Institut fir Parallele und Verteilte Systeme
Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3033

Konzeption und Realisierung
eines Auslastungsdienstes flr
eine verteilte
Ausfihrungsumgebung

Raimund Huber

Studiengang: Informatik

Prufer: Dr. Holger Schwarz
Betreuer: Dipl.-Inf. Nazario Cipriani
begonnen am: 3.Mai 2010

beendet am: 2.November 2010

CR-Klassifikation: C.4,D.4.1,H.3.3

Kurzfassung

In dieser Arbeit wird ein Auslastungsdienst fiir die verteilte Streaming-Middleware
NexusDS entwickelt. Der Auslastungsdienst trifft Vorhersagen {iiber geeignete Aus-
fithrungsknoten fiir die Ausfithrung von Operatoren. Fiir die Vorhersagen werden
laufend auf den Ausfithrungsknoten erfasste Leistungsmessdaten iiber Operatoren und
Ausfithrungsknoten verwendet.

Es wird ein Konzept zur effizienten Filterung der in Frage kommenden Aus-
fiithrungsknoten entwickelt. Fiir die Vorhersage wird eine Clusterbildung verwendet, die
Knoten mit dhnlichen Eigenschaften gruppiert. Um das Clustering schneller berechnen
zu konnen, wird eine Map /Reduce-basierte, verteilte Implementierung entwickelt.

Abstract

In this thesis a utilization service will be developed for the distributed streaming middle-
ware NexusDS. The utilization service predicts, which of the execution nodes known to
him are suitable for the execution of an operator. The prediction is calculated by exploiting
performance meters of the operators and execution nodes.

A concept for an efficient filtering of suitable execution nodes will be developed. For the
forecasting a clustering algorithm is applied to group nodes with similar attributes. For
the implementation of the clustering-algorithm a Map/Reduce based approach is applied
to allow a faster calculation in a distributed manner.

Inhaltsverzeichnis

1 Einleitung 13
1.1 Aufgabenstellung oo 14

1.2 Aufbauder Arbeit 14

2 Grundlagen und verwandte Arbeiten 17
2.1 Nexus e e e 17
2.1.1 AWML - Augmented World Model Language 18

22 NexusDS e 19
2.2.1 Architektur L 20

222 Anwendungsstart. L 21

2.3 Auslastungsmessung und Messdaten fiir Scheduling 23
2.3.1 Application-level scheduling und Network Weather Service 23

2.3.2 Mars—Framework L Lo oL 25

2.3.3 Performance modeling of parallel applications for grid scheduling . 25

2.3.4 VisPerf: Monitoring Tool for Grid Computing 26

3 Architektur des Auslastungsdienstes 29
3.0 Uberblick 30
3.2 Problemanalyse L 32
3.3 Daten e 35
3.3.1 Kompatibilitdatsmatrix L. 35

3.3.2 Knoten- und Operatorstatistik 36

3.3.3 Knotenleistungsclustering 37

3.4 Sensordatenverarbeitung Lo oL L. 38
3.4.1 Operatorleistungsmessung 39

3.5 Knotenanfragebearbeitung oo 0oL 42
3.5.1 Ablauf Knotenanfrageverarbeitung 44

3.6 Verteilte Ausfithrung des Auslastungsdienstes 46

4 Detailentwurf
4.1 Spezifikation der Sensormessdaten 0L
4.1.1 Plattformeigenschaften — statische Knotendaten
4.1.2 Dynamische Knotendaten
4.1.3 Operatormessdaten
4.2 Speicherung der Sensordaten
4.2.1 Gespeicherte Daten und Zugriffspfade
4.2.2 Zeitgranularitat und Historisierung
4.3 Erzeugung und Speicherung der Kompatibilitatsmatrix
4.4 Erzeugung des Knotenleistungsclusterings
4.4.1 Definition der Distanzmetrik
4.4.2 Clusteringverfahren
4.4.3 Bewertung und Auswahl der Clusteringverfahren
4.4.4 Algorithmus L o
4.4.5 Aufwandsreduzierung L L L.
4.5 Berechnung der knoten- und operatorabhéngigen Anforderungen
4.6 Optimierungsranking
4.7 Zusammenfassung und Visualisierung der Daten

5 Implementierung

5.1 Datenspeicherung o oo L
5.2 Implementierung des Auslastungsdienstes
5.2.1 Datenerfassung o L o oL
5.2.2 Knotenanfrageverarbeitung
5.3 Implementierung der Sensoren L.
5.4 Knotenauslastungserfassung
5.5 Knotenleistungsclustering 0 ..
5.5.1 Lokale Berechnung,
5.5.2 Map/Reduce-basierte Berechnung
Messergebnisse L

6 Resiimee

7 Zukunftige Arbeiten
7.1 Bewertung der Vorhersagequalitat

7.2 Heuristik fiir die Anzahl der zu betrachtenden Cluster
7.3 Map/Reduceund NexusDS

A Appendix
A.1 Von SIGAR unterstiitzte Plattformen

49

49
50
50
51
53
53
55
56
58
59
60
63
64
66
67
69
70

73
74
77
79
83
85
88
90
90
93
99

101

103
103
104
104

107

Abbildungsverzeichnis

2.1
2.2

2.3

3.1
3.2
33
3-4
35
3.6
3.7

4.1
4.2
43
44
4.5

5.1
5.2
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
513
514
5.15

Beispiel interaktive ortsbasierte Visualisierungspipeline. 20
Architektur NexusDS L 22
Beispiel Jacobi Matrix Lo Lo 24
Bezug zur NexusDS Architektur 30
Ubersicht iiber die Abldufe um Auslastungsdienst und Sensoren 31
Architektur Auslastungsdienst o o000 34
Beispiel Kompatibilititsmatrix 36
Knoten, Framework, Sensor und Operatoren 39
Beispiel NPGM-Graph Ausschnitt 43
Ubersicht Replikation des Auslastungsdienstes 47
Beispiel Bucket Statistik o 0 00000 55
Beispiel Dendrogramm o L oo 63
Beispiel Distanzmatrizen o L. 65
Verwendung der Knotenleistungscluster zur Berechnung der Anforderungen 69
Ubersicht iiber die gespeicherten Daten als ER-Diagramm 71
Ubersicht Tabellen fiir die Datenspeicherung 75
Ablaufe im Auslastungsdienst Lo L oL 78
Abldufe der Datenerfassung L. 79
Klassen fiir den Ablauf Speicherung 8o
Datentypen fiir die Ubertragung und Verarbeitung der Sensordaten 81
Definition der Klassen ClusterMaintenance und Clusterer 82
Definition der Klasse Request 83
Definition der Klasse RequestHandler 84
Definition der Klasse NodeRecommendation 84
Definition des NodeRequest Interfaces 85
Definition des Service Interface 86
Sequenzdiagramm Lebenslauf eines Sensors 87
Klasse Sensor und Interfaces 88
Map/Reduce-Ablauf oo 94
Ablauf des Clusterbildungs-Algorithmus mit Map/Reduce 95

5.16 Messergebnisse: Map /Reduce-Beschleunigung

Tabellenverzeichnis

3.1 Beispiele fiir Anforderungen oL L. 43
4.1 Erfasste Plattformeigenschaften, 50
4.2 Erfasste Knotenleistungsmessdaten 51
4.3 Erfasste Operatormessdaten 52
4.4 Zusammenfassung der gespeicherten Sensormessdaten 54
4.5 Beispieltabellen fiir String und Float Plattformeigenschaften 57
4.6 Beispieltabellen fiir String und Float Plattformanforderungen 57
4.7 Beispiel fiir die Speicherung einer Kompatibilitditsmatrix 57
5.1 Tabellen fiir die Clusterbildung 93
A.1 Von SIGAR unterstiitzte Plattformen 108
Verzeichnis der Listings
4.1 SQL Beispiel zur Abfrage kompatibler Knoten fiir <AnfrageOperatorID> 58
4.2 Algorithmus zum hierarchischen Clustern 68
5.1 Beispiel SQL-Anfrage Durchnittsbildung beim Verschmelzen der Cluster
QI-G3 -« o e e e e 91
5.2 Beispiel SQL-Anfrage einheitliche String-Werte beim Verschmelzen der
Cluster q1-q3 o 91

Liste der Abkurzungen

AD ... Auslastungsdienst

AFD Anfragedienst

AWM Augmented World Model

AWML Augmented World Model Language

AWQL Augmented World Query Language

CPU Central Processing Unit

CQS Core Query Service

GPU Graphics Processing Unit

ID ...l Identifier

JVM ... Java Virtual Machine

MiB Mebibyte: Entsprechend Standard IEEE 1541 2002 [IEE09]: 1 MiB =
220 Byte

NPGM Nexus Plan Graph Model

OES Operator Execution Service

QF Query Fragmenter

XSD XML Schema Definition

11

Kapitel 1

Einleitung

Trotz allgemein steigender Leistungsfahigkeit von mobilen Computern und Arbeitsplatz-
rechnern ist die Rechenleistung und Speicherkapazitit eines einzelnen Gerites haufig
nicht ausreichend, um grofie Datenmengen vorzuhalten und schnell genug zu verar-
beiten. Das NexusDS Framework erlaubt es, datenstrombasierte Berechnungen in eine
verteilte Plattform zu verlagern. Die gebiindelte Leistungsfahigkeit der in der Plattform
verfiigbaren Rechner wird so einem einzelnen Geriét verfiigbar gemacht und ermoglicht
es, Anwendungen, die aufgrund beschrankter Ressourcen sonst nicht lauffdhig wiren,
verfiigbar zu machen.

In NexusDS kénnen Berechnungen fiir Datenstrome auf sogenannte Operatoren innerhalb
der Plattform verteilt werden. Bisher werden mit Hilfe eines graphischen Editors oder
tiber XML-Steuerdateien die Datenquellen mit Operatoren verkniipft, die Operatoren
miteinander verkniipft und letztlich in die Datensenke — die Ausgabe — geleitet. Allerdings
muss bisher die Verteilung der Operatoren auf die einzelnen Knoten manuell unter Zuhil-
fenahme von externem Wissen des Benutzers iiber die Eigenschaften und die Leistung
der Knoten vorgenommen werden.

Fiir eine automatische Platzierung der Operatoren ist ein Anfragedienst in NexusDS
vorgesehen. Bei der Planung einer Vielzahl voneinander abhédngigen Operatoren steigt
die kombinatorische Komplexitidt. Um dem Anfragedienst um einen Teil der Komplexitat
zu entlasten, ist in NexusDS ein Auslastungsdienst vorgesehen, der die verftigbaren
Ausfiithrungsknoten verwaltet und beobachtet, um ihre Eigenschaften zu bestimmen und
ihre Verfiigbarkeit vorherzusagen.

Diese Eigenschaften konnen zum Beispiel Rechenleistung, Auslastung, spezielle Hardware
wie Grafikkarten, spezielle Systemumgebung, Speicherplatz und Netzwerkanbindung
sein. Zum einen werden aktuelle, also dynamische Daten fiir eine Bewertung gebraucht,
um festzustellen, ob der Knoten momentan tiberhaupt verfiigbar, gerade ausgelastet

13

1 Einleitung

oder nicht erreichbar ist. Zum anderen werden statische Daten tiber die Ausstattung, die
maximale, die typische und die zu erwartende Leistungsfahigkeit der Knoten benétigt.

1.1 Aufgabenstellung

Das Ziel dieser Arbeit ist die Konzeption und Implementierung eines Auslastungsdienstes
als Erweiterung des NexusDS Frameworks. Der Auslastungsdienst soll die verfiigbaren
Knoten verwalten und auf Anfrage nach einem Ausfiithrungsknoten fiir einen bestimmten
Operator Vorschlédge liefern, welche Knoten sowohl den Anforderungen an die Hard-
und Software-Umgebung entsprechen, als auch eine Vorhersage treffen, welche Knoten
nach statistischen Erfahrungswerten am besten geeignet sind, den Operator mit seiner
Konfiguration innerhalb vorgegebener Leistungsanforderungen auszufiihren.

Um diese Ausfiithrungsknotenanfragen bearbeiten zu konnen, sammelt der Auslastung-
dienst entsprechende geeignete Messdaten und bereitet sie auf, um die Anfragen innerhalb
kurzer Zeit beantworten zu konnen.

1.2 Aufbau der Arbeit

Diese Arbeit beginnt mit einem Grundlagenkapitel, das zuerst einen Uberblick iiber das
Nexus Framework und das darauf aufbauende NexusDS Framework gibt. AufSerdem wer-
den verwandte Arbeiten vorgestellt, die sich mit Vorhersagen von Ressourcenverfiigbarkeit
und dem Scheduling von verteilten Anwendungen beschéftigen.

In Kapitel 3 wird eine Einordnung des Auslastungsdienstes in die Architektur vorgenom-
men und die Problemstellung analysiert. Auf dieser Basis werden die Architektur des
Auslastungsdienstes und seine Komponenten entwickelt.

Aufbauend auf der zuvor vorgestellten Architektur erfolgt in Kapitel 4 ein detaillierter
Entwurf mit der Spezifikation der zu erfassenden Daten und der verwendeten Verfahren.
Es wird auf Basis einer Ubersicht iiber verschiedene Clusteringverfahren ein Verfahren
ausgewdhlt und ein Algorithmus zur Implementierung vorgestellt.

In Kapitel 5 wird die Implementierung des Auslastungsdienstes beschrieben. Fiir das
Clusteringverfahren wird eine parallelisierbare Implementierung vorgestellt und in einem
kurzen Test gezeigt, dass diese einen deutlichen Geschwindigkeitszuwachs erbringt.

14

Danksagung

Ich bedanke mich an dieser Stelle bei den Personen, die mir bei der Bearbeitung der
Diplomarbeit geholfen haben: Meinem Betreuer Nazario Cipriani, der mich mit vielen
Ratschldgen unterstiitzt hat, meiner Mutter, die auch in schwierigsten Féllen der Komma-
setzung eine fundierte Meinung vertreten hat, Sevgi, die mich besonders in anstrengenden
Momenten mit einem ldcheln und mit freundlichen Worten aufgemuntert hat sowie all
den Kommilitonen und Freunden die mich nicht nur wahrend der Diplomarbeit als
Gesprachspartner zu neuen Ideen angeregt haben.

15

Kapitel 2

Grundlagen und verwandte
Arbeiten

In diesem Kapitel werden Grundlagen fiir die Arbeit eingefiihrt sowie Forschungsarbeiten,
die sich mit verwandten Themenbereichen auseinandergesetzt haben, vorgestellt.

Zuerst wird ein Uberblick iiber das NexusDS Framework gegeben. Aus NexusDS stammt
die Rahmenarchitektur fiir den in dieser Arbeit entwickelten Auslastungsdienst. Au-
Berdem ist NexusDS die Plattform fiir die Implementierung des Auslastungsdienstes.
Anschliefsend werden verwandte Arbeiten zu folgenden vier Schwerpunkten vorgestellt:
Welche Indikatoren werden fiir ein moglichst optimales Scheduling benétigt, wie konnen
sie in einem Peer2peer System erfasst werden, wie und wo werden diese Daten gespeichert
und wie kdnnen die Daten aufbereitet werden.

2.1 Nexus

Nexus ist eine Plattform fiir ortsbasierte und kontextbezogene Anwendungen [BDGo4].
Ortsbasierte Anwendungen verwenden Daten abhidngig von dem aktuellen Ort des
Benutzers und passen sich entsprechend an. Kontextbasierte Anwendungen reagieren auf
den aktuellen Benutzerkontext. Durch das Kontextmodell von Nexus, das Augmented
World Model (AWM), lassen sich Objekte aus der realen Welt, virtuelle Objekte und ihre
Beziige als sogenannte context models zueinander modellieren.

Die Architektur von Nexus besteht aus drei Schichten: der Application Tier, der Federation
Tier und der Service Tier.

Die Application Tier enthidlt Anwendungen, die die Nexus Plattform verwenden. Die
Federation Tier enthilt Server, die die Funktionen der Plattform fiir Anwendungen und

17

2 Grundlagen und verwandte Arbeiten

Dienste bereitstellen. Anwendungen kdonnen context models iiber die Federation Tier
abrufen und sich dort fiir Mitteilungen tiber Ereignisse registrieren.

Die Server der Federation Tier halten — bis auf Caching — keine Daten vor, sondern
sie bearbeiten Anfragen von Anwendungen, sie suchen die Contextserver, die diese
Daten bereithalten, fragen die Daten ab, bereiten sie zu einer konsistenten Sicht auf und
geben sie an die Anwendung zuriick. Sie iiberwachen Ereignisse und benachrichtigen
Anwendungen, die sich hierfiir registriert haben.

Die Service Tier enthilt Context Server, die context models speichern und bereitstellen.
Context Server verwenden als Anfragesprache die Augmented World Query Language
(AWQL), die raumliche Anfragen ermoglicht. Daten werden in der Augmented World
Model Language (AWML) zuriickgeliefert.

2.1.1 AWML - Augmented World Model Language

Als grundlegendes Datenaustauschformat von Nexus und allen darauf basierenden
Projekten und auch den in dieser Arbeit eingefiihrten Schnittstellen wird AWML hier
etwas ausfiihrlicher vorgestellt.

AWML ist ein XML-basiertes Datenaustauschformat, das durch XML-Schemata definiert
wird.

Die Extensible Markup Language XML [BYS*06] ist eine textbasierte Auszeichnungs-
sprache fiir maschinenlesbare Dokumente. Sie basiert auf einer recommendation, einer
Empfehlung, des W3C*. Durch Einschrankung der erlaubten Elemente von XML lassen
sich anwendungsspezifische Sprachen erzeugen.

Die Einschrankungen fiir XML, also die Definition der erlaubten Elemente und ihrer
Struktur in einem Dokument, wird durch Schemasprachen erreicht. XML-Schema ist
eine selbst in XML definierte Schemasprache [WFo4]. XML-Schema stellt unter anderem
vordefinierte atomare Typen wie xsd:string und xsd:float bereit. Zusatzlich konnen weitere
komplexe Typen definiert werden. XML-Schemata werden meist in xsd-Dokumenten
(XML Schema Definition) gespeichert.

Dokumente, die dem XML-Standard entsprechen, werden als wohlgeformt bezeichnet.
Dokumente, die einen Verweis auf ein XML-Schema enthalten und diesem Schema
entsprechen, nennt man giiltig.

"W3C World Wide Web Consortium - ein Gremium zur Standardisierung von World Wide Web Techniken.

18

2.2 NexusDS

AWML wird durch das Nexus AWML Schema? definiert und verwendet seinerseits das
Nexus Standard Attribute Schema?, das die erlaubten Datentypen in Nexus definiert.

2.2 NexusDS

NexusDS [CEB*o09, CLM10] ist eine Middleware fiir die verteilte Verarbeitung von Da-
tenstromen. Eine Middleware verbirgt die Komplexitat der ihr zugrundeliegenden Funk-
tionalitat fiir eine auf sie aufsetzende Anwendung. NexusDS setzt auf die Nexus Platt-
form [BDG " 04] auf und erweitert Nexus um die Verarbeitung von Datenstromen. Daten-
strome sind Daten, die potenziell unendlich lang sind und auf die kein wahlfreier Zugriff
besteht.

Ein Einsatzbeispiel fiir NexusDS ist eine interaktive Streamingpipeline fiir eine ortsbasierte
Anwendung. Die in Abbildung 2.1 dargestellte Anwendung zeigt auf einem Handheld
eine rotierbare dreidimensionale Karte an. Da das Endgerdt weder die notwendigen
Daten noch die Rechenleistung fiir die Berechnung der Darstellung hat, werden die
Berechnungen in das Netzwerk verlagert.

Die einzelnen Operationen der Streamingpipeline konnen durch verschiedene Knoten,
sogenannte Stream Nodes, zur Verfiigung gestellt werden, die die von der jeweiligen
Operation benétigten Eigenschaften aufweisen. So sollte die Merge and Filter Operation
schnellen Zugriff auf die Datenbanken mit den Umgebungsinformationen haben, wih-
rend der Rendering-Knoten eine GPU benotigt. Als Datenquellen der Pipeline dienen
Datenstrome wie die Position des Handhelds und aktuelle Daten tiber die Umgebung.
Die Datensenke — die Ausgabe — ist hier das Display des Handhelds. Das Userinterface
am Handheld dient auch dazu, die aktuellen Parameter fiir die einzelnen Schritte der
Pipeline vorzugeben. So konnen am Handheld unterschiedliche Datensétze fiir die Kar-
tendarstellung oder unterschiedliche Blickwinkel auf die 3D-Karte ausgewihlt werden.

Eine von einer Anwendung verwendete Streamingpipeline wird durch einen Nexus Plan
Graph Model Graphen (NPGM) beschrieben. Ein NPGM-Graph enthélt die Datenquellen
und Senken und die sie verkniipfenden Operationen. Die in einem NPGM-Graphen vor-
kommenden Operation konnen jeweils entweder logische oder physische Operationen sein.
Eine logische Operation ist eine abstrakte Beschreibung einer Operation, wahrend eine
physische Operation einen bestimmten Operator in einer festgelegten Implementierung
meint.

2Verfiigbar unter http://nexus.informatik.uni-stuttgart.de/en/research/documents/

19

http://nexus.informatik.uni-stuttgart.de/en/research/documents/

2 Grundlagen und verwandte Arbeiten

Sources Operators Sink

Visualization Pipeline

v

: User Location Updates E

Data Stream: Mobile Client:
Bus, Taxi, and User
\ Locations), Merge and Filter: Mapping: .
b Rendering:
Select nearby Map containing . L
. - Project Primitives,
Objects, Interpolate 3D Buildings, : -
N . . Rasterize Primitives
Trajectories Points of Interest
Static Data: Y x
Buildings & Streets X) ! Display Images
Points of Interest . i ! T
— 1 : .

Parameter Updates

Abbildung 2.1: Beispiel interaktive ortsbasierte Visualisierungspipeline mit mobilem
Client (aus [CLM10])

Die Eigenschaften der Operatoren in NexusDS werden durch Metadaten beschrieben. Die
Metadaten definieren unter anderem die Anzahl der Ein- und Ausgénge, ihre Datentypen
sowie spezielle Anforderungen des Operators. Anforderungen kénnen zum Beispiel eine
bestimmte Hardware-Plattform oder spezielle Leistungs- und Umgebungsanforderung
sein.

2.2.1 Architektur

Die NexusDS Architektur besteht aus vier Schichten: Der Communication and Monitoring,
der Nexus Core, der Nexus Domain Extensions und der Nexus Application Extensions Schicht.
In Abbildung 2.2 sind die vier Schichten zu sehen. Dienste sind mit durchgezogenen
Késten versehen, wiahrend Operatoren die gestrichelten Kasten innerhalb der jeweiligen
Schicht sind.

Die Communication and Monitoring Schicht stellt die Kommunikationsinfrastruktur
basierend auf einem Peer2Peer-Netz zur Verfiigung. Sie enthélt den Monitoring Service,
der das System tiberwacht und die teilnehmenden Knoten und ihre Eigenschaften ver-
waltet. Der Service Publisher Service verwaltet die im System angebotenen Services und
ermdglicht die Verdffentlichung und Nutzung von Services.

Die Nexus Core Schicht enthélt die Kerndienste von NexusDS. Hierzu gehoren Core
Operators, Core Query Service, Operator Repository Service und Operator Execution
Service.

Der Operator Repository Service ist ein Speicherplatz fiir Operatoren und ihre Meta-
daten. Es enthilt auch die Informationen zu den Core Operatoren, den grundlegenden

20

2.2 NexusDS

Operatoren wie Join und Selection. Datenquellen und Senken werden als Operatoren
mit nur Eingdngen oder nur Ausgdngen vom Operator Repository Service gespeichert.
Zusétzliche Operatoren, die neue oder spezifische Funktionalitdt bereitstellen, werden in
das Operator Repository eingepflegt und so Anwendungen zur Verfiigung gestellt.

Der Core Query Service verarbeitet Nexus Query Graphen und tiibersetzt die logischen
Anfragegraphen in einen ausfithrbaren Graphen, indem er in mehreren Schritten den
NPGM-Graphen optimiert, fragmentiert und ausfiihrt. Die Optimierung wird durch
den Query Optimizer durchgefiihrt. Die Fragmentierung, also die Aufteilung in kleine-
re Elemente, wird durch den Query Fragmenter durchgefiihrt. Der Query Fragmenter
belegt die logischen Operationen mit physischen Operatoren und findet geeignete Aus-
fiihrungsknoten fiir die physischen Operatoren. Hierfiir greift der Query Fragmenter
auf Ausfithrungsstatistiken zuriick, um eine geeignete, ausfiihrbare Aufteilung zu erzeu-
gen. Die einzelnen Fragmente werden letztlich vom Execution Manager ausgefiihrt. Der
Execution Manager 1adt, parametrisiert und startet die Operatoren, er kontrolliert ihre
Ausfiihrung und kann bei drohender Uberlastung von Knoten eine Neuberechnung und
Verteilung des NPGM-Graphen veranlassen.

Die Nexus Domain Extensions sind eine Zusammenstellung von Nexus Core Diensten
fiir einen bestimmten Anwendungsbereich. Es werden ausschliefilich fiir diesen Bereich
interessante Operatoren und Dienste angeboten; alle anderen Elemente des Nexus Core
werden ausgeblendet.

Die Nexus Application and Extensions Schicht enthilt Operatoren und Services, die
ausschliefllich fiir eine bestimmte Anwendung bestimmt sind. Sie ermoglicht, Teile einer
Anwendung in die Middleware zu verschieben, um die Anwendung und damit die
Hardware auf dem Endgeréat zu entlasten.

2.2.2 Anwendungsstart

Um das Zusammenspiel der einzelnen Komponenten in NexusDS zu verdeutlichen, wird
hier anhand des Beispieles eines Anwendungsstarts der Ablauf durchgegangen.

Eine Anwendung, die NexusDS verwendet, startet mit einer Anfrage an den ihr ent-
sprechenden Application Service und bekommt eine Query ID oder eine Fehlermeldung
zuriick. Der Application Service bildet die Anfrage auf einen logischen Operator Graphen
ab und gibt ihn an den Core Query Service weiter.

Der Core Query Service (CQS) fithrt auf dem logischen NPGM-Graphen Optimierungen
wie das Vorziehen von Selektionen oder frithe Projektionen aus. Der optimierte Graph
wird innerhalb des CQS vom Query Fragmenter in fiir eine Ausfithrung geeignete Frag-
mente zerlegt. Der QF fragt den Monitoring Service hierfiir nach geeigneten Knoten

21

2 Grundlagen und verwandte Arbeiten

Nexus Applications and Extensions Application Operators [Application Services]]]]
N ":
Nexus Domain Extensions Domain Operators [Domain Services]]]]
4 'E \
Core Operators i [Core Query Service (CQS)]
Nexus Core
[Operator Repository] [Operator Execution
Service (ORS) Service (OES)
- J
' '
Service Publisher
Monitoring Service (MS
Communication and Monitoring [onitoring Service (MS)] [Service (SPS)]
\ '

Abbildung 2.2: Architektur NexusDS aus [CEB*o9]

und ihren Statistiken an. Die Anfrage an den Monitoring Service enthélt Informationen
tiber den physischen Operator sowie seine Konfiguration und Einschrankungen, die zu
beachten sind. Der Monitoring Service erstellt anhand seiner Statistiken und der aktuellen
Auslastungsdaten der Knoten eine Liste von Vorschldgen mit verfiigbaren Knoten, die
den Operator ausfithren konnen. Anhand der vorgeschlagenen Knoten berechnet der QF
einen Gesamtgraphen, der aus lauter ausfithrbaren Fragmenten besteht.

Die einzelnen ausfiihrbaren Fragmente des NPGM-Graphen werden nun vom Execution
Manager des CQS an den Operator Execution Service (OES) zur Ausfiihrung tibertragen.

Der Operator Execution Service iiberpriift bei Empfang eines auszufithrenden NPGM-
Graph-Fragments, ob die zur Ausfithrung benotigten Operatoren lokal vorhanden sind.
Fehlende Operatoren werden vom Operator Repository Client von dem Operator Reposi-
tory Service nachgeladen und installiert.

Die Operatoren des NPGM-Graph-Fragments werden parametrisiert und innerhalb
der Operator Execution Sandbox gestartet. Sobald alle Operatoren des NPGM-Graph-
Fragments gestartet sind, wartet der OES auf das Eintreffen von Daten fiir die Bearbeitung
durch das Fragment. Innerhalb des OES arbeitet der Statistics Collector, der Leistungs-
und Auslastungsdaten der Operatoren und des Knotens, auf dem der OES lduft, sammelt
und an den Monitoring Service meldet.

22

2.3 Auslastungsmessung und Messdaten flr Scheduling

2.3 Auslastungsmessung und Messdaten flir Scheduling

Um eine effiziente Verteilung von Operatoren auf Knoten, die eine ausreichende Leistung
zur Verfligung stellen, zu ermoglichen, braucht der Verteilungsalgorithmus Informationen
tiber die verfiigbaren Knoten, ihre Leistungsfihigkeit und aktuelle Auslastung. Diese
werden dem Ressourcenbedarf der einzelnen Operatoren gegentibergestellt. Es stellt sich
die Frage, ob und wie aus historischen Daten Prognosen fiir zukiinftiges Systemverhalten
abzulesen sind.

In diesem Abschnitt werden zuerst Arbeiten, die sich mit der Messung des Ressour-
cenbedarfs von verteilten Anwendungen oder verallgemeinert mit ,Problemen”, wie
der Vorhersage von Ressourcenverfiigbarkeit und der Optimierung der Verteilung von
Berechnungen, beschiftigen. Im Folgenden werden drei Ansitze vorgestellt: Der erste
Losungsansatz fiir Scheduling sieht vor, dass die berechnete Funktion des Problems be-
kannt ist und sich als mathematisches Minimierungsproblem darstellen ldsst. Der zweite
Ansatz beobachtet die Ausfithrung des verteilten Programms im laufenden Betrieb, um
daraus fiir zukiinftige Ausfiihrungen Statistiken zu erstellen. Zuletzt wird ein Verfah-
ren vorgestellt, das durch Testen des Programmes mit unterschiedlichen Problemgrofien
und auf unterschiedlichen Systemen eine Anndherung von mathematischen Funktionen
versucht, {iber deren Parameter die Abbildung auf unterschiedliche Architekturen und
Systemgrofien moglich wird.

2.3.1 Application-level scheduling on distributed heterogeneous networks und
Network Weather Service

In [BWF'96] wird anhand des Beispiels einer zweidimensionalen Jacobi Matrix als Berech-
nungsproblem demonstriert, wie sich die Berechnung des Problems {iber verteilte Knoten
mit unterschiedlichen Netzwerkanbindungen optimal verteilen ldsst. Die Problemstellung
ist, wie in Abbildung 2.3 dargestellt, eine Matrix, in der jeder Wert der Durchschnittswert
seiner vier ndchsten Nachbarn aus der letzten Iteration ist.

Die zu berechnende Matrix wird in Streifen aufgeteilt, deren Randbereiche nach jedem
Rechenschritt mit den Knoten, die den benachbarten Bereich bearbeiten, ausgetauscht
werden miissen. Fiir dieses exakt definierte Problem wird fiir die Aufteilung ein lineares
Gleichungssystem angegeben, dessen Losung eine nahezu optimale Verteilung angibt.

Als Eingangsparameter fiir das lineare Gleichungssystem wird sowohl die aktuelle Sys-
temlast der verfiigbaren Knoten als auch eine Vorhersage der voraussichtlichen Last und
Netzwerkverfiigbarkeit durch einen ,Network Weather Service” verwendet.

23

2 Grundlagen und verwandte Arbeiten

<o

Abbildung 2.3: Jacobi Matrix: Jeder Wert ist der Durchschnitt seiner Nachbarn in der
letzten Iteration

Der , Network Weather Service” [Wolgy, WSPg7] implementiert zwei unterschiedliche
Typen von Sensoren, sogenannte aktive und passive Sensoren. Die aktiven messen ex-
perimentell, indem sie die zu messende Ressource belasten. Sie werden zum Beispiel
fur die Netzwerk-Bandbreitenmessung und -Latenzmessung eingesetzt. Im Gegensatz
dazu lesen die passiven Sensoren im laufenden Betrieb anfallende Daten aus, sie liefern
Informationen tiber die CPU-Auslastung, den freien und belegten Arbeitsspeicher sowie
die Festplattenauslastung oder die Anzahl der Prozesse.

Wolski et al. sehen bei den aktiven Sensoren mehrere Probleme. Jede experimentelle Mes-
sung beeinflusst die verfiigbaren Ressourcen und kann so zu Engpéssen fithren und somit
wiederum das Messergebnis beeinflussen. Vor allem bei der parallelen Durchfiihrung
mehrere Bandbreitenmessungen zwischen Knoten beeinflussen sich die Messungen gegen-
seitig sehr stark und werden somit verfalscht. Um die parallele Messung zu verhindern,
wird im , Network Weather Service” ein Tokenverfahren verwendet. Es darf jeweils nur
der Knoten, der das Token besitzt, eine Messung durchfiihren; danach reicht er das Token
weiter. Das Tokenverfahren hat jedoch den Nachteil, dass es fiir grofse Verbiinde nicht
skaliert und eine Tokenverwaltung zum Schutz gegen einen Verlust des Tokens notwendig
ist.

Sobald eine Messung auf einem Knoten abgeschlossen ist, wird eine neue Vorhersage
berechnet. Der Network Weather Service in [Wolg7] verwendet drei unterschiedliche
Berechnungsmethoden fiir jede Vorhersage und wéhlt diejenige, aus der die Abweichung
der letzten Vorhersage am geringsten zum aktuellen Zustand ist. Die drei verwendeten
Berechnungsmethoden sind durchschnittsbasiert, medianbasiert und , Auto Regressive
Moving Average”. Bei der durchschnittsbasierten Methode wird nicht zwingend die
vollstandige Historie berechnet, sondern nur ein einstellbarer Teilbereich aus der jiingeren
Vergangenheit. Die medianbasierte Berechnung verwendet ebenfalls nur eine Teilhistorie
und hat als Vorteil, dass starke Ausreifler zuverldssig gefiltert werden.

24

2.3 Auslastungsmessung und Messdaten flr Scheduling

2.3.2 MARS - A framework for minimizing the job execution time in a
metacomputing environment

MARS (Meta Computer Adaptive Runtime System) [Gehg6] ist ein Framework, das paral-
lele Programme in einem heterogenen verteilten System auch iiber WAN-Verbindungen
optimiert. MARS sammelt Daten iiber das Programmverhalten und das Systemverhalten,
um aus den statistischen Daten und der aktuellen Auslastung eine optimierte Verteilung
zu erstellen. Das Programmverhalten, also der Rechenzeitbedarf in einzelnen Programmab-
schnitten, und das Kommunikationsverhalten werden als gerichteter Abhdngigkeitsgraph
dargestellt, wihrend die knotenspezifischen Daten in tabellarischer Form verwaltet wer-
den.

Die Abhédngigkeitsgraphen jeder Programmausfithrung werden gespeichert, um so den
ndchsten Programmaufruf optimieren zu konnen. Programme, die bei jedem Aufruf unter-
schiedliche Graphen erzeugen, werden anhand der grofien Varianz in ihren historischen
Graphen erkannt und kénnen so entsprechend behandelt werden.

Das Monitoring der anwendungsspezifischen Daten erfolgt durch Einfiigen von zusatzli-
chen Programmkonstrukten vor jeder Send oder Receive Operation in den Programmcode.
Ein ,,Application Monitor” wird von dem zusétzlichen Code iiber Zeitpunkt und Sende-
/Empfangsvolumen informiert. Um den Ubergang von einer Programmphase in eine
andere, die mit einer Verdnderung des Programmverhaltens einhergeht, erkennen zu
konnen, sieht MARS vor, dass zusétzliche Befehle in das Programm eingefiigt werden,
die das Framework informieren, so dass eventuell eine Umverteilung erfolgen kann.

Das Netzwerk wird von Netzwerkmonitoren auf jeder Station iiberwacht, die regel-
méflig ihre Daten mit den anderen Monitoren im Netzwerk austauschen. Sie messen
CPU-Auslastung und Netzwerkbelastung. Jeder Monitor berechnet aus den selbst gemes-
senen und den von anderen Netzwerkmonitoren empfangen Daten eine globale Sicht.
Ausschliefslich die auf allen Knoten konsistente globale Sicht wird fiir Verteilungsentschei-
dungen verwendet. Die Daten der Netzwerkmonitore werden jeweils als Tupel zwischen
zwei Knoten gespeichert und regelmifiig auf Durchschnittswerte fiir einen Zeitraum
verdichtet.

2.3.3 Performance modeling of parallel applications for grid scheduling

Sanjay und Vadhiyar stellen in [SV08] Strategien vor, um durch Anndherung von Funk-
tionen Ausfiihrungszeitvorhersagen fiir unterschiedliche Systeme zu ermoglichen. In
mehreren Phasen werden jeweils mehrere Tests mit unterschiedlichen Problemgrofien
durchgefiihrt. Dabei werden insgesamt sechs Funktionen, die unterschiedliche Teilaspekte
der Ausfiihrung beschreiben, angendhert. In die Gesamtformel gehen Funktionen fiir

25

2 Grundlagen und verwandte Arbeiten

die Kommunikations- und Berechnungskomplexitdt, Funktionen fiir den Einfluss von
Netzwerk und CPU-Auslastung und jeweils eine Funktion fiir die Abhédngigkeit der
Geschwindigkeitsverdanderung durch Parallelisierung ein.

Fiir die Bestimmung der beschreibenden Funktionen wird zuerst auf einer einzelnen
Ein-CPU-Maschine eine Testreihe gestartet. Aus einem Set von 77 Funktionen werden
bis zu 20 Funktionen ausgewahlt, die die Laufzeit abhéngig von der Problemgrofse mit
moglichst kleinem Fehler beschreiben. In der zweiten Phase wird auf zwei Rechnern
getestet, um den Einfluss unterschiedlicher Netzwerklast zu messen. In der letzten Phase
wird die Anwendung auf 2, 4 und 8 Prozessoren getestet und wiederum eine Auswahl an
Funktionen getroffen, die die Auslastung beschreiben.

Um die Ausfithrungszeit fiir eine gegebene Anwendung, Problemgrofie und CPU-Anzahl
vorherzusagen, werden die fiir die Anwendung erstellten Modelle zus&tzlich mit Vor-
hersagen iiber die Bandbreiten und Rechenzeitverfiigbarkeit von einer Network Weather
Service Instanz (siehe 2.3.1) gespeist. Die vorhergesagte Laufzeit bei gegebenen Ressour-
cen ergibt sich dann durch Auswertung der Funktionsanndherungen, die in den Testldufen
die geringste Abweichung gezeigt hatten. Nach einem Anwendungsdurchlauf werden die
wahrenddessen aufgezeichneten Daten wiederum den Trainingsdaten hinzugefiigt.

Damit sich die zuvor gewonnen Daten {iber eine Anwendung von einer Plattform auf
eine andere tibertragen lassen, fithren Sanjay und Vadhiyar zuséitzliche Tests auf der
Zielplattform aus, um neue Koeffizienten fiir Funktionen zu bestimmen. Zum einen wird
in einem einzelnen Test ein Faktor fiir die CPU-Geschwindigkeit gemessen, zum anderen
in mehreren Tests fiir zwei CPUs der Einfluss auf die Datentibertragung bestimmt.

Da in jeder einzelnen Phase eine grofie Anzahl von Kombinationen fiir die moglichen
Funktionen ausgewertet wird, miissen in einem einzelnen Schritt bis zu 12 320 Funktionen
und ihre Abweichung berechnet werden. Um den Berechnungsaufwand im Betrieb zu
senken, werden beim Eintreffen neuer Trainingsdaten Funktionen, die zu haufig hohe
Abweichungen aufgewiesen haben, aus der Liste der fiir diese Anwendung moglichen
Funktionen gestrichen.

2.3.4 VisPerf: Monitoring Tool for Grid Computing

Ein weiteres Monitoring System wird in [LDRo3] vorgestellt. Es unterscheidet sich von
den vorherigen, indem es Peer2Peer-Verfahren verwendet, um eine besser Skalierbarkeit
zu erreichen.

Im vorgestellten Monitoring-Netz existieren einfache Sensoren, reprasentative Sensoren
und ein Monitoring Directory Service. Die einfachen Sensoren nehmen tiber diverse
Schnittstellen Messdaten ihres lokalen Knotens auf. Sie verfiigen tiber eine Filterfunktion

26

2.3 Auslastungsmessung und Messdaten flr Scheduling

und konnen die Messdaten entweder zur Abfrage bereitstellen (pull) oder laufend an
einen anderen Knoten weitergeben (push).

Die représentativen Sensoren melden sich als push-Empfanger an einfachen Sensoren an
und empfangen deren Daten, die empfangenen Daten werden aggregiert und wiederum
als Sensor reprasentativ fiir die Doméne bereitgestellt. Der reprasentative Sensor meldet
sich beim Start am Monitoring Directory Service an und kann von Interessenten, zum
Beispiel dem Scheduler, iiber eine Anfrage beim Monitoring Directory Service aufgefun-
den werden. Wenn exakte Daten eines einzelnen Sensors abgefragt werden sollen, kann
der reprasentative Sensor nach der Adresse gefragt werden und tiber diese eine Anfrage
direkt an den entsprechenden Sensor gestellt werden.

Die einfachen Sensoren werden von den repradsentativen Sensoren in einer zentralisierten
Struktur verwaltet, wiahrend die reprdsentativen Sensoren untereinander ein Peerz2Peer-
Netzwerk bilden und den Monitoring Directory Service bereitstellen.

27

Kapitel 3

Architektur des Auslastungsdienstes

Dieses Kapitel gibt eine Ubersicht iiber den Auslastungsdienst und die mit ihm zur
Messdatensammlung verbundenen Sensoren. Zuerst wird die Einbettung des Auslas-
tungsdienstes in die Architektur des bereits in Abschnitt 2.2 vorgestellten NexusDS erklart
und ein Uberblick iiber die Komponenten und Zusammenhénge des Gesamtsystems
gegeben.

Im zweiten Abschnitt wird die Problemstellung analysiert und daraus die grundlegende
Arbeitsweise des Auslastungsdienstes entwickelt. Die Architektur des Auslastungsdienstes
wird zunéchst in einer logischen Sicht als Einheit betrachtet.

Darauf folgend werden in Abschnitt 3.3 die vom Auslastungsdienst gespeicherten Daten
und Statistiken vorgestellt.

In Abschnitt 3.4 werden die Sensoren — die Messdatenlieferanten — des Auslastungsdiens-
tes vorgestellt und die von ihnen zu sammelnden Messdaten und die Verarbeitung der
gesammelten Daten erldutert.

In Abschnitt 3.5 wird der Ablauf einer Knotenanfrage des Anfragedienstes bis zu einer
Antwort des Auslastungsdienstes vorgestellt. Hierbei werden die einzelnen Schritte des
Filterprozesses vorgestellt.

Im letzten Abschnitt wird die logische Sicht als Einheit auf den Auslastungsdienst erwei-
tert und das Konzept fiir eine verteilte Ausfithrung des Auslastungsdienstes vorgestellt.

Der Entwurf mit detaillierten Daten, Verfahren, Schnittstellen und Spezifikationen folgt
dann in Kapitel 4.

29

3 Architektur des Auslastungsdienstes

3.1 Uberblick

Das in Abschnitt 2.2 vorgestellte Streaming Framework NexusDS sieht in seiner Ar-
chitektur die Funktionalititen des Auslastungsdienstes und der Sensoren vor. Da die
Implementierung des Auslastungsdienstes NexusDS als Laufzeitsystem verwendet, wird
hier der Bezug der Komponenten des Auslastungsdienstes zur Architektur von NexusDS
hergestellt.

o)

Anfragedienst
Cel (Core Query Service)

Nexus Core

Operator Repository
Service (ORS)

Operator Execution
Service (OES)

Sensor

N |)

Service Publisher
Service (SPS)

Auslastungsdienst
(Monitoring Service)

Communication
and Monitoring

Abbildung 3.1: Bezug zur NexusDS Architektur

Abbildung 3.1 ist ein Ausschnitt der untersten zwei Schichten der NexusDS Architektur,
vergleiche auch Abbildung 2.2. Weif$ hervorgehoben in der Communication and Monito-
ring Schicht definiert NexusDS den Monitoring Service, der hier als Auslastungsdienst
referenziert wird. Die Sensoren befinden sich, ebenfalls weifs hervorgehoben, in der Ne-
xusDS Architektur als Teilfunktion der Operator Execution Services in der Nexus Core
Schicht. NexusDS verwendet ein Service Konzept, iiber das die verschiedenen Dienste
gestartet und im Netzwerk verfiigbar gemacht werden [Kocog].

Der Auslastungsdienst hat die Aufgabe, dem Anfragedienst — in Abbildung 3.1 ebenfalls
weifd markiert — Ausfithrungsknoten fiir vom Anfragedienst vorgegebene Operatoren zu
liefern.

Abbildung 3.2 stellt die Zusammenhénge bei der Ausfithrung dar. Der Anfragedienst
erhidlt aus der Nexus Application Schicht NPGM-Graphen, die er zur Ausfithrung bringt.
Dafiir verwendet er den Auslastungsdienst, um geeignete Ausfithrungsknoten zu erhal-
ten, dargestellt durch die gestrichelte Verbindung. Damit der Auslastungsdienst dem

30

3.1 Uberblick

Nexus — " .
Application = | NPGM Graphl — | NPGM Graph

Schicht

O

Anfragedienst =~ |-

Service Manager

Nexus Core Y Service Manager
Schicht

Ausfiihrungsdienst Ausfiihrungsdienst

Operator Operator Operator Operator

-/

Y
Sensor
[

Y
Sensor
]

Communication

and Monitoring Auslastungsdienst

Schicht

Physische
Schicht Computer j [Computer

Abbildung 3.2: Ubersicht iiber die Ablidufe um Auslastungsdienst und Sensoren

Anfragedienst geeignete Knoten nennen kann, erhdlt er Messdaten von Sensoren, die
als Service auf jedem Ausfiihrungsknoten vom Service Manager gestartet werden. Der
Service Manager startet auch den Ausfiihrungsdienst, der vom Anfragedienst NPGM-
Graph-Fragmente zur Ausfithrung erhilt. Die Ausfiihrung erfolgt durch die Installation
und Ausfiihrung von Operatoren. In der Abbildung ist der Ausfiihrungsknoten selbst
nicht dargestellt; er entspricht der Reichweite des Service Managers.

31

3 Architektur des Auslastungsdienstes

3.2 Problemanalyse

Die Aufgabe des Auslastungsdienstes (AD) ist es, dem Anfragedienst (AFD) eine Auswahl
an Ausfiithrungsknoten zur Ausfithrung von Operatoren zur Verfiigung zu stellen. Die
Knoten miissen vom AFD vorgegebene Operatoren mit ihren Anforderungen an die
Ausfiihrungsumgebung und ihrer aktuellen Parametrisierung innerhalb der vom AFD
vorgegebenen Einschrankungen bzw. Leistungsanforderungen ausfiihren kénnen. Kom-
men mehr Knoten als angefordert infrage, wird eine Vorselektion nach in der Anfrage
enthaltenen Kriterien getroffen.

Damit ein Knoten fiir die Ausfithrung eines Operators geeignet ist, muss er einer Viel-
zahl unterschiedlicher Anforderungen entsprechen. Diese Anforderungen bestehen aus
den Plattformanforderungen des Operators, wenn dieser zum Beispiel nur auf einer be-
stimmten CPU-Architektur, einem speziellen Betriebssystem oder nur bei Vorhandensein
spezieller Softwarebibliotheken lauffihig ist. Diese Plattformanforderungen der Operato-
ren und die ihnen entsprechenden Plattformeigenschaften der Knoten sind statisch. Es
wird von der Annahme ausgegangen, dass sich weder die Anforderungen des Operators
noch die Plattformeigenschaften des Knotens tiber die Zeit &ndern. Die Anforderungen
und Eigenschaften sind harte Entscheidungskriterien. Entweder werden sie exakt erfiillt,
oder der Operator ist auf einem die Kriterien nicht erfiillenden Knoten definitiv nicht
lauffahig.

Zusitzlich hat ein Operator Anforderungen, die aufgrund verschiedener Einfliisse variabel
sind und von Knoten besser oder schlechter erfiillt werden koénnen. Diese Anforderungen
unterliegen zum Beispiel der aktuellen Konfiguration eines Operators oder den Einschran-
kungen durch den NPGM-Graphen (siehe Abschnitt 2.2). Als Veranschaulichung fiir
variable Anforderungen durch unterschiedliche Operatorkonfigurationen stelle man sich
einen Operator Matrixmultiplikation mit den Parametern Dimension 1 und Dimension 2
vor. Wird dieser Operator mit der Parametrisierung (1, 1) ausgefiihrt, ist der Anspruch an
einen Rechenknoten sehr gering, jedoch wiirde eine Parametrisierung mit extrem grofien
Werten fiir Dimension 1 und 2 sowohl die Anspriiche an den verfiigbaren Speicher als
auch an die verfiigbare Rechenzeit schnell anwachsen lassen.

Einschrankungen durch den NPGM-Graphen kénnen zum Beispiel dadurch entstehen,
dass ein NPGM-Graph eine maximal zuldssige Zeitspanne hat, um auf Eingaben durch
eine Ausgabe zu reagieren. Je nachdem, wie viele Operatoren in Reihe in diesem NPGM-
Graphen arbeiten, ist die verfiigbare Latenz pro Operator grofler oder kleiner. Neben dem
Abgleich der Kompatibilitdt anhand der statischen Anforderungen und Eigenschaften soll
der Auslastungsdienst auch Vorhersagen treffen konnen, welche Knoten fiir die Ausfiih-
rung bestimmter Operatoren geeignet sind. Die Operatoren konnen jedoch, abhédngig von
ihrer Parametrisierung, sehr unterschiedliche Laufzeiteigenschaften aufweisen. Zusétzlich

32

3.2 Problemanalyse

kann ein und derselbe Operator mit der gleichen Parametrisierung auf unterschiedlichen
Computern unterschiedlich performant arbeiten.

Um trotz diesem komplexen Problem moglichst gute Vorhersagen zu treffen, werden auf
allen Knoten Sensoren eingesetzt, die die Ausfithrung der Operatoren beobachten. Die
Sensoren leisten eine Inventur der Knoten, um die statischen Plattformeigenschaften zu
bestimmen, und sie sammeln laufend Daten tiber die Ausfithrung der Operatoren und
die Auslastung des Knotens.

Die Aufgabe des Auslastungsdienstes ist es, unter Zuhilfenahme von Messdaten Aussagen
tiber die Ausfithrung zukiinftiger Operatoren zu treffen. Anders ausgedriickt, muss der
Auslastungsdienst aus einer Menge von Knoten solche Knoten auswihlen, die fiir die
Ausfiihrung geeignet erscheinen. Fiir die Auswahl beziehungsweise fiir das Auffinden
von bestimmten Elementen aus einer Menge gibt es verschiedene Verfahren. So kann jedes
Element betrachtet und bewertet werden. Um den Aufwand zu verringern, werden in Da-
tenbanken {tiblicherweise Indexe angelegt, die haufig abgefragte Eigenschaften enthalten.
Sind mehrere Eigenschaften gemeinsam zu betrachten, kénnen multidimensionale Indexe
eingesetzt werden.

Wenn man davon ausgeht, das alle Knoten, die fiir einen Operator geeignet sind, dhnlich
sind kann man versuchen, mit Clustering Algorithmen die Knoten zu gruppieren und
dann Knoten aus dem richtigen Cluster auszuwéhlen.

Diese Ansétze haben jedoch jeweils Nachteile. Das Bewerten eines jeden Knotens kann sehr
aufwendig sein, da sehr viele Knoten verfiigbar sein koénnen, von denen jedoch ein Grofiteil
inkompatibel sein kann. Versucht man, die Auswahl iiber Indexstrukturen, zu treffen
kommt man schnell in kombinatorische Probleme. Die Anforderungen der Operatoren
und die Plattformeigenschaften der Knoten sind frei definierbar. Eine Indexstruktur tiber
diese unbegrenzt erweiterbaren Dimensionen hat potenziell sehr viele leere Eintrdge
fiir Knoten, die Eigenschaften nicht haben, und eine Unzahl von Dimensionen. Fiir
grofie Dimensionsanzahlen, die auch noch diinn besetzt sind, sind Indexe meist nicht
effizient. Hinzu kommt, dass sich manche Eigenschaften der Knoten hédufig &ndern und
andere statisch sind. Zum Beispiel unterliegt die Auslastung einer laufenden Verdnderung,
wahrend sich die CPU-Architektur eines Knotens nie dndert. Ein Teil dieser grofien
Indexstruktur miisste also laufend angepasst werden, wahrend andere Bereiche nahezu
statisch sind.

Bei der Verwendung von Clusteringverfahren werden Knoten, die nach bestimmten Krite-
rien dhnlich sind, zu Clustern zusammengefasst. Werden hierfiir zu wenige Eigenschaften
betrachtet, kommt es zu wenigen grofSen Clustern, die womoglich viele inkompatible
oder ungeeignet Knoten enthalten. Werden andererseits zu wenige Parameter betrach-
tet, kommt es zu vielen Clustern, die dann jeweils wieder getrennt betrachtet werden
miissen.

33

3 Architektur des Auslastungsdienstes

Sensordatenverarbeitung

Daten Knotenanfrageverarbeitung

Knotenanfragen ll l
vy

Sensor-
Sﬁftoemn- @ Anfrage einlesen:
Operator, Anforderungen
_h\\ Parameter,
— o . Optimierung
— Kompatibilitatsmatrix Kompatibilitats-
erstellen matrix @ Nach Plattform-
* anforderungen filtern
Knoten und
Knoten und ® Implizite operator-
Sooieroperr = kaoten-Oparaos " aoningge
Statistik Anforderungen
* e &) Implizite
[knoten-/operator-
Knotenleistungsclustering ™ |Knotenleistungs- - abhangige
Cluster Anforderungen
\¥/

Optimierungsranking

v

Abbildung 3.3: Architektur Auslastungsdienst

i)

\J

Da alle drei vorgestellten Ansitze fiir sich nicht geeignet scheinen, um die kombinatori-
sche Komplexitdt zu beherrschen, wird hier ein kombinierter Ansatz verwendet, indem
versucht wird, die Anzahl der zu betrachtenden Elemente moglichst frith zu verringern
und aufwendige Berechnungen nur noch auf kleinen Teilmengen durchzufiihren.

Hierzu werden die gesammelten Daten in verschiedenen Formen aufbereitet und ge-
speichert, um fiir die jeweiligen Aspekte einer Anfrage eine Entscheidungsgrundlage zu

bilden.

Um aus den unterschiedlichen Daten unterschiedlicher Quellen, unterschiedlicher Struktur
und Granularitit geeignete Knoten auszuwihlen, verarbeitet der Auslastungsdienst die

34

3.3 Daten

Anfragen, indem er die verfligbaren Knoten filtert. Die Filter bestehen zum einen aus
Anforderungen, die sich direkt aus der Anfrage ergeben und zum anderen aus statistischen
Daten iiber die Operatoren und ihre Parametrisierungen aus denen Anforderungen
bestimmt werden.

Der Auslastungsdienst ist in Abbildung 3.3 schematisch dargestellt. Er verfiigt tiber eine
Schnittstelle zur Anbindung der Sensoren, die in Abschnitt 3.4 vorgestellt werden, sowie
iber eine Schnittstelle zur Annahme von Knotenanfragen und zur Auslieferung von Ant-
worten auf die Knotenanfragen. Zunéchst werden in Abschnitt 3.3 die Daten vorgestellt,
die fiir die Auswahl und Vorhersage benottigt werden; sie entsprechen dem hellgrau dar-
gestellten Abschnitt in Abbildung 3.3. Die Daten werden aus den Sensordaten durch die
im linken, dunkelgrau dargestellten Abschnitt der Grafik gezeigten Verarbeitungsschritte
aus den Messdaten der Sensoren erzeugt. Auf die im rechten Abschnitt dargestellten
Knotenanfrageverarbeitungsschritte wird in Abschnitt 3.5 eingegangen.

3.3 Daten

Die verschiedenen zu speichernden Daten sind in Abbildung 3.3 sind im Abschnitt Daten
als getrennte Datenspeicher dargestellt. In den folgenden Abschnitten werden diese Daten
tiir die Kompatibilitdtsmatrix, die Knoten- und Operatorstatistik und die Daten fiir das
Knotenleistungsclustering jeweils kurz vorgestellt. Wie die Daten erfasst, berechnet und
gespeichert werden, wird dann in Abschnitt 3.4 erldutert.

3.3.1 Kompatibilitatsmatrix

Um die Kompatibilitdt eines Knotens zu einem Operator zu bestimmen, werden die Platt-
formanforderungen des Operators mit den Plattformeigenschaften des Knotens verglichen.
Wenn alle Anforderungen durch entsprechende Eigenschaften erfiillt sind, gilt ein Knoten
als kompatibel. Um bei einer Knotenanfrage nicht jeden Knoten einzeln tiberpriifen zu
miissen, wird eine Kompatibilitdtsmatrix erzeugt. Beim Hinzufiigen eines neuen Knotens
zum System, zum Beispiel beim Start des Knotens, werden seine Plattformeigenschaften
durch den Sensor ermittelt und im Auslastungsdienst werden diese mit den Anforderun-
gen aller Operatoren abgeglichen. Fiir den Vergleich werden aus dem Operatorrepository
alle Plattformanforderungen aller Operatoren abgerufen. Das Ergebnis der Uberpriifung
wird in die Kompatibilitatsmatrix eingetragen.

Steht ein Knoten nicht mehr zur Verfiigung, weil er zum Beispiel abgeschaltet oder
ausgefallen ist, wird sein Eintrag aus der Kompatibilitdtsmatrix entfernt. Knoten, die

35

3 Architektur des Auslastungsdienstes

Operator 1 Operator 2 ... Operator n
Knoten1 | 0 1 1 1
Knoten 2 | o 0 0 1
. 1 0 1 1
Knotenn | 1 0 o o

Abbildung 3.4: Beispiel Kompatibilitdtsmatrix

abgeschaltet werden, melden dies dem Auslastungsdienst, wahrend ausgefallene Knoten
anhand des Ausbleibens von Aktualisierungen erkannt werden.

Die Kompatibilitdtsmatrix ist eine Matrix tiber alle zur Verfligung stehenden Knoten und
alle Operatoren des Operatorrepositories. Die Matrix erlaubt ein schnelles Filtern von
Knoten, die zu den Plattformanforderungen eines Operators kompatibel sind. Bei einer
Kompatibilitdtsanfrage fiir einen Operator wird die Spalte des Operators selektiert, die
kompatiblen Knoten konnen direkt abgelesen werden. Siehe auch Abbildung 3.4.

3.3.2 Knoten- und Operatorstatistik

Um Vorhersagen tiber die zu erwartenden Leistungsdaten und den zu erwartenden
Ressourcenverbrauch eines Operators zu treffen, werden statistische Daten verwendet.
Die Auswertungen, die in Abschnitt 3.5.1 vorgestellt werden, arbeiten auf diesen Daten.

Die Sensoren, die in Abschnitt 3.4 vorgestellt werden, liefern dem AD einen Datenstrom,
der zuerst die statischen Knoteneigenschaften enthilt und danach fortlaufend aktuelle
Messwerte tibertragt. Der AD bereitet diese Daten auf und aggregiert sie fiir die spétere
Auswertung.

Die Statistiken werden nach Herkunft der Daten in vier Kategorien aufgeteilt und hier
der Ubersichtlichkeit halber getrennt betrachtet. Es sind die Knotenstatistik, die Opera-
torstatistik, die Knoten/Operatorstatistik und die Knoten/Knotenstatistik.

Die Knotenstatistik enthélt historische, aufaggregierte Daten zu den einzelnen Knoten
tiber ihre Auslastung (Load, Anzahl der Prozesse) sowie der durchschnittlichen und
maximalen Netzwerkauslastung. Neben den historischen Daten enthilt die Knotenstatistik
auch aktuelle Daten iiber die Auslastung und die verfiigbaren Ressourcen der Knoten
(Fest-, Arbeitsspeicher, verfiigbare Netzwerkkapazitat und verfiigbare Rechenleistung).

Die Operatorstatistik enthalt statistische Daten tiber den Ressourcenkonsum und die
Produktivitdt einzelner Operatoren, abhéngig von ihrer Parametrisierung. Hierfiir werden
die Daten pro Operator nach Parameter-Presets gruppiert und Parametrisierungen, die kei-
nem Preset entsprechen, auf dhnliche Presets abgebildet. Es werden jeweils Durchschnitts-,

36

3.3 Daten

Minimal-, Maximalwerte und die Varianz, also die typische Abweichung vom Durch-
schnittswert, pro Operator-Presetpaar gespeichert. Die Minimal- und Maximalwerte
erlauben die Bestimmung zu erwartender dufSerer Grenzen, die voraussichtlich nicht tiber-
oder unterschritten werden. Der Durchschnittswert kann zusammen mit der Varianz
verwendet werden, um einen Erwartungswert, der von AusreifSern bereinigt ist, fiir die
Werte zu bestimmen.

Die automatische Bestimmung von Ahnlichkeit zwischen Parametern und Presets ist keine
triviale Aufgabe, da eine Vielzahl von Parametern unterschiedlich grofsen Einfluss auf das
Leistungsverhalten eines Operators haben kann. Um irrelevante Parameter von der Ahn-
lichkeitsanalyse auszuschliefien, werden Operatorparameter vom Ersteller des Operators
als leistungsrelevant markiert und ausschliellich diese fiir die Ahnlichkeitsbestimmung
verwendet. Bei numerischen Parametern wird der Abstand zwischen einem Preset und
einer aktuellen Parametrisierung durch die Summe der Betrdge der Differenzen zwischen
jeweils gleichnamigen Parametern berechnet.

Bei relevanten Parametern, fiir die keine Distanz definiert ist, zum Beispiel String Pa-
rametern, miissen aktuelle und Preset-Parameter iibereinstimmen, um eine Abbildung
von aktuellen Parametern auf ein Preset zu erlauben. Ein Satz aktueller Parameter wird
auf ein Preset abgebildet, dessen relevante String Parameter tibereinstimmen und dessen
weitere relevante Parameter die kleinste Distanz aufweisen. In den Statistiken wird erfasst,
ob die Daten exakt einem Preset entsprechen oder einem Preset nur dhnlich sind. In der
Statistik werden jeweils fiir exakt auf ein Preset zutreffende Daten und fiir solche, die ihm
dhnlich sind, getrennt Statistiken gefiihrt.

Die Knoten/Operatorstatistik speichert aggregierte Daten iiber den Rechenzeitbedarf,
Ressourcenverbrauch, Latenz und die Produktivitdt von Operatoren auf einem Knoten.
Die statistischen Daten fiir verschiedene Knoten werden spidter anhand des Knotenleis-
tungsclusterings zusammengefasst, um eine breitere Datenbasis zu haben.

Die Knoten/Knotenstatistik speichert Daten tiber die Kommunikation zwischen zwei
Knoten. Sie soll Vorhersagen iiber den moglichen Netzwerkdurchsatz und die Netzwerk-
latenz ermoglichen. Da die laufende Vermessung und Beobachtung eines Netzwerkes
sehr stark von der Technologie und der Topologie abhingig ist, sei auf entsprechende
Ansidtze wie zum Beispiel den bereits in Abschnitt 2.3.1 vorgestellten Network Weather
Service verwiesen.

3.3.3 Knotenleistungsclustering
Das Knotenleistungsclustering fasst Knoten mit vergleichbarer zur Verfiigung gestellter

Rechenleistung in Klassen zusammen. Knoten, die die gleiche CPU-Architektur besitzen,
dhnliche Rechenleistungswerte erreichen sowie eine dhnliche Hardwareausstattung haben,

37

3 Architektur des Auslastungsdienstes

werden in eine gemeinsame Knotenklasse eingefiigt. Anhand der Knotenklasse konnen
statistische Daten tiber Operatorverhalten von einem Knoten auf einen anderen tibertragen
werden, da zu erwarten ist, dass sich Operatoren auf Knoten, die eine hohe Ahnlichkeit
sowohl in der Ausstattung als auch bei den bisherigen statistischen Ergebnissen haben,
bei der Ausfithrung von Operatoren dhnlich verhalten.

Durch die Ubertragung der statistischen Daten zwischen mehreren Knoten wird die
Datenbasis fiir die Vorhersagen grofser. Es ist so nicht notwendig, fiir jeden Operator mit
jeder Parametrisierung und jedem Knoten Tests durchzufiihren.

Die CPU-Architektur und Hardwareausstattung wird aus den Plattformeigenschaften
zu Beginn eines Sensordatenstromes bestimmt. Die Rechenleistungswerte konnen aus
Operatorausfiihrungen mit gleichen Parametern auf verschiedenen Knoten bestimmt
werden.

Alternativ zur reinen Beobachtung eines laufenden Systems kénnen auch Testoperatoren
auf allen Knoten ausgefiihrt werden, die unterschiedliche Aspekte des Knotens durch
Experimente bestimmen und als Produktivitdtskennzahl die Leistung des Knotens an-
geben. So konnte das System mit synthetischen Tests vorab trainiert werden und die
Ahnlichkeit der Rechner ohne die Unschirfe der zusitzlichen Einfliisse — wie Parametrisie-
rung, Datenquelle und Senke — bei der Verwendung von Operatoren zur Datensammlung
bestimmt werden. Nachteil der Datensammlung durch Experimente ist, dass diese zusétz-
liche Rechenzeit entweder vor Inbetriebnahme oder im laufenden Betrieb kosten. Bei der
Durchfithrung von Experimenten im laufenden Betrieb bestiinde wiederum ein Einfluss
durch den reguldren Betrieb, und seine Storung wére nicht auszuschliefien.

3.4 Sensordatenverarbeitung

Die im vorherigen Abschnitt vorgestellten Daten werden, wie in Abbildung 3.2 dargestellt,
von Sensoren gesammelt. Der Sensor hat die Aufgabe, die Plattformeigenschaften zu be-
stimmen, die Auslastung und Leistungsfahigkeit des Knotens sowie den Ressourcenbedarf
und die Produktivitit der auf ihm ausgefiihrten Operatoren zu beobachten.

Der in Abbildung 3.5 dargestellte Sensor wird vom Service Manager gestartet. Bei seinem
Start untersucht der Sensor die statischen Eigenschaften des Knotens und erstellt daraus
eine Liste von Plattformeigenschaften. Sobald alle Plattformeigenschaften vollstandig
bestimmt wurden, wird ein Sensordatenstrom zum Auslastungsdienst (AD) gedffnet und
die Liste der Plattformeigenschaften iibertragen. Der Sensor erhilt von den Operatoren,
die auf demselben Knoten ausgefiihrt werden, Leistungsmessdaten, die er sammelt und
an den Auslastungsdienst tibertragt.

38

3.4 Sensordatenverarbeitung

Ausfihrungsknoten

e Service Manager N

Ausfuhrungsdienst
‘ Operator Operator Operator
‘ Sensor 1 >

N _

Abbildung 3.5: Knoten, Framework, Sensor und Operatoren
*1 Datenstromschnittstelle zum Auslastungsdienst

Im laufenden Betrieb erfasst der Sensor regelméafig eine Ubersicht iiber die aktuellen
Auslastungsdaten des Knotens und die auf dem Knoten ausgefiihrten Operatoren und
tibertragt sie im Sensordatenstrom an den AD. Fiir den Knoten werden Daten wie
Speicher-, CPU-Auslastung und Datentransfer erfasst und fiir jeden ausgefiihrten Ope-
rator werden Daten iiber seinen jeweiligen Ressourcenkonsum und seine Produktivitat
abgefragt. Eine detaillierte Auflistung der erfassten Daten erfolgt in Abschnitt 4.1.2 fiir
den Knoten und in Abschnitt 4.1.3 fiir die Operatoren. Neben dem Auslastungsdienst
konnen auch weitere Anwendungen als Empfanger des Sensordatenstromes eingeftigt
werden. So konnen entweder weitere Monitoring- oder Lastkontrollaufgaben erfiillt wer-
den oder Operatoren konnen Messdaten eines Knotens als Steuergrofie verwenden, um
zum Beispiel ihre Verarbeitung an die aktuelle Auslastungssituation anzupassen. Die
Schnittstelle zwischen Sensor und Operator wird in 3.4.1 eingefiihrt.

Wenn die Ausfiihrungsumgebung auf einem Knoten beendet wird, meldet der Sensor das
Ende der Knotenverfiigbarkeit an den AD und beendet den Sensordatenstrom.

3.4.1 Operatorleistungsmessung

Jeder Operator verfiigt iiber eine Schnittstelle zum Sensor, die es ermoglicht, seine Pro-
duktivitét, seinen Ressourcenverbrauch, seine Verzogerung und Parametrisierung abzu-
fragen.

Der Ressourcenverbrauch eines Operators setzt sich aus verbrauchte CPU-Zeit pro Zeitein-
heit, belegter Arbeitsspeicher, belegter Festspeicher und Netzwerkbelastung zusammen.
Zusitzlich konnen die Programmierer der Operatoren noch eigene Messwerte definieren,
die vom Sensor iibernommen und mit den Operatordaten gespeichert werden. Ein Beispiel

39

3 Architektur des Auslastungsdienstes

fur zusétzlich definierte Messwerte ist die Messung von weiteren Indikatoren, wie zum
Beispiel der GPU-Leistung. Ein Operator, dessen Funktion sowohl die CPU als auch
die GPU benotigt, kann so fiir CPU und GPU getrennte Messwerte erfassen und tiiber
Einschrankungen Mindestanforderungen fiir diese stellen.

Da die Operatoren duflerst unterschiedliche Aufgaben haben konnen, ist eine allgemei-
ne Definition von Produktivitdt anhand von Eingabe und Ausgabevolumen nicht fiir
alle Operatoren sinnvoll. Daher ist die Produktivitat eines Operators eine einheitenlose,
operatorspezifische Grofie. Die Definition der Produktivitdt eines Operators und ihre
Berechnung obliegt dem Ersteller des Operators. Die Produktivitdtskennzahl soll die
Leistungsfahigkeit des Operators auf dem Knoten widerspiegeln. Dementsprechend ist
bei der Definition der Kennzahl darauf zu achten, dass sie unabhéngig von der Eingangs-
datenverfiigarkeit durch einen vorhergehenden Operator ist und nur von der Leistung
des Knotens abhédngt. Ein Negativbeispiel wire die Berechnung durch erzeugte Elemente
pro Zeit. Bei einem Operator, der nur auf Eingabedaten arbeitet, konnte die Produktivi-
tatskennzahl also beliebig schlecht werden, wenn keine Eingabeelemente verfiigbar sind.
Zweckdienlicher wire es in diesem Fall, CPU-Zeit pro Eingabeelement als Kennzahl zu
verwenden.

Wenn mehrere unterschiedliche Implementierungen eines logischen Operators vorliegen,
ist darauf zu achten, dass ihre jeweiligen Produktivitdtskennzahlen nach den gleichen
Berechnungsvorschriften erzeugt werden. So konnen die statistischen Daten fiir austausch-
bare Operatoren auf hoheren Architekturebenen verwendet werden, um die Auswahl zu
treffen, welche Implementierung eines Operators verwendet wird. Um die Vergleichbar-
keit erkennbar zu machen, wird die Produktivititskennzahl {iber eine ID identifiziert.
Diese ID wird zusammen mit den Produktivitdtskennzahlen bei der Erfassung der Opera-
tormessdaten gespeichert.

Wenn ein neuer Operator dem System hinzugefiigt wird, bestehen zwei Moglichkeiten.
Wenn der Operator eine neue logische Operation implementiert, ist sicherzustellen, dass
der Operator eine eindeutige, also noch nicht vorhandene ID fiir seine Produktivitéts-
kennzahl hat.

Ist der neue Operator jedoch eine weitere Implementierung fiir eine bereits im System
bekannte Operation, muss die Produktivitdtskennzahl den vorhandenen Operatoren ent-
sprechen. Es muss also durch einen Administrator tiberpriift werden, dass alle Operatoren,
die die gleiche logische Funktion implementieren, die gleiche ID und Berechnung fiir die
Produktivitatskennzahl verwenden. Eine abweichende Berechnung der ID konnte sonst
zu einer félschlichen Bevorzugung eines Operators fithren, da die Werte unterschiedlich
berechneter Produktivitdtskennzahlen nicht vergleichbar sind.

Gerade bei Echtzeitanwendungen ist es wichtig, Daten iiber die Verzogerung durch die
einzelnen Operatoren zu haben, um eine Gesamtlatenz der Berechnung bestimmen zu

40

3.4 Sensordatenverarbeitung

konnen. Jeder Operator gib daher als Messwert seine Latenz mit an. Je nach Operatortyp ist
ihre Bedeutung leicht unterschiedlich. So ist bei einem Operator, der nur Eingabeelemente
bearbeitet und direkt wieder ausgibt, die Latenz die Zeit zwischen dem Eintreffen und der
Ausgabe des Elementes. Wenn man jedoch einen Videobildgenerator als Beispiel nimmt,
der in einem festen Takt Bilder ausgibt, auch wenn keine neuen Eingaben vorliegen,
muss die Latenz anders berechnet werden. Im Fall des Videobildgenerators ist die Latenz
als die Zeitspanne zwischen dem Eintreffen neuer Daten und ihrer Auswirkung in der
Ausgabe definiert. Bei einem Selektionsoperator hingegen ist die Latenz die Zeitspanne
vom Eintreffen der Daten bis zum Zeitpunkt, zu dem die Selektionsentscheidung getroffen
wurde und an der Ausgabe anliegt.

Anhand von Basisoperatoren von NexusDS wird verdeutlicht, wie die Definition einer
Produktivitdtskennzahl aussehen kann. Die Basisoperatoren von NexusDS sind in [Dorog]
definiert. Fiir die Operatoren Selektion und Sortierung werden mogliche Produktivi-
tatskennzahlen angegeben. Fiir die weiteren Basisoperatoren erfolgt die Definition der
Produktivitatskennzahl analog.

Die Operation Selektion vergleicht die Objekte eines Eingangsdatenstroms mit einem
vorgegebenen Attribut oder sie vergleicht die Elemente zweier eingehender Datenstrome
paarweise. Es wird also Element 1 von Datenstrom 1 mit Element 1 von Datenstrom 2
verglichen. Elemente, fiir die der Vergleich wahr ergibt, werden ausgegeben. Eine Produkti-
vitdtskennzahl fiir diese Operation soll nun bewerten, wie leistungsfiahig ein Operator auf
einem Knoten ist. Es wird davon ausgegangen, dass zu jedem Zeitpunkt Datenelemente
im Eingang verfiigbar sind. Die Leistungsfdhigkeit des Knotens zeigt sich darin, wie
viele Objekte pro Zeiteinheit verglichen werden kénnen. Dabei ist zu beachten, dass der
Vergleich eines Attributs weniger aufwendig ist als der Vergleich mehrerer Attribute.
Als Produktivitdtskennzahl wird daher (Vergleiche/Zeit) vorgeschlagen. Hierbei gibt
Vergleiche die Anzahl der durchgefiihrten Vergleiche an, also zum Beispiel fiir zwei
Datenstrome mit jeweils 5 Elementen, fiir die 3 Attribute verglichen werden, 15. Zeit
ergibt sich aus dem Zeitraum, in dem die Anzahl der Vergleiche gezidhlt wurde. Dies ist
der Zeitraum seit der letzten Ubertragung der Messdaten. Die Messdaten kénnen hier
entweder nach x Elementen iibertragen werden oder zum Beispiel alle 30 Sekunden.

Die Operation Sortierung sortiert endliche Datenstrome oder unendliche Datenstrome,
tiber die Informationen zu einer Vorsortierung bekannt sind. Diese unendlichen Datenstro-
me konnen dann wiederum wie endliche Datenstrome behandelt werden. Da verschiedene
Sortierverfahren implementiert werden kénnen und anhand der Produktivitdtskennzahl
auf hoherer Architekturebene eventuell eine Auswahl der konkreten Implementierung
erfolgen soll, ist es sinnvoll, die unterschiedlichen Verfahren vergleichbar zu machen.
Es wird davon ausgegangen, dass die Sortierverfahren in-place-Verfahren sind, also die
zu sortierenden Objekte nicht innerhalb des Speichers verschoben werden miissen. Des-
halb wird der Aufwand dafiir nicht betrachtet. Bei Sortierverfahren steigt der Aufwand

41

3 Architektur des Auslastungsdienstes

fur die Sortierung mit der Anzahl der zu sortierenden Elemente und ist nicht, wie bei
der zuvor vorgestellten Selektion, linear. Um diesem Anstieg des Aufwands abhéangig
vom Sortierverfahren gentige zu tragen, ist der Vorschlag fiir die Produktivitdtskennzahl
von Sortieroperatoren (Elemente / (Aufwand * Zeit)). Es wird also die Anzahl der
Elemente um den durchschnittlichen Aufwand des Sortierverfahrens bereinigt und auf ein
einheitliches Zeitmaf3 gebracht. Die Produktivitdtskennzahl wird hier immer berechnet,
wenn eine Sortierung abgeschlossen ist.

Fiir beide angegebenen Operatoren gilt, dass das Warten auf Eingabeelemente nicht
mit in die Berechnung der Produktivitdtskennzahl einfliefen darf, da die Wartezeit
keinerlei Aussagewert iiber die Leistungsfahigkeit der Kombination von Operator und
Knoten hat. Die Angabe von Zeit ist daher immer ohne Wartezeiten an der Ein- oder
Ausgabewarteschlange zu verstehen.

3.5 Knotenanfragebearbeitung

Nachdem die notwendigen Daten fiir die Beantwortung von Knotenanfragen bereits
vorgestellt wurden, wird nun die Knotenanfragebearbeitung erldutert.

Eine Knotenanfrage vom Anfragedienst an den Auslastungsdienst nach Ausfiihrungskno-
ten besteht immer aus einem einzelnen Operator und Parametern fiir die Knotenanfrage.
Diese Parameter enthalten Leistungsanforderungen, eventuell weitere Anforderungen
wie Sicherheitsanforderungen oder Einschrankungen auf bestimmte Knoten. AufSerdem
wird die Anzahl der zuriickzuliefernden Knoten und eine Optimierungsreihenfolge fiir
den Fall, dass mehr Knoten verfiigbar sind, als angefordert wurden, angegeben.

Anhand des angeforderten Operators konnen die Plattformanforderungen aus dem Ope-
ratorrepository abgefragt werden. Die Leistungsanforderungen geben an, welche opera-
torspezifische Produktivitdtskennzahl erreicht werden soll. Alternativ zur Definition iiber
die Produktivitdtskennzahl konnen auch Leistungsangaben in Rechnergrofie wie verfiig-
bare CPU-Zeit, CPU-Geschwindigkeit, maximale Load und verfiigbarer RAM angegeben
werden. Wenn exakte Leistungsangaben — aufser der Produktivitdtsanzahl — angegeben
werden, wird die Vorhersage iiber die benétigten Werte anhand statistischer Daten um-
gangen. Dies ermoglicht es, Wissen tiber Leistungsanforderungen, das nicht innerhalb
des AD bekannt ist, explizit zu verwenden.

Die Anforderungsangaben bestehen aus Tripeln der Form (Name, Vergleich, Wert),
wobei der Name vom Typ String und der Vergleich aus {<, =, >, #} ist. Der Wert kann
entweder numerisch oder vom Typ String sein. Bei String Werten ist jedoch nur {=, #}
als Vergleich zuldssig.

42

3.5 Knotenanfragebearbeitung

Name Vergleich Wert
1 | Produktivitatskennzahl > 50
2 | Freier RAM > 1024
3 | Operator-Latenz < 100
4 | CPU-VendorID = GenuineAMD

Tabelle 3.1: Beispiele fiir Anforderungen

Tabelle 3.1 stellt beispielhaft vier solche Anforderungen dar. Anforderung 1 verlangt
eine operatorspezifische Produktivitdatszahl grofier 50. Es werden also ausschliefdlich
Knoten selektiert, die anhand der statistischen Daten fiir die gegebene Konfiguration des
Operators eine Produktivitdt > 50 erreichen. Die Produktivitdtskennzahl ist, wie bereits in
3.4.1 erldutert, eine einheitenlose abstrakte Maf$zahl.

Anforderung 2 fordert mindestens 1024 MB freien RAM; hierbei ist die Mafieinheit fiir
diesen Parameter MB. Anforderung 3 verlangt eine Operatorlatenz kleiner 100 ms, mit
ebenso impliziter Einheit. Die 4. Anforderung verlangt, dass die CPU-VendorID einen
bestimmten Wert hat, zum Beispiel um herstellerspezifische Fahigkeiten zu verwenden.

Die Optimierungsreihenfolge besteht aus geordneten Tupeln der Form (Name,
Optimierung), wobei Optimierung aus {minimieren, maximieren} ist. Optimierungsan-
gaben sind nur fiir numerische Werte moglich. Eine Optimierungsreihenfolge konnte
zum Beispiel ,,(CPU-Takt, Maximieren), (RAM, Maximieren), (Latenz, Minimieren)‘
sein. Die fiir die Knotenanfrage infrage kommenden Knoten werden im letzten Schritt
dementsprechend zuerst nach CPU-Takt (absteigend) sortiert. Knoten mit gleichem
CPU-Takt werden nach RAM (absteigend) sortiert und Knoten mit gleichem CPU-Takt
und RAM zusitzlich nach Latenz aufsteigend angeordnet.

OP1 OP1 OP1

v v v

Abbildung 3.6: Beispiel NPGM-Graph Ausschnitt mit mehrfacher, paralleler Ausfithrung
von Operator OP 1

Mit dem Parameter Anzahl der Knotenanfrage kann der Anfragedienst dem Auslas-
tungsdienst mitteilen, wie viele Operatoren der Anfragedienst zuriickliefern soll. Die

43

3 Architektur des Auslastungsdienstes

Anforderung von mehr als einem Ausfiithrungsknoten fiir einen Operator kann mehrere
Griinde haben. Zum einen konnen die Ausfithrungsknoten zur Auswahl verwendet wer-
den, der Anfragedienst kann also weitere Kriterien zur Selektion verwenden, die nur auf
seiner hoheren Architekturebene bekannt sind. Zum anderen kann fiir den Fall, dass der
Anfragedienst in seinem NPGM-Graphen mehrere gleiche Operatoren parallel ausfiihren
will, Anfrageaufwand gespart werden. Bei dem in Abbildung 3.6 dargestellten Ausschnitt
eines NPGM-Graphen konnten entweder vier Knotenanfragen an den Auslastungsdienst
gestellt werden oder stattdessen zwei Knotenanfragen, die jedoch fiir OP 1 eine Anzahl
von mindestens drei enthélt. Dies ist aber nur moglich, wenn alle Operatoren, die zu einer
Knotenanfrage zusammengefasst werden, iibereinstimmende Anforderungen haben.

3.5.1 Ablauf Knotenanfrageverarbeitung

Eine Anfrage nach geeigneten Knoten wird vom Auslastungsdienst in fiinf aufeinan-
der aufbauenden Schritten bearbeitet. Die Schritte 2 -5 sind eine schrittweise Filterung
der verfiigbaren Knoten mit dem Ziel, am Ende nur noch geeignete Knoten fiir die
Operatorausfiihrung in einer Liste zu haben.

Die Filterung erfolgt in einzelnen aufeinander aufbauenden Schritten, um den Berech-
nungsaufwand gering zu halten. So werden zuerst Schritte ausgefiihrt, die mit geringem
Berechnungsaufwand die Knotenmenge auf relevante Knoten einschranken. In den spéte-
ren Schritten werden dann Statistiken fiir einzelne Knoten ausgewertet, eine Operation,
die auf der vollstindigen Knotenmenge schon in kleinen Systemen zu Engpéssen fithren
wilirde.

Abbildung 3.3 auf Seite 34 stellt diese Schritte im rechten Drittel unter Knotenanfrageverar-
beitung in ihrem Ablauf dar.

Schritt 1: Sobald eine neue Knotenanfrage eintrifft, wird diese eingelesen und in die
Bestandteile Operator, Anforderungen, Operatorparameter und Optimierungsrei-
henfolge zerlegt. Die in der Knotenanfrage vorgegebenen Anforderungen werden
direkt um die Plattformanforderungen des Operators, die im Operatorrepository
verfiigbar sind, ergénzt.

Schritt 2: In diesem Schritt wird die Menge der Knoten anhand der Kompatibilitatsmatrix
gefiltert. Knoten, die nicht den Plattformanforderungen des Operators entsprechen,
werden nicht weiter betrachtet.

Schritt 3: Anhand der leistungsbezogenen Anforderungen des Operators und der Statis-
tik werden implizite operatorabhingige Anforderungen berechnet. Die impliziten

44

3.5 Knotenanfragebearbeitung

operatorabhdngigen Anforderungen geben ausschlieflich operator- und parametri-
sierungsabhéngige Leistungsanforderungen an. So sind die benotigte Netzwerkkapa-
zitdt oder der Speicherverbrauch primér operator- und parametrisierungsabhiangig
und nicht wie die benotigte CPU-Zeit von Knoteneigenschaften wie CPU-Architektur
und Takt abhdngig.

Um diesen Unterschied zu verdeutlichen, nehmen wir als Beispiel einen Operator,
der Videoframes erzeugt, wie er auch in Abbildung 2.1 auf Seite 20 als Rendering
Operator vorkommt. Als Parameter hat er unter anderem das Format der zu er-
zeugenden Videobilder in der Form (Héhe, Breite, Farbtiefe, Bildrate). Der
erzeugte Bilderstrom wird per Netzwerk ausgegeben. Es ist offensichtlich, dass in
diesem Beispiel die Kombination der Parameter das Ausgabedatenvolumen beein-
flusst, wahrend der verwendete Ausfithrungsknoten hingegen, solange er die Bilder
schnell genug berechnen kann, keinen Einfluss auf das Ausgabedatenvolumen hat.
Im Gegensatz zu der ausschliefilich operator- und parametrisierungsabhéngigen
Berechnung des Ausgabedatenvolumens ist die benotigte CPU-Zeit stark knotenab-
hédngig, da ein Knoten je nach CPU-Leistung ldnger oder kiirzer braucht, um die
gleiche Berechnung durchzufiihren.

Die impliziten Anforderungen ergeben sich aus den statistischen Daten fiir den
Operator mit seinem Preset. Wie in Abschnitt 3.3.2 beschrieben existieren fiir den
Operator und seine Presets Statistiken, die die Minimal-, Durchschnitts- und Maxi-
malwerte enthalten. Die impliziten Anforderungen entsprechend den Minimalwer-
ten aus der Statistik. Als Beispiel sei der minimale Arbeitsspeicherverbrauch aus der
Statistik fiir einen Operator OP, 128 MB. Ein Knoten, der aktuell nur einen freien
Arbeitsspeicher von 96 MB hat, kann diesen Anforderungen also nicht entsprechen.

Die in diesem Schritt errechneten Anforderungen werden verwendet, um die Men-
ge der verfiigbaren Knoten einzuschrianken. Knoten, die anhand ihrer aktuellen
Auslastungsdaten und ihrer statistischen Daten diese Anforderungen nicht erfiillen
konnen, werden herausgefiltert. Beim Widerspruch von expliziten Anforderungen
und den errechneten impliziten Anforderungen werden die impliziten verworfen,
ebenso wenn die Menge der verfiigbaren Knoten die Anzahl der angeforderten
Knoten unterschreitet.

Schritt 4: In diesem Schritt werden die kompatiblen Knoten aus dem vorherigen Schritt
anhand der Daten aus dem Knotenleistungscluster nach vergleichbarer Rechenleis-
tung gruppiert. Fiir jedes dieser Cluster wird, wenn fiir das Cluster entsprechende
Statistiken tiber die Ausfiihrungen eines Operators mit seiner aktuellen Parametri-
sierung vorhanden sind, berechnet, ob die Knoten ausreichend Rechenleistung zur
Verfligung stellen und wie hoch die aktuelle Systemauslastung maximal sein darf,
um den Operator ausfiithren zu kénnen.

45

3 Architektur des Auslastungsdienstes

Fiir Knotencluster, tiber die noch keine Statistiken vorhanden sind, konnte, sofern
fiir den Operator iiberhaupt Messdaten vorliegen, tiber die Produktivitdt anderer
Operatoren im Vergleich der Cluster abgeschitzt werden, ob die Knoten leistungsfa-
hig genug sind. Alternativ konnte auch ein Testlauf mit dem Operator und seiner
Parametrisierung gestartet werden. Beide Ansétze werden hier nicht weiter verfolgt.

Knoten, fiir deren Cluster noch keine Daten vorhanden sind, werden dem Anfra-
gedienst in der Antwort auf die Knotenanfrage getrennt von den vorgeschlagenen
Knoten mitgeteilt. Der Anfragedienst kann so entscheiden, ob fiir diese Knoten Sta-
tistiken erzeugt werden. Die Statistiken konnen zum Beispiel durch einen parallelen
Testlauf ohnehin anstehender Operationen erzeugt werden.

Anhand dieser impliziten, aus den statistischen Daten der Knotenleistungscluster ge-
wonnenen Anforderungen und der expliziten Anforderungen aus der Knotenanfrage
wird die Knotenmenge weiter gefiltert. Ergeben sich aus den impliziten Anforderun-
gen und den expliziten Anforderungen der Knotenanfrage Widerspriiche oder sollte
die Anzahl der Knoten unter die Anzahl der angeforderten Knoten fallen, werden
die impliziten Anforderungen aus diesem Schritt verworfen.

Schritt 5: Im abschlieffenden Schritt werden die Knoten, die nach den bisherigen Be-
rechnungen als geeignet gelten, nach den Parametern der Optimierungsreihenfolge
sortiert. Die Sortierung gibt in absteigender Reihenfolge die geeignetsten Knoten an.

Die ersten der angefragten Anzahl entsprechenden Knoten werden zusammen mit
ihren statistischen Daten, den aktuellen Auslastungsdaten, den Statistiken des Ope-
rators, den Statistiken aus der Knoten/Operatorstatistik sowie den Netzwerkdaten
des Knotens als Antwort an den Auslastungsdienst zurtickgeliefert.

3.6 Verteilte Ausfiihrung des Auslastungsdienstes

Bisher wurde der Auslastungsdienst als eine Einheit betrachtet. Diese logische Sicht
wird in diesem Abschnitt erweitert. Da NexusDS als verteiltes, ausfallsicheres System
konzipiert ist, muss auch der Auslastungsdienst diesem Paradigma folgen.

In einem verteilten System werden verschiedene Formen der Transparenz fiir die Vertei-
lung betrachtet. Als grundlegende Eigenschaften eines verteilten System gelten Ortstrans-
parenz, Zugriffstransparenz, Replikationstransparenz und Fragmentierungstransparenz
(vergleiche auch [Graos, S. 132]).

Hierbei steht die Ortstransparenz fiir den Zugriff auf Daten oder Dienste, unabhén-
gig von ihrem aktuellen Speicherort und von der Kenntnis einer ortsbasierten Adresse.

46

3.6 Verteilte Ausfiihrung des Auslastungsdienstes

Zugriffstransparenz steht fiir Zugriff ohne Datenkonvertierungsprobleme, Replikations-
transparenz sorgt fiir die automatische Replikation der Daten ohne weitere Interaktion
durch die Anwendung. Fragmentierungstransparenz erlaubt den Zugriff auf physisch
nicht zusammenhdngend oder am gleichen Ort gespeicherte Daten, ohne eine spezielle
Behandlung dafiir zu benétigen.

Nach aufien, also fiir auf den Auslastungsdienst zugreifende Anwendungen, sind alle
Transparenzen durch das Dienstekonzept von Nexus DS gegeben. Der Auslastungsdienst
kann tiber seine Netzwerkgruppe aufgefunden werden, und auf seine Daten wird nur
tiber seine Schnittstellen zugegriffen. Durch die Festlegung der Schnittstelle ist die Zu-
griffstransparenz gegeben. Die Replikation der Daten wird durch den Auslastungsdienst
erbracht und ist somit von aufSerhalb auch transparent.

Damit innerhalb des Auslastungsdienstes die Transparenzen erreicht werden, muss dieser
jedoch fiir die Replikation der Daten sorgen und selbst replizierbar sein, um Ausfélle oder
Lastspitzen zu iiberstehen.

Verteilte Sensoren
Verteilter Auslastungsdienst

JH— Daten-
aufbereitung

T

>

nfragen
-==p

\J
Anfrage-
verarbeitung

Daten-
annahme

Logische Sicht

Sensor

‘ | W

Auslastungsdienst Datenbank

vertaine B E%Eé Eé %
verteilte DB

Abbildung 3.7: Ubersicht Replikation des Auslastungsdienstes
Abbildung 3.7 stellt den replizierten Auslastungsdienst und die logische Sicht auf ihn

dar. Der bisher monolithisch dargestellte Auslastungsdienst wird in drei Komponenten
zerlegt. Jede der Komponenten kann je nach nach Bedarf mehrfach repliziert werden. Zur

47

3 Architektur des Auslastungsdienstes

Synchronisation der einzelnen Komponenten miteinander und zur Datenhaltung dient
eine Datenbank, die wiederum logisch eine einzelne Komponente darstellt, jedoch als
verteilte, replizierte Datenbank implementiert ist.

Der Ablauf im Auslastungsdienst stellt sich nun wie folgt dar: Sensoren verbinden sich
mit einem (durch die Dienstschnittstelle von NexusDS bestimmten) Datenannahme-
Auslastungsdienst. Sollten die verfiigbaren Datenannahmedienste iiberlastet sein, werden
weitere gestartet. Der Datenannahmedienst speichert die Daten zwischen und informiert
einen Datenaufbereitungsdienst dariiber, dass Daten verfiigbar sind und in die Datenbank
eingepflegt werden konnen.

Der Datenaufbereitungsdienst erzeugt die in Abschnitt 3.2 bereits vorgestellten Statistiken
und Auswertungen. Je nach Berechnungsaufwand kann auch der Datenaufbereitungs-
dienst repliziert werden, solange die Berechnungen getrennt durchfiihrbar sind. Die
Ergebnisse der Berechnungen werden in der Datenbank gespeichert und sind somit
unabhédngig von bestimmten Instanzen des Datenaufbereitungsdienstes verfiigbar. Bei
besonders aufwendigen Berechnungen, wie dem Knotenleistungsclustering, kann der
Datenaufbereitungsdienst asynchron zu samtlichen anderen Operationen arbeiten und
ein neues Clustering berechnen, das ein vorhandenes Clustering in der Datenbank erst
bei Fertigstellung ersetzt.

Der Knotenanfrageverarbeitungsdienst verarbeitet die Knotenanfragen nach bestimmten
Knoten, indem er die bereits aufbereiteten Daten aus der Datenbank abruft, filtert und
die geeigneten Knoten berechnet.

Aus Sicht des verteilten Knotenanfragedienstes ist die Datenbank wiederum eine logische
Einheit, die jedoch durch eine verteilte Datenbank bereitgestellt wird. Die Implementie-
rung solcher verteilten Datenbanken wiirde jedoch den Rahmen dieser Arbeit sprengen.
Hierfiir sei auf die entsprechende Literatur verwiesen [Oz99, Tanob].

48

Kapitel 4

Detailentwurf

Nachdem in Kapitel 3 ein Uberblick iiber die Architektur des gesamten Systems und
besonders iiber den Auslastungsdienst und die Sensoren gegeben wurde, wird in diesem
Kapitel auf die Details und genauen Verfahren der Sensoren und des Auslastungsdienstes
eingegangen.

In Abschnitt 4.1 werden die von den Sensoren gesammelten Daten spezifiziert und in
Abschnitt 4.2 ihre Speicherung.

Abschnitt 4.3 geht auf die Erzeugung und Speicherung der Kompatibilitdtsmatrix
ein. In Abschnitt 4.4 wird die Erzeugung der Knotenleistungscluster erldutert. Hier-
zu werden verschiedene Clusteringverfahren vorgestellt und bewertet. Schlieslich wird
der Aufwand fiir den verwendeten Algorithmus angegeben. Die Berechnung der
knoten-/operatorabhdngigen Anforderungen auf Basis des Knotenleistungsclusterings
wird in Abschnitt 4.5 erldutert. Zuletzt wird in Abschnitt 4.6 die Durchfiithrung des
Optimierungsrankings beschrieben.

4.1 Spezifikation der Sensormessdaten

In diesem Abschnitt werden die von den Sensoren auf den Knoten und in den Opera-
toren gesammelten Daten genauer spezifiziert. Die Sensoren sammeln Daten aus zwei
unterschiedlichen Quellen mit unterschiedlichem Fokus. Es werden Daten tiber den Kno-
ten selber und seine Ressourcen und seine Leistungsfahigkeit gesammelt sowie Daten
tiber die Operatoren, ihre Produktivitdt und ihren Ressourcenverbrauch. Zuerst wird die
Datenerfassung der Knoten erldutert und dann die Datenerfassung der Operatoren.

49

4 Detailentwurf

Parametername Datentyp
Hardware CPU-Architektur String
Maximaler CPU-Takt (in MHz) Float
Anzahl der CPUs Float
Arbeitsspeicher (in MiB) Float
GPU-Typ[ID] String
GPU-Speicher[ID] (in MiB) Float
Festspeicher (in MiB) Float
Software Betriebssystem String
Betriebssystem Variante String
Programm([ID] String
Programmversion[ID] String

Tabelle 4.1: Erfasste Plattformeigenschaften: Parametername und Datentyp

4.1.1 Plattformeigenschaften — statische Knotendaten

Die Plattformeigenschaften beschreiben die statischen Soft- und Hardware-Eigenschaften
des Rechenknotens. Sie werden zur Erkennung der Kompatibilitdt von Operatoren mit
speziellen Anforderungen, zur Zusammenfassung dhnlicher Rechenknoten und zur Be-
rechnung von Leistungsdaten verwendet.

Die Plattformeigenschaften sind statische Werte, die einmalig beim Start des Frameworks
auf dem Knoten erfasst und an den Auslastungsdienst gemeldet werden. Die Platt-
formeigenschaften lassen sich nach ihrer Herkunft in zwei Kategorien, in Hardware- und
Software-Eigenschaften, unterteilen. In Tabelle 4.1 werden zuerst die erfassten Hardware-
Eigenschaften und dann die Software-Eigenschaften aufgelistet. Eigenschaften, die mehr-
fach auftreten konnen, wie zum Beispiel mehrere GPUs (Grafikprozessoren) oder verfiig-
bare Softwarepakete, haben eine [ID] im Parameternamen, die die Mehrfachnennung ohne
Namenskonflikt ermoglicht und gleichzeitig unterschiedliche zusammengehorende Eigen-
schaften verkniipft. So steht zum Beispiel in Programm[ID,] der Name des Programms
und Programmversion[ID,] beschreibt die Version desselben Programms. Der Typ von
[ID] ist Float und wird bei jeder Verwendung von Null an um eins inkrementiert.

4.1.2 Dynamische Knotendaten

Neben den Plattformeigenschaften sammelt der Sensor regelmafig Daten tiber die ak-
tuelle Auslastung des Knotens. Anhand der gemessenen Werte werden die folgenden

50

4.1 Spezifikation der Sensormessdaten

Parametername Datentyp
CPU-Queue-Linge Float
freier Arbeitsspeicher (in MiB) Float
freier Festspeicher (in MiB) Float

Netzwerkvolumen seit letzter Messung (in MiB) Float
Zeit seit letzter Messung (in Sekunden) Float

Tabelle 4.2: Erfasste Knotenleistungsmessdaten

Vorhersagen getroffen: Die Messung des Netzwerkvolumens gibt Auskunft iiber die aktu-
elle Auslastung und als Differenz zu einem historischen Maximum auch {iiber die aktuell
freie Netzwerkkapazitdt. Die aktuelle Arbeits- und Festspeicherauslastung erlaubt eine
Vorhersage welche Speichermenge reserviert werden kann. Hingegen soll die Messung der
CPU-Auslastung zum einen den Verbrauch der bereits laufenden Operatoren bestimmen
als auch erlauben, die freien Rechenkapazititen fiir weitere Operatoren vorherzusagen.

Fiir die CPU-Auslastungsmessungen existieren verschiedene Verfahren. Ferrari und Zhouh
[FZ87] unterteilen sie in queueldngenbasierte (Anzahl der auf die CPU wartenden Pro-
zesse) und auslastungsbasierte (% CPU-Auslastung) Verfahren. Anhand von empirischen
Messungen kommen sie zum Schluss, dass die Messung der Queueldnge genauere
Vorhersagen erlaubt. Die besten Ergebnisse werden in der Untersuchung mit einem 4-
Sekunden-Durchschnitt von CPU+Speicher+Eingabe/Ausgabe-Queueldnge erzielt. Da
diese Messwerte in normalen Systemen nicht verfiigbar sind — Ferrari und Zhouh ver-
wendeten einen speziell angepassten Kernel zur Messung — wird hier nur die aktuelle
CPU-Queueldnge gemessen, die immer noch gute Ergebnisse erzielt. Die CPU-Queueldnge
lasst sich sowohl bei aktuellen Windows Betriebssystemen als auch bei Unix und Linux
Systemen vom Kernel auslesen.

Tabelle 4.2 listet die erfassten Werte nochmals auf und gibt die verwendeten Einheiten und
Datenformate wieder. Die Zeitdifferenz seit der letzten Messung wird zur Normalisierung
der Werte auf einheitliche Zeitabschnitte und zur Gewichtung der absoluten Werte in der
Statistik verwendet. Bei einem Messwert fiir das Netzwerkvolumen von 10 MiB* seit der
letzten Messung und einer Zeitdifferenz von 5 Sekunden wird also 2 MiB/s gespeichert.

4.1.3 Operatormessdaten

Fiir jeden Operator auf einem Knoten werden Leistungs- und Verbrauchsmessdaten
erfasst, um die Leistungsfahigkeit des Operators im Vergleich zwischen verschiedenen

"Mebibyte: Entsprechend Standard TEEE 1541-2002 [TEE0g]: 1 MiB = 220 Byte

51

4 Detailentwurf

Parametername Datentyp
Operator 1D String
Parametrisierung Struktur
Produktivitat Float
Produktivitatskennzahlen ID String
Latenz (Sekundenx*10~3) Float
CPU-Zeit seit letzter Messung (Sekundensx 1073) Float
belegter Arbeitsspeicher (in MiB) Float
belegter Festspeicher (in MiB) Float
Netzwerkvolumen seit letzter Messung (in MiB) Float
Zeit seit letzter Messung (in Sekunden) Float

Y. Lange der Input Queues * Float

Y Lénge der Output Queues ° Float
Operatorspezifische Messwerte[ID] Float

Tabelle 4.3: Erfasste Operatormessdaten

falls Input Queues im Operator vorhanden
bfalls Output Queues im Operator vorhanden

Knoten beurteilen zu kénnen und um daraus eine Vorhersage tiber die Leistungsfahigkeit
und den Ressourcenverbrauch eines Operators auf einem Knoten treffen zu konnen.

Da die erbrachte Leistung eines Operators im Allgemeinen von seiner Parametrisierung
abhédngt, wird neben der Produktivitdtskennzahl, wie in Abschnitt 3.4.1 vorgestellt, die
Parametrisierung des Operators erfasst. Zusatzlich zu den Produktivitdtskennzahlen
werden die vom Operatorprozess verbrauchte CPU-Zeit, der von ihm belegte Arbeits-
und Festspeicher sowie das Netzwerkvolumen seit der letzten Messung erfasst.

Die Operatoren in NexusDS konnen iiber Ein- und Ausgabequeues verfiigen. Die Queues
erlauben es, Daten als nicht blockierende Operation von einem Operator an einen anderen
weiterzugeben. Sofern der Operator iiber Ein- oder Ausgabequeues verfiigt, wird die
Lange dieser Warteschlangen gespeichert. Anhand der Daten iiber die Ein- und Ausgabe-
queueldngen kann der Scheduler eine Uberlastung beziehungsweise einen Flaschenhals
erkennen und durch Rescheduling beheben. So ist zum Beispiel eine durchgehend voll-
standig gefiillte Eingabequeue bei gleichzeitig leerer Ausgabequeue ein Hinweis, dass der
Operator mit der Verarbeitung der Eingabedaten tiberfordert ist.

Die erfasste Zeitspanne seit der letzten Messung dient wiederum der Normalisierung
und Gewichtung der Messdaten. Alle erfassten Operatormessdaten sind in Tabelle 4.3
zusammengefasst.

52

4.2 Speicherung der Sensordaten

4.2 Speicherung der Sensordaten

Die von den Sensoren gesammelten Daten (siehe vorheriger Abschnitt) werden iiber die
Sensordatenstromschnittstelle an den Auslastungsdienst iibertragen und hier aufbereitet
und gespeichert, um bei Anfragen nach geeigneten Knoten Auswertungen tiber diese
Daten durchfiihren zu koénnen.

Die Sensoren iibertragen regelmiflig ihre aktuellen Daten. Bei einer grofien Anzahl von
Knoten und damit Sensoren wiirde die vollstindige Speicherung hohe Anspriiche an die
Speicherkapazitat und die Rechenleistung des Auslastungsdienstes stellen. Zum einen
wiirden die Daten viel Speicherplatz benétigen und zum anderen wiirden Berechnungen,
die statistische Daten verwenden, grofse Datenmengen zu verarbeiten haben. Daher
werden die Sensormessdaten gefiltert und nach Moglichkeit verdichtet.

Im folgenden Abschnitt wird angegeben, welche Daten in welcher Verdichtung gespeichert
werden und iiber welche Zugriffspfade auf sie zugegriffen wird.

Im zweiten Abschnitt wird dann das Verfahren zur Historisierung, also zum Aussortieren
und Vergessen nicht mehr relevanter Daten vorgestellt.

4.2.1 Gespeicherte Daten und Zugriffspfade

Drei Auswertungen — Filterung nach Plattformanforderungen, Berechnung der opera-
torabhdngigen Anforderungen und Berechnung der knoten-/operatorabhdngigen An-
forderungen — verwenden die Daten der Sensoren. Sie haben jeweils unterschiedliche
Anforderungen an die Datengranularitit. Je nach Auswertung werden unterschiedliche
Zugriffsstrukturen auf teilweise gleiche Daten benétigt, um die gesuchten Daten effizient
aufzufinden.

In den folgenden Abschnitten werden zuerst die fiir die jeweiligen Auswertungen beno-
tigten Daten aufgefiihrt und die benotigten Zugriffsstrukturen angegeben.

Filterung nach Plattformanforderungen: Fiir die Filterung nach Plattformanforderun-
gen wird die Kompatibilitdtsmatrix, wie bereits in Abschnitt 3.3.1 vorgestellt, verwen-
det. Fiir die Berechnung der Kompatibilitdtsmatrix werden die statischen Plattform-
eigenschaften verwendet. Sie miissen daher dementsprechend vorgehalten werden.
In der Ubersichtstabelle 4.4 sind dies die Daten der ersten Zeile. Der Zugriff auf die
Daten erfolgt immer iiber eine KnotenID, die hier auch als Index verwendet wird.

Operatorabhingige Anforderungen: Fiir die operatorabhingigen Anforderungen wer-
den die Daten iiber den Ressourcenverbrauch und die Leistung der Operatoren
abhédngig von ihrer Parametrisierung benétigt. Einzelne Operatorausfithrungen

53

4 Detailentwurf

Daten Granularitat Indexe
Plattformeigenschaften statischer Datensatz Knoten-ID
2 | Operatormessdaten n-Bucket-(Min, @, Max) OP-ID, Konfiguration, Knoten-ID
Bucket, OP-ID, Konfiguration
3 | Knotenauslastung n-Bucket-(Min, @, Max) Knoten-ID, Bucket
und aktuelle Daten

Tabelle 4.4: Zusammenfassung der gespeicherten Sensormessdaten, ihrer Granularitat
und der Indexe fiir den Datenzugriff. Unterstreichungen in der Spalte Indexe
definieren jeweils einen kombinierten Index.

konnen starke Abweichungen aufgrund ihrer Eingangsdaten oder anderer Umge-
bungseinfliisse wie Knotenauslastung haben. Diese Ausreifer sind im einzelnen
nicht interessant. Fiir eine Vorhersage der benotigten Ressourcen und Leistung rei-
chen Minimal-, Durchschnitts- und Maximalwert des Ressourcenverbrauchs und der
Leistung. Die Ressourcenverbrauchsdaten der Operatoren sind in Tabelle 4.4 in der
zweiten Zeile zu finden. Der Zugriff erfolgt tiber die Kombination von OperatorID
und seiner Konfiguration. Es wird also ein kombinierter Index tiber OperatorID und
Konfiguration benétigt.

Knoten-/operatorabhingige Anforderungen: Zur Berechnung der knoten-/operatorab-
hingigen Anforderungen wird das Knotenleistungsclustering verwendet. Fiir die
Berechnung der knoten-/operatorabhédngigen Anforderungen anhand des Knoten-
leistungsclusterings werden Daten {iber den Ressourcenverbrauch und die Leistung
der Operatoren wie bei den operatorabhdngigen Anforderungen benotigt (Tabelle 4.4
Zeile 2). Die operatorabhédngigen Anforderungen werden tiber die Kombination von
OperatorID und Operatorkonfiguration angesprochen. Zusitzlich werden in dieser
Auswertung Daten iiber die Knotenauslastung hinzugezogen, um festzustellen, ob
der Knoten ausreichend freie Kapazitit hat. Die Knotenauslastungsdaten bestehen
sowohl aus statistischen Daten als auch aus den aktuellen Daten der Knoten. Da die
Sensoren laufend Messungen durchfiihren, kann durch ein solches Zwischenspei-
chern der aktuellen Auslastungsdaten verhindert werden, dass alle Knoten, die bei
einer Anfrage betrachtet werden, nach ihrer aktuellen Auslastung abgefragt werden
miissen. Die Knotenauslastungsdaten sind in der Ubersichtstabelle 4.4 in Zeile 3
dargestellt. Sie werden anhand eines Indexes iiber die KnotenID angesprochen.

Fiir die Erzeugung des Knotenleistungsclusterings als Hilfsstruktur fiir die
knoten-/operatorabhdngigen Anforderungen werden die statischen Plattformei-
genschaften sowie Informationen iiber die Berechnungsleistung der Knoten benétigt.
Die Berechnungsleistung eines Knotens ergibt sich aus den Produktivitdten der Ope-
ratoren auf diesem Knoten. Da verschiedene Konfigurationen von Operatoren im

54

4.2 Speicherung der Sensordaten

Allgemeinen nicht vergleichbar sind, wird fiir jeden Knoten ein Satz Durchschnitts-
werte pro Operator-Konfigurations-Tupel benotigt. Die exakten Daten einzelner
Operatorausfithrungen miissen hierfiir nicht vorgehalten werden. Alle hierfiir beno-
tigten Daten wurden schon durch vorhergehende Auswertungen gefordert. Sie sind
in der Tabelle 4.4 in Zeile 1 und 2 zu finden. Als Zugriffsstruktur kommt jedoch der
Zugriff tiber die KnotenID hinzu.

4.2.2 Zeitgranularitat und Historisierung

Da sich das System iiber eine ldngere Laufzeit verdndern kann, zum Beispiel beim Wechsel
eines Start- und Testbetriebes in einen reguldren Betrieb oder durch die Installation neuer
Operatoren und Anwendungen, ist es nicht sinnvoll, die historischen Daten beliebig lange
zu speichern. Alte Daten, die schon lange keinen Bezug mehr zum aktuellen System
haben, wiirden in den Statistiken nach wie vor Einfluss ausiiben.

Neue Daten‘

24h | 24h | 24h | 24h | 24h | 24h 7h ¥
,,,,,,,,,,,,,,,,,,,, %) %) %) %) %) %) %)

Tag -6 -5 -4 -3 -2 -1 0

Abbildung 4.1: Beispiel Bucket Statistik fiir 7 x 24 Stunden; das aktuelle Bucket enthalt
hier erst Daten von 7 Stunden.

Es ist wiinschenswert, die statistischen Daten in aggregierter Form vorzuhalten, um
Speicherplatz zu sparen, jedoch so, dass Daten, die eine bestimmtes Alter erreicht haben,
gezielt entfernt werden kdnnen. Bei einer einfachen Berechnung von Durchschnittswerten
wire es unmoglich, alte Werte wieder herauszurechnen, ohne die Originaldaten dafiir
vorzuhalten. Stattdessen wird ein Bucket-Verfahren angewandt, indem Daten eines Zeit-
abschnittes gemeinsam verdichtet werden. Als Beispielzeitraum sei die Statistikerhaltung
tiir eine Woche angenommen und die Bucketgrofse von 24 Stunden. Alle innerhalb von
24 Stunden anfallenden Daten werden in einem Bucket verdichtet (in diesem Fall Minimum,
Durchschnitt, Maximum pro Datensatz). Buckets, die dlter als eine Woche sind, werden ver-
worfen. Der Zugriff auf die Statistik erfolgt durch Durchschnittsbildung iiber alle Buckets,
wobei das aktuelle Bucket mit (Alter in Stunden) /24 gewichtet wird. Abbildung 4.1
verdeutlicht dies nochmals graphisch.

Im aktuellen System sind die Grofien der Buckets und die Lange der Historie an die
Gegebenheiten anzupassen. Sie sind abhédngig von der Verdanderungsrate des Systems,

55

4 Detailentwurf

also davon, ob das System einen relativ statischen Zustand hat oder haufig wechselnde
Anwendungen ausfiihrt. Ebenso ist die Laufzeit von Operatoren zu beachten, da es
nicht sinnvoll ist, bei lange laufenden Operationen bereits wahrend ihrer Ausfiihrung
die Messdaten zu verwerfen. Bei einem nahezu statischen System kann ein sehr grof3er
Zeitraum fiir die Historie gewahlt werden, wéahrend bei einen dynamischen System eher
kiirzere Zeitraume erfolgversprechend sind.

Die Daten der einzelnen Buckets werden, wie in Tabelle 4.4 auf Seite 54 gezeigt, in
einem Datensatz pro Bucket gespeichert. Fiir jeden Knoten werden also entsprechend der
Bucketanzahl Datensitze gespeichert. Ebenso wird fiir jedes Operator-Konfigurations-
Tupel ein Datensatz pro Bucket gespeichert.

Um den Wert des aktuellen Buckets zu bestimmen, gibt es zwei Moglichkeiten. Zum einen
kann bei Eintreffen neuer Daten der Wert des Buckets mit der Anzahl der Datensatze
mit dem neuen Wert als Durchschnitt verrechnet werden. Zum anderen koénnen alle
Datensidtze des Bucketzeitraumes gespeichert werden und jeweils ein Durchschnitt iiber
sie gebildet werden und dieser als Wert des aktuellen Buckets gespeichert werden. Der
erste Ansatz hat den Vorteil, dass sein Speicherverbrauch sehr gering ist. Es werden nur
der ohnehin gespeicherte Wert des aktuellen Buckets, die Anzahl der bisher gespeicherten
Datensitze sowie der neu zu integrierende Datensatz bendtigt. Beim zweiten Ansatz
miissen hingegen alle Datensétze, die bereits in das aktuelle Bucket eingegangen sind,
erhalten bleiben, um {iiber sie einen neuen Durchschnitt bilden zu kénnen. Aufgrund der
Speicherplatzersparnis wird dementsprechend der erste Ansatz verwendet. Es wird also
fur das aktuelle Bucket immer ein Zihler fiir den Messzeitraum den es bereits enthilt,
mitgefiihrt.

4.3 Erzeugung und Speicherung der Kompatibilitatsmatrix

Die Erstellung der in Abschnitt 3.3.1 eingefiihrten Kompatibilitdtsmatrix erfordert ein
Abgleichen der Plattformeigenschaften der Knoten mit den Plattformanforderungen der
Operatoren.

Beim Start des Auslastungsdienstes ruft dieser die Plattformanforderungen fiir alle Ope-
ratoren aus dem Operatorrepository ab und beantragt dort eine Benachrichtigung, um
bei Installation neuer Operatoren informiert zu werden. Die Plattformanforderungen der
Operatoren werden lokal im Auslastungsdienst zwischengespeichert, um einen effizienten
Zugriff auf sie zu ermoglichen.

Die Plattformeigenschaften eines Knotens werden beim Start des Knotens einmalig im
Sensordatenstrom an den Auslastungsdienst tibertragen und im Auslastungsdienst ge-
speichert.

56

4.3 Erzeugung und Speicherung der Kompatibilitatsmatrix

String: KnotenlID | Eigenschaftsname Eigenschaftswert
K1 CPU-Architektur x86
K2 CPU-Architektur amdé64

Float: KnotenID | Eigenschaftsname Eigenschaftswert
K1 Maximaler CPU-Takt 2400
K2 Maximaler CPU-Takt 1800

Tabelle 4.5: Beispieltabellen fiir String und Float Plattformeigenschaften

String: OperatorID | Eigenschaftsname Eigenschaftswert Vergleich
O1 CPU-Architektur x86 =
02 CPU-Architektur sparc #

Float: OperatorID | Eigenschaftsname Eigenschaftswert Vergleich
O1 Maximaler CPU-Takt 2000 >

Tabelle 4.6: Beispieltabellen fiir String und Float Plattformanforderungen

Die Datenhaltung fiir die Plattformeigenschaften besteht aus einer Tabelle pro Datentyp,
die jeweils die Spalten KnotenlD, Eigenschaftsname und Eigenschaftswert hat. Da die
Plattformeigenschaften nur zwei Datentypen enthalten konnen, String und Float, sind sie
durch zwei Tabellen beschrieben. Die Beispieltabellen 4.5 und 4.6 enthalten jeweils zwei
Operatoren mit unterschiedlicher CPU und Taktrate.

Die Plattformanforderungen der Operatoren werden in dhnlicher Form gespeichert, je-
doch enthalten beide Tabellen eine zusédtzliche Spalte, die einen Vergleich spezifiziert.
Der Vergleich kann bei Anforderungen vom Typ String = oder # sein und bei Float
Anforderungen =, <, >. Der Operator O1 in der Tabelle 4.6 erfordert eine x86 Architektur
und einen CPU-Takt, der grofser als 2400 Mhz ist.

OperatorID | KnotenID Kompatibel
O1 K1 True
O1 K2 False
O2 K1 True
O2 K2 True

Tabelle 4.7: Beispiel fiir die Speicherung einer Kompatibilitatsmatrix fiir die Operatoren
01, O2 und die Knoten K1, K2

57

4 Detailentwurf

Sobald die Plattformeigenschaften eines Knotens gespeichert wurden, wird fiir jeden in
den Tabellen mit Operatoranforderungen enthaltenen Operator {iberpriift, ob der Knoten
zu ihm kompatibel ist, also die Anforderungen erfiillt. Hierzu wird zuerst tiberpriift, ob
der Eigenschaftsname jeder Anforderung in den Eigenschaften des Operators vorkommt

und ob fiir diese Paare aus Plattformanforderung PA und Operatoreigenschaft OE gilt:
(OE.Eigenschaftswert PA.Vergleich PA.Eigenschaftswert) = True

Das Ergebnis dieser Uberpriifungen ist eine Matrix, die in einer Tabelle der Form von
Tabelle 4.7 gespeichert wird. Jedem Knoten-/Operatorpaar wird ein Boolescher Wert
zugeordnet, der angibt, ob das Paar kompatibel ist. Uber eine Anfrage wie in Listing
4.1 konnen alle zu einem Operator <AnfrageOperatorID> kompatiblen Knoten abgefragt
werden.

Listing 4.1 SQL Beispiel zur Abfrage kompatibler Knoten fiir <AnfrageOperatorID>

SELECT KnotenID FROM Kompatibilittsmatrix
WHERE OperatorID = <AnfrageOperatorID>
AND Kompatibel = TRUE;

4.4 Erzeugung des Knotenleistungsclusterings

Wie bereits in Abschnitt 3.5 eingefiihrt, dient das Knotenleistungsclustering dazu, Knoten
zu finden, deren Rechenleistung vergleichbar ist, um die statistische Datenbasis fiir
Operatormessdaten und damit die Leistungsvorhersagen zu verbessern, indem die Daten
vergleichbarer Knoten zusammengefiihrt werden.

Damit Knoten fiir die Ausfiithrung von Operatoren als vergleichbar gelten, werden hier
drei Voraussetzungen definiert:

Voraussetzung 1: gleiche CPU-Architektur und gleiches Betriebssystem
Voraussetzung 2: dhnliche Plattformeigenschaften
Voraussetzung 3: dhnliche Rechenleistung

Nach den Voraussetzungen vergleichbare Knoten werden durch einen Clustering-
Algorithmus gesucht, der anhand einer Distanzmetrik die Cluster berechnet. Die Eintei-
lung nach Voraussetzung 1 erfolgt iiber einen einfachen Vergleich der Eigenschaften. Bei
Ubereinstimmung alle Eigenschaften sind die Knoten grundlegend vergleichbar, ansonsten
nicht. Fiir die Eigenschaften 2 und 3 wird die Distanzmetrik gewichtet und dann anhand
dieser geclustert. Die Gewichtung der Eigenschaften 2 und 3 wird zunéchst auf jeweils
50 % festgelegt, liefse sich aber variieren, wenn entsprechende Messungen mit realen Daten
eine Verbesserung der Erkennungsgenauigkeit versprechen. Durch die 50 %-Gewichtung

58

4.4 Erzeugung des Knotenleistungsclusterings

der Plattformeigenschaften zu den Rechenleistungsdaten wird dafiir gesorgt, dass beide
einen gleich grofien Einfluss haben und dass nicht, wie im Falle ohne Gewichtung, eine
grofie Differenz in der Anzahl der Datensitze fiir die jeweiligen Voraussetzungen den
Einfluss der schwécheren verringert. Dies konnte dazu fiihren, dass eine Vielzahl an
Ausfiithrungsmesswerten eine geringe Anzahl an Plattformeigenschaften verdrangt und
diese mit verschwindend geringem Anteil in die Distanz eingehen.

Nach [HKo1] haben Clusteringverfahren im Allgemeinen zum Ziel, Punkte in einem mehr-
dimensionalen Raum, die gemeinsame Eigenschaften aufweisen, in Cluster einzuteilen, so
dass die Punkte eines Clusters grofle Ahnlichkeit aufweisen und unterschiedlich zu den
Punkten anderer Cluster sind.

Im Folgenden wird zuerst eine allgemeine Distanzmetrik fiir mehrdimensionale Punkte
definiert, dann werden verschiedene Clusteringverfahren vorgestellt und gegeneinander
abgewdgt und schliefslich wird der Algorithmus des gewdhlten Verfahrens angegeben.

4.4.1 Definition der Distanzmetrik

Als Distanzmetrik wird die , Distanzfunktion fiir Objekte unterschiedlicher Dimensionali-
tat” nach [HKoz1, S. 397], wie in Formel 4.1 dargestellt, verwendet.

Formel 4.1 Distanzfunktion fiir Objekte unterschiedlicher Dimensionalitat

Sie berechnet den Abstand d(i, j) zweier Punkte i und j. Fiir Dimensionen beziehungsweise
Plattformeigenschaften, die in einem Punkt vorhanden sind, im anderen jedoch nicht,

gilt 51.(].f) =0, sonst 6 = 1. Abhéngig vom Typ der Dimension wird dl(]f) unterschiedlich

ij
berechnet.

(f)

Fiir die hier verwendeten Datentypen String und Float ergibt sich dl.j

und 4.3.

gemafs Formel 4.2

Formel 4.2 Distanzfunktion fiir String Werte

f) 0, wenn X;s = Xjs

v 1, wenn xjs # xjf

59

4 Detailentwurf

Formel 4.3 Distanzfunktion fiir Float Werte”
g — Jxip=xp]

ij — max—min

?Gegentiber [HKo1] leicht vereinfachte Notation

In den Formeln sind x;¢ und x;f die Werte von i respektive j der Eigenschaft f mit max und
min als Maximum und Minimum des Wertebereiches. Sie werden festgelegt, indem der
hochste und niedrigste jemals betrachtete Wert fiir eine Eigenschaft gespeichert wird.

Nachdem die allgemeine Berechnung einer Distanzmetrik vorgestellt wurde, muss dies
noch auf die drei Voraussetzungen in Formel 4.4 angewandt werden. Formel 4.4 be-
schreibt die Distanz dy, y, zweier Knoten ka und kb. Voraussetzung 1 (d;) ist ein hartes
Ausschlusskriterium, wiahrend Voraussetzung 2 (d;) und Voraussetzung 3 (d3) gewichtet
eingehen.

Dadurch, dass Voraussetzung 1 als hartes Kriterium verwendet wird, haben Knoten,
die nicht die gleiche CPU-Architektur und das gleiche Betriebssystem haben, immer
eine maximal Distanz. Es wird also abgebildet, dass diese Knoten nicht miteinander
vergleichbar sind.

Die Berechnung von dy, d, und d3 erfolgt jeweils nach Formel 4.1.

Formel 4.4 Distanzfunktion fiir Clustering tiber

1 1
A kp = Max {dl, <2d2 + 2d3> }

4.4.2 Clusteringverfahren

Ein fir das Clustering von Knoten mit dhnlicher Leistung geeignetes Verfahren muss
mehrere Dinge leisten. Da Vorhersagen fiir alle Knoten eines Clusters anhand der inte-
grierten Daten des Clusters getroffen werden, konnen Knoten, die extreme Werte haben,
die Vorhersage stark verschlechtern. Zusitzlich besteht das Problem, dass die Daten des
Systems nicht statisch sind, sondern die Leistungsdaten regelméfSig aktualisiert werden
und somit auch das Clustering aktualisiert werden muss.

Die Anforderungen an das Clusteringverfahren sind daher

1. Einteilung in Cluster dhnlicher Leistungsfahigkeit

60

4.4 Erzeugung des Knotenleistungsclusterings

2. Genauigkeit
3. Geschwindigkeit

Die Anforderung 1, das Clustern von Objekten, die alle zueinander eine grofiere Ahnlich-
keit haben als zu anderen Objekten, wird im Allgemeinen von Partitionierungsverfahren
und von hierarchischen Verfahren geleistet.

Andere tiiblichen Verfahren wie dichtebasierte und modellbasierte Verfahren werden
hier hingegen nicht weiter betrachtet, da sie fiir den Anwendungsfall keine Vorteile
versprechen. Dichtebasierte Verfahren eignen sich besonders, um nichtkompakte Cluster
zu finden, die beliebige Formen haben. Hier werden jedoch Cluster von Knoten gesucht,
die alle einander sehr dhnlich sind, also rdumliche Nihe aufweisen. Modellbasierte
Verfahren setzen ein zuvor definiertes Modell voraus, dem die Daten angendhert werden.
Ein solches Modell ist hier jedoch nicht vorhanden.

Zunidchst werden Partitionierungsverfahren vorgestellt und dann hierarchische Verfahren,
um daran ihre Eignung nach den Anforderungen 2 und 3 abwéigen zu kénnen.

Partitionierungsverfahren arbeiten, indem sie die Objektmenge in eine gegebene Anzahl k
von Clustern aufteilen und durch Verschieben von Objekten zwischen den Clustern eine
bessere Aufteilung suchen. Eine gute Partitionierung ist erreicht, wenn Objekte innerhalb
einer Partition dhnlicher zueinander sind als zu Objekten anderer Partitionen.

Nachteile sind, dass heuristische Verfahren je nach Anfangsverteilung auf die Cluster
zu unterschiedlichen Ergebnisclustern kommen kénnen und dass die Anzahl der zu
erzeugenden Cluster vorher festgelegt werden muss.

Als Beispiele fiir Partitionierungsverfahren werden der k-Means- und der k-Medoids-
Algorithmus vorgestellt.

k-Means ist ein Clustering-Algorithmus, der als Eingabe eine Menge von Objekten
und eine Anzahl k der Clustern bekommt. Durch Festlegung der Schwerpunkte
fur jedes der k Cluster durch ein zuféllig gewédhltes Objekt wird eine Anfangs-
verteilung geschaffen. In jedem weiteren Schritt werden den Clustern die ihrem
Schwerpunkt ndchsten Objekte zugeordnet und der Schwerpunkt der Cluster neu
als Durchschnittswert alle enthaltenen Objekte berechnet. Die Schritte Zuordnung
und Neuberechnung der Schwerpunkte werden wiederholt, bis entweder eine Iterati-
onsgrenze erreicht ist oder ein Konvergenzkriterium, wie die mittlere quadratrische
Abweichung in Formel 4.5, konvergiert. E ist die Summe der quadratischen Abwei-
chung aller Objekte, p ist die Koordinate eines Objektes und m; der Mittelpunkt des
Clusters i.

61

4 Detailentwurf

Formel 4.5 Quadratische Abweichung [HKoz1, S. 402]

k
E=Y"Y |p—ml

i=1 PGCI'

k-Medoids Im Gegensatz zum k-Means-Verfahren werden in k-Medoids Cluster durch
ein Medoid-Element, also ein reales Objekt des jeweiligen Clusters, statt durch den
Durchschnittswert aller Elemente des Clusters repréasentiert. Als Konvergenzkri-
terium wird der absolute Fehlerwert in Formel 4.6 verwendet; o; ist hierbei das
Medoid.

Der k-Medoids-Algorithmus testet ausgehend von einer Anfangsverteilung und
durch Zuteilen aller Objekte zum ndchsten Medoid, ob das Ersetzen des Medoids
eines Clusters durch ein anderes Objekt den absoluten Fehlerwert verringert. Die
Ersetzungen werden entweder fiir eine festgelegte Anzahl an Iterationen fortgesetzt
oder bis keine Ersetzungen mehr stattfinden, also der Fehlerwert stabil wird.

Formel 4.6 absolute Abweichung [HKo1, S. 405]

k
E=)) Ip—of
=1 peC;

peC

Der Hauptunterschied zwischen k-Means und k-Medoids ist ihre Sensibilitdt gegentiber
Ausreifsern. Objekte mit extremen Werten beeinflussen den Durchschnitt eines Clusters
stark, wahrend ihr Einfluss auf ein Medoid eher gering ist, da sie aufgrund ihrer extremen
Werte nicht selbst zum Medoid werden. Die beiden Verfahren skalieren schlecht fiir gro-
3ere Datenmengen. Haufig wird stattdessen ein Clustering fiir eine zuféllige Untermenge
der Daten, ein sogenanntes Sample, durchgefiihrt und der Rest der Daten den so gefunden
Clustern zugeordnet.

Im Gegensatz zu den Partitionierungsverfahren arbeiten hierarchische Verfahren entwe-
der zusammenfassend oder aufteilend statt mit einer festen Anzahl von Clustern. Die
zusammenfassenden Verfahren fangen mit jedem Objekt in einem eigenen Cluster an
und vereinigen sukzessive dhnliche Cluster, bis entweder nur noch ein Cluster {iibrig
bleibt oder eine Abbruchbedingung greift. Die aufteilenden Verfahren starten mit einem
einzigen Cluster, das alle Objekte enthélt und in jedem Schritt aufgeteilt wird, bis alle
Objekte in einzelnen Clustern sind oder wiederum eine Abbruchbedingung greift. Die
beiden Verfahren werden in Abbildung 4.2 in Form eines Dendrogrammes verdeutlicht.

62

4.4 Erzeugung des Knotenleistungsclusterings

Vereinigendes Verfahren
Schritt: 0 1 2 3 4

“ A ’9\

e A,B,C@
€

cD
Og ot

-
Schritt: 4 3 2 1 0
Aufteilendes Verfahren

Abbildung 4.2: Beispiel Dendrogramm: Clustering von A, B, C, D, E fiir vereinigendes
Verfahren (oben) und aufteilendes Verfahren (unten). Vergleiche [HKo1]

4.4.3 Bewertung und Auswahl der Clusteringverfahren

Der Berechnungsaufwand bei hierarchischen Verfahren ist geringer als bei Partitionie-
rungsverfahren, da einmal getroffene Vereinigungs- oder Aufteilungsentscheidungen
nicht mehr revidiert werden konnen und daher in weiteren Schritten nicht mehr betrach-
tet werden miissen. Dies stellt jedoch auch den grofien Nachteil dar, da nicht optimale
Entscheidungen nicht mehr {iberarbeitet werden konnen. Der Nachteil der Partitionie-
rungsverfahren ist, dass bei Start des Algorithmus die Anzahl der gewiinschten Cluster
bekannt sein oder aber der Algorithmus mehrfach fiir verschiedene Clusteranzahlen
angewandt werden muss.

Im direkten Vergleich zwischen Partitionierungsverfahren und hierarchischen Clustering-
verfahren ergibt sich Folgendes fiir die drei Anforderungen

Einteilung in Cluster dhnlicher Leistungsfdhigkeit: Kann von beiden Verfahren geleis-
tet werden; das hierarchische Verfahren ist jedoch flexibler beziiglich der Anzahl
der Cluster und kann sich somit eher an aktuelle Anforderungen anpassen.

63

4 Detailentwurf

Genauigkeit: Hierarchische Verfahren unterliegen keiner Veranderung durch zuféllige
Anfangsverteilungen und sollten daher stabilere und genauere Ergebnisse erzeugen.

Geschwindigkeit: Hierarchische Verfahren miissen nach jedem Vereinigungsschritt we-
niger Elemente betrachten und ihre Laufzeit ist fest vorhersagbar, wahrend Partitio-
nierungsverfahren im Allgemeinen in jedem Schritt alle Elemente neu betrachten
miissen und sehr lange Laufzeiten haben konnen, bis eine stabile Verteilung, vor
allem bei grofien Anzahlen von Elementen, erreicht ist.

Da alle drei Anforderungen fiir den Einsatz eines hierarchischen Verfahrens sprechen,
wird ein solches verwendet. Das eingesetzte Verfahren ist ein vereinigendes, hierarchi-
sches Verfahren, dass jeweils die Cluster mit dem geringsten Abstand der Schwerpunkte
vereinigt. Durch dieses Vereinigungskriterium werden moglichst kompakte Cluster erzielt.
Die so erzeugten Cluster entsprechen der Zielsetzung von Clustern, deren Objekte alle
zueinander dhnlicher sind als zu den Objekten anderer Cluster.

Um eine moglichst hohe Flexibilitdt zu erhalten, wird die Clusterbildung nicht an einem
bestimmten Punkt abgebrochen. Vielmehr werden alle Vereinigungsstufen durchgefiihrt
und gespeichert, bis die Knoten vollstindig vereinigt sind. Anhand der gespeicherten
Clusteringlevel kann spéter eine beliebige Clustergranularitit ausgewahlt werden.

Zur Auswahl eines geeigneten Clusteringniveaus wird pro Ebene von der vollstandig
vereinigten Clusterung aus getestet, in wie vielen unterschiedlichen Clustern sich die in
den vorherigen Schritten selektierten Knoten befinden, bis eine Ebene mit der gewtiinschten
Granularitdt gefunden wurde. Die gewiinschte Granularitdt kann von unterschiedlichen
Faktoren abhidngen. Da mit der Granularitit und damit der Clustergrofie direkt die
Vorhersagequalitidt einhergeht, jedoch der Berechnungsaufwand fiir eine Vorhersage mit
zu betrachtender Clusteranzahl steigt, kann so je nach verfiigbarer Rechenleistung und
gewiinschter Vorhersagequalitit ein Trade-Off getroffen werden. Zusétzlich kann auch
Wissen tiber die Systemumgebung verwendet werden, wie zum Beispiel die Kenntnis, dass
es unwahrscheinlich ist, mehr als 10 oder 100 unterschiedliche Rechnerkonfigurationen in
der Menge der verfiigbaren Knoten zu haben. Dementsprechend ist es nicht sinnvoll, fiir
mehr als die Anzahl der unterschiedlichen verfiigbaren Knotentypen eigene Vorhersagen
zu berechnen.

4.4.4 Algorithmus

Vollstandiges hierarchisches Clustern erfordert n — 1 Vereinigungen von Clustern [Hasog,
S. 523]. Fiir jede Vereinigung miissen die beiden Cluster mit dem geringsten Abstand bzw.
der geringsten Undhnlichkeit gefunden werden. Nach [HKo1] erfolgt dies im Allgemeinen
durch Berechnung einer Distanzmatrix, die Ahnlichkeit oder Unihnlichkeit aller Cluster
zueinander angibt. Da die Distanzen symmetrisch sind, also dist(a, b) = dist(b,a), und

64

4.4 Erzeugung des Knotenleistungsclusterings

die Knoten zu sich selbst immer den Abstand o haben, ist nur der Teil unterhalb oder
der Teil oberhalb der Diagonale der Matrix belegt. Die Diagonale selbst ist aufgrund
der Symmetrie immer o und darf in der Distanzmatrix nicht belegt werden. Wiirden die
Distanzen der Knoten zu sich selbst in der Matrix gespeichert, wiirde der Algorithmus
zur Vereinigung der Knoten mit dem geringsten Abstand versuchen, Knoten mit sich
selbst zu vereinigen.

In Abbildung 4.3 links ist eine solche Distanzmatrix fiir fiinf Knoten zu sehen. Fiir
n Knoten hat die Distanzmatrix Z;:ll (j) Eintrage, entsprechend der Anzahl an Werten
unter oder {iber der Diagonale.

kr{o0 - — — -— krio - — — -—
k2{d 0 - — -— k2(d 0 - — -
k3{d d 0 — - k3d d 0 — -—
kd|d d 4 0 - cljld d d 0 -—
k5|d d d d 0 o

k1 k2 k3 k4 k5 k1 k2 k3 c1 —

Abbildung 4.3: Beispiel Distanzmatrix fiir die Knoten k1 - k5 und nach der Vereinigung
von k4 und k5 zu c1

In jedem Vereinigungsschritt werden zwei Knoten beziehungsweise Cluster entfernt und
durch ein neues Cluster ersetzt. Hieraus folgt, dass bei n Knoten nach n — 1 Vereinigungen
nur noch ein Cluster {ibrig bleibt. Bei einem einzigen Cluster ist die Distanzmatrix leer.
Dementsprechend hat die Distanzmatrix nach s Schritten 7:_15 (j) Eintrage, wenn die
vollstandige Matrix Schritt 1 entspricht. Abbildung 4.3 rechts zeigt eine Distanzmatrix
nach dem ersten Vereinigungsschritt entsprechend s = 2.

Da die Vereinigung n — 1 mal durchgefiihrt wird, ergibt sich die Gesamtanzahl der
Vergleiche nach Formel 4.7.

Formel 4.7 Anzahl der Distanzen fiir alle Distanzmatrizen eines Clusterings fiir n Knoten

n—1n—s
Anzahl Distanzen =)) " j
s=1 j=1

Da in jedem Schritt s jedoch nur zwei Cluster verschmolzen werden, bleiben die Distanzen
zwischen den anderen Clustern gleich und konnen direkt aus der ersten, vollstindigen
Distanzmatrix iibernommen werden. Dementsprechend ist nur im ersten Schritt eine
vollstandige Distanzmatrix fiir n Knoten zu berechnen.

65

4 Detailentwurf

Fiir jeden Vereinigungsschritt sind dann die Distanzen des neu erzeugten Clusters zu
allen anderen Knoten und Clustern, die in der aktuellen Matrix noch vorhanden sind, zu
berechnen. Es miissen also n — 1-mal die Distanzen eines neu erzeugten Clusters zu allen
anderen Clustern berechnet werden. Da nach jedem Vereinigungsschritt die Grofse der
Distanzmatrix um 1 gesunken ist, miissen n — 1-mal n — s — 1 Distanzen neu berechnet
werden, wobei s wieder den Vereinigungsschritt, beginnend bei 1 fiir die vollstandige
Distanzmatrix, angibt. Da s von 1 bis n — 1 lduft, entspricht die Anzahl der benétigten
Vergleiche Formel 4.8.

In Abbildung 4.3 entsprechen die in diesem Vereinigungsschritt neu berechneten Distan-
zen den fett gedruckten Distanzen der rechten Distanzmatrix.

Formel 4.8 Aufwand fiir vollstandiges hierarchisches Clustern mit Wiederverwendung
bereits gespeicherter Distanzen.

n—1 n—2
Anzahl Distanzen = Z s + Z S
s=1 s=1

4.4.5 Aufwandsreduzierung

Bei einem System, das laufend Anderungen erfahrt, sei es durch neue und abgeschaltete
Knoten oder durch aktuelle Leistungsmessdaten, ist eine standige Aktualisierung — gleich-
bedeutend mit einer Neuberechnung der Cluster — sehr aufwendig. Eine Neuberechnung
des gesamten Clusterings ist wiederum sehr aufwendig.

Wenn man sich die Formel 4.4 auf Seite 60 fiir die Distanzfunktion ansieht, stellt man fest,
dass die Distanz bei unterschiedlicher CPU und unterschiedlichem Betriebssystem immer
1, also maximal ist. Diese Knoten werden also erst in den letzten Schritten des Clusterings
vereinigt beziehungsweise miissen fiir unsere Auswertungen nie als gemeinsames Cluster
betrachtet werden, da die Knoten sowieso als nicht vergleichbar gelten.

Teilclustering: Anstatt eine vollstindige Distanzmatrix aufzubauen und zu verglei-
chen, werden unvergleichbare Knoten (nach Voraussetzung 1) fix auf den Wert
unvergleichbar gesetzt und nicht weiter gemeinsam betrachtet. Da die Beziehung
unvergleichbar transitiv ist, konnen vergleichbare Knoten unabhéngig von allen
Knoten, zu denen sie unvergleichbar sind, betrachtet werden. Dies entspricht einem
getrennten Clustering fiir jede der disjunkten Mengen von kompatiblen Knoten.

66

4.5 Berechnung der knoten- und operatorabhéngigen Anforderungen

Selektive Neuberechnung: Direkt aus dem Teilclustering folgt, dass bei Anderungen
von Knoten eines der Teilcluster nicht alle Cluster neu berechnet werden miissen,
sondern nur das Clustering fiir die nach Voraussetzung 1 kompatiblen Knoten.

Verzogerte Neuberechnung: Als weitere Optimierung des Aufwands wird eine an Verfah-
ren zum Clustern grofler Datenmengen angelehnte Technik verwendet. In Clustering-
Algorithmen fiir Datenmengen, die zu grofS sind, um sie geeignet mit einem
Clustering-Algorithmus zu bearbeiten, der alle Elemente miteinander vergleicht,
wird sogenanntes Sampling verwendet. Beim Sampling werden nicht alle Daten-
punkte betrachtet, sondern zuerst nur eine moglichst reprasentative, haufig aber
auch nur zufillig ausgewdhlte Teilmenge. Auf dieser Teilmenge wird nun ein tibli-
cher Clustering-Algorithmus angewandt und es werden die so festgelegten Cluster
verwendet, um ihnen die restlichen Datenpunkte zuzuordnen.

Um die Probleme mit gednderten oder neuen Knoten im Knotenleistungsclustering
zu verringern, wird, statt bei jedem neuen oder gednderten Knoten das Clustering
neu zu berechnen, das bisherige Cluster als fest betrachtet und die neuen oder gedn-
derten Knoten werden den vorhandenen Clustern nach Ahnlichkeit hinzugefiigt.

Das Hinzufiigen zu den vorhandenen Clustern erfolgt von der Wurzel aus, indem
fiir den neuen oder gednderten Knoten jeweils entschieden wird, ob der rechte oder
der linke Untercluster dhnlicher ist. Da der Baum die maximale Hohe n — 1 hat,
miissen so bei zwei Unterclustern pro Ebene maximal 2(n — 1) Vergleiche zwischen
Knoten und Clustern zum Einfiigen durchgefiihrt werden.

In regelmifligen Abstdnden — wenn die Systemauslastung dies zuldsst — werden
die Cluster neu berechnet. Hierbei gehen dann die seit der letzten Clusterbildung
neu hinzugekommen Knoten und seither verdnderten Auslastungsdaten in die
Berechnung der Cluster mit ein.

Um den Algorithmus inklusive der Aufwandsreduzierung durch Teilclustering zu ver-
deutlichen, ist er in Listing 4.2 in mengenorientiertem Pseudo-Code angegeben.

4.5 Berechnung der knoten- und operatorabhangigen
Anforderungen

Die bereits in Abschnitt 3.5.1 vorgestellte Berechnung der knoten- und operatorabhédngigen
Anforderungen wird durchgefiihrt, indem die Knoten anhand des Knotenleistungsclus-
terings in Cluster mit Knoten dhnlicher Leistungsfahigkeit gruppiert werden. Fiir jedes

67

4 Detailentwurf

Listing 4.2 Algorithmus zum hierarchischen Clustern

Definitionen:
K Menge der Knoten

K. CK,Vkeky € Ke,ky #ky ke Nky =@
Disjunkte Teilmengen von K von miteinander vergleichbaren Knoten, ent-
sprechend der Aufwandsreduzierung durch Teilclustering

for all K. do // Fiir jede Teilmengen K. miteinander vergleichbarer Knoten
cluster(K,) // das Clustering durchfiihren
end for
function cLusTER(k: knoten)
while |k| > 1 do // Bis alle Cluster vereinigt wurden
c1, ¢, = min{dist(k)} // Cluster minimaler Distanz suchen
cm = merge(cy, ¢2) // Cluster minimalen Abstands vereinigen
k=k+cp // Neues Cluster hinzuftigen
=k\{c1,c2} // Alte, vereinigte Cluster entfernen
saveTree(c,, = {c1,¢2}) // Update des Clustering Baumes
end while

end function

dieser Cluster von Knoten dhnlicher Leistungsfdhigkeit werden die statistischen Daten
tiber Operatorausfiihrungen zusammengefiihrt.

Abbildung 4.4 verdeutlicht das Vorgehen. Auf der linken Seite ist der Teil eines Clusterings
tiir die Knoten A -G zu sehen. Das hier verwendete vereinigende Clusteringverfahren
tangt mit jedem Knoten in einem eigenen Cluster an und vereinigt in jedem Schritt zwei
der Cluster. In der Abbildung wurde die Clusterbildung bis zur Stufe vier durchgefiihrt.
Diese wird hier auch fiir die Auswertung verwendet. Fiir jedes der gefundenen Cluster
werden die statistischen Daten fiir die Ausfiihrung des Operators aus der Datenbank, die
auf der rechten Seite der Abbildung zu sehen ist, abgerufen. Wie in der Mitte der Grafik
zu sehen ist, werden die Daten pro Cluster zusammengefiihrt und zu einem gemeinsamen
Wertesatz fiir das Cluster ausgewertet. Hierbei wird ein Gesamtdurchschnitt tiber die
Durchschnittswerte der einzelnen Knoten gebildet und jeweils ein Minimum und ein
Maximum {iber alle Minima und Maxima des Clusters gebildet.

Unter der Annahme, dass die statistischen Daten tiber die Operatorausfithrungen gemaf
dem Knotenleistungsclustering zwischen dhnlichen Knoten tiibertragbar sind, werden die
aggregierten Datensétze fiir die Berechnung der impliziten knoten-/operatorabhingigen
Anforderungen verwendet. Alle Knoten, die nach ihren aktuellen Auslastungsdaten
nicht gentigend freie Ressourcen verfiigbar haben, um den Minimalanforderungen ihres
Clusters fiir die Ausfiihrung des Operators unter seiner Konfiguration zu entsprechen,

68

4.6 Optimierungsranking

Knoteleistungscluster Auswertung Statistiken
1 2 3 4

>

Statistik
{A,B}

B

>
w

A A

Daten

|

Statistik %

Abbildung 4.4: Veranschaulichung der Verwendung der Knotenleistungscluster zur Be-
rechnung der knoten-/operatorabhidngigen Anforderungen

|
|
|
|
|
|
|
C
\ Statistik D
| {C,D,E} E Statistische
|
|
|
|
|
|

werden als inkompatibel markiert. Sollte die Anzahl der in der Anfrage angeforderten
Knoten durch die Anwendung der impliziten Anforderungen unterschritten werden, wird
dieser Filterungsschritt verworfen.

Die Cluster Minimal-, Durchschnitts- und Maximal-Werte werden an die jeweiligen
Datensdtze der Knoten angehidngt und erlauben es, auf hoherer Architekturebene weitere
Bewertungen vorzunehmen.

4.6 Optimierungsranking

Das Optimierungsranking erfolgt, indem die nach Anwendung der vorherigen Schritte
verbleibenden als geeignet bewerteten Knoten anhand der Optimierungsreihenfolge
sortiert werden.

Die Optimimierungsreihenfolge ist eine geordnete Liste von Parametern und ihrer Sor-
tierungsrichtung. Als Beispiel hierfiir ergibt die Optimierungsreihenfolge ,,(CPU-Takt,

69

4 Detailentwurf

Maximieren), (RAM, Maximieren), (Latenz, Minimieren)‘, also eine absteigende Sor-
tierung nach CPU-Takt. Alle Knoten, die den gleichen CPU-Takt haben, werden dann
absteigend nach RAM sortiert. Fiir die Knoten mit gleichem CPU-Takt und gleicher
RAM-Grofse wird nochmals eine Sortierung, diesmal aufsteigend, nach Latenz angewen-
det.

4.7 Zusammenfassung und Visualisierung der Daten

In den Abschnitten Speicherung der Sensordaten, Abschnitt 4.2, Erzeugung und Spei-
cherung der Kompatibilitdtsmatrix, Abschnitt 4.3, und im Abschnitt Erzeugung des
Knotenleistungsclusterings, Abschnitt 4.4, wurden fiir den jeweiligen Bereich relevan-
te Daten erzeugt beziehungsweise gesammelt. In diesem Abschnitt werden alle bisher
erbrachten Daten nochmals zur Ubersicht erfasst und in einen Zusammenhang gestellt.

In Abbildung 4.5 sind die verschiedenen Daten und ihre Zusammenhédnge in einem
Entity-Relationship-Diagramm dargestellt. Zentraler Ausgangspunkt der Daten sind
die Entitdten Operator und Knoten. Beide werden jeweils iiber eine eindeutige ID, die
Operator ID beziehungsweise die Knoten ID, definiert. Ein Operator hat null oder
mehrere Konfigurationen. Die Konfigurationen sind {iber ihren Operator und ihr Preset
definiert. Jeder Operator hat null oder mehr Plattformanforderungen, die jeweils iiber
einen Schliissel, einen Vergleich und einen Wert verfiigen. Ebenso hat ein Knoten null
oder mehr Plattformeigenschaften, die jedoch nur aus Schliissel und Wert bestehen.

Aus den Plattformanforderungen der Operatoren und den Plattformeigenschaften entsteht
unter der Anwendung des Vergleichs die Relation kompatibel. Sie verbindet jeweils einen
Operator mit einem Knoten, sofern diese zueinander kompatibel sind. Die Berechnung
dieser Relation ist in Abschnitt 4.3 beschrieben. Im unteren Teil der Abbildung 4.5 befinden
sie die Entitaten Knotenmessdaten und Operatormessdaten.

Die Knotenmessdaten sind durch einen Knoten, einen Messwert und ihr Bucket definiert.
Sie enthalten jeweils ihr Gewicht, den Minimal-, den Maximal-, den Durchschnittswert
und die Varianz. Die Operatormessdaten sind durch einen Operator, eine Konfiguration,
einen Messwert, einen Knoten und ihr Bucket definiert.

Die Entitit letzter Wert ist durch einen Knoten und einen Messwert definiert. Als Attribut
tragt sie den Wert der letzten Messung des Messwertes fiir den Knoten.

Grau markiert auf der rechten Seite der Abbildung sind die Ergebnisse des Knotenleis-
tungsclusterings zu sehen. Ein Cluster, definiert durch eine Cluster ID, enthilt eine Menge
der Knoten. Jedes Cluster hat ein Clustering-Level.

70

1n

Operator ID

9

-

Konfiguration

=

1n

Operator

>

1

4.7 Zusammenfassung und Visualisierung der Daten

| Plattformanforderungl

Cotenis >

kompatibel

| Plattformeigenschaftl

Knoten

o>

n

1

letzter Wert

@S <>

1

Messwert

| Operatormessdaten

X

Cluster

/ \
\ /

AN

s

-

s] =

Knotenmessdaten

’{/@%}

Abbildung 4.5: Ubersicht iiber die gespeicherten Daten als ER-Diagramm

71

Kapitel 5

Implementierung

In diesem Kapitel werden Teile der Implementierung vorgestellt. Nachdem die vorherigen
Kapitel 3 und 4 die Architektur und die verwendeten Strukturen und Algorithmen
erldutert haben, wird in diesem Kapitel die tatsachliche Umsetzung besprochen. Auch in
der Implementierung sind einige Designentscheidungen zu treffen, die direkten Einfluss
auf die Effizienz und Wiederverwendbarkeit haben.

Die Realisierung des Auslastungsdienstes erfolgt in Java, da so ohne Schnittstellenpro-
bleme die von NexusDS bereitgestellten Schnittstellen benutzt werden konnen. Da Java
eine plattformunabhédngige Programmiersprache ist, kann dieselbe Implementierung auf
verschiedenen Plattformen verwendet werden, ohne dass Anpassungen erfolgen miissen
oder die Programme entsprechend neu kompiliert werden miissen. Somit ist auch die
grundlegende Anforderung an den Auslastungsdienst nach Plattformunabhédngigkeit
erfllt.

In den folgenden Abschnitten sollen einige besonders interessante Konzepte der Im-
plementierung hervorgehoben und einige Entwicklungsentscheidungen erldutert sowie
verwendete externe Programme, Bibliotheken und Hilfsmittel vorgestellt werden.

Zuerst wird die Datenspeicherung fiir die Implementierung vorgestellt, dann wird im
zweiten Abschnitt auf die Implementierung des Auslastungsdienstes eingegangen.

In Abschnitt 5.3 wird die Implementierung der Sensoren vorgestellt.

In Abschnitt 5.4 wird die Erfassung der Messwerte auf den Knoten erldutert und die
hierfiir verwendeten plattformabhéngigen Verfahren erklart.

Im letzten Abschnitt werden zwei Implementierungen fiir das Knotenleistungsclustering
vorgestellt. Eine Implementierung wird lokal auf einem Knoten berechnet, wiahrend
die andere Implementierung das Map/Reduce-Paradigma verwendet, um eine verteilte
Berechnung der Daten zu ermdoglichen.

73

5 Implementierung

In vielen Abschnitten der Implementierung wird Bezug auf Datentypen von Java genom-
men. Dies sind insbesondere die Typen Integer, Float, String, Map, Set, Collection
und Vector. Diese Typen werden hier kurz vorgestellt, um den Text tibersichtlicher zu
gestalten.

Der Typ Integer stellt eine Ganzzahl dar. Der Typ Float stellt eine Gleitkommazahl dar.
Der Typ String stellt eine Zeichenfolge dar. Der Typ Map<Typl, Typ2> enthilt eine Menge
von Schliissel-Wert-Paaren mit dem Schliisseln vom Typ Typ1 und Werten vom Typ Typ2.
Die Schliissel sind hierbei eindeutig. Der Typ Set<Typ1> enthilt unsortiert Objekte vom
Typ Typ1, die jeweils nur einmal im Set enthalten sind. Der Typ Collection ist dem
Typ Set sehr dhnlich, kann jedoch Objekte mehrfach enthalten. Der Typ Vector<Typ1>
enthilt geordnete Daten vom Typ Typi, die mehrfach vorkommen kénnen. Vector ist
einem Array sehr dhnlich, kann jedoch zur Laufzeit vergrofiert und verkleinert werden.

5.1 Datenspeicherung

Eine grundlegende Entscheidung fiir die Implementierung des Auslastungsdienstes ist
die Speicherung und der Zugriff auf die verwendeten Daten. In Abschnitt 4.7 wurden die
verwendeten Daten bereits in Form eines ER-Diagramms zusammengefasst.

Auf die statistischen Daten wird vom Auslastungsdienst hdufig mit selektiven und durch-
schnittsbildenden Anfragen zugegriffen. Die Abfrage von Datensétzen {iber verschiedene
— auch zusammengesetzte — Indexe aus einer grofien Datenmenge wird gezielt von Da-
tenbankmanagementsystemen unterstiitzt. Daher werden in der Implementierung die
statistischen Daten in einer SQL-basierten Datenbank gespeichert.

Die Knotenleistungsclusterbildung stellt besondere Anspriiche an die Datenhaltung
und Abfrage. Im Verlauf des Clusteringprozesses werden, wie in Abschnitt 4.4.4 gezeigt,

"_!'s+Y"2s Distanzen berechnet. Da jede berechnete Distanz als Eingabe die statischen
und statistischen Daten von zwei Knoten hat, ergeben sich, wenn jede Distanzberechnung
die Daten neu anfordert, 2 x ("~ s + Y.""7s) Datenbankanfragen. Zusammengefasst
ergibt dies n> — 2n Anfragen, denen 21 — 1 unterschiedliche Datensitze gegeniiberstehen.
Die 2n — 1 ergeben sich aus n unterschiedlichen Knoten und n — 1 Clustern, die im Verlauf

der Clusterbildung erzeugt werden.

Jeder in der Clusterbildung verwendete Datensatz besteht aus den Plattformeigenschaften
der zugrundeliegenden Knoten und aus den Durchschnittswerten ihrer Operatormessda-
ten. Die Datenbank muss also bei jeder Anfrage Daten aus mehreren Tabellen selektieren
und die Operatormessdaten aggregieren.

74

5.1 Datenspeicherung

Suniaydredsusie(a1p 1y US[[RQR], IYJISIaq[) 1S Sunpiqqy

98esany
ERIEIEIN
[BAUIIN
|BAXBA
1UNODSSPONIIET WsvM
Jaddnena —P>| SdAIN | Md
19MOT 9N QISpON | DI4Nd
SOATIN | T4 adAjluswaunsea|n
ameEnp | Nd png d A
1918ND 1USWINSEISINBPON
alspoN | 4 anjeA

ai8asnp | T4

SEITie Y]]

anjep

QIPPON | TH4Nd
ey Nd

—>| GPPoN | Nd [

3poN

AA

QISPON | 2)4d
SUALIN | TX4Nd

aydedepIse]

J35113Y3PON

anjep

QISPON | THdNd
ey Ad

SuoavepoN

QISPON | I4Md
Qaroiersdo | TH4Nd

SWENSHU0) | 2i4‘Nd
QroIeIado | T4

98eJsany
oueleA
IBAUIA
JeAXEeIN
WSPM
13)ong

uolesngipuo)

——»| QEoIERAD | Nd

> JojesadQ

ELLYIT]
SWweNs[yuo)
aispoN
dpoeisdo

I
14d
DN
AN

mucwEw‘Swmw_\/_._Oum._wQO

Jojesedwo)
anjep

3|qiredwo)
Jojesedwo)
anjeA
o] d
@rio1essdo | TH4Nd

LE))

Ad

QIioIeiado | T4

Suojutesysuo)uiolesado

13S1ulelIsuo)o1elado

75

5 Implementierung

Um zu verhindern, dass die Datenbank dieselben Daten wiederholt sucht und berechnet,
ist es sinnvoll, fiir die Knotenleistungsclusterbildung einen Cache, also einen Zwischen-
speicher, einzusetzen. Zu Beginn der Knotenleistungsclusterbildung werden alle hierfiir
benotigten Daten aus der Datenbank abgefragt und in den Cache geschrieben. Bei einer
Clusterbildung, an der n Knoten beteiligt sind, werden also zu Beginn n Datensitze in
den Cache geschrieben. Im Verlauf der Clusterbildung werden n — 1 neue Datensitze
hinzugefiigt und 2n — 1 Datensitze konnen aus dem Cache geloscht werden, da sie nach
dem Verschmelzen zu einem Cluster nicht mehr benétigt werden.

Die Anforderungen an die Implementierung des Caches hiangen stark mit der aktuellen
Implementierung der Knotenleistungsclusterbildung zusammen. In Abschnitt 5.5 wer-
den zwei unterschiedliche Implementierungen fiir die Knotenleistungsclusterbildung
vorgestellt: Eine Implementierung, die auf einem zentralen Rechner ausgefiihrt wird,
und eine weitere Implementierung, die mittels des Map/Reduce-Frameworks ,Hadoop
MapReduce” eine verteilte Berechnung durchfiihrt.

Bei der lokalen Implementierung ist es sinnvoll, die Daten direkt im Arbeitsspeicher
vorzuhalten, sofern sie in den Arbeitsspeicher passen. Sollten die Daten die Arbeitsspei-
chergrofie tiberschreiten, kann eine Auslagerung in das lokale Dateisystem erfolgen.

Bei der verteilten Implementierung miissen die Daten auf den jeweiligen Knoten verfiigbar
sein. Eine Diskussion der hierfiir geeigneten Verfahren findet sich in Abschnitt 5.5.2.

Aus dem ER-Diagramm in Abbildung 4.5 wurde nun ein Datenbankdiagramm in Ab-
bildung 5.1 mit den Tabellen und Spalten fiir die Daten entwickelt. Jede Tabelle in der
Abbildung ist mit ihrem Namen im grau hinterlegten Feld gekennzeichnet. Alle Felder
des Primaérschliissels einer Tabelle sind unterstrichen und mit PK gekennzeichnet. Spal-
ten, die ein Fremdschliissel aus einer anderen Tabelle sind, sind mit FK und einer Zahl
gekennzeichnet. Alle Spalten, die eine ID enthalten, sind vom Typ UUID, sofern im DBMS
verfiigbar oder von einem verfiigbaren Typen, der UUIDs speichern kann. Das Diagramm
wird, beginnend mit der Tabelle Operator, grob im Uhrzeigersinn erldutert.

Die Tabelle Operator besteht aus dem Primérschliissel OperatorID. Die Tabellen
OperatorConstraintStr und OperatorConstraintFloat haben jeweils eine OperatorID
als Fremdschliissel und einen Key zusammen als Primérschliissel. Key entspricht dem
Text von Key der Operatoranforderungen, ist also ein String. Die Value Spalten ent-
halten den Wert der Operatoranforderungen und sind vom Typ String fiir die Tabelle
OperatorConstraintStr und vom Typ Float fiir die Tabelle OperatorConstraintFloat.
Die Spalten Comparator enthalten den Vergleich der Operatoranforderungen codiert als
Integer, entsprechend der Definition von compareTo in Java.

Die Tabelle Compatible besteht aus den beiden Fremdschliisseln OperatorID und NodeID
aus den Tabellen Operator und Node. Sie bilden zusammen den Primérschliissel. Die

76

5.2 Implementierung des Auslastungsdienstes

Eintrdge von Compatible definieren, dass die so verbunden Knoten und Operatoren
kompatibel sind.

Die Tabelle Node enthilt die Spalte NodeID. Die Plattformeigenschaften eines Knotens
werden in den Tabellen NodeAttrFloat und NodeAttrStr gespeichert. Sie enthalten je-
weils die NodeID als Fremdschliissel und bilden den Primérschliissel mit dem in Key
gespeicherten Key der Eigenschaft. In der Spalte Value wird der Wert der Eigenschaft
gespeichert. Fiir NodeAttrFloat ist Value vom Typ Float und fiir NodeAttrStr vom Typ
String.

Die Tabelle InCluster definiert die Relation NodelDs aus Node und den ClusterIDs der
in Cluster gespeicherten Cluster.

5.2 Implementierung des Auslastungsdienstes

Der Auslastungsdienst wird fiir die Implementierung in zwei Hauptteile aufgeteilt, die
Datenerfassung und die Knotenanfrageverarbeitung. Die Datenerfassung empfangt die
Daten der Sensoren und bereitet sie auf. Die Datenerfassung ist also fiir die Pflege
der Kompatibilitditsmatrix, der Statistiken und der Knotenleistungscluster zustandig.
Die Knotenanfrageverarbeitung lauft asynchron zur Datenerfassung und beantwortet
Knotenanfragen des Anfragedienstes auf Basis der von der Datenerfassung bereitgestellten
Datenbasis. Die Schnittstelle zwischen Datenerfassung und Knotenanfrageverarbeitung
ist also nur die Datenbasis, die durch die Datenerfassung geschrieben und durch die
Knotenanfrageverarbeitung gelesen wird.

Abbildung 5.2 zeigt eine Ubersicht iiber den Ablauf in Datenerfassung und Knotenanfra-
geverarbeitung. Die Datenerfassung in Abbildung 5.2a des Auslastungsdienstes erhalt
die Daten der Sensoren. Die Sensoren senden zuerst ihre statischen Daten und machen
sich damit dem Auslastungsdienst bekannt. Nach der Anmeldung schicken sie regel-
maéfsige Updates. Der Auslastungsdienst speichert diese Daten im Datenspeicher. Die
Datenerfassung verarbeitet regelméfSiig die erhaltenen Daten zu aggregierten Statistiken
und berechnet beziehungweise aktualisiert das Knotenleistungsclustering.

Die Knotenanfrageverarbeitung in Abbildung 5.2b wartet auf Knotenanfragen durch den
Anfragedienst. Sobald eine Knotenanfrage eintrifft, werden in mehreren Schritten die
relevanten Knoten vom Datenspeicher abgefragt und immer weiter gefiltert. Am Ende
des Filterungsprozesses wird dem Anfragedienst eine Antwort zuriickgeliefert.

77

5 Implementierung

(a) Datenerfassung

Abbildung 5.2: Abldufe im Auslastungsdienst

Sensor Datenspeicher
Anmeldung speichern W
N
Update speichern W
N
speichern |
AN}
|
|
|
abfragen W
Daten

Clustering berechnen

speichern

Datenspeicher Auslastungsdienst

Verteilungsdienst

Anfrage (OP1)

Operatorstatistiken OP1 abfragen

Operatostatistik OP1

/

Operator Anforderungen berechnen, Knoten filtern

pa——

|
Cluster fiir verbleibende Knoten abfragen

—_—
nach Optimierungsranking sortieren
T|\
|
1
[——

beste Treffer selektieren
)

—

Antwort an Verteilungsdienst

(b) Clusterbildung

78

5.2 Implementierung des Auslastungsdienstes

5.2.1 Datenerfassung

Die Datenerfassung ldsst sich weiter in zwei Abldufe unterteilen: in Speicherung und
Clusterbildung. Die Speicherung erfasst die eingehenden Daten und speichert sie in der
Statistik, wahrend die Clusterbildung aus den statistischen Daten und den Plattformei-
genschaften das Clustering erstellt und aktualisiert.

/ Sensor [[| (RegelmaRig
o

‘ \ Eingangs- ‘
_ Dateneingang / | warteschlange | |

A\ 4

Nei) Disjunkte
ein a .
- Header - CIusFerlngs
V bestimmen
\4
A\ 4 \ 4 Fur jedes Clustering Alter
Knotenauslastungs- Plattformei- e Al e
- & —>> Clustering spater €———————nichstes Cluster
daten in Cache genschaften . .
)) hinzugefiigten Knoten
speichern speichern bestimmen
Nein, l
néchstes Cluster \
\ 4 \ 4 '
istisch .
Statistische Kompatibilitits Clustering zu alt
Daten in . q Neues
matrix oder Anteil der

Ja Clustering
erstellen

Buckets

N hinzugefiigten Knoten zu
aktualisieren gy

hoch

aktualisieren

(a) Speicherung (b) Clusterbildung

Abbildung 5.3: Abldufe der Datenerfassung

Abbildung 5.3 stellt die beiden Abldufe dar. Der Ablauf Speicherung in Abbildung 5.3a
wird beim Eingang von Sensordaten durchgefiihrt. Zuerst werden die eingegangenen
Daten in eine Warteschlange eingefiigt, die dann in Eingangsreihenfolge abgearbeitet
werden. Der Speicherungsablauf iiberpriift zuerst, ob es sich bei den erhaltenen Daten
um einen Header - die Plattformeigenschaften eines Knotens zu Beginn der Ubertragung
— oder um Messdaten handelt. Bei Empfang eines Headers wird der Knoten in die
Knotentabelle (Node) eingetragen und die Plattformeigenschaften des Knotens werden
in die Plattformeigenschaftentabellen NodeAttrFloat und NodeAttrStr gespeichert. Fiir
den neuen Knoten wird dann die Kompatibilititsmatrix aktualisiert.

79

5 Implementierung

Handelt es sich bei den empfangenen Daten um Messdaten, dann werden die Knotenaus-
lastungsdaten in den Cache fiir die aktuelle Auslastung des Knotens geschrieben und die
statistischen Daten fiir den Knoten und die Operatoren aktualisiert.

Der Ablauf Clusterbildung in Abbildung 5.3b wird regelméaflig aufgerufen und erstellt eine
Liste von disjunkten, zueinander inkompatiblen Knotenmengen, fiir die, wie in Abschnitt
4.4.5 beschrieben, jeweils getrennte Clusterings berechnet werden. Der Zeitabstand fiir
die regelmafligen Aufrufe entspricht mindestens der Zeitdauer, die die Berechnung
der Cluster benotigt, da es nicht sinnvoll ist, den Vorgang ein zweites Mal zu starten,
wiéhrend die Cluster neu berechnet werden. Fiir jede der disjunkten Knotenmengen wird
tiberpriift, ob bereits ein Clustering erstellt wurde, wie lange dies her ist und wie viele
Knoten spéter zu dem Clustering hinzugefiigt wurden. Wenn fiir eine Knotenmenge kein
Clustering existiert, wird dieses erstellt. Wenn das Alter eines Clusterings dlter als ein per
Konfiguration vorgegebener Wert ist, wird die Clusterbildung neu durchgefiihrt. Ebenso
wird die Clusterbildung neu durchgefiihrt, wenn der Anteil der spiter zu einem Clustering
hinzugefiigten Knoten eine per Konfiguration vorgegebene Schwelle {iberschreitet. Eine
solche Schwelle kann zum Beispiel 20 % nachtréglich hinzugeftigte Knoten sein.

DataReceiver

-sensorDataQueue

+startServer(): void
+addSensorData(data:SensorData): void
+remNode(nodeID:String): void
-addToQueue(): void
-handleQueueFirst(): void
-isHeader(): boolean

MeasurementKeeper PlatformAttrKeeper
+addData(data:Measurement): void +addData(data:PlatformAttrs): void
-updateCache(data:Measurement): void +removeNode(data:PlatformAttrs)
-updateBuckets(data:Measurement): void -storeData(data:PlatformAttrs): void

-updateCompatMatrix (NodeID:String): void

Abbildung 5.4: Klassen fiir den Ablauf Speicherung

Die beiden Abldufe, Speicherung und Clusterbildung, werden jeweils in getrennten
Paketen implementiert und entsprechend den einzelnen Schritten der Abldufe weiter in
Klassen unterteilt.

Der Ablauf Speicherung wird durch die in Abbildung 5.4 gezeigte Klasse DataReceiver
implementiert. Uber die Funktion startServer wird ein XML-RPC-Server bereitgestellt,
der die Funktionen addSensorData und remNode exportiert. Die Funktion remNode ()
hat als Parameter eine NodelD und dient zum Abmelden eines Ausfithrungsknotens.
Aufrufe von remNode () werden an die Funktion removeNode () der Klasse NodeAttrKeeper

8o

5.2 Implementierung des Auslastungsdienstes

weitergereicht, und von dieser Funktion wird der Knoten aus der Kompatibilitdtsmatrix
entfernt. Uber die Funktion addSensorData() konnen Sensoren ihre Daten iibertragen.
Die Funktion addSensorData() hat einen Parameter vom Typ SensorData.

Der Typ SensorData ist in Abbildung 5.5 dargestellt. Er hat die zwei Subtypen
PlatformAttrs und Measurement. PlatformAttrs dient zur Speicherung von Plattformei-
genschaften und enthdlt eine Map, die die in Tabelle 4.1 aufgelisteten Eigenschaften
der Plattform enthélt. Measurements enthilt eine Map nodeMeasurements und ein Array
operatorMeasurements. Die Map nodeMeasurements enthdlt die in Tabelle 4.2 aufgelis-
teten Knotenleistungsmessdaten. Das Array operatorMeasurements enthdlt Datensitze
vom Typ OplMeasurement, der aus einer OperatorID und einer Map von Messwerten fiir
den Operator entsprechend Tabelle 4.3 besteht.

SensorData
+NodeID: String

A

PlattformAttrs Measurement
+attributes: Map<String, data> +nodeMeasurements: Map<String,data>
+operatorMeasurements[]: OpMeasurements
OpMeasurement

+0OperatorID: String
+Measurements: Map<String,data>

Abbildung 5.5: Datentypen fiir die Ubertragung und Verarbeitung der Sensordaten

Die Funktion addSensorData fligt die Daten der sensorDataQueue hinzu. Die Funktion
handleQueueFirst wird aufgerufen, sobald die Queue Daten enthilt. Sie tiberpriift mit der
Funktion isHeader, ob der vorderste Datensatz in der Queue ein Header ist. Wenn es sich
um einen Header handelt, wird die Funktion addData() der Klasse PlatformAttrKeeper
aufgerufen, und wenn es sich um Messwerte handelt, die Funktion addData() der Klasse
MeasurementKeeper. Nach der Weitergabe der Daten wird der Datensatz aus der Queue
entfernt.

Wird addData() der Klasse MeasurementKeeper mit Messdaten aufgerufen, so wird zuerst
mit der Funktion updateCache () der Cache fiir die letzten Messdaten des Knotens aktua-
lisiert. Dann werden tiber die Funktion updateBuckets() die Daten in das aktuelle Bucket
verrechnet. Wenn das aktuelle Bucket seine Zeit iiberschritten hat, werden durch diese

81

5 Implementierung

Funktion auch die Buckets verschoben, ein neues hinzugefiigt und das <este Bucket
entfernt.

Wird die Funktion addData() der Klasse PlatformAttrKeeper mit statischen Knotendaten
aufgerufen, fligt diese mittels storeData() die Plattformeigenschaften zu den Attribut-
tabellen (NodeAttrString und NodeAttrFloat) und den Knoten zur Tabelle Nodes hinzu.
Danach wird mittels updateCompatMatrix() fiir alle Operatoren die Kompatibilitit zu
dem Knoten berechnet und in die Tabelle Compatible eingetragen.

Der in Abbildung 5.3b dargestellte Ablauf Clusterbildung wird durch die Klassen
ClusterMaintenance und Clusterer implementiert. Die in Abbildung 5.6 dargestell-
te Klasse ClusterMaintenance fragt die getrennt zu analysierenden Knotengruppen aus
der Datenbank ab und erzeugt fiir jede Gruppe einen Clusterer.

ClusterMaintenance

-Clusterings: Collection<Clusterer>
+runMaintenance(): void

Clusterer

+nodes: Collection<String>
+lastCalc: Integer
+clusterID

+clusterer(ID:String)
+addNode(nodes:String[]): void
+calcClusters(): void

Abbildung 5.6: Definition der Klassen ClusterMaintenance und Clusterer

In Clusterings werden jeweils Referenzen auf die unterschiedlichen Clusterer verwaltet.
Die Funktion runMaintenance () fiihrt die Uberpriifung auf Alter und Anteil der spater
hinzugefiigten Knoten fiir alle Clusterer durch.

Die Klasse Clusterer speichert in der Variable nodes die IDs der enthaltenen Knoten. Die
Variable lastCalc gibt den Zeitpunkt an, zu dem die Clusterbildung zuletzt durchgefiihrt
wurde. Ein Clusterer bekommt iiber seiner Instanzierung einen eindeutigen Namen,
der das von ihm verwaltete Clustering definiert. Uber die Funktion addNodes () werden
dem Clusterer neue Nodes hinzugefiigt. Wird die Funktion addNodes() aufgerufen,
wenn bereits ein Clustering berechnet wurde, dann wird der Knoten den vorhanden
Clustern hinzugeftigt. Wenn noch kein Clustering berechnet wurde, dann wird der
Knoten nur gespeichert, bis die Funktion calcClusters() aufgerufen wird. Die Funktion
calcClusters() berechnet das Clustering fiir die Knoten des Clusterers neu und schreibt
sie in die Datenbank sobald die Berechnung beendet ist.

82

5.2 Implementierung des Auslastungsdienstes

5.2.2 Knotenanfrageverarbeitung

Die Knotenanfragebearbeitung hat nach auflen einen Server, der bei Eintreffen einer
Knotenanfrage einen neuen Knotenanfrageverarbeiter erzeugt, der die Knotenanfrage
bearbeitet und am Ende das Ergebnis ausliefert.

Request

+operatorID: String

+nodeQuantity: Integer
+constraints: Set<Constraint>
+optimizationOrder: Optimization[]

Constraint Optimization
+key: String +key: String
+value: Comparable +comparison: Integer
+comparison: Integer see compareTo()
see compareTo() function for
function for Comparables
Comparables

Abbildung 5.7: Definition der Klasse Request

Der Knotenanfrageverarbeiter bekommt als Eingabe die Knotenanfrage des Anfragediens-
tes und filtert in mehreren Schritten die verfiigbaren Knoten anhand der Vorgaben. Jeder
dieser Filterschritte ist als getrennte Funktion implementiert, so dass diese Filter einzeln
erweitert, ersetzt oder entfernt werden konnen.

Die Knotenanfrage ist wie in Abbildung 5.7 definiert. Eine Anforderung vom Typ Request
enthdlt eine operatorID vom Typ String, die Anzahl der zuriickzuliefernden Ausfiihrungs-
knoten als nodeQuantity vom Typ Integer, ein Set constraints vom Typ Constraint und
ein Array optimizationOrder vom Type Optimization. Das Set constraints ist eine
Sammlung, in der kein Element mehrfach vorkommt. Der Typ Constraint enthdlt einen
Key vom Typ String und einen Wert vom Typ Comparable sowie einen Integer comparison,
der den von der Funktion compareTo() in Java verwendeten Werten entspricht.

Die in optimizationOrder gespeicherten Elemente des Typs Optimization bestehen je-
weils aus key vom Typ String und comparison vom Typ Integer. Negative Werte von
comparison entsprechen einer Minimierung des Wertes und positive Werte einer Maximi-
mierung.

Die Anfrage wird durch die in Abbildung 5.8 dargestellte Klasse RequestHandler be-
arbeitet. Ein RequestHandler hat als private Variablen die Variable request vom Typ
Request, die die zu bearbeitende Anfrage enthélt, und das Set compatNodes, das die IDs

83

5 Implementierung

RequestHandler

-request: Request
-compatNodes: Set<String>

-getCompatibleNodes(): Set<String>

-filterOperatorConstraints(): void

-filterNodeConstraints(): void

-optimizationSort(): Vector<String>
-prepNodeRecommendation(nodes:Vector<String>): NodeRecommendation

Abbildung 5.8: Definition der Klasse RequestHandler

der aktuellen Knoten enthalt. Die Funktion getCompatibleNodes() liefert alle zu dem in
request enthaltenen Operator kompatiblen Knoten. Sie wird verwendet, um die Variable
compatNodes zu beftillen.

Nach der Ausfithrung von getCompatiblesNodes() werden die Funktionen
filterOperatorConstraints() und filterNodeConstraints() nacheinander aus-
gefiihrt. Sie berechnen Anforderungen durch den Operator beziehungsweise durch
die Knoten und filtern die in compatNodes enthaltenen Knoten. Auf die nach den
Filterungsschritten noch verbleibenden Knoten wird die Funktion optimizationSort ()
auf compatNodes angewandt. Sie liefert einen Vector mit der in request.nodeQuantity
geforderten Knotenanzahl entsprechend request.optimizationOrder sortiert zuriick.

NodeRecommendation

+nodes: Vector<NodeData>
+operatorData: Vector<StatisticsBucket>

StatisticsBucket NodeData
+startTimestamp: Integer +nodeName: String
+endTimestamp: Integer +nodeData: Vector<StatisticsBucket
+min: Map<String, Float>

+max: Map<String,Float>
+avg: Map<String, Float>
+variance: Map<String,Float>

Abbildung 5.9: Definition der Klasse NodeRecommendation

Die Funktion prepNodeRecommendation() erzeugt aus dem sortierten Knotenvektor eine
NodeRecommendation wie in Abbildung 5.9 dargestellt. Die NodeRecommendation enthilt
einen Vector operatorData, der Datensdtze vom Typ StatisticsBucket enthdlt, und
einen Vector nodes mit Datensédtzen vom Typ NodeData.

84

5.3 Implementierung der Sensoren

Jedes StatisticsBucket enthdlt einen startTimestamp und einen endTimestamp vom Typ
Integer, die den Zeitraum der Messdaten, die in dem Bucket enthalten sind, angibt. Die
Variablen min, max, avg und variance enthalten jeweils eine Map, die einem String mit
dem Messwertnamen den entsprechenden Statistikwert fiir den Zeitraum des Buckets
zuordnet.

<<interface>>

NodeRequest

+nodeRequest(request:Request): NodeRecommendation

Abbildung 5.10: Definition des NodeRequest Interfaces

NodeData besteht aus den Variablen nodeName, nodeData und operatorData. Die Va-
riable nodeName enthdlt einen String mit der KnotenID. Der Vector nodeData enthilt
StatisticsBuckets, die die statistischen Daten des Knotens enthalten. Der Vector
operatorData enthilt StatisticsBuckets, die die statistischen Daten fiir Operatoraus-
fithrungen auf diesem Knoten enthalten.

Wenn die NodeRecommendation fertig berechnet wurde, wird sie als Antwort auf die
Anfrage des Anfragedienstes zurtickgegeben und der RequestHander wird beendet.

Die Schnittstelle des Auslastungsdienstes fiir den Anfragedienst wird durch das Interface
NodeRequest, wie in Abbildung 5.10 gezeigt, beschrieben. Das Interface wird per XML-
RPC exportiert und stellt die Funktion nodeRequest () bereit, die als Parameter einen
Request hat und eine nodeRecommendation zurtickliefert.

5.3 Implementierung der Sensoren

Fiir die Implementierung der Sensoren ist erforderlich, ihre Ausfithrungsform und ihre
Schnittstellen festzulegen. Da die Sensoren als Dienst im NexusDS Framework ausgefiihrt
werden sollen, miissen sie die Service-Schnittstelle implementieren. Dies erfordert, dass
die in Abbildung 5.11 dargestellte Schnittstelle mit den Funktion start () und stop() im-
plementiert wird. Die Funktion start () startet die Datensammlung und die Anmeldung
am Auslastungsdienst, wihrend die Funktion stop() die Sammlung beendet und den
Sensor und somit auch den Knoten vom Auslastungsdienst abmeldet.

Die Schnittstellen des Sensors bestehen aus der bereits in Abschnitt 5.2.1 eingefiihrten
Schnittstelle zum Auslastungsdienst und der Schnittstelle zur Abfrage der Operatormess-
daten. Die Abfrage der Operatormessdaten kann entweder durch regelmifliige Abfrage,
Pull-Verfahren, oder durch Empfang von durch die Operatoren versendeter Nachrichten,

85

5 Implementierung

<<interface>>
Service

+start(): void
+stop(): void

Abbildung 5.11: Definition des Service Interface

Push-Verfahren, erfolgen. Das Pull-Verfahren hat als Vorteil, dass die Messdaten erzeugt
werden konnen, wenn der Sensor eine Statusmeldung absetzen will. Die Daten miissen so
nicht im Sensor zwischengespeichert werden.

Hingegen hat das Push-Verfahren den Vorteil, dass die Operatoren die Freiheit haben,
zu fiir den Operator sinnvollen Zeitpunkten Messdaten auszuliefern. So konnen die
Messdaten zum Beispiel ereignisabhidngig, wenn Daten berechnet wurden oder wenn
der Operator eine Verdnderung der Arbeitssituation erkennt, iibertragen werden. Ist
die ereignisabhidngige Messdatenauslieferung nicht gewiinscht, kann der Operator aber
auch eine regelmiflige Messdatenauslieferung implementieren. Zusétzlich entfallt der
Verwaltungsaufwand fiir den Sensor, welche Operatoren verfiigbar sind und abgefragt
werden miissen.

Aufgrund der groleren Flexibilitat wird also das Push-Verfahren fiir die Ubertragung der
Messdaten von den Operatoren an den Sensor implementiert. Da Sensoren, Ausfiihrungs-
dienst und Operatoren alle in einem gemeinsamen Prozess auf demselben Computer
ausgefiihrt werden, kann die Ubertragung der Daten durch einen einfachen Methodenauf-
ruf erfolgen. Da mehrere Sensoren zu beliebigen Zeitpunkten und damit auch gleichzeitig
ihre Messdaten {ibertragen konnen, ist dafiir Sorge zu tragen, dass die Ubertragungen
entsprechend synchronisiert werden. Dies erfolgt, indem die Daten in eine Warteschlange
eingefiigt werden.

In regelméfligen, konfigurierbaren Intervallen liest der Sensor die Knotenauslastungsdaten
und die in der Warteschlange vorhandenen Operatormessdaten und {iibertragt sie an den
Auslastungsdienst.

Abbildung 5.12 zeigt den Lebenslauf eines Sensors. Bei seinem Start erfasst der Sensor die
Plattformeigenschaften und meldet diese an den Auslastungsdienst. Damit ist der Sensor
und somit der Knoten dem Auslastungsdienst als verfiigbar bekannt. Sobald Operatoren
vom Ausfithrungsdienst (der Ausfiihrungsdienst ist nicht abgebildet) gestartet werden,
tibertragen diese nach Bedarf Messdaten an den Sensor. Wenn ein Operator beendet wird,
zum Beispiel weil er seine Aufgabe erfiillt hat und nicht mehr benétigt wird, tibertragt er
die letzten Messdaten an den Sensor.

86

5.3 Implementierung der Sensoren

Auslastungsdienst Sensor Operator 1 Operator 2
I I I
I I I
L I I
' I
anmelden Plattformeigenschaften erfassen I
L I
I
I
A
Messdaten
Messdaten
1
Messdaten

alle Messdaten iibertragen > Knotenmessdaten erfassen

letzte Messdaten

letzte Messdaten

alle Messdaten Ubertragen

abmelden

Abbildung 5.12: Sequenzdiagramm Lebenslauf eines Sensors

In regelméfiigen Abstianden erfasst der Sensor die Knotenmessdaten und verschickt sie
zusammen mit den gesammelten Operatormessdaten an den Auslastungsdienst. Wird die
stop() Funktion des Sensors aufgerufen, tibertrdgt er die verbleibenden Operatormessda-
ten an den Auslastungsdienst und meldet sich vom Auslastungsdienst ab.

Abbildung 5.13 zeigt die Klasse Sensor, ihre Subklasse NodeDatCollector sowie die
bereitgestellten Interfaces Service und PerfDataSink. Die Klasse Sensor hat die Varia-
blen interval und OperatorDataQueue. Die Variable interval gibt das konfigurierbare
Intervall an, zu dem der Sensor Daten an den Auslastungsdienst iibertrdagt. Der Vec-
tor OperatorDataQueue enthilt die iiber die Funktion savePerfData() des Interfaces
PerfDataSink iibertragenen Operatormessdaten. Da die Implementierung von Vector in
Java synchronized und damit thread-safe ist, also parallele Zugriffe verarbeiten kann, ist
die Thread-Sicherheit fiir das Interface PerfDataSink gegeben.

Die Subklasse NodeDataCollector stellt die Funktionen getAttributes() und
getPerfData() bereit. Die Funktion getAttributes() gibt die Plattformeigenschaften

87

5 Implementierung

______ Service Manager

r<<Llse>>
<<interface>> <<interface>>
i i <use>>
Service PerfDataSink << <=UZ"JOperator
+start(): void +savePerfData(): Map<String,Long>

+stop(): void 4
A

Sensor < NodeDataCollector

-interval: integer

. +NodeDataCollector()
-OperatorDataQueue: Vector +getPerfData(): Map<String,Long>
+Sensor () +getAttributes(): Map<String,Data>

-updateData()

Abbildung 5.13: Klasse Sensor und die innere Klasse NodeDataCollector sowie die fiir
Service Manager und Operatoren bereitgestellten Interfaces

des Knotens zuriick und die Funktion getPerfData() die aktuellen Knotenauslastungs-
daten.

5.4 Knotenauslastungserfassung

Die Erfassung der Knotenauslastungsdaten erfordert die Abfrage verschiedener vom
System zur Verfiigung gestellter Werte. Je nach Betriebssystem gibt es hierfiir verschie-
dene Schnittstellen zum Kernel, der diese Daten erfasst. Bei unix- und linuxbasierten
Systemen lassen sich die meisten Leistungsdaten aus den virtuellen Dateien des /proc/
Dateisystems auslesen [BYST06]. Bei Windows-Systemen hingegen werden die Perfor-
mance Counter entweder tiber graphische Benutzeranwendungen oder {iiber verschiedene
Programmierschnittstellen zur Verfiigung gestellt [Mic1o, Frioz].

Die von unix- und linuxbasierten Systemen angebotene Schnittstelle ist mit einer Java-
Anwendung relativ einfach zu benutzen. Es miissen die entsprechenden virtuellen Dateien
eingelesen und nach ihrer Struktur zerlegt werden. Die Werte miissen entsprechend
interpretiert werden und konnen dann als Messdaten fungieren. Bei Windows-Systemen
hingegen ist der Zugriff auf die angebotenen Schnittstellen aufwendiger. Entweder wird
das Betriebssystem zum Schreiben von Logdateien konfiguriert, die dann mit einiger
Verzogerung ausgelesen und interpretiert werden konnen, oder aber man greift mit Java

88

5.4 Knotenauslastungserfassung

auf die Windows-Programmierschnittstellen zu, indem tiber JNI' die entsprechenden
Windows-Bibliotheken angesprochen werden. Der Zugriff tiber NI ist aufwendig, da
zwischen den unterschiedlichen Reprasentationen der Daten konvertiert werden muss.

Java bietet seit Version 1.6 ein eigenes Interface zum Zugriff auf Systeminforma-
tionen. Das Interface OperatingSystemMXBean enthdlt vier Funktionen: getArch(),
getAvailableProcessors(), getName(), getSystemLoadAverage() und getVersion().
Mit diesen verfiigbaren Funktionen wird also nur ein Teil der in Abschnitt 4.1 gefor-
derten Messwerte geliefert. Hinzu kommt, dass die Funktion getSystemLoadAverage ()
bei einer Windows Java Virtual Machine keine Werte liefert, da der Windows Kernel
diesen Wert nicht generiert und auch Java diese Funktion nicht implementiert.

Eine weitere Moglichkeit zur Abfrage der Leistungsdaten ist SIGAR - System Information
Gatherer And Reporter, eine API, die fiir Java auf einer Vielzahl an Betriebssystemen
Systeminformationen und Performance Messdaten liefert. SIGAR liefert hierfiir, sofern
fir die jeweilige unterstiitzte Plattform notwendig, native Bibliotheken mit, die die
entsprechenden Informationen aus dem System auslesen und iiber eine einheitliche Java-
Schnittstelle zuganglich machen. SIGAR unterstiitzt eine Vielzahl an Plattformen. Eine
Liste der in der aktuellen Version 1.6.3 unterstiitzten Plattformen befindet sich im Anhang
in Abschnitt A.1.

Die von SIGAR zur Verfiigung gestellten Informationen enthalten einen Grofsteil der in
den Tabellen 4.1 (Seite 50) und 4.2 (Seite 51) beschriebenen Eigenschaften. Es fehlen jedoch
Informationen zur CPU-Queue-Lange, zu den verfiigbaren GPUs und zur Verfiigbarkeit
von Programmen.

Auf Windowsplattformen kann SIGAR jedoch zusédtzliche zu den standardmaéfiig zur
Verfiigung gestellten Werte, ndmlich Werte aus den Windows Performance Countern, ausle-
sen. Hiertiber ldsst sich also auch eine Abfrage der CPU-Queue-Lédnge realisieren. Auf
Linuxplattformen liefert das Programm vmstat die Information®, wie viele Prozesse auf
Aufmerksamkeit durch die CPU warten.

Die Indexierung verfiigbarer Programme und ihrer Versionen und die Erkennung von
GPUs und ihrer Ausstattung muss durch plattformspezifische Abfragen erfolgen oder
manuell in die Eigenschaften eines Knoten eingepflegt werden, da auch hierfiir keine
einheitlichen Schnittstellen in den verschiedenen Betriebssystemen bestehen.

Auf verschiedenen Unix-/Linux-Systemen gibt es eine Vielzahl unterschiedlicher Paket-
managementsysteme, iiber die Software installiert und verwaltet wird. Auf Windows-
systemen kommt zumeist keine zentrale Verwaltung installierter Software zum Einsatz.

1Java Native Interface [Ora], Java Schnittstelle, tiber die unter anderem native Bibliotheken einer Plattform
angesprochen werden konnen.
*Im vmstat Manual (man vmstat): r: The number of processes waiting for run time.

89

5 Implementierung

Dementsprechend kann eine automatische Erkennung nur erfolgen, indem alle unter-
schiedlichen Paketmanagementsysteme unterstiitzt und abgefragt werden oder pro Soft-
wareprodukt ein spezifischer Test zur Erkennung implementiert wird.

Die Erkennung der GPUs kann unter Windows {iber die DirectX-Schnittstelle erfolgen.
Auf Linux- und Unix-Systemen stehen jedoch wieder verschiedene Schnittstellen zur
Auswahl, die teilweise auf ein und demselben System unterschiedliche Ergebnisse in
Bezug auf die GPU-Zugriffsmoglichkeiten liefern konnen.

Daher werden in dieser Implementierung die Plattformeigenschaften, wie GPUs und
verfiigbare Programme, durch eine manuelle Verwaltung in den Knoteneigenschaften
gepflegt. Die Daten konnen jedoch spater durch die Entwicklung plattformspezifischer
Erkennungsmethoden automatisch eingepflegt werden.

5.5 Knotenleistungsclustering

Fiir das Knotenleistungsclustering wurden zwei unterschiedliche Implementierungen
durchgefiihrt. Die erste Implementierung arbeitet in einer einzelnen Instanz und verwen-
det eine SQL-Datenbank zur Datenhaltung und soweit moglich auch zur Berechnung von
Ergebnissen.

Die zweite Implementierung verwendet das Map/Reduce-Paradigma, um die Berech-
nung der Distanzen zwischen den Clustern, also die Berechnung der Distanzmatrix,
verteilt durchzufiihren. Fiir eine effiziente Verteilung der Daten werden diese nicht in
Datenbanken, sondern direkt in Dateien geschrieben.

5.5.1 Lokale Berechnung

Die lokal berechnete Implementierung mit datenbankbasierter Speicherung und Be-
rechnung verwendet fiir die Speicherung aller Daten eine iiber JDBC3 angesprochene
SQL-Datenbank. Aufgrund der Verwendung der standardisierten Schnittstelle kann die
verwendete Datenbanksoftware mit relativ wenigen Anderungen am Programmcode ge-
gen eine andere ausgetauscht werden. Fiir die Entwicklung wurden die eingebettet —, also
ohne externen Datenbankserver — verwendbaren Datenbanken SQLite* und HyperSQL5>
verwendet. Beide Datenbanken konnen die Datenbank vollstandig im Arbeitsspeicher hal-
ten, statt die Daten auf einen Festspeicher zu schreiben, und so den Zugriffsaufwand auf

3Standardschnittstelle fiir Datenbanken in Java.
4SQLite verftigbar unter: http://www.sqlite.org/
SHyperSQL verftigbar unter: http://hsqldb.org/

90

http://www.sqlite.org/
http://hsqldb.org/

5.5 Knotenleistungsclustering

die Festplatte umgehen, vorausgesetzt die Datenbank ist nicht zu grof3 fiir den verfiigbaren
Arbeitsspeicher.

Die Speicherung der Knoteneigenschaften erfolgt in jeweils einer Tabelle fiir die float-
und stringbasierten Eigenschaften. Jede Zeile der beiden Eigenschaftstabellen enthilt ein
Eigenschaftsschliissel-Wert-Paar sowie als Index den Namen des Knotens. Durch diese
Form der Speicherung entsteht ein gewisser Aufwand beim Speichern eines Knotens, da
tiir jede Eigenschaft eines Knotens ein Insert auf der Datenbank ausgefiihrt werden muss.
Fiir einen Knoten mit m Eigenschaften miissen also insgesamt m Inserts in der Datenbank
ausgefiihrt werden. Durch die Zusammenfassung der m Inserts zu einer Transaktion
verringert sich der Aufwand wieder etwas.

Vorteil dieser Speicherungsform ist, dass Berechnungen teilweise in die Datenbank aus-
gelagert werden konnen. So kann beim Verschmelzen von Clustern die Berechnung der
Durchschnittswerte des neuen Clusters in der Datenbank ausgefiihrt werden. Durch die
Berechnung in der Datenbank entfillt der Aufwand fiir das Umwandeln zwischen dem
Datenbankformat und der Java-Reprasentation. Die Berechnung der Durchschnittswerte
fiir das Verschmelzen erfolgt, indem die Durchschnittswert der Eigenschaften (AVG) per
SQL-Anfrage fiir alle zu verschmelzenden Knoten abgefragt werden. Listing 5.1 zeigt
eine solche Anfrage fiir die Cluster q1, q2, q3, deren Float-Eigenschaften in der Tabelle
clusterFloatAttr gespeichert sind.

Listing 5.1 Beispiel SQL-Anfrage Durchnittsbildung beim Verschmelzen der Cluster q1 - q3

SELECT key, AVG(val) as val FROM clusterFloatAttr
WHERE cluster IN("q1", "q2", "q3")
GROUP BY key;

Beim Verschmelzen von String-Eigenschaften werden nur solche Eigenschaften tibernom-
men, die fiir alle Knoten, die verschmolzen werden, denselben Wert haben. Die Abfrage
nach Figenschaften, die dieser Anforderung entsprechen, ldsst sich wiederum durch eine
SQL-Anfrage erreichen. Listing 5.2 zeigt eine Abfrage fiir das Verschmelzen der Cluster
q1, q2, q3, die aus der Tabelle clusterStrAttr ausschliefllich Eigenschaften abfragt, die
bei allen zu verschmelzenden Knoten denselben Wert haben. Die Abfrage erfolgt durch
Gruppieren nach gleichen Werten und der Auswahl aller Schliissel-Wert-Paare, die nur
einen unterschiedlichen Wert haben.

Listing 5.2 Beispiel SQL-Anfrage einheitliche String-Werte beim Verschmelzen der Cluster

q1-93
SELECT key, val FROM clusterStrAttr
WHERE cluster IN ("q1", "g2", "q3")
GROUP BY key, val HAVING COUNT(DISTINCT val) = 1;

91

5 Implementierung

Die Clusterbildung in dieser Implementierung erfolgt, indem die Distanzmatrix fiir
alle Knoten berechnet wird und in einer Datenbanktabelle die Entfernungen zwischen
jeweils zwei Clustern gespeichert werden. Die Speicherung der Distanzmatrix erfolgt in
der Tabelle DM, die die Eintrdge (ClusterA, ClusterB, Distanz) hat, wobei die ersten
beiden Felder String-Werte fiir die ClusterIDs sind und die Distanz ein Float.

Da in jedem Iterationschritt der Clusterbildung zwei Cluster durch ein neues Cluster
ersetzt werden, ist es sinnvoll, alle anderen, unveridnderten Cluster nicht nochmals ab-
zuspeichern. Statt fiir jedes Clustering-Level alle beteiligten Cluster zu speichern, erhalt
jedes Cluster eine obere und untere Grenze, die angibt, auf welcher Iterationsebene das
Cluster erzeugt wurde und auf welcher Iterationsebene es durch Verschmelzen zu einem
neuen Cluster entfernt wird. Die Lebensdauer eines Clusters wird in der Tabelle clusters
anhand Eintrdgen von (cluster, lower, upper) gespeichert. Bei der Erzeugung eines
neuen Clusters wird es in diese Tabelle mit seinem Namen und dem aktuellen Cluste-
ringiterationsschritt als lower-Wert eingetragen. Der Wert von upper wird zundchst auf
oo, reprasentiert durch den maximalen Integer-Wert, gesetzt. Sobald ein Cluster durch
Verschmelzen das Ende seiner Lebenszeit erreicht hat, wird der aktuelle Clusteringiterati-
onsschritt in den upper-Wert des Clusters eingetragen.

Der eigentliche Verschmelzungsprozess, das Zusammenfiigen von mehreren Knoten zu
einem Cluster, wird durch eine Tabelle clustersNodes implementiert. In dieser Tabelle
werden einem Cluster die zu ihm gehorenden Knoten zugeordnet. Es werden hierbei
nicht die einzelnen Verschmelzungsschritte abgebildet, sondern nur deren Ergebnis. Dies
entspricht einem Baum, in dem jeder Knoten nicht auf seine direkten Nachfolger zeigt,
sondern direkt auf die Blatter. Vorteil dieser Speicherung ist, dass fiir ein Cluster mit einer
einzigen Anfrage alle enthaltenen Knoten abgefragt werden konnen, statt der Verzweigung
eines Baumes zu folgen. Da der Baum eine Hohe von n — 1 erreichen kann, miissten bei
der Verfolgung der Verzweigungen bis zu n — 1 Elemente betrachtet werden.

Um den Aufwand beim Zugriff auf die Werte eines Clusters zu verringern, werden die
Durchschnittswerte eines Clusters, die das Cluster reprasentiert, beim Verschmelzen in
die Tabellen clusterFloatAvg und clusterStrAvg geschrieben.

Eine Zusammenfassung {iiber alle verwendeten Tabellen, ihre Felder und die SQL-
Typen der Felder findet sich in Tabelle 5.1. Die Tabellen clusterStrAttr und
clusterFloatAttr entsprechen den bereits in Abbildung 5.1 auf Seite 75 vorgestellten
Tabellen NodeAttrFloat und NodeAttrStr. Die Tabelle clusters entspricht der Tabelle
Cluster und gibt die Clusteringlevel an, auf denen die Cluster existieren. Die Tabelle
clustersNodes entspricht der Tabelle inCluster und ordnet die einzelnen Nodes den
Clustern zu. Die Tabelle dm speichert die Distanzmatrix. Sie hat keine Entsprechung in
Abschnitt 5.1, da die Distanzmatrix nur wahrend der Clusterbildung benétigt wird. Die
Tabellen clusterFloatAvg und clusterStrAvg speichern die Durchschnittswerte eines
Clusters. Sie entsprechen daher den Tabellen NodeAttrFloat und NodeAttrStr, jedoch

92

5.5 Knotenleistungsclustering

Tabellenname

clusterStrAttr cluster VARCHAR key VARCHAR val VARCHAR
clusterFloatAttr | cluster VARCHAR key VARCHAR val Float
clusters cluster VARCHAR lower Integer upper INTEGER
clustersNodes | cluster VARCHAR node VARCHAR

dm clusterA VARCHAR clusterB VARCHAR dist FLOAT
clusterFloatAvg | cluster VARCHAR key VARCHAR val Float
clusterStrAvg cluster VARCHAR key VARCHAR val VARCHAR

Tabelle 5.1: Tabellen fiir die Clusterbildung mit Feldnamen und Feldtypen

mit dem Unterschied, dass sie sich auf Cluster und nicht auf einzelne Nodes beziehen.
Auch ihre Daten werden ausschliefSlich fiir die Clusterbildung verwendet.

5.5.2 Map/Reduce-basierte Berechnung

Da die Clusterbildung einen quadratischen Aufwand fiir die Berechnungen der Distanz
aller Knoten zueinander hat, ist schon bei einigen hundert Knoten mit einem Berechnungs-
aufwand von mehreren Minuten zu rechnen, wenn die in Abschnitt 5.5.1 verwendete
Implementierung verwendet wird. Fiir grofie Knotenanzahlen ist eine solche Clusterbil-
dung offensichtlich kaum noch durch einen iiblichen PC in einem akzeptablen Zeitraum
zu berechnen. Daher wurde der Algorithmus nochmals in einer auf dem Map/Reduce-
Paradigma basierten verteilbaren Version implementiert.

Das Map/Reduce-Paradigma basiert darauf, dass auf einer Menge von Schliissel- und
Wert-Paaren parallel die gleiche Funktion angewendet wird. Die Funktion erzeugt aus
dem Eingabeschliissel-Wert-Paar ein Zwischenergebnis. Das Zwischenergebnis hat wie-
derum die Form eines Schliissel-Wert-Paares. In einem zweiten Schritt werden dann die
Zwischenergebnisse der Funktionsanwendung anhand der Schliissel sortiert und zusam-
mengefiihrt. Die Anwendung der Funktion auf die Daten wird hierbei als Map-Schritt
bezeichnet und die Zusammenfiihrung als Reduce-Schritt [DGo8].

Der Map-Schritt ist parallelisierbar, da er ausschliefslich von seinem Schliissel-Wert-Paar
abhangt. Der Reduce-Schritt hingegen hiangt im Allgemeinen von den Ergebnissen aller
Map-Anwendungen ab und muss daher zentral durchgefiihrt werden. Bei manchen
Algorithmen besteht die Moglichkeit, einen Reduce-Schritt auf jedem Map/Reduce-
Knoten auf Teilmengen der Daten — den sogenannten Combine-Schritt — zwischen Map
und Reduce durchzufiihren, wenn durch eine verteilte Reduzierung von Teilmengen der
Map-Ergebnisse schon ein Vorteil erzielt werden kann. Die Anwendung des Combine-
Schrittes wird spdter anhand eines Beispiels erldutert.

93

5 Implementierung

Map Shuffle Reduce

K,V
K,V
K,V
K,V
K.V
K,V
K,V
K,V

Abbildung 5.14: Map/Reduce-Ablauf

Abbildung 5.14 stellt einen Map/Reduce-Ablauf dar. Die Daten werden als Menge von
Schliissel-Wert-Paaren (Key, Value), vorgehalten. Jeder Datensatz wird von einem Map-
Prozess bearbeitet. Die Map-Prozesse werden in der Abbildung von drei Rechnern,
Node 1 bis Node 3, ausgefiihrt. Jeder der Rechner erhilt die Map-Funktion und fiihrt sie
nacheinander auf allen ihm zugeteilten Daten aus. Die Ergebnisse werden anhand ihrer
Schliissel in der sogenannten Shuffle-Phase auf jedem Map /Reduce-Knoten sortiert und
dem fiir den jeweiligen Schliissel zustandigen Reducer-Prozess gesendet. Die Anzahl der
Reducer hat als Obergrenze die Anzahl der verschiedenen Schliissel und als Untergrenze
1. Alle Datensétze fiir einen Schliissel werden auf demselben Reducer-Prozess bearbeitet.
Ein Reducer kann jedoch Daten fiir mehrere Schliissel verarbeiten. Jeder Reducer fiihrt
seine Reduzierfunktion auf den Daten eines Schliissels aus und schreibt das Ergebnis in
seine Ausgabe.

Ein Beispiel fiir die Anwendung von Map/Reduce gibt White [Whiog] durch die Suche
nach den maximalen Jahrestemperaturen in den amerikanischen Wetteraufzeichnungen an.
Da eine Vielzahl an Wetterstationen existiert, ist die Datenmenge fiir die Jahre 1901-2001
sehr grof3. Die Daten liegen als Datensitze, die jeweils eine Beobachtung einer Vielzahl
von Wetterparametern beschreiben, vor.

94

5.5 Knotenleistungsclustering

!

Verteilt: Map/Reduce

1 Abstand Abstand Abstand
c berechnen berechnen berechnen

.

Lokal
Cluster
2 minimalen
' Abstands
auswahlen

Gewahlte
3 . Cluster
verschmelzen

wiederholen, bis alle Cluster verschmolzen sind

Abbildung 5.15: Ablauf des Clusterbildungs-Algorithmus mit Map/Reduce

Um nun die Maxima-Suche mittels Map/Reduce durchzufiihren, wird die Map-Funktion
jeweils mit einer Jahreszahl als Schliissel und einem Datensatz als Wert aus diesem Jahr
gespeist. Die Map-Funktion analysiert den Datensatz und gibt die Jahreszahl als Schliissel
und die Lufttemperatur aus dem Datensatzes als Wert zuriick. Die Reduce-Funktion
wird fiir jeden Schliisselwert (hier den Jahreszahlen) mit den von den Map-Funktionen
fiir diesen Schliissel erzeugten Werten aufgerufen. Fiir die Maximaltemperatur muss
die Reduce-Funktion also nur das Maximum der tibergebenen Werte auswéhlen und
zusammen mit der Jahreszahl zuriickgeben.

Da in diesem Beispiel jeder Wert, der kein lokales Maximum ist, auch kein globales
Maximum werden kann, konnte die Reduce-Funktion zuséitzlich auf jedem der Rechner
auf den lokal verfiigbaren Ergebnissen als Combine-Funktion ausgefiihrt werden. Durch
das Anwenden der Combine-Funktion vor dem Reduce miissen weniger Daten zwischen
den Rechnern iibertragen werden.

95

5 Implementierung

Fiir Map /Reduce steht ein Framework unter Betreuung der Apache Software Foundation®
zur Verfiigung. Das Hadoop MapReduce? genannte Framework stellt die Funktionalitdt zur
Verftigung, um Berechnungen per Map/Reduce durchzufiihren. Da Hadoop MapReduce
in Java implementiert ist und direkte Schnittstellen fiir Java-Anwendungen anbietet,
wird hier Hadoop zur Implementierung des Algorithmus verwendet. Fiir einige Platt-
formen enthélt Hadoop MapReduce zusitzlich native Bibliotheken, um Vorgiange zu
beschleunigen.

Wie bereits erldutert, wird bei der Verwendung von Map/Reduce der Map-Schritt verteilt
ausgefiihrt. Durch eine verteilte und parallele Ausfithrung des aufwendigsten Schrittes
im Clusterbildungs-Algorithmus kann die Zeit zur Berechnung der Cluster verringert
werden. Wie in Abbildung 5.15 dargestellt kann der Clusterbildungs-Algorithmus in die
Schritte 1., 2. und 3. aufgeteilt werden, die wiederholt werden, bis die Clusterbildung
vollstandig durchgefiihrt ist. Im Allgemeinen wird hier von Clustern gesprochen, auch
wenn diese zu Beginn jeweils nur einen Knoten enthalten.

In der Implementierung des Algorithmus wird nun Schritt 1 verteilt ausgefiihrt, die
Schritte 2 und 3 zentral. Zur verteilten Berechnung der Abstinde zwischen allen Clustern
wird jeweils der Abstand zwischen zwei Clustern durch eine Anwendung der Map-
Funktion berechnet. Die Map-Funktion benétigt als Eingabe die Daten der beiden Cluster
und hat als Ausgabe die Namen der Cluster und ihre Distanz.

Die Map-Funktion zur Distanzberechnung ist definiert als:
Map : id1,id2 — id1, (id2, dist)

Die Eingabe zweier ClusterIDs wird also auf die gleichen ClusterIDs und den Abstand
zwischen den Clustern abgebildet. Hierbei miissen jedoch die zweite ClusterID id2
und die Distanz dist zu einem Objekt verschmolzen werden, da die Map-Funktion
ausschliefSlich auf Schliissel-Wert-Paaren arbeitet.

Der Reduce-Schritt wird in dieser Implementierung des Algorithmus nicht verwendet,
da auch die Distanzen gespeichert werden, die im aktuellen Schritt nicht minimal sind.
Die Distanzen, die im aktuellen Schritt nicht minimal sind, konnen in einem spéateren
Schritt, nachdem die minimale Distanz durch Verschmelzen entfernt wurde, zur mini-
malen Distanz werden. Das Speichern der nicht minimalen Distanzen entspricht der
Wiederverwendung der Distanzmatrix aus dem vorherigen Schritt, wie in Abschnitt 4.4.5
beschrieben.

6The Apache Software Foundation http://www.apache.org/
7Hadoop MapReduce http://hadoop.apache. org/mapreduce/

96

http://www.apache.org/
http://hadoop.apache.org/mapreduce/

5.5 Knotenleistungsclustering

Mit der Entscheidung, alle berechneten Abstidnde fiir die spatere Wiederverwendung
zu speichern, folgt, dass der Map/Reduce-Prozess alle Abstinde ausgeben muss. Es ist
sinnvoll, aus den erhaltenen Distanzen lokal das Minimum auszulesen, da eine verteilte
Ausfiihrung den Aufwand kaum reduzieren wiirde. Fiir das lokale Auslesen miissen
die Ergebnisse einmal linear gelesen werden, wihrend fiir eine verteilte Ausfithrung die
Distanzen des vorherigen Schrittes wieder in einen Map /Reduce-Prozess verteilt werden
miissten. Sie miissten also gelesen und an die Map/Reduce-Knoten iibertragen werden.

Ebenso ist eine verteilte Durchfiihrung von Schritt 3 nicht sinnvoll, da immer nur zwei
Cluster miteinander verschmolzen werden.

Um einen effizienten Zugriff der Map-Funktion auf die Clustereigenschaften zu ge-
wihrleisten, wurden verschiedene Konzepte evaluiert. Die zur Verfiigung stehenden
Abfragemoglichkeiten sind per Datenbankabfrage, durch Speicherung in einem verteilten
Dateisystem, durch Verwendung der Clusterdaten als Map-Parameter (statt der IDs) und
durch Verwendung des Distributed Cache von Hadoop.

Die Verwendung einer Datenbank zur Speicherung und Abfrage der Daten hat den
Vorteil, dass die Daten nur an einem Ort gespeichert und verwaltet werden miissen.
Als Nachteil ergibt sich jedoch, das dies dem Verteilungsgedanken widerspricht und zu
einem Flaschenhals fiihrt, da gleichzeitig viele Map-Prozesse Daten abfragen und sich so
gegenseitig behindern konnen. Zusétzlich ist bei einer entfernten Anfrage eine gewisse
Latenz fiir jede einzelne Anfrage nicht zu umgehen.

Ahnlich zur Speicherung in einer Datenbank verhilt sich die Verwendung eines verteilten
Dateisystems. Zwar ist bei entsprechender Verteilung ein Flaschenhals unwahrscheinlicher,
jedoch kann es haufig zu Verzogerungen durch nicht lokal verfiigbare Daten kommen.
Zudem entsteht ein Verwaltungs-Overhead durch die Verteilung und Abfrage.

Bei der Ubergabe der Daten als Map-Parameter ist der grofle Vorteil, dass die benotigten
Daten in der Map-Funktion direkt vorliegen und keine weiteren Daten angefragt werden
miissen. Dies entspricht dem reinen Map /Reduce-Paradigma, da so die Map-Funktion
keine weiteren Daten lesen muss. Als Nachteil ergibt sich jedoch, dass dieselben Daten
mehrfach tibertragen werden miissen.

Formel 5.1 Overhead pro Clusterbildungs-Schritt bei Ubertragung der Clusterdaten als
Key und Value

n—1 _ _ _
Overhead:(Z*Zi)—nzz*(n 1)(n21+1) w2 on
i=1

97

5 Implementierung

Im ersten Clusterbildungs-Schritt miissen, wie in Abschnitt 4.4.4 gezeigt, Zf’:_f i Abstande
tiir n verschiedene Knoten berechnet werden. Daraus ergibt sich, dass Zf’:_ll i Map-Aufrufe
mit jeweils zwei Knotendatensétzen, also 2 * Z;:ll i Datensitze tibertragen werden miissen,
obwohl es nur n verschiedene Datensétze gibt. Es entsteht also ein Daten-Overhead von
n? — 2n, wie in Formel 5.1 gezeigt, der bei entsprechend grofien Knoten- und damit
Clusteranzahlen durchaus zu einem Problem werden kann.

Die letzte Moglichkeit ist die Verwendung des Distributed Cache, der von Hadoop
MapReduce zu Verfiigung gestellt wird. Hierbei handelt es sich um Dateien beziehungs-
weise gepackte Archive, die vor der Ausfithrung der Map-Funktion an alle Map /Reduce-
Knoten iibertragen werden. Auf den Map/Reduce-Knoten werden die Dateien lokal fiir
die Map-Funktion verfiigbar gemacht. Wenn nun alle Clusterdaten in eine einzige Datei
gespeichert und vor Ausfiihrung an alle Map /Reduce-Knoten tibertragen werden, entsteht
ein Daten-Overhead in Hohe von 7 * (k — 1) mit k als Anzahl der Map/Reduce-Knoten,
auf denen die Berechnung ausgefiihrt wird. Der Overhead ergibt sich dadurch, dass nicht
bekannt ist, welchen Map/Reduce-Knoten das Map auf welche Daten ausfiihren, also
jeder Map /Reduce-Knoten alle Daten braucht. Bei einem Map/Reduce-Knoten wiirde
dieser den Zugriff auf alle n Knotendatensétze benotigen, bei k Map/Reduce-Knoten
braucht jeder zusatzliche Map /Reduce-Knoten eine Kopie der n Knotendatensitze.

Fiir die Implementierung wurde nun das zuletzt vorgestellte Konzept des Distributed
Cache verwendet, da hier die Kombination von Overhead und Latenz am geringsten ist.
Bei jeden Aufruf der Map-Funktion werden zwei Datensitze aus dem Distributed Cache
gelesen. Um die in Relation zu Arbeitsspeicherzugriffen langsamen Festplattenlesezugriffe
zu minimieren, wurde zusétzlich ein kleiner Arbeitsspeichercache fiir die Clusterdaten
entwickelt und implementiert.

Dieser Clusterdatencache macht sich zunutze, dass die Map-Funktion auf einem
Map/Reduce-Knoten hdufig mit aufeinander folgenden Datensdtzen arbeitet. Dazu
kommt es durch die blockweise Verteilung der Eingabedaten an die Map/Reduce-Knoten.
Als Beispiel sei folgende Ausfiihrung fiir einen Map/Reduce-Knoten gegeben: Map (1, 2),
Map(1, 3), Map(l, 4), Map(l, 5), Map(l, 6), Map(2, 3), Map(3, 4), Map(4, 5),
Map (5, 6). Offensichtlich werden in dieser Ausfithrung die Daten des Clusters mit der
ID 1 fiinfmal in direkt aufeinander folgenden Map-Aufrufen benétigt und der Datensatz
mit der ID 2 viermal.

Um nun ein wiederholtes Lesen des Datensatzes von der Festplatte zu umgehen, wurde
dem Lesen ein Cache mit zwei Eintragen vorgeschaltet. Dieser Cache ist in Form einer
FiFo-Queue der Lange zwei implementiert. Bei einer Leseanfrage wird immer zuerst der
Cache angefragt. Ist der Datensatz im Cache verfiigbar, so wird er direkt aus dem Cache
zurtickgeliefert und der Datensatz in der Queue an die letzte Position verschoben. Wenn
ein Datensatz im Cache nicht verfiigbar ist, wird er von der Festplatte gelesen und in der

98

5.5 Knotenleistungsclustering

Queue hinten angefiigt. Er verdrangt damit den <esten, vordersten Datensatz aus der
Queue.

Der Cache macht sich zunutze, dass sich in Hadoop MapReduce iiber die Konfigurati-
on das Wiederverwenden der Java Virtual Machine (JVM) fiir nacheinander auf einer
Maschine ausgefiihrte Map-Anwendungen erzwingen ldsst. Da die Map-Funktion als
static definiert ist, verwenden alle in einer JVM ausgefiihrten Map-Funktionen dieselben
Variablen. Die FiFo-Queue ist als static-Klassenvariable definiert.

Messergebnisse

Es wurde ein kurzer Test zu Bestidtigung der Annahmen {iiber die Parallelisierbarkeit
durchgefiihrt. Fiir den Test wurde nicht das vollstandige Clustering durchgefiihrt, son-
dern nur der erste und aufwendigste Clustering-Schritt. Die absoluten Werte sind nicht
zuverldssig, da die Messumgebung aus zwei unterschiedlich ausgestatteten Computern
bestand und der Code fiir die Messungen nicht optimiert wurde. Anhand der Messdaten
lasst sich jedoch ablesen, dass durch die parallele Ausfithrung ein deutlicher Geschwin-
digkeitszuwachs zu erwarten ist.

Fiir die Messung wurde die einfach parallele Ausfiihrung, also ein Map-Prozess, der
alle Distanzen berechnet, einer vierfach parallelen Ausfiihrung gegeniibergestellt. Der
Messrechner 1 ist ein PC mit einem AMD Athlon X2 Prozessor mit 2,5 GHz und Ubuntu
10.10 64 Bit. Der Messrechner 2 ist ein Notebook mit einem Intel Core2 Duo mit 2 GHz und
Ubuntu 10.04 32 Bit. Messrechner 1 ist in allen Tests der Masterknoten fiir die Verwaltung

und in den vierfach parallelen Tests zusitzlich ein Slaveknoten, der auch Berechnungen
durchfiihrt.

Hadoop MapReduce wurde so konfiguriert, dass jeder Slaveknoten bis zu zwei parallele
Map-Vorgiange durchfiihren kann. Bei zwei Slaveknoten ergeben sich also maximal vier
parallele Map-Vorgénge.

Als Tests wurden jeweils mit einfacher und vierfacher Parallelitdt 179700, 319600 und
499500 Abstdnde berechnet. Bei den Tests mit einfacher Parallelitit wurde die Steue-
rung von Messrechner 1 {ibernommen und die Berechnungen wurden von Messrechner 2
in einem einzigen Map-Vorgang durchgefiihrt. Fiir die Tests wurden jeweils 600, 8oo
und 1000 Knoten mit 100 Attributen erzeugt. Die Attribute wurden von einem Zufalls-
generator entweder mit einem zufilligen String oder einem zufélligen Integer Wert
befiillt. Die Anzahl der berechneten Abstinde ergibt sich aus der Knotenanzahl n durch
(n—1)2+n-1)/2.

Die Ergebnisse sind in Abbildung 5.16 dargestellt. Auf der X-Achse ist die Anzahl
der berechneten Abstdnde aufgefiihrt und auf der Y-Achse die fiir die Berechnungen

99

5 Implementierung

600
500
400
c
<
c 300
=2 =& 1 parallel
$ &4 parallel
200
&
100 @
&
0
179700 319600 499600

berechnete Abstdnde

Abbildung 5.16: Messergebnisse: Map/Reduce-Beschleunigung

bendtigte Zeit. Dem Diagramm ist zu entnehmen, dass die parallel berechnete Version
einen deutlichen Zeitvorteil erzielt. Der Zeitvorteil wird bei grofieren Knotenanzahlen
noch deutlicher, da hier der Overhead fiir den Start des Map-Prozesses weniger ins
Gewicht fallt.

100

Kapitel 6

Restimee

Ziel dieser Arbeit war es, NexusDS um einen Auslastungsdienst zu erweitern, der anhand
von Messdaten Empfehlungen fiir Ausfithrungsknoten zur Ausfithrung von Operatoren
gibt. Hierfiir wurde NexusDS vorgestellt. Nach einer Analyse von verwandten Arbeiten
zur Leistungsmessung und Vorhersage von Anwendungsperformance in verteilten und
parallelen Umgebungen wurde eine Architektur fiir den Auslastungsdienst entwickelt.

Um den Auslastungsdienst mit Leistungsmesswerten und Daten tiber die Plattformeigen-
schaften zu versorgen, wurde das Konzept von verteilten Sensoren angewandt. Die von
ihnen gesammelten Daten werden im Auslastungsdienst zu Statistiken aggregiert.

Hierfiir wurde analysiert, welche Messdaten erfasst werden miissen, um aus ihnen
Vorhersagen tiber die Leistung von Operatoren auf verschiedenen Ausfithrungsknoten
unter bestimmten Parametrisierungen zu berechnen. Fiir die Statistiken wurde eine
Vorgehensweise zur Historisierung von veralteten Daten vorgestellt.

Fiir die Verbreiterung der Datenbasis wurde das Konzept des Knotenleistungsclusterings
eingefiihrt und es wurden verschiedene Clusteringalgorithmen evaluiert. Fiir den ge-
wihlten Algorithmus fiir hierarchisches Clustering wurden verschiedene Verfahren zur
Aufwandsreduzierung vorgestellt.

Um fiir die Implementierung des Auslastungsdienstes ein geeignetes Verfahren fiir die Be-
rechnung des Knotenleistungsclusterings zu haben, wurde das Map/Reduce-Paradigma
zur verteilten Berechnung vorgestellt. Auf der Basis von Map /Reduce wurde der Algo-
rithmus zur verteilten Berechnung der Distanzen zwischen den Clustern beim Knoten-
leistungsclustering entwickelt. Um die Festplattenzugriffe durch die Map-Funktion zu
minimieren, wurde ein Cache entwickelt, der sich die Datenstruktur und Reihenfolge der
Ausfiihrung zunutze macht.

101

Kapitel 7

Zukiinftige Arbeiten

An verschiedenen Stellen dieser Arbeit haben sich weitere Themen aufgezeigt, die in
zukiinftigen Arbeiten zu einer Verbesserung des Systems fiithren konnen oder interessante
Forschungsthemen ergeben.

7.1 Bewertung der Vorhersagequalitat

Der Auslastungsdienst erstellt Vorhersagen tiber geeignete Knoten fiir die Ausfiihrung
von Operatoren unter ihrer Parametrisierung. Allerdings ist bei einer Vorhersage nicht
bekannt, wie gut ihre Qualitét ist, also inwieweit sie der Realititdt entsprechen wird. Ein
spannendes Thema ist daher zum einen die Messung in einem auf allen Architektur-
ebenen vollstindigen System — das hier leider noch nicht zur Verftigung stand —, wie
weit die Vorhersagen des Auslastungsdienstes von einem Optimum abweichen. Dafiir
konnte das Gesamtsystem im Produktivbetrieb beobachtet werden und anhand von
zusédtzlichen Messdaten im Nachhinein beurteilt werden, wie gut die Entscheidungen des
Auslastungsdienstes tatsdchlich waren.

Unabhiéngig von der Bewertung der Vorhersagen im Nachhinein wére auch eine Selbstbe-
wertung der Vorhersagen durch den Auslastungsdienst interessant. Es konnte anhand der
Durchschnittswerte fiir die gemessenen Werte und der zugehorigen Varianz bestimmt
werden, mit welcher Wahrscheinlichkeit ein Ereignis eintritt. Das Ziel ware also, anzu-
geben, mit welcher Wahrscheinlichkeit ein Operator auf einem bestimmten Knoten das
gewtinschte Ergebnis liefert.

103

7 Zukinftige Arbeiten

7.2 Heuristik fiuir die Anzahl der zu betrachtenden Cluster

Das implementierte Clusterbildungsverfahren erlaubt es, die Granularitdt, fiir die die
Knotenleistungscluster betrachtet werden, im Betrieb frei zu wihlen. In der Arbeit wurde
als Heuristik angegeben, dass es nicht sinnvoll ist, mehr als die Anzahl unterschiedlich
ausgestatteter Systeme als getrennte Cluster zu betrachten.

Mit der Anzahl der betrachteten Cluster, fiir die Statistiken fiir die Operatorausfiihrungen
zusammengefiihrt werden, dndert sich nicht nur der Aufwand, sondern auch die Vor-
hersagequalitit. Die Extrembeispiele vom oberen und unteren Ende der Skala sind das
Betrachten eines einzelnen Clusters mit allen Knoten und das Betrachten aller Knoten
einzeln. Im ersten Fall wird die Vorhersage durch die vielen Knoten, die nicht dhnlich
sind, verfdlscht. Fiir jeden Knoten kann es zu unrealistischen Abweichung von den Ober-
und Untergrenzen sowie von den Durchschnittswerten kommen. Im anderen Fall, dass
jeder Knoten fiir sich selbst betrachtet wird, kann es passieren, dass die Datenbasis fiir
den Operator auf diesem Knoten sehr diinn ist. Eine einzelner Ausreifler in diesen Daten
wiirde zu unrealistischen Vorhersagen fiihren.

Ziel ist, die optimale Anzahl der zu betrachtenden Cluster zu bestimmen. Wenn man
das System von auflen betrachtet, ist die Anzahl der zu betrachtenden Cluster offensicht-
lich. Sie entspricht der Anzahl von sich unterschiedlich verhaltenden Systemen in den
Knotenkandidaten. Die Schwierigkeit ist jedoch, diese Anzahl innerhalb des Systems zu
bestimmen. Es wire nun zu evaluieren, wie diese Anzahl berechnet werden kann.

7.3 Map/Reduce und NexusDS

Fiir die Implementierung des Knotenleistungsclusterings wurde in Abschnitt 5.5 das
Map /Reduce-Konzept eingefiihrt. Das Ziel von Map/Reduce ist dhnlich dem von
NexusDS. Beide Frameworks bieten Moglichkeiten zur Berechnung mittels eines ver-
teilten Ansatzes. Wahrend NexusDS flexibel ist, wie die Verteilung und Abfolge von
Operationen aussieht, sind die Reihenfolge und das Format bei Map /Reduce fest vorge-
geben. Map/Reduce arbeitet immer auf Schliissel-Wert-Paaren und Daten, die parallel
verarbeitet werden konnen.

Es wére nun interessant, das Map/Reduce-Paradigma in NexusDS verfiigbar zu machen.
Dafiir miissten Operatoren geschaffen werden, die die Funktionen der verschiedenen
Schritte von Map/Reduce iibernehmen. Wie in Abschnitt 5.5.2 erldutert, werden bei
Map/Reduce die Daten blockweise auf Map-Knoten verteilt, die dann fiir die im Block
enthaltenen Key-Value-Paare nacheinander jeweils die Map-Funktion ausfiihren. Fiir
diesen ersten Schritt werden zwei Operatoren in NexusDS benétigt: zum einen ein

104

7.3 Map/Reduce und NexusDS

Operator, der die Daten in Blocke aufteilt und an verschiedene Knoten weiterreicht, und
zum anderen ein Map-Operator, der die Blocke erhdlt und auf die darin enthaltenen
Daten die Map-Funktion anwendet.

Wird auch der Combine-Schritt implementiert, muss hierfiir ein Puffer zwischen dem Map-
und dem Combine-Operator auf dem Knoten existieren. Sobald ein Block abgearbeitet ist,
kann die Combine-Funktion angewandt werden.

Nach dem Map- oder Combine-Schritt miissen die Daten sortiert werden und an die
Reducer-Operatoren weitergegeben werden. Fiir die Reduce-Operation ist zu beachten,
dass hierfiir alle Ergebnisse fiir alle Datensétze aus den Datenblécken vorliegen miissen.
Ein Reduce-Operator muss also die Information bekommen, wann er alle Ergebnisse
erhalten hat. Dies kann in NexusDS erfolgen, indem der Reducer per Konfiguration
mitgeteilt bekommt, von wie vielen Map- beziehungsweise Combine-Knoten er Daten
erhilt. Er wartet dann, bis er von jedem dieser Knoten das Ende der Daten {iiber eine
Punctation im Datenstrom mitgeteilt bekommen hat. Punctations sind Zusicherungen, die
im Datenstrom mit angegeben werden kdnnen (siehe auch [Dorog]).

105

Anhang A

Appendix

A.1 Von SIGAR unterstitzte Plattformen

Die Monitoring Middleware unterstiitzt in Version 1.6.3 laut der Dokumentation® die in
Tabelle A.1 aufgelisteten Plattformen.

'Die Dokumentation ist verfiigbar unter http://support.hyperic.com/display/SIGAR/Home

107

http://support.hyperic.com/display/SIGAR/Home

A Appendix

Operating System

Linux
Linux
Linux
Linux
Linux
Linux
Linux

Windows

Windows

Solaris
Solaris
Solaris
Solaris
AIX

AIX
HP-UX
HP-UX
FreeBSD
FreeBSD
FreeBSD
FreeBSD

OpenBSD

NetBSD

Mac OS X
Mac OS X
Mac OS X

Architecture
x86

amd64

ppc

ppco4

iab4

$390

$390X

x86

x64
sparc-32
sparc-64
x86
x64
pp¢

ppco4
PA-RISC

iab4

x86

x86

x64

x86, x64
x86

x86
PowerPC
x86

x64

Versions

2.2, 2.4, 2.6 kernels

2.6 kernel

2.6 kernel

2.6 kernel

2.6 kernel

2.6 kernel

2.6 kernel

NT 4.0, 2000 Pro/Server, 2003 Server, XP
Vista, 2008 Server, Windows 7

2003 Server, Vista, 2008 Server, Windows 7
2.6,7,8,9, 10

8,9, 10

4.3,5.1,5.2,5.3, 6.1

5.2, 5.3, 6.1
11

11

4.X

5.X, 6.X
6.x

7.X, 8.X
4.X, 5.X
3.1

10.3, 10.4
10.4, 10.5
10.5

Tabelle A.1: Von SIGAR unterstiitzte Plattformen

108

Literaturverzeichnis

[BDG"04]

[BWF+96]

[BYST'06]

[CEB*o09]

M. Bauer, F. Diirr, J. Geiger, M. Grossmann, N. Honle, J. Joswig, D. Nick-
las, T. Schwarz. Information Management and Exchange in the Ne-
xus Platform. Technischer Bericht Informatik 2004/04, Universitdt Stutt-
gart: Sonderforschungsbereich SFB 627 (Nexus: Umgebungsmodelle fiir
mobile kontextbezogene Systeme), Germany, Universitidt Stuttgart, Institut
fir Parallele und Verteilte Systeme, Verteilte Systeme; Universitat Stutt-
gart, Institut fiir Parallele und Verteilte Systeme, Anwendersoftware, 2004.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=TR-2004-04&mod=0&engl=0&inst=AS. (Zitiert auf den Seiten 17
und 19)

F. D. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao. Application-level
scheduling on distributed heterogeneous networks. In Proceedings of the 1996
ACMY/IEEE conference on Supercomputing (CDROM) - Supercomputing ‘96, pp. 39—
es. Pittsburgh, Pennsylvania, United States, 1996. doi:10.1145/369028.369109.
URL http://portal.acm.org/citation.cfm?doid=369028.369109. (Zitiert
auf Seite 23)

T. Bray, F. Yergeau, C. M. Sperberg-McQueen, J. Paoli, E. Maler. Extensible Mar-
kup Language (XML) 1.0 (Fourth Edition). First edition of a recommendation,
W3C, 2006. URL http://www.w3.org/TR/2006/REC-xm1-20060816. (Zitiert
auf den Seiten 18 und 88)

N. Cipriani, M. Eissele, A. Brodt, M. Grofimann, B. Mitschang. Ne-
xusDS: A Flexible and Extensible Middleware for Distributed Stream Pro-
cessing. In ACM, editor, IDEAS ‘09: Proceedings of the 2008 International
Symposium on Database Engineering & Applications, pp. 152-161. ACM, 2009.
URL http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2009-94&engl=0. (Zitiert auf den Seiten 19 und 22)

109

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&mod=0&engl=0&inst=AS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&mod=0&engl=0&inst=AS
http://portal.acm.org/citation.cfm?doid=369028.369109
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-94&engl=0
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-94&engl=0

Literaturverzeichnis

[CLM10]

[DGo8]

[Dorog]

[Frioz2]

[FZ87]

[Geho6]

[Graos]

[Hasog]

[HKo1]

[IEEo9]

110

N. Cipriani, C. Liibbe, A. Moosbrugger. Exploiting Constraints to Build a
Flexible and Extensible Data Stream Processing Middleware. In The Third
International Workshop on Scalable Stream Processing Systems, pp. 1-8. IEEE
Computer Society, 2010. URL http://www.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-08&engl=0. (Zitiert auf
den Seiten 19 und 20)

J. Dean, S. Ghemawat. MapReduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107-113, 2008. doi:http://doi.acm.org/10.1145/1327452.
1327492. (Zitiert auf Seite 93)

M. Dorr. Entwurf und Implementierung von Basisoperatoren fiir Nexus. Di-
plomarbeit, Universitédt Stuttgart: Sonderforschungsbereich SFB 627 (Nexus:
Umgebungsmodelle fiir mobile kontextbezogene Systeme), Germany, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=DIP-2776&engl=0. (Zitiert auf den Seiten 41 und 105)

M. Friedman. Windows 2000 performance guide. O'Reilly, Sebastopol CA, 2002.
(Zitiert auf Seite 88)

D. Ferrari, S. Zhou. An Empirical Investigation of Load Indices for Load
Balancing Applications. Technical Report UCB/CSD-87-353, EECS Department,
University of California, Berkeley, 1987. URL http://www.eecs.berkeley.
edu/Pubs/TechRpts/1987/5990 . html. (Zitiert auf Seite 51)

J. Gehring. MARS—A framework for minimizing the job execution time in a
metacomputing environment. Future Generation Computer Systems, 12(1):87-99,
1996. d0i:10.1016/0167-739X(95)00037-S. URL http://linkinghub.elsevier.
com/retrieve/pii/0167739X950003785. (Zitiert auf Seite 25)

L. Grandinetti. Grid computing : the new frontier of high performance computing.
Elsevier, 1st ed. edition, 2005. (Zitiert auf Seite 46)

T. Hastie. The elements of statistical learning : data mining, inference, and prediction.
Springer Series in Statistics. Springer, New York, 2nd ed. edition, 2009. (Zitiert
auf Seite 64)

J. Han, M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001. (Zitiert auf den Seiten 59, 60,
62, 63 und 64)

IEEE. IEEE Standard for Prefixes for Binary Multiples. IEEE Std 1541-2002
(R2008), pp. c1 —4, 2009. doi:10.1109/IEEESTD.2009.5254933. (Zitiert auf den
Seiten 11 und 51)

http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-08&engl=0
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-08&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2776&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2776&engl=0
http://www.eecs.berkeley.edu/Pubs/TechRpts/1987/5990.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1987/5990.html
http://linkinghub.elsevier.com/retrieve/pii/0167739X9500037S
http://linkinghub.elsevier.com/retrieve/pii/0167739X9500037S

[Kocog]

[LDRo3]

[Mic10]

[Ora]

[SVo8]

[Tano6]

[WFog]

[Whiog]

[Wolg7]

[WSP97]

Literaturverzeichnis

M. Koch. Konzeption und Realisierung einer erweiterbaren Service-Schnittstelle
in einer verteilten Umgebung. Diplomarbeit, Universitdat Stuttgart, Fakul-
tat Informatik, Elektrotechnik und Informationstechnik, Germany, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?7id=DIP-2913&engl=0. Published: Diplomarbeit: Universitit Stuttgart,
Institut fiir Parallele und Verteilte Systeme, Anwendersoftware. (Zitiert auf
Seite 30)

D. Lee, J. J. Dongarra, R. S. Ramakrishna. visPerf: Monitoring Tool for
Grid Computing. In In ICCS 2003, Lecture Notes in Computer Science, Lec-
ture Notes in Computer Science, p. 233-243. Springer Verlag, 2003. doi:
10.1007/3-540-44863-2_24. (Zitiert auf Seite 26)

Microsoft. Monitoring Performance Data (Windows). Technical report,
2010. URL http://msdn.microsoft.com/en-us/library/aa392397(VS.85)
.aspx. (Zitiert auf Seite 88)

Oracle. JDK 6 Java Native Interface-related APIs & Developer Guides. Tech-
nical report. URL http://download.oracle.com/javase/6/docs/technotes/
guides/jni/index.html. (Zitiert auf Seite 89)

H. Sanjay, S. Vadhiyar. Performance modeling of parallel applications for
grid scheduling. Journal of Parallel and Distributed Computing, 68(8):1135-1145,
2008. d0i:10.1016/j.jpdc.2008.02.006. URL http://linkinghub.elsevier.com/
retrieve/pii/S0743731508000464. (Zitiert auf Seite 25)

A. Tanenbaum. Distributed systems : principles and paradigms. Prentice Hall,
Harlow, 2nd ed. edition, 2006. (Zitiert auf Seite 48)

P. Walmsley, D. C. Fallside. XML Schema Part o: Primer Second Editi-
on. W3C recommendation, W3C, 2004. URL http://www.w3.org/TR/2004/
REC-xmlschema-0-20041028/. (Zitiert auf Seite 18)

T. White. Hadoop : the definitive guide. O’Reilly, Sebastopol CA, 2009. (Zitiert
auf Seite 94)

R. Wolski. Forecasting network performance to support dynamic scheduling
using the network weather service. In HPDC ‘97: Proceedings of the 6th IEEE
International Symposium on High Performance Distributed Computing, p. 316. IEEE
Computer Society, Washington, DC, USA, 1997. (Zitiert auf Seite 24)

R. Wolski, N. Spring, C. Peterson. Implementing a performance forecasting
system for metacomputing. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing (CDROM) - Supercomputing ‘97, pp. 1-19. San Jose, CA,

111

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2913&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2913&engl=0
http://msdn.microsoft.com/en-us/library/aa392397(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa392397(VS.85).aspx
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://linkinghub.elsevier.com/retrieve/pii/S0743731508000464
http://linkinghub.elsevier.com/retrieve/pii/S0743731508000464
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

Literaturverzeichnis

1997. doi:10.1145/509593.509600. URL http://portal.acm.org/citation.
cfm?doid=509593.509600. (Zitiert auf Seite 24)

[Oz99] M. Ozsu. Principles of distributed database systems. Prentice Hall, Upper Saddle
River NJ, 2nd ed. edition, 1999. (Zitiert auf Seite 48)

Alle URLs wurden zuletzt am 31.10.2010 gepriift.

112

http://portal.acm.org/citation.cfm?doid=509593.509600
http://portal.acm.org/citation.cfm?doid=509593.509600

Erklirung

Hiermit versichere ich, diese Arbeit
selbststandig verfasst und nur die angegebenen
Quellen benutzt zu haben.

(Raimund Huber)

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Aufbau der Arbeit

	2 Grundlagen und verwandte Arbeiten
	2.1 Nexus
	2.1.1 AWML – Augmented World Model Language

	2.2 NexusDS
	2.2.1 Architektur
	2.2.2 Anwendungsstart

	2.3 Auslastungsmessung und Messdaten für Scheduling
	2.3.1 Application-level scheduling und Network Weather Service
	2.3.2 Mars – Framework
	2.3.3 Performance modeling of parallel applications for grid scheduling
	2.3.4 VisPerf: Monitoring Tool for Grid Computing

	3 Architektur des Auslastungsdienstes
	3.1 Überblick
	3.2 Problemanalyse
	3.3 Daten
	3.3.1 Kompatibilitätsmatrix
	3.3.2 Knoten- und Operatorstatistik
	3.3.3 Knotenleistungsclustering

	3.4 Sensordatenverarbeitung
	3.4.1 Operatorleistungsmessung

	3.5 Knotenanfragebearbeitung
	3.5.1 Ablauf Knotenanfrageverarbeitung

	3.6 Verteilte Ausführung des Auslastungsdienstes

	4 Detailentwurf
	4.1 Spezifikation der Sensormessdaten
	4.1.1 Plattformeigenschaften – statische Knotendaten
	4.1.2 Dynamische Knotendaten
	4.1.3 Operatormessdaten

	4.2 Speicherung der Sensordaten
	4.2.1 Gespeicherte Daten und Zugriffspfade
	4.2.2 Zeitgranularität und Historisierung

	4.3 Erzeugung und Speicherung der Kompatibilitätsmatrix
	4.4 Erzeugung des Knotenleistungsclusterings
	4.4.1 Definition der Distanzmetrik
	4.4.2 Clusteringverfahren
	4.4.3 Bewertung und Auswahl der Clusteringverfahren
	4.4.4 Algorithmus
	4.4.5 Aufwandsreduzierung

	4.5 Berechnung der knoten- und operatorabhängigen Anforderungen
	4.6 Optimierungsranking
	4.7 Zusammenfassung und Visualisierung der Daten

	5 Implementierung
	5.1 Datenspeicherung
	5.2 Implementierung des Auslastungsdienstes
	5.2.1 Datenerfassung
	5.2.2 Knotenanfrageverarbeitung

	5.3 Implementierung der Sensoren
	5.4 Knotenauslastungserfassung
	5.5 Knotenleistungsclustering
	5.5.1 Lokale Berechnung
	5.5.2 Map/Reduce-basierte Berechnung
	Messergebnisse

	6 Resümee
	7 Zukünftige Arbeiten
	7.1 Bewertung der Vorhersagequalität
	7.2 Heuristik für die Anzahl der zu betrachtenden Cluster
	7.3 Map/Reduce und NexusDS

	A Appendix
	A.1 Von SIGAR unterstützte Plattformen

