
Institut für
Parallele und Verteilte Systeme

Abteilung für Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 2731

Optimierung multidimensionaler
Bereichsanfragen mittels
raumfüllender Kurven in
Peer-to-Peer-Netzen

Daniel Tiebler

Studiengang: Diplom Informatik

Prüfer: Prof. Dr. rer. nat. Dr. h. c. Rothermel
Betreuer: MSc. Faraz Ahmed Memon

begonnen am: 2008–01–21
beendet am: 2008–08–04

CR-Klassifikation: C.2.4, E.1, H.2.4, H.3.4

2

Kurzfassung
In dieser Arbeit wird eine Optimierung von multidimensionalen Bereichsan-
fragen in Peer-to-Peer-Netzen erarbeitet, die auf raumfüllenden Kurven und
verteilten Hash-Tabellen basiert. Bisherige Ansätze verwenden entweder nur
ein oder alle Attribute der Daten für eine Indexstruktur. Die Optimierung
besteht darin, individuelle Attributskombinationen zu erstellen und für An-
fragen einen optimalen Index auszuwählen. Die Bildung von Attributskom-
binationen wird mithilfe einer Heuristik durchgeführt und für die Auswahl
einer optimalen Indexstruktur wird ein heuristischer Algorithmus vorgestellt.
Zudem werden zwei Optimierungen eingeführt, die die Anzahl der paralle-
len Nachrichten im Netz begrenzen sowie aufwändige Berechnungen im Netz
verteilen.

Optimising Multi-dimensional Range Queries
Using Space-filling Curves in

Peer-to-Peer Overlay Networks

Abstract
The main focus of this thesis is the optimization of multi-attribute range
queries on DHT-based peer-to-peer overlay networks, using space-filling cur-
ves. Existing approaches either use one or all data attributes to built an
index structure. In both cases, the performance of the queries suffers if an
application has large number of data attributes. This work optimizes the
multi-attribute range queries by building multiple indices on certain attribu-
te combinations and choosing an optimal one for query processing. Additio-
nally two forwarding optimizations are introduced that limit the number of
parallel messages in the network and distribute computation tasks uniformly.

3

4

Danksagungen
Zuallererst geht mein Dank an meine Eltern, Christine und Horst Tiebler,
da sie mir die Freiheit ließen, mich dem Studium der Informatik zu widmen,
sowie mir über all die Jahre eine Unterkunft und Verpflegung boten. Zudem
schenkten sie mir meinen ersten Computer, einen Amiga 500, mit dem ich
nicht nur spielen durfte, sondern auch arbeiten sollte. Dies weckte mein In-
teresse an sowohl der praktischen als auch, später in Verbindung mit dem
Informatikunterricht in der Schule, theoretischen Seite dieses Fachgebietes
und stellte die Weichen für meinen weiteren Werdegang. Hierfür sei ihnen
ebenfalls herzlichst gedankt.

Für eine durchweg sehr gute Betreuung während der gesamten Bearbei-
tungszeit bedanke ich mich bei meinem Betreuer Faraz Ahmed Memon. Er
hatte immer Zeit, Sachverhalte ausführlich zu diskutieren und zeigte reges
Interesse am Vorankommen sowie an den Ergebnisse dieser Arbeit. Er war
auch bei der Übersetzung ins Englische behilflich.

Mein Dank geht zudem an Frank Dürr, welcher sich ebenfalls die Zeit
nahm, die hier vorgestellten Konzepte anzuhören und zu begutachten. Auch
las er die Ausarbeitung Korrektur und fand so manche verwirrenden Formu-
lierungen.

Acknowledgements
First of all, thanks to my parents, Christine und Horst Tiebler, since they
gave me the freedom to pursue my studies in Computer Science and gave me
food and shelter over the past years of my life. In addition to that, they gave
me my first computer, an Amiga 500, as a present, with which i was not only
allowed to play games, but also had to work. This increased my interest for
both the practical and, later in conjunction with Computer Science lessons
at school, theoretical aspects of the discipline, which set the course for my
future career. Therefore, I am extremely thankful to them.

For a very good all-round support during the whole Diploma thesis dura-
tion, many thanks go to my supervisor Faraz Ahmed Memon. He always had
time to discuss the subject in detail and was very interested in the progress
as well as the results of this work. He also was helpful with translating into
English.

Many thanks go to Frank Dürr, who had the time to listen and to have a
close look on the herein presented concepts. Furthermore, he proofread the
report and pointed out some confusing statements.

5

6

Inhaltsverzeichnis

1 Einleitung 9

2 Grundlagen 13
2.1 Peer-to-Peer-Netze . 13
2.2 Verteilte Hash-Tabellen . 16
2.3 Raumfüllende Kurven . 19

3 Verwandte Arbeiten 25
3.1 Spezialisierte Netzstrukturen 25
3.2 Verteilte Hash-Tabellen basierte Netze 26

3.2.1 Individueller Index . 26
3.2.2 Gesamt-Index . 27
3.2.3 Indices für Attributskombinationen 28

4 Konzepte zur Optimierung 29
4.1 Übersicht . 29
4.2 Daten- und Anfrage-Modell 31
4.3 Datenindexraum . 33

4.3.1 Bildung von Attribut-Untermengen 34
4.3.2 Anwendung der raumfüllenden Kurven 37

4.4 Datenplatzierungskomponente 42
4.5 Anfragenkomponente . 43

4.5.1 Auswahl einer Indexstruktur 43
4.5.2 Grundlegende Anfrage-Weiterleitung 47
4.5.3 Optimierung 1 — Nachrichtenbeschränkung 49
4.5.4 Optimierung 2 — verteilte Berechnung 53

5 Systemevaluation 57
5.1 Experiment 1 — raumfüllende Kurven 60
5.2 Experiment 2 — Nachrichtenbeschränkung 67
5.3 Experiment 3 — verteilte Berechnung 69

7

8 INHALTSVERZEICHNIS

6 Zusammenfassung 75

7 Ausblick 77

A Beweisführungen 79
A.1 Anzahl der Attributskombinationen 79
A.2 Mehrfach belegte Bezeichner 79
A.3 Maximale Anzahl der parallelen Nachrichten 80

Abbildungsverzeichnis 81

Literaturverzeichnis 85

Kapitel 1

Einleitung

Während des letzten Jahrzehnts wurden Peer-to-Peer-Netze (peer-to-peer
overlay networks) entwickelt, die architektonisch über dem Internetprotokoll
liegen und es Endbenutzern ermöglichen, Daten auf skalierbare, effiziente,
flexible und zuverlässige Weise auszutauschen. Solche Netze können sowohl
zum Tauschen als auch zum Anbieten unterschiedlichster Ressourcen einge-
setzt werden, wie zum Beispiel Rechenzeit, Speicherplatz oder generell Daten.
Eine Kategorie der Peer-to-Peer-Netze sind die verteilten Hash-Tabellen (dis-
tributed hash tables), welche den Daten einen eindeutigen Hash-Wert und
damit einen definierten Speicherort im Netz zuweisen. Die ersten Ansätze
unterstützen nur Punktanfragen (point queries) nach einzelnen Werten kos-
tengünstig. Zudem waren die Anfragen nur auf eine Dimension beschränkt,
da der Wertebereich der Hash-Werte selbst eindimensional ist. Bereichsan-
fragen (range queries) würden aufgrund der Hash-Funktion weit auseinander
liegende Werte erzeugen, die Zugriffe über große Bereiche des Netzes erforder-
lich machten. Eine solche Anfrage wäre mit großen Kommunikationskosten
verbunden. Aufgrund dieser Beschränkung entstanden ausgefeiltere Ansätze
(siehe Ganesan u. a. (2004); Schmidt und Parashar (2003); Andrzejak und
Xu (2002); Shu u. a. (2005)), welche die verteilten Hash-Tabellen erweitern
und kostengünstige Bereichsanfragen sowohl für einzelne als auch mehrere
Attribute (multi-attribute range queries) ermöglichen.

Dies wird erreicht, indem als Hash-Funktion eine Indexstruktur über die
beschreibenden Eigenschaften der Daten, den Attributen, aufgebaut wird.
Datenbankverwaltungssysteme setzen Indices zum Organisieren der Daten
auf Speichermedien ein, wodurch sich ein effizienter Zugriff ergibt (siehe Kem-
per und Eikler (2001)). Die Suche nach einem Datum muss demnach nicht
alle Daten einer Datenbank berücksichtigen, was zu einer sehr schlechten
Leistungsfähigkeit (performance) führte, sondern sie beschränkt sich nur auf
den Speicherort, auf den der Index verweist. Folglich beschleunigt ein Index

9

10 KAPITEL 1. EINLEITUNG

das Auffinden von Daten und erhöht somit die Leistungsfähigkeit der Suche.
Das Konzept der Indexstrukturen wurde auf Netze übertragen, wobei es im
Falle der verteilten Hash-Tabellen dezentral eingesetzt wird und es somit kei-
nen einzelnen, fehleranfälligen Punkt (single point of failure) im System mehr
gibt. Als eine solche Indexstruktur können raumfüllende Kurven (space-filling
curve) dienen. Raumfüllende Kurven bilden mehrere Dimensionen auf eine
Dimension ab. Werden die Attribute der Daten als Dimensionen betrachtet,
erfolgt die Abbildung von mehreren Attributen in eine Dimension, den Index.
Der Vorteil dieser Abbildung ist in erster Linie die Zusammenfassung mehrere
Attribute zu einem Index, mit dessen Hilfe nur an einem Ort nach den Da-
ten gesucht werden muss, die alle Attributswerte der Suchanfrage aufweisen.
Hinzu kommt die Eigenschaft der raumfüllenden Kurven, dass benachbarte
Indexwerte von benachbarten Attributswerten aus abgebildet werden. Diese
Lokalität bewahrende Eigenschaft ist in Bereichsanfragen von Vorteil. Berei-
che der Attribute werden wahrscheinlich auf benachbarte Indices abgebildet,
anstatt über den gesamten Wertebereich des Indexes verteilt zu werden, was
die Suchkosten noch weiter senkt.

Allerdings weisen Peer-to-Peer-Systeme, die eine solche Indexstruktur ver-
wenden, zwei Nachteile auf. Ersterer ist der Index selbst, welcher über alle
Attribute eines Systems erstellt wird. Werden Anfragen durchgeführt, die nur
einen Teil der Attribute verwenden, müssen für die restlichen Attribute alle
möglichen Werte angenommen werden. Der Index passt folglich nicht opti-
mal zur Anfrage. Dies führt zu einer sehr großen Anzahl von aufzusuchenden
Speicherorten. Zweiter ist die raumfüllende Kurve, welche mit steigender An-
zahl an Dimensionen zu mehr nicht benachbarter Indices führt und damit die
Lokalität bewahrende Eigenschaft kontinuierlich verliert (siehe Ganesan u. a.
(2004); Moon u. a. (2001)). Hierdurch nimmt die Entfernung der Speicheror-
te zu. Beide Nachteile führen zu höheren Kommunikationskosten und damit
zu einer schlechteren Leistungsfähgikeit beim Informationsfund (information
discovery).

Die Aufgabe dieser Diplomarbeit besteht darin, die Leistungsfähigkeit
solcher Peer-to-Peer-Netze zu optimieren, die auf einer raumfüllenden Kurve
zusammen mit einer verteilte Hash-Tabelle beruhen. Der Lösungsansatz be-
steht darin, mehrere anfrage-spezifische Indices mit nur einer verteilten Hash-
Tabelle zu verwenden, damit für jede Anfrage ein optimaler Index ausgewählt
werden kann. Hinzu gesellen sich zwei Optimierungen, die den Einsatz des
entwickelten Systems praxistauglich machen. Zum einen wird die maximale
Anzahl von parallelen Nachrichten im Netz begrenzt, um einer Überflutung
mit Nachrichten vorzubeugen. Zum anderen wird eine verteilte Berechnung
der Indices eingeführt, damit ein einzelner Knoten von einer rechenintensiven
Anfrage nicht überlastet wird.

11

Die Ausarbeitung ist wie folgt aufgebaut. Das nachfolgende Kapitel 2
„Grundlagen“ gibt einen tieferen Einblick in die Konzepte, die in dieser Di-
plomarbeit zur Anwendung kommen. Hierbei handelt es sich um Peer-to-
Peer-Netze, verteilte Hash-Tabellen und raumfüllende Kurven. Zuerst wird
das Peer-to-Peer-Modell vorgestellt. Anschließend wird auf Funktionsweise
und Eigenschaften der verteilten Hash-Tabellen eingegangen. Am Schluss er-
folgt die Definition der hier verwendeten raumfüllenden Kurve sowie eine
Beschreibung ihrer rekursiven Konstruktion.

In Kapitel 3 „Verwandte Arbeiten“ wird auf Peer-to-Peer-Netze eingegan-
gen, die entweder eine spezielle Netzstruktur aufweisen oder auf verteilten
Hash-Tabellen basieren. Die letztgenannten werden danach kategorisiert, wie
sie den Index aufbauen.

Die Architektur und das Systemmodell dieser Arbeit werden in Kapitel 4
„Konzepte zur Optimierung“ festgelegt. Nach einem Überblick werden alle
Teile schrittweise eingeführt. Während das Kapitel über die Grundlagen die
technischen Aspekte vorstellt, zeigt dieses Kapitel das Systemmodell aus der
Sicht einer Anwendung. Es wird detailliert beschrieben, wie sowohl Daten im
Netz platziert als auch Anfragen für solche Daten abgearbeitet werden. Ne-
ben dem grundlegenden Ansatz werden ebenfalls die beiden oben erwähnten
Optimierungen aufgezeigt, mit denen eine praktikable Lösung erreicht wird.

Eine Evaluierung des Systemmodells wird mittels Simulationen durchge-
führt. Die Ergebnisse werden in Kapitel 5 „Systemevaluation“ diskutiert. Hier
werden Indices für unterschiedliche Attributskombinationen miteinander ver-
glichen, damit der Effekt genau passender Indices klar wird. Ferner werden
die beiden Optimierungen dem grundlegenden Ansatz gegenübergestellt und
damit ihre Notwendigkeit für eine durchführbare Realisierung bestätigt. Am
Ende werden die Ergebnisse noch einmal kurz zusammengetragen.

Während das vorletzte Kapitel 6 „Zusammenfassung“ die gesamte Aus-
arbeitung zusammenfasst, werden im letzten Kapitel 7 „Ausblick“ Aspekte
aufgelistet, die nicht Gegenstand dieser Arbeit sind, jedoch einer näheren Un-
tersuchung bedürfen. Hier werden einige Ideen skizziert, die bedacht werden
sollten.

12 KAPITEL 1. EINLEITUNG

Kapitel 2

Grundlagen

Die in dieser Arbeit verwendeten Techniken werden in diesem Kapitel ein-
geführt. Die Reihenfolge orientiert sich an der technischen Voraussetzung
der Themen, welche aufeinander aufbauen. Zu allererst werden Peer-to-Peer-
Netze vorgestellt. Diese setzen ein bestehendes Rechnernetz bis hin zum In-
ternetprotokoll voraus, auf dem sie basieren und auf das hier nicht näher
eingegangen wird (siehe Tanenbaum (2000)). Daraufhin erfolgt eine Defini-
tion der verteilten Hash-Tabellen, die eine bestimmte Art von Peer-to-Peer-
Netz sind. Die raumfüllenden Kurven hingegen erweitern die verteilten Hash-
Tabellen um die Fähigkeit einer Bereichssuche über mehrere Attribute.

2.1 Peer-to-Peer-Netze

In den Anfängen des Internets war das Client-Server-Modell vorherrschend.
Dabei gibt es den Dienstanbieter, den Server, und den Dienstnutzer, den Cli-
ent. Die Abbildung 2.1 auf Seite 14 zeigt links eine Veranschaulichung dieses
Modells. Diese klare Trennung ist unter anderem auch technisch bedingt. Die
Endsysteme des Internets, womit die Endverbraucher gemeint sind, waren
über langsame Kommunikationsverbindungen, meist per Modem oder ISDN,
an das Netz angebunden und deren Rechner waren damals noch mit leistungs-
schwachen 486er-Prozessoren oder deren Nachfolgegeneration bestückt. Mit
dieser technischen Ausstattung war es praktisch unmöglich einen Dienst im
Internet anzubieten, der einer großen Nutzerschar dauerhaft und zuverlässig
zur Verfügung stand. Daher wurden spezielle Hochleistungsrechner einge-
setzt, die über eine deutlich schnellere und ständige Internetanbindung ver-
fügten. Diese teuren Gerätschaften wurden von Universitäten, Firmen und
Organisationen eingesetzt. Dienste wurden auf diesen dedizierten Maschinen,
welche als Server bezeichnet werden, zentral im Netz angeboten.

13

14 KAPITEL 2. GRUNDLAGEN

Abbildung 2.1: Die Abbildungen zeigen das Client-Server-Modell (links) so-
wie das Peer-to-Peer-Modell (rechts).

Mit dem Fortschritt der technischen Entwicklung wurden neben den In-
ternetverbindungen, erste „Flatrates“ sowie DSL-Technik, auch die Compu-
ter, deren Prozessortaktfrequenz die Gigahertzgrenze überschritt, immer leis-
tungsfähiger und kostengünstiger. Aufgrund dessen wurde eine direkte Kom-
munikation zwischen Ebenbürtigen (Peers), in diesem Fall den Endverbrau-
chern, attraktiver. Ein Peer-to-Peer-Netz ist demnach ein Netz, in dem eine
direkte Kommunikation von einem Peer zu einem anderen Peer (Peer-to-
Peer) erfolgt. In Abbildung 2.1 auf Seite 14 sind sowohl ein Server-Client-
Modell als auch ein Peer-to-Peer-Modell zum Vergleich skizziert. Anstatt
sich eines zentralen Servers als Dienstleister zu bedienen, agieren die Peers
selbst als Dienstanbieter gegenüber anderen Peers. Folglich ist im Peer-to-
Peer-Modell jeder Peer ein Client und auch gleichzeitig ein Server, womit
neue Herausforderungen an die eingesetzten Systeme erwachsen. Zum einen
muss ein Peer-to-Peer-System mit einer Vielzahl von Benutzern noch effizient
funktionieren, also skalieren. Zum anderen muss es flexibel mit den Bei- und
Austritten sowie Ausfall der Benutzer umgehen können, ohne dass der Dienst
im Netz zu sehr darunter leidet. Denn im Gegensatz zu dedizierten Maschi-
nen, die ununterbrochen im Netz zur Verfügung stehen, sind Endsysteme
nicht ständig „online“. Peer-to-Peer-Netze basieren auf dem Internetproto-
koll und werden als ein logisches Netz betrachtet, das ein physikalisches Netz
überlagert (overlay network). Dabei entspricht eine logische Verbindung im
Peer-to-Peer-Netz oft mehreren physikalischen Verbindungen.

Das erste populäre System mit Direktverbindungen zwischen Peers war
Napster (Dürr (2007); Mahlmann und Schindelhauer (2007); Saroiu u. a.
(2003)), das den Austausch von Dateien (file sharing) erlaubt. Es besteht
aus einem Server, der als Verzeichnisdienst fungiert. Clients können sich beim

2.1. PEER-TO-PEER-NETZE 15

Server anmelden und senden ihm eine Liste mit Dateien zu, die sie selbst be-
reitstellen. Die Dateilisten sind der Datenbestand des Servers, in dem jeder
Client suchen kann. Suchanfragen werden an den Server gesendet, welcher
mit einer Liste aller passenden Dateinamen und der Adresse der zugehörigen
Clients antwortet. Mit Hilfe der Adressen können die Peers direkt Kontakt
aufnehmen und die gewünschte Datei austauschen. Napster ist streng ge-
nommen kein reines Peer-to-Peer-Netz, da der Verzeichnisdienst von einem
zentralen Server übernommen wird. Allerdings werden die Dateien komplett
dezentral gespeichert. Solche Systeme, die sowohl das Client-Server-Modell
als auch das Peer-to-Peer-Modell verwenden, werden als hybride Peer-to-
Peer-Systeme bezeichnet.

Ein reines Peer-to-Peer-Netz ohne eine zentrale Komponente ist beispiels-
weise Gnutella (Dürr (2007); Mahlmann und Schindelhauer (2007); Ripeanu
(2001); Saroiu u. a. (2003)), das ebenfalls ein Datei-Austausch-Netz ist. Da
eine zentrale Anlaufstelle für Suchanfragen fehlt, müssen diese direkt an die
anderen Peers gesendet werden, was einer Art Fluten (flooding) des Netzes
mit Nachrichten gleichkommt. Daher wurden spezielle Suchstrategien entwi-
ckelt, die eine komplette Überflutung des Netzes mit Suchanfragen verhin-
dern. Als Beispiele seien die beschränkte Flutung (limited flooding) (siehe
Lv u. a. (2002)) und der zufällige Weg (random walk, siehe Yatin Chawathe
and Sylvia Ratnasamy and Lee Breslau and Nick Lanham and Scott Shenker
(2003)) genannt. Während beim Erstgenannten die Reichweite der Überflu-
tung begrenzt wird, werden beim Letztgenannten zufällige Wege durch das
Netz verwendet. Der Nachteil an solchen System ist, die Daten können sich ir-
gendwo im Netz befinden, da es keinen Zusammenhang zwischen den Daten
und der Netzstruktur gibt. Deshalb werden solche Systeme als unstruktu-
rierte Peer-to-Peer-Netze bezeichnet. Es gibt keine Garantie, dass die Daten
gefunden werden, wenn sie denn vorhanden sind, außer die Suchanfrage wird
an jeden Peer im Netz gesendet.

Eine weitere Kategorie sind die strukturierten Peer-to-Peer-Netze wie die
verteilten Hash-Tabellen, die im nachfolgenden Kapitel vorgestellt werden.
Diese sind ebenfalls vollständig dezentral. Allerdings besitzen sie einen struk-
turierten Netzaufbau und Daten werden an wohldefinierten Orten gespei-
chert. Suchanfragen für bestimmte Daten werden gezielt an den Ort weiter-
geleitet, wo diese Daten gespeichert sein sollten. Damit ist einerseits eine
effizientere Suche als in unstrukturierten Netzen möglich. Andererseits kann
garantiert werden, die Daten zu finden, sofern sie im Netz gespeichert wur-
den.

16 KAPITEL 2. GRUNDLAGEN

2.2 Verteilte Hash-Tabellen

Verteilte Hash-Tabellen (distributed hash tables, siehe Karger u. a. (1997);
Stoica u. a. (2001)) sind ein strukturiertes Peer-to-Peer-System. Im Allge-
meinen funktionieren sie wie Hash-Tabellen, die in der Programmierung ver-
wendet werden, allerdings ohne den wesentlichen Nachteil der kompletten
Reorganisation, wenn sich die Anzahl der Behältnisse ändert.

Daten werden bei Hash-Tabellen als Schlüssel-Werte-Paar angegeben. Der
Schlüssel S beschreibt eine eindeutige Kennung für den Wert, wobei der Wert
den eigentlichen Daten entspricht oder ein Verweis auf diese ist. Für einen
schnellen Zugriff auf die Daten, wird aus dem Schlüssel ein Hash-Wert H be-
rechnet: h(S) = H. Die Hash-Tabelle hat N Behältnisse und der Hash-Wert
H bestimmt das Behältnis, in dem die Daten gespeichert sind. Damit der
Hash-Wert nicht größer als die Anzahl der Behältnisse wird, kommt bei Hash-
Funktionen oft eine Modulo-Berechnung zur Anwendung: h() = (. . .) mod N .
Ändert sich die Anzahl der Behältnisse, so müssen die Hash-Werte aller
Schlüssel neu berechnet und die Daten in die neu berechneten Behältnisse
verschoben werden. Diese Reorganisation ist sehr kostenintensiv. Insbeson-
dere wenn die Behältnisse auf Peers gespeichert werden, da schlimmstenfalls
alle Daten über das Netz ausgetauscht werden müssten.

Verteilte Hash-Tabellen reduzieren diesen Aufwand, indem sie ein soge-
nanntes konsistentes Hash-Verfahren (consistent hashing, Karger u. a. (1997);
Stoica u. a. (2001)) anwenden. Dabei werden jedem Knoten (Konten, Netz-
knoten und Peers werden nachfolgend synonym verwendet) und jedem Schlüs-
sel ein m-Bit langer Hash-Wert zugewiesen, der Bezeichner (identifier) ge-
nannt wird. Der Wertebereich des Bezeichners muss ausreichend groß sein,
damit eine mögliche Zuweisung des gleichen Bezeichners zu zwei verschiede-
nen Knoten vernachlässigt werden kann. Die Peers werden in einem „Bezeichner-
Kreis“ geordnet, in dem „modulo 2m“ gerechnet wird. Der Wertebereich geht
folglich von 0 bis 2m − 1. Der Bezeichner eines Schlüssels wird dem Peer
zugewiesen, dessen Bezeichner größer oder gleich dem Bezeichner des Schlüs-
sels ist. Dieser Peer wird definiert als der Nachfolger im Bezeichner-Kreis.
In Abbildung 2.2 auf Seite 17 ist eine verteilte Hash-Tabelle zu sehen, wobei
die Kreise die Bezeichner der Knoten und die Quadrate die Bezeichner von
Daten zeigen. Hierbei ist m = 6, weshalb der Bezeichnerbereich von 0 bis 63
geht.

Jeder Peer ist anstelle für einen für mehrere Bezeichner verantwortlich.
Ist B die Menge aller Bezeichner sowie N die Anzahl der Peers, so werden
jedem Peer mit hoher Wahrscheinlichkeit B

N
Bezeichner zugewiesen. Mit ho-

her Wahrscheinlichkeit meint hier, die Zuweisung erfolgt rein zufällig über
die Hash-Funktion und wird damit als beinahe gleichverteilt angenommen.

2.2. VERTEILTE HASH-TABELLEN 17

Abbildung 2.2: Zu sehen sind Knoten in einer verteilte Hash-Tabelle mitsamt
zugeordneten Daten. Die Zahlen stellen die Bezeichner dar. Mit m = 6 ist
der Wertebereich des Bezeichners [0, 63].

Hier ist die Hash-Funktion passend zu wählen, welche für gewöhnlich die
kryptographische Hash-Funktion SHA-1 (siehe U.S. Dept. Commerce/NIST
und National Technical Information Service (1995)) ist und eine sehr gute
Zufälligkeit aufweist. Sollte ein Knoten dem Netz beitreten oder es verlassen,
müssen mit hoher Wahrscheinlichkeit nur O(B

N
) Bezeichner mitsamt ihren

Daten verschoben werden. Das betrifft folglich nur all die Bezeichner, für die
der entsprechende Knoten verantwortlich ist oder sein wird. Die anderen Zu-
weisungen bleiben davon unberührt. Dieser Ansatz ist im Vergleich zu einer
kompletten Reorganisation deutlich kostengünstiger.

In dieser Arbeit kam das Chord-Protokoll (siehe Stoica u. a. (2001)) zum
Einsatz, welches eine verteilte Hash-Tabelle verwendet. Es ist ein skalierbares
Peer-to-Peer-Protokoll und kann von Internetanwendungen für eine effiziente
Suche verwendet werden. Der Bezeichner-Kreis wird in einem sogenannten
Chord-Ring organisiert. Chord bietet zwei wesentliche Funktionen an. Zum
einen eine Suchfunktion, mit der effizient der Nachfolger eines Bezeichners
gesucht werden kann. Zum anderen informiert das Protokoll, sobald sich et-

18 KAPITEL 2. GRUNDLAGEN

was an den Bezeichnern ändert, für die ein Knoten zuständig ist. Hiermit
kann die Datenmigration initiiert werden. Das Speichern und Verschieben
der Daten muss die Anwendung selbst übernehmen. Chord dient einzig und
allein der effizienten Suche.

Die Suche im Chord-Ring funktioniert korrekt, wenn jeder Knoten seinen
Nachfolger kennt. Das ist der Peer, dessen Bezeichner im Ring unmittelbar
nach dem Bezeichner eines Knotens kommt. Da ein Knoten seinen Nachfol-
ger kennt, weiß er folglich, für welchen Bereich des Rings der nachfolgende
Knoten verantwortlich ist. Eine Suchanfrage wird solange im Netz an den
Nachfolger weitergereicht, bis ein Knoten feststellt, dass der ihm folgende
Knoten der Nachfolger des gesuchten Bezeichners ist. Dieser Knoten sendet
die Adresse des Nachfolgers an den Urheber der Suchanfrage, womit letzterer
den Speicherort des gesuchten Schlüssel-Werte-Paares gefunden hat.

Finger-Tabelle
i n + 2i−1 ID
1 16 26
2 17 26
3 19 26
4 23 26
5 31 31
6 47 58

Abbildung 2.3: Neben einem Chord-Ring mit m = 6 ist zusätzlich die Finger-
Tabelle des Knotens mit dem Bezeichner (identifier, ID) 15 zu sehen.

Diese lineare Suche ist jedoch nicht effizient. Deshalb speichert jeder Peer
eine sogenannte Finger-Tabelle (finger table). Ein Finger ist eine Langstre-
ckenverbindung, zu einem weit entfernten Knoten im Chord-Ring. Eine solche
Tabelle enthält höchstens m Finger, deren Bezeichner sich wie folgt berech-

2.3. RAUMFÜLLENDE KURVEN 19

nen. Sei n der Bezeichner des aktuellen Knotens. Dann hat der i-te Eintrag
den Bezeichner n + 2i−1. Zusammen mit dem Bezeichner wird die Adresse
des entsprechenden Nachfolgers in der Tabelle gespeichert. Der erste Eintrag
entspricht dem direkten Nachfolger. Bei einer Suche nach dem Nachfolger
eines Bezeichners wird überprüft, ob einer der Finger im Bereich zwischen
dem Bezeichner des aktuellen Knotens und dem zu suchenden Bezeichner
liegt. Da mehrere Finger in diesem Bereich liegen können, wird beim größten
angefangen. Ist ein Finger gefunden, so handelt es sich um den nahsten Vor-
gängerknoten, den der aktuelle Knoten kennt. An diesen wird die Suchanfrage
weitergeleitet. Wird dieses Verfahren auf jedem Knoten angewendet, so hal-
biert sich die Entfernung mit hoher Wahrscheinlichkeit zum Zielknoten mit
jedem Schritt. Ist N die Anzahl der Knoten, dann werden bei einer Suche mit
hoher Wahrscheinlichkeit O(log N) Knoten kontaktiert, bis die Suche been-
det ist. Damit ist die Suche sehr effizient. Für den Beweis sei auf die Literatur
verwiesen. Die Finger-Tabelle ist mit höchstens m Einträgen im Vergleich zu
einer maximalen Anzahl von 2m Netzknoten sehr klein, weshalb die Spei-
cheranforderungen des Chord-Protokolls gering ausfallen. Tatsächlich sind
in einer Finger-Tabelle Einträge enthalten, die auf die selben Knoten ver-
weisen. Werden diese Mehrfacheinträge nicht gespeichert, reduziert sich der
Speicherplatzbedarf der Tabelle auf O(log N). In Abbildung 2.3 auf Seite 18
wird ein Chord-Ring sowie eine Finger-Tabelle des Knotens mit dem Bezeich-
ner 15 gezeigt. Wie dort zu sehen ist, könnten die Mehrfacheinträge auf einen
Eintrag reduziert werden, die auf den Peer mit dem Bezeichner 26 zeigen.

Der Chord-Ring verhält sich bei ständigem Ein- und Austritt oder so-
gar bei einem Ausfall von Knoten unter Einsatz weiterer Maßnahmen robust
und fehlertolerant. Es kann zwar vorkommen, dass die Finger eines Peers zwi-
schenzeitlich nicht auf den nahsten Vorgänger zeigen, aber die Suche bleibt
wegen des direkten Nachfolgers weiterhin korrekt. Die Finger-Tabelle wird
aufgrund dessen in regelmäßigen Abständen verifiziert und gegebenenfalls ak-
tualisiert. Zudem gibt es keine Einschränkungen in der Wahl des Schlüssels,
womit das Chord-Protokoll flexibel einsetzbar ist. Eine nähere Erläuterung
der letztgenannten Eigenschaften übersteigt den Rahmen dieser Arbeit, wes-
halb hier ebenfalls auf die Literatur verwiesen wird.

2.3 Raumfüllende Kurven

Nachdem mit dem Chord-Protokoll ein effizientes Peer-to-Peer-Netz für die
Suche ausgewählt wurde, bedarf es einer effizienten Indexstruktur für meh-
rere Attribute, den beschreibenden Eigenschaften der Daten. Eine Index-
struktur wird in Datenbanken dazu verwendet, die Daten auf einem Spei-

20 KAPITEL 2. GRUNDLAGEN

chermedium zu organisieren, damit ein Zugriff schnell und effizient erfolgen
kann (siehe Kemper und Eikler (2001)). Die Indexstruktur soll sicherstellen,
dass möglichst wenige Peers an der Bearbeitung einer Suchanfrage betei-
ligt sind. Damit werden Kommunikationskosten gespart und die Abarbeitung
einer Suchanfrage wird dadurch kostengünstiger und leistungsfähiger. Zum
Einsatz kommt eine raumfüllende Kurve, die mehrere Dimensionen auf eine
Dimension abbildet. Es existieren verschiedene solcher Kurven wie beispiels-
weise die Hilbert-, Peano-, Sierpiński-, Moore- oder Gray-Kurven (vergleiche
Sagan (1994); Mokbel u. a. (2003)). In Abbildung 2.4 auf Seite 20 werden
drei ausgewählte raumfüllende Beispielkurven dargestellt. Diese Diplomar-
beit verwendet die Hilbert-Kurve, da sie die beste Lokalität bewahrende Ei-
genschaft (locality preserving property, clustering property) aufweist und sie
über alle Dimensionen das gleiche Verhalten zeigt (siehe Mokbel u. a. (2003);
Moon u. a. (2001); Gotsman und Lindenbaum (1996)).

Hilbert-Kurve Peano-Kurve Gray-Kurve

Abbildung 2.4: Es werden die Hilbert-, Peano- sowie Gray-Kurven als Bei-
spiele für raumfüllende Kurven dargestellt.

Aus dem mathematischen Problem, „wie die Punkte einer Linie stetig auf
die Punkte eines Flächenstückes abgebildet werden können“ (Hilbert (1891)),
entstanden die heute bekannten raumfüllenden Kurven (space-filling cur-
ves). Obwohl Guiseppe Peano im Jahre 1890 als erster durch arithmetische
Betrachtungen dieses Problem gelöst hatte, war es David Hilbert ein Jahr
später, der diese Problemstellung geometrisch veranschaulichte. Damit be-
schrieb er mit einfachen Mitteln, wie Funktionen hergeleitet werden können,
die eine solche Kurve abbilden. Im Grunde geht es dabei um die Abbildung
[0, 1] → [0, 1]2. Mit den raumfüllenden Kurven kann leicht eine stetige und
bijektive Abbildung gezeigt werden, die sich umkehren lässt. Daher ist die
für die Indexstruktur benötigte Abbildung von mehreren Dimensionen auf
eine Dimension möglich: [0, 1]2 → [0, 1].

In Abbildung 2.5 auf Seite 21 ist die rekursive Konstruktion der Hilbert-

2.3. RAUMFÜLLENDE KURVEN 21

Kurve zu sehen. Das Flächenstück wird in jeder Dimension in zwei gleichgroße
Teile zerlegt und durch die daraus resultierenden vier Teilflächen geht eine
Linie. Diese hat die Eigenschaft, jeden Flächenteil nur einmal zu passieren.
Die Ziffern geben an, welchem Teilstück auf der Linie welcher Flächenteil
entspricht, wobei die Flächen durch ihre Mittelpunkte markiert sind. Wie
im Bild zu sehen ist, füllt die Linie die Fläche noch nicht aus. Daher wird
mit jeder Teilfläche ebenso verfahren, das heißt jedes einzelne Flächenstück
wird wiederum in vier gleichgroße Teile zerlegt. Da die Kurve jedes Teil-
stück nur einmal durchlaufen darf und stetig sein muss, wird sie aus der
vorherigen Kurve konstruiert, damit sie diese Bedingungen erfüllt. Die bei-
den oberen Teilstücke sind direkte Kopien der ersten Kurve. Die unteren
Teilstücke ergeben sich aus einer Drehung um 90◦ im beziehungsweise gegen
den Uhrzeigersinn. Dabei ist auf die Orientierung der Ausgangskurve im zu
verfeinernden Flächenstück zu achten. Im dritten Bild wurde auf die gleiche
Weise eine weitere Unterteilung durchgeführt. Wie zu sehen ist, nähert sich
die Kurve der Fläche an. Je größer die Annäherung, desto mehr Fläche wird
durch die Kurve belegt, was bei einer unendlichen Annäherung die gesamte
Fläche ergibt. Die arithmetische Konstruktion der Kurve wurde später auf
beliebig viele Dimensionen erweitert.

k = 1 k = 2 k = 3

Abbildung 2.5: Es wird die rekursive Konstruktion der Hilbert-Kurve in den
ersten drei Annäherungsstufen gezeigt.

Die im Schaubild verwendeten Zahlen werden Hilbert-Bezeichner (Hilbert
identifier) genannt und sie zeigen, die Abbildung ist nicht auf das Intervall
[0, 1] beschränkt, sondern kann auch mit ganzen Zahlen beschrieben wer-
den: Nd → N. Die Anzahl der benötigten Hilbert-Bezeichner kann berechnet
werden. Gegeben sei ein Raum mit d Dimensionen. In der ersten Annähe-
rungsstufe (approximation level) wird jede Dimension in zwei gleiche Teile
zerlegt. Die Anzahl der mit jeder weiteren, rekursiven Raumteilung entste-

22 KAPITEL 2. GRUNDLAGEN

henden Unterräume bis zur k-ten Annäherungsstufe ergibt sich wie folgt:

21 · 22 · . . . · 2d−1 · 2d = 2d

22
1 · 22

2 · . . . · 22
d−1 · 22

d = 22·d

...
2k−1

1 · 2k−1
2 · . . . · 2k−1

d−1 · 2k−1
d = 2(k−1)·d

2k
1 · 2k

2 · . . . · 2k
d−1 · 2k

d = 2k·d.

Da alle Unterteilungen einer Dimension in der nächsthöheren Annäherungs-
stufe zerlegt werden, multipliziert sich deren Anzahl mit zwei. Die Gesamt-
zahl der Unterräume ergibt sich aus der Multiplikation der Anzahl der Un-
terteilungen aller Dimensionen. Hiermit lässt sich die Abbildung auch fol-
gendermaßen beschreiben: [2k]d → [2k·d]. Es sei zudem angemerkt, dass an
der Berechnungsformel 2k·d zu erkennen ist, dass die Anzahl der Unterräume
exponentiell mit der Anzahl der Dimensionen und der Annäherungsstufen
wächst.

Für eine Indexstruktur werden die Attribute der Daten als die Dimensio-
nen des Raumes der raumfüllenden Kurve betrachtet. Zuerst wird festgelegt,
welche Attribute abgebildet werden sollen. Dies bestimmt die Dimensiona-
lität der Hilbert-Kurve. Anschließend sollte geklärt werden, wie hoch die
maximale Annäherungsstufe ist. Diese wird durch die „Auflösung“ der Attri-
bute bestimmt. Beträgt der größte Wertebereich aller Dimensionen beispiels-
weise höchstens 100 diskrete Werte, so ist die maximale Annäherungsstufe:
dlog2 100e = 7. Es sei darauf hingewiesen, dass die maximale Annäherungs-
stufe für alle Dimensionen gleich ist. Ob eine maximale Annäherungsstufe
überhaupt Verwendung findet, hängt vom System ab, dass die raumfüllende
Kurve einsetzt. Für gewöhnlich wird eine solche definiert und angewendet.

Jener Unterraum, welcher einem Hilbert-Bezeichner zugeordnet ist, wird
Zone genannt. Direkt benachbarte Zonen entlang eines Liniensegmentes bil-
den sogenannte Cluster. Bei einer Punktanfrage, ist höchstens nur ein Ab-
schnitt je Dimension betroffen, sodass nur eine Zone und damit nur ein
Hilbert-Bezeichner durch die Abbildungsfunktion berechnet wird. Dies ist
der Speicherort, an dem das gesuchte Datum gefunden werden kann. Werden
dagegen Bereiche bei der Suche angegeben, so können auch mehrere Abschnit-
te einer Dimension davon betroffen sein. Eine solche Bereichsanfrage ergibt
mehrere Zonen, von denen einige Zonen Cluster bilden. Die Abbildung 2.6
auf Seite 23 veranschaulicht eine beispielhafte Bereichsanfrage. In der ver-
tikalen Dimension ist nur ein Abschnitt und in der horizontalen Dimension
sind alle Abschnitte betroffen. Dies führt zu den vier Zonen: 5, 8, 9, 12. Die
umittelbar benachbarten Zonen 8 und 9 bilden einen Cluster. Weniger streng
genommen bilden die anderen beiden Zonen auch Cluster, aber nur mit einer

2.3. RAUMFÜLLENDE KURVEN 23

Zone. Die Indices beschreiben in diesem Fall mehrere Speicherorte, an denen
die Daten gefunden werden können. Dabei ist die Entfernung zwischen den
Zonen 5 und 8 sowie 9 und 12 groß. Die Entfernung zwischen den Zonen 8
und 9 ist optimal für ein sequentiell zu lesendes Speichermedium. Kommt ei-
ne verteilte Hash-Tabelle zum Einsatz, könnten sich beide Zonen des Clusters
auf einem Peer befinden, was die Suche kostengünstiger macht.

Bereich der Anfrage Hilbert-Kurve Verteilte Hash-Tabelle

Abbildung 2.6: Zu sehen ist eine beispielhafte Bereichsanfrage, welche die
Zonen 5, 8, 9 sowie 12 auf der Hilbert-Kurve ergibt, und wie der ursprüngliche
Bereich auf die verteilte Hash-Tabelle abgebildet wird. Dabei zeigt sich die
Lokalität des Clusters 8–9.

Die im letzten Abschnitt beschriebenen Cluster sind im Falle einer Be-
reichssuche wesentlich. Eine raumfüllende Kurve fasst zwar mehrere Dimen-
sionen und damit auch Attribute zu einer Dimension, den Index, zusam-
men. Allerdings können bei einer Bereichssuche mehrere Indices berechnet
werden. Ein einzelner Index ist ideal für eine Punktanfrage, bei der exakte
Werte für jedes Attribute angegeben werden. Die Daten müssen folglich nur
an dem Speicherort nachgesehen werden, auf den der Index verweist, anstatt
alle Speicherorte nach den Daten zu durchsuchen. Eine solche Indexstruktur
macht eine mehrdimensionale Suche sehr effizient. Mehrere Indices machen es
erforderlich, die Daten an mehreren Orten ausfindig zu machen. Eine günstige
Situation ergibt sich, wenn alle Indices nahe bei einander liegen, anstatt über
den gesamten Wertebereich des Indexes verstreut zu sein. Denn dies redu-
ziert die Entfernung der Speicherorte zueinander, wodurch eine Suche nicht
deutlich teurer wird. Da eine raumfüllende Kurve alle Unterräume verbin-
det, werden benachbarte Schlüsselwerte von benachbarten Attributswerten
aus abgebildet. Wie im obigen Beispiel zu sehen ist, trifft diese Eigenschaft
für die umgekehrte Abbildung nicht zu: Benachbarte Attributswerte werden
nicht immer auf benachbarte Indices abgebildet. Je weniger solcher Cluster
eine Kurve bei einer Bereichssuche erzeugt, um so besser bewahrt sie die

24 KAPITEL 2. GRUNDLAGEN

Lokalität zwischen den ursprünglichen und den abgebildeten Werten. Diese
Eigenschaft ist bei der Hilbert-Kurve am ausgeprägtesten (siehe Gotsman
und Lindenbaum (1996); Mokbel u. a. (2003); Moon u. a. (2001)).

Mit der Verwendung von verteilten Hash-Tabellen, welchen das konsisten-
te Hash-Verfahren zugrunde liegt (siehe das vorherige Kapitel 2.2 „Verteilte
Hash-Tabellen“ ab Seite 16), zur Speicherung der Daten wird die Lokali-
tät der Kurve ausgenutzt. Da einzelne Peers für Bereiche von Hash-Werten
zuständig sind, könnten die Cluster einer Bereichssuche von nur einigen we-
nigen Peer ausgewertet werden. Neben der Indexstruktur ist dies ein weiterer
Grund, warum die Anzahl der an einer Bereichssuche beteiligten Peers noch
weiter sinken kann. Dies setzt jedoch voraus, dass die Anzahl der Zonen einer
raumfüllenden Kurve größer ist als die Anzahl der Peers im Netz.

Neben der guten Lokalität bewahrenden Eigenschaft zeigt die Hilbert-
Kurve über alle Dimensionen das gleiche Verhalten Mokbel u. a. (2003). Das
bedeutet, es entsteht genau die selbe Anzahl von Clustern für einen Bereich,
egal in welcher Dimension er definiert wird. Keine Dimension wird von der
Kurve bevorzugt. Für die Indizierung von Daten ist diese Eigenschaft eben-
falls ideal, da es einerseits belanglos ist, welches Attribut welcher Dimension
zugewiesen wird. Andererseits ist eine Bereichssuche in einer Dimension nicht
kostengünstiger als in einer anderen Dimension, da das Verhalten der Kurve
über alle Dimensionen gleich verteilt ist.

Allen guten Eigenschaften zum Trotz besitzt die Hilbert-Kurve auch eine
nicht unerhebliche, schlechte Eigenschaft in Bezug auf die Anzahl der Dimen-
sionen. Es wurde gezeigt, die durchschnittliche Anzahl der Cluster fängt ab
der fünften Dimension an, exponentiell zu wachsen (siehe Moon u. a. (2001)).
Während circa 2.500 Cluster für acht Dimensionen noch akzeptabel erschei-
nen, so äußert der Autor der Untersuchung selbst Zweifel, ob eine Benutzung
der Hilbert-Kurve für Daten mit hoher Dimensionalität sinnvoll ist, da die
durchschnittliche Anzahl der Cluster für zehn Dimensionen bereits 19.683 be-
trägt. Hier müssen weitere Recherchen angestrengt werden, ob andere raum-
füllenden Kurven diesbezüglich ein besseres Verhalten aufweisen. Allerdings
könnte dies zu einem Kompromiss führen, da die Hilbert-Kurve in Bezug auf
Lokalität und Gleichbehandlung der Dimensionen besser ist.

Kapitel 3

Verwandte Arbeiten

Die bestehenden Ansätze für multidimensionale Bereichsanfragen in Peer-
to-Peer-Netzen können in zwei Kategorien unterteilt werden. In der einen
Kategorie werden spezielle logische Netzstrukturen aufgebaut, die von den
Attributen abhängen, und in der anderen Kategorie werden verteilte Hash-
Tabellen als Grundlage für Datenstrukturen verwendet. Letztere kann weiter
unterteilt nach der Art, wie die Attribute in die Datenstrukturen mit ein-
fließen. Zum einen werden individuelle Indexstrukturen für jedes einzelne
Attribut aufgebaut und zum anderen werden Indexstrukturen über alle At-
tribute verwendet. Zudem gibt es den Ansazt dieser Diplomarbeit, die meh-
rere Indexstrukturen über Attributskombinationen nutzt. Die nachfolgenden
Kapitel stellen Ansätze aus den jeweiligen Kategorien vor.

3.1 Spezialisierte Netzstrukturen

Ein Vertreter der spezialisierten Netzstrukturen ist Mercury (siehe Bharam-
be u. a. (2004)). In diesem System werden die Knoten zu logischen Ansamm-
lungen namens Routing-Hub (routing hub) zusammengeschlossen. Für jedes
Attribut im Anwendungsgebiet wird eine solche Ansammlung erstellt. Hier-
bei kann ein physischer Knoten in mehreren dieser logischen Hubs vertreten
sein. Die Hubs sind in einem Ring organisiert und jeder Knoten ist für einen
Bereich des Attributs zuständig. Daten werden gespeichert, indem sie an al-
le Hubs gesendet werden. Eine Anfrage hingegen wird nur mit einem Hub
durchgeführt, dessen Attribut mit einem Attribut der Anfrage übereinstim-
men muss.

Anstelle von mehreren Ringen wird in Datta u. a. (2005) eine Netzstruk-
tur aufgebaut, die einem Trie entspricht, wobei die Funktionalität einer ver-
teilten Hash-Tabelle geboten wird. Das heißt, es wird ein Speichern von und

25

26 KAPITEL 3. VERWANDTE ARBEITEN

ein Suchen nach Daten realisiert. Ein Trie wird in Datenbanken verwendet
und ist eine Art Baum für Zeichenkettenpräfixe. Für jeden gemeinsamen
Präfix gibt es einen Knoten im Baum. Dabei werden semantisch nahe Daten-
objekte, die einen gemeinsamen Präfix aufweisen, nahe beieinander im Baum
angehäuft.

Der Suchaufwand wird bei beiden Ansätzen als logarithmisch angegeben
und ergibt sich aus der speziell abgestimmten Netzstruktur. Allerdings ist die
Wartung solcher System aufgrund der komplexen Struktur sehr kosteninten-
siv. Da solche Kosten bei verteile Hash-Tabellen deutlich günstiger ausfallen,
werden sie bevorzugt verwendet.

3.2 Verteilte Hash-Tabellen basierte Netze

Verteilte Hash-Tabellen werden einerseits aufgrund ihrer geringen Wartungs-
kosten und andererseits wegen ihrer effizienten Schlüsselsuche als Grundla-
ge für Datenstrukturen verwendet, die komplexere Anfragen erlauben, als
die Suche nach nur einem Bezeichner. Bisher sind dem Autor zwei Ansätze
für multidimensionale Bereichsanfragen bekannt. Zum einen gibt es Index-
strukturen, die für jedes einzelne Attribut erstellt werden. Bei einer Anfrage
werden ihrer Attribute entsprechende Indexstrukturen verwendet und die Er-
gebnisse auf dem Urheberpeer aggregiert, womit die Kommunikationskosten
bei der Abarbeitung unnötig hoch sind. Zum anderen werden Indexstruk-
turen über alle Attribute eingesetzt. Diese erzeugen ebenfalls einen hohen
Kommunikationsaufwand für Anfragen, die nicht alle Attribute des Indexes
enthalten. Daher wird ein dritter Ansatz vorgestellt, welcher in dieser Di-
plomarbeit erarbeitet wurde. Hierbei werden mehrere Indexstrukturen über
Attributskombinationen verwendet.

3.2.1 Individueller Index

Der Präfix-Hash-Baum (prefix hash tree, siehe Ramabhadran u. a. (2004))
nutzt die verteilte Hash-Tabelle für einen Trie, welcher bereits in Kapitel 3.1
„Spezialisierte Netzstrukturen“ ab Seite 25 beschrieben wurde, wobei der
Trie hier nicht die Netzstruktur bestimmt. Die Idee ist eine Hashfunktion
auf die Präfixe anzuwenden und damit die Knoten zu bestimmen, die für
den Präfix verantwortlich sind. Dies hat die Vorteile der Anhäufung seman-
tisch ähnlicher Daten durch den Trie und einer schnelle Suche nach dem
Knoten, welcher einen Präfix verwaltet durch die verteilte Hash-Tabelle. Be-
reichsanfragen werden durchgeführt, indem zuerst der Knoten mit der verteil-
ten Hash-Tabelle bestimmt und anschließend eine Travesierung der Blätter

3.2. VERTEILTE HASH-TABELLEN BASIERTE NETZE 27

durchgeführt wird.
Mit MAAN (multi-attribute addressable network, mit mehreren Attribu-

ten adressierbares Netz, siehe Cai u. a. (2003)) wird ein anderer Ansatz ver-
folgt, bei dem ein Chord-Ring benutzt wird. Da die Hash-Funktion SHA-1
die Lokalität der Schlüsselwerte zerstört, wird für Zahlen stattdessen eine
Hash-Funktion verwendet, die diese Lokalität bewahrt, womit die Zahlen
geordnet auf den Chord-Ring abgebildet werden. Eine Suche nach einem
Zahlenbereich, der durch eine untere und eine obere Grenze angegeben ist,
beginnt bei der unteren Grenze und verläuft linear durch alle Knoten bis zur
oberen Grenze. Eine Bereichssuche über mehrere Attribute wird durchge-
führt, in dem die Bereichssuche den Chord-Ring anhand von einem Attribut
durchläuft und auf den entsprechenden Knoten die Daten gesammelt werden,
welche allen Attributsbereichen der Anfrage entsprechen.

Während beim Präfix-Hash-Baum mehrere Attribute jeweils nur einzeln
gespeichert werden müssen, erhöht sich dieser Aufwand bei MAAN für die
Bereichsanfrage, da alle Attributewerte der Daten für jedes Attribut not-
wendig sind, damit alle Attributbereich einer Anfrage abgearbeitet werden
können, obwohl der Ring nur für ein Attribut durchlaufen wird. Wie zu se-
hen ist, entstehen auch hierbei Kosten, die vermieden werden können, wie
die nachfolgenden Systeme zeigen.

3.2.2 Gesamt-Index

SCRAP (siehe Ganesan u. a. (2004)) bedient sich einer raumfüllenden Kurve,
um mehrere Dimensionen auf eine abzubilden, und eines sogenanten Skip-
Graphen. Bei letzterem handelt es sich um eine zirkuläre verkette Liste
von Knoten, die auch Verweise über große Entfernungen enthält. Die Su-
che nach einem mehrdimensionalen Attribut erfolgt durch eine Abbildung
mittels der raumfüllenden Kurve auf eine Dimension und der Suche im Skip-
Graphen. Bei Bereichsanfragen werden alle eindimensionalenWerte bestimmt
und ebenfalls im Skip-Graphen nach diesen gesucht.

Das Squid-System (siehe Schmidt und Parashar (2003)) hingegen verfolgt
einen anderen Ansatz. Es baut auf dem Chord-Ring auf und bedient sich der
Hilbert-Kurve für die Umrechnung mehrerer Dimensionen auf eine. Anstatt
jedoch die eindimensionalen Werte komplett zu berechnen, wird der rekursive
Aufbau der Hilbert-Kurve ausgenutzt und die Kurve bei der Abarbeitung
einer Anfrage Schritt für Schritt verfeinert. Das heißt, es wird die Kurve der
nächsten Annäherungsstufe berechnet.

Beide Ansätze verwenden für Anfragen eine Indexstruktur, die mit al-
len Attributen aufgebaut wurde und damit einen Gesamt-Index darstellt.
Für Anfragen mit weniger Attributen stellt dies keinen optimalen Index dar,

28 KAPITEL 3. VERWANDTE ARBEITEN

denn es muss der gesamte Wertebereich für fehlende Attriubte angenommen
werden. Daher wird der im nachfolgenden Kapitel beschriebene Ansatz ver-
folgt.

3.2.3 Indices für Attributskombinationen

Der in dieser Diplomarbeit erarbeitete Ansatz, verwendet mehrere Index-
strukturen aus Attributskombinationen. Hierbei handelt es sich um einen
hybriden Ansatz, da mehrere individuelle Indexstrukturen verwendet werden,
diese aber aus mehreren Attributen bestehen. Somit ist er eine Mischung aus
den beiden vorher beschriebenen, auf verteilte Hash-Tabellen basierenden
Ansätzen.

Über eine Heuristik wird eine gewisse Anzahl an Attributskombinationen
ausgewählt, die als Indexstruktur verwendet werden. Zudem wird ein Algo-
rithmus vorgestellt, welcher aus dieser Menge einen optimalen Index für eine
Anfrage auswählt, mit dem die Anfrage abgearbeitet wird. Dies soll zu einer
minimalen Anzahl an Peers führen, welche in die Bearbeitung der Anfrage
involviert sind, und damit sowohl Kommunikationskosten sparen als auch die
Leistungsfähigkeit erhöhen. Das Systemmodell und die Konzepte der Opti-
mierung werden im nachfolgenden Kapitel präsentiert.

Kapitel 4

Konzepte zur Optimierung

Nachdem in Kapitel 2 „Grundlagen“ ab Seite 13 die Voraussetzung für das
Verständnis dieser Arbeit gelegt und im vorherigen Kapitel andere Systeme
vorgestellt wurden, werden das in dieser Diplomarbeit verwendete System-
modell sowie die erarbeiteten Konzepte zur Optimierung multidimensiona-
ler Bereichsanfragen beschrieben und erläutert. Zuerst wird ein allgemeiner
Überblick gegeben, der alle Komponenten des Systems kurz beschreibt und
der Orientierung dient. Anschließend werden die einzelnen Komponenten,
insbesondere der in Kapitel 3.2.3 „Indices für Attributskombinationen“ ab
Seite 28 vorgestellte Ansatz, sowie deren Funktionsweisen aufgezeigt. Hier-
bei wird aus der Perspektive einer Anwendung vorgegangen, die das System
anwendet. Dies soll helfen, sowohl den Zusammenhang der einzelnen Kom-
ponenten als auch das gesamte Systemmodell an sich besser zu verstehen.

4.1 Übersicht

Es sind drei Teile aus denen sich das Systemmodell zusammensetzt. Oben
auf sitzt das Anwendungsgebiet, welches sich das System zu eigen macht.
Die für eine effiziente Suche verwendete Grundlage bilden verteilte Hash-
Tabellen, wobei Chord als ein Vertreter solcher Peer-to-Peer-Netze ausge-
wählt wurde. Die dazwischenliegende Mittelschicht bildet der Lösungsansatz
dieser Diplomarbeit, der es ermöglicht effiziente Bereichsanfragen über meh-
rere Attribute durchzuführen. Die Abbildung 4.1 auf Seite 30 verdeutlicht
den Aufbau.

Das Anwendungsgebiet bestimmt die Attribute der Daten und somit auch
der Indexstrukturen. Als Beispielanwendung wurde die Suche nach Ressour-
cen im Bereich des sogenannten Grid Computings verwendet. Dabei han-
delt es sich um von verschiedenen Betreibern verwaltete Rechner-Ressourcen,

29

30 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

Abbildung 4.1: Das Systemmodell besteht aus drei Schichten. Diese sind
die benutzende Anwendung (oben), der Ansatz dieser Diplomarbeit (Mit-
te) sowie die verwendete verteilte Hash-Tabelle (unten). Der Datenindex-
raum enthält die spezialisierten raumfüllenden Kurven (K), die von der
Datenplatzierungs- und Anfragekomponente benutzt werden.

die verteilt und gegenseitig zur Verfügung gestellt werden (siehe Kesselman
und Foster (1998)). Mit Hilfe des hier vorgestellten Systems kann die Suche
nach solchen Ressourcen auf Basis des Peer-to-Peer-Netzes effizient durchge-
führt werden. Die wesentliche Optimierung gegenüber anderen Peer-to-Peer-
Systemen liegt in der Auswahl eines anfrage-spezifischen Indexes, der eine
optimale Bearbeitung einer Suchanfrage garantiert.

Nachdem die Attribute des Anwendungsgebietes definiert wurden, gilt
es die einzelnen Indexstrukturen zu bestimmen, damit die Hilbert-Kurven
entsprechend eingesetzt werden können. Anschließend werden mit Hilfe der
Datenplatzierungskomponente die Daten auf den Peers im Netz gespeichert.
Eine Suche nach den Daten kann mit der Anfragekomponente durchgeführt
werden. Letztere hat neben der Abarbeitung der Anfrage auch die Aufgabe
einen optimalen Index auszuwählen, damit die Suche mit minimalen Kosten
durchgeführt werden kann.

Das zugrunde liegende Peer-to-Peer-Netz dient einzig und allein der Su-
che nach den die Daten besitzenden Peers. Währende bei der Platzierung
der Daten im Netz nur einzelne, punktuelle Bezeichner des Chord-Rings er-
fragt werden, sind es bei der Abarbeitung einer Bereichsanfrage durch die
Anfragekomponente Bezeichnerbereiche. Der direkte Austausch der Daten

4.2. DATEN- UND ANFRAGE-MODELL 31

zwischen den Netzknoten wird nicht über das Chord-Protokoll abgewickelt.
Da es eine reine Implementierung einer verteilten Hash-Tabelle darstellt, sind
andere Aufgaben mit dem Protokoll nicht durchführbar. Diese muss das Sys-
tem selbst übernehmen. Dafür kann aufgrund dieser strikten Trennung neben
dem Chord-Protokoll auch jede andere Umsetzung einer eindimensionalen
verteilten Hash-Tabelle verwendet werden, die entweder wie in Chord impli-
zit mit dem Erfragen eines Bezeichners einen Bereich zurückliefert oder diese
Funktionalität explizit zur Verfügung stellt. Dies ist von Vorteil, sollte es in
Zukunft noch effizientere oder für Bereichsanfragen spezialisierte Lösungen
geben.

4.2 Daten- und Anfrage-Modell

Die Beschreibungsdaten der Ressourcen werden in Datenobjekten definiert.
Diese wiederum werden im Peer-to-Peer-Netz dezentral gespeichert und ent-
halten zudem einen Verweis auf den tatsächlichen Ort der Ressource, was
beispielsweise eine Internet-Adresse sein kann. Diese Indirektion oder indirek-
te Speicherung sollte soweit möglich bei anderen Arten von Daten ebenfalls
angewandt werden. Denn würden die Daten selbst direkt auf den Peers ge-
speichert, so müssten diese anstelle der Beschreibungsdaten beim Ein- oder
Austritt eines Peers übertragen werden, wenn sich das Netz reorganisiert.
Handelte es sich dabei um große Datenmengen, führte dies zu einem hohen
Kommunikationsaufkommen. Das Peer-to-Peer-Netz sollte nur dem Indizie-
ren und effizienten Auffinden von Daten dienen. Sollen ebenfalls große Da-
tenmengen im selben Netz gespeichert werden, so muss dieser Mehraufwand
in Kauf genommen werden.

Die Tabelle 4.1 auf Seite 32 zeigt die Definition der im Anwendungs-
beispiel verwendeten Attribute. Jedes Attribut hat einen Namen und einen
Wertebereich, der durch ein Minimum und ein Maximum definiert wird. Die
Einheit bestimmt die Größenordnung eines Attributs, wobei die Beschreibung
die Bedeutung erklärt. Für ein Datenobjekt müssen alle Attribute definiert
werden, was einer Menge von Name-Wert-Paaren entspricht, die als Tupel
angegeben werden. Ein Beispiel einer Definition ist:

Obj =
{ (’CPU-Takt’, ’2,0’), (’CPU-Last’, ’20,7’),
(’HD-Größe’, ’200’), (’HD-Platz’, ’142’),
(’RAM-Größe’, ’4,0’), (’RAM-Nutzung’, ’38,0’),
(’Bandbreite’, ’5,8’) }.

Sollte für ein Attribut kein Wert angegeben werden können, so muss ein
Wert bestimmt werden, der „kein Wert“ definiert. Ansonsten müssten für

32 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

den nicht definierten Wert alle möglichen Werte aus dem Wertebereich des
Attributs angenommen werden. Damit ist eine Indizierung nicht möglich,
außer es würden für alle Werte eigene Datenobjekte erzeugt. Dies führte
zu einem enormen Platzverbrauch bei der Speicherung im Peer-to-Peer-Netz
und wird daher nicht unterstützt.

Name Min. Max. Einheit Beschreibung
CPU-Takt 0,1 4,0 GHz Taktfrequenz des Prozessors
CPU-Last 0,0 100,0 Prozent Beanspruchung der maxi-

malen CPU Leistungsfähig-
keit

HD-Größe 10 3000 GB Größe der Festplatte (hard
disk, HD)

HD-Platz 10 3000 GB frei verfügbarer Festplatten-
platz

RAM-Größe 0,5 8,0 GB Größe des Hauptspeichers
(random access memory,
RAM)

RAM-Nutzung 0,0 100,0 Prozent Beanspruchung des Haupt-
speichers

Bandbreite 0,5 100,0 Mbps Bandbreite der Netzschnitt-
stelle

Tabelle 4.1: Definition einiger Attribute

= gleich 6= ungleich
< kleiner > größer
≤ kleiner oder gleich ≥ größer oder gleich

Tabelle 4.2: Operatoren einer Anfrage

Eine Suchanfrage (query) wird zusammengesetzt aus den Namen des At-
tributs, einem Operator und einem Wert: Name Operator Wert. Die Tabel-
le 4.2 auf Seite 32 listet die verwendeten Operatoren auf. Es können mehrerer
solcher Terme mit einem logisch Und (&) verknüpft werden, wie das folgende
Beispiel zeigt:

CPU-Takt>3,0 & HD-Platz>1000 & RAM-Größe=4,0.

Es wird zwischen zwei Anfragetypen unterschieden. Der eine Typ sind die An-
fragen, welche das System wie oben beschrieben übergeben bekommt. Daraus

4.3. DATENINDEXRAUM 33

wird ein Anfragetyp mit normierter Syntax generiert, welcher den eigentli-
chen Anfrage innerhalb des System entspricht. Letzere wird bei der Suche
nach den Daten verwendet und ist für die Anwendung transparent. Hierfür
werden die Angaben übersetzt, die entweder einen Wert oder einen Bereich
für alle angegebenen Attribute enthalten. Dabei müssen nicht alle Attribu-
te vorkommen, da für fehlende Attribute alle möglichen Werte angenommen
werden, was mit einem Stellvertreterzeichen (wild card) realisiert wird. Die
Übersetzung ist notwendig, weil es nicht möglich ist, alle Operatoren direkt
umzusetzen, und bietet der Anwendung gegenüber eine von den Implemen-
tierungsdetails abstrahierte Syntax. Außerdem kann der Anwendung später
eine mächtigere Anfragesyntax zur Verfügung gestellt werden, die in einfache
atomare Anfragen zerlegt wird, welche im Netz abgearbeitet werden können.
Der Operator für die Ungleichheit kann beispielsweise nicht ohne weiteres im
System benutzt werden. Stattdessen müssen zwei Anfragen erzeugt werden.
Die eine Anfrage sucht nach kleineren und die andere nach größeren Werten.
Eine vollständige Behandlung solcher komplexen Anfragen mitsamt der au-
tomatischen Generierung der für das Netz passenden Anfragen sprengt den
Rahmen dieser Arbeit und wird hier deshalb nicht weiter betrachtet.

4.3 Datenindexraum

Der Datenindexraum beinhaltet alle Räume sowie die Abbildungen zwischen
diesen, die für die Berechnung der Indices aus den Daten erforderlich sind.
Hierzu zählen in erster Linie sowohl die Attributskombinationen, die einen
Datenraum aufspannen, sowie die zugehörigen raumfüllenden Kurven, welche
für die Berechnung der Indices verwendet werden. Außerdem wird noch die
Abbildung der Indizes auf die Bezeichner des Chord-Rings hinzugenommen.
Der Datenindexraum muss vom Administrator des Systems konfiguriert wer-
den, nachdem die Attributsdaten des Datenmodells festgelegt wurden. Die
Schwierigkeit hierin liegt in der Auswahl der Attributskombinationen, die
einen optimalen und anfrage-spezifischen Index bilden sollten. Im nachfol-
genden Unterkapitel 4.3.1 „Bildung von Attribut-Untermengen“ ab Seite 34
wird dies diskutiert.

Für gewöhnlich wird im Chord-Ring eine Hash-Funktion verwendet, da-
mit die Bezeichner möglichst gleichmäßig über alle Peers verteilt werden.
Dies soll sicherstellen, dass die Last, sowohl des Speichers als auch der An-
fragebearbeitung, gleichmäßig über das gesamte Netz verteilt ist. Eine sol-
che Hash-Funktion zerstört jedoch die Lokalität bewahrende Eigenschaft der
Hilbert-Kurve, womit die Suche aufwendiger und teurer wird. Statt eine
Hash-Funktion auf die Indices anzuwenden, werden die Indizes direkt als

34 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

Bezeichner im Chord-Ring verwendet, um den für sie verantwortlichen Peer
auszumachen. Allerdings wurde gezeigt, dass die in einem Peer-to-Peer-Netz
gespeicherten Daten nicht gleich häufig vorkommen (siehe Ripeanu (2001);
Shu u. a. (2005); Klemm u. a. (2004); Gish u. a. (2007)). So gibt es wenige,
aber dafür sehr populäre Daten, die sehr häufig vorhanden sind. Im Gegen-
satz dazu gibt es sehr viele, wenig populäre Daten, die deutlich weniger im
Netz gespeichert sind. Eine ungleichmäßige Verteilung der Daten führt zu
einem ungleichmäßig verteilten Index. Wenn beispielsweise ein Attributswert
sehr populär ist und die anderen Attributswerte nur leicht variieren, könn-
ten aufgrund der Lokalität der Hilbert-Kurve nur wenige Netzknoten für die
Daten zuständig sein. Hieraus folgt, Peers könnten überlastet werden, wenn
sie für Bezeichner zuständig sind, die von sehr populären Daten her resultie-
ren. Folglich bedarf es eines expliziten Lastausgleichs (load balancing). Hinzu
kommt die Dynamik der Daten im Netz selbst, da im Laufe der Zeit Daten
entfernt und neu hinzugefügt werden. Damit ändert sich ebenfalls die Ver-
teilung der Daten, weshalb ein Lastausgleich notwendig wird.

Das Thema Lastausgleich ist nicht Bestandteil dieser Arbeit und wird
daher nicht näher untersucht. Jedoch können bei einer entsprechenden Abbil-
dung der Indices auf den Chord-Ring Situationen auftreten, die Lastspitzen
begünstigen oder hervorbringen. Aus diesem Grund wird auf diese Proble-
matik in Kapitel 4.3.2 „Anwendung der raumfüllenden Kurven“ ab Seite 37
in Bezug auf die Abildung eingegangen.

4.3.1 Bildung von Attribut-Untermengen

In Kapitel 3.2.2 „Gesamt-Index“ ab Seite 27 wurden Peer-to-Peer-Netze vor-
gestellt, die über alle Attribute einen Index bilden. Diese Art der Indexbil-
dung ist nicht optimal. Wird nur nach einigen wenigen Attributen gesucht,
müssen für alle anderen Attribute alle Werte aus den jeweiligen Werteberei-
chen angenommen werden, was sowohl bei einer Punkt- als auch bei einer
Bereichssuche zu einer großen Anzahl unnötig berechneter Indices führt. Je
mehr Indices sich für eine solche Anfrage ergeben, desto mehr Speicheror-
te müssen kontaktiert werden. Die Berechnung unnötig vieler Indices kann
vermieden werden, wenn anfrage-spezifische Indices aufgebaut werden. Die
Vorteile liegen klar auf der Hand: Optimale Indices führen zu der minimal
notwendigen Anzahl von Indices für die Bearbeitung von Anfragen, weshalb
die Durchführung einer Suche kostengünstiger wird. Der Lösungsansatz die-
ser Diplomarbeit besteht darin, solche optimalen, anfrage-spezifischen Index-
strukturen aufzubauen. Hierfür werden Attributskombinationen gebildet, die
als Datenindexraum dienen. Die Bildung von Attribut-Untermengen ist wie
folgt definiert.

4.3. DATENINDEXRAUM 35

Definition 1 Gegeben sei eine Menge von Attributen A = {a1, a2, a3, . . . ,
an} mit n ∈ N. Es werden p ∈ N Attribut-Untermengen A1, A2, A3, . . . , Ap

gebildet, so dass ∀i, j ∈ [1, p], i 6= j :

Ai ⊆ A, Ai 6= Aj, | Ai |> 1 und
p⋃

i=1

Ai = A.

Es werden folglich p Attribut-Untermengen gebildet, die mindestens zwei At-
tribute enthalten müssen. Keine Untermenge darf einer anderen gleichen, was
zu gleichen Indices führte. Zudem müssen alle Attribute in der Vereinigung
der Untermengen vertreten sein, so dass alle Attribute indiziert werden.

Die Beschränkung auf p Attributmengen liegt in der großen Anzahl von
Kombinationen begründet. Bei n Attributen gibt es 2n−n− 1 mögliche Un-
termengen. Die Herleitung der Berechnungsformel ist in Anhang A.1 „Anzahl
der Attributskombinationen“ ab Seite 79 zu finden. Das Wachstum liegt in
der Komplexitätsklasse O(2n) und ist damit exponentiell. Würde die Anzahl
nicht beschränkt werden, könnten bereits mit einer kleinen Anzahl von Attri-
buten eine große Anzahl von Untermengen und damit Indexstrukturen ent-
stehen. Jedoch bedeuten mehrere Indexstrukturen einen höheren Speicher-
bedarf im Netz, da jedes Datenobjekte mit jeder Indexstruktur indiziert
wird. Das heißt, jedes Datenobjekt ist im Peer-to-Peer-Netz p mal gespei-
chert. Die p optimalen Kombinationen für die Indizierung auszuwählen ist
ein komplexes Problem, denn es müssen viele Faktoren berücksichtigt wer-
den. Hierzu gehören sowohl die Abbildung der Hilbert-Bezeichner auf den
Bezeichnerring als auch die Zuordnung der Bezeichnerbereich an die Peers.
In einem dynamischen Peer-to-Peer-Netz kann sich letzteres ändern, was be-
dacht werden muss. Es könnte sein, dass eine Indexstruktur, die nicht exakt
mit den Attributen einer Anfrage übereinstimmt, aufgrund der Bezeichner-
verteilung im Netz eine bessere Leistungsfähigkeit aufzeigt als eine komplett
übereinstimmende, welche theoretisch als optimal gilt. Da die Häufigkeit der
Anfragen in einem Peer-to-Peer-Netz nicht gleichverteilt ist (siehe Ripea-
nu (2001); Shu u. a. (2005); Klemm u. a. (2004); Gish u. a. (2007)), wurde
eine Heuristik ausgewählt, die sich an der Popularität orientiert. Daher wer-
den die p− 1 häufigsten Anfragekombinationen ausgewählt. Die Bildung von
Attribut-Untermengen nach relativer Häufigkeit von Anfragen ist wie folgt
definiert.

Definition 2 Gegeben sei eine Menge von Anfragen Q = {q1, q2, q3, . . . ,
qp−1, qp, . . . , qn} mit p, n ∈ N sowie eindeutigen Attributskombinationen und
sei P(q) die (statistische) Wahrscheinlichkeit einer Attributskombination q.
Aqi

sei die Attribut-Untermenge von qi und es gilt: P(q1) ≥ P(q2) ≥ P(q3) ≥

36 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

. . . ≥ P(qp−1) ≥ P(qp) ≥ . . . ≥ P(qn). Es werden p Attribut-Untermengen
A1, A2, A3, . . . , Ap gebildet, so dass ∀i, j ∈ N, i ∈ [1, p− 1] :

Ai = Aqi
und Ap =

n⋃
j=p

Aqj
.

Für die p − 1 häufigsten Anfragen werden deren Attribute-Kombinationen
direkt als Attribut-Untermenge für die Indexstrukturen übernommen. Mit
den Attributskombinationen der restlichen n− p Anfragen wird die Vereini-
gungsmenge gebildet, welche die letzte Attributskombination darstellt. Sollte
die relative Häufigkeit mehrerer Anfragen gleich sein, so werden Anfragen zu-
fällig ausgewählt, bis die Anzahl von p− 1 erreicht ist.

Die Idee hinter dieser Auswahl ist, mit einem optimalen Index für eine
bestimmte Anfrage keinen Mehraufwand in Bezug auf die Leistungsfähigkeit
der Suche für sehr häufige Anfragen zu erzeugen, da sich bereits ein kleiner
Mehraufwand aufgrund der großen Häufigkeit stark auswirkt. Bei Anfragen,
die weniger oft durchgeführt werden, fällt ein Mehraufwand deutlich geringer
ins Gewicht, weshalb hier kein optimaler Index eingesetzt wird. In der Eva-
luation in Kapitel 5.1 „Experiment 1 — raumfüllende Kurven“ ab Seite 60
wird gezeigt, eine nicht exakte Übereinstimmung der Attribute zwischen einer
Indexstruktur und einer Anfrage führt zu einer erhöhten Anzahl von zu kon-
taktierenden Peers. Im schlimmsten Fall wird die letzte Attribut-Untermenge
alle Attribute enthalten (Ap = A), jedoch ist der mit diesen Attributen ver-
bundene Mehraufwand nicht schlechter als andere Ansätze, die nur einen
einzigen Index über alle Attribute erstellen. Im Übrigen sei nochmals darauf
hingewiesen, dass die Reihenfolge der Attribute im Datenindexraum hier-
bei nicht von Bedeutung ist, weil die Hilbert-Kurve alle Dimensionen gleich
behandelt, wie in Kapitel 2.3 „Raumfüllende Kurven“ ab Seite 19 bereits
erwähnt wurde.

Bevor spezialisierte Indices gebildet werden können, muss erst in Erfah-
rung gebracht werden, welche Suchanfragen in einem Netz gestellt werden.
Aus diesen lassen sich die häufigsten Attributskombinationen bestimmen.
Entweder es liegen bereits Statistiken über Suchanfrangen eines Netzes vor,
welche direkt verwendet werden können. Oder es muss zuerst ein nicht op-
timiertes Netz aufgebaut werden, welches beispielsweise über alle Attribute
einen Index erstellt, in dem dann die statistischen Daten gesammelt werden.
Es sei darauf hingewiesen, Anfragen können sich genauso wie die Daten selbst
über die Zeit ändern, weshalb ein bereits bestehendes Netz ständig die Attri-
bute der Anfragen erfassen und auswerten muss, damit die Indexstrukturen
bei Bedarf angepasst werden können.

4.3. DATENINDEXRAUM 37

Für zukünftige Arbeiten wird kurz auf die Problematik der Auswahl von
Attributskombinationen eingegangen. Sollte die relative Häufigkeit aller An-
fragen annähernd gleich sein, wird es schwer, die richtigen p − 1 Kombi-
nationen auszuwählen. Anstatt wie weiter oben beschrieben, eine zufällige
Auswahl zu treffen, könnten beispielsweise fast-optimale Indices gebildet wer-
den, bei denen für maximal ein Attribut ein Stellvertreterzeichen verwendet
werden darf. Der Mehraufwand, im Sinne berechneter Indices (siehe Kapi-
tel 2.3 „Raumfüllende Kurven“ ab Seite 19), ist hierbei noch linear mit der
Anzahl der Dimensionen (2k · 2k·d), wohingegen mehr als ein Attribut einen
exponentiellen Mehraufwand bedeuten (2a·k · 2k·d). Allerdings ist der Mehr-
aufwand in beiden Fällen exponentiell zur Annäherungsstufe. Es bleibt auch
zu klären, wie Anfragen zu handhaben sind, die untereinander Untermengen
bilden: sowohl Ai ⊆ Ak als auch Aj ⊆ Ak oder sogar Ai ⊆ Aj ⊆ Ak. Hier gilt
es ebenfalls eine optimale Indexstruktur zu finden, wobei diese nicht anfrage-
spezifisch sein muss. Diese beiden Beispiele und weitere Sonderfälle bedürfen
weiterer Untersuchungen.

4.3.2 Anwendung der raumfüllenden Kurven

Sind die Attributskombinationen festgelegt, werden drei Abbildungen durch-
geführt. Zuerst wird der Raum, den die Attribute aufspannen, auf einen
Raum für die raumfüllenden Kurven abgebildet, in dem jede Dimension
den gleichen Wertebereich hat. Anschließend wird über die Berechnung der
Hilbert-Kurve ein eindimensionaler Raum erzeugt. Zum Schluss wird die Kur-
ve auf den Chord-Ring abgebildet. Die Abbildungen können mathematisch
wie folgt dargestellt werden, wobei N die Menge der natürlichen Zahlen, d
die Anzahl der Dimensionen und k die Anzahl der Annäherungsstufen sind:

1. Nd 7→ [2k]d

2. [2k]d 7→ [2k·d]

3. [2k·d] 7→ [2m]

Die Abbildung 4.2 auf Seite 38 veranschaulicht diese Abbildungen. Alle drei
Abbildungen werden für jede Attributskombination durchgeführt und da-
her existieren für jede von ihnen eine individualisierte raumfüllende Kurve.
Nachfolgend werden die Abbildungen erläutert.

Der Wertebereich jedes Attributs kann individuell sein. Die Anwendung
der Hilbert-Kurve setzt allerdings voraus, dass alle Dimensionen den gleichen
Wertebereich aufweisen. Daher muss der mehrdimensionale Raum der Attri-
bute skaliert werden, damit die Voraussetzung erfüllt ist. Hierfür muss der

38 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

Attributsraum

1.7−→

Einheitswürfel

2.7−→

raumfüllende
Kurve

3.7−→

Bezeichner-Ring
in Chord

Abbildung 4.2: Es ist die Abbildungskette zwischen den einzelnen Räumen
zu sehen. Der Punkt markiert ein Datenobjekt. Zuerst wird der Attributs-
raum auf den Einheitswürfel der raumfüllenden Kurve abgebildet (1.). Dar-
aufhin wird der Hilbert-Bezeichner des Datenobjektes berechnet (2.). Dies
entspricht einer Zone auf der Kurve, welche grau gefärbt ist. Abschließend
wird die raumfüllende Kurve auf den Bezeichner-Ring des Chord-Protokolls
abgebildet (3.).

Verwalter des Systems eine maximale Annäherungsstufe kmax festlegen, wor-
aus sich der Wertebereich [2kmax] jeder Dimensionen ergibt. Dabei sollte der
größte Wertebereich aller Attribute einer Attributskombination als Richtwert
dienen, insbesondere wenn es sich um diskrete Werte handelt. Damit wird
die „Auflösung“ aller Attribute gewahrt, das heißt, feinste Abstufungen blei-
ben erhalten. Sind in der Attributkombination sowohl Attribute mit einem
sehr kleinen als auch Attribute mit einem sehr großen Wertebereich enthal-
ten, werden die kleineren Bereich unnötig weit gestreckt. Daher könnte es
günstiger sein, Attribute mit ungefähr gleichgroßen Wertebereichen zu einer
Attributkombination zusammenzufassen. Dies macht die im vorherigen Ka-
pitel diskutierte Bildung von Attribut-Untermengen noch komplizierter und

4.3. DATENINDEXRAUM 39

soll nur als Anreiz für weitere Überlegungen dienen. Zudem wirkt sich die
erste Abbildung auch auf andere Bereiche des Systems aus. Wird einerseits
ein Wertebereich unnötig weit gestreckt, so geht die Lokalität in der entspre-
chenden Dimension verloren. Wird dagegen ein Wertebereich stark gestaucht
und gehen damit Abstufungen verloren, so werden unterschiedliche Werte
verstärkt auf den gleichen Index abgebildet. Dies macht einen Lastausgleich
schwerer, wie er eingangs in Kapitel 4.3 „Datenindexraum“ ab Seite 33 dis-
kutiert wurde, da ein Index eine atomare Einheit darstellt. Die Aufspaltung
eines Indexes ist mit einem Mehraufwand in der Verwaltung verbunden und
erhöhte die Komplexität des gesamten Systemmodells.

Die zweite Abbildung entspricht der Berechnung der raumfüllenden Kur-
ve, welche die Hilbert-Bezeichner und damit den Index repräsentiert. Sie
wurde bereits im Kapitel 2.3 „Raumfüllende Kurven“ ab Seite 19 ausgiebig
diskutiert, weshalb hier nicht näher darauf eingegangen wird.

Die letzte Abbildung der Hilbert-Kurve auf den Chord-Ring wird benö-
tigt, um mehrere Indexstrukturen auf einem Chord-Ring zu verwalten. Sie ist
in Sytemen mit nur einer Indexstruktur nicht notwending, da dort nur eine
raumfüllende Kurve gleichzeitig in einem Chord-Ring verwendet wird und
der Bezeichnerbereich des Rings an den Wertebereich der Kurve angepasst
wird. Das ist im Falle mehrerer Indices nicht möglich, wenn es unterschiedlich
große Bezeichnerbereich gibt. Eine Möglichkeit besteht darin, eine entspre-
chend hohe Annäherungsstufe der Kurven zu wählen, damit die Kurve sich
dem Chord-Ring annähert. In dieser Diplomarbeit werden mehrere Indices
verwendet und da nicht alle Kurven zwingend den gleichen Bereich aufweisen
müssen, kann keine Anpassung des Bezeichnerbereichs durchgeführt werden.
Die Wahl einer höheren Annäherungsstufe ist ebenfalls keine Option, da dies
nur unnötig den Wertebereich „aufbläht“, obwohl kaum Daten für die zu-
sätzlichen Indices zu erwarten sind. Daher werden hier Abbildungsstrategien
erläutert die letztendlich auf die ausgewählte Abbildung hinführen.

Der Chord-Ring verwendet 2m Bezeichner für die verteilte Hash-Tabelle,
wobei in der ursprünglichen Version m = 160 ist. Aufgrund der Zweierpotenz
wird hier auch von m Bits gesprochen, da mindestens m Bits für die Re-
präsentation des Bezeichners verwendet werden müssen. Es wurde bereits in
Kapitel 4.3 „Datenindexraum“ ab Seite 33 erläutert, dass eine Hash-Funktion
für die Abbildung nicht in Frage kommt, da sie die Lokalität zerstört. Die
einfachste Abbildung besteht darin, die 2k·d Zonen der raumfüllenden Kur-
ve direkt auf den Bezeichnerraum des Rings abzubilden. Sollte der Bereich
überschritten werden, wird modulo 2m gerechnet. Allerdings kann dies zu
einer Überlast am Anfang des Bereichs führen. Das heißt, die Peers, welche
für die Bezeichner am Anfang des Bereichs zuständig sind, können eine große
Anzahl an Datenobjekten erhalten, da jede Kurve beim ersten Wert beginnt.

40 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

Dorthin wird nicht nur der Anfang einer jeden Kurve abgebildet, sondern zu
große Bereiche beginnen am Anfang mit der Überlappung auf dem Ring. Die
Abbildung 4.3 auf Seite 40 veranschaulicht diese einfache Abbildung. Selbst
ein Lastausgleich kann die Situation nicht verbessern, da die Kurven alle die-
selben anfänglichen Indexwerte besitzen und ein Index die atomare Einheit
im System ist.

2k·d mod 2m (2k·d mod 2m) + c (s · 2k·d) + c

Abbildung 4.3: Die Schaubilder zeigen die drei vorgestellten Abbildungsmög-
lichkeiten der 2k·d Hilbert-Bezeichner auf die 2m Bezeichner des Chord-Rings.

Mit einem Versatz (offset) der einzelnen Kurven um einen konstanten
Faktor c können die Bereiche der Kurven besser abgestimmt werden, so dass
die Überlappungen ausgeglichener sind: (2k·d mod 2m) + c. Dies wird in der
Abbildung 4.3 auf Seite 40 dargestellt. Diese Berechnung ist gültig für Berei-
che, die sowohl kleiner als auch größer als der Ringbereich sind. Allerdings
kommt es bei dieser Lösung darauf an, wieviele Kurven erstellt werden und
wie groß deren Bereiche sind. Sollten die Kurven nicht den ganzen Bereich
des Ringes füllen, bleibt ein konzentrierter Bezeichnerbereich ohne jegliche
Indices. Ist die Summe der Bereiche jedoch größer als der Ringbereich, so
gibt es einen konzentrierten Bereich in dem die Indices überlappen. Zudem
hängt bei beiden Vorschlägen die Belastung der einzelnen Peers davon ab,
für welche Bezeichner sie zuständig sind und wie die Verteilung der Daten
ist. Ein Lastausgleich muss folglich auch die Abbildung auf den Chord-Ring
beachten.

Neben der direkten Abbildung mitsamt einer Verschiebung besteht die Al-
ternative der Skalierung. Dabei wird der Bereich um einen Faktor gestreckt,
wenn er auf den Ring abgebildet wird: s ·2k·d. Bereiche, die zu groß sind, wer-
den auf den Ring gestaucht, wobei die gleiche Anzahl von mehrfach belegten
Indices entsteht, wie bei der direkten Abbildung. Dies wird im Anhang A.2
auf Seite 79 bewiesen. Bereiche, die kleiner als der Ringbereich sind, werden
dagegen gleichmäßig auf den Ring verteilt. Der Vorteil ist, die Bereiche, auf

4.3. DATENINDEXRAUM 41

die entweder kein Index oder eine große Zahl von Indices abgebildet wird,
verteilt sich über den gesamten Bezeichnerring. Ein Lastausgleich sollte von
der bereits vorhandenen Verteilung profitieren. Jedoch kommt es hier eben-
falls auf die Verteilung der Daten an, inwiefern ein Lastausgleich notwendig
ist. Der Skalierungsfaktor lässt sich wie folgt berechnen:

s · 2k·d = 2m

s = 2m

2k·d

s = 2m−k·d.

Da es sich hier ausschließlich um Zweierpotenzen handelt, kann die Skalie-
rung effizient als Bitschiebeoperation (bit shifting) um m − k · d nach links
realisiert werden. Negative Werte bedeuten entsprechend eine Verschiebung
nach rechts.

Bei der Skalierung können ebenfalls Überlappungen der einzelnen Indices
auftreten, wenn mehrere Abbildungen den gleichen Skalierungsfaktor ver-
wenden. Dabei werden alle Indices der betroffenen raumfüllenden Kurve auf
den gleichen Bezeichner im Chord-Ring abgebildet. Daher sollte hier eben-
falls ein Versatz verwendet werden, der die Kurven gegeneinander verschiebt:
s · 2k·d + c. Die Verschiebung macht nur Sinn, wenn der Bereich der Kurve
kleiner als der Bereich des Ringes ist (2k·d < 2m), da ansonsten alle Bezeich-
ner des Rings in Anspruch genommen werden. In Abbildung 4.3 auf Seite 40
wird dieser Ansatz visualisiert.

Die Skalierungslösung kann den Vorteil der verteilten Hash-Tabelle zu
Nichte machen, bei dem ein Peer für mehrere Bezeichner verantwortlich ist.
Kleine Wertebereiche der raumfüllenden Kurve werden durch die Skalierung
über den gesamten Bezeichnerbereich des Chord-Rings verteilt. Solange die
Anzahl der Peers klein genug ist, erhält jeder Peer mit hoher Wahrschein-
lichkeit mindestens einen Indexwert zugewiesen. Je mehr solcher Indexwerte
einem Peer zugewiesen sind, desto größer ist der Bereich, den er bei einer
Bereichsanfage abarbeiten kann. Sind genau so viele Peers vorhanden, wie es
Schlüsselwerte gibt, erhält jeder Peer mit hoher Wahrscheinlichkeit nur einen
einzigen Wert. Folglich erhöht sich bei einer Bereichsanfrage die Anzahl der
Knoten, die kontaktiert werden müssen, wobei die Lokalität noch bewahrt
bleibt, da der Nachfolger eines Peers für den nächsten Indexwert verantwort-
lich zeichnet. Ist die Anzahl der Peers dagegen deutlich größer als die Anzahl
der Schlüsselwerte, gibt es Peers, die keinen solchen Wert erhalten. Damit
ist sogar die über die Hilbert-Kurve erhaltene Lokalität nicht mehr gegeben,
weil sich die Entfernung der Peers vergrößert, die einen Bezeichner der Kurve
haben. Dies führt zu einem höheren Kommunikationsaufkommen und damit
zu einer teureren Suche. Wird von einer maximalen Annäherungsstufe von
8 ausgegangen, sind es 28 = 256 diskrete Werte für jede Dimension. Für

42 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

zwei Dimensionen sind es „nur“ 28·2 = 65.536 Zonen und damit Indexwer-
te. Bei drei Dimensionen sind es bereits 28·3 = 16.777.216 Werte. An den
Zahlenbeispielen ist zu sehen, dass bei nur 8 Annäherungsstufen bereits drei
Dimensionen ausreichen, um eine ausreichende Anzahl an Zonen für Peer-
to-Peer-Netze mit einigen Millionen Teilnehmern zu erhalten. Für Netze mit
nur einigen Tausend Teilnehmern sind bereits zwei Dimensionen ausreichend.
Dies zeigt ebenfalls, die Abbildungsstrategie kann abhängig von der Bildung
der Attribut-Untermengen gewählt werden. Würden minimal nur drei Dimen-
sionen zugelassen, fiele diese Eigenschaft nicht so sehr ins Gewicht, sofern die
maximale Annäherungsstufe hoch genug ist.

4.4 Datenplatzierungskomponente

Die Aufgabe der Datenplatzierungskomponente ist recht simpel. Insbeson-
dere da sie auf den Datenindexraum aus dem vorherigen Kapitel zurück-
greift, der die gesamte Abbildung von den Daten bis hin zum Bezeichner im
Chord-Ring übernimmt. Sie ist dafür zuständig, Datenobjekte im Peer-to-
Peer-Netz sowohl zu speichern als auch zu löschen. Da beide Vorgänge den
gleichen Ablauf haben, wird hier nur der Speichervorgang beschrieben. Hier-
für erhält die Komponente von der Anwendung ein Datenobjekt, das wie in
Kapitel 4.2 „Daten- und Anfrage-Modell“ ab Seite 31 definiert sein muss. Aus
dem Datenobjekt werden mittels aller Indexstrukturen die zugehörigen In-
dices berechnet. Anschließend wird die Funktionalität des Chord-Protokolls
genutzt, den Peer zu finden, der für einen Index zuständig ist. Dieser wird
daraufhin direkt kontaktiert und das Datenobjekt wird ihm übermittelt. Da-
mit ist das Datenobjekt im Netz platziert. Der Vorgang wiederholt sich für
jeden Index, bis alle Datenobjektkopien im Netz gespeichert wurden.

Es ist klar ersichtlich, dass der Aufwand mit der Anzahl der Indexstruk-
turen steigt, weil für jede Indexstruktur eine Kopie des Datenobjekts gespei-
chert werden muss. Dies garantiert jedoch eine effiziente Suche für Anfragen,
die exakt die selben Attribute aufweisen, für die die Indexstruktur erstellt
wurde. Dabei wird zugunsten einer effizienteren Suche ein höherer Speicher-
platzverbrauch in Kauf genommen (time-space-trade-off). Im Vergleich zu
einem einzigen Index erhöht sich der Speicherplatzbedarf des in dieser Di-
plomarbeit verwendeten Ansatzes um den Faktor p. Wobei p die Anzahl der
verschiedenen Attributskombinationen und damit der Indexstrukturen ist.
Auch wenn der Festplattenspeicherplatz heutzutage billig ist, sollten aus die-
sem Grund keine umfangreichen Daten im Datenobjekt gespeichert werden.
Daher empfiehlt sich bei größeren Daten eine Indirektion, wie sie bereits in
Kapitel 4.2 „Daten- und Anfrage-Modell“ ab Seite 31 besprochen wurde. Der

4.5. ANFRAGENKOMPONENTE 43

vermeintliche Nachteil des erhöhten Speicheraufkommens kann jedoch für
die Ausfallsicherheit genutzt werden. Anstatt, wie in solchen Peer-to-Peer-
Systemen üblich, mehr Redundanz in das Netz zu bringen, indem explizit
Replikate der Daten gespeichert werden, sind in diesem System die Replika-
te bereits implizit vorhanden. Allerdings mangelt es an einem Algorithmus,
der die mehrfach vorhandenen Datenobjekte dazu nutzt, eine Ausfallsicher-
heit und Fehlertoleranz des Systems aufzubauen. Diese Aufgabe sollte mit
dem Lastausgleich gekoppelt werden, damit letzterer die Zuverlässigkeit des
Systems nicht schwächt, und bleibt zukünftigen Arbeiten überlassen.

4.5 Anfragenkomponente

Die Suche nach Datenobjekten stellt sich im Vergleich zur Platzierung auf-
wendiger dar. Neben der Übersetzung von komplexen Anfragen, wie sie in
Kapitel 4.2 „Daten- und Anfrage-Modell“ ab Seite 32 beschrieben wird, gibt
es zwei weitere Herausforderungen. Zum einen gilt es, diejenige Indexstruk-
tur auszuwählen, welche die Anfrage am besten abbildet. Nur eine optimale
Indexstruktur führt zu den günstigsten Kosten bei der Durchführung der Su-
che. Zum anderen sollte die Abarbeitung der Suchanfrage das Netz nicht mit
Nachrichten überschwemmen, sondern kontrolliert vonstatten gehen.

Die Anfragenkomponente wählt die optimale Indexstruktur anhand be-
stimmter Kriterien aus und leitet die Suchanfrage an die Peers zur Abar-
beitung weiter, die für die berechneten Indices zuständig sind. Diese werden
mithilfe der verteilten Hash-Tabelle ermittelt. Zuerst wird eine grundlegende
und einfache Weiterleitung vorgestellt. Anschließend wird auf Optimierungen
eingegangen, die einerseits die maximale Anzahl der parallelen Nachrichten
im Netz und andererseits den maximalen Rechenaufwand eines einzelnen
Peers für eine Anfrage garantieren.

4.5.1 Auswahl einer Indexstruktur

Eine wesentliche Optimierung dieser Diplomarbeit besteht darin, für Suchan-
fragen eine Indexstruktur zu verwenden, welche die gleiche Attributskombi-
nation wie die Anfrage selbst aufweist. Dies stellt sicher, dass eine minimale
Anzahl von Indices während der Abarbeitung der Anfrage verwendet wird
und minimiert damit die Anzahl der Peers, die an der Abarbeitung der An-
frage beteiligt sind. Da die Anzahl der Attributskombination exponentiell
wächst, wird nur eine bestimmte Anzahl solcher Kombinationen verwendet,
um die Indexstrukturen aufzubauen. Dies wurde in Kapitel 4.3.1 „Bildung von
Attribut-Untermengen“ ab Seite 35 bereits diskutiert. Das heißt, der optima-

44 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

le Index für eine bestimmte Anfrage könnte nicht in der Menge der im System
verwendeten Indexstrukturen vorhanden sein. Daher ist ein Algorithmus not-
wendig, der eine optimale Indexstruktur aus den vorhandenen auswählt. Hier
sollte klar sein, „optimal“ bedeutet, es wird die am besten passende Index-
struktur gewählt, welche nicht der exakten Attributskombination entsprechen
muss. Es sei zudem darauf hingewiesen, der hier vorgestellte Ansatz ergibt
im schlimmsten Fall eine Attributskombination, die einer Indexstruktur über
alle Attribute entspricht. Damit wird die Leistungsfähigkeit in Bezug auf die
Anfragebearbeitung im Netz nicht schlechter als die von bereits vorhandenen
Systemen.

Generell beeinflussen sich die Auswahl der optimalen Indexstruktur und
die Bildung von Attribut-Untermengen. Für erstere ungünstige Attributs-
kombinationen können einerseits mit letzterer vermieden werden. Anderer-
seits kann die Auswahl an die Bildung angepasst werden. Da die Bildung von
Attribut-Untermengen weiterer Untersuchungen bedarf (siehe Kapitel 4.3.1
„Bildung von Attribut-Untermengen“ ab Seite 36), ist nicht auszuschließen,
dass der nachfolgend beschriebene Algorithmus angepasst werden muss, wenn
sich die Bildung der Attribut-Untermengen ändert, auch wenn er mit Bedacht
entworfen wurde. Dies trifft ebenfalls zu, wenn sich die Abbildung der Index-
werte auf die Bezeichner der verteilten Hash-Tabelle ändert, da der Algorith-
mus auf dem Ansatz der Skalierung beruht (siehe Kapitel 4.3.2 „Anwendung
der raumfüllenden Kurven“ ab Seite 40).

Bevor der Auswahlalgorithmus vorgestellt wird, bedarf es der Definition
einer Metrik namens Zonenverhältnis. Diese dient als Hilfsmittel zur Bewer-
tung, wie gut eine Indexstruktur zu einer Anfrage passt. Bei der Auswahl
geht es in erster Linie darum, einen Index zu wählen, der zu einer geringen
Anzahl von Peers führt, welche die Anfrage abarbeiten. Jede Indexstruktur
definiert eine raumfüllende Kurve mit einer bestimmten Anzahl an Dimen-
sionen d sowie der maximalen Annäherungsstufe kmax. Die Gesamtzahl aller
Zonen und damit aller Indexwerte ist 2kmax·d, wie im Kapitel 2.3 „Raumfül-
lende Kurven“ ab Seite 21 nachzulesen ist. Sei N die Anzahl der Peers im
Netz und zmax die Anzahl aller Zonen in einer raumfüllenden Kurve, dann ist
die Anzahl der Zonen, die ein Peer verwaltet, mit hoher Wahrscheinlichkeit

zmax

N
=

2kmax·d

N
.

Die Division zmax

N
setzt eine Gleichverteilung der Zonen einer raumfüllenden

Kurve über alle Knoten voraus, was mit der Skalierung der Indexbereiche
gegeben ist. Sei nun zq die Anzahl der Zonen für eine raumfüllende Kur-
ve, die sich aus einer Anfrage q ergibt. Die Anzahl der an der Bearbeitung

4.5. ANFRAGENKOMPONENTE 45

teilnehmenden Knoten lässt sich wie folgt abschätzen:

zq
zmax

N

= zq ·
N

zmax

=
zq

zmax

·N =
zq

2kmax·d
·N.

Hier ist allerdings zu beachten, die Rechnung geht davon aus, dass alle Zonen
eines Peers zur Anfrage gehören, was einer optimistischen Schätzung einer
minimalen Anzahl von Peers entspricht. Diese muss nicht zutreffen, denn
die Anfrage wird einerseits selten einen kontinuierlichen Indexbereich erge-
ben, sondern in einer Vielzahl von Clustern resultieren, welche über mehrere
Peers verstreut sind. Andererseits ist die Zuständigkeit der Peers für die Zo-
nen zufälliger Natur, weshalb nicht davon ausgegangen werden kann, dass ein
Cluster von nur einem Peer bearbeitet wird. Denn ein Cluster kann sich über
die Bereiche zweier Knoten erstrecken, auch wenn er weniger Zonen enthält
als einem Peer mit hoher Wahrscheinlichkeit zugeteilt sind. Die Anzahl der
Knoten im Peer-to-Peer-Netz ist für alle raumfüllenden Kurven gleich und
spielt beim Vergleich zweier Kurven keine Rolle, wie folgende Beispielrech-
nung zeigt:

z1,q

z1,max
· N

?
= z2,q

z2,max
· N | · 1

N
z1,q

z1,max

?
= z2,q

z2,max
.

Nach der Erläuterung aller Parameter kann nun die verwendete Metrik defi-
niert werden.

Definition 3 Gegeben sei eine raumfüllende Kurve mitsamt der Anzahl ih-
rer Dimensionen d sowie ihrer maximalen Annäherungsstufe kmax, wobei gilt:
d, kmax ∈ N, d ≥ 2. Zudem sei eine Anfrage q gegeben, die in zq Zonen der
raumfüllenden Kurve resultiert und es gilt: 1 ≤ zq ≤ 2kmax·d. Das Zonenver-
hältnis wird definiert als

Z =
zq

2kmax·d
,mit Z ∈

[
1

2kmax·d
, 1

]
.

Das Zonenverhältnis bestimmt somit den Anteil an Zonen, in die eine Anfrage
resultiert, im Verhältnis zur Anzahl aller Zonen der entsprechenden raum-
füllenden Kurve. Es gibt mit einer optimistischen Schätzung an, wie viele
Peers an der Abarbeitung einer Anfrage beteiligt sind, wenn eine bestimmte
Indexstruktur verwendet wird. Der Bereich des Zonenverhältnisses geht von
annähernd Null bis Eins und das heißt, die Anfrage wird von mindestens
einem sowie höchstens 2kmax·d Peers bearbeitet. Folglich bedeutet ein kleines
Zonenverhältnis eine kostengünstige Abarbeitung der Anfrage. Es sei darauf
hingewiesen, dass nicht mehr Peers beteiligt sein können, als eine raumfül-
lende Kurve Zonen hat.

46 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

Die Anzahl der Zonen und damit der Indexwerte für eine Bereichsanfrage
kann bestimmt werden, ohne die Hilbert-Bezeichner der Zonen tatsächlich
berechnen zu müssen. Diese Berechnung weist sogar den Vorteil auf, eine
Indexstruktur auszuwählen, deren Attribute die meisten Übereinstimmungen
mit den Attributen der Anfrage aufweist, ohne weitere Untersuchungen der
Attribute durchführen zu müssen.

Definition 4 Die Berechnung des Zonenverhältnisses einer raumfüllenden
Kurve für eine Anfrage sei wie folgt. Sei d die Anzahl der Dimensionen
und kmax die maximale Annäherungsstufe einer raumfüllenden Kurve mit
d, kmax ∈ N. Ferner sei R = 2kmax die Anzahl aller diskreten Werte je Dimen-
sion sowie ri die Anzahl der diskreten Werte der i-ten Dimension bezüglich
der Anfrage. Zudem bezeichnet Ai das Attribut der i-ten Dimension und Aq

die Menge der Attribute der Anfrage q. Es gilt ∀i ∈ N, d ≥ 2:

Z =
d∏

i=1

vi

R
, vi =

{
ri, wenn Ai ∈ Aq

R, sonst .

Stimmt das Attribut einer Dimension mit einem Attribut der Anfrage über-
ein, so wird die Anzahl der diskreten Werte bestimmt, die der Bereich der
Anfrage in dieser Dimension erzeugt. Falls es keine Übereinstimmung gibt,
so muss der gesamte Wertebereich angenommen werden. Das Zonenverhält-
nis ist die Multiplikation der jeweiligen Verhältnisse aller Dimensionen, weil
alle Dimensionen rechtwinklig auf einander stehen. Wie leicht zu sehen ist,
entspricht das Produkt dem Zonenverhältnis aus Definition 3 auf Seite 45.

Interessant sind hier zwei Aspekte. Erstens werden Attribute in der Index-
struktur, die keine Übereinstimmung finden, nicht berücksichtigt, da R

R
= 1

ist. Zweitens ist jenes Zonenverhältnis das kleinste, welches die meisten über-
einstimmenden Attribute hat. Denn rein mathematisch ist v

R
< R

R
für eine

Anzahl diskreter Werte v < R. Beide Aspekte zeigen, das Zonenverhältnis ist
nur eine notwendige aber keine hinreichende Bedingung. Für die Wahl der
optimalen Indexstruktur ist das kleinste Zonenverhältnis notwendig, da dies
garantiert, die kleinste Anzahl von Knoten an der Bearbeitung der Suchanfra-
ge zu beteiligen. Allerdings ist es nicht ausreichend genug, weil nicht über-
einstimmende Attribute nicht gewertet werden. Folglich kann bei gleichem
Zonenverhältnis eine unterschiedliche Anzahl von nicht übereinstimmenden
Attributen vorliegen. Je mehr nicht übereinstimmende Attribute vorhanden
sind, desto mehr Zonen müssen bei der Abarbeitung berechnet werden. Da-
her ist eine hinreichende Bedingung nötig, die die Anzahl der Dimensionen
berücksichtigt. Hingegen bedeuten weniger Dimensionen nicht zugleich eine
bessere Indexstruktur, wenn die Anzahl der übereinstimmenden Attribute

4.5. ANFRAGENKOMPONENTE 47

ebenfalls kleiner ist, was ein größeres Zonenverhältnis ergibt. Deshalb werden
beide, die notwendige und die hinreichende, Bedingung verwendet: kleinstes
Zonenverhältnis und geringste Anzahl von Dimensionen. Während erstere die
Kommunikationskosten senkt, verringert letztere den Rechenaufwand.

Der heuristische Algorithmus für die Auswahl einer Indexstruktur bedient
sich sowohl der Metrik Zonenverhältnis als auch der hinreichenden Bedingung
der geringste Anzahl der Dimensionen in einer priorisierten Reihenfolge. Es
werden Bedingungen aufgestellt, die gelten müssen, damit eine Indexstruk-
tur als optimaler Index für eine Anfrage ausgewählt wird. Sofern nur eine
Struktur die Bedingung erfüllt, ist das Auswahlverfahren beendet. Andern-
falls wird mit der nächsten Bedingung und der Index-Menge der vorherigen
Bedingung fortgefahren, bis letztendlich die letzte Bedingung in Kraft tritt.
Der Algorithmus arbeitet folgende Bedingungen nacheinander ab:

1. Wähle die Indexstruktur, deren Attribute mit den Attributen der An-
frage exakt übereinstimmen.

2. Wähle die Indexstruktur mit dem kleinsten Zonenverhältnis aus.

3. Wähle die Indexstruktur mit der geringsten Anzahl an Dimensionen
aus.

4. Wähle die Indexstruktur zufällig aus.

Es sei angemerkt, die erste Bedingung ist nicht notwendig, da sie implizit über
die Bedingung zwei und drei gegeben ist. Allerdings erspart das Überprüfen
ersterer einige Berechnungen und macht das Auswahlverfahren verständli-
cher. Ferner fließt hier keinerlei Beachtung der von jeder raumfüllenden Kur-
ve zu erzeugenden Cluster für eine Suchanfrage in die Auswahl mit ein. Das
hat folgende Gründe. Zum einen müsste eine Analyse der Cluster vorhanden
sein, bevor diese berechnet sind. Ein guter Hinweis für die Auswahl eines In-
dexes ist zum Beispiel die Anzahl der Cluster. Diese hängt allerdings davon
ab, welche Bereiche in der Anfrage angegeben wurde. Zum anderen ist kein
Wissen über die Verteilung der Zonen auf die Peers vorhanden, da es keine
globale Sicht auf das Netz gibt. Dies macht eine genau Vorhersage über die
Abarbeitung einer Anfrage sehr aufwendig, weshalb hier nur eine heuristi-
sche Auswahl getroffen wird. Bessere Verfahren bleiben zukünftigen Arbeit
überlassen.

4.5.2 Grundlegende Anfrage-Weiterleitung

Ist die optimale Indexstruktur ausgewählt, werden alle Indexwerte für eine
Anfrage berechnet. Diese entsprechen den Bezeichnern im Chord-Ring, da

48 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

eine Indexstruktur auch die Abbildung auf den Bezeichner-Ring durchführt.
Handelt es sich dabei nur um einen Indexwert, wird der entsprechende Peer
mithilfe des Chord-Protokolls ermittelt und die Anfrage zur weiteren Ver-
arbeitung an ihn weitergesandt. Im Falle mehrerer Indexwerte, ist es sehr
aufwendig für jeden einzelnen Schlüsselwert den Peer nachzusehen, zumal
es sich dabei um eine sehr große Anzahl handeln kann. Da ein Peer in ei-
ner verteilten Hash-Tabelle für mehrere Bezeichner zuständig zeichnet, ist es
für direkt benachbarte Indexwerte sehr wahrscheinlich, dass sie vom gleichen
Peer verwaltet werden. Daher können Indexwerte zu Cluster zusammenge-
fasst werden, welche in Kapitel 2.3 „Raumfüllende Kurven“ ab Seite 22 vorge-
stellt wurden. Hierbei handelt es sich um Indexwerte, die sich um höchstens
einen Wert unterscheiden. Die grundlegende Weiterleitung einer Anfrage be-
steht nun darin, anstelle jedes einzelnen Indexwertes einen Cluster pro Nach-
richt zu versenden. Hierfür werden die Cluster in aufsteigender Reihenfolge
sortiert. Für den ersten Schlüsselwert eines jeden Clusters wird der entspre-
chende Peer unter zur Hilfenahme der verteilten Hash-Tabelle ermittelt und
diesem der gesamte Cluster mitsamt der ursprünglichen Anfrage übermittelt.

Bei Erhalt eines solchen Anfrage-Clusters verfährt ein Peer wie folgt. Da
er ohne weitere Maßnahmen nur seinen eigenen Bezeichner kennt, entnimmt
er dem Cluster alle Schlüsselwerte die kleiner oder gleich seines Bezeichners
sind. Für diese arbeitet er die Anfrage ab und sendet eine Antwort an den
Urheber. Den verbleibenden Cluster sendet der Peer wiederum an den Ver-
antwortlichen des ersten Bezeichners. Die Weiterleitung erfolgt so lange, bis
alle Indexwerte aus dem ursprünglichen Cluster entfernt wurden. In Abbil-
dung 4.4 auf Seite 49 ist ein Beispiel einer solchen Weiterleitung gegeben.

In erster Linie ist die grundlegende Weiterleitung eine Art Fluten. Wird
für eine Anfrage eine sehr große Anzahl von Clustern berechnet, werden all
diese Cluster zeitgleich von einem Knoten aus versendet. Die Anzahl der
ausgehenden Nachrichten hängt von dem Bereich der Anfrage sowie der ver-
wendeten Indexstruktur und damit der Hilbert-Kurve ab. Ist die Anzahl der
Attribute des Indexes größer als die Anzahl der Attribute der Anfrage, so
steigt die Anzahl der berechneten Indexwerte deutlich an. Dies kann einer-
seits eine sehr große Anzahl an Clustern ergeben, die das Peer-to-Peer-Netz
fluten. Andererseits könnten die Bereiche der Anfrage derart im Raum der
Hilbert-Kurve liegen, dass weniger aber dafür sehr große Cluster entstehen.
Sehr große Cluster führen zu einer sehr langen Weiterleitungskette, womit es
länger dauert, bis die Anfrage für alle Bezeichner abgearbeitet wurde.

Die Gesamtzahl an Hilbert-Bezeichnern einer raumfüllenden Kurve mit
beispielsweise 3 Dimensionen und einer maximalen Annäherungsstufe von 8,
liegt bei 23·8 = 224 = 16.777.216. Eine Bereichsanfrage kann damit bereits
zu einer Anzahl von mehreren Hundert bis zu Tausend von Clustern führen.

4.5. ANFRAGENKOMPONENTE 49

Abbildung 4.4: Es ist eine grundlegende Weiterleitung einer Anfrage zu sehen,
welche im Peer mit dem Bezeichner 3 ihren Ursprung hat. Die Antwortnach-
richten wurden zu Gunsten der Übersicht weggelassen.

Würden mehrere solcher Anfragen gleichzeitig im gesamten Netz durchge-
führt, wäre das Nachrichtenaufkommen sehr hoch. Hinzu kommt, die Kos-
ten für den Kommunikationsauf sowie -abbau, der Kommunikationsaufwand,
zum Versenden sehr vieler kleiner Cluster fallen mehr ins Gewicht, als beim
Versand weniger großer Nachrichten. Daher ist es wünschenswert, die Anzahl
der zu versendeten Nachrichten bei einer Anfrage zu kontrollieren und zwar
unabhängig von der Anzahl der Cluster. Eine solche Nachrichtenbeschrän-
kung wird im nachfolgenden Kapitel vorgestellt.

4.5.3 Optimierung 1 — Nachrichtenbeschränkung

Die grundlegende Weiterleitung hat den entscheidenden Nachteil, von der
Anzahl der Cluster abzuhängen. Da die Cluster parallel versendet werden,
mag die Bearbeitungszeit der Anfrage im Netz sehr kurz sein. Doch bei einer
großen Anzahl von Anfragen, die in einer großen Anzahl von Clustern resul-
tieren, kann es zu einer Überflutung des Netzes kommen. Aus diesem Grund

50 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

wird eine Optimierung vorgestellt, die die Anzahl der parallelen Nachrichten
für eine Anfrage kontrollierbar macht.

Abbildung 4.5: Es ist die erste Optimierung, die Nachrichtenbeschränkung,
beim Weiterleiten einer Anfrage zu sehen, welche im Peer mit dem Bezeich-
ner 3 ihren Ursprung hat. Die Antwortnachrichten wurden zu Gunsten der
Übersicht weggelassen. Der Ausgangsgrad f und die Baumtiefe l sind beide
2. Wie zu sehen ist, teilt der Peer mit dem Bezeichner 41 den Cluster nicht
mehr auf, weil hier bereits die Baumtiefe von 2 erreicht ist.

Ein erster Ansatz besteht darin, den Ausgangsgrad (fan-out, f) eines Kno-
tens, welcher der Ursprung einer Anfrage ist, zu beschränken. Hierfür wird der
Parameter f definiert, der dessen Ausgangsgrad festlegt. Das heißt, es wer-
den maximal f Nachrichten für eine Anfrage von dem Knoten aus gesendet.
Dazu werden die Cluster in aufsteigender Reihenfolge sortiert und auf f Be-
hältnisse verteilt. Jedes Behältnis wird anschließend mit der grundlegenden
Weiterleitung aus dem vorherigen Kapitel versandt. Zwar beschränkt die-
ser Ansatz die Anzahl der parallelen Nachrichten, jedoch erhöht er auch die
Anzahl der Cluster pro Nachricht, was zu einer sehr langen Weiterleitungs-
kette auch mit nur kleinen Clustern führen kann. Daher scheint es günstig
zu sein, f groß zu wählen. Allerdings versendete erneut nur ein Knoten eine

4.5. ANFRAGENKOMPONENTE 51

große Anzahl an Nachrichten, wenn eine hohe Parallelität erwünscht ist, und
damit fiele der Kommunikationsaufwand wieder mehr ins Gewicht.

Abbildung 4.6: Es ist die Baumansicht der ersten Optimierung beim Weiter-
leiten einer Anfrage zu sehen, welche im Peer mit dem Bezeichner 3 ihren
Ursprung hat. Die Antwortnachrichten wurden zu Gunsten der Übersicht
weggelassen. Der Ausgangsgrad f und die Baumtiefe l sind beide 2. Wie zu
sehen ist, teilt der Peer mit dem Bezeichner 41 den Cluster nicht mehr auf,
weil hier bereits die Baumtiefe von 2 erreicht ist.

Die Beschränkung auf wenige Nachrichten eines Peers einerseits und eine
hohe Gesamtzahl an gleichzeitigen Nachrichten andererseits erfordern einen
weiteren Parameter namens Baumtiefe (depth level, l). Die Baumtiefe legt
fest, wieviele an einer Anfrage beteiligte Peers die verbliebenen Cluster mit
f Nachrichten weiterleiten. Hierzu wird am Ursprungskonten die Baumtiefe
festgelegt und beim Empfang einer Nachricht um eins heruntergezählt. Solan-
ge l größer als Null ist, werden die verbliebenen Cluster mittels f Nachrich-
ten weitergeleitet. Wird l dagegen Null, so kommt wieder die grundlegende
Weiterleitung zum Einsatz. Die Bezeichnung Baumtiefe ist der in der Infor-
matik bekannten Datenstruktur Baum und dessen Höhe entliehen, da die
Weiterleitung der Nachrichten die Eigenschaften eines solchen Baumes bis

52 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

zur angegebenen Baumtiefe aufweist. In Abbildung 4.5 auf Seite 50 ist das
Beispiel aus dem vorherigen Kapitel zu sehen, allerdings wird die Nachrich-
tenbeschränkgung angewandt. Der dazugehörige Baum ist in Abbildung 4.6
auf Seite 51 dargestellt.

Die Eigenschaften dieses Ansatzes sind sowohl ein geringerer Ausgangs-
grad bei einem einzelnen Peer, als auch eine Kontrolle der maximalen Anzahl
der parallelen Nachrichten für eine Anfrage im Netz. Während die Anzahl
des Ausgangsgrades klar ersichtlich ist, kann die maximale Anzahl der par-
allelen Nachrichten leicht berechnet werden. Sie ist f l. Die Herleitung der
Berechnungsformel ist in Kapitel A.3 ab Seite 80 zu finden. Das Wachstum
dieser Formel ist exponentiell in Bezug auf die Baumtiefe. Das heißt, mit je-
der Weiterleitung steigt die Anzahl der Nachrichten einer Anfrage stark an.
Je nach Wahl der Parameter, wird die maximale Anzahl schnell oder lang-
sam erreicht. Wird beispielsweise f sehr groß gewählt, bedarf es nur weniger
Weiterleitungen. Ist hingegen f sehr klein, ist die gewünschte Nachrichtenan-
zahl erst nach einer großen Anzahl von Weiterleitungen erreicht. Zu Gunsten
einer schnellen Anfragebearbeitung kann ein hoher Ausgangsgrad festgelegt
werden, wobei das Nachrichtenaufkommen im Netzwerk steigt. Wird hinge-
gen das Nachrichtenaufkommen mittels des Ausgangsgrades reduziert, erhöht
sich die Weiterleitungskette und damit die Suchdauer. Die Abbildung 4.7 auf
Seite 52 veranschaulicht die Parameterwahl.

Abbildung 4.7: Die Darstellung zeigt den Einfluss der Parameter Ausgangs-
grad f sowie Baumtiefe l in Bezug auf die Anzahl von Weiterleitungen, bis
eine gewünschte maximale Anzahl von Nachrichten erreicht ist. Entweder
wird f groß gewählt, womit kleine l ausreichen (links). Oder f wird klein
gewählt, was große l erforderlich macht (rechts).

Es sei darauf hingewiesen, die Aufteilung aller Cluster in f Behältnis-
se erfolgt anhand der Anzahl aller Zonen, da für eine optimale Aufteilung

4.5. ANFRAGENKOMPONENTE 53

mehr Aufwand betrieben werden müsste. Optimal wäre eine Aufteilung nach
Bezeichner, für die die Peers im Netz verantwortlich sind. Da es an einer
globalen Ansicht mangelt, können die Indexwerte nicht direkt den Knoten
zugewiesen werden, ohne für jeden einzelnen Cluster den verantwortlichen
Peer im Chord-Ring zu erfragen. Zudem hängen die Zonen ebenfalls von
den Bereichen der Anfrage ab, was eine allgemein gültige Lösung erschwert,
zumal das Peer-to-Peer-Netz sich dynamisch verhält und sich damit die Ver-
antwortlichkeiten für Bezeichner ändern.

Bisher wurde nicht auf die Berechnungszeit eingegangen, die ein Peer
aufwenden muss, bis alle Indexwerte für eine Anfrage berechnet werden. Da
dies in der Praxis jedoch von Nachteil sein kann, wird die Berechnung über
mehrere Peers verteilt. Hierauf wird im nachfolgenden Kapitel eingegangen.

4.5.4 Optimierung 2 — verteilte Berechnung

Die Berechnung aller Indexwerte einer Anfrage kann viel Zeit in Anspruch
nehmen, da ihre Zeitkomplexität aufgrund der Hilbert-Kurve in O(2k·d) liegt.
Die Ursache liegt einerseits in der großen Anzahl der Schlüsselwerte selbst,
wenn Bereiche der Anfrage großzügig gewählt werden, und andererseits in der
beschränkten Rechenkapazität eines einzelnen Peers. Daher wird eine weitere
Optimierung des Systems vorgestellt, bei der die Berechnung auf alle Knoten
im Peer-to-Peer-Netz verteilt wird.

Die Verteilung der Berechnung sollte nur dann durchgeführt werden, wenn
ein Peer mit ihr überfordert ist. Das heißt, der Rechner des Anwenders sollte
innerhalb einer akzeptablen Zeit die Anfrage zur Bearbeitung weiterleiten.
Hierfür muss ein Maß eingeführt werden, ab welchem Aufwand eine verteilte
Berechnung notwendig ist, weil in der Praxis unterschiedliche Rechnersyste-
me zum Einsatz kommen und die Berechnungszeit individuell ist. Die Berech-
nung eines Indexwertes ist hierbei die atomare Berechnungseinheit, weshalb
eine Größe angegeben wird, die bestimmt, wie viele Werte von einem einzel-
nen Peer für eine Anfrage berechnet werden. Es hat sich allerdings gezeigt,
die Berechnung eines einzelnen Schlüsselwertes liegt für Prozessoren mit einer
Taktung im Gigahertz-Bereich um die ein Hundert Millisekunden, weshalb
die Angabe nicht direkt in Indexwerten, sondern mit dem Exponenten einer
Zweierpotenz namens B erfolgt: 2B. Dies korreliert mit der Berechnungsfor-
mel für die Gesamtzahl aller Zonen in der Hilbert-Kurve, welche 2kmax·d ist.
Denn anhand der Anzahl der Dimensionen und einer Anfrage kann bestimmt
werden, wie viele Annäherungsstufen auf einem Peer berechnet werden. Das
System unterstützt bisher die Berechnung der nächst höheren Annäherungs-
stufe für alle Cluster einer Nachricht auf einmal. Mit Mehraufwand kann
die Annäherung auch für einzelne Zonen realisiert werden. Hierfür bedarf

54 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

es jedoch näherer Untersuchungen, ob der Nutzen die Kosten aufwiegt. Ist
bei einer fortschreitenden Verfeinerung der Cluster die maximale Annähe-
rungsstufe kmax erreicht, muss die Berechnung nicht verteilt werden. Es wird
garantiert, dass die Anzahl der berechneten Zonen nicht größer ist als 2B. Al-
lerdings wird in jedem Fall die nächste Annäherungsstufe berechnet, um eine
unendliche Weiterleitung ohne jegliche Berechnung zu vermeiden. Eine ver-
teilte Berechnung ist mit der Hilbert-Kurve ohne weiteres möglich, da Zonen
einer höheren Annäherungsstufe rekursiv erzeugt werden, indem bestehende
Zonen geteilt werden. Daher muss kein weiterer Aufwand betrieben werden,
der die Berechnung parallelisierbar macht.

Abbildung 4.8: Die verteilte Berechnung erhöht die Anzahl der Weiterleitun-
gen und damit die Baumtiefe. Sie beginnt am Ursprungsknoten einer Anfrage
(dunkel gefärbte Baumspitze). Die Parameter Ausgangsgrad f und Baum-
tiefe l beeinflussen die Parallelität der Berechnung.

Ist eine Verteilung notwendig, da eine Bereichsanfrage die Berechnung
einer Anzahl von Zonen erfordert, die größer als 2B ist, so wird die An-
näherungsstufe kq verwendet für die gilt: zonen(q, 2kq ·d) ≤ 2B, kq ≥ 1. Die
Funktion zonen() berechnet hierbei die Anzahl der Zonen für eine Anfrage
(query, q). Die Weiterleitung der Berechnung hält sich an die Nachrichten-
beschränkung und nutzt die Parameter f und l. Es sei angemerkt, die Be-
rechnung muss auf mehrere Peers gleichzeitig verteilt werden, damit von der
Parallelität profitiert werden kann. Je mehr Peers gleichzeitig an der Berech-
nung teilnehmen, desto schneller wird diese fertiggestellt. Dies muss bei der
Wahl von f und l berücksichtigt werden. Die Weiterleitung der Nachrich-
ten erfolgt wie in der ersten Optimierung des vorherigen Kapitels, allerdings
mit zwei Ausnahmen. Erstens muss zusätzlich zu der Anfrage und den be-
reits berechneten Clustern die Annäherungsstufe übermittelt werden, damit
die nachfolgenden Berechnungen korrekt durchgeführt werden können, da

4.5. ANFRAGENKOMPONENTE 55

der Verlauf der Hilbert-Kurve sich mit der Annäherungsstufe ändert, wie
in Abbildung 2.5 auf Seite 21 zu sehen ist. Zweitens werden die Nachrich-
ten nicht an die Peers weitergeleitet, welche für die erste Zone eines jeden
Clusters verantwortlich sind, sondern es wird zufällig ein Bezeichner aus dem
Chord-Ring ausgewählt. Letzteres dient der Verteilung der Berechnung auf
alle Peers, unabhängig von den gesuchten Daten. Damit wird vermieden, dass
Peers mit Berechnungen überhäuft werden, deren Bezeichnerbereich populä-
re Daten beinhaltet. Ein verteiltes Berechenn findet auch im Squid-System
Schmidt und Parashar (2003) statt, welches in Kapitel 3.2.2 „Gesamt-Index“
ab Seite 27 vorgestellt wurde. Jedoch werden dort die Anfragen an den Peer
weitergeleitet, der für die Bezeichner einer Anfrage zuständig ist, weshalb
Peers mit populären Daten nicht nur mit häufigen Anfragen, sondern auch
mit deren verteilten Berechnung belastet werden. Die zufällige Auswahl des
Bezeichners dagegen verteilt alle Berechnungen gleichmäßig auf die Peers, da
jeder mit hoher Wahrscheinlichkeit einen gleichgroßen Bezeichnerbereich ver-
waltet. Hierfür sollte ein sehr guter Pseudozufallszahlengenerator verwendet
werden, der auf kryptographischen Verfahren wie SHA-1 (siehe U.S. Dept.
Commerce/NIST und National Technical Information Service (1995)) beruht,
da diese eine sehr zufällige Verteilung aufweisen.

Es sollte klar sein, die verteilte Berechnung erhöht die Weiterleitungskette
und damit die Zeit, bis alle Peers die Anfrage abgearbeitet haben. In Abbil-
dung 4.8 auf Seite 54 wird dies skizziert. Im Vergleich zu einer sehr langen
Berechnung aller Indexwerte auf einem einzelnen Peer ist die Verzögerung
durch die verteilte Berechnung jedoch vernachlässigbar.

56 KAPITEL 4. KONZEPTE ZUR OPTIMIERUNG

Kapitel 5

Systemevaluation

Das in den vorherigen Kapiteln beschriebene Systemmodell, die erarbeiteten
Heuristiken, wie das Zonenverhältnis (siehe Definition 4 ab Seite 46) und der
Auswahlalgorithmus für Indexstrukturen (siehe Definition auf Seite 47), so-
wie die beiden Optimierungen, Nachrichtenbeschränkung (siehe Kapitel 4.5.3
ab Seite 49) und verteiltes Berechnen (siehe Kapitel 4.5.4 ab Seite 53), wur-
den in einer Simulation bewertet, auf die in diesem Kapitel näher eingegangen
wird.

Die Simulation wurde mit dem Simulator PeerSim (siehe PeerSim (2006))
in der Version 1.0.3 durchgeführt, der explizit für Peer-to-Peer-Netze ent-
worfen wurde und in Java programmiert ist. Der Simulator bildet nur die
Grundlage für die Kommunikation zwischen den Netzknoten. Eine beste-
hende Implementierung des Chord-Protokolls ist zwar vorhanden, allerdings
mangelt es einerseits an einer Dokumentation und andererseits wurden bei
einer Durchsicht kleine Fehler gefunden. Zudem bringt sie eine Funktionali-
tät mit, die für die durchgeführten Tests nicht notwendig war. Daher wurde
das Chord-Protokoll selbständig entwickelt. Für die raumfüllenden Kurven
wurde nach einer Implementierung gesucht, um Entwicklungszeit einzuspa-
ren. Hierbei wurde der Quelltext von Lawder (2000) verwendet, welcher den
Algorithmus aus Butz (1971) in der Programmiersprache C umsetzt. Neben
der Übersetzung in die Programmiersprache Java musste ein kritischer Fehler
aufgespürt und korrigiert werden, welcher verhinderte, dass zwischen einem
Hilbert-Bezeichner und den Dimensionen nicht beliebig hin und her gerech-
net werden konnte. Die Funktionen waren nicht invers zu einander. Zudem
fehlte die Berechnung von mehreren Hilbert-Bezeichner für Bereich in den
Dimensionen, welche ebenfalls selbständig ergänzt wurde. Alles zusammen
hat viel Zeit bei der Implementierung in Anspruch genommen und es ent-
standen insgesamt 353 Kilobyte Quelltext, wobei 4.420 Zeilen Programmtext
und 5.439 Zeilen Dokumentation, in Form von JavaDoc, geschrieben wurden.

57

58 KAPITEL 5. SYSTEMEVALUATION

Im Prototypen für die Simulation ist der Ansatz der Skalierung (siehe
Kapitel 4.3.2 „Anwendung der raumfüllenden Kurven“ ab Seite 40) bei der
Abbildung der Hilbert-Bezeichner auf den Bezeichnerring realisiert worden,
da es noch an einer Lösung für den Lastausgleich mangelt und die Skalierung
die Zonen aller raumfüllenden Kurven über den gesamt Bezeichnerbereich
des Chord-Rings verteilt. Dies kommt einem Lastausgleich in Bezug auf die
Zonenverteilung gleich, womit das gesamte Netz beansprucht wird.

Name Min. Max. Einheit Beschreibung
A1 CPU-Takt 0,1 4,0 GHz Taktfrequenz des

Prozessors
A2 CPU-Last 0,0 100,0 Prozent Beanspruchung der

maximalen CPU
Leistungsfähigkeit

A3 HD-Platz 10 3000 GB frei verfügbarer
Festplattenplatz

A4 RAM-Größe 0,5 8,0 GB Größe des Haupt-
speichers (random
access memory,
RAM)

A1 A2 A3 A4 d kmax B
K1

√ √
2 8 16

K2

√ √ √
3 8 16

K3

√ √ √ √
4 8 16

Tabelle 5.1: Es werden die in der Simulation verwendeten Attribute (A) und
raumfüllenden Kurven (K) aufgelistet.

Die Attribute und die darauf aufbauenden raumfüllenden Kurven der Si-
mulation sind in der Tabelle 5.1 auf Seite 58 zusammengefasst. Sie sind in
allen Experimenten gültig. Die drei Kurven für die Indexstrukturen haben
eine unterschiedlich große Anzahl an Dimensionen und es gelten in Bezug
auf diese K1 < K2 < K3 und in Bezug auf die Attribute K1 ⊂ K3 sowie
K1 ⊂ K3. Die Parameter sind die Anzahl der Dimensionen d, die maximale
Annäherungsstufe kmax sowie der Exponent B für die maximal zu berechnen-
den Zonen pro Anfrage.

In der Diskussion der Simulationsergebnisse werden Begriffe verwendet,
die an dieser Stelle eingeführt werden.

Bearbeitungspeer ist an einer Abarbeitung einer Anfrage beteiligter Peers,

59

der in seiner lokalen Datenbanken nach den Daten sucht, die mit der
Anfrage spezifiziert wurden.

Datenpeer ist Bearbeitungspeers, der tatsächlich die in einer Anfrage spe-
zifizierten Daten in seiner lokalen Datenbank findet. Damit gilt die
Beziehung: Datenpeers ⊆ Bearbeitungspeers.

Weiterleitungspeer leitet die Suche nach dem für einen Chord-Bezeichner
zuständigen Peer an einen anderen Peer weiter. Dazu bedient er sich
der Finger-Tabelle.

Berechnungspeer ist entweder der Urheber einer Anfrage oder an der ver-
teilten Berechnung der Bezeichner einer Anfrage beteiligt.

Hop ist ein logischer Sprung zwischen zwei Knoten, der unabhängig von der
darunterliegenden Netzwerkinfrastruktur ist. In der Simulation werden
die Hops im Chord-Ring ermittelt, was einer Verbindung zwischen zwei
Weiterleitungspeers entspricht.

Latenz wird in Hops angegeben und bezeichnet die maximale Länge einer
Weiterleitungskette beziehungsweise den längsten Pfad im Weiterlei-
tungsbaum vom Urheber einer Anfrage bis zu einem Bearbeitungspeer.

Nachrichtengröße wird in Clustern angegeben, wobei eine Zone als ein
Cluster mit demselben Anfangs- und Endbezeichner angesehen wird.
Während andere Nutzdaten einer Nachrichten, wie Anfrage und mo-
mentane Annäherungsstufe, eine konstante Größe bei der Abarbeitung
einer Anfrage aufweisen, beeinflussen die Cluster die Größe einer Nach-
richt maßgeblich.

Rechenlast wird in Zonen angegeben und beschreibt, mit welchem Rechen-
aufwand ein Berechnungspeer belastet wird, wenn er die Bezeichner für
eine Anfrage berechnet.

Sofern nicht anders angegeben, wurden für die Simulation folgende Pa-
rameterwerte verwendet. Die Netzwerkgröße N geht von ein Hundert bis
Zehntausend. Die Schrittweite wurde für den Exponenten definiert, damit
nicht zu viele Durchläufe notwendig sind, um Ergebnisse für eine kleine und
sehr große Anzahl von Peers zu erhalten. Die Anzahl an Datenobjekten O im
Peer-to-Peer-Netz beträgt das Zehnfache der Anzahl der Peers. Dies soll die
Situation widerspiegeln, in der manche Peers viele und andere keine Daten
zur Verfügung stellen. Dies darf nicht mit der Suche und der dafür vorge-
sehenen Speicherung von Datenobjekten verwechselt werden, die mit einer

60 KAPITEL 5. SYSTEMEVALUATION

Anfrage gefunden werden können. Hieran sind alle Peers gleichermaßen be-
teiligt. Die Datenwerte der Datenobjekte werden nach einem Potenzgesetz
nämlich dem Zipfian-Gesetz verteilt, wobei es wenige sehr populäre Daten
und sehr viele kaum populäre Daten gibt. Eine solche Verteilung wurde in
Peer-to-Peer-Netzen nachgewiesen (vergleiche Gish u. a. (2007); Klemm u. a.
(2004); Shu u. a. (2005)) und soll hier ebenfalls Verwendung finden. Die Para-
meter für den Ausgangsgrad f sowie die Baumtiefe l wurden derart definiert,
dass nicht mehr als zehn Prozent der Anzahl der Peers Nachrichten pro An-
frage im Netz unterwegs sind. Das heißt, es werden pro Anfragen im Mittel
maximal zehn Prozent der Peers beansprucht. In Tabelle 5.2 auf Seite 60
werden alle Parameterwerte übersichtlich aufgelistet.

Da die sich die Netzgröße linear im Exponenten ändert, wurde für die Dar-
stellung der Graphen eine logarithmische Skala auf der horizontalen Achse
gewählt. Dies ist beim Betrachten der Graphen zu beachten. Zudem kommt
es vor, dass für eine Kurve sehr kleine und für eine andere Kurve sehr große
Werte entstehen. Diese lassen sich ebenfalls nur mit einer logarithmischen
Skala auf der vertikalen Achse darstellen. In die Graphen wurde deshalb
zusätzlich in grauer Farbe die erste Winkelhalbierende gezeichnet, um eine
Interpretation bezüglich des Wachstums zu erleichtern.

Parameter Wert(e) Beschreibung
N 102,0, 102,5, 103,0, . . . , 105,0 Netzwerkgröße
O 10 ·N Datenobjekte
f 10 Ausgangsgrad
l blog10 Nc − 1 maximale Baumtiefe

Tabelle 5.2: Alle Parameter der Simulation auf einen Blick.

Die nachfolgenden Experimente zeigen die Wirksamkeit der Optimie-
rungskonzepte. Zuerst wird eine Anfrage mit mehreren raumfüllenden Kur-
ven durchgeführt, um zu zeigen, wie gut das Zonenverhältnis arbeitet. An-
schließend werden die grundlegende Weiterleitung und die Nachrichtenbe-
schränkung miteinander verglichen, wobei das Verhalten der Nachrichtenwei-
terleitung begutachtet wird. Als Abschluss wird der Einfluss der verteilten
Berechnung auf die Rechenlast der Peers aufgezeigt.

5.1 Experiment 1 — raumfüllende Kurven
Im ersten Experiment werden mehrere raumfüllende Kurven in Bezug auf
die Abarbeitung verschiedener Anfragen untersucht. Es werden Anfragen ge-
stellt, die in ihren Attributen genau mit den Attributen einer der Kurven

5.1. EXPERIMENT 1 — RAUMFÜLLENDE KURVEN 61

übereinstimmen. Dies soll zeigen, inwiefern das heuristische Auswahlverfah-
ren dazu geeignet ist, mithilfe des Zonenverhältnisses die optimale Index-
struktur auszuwählen. Die Definition der Anfragen orientiert sich an der De-
finition der Kurven. Die erste hat die kleinste und die letzte hat die größte
Anzahl an Attributen.

q1 A1 A3

√
? Z

K1

√ √
2 0 1,52

K2

√
? ? 1 2 10,55

K3

√
?
√

? 2 2 1,52

Tabelle 5.3: Es sind sowohl die Attribute der ersten Anfrage (q1) aufgelistet
als auch wie die raumfüllenden Kurven (K) zur dieser passen.

√
markiert

eine Übereinstimmung in den Attributen und ? kennzeichnet ein notwendiges
Stellvertreterzeichen. Zudem ist das Zonenverhältnis (Z) angegeben.

In Tabelle 5.3 auf Seite 61 ist die erste Anfrage definiert und deren At-
tributskombination wird mit denen der Kurven anschaulich verglichen. Dem
Zonenverhältnis nach kommen die erste und dritte Kurve für eine optimale
Abarbeitung in Frage. Jedoch hat die erste Kurve die wenigsten Stellver-
treterzeichen, welche andeuten, dass für diese Attribute der gesamte Wer-
tebereich angenommen werden muss, weil das Attribut in der Kurve nicht
definiert ist. Hieraus folgt, die erste Kurve sollte zusammen mit der dritten
Kurven die wenigsten Bearbeitungspeers haben. Zudem hat die erste Kurve
die beste Leistungsfähigkeit in Bezug auf die Berechnung der Indexwerte, da
sie die kleinste Anzahl an Stellvertreterzeichen hat. Mit anderen Worten ist
die erste Kurve die optimale Indexstruktur für diese Anfrage.

Die Simulationsergebnisse werden in vier Graphen präsentiert, welche die
Abarbeitung der Anfrage am deutlichsten abbilden, ohne alle Parameter des
Systems aufzeigen zu müssen. Zuallererst wird die Anzahl der Bearbeitungs-
peers sowie der Datenpeers dargestellt. Diese sollen zeigen, inwiefern das
heuristische Zonenverhältnis in einem simulierten Peer-to-Peer-Netz zutrifft.
Als nächstes wird die Gesamtzahl aller Hops gezeigt und damit die notwen-
digen Kommunikationsverbindungen. Je weniger Kommunikation stattfinden
muss, um so besser passt die Indexstruktur in Bezug auf diese. Die Latenz ist
ein Maß für die maximale Dauer, bis eine Anfrage abgearbeitet wurde, und
wird ebenfalls gezeigt. Allerdings nur der Durchschnitt der Latenzen aller Be-
arbeitungspeers, die keine Nachrichten mehr weiterleiten. Dies soll einerseits
verhindern, den Wert zu verfälschen, wenn es aufgrund der Bezeichnervertei-
lung im Netz zu sehr großen Ausreißern kommt und andererseits kann davon
ausgegangen werden, dass nicht alle Suchergebnisse von Bedeutung sind. Das

62 KAPITEL 5. SYSTEMEVALUATION

Abbildung 5.1: Es werden Graphen der Simulationsergebnisse für die erste
Anfrage q1 gezeigt.

heißt, im Mittel werden bereits fast alle Ergebnisse geliefert sein, bevor die
maximale Latenz erreicht wird. Dies sollte wird hier als der Normalfall ange-
nommen. Es sei noch erwähnt, die Latenz steigt mit der Gesamtanzahl der
Hops, weil die Latenz die Hop-Zahl der längsten Pfade beinhaltet.

In Abbildung 5.1 auf Seite 62 sind die vier Graphen für die erste Anfrage
zu sehen. Es sei nochmals auf die logarithmischen Skalen verwiesen, die hier
teilweise zum Einsatz kommen. Es ist klar ersichtlich, der Auswahlalgorith-
mus wählt die optimale Kurve für diese Anfrage aus. Sowohl die Anzahl der
Bearbeitungs- als auch der Datenpeers sind für die erste Kurve am gerings-
ten. Die Zahl dieser Peers steigt mit der Netzgröße linear an, was an der
grauen Winkelhalbierenden erkannt werden kann und zu erwarten war. Je
mehr Peers in einem Netz vorhanden sind, desto besser sind die Datenobjek-
te aufgrund der Skalierung der Hilbert-Bezeichner auf die Chord-Bezeichner
verteilt. In Bezug auf die Gesamtzahl der Hops und die durchschnittliche
Latenz ist die erste Kurve ebenfalls besser. Diese Ergebnisse bestätigen den

5.1. EXPERIMENT 1 — RAUMFÜLLENDE KURVEN 63

Auswahlalgorithmus. Das Zonenverhältnis zeigt sich als gute Metrik für die
Abschätzung der Bearbeitungs- und Datenpeers, weil die dritte Kurve im
Vergleich zur ersten Kurve zusammen mit dem kleineren Zonenverhältnis
auch die geringere Anzahl dieser Peers aufweist. Jedoch scheinen die zwei
zusätzlichen Dimensionen der dritten Kurve in Bezug auf die Anfrage eine
andere Verteilung der Indexwerte auf dem Chord-Ring zu ergeben, weshalb
deutlich mehr Bearbeitungspeers betroffen sind als im Falle der ersten Kurve.

Im Graphen der Gesamtzahl der Hops ist ein merkwürdiges Verhalten
der dritten Kurve zu sehen. Dort gibt es ein großen Sprung beim Übergang
der Netzgröße von 102,5 auf 103,0. Dieser lässt sich wie folgt erklären. Da die
maximale Baumtiefe, ab der die grundlegende Weiterleitung verwendet wird,
mit jedem Hop um Eins dekrementiert wird, kann diese nur ganze Zahlen
annehmen. Der Exponente ist jedoch 2,5, weshalb auf 2 abgerundet wird.
Daher gibt es erst beim Exponenten 3,0 eine weitere Stufe, in der die Cluster
mit f Nachrichten weitergeleitet werden. Nun hat die dritte Kurve zwei Stell-
vertreterzeichen und damit eine sehr große Anzahl berechneter Zonen. Diese
werden einerseits durch die zusätzliche Baumtiefe weiter aufgeteilt und an-
dererseits scheinen die Zonen der Anfrage derart ungeschickt im Chord-Ring
verteilt zu sein, dass es zwar zu einer höheren Parallelität aber gleichzeitig
auch zu einer höheren Latenz kommt. Bei genauerer Betrachtung des Gra-
phen ist zu sehen, die anderen beiden Kurven haben ebenfalls eine solche
Stufe, wenn auch weniger ausgeprägt. Dies scheint mit der Anzahl der Zo-
nen zu tun haben und bedarf einer näheren Untersuchung in zukünftigen
Arbeiten.

q2 A1 A2 A4

√
? Z

K1

√
? 1 1 10,55

K2

√ √ √
3 0 1,23

K3

√ √
?
√

3 1 1,23

Tabelle 5.4: Es sind sowohl die Attribute der zweiten Anfrage (q2) aufgelistet
als auch wie die raumfüllenden Kurven (K) zur dieser passen.

√
markiert

eine Übereinstimmung in den Attributen und ? kennzeichnet ein notwendiges
Stellvertreterzeichen. Zudem ist das Zonenverhältnis (Z) angegeben.

Die Übereinstimmung der Attribute zwischen den Kurven und der zweiten
Anfrage ist in Tabelle 5.4 auf Seite 63 aufgelistet. Bei der zweiten Anfrage
haben erneut zwei Kurven das gleiche Zonenverhältnis. Allerdings hat die
zweite Kurve weniger Dimensionen und wird deshalb vom Auswahlalgorith-
mus als Indexstruktur herangenommen. Die Ergebnisse der Simulation sind
in Abbildung 5.2 auf Seite 64 dargestellt.

64 KAPITEL 5. SYSTEMEVALUATION

Abbildung 5.2: Es werden Graphen der Simulationsergebnisse für die zweite
Anfrage q2 gezeigt.

Auf den ersten Blick ist ersichtlich, die erste Kurve hat eindeutig zu viele
Bearbeitungs- und Datenpeers, worauf bereits das Zonenverhältnis hinweist.
Mit dieser Kurve müsste eine deutlich größere Anzahl an Peers kontaktiert
werden als mit den anderen beiden Kurven. Erstaunlich ist, letztere liegen
nahe beieinander, obwohl die dritte Kurve eine Dimension und damit ein
Stellvertreterzeichen mehr hat. Hier scheint sich die Vermutung zu zeigen,
welche in Kapitel 4.3.1 „Bildung von Attribut-Untermengen“ ab Seite 36 auf-
gestellt wurde, dass ein Stellvertreterzeichen nur einen linearen Mehraufwand
bedeutet. Jedoch zeigt sich sowohl an der Gesamtzahl der Hops als auch an
der Latenz die Überlegenheit der zweiten gegenüber der dritten Kurve. Die
Anzahl der zu berechnenden Zonen scheint immer noch deutlich zu hoch zu
sein, weshalb hier das weiter oben bereits geschilderte Verhalten auftritt.

Als letzter Testfall wird eine Anfrage über alle Attribute der dritten Kurve
gestellt, die in Tabelle 5.5 auf Seite 65 zusammen mit den Kurven angege-
ben ist. Alle Attribute der Kurven stimmen mit der Anfrage überein und

5.1. EXPERIMENT 1 — RAUMFÜLLENDE KURVEN 65

q3 A1 A2 A3 A4

√
? Z

K1

√ √
2 0 2,84

K2

√ √ √
3 0 1,23

K3

√ √ √ √
4 0 0,33

Tabelle 5.5: Es sind sowohl die Attribute der dritte Anfrage (q3) aufgelistet
als auch wie die raumfüllenden Kurven (K) zur dieser passen.

√
markiert

eine Übereinstimmung in den Attributen und ? kennzeichnet ein notwendiges
Stellvertreterzeichen. Zudem ist das Zonenverhältnis (Z) angegeben.

damit gibt es keine unnötigen Stellvertreterzeichen. Wie bereits bei der Her-
leitung des Zonenverhältnisses gezeigt wurde, bedeutet jedes zusätzliches und
übereinstimmendes Attribut ein kleineres Zonenverhältnis. Deshalb wird die
dritte Kurve mit den meisten übereinstimmenden Attributen vom Auswahl-
algorithmus favorisiert.

Die Ergebnisse können in der Abbildung 5.3 auf Seite 66 betrachtet wer-
den und zeigen erneut, die Kurve mit dem kleinsten Zonenverhältnis hat die
geringste Anzahl an Bearbeitungs- und Datenpeers. In diesem Fall ist es die
dritte Kurve, wobei die Differenz zu den anderen beiden Kurven nicht groß
ist. Dies liegt zum einen an dem kleinen Unterschied im Zonenverhältnis und
zum anderen im Mangel an Stellvertreterzeichen. Jedoch zeigt sich im Gra-
phen für die Gesamtzahl der Hops und die Latenz erneut, wie schlecht die
dritte Kurve im Vergleich zu den anderen beiden abschneidet. Spätestens bei
dieser Anfrage, die alle vier Attribute der dritten Kurve spezifiziert, ist zu
sehen, die Anzahl der zu berechnenden Zonen fällt stark ins Gewicht.

Aus Platzgründen und wegen des Auswahlalgorithmus’, welcher die ver-
teilte Berechnung nicht berücksichtigt, wurde auf eine Darstellung der Be-
rechnungspeers verzichtet. Allerdings spiegelt sich ihre Anwesenheit in der
Gesamtzahl der Hops und der durchschnittlichen Latenz wider. Dies ist be-
sonders bei der dritten Kurve zu sehen, da sich die Werte dieser Graphen
über alle drei Anfragen hinweg nicht zu verändern scheinen. In diesem Fall
macht die verteilte Berechnung einen zu großen Teil der Kommunikation aus,
weshalb der hier vorgestellte Auswahlalgorithmus in Bezug darauf erweitert
werden sollte. Da auf die verteilte Berechnung insbesondere bei Kurven mit
einer großen Anzahl an Dimensionen nicht verzichtet werden kann, könnte
der Auswahlalgorithmus neben dem Zonenverhältnis eine weitere Metrik auf-
weisen, welche die an der verteilten Berechnung beteiligten Peers entweder
berechnet oder abschätzt. Die Anzahl der Berechnungspeers hängt sowohl
von den Weiterleitungsparametern f und l als auch der maximal zu berech-
nenden Zonen ab. Erstere bestimmen, wie oft die Cluster aufgeteilt werden

66 KAPITEL 5. SYSTEMEVALUATION

Abbildung 5.3: Es werden Graphen der Simulationsergebnisse für die dritte
Anfrage q3 gezeigt.

und damit wie klein sie werden. Letztere geben an, wie stark sich ein Peer
an der verteilten Berechnung beteiligt. Dies bedarf weiterer Überlegungen so-
wie Untersuchungen, die über den Rahmen dieser Diplomarbeit hinausgehen.
Daher bleiben sie zukünftigen Arbeiten überlassen.

Allein in Bezug auf die Anzahl der von einer Kurve erzeugten Indexwerte
hat sich das Zonenverhältnis als eine gute Metrik erwiesen, obwohl es sich
um einen heuristischen Ansatz handelt. Bei allen drei Anfragen konnte von
vornherein diejenige Kurve bestimmt werden, welche die geringste Anzahl an
Bearbeitungspeers aufwies. Sofern die verteilte Berechnung nicht stärker ins
Gewicht fällt als die Kommunikation mit den Bearbeitungspeers, stellt der
Auswahlalgorithmus einen optimalen Lösungsansatz dar.

5.2. EXPERIMENT 2 — NACHRICHTENBESCHRÄNKUNG 67

5.2 Experiment 2 — Beschränkung der Nach-
richten

Nachdem aus dem ersten Experiment geschlussfolgert werden kann, wie gut
die Auswahl einer Indexstruktur mit dem heuristischen Auswahlalgorithmus
ist und dieser sich als optimal für die gestellten Anforderungen erwies, wer-
den nachfolgend die Eigenschaften der ersten Optimierung, der Nachrichten-
beschränkung bewertet.

Für das zweite Experiment wurde die zweite Hilbert-Kurve (siehe Tabel-
le 5.1 auf Seite 58) und eine Anfrage mit zwei Attributen der Kurve aus-
gewählt. Das heißt, es gibt ein Attribut in der Kurve, für dass der gesamte
Wertebereich angenommen werden muss. Dies erzeugt eine ausreichend große
Anzahl von Zonen, um die grundlegende Weiterleitung und die Nachrichten-
beschränkung zu vergleichen. Bei diesem Experiment wurde die verteilte Be-
rechnung deaktiviert. Die Ergebnisse sind in der Abbildung 5.4 auf Seite 68
zusammengetragen und werden nachfolgend erläutert.

Die Eigenschaften der beiden Weiterleitungen sollten sich in zwei Punk-
ten deutlich widerspiegeln. Zum einen ist die Latenz bei der grundlegenden
Weiterleitung sehr klein, da jeder Cluster mit einer eigenen Nachricht an
den zuständigen Peer gesendet und von dort aus linear Weitergeleitet wird.
Zum anderen ist die Anzahl der Nachrichten pro Weiterleitungsstufe bei der
Nachrichtenbeschränkung durch den Ausgangsgrad und die maximale Baum-
tiefe fest vorgegeben, weshalb bei einer großen Anzahl von Clustern, letztere
deutlich weniger Nachrichten pro Stufe haben sollte. Zudem gibt es bei der
grundlegenden Weiterleitung nur einige wenige Stufen, in der alle Cluster-
Nachrichten versendet werden.

Im Graphen mit dem Nachrichtenaufkommen pro Baumtiefe wird das
Nachrichtenaufkommen über alle Weiterleitungsstufen gemittelt dargestellt.
Es ist ersichtlich, die grundlegende Weiterleitung zeigt eine sehr große Anzahl
von Nachrichten pro Stufe, da die Anzahl der Nachrichten der Anzahl der
Cluster entspricht und es nur sehr wenige Stufen gibt. Bei einer sehr großen
Anzahl von Peers, werden die Werte etwas kleiner, weil jeder Peer für weniger
Bezeichner verantwortlich ist und die lineare Weiterleitung die Baumtiefe
erhöht. Die Wirkung der Nachrichtenbeschränkung zeigt sich dagegen in den
deutlich niedrigeren Werten. Das heißt, es werden nur eine geringe Anzahl
von Nachrichten pro Stufe versendet. Der Anstieg der Werte ergibt sich aus
dem Simulationsaufbau, bei dem die maximale Baumtiefe so gewählt ist, dass
die maximale Anzahl der parallelen Nachrichten zehn Prozent der Netzgröße
nicht übersteigt. Das Nachrichtenaufkommen wächst folglich mit der Größe
des Netzes.

68 KAPITEL 5. SYSTEMEVALUATION

Abbildung 5.4: Es werden Graphen der Simulationsergebnisse für den Ver-
gleich der grundlgenden Weiterleitung mit der Nachrichtenbeschränkung ge-
zeigt.

Die Beschränkung der maximalen Anzahl paralleler Nachrichten sollte zu
einer erhöhten Latenz führen. Dies kann im Graphen der durchschnittlichen
Latenz abgelesen werden. Da die parallele Nachrichtenanzahl der Beschrän-
kung mit der Netzgröße erhöht wird, sollte sich die Latenz der Beschränkung
an die der grundlegenden Weiterleitung annähern. Dies ist jedoch nicht der
Fall und hat mehrere Ursachen. Die zu versendenden Cluster werden bei der
Beschränkung in f Nachrichten aufgeteilt. Mit einer kleinen Netzgröße, ist
ein Peer für einen großen Bezeichnerbereich zuständig, weshalb diese f Nach-
richten sehr günstig sind, wie dem Graphen des Nachrichtenaufkommens pro
Bearbeitungspeer entnommen werden kann. Mit der wachsenden Anzahl an
Peers im Netz sinkt der Bezeichnerbereich eines jeden Peers. Damit erhöht
sich die Weiterleitungskette, auch wenn mehr parallele Nachrichten versendet
werden, was wiederum die Latenz erhöht. Zudem wird die maximale Paral-
lelität erst mit der maximalen Baumtiefe erreicht. Bei einem entsprechend

5.3. EXPERIMENT 3 — VERTEILTE BERECHNUNG 69

kleinen Ausgangsgrad f kann dies eine sehr große Baumtiefe erfordern. Dies
erhöht die Latenz zusätzlich. Ferner werden die Cluster bei der Aufteilung in
f Nachrichten zusammengefasst, wodurch die Weiterleitung ab der maxima-
len Baumtiefe unnötig lange Weiterleitungsketten erzeugen kann. Letzteres
kann im Graphen des Nachrichtenaufkommens pro Bearbeitungspeer erkannt
werden. Die Anzahl der Nachrichten pro Peer steigt im Falle der Nachrichten-
beschränkung nur sehr langsam mit der Netzgröße an, obwohl die Gesamtzahl
der abgearbeiteten Nachrichten linear mit der Netzgröße wächst. Dies lässt
darauf schließen, eine Zusammenfassung der Cluster wirkt sich günstig auf
das Nachrichtenaufkommen eines Peers aus, wobei sich die Latenz aufgrund
von längeren Weiterleitungsketten erhöht. Im Falle der grundlegenden Wei-
terleitung ist das Nachrichtenaufkommen bei kleinen Netzgröße bedenklich
hoch, weil jeder Peer einen sehr großen Bezeichnerbereich verwaltet und meh-
rere Cluster in diese fallen. Mit steigender Netzgröße und damit sinkender
Bezeicherbereiche verringert sich allerdings das Nachrichtenaufkommen. Hier
sei jedoch angemerkt, es sind nähere Untersuchungen nötig, um festzustellen,
ob es keine ungünstigen Bereiche einer Anfrage gibt, die diese Eigenschaft
nicht aufweisen.

Die Ergebnisse belegen, eine Nachrichtenbeschränkung ist aus zweierlei
Hinsicht sinnvoll. Zum einen aufgrund ihrer Definition, die maximale Anzahl
an parallelen Nachrichten zu beschränken, was sich im Nachrichtenaufkom-
men pro Baumtiefe niederschlägt. Zum anderen werden Cluster zusammen-
gefasst, die alle in den Bereich eines Peers fallen, was das Nachrichtenaufkom-
men eines jeden Peers sehr gering hält. Zwar steigt die Latenz im Vergleich
zur grundlegenden Weiterleitung an, doch ist die Differenz vernachlässigbar
im Verhältnis zum Nutzen.

5.3 Experiment 3 — verteilte Berechnung

Während das Verhalten der ersten Optimierung im vorherigen Kapitel an-
hand der Simulationsergebnisse bewertet wurde, findet in diesem Kapitel eine
Begutachtung der zweiten Optimierung statt. Hierbei handelt es sich um das
Verteilen der Berechnung aller Zonen, die für eine Anfrage berechnet werden
müssen. Die Berechnung wird für jeden Peer künstlich auf eine maximale An-
zahl von Zonen beschränkt, um eine unnötige Wartezeit beim Urheber der
Anfrage zu vermeiden.

Für die Simulation wurde die Netzgröße auf 1.000 Peers festgelegt und
die maximale Annäherungsstufe der zweiten Kurve schrittweise von 3 auf
9 erhöht. Der Exponent für die maximale Anzahl zu berechnender Zonen
namens B wurde von 16 auf 9 gesenkt, damit die Berechnung früher verteilt

70 KAPITEL 5. SYSTEMEVALUATION

Abbildung 5.5: Es werden Graphen der Simulationsergebnisse für die Bewer-
tung der verteilten Berechnung gezeigt.

wird. Die Anfrage wurde aus Experiment 2 übernommen. Die Anfrage wurde
einmal mit deaktivierter und einmal mit aktivierter verteilten Berechnung
durchgeführt.

Zuallererst ist die Rechenlast pro Bearbeitungspeer interessant, welche im
Graphen Rechenlast pro Bearbeitungspeer gezeigt wird. Diese findet sich zu-
sammen mit dem anderen Graphen zur durchschnittlichen Nachrichtengröße
in Abbildung 5.5 auf Seite 70. Aufgrund der Berechnungsformel für die An-
zahl der Zonen in einer Hilbert-Kurve 2k·d wächst die Anzahl der Zonen der
Anfrage in Bezug auf k exponentiell. Das heißt, ohne verteilte Berechnung
muss ein einzelner Peer die gesamte Rechenlast tragen, was zu einer sehr
langen Berechnungszeit führen kann. Im Graphen ist die Abarbeitung nur
mit der Nachrichtenbeschränkung als Optimierung zu sehen, welche stetig
exponentiell wächst, was erwartet wurde. Es sei auf die logarithmische Ska-
la der vertikalen Achse hingewiesen, weshalb das Wachstum auf den ersten
Blick linear erscheint. Zudem ist an der eingezeichneten Winkelhalbierenden
erkennbar, dass die anderen beiden Kurven deutlich stärker wachsen. Das
Absinken der Kurve für die verteilte Berechnung bei der Annäherungsstufe
5 zeigt, dass der ursprüngliche Peer seine festgelegte Rechenkapazität über-
schreiten würde und deshalb die Berechnung verteilt hat. Da mehr Peers an
der Berechnung beteiligt sind, fällt die Rechenlast pro Peer. Bei der Annähe-
rungsstufe 6 sinkt der Wert sogar noch weiter. Dies ist ein Hinweis für noch
mehr Berechnungspeers, die gemeinsam an der Berechnung der Zonen arbei-
ten. Anschließend wachsen beide Kurven wieder. Das weitere Wachstum der
Kurve ohne verteile Berechnung ist durch die Berechnungsformel begründet
und wird stetig weitergehen. Für die optimierte Kurve bleibt zu klären, ob
es wieder zu einer Absenkung kommen wird. Hierbei ist die Bedingung zu

5.3. EXPERIMENT 3 — VERTEILTE BERECHNUNG 71

beachten, dass jeder Peer zumindest die nächste Annäherungsstufe berech-
nen muss. Deshalb berechnet jeder Peer ab der 7. Annäherungsstufe mehr
Zonen, als mit die Beschränkung der verteilten Berechnung definiert wurde.
Dies wird durch den zweiten Graphen mit der durchschnittlichen Nachrich-
tengröße bestätigt. Die Anzahl der Cluster pro Nachricht steigt beim verteil-
ten Berechnen, wenn auch verzögert, exponentiell (beide Skalen sind normal).
Mit anderen Worten die ursprüngliche Anzahl der Zonen am Startknoten ist
bereits derart groß, dass die festgelegte Rechenlast deutlich überschritten ist,
der Peer jedoch mindestens die Zonen der nächsten Annäherungsstufe bere-
chen muss. Diese Zonen werden in f Nachrichten aufgeteilt und an andere
Peers zur weiteren Berechnung weitergeleitet. Jedoch ist die Anzahl der ent-
haltenen Zonen bereits so groß, dass jeder Peer wie der Urheber der Anfrage
verfahren wird, bis entweder die maximale Annäherungsstufe erreicht ist oder
die Cluster beim Empfang eine Anzahl von Zonen beinhalten, die nicht die
spezifizierte Rechenlast eines Peers überschreitet.

Abbildung 5.6: Die Graphen zeigen Histogramme der Rechenlast von Peers
im Netz. Wobei die verteilte Berechnung einmal deaktiviert (links) und ein-
mal aktiviert ist (rechts).

Die Simulationsergebnisse zeigen, für die Verteilung der Berechnung ist
nicht nur eine Begrenzung der Rechenlast pro Peer erforderlich. Die Weiterlei-
tungsparameter der Nachrichtenbeschränkung spielen auch eine entscheidene
Rolle. Je größer der Ausgangsgrad, desto kleiner wird die Anzahl an Zonen,
welche mit den f Nachrichten versendet werden. Die maximale Baumtie-
fe ist ebenfalls von Bedeutung. Da die Anzahl der Zonen mit jeder weiteren
Annäherungsstufe exponentiell wächst, wäre eine Weiterleitung mit exponen-
tiellem Wachstum der Nachrichten notwendig, um die Nachrichtengröße zu
beschränken. Dies ist mit einer sehr großen maximalen Baumtiefe gegeben,
da die erreichte Anzahl an parallelen Nachrichten durch die Berechnungsfor-

72 KAPITEL 5. SYSTEMEVALUATION

mel f l begrenzt wird, welche ebenfalls ein exponentielles Wachstum aufweist.
Allerdings führt dies zu einer Nachrichtenmenge, die in Bezug zu der Anzahl
der Zonen und damit Cluster steht. Das widerspricht der Grundannahme
der Nachrichtenbeschränkung, wie sie in dieser Arbeit gegeben ist (verglei-
che Kapitel 4.5.3 ab Seite 49).

Abbildung 5.7: Hier werden das Häufigkeitshistogramm für die Rechenlast so-
wie die Bezeichnerbereiche der Peers gegenübergestellt. Die Bereiche werden
angegeben als die Entfernung zweier Bezeichner.

Ein wesentlicher Aspekt der verteilten Berechnung ist, welche Peers dar-
an beteiligt werden. Ein Ansatz ist, die Berechnung von Peers durchführen
zu lassen, die auch für die enthaltenen Zonen verantwortlich sind. Auf diese
Weise wären die Bezeichner schneller bei ihrem Verwalter. Für sehr populäre
Daten würde der verantwortliche Peer allerdings nicht nur mit einer höhe-
ren Anfragequote, sondern zusätzlich auch mit Berechnungen belastet. Daher
wird die Berechnung rein zufällig im Netz verteilt. In Abbildung 5.6 auf Sei-
te 71 sind zwei Histogramme zusehen, wobei die verteilte Berechnung beim
rechten zum Einsatz kommt und beim linken nicht. Hierfür wurden die oben
beschriebenen Anfragen 5.000 mal von zufälligen Knoten aus durchgeführt.
Im Falle ohne verteilte Berechnung ist eine Gleichverteilung der Rechenlast
zu sehen. Wird dagegen die verteilte Berechnung verwendet, scheint es keine
gute Verteilung zu geben. Hierzu sollte erwähnt werden, eine Anfrage startet
immer an einem Peer, weshalb die Lastverteilung ausgegelichen ist. Bei einer
verteilten Berechnung wird hingegen ein Bezeichner zufällig gewählt, an den
die Anfrage zur Berechnung weitergeleitet wird. Wird das Histogramm für
die verteilte Berechnung unter der Annahme gesehen, der verwendete Pseu-
dozahlenzufallsgenerator erzeugt eine ausreichend gute Gleichverteilung, so
spiegeln sich im Histogramm die Bezeichnerbereich der einzelnen Peers wi-
der. Diese Annahme trifft tatsächlich zu, wie die Gegenüberstellung des Hi-

5.3. EXPERIMENT 3 — VERTEILTE BERECHNUNG 73

stogramms mit den Bezeichnerbereichen in der Abbildung 5.7 auf Seite 72
bestätigt. Damit entsteht zwar eine Gleichverteilung der Berechnung aller-
dings nach Bezeichner und nicht nach Peers. Besitzt ein Peer einen großen
Bezeichnerbereich erhält er ebenfalls eine große Anzahl an Berechnungsan-
fragen.

Wie sich im ersten Experiment gezeigt hat, führt die Verteilung der Be-
rechnung zu einer größeren Gesamtzahl der Hops und letztendlich auch zu
einer höheren Latenz. Hinzu kommt die Beschränkung, mindestens die nächs-
te Annäherungsstufe berechnen zu müssen. Zukünftige Untersuchungen soll-
ten einerseits versuchen, die beiden Optimierungen zu verschmelzen, so dass
die Nachrichtenbeschränkung der verteilten Berechnung entgegenkommt, so-
wie andererseits die Berechnung zu verfeiern, damit ein Peer seine definierte
maximale Rechenlast einhalten kann. Die Verteilung der Berechnung ori-
entiert sich an den zugewiesenen Bezeichnerbereichen im Chord-Ring. Sind
diese nicht gleichverteilt, werden Peers mit der Verantwortlichkeit für mehr
Bezeichner in Bezug auf die verteilte Berechnung benachteiligt. Dies wirkt al-
lerdings einem Lastausgleich entgegen, der populäre Bezeichnerbereiche über
mehrere Knoten streut und weniger populäre Bezeichnerbereiche auf Peers
konzentriert. Die Rechenlast wird auf den Peers mit den populären Bereichen
durch die Anfragen an sich erzeugt und auf den Peers mit weniger populären
Anfragen durch verteilte Berechnungen.

74 KAPITEL 5. SYSTEMEVALUATION

Kapitel 6

Zusammenfassung

Peer-to-Peer-Netze sind in den letzten Jahren zu flexiblen, skalierbaren und
effizienten Systemen herangereift, die in dynamischen Netzen für eine effizien-
te Suche eingesetzte werden. Es wurden Ansätze entwickelt, die multidimen-
sionale Bereichsanfrage ermöglichen. Die Aufgabe dieser Diplomarbeit ist die
Optimierung solcher multidimensionaler Bereichsanfragen, die auf raumfül-
lenden Kurven und verteilten Hash-Tabellen basieren. Die bisherigen Ent-
wicklungen auf diesem Gebiet bilden Indexstrukturen über alle Attribute im
jeweiligen System und bieten Bereichsanfragen mit weniger Attributen daher
keinen optimalen Index. Es wurde gezeigt, eine solche Lösung ist mit einem
Mehraufwand in Bezug auf die zu kontaktierenden Peers verbunden.

Die Optimierung besteht darin, Anfragen einen optimalen Index zu bie-
ten. Hierfür werden mittels einer Heuristik Attributskombinationen gebildet.
Aus diesen muss die für eine Anfrage am besten passende Kombination aus-
gewählt werden. Dafür wurde sowohl eine Metrik namens Zonenverhältnis
als auch ein heuristischer Auswahlalgorithmus vorgestellt und theoretische
begründet. Zudem wurden zwei weitere Optimierungen eingeführt, welche
die maximale Anzahl von Nachrichten im Peer-to-Peer-Netz begrenzen sowie
aufwändige Berechnungen verteilen. Eine Evaluation wurde mithilfe einer
Simulation durchgeführt.

Die Ergebnisse der Simulation bestätigen die Wirkungsweise der Attri-
butskombinationen in Bezug auf die Anzahl der an der Abarbeitung einer
Anfrage beteiligten Peers. Damit stellt die hier vorgestellte Optimierung ei-
ne optimale Lösung dar. Jedoch hat sich gezeigt, kann dies durch eine große
Anzahl an zu berechnenden Zonen getrübt werden, da die Berechnungspeers
einen größeren Teil an der Bearbeitung ausmachen können als die Bearbei-
tungspeers. Daher ist ist die hier vorgestellte Optimierung allein nicht aus-
reichend.

Die Nachrichtenbeschränkung, mit der die maximale Anzahl an parallelen

75

76 KAPITEL 6. ZUSAMMENFASSUNG

Nachrichten im Netz garantiert wird, hat sich als eine effektive Optimierung
herausgestellt, auch wenn die Latenz etwas ansteigt. Denn letzterer Umstand
ist im Vergleich zum Nutzen akzeptierbar.

Die verteilte Berechnung dagegen hat einen großen Einfluss auf die Ge-
samtzahl der Hops und damit auch auf die Latenz. Jedoch sind diese Effekte
tolerierbar, wenn bedacht wird, dass ein Peer sehr lange wenn nicht sogar
deutlich länger für die alleinige Berechnung aller Zonen braucht. Die da-
mit eingeführte Beschränkung der maximal zu berechnenden Zonen, wird
durch die künstlich eingeführte Notwendigkeit, mindestens die nächste An-
näherungsstufe zu berechnen für eine große Anzahl von Clustern unwirksam,
wie sich im dritten Experiment herausgestellt hat.

Alles in allem wurde deutlich gezeigt, eine Menge von kleinen raumfül-
lenden Kurven ist effizienter als eine sehr große Kurve. Allerdings bedeutet
dies einen größeren Speicherbedarf im Netz, welcher jedoch tolerierbar ist.
Für die Bildung der Attributskombinationen wurde eine Heuristik vorgestellt
und der präsentierte Auswahlalgorithmus arbeitet optimal.

Kapitel 7

Ausblick

In zukünftigen Arbeiten sollte zuallererst die verteilte Berechnung zusammen
mit der Nachrichtenbeschränkung überdacht werden. Insbesondere raumfül-
lende Kurven mit einer großen Zahl an Dimensionen machen eine Berchnung
einer sehr großen Anzahl von Clustern notwendig. Hier ist definitiv eine wei-
tere Optimierung notwendig. Hierzu gehört auch eine Berechnung ohne den
Zwang, die zumindest die nächste Annäherungsstufe berechnen zu müssen,
wobei darauf geachtet werden muss, Nachrichten nicht ewig im Chord-Ring
weiterleiten zu lassen.

Der größere Speicherverbrauch des Systems kann für eine höhere Aus-
fallsicherheit genutzt werden. Während andere Systeme explizit Redundanz
einfügen müssen, ist diese im Systemmodell dieser Arbeit implizit vorhanden.
Es bedarf allerdings einer Strategie, wie dies Redundanz genutzt wird.

Die vorgestellte Heuristik ist im Vergleich zu den Einflussfaktoren simpel
gestatltet. Hier sind weitere Untersuchungen notwendig, wie sich verschie-
dene Attributskombinationen gegenseitig beeinflussen, um eine Menge an
hochwertigeren Attributskombinationen zu erhalten, die für möglichst viele
Anfragen eine optimale Kombination bieten.

Die Zonen der raumfüllenden Kurven werden zwar aufgrund der Ska-
lierung der Kurve auf den Chord-Ring gleichmäßig verteilt, allerdings wird
dabei nicht die Verteilung der Datenwerte berücksichtigt. Hierfür ist ein Last-
ausgleich erforderlich, welcher ebenfalls andere Bereiche des Systemmodells
betrifft. Dies wurde an den entsprechenden Stellen in der Ausarbeitung ver-
merkt.

77

78 KAPITEL 7. AUSBLICK

Anhang A

Beweisführungen

A.1 Anzahl der Attributskombinationen

Die Formel aus Kapitel 4.3.1 „Bildung von Attribut-Untermengen“ lässt sich
wie folgt herleiten:

∀n, k ∈ N : S =
n∑

k=2

(
n

k

)
= 2n − n− 1.

Es wird die Summe aller Kombinationen für k bis n Attribute mithilfe des
Binomialkoeffizienten berechnet. Die Formel ganz rechts lässt sich entweder
durch Berechnung mehrerer Werte entdecken oder berechnen, wenn an eine
Potenzmenge gedacht wird. Ein Attribut ist entweder vorhanden oder nicht.
Das sind zwei Möglichkeiten. Bei n Attributen ergeben sich insgesamt 2·2·. . .·
2 = 2n Möglichkeiten. Wird die Anzahl der Möglichkeiten für die leere Menge
sowie eine einelementige Menge abgezogen ergibt sich die Berechnungsformel
2n − n− 1. �

A.2 Mehrfach belegte Bezeichner

Die Anzahl der überlappenden Indices bei der direkten Abbildung (2k·d mod
2m) ist 2k·d − 2m. Die Anzahl der überlappenden Indices bei der Skalierung
(s · 2k·d) ist ebenfalls 2k·d − 2m, da die Anzahl der resultierenden Indices von
der Gesamtzahl abgezogen werden muss. Dies zeigt, bei beiden Abbildungen
handelt es sich um die gleiche Anzahl an überlappenden Indices. �

79

80 ANHANG A. BEWEISFÜHRUNGEN

A.3 Maximale Anzahl der parallelen Nachrich-
ten

Die maximale Anzahl der parallelen Nachrichten für einen Ausgangsgrad f
und eine maximale Baumtiefe l lässt sich wie folgt berechnen. Der erste Peer
sendet f Nachrichten. Es wird angenommen, ein Peer erhält höchsten eine
Nachricht. Damit ergeben sich f Peers, die wiederum f Nachrichten senden,
womit es bereits f ·f = f 2 Nachrichten sind. In der nächsten Stufe versenden
f 2 Peers erneut f Nachrichten. Dies ergibt f 2 · f = f 3 als maximale Anzahl
an Nachrichten. Dies wird soweit fortgeführt, bis eine Baumtiefe von l und
damit eine maximale Anzahl an parallelen Nachrichten von f l erreicht ist. �

Abbildungsverzeichnis

2.1 Die Abbildungen zeigen das Client-Server-Modell (links) sowie
das Peer-to-Peer-Modell (rechts). 14

2.2 Zu sehen sind Knoten in einer verteilte Hash-Tabelle mitsamt
zugeordneten Daten. Die Zahlen stellen die Bezeichner dar.
Mit m = 6 ist der Wertebereich des Bezeichners [0, 63]. 17

2.3 Neben einem Chord-Ring mit m = 6 ist zusätzlich die Finger-
Tabelle des Knotens mit dem Bezeichner (identifier, ID) 15 zu
sehen. 18

2.4 Es werden die Hilbert-, Peano- sowie Gray-Kurven als Beispie-
le für raumfüllende Kurven dargestellt. 20

2.5 Es wird die rekursive Konstruktion der Hilbert-Kurve in den
ersten drei Annäherungsstufen gezeigt. 21

2.6 Zu sehen ist eine beispielhafte Bereichsanfrage, welche die Zo-
nen 5, 8, 9 sowie 12 auf der Hilbert-Kurve ergibt, und wie der
ursprüngliche Bereich auf die verteilte Hash-Tabelle abgebil-
det wird. Dabei zeigt sich die Lokalität des Clusters 8–9. . . . 23

4.1 Das Systemmodell besteht aus drei Schichten. Diese sind die
benutzende Anwendung (oben), der Ansatz dieser Diplomar-
beit (Mitte) sowie die verwendete verteilte Hash-Tabelle (un-
ten). Der Datenindexraum enthält die spezialisierten raumfül-
lenden Kurven (K), die von der Datenplatzierungs- und An-
fragekomponente benutzt werden. 30

4.2 Es ist die Abbildungskette zwischen den einzelnen Räumen
zu sehen. Der Punkt markiert ein Datenobjekt. Zuerst wird
der Attributsraum auf den Einheitswürfel der raumfüllenden
Kurve abgebildet (1.). Daraufhin wird der Hilbert-Bezeichner
des Datenobjektes berechnet (2.). Dies entspricht einer Zo-
ne auf der Kurve, welche grau gefärbt ist. Abschließend wird
die raumfüllende Kurve auf den Bezeichner-Ring des Chord-
Protokolls abgebildet (3.). 38

81

82 ABBILDUNGSVERZEICHNIS

4.3 Die Schaubilder zeigen die drei vorgestellten Abbildungsmög-
lichkeiten der 2k·d Hilbert-Bezeichner auf die 2m Bezeichner
des Chord-Rings. 40

4.4 Es ist eine grundlegende Weiterleitung einer Anfrage zu sehen,
welche im Peer mit dem Bezeichner 3 ihren Ursprung hat. Die
Antwortnachrichten wurden zu Gunsten der Übersicht wegge-
lassen. 49

4.5 Es ist die erste Optimierung, die Nachrichtenbeschränkung,
beim Weiterleiten einer Anfrage zu sehen, welche im Peer mit
dem Bezeichner 3 ihren Ursprung hat. Die Antwortnachrichten
wurden zu Gunsten der Übersicht weggelassen. Der Ausgangs-
grad f und die Baumtiefe l sind beide 2. Wie zu sehen ist, teilt
der Peer mit dem Bezeichner 41 den Cluster nicht mehr auf,
weil hier bereits die Baumtiefe von 2 erreicht ist. 50

4.6 Es ist die Baumansicht der ersten Optimierung beim Weiter-
leiten einer Anfrage zu sehen, welche im Peer mit dem Bezeich-
ner 3 ihren Ursprung hat. Die Antwortnachrichten wurden zu
Gunsten der Übersicht weggelassen. Der Ausgangsgrad f und
die Baumtiefe l sind beide 2. Wie zu sehen ist, teilt der Peer
mit dem Bezeichner 41 den Cluster nicht mehr auf, weil hier
bereits die Baumtiefe von 2 erreicht ist. 51

4.7 Die Darstellung zeigt den Einfluss der Parameter Ausgangs-
grad f sowie Baumtiefe l in Bezug auf die Anzahl von Weiter-
leitungen, bis eine gewünschte maximale Anzahl von Nachrich-
ten erreicht ist. Entweder wird f groß gewählt, womit kleine
l ausreichen (links). Oder f wird klein gewählt, was große l
erforderlich macht (rechts). 52

4.8 Die verteilte Berechnung erhöht die Anzahl der Weiterleitun-
gen und damit die Baumtiefe. Sie beginnt am Ursprungsknoten
einer Anfrage (dunkel gefärbte Baumspitze). Die Parameter
Ausgangsgrad f und Baumtiefe l beeinflussen die Parallelität
der Berechnung. 54

5.1 Es werden Graphen der Simulationsergebnisse für die erste
Anfrage q1 gezeigt. 62

5.2 Es werden Graphen der Simulationsergebnisse für die zweite
Anfrage q2 gezeigt. 64

5.3 Es werden Graphen der Simulationsergebnisse für die dritte
Anfrage q3 gezeigt. 66

ABBILDUNGSVERZEICHNIS 83

5.4 Es werden Graphen der Simulationsergebnisse für den Ver-
gleich der grundlgenden Weiterleitung mit der Nachrichtenbe-
schränkung gezeigt. 68

5.5 Es werden Graphen der Simulationsergebnisse für die Bewer-
tung der verteilten Berechnung gezeigt. 70

5.6 Die Graphen zeigen Histogramme der Rechenlast von Peers
im Netz. Wobei die verteilte Berechnung einmal deaktiviert
(links) und einmal aktiviert ist (rechts). 71

5.7 Hier werden das Häufigkeitshistogramm für die Rechenlast so-
wie die Bezeichnerbereiche der Peers gegenübergestellt. Die
Bereiche werden angegeben als die Entfernung zweier Bezeich-
ner. 72

84 ABBILDUNGSVERZEICHNIS

Literaturverzeichnis

[Andrzejak und Xu 2002] Andrzejak, Artur ; Xu, Zhichen: Scalable, Ef-
ficient Range Queries for Grid Information Services. In: P2P ’02: Procee-
dings of the Second International Conference on Peer-to-Peer Computing.
Washington, DC, USA : IEEE Computer Society, 2002, S. 33. – ISBN
0-7695-1810-9

[Bharambe u. a. 2004] Bharambe, A. ; Agrawal, M. ; Seshan, S.: Mer-
cury: Supporting Scalable Multi-Attribute Range Queries. In: Proceedings
of the SIGCOMM Symposium on Communications Architectures and Pro-
tocols. Portland, OR, Aug 2004

[Butz 1971] Butz, A. R.: Alternative Algorithm for Hilbert’s Space-Filling
Curve. In: IEEE Trans. Comput. 20 (1971), Nr. 4, S. 424–426. – ISSN
0018-9340

[Cai u. a. 2003] Cai, Min ; Frank, Martin ; Chen, Jinbo ; Szekely, Pe-
dro: MAAN: A Multi-Attribute Addressable Network for Grid Information
Services. In: GRID ’03: Proceedings of the Fourth International Workshop
on Grid Computing. Washington, DC, USA : IEEE Computer Society,
2003, S. 184. – ISBN 0-7695-2026-X

[Datta u. a. 2005] Datta, Anwitaman ; Hauswirth, Manfred ; John,
Renault ; Schmidt, Roman ; Aberer, Karl: Range Queries in Trie-
Structured Overlays. In: P2P ’05: Proceedings of the Fifth IEEE Inter-
national Conference on Peer-to-Peer Computing. Washington, DC, USA :
IEEE Computer Society, 2005, S. 57–66. – ISBN 0-7695-2376-5

[Dürr 2007] Dürr, Frank: Konzepte der Peer-to-Peer-Systeme. Vorle-
sung Sommersemester 2007, Institut für Parallele und Verteilte Systeme,
Universität Stuttgart. 2007

[Ganesan u. a. 2004] Ganesan, Prasanna ; Yang, Beverly ; Garcia-
Molina, Hector: One torus to rule them all: multi-dimensional queries in

85

86 LITERATURVERZEICHNIS

P2P systems. In: WebDB ’04: Proceedings of the 7th International Work-
shop on the Web and Databases. New York, NY, USA : ACM, 2004, S. 19–
24

[Gish u. a. 2007] Gish, Adam S. ; Shavitt, Yuval ; Tankel, Tomer: Geo-
graphical Statistics and Characteristics of P2P query strings. In: IPTPS
’07: Online Proceedings of 6rd International Workshop on Peer-to-Peer
Systems, 2007

[Gotsman und Lindenbaum 1996] Gotsman, C. ; Lindenbaum, M.:
the metric properties of discrete space-filling curves. 1996. – URL
citeseer.ist.psu.edu/gotsman96metric.html

[Hilbert 1891] Hilbert, David: Über die stetige Abbildung einer Linie auf
ein Flächenstück. In: Mathematische Annalen, 1891, S. 459–460

[Karger u. a. 1997] Karger, David ; Lehman, Eric ; Leighton, Tom ;
Panigrahy, Rina ; Levine, Matthew ; Lewin, Daniel: Consistent ha-
shing and random trees: distributed caching protocols for relieving hot
spots on the World Wide Web. In: STOC ’97: Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing. New York, NY,
USA : ACM, 1997, S. 654–663. – ISBN 0-89791-888-6

[Kemper und Eikler 2001] Kemper, Alfons ; Eikler, André: Datenbank-
systeme: eine Einführung. 4. überarb. und erw. München : Oldenburg,
2001

[Kesselman und Foster 1998] Kesselman, Carl ; Foster, Ian: The Grid:
Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publis-
hers, November 1998. – ISBN 1558604758

[Klemm u. a. 2004] Klemm, Alexander ; Lindemann, Christoph ; Ver-
non, Mary K. ; Waldhorst, Oliver P.: Characterizing the query behavior
in peer-to-peer file sharing systems. In: IMC ’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement. New York, NY,
USA : ACM, 2004, S. 55–67. – ISBN 1-58113-821-0

[Lawder 2000] Lawder, J.: Calculation of Mappings between One and n-
dimensional Values Using the Hilbert Space-Filling Curve. 2000. – URL
citeseer.ist.psu.edu/lawder00calculation.html

[Lv u. a. 2002] Lv, Qin ; Cao, Pei ; Cohen, Edith ; Li, Kai ; Shenker,
Scott: Search and replication in unstructured peer-to-peer networks. In:

LITERATURVERZEICHNIS 87

ICS ’02: Proceedings of the 16th international conference on Supercompu-
ting. New York, NY, USA : ACM, 2002, S. 84–95. – ISBN 1-58113-483-5

[Mahlmann und Schindelhauer 2007] Mahlmann, Peter ; Schindelhau-
er, Christian: Peer-to-Peer-Netzwerke: Algorithmen und Methoden. Ber-
lin, Heidelberg : Springer-Verlag, 2007

[Mokbel u. a. 2003] Mokbel, Mohamed F. ; Aref, Walid G. ; Kamel,
Ibrahim: Analysis of Multi-Dimensional Space-Filling Curves. In: Geoin-
formatica 7 (2003), Nr. 3, S. 179–209. – ISSN 1384-6175

[Moon u. a. 2001] Moon, Bongki ; Jagadish, H. v. ; Faloutsos, Chri-
stos ; Saltz, Joel H.: Analysis of the Clustering Properties of the Hilbert
Space-Filling Curve. In: IEEE Trans. on Knowl. and Data Eng. 13 (2001),
Nr. 1, S. 124–141. – ISSN 1041-4347

[PeerSim 2006] PeerSim: PeerSim: A Peer-to-Peer Simulator. 2006. –
URL http://peersim.sourceforge.net

[Ramabhadran u. a. 2004] Ramabhadran, Sriram ; Hellerstein, Jo-
seph ; Ratnasamy, Sylvia ; Shenker, Scott: Prefix Hash Tree - An
Indexing Data Structure over Distributed Hash Tables. In: PODC 2004:
Twenty-Third Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, 2004

[Ripeanu 2001] Ripeanu, Matei: Peer-to-Peer Archi-
tecture Case Study: Gnutella Network. 2001. – URL
citeseer.ist.psu.edu/ripeanu01peertopeer.html

[Sagan 1994] Sagan, Hans: Space-Filling Curves. New York, Berlin, Hei-
delberg, London : Springer-Verlag, 1994

[Saroiu u. a. 2003] Saroiu, Stefan ; Gummadi, Krishna P. ; Gribble,
Steven D.: Measuring and analyzing the characteristics of Napster and
Gnutella hosts. In: Multimedia Syst. 9 (2003), Nr. 2, S. 170–184. – ISSN
0942-4962

[Schmidt und Parashar 2003] Schmidt, Cristina ; Parashar, Manish:
Flexible Information Discovery in Decentralized Distributed Systems. In:
HPDC ’03: Proceedings of the 12th IEEE International Symposium on High
Performance Distributed Computing. Washington, DC, USA : IEEE Com-
puter Society, 2003, S. 226. – ISBN 0-7695-1965-2

88 LITERATURVERZEICHNIS

[Shu u. a. 2005] Shu, Yanfeng ; Ooi, Beng C. ; Tan, Kian-Lee ; Zhou,
Aoying: Supporting Multi-Dimensional Range Queries in Peer-to-Peer Sys-
tems. In: P2P ’05: Proceedings of the Fifth IEEE International Conference
on Peer-to-Peer Computing. Washington, DC, USA : IEEE Computer So-
ciety, 2005, S. 173–180. – ISBN 0-7695-2376-5

[Stoica u. a. 2001] Stoica, Ion ; Morris, Robert ; Karger, David ;
Kaashoek, Frans ; Balakrishnan, Hari: Chord: A Scalable Peer-To-
Peer Lookup Service for Internet Applications. In: Proceedings of the 2001
ACM SIGCOMM Conference, 2001, S. 149–160

[Tanenbaum 2000] Tanenbaum, Andrew S.: Computernetzwerke. 3. revi-
dierte Auflage. München : Pearson Studium, 2000

[U.S. Dept. Commerce/NIST und National Technical Information Service
1995] U.S. Dept. Commerce/NIST ; National Technical Infor-
mation Service: Secure Hash Standard. 1995

[Yatin Chawathe and Sylvia Ratnasamy and Lee Breslau and Nick Lanham
and Scott Shenker 2003] Yatin Chawathe and Sylvia Ratnasamy
and Lee Breslau and Nick Lanham and Scott Shenker: Making
gnutella-like P2P systems scalable. In: SIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols
for computer communications. New York, NY, USA : ACM, 2003, S. 407–
418. – ISBN 1-58113-735-4

Erklärung

Hiermit versichere ich, diese Arbeit selbständig verfasst und
nur die angegebenen Quellen benutzt zu haben.

Unterschrift:

Stuttgart, 2008–08–04

