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Kurzfassung

In dieser Arbeit wurde prototypisch ein Jupyter Notebook implementiert, dass beim Data
Wrangling unterstiitzt. Hierzu wurde zunéchst eine Literaturrecherche durchgefiihrt. Die Er-
gebnisse flossen in das Konzept ein. Hauptfokus ist der Aspekt der Datenqualitdt. Das Note-
book versteht sich als flexible Toolbox. Es soll méglich sein, Metriken und Skripte bei Bedarf
einzubinden. Hierzu wurde beispielhaft Funktionalitit aus unterschiedlichen Quellen einge-
bunden. Verwendet werden die Sprachen Python, Java und R. Verschiedene Datenqualitits-
metriken ermoglichen es, die Datenqualitit zu messen. Dabei werden neben strukturierte
Daten auch Textdaten beriicksichtigt. AnschlieBend wurde das Notebook auf Datensétze aus
der Praxis angewendet. Hierzu wird ein Uberblick iiber die Daten gegeben. Zusitzlich werden
mogliche Datenqualititsprobleme analysiert. Um die Verarbeitung groBBer Datenmengen zu
unterstiitzen, wurde die Laufzeit der Metriken betrachtet. Hierzu wurden ausgewéhlte Metri-
ken in Apache Spark implementiert. AnschlieBend wurde eine Evaluation durchgefiihrt. Die
ersten Resultate sind vielversprechend. Fiir die Validierung von Datumsangaben wurde durch
eine einfache Implementierung eine Verbesserung der Laufzeit um Faktor 3,6 erreicht.
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1 Einfithrung

Die Verarbeitung elektronischer Daten spielt in der modernen Gesellschaft eine zentrale
Rolle. Daten sind fundamentaler Bestandteil von operationalen Prozessessen von Unterneh-
men und anderen Organisationen. Zusétzlich bilden sie die Grundlage fiir Entscheidungen.
Dabei ist die Qualitit der Daten von entscheidender Bedeutung. Schitzungen zufolge fithren
Probleme mit der Qualitit von Daten zu Kosten in Milliardenhohe alleine in den USA. [3]

Dabei kommt dem Data Wrangling eine entscheidende Bedeutung zu. Dieser Begriff bezeich-
net den Vorgang, Daten in eine nutzbare Form zu bringen. Hierzu z&hlt zum Beispiel das Sdu-
bern und Transformieren von Daten. Schitzungen zufolge muss in manchen Projekten bis zu
80% der Zeit fiir die Sduberung und Aufbereitung der Daten aufgewendet werden. [16]

In dieser Arbeit wird ein Jupyter Notebook entwickelt, das verschiedene Funktionen anbietet,
die beim Data Wrangling unterstiitzen. Zusétzlich werden beispielhaft diverse Datenqualitits-
metriken angeboten, mit denen die Datenqualitit gemessen und iiberwacht werden kann. Ne-
ben strukturierte Daten werden auch unstrukturierte Daten beriicksichtigt. Es stehen drei Me-
triken zur Verfligung, die auf Textdaten arbeiten. Ziel ist eine flexible und erweiterbare Tool-
box. Diese ist nicht fiir einen bestimmten Anwendungsfall oder eine Doméne gedacht. An-
passbarkeit und Erweiterbarkeit sind im Entwurf mit beriicksichtigt. Um die Flexibilitit des
Ansatzes zu demonstrieren, werden viele Funktionen und Metriken aus Bibliotheken einge-
bunden. Dabei finden die Sprachen Java, Python und R Verwendung. Mit Hilfe dieses Note-
books werden zwei Datensdtze aus der Praxis analysiert. Dabei handelt es sich zum einen um
Daten aus der Produktions, zum anderen um den um den NHTSA Complaints Datensatz.

Die anfallenden Datenmengen werden immer groBer, sollen aber trotzdem moglichst schnell
verarbeitet werden [21]. Aus diesem Grund soll die Laufzeit der Datenqualititsmetriken auch
fiir groe Datensétze beriicksichtigt werden. Hierzu werden abschlieBend ausgewéhlte Metri-
ken mit Apache Spark prototypisch optimiert. Durch Laufzeitmessungen wird evaluiert, ob
sich dadurch die Laufzeit verbessern lésst..

1.1 Motivation

Bei einer Analyse hiangt die Qualitdt der Erkenntnisse, und der Nutzen der daraus in Folge ab-
geleiteten Entscheidungen, stark von der Qualitdt der zu Grunde liegenden Daten ab [3].

Die zu verarbeitenden Datenmengen werden dabei immer groBer und vielféltiger in ihrer Art
und Struktur. Trotzdem sollen sie moglichst echtzeitnah verarbeitet werden. Diese Kombina-
tion aus Volumen, Vielfalt und Geschwindigkeit (im Englischen ,,Volume, Varierty,
Velocity*) werden auch als die 3 V von Big Data bezeichnet. [21]

Dabei ist es wichtig, zu beachten, dass nicht nur Menschen, sondern auch Maschinen Daten
konsumieren. Beispiele hierfiir sind Algorithmen aus dem Bereich Machine Learning und
Data Mining. Beispielsweise findet die automatische Verarbeitung von Texten in natiirlichen
Sprachen (im Englischen ,,natural language processing®, kurz NLP) hdufig in Pipelines statt.



Dies spielt etwa bei der Analyse von Social Media Daten oder Freitextfeldern eine Rolle. Da-
bei werden verschiedene Machine Learning Algorithmen verwendet, die sukzessive aufeinan-
der autbauen. Dass Ergebnis eines Analyseschrittes dient dabei als Eingabe fiir einen weiter-
gehenden Analyseschritt. Dadurch kdnnen sich Qualitdtsprobleme verstiarken und den Nutzen
des Endresultats stark einschrianken. Entscheidend ist neben klassischen Datenqualititskriteri-
en wie der Genauigkeit (im Englischen Accuracy) auch ,.fitness for use. Die Daten miissen
so bereitgestellt werden, wie sie die Datenkonsumenten erwarten, auch im Hinblick auf etwa
Struktur oder Format. [18]

Damit eine Analyse iiberhaupt durchgefiihrt werden kann miissen Daten also in die entspre-
chende Form gebracht werden, ein Vorgang der auch als Data Wrangling bezeichnet wird.
Dabei umfasst der Begriff neben dem Auffinden von Datenqualititsproblemen und der Berei-
nigung der Daten auch die Integration heterogener Datenquellen. [16]

Data Wrangling ist ein sehr aufwendiger Schritt. Laut einer Studie von IBM wird bei Analy-
seprojekten bis zu 70% der Zeit dafiir verwendet, Daten aufzufinden, zu sdubern und zu inte-
grieren. Hierfiir werden drei Griinde angegeben: Daten sind iiber viele verschiedene Systeme
und Applikationen verteilt. Zusétzlich miissen die Daten transformiert und in ein fiir die Ana-
lyse geeignetes Format gebracht werden. Aulerdem miissen die Daten wihrend des Analyse-
prozesses stets aktuell gehalten werden. [7]

Dies fiihrt oft dazu, dass Doménenexperten, deren Fachexpertise fiir die eigentliche Analyse
benotigt wird, sich stattdessen mit der Aufbereitung von Daten beschéftigen miissen. [16]

Die Analyse groBBer Datenmengen spielt in allen Phasen des Produktlebenszyklus eine Rolle.
So zum Beispiel beim Marketing, Kundendienst, Logistik, aber auch bei der Abwicklung und
beim Recycling. Hierzu kénnen auch Daten aus den Sozialen Medien oder 6ffentlich verfiig-
bare Datenquellen wie Wikipedia verwendet werden. [20].

Von zentraler Bedeutung fiir Industrieunternehmen, insbesondere in Lédndern mit einem hohen
Lohnniveau wie etwa Deutschland, ist die datengetriebene Optimierung von Fertigungspro-
zessen. Dadurch konnen Unternehmen Kosten senken und Produktqualitdt erhhen und somit
im globalen Wettbewerb bestehen. Im Kontext der Fertigung fallen gro3e Mengen an struktu-
rierten und unstrukturierten Daten an, etwa durch in Maschinen und Anlagen eingebettete
Sensoren. Zusétzlich stehen oft Daten aus Manufacturing Execution Systems zur Verfligung,
digitalen Systemen fiir das Fertigungsmanagement. Dabei ist es wichtig, nicht nur riickbli-
ckend zu analysieren, sondern den Prozess kontinuierlich zu iiberwachen um schon wihrend
der Ausfithrung mogliche Probleme vorauszusehen und praventiv eingreifen zu kdnnen. Des-
wegen ist eine echtzeitnahe Analyse entscheidend. [13]

1.2 Forschungsfrage und Aufgabenstellung

Zuerst wird im Grundlagenkapitel ein Uberblick iiber die Themenfelder Datenqualitiit und
Data Wrangling gegeben.

Basierend auf einer Literaturrecherche wird ein Konzept entwickelt, dabei sollen verschiedene
Aspekte des Data Wranglings, die in der Literatur diskutiert werden, beriicksichtigt werden.



Das Notebook soll diverse Datenqualitdtsmetriken anbieten, und somit bei der Datenexplorati-
on und beim Data Wrangling unterstiitzten. Jupyter Notebooks basieren urspriinglich auf Py-
thon, sind aber nicht auf eine bestimmte Plattform oder Programmiersprache beschrénkt.
Spezielle Module, sogenannte Kernel, ermoglichen es, Notebooks mit unterschiedliche Pro-
grammiersprachen zu verwenden. Es wird eine Vielzahl von Programmiersprachen unter-
stiitzt, darunter zum Beispiel R. Diese Sprache wird im Bereich Datenanalyse und Data
Wrangling hiufig verwendet und bietet eine Vielzahl von Bibliotheken zur Auswertung und
Visualisierung. Dies ermoglicht eine grofle Flexibilitdt. Es ist moglich, Werkzeuge und
Datenqualitdtsmetriken zu verwenden, die in unterschiedlichen Sprachen implementiert wur-
den. Im Rahmen dieser Arbeit wird untersucht, in wie weit dies moglich ist. Hierzu sollen
verschiedene Metriken zur Messung der Datenqualitdt prototypisch implementiert sowie be-
reits verfiigbare Metriken integriert werden.

Das Notebook soll neben diesen als ausfiihrbarer Code bereitgestellten Metriken auch Texttei-
le enthalten, etwa Checklisten, Erlduterungen und weitergehende Verweise. Ziel ist dabei kein
fertiges Datenanalyseprodukt, sondern ein flexibel erweiterbarer Startpunkt. Das Notebook
dient als Toolbox, die fiir verschiedene Situationen entsprechende Funktionen bereitstellt. Ist
keine passende Funktion verfligbar, soll es mdglich sein, vorhandene Implementierungen,
etwa aus Bibliotheken, einzubinden.

Die Analyse soll auch fiir grole Datenmengen moglich sein. Im Rahmen dieser Arbeit soll da-
her abschlieend die Laufzeit von ausgewéhlten Metriken untersucht werden. Hierzu werden
Experimente zur Laufzeitmessung durchgefiihrt. Verwendet wird dabei Beispielhaft die NHT-
SA Beschwerdedatenbank [41]. Als Evaluationsumgebung wird Openstack [40] genutzt. Die
Optimierung erfolgt prototypisch durch Verwendung von Apache Spark [33].

1.3 Aufbau der Arbeit

Kapitel 1 enthélt neben der Einfithrung auch die Motivation und die Forschungsfrage dieser
Diplomarbeit. Kapitel 2 enthilt einen kurzen Uberblick iiber die theoretischen Grundlagen.
Kapitel 3 bietet einen Uberblick iiber verwandte Arbeiten und diskutiert Gemeinsamkeiten
und Unterschiede zu dieser Diplomarbeit. Kapitel 4 gibt einen Uberblick iiber ausgewihlte
Aspekte des Data Wranglings, die in der Literatur diskutiert werden. Zusitzlich wird darge-
stellt, was davon in dieser Arbeit beriicksichtigt werden konnte. Kapitel 5 enthélt darauf auf-
bauend das Konzept fiir das Jupyter Notebook. Kapitel 6 beschreibt die Implementierung des
Notebooks und Kapitel 7 beschreibt die Implementierung der ausgewidhlten Metriken in
Spark. Kapitel 8 enthilt eine beispielhafte Analyse der Datenqualitét zweier Datensdtze durch
Anwendung des Notebooks. Dieses Kapitel bietet auch praktische Beispiele fiir viele Funktio-
nen des Notebooks. Kapitel 9 beschreibt die Evaluation der fiir Spark entwickelten Metriken.
Kapitel 10 enthilt eine Zusammenfassung und einen Uberblick iiber mdgliche weitergehende
Forschungsansitze.



2 Grundlagen

2.1 Daten und Datenstrukturen

Die Onlineausgabe des Duden nennt fiir das Wort ,,Daten‘ unter anderem folgende Bedeutun-
gen [36]:

(1) ,, (durch Beobachtungen, Messungen, statistische Erhebungen u. a. gewonnene) [Zah-
len]werte*

(2) ,,(EDV) elektronisch gespeicherte Zeichen, Angaben, Informationen®.

Das Wort ,,.Daten hat also eine starke Assoziation mit Zahlen und Messungen. Das Wort
steht hiufig im Zusammenhang mit Computern und bezieht sich dabei auf Fakten, die elektro-
nisch iibertragen und gespeichert werden. Ein Beispiel fiir eine solche Anwendung wére etwa
eine Datenbank. Bei diesen Fakten kann es sich etwa um Messungen handeln. Auch beschrei-
bende Attribute von Entitdten sind moglich, etwa Namen und Orte. Daten konnen definiert
werden als abstrakte Repréisentation ausgewéhlter Merkmale von Konzepten, Ereignissen und
Objekten aus der realen Welt. Bei Daten handelt es sich immer um Repréasentationen. Das be-
deutet auch, dass es oft mehrere Moglichkeiten gibt, das Gleiche zu reprédsentieren. Wichtig
ist auch, dass Daten nur ausgewihlte Eigenschaften darstellen. Dabei handelt es sich
gewissermaflen um ein Modell der Realitidt. Modelle spielen eine wichtige Rolle und helfen
beim Verstindnis verschiedener Aspekte der Realitét. Allerdings handelt es sich bei Modellen
um Vereinfachungen. Dies kann unter Umstdnden zu Problemen fiihren. Ein weiterer wichti-
ger Aspekt ist, dass Daten nicht an sich existieren, sondern geschaffen werden, etwa durch
Prozesse. Der Kontext, in dem die Daten entstanden sind, spielt eine Entscheidende Rolle
beim Verstindnis der Bedeutung der Daten. [26]

Die Bedeutung des Kontextes kann an folgendem Beispiel gezeigt werden. Dieses Beispiel er-
weitert ein dhnlichen Beispiel in [26]:

Auf den ersten Blick erkennt man in der Zeichenfolge ,,10/03/2017* eine Datumsangabe. In
Deutschland versteht man diese im Allgemeinen als 10. Mérz 2017. Allerdings ist es auch
denkbar, dass die ersten beiden Zahlen den Monat représentieren anstelle des Tages. Dieses
Format wird zum Beispiel in den Vereinigten Staaten verwendet. Damit wiirde sich die Da-
tumsangabe auf den 3. Oktober 2017 beziehen. Es ist sogar theoretisch denkbar, dass es sich
bei der Zeichenkette nicht um ein Datum handelt, sondern um eine Pfadangabe in einem
Dateisystem. Abbildung 1 zeigt hierfiir ein einfaches Beispiel fiir Linux. Ohne Kontext ist der
Wert an sich nicht eindeutig.



Abbildung 1: Beispiel fiir ein Linux-System. Hier steht 10/03/2017 nicht fiir ein Datum
sondern eine Pfadangabe

Daten konnen auf verschiedene Weise organisiert sein. Zuerst wird allgemein zwischen struk-
turierten und unstrukturierten Daten unterschieden. Strukturierte Daten folgen einem fest-
gelegtem Schema. Dieses erlaubt die Interpretation der entsprechenden Werte. Ein wichtiges
Beispiel sind Datenbanken, die Informationen in relationalen Tabellen verwalten. Unstruktu-
rierte Daten konnen aus einer beliebigen Folge von Zeichen bestehen. Beispiele hierfiir sind
Bilder und Texte. [3]

Es gibt verschiedene Datenstrukturen, mit denen Daten gespeichert und transportiert werden
konnen, etwa XML oder CSV. CSV steht dabei fiir Comma Separated Values, also durch
Kommas getrennte Datenwerte. Jede Zeile reprisentiert dabei einen Eintrag. Die Werte der je-
weiligen Spalten werden durch Kommas getrennt. Diese Darstellung entspricht einer Tabelle.
In der Praxis werden neben Kommas auch weitere Trennzeichen verwendet, etwa der Tabula-
tor. [22]

Viele Tools, die solche Daten verarbeiten, erlauben es, beim Einlesen das Trennzeichen zu
spezifizieren. Dies ist auch fiir das in der Arbeit entwickelte Jupyter Notebook der Fall. Aus
diesem Grund wird im Kontext dieser Arbeit nicht strikt nach dem Trennzeichen unterschie-
den. Dem allgemeinen Sprachgebrauch folgend werden auch Dateien mit anderen Trennzei-
chen als dem Komma als CSV bezeichnet. Dies ist zum Beispiel fiir die in Kapitel 8 analy-
sierten Datensitze der Fall. Der NHTSA Complaints Datensatz liegt als Textdatei vor, die als
Trennzeichen den Tabulator verwenden. Die Daten des Industriepartners verwenden .csv als
Dateiendung, nutzen aber das Semikolon als Trennzeichen.

2.2 Datenqualitit

Daten spielen in der modernen Gesellschaft eine wichtige Rolle. Sie bilden oft die Grundlage
fiir Entscheidungen, etwa durch Unternehmen und andere Organisationen. Dabei ist die Quali-
tat der Daten entscheidend. Ein Konzept, das auf dem Begriff Datenqualitdt aufbaut und die-
sen ergénzt, ist die Informationsqualitdt. Dieser kommt bei Entscheidungen eine zentrale Be-
deutung zu. Schlechte Informationsqualitdt kann Entscheidungen negativ beeinflussen und
sich negativ auf die Resultate auswirken. [3]

Eine Sichtweise auf das Konzept Datenqualitét ist die die Perspektive der Datenkonsumenten,
also diejenigen Anwender, welche die Daten nutzen. Diese Sichtweise wird in der Literatur
auch als ,,fitness for use* bezeichnet. Die Daten miissen fiir die Verwendung durch die jewei-
ligen Datenkonsumenten geeignet sein. [29]



Datenqualititsprobleme betreffen aber nicht nur menschliche Datenkonsumenten. Auch Sys-
teme und Algorithmen verarbeiten Daten und konnen davon betroffen sein. Eine schlechte
Qualitédt der Eingabedaten kann die verarbeitenden Algorithmen beeintrichtigen und zu einen
schlechten Resultat fiihren. Dieses Problem verstérkt sich, wenn Daten in einer Pipeline verar-
beitet werden. Dieser Englische Begriff bedeutet, dass eine Reihe von Schritten nacheinander
ausgefiihrt werden. Die Ergebnisse des ersten Schrittes dienen dabei als Eingabe fiir den
ndchsten. Pipelines spielen zum Beispiel in der maschinellen Sprachverarbeitung eine wichti-
ge Rolle. [18]

Ein Beispiel hierfiir ist die Bestimmung der Wortarten'. Bevor ein Text mit den entsprechen-
den Tags versehen werden kann, muss dieser zuerst in Tokens zerlegt werden [4]. Siehe hier-
zu auch Abschnitt 2.5 tiber maschinelle Sprachverarbeitung.

Datenqualitit hat mehrere verschiedene Aspekte, die auch als Datenqualitdtsdimensionen be-
zeichnet werden konnen [3]. Ein in der Literatur hdufig zitierte Qualitdtsdimension ist Accu-
racy [28]. Im Deutschen kann fiir diesen Begriff zum Beispiel Genauigkeit verwendet werden.
Dies bezeichnet, inwieweit ein Datenwert dem realen Phdnomen gleicht, das er repriasentieren
soll [3].

Es gibt in der Literatur eine Reihe von Ansitzen, Datenqualititsdimensionen zu charakterisie-
ren. Ein in [3] vorgestellter Ansatz gruppiert die Datenqualitdtsdimensionen in 9 verschiedene
Cluster. Diese Einteilung erfolgt anhand der Ahnlichkeit der einzelnen Dimensionen unterein-
ander. So wird der oben erwihnte Begriff der Genauigkeit beziehungsweise Accuracy als
Cluster aufgefasst, der unter anderem die Dimensionen Korrektheit und Prézision enthilt.
Weitere Cluster wéren Vollstdndigkeit und Konsistenz. [3]

Ein weiterer Ansatz, vorgestellt in [29], ermittelte die Datenqualitdtsdimensionen empirisch
durch Fragebdgen. Damit sollen die Dimensionen beriicksichtigt werden, die fiir Datenkonsu-
menten eine Bedeutung haben. Basierend auf den Ergebnissen der Fragebdgen wurde ein hier-
archisches Framework mit 4 Kategorien entwickelt. Diese gruppieren dhnliche Datenquali-
tatsdimensionen. [29]

Ein Framework, das fiir die Uberwachung und Messung der Datenqualitit durch Metriken
entwickelt wurde ist das Data Quality Assessment Framework (DQAF). Hier werden flnf
Datenqualitidtsdimensionen benutzt: Vollstindigkeit, Rechtzeitigkeit, Validitit, Konsistenz
und Integritit. Diesen Dimensionen sind 48 Messarten zugeordnet. Hierdurch wird das wie-
derholbare Messen der Datenqualitdt moglich. Eine Messart ist dabei eine Verallgemeinerung
und Zusammenfassung mehrerer spezieller Metriken. [26]

Siehe den folgenden Abschnitt 2.3 fiir eine ndhere Betrachtung von Datenqualitdtsmetriken.

1 Im Englischen ,,part-of-speech tagging, oder Abgekiirzt POS tagging



2.3 Datenqualititsmetriken

Datenqualitit kann durch Metriken gemessen werden. Messungen helfen dabei, Beobachtun-
gen durch Zahlen auszudriicken. Dadurch sind Vergleiche moglich. So kénnen Objekte mit-
einander verglichen werden, oder die Entwicklung eines Objektes im Laufe der Zeit. Die er-
mittelten Messwerte konnen dabei als Grundlage von Entscheidungen dienen. Hierzu miissen
die Messungen verstindlich, reproduzierbar und zielfiihrend sein. [26]

Diese drei Punkte sollen im folgenden ndher erlautert werden:

Messungen miissen verstindlich sein, damit sie ihren Zweck erfiillen. Die Ergebnisse kdnnen
nicht bei der Entscheidungsfindung helfen, wenn niemand versteht, was gemessen wurde und
was die Ergebnisse genau bedeuten. Dies unterstreicht die Bedeutung von Metadaten, welche
die Messungen und die Ergebnisse dokumentieren. Dies hilft dem Datenkonsumenten, den
Kontext zu verstehen und die Resultate zu interpretieren. [26]

Messungen miissen reproduzierbar sein. Inkonsistente Messungen fiihren dazu, dass die Er-
gebnisse wenig oder gar keine Bedeutung haben. Um zu zeigen, ob sich die Qualitét in einem
Datensatz verbessert oder verschlechtert, miissen die gleichen Daten mit den gleichen Metho-
den gemessen werden. Dadurch sind auch Vergleiche zwischen verschiedenen Objekten mog-

lich. [26]

Messungen miissen zielfithrend sein. Es sollte das gemessen werden, was dabei hilft, die Un-
sicherheit bei einer Entscheidung zu reduzieren. Messungen dienen also einem Zweck und
helfen bei konkreten Problemen. [26]

Mit Hilfe einer Datenqualitdtsmetrik konnen bestimmte Aspekte der Qualitit eines Datensat-
zes untersucht werden. So kann beispielsweise der Anteil an ungiiltigen Codes in einer be-
stimmten Spalte gemessen werden. Dabei spielt es keine Rolle, um welchen Code es sich ge-
nau handelt. Dies kann fiir jede Spalte ermittelt werden, die einen definierten Wertebereich
hat. Dieser Wertebereich kann zum Beispiel durch eine zweite Tabelle definiert sein. Diese
Tabelle enthélt die zuldssigen Werte, beispielsweise Diagnosecodes im medizinischen Kon-
text. Die Messung ungiiltiger Werte ldsst sich als Validitdt verallgemeinern. Dabei handelt es
sich um den prozentualen Anteil der Werte pro Spalte, die nicht in der fiir diese Spalte defi-
nierten Doméne existieren. Dies erlaubt Vergleiche von dhnlichen Datensétze. Enthalten zwei
Datensétze etwa vergleichbare Spalten, so kann fiir diese die Validitdt ermittelt werden. Da-
durch ist es moglich, die relative Datenqualitét dieser Datensétze zu ermitteln. [26]

2.4 Wissensentdeckung

In vielen unterschiedlichen Bereichen fallen immer grofere Mengen von Daten an. Die
Wissensentdeckung in Datenbanken beschéftigt sich mit Werkzeugen und Methoden, mit de-
ren Hilfe aus diesen wachsenden Datenmengen niitzliche Informationen gewonnen werden
konnen. Im Englischen wird dies als ,.knowledge discovery in databases* bezeichnet, kurz
KDD. Wissensentdeckung in Datenbanken bezeichnet den Prozess, mit dem aus Daten niitzli-



ches Wissen extrahiert wird. Kern dieses Prozesses ist die Anwendung von Methoden des
Data Minings. In Abgrenzung dazu kann Data Mining als ein einzelner Schritt im gesamten
Prozess gesehen werden. Die Verarbeitung von groflen Datensidtzen aus der Praxis ist ein
zentraler Fokus. Deshalb spielt der Aspekt der Skalierbarkeit von Algorithmen fiir grof3e
Datensétze eine wichtige Rolle. [10]

Der KDD Prozess ist iterativ und interaktiv, und besteht aus mehreren Schritten. Dabei soll
zundchst ein Verstdndnis {iber die relevante Domine erlangt werden. Zusitzlich muss auch
das Ziel des Prozesses aus Sicht des Auftraggebers geklart werden. Ein wichtiger Schritt ist
die Bereinigung und Vorverarbeitung der Daten. Dabei geht es unter anderem auch darum
eine Strategie festzulegen, wie mit fehlenden Werten umgegangen werden soll. Ein zentraler
Schritt des Prozesses ist das Data Mining. Dabei geht es darum, nach interessanten Mustern in
den Daten zu suchen, etwa durch Clustering. Danach miissen die gewonnenen Muster inter-
pretiert werden. Hierbei konnen auch verschiedene Visualisierungen angewendet werden. Ab-
schlieBend muss das gewonnene Wissen konsolidiert werden. Dies geschieht beispielsweise,
indem die Ergebnisse dokumentiert und an die entsprechenden Interessenten weitergeleitet
werden. [10]

Data Mining ist ein wichtiger Schritt des gesamten Prozesses. Dabei geht es um die wieder-
holte Anwendung verschiedener Data Mining Methoden. Dieser Prozess ist iterativ. Es kon-
nen grob zwei Arten von Zielen unterschieden werden: die Verifikation und die Entdeckung.
Bei der Verifikation geht es darum, vom Hypothesen des Benutzers zu iiberpriifen. Bei der
Entdeckung sollen automatisch Muster gefunden werden. Diese kann in zwei weitere Unter-
kategorien unterteilt werden, Vorhersage und Beschreibung. Bei der Vorhersage geht es dar-
um, zukiinftiges Verhalten vorherzusagen. Bei der Beschreibung Muster in den Daten zu fin-
den und dem Benutzer auf verstindliche Weise zu présentieren. Typische Data Mining Me-
thoden sind dabei zum Beispiel Clustering und Klassifikation. [10]

2.5 Maschinelle Sprachverarbeitung

Die Verarbeitung von Texten in natiirlicher Sprache hat zunehmende Bedeutung etwa in der
Wissenschaft und der Wirtschaft [4]. Beispiel hierfiir ist die Analyse von Social Media Daten,
etwa fiir die Plattform Twitter [12].

Die Verarbeitung findet dabei hiufig in Pipelines statt. Dies bedeutet, dass einzelne Schritte
aufeinander aufbauen und hintereinander ausgefiihrt werden miissen. Die Ergebnisse eines
Schrittes dienen dabei als Eingabe fiir folgenden Schritt. Dies kann Datenqualitdtsprobleme
verstirken. [18]

Die Annotation der Wortarten spielt in der maschinellen Sprachverarbeitung eine wichtige
Rolle. Viele géngige Standardtools und Bibliotheken benutzen den englischen Namen ,,par-
t-of-speech tagging* oder die Abkiirzung ,,POS tagging* fiir entsprechende Funktionen. Dies
gilt zum Beispiel OpenNLP [43], das in dieser Arbeit verwendet wird. Deshalb werden diese
Begriffe im Folgenden auch synonym verwendet. Grundlage fiir die Annotation der Wortarten
ist die Tokenisierung, die Zerlegung des Textes in Tokens.



2.5.1 Tokenisierung
Bei der Tokenisierung handelt es sich um eine Fundamentale Aufgabe in der maschinellen

Sprachverarbeitung. Sie dient als Grundlage fiir viele weitere Verarbeitungsschritte, beispiels-
weise die Annotation der Wortarten. Siehe hierzu Abschnitt 2.5.2. Bei der Tokenisierung soll
ein Text in die Tokens zerlegt werden, Grundeinheiten eines Textes. In den meisten Fillen
handelt es sich dabei um Worter und Satzzeichen. Es gibt aber auch Ausnahmen. Beispiels-
weise wird im Englischen haufig die Kontraktion ,,don't” fiir ,,do not* verwendet. Je nach An-
wendung kann diese in die Tokens ,,do* und ,,n't“ beziechungsweise ,,not* aufgeteilt werden.
Aus technischer Sicht ist ein in einem Computer gespeicherter Text zunédchst nur eine Folge
von Zeichen. Durch die Tokenisierung wird dieser String in eine Liste von Tokens umgewan-
delt. Es gibt verschiedene Ansétze, die Tokenisierung durchzufiihren. Die einfachste Methode
ist es, Leerzeichen als Trennzeichen zu verwenden. Dies ist aber fiir viele Anwendungen un-
geeignet, weil die Satzzeichen nicht als einzelne Tokens erkannt werden, weil sie in der Regel
nicht durch ein Leerzeichen von einem Wort getrennt sind. Es gibt auch komplexere Imple-
mentierungen, die auf Machine Learning basieren, und teilweise Modelle bendtigen. [4]

Ein Beispiel hierfiir ist der TokenizerME aus dem Paket OpenNLP [43]. ME steht dabei fiir
Maximum Entropy. Dieser Tokenizer muss ein Modell laden, bevor damit Texte verarbeitet
werden konnen. [43]

2.5.2 Part-of-speech Tagging

Part-of-speech tagging dient als Grundlage fiir viele weitergehende Verarbeitungsschritte. Die
Textdaten miissen dafiir mit den entsprechenden Wortarten annotiert werden. Dies geschieht
dadurch, das jedem Token die passende Wortart zugeordnet wird, beispielsweise Nomen oder
Verb. Hierfiir muss ein Text zuerst Tokenisiert werden. Das bedeutet, dass der Text in die ein-
zelnen Tokens zerlegt wird. Bei Tokens handelt es sich in der Regel um Worter. Siehe hierzu
auch den vorgehenden Abschnitt 2.5.1. Dies ist ein Beispiel fiir eine einfache Pipeline. Als
Eingabe fiir das Part-of-speech tagging dient dabei das Ergebnis der Tokenisierung. Part-of-s-
peech tagging kann entweder manuell durch Experten durchgefiihrt werden, oder durch auto-
matisierte Tools, sogenannte Part-of-speech tagger. Es gibt viele verschiedene Implementati-
on. Es werden etwa trainierbare Machine Learning Algorithmen verwendet. Diese benotigen
ein Modell, welches vor der Anwendung erstellt werden muss. Anhand dieses Modell wird
dann im Anwendungsfall eine Entscheidung getroffen, welche Wortart dem jeweiligen Token
zugeordnet wird. [4]

2.5.3 Textahnlichkeit

Textihnlichkeit beschreibt die Ahnlichkeit von zwei Texten. Dabei kann es sich um Sitze,
Paragraphen oder ganze Biicher handeln. Ein Beispiel fiir Ahnlichkeit von Texten sind zwei
Definitionen fiir das gleiche Konzept, die aus unterschiedlichen Worterbiichern stammen.
Textéhnlichkeit lasst sich schwer durch Algorithmen berechnen. Es gibt viele Moglichkeiten,
das gleiche zu sagen. Natiirliche Sprache zeichnet sich durch eine groBle Vielfalt aus. Dies
wird zusitzlich dadurch erschwert, das es mehrere Dimensionen gibt, nach denen die Ahn-
lichkeit von Texten beurteilt werden kann, etwa Inhalt, Struktur und Stil. [1]



In der Literatur werden eine Vielzahl von Metriken zur Messung von Textdhnlichkeit disku-
tiert. Diese basieren auf verschiedenen Ansétzen. Beispielsweise gibt es Metriken, die auf
Ebene der Buchstabendarstellung arbeiten. Diese sogenannten string distance metrics beriick-
sichtigen also keine semantischen Informationen. Andere Metriken verwenden Vektordarstel-
lungen der Texte, und berechnen darauf basierend die Textdhnlichkeit durch Vektordhnlich-
keitsfunktionen. Ein Beispiel hierfiir ist die Cosine Metrik. [1]

Eine Textihnlichkeitsmetrik misst dabei die Ahnlichkeit von zwei Texten. Das Ergebnis wird
als Zahl ausgedriickt. Diese Zahl wird oft normalisiert, damit sie im Intervall zwischen 0 und
1 liegt. 0 Bedeutet, dass sich die Texte nicht dhnlich sind. 1 bedeutet vollkommen &hnlich. [2]

2.6 Spark

Apache Spark ist ein generelles Framework fiir die Verarbeitung groer Datenmengen. Es
kann bis zu 100 mal schneller sein als Hadoop MapReduce, falls die Datenverarbeitung im
Hauptspeicher erfolgt. Fiir Festplatten ist eine Steigerung um bis zu Faktor 10 mdglich. Fiir
die Entwicklung kénnen die Sprachen Java, Scala, Python und R verwendet werden. [33]

Das zugrundeliegende Programmiermodell basiert auf MapReduce. Zusétzlich bietet Spark
,Resilient Distributed Datasets*, abgekiirzt RDD. Dabei handelt es sich um eine Abstraktion,
mit der Daten verteilt werden konnen. Durch diese Erweiterung ist es moglich, zusitzlich ver-
schiedene Arbeitsbereiche abzudecken, wie etwa SQL oder Machine Learning. Abbildung 2
zeigt den Spark Software Stack. Die dargestellten Komponenten koénnen in Spark genutzt
werden. Die Implementierungen verwenden die gleichen Optimierungsmethoden, wie sie in
spezialisierten Engines genutzt werden. Dabei basieren sie auf der gemeinsamen Grundlage
von Spark. Durch die einheitliche Schnittstelle konnen neue Anwendungen leichter entwickelt
werden. Zweitens konnen dadurch Arbeitsaufgaben effizienter kombiniert werden. In Spark
konnen verschiedene Funktionen auf den Daten ausgefiihrt werden. Dies ist oft sogar im
Hauptspeicher moglich. Durch die Einbindung von Hadoop kann Spark auf das Hadoop Dis-
tributed File System (HDFS) zugreifen. [31]

Das besondere an Spark sind RDDs. Hierbei handelt es sich um eine fehlertolerante Daten-
struktur. Sie stellt eine Sammlung von Objekten dar. Diese werden iiber einen Cluster verteilt
und konnen parallel bearbeitet werden. RDDs unterstiitzen dabei verschiedene Funktionen
wie etwa das Filtern. Dieses werden verzdgert ausgewertet. Dadurch kann Spark die Ausfiih-
rung optimieren. [31]



Streaming SQL ML Graph

SAPAEHE&

oark

¢ o ¥ ™
t&g MESOS MySOL

FETmm cassandra

Abbildung 2: Fiir Apache Spark verfiigbare Komponenten. Entnommen
aus [31]

2.7 Jupyter Notebooks

Bei Jupyter Notebooks handelt es sich um Webapplikationen. Diese ermdglichen das Erstel-
len und Teilen von Dokumenten, die etwa ausfiihrbaren Code, Visualisierungen und erklaren-
de Texte enthalten konnen. Bibliotheken, die zur Verarbeitung gro3e Datenmengen geeignet
sind, wie etwa Pandas [46], konnen leicht integriert werden. Es werden 40 verschiedene Pro-
grammiersprachen unterstiitzt, unter anderem Python und R. Python sofort nach der Installati-
on genutzt werden. Die Einbindung anderer Programmiersprachen erfolgt durch Installation
spezieller Module. Das Projekt Jupyter ist Open Source. Die Funktionen des Notebooks basie-
ren alle auf dem IPython Kernel. Dabei handelt es sich um einen separaten Prozess, der unter
anderem fiir die Ausfithrung des Codes verantwortlich ist. Verschiedene Frontends kénnen
sich dabei mit einem Kernel verbinden. Sie haben dadurch zugriff auf den Speicher und die
darin enthaltenen Variablen. Dies war urspriinglich fiir die Entwicklung unterschiedlicher An-
sichten fiir den gleichen Kernel gedacht. Dadurch ist es auch moglich, das mehrere Benutzer
an einem Projekt arbeiten und den Datenstand teilen. Beim Jupyter Notebook handelt es sich
genau genommen um ein solches Frontend. Dies hat die besondere Funktion, das Code und
Texte in einem Dokument gesichert werden. Dieses verwendet das JSON Format und die
Dateiendung .ipynb. Dadurch ist es mdglich, Notebooks einfach zu teilen. Angeboten wird
auch der Export in andere Formate, beispielsweise HTML oder LaTeX. [47]



3 Verwandte Arbeiten

Dieses Kapitel stellt verwandte Arbeiten vor, und beschreibt Gemeinsamkeiten und Unter-
schiede zu dieser Diplomarbeit.

Data Wrangler [17] ist ein interaktives Tool fiir Datentransformationen. Es ist online unter
[38] in einer urspriinglichen Version verfligbar. Dieses Tool wird nicht mehr weiterentwi-
ckelt. Das Unternehmen TriFacta [50], das von Mitgliedern des Forschungsteams gegriindet
wurde, bietet nun unter anderem eine weiterentwickelte Version zum Download an. Hierfiir
wird eine Registrierung mit Angabe der vollstindigen Kontaktdaten verlangt. Die folgende
Beschreibung bezieht sich daher auf die urspriingliche Version [17]. Das Tool bietet eine Vor-
schau fiir geplante Transformationsschritte, damit sich der Benutzer die genauen Auswirkun-
gen an einem Beispiel veranschaulichen kann, so wie eine Liste von bereits vorgenommenen
Schritten. Transformationen konnen auch riickgéngig gemacht werden. In dieser Arbeit ist
dies nicht direkt moglich. Eine Reihe von Transformationen kénnen als Skript gespeichert
und mit Kommentaren dokumentiert werden. Somit konnen Transformationen zu einem spé-
teren Zeitpunkt wiederholt werden, etwa bei neuen Datensdtzen. In dieser Arbeit ist dies nicht
automatisch moglich. Ein besonderes Feature ist, dass das Tool versucht, Vorschldge fiir
Transformationsschritte zu geben, etwa dem Auffiillen oder 16schen leerer Zeilen. Auflerdem
kann das Tool anhand von Beispielen komplexere Transformationen erkennen, etwa fiir die
Extraktion von Zahlen aus einem Freitextfeld. Machine Learning wird verwendet, um die
Qualitdt der Vorschldge mit steigender Nutzung zu verbessern. In dieser Arbeit erfolgt die
Unterstiitzung des Benutzers hauptsdchlich durch Texte, die weitergehende Informationen zu
Metriken und Transformationen bieten. Es werden keine automatischen Vorschlédge fiir Trans-
formationen angeboten. Das Tool ist Tabellenorientiert. Uber jeder Spalte gibt es einen
Datenqualititsbalken der einfache Qualitdtsmetriken darstellt, wie etwa fehlende Werte oder
Werte vom falschen Datentyp. Die Datenqualititsmetriken sind einfach und dienen vor allem
zur Unterstiitzung der Datentransformation. Im Gegensatz dazu verwendet diese Arbeit auch
zusdtzlich komplexere Metriken, insbesondere fiir Textdaten. Das Thema Optimierung der
Laufzeit wird nicht angesprochen. In dieser Arbeit werden ausgewidhlte Metriken mit Ver-
wendung von Apache Spark implementiert und auf die Laufzeit hin evaluiert.

Ein frei verfligbares Tool ist OpenRefine [45]. Dieses Tool ist auch unter dem zuvor verwen-
deten Namen GoogleRefine bekannt. Damit lassen sich Daten sdubern und transformieren.
Das Tool bietet eine tabellenférmige Darstellung der Daten. Wie in dieser Arbeit auch ist es
moglich, Daten zu filtern. Es wird eine Reihe von vorgegebenen Transformationsschritten an-
geboten. Bei dieser Arbeit ist es moglich, Funktionen bei Bedarf direkt im Notebook durch
Code zu implementieren oder aus entsprechenden Skripten einzubinden. Ein Feature, dass in
dieser Arbeit nicht betrachtet wird, ist die Moglichkeit, verschiedene Webservices zu verwen-
den, etwa um freie Datensitze einzubinden. Im Unterschied zu dieser Arbeit liegt der Fokus
nicht auf Qualitdtsmetriken.

Ein weiterer Ansatz fiir die Transformation, Integration und Analyse von Daten in der Litera-
tur ist DataCommandr [25]. Das Hauptfeature ist die Spaltenorientierung, statt der ansonsten
iiblichen relationalen Ansatz mit der Betonung von Tabellen und Reihen. Als Grund fiir die-
sen Ansatz wird die Laufzeitoptimierung genannt. Allerdings bezieht sich eher auf weiter-



gehende Analysen. Im Gegensatz hierzu wird in dieser Diplomarbeit auch die Laufzeit von
Datenqualitdtsmetriken betrachtet, mit denen die Datenqualitét ermittelt und tiberwacht wer-
den kann. Das Tool verwendet eine doménenspezifische Sprache, COEL (concept-oriented
expression language). Beziehungen zwischen Daten werden durch Links realisiert, die viel
einfacher zu handhaben sind als Joins. Dadurch soll sich zusitzlich die Laufzeit von komple-
xen Analysen deutlich verbessern. In dieser Arbeit werden keine speziellen Optimierungen
oder Darstellungsformen entwickelt. Stattdessen werden, wenn moglich, Standardbibliothe-
ken verwendet. Im Gegensatz zu dieser Arbeit wird Datenqualitit nicht diskutiert. Auch wird
dem Benutzer hier keine Hilfestellung etwa durch weiterfithrende Texte oder Checklisten an-
geboten.

Es sind einige Jupyter Notebooks zum Thema Data Wrangling verfiigbar. Ein Beispiel ist
[37]. Dieses Notebook bietet Inspektion und Transformation von Daten. Wie in dieser Di-
plomarbeit werden Textfelder zur Beschreibung und Erlduterung genutzt. Allerdings ist es im
Gegensatz zu dieser Arbeit als Einflihrung gedacht und arbeitet auf konkreten Beispielen. Die
Themen Datenqualitdt und Laufzeit werde nicht angesprochen.

Ein weiteres Beispiel ist [27]. In dieser Arbeit wurde eine spezielle Fragestellung aus dem Be-
reich der Ozeanologie untersucht. Dazu wird ein Jupyter Notebook verwendet. Dabei werden
Daten aufbereitet und gefiltert, um in der anschlieBenden Analyse verwendete werden zu kon-
nen. Im Gegensatz zu dieser Arbeit ist das Notebook fiir einen speziellen Anwendungsfall in
einer bestimmten Doméne gedacht. Auch werden keine Metriken angeboten, mit denen die
Qualitdt der Daten gemessen werden kann.

Es gibt in der Literatur viele Arbeiten {iber Data Wrangling. Im folgenden werden drei wichti-
ge Arbeiten exemplarisch herausgegriffen. Ein kurzer Uberblick iiber das Thema Data
Wrangling findet sich bei [9].

Die Arbeit von Kandel et al. [16] diskutiert verschiedenste Themen und Probleme aus dem
Bereich Data Wrangling, insbesondere unter dem Aspekt der Visualisierung. So kénnen zum
Beispiel Schaubilder und Diagramme dabei helfen, Datenqualitdtsprobleme zu erkennen, wie
etwa fehlende Werte. Diese Diplomarbeit greift einige der in diesem Paper diskutierten
Aspekte und Erkenntnisse auf. Der Hauptunterschied ist, dass in dieser Arbeit eine prototypi-
sche Implementierung durchgefiihrt wird. Zusédtzlich werden Datenqualitidtsmetriken bereitge-
stellt, insbesondere fiir Textdaten.

Das Buch ,,Python for Data Analysis* [23] behandelt das Thema Data Wrangling als Teila-
spekt der Datenanalyse unter Verwendung der Programmiersprache Python als wichtigstes
Tool. Zusitzlich wird unter anderem IPython behandelt, der Vorldufer und die Basis von Ju-
pyter Notebooks. Eine Ahnliche Einfiihrung fiir die Programmiersprache R bietet [5]. Dar-
iiberhinausgehend soll das in dieser Arbeit prototypisch erstellte Notebook nicht auf Python,
R oder eine andere bestimmte Programmiersprachen oder Plattformen beschrdnkt sein, son-
dern bei Bedarf verschiedene Implementierungen integrieren kénnen.

Der Einsatz von Data Analytics in der Produktion wird in der Literatur oft diskutiert. So be-
schéftigt sich zum Beispiel [13] mit der Datengetriebenen Optimierung von Produktionspro-
zessen. Hierzu wurde die Plattform AdMA (Advanced-Manufacturing-Analytics) prototy-
pisch implementiert und evaluiert, die Datenhaltung mit Wissen iiber den Produktionsprozes-



se sowie darauf aufbauende Analysen vereint. Zusdtzlich konnen die Erkenntnisse iiber eine
Mobile App auch Werkern und Fertigungsleitern prisentiert werden. Ahnlich wie diese Arbeit
wird eine Mischung aus strukturierten und unstrukturierten Daten unterstiitzt und ganzheitlich
betrachtet. Allerdings konzentriert sich diese Arbeit auf den Aspekt der Datenqualitit im Kon-
text von Data Wrangling. Weitergehende Analysen wie etwa Data Mining sowie Aspekte der
Présentation stehen nicht im Fokus dieser Diplomarbeit. Zusitzlich ist das Toolkit flexibel ge-
staltet und nicht fiir eine bestimmte Doméne, wie etwa Produktionsprozesse, zugeschnitten.
Jedoch wird das Notebook auch auf Daten angewendet, die aus der Produktion stammen.

Die Notwendigkeit, beim Thema Datenqualitédt nicht nur Menschen sondern auch Maschinen-
konsumenten, wie etwa Data Mining Algorithmen, zu betrachten, wird in [18] betont. Dies
spielt eine noch groBere Rolle, wenn Analysen in einer Pipeline stattfinden, also wenn das Er-
gebnis eines Analyseschrittes direkt als Ausgangsbasis flir den ndchsten Schritt dient.

Datenqualitit im allgemeinen spielt in der Literatur eine sehr gro3e Rolle. Der in [29] prisen-
tierte Ansatz betrachtet Datenqualitdt empirisch. Hierzu wurden Experten, die hdufig mit
Daten arbeiten, befragt. Daraus werden 4 Kategorien von Datenqualitit abgeleitet, die wieder-
um insgesamt 15 Datenqualititsdimensionen enthalten, zum Beispiel Accuracy oder Comple-
teness.

Ein umfassender Uberblick iiber das Thema und die Beschreibung verschiedener Datenquali-
tatsmetriken findet sich in [3]. Der Zusammenhang zwischen der Qualitdt der Daten und der
Qualitét der darauf aufbauenden Analysen spielt eine wichtige Rolle.

Ein Framework zur Messung von Datenqualitit wird in [26] prédsentiert. Es werden 48 kon-
krete Metriken besprochen, teilweise mit Implementierungsskizzen. Der Fokus liegt auf dem
Aspekt der Messung von Datenqualitit. Im Gegensatz zu dieser Arbeit werden Aspekte des
Data Wrangling nicht betrachtet. Zusitzlich spielt die Laufzeit der Metriken eine untergeord-
nete Rolle. Diese Arbeit greift Ideen aus diesem Buch auf und implementiert zwei der be-
schriebenen Metriken.

Das ,,Bad Data Handbook* [22] betrachtet das Thema Datenqualitit sehr praktisch und viel-
faltig. Ein wichtiger Aspekt ist, das sehr viele Daten, etwa in Tabellenverarbeitungsprogram-
men, in einem fiir menschliche Verwendung optimierten Form vorhanden sind. Diese ist fiir
Maschinen schwer zu verarbeiten und muss aufwendig transformiert werden. Auch un-
gewohnliche Datenqualititsprobleme werden behandelt, etwa das von Menschen verfasste
Freitextfelder (etwa Produktbewertungen) bewusste Liigen enthalten kdnnen.



4 Data Wrangling

Data Wrangling bezeichnet den iterativen Prozess, Daten in eine Form zu bringen, die fiir
weitere Analysen geeignet ist. Dabei ist Data Wrangling ein sehr aufwendig und kosteninten-
siv. Laut Schétzungen wird dafiir bis zu 80% der Entwicklungszeit aufgewendet. [16]

In diesem Kapitel soll ein Uberblick iiber das Thema gegeben werden. Hierzu wird in Ab-
schnitt 4.1 der Data Wrangling Prozess ndher beschrieben. Abschnitt 4.2 diskutiert typische
Datenqualititsprobleme wie etwa fehlende Werte. Abschnitt 4.3 gibt einen kurzen Uberblick
iiber in der Literatur diskutierte Ansétze. Dieses Kapitel dient dabei als theoretische Grund-
lage fiir das Konzept des Jupyter Notebooks in Kapitel 5.

4.1 Data Wrangling Prozess

Data Wrangling ist ein aufwendiger und iterativer Prozess. Abbildung 3 zeigt eine Visualisie-
rung des typischen Data Wrangling Prozesses. Ziel ist es, eine Menge roher Daten im Origi-
nalzustand so aufzubereiten dass sie fiir weitergehende Analyseschritte nutzbar sind. Erst da-
durch lassen sich Erkenntnisse erzielen, die moglicherweise einen Mehrwert bringen. Dabei
ist zu beachten, dass Data Wrangling und die anschlieBende Analyse zwar als getrennte
Schritte betrachtet werden konnen. Allerdings lassen sie sich in der Praxis oft nicht scharf
trennen und bilden einen wechselseitigen, iterativen Prozess. Dieser Vorgang ist in Abbildung
3 durch den zickzackformigen Verlauf der Linie symbolisch dargestellt. So ist es moglich,
dass beim Laden der Daten in das Analysetool festgestellt wird, dass die Daten nicht im rich-
tigen Format fiir dieses Tool vorliegen, obwohl bereits mehrere Transformations- und Berei-
nigungsschritte erfolgt sind. Nachdem weitere Schritte durchgefiihrt wurden, konnen bei ei-
nem erneuten Analyseversuch weitere Probleme aufgedeckt werden. Zum Beispiel konnen
nicht plausibel erscheinende Ergebnisse auf Datenqualitdtsprobleme hindeuten. Diese miissen
erst aufgespiirt und behoben werden, bevor die Analyse fortgesetzt werden kann. [16]
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Abbildung 3: Visualisierung eines typischen Data Wrangling Prozesses. Entnommen aus [16]

Im Folgenden sollen die beiden wichtigen Aspekte des Data Wranglings etwas ndher be-
schrieben werden, die Diagnose von moglichen Fehlern, und die Transformation der Daten in
eine nutzbare Form. Bei der Diagnose geht es darum alle moglichen Probleme in den Daten
zu identifizieren. Dabei gibt es verschiedene Arten von Problemen. Ein typisches Beispiel
sind falsche oder fehlende Werte, verursacht etwa durch menschliche Fehler bei der Eingabe.
Aber auch formal korrekte, aber irrefiihrende Werte konnen die Analyse stark beeintrichti-
gen: So konnen bestimmte Informationen durch Codes dargestellt werden, etwa der Wert 999
fiir ,,unbekannt* beim Alter. Da diese Werte aber entsprechend dem Datentyp zuldssig sind,
werden sie nicht direkt erkannt und flihren zu falschen Ergebnissen bei der Analyse, etwa dem
Durchschnittsalter. Ein weiteres Problemfeld ist das Zusammenfiihren von Daten aus unter-
schiedlichen Quellen. Diese konnen in unterschiedlichen Formaten vorliegen. Daneben kon-
nen auch unterschiedliche Konventionen zu Datenqualitdtsproblemen fiihren, etwa die Codie-
rung der Altersangabe ,,unbekannt durch den Wert 0 statt wie im Beispiel zuvor durch 999.
Eine weitergehende Diskussion mdglicher Probleme findet sich in Sektion 4.2. Nachdem
Datenqualititsprobleme diagnostiziert wurden miissen diese behoben werden. Dies geschieht
im Allgemeinen durch Transformation der Daten. Ahnlich wie beim gesamten Data Wrang-
ling Prozess sollten diese beiden Schritte nicht strikt linear verstanden werden sondern wech-
selseitig und iterativ. Bei einer Transformation kdnnen zusitzliche Probleme aufgedeckt wer-
den, die wiederum weitere Transformationsschritte auslosen und so weiter. Typische Trans-



formationsschritte sind dabei das (Um-)Formatieren der Daten, die Extraktion, die Umwand-
lung und die Korrektur fehlerhafter Werte. [16]

Beim Umformatieren der Daten geht es darum, den Datensatz in eine Form zu bringen, die fiir
die weiteren Analysen nutzbar ist. Ein Beispiel hierfiir wire ein Datensatz, der in einer fiir die
Verwendung durch Menschen gedachten Tabelle im CSV-Format bereitgestellt wird. Die Ein-
bettung von wichtigen Informationen in Text, etwa den Namen des Bundesstaates bei einer
Kriminalstatistik fiir die USA, stellt fiir Menschen kein Problem dar, ist aber nicht unmittelbar
von Tools zu verarbeiten und muss umgewandelt werden. Tabelle 1 stellt ein vereinfachtes
Beispiel dar. Auf der linken Seite ist das urspriingliche Format zu sehen. Auf der rechten Seite
das Zielformat, das leichter durch Tools zu verarbeiten ist. Diese Tabelle stellt auch gleichzei-
tig ein Beispiel fiir eine Extraktion dar. Die Information, auf welchen Bundesstaat sich die
Werte beziehen, ist im Originaldatensatz nur in Form eines Textes vorhanden, der nicht ohne
weiteres durch Tools verarbeitet werden kann. Hierzu muss der Name, im Beispiel
»Alabama“, aus dem Text extrahiert und in einer zusétzlichen Spalte gespeichert werden. [17]

Urspriingliches Format: Zielformat:

gemeldete Verbrechen fiir Alabama:  Eigentumsdelikte Jahr Staat Eigentumsdelikte
2004 4000 2004 Alabama 4000

2005 5000 2005 Alabama 5000

2006 3900 2006 Alabama 3900

Tabelle 1: Beispiel fiir Unformatierung und Extraktion. Basierend auf [17]

Ein Beispiel fiir einen Umwandlungsschritt ist die Umrechnung von einer Maf}einheit in eine
andere, etwa von Meilen zu Kilometern. Viele Umwandlungsschritte benétigen zusitzliche
Informationen, beispielsweise zur Umrechnung von Mafeinheiten und zur Umrechnung von
einer Wihrung in die andere. Hierfiir muss der Wechselkurs bekannt sein. Zusétzlich muss
festgelegt werden, zu welchem Zeitpunkt der Wechselkurs ermittelt wird. [16]

Typisch sind aber auch technisch bedingte Umwandlungen. Beispielsweise werden Zahlen
hiufig als Zeichenkette reprisentiert (String). Bevor diese Werte mathematisch verarbeitet
werden konnen miissen sie zuerst in eine Zahlenreprasentation umgewandelt werden (z.B. In-
teger, Float, etc.). [22]



4.2 Typische Datenqualititsprobleme

In dieser Sektion soll ein kurzer Uberblick iiber ausgewihlte Datenqualititsprobleme im Kon-
text von Data Wrangling gegeben werden. Die Darstellung ist keinesfalls vollstdndig oder er-
schopfend. Hierbei wird der Begriff der Datenqualitit im Sinne von ,,fitness for use* benutzt
[29]. Ein Datensatz, der inhaltlich und fachlich einwandfrei ist, aber im falschen Format fiir
das genutzte Analysetool vorliegt, wird als Datenqualitdtsproblem (im Kontext des Analyse-
tools) aufgefasst [18].

Tabelle 2 zeigt eine Ubersicht ausgewihlter Datenqualititsprobleme im Kontext von Data
Wrangling. Die Spalte ,,mogliche Losung* enthilt beispielhaft mégliche Losungsansétze. Die-
se Losungsansdtze sind keinesfalls allgemeingiiltig oder erschopfend. Die Spalte Referenz
enthélt den Verweis fiir die entsprechenden Literaturquelle, auf denen der Eintrag basiert. Der
Verweis dient dabei als Referenz fiir die Herkunft und bedeutet nicht, dass dieses Problem
ausschlieBlich nur in dieser Quelle diskutiert wird. Andere, auch hier zitierte Quellen konnen
Aspekte dieses Problems beleuchten.

Die Tabelle basiert auf einer Zusammenstellung von in der Literatur diskutierten Féllen. Die
Auswabhl erfolgte aus folgenden Griinden: Fiir Menschen gedachte Formate, die schwer ma-
schinell verarbeitet werden konnen sind ein Beispiel fiir die Notwendigkeit von Data Wrang-
ling, selbst wenn der Datensatz an sich keine fachlichen Fehler enthélt. Fehlende und irrefiih-
rende Werte sowie inkonsistente Semantik sind typische Beispiele die hdufig in der Literatur
zitiert werden. Fehlende und irrefithrende Werte werden auch im praktischen Teil dieser Di-
plomarbeit diskutiert. Siehe hierzu das Kapitel 8. Bewusste Tduschung als mdgliche Quelle
von Qualititsproblemen kann je nach Doméne eine grofle Rolle spielen, etwa bei Online
Daten wie Bewertungen, und sollte nicht unterschétzt werden. Das Encoding von Textdaten
spielt bei der Analyse von Texten eine Rolle und kann zu Fehlern fiihren, die schwer zu ent-
decken sind. In dieser Arbeit wurden mehrere Metriken verwendet, die auf Textdaten arbei-
ten, siche hierzu Kapitel 6. Im folgenden werden die einzelnen Qualitdtsprobleme nédher be-
schrieben, mit den dazu gehorenden Referenzen auf die Literaturquellen.

Datenqualitatsproblem: mogliche Ldsung: Referenz
Fir Menschen gedachtes Format  Umformatieren 17,22
Fehlende Werte Imputieren, Filtern 16,22
Irreflhrende Werte, Codes konvertieren 16,22
Bewusste Tauschung Analysieren 22
Inkonsistente Semantik Mapping 16
Encoding von Textdaten konwertieren 22

Tabelle 2: Ausgewdhlite Datenqualitdtsprobleme im Kontext von Data Wrangling mit
moglichen Losungsschritten

Héaufig werden Datensédtze in einem Format bereitgestellt, das fiir die Benutzung durch
Menschen gedacht ist, beispielsweise formatierte Tabellen. Dies stellt ein Problem dar, falls
die Daten maschinell verarbeitet werden sollen. [22]



Ein einfaches Beispiel hierfiir zeigt Tabelle 1, basierend auf einem ausfiihrlicheren Beispiel in
[17]. Diese Tabelle zeigt (fiktive) Informationen iiber Verbrechen pro Jahr und Bundesstaat
der USA. Auf welchen Bundesstaat sich die Informationen beziehen wird im Originaldaten-
satz durch einen Text beschrieben. Fiir Menschen stellt dies kein Problem dar, aber der einfa-
che Text ,,gemeldete Verbrechen fiir [Bundesstaat]* ist nicht ohne weiteres automatisch verar-
beitbar. Die relevante Information, also der Name des Bundesstaates, muss hierfiir extrahiert
werden. Zusitzlich ist das Format zu beachten. Menschen koénnen erkennen, dass sich der
Text mit der Informationen {liber den Bundesstaat sich auf die folgenden drei Jahre 2006, 2007
und 2008 bezieht. Fiir automatische Verarbeitung ist es besser, den Namen des Bundesstaates
zu jeder Zeile hinzuzufiigen. [17]

Falls die Daten in einem Tabellenformat wie etwa CSV bereitgestellt werden, so ist es noch
relativ einfach moglich, sie durch entsprechende Transformationen in ein fiir maschinelle
Verarbeitung geeignetes Format zu konvertieren. Deutlich schwieriger wird dies etwa bei
Daten, die in PDF Dokumenten oder Websites eingebunden sind. [22]

Fehlende Werte in Datensdtzen konnen verschiedene Ursachen haben, etwa menschliche
Fehler bei der Eingabe. Bei Datensétzen, die iiber ldngere Zeitrdume erhoben werden, konnen
bestimmte Spalten erst nachtriaglich in den Datensatz mit aufgenommen worden sein. Fiir élte-
re Werte wurden diese Daten nicht erhoben und stehen auch nicht zur Verfiigung. Es ist auch
moglich, das Daten ganz oder teilweise verlorengegangen sind. Eine Katastrophe, etwa ein
Feuer in einem Archiv, kann bei historischen Daten zu Liicken im Datensatz oder zu einem
Totalverlust bestimmter Werte fithren. Aber auch technische Ursachen kénnen eine Rolle
spielen. Beispielsweise kann eine Schnittstelle, iiber die Daten abgerufen werden, auf eine be-
stimmte Anzahl an zuriickgegeben Werten limitiert sein. [16]

Es gibt verschiedene Ansétze mit fehlenden Werten umzugehen. Die in Tabelle 2 aufgefiihr-
ten Vorgehensweisen filtern und imputieren sind nicht die einzigen und wurden beispielhaft
ausgewdhlt. Filtern bedeutet dabei Eintrdge zu entfernen, die bestimmten Kriterien entspre-
chen. In diesem Fall alle Eintrdge mit fehlenden Werten. In manchen Fiéllen ist dies die einzi-
ge Moglichkeit, mit fehlenden Werten umzugehen, etwa wenn die Werte nicht aus anderen
Datenquellen ergidnzt werden konnen. Es besteht auch die Moglichkeit, fehlende Werte zu im-
putieren. Imputieren bedeutet dabei, einen fehlenden Wert fiir einen Eintrag durch den ent-
sprechend Wert eines dhnlichen Eintrags zu ersetzen. Allerdings kann dieses Vorgehen unter
bestimmten Umstidnden die Qualitét der Analyse verschlechtern und sollte nur mit Bedacht
gewihlt werden. [22]

Irrefiihrende Werte konnen eine Analyse ernsthaft beeintrachtigen. Beispielsweise kann der
Wert 999 bei einer Altersangabe bedeuten, dass das Alter unbekannt ist. Handelt es sich bei
dem Datentyp des Feldes um ,,Zahl®, so ist 999 allerdings ein giiltiger Wert. Einem Analyse-
tool fehlt die semantische Information, dass 999 fiir einen Menschen kein giiltiges Alter dar-
stellt. Dadurch konnen Berechnungen auf den Daten zu falschen Ergebnissen fiihren, etwa die
Berechnung des durchschnittlichen Alters. Eine Moglichkeit damit umzugehen, ist es diesen
Wert zu konvertieren, etwa in einen expliziten Nullwert. [16]

Es ist moglich, dass Datenqualitétsprobleme in einem Datensatz durch bewusste Tduschung
entstanden sind, beispielsweise bei Online-Bewertungen. Dabei kann es sich um fiktive
Scherzeintrage handeln. Auch bewusste Manipulationen sind denkbar. Ein in Onlinebewer-



tungen tatsdchlich vorkommendes Beispiel wire etwa, wenn ein Nutzer einem von ihm ei-
gentlich geschitzten Lokal eine schlechte Bewertung gibt, um andere davon abzuhalten, es zu
besuchen und so eine Uberfiillung zu verhindern. Solche Qualititsprobleme lassen sich ohne
aufwendige Analysen nicht leicht beziehungsweise moglicherweise gar nicht entdecken. [22]

Siehe hierzu auch [15].

Inkonsistente Semantik kann zum Beispiel dadurch entstehen, dass sich ein Klassifikations-
schema im Laufe der Zeit veriindert. Andert sich beispielsweise zu einem Stichtag die Klassi-
fikation fiir ein Feld in einem Datensatz, etwa die Todesursache in einer Kriminalstatistik, so
kann dies zu Inkonsistenzen fithren. Einige Werte kdnnen ab dem Stichtag eine andere Bedeu-
tung haben als exakt die gleichen Werte bei Eintrégen vor dem Stichtag. Manche Werte wer-
den nicht mehr verwendet, neue Bezeichnungen tauchen auf die es im Datensatz zuvor nicht
gab. Probleme mit inkonsistenter Semantik treffen auch hiufig auf, wenn Datensétze aus un-
terschiedlichen Quellen integriert werden sollen, die auf unterschiedlichen Schemata und De-
finitionen basieren, etwa weil sie aus unterschiedlichen Organisationen erstellt wurden oder
aus unterschiedlichen Landern stammen. Eine Mdglichkeit damit umzugehen ist eine seman-
tische Transformation, ein Abbilden von Konzepten aufeinander, die eine vergleichbare Be-
deutung haben. Dies kann zum Beispiel durch eine Mappingfunktion realisiert werden, die in-
kompatible Werte durch die jeweils passenden Werte im Zielschema ersetzt. In manchen Fél-
len sind die Unterschiede zwischen den Schemata aber so groB3, dass keine korrekte Transfor-
mation durchgefiihrt werden kann. [16]

Falsches Encoding von Textdaten kann die Verarbeitung dieser Daten erschweren. In man-
chen Fillen ist es mdglich, dass das félschlicherweise gewihlte Encoding sehr dhnlich zum
tatsdchlich vom Textdatensatz verwendeten Encoding ist. Dies kann dazu fiihren, dass Fehler
entstehen die nur sehr schwer zu entdecken sind, weil bei oberflidchlicher Inspektion der Text-
daten keine offensichtlichen Probleme auffallen. Der Begriff Encoding oder Zeichenkodie-
rung bezeichnet das technische Format, in dem Textdaten digital gespeichert werden. ASCII
ist ein 7-bit Encoding. Das bedeutet, dass jedes Textzeichen durch eine Siebenstellige Bindr-
zahl dargestellt wird, mit insgesamt 128 moglichen Zeichen, die durch das Format reprisen-
tiert werden konnen. Der Zeichensatz umfasst unter anderem alle Buchstaben des englischen
Alphabets in GroB3- und Kleinschreibung, die Zahlen von 0 bis 9 sowie diverse Satzzeichen
und mathematischen Symbole. ASCII ist aus historischen Griinden sehr weit verbreitet und
spielt heute noch aus Kompatibilitidtsgriinden eine grofle Rolle. Viele in westeuropdischen
Sprachen verwendete Symbole kdnnen nicht mit ASCII dargestellt werden, flir die deutsche
Sprache zum Beispiel die Umlaute. Es gibt viele andere Encoding-Schemata, die teilweise in-
kompatibel zu einander sind. Unicode ist ein universelles Encoding mit dem Ziel, alle Zeichen
zu repréasentieren, die in naher Vergangenheit auf der Welt im Druck verwendet wurden. Uni-
code unterstlitzt Sprachen aus der ganzen Welt, darunter auch Sprachen mit einem komplexen
Zeichensatz wie Chinesisch. Ein typisches Problem, dass durch die Verwendung unterschied-
licher Encodings entstehen kann, ist dass Werte nicht richtig verglichen werden kénnen. Zwar
stellen sie den gleichen Text dar und haben somit die gleiche Semantik. Aber wegen der un-
terschiedlichen Encodings werden sie technisch unterschiedlich représentiert. Dadurch wer-
den sie etwa bei Vergleichen als unterschiedlich gewertet, was zum Beispiel bei JOIN Opera-
tionen zu Problem fiihren kann. Eine mogliche Losung ist es, die Encodings vorliegende Text-
daten zu vereinheitlichen. Hierzu werden alle Textdaten in ein einheitliches Standardformat



konvertiert, zum Beispiel UTF-8, eine Variante von Unicode. Dabei ist zu beachten, dass das
Encoding der Ausgangsdaten korrekt angegeben wird. So sind die Encodings Code Page 1252
und ISO-8859-1 sehr dhnlich, unterscheiden sich aber in Details. Die Angabe des falschen En-
codings konnte unter Umstédnden zu schwer diagnostizierbaren Datenqualitétsproblemen fiih-
ren. [22]

Viele der in diesem Abschnitt diskutierten Aspekte sind beim Entwurf des Notebooks beriick-
sichtigt worden. Siehe hierzu das Kapitel 5 {iber das Konzept. Im Folgenden soll dies noch et-
was ausfiihrlicher dargestellt und begriindet werden:

Fiir Menschen gedachte Formate werden nicht direkt beriicksichtigt. Dies liegt daran, dass
es eine Vielzahl verschiedener Varianten und Darstellungsformen gibt. Eine automatische Lo-
sung ist also extrem aufwendig und schwer zu verallgemeinern. Bei kleinen Dokumenten,
etwa Tabellen die aus wenigen Seiten bestehen, kann eine manuelle Bearbeitung durch ein
hierfiir geeignetes Tool die einfachste Alternative darstellen. Beispiele fiir solche Tools sind
Tabellenkalkulationsprogramme wie etwa OpenOffice Calc [42] oder spezialisierte Tools wie
Data Wrangler [17]. Alternativ kann dieses Problem durch Code gelost werden, wie im Bad
Data Handbook erwéhnt [22]. Soll eine Transformation zum Beispiel wiederholbar sein, etwa
wenn der Datensatz regelméBig aktualisiert wird, so kann eine automatische Transformation
durch ein Skript realisiert werden. Dieses kann dann problemlos ins Notebook eingebunden
werden. Im Notebook sind diverse Skripte und Bibliotheken integriert. Verwendet werden un-
ter anderem die Programmiersprachen Java, Python und R. Die Implementierung und Einbin-
dung kann als Starthilfe dienen, eigene Skripte einzubinden. Siehe hierzu auch das Kapitel 6.

Fehlende Werte spielen eine grofle Rolle und werden daher beim Entwurf des Notebooks be-
riicksichtigt. Hierzu steht eine Metrik bereit, welche die Verteilung der Nullwerte im Daten-
satz berechnet. Zusitzlich ist es moglich, Zeilen mit Nullwerten zu filtern. Eine Imputation
wird nicht angeboten. Zum einen ist die Implementierung aufwendig. Zum anderen kdnnen
dadurch zusétzliche Datenqualititsprobleme entstehen [22].

Beispiele fiir fehlende Werte in einem Datensatz bietet die Analyse des NHTSA Complaints
Datensatzes in Kapitel 8.1. Auch bei der Betrachtung der Industriedaten in Kapitel 8.2 wird
dieses Problem diskutiert.

Irrefiihrende Werte spiclen ebenfalls eine grofle Rolle und flieen ins Konzept ein. Das No-
tebook unterstiitzt durch Visualisierungen, etwa eines Histogramms, beim aufspiiren mogli-
cher Kandidaten. Zusétzlich wird eine Metrik zur Erkennung von Ausreiflern beispielhaft an-
geboten. Werden irrefithrende Werte entdeckt, ist es durch die Ersetzungsfunktion moglich,
sie zu dndern. Beispielsweise konnen sie durch explizite Nullwerte ersetzt werden. Siehe hier-
zu Kapitel 6.2.

Siehe die Analyse des NHTSA Complaints Datensatzes in Kapitel 8.1 fiir ein praktisches Bei-
spiel. Die Spalte fiir das Modelljahr (YEARTXT) enthilt Eintrdge mit dem Wert 9999. Dieser
hat die Bedeutung, das der Wert unbekannt ist oder fiir den Eintrag nicht verfiigbar ist.

Bewusste Tauschung ist ein sehr komplexes Problem. Das Notebook bietet hierfiir keine Me-
triken. Es wird bewusst auf eine vereinfachte, beispielhafte Implementierung oder Einbindung
verzichtet. Inkorrekte oder falsch interpretierte Ergebnisse konnten, je nach Doméne, zu ernst-



haften Konsequenzen fiihren. Die Entwicklung einer passenden Methode iibersteigt bei
weitem den Umfang der Arbeit.

Inkonsistente Semantik ist zwar ein wichtiger Aspekt, aber es ist schwer, automatische Lo-
sungen zu entwerfen. Fachwissen iiber die Doméne und die Semantik ist meistens notwendig.
Allerdings ist es durch die Funktionen des Notebooks moglich, den Datensatz zu untersuchen
und zu verdndern. Dies kann bei der Analyse und Behebung helfen. Das Notebook bietet kei-
ne Implementierung einer Mappingfunktion. Pandas [46], die Bibliothek, die als Grundlage
fiir die Datenverarbeitung im Notebook dient, unterstiitzt Mappingfunktionen. So kénnen die-
se relativ einfach entwickelt und direkt im Notebook verwendet werden.

Falsches Encoding von Textdaten spielt in dieser Arbeit eine wichtige Rolle. Es werden drei
Metriken angeboten, mit denen die Qualitdt von Textdaten gemessen werden kann. Siehe
hierzu Abschnitt 5.2.3. Damit diese korrekt funktionieren, muss das richtige Encoding ver-
wendet werden. Das Encoding kann beim Import ausgewédhlt werden. Ein Textfeld fasst
Aspekte dieses Themas kurz zusammen und nennt gangige Encodings, basierend auf dem Bad
Data Handbook [22]. Die Checkliste enthélt einen Punkt, der auf dieses Thema hinweist. Das
Notebook erlaubt das Konvertieren von Encodings. Hierzu muss beim Speichern des Daten-
satz nur das gewiinschte Encoding ausgewihlt werden.

Siehe Kapitel 8 fiir praktische Beispiele.

4.3 Mogliche Ansitze

In diesem Abschnitt soll eine Auswahl von Data Wrangling Ansédtzen aus der Literatur kurz
vorgestellt werden. Diese Ansitze wurden exemplarisch ausgewahlt.

Programmcode spielt im Data Wrangling nach wie vor eine groe Rolle. Kandel et al. berich-
ten, das Skripte in verschiedenen Programmiersprachen wie Python oder R eine gro3e Rolle
beim Data Wrangling spielen. Allerdings wird dies eher als Hindernis gesehen. Viele Men-
schen werden dadurch vom Umgang mit Daten abgehalten, weil ihnen die technische Experti-
se fehle. [16]

Das Bad Data Handbook [22] empfiehlt Code als flexible Moglichkeit zum Umgang mit
Daten. So ist man unabhéngig von Format der Daten. Das in Abschnitt 4.2 erwéhnte Problem,
dass Daten héufig in Formaten bereit gestellt werden, die fiir Menschen gedacht sind und ma-
schinell schwer zu verarbeiten sind, bietet hierfiir ein Beispiel. Falls ein Datensatz in einem
ungewodhnlichen Format bereitgestellt wird, fiir das kein Standard-Tool vorhanden ist, so kann

durch Programmieren ein Tool geschaffen werden, das die Umwandlung automatisch durch-
fithrt. [22]

Datenqualitit spielt eine entscheidende Rolle beim Data Wrangling. Das Tool Data Wrangler
implementiert einen Datenqualitdtsmeter, einen Balken der einfache Datenqualitdtsmetriken
visualisiert. Ein Beispiel wire der Prozentsatz der fehlenden Werte in einer Spalte, der wih-
rend der Analyse stindig berechnet wird. Wird eine Transformation ausgefiihrt, wird der Wert
aktualisiert. So kann der Anwender die Qualitdt des Datensatzes iiberblicken und die Auswir-
kungen der Anderungen verfolgen. [17]



Fiir eine etwas ausfiihrlichere Beschreibung des Tools siehe Kapitel 3 iiber verwandte Arbei-
ten.

Visualisierungen konnen dabei helfen, Datenqualititsprobleme in einem Datensatz zu entde-
cken. Typische Beispiele sind fehlende Werte und Ausrei3er. Beispielsweise lassen sich Aus-
reiler in einem Diagramm oft als auffillige Extremwerte erkennen. Liicken im Schaubild deu-
ten auf fehlende Werte hin. Dabei ist zu beachten, dass die Art der Darstellung einen grof3en
Einfull hat. Manche Datenqualititsprobleme lassen sich gut durch Diagramme oder andere
spezielle Darstellungen erkennen. Andere konnen nur durch Inspektion der Rohdaten erkannt
werden. Eine guter Startpunkt ist die Visualisierung der Daten als einfache Textdarstellung in
Tabellenform. Ein Histogramm ist eine weitergehende Darstellung. Hierbei wird dargestellt,
wie oft ein Wert in einer Spalte vorkommt. [16]

Tabelle 3 enthilt ein einfaches Beispiel fiir ein Histogramm. Der Datensatz (links) enthélt die
Werte A, B und C. Das Histogramm rechts enthdlt die Haufigkeiten fiir diese Spalte.

Datensatz Histogram
Wert Wert Anzahl
A A 3

B C 2

A B 1

C

C

A

Tabelle 3: Beispiel fiir ein Histogramm

Der Umgang mit ,,schmutzigen* Daten, also Daten mit Qualitdtsproblemen, ist ein wichtiges
Thema. Es ist nicht immer moglich diagnostizierte Datenqualitdtsprobleme zu beseitigen.
Fehlende Werte konnen durch Verlust der Originaldaten bedingt sind, bei historischen Daten
etwa durch einen Brand in einem Archiv. Dadurch sind die Daten unter Umsténden verloren
und konnen nicht wieder hergestellt werden. In anderen Fillen konnte die Beseitigung von
Qualitdtsproblemen einen unvertretbar hohen Aufwand erfordern. In diesen Fillen kénnen Vi-
sualisierungen dabei helfen, die Tatsache, dass Werte fehlen, zu kommunizieren. Abbildung 4
zeigt an einem Beispiel 4 mogliche Visualisierungen fiir fehlende Daten. Das Schaubild zeigt
Zensusdaten aus den USA. Dargestellt ist die Anzahl der Menschen, die zum jeweiligen Zeit-
punkt als Landarbeiter tdtig waren. Daten von 1890 sind bei einem Brand verlorengegangen.
Bei Variante 1 werden die fehlenden Daten als ein Wert von 0 interpretiert. Bei Variante 2
wird das Fehlen des Wertes ignoriert. Die Linie im Schaubild stellt eine Interpolation dar. Bei
Variante 3 wird der fehlende Wert explizit aus dem Schaubild entfernt. Bei Variante 4 wird
der fehlende Wert interpoliert, allerdings ist dies durch eine andere Farbe explizit dargestellt.
Es ist noch nicht klar, welche Formen der Darstellung optimal sind. Studien zeigen, dass
Menschen nicht immer erkennen, wenn fehlende Werte durch Standardwerte ersetzt werden.
[16]
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Abbildung 4: Vier mogliche Visualisierungen von fehlenden Werten. Entnommen aus [16]

Einige der hier diskutierten Aspekte wurden beim Entwurf des Notebooks berticksichtigt und
spielen sich in der Umsetzung wieder. Im folgenden soll dies kurz dargestellt und begriindet
werden.

Code ist ein zentrales Element des Notebooks. Dadurch ist es mdglich, flexible Losungen be-
reitzustellen, die je nach Anwendungsfall und Doméne abgewandelt werden konnen. Siehe
hierzu Kapitel 5.2.

Die Datenqualitét ist ebenfalls ein zentraler Aspekt des Prototypen. Hierzu werden verschie-
dene Metriken bereitgestellt. Dabei werden sowohl strukturierte als auch unstrukturierte
Daten berticksichtigt. Siehe hierzu Abschnitt 5.2.3.

Eine Anwendung der Metriken auf Datensétze aus der Praxis mit Berechnung konkreter Er-
gebnisse findet sich in Kapitel 8.

Ein Beispiel, dafiir wie ein Diagramm dabei helfen kann, irrefithrende Werte zu erkennen, fin-
det sich in der Analyse der NHTSA Complaints Daten in Sektion 8.1. Das Notebook bietet
daher beispielhaft einfache Visualisierungen wie Diagramme und Histogramme. Siehe Kapi-
tel 5.2.2. Komplexere Visualisierungen kdnnen nach Bedarf eingebunden werden.

Der Umgang mit ,,schmutzigen Daten ist ein wichtiger Aspekt. Wie in der Diskussion zuvor
beschrieben kénnen in manchen Féllen Qualitdtsprobleme nicht geldst werden, etwa wenn
Daten unwiederbringlich verlorengegangen sind. Entsprechende Funktionen des Notebooks,
die dabei helfen, diese Tatsachen zu kommunizieren, waren wiinschenswert. Beispielsweise
Visualisierungsvarianten, wie sie in Abbildung 4 dargestellt werden. Dies konnte dazu beitra-
gen, Missverstdndnisse und Fehlinterpretationen bei der weiteren Verwendung der Daten zu
reduzieren. Diese konnen aber im Rahmen dieser Arbeit nicht implementiert werden.



5 Konzept des Jupyter Notebooks

In diesem Kapitel soll das Konzept fiir eine prototypische Implementierung eines Jupyter No-
tebooks vorgestellt werden. Das Konzept beriicksichtigt einige der in Kapitel 4 diskutierten
Aspekte des Data Wranglings. Fiir Details zur Implementierung siehe Kapitel 6. Eine Anwen-
dung des Notebooks auf Datensdtze aus der Praxis findet sich in Kapitel 8.

Zuniichst soll in Abschnitt 5.1 ein Uberblick gegeben werden. Danach wird in Abschnitt 5.2
genauer auf den Aufbau eingegangen. Beim Entwurf des Notebooks sind Ideen und Ansitze
aus verschiedenen Literaturquellen entnommen worden. Die entsprechenden Referenzen be-
finden sich in der Beschreibung des jeweiligen Abschnitts.

5.1 Uberblick

Die Grundidee des Notebooks ist es ein flexibles Toolkit, das beim Data Wrangling unter-
stiitzt. Es ist als Prototyp gedacht, nicht als fertiges Produkt. Das Notebook ist nicht fiir einen
bestimmten Anwendungsfall oder eine spezielle Doméne bestimmt. Vielmehr soll es als Start-
punkt dienen. Fiir eine konkrete Analyse kann es angepasst und erweitert werden. Viele Me-
triken und Funktionen wurden nicht in dieser Arbeit entwickelt, sondern von anderen Quellen
iibernommen und eingebunden. Ein Literaturverzeichnis im Notebook soll diese Tatsache do-
kumentieren. Zusétzlich soll dadurch moglich sein, die originale Arbeit schnell aufzufinden.
Dies kann hilfreich sein, wenn fiir die eigene Problemstellung Funktionen angepasst werden
miissen. AuBBerdem kann dies auch als Startpunkt fiir eine Literaturrecherche dienen.

Beim Entwurf sollen die folgenden Punkte beriicksichtigt werden:

In Kapitel 4.1 werden die Diagnose und die Datentransformation als wichtige Aspekte des
Data Wrangling Prozesses beschrieben.

Bei der Diagnose sollen mdgliche Fehler und Qualitédtsprobleme im Datensatz aufgespiirt wer-
den. Das Notebook soll hierzu mehrere Funktionen bieten, mit denen die Daten betrachtet
werden konnen. Es ist moglich, die Daten nach verschiedenen Kriterien zu filtern. Zuséatzlich
werden auch Visualisierungen angeboten. Das Notebook bietet exemplarisch mehrere Daten-
transformationen. Damit ist es moglich, die Daten zu bearbeiten und so mogliche Datenquali-
tatsprobleme zu beseitigen. Die Transformationsschritte werden nicht direkt auf den Original-
daten durchgefiihrt. Das Notebook ldadt beim Import eine Kopie in den Hauptspeicher. Damit
die Anderungen persistiert werden, miissen diese gespeichert werden. Hierzu steht unter Save
Data eine Funktion bereit. Es soll technisch moglich sein, das Original zu {iberschreiben, al-
lerdings muss dies explizit angegeben werden. Dies wird aber nicht empfohlen. Fehlerhafte
Anderungen kénnen so nicht mehr riickgingig gemacht werden, wodurch die Datenqualitiit
negativ beeintrichtigt werden kann. Diese Empfehlung basiert auf der Funktion des Tools
Data Wranglers, durchgefiihrte Transformationen riickgingig machen zu konnen [17]. Eine
solche Funktion wire auch filir das Notebook wiinschenswert, iibersteigt aber wegen des damit
verbundenen Aufwands den Umfang der Arbeit. Deswegen wird sie nicht in den Prototyp auf-
genommen. Eine umsténdlichere, aber einfache Losung ist es, Ergebnisse zwischenzuspei-
chern und bei bedarf auf eine dltere Version oder das Original zuriickzugreifen.



Datenqualitit spielt im Data Wrangling eine entscheidende Rolle, siehe hierzu Kapitel 4.3.
Dies wird beim Entwurf des Notebooks beriicksichtigt. Das Notebook soll Metriken sowohl
fiir strukturierte als auch unstrukturierte Daten bieten, mit denen die Datenqualitdt gemessen
werden kann. Hierzu zéhlen neben einfacheren Metriken wie der Verteilung von Nullwerten
auch komplexere Berechnungen wie die Textidhnlichkeit. Diese unterstiitzen bei der Diagnose
von Qualitdtsproblemen. Somit ist es mdglich, den Ausgangszustand der Daten einschitzen zu
konnen. Zusitzlich konnen so die Auswirkungen der Transformationsschritte auf die Qualitdt
besser beurteilt werden.

Die Realisierung erfolgt durch einen Wechsel von Code und Texten. Diese Texte dienen als
Dokumentation des Codes und bieten zusétzlich Hilfestellung beim Data Wrangling. So wird
zum Beispiel eine Checkliste angeboten, damit wichtige Aspekte nicht untergehen. Diese ba-
siert auf Kapitel 4.2. Als Sprache fiir die Texte wurde Englisch gewdhlt. Dies soll die Ver-
wendung des Notebooks einem weiteren Personenkreis zugénglich machen.

5.2 Aufbau

Das Notebook soll in die folgenden Abschnitte gegliedert werden:
*  Checklist
* Import Data
* View Data
*  Metrics
* Transform Data
e Save Data

Diese Gliederung dient der Ubersichtlichkeit. Hiermit sollen die verschiedenen Funktionen
gruppiert werden, damit sie leichter zu finden sind. Die Gliederung versteht sich nicht als li-
nearer Prozess, bei dem die einzelnen Punkte nacheinander abgearbeitet werden. Vielmehr
handelt es sich um einen Werkzeugkasten, der verschiedene Funktionen bietet. Wie in Kapitel
4.1 beschrieben ist der Data Wrangling Prozess iterativ. Manche Funktionen werden in der
Praxis mehrmals ausgefiihrt, etwa die Inspektion. Beispielsweise um nach einem Transforma-
tionsschritt zu liberpriifen, ob dieser korrekt durchgefiihrt wurde. Es ist auch moglich, dass fiir
manche Analysen Funktionen gar nicht verwendet werden. Die Verwendung von Metriken fiir
Textdaten zum Beispiel macht keinen Sinn, wenn der Datensatz keine Textdaten enthélt. Die-
ses Iterative Vorgehen wird durch das verlinkte Inhaltsverzeichnis unterstiitzt. Dadurch ist es
moglich, direkt zum jeweiligen Abschnitt bzw. zur jeweiligen Metrik zu springen. Zusétzlich
besteht bei jeder Funktion die Moglichkeit, durch einen Link zuriick zum Inhaltsverzeichnis
zu gelangen.

Als néchstes folgt eine Checkliste, die typische Arbeitsschritte und Probleme zusammenfasst,
die allgemein beim Data Wrangling beachtet werden sollen. Sie soll als moglicher Startpunkt



dienen. Die Checkliste ist keinesfalls vollstdndig oder allgemeingiiltig. Auch ist sie nicht als
Anleitung oder Handbuch zu verstehen. Beispielsweise spielt bei Textdaten das Encoding
eine grofe Rolle, siehe hierzu Kapitel 4.2. In Kapitel 8.1 wird an einem praktischen Beispiel
beschrieben, wie einzelne Anfiihrungszeichen in Freitextfeldern die Importfunktion beein-
trachtigen konnen. Diese Aspekte spielen bei der Verarbeitung von Textdaten eine Rolle.
Deshalb wird ein entsprechender Punkt in die Checkliste aufgenommen. Bei Datensitzen
ohne Textdaten hingegen wire dieser Punkt iiberfliissig. Andere Formen von Daten kdnnen
ebenfalls typische Probleme haben, die hier aus Griinden des Umfangs nicht beriicksichtigt
werden konnen.

5.2.1 Import Data

Damit Daten im Notebook verarbeitet werden konnen, miissen diese zundchst Importiert wer-
den. Hierflir soll eine Funktion im Abschnitt Import Data bereitgestellt werden. Die interne
Darstellung des Notebooks soll auf Pandas [46] basieren, einer Python Bibliothek fiir Daten-
verarbeitung und Analyse. Der Import soll beispielhaft fiir Textdateien implementiert werden.
Dadurch soll es moglich sein, sowohl Textdaten als auch strukturierte Daten zu verarbeiten.
Dazu miissen die strukturierten Daten in einem geeigneten Format vorliegen, beispielsweise
CSV. Andere Datenquellen, wie etwa Datenbanken, konnen bei Bedarf eingebunden werden.
Das Notebook ist im allgemeinen nicht dafiir gedacht, Daten in ihrer rohen Form zu manipu-
lieren. Liegt beispielsweise eine fehlerhafte CSV Datei vor, so sollte es mit dem Notebook
moglich sein, eine Textdarstellung der Datei zu importieren und zu betrachten. Eine Bearbei-
tung im Notebook wird aber hierfiir nicht vorgesehen. Kapitel 8.1 bietet ein Beispiel fiir ein
solches Problem.

5.2.2 View Data
Der Abschnitt View Data soll verschiedene Funktionen bieten, mit denen die Daten inspiziert
und visualisiert werden konnen. Siehe hierzu auch Kapitel 4.3.

Als Einstieg dient eine Darstellung der Daten in Tabellenform. Somit kann der Benutzer sich
schnell einen Uberblick iiber die Daten verschaffen. Diese Funktion basiert auf einer Erwih-
nung bei Kandel et al. [16]. Es ist mdglich, sich nur einen Ausschnitt der Daten anzeigen zu
lassen. Hierzu konnen Zeilen und Spalten angegeben werden, die dargestellt werden sollen.

Eine weitere Funktion, basierend auf einem Beispiel im Bad Data Handbook [22], ist das Hi-
stogramm. Dieses berechnet, wie oft jeder Wert in einer Spalte vorkommt. Dies kann dabei
unterstiitzen, sich einen Uberblick iiber die Daten zu verschaffen. Zusitzlich kann ein Histo-
gramm dabei helfen, Anomalien und mégliche Datenqualitdtsprobleme zu entdecken. Das Hi-
stogramm kann auch als Schaubild visualisiert werden. Hierzu soll eine entsprechende Funkti-
on bereitstehen.

Eine weitere wichtige Funktion ist das Filtern. Diese ermdglicht, einen Ausschnitt der Daten
auszuwihlen, der bestimmten Kriterien entspricht. Dies basiert auf Erwdhnungen in der Lite-
ratur, zum Beispiel im Bad Data Handbook [22]. Beispielsweise lassen sich so Zeilen untersu-



chen, die Nullwerte enthalten. Dadurch ist es moglich, sich eine Detailansicht zu verschaffen,
und Datenqualitdtsprobleme genauer zu untersuchen.

Fiir ein praktisches Beispiel dieser Funktionen, siche die Analyse des NHTSA Complaints
Datensatzes in Kapitel 8.1.

Eine einfache Funktion soll es ermdglichen, zu iiberpriifen, ob im Datensatz Sonderzeichen
vorkommen. Dies hilft zum Beispiel dabei, zu priifen, ob Umlaute oder andere spezielle Zei-
chen in einem Text vorkommen. Falls ja, kann dadurch auch sichergestellt werden dass sie
korrekt dargestellt werden. Damit soll das Arbeiten mit Texten erleichtert werden. Ein
falsches Encoding filihrt oft dazu, das Zeichen falsch dargestellt werden. Siehe hierzu Kapitel
4.2.

5.2.3 Metrics

Im Abschnitt Metrics werden sollen diverse Metriken zur Berechnung der Datenqualitét an-
geboten werden. Der Entwurf beriicksichtigt mehrere der von in Kandel et al. in [16] und [17]
diskutierten Aspekte: Zum einen wird es so moglich Datenqualitit wahrend des Data Wrang-
ling Prozesses zu messen. Neben einfachen Metriken wie der Aufschliisselung der Nullwerte
pro Spalte stehen auch komplexere Metriken wie die Textdhnlichkeit zur Verfiigung. Dabei
werden auch unstrukturierte Daten berticksichtigt. Es sollen Metriken angeboten werden, die
auf Textdaten arbeiten.

Ein wichtiger Grund bei der Auswahl der Metriken war, die Flexibilitit des Notebooks zu de-
monstrieren. So sollen Metriken integriert werden, die in Python, Java sowie R implementiert
sind. Diese Implementierungen konnen als Startpunkt dienen, um weitere Metriken zum Note-
book hinzuzufiigen. Kandel et al. [16] diskutieren die Tatsache, dass beim Data Wranging oft
eine grole Anzahl verschiedener Skripte in verschiedenen Programmiersprachen verwendet
wird. Das Notebook bietet die Moglichkeit, diese an einer zentralen Stelle zu biindeln. So
konnen sie leicht angepasst werden. Neue Skripte konnen problemlos hinzugefiigt werden.
Dies ermdglicht einen schnelleren Uberblick und erleichtert den Einstieg fiir neue Benutzer.
Das soll einen Beitrag dazu darstellen, einem groferen Personenkreis die Verarbeitung von
Daten zu ermoglichen. Dies wird ebenfalls von Kandel et al. [16] gefordert.

Siehe Kapitel 6.3 fiir die Details der Implementierung.

Folgende Metriken sollen in der Standardversion verfiigbar sein und sollen im folgenden kurz
beschrieben werden. Die Metriken Nullwerte, Validierung und Part-of-Speech-Tagging wer-
den dabei selbst implementiert. Die Metriken Local Outlier Facor, Noisy Data und Textdhn-
lichkeit werden eingebunden.

Nullwerte:

Diese Funktion liefert fiir jede Spalte des Datensatzes die Anzahl und den prozentualen Anteil
der Nullwerte. Dabei werden nur explizite Nullwerte beriicksichtigt, also das Fehlen eines
Wertes in einer Spalte.



Diese Metrik basiert auf Anregungen aus [26] und soll fiir das Notebook implementiert wer-
den. Dabei sollen Funktionen von Pandas [46] benutzt werden, die Informationen {iber Null-
werte berechnen.

Codierte Nullwerte (siche Kapitel 4.2) konnen dadurch nicht direkt ermittelt werden. Es ist
moglich, diese Werte mit zu beriicksichtigen, wenn sie zuvor in explizite Nullwerte konver-
tiert wurden. Siehe Kapitel 8.1 fiir ein praktisches Beispiel. Die Implementierungsdetails wer-
den in Abschnitt 6.3.1 beschrieben.

Validierung:

Mit der Validierungsfunktion ist es moglich, zu {liberpriifen, ob Werte bestimmten Kriterien
entsprechen. Beispielsweise kann gepriift werden, ob Datumsfelder auch Werte enthalten, die
zuldssige Datumsangaben in dem spezifizierten Datumsformat darstellen.

Diese Metrik basiert auf [26]. Diese Metrik soll implementiert werden.
Siehe Abschnitt 6.3.2 fiir Implementierungsdetails.
Local Outlier Factor:

Diese Metrik hilft beim aufspiiren von Ausreiflern. Sie basiert auf dem Local Outlier Factor
[6]. Kandel et al. [16] erwédhnen, das Ausreillern beim diagnostizieren von Datenqualitdtspro-
blemen eine Rolle spielen. Bei dieser Metrik ist zu beachten, dass sie ein Indiz fiir mogliche
Ausreifler liefert. Diese miissen dann manuell inspiziert werden. Fiir eine automatische Erken-
nung von Ausrei3ern ist sie eher nicht geeignet.

Diese Metrik wird in einem Paket bereitgestellt und ist in R implementiert. Durch das speziel-
les Paket rpy2 [48] ist es mOglich, die Metrik in Python zu nutzen. Siehe hierzu auch 6.1. Das
Notebook soll prototypisch eine Einbindung bieten. Hierzu soll die Funktionalitit des Paketes
durch Objekte in Python direkt verwendet werden. In Jupyter Notebooks ist es durch Verwen-
dung sogenannter magic functions mdglich, Code in R direkt zu verwenden. Allerdings funk-
tioniert dies bei dieser Metrik aus technischen Griinden nicht so leicht. Deshalb soll diese Me-
trik durch Verwendung von rpy2 implementiert werden.

Siehe auch Abschnitt 6.3.3.
Textihnlichkeit

Diese Metrik wurde in einer vorhergehenden Arbeit entwickelt [19] und basiert auf [18]. Fiir
das Notebook soll der dabei entwickelte Prototyp eingebunden werden.

Die Metrik berechnet die Textéhnlichkeit zwischen einem Eingabetext und einer Reihe von
hinterlegten Trainingsdatensidtzen. Der Anwendungsfall ist folgender: soll ein Textdatensatz
mit trainierbaren Machine Learning Algorithmen verarbeitet werden, so stellt sich die Frage,
welcher Trainingsdatensatz das beste Resultat liefert. Die Metrik unterstiitzt bei der Auswabhl,
indem sie den dhnlichsten Datensatz empfiehlt, unter der Annahme, dass die Qualitit der Ana-
lyse umso besser wird, je mehr sich die Trainingsdaten den Eingabedaten dhneln. Diese An-
nahme wird in [19] mit ersten experimentellen Ergebnissen bestétigt.



Diese Metrik bendtigt Datensétze, mit denen die Eingabedaten verglichen werden sollen. Fiir
die Standardversion des Notebooks werden zu Demonstrationszwecken 6 Datensitze bereitge-
stellt. Diese werden in Abschnitt 9.3 genannt und kurz beschrieben. Fiir den konkreten An-
wendungsfall sollen diejenigen Datensitze verwendet werden, die auch flir die Analyse zur
Verfiligung stehen.

In Abschnitt 2.5.3 des Grundlagenkapitels wird eine kurze Einfiihrung zu Textdhnlichkeit ge-
boten.

Die Details der Implementierung werden in 6.3.4 erldutert. Hier wird auch das Interface be-
schrieben, also wie genau Trainingsdatensétze hinterlegt werden kdnnen.

Noisy Data

Dies ist eine weitere Metrik, mit der die Qualitdt von Textdaten gemessen werden kann. Sie
soll nicht selbst entwickelt werden, sondern beruht konzeptionell auf [18]. Damit wird der
Anteil der Rechtschreibfehler in einem Text ermittelt.

Das besondere an der Einbindung im Notebook ist, dass diese Metrik eine Bibliothek benutzt,
die nur mit einer 32Bit Version von Python 2.7. funktioniert. Sie dient auch als komplexeres
Beispiel dafiir, wie im Notebook flexibel Implementierungen aus verschiedenen Quellen und
mit verschiedenen Anforderungen eingebunden werden konnen. Die Metrik steht nur zur Ver-
fiigung, wenn auf dem System eine entsprechende Version von Python installiert ist.

Die Implementierungsdetails werden in Abschnitt 6.3.5 beschrieben.
Part-of-speech

Diese Metrik basiert auf einem Part-of-speech tagger aus OpenNLP [43]. Dieser liefert fiir je-
des Token einen Wahrscheinlichkeitswert fiir den gewidhlten Tag. Die Metrik mittelt die
Wabhrscheinlichkeiten aller Tokens im Text.

Diese Metrik basiert konzeptionell auf [18]. Fiir das Notebook soll sie implementiert werden.

Fir weitergehende Informationen zum Part-of-Speach-Tagging, siche Abschnitt 2.5.2 im
Grundlagenkapitel.

Details zur Implementierung dieser Metrik finden sich in 6.3.6.

5.2.4 Transform Data

Datentransformationen sind ein entscheidender Teil des Data Wrangling Prozesses. Wurden
im Diagnoseschritt Qualititsprobleme im Datensatz festgestellt, so konnen diese eventuell
durch die richtigen Transformationsschritte behoben werden. Siehe hierzu Kapitel 4.1.

Eine wichtige Funktion ist das Ersetzten von Werten. Diese soll fiir das Notebook implemen-
tiert werden. Dadurch ist es zum Beispiel moglich, codierte Nullwerte durch explizite zu er-
setzten. Siehe hierzu 4.2.



Dieser Abschnitt soll eine Filterfunktion bieten, dhnlich der Filterfunktion im Abschnitt View
Data. Auch hier werden Eintridge ausgewdhlt, die bestimmten Kriterien entsprechen. Anstatt
die Daten anzuzeigen, werden diese in eine neue Datenstruktur geladen. Dadurch ist es mog-
lich, diese zu sichern oder auf diesem Teil des Datensatzes weiterzuarbeiten.

Diese Funktion kann auch dazu benutzt werden, Eintrige zu entfernen. Typischer Anwen-
dungsfall ist das entfernen von Nullwerten. Sollen beispielsweise alle Eintrdge mit Nullwerten
entfernt werden, so wird als Kriterium ,,enthilt keinen Nullwert* gewahlt.

Diese Funktionen sind in Anlehnung an das Bad Data Handbook [22] ins Notebook aufge-
nommen worden.

5.2.5 Save Data
Wihrend der Arbeit mit dem Notebook werden die importierten Daten im Hauptspeicher ge-

halten. Damit die Anderungen gesichert werden, miissen sie persistiert werden. Hierzu soll
das Notebook beispielhaft im Abschnitt Save Data eine Funktion anbieten, den Datensatz in
eine CSV-Datei zu schreiben. Andere Datenformate sollen standardmiBig nicht angeboten
werden, konnen aber eingebunden werden.

Es stehen verschiedene Parameter zur Verfiigung. Neben dem Dateinamen kann unter ande-
rem auch das Trennzeichen und das Encoding gewahlt werden. Wie zu Beginn in 5.1 erwihnt
steht keine Funktion bereit, mit der Anderungen leicht riickgingig gemacht werden konnen.
Es wird daher empfohlen, Ergebnisse zwischenzuspeichern. So kann das Notebook auch zur
Dokumentation der Transformationsschritte verwendet werden. Hierzu kann das gespeicherte
Ergebnis mit den Ausgangsdaten verglichen werden.

Diese Funktion kann auch dazu genutzt werden, Textdaten in ein einheitliches Encoding zu
konvertieren. Wird beim Import der Datei das korrekte Encoding angegeben, so reicht es beim
Speichern das gewiinschte Encoding anzugeben. Die Konversion soll automatisch erfolgen.
Siehe hierzu die Diskussion in 4.2.



6 Implementierung

In diesem Abschnitt soll die Implementierung des Jupyter Notebook Prototypen beschrieben
werden. Abschnitt 6.1 listet die verwendete Software. Abschnitt 6.2 beschreibt die Implemen-
tierung des Notebooks selbst. Die verschiedenen zur Verfligung stehenden Metriken werden
in 6.3 beschrieben. Abschnitt 7 beschreibt die Implementierung ausgewihlter Metriken in
Spark. Siehe Kapitel 9 fiir eine Evaluation.

6.1 Verwendete Software

Im folgenden Abschnitt sollen alle verwendeten Tools und Softwarebibliotheken aufgezihlt
und kurz beschrieben werden.

Bei DKPro Similarity handelt es sich um ein Framework fiir Textédhnlichkeit. Es bietet dabei
unter anderem eine umfangreiche Sammlung verschiedenster Ahnlichkeitsmetriken mit
standardisiertem Interface. Das Framework ist als Ergdnzung zu DKPro Core [8] entworfen,
eines Frameworks Sprachverarbeitung. Beide Frameworks sind open source. [2]

Dieses Framework wird zur Umsetzung der Textdhnlichkeitsmetrik fiir Spark genutzt. Siehe
hierzu Abschnitt 7.1.2. Der fiir die Textdhnlichkeitsmetrik des Notebooks eingebundene Pro-
totyp nutzt ebenfalls DKPro Similarity. Beide basieren konzeptionell auf [18]. Der Prototyp
wurde in einer vorhergehenden Arbeit [19] entwickelt. Fiir eine Auflistung der hierzu verwen-
deten Software wird auf diese Arbeit verwiesen.

Pandas ist eine Open Source Bibliothek fiir Python. Sie bietet Datenstrukturen und Tools fiir
die Datenanalyse [46].

Das Notebook verwendetet Pandas fiir viele Funktionen, unter anderem fiir den Import und
die interne Verwaltung der Daten. Dies basiert auf Dataframes, einer von Pandas bereitge-
stellten Datenstruktur. Diese ist wie eine Tabelle organisiert ermdglicht verschiedene Funktio-
nen wie etwa das Filtern der Daten nach bestimmten Kriterien. Siehe hierzu die Beschreibung
des Notebooks in Abschnitt 6.2. Zusitzlich wird Pandas in diversen Metriken fiir den Import
von Daten eingesetzt.

RIoF ist ein Paket fiir die Programmiersprache R. Dieses bietet eine Implementierung der Lo-
cal Outlier Factor Metrik an. [30]

Dieses Paket wird im Notebook eingebunden und fiir die Berechnung des Local Outlier
Factors verwendet, siehe hierzu Abschnitt 6.3.3

NLTK ist ein Open Source Toolkit fiir die maschinelle Sprachverarbeitung [4].

Die Noisy Data Metrik verwendet fiir die Implementierung Funktionen aus NLTK. Siehe hier-
zu Abschnitt 6.3.5.



OpenNLP [43] ist ein Toolkit fiir Sprachverarbeitung. Es unterstiitzt viele gingige Aufgaben
wie etwa die Tokenisierung oder das Part-of-speech tagging.

OpenNLP wird fiir die Implementierung der Part-of-speech Metrik verwendet. Siehe hierzu
Abschnitt 6.3.6. Auch die Implementierung der Textéhnlichkeitsmetrik fiir Spark greift auf
OpenNLP zurtick.

Apache Spark ist ein generelles Framework fiir die Verarbeitung grof3er Datenmengen [33].
Siehe Abschnitt 2.6 im Grundlagenkapitel fiir eine kurze Einfithrung zu Spark.

In dieser Studienarbeit wird Spark fiir die Implementierung und Evaluierung ausgewdhlter
Metriken genutzt. Siehe hierzu Abschnitt 7 fiir die Details der Implementierung. Die Evaluati-
on wird in Kapitel 9 beschrieben.

Anaconda ist eine offene Plattform fiir Data Science, basierend auf Python. [32]

Anaconda wird als Plattform fiir das Jupyter Notebook verwendet. Dies wird in der Installati-
onsanleitung von Jupyter [39] empfohlen.

PyEnchant ist eine Open Source Bibliothek fiir Python. Sie bietet Funktionalitit fiir die
Rechtschreibpriifung. [24]

PyEnchant wird intern von der Noisy Data Metrik verwendet. Siehe hierzu Abschnitt 6.3.5.

Rpy?2 ist ein Interface, mit dem es Moglich ist, aus Python heraus die Programmiersprache R
zu verwenden. [48]

Dieses Paket wird fiir die Einbindung des in R implementierten RLoF Paketes genutzt. Siehe
hierzu Abschnitt 6.3.3.

6.2 Notebook Prototyp

Die Implementierung des Notebooks basiert auf Python 3. Implementiert und getestet wurde
auf Python 3.6 aus Anaconda 4.3.0.

Der allgemeine Aufbau ist, dass jeder Funktion ein Textfeld” vorausgeht, das Informationen
zu dieser Funktion bereitstellt. Diese konnen Erldauterungen sein, oder Verweise auf weiter-
gehende Ressourcen wie die Dokumentation der eingebunden Metriken. Auch finden sich hier
die Referenzen auf die Literaturquellen. Hierbei handelt es sich um eine Stirke des Jupyter
Notebooks. Durch eine Mischung von Text und Code kdnnen dem Benutzer zusétzliche In-
formationen angeboten werden. Der Code selbst ist mit Kommentaren versehen. Dadurch,
dass fachliche Informationen in die Beschreibung ausgelagert werden, konnen sich die Kom-
mentare aber stirker auf technische Aspekte beschrinken und der Code bleibt iibersichtlich.
Dadurch erhoht sich auch die Benutzerfreundlichkeit. So werden zum Beispiel Links durch
Verwendung von HTML klickbar, und miissen nicht erst aus dem Quellcode herauskopiert
werden. Der Benutzer kann die Textfelder bearbeiten. Die Informationen werden gespeichert

2 auch als Text-Zelle bezeichnet



und stehen beim Offnen des Notebooks zur Verfiigung. Zusitzlich ist es dem Benutzer mog-
lich, beliebig neue Textfelder anzulegen. Dies erlaubt, Erkenntnisse festzuhalten. Auch kann
dies dazu beitragen, den konkreten Data Wrangling Prozess zu dokumentieren und anderen
zuginglich zu machen. Eine weitere Stirke des Notebooks ist die Kollaboration. Das Note-
book wird durch ein Webinterface aufgerufen. Dadurch konnen mehrere Benutzer mit dem
gleichen Notebook arbeiten. In der Literatur werden Dokumentation und Kollaboration als
wichtige Aspekte des Data Wrangling herausgestellt, beispielsweise durch Kandel et al. [16].

Die Funktionen selbst sind durch ausfiihrbaren Code implementiert, der in Code-Zellen ge-
gliedert ist. Der Normalfall ist eine Zelle pro Funktion. Im Allgemeinen muss der Code fiir
ein konkretes Beispiel angepasst werden, bevor er ausgefiihrt werden kann. Beispielsweise
muss beim Import der Name der Datei eingetragen werden, die importiert werden soll. Zu-
satzlich miissen eventuell weitere Parameter angegeben werden, etwa das verwendete Trenn-
zeichen oder das Encoding. Wenn moglich, wurden sinnvolle Standardwerte gewahlt. Aller-
dings sollte vor Ausfithrung der Funktion darauf geachtet werden, dass alles korrekt konfigu-
riert wurde.

Um eine Funktion des Notebooks durchzufiihren, muss die entsprechende Code-Zelle ausge-
fiihrt werden. Hierzu gibt es im Notebook einen Button. Alternativ kann die Tastenkombinati-
on ,,SHIFT + ENTER* verwendet werden. Das Notebook ist so entworfen, dass jede Code-
Zelle einzeln ausgefiihrt werden soll, nachdem der Code gegebenenfalls fiir den konkreten
Anwendungsfall angepasst wurde. Eine automatische Ausfithrung aller Zellen hintereinander
macht im Normalfall keinen Sinn und wird standardméfig nicht unterstiitzt. Es wire aber
durchaus moglich, das Notebook so anzupassen, dass ein vordefinierter Transformationspro-
zess in einem Arbeitsgang durchgefiihrt wird. Somit wire eine Wiederverwendbarkeit
gewdhrleistet. Dies wird in der Literatur gefordert, zum Beispiel durch Kandel et al. [16].

Manche Code-Zellen setzen voraus, das zuvor andere Code-Zellen ausgefiihrt wurden. Dies
wird in der Beschreibung und auch in den Kommentaren dokumentiert. Beispielsweise kann
die Textdhnlichkeit nur berechnet werden, wenn zuvor im vorhergehenden Feld ein Text aus
den Daten generiert wurde. Diese Trennung wurde vorgenommen, um die Modularitit zu er-
hohen. Bei manchen Datensétzen sind zusétzliche Vorverarbeitungsschritte notwendig. Diese
konnen nicht durch eine allgemeingiiltige Losung abgedeckt werden, sondern miissen gegebe-
nenfalls fiir den jeweiligen Einzelfall implementiert werden. Siehe hierzu ein praktisches Bei-
spiel in Kapitel 8.2.

Die Implementierung der Checkliste erfolgt als einfaches Textfeld. Soll ein Punkt als erledigt
markiert werden, so muss dies durch Bearbeitung des Textfeldes erfolgen. Beispielsweise
durch das Eintragen eines ,,X“. Diese Implementierung wurde wegen der extremen Einfach-
heit gewihlt. Zwar ist dies nicht sehr benutzerfreundlich, allerdings wird so automatisch
sichergestellt, dass die Informationen erhalten bleiben. Die Textfelder des Notebooks werden
beim SchlieBen des Notebooks gespeichert. Aullerdem wird durch das System regelméfig au-
tomatisch zwischengespeichert. So gehen Anderungen auch bei einem Absturz oder einem an-
deren Problem nicht verloren. Dadurch ist es auch mdglich, dass mehrere Personen an einem
Notebook arbeiten. Alternativ wire es denkbar, die Benutzerfreundlichkeit zu verbessern, in-
dem klickbare Checkboxen verwendet werden. Allerdings muss hierfiir zusétzlich eine Lo-
sung implementiert werden, die den Zustand der Checkboxen speichert und beim Offnen des
Notebooks automatisch ladt.



6.3 Metriken

Dieser Abschnitt beschreibt die Implementierung der im Notebook verwendeten Metriken.

6.3.1 Nullwerte
Diese Metrik berechnet fiir alle Spalten des Datensatzes den prozentualen Anteil der Nullwer-

te, sowie die absolute Anzahl. Wie im Konzept in Abschnitt 5.2.3 erwdhnt werden hierfiir nur
tatsdchlich fehlende Werte beriicksichtigt. Werte, welche die Semantische Bedeutung eines
Nullwertes haben, werden nicht mitgezéhlt. Fiir die Implementierung werden Funktionalitdten
von Pandas [46] genutzt. Siche auch Abschnitt 6.1.

Falls diese Werte mit beriicksichtigt werden sollen, so konnen sie durch die Ersetzungsfunkti-
on des Notebooks in Nullwerte umgewandelt werden.

6.3.2 Validierung
Diese Metrik berechnet den prozentualen Anteil der ungiiltigen Werte fiir die angegebene

Spalte. Zusitzlich wird noch die absolute Zahl ausgegeben. Die Uberpriifung erfolgt durch
eine Funktion, die fiir jeden Wert bestimmt, ob es sich um einen giiltigen Wert handelt. Im
allgemeinen Fall muss diese Funktion fiir die gewiinschte Analyse jeweils implementiert wer-
den.

Im Notebook steht eine Funktion bereit, mit der Datumsfelder validiert werden kénnen. Dafiir
wird eine géngige Funktion aus Python benutzt. Hierzu muss das Format als String angegeben
werden. Es wird das fiir Python gingige Format benutzt. Der begleitende Text enthilt einige
Beispiele. Siehe auch Abschnitt 7.1.1 fiir ein Beispiel.

Die Implementierung verwendet Funktionen von Pandas [46].

6.3.3 Local Outlier Factor
Diese Metrik basiert auf dem Paket RLoF [30]. Sie berechnet fiir eine Spalte den Local Out-
lier Factor. Siehe hierzu auch 5.2.3.

Fiir die Berechnung muss die entsprechende Spalte angegeben werden.

Fiir die Einbindung ins Notebook wird das Paket rpy2 [48] verwendet. Dieses ermdglicht es,
Funktionalitédt aus R durch Objekte in Python zu verwenden. Siehe hierzu auch Abschnitt 6.1.



6.3.4 Textahnlichkeit

Diese Metrik ermoglicht es, Textdaten miteinander zu vergleichen. Hierzu wird die Textdhn-
lichkeit zwischen den Eingabedaten und einer Reihe von Trainingsdatensétzen ermittelt. Die
Implementierung verwendet eine in einer vorhergehenden Arbeit prototypisch entwickelten
Metrik [19]. Diese basiert auf dem in [18] vorgestellten Ansatz. Siche auch Abschnitt 5.2.3.

Die Einbindung in das Notebook erfolgt iiber ein Skript. Die Berechnung selbst erfolgt {iber
den Prototypen, der als ausfiihrbare JAR Datei vorliegt. Hierfiir muss auf dem System Java
installiert sein. Fiir die Berechnung werden die Textdaten in eine Datei geschrieben, damit der
Prototyp sie verarbeiten kann. Fiir das korrekte Funktionieren dieser Metrik sind also Schrei-
brechte notwendig.

Als Eingabe erwartet die Metrik einen Eingabetext als String. Hierzu ist eine Vorverarbei-
tungszelle vorhanden. In der Standardvariante muss in dieser Zelle eine Spalte ausgewéhlt
werden, die Textdaten enthdlt. Diese wird dann in einen Eingabetext konvertiert. Es ist an die-
ser Stelle auch moglich, weitere Vorverarbeitungsschritte zu beriicksichtigen. Beispielsweise
wird im gesamten NHTSA Complaints Datensatz durchgehend fiir alle Zeichen die
GroB3schreibung verwendet. Dies gilt auch fiir Spalte 20, welche ein Freitextfeld enthilt. Die
Code-Zelle enthilt hierfiir exemplarisch eine Funktion, mit der man den gesamten Text in
Kleinschreibung umwandeln kann. Diese ist auskommentiert, weil dadurch im Normalfall In-
formationen zur GroB-und Kleinschreibung verlorengehen. Fiir die Analyse des NHTSA
Complaints Datensatzes kann diese Funktion aber niitzlich sein. Im Textfeld wird darauf hin-
gewiesen. Dies dient auch als praktisches Beispiel, wie das Notebook fiir die jeweilige Analy-
se angepasst werden kann. Fiir die Vorverarbeitung auch Skripte importiert werden. Siehe
Abschnitt 8.2 fiir ein Beispiel.

Damit eine Berechnung erfolgen kann, muss mindestens ein Trainingsdatensatz hinterlegt
sein. Diese miissen sich als Textdateien im Ordner training data befinden. Jede Textdatei re-
priasentiert dabei einen Datensatz. Der Name der Datei wird als Name fiir den Datensatz ver-
wendet. Die Textdateien sollen eine reine Textreprisentation des Datensatzes enthalten, ohne
Annotation. Als Format muss UTF-8 verwendet werden.

Fiir die Berechnungen in dieser Arbeit wurden exemplarisch 6 Datensdtze verwendet. Siehe
Kapitel 9.3 fiir eine kurze Beschreibung.

6.3.5 Noisy Data

Die Metrik berechnet den Anteil an Rechtschreibfehlern in einem Text und basiert auf [18].
Fiir die Implementierung wurde vom Betreuer bereitgestellter Code leicht angepasst. Zur Be-
rechnung wird die Bibliothek PyEnchant [24] verwendet.

Die Metrik ist auf zwei Code-Zellen aufgeteilt. Die erste Zelle regelt die Vorverarbeitung. Die
zweite Zelle erwartet als Eingebe einen Text als String. Sie bindet die eigentliche Metrik via
Skript ein, und gibt das Ergebnis aus. Die beispielhaft implementierte Vorverarbeitung er-
zeugt den Eingabestring aus einem Textfeld. Hierzu muss die entsprechende Spalte im Daten-
satz angegeben werden. Sind komplexere Vorverarbeitungsschritte notig, konnen diese direkt
in der Zelle implementiert oder zum Beispiel via Skript eingebunden werden. Siehe Kapitel 8



fiir praktische Beispiele. Damit diese Metrik korrekt funktioniert, muss auf dem System Py-
thon 2.7 in der 32 Bit Version installiert sein. Die Einbindung erfolgt im Notebook iiber ein
Skript. Hierzu muss im Skript der Pfad fiir Python 2.7 angegeben werden.

Das Notebook verwendet Python 3. Implementiert und getestet wurde auf Python 3.6 aus
Anaconda 4.3.0. Es muss daher zusétzlich Python 2.7 installiert werden, die zur Ausfiihrung
genutzt wird. Die Implementierung verwendet dann diese Version zur Durchfiihrung der Be-
rechnungen. Dies geschieht durch ein Skript. Diese Metrik demonstriert, dass auch eine kom-
plexere Konfiguration durch das Notebook beriicksichtigt werden kann.

6.3.6 Part-of-speech
Diese Metrik basiert auf [18]. Siehe hierzu auch Abschnitt 5.2.3.

Als Eingabe erwartet die Metrik eine Spalte, die Textdaten enthilt. Jeder Wert dieser Spalte
wird durch den Tokenizer in Tokens zerlegt und anschlieBend an den Part-of-speech tagger
weitergeleitet. Der Part-of-speech Tagger wird dabei auf jeden Eintrag angewendet und ermit-
telt exemplarisch die Wortarten. Dabei liefert der Tagger fiir jeden Tag, den er einem Token
zuweist einen Wahrscheinlichkeitswert. Diese Metrik ermittelt hierfiir den Durchschnittlichen
Zahlenwert fiir alle Tokens.

Die Metrik ist in Java implementiert. Das Paket OpenNLP [43] wird fiir den Tokenizer und
den Part-of-speech-tagger verwendet. Siehe Abschnitt 6.1. Beide bendtigen entsprechende
Modelle, die aus Dateien geladen werden miissen. Diese werden durch OpenNLP zur Verfii-
gung gestellt [43]. Fiir die Implementierung werden sie beim kompilieren zur .jar Datei hinzu-
gefligt und stehen somit direkt zur Verfiigung. Die Einbindung in das Notebook erfolgt tiber
ein Skript. Dies funktioniert auf dhnliche Weise, wie die Einbindung der Textdhnlichkeitsme-
trik.



7 Implementierung der ausgewahlten Metriken in Spark

Als Ausgangspunkt wird die Implementierung der Metriken im Jupyter Notebook verwendet.
Die Validierungsmetrik basiert im Notebook auf Python. Die Textédhnlichkeitsmetrik wurde in
einer vorhergehenden Arbeit [19] in Java implementiert, konzeptionell basierend auf [18].

Fiir die Umsetzung in Spark wird als Programmiersprache Java verwendet. Die beiden Metri-
ken sind prototypisch als eigenstindige Applikationen implementiert, die als .jar Dateien vor-
liegen. Damit diese ausgefiihrt werden konnen, miissen die .jar Dateien in HDFS kopiert wer-
den. Danach kdnnen sie mit einem entsprechenden Befehl in Spark ausgefiihrt werden. Die
Ergebnisse werden in HDFS im einem Ordner als Textdateien bereitgestellt.

7.1.1 Validierung von Datumsangaben
Mit dieser Metrik ldsst sich tiberpriifen, ob Werte in einem Datensatz in einem giiltigen Da-
tumsformat vorliegen. Die Uberpriifung basiert auf einer Methode von Java.

Hierzu muss via Kommandozeilenparameter ein Datumsformat spezifiziert werden. Es wird
das in Java genutzte Format verwendet. Beispielsweise verwendet der NHTSA Complaints
Datensatz [41] fiir alle Spalten, die Datumswerte enthalten, das Format ,,YYYYMMDD*.
Dies bedeutet, dass alle Zeitangaben durch eine 8-stellige Zeichenkette dargestellt werden.
Die ersten vier Zeichen enthalten das Jahr, Zeichen 5 und 6 den Monat und die letzten beiden
Zeichen den Tag. Bei diesen 8 Zeichen muss es sich dabei entsprechend der iiblichen Zeitan-
gaben um Zahlen von 0 bis 9 handeln.

Der Wert 20170308 wird als giiltiges Datum fiir dieses Format erkannt.

Der Wert 2017/03/03 enthélt zusitzliche Zeichen, die nicht im obigen Format spezifiziert
sind. Die Validierung wiirde fiir dieses Beispiel also fehlschlagen.

Wird hingegen zum Beispiel das Format ,,YYYY/MM/DD* verwendet, so schlidgt die Vali-
dierung fiir den ersten Wert fehl, weil er keine Schriagstriche enthélt. Der Zweite Wert hinge-
gen entspricht dem Format und wird als korrekt angesehen.

Die Implementierung dieser Metrik orientiert sich direkt an der Version dieser Metrik im No-
tebook. Unterschied ist, das hier Java verwendet wird. Die Metrik im Notebook basiert auf
Python.

Die Applikation ladt Daten aus einer Datei, die in HDFS vorliegen muss. Die Datei soll dabeti
die zu analysierenden Werte enthalten. Jede Zeile stellt dabei einen Wert dar. Als Ergebnis
liefert die Metrik den prozentualen Anteil der ungiiltigen Werte. Dieser wird in eine Datei in
HDFS geschrieben.



7.1.2 Textahnlichkeit

Die Textdhnlichkeitsmetrik wurde in einer fritheren Arbeit entwickelt [19] und basiert kon-
zeptionell auf [18]. Der Prototyp ist nicht fiir eine verteilte Architektur entwickelt worden.
Deshalb ist es nicht ohne weiteres moglich, diesen im Kontext von Spark zu verwenden. Aus
diesem Grund wurde die Metrik in einer abgeénderten Form neu implementiert. Beide Imple-
mentierungen basieren auf dem gleichen Konzept. Es in wird beiden Féllen zur eigentlichen
Berechnung der Ahnlichkeit die Cosine Similarity Metrik aus DKPro Similarity [2] verwen-
det. In der fiir Spark implementierten Variante wird die gleiche Metrik genutzt. Der Haupt-
unterschied liegt darin, das nicht mehr das DKPro Core Framework fiir die Vorverarbeitung
genutzt wird. Stattdessen werden die Textdaten direkt verarbeitet. Hierzu wird der OpenNLP
Tokenizer direkt aus dem Paket OpenNLP [43] verwendet. Siehe hierzu Abschnitt 6.1 {iber
die verwendete Software. Die urspriingliche Implementierung benutzt den OpenNLP Tokeni-
zer, der vom DKPro Core Framework bereitgestellt wird. Zusétzlich erfolgt die Entfernung
der Stoppworter nicht mehr durch vom Framework bereitgestellte Methoden.

Fiir die Implementierung in Spark wurde die Vorverarbeitung der Textdaten vereinfacht. Es
kann nicht garantiert werden, dass die Metrik stets die gleichen Ergebnisse wie die Original-
metrik liefert. Hierzu wire eine Evaluation notwendig, wie sie in [19] fiir den Prototypen
durchgefiihrt wurde.

Der verwendete Tokenizer (TokenizerME) benétigt ein Modell, dass aus einer Datei geladen
werden muss. Diese Datei wurde im Projekt hinterlegt und wird beim kompilieren automa-
tisch zur .jar Datei hinzugefiigt. Das bedeutet, dass sie fiir die Applikation automatisch sicht-
bar ist, und nicht aus HDFS geladen werden muss. Allerdings muss sie trotzdem eingelesen
werden. Entsprechende Modelle stehen unter [43] zur Verfiigung.

Damit die Metrik in Spark ausgefiihrt werden kann, miissen alle Eingabedaten in dem verteil -
ten Dateisystem HDFS bereitgestellt werden. Als Textencoding soll fiir alle Dateien UTF-8
verwendet werden.

Der Ordner training_data soll alle verfiigbaren Trainingsdatensdtze in ihrer Textreprisentation
enthalten. Jede Textdatei reprdsentiert dabei einen Trainingsdatensatz.

Die Datei input.txt im Ordner input soll die Eingabedaten enthalten, ebenfalls als Textdarstel-
lung.

Zusitzlich muss die Datei stopwords.txt vorhanden sein. Jede Zeile représentiert dabei ein
Stoppwort. Alle in dieser Datei vorkommenden Tokens werden aus den Textdatensétzen ent-
fernt, bevor die Berechnung der Ahnlichkeit stattfindet. Ist diese Datei leer, werden keine
Stoppworter entfernt.

Wie bei diesem Modus tiblich schreibt die Metrik die Ergebnisse nicht mehr in eine lokale
Datei, sondern ebenfalls auf HDFS. Das Ergebnis wird in einer Textdatei geschrieben, dhn-
lich wie in der urspriinglichen Implementierung. Der Unterschied ist, dass fiir jede Berech-
nung ein neuer Ordner angelegt wird. Der Name dieser Ordner folgt dem Muster ,, Textsimila-
rity_output [Timestamp]*“ wobei [Timestamp] die aktuelle Systemzeit zum Zeitpunkt der
Ausfithrung darstellt. Somit sind alle Ergebnisse im Dateisystem hinterlegt und werden nicht
iiberschrieben.



Die oben beschriebene Implementierung wird in dieser Arbeit auch als Standardvariante be-
zeichnet. Zusétzlich wurde eine zweite, leicht abgewandelte Version entwickelt: Variante 2.
Diese Metrik unterscheidet sich von der Standardvariante nur durch den Tokenizer. In allen
anderen Punkten ist sie identisch mit der Standardvariante. Der Grund hierfiir ist, dass der
verwendete Tokenizer nicht serialisierbar ist. Somit muss er bei jedem Aufruf neu instanziiert
werden. Hierzu wird allerdings im Gegensatz zur Standardvariante kein Modell bendtigt. Da-
durch ist die Instanziierung deutlich schneller. Dieses Problem wird bei der Diskussion der
Ergebnisse in Abschnitt 9.5 niher erldutert. Die Metrik liefert zwar Vergleichbare, aber leicht
abweichende Ergebnisse wie das Original aus [19] und die Standardvariante. Ob diese Abwei-
chungen signifikant sind, muss in einer Evaluation gekldrt werden. Dies iibersteigt aber den
Umfang dieser Arbeit. Aus diesem Grund wurde darauf verzichtet, eine solche Variante eben-
falls fiir das Notebook zu implementieren. Sie wird nur fiir die Evaluation der Laufzeit ver-
wendet, und dient als Beispiel, wie unterschiedliche Implementierungen die Laufzeit be-
einflussen. Siehe hierzu auch die Analyse der Evaluationsergebnisse in Abschnitt [9.5].



8 Anwendung des Notebooks auf Datensatze aus der Praxis

Im folgenden Kapitel wird das in dieser Arbeit implementierte Jupyter Notebook exempla-
risch auf reale Datensétze angewendet. Dabei soll auch ein Uberblick iiber die Datenqualitit
der jeweiligen Datensitze gegeben werden. Bei den verwendeten Datensétzen handelt es sich
zum einen um den NHTSA Complaints Datensatz, der in Abschnitt 8.1 betrachtet wird. Zum
anderen liegen Daten aus der Industrie vor. Diese werden in Abschnitt 8.2 untersucht.

8.1 NHTSA

Der NHTSA Complaints Datensatz enthélt Informationen iiber sicherheitsrelevante Defekte
bei Fahrzeugen. Die NHTSA, National Highway Traffic Safety Administration, ist eine US-a-
merikanische Regierungsbehorde die unter anderem fiir die Verkehrssicherheit zusténdig ist.
Der Datensatz kann auf der Webseite der NHTSA in komprimierter Form als .zip Datei her-
untergeladen’ werden. Das .zip Archiv enthilt eine knapp 850 MB groBe Textdatei,
FLAT CMPL.txt. Zusitzlich steht eine kurze Beschreibung des Datensatzes in einer Text-
datei (CMPL.txt) sowie eine Anleitung fiir den Import des Datensatzes in eine Access-Daten-
bank zum Download bereit. [41]

Im folgenden wird nur die Textdatei betrachtet, ein Import in ein Access-System wurde nicht
durchgefiihrt. Dies hat zwei Griinde. Zum einen unterstiitzt der Notebook Prototyp direkt
Textdateien, wihrend eine Anbindung an MS-Access erst implementiert werden miisste. Zum
Anderen werden die Daten als Textdatei zur Verfiigung gestellt. Die Analyse des Datensatzes
erfolgt also direkt ohne Zwischenschritte. Der Datensatz wurde am 18.03.2017 heruntergela-
den, die folgende Analyse bezieht sich also auf diesen Stand.

Der Datensatz soll unter Verwendung des Jupyter Notebook Prototyps niher betrachtet wer-
den. Als ersten Schritt miissen die Daten in das Notebook importiert werden. Hierzu wird die
Importfunktion unter Save Data verwendet. Die Dokumentation gibt an, dass als Trennzei-
chen ein Tabulator verwendet wird. Dies muss beim Import im Notebook angegeben werden.
Da es sich bei dem Datensatz um eine Textdatei handelt, spielt das Encoding eine Rolle. Siehe
hierzu Abschnitt 4.2. Falls beim Import kein Encoding angegeben wird, verwendet das Note-
book als Standardformat utf-8. Ein Import des Datensatzes mit diesem Encoding schlégt fehl,
weil Zeichen nicht verarbeitet werden konnten. Dies bedeutet, dass es sich um das falsche En-
coding fiir diese Textdatei handelt. In der Dokumentation (CMPL.txt) wird kein Encoding
spezifiziert. Andere typisch vorkommende Encodings sind Code Page 1252 und ISO-8859-1.
Wie in Abschnitt 4.2 erwihnt, besteht hier Verwechslungsgefahr [22]. Allerdings schlidgt der
Import fiir Code Page 1252 fehl und erfolgt nur fiir ISO-8859-1. Die Importfunktion ist
standardmafBig so konfiguriert, dass fehlerhafte Zeilen ignoriert werden. Stattdessen wird eine
Warnung angezeigt. Alternativ wéire moglich, den Import komplett abzubrechen. In diesem
Beispiel meldet die Importfunktion, dass 12 Zeilen fehlerhaft sind und nicht importiert wer-
den konnten. Hierbei handelt es sich also um ein potentielles Datenqualitdtsproblem. Da der

3 https://www-odi.nhtsa.dot.gov/downloads/



Datensatz aber insgesamt aus iliber 1,3 Millionen Eintrdgen besteht, erscheint das Problem
verhéltnisméBig zundchst vernachldssigbar. Das Problem wird spéter genauer betrachtet.

Eine erste Inspektion der Daten erfolgt mit einer Funktion unter View Data, die es ermog-
licht, einen Ausschnitt der Daten zu betrachten. Angezeigt werden sollen die ersten 5 Eintri-
ge, mit den Spalten 1-8 (Spalte 3 wurde aus Griinden der Ubersichtlichkeit weggelassen). In
Python beginnt das Zdhlen bei 0, fiir die erste Spalte muss also 0 angegeben werden.
Abbildung 5 zeigt einen Screenshot des Resultat. Man erkennt schnell, das etwas nicht
stimmt. Die oberste Zeile (fettgedruckt) soll eigentlich die Namen der Spalten enthalten. Statt-
dessen scheint es sich um einen Eintrag zu handeln. Offenbar gibt es in der Datei keine Kopf-
zeile, also eine Zeile, welche die Namen der Spalten enthilt. Der erste Eintrag des Datensat-
zes wurde also fdlschlicherweise als Kopfzeile verwendet. Dies bedeutet, dass der Import er-
neut ausgefiihrt werden muss, unter Angabe eines besonderen Parameters, der spezifiziert, das
keine Kopfzeile vorhanden ist.

column=s=[0,3,4,5, 6,

data.ix[rows, columns]

SRS 1| NISSAN | MAXIMA 1994 | Unnamed: 6| 19950103
0|2 MISSAM | PATHFINDER 1994 | MaM Mal
1| 3| TOYOTA | LAND CRUISER 1994 [ MaM 19941223
2| 4| TOYOTA | PASED 1994 (Y 19941226
35| TOYOTA| COROLLA 1994 Y 19941128
4|6| GERERY [CHILD SAFETY SEAT| 1993 | MNaN 19941231

Abbildung 5: Screenshot mit den ersten 5 Eintrdge des NHTSA Complaints Datensatzes.
Der erste Eintrag wird fdlschlicherweise als Kopfzeile interpretiert.

Der Screenshot in Abbildung 6 zeigt das Resultat der erneuten Inspektion der ersten 5 Eintré-
ge. Da keine Spaltennamen vorhanden sind, werden diese im Notebook durchnummeriert. Der
erste Eintrag wurde nun korrekt erkannt. Dieses kleine Beispiel zeigt die in Kapitel 4 be-
schriebene iterative Natur des Data Wrangling Prozesses. Hier musste bereits der erste Schritt,
der Import, wiederholt werden, nachdem ein Problem entdeckt wurde.



In [12]:

o be disp

b
P8, 7]

data.ixXx[rows, columns]

e I 4 5 |6 |7
01| NISSAN | MAXIMA 1994 | Nal | 19950103
1|2| NISSAN | PATHFINDER | 1994 | NaN | NaN
2| 3| TOYOTA | LAND CRUISER | 1994 | NaN | 19941223
3|4| TOYOTA | PASED 1994|Y  |19941226
4|5|TOYOTA| COROLLA 1994|Y 19941128

Abbildung 6: Screenshot mit den ersten 5 Eintrdge des NHTSA Complaints Datensatzes
mit Parameter Header = none

Im Folgenden soll zunichst ein Uberblick iiber die Struktur der Daten gegeben werden. Der
Datensatz besteht aus 49 Spalten und hat insgesamt 1,36 Millionen Eintrdge. Die Eintrége re-
prasentieren dabei Beschwerden iiber sicherheitsrelevante Probleme bei Fahrzeugen. Die Do-
kumentation gibt an, dass Daten beriicksichtigt werden, die seit dem 1. Januar 1995 bei der
NHTSA eingegangen sind.

Tabelle 4 gibt eine Ubersicht iiber ausgewihlte Spalten mit dazugehdrigem Datentyp. Die
Zahl in Klammern gibt die maximale Linge des Feldes an. Diese Informationen stammt aus
der Dokumentation (CMPL.txt), die Datei selbst (FLAT CMPL.txt) hat, wie oben erwihnt,
keine Kopfzeile und somit auch keine Informationen iiber die Semantik der Spalten. Der ge-
samte Datensatz verwendet Grofschreibung. Dies trifft auch fiir die Namen der Spalten zu,
die in der Dokumentation aufgeschliisselt werden (CMPL.txt).



Spalte Name Datentyp

1 CMPLID CHAR(9)

3 MFR_NAME CHAR(40)

4 MAKETXT CHAR(25)

5 MODELTXT CHAR(256)
6 YEARTXT CHAR(4)

7 CRASH CHAR(1)

9 FIRE CHAR(1)

10 INURED NUMBER(2)
11 DEATHS NUMBER(2)
13 CITY CHAR(30)
14 STATE CHAR(2)

15 VIN CHAR(11)
16 DATEA CHAR(8)

20 CDESCR CHAR(2048)
22 POLICE_RPT_YN CHAR(1)

Tabelle 4: Ausgewdhlite Spalten des NHTSA Complaints Datensatzes

Zu Beginn der Analyse wurde beim Einlesen des Datensatzes festgestellt, dass 12 Spalten
nicht eingelesen werden konnten. An dieser Stelle soll dies jetzt ndher untersucht werden.
Beim Import meldet das Notebook, falls Zeilen nicht eingelesen werden konnten, mit der An-
gabe der Zeile und des Grundes. Die Fehlermeldung besagt in allen 12 Fillen, dass zu viele
Spalten vorhanden sind. Beispielsweise lautet die Fehlermeldung fiir die erste fehlerhafte
Spalte: ,,Skipping line 562494: expected 49 fields, saw 70“. Um diese Zeilen inspizieren zu
konnen, muss die gesamte Textdatei ins Notebook geladen werden. Hierzu kann als Trennzei-
chen der Zeilenumbruch* angegeben werden. Das Notebook interpretiert somit jede Zeile als
einen einzigen Wert, der als String dargestellt wird. Das bedeutet, dass die Struktur des
Datensatzes ignoriert wird. Nur die Textreprdsentation wird betrachtet. Dies ermdglicht den
gesamten Datensatz ohne Fehler zu laden. Allerdings ist eine Verarbeitung der Daten in die-
sem Modus extrem aufwendig. Dies wird nur durchgefiihrt, um die fehlerhaften Zeilen be-
trachten zu konnen. Alternativ wire auch ein anderes Tool, etwa ein Texteditor, denkbar.

Die Inspektion der Zeile 562494, sowie Zeilen in der Néhe dieser Zeile, liefert keine Anhalts-
punkte. Allerdings fillt auf, dass die Anzahl der Zeilen in der Textdatei 1363351 betrigt, es
im importierten Datensatz aber nur 1362838 Eintrage gibt. 513 Zeilen fehlen, nicht nur 12.
Nach aufwendiger manueller Inspektion stellt sich heraus, dass manche Zeilen ein extrem lan-
ges Textfeld haben. Dieses Textfeld enthilt neben dem eigentlichen Text fiir diese Zeile auch
Daten von einer oder mehr Zeilen als Text. Beim Import ist also ein Problem aufgetreten, und
die Zeilen wurden nicht richtig erkannt. Dies flihrt auch dazu, dass eine irrefithrende Meldung
ausgegeben wird, dass nur 12 Spalten betroffen sind statt 513. Dieses Problem entsteht da-
durch, dass manche Textfelder Anfiithrungszeichen enthalten (,,). Die Importfunktion des No-
tebooks geht davon aus, das Texte unter Umsténden in Anfithrungszeichen gesetzt werden.
Dies wire zum Beispiel notwendig, wenn der Text ein Trennzeichen enthalten wiirde, der

4 In diesem Fall: \n



aber Teil des Textes ist. Wird Beispielsweise ein Komma als Trennzeichen verwendet, so
miissen Texte, die ein Komma enthalten, in Anfiilhrungszeichen® gesetzt werden. Ansonsten
wiére nicht erkennbar, dass das Komma Teil des Textes ist und nicht eine neue Spalte anzeigt.
Der NHTSA Datensatz verwendet keine Anfithrungszeichen zum markieren von Texten. Al-
lerdings tauchen in manchen Freitextfeldern Anfiihrungszeichen auf, so zum Beispiel in Zeile
402673. In diesem Fall enthilt das Textfeld aber nur ein einzelnes Anfithrungszeichen. Die
Importfunktion interpretiert nun alles bis zum nichsten Anfiihrungszeichen als Bestandteil
des Textes. In diesem Fall ist das néchste Anfiihrungszeichen in Zeile 402688. Alle Eintrdge
bis inklusive dieser Zeile werden also als Text des Textfelds von Zeile 402673 betrachtet. Ta-
belle 5 zeigt den Eintrag 402673 fiir ausgewahlte Spalten. Das Textfeld wurde gekiirzt, sym-

bolisiert durch ,,...“, enthilt aber keine weiteren Anfiihrungszeichen mehr.
1 4 5 6 20
CMPLID MAKETXT MODELTXT  YEARTXT CDESCR
402673 NISSAN MAXIMA 2002 "MY 2002 MAXIMA HAS CAUSED ME SOO0OOQO ...

Tabelle 5: Eintrag 402673 aus NHTSA Complaints. Hier fiihrt ein einzelnes
Anfiihrungszeichen zu einem Problem beim Import.

Tabelle 6 verdeutlicht das Problem allgemein. Im Originaldatensatz enthalten die Textfelder
von Zeile 2 und 4 jeweils ein einzelnes Anfiihrungszeichen. Dies fiihrt dazu, dass beim Import
standardmifig davon ausgegangen wird, das alles dazwischen einen Text darstellt, der zum
Textfeld von Zeile 2 gehort. Nach dem Import gibt es statt 4 Zeilen nur noch 2, die Daten von
Zeile 3 und 4 wurden dabei ins Textfeld von Zeile 2 aufgenommen.

Original: Import:
ID Text ID Text
1 A 1 A
2 B 2 ,B 3C4D"
3 C
4 D*

Tabelle 6. Symbolisches Beispiel, wie einzelne Anfiihrungszeichen zu Problemen beim Import
fiihren

Dieses Problem lisst sich 16sen, wenn beim Laden des Notebooks mit Hilfe eines Parameters®
angegeben wird, dass Anfiihrungszeichen ignoriert werden sollen. Nachdem der Datensatz
mit diesem Parameter erneut importiert wurde, meldet die Importfunktion nur noch Fehler fiir

5 Oder andere vorher definierte Zeichen

6 quoting=3



11 Eintrdge. Ein Vergleich mit der Zeilenanzahl ergibt, dass tatsdchlich nur noch 11 Zeilen
fehlen. Das Problem, dass einzelne Anfiihrungszeichen den Import stéren, hat in diesem Fall
verhéltnismaBig geringe Auswirkungen. Es sind nur etwa 500 Zeilen von iiber 1,36 Millionen
betroffen, also weniger als 0,04%. Allerdings ist es denkbar, dass auch viel mehr Zeilen be-
troffen sein konnen. Taucht zum Beispiel im Textfeld der ersten und der letzten Zeile ein An-
fiihrungszeichen auf, wéahrend alle anderen Zeilen keine oder nur eine gerade Anzahl an An-
fithrungszeichen haben, so wird der gesamte Datensatz von der Importfunktion als ein riesiges
Textfeld interpretiert. Dies betrifft nicht nur die Importfunktion des Notebooks sondern auch
viele weitere Tools, die Textdaten in Tabellenformat (CSV) verarbeiten. Beispielsweise tritt
das gleiche Problem fiir das Tabellenverarbeitungsprogramm Calc von OpenOffice auf [42].
Auch hier muss beim Import die StandardméBig ausgewéhlte Verwendung von Anfiihrungs-
zeichen als Texttrenner deaktiviert werden.

Fiir den NHTSA Complaints Datensatz kann dieses Problem wie oben beschrieben einfach
gelost werden. Beim Import wird via Parameter angegeben, dass Anfiithrungszeichen ignoriert
werden sollen. Dies funktioniert, weil der Datensatz diese nicht zum Markieren von Text
nutzt. Das bedeutet aber auch, dass in keinem der Felder ein Trennzeichen, hier ein Tabulator,
vorkommen darf. Die Importfunktion meldet, dass 11 Zeilen nicht importiert werden konnten,
weil zu viele Spalten vorhanden sind. Dies deutet allerdings darauf hin, dass doch extra Tabu-
latoren in diesen 11 Zeilen vorhanden sind. Die erste Fehlermeldung nennt Zeile 1032430.
Auch hier muss zur manuellen Inspektion der Datensatz wie oben beschrieben zeilenweise ins
Notebook geladen werden. Tabelle 7 zeigt den Eintrag. Das Feld STATE enthélt nach dem
Kiirzel TX fiir Texas einen Tabulator. Dieser wird als Trennzeichen interpretiert, was dazu
fiihrt, das die Importfunktion von einer extra Spalte zwischen Spalte 14 und 15 ausgeht. Da
dadurch aber zu viele Spalten in der Zeile vorhanden sind, wird diese Zeile libersprungen und
stattdessen eine Fehlermeldung erzeugt. Eine Untersuchung der iibrigen 10 Zeilen ergibt, das
bei allen das gleiche Problem auftritt. Das Feld State enthidlt neben dem Kiirzel jeweils einen
Tabulator.

1 4 5 13 14 15
CMPLID MAKETXT MODELTXT CITY STATE VIN

1032430 FORD FIESTA AUSTIN TX [TAB] 3FADP4BJOB

Tabelle 7: Eintrag 1032430 aus NHTSA Complaints. Ein zusdtzlicher Tabulator im Feld
STATE verhindert den Import.

Hierbei handelt es sich also um ein Qualititsproblem des Datensatzes. Um diese Zeilen verar-
beiten zu konnen, miissten die unnétigen Tabulator-Zeichen entfernt werden. Allerdings ist
das Notebook nicht dazu gedacht, solche Anderungen an ,,rohen* Daten vorzunehmen. Ent-
sprechend wird keine passende Funktion bereitgestellt.

Eine mogliche Losung konnte folgendermallen aussehen: Der Datensatz wird zeilenweise in
das Notebook geladen. Fiir die 11 fehlerhaften Zeilen wird per Skript der unnétige Tabulator
entfernt. Das Ergebnis wird in eine Datei geschrieben. Dann kann der Datensatz mit der nor-



malen Importfunktion des Notebooks importiert und weiter bearbeitet werden. An dieser Stel-
le wird wegen des geringen Umfangs des Problems auf eine Implementierung verzichtet.

Das Notebook bietet die Moglichkeit, Histogramme zu berechnen und mit Hilfe eines Dia-
gramms zu visualisieren. Ein Histogramm gibt dabei an, wie oft ein Wert in einer Spalte vor-
kommt. Dies soll exemplarisch fiir die Spalte 6 (YEARTXT) geschehen. Diese Spalte enthalt
als Werte das Modelljahr des betroffenen Fahrzeugs. Das Ergebnis ist in Abbildung 7 zu se-
hen. Dabei représentiert die x-Achse die in der Spalte vorkommenden Werte — in diesem Fall
die Jahreszahlen. Die y-Achse représentiert die Haufigkeit der Werte in der Spalte. Diese Dar-
stellung ist moglich, weil es sich bei den Werten um Jahresangaben handelt, die problemlos
als Zahlen aufgefasst werden konnen. Dadurch ist es mdglich, sie sinnvoll auf der x-Achse ei-
nes Schaubildes anzuordnen.

Das Schaubild erscheint auf den ersten Blick sehr plausibel. Der Datensatz beriicksichtigt
Meldungen ab 1995. Sehr alte Fahrzeuge sind im Datensatz selten. Die Anzahl der Eintrdge
nimmt dabei mit steigender Jahreszahl immer stirker zu. Die meisten Eintrdge beziehen sich
auf Fahrzeuge mit einem Modelljahr aus den letzten beiden Jahrzehnten. In Richtung Gegen-
wart nimmt die Anzahl der Eintrdge wieder ab. Auffallend dabei ist eine sehr deutliche Spitze
ganz am Rand des Schaubilds. Es erscheint wenig plausibel, dass es extrem viele Eintrage fiir
Fahrzeuge mit Modelljahr 2017 gibt. Eine weitere Analyse ergibt, dass es sich hierbei um den
Wert 9999 handelt. Die Dokumentation enthélt die Information, dass dieser Wert die Bedeu-
tung ,,unbekannt* oder ,,nicht zutreffend* hat. Es handelt sich also um einen codierten Null-
wert. Dies ist irreflihrend und kann zu Datenqualitdtsproblemen fiihren. Siehe hierzu Kapitel
4.2. Abbildung 7 ist hierfiir bereits ein Beispiel. Der Datentyp der Spalte 6 ist als vierstellige
Zahl festgelegt. 9999 ist also ein giiltiger Wert. Die Visualisierungsfunktion hat keine In-
formation, dass 9999 kein giiltiges Jahr darstellt. Durch die Skalierung ist im Schaubild nicht
sofort erkennbar, dass es sich um einen nicht plausiblen Wert handelt. Eine einfache Berech-
nung des Durchschnitts fiir diese Spalte ergibt 2358.
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Abbildung 7: Schaubild des Histogramms fiir die Spalte 6



Um solche Probleme zu vermeiden, konnen die codierten Nullwerte in explizite Nullwerte
konvertiert werden. Das Notebook bietet hierfiir eine Ersetzungsfunktion. Nachdem die Erset-
zung vorgenommen wurde, ergibt die Berechnung des Durchschnitts fiir die Spalte 6 den
Wert 2002. Abbildung 8 zeigt erneut das Histogramm fiir Spalte 5 fiir den angepassten Daten-
satz. Die irreflihrende Spitze ist nicht mehr zu sehen. Zu beachten ist, dass die Ersetzung der
codierten Werte nicht in jedem Fall durchgefiihrt werden muss. Fiir manche Analysen kann es
durchaus interessant sein, zwischen codierten und expliziten Nullwerten zu unterscheiden. Fiir
das konkrete Beispiel in Abbildung 8, ndmlich ein korrektes Histogramm von Spalte 6, macht
die Ersetzung Sinn und wurde durchgefiihrt.
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Abbildung 8: Schaubild des Histogramms fiir Spalte 6. Der Code 9999
wurde durch explizite Nullwerte ersetzt

Als ndchsten Schritt sollen allgemein die Nullwerte im Datensatz betrachtet werden. Fehlende
Werte spielen beim Data Wrangling eine wichtige Rolle, siche hierzu Abschnitt 4.2. Das No-
tebook bietet eine Funktion, mit der fiir den Datensatz die Nullwerte ermittelt werden kénnen.
Hierbei sollen zunédchst nur explizite Nullwerte betrachtet werden, also Spalten, die keinen
Wert enthalten. Das zuvor durchgefiihrte Ersetzung des Wertes 9999 durch explizite Nullwer-
te in Spalte 5 fliet nicht in diese Betrachtung ein. Dies hat zwei Griinde. Zum einen miisste
fiir ein vergleichbares Ergebnis in jeder betrachteten Spalte analysiert werden, ob codierte
Nullwerte vorliegen. Dies wird aus Griinden des Umfangs fiir dieses Beispiel nicht durchge-
fiihrt. Zum anderen ist es durchaus interessant, die expliziten und die codierten Nullwerte ge-
trennt zu betrachten. Bei einem codierten Wert ist bekannt, dass die Information, dass dieser
Wert unbekannt ist, im Originaldatensatz vorhanden ist. Bei einem expliziten Nullwert, also
dem fehlen eines Wertes, wire auch denkbar, dass diese Information beim Transport der
Daten verlorengegangen ist. Alternativ kdnnte auch ein fehlerhafter Transformationsschritt
die Information zerstort haben. Tabelle 8 zeigt die Anzahl und den Prozentsatz der Nullwerte
pro jeweiliger Spalte. Das Notebook berechnet die Werte automatisch fiir alle Spalten. Aus
Griinden des Umfangs werden aber nur die ausgewihlten Spalten betrachtet.



Spalte Name Absolut Prozentual

1 CMPLID 0 0,00%
3 MFR_NAME 193 0,00%
4 MAKETXT 193 0,00%
5 MODELTXT 193 0,00%
6 YEARTXT 193 0,00%
7 CRASH 256181 19,00%
9 FIRE 80818 6,00%
10 INURED 712207  52,00%
11 DEATHS 728720  53,00%
20 CDESCR 51 0,00%
22 POLICE_RPT_YN 135529 10,00%

Tabelle 8: Explizite Nullwerte fiir ausgewcdhlite Spalten

Spalte 1 enthilt keine Nullwerte. Bei dieser Spalte handelt es sich laut Dokumentation um
eine fortlaufende, eindeutige ID. Fehlende Werte hier wiirden auf ein massives Problem hin-
deuten, entweder im Datensatz selbst, oder beim Import. Dies ist nicht der Fall. Die Spalten 3,
4, 5 und 6 beinhalten Details zum betroffenen Fahrzeug. Beispielsweise den Hersteller (Spalte
3) oder das Modell (Spalte 5). In jeder dieser 4 Spalten gibt es 193 Nullwerte. Eine weitere
Analyse zeigt, dass es sich jeweils um die gleichen Zeilen handelt. AuBlerhalb dieser Zeilen
kommen in diesen Spalten keine expliziten Nullwerte vor. Tabelle 9 zeigt ein Beispiel fiir
einen solchen Eintrag. Zusitzlich zu den aufgefiihrten Spalten fehlen Werte fiir die meisten
anderen Felder. Der Eintrag enthilt fast keine Informationen. Der Wert fiir Spalte 20 ist
»NOTHING - also Nichts. Hierbei handelt es sich also eigentlich um einen Nullwert — dieser
ist aber nicht explizit sondern als englisches Wort. Dies dhnelt dem oben diskutierten Fall fiir
Spalte 5. Auch hier werden Nullwerte codiert dargestellt. Allerdings handelte es sich beim
Wert 9999 um einen eindeutigen und durch die Dokumentation spezifizierten Zahlenwert. In
diesem Fall sind die Nullwerte durch Texte dargestellt. Solche Nullwerte sind sehr schwer zu
entdecken, weil es viele Varianten gibt, ein Fehlen von Information durch Text auszudriicken.
Beispielsweise lautet die Beschreibung (Feld 20) fiir einen dhnlichen Eintrag 113745: ,,NO
SUMMARY* - also keine Zusammenfassung. Insgesamt kommt ,NOTHING* 17 mal im
Datensatz vor. ,,NO SUMMARY* insgesamt 1444 mal. Eine weitere Variante, die nur ein
einziges mal vorkommt, ist zum Beispiel ,,NO FAILURES GIVEN.“. Prozentual spielen diese
Eintrdge keine Rolle. Es gibt aber viele unterschiedliche Moglichkeiten, die theoretisch vor-
kommen konnten. Spalte 20 enthélt nur 51 explizite Nullwerte. Allerdings kann ohne eine
aufwendige Analyse nicht exakt angegeben werden, wie viele Eintrige wirklich keine In-
formationen enthalten. Diese Beispiele stellen Félle von irrefiihrenden Werten da, die in Kapi-
tel 4.2 beschrieben werden.



1 4 5 6 13 14 17 20
CMPLID MAKETXT MODELTXT YEARTXT CITY STATE LDATE CDESCR

175887 BURBANK CA 19990908 NOTHING

Tabelle 9: Beispiel fiir Eintrag mit Nullwerten in den Spalten 3 bis 6. Spalte 3 wurde in der
Darstellung wegen der Ubersichtlichkeit weggelassen.

Spalte 7 (CRASH) enthilt zu 19% Nullwerte. Diese Spalte hat laut Dokumentation nur die zu-
lassigen Werte ,,Y* und ,,N* fiir Ja und Nein. Hierbei handelt es sich eindeutig um ein Daten-
qualititsproblem. Es ist nicht ersichtlich, welche Semantik ein Nullwert hier hat. Naheliegend
ist die Bedeutung ,,unbekannt®, es ist allerdings moglich dass die Daten aus technischen oder
sonstigen Griinden fehlen. Das gleiche gilt fiir Spalte 9 (FIRE) in abgeschwéchter Form. Die-
se besteht zu 6% aus Nullwerten. Auch hier sind die zuldssigen Werte nur ,,Y* und ,,N*.

Die Spalten 10 (INJURED) und 11 (DEATH) haben einen Nullwertanteil von jeweils 52%
bzw. 53%. Spalte 10 enthilt die Anzahl der verletzten im Zusammenhang mit dem in der Be-
schwerde beschriebenen Defekt, Spalte 11 die Anzahl der Toten. Laut Dokumentation sollen
beide Spalten Zahlen enthalten. Der sehr hohe Anteil an Nullwerten stellt ein Datenqualitéts-
problem dar. Fiir die Spalte 10 enthalten insgesamt 65206 Zeilen einen Wert groBer 0. Alle
anderen Eintrdge sind entweder 0 oder ein Nullwert. Fiir die Zeile 11 sind 3500 Werte grof3er
0, insgesamt gibt es 634620 Werte. Bezogen darauf ist der Prozentuale Anteil von Eintrigen
mit Todesfillen 0,55%. Basierend darauf kann eventuell vermutet werden, dass es bei der
iiberwiegenden Anzahl der Fintrage mit Nullwert in Spalte 11 keine Todesfille gab. Aller-
dings ist dies nur eine Mutmafung. Sollen zum Beispiel bei einer Analyse nur Beschwerden
betrachtet werden, bei denen es keine Toten gab, miissten theoretisch mehr als die Halfte der
Eintrage verworfen werden, weil Daten fehlen.

Spalte 22 (POLICE_RPT_YN) gibt an, ob der Vorfall der Polizei gemeldet wurde, und hat als
giiltige Werte ,,Y* fiir Ja und ,,N* fiir Nein. Die Spalte enthélt zu 10% Nullwerte. Laut Doku-
mentation wurde diese Spalte am 14.09.2007 zum Datensatz hinzugefiigt. Spalte 16 (DATEA)
gibt den Zeitpunkt an, wann der Eintrag in die Datenbank aufgenommen wurde. Die meisten
Eintrage, die vor diesem Datum zum Datensatz hinzugefiigt wurden, haben einen Wert fiir
Spalte 22. Dabei kommen sowohl die Werte ,,Y* als auch ,,N* vor. Tabelle 10 enthilt ein Bei-
spiel flir einen Eintrag, der 1995 in die Datenbank aufgenommen wurde, deutlich vor 2007.
Es ist an dieser Stelle nicht klar, was dies genau bedeutet. Waren die Werte bereits vor 2007
intern vorhanden, und wurden erst danach veroffentlicht?

1 5 6 16 22
CMPLID MODELTXT YEARTXT INURED DATEA  POLICE_RPT_YN
25499 RANGER 1993 2 19951010 Y

Tabelle 10: Beispiel fiir einen Eintrag mit "Y" fiir Spalte 22, der vor 2007 zum Datensatz
hinzugefiigt wurde



Spalte 20 enthélt einen Freitext, der die Beschwerde ndher beschreibt. Das Notebook bietet
mehrere Metriken fiir Textdaten. Im folgenden soll die Textédhnlichkeitsmetrik berechnet wer-
den. Diese Metrik ermittelt die Ahnlichkeit des Eingabetextes mit einer Reihe von hinterleg-
ten Korpora. Soll ein Text mit einem Machine Learning Algorithmus analysiert werden, so
kann diese Metrik dabei helfen, den besten Trainingsdatensatz auszuwidhlen. Fiir eine Be-
schreibung der Metrik siehe Abschnitt 2.5.3. Die konkrete Implementierung der Metrik wird
in Kapitel 6.3 beschrieben.

Als Eingabe benétigt die Metrik einen Text als String. Hierzu sollen alle Texte in Spalte 20
verwendet werden. Im Notebook geniigt es, Spalte 20 auszuwéhlen. Der NHTSA Complaints
Datensatz verwendet ausschlieBlich GroBschreibung. Zur Berechnung der Metrik wird der ge-
samte Datensatz in Kleinbuchstaben umgewandelt. Es werden keine weiteren Vorverarbei-
tungsschritte durchgefiihrt. Der entstehende Datensatz ist sehr groB3, knapp 600 MB. Zusitz-
lich bendtigt die Metrik Trainingsdatensétze, damit ein Vergleich durchgefiihrt werden kann.
Fiir die Berechnung wurden Beispielhaft 6 Textdatensdtze genommen. Siehe Abschnitt 9.3 fiir
eine Beschreibung.

Der Datensatz ist seht grof. Auf dem Demonstrationssystem bendtige die Berechnung 3 Stun-
den. Tabelle 11 zeigt die Resultate. Die Tabelle zeigt den Namen des jeweiligen Trainings-
datensatzes und den dazu ermittelten Textdhnlichkeitswert. Die Tabelle ist absteigend nach
Textdhnlichkeit sortiert. Der Brown Reviews Corpus erzielt mit 0,73 den hochsten Wert. Ste-
hen nur diese 6 Datensitze zur Verfiigung, so empfiehlt diese Metrik die Verwendung von
Brown Reviews als Trainingsdaten. Die ermittelten Werte sind relativ niedrig. Die vorliegen-
den Texte enthalten Beschreibungen zu Beschwerden iiber Fahrzeugdefekte. Diese unter-
scheiden sich deutlich von Zeitungstexten, wie etwa dem CoNLL Korpus, der auf Artikeln
des Wall Street Journal beruht. Die Werte sind generell etwas hoher, als die fiir die Industrie-
daten ermittelten Ergebnisse. Siehe hierzu Tabelle 20 in Kapitel 8.2. Hier erzielt der Brown
Fiction Korpus mit 0,62 den hochsten Wert. Die Metrik deutet also auf eine gréBere Ahnlich-
keit von NHTSA Complaints Texten und den verwendeten Standardkorpora. Die Texte der
Industriedaten unterscheiden sich laut Metrik stirker von diesen. Dies erscheint plausibel, da
die Texte in den Industriedaten deutlich technischer sind und sich stark auf die Fertigung be-
ziehen. Die Textdahnlichkeit fiir den Twitterdatensatz betragt 0,38. Hierbei handelt es sich um
Texte der Social Media Plattform Twitter. NPS Chat erzielte einen Wert von 0,36. Dieser
Datensatz basiert auf Texten aus einem Online-Chat. Beide Werte liegen deutlich unter denen
der anderen 4 Korpora. Auch hier erscheint die Reihenfolge plausibel, weil sich die beiden
Datensétze deutlich von den NHTSA Complaints Textdaten unterscheiden.

Trainingsdatensatz | Textahnlichkeit
brown_reviews 0,73
conll 0,69
brown_fiction 0,69
treebank 0,66
twitter 0,38
nps 0,36

Tabelle 11: Textdhnlichkeit fiir das Freitextfeld von NHTSA Complaints



Tabelle 12 zeigt 4 Beispiele fiir Texte des Freitextfeldes in Spalte 20. Wie bereits zu Beginn
der Analyse erwihnt wird fiir den gesamten Text Grofschreibung verwendet. Dadurch geht
Information tiber GroB3- und Kleinschreibung verloren. Im Beispiel fallen 2 Rechtschreibfeh-
ler auf. Im ersten Eintrag aus Tabelle 12 steht ,MY ITSELF* statt ,,BY ITSELF®. In Eintrag 3
ist mit ,,ACCIENT* wohl ,, ACCIDENT* gemeint, es fehlt ein ,,D*.

20
CDESCR

GAS PEDEL ACCELERATOR MY ITSELF.

DRIVER DOOR LATCH FAILED AND FLEW OPEN WHILE DRIVING.
DOOR WOULD NOT STAY CLOSED.

REVERSE TRNSMISSION NOT WORKING WENT OUT WHILE
DRIVING. ALMOST CAUSED AN ACCIENT.

MY AIRBAG LIGHT WOULD GO ON AND OFF AT TIMES AND NOW
IT STAYS ON ALL THE TIME...SAFETY CONCERN!

Tabelle 12: Vier Beispieltexte aus Spalte 20

Das Notebook bietet eine Metrik, mit der der Anteil an Rechtschreibfehlern in einem Text ge-
messen werden kann. Diese Metrik wurde aus [18] integriert. Fiir eine ndhere Beschreibung
siche 6.3.5. Die Berechnung ist relativ aufwendig, so dass sie nicht fiir den kompletten Text-
datensatz berechnet werden kann. Stattdessen wird ein Ausschnitt verwendet, fiir den die Me-
trik beispielhaft berechnet werden soll. Hierzu werden exemplarisch nur Textfelder der Ein-
trige vom Januar 2005 ausgewdhlt, ca. 4500 Zeilen. Auch hier wird alles in Kleinbuchstaben
umgewandelt. Dieser Datensatz ist ca. 2MB groB3. Die Metrik liefert als Ergebnis 11%. Dieser
Wert liegt deutlich unter den 23%, die fiir das Freitextfeld der Industriedaten ermittelt wurde.
Allerdings sind beide Textfelder nicht vergleichbar. Siehe dazu die Ausfithrungen in Kapitel
8.2. Die Metrik deutet darauf hin, dass sich die NHTSA Complaints Daten eher Standard-
Textdaten dhneln als die Industriedaten.



8.2 Industriedaten

Bei dem Industriedatensatz handelt es sich um Produktionsdaten im Kontext einer Fertigungs-
linie. Alle im Folgenden verwendeten Beispiele sind an den realen Datensatz angelehnt und
anonymisiert. Dazu wurden in den Daten vorkommende Werte, wie zum Beispiel IDs, Prozes-
se oder Personennamen, soweit wie notig durch allgemeine Platzhalter ersetzt. Das folgende
Beispiel soll das Vorgehen verdeutlichen:

Fiktivies Beispiel fir einen Datensatz im Klartext:

ID Process_ID Process Remark
12345 54A GlihbirneTauschen Gluhbirne getauscht -Max

Datensatz anonymisiert:

ID Process_ID Process Remark
10000 A10 [Prozess1] [Objekt1] getauscht -[Person1]

Tabelle 13: Veranschaulichung des Vorgehens zur Anonymisierung

Tabelle 13 gibt ein Beispiel flir die Anonymisierung. Eine Zeile (zur Illustration aus einem
fiktiven Datensatz) ist zuerst im Klartext zu sehen. Nach der Anonymisierung sind die kon-
kreten Entitidten durch abstrakte Platzhalter ersetzt. Zuséitzlich wurden auch technische Daten,
wie etwa IDs, abgewandelt.

Der Datensatz basiert auf Daten, die in einer relationalen Datenbank verwaltet werden. Fiir
diese Analyse liegt ein Auszug in Form von .csv Dateien vor, die jeweils die entsprechenden
Tabellen reprisentieren.

Als ersten Schritt werden die Daten in das Jupyter Notebook geladen. Da die Daten als eine
Reihe von .csv Dateien vorliegen, muss hierzu neben dem Pfad der entsprechenden Datei
auch das verwendete Trennzeichen angegeben werden. In diesem Fall handelt es sich um ein
Semikolon. Zum Einstieg soll eine Tabelle betrachtet werden — im folgenden Tabelle A ge-
nannt, die Prozessnamen enthélt. Diese hat 6 Spalten mit ungefidhr 1200 Eintrdgen. Tabelle 14
zeigt exemplarisch zwei Eintrige.

DB Param Process ID AG ID Description EquipmentNo Type

L100 2000 1234 [Prozess1] 2
L200 1000 5678 [Prozess?2] 2

Tabelle 14: Beispielhafte Eintrdge fiir Tabelle A

Die hier anonymisiert dargestellten Beschreibungen (Spalte Description) [Prozess1] und [Pro-
zess2] sind auf Deutsch und enthalten Umlaute. Das Notebook bietet eine Funktion an, mit



der Sonderzeichen in Textfeldern erkannt werden kdnnen. Siehe Kapitel 6. Die Texte wurden
vom Jupyter Notebook Prototypen korrekt geladen und werden inklusive Umlaute richtig an-
gezeigt. Allerdings ist es wichtig, bei der weiteren Verarbeitung der Daten auf das korrekte
Encoding zu achten. Theoretisch wére es moglich, das fiir die weitere Analyse ein Tool ver-
wendet wird, das keine Umlaute oder andere Sonderzeichen unterstiitzt. In diesem Fall konn-
ten die Umlaute zum Beispiel umgewandelt werden (ii — ue). Das Notebook bietet hierfiir
standardméBig keine Funktion an. Falls dies fiir einen Analyseschritt tatsdchlich erforderlich
wire, konnte man diese Funktion problemlos hinzufiigen, etwa durch Einbindung eines Skrip-
tes.

Ein Histogram der ersten Spalte (DB_Param) zeigt, das 56 Eintridge den Wert ,, Test™ enthal-
ten. Hier muss gekldrt werden, ob es sich bei diesen Eintrdgen um Testeintrdge handelt, also
um Eintrdge die erstellt wurden, um die Funktion des Systems zu iiberpriifen. In diesem Fall
enthalten diese Eintrdage keine realen, fachlichen Daten und sollten bei der Analyse nicht be-
riicksichtigt werden. Hierzu bietet das Notebook eine Filterfunktion, mit der Zeilen entfernt
werden konnen, die bestimmten Kriterien entsprechen. In diesem Fall: der Wert der Spalte
DB_Param ist gleich ,,Test*. Diese Funktion des Notebooks wird in Abschnitt 5.2.4 néher be-
schrieben.

Die Prozessbeschreibungen (Spalte Description) sind relativ kurz, im Mittel etwa 26 Zeichen
lang. Allerdings enthalten einige Beschreibungen als letztes Zeichen einen Zeilenumbruch
(\r\n). Dies konnte eventuell bei weiteren Analysen zu Problemen fiihren. Da der Zeilenum-
bruch das letzte Zeichen ist, enthilt er auch keine zusitzlichen Informationen und sollte ent-
fernt werden. Das Notebook stellt fiir diesen Fall keine fertig implementierte Funktion bereit.
Allerdings ist es problemlos moglich, im Notebook eine neue ausfiihrbare Zelle hinzuzufiigen.
Damit kann das Problem direkt durch Code gelost werden, oder ein passendes Skript impor-
tiert werden. In diesem Fall reicht eine Zeile Code in Python’. Zeilenumbriiche werden durch
das Notebook nicht speziell erkannt. Im Normalfall ist es durchaus denkbar, das ein Freitext-
feld Zeilenumbriiche enthilt, etwa bei lingeren Texten. Dies stellt allgemein kein Qualitits-
problem dar. In diesem Fall sind die unnétigen Zeilenumbriiche durch manuelle Inspektion ei-
nes Ausschnitts der Daten entdeckt worden. Falls Zeilenumbriiche beim Analyseprojekt eine
Rolle spielen sollten, konnen entsprechende Funktionen leicht ins Notebook integriert wer-
den.

Als néchsten Schritt werden die Nullwerte in den jeweiligen Spalten berechnet. Abbildung 9
zeigt das Ergebnis. Die Spalten DB_Param, Process ID und Type enthalten {iberhaupt keine
Nullwerte, die Spalte Description nur 2. Auffillig ist, das die Spalte AG_ID zu 68% Nullwer -
te enthdlt. An dieser Stelle sollte die Semantik dieser Spalte geklart werden. Wahrscheinlich
ist diese Spalte optional. Falls nicht, handelt es sich um ein sehr gro3es Datenqualitdtspro-
blem. Die Spalte EquipmentNo besteht zu 100% aus Nullwerten und enthilt keinen Einzigen
Eintrag. Auch an dieser Stelle sollte geklart werden, aus welchem Grund {iberhaupt keine
Werte vorhanden sind. Eventuell ist es moglich, das diese Spalte nicht benétigt wird. In die-
sem Fall kann sie entfernt werden. Beim Speichern der Ergebnisse konnen im Notebook Spal-
ten ausgewdhlt werden. Spalten die entfernt werden sollen, konnen einfach weggelassen wer-
den. Diese Funktion wird in Kapitel 5.2.5 ndher beschrieben.

7 data['Description'] = data['Description'].str.replace("\r\n', ")



out[33]: Count | Percent

DB_Param 0 0%
Process ID (O 0%
AG 1D a11 BE8%
Description (2 0%

EquipmentNo | 1134 | 100%

Type 0 0%

Abbildung 9: Nullwerte fiir Tabelle A

Das Notebook bietet die Moglichkeit, eine Qualitditsmetrik zu berechnen, die den Anteil der
Rechtschreibfehler in einem Textdatensatz misst. Siche Kapitel 6.3.5 fiir eine Beschreibung.
Diese Metrik soll fiir das Feld Description beispielhaft berechnet werden: Hierzu geniigt es,
die entsprechende Spalte anzugeben, sowie die Sprache Festzulegen (hier Deutsch). Als Er-
gebnis liefert die Berechnung einen Wert von 25%. Dieser Wert erscheint {iberraschend hoch,
schlieBlich handelt es sich um vordefinierte Beschreibungen, nicht um Freitexte. Allerdings
ist zu bedenken, dass die Metrik ein Standard-Worterbuch fiir die Deutsche Sprache verwen-
det. Fachbegriffe und fachspezifische Abkiirzungen sind nicht im Worterbuch gelistet und
werden daher als Fehler gewertet. Fiir ein aussagekriftiges Ergebnis miisste eine Metrik ver-
wendet werden, die den dominenspezifischen Sprachgebrauch beriicksichtigt. Allerdings
kann diese Metrik auch als Indikator dafiir benutzt werden, ob ein Text von Standardtexten
abweicht, wie dieses Beispiel zeigt.

An dieser Stelle soll die exemplarische Analyse fiir diese Tabelle beendet werden. Im Kontext
dieser Analyse wurden zwei mdgliche Anderungen an den Daten beschrieben: Testeintrige
entfernen und Bereinigen der Texten von unndtigen Zeilenumbruchzeichen. Diese Anderun-
gen miissen noch durch einen Domédnenexperten gepriift werden. Falls sie aus fachlicher Sicht
Sinn machen, miissen sie gespeichert werden. Wenn die entsprechende Funktionen des Note-
books durchgefiihrt wurden, sind die Anderungen im Arbeitsspeicher, aber noch nicht dauer-
haft gesichert. Hierzu ist es im Notebook moglich, die Daten in eine .csv Datei zu schreiben.
Zusatzlich soll die Spalte EquipmentNo entfernt werden, weil sie nur Nullwerte enthilt. Im
Notebook wird unter Save Data die zu speichernden Daten bestimmt: der Datensatz mit allen
Spalten auBler EquipmentNo. Zusidtzlich muss der Dateiname angegeben werden. Optional
konnen noch weitere Parameter wie das Trennzeichen und das verwendete Encoding (als
default-Wert wird UTF-8 genommen) gewidhlt werden. Damit die Datei gespeichert wird,
muss die Code-Zelle ausgefiihrt werden.

Als zweites betrachten wir eine weitere Tabelle mit 7 Spalten und ca. 150.000 Eintrdgen. Die-
se wird im folgenden als Tabelle B bezeichnet. Tabelle 15 enthilt einen Beispiel-Eintrag.



ID LFDNR DB_Param ProductionStart ProductionEnd  Shift TIN Parts
90000 1234567 L100 [Timestamp1] [Timestamp2] 1 123456789 500

Tabelle 15: Beispielhafter Eintrag fiir Tabelle B

Diese Tabelle enthilt keine Textfelder oder andere unstrukturierte Daten. Die Berechnung der
Nullwerte liefert folgendes Ergebnis (Abbildung 10): Die Spalten ID, DB Param, Producti-
onStart, Shift und Parts enthalten keine Nullwerte.

out[42]: Count |Percent
ID 0 0%
LFDNR 2830 (2%
DB_Param 0 0%
ProductionStart| 0 0%

ProductionEnd |[444 0%

Shift 1] 0%
TTN 2241 (4%
Parts 0 0%

Abbildung 10: Nullwerte fiir Tabelle B

Die Spalte LFDNR enthilt 2830 Nullwerte, etwa 2% der Eintrdge. Tabelle 16 enthilt beispiel-
haft einen Eintrag, bei dem es fiir LFDNR keinen Wert gibt. Auffallig bei diesem Eintrag ist
auBerdem, das fiir ProductionStart und ProductionEnd der gleiche Timestamp eingetragen ist.
Dies ist fiir insgesamt 19 Datensétze der Fall, be1 denen LFDNR Null ist. In Tabelle B kommt
diese Konstellation (ProductionStart gleich ProductionEnd) ansonsten nicht mehr vor. Dies
deutet stark auf Probleme mit diesen Eintragen hin.

ID LFDNR DB Param ProductionStart ProductionEnd  Shift TIN Parts
50000 L123 [Timestamp1] [Timestamp1] 0 1112223334 100

Tabelle 16: Beispiel fiir einen Eintrag mit LFDNR = Null

Die Spalte ProductionEnd enthélt 444 Nullwerte. Eine weitere Analyse zeigt, dass alle diese
Eintridge auch gleichzeitig einen Nullwert in der Spalte LFDNR haben.



Die Spalte TTN enthélt 5241 Nullwerte, etwa 4% der gesamten Eintrage. Ein Histogram die-
ser Eintrage zeigt, dass alle diese Eintrége einen von 8 Werten fiir DB_Param haben, wobei
mit 3939 Eintrdgen 75% der Nullwert-Eintrdge auf 2 DB Param-Werte entfallen. Diese Spal-
te enthdlt die Fertigungswerkstatt des zugehorigen Eintrags. In der gesamten Tabelle kommen
45 verschiedene DB Param Werte vor.

Um im weiteren Vorgehen entscheiden zu konnen, ob es sich bei den zuvor beschriebenen
Anomalien in Tabelle B um relevante Datenqualitdtsprobleme handelt, ist zusdtzliches Doma-
nenwissen erforderlich, zum Beispiel iiber die Semantik der Eintridge. Eine allgemeine Losung
wire es, alle Eintrdge mit Nullwerten auszufiltern. Allerdings kdnnten gerade diese Eintrage
Wertvolle Informationen iiber Fehler und Probleme darstellen.

Als nédchstes soll eine Tabelle betrachtet werden, die ein Schichtbuch darstellt, in dem Proble-
me bei der Produktion eingetragen werden. Die Tabelle hat insgesamt 15 Spalten und etwa
150.000 Eintriige. Tabelle 17 bietet eine Ubersicht aller Spalten sowie die dazu ermittelten
Nullwerte. Tabelle 18 zeigt einen beispielhaften Eintrag. Aus Griinden der Lesbarkeit wurden
mehrere Spalten weggelassen.

DB _Param

Spalte Nullwerte
ID 0%
EREIGNISLISTE_ID 96%
DB_Param 0%
Process_ID 0%
Code 0%
Begin 0%
End 0%
TN 24%
EquipmentNo 100%
Cause 68%
Remark 66%
Person_ID 99%
Duration_in_Seconds 0%
Affected_Parts 0%
isCreatedBySystem 0%

Tabelle 17: Spalten der Tabelle "Schichtbuch"

Code

TN

Process_ID

Cause

Remark

L321 1000 Y12342 1234567890 [Objekt] verklemmt

Tabelle 18: Beispiel fiir einen Eintrag in der Tabelle "Schichtbuch” fiir ausgewdhlte Spalten

Ein Histogramm der Spalte FtedBySystem zeigt, das alle Eintrdge den Wert 0 haben. Die fiir
diese Spalte vorhandene Dokumentation besagt, das dies immer der Fall ist. Genauere In-
formationen liegen nicht vor. Diese Spalte kann also fiir die weiteren Analysen entfernt wer-
den, da sie keine Informationen enthélt. Der Prozentsatz der Nullwerte pro jeweiliger Spalte



kann Tabelle 17 entnommen werden. In 9 Spalten kommen keine Nullwerte vor. Ahnlich wie
in Tabelle B enthélt die Spalte EquipmentNo nur Nullwerte. Auch die Spalte EREIGNISLIS-
TE ID hat einen sehr hohen Nullwertanteil von 96%. In diesen beiden Féllen sollte geklart
werden, warum dies so ist. Etwa 24% der Eintrdge der Spalte TTN sind Nullwerte. Auch hier
stellt sich die Frage, welche Semantik ein Nullwert hat. Die Spalte Person ID besteht zu 99%
aus Nullwerten. Eine weitergehende Analyse ergibt in diesem Fall, das diese Spalte optional
ist und von den Werkern in der Regel nicht eingetragen wird. Bei den Spalten Cause und Re-
mark handelt es sich um Freitextfelder. Diese Enthalten Kommentare und Anmerkungen, die
von den Werkern zu den entsprechenden Eintrdgen verfasst wurden. Die Felder haben einen
Nullwert-Anteil von 68% beziehungsweise 66%. Betrachtet man nur die Spalten, in denen so-
wohl Cause als auch Remark keine Eintrdge besitzen, so reduziert sich der Anteil der Null-
werte auf etwa 45%. Nur etwa 11% der Eintrdge haben einen Wert fiir beide Spalten, sowohl
Cause als auch Remark. Von diesen Eintrdgen haben allerdings iiber 61% einen identischen
Wert, jeweils den gleichen fiir Cause und Remark. Insgesamt haben nur knapp 4% der Eintré-
ge, bezogen auf die gesamte Tabelle, unterschiedliche Texte. Abbildung 11 illustriert diesen
Zusammenhang. Dies deutet auf eine Redundanz dieser beiden Felder hin. Die Einbeziehung
doménenspezifischen Wissens zeigt dass dieses Problem bereits bekannt ist und diese Felder
moglicherweise zusammengelegt werden sollen.

Felder Cause und Remark

Unterschiedlich 49
tedlich 4% | yentisch 7%
/

Beide Felder Null 45%

Ein Feld Null 44%

Abbildung 11: Prozentuale Verteilung fiir die Felder Cause und Remark

Das Feld Duration _in Seconds gibt die Dauer der Storung in Sekunden an. Ein Histogramm
dieser Spalte zeigt, das die 7 haufigsten Werte alles Vielfache von 60 sind, also runde Minu-
tenangaben darstellen. Insgesamt sind etwa 26% der Werte direkte Vielfache von 60. Knapp
0,7% der Eintrdge haben den Wert 0. An dieser Stelle stellt sich die Frage, ob es sich hierbei
um Fehler in den Daten handelt, oder ob eine Dauer von 0 Sekunden eine besondere fachliche
Bedeutung hat und deshalb plausibel ist. Das Notebook integriert eine Metrik zum Erkennen
von Ausreillern, die hier exemplarisch fiir die Spalte Duration _in Seconds angewendet wer-
den soll. Hierzu werden fiir die ersten hundert Eintrdge der LoF-Wert ermittelt. Sieche hierzu
Kapitel 6.3.3. Abbildung 12 zeigt einen Plot des Ergebnisses, der auch im Notebook ange-
zeigt wird. Die x-Achse reprdsentiert dabei den Eintrag, die y-Achse den ermittelten LoF-
Wert. Werte deutlich iiber 2 deuten bei dieser Metrik auf mogliche Ausreiler hin. Laut Plot
gibt es nach dieser Metrik 3 Kandidaten fiir Ausreifler, zum Beispiel die erste Spitze in der
Grafik mit einem Wert von 4,75. Im folgenden soll nur der erste Eintrag ndher betrachtet wer-



den. Tabelle 19 zeigt den Eintrag mit ausgewihlten Spalten. Wie alle anderen Beispiele auch
ist die Darstellung am echten Eintrag angelehnt aber vollstindig anonymisiert. Der Wert der
Spalte Durations_in_Seconds ist mit 13 deutlich niedriger als der Durchschnitt fiir diese Spal-
te, der bei 480 liegt. Allerdings kann keine Aussage dariiber getroffen werden, inwieweit der
Wert einen Ausreiller darstellt. Falls ein Ausreiller vermutet wird, muss eine detailliertere
Analyse erfolgen.

DB_Param Process_ID Code TTN Cause Remark Duration_in_Seconds
B123 2000 A1234Z 9876543210 [TTN1]->[TTN2] [TTN1]->[TTN2] 13

Tabelle 19: Eintrag mit LoF-Wert von 4,75
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Abbildung 12: LoF-Werte fiir die ersten 100 Eintrdge der
Spalte Duration _in_Seconds

An dieser Stelle soll die Validierungsfunktion demonstriert werden. Hierzu wird das Feld Pro-
cess_ID tberpriift. Die zuvor beschriebene Tabelle A schliisselt die in dieser Spalte enthalte-
nen Codes weiter auf. Fiir dieses Beispiel wird vereinfachend iiberpriift, ob ein Code aus der
Tabelle Schichtbuch auch in der Tabelle A vorkommt. Die Metrik liefert als Resultat, dass
dies fiir jeden einzelnen Eintrag der Fall ist. Dies iiberrascht nicht, da die Daten aus einer rela-
tionalen Datenbank stammen, die solche Konsistenzkriterien automatisch sicherstellt. Eine
Uberpriifung wire aber sinnvoll, falls die Daten zum Einlesen komplexeren Vorverarbei-
tungsschritten unterzogen werden miissten. Auch nach dem Ausfiihren von Transformationen
auf den Daten kann eine Uberpriifung Sinn machen, um potentielle Fehler aufzuspiiren.

Die Spalten Cause und Remark sind Freitextfelder, enthalten also unstrukturierte Daten in
Form von Texten, die das Problem niher beschreiben. Eine weitergehende Analyse der in den
Texten enthaltenen Informationen mit Algorithmen, die natiirliche Sprache verarbeiten, wire
moglicherweise interessant. Dabei stellt sich die Frage nach der Qualitdt der Textdaten. Der
Notebook Prototyp bietet eine Metrik, mit der die Textdhnlichkeit zwischen dem zu untersu-
chenden Datensatz, und einer Reihe von vorhandenen Trainingsdatensétzen ermittelt werden



kann. Die Idee ist, das die Ergebnisse eines Machine Learning Algorithmus umso besser sind,
je mehr sich die Trainings- und die Eingabedaten gleichen [18]. Fiir Details siche die Be-
schreibung der Metrik in Abschnitt 6.3.4. Fiir diese Beispielhafte Anwendung der Textidhn-
lichkeitsmetrik werden die Textdaten aus den Spalten Cause und Remark entnommen. Wegen
der zuvor beschriebenen Situation, das die beiden Spalten nur in 4% der Fille unterschiedli-
che Eintrdge enthalten, werden beide Spalten zusammen als ein Textdatensatz betrachtet. Die-
ser Textdatensatz besteht also aus Eintrdgen der Spalten Cause und Remark, jeweils ohne
Nullwerte. Die einzelnen Eintrige werden mit einem Zeilenumbruch getrennt. Fiir den oben
beschriebenen Fall, dass Cause und Remark einen identischen Text enthalten, wird der Text
nur ein mal verwendet, das Duplikat wird nicht beriicksichtigt. Es werden keine weiteren Vor-
verarbeitungsschritte durchgefiihrt. Das Notebook bindet die Textidhnlichkeitsmetrik ein, al-
lerdings erfordert das Zusammenlegen von Spalten, sowie die Bereinigung von Duplikaten
extra Code. Dies kann problemlos durch Hinzufiigen einer zusitzlichen ausfiihrbaren Zelle er-
reicht werden. Abbildung 13 zeigt den Code, der fiir dieses Beispiel benutzt wurde.

Da dieses Fragment Doméanenspezifisch ist, wird es nicht in das Standard-Notebook integriert,
sondern als Skript bereit gestellt. An dieser Stelle zeigt sich die Flexibilitét des Notebooks als
groBBer Vorteil. Durch einfaches einbinden von Code konnen auch Einzelfall-spezifische Ver-
arbeitungsschritte unterstiitzt werden.

aus
cauge df = data[data['Cause']
# Remove duplicates

cause df = cause df[cause df['Remark'] != cause df['Cause']]
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remark df = data[data['Eemark'].notnull(}]

cause = cause df['Cause'].tolist()
remark = remark df['Remark'].tolistc()
data sample = cause + remark

=
r e o a e e R A
#F UIEVS

text = "\n".join(data sample)

Abbildung 13: Code-Zelle im Jupyter Notebook. Der Code erzeugt den Textdatensatz
aus den Spalten Cause und Remark

Nachdem die Textdaten in das von der Textdhnlichkeitsmetrik erwartete Format gebracht
wurden, kann die Metrik einfach durch Ausfithren der Code-Zelle berechnet werden. Tabelle
20 zeigt die Ergebnisse. Die erste Spalte zeigt die vorhandenen Trainingsdatensétze. Die 6
verwendeten Datensdtze wurden beispielhaft ausgewaihlt. Fiir eine Beschreibung der Daten-
satze siche Abschnitt 9.3. Die zweite Spalte zeigt die ermittelte Textdhnlichkeit, ein Wert zwi-
schen 0 und 1. Je hoher der Wert, desto dhnlicher sind sich die entsprechenden Textdaten. Die
Tabelle ist nach der Textédhnlichkeit sortiert.



Trainingsdatensatz | Text Similarity
brown_fiction 0,62
conll 0,58
brown_reviews 0,55
treebank 0,54
nps 0,51
twitter 0,47

Tabelle 20: Die Ergebnisse der Textdihnlichkeitsmetrik fiir den Textdatensatz aus den Spalten
Cause und Remark

Der Brown Fiction Datensatz erzielt die hochste Ahnlichkeit, mit einem Wert von 0,62. Ste-
hen nur diese 6 Trainingsdatensitze zur Verfiigung, so wére die Empfehlung des Systems, die
Brown Fiction Daten als Trainingsdaten zu verwenden. Allerdings ist der erzielte Wert sehr
niedrig. Es ist sehr wahrscheinlich, dass die Qualitét der Analyse dadurch stark beeintréchtigt
werden wiirde. Dies liegt daran, dass die fiir dieses Beispiel verwendeten Trainingsdatensitze
hauptsédchlich aus literarischen und journalistischen Texten bestehen. Daneben handelt es sich
bei den Datensédtzen NPS und Twitter um Daten aus einem Onlinechat beziehungsweise um
Daten der Social Media Plattform Twitter. Diese Datensétze unterscheiden sich stark von
technischen Anmerkungen im Produktionskontext. Die Kommentare enthalten viel fachspezi-
fisches Vokabular und Abkiirzungen, wie etwa ,,AEG* fiir ,,Ausschalten, Einschalten, Geht®.
Tabelle 21 zeigt hierfiir ein Beispiel.

DB_Param Process_ID Code TIN Cause Remark
L123 2000 A1234Y 1234567890  Bleibt beim [Vorgang] stehen. AEG

Tabelle 21: Beispiel fiir Domdnenspezifische Abkiirzungen

Ein weiterer Aspekt ist das die Textfelder oft Kommentare der Form TTN1 — TTN2 enthal-
ten, was sich auf bestimmte doméanenspezifische Prozesse bezieht. Eine TTN ist dabei ein
technische Bezeichner, zum Beispiel in Form einer Zehnstelligen Zahl. Tabelle 22 bietet hier-
fiir ein Beispiel. Das Beispiel zeigt auch die zuvor beschriebene Konstellation, das Cause und
Remark den gleichen Inhalt haben, und dadurch Informationen unnétig dupliziert werden.

In einem zweiten Schritt wurde die Textdhnlichkeitsmetrik nochmal ohne diese Kommentare
berechnet. Hierzu wurde vereinfachend alle Kommentare gefiltert, die die Zeichenkette ,,->*
enthalten. Allerdings dnderte sich das Ergebnis der Metrik hierdurch nicht.

DB_Param Process_ID Code TIN Cause Remark
L345 3000 Y4321X 1234567890 — 9876543210 1234567890 — 9876543210

Tabelle 22: Beispiel fiir einen Kommentar der Form TTN->TTN



Diese Kommentare stellen eigentlich technische, strukturierte Information dar, und kommen
so in natiirlicher Sprache nicht vor. An dieser Stelle stellt sich die Frage, ob solche In-
formationen nicht besser in einer Strukturierten Form reprisentiert werden sollten. So ist es
zum Beispiel bei einem Textfeld nicht moglich die TTN zu validieren, um etwa Fehlern vor-
zubeugen. Anstatt die Informationen direkt aus den strukturierten Daten zu iibernehmen
miissten sie bei Analysen erst aufwendig durch Verarbeitung von Strings extrahiert werden,
etwa durch reguldre Ausdriicke.

Das Notebook bietet eine weitere Qualitdtsmetrik fiir Textdaten: es ist moglich, den Anteil an
Rechtschreibfehlern in einem Text zu messen. Hierzu werden als Eingabedaten die Spalten
Cause und Remark verwendet. Die Vorverarbeitung erfolgt genauso wie im obigen Beispiel
fir die Textdhnlichkeit. Nullwerte werden entfernt, zusatzlich wird ein Text nur einmal be-
nutzt, falls Cause und Remark den gleichen Inhalt haben. Als Sprache wird Deutsch aus-
gewdhlt. Die Metrik liefert als Ergebnis einen Wert von 23%. Die Kommentare enthalten in
der Tat Rechtschreibfehler. Tabelle 23 zeigt als Beispiel einen solchen Eintrag. Die Felder
enthalten Kommentare {iber Probleme, die vom Personal unter Produktionsbedingungen ein-
getragen wurden. Neben Rechtschreibfehlern kommen auch fiir normalen Sprachgebrauch un-
gewoOhnliche Abkiirzungen vor, etwa um Zeit zu sparen. Tabelle 24 bietet hierfiir ein Beispiel.
Bei ,,Q.* handelt es sich wahrscheinlich um eine Abkiirzung fiir Qualitét.

DB_Param Process_ID Code TN Cause Remark
A123 1000 Y12347 1234567890 [Vorgang1]. Danach geht niochts mehr.

Tabelle 23: Beispiel fiir einen Rechtschreibfehler in den Spalten Cause und Remark

DB Param Process ID Code TIN Cause Remark
A456 2000 Y1234Z 9876543210 [Objekt] schlechte Q.

Tabelle 24: Beispiel fiir eine Abkiirzungen in den Spalten Cause und Remark

Die Metrik basiert auf einem Standardworterbuch der Deutschen Sprache. Fachbegriffe sind
nicht bekannt und werden als Fehler gewertet. Der Wert von 23% ist daher wahrscheinlich
hoher als der reale Anteil an Rechtschreibfehlern. In diesem Fall kdnnte ein genaueres Ergeb-
nis erzielt werden, wenn eine Metrik verwendet wird, die Fachwissen mit einbezieht. Bei
Fachausdriicken und Abkiirzungen handelt es sich zwar nicht um Rechtschreibfehler im ei-
gentlichen Sinne, trotzdem bereiten sie Probleme bei der Verarbeitung durch Standardtools.
Diese Metrik selbst ist ein gutes Beispiel dafiir. So wurde am Anfang dieser Analyse in der
Tabelle A fiir die Spalte Description ein Rechtschreibfehleranteil von 25% berechnet. Dies ist
allerdings unwahrscheinlich, weil es sich um statische Beschreibungstexte handelt. Der Grund
wird eher in einem hohen Anteil an Fachvokabular liegen.

Insgesamt deuten die Ergebnisse darauf hin, das eine Analyse der Textfelder Cause und Re-
mark durch Standardtools wahrscheinlich keine guten Resultate liefern wiirde, weil die Art



der vorliegenden Textdaten sich stark sauberen Textdaten wie etwa Zeitungstexten unter-
scheidet.



9 Evaluation

In dieser Arbeit wurde ein Jupyter Notebook entwickelt, das verschiedene Datenqualititsme-
triken anbietet. Dabei stellt sich die Frage, ob diese Metriken sich auch fiir groBe Datensétze
skalieren lassen. In diesem Kapitel soll daher exemplarisch eine Evaluation durchgefiihrt wer-
den. Hierzu wurden zwei Metriken beispielhaft ausgewihlt und in Spark implementiert. Siehe
hierzu Kapitel 7. Diese Metriken entsprechen den bereits in das Notebook eingebundenen Me-
triken, nutzen aber Apache Spark. Die Evaluation soll kldren, in wie weit sich dadurch Vortei-
le im Hinblick auf die Laufzeit bei Anwendung auf grofle Datensétze ergeben. Abschnitt 9.1
beschreibt dabei die verwendete Methodik. Der Aufbau der Experimente, insbesondere die
Konfiguration des Clusters, wird in Abschnitt 9.2 niher beschrieben. In Abschnitt 9.4 werden
die Ergebnisse prisentiert und in Abschnitt 9.5 analysiert. Abschnitt 9.6 enthilt eine kurze
Zusammenfassung.

9.1 Methodik

Die Evaluation der fiir Spark implementierten Metriken erfolgt durch Laufzeitmessungen mit
Hilfe einer Cloud-basierten Infrastruktur, basierend auf Openstack [40]. Hierzu wurde ein bei-
spielhaftes Spark-Cluster eingerichtet. Die Metriken werden als Applikationen implementiert
und auf dem Cluster ausgefiihrt. Siche Kapitel 7 fiir die Beschreibung der Implementierung.
Zur Messung der Laufzeit wird die von Spark bereitgestellte Web-API verwendet. Diese bie-
tet Informationen zum Cluster und den darauf ausgefiihrten Applikationen. Unter anderem
gibt es zu jeder beendeten Applikation die Information zur Laufzeit in der Spalte Duration.
Fiir die Konfiguration des Clusters wurde dabei so weit wie moglich eine Standardkonfigura-
tion verwendet. Siehe hierzu das Kapitel 9.2.

Zum Vergleich werden die ausgewihlten Metriken verwendet, wie sie im Jupyter Notebook
Prototypen angeboten werden. Um moglichst vergleichbare Ergebnisse zu erhalten, werden
hierzu spezielle Skripte verwendet, welche die jeweiligen Metriken automatisch auf Ver-
gleichbare Weise berechnen, wie dies im Notebook durch Interaktion des Benutzers gesche-
hen wiirde. Diese Skripte sind nicht fiir eine konkrete, interaktive Analyse gedacht sondern
nur strikt fiir Evaluationszwecke. Jedes Skript stellt dabei ein Experiment dar, dass Daten ein-
liest, die Metrik berechnet und die Ergebnisse in eine Datei schreibt. Dies ist notwendig, um
eine Vergleichbarkeit mit Spark zu erreichen. Eine Spark-Applikation arbeitet im allgemeinen
nach folgendem Muster: Nachdem ein Job beim Spark Master eingereicht wurde, wird dieser
an Worker im Cluster verteilt. Diese lesen die Daten ein und verarbeiten sie. Die Ergebnisse
stehen nach Fertigstellung im HDFS-Dateisystem in Form von Dateien zur Verfligung. Es
sollte also auch das Einlesen und Schreiben der Daten in der Zeitmessung beriicksichtigt wer-
den. Fiir die Evaluation wurde die Zeit gemessen, die die Metriken bis zur Bereitstellung des
Ergebnisses benotigen.



9.2 Experimentaufbau

Fiir die Experimente wurde folgender Aufbau verwendet:

In der Weboberfliche der bereitgestellten Openstack Cloud-Plattform ist es unter dem Punkt
Data Processing moglich, ein Cluster einzurichten. Hierzu miissen Vorlagen konfiguriert
werden. Unter dem Unterpunkt Node Group Templates wurden hierzu iiber den Button Crea-
te Template zwei Vorlagen erstellt, jeweils fiir den Master und die Worker. Zuerst muss das
Plugin und die Version ausgewihlt werden, hier Apache Spark in der Version 1.3.1. Danach
muss im Konfigurationsfenster das entsprechende Flavor ausgewidhlt werden. Dieses Flavor
legt fest, welche Spezifikation die einzelnen Knoten des Clusters haben sollen, also die An-
zahl der CPUs, RAM, Speicherplatz etc. Fiir die Evaluation wurde das Flavor ml.large
gewdhlt, und zwar sowohl fiir den Master als auch fiir die Worker. Dieses Flavor bietet 4
CPUs, 8 GB Ram und 80 GB Speicherplatz. Unter dem Reiter Node Processes miissen bei der
Vorlage fiir den Worker die Prozesse datanode und slave ausgewéhlt werden. Fiir den Master
sind es namenode und master. Im Configure Node Group Template wurde die Option Auto-
configure verwendet, ansonsten wurden keine weiteren Konfigurationsschritte vorgenommen.

Danach wird unter dem Unterpunkt Cluster Templates eine Vorlage fiir das Cluster erstellt.
Auch hier wird im entsprechenden Konfigurationsdialog die Option Auto-configure verwen-
det®. Unter dem Reiter Node Groups konnen die im Schritt zuvor erstellten Vorlagen hinzuge-
fiigt werden. Fiir die Experimente werden ein Master und 4 Worker verwendet. Ansonsten
wurden keine weiteren Anderungen an den Standardwerten vorgenommen. Nachdem die Vor-
lage erstellt wurde, kann das Cluster mit Launch Cluster gestartet werden. Hierzu muss das
Image ausgewihlt werden’. Unter Keypair muss ein Schliisselpaar angegeben werden, mit
dem man Zugriff auf die Maschinen im Cluster erhélt. Unter Compute->Access & Security,
Reiter Key Pairs konnen Schliissselpaare verwaltet werden. Um sich auf den Maschinen via
SSH einloggen zu kénnen werden diese Schliissel bendtigt, eine Authentifizierung iiber ein
Passwort ist zu Beginn nicht moglich.

Die Zeitmessung fiir die reguléren Metriken erfolgte auf dem Demonstrationssystem. Hierbei
handelt es sich um eine Virtuelle Maschine mit dem gleichen Flavor (m1.large) wie die Kno-
ten das Spark-Clusters. Das Betriebssystem ist Windows Server 2008,

Die Testdaten werden dem NHTSA Complaints Datensatz entnommen. Fiir die Validierungs-
metrik wurden exemplarisch alle Eintrdge der Spalte 8 verwendet. Diese Spalte heif3t FAIL-
DATE und enthélt das Datum, an dem der Vorfall passiert ist. Im Datensatz ist diese Spalte
ein String mit 8 Zeichen. Dieser repriasentiert das Datum im Format ,,YYYYMMDD*. Dies
bedeutet, dass die ersten vier Zeichen das Jahr angeben. Zeichen 5 und 6 stellen den Monat
dar, und die letzten beiden Zeichen den Tag. Mit dieser Metrik wird {iberpriift, ob dieses For-
mat eingehalten wird. Dieser Datensatz hat eine Grofle von ca. 12MB.

8 Zusétzlich wurden unter dem Reiter General Parameters die Optionen Enable NTP Service und Enable Swifi deak-
tiviert, weil sich das Cluster ansonsten nicht starten lies.

9Verwendet wurde fiir die Experimente das Image sahara-liberty-spark-1.3.1-ubuntu-14.04.

10 Das verwendete Image ist windows_2008_r2



Fiir die Textdhnlichkeit wird dabei Spalte 20 verwendet. Bei dieser Spalte handelt es sich um
ein Freitextfeld, das einen Kommentar zur jeweiligen Beschwerde enthilt. Fiir die Textéhn-
lichkeit werden drei Experimente durchgefiihrt. Einmal wird die gesamte Spalte als Text-
datensatz verwendet. Dieser Text ist sehr groB3, knapp 600MB. Fiir das zweite Experiment
wurde exemplarisch ein kleiner Datensatz verwendet. Dieser besteht aus knapp 4500 Eintra-
gen. Hierzu wurden beispielhaft nur die Eintrdge vom Januar 2005 verwendet. Dieser hat eine
GroBe von etwa 2MB.

9.3 Verwendete Textkorpora

Fiir die Berechnung der Textédhnlichkeitsmetrik muss mindestens ein Trainingsdatensatz vor-
liegen. Siehe hierzu Abschnitt 6.3.4. Fiir die Anwendung der Metrik in dieser Arbeit werden
deshalb 6 Trainingskorpora beispielhaft verwendet. Diese sollen im folgenden genannt und
kurz beschrieben werden:

Der Brown Korpus besteht aus einer groBen Sammlung von Texten aus den 60er Jahren, die
in den Vereinigten Staaten im Druck erschienen sind. Der Korpus ist in verschiedene Katego-
rien unterteilt. In dieser Arbeit werden die Kategorien Fiction und Review verwendet. Diese
bilden jeweils einen Datensatz. [34]

Der CoNLL Korpus enthédlt Texte aus dem Wall Street Journal. Enstanden ist er im Rahmen
der Conference on Computational Natural Language Learning im Jahre 2000. [35]

Der NPS Chat Datensatz besteht aus Nachrichten eines Onlinechats. Diese wurden im Jahre
2006 gesammelt und aus Datenschutzgriinden anonymisiert. [11]

Der Twitter Korpus basiert auf Daten der Social Media Platform Twitter''. Hierzu wurden
Tweets gesammelt und aufbereitet [12]. Die Daten sind unter [51] verfiigbar.

Siehe hierzu auch die Anwendung des Notebooks auf Daten aus der Praxis in Kapitel 8.

9.4 Ergebnisse

Tabelle 25 zeigt die Ergebnisse fiir die Validierungsmetrik. Die Spalten Notebook und Spark
enthalten die Laufzeit fiir die jeweilige Version. Die Spalte Faktor gibt an, um welchen Faktor
die Implementierung in Spark schneller ist als die Standardversion.

Laufzeit
| Notebook Spark Faktor
Validierung | 18s 5s

Tabelle 25: Laufzeiten fiir die Validierungsmetrik fiir den kompletten Datensatz aus Spalte 8

11 https://twitter.com/



Tabelle 26 zeigt die Ergebnisse fiir die Textédhnlichkeitsmetrik. Die Spalte Datensatz gibt an,
welcher Datensatz verwendet wurde. Siehe hierzu den vorgehenden Abschnitt 9.2 fiir Details.
Die Spalte Notebook enthélt die Ergebnisse fiir die regulidre Implementierung, wie sie im No-
tebook verwendet wird. Die Spalte Spark enthdlt die Werte flir die Implementierung mit
Spark. Bei den Werten handelt es sich um die Laufzeit mit Angabe der Einheit. Die Textdhn-
lichkeitsmetrik fiir Spark liegt in zwei Varianten vor, Standard und Variante 2. Variante 2 ver-
wendet einen anderen Tokenizer. Der Tokenizer der Standard-Variante bendtigt ein Modell,
das aus einer Datei geladen werden muss. Siehe hierzu die Implementierungsdetails in Ab-
schnitt 7.1.2. Die reguldre Metrik gibt es nur in einer Variante, siche hierzu Abschnitt 6.3.4.
Diese verwendet einen vergleichbaren Tokenizer wie die Standard-Variante fiir Spark. Es gibt
fiir Variante 2 keine direkt vergleichbare Metrik im Notebook, deshalb wird kein Wert ange-
geben. Siehe hierzu auch die Diskussion in Abschnitt 9.5. Die Spalte Faktor gibt an, um wel-
chen Faktor die Laufzeit durch die Implementierung in Spark verbessert werden konnte. Fiir
die vereinfachte Metrik bezieht sich diese Spalte auf die Laufzeit der Standardimplementie-
rung fiir Spark.

Textahnlichkeitsmetrik Laufzeit

Datensatz | Notebook Spark  Faktor
Standard 2MB 24s 23s 1,04
Variante2 ~ 2MB - 11s 2
Standard 600MB 180min Fehler
Variante 2 600MB - Fehler

Tabelle 26: Laufzeiten fiir die Textihnlichkeitsmetrik

Beide Textidhnlichkeitsmetriken konnten fiir den groflen Textdatensatz kein Ergebnis berech-
nen. Die Spark Weboberflache gab den Zustand des Jobs als ,,gescheitert™ an. Eine Analyse
ergab, dass dies durch eine Exception verursacht wurde, die auf Speicherprobleme hindeutet.
Siehe hierzu auch Abschnitt 9.5.

9.5 Analyse

In diesem Abschnitt sollen die zuvor in 9.4 priasentierten Ergebnisse analysiert und diskutiert
werden.

Die Ergebnisse fiir die Validierungsfunktion kénnen Tabelle 25 entnommen werden. Die Va-
riante im Notebook benétige 18s. Die Implementierung in Spark lieferte das Ergebnis in Ss,
eine Verbesserung um Faktor 3,6. Eine mogliche Erklirung fiir das sehr gute Ergebnis ist, das
sich dieses Problem leicht verteilt bearbeiten ldsst. Der Datensatz enthélt tiber 1 Million Ein-
trige. Die Metrik muss filir jeden Wert priifen, ob dieser dem Format entspricht. Allerdings
kann dies unabhédngig von den anderen Werten geschehen. So kann das Problem leicht auf
mehrere Worker verteilt werden. Dieses Beispiel zeigt, dass die Verwendung von Spark bei
groflen Datensétzen zu einem deutlichen Gewinn an Performance fiithren kann. Zu beachten



ist, dass der Cluster in Standard-Konfiguration verwendet wurde. Auch an der Metrik selbst
wurden keine komplexen Optimierungen durchgefiihrt, etwa durch Anpassung diverser von
Spark angebotener Parameter. Es wire denkbar, dass noch deutlich bessere Laufzeiten erzielt
werden konnen, falls entsprechende Schritte unternommen werden.

Die Ergebnisse fiir die Textédhnlichkeitsmetrik werden in Tabelle 26 dargestellt. Die Ergebnis-
se fiir den kleinen Datensatz sind vielversprechend. Die Standardvariante bendtigt in Spark
23s und ist damit etwas schneller als die Standardimplementierung im Notebook mit 24s. Va-
riante 2 ist mit 11s deutlich schneller, und zwar um Faktor 2,1. Dies liegt daran, dass ein an-
derer Tokenizer verwendet wird. Siehe Abschnitt 2.5.1 im Grundlagenkapitel fiir eine kurze
Einflihrung zu Tokenizern. Dieser benotigt zur Instanziierung kein Modell aus einer externen
Ressource. Im Gegensatz dazu muss der Maximum Entropy Tokenizer (TokenizerME) ein
Modell aus einer Datei laden, bevor er verwendet werden kann. Diese Datei ist mehrere
Megabyte grof3. Durch die Verwendung eines anderen Tokenizers unterscheidet sich das Er-
gebnis der Metrik teilweise von der Standardimplementierung. Dadurch ist es moglich, dass
die Qualitét beeintrdchtigt wird. Aus diesem Grund wird diese Implementierung nur fiir Spark
zu Demonstrationszwecken verwendet. Es gibt keine vergleichbare Implementierung fiir das
Notebook. Beide Tokenizer stellen kein Serializable Interface zur Verfiigung. Dieses wird von
Spark aber benétigt, falls das Objekt nur ein mal instanziiert werden soll. Eine Spark Applika-
tion im Cluster-Modus wird verteilt auf mehreren Workern bearbeitet. Durch dieses Interface
kann das Objekt allen Workern zur Verfiigung gestellt werden. Eine Alternative ist es, eine
statische Funktion zu verwenden. Innerhalb dieser Funktion wird das Objekt instanziiert. So-
mit ist es moglich, auch Objekte ohne Implementierung des Serializable Interfaces zu verwen-
den. Allerdings wird das Objekt dann bei jedem Aufruf der Funktion neu erzeugt. Bei Objek-
ten, deren Instanziierung aufwendig sind, etwa beim TokenizerME, der eine externe Datei la-
den muss, fiihrt dies zu Performanzproblemen. Im Fall der Textdhnlichkeitsmetrik wird der
Tokenizer einmal pro Textdatensatz aufgerufen. In diesem Fall also insgesamt 7 mal. Es wur-
den fiir diese Evaluation beispielhaft 6 Trainingsséitze verwendet, hinzu kommen die Eingabe-
daten. Dadurch ist die Implementierung insgesamt trotzdem etwas schneller also die
Standardversion im Notebook. Variante 2 verwendet einen Tokenizer, der viel schneller in-
stanziiert werden kann. Dadurch ist die Laufzeit auch deutlich besser.

Dieses Problem ist auch der Grund, warum die Part-Of-speech Metrik nicht in Spark imple-
mentiert werden konnte. Siehe fiir diese Metrik Abschnitt 6.3.6. Hierzu wird ein Part-of-S-
peech Tagger bendtigt, der dhnlich wie der TokenizerME ein Modell aus einer externen Datei
1adt. Bei dieser Metrik miisste allerdings die Funktion fiir jede Zeile des Datensatzes aufgeru-
fen werden. Beim NHTSA Complaints Datensatz sind das mehr als 1,3 Millionen Zeilen. Die
Modelldatei fiir den Part-of-speech tagger miisste dann 1,3 Millionen mal geladen werden. In
diesem Fall wire eine solche Implementierung nicht sinnvoll.

Es stellt sich die Frage, ob es moglich wére, das Serializable Interface nachtraglich zu imple-
mentieren. Dabei wire auch zu priifen, mit welchem Aufwand dies verbunden wire. Zusétz-
lich muss geklért werden, wie sich das auf die Performance auswirken konnte. Die Spark Do-
kumentation zum Tuning [49] erwéhnt, dass die Serialisierung in Java oft langsam sein kann.

Fiir den kompletten Textdatensatz konnte die Textdhnlichkeitsmetrik in Spark kein Ergebnis
erzielen. Dies gilt auch fiir Variante 2. Der Job wurde durch Spark abgebrochen, und der Zu-
stand auf ,,gescheitert* gesetzt. In den Logs wird als Ursache die folgende Exception genannt:



java.lang.OutOfMemoryError: Java heap space

Offenbar gibt es Probleme mit dem Speicher. Die Dokumentation von Spark bietet eine Seite,
die Informationen zum Tuning enthélt [49]. Entsprechend dieser Dokumentation kénnen Java-
Objekte deutlich mehr Speicherplatz verbrauchen, als die reinen Werte, die sie reprisentieren.
Dies gilt insbesondere fiir Strings. Es wird empfohlen, Arrays anstelle der Java Collection
Classes zu verwenden. Zusétzlich sollen moglichst primitive Datentypen verwendet werden.
Die aus DKPro Similarity eingebundene Textdhnlichkeitsmetrik erwartet als Eingabe einer
Liste von Strings fiir jeden der beiden Texte, die miteinander verglichen werden sollen. Jedes
Element dieser Liste stellt einen Token dar. Ein Token ist dabei ein Wort oder eine kleine
Gruppe von Worten, die zusammengehoren. Bei einem groflen Text muss also eine Liste mit
sehr vielen Elementen verwaltet werden. Zusétzlich handelt es sich bei jedem dieser Elemente
um einen String. Jeder der Spark Worker verfiigt iiber 8 GB Arbeitsspeicher. Die Standard-
Variante des Notebooks wurde auf einem Rechner mit gleichen Ressourcen ausgefiihrt und
war in der Lage, ein Ergebnis zu berechnen. Allerdings dauerte dies fiir den gesamten Daten-
satz 3 Stunden. Offenbar erschweren Besonderheiten von Spark die Berechnung dieser Metrik
fiir grofle Datensétze.

Eine mogliche Losung des Problems konnte es sein, die Textédhnlickeitsmetrik neu zu imple-
mentieren. Dabei miisste statt einer Liste von Strings eine Darstellung gewéhlt werden, wel-
che die verteilte Ausfiihrung von Spark-Applikationen beriicksichtigt. Eine solche Implemen-
tierung tibersteigt jedoch bei weitem den Umfang der Arbeit.

9.6 Zusammenfassung

In diesem Kapitel wurden Experimente durchgefiihrt, mit der die Laufzeit ausgewiahlter Me-
triken ermittelt wurde. Dabei wurde verglichen, in wie weit sich die Laufzeit durch eine Ver-
wendung von Spark reduzieren ldsst. Fiir die Validierungsmetrik konnte bereits durch eine
einfache Implementation in Spark in ein deutlicher Performancegewinn erzielt werden. Die
Version im Notebook, die auf Python basiert, benétigte 18s, die Variante in Spark nur 5. Eine
Verbesserung um den Faktor 3,6.

Fiir die Textdhnlichkeit konnte fiir einen kleinen Beispieldatensatz eine leichte Verbesserung
erzielt werden. Hier ist die Standardimplementierung mit 24s etwas langsamer als die Varian-
te in Spark mit 23s. Um diese Metrik berechnen zu kdnnen, ist ein Tokenizer notig, ein Ma-
chine Learning Algorithmus der ein Modell aus einer externen Datei laden muss. Die verwen-
dete Bibliothek bietet filir diesen Tokenizer kein Serializeable Interface an. Dadurch muss er
in Spark fiir jeden Textdatensatz neu instanziiert werden. In diesem Experiment 7 mal. Eine
Alternative Implementierung verwendet einen Tokenizer, der deutlich einfacher instanziiert
werden kann. Diese Implementierung ist mit 11s deutlich schneller als die Standard-Vairante
in Spark. Da der Tokenizer ein anderes Ergebnis liefert, kann diese Implementierung aber
nicht direkt iibernommen werden. Es sollte gepriift werden, ob die Qualitidt den Anforderun-
gen gentigt. Dieses Beispiel zeigt aber, dass eine deutliche Performancesteigerung moglich
sein konnte. Hierzu muss das zuvor erwihnte Problem der Serialisierbarkeit gelost werden.
Dieses Problem betrifft auch viele weitere Objekte, etwa den Part-of-Speech tagger. Auch
dieser muss ein Modell aus einer externen Quelle laden. Kann das Objekt nicht serialisiert und



an die Worker geschickt werden, so muss es bei jedem Aufruf neu instanziiert werden, was zu
massiven Performance-Verlusten fiihrt. Als mogliche Alternative wire denkbar, diese Metri-
ken in Anlehnung an die Implementierungen in den jeweiligen Bibliotheken neu zu entwi-
ckeln. Dabei konnten die Besonderheiten von Spark beim Entwurf von Anfang an berticksich-
tigt werden. Eventuell wire es dadurch mdéglich, auch das Problem der Textdhnlichkeitsmetrik
mit sehr groBen Texten zu 16sen. Die Verwendung des vollen Textdatensatzes aus NHTSA
Complaints fiihrte bei beiden Varianten zu Fehlern wegen Speicherproblemen. Dies hingt
vermutlich mit der internen Implementierung der verwendeten Textdhnlichkeitsmetrik in DK-
Pro Similarity [2] zusammen. Diese verwendet Datentypen, Listen und Strings, die in Spark
zu Problemen fithren kénnen [49].



10 Fazit und Ausblick

In dieser Arbeit wurde ein Jupyter Notebook fiir das Data Wrangling entworfen und prototy-
pisch implementiert. In der Literatur wird eine Vielzahl von Problemen und moglichen Ansét-
zen im Kontext des Data Wranglings diskutiert. Einen Uberblick dariiber findet sich in Kapi-
tel 4. Darauf autbauend wird in Kapitel 5 das Konzept présentiert.

Das entwickelte Notebook erlaubt es, Daten zu inspizieren und zu transformieren. Verschie-
dene Datenqualititsmetriken ermdglichen es die Datenqualitit zu messen. Dies kann zusétz-
lich dazu beitragen, potentielle Datenqualititsprobleme zu diagnostizieren. Einige Metriken
wurden dabei speziell fiir das Notebook implementiert. Bereits existierende Metriken in den
Sprachen Python, Java und R wurden in das Notebook eingebunden. Siehe hierzu das Kapitel
6. Dies zeigt die groBBe Flexibilitit des Ansatzes.

Das Notebook wurde auf Datensdtze aus der Praxis angewendet. Diese sind der NHTSA
Complaints Datensatz und ein Datensatz aus der Produktion. Hierzu wird in Kapitel 8 zu-
nichst ein Uberblick iiber die Struktur und, soweit wie moglich, die Semantik der Daten gege-
ben. Dies geschieht durch die Anwendung des Notebooks auf die Datensitze. Dabei wird
auch die Datenqualitit analysiert. Hierzu wurden passende Metriken berechnet. Das Notebook
ist als flexibler Werkzeugkasten gedacht, der fiir verschiedene Aufgabenstellungen eingesetzt
werden kann. Nicht immer ist jede Metrik anwendbar. Beispielsweise enthielt nicht jede Ta-
belle der Industriedaten Textfelder. Eine Berechnung der Textdhnlichkeitsmetriken war des-
halb fiir diese Tabellen nicht notwendig. Verschiedene Beispiele zeigen mdgliche Datenquali-
tétsprobleme. Das Notebook erlaubt es, jederzeit, auch wihrend der Analyse neue Funktiona-
lititen zu integrieren. Beispielsweise erlaubt die Standardimplementierung die Analyse von
Textdaten, die einer Spalte entnommen wurden. Fiir die Industriedaten sollten aber aus zwei
Spalten ein Textdatensatz gebildet werden. Zusdtzlich mussten Duplikate entfernt werden,
weil diese Spalten gegebenenfalls die gleichen Werte enthielten. Diese Funktion konnte per
Skript implementiert und die Analyse durchgefiihrt werden. Siehe hierzu Abschnitt 8.2 fiir
eine weitergehende Beschreibung und fiir die Ergebnisse. Insgesamt zeigt die Anwendung auf
Datensétzen aus der Praxis, dass das Konzept des Notebooks vielversprechend ist. Die Flexi-
bilitdt des Ansatzes konnte bestitigt werden.

Wegen des begrenzten Umfangs konnten viele in der Literatur diskutierte Ansétze nicht be-
riicksichtigt werden. Beispielsweise wire es wiinschenswert, durchgefiihrte Transformationen
sofort riickgdngig machen zu konnen. Dies wird zum Beispiel in [17] diskutiert und imple-
mentiert. Ein weitergehender Aspekt, der nicht beriicksichtigt werden konnte, ist der Umgang
mit ,,dirty* Data. Siehe hierzu die Diskussion in 4.3. Fiir manche diagnostizierten Datenquali-
tatsprobleme gibt es keine Losung. Fehlende Werte etwa konnen darauf zuriickzufiihren sein,
das Teile der Daten fiir immer verloren sind. Beispiel hierfiir wire ein Feuer in einem Archiv.
Die Tatsache, das Daten fehlen, stellt ein Qualititsproblem dar. Eventuell ist es moglich,
Fehlinterpretationen entgegenzuwirken, wenn dem Konsumenten diese Tatsache auf passende
Weise kommuniziert wird. Zum Beispiel durch entsprechende Visualisierungen, die deutlich
machen, das Daten fehlen. Siehe hierzu die Diskussion in Abschnitt 4.3. Entsprechende Funk-
tionen in das Notebook zu integrieren kdnnte ein vielversprechender Ansatz sein.



Die Anwendung des Notebooks soll auch auf groBe Datensitze moglich sein. Dabei stellt sich
die Frage nach der Performance und der Skalierbarkeit der verwendeten Metriken. Hierzu
wurde exemplarisch gepriift, ob sich die Laufzeit der Metriken durch eine Implementierung
mit Spark verbessern ldsst.

Hierzu wurden die Metriken Validierung und Textdhnlichkeit ausgewaihlt. Die Validierungs-
metrik arbeitet auf strukturierten Daten. Die Textdhnlichkeitsmetrik ist ein Beispiel flir die
Qualitdtsmessung von unstrukturierten Daten. Die Ergebnisse fiir die Validierungsmetrik sind
sehr gut. Die Laufzeit konnte bereits durch eine einfache Implementierung in Spark um den
Faktor 3,6 verbessert werden. Dies liegt vermutlich daran, dass sich diese Problemstellung gut
in Spark abbilden l4sst.

Die Ergebnisse fiir die Textdhnlichkeitsmetrik sind vielversprechend. Die Textdahnlichkeits-
metrik war flir einen kleineren Datensatz mit 23s leicht schneller als die im Notebook verwen-
dete Version mit 24s. Eine abgewandelte Variante konnte ein Ergebnis in 11s berechnen. Al-
lerdings muss eine Reihe von Problemen geldst werden. Beispielsweise konnte die Metrik fiir
den kompletten Datensatz im Cluster-Modus nicht berechnet werden. Die Analyse deutet auf
Speicherprobleme hin. Die reguldre Version im Notebook war in der Lage, ein Ergebnis zu
berechnen. Die Ursache ist moglicherweise, dass die zur Berechnung der Textdhnlichkeit ge-
nutzte Bibliothek DKPro Similarity [2] auf Listen von Strings arbeitet. Laut der Dokumentati-
on von Spark ist dies ungiinstig [49]. Eine Mdgliche Losung konnte es sein, die Berechnung
der Textéhnlichkeit speziell fiir Spark neu zu implementieren. Siehe Kapitel 9.5 fiir eine de-
taillierte Analyse der Ergebnisse.

Insgesamt ist die Verwendung eines Jupyter Notebooks fiir Data Wrangling vielversprechend.
Der entwickelte Prototyp hat sich bei der Anwendung auf Datensitze aus der Praxis bewihrt.
Durch die Flexibilitdt des Ansatzes kdnnen Anpassungen und Erweiterungen leicht durchge-
fithrt werden.
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