Institut fir Parallele und Verteilte Systeme
Abteilung Anwendersoftware

Universitat Stuttgart
Universitatsstraf3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 2983

Einsatz unscharfer
Suchstrategien fur Datenbanken
in betriebswirtschaftlichen
Webanwendungen

Dennis Scheck

Studiengang: Softwaretechnik
Prufer: Prof. Dr.-Ing. habil. Bernhard Mitschang
Betreuer: Dipl.-Inf. Alexander Moosbrugger

IPVS, Universitat Stuttgart

Dr. Elke Schweizer
CI/AFJ, Robert Bosch GmbH

begonnen am: 3. November 2009

beendet am: 5.Mai 2010

CR-Klassifikation: H.3.3, H.2.8

Abstract

Zwei hédufige Probleme bei datenintensiven Anwendungen werden durch die tibli-
cherweise verwendete exakte Suche verursacht. Zum einen konnen unterschiedliche
Schreibweisen beim Anlegen und spateren Suchen eines Datensatzes das Auffinden
erschweren oder gar unmoglich machen. Zum anderen kénnen dadurch zahlreiche
Dubletten entstehen, was bei betriebswirtschaftlichen Anwendungen in grofien Unter-
nehmen viele weitere Probleme nach sich ziehen kann.

In dieser Arbeit werden verschiedene phonetische und distanzbasierte Methoden
zur unscharfen Suche betrachtet und diverse Moglichkeiten des Einsatzes in Web-
Applikationen evaluiert. Anhand der gewonnenen Erkenntnisse wird ein Prototyp
implementiert, in dem Suche, dublettenfreie Anlage und Abgleich von Objekten in
einem Stammdatensystem mit Hilfe von Hibernate Search unter Verwendung von
Double Metaphone als phonetisches Verfahren und distanzbasierter Verfahren realisiert
werden.

Inhaltsverzeichnis

1

Einleitung

2 Grundlagen

4

2.1

2.2

2.3
24

2.5
2.6

Phonetische Verfahren
211 Soundex e
2.1.2 Daitch-Mokotoff-Soundex
2.1.3 KolnerPhonetik
2.1.4 Weitere Soundex-basierte Algorithmen
215 Match Rating Approach
Distanzverfahren
2.2.1 Schreibmaschinendistanz
222 Hamming-Distanz
223 Levenshtein-Distanz
224 Jaro-Winkler-Ubereinstimmung
Vergleich der Verfahren.
ApacheLucene
241 ErstelleneinesIndex
242 SucheimIndex
243 ApacheSolr
Hibernate Search
BOSCH OpenJava Platform

Evaluierung verschiedener Losungsansétze

3.1 Unscharfe Suche mit Hilfe einesRDBMS
311 MySQL
312 Oracle e
32 ApacheLucene
3.3 Ergebnisder Evaluierung
Implementierung

11
11
12
15
16
19
19
22
22
24
25
27
29
31
32
34
37
37
38

41
42
42
46
52
54

55

4.1
4.2
4.3
44
4.5

4.6

Vergleich Ist- und Soll-Architektur bei der Suche in Web-Anwendungen

im BOSCH OpenJava Framework 55
Notwendige Projekteinstellungen zur Nutzung von Hibernate Search im

BOSCH OpenJava Framework 58
Erstellen und Verwalten des Lucene-Index 59
Voriiberlegungen zur Verbesserung der Suchergebnisse 62
Notwendige Erweiterungen an Hibernate Search und Lucene zur un-

scharfenSuche o o o 63
Erstellen eines Prototyps 66
4.6.1 Unscharfe Suche nach Objekten 66
4.6.2 Dublettenlose Neuanlage von Stammdaten 71

4.6.3 Zusammenfithrung mit redundanten Daten aus anderen Systemen 72

5 Test und Bewertung der Implementierung 75
5.1 Test und Bewertung der Suchgeschwindigkeit 75
5.2 Test und Bewertung der Trefferqualitat. 77

6 Zusammenfassung und Ausblick 79

A Daitch-Mokotoff Soundex Kodier-Schema 85

Abbildungsverzeichnis

2.1
2.2
2.3

4.1

4.2

4.3
44

4.5
4.6
4.7
4.8

Schema der Indexerstellung mit Lucene 32
LuceneIndexsuche 34
Hibernate Search Schemanach [hibb] 38
Ist-Architektur fiir die Suche in Web-Anwendungen bei CI/AFJ mit

OpenJava. L 56
Architektur der Suche in Web-Anwendungen bei CI/ AFJ mit OpenJava

bei Verwendung von Hibernate Search 58
Attributbezogene Suchmaske fiir die unscharfe Suche 67
Baum aus Query-Objekten fiir die Suche nach Name=,Meier” und

Ort=,Hamburg” o 67
Suchmaske fiir die unscharfe Suche tiber alle Attribute 68
Baum aus Query-Objekten fiir die Suche nach ,Meier Hamburg” 70
Anzeige moglicher Duplikate beim Anlegen eines neuen Kundenkontos 71
Anzeige eines potentiellen iibereinstimmenden Datensatz 74

Tabellenverzeichnis

2.1
2.2
2.3
24

51
52

Soundex Codierschema 13
Codierschema der Kolner Phonetik 17
Schwellenwerte fiir den Match Rating Approach 20
Vergleich der Verfahren 30
Geschwindigkeitsvergleich von unscharfer und scharfer Suche im Prototyp 76
Vergleich der Anzahl und Qualitdt der Treffer 78

A.1 Daitch-Mokotoff Soundex Kodier-Schema 85

Verzeichnis der Beispiele

2.1
2.2
2.3
24

2.5
2.6
2.7
2.8

Namen codiert mit Soundex 14
Namen codiert nach Daitch-Mokotoff im Vergleich zu Soundex 16
Namen codiert nach Kolner Phonetik im Vergleich zu Soundex 18
Uberpriifung der Ahnlichkeit jeweils zweier Namen nach Match Rating

Approach. 21
Tastaturdistanz zwischen jeweils zwei Namen 23
Hamming-Distanz zwischen jeweils zwei Namen 24
Berechnung der Levenshtein-Distanz mit Hilfe einer Matrix 26
Jaro-Winkler-Ubereinstimmung jeweils zweier Namen 28

Verzeichnis der Listings

4.1
4.2

4.3
44
4.5
4.6
4.7

Notwendige Einstellungen in persistencexml 59
Minimalbeispiel fiir Hibernate Search Annotationen (am Beispiel der

Entity Foo) 61
Manuelle Indizierung von Objekten (am Beispiel der Entity Customer) . 62
Definition des phonetischen Analyzers. 64
Ein Objektattribut in mehrere Felder indizieren 64
Aufbau einer Lucene Query fiir ein (Doppel-)Feld 65
Abfrage des Scores zursitzlich zu den Treffern 66

Bevor man beginnt, bedarf es der
Uberlegung und, sobald man
Uberlegt hat, rechtzeitiger
Ausfihrung.

— Sallust

1 Einleitung

Immer haufiger treten in Projekten der Abteilung CI/AF] direkt Kundenwiinsche nach
einer unscharfen Suche auf oder wére eine unscharfe Suchmethode zur Implementie-
rung weiterer Funktionen, wie z. B. Dublettenerkennung und -vermeidung, hilfreich.

Der dringlichste Wunsch war eine unscharfe Suche tiber Kundendaten. “Meyer oder
Maier? Oder gar Mayer?,, — ,Nein, Meier “. Diese Dialoge sollten der Vergangenheit
angehoren.

Als Reaktion auf die immer wiederkehrenden Anfragen wurde diese Arbeit in Auftrag
gegeben. Der Fokus liegt dabei allein auf der unscharfen Suche in Adressdaten, da hier
andere Anforderungen gestellt und andere Algorithmen zur Verfiigung stehen als z.B.
fiir eine unscharfe Volltextsuche.

Die unscharfe Suche auf Stammdaten wird dabei in verschiedenen Anwendungsszena-
rien bendtigt, auf die auch in dieser Arbeit eingegangen werden soll.

Zum einen sollen bei einer Suche eines Kunden, Lieferanten oder Mitarbeiters auch
diejenigen gefunden werden, die dhnlich geschrieben werden. Damit soll einerseits
vermieden werden, dass Tippfehler beim Anlegen oder beim Suchen das erneute
Auffinden unmoglich machen, aber andererseits auch Daten gefunden werden, wenn
man die genaue Schreibweise nicht kennt, weil man den Namen nur gehort oder in
Erinnerung hat und nicht geschrieben vor sich sieht.

Ein zweiter Anwendungsfall ist die Vermeidung von Dubletten. Beim Anlegen von neuen
Stammdaten passiert es immer wieder, dass mehrere Konten fiir einen Kunden ange-
legt werden. Auch hier stofst man wieder auf die selben Probleme wie bei der Suche.
Darum soll vor der Anlage eines neuen Datensatzes unscharf tiberpriift werden, ob ein
dhnlicher Datensatz nicht bereits schon vorhanden ist.

Der dritte zu berticksichtigende Anwendungsfall ist das Zusammenfiihren von Datensiit-
zen aus unterschiedlichen Datenquellen. In vielen Projekten miissen Daten aus anderen
Datenquellen mit Datensédtzen aus der eigenen Anwendung kombiniert werden. Oft
steht kein eindeutiger Schliissel dafiir zur Verfiigung. Mit Hilfe der unscharfen Suche
soll dennoch versucht werden, ein Mapping herzustellen.

1 Einleitung

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: Dieses Kapitel stellt die Grundlagen dieser Arbeit vor. Neben
der Beschreibung und Erkldarung verschiedener Algorithmen zur unscharfen
Suche iiber Namen werden auch verwendete Technologien kurz erldutert.

Kapitel 3 — Evaluierung verschiedener Lésungsansatze: In Kapitel 3 werden ver-
schiedene Moglichkeiten evaluiert, mit denen die unscharfe Suche fiir die BOSCH
OpenJava Platform realisiert werden konnte, und die Auswahl der Technologie
tiir die Implementierung getroffen.

Kapitel 4 — Implementierung: Hier wird die Implementierung der unscharfen Suche
fir die BOSCH OpenJava Platform und das Vorgehen bei der Erstellung des
Prototyps beschrieben.

Kapitel 5 — Test und Bewertung der Implementierung: Eine Bewertung der Imple-
mentierung findet in diesem Kapitel statt.

Kapitel 6 — Zusammenfassung und Ausblick: Das letzte Kapitel gibt noch einmal
einen Uberblick iiber den Ablauf der Diplomarbeit und gibt Ideen fiir zukiinftige
Erweiterungen.

Anhang: Im Anhang finden sich Materialien im Zusammenhang mit dieser Arbeit.

Anmerkungen zu den Testdaten

Da fiir Testzwecke keine Daten in groflerer Menge zur Verfligung standen, wurden aus
einer Kunden-Datei mit personenbezogenen Daten aus einem produktiven Buchhal-
tungsbestand im CSV-Format die Spalten Vorname, Nachname, Adresse und Ort extrahiert,
und diese mit Hilfe eines Perl-Skripts zufdllig neu kombiniert.

Dadurch entstanden tiber 115.000 Datens&tze mit fiktiven Personen, die jedoch einen
realen Querschnitt {iber eine Adressdatenbank im europdischen Raum (mit Schwer-
punkt auf deutschen Namen) bot.

Die meisten in Kapitel 2 verwendeten Beispiele waren in den Daten bereits vorhanden.
Fehlende Beispiele wurden ergidnzt, damit die bereits eingefiihrten Beispiele fiir Kapitel
3 zur Evaluierung von moglichen Verfahren verwendet werden konnen.

10

Zu wissen, woran man selbst
interessiert ist, ist die
Voraussetzung, um andere Leute
daflir zu interessieren.

— Walter Pater

2 Grundlagen

In diesem Kapitel werden die Grundlagen zu spéter verwendeten oder evaluierten
Technologien vorgestellt, sowie die Verfahren, die von den jeweiligen Bibliotheken
verwendet werden. Dabei wird auch kurz die Geschichte und Weiterentwicklung
der Algorithmen erwédhnt, um beispielhaft Moglichkeiten und Ansitze fiir eigene
Verbesserungen der Verfahren aufzuzeigen, die allerdings aufierhalb des Rahmens
dieser Arbeit liegen.

2.1 Phonetische Verfahren

Bei den phonetischen Verfahren werden nicht die Zeichen eines Wortes miteinander
verglichen, wie z. B. bei einem String-Vergleich, sondern die Aussprache der jeweiligen
Worte.

Zum Beispiel die Namen Maier, Meier, Mayer, Meyer oder gar Major werden allesamt
als ['maee] ausgesprochen, obwohl es 5 verschiedene Zeichenketten sind. Vor allem
die Namenstrager einer der Varianten kennen das Problem, dass sie sehr haufig die
korrekte Schreibweise ihres Namens ergdanzend angeben miissen.

Bei phonetischen Verfahren, die man in die Klasse der Hashing-Algorithmen einordnen
kann, wird versucht, den Klang eines Wortes (bzw. im Kontext dieser Arbeit hauptsach-
lich eines Namens) in einer standardisierten Form zu erfassen und zu codieren. Ergeben
zwei verschiedene Namen den selben Code, kann man davon ausgehen, dass die Aus-
sprache sehr dhnlich oder sogar identisch ist, auch wenn ein ,scharfer” String-Vergleich
keine Ubereinstimmungen bringt.

Da je nach Sprache (oder sogar Region innerhalb eines Sprachraums) Worte und Namen
unterschiedlich ausgesprochen werden konnen, stofsen diese Verfahren an Grenzen. Es
wiére denkbar, dass in einer Sprache zwei verschiedene Schreibweisen gleich ausgespro-
chen werden, in einer anderen Sprache aber ein grofser Unterschied in der Aussprache
besteht. Das jeweilige Verfahren muss also auf den Sprachraum angepasst sein.

11

2 Grundlagen

Aber selbst dann konnen Probleme auftreten, da eine eindeutige Aussprache nicht
immer existiert. Als Beispiel soll hier das — zugegebenermafien etwas konstruierte
— Kunstwort ghoti genannt werden, das gerne von Sprachkritikern angefiihrt wird,
wenn man die Undeutigkeit einer Aussprache eines Wortes in der englischen Sprache
demonstrieren will.

Nach den englischen Ausspracheregeln konnte ghoti zum einen naheliegend als [gooti:],
aber auch als [fif], also gleich wie das Wort fish ausgesprochen werden:

- ,gh” als /f/, wenn man es ausspricht wie in enough
- ,0”als /1/, bei der Aussprache wie in women und
- ,ti” als /[/ wie in emotion

Es konnte aber auch gar nicht, also stumm ausgesprochen werden, wenn
- ,gh” wie in night oder fight
- ,0” wie in people

,t” wie in ballet oder gourmet und

— ,,i” wie in business

ausgesprochen werden.

Wobei das Beispiel genau genommen hinkt, da durch den Kontext, in dem die jeweiligen
Buchstaben stehen, durchaus nur eine konkrete Aussprache moglich ist, und nur [gooti:]
als korrekte Aussprache in Frage kommt (vgl. [Ros00]). Dennoch eignet sich das Beispiel,
um die Schwierigkeiten und Komplexitat der phonetischen Verfahren aufzuzeigen.

Im Folgenden werden mehrere Verfahren vorgestellt und verglichen. Ausgehend von
Soundex, dem ersten phonetischen Verfahren, werden die Verbesserungen von Mokotoff
und Daitch des Verfahrens vorgestellt, sowie die Kolner Phonetik als Verfahren fiir
den deutschsprachigen Raum. SchliefSlich Metaphone und die Erweiterung Double
Metaphone, die deutlich komplexere Regeln haben, dafiir aber sehr gute Resultate
liefern.

Der Match Rating Approach, ein phonetisches Verfahren nach einem anderen Prinzip
wie Soundex, wird ebenfalls kurz vorgestellt, um auch noch einen anderen Ansatz zu
phonetischen Vergleichen zu demonstrieren.

2.1.1 Soundex

Soundex wurde von Robert Russel Ende des 19. Jahrhunderts als phonetisches Ver-
fahren in den USA entwickelt, um fiir die Volkszdhlung tiber einen Code dhnliche

12

2.1 Phonetische Verfahren

Namen zusammenfassen zu konnen (vgl. [Arm00, S. 14]). Soundex ist der Urvater
vieler weiterer phonetischer Verfahren.

Der Algorithmus folgt dabei einfachen Regeln:

1. Der erste Buchstabe des Wortes wird direkt iibernommen.

2. Danach werden bis zu 3 Ziffern angehingt, die nach folgendem Schema Buchstabe
fiir Buchstabe ermittelt werden, beginnend mit dem zweiten Buchstaben des
Ausgangswortes:

a) Der Zahlenwert des Buchstabens nach Tabelle 2.1 wird an den bestehenden
Code angehidngt. Taucht der Buchstabe nicht in der Tabelle auf, wird er
ignoriert.

b) Bei doppelten Konsonanten wird nur der erste codiert, der zweite wird
ignoriert.

¢) Aufeinanderfolgende Buchstaben, die den selben Code ergeben, werden
ebenfalls nur einmal codiert, der zweite wird verworfen.

d) Werden zwei Konsonanten mit dem selben Code durch einen Vokal oder Y
getrennt, wird der zweite nicht verworfen.

3. Hat der Code danach weniger als 4 Stellen (1 Buchstabe und 3 Ziffern), wird
rechts mit 0 aufgefiillt, bis insgesamt 4 Stellen vorhanden sind.

Buchstabe Code

BPFV 1
CSKGJQXZ®) 2
DT 3
L 4
5
6

MN
R

Tabelle 2.1: Soundex Codierschema

Beispiele fir Soundex-Codierungen
Wie das folgende Beispiel 2.1 zeigt, werden 4 der 5 bereits vorgestellten Meier-Varianten
erkannt. Major hingegen wird mit unterschiedlichem Soundex-Code verschliisselt.

13

2 Grundlagen

Name Soundex-Code Name Soundex-Code
Maier M600 Falsch Positiv:
Mayer M600 Spears 5162
Meier M600 Superzicke S162
Meyer M600 Falsch Negativ:

aber: Fischer F260
Major M260 Vischer V260
Beier B600 Moskowitz M232

Moskovitz M213

Beispiel 2.1: Namen codiert mit Soundex

Vorteile

— Ahnlich klingende Namen aus dem englischen Sprachraum werden mit grof3er
Wahrscheinlichkeit erkannt. Fiir andere Sprachrdaume miissen aber erhebliche
Anderungen vorgenommen werden.

— Der Algorithmus lédsst sich leicht ohne Computerunterstiitzung auch von Hand
durchfiihren.

— Einige Datenbanken, wie z. B. Oracle oder MySQL unterstiitzen Soundex direkt
iiber proprietdare Erweiterungen der Abfragesprache. Siehe hierzu auch Kapitel 3.1.

— Codes konnen im Voraus berechnet und mit in der Datenbank abgespeichert
werden. Die Suche ist dann ein einfacher Vergleich der Codes. Dadurch hohe
Effizienz.

— Implementierungen fiir zahlreiche Programmiersprachen existieren. In einigen
Sprachen (wie z. B. PHP ab Version 4) ist die Soundex-Codierung direkt im Sprach-
umfang enthalten.

Nachteile

— Soundex ist sehr auf den englischsprachigen Raum festgelegt und beriicksichtigt
weder anderssprachige Aussprachen, noch verschiedene Transkriptionen von
Namen aus anderen Schriftzeichen in lateinische Buchstaben.

— Abweichungen an der ersten Stelle eines Wortes fithren immer zu unterschiedlichen
Codes.

14

2.1 Phonetische Verfahren

— Bei Namenszusitzen wie Von, Van, De, Zu, u. A. ist nicht eindeutig klar, ob der Zu-
satz mit codiert wurde oder nicht. Es entstehen dadurch aber ganz unterschiedliche
Codes.

— Das Verfahren ist relativ grob. Bei Namen mit vielen Vokalen kénnen z. B. auch sehr
unterschiedlich klingende Namen wie Spears und Superzicke den selben Soundex-
Code erhalten.

— Nicht robust gegen Tippfehler wie z. B. Zeichendreher.

2.1.2 Daitch-Mokotoff-Soundex

Randy Daitch und Gary Mokotoff iiberarbeiteten und erweiterten das urspriingliche
Soundex-Verfahren von Russel. Sie stellten fest, dass gerade yiddische oder slawische
Namen mit dem urspriinglichen Verfahren keine guten Ergebnisse liefern, da der
Russel-Soundex nur fiir englische Namen erstellt wurde (vgl. [Mok97]).

Der Daitch-Mokotoff-Soundex-Algorithmus ist wesentlich komplexer als der traditio-
nelle, gewinnt dadurch aber deutlich an Genauigkeit, vor allem fiir slawische und
yiddische Namen. Er wird hier exemplarisch vorgestellt, um mogliche Ansitze zur
Verbesserung der Ergebnisse vorzustellen.

Anderungen des Daitch-Mokotoff-Soundex zur urspriinglichen Version von Russel:

1. Das Codierschema enthélt deutlich mehr Regeln. Fiir den interessierten Leser ist
das komplette Schema im Anhang A abgebildet.

2. Der erste Buchstaben des Namens wird codiert nach den selben Regeln wie Buch-
staben innerhalb des Wortes. Eine Ausnahme bilden Vokale, die am Wortanfang
mit 0 codiert werden.

3. Buchstabenkombinationen, die nur fiir einen Laut stehen, wie z.B. ts oder tz,
werden auch nur mit einer Ziffer codiert.

4. Es werden Codes mit einer Lange von 6 Zeichen erzeugt, anstatt nur 4.

5. Falls Zeichenkombinationen zwei verschiedene Laute reprasentieren kdnnen (z. B.
kann ch wie in Christian oder in Charles gesprochen werden), miissen beide Laute
codiert werden.

Beispiele fiir Daitch-Mokotoff Soundex Codierungen

Beispiel 2.2 zeigt, dass die Anderungen am Algorithmus eine deutlich bessere Anpas-
sung fiir osteuropdische Namen bietet. Es zeigt aber auch in der rechten Tabelle, dass fiir
einen Namen mehrere Codes existieren konnen, was die Komplexitit steigert. Um z. B.

15

2 Grundlagen

zu vergleichen, ob Spears und Superzicke phonetisch dhnlich sind, miissen 8 Vergleiche
ausgefiihrt werden.

Name DM-Code Soundex Name DM-Code Soundex
Auerbach 097500 A612 Spears 479400 S162
Ohrbach 097500 0612 474000

Ceniow 467000 C500 Superzicke 474500 S162
Tsenyuv 467000 1251 479459

Holubica 587400 H412 474450

Golubitsa 587400 G413 479445

Beispiel 2.2: Namen codiert nach Daitch-Mokotoff im Vergleich zu Soundex

Vorteile

— Gute Anpassung an osteuropdische Namen. Das Verfahren findet daher auch
hauptsichlich Verwendung in der Ahnenforschung von slawischen und jiidischen
Personenstandsdatenbanken.

— Bessere Genauigkeit bei langeren Namen.

— Codes konnen im Voraus berechnet und mit in der Datenbank abgespeichert
werden. Die Suche ist dann ein einfacher Vergleich der Codes. Dadurch hohe
Effizienz.

Nachteile

— Fiir ein Wort kdnnen mehrere Codes entstehen, was die Komplexitit bei Verglei-
chen erhoht.

— Komplexe Abwandlung des Russel-Soundex — eine Berechnung ohne Computer
ist vergleichsweise aufwendig.

— Fiir Namen aus anderen Sprachrdumen ist das Verfahren nicht optimal.

2.1.3 Kolner Phonetik

Eine weitere Abwandlung des klassischen Soundex-Algorithmus, die im Rahmen dieser
Arbeit betrachtet werden soll, ist die Kolner Phonetik. Sie wurde als frither Ansatz
zur Anpassung des Russel-Soundex an die deutsche Aussprache von H.-J. Postel in

16

2.1 Phonetische Verfahren

[Pos69] veroffentlicht. Anders als bei Soundex gibt es keine Langenbeschrankung fiir
die Codes.

Codierungsregeln der Kolner Phonetik:

1. Von links nach rechts wird buchstabenweise nach dem Codierschema in Tabelle
2.2 codiert.

2. Danach werden alle mehrfachen Codes eliminiert.

3. Eine ,,0” an der ersten Stelle bleibt erhalten. Alle anderen ,,0” innerhalb des Codes
werden entfernt.

Tabelle 2.2: Codierschema der Kolner Phonetik

Buchstabe Kontext Code
AE L], OUYA O U 0
H -
B 1
P nicht vor H 1
DT nichtvor C,S, Z 2
EVW 3
P vor H 3
G K, Q 4
C im Anlautvor A, H,L,O,Q,R, U, X 4
C vor A, H, K, O,Q, U, Xaufser nach S, Z 4
X nicht nach C, K, Q 48
L 5
M, N 6
R 7
S,Z,f8 8
C nach S, Z 8
C im Anlautvor A,H,K,L,O,Q,R, U, X 8
C nicht vor A,H, K, O, Q, U, X 8
D, T vor(C,S, Z 8
X nach C, K, Q 8

17

2 Grundlagen

Beispiele fur die Kélner Phonetik Beispiel 2.3 zeigt, dass Anpassungen an deutsche
Namen die Genauigkeit erhthen. So erzeugt im Gegensatz zu Soundex die Kolner
Phonetik auch fiir Fischer und Vischer den selben Code. Allerdings werden auch hier
Meier und Beier nicht als dhnlich erkannt.

Auch fiir slawische Namen bringt die Kélner Phonetik einige Vorteile im Vergleich zu
Soundex, wie aber das Paar Holubica und Golubitsa zeigt, ist es jedoch fiir diese Namen
dem Daitch-Mokotoff Soundex unterlegen.

Name Kolner Phonetik Soundex Name Kolner Phonetik Soundex
Maier 67 M600 Auerbach 0714 A612
Mayer 67 M600 Ohrbach 0714 0612
Meier 67 M600 Moskowitz 68438 M232
Meyer 67 M600 Moskovitz 68438 M213
Major 67 M260 Ceniow 863 C500
Beier 17 B600 Tsenyuv 863 1251
Fischer 387 F260 Holubica 514 H412
Vischer 387 V260 Golubitsa 4518 G413

Beispiel 2.3: Namen codiert nach Kolner Phonetik im Vergleich zu Soundex

Vorteile

— Gute Anpassung an den deutschen Sprachraum.

— Bessere Genauigkeit bei langen Namen.

— Deckt slawische Namen besser ab als Soundex nach Russel.

— Codes konnen im Voraus berechnet und mit in der Datenbank abgespeichert
werden. Die Suche ist dann ein einfacher Vergleich der Codes. Dadurch hohe
Effizienz.

— Einfaches Verfahren.

Nachteile

— Geringe Verbreitung — kommerziellen Losungen enthalten normalerweise keine
Implementierungen.

18

2.1 Phonetische Verfahren

2.1.4 Weitere Soundex-basierte Algorithmen

Zahlreiche weitere Verbesserungen und Anpassungen von Soundex fiihrten zu einer
Vielzahl weiterer phonetischer Verfahren, die alle mehr oder weniger die bereits vorge-
stellten Prinzipien von Soundex mit leicht verdnderten Regeln oder Codetabellen fiir
bestimmte Sprachraume oder Anwendungsfalle zu optimieren versuchen. Im Rahmen
dieser Einfiihrung soll nicht ndher auf diese Verfahren eingegangen werden. Folgende
Verfahren seien jedoch noch kurz erwéhnt:

Metaphone enthilt etwas ausfiihrlichere Regeln als Soundex und berticksichtigt auch
den Kontext eines Zeichens. Die resultierenden Schliissel bestehen aus Buchstaben
(und wenigen Ziffern fiir bestimmte Laute, z.B. ,0” fiir das englische ,th”) und haben
eine variable Lange (vgl. [Wil05, S. 14]). Das Verfahren ist relativ weit verbreitet und
Funktionen zur Berechnung des Metaphone-Codes gehoren in manchen Programmier-
sprachen zum Grundumfang, wie z. B. die Funktion metaphone() in PHP ab Version 4.
Des weiteren existieren Implementierungen in PL/SQL fiir Oracle. Siehe hierzu auch
Kapitel 3.1.2.

Double Metaphone ist eine auf Metaphone aufbauende Verbesserung, die fiir einen
Namen neben einem Primédrcode auch einen alternativen Code erzeugt, der alternative
Aussprachemoglichkeiten berticksichtigt, und dadurch bessere Treffer erzielen kann.
Double Metaphone basiert auf sehr umfangreichen und kontextbezogenen Regeln und
versucht Unregelméfiigkeiten aus vielen (hauptsédchlich europdischen) Sprachraumen
zu berticksichtigen. Das fiihrt vereinzelt zu tiber 100 Regeln fiir nur einen Buchstaben.

2.1.5 Match Rating Approach

Der Match Rating Approach ist ein weiteres phonetisches Verfahren, das 1977 von den
Western Airlines entwickelt wurde (vgl. [ArmO00, S. 39 {.]). Es verfolgt einen komplett
anderen Ansatz als Soundex und soll darum ebenfalls kurz vorgestellt werden.

Der Algorithmus zeichnet sich durch sehr einfache Codierungsregeln aus:

1. Alle Vokale (aufser am Wortanfang) werden aus dem Namen geloscht.

2. Alle Doppelkonsonanten werden in einzelne Konsonanten gedndert.

3. Falls der resultierende Code ldnger als 6 Zeichen ist, werden nur die ersten 3 und
letzten 3 verwendet.

19

2 Grundlagen

Dafiir sind die Vergleichsregeln vergleichsweise umfangreich:

1.

Falls sich die beiden zu vergleichenden Codes in der Zeichenldnge um mehr als 3
Zeichen unterscheiden, werden sie ohne weitere Tests als ungleich klassifiziert.

. Die Zeichenldnge der beiden Codes wird addiert und fiir die resultierende Summe

ein Schwellenwert aus der Tabelle 2.3 ermittelt.

. Danach werden beide Namen von vorne (links nach rechts) Zeichen fiir Zeichen

verglichen und identische Zeichen aus beiden Namen entfernt.

. Die verbleibenden Codes werden von hinten (rechts nach links) Zeichen fiir

Zeichen verglichen und identische Zeichen aus beiden Codes entfernt.

. Von dem ldngeren verbliebenen Code wird die Zeichenldnge ermittelt und vom

Wert 6 subtrahiert. Die resultierende Zahl ist der Ahnlichkeitswert.

. Wenn der Ahnlichkeitswert grofer oder gleich dem in Schritt 2 ermittelten Schwel-

lenwert ist, gelten die zwei verglichenen Namen als dhnlich; andernfalls sind sie
verschieden.

Summe der Zeichenlinge Minimaler Ahnlichkeitswert

bis 4 5
5 bis 7 4
8 bis 11 3
12 2

Tabelle 2.3: Schwellenwerte fiir den Match Rating Approach

Beispiele fiir den Match Rating Approach
Beispiel 2.4 zeigt, wie jeweils zwei Namen mit Hilfe des Match Rating Approach auf
Ahnlichkeit iiberpriift wurden.

20

2.1 Phonetische Verfahren

Name MRA-Code Schwellenwert Ahnlichkeitswert Treffer
Schmied SCHMD 3 5 Y
Schmidt SCHMDT

Maier MR 4 5 v
Meyer MYR

Ma'lyer MYR 4 4 v
Beier BR

Major MJR 4 4 v
Beyer BYR

Ceniow CNW 3 1 X
Tsenyuv TSNYV

Holubica HLBC 3 3 v

Golubitsa GLBTS

Beispiel 2.4: Uberprﬁfung der Ahnlichkeit jeweils zweier Namen nach Match Rating
Approach

Vorteile

— Vergleichsweise gute Genauigkeit als phonetisches Verfahren, kann aber auch
einfache Vertipper erkennen.

Nachteile

— Kann nicht im Voraus berechnet werden, sondern muss fiir jeden Vergleich getrennt
berechnet werden und ist daher nicht so performant wie die bereits vorgestellten
Verfahren.

— Geringe Verbreitung — kommerziellen Losungen enthalten normalerweise keine
Implementierungen.

21

2 Grundlagen

2.2 Distanzverfahren

Einen komplett anderen Ansatz verfolgen die Distanzverfahren. Hierbei wird die Ahn-
lichkeit nicht tiber den Klang eines Namens bestimmt, sondern iiber die Anzahl der
verdnderten Zeichen. Je nach Metrik, die fiir die Distanz verwendet wird, erhilt man
einen Wert fiir die Ahnlichkeit zweier Namen. In diesem Kapitel werden vier ver-
schiedene Distanzmetriken vorgestellt: Schreibmaschinendistanz, Hamming-Distanz,
Levenshtein-Distanz und Jaro-Winkler-Ahnlichkeit.

Um jedoch eine Entscheidung treffen zu konnen, ob zwei Namen dhnlich sind, wird
jeweils noch ein Schwellenwert benétigt, da die Verfahren im Gegensatz zu den bereits
vorgestellten nicht nur ,dhnlich” und ,nicht dhnlich” als Ergebnis liefern, sondern
einen Distanzwert. Je nach Verfahren beschreibt der Distanzwert die Anzahl der un-
terschiedlichen Zeichen oder die Anzahl der Anderungen, die notig waren, den einen
Namen in den anderen zu tiberfiihren.

Die Liange der Namen sollte in die Bestimmung des Schwellenwerts mit einbezogen
werden, denn so sind zum Beispiel 3 notwendige Anderungen in einem Wort mit der
Linge von 3 Zeichen ein deutliches Zeichen fiir keine Ahnlichkeit. 3 notwendige Ande-
rungen in einem Wort von 25 Zeichen Linge hingegen deuten auf grole Ahnlichkeit
hin.

2.2.1 Schreibmaschinendistanz

Ein sehr einfaches und sehr anschauliches Distanzverfahren ist die Schreibmaschinendi-
stanz, oder auch Tastaturdistanz genannt (siehe [Wik]). Hintergrund dieses Verfahrens
ist das Erkennen von Tippfehlern. So ist es wahrscheinlicher, dass man einen Buchsta-
ben falschlicherweise durch einen anderen ersetzt, der auf einer Tastatur direkt daneben
liegt, als mit einem, der weiter von dem korrekten Buchstaben entfernt ist.

Zum Beispiel konnte in einem phonetischen Verfahren die Namen Scheck und Schick als
sehr dhnlich eingestuft werden. Die Schreibmaschinendistanz ist jedoch 7, was einen
versehentlichen Vertipper fast ausschliefdt.

Andererseits hitte Apple und Wople nur eine Distanz von 2, was eine Ahnlichkeit nach
dieser Metrik schon eher nahe legt.

Der Schreibmaschinendistanz wird nach folgenden Regeln berechnet:

1. Vergleiche beide Namen zeichenweise von rechts nach links.

22

2.2 Distanzverfahren

2. Wenn zwei Zeichen an der jeweils selben Stelle in beiden Namen unterschiedlich
sind, berechne, wie viele Tasten dazwischen liegen, und addiere den Wert zu der
Gesamtdistanz.

Beispiele fiir die Tastaturdistanz
Beispiel 2.5 zeigt, wie fiir jeweils zwei Namen die Distanz berechnet wird.

Name 1: A P P L E
Name 1: W O P L E
Distanz: 1 + 1 + 0 + 0 + 0 = 2
Namel: S C H E C

Namel: S C H O C K
Distanzz. 0 + 0 + 0 + 7 + 0 + 0 = 7
Name 1: M A Y E R
Name 1: M E I E R
Distanz: o + 2 + 7 + 0 + 0 =9

Beispiel 2.5: Tastaturdistanz zwischen jeweils zwei Namen

Vorteile

— Das Verfahren eignet sich hervorragend, um bei versehentlichen Vertippern bei der
Eingabe auf der Tastatur trotzdem Ahnlichkeiten festzustellen.

Nachteile

— Wie das Scheck/ Schick-Beispiel zeigt, kann eine (tatsdchlich hdufig vorkommende)
Vertauschung von nur einem Zeichen einen hohen Distanzwert liefern.

— Eine QUERTY-Tastatur liefert unter Umstdnden andere Ergebnisse als eine
QUERTZ-Tastatur oder gar eine Tastatur mit DVORAK-Layout. Die verwendete
Tastatur muss darum bekannt sein, um ein genaues Ergebnis zu erhalten.

— Muss fiir jeden Vergleich mit jedem Namen neu berechnet werden und ist daher
eher aufwendig.

23

2 Grundlagen

2.2.2 Hamming-Distanz

Die Hamming-Distanz wurde von Richard W. Hamming in [Ham50] eingefiihrt und ist
ein Maf fiir die Unterschiedlichkeit von Zeichenketten. Hierbei wird die Abweichung
in zwei gleich langen Zeichenketten als Distanzwert ausgedrtickt.

Die Hamming-Distanz wird nach folgenden Regeln berechnet:

1. Vergleiche beide Namen zeichenweise von rechts nach links.
2. Wenn zwei Zeichen an der jeweils selben Stelle in beiden Namen unterschiedlich
sind, erhéhe den Distanzwert um 1.

Das Ergebnis ist also die Anzahl der verschiedenen Zeichen in zwei gleich langen
Zeichenketten.

Beispiele fiir die Berechnung der Hamming-Distanz
Beispiel 2.6 zeigt, wie fiir jeweils zwei Namen die Distanz berechnet wird.

Namel: S C H E C K
Namel: S C H @) C K
Distanz: 0 + + 0 + 1 + 0 + 0 =1
Name 1: M A Y E R
Name 1: M E I E R
Distanz: o + 1 + 1 + 0 + 0 = 2

Beispiel 2.6: Hamming-Distanz zwischen jeweils zwei Namen

Vorteile

— Verfahren eignet sich gut zu Erkennung von Vertippern.

— Berechnung hingt nicht von einem Tastaturlayout ab und braucht daher keine
Informatationen tiber das verwendete Layout.

— Kann einfach bestimmt werden.

24

2.2 Distanzverfahren

Nachteile

— Kann nur fiir den Vergleich zweier gleich langer Namen verwendet werden.
— Muss fiir jedes Paar extra berechnet werden.

2.2.3 Levenshtein-Distanz

Vladimir L. Levenshtein stellt in [Lev65] die sogenannte Levenshtein-Distanz vor, die
auch Edit-Distanz oder Editierabstand genannt wird. Dabei wird dhnlich wie bei der
bereits vorgestellten Hamming-Distanz die Anzahl der Anderungen erfasst, die notig
wairen, um den ersten Namen in den zweiten zu iiberfithren. Das Verfahren kennt 3
Operationen:

1. Einfiigen eines Zeichens
2. Loschen eines Zeichens
3. Vertauschen eines Zeichens

Durch die Operationen , Einfligen” und , Loschen” wird damit auch moglich, zwei
Namen mit verschiedener Lange zu vergleichen.

Berechnung der Levenshtein-Distanz

Zur Berechnung der Levenshtein-Distanz gibt es verschiedene Algorithmen. Eine an-
schauliche Methode ist die Berechnung in einer Matrix der Dimension (s 41, ¢ + 1) mit
Hilfe der folgenden Rekursionsgleichung (wobei s und ¢ die Lange der zu vergleichen-
den Namen sind):

Do =0
Dm,() =m
DO,n =n

und firallel <m <s;, 1<n<t:

. 1 falls gleicher Buchstabe
Dy_14-1+x wobeix =
. 0 falls Ersetzung
Dy n = min

Dm,nfl +1

Dmfl,n +1

25

2 Grundlagen

Die Distanz kann dann aus D, ;1,1 abgelesen werden.

Beispiele fiir die Berechnung der Levenshtein-Distanz

Fiir die beiden Namen Mair und Meier soll in Beispiel 2.7 die Distanz ausgerechnet
werden. Zuerst wird eine 6 x 5 -Matrix erstellt und danach mit der bekannten Formel
ausgefiillt:

I

U1H>00N>—\©m

M
1

©
1
2
3
4

e w R E) = N
@Nwww% =

Ame~=mZ o

3
2
2

@

@
3

Beispiel 2.7: Berechnung der Levenshtein-Distanz mit Hilfe einer Matrix

Die Distanz betragt also 2.

Ich empfehle eine Normierung der Distanz auf Werte zwischen 0 (keine Ubereinstim-
mung) und 1 (identische Namen). Dies kann mit folgender Formel erreicht werden
(wobei s und t die Lange der zu vergleichenden Namen sind und D der Distanzwert):

max(s,t) — D

Dnormiert = max(s t)
7

Vorteile

— Anwendbar bei verschieden langen Namen.
— Implementierungen fiir viele Programmiersprachen vorhanden.
— Bei Dpormiert zwischen 0.6 und 0.8 (je nach Anwendungsfall) gute Trefferquote.

Nachteile

— Muss fiir jedes Paar berechnet werden.
— Berechnung ist komplexer als bei den anderen beiden Distanzverfahren.

26

2.2 Distanzverfahren

Damerau-Levenshtein-Distanz

Bei der Damerau-Levenshtein-Distanz wird die Verdrehung zweier Buchstaben als
zusitzliche Operation eingefiigt. Wahrend bei der Levenshtein-Distanz eine Verdre-
hung von zwei Buchstaben zwei Operationen erfordert, namlich jeweils stellenweise
die Ersetzung mit dem korrekten Buchstaben, wird bei dieser Erweiterung nur eine
Operation benétigt (vgl. [Dam64]).

2.2.4 Jaro-Winkler-Ubereinstimmung

Die]aro-Winkler—Ubereinstimmung nach [Win99] berechnet die Ahnlichkeit zweier
Namen. Dafiir werden nicht nur die Unterschiede wie bei den anderen vorgestellten
Verfahren berticksichtigt, sondern auch die tibereinstimmenden Zeichen. Damit sollen
Eingabefehler bei der Berechnung der Ahnlichkeit mit beriicksichtigt werden. Sie soll
hier nur kurz der Vollstindigkeit wegen erwédhnt werden, da sie in Kapitel 3.1.2 als
mogliche Losung fiir die unscharfe Suche evaluiert wird.

Die Formel zur Berechnung der Jaro-Winkler-Ubereinstimmung JW sy, s,) fiir zwei
Namen s; und s; lautet:

]W(S1,Sz):;><(€4 +t>

[si] * lsal " c

wobei

¢ die Anzahl der iibereinstimmenden Zeichen,

|s1| die Lange des ersten Namens,

|s2| die Lange des zweiten Namens und

t die Anzahl der notwendigen Anderungen zum Uberfiihren des einen Namens in
den anderen sind.

Das Ergebnis der Berechnung ist ein Wert aus R zwischen 0 (keine Ubereinstimmung)
und 1 (identisch).

Beispiele fiir die Jaro-Winkler-Ubereinstimmung
Beispiel 2.8 zeigt die Ubereinstimmung jeweils zweier Namen.

27

2 Grundlagen

Name Ahnlichkeitswert

Schm%ed 0,94
Schmidt

Maier 0.76
Meyer

Mayer 0,60
Beier

Ceniow 0.53
Tsenyuv

Major 0,46
Beyer

Beispiel 2.8: Jaro-Winkler-Ubereinstimmung jeweils zweier Namen

Vorteile

— Es werden auch die Ubereinstimmungen in die Berechnung mit einbezogen, daher
genauere Aussagen iiber die Ahnlichkeit moglich.
— Es steht ein Maf der Ahnlichkeit zur Verfiigung.

Nachteile

— Muss fiir jedes Paar extra berechnet werden.
— Bei hohem Schwellenwert werden nur wenige gute Treffer gefunden, bei niedrigem
jedoch viele schlechte.

28

2.3 Vergleich der Verfahren

2.3 Vergleich der Verfahren

Die verschiedenen Verfahren sollen nun kurz in Tabelle 2.4 miteinander verglichen
werden.

Bei der Bewertung wurde berticksichtigt, ob der komplexeste Teil des Verfahrens jeweils
im Voraus berechnet werden kann, wie z.B. ein Soundex-Code, der dann auch in
einer Datenbank abgelegt werden konnte, oder ob fiir jedes zu vergleichende Paar
eine Berechnung durchgefiihrt werden muss, wie zum Beispiel bei der Levenshtein-
Distanz.

Die Komplexitidt der Codeberechnungsregel wird in drei Stufen eingeteilt, von 1 (ein-
fach) bis 3 (komplex). Soundex hat z. B. sehr einfache Regeln, daher wurde es mit 1
bewertet. Bei z. B. Double Metaphone hingegen kann es fiir nur einen Buchstaben tiber
100 Regeln fiir unterschiedliche Kontexte geben, daher wurde er mit 3 bewertet.

Bei der Komplexitdt der Vergleichsregel wurde beurteilt, wie aufwendig der Algorith-
mus zum Vergleichen ist. Da das bei allen soundexbasierten Verfahren ein einfacher
Stringvergleich ist, wurden diese alle mit 1 (einfach) bewertet. Mit 3 (komplex) wurde
nur die Levenshtein-Distanz berechnet, da hier die komplexeste Berechnung notwendig
ist.

Die Verfahren wurden auch nach der subjektiven Qualitdt der Treffer bewertet. Hier
wurde vor allem rein gefiihlsmafiig bewertet, ob moglichst viele subjektiv empfunden
dhnliche Treffer gefunden wurden, und moglichst wenige Falsch-Positive.

Neben der generellen Verfiigbarkeit der einzelnen Verfahren in verschiedenen Program-
miersprachen spielt vor allem auch im Hinblick auf Kapitel 4 das Vorhandenensein
einer Implementierung fiir Apache Lucene (bzw. Apache Solr) eine Rolle. So gibt es Im-
plementierungen von Soundex in vielen Programmiersprachen, fiir die Kélner Phonetik
finden sich jedoch kaum welche.

Dartiber hinaus ist fiir die Auswahl eines Verfahrens wichtig, dass dieses nicht nur
speziell auf einen bestimmten Sprachraum festgelegt ist.

29

2 Grundlagen

Tabelle 2.4: Vergleich der Verfahren

S =
) e < o .
= Q. = E s =
bes .~ _8 é" g = @ <
S < a, = 8 A <
S @ « =Y < = =
< § @ T £ g R £ 2
x > £ g = 5 £ 2 £ A
[}] - = [N RS = - =
5 g 3 g = <= % § g =
= - =] = = - = g v !
3 < S 2 S = 5 & 3 =
Kriterium n A N p=) = O - = =,
Sprachraum eng. slaw.. deu. (eng.) (eng.) - - - - -
Kann im Voraus berech- v v v v v
net werden
Muss fiir jedes Paar se- v o v v v/
parat berechnet werden
Codeberechnungsregel 1 2 1 2 3 1 - - - -
(1=einfach, 3=komplex)
Vergleichsregel 1 1 1 1 1 2 2 2 3 2
(1=einfach, 3=komplex)
Subjektive Qualitit der 3 2 2 2 1 1 2 2 1 2
Treffer (1=gut, 5=schlecht)
Verfiigbarkeit 1 2 3 1 1 3 3 1 1 2
(1=gut, 3=schlecht)
In Lucene/Solr vorhan- v X X v v X X X v X

den

30

2.4 Apache Lucene

2.4 Apache Lucene

Apache Lucene! ist eine hochperformante und vielseitige Java-Implementierung? einer
Volltext-Suchmaschine (siehe dazu auch [HGO05]), die bereits in zahlreichen grofien
Projekten eingesetzt wird, wie z. B. auf den Webseiten Wikipedia®, Monster* und Lin-
kedIn® oder auch in Desktop-Anwendungen wie Eclipse® fiir die Suche in der Hilfe.
Lucene beschrankt sich dabei auf die Erstellung des Indexes sowie die Suche in diesem
Index. Dabei ist Lucene sehr modular aufgebaut und bietet oft mehrere unterschiedliche
Implementierungen der einzelnen Komponenten, die je nach Anwendungsfall dann
verschieden kombiniert werden kénnen.

Lucene ist eigentlich auf die Indizierung von Dokumenten ausgelegt. Zusitzlich kann
zu jedem Dokument eine beliebige Anzahl von zusétzlichen Daten (z. B. Meta-Daten) in
benannten Feldern mit abgelegt werden. Fiir jedes Feld kann dann entschieden werden,
in welcher Form es weiterverarbeitet werden soll, z. B. ob es in einzelne Tokens zerlegt
werden soll und ob die Inhalte des Feldes auch gespeichert werden sollen oder nicht.

Das Speichern des Inhaltes eines Feldes hat den Vorteil, dass der komplette Inhalt des
Feldes eines Treffers von Lucene auch zuriick gegeben wird und so in der Ausgabe einer
Suchmaschine direkt angezeigt werden kann, ohne das Dokument 6ffnen zu miissen.
Dem gegentiber steht aber ein deutlich hoherer Speicherplatzbedarf im Index.

Zusitzlich zum offiziellen Funktionsumfang gibt es eine ganze Reihe von Open-Source-
Erweiterungen, die ebenfalls die Funktionalitit von Lucene deutlich erweitern. Des
weiteren kann Lucene durch eigene Klassen erweitert und angepasst werden.

1http ://lucene.apache.org/

’Das Hauptprojekt ist die Java-Implementierung. Es gibt jedoch auch Implementierungen fiir viele
weitere Programmiersprachen, wie z. B. .NET, C oder Python

Shttp://www.wikipedia.org/

4http ://jobsearch.monster.com/

5http ://www.linkedin.com/

6http ://www.eclipse.org/

31

http://lucene.apache.org/
http://www.wikipedia.org/
http://jobsearch.monster.com/
http://www.linkedin.com/
http://www.eclipse.org/

2 Grundlagen

Abbildung 2.1 Schema der Indexerstellung mit Lucene

Contributions

.html—>| HTML-Parser

.pdf *>| PDF-Parser \\A Apache Lucene Core
Analyzer H Index Writer
S
Jxt —>| Text-Parser

.doc —>| MS Word-Parser

2.4.1 Erstellen eines Index

Das Erstellen eines Index lduft bei Lucene aus Sicht des Anwendungsprogrammierers
in zwei Schritten ab, die vereinfacht in Abbildung 2.1 dargestellt sind:

Im ersten Schritt muss das zu indizierende Dokument geparst werden. Es gibt jedoch
bereits verschiedene Parser fiir gebrauchliche Dokument-Formate, wie z. B. HTML,
DOC, PDF oder XML, die verwendet werden kdonnen. Das Implementieren eigener
Parser ist sehr einfach, damit konnen beliebige Dokumenttypen indiziert werden.

Im zweiten Schritt werden die Dokumente in den Index aufgenommen. Ein Lucene-
Dokument kann dabei noch weitere Felder haben, die Meta-Informationen aufnehmen
konnen.

Der Inhalt des Dokuments wird dabei von einem Analyzer in Worter zerlegt. Fiir
verschiedene Sprachen gibt es jeweils einen unterschiedlichen Analyzer. Dariiber hinaus
gibt es auch Stemmer mit Implementierungen fiir einige Sprachen.

Die offizielle Dokumentation empfiehlt, dass fiir die Erstellung eines Indexes keine
verschiedenen Analyzer gemischt werden sollen, ebenso wie fiir die Suche in einem
Index. Hat man sich fiir einen Analyzer entschieden, muss fiir jede weitere Operation
der selbe Analyzer verwendet werden.

32

2.4 Apache Lucene

Stemmer und Lemmatizer

Da in vielen Sprachen Worte je nach grammatischer Stellung verschiedene Endungen
haben konnen, ist es oft notig, von einem iibergebenem Wort die Grundform ablei-
ten konnen. Dabei wird zwischen zwei verschiedenen Moglichkeiten unterschieden:
Stemmer und Lemmatizer.

Bei der Indizierung von Dokumenten, aber auch von Produktdaten usw. spielen Stem-
mer eine wichtige Rolle fiir die Genauigkeit der Ergebnisse. Fiir Stammdaten wie
Namen oder Adressen wird kein Stemmer oder Lemmatizer benétigt, da die Ergebnisse
in diesem Sonderfall eher verschlechtert werden. Sollten die in dieser Arbeit vorgestell-
ten Methoden jedoch auf andere Daten als Stammdaten angewendet werden, diirfen
sie nicht vernachldssigt werden und werden daher kurz erklart.

Stemmer

Die einfachere Form der beiden ist ein Stemmer (von engl. stem: Baumstamm, bzw.
to stem from: von etwas abstammen). Stemmer haben eine Menge von Regeln, die ein
Wort in seine Grundform umwandeln konnen. In der Regel geschieht dies tiber das
Abschneiden von Wortendungen. So kann ein Stemmer nach einfachen Regeln , houses”
durch Abschneiden von ,es” in die Grundform ,house” tiberfithren. Stemmer eignen
sich fiir die Englische Sprache deutlich besser als fiir Deutsch, da im Deutschen immer
auch der Wortstamm flektiert wird, wie z. B. ,,Haus” und , Hiuser” zeigt (siehe auch
[TomO03]).

Regeln eines Stemmers fiir Englisch kdnnten unter anderem enthalten:

Regel Beispiel
SSES — SS dresses — dress
IES — Y parties — party
S — books — book

Lemmatizer

Ein Lammatizer bestimmt die Grundform nicht durch Heuristiken wie ein Stemmer,
sondern benutzt umfangreiche Worterbiicher und Morphemregeln, um Worte korrekter
auf die Grundform abzuleiten.

Lemmatizer sind deutlich komplexer und ernstzunehmende Open Source Implementie-
rungen existieren bisher nicht.

33

2 Grundlagen

Abbildung 2.2 Suche im Lucene-Index

Ergebnisse
S

Apache Lucene Core

Index Reader

T
/AbfrageH Query Parser H Query H Index Searcher H Collector D

>I

2.4.2 Suche im Index

Die Suche im Index aus Sicht eines Programmierers verlduft ebenfalls in zwei Schrit-
ten, die schematisch in Abbildung 2.2 dargestellt werden. Im ersten Schritt wird ein
Query-Baum aus Query-Objekten erstellt, die dann im zweiten Schritt einem Searcher
iibergeben werden. Die Treffer werden dabei in einem Collector ausgewertet.

Es existiert ein QueryParser, der einen Suchstring mit Hilfe eines Analyzers in einen
passenden Query-Baum {iberfiihrt. Dies ist eine komfortable Methode zur Erstellung
des Suchbaums und wird meistens auch so verwendet. Wie bereits in Kapitel 2.4.1
erwdhnt, ist es dabei aber sehr wichtig, den selben Analyzer zum Analysieren des
Suchstrings zu verwenden wie beim Schreiben des Index.

Das Erstellen der Query kann aber auch manuell erfolgen, wenn komplexere Query-
Baume benotigt werden, was in Kapitel 4 auch meist notwendig war, weil durch die
Kombination verschiedener Verfahren und damit auch verschiedener Analyzer im
Prototyp der QueryParser nicht verwendet werden konnte, da dieser pro Query nur
einen Analyzer verwenden kann.

Lucene Query Syntax
In diesem Unterkapitel wird die Syntax vorgestellt, die der QueryParser von Lucene

verwendet, da diese Syntax auch bei einem Anwendungsfall bei der Suche im Prototyp
verwendet werden kann.

34

2.4 Apache Lucene

Eine Abfrage besteht dabei aus einem oder mehreren Termen und Operatoren:

Terme

Einfacher Term ein einfaches Wort. Es wird direkt so eingegeben. Z. B. buch

Phrase ist ein Term der aus mehreren Wortern besteht und genau so auftauchen muss.
Eine Phrase wird in Anfiihrungszeichen eingeschlossen. Z.B. "hallo welt"

Terme konnen dariiber hinaus noch Meta-Angaben fiir die Suche enthalten, wie:

Feldnamen Der QueryParser verwendet standardméflig ein Feld des Dokuments zur
Suche. Das Standard-Feld wird beim Instantiieren des Query-Parsers angegeben.
Soll jedoch in einem anderen Feld gesucht werden, kann der Feldname mit Dop-
pelpunkt vorangestellt werden. Z. B. titel:apfel sucht im Feld ,titel” nach dem
Wort , Apfel”.

Platzhalter Der Query-Parser erlaubt die Verwendung von Platzhaltern. Dabei steht ?
(das Fragezeichen) fiir ein beliebiges Zeichen, und * (der Stern) fiir beliebig viele
beliebige Zeichen. Platzhalter diirfen nicht am Anfang eines Terms stehen. Z. B.
te?t findet sowohl , Test” als auch ,, Text”.

Unscharfe Suche Lucene unterstiitzt die unscharfe Suche mit Hilfe der Levenshtein
Distanz. Um fiir einen Simplen Term eine unscharfe Suche durchzufiihren, wird
~ (eine Tilde) an das Wort angehingt, und optional direkt daran den Ahnlich-
keitswert zwischen 1 und 0, wobei Werte niher zu 1 mehr Ahnlichkeit verlangen.
Wird der Ahnlichkeitswert weggelassen, wird standardméfig 0.5 verwendet.
Z.B. meier~ sucht nach allen Treffern, die mit 0.5 oder mehr eingestuft werden.
meier~0.8 nach Treffern mit mindestens Ahnlichkeit von 0.8.

Kontext-Suche Lucene unterstiitzt die Suche nach Worten, die nur eine bestimmte
Anzahl von Worten auseinander liegen. Dafiir wird ~ (die Tilde) auf eine Phrase
angewendet. Z.B. "apfel kuchen"~5 sucht nach Dokumenten, in denen die Wor-
te ,Apfel” und ,Kuchen” nicht weiter als 5 Worte voneinander entfert auftauchen.

Bereichsuche Werte in einem bestimmten Wertebereich konnen in Verbindung mit
dem Schliisselwort TO angegeben werden. Ob die angegebenen Grenzwerte ein-
geschlossen oder ausgeschlossen sind, wird tiber eckige (Werte inklusive) und
geschwungene (Werte exklusive) Klammern angegeben. Z. B. preis: [10 TO 100]
findet alle Dokumente, deren Feld , preis” einen Wert zwischen 10 und 100 hat,
jeweils inclusive der Grenzwerte.

35

2 Grundlagen

Verstérker Einzelnen Termen kann ein starkeres Gewicht bei der Suche verliehen wer-
den. Dazu wird " (Zirkumflex) zusammen mit einem Verstarkunsfaktor (,,boost
factor”) angegeben. Standard ist Wert 1. Negative Werte sind nicht moglich, aber
Werte kleiner als 1 konnen fiir weniger wichtige Terme verwendet werden. Z. B.
apfel”2 kuchen liefert Dokumente, die entweder ,apfel” oder ,kuchen” enthal-
ten, aber Dokumente mit ,apfel” werden zweimal hoher bewertet.

Operatoren

Mit Hilfe von Operatoren konnen verschiedene Terme verkniipft werden. Operatoren
wie AND und OR miissen dabei zwingend grof§ geschrieben werden, um als Operatoren
erkannt zu werden.

OR ist ein zweistelliger Operator und gibt an, dass entweder der Term links oder
der Term rechts davon im Suchergebnis enthalten sein muss. OR ist auch der
Standard-Operator: Werden zwei Terme ohne Operator aneinander gereiht, wird
eine OR-Verkniipfung angenommen. Z. B. apfel kuchen findet Dokumente, die
apfel” oder , kuchen” (oder beides) enthalten.

AND ist ebenfalls ein zweistelliger Operator und gibt an, dass sowohl der Term links als
auch rechts davon im Suchergebnis enthalten sein muss. Z. B. apfel AND kuchen
findet Dokumente, die sowohl ,apfel” als auch , kuchen” beinhalten.

+ ist ein einseitiger Operator und gibt an, dass der folgende Term enthalten sein muss.
Z.B. apfel +kuchen findet Dokumente, die auf jeden Fall , kuchen” beinhalten
miissen, und ,,apfel” beinhalten konnen.

NOT oder alternativ ! sind zweiseitige Operatoren, die angeben, dass der rechte Term
nicht enthalten sein darf. Aus Sicht der Mengenlehre ist es die Differenz. Z.B.
apfel NOT kuchen findet alle Dokumente, die ,apfel” beinhalten, aber nicht
,kuchen”.

- ist ein einstelliger Operator und gibt an, dass der nachfolgende Term in einem Treffer
nicht enthalten sein darf. Z.B. apfel -kuchen findet alle Dokumente, die ,,apfel”
beinhalten, aber nicht , kuchen”.

Um verschachtelte logische Ausdriicke beschreiben zu konnen, diirfen Operatoren auch
geklammert werden. Z. B. (apfel OR kirsch) AND kuchen.

Um geklammerte Operatoren mit Angabe eines Feldes zu verwenden, wird der Feld-
Bezeichner vorangestellt. Z.B. title: (apfel AND kuchen)

Beispiele fiir die Verwendung von Lucene und eine Evaluierung der Leistung finden
sich in Kapitel 3.2.

36

2.5 Hibernate Search

2.4.3 Apache Solr

Apache Solr” ist die Implementierung einer Suchmaschine mit Hilfe von Lucene. Unter
anderem bietet Solr die komplette Suchmaschinenlogik als Webservice an. Dadurch
wird die Anbindung an eigene Anwendungen sehr einfach, da sich die Komplexitat
der Suche fiir den Programmierer hauptsichlich auf die Verwendung eines Webservice
reduziert.

Dabei bietet Solr verschiedene Erweiterungen, wie z. B. Parser fiir verschiedene Doku-
menttypen. Es stellt aber auch Analyzer fiir Lucene zur Verfiigung, die phonetische
Verfahren verwenden. Dadurch wird Solr auch im Zusammenhang dieser Arbeit inter-
essant. Die Verwendung von Solr beschrédnkt sich jedoch in dieser Ausarbeitung auf
eben diese Analyzer.

2.5 Hibernate Search

Hibernate Search® ist eine Erweiterung des Persistenz-Frameworks Hibernate’ um
Volltextsuche mit Hilfe von Lucene.

Hibernate bietet ein sehr komfortables Mapping von Objekten zu Datensatzen in ei-
ner Datenbank. Uber Hibernate Annotations lisst sich der Framework sehr einfach
konfigurieren und verwenden.

Da Lucene eigentlich zur Indizierung von Dokumenten entworfen wurde, muss fiir
die Verwendung mit einer Datenbank eine Anpassung vorgenommen werden. Man
verwendet in diesem Fall nur die Felder fiir die Meta-Daten und schreibt die einzelnen
Attribute eines Datensatzes in die jeweiligen Felder fiir Lucene. Dabei ist es sinnvoll,
als Feldnamen den selben Bezeichner wie fiir den Spaltennamen in der Tabelle zu
verwenden.

Dariiber hinaus miisste der Index manuell aktualisiert werden, wann immer ein Daten-
satz hinzugefiigt, gedndert oder geloscht wurde.

Genau diese Aufgaben nimmt einem Hibernate Search nun ab. Durch wenige einfache
Annotations kann das Mapping zwischen Attributen und Lucene-Feldern vorgenom-
men werden. Zusétzlich liefert die Suche mit Hibernate Search nicht nur die Treffer aus

7http ://lucene.apache.org/solr/
8http ://www.hibernate.org/subprojects/search.html
9http ://www.hibernate.org/

37

http://lucene.apache.org/solr/
http://www.hibernate.org/subprojects/search.html
http://www.hibernate.org/

2 Grundlagen

dem Index zuriick, sondern iiber Hibernate gleich echte Objekte (siehe auch Abbildung
2.3).

Abbildung 2.3 Hibernate Search Schema nach [hibb]

Hibernate
+
Hibernate Search

Search request
Index update

Lucene
Directary
Plae {Indiax)
Search request
_________________ Index update

1
]

Hibernate
+
Hibemate Search

—————— -
1

Auch das Persistieren und Loschen eines Objekts mit Hilfe des EntityManagers fiihrt
automatisch zur Aktualisierung des Index, ohne dass weitere Anderungen an der
Programmlogik vorgenommen werden miissen.

Es bietet sich an, fiir jede Entity einen eigenen Index zu verwenden.

Beispiele fiir die Verwendung von Hibernate Search finden sich in den Kapiteln 4.2, 4.2
und 4.5.

2.6 BOSCH OpendJava Platform

Fiir die Erstellung neuer webbasierter Anwendungen bei Bosch wurde die OpenJava
Platform standardisiert. Es ist eine Zusammenstellung verschiedener Java-Frameworks
und Tools und empfiehlt fiir die Ausfithrung einen JBoss Anwendungsserver.

Die aktuelle Version der Platform ist BOSCH OpenJava 1002 und besteht aus folgenden
Komponenten:

38

2.6 BOSCH OpenJava Platform

e JBoss Application Server 5.1.0'°
e JBoss Seam 2.2.0!!
e Java SDK 1.6.0.16'2

e Rich Faces!?

BOSCH OpenJava beinhaltet aufierdem eine IDE und allen benétigten Tools fiir die
Entwicklung:

Eclipse 3.4.214

Antl®

JBoss Tools 3.0.31

ojdbc147

sowie Tools fiir das Deployment auf Test- und Qualitdtssicherungssystemen

Dartiber hinaus gibt es eine Sample-Anwendung, die bereits alle Bosch-spezifischen
Anpassungen enthilt und sich an die internen Vorgaben hilt, wie z. B.

e Anpassung an den BOSCH-Styleguide fiir Web-Applikationen

e Portalintegration

e Single-Sign-On iiber das unternehmensweite WAM

e Rollenverteilung tiber Identity Management

Fiir die Entwicklung neuer Applikationen gibt es dazu noch eine build.xml fiir Ant, die
nach Anlegen des Projekts in Eclipse alle Bosch-spezifischen Anderungen in das neue
Projekt einpasst.

Whttp:
Uhttp:
Lhttp:
Bhttp:
Hhttp:
Bhttp:
16http:
17http:

//WWw .
//seamframework.org/

//java.sun.com/javase/
/ /W .
/ /W .
/ /W .
//ant.
//WWW .

jboss.org/jbossas

jboss.org/richfaces

eclipse.org/

jboss.org/tools

apache.org/
oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

39

http://www.jboss.org/jbossas
http://seamframework.org/
http://java.sun.com/javase/
http://www.jboss.org/richfaces
http://www.eclipse.org/
http://www.jboss.org/tools
http://ant.apache.org/
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc_10201.html

The nice thing about standards is
that you have so many to choose
from; furthermore, if you do not
like any of them, you can just
wait for next year's model.

— Andrew S. Tanenbaum

3 Evaluierung verschiedener
Losungsansatze

Um eine unscharfe Suche in die Bosch OpenJava Platform zu integrieren, sind mehrere
Ansitze denkbar. In diesem Kapitel sollen verschiedene zur Wahl stehende Moglichkei-
ten evaluiert werden.

Zum einen wird untersucht, welche Moglichkeiten verschiedene Datenbanksysteme
bieten, und ob diese Ansitze in der BOSCH OpenJava Platform verwendet werden
konnten. Zum anderen wird die Volltext-Suchmaschine Apache Lucene evaluiert.

Da die BOSCH OpenJava-Platform aus dem Wunsch entstand, eine quell- und lizenzof-
fene Entwicklungslinie zu schaffen, wurde auf eine Evaluierung proprietdrer Bibliothe-
ken, wie z. B. dem Omikron FACT-Finder'8, verzichtet.

Als Datenbasis fiir die Evaluierung wurden jedes Mal die selben Daten verwendet,
um die Ergebnisse vergleichen zu kénnen. Die Datenbasis besteht aus tiber 115.000
Adressen. Zu weiteren Anmerkungen zu den Adressdaten siehe auch Kapitel 1.

Alle Angaben beziiglich Laufzeit oder Geschwindigkeit in diesem Kapitel beziehen sich
auf folgende Rechnerausstattung:

Hardware:
Geriteklasse Notebook
Prozessor 1,6 GHz Intel Dual Core

Hauptspeicher 2 GB
Sonstiges:
Betriebssystem Linux, Kernel 2.6.31

18http ://www. fact-finder.de

41

http://www.fact-finder.de

3 Evaluierung verschiedener Lésungsansatze

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Viele Datenbank-Systeme bieten mittlerweile eine Unterstiitzung der unscharfen Suche
an, entweder {iber proprietdre Erweiterungen von SQL, oder aber iiber Stored Proce-
dures. Da fiir Web-Applicationen im Bosch CI die beiden Systeme MySQL und Oracle
angeboten werden, beschrankt sich die Evaluierung auf die beiden Systeme.

3.1.1 MySQL

MySQL kann seit Version 4 unscharfe Suche mit Hilfe von Soundex durchfiihren. Dazu
wird sowohl die Funktion soundex (name), sowie der Operator SOUNDS LIKE angeboten.
Die Syntax soll durch zwei Beispiele verdeutlicht werden:

SELECT *
FROM kunden
WHERE name SOUNDS LIKE ’Meier’;

Oder alternativ
SELECT *
FROM kunden

WHERE soundex(name) = soundex(’Meier’);

Aufierdem kann mit ,,SELECT soundex(’Meier’);” der Soundex-Code fiir einen Na-
men direkt ausgegeben werden.

Die fiir diese Evaluierung verwendete Version ist MySQL 5.1.37.
Korrektheit der Berechnung des Soundex-Codes
Zuerst soll tiberpriift werden, ob die Soundex-Implementierung in MySQL korrekt

arbeitet. Dazu sollen die in Kapitel 2.1.1 ermittelten Codes noch einmal von MySQL
mit Hilfe von ,,select soundex(name)” berechnet werden:

42

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Name Erwartetes Ergebnis Erhaltenes Ergebnis Ubereinstimmung
Maier M600 M600 v
Mayer M600 M600 v
Meier M600 M600 4
Meyer M600 M600 v
Major M260 M260 v
Beier B600 B600 v
Fischer F260 F260 4
Vischer V260 V260 4
Moskowitz M232 M232 4
Moskovitz M213 M2132 X
Superzicke S162 S162 v
Scheck 5200 S000 X
Schweizer 5260 S600 X

Auffillig ist, dass MySQL teilweise langere Soundex-Codes ausgibt. So erzeugt Mos-
kowitz 4 Stellen, Moskovitz jedoch 5 Stellen. Die erste Vermutung, dass MySQL die
Soundex-Codes nach 4 Stellen einfach nicht abscheidet, wird jedoch durch das Beispiel
Superzicke widerlegt, das dann namlich S1622 lauten miisste.

Auflerdem fillt auf, dass die Namen Scheck und Schweizer nicht wie erwartet codiert
werden.

Daraus kann geschlossen werden, dass MySQL eine modifizierte Version des Soundex-
Algorithmus verwendet. Allerdings zeigen vor allem die letzten beiden Beispiele in der
Tabelle, dass die verwendete Version ungenauer als der urspriingliche Soundex ist.

Suche nach ahnlich klingenden Namen im Datenbestand

Als zweiter Test soll im Datenbestand nach dhnlich klingenden Namen gesucht werden.
Dazu wird folgende Abfrage verwendet.

SELECT DISTINCT name

FROM adressen
WHERE name SOUNDS LIKE ’Name’;

43

3 Evaluierung verschiedener Lésungsansatze

Fiir den Namen Meier liefert die Anfrage das folgendes Ergebnis:

Gesucht: Meier

Gefundene Namen: 50

Gute Treffer: Maier, Meier, Meyer, Mayr, Mayer, Mair, Maeyer, Moier, Mauer,
Mayrer, Mahir

Schlechte Treffer: Maurer, Muhr, Mohr, Mahr, Mauri, Maimer, Mihr, Meurer, Maue-
rer, Mera, Murrer, Marr, Mahner, Mennemeier, Mueri, Menauer,
Memmer, Muehr, Moor, Morawe, Morareo, Mehrer, Marie, Minar,
Minner, Morr, Maru, Maehner, Miehr, Murauer, Muhra, Monnier,
Maar, Manerer, Moreira, Meer, Meri, Moro, Merry

Die Bewertung der Treffer in gut und schlecht wurde rein subjektiv vorgenommen.
Als Beurteilungsgrundlage wurde subjektive phonetische Ahnlichkeit zum gesuchten
Namen verwendet.

Es fillt auf, dass die im vorherigen Absatz angenommene Vermutung, die Soundex-
Version in MySQL sei von der Genauigkeit eher grob, sich in diesem Beispiel bestatigt
hat.

Testweise wurden weitere Abfragen durchgefiihrt:

Gesucht: Ohrbach

Gefundene Namen: 2
Gute Treffer: Ohrbach
Schlechte Treffer: Orbegozo

44

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Gesucht: Scheck

Gefundene Namen: 130

Gute Treffer: Sick, Schoech, Schach, Schack, Schick, Schoch, Scheck, Schaeg,
Schoeck, Schuck, Schueck, Schock, Schieck, Seck, Schock, Schoke

Schlechte Treffer: Sachs, Schuscha, Saey, Saez, Scho, Schiweck, Seegis, Six, Sags-

oez, Saggau, Suske, Suesse, Sigg, Sachse, Schiess, Suck, Skoko,
Sack, Sah, Sacoo, Schukies, Sowka, Sass, Scheich, See, Sieg, Sich,
Schau, Sasse, Scheja, Sessous, Soco, Sawski, Sause, Saahs, Saks,
Siek, Sax, Suess, Schoessow, Schawach, Schuh, Schewe, Sashe,
Schieweck, Schug, Sachau, Schikowski, Seeg, Schicho, Schache,
Sock, Sieke, Schoeke, Schugk, Schewes, Sueck, Schega, Schieke,
Schueschke, Schwake, Su, Sjouke, Sossau, Shoji, Sawy, Soccio,
Shea, Schaa, Sykes, Sakowski, Schiegg, Szuecz, Sowa, Sekac, Scha-
we, Siko, Schiwy, Sachweh, , Soika, Seiz, Soe, Swewczyk, Schweig,
Scheu, Seigis, Saucke, Schiwek, Sussieck, Schaack, Soyk, Schauss,
Souza, Schuch, Seggewiss, Sois, Saske, Suchy, Sikes, Sewczyk, Su-
cic, Schwuchow, Schuss, Schaich, Sagzoez, Schuy, Schies, Sacco,
Saygi, Szuecs, Schwach, Sues, Skasa, Sy

Beurteilung der phonetischen Suche mit MySQL

Die Suche tiber 117677 Datensétze geht sehr schnell, die Antwortzeit liegt im Schnitt bei
ca. 0,15 Sekunden. Wobei die Suche nach Tseniov bei diesem Test am langsten dauerte
und ganze 0,27 Sekunden in Anspruch nahm und einen Treffer (Tsenyuv) lieferte.

Wie die einfachen Tests gezeigt haben, werden jedoch deutlich mehr Treffer zuriickge-
liefert als erwartet. Die subjektive Qualitdt der Treffer ist nicht sehr hoch.

Sollte eine Ahnlichkeitssuche oder Dublettensuche damit realisiert werden, miisste
erheblicher weiterer Aufwand unternommen werden, um die gefundenen Treffer noch
weiter zu filtern. Die phonetische unscharfe Suche von MySQL kann im Kontext dieser
Arbeit eher als eine Vorauswabhl fiir eine Bearbeitung durch genauere Algorithmen
angesehen werden, was aber den gesetzten Rahmen tiberschreitet.

Aufgrund der Ergebnisse dieser Evaluierung, und vor allem da Oracle zum derzeitigen
Stand die bevorzugte Datenbank fiir Projekte im Cl ist, wird dieser Ansatz nicht weiter
verfolgt.

45

3 Evaluierung verschiedener Lésungsansatze

3.1.2 Oracle

Auch Oracle bietet die phonetische Suche mit Hilfe von Soundex an. Dazu existiert
von Hause aus die Funktion soundex(). Einen SOUNDS LIKE Operator kennt Oracle
hingegen nicht. Die Syntax ist identisch mit der Syntax unter MySQL.:

SELECT *
FROM kunden
WHERE soundex(name) = soundex(’Meier’);

Auflerdem kann mit ,SELECT soundex(’Meier’) from dual;” der Soundex-Code fiir
einen Namen direkt ausgegeben werden.

Die fiir diese Evaluierung verwendete Version ist Oracle XE 10g (Version 10.2.0.1-1.0).
Korrektheit der Berechnung des Soundex-Codes
Nachdem MySQL teilweise andere Codes als erwartet zuriickgeliefert hat, soll auch

unter Oracle tiberpriift werden, ob die Ausgaben auch der Erwartung entsprechen,
bevor weitere Funktionen evaluiert werden.

Name Erwartetes Ergebnis Erhaltenes Ergebnis Ubereinstimmung
Maier M600 M600 v/
Mayer M600 M600 v/
Meier M600 M600 v
Meyer M600 M600 v
Major M260 M260 v
Beier B600 B600 v
Fischer F260 F260 v/
Vischer V260 V260 v
Moskowitz M232 M232 4
Moskovitz M213 M213 v/
Superzicke 5162 5162 4
Scheck 5200 5200 v
Schweizer 5260 5260 v/

46

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Bei diesem Test stimmte das erhaltene Ergebnis stets mit dem erwarteten tiberein.
Daraus kann geschlossen werden, dass sich Oracle bei der Implementierung an den
Standard gehalten hat und keine Sonderregeln implementiert hat.

Suche nach &hnlich klingenden Namen im Datenbestand
Weitere Tests sollen nun zeigen, wie sich dies auf die Trefferrate auswirkt, wenn im
kompletten Datenbestand gesucht wird.

Zur besseren Vergleichbarkeit sollen auch hier wieder die selben Abfragen durchgefiihrt
werden. Der Datenbestand in beiden Datenbanken ist identisch.

Fiir die Suche wird die folgende Abfrage verwendet:
SELECT DISTINCT name

FROM adressen
WHERE soundex(name) = soundex(’Name’)

Gesucht: Meier

Gefundene Namen: 31

Gute Treffer: Meyer, Meier, Moier, Mahir, Mayer, Mair, Maier, Mayr, Maeyer,
Mauer

Schlechte Treffer: Mauri, Moor, Maar, Merry, Mohr, Marr, Mera, Morr, Mihr, Miehr,
Maru, Muhra, Mahr, Moro, Muehr, Marie, Meer, Meri, Muhr, Mu-
eri, Morawe

Diese Abfrage zeigt, dass die schlechten Treffer aus den MySQL-Ergebnissen fiir Meier
sich hier fast halbiert haben, die guten Treffer sind jedoch fast identisch, es fehlt nur
Mayrer, was aber subjektiv betrachtet auch nur gerade noch ein guter Treffer bei MySQL
war.

Gesucht: Ohrbach

Gefundene Namen: 2
Gute Treffer: Ohrbach
Schlechte Treffer: Orbegozo

Dieser Test zeigt, dass die Treffer fiir Ohrbach identisch mit denen von MySQL sind.

47

3 Evaluierung verschiedener Lésungsansatze

Gesucht: Scheck

Gefundene Namen: 93

Gute Treffer: Schack, Schaeg, Schock, Scheck, Schick, Schieck, Schiegg, Schoch,
Schock, Schoech, Schoeck, Schoeke, Schoke, Schuch, Schuck,
Schueck, Schug, Schugk, Suck, Seck, Schach

Schlechte Treffer: Saahs, Sacco, Sachau, Sachweh, Sack, Sacoo, Saez, Saggau, Saks,
Sashe, Saske, Sass, Sasse, Saucke, Sause, Sawski, Sax, Saygi,
Schaack, Schache, Schaich, Schauss, Schawach, Schega, Scheich,
Scheja, Schewes, Schicho, Schieke, Schies, Schiess, Schieweck, Schi-
weck, Schiwek, Schoessow, Schuscha, Schuss, Schwach, Schwake,
Schweig, Schwuchow, Seeg, Seiz, Shoji, Sich, Sick, Sieg, Siek, Sieke,
Sigg, Siko, Six, Sjouke, Skasa, Skoko, Soccio, Sock, Soco, Soika, Sois,
Sossau, Souza, Sowka, Soyk, Suchy, Sueck, Sues, Suess, Suesse,
Suske, Szuecs, Szuecz

Beurteilung der phonetischen Suche mit Oracle

Die Suche benétigt auch hier durchschnittlich 0,1 Sekunden fiir eine Antwort, was
die Verwendung in einer Web-Anwendung problemlos erlauben wiirde. Auch die
Ergebnisse sind nach subjektivem Empfinden besser als bei MySQL.

Da aber noch immer viele subjektiv schlechte Treffer in den Ergebnissen enthalten
sind, ist das Verfahren nicht optimal. Web-Anwendungen, die eine unscharfe Suche mit
geringstem Aufwand und eher als Nebenfunktion benétigen, konnten dieses Verfahren
eventuell verwenden.

Um die Vorteile von Hibernate (vor allem objektrelationales Mapping) auch aus einer
SQL-Query zu nutzen, kann die Methode addEntity benutzt werden:

session.createSQLQuery(
"SELECT * FROM adressen WHERE soundex(name) = soundex(’Name’)"
) .addEntity(Customer.class);

Wenn die Anwendung aber mehr Anspriiche an die unscharfe Suche stellt, ist dieses
Verfahren nur bedingt geeignet.

48

3.1 Unscharfe Suche mit Hilfe eines RDBMS

Erweiterung mit PL/SQL

Fiir Oracle existieren viele Implementierungen der phonetischer Suche in PL/SQL, die
die standardmaflige Funktionalitidt verbessern sollen. Stellvertretend fiir eine Vielzahl
verschiedener Skripte wird das Paket ,,Metaphone for Oracle” von Scott Stephens (siehe
[byt]) untersucht.

Nachdem das PL/SQL-Skript importiert wurde, ist die Berechnung des Metaphone-
Codes mit der Funktion meta.phone () moglich. Daraus ergibt sich die Abfrage:

SELECT DISTINCT name
FROM adressen
WHERE meta.phone(name) = meta.phone(’ Name’)

Stellvertretend wird die Suche fiir Scheck durchgefiihrt:
Gesucht: Scheck

Metaphone-Code: SXK

Gefundene Namen: 26

Gute Treffer: Schoeck, Schoeke, Schieck, Schieke, Schueck, Schiegg, Schack,
Schock, Schaack, Schock, Schick, Schuck, Scheck, Schug, Schaeg,
Schoke

Schlechte Treffer: Schega, Schweig, Schiweck, Waschka, Waschk, Waschkau, Wa-
schek, Schwake, Schiwek, Schieweck

Das Ergebnis der Suche wurde deutlich besser, viele subjektiv schlechte Treffer wurden
unterdriickt. Allerdings hatte die Anfrage eine Antwortzeit von knapp 72 Sekunden.
Damit ist dieses Verfahren in dieser Form fiir eine Web-Anwendung nicht einsetzbar.

Performanceverbesserung durch Vorausberechnung

Zur Verbesserung der Performance wurde die Tabelle adressen um die Spalte
metaphone erweitert, in welcher der zugehorige Metaphone-Code gespeichert wird.
Dadurch muss bei einem SELECT nicht mehr fiir jede Zeile der Code extra berechnet
werden. Die Abfrage lautet nun fiir Scheck:

SELECT DISTINCT name

FROM adressen
WHERE metaphone = meta.phone(’Scheck’)

49

3 Evaluierung verschiedener Lésungsansatze

Die Treffer sind wie erwartet identisch, die Antwortzeit hat sich jedoch auf 30,2 Sekun-
den verkiirzt. Dennoch ist dies fiir eine Web-Anwendung deutlich zu langsam.

Wird der Metaphone-Code fiir den Namen allerdings im Voraus berechnet, z. B. mit der
Abfrage ,,SELECT meta.phone(’Scheck’)”, kann die Abfrage signifikant beschleunigt
werden.

Die Abfrage

SELECT DISTINCT name
FROM adressen
WHERE metaphone = ’SXK’

dauert nur noch 0,02 Sekunden mit identischen Treffern. Mit einem Trigger konnte si-
chergestellt werden, dass das Feld metaphone immer den korrekten Wert enthélt. Damit
wire dieses Verfahren fiir die unscharfe Kundendatensuche in einer Web-Anwendung
anwendbar.

Suche in Oracle mit distanzbasierten Verfahren

Zum reguldren Lieferumfang von Oracle gehort seit Version 10g Release 2 auch das
undokumentierte Paket UTL_MATCH, das zwei Algorithmen zur Berechnung der Ahnlich-
keit zweier Strings zur Verfiigung stellt (vgl. [HMO05, S. 18 f£.]): die Levenshtein-Distanz
und die Jaro-Winkler-Ahnlichkeit.

Bevor UTL_MATCH das erste Mal verwendet werden kann, muss das PL/SQL-Skript
$ORACLE_HOME/rdbms/admin/utlmatch.sql vom Datenbankadministrator ausgefiihrt
werden.

Bevor eine Suche damit ausgefiihrt wird, ist es ratsam, einen sinnvollen Schwellenwert
fiir die Distanz zu wihlen, ab welchem man einen Namen nicht mehr als ausreichend
dhnlich zum gesuchten Namen ansieht. Auch dieses Verfahren soll stellvertretend mit
Scheck getestet werden. Als Schwellenwert wurde 3 gewahlt. Damit ergibt sich die
Abfrage:

SELECT DISTINCT name, dist

FROM (
SELECT name, utl_match.edit_distance(name, ’Scheck’) AS dist
FROM adressen

50

3.1 Unscharfe Suche mit Hilfe eines RDBMS

)
WHERE dist < 3

ORDER BY dist

Stellvertretend wird die Suche fiir Scheck durchgefiihrt:

Gesucht: Scheck

Treffer gesamt: 77

1 x Distanz 0: Scheck

11 x Distanz 1: Schack, Schenck, Schenk, Schick, Schieck, Schneck, Schock,
Schoeck, Schreck, Schuck, Schueck

65 x Distanz 2: Schaack, Schach, Schalk, Schank, Schareck, Scheel, Scheer, Sche-
ga, Schehr, Scheib, Scheich, Scheid, Scheikl, Schein, Scheit, Scheja,
Schelb, Schell, Schelm, Schels, Schemm, Schenke, Schenkl, Sche-
pe, Scherb, Scherf, Scherg, Scherl, Scherm, Scherr, Schett, Scheu,
Scheur, Scheve, Schewe, Schickl, Schimeck, Schink, Schiweck,
Schlak, Schlick, Schmok, Schmuck, Schmueck, Schnack, Schnick,
Schoch, Schock, Schoech, Schrack, Schrenk, Schrick, Schroeck,
Schuch, Schugk, Schunck, Schurk, Schwenk, Seck, Sobeck, Speck,
Steck, Stoeck, Streck, Sueck

Obwohl der Wert fiir jede Zeile gesondert berechnet werden muss, stand das Ergebnis
bereits nach 1,7 Sekunden zur Verfiigung. Es fillt aufserdem auf, dass die Anzahl der
Treffer wieder deutlich hoher ist, die Treffer aber nicht nach subjektivem Empfinden
in gute und schlechte Treffer gruppiert werden miissen, da ein Distanzwert die Ahn-
lichkeit angibt. Man erhiélt dadurch eine Gewichtung, die von der Anwendungslogik
ausgewertet und berticksichtigt werden kann.

Jaro-Winkler-Ubereinstimmung

Auf die Moglichkeit der unscharfen Suche mit Hilfe der Jaro-Winkler-Ubereinstimmung
(auch aus dem Paket UTL_MATCH) soll ebenfalls kurz eingegangen werden. Die Funkti-
on UTL_MATCH. jaro_winkler_similarity(sl, s2) liefert die Ubereinstimmung nach
Jaro-Winkler in Prozent. Als Schwellenwert wihlen wir 90:

SELECT DISTINCT name, dist

FROM (
SELECT name, utl_match.jaro_winkler_similarity(name, ’Scheck’) AS dist
FROM adressen

51

3 Evaluierung verschiedener Lésungsansatze

)
WHERE dist > 90
ORDER BY dist DESC

Gesucht: Scheck

Gefundene Namen gesamt: 29

1 x 100% Ubereinstimmung: Scheck

1 x 97% Ubereinstimmung: Schenck

5 x 96% I"Jbereinstimmung: Schieck, Schneck, Schoeck, Schreck, Schueck

5 x 94% Ubereinstimmung: Schareck, Schimeck, Schiweck, Schmueck, Schroeck
2 X 93% Ubereinstimmung: Schenk, Schennack

15 X 92% Ubereinstimmung: Schack, Schalueck, Schambeck, Scheffczik, Schencking,
Schick, Schieckel, Schiedeck, Schiereck, Schieweck,
Schock, Schrecker, Schreieck, Schuck, Schwebcke

Das Ergebnis der Abfrage stand nach 1,6 Sekunden zur Verfiigung. Es fallt auf, dass die
Ergebnisse noch feiner gewichtet sind als bei der Verwendung der Levenshtein-Distanz.
Allerdings fallt ebenfalls auf, dass z. B. Schenck besser bewertet wird als Schneck, und
auflerdem dass viele nach subjektivem Empfinden gute Treffer aus anderen Abfragen
hier nicht auftauchen.

3.2 Apache Lucene

Apache Lucene bietet standardmaéflig eine unscharfe Suche mit Hilfe der Levenshtein-
Distanz. Um Lucene evaluieren zu konnen, wurden zwei Java-Klassen geschrieben,
von der eine die schon in den anderen Beispielen verwendeten Adressen in den Index
schreibt, und eine zweite zur Suche im Index.

Standardmaflig verwendet Lucene bei der unscharfen Suche mit der Levenshtein-
Distanz ein Dpormiert = 0.5. Es hat sich aber gezeigt, dass die subjektive Qualitit der
Treffer bei Dyormiert = 0.8 deutlich besser wird.

Auch hier soll nach Ohrbach, Scheck und Meier gesucht werden.

Gesucht: Ohrbach (mit Dyormiert = 0.8)

Gefundene Namen: 4

Gute Treffer: Ohrbach, Mohrbach, Rohrbach, Ohlbach-Nowatzki
Schlechte Treffer: -

52

3.2 Apache Lucene

Die Suche dauerte 0,3 Sekunden. Auerbach taucht auch hier (wie bei allen anderen
bisher evaluierten Verfahren) nicht bei den Treffern auf, dafiir drei weitere Namen, die
subjektiv sehr gute Treffer sind, aber bei bisher keinem anderen Verfahren gefunden
wurden.

Als ndchstes werden die Ergebnisse fiir Scheck betrachtet.

Gesucht: Scheck (mit Dyormiert = 0.8)

Gefundene Namen: 18

Gute Treffer: Scheck, Schenck, Schoeck, Schueck, Schock, Schock, Schack,
Schreck, Schuck, Schneck, Schieck, Schick, Schenk, Schreck-
Engelhardt, Thomas-Schuck, Lueke-Schuck, Schick-Wagner, Paetz
gen. Schieck

Schlechte Treffer: -

Die Suche dauerte 0,4 Sekunden, auch hier sind die Treffer durchweg subjektiv gut. Wie
auch schon beim letzten Beispiel aufgefallen ist, werden erstmals auch Doppelnamen
bei der Suche berticksichtigt.

Abschlief3end soll nun noch die Suche nach Meier betrachtet werden.

Bei Dpormiert = 0.8 werden zwar einige Treffer ausgegeben, aber neben Meier werden
nur Doppelnamen mit Meier gefunden. Jedoch taucht keine andere Schreibweise des
Namens auf.

Bei Dpormiert = 0.7 werden deutlich mehr Treffer ausgegeben, vor allem auch viele
Doppelnamen. Diese sollen der Ubersichtlichkeit wegen allerdings ignoriert werden.
Neben Meier taucht nun auch Maier und Meyer auf. Dazu kommt noch Beier, Meer und
Meir. Allerdings fehlt noch immer Mayer.

Bei Dpormiert > 0.6 kommen noch einige Namen hinzu, allerdings wird Mayer noch
immer nicht gefunden.

Bei Dpormiert > 0.5 findet sich auch Mayer unter den Suchergebnissen, allerdings auch
viele schlechte Treffer wie z. B. Weber oder auch Reiser.

Beurteilung der unscharfen Suche mit Lucene
Insgesamt betrachtet funktioniert die Suche mit Lucene sehr gut und performant. Es ist

fir den Einsatz in einer Web-Anwendung gut geeignet. Ein grofler Vorteil gegentiber
allen anderen getesteten Verfahren ist das Finden auch von Doppelnamen. Allerdings

53

3 Evaluierung verschiedener Lésungsansatze

wird auch deutlich, dass die Qualitdt der Ergebnisse stark vom verwendeten Schwel-
lenwert Dpormiert abhdngt.

Da Hibernate Search intern ebenfalls Lucene verwendet, kann bei der Verwendung von
Hibernate Search das gleiche Ergebnis erwartet werden.

3.3 Ergebnis der Evaluierung

Die Evaluierung der verschiedenen Moglichkeiten hat gezeigt, dass mit Lucene und
einem geeigneten Schwellenwert die besten Ergebnisse erzielt werden konnten. Aufser-
dem ist es das einzige der getesteten Verfahren, das auch Doppelnamen berticksich-
tigt.

Einziger Nachteil von Lucene im Vergleich zu den anderen Verfahren ist die zusatzliche
Verwaltung des Index unabhéngig von der Datenbank. Eine Herausforderung ist es
daher, den Index immer konsistent zum Datenbank-Inhalt zu halten. Im Zusammenspiel
mit Hibernate Search sollte dies jedoch moglich sein.

Eine weitere Herausforderung bei der Implementierung des Prototyps wird es sein, die
Suchanfrage derart zu verfeinern, dass moglichst viele gute Treffer gefunden werden,
aber gleichzeitig so wenig wie moglich schlechte. Aufgrund der Flexibilitdt von Lucene
und den bereits mit den Standard-Optionen guten Treffern wird Lucene als einzige
mogliche Bibliothek zur Realisierung der unscharfen Suche in Betracht gezogen und
soll fiir den Prototyp verwendet werden.

54

Vision without implementation is
hallucination.

— Benjamin Franklin

4 Implementierung

Die in den Kapiteln 2 und 3 gewonnenen Erkenntnisse sollen nun fiir die Erstellung
eines Prototyps einer Web-Anwendung eingesetzt werden. In diesem Kapitel werden
die Uberlegungen, die Herangehensweise und die zu iiberwindenden Probleme be-
schrieben, die wahrend der Implementierung aufgetreten sind, sowie natiirlich deren
Losungen.

Dieses Kapitel soll gleichzeitig auch Anleitung, Beispiel und Dokumentation fiir den
CI/ AFJ sein, wie andere Projekte mit einfachen Mitteln die selbe Funktionalitét einbin-
den konnen.

Fiir den Prototyp wird eine Klasse Customer verwendet, die folgende Attribute be-
sitzt:

o id
o firstName

lastName

street

o city

4.1 Vergleich Ist- und Soll-Architektur bei der Suche in
Web-Anwendungen im BOSCH OpendJava Framework

In diesem Abschnitt soll ein Uberblick iiber die bisherige Architektur der Suche in
Web-Anwendungen im BOSCH OpenJava Framework gegeben werden. Aufierdem
wird erldutert, wie die Architektur der Suche bei Verwendung von Hibernate Search
aussieht.

55

4 Implementierung

Ist-Architektur

Bisher werden in Anwendungen, die fiir die BOSCH OpenJava Platform entwickelt
werden, fiir Zugriffe auf Datenbanken Hibernate als Abstraktionsschicht und Frame-
work zur objektrelationalen Abbildung verwendet. Die Architektur ist in Abbildung 4.1
vereinfacht dargestellt.

In den Session-Beans wird von Seam ein EntityManager ,injected”, iiber den mit

List<Customer> customers = entityManager.createQuery(
"SELECT customer FROM Customer AS customer "
+ "where lower(name) like lower(?1)")
.setParameter(l, "Meier%")
.getResultList();

Abfragen in JPQL!Y formuliert werden kénnen und Listen mit Entity-Objekten als
Resultat zurtickgegeben werden.

Abbildung 4.1 Ist-Architektur fiir die Suche in Web-Anwendungen bei CI/AF] mit
OpenJava

Web-Application

View
?

Session Beans

Hibernate

Object
Relational

Mapping

< =

PJava Persistence Query Language. Siehe http://java.sun.com/javaee/5/docs/tutorial/backup/
update3/doc/QueryLanguage.html

56

http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/QueryLanguage.html
http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/QueryLanguage.html

4.1 Vergleich Ist- und Soll-Architektur bei der Suche in Web-Anwendungen im BOSCH
Opendava Framework

Soll-Architektur

Beim Einsatz von Hibernate Search wird statt dem EntityManager ein
FullTextEntityManager verwendet, der ebenfalls von Seam ,injected” wird.
Die Klasse FullTextEntityManager erbt von EntityManager, daher kann die bisherige
Suchmethode auch weiterhin je nach Anwendungsfall parallel zur Suche mit Hibernate
Search verwendet werden.

Bei der Suche mit Hibernate Search wird die Abfrage jedoch nicht als JPQL-Abfrage
gestellt, sondern ein Query?’-Objekt (bzw. meistens ein Baum von Query-Obijekten) an
den FullTextEntityManager iibergeben:

FuzzyQuery luceneQuery = new FuzzyQuery(new Term('"name", "meier"), 0.7f);
customerList = (List<Customer>) entityManager.createFullTextQuery(
luceneQuery, Customer.class)
.getResultlList();

Durch diese Anweisung wird Hibernate Search im Index alle Eintrdge finden, auf
die die Suchkriterien (hier: Name zu 70% identisch mit ,,meier”) zutreffen. Die IDs
der betreffenden Eintrdge werden dann automatisch von Hibernate Search in eine
SQL-Abfrage der Art

SELECT *
FROM Customer
WHERE id IN (<Liste von den IDs der Treffer>)

umgewandelt und ausgefiihrt. Die Ergebnisse werden dann ebenfalls als Liste von
Entity-Objekten zuriickgegeben. Einen vereinfachten schematischen Uberblick iiber die
Suche mit Hibernate Search zeigt Abbildung 4.2.

20Wie eine Query oder ein Query-Baum aufgebaut wird, beschreibt u. a. Kapitel 4.5, sowie [HGO5].

57

4 Implementierung

Abbildung 4.2 Architektur der Suche in Web-Anwendungen bei CI/AFJ mit OpenJava
bei Verwendung von Hibernate Search

Web-Application

View
¢

Session Beans

Results Query

Hibernate

Object _|
Relational
Mapping

— Hibernate <

Tucene
Search

Lucene Index

4.2 Notwendige Projekteinstellungen zur Nutzung von
Hibernate Search im BOSCH OpendJava Framework

Die BOSCH OpenJava Platform bringt die wichtigsten Bibliotheken bereits mit, da Seam
Hibernate Search schon integriert hat. Allerdings werden die Bibliotheken beim Anlegen
eines neuen Projekts nicht automatisch eingebunden. Daher miissen die folgenden JARs
manuell dem Projekt hinzugefiigt werden?!:

e commons-codec.jar
e hibernate-search.jar

e lucene-core jar

21Bej Verwendung der BOSCH OpenJava Platform finden sich die JARs im Verzeichnis
C:\OpenJava-1002\jboss-seam-2.2.0.GA\1lib. Andernfalls konnen sie zusammen mit Seam von
http://seamframework.org/ geladen werden.

58

http://seamframework.org/

-

4.3 Erstellen und Verwalten des Lucene-Index

Auflerdem werden Analyzer und Filter vom Solr-Projekt fiir die phonetischen Verfahren
verwendet. Daher miissen zusitzlich die folgenden JARs?? mit eingebunden werden:

e apache-solr-common-1.3.0.jar
e apache-solr-core-1.3.0.jar
e apache-solr-solrj-1.3.0.jar
Des weiteren miissen noch zwei zusédtzliche Einstellungen in der Datei

persistence.xml vorgenommen werden (sieche Ausschnitt aus persistence.xml
in Listing 4.1).

Listing 4.1 Notwendige Einstellungen in persistence.xml

<!-- use a file system based index -->
<property name="hibernate.search.default.directory_provider"
value="org.hibernate.search.store.FSDirectoryProvider" />

<!-- directory where the indexes will be stored -->
<property name="hibernate.search.default.indexBase"
value="index" />

Zum einen muss der zu verwendende Index-Typ angegeben werden.
Da der Index nicht in einer Datenbank oder im Hauptspeicher gehal-
ten werden soll, sondern in einer Dateisystem-Hierarchie, wahlt man
org.hibernate.search.store.FSDirectoryProvider.

Als zweites muss dazu noch der Speicherort fiir den Index angegeben werden.

4.3 Erstellen und Verwalten des Lucene-Index

Damit die Suche im Index mit Lucene {iberhaupt Resultate finden kann, muss der Index
natiirlich auch gefiillt werden. Aulerdem muss der Inhalt des Index bei jeder Anderung
in der Datenbank ebenfalls aktualisiert werden.

In diesem Abschnitt werden zwei Moglichkeiten zum Erstellen und Aktualisieren des
Index vorgestellt.

227um Herunterladen als Teil von Solr unter http://lucene.apache.org/solr/. Es ist darauf zu achten,
die Version 1.3 zu verwenden, da die aktuelle Version 1.4 zu Versionskonflikten mit der im BOSCH
OpenJava Framework enthaltenen Version von Hibernate fiihrt.

59

http://lucene.apache.org/solr/

4 Implementierung

Erweiterungen an Entity-Klassen fiir die automatische Indexaktualisierung

Hibernate Search bietet einige Annotationen fiir Entitys, mit denen die komplette
Indizierung gesteuert werden kann. Hibernate Search aktualisiert dann automatisch
den Index bei jeder reguldren Anderung, Neuanlage oder Loschung von Datensatzen.

Wichtig sind drei Annotationen. Sind diese vorhanden, miissen beim Persistieren der
Entitys keine weiteren Anderungen in den Entity-Manager-Klassen vorgenommen
werden. Ein Minimalbeispiel findet sich im Listing 4.2.

Die Klasse wird mit @Indexed annotiert, um zu markieren, dass die Entitys indiziert
werden sollen. Zusétzlich wird ein Index-Name angegeben. Hibernate Search erzeugt
dann einen Unterordner mit dem selben Namen fiir den Index in dem Ordner, der bei
hibernate.search.default.indexBase (siehe Abschnitt 4.2) angegeben wurde. Jede
Klasse sollte einen eigenen Indexnamen benutzen, damit die Indizes verschiedener
Entitys nicht vermischt werden.

Das Attribut ID der Entity muss mit @ocumentId annotiert werden, damit Hibernate
Search ein Mapping zwischen Dokumenten im Index und Entitys in der Datenbank her-
stellen kann. Es zeichnet sozusagen den Primérschliissel fiir Hibernate Search aus. Wenn
Hibernate Annotations verwendet werden (was bei der BOSCH OpenJava Platform
der Fall ist) und ein Attribut mit @Id ausgezeichnet ist, kann @ocumentId weggelassen
werden.

Schliefslich werden die zu indizierenden Attribute noch mit @Field annotiert. Mit
Parametern kann aufierdem noch angegeben werden, wie das Feld heifsen soll und wie
indiziert werden soll: ob der Inhalt in Tokens zerlegt werden soll oder nicht, ob der
Inhalt auch im Index gespeichert werden soll, welche Filter und Analyzer fiir das Feld
verwendet werden sollen usw.

60

4.3 Erstellen und Verwalten des Lucene-Index

Listing 4.2 Minimalbeispiel fiir Hibernate Search Annotationen (am Beispiel der Entity
Foo)

1 @Entity
@Table(name = "foo™)
3 @Indexed(index = "foo")
public class Foo implements Serializable {

13

15

17

19

21

23

25

27

29

31 }

private static final long serialVersionUID = 231831029191111798L;

private Long id;
private String bar;

@Id

@DocumentId

@GeneratedValue

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
}

@Column(name "bar")
@Field(index = Index.TOKENIZED, store = Store.NO),
public String getBar() {

return bar;

}

public void setBar(String bar) {
this.bar = bar;

}

Manuelle Erzeugung des Lucene-Index

Es gibt einige Fille, in denen der Index manuell aktualisiert werden muss. Das sind
unter anderem:

e Hibernate Search wird nachtréglich in ein bereits existierendes System integriert
und fiir die bereits persistierten Objekte gibt es noch keine Eintrdge im Index.

61

11

15

17

4 Implementierung

e Datenbank-Sicherungen wurden eingespielt oder Daten direkt in der Datenbank
ohne Benutzung der Anwendung gedndert und der Datenbestand passt nicht
mehr zum bestehenden Index.

Das Listing 4.3 zeigt beispielhaft, wie innerhalb der Entity-Manager-Klasse
CustomerManager der Index fiir die Entity Customer neu aufgebaut werden kann.
Verwendet wird hierbei nicht der normale EntityManager, sondern wie bei allen
Entity-Manager-Klassen, die Hibernate Search benutzen wollen, die Unterklasse
FullTextEntityManager, der von Seam automatisch , injected” wird.

Listing 4.3 Manuelle Indizierung von Objekten (am Beispiel der Entity Customer)

@In
FullTextEntityManager entityManager;

public void createIndex() {

// get all entries from database
List<Customer> customers = (List<Customer>)
entityManager.createQuery("select customer from Customer as customer")
.getResultList();

// purge index (in case it already exists)
entityManager.purgeAll (Customer.class);

// add each
for (Customer cust : customers) {
entityManager.index(cust);

}

Da die Laufzeit beim Erstellen des Index bei grofieren Tabellen langer als der Timeout
des Application-Servers sein kann, bietet es sich an, den Index asynchron erstellen zu
lassen. Dazu wird die Methode mit @0bserver (value=indexWorker") annotiert und
dann mittels events.raiseAsynchronousEvent (indexWorker") ; aufgerufen.

4.4 Voriiberlegungen zur Verbesserung der Suchergebnisse

Der Test von Lucene in Kapitel 3.2 hat gezeigt, dass die unscharfe Suche mit Levenshtein
schon sehr gute Ergebnisse liefert. Jedoch hat die Evaluierung ebenfalls gezeigt, dass es
auch Schwachstellen gibt. So wurde beispielsweise Mayer bei der Suche nach Meier nur

62

4.5 Notwendige Erweiterungen an Hibernate Search und Lucene zur unscharfen Suche

gefunden, wenn der Schwellenwert fiir die Ahnlichkeit relativ gering ist und dadurch
auch viele unerwiinschte Treffer auftreten. Bei einem phonetischen Verfahren wiren
die beiden Varianten als dhnlich erkannt worden.

Andererseits kann ein kleiner Tippfehler bei einem phonetischen Verfahren ausreichen,
dass (obwohl sich die beiden Namen nur in einem Buchstaben unterscheiden und
am Telefon vielleicht sogar sehr dhnlich klingen) keine Ahnlichkeit festgestellt wird:
Miiller und Fiiller werden von fast allen in Kapitel 2.1 vorgestellten Verfahren als
unterschiedlich angesehen (Soundex: M460 # F460, Daitch-Mokotoff: 689000 # 789000,
Kolner Phonetik: 657 # 357, Metaphone: MLR # FLR), mit Ausnahme des Match Rating
Approach (Kapitel 2.1.5), fiir den es jedoch kaum Implementierungen gibt und der
paarweise und daher aufwendiger zu berechnen ist.

Ein distanzbasiertes Verfahren wie Levenshtein hitte jedoch auch noch mit hohem
Schwellenwert die Ahnlichkeit entdeckt, stoit dafiir aber wieder an Grenzen bei Schmidt
und Smith, die jedoch z. B. von Double Metaphone als dhnlich eingestuft werden.

Diese Uberlegungen fiihrten dazu, zwei Verfahren zu kombinieren. Darum soll fiir
diesen Prototyp die distanzbasierte Standard-Fuzzy-Suche von Lucene mit Double
Metaphone als phonetisches Verfahren kombiniert werden. Durch die Kombination
der beiden Verfahren bleiben die Vorteile der einzelnen Methoden erhalten, aber die
jeweiligen Nachteile gleichen sich teilweise aus.

4.5 Notwendige Erweiterungen an Hibernate Search und
Lucene zur unscharfen Suche

In diesem Abschnitt soll eine distanzbasierte und eine phonetische Methode fiir Lucene
vereint werden.

Unscharfe Suche mit Levenshtein ist ohne Probleme mit einer FuzzyQuery in Lucene
bereits verfiigbar. Die FuzzyQuery funktioniert ohne weitere Vorarbeiten. Auch beim
Schreiben des Index muss nichts zusatzlich beachtet werden. Allerdings kann der
QueryParser nicht direkt verwendet werden, da sonst nur durch Anhéngen einer Tilde
,~" an den Suchbegriff unscharf gesucht werden wiirde. Stattdessen muss die Query
manuell erstellt werden.

Die Suche mit einem phonetischen Verfahren erfordert allerdings ein paar Anderungen.
Zusitzlich zu den normalen Feldern wird jedes Feld noch einmal codiert ebenfalls in

63

4 Implementierung

den Index aufgenommen. Um die codierten Inhalte von den uncodierten auseinander
halten zu kdnnen, werden die codierten in ein eigenes Feld geschrieben.

Der dazu notwendige Analyzer muss erst noch definiert werden, was mit Hilfe der
Bibliotheken aus dem Solr-Projekt sehr einfach it, siehe auch Listing 4.4. Der Analyzer
verwendet einen normalen Tokenizer, damit mehrere Worte in einem Attribut getrennt
codiert werden. Zusitzlich wird ein phonetischer Filter hinzugefiigt, der hier mit einem
DoubleMetaphone-Encoder (ebenfalls aus dem Solr-Projekt) die einzelnen Token in
phonetische Codes umwandelt, bevor sie in den Index aufgenommen werden.

Listing 4.4 Definition des phonetischen Analyzers

@AnalyzerDef(

2 name = "phonetic",
tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
4 filters = {
@TokenFilterDef(factory = StandardFilterFactory.class),
6 @TokenFilterDef(factory = PhoneticFilterFactory.class, params = {
@Parameter (name = "encoder", value = "DoubleMetaphone")

8 b

b

Des weiteren muss bei der Definition der Felder der zuséitzliche Encoder angegeben
werden. Da der uncodierte und der codierte Attributwert in zwei getrennte Felder
geschrieben werden soll, bietet sich an, fiir das Feld mit den phonetischen Codes den
selben Namen mit angehdngtem _pho zu verwenden. Somit konnen die beiden Felder
jeweils einfach auseinander gehalten werden. Um eine Property in mehrere Felder
zu schreiben, muss die @Fields-Annotation verwendet werden, wie in Listing 4.5
gezeigt.

Listing 4.5 Ein Objektattribut in mehrere Felder indizieren

1 @Column(name = "city")
@Fields({
3 @Field(index = Index.TOKENIZED, store = Store.NO),
@Field(name = "city_pho", analyzer = @Analyzer(definition = "phonetic"))
5 1)
public String getCity() {
7 return city;

3

64

10

12

14

4.5 Notwendige Erweiterungen an Hibernate Search und Lucene zur unscharfen Suche

Im Prototyp wurde das fiir alle Attribute der Klasse Customer gemacht. Es werden
also auch die Attribute street und city mit dem phonetischen Analyzer in den Index
aufgenommen.

Suche uber kombinierte Doppelfelder

Auch bei der Suche tiber diese Doppelfelder muss die Query selber aufgebaut werden.
Fiir jedes Attribut, tiber das unscharf gesucht werden soll, miissen mindestens zwei
Querys (bei dem verwendeten Double Metaphone sogar drei) erzeugt werden, die
dann wiederum in einer BooleanQuery mit einer ODER-Verkniipfung zusammengefiigt
werden konnen. Das heifst, fiir jeden Term werden intern bis zu 3 Querys verwendet.

Fiir den Levenshtein-Anteil wird eine FuzzyQuery tuiber das Feld mit dem uncodierten
Inhalt realisiert. Fiir den phonetischen Anteil wird eine einfach TermQuery iiber das
phonetisch codierte Feld verwendet, aber der Suchstring zuvor ebenfalls in den phone-
tischen Code umgewandelt. Da Double Metaphone zwei Codes erzeugt, wird fiir jeden
Code je ein TermQuery erzeugt.

Dieses Vorgehen ist fiir jede unscharfe Suche (und hier wiederum fiir jedes in der Suche
berticksichtigte Feld) notwendig. Darum wurde die Erzeugung dieses Konstrukts in
eine statische Methode (siehe Listing 4.6) ausgelagert, die fiir die eigentlichen Suchen
dann beim Zusammenstellen der Querys hilft.

Listing 4.6 Aufbau einer Lucene Query fiir ein (Doppel-)Feld

public static BooleanQuery getCombinedQuery(String field, String value, float boost) {
BooleanQuery result = new BooleanQuery();
String metaphonePrimary = encoder.doubleMetaphone(value, false);
String metaphoneSecondary = encoder.doubleMetaphone(value, true);
FuzzyQuery fq = new FuzzyQuery(new Term(field, value), 0.7f);
TermQuery tql = new TermQuery(new Term(field + "_pho", metaphonePrimary));
fg.setBoost(boost);
tql.setBoost(boost - 0.1f);
result.add(£fg, Occur.SHOULD);
result.add(tgl, Occur.SHOULD);
// check if secondary DoubleMetaphone code is different
if (! metaphonePrimary.equals(metaphoneSecondary)) {
TermQuery tq2 = new TermQuery(new Term(field + "_pho", metaphoneSecondary));
tg2.setBoost(boost - 0.1£);
result.add(tg2, Occur.SHOULD);
}

return result;

65

4 Implementierung

Scores der Treffer erhalten

Sollen von der Anwendung nicht nur die Treffer verarbeitet werden, sondern auch
noch der Score fiir jeden Treffer, kann der Score iiber eine ,Projection” abgefragt werden.
Dazu wird fiir eine Query die Methode setProjection aufgerufen, und die Felder, die
im Ergebnis enthalten sein sollen, angegeben.

Der spezielle Wert FullTextQuery.SCORE liefert dabei den Score, und
FullTextQuery.THIS liefert die Entity. Ein Beispiel findet sich in Listing 4.7.

Listing 4.7 Abfrage des Scores zursétzlich zu den Treffern

FullTextQuery query = entityManager.createFullTextQuery(luceneQuery, Customer.class)
2 query.setProjection(FullTextQuery.SCORE, FullTextQuery.THIS);
List results = query.list();
4 Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[0];
Customer customer = firstResult[1];

=N

4.6 Erstellen eines Prototyps

In diesem Kapitel werden die verschiedenen Suchstrategien und Vorgehensweisen fiir
die folgenden Funktionen des Stammdaten-Prototyps beschrieben:

o Unscharfe Suche nach Adressdaten

— unter Verwendung einer Suchmaske
- unter Verwendung eines einzigen Suchfeldes

e Dublettenerkennung bei der Neuanlage von Datensitzen

e Zusammenfiihrung mit Daten aus einem anderen System

4.6.1 Unscharfe Suche nach Objekten
Bei neuen Projekten im CI/AF] tritt immer hadufiger die Frage nach unscharfer Suche
auf. Dabei gibt es vor allem zwei verschiedene Auspragungen:

e wie gewohnt mit einer Suchmaske mit Feldern fiir jedes Attribut

e Suche tiiber alle Attribute durch Eingabe in nur einem Feld, dhnlich wie man es
auch bei einer Suchmaschine im Internet kennt

66

4.6 Erstellen eines Prototyps

Abbildung 4.3 Attributbezogene Suchmaske fiir die unscharfe Suche

FSP: Home Customer Login

Customer List

Search Customer

Fuzzy Advanced Search Exact

First Name:

Last Name: [Schick

Street:

City:

D+ Last Name + First Name & Street ¢ City +
i & BF 235357 Scheck Dennis Forststr. 56 70176 Stuttgart

Bei der Suche mit Suchfeldern (siehe Abbildung 4.3) steht eindeutig fest, welcher
Term in welchem Feld gesucht werden muss. Eine Query ldsst sich darum einfach
aufbauen:

1. Fiir jedes nicht leere Suchfeld wird mit Hilfe von getCombinedQuery (aus Listing
4.6) eine Query aufgebaut.

2. Diese Querys werden in einer BooleanQuery mit Occur .MUST kombiniert.

Der dabei entstehende Query-Baum wird in Abbildung 4.4 veranschaulicht.

Abbildung 4.4 Baum aus Query-Objekten fiir die Suche nach Name=, Meier” und
Ort=,Hamburg”

FuzzyQuery 'Meier' in Feld firstname

TermQuery 'MR" in Feld firstname_pho

FuzzyQuery 'Hamburg' in Feld city

TermQuery 'HMPR' in Feld city_pho

BooleanQuery

BooleanQuery

BooleanQuery
Should
Should

67

4 Implementierung

Suche mit nur einem Suchfeld

Soll hingegen mit nur einem Suchfeld wie in Abbildung 4.5 in allen (relevanten) Fel-
dern im Index gesucht werden, muss eine andere Strategie zur Erstellung der Query
angewendet werden.

Abbildung 4.5 Suchmaske fiir die unscharfe Suche tiber alle Attribute

FSP: Home Customer Login

Customer List

Search Customer

Fuzzy Advanced Search Exact

Search: [Mayer Hamburg
s
ER 3 | =
D= Last Name = First Name = Street = City =
i & BE | 47782 Mayer Helene Aurikelstr. 8 A 20251 Hamburg
i & BF | 54243 Mayer Anke Fritzstr. 17 22767 Hamburg
i & BF| 67750 Mayer Hirsten QOrleansstr. 41 22587 Hamburg
i & BT 81872 Mayer Franziska Wildwechsel 16 22085 Hamburg
1|l | BN 780 Meyer Karin Rebhuhnweg 11 22158 Hamburg
i |l ||EBn 4785 Maier Monika Ahornstr. 3 22607 Hamburg
1|l | BN 4846 Maier Regina Amselweg 9 22587 Hamburg
i & BT | 235356 Maier Bianka Hubweg 12 12345 Hamburg
e el 10290 | Meyer Gisela Zoppoter Str. 11 22339 Hamburg

Die allergrofite Anzahl der Abfragen auf Adressdaten in dieser Maske wird aus ei-
nem bis drei Wortern bestehen, dem Familiennamen, und eventuell dem Vornamen
und/oder dem Ort, wie zum Beispiel ,Schmidt” oder , Peter Hinzig Hamburg”.

Lucene bietet einen MultiFieldQueryParser, der einen Suchstring in mehreren Fel-
dern sucht. Doch einerseits wére damit die Suche tiber die phonetischen Felder nicht
moglich, da der MultiFieldQueryParser nur einen Analyzer verwenden kann, und
somit unser phonetic-Analyzer gar nicht zusétzlich verwendet werden konnte. Ein
weiterer Nachteil des MultiFieldQueryParser ist, dass bei einer Suche mit Operato-
ren unerwartete Nebeneffekte auftreten. Zum Beispiel wiirde eine Suche nach ,Meier
AND Hamburg” bedeuten, dass mindestens in einem Feld beide Begriffe, also ,, Meier”

68

4.6 Erstellen eines Prototyps

und ,, Hamburg”, vorhanden sein miissen, was mit hoher Wahrscheinlichkeit nicht der
Absicht des Suchenden entspricht.

Die Query muss also auch hier manuell aufgebaut werden. Da nicht bekannt ist, welches
Wort in welchem Feld vorhanden sein soll, muss ein etwas komplexerer Baum aus
Query-Objekten aufgebaut werden als bei der Suche mit Suchmaske:

1. Zuerst muss der Suchterm an Leerzeichen in einzelne Tokens aufgespalten wer-
den, da jeder Token in einem anderen Feld vorkommen konnte.

2. Fiir jeden dieser Tokens wird daraufhin fiir jedes indizierte Feld mit Hilfe der
Methode getCombinedQuery (aus Listing 4.6) eine Query erzeugt.

3. Diese Querys werden mit Occur. SHOULD in einer BooleanQuery kombiniert.
4. Diese Baume werden wiederum in einer BooleanQuery mit Occur . MUST kombi-

niert.

Wie ein Query-Baum fiir den Suchterm ,Meier Hamburg” aussieht, zeigt Abbildung
4.6.

69

4 Implementierung

Abbildung 4.6 Baum aus Query-Objekten fiir die Suche nach , Meier Hamburg”

Should

Should

BooleanQuery Should

Should
Must

BooleanQuery

ust

Should

BooleanQuery Should

Should

Should

BooleanQuery

BooleanQuery

BooleanQuery

BooleanQuery

BooleanQuery

BooleanQuery

BooleanQuery

BooleanQuery

Should
Should

Should
Should

Should
Should

Should

Should

Should
Should

Should
Should

Should
Should

Should
Should

FuzzyQuery ‘Meier' in Feld firstname

TermQuery 'MR' in Feld firstname_pho

FuzzyQuery 'Meier' in Feld lastname

TermQuery 'MR' in Feld lastname_pho

FuzzyQuery 'Meier' in Feld street

TermQuery 'MR' in Feld street_pho

FuzzyQuery 'Meier' in Feld city

TermQuery 'MR' in Feld city_pho

FuzzyQuery 'Hamburg' in Feld firstname

TermQuery 'HMPR' in Feld firstname_pho

FuzzyQuery 'Hamburg' in Feld lasthame

TermQuery 'HMPR' in Feld lasthname_pho

FuzzyQuery ‘Hamburg' in Feld street

TermQuery ‘HMPR' in Feld street_pho

FuzzyQuery 'Hamburg' in Feld city

TermQuery 'HMPR' in Feld city_pho

Feintuning

Je nach Anwendungsfall und Datenbasis konnen verschiedene ,Schirfegrade” bei der
Suche wiinschenswert sein, um mehr oder weniger Treffer zu erhalten.

Dies kann erreicht werden, indem zum einen der minimale Ahnlichkeitswert der
FuzzyQuery variiert wird; je dichter der Wert bei 1 liegt, desto genauer ist die Suche
und desto weniger Treffer werden zuriickgeliefert, und je dichter der Wert bei 0 ist,
desto unschérfer ist die Suche und desto mehr Treffer werden gefunden.

Bei dem phonetischen Anteil kann man den , Schérfegrad” nicht in diesem Mafie steu-
ern. Allerdings hat man hier mit einem Boost-Faktor die Moglichkeit, beim Aufbauen
der Query dem phonetischen Feld mehr (Boost-Faktor > 1.0) oder weniger (0.0 <

70

4.6 Erstellen eines Prototyps

Boost-Faktor < 1.0) Gewicht zu geben. Damit kann man steuern, wie viel Einfluss der
phonetische Anteil der Suche auf das Ergebnis hat.

4.6.2 Dublettenlose Neuanlage von Stammdaten

Eine weitere Einsatzmoglichkeit der unscharfen Suche ist die Priifung auf bereits vor-
handene dhnliche Datensitze vor dem Abspeichern einer Neuanlage zur Vermeidung
von Dubletten.

Abbildung 4.7 Anzeige moglicher Duplikate beim Anlegen eines neuen Kundenkontos

FSP: Home Customer Login
@ There are 4 similar enfries in the database. Please check the similar entries to avoid duplicates
Customer

Create Customer

First Name:* |Joseph

Last Name:* [Maier

Street:* i"'u"i-'et-r-,-|'gasse 12

City:* |23456 Hamburg

Save Anyway E

Possible Duplicates Customer

D2 Last Name 2 First Name 2 Street 2 City =
[| 54368 Meier Josef Im Weiherwiesen 32 22085 Hamburg
E 33113 Meyer Josef Geschwister-Scholl-Ring 37 33803 Steinhagen
B 33123 Meyer Josef Im Gries 4 83209 Prien
E 98891 Mayer Karl-Josef Hauptstr. 7 46118 Cherhausen

Zwar konnten Dubletten vermieden werden, wenn der Anwender manuell vor der Neu-
anlage zuerst eine unscharfe Suche ausfiihrt und tiberpriift, ob bereits ein identischer
Eintrag existiert. Da dies viel Disziplin von den Nutzern erfordert und vor allem bei
Zeitdruck unter Umstanden vernachldssigt werden wiirde, wie die Erfahrung mit be-
reits im Einsatz befindlichen Systemen zeigt, muss die Anwendung diese Funktionalitat
automatisch abdecken.

71

4 Implementierung

Dies wurde folgendermafien realisiert: Dem Benutzer wird eine gewohnliche Maske
zum Anlegen des Datensatzes angezeigt. Nachdem der Benutzer die Maske ausgefiillt
hat, klickt er auf ,,Speichern”. Findet sich kein dhnlicher Datensatz in der Datenbank,
wird ein neuer Datensatz abgespeichert und eine Bestdtigung der Speicherung fiir
den Benutzer ausgegeben. Fiir den Anwender ist der Ablauf soweit also zu 100%
identisch mit der Funktionalitdt, wie sie bisher bei Projekten realisiert wurde. Eine
,Umgewohnung” der Benutzer zur Vermeidung von Dubletten ist nicht notwendig.

Wird jedoch bei der Priifung auf dhnliche Datensétze eine potentielle Dublette gefunden,
werden die Treffer dem Anwender angezeigt (siehe Abbildung 4.7) und die eingege-
benen Daten noch nicht in die Datenbank persistiert. Der Benutzer kann dann selbst
entscheiden, ob sein neuer Eintrag in der Liste der angezeigten dhnlichen Eintrage
vorhanden ist, und dann diesen auswihlen, oder aber trotzdem seinen Datensatz wie
eingegeben persistieren.

Es wurde versucht, auch Umziige von Personen zu berticksichtigen, soweit dies moglich
ist. Dazu wird zuerst nur nach Eintrdgen mit &hnlichem Vor- und Nachnamen gesucht,
Strafe und Ort werden dabei vorerst nicht mit in die Abfrage integriert. Dadurch
soll moglich werden, dass bei Personen mit seltenem Namen eventuell ein bereits
existierendes Kundenkonto gefunden wird, auch wenn sich die Anschrift geandert
hat.

Da bei iiber 20 Treffern zum einen davon ausgegangen werden kann, dass es sich um
einen gebrdauchlichen Namen handelt und man weltweit gar nicht mit Sicherheit ein
bereits existierendes Konto des selben Kunden identifizieren kann, und zum anderen
bei mehr als 20 Eintragen auch die Ubersichtlichkeit verloren geht, wird die Suche in
diesem Fall unter Einbeziehung des Ortes wiederholt und die Treffer dann angezeigt.

4.6.3 Zusammenfiihrung mit redundanten Daten aus anderen Systemen

Ebenfalls eine hdufige Anforderung bei neuen Projekten ist der Abgleich mit anderen
Stammdatensystemen. Unternehmensweit existieren viele gewachsene Systeme mit
teilweise uniiberschaubar vielen Eintrdgen in den zugehorigen Datenbanken, die oft
auch redundante Informationen enthalten, die sich jedoch nicht {iber Primar- und
Fremdschliissel abgleichen lassen. Der Abgleich muss daher ohne Schliissel, also iiber
Vergleich der einzelnen Attribute erfolgen.

Da eine scharfe Suche auch hier an Grenzen stofst, wenn leicht abweichende Schreib-
weisen gewdhlt wurden, kann auch hier die unscharfe Suche weiterhelfen.

72

4.6 Erstellen eines Prototyps

Anders als bei der unscharfen Suche nach einem Datensatz durch einen Benutzer wie
in Kapitel 4.6.1, oder nach einer Dublette wie in Kapitel 4.6.2, wo man die Suche eher
unschirfer wiinscht und eher mehr Treffer bekommen mochte, muss die Suche fiir
diesen Fall genauer sein. Darum werden auf jeden Fall alle in beiden Datenbestianden
vorkommenden Attribute als Suchkriterien verwendet.

Bei dem im Prototyp realisierten Beispiel wird fiir einen Customer (als anwendungs-
eigene Entitdt) aus einer zweiten Tabelle fsp_client ein passendes Client-Objekt
gesucht.

Fiir den Prototyp liegt die Tabelle im selben Schema, soll aber eine Tabelle aus einer
fremden Datenbank représentieren. Je nach Datenbank, in der die fremden Daten
vorliegen, muss eine unterschiedliche Anbindung realisiert werden?>.

Das Verfahren lduft nach den folgenden Schritten ab:

1. Unscharfe Suche tiber Client, in der alle relevanten Attribute des Customer
berticksichtigt werden.

2. Gibt es keinen Treffer, konnte kein passender Client gefunden werden. Andern-
falls werden mit scharfem String-Vergleich fiir jeden Treffer noch einmal alle
Attribute verglichen. Sind sie identisch, kann davon ausgegangen werden, den
korrekten Client gefunden zu haben.

3. Stimmen im scharfen Vergleich die Attribute bei keinem der Treffer tiberein,
wird die Trefferliste dem Benutzer angezeigt (siehe Abbildung 4.8), damit dieser
entscheiden kann, ob der richtigen Client in der Liste ist, und diesen dann
manuell auswihlen.

2Liegen die Daten in einer anderen Instanz einer Oracle-Datenbank (was fiir den Bosch CI der Regelfall
sein wird), lasst sich eine fremde Tabelle oder ein fremder View tiber zwei Schritte im aktuellen Schema
zugénglich machen: Zuerst muss mit dem Befehl CREATE DATABASE LINK eine Verbindung hergestellt
werden, dann kann mit CREATE SYNONYM ein Alias im eigenen Schema fiir die fremde Tabelle angelegt
werden.

73

4 Implementierung

Abbildung 4.8 Anzeige eines potentiellen {ibereinstimmenden Datensatz

FSP: Home Customer

Customer

View Customer

ID:

First Name:
Last Name:
Street:
City:

Wiew List [

Possible Matches Client

D+ Last Name &
= 2 Meier

88095

Albrecht

Maier
Munchsgatan 7

81377 Muenchen

First Name 2

Albrecht

Street 2
Munchsgatan 7

City 2
81377 Muenchen

Login

74

,Regression testing“? What'’s
that? If it compiles, it is good; if it
boots up, it is perfect.

— Linus Torvalds

5 Test und Bewertung der Implementierung

In diesem Kapitel soll der Prototyp aus Kapitel 4 getestet und bewertet werden. Als
Bewertungskriterien werden sowohl die Suchgeschwindigkeit, als auch die subjektive
Qualitdt der Such-Ergebnisse verwendet. Auflerdem wird untersucht, welche Anderun-
gen sich durch die Kombination zweier unscharfer Suchverfahren im Vergleich zu nur
einem Verfahren ergeben.

Fiir die Bewertungen wurde der Prototyp auf einen der OpenJava POC-Server? im
Rechenzentrum ,deployed”. Alle Angaben beziiglich Laufzeit und Geschwindigkeit in
diesem Kapitel beziehen sich auf folgende Rechnerausstattung:

Hardware:
Geriteklasse Server
Prozessor 3 GHz Intel Quad-Core

Hauptspeicher 8 GB
Sonstiges:
Betriebssystem Linux, 64-Bit-Kernel 2.6.18

Die verwendete Instanz der Oracle-Datenbank liegt auf einem anderen Server.

5.1 Test und Bewertung der Suchgeschwindigkeit

Um die Geschwindigkeit der Suche zu testen, wurde der Prototyp um einige Debug-
Ausgaben ergdnzt. Dann wurden die Abfragen tiber den Browser durchgefiihrt, jeweils
als scharfe Suche und als unscharfe Suche {iiber alle Attribute mit nur einem Suchfeld
(siehe 4.5), da hier der Query-Baum komplexer wird als bei der unscharfen Suche mit
Suchmaske. Im Anschluss wurde der Serverlog analysiert und die Zeiten abgelesen.
Ausgewdéhlte Beispiele sind in der Tabelle 5.1 aufgefiihrt.

2 proof Of Concept”, diese Server dienen zur Evaluierung und Standardisierung von Verfahren im
Umfeld der BOSCH OpenJava Platform

75

5 Test und Bewertung der Implementierung

Unscharfe Suche Scharfe Suche
Name Treffer Antwortzeit Treffer Antwortzeit
Lucene Datenbank Datenbank
Ohrbach 56 < 0,1s <0,1s 1 <0,1s
Scheck 454 ~0,1s ~0,2s 16 <0,1s
Meier 2337 ~0,1s ~1.6s 149 ~0,2s
Fischer 621 ~0,1s ~0,3s 474 ~0,3s

Tabelle 5.1: Geschwindigkeitsvergleich von unscharfer und scharfer Suche im Prototyp

Beim Abschicken von Testabfragen iiber die Web-Anwendung fiel auf, dass die Zeit,
bis die Antwort im Browser erscheint, sehr stark variiert. Abfragen, die nur wenige
Treffer zuriick liefern, wurden in weniger als 1 Sekunde beantwortet. Bei Abfragen, die
mehrere Treffer liefern, dauerte dies teilweise deutlich linger.

Die Debug-Eintriage im Serverlog zeigen dabei, dass fiir die Suche im Lucene Index
nur ein zu vernachldssigender Bruchteil der Gesamtzeit verwendet wird. Die grofite
Anteil entsteht beim Warten auf die Ergebnisse von der Datenbank, nachdem die IDs
von Lucene bereits ermittelt wurden. Aber auch die Suche in der Datenbank lauft viel
schneller ab, wenn man die selben SQL-Abfragen (mit veranderten IDs, um Vorteile
durch Caching im Datenbankserver auszuschliefien) direkt eingibt. Darum wurde
weiter untersucht, warum im Zusammenspiel die Laufzeit viel langer ist als die Summe
der Zeiten der Einzelschritte.

Nach eingehender Uberpriifung wurde festgestellt, dass die meiste Zeit fiir die Ubertra-
gung der Daten von der Datenbank zum Applikation-Server iiber das Intranet benotigt
wird, z. B. benétigt die Ubertragung aller ~117.000 Eintrdge im Durchschnitt knapp 15
Sekunden. Negativ beeinflusst wurde dieser Effekt zusatzlich, da wegen eines Netz-
werkproblems an den Tagen dieser Tests das Intranet generell sehr langsam war, was
sich auch in zahlreichen anderen Web-Anwendungen deutlich bemerkbar machte.

Grundsitzliche Aussagen tiber die Geschwindigkeit lassen sich daher nicht treffen.
Durch die Debug-Eintrége im Serverlog konnte jedoch gezeigt werden, dass die Warte-
zeit nicht durch die Suche im Index entsteht, sondern lediglich durch die Datentibertra-
gung im Netzwerk, die durch Netzwerkprobleme zudem langsamer ablief als tiblich.
Da hiervon jegliche Art der Suche betroffen ist, wird daraus geschlossen, dass die
unscharfe Suche mit Hibernate Search sehr performant ablduft und fiir den Benutzer

76

5.2 Test und Bewertung der Trefferqualitat

zu keiner wahrnehmbaren Verldngerung der Wartezeit im Vergleich mit der bisher
eingesetzten scharfen Suche fiihrt.

5.2 Test und Bewertung der Trefferqualitat

Um zu Bewerten, wie sich die Kombination eines Distanzverfahrens und eines pho-
netischen Verfahrens bei der unscharfen Suche mit Hibernate Search auswirkt, soll
fiir die scharfe Suche, die normale Lucene-FuzzyQuery (Levenshtein Distanz), Double
Metaphone sowie die Kombination der beiden Verfahren jeweils die Anzahl und die
subjektiv empfundene Qualitit der Treffer in Schulnoten (1 = sehr gut, 6 = ungentigend)
angegeben werden. Die Ergebnisse zeigt Tabelle 5.2.

Zum Ermitteln der Ergebnisse wurde der Prototyp jeweils umgeschrieben, damit die
Suche nur das angegebene Verfahren verwendet. Da zur Bewertung der Qualitat tat-
sdchlich nur tiber die Namen gesucht werden soll, wurde hier im Index auch nur im
Feld name gesucht, daher weicht die Anzahl der Treffer auch im Vergleich zu den Tests
in Kapitel 5.2 ab, wo der Term jeweils in allen Feldern gesucht wurde.

Bei der scharfen Suche wurde auf die Bewertung der Qualitét verzichtet, da sich dieses
Verfahren gerade dadurch auszeichnet, dass die Suchergebnisse stets zu 100% mit der
Suchanfrage tibereinstimmen. Da die Abfrage mit dem LIKE-Operator durchgefiihrt
wurde (siehe Kapitel 4.1), werden trotzdem auch Namen und Doppelnamen gefunden,
die nicht genau dem Namen entsprechen, die aber mit genau dem Namen beginnen.
Dennoch zeigt die Anzahl der Treffer, wie viele Ergebnisse mit dem BOSCH OpenJava
Framework ohne die unscharfe Suche zu erwarten gewesen waren.

Die unscharfe Suche mit der Levenshtein-Distanz wurde fiir diesen Test mit einem
Schwellenwert von 0,5 ausgefiihrt, wie es der Standardeinstellung des QueryParsers
von Lucene entspricht. Es fillt auf, dass zwar viele Treffer gefunden werden, jedoch
wegen des niederen Schwellenwerts auch viele schlechte Treffer enthalten sind, die
fiir den Benutzer die Ubersichtlichkeit der Ergebnisliste einschranken. Die Anzahl
schlechter Treffer nimmt deutlich ab, wenn der Schwellenwert erhoht wird, allerdings
sinkt damit auch die Anzahl der guten Treffer deutlich.

Bei der unscharfen Suche mit Double Metaphone bleiben die Ergebnisse iibersichtlicher.
Auflerdem sind viele gute Treffer im Ergebnis enthalten. Da es aber hier (im Gegensatz
zur Levenshtein-Distanz) keine Gewichtung der Treffer in Form eines Scores gibt, und
dadurch auch keine Sortierung, kann es vorkommen, dass der gesuchte Name erst am
Ende der Trefferliste erscheint. Zum Beispiel hat Meier den Double-Metaphone-Code MR.

77

5 Test und Bewertung der Implementierung

Damit zdhlen alle Namen als Treffer, die ebenfalls MR als Code besitzen, wie Mohr, Maar
oder Mera. Zwar kann es bei der unscharfen Suche durchaus gewiinscht sein, diese
Treffer ebenfalls zu bekommen, allerdings haben sie den selben Score wie der tatsachlich
gesuchte Meier, und konnen daher in der Trefferliste auch davor auftreten.

Bei der Kombination der beiden Verfahren (mit einem Schwellenwert fiir die
Levenshtein-Distanz von 0,7) kann man von den Vorteilen beider Verfahren profitieren.
Uber das phonetische Verfahren wird sichergestellt, dass trotz hohem Schwellenwert
beim Distanzverfahren viele gute Treffer enthalten sind. Das Distanzverfahren hingegen
stellt sicher, dass die besten Treffer auch am Anfang der Ergebnisliste auftauchen.

Somit wurde gezeigt, dass durch die Kombination der beiden Verfahren bessere Ergeb-
nisse erhalten werden als durch Verwendung nur eines Verfahrens.

Scharfe Suche Levenshtein Metaphone Kombination
Name Tref. Qual. Tref. Qual. Tref. Qual. Tref. Qual
Scheck 16 - 153 1,3 149 2,0 149 1,3
Meyer 195 - 1557 2,7 952 2,3 1085 1,7
Ohrbach 1 - 176 3,0 35 2,7 56 2,0
Vischer 1 - 1552 4,0 496 1,5 598 1,3

Tabelle 5.2: Vergleich der Anzahl und Qualitédt der Treffer

78

Wenn die anderen glauben, man
ist am Ende, so muss man erst
richtig anfangen.

— Konrad Adenauer

6 Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurde ein Prototyp erstellt, der fiir die BOSCH Open]a-
va Platform mit Hilfe von Hibernate Search und unter Verwendung unscharfer Suchme-
thoden eine Suche in Stammdaten, eine dublettenlose Neuanlage von neuen Eintragen
in ein Stammdatensystem sowie einen Abgleich von Stammdaten mit anderen Systemen
realisiert.

Dafiir wurden verschiedene phonetische und distanzbasierte Methoden fiir die unschar-
fe Suche betrachtet und bewertet. Dabei fiel vor allem auf, dass eine fiir alle Anwen-
dungsfille optimale Methode nicht existiert und dass jede Methode ihre Schwachstellen
hat.

Im zweiten Schritt wurde untersucht, wie diese Methoden eingesetzt werden konnten.
Dazu wurden verschiedene Moglichkeiten zur unscharfen Suche in den RDBMS MySQL
und Oracle evaluiert, die aber keine zufriedenstellenden Ergebnisse lieferten. Auflerdem
wurde die Volltext-Suchmaschine Lucene sowie Solr betrachtet und auch einige Tests
damit durchgefiihrt.

Schliefilich wurde versucht, die Vorteile eines phonetischen und eines distanzbasierten
Verfahrens fiir die unscharfe Suche zu kombinieren, um gleichzeitig die jeweiligen
Nachteile durch die Kombination auszugleichen. Darum wurden von jeder Methode
das am besten bewertete Verfahren ausgewidhlt und miteinander kombiniert. Das
Ergebnis war die Verbindung von Double Metaphone und Levenshtein.

Da Lucene sehr performant arbeitet und in Verbindung mit Hibernate Search sehr
komfortabel eingesetzt werden kann, wurde im nédchsten Schritt untersucht, wie die
Kombination von Double Metaphone und Levenshtein mit Hibernate Search umgesetzt
werden kann.

Nachdem die Moglichkeiten zur unscharfen Suche dann durch die Vorarbeit zur Ver-
fugung standen, wurde mit der Implementierung des Prototypen begonnen. Drei ver-
schiedene Anwendungsfille sollten dabei bertiicksichtigt werden: Suche von Objekten,
dublettenlose Neuanlage sowie Abgleich mit anderen Systemen. Je nach Anwendungs-
fall waren verschiedene Strategien zum Aufbau einer Query notwendig. Da die BOSCH

79

6 Zusammenfassung und Ausblick

OpenJava Platform fiir mich ebenfalls ein unbekanntes Terrain war, musste ich mich
auch hier etwas einarbeiten.

Um im Zusammenspiel der beiden Verfahren die besten Resultate zu erhalten, wurde
nach Fertigstellung des Prototypen untersucht, wie sich Anderungen an verschiedenen
Parametern, wie z. B. dem Schwellenwert fiir die Levenshtein-Distanz oder von Boost-
Faktoren auf verschiedene Felder auswirken.

Danach wurden die Ergebnisse der Arbeit mit der derzeit eingesetzten scharfen Su-
che, sowie mit den einzelnen Verfahren verglichen. Dabei wurde deutlich, dass die
Kombination der beiden Verfahren die Qualitit der Treffer verbessert hat.

Der Prototyp ist einsatzfihig und nutzt die unscharfe Suche erfolgreich fiir verschie-
dene Anwendungsfélle. Das Verfahren liefert gute Ergebnisse, einem Einsatz in realen
Projekten steht nichts im Wege. Da immer hadufiger von Kunden die unscharfe Suche
tiir eigene Projekte gewiinscht wird und auch die Vermeidung von Dubletten sowie der
Abgleich von Daten in fast jedem Projekt eine Rolle spielen, wird empfohlen, dieses Ver-
fahren in die Standardisierung der OpenJava Platform sowie der Sample-Application
aufzunehmen.

Ausblick

In dieser Arbeit wurde nur auf die unscharfe Suche von Namen eingegangen. Um eine
flexiblere Losung zur Abdeckung weiterer Anwendungsfalle zu erhalten, konnten die
vorgestellten Methoden erweitert werden.

Denkbare Anwendungsfélle wiren z. B. unscharfe Suche fiir Volltext-Dokumente. Hier-
bei wird man auf andere Probleme stofsen, die fiir die Zielsetzung dieser Diplomarbeit
nicht relevant waren.

In diesem Zusammenhang konnen verschiedene Stemmer oder Lemmatizer untersucht
werden, auf deren Verwendung bei Namen génzlich verzichtet werden kann. Auch die
Verwendung von Synonymlisten kann hier zu erheblichen Verbesserungen fiihren.

Auflerdem wurde im Prototyp nur nach Strings gesucht. Mochte man auch ande-
re Datentypen indizieren und fiir die Suche verwenden, werden die Annotationen
@FieldBridge oder @ateBridge benotigt. Aber auch die Auswahl eines anderen Ana-
lyzers oder andere Strategien zum Aufbau eines Query-Baums konnen notwendig
werden.

80

Bisher wurde nur eine Entitdt berticksichtigt. Mochte man Objekte indizieren, die
Pointer auf andere Objekte besitzen, konnen die Annotation @IndexedEmbedded oder
@ContainedIn benotigt werden. Auch hier werden je nach Anwendungsfall unter Um-
stinden andere Strategien zum Aufbau des Query-Baums notwendig.

81

Danksagung

Ich mochte mich herzlich bei Frau Dr. Elke Schweizer und Herrn Dipl.-Inf. Alexander
Moosbrugger fiir die kompetente und freundliche Betreuung wahrend der Arbeit und
fiir die konstruktiven Verbesserungsvorschldge und Anregungen bedanken.

Ebenso bei der Abteilung CI/AFJ der Robert Bosch GmbH fiir die freundliche Auf-
nahme wahrend der 6 Monate und das grofse Interesse an den Ergebnissen dieser
Arbeit.

Besonders herzlicher Dank gilt meiner Mutter, die mit ihrer Unterstiitzung mein Studi-
um {iberhaupt erst ermdoglicht hat.

A Daitch-Mokotoff Soundex Kodier-Schema

Das Kodier-Schema zum Daitch-Mokotoff-Verfahren aus Kapitel 2.1.2.

Tabelle A.1: Daitch-Mokotoff Soundex Kodier-Schema

Buchstabe alternative Schreibweise Wortanfang vor Vokal sonst
Al AJ, AY 0 1 -
AU 0 7 -
A 0 - -
B 7 7 7
CHS 5 54 54
CH siehe KH (5) + TCH (4)

CK siehe K (5) + TSK (45)

Cz CS,CSZ, CZs 4 4 4
C siehe K (5) + TZ (4)

DRZ DRS 4 4 4
DS DSH, DSZ 4 4 4
DZ DZH, DZS 4 4 4
D DT 3 3 3
EI EJ, EY 0 1 -
EU 1 1 -
E 0 - -
FB 7 7 7
F 7 7 7
G 5 5 5
H 5 5 -
IA IE, 10, IU 1 - -
I 0 - -

weiter auf der niichsten Seite. ...

85

A Daitch-Mokotoff Soundex Kodier-Schema

Tabelle A.1 — Fortsetzung

Buchstabe alt. Schreibweise Wortanfang vor Vokal sonst
] siehe Y (1) + DZH (4)

KS 5 54 54
KH 5 5 5
K 5 5 5
L 8 8 8
MN 66 66
M 6 6 6
NM 66 66
N 6 6
Ol 0], OY 0 1 -
O 0 - -
P PF, PH 7

Q 5 5 5
RZ, RS RTZ (94) + ZH (4)

R 9 9 9
SCHTSCH SCHTSH, SCHTCH 2 4 4
SCH 4 4 4
SHTCH SHCH, SHTSH 2 4 4
SHT SCHT, SCHD 2 43 43
SH 4 4 4
STCH STSCH, SC 2 4 4
STRZ STRS, STSH 2 4 4
ST 2 43 43
SZS7 SZCS 2 4 4
SZT SHD, SZD, SD 2 43 43
SZ 4 4 4
S 4 4 4
TCH TTCH, TTSCH 4 4 4
TH 3 3 3
TRZ TRS 4 4 4
TSCH TSH 4 4 4
TS TTS, TTSZ, TC 4 4 4

weiter auf der niichsten Seite. ..

86

Tabelle A.1 — Fortsetzung

Buchstabe alt. Schreibweise Wortanfang vor Vokal sonst
TZ TTZ, TZS, TSZ 4 4 4
T 3 3 3
Ul UJ, UY 0 1 -
U UE 0 - -
\Y 7 7 7
W 7 7 7
X 5 54 54
Y 1 - -
ZDZ ZDZH, ZHDZH 2 4 4
ZD ZHD 2 43 43
ZH 7S, 75CH, ZSH 4 4 4
V4 4 4 4

Abkurzungsverzeichnis

Cl

Corporate Sector Information Systems and Services

CI/AF
CI / Application Foundation & Security

CI/AFJ
CI/AF / Java Development

EJB
Enterprise JavaBeans

JDBC
Java Database Connectivity

JPA
Java Persistence API

JSF
Java Server Faces

RDBMS
Relationales Datenbankmanagementsystem

WAM
Web Access Manager

89

Glossar

DVORAK-Tastatur
Ein alternatives Tastatur-Layout, bei dem die Tasten nicht wie auf einer gewohnli-
chen Tastatur angeordnet sind, sondern nach ergonomischen Gesichtspunkten.

Hashing-Algorithmus
Ein Hashing-Algorithmus bildet eine grofle Menge von Daten auf eine kleine Men-
ge ab. Dadurch entsteht eine Art Schliissel, der wiederum als implizite Gruppie-
rung dienen kann. Dies findet u. A. Anwendung bei Priiffsummenberechnungen
oder digitalen Signaturen, aber eben auch bei der phonetischen Suche.

Lemma
Die Linguistik bezeichnet die Grundform eines Wortes als Lemma (von griechisch
AMppa (lemma), ,,Annahme”). Es ist die Form des Wortes, die als Schlagwort in
ein Worterbuch aufgenommen wird.

Namensvariation (engl. name variation)
Verschiedene Schreibweisen eines Namens oder gar verschiedene Namen kénnen
sich auf ein und dieselbe Person beziehen.

Namensitiberladung (engl. name overloading)
Mehrere verschiedene Personen konnen den gleichen Namen besitzen, d. h. ein
Name bezieht sich nicht notwendigerweise auf genau eine Person.

Phonetik
Die Phonetik beschiftigt sich mit der Aussprache und dem Klang von Wortern.
Der Begriff stammt vom griechischen pwvntixéc (phonetikés) ab, was ,,zum Spre-
chen gehorig” bedeutet und von @wvi| (phoné) , Stimme, Laut, Klang, Ton” abgeleitet
ist.

QUERTY-Tastatur
Tastatur-Layout, wie es in vielen englischsprachigen Landern verwendet wird. Es
ist benannt nach der Anordnung der ersten Tasten auf der oberen Buchstabenzeile
vonlinks: QWERTY.

91

Glossar

QUERTZ-Tastatur
Tastatur-Layout, wie es unter anderem in deutschsprachigen Landern verwendet
wird und Y und Z im Vergleich zur QUERTY-Tastatur vertauscht sind. Es ist
benannt nach der Anordnung der ersten Tasten auf der oberen Buchstabenzeile
vonlinks: QWERT Z.

Scharfe Suche
Die ,scharfe” Suche als Abgrenzung zur ,,unscharfen” Suche verlangt, dass Treffer
vollstdandig, 0Zeichen fiir Zeichen, dem Suchterm entsprechen.

Unscharfe Suche
Bei einer ,,unscharfen” Suche kann ein Treffer im Gegensatz zur ,scharfen” Suche
dem gesuchten Begriff auch nur dhnlich sein. Fiir die Berechnung der Ahnlichkeit
gibt es mehrere Verfahren. Die fiir diese Arbeit relevanten wurden in Kapitel 2
vorgestellt.

92

Index

Symbols
@AnalyzerDef 63
@ContainedIn....................... 81
@DateBridge................... ... 80
@DocumentId 60
@Field........................... ... 60
@FieldBridge 80
@Fields. ..., 64
@Indexed...........oo i 60
@IndexedEmbedded 81
A
Apache
Lucene......................... 31
Apache Lucene 52
ApacheSolr 37
B
BOSCH OpenJava.................. 38
D
Daitch-Mokotoff-Soundex 15
Damerau-Levenshtein-Distanz. 27
Distanzverfahren................... 22
Double Metaphone 19
E
Edit-Distanz........................ 25

Editierabstand 25

F

FuzzyQuery........................ 65

H

Hamming-Distanz.................. 24

Hibernate Search 37
Annotations.................... 60
Architektur..................... 57
Indexerstellung

Annotations.................. 60
manuell 61

Indexsuche..................... 65

I

Indexerstellung..................... 32

Indexsuche 34

J

Jaro-Winkler Ubereinstimmung 27

K

Kolner Phonetik 16

L

Lemmatizer 33

Levenshtein-Distanz................ 25

93

Index

Lucene
Grundlagen 31
Indexerstellung................. 32
Indexsuche..................... 34
Query Syntax................... 34

M

Match Rating Approach 19

Metaphone 19

MySQL
SoundeXx.......cooviuiiiiiin... 42
UnscharfeSuche................ 42

0]

Operatoren......................... 36

Oracle
Levenshtein.................... 50
Metaphone..................... 49
SoundeX.......ccoviiiiiin... 46
UnscharfeSuche................ 46

P

persistence.xml................ ..., 59

Phonetische Verfahren.............. 11

Q

Query Syntax....................... 34

S

Schreibmaschinendistanz 22

o 1610 <IN 66

Soundex......ooveiiiiiii 12
Daitch-Mokotoff................ 15

Stermmer. ... 33

T

Tastaturdistanz 22

94

TermQuery..................... ...

Literaturverzeichnis

[A1108]

[ArmO00]

[BDT09]

[byt]

[Damé64]

[DC94]

[GJ02]
[Ham50]
[HD80]
[HGO5]

[hiba]
[hibb]

D. Allen. Seam in Action (In Action series). Manning Publications Co., Green-
wich, CT, USA, 2008

M. Armstrong. An Overview of the Issues Related to the use of Personal Identi-
fiers, 2000. URL http://www.statcan.gc.ca/pub/85-602-x/4193729-eng.
pdf

A. Bronselaer, G. De Tré. A possibilistic approach to string comparison. Trans.
Fuz Sys., 17(1):208-223, 2009. doi:http://dx.doi.org/10.1109/TFUZZ.2008.
2008025

Metaphone - a better Soundex. URL http://www.bytelife.nl/metaphone.
htm

E. J. Damerau. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7(3):171-176, 1964. doi:http://doi.acm.org/10.1145/
363958.363994

M. W. Du, S. C. Chang. An Approach to Designing Very Fast Approximate
String Matching Algorithms. IEEE Trans. on Knowl. and Data Eng., 6(4):620-633,
1994. doi:http:/ /dx.doi.org/10.1109/69.298177

C. Gibas, P. Jambeck. Einfiihrung in die Praktische Bioinformatik. O'Reilly, Koln,
2002

R. W. Hamming. Error Detecting and Error Correcting Codes. Technical
Report Vol. XXVI, No 2, S. 147 ff., Bell Systems, 1950

P. A. V. Hall, G. R. Dowling. Approximate String Matching. ACM Comput.
Surv., 12(4):381-402, 1980. doi:http://doi.acm.org/10.1145/356827.356830

E. Hatcher, O. Gospodnetic. Lucene in Action (In Action series). Manning
Publications Co., Greenwich, CT, USA, 2005

Hibernate. URL http://www.hibernate.org/

Hibernate Search. URL http://www.hibernate.org/subprojects/search.
html

95

http://www.statcan.gc.ca/pub/85-602-x/4193729-eng.pdf
http://www.statcan.gc.ca/pub/85-602-x/4193729-eng.pdf
http://www.bytelife.nl/metaphone.htm
http://www.bytelife.nl/metaphone.htm
http://www.hibernate.org/
http://www.hibernate.org/subprojects/search.html
http://www.hibernate.org/subprojects/search.html

Literaturverzeichnis

[HIMO5]

[KHO7]

[Lev65]

[LR93]

[luc]

[MF82]

[Mok97]

[MRSO08]

[mys]

[Nav01]

[omi]

[ora]

[Pos69]

[PT09]

96

R. Hardman, M. McLaughlin. Expert Oracle PL/SQL. Osborne ORACLE
Press Series, 2005. URL http://www.oracle.com/technology/books/pdfs/
expert%20oracle%20pl_sql%20ch%201.pdf

M. Kehle, R. Hien. Hibernate und die Java Persistence API. entwickler.press,
Frankfurt (Main), Deutschland, 2007

V. L. Levenshtein. Binary codes capable of correcting spurious insertions and
deletions of ones. Problems of Information Transmission, (1):8-17, 1965

A.]. Lait, B. Randell. An Assessment of Name Matching Algorithms.
1993. URL http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/
NameMatching.pdf

Apache Lucene. URL http://lucene.apache.org/

M. Mor, A. S. Fraenkel. A hash code method for detecting and correcting
spelling errors. Commun. ACM, 25(12):935-938, 1982. doi:http://doi.acm.org/
10.1145/358728.358752

G. Mokotoff. Soundexing and Genealogy, 1997. URL http://www.avotaynu.
com/soundex.html

C. D. Manning, P. Raghavan, H. Schiitze. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, USA, 2008

MySQL 5.1 Referenzhandbuch. URL http://dev.mysql.com/doc/refman/
5.1/de/index.html

G. Navarro. A Guided Tour to Approximate String Matching. ACM Com-
puting Surveys, 33(1):31-88, 2001. URL http://www.egeen.ee/u/vilo/edu/
2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_
on_Approximate_Matching_p31l-navarro.pdf

Omikron Firmenhomepage. URL http://www.omikron.net/

Oracle Database Documentation Library. URL http://www.oracle.com/
technology/documentation/index.html

H.-J. Postel. Die Kolner Phonetik. Ein Verfahren zur Identifizierung von
Personennamen auf der Grundlage der Gestaltanalyse. 1969. 19. Jahrgang, S.
925-931

E. Patman, P. Thompson. Names: A New Frontier in Text Mining. In Intelligence
and Security Informatics, volume 2665 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009. doi:10.1007 /3-540-44853-5_3. URL http:
//www.springerlink.com/content/tfpg9bhlq5d49vb2/

http://www.oracle.com/technology/books/pdfs/expert%20oracle%20pl_sql%20ch%201.pdf
http://www.oracle.com/technology/books/pdfs/expert%20oracle%20pl_sql%20ch%201.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf
http://lucene.apache.org/
http://www.avotaynu.com/soundex.html
http://www.avotaynu.com/soundex.html
http://dev.mysql.com/doc/refman/5.1/de/index.html
http://dev.mysql.com/doc/refman/5.1/de/index.html
http://www.egeen.ee/u/vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_on_Approximate_Matching_p31-navarro.pdf
http://www.egeen.ee/u/vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_on_Approximate_Matching_p31-navarro.pdf
http://www.egeen.ee/u/vilo/edu/2002-03/Tekstialgoritmid_I/Articles/Approximate/Navarro_Review_on_Approximate_Matching_p31-navarro.pdf
http://www.omikron.net/
http://www.oracle.com/technology/documentation/index.html
http://www.oracle.com/technology/documentation/index.html
http://www.springerlink.com/content/tfpg9bhlq5d49vb2/
http://www.springerlink.com/content/tfpg9bhlq5d49vb2/

Literaturverzeichnis

[Ros00]

[Sch04]

[sol]
[TomO3]

[Wik]

[Wil05]

[Win99]

M. Rosenfelder. Hou tu pranownse Inglish, 2000. URL http://zompist.com/
spell.html

S. Schiile. Qualititssicherung von Suchmaschinen. Diplomarbeit, Fachhochschu-
le Pforzheim, Hochschule fiir Gestaltung, Technik und Wirtschaft, 2004

Apache Solr. URL http://lucene.apache.org/solr/

S. Tomlinson. Lexical and Algorithmic Stemming Compared for 9 European
Languages with Hummingbird SearchServer™at CLEF 2003. CLEF, 2003.
URL http://www.clef-campaign.org/2003/WN_web/19.pdf

Wikipedia: Schreibmaschinendistanz, 14. April 2009. URL http://de.
wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=
59000374

M. Wilz. Aspekte der Kodierung phonetischer Ahnlichkeiten in deutschen
Eigennamen. Magisterarbeit, Universitit zu Koln, Institut fiir Linguis-
tik, 2005. URL http://www.uni-koeln.de/phil-fak/phonetik/Lehre/
MA-Arbeiten/magister_wilz.pdf

W. E. Winkler. The State of Record Linkage and Current Research Problems.
Statistics of Income Division, Internal Revenue Service Publication R99/04,
1999. URL http://www.census.gov/srd/papers/pdf/rr99-04.pdf

Alle URLs wurden zuletzt am 03.05.2010 gepriift.

97

http://zompist.com/spell.html
http://zompist.com/spell.html
http://lucene.apache.org/solr/
http://www.clef-campaign.org/2003/WN_web/19.pdf
http://de.wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=59000374
http://de.wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=59000374
http://de.wikipedia.org/w/index.php?title=Schreibmaschinendistanz&oldid=59000374
http://www.uni-koeln.de/phil-fak/phonetik/Lehre/MA-Arbeiten/magister_wilz.pdf
http://www.uni-koeln.de/phil-fak/phonetik/Lehre/MA-Arbeiten/magister_wilz.pdf
http://www.census.gov/srd/papers/pdf/rr99-04.pdf

Erklarung

Hiermit versichere ich, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

Dennis Scheck

	1 Einleitung
	2 Grundlagen
	2.1 Phonetische Verfahren
	2.1.1 Soundex
	2.1.2 Daitch-Mokotoff-Soundex
	2.1.3 Kölner Phonetik
	2.1.4 Weitere Soundex-basierte Algorithmen
	2.1.5 Match Rating Approach

	2.2 Distanzverfahren
	2.2.1 Schreibmaschinendistanz
	2.2.2 Hamming-Distanz
	2.2.3 Levenshtein-Distanz
	2.2.4 Jaro-Winkler-Übereinstimmung

	2.3 Vergleich der Verfahren
	2.4 Apache Lucene
	2.4.1 Erstellen eines Index
	2.4.2 Suche im Index
	2.4.3 Apache Solr

	2.5 Hibernate Search
	2.6 BOSCH OpenJava Platform

	3 Evaluierung verschiedener Lösungsansätze
	3.1 Unscharfe Suche mit Hilfe eines RDBMS
	3.1.1 MySQL
	3.1.2 Oracle

	3.2 Apache Lucene
	3.3 Ergebnis der Evaluierung

	4 Implementierung
	4.1 Vergleich Ist- und Soll-Architektur bei der Suche in Web-Anwendungen im BOSCH OpenJava Framework
	4.2 Notwendige Projekteinstellungen zur Nutzung von Hibernate Search im BOSCH OpenJava Framework
	4.3 Erstellen und Verwalten des Lucene-Index
	4.4 Vorüberlegungen zur Verbesserung der Suchergebnisse
	4.5 Notwendige Erweiterungen an Hibernate Search und Lucene zur unscharfen Suche
	4.6 Erstellen eines Prototyps
	4.6.1 Unscharfe Suche nach Objekten
	4.6.2 Dublettenlose Neuanlage von Stammdaten
	4.6.3 Zusammenführung mit redundanten Daten aus anderen Systemen

	5 Test und Bewertung der Implementierung
	5.1 Test und Bewertung der Suchgeschwindigkeit
	5.2 Test und Bewertung der Trefferqualität

	6 Zusammenfassung und Ausblick
	A Daitch-Mokotoff Soundex Kodier-Schema

