Institut fiir Visualisierung und Interaktive Systeme

Universitdt Stuttgart
Universitatsstrafle 38
D-70569 Stuttgart

Graphics, Usability, and Visualization Lab

School of Computing Science
Simon Fraser University
Burnaby BC
Canada V5A 1S6

Diplomarbeit Nr. 2510

GPU-basierte
Vektorfeldvisualisierung
mittels 3D LIC
Martin Falk

Studiengang: Informatik
Priifer: Prof. Dr. Thomas Ertl
Betreuer: Prof. Dr. Daniel Weiskopf
begonnen am: 15. Juni 2006
beendet am: 15. Dezember 2006

CR-Klassifikation: 1.3.3, 1.3.7






Inhaltsverzeichnis

1 Einleitung
1.1 Motivation . . . .. . ..
1.2 Aufgabenstellung . . . . ... ... ... ... ... o

2 Volumenvisualisierung

21 Isoflachen . . . . . . . . e
2.2 Schnittebene . . . . . ..
2.3 DVR-Direct Volume Rendering . . . . ... .....................
231 Slicing . . ... ...
232 Ray-Casting . . . ... ... .. ... . ... .
2.3.3 Beschleunigung der GPU-Verfahren . . . . . ... ..............
3 LIC - Line Integral Convolution
3.1 2DLIC . . . . e
32 3DLIC . ...
33 GPU-basierter BDLIC . . . . . . . . . .
34 BeleuchtungvonLinien . ... ... ... .......................
34.1 Stromliniennach Zockler . . . ... ... ... ... .. ... ........
34.2 StromliniennachMallo . ... ... ... ... ... ............
3.4.3 Beleuchtung des LIC anhand von Gradienten . ... ... .........
3.4.4 Wahl der Transferfunktion. . . . . .. ... ... ... ... .........
35 Features . . . . . . . ..
3.5.1 ErkennungvonWirbeln . . .. ... ... ... .. .. o 00 L
4 Modellierung des Rauschens
4.1 WeiflesRauschen . . . . . . ... .. .. . e
42 DinnesRauschen . . . . . . .. ...
43 Filterung . . . . ... . e
44 Konstante Raumfrequenz . . ... ... ... ... ... .. ... . L.

11
12
14
14
15
16
17
19
20
20
22



Inhaltsverzeichnis

5 GPU-basierter 3D LIC

51 Berechnungdes3DLIC . ... ...............

51.1 LIC—BereChnung im Fragmentprogramm

512 Ray-Casting . . ....................
5.1.3 Ray-Casting mit Depth-Peeling . . . . . . ... ..
514 Slicing . ... ..... .. .. ... ... .. . ...
52 Beleuchtung . ... ... ..... .. ... .. .......
53 Features ... .... ... ...
5.4 Visualisierung zeitabhdngiger Datensdtze . . . . . . . ..

6 Leistungsbetrachtung

6.1 Einfluss der Viewportgrofse . . . ... ... ... ... ..
6.2 Optimierungen . ... ... .................
6.3 Abhingigkeit von der Kameraposition . . . . .. ... ..
6.4 Beleuchtungsmodelle . . . . . ... .............
6.5 Samplingdistanz . ... ... ... ... ... .. ... ..
6.6 Anzahl der LIC-Schritte pro Abtastpunkt . . . . ... ..

6.7 Anzahl der Abtastungen pro Depth-Peel-Schicht

7 Qualitative Ergebnisse

7.1 Visuelle Auswertung . .. ... ... ... .........

72 Beispiele . ... ... ... .. o

8 Zusammenfassung und Ausblick

Literaturverzeichnis

II



Abbildungsverzeichnis

2.1 Object-Aligned Slicing . . . . . . .. ... ... . L 5
22 View-Aligned Slicing . . . . . ... ... ... .. L o 6
23 Ray-Casting . . . ... ... ... ... .. 7
3.1 VergleichLICund SpotNoise . . . .. ... ... ... ... .. ....... 13
3.2 VolumeLICohneundmitHalo . ... ... ...................... 14
3.3 Beleuchtungstextur von Zoéckler . . . . . . ... ... ... .. ... ... ... 16
3.4 Diffuse Beleuchtung eines Zylinders . . . . . ... ... ............... 17
3.5 BeleuchtungstexturenvonMallo . . .. ... ....... ... .. .. .. ... .. 18
3.6 Velocity-Masking . . . ... .. ... ... 21
3.7 Clipping des Vektorfelds . . . . . ..... ... .. .. ... .. ....... 21
4.1 LIC bei verschiedenen Raumfrequenzen der Rauschtextur . . .. ... ... ... 23
42 WeilesRauschen . . ... ... ... ... ... .. .. .. .. 24
4.3 Gleichverteilung von diinnem Rauschen . . . . . ... ... .. .......... 25
4.4 Filterung mit einem Tiefpassfilter . . . . . .. ... .. ... .. .. ... ... ... 28
45 Konstante Raumfrequenz des Rauschens im Bildraum . . . . . .. ... ... ... 29
5.1 Architektur zur Berechnung des 3D LIC aufderGPU . . . . . ... ... ... .. 31
5.2 Schema des Fragmentprogramms fiir 3D LIC mittels Ray-Casting . . . . .. . .. 33
5.3 Ablauf des Ray-Castings mit Depth-Peeling . . . . .. ... ............. 34
54 AblaufdesSlicings . . . .. ... ... ... 35
5.5 Empty-Space-Leaping durch Ray-Casting mit Depth-Peeling . . . . . .. ... .. 38
6.1 Testszenario: Viewportgrofie . . . . . . ... ... Lo L oo 42
6.2 Diagramm: Einfluss Viewportgrofle . . .. ... .. ... .. ... .. ....... 43
6.3 Testszenario: Framebufferobjekt und Early-Z-Test . . . ... ... ... ...... 43
6.4 Diagramm: FBO und Early-Z-Test, ohne Optimierungen . . ... ... ... ... 45
6.5 Diagramm: FBO und Early-Z-Test, vorzeitiger Strahlabbruch . . . . . .. ... .. 45
6.6 Diagramm: FBO und Early-Z-Test, mit Optimierungen . . .. ... ... ... .. 45
6.7 Diagramm: FBO und Early-Z-Test, Vergleich . . . ... ... ... ......... 46
6.8 Testszenario: Abhdngigkeit von der Kameraposition . . . . . ... ... ... ... 46
6.9 Diagramm: Abhdngigkeit von der Kameraposition . . . . . . ... ... ... ... 46
6.10 Testszenario und Diagramm: Beleuchtungsmodelle . . . ... ... ... ... .. 47
6.11 Testszenario und Diagramm: Abstand der Samplingpositionen . . ... ... .. 48

I



Abbildungsverzeichnis

6.12 Testszenario und Diagramm: LIC-Schritte . . . . . ... ........ ... .... 49
6.13 Testszenario und Diagramm: Abtastungen pro Depth-Peel-Schicht . . . ... .. 50
7.1 Vergleich zwischen hoch und niedrig aufgeloster Visualisierung . . . . . . . ... 52
7.2 Maximales Instruktionslimit im Fragmentprogramm . ... ... ... ... ... 53
7.3 Skalierung der Raumfrequenz des Rauschens . . . . . .. ... ..... ... ... 53
74 FEinflussdesRauschens . . . . . . .. ... ... Lo 54
7.5 Normalen der Beleuchtungsmodelle . . . . . ... ............. .. ... 55
7.6 Vergleich der Beleuchtungsmodelle . . . . . . ... ............. .. ... 55
7.7 Hervorhebung mittels Transferfunktion . . . . ... ... ... ... ..... ... 56
7.8 Verbesserung der Tiefenwahrnehmung durch die Transferfunktion . . ... ... 56
7.9 Benard-Stromung von Daniel Weiskopf . . . . ... ... .. ... .. .. .... 57
7.10 Datensatz des IEEE Visualization 2004 Contest . . . . . .. ... ... ... .... 58
7.11 Tornado von Roger Crawfis . . . ... .. ... ... ... .. .. .......... 59
7.12 Large-Eddy-Simulation von Octavian Frederich . . .. ... ... ... ... ... 60
713 Datensatz 6603-small . . . . . .. ... .o 61

v



1 Einleitung

1.1 Motivation

Die Stromungsvisualisierung ist ein grofses Teilgebiet der Visualisierung. In diesem Gebiet
miissen oft Vektorfelder aus Messungen oder Simulationen dargestellt werden. Handelt es
sich dabei um zweidimensionale Daten, wird oft die Line Integral Convolution, kurz LIC,
dazu verwendet. Die Line Integral Convolution gehort zu den globalen Techniken der Vektor-
feldvisualisierung.

Es existieren bereits einige Ansédtze, die die Berechnung des LIC auch auf dreidimensionalen
Daten durchfithren konnen. Durch den Wechsel der Dimension ergeben sich jedoch Probleme.
Zum einen steigt die Berechnungskomplexitdt an, zum anderen erhoht sich die visuelle Kom-
plexitit und auch die Verdeckung nimmt zu. Da der LIC lokal berechnet werden kann, wiirde
sich fiir die Berechnung die GPU aufgrund ihrer SIMD-Architektur anbieten.

Zur Verringerung der visuellen Komplexitit konnen verschiedene Anséitze verfolgt werden.
So konnen bei Vektorfeldern Bereiche mit einer bestimmten Geschwindigkeit ausgeblendet
werden. Ebenso kann ein Beleuchtungsmodell fiir die Schattierung des LIC eingesetzt werden.

In dieser Arbeit wird die erste GPU-basierte Implementierung eines volumetrischen LIC vor-
gestellt. Die Berechnung erfolgt dabei vollstindig auf der Grafikkarte. Es werden dazu Ray-
Casting als bildraumbasiertes Verfahren und Slicing als ein Objektraumverfahren eingesetzt.
Fiir beide Techniken werden verschiedene Beschleunigungsverfahren vorgestellt um die Be-
rechnungskomplexitdt weiter zu senken.

Die visuelle Komplexitét soll durch die Beleuchtung des LIC verringert werden. Da es sich
bei Ergebnis des LIC jedoch um Linien handelt miissen spezielle Verfahren eingesetzt werden.
Dariiber hinaus soll ein neuer Ansatz zur Beleuchtung von Linien, die sich aus der Berechnung
des LIC ergeben, vorgestellt werden.



Kapitel 1 Einleitung 1.2 Aufgabenstellung

1.2 Aufgabenstellung

Die Visualisierung von 3D Vektorfeldern spielt eine wichtige Rolle fiir die Darstellung von
Simulationsergebnissen aus CFD-Berechnungen (Computational Fluid Dynamics). Ein fiir 2D
Stromungen beliebter Ansatz ist die LIC-Technik (LIC = Line Integral Convolution). Im 3D
Fall ist LIC-Technik jedoch mit sehr hohen Rechenkosten verbunden. Deshalb sollte in dieser
Arbeit eine effiziente Realisierung von 3D LIC mittels GPUs entwickelt werden. Die Darstel-
lung der LIC-Berechnungen sollte durch GPU-Ray-Casting erfolgen. Ziele der Arbeit waren
im Einzelnen:

Implementierung der 3D LIC-Berechnung in einem Fragment-Programm

Darstellung der LIC-Berechnung durch GPU-Ray-Casting

Beschleunigung des Ray-Casting durch Standardmethoden (z.B. Early-Ray-Termination)
Anti-Aliasing und Multi-Resolution-Methoden fiir die Modellierung der injizierten
Rauschtexturen

e Anpassung der Granularitdat und Opazitdt der Volumendarstellung, um eine gute Wahr-
nehmung der Tiefenstrukturen zu erreichen (z.B. durch Anpassung der Dichte der
Rauschtexturen und durch Wahl angemessener Transferfunktionen)

Die Implementierung sollte in C/C++, OpenGL und ARB-Shadern erfolgen. Fiir das GPU-
Ray-Casting sollte auf der existierenden Implementierung von Stegmaier et al. [54] aufgebaut
werden.



2 Volumenvisualisierung

Die Volumenvisualisierung wird vorrangig im Bereich der medizinischen Visualisierung an-
gewandt, wenn es darum geht, Daten aus einem Computertomographen (CT) oder einem Ma-
gnetresonanztomographen (MRT) darzustellen [55]. Sie wird aber auch bei der Visualisierung
von Daten aus den Bereichen der CFD (Computational Fluid Dynamics), der Seismik und der
Geologie verwendet. Die Arbeit von Kajiya und von Herzen [22] bildet dabei die Grundlage
fiir die Darstellung von Volumendaten.

Ist nur eine zweidimensionale Visualisierung der Daten erforderlich, kénnen Ebenen einge-
setzt werden, die das Volumen schneiden. Fiir die dreimdimensionale Darstellung muss zwi-
schen den Techniken der direkten und der indirekten Volumenvisualisierung unterschieden
werden. Bei der indirekten Volumendarstellung wird in einem Vorbereitungsschritt eine Zwi-
schenreprésentation erstellt, die anschlieflend mit klassischen Techniken dargestellt werden
kann. Dadurch ist es moglich, Isoflachen aus dem Volumen zu extrahieren und mittels Geo-
metrie zu rendern. Dagegen wird bei der direkten Volumenvisualisierung, kurz DVR (Direct
Volume Rendering), das Volumen ohne Zwischenrepriasentation gerendert. Zu den Techni-
ken des DVR zdhlen das Ray-Casting, das Slicing, das Splatting [65] und die Shear-Warp-
Faktorisierung [31]. Beim Ray-Casting werden Strahlen von der Kamera aus durch das Vo-
lumen gesendet. Durch regelméfiiges Abtasten entlang des Strahls kann so das Volumeninte-
gral gelost werden. Ray-Casting ist ein Bildraumverfahren, bei dem fiir jedes Pixel ein Strahl
berechnet werden muss. Dagegen wird beim Slicing das Volumen von mehreren Ebenen ge-
schnitten, die texturiert werden und anschliefSend das Ergebnis mittels Compositing berech-
net. Splatting ist, ebenso wie das Slicing und die Shear-Warp-Faktorisierung, ein Verfahren,
das im Objektraum berechnet wird. Beim Splatting werden alle Voxel auf die Bildebene proji-
ziert. Dabei wird jedes Voxel als Scheibe, deren Dichte zum Rand abfillt, gerendert. Die Shear-
Warp-Faktorisierung verwendet im ersten Schritt eine Scherung des Volumens (Shear), um
eine konstante Samplingdistanz beizubehalten. Im zweiten Schritt wird das Ergebnis auf die
Bildebene projiziert (Warp). Sowohl das Splatting als auch die Shear-Warp-Faktorisierung sind
bei der Darstellung von Volumen sehr schnell. Dies hat zur Folge, dass die Ergebnisse qualita-
tiv nicht so hochwertig wie beim Ray-Casting oder Slicing sind.

Einige der im folgenden nédher vorgestellten Techniken werden in leicht abgewandelter Form
auch fiir die Visualisierung von Vektorfeldern verwendet. In dieser Arbeit werden das Ray-
Casting und das Slicing, einschlieslich deren Beschleunigungen zur Berechnung des LIC ein-
gesetzt.

2.1 Isoflachen

Die Visualisierung von Volumen anhand von Isofldchen zéhlt zur indirekten Volumendarstel-
lung, da zuerst die Isofldchen aus dem Volumen extrahiert und diese anschlieffend gerendert
werden. Eine zum Isowert ¢ zugehdrige Isofliche wird aus der Menge von Punkten, die gleich
c sind, gebildet. Die Bestimmung und Berechnung erfolgt auf verschiedene Arten.



Kapitel 2 Volumenvisualisierung 2.2 Schnittebene

So wird beim Verfolgen von Konturen (Contour Tracing) das Volumen durch mehrere parallele
Ebenen unterteilt. Innerhalb jeder Ebene wird nun versucht, eine geschlossene Konturlinie mit
dem Isowert ¢ zu finden. Danach werden die Konturlinien von zwei benachbarten Ebenen mit
einem Streifen aus Dreiecken verbunden. In einem Zwischenschritt konnen die Konturlinien
klassifiziert werden. Dies ermoglicht die Zuordnung der Linien {iber die Ebenen hinweg an-
hand der Klassifikation. Die so entstandenen Dreiecke bilden die Isofliche zu c. Von Nachteil
ist, dass eine hohe Varianz zwischen den Ebenen das Finden von Konturen erheblich erschwe-
ren kann und innerhalb einer Ebenen keine Geometrie erzeugt wird.

Zur Bestimmung von Isoflichen kann auch der Cuberille-Ansatz von Herman und Liu [18]
verwendet werden. Dabei wird der Datensatz in ein uniformes Gitter aufgeteilt. Die Werte der
Gitterpunkte werden mit dem Isowert verglichen und die Punkte entsprechend positiv oder
negativ markiert. Danach werden die Flachen der Gitterzellen gerendert, deren Normale aus
der Zelle und in Richtung Kamera zeigt. Da innerhalb der Zellen nicht interpoliert wird, ist die
so berechnete Isofliche sehr blockartig. Um diese Artefakte zu verringern, kann eine adaptive
Unterteilung der Wiirfel eingesetzt werden. Dies fiihrt zu dem Ansatz der Dividing Cubes von
Cline et al. [6].

Der Marching-Cube-Algorithmus von Lorensen und Cline [37] ist wohl das bekannteste Ver-
fahren zur Extraktion von Isoflichen. Das Volumen wird dabei ebenfalls in ein uniformes Git-
ter unterteilt. Da in diesem Algorithmus jeweils nur eine Zelle des Gitters betrachtet und an-
schlieflend zur nichsten {ibergegangen wird und die Zellen einem Wiirfel gleichen, bekam
er den Namen Marching-Cube (marschierender Wiirfel). Die Eckpunkte des Wiirfels werden
wie beim Cuberille-Ansatz [18] entsprechend dem Isowert markiert. Diese Markierung erfolgt
in einer Bitmaske, mit welcher anschlieffend in einer Lookuptabelle nachgeschlagen werden
kann. Diese Lookuptabelle enthilt alle moglichen Kombination von Isofldchen, die sich durch
trilineare Interpolation innerhalb eines Wiirfels ergeben kénnen. Zusammen mit den Schnitt-
punkten, die entlang der Wiirfelkanten durch lineare Interpolation berechnet werden, ergibt
sich so eine effiziente Triangulierung der Isofldche.

Durch die heutige Funktionalitdt der Grafikhardware ergeben sich aber auch neue Moglich-
keiten zur Berechnung der Isoflichen. So lassen sich beispielsweise Isoflichen direkt mittels
Ray-Casting aus dem Volumendatensatz extrahieren. Stegmaier et al. [54] fithren dazu die Su-
che nach dem Isowert wihrend des Ray-Castings im Fragmentprogramm durch. Jedoch kon-
nen diese Isofldchen nur direkt visualisiert werden, da es sich um Fragmente, nicht aber um
Geometrie im eigentlichen Sinne handelt.

2.2 Schnittebene

Ist nur eine zweidimensionale Darstellung des Volumens erwiinscht, kann dies mit Hilfe von
Ebenen realisiert werden. Diese Technik ist auch unter dem Namen Multiplanar Reformatting
(MPR) bekannt [17, 46, 29, 40, 55]. Das Volumen wird dabei mit der Ebene geschnitten. Erfolgt
das Schneiden orthogonal zu den Hauptachsen x, y oder z, kann die Ebene durch Resampling
mit bilinearer Interpolation aufgefiillt werden. Bei beliebigen Ebenen muss dagegen trilinea-
re Filterung verwendet werden. Das Resampling kann durch die CPU oder auch durch die
Grafikhardware erfolgen.



Kapitel 2 Volumenvisualisierung 2.3 DVR - Direct Volume Rendering

Abbildung 2.1: Slicing mit an den Hauptachsen des Volumens ausgerichteten Ebenen (Object-
Aligned). Links die Anordnung der Ebenen, in der Mitte und rechts die Positionen
der Abtastpunkte bei verschiedenen Kamerapositionen.

2.3 DVR - Direct Volume Rendering

Bei der direkten Volumenvisualisierung wird nicht wie bei der indirekten zuerst eine Zwi-
schenreprasentation erzeugt, sondern das Volumen als Ganzes direkt visualisiert. Dabei kon-
nen die Techniken in Objektraum- und Bildraumverfahren eingeteilt werden. Slicing wird den
Objektraumverfahren zugeordnet, da der Datensatz dabei im Objektraum traversiert wird.
Bildraumverfahren, zu denen auch das Ray-Casting gehort, arbeiten auf Pixelebene.

2.3.1 Slicing

Slicing gehort zu den texturbasierten Visualisierungstechniken [47, 10, 67]. Da die Grafikhard-
ware bislang keine volumetrischen Primitive unterstiitzt, wird eine Proxygeometrie erzeugt.
Diese Proxygeometrie besteht aus einer Menge von Primitiven, die das Volumen représentie-
ren. Meist wird dazu das Volumen mit mehreren Ebenen geschnitten. Diese Ebenen werden
mit Daten des Volumendatensatzes texturiert und anschliefsend gerendert.

Der Ablauf dieser Technik ldsst sich in drei grobe Schritte unterteilen. Zuerst wird die Proxy-
geometrie erzeugt und anschliefsend rasterisiert. Nach der Rasterisierung erfolgt die Texturie-
rung durch 2D- oder 3D-Texturen abhidngig von der verwendeten Proxygeometrie. Im letzten
Schritt miissen die texturierten Ebenen zusammengefiigt werden. Dies geschieht durch das
Compositing. Werden die Ebenen der Reihe nach von hinten nach vorne gerendert, kann das
Back-To-Front-Compositing, auch als Over-Operator [43] bekannt, eingesetzt werden. Die Far-
be C! fiir die i. Ebene, i € {0,...,n — 1}, lasst sich mit

Cl = (1 - &) Clyy + G @D

berechnen, wobei C), mit null initialisiert wird und C; und «; den Farbwert beziehungsweise
die Opazitdt der Ebene i beschreiben. Mit dieser Traversierung der Ebenen ist es aber nicht
moglich, den vorzeitigen Strahlabbruch zur Beschleunigung zu implementieren (siehe Ab-
schnitt 2.3.3). Findet das Zeichnen der Proxygeometrie von vorne noch hinten statt, wird die
Gleichung fiir Front-To-Back-Compositing verwendet.



Kapitel 2 Volumenvisualisierung 2.3 DVR - Direct Volume Rendering

Abbildung 2.2: Slicing mit Ebenen, deren Normale gleich der Blickrichtung ist (View-Aligned).
Links die Anordnung der Ebenen, rechts die Positionen der Abtastpunkte.

Mitiaus {1,...,n}, Cjy = 0 und aj = 0 ergibt sich
Cz/ = 1{_1 + (1 — 06;_1) DCiCi (22)
wp=o; 1+ (1—aj_q) e (2.3)

Zu beachten ist, dass bei dieser Art des Compositing der berechnete Opazitdtswert explizit im
Framebuffer gespeichert werden muss.

Die Erzeugung der Proxygeometrie kann auf mehrere Arten erfolgen. Die einfachste Mog-
lichkeit bietet die Ausrichtung der Ebenen entlang der Hauptachsen des Volumens (Object-
Aligned Slicing). Dazu werden getrennt fiir jede Achse 2D-Texturen angelegt, die zur Textu-
rierung der Proxygeometrie verwendet werden (Abbildung 2.1 links). Die Anzahl der Ebe-
nen ist auf die Auflosung des Volumendatensatzes in der jeweiligen Dimension beschrankt.
Fiir die Darstellung werden die Ebenen und Texturen der Hauptachse verwendet, die der
Blickrichtung der Kamera am néichsten sind. Da 2D-Texturen verwendet werden, kann bei
der Rasterisierung der Proxygeometrie nur bilineare Filterung eingesetzt werden. Jedoch ladsst
sich diese Technik auch auf dlterer Grafikhardware ohne Unterstiitzung fiir 3D-Texturen rea-
lisieren. Durch die Ausrichtung entlang der Achsen ergeben sich aber Probleme: so wird das
Dreifache des Speicherbedarfs des Volumens fiir die Texturen der drei Achsen benétigt. Hinzu
kommt, dass der Abstand der Abtastpunkte nicht konstant ist, wenn sich die Kameraposi-
tion verdndert. Wird die Kamera so verdndert, dass eine andere Achsenrichtung als bisher
angezeigt werden muss, kommt es zu Helligkeitsschwankungen, da sich die Positionen der
Abtastpunkte verdndern (Abbildung 2.1 Mitte und rechts).

Werden 3D-Texturen von der Grafikhardware bereitgestellt, 1dsst sich die Proxygeometrie auch
direkt an der Blickrichtung der Kamera ausrichten (View-Aligned Slicing). Zur Bestimmung
der Texturkoordinaten miissen die Ebenen mit der Boundingbox des Volumens geschnitten
werden. Das Volumen wird als 3D-Textur gespeichert und diese mit trilinearer Filterung fiir
jede Ebene abgetastet. Da wegen der trilinearen Filterung acht anstelle von vier Texturnach-
schldgen durchgefiihrt werden miissen und auf 3D-Texturen nicht so effizient zugegriffen wer-
den kann wie auf 2D-Texturen, steigt die Renderzeit an. Jedoch lasst sich die Samplingdichte
einfach erhohen, indem mehr Ebenen verwendet werden. In Abbildung 2.2 sind die Ausrich-
tung der Ebenen zur Kamera und die entsprechenden Abtastpunkte dargestellt. Durch Ver-
wendung der Preintegration kann die Qualitdt des Slicings weiter verbessert werden [48].



Kapitel 2 Volumenvisualisierung 2.3 DVR - Direct Volume Rendering

:

/
o

/
/
/

N
W

Abbildung 2.3: Strahlenverlauf und Position der Abtastpunkte beim Ray-Casting. Links liegt die
Startposition im Auge, rechts auf der Oberfliche des Volumens

2.3.2 Ray-Casting

Ray-Casting besitzt grole Ahnlichkeit mit Ray-Tracing, jedoch werden nur die Primarstrahlen
betrachtet und die Sekundérstrahlen vernachlassigt. Bei beiden Verfahren, werden vom Auge
beziehungsweise der Kamera aus Strahlen durch jedes Pixel der Bildebene geschickt. Fiir jeden
Strahl wird tiberpriift, ob ein Objekt vom Strahl getroffen wird. Da im Volumen keine explizite
Geometrie gegeben ist, kann keine Schnittberechnung mit den Strahlen durchgefiihrt werden.
Stattdessen werden die Strahlen mit konstantem Abstand innerhalb des Volumens abgetastet
[34, 7]. Als Startposition kann fiir die Strahlen die Augposition oder ein Punkt auf der Volu-
menoberfliche verwendet werden. Dadurch kdnnen sich aber unterschiedliche Positionen der
Abtastpunkte ergeben, wie in Abbildung 2.3 zu sehen ist.

Da beim Ray-Casting die Berechnung fiir jeden Strahl unabhéngig von den anderen erfolgt,
eignet sich dieses Verfahren fiir die parallele SIMD-Architektur heutiger Grafikkarten. Purcell
et al. stellten dazu im Jahr 2002 ein Konzept fiir Ray-Tracing auf der GPU vor [44]. Ein Jahr
darauf stellten Kriiger und Westerman [30] und Réttger et al. [47] jeweils einen Algorithmus
fir GPU-basiertes Ray-Casting zur Volumenvisualisierung vor.

Fiir die Durchfithrung des Ray-Casting auf der GPU wird der Volumendatensatz in einer 3D-
Textur gespeichert. Zur Bestimmung der Anfangspositionen wird nur die Boundingbox des
Volumens mit angepassten Texturkoordinaten gerendert. Durch die Interpolation wéahrend der
Rasterisierung ergibt sich so fiir jedes Fragment ein Startpunkt. Zusammen mit der Kamerapo-
sition kann nun die Strahlrichtung bestimmt werden. Anschlieflend wird das Volumen entlang
jeden Strahls traversiert. Texturzugriffe auf den Datensatz erfolgen dabei mit trilinearer Filte-
rung. Die einzelnen Samples werden mittels Front-To-Back-Compositing (Gleichungen (2.2)
und (2.3)) geblendet.

Da 2003 die maximale Anzahl der Instruktionen pro Fragmentprogramm sehr gering war, wa-
ren Kriiger und Rottger gezwungen, die Traversierung des Volumens in mehrere Teilschritte
zu zerlegen. Erst seit der Einfithrung von Schleifen und Verzweigungen mit Shader Model 3.0
und einer grofleren maximalen Anzahl an Instruktionen [50] ist es moglich, das Ray-Casting
in nur einem Renderpass durchzufiihren [28, 54]. Stegmaier et al. fithren dazu die Strahlinte-
gration im Inneren von zwei ineinander geschachtelten Schleifen durch [54].



Kapitel 2 Volumenvisualisierung 2.3 DVR - Direct Volume Rendering

2.3.3 Beschleunigung der GPU-Verfahren

Die Volumenvisualisierung auf der GPU lésst sich durch angepasste Beschleunigungsverfah-
ren aus der direkten Volumenvisualisierung ebenfalls beschleunigen [30]. So kann zum Bei-
spiel wertvolle Zeit eingespart werden, wenn grofie Bereiche des Volumens leer sind. Die-
se Technik ist unter dem Namen Empty Space Leaping, dem Uberspringen von leerem Raum,
bekannt [64, 47, 36, 32, 28]. Westermann und Sevenich [64] verwenden dazu in Threr GPU-
Implementierung einen zuséitzlichen Renderpass, der das Volumen traversiert und dabei die
Position bestimmt, an der zum ersten Mal ein Datenwert ungleich null ist. Diese so gefunde-
nen Positionen werden beim nachfolgenden Ray-Casting als Startpositionen verwendet. Um
weitere Zeit zu sparen kann auch die Berechnung des Volumenintegrals abgebrochen wer-
den. Dieser vorzeitige Strahlabbruch (Early Ray Termination) tritt ein, wenn die Opazitit einen
bestimmten Schwellwert iiberschritten hat oder keine nennenswerten Beitrdge mehr zu er-
warten sind [1, 34, 7]. Das Volumen muss dazu von vorne nach hinten traversiert werden. Auf
der GPU lasst sich dieser Strahlabbruch auch einsetzen, wenn Fragmentprogramme verwen-
det werden koénnen. Dabei wird im Shader die Abbruchbedingung tiberpriift und die weitere
Berechnung gegebenenfalls abgebrochen [47, 54].

Auf heutiger Grafikhardware bietet sich zusitzlich zu den eben angefiihrten Techniken eine
weitere Moglichkeit zur Beschleunigung an, den Early-Z-Test [67]. Dabei handelt es sich um
einen Test, der hardwareseitig in die Renderingpipeline integriert ist. Der Name des Early-Z-
Tests riithrt daher, dass ein zusétzlicher Tiefentest direkt nach der Rasterisierung durchgefiihrt
wird, bevor fiir das Fragment das Fragmentprogramm und die nachfolgenden Tests durchge-
fithrt werden. Ist dieser Tiefentest erfolgreich, wird das Fragment weiter in der Renderingpipe-
line verarbeitet, ansonsten verworfen. Voraussetzung fiir das Funktionieren des Early-Z-Test
ist, dass weder das nachfolgende Fragmentprogramm den Tiefenwert des Fragments veran-
dert noch Zustdnde von OpenGL, die den Tiefenpuffer betreffen, beeinflusst werden. Um von
diesem Test zu profitieren, wird in einem zusétzlichen Renderpass der Tiefenpuffer mit einem
weiteren Fragmentprogramm so prapariert, dass nicht zu berechnende Fragmente blockiert
werden. Wird fiir die Vergleichsfunktion des Tiefentests der Vergleich auf kleiner, GL_LESS in
OpenGL, gesetzt, werden mit einem Tiefenwert gleich null weitere Fragmente an dieser Posi-
tion verworfen. Dagegen werden bei einem Wert gleich eins die Fragmente der nachfolgenden
Fragmentprogramme wie gewohnlich verarbeitet. Nach dem Vorbereiten des Tiefenpuffers
wird das Schreiben des Puffers ab- und der Tiefentest angeschaltet. Anschlieffend kann mit
der darzustellenden Geometrie wie bisher verfahren werden.

Es muss jedoch davon ausgegangen werden, dass die Beschleunigung durch den Early-Z-Test
nicht so ist wie durch das Auslassen von Geometrie vor der Rasterisierung. Da die Grafikhard-
ware den Viewport in mehrere Blocke unterteilt, sollten diese moglichst homogen aufgebaut
sein. So geniigt beispielsweise die Berechnung eines Fragments des Blocks, wahrend die ver-
bleibenden Fragmente vom Early-Z-Test verworfen werden, um die Beschleunigung dieser
Uberpriifung zunichte zu machen. Allerdings ergeben sich durch den Early-Z-Test auch neue
Moglichkeiten. Beim Slicing kann, vorausgesetzt die Proxygeometrie wird von vorn nach hin-
ten gerendert, mit diesem zusitzlichen Test die Erkennung von leeren Voxeln und auch der
vorzeitige Strahlabbruch durchgefiihrt werden. Dazu wird in dem Fragmentprogramm, das
den Tiefenpuffer prapariert, gepriift, ob die Opazitit des Zwischenergebnisses hoch genug
oder das nichste Voxel leer ist. Bei einfachen Fragmentprogrammen, wie beispielsweise bei



Kapitel 2 Volumenvisualisierung 2.3 DVR - Direct Volume Rendering

der reinen Volumenvisualisierung, kann dieser Ansatz aber zur Verschlechterung der Render-
zeit fithren, da pro Ebene das Fragmentprogramm zweimal gewechselt werden muss. Ist die
Berechnung pro Abtastpunkt aber komplexer, kann sich die Renderzeit insgesamt verkiirzen.






3 LIC - Line Integral Convolution

Die Line Integral Convolution, kurz LIC, ist eine von vielen Techniken zur Visualisierung von
Vektorfeldern. Der Schwerpunkt der Vektorfeldvisualisierung liegt im Bereich der Stromungs-
simulation. Diese Art der Visualisierung ist unter dem Begriff Flow Visualization bekannt. Dabei
handelt es sich um die Darstellung der Bewegung von Fliissigkeiten und Gasen. Aber auch bei
der Reprasentation von elektrischen oder magnetischen Feldern findet die Vektorfeldvisuali-
sierung Anwendung.

Die zu visualisierenden Daten stammen aus Simulationen, physikalischen Messungen oder
aus analytischen Modellen. Fiir die Simulation von Stromungen werden Methoden aus dem
Bereich der numerischen Stromungsmechanik, kurz CFD (Computational Fluid Dynamics), ver-
wendet. Meist wird dabei versucht, die Navier-Stokes-Gleichungen zu 16sen. Die Klassifizie-
rung der Daten erfolgt anhand der verwendeten Dimensionen, der Unterscheidung zwischen
stationdrer oder instationdrer Stromung, dem verwendeten Gittertyp (kartesisch, regulér, cur-
vilinear, unstrukturiert) und ob das Medium kompressibel ist.

Ein Vektorfeld ist durch Geschwindigkeit und Richtung v(x) definiert. Dabei entspricht x einer
Gitterposition der Abtastpunkte des Datensatzes. Handelt es sich um eine nicht stationdre
Stromung, ist die Geschwindigkeit v(x, t) auch abhédngig von der Zeit t. Zusatzlich kann das
Vektorfeld weitere externe Grofien wie beispielsweise den Druck p, die Temperatur T, die
Dichte p und auch die Wirbelstédrke (Vorticity) Vxv enthalten.

Zur direkten Visualisierung von Vektorfeldern kénnen Pfeile und Bildzeichen (Glyphen) [57]
verwendet werden. Diese werden zur Darstellung von lokalen Merkmalen eingesetzt. So kann
mit Pfeilen die Richtung der Stromung reprasentiert werden. Die Geschwindigkeit ldsst sich
beispielsweise durch die Lange des Pfeils oder durch eine Farbkodierung darstellen. Durch die
Verwendung von Bildzeichen konnen mehrere Grofien gleichzeitig visualisiert werden. Bei der
Verwendung von Datensédtzen hoherer Auflosung treten jedoch mit diesen beiden Techniken
sehr schnell Verdeckungsprobleme auf.

Eine weitere Moglichkeit zur Vektorfeldvisualisierung bietet sich durch das Verfolgen von in-
dividuellen Partikeln an. Dabei wird ein einzelnes masseloses Partikel oder auch mehrere in
das Vektorfeld eingestreut und verfolgt. Dadurch ergeben sich die charakteristischen Linien des
Vektorfelds. Es kann zwischen vier Arten unterschieden werden: Pfadlinien (Pathlines), Strom-
bahnen (Streaklines), Zeitlinien (Timelines) und Stromlinien (Streamlines). Fiir die Erzeugung von
Pfadlinien wird der Weg eines Partikels tiber die Zeit beobachtet und die Positionen werden
mit einer Linie verbunden. Bei den Strombahnen werden die Partikel beziehungsweise ein
Farbstoff an einer festen Position in das Feld eingestreut. Zeitlinien entstehen durch die Aus-
breitung von Linien oder Flachen, die sich aus Partikeln zusammensetzen. Wird das Vektorfeld
zu einem vorher festgesetzten Zeitpunkt f betrachtet und ein Partikel entlang der Tangenten
des Felds bewegt ergeben sich Stromlinien. Pfadlinien, Strombahnen und Stromlinien sind im
Fall von stationdren Stromungen identisch.

11



Kapitel 3 LIC - Line Integral Convolution 3.1 2D LIC

Formal gesehen ist eine Stromlinie eine mogliche Losung des Eigenwertproblems einer ge-
wohnlichen Differentialgleichung zum Zeitpunkt ¢.

p0=x 1Py 6

Damit ergibt sich fiir eine Stromlinie durch xg eine Kurve ¢ (s) mit dem Parameter s.

Globale Verfahren zur Visualisierung von Vektorfeldern sind im Bereich der dichten und tex-
turbasierten Stromungsvisualisierung zu finden. Ein Uberblick der hierbei eingesetzten Tech-
niken ist in The State of the Art in Flow Visualization: Dense and Texture-Based Techniques von Lara-
mee et al. [33] zu finden. Van Wijk stellte 1991 einen Algorithmus vor, der Daten mit Hilfe von
Texturen visualisiert [59]. Dazu verwendet er ein Rauschen an zuféllig verteilten Positionen,
welches er Spot Noise nennt. Wird dieses Rauschen zur Visualisierung der Geschwindigkeit ei-
nes Vektorfelds eingesetzt, so wird die Textur entlang der Bewegungsrichtung skaliert. Bei der
Texturadvektion [39] werden dagegen die Texel einer Textur entlang des zugrunde liegenden
Vektorfelds verschoben.

Line Integral Convolution gehort ebenfalls zu den texturbasierten Verfahren. Dabei wird die
Doméne mit einer Rauschtextur bedeckt und diese anschliefsend entlang von Stromlinien ver-
wischt. Das Verwischen erfolgt durch die Faltung der Rauschtextur mit einem Filter. Sei T (x')
die Intensitét der Rauschtextur an der Stelle x’ und sei k ein Filter, so ergibt sich fiir die Faltung

o(x) = /k(s) -T(s—x)ds (3.2)

Wird die Faltung entlang der Stromlinie s — ¢,.(s) durch den Punkt x durchgefiihrt, folgt fiir
die Intensitét ¢ an dieser Stelle

L

o) = [ k(s)- T(g,(s +s0))ds (33)

—L

Der Filter besitzt hier nur lokalen Einfluss im Intervall [—L, L]. Wird dieses Intervall zu grof3
gewihlt, ndhert sich die berechnete Intensitdt dem Mittelwert der Rauschtextur an. Ist es da-
gegen zu klein, ist der Effekt des Verwischens minimal. Als Filter wird meist ein einfacher
Boxfilter oder ein isotroper Filter verwendet. Durch die Filterung ergibt sich entlang einer
Stromlinie eine hohe Korrelation, jedoch nicht zwischen benachbarten Stromlinien.

3.1 2D LIC

Die Erfinder der Line Integral Convolution, Cabral und Leedom, stellten diese Technik zur
Visualisierung von zweidimensionalen Stromungen im Jahr 1993 vor [4]. Dabei wird eine
Rauschtextur mittels Faltung entlang von Stromlinien verschmiert. Die Integration erfolgt da-
bei aber weder kontinuierlich noch diskret mit konstantem Abstand, sondern pro Gitterzelle
des Vektorfelds, die von der Stromlinie traversiert wird. Dadurch ist es moglich, der Stromli-
nie durch jede Zelle zu folgen. Die Rauschtextur besitzt dieselbe Auflésung wie das Vektorfeld

12



Kapitel 3 LIC — Line Integral Convolution 3.1 2D LIC

Abbildung 3.1: Vergleich zwischen LIC (links) und Spot Noise (rechts).[33]

und besteht aus weifiem Rauschen. Shen et al. [51] kombinierten 1996 den LIC mit der Advekti-
on von Farbstoff. Dabei handelt es sich jedoch nicht um eine physikalisch korrekte Advektion,
da die Diffusion vernachlassigt wurde.

Stalling und Hege [53] stellten 1995 einen beschleunigten, auflosungsunabhingigen LIC unter
dem Namen FastLIC vor. Sie beschleunigten die Berechnung, indem die LIC-Integration nicht
mehr fiir jedes einzelne Pixel sondern entlang einer Stromlinie durchgefiihrt wird und Zwi-
schenergebnisse wiederverwendet werden. Dazu muss jedoch ein Boxfilter eingesetzt werden.
1998 erweiterten sie den FastLIC um Filter auf Polynombasis [15].

Die Berechnung des LIC auf curvilinearen Gittern wurde durch Forssell [13] moglich. Forssell
fiihrte in dieser Arbeit auch eine Technik ein, mit der die Geschwindigkeit des Vektorfelds
visualisiert und der LIC animiert werden kann. Zusammen mit Cohen hat Forssell den LIC
zur Darstellung nicht stationdrer Stromungen 1995 erweitert [14]. Shen und Kao erweiterten
das Konzept fiir nicht stationdre Stromungen und gaben ihm den Namen UFLIC (Unsteady
Flow LIC) [52]. 2006 stellten Li et al. eine GPU-basierte Version des UFLIC, genannt GPUFLIC,
vor [35].

Beim Multifrequency LIC von Kiu und Banks [27] wird die Raumfrequenz des verwendeten
Rauschens abhingig von der Geschwindigkeit verdndert. Urness et al. [58] verwenden fiir ih-
ren Multivariate LIC das Multifrequenz-Rauschen von Kiu und Banks nicht fiir die Visualisie-
rung der Geschwindigkeit sondern fiir Features. Zusétzlich erlaubt ihre Color-Weaving-Technik
(Verweben von Farben) die gleichzeitige Darstellung mehrerer Skalardaten zusammen mit den
Vektorattributen. Mit dem HyperLIC von Zheng et al. [68] lassen sich symmetrische zwei- oder
dreidimensionale Tensorfelder visualisieren.

Die Richtung der Stromung ist beim klassischen LIC nicht erkennbar. Um diese visualisieren
zu konnen nutzen Wegenkittl et al. [60] fiir ihren OLIC (Oriented LIC) einen asymmetrischen
Filter. Aufgrund der hohen Dichte der Stromlinien reicht dies jedoch nicht allein aus. Sie ver-
wenden deshalb eine Rauschtextur, die nur diinn besetzt ist.

De Leeuw und van Liere haben in Ihrer Arbeit Spot Noise und LIC verglichen [8]. Sie kamen
zu dem Schluss, dass der LIC die Richtung des Flusses mehr hervorhebt, jedoch keine Ge-
schwindigkeitsinformation darstellt. In Abbildung 3.1 sind die Ergebnisse einer Berechnung
durch LIC und Spot Noise gegeniibergestellt.

13



Kapitel 3 LIC - Line Integral Convolution 3.23D LIC

Abbildung 3.2: VolumeLIC mit Abbildung der Geschwindigkeit auf den Alphawert. Links ohne
Halo, rechts mit Halo zur Hervorhebung der Tiefeninformationen. (Eigentum von
Victoria Interrante) [http://www-users.cs.umn.edu/~interran/3Dflow.html]

3.2 3DLIC

Der 3D LIC ist eine Erweiterung des 2D LIC. Die Berechnung des LIC in drei anstatt in zwei
Dimensionen erfolgt auf dieselbe Weise mit Gleichung (3.3), da die Definition der Stromlinien
(Gleichung (3.1)) auch im dreidimensionalen Raum giiltig ist. Durch den Dimensionswechsel
ergeben sich jedoch Probleme. So nimmt die visuelle Komplexitdt und die Verdeckung zu.
Aber auch die Komplexitidt der Berechnung nimmt zu, da mehr Stromlinien berechnet werden.

Interrante und Grosch [19, 20] stellten 1997 mit VolumeLIC erstmals einen volumetrischen LIC
vor. Zur Reduktion der visuellen Komplexitit wird die Geschwindigkeit auf den Alphawert
abgebildet und Halos eingesetzt. Dadurch ergeben sich Bilder mit klarer Tiefenstruktur (Ab-
bildung 3.2). Dies sehen Laramee et al. [33] als ,,Schritt in Richtung geometrischer Stromungs-
visualisierung, bei der diskrete Objekte wie Stromlinien unterschieden werden kénnen”.

Um Benutzerinteraktionen trotz langer Rechenzeiten des 3D LIC zu ermdglichen, verwenden
Rezk-Salama et al. [45] einen Vorberechnungsschritt. Wahrend dieser Vorbereitung wird der
3D LIC berechnet und in einer 3D-Textur gespeichert. Diese Textur wird anschlieffend mit-
tels texturbasierter Volumenvisualisierung (vgl. Abschnitt 2.3.1) angezeigt. Mittels geeigneter
Transferfunktionen und Clipping (siehe Abschnitt 3.5) ist es moglich, interessante Teile der
Stromung zu extrahieren. Suzuki et al. [56] setzen ebenfalls eine 3D-Textur ein, jedoch findet
die Visualisierung auf der VolumePro-Hardware statt.

Zur Verringerung der fiir die LIC-Berechnung benétigten Zeit kann auch der sogenannte Seed
LIC eingesetzt werden [16]. Dabei handelt es sich um einen LIC, dessen Stromlinien nur von
bestimmten Punkten aus, definiert durch eine diinnbesetzte Seed-Textur, berechnet werden.

3.3 GPU-basierter 3D LIC

Grundlage dieser Arbeit ist der erstmalige Einsatz eines GPU-basierten Ansatzes zur Berech-
nung des dreidimensionalen LIC. Die Berechnung der Stromlinien erfolgt fiir den LIC, auch
im dreidimensionalen Fall, getrennt pro Pixel, siecht man von der Verwendung des FastLIC

14


http://www-users.cs.umn.edu/~interran/3Dflow.html

Kapitel 3 LIC - Line Integral Convolution 3.4 Beleuchtung von Linien

ab. Dies spricht aufgrund der hohen Parallelisierbarkeit fiir die Verwendung der GPU als Ge-
neral Purpose GPU (GPGPU). Dazu wird das Vektorfeld in einer 3D-Textur reprédsentiert und
die Berechnung des LIC erfolgt in Fragmentprogrammen. Zur Beschleunigung eignen sich die
Techniken, die auch bei der Volumenvisualisierung auf der GPU zum Einsatz kommen (sie-
he Abschnitt 2.3.3). Dazu gehoren der Early-Z-Test, das Empty-Space-Leaping und der vor-
zeitige Strahlabbruch. Die visuelle Komplexitdt wird verringert durch die Verwendung von
diinnem Rauschen anstelle von weifsem Rauschen, dem Einsatz geeigneter Transferfunktionen
und der Beleuchtung der Stromlinien. Um bei der Visualisierung und speziell bei der Interak-
tion Aliasingeffekten vorzubegeugen, sollte die Raumfrequenz des verwendeten Rauschens
im Bildraum konstant sein.

3.4 Beleuchtung von Linien

Wird ein kdimensionales Objekt in einen n-dimensionalen Euklidischen Raum n > k einge-
bettet, ist die Kodimension gegeben durch n — k. Dadurch ist die Kodimension von Flachen
im dreidimensionalen Raum gleich eins. In diesem Fall erfolgt die Beleuchtungsberechnung
anhand der eindeutigen Normale der Fliche [12]. Lediglich die Orientierung der Flache muss
dabei beriicksichtigt werden. Fiir Kodimensionen grofier eins existieren viele mogliche Nor-
malen. So liegen beispielsweise bei dreidimensionalen Linien mit Kodimension zwei die mog-
lichen Normalen in einer Ebene, die orthogonal zur Tangente der Linie liegt. Banks stellte zu
diesem Problem die Arbeit Beleuchtung in diversen Kodimensionen vor [2]. Fiir die Beleuchtung
von Linien mit Kodimension zwei verwendet er unendlich diinne Zylinder und maximiert ge-
trennt fir den diffusen und spekularen Anteil das reflektierte Licht entlang des Umfangs. In
seiner Arbeit geht Banks auch auf die zunehmende Helligkeit mit zunehmender Kodimension
ein.

Zockler et al. [69] stellten 1996 eine Methode zur Beleuchtung von Stromlinien vor. Darin setz-
ten sie das Modell von Banks ein. Mallo et al. [38] verwenden ebenfalls unendlich diinne Zy-
linder, gebrauchen aber nicht die Maxima fiir den spekularen und diffusen Anteil. Stattdessen
integrieren sie die Intensitédt {iber den sichtbaren und beleuchteten Bereich des Zylinders.

Eine weitere Moglichkeit bietet die Verwendung des Gradienten als Normale [62, 63]. Bei der
Volumenvisualisierung kann der Gradient aus dem gegebenen Skalarfeld berechnet werden.
Weiskopf et al. berechnen den Gradienten nach jedem Zeitschritt ihrer Texturadvektion [62,
63]. Werden die Stromlinien durch einen LIC erzeugt, konnen die Gradienten der Rauschtextur
verwendet werden (Abschnitt 3.4.3).

Die Berechnung der Beleuchtung erfolgt mit dem Modell von Phong [42] beziehungsweise mit
dem Blinn-Phong-Modell von Blinn [3]. Beim Phong-Modell ergibt sich die Intensitdt mit
I =ks+ksL-N+ks (V-R)" (3.4)

Dabei sind k;, k; und ks jeweils die Koeffizienten fiir den ambienten, den diffusen und den
spekularen Anteil des Lichts. V steht fiir die Blickrichtung, N fiir die Normale, L fiir die Licht-
richtung und R fiir den Reflektionsvektor von L an der Normale N. Die Grofie des spekularen
Glanzpunkts wird vom Exponenten n beeinflusst.

15



Kapitel 3 LIC - Line Integral Convolution 3.4 Beleuchtung von Linien

Abbildung 3.3: Textur fiir die Beleuchtung von Stromlinien nach Zockler. Die Abszisse gibt das
Skalarprodukt L - T, die Ordinate das Skalarprodukt V - T wieder.

Das Blinn-Phong-Modell approximiert den Winkel zwischen Reflektionsvektor und Blickrich-
tung mit dem Winkel zwischen der Normalen und dem Halfwayvektor. Der Halfwayvektor
H ist definiert durch H = (V 4+ L)/||V + L||. Daraus folgt fiir die Intensitit nach Blinn-Phong

I=k;+ksL-N+ks(H-N)" (3.5)

3.4.1 Stromlinien nach Zockler

Zockler et al. [69] wahlen fiir die Beleuchtung von Stromlinien die Normale aus, mit der die
berechnete Intensitdt am grofiten ist. Dazu verwenden sie die Normale, die koplanar zu dem
Tangentenvektor T der Linie und der Lichtrichtung L ist. Damit ist es moglich, die Beleuchtung
mittels Gleichung (3.4) zu berechnen. Um die Berechnung von der Normalen unabhingig zu
machen, fithren Zockler et al. mehrere Umformungen durch.

Wird die Lichtrichtung L im Tangentenraum der Linie zerlegt, ergibt sich
L=Ly+Lt (3.6)

Hieraus folgt mit dem Satz von Pythagoras fiir den diffusen Teil der Gleichung (3.4)

L-N=|[Ly|]|=/1—|Lr|2=/1—(V -T)? (37)

Der spekulare Anteil ldsst sich durch eine dhnliche Umformung ohne die Normale N aus-
driicken

V.-R=V.(Lr—Ly)

=(L-T)(V-T)— \/(L-T)z\/(V-T)z (3.8)

Mit diesen beiden Gleichungen ist es nun moglich, die Gleichung (3.4) des Phong-Modells nur
abhéngig von den Skalarprodukten L - T und V - T auszudriicken und in einer 2D-Textur ab-
zuspeichern (Abbildung 3.3). Das Beleuchten der Linien erfolgt durch Texturierung mit dieser
2D-Textur. Dazu wird fiir die Texturkoordinaten eines Liniensegments die Tangente verwen-
det. Wird von gerichtetem Licht und einer orthographischen Kamera ausgegangen, kénnen

16



Kapitel 3 LIC - Line Integral Convolution 3.4 Beleuchtung von Linien

0= % _ B
0=a
)\ 4 N,
0=a-% =0
"V
"N

Abbildung 3.4: Querschnitt eines Zylinders zur Beleuchtungsberechnung. Der vom Auge aus
sichtbare und diffus beleuchtete Teil der Oberflédche ist rot eingefarbt.

die zwei fiir den Nachschlag benétigten Skalarprodukte durch die Texturtransformationsma-
trix ausgerechnet werden. Dazu wird die Matrix mit der Lichtrichtung L und der Blickrichtung
V folgendermafsen gefiillt:

Ly Vy 0 0
11 L, Vv, 00
—— Y ¥
M 2 L, V; 0 O (39)
1 1 0 2

Wird diese Matrix mit den Texturkoordinaten der Liniensegmente multipliziert, ergeben sich
neue Texturkoordinaten zwischen 0 und 1, mit denen der Texturnachschlag durchgefiihrt wer-
den kann.

Da die Normale immer in Richtung Lichtquelle ausgerichtet ist, existiert keine definierte
,Riickseite” der Linie. Dies fiihrt dazu, dass die Linie dieselbe diffuse Intensitit besitzt, wenn
sich das Vorzeichen der Lichtrichtung dndert. In diesem Zusammenhang wird von bidirektio-
naler Beleuchtung gesprochen. Der Effekt ldsst sich minimieren, wenn die Lichtrichtung gleich
der Blickrichtung ist. Zockler et al. verwenden fiir den diffusen Term zusitzlich einen Expo-
nenten, um den Uberschuss der Helligkeit aufgrund der hoheren Kodimension auszugleichen.
Banks schlédgt dafiir einen konstanten Wert von 4,8 vor.

3.4.2 Stromlinien nach Mallo

In dem Ansatz von Mallo et al. [38] erfolgt die Beleuchtung nicht durch die Transformation
von Texturkoordinaten und anschlieSendem Texturnachschlag. Vielmehr wird dazu die pro-
grammierbare Pipeline der Grafikkarte mit Vertex- und Fragmentprogramm verwendet. Ihr
Verfahren verbessert die diffusen Reflektionen von Zockler et al. [69]. Dazu wird der diffu-
se und der spekulare Anteil nicht iiber die maximale Intensitdt bestimmt, sondern wie bei
Schussmann und Ma [49] berechnet. Dies geschieht durch Integration tiber den beleuchteten
und sichtbaren Teil der Oberfldche eines unendlich diinnen Zylinders. In Abbildung 3.4 ist der
sichtbare Teil des Zylinders rot eingefarbt. Der Tangentenraum entlang der Linie ist definiert
durch die Tangente, die Normale und die Binormale (T, N, B). Die Binormale ist gegeben mit
B =T x V/|T x V|| und die Normale mit N = B x T.

17



Kapitel 3 LIC - Line Integral Convolution 3.4 Beleuchtung von Linien

(a) (b)

Abbildung 3.5: Texturen fiir die Beleuchtung von Stromlinien nach Mallo. (a) Diffuser Anteil: Auf
der Abszisse ist cos(«) und auf der Ordinate L - T dargestellt. (b) Spekularer Anteil:
Auf der Abszisse ist cos(a) und auf der Ordinate cos(f) dargestellt.

Der sichtbare Bereich des Zylinders hangt von dem Winkel a zwischen den Projektionen von
V und L auf die Ebene N, B ab. Dieser Winkel lisst sich mit Hilfe von V und L ausdriicken:

V.-L-V7-L
& = arccos T =T (3.10)

V1= [Vrl2y/1 - Lr]

Dabei bezeichnet V1 und Lt die Blickrichtung beziehungsweise die Lichtrichtung im Tangen-
tenraum.

Fiir den diffusen Teil ergibt sich derselbe Term wie bei Zockler (Gleichung (3.7)), jedoch skaliert

L.N= /l—HLTH2-Sm“+(7T4_“)COS“ (3.11)

Fiir den spekularen Anteil folgt fiir das Modell nach Blinn-Phong

s
2

H-N=/1—|[Hr| [ cos"(0—p) Cozsgde (3.12)

mit B gleich dem Winkel zwischen der Projektion von V und H auf die Ebene N, B. Das Integral
tiber & muss numerisch geldst werden (siehe [38]). Mallo et al. legen fiir den diffusen und
den spekularen Anteil je eine vorberechnet Textur an. Die diffuse Textur Ty;rr wird dabei in
Abhiéngigkeit von cos « und L - T und die spekulare Textur Ty von cos & und cos  berechnet
(Abbildung 3.5).

Beim Rendern werden der Lichtvektor L, die Blickrichtung V und die Tangente T im Vertex-
programm berechnet. Im Fragmentprogramm werden die Binormale, die Normale und der
Halfwayvektor ermittelt. Zusammen mit

B}

L-N H-N
cos = ——— und oS = ————— (3.13)

1—(L-T)? 1—(H-T)?



Kapitel 3 LIC - Line Integral Convolution 3.4 Beleuchtung von Linien

ergibt sich dann fiir das beleuchtete Fragment mit der Farbe C;,

Cout = Ciyy (ku +ka - Taiff(cosa, L - T)) +ks-y/1—(H- T)2 - Tspec(cos o, cos B) (3.14)

3.4.3 Beleuchtung des LIC anhand von Gradienten

Der Gradient wird in der Volumenvisualisierung und auch bei der Texturadvektion zur Be-
leuchtungsberechnung verwendet [63]. Wird der Gradient des LIC benétigt, so konnte das
Ergebnis des LIC zwischengespeichert und die Gradienten von diesem Skalarfeld berechnet
werden. Anschlieffend konnte die Beleuchtungsberechnung fiir das Skalarfeld zusammen mit
den Gradienten durchgefiihrt werden. Bei dem hier vorgestellten Ansatz erfolgt die Beleuch-
tungsberechnung gleichzeitig mit der Berechnung des LIC, um beispielsweise vom vorzeiti-
gen Strahlabbruch profitieren zu konnen. Dazu wird der Gradient gleichzeitig mit der Faltung
entlang der Stromlinien berechnet.

Die Dichte beziehungsweise Intensitit o(x) des LIC entlang einer Stromlinie s — ¢ (s) ist
gegeben durch Gleichung (3.3)

L

o(x) = [ k(s) - T(g,(s +50))ds

“L
Der Gradient der Dichte o(x) ist definiert durch

L
Vo(x) =V / k(s) - T(,(s +50)) d's (3.15)

—L

Wird nun davon ausgegangen, dass der Gradient des Filters k anndhernd konstant ist und es
sich um gerade Stromlinien handelt, ergibt sich

L
Vo(x) = / k(s) - VT(¢,(s+50)) ds (3.16)

—-L

Damit ist der Gradient nur noch vom eingesetzten Rauschen abhéngig. Das Rauschen darf
aber kein reines weifles Rauschen sein, da benachbarte Gradienten durch die hohen Raum-
frequenzen sonst keine Korrelation besitzen. Eine Moglichkeit bietet die Filterung des weifsen
Rauschens mit einem Tiefpassfilter, wodurch sich glattere Ubergéinge zwischen den Gradien-
ten ergeben.

Wird anstelle des weiflen Rauschen ein diinnes Rauschen eingesetzt und dieses ebenfalls mit
einem Tiefpassfilter gefiltert, ergeben sich Stromlinienbiindel. Diese besitzen im Inneren eine
hohere Dichte als aufsen. Die berechneten Gradienten entsprechen den Normalen einer Iso-
flache um dieses Strahlenbiindel. Dadurch entsteht durch die Beleuchtung der Eindruck von
Geometrie.

19



Kapitel 3 LIC - Line Integral Convolution 3.5 Features

3.4.4 Wahl der Transferfunktion

Eine Transferfunktion dient zur Abbildung eines Werts auf einen oder mehrere Werte. Dies er-
moglicht, Skalarwerte auf Farbwerte und auch auf die Opazitit abzubilden. Da der Skalarwert
meist auf Farben abgebildet wird, werden die Abbildungen auf die einzelnen Farbkomponen-
ten in einer Transferfunktion zusammengefasst und als Kanile der Transferfunktion bezeich-
net.

Die Wahl der richtigen Transferfunktion ist bei der Visualisierung von 3D LIC ebenso wich-
tig wie bei der Darstellung von Volumen. In der klassischen Volumenvisualisierung wird die
Dichte des Volumens auf vier Kandle der Transferfunktion abgebildet. Diese vier Kandle las-
sen sich dabei in drei Abbildungen auf den Farbwert im RGB-Farbraum und einer Abbildung
auf den Alphawert aufteilen. Dadurch ist es moglich, Bereiche mit einer bestimmten Dichte in-
nerhalb des Volumens transparent andere opak darzustellen und gleichzeitig Farben fiir jeden
Dichtewert zu definieren. In dieser Arbeit wurde eine Transferfunktion bestehend aus fiinf
Kanilen gewdhlt. Die ersten drei Kandle bilden einen Skalarwert auf einen Farbwert ab. Bei
den verbleibenden zwei Kanédlen handelt es sich um Abbildungen auf den Alphawert. Als Ein-
gabewert fiir den ersten Alphakanal kann die Geschwindigkeit des Vektors aber auch andere
Groflen, wie beispielsweise das Ergebnis der Lambda2-Berechnung, eingesetzt werden. Da-
durch konnen Bereiche des Vektorfelds ausgeblendet oder hervorgehoben werden. Der zweite
Alphakanal der Transferfunktion wird dazu verwendet, die Intensitét ¢, die sich aus der LIC-
Berechnung ergibt, auf den Alphawert abzubilden. Dies ermoglicht zum Beispiel die Freistel-
lung der Bereiche mit hoher Intensitit. So konnen bei Verwendung eines diinnen Rauschens
Stromlinienbtiindel freigelegt werden. Die zwei Alphakanile konnen im Fragmentprogramm
mittels Tensorprodukt miteinander kombiniert werden.

Wird die Transferfunktion entsprechend gewéhlt, kann sich ein Effekt namens Limb Darkening
[16] einstellen. Es handelt sich dabei um ein Phidnomen aus der Astrophysik. Dabei erscheint
die Atmosphére eines Sterns am Rand dunkler als in der Mitte. Mit einer Transferfunktion
kann ein dhnlicher Effekt erzeugt werden, indem die Intensitdt der Farbe fiir die Skalarwerte
am Rand geringer als im Inneren des Objekts ist. Gleichzeitig sollte der Alphawert am Rand
des Objekts sehr gering sein und nach innen zunehmen.

3.5 Features

Features oder auch Merkmale sind in der Visualisierung von besonderem Interesse. Es handelt
sich dabei um spezielle Bereiche, die sich meist im Inneren des Datensatzes befinden. In der
medizinischen Visualierung kénnten dies beispielsweise Knochen, Arterien oder auch Tumore
sein. Im Bereich der Stromungsmechanik sind dies Wirbel und Turbulenzen.

Diese Features konnen auf verschieden Weisen extrahiert werden. So ldssen sich mit einer ge-
eigneten Transferfunktion Bereiche des Volumens ausblenden. Je nach verwendeten Skalarda-
ten kann so eine Maskierung, zum Beispiel anhand der Geschwindigkeit (Velocity-Masking),
durchgefiihrt werden. In Abbildung 3.6 wurden die langsameren Schichten um den Tornado
ausgeblendet, so dass der Schlauch des Tornados besser zu erkennen ist. Besteht das Volumen
jedoch iiberwiegend aus denselben Dichte- beziehungsweise Skalarwerten, wird das Feature
mit ausgeblendet.

20



Kapitel 3 LIC — Line Integral Convolution 3.5 Features

Abbildung 3.6: Ausblenden von Bereichen des Vektorfelds mittels Velocity-Masking. Links der
opake Datensatz, rechts derselbe Datensatz mit Velocity-Masking. Als Datensatz
wurde der Tornado von Roger Crawfis verwendet.

Abbildung 3.7: Links ist der vollstindige Datensatz abgebildet, rechts wurde mit einer Clipebe-
ne der vordere Teil weggeschnitten. Als Datensatz wurde der Tornado von Roger
Crawfis verwendet.

Zur Extraktion kann aber auch ein sogenanntes Importance-Volumen eingesetzt werden. Da-
bei handelt es sich um ein weiteres Volumen, dass jedoch einzig zur Maskierung der eigentli-
chen Daten dient. Diese Maskierung kann kontinuierlich oder diskret erfolgen. In den Daten
von Stromungssimulationen konnen so mit Hilfe des Lambda2-Verfahrens Wirbel hervorge-
hoben werden. Dazu wird das Ergebnis aus der Lambda2-Berechnung in diesem Importance-
Volumen gespeichert. Bei dem Seed LIC von Helgeland et al. [16] konnen mit der entsprechen-
den Gestaltung der Seed-Textur Features extrahiert werden.

Beim Clipping werden Teile des Volumens mit Hilfe von Primitiven weggeschnitten [41, 61].
Meist werden dazu Ebenen eingesetzt, die frei im Raum platziert werden konnen. Es konnen
aber auch beliebig komplexe Formen verwendet werden [61]. Eine weitere Moglichkeit bie-
tet die Schnittebene (Abschnitt 2.2). Mit ihr lassen sich einzelne Schichten aus dem Volumen
extrahieren und analysieren.

21



Kapitel 3 LIC - Line Integral Convolution 3.5 Features

3.5.1 Erkennung von Wirbeln

Jeong und Hussain stellten 1995 eine Methode vor, mit der es moglich ist, Wirbel innerhalb
von Stromungen zu identifizieren [21]. Sie verwenden dazu die Eigenwerte der Jacobimatrix.
Die Jacobimatrix, auch Geschwindigkeitsgradient-Tensor genannt, ist definiert durch
J )
J=Vvxt) =1 &V 5% 5V (3.17)

J
vz @Vz 3z Vz

Die Eigenwerte der Jacobimatrix erlauben eine Klassifizierung der Stromung [26]. So konnen
Verwirbelungen, Anziehung und auch ein Abbremsen der Stromung festgestellt werden. Zur
einfacheren Bestimmung der Eigenwerte wird die Jacobimatrix in einen symmetrischen Teil,
den Diffusionstensor, und einen antisymmetrischen Teil, den Rotationstensor, unterteilt. Der
Diffusionstensor beschreibt den Fluss in und aus einer Region und ist gegeben durch

s=>(1+17) 18)

Durch den Rotationstensor wird die Rotation eines Differenzvektors beschrieben. Er ist defi-
niert durch

_1 T
a=3(1-1) (3.19)
Nach Bestimmung der Eigenwerte werden diese der Grofse nach geordnet
A 2>2A 2> A3 (3.20)

Das Lambda2-Kriterium definiert einen Wirbel (Vortex) als eine zusammenhédngende Region,
in der zwei Eigenwerte negativ sind. Oder anders ausgedriickt A, kleiner null ist. Dadurch
ergibt sich mehr ein verschwommener Bereich fiir einen Wirbel anstatt einer bindren Entschei-
dung. Wird die Bestimmung des Lambda2-Werts fiir das gesamte Vektorfeld durchgefiihrt
und positive Werte nicht berticksichtigt ergibt sich ein Skalarfeld. Die Wahl eines geeigneten
Isowerts fiir die Extraktion der Wirbel ist jedoch sehr intuitiv.

22



4 Modellierung des Rauschens

Das Ergebnis der LIC-Berechnung hingt wesentlich vom verwendeten Rauschen ab. So beein-
flussen beispielsweise die Raumfrequenzen des Rauschens die Anzahl der Stromlinien. Hohe-
re Frequenzen fiithren zu mehr und feineren, niedrige Frequenzen zu weniger und breiteren
Stromlinien. Abbildung 4.1 verdeutlicht dies. Cabral und Leedom [4] verwenden in Threr Ar-
beit weifses Rauschen, das dieselbe Dimension wie das Vektorfeld besitzt. Erst seit dem Ansatz
von Stalling und Hege [53] ist es moglich, fiir das Rauschen eine Auflosung zu wéhlen, die
sich von der des Vektorfelds unterscheidet. Dies erlaubt eine Anpassung der Raumfrequenzen
ohne vorher einen Filter auf das Rauschen anwenden zu miissen. Obwohl der Schwerpunkt
dieser Arbeit auf dreidimensionalem LIC liegt und ein Rauschvolumen eingesetzt wird, wird
im folgenden nur auf 2D-Rauschtexturen eingegangen. Der dreidimensionale Fall ergibt sich,
wenn nicht anders vermerkt, einfach durch Erweiterung der Dimensionalitit.

Weifles Rauschen ist jedoch fiir die gleichzeitige Darstellung von Richtung und Orientierung
des Vektorfelds mittels LIC weniger geeignet. Wegenkittel et al. [60] verwenden fiir den orien-
tierten LIC mit asymmetrischem Filterkernel statt des weifien Rauschens ein diinnes Rauschen.
Das von ihnen verwendete diinne Rauschen ist regelméafiig aufgebaut, wobei die Abtastpunkte
auch minimal verschoben sein konnen (Jitter). Bei dem 3D LIC von Interrante und Grosch [19]
werden die besten Ergebnisse mit in einem Volumen zuféllig verteilten Punkten erzielt. Diese
Punkte sollten mit einer Poissonverteilung oder einer Approximation der Poissonverteilung
im Volumen platziert werden, um eine Gleichverteilung zu erhalten.

Um bei Verwendung von diinnem Rauschen die Breite der Stromlinien zu beeinflussen, gibt es
zwei Moglichkeiten. So gentigt es, die Aufldsung der Rauschtextur und gleichzeitig auch die
Zahl der Samples zu reduzieren. Dadurch vergroflert sich im Bildraum der Querschnitt jedes
Samples, wodurch mehr Stromlinien durch jedes Sample verlaufen. Jedoch kénnen sich trotz
linearer Texturfilterung an den Rdndern der breiteren Stromlinien harte Kanten bilden. Wird
nun die Intensitdt der Stromlinien mittels einer Transferfunktion auf die Opazitat abgebildet,
so ist es kaum moglich, das Innere eines solchen Stromlinienbiindels opak darzustellen, wih-
rend der Rand transparent ist. Dies riihrt daher, dass aufgrund der Skalierung des Samples

= NS
N \//i/)’jl// W
\ =)
————
/7 \\{é ,
/ \ N~/
2 \\Q \‘,’/ y

),
=
N =

Abbildung 4.1: Einfluss der Raumfrequenzen der Rauschtextur auf das Resultat der LIC-
Berechnung. Links niedrige, rechts hohe Raumfrequenzen. Die Parameter des LIC
wurden nicht verandert.

23



Kapitel 4 Modellierung des Rauschens 4.1 Weifles Rauschen

Abbildung 4.2: Weifies Rauschen erzeugt durch Zufallszahlen zwischen null und eins.

samtliche Stromlinien eine dhnliche Intensitit besitzen. Dieses Problem ladsst sich umgehen,
indem nicht die Auflosung der Rauschtextur verdandert wird, sondern das Rauschen mit ei-
nem Tiefpassfilter gefiltert wird. Dadurch vergrofert sich ebenfalls der Querschnitt der Samp-
les. Gleichzeitig wird aber die Intensitét eines einzelnen Samples mit zunehmendem Abstand
zur urspriinglichen Abtastposition geringer. Wird der LIC auf dieses gefilterte Rauschen ange-
wendet, so ergeben sie Stromlinienbiindel, die am Rand eine recht geringe Intensitit besitzen,
die sich zum Mittelpunkt hin erhdht. Da die Gradienten dieses Rauschens bei der Berechnung
der Beleuchtung als Normalen verwendet werden konnen (siehe Abschnitt 3.4.3), wirkt sich
so die Filterung indirekt auch auf die Beleuchtung aus. Dies hat zur Folge, dass die Gradien-
ten einen wesentlich glatteren Verlauf aufweisen. Hiervon profitiert die Beleuchtung mittels
Gradienten.

4.1 Weifies Rauschen

Weifles Rauschen ldsst sich sehr einfach mit Zufallszahlen erzeugen. Dazu werden fiir jedes
Texel der Rauschtextur Zufallszahlen zwischen null und eins erzeugt. Im Mittel ergibt sich so
ein Wert von 0,5. Abbildung 4.2 zeigt ein auf diese Weise erzeugtes Rauschen. Weifles Rau-
schen kann beim zweidimensionalen LIC als Ausgangstextur verwendet werden [4][53]. Beim
OLIC [60] und beim 3D LIC [19] wird zur besseren Visualisierung jedoch diinnes Rauschen
eingesetzt.

4.2 Diinnes Rauschen

Fiir die Erzeugung von diinnem Rauschen wird die gesamte Rauschtextur mit null initiali-
siert. Anschlieflend werden zufillige Positionen auf eins gesetzt. Die Anzahl der Abtastpunkte
sollte klein gegentiber der Gesamtzahl aller moglichen Positionen sein. Der Erwartungswert
befindet sich dementsprechend im Intervall von null bis eins. Durch die Verwendung von
Pseudozufallszahlen konnen Haufungen mehrerer Samples ebenso wie grofsere leere Bereiche
auftreten (vgl. Abbildung 4.3(a)). Um die Uniformitdt beziehungsweise die Diskrepanz der
Abtastungen zu erhohen, miisste eine Poissonverteilung verwendet werden, die jedoch sehr

24



Kapitel 4 Modellierung des Rauschens 4.2 Diinnes Rauschen

(a) (b) (©)

Abbildung 4.3: Gleichverteilung von 150 Abtastpunkten zur Erzeugung von diinnem Rauschen.
Verwendung von (a) Pseudozufallszahlen, (b) Stratified Sampling, (c) Haltonse-
quenz.

aufwendig zu berechnen ist. Stattdessen konnen verschiedene Approximationen der Poisson-
verteilung zur Verbesserung dieser Uniformitit eingesetzt werden.

Die Diskrepanz ist optimal, wenn ein reguldres Gitter fiir die Ausgangspositionen der Abtast-
punkte verwendet wird. Die Abtastpunkte konnen anschlieffend relativ zu ihrer urspriingli-
chen Position mit Zufallszahlen minimal verschoben (Jitter). Jedoch sind dann die Samples
sehr regelmiflig verteilt. Weitere Moglichkeiten zur Erhdhung der Diskrepanz der Abtastun-
gen bieten die Stratifikation und das Latin-Hypercube-Sampling [25]. Bei der Stratifikation
wird die Rauschtextur in mehrere Strata unterteilt und diese jeweils mit n Punkten gefiillt
(Stratified Sampling). Die Rauschtextur wird beim Latin-Hypercube-Sampling ebenfalls in
Strata unterteilt. Jedoch darf hochstens ein Sample pro Spalte und Zeile auftreten. Realisiert
wird diese Auswahl der Strata durch zuféllige Permutationen.

Die Uniformitiat kann auch durch die Verwendung von Sequenzen geringer Diskrepanz (Low
Discrepancy Sequences), wie zum Beispiel der Haltonsequenz, verbessert werden [23][24]. Zur
Erzeugung der Haltonsequenz wird die Radixinvertierung verwendet [25]. Die Radixinvertie-
rung zur Basis b der Zahl i ist definiert durch

ou(i) = Y a(i)b I (1)
j=0

Dabei bezeichnet a;(i) die Stelle j von i. Fir i aus Ny ergibt sich daraus die van der Corput-
sequenz der Basis b. Bei einer n-dimensionalen Haltonsequenz wird fiir jede Dimension eine
van der Corputsequenz verwendet. Die Position eines Samples p ergibt sich dann aus

P() = (901 (D), @u2(i), - -, Pon(i)) (42)

Um eine Gleichverteilung zu erhalten, sollten die Basen by, .. ., b, aus aufsteigenden Primzah-
len bestehen. In Abbildung 4.3 sind einige Beispiele fiir eine Gleichverteilung dargestellt.

25



Kapitel 4 Modellierung des Rauschens 4.3 Filterung

4.3 Filterung

Die Filterung eines eindimensionalen Signals entspricht der Faltung des Signals mit dem Filter.
Sei h(t) das Signal und g(t) der Filter, dann ist die Faltung definiert durch

o]

(g+h) (1) = [ g(x)-h(t=T)dr @3)

Das Faltungstheorem besagt, dass die Faltung einer Multiplikation im Fourierraum entspricht:
(g*h)(t) <= G(v) -H(v) (4.4)

G(v) und H(v) sind die entsprechenden Funktionen im Fourierraum. Damit ldsst sich fiir Fal-
tungen der Aufwand reduzieren. Dazu muss eine Fouriertransformation in den Frequenzraum
und anschlieffend die inverse Fouriertransformation zuriick in den Bildraum durchgefiihrt
werden. Diese Methode ist schneller als die Filterung im Bildraum, wenn der Filterkern eine
grofse Ausdehnung oder sogar unendlichen Einfluss besitzt.

Sei h(t) eine Funktion im Bildraum, dann ist H(v) die analoge Reprasentation im Frequenz-
raum. Fiir die Fouriertransformation gilt

[ee]

H(v) = / h(t)e "t dt (4.5)

und fiir die Riicktransformation
h(t) = L 7 H(v)e"'dv (4.6)
\/27t_oo

Ist das Signal mehrdimensional, so erfolgt die Faltung nacheinander entlang jeder Dimension.
Ebenso wird mit der Fouriertransformation verfahren.

Um bei einem Signal die hohen Frequenzen zu eliminieren, wird ein Tiefpassfilter eingesetzt.

Ein idealer Filter dafiir ist der sinc-Filter mit

sin(x)
X

h(t) = Av - sinc(rtAvt) mitsinc(x) = 4.7)
Dabei ist Av/2 die maximale Frequenz des Filters. Wird der sinc-Filter in den Fourierraum
tiberfiihrt ergibt sich ein Boxfilter

Av Av
I - =<vsy

0 sonst (4.8)

H(v):{

Soll nun ein Signal gefiltert werden, wird es mittels Fouriertransformation in den Frequenz-
raum tiberfithrt. Dort werden alle Frequenzen grofser Av/2 auf null gesetzt. AnschliefSfend
wird das Signal mit der inversen Fouriertransformation zurticktransformiert.

Dieser Tiefpassfilter eignet sich fiir weifles, nicht jedoch fiir diinnes Rauschen. Da die hohen
Frequenzen komplett abgeschnitten werden, kommt es zu Oberschwingungen, die nicht mehr

26



Kapitel 4 Modellierung des Rauschens 4.4 Konstante Raumfrequenz

ausgeglichen werden. Diese Oberschwingungen sind aufgrund der geringen Intensititim wei-
len Rauschen kaum bemerkbar, jedoch im diinnen Rauschen deutlich sichtbar (Abbildung 4.4
mittlere Spalte). Um diese Problematik zu umgehen, kann ein Filter verwendet werden, der im
Frequenzraum mit zunehmender Frequenz an Einfluss verliert. Hierfiir bietet sich der Gaufs-
filter an:

1 —x2/(20%)
xX) = -e 4.9
Wird der Gaufifilter in den Frequenzraum transformiert, so ergibt sich wieder eine Gaufskurve
mit

_ 1 . —c2v2/2

F(v) Nz e (4.10)
Bei der Filterung mit diesem Filter wird das Signal entsprechend dem Faltungstheorem (Glei-
chung (4.4)) im Frequenzraum nur mit dem Gaufifilter multipliziert. Da hohere Frequenzen
immer geringer gewichtet werden, kdnnen keine Oberschwingungen mehr auftreten. Abbil-
dung 4.4 zeigt die Auswirkungen der Filterung mit einem Box- und einem Gaufifilter auf diin-
nes Rauschen und auf weifies Rauschen. Die Zwischenergebnisse der Filterung im Frequenz-
raum sind in der letzten Zeile abgebildet.

4.4 Konstante Raumfrequenz von Rauschen im Bildraum

Sind die Raumfrequenzen im Bildraum zu hoch, kann es zu Aliasingeffekten kommen. Dies
kann sich in Flimmern oder harten Ubergangen duflern. Wird bei einer perspektivischen Ka-
mera der Abstand zwischen dem Vektorfeld und der Augposition verringert, so nehmen die
Raumfrequenzen ab, da das Vektorfeld insgesamt mehr Raum im Viewport einnimmt. Dage-
gen nehmen die Raumfrequenzen zu, wenn sich das Vektorfeld vom Auge entfernt. Um zu
verhindern, dass sich die Raumfrequenzen in diesem Umfang dndern, muss die Distanz zwi-
schen Vektorfeld und Auge mit in Betracht gezogen werden. Ein moglicher Ansatz soll hier
vorgestellt werden.

Die Idee besteht darin, dass der Texturnachschlag in Texturen verschiedener Auflosung durch-
gefiihrt wird. Die Auflosung der Texturen soll dabei abhdngig von der Entfernung zum Auge
sein. Da eine perspektivische Kamera verwendet wird, muss diese Entfernung in Gerétekoor-
dinaten oder in Bildkoordinaten berechnet werden. In Bildkoordinaten entspricht die Entfer-
nung zwischen Auge und der Position genau dem z-Wert der Position (nach der Homogeni-
sierung). Da der Verlauf der Tiefenwerte nicht linear ist, wird zur Approximation die Potenz
zur Basis zwei verwendet. Um die ndchstkleinere Texturstufe m fiir einen Tiefenwert d zu be-
rechnen, wird nur der ganzzahlige Teil der Potenz verwendet, der sich aus

m=|1d(d+1)] (4.11)

ergibt. Wird nun aus den Texturen fiir Stufe m und m + 1 jeweils die Intensitidt des Rauschens
ermittelt, kann mit linearer Interpolation die Intensitit eines neuen Rauschens berechnet wer-
den. Dieses Rauschen sollte, unabhédngig vom Augabstand, eine ndherungsweise konstante
Raumfrequenz im Bildraum besitzen.

27



4.4 Konstante Raumfrequenz

28

zen. In den ersten beiden Zeilen ist das urspriingliche Rauschen, das Ergebnis nach

Anwendung des Boxfilters und nach Anwendung des Gaufsfilters von links nach
rechts abgebildet. In der dritten Zeile ist das Resultat der Filterung im Frequenz-

raum dargestellt.

Abbildung 4.4: Verwendung eines Box- und eines Gaufsfilters zur Filterung der niedrigen Frequen-

Kapitel 4 Modellierung des Rauschens



Kapitel 4 Modellierung des Rauschens 4.4 Konstante Raumfrequenz

Abbildung 4.5: Konstante Raumfrequenz des Rauschens im Bildraum. Das Rauschen der Stufe m
ist rot und der Stufe m + 1 griin eingefdrbt. Der harte Ubergang im linken und
rechten Bild tritt auf, da der Interpolationskoeffizient von eins auf null zurtick-
springt. Im mittleren Bild ist deutlich die Mischung von niederfrequentem (griin)
und hochfrequentem Rauschen (rot) zu erkennen.Der Abstand der Kamera wird
von links nach rechts verringert.

Anstatt viele Rauschtexturen unterschiedlicher Auflosung, vergleichbar mit Mip-Mapping,
anzulegen, werden nur die Texturkoordinaten im Fragmentprogramm entsprechend skaliert
und eine einzige Rauschtextur verwendet. So muss beispielsweise, um Rauschen mit hoherer
Frequenz zu erhalten, die Texturkoordinate mit einem Faktor grofier eins multipliziert werden,
was zu Undersampling fiihrt. Eine Skalierung kleiner eins fiihrt dagegen bei Verwendung von
trilinearer Texturfilterung zu Oversampling und somit zu niedrigeren Frequenzen. Vorausset-
zung dafiir ist jedoch, dass beim Texturzugriff der ganzzahlige Anteil der Texturkoordinaten
ignoriert wird, was in OpenGL dem Verhalten von GL_REPEAT entspricht (siehe [50]). Die
Berechnung dieses Skalierungsfaktors f,, ergibt sich aus

fm =S- 27711
_ g oL+ (4.12)

Dabei ldsst sich mit s die Raumfrequenz des Bildraums justieren. Mit f,, und f,, 11 lassen sich
nun die Texturkoordinaten fiir die Texturstufen m und m + 1 berechnen, indem die urspriing-
liche Koordinate mit f,, beziehungsweise f,, 1 multipliziert wird. Anschlieffend wird mit die-
sen Texturkoordinaten jeweils in derselben Rauschtextur nachgeschlagen. Sei 1, das Ergebnis
dieses Nachschlags fiir Auflésung m und n,,,1 fiir m + 1, dann ergibt sich fiir das Rauschen
mit konstanter Raumfrequenz n,,s; mittels linearer Interpolation

tZId(d—i-])— Ud(d-f—l)J
Neonst = 1 + (1 - t)nm (4.13)

In Abbildung 4.5 ist eine solche Textur mit konstanter Raumfrequenz dargestellt. Der Abstand
der Kamera nimmt dabei von links nach rechts ab. Zur Hervorhebung der unterschiedlichen
Texturstufen wurde die Stufe m rot und Stufe m + 1 griin eingefarbt. Die harte Kante zwischen
dem roten und dem griinen Rauschen im ersten und dritten Bild tritt auf, weil hier aufgrund
der Entfernung zur Kamera m = m + 1 fiir verschiedene 4 gilt.

29






5 GPU-basierter 3D LIC

Im Folgenden wird das Ziel dieser Arbeit, die Berechnung des dreidimensionalen LIC auf der
GPU, erldautert. Obwohl der LIC zu den globalen Verfahren der Vektorfeldvisualisierungen
zdhlt, findet die Auswertung lokal beschrankt entlang der Stromlinien statt. Diese Auswertung
wird fiir jedes Pixel durchgefiihrt, wodurch sich ein globaler Effekt einstellt. Die einzige Aus-
nahme bildet der FastLIC von Stalling und Hege [53]. Da die Berechnungen der einzelnen Pixel
nur abhingig vom Vektorfeld und der eingesetzten Rauschtextur sind, ldsst sich die Auswer-
tung des LIC sehr gut parallelisieren. Durch die SIMD-Archtitektur (Single Instruction Multiple
Data ist heutige Grafikhardware hierfiir geradezu priadestiniert. Werden dazu das Vektorfeld
und die Rauschtextur auf der GPU durch 3D-Texturen reprasentiert und die Berechnung des
LIC im Fragmentshader durchgefiihrt, kénnen abhingig von der Anzahl der Pixelpipelines
der GPU bis zu 128 Pixel beziehungsweise Fragmente (nVidia GeForce 8800GTX) gleichzeitig
ausgewertet werden. Die Traversierung des Volumens kann dabei auf unterschiedliche Wei-
sen erfolgen. Entsprechend der Aufgabenstellung wird hierfiir das Ray-Casting verwendet.
Dariiber hinaus wurde in dieser Arbeit auch ein vielversprechender Ansatz mittels Slicing
verfolgt. Beide Verfahren werden in der Volumenvisualisierung eingesetzt (siehe Kapitel 2).
Grundlage fiir das Ray-Casting auf der GPU bilden die Arbeiten von Carr et al. [5] und von
Purcell et al. [44] aus dem Jahr 2002. In diesen Publikationen werden GPU-basierte Implemen-
tierungen von Ray-Tracing vorgestellt. Als Ausgangsbasis fiir diese Arbeit diente dabei das
Grundgeriist des Volumenrenderers fiir GPU-basiertes Ray-Casting von Stegmaier et al. [54].

In Abbildung 5.1 ist das Flussdiagramm des Algorithmus dargestellt. Im ersten Schritt wird
das zu visualisierende Vektorfeld aus dem Datensatz geladen. Damit auf das Vektorfeld auf
der GPU zugegriffen werden kann, muss dieses in einer 3D-Textur gespeichert werden. Dazu
wird eine Textur mit vier Kanélen verwendet. Als Datentyp der Textur werden vorzeichenlose
Bytes eingesetzt. Auf die Verwendung von 16 Bit-Gleitkommazahlen wurde bewusst wegen
des grofseren Speicherbedarfs verzichtet. Die Richtung des Vektorfelds wird in den ersten drei
Kanilen gespeichert. Besitzt der Datensatz in einer Richtung nicht die Grofie einer Zweier-
potenz, so werden die Daten in dieser Richtung nicht interpoliert und die nicht mit Daten

Transferfunktion
Vektorfeld Beleuchtung 3D LIC Compositing Anzeigen des
laden vorberechnen berechnen Hintergrund Ergebnisses
Berechnung
Rauschen Gradienten auf der GPU
erzeugen berechnen

31

Abbildung 5.1: Architektur zur Berechnung des 3D LIC auf der GPU.




Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

gefiillten Texel mit Null aufgefiillt. Im Fragmentprogramm werden bei Zugriffen auf diese
Textur die Texturkoordinaten so skaliert, dass nur auf den Datenbereich zugegriffen wird. Da
nur acht Bit pro Kanal zu Verfiigung stehen, miissen die Vektoren quantisiert und verschoben
werden. Durch die Quantisierung konnen sich beim Texturzugriff und trilinearer Filterung auf
der GPU Artefakte ergeben. Um dies zu umgehen, wird die Richtung der Vektoren normali-
siert und der Betrag jeden Vektors in der vierten Komponente des Vektorfelds gespeichert.
Anschliefiend werden die fiir die Beleuchtung erforderlichen Vorberechnungen durchgefiihrt.
Dazu zdhlt die Erstellung der Texturen fiir die Modelle von Zockler et al. [69] und Mallo et al.
[38] (Abschnitt 3.4).

Fiir die Berechnung des LIC wird eine Rauschtextur benétigt, die zu Beginn erzeugt wird.
Dabei kann es sich um reines weifSes Rauschen oder auch diinnes Rauschen handeln (siehe
Kapitel 4). Dieses Rauschen kann anschliefiend zur Verringerung der hohen Raumfrequenzen
noch mit einem Tiefpass gefitert werden. Im nachfolgenden Schritt werden die Gradienten des
Rauschens berechnet, da diese fiir die Beleuchtung mittels Gradienten benétigt werden (Ab-
schnitt 3.4.3). Gradienten und die Intensitit des Rauschens werden wie auch das Vektorfeld in
einer 3D-Textur mit vier Komponenten gespeichert. Das aufwendige Erzeugen des Rauschens
und auch die Berechnung der Gradienten kann in eine Anwendung ausgelagert werden. Da-
durch muss das Rauschen fiir den LIC nur geladen und in die 3D-Textur geschrieben werden.

Nach diesen Vorbereitungsschritten kann nun die Berechnung des LIC auf der GPU erfolgen.
Dabei hat die verwendete Transferfunktion wesentlichen Einfluss auf das Ergebnis (vgl. Ab-
schnitt 3.4.4). Im nachfolgenden Abschnitt wird diese Berechnung, die im Fragmentprogramm
stattfindet, ndher erldutert. Das Ergebnis wird dann mittels Compositing mit dem Hintergrund
kombiniert und kann anschlieflend angezeigt werden.

5.1 Berechnung des 3D LIC

Fiir die Implementierung des 3D LIC auf der GPU wurden das Ray-Casting und das Slicing als
separate, austauschbare Techniken implementiert. Um bei Verwendung des Ray-Castings vom
Effekt des Empty-Space-Leaping zu profitieren wurde eine Technik namens Depth Peeling ein-
gesetzt. Diese Technik wird das zum korrekten Rendern transparenter Szenen eingesetzt [11].
Dabei wird die Szene durch mehrfaches Rendern in mehrere Schichten unterschiedlicher Tiefe
unterteilt. Beim nachfolgenden Rendern der Szene werden diese Tiefenschichten dazu ver-
wendet, die Szene mit korrekter Tiefensortierung, die bei transparenten Objekten sehr wichtig
ist, darzustellen.

5.1.1 LIC-Berechnung im Fragmentprogramm

Die Berechnung des LIC erfolgt auf der GPU entsprechend Gleichung (3.3). Dazu werden zwei
nacheinander ausgefiihrte Schleifen mit je L Durchldufen verwendet. In der ersten Schleife
wird der positive Teil des LIC-Integrals durch eine Diskretisierung geltst, in der zweiten der
negative Teil. Das Verfolgen der Stromlinie erfolgt in Richtung des aus dem Vektorfelds ermit-
telten Vektors. Entlang der Stromlinie wird fiir jeden Abtastpunkt ein Texturnachschlag in der
Rauschtextur durchgefiihrt und die Intensitdt des Rauschen mit dem Filter entsprechend ge-
wichtet. Die ermittelten Intensitidten werden aufsummiert und anschlieffend normalisiert. Dies

32



Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

k Schritte
alpha=0
Startliichtung > néchst(? Position . Nachschlag . LIC _»| Compositing \ >
bestimmen bestimmen Vektorfeld berechnen
Rauschen
Transferfunktion

Abbildung 5.2: Schema des Fragmentprogramms fiir die Berechnung des 3D LIC mittels Ray-
Casting

ergibt den Dichtewert des LIC an der aktuellen Samplingposition auf dem Strahl. Die Dichte
kann anschlieffend in der Beleuchtungsberechnung weiter verwendet oder direkt visualisiert
werden.

5.1.2 Ray-Casting

Beim Ray-Casting werden die Traversierung der Strahlen und die Berechnung des LIC in
demselben Fragmentprogramm durchgefiihrt. Abbildung 5.2 verdeutlicht dazu den Aufbau
des Fragmentprogramms. Zu Beginn wird fiir jedes Fragment mit Hilfe der Startposition des
Strahls und der Kameraposition die Richtung des Strahls bestimmt. Danach kann mit dem
Abtasten entlang des Strahls begonnen werden. Dazu wird die Position in Strahlrichtung
um die Samplingdistanz verschoben. Aus der 3D-Textur des Vektorfelds ergibt sich an die-
ser neuen Position mit trilinearer Filterung die Richtung und der Betrag des Vektors. Soll die
Geschwindigkeit mit der Transferfunktion auf eine Farbe und einen Alphawert abgebildet
werden, wird die Transferfunktion auf den Betrag des Vektors angewendet. Ist der berech-
nete Alphawert gleich null, kann zum néachsten Abtastpunkt weitergegangen werden. An-
derfalls wird die Richtung des Vektors und die aktuelle Position im Volumen fiir die LIC-
Berechnung verwendet (Abschnitt 5.1.1). Das Ergebnis der LIC-Berechnung wird danach mit
Front-To-Back-Compositing mit den Ergebnissen der vorherigen Strahlpositionen geblendet.
Wurden k Schritte durchgefiihrt, das Volumen verlassen oder tiberschreitet die Opazitét einen
Schwellwert (vorzeitiger Strahlabbruch), kann die weitere Berechnung abgebrochen werden.
Die Anzahl der Schritte ist dabei beschrankt durch die maximale Anzahl der Instruktionen pro
Fragmentprogramm.

Damit dieses Fragmentprogramm ausschliefllich fiir das Volumen ausgefiihrt wird, werden
nur die sichtbaren Flachen der Boundingbox des Volumens gezeichnet. Da die Abtastung ent-
lang der Strahlen erst auf der Oberflache des Volumens beginnen soll, wird an den Vertizes
der Boundingbox die Objektraumposition in eine Texturkoordinate geschrieben. Durch die In-
terpolation durch die Rasterisierung ergibt sich so fiir jedes Fragment eine Position auf der
Oberflache der Boundingbox in Objektkoordinaten, auf die im Fragmentprogramm zuriickge-
griffen werden kann.

33



Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

n Schichten n Schichten

l Berechnung l kein Early—Z-Test
Depth—Peel Schicht i

Ray—Casting

y

Tiefenpuffer | T
setzen
Berechnung Rauschen
auf der GPU Early-Z-Test Transferfunktion

Abbildung 5.3: Ablauf des Ray-Castings mit gleichzeitigem Einsatz von Depth-Peeling.

5.1.3 Ray-Casting mit Depth-Peeling

Das Konzept des Depth-Peeling [11] wurde mit dem Ray-Casting kombiniert, um das Uber-
springen von leeren Voxeln zu realisieren und die maximale Anzahl der Abtastungen pro
Strahl gegeniiber dem Ray-Casting ohne Depth-Peeling zu erhdhen. Letzteres gelingt dadurch,
weil es sich beim Ray-Casting mit Depth-Peeling um ein Multi-Pass-Verfahren handelt. Dabei
wird das Ray-Casting abgesehen von einer kleinen Anderung wie bisher eingesetzt.

Der Ablauf des Algorithmus ist in Abbildung 5.3 dargestellt. In einem ersten Schritt wird das
Volumen in mehrere Depth-Peel-Schichten unterteilt. Dazu wird ein Fragmentprogramm ver-
wendet, welches denselben Aufbau besitzt wie das Programm fiir das Ray-Casting. Die maxi-
male Anzahl an Schritten n pro Depth-Peel-Schicht wird vorab auf festgelegt und beeinflusst
zusammen mit der Samplingdistanz die Anzahl der Schichten.

Zur Berechnung der einzelnen Depth-Peel-Schichten wird in diesem Fragmentprogramm nur
die Traversierung des Strahls und keine LIC-Berechnung durchgefiihrt. Wahrend dieser Tra-
versierung wird in der 3D-Textur des Vektorfelds an jedem Abtastpunkt ein Texturnachschlag
ausgefiihrt und die Transferfunktion auf die Geschwindigkeit, die sich in der vierten Kom-
ponte befindet, angewandt. Ist der abgebildete Alphawert gleich null, wird mit der nichsten
Position auf dem Strahl fortgefahren. Bei einem Wert grofier null wird die Ausfithrung des
Ray-Casting abgebrochen und die Anzahl der im leeren Raum zuriickgelegten Schritte als
Ausgabe des Fragmentprogramms verwendet. Zur Bestimmung der ersten Schicht wird wie
beim Ray-Casting an der Oberfldche des Volumens begonnen. Bei den darauffolgenden Schich-
ten wird die Startposition um i cot n Schritte entlang des Strahls verschoben, wenn i der Index
der aktuell zu berechnenden Schicht ist. Die Ergebnisse werden fiir jede Schicht getrennt in
eine 2D-Textur geschrieben, die den gesamten Viewport fiillt.

Fiir jede dieser Schichten wird anschlieffend ein Ray-Casting mit n Schritten durchgefiihrt.
Dabei werden die Startpositionen wie schon bei der Berechnung der Depth-Peel-Schichten an
den Beginn der jeweiligen Schicht verschoben. Im Fragmentprogramm wird zusétzlich an der
Fragmentposition in der 2D-Textur der aktuellen Depth-Peel-Schicht die Anzahl der Schritte
im leeren Raum nachgeschlagen und die Startposition entsprechend angepasst. Dabei werden
fir die Fragmentposition Texturkoordinaten im Bildraum verwendet. Anschlieffend wird das
Ray-Casting fiir die verbleibenden Schritte durchgefiihrt.

34



Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

n Ebenen
alpha=0
|
Y kein Early—Z-Test Rendern von Nachschlag LIC Yo c s
> - ompositing H
Ebene i ™ Vektorfeld > berechnen > P g
Tiefenpuffer
setzen |

Rauschen Berechnung
Early—Z-Test Transferfunktion auf der GPU

Abbildung 5.4: Ablauf des Slicings fiir n Ebenen.

Zur Verwendung des Early-Z-Tests wird vor dem Durchfiihren des Ray-Castings fiir jede
Schicht der Tiefenpuffer entsprechend vorbereitet. Wird der Early-Z-Test eingesetzt, kann die
Textur der jeweiligen Depth-Peel-Schicht dazu verwendet werden, komplett leere Bereiche
von der LIC-Berechnung auszusparen. Da mehrere Renderdurchldufe benotigt werden, wird
wahrend des Ray-Castings und der Vorbereitung des Tiefenpuffers der vorzeitige Strahlab-
bruch durchgefiihrt. Dadurch wird verhindert, dass die nachfolgenden Schichten eines bereits
abgebrochenen Strahls weiterberechnet werden.

In Abbildung 5.5 sind auf der linken Seite die Texturen fiir die ersten vier Depth-Peel-Schichten
und auf der rechten Seite das jeweilige Ergebnis des LIC, bestehend aus den vorangegangenen
Schichten, dargestellt. Die Rotschattierungen geben die Anzahl der Schritte im leeren Raum
wieder. Je heller das Rot ist, desto mehr Schritte konnen iibersprungen werden. Griin einge-
tarbte Bereiche deuten darauf hin, dass die Boundingbox verlassen wurde ohne auf ein opakes
Voxel gestofien zu sein.

5.1.4 Slicing

Es wurde fiir das Slicing die Variante gewdhlt, bei der die Ebenen an der Kamera ausgerichtet
werden (View-Aligned-Slicing). Die Anzahl der Ebenen # ist abhédngig von der Samplingdi-
stanz. Deshalb wird zu Beginn die Distanz entlang der Blickrichtung zwischen der Vordersei-
te und der Riickseite des Volumens berechnet. n ergibt sich aus dem Verhéltnis dieser Distanz
zur Samplingdistanz. In Abbildung 5.4 ist die LIC-Berechnung fiir n Ebenen dargestellt.

Wird der Early-Z-Test zur Beschleunigung verwendet, muss der Tiefenpuffer entsprechend
modifiziert werden. Dazu wird dieser aufgrund des Framebufferinhalts des letzten Durchlaufs
vorbereitet. Ist die Opazitit eines Fragments grofier als der Schwellenwert des vorzeitigen
Strahlabbruchs, wird die Tiefe auf null gesetzt. Dadurch schldgt beim Rendern der nichsten
Ebene der Tiefentest fiir diese Fragmente fehl und das Fragmentprogramm wird nicht ausge-
fithrt. Der Einsatz des Early-Z-Test ist dringend zu empfehlen, da im Optimalfall einer grof3-
tenteils opaken Transferfunktion die LIC-Berechnung nur fiir wenige Fragemente ausgefiihrt
werden muss (vgl. 6.2).

35



Kapitel 5 GPU-basierter 3D LIC 5.2 Beleuchtung

Die Rendern der aktuellen Ebene i erfolgt nach deren Schnittberechnung mit dem Volumen.
Diese Schnittpunkte bilden nach einer Sortierung einen Facher aus Dreiecken. Beim Rendern
dieses Fachers werden die Positionen der Vertizes als Texturkoordinaten verwendet. Mit dieser
Position aus den Texturkoordinaten kann im Fragmentprogramm in der 3D-Textur des Vektor-
felds nachgeschlagen werden. Die Geschwindigkeit des Vektors kann wie beim Ray-Casting
als Eingabeparameter der Transferfunktion verwendet werden. Die Berechnung des LIC er-
folgt wie in Abschnitt 5.1.1 beschrieben im Fragmentprogramm. Das anschlieffende Compo-
siting kann entweder durch das Hardware-Blending von OpenGL oder durch Front-To-Back-
Blending im selben Fragmentprogramm erfolgen. Da der Einsatz des Early-Z-Tests den Inhalt
des Framebulffers fiir den vorzeitigen Strahlabbruch benétigt, kann dieser fiir das Compositing
im Fragmentprogramm wieder verwendet werden.

5.2 Beleuchtung

Fiir die Beleuchtung der Stromlinien werden nach der Berechnung des LIC im Fragmentpro-
gramm fiir jeden Abtastpunkt die Lichtrichtung und die Blickrichtung berechnet. Bei Verwen-
dung des Ray-Castings entspricht die Blickrichtung der umgekehrten Strahlrichtung, beim
Slicing muss sie aus der Kameraposition und der gegenwirtigen Position ausgerechnet wer-
den. Je nach verwendetem Beleuchtungsmodell erfolgen weitere Berechnungen (siehe Ab-
schnitt 3.4). Wird die Beleuchtung mittels Gradienten gleichzeitig mit der Methode zur Er-
haltung einer konstanten Raumfrequenz des Rauschens (Abschnitt 4.4) eingesetzt, konnen die
Gradienten ebenfalls mit Gleichung (4.13) interpoliert werden. Jedoch muss der Gradient aus
der Stufe m zuvor mit Faktor zwei multipliziert werden, um ihn an die hoheren Frequenzen
anzupassen.

Werden verschiedene Schrittweiten fiir die Traversierung des Volumens verwendet, ergeben
sich fiir transparente Bereiche unterschiedliche Ergebnisse. Dies wird durch die unterschiedli-
che Anzahl der Abtastungen verursacht. Durch einen geringeren Abstand ergeben sich mehr
Abtastungen und dies fiihrt zu einem dunkleren Ergebnis. Um dies zu korrigieren kann eine
Opazitatskorrektur (Opacity Correction) durchgefiihrt werden [31, 48]. Wurde die Opazitit
tiir die Samplingdistanz d,;; festgelegt und ist d,.» die neue Samplingdistanz, ergibt sich nach
Lacroute und Levoy [31] der korrigierte Alphawert aus

Xkorrigiert = 1- (1 - ‘X)dmw/dom (51)

Diese Korrektur der Opazitit lasst sich im Fragmentprogramm mit den folgenden drei Zeilen
durchfiihren:

SUB tmp.a, 1, dst.a;
POW tmp.a, tmp.a, ratio.r;
SUB dst.a, 1, tmp.a;

ratio.r enthilt dabei das Verhilinis dj,ey / dy14.

36



Kapitel 5 GPU-basierter 3D LIC 5.3 Features

5.3 Features

Zur Extraktion von Features lassen sich verschiedene Techniken einsetzen (siehe Ab-
schnitt 3.5). Das Velocity-Masking ldsst sich sehr einfach umsetzen. Im Fragmentprogramm
muss dazu nur die Geschwindigkeit des Vektors, fiir den der LIC berechnet wird, tiber die
Transferfunktion auf den Alphawert abgebildet werden. Ist dieser Alphawert gleich null, kann
die LIC-Berechnung fiir diesen Vektor iibersprungen werden. Zur Hervorhebung von Wirbeln
mit dem Lambda2-Verfahren wird anstelle der Geschwindigkeit der Skalarwert aus einer 3D-
Textur, die das Lambda2-Volumen enthilt, verwendet. Auf diesen Skalarwert kann anschlie-
end die Transferfunktion angewandt werden, um die uninteressanten Bereiche auszublen-
den.

Fiir das Clipping werden die von OpenGL zur Verfiigungen gestellten Hardware-Clip-Ebenen
verwendet. Jedoch erfordert die Verwendung der programmierbaren Pipeline der GPU, dass
die Entfernung von einem Vertex zu jeder Clipebene im Vertexprogramm explizit ausgerech-
net werden muss. Beim Slicing kann anschlieffend die LIC-Berechnung wie bisher durchge-
fithrt werden. Wird dagegen Ray-Casting eingesetzt, werden durch das Clipping Teile der
Boundingbox entfernt. Da das Fragmentprogramm fiir das Ray-Casting nur fiir gerenderte
Primitive durchgefiihrt wird, miissen die durch das Clipping entstandenen Flachen ebenfalls
mit Primitiven gefiillt werden. Zur Erzeugung dieser Primitive wird der beim Slicing verwen-
dete Algorithmus eingesetzt. Dieser wird so modifiziert, dass nur eine Ebene erzeugt wird,
die identisch mit der Clipebene ist. AnschliefSend wird das Ray-Casting fiir diese zusatzliche
Ebene durchgefiihrt.

5.4 Visualisierung zeitabhiangiger Datensitze

In der Stromungsvisualisierung sollen oft Daten, die aus mehreren Zeitschritten bestehen, vi-
sualisiert werden. Da die Messungen beziehungsweise die Simulationen mit diskreten Zeit-
schritten erfolgen, konnen sich bei der Visualisierung Diskontinuitdten ergeben. Um diese zu
verringern konnen Zwischenschritte berechnet werden. Dies kann beispielsweise durch Inter-
polation zwischen den einzelnen Zeitschritten erfolgen. Dazu werden die Datensitze von zwei
Zeitschritten jeweils in einer 3D-Textur abgelegt. Im Fragmentprogramm der LIC-Berechnung
findet in diesem Fall der Texturnachschlag mit der aktuellen Abtastposition in beiden Vektor-
feldern statt. Die Berechnung des LIC wird anschliefiend mit dem Wert durchgefiihrt, der sich
durch lineare Interpolation aus den Werten beider Texturen ergibt. Der Interpolationskoeffizi-
ent wird dazu von der Anwendung entsprechend gesetzt.

37



Kapitel 5 GPU-basierter 3D LIC 5.4 Visualisierung zeitabhdngiger Datensitze

Abbildung 5.5: Hier sind die ersten drei Schritte einer LIC-Berechnung mittels Ray-Casting in
Kombination mit Depth-Peeling dargestellt. Links sind die Texturen der jeweili-
gen Depth-Peel-Schicht dargestellt. Die Rotfarbung gibt an, wie viele Schritte im
leeren Raum {ibersprungen werden konnen. In griinen Bereichen wurde das Vo-
lumen verlassen. Rechts ist das Ergebnis des LIC fiir jeden Schritt abgebildet. Als
Datensatz wurde die Large Eddy Simulation von Octavian Frederich verwendet.

38



Kapitel 5 GPU-basierter 3D LIC 5.4 Visualisierung zeitabhdngiger Datensitze

Abbildung 5.5: Hier sind die Schritte vier bis sechs einer LIC-Berechnung mittels Ray-Casting in
Kombination mit Depth-Peeling dargestellt. Links sind die Texturen der jeweili-
gen Depth-Peel-Schicht dargestellt. Die Rotfarbung gibt an, wie viele Schritte im
leeren Raum {ibersprungen werden koénnen. In griinen Bereichen wurde das Vo-
lumen verlassen. Rechts ist das Ergebnis des LIC fiir jeden Schritt abgebildet. Als
Datensatz wurde die Large Eddy Simulation von Octavian Frederich verwendet.

39






6 Leistungsbetrachtung

Die Messungen wurden auf einem AMD Opteron 2800 mit Dual Core und 8 GB RAM durch-
gefiihrt. Als Grafikkarte wurde eine Quadro FX 3450 mit 256 MB Grafikspeicher von nVidia
eingesetzt. Die Viewportgrofie wurde auf 512 x 512 Pixel gesetzt. Wenn in den einzelnen Mes-
sungen nicht anders vermerkt, wurde eine Samplingdistanz von 1/128 verwendet. Die Anzahl
der Abtastpunkte pro Depth-Peel-Schicht beim Ray-Casting mit Depth-Peeling wurde auf 50
festgelegt. Bei der Verwendung weniger Abtastpunkte steigt die Zahl der Schichten, die vorbe-
rechnet und in Texturen gespeichert werden miissen. Speziell bei der Messung des Einflusses
verschiedener Viewportgrofien reicht deswegen bei hoheren Auflosungen der Grafikspeicher
nicht mehr aus. Wird stattdessen die Zahl der Abtastpunkte pro Schicht erhoht, so tibersteigt
die Zahl der Instruktionen im Fragmentprogramm das maximale Limit von 65536.

Gemessen wird die Zeit, die fiir das Rendern eines Bild benétigt wird, die Zahl der berechneten
Pixel und die Anzahl der Abtastpunkte. Um die Zeit zu messen, wird die Szene zwischen zehn
und 60 Mal, abhéngig von der erwarteten Zeit, gerendert und die gemessenen Zeiten gemittelt.
Zur Bestimmung der Anzahl der berechneten Pixel wird dieselbe Geometrie verwendet wie
bei der eigentlichen LIC-Berechnung, d.h. ein Wiirfel beim Ray-Casting und samtliche Slices
beim Slicing. Fiir das Ray-Casting wurden die Fragmentprogramme so abgedndert, dass nur
ein Schritt durchgefiihrt wird, aber keine LIC-Berechnung stattfindet. Beim Slicing wird die
Geometrie ohne Fragmentprogramm gerendert. Anschlieflend wird der Inhalt des Framebuf-
fers zurtickgelesen und die Pixel, deren Alphawert grofier null ist, gezahlt. Fiir die Ermittlung
der Anzahl der Abtastpunkte wurden die Fragmentprogramme fiir die LIC-Berechnung eben-
falls etwas abgedndert. Da jedoch das Ergebnis der LIC-Berechnung Einfluss auf die Anzahl
der Abtastpunkte hat, kann diese Messung nur gleichzeitig mit einer LIC-Berechnung durch-
gefiihrt werden. Ein Beispiel hierfiir wére der vorzeitige Strahlabbruch. Zu diesem Zweck
wurden die Fragmentprogramme mit einem zusatzlichen Zahler versehen, der inkrementiert
wird, wenn an der aktuellen Samplingposition eine LIC-Berechnung stattfindet. Um nicht das
Ergebnis des LIC zu beeinflussen, wird dieser Zahler in ein weiteres Rendertarget geschrieben.
Durch Zuriicklesen dieses weiteren Rendertargets kann sodann die Zahl der Abtastpunkte er-
mittelt werden. Wird Ray-Casting mit Depth-Peeling oder Slicing verwendet, so muss dieses
Rendertarget nach jedem Depth-Peel-Schicht beziehungsweise nach jedem Slice zuriickgele-
sen und das Ergebnis akkumuliert werden. In den Diagrammen wird das Ray-Casting mit
Depth-Peeling abgekiirzt mit Ray-Casting+DP.

Der fiir die Messungen verwendete Datensatz stammt aus einer Large-Eddy-Simulation und
ist Eigentum von Octavian Frederich, TU Berlin. Der Datensatz besitzt eine Auflosung von
128 x 128 x 128 Voxeln. Es handelt sich dabei um den Fluss einer Fliissigkeit oder eines Gases
um einen massiven Zylinder.

41



Kapitel 6 Leistungsbetrachtung 6.1 Einfluss der Viewportgrofse

Abbildung 6.1: Testszenario zur Messung des Einflusses der Viewportgrofie. Als Datensatz wurde
die Large Eddy Simulation von Octavian Frederich verwendet.

6.1 Einfluss der Viewportgrofie

Wenn die durchschnittlich benétigte Zeit pro Pixel konstant ist, sollte sich bei einer Vergrofse-
rung des Viewports die Gesamtzeit fiir das Rendern linear dazu verhalten. Dazu wird, begin-
ned bei einer Viewportgrofie von 64 x 64 Pixeln, die Auflésung schrittweise um 64 Pixel jeweils
in beide Dimensionen vergrofiert. Die verwendete Szene ist in Abbildung 6.1 dargestellt.

Gemessen wurde die benotigte Dauer pro Bild und die Zahl der berechneten Pixel. Da eine
Transferfunktion gewdhlt wurde, mit der grofse Teile des Vektorfelds ausgeblendet werden,
musste die Schrittweite fiir die Messung mit einfachem Ray-Casting auf 1/64 reduziert wer-
den (Abbildung 6.2(a)). Ansonsten ware das Instruktionslimit des Fragmentprogrammes tiber-
schritten und die Messung verfilscht worden. In Abbildung 6.2(b) betrdgt die Schrittweite
1/128. Es wurde ein logarithmischer Mafistab gewdhlt, da sich die Anzahl der Pixel exponen-
tiell zur Breite und Hohe des Viewports verhilt. Das lineare Verhalten ist deutlich zu erkennen.
Vervierfacht sich jedoch die Zahl der zu berechnenden Pixel, beispielsweise von 512 x 512 auf
1024 x 1024, so ist der Faktor bei der Renderdauer nicht ebenfalls vier sondern 2,5. Dies deutet
auf einen Faktor hin, der mit zunehmender Viewportgrofie beziehungsweise Renderdauer an
Gewicht verliert. Moglicherweise ist das bedingt durch das Vorbereiten des Framebuffers und
den Wechsel der Fragmentprogramme wihrend eines Renderpasses.

6.2 Framebufferobjekt, Early-Z-Test und weitere Optimierungen

In dieser Messung werden verschiedene Moglichkeiten verglichen, die das Rendern beschleu-
nigen oder das Zurticklesen von Texturen {iberfliissig machen. Ersteres wird unterstiitzt durch
den Early-Z-Test (siehe Abschnitt 2.3.3), letzteres durch Framebufferobjekte, kurz FBO. Diese
Framebufferobjekte erlauben es, direkt in Texturen zu rendern anstatt den Inhalt des Frame-
buffers nach dem Rendern in eine Textur zuriickzulesen. Hinzu kommen weitere Optimie-
rungen wie vorzeitiger Strahlabbruch (Abschnitt 2.3.3) oder Verzweigungen im Fragmentpro-
gramm. Um diese Effekte zu messen, wird der Datensatz aus zwei unterschiedlichen Positio-
nen, jedoch mit derselben Transferfunktion gerendert. Die Transferfunktion wurde so gewihlt,
dass nur der Fluss und die Wirbel in unmittelbarer Ndhe des Zylinders zu sehen sind. Von der
Seite muss so ein Grofsteil des Vektorfelds traversiert werden. Werden die LIC-Berechnungen

42



Kapitel 6 Leistungsbetrachtung 6.2 Optimierungen

oL Ray Casting —+— Ray Casting+DP ——+— Py

200 Ray Casting+DP —— 2m0° Slicing —*— 'y
~ 1m0° | Slicing —*— _
g 8 1m0°
@ 5007t Z o
5 5 500~
2 om0 | g
g 2010 8
[} 1 ) =
2 1ot ' 2007
[ [9)
14 9 14

5107 1107t F

ZEI.O_Z 1 1 1 1 1 1 11 11l 5'].0_2 T 1 1 1 1 1 N I T I

64x64 128x128  256x256  512x512  1024x1024 64x64 128x128  256x256  512x512 1024x1024
ViewportgroRe in Pixel (log) Viewportgrofe in Pixel (log)
(a) (b)

Abbildung 6.2: Einfluss der Grofle des Viewports auf die Renderdauer. Der Abstand der Samp-
lingpositionen betragt 1/64 (a) und 1/128 (b).

(a) (b)

Abbildung 6.3: Testszenario zur Messung von Optimierungen und der Verwendung von Frame-
bufferobjekten. Als Datensatz wurde die Large Eddy Simulation von Octavian Fre-
derich verwendet. Die Messungen wurden mit Blick von der Seite (a) und von oben
(b) durchgefiihrt.

innerhalb von diesem leeren Bereich nicht durchgefiihrt, sollte sich die Renderdauer verkiir-
zen (Abbildung 6.3(a)). Da der Datensatz im oberen Bereich eine schmale Schicht mit sehr ge-
ringer Geschwindigkeit enthilt, ldsst sich hier der Effekt des Early-Z-Tests und der vorzeitige
Strahlabbruch aufgrund hoher Opazitdten messen (Abbildung 6.3(b)).

Bei dieser Messung wurden die Renderdauer und die Anzahl der Abtastpunkte ermittelt.
Dafiir wurden fiir beide Positionen drei Messreihen, jeweils mit allen Kombinationen von
Early-Z-Test und Framebufferobjekten, durchgefiihrt. In der erste Messreihe wurden samt-
liche Optimierungen in den Fragmentprogrammen einschliefslich dem vorzeitigen Strahlab-
bruch deaktiviert. In der zweiten Testreihe wurde nur der vorzeitige Strahlabbruch und in
der letzten Testreihe wurden samtliche Optimierungen angeschaltet. Ist das Framebufferob-
jekt abgeschaltet, wird der Inhalt des Framebuffers mittels Zuriicklesen in die entsprechen-
den Texturen kopiert. Fiir das Ray-Casting ohne Depth-Peeling wurden keine Messungen fiir
den aktivierten Early-Z-Test durchgefiihrt, da dieses Verfahren fiir genau einen Pass konzi-
piert wurde. Abbildung 6.4 zeigt die Renderdauer bei gleichzeitiger Verwendung der nicht

43



Kapitel 6 Leistungsbetrachtung 6.3 Abhingigkeit von der Kameraposition

optimierten Fragmentprogramme. Der positive Effekt des Early-Z-Tests ist hier deutlich zu
erkennen. Wird nun der vorzeitige Strahlabbruch angeschaltet, verkiirzt sich die Renderdau-
er (Abbildung 6.5) auch ohne den Early-Z-Test. Beim Blick von oben sorgt dieser Test dafiir,
dass die Berechnung schon nach ein oder zwei Ray-Casting-Schritten abgebrochen wird, da
hier die gewtiinschte Opazitit erreicht wurde. Das Slicing profitiert von diesem Strahlabbruch
nicht, da dieser schon implizit im Early-Z-Test enthalten ist und weiterhin alle Slices geren-
dert werden miissen. Erst weitere Optimierungen in den Fragmentprogrammen sorgen dafiir,
dass die Renderzeiten beim Slicing sich denen der Ray-Casting-Verfahren angleichen (Abbil-
dung 6.6). Zu diesen Optimierungen gehort das Auslassen der LIC-Berechnung fiir Abtast-
punkte, an denen der Alphawert aus der Transferfunktion gleich null ist. Auffallend ist bei
allen Messungen, dass das Zuriicklesen aus dem Framebuffer schneller als die Verwendung
von Framebufferobjekten und dem gleichzeitigen Rendern in Texturen ist. In den Diagrammen
von Abbildung 6.7 sind die tatsdchlich durchgefiihrten LIC-Berechnungen mit Optimierungen
im Vergleich zu den insgesamt moglichen dargestellt. In Abbildung 6.7(b) ergibt sich der hohe
Anteil an gesparten Berechnungen aus der vollstindig opaken Schicht gleich zu Beginn des
Vektorfelds.

6.3 Abhingigkeit von der Kameraposition

Bei dieser Messung werden die Zeiten von verschiedenen Kamerapositionen verglichen. Fiir
die verschiedenen Kamerapositionen wird eine Haltonsequenz mit drei Komponenten ver-
wendet. Die Elemente der Haltonsequenz werden zur Erzeugung von Positionen in einem Ein-
heitswiirfel verwendet. Dabei werden Elemente, deren Position sich auferhalb der Einheitsku-
gel befinden, verworfen. Damit soll verhindert werden, dass sich in der Ndhe der Diagonalen
des Wiirfels mehr mogliche Positionen befinden als im tibrigen Raum. Die so gewonnenen
Positionen werden nach einer Normierung als neue Kamerarichtung verwendet. Die Kamera
wird anschlieflend ausgehend von der positiven z-Achse mit Hilfe von Quaternionen in die
neue Richtung gedreht. Dadurch ist sichergestellt, dass die Kamera immer auf den Ursprung
ausgerichtet ist. Gleichzeitig soll auch der Einfluss der Transferfunktion gemessen werden.
Dazu wurden zwei Transferfunktionen erstellt. Die erste Transferfunktion enthélt nur Alpha-
werte von null (transparent) und eins (opak). Bei der zweiten wurden weichere Ubergénge
zwischen transparenten und opaken Werten gewahlt (Abbildung 6.8).

Die Zeitmessungen fiir die erste Transferfunktion wurde fiir alle drei Techniken durchgefiihrt
(Abbildung 6.9(a)). Bei der zweiten Transferfunktion wurde auf Messungen mit Ray-Casting
ohne Depth-Peeling verzichtet, da hier 6fter das Instruktionslimit des Fragmentprogramms
tiberschritten worden wire (Abbildung 6.9(b)). Auffallend ist, dass Slicing bei den hier ge-
messenen Kamerapositionen schneller ist als die Techniken, die auf Ray-Casting basieren. Die
einzige Ausnahme bildet Position 10. Allerdings gilt zu beachten, dass hier nur die Zeit pro
Bild gemessen und keine Aussagen tiiber die Qualitdt gemacht wurden.

44



Kapitel 6 Leistungsbetrachtung

6.3 Abhéngigkeit von der Kameraposition

3 3
Ray Casting = Ray Casting m———1
Ray Casting+DP Ray Casting+DP
25 Slicing === 25 | Slicing ===
Z 2t @ 2t ] B
o 5}
3 3
© 15 ° 15
[} (7]
kel o
T T
2 1r & 1r
05 | 05 |
0 ﬂ 0 1
no FBO/no earlyZ FBO/no earlyZ  no FBO/earlyZ FBO/earlyZ no FBO/no earlyZ FBO/no earlyZ  no FBO/earlyZ FBO/earlyz

(a)

Abbildung 6.4: Renderdauer ohne vorzeitigen Strahlabbruch und zusatzlichen Optimierungen im

(b)

Fragmentprogramm. Vektorfeld von der Seite (a) und von oben (b).

3 25
Ray Casting = Ray Casting ———
Ray Casting+DP Ray Casting+DP
25 Slicing == oL ! I Slicing ==
@ 2t )
5} & 15}
3 3
T 15¢r k<l
S S
5 5
g 1t 2
05 L 05
0 ’_‘ 0 = = [
no FBO/no earlyZ FBO/no earlyZ  no FBO/earlyZ FBOlearlyz no FBO/no earlyZ FBO/no earlyZ  no FBO/earlyZ FBO/earlyZ

(a)

Abbildung 6.5: Renderdauer mit aktiviertem vorzeitigen Strahlabbruch ohne zusétzliche Optimie-

(b)

rungen im Fragmentprogramm. Vektorfeld von der Seite (a) und von oben (b).

1 0.2
Ray Casting =——— Ray Casting ==——
Ray Casting+DP Ray Casting+DP
08 | Slicing === Slicing ==
’ 0.15
= @
& 06} @
3 3
° ° 0.1
[} [
2 04F} °
[J] (5]
14 14
0.05
02
0

no FBO/no earlyZ FBO/no earlyZ

(a)

no FBO/earlyZ FBO/earlyZ

no FBO/no earlyZ FBO/no earlyZ

(b)

no FBO/earlyZ FBO/earlyZ

Abbildung 6.6: Renderdauer mit aktiviertem vorzeitigem Strahlabbruch und zusitzlichen Opti-
mierungen im Fragmentprogramm. Vektorfeld von der Seite (a) und von oben (b).

45



Kapitel 6 Leistungsbetrachtung 6.3 Abhingigkeit von der Kameraposition

25% - 4% -
Ray Casting ==——— Ray Casting =——
Ray Casting+DP = 3.5% | Ray Casting+DP =
20% | Slicing == Slicing ===
3%
15% |- 25%
2%
10% - 1.5% |-
1%
5% |-
0.5% [
0% 0%
no FBO/no earlyZ  FBO/no earlyZ no FBO/earlyZ FBO/earlyz no FBO/no earlyZ FBO/no earlyZ ~ no FBO/earlyZ FBO/earlyZ
(@) (b)

Abbildung 6.7: Verhiltnis zwischen durchgefiihrten LIC-Berechnungen mit optimiertem Frag-
mentprogramm und der Anzahl der Berechnungen im nichtoptimierten Fall. Vek-
torfeld von der Seite (a) und von oben (b).

(a) (b)

Abbildung 6.8: Testszenario, um die Auswirkung verschiedener Kamerapositionen auf die Ren-
derdauer zu messen. (a) harter Ubergang der Opazitit. (b) weicher Ubergang der

Opazitit.
0.7 - 0.7 -
Ray Casting =—2 ; Ray Casting+DP 1
06 | Ray Casting+DP =1 06 I I Slicing ==
’ N Slicing == ) . B
@ 05 ) @ 05 1 - N -
5] 9]
§ 04 § 04
g o3} g o3}
] 5
02 T g2l
il ot nl W |
0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Kameraposition Kameraposition
(a) (b)

Abbildung 6.9: Auswirkung verschiedener Kamerapositionen auf die Renderdauer. (a) harter
Ubergang der Opazitit. (b) weicher Ubergang der Opazitit.

46



Kapitel 6 Leistungsbetrachtung 6.4 Beleuchtungsmodelle

(d)

35
Zockler —m —
3L Mallo -
Gradient =—=3 —
LIC 3 L
) 25 | ]
2
3 15
o
3]
24 1+
0.5
0

opak/opak transp/opak opak/transp transp/transp

Transferfunktion Velocity—Masking/LIC Intensitat

(e)

Abbildung 6.10: Gegentiberstellung der Beleuchtungsmodelle von Zockler und Mallo, der Be-
leuchtung mittels Gradienten und des unbeleuchteten LICs bei Verdnderung
der Transferfunktionen fiir Velocity-Masking und LIC-Intensitit. Testszenario
mit Gradientenbeleuchtung: (a) beide Transferfunktionen vollstdndig opak. (b)
Velocity-Masking mit Transparenz. (c) niedrige LIC-Intensitdt mit Transparenz.
(d) Kombination aus (b) und (c).

(e) Messung der benétigten Zeit pro Bild fiir diese Transferfunktionen.

6.4 Beleuchtungsmodelle

Fiir den Vergleich der verschiedenen Beleuchtungsmodelle von Zockler, Mallo, Beleuchtung
mittels Gradienten und des unbeleuchteten LIC (siehe Abschnitt 5.2) wird Ray-Casting mit
Depth-Peeling zusammen mit mehreren Transferfunktionen eingesetzt. Eine Transferfunkti-
on wird fiir das Velocity-Masking verwendet, um Teile des Vektorfelds auszublenden (siehe
Abschnitt 3.5), eine weitere wird zur Abbildung der LIC-Intensitdt verwendet. Damit ist es bei-
spielsweise moglich, Bereiche, in denen die Intensitdt des LIC sehr gering ist, auszublenden.
Fiir die Messung werden diese zwei Transferfunktionen miteinander kombiniert. In Abbil-
dung 6.10(a)-(d) sind die Effekte dieser Transferfunktionen exemplarisch dargestellt.

Die benétigte Zeit pro Bild ist in Abbildung 6.10(e) dargestellt. Auf der x-Achse sind vier
Kombinationen der Transferfunktionen aufgetragen. Die erste Komponente jeder Kombina-
tion bezieht sich auf die Transferfunktion des Velocity-Maskings, die zweite bezieht sich auf
die Abbildung der LIC-Intensitit. Sind beide Transferfunktionen opak, so wird nur eine LIC-
Berechnung direkt an der Oberfliche des Wiirfels durchgefiihrt. Fiir alle Beleuchtungsmo-
delle ergeben sich deshalb sehr geringe Renderzeiten. Erkennbar ist, dass die Beleuchtung

47



Kapitel 6 Leistungsbetrachtung 6.5 Samplingdistanz

Ray Casting —+—
3.5  Ray Casting+DP ——<— X
Slicing —*—

Renderdauer [s]

14 1/32 1/64 1/128 1/256
Samplingdistanz

(a) (b)

Abbildung 6.11: (a) Testszenario zur Messung des Einflusses der Samplingdistanz. Als Datensatz
wurde die Large Eddy Simulation von Octavian Frederich verwendet. (b) Dauer
pro Bild in Abhédngigkeit von der Samplingdistanz. Die Unterteilung der x-Achse
entspricht der Anzahl der Abtastpunkte.

anhand von Gradienten die meiste Zeit beansprucht. Dies diirfte auf die zusatzlichen Kom-
ponenten des Rauschens zuriickzufiihren sein. Denn anstatt nur die Intensitdt des Rauschens
aus einer Textur zu lesen, miissen zusétzlich die Gradienten ausgelesen und verarbeitet wer-
den. Erstaunlich ist, dass der unbeleuchtete LIC mehr Zeit zur Berechnung benétigt als das
Modell von Zockler, wobei nach der Berechnung des LIC nur die Abbildung auf die zweite
Transferfunktion und die Korrektur der Opazitat durchgefiihrt wird. Bei Zockler hingegen ist
ein Texturnachschlag erforderlich. Moglicherweise kann durch diesen Texturnachschlag das
Fragmentprogramm besser optimiert werden oder mogliche Latenzen werden dadurch auf-
gefangen. Fiir eine ndhere Untersuchung miissen genauere Messungen durchgefiihrt werden.
Es muss auch mehr {iber den internen Aufbau der Grafikhardware bekannt sein. Dagegen
erscheint es logisch, dass die Beleuchtung nach Mallo langsamer ist als bei Zockler, da die Be-
rechnung der Texturkoordinaten komplexer ist und zwei Texturnachschlidge benotigt werden.

6.5 Samplingdistanz

Die pro Bild benotigte Zeit sollte linear zur Anzahl der Samplingpositionen sein, da jede LIC-
Berechnung pro Samplingposition exakt dieselbe Zeit beanspruchen sollte. Da sich die Zahl
der Abtastungen schwer einstellen ldsst, wird bei dieser Messung die Samplingdistanz ver-
wendet, die sich reziprok dazu verhilt. Die Transferfunktion wurde so gewéhlt, dass der Fluss
um den Zylinder halb transparent ist. Dadurch miissen mehrere LIC-Berechnungen durchge-
fithrt werden, um ein opakes Fragment zu erhalten. Abbildung 6.11(a) zeigt das Vektorfeld mit
der entsprechenden Transferfunktion.

In Abbildung 6.11(b) ist das Ergebnis der Messung dargestellt. Die x-Achse wurde so skaliert,
dass sie der tatsachlichen Anzahl von Abtastpunkten entspricht. So sollte sich die Anzahl der
Abtastungen um Faktor zwei verdoppeln, wenn die Samplingdistanz halbiert wird. Zu erken-
nen ist der erwartete lineare Verlauf. Fiir das Ray-Casting ohne Depth-Peeling wurden nur

48



Kapitel 6 Leistungsbetrachtung 6.6 Anzahl der LIC-Schritte pro Abtastpunkt

25 -
Ray Casting+DP ——+—

2+ +
Z +
g 15¢f )
T
©
5] +
5
2 e

o5+
7
0 1 1 1 1 1 1

0 10 20 30 40 50 60
Schritte pro LIC-Berechnung

(a) (b)

Abbildung 6.12: (a) Testszenario um den Einfluss der Anzahl der LIC-Schritte zu bestimmen. Als
Datensatz wurde die Large Eddy Simulation von Octavian Frederich verwendet.
(b) Dauer pro Bild in Abhéangigkeit der LIC-Schritte.

die Messdaten bis zu einer Samplingdistanz von 1/64 abgebildet, da das Instruktionslimit bei
kleineren Schrittweiten iiberschritten wurde.

6.6 Anzahl der LIC-Schritte pro Abtastpunkt

Die Breite des LIC-Kernels wird durch zwei Faktoren bestimmt: Zum Einen durch die Schritt-
weite zwischen den einzelnen Abtastungen und zum Anderen durch die Anzahl der Schritte
in beide Richtungen. Die Anderung der Schrittweite hat nur Einfluss auf das Ergebnis der
Berechnung, aber nicht auf die Komplexitit, da das Vektorfeld nur an anderen Punkten abge-
tastet wird. Nimmt dagegen die Anzahl der LIC-Schritte zu, so miissen die zwei Schleifen fiir
die Vorwirts- beziehungsweise die Riickwirtsrichtung mehrmals ausgefiihrt werden. Da der
Schleifenrumpf in beiden Fillen nur aus Instruktionen ohne Verzweigung oder Spriingen be-
steht, liegt die Komplexitdt des Rumpfs in O(1). Dadurch sollte sich ein linearer Zuwachs bei
der benotigten Zeit pro Bild ergeben. Bei dieser Messung wurde als Technik Ray-Casting mit
Depth-Peeling eingesetzt. In Abbildung 6.12 ist die Testszene und das Ergebnis der Messung
dargestellt. Mit Ausnahme des ersten Messwerts ergibt sich der erwartete lineare Verlauf.

6.7 Anzahl der Abtastungen pro Depth-Peel-Schicht

Wird Ray-Casting mit Depth-Peeling verwendet, so werden abhédngig von der Anzahl der Ab-
tastungen pro Depth-Peel-Schicht mehr oder weniger Schichten benétigt. Da mit jeder zu-
sdtzlichen Depth-Peel-Schicht beim Rendern ein gewisser Overhead verbunden ist, sollte die
Zahl der Schichten moglichst gering sein und damit die Anzahl der Abtastungen pro Schicht
grofs. Allerdings ist die maximale Zahl der Abtastungen aufgrund des Instruktionslimits fiir
Fragmentprogramme auf 50 beschrédnkt. Fiir diese Messung wurde die Transferfunktion so
gewdhlt, dass grofie Bereiche entstehen, die vollstdndig transparent sind, Teile des Inneren je-
doch gleichzeitig opak sind (Abbildung 6.13(a)). Bei dieser Transferfunktion sollte die Zahl

49



Kapitel 6 Leistungsbetrachtung 6.7 Anzahl der Abtastungen pro Depth-Peel-Schicht

25

15| A A

Renderdauer [s]

05

10 15 20 25 30 35 40 45 50
Schritte pro Depth—Layer—Schicht

(@) (b)

Abbildung 6.13: (a) Zur Messung der Auswirkungen von unterschiedlich vielen Abtastungen pro
Depth-Peel-Schicht verwendetes Testszenario. Als Datensatz wurde die Large Ed-
dy Simulation von Octavian Frederich verwendet. (b) Dauer pro Bild in Abhan-
gigkeit zur Anzahl der Abtastungen pro Depth-Peel-Schicht.

der Abtastungen pro Depth-Peel-Schicht moglichst grof3 sein, um den leeren Raum mit mog-
lichst wenigen Schichten tiberspringen zu konnen. Im Inneren des Vektorfelds sollte jedoch die
Zahl der Schichten etwas hoher sein, um vom Early-Z-Test zwischen den einzelnen Schichten
profitieren zu konnen.

Das Ergebnis der Messung fiir diese Transferfunktion ist in Abbildung 6.13(b) zu sehen.
Auffillig sind die starke Schwankungen besonders im mittleren Bereich. Eine Erklarung da-
fiir konnte das interne Caching der Grafikkarte sein. Das notwendige Wechseln der Shader
wihrend des Rendervorgangs konnte sich ebenfalls auswirken. Da iiber die interne Architek-
tur der heutigen Grafikkarten wenig bekannt ist, lassen sich in beiden Fillen keine konkreten
Aussagen treffen. Anzumerken bleibt, dass hier nur eine spezielle Transferfunktion untersucht
wurde. Da die Anzahl der Abtastungen pro Depth-Peel-Schicht abhdngig von der verwende-
ten Transferfunktion ist, ist es nicht moglich, eine generelle Aussage dazu zu treffen.

50



7 Qualitative Ergebnisse

7.1 Visuelle Auswertung

Verbesserung der Interaktion

Da die Berechnung des 3D LIC nicht interaktiv erfolgt, wird wahrend der Benutzerinteraktio-
nen der Datensatz mit reduzierter Qualitdt dargestellt (Abbildung 7.1). Dazu wird die Auflo-
sung des Viewports halbiert und die Samplingdistanz vergrofiert. Gleichzeitig wird die Raum-
frequenz des Rauschens verringert, um den Gesamteindruck ansatzweise zu erhalten.

Maximales Instruktionslimit des Fragmentprogramms

Aufgrund der hohen Komplexitdt der LIC-Berechnung kann das Instruktionslimit der Frag-
mentprogramme iiberschritten werden. Da beim Ray-Casting ohne Depth-Peeling die kom-
plette Berechnung des 3D LIC innerhalb eines Fragmentprogramms erfolgt, wird dieses In-
struktionslimit sehr schnell erreicht. Sobald das Instruktionslimit iiberschritten wird, tauchen
im Framebuffer beziehungsweise in der Textur des Rendertargets meist griine Pixel auf. In
Abbildung 7.2 ist dieser Fall abgebildet.

Skalierung der Raumfrequenzen des Rauschens

Um den Einfluss der Raumfrequenz des Rauschens auf das Ergebnis des 3D LIC zu demons-
trieren, wurde ein diinnes Rauschen verwendet und die Raumfrequenzen des Rauschen durch
eine Skalierung verdndert. Abbildung 7.3 zeigt, dass die Granularitit des 3D LIC von der
Raumfrequenz des Rauschens beeinflusst wird. So ergeben sich fiir niedrige Frequenzen gro-
ere Anhdufungen und fiir hohere Frequenzen feine Stromlinien.

Einfluss des verwendeten Rauschens

Der Typ des verwendeten Rauschen wirkt sich auf das Ergebnis des 3D LIC auswirken. Be-
sonders bei der Verwendung der Beleuchtung mittels Gradienten sollte das Rauschen keine
hohen Frequenzen enthalten, damit durch Beleuchtung der Eindruck glatter Flichen erweckt
wirkt. Abbildung 7.4 veranschaulicht dazu auf der linken Seite verschiedene Typen von Rau-
schen. Auf der rechten Seite sind Ausschnitte derselben Szene zu sehen. Das weifie Rauschen
erweckt einen guten Eindruck durch die feine Struktur. In der Vergrofierung ist jedoch zu
erkennen, dass die Oberflache der Stromlinien nicht glatt ist. Dies ist auf die hohen Raumfre-
quenzen der Textur zuriickzufiihren. Ist das Rauschen zu diinn, ergeben sich nur Bruchstiicke
der Stromlinien (Abbildung 7.4, vierte Reihe). Durch die Erhohung der Schrittweite und der
Schrittanzahl innerhalb des LIC sollten sich langere Stromlinien ergeben.

51



Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.1: Zur Verbesserung der Interaktion wird die Qualitét verringert. Links ist die hoch-
aufgeloste Version dargestellt, rechts dieselbe Szene mit reduzierter Auflosung,
grofierer Samplingdistanz und kleinerem Skalierungsfaktor fiir das Rauschen. Der
verwendete Datensatz stammt aus einer Large-Eddy-Simulation von Octavian Fre-
derich.

Vergleich der Beleuchtungsmodelle

In Abbildung 7.5 sind die Normalen der drei verwendeten Modelle fiir Stromlinienbeleuch-
tung dargestellt. Bei den Normalen von Zockler ist deutlich zu erkennen, dass diese koplanar
zu der Ebene sind, die von der Blickrichtung und der Lichtrichtung aufgespannt wird. Die
Normalen aus dem Modell von Mallo sind zwar abhdngig von der Richtung des Vektorfelds,
aber fiir jedes Stromlinienbiindel wird nur eine einzige Normale verwendet. Die Verwendung
des Gradienten aus der Rauschtextur fiihrt zu Normalen, die einer Oberfldche entsprechen.
Die drei Beleuchtungsmodelle und der unbeleuchtete LIC sind in Abbildung 7.6 veranschau-
licht.

Einfluss der Transferfunktion

Die Transferfunktion kann wie in der Volumenvisualisierung dazu verwendet werden, be-
stimmte Bereiche des Datensatzes einzufdrben und hervorzuheben. Gleichzeitig konnen an-
dere Teile des Volumens ausgeblendet werden. Dies wird am Beispiel eines Wirbel in Abbil-
dung 7.7 illustriert. Durch die Verwendung der speziellen Transferfunktion fiir den 3D LIC
(Abschnitt 3.4.4) kann der Tiefeneindruck der Visualisierung deutlich verbessert werden. In
Abbildung 7.8 werden links niedrige Intensitdtswerte des LIC auf null abgebildet, wodurch
sich leere Bereiche ergeben. Der Tiefeneindruck wird aber wesentlich verstarkt, wenn die In-
tensitat auf Werte, die minimal {iber null liegen, abgebildet wird.

52



Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.2: Maximale Anzahl der Instruktionen im Fragmentprogramm: Links wurde beim
Ray-Casting die maximale Anzahl {iberschritten. Rechts wurde dieselbe Szene
mit Ray-Casting und Depth-Peeling gerendert. Der verwendete Tornadodatensatz
stammt von Roger Crawfis.

Abbildung 7.3: Die Skalierung der Raumfrequenz des Rauschens hat groien Einfluss auf das Er-
gebnis des 3D LIC. Fiir diese Abbildungen wurde ein diinnes Rauschen mit einer
Auflésung von 256 x 256 x 256 verwendet. Der Skalierungsfaktor betragt 0,5, 1,5,
2,5 und 3,5 (von links nach rechts, von oben nach unten). Der verwendete Torna-
dodatensatz stammt von Roger Crawfis.

53



Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.4: Der Datensatz ist links vollstaindig und rechts als Ausschnitt dargestellt. In der
ersten Reihe wurde weifles Rauschen, in der zweiten, dritten und vierten Reihe
wurde diinnes Rauschen eingesetzt. Dabei wurde fiir das Rauschen in Reihe zwei
das Stratified Sampling eingesetzt. Reihe drei und vier zeigen jeweils ein Rauschen
aus einer Haltonsequence, fiir Reihe vier wurde ein Tiefpassfilter mit sehr geringer
Grenzfrequenz gewéhlt. Der Tornadodatensatz stammt von Roger Crawfis.

54



Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.5: Hier sind die Normalen der verschiedenen Beleuchtungsmodelle dargestellt. Ganz
links ist das Normalenfeld von Zockler, in der Mitte das von Mallo und rechts das
der Gradienten abgebildet. Als Datensatz wurde der Tornado von Roger Crawfis
eingesetzt.

Abbildung 7.6: Links oben ist der unbeleuchtete LIC, rechts davon die Beleuchtung nach Zockler
et al. dargestellt. In der unteren Reihe befindet sich links das Modell von Mallo et
al. und rechts die neu vorgestellte Beleuchtung mittels Gradienten des eingesetzten
Rauschens. Als Datensatz wurde der Tornado von Roger Crawfis eingesetzt.

55



Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.7: Mit einer geeigneten Transferfunktion ldsst sich aus dem Volumen links ein Wirbel
extrahieren (rechts). Als Datensatz wurde 6603-small eingesetzt.

Abbildung 7.8: Zur Verbesserung der Tiefenwahrnehmung kann die Transferfunktion verwendet
werden. In der linken Spalte werden niedrige Intensititen des 3D LIC auf null
abgebildet. Wird stattdessen ein Wert groier null verwendet ergibt sich ein bes-
seres Tiefenbild (rechts). Als Datensédtze wurden die Benard-Stromung von Daniel
Weiskopf (oben) und der Tornado von Roger Crawfis (unten) verwendet.

56



Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

7.2 Beispiele

Benard-Stromung

Die Benard-Stromung von Daniel Weiskopf besteht aus zahlreichen Wirbeln. Der Datensatz
besitzt eine Auflosung von 128 x 32 x 64. Leider stand der Datensatz nur als Vektorfeld mit
normierten Richtungen ohne Geschwindigkeitsinformation zur Verfiigung. In Abbildung 7.9
ist links der Datensatz mit einem diinnen Rauschen und dem 3D LIC dargestellt. Rechts wer-
den mit Hilfe des Lambda2-Verfahrens die Wirbel identifiziert und rot hervorgehoben.

IEEE Visualization 2004 Contest

Dieser Datensatz stammt aus dem IEEE Visualization Contest im Jahr 2004. Es handelt sich
dabei um einen Datensatz einer Hurrikansimulation des National Center for Atmospheric Re-
search in den Vereinigten Staaten. Die Stromungsdaten wurden aus dem multivariten Origi-
naldatensatz gewonnen. Der Datensatz besitzt eine Auflosung von 500 x 500 x 100 und wird
in Abbildung 7.10 veranschaulicht.

Tornado
Dieser Tornado stammt aus einer Simulation von Roger Crawfis. Der Datensatz wurde mit

einer Auflésung von 256 x 256 x 256 erzeugt. Fiir die Darstellung in Abbildung 7.11 werden
Velocity-Masking, Clipping und das Lambda2-Verfahren eingesetzt.

Large-Eddy-Simulation

Fiir diese Simulation wurde eine Auflosung von 256 x 128 x 128 zugrunde gelegt. Hierbei
handelt es sich um einen Datensatz von Octavian Frederich, in dem ein Zylinder von einer

Abbildung 7.9: Benard-Stromung von Daniel Weiskopf: Da in diesem Datensatz leider nur die nor-
mierten Vektoren zur Verfiigung standen, kann die Stromung nur in einem Farbton
dargestellt werden (links). Rechts sind die Wirbel basierend auf dem Lambda2-
Wert mit rot hervorgehoben.

57



Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.10: IEEE Visualization 2004 Contest: Links wurde die Kamera direkt tiber dem Daten-
satz platziert. Der Hurrikan befindet sich etwas rechts unterhalb der Bildmitte. Im
rechten Bild wurde der Kern des Hurrikan mittels Lambda2-Verfahren extrahiert.
Die Farben reprasentieren die Geschwindigkeit. Weifse Bereiche deuten auf eine
langsame und blau-violette Bereiche auf eine schnelle Stromung hin.

Stromung umflossen wird. In Abbildung 7.12 ist der Datensatz von der Seite und von oben
dargestellt. Fiir die Farbkodierung wurde die Geschwindigkeit verwendet. Langsame Bereiche
sind von blau bis griin, schnellere Bereiche von griin iiber gelb bis hin zu rot eingefarbt.

6603-small
Bei diesem Datensatz handelt es sich um zwei Wirbel mit hoher Geschwindigkeit. Diese Wirbel

sind umgeben von einer langsamen Stromung, welche in Abbildung 7.13 zu sehen sind. Die
Auflosung des Datensatzes betragt 135 x 225 x 129.

58



Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.11: Tornado von Roger Crawfis: Links ist der Tornadodatensatz von aussen zu se-
hen. Die Transferfunktion ist so gewéhlt, dass die Stromlinienbiindel deutlich zu
sehen sind. Im Bild rechts wird das Innere des Tornados durch Clipping sichtbar
gemacht. In der unteren Reihe wird der Tornado links durch Velocity-Masking
hervorgehoben. Rechts wurde der Wirbelkern des Tornados durch das Lambda2-
Kriterium bestimmt und opak gerendert.

59



Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.12: Large-Eddy-Simulation von Octavian Frederich: Im ersten Bild wird ein sehr diin-
nes Rauschen verwendet. Der Zylinder ist dunkelblau eingefdrbt. Im néchsten
Bild wird dieselbe Kameraposition aber ein dichteres Rauschen verwendet. Fiir
das letzte Bild wird mit einer Clipping-Ebene der obere Teil des Volumens ent-
fernt und von oben auf die Stromung geblickt. In allen Bildern sind deutlich die
Verwirbelungen hinter dem Zylinder zu erkennen. (von oben nach unten)

60



Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.13: 6603-small: In der ersten Reihe wird eine Clipping-Ebene verwendet, um das In-
nere des Datensatzes zu visualisieren. Am unteren Rand ist einer der zwei Wirbel
zu erkennen. Bei den Bildern der mittleren Reihe wird eine andere Transferfunk-
tion eingesetzt und beim rechten Bild zusétzlich Velocity-Masking eingesetzt. Fiir
das Bild in der untersten Reihe wurde eine Clipping-Ebene entlang eines Wirbels
platziert.

61






8 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein neuer Ansatz zur Berechnung des volumetrischen LIC vorgestellt.
Dabei handelt es sich um ein GPU-basiertes Verfahren. Der 3D LIC wurde dazu mittels ver-
schiedener Techniken berechnet. Das Ray-Casting und das Slicing aus dem Bereich der Vo-
lumenvisualisierung wurden an die Berechnung des LIC angepasst. Die Integration des LIC
erfolgt dabei vollstandig im Fragmentprogramm. Zur Beschleunigung wurden Verfahren wie
der vorzeitige Strahlabbruch, das Uberspringen von leerem Raum und der Early-Z-Test ver-
wendet.

Zur Bewiltigung der visuellen Komplexitat, die sich durch den Wechsel der Dimension von
2D auf 3D ergibt, wurden verschiedene Losungsanséatze vorgestellt. Dazu wurde die Transfer-
funktion um einen weiteren Kanal erweitert. Dieser Kanal dient dazu, die berechnete Intensitit
des LIC auf einen Opazitdtswert abzubilden. Die ermoglicht es, Bereiche in denen die LIC-
Intensitdt sehr gering ist auszublenden. Wird fiir diese Opazitdtswerte ein Wert verwendet,
der geringfligig grofler als null ist, fiihrt dies zu einem verstarkten Tiefeneindruck.

Erstmalig wurden fiir die Beleuchtung der Stromlinien die Gradienten des Rauschens ver-
wendet. Aus diesen Gradienten wird im Integrationsschritt des LIC ein neuer Gradient be-
rechnet. Dieser wird in der nachfolgenden Beleuchtung als Normale verwendet. Durch die
Verwendung geeigneter Rauschtexturen ergeben sich so Stromlinienbiindel mit glatter Ober-
flache und den entsprechenden Normalen. Zum Vergleich dazu wurden auch die Modelle zur
Beleuchtung von Stromlinien von Zockler et al. und Mallo et al. implementiert.

Bei der Berechnung des Gradienten wahrend der Integration des LIC wurden die Annahmen
getroffen, dass der Gradient des Filters konstant ist und es sich um gerade Stromlinien handelt.
Die Annahme, dass Stromlinien gerade sind, ist in turbulenten Stromungen nicht giiltig. Wenn
sich die Stromlinie kriimmt, miisste der Gradient entsprechend angepasst werden.

Das Clipping mit den Hardware-Clip-Ebenen ist fiir das Ray-Casting nicht immer korrekt.
Wird eine Clipebene entgegen der Blickrichtung verwendet, werden die Strahlen des Ray-
Castings nicht an dieser Clip-Ebene sondern erst an der Boundingbox des Volumens abgebro-
chen. Eine mogliche Losung wire, nicht die Boundingbox fiir den Strahlabbruch zu verwen-
den sondern eine beliebige Geometrie.

Zur Verbesserung der Wahrnehmung wire die Animation des 3D LIC denkbar, um die Stro-
mungsrichtung besser darstellen zu konnen. Interessant wire auch, die Berechnung des 3D
LIC auf der GeForce 8800 von nVidia durchzufiihren. Da diese Grafikkarte tiber 128 Pipelines
verfligt diirfte sich dies positiv auf die Gesamtperfomance auswirken.

63






Literaturverzeichnis

[1] Arvo,].R,; Kirk, D. B.: Particle Transport and Image Synthesis. In: Computer Graphics (ACM
SIGGRAPH), Seiten 63-66. 1990

[2] Banks, D. C.: Illumination in diverse codimensions. In: Proc. ACM SIGGRAPH, Seiten 327-
334. 1994

[3] Blinn, J. E.: Models of light reflection for computer synthesized pictures. In: Proc. ACM SIG-
GRAPH, Seiten 192-198. 1977

[4] Cabral, B.; Leedom, L. C.: Imaging Vector Fields Using Line Integral Convolution. In: Proc.
ACM SIGGRAPH, Seiten 263-270. 1993

[5] Carr, N. A.; Hall, J. D.; Hart, J. C.: The ray engine. In: Proc. ACM SIGGRAPH/EUROGRA-
PHICS, Seiten 37—-46. 2002

[6] Cline, H. E.; Ludke, S.; Lorensen, W. E.: Dividing cubes system and method for the display of
surface structures contained within the interior region of a solid body. United States Patent No.
4,719,585, 1988

[7] Danskin, J.; Hanrahan, P.: Fast algorithms for volume ray tracing. Workshop on Volume
Visualization, Seiten 91-98. 1992

[8] de Leeuw, W,; van Liere, R.: Comparing LIC and spot noise. In: Proc. IEEE Visualization,
Seiten 359-365. 1998

[9] Diepstraten, J.; Weiskopf, D.; Ertl, T.: Transparency in interactive technical illustrations. Com-
puter Graphics Forum, Vol. 21.3, Seiten 317-317. 2002

[10] Engel, K.; Hadwiger, M.; Kniss, ]. M.; Lefohn, A. E.; Salama, C. R.; Weiskopf, D.: Real-time
volume graphics. In: ACM SIGGRAPH 2004 Course Notes. 2004

[11] Everitt, C.: Interactive order-independent transparency. nVidia White Paper.  2001.
URL http://developer.nvidia.com/object/Interactive_Order_
Transparency.html

[12] Foley, J. D.; van Dam, A.; Feiner, S. K.; Hughes, J. E.: Computer Graphics — Principles and
Practice. 2. Auflage Addision-Wesley 1990

[13] Forssell, L.: Visualizing flow over curvilinear grid surfaces using line integralconvolution. In:
Proc. IEEE Visualization, Seiten 240-247. 1994

[14] Forssell, L.; Cohen, S.: Using Line Integral Convolution for Flow Visualization: Curvilinear
Grids, Variable-Speed Animation, and Unsteady Flows. In: IEEE Transactions on Visualization
and Computer Graphics, Seiten 133-141. 1995

[15] Hege, H.; Stalling, D.: Fast LIC with Piecewise Polynomial Filter Kernels. Mathematical Vi-
sualization, Seiten 295-314. 1998

[16] Helgeland, A.; Andreassen, O.: Visualization of vector fields using seed LIC and volume ren-
dering. IEEE Transactions on Visualization and Computer Graphics, Vol. 10.6, Seiten 673—
682. 2004

65


http://developer.nvidia.com/object/Interactive_Order_Transparency.html
http://developer.nvidia.com/object/Interactive_Order_Transparency.html

Literaturverzeichnis

[17] Herman, G.; Liu, H.: Display of three-dimensional information in computed tomography. ] Com-
put. Assisted Tomograph, Vol. 1.1, Seiten 155-160. 1977

[18] Herman, G. T.; Liu, H. K.: 3D display of human organs from computed tomograms. Computer
Graphics Image Processing, Vol. 9.1, Seiten 1-21. 1979

[19] Interrante, V.; Grosch, C.: Strategies for Effectively Visualizing 3D Flow with Volume LIC. In:
Proc. IEEE Visualization, Seiten 421-424. 1997

[20] Interrante, V.; Grosch, C.: Visualizing 3D flow. IEEE Computer Graphics & Applications,
Vol. 18.4, Seiten 49-53. 1998

[21] Jeong, J.; Hussain, E.: On the identification of a vortex. Journal of Fluid Mechanics Digital
Archive, Vol. 285, Seiten 69-94. 1995

[22] Kajiya, J. T.; Herzen, B. P. V.: Ray tracing volume densities. In: ACM SIGGRAPH, Seiten
165-174. 1984

[23] Keller, A.: The Fast Calculation of Form Factors Using Low Discrepancy Sequences. In: Proc.
Spring Conference on Computer Graphics (SCCG 96), Seiten 195-204. 1996

[24] Keller, A.: Instant radiosity. Computer Graphics, Vol. 31.Annual Conference Series, Seiten
49-56. 1997

[25] Keller, A. Strictly deterministic sampling methods in computer graphics. Technical report,
Mental Images, 2001

[26] Kenwright, D. N.; Mallinson, G. D.: A 3-D streamline tracking algorithm using dual stream
functions. In: Proc. IEEE Visualization, Seiten 62-68. 1992

[27] Kiu, M.-H.; Banks, D. C.: Multi-frequency noise for LIC. In: Proc. IEEE Visualization, Seiten
121-126. 1996

[28] Klein, T.; Strengert, M.; Stegmaier, S.; Ertl, T.: Exploiting Frame-to-Frame Coherence for Acce-
lerating High-Quality Volume Raycasting on Graphics Hardware. In: Proc. IEEE Visualization,
Seite 29. 2005

[29] Kramer, D.; Kaufman, L.; Guzman, R.; Hawryszko, C.: A general algorithm for oblique image
reconstruction. IEEE Computer Graphics and Applications, Vol. 10.2, Seiten 62-65. 1990

[30] Kriiger, J.; Westermann, R.: Acceleration Techniques for GPU-based Volume Rendering. In:
Proc. IEEE Visualization, Seiten 287-292. 2003

[31] Lacroute, P.; Levoy, M.: Fast Volume Rendering Using a Shear—Warp Factorization of the View-
ing Transformation. In: Proc. ACM SIGGRAPH, Seiten 451-458. 1994

[32] Lakare, S.; Kaufman, A.: Light Weight Space Leaping using Ray Coherence. In: Proc. IEEE
Visualization, Seiten 19-26. 2004

[33] Laramee, R. S.; Hauser, H.; Doleisch, H.; Vrolijk, B.; Post, F. H.; Weiskopf, D.: The state of
the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum,
Vol. 23.2, Seiten 143-161. 2004

[34] Levoy, M.: Efficient ray tracing of volume data. ACM Transactions on Graphics, Vol. 9.3,
Seiten 245-261. 1990

[35] Li, G.; Tricochel, X.; Hansen, C.: GPUFLIC: Interactive and Accurate Dense Visualization of

66



Literaturverzeichnis

Unsteady Flows. In: Proc. Eurovis 2006 (EG / IEEE VGTC Symposium on Visualization).
2006

[36] Li, W.; Mueller, K.; Kaufman, A.: Empty Space Skipping and Occlusion Clipping for Texture-
based Volume Rendering. In: Proc. IEEE Visualization, Seiten 317-324. 2003

[37] Lorensen, W. E.; Cline, H. E.: Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. In: Computer Graphics (ACM SIGGRAPH), Seiten 163-169. 1987

[38] Mallo, O.; Peikert, R.; Sigg, C.; Sadlo, F.: [lluminated Lines Revisited. In: Proc. IEEE Visuali-
zation, Seite 3. 2005

[39] Max, N.; Crawfis, R.; Williams, D.: Visualizing wind velocities by advecting cloud textures. In:
Proc. IEEE Visualization, Seiten 179-184. 1992

[40] Mosher, C.; van Hook, T.: A geometric approach for rendering volume data. In: Proc. National
Computer Graphics Association (NCGA), Seiten 184-193. 1990

[41] Pfister, H.; Hardenbergh, J.; Knittel, J.; Lauer, H.; Seiler, L.: The VolumePro real-time ray-
casting system. In: Proc. ACM SIGGRAPH, Seiten 251-260. 1999

[42] Phong, B. T.: Illumination for computer generated pictures. Communications of the ACM,
Vol. 18.6, Seiten 311-317. 1975

[43] Porter, T.; Duff, T.: Compositing digital images. In: Proc. ACM SIGGRAPH, Seiten 253-259.
1984

[44] Purcell, T. J.; Buck, I; Mark, W. R.; Hanrahan, P.: Ray tracing on programmable graphics
hardware. In: Proc. ACM SIGGRAPH, Seiten 703-712. 2002

[45] Rezk-Salama, C.; Hastreiter, P.; Teitzel, C.; Ertl, T.: Interactive exploration of volume line inte-
gral convolution based on 3D-texture mapping. In: Proc. IEEE Visualization, Seiten 233-240.
1999

[46] Rhodes, M.; Glenn, W.; Azaawi, Y.: Extracting oblique planes from serial ct sections. ] Comput.
Assisted Tomograph, Vol. 4.5, Seiten 649-657. 1980

[47] Rottger, S.; Guthe, S.; Weiskopf, D.; Ertl, T.; Strasser, W.: Smart hardware-accelerated volume
rendering. In: Proc. EG / IEEE TCVG Symposium on Visualisation, Seiten 231-238. 2003

[48] Schulze, ]J. P.; Kraus, M.; Lang, U.; Ertl, T.: Integrating pre-integration into the shear-warp
algorithm. In: Proc. EG / IEEE TVCG Workshop on Volume graphics, Seiten 109-118. 2003

[49] Schussman, G.; Ma, K.-L.: Anisotropic Volume Rendering for Extremely Dense, Thin Line Data.
In: Proc. IEEE Visualization, Seiten 107-114. 2004

[50] Segal, M.; Akeley, K.: The OpenGL graphics system: A specification (version 2.0), 2004. URL
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

[51] Shen, H.-W.; Johnson, C. R.; Ma, K.-L.: Visualizing Vector Fields Using Line Integral Convo-
lution and Dye advection. In: Proc. Volume Visualization Symposium, Seiten 63-70. 1996

[52] Shen, H.-W.; Kao, D. L.: UFLIC: a line integral convolution algorithm for visualizing unsteady
flows. In: Proc. IEEE Visualization, Seiten 317-322. 1997

[53] Stalling, D.; Hege, H.-C.: Fast and resolution independent line integral convolution. In: Proc.
ACM SIGGRAPH, Seiten 249-256. 1995

67


http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

Literaturverzeichnis

[54] Stegmaier, S.; Strengert, M.; Klein, T.; Ertl, T.: A Simple and Flexible Volume Rendering Fra-
mework for Graphics-Hardware-based Raycasting. In: Proc. EG / IEEE VGTC Workshop on
Volume Graphics 2005, Seiten 187-195. 2005

[55] Stytz, M. R; Frieder, G.; Frieder, O.: Three-dimensional medical imaging: Algorithms and com-
puter systems. ACM Computing Surveys, Vol. 23.4, Seiten 421-499. 1991

[56] Suzuki, Y.; Fujishiro, I.; Chen, L.; Nakamura, H.: Case Study: Hardware-Accelerated Selective
LIC Volume Rendering. In: Proc. IEEE Visualization, Seiten 485—488. 2002

[57] Tufte, E. R.: The Visual Display of Quantitative Information. Graphics Press 1983

[58] Urness, T.; Interrante, V.; Marusic, I.; Longmire, E.; Ganapathisubramani, B.: Effectively
Visualizing Multi-Valued Flow Data using Color and Texture. In: Proc. IEEE Visualization,
Seiten 115-121. 2003

[59] van Wik, J.: Spot noise texture synthesis for data visualization. In: Computer Graphics (Proc.
ACM SIGGRAPH), Seiten 309-318. 1991

[60] Wegenkittl, R.; Groller, E.; Purgathofer, W.: Animating Flow Fields: Rendering of Oriented
Line Integral Convolution. In: Proc. Computer Animation, Seiten 15-21. 1997

[61] Weiskopf, D.; Engel, K.; Ertl, T.: Interactive clipping techniques for texture-based volume visua-
lization and volume shading. IEEE Transactions on Visualization and Computer Graphics,
Vol. 9.3, Seiten 298-312. 2003

[62] Weiskopf, D.; Schathitzel, T.; Ertl, T.: Real-Time Advection and Volumetric Illumination for the
Visualization of 3D Unsteady Flow. In: Proc. Eurovis 2005 (EG / IEEE VGTC Symposium
on Visualization), Seiten 13-20. 2005

[63] Weiskopf, D.; Schafhitzel, T.; Ertl, T.: Texture-based visualization of 3d unsteady flow by real-
time advection and volumetric illumination. Angenommen bei IEEE Transactions on Visuali-
zation and Computer Graphics. 2006

[64] Westermann, R.; Sevenich, B.: Accelerated volume ray-casting using texture mapping. In: Proc.
IEEE Visualization, Seiten 271-278. 2001

[65] Westover, L.: Footprint evaluation for volume rendering. In: Proc. ACM SIGGRAPH, Seiten
367-376. 1990

[66] Woo, M.; Neider, J.; Davis, T.; OpenGL Architecture Review Board,: The Official Guide to
Learning OpenGL, Version 1.1. Addison-Wesley 1997

[67] Xue, D.; Zhang, C.; Crawfis, R.: iSBVR: Isosurface-aided Hardware Acceleration Techniques for
Slice-Based Volume Rendering. In: Proc. EG / IEEE VGTC Workshop on Volume Graphics
2005, Seiten 207-215. 2005

[68] Zheng, X.; Pang, A.: HyperLIC. In: Proc. IEEE Visualization, Seiten 249-256. 2003

[69] Zockler, M.; Stalling, D.; Hege, H.-C.: Interactive visualization of 3D-vector fields using illu-
minated stream lines. In: Proc. IEEE Visualization, Seiten 107-113. 1996

68



Erklarung

Hiermit versichere ich, diese Arbeit
selbststandig verfasst und nur die
angegebenen Quellen benutzt zu haben.

(Martin Falk)



	Einleitung
	Motivation
	Aufgabenstellung

	Volumenvisualisierung
	Isoflächen
	Schnittebene
	DVR -- Direct Volume Rendering
	Slicing
	Ray-Casting
	Beschleunigung der GPU-Verfahren


	LIC -- Line Integral Convolution
	2D LIC
	3D LIC
	GPU-basierter 3D LIC
	Beleuchtung von Linien
	Stromlinien nach Zöckler
	Stromlinien nach Mallo
	Beleuchtung des LIC anhand von Gradienten
	Wahl der Transferfunktion

	Features
	Erkennung von Wirbeln


	Modellierung des Rauschens
	Weißes Rauschen
	Dünnes Rauschen
	Filterung
	Konstante Raumfrequenz

	GPU-basierter 3D LIC
	Berechnung des 3D LIC
	LIC-Berechnung im Fragmentprogramm
	Ray-Casting
	Ray-Casting mit Depth-Peeling
	Slicing

	Beleuchtung
	Features
	Visualisierung zeitabhängiger Datensätze

	Leistungsbetrachtung
	Einfluss der Viewportgröße
	Optimierungen
	Abhängigkeit von der Kameraposition
	Beleuchtungsmodelle
	Samplingdistanz
	Anzahl der LIC-Schritte pro Abtastpunkt
	Anzahl der Abtastungen pro Depth-Peel-Schicht

	Qualitative Ergebnisse
	Visuelle Auswertung
	Beispiele

	Zusammenfassung und Ausblick
	Literaturverzeichnis

