
Institut für Parallele und Verteilte Systeme

Abteilung Anwendersoftware

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 2983

Einsatz unscharfer
Suchstrategien für Datenbanken

in betriebswirtschaftlichen
Webanwendungen

Dennis Scheck

Studiengang: Softwaretechnik

Prüfer: Prof. Dr.-Ing. habil. Bernhard Mitschang

Betreuer: Dipl.-Inf. Alexander Moosbrugger
IPVS, Universität Stuttgart

Dr. Elke Schweizer
CI/AFJ, Robert Bosch GmbH

begonnen am: 3. November 2009

beendet am: 5. Mai 2010

CR-Klassifikation: H.3.3, H.2.8

Abstract

Zwei häufige Probleme bei datenintensiven Anwendungen werden durch die übli-
cherweise verwendete exakte Suche verursacht. Zum einen können unterschiedliche
Schreibweisen beim Anlegen und späteren Suchen eines Datensatzes das Auffinden
erschweren oder gar unmöglich machen. Zum anderen können dadurch zahlreiche
Dubletten entstehen, was bei betriebswirtschaftlichen Anwendungen in großen Unter-
nehmen viele weitere Probleme nach sich ziehen kann.

In dieser Arbeit werden verschiedene phonetische und distanzbasierte Methoden
zur unscharfen Suche betrachtet und diverse Möglichkeiten des Einsatzes in Web-
Applikationen evaluiert. Anhand der gewonnenen Erkenntnisse wird ein Prototyp
implementiert, in dem Suche, dublettenfreie Anlage und Abgleich von Objekten in
einem Stammdatensystem mit Hilfe von Hibernate Search unter Verwendung von
Double Metaphone als phonetisches Verfahren und distanzbasierter Verfahren realisiert
werden.

3

Inhaltsverzeichnis

1 Einleitung 9

2 Grundlagen 11
2.1 Phonetische Verfahren . 11

2.1.1 Soundex . 12
2.1.2 Daitch-Mokotoff-Soundex . 15
2.1.3 Kölner Phonetik . 16
2.1.4 Weitere Soundex-basierte Algorithmen 19
2.1.5 Match Rating Approach . 19

2.2 Distanzverfahren . 22
2.2.1 Schreibmaschinendistanz . 22
2.2.2 Hamming-Distanz . 24
2.2.3 Levenshtein-Distanz . 25
2.2.4 Jaro-Winkler-Übereinstimmung 27

2.3 Vergleich der Verfahren . 29
2.4 Apache Lucene . 31

2.4.1 Erstellen eines Index . 32
2.4.2 Suche im Index . 34
2.4.3 Apache Solr . 37

2.5 Hibernate Search . 37
2.6 BOSCH OpenJava Platform . 38

3 Evaluierung verschiedener Lösungsansätze 41
3.1 Unscharfe Suche mit Hilfe eines RDBMS 42

3.1.1 MySQL . 42
3.1.2 Oracle . 46

3.2 Apache Lucene . 52
3.3 Ergebnis der Evaluierung . 54

4 Implementierung 55

5

4.1 Vergleich Ist- und Soll-Architektur bei der Suche in Web-Anwendungen
im BOSCH OpenJava Framework . 55

4.2 Notwendige Projekteinstellungen zur Nutzung von Hibernate Search im
BOSCH OpenJava Framework . 58

4.3 Erstellen und Verwalten des Lucene-Index 59
4.4 Vorüberlegungen zur Verbesserung der Suchergebnisse 62
4.5 Notwendige Erweiterungen an Hibernate Search und Lucene zur un-

scharfen Suche . 63
4.6 Erstellen eines Prototyps . 66

4.6.1 Unscharfe Suche nach Objekten 66
4.6.2 Dublettenlose Neuanlage von Stammdaten 71
4.6.3 Zusammenführung mit redundanten Daten aus anderen Systemen 72

5 Test und Bewertung der Implementierung 75
5.1 Test und Bewertung der Suchgeschwindigkeit 75
5.2 Test und Bewertung der Trefferqualität . 77

6 Zusammenfassung und Ausblick 79

A Daitch-Mokotoff Soundex Kodier-Schema 85

6

Abbildungsverzeichnis

2.1 Schema der Indexerstellung mit Lucene 32
2.2 Lucene Indexsuche . 34
2.3 Hibernate Search Schema nach [hibb] . 38

4.1 Ist-Architektur für die Suche in Web-Anwendungen bei CI/AFJ mit
OpenJava . 56

4.2 Architektur der Suche in Web-Anwendungen bei CI/AFJ mit OpenJava
bei Verwendung von Hibernate Search . 58

4.3 Attributbezogene Suchmaske für die unscharfe Suche 67
4.4 Baum aus Query-Objekten für die Suche nach Name=„Meier“ und

Ort=„Hamburg“ . 67
4.5 Suchmaske für die unscharfe Suche über alle Attribute 68
4.6 Baum aus Query-Objekten für die Suche nach „Meier Hamburg“ 70
4.7 Anzeige möglicher Duplikate beim Anlegen eines neuen Kundenkontos 71
4.8 Anzeige eines potentiellen übereinstimmenden Datensatz 74

Tabellenverzeichnis

2.1 Soundex Codierschema . 13
2.2 Codierschema der Kölner Phonetik . 17
2.3 Schwellenwerte für den Match Rating Approach 20
2.4 Vergleich der Verfahren . 30

5.1 Geschwindigkeitsvergleich von unscharfer und scharfer Suche im Prototyp 76
5.2 Vergleich der Anzahl und Qualität der Treffer 78

7

A.1 Daitch-Mokotoff Soundex Kodier-Schema 85

Verzeichnis der Beispiele

2.1 Namen codiert mit Soundex . 14
2.2 Namen codiert nach Daitch-Mokotoff im Vergleich zu Soundex 16
2.3 Namen codiert nach Kölner Phonetik im Vergleich zu Soundex 18
2.4 Überprüfung der Ähnlichkeit jeweils zweier Namen nach Match Rating

Approach . 21
2.5 Tastaturdistanz zwischen jeweils zwei Namen 23
2.6 Hamming-Distanz zwischen jeweils zwei Namen 24
2.7 Berechnung der Levenshtein-Distanz mit Hilfe einer Matrix 26
2.8 Jaro-Winkler-Übereinstimmung jeweils zweier Namen 28

Verzeichnis der Listings

4.1 Notwendige Einstellungen in persistence.xml 59
4.2 Minimalbeispiel für Hibernate Search Annotationen (am Beispiel der

Entity Foo) . 61
4.3 Manuelle Indizierung von Objekten (am Beispiel der Entity Customer) . 62
4.4 Definition des phonetischen Analyzers . 64
4.5 Ein Objektattribut in mehrere Felder indizieren 64
4.6 Aufbau einer Lucene Query für ein (Doppel-)Feld 65
4.7 Abfrage des Scores zursätzlich zu den Treffern 66

8

Bevor man beginnt, bedarf es der
Überlegung und, sobald man
überlegt hat, rechtzeitiger
Ausführung.

– Sallust

1 Einleitung

Immer häufiger treten in Projekten der Abteilung CI/AFJ direkt Kundenwünsche nach
einer unscharfen Suche auf oder wäre eine unscharfe Suchmethode zur Implementie-
rung weiterer Funktionen, wie z. B. Dublettenerkennung und -vermeidung, hilfreich.

Der dringlichste Wunsch war eine unscharfe Suche über Kundendaten. “Meyer oder
Maier? Oder gar Mayer?„ – „Nein, Meier “. Diese Dialoge sollten der Vergangenheit
angehören.

Als Reaktion auf die immer wiederkehrenden Anfragen wurde diese Arbeit in Auftrag
gegeben. Der Fokus liegt dabei allein auf der unscharfen Suche in Adressdaten, da hier
andere Anforderungen gestellt und andere Algorithmen zur Verfügung stehen als z.B.
für eine unscharfe Volltextsuche.

Die unscharfe Suche auf Stammdaten wird dabei in verschiedenen Anwendungsszena-
rien benötigt, auf die auch in dieser Arbeit eingegangen werden soll.

Zum einen sollen bei einer Suche eines Kunden, Lieferanten oder Mitarbeiters auch
diejenigen gefunden werden, die ähnlich geschrieben werden. Damit soll einerseits
vermieden werden, dass Tippfehler beim Anlegen oder beim Suchen das erneute
Auffinden unmöglich machen, aber andererseits auch Daten gefunden werden, wenn
man die genaue Schreibweise nicht kennt, weil man den Namen nur gehört oder in
Erinnerung hat und nicht geschrieben vor sich sieht.

Ein zweiter Anwendungsfall ist die Vermeidung von Dubletten. Beim Anlegen von neuen
Stammdaten passiert es immer wieder, dass mehrere Konten für einen Kunden ange-
legt werden. Auch hier stößt man wieder auf die selben Probleme wie bei der Suche.
Darum soll vor der Anlage eines neuen Datensatzes unscharf überprüft werden, ob ein
ähnlicher Datensatz nicht bereits schon vorhanden ist.

Der dritte zu berücksichtigende Anwendungsfall ist das Zusammenführen von Datensät-
zen aus unterschiedlichen Datenquellen. In vielen Projekten müssen Daten aus anderen
Datenquellen mit Datensätzen aus der eigenen Anwendung kombiniert werden. Oft
steht kein eindeutiger Schlüssel dafür zur Verfügung. Mit Hilfe der unscharfen Suche
soll dennoch versucht werden, ein Mapping herzustellen.

9

1 Einleitung

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Dieses Kapitel stellt die Grundlagen dieser Arbeit vor. Neben
der Beschreibung und Erklärung verschiedener Algorithmen zur unscharfen
Suche über Namen werden auch verwendete Technologien kurz erläutert.

Kapitel 3 – Evaluierung verschiedener Lösungsansätze: In Kapitel 3 werden ver-
schiedene Möglichkeiten evaluiert, mit denen die unscharfe Suche für die BOSCH
OpenJava Platform realisiert werden könnte, und die Auswahl der Technologie
für die Implementierung getroffen.

Kapitel 4 – Implementierung: Hier wird die Implementierung der unscharfen Suche
für die BOSCH OpenJava Platform und das Vorgehen bei der Erstellung des
Prototyps beschrieben.

Kapitel 5 – Test und Bewertung der Implementierung: Eine Bewertung der Imple-
mentierung findet in diesem Kapitel statt.

Kapitel 6 – Zusammenfassung und Ausblick: Das letzte Kapitel gibt noch einmal
einen Überblick über den Ablauf der Diplomarbeit und gibt Ideen für zukünftige
Erweiterungen.

Anhang: Im Anhang finden sich Materialien im Zusammenhang mit dieser Arbeit.

Anmerkungen zu den Testdaten

Da für Testzwecke keine Daten in größerer Menge zur Verfügung standen, wurden aus
einer Kunden-Datei mit personenbezogenen Daten aus einem produktiven Buchhal-
tungsbestand im CSV-Format die Spalten Vorname, Nachname, Adresse und Ort extrahiert,
und diese mit Hilfe eines Perl-Skripts zufällig neu kombiniert.

Dadurch entstanden über 115.000 Datensätze mit fiktiven Personen, die jedoch einen
realen Querschnitt über eine Adressdatenbank im europäischen Raum (mit Schwer-
punkt auf deutschen Namen) bot.

Die meisten in Kapitel 2 verwendeten Beispiele waren in den Daten bereits vorhanden.
Fehlende Beispiele wurden ergänzt, damit die bereits eingeführten Beispiele für Kapitel
3 zur Evaluierung von möglichen Verfahren verwendet werden können.

10

Zu wissen, woran man selbst
interessiert ist, ist die
Voraussetzung, um andere Leute
dafür zu interessieren.

– Walter Pater

2 Grundlagen

In diesem Kapitel werden die Grundlagen zu später verwendeten oder evaluierten
Technologien vorgestellt, sowie die Verfahren, die von den jeweiligen Bibliotheken
verwendet werden. Dabei wird auch kurz die Geschichte und Weiterentwicklung
der Algorithmen erwähnt, um beispielhaft Möglichkeiten und Ansätze für eigene
Verbesserungen der Verfahren aufzuzeigen, die allerdings außerhalb des Rahmens
dieser Arbeit liegen.

2.1 Phonetische Verfahren

Bei den phonetischen Verfahren werden nicht die Zeichen eines Wortes miteinander
verglichen, wie z. B. bei einem String-Vergleich, sondern die Aussprache der jeweiligen
Worte.

Zum Beispiel die Namen Maier, Meier, Mayer, Meyer oder gar Major werden allesamt
als ["mAe<5] ausgesprochen, obwohl es 5 verschiedene Zeichenketten sind. Vor allem
die Namensträger einer der Varianten kennen das Problem, dass sie sehr häufig die
korrekte Schreibweise ihres Namens ergänzend angeben müssen.

Bei phonetischen Verfahren, die man in die Klasse der Hashing-Algorithmen einordnen
kann, wird versucht, den Klang eines Wortes (bzw. im Kontext dieser Arbeit hauptsäch-
lich eines Namens) in einer standardisierten Form zu erfassen und zu codieren. Ergeben
zwei verschiedene Namen den selben Code, kann man davon ausgehen, dass die Aus-
sprache sehr ähnlich oder sogar identisch ist, auch wenn ein „scharfer“ String-Vergleich
keine Übereinstimmungen bringt.

Da je nach Sprache (oder sogar Region innerhalb eines Sprachraums) Worte und Namen
unterschiedlich ausgesprochen werden können, stoßen diese Verfahren an Grenzen. Es
wäre denkbar, dass in einer Sprache zwei verschiedene Schreibweisen gleich ausgespro-
chen werden, in einer anderen Sprache aber ein großer Unterschied in der Aussprache
besteht. Das jeweilige Verfahren muss also auf den Sprachraum angepasst sein.

11

2 Grundlagen

Aber selbst dann können Probleme auftreten, da eine eindeutige Aussprache nicht
immer existiert. Als Beispiel soll hier das – zugegebenermaßen etwas konstruierte
– Kunstwort ghoti genannt werden, das gerne von Sprachkritikern angeführt wird,
wenn man die Undeutigkeit einer Aussprache eines Wortes in der englischen Sprache
demonstrieren will.

Nach den englischen Ausspracheregeln könnte ghoti zum einen naheliegend als [g@oti
“
:],

aber auch als [fIS], also gleich wie das Wort fish ausgesprochen werden:

– „gh“ als /f/, wenn man es ausspricht wie in enough
– „o“ als /I/, bei der Aussprache wie in women und
– „ti“ als /S/ wie in emotion

Es könnte aber auch gar nicht, also stumm ausgesprochen werden, wenn

– „gh“ wie in night oder fight
– „o“ wie in people
– „t“ wie in ballet oder gourmet und
– „i“ wie in business

ausgesprochen werden.

Wobei das Beispiel genau genommen hinkt, da durch den Kontext, in dem die jeweiligen
Buchstaben stehen, durchaus nur eine konkrete Aussprache möglich ist, und nur [g@oti

“
:]

als korrekte Aussprache in Frage kommt (vgl. [Ros00]). Dennoch eignet sich das Beispiel,
um die Schwierigkeiten und Komplexität der phonetischen Verfahren aufzuzeigen.

Im Folgenden werden mehrere Verfahren vorgestellt und verglichen. Ausgehend von
Soundex, dem ersten phonetischen Verfahren, werden die Verbesserungen von Mokotoff
und Daitch des Verfahrens vorgestellt, sowie die Kölner Phonetik als Verfahren für
den deutschsprachigen Raum. Schließlich Metaphone und die Erweiterung Double
Metaphone, die deutlich komplexere Regeln haben, dafür aber sehr gute Resultate
liefern.

Der Match Rating Approach, ein phonetisches Verfahren nach einem anderen Prinzip
wie Soundex, wird ebenfalls kurz vorgestellt, um auch noch einen anderen Ansatz zu
phonetischen Vergleichen zu demonstrieren.

2.1.1 Soundex

Soundex wurde von Robert Russel Ende des 19. Jahrhunderts als phonetisches Ver-
fahren in den USA entwickelt, um für die Volkszählung über einen Code ähnliche

12

2.1 Phonetische Verfahren

Namen zusammenfassen zu können (vgl. [Arm00, S. 14]). Soundex ist der Urvater
vieler weiterer phonetischer Verfahren.

Der Algorithmus folgt dabei einfachen Regeln:

1. Der erste Buchstabe des Wortes wird direkt übernommen.
2. Danach werden bis zu 3 Ziffern angehängt, die nach folgendem Schema Buchstabe

für Buchstabe ermittelt werden, beginnend mit dem zweiten Buchstaben des
Ausgangswortes:

a) Der Zahlenwert des Buchstabens nach Tabelle 2.1 wird an den bestehenden
Code angehängt. Taucht der Buchstabe nicht in der Tabelle auf, wird er
ignoriert.

b) Bei doppelten Konsonanten wird nur der erste codiert, der zweite wird
ignoriert.

c) Aufeinanderfolgende Buchstaben, die den selben Code ergeben, werden
ebenfalls nur einmal codiert, der zweite wird verworfen.

d) Werden zwei Konsonanten mit dem selben Code durch einen Vokal oder Y
getrennt, wird der zweite nicht verworfen.

3. Hat der Code danach weniger als 4 Stellen (1 Buchstabe und 3 Ziffern), wird
rechts mit 0 aufgefüllt, bis insgesamt 4 Stellen vorhanden sind.

Buchstabe Code

B P F V 1
C S K G J Q X Z (ß) 2
D T 3
L 4
M N 5
R 6

Tabelle 2.1: Soundex Codierschema

Beispiele für Soundex-Codierungen
Wie das folgende Beispiel 2.1 zeigt, werden 4 der 5 bereits vorgestellten Meier-Varianten
erkannt. Major hingegen wird mit unterschiedlichem Soundex-Code verschlüsselt.

13

2 Grundlagen

Name Soundex-Code

Maier M600
Mayer M600
Meier M600
Meyer M600

aber:
Major M260
Beier B600

Name Soundex-Code

Falsch Positiv:
Spears S162
Superzicke S162

Falsch Negativ:
Fischer F260
Vischer V260
Moskowitz M232
Moskovitz M213

Beispiel 2.1: Namen codiert mit Soundex

Vorteile

– Ähnlich klingende Namen aus dem englischen Sprachraum werden mit großer
Wahrscheinlichkeit erkannt. Für andere Sprachräume müssen aber erhebliche
Änderungen vorgenommen werden.

– Der Algorithmus lässt sich leicht ohne Computerunterstützung auch von Hand
durchführen.

– Einige Datenbanken, wie z. B. Oracle oder MySQL unterstützen Soundex direkt
über proprietäre Erweiterungen der Abfragesprache. Siehe hierzu auch Kapitel 3.1.

– Codes können im Voraus berechnet und mit in der Datenbank abgespeichert
werden. Die Suche ist dann ein einfacher Vergleich der Codes. Dadurch hohe
Effizienz.

– Implementierungen für zahlreiche Programmiersprachen existieren. In einigen
Sprachen (wie z. B. PHP ab Version 4) ist die Soundex-Codierung direkt im Sprach-
umfang enthalten.

Nachteile

– Soundex ist sehr auf den englischsprachigen Raum festgelegt und berücksichtigt
weder anderssprachige Aussprachen, noch verschiedene Transkriptionen von
Namen aus anderen Schriftzeichen in lateinische Buchstaben.

– Abweichungen an der ersten Stelle eines Wortes führen immer zu unterschiedlichen
Codes.

14

2.1 Phonetische Verfahren

– Bei Namenszusätzen wie Von, Van, De, Zu, u. Ä. ist nicht eindeutig klar, ob der Zu-
satz mit codiert wurde oder nicht. Es entstehen dadurch aber ganz unterschiedliche
Codes.

– Das Verfahren ist relativ grob. Bei Namen mit vielen Vokalen können z. B. auch sehr
unterschiedlich klingende Namen wie Spears und Superzicke den selben Soundex-
Code erhalten.

– Nicht robust gegen Tippfehler wie z. B. Zeichendreher.

2.1.2 Daitch-Mokotoff-Soundex

Randy Daitch und Gary Mokotoff überarbeiteten und erweiterten das ursprüngliche
Soundex-Verfahren von Russel. Sie stellten fest, dass gerade yiddische oder slawische
Namen mit dem ursprünglichen Verfahren keine guten Ergebnisse liefern, da der
Russel-Soundex nur für englische Namen erstellt wurde (vgl. [Mok97]).

Der Daitch-Mokotoff-Soundex-Algorithmus ist wesentlich komplexer als der traditio-
nelle, gewinnt dadurch aber deutlich an Genauigkeit, vor allem für slawische und
yiddische Namen. Er wird hier exemplarisch vorgestellt, um mögliche Ansätze zur
Verbesserung der Ergebnisse vorzustellen.

Änderungen des Daitch-Mokotoff-Soundex zur ursprünglichen Version von Russel:

1. Das Codierschema enthält deutlich mehr Regeln. Für den interessierten Leser ist
das komplette Schema im Anhang A abgebildet.

2. Der erste Buchstaben des Namens wird codiert nach den selben Regeln wie Buch-
staben innerhalb des Wortes. Eine Ausnahme bilden Vokale, die am Wortanfang
mit 0 codiert werden.

3. Buchstabenkombinationen, die nur für einen Laut stehen, wie z. B. ts oder tz,
werden auch nur mit einer Ziffer codiert.

4. Es werden Codes mit einer Länge von 6 Zeichen erzeugt, anstatt nur 4.
5. Falls Zeichenkombinationen zwei verschiedene Laute repräsentieren können (z. B.

kann ch wie in Christian oder in Charles gesprochen werden), müssen beide Laute
codiert werden.

Beispiele für Daitch-Mokotoff Soundex Codierungen
Beispiel 2.2 zeigt, dass die Änderungen am Algorithmus eine deutlich bessere Anpas-
sung für osteuropäische Namen bietet. Es zeigt aber auch in der rechten Tabelle, dass für
einen Namen mehrere Codes existieren können, was die Komplexität steigert. Um z. B.

15

2 Grundlagen

zu vergleichen, ob Spears und Superzicke phonetisch ähnlich sind, müssen 8 Vergleiche
ausgeführt werden.

Name DM-Code Soundex

Auerbach 097500 A612
Ohrbach 097500 O612
Ceniow 467000 C500
Tsenyuv 467000 T251
Holubica 587400 H412
Golubitsa 587400 G413

Name DM-Code Soundex

Spears 479400 S162
474000

Superzicke 474500 S162
479459
474450
479445

Beispiel 2.2: Namen codiert nach Daitch-Mokotoff im Vergleich zu Soundex

Vorteile

– Gute Anpassung an osteuropäische Namen. Das Verfahren findet daher auch
hauptsächlich Verwendung in der Ahnenforschung von slawischen und jüdischen
Personenstandsdatenbanken.

– Bessere Genauigkeit bei längeren Namen.
– Codes können im Voraus berechnet und mit in der Datenbank abgespeichert

werden. Die Suche ist dann ein einfacher Vergleich der Codes. Dadurch hohe
Effizienz.

Nachteile

– Für ein Wort können mehrere Codes entstehen, was die Komplexität bei Verglei-
chen erhöht.

– Komplexe Abwandlung des Russel-Soundex – eine Berechnung ohne Computer
ist vergleichsweise aufwendig.

– Für Namen aus anderen Sprachräumen ist das Verfahren nicht optimal.

2.1.3 Kölner Phonetik

Eine weitere Abwandlung des klassischen Soundex-Algorithmus, die im Rahmen dieser
Arbeit betrachtet werden soll, ist die Kölner Phonetik. Sie wurde als früher Ansatz
zur Anpassung des Russel-Soundex an die deutsche Aussprache von H.-J. Postel in

16

2.1 Phonetische Verfahren

[Pos69] veröffentlicht. Anders als bei Soundex gibt es keine Längenbeschränkung für
die Codes.

Codierungsregeln der Kölner Phonetik:

1. Von links nach rechts wird buchstabenweise nach dem Codierschema in Tabelle
2.2 codiert.

2. Danach werden alle mehrfachen Codes eliminiert.
3. Eine „0“ an der ersten Stelle bleibt erhalten. Alle anderen „0“ innerhalb des Codes

werden entfernt.

Tabelle 2.2: Codierschema der Kölner Phonetik

Buchstabe Kontext Code

A, E, I, J, O, U, Y, Ä, Ö, Ü 0
H -
B 1
P nicht vor H 1
D, T nicht vor C, S, Z 2
F, V, W 3
P vor H 3
G, K, Q 4
C im Anlaut vor A, H, L, O, Q, R, U, X 4
C vor A, H, K, O, Q, U, X außer nach S, Z 4
X nicht nach C, K, Q 48
L 5
M, N 6
R 7
S, Z, ß 8
C nach S, Z 8
C im Anlaut vor A, H, K, L, O, Q, R, U, X 8
C nicht vor A, H, K, O, Q, U, X 8
D, T vor C, S, Z 8
X nach C, K, Q 8

17

2 Grundlagen

Beispiele für die Kölner Phonetik Beispiel 2.3 zeigt, dass Anpassungen an deutsche
Namen die Genauigkeit erhöhen. So erzeugt im Gegensatz zu Soundex die Kölner
Phonetik auch für Fischer und Vischer den selben Code. Allerdings werden auch hier
Meier und Beier nicht als ähnlich erkannt.

Auch für slawische Namen bringt die Kölner Phonetik einige Vorteile im Vergleich zu
Soundex, wie aber das Paar Holubica und Golubitsa zeigt, ist es jedoch für diese Namen
dem Daitch-Mokotoff Soundex unterlegen.

Name Kölner Phonetik Soundex

Maier 67 M600
Mayer 67 M600
Meier 67 M600
Meyer 67 M600
Major 67 M260
Beier 17 B600
Fischer 387 F260
Vischer 387 V260

Name Kölner Phonetik Soundex

Auerbach 0714 A612
Ohrbach 0714 O612
Moskowitz 68438 M232
Moskovitz 68438 M213
Ceniow 863 C500
Tsenyuv 863 T251
Holubica 514 H412
Golubitsa 4518 G413

Beispiel 2.3: Namen codiert nach Kölner Phonetik im Vergleich zu Soundex

Vorteile

– Gute Anpassung an den deutschen Sprachraum.
– Bessere Genauigkeit bei langen Namen.
– Deckt slawische Namen besser ab als Soundex nach Russel.
– Codes können im Voraus berechnet und mit in der Datenbank abgespeichert

werden. Die Suche ist dann ein einfacher Vergleich der Codes. Dadurch hohe
Effizienz.

– Einfaches Verfahren.

Nachteile

– Geringe Verbreitung – kommerziellen Lösungen enthalten normalerweise keine
Implementierungen.

18

2.1 Phonetische Verfahren

2.1.4 Weitere Soundex-basierte Algorithmen

Zahlreiche weitere Verbesserungen und Anpassungen von Soundex führten zu einer
Vielzahl weiterer phonetischer Verfahren, die alle mehr oder weniger die bereits vorge-
stellten Prinzipien von Soundex mit leicht veränderten Regeln oder Codetabellen für
bestimmte Sprachräume oder Anwendungsfälle zu optimieren versuchen. Im Rahmen
dieser Einführung soll nicht näher auf diese Verfahren eingegangen werden. Folgende
Verfahren seien jedoch noch kurz erwähnt:

Metaphone enthält etwas ausführlichere Regeln als Soundex und berücksichtigt auch
den Kontext eines Zeichens. Die resultierenden Schlüssel bestehen aus Buchstaben
(und wenigen Ziffern für bestimmte Laute, z.B. „0“ für das englische „th“) und haben
eine variable Länge (vgl. [Wil05, S. 14]). Das Verfahren ist relativ weit verbreitet und
Funktionen zur Berechnung des Metaphone-Codes gehören in manchen Programmier-
sprachen zum Grundumfang, wie z. B. die Funktion metaphone() in PHP ab Version 4.
Des weiteren existieren Implementierungen in PL/SQL für Oracle. Siehe hierzu auch
Kapitel 3.1.2.

Double Metaphone ist eine auf Metaphone aufbauende Verbesserung, die für einen
Namen neben einem Primärcode auch einen alternativen Code erzeugt, der alternative
Aussprachemöglichkeiten berücksichtigt, und dadurch bessere Treffer erzielen kann.
Double Metaphone basiert auf sehr umfangreichen und kontextbezogenen Regeln und
versucht Unregelmäßigkeiten aus vielen (hauptsächlich europäischen) Sprachräumen
zu berücksichtigen. Das führt vereinzelt zu über 100 Regeln für nur einen Buchstaben.

2.1.5 Match Rating Approach

Der Match Rating Approach ist ein weiteres phonetisches Verfahren, das 1977 von den
Western Airlines entwickelt wurde (vgl. [Arm00, S. 39 f.]). Es verfolgt einen komplett
anderen Ansatz als Soundex und soll darum ebenfalls kurz vorgestellt werden.

Der Algorithmus zeichnet sich durch sehr einfache Codierungsregeln aus:

1. Alle Vokale (außer am Wortanfang) werden aus dem Namen gelöscht.
2. Alle Doppelkonsonanten werden in einzelne Konsonanten geändert.
3. Falls der resultierende Code länger als 6 Zeichen ist, werden nur die ersten 3 und

letzten 3 verwendet.

19

2 Grundlagen

Dafür sind die Vergleichsregeln vergleichsweise umfangreich:

1. Falls sich die beiden zu vergleichenden Codes in der Zeichenlänge um mehr als 3
Zeichen unterscheiden, werden sie ohne weitere Tests als ungleich klassifiziert.

2. Die Zeichenlänge der beiden Codes wird addiert und für die resultierende Summe
ein Schwellenwert aus der Tabelle 2.3 ermittelt.

3. Danach werden beide Namen von vorne (links nach rechts) Zeichen für Zeichen
verglichen und identische Zeichen aus beiden Namen entfernt.

4. Die verbleibenden Codes werden von hinten (rechts nach links) Zeichen für
Zeichen verglichen und identische Zeichen aus beiden Codes entfernt.

5. Von dem längeren verbliebenen Code wird die Zeichenlänge ermittelt und vom
Wert 6 subtrahiert. Die resultierende Zahl ist der Ähnlichkeitswert.

6. Wenn der Ähnlichkeitswert größer oder gleich dem in Schritt 2 ermittelten Schwel-
lenwert ist, gelten die zwei verglichenen Namen als ähnlich; andernfalls sind sie
verschieden.

Summe der Zeichenlänge Minimaler Ähnlichkeitswert

bis 4 5
5 bis 7 4
8 bis 11 3

12 2

Tabelle 2.3: Schwellenwerte für den Match Rating Approach

Beispiele für den Match Rating Approach
Beispiel 2.4 zeigt, wie jeweils zwei Namen mit Hilfe des Match Rating Approach auf
Ähnlichkeit überprüft wurden.

20

2.1 Phonetische Verfahren

Name MRA-Code Schwellenwert Ähnlichkeitswert Treffer

Schmied SCHMD
3 5 3

Schmidt SCHMDT

Maier MR
4 5 3

Meyer MYR

Mayer MYR
4 4 3

Beier BR

Major MJR
4 4 3

Beyer BYR

Ceniow CNW
3 1 7

Tsenyuv TSNYV

Holubica HLBC
3 3 3

Golubitsa GLBTS

Beispiel 2.4: Überprüfung der Ähnlichkeit jeweils zweier Namen nach Match Rating
Approach

Vorteile

– Vergleichsweise gute Genauigkeit als phonetisches Verfahren, kann aber auch
einfache Vertipper erkennen.

Nachteile

– Kann nicht im Voraus berechnet werden, sondern muss für jeden Vergleich getrennt
berechnet werden und ist daher nicht so performant wie die bereits vorgestellten
Verfahren.

– Geringe Verbreitung – kommerziellen Lösungen enthalten normalerweise keine
Implementierungen.

21

2 Grundlagen

2.2 Distanzverfahren

Einen komplett anderen Ansatz verfolgen die Distanzverfahren. Hierbei wird die Ähn-
lichkeit nicht über den Klang eines Namens bestimmt, sondern über die Anzahl der
veränderten Zeichen. Je nach Metrik, die für die Distanz verwendet wird, erhält man
einen Wert für die Ähnlichkeit zweier Namen. In diesem Kapitel werden vier ver-
schiedene Distanzmetriken vorgestellt: Schreibmaschinendistanz, Hamming-Distanz,
Levenshtein-Distanz und Jaro-Winkler-Ähnlichkeit.

Um jedoch eine Entscheidung treffen zu können, ob zwei Namen ähnlich sind, wird
jeweils noch ein Schwellenwert benötigt, da die Verfahren im Gegensatz zu den bereits
vorgestellten nicht nur „ähnlich“ und „nicht ähnlich“ als Ergebnis liefern, sondern
einen Distanzwert. Je nach Verfahren beschreibt der Distanzwert die Anzahl der un-
terschiedlichen Zeichen oder die Anzahl der Änderungen, die nötig wären, den einen
Namen in den anderen zu überführen.

Die Länge der Namen sollte in die Bestimmung des Schwellenwerts mit einbezogen
werden, denn so sind zum Beispiel 3 notwendige Änderungen in einem Wort mit der
Länge von 3 Zeichen ein deutliches Zeichen für keine Ähnlichkeit. 3 notwendige Ände-
rungen in einem Wort von 25 Zeichen Länge hingegen deuten auf große Ähnlichkeit
hin.

2.2.1 Schreibmaschinendistanz

Ein sehr einfaches und sehr anschauliches Distanzverfahren ist die Schreibmaschinendi-
stanz, oder auch Tastaturdistanz genannt (siehe [Wik]). Hintergrund dieses Verfahrens
ist das Erkennen von Tippfehlern. So ist es wahrscheinlicher, dass man einen Buchsta-
ben fälschlicherweise durch einen anderen ersetzt, der auf einer Tastatur direkt daneben
liegt, als mit einem, der weiter von dem korrekten Buchstaben entfernt ist.

Zum Beispiel könnte in einem phonetischen Verfahren die Namen Scheck und Schöck als
sehr ähnlich eingestuft werden. Die Schreibmaschinendistanz ist jedoch 7, was einen
versehentlichen Vertipper fast ausschließt.

Andererseits hätte Apple und Wople nur eine Distanz von 2, was eine Ähnlichkeit nach
dieser Metrik schon eher nahe legt.

Der Schreibmaschinendistanz wird nach folgenden Regeln berechnet:

1. Vergleiche beide Namen zeichenweise von rechts nach links.

22

2.2 Distanzverfahren

2. Wenn zwei Zeichen an der jeweils selben Stelle in beiden Namen unterschiedlich
sind, berechne, wie viele Tasten dazwischen liegen, und addiere den Wert zu der
Gesamtdistanz.

Beispiele für die Tastaturdistanz
Beispiel 2.5 zeigt, wie für jeweils zwei Namen die Distanz berechnet wird.

Name 1: A P P L E
Name 1: W O P L E

Distanz: 1 + 1 + 0 + 0 + 0 = 2

Name 1: S C H E C K
Name 1: S C H Ö C K

Distanz: 0 + 0 + 0 + 7 + 0 + 0 = 7

Name 1: M A Y E R
Name 1: M E I E R

Distanz: 0 + 2 + 7 + 0 + 0 = 9

Beispiel 2.5: Tastaturdistanz zwischen jeweils zwei Namen

Vorteile

– Das Verfahren eignet sich hervorragend, um bei versehentlichen Vertippern bei der
Eingabe auf der Tastatur trotzdem Ähnlichkeiten festzustellen.

Nachteile

– Wie das Scheck/Schöck-Beispiel zeigt, kann eine (tatsächlich häufig vorkommende)
Vertauschung von nur einem Zeichen einen hohen Distanzwert liefern.

– Eine QUERTY-Tastatur liefert unter Umständen andere Ergebnisse als eine
QUERTZ-Tastatur oder gar eine Tastatur mit DVORAK-Layout. Die verwendete
Tastatur muss darum bekannt sein, um ein genaues Ergebnis zu erhalten.

– Muss für jeden Vergleich mit jedem Namen neu berechnet werden und ist daher
eher aufwendig.

23

2 Grundlagen

2.2.2 Hamming-Distanz

Die Hamming-Distanz wurde von Richard W. Hamming in [Ham50] eingeführt und ist
ein Maß für die Unterschiedlichkeit von Zeichenketten. Hierbei wird die Abweichung
in zwei gleich langen Zeichenketten als Distanzwert ausgedrückt.

Die Hamming-Distanz wird nach folgenden Regeln berechnet:

1. Vergleiche beide Namen zeichenweise von rechts nach links.
2. Wenn zwei Zeichen an der jeweils selben Stelle in beiden Namen unterschiedlich

sind, erhöhe den Distanzwert um 1.

Das Ergebnis ist also die Anzahl der verschiedenen Zeichen in zwei gleich langen
Zeichenketten.

Beispiele für die Berechnung der Hamming-Distanz
Beispiel 2.6 zeigt, wie für jeweils zwei Namen die Distanz berechnet wird.

Name 1: S C H E C K
Name 1: S C H Ö C K

Distanz: 0 + 0 + 0 + 1 + 0 + 0 = 1

Name 1: M A Y E R
Name 1: M E I E R

Distanz: 0 + 1 + 1 + 0 + 0 = 2

Beispiel 2.6: Hamming-Distanz zwischen jeweils zwei Namen

Vorteile

– Verfahren eignet sich gut zu Erkennung von Vertippern.
– Berechnung hängt nicht von einem Tastaturlayout ab und braucht daher keine

Informatationen über das verwendete Layout.
– Kann einfach bestimmt werden.

24

2.2 Distanzverfahren

Nachteile

– Kann nur für den Vergleich zweier gleich langer Namen verwendet werden.
– Muss für jedes Paar extra berechnet werden.

2.2.3 Levenshtein-Distanz

Vladimir L. Levenshtein stellt in [Lev65] die sogenannte Levenshtein-Distanz vor, die
auch Edit-Distanz oder Editierabstand genannt wird. Dabei wird ähnlich wie bei der
bereits vorgestellten Hamming-Distanz die Anzahl der Änderungen erfasst, die nötig
wären, um den ersten Namen in den zweiten zu überführen. Das Verfahren kennt 3
Operationen:

1. Einfügen eines Zeichens
2. Löschen eines Zeichens
3. Vertauschen eines Zeichens

Durch die Operationen „Einfügen“ und „Löschen“ wird damit auch möglich, zwei
Namen mit verschiedener Länge zu vergleichen.

Berechnung der Levenshtein-Distanz
Zur Berechnung der Levenshtein-Distanz gibt es verschiedene Algorithmen. Eine an-
schauliche Methode ist die Berechnung in einer Matrix der Dimension (s + 1, t + 1) mit
Hilfe der folgenden Rekursionsgleichung (wobei s und t die Länge der zu vergleichen-
den Namen sind):

D0,0 = 0

Dm,0 = m

D0,n = n

und für alle 1 ≤ m ≤ s; 1 ≤ n ≤ t :

Dm,n = min


Dm−1,n−1 + x wobei x =

1 falls gleicher Buchstabe

0 falls Ersetzung

Dm,n−1 + 1

Dm−1,n + 1

25

2 Grundlagen

Die Distanz kann dann aus Dm+1,n+1 abgelesen werden.

Beispiele für die Berechnung der Levenshtein-Distanz
Für die beiden Namen Mair und Meier soll in Beispiel 2.7 die Distanz ausgerechnet
werden. Zuerst wird eine 6 x 5 -Matrix erstellt und danach mit der bekannten Formel
ausgefüllt:

E M A I R

E 0© 1 2 3 4
M 1 0© 1 2 3
E 2 1 1© 2 3
I 3 2 2 1© 2
E 4 3 3 2© 2
R 5 4 4 3 2©

Beispiel 2.7: Berechnung der Levenshtein-Distanz mit Hilfe einer Matrix

Die Distanz beträgt also 2.

Ich empfehle eine Normierung der Distanz auf Werte zwischen 0 (keine Übereinstim-
mung) und 1 (identische Namen). Dies kann mit folgender Formel erreicht werden
(wobei s und t die Länge der zu vergleichenden Namen sind und D der Distanzwert):

Dnormiert =
max(s, t)− D

max(s, t)

Vorteile

– Anwendbar bei verschieden langen Namen.
– Implementierungen für viele Programmiersprachen vorhanden.
– Bei Dnormiert zwischen 0.6 und 0.8 (je nach Anwendungsfall) gute Trefferquote.

Nachteile

– Muss für jedes Paar berechnet werden.
– Berechnung ist komplexer als bei den anderen beiden Distanzverfahren.

26

2.2 Distanzverfahren

Damerau-Levenshtein-Distanz
Bei der Damerau-Levenshtein-Distanz wird die Verdrehung zweier Buchstaben als
zusätzliche Operation eingefügt. Während bei der Levenshtein-Distanz eine Verdre-
hung von zwei Buchstaben zwei Operationen erfordert, nämlich jeweils stellenweise
die Ersetzung mit dem korrekten Buchstaben, wird bei dieser Erweiterung nur eine
Operation benötigt (vgl. [Dam64]).

2.2.4 Jaro-Winkler-Übereinstimmung

Die Jaro-Winkler-Übereinstimmung nach [Win99] berechnet die Ähnlichkeit zweier
Namen. Dafür werden nicht nur die Unterschiede wie bei den anderen vorgestellten
Verfahren berücksichtigt, sondern auch die übereinstimmenden Zeichen. Damit sollen
Eingabefehler bei der Berechnung der Ähnlichkeit mit berücksichtigt werden. Sie soll
hier nur kurz der Vollständigkeit wegen erwähnt werden, da sie in Kapitel 3.1.2 als
mögliche Lösung für die unscharfe Suche evaluiert wird.

Die Formel zur Berechnung der Jaro-Winkler-Übereinstimmung JW(s1, s2) für zwei
Namen s1 und s2 lautet:

JW(s1, s2) =
1
3
×
(

c
|s1|

+
c
|s2|

+
t
c

)

wobei
c die Anzahl der übereinstimmenden Zeichen,
|s1| die Länge des ersten Namens,
|s2| die Länge des zweiten Namens und
t die Anzahl der notwendigen Änderungen zum Überführen des einen Namens in

den anderen sind.

Das Ergebnis der Berechnung ist ein Wert aus R zwischen 0 (keine Übereinstimmung)
und 1 (identisch).

Beispiele für die Jaro-Winkler-Übereinstimmung
Beispiel 2.8 zeigt die Übereinstimmung jeweils zweier Namen.

27

2 Grundlagen

Name Ähnlichkeitswert

Schmied
0,94

Schmidt

Maier
0,76

Meyer

Mayer
0,60

Beier

Ceniow
0.53

Tsenyuv

Major
0,46

Beyer

Beispiel 2.8: Jaro-Winkler-Übereinstimmung jeweils zweier Namen

Vorteile

– Es werden auch die Übereinstimmungen in die Berechnung mit einbezogen, daher
genauere Aussagen über die Ähnlichkeit möglich.

– Es steht ein Maß der Ähnlichkeit zur Verfügung.

Nachteile

– Muss für jedes Paar extra berechnet werden.
– Bei hohem Schwellenwert werden nur wenige gute Treffer gefunden, bei niedrigem

jedoch viele schlechte.

28

2.3 Vergleich der Verfahren

2.3 Vergleich der Verfahren

Die verschiedenen Verfahren sollen nun kurz in Tabelle 2.4 miteinander verglichen
werden.

Bei der Bewertung wurde berücksichtigt, ob der komplexeste Teil des Verfahrens jeweils
im Voraus berechnet werden kann, wie z. B. ein Soundex-Code, der dann auch in
einer Datenbank abgelegt werden könnte, oder ob für jedes zu vergleichende Paar
eine Berechnung durchgeführt werden muss, wie zum Beispiel bei der Levenshtein-
Distanz.

Die Komplexität der Codeberechnungsregel wird in drei Stufen eingeteilt, von 1 (ein-
fach) bis 3 (komplex). Soundex hat z. B. sehr einfache Regeln, daher wurde es mit 1
bewertet. Bei z. B. Double Metaphone hingegen kann es für nur einen Buchstaben über
100 Regeln für unterschiedliche Kontexte geben, daher wurde er mit 3 bewertet.

Bei der Komplexität der Vergleichsregel wurde beurteilt, wie aufwendig der Algorith-
mus zum Vergleichen ist. Da das bei allen soundexbasierten Verfahren ein einfacher
Stringvergleich ist, wurden diese alle mit 1 (einfach) bewertet. Mit 3 (komplex) wurde
nur die Levenshtein-Distanz berechnet, da hier die komplexeste Berechnung notwendig
ist.

Die Verfahren wurden auch nach der subjektiven Qualität der Treffer bewertet. Hier
wurde vor allem rein gefühlsmäßig bewertet, ob möglichst viele subjektiv empfunden
ähnliche Treffer gefunden wurden, und möglichst wenige Falsch-Positive.

Neben der generellen Verfügbarkeit der einzelnen Verfahren in verschiedenen Program-
miersprachen spielt vor allem auch im Hinblick auf Kapitel 4 das Vorhandenensein
einer Implementierung für Apache Lucene (bzw. Apache Solr) eine Rolle. So gibt es Im-
plementierungen von Soundex in vielen Programmiersprachen, für die Kölner Phonetik
finden sich jedoch kaum welche.

Darüber hinaus ist für die Auswahl eines Verfahrens wichtig, dass dieses nicht nur
speziell auf einen bestimmten Sprachraum festgelegt ist.

29

2 Grundlagen

Tabelle 2.4: Vergleich der Verfahren

Kriterium So
un

de
x

D
ai

tc
h-

M
ok

ot
of

f

K
öl

ne
r

Ph
on

et
ik

M
et

ap
ho

ne

D
ou

bl
e

M
et

ap
ho

ne

M
at

ch
R

at
in

g
A

pp
ro

ac
h

Sc
hr

ei
bm

as
ch

in
en

di
st

an
z

H
am

m
in

g-
D

is
ta

nz

Le
ve

ns
ht

ei
n

D
is

ta
nz

Ja
ro

-W
in

kl
er

Ä
hn

li
ch

ke
it

Sprachraum eng. slaw.. deu. (eng.) (eng.) – – – – –

Kann im Voraus berech-
net werden

3 3 3 3 3

Muss für jedes Paar se-
parat berechnet werden

3 3 3 3 3

Codeberechnungsregel
(1=einfach, 3=komplex)

1 2 1 2 3 1 – – – –

Vergleichsregel
(1=einfach, 3=komplex)

1 1 1 1 1 2 2 2 3 2

Subjektive Qualität der
Treffer (1=gut, 5=schlecht)

3 2 2 2 1 1 2 2 1 2

Verfügbarkeit
(1=gut, 3=schlecht)

1 2 3 1 1 3 3 1 1 2

In Lucene/Solr vorhan-
den

3 7 7 3 3 7 7 7 3 7

30

2.4 Apache Lucene

2.4 Apache Lucene

Apache Lucene1 ist eine hochperformante und vielseitige Java-Implementierung2 einer
Volltext-Suchmaschine (siehe dazu auch [HG05]), die bereits in zahlreichen großen
Projekten eingesetzt wird, wie z. B. auf den Webseiten Wikipedia3, Monster4 und Lin-
kedIn5 oder auch in Desktop-Anwendungen wie Eclipse6 für die Suche in der Hilfe.
Lucene beschränkt sich dabei auf die Erstellung des Indexes sowie die Suche in diesem
Index. Dabei ist Lucene sehr modular aufgebaut und bietet oft mehrere unterschiedliche
Implementierungen der einzelnen Komponenten, die je nach Anwendungsfall dann
verschieden kombiniert werden können.

Lucene ist eigentlich auf die Indizierung von Dokumenten ausgelegt. Zusätzlich kann
zu jedem Dokument eine beliebige Anzahl von zusätzlichen Daten (z. B. Meta-Daten) in
benannten Feldern mit abgelegt werden. Für jedes Feld kann dann entschieden werden,
in welcher Form es weiterverarbeitet werden soll, z. B. ob es in einzelne Tokens zerlegt
werden soll und ob die Inhalte des Feldes auch gespeichert werden sollen oder nicht.

Das Speichern des Inhaltes eines Feldes hat den Vorteil, dass der komplette Inhalt des
Feldes eines Treffers von Lucene auch zurück gegeben wird und so in der Ausgabe einer
Suchmaschine direkt angezeigt werden kann, ohne das Dokument öffnen zu müssen.
Dem gegenüber steht aber ein deutlich höherer Speicherplatzbedarf im Index.

Zusätzlich zum offiziellen Funktionsumfang gibt es eine ganze Reihe von Open-Source-
Erweiterungen, die ebenfalls die Funktionalität von Lucene deutlich erweitern. Des
weiteren kann Lucene durch eigene Klassen erweitert und angepasst werden.

1http://lucene.apache.org/
2Das Hauptprojekt ist die Java-Implementierung. Es gibt jedoch auch Implementierungen für viele

weitere Programmiersprachen, wie z. B. .NET, C oder Python
3http://www.wikipedia.org/
4http://jobsearch.monster.com/
5http://www.linkedin.com/
6http://www.eclipse.org/

31

http://lucene.apache.org/
http://www.wikipedia.org/
http://jobsearch.monster.com/
http://www.linkedin.com/
http://www.eclipse.org/

2 Grundlagen

Abbildung 2.1 Schema der Indexerstellung mit Lucene

2.4.1 Erstellen eines Index

Das Erstellen eines Index läuft bei Lucene aus Sicht des Anwendungsprogrammierers
in zwei Schritten ab, die vereinfacht in Abbildung 2.1 dargestellt sind:

Im ersten Schritt muss das zu indizierende Dokument geparst werden. Es gibt jedoch
bereits verschiedene Parser für gebräuchliche Dokument-Formate, wie z. B. HTML,
DOC, PDF oder XML, die verwendet werden können. Das Implementieren eigener
Parser ist sehr einfach, damit können beliebige Dokumenttypen indiziert werden.

Im zweiten Schritt werden die Dokumente in den Index aufgenommen. Ein Lucene-
Dokument kann dabei noch weitere Felder haben, die Meta-Informationen aufnehmen
können.

Der Inhalt des Dokuments wird dabei von einem Analyzer in Wörter zerlegt. Für
verschiedene Sprachen gibt es jeweils einen unterschiedlichen Analyzer. Darüber hinaus
gibt es auch Stemmer mit Implementierungen für einige Sprachen.

Die offizielle Dokumentation empfiehlt, dass für die Erstellung eines Indexes keine
verschiedenen Analyzer gemischt werden sollen, ebenso wie für die Suche in einem
Index. Hat man sich für einen Analyzer entschieden, muss für jede weitere Operation
der selbe Analyzer verwendet werden.

32

2.4 Apache Lucene

Stemmer und Lemmatizer

Da in vielen Sprachen Worte je nach grammatischer Stellung verschiedene Endungen
haben können, ist es oft nötig, von einem übergebenem Wort die Grundform ablei-
ten können. Dabei wird zwischen zwei verschiedenen Möglichkeiten unterschieden:
Stemmer und Lemmatizer.

Bei der Indizierung von Dokumenten, aber auch von Produktdaten usw. spielen Stem-
mer eine wichtige Rolle für die Genauigkeit der Ergebnisse. Für Stammdaten wie
Namen oder Adressen wird kein Stemmer oder Lemmatizer benötigt, da die Ergebnisse
in diesem Sonderfall eher verschlechtert werden. Sollten die in dieser Arbeit vorgestell-
ten Methoden jedoch auf andere Daten als Stammdaten angewendet werden, dürfen
sie nicht vernachlässigt werden und werden daher kurz erklärt.

Stemmer
Die einfachere Form der beiden ist ein Stemmer (von engl. stem: Baumstamm, bzw.
to stem from: von etwas abstammen). Stemmer haben eine Menge von Regeln, die ein
Wort in seine Grundform umwandeln können. In der Regel geschieht dies über das
Abschneiden von Wortendungen. So kann ein Stemmer nach einfachen Regeln „houses“
durch Abschneiden von „es“ in die Grundform „house“ überführen. Stemmer eignen
sich für die Englische Sprache deutlich besser als für Deutsch, da im Deutschen immer
auch der Wortstamm flektiert wird, wie z. B. „Haus“ und „Häuser“ zeigt (siehe auch
[Tom03]).

Regeln eines Stemmers für Englisch könnten unter anderem enthalten:

Regel Beispiel
SSES → SS dresses → dress
IES → Y parties → party
S → books → book

Lemmatizer
Ein Lammatizer bestimmt die Grundform nicht durch Heuristiken wie ein Stemmer,
sondern benutzt umfangreiche Wörterbücher und Morphemregeln, um Worte korrekter
auf die Grundform abzuleiten.

Lemmatizer sind deutlich komplexer und ernstzunehmende Open Source Implementie-
rungen existieren bisher nicht.

33

2 Grundlagen

Abbildung 2.2 Suche im Lucene-Index

2.4.2 Suche im Index

Die Suche im Index aus Sicht eines Programmierers verläuft ebenfalls in zwei Schrit-
ten, die schematisch in Abbildung 2.2 dargestellt werden. Im ersten Schritt wird ein
Query-Baum aus Query-Objekten erstellt, die dann im zweiten Schritt einem Searcher

übergeben werden. Die Treffer werden dabei in einem Collector ausgewertet.

Es existiert ein QueryParser, der einen Suchstring mit Hilfe eines Analyzers in einen
passenden Query-Baum überführt. Dies ist eine komfortable Methode zur Erstellung
des Suchbaums und wird meistens auch so verwendet. Wie bereits in Kapitel 2.4.1
erwähnt, ist es dabei aber sehr wichtig, den selben Analyzer zum Analysieren des
Suchstrings zu verwenden wie beim Schreiben des Index.

Das Erstellen der Query kann aber auch manuell erfolgen, wenn komplexere Query-
Bäume benötigt werden, was in Kapitel 4 auch meist notwendig war, weil durch die
Kombination verschiedener Verfahren und damit auch verschiedener Analyzer im
Prototyp der QueryParser nicht verwendet werden konnte, da dieser pro Query nur
einen Analyzer verwenden kann.

Lucene Query Syntax

In diesem Unterkapitel wird die Syntax vorgestellt, die der QueryParser von Lucene
verwendet, da diese Syntax auch bei einem Anwendungsfall bei der Suche im Prototyp
verwendet werden kann.

34

2.4 Apache Lucene

Eine Abfrage besteht dabei aus einem oder mehreren Termen und Operatoren:

Terme

Einfacher Term ein einfaches Wort. Es wird direkt so eingegeben. Z. B. buch

Phrase ist ein Term der aus mehreren Wörtern besteht und genau so auftauchen muss.
Eine Phrase wird in Anführungszeichen eingeschlossen. Z. B. "hallo welt"

Terme können darüber hinaus noch Meta-Angaben für die Suche enthalten, wie:

Feldnamen Der QueryParser verwendet standardmäßig ein Feld des Dokuments zur
Suche. Das Standard-Feld wird beim Instantiieren des Query-Parsers angegeben.
Soll jedoch in einem anderen Feld gesucht werden, kann der Feldname mit Dop-
pelpunkt vorangestellt werden. Z. B. titel:apfel sucht im Feld „titel“ nach dem
Wort „Apfel“.

Platzhalter Der Query-Parser erlaubt die Verwendung von Platzhaltern. Dabei steht ?
(das Fragezeichen) für ein beliebiges Zeichen, und * (der Stern) für beliebig viele
beliebige Zeichen. Platzhalter dürfen nicht am Anfang eines Terms stehen. Z. B.
te?t findet sowohl „Test“ als auch „Text“.

Unscharfe Suche Lucene unterstützt die unscharfe Suche mit Hilfe der Levenshtein
Distanz. Um für einen Simplen Term eine unscharfe Suche durchzuführen, wird
~ (eine Tilde) an das Wort angehängt, und optional direkt daran den Ähnlich-
keitswert zwischen 1 und 0, wobei Werte näher zu 1 mehr Ähnlichkeit verlangen.
Wird der Ähnlichkeitswert weggelassen, wird standardmäßig 0.5 verwendet.
Z. B. meier~ sucht nach allen Treffern, die mit 0.5 oder mehr eingestuft werden.
meier~0.8 nach Treffern mit mindestens Ähnlichkeit von 0.8.

Kontext-Suche Lucene unterstützt die Suche nach Worten, die nur eine bestimmte
Anzahl von Worten auseinander liegen. Dafür wird ~ (die Tilde) auf eine Phrase
angewendet. Z. B. "apfel kuchen"~5 sucht nach Dokumenten, in denen die Wor-
te „Apfel“ und „Kuchen“ nicht weiter als 5 Worte voneinander entfert auftauchen.

Bereichsuche Werte in einem bestimmten Wertebereich können in Verbindung mit
dem Schlüsselwort TO angegeben werden. Ob die angegebenen Grenzwerte ein-
geschlossen oder ausgeschlossen sind, wird über eckige (Werte inklusive) und
geschwungene (Werte exklusive) Klammern angegeben. Z. B. preis:[10 TO 100]

findet alle Dokumente, deren Feld „preis“ einen Wert zwischen 10 und 100 hat,
jeweils inclusive der Grenzwerte.

35

2 Grundlagen

Verstärker Einzelnen Termen kann ein stärkeres Gewicht bei der Suche verliehen wer-
den. Dazu wird ˆ (Zirkumflex) zusammen mit einem Verstärkunsfaktor („boost
factor“) angegeben. Standard ist Wert 1. Negative Werte sind nicht möglich, aber
Werte kleiner als 1 können für weniger wichtige Terme verwendet werden. Z. B.
apfelˆ2 kuchen liefert Dokumente, die entweder „apfel“ oder „kuchen“ enthal-
ten, aber Dokumente mit „apfel“ werden zweimal höher bewertet.

Operatoren
Mit Hilfe von Operatoren können verschiedene Terme verknüpft werden. Operatoren

wie AND und OR müssen dabei zwingend groß geschrieben werden, um als Operatoren
erkannt zu werden.

OR ist ein zweistelliger Operator und gibt an, dass entweder der Term links oder
der Term rechts davon im Suchergebnis enthalten sein muss. OR ist auch der
Standard-Operator: Werden zwei Terme ohne Operator aneinander gereiht, wird
eine OR-Verknüpfung angenommen. Z. B. apfel kuchen findet Dokumente, die
äpfel“ oder „kuchen“ (oder beides) enthalten.

AND ist ebenfalls ein zweistelliger Operator und gibt an, dass sowohl der Term links als
auch rechts davon im Suchergebnis enthalten sein muss. Z. B. apfel AND kuchen

findet Dokumente, die sowohl „apfel“ als auch „kuchen“ beinhalten.

+ ist ein einseitiger Operator und gibt an, dass der folgende Term enthalten sein muss.
Z. B. apfel +kuchen findet Dokumente, die auf jeden Fall „kuchen“ beinhalten
müssen, und „apfel“ beinhalten können.

NOT oder alternativ ! sind zweiseitige Operatoren, die angeben, dass der rechte Term
nicht enthalten sein darf. Aus Sicht der Mengenlehre ist es die Differenz. Z. B.
apfel NOT kuchen findet alle Dokumente, die „apfel“ beinhalten, aber nicht
„kuchen“.

- ist ein einstelliger Operator und gibt an, dass der nachfolgende Term in einem Treffer
nicht enthalten sein darf. Z. B. apfel -kuchen findet alle Dokumente, die „apfel“
beinhalten, aber nicht „kuchen“.

Um verschachtelte logische Ausdrücke beschreiben zu können, dürfen Operatoren auch
geklammert werden. Z. B. (apfel OR kirsch) AND kuchen.

Um geklammerte Operatoren mit Angabe eines Feldes zu verwenden, wird der Feld-
Bezeichner vorangestellt. Z. B. title:(apfel AND kuchen)

Beispiele für die Verwendung von Lucene und eine Evaluierung der Leistung finden
sich in Kapitel 3.2.

36

2.5 Hibernate Search

2.4.3 Apache Solr

Apache Solr7 ist die Implementierung einer Suchmaschine mit Hilfe von Lucene. Unter
anderem bietet Solr die komplette Suchmaschinenlogik als Webservice an. Dadurch
wird die Anbindung an eigene Anwendungen sehr einfach, da sich die Komplexität
der Suche für den Programmierer hauptsächlich auf die Verwendung eines Webservice
reduziert.

Dabei bietet Solr verschiedene Erweiterungen, wie z. B. Parser für verschiedene Doku-
menttypen. Es stellt aber auch Analyzer für Lucene zur Verfügung, die phonetische
Verfahren verwenden. Dadurch wird Solr auch im Zusammenhang dieser Arbeit inter-
essant. Die Verwendung von Solr beschränkt sich jedoch in dieser Ausarbeitung auf
eben diese Analyzer.

2.5 Hibernate Search

Hibernate Search8 ist eine Erweiterung des Persistenz-Frameworks Hibernate9 um
Volltextsuche mit Hilfe von Lucene.

Hibernate bietet ein sehr komfortables Mapping von Objekten zu Datensätzen in ei-
ner Datenbank. Über Hibernate Annotations lässt sich der Framework sehr einfach
konfigurieren und verwenden.

Da Lucene eigentlich zur Indizierung von Dokumenten entworfen wurde, muss für
die Verwendung mit einer Datenbank eine Anpassung vorgenommen werden. Man
verwendet in diesem Fall nur die Felder für die Meta-Daten und schreibt die einzelnen
Attribute eines Datensatzes in die jeweiligen Felder für Lucene. Dabei ist es sinnvoll,
als Feldnamen den selben Bezeichner wie für den Spaltennamen in der Tabelle zu
verwenden.

Darüber hinaus müsste der Index manuell aktualisiert werden, wann immer ein Daten-
satz hinzugefügt, geändert oder gelöscht wurde.

Genau diese Aufgaben nimmt einem Hibernate Search nun ab. Durch wenige einfache
Annotations kann das Mapping zwischen Attributen und Lucene-Feldern vorgenom-
men werden. Zusätzlich liefert die Suche mit Hibernate Search nicht nur die Treffer aus

7http://lucene.apache.org/solr/
8http://www.hibernate.org/subprojects/search.html
9http://www.hibernate.org/

37

http://lucene.apache.org/solr/
http://www.hibernate.org/subprojects/search.html
http://www.hibernate.org/

2 Grundlagen

dem Index zurück, sondern über Hibernate gleich echte Objekte (siehe auch Abbildung
2.3).

Abbildung 2.3 Hibernate Search Schema nach [hibb]

Auch das Persistieren und Löschen eines Objekts mit Hilfe des EntityManagers führt
automatisch zur Aktualisierung des Index, ohne dass weitere Änderungen an der
Programmlogik vorgenommen werden müssen.

Es bietet sich an, für jede Entity einen eigenen Index zu verwenden.

Beispiele für die Verwendung von Hibernate Search finden sich in den Kapiteln 4.2, 4.2
und 4.5.

2.6 BOSCH OpenJava Platform

Für die Erstellung neuer webbasierter Anwendungen bei Bosch wurde die OpenJava
Platform standardisiert. Es ist eine Zusammenstellung verschiedener Java-Frameworks
und Tools und empfiehlt für die Ausführung einen JBoss Anwendungsserver.

Die aktuelle Version der Platform ist BOSCH OpenJava 1002 und besteht aus folgenden
Komponenten:

38

2.6 BOSCH OpenJava Platform

• JBoss Application Server 5.1.010

• JBoss Seam 2.2.011

• Java SDK 1.6.0.1612

• Rich Faces13

BOSCH OpenJava beinhaltet außerdem eine IDE und allen benötigten Tools für die
Entwicklung:

• Eclipse 3.4.214

• JBoss Tools 3.0.315

• Ant16

• ojdbc1417

• sowie Tools für das Deployment auf Test- und Qualitätssicherungssystemen

Darüber hinaus gibt es eine Sample-Anwendung, die bereits alle Bosch-spezifischen
Anpassungen enthält und sich an die internen Vorgaben hält, wie z. B.

• Anpassung an den BOSCH-Styleguide für Web-Applikationen

• Portalintegration

• Single-Sign-On über das unternehmensweite WAM

• Rollenverteilung über Identity Management

Für die Entwicklung neuer Applikationen gibt es dazu noch eine build.xml für Ant, die
nach Anlegen des Projekts in Eclipse alle Bosch-spezifischen Änderungen in das neue
Projekt einpasst.

10http://www.jboss.org/jbossas
11http://seamframework.org/
12http://java.sun.com/javase/
13http://www.jboss.org/richfaces
14http://www.eclipse.org/
15http://www.jboss.org/tools
16http://ant.apache.org/
17http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

39

http://www.jboss.org/jbossas
http://seamframework.org/
http://java.sun.com/javase/
http://www.jboss.org/richfaces
http://www.eclipse.org/
http://www.jboss.org/tools
http://ant.apache.org/
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

The nice thing about standards is
that you have so many to choose
from; furthermore, if you do not
like any of them, you can just
wait for next year’s model.

– Andrew S. Tanenbaum

3 Evaluierung verschiedener
Lösungsansätze

Um eine unscharfe Suche in die Bosch OpenJava Platform zu integrieren, sind mehrere
Ansätze denkbar. In diesem Kapitel sollen verschiedene zur Wahl stehende Möglichkei-
ten evaluiert werden.

Zum einen wird untersucht, welche Möglichkeiten verschiedene Datenbanksysteme
bieten, und ob diese Ansätze in der BOSCH OpenJava Platform verwendet werden
könnten. Zum anderen wird die Volltext-Suchmaschine Apache Lucene evaluiert.

Da die BOSCH OpenJava-Platform aus dem Wunsch entstand, eine quell- und lizenzof-
fene Entwicklungslinie zu schaffen, wurde auf eine Evaluierung proprietärer Bibliothe-
ken, wie z. B. dem Omikron FACT-Finder18, verzichtet.

Als Datenbasis für die Evaluierung wurden jedes Mal die selben Daten verwendet,
um die Ergebnisse vergleichen zu können. Die Datenbasis besteht aus über 115.000
Adressen. Zu weiteren Anmerkungen zu den Adressdaten siehe auch Kapitel 1.

Alle Angaben bezüglich Laufzeit oder Geschwindigkeit in diesem Kapitel beziehen sich
auf folgende Rechnerausstattung:

Hardware:
Geräteklasse Notebook
Prozessor 1,6 GHz Intel Dual Core
Hauptspeicher 2 GB

Sonstiges:
Betriebssystem Linux, Kernel 2.6.31

18http://www.fact-finder.de

41

http://www.fact-finder.de

3 Evaluierung verschiedener Lösungsansätze

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Viele Datenbank-Systeme bieten mittlerweile eine Unterstützung der unscharfen Suche
an, entweder über proprietäre Erweiterungen von SQL, oder aber über Stored Proce-
dures. Da für Web-Applicationen im Bosch CI die beiden Systeme MySQL und Oracle
angeboten werden, beschränkt sich die Evaluierung auf die beiden Systeme.

3.1.1 MySQL

MySQL kann seit Version 4 unscharfe Suche mit Hilfe von Soundex durchführen. Dazu
wird sowohl die Funktion soundex(name), sowie der Operator SOUNDS LIKE angeboten.
Die Syntax soll durch zwei Beispiele verdeutlicht werden:

SELECT *

FROM kunden

WHERE name SOUNDS LIKE ’Meier’;

Oder alternativ

SELECT *

FROM kunden

WHERE soundex(name) = soundex(’Meier’);

Außerdem kann mit „SELECT soundex(’Meier’);“ der Soundex-Code für einen Na-
men direkt ausgegeben werden.

Die für diese Evaluierung verwendete Version ist MySQL 5.1.37.

Korrektheit der Berechnung des Soundex-Codes

Zuerst soll überprüft werden, ob die Soundex-Implementierung in MySQL korrekt
arbeitet. Dazu sollen die in Kapitel 2.1.1 ermittelten Codes noch einmal von MySQL
mit Hilfe von „select soundex(name)“ berechnet werden:

42

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Name Erwartetes Ergebnis Erhaltenes Ergebnis Übereinstimmung

Maier M600 M600 3

Mayer M600 M600 3

Meier M600 M600 3

Meyer M600 M600 3

Major M260 M260 3

Beier B600 B600 3

Fischer F260 F260 3

Vischer V260 V260 3

Moskowitz M232 M232 3

Moskovitz M213 M2132 7

Superzicke S162 S162 3

Scheck S200 S000 7

Schweizer S260 S600 7

Auffällig ist, dass MySQL teilweise längere Soundex-Codes ausgibt. So erzeugt Mos-
kowitz 4 Stellen, Moskovitz jedoch 5 Stellen. Die erste Vermutung, dass MySQL die
Soundex-Codes nach 4 Stellen einfach nicht abscheidet, wird jedoch durch das Beispiel
Superzicke widerlegt, das dann nämlich S1622 lauten müsste.

Außerdem fällt auf, dass die Namen Scheck und Schweizer nicht wie erwartet codiert
werden.

Daraus kann geschlossen werden, dass MySQL eine modifizierte Version des Soundex-
Algorithmus verwendet. Allerdings zeigen vor allem die letzten beiden Beispiele in der
Tabelle, dass die verwendete Version ungenauer als der ursprüngliche Soundex ist.

Suche nach ähnlich klingenden Namen im Datenbestand

Als zweiter Test soll im Datenbestand nach ähnlich klingenden Namen gesucht werden.
Dazu wird folgende Abfrage verwendet.

SELECT DISTINCT name

FROM adressen

WHERE name SOUNDS LIKE ’Name’;

43

3 Evaluierung verschiedener Lösungsansätze

Für den Namen Meier liefert die Anfrage das folgendes Ergebnis:

Gesucht: Meier

Gefundene Namen: 50
Gute Treffer: Maier, Meier, Meyer, Mayr, Mayer, Mair, Maeyer, Moier, Mauer,

Mayrer, Mahir
Schlechte Treffer: Maurer, Muhr, Mohr, Mahr, Mauri, Maimer, Mihr, Meurer, Maue-

rer, Mera, Murrer, Marr, Mahner, Mennemeier, Mueri, Menauer,
Memmer, Muehr, Moor, Morawe, Morareo, Mehrer, Marie, Minar,
Minner, Morr, Maru, Maehner, Miehr, Murauer, Muhra, Monnier,
Maar, Manerer, Moreira, Meer, Meri, Moro, Merry

Die Bewertung der Treffer in gut und schlecht wurde rein subjektiv vorgenommen.
Als Beurteilungsgrundlage wurde subjektive phonetische Ähnlichkeit zum gesuchten
Namen verwendet.

Es fällt auf, dass die im vorherigen Absatz angenommene Vermutung, die Soundex-
Version in MySQL sei von der Genauigkeit eher grob, sich in diesem Beispiel bestätigt
hat.

Testweise wurden weitere Abfragen durchgeführt:

Gesucht: Ohrbach

Gefundene Namen: 2
Gute Treffer: Ohrbach
Schlechte Treffer: Orbegozo

44

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Gesucht: Scheck

Gefundene Namen: 130
Gute Treffer: Sick, Schoech, Schach, Schack, Schick, Schoch, Scheck, Schaeg,

Schoeck, Schuck, Schueck, Schock, Schieck, Seck, Schöck, Schoke
Schlechte Treffer: Sachs, Schuscha, Saey, Saez, Scho, Schiweck, Seegis, Six, Sags-

oez, Saggau, Suske, Suesse, Sigg, Sachse, Schiess, Suck, Skoko,
Sack, Sah, Sacoo, Schukies, Sowka, Sass, Scheich, See, Sieg, Sich,
Schau, Sasse, Scheja, Sessous, Soco, Sawski, Sause, Saahs, Saks,
Siek, Sax, Suess, Schoessow, Schawach, Schuh, Schewe, Sashe,
Schieweck, Schug, Sachau, Schikowski, Seeg, Schicho, Schache,
Sock, Sieke, Schoeke, Schugk, Schewes, Sueck, Schega, Schieke,
Schueschke, Schwake, Su, Sjouke, Sossau, Shoji, Sawy, Soccio,
Shea, Schaa, Sykes, Sakowski, Schiegg, Szuecz, Sowa, Sekac, Scha-
we, Siko, Schiwy, Sachweh, , Soika, Seiz, Soe, Swewczyk, Schweig,
Scheu, Seigis, Saucke, Schiwek, Sussieck, Schaack, Soyk, Schauss,
Souza, Schuch, Seggewiss, Sois, Saske, Suchy, Sikes, Sewczyk, Su-
cic, Schwuchow, Schuss, Schaich, Sagzoez, Schuy, Schies, Sacco,
Saygi, Szuecs, Schwach, Sues, Skasa, Sy

Beurteilung der phonetischen Suche mit MySQL

Die Suche über 117677 Datensätze geht sehr schnell, die Antwortzeit liegt im Schnitt bei
ca. 0,15 Sekunden. Wobei die Suche nach Tseniov bei diesem Test am längsten dauerte
und ganze 0,27 Sekunden in Anspruch nahm und einen Treffer (Tsenyuv) lieferte.

Wie die einfachen Tests gezeigt haben, werden jedoch deutlich mehr Treffer zurückge-
liefert als erwartet. Die subjektive Qualität der Treffer ist nicht sehr hoch.

Sollte eine Ähnlichkeitssuche oder Dublettensuche damit realisiert werden, müsste
erheblicher weiterer Aufwand unternommen werden, um die gefundenen Treffer noch
weiter zu filtern. Die phonetische unscharfe Suche von MySQL kann im Kontext dieser
Arbeit eher als eine Vorauswahl für eine Bearbeitung durch genauere Algorithmen
angesehen werden, was aber den gesetzten Rahmen überschreitet.

Aufgrund der Ergebnisse dieser Evaluierung, und vor allem da Oracle zum derzeitigen
Stand die bevorzugte Datenbank für Projekte im CI ist, wird dieser Ansatz nicht weiter
verfolgt.

45

3 Evaluierung verschiedener Lösungsansätze

3.1.2 Oracle

Auch Oracle bietet die phonetische Suche mit Hilfe von Soundex an. Dazu existiert
von Hause aus die Funktion soundex(). Einen SOUNDS LIKE Operator kennt Oracle
hingegen nicht. Die Syntax ist identisch mit der Syntax unter MySQL:

SELECT *

FROM kunden

WHERE soundex(name) = soundex(’Meier’);

Außerdem kann mit „SELECT soundex(’Meier’) from dual;“ der Soundex-Code für
einen Namen direkt ausgegeben werden.

Die für diese Evaluierung verwendete Version ist Oracle XE 10g (Version 10.2.0.1-1.0).

Korrektheit der Berechnung des Soundex-Codes

Nachdem MySQL teilweise andere Codes als erwartet zurückgeliefert hat, soll auch
unter Oracle überprüft werden, ob die Ausgaben auch der Erwartung entsprechen,
bevor weitere Funktionen evaluiert werden.

Name Erwartetes Ergebnis Erhaltenes Ergebnis Übereinstimmung

Maier M600 M600 3

Mayer M600 M600 3

Meier M600 M600 3

Meyer M600 M600 3

Major M260 M260 3

Beier B600 B600 3

Fischer F260 F260 3

Vischer V260 V260 3

Moskowitz M232 M232 3

Moskovitz M213 M213 3

Superzicke S162 S162 3

Scheck S200 S200 3

Schweizer S260 S260 3

46

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Bei diesem Test stimmte das erhaltene Ergebnis stets mit dem erwarteten überein.
Daraus kann geschlossen werden, dass sich Oracle bei der Implementierung an den
Standard gehalten hat und keine Sonderregeln implementiert hat.

Suche nach ähnlich klingenden Namen im Datenbestand

Weitere Tests sollen nun zeigen, wie sich dies auf die Trefferrate auswirkt, wenn im
kompletten Datenbestand gesucht wird.

Zur besseren Vergleichbarkeit sollen auch hier wieder die selben Abfragen durchgeführt
werden. Der Datenbestand in beiden Datenbanken ist identisch.

Für die Suche wird die folgende Abfrage verwendet:

SELECT DISTINCT name

FROM adressen

WHERE soundex(name) = soundex(’Name’)

Gesucht: Meier

Gefundene Namen: 31
Gute Treffer: Meyer, Meier, Moier, Mahir, Mayer, Mair, Maier, Mayr, Maeyer,

Mauer
Schlechte Treffer: Mauri, Moor, Maar, Merry, Mohr, Marr, Mera, Morr, Mihr, Miehr,

Maru, Muhra, Mahr, Moro, Muehr, Marie, Meer, Meri, Muhr, Mu-
eri, Morawe

Diese Abfrage zeigt, dass die schlechten Treffer aus den MySQL-Ergebnissen für Meier
sich hier fast halbiert haben, die guten Treffer sind jedoch fast identisch, es fehlt nur
Mayrer, was aber subjektiv betrachtet auch nur gerade noch ein guter Treffer bei MySQL
war.

Gesucht: Ohrbach

Gefundene Namen: 2
Gute Treffer: Ohrbach
Schlechte Treffer: Orbegozo

Dieser Test zeigt, dass die Treffer für Ohrbach identisch mit denen von MySQL sind.

47

3 Evaluierung verschiedener Lösungsansätze

Gesucht: Scheck

Gefundene Namen: 93
Gute Treffer: Schack, Schaeg, Schöck, Scheck, Schick, Schieck, Schiegg, Schoch,

Schock, Schoech, Schoeck, Schoeke, Schoke, Schuch, Schuck,
Schueck, Schug, Schugk, Suck, Seck, Schach

Schlechte Treffer: Saahs, Sacco, Sachau, Sachweh, Sack, Sacoo, Saez, Saggau, Saks,
Sashe, Saske, Sass, Sasse, Saucke, Sause, Sawski, Sax, Saygi,
Schaack, Schache, Schaich, Schauss, Schawach, Schega, Scheich,
Scheja, Schewes, Schicho, Schieke, Schies, Schiess, Schieweck, Schi-
weck, Schiwek, Schoessow, Schuscha, Schuss, Schwach, Schwake,
Schweig, Schwuchow, Seeg, Seiz, Shoji, Sich, Sick, Sieg, Siek, Sieke,
Sigg, Siko, Six, Sjouke, Skasa, Skoko, Soccio, Sock, Soco, Soika, Sois,
Sossau, Souza, Sowka, Soyk, Suchy, Sueck, Sues, Suess, Suesse,
Suske, Szuecs, Szuecz

Beurteilung der phonetischen Suche mit Oracle

Die Suche benötigt auch hier durchschnittlich 0,1 Sekunden für eine Antwort, was
die Verwendung in einer Web-Anwendung problemlos erlauben würde. Auch die
Ergebnisse sind nach subjektivem Empfinden besser als bei MySQL.

Da aber noch immer viele subjektiv schlechte Treffer in den Ergebnissen enthalten
sind, ist das Verfahren nicht optimal. Web-Anwendungen, die eine unscharfe Suche mit
geringstem Aufwand und eher als Nebenfunktion benötigen, könnten dieses Verfahren
eventuell verwenden.

Um die Vorteile von Hibernate (vor allem objektrelationales Mapping) auch aus einer
SQL-Query zu nutzen, kann die Methode addEntity benutzt werden:

session.createSQLQuery(

"SELECT * FROM adressen WHERE soundex(name) = soundex(’Name’)"

).addEntity(Customer.class);

Wenn die Anwendung aber mehr Ansprüche an die unscharfe Suche stellt, ist dieses
Verfahren nur bedingt geeignet.

48

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Erweiterung mit PL/SQL

Für Oracle existieren viele Implementierungen der phonetischer Suche in PL/SQL, die
die standardmäßige Funktionalität verbessern sollen. Stellvertretend für eine Vielzahl
verschiedener Skripte wird das Paket „Metaphone for Oracle“ von Scott Stephens (siehe
[byt]) untersucht.

Nachdem das PL/SQL-Skript importiert wurde, ist die Berechnung des Metaphone-
Codes mit der Funktion meta.phone() möglich. Daraus ergibt sich die Abfrage:

SELECT DISTINCT name

FROM adressen

WHERE meta.phone(name) = meta.phone(’Name’)

Stellvertretend wird die Suche für Scheck durchgeführt:

Gesucht: Scheck

Metaphone-Code: SXK
Gefundene Namen: 26
Gute Treffer: Schoeck, Schoeke, Schieck, Schieke, Schueck, Schiegg, Schack,

Schock, Schaack, Schöck, Schick, Schuck, Scheck, Schug, Schaeg,
Schoke

Schlechte Treffer: Schega, Schweig, Schiweck, Waschka, Waschk, Waschkau, Wa-
schek, Schwake, Schiwek, Schieweck

Das Ergebnis der Suche wurde deutlich besser, viele subjektiv schlechte Treffer wurden
unterdrückt. Allerdings hatte die Anfrage eine Antwortzeit von knapp 72 Sekunden.
Damit ist dieses Verfahren in dieser Form für eine Web-Anwendung nicht einsetzbar.

Performanceverbesserung durch Vorausberechnung

Zur Verbesserung der Performance wurde die Tabelle adressen um die Spalte
metaphone erweitert, in welcher der zugehörige Metaphone-Code gespeichert wird.
Dadurch muss bei einem SELECT nicht mehr für jede Zeile der Code extra berechnet
werden. Die Abfrage lautet nun für Scheck:

SELECT DISTINCT name

FROM adressen

WHERE metaphone = meta.phone(’Scheck’)

49

3 Evaluierung verschiedener Lösungsansätze

Die Treffer sind wie erwartet identisch, die Antwortzeit hat sich jedoch auf 30,2 Sekun-
den verkürzt. Dennoch ist dies für eine Web-Anwendung deutlich zu langsam.

Wird der Metaphone-Code für den Namen allerdings im Voraus berechnet, z. B. mit der
Abfrage „SELECT meta.phone(’Scheck’)“, kann die Abfrage signifikant beschleunigt
werden.

Die Abfrage

SELECT DISTINCT name

FROM adressen

WHERE metaphone = ’SXK’

dauert nur noch 0,02 Sekunden mit identischen Treffern. Mit einem Trigger könnte si-
chergestellt werden, dass das Feld metaphone immer den korrekten Wert enthält. Damit
wäre dieses Verfahren für die unscharfe Kundendatensuche in einer Web-Anwendung
anwendbar.

Suche in Oracle mit distanzbasierten Verfahren

Zum regulären Lieferumfang von Oracle gehört seit Version 10g Release 2 auch das
undokumentierte Paket UTL_MATCH, das zwei Algorithmen zur Berechnung der Ähnlich-
keit zweier Strings zur Verfügung stellt (vgl. [HM05, S. 18 ff.]): die Levenshtein-Distanz
und die Jaro-Winkler-Ähnlichkeit.

Bevor UTL_MATCH das erste Mal verwendet werden kann, muss das PL/SQL-Skript
$ORACLE_HOME/rdbms/admin/utlmatch.sql vom Datenbankadministrator ausgeführt
werden.

Bevor eine Suche damit ausgeführt wird, ist es ratsam, einen sinnvollen Schwellenwert
für die Distanz zu wählen, ab welchem man einen Namen nicht mehr als ausreichend
ähnlich zum gesuchten Namen ansieht. Auch dieses Verfahren soll stellvertretend mit
Scheck getestet werden. Als Schwellenwert wurde 3 gewählt. Damit ergibt sich die
Abfrage:

SELECT DISTINCT name, dist

FROM (

SELECT name, utl_match.edit_distance(name, ’Scheck’) AS dist

FROM adressen

50

3.1 Unscharfe Suche mit Hilfe eines RDBMS

)

WHERE dist < 3

ORDER BY dist

Stellvertretend wird die Suche für Scheck durchgeführt:

Gesucht: Scheck

Treffer gesamt: 77
1 × Distanz 0: Scheck
11 × Distanz 1: Schack, Schenck, Schenk, Schick, Schieck, Schneck, Schock,

Schoeck, Schreck, Schuck, Schueck
65 × Distanz 2: Schaack, Schach, Schalk, Schank, Schareck, Scheel, Scheer, Sche-

ga, Schehr, Scheib, Scheich, Scheid, Scheikl, Schein, Scheit, Scheja,
Schelb, Schell, Schelm, Schels, Schemm, Schenke, Schenkl, Sche-
pe, Scherb, Scherf, Scherg, Scherl, Scherm, Scherr, Schett, Scheu,
Scheur, Scheve, Schewe, Schickl, Schimeck, Schink, Schiweck,
Schlak, Schlick, Schmok, Schmuck, Schmueck, Schnack, Schnick,
Schoch, Schöck, Schoech, Schrack, Schrenk, Schrick, Schroeck,
Schuch, Schugk, Schunck, Schurk, Schwenk, Seck, Sobeck, Speck,
Steck, Stoeck, Streck, Sueck

Obwohl der Wert für jede Zeile gesondert berechnet werden muss, stand das Ergebnis
bereits nach 1,7 Sekunden zur Verfügung. Es fällt außerdem auf, dass die Anzahl der
Treffer wieder deutlich höher ist, die Treffer aber nicht nach subjektivem Empfinden
in gute und schlechte Treffer gruppiert werden müssen, da ein Distanzwert die Ähn-
lichkeit angibt. Man erhält dadurch eine Gewichtung, die von der Anwendungslogik
ausgewertet und berücksichtigt werden kann.

Jaro-Winkler-Übereinstimmung
Auf die Möglichkeit der unscharfen Suche mit Hilfe der Jaro-Winkler-Übereinstimmung
(auch aus dem Paket UTL_MATCH) soll ebenfalls kurz eingegangen werden. Die Funkti-
on UTL_MATCH.jaro_winkler_similarity(s1, s2) liefert die Übereinstimmung nach
Jaro-Winkler in Prozent. Als Schwellenwert wählen wir 90:

SELECT DISTINCT name, dist

FROM (

SELECT name, utl_match.jaro_winkler_similarity(name, ’Scheck’) AS dist

FROM adressen

51

3 Evaluierung verschiedener Lösungsansätze

)

WHERE dist > 90

ORDER BY dist DESC

Gesucht: Scheck

Gefundene Namen gesamt: 29
1 × 100% Übereinstimmung: Scheck
1 × 97% Übereinstimmung: Schenck
5 × 96% Übereinstimmung: Schieck, Schneck, Schoeck, Schreck, Schueck
5 × 94% Übereinstimmung: Schareck, Schimeck, Schiweck, Schmueck, Schroeck
2 × 93% Übereinstimmung: Schenk, Schennack
15 × 92% Übereinstimmung: Schack, Schalueck, Schambeck, Scheffczik, Schencking,

Schick, Schieckel, Schiedeck, Schiereck, Schieweck,
Schock, Schrecker, Schreieck, Schuck, Schwebcke

Das Ergebnis der Abfrage stand nach 1,6 Sekunden zur Verfügung. Es fällt auf, dass die
Ergebnisse noch feiner gewichtet sind als bei der Verwendung der Levenshtein-Distanz.
Allerdings fällt ebenfalls auf, dass z. B. Schenck besser bewertet wird als Schneck, und
außerdem dass viele nach subjektivem Empfinden gute Treffer aus anderen Abfragen
hier nicht auftauchen.

3.2 Apache Lucene

Apache Lucene bietet standardmäßig eine unscharfe Suche mit Hilfe der Levenshtein-
Distanz. Um Lucene evaluieren zu können, wurden zwei Java-Klassen geschrieben,
von der eine die schon in den anderen Beispielen verwendeten Adressen in den Index
schreibt, und eine zweite zur Suche im Index.

Standardmäßig verwendet Lucene bei der unscharfen Suche mit der Levenshtein-
Distanz ein Dnormiert ≥ 0.5. Es hat sich aber gezeigt, dass die subjektive Qualität der
Treffer bei Dnormiert ≥ 0.8 deutlich besser wird.

Auch hier soll nach Ohrbach, Scheck und Meier gesucht werden.

Gesucht: Ohrbach (mit Dnormiert ≥ 0.8)

Gefundene Namen: 4
Gute Treffer: Ohrbach, Mohrbach, Rohrbach, Ohlbach-Nowatzki
Schlechte Treffer: –

52

3.2 Apache Lucene

Die Suche dauerte 0,3 Sekunden. Auerbach taucht auch hier (wie bei allen anderen
bisher evaluierten Verfahren) nicht bei den Treffern auf, dafür drei weitere Namen, die
subjektiv sehr gute Treffer sind, aber bei bisher keinem anderen Verfahren gefunden
wurden.

Als nächstes werden die Ergebnisse für Scheck betrachtet.

Gesucht: Scheck (mit Dnormiert ≥ 0.8)

Gefundene Namen: 18
Gute Treffer: Scheck, Schenck, Schoeck, Schueck, Schöck, Schock, Schack,

Schreck, Schuck, Schneck, Schieck, Schick, Schenk, Schreck-
Engelhardt, Thomas-Schuck, Lueke-Schuck, Schick-Wagner, Paetz
gen. Schieck

Schlechte Treffer: –

Die Suche dauerte 0,4 Sekunden, auch hier sind die Treffer durchweg subjektiv gut. Wie
auch schon beim letzten Beispiel aufgefallen ist, werden erstmals auch Doppelnamen
bei der Suche berücksichtigt.

Abschließend soll nun noch die Suche nach Meier betrachtet werden.

Bei Dnormiert ≥ 0.8 werden zwar einige Treffer ausgegeben, aber neben Meier werden
nur Doppelnamen mit Meier gefunden. Jedoch taucht keine andere Schreibweise des
Namens auf.

Bei Dnormiert ≥ 0.7 werden deutlich mehr Treffer ausgegeben, vor allem auch viele
Doppelnamen. Diese sollen der Übersichtlichkeit wegen allerdings ignoriert werden.
Neben Meier taucht nun auch Maier und Meyer auf. Dazu kommt noch Beier, Meer und
Meir. Allerdings fehlt noch immer Mayer.

Bei Dnormiert ≥ 0.6 kommen noch einige Namen hinzu, allerdings wird Mayer noch
immer nicht gefunden.

Bei Dnormiert ≥ 0.5 findet sich auch Mayer unter den Suchergebnissen, allerdings auch
viele schlechte Treffer wie z. B. Weber oder auch Reiser.

Beurteilung der unscharfen Suche mit Lucene

Insgesamt betrachtet funktioniert die Suche mit Lucene sehr gut und performant. Es ist
für den Einsatz in einer Web-Anwendung gut geeignet. Ein großer Vorteil gegenüber
allen anderen getesteten Verfahren ist das Finden auch von Doppelnamen. Allerdings

53

3 Evaluierung verschiedener Lösungsansätze

wird auch deutlich, dass die Qualität der Ergebnisse stark vom verwendeten Schwel-
lenwert Dnormiert abhängt.

Da Hibernate Search intern ebenfalls Lucene verwendet, kann bei der Verwendung von
Hibernate Search das gleiche Ergebnis erwartet werden.

3.3 Ergebnis der Evaluierung

Die Evaluierung der verschiedenen Möglichkeiten hat gezeigt, dass mit Lucene und
einem geeigneten Schwellenwert die besten Ergebnisse erzielt werden konnten. Außer-
dem ist es das einzige der getesteten Verfahren, das auch Doppelnamen berücksich-
tigt.

Einziger Nachteil von Lucene im Vergleich zu den anderen Verfahren ist die zusätzliche
Verwaltung des Index unabhängig von der Datenbank. Eine Herausforderung ist es
daher, den Index immer konsistent zum Datenbank-Inhalt zu halten. Im Zusammenspiel
mit Hibernate Search sollte dies jedoch möglich sein.

Eine weitere Herausforderung bei der Implementierung des Prototyps wird es sein, die
Suchanfrage derart zu verfeinern, dass möglichst viele gute Treffer gefunden werden,
aber gleichzeitig so wenig wie möglich schlechte. Aufgrund der Flexibilität von Lucene
und den bereits mit den Standard-Optionen guten Treffern wird Lucene als einzige
mögliche Bibliothek zur Realisierung der unscharfen Suche in Betracht gezogen und
soll für den Prototyp verwendet werden.

54

Vision without implementation is
hallucination.

– Benjamin Franklin

4 Implementierung

Die in den Kapiteln 2 und 3 gewonnenen Erkenntnisse sollen nun für die Erstellung
eines Prototyps einer Web-Anwendung eingesetzt werden. In diesem Kapitel werden
die Überlegungen, die Herangehensweise und die zu überwindenden Probleme be-
schrieben, die während der Implementierung aufgetreten sind, sowie natürlich deren
Lösungen.

Dieses Kapitel soll gleichzeitig auch Anleitung, Beispiel und Dokumentation für den
CI/AFJ sein, wie andere Projekte mit einfachen Mitteln die selbe Funktionalität einbin-
den können.

Für den Prototyp wird eine Klasse Customer verwendet, die folgende Attribute be-
sitzt:

• id

• firstName

• lastName

• street

• city

4.1 Vergleich Ist- und Soll-Architektur bei der Suche in
Web-Anwendungen im BOSCH OpenJava Framework

In diesem Abschnitt soll ein Überblick über die bisherige Architektur der Suche in
Web-Anwendungen im BOSCH OpenJava Framework gegeben werden. Außerdem
wird erläutert, wie die Architektur der Suche bei Verwendung von Hibernate Search
aussieht.

55

4 Implementierung

Ist-Architektur
Bisher werden in Anwendungen, die für die BOSCH OpenJava Platform entwickelt
werden, für Zugriffe auf Datenbanken Hibernate als Abstraktionsschicht und Frame-
work zur objektrelationalen Abbildung verwendet. Die Architektur ist in Abbildung 4.1
vereinfacht dargestellt.

In den Session-Beans wird von Seam ein EntityManager „injected“, über den mit

List<Customer> customers = entityManager.createQuery(

"SELECT customer FROM Customer AS customer "

+ "where lower(name) like lower(?1)")

.setParameter(1, "Meier%")

.getResultList();

Abfragen in JPQL19 formuliert werden können und Listen mit Entity-Objekten als
Resultat zurückgegeben werden.

Abbildung 4.1 Ist-Architektur für die Suche in Web-Anwendungen bei CI/AFJ mit
OpenJava

19Java Persistence Query Language. Siehe http://java.sun.com/javaee/5/docs/tutorial/backup/

update3/doc/QueryLanguage.html

56

http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/QueryLanguage.html
http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/QueryLanguage.html

4.1 Vergleich Ist- und Soll-Architektur bei der Suche in Web-Anwendungen im BOSCH
OpenJava Framework

Soll-Architektur
Beim Einsatz von Hibernate Search wird statt dem EntityManager ein

FullTextEntityManager verwendet, der ebenfalls von Seam „injected“ wird.
Die Klasse FullTextEntityManager erbt von EntityManager, daher kann die bisherige
Suchmethode auch weiterhin je nach Anwendungsfall parallel zur Suche mit Hibernate
Search verwendet werden.

Bei der Suche mit Hibernate Search wird die Abfrage jedoch nicht als JPQL-Abfrage
gestellt, sondern ein Query20-Objekt (bzw. meistens ein Baum von Query-Objekten) an
den FullTextEntityManager übergeben:

FuzzyQuery luceneQuery = new FuzzyQuery(new Term("name", "meier"), 0.7f);

customerList = (List<Customer>) entityManager.createFullTextQuery(

luceneQuery, Customer.class)

.getResultList();

Durch diese Anweisung wird Hibernate Search im Index alle Einträge finden, auf
die die Suchkriterien (hier: Name zu 70% identisch mit „meier“) zutreffen. Die IDs
der betreffenden Einträge werden dann automatisch von Hibernate Search in eine
SQL-Abfrage der Art

SELECT *

FROM Customer

WHERE id IN (<Liste von den IDs der Treffer>)

umgewandelt und ausgeführt. Die Ergebnisse werden dann ebenfalls als Liste von
Entity-Objekten zurückgegeben. Einen vereinfachten schematischen Überblick über die
Suche mit Hibernate Search zeigt Abbildung 4.2.

20Wie eine Query oder ein Query-Baum aufgebaut wird, beschreibt u. a. Kapitel 4.5, sowie [HG05].

57

4 Implementierung

Abbildung 4.2 Architektur der Suche in Web-Anwendungen bei CI/AFJ mit OpenJava
bei Verwendung von Hibernate Search

4.2 Notwendige Projekteinstellungen zur Nutzung von
Hibernate Search im BOSCH OpenJava Framework

Die BOSCH OpenJava Platform bringt die wichtigsten Bibliotheken bereits mit, da Seam
Hibernate Search schon integriert hat. Allerdings werden die Bibliotheken beim Anlegen
eines neuen Projekts nicht automatisch eingebunden. Daher müssen die folgenden JARs
manuell dem Projekt hinzugefügt werden21:

• commons-codec.jar

• hibernate-search.jar

• lucene-core.jar

21Bei Verwendung der BOSCH OpenJava Platform finden sich die JARs im Verzeichnis
C:\OpenJava-1002\jboss-seam-2.2.0.GA\lib. Andernfalls können sie zusammen mit Seam von
http://seamframework.org/ geladen werden.

58

http://seamframework.org/

4.3 Erstellen und Verwalten des Lucene-Index

Außerdem werden Analyzer und Filter vom Solr-Projekt für die phonetischen Verfahren
verwendet. Daher müssen zusätzlich die folgenden JARs22 mit eingebunden werden:

• apache-solr-common-1.3.0.jar

• apache-solr-core-1.3.0.jar

• apache-solr-solrj-1.3.0.jar

Des weiteren müssen noch zwei zusätzliche Einstellungen in der Datei
persistence.xml vorgenommen werden (siehe Ausschnitt aus persistence.xml
in Listing 4.1).

Listing 4.1 Notwendige Einstellungen in persistence.xml
1 <!-- use a file system based index -->

<property name="hibernate.search.default.directory_provider"

3 value="org.hibernate.search.store.FSDirectoryProvider"/>

5 <!-- directory where the indexes will be stored -->

<property name="hibernate.search.default.indexBase"

7 value="index"/>

Zum einen muss der zu verwendende Index-Typ angegeben werden.
Da der Index nicht in einer Datenbank oder im Hauptspeicher gehal-
ten werden soll, sondern in einer Dateisystem-Hierarchie, wählt man
org.hibernate.search.store.FSDirectoryProvider.

Als zweites muss dazu noch der Speicherort für den Index angegeben werden.

4.3 Erstellen und Verwalten des Lucene-Index

Damit die Suche im Index mit Lucene überhaupt Resultate finden kann, muss der Index
natürlich auch gefüllt werden. Außerdem muss der Inhalt des Index bei jeder Änderung
in der Datenbank ebenfalls aktualisiert werden.

In diesem Abschnitt werden zwei Möglichkeiten zum Erstellen und Aktualisieren des
Index vorgestellt.

22Zum Herunterladen als Teil von Solr unter http://lucene.apache.org/solr/. Es ist darauf zu achten,
die Version 1.3 zu verwenden, da die aktuelle Version 1.4 zu Versionskonflikten mit der im BOSCH
OpenJava Framework enthaltenen Version von Hibernate führt.

59

http://lucene.apache.org/solr/

4 Implementierung

Erweiterungen an Entity-Klassen für die automatische Indexaktualisierung

Hibernate Search bietet einige Annotationen für Entitys, mit denen die komplette
Indizierung gesteuert werden kann. Hibernate Search aktualisiert dann automatisch
den Index bei jeder regulären Änderung, Neuanlage oder Löschung von Datensätzen.

Wichtig sind drei Annotationen. Sind diese vorhanden, müssen beim Persistieren der
Entitys keine weiteren Änderungen in den Entity-Manager-Klassen vorgenommen
werden. Ein Minimalbeispiel findet sich im Listing 4.2.

Die Klasse wird mit @Indexed annotiert, um zu markieren, dass die Entitys indiziert
werden sollen. Zusätzlich wird ein Index-Name angegeben. Hibernate Search erzeugt
dann einen Unterordner mit dem selben Namen für den Index in dem Ordner, der bei
hibernate.search.default.indexBase (siehe Abschnitt 4.2) angegeben wurde. Jede
Klasse sollte einen eigenen Indexnamen benutzen, damit die Indizes verschiedener
Entitys nicht vermischt werden.

Das Attribut ID der Entity muss mit @DocumentId annotiert werden, damit Hibernate
Search ein Mapping zwischen Dokumenten im Index und Entitys in der Datenbank her-
stellen kann. Es zeichnet sozusagen den Primärschlüssel für Hibernate Search aus. Wenn
Hibernate Annotations verwendet werden (was bei der BOSCH OpenJava Platform
der Fall ist) und ein Attribut mit @Id ausgezeichnet ist, kann @DocumentId weggelassen
werden.

Schließlich werden die zu indizierenden Attribute noch mit @Field annotiert. Mit
Parametern kann außerdem noch angegeben werden, wie das Feld heißen soll und wie
indiziert werden soll: ob der Inhalt in Tokens zerlegt werden soll oder nicht, ob der
Inhalt auch im Index gespeichert werden soll, welche Filter und Analyzer für das Feld
verwendet werden sollen usw.

60

4.3 Erstellen und Verwalten des Lucene-Index

Listing 4.2 Minimalbeispiel für Hibernate Search Annotationen (am Beispiel der Entity
Foo)

1 @Entity

@Table(name = "foo")

3 @Indexed(index = "foo")

public class Foo implements Serializable {

5

private static final long serialVersionUID = 231831029191111798L;

7

private Long id;

9 private String bar;

11 @Id

@DocumentId

13 @GeneratedValue

public Long getId() {

15 return id;

}

17

public void setId(Long id) {

19 this.id = id;

}

21

@Column(name = "bar")

23 @Field(index = Index.TOKENIZED, store = Store.NO),

public String getBar() {

25 return bar;

}

27

public void setBar(String bar) {

29 this.bar = bar;

}

31 }

Manuelle Erzeugung des Lucene-Index

Es gibt einige Fälle, in denen der Index manuell aktualisiert werden muss. Das sind
unter anderem:

• Hibernate Search wird nachträglich in ein bereits existierendes System integriert
und für die bereits persistierten Objekte gibt es noch keine Einträge im Index.

61

4 Implementierung

• Datenbank-Sicherungen wurden eingespielt oder Daten direkt in der Datenbank
ohne Benutzung der Anwendung geändert und der Datenbestand passt nicht
mehr zum bestehenden Index.

Das Listing 4.3 zeigt beispielhaft, wie innerhalb der Entity-Manager-Klasse
CustomerManager der Index für die Entity Customer neu aufgebaut werden kann.
Verwendet wird hierbei nicht der normale EntityManager, sondern wie bei allen
Entity-Manager-Klassen, die Hibernate Search benutzen wollen, die Unterklasse
FullTextEntityManager, der von Seam automatisch „injected“ wird.

Listing 4.3 Manuelle Indizierung von Objekten (am Beispiel der Entity Customer)
1 @In

FullTextEntityManager entityManager;

3

public void createIndex() {

5

// get all entries from database

7 List<Customer> customers = (List<Customer>)

entityManager.createQuery("select customer from Customer as customer")

9 .getResultList();

11 // purge index (in case it already exists)

entityManager.purgeAll(Customer.class);
13

// add each

15 for (Customer cust : customers) {

entityManager.index(cust);

17 }

}

Da die Laufzeit beim Erstellen des Index bei größeren Tabellen länger als der Timeout
des Application-Servers sein kann, bietet es sich an, den Index asynchron erstellen zu
lassen. Dazu wird die Methode mit @Observer(value=ïndexWorker") annotiert und
dann mittels events.raiseAsynchronousEvent(ïndexWorker"); aufgerufen.

4.4 Vorüberlegungen zur Verbesserung der Suchergebnisse

Der Test von Lucene in Kapitel 3.2 hat gezeigt, dass die unscharfe Suche mit Levenshtein
schon sehr gute Ergebnisse liefert. Jedoch hat die Evaluierung ebenfalls gezeigt, dass es
auch Schwachstellen gibt. So wurde beispielsweise Mayer bei der Suche nach Meier nur

62

4.5 Notwendige Erweiterungen an Hibernate Search und Lucene zur unscharfen Suche

gefunden, wenn der Schwellenwert für die Ähnlichkeit relativ gering ist und dadurch
auch viele unerwünschte Treffer auftreten. Bei einem phonetischen Verfahren wären
die beiden Varianten als ähnlich erkannt worden.

Andererseits kann ein kleiner Tippfehler bei einem phonetischen Verfahren ausreichen,
dass (obwohl sich die beiden Namen nur in einem Buchstaben unterscheiden und
am Telefon vielleicht sogar sehr ähnlich klingen) keine Ähnlichkeit festgestellt wird:
Müller und Füller werden von fast allen in Kapitel 2.1 vorgestellten Verfahren als
unterschiedlich angesehen (Soundex: M460 , F460, Daitch-Mokotoff: 689000 , 789000,
Kölner Phonetik: 657 , 357, Metaphone: MLR , FLR), mit Ausnahme des Match Rating
Approach (Kapitel 2.1.5), für den es jedoch kaum Implementierungen gibt und der
paarweise und daher aufwendiger zu berechnen ist.

Ein distanzbasiertes Verfahren wie Levenshtein hätte jedoch auch noch mit hohem
Schwellenwert die Ähnlichkeit entdeckt, stößt dafür aber wieder an Grenzen bei Schmidt
und Smith, die jedoch z. B. von Double Metaphone als ähnlich eingestuft werden.

Diese Überlegungen führten dazu, zwei Verfahren zu kombinieren. Darum soll für
diesen Prototyp die distanzbasierte Standard-Fuzzy-Suche von Lucene mit Double
Metaphone als phonetisches Verfahren kombiniert werden. Durch die Kombination
der beiden Verfahren bleiben die Vorteile der einzelnen Methoden erhalten, aber die
jeweiligen Nachteile gleichen sich teilweise aus.

4.5 Notwendige Erweiterungen an Hibernate Search und
Lucene zur unscharfen Suche

In diesem Abschnitt soll eine distanzbasierte und eine phonetische Methode für Lucene
vereint werden.

Unscharfe Suche mit Levenshtein ist ohne Probleme mit einer FuzzyQuery in Lucene
bereits verfügbar. Die FuzzyQuery funktioniert ohne weitere Vorarbeiten. Auch beim
Schreiben des Index muss nichts zusätzlich beachtet werden. Allerdings kann der
QueryParser nicht direkt verwendet werden, da sonst nur durch Anhängen einer Tilde
„~“ an den Suchbegriff unscharf gesucht werden würde. Stattdessen muss die Query

manuell erstellt werden.

Die Suche mit einem phonetischen Verfahren erfordert allerdings ein paar Änderungen.
Zusätzlich zu den normalen Feldern wird jedes Feld noch einmal codiert ebenfalls in

63

4 Implementierung

den Index aufgenommen. Um die codierten Inhalte von den uncodierten auseinander
halten zu können, werden die codierten in ein eigenes Feld geschrieben.

Der dazu notwendige Analyzer muss erst noch definiert werden, was mit Hilfe der
Bibliotheken aus dem Solr-Projekt sehr einfach it, siehe auch Listing 4.4. Der Analyzer
verwendet einen normalen Tokenizer, damit mehrere Worte in einem Attribut getrennt
codiert werden. Zusätzlich wird ein phonetischer Filter hinzugefügt, der hier mit einem
DoubleMetaphone-Encoder (ebenfalls aus dem Solr-Projekt) die einzelnen Token in
phonetische Codes umwandelt, bevor sie in den Index aufgenommen werden.

Listing 4.4 Definition des phonetischen Analyzers
@AnalyzerDef(

2 name = "phonetic",

tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
4 filters = {

@TokenFilterDef(factory = StandardFilterFactory.class),
6 @TokenFilterDef(factory = PhoneticFilterFactory.class, params = {

@Parameter(name = "encoder", value = "DoubleMetaphone")

8 })

})

Des weiteren muss bei der Definition der Felder der zusätzliche Encoder angegeben
werden. Da der uncodierte und der codierte Attributwert in zwei getrennte Felder
geschrieben werden soll, bietet sich an, für das Feld mit den phonetischen Codes den
selben Namen mit angehängtem _pho zu verwenden. Somit können die beiden Felder
jeweils einfach auseinander gehalten werden. Um eine Property in mehrere Felder
zu schreiben, muss die @Fields-Annotation verwendet werden, wie in Listing 4.5
gezeigt.

Listing 4.5 Ein Objektattribut in mehrere Felder indizieren
1 @Column(name = "city")

@Fields({

3 @Field(index = Index.TOKENIZED, store = Store.NO),

@Field(name = "city_pho", analyzer = @Analyzer(definition = "phonetic"))

5 })

public String getCity() {

7 return city;

}

64

4.5 Notwendige Erweiterungen an Hibernate Search und Lucene zur unscharfen Suche

Im Prototyp wurde das für alle Attribute der Klasse Customer gemacht. Es werden
also auch die Attribute street und city mit dem phonetischen Analyzer in den Index
aufgenommen.

Suche über kombinierte Doppelfelder
Auch bei der Suche über diese Doppelfelder muss die Query selber aufgebaut werden.
Für jedes Attribut, über das unscharf gesucht werden soll, müssen mindestens zwei
Querys (bei dem verwendeten Double Metaphone sogar drei) erzeugt werden, die
dann wiederum in einer BooleanQuery mit einer ODER-Verknüpfung zusammengefügt
werden können. Das heißt, für jeden Term werden intern bis zu 3 Querys verwendet.

Für den Levenshtein-Anteil wird eine FuzzyQuery über das Feld mit dem uncodierten
Inhalt realisiert. Für den phonetischen Anteil wird eine einfach TermQuery über das
phonetisch codierte Feld verwendet, aber der Suchstring zuvor ebenfalls in den phone-
tischen Code umgewandelt. Da Double Metaphone zwei Codes erzeugt, wird für jeden
Code je ein TermQuery erzeugt.

Dieses Vorgehen ist für jede unscharfe Suche (und hier wiederum für jedes in der Suche
berücksichtigte Feld) notwendig. Darum wurde die Erzeugung dieses Konstrukts in
eine statische Methode (siehe Listing 4.6) ausgelagert, die für die eigentlichen Suchen
dann beim Zusammenstellen der Querys hilft.

Listing 4.6 Aufbau einer Lucene Query für ein (Doppel-)Feld
public static BooleanQuery getCombinedQuery(String field, String value, float boost) {

2 BooleanQuery result = new BooleanQuery();

String metaphonePrimary = encoder.doubleMetaphone(value, false);
4 String metaphoneSecondary = encoder.doubleMetaphone(value, true);

FuzzyQuery fq = new FuzzyQuery(new Term(field, value), 0.7f);

6 TermQuery tq1 = new TermQuery(new Term(field + "_pho", metaphonePrimary));

fq.setBoost(boost);

8 tq1.setBoost(boost - 0.1f);

result.add(fq, Occur.SHOULD);

10 result.add(tq1, Occur.SHOULD);

// check if secondary DoubleMetaphone code is different

12 if (! metaphonePrimary.equals(metaphoneSecondary)) {

TermQuery tq2 = new TermQuery(new Term(field + "_pho", metaphoneSecondary));

14 tq2.setBoost(boost - 0.1f);

result.add(tq2, Occur.SHOULD);

16 }

return result;

18 }

65

4 Implementierung

Scores der Treffer erhalten
Sollen von der Anwendung nicht nur die Treffer verarbeitet werden, sondern auch

noch der Score für jeden Treffer, kann der Score über eine „Projection“ abgefragt werden.
Dazu wird für eine Query die Methode setProjection aufgerufen, und die Felder, die
im Ergebnis enthalten sein sollen, angegeben.

Der spezielle Wert FullTextQuery.SCORE liefert dabei den Score, und
FullTextQuery.THIS liefert die Entity. Ein Beispiel findet sich in Listing 4.7.

Listing 4.7 Abfrage des Scores zursätzlich zu den Treffern
FullTextQuery query = entityManager.createFullTextQuery(luceneQuery, Customer.class)

2 query.setProjection(FullTextQuery.SCORE, FullTextQuery.THIS);

List results = query.list();

4 Object[] firstResult = (Object[]) results.get(0);

float score = firstResult[0];

6 Customer customer = firstResult[1];

4.6 Erstellen eines Prototyps

In diesem Kapitel werden die verschiedenen Suchstrategien und Vorgehensweisen für
die folgenden Funktionen des Stammdaten-Prototyps beschrieben:

• Unscharfe Suche nach Adressdaten

– unter Verwendung einer Suchmaske
– unter Verwendung eines einzigen Suchfeldes

• Dublettenerkennung bei der Neuanlage von Datensätzen

• Zusammenführung mit Daten aus einem anderen System

4.6.1 Unscharfe Suche nach Objekten

Bei neuen Projekten im CI/AFJ tritt immer häufiger die Frage nach unscharfer Suche
auf. Dabei gibt es vor allem zwei verschiedene Ausprägungen:

• wie gewohnt mit einer Suchmaske mit Feldern für jedes Attribut

• Suche über alle Attribute durch Eingabe in nur einem Feld, ähnlich wie man es
auch bei einer Suchmaschine im Internet kennt

66

4.6 Erstellen eines Prototyps

Abbildung 4.3 Attributbezogene Suchmaske für die unscharfe Suche

Bei der Suche mit Suchfeldern (siehe Abbildung 4.3) steht eindeutig fest, welcher
Term in welchem Feld gesucht werden muss. Eine Query lässt sich darum einfach
aufbauen:

1. Für jedes nicht leere Suchfeld wird mit Hilfe von getCombinedQuery (aus Listing
4.6) eine Query aufgebaut.

2. Diese Querys werden in einer BooleanQuery mit Occur.MUST kombiniert.

Der dabei entstehende Query-Baum wird in Abbildung 4.4 veranschaulicht.

Abbildung 4.4 Baum aus Query-Objekten für die Suche nach Name=„Meier“ und
Ort=„Hamburg“

67

4 Implementierung

Suche mit nur einem Suchfeld
Soll hingegen mit nur einem Suchfeld wie in Abbildung 4.5 in allen (relevanten) Fel-
dern im Index gesucht werden, muss eine andere Strategie zur Erstellung der Query
angewendet werden.

Abbildung 4.5 Suchmaske für die unscharfe Suche über alle Attribute

Die allergrößte Anzahl der Abfragen auf Adressdaten in dieser Maske wird aus ei-
nem bis drei Wörtern bestehen, dem Familiennamen, und eventuell dem Vornamen
und/oder dem Ort, wie zum Beispiel „Schmidt“ oder „Peter Hinzig Hamburg“.

Lucene bietet einen MultiFieldQueryParser, der einen Suchstring in mehreren Fel-
dern sucht. Doch einerseits wäre damit die Suche über die phonetischen Felder nicht
möglich, da der MultiFieldQueryParser nur einen Analyzer verwenden kann, und
somit unser phonetic-Analyzer gar nicht zusätzlich verwendet werden könnte. Ein
weiterer Nachteil des MultiFieldQueryParser ist, dass bei einer Suche mit Operato-
ren unerwartete Nebeneffekte auftreten. Zum Beispiel würde eine Suche nach „Meier
AND Hamburg“ bedeuten, dass mindestens in einem Feld beide Begriffe, also „Meier“

68

4.6 Erstellen eines Prototyps

und „Hamburg“, vorhanden sein müssen, was mit hoher Wahrscheinlichkeit nicht der
Absicht des Suchenden entspricht.

Die Query muss also auch hier manuell aufgebaut werden. Da nicht bekannt ist, welches
Wort in welchem Feld vorhanden sein soll, muss ein etwas komplexerer Baum aus
Query-Objekten aufgebaut werden als bei der Suche mit Suchmaske:

1. Zuerst muss der Suchterm an Leerzeichen in einzelne Tokens aufgespalten wer-
den, da jeder Token in einem anderen Feld vorkommen könnte.

2. Für jeden dieser Tokens wird daraufhin für jedes indizierte Feld mit Hilfe der
Methode getCombinedQuery (aus Listing 4.6) eine Query erzeugt.

3. Diese Querys werden mit Occur.SHOULD in einer BooleanQuery kombiniert.

4. Diese Bäume werden wiederum in einer BooleanQuery mit Occur.MUST kombi-
niert.

Wie ein Query-Baum für den Suchterm „Meier Hamburg“ aussieht, zeigt Abbildung
4.6.

69

4 Implementierung

Abbildung 4.6 Baum aus Query-Objekten für die Suche nach „Meier Hamburg“

Feintuning
Je nach Anwendungsfall und Datenbasis können verschiedene „Schärfegrade“ bei der
Suche wünschenswert sein, um mehr oder weniger Treffer zu erhalten.

Dies kann erreicht werden, indem zum einen der minimale Ähnlichkeitswert der
FuzzyQuery variiert wird; je dichter der Wert bei 1 liegt, desto genauer ist die Suche
und desto weniger Treffer werden zurückgeliefert, und je dichter der Wert bei 0 ist,
desto unschärfer ist die Suche und desto mehr Treffer werden gefunden.

Bei dem phonetischen Anteil kann man den „Schärfegrad“ nicht in diesem Maße steu-
ern. Allerdings hat man hier mit einem Boost-Faktor die Möglichkeit, beim Aufbauen
der Query dem phonetischen Feld mehr (Boost-Faktor > 1.0) oder weniger (0.0 <

70

4.6 Erstellen eines Prototyps

Boost-Faktor < 1.0) Gewicht zu geben. Damit kann man steuern, wie viel Einfluss der
phonetische Anteil der Suche auf das Ergebnis hat.

4.6.2 Dublettenlose Neuanlage von Stammdaten

Eine weitere Einsatzmöglichkeit der unscharfen Suche ist die Prüfung auf bereits vor-
handene ähnliche Datensätze vor dem Abspeichern einer Neuanlage zur Vermeidung
von Dubletten.

Abbildung 4.7 Anzeige möglicher Duplikate beim Anlegen eines neuen Kundenkontos

Zwar könnten Dubletten vermieden werden, wenn der Anwender manuell vor der Neu-
anlage zuerst eine unscharfe Suche ausführt und überprüft, ob bereits ein identischer
Eintrag existiert. Da dies viel Disziplin von den Nutzern erfordert und vor allem bei
Zeitdruck unter Umständen vernachlässigt werden würde, wie die Erfahrung mit be-
reits im Einsatz befindlichen Systemen zeigt, muss die Anwendung diese Funktionalität
automatisch abdecken.

71

4 Implementierung

Dies wurde folgendermaßen realisiert: Dem Benutzer wird eine gewöhnliche Maske
zum Anlegen des Datensatzes angezeigt. Nachdem der Benutzer die Maske ausgefüllt
hat, klickt er auf „Speichern“. Findet sich kein ähnlicher Datensatz in der Datenbank,
wird ein neuer Datensatz abgespeichert und eine Bestätigung der Speicherung für
den Benutzer ausgegeben. Für den Anwender ist der Ablauf soweit also zu 100%
identisch mit der Funktionalität, wie sie bisher bei Projekten realisiert wurde. Eine
„Umgewöhnung“ der Benutzer zur Vermeidung von Dubletten ist nicht notwendig.

Wird jedoch bei der Prüfung auf ähnliche Datensätze eine potentielle Dublette gefunden,
werden die Treffer dem Anwender angezeigt (siehe Abbildung 4.7) und die eingege-
benen Daten noch nicht in die Datenbank persistiert. Der Benutzer kann dann selbst
entscheiden, ob sein neuer Eintrag in der Liste der angezeigten ähnlichen Einträge
vorhanden ist, und dann diesen auswählen, oder aber trotzdem seinen Datensatz wie
eingegeben persistieren.

Es wurde versucht, auch Umzüge von Personen zu berücksichtigen, soweit dies möglich
ist. Dazu wird zuerst nur nach Einträgen mit ähnlichem Vor- und Nachnamen gesucht,
Straße und Ort werden dabei vorerst nicht mit in die Abfrage integriert. Dadurch
soll möglich werden, dass bei Personen mit seltenem Namen eventuell ein bereits
existierendes Kundenkonto gefunden wird, auch wenn sich die Anschrift geändert
hat.

Da bei über 20 Treffern zum einen davon ausgegangen werden kann, dass es sich um
einen gebräuchlichen Namen handelt und man weltweit gar nicht mit Sicherheit ein
bereits existierendes Konto des selben Kunden identifizieren kann, und zum anderen
bei mehr als 20 Einträgen auch die Übersichtlichkeit verloren geht, wird die Suche in
diesem Fall unter Einbeziehung des Ortes wiederholt und die Treffer dann angezeigt.

4.6.3 Zusammenführung mit redundanten Daten aus anderen Systemen

Ebenfalls eine häufige Anforderung bei neuen Projekten ist der Abgleich mit anderen
Stammdatensystemen. Unternehmensweit existieren viele gewachsene Systeme mit
teilweise unüberschaubar vielen Einträgen in den zugehörigen Datenbanken, die oft
auch redundante Informationen enthalten, die sich jedoch nicht über Primär- und
Fremdschlüssel abgleichen lassen. Der Abgleich muss daher ohne Schlüssel, also über
Vergleich der einzelnen Attribute erfolgen.

Da eine scharfe Suche auch hier an Grenzen stößt, wenn leicht abweichende Schreib-
weisen gewählt wurden, kann auch hier die unscharfe Suche weiterhelfen.

72

4.6 Erstellen eines Prototyps

Anders als bei der unscharfen Suche nach einem Datensatz durch einen Benutzer wie
in Kapitel 4.6.1, oder nach einer Dublette wie in Kapitel 4.6.2, wo man die Suche eher
unschärfer wünscht und eher mehr Treffer bekommen möchte, muss die Suche für
diesen Fall genauer sein. Darum werden auf jeden Fall alle in beiden Datenbeständen
vorkommenden Attribute als Suchkriterien verwendet.

Bei dem im Prototyp realisierten Beispiel wird für einen Customer (als anwendungs-
eigene Entität) aus einer zweiten Tabelle fsp_client ein passendes Client-Objekt
gesucht.

Für den Prototyp liegt die Tabelle im selben Schema, soll aber eine Tabelle aus einer
fremden Datenbank repräsentieren. Je nach Datenbank, in der die fremden Daten
vorliegen, muss eine unterschiedliche Anbindung realisiert werden23.

Das Verfahren läuft nach den folgenden Schritten ab:

1. Unscharfe Suche über Client, in der alle relevanten Attribute des Customer

berücksichtigt werden.

2. Gibt es keinen Treffer, konnte kein passender Client gefunden werden. Andern-
falls werden mit scharfem String-Vergleich für jeden Treffer noch einmal alle
Attribute verglichen. Sind sie identisch, kann davon ausgegangen werden, den
korrekten Client gefunden zu haben.

3. Stimmen im scharfen Vergleich die Attribute bei keinem der Treffer überein,
wird die Trefferliste dem Benutzer angezeigt (siehe Abbildung 4.8), damit dieser
entscheiden kann, ob der richtigen Client in der Liste ist, und diesen dann
manuell auswählen.

23Liegen die Daten in einer anderen Instanz einer Oracle-Datenbank (was für den Bosch CI der Regelfall
sein wird), lässt sich eine fremde Tabelle oder ein fremder View über zwei Schritte im aktuellen Schema
zugänglich machen: Zuerst muss mit dem Befehl CREATE DATABASE LINK eine Verbindung hergestellt
werden, dann kann mit CREATE SYNONYM ein Alias im eigenen Schema für die fremde Tabelle angelegt
werden.

73

4 Implementierung

Abbildung 4.8 Anzeige eines potentiellen übereinstimmenden Datensatz

74

„Regression testing“? What’s
that? If it compiles, it is good; if it
boots up, it is perfect.

– Linus Torvalds

5 Test und Bewertung der Implementierung

In diesem Kapitel soll der Prototyp aus Kapitel 4 getestet und bewertet werden. Als
Bewertungskriterien werden sowohl die Suchgeschwindigkeit, als auch die subjektive
Qualität der Such-Ergebnisse verwendet. Außerdem wird untersucht, welche Änderun-
gen sich durch die Kombination zweier unscharfer Suchverfahren im Vergleich zu nur
einem Verfahren ergeben.

Für die Bewertungen wurde der Prototyp auf einen der OpenJava POC-Server24 im
Rechenzentrum „deployed“. Alle Angaben bezüglich Laufzeit und Geschwindigkeit in
diesem Kapitel beziehen sich auf folgende Rechnerausstattung:

Hardware:
Geräteklasse Server
Prozessor 3 GHz Intel Quad-Core
Hauptspeicher 8 GB

Sonstiges:
Betriebssystem Linux, 64-Bit-Kernel 2.6.18

Die verwendete Instanz der Oracle-Datenbank liegt auf einem anderen Server.

5.1 Test und Bewertung der Suchgeschwindigkeit

Um die Geschwindigkeit der Suche zu testen, wurde der Prototyp um einige Debug-
Ausgaben ergänzt. Dann wurden die Abfragen über den Browser durchgeführt, jeweils
als scharfe Suche und als unscharfe Suche über alle Attribute mit nur einem Suchfeld
(siehe 4.5), da hier der Query-Baum komplexer wird als bei der unscharfen Suche mit
Suchmaske. Im Anschluss wurde der Serverlog analysiert und die Zeiten abgelesen.
Ausgewählte Beispiele sind in der Tabelle 5.1 aufgeführt.

24„Proof Of Concept“, diese Server dienen zur Evaluierung und Standardisierung von Verfahren im
Umfeld der BOSCH OpenJava Platform

75

5 Test und Bewertung der Implementierung

Name

Ohrbach
Scheck
Meier
Fischer

Unscharfe Suche

Treffer
Antwortzeit

Lucene Datenbank

56 < 0,1s < 0,1s
454 ~ 0,1s ~ 0,2s

2337 ~ 0,1s ~ 1.6s
621 ~ 0,1s ~ 0,3s

Scharfe Suche

Treffer
Antwortzeit

Datenbank

1 < 0,1s
16 < 0,1s

149 ~ 0,2s
474 ~ 0,3s

Tabelle 5.1: Geschwindigkeitsvergleich von unscharfer und scharfer Suche im Prototyp

Beim Abschicken von Testabfragen über die Web-Anwendung fiel auf, dass die Zeit,
bis die Antwort im Browser erscheint, sehr stark variiert. Abfragen, die nur wenige
Treffer zurück liefern, wurden in weniger als 1 Sekunde beantwortet. Bei Abfragen, die
mehrere Treffer liefern, dauerte dies teilweise deutlich länger.

Die Debug-Einträge im Serverlog zeigen dabei, dass für die Suche im Lucene Index
nur ein zu vernachlässigender Bruchteil der Gesamtzeit verwendet wird. Die größte
Anteil entsteht beim Warten auf die Ergebnisse von der Datenbank, nachdem die IDs
von Lucene bereits ermittelt wurden. Aber auch die Suche in der Datenbank läuft viel
schneller ab, wenn man die selben SQL-Abfragen (mit veränderten IDs, um Vorteile
durch Caching im Datenbankserver auszuschließen) direkt eingibt. Darum wurde
weiter untersucht, warum im Zusammenspiel die Laufzeit viel länger ist als die Summe
der Zeiten der Einzelschritte.

Nach eingehender Überprüfung wurde festgestellt, dass die meiste Zeit für die Übertra-
gung der Daten von der Datenbank zum Applikation-Server über das Intranet benötigt
wird, z. B. benötigt die Übertragung aller ~117.000 Einträge im Durchschnitt knapp 15
Sekunden. Negativ beeinflusst wurde dieser Effekt zusätzlich, da wegen eines Netz-
werkproblems an den Tagen dieser Tests das Intranet generell sehr langsam war, was
sich auch in zahlreichen anderen Web-Anwendungen deutlich bemerkbar machte.

Grundsätzliche Aussagen über die Geschwindigkeit lassen sich daher nicht treffen.
Durch die Debug-Einträge im Serverlog konnte jedoch gezeigt werden, dass die Warte-
zeit nicht durch die Suche im Index entsteht, sondern lediglich durch die Datenübertra-
gung im Netzwerk, die durch Netzwerkprobleme zudem langsamer ablief als üblich.
Da hiervon jegliche Art der Suche betroffen ist, wird daraus geschlossen, dass die
unscharfe Suche mit Hibernate Search sehr performant abläuft und für den Benutzer

76

5.2 Test und Bewertung der Trefferqualität

zu keiner wahrnehmbaren Verlängerung der Wartezeit im Vergleich mit der bisher
eingesetzten scharfen Suche führt.

5.2 Test und Bewertung der Trefferqualität

Um zu Bewerten, wie sich die Kombination eines Distanzverfahrens und eines pho-
netischen Verfahrens bei der unscharfen Suche mit Hibernate Search auswirkt, soll
für die scharfe Suche, die normale Lucene-FuzzyQuery (Levenshtein Distanz), Double
Metaphone sowie die Kombination der beiden Verfahren jeweils die Anzahl und die
subjektiv empfundene Qualität der Treffer in Schulnoten (1 = sehr gut, 6 = ungenügend)
angegeben werden. Die Ergebnisse zeigt Tabelle 5.2.

Zum Ermitteln der Ergebnisse wurde der Prototyp jeweils umgeschrieben, damit die
Suche nur das angegebene Verfahren verwendet. Da zur Bewertung der Qualität tat-
sächlich nur über die Namen gesucht werden soll, wurde hier im Index auch nur im
Feld name gesucht, daher weicht die Anzahl der Treffer auch im Vergleich zu den Tests
in Kapitel 5.2 ab, wo der Term jeweils in allen Feldern gesucht wurde.

Bei der scharfen Suche wurde auf die Bewertung der Qualität verzichtet, da sich dieses
Verfahren gerade dadurch auszeichnet, dass die Suchergebnisse stets zu 100% mit der
Suchanfrage übereinstimmen. Da die Abfrage mit dem LIKE-Operator durchgeführt
wurde (siehe Kapitel 4.1), werden trotzdem auch Namen und Doppelnamen gefunden,
die nicht genau dem Namen entsprechen, die aber mit genau dem Namen beginnen.
Dennoch zeigt die Anzahl der Treffer, wie viele Ergebnisse mit dem BOSCH OpenJava
Framework ohne die unscharfe Suche zu erwarten gewesen wären.

Die unscharfe Suche mit der Levenshtein-Distanz wurde für diesen Test mit einem
Schwellenwert von 0,5 ausgeführt, wie es der Standardeinstellung des QueryParsers
von Lucene entspricht. Es fällt auf, dass zwar viele Treffer gefunden werden, jedoch
wegen des niederen Schwellenwerts auch viele schlechte Treffer enthalten sind, die
für den Benutzer die Übersichtlichkeit der Ergebnisliste einschränken. Die Anzahl
schlechter Treffer nimmt deutlich ab, wenn der Schwellenwert erhöht wird, allerdings
sinkt damit auch die Anzahl der guten Treffer deutlich.

Bei der unscharfen Suche mit Double Metaphone bleiben die Ergebnisse übersichtlicher.
Außerdem sind viele gute Treffer im Ergebnis enthalten. Da es aber hier (im Gegensatz
zur Levenshtein-Distanz) keine Gewichtung der Treffer in Form eines Scores gibt, und
dadurch auch keine Sortierung, kann es vorkommen, dass der gesuchte Name erst am
Ende der Trefferliste erscheint. Zum Beispiel hat Meier den Double-Metaphone-Code MR.

77

5 Test und Bewertung der Implementierung

Damit zählen alle Namen als Treffer, die ebenfalls MR als Code besitzen, wie Mohr, Maar
oder Mera. Zwar kann es bei der unscharfen Suche durchaus gewünscht sein, diese
Treffer ebenfalls zu bekommen, allerdings haben sie den selben Score wie der tatsächlich
gesuchte Meier, und können daher in der Trefferliste auch davor auftreten.

Bei der Kombination der beiden Verfahren (mit einem Schwellenwert für die
Levenshtein-Distanz von 0,7) kann man von den Vorteilen beider Verfahren profitieren.
Über das phonetische Verfahren wird sichergestellt, dass trotz hohem Schwellenwert
beim Distanzverfahren viele gute Treffer enthalten sind. Das Distanzverfahren hingegen
stellt sicher, dass die besten Treffer auch am Anfang der Ergebnisliste auftauchen.

Somit wurde gezeigt, dass durch die Kombination der beiden Verfahren bessere Ergeb-
nisse erhalten werden als durch Verwendung nur eines Verfahrens.

Scharfe Suche Levenshtein Metaphone Kombination

Name Tref. Qual. Tref. Qual. Tref. Qual. Tref. Qual.

Scheck 16 – 153 1,3 149 2,0 149 1,3
Meyer 195 – 1557 2,7 952 2,3 1085 1,7
Ohrbach 1 – 176 3,0 35 2,7 56 2,0
Vischer 1 – 1552 4,0 496 1,5 598 1,3

Tabelle 5.2: Vergleich der Anzahl und Qualität der Treffer

78

Wenn die anderen glauben, man
ist am Ende, so muss man erst
richtig anfangen.

– Konrad Adenauer

6 Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurde ein Prototyp erstellt, der für die BOSCH OpenJa-
va Platform mit Hilfe von Hibernate Search und unter Verwendung unscharfer Suchme-
thoden eine Suche in Stammdaten, eine dublettenlose Neuanlage von neuen Einträgen
in ein Stammdatensystem sowie einen Abgleich von Stammdaten mit anderen Systemen
realisiert.

Dafür wurden verschiedene phonetische und distanzbasierte Methoden für die unschar-
fe Suche betrachtet und bewertet. Dabei fiel vor allem auf, dass eine für alle Anwen-
dungsfälle optimale Methode nicht existiert und dass jede Methode ihre Schwachstellen
hat.

Im zweiten Schritt wurde untersucht, wie diese Methoden eingesetzt werden könnten.
Dazu wurden verschiedene Möglichkeiten zur unscharfen Suche in den RDBMS MySQL
und Oracle evaluiert, die aber keine zufriedenstellenden Ergebnisse lieferten. Außerdem
wurde die Volltext-Suchmaschine Lucene sowie Solr betrachtet und auch einige Tests
damit durchgeführt.

Schließlich wurde versucht, die Vorteile eines phonetischen und eines distanzbasierten
Verfahrens für die unscharfe Suche zu kombinieren, um gleichzeitig die jeweiligen
Nachteile durch die Kombination auszugleichen. Darum wurden von jeder Methode
das am besten bewertete Verfahren ausgewählt und miteinander kombiniert. Das
Ergebnis war die Verbindung von Double Metaphone und Levenshtein.

Da Lucene sehr performant arbeitet und in Verbindung mit Hibernate Search sehr
komfortabel eingesetzt werden kann, wurde im nächsten Schritt untersucht, wie die
Kombination von Double Metaphone und Levenshtein mit Hibernate Search umgesetzt
werden kann.

Nachdem die Möglichkeiten zur unscharfen Suche dann durch die Vorarbeit zur Ver-
fügung standen, wurde mit der Implementierung des Prototypen begonnen. Drei ver-
schiedene Anwendungsfälle sollten dabei berücksichtigt werden: Suche von Objekten,
dublettenlose Neuanlage sowie Abgleich mit anderen Systemen. Je nach Anwendungs-
fall waren verschiedene Strategien zum Aufbau einer Query notwendig. Da die BOSCH

79

6 Zusammenfassung und Ausblick

OpenJava Platform für mich ebenfalls ein unbekanntes Terrain war, musste ich mich
auch hier etwas einarbeiten.

Um im Zusammenspiel der beiden Verfahren die besten Resultate zu erhalten, wurde
nach Fertigstellung des Prototypen untersucht, wie sich Änderungen an verschiedenen
Parametern, wie z. B. dem Schwellenwert für die Levenshtein-Distanz oder von Boost-
Faktoren auf verschiedene Felder auswirken.

Danach wurden die Ergebnisse der Arbeit mit der derzeit eingesetzten scharfen Su-
che, sowie mit den einzelnen Verfahren verglichen. Dabei wurde deutlich, dass die
Kombination der beiden Verfahren die Qualität der Treffer verbessert hat.

Der Prototyp ist einsatzfähig und nutzt die unscharfe Suche erfolgreich für verschie-
dene Anwendungsfälle. Das Verfahren liefert gute Ergebnisse, einem Einsatz in realen
Projekten steht nichts im Wege. Da immer häufiger von Kunden die unscharfe Suche
für eigene Projekte gewünscht wird und auch die Vermeidung von Dubletten sowie der
Abgleich von Daten in fast jedem Projekt eine Rolle spielen, wird empfohlen, dieses Ver-
fahren in die Standardisierung der OpenJava Platform sowie der Sample-Application
aufzunehmen.

Ausblick

In dieser Arbeit wurde nur auf die unscharfe Suche von Namen eingegangen. Um eine
flexiblere Lösung zur Abdeckung weiterer Anwendungsfälle zu erhalten, könnten die
vorgestellten Methoden erweitert werden.

Denkbare Anwendungsfälle wären z. B. unscharfe Suche für Volltext-Dokumente. Hier-
bei wird man auf andere Probleme stoßen, die für die Zielsetzung dieser Diplomarbeit
nicht relevant waren.

In diesem Zusammenhang können verschiedene Stemmer oder Lemmatizer untersucht
werden, auf deren Verwendung bei Namen gänzlich verzichtet werden kann. Auch die
Verwendung von Synonymlisten kann hier zu erheblichen Verbesserungen führen.

Außerdem wurde im Prototyp nur nach Strings gesucht. Möchte man auch ande-
re Datentypen indizieren und für die Suche verwenden, werden die Annotationen
@FieldBridge oder @DateBridge benötigt. Aber auch die Auswahl eines anderen Ana-
lyzers oder andere Strategien zum Aufbau eines Query-Baums können notwendig
werden.

80

Bisher wurde nur eine Entität berücksichtigt. Möchte man Objekte indizieren, die
Pointer auf andere Objekte besitzen, können die Annotation @IndexedEmbedded oder
@ContainedIn benötigt werden. Auch hier werden je nach Anwendungsfall unter Um-
ständen andere Strategien zum Aufbau des Query-Baums notwendig.

81

Danksagung

Ich möchte mich herzlich bei Frau Dr. Elke Schweizer und Herrn Dipl.-Inf. Alexander
Moosbrugger für die kompetente und freundliche Betreuung während der Arbeit und
für die konstruktiven Verbesserungsvorschläge und Anregungen bedanken.

Ebenso bei der Abteilung CI/AFJ der Robert Bosch GmbH für die freundliche Auf-
nahme während der 6 Monate und das große Interesse an den Ergebnissen dieser
Arbeit.

Besonders herzlicher Dank gilt meiner Mutter, die mit ihrer Unterstützung mein Studi-
um überhaupt erst ermöglicht hat.

A Daitch-Mokotoff Soundex Kodier-Schema

Das Kodier-Schema zum Daitch-Mokotoff-Verfahren aus Kapitel 2.1.2.

Tabelle A.1: Daitch-Mokotoff Soundex Kodier-Schema

Buchstabe alternative Schreibweise Wortanfang vor Vokal sonst

AI AJ, AY 0 1 –
AU 0 7 –
A 0 – –
B 7 7 7
CHS 5 54 54
CH siehe KH (5) + TCH (4)
CK siehe K (5) + TSK (45)
CZ CS, CSZ, CZS 4 4 4
C siehe K (5) + TZ (4)
DRZ DRS 4 4 4
DS DSH, DSZ 4 4 4
DZ DZH, DZS 4 4 4
D DT 3 3 3
EI EJ, EY 0 1 –
EU 1 1 –
E 0 – –
FB 7 7 7
F 7 7 7
G 5 5 5
H 5 5 –
IA IE, IO, IU 1 – –
I 0 – –

weiter auf der nächsten Seite. . .

85

A Daitch-Mokotoff Soundex Kodier-Schema

Tabelle A.1 – Fortsetzung

Buchstabe alt. Schreibweise Wortanfang vor Vokal sonst

J siehe Y (1) + DZH (4)
KS 5 54 54
KH 5 5 5
K 5 5 5
L 8 8 8
MN 66 66
M 6 6 6
NM 66 66
N 6 6 6
OI OJ, OY 0 1 –
O 0 – –
P PF, PH 7 7 7
Q 5 5 5
RZ, RS RTZ (94) + ZH (4)
R 9 9 9
SCHTSCH SCHTSH, SCHTCH 2 4 4
SCH 4 4 4
SHTCH SHCH, SHTSH 2 4 4
SHT SCHT, SCHD 2 43 43
SH 4 4 4
STCH STSCH, SC 2 4 4
STRZ STRS, STSH 2 4 4
ST 2 43 43
SZSZ SZCS 2 4 4
SZT SHD, SZD, SD 2 43 43
SZ 4 4 4
S 4 4 4
TCH TTCH, TTSCH 4 4 4
TH 3 3 3
TRZ TRS 4 4 4
TSCH TSH 4 4 4
TS TTS, TTSZ, TC 4 4 4

weiter auf der nächsten Seite. . .

86

Tabelle A.1 – Fortsetzung

Buchstabe alt. Schreibweise Wortanfang vor Vokal sonst

TZ TTZ, TZS, TSZ 4 4 4
T 3 3 3
UI UJ, UY 0 1 –
U UE 0 – –
V 7 7 7
W 7 7 7
X 5 54 54
Y 1 – –
ZDZ ZDZH, ZHDZH 2 4 4
ZD ZHD 2 43 43
ZH ZS, ZSCH, ZSH 4 4 4
Z 4 4 4

87

Abkürzungsverzeichnis

CI
Corporate Sector Information Systems and Services

CI/AF
CI / Application Foundation & Security

CI/AFJ
CI/AF / Java Development

EJB
Enterprise JavaBeans

JDBC
Java Database Connectivity

JPA
Java Persistence API

JSF
Java Server Faces

RDBMS
Relationales Datenbankmanagementsystem

WAM
Web Access Manager

89

Glossar

DVORAK-Tastatur
Ein alternatives Tastatur-Layout, bei dem die Tasten nicht wie auf einer gewöhnli-
chen Tastatur angeordnet sind, sondern nach ergonomischen Gesichtspunkten.

Hashing-Algorithmus
Ein Hashing-Algorithmus bildet eine große Menge von Daten auf eine kleine Men-
ge ab. Dadurch entsteht eine Art Schlüssel, der wiederum als implizite Gruppie-
rung dienen kann. Dies findet u. A. Anwendung bei Prüfsummenberechnungen
oder digitalen Signaturen, aber eben auch bei der phonetischen Suche.

Lemma
Die Linguistik bezeichnet die Grundform eines Wortes als Lemma (von griechisch
λη̄µµα (lēmma), „Annahme“). Es ist die Form des Wortes, die als Schlagwort in
ein Wörterbuch aufgenommen wird.

Namensvariation (engl. name variation)
Verschiedene Schreibweisen eines Namens oder gar verschiedene Namen können
sich auf ein und dieselbe Person beziehen.

Namensüberladung (engl. name overloading)
Mehrere verschiedene Personen können den gleichen Namen besitzen, d. h. ein
Name bezieht sich nicht notwendigerweise auf genau eine Person.

Phonetik
Die Phonetik beschäftigt sich mit der Aussprache und dem Klang von Wörtern.
Der Begriff stammt vom griechischen ϕωνητικóς (phōnētikós) ab, was „zum Spre-
chen gehörig“ bedeutet und von ϕωνή (phōn´̄e) „Stimme, Laut, Klang, Ton“ abgeleitet
ist.

QUERTY-Tastatur
Tastatur-Layout, wie es in vielen englischsprachigen Ländern verwendet wird. Es
ist benannt nach der Anordnung der ersten Tasten auf der oberen Buchstabenzeile
von links: Q W E R T Y.

91

Glossar

QUERTZ-Tastatur
Tastatur-Layout, wie es unter anderem in deutschsprachigen Ländern verwendet
wird und Y und Z im Vergleich zur QUERTY-Tastatur vertauscht sind. Es ist
benannt nach der Anordnung der ersten Tasten auf der oberen Buchstabenzeile
von links: Q W E R T Z.

Scharfe Suche
Die „scharfe“ Suche als Abgrenzung zur „unscharfen“ Suche verlangt, dass Treffer
vollständig, ðZeichen für Zeichen, dem Suchterm entsprechen.

Unscharfe Suche
Bei einer „unscharfen“ Suche kann ein Treffer im Gegensatz zur „scharfen“ Suche
dem gesuchten Begriff auch nur ähnlich sein. Für die Berechnung der Ähnlichkeit
gibt es mehrere Verfahren. Die für diese Arbeit relevanten wurden in Kapitel 2
vorgestellt.

92

Index

Symbols

@AnalyzerDef . 63
@ContainedIn. .81
@DateBridge. .80
@DocumentId . 60
@Field . 60
@FieldBridge . 80
@Fields . 64
@Indexed . 60
@IndexedEmbedded 81

A

Apache
Lucene . 31

Apache Lucene . 52
Apache Solr . 37

B

BOSCH OpenJava 38

D

Daitch-Mokotoff-Soundex 15
Damerau-Levenshtein-Distanz 27
Distanzverfahren 22
Double Metaphone 19

E

Edit-Distanz . 25

Editierabstand . 25

F

FuzzyQuery . 65

H

Hamming-Distanz 24
Hibernate Search 37

Annotations . 60
Architektur . 57
Indexerstellung

Annotations 60
manuell . 61

Indexsuche . 65

I

Indexerstellung . 32
Indexsuche . 34

J

Jaro-Winkler Übereinstimmung 27

K

Kölner Phonetik . 16

L

Lemmatizer . 33
Levenshtein-Distanz 25

93

Index

Lucene
Grundlagen . 31
Indexerstellung 32
Indexsuche . 34
Query Syntax 34

M

Match Rating Approach 19
Metaphone . 19
MySQL

Soundex . 42
Unscharfe Suche 42

O

Operatoren . 36
Oracle

Levenshtein . 50
Metaphone . 49
Soundex . 46
Unscharfe Suche 46

P

persistence.xml . 59
Phonetische Verfahren 11

Q

Query Syntax . 34

S

Schreibmaschinendistanz 22
Score . 66
Soundex . 12

Daitch-Mokotoff 15
Stemmer. 33

T

Tastaturdistanz . 22

Term . 35
TermQuery . 65
Testdaten . 10

94

Literaturverzeichnis

[All08] D. Allen. Seam in Action (In Action series). Manning Publications Co., Green-
wich, CT, USA, 2008

[Arm00] M. Armstrong. An Overview of the Issues Related to the use of Personal Identi-
fiers, 2000. URL http://www.statcan.gc.ca/pub/85-602-x/4193729-eng.

pdf

[BDT09] A. Bronselaer, G. De Tré. A possibilistic approach to string comparison. Trans.
Fuz Sys., 17(1):208–223, 2009. doi:http://dx.doi.org/10.1109/TFUZZ.2008.
2008025

[byt] Metaphone - a better Soundex. URL http://www.bytelife.nl/metaphone.

htm

[Dam64] F. J. Damerau. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7(3):171–176, 1964. doi:http://doi.acm.org/10.1145/
363958.363994

[DC94] M. W. Du, S. C. Chang. An Approach to Designing Very Fast Approximate
String Matching Algorithms. IEEE Trans. on Knowl. and Data Eng., 6(4):620–633,
1994. doi:http://dx.doi.org/10.1109/69.298177

[GJ02] C. Gibas, P. Jambeck. Einführung in die Praktische Bioinformatik. O’Reilly, Köln,
2002

[Ham50] R. W. Hamming. Error Detecting and Error Correcting Codes. Technical
Report Vol. XXVI, No 2, S. 147 ff., Bell Systems, 1950

[HD80] P. A. V. Hall, G. R. Dowling. Approximate String Matching. ACM Comput.
Surv., 12(4):381–402, 1980. doi:http://doi.acm.org/10.1145/356827.356830

[HG05] E. Hatcher, O. Gospodnetic. Lucene in Action (In Action series). Manning
Publications Co., Greenwich, CT, USA, 2005

[hiba] Hibernate. URL http://www.hibernate.org/

[hibb] Hibernate Search. URL http://www.hibernate.org/subprojects/search.

html

95

http://www.statcan.gc.ca/pub/85-602-x/4193729-eng.pdf
http://www.statcan.gc.ca/pub/85-602-x/4193729-eng.pdf
http://www.bytelife.nl/metaphone.htm
http://www.bytelife.nl/metaphone.htm
http://www.hibernate.org/
http://www.hibernate.org/subprojects/search.html
http://www.hibernate.org/subprojects/search.html

Literaturverzeichnis

[HM05] R. Hardman, M. McLaughlin. Expert Oracle PL/SQL. Osborne ORACLE
Press Series, 2005. URL http://www.oracle.com/technology/books/pdfs/

expert%20oracle%20pl_sql%20ch%201.pdf

[KH07] M. Kehle, R. Hien. Hibernate und die Java Persistence API. entwickler.press,
Frankfurt (Main), Deutschland, 2007

[Lev65] V. L. Levenshtein. Binary codes capable of correcting spurious insertions and
deletions of ones. Problems of Information Transmission, (1):8–17, 1965

[LR93] A. J. Lait, B. Randell. An Assessment of Name Matching Algorithms.
1993. URL http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/

NameMatching.pdf

[luc] Apache Lucene. URL http://lucene.apache.org/

[MF82] M. Mor, A. S. Fraenkel. A hash code method for detecting and correcting
spelling errors. Commun. ACM, 25(12):935–938, 1982. doi:http://doi.acm.org/
10.1145/358728.358752

[Mok97] G. Mokotoff. Soundexing and Genealogy, 1997. URL http://www.avotaynu.

com/soundex.html

[MRS08] C. D. Manning, P. Raghavan, H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, USA, 2008

[mys] MySQL 5.1 Referenzhandbuch. URL http://dev.mysql.com/doc/refman/

5.1/de/index.html

[Nav01] G. Navarro. A Guided Tour to Approximate String Matching. ACM Com-
puting Surveys, 33(1):31–88, 2001. URL http://www.egeen.ee/u/vilo/edu/

2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_

on_Approximate_Matching_p31-navarro.pdf

[omi] Omikron Firmenhomepage. URL http://www.omikron.net/

[ora] Oracle Database Documentation Library. URL http://www.oracle.com/

technology/documentation/index.html

[Pos69] H.-J. Postel. Die Kölner Phonetik. Ein Verfahren zur Identifizierung von
Personennamen auf der Grundlage der Gestaltanalyse. 1969. 19. Jahrgang, S.
925-931

[PT09] F. Patman, P. Thompson. Names: A New Frontier in Text Mining. In Intelligence
and Security Informatics, volume 2665 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009. doi:10.1007/3-540-44853-5_3. URL http:

//www.springerlink.com/content/tfpg9bhlq5d49vb2/

96

http://www.oracle.com/technology/books/pdfs/expert%20oracle%20pl_sql%20ch%201.pdf
http://www.oracle.com/technology/books/pdfs/expert%20oracle%20pl_sql%20ch%201.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf
http://lucene.apache.org/
http://www.avotaynu.com/soundex.html
http://www.avotaynu.com/soundex.html
http://dev.mysql.com/doc/refman/5.1/de/index.html
http://dev.mysql.com/doc/refman/5.1/de/index.html
http://www.egeen.ee/u/vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_on_Approximate_Matching_p31-navarro.pdf
http://www.egeen.ee/u/vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_on_Approximate_Matching_p31-navarro.pdf
http://www.egeen.ee/u/vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_on_Approximate_Matching_p31-navarro.pdf
http://www.omikron.net/
http://www.oracle.com/technology/documentation/index.html
http://www.oracle.com/technology/documentation/index.html
http://www.springerlink.com/content/tfpg9bhlq5d49vb2/
http://www.springerlink.com/content/tfpg9bhlq5d49vb2/

Literaturverzeichnis

[Ros00] M. Rosenfelder. Hou tu pranownse Inglish, 2000. URL http://zompist.com/

spell.html

[Sch04] S. Schüle. Qualitätssicherung von Suchmaschinen. Diplomarbeit, Fachhochschu-
le Pforzheim, Hochschule für Gestaltung, Technik und Wirtschaft, 2004

[sol] Apache Solr. URL http://lucene.apache.org/solr/

[Tom03] S. Tomlinson. Lexical and Algorithmic Stemming Compared for 9 European
Languages with Hummingbird SearchServerTMat CLEF 2003. CLEF, 2003.
URL http://www.clef-campaign.org/2003/WN_web/19.pdf

[Wik] Wikipedia: Schreibmaschinendistanz, 14. April 2009. URL http://de.

wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=

59000374

[Wil05] M. Wilz. Aspekte der Kodierung phonetischer Ähnlichkeiten in deutschen
Eigennamen. Magisterarbeit, Universität zu Köln, Institut für Linguis-
tik, 2005. URL http://www.uni-koeln.de/phil-fak/phonetik/Lehre/

MA-Arbeiten/magister_wilz.pdf

[Win99] W. E. Winkler. The State of Record Linkage and Current Research Problems.
Statistics of Income Division, Internal Revenue Service Publication R99/04,
1999. URL http://www.census.gov/srd/papers/pdf/rr99-04.pdf

Alle URLs wurden zuletzt am 03.05.2010 geprüft.

97

http://zompist.com/spell.html
http://zompist.com/spell.html
http://lucene.apache.org/solr/
http://www.clef-campaign.org/2003/WN_web/19.pdf
http://de.wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=59000374
http://de.wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=59000374
http://de.wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=59000374
http://www.uni-koeln.de/phil-fak/phonetik/Lehre/MA-Arbeiten/magister_wilz.pdf
http://www.uni-koeln.de/phil-fak/phonetik/Lehre/MA-Arbeiten/magister_wilz.pdf
http://www.census.gov/srd/papers/pdf/rr99-04.pdf

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

Dennis Scheck

	1 Einleitung
	2 Grundlagen
	2.1 Phonetische Verfahren
	2.1.1 Soundex
	2.1.2 Daitch-Mokotoff-Soundex
	2.1.3 Kölner Phonetik
	2.1.4 Weitere Soundex-basierte Algorithmen
	2.1.5 Match Rating Approach

	2.2 Distanzverfahren
	2.2.1 Schreibmaschinendistanz
	2.2.2 Hamming-Distanz
	2.2.3 Levenshtein-Distanz
	2.2.4 Jaro-Winkler-Übereinstimmung

	2.3 Vergleich der Verfahren
	2.4 Apache Lucene
	2.4.1 Erstellen eines Index
	2.4.2 Suche im Index
	2.4.3 Apache Solr

	2.5 Hibernate Search
	2.6 BOSCH OpenJava Platform

	3 Evaluierung verschiedener Lösungsansätze
	3.1 Unscharfe Suche mit Hilfe eines RDBMS
	3.1.1 MySQL
	3.1.2 Oracle

	3.2 Apache Lucene
	3.3 Ergebnis der Evaluierung

	4 Implementierung
	4.1 Vergleich Ist- und Soll-Architektur bei der Suche in Web-Anwendungen im BOSCH OpenJava Framework
	4.2 Notwendige Projekteinstellungen zur Nutzung von Hibernate Search im BOSCH OpenJava Framework
	4.3 Erstellen und Verwalten des Lucene-Index
	4.4 Vorüberlegungen zur Verbesserung der Suchergebnisse
	4.5 Notwendige Erweiterungen an Hibernate Search und Lucene zur unscharfen Suche
	4.6 Erstellen eines Prototyps
	4.6.1 Unscharfe Suche nach Objekten
	4.6.2 Dublettenlose Neuanlage von Stammdaten
	4.6.3 Zusammenführung mit redundanten Daten aus anderen Systemen

	5 Test und Bewertung der Implementierung
	5.1 Test und Bewertung der Suchgeschwindigkeit
	5.2 Test und Bewertung der Trefferqualität

	6 Zusammenfassung und Ausblick
	A Daitch-Mokotoff Soundex Kodier-Schema

