
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Graphics, Usability, and Visualization Lab

School of Computing Science
Simon Fraser University

Burnaby BC
Canada V5A 1S6

Diplomarbeit Nr. 2510

GPU-basierte
Vektorfeldvisualisierung

mittels 3D LIC

Martin Falk

Studiengang: Informatik

Prüfer: Prof. Dr. Thomas Ertl

Betreuer: Prof. Dr. Daniel Weiskopf

begonnen am: 15. Juni 2006

beendet am: 15. Dezember 2006

CR-Klassifikation: I.3.3, I.3.7

Inhaltsverzeichnis

1 Einleitung 1

1.1 Motivation . 1

1.2 Aufgabenstellung . 2

2 Volumenvisualisierung 3

2.1 Isoflächen . 3

2.2 Schnittebene . 4

2.3 DVR – Direct Volume Rendering . 5

2.3.1 Slicing . 5

2.3.2 Ray-Casting . 7

2.3.3 Beschleunigung der GPU-Verfahren . 8

3 LIC – Line Integral Convolution 11

3.1 2D LIC . 12

3.2 3D LIC . 14

3.3 GPU-basierter 3D LIC . 14

3.4 Beleuchtung von Linien . 15

3.4.1 Stromlinien nach Zöckler . 16

3.4.2 Stromlinien nach Mallo . 17

3.4.3 Beleuchtung des LIC anhand von Gradienten 19

3.4.4 Wahl der Transferfunktion . 20

3.5 Features . 20

3.5.1 Erkennung von Wirbeln . 22

4 Modellierung des Rauschens 23

4.1 Weißes Rauschen . 24

4.2 Dünnes Rauschen . 24

4.3 Filterung . 26

4.4 Konstante Raumfrequenz . 27

I

Inhaltsverzeichnis

5 GPU-basierter 3D LIC 31

5.1 Berechnung des 3D LIC . 32

5.1.1 LIC-Berechnung im Fragmentprogramm 32

5.1.2 Ray-Casting . 33

5.1.3 Ray-Casting mit Depth-Peeling . 34

5.1.4 Slicing . 35

5.2 Beleuchtung . 36

5.3 Features . 37

5.4 Visualisierung zeitabhängiger Datensätze . 37

6 Leistungsbetrachtung 41

6.1 Einfluss der Viewportgröße . 42

6.2 Optimierungen . 42

6.3 Abhängigkeit von der Kameraposition . 44

6.4 Beleuchtungsmodelle . 47

6.5 Samplingdistanz . 48

6.6 Anzahl der LIC-Schritte pro Abtastpunkt . 49

6.7 Anzahl der Abtastungen pro Depth-Peel-Schicht 49

7 Qualitative Ergebnisse 51

7.1 Visuelle Auswertung . 51

7.2 Beispiele . 57

8 Zusammenfassung und Ausblick 63

Literaturverzeichnis 65

II

Abbildungsverzeichnis

2.1 Object-Aligned Slicing . 5

2.2 View-Aligned Slicing . 6

2.3 Ray-Casting . 7

3.1 Vergleich LIC und Spot Noise . 13

3.2 VolumeLIC ohne und mit Halo . 14

3.3 Beleuchtungstextur von Zöckler . 16

3.4 Diffuse Beleuchtung eines Zylinders . 17

3.5 Beleuchtungstexturen von Mallo . 18

3.6 Velocity-Masking . 21

3.7 Clipping des Vektorfelds . 21

4.1 LIC bei verschiedenen Raumfrequenzen der Rauschtextur 23

4.2 Weißes Rauschen . 24

4.3 Gleichverteilung von dünnem Rauschen . 25

4.4 Filterung mit einem Tiefpassfilter . 28

4.5 Konstante Raumfrequenz des Rauschens im Bildraum 29

5.1 Architektur zur Berechnung des 3D LIC auf der GPU 31

5.2 Schema des Fragmentprogramms für 3D LIC mittels Ray-Casting 33

5.3 Ablauf des Ray-Castings mit Depth-Peeling . 34

5.4 Ablauf des Slicings . 35

5.5 Empty-Space-Leaping durch Ray-Casting mit Depth-Peeling 38

6.1 Testszenario: Viewportgröße . 42

6.2 Diagramm: Einfluss Viewportgröße . 43

6.3 Testszenario: Framebufferobjekt und Early-Z-Test 43

6.4 Diagramm: FBO und Early-Z-Test, ohne Optimierungen 45

6.5 Diagramm: FBO und Early-Z-Test, vorzeitiger Strahlabbruch 45

6.6 Diagramm: FBO und Early-Z-Test, mit Optimierungen 45

6.7 Diagramm: FBO und Early-Z-Test, Vergleich . 46

6.8 Testszenario: Abhängigkeit von der Kameraposition 46

6.9 Diagramm: Abhängigkeit von der Kameraposition 46

6.10 Testszenario und Diagramm: Beleuchtungsmodelle 47

6.11 Testszenario und Diagramm: Abstand der Samplingpositionen 48

III

Abbildungsverzeichnis

6.12 Testszenario und Diagramm: LIC-Schritte . 49

6.13 Testszenario und Diagramm: Abtastungen pro Depth-Peel-Schicht 50

7.1 Vergleich zwischen hoch und niedrig aufgelöster Visualisierung 52

7.2 Maximales Instruktionslimit im Fragmentprogramm 53

7.3 Skalierung der Raumfrequenz des Rauschens . 53

7.4 Einfluss des Rauschens . 54

7.5 Normalen der Beleuchtungsmodelle . 55

7.6 Vergleich der Beleuchtungsmodelle . 55

7.7 Hervorhebung mittels Transferfunktion . 56

7.8 Verbesserung der Tiefenwahrnehmung durch die Transferfunktion 56

7.9 Benard-Strömung von Daniel Weiskopf . 57

7.10 Datensatz des IEEE Visualization 2004 Contest . 58

7.11 Tornado von Roger Crawfis . 59

7.12 Large-Eddy-Simulation von Octavian Frederich 60

7.13 Datensatz 6603-small . 61

IV

1 Einleitung

1.1 Motivation

Die Strömungsvisualisierung ist ein großes Teilgebiet der Visualisierung. In diesem Gebiet
müssen oft Vektorfelder aus Messungen oder Simulationen dargestellt werden. Handelt es
sich dabei um zweidimensionale Daten, wird oft die Line Integral Convolution, kurz LIC,
dazu verwendet. Die Line Integral Convolution gehört zu den globalen Techniken der Vektor-
feldvisualisierung.

Es existieren bereits einige Ansätze, die die Berechnung des LIC auch auf dreidimensionalen
Daten durchführen können. Durch den Wechsel der Dimension ergeben sich jedoch Probleme.
Zum einen steigt die Berechnungskomplexität an, zum anderen erhöht sich die visuelle Kom-
plexität und auch die Verdeckung nimmt zu. Da der LIC lokal berechnet werden kann, würde
sich für die Berechnung die GPU aufgrund ihrer SIMD-Architektur anbieten.

Zur Verringerung der visuellen Komplexität können verschiedene Ansätze verfolgt werden.
So können bei Vektorfeldern Bereiche mit einer bestimmten Geschwindigkeit ausgeblendet
werden. Ebenso kann ein Beleuchtungsmodell für die Schattierung des LIC eingesetzt werden.

In dieser Arbeit wird die erste GPU-basierte Implementierung eines volumetrischen LIC vor-
gestellt. Die Berechnung erfolgt dabei vollständig auf der Grafikkarte. Es werden dazu Ray-
Casting als bildraumbasiertes Verfahren und Slicing als ein Objektraumverfahren eingesetzt.
Für beide Techniken werden verschiedene Beschleunigungsverfahren vorgestellt um die Be-
rechnungskomplexität weiter zu senken.

Die visuelle Komplexität soll durch die Beleuchtung des LIC verringert werden. Da es sich
bei Ergebnis des LIC jedoch um Linien handelt müssen spezielle Verfahren eingesetzt werden.
Darüber hinaus soll ein neuer Ansatz zur Beleuchtung von Linien, die sich aus der Berechnung
des LIC ergeben, vorgestellt werden.

1

Kapitel 1 Einleitung 1.2 Aufgabenstellung

1.2 Aufgabenstellung

Die Visualisierung von 3D Vektorfeldern spielt eine wichtige Rolle für die Darstellung von
Simulationsergebnissen aus CFD-Berechnungen (Computational Fluid Dynamics). Ein für 2D
Strömungen beliebter Ansatz ist die LIC-Technik (LIC = Line Integral Convolution). Im 3D
Fall ist LIC-Technik jedoch mit sehr hohen Rechenkosten verbunden. Deshalb sollte in dieser
Arbeit eine effiziente Realisierung von 3D LIC mittels GPUs entwickelt werden. Die Darstel-
lung der LIC-Berechnungen sollte durch GPU-Ray-Casting erfolgen. Ziele der Arbeit waren
im Einzelnen:

• Implementierung der 3D LIC-Berechnung in einem Fragment-Programm
• Darstellung der LIC-Berechnung durch GPU-Ray-Casting
• Beschleunigung des Ray-Casting durch Standardmethoden (z.B. Early-Ray-Termination)
• Anti-Aliasing und Multi-Resolution-Methoden für die Modellierung der injizierten

Rauschtexturen
• Anpassung der Granularität und Opazität der Volumendarstellung, um eine gute Wahr-

nehmung der Tiefenstrukturen zu erreichen (z.B. durch Anpassung der Dichte der
Rauschtexturen und durch Wahl angemessener Transferfunktionen)

Die Implementierung sollte in C/C++, OpenGL und ARB-Shadern erfolgen. Für das GPU-
Ray-Casting sollte auf der existierenden Implementierung von Stegmaier et al. [54] aufgebaut
werden.

2

2 Volumenvisualisierung

Die Volumenvisualisierung wird vorrangig im Bereich der medizinischen Visualisierung an-
gewandt, wenn es darum geht, Daten aus einem Computertomographen (CT) oder einem Ma-
gnetresonanztomographen (MRT) darzustellen [55]. Sie wird aber auch bei der Visualisierung
von Daten aus den Bereichen der CFD (Computational Fluid Dynamics), der Seismik und der
Geologie verwendet. Die Arbeit von Kajiya und von Herzen [22] bildet dabei die Grundlage
für die Darstellung von Volumendaten.

Ist nur eine zweidimensionale Visualisierung der Daten erforderlich, können Ebenen einge-
setzt werden, die das Volumen schneiden. Für die dreimdimensionale Darstellung muss zwi-
schen den Techniken der direkten und der indirekten Volumenvisualisierung unterschieden
werden. Bei der indirekten Volumendarstellung wird in einem Vorbereitungsschritt eine Zwi-
schenrepräsentation erstellt, die anschließend mit klassischen Techniken dargestellt werden
kann. Dadurch ist es möglich, Isoflächen aus dem Volumen zu extrahieren und mittels Geo-
metrie zu rendern. Dagegen wird bei der direkten Volumenvisualisierung, kurz DVR (Direct
Volume Rendering), das Volumen ohne Zwischenrepräsentation gerendert. Zu den Techni-
ken des DVR zählen das Ray-Casting, das Slicing, das Splatting [65] und die Shear-Warp-
Faktorisierung [31]. Beim Ray-Casting werden Strahlen von der Kamera aus durch das Vo-
lumen gesendet. Durch regelmäßiges Abtasten entlang des Strahls kann so das Volumeninte-
gral gelöst werden. Ray-Casting ist ein Bildraumverfahren, bei dem für jedes Pixel ein Strahl
berechnet werden muss. Dagegen wird beim Slicing das Volumen von mehreren Ebenen ge-
schnitten, die texturiert werden und anschließend das Ergebnis mittels Compositing berech-
net. Splatting ist, ebenso wie das Slicing und die Shear-Warp-Faktorisierung, ein Verfahren,
das im Objektraum berechnet wird. Beim Splatting werden alle Voxel auf die Bildebene proji-
ziert. Dabei wird jedes Voxel als Scheibe, deren Dichte zum Rand abfällt, gerendert. Die Shear-
Warp-Faktorisierung verwendet im ersten Schritt eine Scherung des Volumens (Shear), um
eine konstante Samplingdistanz beizubehalten. Im zweiten Schritt wird das Ergebnis auf die
Bildebene projiziert (Warp). Sowohl das Splatting als auch die Shear-Warp-Faktorisierung sind
bei der Darstellung von Volumen sehr schnell. Dies hat zur Folge, dass die Ergebnisse qualita-
tiv nicht so hochwertig wie beim Ray-Casting oder Slicing sind.

Einige der im folgenden näher vorgestellten Techniken werden in leicht abgewandelter Form
auch für die Visualisierung von Vektorfeldern verwendet. In dieser Arbeit werden das Ray-
Casting und das Slicing, einschließlich deren Beschleunigungen zur Berechnung des LIC ein-
gesetzt.

2.1 Isoflächen

Die Visualisierung von Volumen anhand von Isoflächen zählt zur indirekten Volumendarstel-
lung, da zuerst die Isoflächen aus dem Volumen extrahiert und diese anschließend gerendert
werden. Eine zum Isowert c zugehörige Isofläche wird aus der Menge von Punkten, die gleich
c sind, gebildet. Die Bestimmung und Berechnung erfolgt auf verschiedene Arten.

3

Kapitel 2 Volumenvisualisierung 2.2 Schnittebene

So wird beim Verfolgen von Konturen (Contour Tracing) das Volumen durch mehrere parallele
Ebenen unterteilt. Innerhalb jeder Ebene wird nun versucht, eine geschlossene Konturlinie mit
dem Isowert c zu finden. Danach werden die Konturlinien von zwei benachbarten Ebenen mit
einem Streifen aus Dreiecken verbunden. In einem Zwischenschritt können die Konturlinien
klassifiziert werden. Dies ermöglicht die Zuordnung der Linien über die Ebenen hinweg an-
hand der Klassifikation. Die so entstandenen Dreiecke bilden die Isofläche zu c. Von Nachteil
ist, dass eine hohe Varianz zwischen den Ebenen das Finden von Konturen erheblich erschwe-
ren kann und innerhalb einer Ebenen keine Geometrie erzeugt wird.

Zur Bestimmung von Isoflächen kann auch der Cuberille-Ansatz von Herman und Liu [18]
verwendet werden. Dabei wird der Datensatz in ein uniformes Gitter aufgeteilt. Die Werte der
Gitterpunkte werden mit dem Isowert verglichen und die Punkte entsprechend positiv oder
negativ markiert. Danach werden die Flächen der Gitterzellen gerendert, deren Normale aus
der Zelle und in Richtung Kamera zeigt. Da innerhalb der Zellen nicht interpoliert wird, ist die
so berechnete Isofläche sehr blockartig. Um diese Artefakte zu verringern, kann eine adaptive
Unterteilung der Würfel eingesetzt werden. Dies führt zu dem Ansatz der Dividing Cubes von
Cline et al. [6].

Der Marching-Cube-Algorithmus von Lorensen und Cline [37] ist wohl das bekannteste Ver-
fahren zur Extraktion von Isoflächen. Das Volumen wird dabei ebenfalls in ein uniformes Git-
ter unterteilt. Da in diesem Algorithmus jeweils nur eine Zelle des Gitters betrachtet und an-
schließend zur nächsten übergegangen wird und die Zellen einem Würfel gleichen, bekam
er den Namen Marching-Cube (marschierender Würfel). Die Eckpunkte des Würfels werden
wie beim Cuberille-Ansatz [18] entsprechend dem Isowert markiert. Diese Markierung erfolgt
in einer Bitmaske, mit welcher anschließend in einer Lookuptabelle nachgeschlagen werden
kann. Diese Lookuptabelle enthält alle möglichen Kombination von Isoflächen, die sich durch
trilineare Interpolation innerhalb eines Würfels ergeben können. Zusammen mit den Schnitt-
punkten, die entlang der Würfelkanten durch lineare Interpolation berechnet werden, ergibt
sich so eine effiziente Triangulierung der Isofläche.

Durch die heutige Funktionalität der Grafikhardware ergeben sich aber auch neue Möglich-
keiten zur Berechnung der Isoflächen. So lassen sich beispielsweise Isoflächen direkt mittels
Ray-Casting aus dem Volumendatensatz extrahieren. Stegmaier et al. [54] führen dazu die Su-
che nach dem Isowert während des Ray-Castings im Fragmentprogramm durch. Jedoch kön-
nen diese Isoflächen nur direkt visualisiert werden, da es sich um Fragmente, nicht aber um
Geometrie im eigentlichen Sinne handelt.

2.2 Schnittebene

Ist nur eine zweidimensionale Darstellung des Volumens erwünscht, kann dies mit Hilfe von
Ebenen realisiert werden. Diese Technik ist auch unter dem Namen Multiplanar Reformatting
(MPR) bekannt [17, 46, 29, 40, 55]. Das Volumen wird dabei mit der Ebene geschnitten. Erfolgt
das Schneiden orthogonal zu den Hauptachsen x, y oder z, kann die Ebene durch Resampling
mit bilinearer Interpolation aufgefüllt werden. Bei beliebigen Ebenen muss dagegen trilinea-
re Filterung verwendet werden. Das Resampling kann durch die CPU oder auch durch die
Grafikhardware erfolgen.

4

Kapitel 2 Volumenvisualisierung 2.3 DVR – Direct Volume Rendering

Abbildung 2.1: Slicing mit an den Hauptachsen des Volumens ausgerichteten Ebenen (Object-
Aligned). Links die Anordnung der Ebenen, in der Mitte und rechts die Positionen
der Abtastpunkte bei verschiedenen Kamerapositionen.

2.3 DVR – Direct Volume Rendering

Bei der direkten Volumenvisualisierung wird nicht wie bei der indirekten zuerst eine Zwi-
schenrepräsentation erzeugt, sondern das Volumen als Ganzes direkt visualisiert. Dabei kön-
nen die Techniken in Objektraum- und Bildraumverfahren eingeteilt werden. Slicing wird den
Objektraumverfahren zugeordnet, da der Datensatz dabei im Objektraum traversiert wird.
Bildraumverfahren, zu denen auch das Ray-Casting gehört, arbeiten auf Pixelebene.

2.3.1 Slicing

Slicing gehört zu den texturbasierten Visualisierungstechniken [47, 10, 67]. Da die Grafikhard-
ware bislang keine volumetrischen Primitive unterstützt, wird eine Proxygeometrie erzeugt.
Diese Proxygeometrie besteht aus einer Menge von Primitiven, die das Volumen repräsentie-
ren. Meist wird dazu das Volumen mit mehreren Ebenen geschnitten. Diese Ebenen werden
mit Daten des Volumendatensatzes texturiert und anschließend gerendert.

Der Ablauf dieser Technik lässt sich in drei grobe Schritte unterteilen. Zuerst wird die Proxy-
geometrie erzeugt und anschließend rasterisiert. Nach der Rasterisierung erfolgt die Texturie-
rung durch 2D- oder 3D-Texturen abhängig von der verwendeten Proxygeometrie. Im letzten
Schritt müssen die texturierten Ebenen zusammengefügt werden. Dies geschieht durch das
Compositing. Werden die Ebenen der Reihe nach von hinten nach vorne gerendert, kann das
Back-To-Front-Compositing, auch als Over-Operator [43] bekannt, eingesetzt werden. Die Far-
be C′

i für die i. Ebene, i ∈ {0, . . . , n− 1}, lässt sich mit

C′
i = (1− αi) C′

i+1 + αiCi (2.1)

berechnen, wobei C′
n mit null initialisiert wird und Ci und αi den Farbwert beziehungsweise

die Opazität der Ebene i beschreiben. Mit dieser Traversierung der Ebenen ist es aber nicht
möglich, den vorzeitigen Strahlabbruch zur Beschleunigung zu implementieren (siehe Ab-
schnitt 2.3.3). Findet das Zeichnen der Proxygeometrie von vorne noch hinten statt, wird die
Gleichung für Front-To-Back-Compositing verwendet.

5

Kapitel 2 Volumenvisualisierung 2.3 DVR – Direct Volume Rendering

Abbildung 2.2: Slicing mit Ebenen, deren Normale gleich der Blickrichtung ist (View-Aligned).
Links die Anordnung der Ebenen, rechts die Positionen der Abtastpunkte.

Mit i aus {1, . . . , n}, C′
0 = 0 und α′0 = 0 ergibt sich

C′
i = C′

i−1 +
(
1− α′i−1

)
αiCi (2.2)

α′i = α′i−1 +
(
1− α′i−1

)
αi (2.3)

Zu beachten ist, dass bei dieser Art des Compositing der berechnete Opazitätswert explizit im
Framebuffer gespeichert werden muss.

Die Erzeugung der Proxygeometrie kann auf mehrere Arten erfolgen. Die einfachste Mög-
lichkeit bietet die Ausrichtung der Ebenen entlang der Hauptachsen des Volumens (Object-
Aligned Slicing). Dazu werden getrennt für jede Achse 2D-Texturen angelegt, die zur Textu-
rierung der Proxygeometrie verwendet werden (Abbildung 2.1 links). Die Anzahl der Ebe-
nen ist auf die Auflösung des Volumendatensatzes in der jeweiligen Dimension beschränkt.
Für die Darstellung werden die Ebenen und Texturen der Hauptachse verwendet, die der
Blickrichtung der Kamera am nächsten sind. Da 2D-Texturen verwendet werden, kann bei
der Rasterisierung der Proxygeometrie nur bilineare Filterung eingesetzt werden. Jedoch lässt
sich diese Technik auch auf älterer Grafikhardware ohne Unterstützung für 3D-Texturen rea-
lisieren. Durch die Ausrichtung entlang der Achsen ergeben sich aber Probleme: so wird das
Dreifache des Speicherbedarfs des Volumens für die Texturen der drei Achsen benötigt. Hinzu
kommt, dass der Abstand der Abtastpunkte nicht konstant ist, wenn sich die Kameraposi-
tion verändert. Wird die Kamera so verändert, dass eine andere Achsenrichtung als bisher
angezeigt werden muss, kommt es zu Helligkeitsschwankungen, da sich die Positionen der
Abtastpunkte verändern (Abbildung 2.1 Mitte und rechts).

Werden 3D-Texturen von der Grafikhardware bereitgestellt, lässt sich die Proxygeometrie auch
direkt an der Blickrichtung der Kamera ausrichten (View-Aligned Slicing). Zur Bestimmung
der Texturkoordinaten müssen die Ebenen mit der Boundingbox des Volumens geschnitten
werden. Das Volumen wird als 3D-Textur gespeichert und diese mit trilinearer Filterung für
jede Ebene abgetastet. Da wegen der trilinearen Filterung acht anstelle von vier Texturnach-
schlägen durchgeführt werden müssen und auf 3D-Texturen nicht so effizient zugegriffen wer-
den kann wie auf 2D-Texturen, steigt die Renderzeit an. Jedoch lässt sich die Samplingdichte
einfach erhöhen, indem mehr Ebenen verwendet werden. In Abbildung 2.2 sind die Ausrich-
tung der Ebenen zur Kamera und die entsprechenden Abtastpunkte dargestellt. Durch Ver-
wendung der Preintegration kann die Qualität des Slicings weiter verbessert werden [48].

6

Kapitel 2 Volumenvisualisierung 2.3 DVR – Direct Volume Rendering

Abbildung 2.3: Strahlenverlauf und Position der Abtastpunkte beim Ray-Casting. Links liegt die
Startposition im Auge, rechts auf der Oberfläche des Volumens

2.3.2 Ray-Casting

Ray-Casting besitzt große Ähnlichkeit mit Ray-Tracing, jedoch werden nur die Primärstrahlen
betrachtet und die Sekundärstrahlen vernachlässigt. Bei beiden Verfahren, werden vom Auge
beziehungsweise der Kamera aus Strahlen durch jedes Pixel der Bildebene geschickt. Für jeden
Strahl wird überprüft, ob ein Objekt vom Strahl getroffen wird. Da im Volumen keine explizite
Geometrie gegeben ist, kann keine Schnittberechnung mit den Strahlen durchgeführt werden.
Stattdessen werden die Strahlen mit konstantem Abstand innerhalb des Volumens abgetastet
[34, 7]. Als Startposition kann für die Strahlen die Augposition oder ein Punkt auf der Volu-
menoberfläche verwendet werden. Dadurch können sich aber unterschiedliche Positionen der
Abtastpunkte ergeben, wie in Abbildung 2.3 zu sehen ist.

Da beim Ray-Casting die Berechnung für jeden Strahl unabhängig von den anderen erfolgt,
eignet sich dieses Verfahren für die parallele SIMD-Architektur heutiger Grafikkarten. Purcell
et al. stellten dazu im Jahr 2002 ein Konzept für Ray-Tracing auf der GPU vor [44]. Ein Jahr
darauf stellten Krüger und Westerman [30] und Röttger et al. [47] jeweils einen Algorithmus
für GPU-basiertes Ray-Casting zur Volumenvisualisierung vor.

Für die Durchführung des Ray-Casting auf der GPU wird der Volumendatensatz in einer 3D-
Textur gespeichert. Zur Bestimmung der Anfangspositionen wird nur die Boundingbox des
Volumens mit angepassten Texturkoordinaten gerendert. Durch die Interpolation während der
Rasterisierung ergibt sich so für jedes Fragment ein Startpunkt. Zusammen mit der Kamerapo-
sition kann nun die Strahlrichtung bestimmt werden. Anschließend wird das Volumen entlang
jeden Strahls traversiert. Texturzugriffe auf den Datensatz erfolgen dabei mit trilinearer Filte-
rung. Die einzelnen Samples werden mittels Front-To-Back-Compositing (Gleichungen (2.2)
und (2.3)) geblendet.

Da 2003 die maximale Anzahl der Instruktionen pro Fragmentprogramm sehr gering war, wa-
ren Krüger und Röttger gezwungen, die Traversierung des Volumens in mehrere Teilschritte
zu zerlegen. Erst seit der Einführung von Schleifen und Verzweigungen mit Shader Model 3.0
und einer größeren maximalen Anzahl an Instruktionen [50] ist es möglich, das Ray-Casting
in nur einem Renderpass durchzuführen [28, 54]. Stegmaier et al. führen dazu die Strahlinte-
gration im Inneren von zwei ineinander geschachtelten Schleifen durch [54].

7

Kapitel 2 Volumenvisualisierung 2.3 DVR – Direct Volume Rendering

2.3.3 Beschleunigung der GPU-Verfahren

Die Volumenvisualisierung auf der GPU lässt sich durch angepasste Beschleunigungsverfah-
ren aus der direkten Volumenvisualisierung ebenfalls beschleunigen [30]. So kann zum Bei-
spiel wertvolle Zeit eingespart werden, wenn große Bereiche des Volumens leer sind. Die-
se Technik ist unter dem Namen Empty Space Leaping, dem Überspringen von leerem Raum,
bekannt [64, 47, 36, 32, 28]. Westermann und Sevenich [64] verwenden dazu in Ihrer GPU-
Implementierung einen zusätzlichen Renderpass, der das Volumen traversiert und dabei die
Position bestimmt, an der zum ersten Mal ein Datenwert ungleich null ist. Diese so gefunde-
nen Positionen werden beim nachfolgenden Ray-Casting als Startpositionen verwendet. Um
weitere Zeit zu sparen kann auch die Berechnung des Volumenintegrals abgebrochen wer-
den. Dieser vorzeitige Strahlabbruch (Early Ray Termination) tritt ein, wenn die Opazität einen
bestimmten Schwellwert überschritten hat oder keine nennenswerten Beiträge mehr zu er-
warten sind [1, 34, 7]. Das Volumen muss dazu von vorne nach hinten traversiert werden. Auf
der GPU lässt sich dieser Strahlabbruch auch einsetzen, wenn Fragmentprogramme verwen-
det werden können. Dabei wird im Shader die Abbruchbedingung überprüft und die weitere
Berechnung gegebenenfalls abgebrochen [47, 54].

Auf heutiger Grafikhardware bietet sich zusätzlich zu den eben angeführten Techniken eine
weitere Möglichkeit zur Beschleunigung an, den Early-Z-Test [67]. Dabei handelt es sich um
einen Test, der hardwareseitig in die Renderingpipeline integriert ist. Der Name des Early-Z-
Tests rührt daher, dass ein zusätzlicher Tiefentest direkt nach der Rasterisierung durchgeführt
wird, bevor für das Fragment das Fragmentprogramm und die nachfolgenden Tests durchge-
führt werden. Ist dieser Tiefentest erfolgreich, wird das Fragment weiter in der Renderingpipe-
line verarbeitet, ansonsten verworfen. Voraussetzung für das Funktionieren des Early-Z-Test
ist, dass weder das nachfolgende Fragmentprogramm den Tiefenwert des Fragments verän-
dert noch Zustände von OpenGL, die den Tiefenpuffer betreffen, beeinflusst werden. Um von
diesem Test zu profitieren, wird in einem zusätzlichen Renderpass der Tiefenpuffer mit einem
weiteren Fragmentprogramm so präpariert, dass nicht zu berechnende Fragmente blockiert
werden. Wird für die Vergleichsfunktion des Tiefentests der Vergleich auf kleiner, GL_LESS in
OpenGL, gesetzt, werden mit einem Tiefenwert gleich null weitere Fragmente an dieser Posi-
tion verworfen. Dagegen werden bei einem Wert gleich eins die Fragmente der nachfolgenden
Fragmentprogramme wie gewöhnlich verarbeitet. Nach dem Vorbereiten des Tiefenpuffers
wird das Schreiben des Puffers ab- und der Tiefentest angeschaltet. Anschließend kann mit
der darzustellenden Geometrie wie bisher verfahren werden.

Es muss jedoch davon ausgegangen werden, dass die Beschleunigung durch den Early-Z-Test
nicht so ist wie durch das Auslassen von Geometrie vor der Rasterisierung. Da die Grafikhard-
ware den Viewport in mehrere Blöcke unterteilt, sollten diese möglichst homogen aufgebaut
sein. So genügt beispielsweise die Berechnung eines Fragments des Blocks, während die ver-
bleibenden Fragmente vom Early-Z-Test verworfen werden, um die Beschleunigung dieser
Überprüfung zunichte zu machen. Allerdings ergeben sich durch den Early-Z-Test auch neue
Möglichkeiten. Beim Slicing kann, vorausgesetzt die Proxygeometrie wird von vorn nach hin-
ten gerendert, mit diesem zusätzlichen Test die Erkennung von leeren Voxeln und auch der
vorzeitige Strahlabbruch durchgeführt werden. Dazu wird in dem Fragmentprogramm, das
den Tiefenpuffer präpariert, geprüft, ob die Opazität des Zwischenergebnisses hoch genug
oder das nächste Voxel leer ist. Bei einfachen Fragmentprogrammen, wie beispielsweise bei

8

Kapitel 2 Volumenvisualisierung 2.3 DVR – Direct Volume Rendering

der reinen Volumenvisualisierung, kann dieser Ansatz aber zur Verschlechterung der Render-
zeit führen, da pro Ebene das Fragmentprogramm zweimal gewechselt werden muss. Ist die
Berechnung pro Abtastpunkt aber komplexer, kann sich die Renderzeit insgesamt verkürzen.

9

3 LIC – Line Integral Convolution

Die Line Integral Convolution, kurz LIC, ist eine von vielen Techniken zur Visualisierung von
Vektorfeldern. Der Schwerpunkt der Vektorfeldvisualisierung liegt im Bereich der Strömungs-
simulation. Diese Art der Visualisierung ist unter dem Begriff Flow Visualization bekannt. Dabei
handelt es sich um die Darstellung der Bewegung von Flüssigkeiten und Gasen. Aber auch bei
der Repräsentation von elektrischen oder magnetischen Feldern findet die Vektorfeldvisuali-
sierung Anwendung.

Die zu visualisierenden Daten stammen aus Simulationen, physikalischen Messungen oder
aus analytischen Modellen. Für die Simulation von Strömungen werden Methoden aus dem
Bereich der numerischen Strömungsmechanik, kurz CFD (Computational Fluid Dynamics), ver-
wendet. Meist wird dabei versucht, die Navier-Stokes-Gleichungen zu lösen. Die Klassifizie-
rung der Daten erfolgt anhand der verwendeten Dimensionen, der Unterscheidung zwischen
stationärer oder instationärer Strömung, dem verwendeten Gittertyp (kartesisch, regulär, cur-
vilinear, unstrukturiert) und ob das Medium kompressibel ist.

Ein Vektorfeld ist durch Geschwindigkeit und Richtung v(x) definiert. Dabei entspricht x einer
Gitterposition der Abtastpunkte des Datensatzes. Handelt es sich um eine nicht stationäre
Strömung, ist die Geschwindigkeit v(x, t) auch abhängig von der Zeit t. Zusätzlich kann das
Vektorfeld weitere externe Größen wie beispielsweise den Druck p, die Temperatur T, die
Dichte ρ und auch die Wirbelstärke (Vorticity) ∇×v enthalten.

Zur direkten Visualisierung von Vektorfeldern können Pfeile und Bildzeichen (Glyphen) [57]
verwendet werden. Diese werden zur Darstellung von lokalen Merkmalen eingesetzt. So kann
mit Pfeilen die Richtung der Strömung repräsentiert werden. Die Geschwindigkeit lässt sich
beispielsweise durch die Länge des Pfeils oder durch eine Farbkodierung darstellen. Durch die
Verwendung von Bildzeichen können mehrere Größen gleichzeitig visualisiert werden. Bei der
Verwendung von Datensätzen höherer Auflösung treten jedoch mit diesen beiden Techniken
sehr schnell Verdeckungsprobleme auf.

Eine weitere Möglichkeit zur Vektorfeldvisualisierung bietet sich durch das Verfolgen von in-
dividuellen Partikeln an. Dabei wird ein einzelnes masseloses Partikel oder auch mehrere in
das Vektorfeld eingestreut und verfolgt. Dadurch ergeben sich die charakteristischen Linien des
Vektorfelds. Es kann zwischen vier Arten unterschieden werden: Pfadlinien (Pathlines), Strom-
bahnen (Streaklines), Zeitlinien (Timelines) und Stromlinien (Streamlines). Für die Erzeugung von
Pfadlinien wird der Weg eines Partikels über die Zeit beobachtet und die Positionen werden
mit einer Linie verbunden. Bei den Strombahnen werden die Partikel beziehungsweise ein
Farbstoff an einer festen Position in das Feld eingestreut. Zeitlinien entstehen durch die Aus-
breitung von Linien oder Flächen, die sich aus Partikeln zusammensetzen. Wird das Vektorfeld
zu einem vorher festgesetzten Zeitpunkt t betrachtet und ein Partikel entlang der Tangenten
des Felds bewegt ergeben sich Stromlinien. Pfadlinien, Strombahnen und Stromlinien sind im
Fall von stationären Strömungen identisch.

11

Kapitel 3 LIC – Line Integral Convolution 3.1 2D LIC

Formal gesehen ist eine Stromlinie eine mögliche Lösung des Eigenwertproblems einer ge-
wöhnlichen Differentialgleichung zum Zeitpunkt t.

φ(0) = x0
d φ(s)

d s
= v(φ(s), t) (3.1)

Damit ergibt sich für eine Stromlinie durch x0 eine Kurve φ(s) mit dem Parameter s.

Globale Verfahren zur Visualisierung von Vektorfeldern sind im Bereich der dichten und tex-
turbasierten Strömungsvisualisierung zu finden. Ein Überblick der hierbei eingesetzten Tech-
niken ist in The State of the Art in Flow Visualization: Dense and Texture-Based Techniques von Lara-
mee et al. [33] zu finden. Van Wijk stellte 1991 einen Algorithmus vor, der Daten mit Hilfe von
Texturen visualisiert [59]. Dazu verwendet er ein Rauschen an zufällig verteilten Positionen,
welches er Spot Noise nennt. Wird dieses Rauschen zur Visualisierung der Geschwindigkeit ei-
nes Vektorfelds eingesetzt, so wird die Textur entlang der Bewegungsrichtung skaliert. Bei der
Texturadvektion [39] werden dagegen die Texel einer Textur entlang des zugrunde liegenden
Vektorfelds verschoben.

Line Integral Convolution gehört ebenfalls zu den texturbasierten Verfahren. Dabei wird die
Domäne mit einer Rauschtextur bedeckt und diese anschließend entlang von Stromlinien ver-
wischt. Das Verwischen erfolgt durch die Faltung der Rauschtextur mit einem Filter. Sei T(x′)
die Intensität der Rauschtextur an der Stelle x′ und sei k ein Filter, so ergibt sich für die Faltung

$(x) =
∫

k(s) · T(s− x) d s (3.2)

Wird die Faltung entlang der Stromlinie s → φx(s) durch den Punkt x durchgeführt, folgt für
die Intensität $ an dieser Stelle

$(x) =
L∫

−L

k(s) · T(φx(s + s0)) d s (3.3)

Der Filter besitzt hier nur lokalen Einfluss im Intervall [−L, L]. Wird dieses Intervall zu groß
gewählt, nähert sich die berechnete Intensität dem Mittelwert der Rauschtextur an. Ist es da-
gegen zu klein, ist der Effekt des Verwischens minimal. Als Filter wird meist ein einfacher
Boxfilter oder ein isotroper Filter verwendet. Durch die Filterung ergibt sich entlang einer
Stromlinie eine hohe Korrelation, jedoch nicht zwischen benachbarten Stromlinien.

3.1 2D LIC

Die Erfinder der Line Integral Convolution, Cabral und Leedom, stellten diese Technik zur
Visualisierung von zweidimensionalen Strömungen im Jahr 1993 vor [4]. Dabei wird eine
Rauschtextur mittels Faltung entlang von Stromlinien verschmiert. Die Integration erfolgt da-
bei aber weder kontinuierlich noch diskret mit konstantem Abstand, sondern pro Gitterzelle
des Vektorfelds, die von der Stromlinie traversiert wird. Dadurch ist es möglich, der Stromli-
nie durch jede Zelle zu folgen. Die Rauschtextur besitzt dieselbe Auflösung wie das Vektorfeld

12

Kapitel 3 LIC – Line Integral Convolution 3.1 2D LIC

Abbildung 3.1: Vergleich zwischen LIC (links) und Spot Noise (rechts).[33]

und besteht aus weißem Rauschen. Shen et al. [51] kombinierten 1996 den LIC mit der Advekti-
on von Farbstoff. Dabei handelt es sich jedoch nicht um eine physikalisch korrekte Advektion,
da die Diffusion vernachlässigt wurde.

Stalling und Hege [53] stellten 1995 einen beschleunigten, auflösungsunabhängigen LIC unter
dem Namen FastLIC vor. Sie beschleunigten die Berechnung, indem die LIC-Integration nicht
mehr für jedes einzelne Pixel sondern entlang einer Stromlinie durchgeführt wird und Zwi-
schenergebnisse wiederverwendet werden. Dazu muss jedoch ein Boxfilter eingesetzt werden.
1998 erweiterten sie den FastLIC um Filter auf Polynombasis [15].

Die Berechnung des LIC auf curvilinearen Gittern wurde durch Forssell [13] möglich. Forssell
führte in dieser Arbeit auch eine Technik ein, mit der die Geschwindigkeit des Vektorfelds
visualisiert und der LIC animiert werden kann. Zusammen mit Cohen hat Forssell den LIC
zur Darstellung nicht stationärer Strömungen 1995 erweitert [14]. Shen und Kao erweiterten
das Konzept für nicht stationäre Strömungen und gaben ihm den Namen UFLIC (Unsteady
Flow LIC) [52]. 2006 stellten Li et al. eine GPU-basierte Version des UFLIC, genannt GPUFLIC,
vor [35].

Beim Multifrequency LIC von Kiu und Banks [27] wird die Raumfrequenz des verwendeten
Rauschens abhängig von der Geschwindigkeit verändert. Urness et al. [58] verwenden für ih-
ren Multivariate LIC das Multifrequenz-Rauschen von Kiu und Banks nicht für die Visualisie-
rung der Geschwindigkeit sondern für Features. Zusätzlich erlaubt ihre Color-Weaving-Technik
(Verweben von Farben) die gleichzeitige Darstellung mehrerer Skalardaten zusammen mit den
Vektorattributen. Mit dem HyperLIC von Zheng et al. [68] lassen sich symmetrische zwei- oder
dreidimensionale Tensorfelder visualisieren.

Die Richtung der Strömung ist beim klassischen LIC nicht erkennbar. Um diese visualisieren
zu können nutzen Wegenkittl et al. [60] für ihren OLIC (Oriented LIC) einen asymmetrischen
Filter. Aufgrund der hohen Dichte der Stromlinien reicht dies jedoch nicht allein aus. Sie ver-
wenden deshalb eine Rauschtextur, die nur dünn besetzt ist.

De Leeuw und van Liere haben in Ihrer Arbeit Spot Noise und LIC verglichen [8]. Sie kamen
zu dem Schluss, dass der LIC die Richtung des Flusses mehr hervorhebt, jedoch keine Ge-
schwindigkeitsinformation darstellt. In Abbildung 3.1 sind die Ergebnisse einer Berechnung
durch LIC und Spot Noise gegenübergestellt.

13

Kapitel 3 LIC – Line Integral Convolution 3.2 3D LIC

Abbildung 3.2: VolumeLIC mit Abbildung der Geschwindigkeit auf den Alphawert. Links ohne
Halo, rechts mit Halo zur Hervorhebung der Tiefeninformationen. (Eigentum von
Victoria Interrante) [http://www-users.cs.umn.edu/∼interran/3Dflow.html]

3.2 3D LIC

Der 3D LIC ist eine Erweiterung des 2D LIC. Die Berechnung des LIC in drei anstatt in zwei
Dimensionen erfolgt auf dieselbe Weise mit Gleichung (3.3), da die Definition der Stromlinien
(Gleichung (3.1)) auch im dreidimensionalen Raum gültig ist. Durch den Dimensionswechsel
ergeben sich jedoch Probleme. So nimmt die visuelle Komplexität und die Verdeckung zu.
Aber auch die Komplexität der Berechnung nimmt zu, da mehr Stromlinien berechnet werden.

Interrante und Grosch [19, 20] stellten 1997 mit VolumeLIC erstmals einen volumetrischen LIC
vor. Zur Reduktion der visuellen Komplexität wird die Geschwindigkeit auf den Alphawert
abgebildet und Halos eingesetzt. Dadurch ergeben sich Bilder mit klarer Tiefenstruktur (Ab-
bildung 3.2). Dies sehen Laramee et al. [33] als „Schritt in Richtung geometrischer Strömungs-
visualisierung, bei der diskrete Objekte wie Stromlinien unterschieden werden können“.

Um Benutzerinteraktionen trotz langer Rechenzeiten des 3D LIC zu ermöglichen, verwenden
Rezk-Salama et al. [45] einen Vorberechnungsschritt. Während dieser Vorbereitung wird der
3D LIC berechnet und in einer 3D-Textur gespeichert. Diese Textur wird anschließend mit-
tels texturbasierter Volumenvisualisierung (vgl. Abschnitt 2.3.1) angezeigt. Mittels geeigneter
Transferfunktionen und Clipping (siehe Abschnitt 3.5) ist es möglich, interessante Teile der
Strömung zu extrahieren. Suzuki et al. [56] setzen ebenfalls eine 3D-Textur ein, jedoch findet
die Visualisierung auf der VolumePro-Hardware statt.

Zur Verringerung der für die LIC-Berechnung benötigten Zeit kann auch der sogenannte Seed
LIC eingesetzt werden [16]. Dabei handelt es sich um einen LIC, dessen Stromlinien nur von
bestimmten Punkten aus, definiert durch eine dünnbesetzte Seed-Textur, berechnet werden.

3.3 GPU-basierter 3D LIC

Grundlage dieser Arbeit ist der erstmalige Einsatz eines GPU-basierten Ansatzes zur Berech-
nung des dreidimensionalen LIC. Die Berechnung der Stromlinien erfolgt für den LIC, auch
im dreidimensionalen Fall, getrennt pro Pixel, sieht man von der Verwendung des FastLIC

14

http://www-users.cs.umn.edu/~interran/3Dflow.html

Kapitel 3 LIC – Line Integral Convolution 3.4 Beleuchtung von Linien

ab. Dies spricht aufgrund der hohen Parallelisierbarkeit für die Verwendung der GPU als Ge-
neral Purpose GPU (GPGPU). Dazu wird das Vektorfeld in einer 3D-Textur repräsentiert und
die Berechnung des LIC erfolgt in Fragmentprogrammen. Zur Beschleunigung eignen sich die
Techniken, die auch bei der Volumenvisualisierung auf der GPU zum Einsatz kommen (sie-
he Abschnitt 2.3.3). Dazu gehören der Early-Z-Test, das Empty-Space-Leaping und der vor-
zeitige Strahlabbruch. Die visuelle Komplexität wird verringert durch die Verwendung von
dünnem Rauschen anstelle von weißem Rauschen, dem Einsatz geeigneter Transferfunktionen
und der Beleuchtung der Stromlinien. Um bei der Visualisierung und speziell bei der Interak-
tion Aliasingeffekten vorzubegeugen, sollte die Raumfrequenz des verwendeten Rauschens
im Bildraum konstant sein.

3.4 Beleuchtung von Linien

Wird ein kdimensionales Objekt in einen n-dimensionalen Euklidischen Raum n > k einge-
bettet, ist die Kodimension gegeben durch n − k. Dadurch ist die Kodimension von Flächen
im dreidimensionalen Raum gleich eins. In diesem Fall erfolgt die Beleuchtungsberechnung
anhand der eindeutigen Normale der Fläche [12]. Lediglich die Orientierung der Fläche muss
dabei berücksichtigt werden. Für Kodimensionen größer eins existieren viele mögliche Nor-
malen. So liegen beispielsweise bei dreidimensionalen Linien mit Kodimension zwei die mög-
lichen Normalen in einer Ebene, die orthogonal zur Tangente der Linie liegt. Banks stellte zu
diesem Problem die Arbeit Beleuchtung in diversen Kodimensionen vor [2]. Für die Beleuchtung
von Linien mit Kodimension zwei verwendet er unendlich dünne Zylinder und maximiert ge-
trennt für den diffusen und spekularen Anteil das reflektierte Licht entlang des Umfangs. In
seiner Arbeit geht Banks auch auf die zunehmende Helligkeit mit zunehmender Kodimension
ein.

Zöckler et al. [69] stellten 1996 eine Methode zur Beleuchtung von Stromlinien vor. Darin setz-
ten sie das Modell von Banks ein. Mallo et al. [38] verwenden ebenfalls unendlich dünne Zy-
linder, gebrauchen aber nicht die Maxima für den spekularen und diffusen Anteil. Stattdessen
integrieren sie die Intensität über den sichtbaren und beleuchteten Bereich des Zylinders.

Eine weitere Möglichkeit bietet die Verwendung des Gradienten als Normale [62, 63]. Bei der
Volumenvisualisierung kann der Gradient aus dem gegebenen Skalarfeld berechnet werden.
Weiskopf et al. berechnen den Gradienten nach jedem Zeitschritt ihrer Texturadvektion [62,
63]. Werden die Stromlinien durch einen LIC erzeugt, können die Gradienten der Rauschtextur
verwendet werden (Abschnitt 3.4.3).

Die Berechnung der Beleuchtung erfolgt mit dem Modell von Phong [42] beziehungsweise mit
dem Blinn-Phong-Modell von Blinn [3]. Beim Phong-Modell ergibt sich die Intensität mit

I = ka + kdL ·N + ks (V · R)n (3.4)

Dabei sind ka, kd und ks jeweils die Koeffizienten für den ambienten, den diffusen und den
spekularen Anteil des Lichts. V steht für die Blickrichtung, N für die Normale, L für die Licht-
richtung und R für den Reflektionsvektor von L an der Normale N. Die Größe des spekularen
Glanzpunkts wird vom Exponenten n beeinflusst.

15

Kapitel 3 LIC – Line Integral Convolution 3.4 Beleuchtung von Linien

Abbildung 3.3: Textur für die Beleuchtung von Stromlinien nach Zöckler. Die Abszisse gibt das
Skalarprodukt L · T, die Ordinate das Skalarprodukt V · T wieder.

Das Blinn-Phong-Modell approximiert den Winkel zwischen Reflektionsvektor und Blickrich-
tung mit dem Winkel zwischen der Normalen und dem Halfwayvektor. Der Halfwayvektor
H ist definiert durch H = (V + L)/‖V + L‖. Daraus folgt für die Intensität nach Blinn-Phong

I = ka + kdL ·N + ks (H ·N)n (3.5)

3.4.1 Stromlinien nach Zöckler

Zöckler et al. [69] wählen für die Beleuchtung von Stromlinien die Normale aus, mit der die
berechnete Intensität am größten ist. Dazu verwenden sie die Normale, die koplanar zu dem
Tangentenvektor T der Linie und der Lichtrichtung L ist. Damit ist es möglich, die Beleuchtung
mittels Gleichung (3.4) zu berechnen. Um die Berechnung von der Normalen unabhängig zu
machen, führen Zöckler et al. mehrere Umformungen durch.

Wird die Lichtrichtung L im Tangentenraum der Linie zerlegt, ergibt sich

L = LN + LT (3.6)

Hieraus folgt mit dem Satz von Pythagoras für den diffusen Teil der Gleichung (3.4)

L ·N = ‖LN‖ =
√

1− ‖LT‖2 =
√

1− (V · T)2 (3.7)

Der spekulare Anteil lässt sich durch eine ähnliche Umformung ohne die Normale N aus-
drücken

V · R = V · (LT − LN)

= (L · T) (V · T)−
√

(L · T)2
√

(V · T)2 (3.8)

Mit diesen beiden Gleichungen ist es nun möglich, die Gleichung (3.4) des Phong-Modells nur
abhängig von den Skalarprodukten L · T und V · T auszudrücken und in einer 2D-Textur ab-
zuspeichern (Abbildung 3.3). Das Beleuchten der Linien erfolgt durch Texturierung mit dieser
2D-Textur. Dazu wird für die Texturkoordinaten eines Liniensegments die Tangente verwen-
det. Wird von gerichtetem Licht und einer orthographischen Kamera ausgegangen, können

16

Kapitel 3 LIC – Line Integral Convolution 3.4 Beleuchtung von Linien

θ = α− π
2

θ = α

θ = 0

θ = π
2

V

N

B

Nα

L

Abbildung 3.4: Querschnitt eines Zylinders zur Beleuchtungsberechnung. Der vom Auge aus
sichtbare und diffus beleuchtete Teil der Oberfläche ist rot eingefärbt.

die zwei für den Nachschlag benötigten Skalarprodukte durch die Texturtransformationsma-
trix ausgerechnet werden. Dazu wird die Matrix mit der Lichtrichtung L und der Blickrichtung
V folgendermaßen gefüllt:

M =
1
2


Lx Vx 0 0
Ly Vy 0 0
Lz Vz 0 0
1 1 0 2

 (3.9)

Wird diese Matrix mit den Texturkoordinaten der Liniensegmente multipliziert, ergeben sich
neue Texturkoordinaten zwischen 0 und 1, mit denen der Texturnachschlag durchgeführt wer-
den kann.

Da die Normale immer in Richtung Lichtquelle ausgerichtet ist, existiert keine definierte
„Rückseite“ der Linie. Dies führt dazu, dass die Linie dieselbe diffuse Intensität besitzt, wenn
sich das Vorzeichen der Lichtrichtung ändert. In diesem Zusammenhang wird von bidirektio-
naler Beleuchtung gesprochen. Der Effekt lässt sich minimieren, wenn die Lichtrichtung gleich
der Blickrichtung ist. Zöckler et al. verwenden für den diffusen Term zusätzlich einen Expo-
nenten, um den Überschuss der Helligkeit aufgrund der höheren Kodimension auszugleichen.
Banks schlägt dafür einen konstanten Wert von 4,8 vor.

3.4.2 Stromlinien nach Mallo

In dem Ansatz von Mallo et al. [38] erfolgt die Beleuchtung nicht durch die Transformation
von Texturkoordinaten und anschließendem Texturnachschlag. Vielmehr wird dazu die pro-
grammierbare Pipeline der Grafikkarte mit Vertex- und Fragmentprogramm verwendet. Ihr
Verfahren verbessert die diffusen Reflektionen von Zöckler et al. [69]. Dazu wird der diffu-
se und der spekulare Anteil nicht über die maximale Intensität bestimmt, sondern wie bei
Schussmann und Ma [49] berechnet. Dies geschieht durch Integration über den beleuchteten
und sichtbaren Teil der Oberfläche eines unendlich dünnen Zylinders. In Abbildung 3.4 ist der
sichtbare Teil des Zylinders rot eingefärbt. Der Tangentenraum entlang der Linie ist definiert
durch die Tangente, die Normale und die Binormale (T, N, B). Die Binormale ist gegeben mit
B = T×V/‖T×V‖ und die Normale mit N = B× T.

17

Kapitel 3 LIC – Line Integral Convolution 3.4 Beleuchtung von Linien

(a) (b)

Abbildung 3.5: Texturen für die Beleuchtung von Stromlinien nach Mallo. (a) Diffuser Anteil: Auf
der Abszisse ist cos(α) und auf der Ordinate L ·T dargestellt. (b) Spekularer Anteil:
Auf der Abszisse ist cos(α) und auf der Ordinate cos(β) dargestellt.

Der sichtbare Bereich des Zylinders hängt von dem Winkel α zwischen den Projektionen von
V und L auf die Ebene N, B ab. Dieser Winkel lässt sich mit Hilfe von V und L ausdrücken:

α = arccos
V · L−VT · LT√

1− ‖VT‖2
√

1− ‖LT‖2
(3.10)

Dabei bezeichnet VT und LT die Blickrichtung beziehungsweise die Lichtrichtung im Tangen-
tenraum.

Für den diffusen Teil ergibt sich derselbe Term wie bei Zöckler (Gleichung (3.7)), jedoch skaliert

L ·N =
√

1− ‖LT‖2 · sin α + (π − α) cos α

4
(3.11)

Für den spekularen Anteil folgt für das Modell nach Blinn-Phong

H ·N =
√

1− ‖HT‖
n

π
2∫

α− π
2

cosn (θ − β)
cos θ

2
d θ (3.12)

mit β gleich dem Winkel zwischen der Projektion von V und H auf die Ebene N, B. Das Integral
über θ muss numerisch gelöst werden (siehe [38]). Mallo et al. legen für den diffusen und
den spekularen Anteil je eine vorberechnet Textur an. Die diffuse Textur Tdi f f wird dabei in
Abhängigkeit von cos α und L · T und die spekulare Textur Tspec von cos α und cos β berechnet
(Abbildung 3.5).

Beim Rendern werden der Lichtvektor L, die Blickrichtung V und die Tangente T im Vertex-
programm berechnet. Im Fragmentprogramm werden die Binormale, die Normale und der
Halfwayvektor ermittelt. Zusammen mit

cos α =
L ·N√

1− (L · T)2
und cos β =

H ·N√
1− (H · T)2

(3.13)

18

Kapitel 3 LIC – Line Integral Convolution 3.4 Beleuchtung von Linien

ergibt sich dann für das beleuchtete Fragment mit der Farbe Cin

Cout = Cin
(
ka + kd · Tdi f f (cos α, L · T)

)
+ ks ·

√
1− (H · T)2 · Tspec(cos α, cos β) (3.14)

3.4.3 Beleuchtung des LIC anhand von Gradienten

Der Gradient wird in der Volumenvisualisierung und auch bei der Texturadvektion zur Be-
leuchtungsberechnung verwendet [63]. Wird der Gradient des LIC benötigt, so könnte das
Ergebnis des LIC zwischengespeichert und die Gradienten von diesem Skalarfeld berechnet
werden. Anschließend könnte die Beleuchtungsberechnung für das Skalarfeld zusammen mit
den Gradienten durchgeführt werden. Bei dem hier vorgestellten Ansatz erfolgt die Beleuch-
tungsberechnung gleichzeitig mit der Berechnung des LIC, um beispielsweise vom vorzeiti-
gen Strahlabbruch profitieren zu können. Dazu wird der Gradient gleichzeitig mit der Faltung
entlang der Stromlinien berechnet.

Die Dichte beziehungsweise Intensität $(x) des LIC entlang einer Stromlinie s → φx(s) ist
gegeben durch Gleichung (3.3)

$(x) =
L∫

−L

k(s) · T(φx(s + s0)) d s

Der Gradient der Dichte $(x) ist definiert durch

∇$(x) = ∇
L∫

−L

k(s) · T(φx(s + s0)) d s (3.15)

Wird nun davon ausgegangen, dass der Gradient des Filters k annähernd konstant ist und es
sich um gerade Stromlinien handelt, ergibt sich

∇$(x) =
L∫

−L

k(s) · ∇T(φx(s + s0)) d s (3.16)

Damit ist der Gradient nur noch vom eingesetzten Rauschen abhängig. Das Rauschen darf
aber kein reines weißes Rauschen sein, da benachbarte Gradienten durch die hohen Raum-
frequenzen sonst keine Korrelation besitzen. Eine Möglichkeit bietet die Filterung des weißen
Rauschens mit einem Tiefpassfilter, wodurch sich glattere Übergänge zwischen den Gradien-
ten ergeben.

Wird anstelle des weißen Rauschen ein dünnes Rauschen eingesetzt und dieses ebenfalls mit
einem Tiefpassfilter gefiltert, ergeben sich Stromlinienbündel. Diese besitzen im Inneren eine
höhere Dichte als außen. Die berechneten Gradienten entsprechen den Normalen einer Iso-
fläche um dieses Strahlenbündel. Dadurch entsteht durch die Beleuchtung der Eindruck von
Geometrie.

19

Kapitel 3 LIC – Line Integral Convolution 3.5 Features

3.4.4 Wahl der Transferfunktion

Eine Transferfunktion dient zur Abbildung eines Werts auf einen oder mehrere Werte. Dies er-
möglicht, Skalarwerte auf Farbwerte und auch auf die Opazität abzubilden. Da der Skalarwert
meist auf Farben abgebildet wird, werden die Abbildungen auf die einzelnen Farbkomponen-
ten in einer Transferfunktion zusammengefasst und als Kanäle der Transferfunktion bezeich-
net.

Die Wahl der richtigen Transferfunktion ist bei der Visualisierung von 3D LIC ebenso wich-
tig wie bei der Darstellung von Volumen. In der klassischen Volumenvisualisierung wird die
Dichte des Volumens auf vier Kanäle der Transferfunktion abgebildet. Diese vier Kanäle las-
sen sich dabei in drei Abbildungen auf den Farbwert im RGB-Farbraum und einer Abbildung
auf den Alphawert aufteilen. Dadurch ist es möglich, Bereiche mit einer bestimmten Dichte in-
nerhalb des Volumens transparent andere opak darzustellen und gleichzeitig Farben für jeden
Dichtewert zu definieren. In dieser Arbeit wurde eine Transferfunktion bestehend aus fünf
Kanälen gewählt. Die ersten drei Kanäle bilden einen Skalarwert auf einen Farbwert ab. Bei
den verbleibenden zwei Kanälen handelt es sich um Abbildungen auf den Alphawert. Als Ein-
gabewert für den ersten Alphakanal kann die Geschwindigkeit des Vektors aber auch andere
Größen, wie beispielsweise das Ergebnis der Lambda2-Berechnung, eingesetzt werden. Da-
durch können Bereiche des Vektorfelds ausgeblendet oder hervorgehoben werden. Der zweite
Alphakanal der Transferfunktion wird dazu verwendet, die Intensität $, die sich aus der LIC-
Berechnung ergibt, auf den Alphawert abzubilden. Dies ermöglicht zum Beispiel die Freistel-
lung der Bereiche mit hoher Intensität. So können bei Verwendung eines dünnen Rauschens
Stromlinienbündel freigelegt werden. Die zwei Alphakanäle können im Fragmentprogramm
mittels Tensorprodukt miteinander kombiniert werden.

Wird die Transferfunktion entsprechend gewählt, kann sich ein Effekt namens Limb Darkening
[16] einstellen. Es handelt sich dabei um ein Phänomen aus der Astrophysik. Dabei erscheint
die Atmosphäre eines Sterns am Rand dunkler als in der Mitte. Mit einer Transferfunktion
kann ein ähnlicher Effekt erzeugt werden, indem die Intensität der Farbe für die Skalarwerte
am Rand geringer als im Inneren des Objekts ist. Gleichzeitig sollte der Alphawert am Rand
des Objekts sehr gering sein und nach innen zunehmen.

3.5 Features

Features oder auch Merkmale sind in der Visualisierung von besonderem Interesse. Es handelt
sich dabei um spezielle Bereiche, die sich meist im Inneren des Datensatzes befinden. In der
medizinischen Visualierung könnten dies beispielsweise Knochen, Arterien oder auch Tumore
sein. Im Bereich der Strömungsmechanik sind dies Wirbel und Turbulenzen.

Diese Features können auf verschieden Weisen extrahiert werden. So lässen sich mit einer ge-
eigneten Transferfunktion Bereiche des Volumens ausblenden. Je nach verwendeten Skalarda-
ten kann so eine Maskierung, zum Beispiel anhand der Geschwindigkeit (Velocity-Masking),
durchgeführt werden. In Abbildung 3.6 wurden die langsameren Schichten um den Tornado
ausgeblendet, so dass der Schlauch des Tornados besser zu erkennen ist. Besteht das Volumen
jedoch überwiegend aus denselben Dichte- beziehungsweise Skalarwerten, wird das Feature
mit ausgeblendet.

20

Kapitel 3 LIC – Line Integral Convolution 3.5 Features

Abbildung 3.6: Ausblenden von Bereichen des Vektorfelds mittels Velocity-Masking. Links der
opake Datensatz, rechts derselbe Datensatz mit Velocity-Masking. Als Datensatz
wurde der Tornado von Roger Crawfis verwendet.

Abbildung 3.7: Links ist der vollständige Datensatz abgebildet, rechts wurde mit einer Clipebe-
ne der vordere Teil weggeschnitten. Als Datensatz wurde der Tornado von Roger
Crawfis verwendet.

Zur Extraktion kann aber auch ein sogenanntes Importance-Volumen eingesetzt werden. Da-
bei handelt es sich um ein weiteres Volumen, dass jedoch einzig zur Maskierung der eigentli-
chen Daten dient. Diese Maskierung kann kontinuierlich oder diskret erfolgen. In den Daten
von Strömungssimulationen können so mit Hilfe des Lambda2-Verfahrens Wirbel hervorge-
hoben werden. Dazu wird das Ergebnis aus der Lambda2-Berechnung in diesem Importance-
Volumen gespeichert. Bei dem Seed LIC von Helgeland et al. [16] können mit der entsprechen-
den Gestaltung der Seed-Textur Features extrahiert werden.

Beim Clipping werden Teile des Volumens mit Hilfe von Primitiven weggeschnitten [41, 61].
Meist werden dazu Ebenen eingesetzt, die frei im Raum platziert werden können. Es können
aber auch beliebig komplexe Formen verwendet werden [61]. Eine weitere Möglichkeit bie-
tet die Schnittebene (Abschnitt 2.2). Mit ihr lassen sich einzelne Schichten aus dem Volumen
extrahieren und analysieren.

21

Kapitel 3 LIC – Line Integral Convolution 3.5 Features

3.5.1 Erkennung von Wirbeln

Jeong und Hussain stellten 1995 eine Methode vor, mit der es möglich ist, Wirbel innerhalb
von Strömungen zu identifizieren [21]. Sie verwenden dazu die Eigenwerte der Jacobimatrix.
Die Jacobimatrix, auch Geschwindigkeitsgradient-Tensor genannt, ist definiert durch

J = ∇v (x, t) =


∂

∂x vx
∂

∂y vx
∂
∂z vx

∂
∂x vy

∂
∂y vy

∂
∂z vy

∂
∂x vz

∂
∂y vz

∂
∂z vz

 (3.17)

Die Eigenwerte der Jacobimatrix erlauben eine Klassifizierung der Strömung [26]. So können
Verwirbelungen, Anziehung und auch ein Abbremsen der Strömung festgestellt werden. Zur
einfacheren Bestimmung der Eigenwerte wird die Jacobimatrix in einen symmetrischen Teil,
den Diffusionstensor, und einen antisymmetrischen Teil, den Rotationstensor, unterteilt. Der
Diffusionstensor beschreibt den Fluss in und aus einer Region und ist gegeben durch

S =
1
2

(
J + JT

)
(3.18)

Durch den Rotationstensor wird die Rotation eines Differenzvektors beschrieben. Er ist defi-
niert durch

Ω =
1
2

(
J− JT

)
(3.19)

Nach Bestimmung der Eigenwerte werden diese der Größe nach geordnet

λ1 ≥ λ2 ≥ λ3 (3.20)

Das Lambda2-Kriterium definiert einen Wirbel (Vortex) als eine zusammenhängende Region,
in der zwei Eigenwerte negativ sind. Oder anders ausgedrückt λ2 kleiner null ist. Dadurch
ergibt sich mehr ein verschwommener Bereich für einen Wirbel anstatt einer binären Entschei-
dung. Wird die Bestimmung des Lambda2-Werts für das gesamte Vektorfeld durchgeführt
und positive Werte nicht berücksichtigt ergibt sich ein Skalarfeld. Die Wahl eines geeigneten
Isowerts für die Extraktion der Wirbel ist jedoch sehr intuitiv.

22

4 Modellierung des Rauschens

Das Ergebnis der LIC-Berechnung hängt wesentlich vom verwendeten Rauschen ab. So beein-
flussen beispielsweise die Raumfrequenzen des Rauschens die Anzahl der Stromlinien. Höhe-
re Frequenzen führen zu mehr und feineren, niedrige Frequenzen zu weniger und breiteren
Stromlinien. Abbildung 4.1 verdeutlicht dies. Cabral und Leedom [4] verwenden in Ihrer Ar-
beit weißes Rauschen, das dieselbe Dimension wie das Vektorfeld besitzt. Erst seit dem Ansatz
von Stalling und Hege [53] ist es möglich, für das Rauschen eine Auflösung zu wählen, die
sich von der des Vektorfelds unterscheidet. Dies erlaubt eine Anpassung der Raumfrequenzen
ohne vorher einen Filter auf das Rauschen anwenden zu müssen. Obwohl der Schwerpunkt
dieser Arbeit auf dreidimensionalem LIC liegt und ein Rauschvolumen eingesetzt wird, wird
im folgenden nur auf 2D-Rauschtexturen eingegangen. Der dreidimensionale Fall ergibt sich,
wenn nicht anders vermerkt, einfach durch Erweiterung der Dimensionalität.

Weißes Rauschen ist jedoch für die gleichzeitige Darstellung von Richtung und Orientierung
des Vektorfelds mittels LIC weniger geeignet. Wegenkittel et al. [60] verwenden für den orien-
tierten LIC mit asymmetrischem Filterkernel statt des weißen Rauschens ein dünnes Rauschen.
Das von ihnen verwendete dünne Rauschen ist regelmäßig aufgebaut, wobei die Abtastpunkte
auch minimal verschoben sein können (Jitter). Bei dem 3D LIC von Interrante und Grosch [19]
werden die besten Ergebnisse mit in einem Volumen zufällig verteilten Punkten erzielt. Diese
Punkte sollten mit einer Poissonverteilung oder einer Approximation der Poissonverteilung
im Volumen platziert werden, um eine Gleichverteilung zu erhalten.

Um bei Verwendung von dünnem Rauschen die Breite der Stromlinien zu beeinflussen, gibt es
zwei Möglichkeiten. So genügt es, die Auflösung der Rauschtextur und gleichzeitig auch die
Zahl der Samples zu reduzieren. Dadurch vergrößert sich im Bildraum der Querschnitt jedes
Samples, wodurch mehr Stromlinien durch jedes Sample verlaufen. Jedoch können sich trotz
linearer Texturfilterung an den Rändern der breiteren Stromlinien harte Kanten bilden. Wird
nun die Intensität der Stromlinien mittels einer Transferfunktion auf die Opazität abgebildet,
so ist es kaum möglich, das Innere eines solchen Stromlinienbündels opak darzustellen, wäh-
rend der Rand transparent ist. Dies rührt daher, dass aufgrund der Skalierung des Samples

Abbildung 4.1: Einfluss der Raumfrequenzen der Rauschtextur auf das Resultat der LIC-
Berechnung. Links niedrige, rechts hohe Raumfrequenzen. Die Parameter des LIC
wurden nicht verändert.

23

Kapitel 4 Modellierung des Rauschens 4.1 Weißes Rauschen

Abbildung 4.2: Weißes Rauschen erzeugt durch Zufallszahlen zwischen null und eins.

sämtliche Stromlinien eine ähnliche Intensität besitzen. Dieses Problem lässt sich umgehen,
indem nicht die Auflösung der Rauschtextur verändert wird, sondern das Rauschen mit ei-
nem Tiefpassfilter gefiltert wird. Dadurch vergrößert sich ebenfalls der Querschnitt der Samp-
les. Gleichzeitig wird aber die Intensität eines einzelnen Samples mit zunehmendem Abstand
zur ursprünglichen Abtastposition geringer. Wird der LIC auf dieses gefilterte Rauschen ange-
wendet, so ergeben sie Stromlinienbündel, die am Rand eine recht geringe Intensität besitzen,
die sich zum Mittelpunkt hin erhöht. Da die Gradienten dieses Rauschens bei der Berechnung
der Beleuchtung als Normalen verwendet werden können (siehe Abschnitt 3.4.3), wirkt sich
so die Filterung indirekt auch auf die Beleuchtung aus. Dies hat zur Folge, dass die Gradien-
ten einen wesentlich glatteren Verlauf aufweisen. Hiervon profitiert die Beleuchtung mittels
Gradienten.

4.1 Weißes Rauschen

Weißes Rauschen lässt sich sehr einfach mit Zufallszahlen erzeugen. Dazu werden für jedes
Texel der Rauschtextur Zufallszahlen zwischen null und eins erzeugt. Im Mittel ergibt sich so
ein Wert von 0,5. Abbildung 4.2 zeigt ein auf diese Weise erzeugtes Rauschen. Weißes Rau-
schen kann beim zweidimensionalen LIC als Ausgangstextur verwendet werden [4][53]. Beim
OLIC [60] und beim 3D LIC [19] wird zur besseren Visualisierung jedoch dünnes Rauschen
eingesetzt.

4.2 Dünnes Rauschen

Für die Erzeugung von dünnem Rauschen wird die gesamte Rauschtextur mit null initiali-
siert. Anschließend werden zufällige Positionen auf eins gesetzt. Die Anzahl der Abtastpunkte
sollte klein gegenüber der Gesamtzahl aller möglichen Positionen sein. Der Erwartungswert
befindet sich dementsprechend im Intervall von null bis eins. Durch die Verwendung von
Pseudozufallszahlen können Häufungen mehrerer Samples ebenso wie größere leere Bereiche
auftreten (vgl. Abbildung 4.3(a)). Um die Uniformität beziehungsweise die Diskrepanz der
Abtastungen zu erhöhen, müsste eine Poissonverteilung verwendet werden, die jedoch sehr

24

Kapitel 4 Modellierung des Rauschens 4.2 Dünnes Rauschen

(a) (b) (c)

Abbildung 4.3: Gleichverteilung von 150 Abtastpunkten zur Erzeugung von dünnem Rauschen.
Verwendung von (a) Pseudozufallszahlen, (b) Stratified Sampling, (c) Haltonse-
quenz.

aufwendig zu berechnen ist. Stattdessen können verschiedene Approximationen der Poisson-
verteilung zur Verbesserung dieser Uniformität eingesetzt werden.

Die Diskrepanz ist optimal, wenn ein reguläres Gitter für die Ausgangspositionen der Abtast-
punkte verwendet wird. Die Abtastpunkte können anschließend relativ zu ihrer ursprüngli-
chen Position mit Zufallszahlen minimal verschoben (Jitter). Jedoch sind dann die Samples
sehr regelmäßig verteilt. Weitere Möglichkeiten zur Erhöhung der Diskrepanz der Abtastun-
gen bieten die Stratifikation und das Latin-Hypercube-Sampling [25]. Bei der Stratifikation
wird die Rauschtextur in mehrere Strata unterteilt und diese jeweils mit n Punkten gefüllt
(Stratified Sampling). Die Rauschtextur wird beim Latin-Hypercube-Sampling ebenfalls in
Strata unterteilt. Jedoch darf höchstens ein Sample pro Spalte und Zeile auftreten. Realisiert
wird diese Auswahl der Strata durch zufällige Permutationen.

Die Uniformität kann auch durch die Verwendung von Sequenzen geringer Diskrepanz (Low
Discrepancy Sequences), wie zum Beispiel der Haltonsequenz, verbessert werden [23][24]. Zur
Erzeugung der Haltonsequenz wird die Radixinvertierung verwendet [25]. Die Radixinvertie-
rung zur Basis b der Zahl i ist definiert durch

ϕb(i) =
∞

∑
j=0

aj(i)b−j−1 (4.1)

Dabei bezeichnet aj(i) die Stelle j von i. Für i aus N0 ergibt sich daraus die van der Corput-
sequenz der Basis b. Bei einer n-dimensionalen Haltonsequenz wird für jede Dimension eine
van der Corputsequenz verwendet. Die Position eines Samples p ergibt sich dann aus

p(i) = (ϕb1(i), ϕb2(i), . . . , ϕbn(i)) (4.2)

Um eine Gleichverteilung zu erhalten, sollten die Basen b1, . . . , bn aus aufsteigenden Primzah-
len bestehen. In Abbildung 4.3 sind einige Beispiele für eine Gleichverteilung dargestellt.

25

Kapitel 4 Modellierung des Rauschens 4.3 Filterung

4.3 Filterung

Die Filterung eines eindimensionalen Signals entspricht der Faltung des Signals mit dem Filter.
Sei h(t) das Signal und g(t) der Filter, dann ist die Faltung definiert durch

(g ∗ h) (t) =
∞∫

−∞

g(τ) · h(t− τ)dτ (4.3)

Das Faltungstheorem besagt, dass die Faltung einer Multiplikation im Fourierraum entspricht:

(g ∗ h) (t) ⇐⇒ G(ν) · H(ν) (4.4)

G(ν) und H(ν) sind die entsprechenden Funktionen im Fourierraum. Damit lässt sich für Fal-
tungen der Aufwand reduzieren. Dazu muss eine Fouriertransformation in den Frequenzraum
und anschließend die inverse Fouriertransformation zurück in den Bildraum durchgeführt
werden. Diese Methode ist schneller als die Filterung im Bildraum, wenn der Filterkern eine
große Ausdehnung oder sogar unendlichen Einfluss besitzt.

Sei h(t) eine Funktion im Bildraum, dann ist H(ν) die analoge Repräsentation im Frequenz-
raum. Für die Fouriertransformation gilt

H(ν) =
1√
2π

∞∫
−∞

h(t)e−iνt d t (4.5)

und für die Rücktransformation

h(t) =
1√
2π

∞∫
−∞

H(ν)eiνt d ν (4.6)

Ist das Signal mehrdimensional, so erfolgt die Faltung nacheinander entlang jeder Dimension.
Ebenso wird mit der Fouriertransformation verfahren.

Um bei einem Signal die hohen Frequenzen zu eliminieren, wird ein Tiefpassfilter eingesetzt.
Ein idealer Filter dafür ist der sinc-Filter mit

h(t) = ∆ν · sinc(π∆νt) mit sinc(x) =
sin(x)

x
(4.7)

Dabei ist ∆ν/2 die maximale Frequenz des Filters. Wird der sinc-Filter in den Fourierraum
überführt ergibt sich ein Boxfilter

H(ν) =
{

1 −∆ν
2 ≤ ν ≤ ∆ν

2
0 sonst

(4.8)

Soll nun ein Signal gefiltert werden, wird es mittels Fouriertransformation in den Frequenz-
raum überführt. Dort werden alle Frequenzen größer ∆ν/2 auf null gesetzt. Anschließend
wird das Signal mit der inversen Fouriertransformation zurücktransformiert.

Dieser Tiefpassfilter eignet sich für weißes, nicht jedoch für dünnes Rauschen. Da die hohen
Frequenzen komplett abgeschnitten werden, kommt es zu Oberschwingungen, die nicht mehr

26

Kapitel 4 Modellierung des Rauschens 4.4 Konstante Raumfrequenz

ausgeglichen werden. Diese Oberschwingungen sind aufgrund der geringen Intensität im wei-
ßen Rauschen kaum bemerkbar, jedoch im dünnen Rauschen deutlich sichtbar (Abbildung 4.4
mittlere Spalte). Um diese Problematik zu umgehen, kann ein Filter verwendet werden, der im
Frequenzraum mit zunehmender Frequenz an Einfluss verliert. Hierfür bietet sich der Gauß-
filter an:

f (x) =
1

σ
√

2π
· e−x2/(2σ2) (4.9)

Wird der Gaußfilter in den Frequenzraum transformiert, so ergibt sich wieder eine Gaußkurve
mit

F(ν) =
1√
2π

· e−σ2ν2/2 (4.10)

Bei der Filterung mit diesem Filter wird das Signal entsprechend dem Faltungstheorem (Glei-
chung (4.4)) im Frequenzraum nur mit dem Gaußfilter multipliziert. Da höhere Frequenzen
immer geringer gewichtet werden, können keine Oberschwingungen mehr auftreten. Abbil-
dung 4.4 zeigt die Auswirkungen der Filterung mit einem Box- und einem Gaußfilter auf dün-
nes Rauschen und auf weißes Rauschen. Die Zwischenergebnisse der Filterung im Frequenz-
raum sind in der letzten Zeile abgebildet.

4.4 Konstante Raumfrequenz von Rauschen im Bildraum

Sind die Raumfrequenzen im Bildraum zu hoch, kann es zu Aliasingeffekten kommen. Dies
kann sich in Flimmern oder harten Übergängen äußern. Wird bei einer perspektivischen Ka-
mera der Abstand zwischen dem Vektorfeld und der Augposition verringert, so nehmen die
Raumfrequenzen ab, da das Vektorfeld insgesamt mehr Raum im Viewport einnimmt. Dage-
gen nehmen die Raumfrequenzen zu, wenn sich das Vektorfeld vom Auge entfernt. Um zu
verhindern, dass sich die Raumfrequenzen in diesem Umfang ändern, muss die Distanz zwi-
schen Vektorfeld und Auge mit in Betracht gezogen werden. Ein möglicher Ansatz soll hier
vorgestellt werden.

Die Idee besteht darin, dass der Texturnachschlag in Texturen verschiedener Auflösung durch-
geführt wird. Die Auflösung der Texturen soll dabei abhängig von der Entfernung zum Auge
sein. Da eine perspektivische Kamera verwendet wird, muss diese Entfernung in Gerätekoor-
dinaten oder in Bildkoordinaten berechnet werden. In Bildkoordinaten entspricht die Entfer-
nung zwischen Auge und der Position genau dem z-Wert der Position (nach der Homogeni-
sierung). Da der Verlauf der Tiefenwerte nicht linear ist, wird zur Approximation die Potenz
zur Basis zwei verwendet. Um die nächstkleinere Texturstufe m für einen Tiefenwert d zu be-
rechnen, wird nur der ganzzahlige Teil der Potenz verwendet, der sich aus

m = bld (d + 1)c (4.11)

ergibt. Wird nun aus den Texturen für Stufe m und m + 1 jeweils die Intensität des Rauschens
ermittelt, kann mit linearer Interpolation die Intensität eines neuen Rauschens berechnet wer-
den. Dieses Rauschen sollte, unabhängig vom Augabstand, eine näherungsweise konstante
Raumfrequenz im Bildraum besitzen.

27

Kapitel 4 Modellierung des Rauschens 4.4 Konstante Raumfrequenz

Abbildung 4.4: Verwendung eines Box- und eines Gaußfilters zur Filterung der niedrigen Frequen-
zen. In den ersten beiden Zeilen ist das ursprüngliche Rauschen, das Ergebnis nach
Anwendung des Boxfilters und nach Anwendung des Gaußfilters von links nach
rechts abgebildet. In der dritten Zeile ist das Resultat der Filterung im Frequenz-
raum dargestellt.

28

Kapitel 4 Modellierung des Rauschens 4.4 Konstante Raumfrequenz

Abbildung 4.5: Konstante Raumfrequenz des Rauschens im Bildraum. Das Rauschen der Stufe m
ist rot und der Stufe m + 1 grün eingefärbt. Der harte Übergang im linken und
rechten Bild tritt auf, da der Interpolationskoeffizient von eins auf null zurück-
springt. Im mittleren Bild ist deutlich die Mischung von niederfrequentem (grün)
und hochfrequentem Rauschen (rot) zu erkennen.Der Abstand der Kamera wird
von links nach rechts verringert.

Anstatt viele Rauschtexturen unterschiedlicher Auflösung, vergleichbar mit Mip-Mapping,
anzulegen, werden nur die Texturkoordinaten im Fragmentprogramm entsprechend skaliert
und eine einzige Rauschtextur verwendet. So muss beispielsweise, um Rauschen mit höherer
Frequenz zu erhalten, die Texturkoordinate mit einem Faktor größer eins multipliziert werden,
was zu Undersampling führt. Eine Skalierung kleiner eins führt dagegen bei Verwendung von
trilinearer Texturfilterung zu Oversampling und somit zu niedrigeren Frequenzen. Vorausset-
zung dafür ist jedoch, dass beim Texturzugriff der ganzzahlige Anteil der Texturkoordinaten
ignoriert wird, was in OpenGL dem Verhalten von GL_REPEAT entspricht (siehe [50]). Die
Berechnung dieses Skalierungsfaktors fm ergibt sich aus

fm = s · 2−m

= s · 2−bld(d+1)c (4.12)

Dabei lässt sich mit s die Raumfrequenz des Bildraums justieren. Mit fm und fm+1 lassen sich
nun die Texturkoordinaten für die Texturstufen m und m + 1 berechnen, indem die ursprüng-
liche Koordinate mit fm beziehungsweise fm+1 multipliziert wird. Anschließend wird mit die-
sen Texturkoordinaten jeweils in derselben Rauschtextur nachgeschlagen. Sei nm das Ergebnis
dieses Nachschlags für Auflösung m und nm+1 für m + 1, dann ergibt sich für das Rauschen
mit konstanter Raumfrequenz nconst mittels linearer Interpolation

t = ld (d + 1)− bld (d + 1)c
nconst = tnm+1 + (1− t)nm (4.13)

In Abbildung 4.5 ist eine solche Textur mit konstanter Raumfrequenz dargestellt. Der Abstand
der Kamera nimmt dabei von links nach rechts ab. Zur Hervorhebung der unterschiedlichen
Texturstufen wurde die Stufe m rot und Stufe m + 1 grün eingefärbt. Die harte Kante zwischen
dem roten und dem grünen Rauschen im ersten und dritten Bild tritt auf, weil hier aufgrund
der Entfernung zur Kamera m = m + 1 für verschiedene d gilt.

29

5 GPU-basierter 3D LIC

Im Folgenden wird das Ziel dieser Arbeit, die Berechnung des dreidimensionalen LIC auf der
GPU, erläutert. Obwohl der LIC zu den globalen Verfahren der Vektorfeldvisualisierungen
zählt, findet die Auswertung lokal beschränkt entlang der Stromlinien statt. Diese Auswertung
wird für jedes Pixel durchgeführt, wodurch sich ein globaler Effekt einstellt. Die einzige Aus-
nahme bildet der FastLIC von Stalling und Hege [53]. Da die Berechnungen der einzelnen Pixel
nur abhängig vom Vektorfeld und der eingesetzten Rauschtextur sind, lässt sich die Auswer-
tung des LIC sehr gut parallelisieren. Durch die SIMD-Archtitektur (Single Instruction Multiple
Data ist heutige Grafikhardware hierfür geradezu prädestiniert. Werden dazu das Vektorfeld
und die Rauschtextur auf der GPU durch 3D-Texturen repräsentiert und die Berechnung des
LIC im Fragmentshader durchgeführt, können abhängig von der Anzahl der Pixelpipelines
der GPU bis zu 128 Pixel beziehungsweise Fragmente (nVidia GeForce 8800GTX) gleichzeitig
ausgewertet werden. Die Traversierung des Volumens kann dabei auf unterschiedliche Wei-
sen erfolgen. Entsprechend der Aufgabenstellung wird hierfür das Ray-Casting verwendet.
Darüber hinaus wurde in dieser Arbeit auch ein vielversprechender Ansatz mittels Slicing
verfolgt. Beide Verfahren werden in der Volumenvisualisierung eingesetzt (siehe Kapitel 2).
Grundlage für das Ray-Casting auf der GPU bilden die Arbeiten von Carr et al. [5] und von
Purcell et al. [44] aus dem Jahr 2002. In diesen Publikationen werden GPU-basierte Implemen-
tierungen von Ray-Tracing vorgestellt. Als Ausgangsbasis für diese Arbeit diente dabei das
Grundgerüst des Volumenrenderers für GPU-basiertes Ray-Casting von Stegmaier et al. [54].

In Abbildung 5.1 ist das Flussdiagramm des Algorithmus dargestellt. Im ersten Schritt wird
das zu visualisierende Vektorfeld aus dem Datensatz geladen. Damit auf das Vektorfeld auf
der GPU zugegriffen werden kann, muss dieses in einer 3D-Textur gespeichert werden. Dazu
wird eine Textur mit vier Kanälen verwendet. Als Datentyp der Textur werden vorzeichenlose
Bytes eingesetzt. Auf die Verwendung von 16 Bit-Gleitkommazahlen wurde bewusst wegen
des größeren Speicherbedarfs verzichtet. Die Richtung des Vektorfelds wird in den ersten drei
Kanälen gespeichert. Besitzt der Datensatz in einer Richtung nicht die Größe einer Zweier-
potenz, so werden die Daten in dieser Richtung nicht interpoliert und die nicht mit Daten

auf der GPU

Berechnung

Vektorfeld

laden

Beleuchtung

vorberechnen

3D LIC

berechnen

Compositing

Hintergrund

Anzeigen des

Ergebnisses

Gradienten

berechnen

Rauschen

erzeugen

Transferfunktion

Abbildung 5.1: Architektur zur Berechnung des 3D LIC auf der GPU.

31

Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

gefüllten Texel mit Null aufgefüllt. Im Fragmentprogramm werden bei Zugriffen auf diese
Textur die Texturkoordinaten so skaliert, dass nur auf den Datenbereich zugegriffen wird. Da
nur acht Bit pro Kanal zu Verfügung stehen, müssen die Vektoren quantisiert und verschoben
werden. Durch die Quantisierung können sich beim Texturzugriff und trilinearer Filterung auf
der GPU Artefakte ergeben. Um dies zu umgehen, wird die Richtung der Vektoren normali-
siert und der Betrag jeden Vektors in der vierten Komponente des Vektorfelds gespeichert.
Anschließend werden die für die Beleuchtung erforderlichen Vorberechnungen durchgeführt.
Dazu zählt die Erstellung der Texturen für die Modelle von Zöckler et al. [69] und Mallo et al.
[38] (Abschnitt 3.4).

Für die Berechnung des LIC wird eine Rauschtextur benötigt, die zu Beginn erzeugt wird.
Dabei kann es sich um reines weißes Rauschen oder auch dünnes Rauschen handeln (siehe
Kapitel 4). Dieses Rauschen kann anschließend zur Verringerung der hohen Raumfrequenzen
noch mit einem Tiefpass gefitert werden. Im nachfolgenden Schritt werden die Gradienten des
Rauschens berechnet, da diese für die Beleuchtung mittels Gradienten benötigt werden (Ab-
schnitt 3.4.3). Gradienten und die Intensität des Rauschens werden wie auch das Vektorfeld in
einer 3D-Textur mit vier Komponenten gespeichert. Das aufwendige Erzeugen des Rauschens
und auch die Berechnung der Gradienten kann in eine Anwendung ausgelagert werden. Da-
durch muss das Rauschen für den LIC nur geladen und in die 3D-Textur geschrieben werden.

Nach diesen Vorbereitungsschritten kann nun die Berechnung des LIC auf der GPU erfolgen.
Dabei hat die verwendete Transferfunktion wesentlichen Einfluss auf das Ergebnis (vgl. Ab-
schnitt 3.4.4). Im nachfolgenden Abschnitt wird diese Berechnung, die im Fragmentprogramm
stattfindet, näher erläutert. Das Ergebnis wird dann mittels Compositing mit dem Hintergrund
kombiniert und kann anschließend angezeigt werden.

5.1 Berechnung des 3D LIC

Für die Implementierung des 3D LIC auf der GPU wurden das Ray-Casting und das Slicing als
separate, austauschbare Techniken implementiert. Um bei Verwendung des Ray-Castings vom
Effekt des Empty-Space-Leaping zu profitieren wurde eine Technik namens Depth Peeling ein-
gesetzt. Diese Technik wird das zum korrekten Rendern transparenter Szenen eingesetzt [11].
Dabei wird die Szene durch mehrfaches Rendern in mehrere Schichten unterschiedlicher Tiefe
unterteilt. Beim nachfolgenden Rendern der Szene werden diese Tiefenschichten dazu ver-
wendet, die Szene mit korrekter Tiefensortierung, die bei transparenten Objekten sehr wichtig
ist, darzustellen.

5.1.1 LIC-Berechnung im Fragmentprogramm

Die Berechnung des LIC erfolgt auf der GPU entsprechend Gleichung (3.3). Dazu werden zwei
nacheinander ausgeführte Schleifen mit je L Durchläufen verwendet. In der ersten Schleife
wird der positive Teil des LIC-Integrals durch eine Diskretisierung gelöst, in der zweiten der
negative Teil. Das Verfolgen der Stromlinie erfolgt in Richtung des aus dem Vektorfelds ermit-
telten Vektors. Entlang der Stromlinie wird für jeden Abtastpunkt ein Texturnachschlag in der
Rauschtextur durchgeführt und die Intensität des Rauschen mit dem Filter entsprechend ge-
wichtet. Die ermittelten Intensitäten werden aufsummiert und anschließend normalisiert. Dies

32

Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

Compositing
Nachschlag

Vektorfeld

LIC

berechnen

nächste Position

bestimmen

Startrichtung

bestimmen

alpha=0

Rauschen

Transferfunktion

k Schritte

Abbildung 5.2: Schema des Fragmentprogramms für die Berechnung des 3D LIC mittels Ray-
Casting

ergibt den Dichtewert des LIC an der aktuellen Samplingposition auf dem Strahl. Die Dichte
kann anschließend in der Beleuchtungsberechnung weiter verwendet oder direkt visualisiert
werden.

5.1.2 Ray-Casting

Beim Ray-Casting werden die Traversierung der Strahlen und die Berechnung des LIC in
demselben Fragmentprogramm durchgeführt. Abbildung 5.2 verdeutlicht dazu den Aufbau
des Fragmentprogramms. Zu Beginn wird für jedes Fragment mit Hilfe der Startposition des
Strahls und der Kameraposition die Richtung des Strahls bestimmt. Danach kann mit dem
Abtasten entlang des Strahls begonnen werden. Dazu wird die Position in Strahlrichtung
um die Samplingdistanz verschoben. Aus der 3D-Textur des Vektorfelds ergibt sich an die-
ser neuen Position mit trilinearer Filterung die Richtung und der Betrag des Vektors. Soll die
Geschwindigkeit mit der Transferfunktion auf eine Farbe und einen Alphawert abgebildet
werden, wird die Transferfunktion auf den Betrag des Vektors angewendet. Ist der berech-
nete Alphawert gleich null, kann zum nächsten Abtastpunkt weitergegangen werden. An-
derfalls wird die Richtung des Vektors und die aktuelle Position im Volumen für die LIC-
Berechnung verwendet (Abschnitt 5.1.1). Das Ergebnis der LIC-Berechnung wird danach mit
Front-To-Back-Compositing mit den Ergebnissen der vorherigen Strahlpositionen geblendet.
Wurden k Schritte durchgeführt, das Volumen verlassen oder überschreitet die Opazität einen
Schwellwert (vorzeitiger Strahlabbruch), kann die weitere Berechnung abgebrochen werden.
Die Anzahl der Schritte ist dabei beschränkt durch die maximale Anzahl der Instruktionen pro
Fragmentprogramm.

Damit dieses Fragmentprogramm ausschließlich für das Volumen ausgeführt wird, werden
nur die sichtbaren Flächen der Boundingbox des Volumens gezeichnet. Da die Abtastung ent-
lang der Strahlen erst auf der Oberfläche des Volumens beginnen soll, wird an den Vertizes
der Boundingbox die Objektraumposition in eine Texturkoordinate geschrieben. Durch die In-
terpolation durch die Rasterisierung ergibt sich so für jedes Fragment eine Position auf der
Oberfläche der Boundingbox in Objektkoordinaten, auf die im Fragmentprogramm zurückge-
griffen werden kann.

33

Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

auf der GPU

Berechnung

Berechnung

Depth−Peel Schicht i

Tiefenpuffer

setzen

Ray−Casting

Early−Z−Test

kein Early−Z−Test

Transferfunktion

Rauschen

n Schichten n Schichten

Abbildung 5.3: Ablauf des Ray-Castings mit gleichzeitigem Einsatz von Depth-Peeling.

5.1.3 Ray-Casting mit Depth-Peeling

Das Konzept des Depth-Peeling [11] wurde mit dem Ray-Casting kombiniert, um das Über-
springen von leeren Voxeln zu realisieren und die maximale Anzahl der Abtastungen pro
Strahl gegenüber dem Ray-Casting ohne Depth-Peeling zu erhöhen. Letzteres gelingt dadurch,
weil es sich beim Ray-Casting mit Depth-Peeling um ein Multi-Pass-Verfahren handelt. Dabei
wird das Ray-Casting abgesehen von einer kleinen Änderung wie bisher eingesetzt.

Der Ablauf des Algorithmus ist in Abbildung 5.3 dargestellt. In einem ersten Schritt wird das
Volumen in mehrere Depth-Peel-Schichten unterteilt. Dazu wird ein Fragmentprogramm ver-
wendet, welches denselben Aufbau besitzt wie das Programm für das Ray-Casting. Die maxi-
male Anzahl an Schritten n pro Depth-Peel-Schicht wird vorab auf festgelegt und beeinflusst
zusammen mit der Samplingdistanz die Anzahl der Schichten.

Zur Berechnung der einzelnen Depth-Peel-Schichten wird in diesem Fragmentprogramm nur
die Traversierung des Strahls und keine LIC-Berechnung durchgeführt. Während dieser Tra-
versierung wird in der 3D-Textur des Vektorfelds an jedem Abtastpunkt ein Texturnachschlag
ausgeführt und die Transferfunktion auf die Geschwindigkeit, die sich in der vierten Kom-
ponte befindet, angewandt. Ist der abgebildete Alphawert gleich null, wird mit der nächsten
Position auf dem Strahl fortgefahren. Bei einem Wert größer null wird die Ausführung des
Ray-Casting abgebrochen und die Anzahl der im leeren Raum zurückgelegten Schritte als
Ausgabe des Fragmentprogramms verwendet. Zur Bestimmung der ersten Schicht wird wie
beim Ray-Casting an der Oberfläche des Volumens begonnen. Bei den darauffolgenden Schich-
ten wird die Startposition um i cot n Schritte entlang des Strahls verschoben, wenn i der Index
der aktuell zu berechnenden Schicht ist. Die Ergebnisse werden für jede Schicht getrennt in
eine 2D-Textur geschrieben, die den gesamten Viewport füllt.

Für jede dieser Schichten wird anschließend ein Ray-Casting mit n Schritten durchgeführt.
Dabei werden die Startpositionen wie schon bei der Berechnung der Depth-Peel-Schichten an
den Beginn der jeweiligen Schicht verschoben. Im Fragmentprogramm wird zusätzlich an der
Fragmentposition in der 2D-Textur der aktuellen Depth-Peel-Schicht die Anzahl der Schritte
im leeren Raum nachgeschlagen und die Startposition entsprechend angepasst. Dabei werden
für die Fragmentposition Texturkoordinaten im Bildraum verwendet. Anschließend wird das
Ray-Casting für die verbleibenden Schritte durchgeführt.

34

Kapitel 5 GPU-basierter 3D LIC 5.1 Berechnung des 3D LIC

auf der GPU

Berechnung

Compositing
LIC

berechnen

Nachschlag

Vektorfeld

Rendern von

Ebene i

Tiefenpuffer

setzen

Early−Z−Test

kein Early−Z−Test

n Ebenen

alpha=0

Transferfunktion

Rauschen

Abbildung 5.4: Ablauf des Slicings für n Ebenen.

Zur Verwendung des Early-Z-Tests wird vor dem Durchführen des Ray-Castings für jede
Schicht der Tiefenpuffer entsprechend vorbereitet. Wird der Early-Z-Test eingesetzt, kann die
Textur der jeweiligen Depth-Peel-Schicht dazu verwendet werden, komplett leere Bereiche
von der LIC-Berechnung auszusparen. Da mehrere Renderdurchläufe benötigt werden, wird
während des Ray-Castings und der Vorbereitung des Tiefenpuffers der vorzeitige Strahlab-
bruch durchgeführt. Dadurch wird verhindert, dass die nachfolgenden Schichten eines bereits
abgebrochenen Strahls weiterberechnet werden.

In Abbildung 5.5 sind auf der linken Seite die Texturen für die ersten vier Depth-Peel-Schichten
und auf der rechten Seite das jeweilige Ergebnis des LIC, bestehend aus den vorangegangenen
Schichten, dargestellt. Die Rotschattierungen geben die Anzahl der Schritte im leeren Raum
wieder. Je heller das Rot ist, desto mehr Schritte können übersprungen werden. Grün einge-
färbte Bereiche deuten darauf hin, dass die Boundingbox verlassen wurde ohne auf ein opakes
Voxel gestoßen zu sein.

5.1.4 Slicing

Es wurde für das Slicing die Variante gewählt, bei der die Ebenen an der Kamera ausgerichtet
werden (View-Aligned-Slicing). Die Anzahl der Ebenen n ist abhängig von der Samplingdi-
stanz. Deshalb wird zu Beginn die Distanz entlang der Blickrichtung zwischen der Vordersei-
te und der Rückseite des Volumens berechnet. n ergibt sich aus dem Verhältnis dieser Distanz
zur Samplingdistanz. In Abbildung 5.4 ist die LIC-Berechnung für n Ebenen dargestellt.

Wird der Early-Z-Test zur Beschleunigung verwendet, muss der Tiefenpuffer entsprechend
modifiziert werden. Dazu wird dieser aufgrund des Framebufferinhalts des letzten Durchlaufs
vorbereitet. Ist die Opazität eines Fragments größer als der Schwellenwert des vorzeitigen
Strahlabbruchs, wird die Tiefe auf null gesetzt. Dadurch schlägt beim Rendern der nächsten
Ebene der Tiefentest für diese Fragmente fehl und das Fragmentprogramm wird nicht ausge-
führt. Der Einsatz des Early-Z-Test ist dringend zu empfehlen, da im Optimalfall einer größ-
tenteils opaken Transferfunktion die LIC-Berechnung nur für wenige Fragemente ausgeführt
werden muss (vgl. 6.2).

35

Kapitel 5 GPU-basierter 3D LIC 5.2 Beleuchtung

Die Rendern der aktuellen Ebene i erfolgt nach deren Schnittberechnung mit dem Volumen.
Diese Schnittpunkte bilden nach einer Sortierung einen Fächer aus Dreiecken. Beim Rendern
dieses Fächers werden die Positionen der Vertizes als Texturkoordinaten verwendet. Mit dieser
Position aus den Texturkoordinaten kann im Fragmentprogramm in der 3D-Textur des Vektor-
felds nachgeschlagen werden. Die Geschwindigkeit des Vektors kann wie beim Ray-Casting
als Eingabeparameter der Transferfunktion verwendet werden. Die Berechnung des LIC er-
folgt wie in Abschnitt 5.1.1 beschrieben im Fragmentprogramm. Das anschließende Compo-
siting kann entweder durch das Hardware-Blending von OpenGL oder durch Front-To-Back-
Blending im selben Fragmentprogramm erfolgen. Da der Einsatz des Early-Z-Tests den Inhalt
des Framebuffers für den vorzeitigen Strahlabbruch benötigt, kann dieser für das Compositing
im Fragmentprogramm wieder verwendet werden.

5.2 Beleuchtung

Für die Beleuchtung der Stromlinien werden nach der Berechnung des LIC im Fragmentpro-
gramm für jeden Abtastpunkt die Lichtrichtung und die Blickrichtung berechnet. Bei Verwen-
dung des Ray-Castings entspricht die Blickrichtung der umgekehrten Strahlrichtung, beim
Slicing muss sie aus der Kameraposition und der gegenwärtigen Position ausgerechnet wer-
den. Je nach verwendetem Beleuchtungsmodell erfolgen weitere Berechnungen (siehe Ab-
schnitt 3.4). Wird die Beleuchtung mittels Gradienten gleichzeitig mit der Methode zur Er-
haltung einer konstanten Raumfrequenz des Rauschens (Abschnitt 4.4) eingesetzt, können die
Gradienten ebenfalls mit Gleichung (4.13) interpoliert werden. Jedoch muss der Gradient aus
der Stufe m zuvor mit Faktor zwei multipliziert werden, um ihn an die höheren Frequenzen
anzupassen.

Werden verschiedene Schrittweiten für die Traversierung des Volumens verwendet, ergeben
sich für transparente Bereiche unterschiedliche Ergebnisse. Dies wird durch die unterschiedli-
che Anzahl der Abtastungen verursacht. Durch einen geringeren Abstand ergeben sich mehr
Abtastungen und dies führt zu einem dunkleren Ergebnis. Um dies zu korrigieren kann eine
Opazitätskorrektur (Opacity Correction) durchgeführt werden [31, 48]. Wurde die Opazität
für die Samplingdistanz dold festgelegt und ist dnew die neue Samplingdistanz, ergibt sich nach
Lacroute und Levoy [31] der korrigierte Alphawert aus

αkorrigiert = 1− (1− α)dnew/dold (5.1)

Diese Korrektur der Opazität lässt sich im Fragmentprogramm mit den folgenden drei Zeilen
durchführen:
SUB tmp . a , 1 , dst . a ;
POW tmp . a , tmp . a , r a t i o . r ;
SUB dst . a , 1 , tmp . a ;

ratio . r enthält dabei das Verhältnis dnew/dold.

36

Kapitel 5 GPU-basierter 3D LIC 5.3 Features

5.3 Features

Zur Extraktion von Features lassen sich verschiedene Techniken einsetzen (siehe Ab-
schnitt 3.5). Das Velocity-Masking lässt sich sehr einfach umsetzen. Im Fragmentprogramm
muss dazu nur die Geschwindigkeit des Vektors, für den der LIC berechnet wird, über die
Transferfunktion auf den Alphawert abgebildet werden. Ist dieser Alphawert gleich null, kann
die LIC-Berechnung für diesen Vektor übersprungen werden. Zur Hervorhebung von Wirbeln
mit dem Lambda2-Verfahren wird anstelle der Geschwindigkeit der Skalarwert aus einer 3D-
Textur, die das Lambda2-Volumen enthält, verwendet. Auf diesen Skalarwert kann anschlie-
ßend die Transferfunktion angewandt werden, um die uninteressanten Bereiche auszublen-
den.

Für das Clipping werden die von OpenGL zur Verfügungen gestellten Hardware-Clip-Ebenen
verwendet. Jedoch erfordert die Verwendung der programmierbaren Pipeline der GPU, dass
die Entfernung von einem Vertex zu jeder Clipebene im Vertexprogramm explizit ausgerech-
net werden muss. Beim Slicing kann anschließend die LIC-Berechnung wie bisher durchge-
führt werden. Wird dagegen Ray-Casting eingesetzt, werden durch das Clipping Teile der
Boundingbox entfernt. Da das Fragmentprogramm für das Ray-Casting nur für gerenderte
Primitive durchgeführt wird, müssen die durch das Clipping entstandenen Flächen ebenfalls
mit Primitiven gefüllt werden. Zur Erzeugung dieser Primitive wird der beim Slicing verwen-
dete Algorithmus eingesetzt. Dieser wird so modifiziert, dass nur eine Ebene erzeugt wird,
die identisch mit der Clipebene ist. Anschließend wird das Ray-Casting für diese zusätzliche
Ebene durchgeführt.

5.4 Visualisierung zeitabhängiger Datensätze

In der Strömungsvisualisierung sollen oft Daten, die aus mehreren Zeitschritten bestehen, vi-
sualisiert werden. Da die Messungen beziehungsweise die Simulationen mit diskreten Zeit-
schritten erfolgen, können sich bei der Visualisierung Diskontinuitäten ergeben. Um diese zu
verringern können Zwischenschritte berechnet werden. Dies kann beispielsweise durch Inter-
polation zwischen den einzelnen Zeitschritten erfolgen. Dazu werden die Datensätze von zwei
Zeitschritten jeweils in einer 3D-Textur abgelegt. Im Fragmentprogramm der LIC-Berechnung
findet in diesem Fall der Texturnachschlag mit der aktuellen Abtastposition in beiden Vektor-
feldern statt. Die Berechnung des LIC wird anschließend mit dem Wert durchgeführt, der sich
durch lineare Interpolation aus den Werten beider Texturen ergibt. Der Interpolationskoeffizi-
ent wird dazu von der Anwendung entsprechend gesetzt.

37

Kapitel 5 GPU-basierter 3D LIC 5.4 Visualisierung zeitabhängiger Datensätze

Abbildung 5.5: Hier sind die ersten drei Schritte einer LIC-Berechnung mittels Ray-Casting in
Kombination mit Depth-Peeling dargestellt. Links sind die Texturen der jeweili-
gen Depth-Peel-Schicht dargestellt. Die Rotfärbung gibt an, wie viele Schritte im
leeren Raum übersprungen werden können. In grünen Bereichen wurde das Vo-
lumen verlassen. Rechts ist das Ergebnis des LIC für jeden Schritt abgebildet. Als
Datensatz wurde die Large Eddy Simulation von Octavian Frederich verwendet.

38

Kapitel 5 GPU-basierter 3D LIC 5.4 Visualisierung zeitabhängiger Datensätze

Abbildung 5.5: Hier sind die Schritte vier bis sechs einer LIC-Berechnung mittels Ray-Casting in
Kombination mit Depth-Peeling dargestellt. Links sind die Texturen der jeweili-
gen Depth-Peel-Schicht dargestellt. Die Rotfärbung gibt an, wie viele Schritte im
leeren Raum übersprungen werden können. In grünen Bereichen wurde das Vo-
lumen verlassen. Rechts ist das Ergebnis des LIC für jeden Schritt abgebildet. Als
Datensatz wurde die Large Eddy Simulation von Octavian Frederich verwendet.

39

6 Leistungsbetrachtung

Die Messungen wurden auf einem AMD Opteron 2800 mit Dual Core und 8 GB RAM durch-
geführt. Als Grafikkarte wurde eine Quadro FX 3450 mit 256 MB Grafikspeicher von nVidia
eingesetzt. Die Viewportgröße wurde auf 512× 512 Pixel gesetzt. Wenn in den einzelnen Mes-
sungen nicht anders vermerkt, wurde eine Samplingdistanz von 1/128 verwendet. Die Anzahl
der Abtastpunkte pro Depth-Peel-Schicht beim Ray-Casting mit Depth-Peeling wurde auf 50
festgelegt. Bei der Verwendung weniger Abtastpunkte steigt die Zahl der Schichten, die vorbe-
rechnet und in Texturen gespeichert werden müssen. Speziell bei der Messung des Einflusses
verschiedener Viewportgrößen reicht deswegen bei höheren Auflösungen der Grafikspeicher
nicht mehr aus. Wird stattdessen die Zahl der Abtastpunkte pro Schicht erhöht, so übersteigt
die Zahl der Instruktionen im Fragmentprogramm das maximale Limit von 65536.

Gemessen wird die Zeit, die für das Rendern eines Bild benötigt wird, die Zahl der berechneten
Pixel und die Anzahl der Abtastpunkte. Um die Zeit zu messen, wird die Szene zwischen zehn
und 60 Mal, abhängig von der erwarteten Zeit, gerendert und die gemessenen Zeiten gemittelt.
Zur Bestimmung der Anzahl der berechneten Pixel wird dieselbe Geometrie verwendet wie
bei der eigentlichen LIC-Berechnung, d.h. ein Würfel beim Ray-Casting und sämtliche Slices
beim Slicing. Für das Ray-Casting wurden die Fragmentprogramme so abgeändert, dass nur
ein Schritt durchgeführt wird, aber keine LIC-Berechnung stattfindet. Beim Slicing wird die
Geometrie ohne Fragmentprogramm gerendert. Anschließend wird der Inhalt des Framebuf-
fers zurückgelesen und die Pixel, deren Alphawert größer null ist, gezählt. Für die Ermittlung
der Anzahl der Abtastpunkte wurden die Fragmentprogramme für die LIC-Berechnung eben-
falls etwas abgeändert. Da jedoch das Ergebnis der LIC-Berechnung Einfluss auf die Anzahl
der Abtastpunkte hat, kann diese Messung nur gleichzeitig mit einer LIC-Berechnung durch-
geführt werden. Ein Beispiel hierfür wäre der vorzeitige Strahlabbruch. Zu diesem Zweck
wurden die Fragmentprogramme mit einem zusätzlichen Zähler versehen, der inkrementiert
wird, wenn an der aktuellen Samplingposition eine LIC-Berechnung stattfindet. Um nicht das
Ergebnis des LIC zu beeinflussen, wird dieser Zähler in ein weiteres Rendertarget geschrieben.
Durch Zurücklesen dieses weiteren Rendertargets kann sodann die Zahl der Abtastpunkte er-
mittelt werden. Wird Ray-Casting mit Depth-Peeling oder Slicing verwendet, so muss dieses
Rendertarget nach jedem Depth-Peel-Schicht beziehungsweise nach jedem Slice zurückgele-
sen und das Ergebnis akkumuliert werden. In den Diagrammen wird das Ray-Casting mit
Depth-Peeling abgekürzt mit Ray-Casting+DP.

Der für die Messungen verwendete Datensatz stammt aus einer Large-Eddy-Simulation und
ist Eigentum von Octavian Frederich, TU Berlin. Der Datensatz besitzt eine Auflösung von
128× 128× 128 Voxeln. Es handelt sich dabei um den Fluss einer Flüssigkeit oder eines Gases
um einen massiven Zylinder.

41

Kapitel 6 Leistungsbetrachtung 6.1 Einfluss der Viewportgröße

Abbildung 6.1: Testszenario zur Messung des Einflusses der Viewportgröße. Als Datensatz wurde
die Large Eddy Simulation von Octavian Frederich verwendet.

6.1 Einfluss der Viewportgröße

Wenn die durchschnittlich benötigte Zeit pro Pixel konstant ist, sollte sich bei einer Vergröße-
rung des Viewports die Gesamtzeit für das Rendern linear dazu verhalten. Dazu wird, begin-
ned bei einer Viewportgröße von 64× 64 Pixeln, die Auflösung schrittweise um 64 Pixel jeweils
in beide Dimensionen vergrößert. Die verwendete Szene ist in Abbildung 6.1 dargestellt.

Gemessen wurde die benötigte Dauer pro Bild und die Zahl der berechneten Pixel. Da eine
Transferfunktion gewählt wurde, mit der große Teile des Vektorfelds ausgeblendet werden,
musste die Schrittweite für die Messung mit einfachem Ray-Casting auf 1/64 reduziert wer-
den (Abbildung 6.2(a)). Ansonsten wäre das Instruktionslimit des Fragmentprogramms über-
schritten und die Messung verfälscht worden. In Abbildung 6.2(b) beträgt die Schrittweite
1/128. Es wurde ein logarithmischer Maßstab gewählt, da sich die Anzahl der Pixel exponen-
tiell zur Breite und Höhe des Viewports verhält. Das lineare Verhalten ist deutlich zu erkennen.
Vervierfacht sich jedoch die Zahl der zu berechnenden Pixel, beispielsweise von 512× 512 auf
1024× 1024, so ist der Faktor bei der Renderdauer nicht ebenfalls vier sondern 2,5. Dies deutet
auf einen Faktor hin, der mit zunehmender Viewportgröße beziehungsweise Renderdauer an
Gewicht verliert. Möglicherweise ist das bedingt durch das Vorbereiten des Framebuffers und
den Wechsel der Fragmentprogramme während eines Renderpasses.

6.2 Framebufferobjekt, Early-Z-Test und weitere Optimierungen

In dieser Messung werden verschiedene Möglichkeiten verglichen, die das Rendern beschleu-
nigen oder das Zurücklesen von Texturen überflüssig machen. Ersteres wird unterstützt durch
den Early-Z-Test (siehe Abschnitt 2.3.3), letzteres durch Framebufferobjekte, kurz FBO. Diese
Framebufferobjekte erlauben es, direkt in Texturen zu rendern anstatt den Inhalt des Frame-
buffers nach dem Rendern in eine Textur zurückzulesen. Hinzu kommen weitere Optimie-
rungen wie vorzeitiger Strahlabbruch (Abschnitt 2.3.3) oder Verzweigungen im Fragmentpro-
gramm. Um diese Effekte zu messen, wird der Datensatz aus zwei unterschiedlichen Positio-
nen, jedoch mit derselben Transferfunktion gerendert. Die Transferfunktion wurde so gewählt,
dass nur der Fluss und die Wirbel in unmittelbarer Nähe des Zylinders zu sehen sind. Von der
Seite muss so ein Großteil des Vektorfelds traversiert werden. Werden die LIC-Berechnungen

42

Kapitel 6 Leistungsbetrachtung 6.2 Optimierungen

 2⋅100

 1⋅100

 5⋅10−1

 2⋅10−1

 1⋅10−1

 5⋅10−2

 2⋅10−2

1024x1024512x512256x256128x12864x64

R
en

de
rd

au
er

 [s
] (

lo
g)

Viewportgröße in Pixel (log)

Ray Casting
Ray Casting+DP

Slicing

(a)

 2⋅100

 1⋅100

 5⋅10−1

 2⋅10−1

 1⋅10−1

 5⋅10−2

1024x1024512x512256x256128x12864x64

R
en

de
rd

au
er

 [s
] (

lo
g)

Viewportgröße in Pixel (log)

Ray Casting+DP
Slicing

(b)
Abbildung 6.2: Einfluss der Größe des Viewports auf die Renderdauer. Der Abstand der Samp-

lingpositionen beträgt 1/64 (a) und 1/128 (b).

(a) (b)
Abbildung 6.3: Testszenario zur Messung von Optimierungen und der Verwendung von Frame-

bufferobjekten. Als Datensatz wurde die Large Eddy Simulation von Octavian Fre-
derich verwendet. Die Messungen wurden mit Blick von der Seite (a) und von oben
(b) durchgeführt.

innerhalb von diesem leeren Bereich nicht durchgeführt, sollte sich die Renderdauer verkür-
zen (Abbildung 6.3(a)). Da der Datensatz im oberen Bereich eine schmale Schicht mit sehr ge-
ringer Geschwindigkeit enthält, lässt sich hier der Effekt des Early-Z-Tests und der vorzeitige
Strahlabbruch aufgrund hoher Opazitäten messen (Abbildung 6.3(b)).

Bei dieser Messung wurden die Renderdauer und die Anzahl der Abtastpunkte ermittelt.
Dafür wurden für beide Positionen drei Messreihen, jeweils mit allen Kombinationen von
Early-Z-Test und Framebufferobjekten, durchgeführt. In der erste Messreihe wurden sämt-
liche Optimierungen in den Fragmentprogrammen einschließlich dem vorzeitigen Strahlab-
bruch deaktiviert. In der zweiten Testreihe wurde nur der vorzeitige Strahlabbruch und in
der letzten Testreihe wurden sämtliche Optimierungen angeschaltet. Ist das Framebufferob-
jekt abgeschaltet, wird der Inhalt des Framebuffers mittels Zurücklesen in die entsprechen-
den Texturen kopiert. Für das Ray-Casting ohne Depth-Peeling wurden keine Messungen für
den aktivierten Early-Z-Test durchgeführt, da dieses Verfahren für genau einen Pass konzi-
piert wurde. Abbildung 6.4 zeigt die Renderdauer bei gleichzeitiger Verwendung der nicht

43

Kapitel 6 Leistungsbetrachtung 6.3 Abhängigkeit von der Kameraposition

optimierten Fragmentprogramme. Der positive Effekt des Early-Z-Tests ist hier deutlich zu
erkennen. Wird nun der vorzeitige Strahlabbruch angeschaltet, verkürzt sich die Renderdau-
er (Abbildung 6.5) auch ohne den Early-Z-Test. Beim Blick von oben sorgt dieser Test dafür,
dass die Berechnung schon nach ein oder zwei Ray-Casting-Schritten abgebrochen wird, da
hier die gewünschte Opazität erreicht wurde. Das Slicing profitiert von diesem Strahlabbruch
nicht, da dieser schon implizit im Early-Z-Test enthalten ist und weiterhin alle Slices geren-
dert werden müssen. Erst weitere Optimierungen in den Fragmentprogrammen sorgen dafür,
dass die Renderzeiten beim Slicing sich denen der Ray-Casting-Verfahren angleichen (Abbil-
dung 6.6). Zu diesen Optimierungen gehört das Auslassen der LIC-Berechnung für Abtast-
punkte, an denen der Alphawert aus der Transferfunktion gleich null ist. Auffallend ist bei
allen Messungen, dass das Zurücklesen aus dem Framebuffer schneller als die Verwendung
von Framebufferobjekten und dem gleichzeitigen Rendern in Texturen ist. In den Diagrammen
von Abbildung 6.7 sind die tatsächlich durchgeführten LIC-Berechnungen mit Optimierungen
im Vergleich zu den insgesamt möglichen dargestellt. In Abbildung 6.7(b) ergibt sich der hohe
Anteil an gesparten Berechnungen aus der vollständig opaken Schicht gleich zu Beginn des
Vektorfelds.

6.3 Abhängigkeit von der Kameraposition

Bei dieser Messung werden die Zeiten von verschiedenen Kamerapositionen verglichen. Für
die verschiedenen Kamerapositionen wird eine Haltonsequenz mit drei Komponenten ver-
wendet. Die Elemente der Haltonsequenz werden zur Erzeugung von Positionen in einem Ein-
heitswürfel verwendet. Dabei werden Elemente, deren Position sich außerhalb der Einheitsku-
gel befinden, verworfen. Damit soll verhindert werden, dass sich in der Nähe der Diagonalen
des Würfels mehr mögliche Positionen befinden als im übrigen Raum. Die so gewonnenen
Positionen werden nach einer Normierung als neue Kamerarichtung verwendet. Die Kamera
wird anschließend ausgehend von der positiven z-Achse mit Hilfe von Quaternionen in die
neue Richtung gedreht. Dadurch ist sichergestellt, dass die Kamera immer auf den Ursprung
ausgerichtet ist. Gleichzeitig soll auch der Einfluss der Transferfunktion gemessen werden.
Dazu wurden zwei Transferfunktionen erstellt. Die erste Transferfunktion enthält nur Alpha-
werte von null (transparent) und eins (opak). Bei der zweiten wurden weichere Übergänge
zwischen transparenten und opaken Werten gewählt (Abbildung 6.8).

Die Zeitmessungen für die erste Transferfunktion wurde für alle drei Techniken durchgeführt
(Abbildung 6.9(a)). Bei der zweiten Transferfunktion wurde auf Messungen mit Ray-Casting
ohne Depth-Peeling verzichtet, da hier öfter das Instruktionslimit des Fragmentprogramms
überschritten worden wäre (Abbildung 6.9(b)). Auffallend ist, dass Slicing bei den hier ge-
messenen Kamerapositionen schneller ist als die Techniken, die auf Ray-Casting basieren. Die
einzige Ausnahme bildet Position 10. Allerdings gilt zu beachten, dass hier nur die Zeit pro
Bild gemessen und keine Aussagen über die Qualität gemacht wurden.

44

Kapitel 6 Leistungsbetrachtung 6.3 Abhängigkeit von der Kameraposition

 0

 0.5

 1

 1.5

 2

 2.5

 3

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

R
en

de
rd

au
er

 [s
]

Ray Casting
Ray Casting+DP

Slicing

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

R
en

de
rd

au
er

 [s
]

Ray Casting
Ray Casting+DP

Slicing

(b)
Abbildung 6.4: Renderdauer ohne vorzeitigen Strahlabbruch und zusätzlichen Optimierungen im

Fragmentprogramm. Vektorfeld von der Seite (a) und von oben (b).

 0

 0.5

 1

 1.5

 2

 2.5

 3

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

R
en

de
rd

au
er

 [s
]

Ray Casting
Ray Casting+DP

Slicing

(a)

 0

 0.5

 1

 1.5

 2

 2.5

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

R
en

de
rd

au
er

 [s
]

Ray Casting
Ray Casting+DP

Slicing

(b)
Abbildung 6.5: Renderdauer mit aktiviertem vorzeitigen Strahlabbruch ohne zusätzliche Optimie-

rungen im Fragmentprogramm. Vektorfeld von der Seite (a) und von oben (b).

 0

 0.2

 0.4

 0.6

 0.8

 1

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

R
en

de
rd

au
er

 [s
]

Ray Casting
Ray Casting+DP

Slicing

(a)

 0

 0.05

 0.1

 0.15

 0.2

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

R
en

de
rd

au
er

 [s
]

Ray Casting
Ray Casting+DP

Slicing

(b)
Abbildung 6.6: Renderdauer mit aktiviertem vorzeitigem Strahlabbruch und zusätzlichen Opti-

mierungen im Fragmentprogramm. Vektorfeld von der Seite (a) und von oben (b).

45

Kapitel 6 Leistungsbetrachtung 6.3 Abhängigkeit von der Kameraposition

 0%

 5%

 10%

 15%

 20%

 25%

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

Ray Casting
Ray Casting+DP

Slicing

(a)

 0%

 0.5%

 1%

 1.5%

 2%

 2.5%

 3%

 3.5%

 4%

FBO/earlyZno FBO/earlyZFBO/no earlyZno FBO/no earlyZ

Ray Casting
Ray Casting+DP

Slicing

(b)
Abbildung 6.7: Verhältnis zwischen durchgeführten LIC-Berechnungen mit optimiertem Frag-

mentprogramm und der Anzahl der Berechnungen im nichtoptimierten Fall. Vek-
torfeld von der Seite (a) und von oben (b).

(a) (b)

Abbildung 6.8: Testszenario, um die Auswirkung verschiedener Kamerapositionen auf die Ren-
derdauer zu messen. (a) harter Übergang der Opazität. (b) weicher Übergang der
Opazität.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
en

de
rd

au
er

 [s
]

Kameraposition

Ray Casting
Ray Casting+DP

Slicing

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
en

de
rd

au
er

 [s
]

Kameraposition

Ray Casting+DP
Slicing

(b)
Abbildung 6.9: Auswirkung verschiedener Kamerapositionen auf die Renderdauer. (a) harter

Übergang der Opazität. (b) weicher Übergang der Opazität.

46

Kapitel 6 Leistungsbetrachtung 6.4 Beleuchtungsmodelle

(a) (b) (c) (d)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

transp/transpopak/transptransp/opakopak/opak

R
en

de
rd

au
er

 [s
]

Transferfunktion Velocity−Masking/LIC Intensität

Zöckler
Mallo

Gradient
LIC

(e)

Abbildung 6.10: Gegenüberstellung der Beleuchtungsmodelle von Zöckler und Mallo, der Be-
leuchtung mittels Gradienten und des unbeleuchteten LICs bei Veränderung
der Transferfunktionen für Velocity-Masking und LIC-Intensität. Testszenario
mit Gradientenbeleuchtung: (a) beide Transferfunktionen vollständig opak. (b)
Velocity-Masking mit Transparenz. (c) niedrige LIC-Intensität mit Transparenz.
(d) Kombination aus (b) und (c).
(e) Messung der benötigten Zeit pro Bild für diese Transferfunktionen.

6.4 Beleuchtungsmodelle

Für den Vergleich der verschiedenen Beleuchtungsmodelle von Zöckler, Mallo, Beleuchtung
mittels Gradienten und des unbeleuchteten LIC (siehe Abschnitt 5.2) wird Ray-Casting mit
Depth-Peeling zusammen mit mehreren Transferfunktionen eingesetzt. Eine Transferfunkti-
on wird für das Velocity-Masking verwendet, um Teile des Vektorfelds auszublenden (siehe
Abschnitt 3.5), eine weitere wird zur Abbildung der LIC-Intensität verwendet. Damit ist es bei-
spielsweise möglich, Bereiche, in denen die Intensität des LIC sehr gering ist, auszublenden.
Für die Messung werden diese zwei Transferfunktionen miteinander kombiniert. In Abbil-
dung 6.10(a)-(d) sind die Effekte dieser Transferfunktionen exemplarisch dargestellt.

Die benötigte Zeit pro Bild ist in Abbildung 6.10(e) dargestellt. Auf der x-Achse sind vier
Kombinationen der Transferfunktionen aufgetragen. Die erste Komponente jeder Kombina-
tion bezieht sich auf die Transferfunktion des Velocity-Maskings, die zweite bezieht sich auf
die Abbildung der LIC-Intensität. Sind beide Transferfunktionen opak, so wird nur eine LIC-
Berechnung direkt an der Oberfläche des Würfels durchgeführt. Für alle Beleuchtungsmo-
delle ergeben sich deshalb sehr geringe Renderzeiten. Erkennbar ist, dass die Beleuchtung

47

Kapitel 6 Leistungsbetrachtung 6.5 Samplingdistanz

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1/2561/1281/641/321/4

R
en

de
rd

au
er

 [s
]

Samplingdistanz

Ray Casting
Ray Casting+DP

Slicing

(b)

Abbildung 6.11: (a) Testszenario zur Messung des Einflusses der Samplingdistanz. Als Datensatz
wurde die Large Eddy Simulation von Octavian Frederich verwendet. (b) Dauer
pro Bild in Abhängigkeit von der Samplingdistanz. Die Unterteilung der x-Achse
entspricht der Anzahl der Abtastpunkte.

anhand von Gradienten die meiste Zeit beansprucht. Dies dürfte auf die zusätzlichen Kom-
ponenten des Rauschens zurückzuführen sein. Denn anstatt nur die Intensität des Rauschens
aus einer Textur zu lesen, müssen zusätzlich die Gradienten ausgelesen und verarbeitet wer-
den. Erstaunlich ist, dass der unbeleuchtete LIC mehr Zeit zur Berechnung benötigt als das
Modell von Zöckler, wobei nach der Berechnung des LIC nur die Abbildung auf die zweite
Transferfunktion und die Korrektur der Opazität durchgeführt wird. Bei Zöckler hingegen ist
ein Texturnachschlag erforderlich. Möglicherweise kann durch diesen Texturnachschlag das
Fragmentprogramm besser optimiert werden oder mögliche Latenzen werden dadurch auf-
gefangen. Für eine nähere Untersuchung müssen genauere Messungen durchgeführt werden.
Es muss auch mehr über den internen Aufbau der Grafikhardware bekannt sein. Dagegen
erscheint es logisch, dass die Beleuchtung nach Mallo langsamer ist als bei Zöckler, da die Be-
rechnung der Texturkoordinaten komplexer ist und zwei Texturnachschläge benötigt werden.

6.5 Samplingdistanz

Die pro Bild benötigte Zeit sollte linear zur Anzahl der Samplingpositionen sein, da jede LIC-
Berechnung pro Samplingposition exakt dieselbe Zeit beanspruchen sollte. Da sich die Zahl
der Abtastungen schwer einstellen lässt, wird bei dieser Messung die Samplingdistanz ver-
wendet, die sich reziprok dazu verhält. Die Transferfunktion wurde so gewählt, dass der Fluss
um den Zylinder halb transparent ist. Dadurch müssen mehrere LIC-Berechnungen durchge-
führt werden, um ein opakes Fragment zu erhalten. Abbildung 6.11(a) zeigt das Vektorfeld mit
der entsprechenden Transferfunktion.

In Abbildung 6.11(b) ist das Ergebnis der Messung dargestellt. Die x-Achse wurde so skaliert,
dass sie der tatsächlichen Anzahl von Abtastpunkten entspricht. So sollte sich die Anzahl der
Abtastungen um Faktor zwei verdoppeln, wenn die Samplingdistanz halbiert wird. Zu erken-
nen ist der erwartete lineare Verlauf. Für das Ray-Casting ohne Depth-Peeling wurden nur

48

Kapitel 6 Leistungsbetrachtung 6.6 Anzahl der LIC-Schritte pro Abtastpunkt

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60

R
en

de
rd

au
er

 [s
]

 Schritte pro LIC−Berechnung

Ray Casting+DP

(b)

Abbildung 6.12: (a) Testszenario um den Einfluss der Anzahl der LIC-Schritte zu bestimmen. Als
Datensatz wurde die Large Eddy Simulation von Octavian Frederich verwendet.
(b) Dauer pro Bild in Abhängigkeit der LIC-Schritte.

die Messdaten bis zu einer Samplingdistanz von 1/64 abgebildet, da das Instruktionslimit bei
kleineren Schrittweiten überschritten wurde.

6.6 Anzahl der LIC-Schritte pro Abtastpunkt

Die Breite des LIC-Kernels wird durch zwei Faktoren bestimmt: Zum Einen durch die Schritt-
weite zwischen den einzelnen Abtastungen und zum Anderen durch die Anzahl der Schritte
in beide Richtungen. Die Änderung der Schrittweite hat nur Einfluss auf das Ergebnis der
Berechnung, aber nicht auf die Komplexität, da das Vektorfeld nur an anderen Punkten abge-
tastet wird. Nimmt dagegen die Anzahl der LIC-Schritte zu, so müssen die zwei Schleifen für
die Vorwärts- beziehungsweise die Rückwärtsrichtung mehrmals ausgeführt werden. Da der
Schleifenrumpf in beiden Fällen nur aus Instruktionen ohne Verzweigung oder Sprüngen be-
steht, liegt die Komplexität des Rumpfs in O(1). Dadurch sollte sich ein linearer Zuwachs bei
der benötigten Zeit pro Bild ergeben. Bei dieser Messung wurde als Technik Ray-Casting mit
Depth-Peeling eingesetzt. In Abbildung 6.12 ist die Testszene und das Ergebnis der Messung
dargestellt. Mit Ausnahme des ersten Messwerts ergibt sich der erwartete lineare Verlauf.

6.7 Anzahl der Abtastungen pro Depth-Peel-Schicht

Wird Ray-Casting mit Depth-Peeling verwendet, so werden abhängig von der Anzahl der Ab-
tastungen pro Depth-Peel-Schicht mehr oder weniger Schichten benötigt. Da mit jeder zu-
sätzlichen Depth-Peel-Schicht beim Rendern ein gewisser Overhead verbunden ist, sollte die
Zahl der Schichten möglichst gering sein und damit die Anzahl der Abtastungen pro Schicht
groß. Allerdings ist die maximale Zahl der Abtastungen aufgrund des Instruktionslimits für
Fragmentprogramme auf 50 beschränkt. Für diese Messung wurde die Transferfunktion so
gewählt, dass große Bereiche entstehen, die vollständig transparent sind, Teile des Inneren je-
doch gleichzeitig opak sind (Abbildung 6.13(a)). Bei dieser Transferfunktion sollte die Zahl

49

Kapitel 6 Leistungsbetrachtung 6.7 Anzahl der Abtastungen pro Depth-Peel-Schicht

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 10 15 20 25 30 35 40 45 50

R
en

de
rd

au
er

 [s
]

Schritte pro Depth−Layer−Schicht

(b)

Abbildung 6.13: (a) Zur Messung der Auswirkungen von unterschiedlich vielen Abtastungen pro
Depth-Peel-Schicht verwendetes Testszenario. Als Datensatz wurde die Large Ed-
dy Simulation von Octavian Frederich verwendet. (b) Dauer pro Bild in Abhän-
gigkeit zur Anzahl der Abtastungen pro Depth-Peel-Schicht.

der Abtastungen pro Depth-Peel-Schicht möglichst groß sein, um den leeren Raum mit mög-
lichst wenigen Schichten überspringen zu können. Im Inneren des Vektorfelds sollte jedoch die
Zahl der Schichten etwas höher sein, um vom Early-Z-Test zwischen den einzelnen Schichten
profitieren zu können.

Das Ergebnis der Messung für diese Transferfunktion ist in Abbildung 6.13(b) zu sehen.
Auffällig sind die starke Schwankungen besonders im mittleren Bereich. Eine Erklärung da-
für könnte das interne Caching der Grafikkarte sein. Das notwendige Wechseln der Shader
während des Rendervorgangs könnte sich ebenfalls auswirken. Da über die interne Architek-
tur der heutigen Grafikkarten wenig bekannt ist, lassen sich in beiden Fällen keine konkreten
Aussagen treffen. Anzumerken bleibt, dass hier nur eine spezielle Transferfunktion untersucht
wurde. Da die Anzahl der Abtastungen pro Depth-Peel-Schicht abhängig von der verwende-
ten Transferfunktion ist, ist es nicht möglich, eine generelle Aussage dazu zu treffen.

50

7 Qualitative Ergebnisse

7.1 Visuelle Auswertung

Verbesserung der Interaktion

Da die Berechnung des 3D LIC nicht interaktiv erfolgt, wird während der Benutzerinteraktio-
nen der Datensatz mit reduzierter Qualität dargestellt (Abbildung 7.1). Dazu wird die Auflö-
sung des Viewports halbiert und die Samplingdistanz vergrößert. Gleichzeitig wird die Raum-
frequenz des Rauschens verringert, um den Gesamteindruck ansatzweise zu erhalten.

Maximales Instruktionslimit des Fragmentprogramms

Aufgrund der hohen Komplexität der LIC-Berechnung kann das Instruktionslimit der Frag-
mentprogramme überschritten werden. Da beim Ray-Casting ohne Depth-Peeling die kom-
plette Berechnung des 3D LIC innerhalb eines Fragmentprogramms erfolgt, wird dieses In-
struktionslimit sehr schnell erreicht. Sobald das Instruktionslimit überschritten wird, tauchen
im Framebuffer beziehungsweise in der Textur des Rendertargets meist grüne Pixel auf. In
Abbildung 7.2 ist dieser Fall abgebildet.

Skalierung der Raumfrequenzen des Rauschens

Um den Einfluss der Raumfrequenz des Rauschens auf das Ergebnis des 3D LIC zu demons-
trieren, wurde ein dünnes Rauschen verwendet und die Raumfrequenzen des Rauschen durch
eine Skalierung verändert. Abbildung 7.3 zeigt, dass die Granularität des 3D LIC von der
Raumfrequenz des Rauschens beeinflusst wird. So ergeben sich für niedrige Frequenzen grö-
ßere Anhäufungen und für höhere Frequenzen feine Stromlinien.

Einfluss des verwendeten Rauschens

Der Typ des verwendeten Rauschen wirkt sich auf das Ergebnis des 3D LIC auswirken. Be-
sonders bei der Verwendung der Beleuchtung mittels Gradienten sollte das Rauschen keine
hohen Frequenzen enthalten, damit durch Beleuchtung der Eindruck glatter Flächen erweckt
wirkt. Abbildung 7.4 veranschaulicht dazu auf der linken Seite verschiedene Typen von Rau-
schen. Auf der rechten Seite sind Ausschnitte derselben Szene zu sehen. Das weiße Rauschen
erweckt einen guten Eindruck durch die feine Struktur. In der Vergrößerung ist jedoch zu
erkennen, dass die Oberfläche der Stromlinien nicht glatt ist. Dies ist auf die hohen Raumfre-
quenzen der Textur zurückzuführen. Ist das Rauschen zu dünn, ergeben sich nur Bruchstücke
der Stromlinien (Abbildung 7.4, vierte Reihe). Durch die Erhöhung der Schrittweite und der
Schrittanzahl innerhalb des LIC sollten sich längere Stromlinien ergeben.

51

Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.1: Zur Verbesserung der Interaktion wird die Qualität verringert. Links ist die hoch-
aufgelöste Version dargestellt, rechts dieselbe Szene mit reduzierter Auflösung,
größerer Samplingdistanz und kleinerem Skalierungsfaktor für das Rauschen. Der
verwendete Datensatz stammt aus einer Large-Eddy-Simulation von Octavian Fre-
derich.

Vergleich der Beleuchtungsmodelle

In Abbildung 7.5 sind die Normalen der drei verwendeten Modelle für Stromlinienbeleuch-
tung dargestellt. Bei den Normalen von Zöckler ist deutlich zu erkennen, dass diese koplanar
zu der Ebene sind, die von der Blickrichtung und der Lichtrichtung aufgespannt wird. Die
Normalen aus dem Modell von Mallo sind zwar abhängig von der Richtung des Vektorfelds,
aber für jedes Stromlinienbündel wird nur eine einzige Normale verwendet. Die Verwendung
des Gradienten aus der Rauschtextur führt zu Normalen, die einer Oberfläche entsprechen.
Die drei Beleuchtungsmodelle und der unbeleuchtete LIC sind in Abbildung 7.6 veranschau-
licht.

Einfluss der Transferfunktion

Die Transferfunktion kann wie in der Volumenvisualisierung dazu verwendet werden, be-
stimmte Bereiche des Datensatzes einzufärben und hervorzuheben. Gleichzeitig können an-
dere Teile des Volumens ausgeblendet werden. Dies wird am Beispiel eines Wirbel in Abbil-
dung 7.7 illustriert. Durch die Verwendung der speziellen Transferfunktion für den 3D LIC
(Abschnitt 3.4.4) kann der Tiefeneindruck der Visualisierung deutlich verbessert werden. In
Abbildung 7.8 werden links niedrige Intensitätswerte des LIC auf null abgebildet, wodurch
sich leere Bereiche ergeben. Der Tiefeneindruck wird aber wesentlich verstärkt, wenn die In-
tensität auf Werte, die minimal über null liegen, abgebildet wird.

52

Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.2: Maximale Anzahl der Instruktionen im Fragmentprogramm: Links wurde beim
Ray-Casting die maximale Anzahl überschritten. Rechts wurde dieselbe Szene
mit Ray-Casting und Depth-Peeling gerendert. Der verwendete Tornadodatensatz
stammt von Roger Crawfis.

Abbildung 7.3: Die Skalierung der Raumfrequenz des Rauschens hat großen Einfluss auf das Er-
gebnis des 3D LIC. Für diese Abbildungen wurde ein dünnes Rauschen mit einer
Auflösung von 256× 256× 256 verwendet. Der Skalierungsfaktor beträgt 0,5, 1,5,
2,5 und 3,5 (von links nach rechts, von oben nach unten). Der verwendete Torna-
dodatensatz stammt von Roger Crawfis.

53

Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.4: Der Datensatz ist links vollständig und rechts als Ausschnitt dargestellt. In der
ersten Reihe wurde weißes Rauschen, in der zweiten, dritten und vierten Reihe
wurde dünnes Rauschen eingesetzt. Dabei wurde für das Rauschen in Reihe zwei
das Stratified Sampling eingesetzt. Reihe drei und vier zeigen jeweils ein Rauschen
aus einer Haltonsequence, für Reihe vier wurde ein Tiefpassfilter mit sehr geringer
Grenzfrequenz gewählt. Der Tornadodatensatz stammt von Roger Crawfis.

54

Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.5: Hier sind die Normalen der verschiedenen Beleuchtungsmodelle dargestellt. Ganz
links ist das Normalenfeld von Zöckler, in der Mitte das von Mallo und rechts das
der Gradienten abgebildet. Als Datensatz wurde der Tornado von Roger Crawfis
eingesetzt.

Abbildung 7.6: Links oben ist der unbeleuchtete LIC, rechts davon die Beleuchtung nach Zöckler
et al. dargestellt. In der unteren Reihe befindet sich links das Modell von Mallo et
al. und rechts die neu vorgestellte Beleuchtung mittels Gradienten des eingesetzten
Rauschens. Als Datensatz wurde der Tornado von Roger Crawfis eingesetzt.

55

Kapitel 7 Qualitative Ergebnisse 7.1 Visuelle Auswertung

Abbildung 7.7: Mit einer geeigneten Transferfunktion lässt sich aus dem Volumen links ein Wirbel
extrahieren (rechts). Als Datensatz wurde 6603-small eingesetzt.

Abbildung 7.8: Zur Verbesserung der Tiefenwahrnehmung kann die Transferfunktion verwendet
werden. In der linken Spalte werden niedrige Intensitäten des 3D LIC auf null
abgebildet. Wird stattdessen ein Wert größer null verwendet ergibt sich ein bes-
seres Tiefenbild (rechts). Als Datensätze wurden die Benard-Strömung von Daniel
Weiskopf (oben) und der Tornado von Roger Crawfis (unten) verwendet.

56

Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

7.2 Beispiele

Benard-Strömung

Die Benard-Strömung von Daniel Weiskopf besteht aus zahlreichen Wirbeln. Der Datensatz
besitzt eine Auflösung von 128× 32× 64. Leider stand der Datensatz nur als Vektorfeld mit
normierten Richtungen ohne Geschwindigkeitsinformation zur Verfügung. In Abbildung 7.9
ist links der Datensatz mit einem dünnen Rauschen und dem 3D LIC dargestellt. Rechts wer-
den mit Hilfe des Lambda2-Verfahrens die Wirbel identifiziert und rot hervorgehoben.

IEEE Visualization 2004 Contest

Dieser Datensatz stammt aus dem IEEE Visualization Contest im Jahr 2004. Es handelt sich
dabei um einen Datensatz einer Hurrikansimulation des National Center for Atmospheric Re-
search in den Vereinigten Staaten. Die Strömungsdaten wurden aus dem multivariten Origi-
naldatensatz gewonnen. Der Datensatz besitzt eine Auflösung von 500× 500× 100 und wird
in Abbildung 7.10 veranschaulicht.

Tornado

Dieser Tornado stammt aus einer Simulation von Roger Crawfis. Der Datensatz wurde mit
einer Auflösung von 256× 256× 256 erzeugt. Für die Darstellung in Abbildung 7.11 werden
Velocity-Masking, Clipping und das Lambda2-Verfahren eingesetzt.

Large-Eddy-Simulation

Für diese Simulation wurde eine Auflösung von 256 × 128 × 128 zugrunde gelegt. Hierbei
handelt es sich um einen Datensatz von Octavian Frederich, in dem ein Zylinder von einer

Abbildung 7.9: Benard-Strömung von Daniel Weiskopf: Da in diesem Datensatz leider nur die nor-
mierten Vektoren zur Verfügung standen, kann die Strömung nur in einem Farbton
dargestellt werden (links). Rechts sind die Wirbel basierend auf dem Lambda2-
Wert mit rot hervorgehoben.

57

Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.10: IEEE Visualization 2004 Contest: Links wurde die Kamera direkt über dem Daten-
satz platziert. Der Hurrikan befindet sich etwas rechts unterhalb der Bildmitte. Im
rechten Bild wurde der Kern des Hurrikan mittels Lambda2-Verfahren extrahiert.
Die Farben repräsentieren die Geschwindigkeit. Weiße Bereiche deuten auf eine
langsame und blau-violette Bereiche auf eine schnelle Strömung hin.

Strömung umflossen wird. In Abbildung 7.12 ist der Datensatz von der Seite und von oben
dargestellt. Für die Farbkodierung wurde die Geschwindigkeit verwendet. Langsame Bereiche
sind von blau bis grün, schnellere Bereiche von grün über gelb bis hin zu rot eingefärbt.

6603-small

Bei diesem Datensatz handelt es sich um zwei Wirbel mit hoher Geschwindigkeit. Diese Wirbel
sind umgeben von einer langsamen Strömung, welche in Abbildung 7.13 zu sehen sind. Die
Auflösung des Datensatzes beträgt 135× 225× 129.

58

Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.11: Tornado von Roger Crawfis: Links ist der Tornadodatensatz von aussen zu se-
hen. Die Transferfunktion ist so gewählt, dass die Stromlinienbündel deutlich zu
sehen sind. Im Bild rechts wird das Innere des Tornados durch Clipping sichtbar
gemacht. In der unteren Reihe wird der Tornado links durch Velocity-Masking
hervorgehoben. Rechts wurde der Wirbelkern des Tornados durch das Lambda2-
Kriterium bestimmt und opak gerendert.

59

Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.12: Large-Eddy-Simulation von Octavian Frederich: Im ersten Bild wird ein sehr dün-
nes Rauschen verwendet. Der Zylinder ist dunkelblau eingefärbt. Im nächsten
Bild wird dieselbe Kameraposition aber ein dichteres Rauschen verwendet. Für
das letzte Bild wird mit einer Clipping-Ebene der obere Teil des Volumens ent-
fernt und von oben auf die Strömung geblickt. In allen Bildern sind deutlich die
Verwirbelungen hinter dem Zylinder zu erkennen. (von oben nach unten)

60

Kapitel 7 Qualitative Ergebnisse 7.2 Beispiele

Abbildung 7.13: 6603-small: In der ersten Reihe wird eine Clipping-Ebene verwendet, um das In-
nere des Datensatzes zu visualisieren. Am unteren Rand ist einer der zwei Wirbel
zu erkennen. Bei den Bildern der mittleren Reihe wird eine andere Transferfunk-
tion eingesetzt und beim rechten Bild zusätzlich Velocity-Masking eingesetzt. Für
das Bild in der untersten Reihe wurde eine Clipping-Ebene entlang eines Wirbels
platziert.

61

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein neuer Ansatz zur Berechnung des volumetrischen LIC vorgestellt.
Dabei handelt es sich um ein GPU-basiertes Verfahren. Der 3D LIC wurde dazu mittels ver-
schiedener Techniken berechnet. Das Ray-Casting und das Slicing aus dem Bereich der Vo-
lumenvisualisierung wurden an die Berechnung des LIC angepasst. Die Integration des LIC
erfolgt dabei vollständig im Fragmentprogramm. Zur Beschleunigung wurden Verfahren wie
der vorzeitige Strahlabbruch, das Überspringen von leerem Raum und der Early-Z-Test ver-
wendet.

Zur Bewältigung der visuellen Komplexität, die sich durch den Wechsel der Dimension von
2D auf 3D ergibt, wurden verschiedene Lösungsansätze vorgestellt. Dazu wurde die Transfer-
funktion um einen weiteren Kanal erweitert. Dieser Kanal dient dazu, die berechnete Intensität
des LIC auf einen Opazitätswert abzubilden. Die ermöglicht es, Bereiche in denen die LIC-
Intensität sehr gering ist auszublenden. Wird für diese Opazitätswerte ein Wert verwendet,
der geringfügig größer als null ist, führt dies zu einem verstärkten Tiefeneindruck.

Erstmalig wurden für die Beleuchtung der Stromlinien die Gradienten des Rauschens ver-
wendet. Aus diesen Gradienten wird im Integrationsschritt des LIC ein neuer Gradient be-
rechnet. Dieser wird in der nachfolgenden Beleuchtung als Normale verwendet. Durch die
Verwendung geeigneter Rauschtexturen ergeben sich so Stromlinienbündel mit glatter Ober-
fläche und den entsprechenden Normalen. Zum Vergleich dazu wurden auch die Modelle zur
Beleuchtung von Stromlinien von Zöckler et al. und Mallo et al. implementiert.

Bei der Berechnung des Gradienten während der Integration des LIC wurden die Annahmen
getroffen, dass der Gradient des Filters konstant ist und es sich um gerade Stromlinien handelt.
Die Annahme, dass Stromlinien gerade sind, ist in turbulenten Strömungen nicht gültig. Wenn
sich die Stromlinie krümmt, müsste der Gradient entsprechend angepasst werden.

Das Clipping mit den Hardware-Clip-Ebenen ist für das Ray-Casting nicht immer korrekt.
Wird eine Clipebene entgegen der Blickrichtung verwendet, werden die Strahlen des Ray-
Castings nicht an dieser Clip-Ebene sondern erst an der Boundingbox des Volumens abgebro-
chen. Eine mögliche Lösung wäre, nicht die Boundingbox für den Strahlabbruch zu verwen-
den sondern eine beliebige Geometrie.

Zur Verbesserung der Wahrnehmung wäre die Animation des 3D LIC denkbar, um die Strö-
mungsrichtung besser darstellen zu können. Interessant wäre auch, die Berechnung des 3D
LIC auf der GeForce 8800 von nVidia durchzuführen. Da diese Grafikkarte über 128 Pipelines
verfügt dürfte sich dies positiv auf die Gesamtperfomance auswirken.

63

Literaturverzeichnis

[1] Arvo, J. R.; Kirk, D. B.: Particle Transport and Image Synthesis. In: Computer Graphics (ACM
SIGGRAPH), Seiten 63–66. 1990

[2] Banks, D. C.: Illumination in diverse codimensions. In: Proc. ACM SIGGRAPH, Seiten 327–
334. 1994

[3] Blinn, J. F.: Models of light reflection for computer synthesized pictures. In: Proc. ACM SIG-
GRAPH, Seiten 192–198. 1977

[4] Cabral, B.; Leedom, L. C.: Imaging Vector Fields Using Line Integral Convolution. In: Proc.
ACM SIGGRAPH, Seiten 263–270. 1993

[5] Carr, N. A.; Hall, J. D.; Hart, J. C.: The ray engine. In: Proc. ACM SIGGRAPH/EUROGRA-
PHICS, Seiten 37–46. 2002

[6] Cline, H. E.; Ludke, S.; Lorensen, W. E.: Dividing cubes system and method for the display of
surface structures contained within the interior region of a solid body. United States Patent No.
4,719,585, 1988

[7] Danskin, J.; Hanrahan, P.: Fast algorithms for volume ray tracing. Workshop on Volume
Visualization, Seiten 91–98. 1992

[8] de Leeuw, W.; van Liere, R.: Comparing LIC and spot noise. In: Proc. IEEE Visualization,
Seiten 359–365. 1998

[9] Diepstraten, J.; Weiskopf, D.; Ertl, T.: Transparency in interactive technical illustrations. Com-
puter Graphics Forum, Vol. 21.3, Seiten 317–317. 2002

[10] Engel, K.; Hadwiger, M.; Kniss, J. M.; Lefohn, A. E.; Salama, C. R.; Weiskopf, D.: Real-time
volume graphics. In: ACM SIGGRAPH 2004 Course Notes. 2004

[11] Everitt, C.: Interactive order-independent transparency. nVidia White Paper. 2001.
URL http://developer.nvidia.com/object/Interactive_Order_
Transparency.html

[12] Foley, J. D.; van Dam, A.; Feiner, S. K.; Hughes, J. F.: Computer Graphics — Principles and
Practice. 2. Auflage Addision-Wesley 1990

[13] Forssell, L.: Visualizing flow over curvilinear grid surfaces using line integralconvolution. In:
Proc. IEEE Visualization, Seiten 240–247. 1994

[14] Forssell, L.; Cohen, S.: Using Line Integral Convolution for Flow Visualization: Curvilinear
Grids, Variable-Speed Animation, and Unsteady Flows. In: IEEE Transactions on Visualization
and Computer Graphics, Seiten 133–141. 1995

[15] Hege, H.; Stalling, D.: Fast LIC with Piecewise Polynomial Filter Kernels. Mathematical Vi-
sualization, Seiten 295–314. 1998

[16] Helgeland, A.; Andreassen, O.: Visualization of vector fields using seed LIC and volume ren-
dering. IEEE Transactions on Visualization and Computer Graphics, Vol. 10.6, Seiten 673–
682. 2004

65

http://developer.nvidia.com/object/Interactive_Order_Transparency.html
http://developer.nvidia.com/object/Interactive_Order_Transparency.html

Literaturverzeichnis

[17] Herman, G.; Liu, H.: Display of three-dimensional information in computed tomography. J Com-
put. Assisted Tomograph, Vol. 1.1, Seiten 155–160. 1977

[18] Herman, G. T.; Liu, H. K.: 3D display of human organs from computed tomograms. Computer
Graphics Image Processing, Vol. 9.1, Seiten 1–21. 1979

[19] Interrante, V.; Grosch, C.: Strategies for Effectively Visualizing 3D Flow with Volume LIC. In:
Proc. IEEE Visualization, Seiten 421–424. 1997

[20] Interrante, V.; Grosch, C.: Visualizing 3D flow. IEEE Computer Graphics & Applications,
Vol. 18.4, Seiten 49–53. 1998

[21] Jeong, J.; Hussain, F.: On the identification of a vortex. Journal of Fluid Mechanics Digital
Archive, Vol. 285, Seiten 69–94. 1995

[22] Kajiya, J. T.; Herzen, B. P. V.: Ray tracing volume densities. In: ACM SIGGRAPH, Seiten
165–174. 1984

[23] Keller, A.: The Fast Calculation of Form Factors Using Low Discrepancy Sequences. In: Proc.
Spring Conference on Computer Graphics (SCCG 96), Seiten 195–204. 1996

[24] Keller, A.: Instant radiosity. Computer Graphics, Vol. 31.Annual Conference Series, Seiten
49–56. 1997

[25] Keller, A. Strictly deterministic sampling methods in computer graphics. Technical report,
Mental Images, 2001

[26] Kenwright, D. N.; Mallinson, G. D.: A 3-D streamline tracking algorithm using dual stream
functions. In: Proc. IEEE Visualization, Seiten 62–68. 1992

[27] Kiu, M.-H.; Banks, D. C.: Multi-frequency noise for LIC. In: Proc. IEEE Visualization, Seiten
121–126. 1996

[28] Klein, T.; Strengert, M.; Stegmaier, S.; Ertl, T.: Exploiting Frame-to-Frame Coherence for Acce-
lerating High-Quality Volume Raycasting on Graphics Hardware. In: Proc. IEEE Visualization,
Seite 29. 2005

[29] Kramer, D.; Kaufman, L.; Guzman, R.; Hawryszko, C.: A general algorithm for oblique image
reconstruction. IEEE Computer Graphics and Applications, Vol. 10.2, Seiten 62–65. 1990

[30] Krüger, J.; Westermann, R.: Acceleration Techniques for GPU-based Volume Rendering. In:
Proc. IEEE Visualization, Seiten 287–292. 2003

[31] Lacroute, P.; Levoy, M.: Fast Volume Rendering Using a Shear–Warp Factorization of the View-
ing Transformation. In: Proc. ACM SIGGRAPH, Seiten 451–458. 1994

[32] Lakare, S.; Kaufman, A.: Light Weight Space Leaping using Ray Coherence. In: Proc. IEEE
Visualization, Seiten 19–26. 2004

[33] Laramee, R. S.; Hauser, H.; Doleisch, H.; Vrolijk, B.; Post, F. H.; Weiskopf, D.: The state of
the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum,
Vol. 23.2, Seiten 143–161. 2004

[34] Levoy, M.: Efficient ray tracing of volume data. ACM Transactions on Graphics, Vol. 9.3,
Seiten 245–261. 1990

[35] Li, G.; Tricoche1, X.; Hansen, C.: GPUFLIC: Interactive and Accurate Dense Visualization of

66

Literaturverzeichnis

Unsteady Flows. In: Proc. Eurovis 2006 (EG / IEEE VGTC Symposium on Visualization).
2006

[36] Li, W.; Mueller, K.; Kaufman, A.: Empty Space Skipping and Occlusion Clipping for Texture-
based Volume Rendering. In: Proc. IEEE Visualization, Seiten 317–324. 2003

[37] Lorensen, W. E.; Cline, H. E.: Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. In: Computer Graphics (ACM SIGGRAPH), Seiten 163–169. 1987

[38] Mallo, O.; Peikert, R.; Sigg, C.; Sadlo, F.: Illuminated Lines Revisited. In: Proc. IEEE Visuali-
zation, Seite 3. 2005

[39] Max, N.; Crawfis, R.; Williams, D.: Visualizing wind velocities by advecting cloud textures. In:
Proc. IEEE Visualization, Seiten 179–184. 1992

[40] Mosher, C.; van Hook, T.: A geometric approach for rendering volume data. In: Proc. National
Computer Graphics Association (NCGA), Seiten 184–193. 1990

[41] Pfister, H.; Hardenbergh, J.; Knittel, J.; Lauer, H.; Seiler, L.: The VolumePro real-time ray-
casting system. In: Proc. ACM SIGGRAPH, Seiten 251–260. 1999

[42] Phong, B. T.: Illumination for computer generated pictures. Communications of the ACM,
Vol. 18.6, Seiten 311–317. 1975

[43] Porter, T.; Duff, T.: Compositing digital images. In: Proc. ACM SIGGRAPH, Seiten 253–259.
1984

[44] Purcell, T. J.; Buck, I.; Mark, W. R.; Hanrahan, P.: Ray tracing on programmable graphics
hardware. In: Proc. ACM SIGGRAPH, Seiten 703–712. 2002

[45] Rezk-Salama, C.; Hastreiter, P.; Teitzel, C.; Ertl, T.: Interactive exploration of volume line inte-
gral convolution based on 3D-texture mapping. In: Proc. IEEE Visualization, Seiten 233–240.
1999

[46] Rhodes, M.; Glenn, W.; Azaawi, Y.: Extracting oblique planes from serial ct sections. J Comput.
Assisted Tomograph, Vol. 4.5, Seiten 649–657. 1980

[47] Röttger, S.; Guthe, S.; Weiskopf, D.; Ertl, T.; Strasser, W.: Smart hardware-accelerated volume
rendering. In: Proc. EG / IEEE TCVG Symposium on Visualisation, Seiten 231–238. 2003

[48] Schulze, J. P.; Kraus, M.; Lang, U.; Ertl, T.: Integrating pre-integration into the shear-warp
algorithm. In: Proc. EG / IEEE TVCG Workshop on Volume graphics, Seiten 109–118. 2003

[49] Schussman, G.; Ma, K.-L.: Anisotropic Volume Rendering for Extremely Dense, Thin Line Data.
In: Proc. IEEE Visualization, Seiten 107–114. 2004

[50] Segal, M.; Akeley, K.: The OpenGL graphics system: A specification (version 2.0), 2004. URL
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

[51] Shen, H.-W.; Johnson, C. R.; Ma, K.-L.: Visualizing Vector Fields Using Line Integral Convo-
lution and Dye advection. In: Proc. Volume Visualization Symposium, Seiten 63–70. 1996

[52] Shen, H.-W.; Kao, D. L.: UFLIC: a line integral convolution algorithm for visualizing unsteady
flows. In: Proc. IEEE Visualization, Seiten 317–322. 1997

[53] Stalling, D.; Hege, H.-C.: Fast and resolution independent line integral convolution. In: Proc.
ACM SIGGRAPH, Seiten 249–256. 1995

67

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

Literaturverzeichnis

[54] Stegmaier, S.; Strengert, M.; Klein, T.; Ertl, T.: A Simple and Flexible Volume Rendering Fra-
mework for Graphics-Hardware-based Raycasting. In: Proc. EG / IEEE VGTC Workshop on
Volume Graphics 2005, Seiten 187–195. 2005

[55] Stytz, M. R.; Frieder, G.; Frieder, O.: Three-dimensional medical imaging: Algorithms and com-
puter systems. ACM Computing Surveys, Vol. 23.4, Seiten 421–499. 1991

[56] Suzuki, Y.; Fujishiro, I.; Chen, L.; Nakamura, H.: Case Study: Hardware-Accelerated Selective
LIC Volume Rendering. In: Proc. IEEE Visualization, Seiten 485–488. 2002

[57] Tufte, E. R.: The Visual Display of Quantitative Information. Graphics Press 1983

[58] Urness, T.; Interrante, V.; Marusic, I.; Longmire, E.; Ganapathisubramani, B.: Effectively
Visualizing Multi-Valued Flow Data using Color and Texture. In: Proc. IEEE Visualization,
Seiten 115–121. 2003

[59] van Wijk, J.: Spot noise texture synthesis for data visualization. In: Computer Graphics (Proc.
ACM SIGGRAPH), Seiten 309–318. 1991

[60] Wegenkittl, R.; Gröller, E.; Purgathofer, W.: Animating Flow Fields: Rendering of Oriented
Line Integral Convolution. In: Proc. Computer Animation, Seiten 15–21. 1997

[61] Weiskopf, D.; Engel, K.; Ertl, T.: Interactive clipping techniques for texture-based volume visua-
lization and volume shading. IEEE Transactions on Visualization and Computer Graphics,
Vol. 9.3, Seiten 298–312. 2003

[62] Weiskopf, D.; Schafhitzel, T.; Ertl, T.: Real-Time Advection and Volumetric Illumination for the
Visualization of 3D Unsteady Flow. In: Proc. Eurovis 2005 (EG / IEEE VGTC Symposium
on Visualization), Seiten 13–20. 2005

[63] Weiskopf, D.; Schafhitzel, T.; Ertl, T.: Texture-based visualization of 3d unsteady flow by real-
time advection and volumetric illumination. Angenommen bei IEEE Transactions on Visuali-
zation and Computer Graphics. 2006

[64] Westermann, R.; Sevenich, B.: Accelerated volume ray-casting using texture mapping. In: Proc.
IEEE Visualization, Seiten 271–278. 2001

[65] Westover, L.: Footprint evaluation for volume rendering. In: Proc. ACM SIGGRAPH, Seiten
367–376. 1990

[66] Woo, M.; Neider, J.; Davis, T.; OpenGL Architecture Review Board,: The Official Guide to
Learning OpenGL, Version 1.1. Addison-Wesley 1997

[67] Xue, D.; Zhang, C.; Crawfis, R.: iSBVR: Isosurface-aided Hardware Acceleration Techniques for
Slice-Based Volume Rendering. In: Proc. EG / IEEE VGTC Workshop on Volume Graphics
2005, Seiten 207–215. 2005

[68] Zheng, X.; Pang, A.: HyperLIC. In: Proc. IEEE Visualization, Seiten 249–256. 2003

[69] Zöckler, M.; Stalling, D.; Hege, H.-C.: Interactive visualization of 3D-vector fields using illu-
minated stream lines. In: Proc. IEEE Visualization, Seiten 107–113. 1996

68

Erklärung

Hiermit versichere ich, diese Arbeit
selbstständig verfasst und nur die
angegebenen Quellen benutzt zu haben.

(Martin Falk)

	Einleitung
	Motivation
	Aufgabenstellung

	Volumenvisualisierung
	Isoflächen
	Schnittebene
	DVR -- Direct Volume Rendering
	Slicing
	Ray-Casting
	Beschleunigung der GPU-Verfahren

	LIC -- Line Integral Convolution
	2D LIC
	3D LIC
	GPU-basierter 3D LIC
	Beleuchtung von Linien
	Stromlinien nach Zöckler
	Stromlinien nach Mallo
	Beleuchtung des LIC anhand von Gradienten
	Wahl der Transferfunktion

	Features
	Erkennung von Wirbeln

	Modellierung des Rauschens
	Weißes Rauschen
	Dünnes Rauschen
	Filterung
	Konstante Raumfrequenz

	GPU-basierter 3D LIC
	Berechnung des 3D LIC
	LIC-Berechnung im Fragmentprogramm
	Ray-Casting
	Ray-Casting mit Depth-Peeling
	Slicing

	Beleuchtung
	Features
	Visualisierung zeitabhängiger Datensätze

	Leistungsbetrachtung
	Einfluss der Viewportgröße
	Optimierungen
	Abhängigkeit von der Kameraposition
	Beleuchtungsmodelle
	Samplingdistanz
	Anzahl der LIC-Schritte pro Abtastpunkt
	Anzahl der Abtastungen pro Depth-Peel-Schicht

	Qualitative Ergebnisse
	Visuelle Auswertung
	Beispiele

	Zusammenfassung und Ausblick
	Literaturverzeichnis

