstellenden Tools
Kapitel 6 — Implementierung;:

Beschreibung der Implementierung des Tools
Kapitel 7 — Evaluierung;:

Evaluierung des erstellten Tools
Kapitel 8 - Zusammenfassung;:

Abschliefsende Worte und Ausblick



2 Grundlagen

In diesem Kapitel werden die Grundlagen und verwendeten Technologien

erlautert.

2.1 Pattern Mining

Data Mining beschiftigt sich mit dem Sammeln, Verarbeiten und Analysieren von
Daten, um niitzliche Einsichten zu gewinnen [2]. Ein Teilbereich des Data Minings
ist Pattern Mining, welches sich mit interessanten, niitzlichen und unerwarteten
Mustern in Datenbanken beschiftigt. Mit Hilfe dieser Technik konnen versteckte
Muster in grofsen Datenbanken zum Vorschein gebracht werden [3].

In diesem Kapitel werden die Pattern Mining Techniken Frequent Itemset Mining

und Sequential Pattern Mining erldutert und verglichen.

2.1.1 Frequent Itemset Mining

Frequent Itemset Mining berechnet haufig vorkommende Itemsets in einer
Transaktionsdatenbank. FEine Transaktionsdatenbank DB setzt sich zusammen aus
einer Menge von Tupeln (tid, T), wobei T fiir eine Transaktion steht und aus einer
Menge von Items besteht (ein sogenanntes Itemset). Die Transaktions ID dient der
eindeutigen Identifikation der Transaktion. Ein Itemset A kommt dann haufig in
einer Transaktionsdatenbank DB vor, wenn die Anzahl der Transaktionen, in
denen A enthalten ist (entspricht dem Support-Wert), einen vorbestimmten Wert,

den Minimum-Support-Wert, tibersteigt. In diesem Fall ist A ein Frequent Pattern.

[4]

Um die Frequent Patterns einer Transationsdatenbank DB effizient zu berechnen,

benutzt FPGrowth eine kompakte Datenstruktur mit dem Namen FP-tree.



Header table G”‘,D

head of gl.__“ <‘ D
item node-links i

c «(::) G 1)"*{ >

m -
P -

RO SR G

Abbildung 2.1: Beispiel fiir ein FP-tree [4]

Die Konstruktion des FP-tree wird durch zwei Durchldaufe von DB bewerkstelligt.
Im ersten Durchlauf wird der Support aller Items gezahlt. Es entsteht eine Liste
FList aus Items und ihrem Support. Items mit einem Support kleiner als
Minimum-Support werden nicht in die Liste aufgenommen. Anschlieffend wird
die Liste absteigend nach Support sortiert.

Im zweiten Durchlauf wird der FP-tree aus den Transaktionen in DB erzeugt. Dies
wird anhand des Beispiel FP-trees in Abbildung 2.1 erldautert. Nicht haufig
vorkommende Items werden aus den Transaktionen aussortiert. Frequent Items
werden nach den Vorkommen der Items in FList sortiert. Werden als Frequent
Items z.B. die Items in Abbildung 2.1 angenommen, bedeutet dies fiir eine
Transaktion mit Items <b, ¢, p> eine Sortierung nach <c, b, p>. Die sortierten
Transaktionen werden anschlieffend der Reihe nach in den Baum eingefiigt.
Transaktionen, welche einen Prefix einer bereits im Baum vorhandenen
Transaktion enthalten, werden entlang des Prefixes in den Baum eingefiigt. An der
Stelle, wo sie sich unterscheiden, entsteht ein neuer Ast im Baum und der Rest der

Items der Transaktion werden in den Ast eingefiigt.

Damit die Frequent Itemsets berechnet werden konnen, wird eine Zeiger-Tabelle
tir die Frequent Items aufgebaut. Sie zeigen zu den ersten im FP-tree
vorkommenden Items mit demselben Namen. Dies ist in Abbildung 2.1 gut zu
sehen. Der Zeiger fiir das Item f z.B. zeigt auf das erste hinzugefiigte Item f in
FP-tree. Dasselbe gilt fiir die anderen Frequent Items. Die Knoten im FP-tree
zeigen mit ihren Zeigern ebenfalls auf neu hinzugefiigte Items mit demselben

Namen.



Um die Frequent Patterns, an denen ein Frequent Item beteiligt ist, zu berechnen,
wird zundchst tiber die Zeiger-Tabelle alle Transaktionen im FP-tree verfolgt, in
denen das Frequent Item vorkommt. Daraufhin werden nur die Prefixpfade ohne
das Item und dem Suffix betrachtet. Aus diesen wird ein neuer sogenannter
Conditional FP-tree erzeugt und es werden die in diesem Baum vorkommenden
Frequent Itemsets berechnet. Dies wird rekursiv solange wiederholt, bis alle

Frequent Patterns gefunden sind. [4]

2.1.2 Sequential Pattern Mining

Fiir Daten, in denen die Reihenfolge eine wichtige Rolle spielt wie z.B. DNA-
Sequenzen [5], ist Sequential Pattern Mining das bevorzugte Tool, denn es wurde

tiir die Entdeckung von sequenziellen Mustern entworfen.

Sequential Pattern Mining nutzt eine sogenannte Sequenzdatenbank als Input.
Eine Sequenzdatenbank besteht aus einer Menge von Tupeln <sid, s>, wobei sid
eine eindeutige Sequenz ID ist und s eine Sequenz darstellt. Eine Sequenz besteht
aus einer Liste von Itemsets (vgl. Kapitel 2.1.1) [5]. Aus dem Namen Sequenz lasst
sich ableiten, dass die Reihenfolge, in der die Itemsets vorkommen, von dufSerster
Wichtigkeit sind.

Eine Sequenz a=(a,a,..a,) ist eine Subsequenz von einer Sequenz
p=(b,b,...b,) , falls alle Itemsets in a als Untermenge von Itemsets in {3 in einer
Sequenz vorkommen. Formal bedeutet dies, falls Zahlen 1<j <j,<..<j,<m

existieren, sodass a,=b.,a,<b.,,...,a,Sb ilt, dann ist a eine Subsequenz von f3.
1 jL>2 j2 n

jn
Wenn die Anzahl der Sequenzen (in der Sequenzdatenbank), in denen a als
Subsequenz vorkommt, mindestens dem Minimum-Support-Wert entspricht,

dann ist a ein Sequential Pattern. [5]

Das Ziel des Sequential Pattern Mining ist bei gegebenem Minimum-Support-Wert

alle Sequential Patterns einer Sequenzdatenbank zu finden.

Prefixspan ist ein schneller Algorithmus designt zum Mining von Sequential
Patterns. Der Mining Prozess findet statt, indem zuerst alle frequent length-1
Sequential Patterns gesucht werden. Hierzu wird die Datenbank einmal komplett
gescannt. Danach wird der Suchraum nach den gefundenen length-1 Sequential

Patterns partitioniert. Die Subsequenzen der Sequential Pattern koénnen dann



gemint werden, indem ihre projizierten Datenbanken erstellt und rekursiv gemint

werden [5].

2.1.3 Vergleich der Methoden

Sequential Pattern Mining und Frequent Itemset Mining haben unterschiedliche
Ziele. Frequent Itemset Mining versucht die haufig vorkommenden Pattern einer
Transaktionsdatenbank zu finden. Transaktionen bestehen aus Itemmengen, was
bedeutet, dass Items jeweils nur einmal in einer Transaktion vorkommen konnen.
Sequential Pattern Mining versucht hingegen hédufig vorkommende Sequential
Patterns in einer Sequenzdatenbank zu finden. Im Gegensatz zu Frequent Pattern
Mining besteht eine Sequenz aus einer Folge von Itemsets. Das bedeutet, dass
Items auch mehrfach in einer Sequenz vorkommen konnen. Des Weiteren ist die
Reihenfolge der Itemsets in einer Sequenz wichtig. Prefixspan und FPGrowth als
Reprasentanten ihrer Klassen haben gemeinsam, dass sie beide Pattern-Growth

Methoden ohne Kandidatengenerierung sind [4][5].

2.2 CSV-Dateien

CSV steht fiir ,comma seperated values” [6] und ist ein Format zur Speicherung
von Tabellen, Datenbanken u.d. Datensatze. So lassen sich mit diesem Format
beispielsweise Tabellen aus Tabellenkalkulationsprogrammen auf einfache Art
exportieren, um diese anderen Personen zur Verfligung zu stellen. Auch Kontakte

aus E-Mail-Programmen lassen sich auf diese Weise exportieren und sichern.

CSV-Dateien sind simple Textdateien, die sich mit herkdémmlichen Texteditoren
offnen und bearbeiten lassen. Auch Tabellenkalkulationsprogramme wie Microsoft
Excel sind in der Lage sie zu 6ffnen. Excel zeigt die Dateien dabei in tabellarischer
Form an. Im Gegensatz dazu werden CSV-Dateien von Texteditoren in ihrer

eigentlichen Form angezeigt.

2.2.1 Aufbau einer CSV-Datei
Obwohl der Aufbau einer CSV-Datei meist recht einfach ist, gibt es fiir CSV-

Dateien keinen einheitlichen Standard. Programme konnen die Struktur von
CSV-Dateien frei bestimmen, was dadurch zu Inkompatibilititen bei Software

fihren kann, welche eine andere Struktur erwarten. Trotz dieser Vielzahl von

10



moglichen Formaten hat sich ein allgemeiner Aufbau durchgesetzt, so wie sie von
einer grofien Mehrheit von Software akzeptiert wird. Der allgemeine Aufbau, ist in
RFC 4180 [6] von der IETF (Internet Engineering Task Force) dokumentiert
worden. In Listing 2.1 wird der Aufbau von CSV-Dateien als ABNF Grammatik

beschrieben.

file = [header CRLF] record * (CRLF record) [CRLF]
header = name * (COMMA name)

record = field *(COMMA field)

name = field

field = (escaped / non-escaped)

escaped = DQUOTE * (TEXTDATA / COMMA / CR / LF / 2DQUOTE) DQUOTE
non-escaped = *TEXTDATA

Listing 2.1: ABNF Grammatik von CSV-Dateien [6]

Eine CSV-Datei besteht also aus einem optionalem Header, welcher die Spalten
der Datei beschreibt. Jede darauf folgende Zeile ist ein Record. Die Records selbst
sind in Felder unterteilt, welche Text enthalten. Das Trennzeichen, das die Felder
voneinander trennt, ist das Komma. Die Anzahl der Felder pro Record muss
einheitlich sein und auch mit der Anzahl der Felder im Header (falls vorhanden)

tibereinstimmen.

Als Trennzeichen kommen neben dem Komma oft auch Doppelpunkte oder

Semikola vor.

2.3 Eclipse Rich Client Platform

Eclipse RCP ist eine Software Plattform fiir die Entwicklung von Desktop
Anwendungen. Hierfiir bietet RCP ein Grundgeriist aus Komponenten, welche

beliebig erweitert werden konnen.

Das wohl bekannteste Anwendungsbeispiel von Eclipse RCP ist die Eclipse IDE.
Sie demonstriert die Machtigkeit von RCP, mit ihrer Erweiterbarkeit und

sinnvollen Nutzung von Eclipse Plugins und Komponenten.
Mit RCP lassen sich in kurzer Zeit komplexe Anwendungen realisieren, die zudem
Plattformunabhangig sind [7]. Die bereitgestellten grafischen Komponenten

entsprechen den grundlegenden Bediirfnissen einer Benutzeroberfliche. RCP

11



Anwendungen lassen sich tiber die Eclipse IDE einfach programmieren, da sie
Plugins fiir ihre Erstellung bereitstellt. Diese nehmen dem Programmierer einen

grofien Teil der Entwicklungslast ab.

Es gibt eine grofie Community, die Eclipse basierende Plugins und Tools
entwickeln und diese der Allgemeinheit zur Verfiigung stellen. Entwickler konnen
sich auf diese Weise um die eigentliche Software kiimmern, ohne sich um die

Implementation dieser Funktionalitdten kiimmern zu miissen.

2.3.1 Dependency Injection

Eines der grofiten und wichtigsten Neuerungen in RCP 4 ist die Einfiihrung eines
serviceorientierten Programmiermodells [8]. Im Gegensatz zu RCP 3, wird in RCP

4 bevorzugt Dependency Injection (DI) verwendet.

BundleContext ctx=FrameworkUtil.getBundle (Eventsender.class)
.getBundleContext () ;

ServiceReference<EventAdmin> sref =

ctx.getServiceReference (EventAdmin.class) ;

EventAdmin eventAdmin = ctx.getService (sref);
Map<String,Object> properties = new HashMap<String, Object>();
properties.put ("date", new Date());

Event event = new Event ("dateEvent", properties);
eventAdmin.postEvent (event) ;

Listing 2.2: Beispiel zum Senden von Events in RCP 3

Um ein EventAdmin Objekt zu erhalten ist es in RCP 3 erforderlich, einen Umweg
iber mehrere Klassen zu machen. Erst muss iiber die FrameworkUtil ein
BundleContext erlangt werden. Uber diesen und einer ServiceReference auf die
EventAdmin Klasse kann schlieSlich ein EventAdmin Objekt erhalten werden. Das
gewiinschte Event kann nun iiber das EventAdmin Objekt versendet werden. In
Listing 2.3 ist der Code abgebildet, der dasselbe Ergebnis mit RCP 4 erreicht.

@Inject
IEventBroker eventBroker;
eventBroker.postEvent ("date", new Date());

Listing 2.3: Beispiel zum Senden von Events in RCP 4

Im Vergleich zu RCP 3 wird in RCP 4 ein IEventBroker Objekt verwendet. Auf den
ersten Blick fallt auf, dass dieselbe Funktionalitdt, die in Listing 2.3 abgebildet ist,
mit RCP 4 in nur 3 Zeilen ausgedriickt werden kann. Der Umweg {iiber die

12



FramworkUtil und dem BundleContext fillt weg. Erreicht wird dies tiber die
,@Inject” Annotation, welche dem Eclipse Framework die Biirde des Auffindens
des IEventBroker Objekts aufladt. Sobald es gefunden ist, wird es in die
eventBroker Variable ,injiziert”. Das Senden eines Events erfolgt schliefslich iiber

den Aufruf der postEvent Methode mit den zugehorigen Parametern.

2.3.2 Annotationen

In RCP 4 existieren verschiedene Annotationen, die von der Plattform fiir
Dependency Injection und Callbacks eingesetzt werden. In Tabelle 2.1 ist eine

Auswahl der von RCP 4 unterstiitzten Annotationen aufgelistet.

Annotation Beschreibung

@Inject Zur Injektion von Feldern, Methoden und Konstruktoren

@Optional Markiert Felder, Methoden und Parameter als Optional

@UIEventTopic("TOPIC") |Registriert eine Methode fiir den Empfang von bestimmten Ereignissen

@PostConstruct Methoden die mit @PostConstruct markiert sind, werden aufgerufen
nachdem alle ausstehenden DI auf dem Objekt durchgelaufen sind

@PreDestroy Methoden die mit @PreDestroy markiert sind, werden bei Zerstorung eines
Objekts aufgerufen

Tabelle 2.1: Auswahl an von RCP 4 unterstiitzten Annotationen [9]

In Kapitel 2.3.1 wurde bereits der Einsatz von Annotationen im Zusammenhang
von Events anhand eines Beispiels (siehe Listing 2.3) geschildert. In diesem
Beispiel wurde ein Event mit dem Topic , date” versendet. Um auf dieses Event
reagieren zu konnen ist es erforderlich, eine Methode zu registrieren, die bei
Empfangen des Events aufgerufen wird. Dies kann tiber ein IEventBroker Objekt
erreicht werden oder {iber die Annotation einer Methode mit der

@UIEventTopic("date") Annotation.

Die @Optional Annotation hat je nach Definierungsort unterschiedliches Verhalten
und wird zusammen mit der @Inject Annotation verwendet. Sie kommt iiberall
zum Einsatz, wo eine erfolgreiche Injektion von Seiten des Frameworks nicht
immer garantiert werden kann. So wird bei einer nicht erfolgreichen Injektion bei

* Feldern die gewtiinschten Objekte nicht injiziert

¢ Methoden, der Aufruf tibersprungen

» Parametern, der ,null” Wert tibergeben

Dadurch lassen sich beispielsweise unnotige NullPointer Exceptions vermeiden.

13



Fiir das Management des Lebenszyklus sind Annotationen wie @PostConstruct

und @PreDestroy zustandig, wie sich auch aus Tabelle 2.1 entnehmen lasst.

Die Eclipse Plattform beherbergt noch etliche weitere Annotationen mit

verschiedensten Einsatzzwecken.

24 SPMF

SPMF ist eine Open Source Data Mining Software mit dem Fokus auf Pattern
Mining [10]. Es sind 129 Data Mining Algorithmen aus verschiedenen Kategorien
implementiert. Darunter befinden sich z.B. Itemset Mining und Sequential Pattern
Mining. Die Algorithmen konnen {iiber eine Benutzeroberfliche oder tiiber die

Kommandozeile ausgefiihrt werden.

Fir die Ausfithrung der Algorithmen werden algorithmenspezifische
Input-Dateien und Parameter bendtigt. Ein solcher Parameter kann z.B. ein
Minimum-Support-Wert sein. Nachdem der Benutzer die Parameter gesetzt und

eine Output-Textdatei definiert hat, werden die Ergebnisse in diese geschrieben.

Durch die modulare Art der Software ist es moglich die Algorithmen ohne GUI in

anderer Software zu verwenden und fiir eigene Zwecke anzupassen.

14



3 Verwandte Arbeiten

In diesem Abschnitt werden Arbeiten vorgestellt, die der Funktionalitit des zu
erstellenden Tools dhnlich sind. Die Arbeiten die in Kapitel 3.2 und 3.3 vorgestellt
werden, stellen ein grofles Fundament fiir das Tool dar, da das Tool in weiten

Ziigen auf diesen Arbeiten aufbaut.

3.1 Release History Database

Von Fischer et. al [11] wurde eine , Release History Database” entwickelt, mit
dessen Hilfe die Evolution einer Software analysiert werden kann. Das System
kombiniert dabei die Informationen, die in CVS Version Control Systemen und im
Bugzilla Bugtracker vorhanden sind. Um die Daten aus CVS und Bugzilla zu

extrahieren, verwenden sie verschiedene Skripte.

Wie aus dem Namen des Systems abzuleiten ist, wird eine SQL Datenbank zur
Speicherung der Daten verwendet. In Abbildung 3.1 ist ein UML-Diagramm der

Datenbank zu sehen.

cvsalias 1 cvsitemalias cvsitemfeature| 1 feature 1 featureset
id cvsitem * * /| cvsitemid id featureid
name cvsalias featureid fname subfeatureid
date revision it
usagecount
1 1
evalresult cvsitem 1 cvsitemlog | 4 cvsauthor
id 0 1 id id id
cvsitem rcsfile cvsitem author
evkey workfile revision
evtype 1 head date bugreport
evclass locks author
evobject access state id
keysubst ladd bugfile_loc
y - 1 revtot Idel bug_severity
projstruct revgs_zl branchgs short_desc
P cvsitemprojectstruct revision description op_sys
parentid 1 - cvsitemid 1 g:loodrﬁi't bugreportdesc
nodename projectstructid N version -
' history component i .
cvsitemlogbugreport | | resolution ) bugreportid
programkey . 1] target_milestone |1 who
pgclass cvsitemlog qa_contact bug_when
pgstate bugreport keywords thetext

Abbildung 3.1: Release History Database [11]

In der Datenbank werden die CVS Informationen aller Dateien abgespeichert. Die

15



Informationen werden aus den CVS Log-Dateien gewonnen. Dabei besitzt jede
Datei in CVS Log-Informationen. Andert sich die Revision einer Datei, nachdem
Veranderungen an ihr durchgefiihrt wurden, wird dies in der Log-Datei
protokolliert. Zu den protokollierten Daten gehdren z.B. Autor, der die Anderung
durchgefiihrt hat, und das Datum, an dem die Anderung stattgefunden hat. Auch
eine textuelle Beschreibung, welche die Anderungen kurz zusammenfasst, werden
erfasst. Diese Daten werden jeweils in die author, date und description Felder der

cvsitemlog Tabelle geschrieben.

Jeder Eintrag in cusitemlog gehort zu einem Eintrag in cvsitem. Sie stellt die zentrale
Einheit der Datenbank dar. Fiir jede Datei im Software-Repository wird ein
Eintrag in csvitem erstellt, welches u.a. den Pfad zur Datei im Feld rcsfile
abspeichert. Die Beziehung zwischen cvsitern und cvsitemlog ist dabei eine 1-zu-n-
Beziehung, da jede Datei in CVS mehrere Revisionen und damit Log-

Informationen besitzt.

Wie aus Abbildung 3.1 ersichtlich ist, sind die Informationen aus den Bugreports
in Bugzilla ebenfalls in der Datenbank vertreten. Die Bugreports werden iiber die
Tabelle cvsitemlogbugreport mit der cuvsitemlog Tabelle verkniipft. Erfasst werden
u.a. Bug ID, Bug Status und Bug Severity als Bugreportdaten. Damit die
Datenbank gefiillt werden kann, miissen die notwendigen Informationen aus

einem CVS Repository und zugehorigem Bugzilla ausgelesen werden.

Der Importprozess von CVS Daten und Bugreports ist in Abbildung 3.2
dargestellt.

| Retrieve Source Tree ‘

$

‘ Get log file information ‘

‘ Import log file information

CVS item

Get bugreport IDs
Get bu

Release
History
Database

bugid

greports

bugreport
Import bugreports

Abbildung 3.2: Database History Database
Importprozess[11]

16



Damit die Daten in einem CVS Repository extrahiert werden konnen, muss das
CVS Repository z.B. durch auschecken des Repositories heruntergeladen werden.
Daraufthin konnen die Log-Informationen der Dateien im Repository mithilfe des
CVS Programms extrahiert und in die Datenbank geschrieben werden. Der
nachste Schritt ist Bugreports aus Bugzilla herunterzuladen und sie mit den
zugehorigen cvsitems zu verkniipfen. Hierzu wird zunachst versucht, aus den Log-
Informationen der Dateien die Bug ID ausfindig zu machen. Diese haben kein
festes Format und das System versucht deshalb iiber einen reguldren Ausdruck die
Bug ID zu finden. Ist sie gefunden, wird sie in die Tabelle cvsitemlogbugreport
geschrieben. Dieselbe Bug ID wird nun verwendet, um den Bugreport von
Bugzilla herunterzuladen. Die so erhaltenen Bugreports werden daraufhin in die

Datenbank geschrieben.

Mit der erstellten , Release History Database” konnen Evulotiondre Aspekte einer
Software, wie z.B. Systemwachstum oder Anderungsrate des Systems analysiert
werden. Ebenso ist es moglich, logisch gekoppelte Dateien {iiber die Release
Historie ausfindig zu machen. Die gekoppelten Dateien hiangen auch oft mit
Bugreports zusammen und so lassen sich Gruppen von Bugreports finden, welche

ein dhnliches Problem beschreiben. [11]

3.2 Automatische Transformation von Daten aus Software
Repositories

Die Software ATSR [12] hat die Funktion, die in Software-Repositories
gespeicherten Metadaten zu extrahieren und in einer Datenbank zu speichern. Die
so gespeicherten Daten konnen von anderen Programmen eingelesen und
weiterverarbeitet werden. Als Software-Repository kommen bei ATSR Git

Repositories in Frage.

Das Tool bietet dem Benutzer eine Benutzeroberflache, welche hauptsachlich in
Java Swing entwickelt wurde. Zur Speicherung der Transformationsdaten in der
Datenbank verwendet es als SQL-Backend das MySQL-Datenbanksystem.

Die GUI enthélt Felder, iiber die der Benutzer die gewiinschte Transformation
durchfithren kann. Dariiber hinaus konnen Einstellungen beziiglich der

Datenbank vorgenommen werden.

17



3.2.1 Input- und Outputformat

Metadata |Datenquelle Format
Issue Csv Parameter 1;Parameter 2;...;Parameter 22
Docu Csv Parameter 1;Parameter 2;Parameter 3

Commit Kommandozeilen- |<Hash>#<Urheber>#<Uhrzeit+Datum>#<Commit-Titel>

output <Dateiliste>

Tabelle 3.1: Datenquellen und -format [13]

Als Input nutzt ATSR Issue- und Docudaten, welche jeweils im CSV Format
vorliegen miissen. Die Commitdaten werden aus der Terminalausgabe des Git
Kommandozeilenprogramms ausgelesen und transformiert. Die Commitausgabe
umfasst dabei wichtige Daten wie den Commithash bzw. Commit ID, Committitel

und eine Liste der Dateien, welche in dem Commit enthalten sind.

Die CSV Dateien werden zeilenweise geparst und die Daten werden Zeile fiir
Zeile in ihre jeweiligen Datenbanktabellen geschrieben. Fiir Issuedaten ist es die
,issuetable”, fiir Docudaten ist es die ,,docutable”.

Da die Commitdaten die umfangreichsten Daten beinhaltet, ist das
Datenbankformat dementsprechend komplex. In Abbildung 3.3 ist das

Outputformat fiir die Commitdaten dargestellt.

committable
<<pk>> id: VARCHAR(12) |, |, o x filetable
author: VARCHAR(255) 15308 . I ok>> id: INT
date: DATE path: VARCHAR(255)
message: LONGTEXT

Abbildung 3.3: Tabellen fiir die Commit-Metadaten [13]

Die Commitdaten werden in drei Tabellen gespeichert: committable, usage,
filetable. ,Hash”, ,Urheber”, , Datum” und ,, Committitel” aus Tabelle 3.1 werden
in dieser Reihenfolge in die committable geschrieben. Die Dateien werden in der
filetable gespeichert. Die filetable speichert alle Dateien, die in allen Commits
vorkommen. Keine Datei kommt doppelt vor. Die Commits werden mit der
filetable tiber die usage Tabelle verbunden. Sie verkniipft die Commits und die in

ihnen enthaltenen Dateien.

18



3.3 SRM Plugin

SRMP [14][15] ist ein Tool, welches entwickelt wurde, um Data Mining auf Basis
der Metadaten eines Software Repositories zu betreiben und auf Basis dieses Data
Minings Coupled Changes zu identifizieren. Die Metadaten liegen in
Datenbanken im Format der ATSR Software vor. Genauer sind es die Commit
Metadaten, welche fiir das Data Mining verwendet werden. Als Data Mining
Algorithmus kommt FPGrowth zum Einsatz, was zum Ziel hat, die Frequent
Itemsets aus der Commitdatenbank zu extrahieren und diese wiederum in einer
Datenbank zu speichern, um weitere Zugriffe zu beschleunigen. Diese Frequent
Itemsets werden benutzt um Coupled Changes zu identifizieren. Der Benutzer legt
die Identifikation in Gang, indem er eine Datei in der GUI auswahlt und das
SRMP startet daraufhin eine Suche in der fiir die Frequent Itemsets angelegten
Datenbank. Es werden alle Frequent Itemsets ausgelesen, die die ausgewdhlte
Datei beinhalten und alle Dateien dieser Frequent Itemsets werden in der GUI
gelistet. Diese Menge an Dateien definiert sich als Coupled Changes, denn es sind

die Dateien, welche zusammen mit der ausgewahlten Datei geandert wurden.

In der aktuellsten Fassung des SRMP [13] wurden die ATSR Funktionen in das
Plugin in Form eines Wizards integriert. Dem Benutzer wurde es damit
ermoglicht, direkt im Plugin die notwendigen Datenbanktabellen fiir das Data
Mining zu generieren. Der Minimum-Support-Wert kann nun tiber den Wizard
eingestellt werden. Falls gewtiinscht, kann die Grofie der Input-Daten fiir das Data
Mining {iber die Auswahl eines Committers eingeschrankt werden. Hierfiir
werden die Committer mit den meisten Commits im Wizard aufgelistet. Durch
Auswahl eines Committers werden lediglich die Commits dieses Committers fiir
die Frequent Itemset Analyse in Betracht gezogen. Das MySQL-Backend wurde
fiir eine besser integrierte, eingebettete Datenbank ausgetauscht. Der Benutzer des
Plugins muss sich dank dieser Anderung nicht auch noch um das Aufsetzen eines

SQL Servers kiitmmern, womit die Installation des Plugins erleichtert wurde.

19



4 Anforderungen und Analyse

In diesem Kapitel wird erlautert, was die Anforderungen am Tool sind und es

wird analysiert, wie diese Anforderungen durchgesetzt werden konnen.

4.1 Anforderungen an das Tool
Das Tool hat folgende Anforderungen zu erfiillen:

1. Eclipse basierend: Eine Eclipse basierende Anwendung erleichtert das
Design einer GUI und vereinfacht die Wiederverwendung von
Komponenten aus anderen Eclipse Produkten oder Nutzung von
vorhanden GUI Komponenten entwickelt fiir die Eclipse Plattform. Ein
weiterer Bonus ist, dass das Tool ohne viel Aufwand auf anderen

Plattformen benutzt werden kann.

2. Import von Issuedaten: Fiir die Arbeit des Tools sind Issuedaten eine

Voraussetzung. Einlesen von Issuedaten im CSV Format muss moglich sein.

3. Import von Git Logs in eine Datenbank: Commit-Daten gehoren zu den
wichtigsten Daten und erfordern eine persistente Speicherung in einer
Datenbank. Uber Anwendungsneustarts kénnen so dieselben Daten ohne

Neuberechnung wiederverwendet werden.

4. Nutzung von Frequent Itemsets Mining Algorithmus FPGrowth: Data
Mining Algorithmus benétigt fiir die Generierung von Coupled Changes.

5. Nutzung von Sequence Pattern Mining Algorithmus Prefixspan:
Alternative Data Mining Methode fiir die Generierung von Coupled

Changes.

6. Anzeigen von Issues: Die Issues sind im Tool passend aufzulisten.

20



7. Anzeigen von Coupled Changes in Relation zu Issues und zugehorige
Attribute: Die generierten Coupled Changes sollen im Tool mit ihren
Attributen wie beispielsweise Commit ID, Commit message und Autor

angezeigt werden.

8. Export der generierten Coupled Changes: Es soll moglich sein, generierte

Coupled Changes iiber die Benutzeroberflache zu exportieren.

9. Coupled Changes nach Zeit, Committer und anderen Commit Attributen

filtrieren.

4.2 Analyse

Werden die Anforderungen analysiert, lassen sich gewisse Parallelititen zwischen
dem Tool und SRMP aufzeigen, welche bei der Entwicklung des Tools ausgenutzt
werden konnen. Anforderungen zwei, drei und vier sind in dhnlicher Form bereits
in SRMP integriert und koénnen mit minimalen Anderungen wiederverwendet
werden. Die Nutzung von Prefixspan im Tool (Punkt 5) ldsst sich in das
bestehende Framework SRMPs integrieren, da mit FPGrowth bereits der
Grundpfeiler fiir weitere Data Mining Algorithmen gelegt wurde. SRMP hat auch
Funktionen integriert, welche zum Anzeigen von Issues und Coupled Changes
verwendet werden. Diese sind jedoch SRMP spezifisch und deshalb nicht auf das

Tool anwendbar.

21



5 Konzept und Architektur

In diesem Kapitel wird neben dem Losungsansatz zur Erzeugung von Coupled
Changes fiir Issue Tasks auch das Workflow und die Architektur des Tools

beschrieben.

5.1 Losungsansatz zum Erzeugen von Coupled Changes fiir Issue
Tasks

Der Ansatz, der von der Release History Database (siehe Kapitel 3) genutzt wird,
um Bugreport IDs aus den CVS Log-Dateien zu extrahieren, kann auch fiir das
Finden von Issue IDs in Git-Logs genutzt werden. Extrahiere hierzu erst alle
Commit IDs, die eine Referenz zu einer bestimmten Issue besitzen. Die erstellte
Liste kann dann zur Erzeugung von Coupled Changes fiir die Issue genutzt

werden. Dieser Prozess wird in Kapitel 6.3 ausfiihrlich beschrieben.

5.2 Workflow

In Abbildung 5.1 ist der Workflow des Tools abgebildet.

Wizard

Import Commit Commit-Daten =v

Import Issue Issue-Daten | « Issue ID Wihle

s Issue
Input-Daten Datenbank Coupled Changes

&

Starte
Data-Mining »

Output-Daten v

Abbildung 5.1: Workflow des Tools

Uber den Wizard werden die Commits und danach die Issues importiert. Die

Daten werden in die Datenbank geschrieben. Daraufhin wird das Data Mining mit

22



den Input-Daten, die aus der Datenbank ausgelesen werden, gestartet. Die
Output-Daten des Mining-Prozesses werden zuriick in die Datenbank

geschrieben.

Durch Auswahl einer Issue wird dessen ID in die Datenbank iibergeben und es

werden Coupled Changes mit Referenz zur ID ausgegeben.

5.3 Framework

Wie bereits in Abschnitt 4.2 erwahnt, enthdlt SRMP einen Unterbau fiir die
Verwendung von FPGrowth, welches sich eignet, um weitere Data Mining
Algorithmen, wie Prefixspan, zu integrieren. Prefixspan lasst sich durch Nutzung

dieses Unterbaus in das Framework integrieren. Das resultierende Framework ist
in Abbildung 5.2 abgebildet.

Wizard

FPGrowth

|
-

Result Objekt

ble

— Prefixspan

' ata Mining =
nput Objek

outputtable

Abbildung 5.2: Framework fiir das Data-Mining

Uber das Framework kann das Tool die Metadaten fiir die Commits, welche in
einer Datenbank abgespeichert sind, auslesen und weiterverwenden. Die dabei
verwendeten Tabellen sind die committable und filetable (vgl. Abbildung 3.3).
Damit der Data Mining Algorithmus die Daten verwenden kann, werden diese
aus den Tabellen ausgelesen und in ein Data Mining Input Objekt (DMIO)
umgeformt (siehe Kapitel 5.4.1). Als Output wird ein Data Mining Result Objekt

23



(DMRO) von den Algorithmen erzeugt. Dieses Objekt wird im letzten Schritt in
eine Output-Tabelle geschrieben. Durch diese Tabelle sind die Ergebnisse des Data
Minings fiir die Berechnung von Coupled Changes zuganglich.

5.4 Input und Output Objekte fiir das Data Mining

Sowohl das Data Mining Input Objekt als auch das Data Mining Result Objekt sind
Objekte, welche fiir beide Algorithmen ein identisches Format haben. Dies
erleichtert die Integration von Prefixspan in das bestehende Framework, da keine

algorithmenspezifische Funktionen und Pfade implementiert werden miissen.

5.4.1 Data Mining Input Objekt

Das DMIO speichert alle relevanten Informationen, die fiir das Arbeiten der Data
Mining Algorithmen notwendig sind. Die Informationen werden vom Wizard
(siehe Kapitel 3.3) in Form der committable und filetable bereitgestellt (siehe
Abbildung 3.3).

CommitIDi, Item; 1, ...., ltem; |
CommitIDj, Item; 1, ...., Item;m
CommitID k, Item, 1, ...., ltemy n

Tabelle 5.1: Format eines Data Mining Input Objekts

Die aus den Datenbanktabellen extrahierten Daten sind eine Liste aller Commits
und die ihnen zugehorigen, in den Commits gednderten Dateien (siehe Tabelle
51). Die Data Mining Algorithmen nutzen nun dieses Objekt als
Transaktionsdatenbank im Fall FPGrowth und als Sequenzdatenbank im Falle

Prefixspans.

5.4.2 Data Mining Result Objekt

Die Resultate der Data Mining Algorithmen miissen in einer Form vorliegen,
welche die Berechnung von Coupled Changes vereinfacht und eine persistente
Speicherung moglich macht.

Das DMRO speichert hierzu die Ergebnisse der Data Mining Algorithmen als

24



Vorbereitung fiir die persistente Speicherung in einer Datenbank ab. Die
Algorithmen geben die Ergebnisse als Liste zuriick, deren Format in Tabelle 5.2 zu

sehen ist.

Support;, Length;, CommitID; 1, .., Commit ID; |, Item; 1, ... Item; |,

Support;, Length;, CommitID; 1, .., CommitID;m,, Item; 1, ... ltem;m,

Support,, Length,, Commit ID, 1, .., Commit ID, n,, Item 1, ... Item n,

Tabelle 5.2: Format eines Data Mining Result Objekts

Es ist zu erkennen, dass ein jeder Eintrag in der Liste mit Support und Length
beginnt, welche beide Zahlen sind. Die erste Zahl stellt den Support dieses
Eintrags dar. Die Interpretation dieser Zahl ist sowohl bei FPGrowth als auch bei
Prefixspan ahnlich. In FPGrowth bedeutet die Zahl, in wievielen Transaktionen
die gefundenen Frequent Pattern vorkommen. In Prefixspan bedeutet sie, in
wievielen Sequenzen die gefundenen Pattern vorkommen. Die zweite Zahl
beschreibt jeweils die Anzahl der gefundenen Pattern. Auf diese beiden Zahlen
folgt eine Liste von Commit IDs, der Lange von der ersten Zahl Support. Die
Commit IDs entsprechen der Transaktions ID bzw. Sequenz ID von FPGrowth
und Prefixspan. Sie bekriftigen die Zugehorigkeit der Patterns zu den
entsprechenden Commits. Ist diese Relation nicht vorhanden, ist eine Berechnung
der Coupled Changes nicht moglich. Dies ist der Grund, weshalb die Liste der
Commit IDs zwingend fiir jeden Eintrag in der Ergebnismenge vorhanden sein
muss. Auf die Liste der Commit IDs folgt die Liste der gefundenen Pattern. Diese
Liste hat die Lange der zweiten Zahl, also der Anzahl der gefundenen Pattern. Die
ersten zwei Zahlen dienen somit als Index und beschreiben die Position und

Lange von Commit IDs und Patterns.

Weitere wichtige Variablen, die von dem DMRO bereitgestellt werden, sind
maxsupport und maxlength. Sie definieren, wie aus dem Namen abgeleitet
werden kann, den grofiten Support und Léange, welche in der Ergebnismenge
gefunden werden konnte. Sie werden fiir die Erzeugung der Output-Tabelle

benotigt.

25



5.5 Format der Output-Tabelle

Das DMRO, welches durch die Anwendung der Data Mining Algorithmen auf das
DMIO entsteht, wird zur persistenten Speicherung in eine Datenbank geschrieben.

Die entstehende Output-Tabelle beinhaltet die vollstindigen Informationen des
DMRO.

Da die Eintrdge im DMRO jeweils eine variable Anzahl von Commit IDs und
Patterns besitzen konnen, muss die Output-Tabelle in Anbetracht dieser
Variabilitdt erstellt werden. Hier kommen die maxsupport und maxlength
Variablen des DMRO zum Einsatz (siehe Abschnitt 5.4.2). Der maxsupport Wert
bestimmt die Anzahl der Commit ID Spalten, wohingegen der Wert von
maxlength die Anzahl der Spalten fiir die gefundenen Items, also den Dateien,
bestimmt. Dadurch konnen die Eintrige im DMRO in die Output-Tabelle
abgebildet werden.

5.5.1 Schreiben des Output Objekts in die Output-Tabelle

Jeder Datensatz der Output-Tabelle entspricht einem Eintrag im DMRO. Es
werden zuerst der Support und Length Wert in die Tabelle geschrieben. Darauf
folgen Commit IDs und Items.

Wie bereits beschrieben, enthalt nicht jeder Eintrag die volle Anzahl von Commit
IDs und Items, deshalb werden die Commit IDs nach der Reihe in die Commit ID
Spalten der Output-Tabelle geschrieben. Falls die Anzahl der Commit IDs geringer
ist als maxsupport, werden die restlichen Commit ID Spalten der Tabelle mit null
Werten beschrieben, um kenntlich zu machen, dass diese Spalten leer sind und
nicht verwendet werden sollen. Dasselbe Vorgehen wird analog fiir die Items
angewandt, nur werden sie in die Item Spalten geschrieben und nicht in die

Commit ID Spalten.

Nachdem jeder Eintrag im DMRO in einem Datensatz der Output-Tabelle
gespeichert ist, ist das Schreiben in die Tabelle beendet.

5.6 Prefixspan in SPMF

Als Implementation fiir Sequential Pattern Mining wurde eine Implementation

26



von Prefixspan aus dem SPMF Framework (siehe Kapitel 2.4) ausgewahlt. In
SPMF sind verschiedene Implementationen des Algorithmus integriert. Die erste
basiert auf einem Input aus Zahlen und die zweite auf einem Input von Strings.
Im Folgenden soll diskutiert werden, wie der Input fiir Prefixspan (SPMF)
aufgebaut ist und auf Basis dieser Erkenntnisse, die Auswahl der Implementation

begriindet werden.

5.6.1 Input von Prefixspan

Wie bereits in Kapitel 2.4 beschrieben, benutzt das SPMF Framework als Input fiir
die implementierten Daten herkommliche Textdateien. Das Format und der Inhalt
der Textdateien sind je nach Algorithmus unterschiedlich. Fiir Prefixspan gilt das
in Tabelle 5.3 definierte Format.

<|temset 1>-1<Iltemset2>-1....... <ltemset i-1> -1 <ltemset i>-1 -2
<ltemset 1> -1 <Itemset2>-1....... <ltemset j-1> -1 <Itemset j>-1-2
<|temset 1> -1 <Itemset2>-1....... <ltemset k-1> -1 <[temset k> -1 -2

Tabelle 5.3: Prefixspan Input-Textdateiformat

Die Textdatei besteht aus einer Sequenzdatenbank mit je einer Sequenz pro Zeile.
Jede Sequenz besteht aus einem oder mehreren Itemsets. Itemsets wiederum
bestehen aus mindestens einem Item. Die Items werden mit einem Leerzeichen
voneinander getrennt. Bei Prefixspan_int bestehen Items ausschliefllich aus
positiven Zahlen, wohingegen bei Prefixspan_string die Items aus einer
Zeichenkette bestehen. Jedoch gilt bei beiden, dass Items in Itemsets mit
Leerzeichen voneinander getrennt werden. Wiirde man Itemsets auch mit einem
Leerzeichen voneinander trennen, giabe es keine Moglichkeit die verschiedenen
Itemsets voneinander zu unterscheiden. Deshalb werden sie mit einer Zahl
getrennt, die nicht in Itemsets vorkommen kann oder vorkommen sollte. Da
Itemsets in Prefixspan_int aus positiven Zahlen bestehen, wird zur Trennung eine
negative Zahl, ,-1”, verwendet. Damit der Algorithmus weifs, wann eine Sequenz

beendet ist, erwartet es eine weitere negative Zahl, ,-2".

Die Trennzeichen fiir Itemsets (,-1“) und Sequenzen (,-2”) gelten sowohl fiir

Prefixspan_int als auch Prefixspan_string.

27



5.6.2 Auswahl der Implementierung

Da Prefixspan als Input mit Dateipfaden arbeiten muss und diese als
Zeichenketten vorliegen, ist eine Verwendung von Prefixspan basierend auf Items

mit Strings naheliegend.

Bei der Verwendung von Prefixspan_int miissten alle Dateipfade, die dem
Algorithmus als Input iibergeben werden, auf positive Zahlen abgebildet werden.
Ist das Data Mining durchgelaufen, miissen diese Dateien wieder von Zahlen
zuriick in Strings umgewandelt werden, damit die Daten im Rest des Tools
weiterverwendet werden konnen. Dies stellt einen unnétigen Mehraufwand dar,
der mit Strings wegfallt. Auflerdem stellt die Translation von Strings in Integers

und wieder zuriick eine weitere potenzielle Fehlerquelle dar.

28



6 Implementierung

In diesem Kapitel wird die Implementierung des Tools unter Berticksichtigung

des angestrebten Konzepts und der Architektur beschrieben.

6.1 CommitTableData

Die CommitTableData wird mit dem Lesen der Input-Datenbank erzeugt und
bildet das Format der Input-Datenbank in einer Instanzvariable res ab (siehe
Tabelle 5.1). Zusidtzlich besitzt sie ein Feld (list_commitID) zum seperaten
abspeichern einer Commit ID Liste fiir den Data Mining Algorithmus Prefixspan.
Eine weitere Funktion dieser Klasse ist, das Objekt res fiir die Verwendung als

Sequenzdatenbank vorzubereiten (siehe 6.2.1).

6.2 Integrierung von Prefixspan in das Framework

Da Prefixspan ein bestimmtes Input-Format besitzt (vgl. Kapitel 5.6.1), miissen die
Input-Daten vor der Ubergabe an Prefixspan transformiert werden und Prefixspan
bringt die Daten dann in sein internes Format. Die gefundenen Pattern miissen
ebenfalls transformiert werden, um die Ergebnisse im Rest des Frameworks

nutzen zu konnen.

6.2.1 Transformation der Input-Daten fiir Prefixspan

Die DMIO Daten des CommitTableData Objekts, konnen im Gegensatz zu
FPGrowth nicht direkt verwendet werden. Wie in Kapitel 5.4.1 beschrieben,
besteht ein Eintrag im DMIO aus einer Commit ID und den im Commit
gedanderten Dateien. FPGrowth nimmt die Daten des CommitTableData Objekts
ohne Verdnderung an. Bei Prefixspan ist dies nicht ohne weiteres moglich, da

Prefixspan das in Tabelle 5.3 beschriebene Inputformat erwartet.

Um die Daten in das gewtiinschte Format zu bringen ist es zunachst nur notig eine

neue Liste zu generieren, bei dem jeweils alle Commit IDs fehlen. Die zustandige

29



Methode der CommitTableData get_fileIDs() ist in Listing 6.1 abgebildet.

1 |public List<List<String>> get fileIDs() {

2 List<List<String>> ret = new ArraylList<>(res.size());
3 list commitID = new ArraylList<>();

4 for(List<String> it : res) {

5 ArrayList<String> t = new ArraylList<>();

6 for(int i=0; i<it.size(); i++) {

7 if (i==0)

8 list commitID.add(it.get(0));
9 else

10 t.add(it.get(i));

11 }

12 ret.add(t);

13 }

14 return ret;

15 |}

Listing 6.1: Transformation der Input-Daten fiir Prefixspan

Die Variable ret speichert die transformierten Input-Daten, welche wie oben
beschrieben umgewandelt werden. In Zeile 8 werden die zu einem Commit
gehorende Commit ID in einer seperaten Instanzvariable list_commitID
gespeichert. Die restlichen Daten werden in Zeile 12 der Variablen ret {ibergeben.
Somit sind in ret nur noch Listen aus Dateipfaden gespeichert. Die Instanzvariable
list_commitID ist von besonderer Wichtigkeit, denn sie ist erforderlich um den
berechneten Sequential Patterns die zugehorigen Commit IDs hinzuzufiigen. Dies
ist erforderlich, damit sich Prefixspan in das in Kapitel 5.3 beschriebene

Framework integrieren kann.

6.2.2 Laden von transformierten Input-Daten

In Kapitel 5.6.1 wurde das Input-Format fiir Prefixspan und in Kapitel 6.2.1 die
Transformation der Input-Daten fiir Prefixspan erldautert. In der urspriinglichen
SPMF Implementation unterstiitzt Prefixspan lediglich das Einlesen von
Textdateien. Die Input-Daten liegen jedoch als DMIO vor, welche nicht von
Prefixspan verstanden werden. Deshalb wurde Prefixspan um eine Methode
erweitert, welche die transformierten Input-Daten laden und diese in das

Prefixspan Input-Format tiberfithren kann.
Die SequenceDatabase Klasse ist unter anderem fiir das Laden von Textdateien

zustindig. Sie wurde um die Methode load_files() erweitert, welche die

transformierten Input-Daten akzeptiert (siehe Listing 6.2).

30



public void load files(List<List<String>> files) {
for(List<String> lfiles : files) {
String[] tokens = format files(lfiles);
addSequence(tokens);

ok WNRE

}
Listing 6.2: Laden und Umwandeln der Prefixspan Input-Daten

Fiir jede Liste aus Dateipfaden (Zeilen 2-5) wird eine Methode format_files()
aufgerufen. Die format_files() Methode tiberfiihrt die in Ifiles beinhalteten Strings in
das von Prefixspan erwartete Format. Nach jedem Item/ Dateipfad wird ein ,,-1“
String hinzugefiigt um das Itemset als beendet zu markieren. Am Schluss wird

s

zusatzlich noch eine ,-2” angehdngt, um das Ende der Sequenz zu markieren.
Nachdem format_files() die Uberfiihrung beendet hat, gibt er die umgewandelte
Sequenz als String Array tokens zuriick. Die Sequenz wird zum Schluss an die

SequenceDatabase hinzugefiigt (Zeile 4).

Ist die Methode load_files() durchgelaufen, sind die Input-Daten in der

Sequenzdatenbank von Prefixspan im benétigten Format vorliegend.

6.2.3 Transformation der gefundenen Sequential Patterns

Nachdem Prefixspan tiber die runAlgorithm() Methode ausgefiihrt wurde, werden
die gefundenen Sequential Patterns von der Methode als SequentialPatterns

Objekt zuriickgegeben.

Fiir die Berechnung der Coupled Changes ist es erforderlich zu Wissen, aus
welcher Sequenz der Sequenzdatenbank die gefundenen Sequential Patterns
stammen. Prefixspan etikettiert jede Sequenz in einer Sequenzdatenbank mit einer
eindeutigen internen Nummer. Angefangen bei Null, welches der ersten Sequenz
entspricht, wird so jede Sequenz durchnummeriert. Diese Nummer wird auch

Sequenz ID genannt. Sie ist vergleichbar mit der Transaktions ID FPGrowths.

Fiir jedes gefundene Pattern wird gespeichert in welchen Sequenzen es jeweils
vorkommt. Somit besitzt jedes Pattern eine Liste aus Sequenz IDs tiiber die der
Ursprung des Patterns in der Sequenzdatenbank ersichtlich ist. Da jedoch fiir die
Berechnung der Coupled Changes ein Objekt benoétigt wird, welches dem Format

eines DMRO entspricht, miissen die Patterns angepasst werden.

31



In Kapitel 6.2.1 wurde beschrieben, welche Form die Input-Daten fiir Prefixspan
haben. Bevor sie fiir Prefixspan transformiert werden, besteht jede Liste in den
Input-Daten aus einer Commit ID und Dateipfaden. Nach der Transformation
fehlt jeder Liste die Commit ID. Die Listen stellen Sequenzen der
Sequenzdatenbank dar und werden wie beschrieben durchnummeriert. Wie aus
Listing 6.1 ersichtlich ist, werden die Commit IDs der Sequenzen in die ArrayList
list_commitID kopiert. Somit herrscht eine FEins-zu-eins-Beziehung zwischen
Position der Commit ID in list_commitID und der Sequenz ID der Sequenz. Dieser

Umstand wird ausgenutzt, um aus der Sequenz ID die zugehorige Commit ID

zuriickzugewinnen.

1 public List<List<String>> getPatterns(){

2 List<List<String>> patterns = new ArraylList<>();

3 maximum support = 0;

4 maximum item length = 0;

5 for(List<SequentialPattern> level : levels) {

6 for(SequentialPattern sequence : level) {

7 List<String> subp = new LinkedList<>();

8 subp.add(Integer.toString(sequence.getAbsoluteSupport()));
9 subp.add(Integer.toString(sequence.size()));

10 Set<Integer> sequencelDs = sequence.getSequencesID();
11 List<Itemset> itemset = sequence.getItemsets();

12 List<String> items string = new ArraylList<>(itemset.size());
13 itemset.forEach(set -> set.getItems().forEach(item ->
14 items string.add(item)));

15 List<String> sequencelDs string =

16 new ArraylList<>(sequencelIDs.size());

17 if(mapSeqIDtoCommitID != null)

18 for(int i : sequenceIDs) {

19 sequencelIDs string

20 .add (mapSeqIDtoCommitID.get(i));
21 }

22 subp.addAll(sequencelIDs string);

23 subp.addAll(items string);

24 if (maximum_support < sequence.getAbsoluteSupport())
25 maximum_ support =

26 sequence.getAbsoluteSupport();

27 if (maximum_item length < itemset.size())

28 maximum item length = itemset.size();

29 patterns.add(subp);

30 }

31 }

32 return patterns;

33 |}

Listing 6.3: Transformation der Sequential Patterns

In Listing 6.3 ist der Quellcode abgebildet der aus den gefundenen Sequential
Patterns des SequentialPatterns Objekts ein DMRO generiert. Es wird tiber jedes
Pattern iteriert und fiir diese ein Eintrag fiir das DMRO zusammengebaut. Hierfiir
wird der Support-Wert und die Anzahl der Items im Pattern in der Liste subp
gespeichert. Daraufhin miissen laut dem DMRO-Format die Commit IDs und die

Items folgen.

32



Wie beschrieben sind die Commit IDs als Zahl codiert. Die Codierung wird in den
Zeilen 18-21 mit Hilfe der Instanzvariable mapSeqlDtoCommitID riickgangig
gemacht. Die Instanzvariable entspricht der [ist_commitID Liste. Durch
Ausnutzung der Eins-zu-eins-Beziehung wird aus den Sequenz IDs zugehorige

Commit IDs gewonnen und der Liste subp hinzugefiigt (Zeile 22).

Die Items werden aus den Itemsets {iber den Ausdruck in Zeile 13-14 gewonnen.
Es wird iber alle Itemsets iteriert und die Items der Reihe nach in die Liste
items_string kopiert. Die items in items_string werden nach den Commit IDs in die
Liste subp eingefiigt. Dadurch ist ein vollstindiger Eintrag fiir das DMRO
zusammengebaut, welcher dann in die patterns Liste eingefiigt wird. Ist die
Iteration beendet enthalt patterns das fertige DMRO und wird mit Beendigung der
Methode getPatterns() zurlickgegeben.

Neben der Erzeugung der Eintrage wird wahrend der Iteration der maximale
Support (Zeile 24-26) und die maximale Item-Anzahl (Zeile 27-28) in den
gefundenen Sequential Patterns berechnet. Diese werden fiir die Erstellung und
das Beschreiben der Output-Datenbank benotigt (siehe Kapitel 6.7.2).

6.2.4 Konstruktor und Ausfiihrung des Algorithmus

Wie in Kapitel 6.2.3 beschrieben, wird eine Liste der Commit IDs benétigt um die
Codierung der Sequenz IDs riickgangig zu machen. Die Liste wird bei Erzeugung
eines Prefixspan Objekts dem Konstruktor als Parameter tibergeben und in der

Instanzvariable mapSeqIDtoCommitlD gespeichert (Listing 6.4, Zeile 2).

Der Algorithmus wird tiber die runAlgorithm() Methode gestartet. Als Parameter
erhdlt sie transformierte Input-Daten (Variable files) und ein Minimum-Support-
Wert. Die SequenceDatabase wiederum transformiert files in das Prefixspan
Format und der Algorithmus wird mit der SequenceDatabase ausgefiihrt (Zeile
10).

33



1 |public AlgoPrefixSpan with Strings(ArrayList<String> mapSeqIDtoCommitID) {
2 this.mapSeqIDtoCommitID = mapSeqIDtoCommitID;

3 |}

4

5 |public SequentialPatterns runAlgorithm(List<List<String>> files,
6 |double minsupRelative) throws IOException {

7 SequenceDatabase sequenceDatabase = new SequenceDatabase();
8 sequenceDatabase.load files(files);

9 .

10 prefixSpan(sequenceDatabase, null);

11 -

12 return patterns;

13 |}

Listing 6.4: Prefixspan — Konstruktor und runAlgorithm()

6.3 Generierung von Coupled Changes fiir Issue Tasks

Im SRMP existiert eine Implementation zur Generierung von Coupled Changes
(siehe Kapitel 3.3). Die Coupled Changes werden jedoch iiber Quellcodepfade im
Eclipse Package Explorer generiert und derselbe Prozess ist deshalb nicht fiir das
Tool geeignet. Die Generierung der Coupled Changes von Issue Tasks besteht aus
einer Folge von Schritten, die aufeinander aufbauen. In diesem Abschnitt werden

diese Schritte und ihre Implementation erldutert.

6.3.1 Filterung von Commits die im Zusammenhang mit Issues stehen

Da eine Verbindung zwischen Issues und Commits hergestellt werden muss, um
Coupled Changes zu generieren, ist der erste Schritt folglich das Herausfiltern der
Commits, welche im Zusammenhang mit Issues stehen. Die Commitdaten sind in

der Datenbank abgespeichert und miissen auch von dort abgefragt werden.

Ein Commit hangt mit einem Issue zusammen, falls sich in der Commitmessage
ein Hinweis auf eine Issue finden ladsst. Ein solcher Hinweis ist meistens die Issue
ID der Issue. Die Commitmessage lasst sich in der Datenbanktabelle committable
finden und {iiber eine SQL-Abfrage lassen sich die Commits aus der Tabelle
herausfiltern. Die SQL-Abfrage ist in Listing 6.5 dargestellt.

1 |SELECTid

FROM committable

3 | WHERE message LIKE '%f#<Issue ID>%'
OR message LIKE '%refs <Issue ID>%'

N

Listing 6.5: Auslesen von Commits die in Relation zu Issues stehen

34



Uber die SQL-Abfrage werden aus der committable alle Commit IDs selektiert,
welche in ihrem message Feld eine Issue ID referenzieren. Hierzu wird der LIKE
Operator verwendet mit dessen Hilfe sich Muster in Feldern finden lassen. Kommt
eine Issue ID in der Form ,#<Issue ID>", oder ,refs <Issue ID>" im message Feld
der Tabelle vor, dann referenziert der Commit eine Issue. Das in der
Where-Klausel vorkommende ,,<Issue ID>" stellt offensichtlich eine Zahl dar, die

eine Issue referenziert.

6.3.2 Bestimmung der Commitspaltenanzahl

Die Bestimmung der Commitspaltenanzahl ist erforderlich, da eine SQL-Abfrage
iiber alle CommitID Spalten der Output-Tabelle fiir das weitere Vorgehen notig
sind. Hierfiir wird zuerst lediglich eine Zeile mit allen Feldern aus der Output-
Tabelle ausgelesen. Dies wird {iiber die SQL-Abfrage ,SELECT * FROM
outputtable LIMIT 1 bewerkstelligt. Das zurtickgegebene ResultSet wird an die
buildWhereClause() (siehe Listing 6.6) Methode der DBConnection Klasse
iibergeben. Diese Methode baut aus dem ResultSet, welches wie beschrieben aus
lediglich einem Record besteht.

1 |private String buildWhereClause(String val, int[] icount, ResultSet
2 |result) throws SQLException {

3 ResultSetMetaData metaData = result.getMetaData();

4 -

5 int count = 0;

6 for (int i = 4; i <= metaData.getColumnCount(); i++) {
7 if (metaData.getColumnName(i).contains(val))

8 count++;

9 }

10 -

11 for (int i = 1; 1 < count; i++)

12 whereclause.append(val + i + " LIKE ? OR ");

13 whereclause.append(val + count + " LIKE ?");

14 -

15 return whereclause.toString();}

Listing 6.6: Aufbau der WHERE-Klausel zur Auslesung von Commit IDs

Der Parameter val entspricht ,CommitID”. Aus dem ResultSet werden nach
CommitID Spalten gesucht und die Anzahl gezahlt (Listing 6.6). Mit diesen
Informationen kann die WHERE-Klausel gebaut werden. Hierfiir sind die Zeilen
11-13 zustandig. Es entsteht eine WHERE-Klausel die das Format , CommitID1
LIKE ? OR ... CommitIDN LIKE ?“, je nachdem wie viele Commit ID Spalten in

35



der Output-Tabelle existieren.

6.3.3 Auslesen der Data Mining Resultate aus der Datenbank

Als Vorschritt zur Generierung von Coupled Changes, miissen nun die Ergebnisse
des Data Mining Prozesses aus der Datenbank ausgelesen werden, in die sie
geschrieben wurden (vgl. Kapitel 5.5 & 5.5.1). Da das DMRO (vgl. Kapitel 5.4.2) in
die Output-Tabelle geschrieben wird, miissen die Daten auch wieder von dort

ausgelesen werden.

Im vorigen Kapitel(6.3.2) wurde die WHERE-Klausel fiir die benttigte Abfrage
gebaut. Der WHERE-Klausel fehlen jedoch noch die notwendigen Parameter fiir
die SQL-Abfrage. Eine Beispielhafte SQL-Abfrage ist in Listing 6.7 abgebildet. Die
Parameter ersetzen die Fragezeichen in der Abfrage.

SELECT *

FROM outputtable
WHERE CommitID1 LIKE ?
OR CommitID2 LIKE ?

OR CommitID3 LIKE ?

a b WN R

Listing 6.7: Beispiel SOL-Abrage zum Auslesen der Output-Tabelle

In diesem Beispiel hat die Output-Tabelle lediglich drei Commit ID Spalten,
welche von eins bis drei durchnummeriert sind. Selektiert werden alle Felder der
Datenbanktabelle, welche die gesuchten Parameter enthalten. Die Commit IDs,
welche tiber die SQL-Abfrage in Listing 6.5 bereitgestellt werden, stellen die

benotigten Parameter dar.

SELECT *
FROM outputtable
WHERE CommitliD1 LIKE ?

a b WN =

OR CommitIDN LIKE ?

Listing 6.8: SQL-Abrage zum Auslesen der Output-Tabelle

Die SQL-Abfrage in Listing 6.7 ist, wie bereits dargelegt, ein Beispiel. Im
Allgemeinen hingt die genau Form der SQL-Abfrage von der WHERE-Klausel ab.
Im Beispiel besteht sie aus einer Abfrage iiber drei Commit ID Spalten. Im

allgemeinen Fall wird sie wie in Kapitel 6.3.2 beschrieben zusammengestellt und

36



hat eine, wie in Listing 6.8 abgebildete Form. Die Form ist bedingt durch den
Minimum-Support-Wert.  Verschiedene = Minimum-Support-Werte  bedeuten
unterschiedliche Output Tabellen und unterschiedliche Output Tabellen bedeuten

eine unterschiedliche Anzahl an Commit ID Spalten.

Um nun die mit den Issues gekoppelten Dateidnderungen aus der Output-Tabelle
zu berechnen, ist es erforderlich, die in Listing 6.8 abgebildete SQL-Abfrage mit
Commit ID Parametern zu bestiicken. Wie beschrieben werden diese tiber die in
Listing 6.5 abgebildete SQL-Abfrage erhalten. Da die SQL-Abfrage eine Liste von
Commit IDs zuriickgibt, muss tiber diese Liste iteriert werden und die Parameter
der SQL-Abfrage in jeder Iteration angepasst werden. Der zustandige Quellcode

ist in Listing 6.9 zu sehen.

1 |while (commit result.next()) {

2 String commitID = commit result.getString(1l);

3 for (int i = 1; i <= itemcount[0]; i++)

4 output statement.setString(i, commitID);

5 output statement.executeQuery();

6 output result = output statement.getResultSet();

7 ResultSetMetaData data = output result.getMetaData();

8 int numcols = data.getColumnCount();

9 while (output result.next()) {

10 List<String> row = new ArrayList<>(numcols); int i = 2;
11 while (i <= numcols) {

12 if (output result.getString(i) != null && !
13 |output result.getString(i).equals("null"))

14 row.add (output result.getString(i));
15 i++;

16 }

17 res.add(row);}}

Listing 6.9: Erzeugung der Coupled Changes

Die daufierste While-Schleife iteriert, wie beschrieben, tiber die Commit IDs. In den
Zeilen 3-4 werden die Parameter zur SQL-Abfrage (Listing 6.8) gesetzt. Alle
Parameter der SQL-Abfrage werden auf den aktuellen Wert der iterierten gesetzt.
Nach diesem Schritt ist die Abfrage vollstaindig und kann dem Datenbanksystem
zum ausfiihren tibergeben werden (Zeile 5). Das Resultat der Abfrage wird in der
Variablen output_result gespeichert. Es besteht aus allen Datensatzen der Output-
Tabelle, welche die aktuelle Commit ID in einer ihrer Commit ID Spalten enthalt.
In den Zeilen 9-17 wird tiber das Ergebnis der Abfrage bzw. output_result iteriert.
Die Daten der Records werden in der Variablen row gespeichert (Zeile 14). Da die

Felder der Output-Tabelle nicht alle mit validen, brauchbaren Daten beschrieben

37



sind, werden nur diejenigen Felder gespeichert, welche nicht null sind. Schliefdlich
wird row in der Liste res gespeichert und die Iteration fahrt wieder in Zeile 9 fort,

solange bis alle Datensatze von output_result kopiert sind.

Die Tatsache, dass iiber mehrere Commit IDs iteriert wird und mit diesen Commit
IDs jeweils SQL-Abfragen in der Output-Tabelle getdtigt werden, kann zu
Duplikaten in res fiithren. Es kann nicht ausgeschlossen werden, dass ein Teil der
Datensatze identisch ist. Um Duplikate zu vermeiden, ist die Variable res vom

Datentyp Set, denn es konnen keine zwei identischen Objekte in ihr vorkommen.

Die Variable res ist ein Teil des DMRO, da es dasselbe Format besitzt (vgl. Tabelle
5.2). Die in res gespeicherten Datensitze aus der Output-Tabelle reprasentieren die
Coupled Changes die zu einer Issue gehoren. Um auf die berechneten Coupled
Changes von anderen Klassen zugreifen zu konnen, wird die Instanzvariable
sqlprocedurelnput der DBConnection Klasse auf die Referenz der lokalen Variable

res gesetzt.

6.3.4 Zusammenfassung

Zur Erzeugung von Coupled Changes fiir Issue Tasks sind mehrere aufeinander
aufbauende Schritte erforderlich. Die erforderlichen Schritte wurden in den
Kapiteln 6.3.1-6.3.3 erlautert. Diese Schritte sind Teil der ReadOutputTable2()
Methode der DBConnection Klasse. Als Input erhélt sie die Issue ID einer Issue,
die zur Generierung einer Liste von Commits aus der Datenbank benutzt wird.
Die Commits stehen dabei im Zusammenhang mit der Issue. Die Commit IDs der
Commits wird benutzt, um in der Output-Tabelle alle Sequenzen bzw.
Transaktionen herauszufiltern, an denen sie beteiligt sind. Das Ergebnis ist ein

DMRO, dass die Informationen tiber die Coupled Changes beherbergt.

6.4 Implementierung der Benutzeroberfliche

Das Design der Bedienoberfliche folgt den Anforderungen an das Tool. Die
Oberflache wurde in drei verschiedene Bereiche unterteilt:

* Bereich zur Anzeige von Issues

* Bereich zur Anzeige von Informationen zur ausgewdahlten Issue

* Bereich zur Anzeige von Coupled Changes und zugehorigen Informationen

Fiir die Reprasentation von verschiedenen Informationen werden SWT-Table

38



Objekte verwendet. Die Implementierung der Oberfliche und den Anderungen

am Wizard werden in den nadchsten Kapiteln beschrieben.

6.4.1 IssuesPart

Die Issues, welche iiber die Wizard Komponente des SRMPs in die Datenbank
geschrieben werden, werden in der IssuesPart Part-Komponente angezeigt. Zur
Repasentation der Daten wird eine SWT Tabelle verwendet, welche zwei Spalten
besitzt. Die erste Spalte tragt den Namen ,ID”, die zweite ,Issue Title”. Jede
vollstandige Zeile in der Tabelle beinhaltet ein Paar aus einer Issue ID und dem

zugehorigen Issue Titel.

Wird eine Zeile vom Benutzer selektiert, dann wird der SelectionlListener der

Tabelle ausgefiihrt. Dieser ist in Listing 6.10 abgebildet.

tablelssue.addSelectionListener(new SelectionAdapter() {
@Override
public void widgetSelected(SelectionEvent e) {
broker.post("DisplayIssues",
issues.get(tablelssue.getSelectionIndex()));

NoubhshWNPRE

1)

Listing 6.10: IssuesPart - SelectionListener der Tabelle

Die Instanzvariable issues beinhaltet eine Liste aus allen Issue-Informationen. Die
zugehorigen Issue-Informationen der ausgewdahlten Tabellenzeile werden tiber ein
Ereignis mit dem Topic ,Displaylssues” versendet (Zeile 4). Da eine Eins-zu-eins-
Beziehung zwischen dem Tabellenindex und der Position der Issue in der
Instanzvariable issues besteht, wird dieser Index verwendet um die zugehorigen

Issue-Informationen aus issues zu extrahieren.

6.4.2 IssuelnformationsPart

In der IssuelnformationsPart werden Issue-Informationen detailliert aufgelistet.
Um die Informationen anzuzeigen, wird wieder eine SWT Tabelle verwendet. Die
Tabelle hat fiinf Spalten mit den Namen:

¢ IssuelD

* Issue Status

e Issue Type

e JIssue Date

39



* Issue Description
Des Weiteren ist im IssuelnformationsPart ein Button mit der Aufschrift ,SRM
Settings” enthalten, tiber den der SRMP-Wizard aufgerufen werden kann. Wird

der Button ausgewahlt, wird der in Listing 6.11 abgebildete SelectionListener

ausgefiihrt.

1 |btn srmsettings.addSelectionListener(new SelectionAdapter() {
2 @Override

3 public void widgetSelected(SelectionEvent e) {

4 SRMSettings.project name = "maint tools";

5 DBConnection.getDBConnection()

6 .setDatabase(SRMSettings.project name);

7 Wizard w = new Wizard(ctx);

8 NWizardDialog wizardDialog = new NWizardDialog(shell,w);
9 ContextInjectionFactory.inject(wizardDialog, ctx);
10 C

11 wizardDialog.open();

12 }

13 1});

Listing 6.11: IssuelnformationsPart - SelectionListener von Button ,,SRM Settings *

Zunachst wird der Projektname in Zeile 4 auf ,maint tools” gesetzt. Die
DBConnection wird daraufhin aufgefordert eine Verbindung zu der Datenbank
mit dem gesetzten Projektnamen aufzubauen. Die Instanzvariable ctx ist vom Typ
IEclipseContext und wird fiir Dependency Injection im Wizard bendtigt (Zeile 7).
Im Wizard wird zur Kommunikation mit der IssuesPart ein IEventBroker benotigt.
Dieser kann ohne den IEclipseContext nicht direkt in den Wizard injiziert werden.
Ist die Konfiguration des Wizards beendet, wird der Wizard-Dialog geoffnet (Zeile
11).

6.4.3 CoupledChangesPart

Fiir Issue Tasks berechnete Coupled Changes werden in der CoupledChangesPart
angezeigt. Dieser Part ist in zwei Tabellen unterteilt. Die erste Tabelle dient der
Anzeige von Coupled Changes, die zweite zur Anzeige von Commit-Information.
Dies sind die Commit-Informationen zu allen Commit IDs, die in der aktuell
ausgewdhlten Coupled-Changes-Gruppe vorkommen. Die Coupled-Changes-
Gruppen bestehen aus den Daten welche tiber die Read OutputTable2() Methode der
DBConnection Klasse bereitgestellt werden (vgl. Kapitel 6.3). Jede Gruppe wird
iiber eine Liste von gekoppelten Dateipfaden definiert. Da die Gruppen jeweils zu

einem Coupled Change gehoren, sind die Commit-Informationen fiir die Eintrage

40



in einer Gruppe identisch. Gruppen sind durch leere Zeilen voneinander getrennt.

Die in der Commit Tabelle enthaltenen Spalten sind:

¢ Commit ID

¢ Commit Author

¢ Commit Date

¢ Commit Message
Des Weiteren enthidlt die CoupledChangesPart ein Button zum Export der
Coupled Changes (siehe Kapitel 6.6).

List<String> commit ids = (List<String>) item.getData();
DBConnection db = DBConnection.getDBConnection();
String where clause="WHERE id IN ("+buildWhereClause(commit ids+")";
List<List<String>> commit data=
db.ReadTable("committable",where clause);
for(List<String> 1 : commit data) {
TableItem ti = new TableItem(tableCommitData, SWT.NONE);
for(int i=0; i<tableCommitData.getColumnCount(); i++)
ti.setText(i, l.get(i));

HOoo~NOULE, WN -

0}

Listing 6.12: CoupledChangesPart — Ausschnitt SelectionListener

Ist keine Tabellenzeile in der Coupled-Changes-Tabelle ausgewdhlt, dann ist die
Commit Tabelle leer, da nichts anzuzeigen ist. Wird eine Zeile ausgewahlt, dann
wird in jedem Fall die Commit Tabelle geleert. Ansonsten wiirde die Tabelle bei
hinzufiigen von neuen Elementen stiandig wachsen und alte Elemente waren

immer noch vorhanden.

Weiterhin wird tiberpriift ob die Zeile ein Daten-Objekt besitzt (vgl. Kapitel 6.5.5),
falls nicht dann ist die Zeile leer und es wird nichts gemacht (aufler dem Leeren
der Tabelle). Ein Daten-Objekt ist hierbei eine Liste von Commit IDs. Besitzt die
Zeile jedoch ein Daten-Objekt, dann wird der in Quellcode in Listing 6.12
ausgefiihrt. Das Daten-Objekt wird aus dem aktuell ausgewadhlten Tabellenzeile
entnommen und in die commit_ids Variable gespeichert (Zeile 1). Die
buildWhereClause() Methode baut aus der commit_ids Variablen einen String, in
dem die Commit IDs mit Kommas getrennt sind. Dieser String wird als Parameter
fiir die WHERE-Klausel in Zeile 3 eingefiigt. Die WHERE-Klausel selektiert alle
Commit IDs, welche in der Variablen commit_ids vorkommen. Zusammen mit dem
Aufruf von db.ReadlIable() (Zeile 5) entsteht eine SQL-Anweisung welche aus der

committable alle Commit-Informationen zuriickgibt, welche die Commit IDs

41



enthalten. Die so erhaltenen Commit-Daten, werden Zeilenweise in die Commit
Tabelle eingefiigt (Zeilen 6-10).

6.5 Kommunikation zwischen den Komponenten

In Kapitel 6.4 wurde die Benutzeroberfliche beschrieben und wie die
verschiedenen Parts ihre Komponenten mit Daten fiillen, aber nicht woher sie

diese Daten erhalten. Dies wird in den nachfolgenden Kapitel erlautert.

6.5.1 Events

Die Parts reagieren auf Events die von dem Tool versendet werden. Die Events

und von welcher Komponente sie versendet werden, sind in Abbildung 6.1 zu

sehen.
Displaylssues
E4LifeCycle ——P»| IssuelnformationsPart
UpdatelssuePart
IssuesPart
DisplayCoupledChanges
Y
Wizard CoupledChangesPart

Abbildung 6.1: Von den Komponenten gesendete und empfangene Events

Wie aus der Abbildung erkennbar ist, wird von dem Wizard ein Event mit dem
Topic ,,UpdatelssuePart” an die IssuesPart Komponente versendet. Dieses Event
wird von dem Wizard in dem Zeitpunkt versendet, wenn die Transformation
einer Issue-CSV-Datei in die Datenbank beendet ist. Das Event signalisiert also,
dass die Issue-Daten in der Datenbank gespeichert sind und das auf diese tiber
SQL-Abfragen zugegriffen werden kann. Es wird auch von der E4LifeCycle

Klasse, beim Start der Anwendung versendet.

42



Von der IssuesPart wird ein Event beim Auswahlen einer Tabellenzeile versendet
(vgl. Listing 6.10). Das Topic lautet bei diesem Event , Displaylssues”. Zusammen
mit dem Event werden die Issue-Informationen des ausgewadhlten Elements

versendet.

Die IssuelnformationsPart versendet ein ,DisplayCoupledChanges” Event, mit

einem Coupled Changes Objekt als Parameter.

6.5.2 EventHandler

Die von der Anwendung versendeten Events werden {iiber EventHandler-
Methoden empfangen. Jede EventHandler-Methode registriert sich hierfiir, fiir die
Events, die fiir sie von Belang sind. Im Tool existieren EventHandler in den
IssuesPart, IssuelnformationsPart und CoupledChangesPart Klassen. Uber
Annotationen werden diese in der Eclipse Platform als EventHandler markiert.
Dependency Injection kiimmert sich dann um die Injektion der zu empfangenden

Parameter. In Tabelle 6.1 sind die im Tool benutzten EventHandler gelistet.

Klasse EventHandler

IssuesPart @Inject @Optional
void updatelListing(
@UIEventTopic("UpdateIssuePart") String obj)

IssueInformationsPart @Inject @Optional
void updateIssueInformationTable(
@UIEventTopic("DisplayIssues") List<String> issue)

CoupledChangesPart @Inject @Optional
void UpdateCoupledChanges (@UIEventTopic("DisplayCoupledChanges")
List<List<String>> output)

Tabelle 6.1: EventHandler

Uber die Annotation UlEeventTopic() wird die Klasse
* IssuesPart zum Empfang von , UpdatelssuePart” Events,
* IssuelnformationsPart zum Empfang von , Displaylssues” Events,
* CoupledChangesPart zum Empfang von , DisplayCoupledChanges” Events

registriert.

6.5.3 EventHandler IssuesPart

Der EventHandler updateListing() (siehe Listing 6.13) empfangt ,,UpdatelssuePart”

43



Events und ein String Objekt obj. Es wird tiberpriift, ob das Objekt ein valides
Objekt ist (Zeile 3). Trifft dies zu, dann wird der Rest des EventHandlers

ausgefiihrt.

1 |@Inject @Optional

2 |private void updatelListing(@UIEventTopic("UpdateIssuePart") String obj) {
3 if(obj != null) {

4 DBConnection conn = DBConnection.getDBConnection();
5 conn.setDatabase (SRMSettings.project name);

6 issues = conn.ReadTable("issuetable", null);

7 tableIssue.removeAll();

8 for (List<String> issue : issues) {

9 TableItem ti = new TableItem(

10 tableIssue, SWT.NONE);

11 ti.setText(new String[] {

12 issue.get(0), issue.get(5)});

13 }

14 }

15 |}

Listing 6.13: EventHandler updateListing()

In Kapitel 6.5.1 wurde beschrieben, dass dieses Event nach dem Schreiben der
Issue-Daten aus einer CSV-Datei versendet wird. Ausgelost wird das Schreiben
durch den Benutzer. Nachdem er im Wizard eine CSV-Datei ausgewahlt und diese
mit einem Klick auf den Transformationsbutton in die Datenbank geschrieben hat,
miissen die Issues auch in der Benutzeroberflache im IssuesPart angezeigt werden.

Diese Aufgabe iibernimmt der updateListint() EventHandler.

Der EventHandler setzt den Datenbanknamen und verbindet sich mit der
Datenbank (Zeile 5). Die in der Datenbank gespeicherten Issue-Daten werden tiber
die ReadTuble() Methode ausgelesen und in die Instanzvariable issues gespeichert.
Als Parameter erhdlt diese den Namen der Issue Tabelle ,issuetable” (Zeile 6).
Schliefslich werden eventuell in der Tabelle vorhandene Issues geloscht, da sie mit
neuen ersetzt werden sollen (Zeile 7). In der For-Schleife (Zeile 8-13) wird die Issue
SWT-Tabelle der Benutzeroberflache mit Issue IDs und Issue Titeln der Issues
gefiillt (vgl. Kapitel 6.4.1).

6.5.4 EventHandler IssuelnformationsPart

Die Issue-Daten, welche von der IssuesPart gesendet werden nachdem ein
Element in der Issue Tabelle ausgewdhlt wurde, werden tiber den EventHandler
updatelssuelnformationTable() (siehe Listing 6.14) im IssuelnformationsPart

empfangen. Das Event auf das gewartet wird, ist das , Displaylssues” Event und

44



als Parameter wird per Dependency Injection die Issue-Daten issue in den

EventHandler injiziert.

1 |@Inject @Optional

2 |private void updateIssueInformationTable(@UIEventTopic("DisplayIssues")
3 List<String> issue) {

4 |if (issue != null) {

5 tableIssue.removeAll();

6 TableItem ti = new TableItem(tableIssue, SWT.NONE);

7 for (String s : issue) {

8 c.

9 ti.setText(i++, s);

10

11 }

12 DBConnection.getDBConnection()

13 .ReadOutputTable2(issue.get(0));

14 List<List<String>> sqlprocedurelnput =

15 DBConnection.getDBConnection().sqlprocedurelInput;
16 broker.send("DisplayCoupledChanges", sqlprocedurelnput);
17 |}}

Listing 6.14: EventHandler updatelssuelnformationTable()

Bevor die Issue-Daten iibernommen werden, wird die Tabelle geleert (Zeile 5). In
den Zeilen 7-11 werden die Issue-Daten nacheinander in die Tabelle eingefiigt. Das
Resultat ist nach dem Einfiigen eine Zeile in der Tabelle, die die Issue-Daten
enthalt.

Der EventHandler hat auch die Aufgabe die Coupled Changes iiber die Issue ID
zu beschaffen (siehe Kapitel 6.3). Hierfiir tibergibt er der ReadOutputTable2()
Methode der DBConnection Klasse die Issue ID der im IssuesPart ausgewahlten
Issue (Zeile 12-13). Die Coupled Changes werden von der Instanzvariable
sqlprocedurelnput der DBConnection Klasse ausgelesen (Zeile 14-15), welche nach
Beendigung der ReadOutputTable2() Methode gesetzt wird.

Der EventHandler wiederum sendet selber ein Event mit dem Topic

,DisplayCoupledChanges” und den zuvor generierten Coupled Changes Daten.

6.5.5 EventHandler CoupledChangesPart

Die von dem EventHandler updatelssuelnformationTable()  versendeten
,Displaylssues” Events kommen im EventHandler updateCoupledChanges() (siehe
Listing 6.15) der CoupledChangesPart an. Wie in Kapitel 6.5.4 dargelegt wurde,
werden zusammen mit dem Event die Coupled Changes Daten gesendet. Diese

werden in den Methodenparameter output per Dependency Injection eingefiigt.

45



1 |@Inject @Optional

2 |private void updateCoupledChanges(@UIEventTopic("DisplayCoupledChanges")
3 List<List<String>> output) {

4 |if(output != null) {

5 |tableCoupledChanges.removeAll();

6 |tableCommitData.removeAll();

7 |cchanges = new ArraylList<>();

8 |for(List<String> 1 : output) {

9 Tableltem ti = null;

10 int support = Integer.valueOf(l.get(0));

11 int length = Integer.valueOf(l.get(1l));

12 int index commits = 2;

13 int index files = index commits + support;

14 cchanges.add(l.subList(index files, l.size()));

15 List<String> commit ids = new ArraylList<>(support);
16 for(int i=0; i<support; i++)

17 commit ids.add(l.get(index commits++));

18 for(int i=0; i<length; i++) {

19 String s = l.get(index files++);

20 ti = new TableItem(tableCoupledChanges, SWT.NONE);
21 ti.setText (0, s);

22 ti.setData(commit ids);

23 }

24 new TableItem(tableCoupledChanges, SWT.NONE);

25 |}}}

Listing 6.15: EventHandler updateCoupledChanges()

Bei Ankommen eines Events mit Eventdaten output, werden die Coupled Changes
und Commit-Informationen Tabellen geleert (Zeile 5 und 6). Die Instanzvariable

cchanges speichert die Dateipfade aus dem Inputparameter output.

Aus jeder Coupled-Changes-Gruppe (vgl. Format in Tabelle 5.2) im output Objekt
werden zundchst der Supportwert und die Anzahl der Items bzw. Dateipfade
extrahiert (Zeile 10 und 11). Die Variable | repradsentiert hierbei die Coupled-
Changes-Gruppe. Die Variablen index_commits und index_files sind Zeiger auf den
Start der Commit-Daten und Dateipfaden in den Coupled-Changes-Gruppen. Die
Variable index_commits hat den Anfangswert von zwei, da die ersten beiden
Elemente der Gruppe support und length sind und die Liste von Commits nach

ihnen beginnt.

Es werden die Commit IDs aus den Coupled-Changes-Gruppen {iber
index_commits in die Liste commit_ids kopiert (Zeile 16-17). Danach folgen die
Dateipfade. Jedoch werden diese nicht in eine Variable kopiert wie bei den
Commit IDs, sondern sie werden in die Coupled Changes Tabelle geschrieben.
Dabei werden Dateipfade die zu einer Coupled-Changes-Gruppe gehoren
untereinander in die Tabelle eingefiigt. Ist das Einfligen fiir eine Gruppe von

46



Dateipfaden beendet, werden diese von anderen Gruppen mit einer leeren
Tabellenzeile getrennt (Zeile 24). Zusitzlich erhalten die in einer Gruppe
vorkommenden Coupled Changes die zuvor aus der Variablen output kopierten
Commit IDs, indem die Liste commit_ids in die Tabellenzeilen eingebettet wird
(Zeile 22). Somit besitzt jede Gruppe aus Dateipfaden in der Tabelle dasselbe
commit_ids Objekt. Leere Tabellenzeilen erhalten hingegen kein Daten-Objekt.

Das Einbetten der Commit-Informationen in die Tabellenzeilen der Coupled
Changes Tabelle ist erforderlich, um sie in der Commit Tabelle anzeigen zu
konnen. Die Commit-Informationen werden namlich tiber den SelectionListener
der Coupled Changes Tabelle in die Commit Tabelle geschrieben (siehe Kapitel
6.4.3).

6.6 Export von Coupled Changes

In Kapitel 6.4.3 wurde die Oberfliche der CoupledChangesPart beschrieben.
Neben der Anzeige von Coupled Changes und Commit-Informationen in
SWT-Tabellen existiert auch eine Schaltfliche fiir den Export der in der
Benutzeroberflache angezeigten Coupled Changes. Der SelectionListener fiir den

Button ist in Listing 6.16 zu sehen.

1 |btn exportcchanges.addSelectionListener(new SelectionAdapter() {

2 @Override

3 public void widgetSelected(SelectionEvent e) {

4 FileDialog select file = new FileDialog(shell,SWT.SAVE);
5 select file.setFilterExtensions(new String[] {".txt"});
6 String path = select file.open();

7 if(path != null)

8 writeCoupledChanges(path);

9 }

10 |});

Listing 6.16: SelectionListener fiir den Export von Coupled Changes

Beim Auswahlen des Buttons wird ein SWT-FileDialog mit der Option SWT.SAVE
initialisiert (Zeile 4). Wie der Name vermuten ldsst, konfiguriert dies den
FileDialog sich im Speichermodus zu Ooffnen. Dies ermoglicht neben der
Navigation durch Ordner, auch die Eingabe eines Dateinamens fiir die zu
exportierenden Coupled Changes. Als Dateiendung sind Dateien mit der

Dateiendung , txt” zugelassen.

47



Ist die Konfiguration des Speicherdialogs beendet, wird er gedffnet und der
Benutzer kann zu dem Verzeichnis navigieren, in der er die Datei abspeichern

mochte. Ist ein Dateiname gewahlt, kann der Speicherdialog beendet werden.

Mit Beendigung des Speicherdialogs wird der Pfad, welcher den Dateinamen
enthalt, zuriickgegeben (Zeile 6). Nun ist es auch moglich, dass der Benutzer den

Speicherdialog abgebrochen hat. In diesem Fall wird , null” zuritickgegeben.

Die Coupled Changes werden nur dann in eine Datei geschrieben, wenn der Pfad
im Speicherdialog gesetzt wurde. Trifft dies zu wird die writeCoupledChanges()
Methode (siehe Listing 6.17) mit dem Pfad als Parameter aufgerufen (Zeile 8).

private void writeCoupledChanges(String path) {
try (BufferedWriter bw =
Files.newBufferedWriter(Paths.get(path),
StandardOpenOption. CREATE,
StandardOpenOption.TRUNCATE EXISTING)) {
for(List<String> 1 : cchanges) {
for(String s : 1)
bw.write(s+"\n");
bw.write("\n");

CooNOULTA, WN R

12 |}

Listing 6.17: Schreiben der Coupled Changes in eine Datei

Der tibergebene Pfad wird von einem BufferedWriter getffnet. Existiert die Datei
nicht wird sie erstellt. Die Datei kann von einem vorigen Export stammen, deshalb
ist es wichtig etwaige vorhandene Daten zu loschen. Dies geschieht mit der
StandardOpenOption. TRUNCATE_EXISTING.

Wurde die Datei erfolgreich fiir das Beschreiben geoffnet, konnen die Coupled
Changes Daten in die Datei geschrieben werden. Hiefiir wird die zuvor vom
EventHandler updateCoupledChanges() befiillte cchanges Instanzvariable (vgl.
Listing 6.15) verwendet.

Die Struktur der exportierten Datei ist der Struktur der Coupled Changes Tabelle

im CoupledChangesPart dhnlich. Dies folgt aus der Tatsache, dass die Coupled
Changes als Liste von Dateipfaden in cchanges abgelegt sind. Dateipfade die in

48



einer Liste enthalten sind, werden Zeile fiir Zeile in die Datei geschrieben
(Zeile 7-8). Sind jeweils alle Elemente in einer Liste in die Datei geschrieben, wird
eine leere Zeile eingefiigt (Zeile 9). In der Coupled Changes Tabelle wird dhnlich
vorgegangen. Der Unterschied ist, dass leere Tabellenzeilen statt leeren Zeilen
eingefiigt werden. Am Ende des Vorgans entspricht die Datei der angezeigten

Coupled Changes in der Coupled Changes Tabelle.

6.7 Anderungen am Wizard

Durch Integrierung von Prefixspan in das Framework muss der bestehende

Wizard mit Prefixspan erweitert werden.

6.7.1 Auswahlmoéglichkeit zwischen den Data Mining Algorithmen

Der Wizard im SRMP hatte bisher nur mit einem Data Mining Algorithmus zu
tun. In dieser Form gentigt der Wizard nicht den Anforderungen. Er muss in der
Lage sein auch mit Prefixspan umzugehen. Hierzu wurde der Wizard in der
SelectCommitersPage um eine Auswahlmoglichkeit zwischen den Algorithmen
erweitert. Hierfiir wurde der WizardPage eine SWT-ToolBar eingefiigt. In diese
ToolBar konnen Toolltems eingefligt werden. Es wird ein Toolltem fiir FPGrowth
und ein weiteres fiir Prefixspan eingefiigt. Sie tragen die Aufschrift , FPGrowth”

und , Prefixspan”.

Mit Auswahl eines Toolltems wird dessen SelectionListener ausgefiihrt. Dieser
setzt den Data Mining Algorithmus in der SRMSettings Klasse des Wizards.
Hierzu wurde die SRMSettings Klasse um ein Enum DataMiningAlgorithm
erweitert (siehe Listing 6.18).

public class SRMSettings {
public static enum DataMiningAlgorithm {
FPGrowth, PrefixSpan
}

public static DataMiningAlgorithm data mining algorithm =
DataMiningAlgorithm.FPGrowth;

oNOOUTA WN -

}
Listing 6.18: SRMSettings Enum fiir verwendeten Data Mining Algorithmus

Die Elemente im Enum sind FPGrowth und Prefixspan. Standardmafig, falls noch

49



kein Data Mining Algorithmus gesetzt wurde, wird als Algorithmus FPGrowth
vorgegeben (Zeile 6-7).

Wenn das FPGrowths  Toolltem  ausgewdhlt wird, dann  wird
data_mining_algorithm auf FPGrowth gesetzt. Bei Prefixspans Toolltem wird es
wiederum auf Prefixspan gesetzt. Beim Offnen des Wizards, wird automatisch das
Toolltem ausgewdhlt, welches in der Variable data_mining_algorithm gesetzt ist.
Wird im Wizard z.B. FPGrowth ausgewahlt, dann bleibt dieses solange in der
ToolBar automatisch ausgewahlt, bis FPGrowth ausgewahlt wird.

6.7.2 Durchfiihrung des Data Minings

Nach Auswahl des Data Mining Algorithmus und des Minimum-Support-Werts
kann der Wizard abgeschlossen werden. Daraufhin werden der ausgewdhlte
Minimum-Support-Wert und Data Mining Algorithmus im Configuration Scope

des Eclipse Preference Service gespeichert (siehe Listing 6.19).

IEclipsePreferences node =
ConfigurationScope.INSTANCE.getNode("com.maint tools");
node.put("Algorithm", SRMSettings.data mining algorithm.toString());

node.putDouble("minimum support", SRMSettings.minsupport);

ok, WN B

ﬁéae.flush();

Listing 6.19: Speichern der Wizard-Daten

Der Ausgewadhlte Data Mining Algorithmus wird als String mit dem Schliissel
,Algorithm” abgelegt. Der Minimum-Support-Wert hingegen wird, da es eine

reelle Zahl ist, als Double mit dem Schliissel , minimum_support” abgelegt.

Nachdem die Daten geschrieben sind folgt die Durchfiihrung des Data Minings.
Dieser Prozess folgt dem im Framework (vgl. Abbildung 5.2) vorgegebenen
Ablauf. Aus der ,committable” und ,filetable” wird ein DMIO erzeugt, welches
den Algorithmen als Input dient. Diese wiederum produzieren ein DMRO,

welches in die Datenbanktabelle , outputtable” geschrieben wird.

Die Schritte im Quellcode, die dem Vorgang im Framework entsprechen, sind fiir
FPGrowth und Prefixspan sehr dhnlich (siehe Listing 6.20).

50



1 |commit data = dataBaseConn.ReadInputTable(null);

2 |switch(SRMSettings.data mining algorithm) {

3 |case FPGrowth :

4 FPGrowthAlgorithmus.input = commit data.get res();

5 fpgaAlg.runAlgorithm(SRMSettings.minsupport);

6 output = FPGrowthAlgorithmus.output;

7 maxsupport = FPGrowthAlgorithmus.maxSupport;

8 maxlength = FPGrowthAlgorithmus.maxLength;

9 break;

10 |case PrefixSpan :

11 List<List<String>> files = commit data.get fileIDs();

12 AlgoPrefixSpan with Strings prefixspan =

13 new AlgoPrefixSpan with Strings(commit data.get list commitID());
14 SequentialPatterns patterns = null;

15 patterns = prefixspan.runAlgorithm(files, SRMSettings.minsupport);
16 output = patterns.getPatterns();

17 maxsupport = patterns.get maximum_ support();

18 maxlength = patterns.get maximum_item length();

19 break;

20 |}

21 |dataBaseConn.CreateOutputTable("outputtable",maxsupport,maxlength);

22 |dataBaseConn.WriteIntoOutputTable("outputtable",output,maxsupport,maxlength)

Listing 6.20: Ausfiihrung der Data Mining Algorithmen

Als Erstes wird die Input Tabelle ausgelesen und der Inhalt wird in commit_data
vom Typ CommitTableData gespeichert. Der Inhalt reprasentiert die Daten, die
den Data Mining Algorithmen als Input dienen. Danach werden die Input-
Parameter fiir die Algorithmen vorbereitet und der Algorithmus, mit dem im
Wizard ausgewdhlten Minimum-Support-Wert, ausgefiihrt. Als Resultat
generieren die Algorithmen Output Objekte in Form eines DMRO. Das Format der
Output Objekte ist fiir beide Algorithmen identisch. Wie im Framework ersichtlich
ist, wird das DMRO zur persistenten Speicherung in die Datenbanktabelle

,outputtable” geschrieben.

Zusatzlich zu den generierten Output Objekten, berechnen die Data Mining
Algorithmen den maximalen Support-Wert und die maximale Lange eines im
Output Objekt vorkommenden Patterns. Der maximale Support-Wert ist die
maximale Anzahl von Commit IDs in allen Patterns. Die maximale Lange
hingegen bezeichnet die maximale Anzahl an Dateipfaden in allen Patterns. Diese
Informationen werden fiir die Erstellung der Output-Tabelle und dem Schreiben
des Output Objekts in selbiges benotigt (siehe Kapitel 5.5 & 5.5.1). Der Wert von
maxsupport stellt die obere Grenze fiir die Commit ID Spalten dar und maxlength

die obere Grenze fiir die Item Spalten.

Die Vorbereitung der Input-Parameter erfolgt fiir die Algorithmen auf

51



unterschiedliche Weise. FPGrowth erhalt das DMIO so wie es ist (Zeile 4) (siehe
Kapitel 5.4.1). Bei Prefixspan miissen die in commit_data gespeicherten Input-Daten
zuerst transformiert werden (siehe Kapitel 6.2.1). Die Transformation wird iiber
commit_data.get_fileIDs() (Zeile 11) bewerkstelligt. In der Variablen files sind nur
noch Dateipfade des DMIO enthalten. Um nach Durchfithrung von Prefixspan
wieder ein vollstandiges DMRO zu erhalten, wird dem Algorithmus eine Liste der
Commit IDs {ibergeben. Somit sind die Vorbereitungen beendet und der
Algorithmus kann mit files als Sequenzdatenbank und dem Minimum-Support-
Wert gestartet werden. Das DMRO wird iiber die getPatterns() Methode mit Hilfe

der Commit ID Liste zusammengebaut und in output gespeichert (Zeile 16).

6.8 Programmstart

Beim Offnen des Tools wird die in der E4LifeCycle Klasse definierten Methoden
ausgefiihrt. Diese sind je nach zu erfiillender Funktion mit bestimmten
Annotationen annotiert. Damit der Benutzer bei Neustart des Tools nicht immer
dieselben Vorschritte zum Berechnen der Coupled Changes durchfiithren muss,
sollen diese nach Programmstart automatisch ausgefiihrt werden. Diese
Vorschritte sind alle Schritte, die zur Erzeugung und Befiillung der Output-Tabelle
fiihren (siehe Kapitel 6.7.2).

Die Methode processAdditions() mit der Annotation @ProcessAdditions wird
aufgerufen nachdem das Applikationsmodell, also alle Komponenten welche die
Benutzeroberflache darstellen, geladen wurde [16]. Nicht nur die Schritte bis zur
Befiillung der Output-Tabelle sollen durchgefiihrt werden, sondern auch die
Anzeige der Issue-Daten im IssuesPart. Deshalb ist es erforderlich diese

Anderungen in der processAdditions() Methode durchzufiihren.

@ProcessAdditions

void processAdditions(IEclipseContext workbenchContext) {
broker.subscribe(UIEvents.UILifeCycle.APP_STARTUP_COMPLETE,event -> {
//Durchfihrung des Data Minings

}

OoOuUh, WNRE

}

Listing 6.21: Warten auf den vollstindigen Programmstart

Damit die erforderlichen Schritte durchgefithrt werden konnen, muss auf den

vollstindigen Programmstart gewartet werden. Hierzu wird ein IEventBroker

52



registriert, welcher auf das zugehorige UlEvent (APP_STARTUP_COMPLETE,
Listing 6.21, Zeile 3) wartet.

Damit die IssuesPart mit Issue-Daten befiillt werden kann, muss erst iiberpriift
werden, ob die Datenbanktabelle ,issuetable” existiert. Nur dann kann davon
ausgegangen werden, dass zuvor eine Issue CSV-Datei iiber den Wizard
transformiert und in die Datenbank geschrieben wurde. Wurde in der Datenbank
eine ,issuetable” gefunden, muss nur noch ein , UpdatelssuePart” Event gesendet
werden. Der EventHandler der IssuesPart, der fiir dieses Event registriert ist,
kiimmert sich dann um die Befiillung der Tabelle fiir die Issue-Daten (siehe
Kapitel 6.5.3).

Da zur Durchfithrung des Data Minings Commit-Daten vorhanden sein miissen
wird tberpriift, ob die ,,committable” Datenbanktabelle existiert. Ist dies der Fall
wird versucht den in der Configuration Scope gesicherten Minimum-Support-
Wert und den ausgewdhlten Data Mining Algorithmus (siehe Listing 6.19) iiber
die Schliissel ,, minimum_support” und , Algorithm” zu laden. Diese werden
dann, wenn sie existieren, in die zugehdrigen Instanzvariablen der SRMSettings
Klasse kopiert. Andernfalls werden Standardwerte fiir die Instanzvariablen
angenommen. Es folgen daraufhin die Schritte zur Ausfiihrung der Data Mining

Algorithmen (vgl. Listing 6.20).

53



7 Evaluierung

In diesem Kapitel wird die Evaluation des Tools beschrieben. An der Evaluation
haben insgesamt acht Personen teilgenommen: Fiinf Informatik Studenten und

drei Absolventen des Studiengangs Informatik.

7.1 Vorbereitungen und Testumgebung

Als Testumgebung wurde ein Windows-Laptop mit vorinstallierter Eclipse IDE
bereitgestellt. Damit das Tool arbeiten kann, muss seine Datenbank mit den Daten
eines Git-Repositories gefiillt werden. Fiir diesen Zweck wurde die Software
A-STPA [17] und dessen Git-Repository ausgewdhlt. Neben dem Git-Repository
wird eine zugehorige CSV-Datei mit Issue-Daten benoétigt. Damit die Berechnung
der Coupled Changes funktionieren kann, miissen die Issue-Daten offensichtlich
dem Git-Repository zugehorig sein. Die Issue-Daten wurden fiir diesen Zweck
bereitgestellt, da sie nicht offentlich zuganglich sind. Die Datenbank des Tools
wurde befiillt, indem das Git-Repository und die Issue-Datei iiber den Wizard

importiert wurden.

Weiterhin wurde die A-STPA Software in Eclipse importiert und Eclipse so
konfiguriert, dass die Software auch kompiliert und ausgefiihrt werden kann.
Dadurch sind die Teilnehmer in der Lage ihre Anderungen am Quellcode direkt

zu testen.

7.2 Testaufbau

Fiir die Evaluation des Tools wurden die Teilnehmer in zwei gleich grofe
Gruppen unterteilt. Beide Gruppen haben zwei gleiche Aufgaben (Tasks)
bekommen, die sie mithilfe des Tools 16sen sollten. Zwar sind die Tasks gleich,
aber die Parameter, die im Tool gesetzt werden miissen, sind jeweils

unterschiedlich.

Die zu losenden Tasks sind:

54



« Task 1: Andern der Shortcuts zum Hinzufiigen von neuen Items fiir die
CommonTableViewer Klassen von Keycode ,n” in Keycode ,,i”.
» Task 2: Anfiigen des Strings ,,_EditPart” an die Tooltips fiir die

Komponenten-Elemente der Control Structure.

Die Tasks sind so konstruiert, dass die Losung der Tasks eine Anderung an der
Benutzeroberflache hervorruft. Dadurch ist kein tiefgehendes Verstandnis des
A-STPA Quellcodes erforderlich und es miissen keine gravierenden Anderungen

von den Teilnehmern durchgefiihrt werden.

Gruppe 1 fiihrt fiir Task 1 das Data Mining mit dem Frequent Pattern Mining
Algorithmus FPGrowth durch und fiir Task 2 wird der Sequential Pattern Mining
Algorithmus Prefixspan verwendet. Fiir Gruppe 2 gilt das Gegenteil: Task 1 wird
mit Prefixspan und Task 2 mit FPGrowth durchgefiihrt. Dadurch lassen sich die
Ergebnisse zur Losung der Tasks mit beiden Algorithmen vergleichen. Der
Minimum-Support-Wert fiir Task 1 und Task 2 ist vorgegeben und ist fiir beide
Algorithmen identisch. Fiir Task 1 wurde ein Minimum-Support-Wert von vier
Prozent und fiir Task 2 ein Minimum-Support-Wert von zwei Prozent festgelegt.
Es wird ein identischer Wert vorgegeben um die Vergleichbarkeit der Algorithmen

zu gewahrleisten.

Damit Coupled Changes generiert werden kénnen, werden fiir Task 1 und Task 2

Issues vorgegeben, die mit der zu l6senden Issue-Task zusammenhangen.

Die Issue-Tasks und der Testaufbau orientieren sich an denen, die in [18]

angegeben sind.

7.3 Testdurchfithrung

Die Teilnehmer erhalten einen Zettel mit der Aufgabenbeschreibung und welche
Schritte sie durchfiihren miissen. Diese Schritte sind wie sie die Einstellungen
beziiglich der Data Mining Algorithmen im Tool vorzunehmen haben und welche
Issue sie im Tool auswahlen miissen (Issue 854 fiir Task 1 und Issue 834 fiir Task
2), um Coupled Changes fiir die zu 16sende Aufgabe zu erstellen.

Fragen bei Unklarheiten beziiglich der Aufgabenstellung und der
durchzufiihrenden Schritte wurden bei Anfragen beantwortet.

55



Die Teilnehmer haben nun die Aufgabe beide Tasks zu losen, indem sie die
Anleitung benutzen, um Coupled Changes fiir die Tasks zu generieren. Unter
Zuhilfenahme dieser Coupled Changes sollen die Tasks gelost werden. Im

Anschluss fiillen die Teilnehmer einen Fragebogen aus (siehe Tabelle 7.1).

Fragen

Programmiererfahrung in Java*

Erfahrung mit Issue-Tracking-Systemen (bsp. Jira, Bugzilla, launchpad)

Die Bedienung des Tools ist verstandlich

Die Anordnung der Views in der Benutzeroberfldche ist gut strukturiert

Die dargestellten Informationen sind Issue- & Commit-Informationen
iibersichtlicht Coupled Changes
Das Tool war bei Losung der Tasks hilfreich mit Frequent Patterns

Sequential Patterns

Niitzlichkeit von Coupled Changes

Tabelle 7.1: Fragebogen

7.4 Auswertung
Die Zeit, die ein Teilnehmer fiir das Losen einer Task benotigt, wird festgehalten.
Des Weiteren wird tiberpriift, ob eine korrekte Losung gefunden wurde indem der

vom Teilnehmer veranderte Quellcode analysiert wird. Es wird gezahlt, wie viele

der notwendigen Veranderungen vom Teilnehmer umgesetzt wurden.

7.5 Ergebnisse

In Abbildung 7.1 sind die Umfrageergebnisse abgebildet.

56



Frage 1 NZJSZNINN25/0% 25,0% 25,0% 12,5%
Frage 2 [SZ %1250 25,0% 12,5% Hi25%N

Frage 3 [Z)5%012)5%0 25,0% 50,0%

Frage 4 37,5% 25,0% . 3715%
Frage 5 [12)5% 37,5% - 500%
Frage 6 25,0% 37,5% L 375%
Frage 7 [12,5% 50,0% L 375%
Frage 8 [N2)5%N 50,0% . 315%
Frage 9 50,0% . 500%

0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0%
Prozentualer Anteil der Teilnehmer

M trifft nicht zu ™ trifft eher nicht zu weder noch = trifft eherzu W trifft zu

Abbildung 7.1: Umfrageergebnisse

Aus der ersten Frage kann die Verteilung der Programmiererfahrung in Java
abgelesen werden. Es herrscht beinahe eine homogene Verteilung. Die Legende ist
hier als 1 Jahr, 1-2 Jahre, 2-3 Jahre, 3-4 Jahre und 5+ Jahre zu interpretieren.

Ein grofler Prozentsatz (37,5%) hat keinerlei Erfahrung mit Issue-Tracking
Systemen, wobei der Mehrheit (62,5%) Issue-Tracking Systeme zumindest ein
Begriff ist. Dies zeigt, dass sie mit der Thematik von Issues-Tracking Systemen
vertraut sind und eventuell mit den im Tool angezeigten Issue- und Commit-
Informationen besser umgehen konnen. Die Fragen drei bis sechs betreffen das
Design des Tools. Die Bedienung des Tools ist fiir die Mehrheit verstandlich, aber
es gibt auch Teilnehmer, die diesen Punkt negativ bewertet haben. Die restlichen

Fragen beziiglich des Designs wurden positiv bewertet.

Mit den Fragen sieben und acht wurde ermittelt, ob die Teilnehmer die Nutzung
der Data Mining Algorithmen zur Losung der Tasks und somit die von ihnen
generierten Coupled Changes als hilfreich empfunden haben. Aus Abbildung 7.1
kann leicht abgelesen werden, dass beide Data-Mining-Algorithmen ein sehr
hilfreiche Rolle bei der Losung der Tasks gespielt haben. In Abbildung 7.2 ist

Frage sieben und acht nach den Gruppen aufgeschliisselt.

57



Gruppe 1

Gruppe 2

M trifft nicht zu

Task 1: Frequent Patterns

Task 2: Sequential Patterns

Task 1: Sequential Patterns

Task 2: Frequent Patterns

trifft eher nicht zu

25,0%

25,0%

50,0%

50,0%

0,0%  20,0%

50,0%

50,0%

40,0%

60,0%  80,0%

Prozentualer Anteil der Teilnehmer

weder noch

trifft eher zu MW trifft zu

Abbildung 7.2: Frage 7 und 8 nach Gruppen aufgeschliisselt

100,0%

Wie zu sehen ist, wurde von Gruppe 2 die Nutzung von sowohl Sequential Pattern

Mining als auch Frequent Pattern Mining insgesamt sehr positiv bewertet. In

Gruppe 1 wurde Frequent Pattern Mining von neutral bis positiv bewertet, wobei

der positive Anteil bei Sequential Pattern Mining identisch ist. Jedoch wurde es

von 25% der Teilnehmer eher negativ bewertet. Die letzte Frage betrachtet die

Bewertung der Niitzlichkeit von Coupled Changes insgesamt, also fiir beide

Algorithmen. Das Ergebnis zeigt, dass die Teilnehmer Coupled Changes als

niitzlich bis sehr niitzlich bewerten.

Durchschnittliche benétigte Zeit Standardabweichung
Gruppe Task 1 Task 2 Task 1 Task 2
1 12:42 15:39 1:53 5:07
2 13:45 15:09 7:19 4:18

Tabelle 7.2: Durchschnittlich bendtigte Zeit fiir Tasks

In Tabelle 7.2 ist die durchschnittliche Zeit dargestellt, die jede Gruppe fiir Task 1
und Task 2 benoétigten. Gruppe 1 benétigte fiir Task 1 weniger Zeit als Gruppe 2

und mit geringerer Abweichung zwischen den Teilnehmern. Bei Task 2 sind beide

Gruppen praktisch gleich schnell gewesen.

58



Korrektheit Standardabweichung
Gruppe Task 1 Task 2 Task 1 Task 2
1 83,3% 93,75% 13,61% 12,5%
2 83,3% 100% 0% 0%

Tabelle 7.3: Durchschnittliche Korrektheit fiir Tasks

Aus der Tabelle 7.3 ladsst sich ableiten, dass fiir die Losung von Task 1 beide
Gruppen insgesamt denselben Korrektheitsgrad erreichen. Wahrend in Gruppe 2
jeder Teilnehmer dasselbe Ergebnis erreicht (Standardabweichung 0%), ist die
Korrektheit bei Gruppe 1 nicht uniform (Standardabweichung 13,61%).

Bei Task 2 erreicht jeder Teilnehmer in Gruppe 2 die vollstindige Losung,
wahrend Gruppe 1 hier mit 93,75% trotzdem einen sehr hohen Korrektheitsgrad

erreicht.

Sowohl die Ergebnisse aus Tabelle 7.3 als auch den Umfrageergebnissen sind ein
Indiz dafiir, dass es keinen grofien Unterschied macht, welcher Data-Mining-
Algorithmus fiir die Generierung der Coupled Changes verwendet wird,

zumindest fiir dieses Paar an Tasks.

Im allgemeinen konnte Sequential Pattern Mining bessere Ergebnisse aufgrund
der sequentiellen Natur der Input-Daten bieten, denn in Git werden die
Dateipfade eines Commits lexikographisch ausgegeben. Dies bedeutet, dass
potenziel viele Subsequenzen in der Sequenzdatenbank als Muster auftauchen

konnen.

59



8 Zusammenfassung

Das Ziel dieser Arbeit war, ein Eclipse basierendes Tool zu entwickeln welches in
der Lage ist ,Maintenance Tasks Issues” eines Softwareprojekts anzuzeigen und
zugehorige Coupled Changes zu extrahieren. Dafiir muss das Tool die Daten in
seine Datenbank importieren, zusatzlich zu dem Git-Repository, zu dem die Issue
Tasks gehoren. Mit der internen Reprasentation der Daten konnen die Git-Logs in
Verbindung mit Issue IDs gebracht und Coupled Changes berechnet werden. Die
Anforderungen an das Tool wurden bis auf Punkt neun (vgl. Kapitel 4.1)
vollstindig umgesetzt, da fiir diesen Punkt leider keine Zeit mehr {ibrig blieb.
Durch Wegfall von Punkt neun sind keine negativen Auswirkungen auf die
Evaluation des Tools zu erwarten, denn es hatte keinen Einfluss auf die erzeugten

Coupled Changes.

Um die Maintenance-Aufgaben von Software Projekten zu koordinieren, werden
Issue Tracking Systeme eingesetzt. Um die Issues zu bearbeiten, sind meist
mehrere Anderungen am Quellcode durchzufiihren. Fiir Issue Tasks, die sich
ahnlich sind, miissen oft dieselbe Menge an Dateien geandert werden, da sie
logisch miteinander gekoppelt sind. Zur Durchfiithrung von neuen Maintenance
Tasks kann mit dem Tool durch Auswahl einer dhnlichen Issue Task (falls
vorhanden) Coupled Changes beziiglich diesem Task gefunden und die Arbeit des
Entwicklers vereinfacht werden. Die Evaluation des Tools hat gezeigt, dass die
Losung von Maintenance Tasks durch Nutzung des Tools mit einem hohen

Korrektheitsgrad durchgefiihrt werden kann.

8.1 Weitere Schritte

Um eine Verbindung zwischen den Issue-Daten und den Git-Logs herzustellen,
wurde in den Logs nach Hinweisen fiir eine Issue gesucht. Als Hinweis dienten
Strings wie ,, #<IssuelD>" und , refs <IssueID>". Dies hat fiir die Issues von A-STPA
gut funktioniert, denn es wurden hauptsachlich solche Verweise auf Issues in den
Commit-Logs verwendet. Doch kann diese Annahme nicht fiir alle moglichen

Issue CSV-Dateien gelten, die dem Tool als Import dienen. Eine Verbesserung

60



wire es, die Suchkriterien nach einer IssuelD mit reguldaren Ausdriicken zu
erweitern, um eine bessere Trefferquote zu erreichen. Doch ist es meist auch nicht
moglich alle Referenzen zu finden, da Entwickler u.a. oft vergessen, beim
Committen eine Referenz zu einer Issue ID zu setzen und es gehen somit viele

mogliche Referenzen verloren [19].

Das Tool kann zudem mit einer Suchleiste erweitert werden, mit der nach Issues
gesucht werden kann, indem Stichwdorter eingegeben werden. Denkbar ware auch
der Einsatz von Methoden der maschinellen Sprachverarbeitung um semantisch

ahnliche Issues vorzuschlagen.

61



[1]

(2]
[3]

[4]

[5]

[6]

[7]
[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Literaturverzeichnis

Hassan, A.E., The Road Ahead for Mining Software Repositories, Queen’s
University, Canada, 2008

Aggarwal, C. C., Data Mining: The Textbook, 2015

Fournier-Viger, P., Lin, C. W,, Kiran, R. U., Koh, Y. S,, Thomas, R., A Survey of
Sequential Pattern Mining, Ubiquitous International, vol. 1, no. 1, 2017

Han, J., Pei, ], Yin, Y., Mao, R.,, Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge
Discovery, vol. 8(1), pp. 53-87, 2004

Pei, ]., Han, J., Mortazavi-Asl, B., Dayal, U., Hsu, M.-C., Mining Sequential Patterns
by Pattern-Growth: The PrefixSpan Approach, IEEE Transactions on knowledge
and data engineering, vol. 16, no. 10, 2004

Common Format and MIME Type for Comma-Separated Values (CSV) Files
URL: https://tools.ietf.org/html/rfc4180

Rich Client Platform/FAQ URL: https://wiki.eclipse.org/Rich Client Platform/FAQ

White Paper: e4 Technical Overview
URL: https://www.eclipse.org/e4/resources/e4-whitepaper-20090729.pdf

Eclipse4/RCP/Dependency Injection
URL: https://wiki.eclipse.org/Eclipse4/RCP/Dependency Injection

Fournier-Viger, P., Lin, CW., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam,
H. T. (2016). The SPMF Open-Source Data Mining Library Version 2. Proc. 19th
European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD 2016) Part III, Springer LNCS 9853, pp. 36-40.

Fischer, M., Pinziger, M., Gall, H., Populating a Release History Database from
Version Control and Bug Tracking Systems, Vienna University of Technology

Lehmann, S., Automatisierte Transformation von Daten aus Software Repositories
und ihre Vorbereitung fiir Data Mining, Universitat Stuttgart, 2015

Alakus, D., Integration von Data Mining in einem Eclipse Plugin, Universitat
Stuttgart, 2016

Cicek, M. F., Prasentation von Software Repository in Eclipse, Universitat Stuttgart,
2015

Demir, Y., Visualisierungsoptimierung von Repository Data Mining in Eclipse,
Universitat Stuttgart, 2015

Eclipse4/RCP/Lifecycle URL: https://wiki.eclipse.org/Eclipse4/RCP/Lifecycle

62


https://wiki.eclipse.org/Eclipse4/RCP/Lifecycle
https://wiki.eclipse.org/Eclipse4/RCP/Dependency_Injection
https://www.eclipse.org/e4/resources/e4-whitepaper-20090729.pdf
https://wiki.eclipse.org/Rich_Client_Platform/FAQ
https://tools.ietf.org/html/rfc4180

[17] A-STPA URL: https://sourceforge.net/projects/astpa/

[18] Ramadani, ., Wagner, S., Are coupled file changes suggestions useful?, 2016
URL: https://doi.org/10.7287/peerj.preprints.2492v1

[19] Ayari, K., Meshkinfam, P., Antoniol, G., Di Penta, M., Threats on Building Models
from CVS and Bugzilla Repositories: the Mozilla Case Study. In Proceedings of the
2007 conference of the center for advanced studies on Collaborative research
(CASCON '07), Bruce Spencer, Margaret-Anne Storey, and Darlene Stewart (Eds.).
IBM Corp., Riverton, NJ, USA, 215-228., 2007

Alle Links wurden zuletzt am 27.03.17 besucht

63


https://sourceforge.net/projects/astpa/
https://doi.org/10.7287/peerj.preprints.2492v1

Erklarung:

Ich versichere, diese Arbeit selbststandig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich
oder sinngemdfs aus anderen Werken iibernommene Aussagen als solche
gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines
anderen Priifungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollstandig veroffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren iiberein.

Ort, Datum, Unterschrift

64



	1 Einleitung
	1.1 Gliederung

	2 Grundlagen
	2.1 Pattern Mining
	2.1.1 Frequent Itemset Mining
	2.1.2 Sequential Pattern Mining
	2.1.3 Vergleich der Methoden

	2.2 CSV-Dateien
	2.2.1 Aufbau einer CSV-Datei

	2.3 Eclipse Rich Client Platform
	2.3.1 Dependency Injection
	2.3.2 Annotationen

	2.4 SPMF

	3 Verwandte Arbeiten
	3.1 Release History Database
	3.2 Automatische Transformation von Daten aus Software Repositories
	3.2.1 Input- und Outputformat

	3.3 SRM Plugin

	4 Anforderungen und Analyse
	4.1 Anforderungen an das Tool
	4.2 Analyse

	5 Konzept und Architektur
	5.1 Lösungsansatz zum Erzeugen von Coupled Changes für Issue Tasks
	5.2 Workflow
	5.3 Framework
	5.4 Input und Output Objekte für das Data Mining
	5.4.1 Data Mining Input Objekt
	5.4.2 Data Mining Result Objekt

	5.5 Format der Output-Tabelle
	5.5.1 Schreiben des Output Objekts in die Output-Tabelle

	5.6 Prefixspan in SPMF
	5.6.1 Input von Prefixspan
	5.6.2 Auswahl der Implementierung


	6 Implementierung
	6.1 CommitTableData
	6.2 Integrierung von Prefixspan in das Framework
	6.2.1 Transformation der Input-Daten für Prefixspan
	6.2.2 Laden von transformierten Input-Daten
	6.2.3 Transformation der gefundenen Sequential Patterns
	6.2.4 Konstruktor und Ausführung des Algorithmus

	6.3 Generierung von Coupled Changes für Issue Tasks
	6.3.1 Filterung von Commits die im Zusammenhang mit Issues stehen
	6.3.2 Bestimmung der Commitspaltenanzahl
	6.3.3 Auslesen der Data Mining Resultate aus der Datenbank
	6.3.4 Zusammenfassung

	6.4 Implementierung der Benutzeroberfläche
	6.4.1 IssuesPart
	6.4.2 IssueInformationsPart
	6.4.3 CoupledChangesPart

	6.5 Kommunikation zwischen den Komponenten
	6.5.1 Events
	6.5.2 EventHandler
	6.5.3 EventHandler IssuesPart
	6.5.4 EventHandler IssueInformationsPart
	6.5.5 EventHandler CoupledChangesPart

	6.6 Export von Coupled Changes
	6.7 Änderungen am Wizard
	6.7.1 Auswahlmöglichkeit zwischen den Data Mining Algorithmen
	6.7.2 Durchführung des Data Minings

	6.8 Programmstart

	7 Evaluierung
	7.1 Vorbereitungen und Testumgebung
	7.2 Testaufbau
	7.3 Testdurchführung
	7.4 Auswertung
	7.5 Ergebnisse

	8 Zusammenfassung
	8.1 Weitere Schritte

	Literaturverzeichnis

