
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart

Germany

Diplomarbeit

Untersuchung zur Qualität von
Fertigungsdaten – Ein Beispiel

für die Analyse großer Datenmengen

Andreas Laukart

Studiengang: Informatik

Prüfer: Prof. Dr.-Ing. habil. Bernhard Mitschang

Betreuer: M.Sc. Cornelia Kiefer

begonnen am: 20.12.16

beendet am: 31.03.17

CR-Klassifikation: H.5.2, C.4, I.2.7

Kurzfassung

In dieser Arbeit wurde prototypisch ein Jupyter Notebook implementiert, dass beim Data
Wrangling unterstützt. Hierzu wurde zunächst eine Literaturrecherche durchgeführt. Die Er-
gebnisse flossen in das Konzept ein. Hauptfokus ist der Aspekt der Datenqualität. Das Note-
book versteht sich als flexible Toolbox. Es soll möglich sein, Metriken und Skripte bei Bedarf
einzubinden. Hierzu wurde beispielhaft Funktionalität aus unterschiedlichen Quellen einge-
bunden. Verwendet werden die Sprachen Python, Java und R. Verschiedene Datenqualitäts-
metriken ermöglichen es, die Datenqualität zu messen. Dabei werden neben strukturierte
Daten auch Textdaten berücksichtigt. Anschließend wurde das Notebook auf Datensätze aus
der Praxis angewendet. Hierzu wird ein Überblick über die Daten gegeben. Zusätzlich werden
mögliche Datenqualitätsprobleme analysiert. Um die Verarbeitung großer Datenmengen zu
unterstützen, wurde die Laufzeit der Metriken betrachtet. Hierzu wurden ausgewählte Metri-
ken in Apache Spark implementiert. Anschließend wurde eine Evaluation durchgeführt. Die
ersten Resultate sind vielversprechend. Für die Validierung von Datumsangaben wurde durch
eine einfache Implementierung eine Verbesserung der Laufzeit um Faktor 3,6 erreicht.

Inhaltsverzeichnis

1 Einführung...9

1.1 Motivation...9

1.2 Forschungsfrage und Aufgabenstellung..10

1.3 Aufbau der Arbeit..11

2 Grundlagen...12

2.1 Daten und Datenstrukturen..12

2.2 Datenqualität...13

2.3 Datenqualitätsmetriken..15

2.4 Wissensentdeckung...15

2.5 Maschinelle Sprachverarbeitung...16

2.5.1 Tokenisierung...17

2.5.2 Part-of-speech Tagging...17

2.5.3 Textähnlichkeit...17

2.6 Spark..18

2.7 Jupyter Notebooks...19

3 Verwandte Arbeiten...20

4 Data Wrangling..23

4.1 Data Wrangling Prozess..23

4.2 Typische Datenqualitätsprobleme...26

4.3 Mögliche Ansätze..30

5 Konzept des Jupyter Notebooks...33

5.1 Überblick...33

5.2 Aufbau...34

5.2.1 Import Data...35

5.2.2 View Data...35

5.2.3 Metrics..36

5.2.4 Transform Data...38

5.2.5 Save Data..39

6 Implementierung..40

6.1 Verwendete Software..40

6.2 Notebook Prototyp..41

6.3 Metriken..43

6.3.1 Nullwerte..43

6.3.2 Validierung...43

6.3.3 Local Outlier Factor..43

6.3.4 Textähnlichkeit...44

6.3.5 Noisy Data..44

6.3.6 Part-of-speech...45

7 Implementierung der ausgewählten Metriken in Spark...46

7.1.1 Validierung von Datumsangaben...46

7.1.2 Textähnlichkeit...47

8 Anwendung des Notebooks auf Datensätze aus der Praxis...49

8.1 NHTSA..49

8.2 Industriedaten..61

9 Evaluation..72

9.1 Methodik...72

9.2 Experimentaufbau...73

9.3 Verwendete Textkorpora...74

9.4 Ergebnisse...74

9.5 Analyse..75

9.6 Zusammenfassung...77

10 Fazit und Ausblick...79

Abbildungsverzeichnis
Abbildung 1: Beispiel für ein Linux-System. Hier steht 10/03/2017 nicht für ein Datum
sondern eine Pfadangabe...13

Abbildung 2: Für Apache Spark verfügbare Komponenten. Entnommen aus [31]..................19

Abbildung 3: Visualisierung eines typischen Data Wrangling Prozesses. Entnommen aus [16]
...24

Abbildung 4: Vier mögliche Visualisierungen von fehlenden Werten. Entnommen aus [16]. 32

Abbildung 5: Screenshot mit den ersten 5 Einträge des NHTSA Complaints Datensatzes. Der
erste Eintrag wird fälschlicherweise als Kopfzeile interpretiert...50

Abbildung 6: Screenshot mit den ersten 5 Einträge des NHTSA Complaints Datensatzes mit
Parameter Header = none..51

Abbildung 7: Schaubild des Histogramms für die Spalte 6..55

Abbildung 8: Schaubild des Histogramms für Spalte 6. Der Code 9999 wurde durch explizite
Nullwerte ersetzt...56

Abbildung 9: Nullwerte für Tabelle A..63

Abbildung 10: Nullwerte für Tabelle B..64

Abbildung 11: Prozentuale Verteilung für die Felder Cause und Remark...............................66

Abbildung 12: LoF-Werte für die ersten 100 Einträge der Spalte Duration_in_Seconds........67

Abbildung 13: Code-Zelle im Jupyter Notebook. Der Code erzeugt den Textdatensatz aus den
Spalten Cause und Remark...68

Tabellenverzeichnis
Tabelle 1: Beispiel für Umformatierung und Extraktion. Basierend auf [17]..........................25

Tabelle 2: Ausgewählte Datenqualitätsprobleme im Kontext von Data Wrangling mit
möglichen Lösungsschritten...26

Tabelle 3: Beispiel für ein Histogramm..31

Tabelle 4: Ausgewählte Spalten des NHTSA Complaints Datensatzes....................................52

Tabelle 5: Eintrag 402673 aus NHTSA Complaints. Hier führt ein einzelnes
Anführungszeichen zu einem Problem beim Import..53

Tabelle 6: Symbolisches Beispiel, wie einzelne Anführungszeichen zu Problemen beim
Import führen..53

Tabelle 7: Eintrag 1032430 aus NHTSA Complaints. Ein zusätzlicher Tabulator im Feld
STATE verhindert den Import..54

Tabelle 8: Explizite Nullwerte für ausgewählte Spalten...57

Tabelle 9: Beispiel für Eintrag mit Nullwerten in den Spalten 3 bis 6. Spalte 3 wurde in der
Darstellung wegen der Übersichtlichkeit weggelassen...58

Tabelle 10: Beispiel für einen Eintrag mit "Y" für Spalte 22, der vor 2007 zum Datensatz
hinzugefügt wurde...58

Tabelle 11: Textähnlichkeit für das Freitextfeld von NHTSA Complaints..............................59

Tabelle 12: Vier Beispieltexte aus Spalte 20..60

Tabelle 13: Veranschaulichung des Vorgehens zur Anonymisierung......................................61

Tabelle 14: Beispielhafte Einträge für Tabelle A...61

Tabelle 15: Beispielhafter Eintrag für Tabelle B..64

Tabelle 16: Beispiel für einen Eintrag mit LFDNR = Null...64

Tabelle 17: Spalten der Tabelle "Schichtbuch"..65

Tabelle 18: Beispiel für einen Eintrag in der Tabelle "Schichtbuch" für ausgewählte Spalten65

Tabelle 19: Eintrag mit LoF-Wert von 4,75...67

Tabelle 20: Die Ergebnisse der Textähnlichkeitsmetrik für den Textdatensatz aus den Spalten
Cause und Remark..69

Tabelle 21: Beispiel für Domänenspezifische Abkürzungen..69

Tabelle 22: Beispiel für einen Kommentar der Form TTN->TTN...69

Tabelle 23: Beispiel für einen Rechtschreibfehler in den Spalten Cause und Remark.............70

Tabelle 24: Beispiel für eine Abkürzungen in den Spalten Cause und Remark.......................70

Tabelle 25: Laufzeiten für die Validierungsmetrik für den kompletten Datensatz aus Spalte 8
...74

Tabelle 26: Laufzeiten für die Textähnlichkeitsmetrik...75

1 Einführung

Die Verarbeitung elektronischer Daten spielt in der modernen Gesellschaft eine zentrale
Rolle. Daten sind fundamentaler Bestandteil von operationalen Prozessessen von Unterneh-
men und anderen Organisationen. Zusätzlich bilden sie die Grundlage für Entscheidungen.
Dabei ist die Qualität der Daten von entscheidender Bedeutung. Schätzungen zufolge führen
Probleme mit der Qualität von Daten zu Kosten in Milliardenhöhe alleine in den USA. [3]

Dabei kommt dem Data Wrangling eine entscheidende Bedeutung zu. Dieser Begriff bezeich-
net den Vorgang, Daten in eine nutzbare Form zu bringen. Hierzu zählt zum Beispiel das Säu-
bern und Transformieren von Daten. Schätzungen zufolge muss in manchen Projekten bis zu
80% der Zeit für die Säuberung und Aufbereitung der Daten aufgewendet werden. [16]

In dieser Arbeit wird ein Jupyter Notebook entwickelt, das verschiedene Funktionen anbietet,
die beim Data Wrangling unterstützen. Zusätzlich werden beispielhaft diverse Datenqualitäts-
metriken angeboten, mit denen die Datenqualität gemessen und überwacht werden kann. Ne-
ben strukturierte Daten werden auch unstrukturierte Daten berücksichtigt. Es stehen drei Me-
triken zur Verfügung, die auf Textdaten arbeiten. Ziel ist eine flexible und erweiterbare Tool-
box. Diese ist nicht für einen bestimmten Anwendungsfall oder eine Domäne gedacht. An-
passbarkeit und Erweiterbarkeit sind im Entwurf mit berücksichtigt. Um die Flexibilität des
Ansatzes zu demonstrieren, werden viele Funktionen und Metriken aus Bibliotheken einge-
bunden. Dabei finden die Sprachen Java, Python und R Verwendung. Mit Hilfe dieses Note-
books werden zwei Datensätze aus der Praxis analysiert. Dabei handelt es sich zum einen um
Daten aus der Produktions, zum anderen um den um den NHTSA Complaints Datensatz.

Die anfallenden Datenmengen werden immer größer, sollen aber trotzdem möglichst schnell
verarbeitet werden [21]. Aus diesem Grund soll die Laufzeit der Datenqualitätsmetriken auch
für große Datensätze berücksichtigt werden. Hierzu werden abschließend ausgewählte Metri-
ken mit Apache Spark prototypisch optimiert. Durch Laufzeitmessungen wird evaluiert, ob
sich dadurch die Laufzeit verbessern lässt..

1.1 Motivation

Bei einer Analyse hängt die Qualität der Erkenntnisse, und der Nutzen der daraus in Folge ab-
geleiteten Entscheidungen, stark von der Qualität der zu Grunde liegenden Daten ab [3].

Die zu verarbeitenden Datenmengen werden dabei immer größer und vielfältiger in ihrer Art
und Struktur. Trotzdem sollen sie möglichst echtzeitnah verarbeitet werden. Diese Kombina-
tion aus Volumen, Vielfalt und Geschwindigkeit (im Englischen „Volume, Varierty,
Velocity“) werden auch als die 3 V von Big Data bezeichnet. [21]

Dabei ist es wichtig, zu beachten, dass nicht nur Menschen, sondern auch Maschinen Daten
konsumieren. Beispiele hierfür sind Algorithmen aus dem Bereich Machine Learning und
Data Mining. Beispielsweise findet die automatische Verarbeitung von Texten in natürlichen
Sprachen (im Englischen „natural language processing“, kurz NLP) häufig in Pipelines statt.

Dies spielt etwa bei der Analyse von Social Media Daten oder Freitextfeldern eine Rolle. Da-
bei werden verschiedene Machine Learning Algorithmen verwendet, die sukzessive aufeinan-
der aufbauen. Dass Ergebnis eines Analyseschrittes dient dabei als Eingabe für einen weiter-
gehenden Analyseschritt. Dadurch können sich Qualitätsprobleme verstärken und den Nutzen
des Endresultats stark einschränken. Entscheidend ist neben klassischen Datenqualitätskriteri-
en wie der Genauigkeit (im Englischen Accuracy) auch „fitness for use“. Die Daten müssen
so bereitgestellt werden, wie sie die Datenkonsumenten erwarten, auch im Hinblick auf etwa
Struktur oder Format. [18]

Damit eine Analyse überhaupt durchgeführt werden kann müssen Daten also in die entspre-
chende Form gebracht werden, ein Vorgang der auch als Data Wrangling bezeichnet wird.
Dabei umfasst der Begriff neben dem Auffinden von Datenqualitätsproblemen und der Berei-
nigung der Daten auch die Integration heterogener Datenquellen. [16]

Data Wrangling ist ein sehr aufwendiger Schritt. Laut einer Studie von IBM wird bei Analy-
seprojekten bis zu 70% der Zeit dafür verwendet, Daten aufzufinden, zu säubern und zu inte-
grieren. Hierfür werden drei Gründe angegeben: Daten sind über viele verschiedene Systeme
und Applikationen verteilt. Zusätzlich müssen die Daten transformiert und in ein für die Ana-
lyse geeignetes Format gebracht werden. Außerdem müssen die Daten während des Analyse-
prozesses stets aktuell gehalten werden. [7]

Dies führt oft dazu, dass Domänenexperten, deren Fachexpertise für die eigentliche Analyse
benötigt wird, sich stattdessen mit der Aufbereitung von Daten beschäftigen müssen. [16]

Die Analyse großer Datenmengen spielt in allen Phasen des Produktlebenszyklus eine Rolle.
So zum Beispiel beim Marketing, Kundendienst, Logistik, aber auch bei der Abwicklung und
beim Recycling. Hierzu können auch Daten aus den Sozialen Medien oder öffentlich verfüg-
bare Datenquellen wie Wikipedia verwendet werden. [20].

Von zentraler Bedeutung für Industrieunternehmen, insbesondere in Ländern mit einem hohen
Lohnniveau wie etwa Deutschland, ist die datengetriebene Optimierung von Fertigungspro-
zessen. Dadurch können Unternehmen Kosten senken und Produktqualität erhöhen und somit
im globalen Wettbewerb bestehen. Im Kontext der Fertigung fallen große Mengen an struktu-
rierten und unstrukturierten Daten an, etwa durch in Maschinen und Anlagen eingebettete
Sensoren. Zusätzlich stehen oft Daten aus Manufacturing Execution Systems zur Verfügung,
digitalen Systemen für das Fertigungsmanagement. Dabei ist es wichtig, nicht nur rückbli-
ckend zu analysieren, sondern den Prozess kontinuierlich zu überwachen um schon während
der Ausführung mögliche Probleme vorauszusehen und präventiv eingreifen zu können. Des-
wegen ist eine echtzeitnahe Analyse entscheidend. [13]

1.2 Forschungsfrage und Aufgabenstellung

Zuerst wird im Grundlagenkapitel ein Überblick über die Themenfelder Datenqualität und
Data Wrangling gegeben.

Basierend auf einer Literaturrecherche wird ein Konzept entwickelt, dabei sollen verschiedene
Aspekte des Data Wranglings, die in der Literatur diskutiert werden, berücksichtigt werden.

Das Notebook soll diverse Datenqualitätsmetriken anbieten, und somit bei der Datenexplorati-
on und beim Data Wrangling unterstützten. Jupyter Notebooks basieren ursprünglich auf Py-
thon, sind aber nicht auf eine bestimmte Plattform oder Programmiersprache beschränkt.
Spezielle Module, sogenannte Kernel, ermöglichen es, Notebooks mit unterschiedliche Pro-
grammiersprachen zu verwenden. Es wird eine Vielzahl von Programmiersprachen unter-
stützt, darunter zum Beispiel R. Diese Sprache wird im Bereich Datenanalyse und Data
Wrangling häufig verwendet und bietet eine Vielzahl von Bibliotheken zur Auswertung und
Visualisierung. Dies ermöglicht eine große Flexibilität. Es ist möglich, Werkzeuge und
Datenqualitätsmetriken zu verwenden, die in unterschiedlichen Sprachen implementiert wur-
den. Im Rahmen dieser Arbeit wird untersucht, in wie weit dies möglich ist. Hierzu sollen
verschiedene Metriken zur Messung der Datenqualität prototypisch implementiert sowie be-
reits verfügbare Metriken integriert werden.

Das Notebook soll neben diesen als ausführbarer Code bereitgestellten Metriken auch Texttei-
le enthalten, etwa Checklisten, Erläuterungen und weitergehende Verweise. Ziel ist dabei kein
fertiges Datenanalyseprodukt, sondern ein flexibel erweiterbarer Startpunkt. Das Notebook
dient als Toolbox, die für verschiedene Situationen entsprechende Funktionen bereitstellt. Ist
keine passende Funktion verfügbar, soll es möglich sein, vorhandene Implementierungen,
etwa aus Bibliotheken, einzubinden.

Die Analyse soll auch für große Datenmengen möglich sein. Im Rahmen dieser Arbeit soll da-
her abschließend die Laufzeit von ausgewählten Metriken untersucht werden. Hierzu werden
Experimente zur Laufzeitmessung durchgeführt. Verwendet wird dabei Beispielhaft die NHT-
SA Beschwerdedatenbank [41]. Als Evaluationsumgebung wird Openstack [40] genutzt. Die
Optimierung erfolgt prototypisch durch Verwendung von Apache Spark [33].

1.3 Aufbau der Arbeit

Kapitel 1 enthält neben der Einführung auch die Motivation und die Forschungsfrage dieser
Diplomarbeit. Kapitel 2 enthält einen kurzen Überblick über die theoretischen Grundlagen.
Kapitel 3 bietet einen Überblick über verwandte Arbeiten und diskutiert Gemeinsamkeiten
und Unterschiede zu dieser Diplomarbeit. Kapitel 4 gibt einen Überblick über ausgewählte
Aspekte des Data Wranglings, die in der Literatur diskutiert werden. Zusätzlich wird darge-
stellt, was davon in dieser Arbeit berücksichtigt werden konnte. Kapitel 5 enthält darauf auf-
bauend das Konzept für das Jupyter Notebook. Kapitel 6 beschreibt die Implementierung des
Notebooks und Kapitel 7 beschreibt die Implementierung der ausgewählten Metriken in
Spark. Kapitel 8 enthält eine beispielhafte Analyse der Datenqualität zweier Datensätze durch
Anwendung des Notebooks. Dieses Kapitel bietet auch praktische Beispiele für viele Funktio-
nen des Notebooks. Kapitel 9 beschreibt die Evaluation der für Spark entwickelten Metriken.
Kapitel 10 enthält eine Zusammenfassung und einen Überblick über mögliche weitergehende
Forschungsansätze.

2 Grundlagen

2.1 Daten und Datenstrukturen

Die Onlineausgabe des Duden nennt für das Wort „Daten“ unter anderem folgende Bedeutun-
gen [36]:

(1) „ (durch Beobachtungen, Messungen, statistische Erhebungen u. a. gewonnene) [Zah-
len]werte“

(2) „(EDV) elektronisch gespeicherte Zeichen, Angaben, Informationen“.

Das Wort „Daten“ hat also eine starke Assoziation mit Zahlen und Messungen. Das Wort
steht häufig im Zusammenhang mit Computern und bezieht sich dabei auf Fakten, die elektro-
nisch übertragen und gespeichert werden. Ein Beispiel für eine solche Anwendung wäre etwa
eine Datenbank. Bei diesen Fakten kann es sich etwa um Messungen handeln. Auch beschrei-
bende Attribute von Entitäten sind möglich, etwa Namen und Orte. Daten können definiert
werden als abstrakte Repräsentation ausgewählter Merkmale von Konzepten, Ereignissen und
Objekten aus der realen Welt. Bei Daten handelt es sich immer um Repräsentationen. Das be-
deutet auch, dass es oft mehrere Möglichkeiten gibt, das Gleiche zu repräsentieren. Wichtig
ist auch, dass Daten nur ausgewählte Eigenschaften darstellen. Dabei handelt es sich
gewissermaßen um ein Modell der Realität. Modelle spielen eine wichtige Rolle und helfen
beim Verständnis verschiedener Aspekte der Realität. Allerdings handelt es sich bei Modellen
um Vereinfachungen. Dies kann unter Umständen zu Problemen führen. Ein weiterer wichti-
ger Aspekt ist, dass Daten nicht an sich existieren, sondern geschaffen werden, etwa durch
Prozesse. Der Kontext, in dem die Daten entstanden sind, spielt eine Entscheidende Rolle
beim Verständnis der Bedeutung der Daten. [26]

Die Bedeutung des Kontextes kann an folgendem Beispiel gezeigt werden. Dieses Beispiel er-
weitert ein ähnlichen Beispiel in [26]:

Auf den ersten Blick erkennt man in der Zeichenfolge „10/03/2017“ eine Datumsangabe. In
Deutschland versteht man diese im Allgemeinen als 10. März 2017. Allerdings ist es auch
denkbar, dass die ersten beiden Zahlen den Monat repräsentieren anstelle des Tages. Dieses
Format wird zum Beispiel in den Vereinigten Staaten verwendet. Damit würde sich die Da-
tumsangabe auf den 3. Oktober 2017 beziehen. Es ist sogar theoretisch denkbar, dass es sich
bei der Zeichenkette nicht um ein Datum handelt, sondern um eine Pfadangabe in einem
Dateisystem. Abbildung 1 zeigt hierfür ein einfaches Beispiel für Linux. Ohne Kontext ist der
Wert an sich nicht eindeutig.

Daten können auf verschiedene Weise organisiert sein. Zuerst wird allgemein zwischen struk-
turierten und unstrukturierten Daten unterschieden. Strukturierte Daten folgen einem fest-
gelegtem Schema. Dieses erlaubt die Interpretation der entsprechenden Werte. Ein wichtiges
Beispiel sind Datenbanken, die Informationen in relationalen Tabellen verwalten. Unstruktu-
rierte Daten können aus einer beliebigen Folge von Zeichen bestehen. Beispiele hierfür sind
Bilder und Texte. [3]

Es gibt verschiedene Datenstrukturen, mit denen Daten gespeichert und transportiert werden
können, etwa XML oder CSV. CSV steht dabei für Comma Separated Values, also durch
Kommas getrennte Datenwerte. Jede Zeile repräsentiert dabei einen Eintrag. Die Werte der je-
weiligen Spalten werden durch Kommas getrennt. Diese Darstellung entspricht einer Tabelle.
In der Praxis werden neben Kommas auch weitere Trennzeichen verwendet, etwa der Tabula-
tor. [22]

Viele Tools, die solche Daten verarbeiten, erlauben es, beim Einlesen das Trennzeichen zu
spezifizieren. Dies ist auch für das in der Arbeit entwickelte Jupyter Notebook der Fall. Aus
diesem Grund wird im Kontext dieser Arbeit nicht strikt nach dem Trennzeichen unterschie-
den. Dem allgemeinen Sprachgebrauch folgend werden auch Dateien mit anderen Trennzei-
chen als dem Komma als CSV bezeichnet. Dies ist zum Beispiel für die in Kapitel 8 analy-
sierten Datensätze der Fall. Der NHTSA Complaints Datensatz liegt als Textdatei vor, die als
Trennzeichen den Tabulator verwenden. Die Daten des Industriepartners verwenden .csv als
Dateiendung, nutzen aber das Semikolon als Trennzeichen.

2.2 Datenqualität

Daten spielen in der modernen Gesellschaft eine wichtige Rolle. Sie bilden oft die Grundlage
für Entscheidungen, etwa durch Unternehmen und andere Organisationen. Dabei ist die Quali-
tät der Daten entscheidend. Ein Konzept, das auf dem Begriff Datenqualität aufbaut und die-
sen ergänzt, ist die Informationsqualität. Dieser kommt bei Entscheidungen eine zentrale Be-
deutung zu. Schlechte Informationsqualität kann Entscheidungen negativ beeinflussen und
sich negativ auf die Resultate auswirken. [3]

Eine Sichtweise auf das Konzept Datenqualität ist die die Perspektive der Datenkonsumenten,
also diejenigen Anwender, welche die Daten nutzen. Diese Sichtweise wird in der Literatur
auch als „fitness for use“ bezeichnet. Die Daten müssen für die Verwendung durch die jewei-
ligen Datenkonsumenten geeignet sein. [29]

Abbildung 1: Beispiel für ein Linux-System. Hier steht 10/03/2017 nicht für ein Datum
sondern eine Pfadangabe

Datenqualitätsprobleme betreffen aber nicht nur menschliche Datenkonsumenten. Auch Sys-
teme und Algorithmen verarbeiten Daten und können davon betroffen sein. Eine schlechte
Qualität der Eingabedaten kann die verarbeitenden Algorithmen beeinträchtigen und zu einen
schlechten Resultat führen. Dieses Problem verstärkt sich, wenn Daten in einer Pipeline verar-
beitet werden. Dieser Englische Begriff bedeutet, dass eine Reihe von Schritten nacheinander
ausgeführt werden. Die Ergebnisse des ersten Schrittes dienen dabei als Eingabe für den
nächsten. Pipelines spielen zum Beispiel in der maschinellen Sprachverarbeitung eine wichti-
ge Rolle. [18]

Ein Beispiel hierfür ist die Bestimmung der Wortarten1. Bevor ein Text mit den entsprechen-
den Tags versehen werden kann, muss dieser zuerst in Tokens zerlegt werden [4]. Siehe hier-
zu auch Abschnitt 2.5 über maschinelle Sprachverarbeitung.

Datenqualität hat mehrere verschiedene Aspekte, die auch als Datenqualitätsdimensionen be-
zeichnet werden können [3]. Ein in der Literatur häufig zitierte Qualitätsdimension ist Accu-
racy [28]. Im Deutschen kann für diesen Begriff zum Beispiel Genauigkeit verwendet werden.
Dies bezeichnet, inwieweit ein Datenwert dem realen Phänomen gleicht, das er repräsentieren
soll [3].

Es gibt in der Literatur eine Reihe von Ansätzen, Datenqualitätsdimensionen zu charakterisie-
ren. Ein in [3] vorgestellter Ansatz gruppiert die Datenqualitätsdimensionen in 9 verschiedene
Cluster. Diese Einteilung erfolgt anhand der Ähnlichkeit der einzelnen Dimensionen unterein-
ander. So wird der oben erwähnte Begriff der Genauigkeit beziehungsweise Accuracy als
Cluster aufgefasst, der unter anderem die Dimensionen Korrektheit und Präzision enthält.
Weitere Cluster wären Vollständigkeit und Konsistenz. [3]

Ein weiterer Ansatz, vorgestellt in [29], ermittelte die Datenqualitätsdimensionen empirisch
durch Fragebögen. Damit sollen die Dimensionen berücksichtigt werden, die für Datenkonsu-
menten eine Bedeutung haben. Basierend auf den Ergebnissen der Fragebögen wurde ein hier-
archisches Framework mit 4 Kategorien entwickelt. Diese gruppieren ähnliche Datenquali-
tätsdimensionen. [29]

Ein Framework, das für die Überwachung und Messung der Datenqualität durch Metriken
entwickelt wurde ist das Data Quality Assessment Framework (DQAF). Hier werden fünf
Datenqualitätsdimensionen benutzt: Vollständigkeit, Rechtzeitigkeit, Validität, Konsistenz
und Integrität. Diesen Dimensionen sind 48 Messarten zugeordnet. Hierdurch wird das wie-
derholbare Messen der Datenqualität möglich. Eine Messart ist dabei eine Verallgemeinerung
und Zusammenfassung mehrerer spezieller Metriken. [26]

Siehe den folgenden Abschnitt 2.3 für eine nähere Betrachtung von Datenqualitätsmetriken.

1 Im Englischen „part-of-speech tagging, oder Abgekürzt POS tagging

2.3 Datenqualitätsmetriken

Datenqualität kann durch Metriken gemessen werden. Messungen helfen dabei, Beobachtun-
gen durch Zahlen auszudrücken. Dadurch sind Vergleiche möglich. So können Objekte mit-
einander verglichen werden, oder die Entwicklung eines Objektes im Laufe der Zeit. Die er-
mittelten Messwerte können dabei als Grundlage von Entscheidungen dienen. Hierzu müssen
die Messungen verständlich, reproduzierbar und zielführend sein. [26]

Diese drei Punkte sollen im folgenden näher erläutert werden:

Messungen müssen verständlich sein, damit sie ihren Zweck erfüllen. Die Ergebnisse können
nicht bei der Entscheidungsfindung helfen, wenn niemand versteht, was gemessen wurde und
was die Ergebnisse genau bedeuten. Dies unterstreicht die Bedeutung von Metadaten, welche
die Messungen und die Ergebnisse dokumentieren. Dies hilft dem Datenkonsumenten, den
Kontext zu verstehen und die Resultate zu interpretieren. [26]

Messungen müssen reproduzierbar sein. Inkonsistente Messungen führen dazu, dass die Er-
gebnisse wenig oder gar keine Bedeutung haben. Um zu zeigen, ob sich die Qualität in einem
Datensatz verbessert oder verschlechtert, müssen die gleichen Daten mit den gleichen Metho-
den gemessen werden. Dadurch sind auch Vergleiche zwischen verschiedenen Objekten mög-
lich. [26]

Messungen müssen zielführend sein. Es sollte das gemessen werden, was dabei hilft, die Un-
sicherheit bei einer Entscheidung zu reduzieren. Messungen dienen also einem Zweck und
helfen bei konkreten Problemen. [26]

Mit Hilfe einer Datenqualitätsmetrik können bestimmte Aspekte der Qualität eines Datensat-
zes untersucht werden. So kann beispielsweise der Anteil an ungültigen Codes in einer be-
stimmten Spalte gemessen werden. Dabei spielt es keine Rolle, um welchen Code es sich ge-
nau handelt. Dies kann für jede Spalte ermittelt werden, die einen definierten Wertebereich
hat. Dieser Wertebereich kann zum Beispiel durch eine zweite Tabelle definiert sein. Diese
Tabelle enthält die zulässigen Werte, beispielsweise Diagnosecodes im medizinischen Kon-
text. Die Messung ungültiger Werte lässt sich als Validität verallgemeinern. Dabei handelt es
sich um den prozentualen Anteil der Werte pro Spalte, die nicht in der für diese Spalte defi-
nierten Domäne existieren. Dies erlaubt Vergleiche von ähnlichen Datensätze. Enthalten zwei
Datensätze etwa vergleichbare Spalten, so kann für diese die Validität ermittelt werden. Da-
durch ist es möglich, die relative Datenqualität dieser Datensätze zu ermitteln. [26]

2.4 Wissensentdeckung

In vielen unterschiedlichen Bereichen fallen immer größere Mengen von Daten an. Die
Wissensentdeckung in Datenbanken beschäftigt sich mit Werkzeugen und Methoden, mit de-
ren Hilfe aus diesen wachsenden Datenmengen nützliche Informationen gewonnen werden
können. Im Englischen wird dies als „knowledge discovery in databases“ bezeichnet, kurz
KDD. Wissensentdeckung in Datenbanken bezeichnet den Prozess, mit dem aus Daten nützli-

ches Wissen extrahiert wird. Kern dieses Prozesses ist die Anwendung von Methoden des
Data Minings. In Abgrenzung dazu kann Data Mining als ein einzelner Schritt im gesamten
Prozess gesehen werden. Die Verarbeitung von großen Datensätzen aus der Praxis ist ein
zentraler Fokus. Deshalb spielt der Aspekt der Skalierbarkeit von Algorithmen für große
Datensätze eine wichtige Rolle. [10]

Der KDD Prozess ist iterativ und interaktiv, und besteht aus mehreren Schritten. Dabei soll
zunächst ein Verständnis über die relevante Domäne erlangt werden. Zusätzlich muss auch
das Ziel des Prozesses aus Sicht des Auftraggebers geklärt werden. Ein wichtiger Schritt ist
die Bereinigung und Vorverarbeitung der Daten. Dabei geht es unter anderem auch darum
eine Strategie festzulegen, wie mit fehlenden Werten umgegangen werden soll. Ein zentraler
Schritt des Prozesses ist das Data Mining. Dabei geht es darum, nach interessanten Mustern in
den Daten zu suchen, etwa durch Clustering. Danach müssen die gewonnenen Muster inter-
pretiert werden. Hierbei können auch verschiedene Visualisierungen angewendet werden. Ab-
schließend muss das gewonnene Wissen konsolidiert werden. Dies geschieht beispielsweise,
indem die Ergebnisse dokumentiert und an die entsprechenden Interessenten weitergeleitet
werden. [10]

Data Mining ist ein wichtiger Schritt des gesamten Prozesses. Dabei geht es um die wieder-
holte Anwendung verschiedener Data Mining Methoden. Dieser Prozess ist iterativ. Es kön-
nen grob zwei Arten von Zielen unterschieden werden: die Verifikation und die Entdeckung.
Bei der Verifikation geht es darum, vom Hypothesen des Benutzers zu überprüfen. Bei der
Entdeckung sollen automatisch Muster gefunden werden. Diese kann in zwei weitere Unter-
kategorien unterteilt werden, Vorhersage und Beschreibung. Bei der Vorhersage geht es dar-
um, zukünftiges Verhalten vorherzusagen. Bei der Beschreibung Muster in den Daten zu fin-
den und dem Benutzer auf verständliche Weise zu präsentieren. Typische Data Mining Me-
thoden sind dabei zum Beispiel Clustering und Klassifikation. [10]

2.5 Maschinelle Sprachverarbeitung

Die Verarbeitung von Texten in natürlicher Sprache hat zunehmende Bedeutung etwa in der
Wissenschaft und der Wirtschaft [4]. Beispiel hierfür ist die Analyse von Social Media Daten,
etwa für die Plattform Twitter [12].

Die Verarbeitung findet dabei häufig in Pipelines statt. Dies bedeutet, dass einzelne Schritte
aufeinander aufbauen und hintereinander ausgeführt werden müssen. Die Ergebnisse eines
Schrittes dienen dabei als Eingabe für folgenden Schritt. Dies kann Datenqualitätsprobleme
verstärken. [18]

Die Annotation der Wortarten spielt in der maschinellen Sprachverarbeitung eine wichtige
Rolle. Viele gängige Standardtools und Bibliotheken benutzen den englischen Namen „par-
t-of-speech tagging“ oder die Abkürzung „POS tagging“ für entsprechende Funktionen. Dies
gilt zum Beispiel OpenNLP [43], das in dieser Arbeit verwendet wird. Deshalb werden diese
Begriffe im Folgenden auch synonym verwendet. Grundlage für die Annotation der Wortarten
ist die Tokenisierung, die Zerlegung des Textes in Tokens.

2.5.1 Tokenisierung
Bei der Tokenisierung handelt es sich um eine Fundamentale Aufgabe in der maschinellen
Sprachverarbeitung. Sie dient als Grundlage für viele weitere Verarbeitungsschritte, beispiels-
weise die Annotation der Wortarten. Siehe hierzu Abschnitt 2.5.2. Bei der Tokenisierung soll
ein Text in die Tokens zerlegt werden, Grundeinheiten eines Textes. In den meisten Fällen
handelt es sich dabei um Wörter und Satzzeichen. Es gibt aber auch Ausnahmen. Beispiels-
weise wird im Englischen häufig die Kontraktion „don't“ für „do not“ verwendet. Je nach An-
wendung kann diese in die Tokens „do“ und „n't“ beziehungsweise „not“ aufgeteilt werden.
Aus technischer Sicht ist ein in einem Computer gespeicherter Text zunächst nur eine Folge
von Zeichen. Durch die Tokenisierung wird dieser String in eine Liste von Tokens umgewan-
delt. Es gibt verschiedene Ansätze, die Tokenisierung durchzuführen. Die einfachste Methode
ist es, Leerzeichen als Trennzeichen zu verwenden. Dies ist aber für viele Anwendungen un-
geeignet, weil die Satzzeichen nicht als einzelne Tokens erkannt werden, weil sie in der Regel
nicht durch ein Leerzeichen von einem Wort getrennt sind. Es gibt auch komplexere Imple-
mentierungen, die auf Machine Learning basieren, und teilweise Modelle benötigen. [4]

Ein Beispiel hierfür ist der TokenizerME aus dem Paket OpenNLP [43]. ME steht dabei für
Maximum Entropy. Dieser Tokenizer muss ein Modell laden, bevor damit Texte verarbeitet
werden können. [43]

2.5.2 Part-of-speech Tagging
Part-of-speech tagging dient als Grundlage für viele weitergehende Verarbeitungsschritte. Die
Textdaten müssen dafür mit den entsprechenden Wortarten annotiert werden. Dies geschieht
dadurch, das jedem Token die passende Wortart zugeordnet wird, beispielsweise Nomen oder
Verb. Hierfür muss ein Text zuerst Tokenisiert werden. Das bedeutet, dass der Text in die ein-
zelnen Tokens zerlegt wird. Bei Tokens handelt es sich in der Regel um Wörter. Siehe hierzu
auch den vorgehenden Abschnitt 2.5.1. Dies ist ein Beispiel für eine einfache Pipeline. Als
Eingabe für das Part-of-speech tagging dient dabei das Ergebnis der Tokenisierung. Part-of-s-
peech tagging kann entweder manuell durch Experten durchgeführt werden, oder durch auto-
matisierte Tools, sogenannte Part-of-speech tagger. Es gibt viele verschiedene Implementati-
on. Es werden etwa trainierbare Machine Learning Algorithmen verwendet. Diese benötigen
ein Modell, welches vor der Anwendung erstellt werden muss. Anhand dieses Modell wird
dann im Anwendungsfall eine Entscheidung getroffen, welche Wortart dem jeweiligen Token
zugeordnet wird. [4]

2.5.3 Textähnlichkeit
Textähnlichkeit beschreibt die Ähnlichkeit von zwei Texten. Dabei kann es sich um Sätze,
Paragraphen oder ganze Bücher handeln. Ein Beispiel für Ähnlichkeit von Texten sind zwei
Definitionen für das gleiche Konzept, die aus unterschiedlichen Wörterbüchern stammen.
Textähnlichkeit lässt sich schwer durch Algorithmen berechnen. Es gibt viele Möglichkeiten,
das gleiche zu sagen. Natürliche Sprache zeichnet sich durch eine große Vielfalt aus. Dies
wird zusätzlich dadurch erschwert, das es mehrere Dimensionen gibt, nach denen die Ähn-
lichkeit von Texten beurteilt werden kann, etwa Inhalt, Struktur und Stil. [1]

In der Literatur werden eine Vielzahl von Metriken zur Messung von Textähnlichkeit disku-
tiert. Diese basieren auf verschiedenen Ansätzen. Beispielsweise gibt es Metriken, die auf
Ebene der Buchstabendarstellung arbeiten. Diese sogenannten string distance metrics berück-
sichtigen also keine semantischen Informationen. Andere Metriken verwenden Vektordarstel-
lungen der Texte, und berechnen darauf basierend die Textähnlichkeit durch Vektorähnlich-
keitsfunktionen. Ein Beispiel hierfür ist die Cosine Metrik. [1]

Eine Textähnlichkeitsmetrik misst dabei die Ähnlichkeit von zwei Texten. Das Ergebnis wird
als Zahl ausgedrückt. Diese Zahl wird oft normalisiert, damit sie im Intervall zwischen 0 und
1 liegt. 0 Bedeutet, dass sich die Texte nicht ähnlich sind. 1 bedeutet vollkommen ähnlich. [2]

2.6 Spark

Apache Spark ist ein generelles Framework für die Verarbeitung großer Datenmengen. Es
kann bis zu 100 mal schneller sein als Hadoop MapReduce, falls die Datenverarbeitung im
Hauptspeicher erfolgt. Für Festplatten ist eine Steigerung um bis zu Faktor 10 möglich. Für
die Entwicklung können die Sprachen Java, Scala, Python und R verwendet werden. [33]

Das zugrundeliegende Programmiermodell basiert auf MapReduce. Zusätzlich bietet Spark
„Resilient Distributed Datasets“, abgekürzt RDD. Dabei handelt es sich um eine Abstraktion,
mit der Daten verteilt werden können. Durch diese Erweiterung ist es möglich, zusätzlich ver-
schiedene Arbeitsbereiche abzudecken, wie etwa SQL oder Machine Learning. Abbildung 2
zeigt den Spark Software Stack. Die dargestellten Komponenten können in Spark genutzt
werden. Die Implementierungen verwenden die gleichen Optimierungsmethoden, wie sie in
spezialisierten Engines genutzt werden. Dabei basieren sie auf der gemeinsamen Grundlage
von Spark. Durch die einheitliche Schnittstelle können neue Anwendungen leichter entwickelt
werden. Zweitens können dadurch Arbeitsaufgaben effizienter kombiniert werden. In Spark
können verschiedene Funktionen auf den Daten ausgeführt werden. Dies ist oft sogar im
Hauptspeicher möglich. Durch die Einbindung von Hadoop kann Spark auf das Hadoop Dis-
tributed File System (HDFS) zugreifen. [31]

Das besondere an Spark sind RDDs. Hierbei handelt es sich um eine fehlertolerante Daten-
struktur. Sie stellt eine Sammlung von Objekten dar. Diese werden über einen Cluster verteilt
und können parallel bearbeitet werden. RDDs unterstützen dabei verschiedene Funktionen
wie etwa das Filtern. Dieses werden verzögert ausgewertet. Dadurch kann Spark die Ausfüh-
rung optimieren. [31]

2.7 Jupyter Notebooks

Bei Jupyter Notebooks handelt es sich um Webapplikationen. Diese ermöglichen das Erstel-
len und Teilen von Dokumenten, die etwa ausführbaren Code, Visualisierungen und erklären-
de Texte enthalten können. Bibliotheken, die zur Verarbeitung große Datenmengen geeignet
sind, wie etwa Pandas [46], können leicht integriert werden. Es werden 40 verschiedene Pro-
grammiersprachen unterstützt, unter anderem Python und R. Python sofort nach der Installati-
on genutzt werden. Die Einbindung anderer Programmiersprachen erfolgt durch Installation
spezieller Module. Das Projekt Jupyter ist Open Source. Die Funktionen des Notebooks basie-
ren alle auf dem IPython Kernel. Dabei handelt es sich um einen separaten Prozess, der unter
anderem für die Ausführung des Codes verantwortlich ist. Verschiedene Frontends können
sich dabei mit einem Kernel verbinden. Sie haben dadurch zugriff auf den Speicher und die
darin enthaltenen Variablen. Dies war ursprünglich für die Entwicklung unterschiedlicher An-
sichten für den gleichen Kernel gedacht. Dadurch ist es auch möglich, das mehrere Benutzer
an einem Projekt arbeiten und den Datenstand teilen. Beim Jupyter Notebook handelt es sich
genau genommen um ein solches Frontend. Dies hat die besondere Funktion, das Code und
Texte in einem Dokument gesichert werden. Dieses verwendet das JSON Format und die
Dateiendung .ipynb. Dadurch ist es möglich, Notebooks einfach zu teilen. Angeboten wird
auch der Export in andere Formate, beispielsweise HTML oder LaTeX. [47]

Abbildung 2: Für Apache Spark verfügbare Komponenten. Entnommen
aus [31]

3 Verwandte Arbeiten

Dieses Kapitel stellt verwandte Arbeiten vor, und beschreibt Gemeinsamkeiten und Unter-
schiede zu dieser Diplomarbeit.

Data Wrangler [17] ist ein interaktives Tool für Datentransformationen. Es ist online unter
[38] in einer ursprünglichen Version verfügbar. Dieses Tool wird nicht mehr weiterentwi-
ckelt. Das Unternehmen TriFacta [50], das von Mitgliedern des Forschungsteams gegründet
wurde, bietet nun unter anderem eine weiterentwickelte Version zum Download an. Hierfür
wird eine Registrierung mit Angabe der vollständigen Kontaktdaten verlangt. Die folgende
Beschreibung bezieht sich daher auf die ursprüngliche Version [17]. Das Tool bietet eine Vor-
schau für geplante Transformationsschritte, damit sich der Benutzer die genauen Auswirkun-
gen an einem Beispiel veranschaulichen kann, so wie eine Liste von bereits vorgenommenen
Schritten. Transformationen können auch rückgängig gemacht werden. In dieser Arbeit ist
dies nicht direkt möglich. Eine Reihe von Transformationen können als Skript gespeichert
und mit Kommentaren dokumentiert werden. Somit können Transformationen zu einem spä-
teren Zeitpunkt wiederholt werden, etwa bei neuen Datensätzen. In dieser Arbeit ist dies nicht
automatisch möglich. Ein besonderes Feature ist, dass das Tool versucht, Vorschläge für
Transformationsschritte zu geben, etwa dem Auffüllen oder löschen leerer Zeilen. Außerdem
kann das Tool anhand von Beispielen komplexere Transformationen erkennen, etwa für die
Extraktion von Zahlen aus einem Freitextfeld. Machine Learning wird verwendet, um die
Qualität der Vorschläge mit steigender Nutzung zu verbessern. In dieser Arbeit erfolgt die
Unterstützung des Benutzers hauptsächlich durch Texte, die weitergehende Informationen zu
Metriken und Transformationen bieten. Es werden keine automatischen Vorschläge für Trans-
formationen angeboten. Das Tool ist Tabellenorientiert. Über jeder Spalte gibt es einen
Datenqualitätsbalken der einfache Qualitätsmetriken darstellt, wie etwa fehlende Werte oder
Werte vom falschen Datentyp. Die Datenqualitätsmetriken sind einfach und dienen vor allem
zur Unterstützung der Datentransformation. Im Gegensatz dazu verwendet diese Arbeit auch
zusätzlich komplexere Metriken, insbesondere für Textdaten. Das Thema Optimierung der
Laufzeit wird nicht angesprochen. In dieser Arbeit werden ausgewählte Metriken mit Ver-
wendung von Apache Spark implementiert und auf die Laufzeit hin evaluiert.

Ein frei verfügbares Tool ist OpenRefine [45]. Dieses Tool ist auch unter dem zuvor verwen-
deten Namen GoogleRefine bekannt. Damit lassen sich Daten säubern und transformieren.
Das Tool bietet eine tabellenförmige Darstellung der Daten. Wie in dieser Arbeit auch ist es
möglich, Daten zu filtern. Es wird eine Reihe von vorgegebenen Transformationsschritten an-
geboten. Bei dieser Arbeit ist es möglich, Funktionen bei Bedarf direkt im Notebook durch
Code zu implementieren oder aus entsprechenden Skripten einzubinden. Ein Feature, dass in
dieser Arbeit nicht betrachtet wird, ist die Möglichkeit, verschiedene Webservices zu verwen-
den, etwa um freie Datensätze einzubinden. Im Unterschied zu dieser Arbeit liegt der Fokus
nicht auf Qualitätsmetriken.

Ein weiterer Ansatz für die Transformation, Integration und Analyse von Daten in der Litera-
tur ist DataCommandr [25]. Das Hauptfeature ist die Spaltenorientierung, statt der ansonsten
üblichen relationalen Ansatz mit der Betonung von Tabellen und Reihen. Als Grund für die-
sen Ansatz wird die Laufzeitoptimierung genannt. Allerdings bezieht sich eher auf weiter-

gehende Analysen. Im Gegensatz hierzu wird in dieser Diplomarbeit auch die Laufzeit von
Datenqualitätsmetriken betrachtet, mit denen die Datenqualität ermittelt und überwacht wer-
den kann. Das Tool verwendet eine domänenspezifische Sprache, COEL (concept-oriented
expression language). Beziehungen zwischen Daten werden durch Links realisiert, die viel
einfacher zu handhaben sind als Joins. Dadurch soll sich zusätzlich die Laufzeit von komple-
xen Analysen deutlich verbessern. In dieser Arbeit werden keine speziellen Optimierungen
oder Darstellungsformen entwickelt. Stattdessen werden, wenn möglich, Standardbibliothe-
ken verwendet. Im Gegensatz zu dieser Arbeit wird Datenqualität nicht diskutiert. Auch wird
dem Benutzer hier keine Hilfestellung etwa durch weiterführende Texte oder Checklisten an-
geboten.

Es sind einige Jupyter Notebooks zum Thema Data Wrangling verfügbar. Ein Beispiel ist
[37]. Dieses Notebook bietet Inspektion und Transformation von Daten. Wie in dieser Di-
plomarbeit werden Textfelder zur Beschreibung und Erläuterung genutzt. Allerdings ist es im
Gegensatz zu dieser Arbeit als Einführung gedacht und arbeitet auf konkreten Beispielen. Die
Themen Datenqualität und Laufzeit werde nicht angesprochen.

Ein weiteres Beispiel ist [27]. In dieser Arbeit wurde eine spezielle Fragestellung aus dem Be-
reich der Ozeanologie untersucht. Dazu wird ein Jupyter Notebook verwendet. Dabei werden
Daten aufbereitet und gefiltert, um in der anschließenden Analyse verwendete werden zu kön-
nen. Im Gegensatz zu dieser Arbeit ist das Notebook für einen speziellen Anwendungsfall in
einer bestimmten Domäne gedacht. Auch werden keine Metriken angeboten, mit denen die
Qualität der Daten gemessen werden kann.

Es gibt in der Literatur viele Arbeiten über Data Wrangling. Im folgenden werden drei wichti-
ge Arbeiten exemplarisch herausgegriffen. Ein kurzer Überblick über das Thema Data
Wrangling findet sich bei [9].

Die Arbeit von Kandel et al. [16] diskutiert verschiedenste Themen und Probleme aus dem
Bereich Data Wrangling, insbesondere unter dem Aspekt der Visualisierung. So können zum
Beispiel Schaubilder und Diagramme dabei helfen, Datenqualitätsprobleme zu erkennen, wie
etwa fehlende Werte. Diese Diplomarbeit greift einige der in diesem Paper diskutierten
Aspekte und Erkenntnisse auf. Der Hauptunterschied ist, dass in dieser Arbeit eine prototypi-
sche Implementierung durchgeführt wird. Zusätzlich werden Datenqualitätsmetriken bereitge-
stellt, insbesondere für Textdaten.

Das Buch „Python for Data Analysis“ [23] behandelt das Thema Data Wrangling als Teila-
spekt der Datenanalyse unter Verwendung der Programmiersprache Python als wichtigstes
Tool. Zusätzlich wird unter anderem IPython behandelt, der Vorläufer und die Basis von Ju-
pyter Notebooks. Eine Ähnliche Einführung für die Programmiersprache R bietet [5]. Dar-
überhinausgehend soll das in dieser Arbeit prototypisch erstellte Notebook nicht auf Python,
R oder eine andere bestimmte Programmiersprachen oder Plattformen beschränkt sein, son-
dern bei Bedarf verschiedene Implementierungen integrieren können.

Der Einsatz von Data Analytics in der Produktion wird in der Literatur oft diskutiert. So be-
schäftigt sich zum Beispiel [13] mit der Datengetriebenen Optimierung von Produktionspro-
zessen. Hierzu wurde die Plattform AdMA (Advanced-Manufacturing-Analytics) prototy-
pisch implementiert und evaluiert, die Datenhaltung mit Wissen über den Produktionsprozes-

se sowie darauf aufbauende Analysen vereint. Zusätzlich können die Erkenntnisse über eine
Mobile App auch Werkern und Fertigungsleitern präsentiert werden. Ähnlich wie diese Arbeit
wird eine Mischung aus strukturierten und unstrukturierten Daten unterstützt und ganzheitlich
betrachtet. Allerdings konzentriert sich diese Arbeit auf den Aspekt der Datenqualität im Kon-
text von Data Wrangling. Weitergehende Analysen wie etwa Data Mining sowie Aspekte der
Präsentation stehen nicht im Fokus dieser Diplomarbeit. Zusätzlich ist das Toolkit flexibel ge-
staltet und nicht für eine bestimmte Domäne, wie etwa Produktionsprozesse, zugeschnitten.
Jedoch wird das Notebook auch auf Daten angewendet, die aus der Produktion stammen.

Die Notwendigkeit, beim Thema Datenqualität nicht nur Menschen sondern auch Maschinen-
konsumenten, wie etwa Data Mining Algorithmen, zu betrachten, wird in [18] betont. Dies
spielt eine noch größere Rolle, wenn Analysen in einer Pipeline stattfinden, also wenn das Er-
gebnis eines Analyseschrittes direkt als Ausgangsbasis für den nächsten Schritt dient.

Datenqualität im allgemeinen spielt in der Literatur eine sehr große Rolle. Der in [29] präsen-
tierte Ansatz betrachtet Datenqualität empirisch. Hierzu wurden Experten, die häufig mit
Daten arbeiten, befragt. Daraus werden 4 Kategorien von Datenqualität abgeleitet, die wieder-
um insgesamt 15 Datenqualitätsdimensionen enthalten, zum Beispiel Accuracy oder Comple-
teness.

Ein umfassender Überblick über das Thema und die Beschreibung verschiedener Datenquali-
tätsmetriken findet sich in [3]. Der Zusammenhang zwischen der Qualität der Daten und der
Qualität der darauf aufbauenden Analysen spielt eine wichtige Rolle.

Ein Framework zur Messung von Datenqualität wird in [26] präsentiert. Es werden 48 kon-
krete Metriken besprochen, teilweise mit Implementierungsskizzen. Der Fokus liegt auf dem
Aspekt der Messung von Datenqualität. Im Gegensatz zu dieser Arbeit werden Aspekte des
Data Wrangling nicht betrachtet. Zusätzlich spielt die Laufzeit der Metriken eine untergeord-
nete Rolle. Diese Arbeit greift Ideen aus diesem Buch auf und implementiert zwei der be-
schriebenen Metriken.

Das „Bad Data Handbook“ [22] betrachtet das Thema Datenqualität sehr praktisch und viel-
fältig. Ein wichtiger Aspekt ist, das sehr viele Daten, etwa in Tabellenverarbeitungsprogram-
men, in einem für menschliche Verwendung optimierten Form vorhanden sind. Diese ist für
Maschinen schwer zu verarbeiten und muss aufwendig transformiert werden. Auch un-
gewöhnliche Datenqualitätsprobleme werden behandelt, etwa das von Menschen verfasste
Freitextfelder (etwa Produktbewertungen) bewusste Lügen enthalten können.

4 Data Wrangling

Data Wrangling bezeichnet den iterativen Prozess, Daten in eine Form zu bringen, die für
weitere Analysen geeignet ist. Dabei ist Data Wrangling ein sehr aufwendig und kosteninten-
siv. Laut Schätzungen wird dafür bis zu 80% der Entwicklungszeit aufgewendet. [16]

In diesem Kapitel soll ein Überblick über das Thema gegeben werden. Hierzu wird in Ab-
schnitt 4.1 der Data Wrangling Prozess näher beschrieben. Abschnitt 4.2 diskutiert typische
Datenqualitätsprobleme wie etwa fehlende Werte. Abschnitt 4.3 gibt einen kurzen Überblick
über in der Literatur diskutierte Ansätze. Dieses Kapitel dient dabei als theoretische Grund-
lage für das Konzept des Jupyter Notebooks in Kapitel 5.

4.1 Data Wrangling Prozess

Data Wrangling ist ein aufwendiger und iterativer Prozess. Abbildung 3 zeigt eine Visualisie-
rung des typischen Data Wrangling Prozesses. Ziel ist es, eine Menge roher Daten im Origi-
nalzustand so aufzubereiten dass sie für weitergehende Analyseschritte nutzbar sind. Erst da-
durch lassen sich Erkenntnisse erzielen, die möglicherweise einen Mehrwert bringen. Dabei
ist zu beachten, dass Data Wrangling und die anschließende Analyse zwar als getrennte
Schritte betrachtet werden können. Allerdings lassen sie sich in der Praxis oft nicht scharf
trennen und bilden einen wechselseitigen, iterativen Prozess. Dieser Vorgang ist in Abbildung
3 durch den zickzackförmigen Verlauf der Linie symbolisch dargestellt. So ist es möglich,
dass beim Laden der Daten in das Analysetool festgestellt wird, dass die Daten nicht im rich-
tigen Format für dieses Tool vorliegen, obwohl bereits mehrere Transformations- und Berei-
nigungsschritte erfolgt sind. Nachdem weitere Schritte durchgeführt wurden, können bei ei-
nem erneuten Analyseversuch weitere Probleme aufgedeckt werden. Zum Beispiel können
nicht plausibel erscheinende Ergebnisse auf Datenqualitätsprobleme hindeuten. Diese müssen
erst aufgespürt und behoben werden, bevor die Analyse fortgesetzt werden kann. [16]

Im Folgenden sollen die beiden wichtigen Aspekte des Data Wranglings etwas näher be-
schrieben werden, die Diagnose von möglichen Fehlern, und die Transformation der Daten in
eine nutzbare Form. Bei der Diagnose geht es darum alle möglichen Probleme in den Daten
zu identifizieren. Dabei gibt es verschiedene Arten von Problemen. Ein typisches Beispiel
sind falsche oder fehlende Werte, verursacht etwa durch menschliche Fehler bei der Eingabe.
Aber auch formal korrekte, aber irreführende Werte können die Analyse stark beeinträchti-
gen: So können bestimmte Informationen durch Codes dargestellt werden, etwa der Wert 999
für „unbekannt“ beim Alter. Da diese Werte aber entsprechend dem Datentyp zulässig sind,
werden sie nicht direkt erkannt und führen zu falschen Ergebnissen bei der Analyse, etwa dem
Durchschnittsalter. Ein weiteres Problemfeld ist das Zusammenführen von Daten aus unter-
schiedlichen Quellen. Diese können in unterschiedlichen Formaten vorliegen. Daneben kön-
nen auch unterschiedliche Konventionen zu Datenqualitätsproblemen führen, etwa die Codie-
rung der Altersangabe „unbekannt“ durch den Wert 0 statt wie im Beispiel zuvor durch 999.
Eine weitergehende Diskussion möglicher Probleme findet sich in Sektion 4.2. Nachdem
Datenqualitätsprobleme diagnostiziert wurden müssen diese behoben werden. Dies geschieht
im Allgemeinen durch Transformation der Daten. Ähnlich wie beim gesamten Data Wrang-
ling Prozess sollten diese beiden Schritte nicht strikt linear verstanden werden sondern wech-
selseitig und iterativ. Bei einer Transformation können zusätzliche Probleme aufgedeckt wer-
den, die wiederum weitere Transformationsschritte auslösen und so weiter. Typische Trans-

Abbildung 3: Visualisierung eines typischen Data Wrangling Prozesses. Entnommen aus [16]

formationsschritte sind dabei das (Um-)Formatieren der Daten, die Extraktion, die Umwand-
lung und die Korrektur fehlerhafter Werte. [16]

Beim Umformatieren der Daten geht es darum, den Datensatz in eine Form zu bringen, die für
die weiteren Analysen nutzbar ist. Ein Beispiel hierfür wäre ein Datensatz, der in einer für die
Verwendung durch Menschen gedachten Tabelle im CSV-Format bereitgestellt wird. Die Ein-
bettung von wichtigen Informationen in Text, etwa den Namen des Bundesstaates bei einer
Kriminalstatistik für die USA, stellt für Menschen kein Problem dar, ist aber nicht unmittelbar
von Tools zu verarbeiten und muss umgewandelt werden. Tabelle 1 stellt ein vereinfachtes
Beispiel dar. Auf der linken Seite ist das ursprüngliche Format zu sehen. Auf der rechten Seite
das Zielformat, das leichter durch Tools zu verarbeiten ist. Diese Tabelle stellt auch gleichzei-
tig ein Beispiel für eine Extraktion dar. Die Information, auf welchen Bundesstaat sich die
Werte beziehen, ist im Originaldatensatz nur in Form eines Textes vorhanden, der nicht ohne
weiteres durch Tools verarbeitet werden kann. Hierzu muss der Name, im Beispiel
„Alabama“, aus dem Text extrahiert und in einer zusätzlichen Spalte gespeichert werden. [17]

Tabelle 1: Beispiel für Umformatierung und Extraktion. Basierend auf [17]

Ein Beispiel für einen Umwandlungsschritt ist die Umrechnung von einer Maßeinheit in eine
andere, etwa von Meilen zu Kilometern. Viele Umwandlungsschritte benötigen zusätzliche
Informationen, beispielsweise zur Umrechnung von Maßeinheiten und zur Umrechnung von
einer Währung in die andere. Hierfür muss der Wechselkurs bekannt sein. Zusätzlich muss
festgelegt werden, zu welchem Zeitpunkt der Wechselkurs ermittelt wird. [16]

Typisch sind aber auch technisch bedingte Umwandlungen. Beispielsweise werden Zahlen
häufig als Zeichenkette repräsentiert (String). Bevor diese Werte mathematisch verarbeitet
werden können müssen sie zuerst in eine Zahlenrepräsentation umgewandelt werden (z.B. In-
teger, Float, etc.). [22]

Ursprüngliches Format: Zielformat:

Eigentumsdelikte Jahr Staat Eigentumsdelikte
2004 4000 2004 Alabama 4000
2005 5000 2005 Alabama 5000
2006 3900 2006 Alabama 3900

gemeldete Verbrechen für Alabama:

4.2 Typische Datenqualitätsprobleme

In dieser Sektion soll ein kurzer Überblick über ausgewählte Datenqualitätsprobleme im Kon-
text von Data Wrangling gegeben werden. Die Darstellung ist keinesfalls vollständig oder er-
schöpfend. Hierbei wird der Begriff der Datenqualität im Sinne von „fitness for use“ benutzt
[29]. Ein Datensatz, der inhaltlich und fachlich einwandfrei ist, aber im falschen Format für
das genutzte Analysetool vorliegt, wird als Datenqualitätsproblem (im Kontext des Analyse-
tools) aufgefasst [18].

Tabelle 2 zeigt eine Übersicht ausgewählter Datenqualitätsprobleme im Kontext von Data
Wrangling. Die Spalte „mögliche Lösung“ enthält beispielhaft mögliche Lösungsansätze. Die-
se Lösungsansätze sind keinesfalls allgemeingültig oder erschöpfend. Die Spalte Referenz
enthält den Verweis für die entsprechenden Literaturquelle, auf denen der Eintrag basiert. Der
Verweis dient dabei als Referenz für die Herkunft und bedeutet nicht, dass dieses Problem
ausschließlich nur in dieser Quelle diskutiert wird. Andere, auch hier zitierte Quellen können
Aspekte dieses Problems beleuchten.

Die Tabelle basiert auf einer Zusammenstellung von in der Literatur diskutierten Fällen. Die
Auswahl erfolgte aus folgenden Gründen: Für Menschen gedachte Formate, die schwer ma-
schinell verarbeitet werden können sind ein Beispiel für die Notwendigkeit von Data Wrang-
ling, selbst wenn der Datensatz an sich keine fachlichen Fehler enthält. Fehlende und irrefüh-
rende Werte sowie inkonsistente Semantik sind typische Beispiele die häufig in der Literatur
zitiert werden. Fehlende und irreführende Werte werden auch im praktischen Teil dieser Di-
plomarbeit diskutiert. Siehe hierzu das Kapitel 8. Bewusste Täuschung als mögliche Quelle
von Qualitätsproblemen kann je nach Domäne eine große Rolle spielen, etwa bei Online
Daten wie Bewertungen, und sollte nicht unterschätzt werden. Das Encoding von Textdaten
spielt bei der Analyse von Texten eine Rolle und kann zu Fehlern führen, die schwer zu ent-
decken sind. In dieser Arbeit wurden mehrere Metriken verwendet, die auf Textdaten arbei-
ten, siehe hierzu Kapitel 6. Im folgenden werden die einzelnen Qualitätsprobleme näher be-
schrieben, mit den dazu gehörenden Referenzen auf die Literaturquellen.

Tabelle 2: Ausgewählte Datenqualitätsprobleme im Kontext von Data Wrangling mit
möglichen Lösungsschritten

Häufig werden Datensätze in einem Format bereitgestellt, das für die Benutzung durch
Menschen gedacht ist, beispielsweise formatierte Tabellen. Dies stellt ein Problem dar, falls
die Daten maschinell verarbeitet werden sollen. [22]

Datenqualitätsproblem: mögliche Lösung: Referenz

Für Menschen gedachtes Format Umformatieren 17,22
Fehlende Werte Imputieren, Filtern 16,22
Irreführende Werte, Codes konvertieren 16,22
Bewusste Täuschung Analysieren 22
Inkonsistente Semantik Mapping 16
Encoding von Textdaten konvertieren 22

Ein einfaches Beispiel hierfür zeigt Tabelle 1, basierend auf einem ausführlicheren Beispiel in
[17]. Diese Tabelle zeigt (fiktive) Informationen über Verbrechen pro Jahr und Bundesstaat
der USA. Auf welchen Bundesstaat sich die Informationen beziehen wird im Originaldaten-
satz durch einen Text beschrieben. Für Menschen stellt dies kein Problem dar, aber der einfa-
che Text „gemeldete Verbrechen für [Bundesstaat]“ ist nicht ohne weiteres automatisch verar-
beitbar. Die relevante Information, also der Name des Bundesstaates, muss hierfür extrahiert
werden. Zusätzlich ist das Format zu beachten. Menschen können erkennen, dass sich der
Text mit der Informationen über den Bundesstaat sich auf die folgenden drei Jahre 2006, 2007
und 2008 bezieht. Für automatische Verarbeitung ist es besser, den Namen des Bundesstaates
zu jeder Zeile hinzuzufügen. [17]

Falls die Daten in einem Tabellenformat wie etwa CSV bereitgestellt werden, so ist es noch
relativ einfach möglich, sie durch entsprechende Transformationen in ein für maschinelle
Verarbeitung geeignetes Format zu konvertieren. Deutlich schwieriger wird dies etwa bei
Daten, die in PDF Dokumenten oder Websites eingebunden sind. [22]

Fehlende Werte in Datensätzen können verschiedene Ursachen haben, etwa menschliche
Fehler bei der Eingabe. Bei Datensätzen, die über längere Zeiträume erhoben werden, können
bestimmte Spalten erst nachträglich in den Datensatz mit aufgenommen worden sein. Für älte-
re Werte wurden diese Daten nicht erhoben und stehen auch nicht zur Verfügung. Es ist auch
möglich, das Daten ganz oder teilweise verlorengegangen sind. Eine Katastrophe, etwa ein
Feuer in einem Archiv, kann bei historischen Daten zu Lücken im Datensatz oder zu einem
Totalverlust bestimmter Werte führen. Aber auch technische Ursachen können eine Rolle
spielen. Beispielsweise kann eine Schnittstelle, über die Daten abgerufen werden, auf eine be-
stimmte Anzahl an zurückgegeben Werten limitiert sein. [16]

Es gibt verschiedene Ansätze mit fehlenden Werten umzugehen. Die in Tabelle 2 aufgeführ-
ten Vorgehensweisen filtern und imputieren sind nicht die einzigen und wurden beispielhaft
ausgewählt. Filtern bedeutet dabei Einträge zu entfernen, die bestimmten Kriterien entspre-
chen. In diesem Fall alle Einträge mit fehlenden Werten. In manchen Fällen ist dies die einzi-
ge Möglichkeit, mit fehlenden Werten umzugehen, etwa wenn die Werte nicht aus anderen
Datenquellen ergänzt werden können. Es besteht auch die Möglichkeit, fehlende Werte zu im-
putieren. Imputieren bedeutet dabei, einen fehlenden Wert für einen Eintrag durch den ent-
sprechend Wert eines ähnlichen Eintrags zu ersetzen. Allerdings kann dieses Vorgehen unter
bestimmten Umständen die Qualität der Analyse verschlechtern und sollte nur mit Bedacht
gewählt werden. [22]

Irreführende Werte können eine Analyse ernsthaft beeinträchtigen. Beispielsweise kann der
Wert 999 bei einer Altersangabe bedeuten, dass das Alter unbekannt ist. Handelt es sich bei
dem Datentyp des Feldes um „Zahl“, so ist 999 allerdings ein gültiger Wert. Einem Analyse-
tool fehlt die semantische Information, dass 999 für einen Menschen kein gültiges Alter dar-
stellt. Dadurch können Berechnungen auf den Daten zu falschen Ergebnissen führen, etwa die
Berechnung des durchschnittlichen Alters. Eine Möglichkeit damit umzugehen, ist es diesen
Wert zu konvertieren, etwa in einen expliziten Nullwert. [16]

Es ist möglich, dass Datenqualitätsprobleme in einem Datensatz durch bewusste Täuschung
entstanden sind, beispielsweise bei Online-Bewertungen. Dabei kann es sich um fiktive
Scherzeinträge handeln. Auch bewusste Manipulationen sind denkbar. Ein in Onlinebewer-

tungen tatsächlich vorkommendes Beispiel wäre etwa, wenn ein Nutzer einem von ihm ei-
gentlich geschätzten Lokal eine schlechte Bewertung gibt, um andere davon abzuhalten, es zu
besuchen und so eine Überfüllung zu verhindern. Solche Qualitätsprobleme lassen sich ohne
aufwendige Analysen nicht leicht beziehungsweise möglicherweise gar nicht entdecken. [22]

Siehe hierzu auch [15].

Inkonsistente Semantik kann zum Beispiel dadurch entstehen, dass sich ein Klassifikations-
schema im Laufe der Zeit verändert. Ändert sich beispielsweise zu einem Stichtag die Klassi-
fikation für ein Feld in einem Datensatz, etwa die Todesursache in einer Kriminalstatistik, so
kann dies zu Inkonsistenzen führen. Einige Werte können ab dem Stichtag eine andere Bedeu-
tung haben als exakt die gleichen Werte bei Einträgen vor dem Stichtag. Manche Werte wer-
den nicht mehr verwendet, neue Bezeichnungen tauchen auf die es im Datensatz zuvor nicht
gab. Probleme mit inkonsistenter Semantik treffen auch häufig auf, wenn Datensätze aus un-
terschiedlichen Quellen integriert werden sollen, die auf unterschiedlichen Schemata und De-
finitionen basieren, etwa weil sie aus unterschiedlichen Organisationen erstellt wurden oder
aus unterschiedlichen Ländern stammen. Eine Möglichkeit damit umzugehen ist eine seman-
tische Transformation, ein Abbilden von Konzepten aufeinander, die eine vergleichbare Be-
deutung haben. Dies kann zum Beispiel durch eine Mappingfunktion realisiert werden, die in-
kompatible Werte durch die jeweils passenden Werte im Zielschema ersetzt. In manchen Fäl-
len sind die Unterschiede zwischen den Schemata aber so groß, dass keine korrekte Transfor-
mation durchgeführt werden kann. [16]

Falsches Encoding von Textdaten kann die Verarbeitung dieser Daten erschweren. In man-
chen Fällen ist es möglich, dass das fälschlicherweise gewählte Encoding sehr ähnlich zum
tatsächlich vom Textdatensatz verwendeten Encoding ist. Dies kann dazu führen, dass Fehler
entstehen die nur sehr schwer zu entdecken sind, weil bei oberflächlicher Inspektion der Text-
daten keine offensichtlichen Probleme auffallen. Der Begriff Encoding oder Zeichenkodie-
rung bezeichnet das technische Format, in dem Textdaten digital gespeichert werden. ASCII
ist ein 7-bit Encoding. Das bedeutet, dass jedes Textzeichen durch eine Siebenstellige Binär-
zahl dargestellt wird, mit insgesamt 128 möglichen Zeichen, die durch das Format repräsen-
tiert werden können. Der Zeichensatz umfasst unter anderem alle Buchstaben des englischen
Alphabets in Groß- und Kleinschreibung, die Zahlen von 0 bis 9 sowie diverse Satzzeichen
und mathematischen Symbole. ASCII ist aus historischen Gründen sehr weit verbreitet und
spielt heute noch aus Kompatibilitätsgründen eine große Rolle. Viele in westeuropäischen
Sprachen verwendete Symbole können nicht mit ASCII dargestellt werden, für die deutsche
Sprache zum Beispiel die Umlaute. Es gibt viele andere Encoding-Schemata, die teilweise in-
kompatibel zu einander sind. Unicode ist ein universelles Encoding mit dem Ziel, alle Zeichen
zu repräsentieren, die in naher Vergangenheit auf der Welt im Druck verwendet wurden. Uni-
code unterstützt Sprachen aus der ganzen Welt, darunter auch Sprachen mit einem komplexen
Zeichensatz wie Chinesisch. Ein typisches Problem, dass durch die Verwendung unterschied-
licher Encodings entstehen kann, ist dass Werte nicht richtig verglichen werden können. Zwar
stellen sie den gleichen Text dar und haben somit die gleiche Semantik. Aber wegen der un-
terschiedlichen Encodings werden sie technisch unterschiedlich repräsentiert. Dadurch wer-
den sie etwa bei Vergleichen als unterschiedlich gewertet, was zum Beispiel bei JOIN Opera-
tionen zu Problem führen kann. Eine mögliche Lösung ist es, die Encodings vorliegende Text-
daten zu vereinheitlichen. Hierzu werden alle Textdaten in ein einheitliches Standardformat

konvertiert, zum Beispiel UTF-8, eine Variante von Unicode. Dabei ist zu beachten, dass das
Encoding der Ausgangsdaten korrekt angegeben wird. So sind die Encodings Code Page 1252
und ISO-8859-1 sehr ähnlich, unterscheiden sich aber in Details. Die Angabe des falschen En-
codings könnte unter Umständen zu schwer diagnostizierbaren Datenqualitätsproblemen füh-
ren. [22]

Viele der in diesem Abschnitt diskutierten Aspekte sind beim Entwurf des Notebooks berück-
sichtigt worden. Siehe hierzu das Kapitel 5 über das Konzept. Im Folgenden soll dies noch et-
was ausführlicher dargestellt und begründet werden:

Für Menschen gedachte Formate werden nicht direkt berücksichtigt. Dies liegt daran, dass
es eine Vielzahl verschiedener Varianten und Darstellungsformen gibt. Eine automatische Lö-
sung ist also extrem aufwendig und schwer zu verallgemeinern. Bei kleinen Dokumenten,
etwa Tabellen die aus wenigen Seiten bestehen, kann eine manuelle Bearbeitung durch ein
hierfür geeignetes Tool die einfachste Alternative darstellen. Beispiele für solche Tools sind
Tabellenkalkulationsprogramme wie etwa OpenOffice Calc [42] oder spezialisierte Tools wie
Data Wrangler [17]. Alternativ kann dieses Problem durch Code gelöst werden, wie im Bad
Data Handbook erwähnt [22]. Soll eine Transformation zum Beispiel wiederholbar sein, etwa
wenn der Datensatz regelmäßig aktualisiert wird, so kann eine automatische Transformation
durch ein Skript realisiert werden. Dieses kann dann problemlos ins Notebook eingebunden
werden. Im Notebook sind diverse Skripte und Bibliotheken integriert. Verwendet werden un-
ter anderem die Programmiersprachen Java, Python und R. Die Implementierung und Einbin-
dung kann als Starthilfe dienen, eigene Skripte einzubinden. Siehe hierzu auch das Kapitel 6.

Fehlende Werte spielen eine große Rolle und werden daher beim Entwurf des Notebooks be-
rücksichtigt. Hierzu steht eine Metrik bereit, welche die Verteilung der Nullwerte im Daten-
satz berechnet. Zusätzlich ist es möglich, Zeilen mit Nullwerten zu filtern. Eine Imputation
wird nicht angeboten. Zum einen ist die Implementierung aufwendig. Zum anderen können
dadurch zusätzliche Datenqualitätsprobleme entstehen [22].

Beispiele für fehlende Werte in einem Datensatz bietet die Analyse des NHTSA Complaints
Datensatzes in Kapitel 8.1. Auch bei der Betrachtung der Industriedaten in Kapitel 8.2 wird
dieses Problem diskutiert.

Irreführende Werte spielen ebenfalls eine große Rolle und fließen ins Konzept ein. Das No-
tebook unterstützt durch Visualisierungen, etwa eines Histogramms, beim aufspüren mögli-
cher Kandidaten. Zusätzlich wird eine Metrik zur Erkennung von Ausreißern beispielhaft an-
geboten. Werden irreführende Werte entdeckt, ist es durch die Ersetzungsfunktion möglich,
sie zu ändern. Beispielsweise können sie durch explizite Nullwerte ersetzt werden. Siehe hier-
zu Kapitel 6.2.

Siehe die Analyse des NHTSA Complaints Datensatzes in Kapitel 8.1 für ein praktisches Bei-
spiel. Die Spalte für das Modelljahr (YEARTXT) enthält Einträge mit dem Wert 9999. Dieser
hat die Bedeutung, das der Wert unbekannt ist oder für den Eintrag nicht verfügbar ist.

Bewusste Täuschung ist ein sehr komplexes Problem. Das Notebook bietet hierfür keine Me-
triken. Es wird bewusst auf eine vereinfachte, beispielhafte Implementierung oder Einbindung
verzichtet. Inkorrekte oder falsch interpretierte Ergebnisse könnten, je nach Domäne, zu ernst-

haften Konsequenzen führen. Die Entwicklung einer passenden Methode übersteigt bei
weitem den Umfang der Arbeit.

Inkonsistente Semantik ist zwar ein wichtiger Aspekt, aber es ist schwer, automatische Lö-
sungen zu entwerfen. Fachwissen über die Domäne und die Semantik ist meistens notwendig.
Allerdings ist es durch die Funktionen des Notebooks möglich, den Datensatz zu untersuchen
und zu verändern. Dies kann bei der Analyse und Behebung helfen. Das Notebook bietet kei-
ne Implementierung einer Mappingfunktion. Pandas [46], die Bibliothek, die als Grundlage
für die Datenverarbeitung im Notebook dient, unterstützt Mappingfunktionen. So können die-
se relativ einfach entwickelt und direkt im Notebook verwendet werden.

Falsches Encoding von Textdaten spielt in dieser Arbeit eine wichtige Rolle. Es werden drei
Metriken angeboten, mit denen die Qualität von Textdaten gemessen werden kann. Siehe
hierzu Abschnitt 5.2.3. Damit diese korrekt funktionieren, muss das richtige Encoding ver-
wendet werden. Das Encoding kann beim Import ausgewählt werden. Ein Textfeld fasst
Aspekte dieses Themas kurz zusammen und nennt gängige Encodings, basierend auf dem Bad
Data Handbook [22]. Die Checkliste enthält einen Punkt, der auf dieses Thema hinweist. Das
Notebook erlaubt das Konvertieren von Encodings. Hierzu muss beim Speichern des Daten-
satz nur das gewünschte Encoding ausgewählt werden.

Siehe Kapitel 8 für praktische Beispiele.

4.3 Mögliche Ansätze

In diesem Abschnitt soll eine Auswahl von Data Wrangling Ansätzen aus der Literatur kurz
vorgestellt werden. Diese Ansätze wurden exemplarisch ausgewählt.

Programmcode spielt im Data Wrangling nach wie vor eine große Rolle. Kandel et al. berich-
ten, das Skripte in verschiedenen Programmiersprachen wie Python oder R eine große Rolle
beim Data Wrangling spielen. Allerdings wird dies eher als Hindernis gesehen. Viele Men-
schen werden dadurch vom Umgang mit Daten abgehalten, weil ihnen die technische Experti-
se fehle. [16]

Das Bad Data Handbook [22] empfiehlt Code als flexible Möglichkeit zum Umgang mit
Daten. So ist man unabhängig von Format der Daten. Das in Abschnitt 4.2 erwähnte Problem,
dass Daten häufig in Formaten bereit gestellt werden, die für Menschen gedacht sind und ma-
schinell schwer zu verarbeiten sind, bietet hierfür ein Beispiel. Falls ein Datensatz in einem
ungewöhnlichen Format bereitgestellt wird, für das kein Standard-Tool vorhanden ist, so kann
durch Programmieren ein Tool geschaffen werden, das die Umwandlung automatisch durch-
führt. [22]

Datenqualität spielt eine entscheidende Rolle beim Data Wrangling. Das Tool Data Wrangler
implementiert einen Datenqualitätsmeter, einen Balken der einfache Datenqualitätsmetriken
visualisiert. Ein Beispiel wäre der Prozentsatz der fehlenden Werte in einer Spalte, der wäh-
rend der Analyse ständig berechnet wird. Wird eine Transformation ausgeführt, wird der Wert
aktualisiert. So kann der Anwender die Qualität des Datensatzes überblicken und die Auswir-
kungen der Änderungen verfolgen. [17]

Für eine etwas ausführlichere Beschreibung des Tools siehe Kapitel 3 über verwandte Arbei-
ten.

Visualisierungen können dabei helfen, Datenqualitätsprobleme in einem Datensatz zu entde-
cken. Typische Beispiele sind fehlende Werte und Ausreißer. Beispielsweise lassen sich Aus-
reißer in einem Diagramm oft als auffällige Extremwerte erkennen. Lücken im Schaubild deu-
ten auf fehlende Werte hin. Dabei ist zu beachten, dass die Art der Darstellung einen großen
Einfuß hat. Manche Datenqualitätsprobleme lassen sich gut durch Diagramme oder andere
spezielle Darstellungen erkennen. Andere können nur durch Inspektion der Rohdaten erkannt
werden. Eine guter Startpunkt ist die Visualisierung der Daten als einfache Textdarstellung in
Tabellenform. Ein Histogramm ist eine weitergehende Darstellung. Hierbei wird dargestellt,
wie oft ein Wert in einer Spalte vorkommt. [16]

Tabelle 3 enthält ein einfaches Beispiel für ein Histogramm. Der Datensatz (links) enthält die
Werte A, B und C. Das Histogramm rechts enthält die Häufigkeiten für diese Spalte.

Tabelle 3: Beispiel für ein Histogramm

Der Umgang mit „schmutzigen“ Daten, also Daten mit Qualitätsproblemen, ist ein wichtiges
Thema. Es ist nicht immer möglich diagnostizierte Datenqualitätsprobleme zu beseitigen.
Fehlende Werte können durch Verlust der Originaldaten bedingt sind, bei historischen Daten
etwa durch einen Brand in einem Archiv. Dadurch sind die Daten unter Umständen verloren
und können nicht wieder hergestellt werden. In anderen Fällen könnte die Beseitigung von
Qualitätsproblemen einen unvertretbar hohen Aufwand erfordern. In diesen Fällen können Vi-
sualisierungen dabei helfen, die Tatsache, dass Werte fehlen, zu kommunizieren. Abbildung 4
zeigt an einem Beispiel 4 mögliche Visualisierungen für fehlende Daten. Das Schaubild zeigt
Zensusdaten aus den USA. Dargestellt ist die Anzahl der Menschen, die zum jeweiligen Zeit-
punkt als Landarbeiter tätig waren. Daten von 1890 sind bei einem Brand verlorengegangen.
Bei Variante 1 werden die fehlenden Daten als ein Wert von 0 interpretiert. Bei Variante 2
wird das Fehlen des Wertes ignoriert. Die Linie im Schaubild stellt eine Interpolation dar. Bei
Variante 3 wird der fehlende Wert explizit aus dem Schaubild entfernt. Bei Variante 4 wird
der fehlende Wert interpoliert, allerdings ist dies durch eine andere Farbe explizit dargestellt.
Es ist noch nicht klar, welche Formen der Darstellung optimal sind. Studien zeigen, dass
Menschen nicht immer erkennen, wenn fehlende Werte durch Standardwerte ersetzt werden.
[16]

Datensatz Histogram

Wert Wert Anzahl
A A 3
B C 2
A B 1
C
C
A

Einige der hier diskutierten Aspekte wurden beim Entwurf des Notebooks berücksichtigt und
spielen sich in der Umsetzung wieder. Im folgenden soll dies kurz dargestellt und begründet
werden.

Code ist ein zentrales Element des Notebooks. Dadurch ist es möglich, flexible Lösungen be-
reitzustellen, die je nach Anwendungsfall und Domäne abgewandelt werden können. Siehe
hierzu Kapitel 5.2.

Die Datenqualität ist ebenfalls ein zentraler Aspekt des Prototypen. Hierzu werden verschie-
dene Metriken bereitgestellt. Dabei werden sowohl strukturierte als auch unstrukturierte
Daten berücksichtigt. Siehe hierzu Abschnitt 5.2.3.

Eine Anwendung der Metriken auf Datensätze aus der Praxis mit Berechnung konkreter Er-
gebnisse findet sich in Kapitel 8.

Ein Beispiel, dafür wie ein Diagramm dabei helfen kann, irreführende Werte zu erkennen, fin-
det sich in der Analyse der NHTSA Complaints Daten in Sektion 8.1. Das Notebook bietet
daher beispielhaft einfache Visualisierungen wie Diagramme und Histogramme. Siehe Kapi-
tel 5.2.2. Komplexere Visualisierungen können nach Bedarf eingebunden werden.

Der Umgang mit „schmutzigen“ Daten ist ein wichtiger Aspekt. Wie in der Diskussion zuvor
beschrieben können in manchen Fällen Qualitätsprobleme nicht gelöst werden, etwa wenn
Daten unwiederbringlich verlorengegangen sind. Entsprechende Funktionen des Notebooks,
die dabei helfen, diese Tatsachen zu kommunizieren, wären wünschenswert. Beispielsweise
Visualisierungsvarianten, wie sie in Abbildung 4 dargestellt werden. Dies könnte dazu beitra-
gen, Missverständnisse und Fehlinterpretationen bei der weiteren Verwendung der Daten zu
reduzieren. Diese können aber im Rahmen dieser Arbeit nicht implementiert werden.

Abbildung 4: Vier mögliche Visualisierungen von fehlenden Werten. Entnommen aus [16]

5 Konzept des Jupyter Notebooks

In diesem Kapitel soll das Konzept für eine prototypische Implementierung eines Jupyter No-
tebooks vorgestellt werden. Das Konzept berücksichtigt einige der in Kapitel 4 diskutierten
Aspekte des Data Wranglings. Für Details zur Implementierung siehe Kapitel 6. Eine Anwen-
dung des Notebooks auf Datensätze aus der Praxis findet sich in Kapitel 8.

Zunächst soll in Abschnitt 5.1 ein Überblick gegeben werden. Danach wird in Abschnitt 5.2
genauer auf den Aufbau eingegangen. Beim Entwurf des Notebooks sind Ideen und Ansätze
aus verschiedenen Literaturquellen entnommen worden. Die entsprechenden Referenzen be-
finden sich in der Beschreibung des jeweiligen Abschnitts.

5.1 Überblick

Die Grundidee des Notebooks ist es ein flexibles Toolkit, das beim Data Wrangling unter-
stützt. Es ist als Prototyp gedacht, nicht als fertiges Produkt. Das Notebook ist nicht für einen
bestimmten Anwendungsfall oder eine spezielle Domäne bestimmt. Vielmehr soll es als Start-
punkt dienen. Für eine konkrete Analyse kann es angepasst und erweitert werden. Viele Me-
triken und Funktionen wurden nicht in dieser Arbeit entwickelt, sondern von anderen Quellen
übernommen und eingebunden. Ein Literaturverzeichnis im Notebook soll diese Tatsache do-
kumentieren. Zusätzlich soll dadurch möglich sein, die originale Arbeit schnell aufzufinden.
Dies kann hilfreich sein, wenn für die eigene Problemstellung Funktionen angepasst werden
müssen. Außerdem kann dies auch als Startpunkt für eine Literaturrecherche dienen.

Beim Entwurf sollen die folgenden Punkte berücksichtigt werden:

In Kapitel 4.1 werden die Diagnose und die Datentransformation als wichtige Aspekte des
Data Wrangling Prozesses beschrieben.

Bei der Diagnose sollen mögliche Fehler und Qualitätsprobleme im Datensatz aufgespürt wer-
den. Das Notebook soll hierzu mehrere Funktionen bieten, mit denen die Daten betrachtet
werden können. Es ist möglich, die Daten nach verschiedenen Kriterien zu filtern. Zusätzlich
werden auch Visualisierungen angeboten. Das Notebook bietet exemplarisch mehrere Daten-
transformationen. Damit ist es möglich, die Daten zu bearbeiten und so mögliche Datenquali-
tätsprobleme zu beseitigen. Die Transformationsschritte werden nicht direkt auf den Original-
daten durchgeführt. Das Notebook lädt beim Import eine Kopie in den Hauptspeicher. Damit
die Änderungen persistiert werden, müssen diese gespeichert werden. Hierzu steht unter Save
Data eine Funktion bereit. Es soll technisch möglich sein, das Original zu überschreiben, al-
lerdings muss dies explizit angegeben werden. Dies wird aber nicht empfohlen. Fehlerhafte
Änderungen können so nicht mehr rückgängig gemacht werden, wodurch die Datenqualität
negativ beeinträchtigt werden kann. Diese Empfehlung basiert auf der Funktion des Tools
Data Wranglers, durchgeführte Transformationen rückgängig machen zu können [17]. Eine
solche Funktion wäre auch für das Notebook wünschenswert, übersteigt aber wegen des damit
verbundenen Aufwands den Umfang der Arbeit. Deswegen wird sie nicht in den Prototyp auf-
genommen. Eine umständlichere, aber einfache Lösung ist es, Ergebnisse zwischenzuspei-
chern und bei bedarf auf eine ältere Version oder das Original zurückzugreifen.

Datenqualität spielt im Data Wrangling eine entscheidende Rolle, siehe hierzu Kapitel 4.3.
Dies wird beim Entwurf des Notebooks berücksichtigt. Das Notebook soll Metriken sowohl
für strukturierte als auch unstrukturierte Daten bieten, mit denen die Datenqualität gemessen
werden kann. Hierzu zählen neben einfacheren Metriken wie der Verteilung von Nullwerten
auch komplexere Berechnungen wie die Textähnlichkeit. Diese unterstützen bei der Diagnose
von Qualitätsproblemen. Somit ist es möglich, den Ausgangszustand der Daten einschätzen zu
können. Zusätzlich können so die Auswirkungen der Transformationsschritte auf die Qualität
besser beurteilt werden.

Die Realisierung erfolgt durch einen Wechsel von Code und Texten. Diese Texte dienen als
Dokumentation des Codes und bieten zusätzlich Hilfestellung beim Data Wrangling. So wird
zum Beispiel eine Checkliste angeboten, damit wichtige Aspekte nicht untergehen. Diese ba-
siert auf Kapitel 4.2. Als Sprache für die Texte wurde Englisch gewählt. Dies soll die Ver-
wendung des Notebooks einem weiteren Personenkreis zugänglich machen.

5.2 Aufbau

Das Notebook soll in die folgenden Abschnitte gegliedert werden:

• Checklist

• Import Data

• View Data

• Metrics

• Transform Data

• Save Data

Diese Gliederung dient der Übersichtlichkeit. Hiermit sollen die verschiedenen Funktionen
gruppiert werden, damit sie leichter zu finden sind. Die Gliederung versteht sich nicht als li-
nearer Prozess, bei dem die einzelnen Punkte nacheinander abgearbeitet werden. Vielmehr
handelt es sich um einen Werkzeugkasten, der verschiedene Funktionen bietet. Wie in Kapitel
4.1 beschrieben ist der Data Wrangling Prozess iterativ. Manche Funktionen werden in der
Praxis mehrmals ausgeführt, etwa die Inspektion. Beispielsweise um nach einem Transforma-
tionsschritt zu überprüfen, ob dieser korrekt durchgeführt wurde. Es ist auch möglich, dass für
manche Analysen Funktionen gar nicht verwendet werden. Die Verwendung von Metriken für
Textdaten zum Beispiel macht keinen Sinn, wenn der Datensatz keine Textdaten enthält. Die-
ses Iterative Vorgehen wird durch das verlinkte Inhaltsverzeichnis unterstützt. Dadurch ist es
möglich, direkt zum jeweiligen Abschnitt bzw. zur jeweiligen Metrik zu springen. Zusätzlich
besteht bei jeder Funktion die Möglichkeit, durch einen Link zurück zum Inhaltsverzeichnis
zu gelangen.

Als nächstes folgt eine Checkliste, die typische Arbeitsschritte und Probleme zusammenfasst,
die allgemein beim Data Wrangling beachtet werden sollen. Sie soll als möglicher Startpunkt

dienen. Die Checkliste ist keinesfalls vollständig oder allgemeingültig. Auch ist sie nicht als
Anleitung oder Handbuch zu verstehen. Beispielsweise spielt bei Textdaten das Encoding
eine große Rolle, siehe hierzu Kapitel 4.2. In Kapitel 8.1 wird an einem praktischen Beispiel
beschrieben, wie einzelne Anführungszeichen in Freitextfeldern die Importfunktion beein-
trächtigen können. Diese Aspekte spielen bei der Verarbeitung von Textdaten eine Rolle.
Deshalb wird ein entsprechender Punkt in die Checkliste aufgenommen. Bei Datensätzen
ohne Textdaten hingegen wäre dieser Punkt überflüssig. Andere Formen von Daten können
ebenfalls typische Probleme haben, die hier aus Gründen des Umfangs nicht berücksichtigt
werden können.

5.2.1 Import Data
Damit Daten im Notebook verarbeitet werden können, müssen diese zunächst Importiert wer-
den. Hierfür soll eine Funktion im Abschnitt Import Data bereitgestellt werden. Die interne
Darstellung des Notebooks soll auf Pandas [46] basieren, einer Python Bibliothek für Daten-
verarbeitung und Analyse. Der Import soll beispielhaft für Textdateien implementiert werden.
Dadurch soll es möglich sein, sowohl Textdaten als auch strukturierte Daten zu verarbeiten.
Dazu müssen die strukturierten Daten in einem geeigneten Format vorliegen, beispielsweise
CSV. Andere Datenquellen, wie etwa Datenbanken, können bei Bedarf eingebunden werden.
Das Notebook ist im allgemeinen nicht dafür gedacht, Daten in ihrer rohen Form zu manipu-
lieren. Liegt beispielsweise eine fehlerhafte CSV Datei vor, so sollte es mit dem Notebook
möglich sein, eine Textdarstellung der Datei zu importieren und zu betrachten. Eine Bearbei-
tung im Notebook wird aber hierfür nicht vorgesehen. Kapitel 8.1 bietet ein Beispiel für ein
solches Problem.

5.2.2 View Data
Der Abschnitt View Data soll verschiedene Funktionen bieten, mit denen die Daten inspiziert
und visualisiert werden können. Siehe hierzu auch Kapitel 4.3.

Als Einstieg dient eine Darstellung der Daten in Tabellenform. Somit kann der Benutzer sich
schnell einen Überblick über die Daten verschaffen. Diese Funktion basiert auf einer Erwäh-
nung bei Kandel et al. [16]. Es ist möglich, sich nur einen Ausschnitt der Daten anzeigen zu
lassen. Hierzu können Zeilen und Spalten angegeben werden, die dargestellt werden sollen.

Eine weitere Funktion, basierend auf einem Beispiel im Bad Data Handbook [22], ist das Hi-
stogramm. Dieses berechnet, wie oft jeder Wert in einer Spalte vorkommt. Dies kann dabei
unterstützen, sich einen Überblick über die Daten zu verschaffen. Zusätzlich kann ein Histo-
gramm dabei helfen, Anomalien und mögliche Datenqualitätsprobleme zu entdecken. Das Hi-
stogramm kann auch als Schaubild visualisiert werden. Hierzu soll eine entsprechende Funkti-
on bereitstehen.

Eine weitere wichtige Funktion ist das Filtern. Diese ermöglicht, einen Ausschnitt der Daten
auszuwählen, der bestimmten Kriterien entspricht. Dies basiert auf Erwähnungen in der Lite-
ratur, zum Beispiel im Bad Data Handbook [22]. Beispielsweise lassen sich so Zeilen untersu-

chen, die Nullwerte enthalten. Dadurch ist es möglich, sich eine Detailansicht zu verschaffen,
und Datenqualitätsprobleme genauer zu untersuchen.

Für ein praktisches Beispiel dieser Funktionen, siehe die Analyse des NHTSA Complaints
Datensatzes in Kapitel 8.1.

Eine einfache Funktion soll es ermöglichen, zu überprüfen, ob im Datensatz Sonderzeichen
vorkommen. Dies hilft zum Beispiel dabei, zu prüfen, ob Umlaute oder andere spezielle Zei-
chen in einem Text vorkommen. Falls ja, kann dadurch auch sichergestellt werden dass sie
korrekt dargestellt werden. Damit soll das Arbeiten mit Texten erleichtert werden. Ein
falsches Encoding führt oft dazu, das Zeichen falsch dargestellt werden. Siehe hierzu Kapitel
4.2.

5.2.3 Metrics
Im Abschnitt Metrics werden sollen diverse Metriken zur Berechnung der Datenqualität an-
geboten werden. Der Entwurf berücksichtigt mehrere der von in Kandel et al. in [16] und [17]
diskutierten Aspekte: Zum einen wird es so möglich Datenqualität während des Data Wrang-
ling Prozesses zu messen. Neben einfachen Metriken wie der Aufschlüsselung der Nullwerte
pro Spalte stehen auch komplexere Metriken wie die Textähnlichkeit zur Verfügung. Dabei
werden auch unstrukturierte Daten berücksichtigt. Es sollen Metriken angeboten werden, die
auf Textdaten arbeiten.

Ein wichtiger Grund bei der Auswahl der Metriken war, die Flexibilität des Notebooks zu de-
monstrieren. So sollen Metriken integriert werden, die in Python, Java sowie R implementiert
sind. Diese Implementierungen können als Startpunkt dienen, um weitere Metriken zum Note-
book hinzuzufügen. Kandel et al. [16] diskutieren die Tatsache, dass beim Data Wranging oft
eine große Anzahl verschiedener Skripte in verschiedenen Programmiersprachen verwendet
wird. Das Notebook bietet die Möglichkeit, diese an einer zentralen Stelle zu bündeln. So
können sie leicht angepasst werden. Neue Skripte können problemlos hinzugefügt werden.
Dies ermöglicht einen schnelleren Überblick und erleichtert den Einstieg für neue Benutzer.
Das soll einen Beitrag dazu darstellen, einem größeren Personenkreis die Verarbeitung von
Daten zu ermöglichen. Dies wird ebenfalls von Kandel et al. [16] gefordert.

Siehe Kapitel 6.3 für die Details der Implementierung.

Folgende Metriken sollen in der Standardversion verfügbar sein und sollen im folgenden kurz
beschrieben werden. Die Metriken Nullwerte, Validierung und Part-of-Speech-Tagging wer-
den dabei selbst implementiert. Die Metriken Local Outlier Facor, Noisy Data und Textähn-
lichkeit werden eingebunden.

Nullwerte:

Diese Funktion liefert für jede Spalte des Datensatzes die Anzahl und den prozentualen Anteil
der Nullwerte. Dabei werden nur explizite Nullwerte berücksichtigt, also das Fehlen eines
Wertes in einer Spalte.

Diese Metrik basiert auf Anregungen aus [26] und soll für das Notebook implementiert wer-
den. Dabei sollen Funktionen von Pandas [46] benutzt werden, die Informationen über Null-
werte berechnen.

Codierte Nullwerte (siehe Kapitel 4.2) können dadurch nicht direkt ermittelt werden. Es ist
möglich, diese Werte mit zu berücksichtigen, wenn sie zuvor in explizite Nullwerte konver-
tiert wurden. Siehe Kapitel 8.1 für ein praktisches Beispiel. Die Implementierungsdetails wer-
den in Abschnitt 6.3.1 beschrieben.

Validierung:

Mit der Validierungsfunktion ist es möglich, zu überprüfen, ob Werte bestimmten Kriterien
entsprechen. Beispielsweise kann geprüft werden, ob Datumsfelder auch Werte enthalten, die
zulässige Datumsangaben in dem spezifizierten Datumsformat darstellen.

Diese Metrik basiert auf [26]. Diese Metrik soll implementiert werden.

Siehe Abschnitt 6.3.2 für Implementierungsdetails.

Local Outlier Factor:

Diese Metrik hilft beim aufspüren von Ausreißern. Sie basiert auf dem Local Outlier Factor
[6]. Kandel et al. [16] erwähnen, das Ausreißern beim diagnostizieren von Datenqualitätspro-
blemen eine Rolle spielen. Bei dieser Metrik ist zu beachten, dass sie ein Indiz für mögliche
Ausreißer liefert. Diese müssen dann manuell inspiziert werden. Für eine automatische Erken-
nung von Ausreißern ist sie eher nicht geeignet.

Diese Metrik wird in einem Paket bereitgestellt und ist in R implementiert. Durch das speziel-
les Paket rpy2 [48] ist es möglich, die Metrik in Python zu nutzen. Siehe hierzu auch 6.1. Das
Notebook soll prototypisch eine Einbindung bieten. Hierzu soll die Funktionalität des Paketes
durch Objekte in Python direkt verwendet werden. In Jupyter Notebooks ist es durch Verwen-
dung sogenannter magic functions möglich, Code in R direkt zu verwenden. Allerdings funk-
tioniert dies bei dieser Metrik aus technischen Gründen nicht so leicht. Deshalb soll diese Me-
trik durch Verwendung von rpy2 implementiert werden.

Siehe auch Abschnitt 6.3.3.

Textähnlichkeit

Diese Metrik wurde in einer vorhergehenden Arbeit entwickelt [19] und basiert auf [18]. Für
das Notebook soll der dabei entwickelte Prototyp eingebunden werden.

Die Metrik berechnet die Textähnlichkeit zwischen einem Eingabetext und einer Reihe von
hinterlegten Trainingsdatensätzen. Der Anwendungsfall ist folgender: soll ein Textdatensatz
mit trainierbaren Machine Learning Algorithmen verarbeitet werden, so stellt sich die Frage,
welcher Trainingsdatensatz das beste Resultat liefert. Die Metrik unterstützt bei der Auswahl,
indem sie den ähnlichsten Datensatz empfiehlt, unter der Annahme, dass die Qualität der Ana-
lyse umso besser wird, je mehr sich die Trainingsdaten den Eingabedaten ähneln. Diese An-
nahme wird in [19] mit ersten experimentellen Ergebnissen bestätigt.

Diese Metrik benötigt Datensätze, mit denen die Eingabedaten verglichen werden sollen. Für
die Standardversion des Notebooks werden zu Demonstrationszwecken 6 Datensätze bereitge-
stellt. Diese werden in Abschnitt 9.3 genannt und kurz beschrieben. Für den konkreten An-
wendungsfall sollen diejenigen Datensätze verwendet werden, die auch für die Analyse zur
Verfügung stehen.

In Abschnitt 2.5.3 des Grundlagenkapitels wird eine kurze Einführung zu Textähnlichkeit ge-
boten.

Die Details der Implementierung werden in 6.3.4 erläutert. Hier wird auch das Interface be-
schrieben, also wie genau Trainingsdatensätze hinterlegt werden können.

Noisy Data

Dies ist eine weitere Metrik, mit der die Qualität von Textdaten gemessen werden kann. Sie
soll nicht selbst entwickelt werden, sondern beruht konzeptionell auf [18]. Damit wird der
Anteil der Rechtschreibfehler in einem Text ermittelt.

Das besondere an der Einbindung im Notebook ist, dass diese Metrik eine Bibliothek benutzt,
die nur mit einer 32Bit Version von Python 2.7. funktioniert. Sie dient auch als komplexeres
Beispiel dafür, wie im Notebook flexibel Implementierungen aus verschiedenen Quellen und
mit verschiedenen Anforderungen eingebunden werden können. Die Metrik steht nur zur Ver-
fügung, wenn auf dem System eine entsprechende Version von Python installiert ist.

Die Implementierungsdetails werden in Abschnitt 6.3.5 beschrieben.

Part-of-speech

Diese Metrik basiert auf einem Part-of-speech tagger aus OpenNLP [43]. Dieser liefert für je-
des Token einen Wahrscheinlichkeitswert für den gewählten Tag. Die Metrik mittelt die
Wahrscheinlichkeiten aller Tokens im Text.

Diese Metrik basiert konzeptionell auf [18]. Für das Notebook soll sie implementiert werden.

Für weitergehende Informationen zum Part-of-Speach-Tagging, siehe Abschnitt 2.5.2 im
Grundlagenkapitel.

Details zur Implementierung dieser Metrik finden sich in 6.3.6.

5.2.4 Transform Data
Datentransformationen sind ein entscheidender Teil des Data Wrangling Prozesses. Wurden
im Diagnoseschritt Qualitätsprobleme im Datensatz festgestellt, so können diese eventuell
durch die richtigen Transformationsschritte behoben werden. Siehe hierzu Kapitel 4.1.

Eine wichtige Funktion ist das Ersetzten von Werten. Diese soll für das Notebook implemen-
tiert werden. Dadurch ist es zum Beispiel möglich, codierte Nullwerte durch explizite zu er-
setzten. Siehe hierzu 4.2.

Dieser Abschnitt soll eine Filterfunktion bieten, ähnlich der Filterfunktion im Abschnitt View
Data. Auch hier werden Einträge ausgewählt, die bestimmten Kriterien entsprechen. Anstatt
die Daten anzuzeigen, werden diese in eine neue Datenstruktur geladen. Dadurch ist es mög-
lich, diese zu sichern oder auf diesem Teil des Datensatzes weiterzuarbeiten.

Diese Funktion kann auch dazu benutzt werden, Einträge zu entfernen. Typischer Anwen-
dungsfall ist das entfernen von Nullwerten. Sollen beispielsweise alle Einträge mit Nullwerten
entfernt werden, so wird als Kriterium „enthält keinen Nullwert“ gewählt.

Diese Funktionen sind in Anlehnung an das Bad Data Handbook [22] ins Notebook aufge-
nommen worden.

5.2.5 Save Data
Während der Arbeit mit dem Notebook werden die importierten Daten im Hauptspeicher ge-
halten. Damit die Änderungen gesichert werden, müssen sie persistiert werden. Hierzu soll
das Notebook beispielhaft im Abschnitt Save Data eine Funktion anbieten, den Datensatz in
eine CSV-Datei zu schreiben. Andere Datenformate sollen standardmäßig nicht angeboten
werden, können aber eingebunden werden.

Es stehen verschiedene Parameter zur Verfügung. Neben dem Dateinamen kann unter ande-
rem auch das Trennzeichen und das Encoding gewählt werden. Wie zu Beginn in 5.1 erwähnt
steht keine Funktion bereit, mit der Änderungen leicht rückgängig gemacht werden können.
Es wird daher empfohlen, Ergebnisse zwischenzuspeichern. So kann das Notebook auch zur
Dokumentation der Transformationsschritte verwendet werden. Hierzu kann das gespeicherte
Ergebnis mit den Ausgangsdaten verglichen werden.

Diese Funktion kann auch dazu genutzt werden, Textdaten in ein einheitliches Encoding zu
konvertieren. Wird beim Import der Datei das korrekte Encoding angegeben, so reicht es beim
Speichern das gewünschte Encoding anzugeben. Die Konversion soll automatisch erfolgen.
Siehe hierzu die Diskussion in 4.2.

6 Implementierung

In diesem Abschnitt soll die Implementierung des Jupyter Notebook Prototypen beschrieben
werden. Abschnitt 6.1 listet die verwendete Software. Abschnitt 6.2 beschreibt die Implemen-
tierung des Notebooks selbst. Die verschiedenen zur Verfügung stehenden Metriken werden
in 6.3 beschrieben. Abschnitt 7 beschreibt die Implementierung ausgewählter Metriken in
Spark. Siehe Kapitel 9 für eine Evaluation.

6.1 Verwendete Software

Im folgenden Abschnitt sollen alle verwendeten Tools und Softwarebibliotheken aufgezählt
und kurz beschrieben werden.

Bei DKPro Similarity handelt es sich um ein Framework für Textähnlichkeit. Es bietet dabei
unter anderem eine umfangreiche Sammlung verschiedenster Ähnlichkeitsmetriken mit
standardisiertem Interface. Das Framework ist als Ergänzung zu DKPro Core [8] entworfen,
eines Frameworks Sprachverarbeitung. Beide Frameworks sind open source. [2]

Dieses Framework wird zur Umsetzung der Textähnlichkeitsmetrik für Spark genutzt. Siehe
hierzu Abschnitt 7.1.2. Der für die Textähnlichkeitsmetrik des Notebooks eingebundene Pro-
totyp nutzt ebenfalls DKPro Similarity. Beide basieren konzeptionell auf [18]. Der Prototyp
wurde in einer vorhergehenden Arbeit [19] entwickelt. Für eine Auflistung der hierzu verwen-
deten Software wird auf diese Arbeit verwiesen.

Pandas ist eine Open Source Bibliothek für Python. Sie bietet Datenstrukturen und Tools für
die Datenanalyse [46].

Das Notebook verwendetet Pandas für viele Funktionen, unter anderem für den Import und
die interne Verwaltung der Daten. Dies basiert auf Dataframes, einer von Pandas bereitge-
stellten Datenstruktur. Diese ist wie eine Tabelle organisiert ermöglicht verschiedene Funktio-
nen wie etwa das Filtern der Daten nach bestimmten Kriterien. Siehe hierzu die Beschreibung
des Notebooks in Abschnitt 6.2. Zusätzlich wird Pandas in diversen Metriken für den Import
von Daten eingesetzt.

RloF ist ein Paket für die Programmiersprache R. Dieses bietet eine Implementierung der Lo-
cal Outlier Factor Metrik an. [30]

Dieses Paket wird im Notebook eingebunden und für die Berechnung des Local Outlier
Factors verwendet, siehe hierzu Abschnitt 6.3.3

NLTK ist ein Open Source Toolkit für die maschinelle Sprachverarbeitung [4].

Die Noisy Data Metrik verwendet für die Implementierung Funktionen aus NLTK. Siehe hier-
zu Abschnitt 6.3.5.

OpenNLP [43] ist ein Toolkit für Sprachverarbeitung. Es unterstützt viele gängige Aufgaben
wie etwa die Tokenisierung oder das Part-of-speech tagging.

OpenNLP wird für die Implementierung der Part-of-speech Metrik verwendet. Siehe hierzu
Abschnitt 6.3.6. Auch die Implementierung der Textähnlichkeitsmetrik für Spark greift auf
OpenNLP zurück.

Apache Spark ist ein generelles Framework für die Verarbeitung großer Datenmengen [33].
Siehe Abschnitt 2.6 im Grundlagenkapitel für eine kurze Einführung zu Spark.

In dieser Studienarbeit wird Spark für die Implementierung und Evaluierung ausgewählter
Metriken genutzt. Siehe hierzu Abschnitt 7 für die Details der Implementierung. Die Evaluati-
on wird in Kapitel 9 beschrieben.

Anaconda ist eine offene Plattform für Data Science, basierend auf Python. [32]

Anaconda wird als Plattform für das Jupyter Notebook verwendet. Dies wird in der Installati-
onsanleitung von Jupyter [39] empfohlen.

PyEnchant ist eine Open Source Bibliothek für Python. Sie bietet Funktionalität für die
Rechtschreibprüfung. [24]

PyEnchant wird intern von der Noisy Data Metrik verwendet. Siehe hierzu Abschnitt 6.3.5.

Rpy2 ist ein Interface, mit dem es Möglich ist, aus Python heraus die Programmiersprache R
zu verwenden. [48]

Dieses Paket wird für die Einbindung des in R implementierten RLoF Paketes genutzt. Siehe
hierzu Abschnitt 6.3.3.

6.2 Notebook Prototyp

Die Implementierung des Notebooks basiert auf Python 3. Implementiert und getestet wurde
auf Python 3.6 aus Anaconda 4.3.0.

Der allgemeine Aufbau ist, dass jeder Funktion ein Textfeld2 vorausgeht, das Informationen
zu dieser Funktion bereitstellt. Diese können Erläuterungen sein, oder Verweise auf weiter-
gehende Ressourcen wie die Dokumentation der eingebunden Metriken. Auch finden sich hier
die Referenzen auf die Literaturquellen. Hierbei handelt es sich um eine Stärke des Jupyter
Notebooks. Durch eine Mischung von Text und Code können dem Benutzer zusätzliche In-
formationen angeboten werden. Der Code selbst ist mit Kommentaren versehen. Dadurch,
dass fachliche Informationen in die Beschreibung ausgelagert werden, können sich die Kom-
mentare aber stärker auf technische Aspekte beschränken und der Code bleibt übersichtlich.
Dadurch erhöht sich auch die Benutzerfreundlichkeit. So werden zum Beispiel Links durch
Verwendung von HTML klickbar, und müssen nicht erst aus dem Quellcode herauskopiert
werden. Der Benutzer kann die Textfelder bearbeiten. Die Informationen werden gespeichert

2 auch als Text-Zelle bezeichnet

und stehen beim Öffnen des Notebooks zur Verfügung. Zusätzlich ist es dem Benutzer mög-
lich, beliebig neue Textfelder anzulegen. Dies erlaubt, Erkenntnisse festzuhalten. Auch kann
dies dazu beitragen, den konkreten Data Wrangling Prozess zu dokumentieren und anderen
zugänglich zu machen. Eine weitere Stärke des Notebooks ist die Kollaboration. Das Note-
book wird durch ein Webinterface aufgerufen. Dadurch können mehrere Benutzer mit dem
gleichen Notebook arbeiten. In der Literatur werden Dokumentation und Kollaboration als
wichtige Aspekte des Data Wrangling herausgestellt, beispielsweise durch Kandel et al. [16].

Die Funktionen selbst sind durch ausführbaren Code implementiert, der in Code-Zellen ge-
gliedert ist. Der Normalfall ist eine Zelle pro Funktion. Im Allgemeinen muss der Code für
ein konkretes Beispiel angepasst werden, bevor er ausgeführt werden kann. Beispielsweise
muss beim Import der Name der Datei eingetragen werden, die importiert werden soll. Zu-
sätzlich müssen eventuell weitere Parameter angegeben werden, etwa das verwendete Trenn-
zeichen oder das Encoding. Wenn möglich, wurden sinnvolle Standardwerte gewählt. Aller-
dings sollte vor Ausführung der Funktion darauf geachtet werden, dass alles korrekt konfigu-
riert wurde.

Um eine Funktion des Notebooks durchzuführen, muss die entsprechende Code-Zelle ausge-
führt werden. Hierzu gibt es im Notebook einen Button. Alternativ kann die Tastenkombinati-
on „SHIFT + ENTER“ verwendet werden. Das Notebook ist so entworfen, dass jede Code-
Zelle einzeln ausgeführt werden soll, nachdem der Code gegebenenfalls für den konkreten
Anwendungsfall angepasst wurde. Eine automatische Ausführung aller Zellen hintereinander
macht im Normalfall keinen Sinn und wird standardmäßig nicht unterstützt. Es wäre aber
durchaus möglich, das Notebook so anzupassen, dass ein vordefinierter Transformationspro-
zess in einem Arbeitsgang durchgeführt wird. Somit wäre eine Wiederverwendbarkeit
gewährleistet. Dies wird in der Literatur gefordert, zum Beispiel durch Kandel et al. [16].

Manche Code-Zellen setzen voraus, das zuvor andere Code-Zellen ausgeführt wurden. Dies
wird in der Beschreibung und auch in den Kommentaren dokumentiert. Beispielsweise kann
die Textähnlichkeit nur berechnet werden, wenn zuvor im vorhergehenden Feld ein Text aus
den Daten generiert wurde. Diese Trennung wurde vorgenommen, um die Modularität zu er-
höhen. Bei manchen Datensätzen sind zusätzliche Vorverarbeitungsschritte notwendig. Diese
können nicht durch eine allgemeingültige Lösung abgedeckt werden, sondern müssen gegebe-
nenfalls für den jeweiligen Einzelfall implementiert werden. Siehe hierzu ein praktisches Bei-
spiel in Kapitel 8.2.

Die Implementierung der Checkliste erfolgt als einfaches Textfeld. Soll ein Punkt als erledigt
markiert werden, so muss dies durch Bearbeitung des Textfeldes erfolgen. Beispielsweise
durch das Eintragen eines „X“. Diese Implementierung wurde wegen der extremen Einfach-
heit gewählt. Zwar ist dies nicht sehr benutzerfreundlich, allerdings wird so automatisch
sichergestellt, dass die Informationen erhalten bleiben. Die Textfelder des Notebooks werden
beim Schließen des Notebooks gespeichert. Außerdem wird durch das System regelmäßig au-
tomatisch zwischengespeichert. So gehen Änderungen auch bei einem Absturz oder einem an-
deren Problem nicht verloren. Dadurch ist es auch möglich, dass mehrere Personen an einem
Notebook arbeiten. Alternativ wäre es denkbar, die Benutzerfreundlichkeit zu verbessern, in-
dem klickbare Checkboxen verwendet werden. Allerdings muss hierfür zusätzlich eine Lö-
sung implementiert werden, die den Zustand der Checkboxen speichert und beim Öffnen des
Notebooks automatisch lädt.

6.3 Metriken

Dieser Abschnitt beschreibt die Implementierung der im Notebook verwendeten Metriken.

6.3.1 Nullwerte
Diese Metrik berechnet für alle Spalten des Datensatzes den prozentualen Anteil der Nullwer-
te, sowie die absolute Anzahl. Wie im Konzept in Abschnitt 5.2.3 erwähnt werden hierfür nur
tatsächlich fehlende Werte berücksichtigt. Werte, welche die Semantische Bedeutung eines
Nullwertes haben, werden nicht mitgezählt. Für die Implementierung werden Funktionalitäten
von Pandas [46] genutzt. Siehe auch Abschnitt 6.1.

Falls diese Werte mit berücksichtigt werden sollen, so können sie durch die Ersetzungsfunkti-
on des Notebooks in Nullwerte umgewandelt werden.

6.3.2 Validierung
Diese Metrik berechnet den prozentualen Anteil der ungültigen Werte für die angegebene
Spalte. Zusätzlich wird noch die absolute Zahl ausgegeben. Die Überprüfung erfolgt durch
eine Funktion, die für jeden Wert bestimmt, ob es sich um einen gültigen Wert handelt. Im
allgemeinen Fall muss diese Funktion für die gewünschte Analyse jeweils implementiert wer-
den.

Im Notebook steht eine Funktion bereit, mit der Datumsfelder validiert werden können. Dafür
wird eine gängige Funktion aus Python benutzt. Hierzu muss das Format als String angegeben
werden. Es wird das für Python gängige Format benutzt. Der begleitende Text enthält einige
Beispiele. Siehe auch Abschnitt 7.1.1 für ein Beispiel.

Die Implementierung verwendet Funktionen von Pandas [46].

6.3.3 Local Outlier Factor
Diese Metrik basiert auf dem Paket RLoF [30]. Sie berechnet für eine Spalte den Local Out-
lier Factor. Siehe hierzu auch 5.2.3.

Für die Berechnung muss die entsprechende Spalte angegeben werden.

Für die Einbindung ins Notebook wird das Paket rpy2 [48] verwendet. Dieses ermöglicht es,
Funktionalität aus R durch Objekte in Python zu verwenden. Siehe hierzu auch Abschnitt 6.1.

6.3.4 Textähnlichkeit
Diese Metrik ermöglicht es, Textdaten miteinander zu vergleichen. Hierzu wird die Textähn-
lichkeit zwischen den Eingabedaten und einer Reihe von Trainingsdatensätzen ermittelt. Die
Implementierung verwendet eine in einer vorhergehenden Arbeit prototypisch entwickelten
Metrik [19]. Diese basiert auf dem in [18] vorgestellten Ansatz. Siehe auch Abschnitt 5.2.3.

Die Einbindung in das Notebook erfolgt über ein Skript. Die Berechnung selbst erfolgt über
den Prototypen, der als ausführbare JAR Datei vorliegt. Hierfür muss auf dem System Java
installiert sein. Für die Berechnung werden die Textdaten in eine Datei geschrieben, damit der
Prototyp sie verarbeiten kann. Für das korrekte Funktionieren dieser Metrik sind also Schrei-
brechte notwendig.

Als Eingabe erwartet die Metrik einen Eingabetext als String. Hierzu ist eine Vorverarbei-
tungszelle vorhanden. In der Standardvariante muss in dieser Zelle eine Spalte ausgewählt
werden, die Textdaten enthält. Diese wird dann in einen Eingabetext konvertiert. Es ist an die-
ser Stelle auch möglich, weitere Vorverarbeitungsschritte zu berücksichtigen. Beispielsweise
wird im gesamten NHTSA Complaints Datensatz durchgehend für alle Zeichen die
Großschreibung verwendet. Dies gilt auch für Spalte 20, welche ein Freitextfeld enthält. Die
Code-Zelle enthält hierfür exemplarisch eine Funktion, mit der man den gesamten Text in
Kleinschreibung umwandeln kann. Diese ist auskommentiert, weil dadurch im Normalfall In-
formationen zur Groß-und Kleinschreibung verlorengehen. Für die Analyse des NHTSA
Complaints Datensatzes kann diese Funktion aber nützlich sein. Im Textfeld wird darauf hin-
gewiesen. Dies dient auch als praktisches Beispiel, wie das Notebook für die jeweilige Analy-
se angepasst werden kann. Für die Vorverarbeitung auch Skripte importiert werden. Siehe
Abschnitt 8.2 für ein Beispiel.

Damit eine Berechnung erfolgen kann, muss mindestens ein Trainingsdatensatz hinterlegt
sein. Diese müssen sich als Textdateien im Ordner training_data befinden. Jede Textdatei re-
präsentiert dabei einen Datensatz. Der Name der Datei wird als Name für den Datensatz ver-
wendet. Die Textdateien sollen eine reine Textrepräsentation des Datensatzes enthalten, ohne
Annotation. Als Format muss UTF-8 verwendet werden.

Für die Berechnungen in dieser Arbeit wurden exemplarisch 6 Datensätze verwendet. Siehe
Kapitel 9.3 für eine kurze Beschreibung.

6.3.5 Noisy Data
Die Metrik berechnet den Anteil an Rechtschreibfehlern in einem Text und basiert auf [18].
Für die Implementierung wurde vom Betreuer bereitgestellter Code leicht angepasst. Zur Be-
rechnung wird die Bibliothek PyEnchant [24] verwendet.

Die Metrik ist auf zwei Code-Zellen aufgeteilt. Die erste Zelle regelt die Vorverarbeitung. Die
zweite Zelle erwartet als Eingebe einen Text als String. Sie bindet die eigentliche Metrik via
Skript ein, und gibt das Ergebnis aus. Die beispielhaft implementierte Vorverarbeitung er-
zeugt den Eingabestring aus einem Textfeld. Hierzu muss die entsprechende Spalte im Daten-
satz angegeben werden. Sind komplexere Vorverarbeitungsschritte nötig, können diese direkt
in der Zelle implementiert oder zum Beispiel via Skript eingebunden werden. Siehe Kapitel 8

für praktische Beispiele. Damit diese Metrik korrekt funktioniert, muss auf dem System Py-
thon 2.7 in der 32 Bit Version installiert sein. Die Einbindung erfolgt im Notebook über ein
Skript. Hierzu muss im Skript der Pfad für Python 2.7 angegeben werden.

Das Notebook verwendet Python 3. Implementiert und getestet wurde auf Python 3.6 aus
Anaconda 4.3.0. Es muss daher zusätzlich Python 2.7 installiert werden, die zur Ausführung
genutzt wird. Die Implementierung verwendet dann diese Version zur Durchführung der Be-
rechnungen. Dies geschieht durch ein Skript. Diese Metrik demonstriert, dass auch eine kom-
plexere Konfiguration durch das Notebook berücksichtigt werden kann.

6.3.6 Part-of-speech
Diese Metrik basiert auf [18]. Siehe hierzu auch Abschnitt 5.2.3.

Als Eingabe erwartet die Metrik eine Spalte, die Textdaten enthält. Jeder Wert dieser Spalte
wird durch den Tokenizer in Tokens zerlegt und anschließend an den Part-of-speech tagger
weitergeleitet. Der Part-of-speech Tagger wird dabei auf jeden Eintrag angewendet und ermit-
telt exemplarisch die Wortarten. Dabei liefert der Tagger für jeden Tag, den er einem Token
zuweist einen Wahrscheinlichkeitswert. Diese Metrik ermittelt hierfür den Durchschnittlichen
Zahlenwert für alle Tokens.

Die Metrik ist in Java implementiert. Das Paket OpenNLP [43] wird für den Tokenizer und
den Part-of-speech-tagger verwendet. Siehe Abschnitt 6.1. Beide benötigen entsprechende
Modelle, die aus Dateien geladen werden müssen. Diese werden durch OpenNLP zur Verfü-
gung gestellt [43]. Für die Implementierung werden sie beim kompilieren zur .jar Datei hinzu-
gefügt und stehen somit direkt zur Verfügung. Die Einbindung in das Notebook erfolgt über
ein Skript. Dies funktioniert auf ähnliche Weise, wie die Einbindung der Textähnlichkeitsme-
trik.

7 Implementierung der ausgewählten Metriken in Spark

Als Ausgangspunkt wird die Implementierung der Metriken im Jupyter Notebook verwendet.
Die Validierungsmetrik basiert im Notebook auf Python. Die Textähnlichkeitsmetrik wurde in
einer vorhergehenden Arbeit [19] in Java implementiert, konzeptionell basierend auf [18].

Für die Umsetzung in Spark wird als Programmiersprache Java verwendet. Die beiden Metri-
ken sind prototypisch als eigenständige Applikationen implementiert, die als .jar Dateien vor-
liegen. Damit diese ausgeführt werden können, müssen die .jar Dateien in HDFS kopiert wer-
den. Danach können sie mit einem entsprechenden Befehl in Spark ausgeführt werden. Die
Ergebnisse werden in HDFS im einem Ordner als Textdateien bereitgestellt.

7.1.1 Validierung von Datumsangaben
Mit dieser Metrik lässt sich überprüfen, ob Werte in einem Datensatz in einem gültigen Da-
tumsformat vorliegen. Die Überprüfung basiert auf einer Methode von Java.

Hierzu muss via Kommandozeilenparameter ein Datumsformat spezifiziert werden. Es wird
das in Java genutzte Format verwendet. Beispielsweise verwendet der NHTSA Complaints
Datensatz [41] für alle Spalten, die Datumswerte enthalten, das Format „YYYYMMDD“.
Dies bedeutet, dass alle Zeitangaben durch eine 8-stellige Zeichenkette dargestellt werden.
Die ersten vier Zeichen enthalten das Jahr, Zeichen 5 und 6 den Monat und die letzten beiden
Zeichen den Tag. Bei diesen 8 Zeichen muss es sich dabei entsprechend der üblichen Zeitan-
gaben um Zahlen von 0 bis 9 handeln.

Der Wert 20170308 wird als gültiges Datum für dieses Format erkannt.

Der Wert 2017/03/03 enthält zusätzliche Zeichen, die nicht im obigen Format spezifiziert
sind. Die Validierung würde für dieses Beispiel also fehlschlagen.

Wird hingegen zum Beispiel das Format „YYYY/MM/DD“ verwendet, so schlägt die Vali-
dierung für den ersten Wert fehl, weil er keine Schrägstriche enthält. Der Zweite Wert hinge-
gen entspricht dem Format und wird als korrekt angesehen.

Die Implementierung dieser Metrik orientiert sich direkt an der Version dieser Metrik im No-
tebook. Unterschied ist, das hier Java verwendet wird. Die Metrik im Notebook basiert auf
Python.

Die Applikation lädt Daten aus einer Datei, die in HDFS vorliegen muss. Die Datei soll dabei
die zu analysierenden Werte enthalten. Jede Zeile stellt dabei einen Wert dar. Als Ergebnis
liefert die Metrik den prozentualen Anteil der ungültigen Werte. Dieser wird in eine Datei in
HDFS geschrieben.

7.1.2 Textähnlichkeit
Die Textähnlichkeitsmetrik wurde in einer früheren Arbeit entwickelt [19] und basiert kon-
zeptionell auf [18]. Der Prototyp ist nicht für eine verteilte Architektur entwickelt worden.
Deshalb ist es nicht ohne weiteres möglich, diesen im Kontext von Spark zu verwenden. Aus
diesem Grund wurde die Metrik in einer abgeänderten Form neu implementiert. Beide Imple-
mentierungen basieren auf dem gleichen Konzept. Es in wird beiden Fällen zur eigentlichen
Berechnung der Ähnlichkeit die Cosine Similarity Metrik aus DKPro Similarity [2] verwen-
det. In der für Spark implementierten Variante wird die gleiche Metrik genutzt. Der Haupt-
unterschied liegt darin, das nicht mehr das DKPro Core Framework für die Vorverarbeitung
genutzt wird. Stattdessen werden die Textdaten direkt verarbeitet. Hierzu wird der OpenNLP
Tokenizer direkt aus dem Paket OpenNLP [43] verwendet. Siehe hierzu Abschnitt 6.1 über
die verwendete Software. Die ursprüngliche Implementierung benutzt den OpenNLP Tokeni-
zer, der vom DKPro Core Framework bereitgestellt wird. Zusätzlich erfolgt die Entfernung
der Stoppwörter nicht mehr durch vom Framework bereitgestellte Methoden.

Für die Implementierung in Spark wurde die Vorverarbeitung der Textdaten vereinfacht. Es
kann nicht garantiert werden, dass die Metrik stets die gleichen Ergebnisse wie die Original-
metrik liefert. Hierzu wäre eine Evaluation notwendig, wie sie in [19] für den Prototypen
durchgeführt wurde.

Der verwendete Tokenizer (TokenizerME) benötigt ein Modell, dass aus einer Datei geladen
werden muss. Diese Datei wurde im Projekt hinterlegt und wird beim kompilieren automa-
tisch zur .jar Datei hinzugefügt. Das bedeutet, dass sie für die Applikation automatisch sicht-
bar ist, und nicht aus HDFS geladen werden muss. Allerdings muss sie trotzdem eingelesen
werden. Entsprechende Modelle stehen unter [43] zur Verfügung.

Damit die Metrik in Spark ausgeführt werden kann, müssen alle Eingabedaten in dem verteil-
ten Dateisystem HDFS bereitgestellt werden. Als Textencoding soll für alle Dateien UTF-8
verwendet werden.

Der Ordner training_data soll alle verfügbaren Trainingsdatensätze in ihrer Textrepräsentation
enthalten. Jede Textdatei repräsentiert dabei einen Trainingsdatensatz.

Die Datei input.txt im Ordner input soll die Eingabedaten enthalten, ebenfalls als Textdarstel-
lung.

Zusätzlich muss die Datei stopwords.txt vorhanden sein. Jede Zeile repräsentiert dabei ein
Stoppwort. Alle in dieser Datei vorkommenden Tokens werden aus den Textdatensätzen ent-
fernt, bevor die Berechnung der Ähnlichkeit stattfindet. Ist diese Datei leer, werden keine
Stoppwörter entfernt.

Wie bei diesem Modus üblich schreibt die Metrik die Ergebnisse nicht mehr in eine lokale
Datei, sondern ebenfalls auf HDFS. Das Ergebnis wird in einer Textdatei geschrieben, ähn-
lich wie in der ursprünglichen Implementierung. Der Unterschied ist, dass für jede Berech-
nung ein neuer Ordner angelegt wird. Der Name dieser Ordner folgt dem Muster „Textsimila-
rity_output_[Timestamp]“ wobei [Timestamp] die aktuelle Systemzeit zum Zeitpunkt der
Ausführung darstellt. Somit sind alle Ergebnisse im Dateisystem hinterlegt und werden nicht
überschrieben.

Die oben beschriebene Implementierung wird in dieser Arbeit auch als Standardvariante be-
zeichnet. Zusätzlich wurde eine zweite, leicht abgewandelte Version entwickelt: Variante 2.
Diese Metrik unterscheidet sich von der Standardvariante nur durch den Tokenizer. In allen
anderen Punkten ist sie identisch mit der Standardvariante. Der Grund hierfür ist, dass der
verwendete Tokenizer nicht serialisierbar ist. Somit muss er bei jedem Aufruf neu instanziiert
werden. Hierzu wird allerdings im Gegensatz zur Standardvariante kein Modell benötigt. Da-
durch ist die Instanziierung deutlich schneller. Dieses Problem wird bei der Diskussion der
Ergebnisse in Abschnitt 9.5 näher erläutert. Die Metrik liefert zwar Vergleichbare, aber leicht
abweichende Ergebnisse wie das Original aus [19] und die Standardvariante. Ob diese Abwei-
chungen signifikant sind, muss in einer Evaluation geklärt werden. Dies übersteigt aber den
Umfang dieser Arbeit. Aus diesem Grund wurde darauf verzichtet, eine solche Variante eben-
falls für das Notebook zu implementieren. Sie wird nur für die Evaluation der Laufzeit ver-
wendet, und dient als Beispiel, wie unterschiedliche Implementierungen die Laufzeit be-
einflussen. Siehe hierzu auch die Analyse der Evaluationsergebnisse in Abschnitt [9.5].

8 Anwendung des Notebooks auf Datensätze aus der Praxis

Im folgenden Kapitel wird das in dieser Arbeit implementierte Jupyter Notebook exempla-
risch auf reale Datensätze angewendet. Dabei soll auch ein Überblick über die Datenqualität
der jeweiligen Datensätze gegeben werden. Bei den verwendeten Datensätzen handelt es sich
zum einen um den NHTSA Complaints Datensatz, der in Abschnitt 8.1 betrachtet wird. Zum
anderen liegen Daten aus der Industrie vor. Diese werden in Abschnitt 8.2 untersucht.

8.1 NHTSA

Der NHTSA Complaints Datensatz enthält Informationen über sicherheitsrelevante Defekte
bei Fahrzeugen. Die NHTSA, National Highway Traffic Safety Administration, ist eine US-a-
merikanische Regierungsbehörde die unter anderem für die Verkehrssicherheit zuständig ist.
Der Datensatz kann auf der Webseite der NHTSA in komprimierter Form als .zip Datei her-
untergeladen3 werden. Das .zip Archiv enthält eine knapp 850 MB große Textdatei,
FLAT_CMPL.txt. Zusätzlich steht eine kurze Beschreibung des Datensatzes in einer Text-
datei (CMPL.txt) sowie eine Anleitung für den Import des Datensatzes in eine Access-Daten-
bank zum Download bereit. [41]

Im folgenden wird nur die Textdatei betrachtet, ein Import in ein Access-System wurde nicht
durchgeführt. Dies hat zwei Gründe. Zum einen unterstützt der Notebook Prototyp direkt
Textdateien, während eine Anbindung an MS-Access erst implementiert werden müsste. Zum
Anderen werden die Daten als Textdatei zur Verfügung gestellt. Die Analyse des Datensatzes
erfolgt also direkt ohne Zwischenschritte. Der Datensatz wurde am 18.03.2017 heruntergela-
den, die folgende Analyse bezieht sich also auf diesen Stand.

Der Datensatz soll unter Verwendung des Jupyter Notebook Prototyps näher betrachtet wer-
den. Als ersten Schritt müssen die Daten in das Notebook importiert werden. Hierzu wird die
Importfunktion unter Save Data verwendet. Die Dokumentation gibt an, dass als Trennzei-
chen ein Tabulator verwendet wird. Dies muss beim Import im Notebook angegeben werden.
Da es sich bei dem Datensatz um eine Textdatei handelt, spielt das Encoding eine Rolle. Siehe
hierzu Abschnitt 4.2. Falls beim Import kein Encoding angegeben wird, verwendet das Note-
book als Standardformat utf-8. Ein Import des Datensatzes mit diesem Encoding schlägt fehl,
weil Zeichen nicht verarbeitet werden konnten. Dies bedeutet, dass es sich um das falsche En-
coding für diese Textdatei handelt. In der Dokumentation (CMPL.txt) wird kein Encoding
spezifiziert. Andere typisch vorkommende Encodings sind Code Page 1252 und ISO-8859-1.
Wie in Abschnitt 4.2 erwähnt, besteht hier Verwechslungsgefahr [22]. Allerdings schlägt der
Import für Code Page 1252 fehl und erfolgt nur für ISO-8859-1. Die Importfunktion ist
standardmäßig so konfiguriert, dass fehlerhafte Zeilen ignoriert werden. Stattdessen wird eine
Warnung angezeigt. Alternativ wäre möglich, den Import komplett abzubrechen. In diesem
Beispiel meldet die Importfunktion, dass 12 Zeilen fehlerhaft sind und nicht importiert wer-
den konnten. Hierbei handelt es sich also um ein potentielles Datenqualitätsproblem. Da der

3 https://www-odi.nhtsa.dot.gov/downloads/

Datensatz aber insgesamt aus über 1,3 Millionen Einträgen besteht, erscheint das Problem
verhältnismäßig zunächst vernachlässigbar. Das Problem wird später genauer betrachtet.

Eine erste Inspektion der Daten erfolgt mit einer Funktion unter View Data, die es ermög-
licht, einen Ausschnitt der Daten zu betrachten. Angezeigt werden sollen die ersten 5 Einträ-
ge, mit den Spalten 1-8 (Spalte 3 wurde aus Gründen der Übersichtlichkeit weggelassen). In
Python beginnt das Zählen bei 0, für die erste Spalte muss also 0 angegeben werden.
Abbildung 5 zeigt einen Screenshot des Resultat. Man erkennt schnell, das etwas nicht
stimmt. Die oberste Zeile (fettgedruckt) soll eigentlich die Namen der Spalten enthalten. Statt-
dessen scheint es sich um einen Eintrag zu handeln. Offenbar gibt es in der Datei keine Kopf-
zeile, also eine Zeile, welche die Namen der Spalten enthält. Der erste Eintrag des Datensat-
zes wurde also fälschlicherweise als Kopfzeile verwendet. Dies bedeutet, dass der Import er-
neut ausgeführt werden muss, unter Angabe eines besonderen Parameters, der spezifiziert, das
keine Kopfzeile vorhanden ist.

Der Screenshot in Abbildung 6 zeigt das Resultat der erneuten Inspektion der ersten 5 Einträ-
ge. Da keine Spaltennamen vorhanden sind, werden diese im Notebook durchnummeriert. Der
erste Eintrag wurde nun korrekt erkannt. Dieses kleine Beispiel zeigt die in Kapitel 4 be-
schriebene iterative Natur des Data Wrangling Prozesses. Hier musste bereits der erste Schritt,
der Import, wiederholt werden, nachdem ein Problem entdeckt wurde.

Abbildung 5: Screenshot mit den ersten 5 Einträge des NHTSA Complaints Datensatzes.
Der erste Eintrag wird fälschlicherweise als Kopfzeile interpretiert.

Im Folgenden soll zunächst ein Überblick über die Struktur der Daten gegeben werden. Der
Datensatz besteht aus 49 Spalten und hat insgesamt 1,36 Millionen Einträge. Die Einträge re-
präsentieren dabei Beschwerden über sicherheitsrelevante Probleme bei Fahrzeugen. Die Do-
kumentation gibt an, dass Daten berücksichtigt werden, die seit dem 1. Januar 1995 bei der
NHTSA eingegangen sind.

Tabelle 4 gibt eine Übersicht über ausgewählte Spalten mit dazugehörigem Datentyp. Die
Zahl in Klammern gibt die maximale Länge des Feldes an. Diese Informationen stammt aus
der Dokumentation (CMPL.txt), die Datei selbst (FLAT_CMPL.txt) hat, wie oben erwähnt,
keine Kopfzeile und somit auch keine Informationen über die Semantik der Spalten. Der ge-
samte Datensatz verwendet Großschreibung. Dies trifft auch für die Namen der Spalten zu,
die in der Dokumentation aufgeschlüsselt werden (CMPL.txt).

Abbildung 6: Screenshot mit den ersten 5 Einträge des NHTSA Complaints Datensatzes
mit Parameter Header = none

Tabelle 4: Ausgewählte Spalten des NHTSA Complaints Datensatzes

Zu Beginn der Analyse wurde beim Einlesen des Datensatzes festgestellt, dass 12 Spalten
nicht eingelesen werden konnten. An dieser Stelle soll dies jetzt näher untersucht werden.
Beim Import meldet das Notebook, falls Zeilen nicht eingelesen werden konnten, mit der An-
gabe der Zeile und des Grundes. Die Fehlermeldung besagt in allen 12 Fällen, dass zu viele
Spalten vorhanden sind. Beispielsweise lautet die Fehlermeldung für die erste fehlerhafte
Spalte: „Skipping line 562494: expected 49 fields, saw 70“. Um diese Zeilen inspizieren zu
können, muss die gesamte Textdatei ins Notebook geladen werden. Hierzu kann als Trennzei-
chen der Zeilenumbruch4 angegeben werden. Das Notebook interpretiert somit jede Zeile als
einen einzigen Wert, der als String dargestellt wird. Das bedeutet, dass die Struktur des
Datensatzes ignoriert wird. Nur die Textrepräsentation wird betrachtet. Dies ermöglicht den
gesamten Datensatz ohne Fehler zu laden. Allerdings ist eine Verarbeitung der Daten in die-
sem Modus extrem aufwendig. Dies wird nur durchgeführt, um die fehlerhaften Zeilen be-
trachten zu können. Alternativ wäre auch ein anderes Tool, etwa ein Texteditor, denkbar.

Die Inspektion der Zeile 562494, sowie Zeilen in der Nähe dieser Zeile, liefert keine Anhalts-
punkte. Allerdings fällt auf, dass die Anzahl der Zeilen in der Textdatei 1363351 beträgt, es
im importierten Datensatz aber nur 1362838 Einträge gibt. 513 Zeilen fehlen, nicht nur 12.
Nach aufwendiger manueller Inspektion stellt sich heraus, dass manche Zeilen ein extrem lan-
ges Textfeld haben. Dieses Textfeld enthält neben dem eigentlichen Text für diese Zeile auch
Daten von einer oder mehr Zeilen als Text. Beim Import ist also ein Problem aufgetreten, und
die Zeilen wurden nicht richtig erkannt. Dies führt auch dazu, dass eine irreführende Meldung
ausgegeben wird, dass nur 12 Spalten betroffen sind statt 513. Dieses Problem entsteht da-
durch, dass manche Textfelder Anführungszeichen enthalten („“). Die Importfunktion des No-
tebooks geht davon aus, das Texte unter Umständen in Anführungszeichen gesetzt werden.
Dies wäre zum Beispiel notwendig, wenn der Text ein Trennzeichen enthalten würde, der

4 In diesem Fall: \n

Spalte Name Datentyp

1 CMPLID CHAR(9)
3 MFR_NAME CHAR(40)
4 MAKETXT CHAR(25)
5 MODELTXT CHAR(256)
6 YEARTXT CHAR(4)
7 CRASH CHAR(1)
9 FIRE CHAR(1)
10 INURED NUMBER(2)
11 DEATHS NUMBER(2)
13 CITY CHAR(30)
14 STATE CHAR(2)
15 VIN CHAR(11)
16 DATEA CHAR(8)
20 CDESCR CHAR(2048)
22 POLICE_RPT_YN CHAR(1)

aber Teil des Textes ist. Wird Beispielsweise ein Komma als Trennzeichen verwendet, so
müssen Texte, die ein Komma enthalten, in Anführungszeichen5 gesetzt werden. Ansonsten
wäre nicht erkennbar, dass das Komma Teil des Textes ist und nicht eine neue Spalte anzeigt.
Der NHTSA Datensatz verwendet keine Anführungszeichen zum markieren von Texten. Al-
lerdings tauchen in manchen Freitextfeldern Anführungszeichen auf, so zum Beispiel in Zeile
402673. In diesem Fall enthält das Textfeld aber nur ein einzelnes Anführungszeichen. Die
Importfunktion interpretiert nun alles bis zum nächsten Anführungszeichen als Bestandteil
des Textes. In diesem Fall ist das nächste Anführungszeichen in Zeile 402688. Alle Einträge
bis inklusive dieser Zeile werden also als Text des Textfelds von Zeile 402673 betrachtet. Ta-
belle 5 zeigt den Eintrag 402673 für ausgewählte Spalten. Das Textfeld wurde gekürzt, sym-
bolisiert durch „...“, enthält aber keine weiteren Anführungszeichen mehr.

Tabelle 5: Eintrag 402673 aus NHTSA Complaints. Hier führt ein einzelnes
Anführungszeichen zu einem Problem beim Import.

Tabelle 6 verdeutlicht das Problem allgemein. Im Originaldatensatz enthalten die Textfelder
von Zeile 2 und 4 jeweils ein einzelnes Anführungszeichen. Dies führt dazu, dass beim Import
standardmäßig davon ausgegangen wird, das alles dazwischen einen Text darstellt, der zum
Textfeld von Zeile 2 gehört. Nach dem Import gibt es statt 4 Zeilen nur noch 2, die Daten von
Zeile 3 und 4 wurden dabei ins Textfeld von Zeile 2 aufgenommen.

Tabelle 6: Symbolisches Beispiel, wie einzelne Anführungszeichen zu Problemen beim Import
führen

Dieses Problem lässt sich lösen, wenn beim Laden des Notebooks mit Hilfe eines Parameters6

angegeben wird, dass Anführungszeichen ignoriert werden sollen. Nachdem der Datensatz
mit diesem Parameter erneut importiert wurde, meldet die Importfunktion nur noch Fehler für

5 Oder andere vorher definierte Zeichen

6 quoting = 3

Original: Import:

ID Text ID Text

1 A 1 A
2 2
3 C
4

„B „B 3 C 4 D“

D“

1 4 5 6 20
CMPLID MAKETXT MODELTXT YEARTXT CDESCR

402673 NISSAN MAXIMA 2002 "MY 2002 MAXIMA HAS CAUSED ME SOOOO ...

11 Einträge. Ein Vergleich mit der Zeilenanzahl ergibt, dass tatsächlich nur noch 11 Zeilen
fehlen. Das Problem, dass einzelne Anführungszeichen den Import stören, hat in diesem Fall
verhältnismäßig geringe Auswirkungen. Es sind nur etwa 500 Zeilen von über 1,36 Millionen
betroffen, also weniger als 0,04%. Allerdings ist es denkbar, dass auch viel mehr Zeilen be-
troffen sein können. Taucht zum Beispiel im Textfeld der ersten und der letzten Zeile ein An-
führungszeichen auf, während alle anderen Zeilen keine oder nur eine gerade Anzahl an An-
führungszeichen haben, so wird der gesamte Datensatz von der Importfunktion als ein riesiges
Textfeld interpretiert. Dies betrifft nicht nur die Importfunktion des Notebooks sondern auch
viele weitere Tools, die Textdaten in Tabellenformat (CSV) verarbeiten. Beispielsweise tritt
das gleiche Problem für das Tabellenverarbeitungsprogramm Calc von OpenOffice auf [42].
Auch hier muss beim Import die Standardmäßig ausgewählte Verwendung von Anführungs-
zeichen als Texttrenner deaktiviert werden.

Für den NHTSA Complaints Datensatz kann dieses Problem wie oben beschrieben einfach
gelöst werden. Beim Import wird via Parameter angegeben, dass Anführungszeichen ignoriert
werden sollen. Dies funktioniert, weil der Datensatz diese nicht zum Markieren von Text
nutzt. Das bedeutet aber auch, dass in keinem der Felder ein Trennzeichen, hier ein Tabulator,
vorkommen darf. Die Importfunktion meldet, dass 11 Zeilen nicht importiert werden konnten,
weil zu viele Spalten vorhanden sind. Dies deutet allerdings darauf hin, dass doch extra Tabu-
latoren in diesen 11 Zeilen vorhanden sind. Die erste Fehlermeldung nennt Zeile 1032430.
Auch hier muss zur manuellen Inspektion der Datensatz wie oben beschrieben zeilenweise ins
Notebook geladen werden. Tabelle 7 zeigt den Eintrag. Das Feld STATE enthält nach dem
Kürzel TX für Texas einen Tabulator. Dieser wird als Trennzeichen interpretiert, was dazu
führt, das die Importfunktion von einer extra Spalte zwischen Spalte 14 und 15 ausgeht. Da
dadurch aber zu viele Spalten in der Zeile vorhanden sind, wird diese Zeile übersprungen und
stattdessen eine Fehlermeldung erzeugt. Eine Untersuchung der übrigen 10 Zeilen ergibt, das
bei allen das gleiche Problem auftritt. Das Feld State enthält neben dem Kürzel jeweils einen
Tabulator.

Tabelle 7: Eintrag 1032430 aus NHTSA Complaints. Ein zusätzlicher Tabulator im Feld
STATE verhindert den Import.

Hierbei handelt es sich also um ein Qualitätsproblem des Datensatzes. Um diese Zeilen verar-
beiten zu können, müssten die unnötigen Tabulator-Zeichen entfernt werden. Allerdings ist
das Notebook nicht dazu gedacht, solche Änderungen an „rohen“ Daten vorzunehmen. Ent-
sprechend wird keine passende Funktion bereitgestellt.

Eine mögliche Lösung könnte folgendermaßen aussehen: Der Datensatz wird zeilenweise in
das Notebook geladen. Für die 11 fehlerhaften Zeilen wird per Skript der unnötige Tabulator
entfernt. Das Ergebnis wird in eine Datei geschrieben. Dann kann der Datensatz mit der nor-

1 4 5 13 14 15
CMPLID MAKETXT MODELTXT CITY STATE VIN

1032430 FORD FIESTA AUSTIN 3FADP4BJ0B TX [TAB]

malen Importfunktion des Notebooks importiert und weiter bearbeitet werden. An dieser Stel-
le wird wegen des geringen Umfangs des Problems auf eine Implementierung verzichtet.

Das Notebook bietet die Möglichkeit, Histogramme zu berechnen und mit Hilfe eines Dia-
gramms zu visualisieren. Ein Histogramm gibt dabei an, wie oft ein Wert in einer Spalte vor-
kommt. Dies soll exemplarisch für die Spalte 6 (YEARTXT) geschehen. Diese Spalte enthält
als Werte das Modelljahr des betroffenen Fahrzeugs. Das Ergebnis ist in Abbildung 7 zu se-
hen. Dabei repräsentiert die x-Achse die in der Spalte vorkommenden Werte – in diesem Fall
die Jahreszahlen. Die y-Achse repräsentiert die Häufigkeit der Werte in der Spalte. Diese Dar-
stellung ist möglich, weil es sich bei den Werten um Jahresangaben handelt, die problemlos
als Zahlen aufgefasst werden können. Dadurch ist es möglich, sie sinnvoll auf der x-Achse ei-
nes Schaubildes anzuordnen.

Das Schaubild erscheint auf den ersten Blick sehr plausibel. Der Datensatz berücksichtigt
Meldungen ab 1995. Sehr alte Fahrzeuge sind im Datensatz selten. Die Anzahl der Einträge
nimmt dabei mit steigender Jahreszahl immer stärker zu. Die meisten Einträge beziehen sich
auf Fahrzeuge mit einem Modelljahr aus den letzten beiden Jahrzehnten. In Richtung Gegen-
wart nimmt die Anzahl der Einträge wieder ab. Auffallend dabei ist eine sehr deutliche Spitze
ganz am Rand des Schaubilds. Es erscheint wenig plausibel, dass es extrem viele Einträge für
Fahrzeuge mit Modelljahr 2017 gibt. Eine weitere Analyse ergibt, dass es sich hierbei um den
Wert 9999 handelt. Die Dokumentation enthält die Information, dass dieser Wert die Bedeu-
tung „unbekannt“ oder „nicht zutreffend“ hat. Es handelt sich also um einen codierten Null-
wert. Dies ist irreführend und kann zu Datenqualitätsproblemen führen. Siehe hierzu Kapitel
4.2. Abbildung 7 ist hierfür bereits ein Beispiel. Der Datentyp der Spalte 6 ist als vierstellige
Zahl festgelegt. 9999 ist also ein gültiger Wert. Die Visualisierungsfunktion hat keine In-
formation, dass 9999 kein gültiges Jahr darstellt. Durch die Skalierung ist im Schaubild nicht
sofort erkennbar, dass es sich um einen nicht plausiblen Wert handelt. Eine einfache Berech-
nung des Durchschnitts für diese Spalte ergibt 2358.

Abbildung 7: Schaubild des Histogramms für die Spalte 6

Um solche Probleme zu vermeiden, können die codierten Nullwerte in explizite Nullwerte
konvertiert werden. Das Notebook bietet hierfür eine Ersetzungsfunktion. Nachdem die Erset-
zung vorgenommen wurde, ergibt die Berechnung des Durchschnitts für die Spalte 6 den
Wert 2002. Abbildung 8 zeigt erneut das Histogramm für Spalte 5 für den angepassten Daten-
satz. Die irreführende Spitze ist nicht mehr zu sehen. Zu beachten ist, dass die Ersetzung der
codierten Werte nicht in jedem Fall durchgeführt werden muss. Für manche Analysen kann es
durchaus interessant sein, zwischen codierten und expliziten Nullwerten zu unterscheiden. Für
das konkrete Beispiel in Abbildung 8, nämlich ein korrektes Histogramm von Spalte 6, macht
die Ersetzung Sinn und wurde durchgeführt.

Als nächsten Schritt sollen allgemein die Nullwerte im Datensatz betrachtet werden. Fehlende
Werte spielen beim Data Wrangling eine wichtige Rolle, siehe hierzu Abschnitt 4.2. Das No-
tebook bietet eine Funktion, mit der für den Datensatz die Nullwerte ermittelt werden können.
Hierbei sollen zunächst nur explizite Nullwerte betrachtet werden, also Spalten, die keinen
Wert enthalten. Das zuvor durchgeführte Ersetzung des Wertes 9999 durch explizite Nullwer-
te in Spalte 5 fließt nicht in diese Betrachtung ein. Dies hat zwei Gründe. Zum einen müsste
für ein vergleichbares Ergebnis in jeder betrachteten Spalte analysiert werden, ob codierte
Nullwerte vorliegen. Dies wird aus Gründen des Umfangs für dieses Beispiel nicht durchge-
führt. Zum anderen ist es durchaus interessant, die expliziten und die codierten Nullwerte ge-
trennt zu betrachten. Bei einem codierten Wert ist bekannt, dass die Information, dass dieser
Wert unbekannt ist, im Originaldatensatz vorhanden ist. Bei einem expliziten Nullwert, also
dem fehlen eines Wertes, wäre auch denkbar, dass diese Information beim Transport der
Daten verlorengegangen ist. Alternativ könnte auch ein fehlerhafter Transformationsschritt
die Information zerstört haben. Tabelle 8 zeigt die Anzahl und den Prozentsatz der Nullwerte
pro jeweiliger Spalte. Das Notebook berechnet die Werte automatisch für alle Spalten. Aus
Gründen des Umfangs werden aber nur die ausgewählten Spalten betrachtet.

Abbildung 8: Schaubild des Histogramms für Spalte 6. Der Code 9999
wurde durch explizite Nullwerte ersetzt

Tabelle 8: Explizite Nullwerte für ausgewählte Spalten

Spalte 1 enthält keine Nullwerte. Bei dieser Spalte handelt es sich laut Dokumentation um
eine fortlaufende, eindeutige ID. Fehlende Werte hier würden auf ein massives Problem hin-
deuten, entweder im Datensatz selbst, oder beim Import. Dies ist nicht der Fall. Die Spalten 3,
4, 5 und 6 beinhalten Details zum betroffenen Fahrzeug. Beispielsweise den Hersteller (Spalte
3) oder das Modell (Spalte 5). In jeder dieser 4 Spalten gibt es 193 Nullwerte. Eine weitere
Analyse zeigt, dass es sich jeweils um die gleichen Zeilen handelt. Außerhalb dieser Zeilen
kommen in diesen Spalten keine expliziten Nullwerte vor. Tabelle 9 zeigt ein Beispiel für
einen solchen Eintrag. Zusätzlich zu den aufgeführten Spalten fehlen Werte für die meisten
anderen Felder. Der Eintrag enthält fast keine Informationen. Der Wert für Spalte 20 ist
„NOTHING“ - also Nichts. Hierbei handelt es sich also eigentlich um einen Nullwert – dieser
ist aber nicht explizit sondern als englisches Wort. Dies ähnelt dem oben diskutierten Fall für
Spalte 5. Auch hier werden Nullwerte codiert dargestellt. Allerdings handelte es sich beim
Wert 9999 um einen eindeutigen und durch die Dokumentation spezifizierten Zahlenwert. In
diesem Fall sind die Nullwerte durch Texte dargestellt. Solche Nullwerte sind sehr schwer zu
entdecken, weil es viele Varianten gibt, ein Fehlen von Information durch Text auszudrücken.
Beispielsweise lautet die Beschreibung (Feld 20) für einen ähnlichen Eintrag 113745: „NO
SUMMARY“ - also keine Zusammenfassung. Insgesamt kommt „NOTHING“ 17 mal im
Datensatz vor. „NO SUMMARY“ insgesamt 1444 mal. Eine weitere Variante, die nur ein
einziges mal vorkommt, ist zum Beispiel „NO FAILURES GIVEN.“. Prozentual spielen diese
Einträge keine Rolle. Es gibt aber viele unterschiedliche Möglichkeiten, die theoretisch vor-
kommen könnten. Spalte 20 enthält nur 51 explizite Nullwerte. Allerdings kann ohne eine
aufwendige Analyse nicht exakt angegeben werden, wie viele Einträge wirklich keine In-
formationen enthalten. Diese Beispiele stellen Fälle von irreführenden Werten da, die in Kapi-
tel 4.2 beschrieben werden.

Spalte Name Absolut Prozentual

1 CMPLID 0 0,00%
3 MFR_NAME 193 0,00%
4 MAKETXT 193 0,00%
5 MODELTXT 193 0,00%
6 YEARTXT 193 0,00%
7 CRASH 256181 19,00%
9 FIRE 80818 6,00%
10 INURED 712207 52,00%
11 DEATHS 728720 53,00%
20 CDESCR 51 0,00%
22 POLICE_RPT_YN 135529 10,00%

Tabelle 9: Beispiel für Eintrag mit Nullwerten in den Spalten 3 bis 6. Spalte 3 wurde in der
Darstellung wegen der Übersichtlichkeit weggelassen.

Spalte 7 (CRASH) enthält zu 19% Nullwerte. Diese Spalte hat laut Dokumentation nur die zu-
lässigen Werte „Y“ und „N“ für Ja und Nein. Hierbei handelt es sich eindeutig um ein Daten-
qualitätsproblem. Es ist nicht ersichtlich, welche Semantik ein Nullwert hier hat. Naheliegend
ist die Bedeutung „unbekannt“, es ist allerdings möglich dass die Daten aus technischen oder
sonstigen Gründen fehlen. Das gleiche gilt für Spalte 9 (FIRE) in abgeschwächter Form. Die-
se besteht zu 6% aus Nullwerten. Auch hier sind die zulässigen Werte nur „Y“ und „N“.

Die Spalten 10 (INJURED) und 11 (DEATH) haben einen Nullwertanteil von jeweils 52%
bzw. 53%. Spalte 10 enthält die Anzahl der verletzten im Zusammenhang mit dem in der Be-
schwerde beschriebenen Defekt, Spalte 11 die Anzahl der Toten. Laut Dokumentation sollen
beide Spalten Zahlen enthalten. Der sehr hohe Anteil an Nullwerten stellt ein Datenqualitäts-
problem dar. Für die Spalte 10 enthalten insgesamt 65206 Zeilen einen Wert größer 0. Alle
anderen Einträge sind entweder 0 oder ein Nullwert. Für die Zeile 11 sind 3500 Werte größer
0, insgesamt gibt es 634620 Werte. Bezogen darauf ist der Prozentuale Anteil von Einträgen
mit Todesfällen 0,55%. Basierend darauf kann eventuell vermutet werden, dass es bei der
überwiegenden Anzahl der Einträge mit Nullwert in Spalte 11 keine Todesfälle gab. Aller-
dings ist dies nur eine Mutmaßung. Sollen zum Beispiel bei einer Analyse nur Beschwerden
betrachtet werden, bei denen es keine Toten gab, müssten theoretisch mehr als die Hälfte der
Einträge verworfen werden, weil Daten fehlen.

Spalte 22 (POLICE_RPT_YN) gibt an, ob der Vorfall der Polizei gemeldet wurde, und hat als
gültige Werte „Y“ für Ja und „N“ für Nein. Die Spalte enthält zu 10% Nullwerte. Laut Doku-
mentation wurde diese Spalte am 14.09.2007 zum Datensatz hinzugefügt. Spalte 16 (DATEA)
gibt den Zeitpunkt an, wann der Eintrag in die Datenbank aufgenommen wurde. Die meisten
Einträge, die vor diesem Datum zum Datensatz hinzugefügt wurden, haben einen Wert für
Spalte 22. Dabei kommen sowohl die Werte „Y“ als auch „N“ vor. Tabelle 10 enthält ein Bei-
spiel für einen Eintrag, der 1995 in die Datenbank aufgenommen wurde, deutlich vor 2007.
Es ist an dieser Stelle nicht klar, was dies genau bedeutet. Waren die Werte bereits vor 2007
intern vorhanden, und wurden erst danach veröffentlicht?

Tabelle 10: Beispiel für einen Eintrag mit "Y" für Spalte 22, der vor 2007 zum Datensatz
hinzugefügt wurde

1 4 5 6 13 14 17 20
CMPLID MAKETXT MODELTXT YEARTXT CITY STATE LDATE CDESCR

175887 BURBANK CA 19990908 NOTHING

1 5 6 16 22
CMPLID MODELTXT YEARTXT INURED DATEA POLICE_RPT_YN

25499 RANGER 1993 2 19951010 Y

Spalte 20 enthält einen Freitext, der die Beschwerde näher beschreibt. Das Notebook bietet
mehrere Metriken für Textdaten. Im folgenden soll die Textähnlichkeitsmetrik berechnet wer-
den. Diese Metrik ermittelt die Ähnlichkeit des Eingabetextes mit einer Reihe von hinterleg-
ten Korpora. Soll ein Text mit einem Machine Learning Algorithmus analysiert werden, so
kann diese Metrik dabei helfen, den besten Trainingsdatensatz auszuwählen. Für eine Be-
schreibung der Metrik siehe Abschnitt 2.5.3. Die konkrete Implementierung der Metrik wird
in Kapitel 6.3 beschrieben.

Als Eingabe benötigt die Metrik einen Text als String. Hierzu sollen alle Texte in Spalte 20
verwendet werden. Im Notebook genügt es, Spalte 20 auszuwählen. Der NHTSA Complaints
Datensatz verwendet ausschließlich Großschreibung. Zur Berechnung der Metrik wird der ge-
samte Datensatz in Kleinbuchstaben umgewandelt. Es werden keine weiteren Vorverarbei-
tungsschritte durchgeführt. Der entstehende Datensatz ist sehr groß, knapp 600 MB. Zusätz-
lich benötigt die Metrik Trainingsdatensätze, damit ein Vergleich durchgeführt werden kann.
Für die Berechnung wurden Beispielhaft 6 Textdatensätze genommen. Siehe Abschnitt 9.3 für
eine Beschreibung.

Der Datensatz ist seht groß. Auf dem Demonstrationssystem benötige die Berechnung 3 Stun-
den. Tabelle 11 zeigt die Resultate. Die Tabelle zeigt den Namen des jeweiligen Trainings-
datensatzes und den dazu ermittelten Textähnlichkeitswert. Die Tabelle ist absteigend nach
Textähnlichkeit sortiert. Der Brown Reviews Corpus erzielt mit 0,73 den höchsten Wert. Ste-
hen nur diese 6 Datensätze zur Verfügung, so empfiehlt diese Metrik die Verwendung von
Brown Reviews als Trainingsdaten. Die ermittelten Werte sind relativ niedrig. Die vorliegen-
den Texte enthalten Beschreibungen zu Beschwerden über Fahrzeugdefekte. Diese unter-
scheiden sich deutlich von Zeitungstexten, wie etwa dem CoNLL Korpus, der auf Artikeln
des Wall Street Journal beruht. Die Werte sind generell etwas höher, als die für die Industrie-
daten ermittelten Ergebnisse. Siehe hierzu Tabelle 20 in Kapitel 8.2. Hier erzielt der Brown
Fiction Korpus mit 0,62 den höchsten Wert. Die Metrik deutet also auf eine größere Ähnlich-
keit von NHTSA Complaints Texten und den verwendeten Standardkorpora. Die Texte der
Industriedaten unterscheiden sich laut Metrik stärker von diesen. Dies erscheint plausibel, da
die Texte in den Industriedaten deutlich technischer sind und sich stark auf die Fertigung be-
ziehen. Die Textähnlichkeit für den Twitterdatensatz beträgt 0,38. Hierbei handelt es sich um
Texte der Social Media Plattform Twitter. NPS Chat erzielte einen Wert von 0,36. Dieser
Datensatz basiert auf Texten aus einem Online-Chat. Beide Werte liegen deutlich unter denen
der anderen 4 Korpora. Auch hier erscheint die Reihenfolge plausibel, weil sich die beiden
Datensätze deutlich von den NHTSA Complaints Textdaten unterscheiden.

Tabelle 11: Textähnlichkeit für das Freitextfeld von NHTSA Complaints

Trainingsdatensatz Textähnlichkeit

brown_reviews 0,73
conll 0,69
brown_fiction 0,69
treebank 0,66
twitter 0,38
nps 0,36

Tabelle 12 zeigt 4 Beispiele für Texte des Freitextfeldes in Spalte 20. Wie bereits zu Beginn
der Analyse erwähnt wird für den gesamten Text Großschreibung verwendet. Dadurch geht
Information über Groß- und Kleinschreibung verloren. Im Beispiel fallen 2 Rechtschreibfeh-
ler auf. Im ersten Eintrag aus Tabelle 12 steht „MY ITSELF“ statt „BY ITSELF“. In Eintrag 3
ist mit „ACCIENT“ wohl „ACCIDENT“ gemeint, es fehlt ein „D“.

Tabelle 12: Vier Beispieltexte aus Spalte 20

Das Notebook bietet eine Metrik, mit der der Anteil an Rechtschreibfehlern in einem Text ge-
messen werden kann. Diese Metrik wurde aus [18] integriert. Für eine nähere Beschreibung
siehe 6.3.5. Die Berechnung ist relativ aufwendig, so dass sie nicht für den kompletten Text-
datensatz berechnet werden kann. Stattdessen wird ein Ausschnitt verwendet, für den die Me-
trik beispielhaft berechnet werden soll. Hierzu werden exemplarisch nur Textfelder der Ein-
träge vom Januar 2005 ausgewählt, ca. 4500 Zeilen. Auch hier wird alles in Kleinbuchstaben
umgewandelt. Dieser Datensatz ist ca. 2MB groß. Die Metrik liefert als Ergebnis 11%. Dieser
Wert liegt deutlich unter den 23%, die für das Freitextfeld der Industriedaten ermittelt wurde.
Allerdings sind beide Textfelder nicht vergleichbar. Siehe dazu die Ausführungen in Kapitel
8.2. Die Metrik deutet darauf hin, dass sich die NHTSA Complaints Daten eher Standard-
Textdaten ähneln als die Industriedaten.

20
CDESCR

GAS PEDEL ACCELERATOR MY ITSELF.
DRIVER DOOR LATCH FAILED AND FLEW OPEN WHILE DRIVING.
DOOR WOULD NOT STAY CLOSED.
REVERSE TRNSMISSION NOT WORKING WENT OUT WHILE
DRIVING. ALMOST CAUSED AN ACCIENT.
MY AIRBAG LIGHT WOULD GO ON AND OFF AT TIMES AND NOW
IT STAYS ON ALL THE TIME...SAFETY CONCERN!

8.2 Industriedaten

Bei dem Industriedatensatz handelt es sich um Produktionsdaten im Kontext einer Fertigungs-
linie. Alle im Folgenden verwendeten Beispiele sind an den realen Datensatz angelehnt und
anonymisiert. Dazu wurden in den Daten vorkommende Werte, wie zum Beispiel IDs, Prozes-
se oder Personennamen, soweit wie nötig durch allgemeine Platzhalter ersetzt. Das folgende
Beispiel soll das Vorgehen verdeutlichen:

Tabelle 13: Veranschaulichung des Vorgehens zur Anonymisierung

Tabelle 13 gibt ein Beispiel für die Anonymisierung. Eine Zeile (zur Illustration aus einem
fiktiven Datensatz) ist zuerst im Klartext zu sehen. Nach der Anonymisierung sind die kon-
kreten Entitäten durch abstrakte Platzhalter ersetzt. Zusätzlich wurden auch technische Daten,
wie etwa IDs, abgewandelt.

Der Datensatz basiert auf Daten, die in einer relationalen Datenbank verwaltet werden. Für
diese Analyse liegt ein Auszug in Form von .csv Dateien vor, die jeweils die entsprechenden
Tabellen repräsentieren.

Als ersten Schritt werden die Daten in das Jupyter Notebook geladen. Da die Daten als eine
Reihe von .csv Dateien vorliegen, muss hierzu neben dem Pfad der entsprechenden Datei
auch das verwendete Trennzeichen angegeben werden. In diesem Fall handelt es sich um ein
Semikolon. Zum Einstieg soll eine Tabelle betrachtet werden – im folgenden Tabelle A ge-
nannt, die Prozessnamen enthält. Diese hat 6 Spalten mit ungefähr 1200 Einträgen. Tabelle 14
zeigt exemplarisch zwei Einträge.

Tabelle 14: Beispielhafte Einträge für Tabelle A

Die hier anonymisiert dargestellten Beschreibungen (Spalte Description) [Prozess1] und [Pro-
zess2] sind auf Deutsch und enthalten Umlaute. Das Notebook bietet eine Funktion an, mit

DB_Param Process_ID AG_ID Description EquipmentNo Type

L100 2000 1234 [Prozess1] 2
L200 1000 5678 [Prozess2] 2

Fiktivies Beispiel für einen Datensatz im Klartext:

ID Process_ID Process Remark

12345 54A GlühbirneTauschen Glühbirne getauscht -Max

Datensatz anonymisiert:

ID Process_ID Process Remark

10000 A10 [Prozess1] [Objekt1] getauscht -[Person1]

der Sonderzeichen in Textfeldern erkannt werden können. Siehe Kapitel 6. Die Texte wurden
vom Jupyter Notebook Prototypen korrekt geladen und werden inklusive Umlaute richtig an-
gezeigt. Allerdings ist es wichtig, bei der weiteren Verarbeitung der Daten auf das korrekte
Encoding zu achten. Theoretisch wäre es möglich, das für die weitere Analyse ein Tool ver-
wendet wird, das keine Umlaute oder andere Sonderzeichen unterstützt. In diesem Fall könn-
ten die Umlaute zum Beispiel umgewandelt werden (ü → ue). Das Notebook bietet hierfür
standardmäßig keine Funktion an. Falls dies für einen Analyseschritt tatsächlich erforderlich
wäre, könnte man diese Funktion problemlos hinzufügen, etwa durch Einbindung eines Skrip-
tes.

Ein Histogram der ersten Spalte (DB_Param) zeigt, das 56 Einträge den Wert „Test“ enthal-
ten. Hier muss geklärt werden, ob es sich bei diesen Einträgen um Testeinträge handelt, also
um Einträge die erstellt wurden, um die Funktion des Systems zu überprüfen. In diesem Fall
enthalten diese Einträge keine realen, fachlichen Daten und sollten bei der Analyse nicht be-
rücksichtigt werden. Hierzu bietet das Notebook eine Filterfunktion, mit der Zeilen entfernt
werden können, die bestimmten Kriterien entsprechen. In diesem Fall: der Wert der Spalte
DB_Param ist gleich „Test“. Diese Funktion des Notebooks wird in Abschnitt 5.2.4 näher be-
schrieben.

Die Prozessbeschreibungen (Spalte Description) sind relativ kurz, im Mittel etwa 26 Zeichen
lang. Allerdings enthalten einige Beschreibungen als letztes Zeichen einen Zeilenumbruch
(\r\n). Dies könnte eventuell bei weiteren Analysen zu Problemen führen. Da der Zeilenum-
bruch das letzte Zeichen ist, enthält er auch keine zusätzlichen Informationen und sollte ent-
fernt werden. Das Notebook stellt für diesen Fall keine fertig implementierte Funktion bereit.
Allerdings ist es problemlos möglich, im Notebook eine neue ausführbare Zelle hinzuzufügen.
Damit kann das Problem direkt durch Code gelöst werden, oder ein passendes Skript impor-
tiert werden. In diesem Fall reicht eine Zeile Code in Python7. Zeilenumbrüche werden durch
das Notebook nicht speziell erkannt. Im Normalfall ist es durchaus denkbar, das ein Freitext-
feld Zeilenumbrüche enthält, etwa bei längeren Texten. Dies stellt allgemein kein Qualitäts-
problem dar. In diesem Fall sind die unnötigen Zeilenumbrüche durch manuelle Inspektion ei-
nes Ausschnitts der Daten entdeckt worden. Falls Zeilenumbrüche beim Analyseprojekt eine
Rolle spielen sollten, können entsprechende Funktionen leicht ins Notebook integriert wer-
den.

Als nächsten Schritt werden die Nullwerte in den jeweiligen Spalten berechnet. Abbildung 9
zeigt das Ergebnis. Die Spalten DB_Param, Process_ID und Type enthalten überhaupt keine
Nullwerte, die Spalte Description nur 2. Auffällig ist, das die Spalte AG_ID zu 68% Nullwer-
te enthält. An dieser Stelle sollte die Semantik dieser Spalte geklärt werden. Wahrscheinlich
ist diese Spalte optional. Falls nicht, handelt es sich um ein sehr großes Datenqualitätspro-
blem. Die Spalte EquipmentNo besteht zu 100% aus Nullwerten und enthält keinen Einzigen
Eintrag. Auch an dieser Stelle sollte geklärt werden, aus welchem Grund überhaupt keine
Werte vorhanden sind. Eventuell ist es möglich, das diese Spalte nicht benötigt wird. In die-
sem Fall kann sie entfernt werden. Beim Speichern der Ergebnisse können im Notebook Spal-
ten ausgewählt werden. Spalten die entfernt werden sollen, können einfach weggelassen wer-
den. Diese Funktion wird in Kapitel 5.2.5 näher beschrieben.

7 data['Description'] = data['Description'].str.replace('\r\n', '')

Das Notebook bietet die Möglichkeit, eine Qualitätsmetrik zu berechnen, die den Anteil der
Rechtschreibfehler in einem Textdatensatz misst. Siehe Kapitel 6.3.5 für eine Beschreibung.
Diese Metrik soll für das Feld Description beispielhaft berechnet werden: Hierzu genügt es,
die entsprechende Spalte anzugeben, sowie die Sprache Festzulegen (hier Deutsch). Als Er-
gebnis liefert die Berechnung einen Wert von 25%. Dieser Wert erscheint überraschend hoch,
schließlich handelt es sich um vordefinierte Beschreibungen, nicht um Freitexte. Allerdings
ist zu bedenken, dass die Metrik ein Standard-Wörterbuch für die Deutsche Sprache verwen-
det. Fachbegriffe und fachspezifische Abkürzungen sind nicht im Wörterbuch gelistet und
werden daher als Fehler gewertet. Für ein aussagekräftiges Ergebnis müsste eine Metrik ver-
wendet werden, die den domänenspezifischen Sprachgebrauch berücksichtigt. Allerdings
kann diese Metrik auch als Indikator dafür benutzt werden, ob ein Text von Standardtexten
abweicht, wie dieses Beispiel zeigt.

An dieser Stelle soll die exemplarische Analyse für diese Tabelle beendet werden. Im Kontext
dieser Analyse wurden zwei mögliche Änderungen an den Daten beschrieben: Testeinträge
entfernen und Bereinigen der Texten von unnötigen Zeilenumbruchzeichen. Diese Änderun-
gen müssen noch durch einen Domänenexperten geprüft werden. Falls sie aus fachlicher Sicht
Sinn machen, müssen sie gespeichert werden. Wenn die entsprechende Funktionen des Note-
books durchgeführt wurden, sind die Änderungen im Arbeitsspeicher, aber noch nicht dauer-
haft gesichert. Hierzu ist es im Notebook möglich, die Daten in eine .csv Datei zu schreiben.
Zusätzlich soll die Spalte EquipmentNo entfernt werden, weil sie nur Nullwerte enthält. Im
Notebook wird unter Save Data die zu speichernden Daten bestimmt: der Datensatz mit allen
Spalten außer EquipmentNo. Zusätzlich muss der Dateiname angegeben werden. Optional
können noch weitere Parameter wie das Trennzeichen und das verwendete Encoding (als
default-Wert wird UTF-8 genommen) gewählt werden. Damit die Datei gespeichert wird,
muss die Code-Zelle ausgeführt werden.

Als zweites betrachten wir eine weitere Tabelle mit 7 Spalten und ca. 150.000 Einträgen. Die-
se wird im folgenden als Tabelle B bezeichnet. Tabelle 15 enthält einen Beispiel-Eintrag.

Abbildung 9: Nullwerte für Tabelle A

Tabelle 15: Beispielhafter Eintrag für Tabelle B

Diese Tabelle enthält keine Textfelder oder andere unstrukturierte Daten. Die Berechnung der
Nullwerte liefert folgendes Ergebnis (Abbildung 10): Die Spalten ID, DB_Param, Producti-
onStart, Shift und Parts enthalten keine Nullwerte.

Die Spalte LFDNR enthält 2830 Nullwerte, etwa 2% der Einträge. Tabelle 16 enthält beispiel-
haft einen Eintrag, bei dem es für LFDNR keinen Wert gibt. Auffällig bei diesem Eintrag ist
außerdem, das für ProductionStart und ProductionEnd der gleiche Timestamp eingetragen ist.
Dies ist für insgesamt 19 Datensätze der Fall, bei denen LFDNR Null ist. In Tabelle B kommt
diese Konstellation (ProductionStart gleich ProductionEnd) ansonsten nicht mehr vor. Dies
deutet stark auf Probleme mit diesen Einträgen hin.

Tabelle 16: Beispiel für einen Eintrag mit LFDNR = Null

Die Spalte ProductionEnd enthält 444 Nullwerte. Eine weitere Analyse zeigt, dass alle diese
Einträge auch gleichzeitig einen Nullwert in der Spalte LFDNR haben.

Abbildung 10: Nullwerte für Tabelle B

ID LFDNR DB_Param ProductionStart ProductionEnd Shift TTN Parts

50000 L123 [Timestamp1] [Timestamp1] 0 1112223334 100

ID LFDNR DB_Param ProductionStart ProductionEnd Shift TTN Parts

90000 1234567 L100 [Timestamp1] [Timestamp2] 1 123456789 500

Die Spalte TTN enthält 5241 Nullwerte, etwa 4% der gesamten Einträge. Ein Histogram die-
ser Einträge zeigt, dass alle diese Einträge einen von 8 Werten für DB_Param haben, wobei
mit 3939 Einträgen 75% der Nullwert-Einträge auf 2 DB_Param-Werte entfallen. Diese Spal-
te enthält die Fertigungswerkstatt des zugehörigen Eintrags. In der gesamten Tabelle kommen
45 verschiedene DB_Param Werte vor.

Um im weiteren Vorgehen entscheiden zu können, ob es sich bei den zuvor beschriebenen
Anomalien in Tabelle B um relevante Datenqualitätsprobleme handelt, ist zusätzliches Domä-
nenwissen erforderlich, zum Beispiel über die Semantik der Einträge. Eine allgemeine Lösung
wäre es, alle Einträge mit Nullwerten auszufiltern. Allerdings könnten gerade diese Einträge
Wertvolle Informationen über Fehler und Probleme darstellen.

Als nächstes soll eine Tabelle betrachtet werden, die ein Schichtbuch darstellt, in dem Proble-
me bei der Produktion eingetragen werden. Die Tabelle hat insgesamt 15 Spalten und etwa
150.000 Einträge. Tabelle 17 bietet eine Übersicht aller Spalten sowie die dazu ermittelten
Nullwerte. Tabelle 18 zeigt einen beispielhaften Eintrag. Aus Gründen der Lesbarkeit wurden
mehrere Spalten weggelassen.

Tabelle 17: Spalten der Tabelle "Schichtbuch"

Tabelle 18: Beispiel für einen Eintrag in der Tabelle "Schichtbuch" für ausgewählte Spalten

Ein Histogramm der Spalte FtedBySystem zeigt, das alle Einträge den Wert 0 haben. Die für
diese Spalte vorhandene Dokumentation besagt, das dies immer der Fall ist. Genauere In-
formationen liegen nicht vor. Diese Spalte kann also für die weiteren Analysen entfernt wer-
den, da sie keine Informationen enthält. Der Prozentsatz der Nullwerte pro jeweiliger Spalte

Spalte Nullwerte

ID 0%
EREIGNISLISTE_ID 96%
DB_Param 0%
Process_ID 0%
Code 0%
Begin 0%
End 0%
TTN 24%
EquipmentNo 100%
Cause 68%
Remark 66%
Person_ID 99%
Duration_in_Seconds 0%
Affected_Parts 0%
isCreatedBySystem 0%

DB_Param Process_ID Code TTN Cause Remark

L321 1000 Y1234Z 1234567890 [Objekt] verklemmt

kann Tabelle 17 entnommen werden. In 9 Spalten kommen keine Nullwerte vor. Ähnlich wie
in Tabelle B enthält die Spalte EquipmentNo nur Nullwerte. Auch die Spalte EREIGNISLIS-
TE_ID hat einen sehr hohen Nullwertanteil von 96%. In diesen beiden Fällen sollte geklärt
werden, warum dies so ist. Etwa 24% der Einträge der Spalte TTN sind Nullwerte. Auch hier
stellt sich die Frage, welche Semantik ein Nullwert hat. Die Spalte Person_ID besteht zu 99%
aus Nullwerten. Eine weitergehende Analyse ergibt in diesem Fall, das diese Spalte optional
ist und von den Werkern in der Regel nicht eingetragen wird. Bei den Spalten Cause und Re-
mark handelt es sich um Freitextfelder. Diese Enthalten Kommentare und Anmerkungen, die
von den Werkern zu den entsprechenden Einträgen verfasst wurden. Die Felder haben einen
Nullwert-Anteil von 68% beziehungsweise 66%. Betrachtet man nur die Spalten, in denen so-
wohl Cause als auch Remark keine Einträge besitzen, so reduziert sich der Anteil der Null-
werte auf etwa 45%. Nur etwa 11% der Einträge haben einen Wert für beide Spalten, sowohl
Cause als auch Remark. Von diesen Einträgen haben allerdings über 61% einen identischen
Wert, jeweils den gleichen für Cause und Remark. Insgesamt haben nur knapp 4% der Einträ-
ge, bezogen auf die gesamte Tabelle, unterschiedliche Texte. Abbildung 11 illustriert diesen
Zusammenhang. Dies deutet auf eine Redundanz dieser beiden Felder hin. Die Einbeziehung
domänenspezifischen Wissens zeigt dass dieses Problem bereits bekannt ist und diese Felder
möglicherweise zusammengelegt werden sollen.

Das Feld Duration_in_Seconds gibt die Dauer der Störung in Sekunden an. Ein Histogramm
dieser Spalte zeigt, das die 7 häufigsten Werte alles Vielfache von 60 sind, also runde Minu-
tenangaben darstellen. Insgesamt sind etwa 26% der Werte direkte Vielfache von 60. Knapp
0,7% der Einträge haben den Wert 0. An dieser Stelle stellt sich die Frage, ob es sich hierbei
um Fehler in den Daten handelt, oder ob eine Dauer von 0 Sekunden eine besondere fachliche
Bedeutung hat und deshalb plausibel ist. Das Notebook integriert eine Metrik zum Erkennen
von Ausreißern, die hier exemplarisch für die Spalte Duration_in_Seconds angewendet wer-
den soll. Hierzu werden für die ersten hundert Einträge der LoF-Wert ermittelt. Siehe hierzu
Kapitel 6.3.3. Abbildung 12 zeigt einen Plot des Ergebnisses, der auch im Notebook ange-
zeigt wird. Die x-Achse repräsentiert dabei den Eintrag, die y-Achse den ermittelten LoF-
Wert. Werte deutlich über 2 deuten bei dieser Metrik auf mögliche Ausreißer hin. Laut Plot
gibt es nach dieser Metrik 3 Kandidaten für Ausreißer, zum Beispiel die erste Spitze in der
Grafik mit einem Wert von 4,75. Im folgenden soll nur der erste Eintrag näher betrachtet wer-

Abbildung 11: Prozentuale Verteilung für die Felder Cause und Remark

Beide Felder Null 45%

Ein Feld Null 44%

Identisch 7%
Unterschiedlich 4%

Felder Cause und Remark

den. Tabelle 19 zeigt den Eintrag mit ausgewählten Spalten. Wie alle anderen Beispiele auch
ist die Darstellung am echten Eintrag angelehnt aber vollständig anonymisiert. Der Wert der
Spalte Durations_in_Seconds ist mit 13 deutlich niedriger als der Durchschnitt für diese Spal-
te, der bei 480 liegt. Allerdings kann keine Aussage darüber getroffen werden, inwieweit der
Wert einen Ausreißer darstellt. Falls ein Ausreißer vermutet wird, muss eine detailliertere
Analyse erfolgen.

Tabelle 19: Eintrag mit LoF-Wert von 4,75

An dieser Stelle soll die Validierungsfunktion demonstriert werden. Hierzu wird das Feld Pro-
cess_ID überprüft. Die zuvor beschriebene Tabelle A schlüsselt die in dieser Spalte enthalte-
nen Codes weiter auf. Für dieses Beispiel wird vereinfachend überprüft, ob ein Code aus der
Tabelle Schichtbuch auch in der Tabelle A vorkommt. Die Metrik liefert als Resultat, dass
dies für jeden einzelnen Eintrag der Fall ist. Dies überrascht nicht, da die Daten aus einer rela-
tionalen Datenbank stammen, die solche Konsistenzkriterien automatisch sicherstellt. Eine
Überprüfung wäre aber sinnvoll, falls die Daten zum Einlesen komplexeren Vorverarbei-
tungsschritten unterzogen werden müssten. Auch nach dem Ausführen von Transformationen
auf den Daten kann eine Überprüfung Sinn machen, um potentielle Fehler aufzuspüren.

Die Spalten Cause und Remark sind Freitextfelder, enthalten also unstrukturierte Daten in
Form von Texten, die das Problem näher beschreiben. Eine weitergehende Analyse der in den
Texten enthaltenen Informationen mit Algorithmen, die natürliche Sprache verarbeiten, wäre
möglicherweise interessant. Dabei stellt sich die Frage nach der Qualität der Textdaten. Der
Notebook Prototyp bietet eine Metrik, mit der die Textähnlichkeit zwischen dem zu untersu-
chenden Datensatz, und einer Reihe von vorhandenen Trainingsdatensätzen ermittelt werden

Abbildung 12: LoF-Werte für die ersten 100 Einträge der
Spalte Duration_in_Seconds

DB_Param Process_ID Code TTN Cause Remark Duration_in_Seconds

B123 2000 A1234Z 9876543210 [TTN1]->[TTN2] [TTN1]->[TTN2] 13

kann. Die Idee ist, das die Ergebnisse eines Machine Learning Algorithmus umso besser sind,
je mehr sich die Trainings- und die Eingabedaten gleichen [18]. Für Details siehe die Be-
schreibung der Metrik in Abschnitt 6.3.4. Für diese Beispielhafte Anwendung der Textähn-
lichkeitsmetrik werden die Textdaten aus den Spalten Cause und Remark entnommen. Wegen
der zuvor beschriebenen Situation, das die beiden Spalten nur in 4% der Fälle unterschiedli-
che Einträge enthalten, werden beide Spalten zusammen als ein Textdatensatz betrachtet. Die-
ser Textdatensatz besteht also aus Einträgen der Spalten Cause und Remark, jeweils ohne
Nullwerte. Die einzelnen Einträge werden mit einem Zeilenumbruch getrennt. Für den oben
beschriebenen Fall, dass Cause und Remark einen identischen Text enthalten, wird der Text
nur ein mal verwendet, das Duplikat wird nicht berücksichtigt. Es werden keine weiteren Vor-
verarbeitungsschritte durchgeführt. Das Notebook bindet die Textähnlichkeitsmetrik ein, al-
lerdings erfordert das Zusammenlegen von Spalten, sowie die Bereinigung von Duplikaten
extra Code. Dies kann problemlos durch Hinzufügen einer zusätzlichen ausführbaren Zelle er-
reicht werden. Abbildung 13 zeigt den Code, der für dieses Beispiel benutzt wurde.

Da dieses Fragment Domänenspezifisch ist, wird es nicht in das Standard-Notebook integriert,
sondern als Skript bereit gestellt. An dieser Stelle zeigt sich die Flexibilität des Notebooks als
großer Vorteil. Durch einfaches einbinden von Code können auch Einzelfall-spezifische Ver-
arbeitungsschritte unterstützt werden.

Nachdem die Textdaten in das von der Textähnlichkeitsmetrik erwartete Format gebracht
wurden, kann die Metrik einfach durch Ausführen der Code-Zelle berechnet werden. Tabelle
20 zeigt die Ergebnisse. Die erste Spalte zeigt die vorhandenen Trainingsdatensätze. Die 6
verwendeten Datensätze wurden beispielhaft ausgewählt. Für eine Beschreibung der Daten-
sätze siehe Abschnitt 9.3. Die zweite Spalte zeigt die ermittelte Textähnlichkeit, ein Wert zwi-
schen 0 und 1. Je höher der Wert, desto ähnlicher sind sich die entsprechenden Textdaten. Die
Tabelle ist nach der Textähnlichkeit sortiert.

Abbildung 13: Code-Zelle im Jupyter Notebook. Der Code erzeugt den Textdatensatz
aus den Spalten Cause und Remark

Tabelle 20: Die Ergebnisse der Textähnlichkeitsmetrik für den Textdatensatz aus den Spalten
Cause und Remark

Der Brown Fiction Datensatz erzielt die höchste Ähnlichkeit, mit einem Wert von 0,62. Ste-
hen nur diese 6 Trainingsdatensätze zur Verfügung, so wäre die Empfehlung des Systems, die
Brown Fiction Daten als Trainingsdaten zu verwenden. Allerdings ist der erzielte Wert sehr
niedrig. Es ist sehr wahrscheinlich, dass die Qualität der Analyse dadurch stark beeinträchtigt
werden würde. Dies liegt daran, dass die für dieses Beispiel verwendeten Trainingsdatensätze
hauptsächlich aus literarischen und journalistischen Texten bestehen. Daneben handelt es sich
bei den Datensätzen NPS und Twitter um Daten aus einem Onlinechat beziehungsweise um
Daten der Social Media Plattform Twitter. Diese Datensätze unterscheiden sich stark von
technischen Anmerkungen im Produktionskontext. Die Kommentare enthalten viel fachspezi-
fisches Vokabular und Abkürzungen, wie etwa „AEG“ für „Ausschalten, Einschalten, Geht“.
Tabelle 21 zeigt hierfür ein Beispiel.

Tabelle 21: Beispiel für Domänenspezifische Abkürzungen

Ein weiterer Aspekt ist das die Textfelder oft Kommentare der Form TTN1 → TTN2 enthal-
ten, was sich auf bestimmte domänenspezifische Prozesse bezieht. Eine TTN ist dabei ein
technische Bezeichner, zum Beispiel in Form einer Zehnstelligen Zahl. Tabelle 22 bietet hier-
für ein Beispiel. Das Beispiel zeigt auch die zuvor beschriebene Konstellation, das Cause und
Remark den gleichen Inhalt haben, und dadurch Informationen unnötig dupliziert werden.

In einem zweiten Schritt wurde die Textähnlichkeitsmetrik nochmal ohne diese Kommentare
berechnet. Hierzu wurde vereinfachend alle Kommentare gefiltert, die die Zeichenkette „->“
enthalten. Allerdings änderte sich das Ergebnis der Metrik hierdurch nicht.

Tabelle 22: Beispiel für einen Kommentar der Form TTN->TTN

DB_Param Process_ID Code TTN Cause Remark

L123 2000 A1234Y 1234567890 Bleibt beim [Vorgang] stehen. AEG

DB_Param Process_ID Code TTN Cause Remark

L345 3000 Y4321X 1234567890 → 9876543210 1234567890 → 9876543210

Trainingsdatensatz Text Similarity

brown_fiction 0,62
conll 0,58
brown_reviews 0,55
treebank 0,54
nps 0,51
twitter 0,47

Diese Kommentare stellen eigentlich technische, strukturierte Information dar, und kommen
so in natürlicher Sprache nicht vor. An dieser Stelle stellt sich die Frage, ob solche In-
formationen nicht besser in einer Strukturierten Form repräsentiert werden sollten. So ist es
zum Beispiel bei einem Textfeld nicht möglich die TTN zu validieren, um etwa Fehlern vor-
zubeugen. Anstatt die Informationen direkt aus den strukturierten Daten zu übernehmen
müssten sie bei Analysen erst aufwendig durch Verarbeitung von Strings extrahiert werden,
etwa durch reguläre Ausdrücke.

Das Notebook bietet eine weitere Qualitätsmetrik für Textdaten: es ist möglich, den Anteil an
Rechtschreibfehlern in einem Text zu messen. Hierzu werden als Eingabedaten die Spalten
Cause und Remark verwendet. Die Vorverarbeitung erfolgt genauso wie im obigen Beispiel
für die Textähnlichkeit. Nullwerte werden entfernt, zusätzlich wird ein Text nur einmal be-
nutzt, falls Cause und Remark den gleichen Inhalt haben. Als Sprache wird Deutsch aus-
gewählt. Die Metrik liefert als Ergebnis einen Wert von 23%. Die Kommentare enthalten in
der Tat Rechtschreibfehler. Tabelle 23 zeigt als Beispiel einen solchen Eintrag. Die Felder
enthalten Kommentare über Probleme, die vom Personal unter Produktionsbedingungen ein-
getragen wurden. Neben Rechtschreibfehlern kommen auch für normalen Sprachgebrauch un-
gewöhnliche Abkürzungen vor, etwa um Zeit zu sparen. Tabelle 24 bietet hierfür ein Beispiel.
Bei „Q.“ handelt es sich wahrscheinlich um eine Abkürzung für Qualität.

Tabelle 23: Beispiel für einen Rechtschreibfehler in den Spalten Cause und Remark

Tabelle 24: Beispiel für eine Abkürzungen in den Spalten Cause und Remark

Die Metrik basiert auf einem Standardwörterbuch der Deutschen Sprache. Fachbegriffe sind
nicht bekannt und werden als Fehler gewertet. Der Wert von 23% ist daher wahrscheinlich
höher als der reale Anteil an Rechtschreibfehlern. In diesem Fall könnte ein genaueres Ergeb-
nis erzielt werden, wenn eine Metrik verwendet wird, die Fachwissen mit einbezieht. Bei
Fachausdrücken und Abkürzungen handelt es sich zwar nicht um Rechtschreibfehler im ei-
gentlichen Sinne, trotzdem bereiten sie Probleme bei der Verarbeitung durch Standardtools.
Diese Metrik selbst ist ein gutes Beispiel dafür. So wurde am Anfang dieser Analyse in der
Tabelle A für die Spalte Description ein Rechtschreibfehleranteil von 25% berechnet. Dies ist
allerdings unwahrscheinlich, weil es sich um statische Beschreibungstexte handelt. Der Grund
wird eher in einem hohen Anteil an Fachvokabular liegen.

Insgesamt deuten die Ergebnisse darauf hin, das eine Analyse der Textfelder Cause und Re-
mark durch Standardtools wahrscheinlich keine guten Resultate liefern würde, weil die Art

DB_Param Process_ID Code TTN Cause Remark

A123 1000 Y1234Z 1234567890 [Vorgang1]. Danach geht niochts mehr.

DB_Param Process_ID Code TTN Cause Remark

A456 2000 Y1234Z 9876543210 [Objekt] schlechte Q.

der vorliegenden Textdaten sich stark sauberen Textdaten wie etwa Zeitungstexten unter-
scheidet.

9 Evaluation

In dieser Arbeit wurde ein Jupyter Notebook entwickelt, das verschiedene Datenqualitätsme-
triken anbietet. Dabei stellt sich die Frage, ob diese Metriken sich auch für große Datensätze
skalieren lassen. In diesem Kapitel soll daher exemplarisch eine Evaluation durchgeführt wer-
den. Hierzu wurden zwei Metriken beispielhaft ausgewählt und in Spark implementiert. Siehe
hierzu Kapitel 7. Diese Metriken entsprechen den bereits in das Notebook eingebundenen Me-
triken, nutzen aber Apache Spark. Die Evaluation soll klären, in wie weit sich dadurch Vortei-
le im Hinblick auf die Laufzeit bei Anwendung auf große Datensätze ergeben. Abschnitt 9.1
beschreibt dabei die verwendete Methodik. Der Aufbau der Experimente, insbesondere die
Konfiguration des Clusters, wird in Abschnitt 9.2 näher beschrieben. In Abschnitt 9.4 werden
die Ergebnisse präsentiert und in Abschnitt 9.5 analysiert. Abschnitt 9.6 enthält eine kurze
Zusammenfassung.

9.1 Methodik

Die Evaluation der für Spark implementierten Metriken erfolgt durch Laufzeitmessungen mit
Hilfe einer Cloud-basierten Infrastruktur, basierend auf Openstack [40]. Hierzu wurde ein bei-
spielhaftes Spark-Cluster eingerichtet. Die Metriken werden als Applikationen implementiert
und auf dem Cluster ausgeführt. Siehe Kapitel 7 für die Beschreibung der Implementierung.
Zur Messung der Laufzeit wird die von Spark bereitgestellte Web-API verwendet. Diese bie-
tet Informationen zum Cluster und den darauf ausgeführten Applikationen. Unter anderem
gibt es zu jeder beendeten Applikation die Information zur Laufzeit in der Spalte Duration.
Für die Konfiguration des Clusters wurde dabei so weit wie möglich eine Standardkonfigura-
tion verwendet. Siehe hierzu das Kapitel 9.2.

Zum Vergleich werden die ausgewählten Metriken verwendet, wie sie im Jupyter Notebook
Prototypen angeboten werden. Um möglichst vergleichbare Ergebnisse zu erhalten, werden
hierzu spezielle Skripte verwendet, welche die jeweiligen Metriken automatisch auf Ver-
gleichbare Weise berechnen, wie dies im Notebook durch Interaktion des Benutzers gesche-
hen würde. Diese Skripte sind nicht für eine konkrete, interaktive Analyse gedacht sondern
nur strikt für Evaluationszwecke. Jedes Skript stellt dabei ein Experiment dar, dass Daten ein-
liest, die Metrik berechnet und die Ergebnisse in eine Datei schreibt. Dies ist notwendig, um
eine Vergleichbarkeit mit Spark zu erreichen. Eine Spark-Applikation arbeitet im allgemeinen
nach folgendem Muster: Nachdem ein Job beim Spark Master eingereicht wurde, wird dieser
an Worker im Cluster verteilt. Diese lesen die Daten ein und verarbeiten sie. Die Ergebnisse
stehen nach Fertigstellung im HDFS-Dateisystem in Form von Dateien zur Verfügung. Es
sollte also auch das Einlesen und Schreiben der Daten in der Zeitmessung berücksichtigt wer-
den. Für die Evaluation wurde die Zeit gemessen, die die Metriken bis zur Bereitstellung des
Ergebnisses benötigen.

9.2 Experimentaufbau

Für die Experimente wurde folgender Aufbau verwendet:

In der Weboberfläche der bereitgestellten Openstack Cloud-Plattform ist es unter dem Punkt
Data Processing möglich, ein Cluster einzurichten. Hierzu müssen Vorlagen konfiguriert
werden. Unter dem Unterpunkt Node Group Templates wurden hierzu über den Button Crea-
te Template zwei Vorlagen erstellt, jeweils für den Master und die Worker. Zuerst muss das
Plugin und die Version ausgewählt werden, hier Apache Spark in der Version 1.3.1. Danach
muss im Konfigurationsfenster das entsprechende Flavor ausgewählt werden. Dieses Flavor
legt fest, welche Spezifikation die einzelnen Knoten des Clusters haben sollen, also die An-
zahl der CPUs, RAM, Speicherplatz etc. Für die Evaluation wurde das Flavor m1.large
gewählt, und zwar sowohl für den Master als auch für die Worker. Dieses Flavor bietet 4
CPUs, 8 GB Ram und 80 GB Speicherplatz. Unter dem Reiter Node Processes müssen bei der
Vorlage für den Worker die Prozesse datanode und slave ausgewählt werden. Für den Master
sind es namenode und master. Im Configure Node Group Template wurde die Option Auto-
configure verwendet, ansonsten wurden keine weiteren Konfigurationsschritte vorgenommen.

Danach wird unter dem Unterpunkt Cluster Templates eine Vorlage für das Cluster erstellt.
Auch hier wird im entsprechenden Konfigurationsdialog die Option Auto-configure verwen-
det8. Unter dem Reiter Node Groups können die im Schritt zuvor erstellten Vorlagen hinzuge-
fügt werden. Für die Experimente werden ein Master und 4 Worker verwendet. Ansonsten
wurden keine weiteren Änderungen an den Standardwerten vorgenommen. Nachdem die Vor-
lage erstellt wurde, kann das Cluster mit Launch Cluster gestartet werden. Hierzu muss das
Image ausgewählt werden9. Unter Keypair muss ein Schlüsselpaar angegeben werden, mit
dem man Zugriff auf die Maschinen im Cluster erhält. Unter Compute->Access & Security,
Reiter Key Pairs können Schlüssselpaare verwaltet werden. Um sich auf den Maschinen via
SSH einloggen zu können werden diese Schlüssel benötigt, eine Authentifizierung über ein
Passwort ist zu Beginn nicht möglich.

Die Zeitmessung für die regulären Metriken erfolgte auf dem Demonstrationssystem. Hierbei
handelt es sich um eine Virtuelle Maschine mit dem gleichen Flavor (m1.large) wie die Kno-
ten das Spark-Clusters. Das Betriebssystem ist Windows Server 200810.

Die Testdaten werden dem NHTSA Complaints Datensatz entnommen. Für die Validierungs-
metrik wurden exemplarisch alle Einträge der Spalte 8 verwendet. Diese Spalte heißt FAIL-
DATE und enthält das Datum, an dem der Vorfall passiert ist. Im Datensatz ist diese Spalte
ein String mit 8 Zeichen. Dieser repräsentiert das Datum im Format „YYYYMMDD“. Dies
bedeutet, dass die ersten vier Zeichen das Jahr angeben. Zeichen 5 und 6 stellen den Monat
dar, und die letzten beiden Zeichen den Tag. Mit dieser Metrik wird überprüft, ob dieses For-
mat eingehalten wird. Dieser Datensatz hat eine Größe von ca. 12MB.

8 Zusätzlich wurden unter dem Reiter General Parameters die Optionen Enable NTP Service und Enable Swift deak-
tiviert, weil sich das Cluster ansonsten nicht starten lies.

9Verwendet wurde für die Experimente das Image sahara-liberty-spark-1.3.1-ubuntu-14.04.

10 Das verwendete Image ist windows_2008_r2

Für die Textähnlichkeit wird dabei Spalte 20 verwendet. Bei dieser Spalte handelt es sich um
ein Freitextfeld, das einen Kommentar zur jeweiligen Beschwerde enthält. Für die Textähn-
lichkeit werden drei Experimente durchgeführt. Einmal wird die gesamte Spalte als Text-
datensatz verwendet. Dieser Text ist sehr groß, knapp 600MB. Für das zweite Experiment
wurde exemplarisch ein kleiner Datensatz verwendet. Dieser besteht aus knapp 4500 Einträ-
gen. Hierzu wurden beispielhaft nur die Einträge vom Januar 2005 verwendet. Dieser hat eine
Größe von etwa 2MB.

9.3 Verwendete Textkorpora

Für die Berechnung der Textähnlichkeitsmetrik muss mindestens ein Trainingsdatensatz vor-
liegen. Siehe hierzu Abschnitt 6.3.4. Für die Anwendung der Metrik in dieser Arbeit werden
deshalb 6 Trainingskorpora beispielhaft verwendet. Diese sollen im folgenden genannt und
kurz beschrieben werden:

Der Brown Korpus besteht aus einer großen Sammlung von Texten aus den 60er Jahren, die
in den Vereinigten Staaten im Druck erschienen sind. Der Korpus ist in verschiedene Katego-
rien unterteilt. In dieser Arbeit werden die Kategorien Fiction und Review verwendet. Diese
bilden jeweils einen Datensatz. [34]

Der CoNLL Korpus enthält Texte aus dem Wall Street Journal. Enstanden ist er im Rahmen
der Conference on Computational Natural Language Learning im Jahre 2000. [35]

Der NPS Chat Datensatz besteht aus Nachrichten eines Onlinechats. Diese wurden im Jahre
2006 gesammelt und aus Datenschutzgründen anonymisiert. [11]

Der Twitter Korpus basiert auf Daten der Social Media Platform Twitter11. Hierzu wurden
Tweets gesammelt und aufbereitet [12]. Die Daten sind unter [51] verfügbar.

Siehe hierzu auch die Anwendung des Notebooks auf Daten aus der Praxis in Kapitel 8.

9.4 Ergebnisse

Tabelle 25 zeigt die Ergebnisse für die Validierungsmetrik. Die Spalten Notebook und Spark
enthalten die Laufzeit für die jeweilige Version. Die Spalte Faktor gibt an, um welchen Faktor
die Implementierung in Spark schneller ist als die Standardversion.

Tabelle 25: Laufzeiten für die Validierungsmetrik für den kompletten Datensatz aus Spalte 8

11 https://twitter.com/

Laufzeit

Notebook Spark Faktor

Validierung 18s 5s 3,6

Tabelle 26 zeigt die Ergebnisse für die Textähnlichkeitsmetrik. Die Spalte Datensatz gibt an,
welcher Datensatz verwendet wurde. Siehe hierzu den vorgehenden Abschnitt 9.2 für Details.
Die Spalte Notebook enthält die Ergebnisse für die reguläre Implementierung, wie sie im No-
tebook verwendet wird. Die Spalte Spark enthält die Werte für die Implementierung mit
Spark. Bei den Werten handelt es sich um die Laufzeit mit Angabe der Einheit. Die Textähn-
lichkeitsmetrik für Spark liegt in zwei Varianten vor, Standard und Variante 2. Variante 2 ver-
wendet einen anderen Tokenizer. Der Tokenizer der Standard-Variante benötigt ein Modell,
das aus einer Datei geladen werden muss. Siehe hierzu die Implementierungsdetails in Ab-
schnitt 7.1.2. Die reguläre Metrik gibt es nur in einer Variante, siehe hierzu Abschnitt 6.3.4.
Diese verwendet einen vergleichbaren Tokenizer wie die Standard-Variante für Spark. Es gibt
für Variante 2 keine direkt vergleichbare Metrik im Notebook, deshalb wird kein Wert ange-
geben. Siehe hierzu auch die Diskussion in Abschnitt 9.5. Die Spalte Faktor gibt an, um wel-
chen Faktor die Laufzeit durch die Implementierung in Spark verbessert werden konnte. Für
die vereinfachte Metrik bezieht sich diese Spalte auf die Laufzeit der Standardimplementie-
rung für Spark.

Tabelle 26: Laufzeiten für die Textähnlichkeitsmetrik

Beide Textähnlichkeitsmetriken konnten für den großen Textdatensatz kein Ergebnis berech-
nen. Die Spark Weboberfläche gab den Zustand des Jobs als „gescheitert“ an. Eine Analyse
ergab, dass dies durch eine Exception verursacht wurde, die auf Speicherprobleme hindeutet.
Siehe hierzu auch Abschnitt 9.5.

9.5 Analyse

In diesem Abschnitt sollen die zuvor in 9.4 präsentierten Ergebnisse analysiert und diskutiert
werden.

Die Ergebnisse für die Validierungsfunktion können Tabelle 25 entnommen werden. Die Va-
riante im Notebook benötige 18s. Die Implementierung in Spark lieferte das Ergebnis in 5s,
eine Verbesserung um Faktor 3,6. Eine mögliche Erklärung für das sehr gute Ergebnis ist, das
sich dieses Problem leicht verteilt bearbeiten lässt. Der Datensatz enthält über 1 Million Ein-
träge. Die Metrik muss für jeden Wert prüfen, ob dieser dem Format entspricht. Allerdings
kann dies unabhängig von den anderen Werten geschehen. So kann das Problem leicht auf
mehrere Worker verteilt werden. Dieses Beispiel zeigt, dass die Verwendung von Spark bei
großen Datensätzen zu einem deutlichen Gewinn an Performance führen kann. Zu beachten

Textähnlichkeitsmetrik Laufzeit

Datensatz Notebook Spark Faktor

Standard 2MB 24s 23s 1,04
Variante 2 2MB - 11s 2,1
Standard 600MB 180min Fehler
Variante 2 600MB - Fehler

ist, dass der Cluster in Standard-Konfiguration verwendet wurde. Auch an der Metrik selbst
wurden keine komplexen Optimierungen durchgeführt, etwa durch Anpassung diverser von
Spark angebotener Parameter. Es wäre denkbar, dass noch deutlich bessere Laufzeiten erzielt
werden können, falls entsprechende Schritte unternommen werden.

Die Ergebnisse für die Textähnlichkeitsmetrik werden in Tabelle 26 dargestellt. Die Ergebnis-
se für den kleinen Datensatz sind vielversprechend. Die Standardvariante benötigt in Spark
23s und ist damit etwas schneller als die Standardimplementierung im Notebook mit 24s. Va-
riante 2 ist mit 11s deutlich schneller, und zwar um Faktor 2,1. Dies liegt daran, dass ein an-
derer Tokenizer verwendet wird. Siehe Abschnitt 2.5.1 im Grundlagenkapitel für eine kurze
Einführung zu Tokenizern. Dieser benötigt zur Instanziierung kein Modell aus einer externen
Ressource. Im Gegensatz dazu muss der Maximum Entropy Tokenizer (TokenizerME) ein
Modell aus einer Datei laden, bevor er verwendet werden kann. Diese Datei ist mehrere
Megabyte groß. Durch die Verwendung eines anderen Tokenizers unterscheidet sich das Er-
gebnis der Metrik teilweise von der Standardimplementierung. Dadurch ist es möglich, dass
die Qualität beeinträchtigt wird. Aus diesem Grund wird diese Implementierung nur für Spark
zu Demonstrationszwecken verwendet. Es gibt keine vergleichbare Implementierung für das
Notebook. Beide Tokenizer stellen kein Serializable Interface zur Verfügung. Dieses wird von
Spark aber benötigt, falls das Objekt nur ein mal instanziiert werden soll. Eine Spark Applika-
tion im Cluster-Modus wird verteilt auf mehreren Workern bearbeitet. Durch dieses Interface
kann das Objekt allen Workern zur Verfügung gestellt werden. Eine Alternative ist es, eine
statische Funktion zu verwenden. Innerhalb dieser Funktion wird das Objekt instanziiert. So-
mit ist es möglich, auch Objekte ohne Implementierung des Serializable Interfaces zu verwen-
den. Allerdings wird das Objekt dann bei jedem Aufruf der Funktion neu erzeugt. Bei Objek-
ten, deren Instanziierung aufwendig sind, etwa beim TokenizerME, der eine externe Datei la-
den muss, führt dies zu Performanzproblemen. Im Fall der Textähnlichkeitsmetrik wird der
Tokenizer einmal pro Textdatensatz aufgerufen. In diesem Fall also insgesamt 7 mal. Es wur-
den für diese Evaluation beispielhaft 6 Trainingssätze verwendet, hinzu kommen die Eingabe-
daten. Dadurch ist die Implementierung insgesamt trotzdem etwas schneller also die
Standardversion im Notebook. Variante 2 verwendet einen Tokenizer, der viel schneller in-
stanziiert werden kann. Dadurch ist die Laufzeit auch deutlich besser.

Dieses Problem ist auch der Grund, warum die Part-Of-speech Metrik nicht in Spark imple-
mentiert werden konnte. Siehe für diese Metrik Abschnitt 6.3.6. Hierzu wird ein Part-of-S-
peech Tagger benötigt, der ähnlich wie der TokenizerME ein Modell aus einer externen Datei
lädt. Bei dieser Metrik müsste allerdings die Funktion für jede Zeile des Datensatzes aufgeru-
fen werden. Beim NHTSA Complaints Datensatz sind das mehr als 1,3 Millionen Zeilen. Die
Modelldatei für den Part-of-speech tagger müsste dann 1,3 Millionen mal geladen werden. In
diesem Fall wäre eine solche Implementierung nicht sinnvoll.

Es stellt sich die Frage, ob es möglich wäre, das Serializable Interface nachträglich zu imple-
mentieren. Dabei wäre auch zu prüfen, mit welchem Aufwand dies verbunden wäre. Zusätz-
lich muss geklärt werden, wie sich das auf die Performance auswirken könnte. Die Spark Do-
kumentation zum Tuning [49] erwähnt, dass die Serialisierung in Java oft langsam sein kann.

Für den kompletten Textdatensatz konnte die Textähnlichkeitsmetrik in Spark kein Ergebnis
erzielen. Dies gilt auch für Variante 2. Der Job wurde durch Spark abgebrochen, und der Zu-
stand auf „gescheitert“ gesetzt. In den Logs wird als Ursache die folgende Exception genannt:

java.lang.OutOfMemoryError: Java heap space

Offenbar gibt es Probleme mit dem Speicher. Die Dokumentation von Spark bietet eine Seite,
die Informationen zum Tuning enthält [49]. Entsprechend dieser Dokumentation können Java-
Objekte deutlich mehr Speicherplatz verbrauchen, als die reinen Werte, die sie repräsentieren.
Dies gilt insbesondere für Strings. Es wird empfohlen, Arrays anstelle der Java Collection
Classes zu verwenden. Zusätzlich sollen möglichst primitive Datentypen verwendet werden.
Die aus DKPro Similarity eingebundene Textähnlichkeitsmetrik erwartet als Eingabe einer
Liste von Strings für jeden der beiden Texte, die miteinander verglichen werden sollen. Jedes
Element dieser Liste stellt einen Token dar. Ein Token ist dabei ein Wort oder eine kleine
Gruppe von Worten, die zusammengehören. Bei einem großen Text muss also eine Liste mit
sehr vielen Elementen verwaltet werden. Zusätzlich handelt es sich bei jedem dieser Elemente
um einen String. Jeder der Spark Worker verfügt über 8 GB Arbeitsspeicher. Die Standard-
Variante des Notebooks wurde auf einem Rechner mit gleichen Ressourcen ausgeführt und
war in der Lage, ein Ergebnis zu berechnen. Allerdings dauerte dies für den gesamten Daten-
satz 3 Stunden. Offenbar erschweren Besonderheiten von Spark die Berechnung dieser Metrik
für große Datensätze.

Eine mögliche Lösung des Problems könnte es sein, die Textähnlickeitsmetrik neu zu imple-
mentieren. Dabei müsste statt einer Liste von Strings eine Darstellung gewählt werden, wel-
che die verteilte Ausführung von Spark-Applikationen berücksichtigt. Eine solche Implemen-
tierung übersteigt jedoch bei weitem den Umfang der Arbeit.

9.6 Zusammenfassung

In diesem Kapitel wurden Experimente durchgeführt, mit der die Laufzeit ausgewählter Me-
triken ermittelt wurde. Dabei wurde verglichen, in wie weit sich die Laufzeit durch eine Ver-
wendung von Spark reduzieren lässt. Für die Validierungsmetrik konnte bereits durch eine
einfache Implementation in Spark in ein deutlicher Performancegewinn erzielt werden. Die
Version im Notebook, die auf Python basiert, benötigte 18s, die Variante in Spark nur 5. Eine
Verbesserung um den Faktor 3,6.

Für die Textähnlichkeit konnte für einen kleinen Beispieldatensatz eine leichte Verbesserung
erzielt werden. Hier ist die Standardimplementierung mit 24s etwas langsamer als die Varian-
te in Spark mit 23s. Um diese Metrik berechnen zu können, ist ein Tokenizer nötig, ein Ma-
chine Learning Algorithmus der ein Modell aus einer externen Datei laden muss. Die verwen-
dete Bibliothek bietet für diesen Tokenizer kein Serializeable Interface an. Dadurch muss er
in Spark für jeden Textdatensatz neu instanziiert werden. In diesem Experiment 7 mal. Eine
Alternative Implementierung verwendet einen Tokenizer, der deutlich einfacher instanziiert
werden kann. Diese Implementierung ist mit 11s deutlich schneller als die Standard-Vairante
in Spark. Da der Tokenizer ein anderes Ergebnis liefert, kann diese Implementierung aber
nicht direkt übernommen werden. Es sollte geprüft werden, ob die Qualität den Anforderun-
gen genügt. Dieses Beispiel zeigt aber, dass eine deutliche Performancesteigerung möglich
sein könnte. Hierzu muss das zuvor erwähnte Problem der Serialisierbarkeit gelöst werden.
Dieses Problem betrifft auch viele weitere Objekte, etwa den Part-of-Speech tagger. Auch
dieser muss ein Modell aus einer externen Quelle laden. Kann das Objekt nicht serialisiert und

an die Worker geschickt werden, so muss es bei jedem Aufruf neu instanziiert werden, was zu
massiven Performance-Verlusten führt. Als mögliche Alternative wäre denkbar, diese Metri-
ken in Anlehnung an die Implementierungen in den jeweiligen Bibliotheken neu zu entwi-
ckeln. Dabei könnten die Besonderheiten von Spark beim Entwurf von Anfang an berücksich-
tigt werden. Eventuell wäre es dadurch möglich, auch das Problem der Textähnlichkeitsmetrik
mit sehr großen Texten zu lösen. Die Verwendung des vollen Textdatensatzes aus NHTSA
Complaints führte bei beiden Varianten zu Fehlern wegen Speicherproblemen. Dies hängt
vermutlich mit der internen Implementierung der verwendeten Textähnlichkeitsmetrik in DK-
Pro Similarity [2] zusammen. Diese verwendet Datentypen, Listen und Strings, die in Spark
zu Problemen führen können [49].

10 Fazit und Ausblick

In dieser Arbeit wurde ein Jupyter Notebook für das Data Wrangling entworfen und prototy-
pisch implementiert. In der Literatur wird eine Vielzahl von Problemen und möglichen Ansät-
zen im Kontext des Data Wranglings diskutiert. Einen Überblick darüber findet sich in Kapi-
tel 4. Darauf aufbauend wird in Kapitel 5 das Konzept präsentiert.

Das entwickelte Notebook erlaubt es, Daten zu inspizieren und zu transformieren. Verschie-
dene Datenqualitätsmetriken ermöglichen es die Datenqualität zu messen. Dies kann zusätz-
lich dazu beitragen, potentielle Datenqualitätsprobleme zu diagnostizieren. Einige Metriken
wurden dabei speziell für das Notebook implementiert. Bereits existierende Metriken in den
Sprachen Python, Java und R wurden in das Notebook eingebunden. Siehe hierzu das Kapitel
6. Dies zeigt die große Flexibilität des Ansatzes.

Das Notebook wurde auf Datensätze aus der Praxis angewendet. Diese sind der NHTSA
Complaints Datensatz und ein Datensatz aus der Produktion. Hierzu wird in Kapitel 8 zu-
nächst ein Überblick über die Struktur und, soweit wie möglich, die Semantik der Daten gege-
ben. Dies geschieht durch die Anwendung des Notebooks auf die Datensätze. Dabei wird
auch die Datenqualität analysiert. Hierzu wurden passende Metriken berechnet. Das Notebook
ist als flexibler Werkzeugkasten gedacht, der für verschiedene Aufgabenstellungen eingesetzt
werden kann. Nicht immer ist jede Metrik anwendbar. Beispielsweise enthielt nicht jede Ta-
belle der Industriedaten Textfelder. Eine Berechnung der Textähnlichkeitsmetriken war des-
halb für diese Tabellen nicht notwendig. Verschiedene Beispiele zeigen mögliche Datenquali-
tätsprobleme. Das Notebook erlaubt es, jederzeit, auch während der Analyse neue Funktiona-
litäten zu integrieren. Beispielsweise erlaubt die Standardimplementierung die Analyse von
Textdaten, die einer Spalte entnommen wurden. Für die Industriedaten sollten aber aus zwei
Spalten ein Textdatensatz gebildet werden. Zusätzlich mussten Duplikate entfernt werden,
weil diese Spalten gegebenenfalls die gleichen Werte enthielten. Diese Funktion konnte per
Skript implementiert und die Analyse durchgeführt werden. Siehe hierzu Abschnitt 8.2 für
eine weitergehende Beschreibung und für die Ergebnisse. Insgesamt zeigt die Anwendung auf
Datensätzen aus der Praxis, dass das Konzept des Notebooks vielversprechend ist. Die Flexi-
bilität des Ansatzes konnte bestätigt werden.

Wegen des begrenzten Umfangs konnten viele in der Literatur diskutierte Ansätze nicht be-
rücksichtigt werden. Beispielsweise wäre es wünschenswert, durchgeführte Transformationen
sofort rückgängig machen zu können. Dies wird zum Beispiel in [17] diskutiert und imple-
mentiert. Ein weitergehender Aspekt, der nicht berücksichtigt werden konnte, ist der Umgang
mit „dirty“ Data. Siehe hierzu die Diskussion in 4.3. Für manche diagnostizierten Datenquali-
tätsprobleme gibt es keine Lösung. Fehlende Werte etwa können darauf zurückzuführen sein,
das Teile der Daten für immer verloren sind. Beispiel hierfür wäre ein Feuer in einem Archiv.
Die Tatsache, das Daten fehlen, stellt ein Qualitätsproblem dar. Eventuell ist es möglich,
Fehlinterpretationen entgegenzuwirken, wenn dem Konsumenten diese Tatsache auf passende
Weise kommuniziert wird. Zum Beispiel durch entsprechende Visualisierungen, die deutlich
machen, das Daten fehlen. Siehe hierzu die Diskussion in Abschnitt 4.3. Entsprechende Funk-
tionen in das Notebook zu integrieren könnte ein vielversprechender Ansatz sein.

Die Anwendung des Notebooks soll auch auf große Datensätze möglich sein. Dabei stellt sich
die Frage nach der Performance und der Skalierbarkeit der verwendeten Metriken. Hierzu
wurde exemplarisch geprüft, ob sich die Laufzeit der Metriken durch eine Implementierung
mit Spark verbessern lässt.

Hierzu wurden die Metriken Validierung und Textähnlichkeit ausgewählt. Die Validierungs-
metrik arbeitet auf strukturierten Daten. Die Textähnlichkeitsmetrik ist ein Beispiel für die
Qualitätsmessung von unstrukturierten Daten. Die Ergebnisse für die Validierungsmetrik sind
sehr gut. Die Laufzeit konnte bereits durch eine einfache Implementierung in Spark um den
Faktor 3,6 verbessert werden. Dies liegt vermutlich daran, dass sich diese Problemstellung gut
in Spark abbilden lässt.

Die Ergebnisse für die Textähnlichkeitsmetrik sind vielversprechend. Die Textähnlichkeits-
metrik war für einen kleineren Datensatz mit 23s leicht schneller als die im Notebook verwen-
dete Version mit 24s. Eine abgewandelte Variante konnte ein Ergebnis in 11s berechnen. Al-
lerdings muss eine Reihe von Problemen gelöst werden. Beispielsweise konnte die Metrik für
den kompletten Datensatz im Cluster-Modus nicht berechnet werden. Die Analyse deutet auf
Speicherprobleme hin. Die reguläre Version im Notebook war in der Lage, ein Ergebnis zu
berechnen. Die Ursache ist möglicherweise, dass die zur Berechnung der Textähnlichkeit ge-
nutzte Bibliothek DKPro Similarity [2] auf Listen von Strings arbeitet. Laut der Dokumentati-
on von Spark ist dies ungünstig [49]. Eine Mögliche Lösung könnte es sein, die Berechnung
der Textähnlichkeit speziell für Spark neu zu implementieren. Siehe Kapitel 9.5 für eine de-
taillierte Analyse der Ergebnisse.

Insgesamt ist die Verwendung eines Jupyter Notebooks für Data Wrangling vielversprechend.
Der entwickelte Prototyp hat sich bei der Anwendung auf Datensätze aus der Praxis bewährt.
Durch die Flexibilität des Ansatzes können Anpassungen und Erweiterungen leicht durchge-
führt werden.

Literaturverzeichnis

[1] Bär, Daniel; Gurevych, Iryna; Dagan, Ido; Zesch, Torsten (2013): A Composite Model for
Computing Similarity Between Texts. Darmstadt: Universitäts- und Landesbiblio-
thek Darmstadt.

[2] Bär, D., Zesch, T. and Gurevych, I. (August 2013). DKPro Similarity: An Open Source
Framework for Text Similarity. In ACL (Conference System Demonstrations),
121-126

[3] Batini, Carlo; Scannapieco, Monica (2016): Data and Information Quality. Dimensions,
Principles and Techniques, Seiten 1-72, 113-134, 337-352. 1st ed. 2016. s.l.:
Springer-Verlag (Data-Centric Systems and Applications).

[4] Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with
Python. O’Reilly Media Inc.

[5] Boehmke, B. (2016). Data Wrangling with R. Springer.

[6] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J.(Mai 2000). LOF: identifying densi-
ty-based local outliers. In ACM sigmod record (Vol. 29, No. 2, 93-104). ACM.

[7] Chessell, M., Scheepers, F., Nguyen, N., van Kessel, R. and van der Starre, R. (2014). Go-
verning and managing big data for analytics and decision makers. IBM Redguides
for Business Leaders.

[8] de Castilho, R.E. and Gurevych, I. (August 2014). A broad-coverage collection of portable
NLP components for building shareable analysis pipelines. In Proceedings of the
Workshop on Open Infrastructures and Analysis Frameworks for HLT (OI-
AF4HLT) at COLING, 1-11.

[9] Endel, F. and Piringer, H. (2015). Data Wrangling: Making data useful again. IFAC-Pa-
persOnLine, 48(1), 111-112.

[10] Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. (August 1996). Knowledge Discove-
ry and Data Mining: Towards a Unifying Framework. In KDD (Vol. 96, 82-88).

[11] Forsyth, Eric N. and Martell, Craig H. (September 2007). "Lexical and Discourse Analy-
sis of Online Chat Dialog," Proceedings of the First IEEE International Confe-
rence on Semantic Computing (ICSC 2007), pp. 19-26

[12] Gimpel, K., Schneider, N., O'Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M.,
Yogatama, D., Flanigan, J. and Smith, N.A. (Juni 2011). Part-of-speech tagging
for twitter: Annotation, features, and experiments. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Language
Technologies: short papers-Volume 2, 42-47. Association for Computational Lin-
guistics.

[13] Gröger, C. (2015). Advanced Manufacturing Analytics. Lohmar, Köln: Eul-Verl.

[15] Jindal, N. and Liu, B., (Februar 2008). Opinion spam and analysis. In Proceedings of the
2008 International Conference on Web Search and Data Mining, 219-230. ACM.

[16] Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver, C.,
Lee, B., Brodbeck, D. and Buono, P. (2011). Research directions in data wrang-
ling: Visualizations and transformations for usable and credible data. Information
Visualization, 10(4), 271-288.

[17] Kandel, S., Paepcke, A., Hellerstein, J. and Heer, J. (Mai 2011). Wrangler: Interactive vi-
sual specification of data transformation scripts. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 3363-3372. ACM.

[18] Kiefer, Cornelia (2016): Assessing the Quality of Unstructured Data: An Initial Over-
view. In: Ralf Krestel, Davide Mottin und Emmanuel Müller (Hg.): Proceedings
of the LWDA 2016 Proceedings (LWDA). Aachen (CEUR Workshop Procee-
dings), 62–73.

[19] Laukart, Andreas (2016): Fit of training data and text data – automatic identification of
the best fitting training data. Studienarbeit. Universität Stuttgart. Institut für Paral-
lele und Verteilte Systeme.

[20] Li, J., Tao, F., Cheng, Y. and Zhao, L. (2015). Big data in product lifecycle management.
The International Journal of Advanced Manufacturing Technology, 81(1-4), 667-
684.

[21] McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J. and Barton, D. (2012). Big
data. The management revolution. Harvard Bus Rev, 90(10), 61-67.

[22] McCallum, Q. (2012). Bad Data Handbook, Seiten 31-51, 53-68, 83-93, 129-140. O'Reil-
ly Media, Inc.

[23] McKinney, W. (2012). Python for Data Analysis. O'Reilly Media, Inc.

[24] Kelly, Ryan, PyEnchant Website, http://pythonhosted.org/pyenchant/, Zugriff am
23.03.2017

[25] Savinov, A. (2016). DataCommandr: Column-Oriented Data Integration, Transformation
and Analysis. In Proc. International Conference on Internet of Things and Big
Data (IoTBD 2016), 339-347.

[26] Sebastian-Coleman, L. (2012). Measuring data quality for ongoing improvement: a data
quality assessment framework. Seiten S 3-15, 39-53. Newnes.

[27] Signell, R.P., Fernandes, F. and Wilcox, K. (2016). Dynamic reusable workflows for
ocean science. Journal of Marine Science and Engineering, 4(4), 68.

[28] Wand, Y. and Wang, R.Y. (1996). Anchoring data quality dimensions in ontological
foundations. Communications of the ACM, 39(11), 86-95.

http://www.rfk.id.au/
http://pythonhosted.org/pyenchant/

[29] Wang, R.Y. and Strong, D.M. (1996). Beyond accuracy: What data quality means to data
consumers. Journal of management information systems, 12(4), 5-33.

[30] Yingsong Hu, Wayne Murray and Yin Shan, RLOF package, https://CRAN.R-
project.org/package=Rlof, Zugriff am 23.03.2017

[31] Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen,
J., Venkataraman, S., Franklin, M.J. and Ghodsi, A. (2016). Apache Spark: a uni-
fied engine for big data processing. Communications of the ACM, 59(11), 56-65.

[32] Anaconda Webseite, https://www.continuum.io/anaconda-overview, Zugriff am
23.03.2017

[33] Apache Spark Homepage, http://spark.apache.org/, Zugriff am 23.03.2017

[34] Brown Korpus Handbuch, http://www.hit.uib.no/icame/brown/bcm.html, Zugriff am
23.03.2017

[35] CoNLL2000 Korpus, http://www.cnts.ua.ac.be/conll2000/chunking/, Zugriff am
23.03.2017

[36] „Daten“ auf Duden online, www.duden.de/rechtschreibung/Daten, Zugriff am
23.03.2017

[37] Data Wrangling with Python Repository, https://github.com/aepton/python-data-
wrangling, Zugriff 23.03.2017

[38] Data Wrangler App, http://vis.stanford.edu/wrangler/app/, Zugriff am 23.03.2017

[39] Installationsanleitung für Jupyter, ,http://jupyter.org/install.html, Zugriff am 23.03.2017

[40] Openstack Homepage, http://www.openstack.org/ , Zugriff 23.03.2017

[41] NHTSA Complaints Datensatz, http://www-odi.nhtsa.dot.gov/downloads/, Zugriff am
18.03.2017

[42] Open Office Homepage, https://www.openoffice.org/, Zugriff am 23.03.2017

[43] OpenNLP Homepage, https://opennlp.apache.org/, Zugriff am 23.03.2017

[44] OpenNLP Models, http://opennlp.sourceforge.net/models-1.5/, Zugriff am 23.03.2017

[45] OpenRefine Homepage, http://openrefine.org/index.html, Zugriff am 23.03.2017

[46] Pandas Homepage, http://pandas.pydata.org/, Zugriff am 23.03.2017

[47] Projet Jupyter Homepage, http://jupyter.org/, Zugriff am 23.03.2017

[48] rpy2 Homepage, https://rpy2.bitbucket.io/, Zugriff am 23.03.2017

https://rpy2.bitbucket.io/
http://jupyter.org/
http://pandas.pydata.org/
http://openrefine.org/index.html
http://opennlp.sourceforge.net/models-1.5/
https://opennlp.apache.org/
https://www.openoffice.org/
http://www-odi.nhtsa.dot.gov/downloads/
http://jupyter.org/install.html
http://vis.stanford.edu/wrangler/app/
https://github.com/aepton/python-data-wrangling
https://github.com/aepton/python-data-wrangling
http://www.duden.de/rechtschreibung/Daten
http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.hit.uib.no/icame/brown/bcm.html
http://spark.apache.org/
https://www.continuum.io/anaconda-overview
https://CRAN.R-project.org/package=Rlof
https://CRAN.R-project.org/package=Rlof

[49] Spark Tuning Page für Version 1.3.1, https://spark.apache.org/docs/1.3.1/tuning.html,
Zugriff am 23.03.2017

[50] Trifacta homepage, https://www.trifacta.com/, Zugriff am 19.03.2017

[51] Twitter corpus repository, https://github.com/brendano/ark-tweet-nlp/, Zugriff am
23.03.2017

https://spark.apache.org/docs/1.3.1/tuning.html

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß
aus anderen Werken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Stuttgart, den _____________________

	1 Einführung
	1.1 Motivation
	1.2 Forschungsfrage und Aufgabenstellung
	1.3 Aufbau der Arbeit

	2 Grundlagen
	2.1 Daten und Datenstrukturen
	2.2 Datenqualität
	2.3 Datenqualitätsmetriken
	2.4 Wissensentdeckung
	2.5 Maschinelle Sprachverarbeitung
	2.5.1 Tokenisierung
	2.5.2 Part-of-speech Tagging
	2.5.3 Textähnlichkeit

	2.6 Spark
	2.7 Jupyter Notebooks

	3 Verwandte Arbeiten
	4 Data Wrangling
	4.1 Data Wrangling Prozess
	4.2 Typische Datenqualitätsprobleme
	4.3 Mögliche Ansätze

	5 Konzept des Jupyter Notebooks
	5.1 Überblick
	5.2 Aufbau
	5.2.1 Import Data
	5.2.2 View Data
	5.2.3 Metrics
	5.2.4 Transform Data
	5.2.5 Save Data

	6 Implementierung
	6.1 Verwendete Software
	6.2 Notebook Prototyp
	6.3 Metriken
	6.3.1 Nullwerte
	6.3.2 Validierung
	6.3.3 Local Outlier Factor
	6.3.4 Textähnlichkeit
	6.3.5 Noisy Data
	6.3.6 Part-of-speech

	7 Implementierung der ausgewählten Metriken in Spark
	7.1.1 Validierung von Datumsangaben
	7.1.2 Textähnlichkeit

	8 Anwendung des Notebooks auf Datensätze aus der Praxis
	8.1 NHTSA
	8.2 Industriedaten

	9 Evaluation
	9.1 Methodik
	9.2 Experimentaufbau
	9.3 Verwendete Textkorpora
	9.4 Ergebnisse
	9.5 Analyse
	9.6 Zusammenfassung

	10 Fazit und Ausblick

