
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3033

Konzeption und Realisierung
eines Auslastungsdienstes für

eine verteilte
Ausführungsumgebung

Raimund Huber

Studiengang: Informatik

Prüfer: Dr. Holger Schwarz

Betreuer: Dipl.-Inf. Nazario Cipriani

begonnen am: 3. Mai 2010

beendet am: 2. November 2010

CR-Klassifikation: C.4, D.4.1, H.3.3

Kurzfassung

In dieser Arbeit wird ein Auslastungsdienst für die verteilte Streaming-Middleware
NexusDS entwickelt. Der Auslastungsdienst trifft Vorhersagen über geeignete Aus-
führungsknoten für die Ausführung von Operatoren. Für die Vorhersagen werden
laufend auf den Ausführungsknoten erfasste Leistungsmessdaten über Operatoren und
Ausführungsknoten verwendet.

Es wird ein Konzept zur effizienten Filterung der in Frage kommenden Aus-
führungsknoten entwickelt. Für die Vorhersage wird eine Clusterbildung verwendet, die
Knoten mit ähnlichen Eigenschaften gruppiert. Um das Clustering schneller berechnen
zu können, wird eine Map/Reduce-basierte, verteilte Implementierung entwickelt.

Abstract

In this thesis a utilization service will be developed for the distributed streaming middle-
ware NexusDS. The utilization service predicts, which of the execution nodes known to
him are suitable for the execution of an operator. The prediction is calculated by exploiting
performance meters of the operators and execution nodes.

A concept for an efficient filtering of suitable execution nodes will be developed. For the
forecasting a clustering algorithm is applied to group nodes with similar attributes. For
the implementation of the clustering-algorithm a Map/Reduce based approach is applied
to allow a faster calculation in a distributed manner.

3

Inhaltsverzeichnis

1 Einleitung 13
1.1 Aufgabenstellung . 14

1.2 Aufbau der Arbeit . 14

2 Grundlagen und verwandte Arbeiten 17
2.1 Nexus . 17

2.1.1 AWML – Augmented World Model Language 18

2.2 NexusDS . 19

2.2.1 Architektur . 20

2.2.2 Anwendungsstart . 21

2.3 Auslastungsmessung und Messdaten für Scheduling 23

2.3.1 Application-level scheduling und Network Weather Service 23

2.3.2 Mars – Framework . 25

2.3.3 Performance modeling of parallel applications for grid scheduling . 25

2.3.4 VisPerf: Monitoring Tool for Grid Computing 26

3 Architektur des Auslastungsdienstes 29
3.1 Überblick . 30

3.2 Problemanalyse . 32

3.3 Daten . 35

3.3.1 Kompatibilitätsmatrix . 35

3.3.2 Knoten- und Operatorstatistik . 36

3.3.3 Knotenleistungsclustering . 37

3.4 Sensordatenverarbeitung . 38

3.4.1 Operatorleistungsmessung . 39

3.5 Knotenanfragebearbeitung . 42

3.5.1 Ablauf Knotenanfrageverarbeitung 44

3.6 Verteilte Ausführung des Auslastungsdienstes 46

5

4 Detailentwurf 49
4.1 Spezifikation der Sensormessdaten . 49

4.1.1 Plattformeigenschaften – statische Knotendaten 50

4.1.2 Dynamische Knotendaten . 50

4.1.3 Operatormessdaten . 51

4.2 Speicherung der Sensordaten . 53

4.2.1 Gespeicherte Daten und Zugriffspfade 53

4.2.2 Zeitgranularität und Historisierung 55

4.3 Erzeugung und Speicherung der Kompatibilitätsmatrix 56

4.4 Erzeugung des Knotenleistungsclusterings 58

4.4.1 Definition der Distanzmetrik . 59

4.4.2 Clusteringverfahren . 60

4.4.3 Bewertung und Auswahl der Clusteringverfahren 63

4.4.4 Algorithmus . 64

4.4.5 Aufwandsreduzierung . 66

4.5 Berechnung der knoten- und operatorabhängigen Anforderungen 67

4.6 Optimierungsranking . 69

4.7 Zusammenfassung und Visualisierung der Daten 70

5 Implementierung 73
5.1 Datenspeicherung . 74

5.2 Implementierung des Auslastungsdienstes 77

5.2.1 Datenerfassung . 79

5.2.2 Knotenanfrageverarbeitung . 83

5.3 Implementierung der Sensoren . 85

5.4 Knotenauslastungserfassung . 88

5.5 Knotenleistungsclustering . 90

5.5.1 Lokale Berechnung . 90

5.5.2 Map/Reduce-basierte Berechnung . 93

Messergebnisse . 99

6 Resümee 101

7 Zukünftige Arbeiten 103
7.1 Bewertung der Vorhersagequalität . 103

7.2 Heuristik für die Anzahl der zu betrachtenden Cluster 104

7.3 Map/Reduce und NexusDS . 104

A Appendix 107
A.1 Von SIGAR unterstützte Plattformen . 107

6

Abbildungsverzeichnis

2.1 Beispiel interaktive ortsbasierte Visualisierungspipeline 20

2.2 Architektur NexusDS . 22

2.3 Beispiel Jacobi Matrix . 24

3.1 Bezug zur NexusDS Architektur . 30

3.2 Übersicht über die Abläufe um Auslastungsdienst und Sensoren 31

3.3 Architektur Auslastungsdienst . 34

3.4 Beispiel Kompatibilitätsmatrix . 36

3.5 Knoten, Framework, Sensor und Operatoren 39

3.6 Beispiel NPGM-Graph Ausschnitt . 43

3.7 Übersicht Replikation des Auslastungsdienstes 47

4.1 Beispiel Bucket Statistik . 55

4.2 Beispiel Dendrogramm . 63

4.3 Beispiel Distanzmatrizen . 65

4.4 Verwendung der Knotenleistungscluster zur Berechnung der Anforderungen 69

4.5 Übersicht über die gespeicherten Daten als ER-Diagramm 71

5.1 Übersicht Tabellen für die Datenspeicherung 75

5.2 Abläufe im Auslastungsdienst . 78

5.3 Abläufe der Datenerfassung . 79

5.4 Klassen für den Ablauf Speicherung . 80

5.5 Datentypen für die Übertragung und Verarbeitung der Sensordaten 81

5.6 Definition der Klassen ClusterMaintenance und Clusterer 82

5.7 Definition der Klasse Request . 83

5.8 Definition der Klasse RequestHandler . 84

5.9 Definition der Klasse NodeRecommendation 84

5.10 Definition des NodeRequest Interfaces . 85

5.11 Definition des Service Interface . 86

5.12 Sequenzdiagramm Lebenslauf eines Sensors 87

5.13 Klasse Sensor und Interfaces . 88

5.14 Map/Reduce-Ablauf . 94

5.15 Ablauf des Clusterbildungs-Algorithmus mit Map/Reduce 95

7

5.16 Messergebnisse: Map/Reduce-Beschleunigung 100

8

Tabellenverzeichnis

3.1 Beispiele für Anforderungen . 43

4.1 Erfasste Plattformeigenschaften . 50

4.2 Erfasste Knotenleistungsmessdaten . 51

4.3 Erfasste Operatormessdaten . 52

4.4 Zusammenfassung der gespeicherten Sensormessdaten 54

4.5 Beispieltabellen für String und Float Plattformeigenschaften 57

4.6 Beispieltabellen für String und Float Plattformanforderungen 57

4.7 Beispiel für die Speicherung einer Kompatibilitätsmatrix 57

5.1 Tabellen für die Clusterbildung . 93

A.1 Von SIGAR unterstützte Plattformen . 108

Verzeichnis der Listings

4.1 SQL Beispiel zur Abfrage kompatibler Knoten für <AnfrageOperatorID> . 58

4.2 Algorithmus zum hierarchischen Clustern 68

5.1 Beispiel SQL-Anfrage Durchnittsbildung beim Verschmelzen der Cluster
q1 - q3 . 91

5.2 Beispiel SQL-Anfrage einheitliche String-Werte beim Verschmelzen der
Cluster q1 - q3 . 91

9

Liste der Abkürzungen

AD Auslastungsdienst

AFD Anfragedienst

AWM Augmented World Model

AWML Augmented World Model Language

AWQL Augmented World Query Language

CPU Central Processing Unit

CQS Core Query Service

GPU Graphics Processing Unit

ID Identifier

JVM Java Virtual Machine

MiB Mebibyte: Entsprechend Standard IEEE 1541 2002 [IEE09]: 1 MiB =
220 Byte

NPGM Nexus Plan Graph Model

OES Operator Execution Service

QF Query Fragmenter

XSD XML Schema Definition

11

Kapitel 1

Einleitung

Trotz allgemein steigender Leistungsfähigkeit von mobilen Computern und Arbeitsplatz-
rechnern ist die Rechenleistung und Speicherkapazität eines einzelnen Gerätes häufig
nicht ausreichend, um große Datenmengen vorzuhalten und schnell genug zu verar-
beiten. Das NexusDS Framework erlaubt es, datenstrombasierte Berechnungen in eine
verteilte Plattform zu verlagern. Die gebündelte Leistungsfähigkeit der in der Plattform
verfügbaren Rechner wird so einem einzelnen Gerät verfügbar gemacht und ermöglicht
es, Anwendungen, die aufgrund beschränkter Ressourcen sonst nicht lauffähig wären,
verfügbar zu machen.

In NexusDS können Berechnungen für Datenströme auf sogenannte Operatoren innerhalb
der Plattform verteilt werden. Bisher werden mit Hilfe eines graphischen Editors oder
über XML-Steuerdateien die Datenquellen mit Operatoren verknüpft, die Operatoren
miteinander verknüpft und letztlich in die Datensenke – die Ausgabe – geleitet. Allerdings
muss bisher die Verteilung der Operatoren auf die einzelnen Knoten manuell unter Zuhil-
fenahme von externem Wissen des Benutzers über die Eigenschaften und die Leistung
der Knoten vorgenommen werden.

Für eine automatische Platzierung der Operatoren ist ein Anfragedienst in NexusDS
vorgesehen. Bei der Planung einer Vielzahl voneinander abhängigen Operatoren steigt
die kombinatorische Komplexität. Um dem Anfragedienst um einen Teil der Komplexität
zu entlasten, ist in NexusDS ein Auslastungsdienst vorgesehen, der die verfügbaren
Ausführungsknoten verwaltet und beobachtet, um ihre Eigenschaften zu bestimmen und
ihre Verfügbarkeit vorherzusagen.

Diese Eigenschaften können zum Beispiel Rechenleistung, Auslastung, spezielle Hardware
wie Grafikkarten, spezielle Systemumgebung, Speicherplatz und Netzwerkanbindung
sein. Zum einen werden aktuelle, also dynamische Daten für eine Bewertung gebraucht,
um festzustellen, ob der Knoten momentan überhaupt verfügbar, gerade ausgelastet

13

1 Einleitung

oder nicht erreichbar ist. Zum anderen werden statische Daten über die Ausstattung, die
maximale, die typische und die zu erwartende Leistungsfähigkeit der Knoten benötigt.

1.1 Aufgabenstellung

Das Ziel dieser Arbeit ist die Konzeption und Implementierung eines Auslastungsdienstes
als Erweiterung des NexusDS Frameworks. Der Auslastungsdienst soll die verfügbaren
Knoten verwalten und auf Anfrage nach einem Ausführungsknoten für einen bestimmten
Operator Vorschläge liefern, welche Knoten sowohl den Anforderungen an die Hard-
und Software-Umgebung entsprechen, als auch eine Vorhersage treffen, welche Knoten
nach statistischen Erfahrungswerten am besten geeignet sind, den Operator mit seiner
Konfiguration innerhalb vorgegebener Leistungsanforderungen auszuführen.

Um diese Ausführungsknotenanfragen bearbeiten zu können, sammelt der Auslastung-
dienst entsprechende geeignete Messdaten und bereitet sie auf, um die Anfragen innerhalb
kurzer Zeit beantworten zu können.

1.2 Aufbau der Arbeit

Diese Arbeit beginnt mit einem Grundlagenkapitel, das zuerst einen Überblick über das
Nexus Framework und das darauf aufbauende NexusDS Framework gibt. Außerdem wer-
den verwandte Arbeiten vorgestellt, die sich mit Vorhersagen von Ressourcenverfügbarkeit
und dem Scheduling von verteilten Anwendungen beschäftigen.

In Kapitel 3 wird eine Einordnung des Auslastungsdienstes in die Architektur vorgenom-
men und die Problemstellung analysiert. Auf dieser Basis werden die Architektur des
Auslastungsdienstes und seine Komponenten entwickelt.

Aufbauend auf der zuvor vorgestellten Architektur erfolgt in Kapitel 4 ein detaillierter
Entwurf mit der Spezifikation der zu erfassenden Daten und der verwendeten Verfahren.
Es wird auf Basis einer Übersicht über verschiedene Clusteringverfahren ein Verfahren
ausgewählt und ein Algorithmus zur Implementierung vorgestellt.

In Kapitel 5 wird die Implementierung des Auslastungsdienstes beschrieben. Für das
Clusteringverfahren wird eine parallelisierbare Implementierung vorgestellt und in einem
kurzen Test gezeigt, dass diese einen deutlichen Geschwindigkeitszuwachs erbringt.

14

Danksagung

Ich bedanke mich an dieser Stelle bei den Personen, die mir bei der Bearbeitung der
Diplomarbeit geholfen haben: Meinem Betreuer Nazario Cipriani, der mich mit vielen
Ratschlägen unterstützt hat, meiner Mutter, die auch in schwierigsten Fällen der Komma-
setzung eine fundierte Meinung vertreten hat, Sevgi, die mich besonders in anstrengenden
Momenten mit einem lächeln und mit freundlichen Worten aufgemuntert hat sowie all
den Kommilitonen und Freunden die mich nicht nur während der Diplomarbeit als
Gesprächspartner zu neuen Ideen angeregt haben.

15

Kapitel 2

Grundlagen und verwandte
Arbeiten

In diesem Kapitel werden Grundlagen für die Arbeit eingeführt sowie Forschungsarbeiten,
die sich mit verwandten Themenbereichen auseinandergesetzt haben, vorgestellt.

Zuerst wird ein Überblick über das NexusDS Framework gegeben. Aus NexusDS stammt
die Rahmenarchitektur für den in dieser Arbeit entwickelten Auslastungsdienst. Au-
ßerdem ist NexusDS die Plattform für die Implementierung des Auslastungsdienstes.
Anschließend werden verwandte Arbeiten zu folgenden vier Schwerpunkten vorgestellt:
Welche Indikatoren werden für ein möglichst optimales Scheduling benötigt, wie können
sie in einem Peer2peer System erfasst werden, wie und wo werden diese Daten gespeichert
und wie können die Daten aufbereitet werden.

2.1 Nexus

Nexus ist eine Plattform für ortsbasierte und kontextbezogene Anwendungen [BDG+
04].

Ortsbasierte Anwendungen verwenden Daten abhängig von dem aktuellen Ort des
Benutzers und passen sich entsprechend an. Kontextbasierte Anwendungen reagieren auf
den aktuellen Benutzerkontext. Durch das Kontextmodell von Nexus, das Augmented
World Model (AWM), lassen sich Objekte aus der realen Welt, virtuelle Objekte und ihre
Bezüge als sogenannte context models zueinander modellieren.

Die Architektur von Nexus besteht aus drei Schichten: der Application Tier, der Federation
Tier und der Service Tier.

Die Application Tier enthält Anwendungen, die die Nexus Plattform verwenden. Die
Federation Tier enthält Server, die die Funktionen der Plattform für Anwendungen und

17

2 Grundlagen und verwandte Arbeiten

Dienste bereitstellen. Anwendungen können context models über die Federation Tier
abrufen und sich dort für Mitteilungen über Ereignisse registrieren.

Die Server der Federation Tier halten – bis auf Caching – keine Daten vor, sondern
sie bearbeiten Anfragen von Anwendungen, sie suchen die Contextserver, die diese
Daten bereithalten, fragen die Daten ab, bereiten sie zu einer konsistenten Sicht auf und
geben sie an die Anwendung zurück. Sie überwachen Ereignisse und benachrichtigen
Anwendungen, die sich hierfür registriert haben.

Die Service Tier enthält Context Server, die context models speichern und bereitstellen.
Context Server verwenden als Anfragesprache die Augmented World Query Language
(AWQL), die räumliche Anfragen ermöglicht. Daten werden in der Augmented World
Model Language (AWML) zurückgeliefert.

2.1.1 AWML – Augmented World Model Language

Als grundlegendes Datenaustauschformat von Nexus und allen darauf basierenden
Projekten und auch den in dieser Arbeit eingeführten Schnittstellen wird AWML hier
etwas ausführlicher vorgestellt.

AWML ist ein XML-basiertes Datenaustauschformat, das durch XML-Schemata definiert
wird.

Die Extensible Markup Language XML [BYS+06] ist eine textbasierte Auszeichnungs-
sprache für maschinenlesbare Dokumente. Sie basiert auf einer recommendation, einer
Empfehlung, des W3C1. Durch Einschränkung der erlaubten Elemente von XML lassen
sich anwendungsspezifische Sprachen erzeugen.

Die Einschränkungen für XML, also die Definition der erlaubten Elemente und ihrer
Struktur in einem Dokument, wird durch Schemasprachen erreicht. XML-Schema ist
eine selbst in XML definierte Schemasprache [WF04]. XML-Schema stellt unter anderem
vordefinierte atomare Typen wie xsd:string und xsd:float bereit. Zusätzlich können weitere
komplexe Typen definiert werden. XML-Schemata werden meist in xsd-Dokumenten
(XML Schema Definition) gespeichert.

Dokumente, die dem XML-Standard entsprechen, werden als wohlgeformt bezeichnet.
Dokumente, die einen Verweis auf ein XML-Schema enthalten und diesem Schema
entsprechen, nennt man gültig.

1W3C World Wide Web Consortium - ein Gremium zur Standardisierung von World Wide Web Techniken.

18

2.2 NexusDS

AWML wird durch das Nexus AWML Schema2 definiert und verwendet seinerseits das
Nexus Standard Attribute Schema2, das die erlaubten Datentypen in Nexus definiert.

2.2 NexusDS

NexusDS [CEB+
09, CLM10] ist eine Middleware für die verteilte Verarbeitung von Da-

tenströmen. Eine Middleware verbirgt die Komplexität der ihr zugrundeliegenden Funk-
tionalität für eine auf sie aufsetzende Anwendung. NexusDS setzt auf die Nexus Platt-
form [BDG+

04] auf und erweitert Nexus um die Verarbeitung von Datenströmen. Daten-
ströme sind Daten, die potenziell unendlich lang sind und auf die kein wahlfreier Zugriff
besteht.

Ein Einsatzbeispiel für NexusDS ist eine interaktive Streamingpipeline für eine ortsbasierte
Anwendung. Die in Abbildung 2.1 dargestellte Anwendung zeigt auf einem Handheld
eine rotierbare dreidimensionale Karte an. Da das Endgerät weder die notwendigen
Daten noch die Rechenleistung für die Berechnung der Darstellung hat, werden die
Berechnungen in das Netzwerk verlagert.

Die einzelnen Operationen der Streamingpipeline können durch verschiedene Knoten,
sogenannte Stream Nodes, zur Verfügung gestellt werden, die die von der jeweiligen
Operation benötigten Eigenschaften aufweisen. So sollte die Merge and Filter Operation
schnellen Zugriff auf die Datenbanken mit den Umgebungsinformationen haben, wäh-
rend der Rendering-Knoten eine GPU benötigt. Als Datenquellen der Pipeline dienen
Datenströme wie die Position des Handhelds und aktuelle Daten über die Umgebung.
Die Datensenke – die Ausgabe – ist hier das Display des Handhelds. Das Userinterface
am Handheld dient auch dazu, die aktuellen Parameter für die einzelnen Schritte der
Pipeline vorzugeben. So können am Handheld unterschiedliche Datensätze für die Kar-
tendarstellung oder unterschiedliche Blickwinkel auf die 3D-Karte ausgewählt werden.

Eine von einer Anwendung verwendete Streamingpipeline wird durch einen Nexus Plan
Graph Model Graphen (NPGM) beschrieben. Ein NPGM-Graph enthält die Datenquellen
und Senken und die sie verknüpfenden Operationen. Die in einem NPGM-Graphen vor-
kommenden Operation können jeweils entweder logische oder physische Operationen sein.
Eine logische Operation ist eine abstrakte Beschreibung einer Operation, während eine
physische Operation einen bestimmten Operator in einer festgelegten Implementierung
meint.

2Verfügbar unter http://nexus.informatik.uni-stuttgart.de/en/research/documents/

19

http://nexus.informatik.uni-stuttgart.de/en/research/documents/

2 Grundlagen und verwandte Arbeiten

Visualization Pipeline

Sources Operators Sink

User Location Updates

Merge and Filter:

Select nearby

Objects, Interpolate

Trajectories
Static Data:

Buildings & Streets

Points of Interest

Data Stream:

Bus, Taxi, and User

Locations
Mapping:

Map containing

3D Buildings,

Points of Interest

Rendering:

Project Primitives,

Rasterize Primitives

Mobile Client:

Display Images

User Location Updates

Parameter Updates

Figure 1: Operator Graph of an Interactive and Location-Aware Visualization Pipeline for Mobile Client
Devices

streets. Moreover, it displays buses and taxis in range and
highlights points of interest.

To deal with the different data streams in this scenario, it
is clearly desirable to make use of a distributed data stream
processing system. A visualization pipeline generally con-
sists of three steps: filtering, mapping, and rendering [15,
27]. These steps map nicely to complex operators of a stream
processing system serving an image stream to a possibly low-
performance mobile client device. First, the streams of the
continuously changing user, bus, and taxi positions and the
static geographic objects are merged and filtered on the re-
striction of the user’s proximity. Then, the mapping step
assigns graphical primitives to the filtered data, such as tri-
angles, points, etc. Finally, a rendering operator transforms
the stream of graphic primitives into an image stream to
display on the client device. Preferably, the rendering step
is executed on specialized graphics hardware (GPU). User
interaction, such as to rotate and pan the scene, can be
modelled as parameter updates for the operators, e.g. the
camera parameters of the rendering operator.

As we will further discuss in Section 2, this example brings
up novel requirements for data stream processing systems.
To satisfy the needs of specific application domains, such
as visualization, a data stream processing system must be
extensible towards specialized operators which may require
specialized hardware. For this purpose, it must provide
the operators with means to express their deployment con-
straints, e.g., specific graphics hardware, so that such oper-
ators can be deployed on respective computing nodes. Also,
it must support utterly heterogeneous system topologies in-
cluding powerful computing servers and small mobile de-
vices. Finally, the incorporated data model must support
both structured and unstructured data, such as position
data or image sequences, respectively. At present, no stream-
processing system fulfills these requirements, as we will show
in Section 3.

To address these new requirements we have built NexusDS,
a distributed stream-processing system featuring a flexible
operator model, constraint-based operator distribution and
deployment, management of heterogeneous system topolo-
gies, and a peer-to-peer approach for dynamic, on-demand
scale out. We detail the architecture, processing model, and
operator model of NexusDS in Section 4. Section 5 gives an

overview on the implementation along with a preliminary
evaluation of NexusDS. Finally, Section 6 concludes this pa-
per with an outlook on interesting future work.

2. REQUIREMENTS
Complex data stream scenarios, as described in the previ-

ous section, raise requirements that go beyond the state-of-
the-art data stream processing systems. Specific application
domains call for specific functionality while still depending
on general data stream processing principles. In other words,
to support domain- and application-specific requirements, a
stream processing system must be extensible. This leads to
the following requirements:

1. Custom system functionality: The system must
permit custom functionality, such as a query service for
particular sensors, a visualization service for complex
rendering techniques, or a navigation service. Applica-
tions use this functionality to interact with the system.
This is different from operators, which are push-based
and process the data streams. Custom system func-
tionality is pull-based and uses operators.

2. Extensible operator base: Special domain or appli-
cation needs often require specialized operators, such
as the three visualization steps depicted in Figure 1.
In a large distributed computing environment it is es-
sential that new operators can be added to the stream
processing system online. Also, once an operator is
published, it must be made available for all applica-
tions, so that custom operators can be reused.

3. Heterogeneous system topology: Certain frequen-
tly recurring tasks may be computationally expensive,
so that usage of dedicated hardware, such as graphic
processing units (GPUs) or field programmable gate
arrays (FPGAs), is justified [22, 14]. Also, some com-
puting nodes, e.g., mobile devices, might be computa-
tionally weak. This results in a broad variety of par-
ticipating computing nodes, which must be managed
by the stream processing system.

4. Operator deployment and runtime constraints:
As discussed in the previous section, custom operators

Abbildung 2.1: Beispiel interaktive ortsbasierte Visualisierungspipeline mit mobilem
Client (aus [CLM10])

Die Eigenschaften der Operatoren in NexusDS werden durch Metadaten beschrieben. Die
Metadaten definieren unter anderem die Anzahl der Ein- und Ausgänge, ihre Datentypen
sowie spezielle Anforderungen des Operators. Anforderungen können zum Beispiel eine
bestimmte Hardware-Plattform oder spezielle Leistungs- und Umgebungsanforderung
sein.

2.2.1 Architektur

Die NexusDS Architektur besteht aus vier Schichten: Der Communication and Monitoring,
der Nexus Core, der Nexus Domain Extensions und der Nexus Application Extensions Schicht.
In Abbildung 2.2 sind die vier Schichten zu sehen. Dienste sind mit durchgezogenen
Kästen versehen, während Operatoren die gestrichelten Kästen innerhalb der jeweiligen
Schicht sind.

Die Communication and Monitoring Schicht stellt die Kommunikationsinfrastruktur
basierend auf einem Peer2Peer-Netz zur Verfügung. Sie enthält den Monitoring Service,
der das System überwacht und die teilnehmenden Knoten und ihre Eigenschaften ver-
waltet. Der Service Publisher Service verwaltet die im System angebotenen Services und
ermöglicht die Veröffentlichung und Nutzung von Services.

Die Nexus Core Schicht enthält die Kerndienste von NexusDS. Hierzu gehören Core
Operators, Core Query Service, Operator Repository Service und Operator Execution
Service.

Der Operator Repository Service ist ein Speicherplatz für Operatoren und ihre Meta-
daten. Es enthält auch die Informationen zu den Core Operatoren, den grundlegenden

20

2.2 NexusDS

Operatoren wie Join und Selection. Datenquellen und Senken werden als Operatoren
mit nur Eingängen oder nur Ausgängen vom Operator Repository Service gespeichert.
Zusätzliche Operatoren, die neue oder spezifische Funktionalität bereitstellen, werden in
das Operator Repository eingepflegt und so Anwendungen zur Verfügung gestellt.

Der Core Query Service verarbeitet Nexus Query Graphen und übersetzt die logischen
Anfragegraphen in einen ausführbaren Graphen, indem er in mehreren Schritten den
NPGM-Graphen optimiert, fragmentiert und ausführt. Die Optimierung wird durch
den Query Optimizer durchgeführt. Die Fragmentierung, also die Aufteilung in kleine-
re Elemente, wird durch den Query Fragmenter durchgeführt. Der Query Fragmenter
belegt die logischen Operationen mit physischen Operatoren und findet geeignete Aus-
führungsknoten für die physischen Operatoren. Hierfür greift der Query Fragmenter
auf Ausführungsstatistiken zurück, um eine geeignete, ausführbare Aufteilung zu erzeu-
gen. Die einzelnen Fragmente werden letztlich vom Execution Manager ausgeführt. Der
Execution Manager lädt, parametrisiert und startet die Operatoren, er kontrolliert ihre
Ausführung und kann bei drohender Überlastung von Knoten eine Neuberechnung und
Verteilung des NPGM-Graphen veranlassen.

Die Nexus Domain Extensions sind eine Zusammenstellung von Nexus Core Diensten
für einen bestimmten Anwendungsbereich. Es werden ausschließlich für diesen Bereich
interessante Operatoren und Dienste angeboten; alle anderen Elemente des Nexus Core
werden ausgeblendet.

Die Nexus Application and Extensions Schicht enthält Operatoren und Services, die
ausschließlich für eine bestimmte Anwendung bestimmt sind. Sie ermöglicht, Teile einer
Anwendung in die Middleware zu verschieben, um die Anwendung und damit die
Hardware auf dem Endgerät zu entlasten.

2.2.2 Anwendungsstart

Um das Zusammenspiel der einzelnen Komponenten in NexusDS zu verdeutlichen, wird
hier anhand des Beispieles eines Anwendungsstarts der Ablauf durchgegangen.

Eine Anwendung, die NexusDS verwendet, startet mit einer Anfrage an den ihr ent-
sprechenden Application Service und bekommt eine Query ID oder eine Fehlermeldung
zurück. Der Application Service bildet die Anfrage auf einen logischen Operator Graphen
ab und gibt ihn an den Core Query Service weiter.

Der Core Query Service (CQS) führt auf dem logischen NPGM-Graphen Optimierungen
wie das Vorziehen von Selektionen oder frühe Projektionen aus. Der optimierte Graph
wird innerhalb des CQS vom Query Fragmenter in für eine Ausführung geeignete Frag-
mente zerlegt. Der QF fragt den Monitoring Service hierfür nach geeigneten Knoten

21

2 Grundlagen und verwandte Arbeiten

Abbildung 2.2: Architektur NexusDS aus [CEB+
09]

und ihren Statistiken an. Die Anfrage an den Monitoring Service enthält Informationen
über den physischen Operator sowie seine Konfiguration und Einschränkungen, die zu
beachten sind. Der Monitoring Service erstellt anhand seiner Statistiken und der aktuellen
Auslastungsdaten der Knoten eine Liste von Vorschlägen mit verfügbaren Knoten, die
den Operator ausführen können. Anhand der vorgeschlagenen Knoten berechnet der QF
einen Gesamtgraphen, der aus lauter ausführbaren Fragmenten besteht.

Die einzelnen ausführbaren Fragmente des NPGM-Graphen werden nun vom Execution
Manager des CQS an den Operator Execution Service (OES) zur Ausführung übertragen.

Der Operator Execution Service überprüft bei Empfang eines auszuführenden NPGM-
Graph-Fragments, ob die zur Ausführung benötigten Operatoren lokal vorhanden sind.
Fehlende Operatoren werden vom Operator Repository Client von dem Operator Reposi-
tory Service nachgeladen und installiert.

Die Operatoren des NPGM-Graph-Fragments werden parametrisiert und innerhalb
der Operator Execution Sandbox gestartet. Sobald alle Operatoren des NPGM-Graph-
Fragments gestartet sind, wartet der OES auf das Eintreffen von Daten für die Bearbeitung
durch das Fragment. Innerhalb des OES arbeitet der Statistics Collector, der Leistungs-
und Auslastungsdaten der Operatoren und des Knotens, auf dem der OES läuft, sammelt
und an den Monitoring Service meldet.

22

2.3 Auslastungsmessung und Messdaten für Scheduling

2.3 Auslastungsmessung und Messdaten für Scheduling

Um eine effiziente Verteilung von Operatoren auf Knoten, die eine ausreichende Leistung
zur Verfügung stellen, zu ermöglichen, braucht der Verteilungsalgorithmus Informationen
über die verfügbaren Knoten, ihre Leistungsfähigkeit und aktuelle Auslastung. Diese
werden dem Ressourcenbedarf der einzelnen Operatoren gegenübergestellt. Es stellt sich
die Frage, ob und wie aus historischen Daten Prognosen für zukünftiges Systemverhalten
abzulesen sind.

In diesem Abschnitt werden zuerst Arbeiten, die sich mit der Messung des Ressour-
cenbedarfs von verteilten Anwendungen oder verallgemeinert mit „Problemen“, wie
der Vorhersage von Ressourcenverfügbarkeit und der Optimierung der Verteilung von
Berechnungen, beschäftigen. Im Folgenden werden drei Ansätze vorgestellt: Der erste
Lösungsansatz für Scheduling sieht vor, dass die berechnete Funktion des Problems be-
kannt ist und sich als mathematisches Minimierungsproblem darstellen lässt. Der zweite
Ansatz beobachtet die Ausführung des verteilten Programms im laufenden Betrieb, um
daraus für zukünftige Ausführungen Statistiken zu erstellen. Zuletzt wird ein Verfah-
ren vorgestellt, das durch Testen des Programmes mit unterschiedlichen Problemgrößen
und auf unterschiedlichen Systemen eine Annäherung von mathematischen Funktionen
versucht, über deren Parameter die Abbildung auf unterschiedliche Architekturen und
Systemgrößen möglich wird.

2.3.1 Application-level scheduling on distributed heterogeneous networks und
Network Weather Service

In [BWF+
96] wird anhand des Beispiels einer zweidimensionalen Jacobi Matrix als Berech-

nungsproblem demonstriert, wie sich die Berechnung des Problems über verteilte Knoten
mit unterschiedlichen Netzwerkanbindungen optimal verteilen lässt. Die Problemstellung
ist, wie in Abbildung 2.3 dargestellt, eine Matrix, in der jeder Wert der Durchschnittswert
seiner vier nächsten Nachbarn aus der letzten Iteration ist.

Die zu berechnende Matrix wird in Streifen aufgeteilt, deren Randbereiche nach jedem
Rechenschritt mit den Knoten, die den benachbarten Bereich bearbeiten, ausgetauscht
werden müssen. Für dieses exakt definierte Problem wird für die Aufteilung ein lineares
Gleichungssystem angegeben, dessen Lösung eine nahezu optimale Verteilung angibt.

Als Eingangsparameter für das lineare Gleichungssystem wird sowohl die aktuelle Sys-
temlast der verfügbaren Knoten als auch eine Vorhersage der voraussichtlichen Last und
Netzwerkverfügbarkeit durch einen „Network Weather Service“ verwendet.

23

2 Grundlagen und verwandte Arbeiten

Abbildung 2.3: Jacobi Matrix: Jeder Wert ist der Durchschnitt seiner Nachbarn in der
letzten Iteration

Der „Network Weather Service“ [Wol97, WSP97] implementiert zwei unterschiedliche
Typen von Sensoren, sogenannte aktive und passive Sensoren. Die aktiven messen ex-
perimentell, indem sie die zu messende Ressource belasten. Sie werden zum Beispiel
für die Netzwerk-Bandbreitenmessung und -Latenzmessung eingesetzt. Im Gegensatz
dazu lesen die passiven Sensoren im laufenden Betrieb anfallende Daten aus, sie liefern
Informationen über die CPU-Auslastung, den freien und belegten Arbeitsspeicher sowie
die Festplattenauslastung oder die Anzahl der Prozesse.

Wolski et al. sehen bei den aktiven Sensoren mehrere Probleme. Jede experimentelle Mes-
sung beeinflusst die verfügbaren Ressourcen und kann so zu Engpässen führen und somit
wiederum das Messergebnis beeinflussen. Vor allem bei der parallelen Durchführung
mehrere Bandbreitenmessungen zwischen Knoten beeinflussen sich die Messungen gegen-
seitig sehr stark und werden somit verfälscht. Um die parallele Messung zu verhindern,
wird im „Network Weather Service“ ein Tokenverfahren verwendet. Es darf jeweils nur
der Knoten, der das Token besitzt, eine Messung durchführen; danach reicht er das Token
weiter. Das Tokenverfahren hat jedoch den Nachteil, dass es für große Verbünde nicht
skaliert und eine Tokenverwaltung zum Schutz gegen einen Verlust des Tokens notwendig
ist.

Sobald eine Messung auf einem Knoten abgeschlossen ist, wird eine neue Vorhersage
berechnet. Der Network Weather Service in [Wol97] verwendet drei unterschiedliche
Berechnungsmethoden für jede Vorhersage und wählt diejenige, aus der die Abweichung
der letzten Vorhersage am geringsten zum aktuellen Zustand ist. Die drei verwendeten
Berechnungsmethoden sind durchschnittsbasiert, medianbasiert und „Auto Regressive
Moving Average“. Bei der durchschnittsbasierten Methode wird nicht zwingend die
vollständige Historie berechnet, sondern nur ein einstellbarer Teilbereich aus der jüngeren
Vergangenheit. Die medianbasierte Berechnung verwendet ebenfalls nur eine Teilhistorie
und hat als Vorteil, dass starke Ausreißer zuverlässig gefiltert werden.

24

2.3 Auslastungsmessung und Messdaten für Scheduling

2.3.2 MARS – A framework for minimizing the job execution time in a
metacomputing environment

MARS (Meta Computer Adaptive Runtime System) [Geh96] ist ein Framework, das paral-
lele Programme in einem heterogenen verteilten System auch über WAN-Verbindungen
optimiert. MARS sammelt Daten über das Programmverhalten und das Systemverhalten,
um aus den statistischen Daten und der aktuellen Auslastung eine optimierte Verteilung
zu erstellen. Das Programmverhalten, also der Rechenzeitbedarf in einzelnen Programmab-
schnitten, und das Kommunikationsverhalten werden als gerichteter Abhängigkeitsgraph
dargestellt, während die knotenspezifischen Daten in tabellarischer Form verwaltet wer-
den.

Die Abhängigkeitsgraphen jeder Programmausführung werden gespeichert, um so den
nächsten Programmaufruf optimieren zu können. Programme, die bei jedem Aufruf unter-
schiedliche Graphen erzeugen, werden anhand der großen Varianz in ihren historischen
Graphen erkannt und können so entsprechend behandelt werden.

Das Monitoring der anwendungsspezifischen Daten erfolgt durch Einfügen von zusätzli-
chen Programmkonstrukten vor jeder Send oder Receive Operation in den Programmcode.
Ein „Application Monitor“ wird von dem zusätzlichen Code über Zeitpunkt und Sende-
/Empfangsvolumen informiert. Um den Übergang von einer Programmphase in eine
andere, die mit einer Veränderung des Programmverhaltens einhergeht, erkennen zu
können, sieht MARS vor, dass zusätzliche Befehle in das Programm eingefügt werden,
die das Framework informieren, so dass eventuell eine Umverteilung erfolgen kann.

Das Netzwerk wird von Netzwerkmonitoren auf jeder Station überwacht, die regel-
mäßig ihre Daten mit den anderen Monitoren im Netzwerk austauschen. Sie messen
CPU-Auslastung und Netzwerkbelastung. Jeder Monitor berechnet aus den selbst gemes-
senen und den von anderen Netzwerkmonitoren empfangen Daten eine globale Sicht.
Ausschließlich die auf allen Knoten konsistente globale Sicht wird für Verteilungsentschei-
dungen verwendet. Die Daten der Netzwerkmonitore werden jeweils als Tupel zwischen
zwei Knoten gespeichert und regelmäßig auf Durchschnittswerte für einen Zeitraum
verdichtet.

2.3.3 Performance modeling of parallel applications for grid scheduling

Sanjay und Vadhiyar stellen in [SV08] Strategien vor, um durch Annäherung von Funk-
tionen Ausführungszeitvorhersagen für unterschiedliche Systeme zu ermöglichen. In
mehreren Phasen werden jeweils mehrere Tests mit unterschiedlichen Problemgrößen
durchgeführt. Dabei werden insgesamt sechs Funktionen, die unterschiedliche Teilaspekte
der Ausführung beschreiben, angenähert. In die Gesamtformel gehen Funktionen für

25

2 Grundlagen und verwandte Arbeiten

die Kommunikations- und Berechnungskomplexität, Funktionen für den Einfluss von
Netzwerk und CPU-Auslastung und jeweils eine Funktion für die Abhängigkeit der
Geschwindigkeitsveränderung durch Parallelisierung ein.

Für die Bestimmung der beschreibenden Funktionen wird zuerst auf einer einzelnen
Ein-CPU-Maschine eine Testreihe gestartet. Aus einem Set von 77 Funktionen werden
bis zu 20 Funktionen ausgewählt, die die Laufzeit abhängig von der Problemgröße mit
möglichst kleinem Fehler beschreiben. In der zweiten Phase wird auf zwei Rechnern
getestet, um den Einfluss unterschiedlicher Netzwerklast zu messen. In der letzten Phase
wird die Anwendung auf 2, 4 und 8 Prozessoren getestet und wiederum eine Auswahl an
Funktionen getroffen, die die Auslastung beschreiben.

Um die Ausführungszeit für eine gegebene Anwendung, Problemgröße und CPU-Anzahl
vorherzusagen, werden die für die Anwendung erstellten Modelle zusätzlich mit Vor-
hersagen über die Bandbreiten und Rechenzeitverfügbarkeit von einer Network Weather
Service Instanz (siehe 2.3.1) gespeist. Die vorhergesagte Laufzeit bei gegebenen Ressour-
cen ergibt sich dann durch Auswertung der Funktionsannäherungen, die in den Testläufen
die geringste Abweichung gezeigt hatten. Nach einem Anwendungsdurchlauf werden die
währenddessen aufgezeichneten Daten wiederum den Trainingsdaten hinzugefügt.

Damit sich die zuvor gewonnen Daten über eine Anwendung von einer Plattform auf
eine andere übertragen lassen, führen Sanjay und Vadhiyar zusätzliche Tests auf der
Zielplattform aus, um neue Koeffizienten für Funktionen zu bestimmen. Zum einen wird
in einem einzelnen Test ein Faktor für die CPU-Geschwindigkeit gemessen, zum anderen
in mehreren Tests für zwei CPUs der Einfluss auf die Datenübertragung bestimmt.

Da in jeder einzelnen Phase eine große Anzahl von Kombinationen für die möglichen
Funktionen ausgewertet wird, müssen in einem einzelnen Schritt bis zu 12 320 Funktionen
und ihre Abweichung berechnet werden. Um den Berechnungsaufwand im Betrieb zu
senken, werden beim Eintreffen neuer Trainingsdaten Funktionen, die zu häufig hohe
Abweichungen aufgewiesen haben, aus der Liste der für diese Anwendung möglichen
Funktionen gestrichen.

2.3.4 VisPerf: Monitoring Tool for Grid Computing

Ein weiteres Monitoring System wird in [LDR03] vorgestellt. Es unterscheidet sich von
den vorherigen, indem es Peer2Peer-Verfahren verwendet, um eine besser Skalierbarkeit
zu erreichen.

Im vorgestellten Monitoring-Netz existieren einfache Sensoren, repräsentative Sensoren
und ein Monitoring Directory Service. Die einfachen Sensoren nehmen über diverse
Schnittstellen Messdaten ihres lokalen Knotens auf. Sie verfügen über eine Filterfunktion

26

2.3 Auslastungsmessung und Messdaten für Scheduling

und können die Messdaten entweder zur Abfrage bereitstellen (pull) oder laufend an
einen anderen Knoten weitergeben (push).

Die repräsentativen Sensoren melden sich als push-Empfänger an einfachen Sensoren an
und empfangen deren Daten, die empfangenen Daten werden aggregiert und wiederum
als Sensor repräsentativ für die Domäne bereitgestellt. Der repräsentative Sensor meldet
sich beim Start am Monitoring Directory Service an und kann von Interessenten, zum
Beispiel dem Scheduler, über eine Anfrage beim Monitoring Directory Service aufgefun-
den werden. Wenn exakte Daten eines einzelnen Sensors abgefragt werden sollen, kann
der repräsentative Sensor nach der Adresse gefragt werden und über diese eine Anfrage
direkt an den entsprechenden Sensor gestellt werden.

Die einfachen Sensoren werden von den repräsentativen Sensoren in einer zentralisierten
Struktur verwaltet, während die repräsentativen Sensoren untereinander ein Peer2Peer-
Netzwerk bilden und den Monitoring Directory Service bereitstellen.

27

Kapitel 3

Architektur des Auslastungsdienstes

Dieses Kapitel gibt eine Übersicht über den Auslastungsdienst und die mit ihm zur
Messdatensammlung verbundenen Sensoren. Zuerst wird die Einbettung des Auslas-
tungsdienstes in die Architektur des bereits in Abschnitt 2.2 vorgestellten NexusDS erklärt
und ein Überblick über die Komponenten und Zusammenhänge des Gesamtsystems
gegeben.

Im zweiten Abschnitt wird die Problemstellung analysiert und daraus die grundlegende
Arbeitsweise des Auslastungsdienstes entwickelt. Die Architektur des Auslastungsdienstes
wird zunächst in einer logischen Sicht als Einheit betrachtet.

Darauf folgend werden in Abschnitt 3.3 die vom Auslastungsdienst gespeicherten Daten
und Statistiken vorgestellt.

In Abschnitt 3.4 werden die Sensoren – die Messdatenlieferanten – des Auslastungsdiens-
tes vorgestellt und die von ihnen zu sammelnden Messdaten und die Verarbeitung der
gesammelten Daten erläutert.

In Abschnitt 3.5 wird der Ablauf einer Knotenanfrage des Anfragedienstes bis zu einer
Antwort des Auslastungsdienstes vorgestellt. Hierbei werden die einzelnen Schritte des
Filterprozesses vorgestellt.

Im letzten Abschnitt wird die logische Sicht als Einheit auf den Auslastungsdienst erwei-
tert und das Konzept für eine verteilte Ausführung des Auslastungsdienstes vorgestellt.

Der Entwurf mit detaillierten Daten, Verfahren, Schnittstellen und Spezifikationen folgt
dann in Kapitel 4.

29

3 Architektur des Auslastungsdienstes

3.1 Überblick

Das in Abschnitt 2.2 vorgestellte Streaming Framework NexusDS sieht in seiner Ar-
chitektur die Funktionalitäten des Auslastungsdienstes und der Sensoren vor. Da die
Implementierung des Auslastungsdienstes NexusDS als Laufzeitsystem verwendet, wird
hier der Bezug der Komponenten des Auslastungsdienstes zur Architektur von NexusDS
hergestellt.

Nexus Core

Communication
 and Monitoring

Auslastungsdienst
(Monitoring Service)

Service Publisher
Service (SPS)

Operator Repository
Service (ORS)

Operator Execution
Service (OES)

Core Operators
Anfragedienst

(Core Query Service)

Sensor

Abbildung 3.1: Bezug zur NexusDS Architektur

Abbildung 3.1 ist ein Ausschnitt der untersten zwei Schichten der NexusDS Architektur,
vergleiche auch Abbildung 2.2. Weiß hervorgehoben in der Communication and Monito-
ring Schicht definiert NexusDS den Monitoring Service, der hier als Auslastungsdienst
referenziert wird. Die Sensoren befinden sich, ebenfalls weiß hervorgehoben, in der Ne-
xusDS Architektur als Teilfunktion der Operator Execution Services in der Nexus Core
Schicht. NexusDS verwendet ein Service Konzept, über das die verschiedenen Dienste
gestartet und im Netzwerk verfügbar gemacht werden [Koc09].

Der Auslastungsdienst hat die Aufgabe, dem Anfragedienst – in Abbildung 3.1 ebenfalls
weiß markiert – Ausführungsknoten für vom Anfragedienst vorgegebene Operatoren zu
liefern.

Abbildung 3.2 stellt die Zusammenhänge bei der Ausführung dar. Der Anfragedienst
erhält aus der Nexus Application Schicht NPGM-Graphen, die er zur Ausführung bringt.
Dafür verwendet er den Auslastungsdienst, um geeignete Ausführungsknoten zu erhal-
ten, dargestellt durch die gestrichelte Verbindung. Damit der Auslastungsdienst dem

30

3.1 Überblick

Nexus Core
Schicht

Anfragedienst Anfragedienst

Nexus
Application

Schicht

NPGM Graph NPGM Graph NPGM Graph NPGM Graph

Communication
and Monitoring

Schicht

Physische
Schicht

Computer Computer Computer

Auslastungsdienst Auslastungsdienst

Service Manager

Ausführungsdienst

Sensor

OperatorOperator

Service Manager

Ausführungsdienst

Sensor

OperatorOperator

Service Manager

Ausführungsdienst

Sensor

OperatorOperator

Abbildung 3.2: Übersicht über die Abläufe um Auslastungsdienst und Sensoren

Anfragedienst geeignete Knoten nennen kann, erhält er Messdaten von Sensoren, die
als Service auf jedem Ausführungsknoten vom Service Manager gestartet werden. Der
Service Manager startet auch den Ausführungsdienst, der vom Anfragedienst NPGM-
Graph-Fragmente zur Ausführung erhält. Die Ausführung erfolgt durch die Installation
und Ausführung von Operatoren. In der Abbildung ist der Ausführungsknoten selbst
nicht dargestellt; er entspricht der Reichweite des Service Managers.

31

3 Architektur des Auslastungsdienstes

3.2 Problemanalyse

Die Aufgabe des Auslastungsdienstes (AD) ist es, dem Anfragedienst (AFD) eine Auswahl
an Ausführungsknoten zur Ausführung von Operatoren zur Verfügung zu stellen. Die
Knoten müssen vom AFD vorgegebene Operatoren mit ihren Anforderungen an die
Ausführungsumgebung und ihrer aktuellen Parametrisierung innerhalb der vom AFD
vorgegebenen Einschränkungen bzw. Leistungsanforderungen ausführen können. Kom-
men mehr Knoten als angefordert infrage, wird eine Vorselektion nach in der Anfrage
enthaltenen Kriterien getroffen.

Damit ein Knoten für die Ausführung eines Operators geeignet ist, muss er einer Viel-
zahl unterschiedlicher Anforderungen entsprechen. Diese Anforderungen bestehen aus
den Plattformanforderungen des Operators, wenn dieser zum Beispiel nur auf einer be-
stimmten CPU-Architektur, einem speziellen Betriebssystem oder nur bei Vorhandensein
spezieller Softwarebibliotheken lauffähig ist. Diese Plattformanforderungen der Operato-
ren und die ihnen entsprechenden Plattformeigenschaften der Knoten sind statisch. Es
wird von der Annahme ausgegangen, dass sich weder die Anforderungen des Operators
noch die Plattformeigenschaften des Knotens über die Zeit ändern. Die Anforderungen
und Eigenschaften sind harte Entscheidungskriterien. Entweder werden sie exakt erfüllt,
oder der Operator ist auf einem die Kriterien nicht erfüllenden Knoten definitiv nicht
lauffähig.

Zusätzlich hat ein Operator Anforderungen, die aufgrund verschiedener Einflüsse variabel
sind und von Knoten besser oder schlechter erfüllt werden können. Diese Anforderungen
unterliegen zum Beispiel der aktuellen Konfiguration eines Operators oder den Einschrän-
kungen durch den NPGM-Graphen (siehe Abschnitt 2.2). Als Veranschaulichung für
variable Anforderungen durch unterschiedliche Operatorkonfigurationen stelle man sich
einen Operator Matrixmultiplikation mit den Parametern Dimension 1 und Dimension 2

vor. Wird dieser Operator mit der Parametrisierung (1, 1) ausgeführt, ist der Anspruch an
einen Rechenknoten sehr gering, jedoch würde eine Parametrisierung mit extrem großen
Werten für Dimension 1 und 2 sowohl die Ansprüche an den verfügbaren Speicher als
auch an die verfügbare Rechenzeit schnell anwachsen lassen.

Einschränkungen durch den NPGM-Graphen können zum Beispiel dadurch entstehen,
dass ein NPGM-Graph eine maximal zulässige Zeitspanne hat, um auf Eingaben durch
eine Ausgabe zu reagieren. Je nachdem, wie viele Operatoren in Reihe in diesem NPGM-
Graphen arbeiten, ist die verfügbare Latenz pro Operator größer oder kleiner. Neben dem
Abgleich der Kompatibilität anhand der statischen Anforderungen und Eigenschaften soll
der Auslastungsdienst auch Vorhersagen treffen können, welche Knoten für die Ausfüh-
rung bestimmter Operatoren geeignet sind. Die Operatoren können jedoch, abhängig von
ihrer Parametrisierung, sehr unterschiedliche Laufzeiteigenschaften aufweisen. Zusätzlich

32

3.2 Problemanalyse

kann ein und derselbe Operator mit der gleichen Parametrisierung auf unterschiedlichen
Computern unterschiedlich performant arbeiten.

Um trotz diesem komplexen Problem möglichst gute Vorhersagen zu treffen, werden auf
allen Knoten Sensoren eingesetzt, die die Ausführung der Operatoren beobachten. Die
Sensoren leisten eine Inventur der Knoten, um die statischen Plattformeigenschaften zu
bestimmen, und sie sammeln laufend Daten über die Ausführung der Operatoren und
die Auslastung des Knotens.

Die Aufgabe des Auslastungsdienstes ist es, unter Zuhilfenahme von Messdaten Aussagen
über die Ausführung zukünftiger Operatoren zu treffen. Anders ausgedrückt, muss der
Auslastungsdienst aus einer Menge von Knoten solche Knoten auswählen, die für die
Ausführung geeignet erscheinen. Für die Auswahl beziehungsweise für das Auffinden
von bestimmten Elementen aus einer Menge gibt es verschiedene Verfahren. So kann jedes
Element betrachtet und bewertet werden. Um den Aufwand zu verringern, werden in Da-
tenbanken üblicherweise Indexe angelegt, die häufig abgefragte Eigenschaften enthalten.
Sind mehrere Eigenschaften gemeinsam zu betrachten, können multidimensionale Indexe
eingesetzt werden.

Wenn man davon ausgeht, das alle Knoten, die für einen Operator geeignet sind, ähnlich
sind kann man versuchen, mit Clustering Algorithmen die Knoten zu gruppieren und
dann Knoten aus dem richtigen Cluster auszuwählen.

Diese Ansätze haben jedoch jeweils Nachteile. Das Bewerten eines jeden Knotens kann sehr
aufwendig sein, da sehr viele Knoten verfügbar sein können, von denen jedoch ein Großteil
inkompatibel sein kann. Versucht man, die Auswahl über Indexstrukturen, zu treffen
kommt man schnell in kombinatorische Probleme. Die Anforderungen der Operatoren
und die Plattformeigenschaften der Knoten sind frei definierbar. Eine Indexstruktur über
diese unbegrenzt erweiterbaren Dimensionen hat potenziell sehr viele leere Einträge
für Knoten, die Eigenschaften nicht haben, und eine Unzahl von Dimensionen. Für
große Dimensionsanzahlen, die auch noch dünn besetzt sind, sind Indexe meist nicht
effizient. Hinzu kommt, dass sich manche Eigenschaften der Knoten häufig ändern und
andere statisch sind. Zum Beispiel unterliegt die Auslastung einer laufenden Veränderung,
während sich die CPU-Architektur eines Knotens nie ändert. Ein Teil dieser großen
Indexstruktur müsste also laufend angepasst werden, während andere Bereiche nahezu
statisch sind.

Bei der Verwendung von Clusteringverfahren werden Knoten, die nach bestimmten Krite-
rien ähnlich sind, zu Clustern zusammengefasst. Werden hierfür zu wenige Eigenschaften
betrachtet, kommt es zu wenigen großen Clustern, die womöglich viele inkompatible
oder ungeeignet Knoten enthalten. Werden andererseits zu wenige Parameter betrach-
tet, kommt es zu vielen Clustern, die dann jeweils wieder getrennt betrachtet werden
müssen.

33

3 Architektur des Auslastungsdienstes

KnotenanfrageverarbeitungSensordatenverarbeitung

Kompatibilitäts-
matrix

Knoten und
Knoten-/Operator

 Statistik

Knotenleistungs-
Cluster

Kompatibilitätsmatrix
erstellen

Knoten und
Knoten-/Operator-

Statistiken erstellen

Knotenleistungsclustering

Anfrage einlesen:
Operator, Anforderungen,

 Parameter,
Optimierung

Nach Plattform-
anforderungen filtern

Implizite operator-
abhänginge

 Anforderungen

Implizite
knoten-/operator-

abhängige
Anforderungen

Knotenanfragen

Antworten

Sensor-
daten-
strom

Optimierungsranking

1

2

3

4

5

Daten

Abbildung 3.3: Architektur Auslastungsdienst

Da alle drei vorgestellten Ansätze für sich nicht geeignet scheinen, um die kombinatori-
sche Komplexität zu beherrschen, wird hier ein kombinierter Ansatz verwendet, indem
versucht wird, die Anzahl der zu betrachtenden Elemente möglichst früh zu verringern
und aufwendige Berechnungen nur noch auf kleinen Teilmengen durchzuführen.

Hierzu werden die gesammelten Daten in verschiedenen Formen aufbereitet und ge-
speichert, um für die jeweiligen Aspekte einer Anfrage eine Entscheidungsgrundlage zu
bilden.

Um aus den unterschiedlichen Daten unterschiedlicher Quellen, unterschiedlicher Struktur
und Granularität geeignete Knoten auszuwählen, verarbeitet der Auslastungsdienst die

34

3.3 Daten

Anfragen, indem er die verfügbaren Knoten filtert. Die Filter bestehen zum einen aus
Anforderungen, die sich direkt aus der Anfrage ergeben und zum anderen aus statistischen
Daten über die Operatoren und ihre Parametrisierungen aus denen Anforderungen
bestimmt werden.

Der Auslastungsdienst ist in Abbildung 3.3 schematisch dargestellt. Er verfügt über eine
Schnittstelle zur Anbindung der Sensoren, die in Abschnitt 3.4 vorgestellt werden, sowie
über eine Schnittstelle zur Annahme von Knotenanfragen und zur Auslieferung von Ant-
worten auf die Knotenanfragen. Zunächst werden in Abschnitt 3.3 die Daten vorgestellt,
die für die Auswahl und Vorhersage benötigt werden; sie entsprechen dem hellgrau dar-
gestellten Abschnitt in Abbildung 3.3. Die Daten werden aus den Sensordaten durch die
im linken, dunkelgrau dargestellten Abschnitt der Grafik gezeigten Verarbeitungsschritte
aus den Messdaten der Sensoren erzeugt. Auf die im rechten Abschnitt dargestellten
Knotenanfrageverarbeitungsschritte wird in Abschnitt 3.5 eingegangen.

3.3 Daten

Die verschiedenen zu speichernden Daten sind in Abbildung 3.3 sind im Abschnitt Daten
als getrennte Datenspeicher dargestellt. In den folgenden Abschnitten werden diese Daten
für die Kompatibilitätsmatrix, die Knoten- und Operatorstatistik und die Daten für das
Knotenleistungsclustering jeweils kurz vorgestellt. Wie die Daten erfasst, berechnet und
gespeichert werden, wird dann in Abschnitt 3.4 erläutert.

3.3.1 Kompatibilitätsmatrix

Um die Kompatibilität eines Knotens zu einem Operator zu bestimmen, werden die Platt-
formanforderungen des Operators mit den Plattformeigenschaften des Knotens verglichen.
Wenn alle Anforderungen durch entsprechende Eigenschaften erfüllt sind, gilt ein Knoten
als kompatibel. Um bei einer Knotenanfrage nicht jeden Knoten einzeln überprüfen zu
müssen, wird eine Kompatibilitätsmatrix erzeugt. Beim Hinzufügen eines neuen Knotens
zum System, zum Beispiel beim Start des Knotens, werden seine Plattformeigenschaften
durch den Sensor ermittelt und im Auslastungsdienst werden diese mit den Anforderun-
gen aller Operatoren abgeglichen. Für den Vergleich werden aus dem Operatorrepository
alle Plattformanforderungen aller Operatoren abgerufen. Das Ergebnis der Überprüfung
wird in die Kompatibilitätsmatrix eingetragen.

Steht ein Knoten nicht mehr zur Verfügung, weil er zum Beispiel abgeschaltet oder
ausgefallen ist, wird sein Eintrag aus der Kompatibilitätsmatrix entfernt. Knoten, die

35

3 Architektur des Auslastungsdienstes

Operator 1 Operator 2 . . . Operator n
Knoten 1 0 1 1 1

Knoten 2 0 0 0 1

. . . 1 0 1 1

Knoten n 1 0 0 0

Abbildung 3.4: Beispiel Kompatibilitätsmatrix

abgeschaltet werden, melden dies dem Auslastungsdienst, während ausgefallene Knoten
anhand des Ausbleibens von Aktualisierungen erkannt werden.

Die Kompatibilitätsmatrix ist eine Matrix über alle zur Verfügung stehenden Knoten und
alle Operatoren des Operatorrepositories. Die Matrix erlaubt ein schnelles Filtern von
Knoten, die zu den Plattformanforderungen eines Operators kompatibel sind. Bei einer
Kompatibilitätsanfrage für einen Operator wird die Spalte des Operators selektiert, die
kompatiblen Knoten können direkt abgelesen werden. Siehe auch Abbildung 3.4.

3.3.2 Knoten- und Operatorstatistik

Um Vorhersagen über die zu erwartenden Leistungsdaten und den zu erwartenden
Ressourcenverbrauch eines Operators zu treffen, werden statistische Daten verwendet.
Die Auswertungen, die in Abschnitt 3.5.1 vorgestellt werden, arbeiten auf diesen Daten.

Die Sensoren, die in Abschnitt 3.4 vorgestellt werden, liefern dem AD einen Datenstrom,
der zuerst die statischen Knoteneigenschaften enthält und danach fortlaufend aktuelle
Messwerte überträgt. Der AD bereitet diese Daten auf und aggregiert sie für die spätere
Auswertung.

Die Statistiken werden nach Herkunft der Daten in vier Kategorien aufgeteilt und hier
der Übersichtlichkeit halber getrennt betrachtet. Es sind die Knotenstatistik, die Opera-
torstatistik, die Knoten/Operatorstatistik und die Knoten/Knotenstatistik.

Die Knotenstatistik enthält historische, aufaggregierte Daten zu den einzelnen Knoten
über ihre Auslastung (Load, Anzahl der Prozesse) sowie der durchschnittlichen und
maximalen Netzwerkauslastung. Neben den historischen Daten enthält die Knotenstatistik
auch aktuelle Daten über die Auslastung und die verfügbaren Ressourcen der Knoten
(Fest-, Arbeitsspeicher, verfügbare Netzwerkkapazität und verfügbare Rechenleistung).

Die Operatorstatistik enthält statistische Daten über den Ressourcenkonsum und die
Produktivität einzelner Operatoren, abhängig von ihrer Parametrisierung. Hierfür werden
die Daten pro Operator nach Parameter-Presets gruppiert und Parametrisierungen, die kei-
nem Preset entsprechen, auf ähnliche Presets abgebildet. Es werden jeweils Durchschnitts-,

36

3.3 Daten

Minimal-, Maximalwerte und die Varianz, also die typische Abweichung vom Durch-
schnittswert, pro Operator-Presetpaar gespeichert. Die Minimal- und Maximalwerte
erlauben die Bestimmung zu erwartender äußerer Grenzen, die voraussichtlich nicht über-
oder unterschritten werden. Der Durchschnittswert kann zusammen mit der Varianz
verwendet werden, um einen Erwartungswert, der von Ausreißern bereinigt ist, für die
Werte zu bestimmen.

Die automatische Bestimmung von Ähnlichkeit zwischen Parametern und Presets ist keine
triviale Aufgabe, da eine Vielzahl von Parametern unterschiedlich großen Einfluss auf das
Leistungsverhalten eines Operators haben kann. Um irrelevante Parameter von der Ähn-
lichkeitsanalyse auszuschließen, werden Operatorparameter vom Ersteller des Operators
als leistungsrelevant markiert und ausschließlich diese für die Ähnlichkeitsbestimmung
verwendet. Bei numerischen Parametern wird der Abstand zwischen einem Preset und
einer aktuellen Parametrisierung durch die Summe der Beträge der Differenzen zwischen
jeweils gleichnamigen Parametern berechnet.

Bei relevanten Parametern, für die keine Distanz definiert ist, zum Beispiel String Pa-
rametern, müssen aktuelle und Preset-Parameter übereinstimmen, um eine Abbildung
von aktuellen Parametern auf ein Preset zu erlauben. Ein Satz aktueller Parameter wird
auf ein Preset abgebildet, dessen relevante String Parameter übereinstimmen und dessen
weitere relevante Parameter die kleinste Distanz aufweisen. In den Statistiken wird erfasst,
ob die Daten exakt einem Preset entsprechen oder einem Preset nur ähnlich sind. In der
Statistik werden jeweils für exakt auf ein Preset zutreffende Daten und für solche, die ihm
ähnlich sind, getrennt Statistiken geführt.

Die Knoten/Operatorstatistik speichert aggregierte Daten über den Rechenzeitbedarf,
Ressourcenverbrauch, Latenz und die Produktivität von Operatoren auf einem Knoten.
Die statistischen Daten für verschiedene Knoten werden später anhand des Knotenleis-
tungsclusterings zusammengefasst, um eine breitere Datenbasis zu haben.

Die Knoten/Knotenstatistik speichert Daten über die Kommunikation zwischen zwei
Knoten. Sie soll Vorhersagen über den möglichen Netzwerkdurchsatz und die Netzwerk-
latenz ermöglichen. Da die laufende Vermessung und Beobachtung eines Netzwerkes
sehr stark von der Technologie und der Topologie abhängig ist, sei auf entsprechende
Ansätze wie zum Beispiel den bereits in Abschnitt 2.3.1 vorgestellten Network Weather
Service verwiesen.

3.3.3 Knotenleistungsclustering

Das Knotenleistungsclustering fasst Knoten mit vergleichbarer zur Verfügung gestellter
Rechenleistung in Klassen zusammen. Knoten, die die gleiche CPU-Architektur besitzen,
ähnliche Rechenleistungswerte erreichen sowie eine ähnliche Hardwareausstattung haben,

37

3 Architektur des Auslastungsdienstes

werden in eine gemeinsame Knotenklasse eingefügt. Anhand der Knotenklasse können
statistische Daten über Operatorverhalten von einem Knoten auf einen anderen übertragen
werden, da zu erwarten ist, dass sich Operatoren auf Knoten, die eine hohe Ähnlichkeit
sowohl in der Ausstattung als auch bei den bisherigen statistischen Ergebnissen haben,
bei der Ausführung von Operatoren ähnlich verhalten.

Durch die Übertragung der statistischen Daten zwischen mehreren Knoten wird die
Datenbasis für die Vorhersagen größer. Es ist so nicht notwendig, für jeden Operator mit
jeder Parametrisierung und jedem Knoten Tests durchzuführen.

Die CPU-Architektur und Hardwareausstattung wird aus den Plattformeigenschaften
zu Beginn eines Sensordatenstromes bestimmt. Die Rechenleistungswerte können aus
Operatorausführungen mit gleichen Parametern auf verschiedenen Knoten bestimmt
werden.

Alternativ zur reinen Beobachtung eines laufenden Systems können auch Testoperatoren
auf allen Knoten ausgeführt werden, die unterschiedliche Aspekte des Knotens durch
Experimente bestimmen und als Produktivitätskennzahl die Leistung des Knotens an-
geben. So könnte das System mit synthetischen Tests vorab trainiert werden und die
Ähnlichkeit der Rechner ohne die Unschärfe der zusätzlichen Einflüsse – wie Parametrisie-
rung, Datenquelle und Senke – bei der Verwendung von Operatoren zur Datensammlung
bestimmt werden. Nachteil der Datensammlung durch Experimente ist, dass diese zusätz-
liche Rechenzeit entweder vor Inbetriebnahme oder im laufenden Betrieb kosten. Bei der
Durchführung von Experimenten im laufenden Betrieb bestünde wiederum ein Einfluss
durch den regulären Betrieb, und seine Störung wäre nicht auszuschließen.

3.4 Sensordatenverarbeitung

Die im vorherigen Abschnitt vorgestellten Daten werden, wie in Abbildung 3.2 dargestellt,
von Sensoren gesammelt. Der Sensor hat die Aufgabe, die Plattformeigenschaften zu be-
stimmen, die Auslastung und Leistungsfähigkeit des Knotens sowie den Ressourcenbedarf
und die Produktivität der auf ihm ausgeführten Operatoren zu beobachten.

Der in Abbildung 3.5 dargestellte Sensor wird vom Service Manager gestartet. Bei seinem
Start untersucht der Sensor die statischen Eigenschaften des Knotens und erstellt daraus
eine Liste von Plattformeigenschaften. Sobald alle Plattformeigenschaften vollständig
bestimmt wurden, wird ein Sensordatenstrom zum Auslastungsdienst (AD) geöffnet und
die Liste der Plattformeigenschaften übertragen. Der Sensor erhält von den Operatoren,
die auf demselben Knoten ausgeführt werden, Leistungsmessdaten, die er sammelt und
an den Auslastungsdienst überträgt.

38

3.4 Sensordatenverarbeitung

Ausführungsknoten

Ausführungsdienst

Sensor

OperatorOperator Operator

*1

Service Manager

Abbildung 3.5: Knoten, Framework, Sensor und Operatoren
∗1 Datenstromschnittstelle zum Auslastungsdienst

Im laufenden Betrieb erfasst der Sensor regelmäßig eine Übersicht über die aktuellen
Auslastungsdaten des Knotens und die auf dem Knoten ausgeführten Operatoren und
überträgt sie im Sensordatenstrom an den AD. Für den Knoten werden Daten wie
Speicher-, CPU-Auslastung und Datentransfer erfasst und für jeden ausgeführten Ope-
rator werden Daten über seinen jeweiligen Ressourcenkonsum und seine Produktivität
abgefragt. Eine detaillierte Auflistung der erfassten Daten erfolgt in Abschnitt 4.1.2 für
den Knoten und in Abschnitt 4.1.3 für die Operatoren. Neben dem Auslastungsdienst
können auch weitere Anwendungen als Empfänger des Sensordatenstromes eingefügt
werden. So können entweder weitere Monitoring- oder Lastkontrollaufgaben erfüllt wer-
den oder Operatoren können Messdaten eines Knotens als Steuergröße verwenden, um
zum Beispiel ihre Verarbeitung an die aktuelle Auslastungssituation anzupassen. Die
Schnittstelle zwischen Sensor und Operator wird in 3.4.1 eingeführt.

Wenn die Ausführungsumgebung auf einem Knoten beendet wird, meldet der Sensor das
Ende der Knotenverfügbarkeit an den AD und beendet den Sensordatenstrom.

3.4.1 Operatorleistungsmessung

Jeder Operator verfügt über eine Schnittstelle zum Sensor, die es ermöglicht, seine Pro-
duktivität, seinen Ressourcenverbrauch, seine Verzögerung und Parametrisierung abzu-
fragen.

Der Ressourcenverbrauch eines Operators setzt sich aus verbrauchte CPU-Zeit pro Zeitein-
heit, belegter Arbeitsspeicher, belegter Festspeicher und Netzwerkbelastung zusammen.
Zusätzlich können die Programmierer der Operatoren noch eigene Messwerte definieren,
die vom Sensor übernommen und mit den Operatordaten gespeichert werden. Ein Beispiel

39

3 Architektur des Auslastungsdienstes

für zusätzlich definierte Messwerte ist die Messung von weiteren Indikatoren, wie zum
Beispiel der GPU-Leistung. Ein Operator, dessen Funktion sowohl die CPU als auch
die GPU benötigt, kann so für CPU und GPU getrennte Messwerte erfassen und über
Einschränkungen Mindestanforderungen für diese stellen.

Da die Operatoren äußerst unterschiedliche Aufgaben haben können, ist eine allgemei-
ne Definition von Produktivität anhand von Eingabe und Ausgabevolumen nicht für
alle Operatoren sinnvoll. Daher ist die Produktivität eines Operators eine einheitenlose,
operatorspezifische Größe. Die Definition der Produktivität eines Operators und ihre
Berechnung obliegt dem Ersteller des Operators. Die Produktivitätskennzahl soll die
Leistungsfähigkeit des Operators auf dem Knoten widerspiegeln. Dementsprechend ist
bei der Definition der Kennzahl darauf zu achten, dass sie unabhängig von der Eingangs-
datenverfügarkeit durch einen vorhergehenden Operator ist und nur von der Leistung
des Knotens abhängt. Ein Negativbeispiel wäre die Berechnung durch erzeugte Elemente
pro Zeit. Bei einem Operator, der nur auf Eingabedaten arbeitet, könnte die Produktivi-
tätskennzahl also beliebig schlecht werden, wenn keine Eingabeelemente verfügbar sind.
Zweckdienlicher wäre es in diesem Fall, CPU-Zeit pro Eingabeelement als Kennzahl zu
verwenden.

Wenn mehrere unterschiedliche Implementierungen eines logischen Operators vorliegen,
ist darauf zu achten, dass ihre jeweiligen Produktivitätskennzahlen nach den gleichen
Berechnungsvorschriften erzeugt werden. So können die statistischen Daten für austausch-
bare Operatoren auf höheren Architekturebenen verwendet werden, um die Auswahl zu
treffen, welche Implementierung eines Operators verwendet wird. Um die Vergleichbar-
keit erkennbar zu machen, wird die Produktivitätskennzahl über eine ID identifiziert.
Diese ID wird zusammen mit den Produktivitätskennzahlen bei der Erfassung der Opera-
tormessdaten gespeichert.

Wenn ein neuer Operator dem System hinzugefügt wird, bestehen zwei Möglichkeiten.
Wenn der Operator eine neue logische Operation implementiert, ist sicherzustellen, dass
der Operator eine eindeutige, also noch nicht vorhandene ID für seine Produktivitäts-
kennzahl hat.

Ist der neue Operator jedoch eine weitere Implementierung für eine bereits im System
bekannte Operation, muss die Produktivitätskennzahl den vorhandenen Operatoren ent-
sprechen. Es muss also durch einen Administrator überprüft werden, dass alle Operatoren,
die die gleiche logische Funktion implementieren, die gleiche ID und Berechnung für die
Produktivitätskennzahl verwenden. Eine abweichende Berechnung der ID könnte sonst
zu einer fälschlichen Bevorzugung eines Operators führen, da die Werte unterschiedlich
berechneter Produktivitätskennzahlen nicht vergleichbar sind.

Gerade bei Echtzeitanwendungen ist es wichtig, Daten über die Verzögerung durch die
einzelnen Operatoren zu haben, um eine Gesamtlatenz der Berechnung bestimmen zu

40

3.4 Sensordatenverarbeitung

können. Jeder Operator gib daher als Messwert seine Latenz mit an. Je nach Operatortyp ist
ihre Bedeutung leicht unterschiedlich. So ist bei einem Operator, der nur Eingabeelemente
bearbeitet und direkt wieder ausgibt, die Latenz die Zeit zwischen dem Eintreffen und der
Ausgabe des Elementes. Wenn man jedoch einen Videobildgenerator als Beispiel nimmt,
der in einem festen Takt Bilder ausgibt, auch wenn keine neuen Eingaben vorliegen,
muss die Latenz anders berechnet werden. Im Fall des Videobildgenerators ist die Latenz
als die Zeitspanne zwischen dem Eintreffen neuer Daten und ihrer Auswirkung in der
Ausgabe definiert. Bei einem Selektionsoperator hingegen ist die Latenz die Zeitspanne
vom Eintreffen der Daten bis zum Zeitpunkt, zu dem die Selektionsentscheidung getroffen
wurde und an der Ausgabe anliegt.

Anhand von Basisoperatoren von NexusDS wird verdeutlicht, wie die Definition einer
Produktivitätskennzahl aussehen kann. Die Basisoperatoren von NexusDS sind in [Dör09]
definiert. Für die Operatoren Selektion und Sortierung werden mögliche Produktivi-
tätskennzahlen angegeben. Für die weiteren Basisoperatoren erfolgt die Definition der
Produktivitätskennzahl analog.

Die Operation Selektion vergleicht die Objekte eines Eingangsdatenstroms mit einem
vorgegebenen Attribut oder sie vergleicht die Elemente zweier eingehender Datenströme
paarweise. Es wird also Element 1 von Datenstrom 1 mit Element 1 von Datenstrom 2

verglichen. Elemente, für die der Vergleich wahr ergibt, werden ausgegeben. Eine Produkti-
vitätskennzahl für diese Operation soll nun bewerten, wie leistungsfähig ein Operator auf
einem Knoten ist. Es wird davon ausgegangen, dass zu jedem Zeitpunkt Datenelemente
im Eingang verfügbar sind. Die Leistungsfähigkeit des Knotens zeigt sich darin, wie
viele Objekte pro Zeiteinheit verglichen werden können. Dabei ist zu beachten, dass der
Vergleich eines Attributs weniger aufwendig ist als der Vergleich mehrerer Attribute.
Als Produktivitätskennzahl wird daher (Vergleiche/Zeit) vorgeschlagen. Hierbei gibt
Vergleiche die Anzahl der durchgeführten Vergleiche an, also zum Beispiel für zwei
Datenströme mit jeweils 5 Elementen, für die 3 Attribute verglichen werden, 15. Zeit
ergibt sich aus dem Zeitraum, in dem die Anzahl der Vergleiche gezählt wurde. Dies ist
der Zeitraum seit der letzten Übertragung der Messdaten. Die Messdaten können hier
entweder nach x Elementen übertragen werden oder zum Beispiel alle 30 Sekunden.

Die Operation Sortierung sortiert endliche Datenströme oder unendliche Datenströme,
über die Informationen zu einer Vorsortierung bekannt sind. Diese unendlichen Datenströ-
me können dann wiederum wie endliche Datenströme behandelt werden. Da verschiedene
Sortierverfahren implementiert werden können und anhand der Produktivitätskennzahl
auf höherer Architekturebene eventuell eine Auswahl der konkreten Implementierung
erfolgen soll, ist es sinnvoll, die unterschiedlichen Verfahren vergleichbar zu machen.
Es wird davon ausgegangen, dass die Sortierverfahren in-place-Verfahren sind, also die
zu sortierenden Objekte nicht innerhalb des Speichers verschoben werden müssen. Des-
halb wird der Aufwand dafür nicht betrachtet. Bei Sortierverfahren steigt der Aufwand

41

3 Architektur des Auslastungsdienstes

für die Sortierung mit der Anzahl der zu sortierenden Elemente und ist nicht, wie bei
der zuvor vorgestellten Selektion, linear. Um diesem Anstieg des Aufwands abhängig
vom Sortierverfahren genüge zu tragen, ist der Vorschlag für die Produktivitätskennzahl
von Sortieroperatoren (Elemente / (Aufwand * Zeit)). Es wird also die Anzahl der
Elemente um den durchschnittlichen Aufwand des Sortierverfahrens bereinigt und auf ein
einheitliches Zeitmaß gebracht. Die Produktivitätskennzahl wird hier immer berechnet,
wenn eine Sortierung abgeschlossen ist.

Für beide angegebenen Operatoren gilt, dass das Warten auf Eingabeelemente nicht
mit in die Berechnung der Produktivitätskennzahl einfließen darf, da die Wartezeit
keinerlei Aussagewert über die Leistungsfähigkeit der Kombination von Operator und
Knoten hat. Die Angabe von Zeit ist daher immer ohne Wartezeiten an der Ein- oder
Ausgabewarteschlange zu verstehen.

3.5 Knotenanfragebearbeitung

Nachdem die notwendigen Daten für die Beantwortung von Knotenanfragen bereits
vorgestellt wurden, wird nun die Knotenanfragebearbeitung erläutert.

Eine Knotenanfrage vom Anfragedienst an den Auslastungsdienst nach Ausführungskno-
ten besteht immer aus einem einzelnen Operator und Parametern für die Knotenanfrage.
Diese Parameter enthalten Leistungsanforderungen, eventuell weitere Anforderungen
wie Sicherheitsanforderungen oder Einschränkungen auf bestimmte Knoten. Außerdem
wird die Anzahl der zurückzuliefernden Knoten und eine Optimierungsreihenfolge für
den Fall, dass mehr Knoten verfügbar sind, als angefordert wurden, angegeben.

Anhand des angeforderten Operators können die Plattformanforderungen aus dem Ope-
ratorrepository abgefragt werden. Die Leistungsanforderungen geben an, welche opera-
torspezifische Produktivitätskennzahl erreicht werden soll. Alternativ zur Definition über
die Produktivitätskennzahl können auch Leistungsangaben in Rechnergröße wie verfüg-
bare CPU-Zeit, CPU-Geschwindigkeit, maximale Load und verfügbarer RAM angegeben
werden. Wenn exakte Leistungsangaben – außer der Produktivitätsanzahl – angegeben
werden, wird die Vorhersage über die benötigten Werte anhand statistischer Daten um-
gangen. Dies ermöglicht es, Wissen über Leistungsanforderungen, das nicht innerhalb
des AD bekannt ist, explizit zu verwenden.

Die Anforderungsangaben bestehen aus Tripeln der Form (Name, Vergleich, Wert),
wobei der Name vom Typ String und der Vergleich aus {<,=,>, 6=} ist. Der Wert kann
entweder numerisch oder vom Typ String sein. Bei String Werten ist jedoch nur {=, 6=}

als Vergleich zulässig.

42

3.5 Knotenanfragebearbeitung

Name Vergleich Wert
1 Produktivitätskennzahl > 50

2 Freier RAM > 1024

3 Operator-Latenz < 100

4 CPU-VendorID = GenuineAMD

Tabelle 3.1: Beispiele für Anforderungen

Tabelle 3.1 stellt beispielhaft vier solche Anforderungen dar. Anforderung 1 verlangt
eine operatorspezifische Produktivitätszahl größer 50. Es werden also ausschließlich
Knoten selektiert, die anhand der statistischen Daten für die gegebene Konfiguration des
Operators eine Produktivität > 50 erreichen. Die Produktivitätskennzahl ist, wie bereits in
3.4.1 erläutert, eine einheitenlose abstrakte Maßzahl.

Anforderung 2 fordert mindestens 1024 MB freien RAM; hierbei ist die Maßeinheit für
diesen Parameter MB. Anforderung 3 verlangt eine Operatorlatenz kleiner 100 ms, mit
ebenso impliziter Einheit. Die 4. Anforderung verlangt, dass die CPU-VendorID einen
bestimmten Wert hat, zum Beispiel um herstellerspezifische Fähigkeiten zu verwenden.

Die Optimierungsreihenfolge besteht aus geordneten Tupeln der Form (Name,

Optimierung), wobei Optimierung aus {minimieren, maximieren} ist. Optimierungsan-
gaben sind nur für numerische Werte möglich. Eine Optimierungsreihenfolge könnte
zum Beispiel �(CPU-Takt, Maximieren), (RAM, Maximieren), (Latenz, Minimieren)�

sein. Die für die Knotenanfrage infrage kommenden Knoten werden im letzten Schritt
dementsprechend zuerst nach CPU-Takt (absteigend) sortiert. Knoten mit gleichem
CPU-Takt werden nach RAM (absteigend) sortiert und Knoten mit gleichem CPU-Takt
und RAM zusätzlich nach Latenz aufsteigend angeordnet.

Abbildung 3.6: Beispiel NPGM-Graph Ausschnitt mit mehrfacher, paralleler Ausführung
von Operator OP 1

Mit dem Parameter Anzahl der Knotenanfrage kann der Anfragedienst dem Auslas-
tungsdienst mitteilen, wie viele Operatoren der Anfragedienst zurückliefern soll. Die

43

3 Architektur des Auslastungsdienstes

Anforderung von mehr als einem Ausführungsknoten für einen Operator kann mehrere
Gründe haben. Zum einen können die Ausführungsknoten zur Auswahl verwendet wer-
den, der Anfragedienst kann also weitere Kriterien zur Selektion verwenden, die nur auf
seiner höheren Architekturebene bekannt sind. Zum anderen kann für den Fall, dass der
Anfragedienst in seinem NPGM-Graphen mehrere gleiche Operatoren parallel ausführen
will, Anfrageaufwand gespart werden. Bei dem in Abbildung 3.6 dargestellten Ausschnitt
eines NPGM-Graphen könnten entweder vier Knotenanfragen an den Auslastungsdienst
gestellt werden oder stattdessen zwei Knotenanfragen, die jedoch für OP 1 eine Anzahl
von mindestens drei enthält. Dies ist aber nur möglich, wenn alle Operatoren, die zu einer
Knotenanfrage zusammengefasst werden, übereinstimmende Anforderungen haben.

3.5.1 Ablauf Knotenanfrageverarbeitung

Eine Anfrage nach geeigneten Knoten wird vom Auslastungsdienst in fünf aufeinan-
der aufbauenden Schritten bearbeitet. Die Schritte 2 - 5 sind eine schrittweise Filterung
der verfügbaren Knoten mit dem Ziel, am Ende nur noch geeignete Knoten für die
Operatorausführung in einer Liste zu haben.

Die Filterung erfolgt in einzelnen aufeinander aufbauenden Schritten, um den Berech-
nungsaufwand gering zu halten. So werden zuerst Schritte ausgeführt, die mit geringem
Berechnungsaufwand die Knotenmenge auf relevante Knoten einschränken. In den späte-
ren Schritten werden dann Statistiken für einzelne Knoten ausgewertet, eine Operation,
die auf der vollständigen Knotenmenge schon in kleinen Systemen zu Engpässen führen
würde.

Abbildung 3.3 auf Seite 34 stellt diese Schritte im rechten Drittel unter Knotenanfrageverar-
beitung in ihrem Ablauf dar.

Schritt 1: Sobald eine neue Knotenanfrage eintrifft, wird diese eingelesen und in die
Bestandteile Operator, Anforderungen, Operatorparameter und Optimierungsrei-
henfolge zerlegt. Die in der Knotenanfrage vorgegebenen Anforderungen werden
direkt um die Plattformanforderungen des Operators, die im Operatorrepository
verfügbar sind, ergänzt.

Schritt 2: In diesem Schritt wird die Menge der Knoten anhand der Kompatibilitätsmatrix
gefiltert. Knoten, die nicht den Plattformanforderungen des Operators entsprechen,
werden nicht weiter betrachtet.

Schritt 3: Anhand der leistungsbezogenen Anforderungen des Operators und der Statis-
tik werden implizite operatorabhängige Anforderungen berechnet. Die impliziten

44

3.5 Knotenanfragebearbeitung

operatorabhängigen Anforderungen geben ausschließlich operator- und parametri-
sierungsabhängige Leistungsanforderungen an. So sind die benötigte Netzwerkkapa-
zität oder der Speicherverbrauch primär operator- und parametrisierungsabhängig
und nicht wie die benötigte CPU-Zeit von Knoteneigenschaften wie CPU-Architektur
und Takt abhängig.

Um diesen Unterschied zu verdeutlichen, nehmen wir als Beispiel einen Operator,
der Videoframes erzeugt, wie er auch in Abbildung 2.1 auf Seite 20 als Rendering
Operator vorkommt. Als Parameter hat er unter anderem das Format der zu er-
zeugenden Videobilder in der Form (Höhe, Breite, Farbtiefe, Bildrate). Der
erzeugte Bilderstrom wird per Netzwerk ausgegeben. Es ist offensichtlich, dass in
diesem Beispiel die Kombination der Parameter das Ausgabedatenvolumen beein-
flusst, während der verwendete Ausführungsknoten hingegen, solange er die Bilder
schnell genug berechnen kann, keinen Einfluss auf das Ausgabedatenvolumen hat.
Im Gegensatz zu der ausschließlich operator- und parametrisierungsabhängigen
Berechnung des Ausgabedatenvolumens ist die benötigte CPU-Zeit stark knotenab-
hängig, da ein Knoten je nach CPU-Leistung länger oder kürzer braucht, um die
gleiche Berechnung durchzuführen.

Die impliziten Anforderungen ergeben sich aus den statistischen Daten für den
Operator mit seinem Preset. Wie in Abschnitt 3.3.2 beschrieben existieren für den
Operator und seine Presets Statistiken, die die Minimal-, Durchschnitts- und Maxi-
malwerte enthalten. Die impliziten Anforderungen entsprechend den Minimalwer-
ten aus der Statistik. Als Beispiel sei der minimale Arbeitsspeicherverbrauch aus der
Statistik für einen Operator OPa 128 MB. Ein Knoten, der aktuell nur einen freien
Arbeitsspeicher von 96 MB hat, kann diesen Anforderungen also nicht entsprechen.

Die in diesem Schritt errechneten Anforderungen werden verwendet, um die Men-
ge der verfügbaren Knoten einzuschränken. Knoten, die anhand ihrer aktuellen
Auslastungsdaten und ihrer statistischen Daten diese Anforderungen nicht erfüllen
können, werden herausgefiltert. Beim Widerspruch von expliziten Anforderungen
und den errechneten impliziten Anforderungen werden die impliziten verworfen,
ebenso wenn die Menge der verfügbaren Knoten die Anzahl der angeforderten
Knoten unterschreitet.

Schritt 4: In diesem Schritt werden die kompatiblen Knoten aus dem vorherigen Schritt
anhand der Daten aus dem Knotenleistungscluster nach vergleichbarer Rechenleis-
tung gruppiert. Für jedes dieser Cluster wird, wenn für das Cluster entsprechende
Statistiken über die Ausführungen eines Operators mit seiner aktuellen Parametri-
sierung vorhanden sind, berechnet, ob die Knoten ausreichend Rechenleistung zur
Verfügung stellen und wie hoch die aktuelle Systemauslastung maximal sein darf,
um den Operator ausführen zu können.

45

3 Architektur des Auslastungsdienstes

Für Knotencluster, über die noch keine Statistiken vorhanden sind, könnte, sofern
für den Operator überhaupt Messdaten vorliegen, über die Produktivität anderer
Operatoren im Vergleich der Cluster abgeschätzt werden, ob die Knoten leistungsfä-
hig genug sind. Alternativ könnte auch ein Testlauf mit dem Operator und seiner
Parametrisierung gestartet werden. Beide Ansätze werden hier nicht weiter verfolgt.

Knoten, für deren Cluster noch keine Daten vorhanden sind, werden dem Anfra-
gedienst in der Antwort auf die Knotenanfrage getrennt von den vorgeschlagenen
Knoten mitgeteilt. Der Anfragedienst kann so entscheiden, ob für diese Knoten Sta-
tistiken erzeugt werden. Die Statistiken können zum Beispiel durch einen parallelen
Testlauf ohnehin anstehender Operationen erzeugt werden.

Anhand dieser impliziten, aus den statistischen Daten der Knotenleistungscluster ge-
wonnenen Anforderungen und der expliziten Anforderungen aus der Knotenanfrage
wird die Knotenmenge weiter gefiltert. Ergeben sich aus den impliziten Anforderun-
gen und den expliziten Anforderungen der Knotenanfrage Widersprüche oder sollte
die Anzahl der Knoten unter die Anzahl der angeforderten Knoten fallen, werden
die impliziten Anforderungen aus diesem Schritt verworfen.

Schritt 5: Im abschließenden Schritt werden die Knoten, die nach den bisherigen Be-
rechnungen als geeignet gelten, nach den Parametern der Optimierungsreihenfolge
sortiert. Die Sortierung gibt in absteigender Reihenfolge die geeignetsten Knoten an.

Die ersten der angefragten Anzahl entsprechenden Knoten werden zusammen mit
ihren statistischen Daten, den aktuellen Auslastungsdaten, den Statistiken des Ope-
rators, den Statistiken aus der Knoten/Operatorstatistik sowie den Netzwerkdaten
des Knotens als Antwort an den Auslastungsdienst zurückgeliefert.

3.6 Verteilte Ausführung des Auslastungsdienstes

Bisher wurde der Auslastungsdienst als eine Einheit betrachtet. Diese logische Sicht
wird in diesem Abschnitt erweitert. Da NexusDS als verteiltes, ausfallsicheres System
konzipiert ist, muss auch der Auslastungsdienst diesem Paradigma folgen.

In einem verteilten System werden verschiedene Formen der Transparenz für die Vertei-
lung betrachtet. Als grundlegende Eigenschaften eines verteilten System gelten Ortstrans-
parenz, Zugriffstransparenz, Replikationstransparenz und Fragmentierungstransparenz
(vergleiche auch [Gra05, S. 132]).

Hierbei steht die Ortstransparenz für den Zugriff auf Daten oder Dienste, unabhän-
gig von ihrem aktuellen Speicherort und von der Kenntnis einer ortsbasierten Adresse.

46

3.6 Verteilte Ausführung des Auslastungsdienstes

Zugriffstransparenz steht für Zugriff ohne Datenkonvertierungsprobleme, Replikations-
transparenz sorgt für die automatische Replikation der Daten ohne weitere Interaktion
durch die Anwendung. Fragmentierungstransparenz erlaubt den Zugriff auf physisch
nicht zusammenhängend oder am gleichen Ort gespeicherte Daten, ohne eine spezielle
Behandlung dafür zu benötigen.

Nach außen, also für auf den Auslastungsdienst zugreifende Anwendungen, sind alle
Transparenzen durch das Dienstekonzept von Nexus DS gegeben. Der Auslastungsdienst
kann über seine Netzwerkgruppe aufgefunden werden, und auf seine Daten wird nur
über seine Schnittstellen zugegriffen. Durch die Festlegung der Schnittstelle ist die Zu-
griffstransparenz gegeben. Die Replikation der Daten wird durch den Auslastungsdienst
erbracht und ist somit von außerhalb auch transparent.

Damit innerhalb des Auslastungsdienstes die Transparenzen erreicht werden, muss dieser
jedoch für die Replikation der Daten sorgen und selbst replizierbar sein, um Ausfälle oder
Lastspitzen zu überstehen.

Auslastungsdienst Datenbank

Sensor

Logische Sicht

Daten-
annahme

Daten-
aufbereitung

Anfrage-
verarbeitung

Daten-
annahme
Daten-

annahme
Daten-

aufbereitung
Daten-

aufbereitung
Anfrage-

verarbeitung
Anfrage-

verarbeitung

SensorSensorSensor

Transparent
verteilte DB

Verteilte Sensoren
Verteilter Auslastungsdienst

Anfragen

Abbildung 3.7: Übersicht Replikation des Auslastungsdienstes

Abbildung 3.7 stellt den replizierten Auslastungsdienst und die logische Sicht auf ihn
dar. Der bisher monolithisch dargestellte Auslastungsdienst wird in drei Komponenten
zerlegt. Jede der Komponenten kann je nach nach Bedarf mehrfach repliziert werden. Zur

47

3 Architektur des Auslastungsdienstes

Synchronisation der einzelnen Komponenten miteinander und zur Datenhaltung dient
eine Datenbank, die wiederum logisch eine einzelne Komponente darstellt, jedoch als
verteilte, replizierte Datenbank implementiert ist.

Der Ablauf im Auslastungsdienst stellt sich nun wie folgt dar: Sensoren verbinden sich
mit einem (durch die Dienstschnittstelle von NexusDS bestimmten) Datenannahme-
Auslastungsdienst. Sollten die verfügbaren Datenannahmedienste überlastet sein, werden
weitere gestartet. Der Datenannahmedienst speichert die Daten zwischen und informiert
einen Datenaufbereitungsdienst darüber, dass Daten verfügbar sind und in die Datenbank
eingepflegt werden können.

Der Datenaufbereitungsdienst erzeugt die in Abschnitt 3.2 bereits vorgestellten Statistiken
und Auswertungen. Je nach Berechnungsaufwand kann auch der Datenaufbereitungs-
dienst repliziert werden, solange die Berechnungen getrennt durchführbar sind. Die
Ergebnisse der Berechnungen werden in der Datenbank gespeichert und sind somit
unabhängig von bestimmten Instanzen des Datenaufbereitungsdienstes verfügbar. Bei
besonders aufwendigen Berechnungen, wie dem Knotenleistungsclustering, kann der
Datenaufbereitungsdienst asynchron zu sämtlichen anderen Operationen arbeiten und
ein neues Clustering berechnen, das ein vorhandenes Clustering in der Datenbank erst
bei Fertigstellung ersetzt.

Der Knotenanfrageverarbeitungsdienst verarbeitet die Knotenanfragen nach bestimmten
Knoten, indem er die bereits aufbereiteten Daten aus der Datenbank abruft, filtert und
die geeigneten Knoten berechnet.

Aus Sicht des verteilten Knotenanfragedienstes ist die Datenbank wiederum eine logische
Einheit, die jedoch durch eine verteilte Datenbank bereitgestellt wird. Die Implementie-
rung solcher verteilten Datenbanken würde jedoch den Rahmen dieser Arbeit sprengen.
Hierfür sei auf die entsprechende Literatur verwiesen [Öz99, Tan06].

48

Kapitel 4

Detailentwurf

Nachdem in Kapitel 3 ein Überblick über die Architektur des gesamten Systems und
besonders über den Auslastungsdienst und die Sensoren gegeben wurde, wird in diesem
Kapitel auf die Details und genauen Verfahren der Sensoren und des Auslastungsdienstes
eingegangen.

In Abschnitt 4.1 werden die von den Sensoren gesammelten Daten spezifiziert und in
Abschnitt 4.2 ihre Speicherung.

Abschnitt 4.3 geht auf die Erzeugung und Speicherung der Kompatibilitätsmatrix
ein. In Abschnitt 4.4 wird die Erzeugung der Knotenleistungscluster erläutert. Hier-
zu werden verschiedene Clusteringverfahren vorgestellt und bewertet. Schließlich wird
der Aufwand für den verwendeten Algorithmus angegeben. Die Berechnung der
knoten-/operatorabhängigen Anforderungen auf Basis des Knotenleistungsclusterings
wird in Abschnitt 4.5 erläutert. Zuletzt wird in Abschnitt 4.6 die Durchführung des
Optimierungsrankings beschrieben.

4.1 Spezifikation der Sensormessdaten

In diesem Abschnitt werden die von den Sensoren auf den Knoten und in den Opera-
toren gesammelten Daten genauer spezifiziert. Die Sensoren sammeln Daten aus zwei
unterschiedlichen Quellen mit unterschiedlichem Fokus. Es werden Daten über den Kno-
ten selber und seine Ressourcen und seine Leistungsfähigkeit gesammelt sowie Daten
über die Operatoren, ihre Produktivität und ihren Ressourcenverbrauch. Zuerst wird die
Datenerfassung der Knoten erläutert und dann die Datenerfassung der Operatoren.

49

4 Detailentwurf

Parametername Datentyp
Hardware CPU-Architektur String

Maximaler CPU-Takt (in MHz) Float
Anzahl der CPUs Float
Arbeitsspeicher (in MiB) Float
GPU-Typ[ID] String
GPU-Speicher[ID] (in MiB) Float
Festspeicher (in MiB) Float

Software Betriebssystem String
Betriebssystem Variante String
Programm[ID] String
Programmversion[ID] String

Tabelle 4.1: Erfasste Plattformeigenschaften: Parametername und Datentyp

4.1.1 Plattformeigenschaften – statische Knotendaten

Die Plattformeigenschaften beschreiben die statischen Soft- und Hardware-Eigenschaften
des Rechenknotens. Sie werden zur Erkennung der Kompatibilität von Operatoren mit
speziellen Anforderungen, zur Zusammenfassung ähnlicher Rechenknoten und zur Be-
rechnung von Leistungsdaten verwendet.

Die Plattformeigenschaften sind statische Werte, die einmalig beim Start des Frameworks
auf dem Knoten erfasst und an den Auslastungsdienst gemeldet werden. Die Platt-
formeigenschaften lassen sich nach ihrer Herkunft in zwei Kategorien, in Hardware- und
Software-Eigenschaften, unterteilen. In Tabelle 4.1 werden zuerst die erfassten Hardware-
Eigenschaften und dann die Software-Eigenschaften aufgelistet. Eigenschaften, die mehr-
fach auftreten können, wie zum Beispiel mehrere GPUs (Grafikprozessoren) oder verfüg-
bare Softwarepakete, haben eine [ID] im Parameternamen, die die Mehrfachnennung ohne
Namenskonflikt ermöglicht und gleichzeitig unterschiedliche zusammengehörende Eigen-
schaften verknüpft. So steht zum Beispiel in Programm[IDa] der Name des Programms
und Programmversion[IDa] beschreibt die Version desselben Programms. Der Typ von
[ID] ist Float und wird bei jeder Verwendung von Null an um eins inkrementiert.

4.1.2 Dynamische Knotendaten

Neben den Plattformeigenschaften sammelt der Sensor regelmäßig Daten über die ak-
tuelle Auslastung des Knotens. Anhand der gemessenen Werte werden die folgenden

50

4.1 Spezifikation der Sensormessdaten

Parametername Datentyp
CPU-Queue-Länge Float
freier Arbeitsspeicher (in MiB) Float
freier Festspeicher (in MiB) Float
Netzwerkvolumen seit letzter Messung (in MiB) Float
Zeit seit letzter Messung (in Sekunden) Float

Tabelle 4.2: Erfasste Knotenleistungsmessdaten

Vorhersagen getroffen: Die Messung des Netzwerkvolumens gibt Auskunft über die aktu-
elle Auslastung und als Differenz zu einem historischen Maximum auch über die aktuell
freie Netzwerkkapazität. Die aktuelle Arbeits- und Festspeicherauslastung erlaubt eine
Vorhersage welche Speichermenge reserviert werden kann. Hingegen soll die Messung der
CPU-Auslastung zum einen den Verbrauch der bereits laufenden Operatoren bestimmen
als auch erlauben, die freien Rechenkapazitäten für weitere Operatoren vorherzusagen.

Für die CPU-Auslastungsmessungen existieren verschiedene Verfahren. Ferrari und Zhouh
[FZ87] unterteilen sie in queuelängenbasierte (Anzahl der auf die CPU wartenden Pro-
zesse) und auslastungsbasierte (% CPU-Auslastung) Verfahren. Anhand von empirischen
Messungen kommen sie zum Schluss, dass die Messung der Queuelänge genauere
Vorhersagen erlaubt. Die besten Ergebnisse werden in der Untersuchung mit einem 4-
Sekunden-Durchschnitt von CPU+Speicher+Eingabe/Ausgabe-Queuelänge erzielt. Da
diese Messwerte in normalen Systemen nicht verfügbar sind – Ferrari und Zhouh ver-
wendeten einen speziell angepassten Kernel zur Messung – wird hier nur die aktuelle
CPU-Queuelänge gemessen, die immer noch gute Ergebnisse erzielt. Die CPU-Queuelänge
lässt sich sowohl bei aktuellen Windows Betriebssystemen als auch bei Unix und Linux
Systemen vom Kernel auslesen.

Tabelle 4.2 listet die erfassten Werte nochmals auf und gibt die verwendeten Einheiten und
Datenformate wieder. Die Zeitdifferenz seit der letzten Messung wird zur Normalisierung
der Werte auf einheitliche Zeitabschnitte und zur Gewichtung der absoluten Werte in der
Statistik verwendet. Bei einem Messwert für das Netzwerkvolumen von 10 MiB1 seit der
letzten Messung und einer Zeitdifferenz von 5 Sekunden wird also 2 MiB/s gespeichert.

4.1.3 Operatormessdaten

Für jeden Operator auf einem Knoten werden Leistungs- und Verbrauchsmessdaten
erfasst, um die Leistungsfähigkeit des Operators im Vergleich zwischen verschiedenen

1Mebibyte: Entsprechend Standard IEEE 1541-2002 [IEE09]: 1 MiB = 220 Byte

51

4 Detailentwurf

Parametername Datentyp
Operator ID String
Parametrisierung Struktur
Produktivität Float
Produktivitätskennzahlen ID String
Latenz (Sekunden∗10−3) Float
CPU-Zeit seit letzter Messung (Sekunden∗10−3) Float
belegter Arbeitsspeicher (in MiB) Float
belegter Festspeicher (in MiB) Float
Netzwerkvolumen seit letzter Messung (in MiB) Float
Zeit seit letzter Messung (in Sekunden) Float
∑ Länge der Input Queues a Float
∑ Länge der Output Queues b Float
Operatorspezifische Messwerte[ID] Float

Tabelle 4.3: Erfasste Operatormessdaten

afalls Input Queues im Operator vorhanden
bfalls Output Queues im Operator vorhanden

Knoten beurteilen zu können und um daraus eine Vorhersage über die Leistungsfähigkeit
und den Ressourcenverbrauch eines Operators auf einem Knoten treffen zu können.

Da die erbrachte Leistung eines Operators im Allgemeinen von seiner Parametrisierung
abhängt, wird neben der Produktivitätskennzahl, wie in Abschnitt 3.4.1 vorgestellt, die
Parametrisierung des Operators erfasst. Zusätzlich zu den Produktivitätskennzahlen
werden die vom Operatorprozess verbrauchte CPU-Zeit, der von ihm belegte Arbeits-
und Festspeicher sowie das Netzwerkvolumen seit der letzten Messung erfasst.

Die Operatoren in NexusDS können über Ein- und Ausgabequeues verfügen. Die Queues
erlauben es, Daten als nicht blockierende Operation von einem Operator an einen anderen
weiterzugeben. Sofern der Operator über Ein- oder Ausgabequeues verfügt, wird die
Länge dieser Warteschlangen gespeichert. Anhand der Daten über die Ein- und Ausgabe-
queuelängen kann der Scheduler eine Überlastung beziehungsweise einen Flaschenhals
erkennen und durch Rescheduling beheben. So ist zum Beispiel eine durchgehend voll-
ständig gefüllte Eingabequeue bei gleichzeitig leerer Ausgabequeue ein Hinweis, dass der
Operator mit der Verarbeitung der Eingabedaten überfordert ist.

Die erfasste Zeitspanne seit der letzten Messung dient wiederum der Normalisierung
und Gewichtung der Messdaten. Alle erfassten Operatormessdaten sind in Tabelle 4.3
zusammengefasst.

52

4.2 Speicherung der Sensordaten

4.2 Speicherung der Sensordaten

Die von den Sensoren gesammelten Daten (siehe vorheriger Abschnitt) werden über die
Sensordatenstromschnittstelle an den Auslastungsdienst übertragen und hier aufbereitet
und gespeichert, um bei Anfragen nach geeigneten Knoten Auswertungen über diese
Daten durchführen zu können.

Die Sensoren übertragen regelmäßig ihre aktuellen Daten. Bei einer großen Anzahl von
Knoten und damit Sensoren würde die vollständige Speicherung hohe Ansprüche an die
Speicherkapazität und die Rechenleistung des Auslastungsdienstes stellen. Zum einen
würden die Daten viel Speicherplatz benötigen und zum anderen würden Berechnungen,
die statistische Daten verwenden, große Datenmengen zu verarbeiten haben. Daher
werden die Sensormessdaten gefiltert und nach Möglichkeit verdichtet.

Im folgenden Abschnitt wird angegeben, welche Daten in welcher Verdichtung gespeichert
werden und über welche Zugriffspfade auf sie zugegriffen wird.

Im zweiten Abschnitt wird dann das Verfahren zur Historisierung, also zum Aussortieren
und Vergessen nicht mehr relevanter Daten vorgestellt.

4.2.1 Gespeicherte Daten und Zugriffspfade

Drei Auswertungen – Filterung nach Plattformanforderungen, Berechnung der opera-
torabhängigen Anforderungen und Berechnung der knoten-/operatorabhängigen An-
forderungen – verwenden die Daten der Sensoren. Sie haben jeweils unterschiedliche
Anforderungen an die Datengranularität. Je nach Auswertung werden unterschiedliche
Zugriffsstrukturen auf teilweise gleiche Daten benötigt, um die gesuchten Daten effizient
aufzufinden.

In den folgenden Abschnitten werden zuerst die für die jeweiligen Auswertungen benö-
tigten Daten aufgeführt und die benötigten Zugriffsstrukturen angegeben.

Filterung nach Plattformanforderungen: Für die Filterung nach Plattformanforderun-
gen wird die Kompatibilitätsmatrix, wie bereits in Abschnitt 3.3.1 vorgestellt, verwen-
det. Für die Berechnung der Kompatibilitätsmatrix werden die statischen Plattform-
eigenschaften verwendet. Sie müssen daher dementsprechend vorgehalten werden.
In der Übersichtstabelle 4.4 sind dies die Daten der ersten Zeile. Der Zugriff auf die
Daten erfolgt immer über eine KnotenID, die hier auch als Index verwendet wird.

Operatorabhängige Anforderungen: Für die operatorabhängigen Anforderungen wer-
den die Daten über den Ressourcenverbrauch und die Leistung der Operatoren
abhängig von ihrer Parametrisierung benötigt. Einzelne Operatorausführungen

53

4 Detailentwurf

Daten Granularität Indexe
1 Plattformeigenschaften statischer Datensatz Knoten-ID
2 Operatormessdaten n-Bucket-(Min, ∅, Max) OP-ID, Konfiguration, Knoten-ID

Bucket, OP-ID, Konfiguration
3 Knotenauslastung n-Bucket-(Min, ∅, Max) Knoten-ID, Bucket

und aktuelle Daten

Tabelle 4.4: Zusammenfassung der gespeicherten Sensormessdaten, ihrer Granularität
und der Indexe für den Datenzugriff. Unterstreichungen in der Spalte Indexe
definieren jeweils einen kombinierten Index.

können starke Abweichungen aufgrund ihrer Eingangsdaten oder anderer Umge-
bungseinflüsse wie Knotenauslastung haben. Diese Ausreißer sind im einzelnen
nicht interessant. Für eine Vorhersage der benötigten Ressourcen und Leistung rei-
chen Minimal-, Durchschnitts- und Maximalwert des Ressourcenverbrauchs und der
Leistung. Die Ressourcenverbrauchsdaten der Operatoren sind in Tabelle 4.4 in der
zweiten Zeile zu finden. Der Zugriff erfolgt über die Kombination von OperatorID
und seiner Konfiguration. Es wird also ein kombinierter Index über OperatorID und
Konfiguration benötigt.

Knoten-/operatorabhängige Anforderungen: Zur Berechnung der knoten-/operatorab-
hängigen Anforderungen wird das Knotenleistungsclustering verwendet. Für die
Berechnung der knoten-/operatorabhängigen Anforderungen anhand des Knoten-
leistungsclusterings werden Daten über den Ressourcenverbrauch und die Leistung
der Operatoren wie bei den operatorabhängigen Anforderungen benötigt (Tabelle 4.4
Zeile 2). Die operatorabhängigen Anforderungen werden über die Kombination von
OperatorID und Operatorkonfiguration angesprochen. Zusätzlich werden in dieser
Auswertung Daten über die Knotenauslastung hinzugezogen, um festzustellen, ob
der Knoten ausreichend freie Kapazität hat. Die Knotenauslastungsdaten bestehen
sowohl aus statistischen Daten als auch aus den aktuellen Daten der Knoten. Da die
Sensoren laufend Messungen durchführen, kann durch ein solches Zwischenspei-
chern der aktuellen Auslastungsdaten verhindert werden, dass alle Knoten, die bei
einer Anfrage betrachtet werden, nach ihrer aktuellen Auslastung abgefragt werden
müssen. Die Knotenauslastungsdaten sind in der Übersichtstabelle 4.4 in Zeile 3

dargestellt. Sie werden anhand eines Indexes über die KnotenID angesprochen.

Für die Erzeugung des Knotenleistungsclusterings als Hilfsstruktur für die
knoten-/operatorabhängigen Anforderungen werden die statischen Plattformei-
genschaften sowie Informationen über die Berechnungsleistung der Knoten benötigt.
Die Berechnungsleistung eines Knotens ergibt sich aus den Produktivitäten der Ope-
ratoren auf diesem Knoten. Da verschiedene Konfigurationen von Operatoren im

54

4.2 Speicherung der Sensordaten

Allgemeinen nicht vergleichbar sind, wird für jeden Knoten ein Satz Durchschnitts-
werte pro Operator-Konfigurations-Tupel benötigt. Die exakten Daten einzelner
Operatorausführungen müssen hierfür nicht vorgehalten werden. Alle hierfür benö-
tigten Daten wurden schon durch vorhergehende Auswertungen gefordert. Sie sind
in der Tabelle 4.4 in Zeile 1 und 2 zu finden. Als Zugriffsstruktur kommt jedoch der
Zugriff über die KnotenID hinzu.

4.2.2 Zeitgranularität und Historisierung

Da sich das System über eine längere Laufzeit verändern kann, zum Beispiel beim Wechsel
eines Start- und Testbetriebes in einen regulären Betrieb oder durch die Installation neuer
Operatoren und Anwendungen, ist es nicht sinnvoll, die historischen Daten beliebig lange
zu speichern. Alte Daten, die schon lange keinen Bezug mehr zum aktuellen System
haben, würden in den Statistiken nach wie vor Einfluss ausüben.

24h
∅

24h
∅

24h
∅

24h
∅

24h
∅

24h
∅

24h
∅

7h
∅

Neue Daten

0-1-2-3-4-5-6-7Tag

Abbildung 4.1: Beispiel Bucket Statistik für 7 x 24 Stunden; das aktuelle Bucket enthält
hier erst Daten von 7 Stunden.

Es ist wünschenswert, die statistischen Daten in aggregierter Form vorzuhalten, um
Speicherplatz zu sparen, jedoch so, dass Daten, die eine bestimmtes Alter erreicht haben,
gezielt entfernt werden können. Bei einer einfachen Berechnung von Durchschnittswerten
wäre es unmöglich, alte Werte wieder herauszurechnen, ohne die Originaldaten dafür
vorzuhalten. Stattdessen wird ein Bucket-Verfahren angewandt, indem Daten eines Zeit-
abschnittes gemeinsam verdichtet werden. Als Beispielzeitraum sei die Statistikerhaltung
für eine Woche angenommen und die Bucketgröße von 24 Stunden. Alle innerhalb von
24 Stunden anfallenden Daten werden in einem Bucket verdichtet (in diesem Fall Minimum,
Durchschnitt, Maximum pro Datensatz). Buckets, die älter als eine Woche sind, werden ver-
worfen. Der Zugriff auf die Statistik erfolgt durch Durchschnittsbildung über alle Buckets,
wobei das aktuelle Bucket mit (Alter in Stunden)/24 gewichtet wird. Abbildung 4.1
verdeutlicht dies nochmals graphisch.

Im aktuellen System sind die Größen der Buckets und die Länge der Historie an die
Gegebenheiten anzupassen. Sie sind abhängig von der Veränderungsrate des Systems,

55

4 Detailentwurf

also davon, ob das System einen relativ statischen Zustand hat oder häufig wechselnde
Anwendungen ausführt. Ebenso ist die Laufzeit von Operatoren zu beachten, da es
nicht sinnvoll ist, bei lange laufenden Operationen bereits während ihrer Ausführung
die Messdaten zu verwerfen. Bei einem nahezu statischen System kann ein sehr großer
Zeitraum für die Historie gewählt werden, während bei einen dynamischen System eher
kürzere Zeiträume erfolgversprechend sind.

Die Daten der einzelnen Buckets werden, wie in Tabelle 4.4 auf Seite 54 gezeigt, in
einem Datensatz pro Bucket gespeichert. Für jeden Knoten werden also entsprechend der
Bucketanzahl Datensätze gespeichert. Ebenso wird für jedes Operator-Konfigurations-
Tupel ein Datensatz pro Bucket gespeichert.

Um den Wert des aktuellen Buckets zu bestimmen, gibt es zwei Möglichkeiten. Zum einen
kann bei Eintreffen neuer Daten der Wert des Buckets mit der Anzahl der Datensätze
mit dem neuen Wert als Durchschnitt verrechnet werden. Zum anderen können alle
Datensätze des Bucketzeitraumes gespeichert werden und jeweils ein Durchschnitt über
sie gebildet werden und dieser als Wert des aktuellen Buckets gespeichert werden. Der
erste Ansatz hat den Vorteil, dass sein Speicherverbrauch sehr gering ist. Es werden nur
der ohnehin gespeicherte Wert des aktuellen Buckets, die Anzahl der bisher gespeicherten
Datensätze sowie der neu zu integrierende Datensatz benötigt. Beim zweiten Ansatz
müssen hingegen alle Datensätze, die bereits in das aktuelle Bucket eingegangen sind,
erhalten bleiben, um über sie einen neuen Durchschnitt bilden zu können. Aufgrund der
Speicherplatzersparnis wird dementsprechend der erste Ansatz verwendet. Es wird also
für das aktuelle Bucket immer ein Zähler für den Messzeitraum den es bereits enthält,
mitgeführt.

4.3 Erzeugung und Speicherung der Kompatibilitätsmatrix

Die Erstellung der in Abschnitt 3.3.1 eingeführten Kompatibilitätsmatrix erfordert ein
Abgleichen der Plattformeigenschaften der Knoten mit den Plattformanforderungen der
Operatoren.

Beim Start des Auslastungsdienstes ruft dieser die Plattformanforderungen für alle Ope-
ratoren aus dem Operatorrepository ab und beantragt dort eine Benachrichtigung, um
bei Installation neuer Operatoren informiert zu werden. Die Plattformanforderungen der
Operatoren werden lokal im Auslastungsdienst zwischengespeichert, um einen effizienten
Zugriff auf sie zu ermöglichen.

Die Plattformeigenschaften eines Knotens werden beim Start des Knotens einmalig im
Sensordatenstrom an den Auslastungsdienst übertragen und im Auslastungsdienst ge-
speichert.

56

4.3 Erzeugung und Speicherung der Kompatibilitätsmatrix

String: KnotenID Eigenschaftsname Eigenschaftswert
K1 CPU-Architektur x86

K2 CPU-Architektur amd64

Float: KnotenID Eigenschaftsname Eigenschaftswert
K1 Maximaler CPU-Takt 2400

K2 Maximaler CPU-Takt 1800

Tabelle 4.5: Beispieltabellen für String und Float Plattformeigenschaften

String: OperatorID Eigenschaftsname Eigenschaftswert Vergleich
O1 CPU-Architektur x86 =

O2 CPU-Architektur sparc 6=

Float: OperatorID Eigenschaftsname Eigenschaftswert Vergleich
O1 Maximaler CPU-Takt 2000 >

Tabelle 4.6: Beispieltabellen für String und Float Plattformanforderungen

Die Datenhaltung für die Plattformeigenschaften besteht aus einer Tabelle pro Datentyp,
die jeweils die Spalten KnotenID, Eigenschaftsname und Eigenschaftswert hat. Da die
Plattformeigenschaften nur zwei Datentypen enthalten können, String und Float, sind sie
durch zwei Tabellen beschrieben. Die Beispieltabellen 4.5 und 4.6 enthalten jeweils zwei
Operatoren mit unterschiedlicher CPU und Taktrate.

Die Plattformanforderungen der Operatoren werden in ähnlicher Form gespeichert, je-
doch enthalten beide Tabellen eine zusätzliche Spalte, die einen Vergleich spezifiziert.
Der Vergleich kann bei Anforderungen vom Typ String = oder 6= sein und bei Float
Anforderungen =,<,>. Der Operator O1 in der Tabelle 4.6 erfordert eine x86 Architektur
und einen CPU-Takt, der größer als 2400 Mhz ist.

OperatorID KnotenID Kompatibel
O1 K1 True
O1 K2 False
O2 K1 True
O2 K2 True

Tabelle 4.7: Beispiel für die Speicherung einer Kompatibilitätsmatrix für die Operatoren
O1, O2 und die Knoten K1, K2

57

4 Detailentwurf

Sobald die Plattformeigenschaften eines Knotens gespeichert wurden, wird für jeden in
den Tabellen mit Operatoranforderungen enthaltenen Operator überprüft, ob der Knoten
zu ihm kompatibel ist, also die Anforderungen erfüllt. Hierzu wird zuerst überprüft, ob
der Eigenschaftsname jeder Anforderung in den Eigenschaften des Operators vorkommt
und ob für diese Paare aus Plattformanforderung PA und Operatoreigenschaft OE gilt:
(OE.Eigenschaftswert PA.Vergleich PA.Eigenschaftswert) = True

Das Ergebnis dieser Überprüfungen ist eine Matrix, die in einer Tabelle der Form von
Tabelle 4.7 gespeichert wird. Jedem Knoten-/Operatorpaar wird ein Boolescher Wert
zugeordnet, der angibt, ob das Paar kompatibel ist. Über eine Anfrage wie in Listing
4.1 können alle zu einem Operator <AnfrageOperatorID> kompatiblen Knoten abgefragt
werden.

Listing 4.1 SQL Beispiel zur Abfrage kompatibler Knoten für <AnfrageOperatorID>
SELECT KnotenID FROM Kompatibilittsmatrix

WHERE OperatorID = <AnfrageOperatorID>

AND Kompatibel = TRUE;

4.4 Erzeugung des Knotenleistungsclusterings

Wie bereits in Abschnitt 3.5 eingeführt, dient das Knotenleistungsclustering dazu, Knoten
zu finden, deren Rechenleistung vergleichbar ist, um die statistische Datenbasis für
Operatormessdaten und damit die Leistungsvorhersagen zu verbessern, indem die Daten
vergleichbarer Knoten zusammengeführt werden.

Damit Knoten für die Ausführung von Operatoren als vergleichbar gelten, werden hier
drei Voraussetzungen definiert:

Voraussetzung 1: gleiche CPU-Architektur und gleiches Betriebssystem

Voraussetzung 2: ähnliche Plattformeigenschaften

Voraussetzung 3: ähnliche Rechenleistung

Nach den Voraussetzungen vergleichbare Knoten werden durch einen Clustering-
Algorithmus gesucht, der anhand einer Distanzmetrik die Cluster berechnet. Die Eintei-
lung nach Voraussetzung 1 erfolgt über einen einfachen Vergleich der Eigenschaften. Bei
Übereinstimmung alle Eigenschaften sind die Knoten grundlegend vergleichbar, ansonsten
nicht. Für die Eigenschaften 2 und 3 wird die Distanzmetrik gewichtet und dann anhand
dieser geclustert. Die Gewichtung der Eigenschaften 2 und 3 wird zunächst auf jeweils
50 % festgelegt, ließe sich aber variieren, wenn entsprechende Messungen mit realen Daten
eine Verbesserung der Erkennungsgenauigkeit versprechen. Durch die 50 %-Gewichtung

58

4.4 Erzeugung des Knotenleistungsclusterings

der Plattformeigenschaften zu den Rechenleistungsdaten wird dafür gesorgt, dass beide
einen gleich großen Einfluss haben und dass nicht, wie im Falle ohne Gewichtung, eine
große Differenz in der Anzahl der Datensätze für die jeweiligen Voraussetzungen den
Einfluss der schwächeren verringert. Dies könnte dazu führen, dass eine Vielzahl an
Ausführungsmesswerten eine geringe Anzahl an Plattformeigenschaften verdrängt und
diese mit verschwindend geringem Anteil in die Distanz eingehen.

Nach [HK01] haben Clusteringverfahren im Allgemeinen zum Ziel, Punkte in einem mehr-
dimensionalen Raum, die gemeinsame Eigenschaften aufweisen, in Cluster einzuteilen, so
dass die Punkte eines Clusters große Ähnlichkeit aufweisen und unterschiedlich zu den
Punkten anderer Cluster sind.

Im Folgenden wird zuerst eine allgemeine Distanzmetrik für mehrdimensionale Punkte
definiert, dann werden verschiedene Clusteringverfahren vorgestellt und gegeneinander
abgewägt und schließlich wird der Algorithmus des gewählten Verfahrens angegeben.

4.4.1 Definition der Distanzmetrik

Als Distanzmetrik wird die „Distanzfunktion für Objekte unterschiedlicher Dimensionali-
tät“ nach [HK01, S. 397], wie in Formel 4.1 dargestellt, verwendet.

Formel 4.1 Distanzfunktion für Objekte unterschiedlicher Dimensionalität

d(i, j) =
∑

p
f=1 δ

(f)
ij d(f)

ij

∑
p
f=1 δ

(f)
ij

Sie berechnet den Abstand d(i, j) zweier Punkte i und j. Für Dimensionen beziehungsweise
Plattformeigenschaften, die in einem Punkt vorhanden sind, im anderen jedoch nicht,
gilt δ

(f)
ij = 0, sonst δ

(f)
ij = 1. Abhängig vom Typ der Dimension wird d(f)

ij unterschiedlich
berechnet.

Für die hier verwendeten Datentypen String und Float ergibt sich d(f)
ij gemäß Formel 4.2

und 4.3.

Formel 4.2 Distanzfunktion für String Werte

d(f)
ij =

0, wenn xi f = xj f

1, wenn xi f 6= xj f

59

4 Detailentwurf

Formel 4.3 Distanzfunktion für Float Wertea

d(f)
ij =

|xi f−xj f |
max−min

aGegenüber [HK01] leicht vereinfachte Notation

In den Formeln sind xi f und xj f die Werte von i respektive j der Eigenschaft f mit max und
min als Maximum und Minimum des Wertebereiches. Sie werden festgelegt, indem der
höchste und niedrigste jemals betrachtete Wert für eine Eigenschaft gespeichert wird.

Nachdem die allgemeine Berechnung einer Distanzmetrik vorgestellt wurde, muss dies
noch auf die drei Voraussetzungen in Formel 4.4 angewandt werden. Formel 4.4 be-
schreibt die Distanz dka,kb zweier Knoten ka und kb. Voraussetzung 1 (d1) ist ein hartes
Ausschlusskriterium, während Voraussetzung 2 (d2) und Voraussetzung 3 (d3) gewichtet
eingehen.

Dadurch, dass Voraussetzung 1 als hartes Kriterium verwendet wird, haben Knoten,
die nicht die gleiche CPU-Architektur und das gleiche Betriebssystem haben, immer
eine maximal Distanz. Es wird also abgebildet, dass diese Knoten nicht miteinander
vergleichbar sind.

Die Berechnung von d1, d2 und d3 erfolgt jeweils nach Formel 4.1.

Formel 4.4 Distanzfunktion für Clustering über

dka,kb = max
{

d1,
(

1
2

d2 +
1
2

d3

)}

4.4.2 Clusteringverfahren

Ein für das Clustering von Knoten mit ähnlicher Leistung geeignetes Verfahren muss
mehrere Dinge leisten. Da Vorhersagen für alle Knoten eines Clusters anhand der inte-
grierten Daten des Clusters getroffen werden, können Knoten, die extreme Werte haben,
die Vorhersage stark verschlechtern. Zusätzlich besteht das Problem, dass die Daten des
Systems nicht statisch sind, sondern die Leistungsdaten regelmäßig aktualisiert werden
und somit auch das Clustering aktualisiert werden muss.

Die Anforderungen an das Clusteringverfahren sind daher

1. Einteilung in Cluster ähnlicher Leistungsfähigkeit

60

4.4 Erzeugung des Knotenleistungsclusterings

2. Genauigkeit

3. Geschwindigkeit

Die Anforderung 1, das Clustern von Objekten, die alle zueinander eine größere Ähnlich-
keit haben als zu anderen Objekten, wird im Allgemeinen von Partitionierungsverfahren
und von hierarchischen Verfahren geleistet.

Andere üblichen Verfahren wie dichtebasierte und modellbasierte Verfahren werden
hier hingegen nicht weiter betrachtet, da sie für den Anwendungsfall keine Vorteile
versprechen. Dichtebasierte Verfahren eignen sich besonders, um nichtkompakte Cluster
zu finden, die beliebige Formen haben. Hier werden jedoch Cluster von Knoten gesucht,
die alle einander sehr ähnlich sind, also räumliche Nähe aufweisen. Modellbasierte
Verfahren setzen ein zuvor definiertes Modell voraus, dem die Daten angenähert werden.
Ein solches Modell ist hier jedoch nicht vorhanden.

Zunächst werden Partitionierungsverfahren vorgestellt und dann hierarchische Verfahren,
um daran ihre Eignung nach den Anforderungen 2 und 3 abwägen zu können.

Partitionierungsverfahren arbeiten, indem sie die Objektmenge in eine gegebene Anzahl k
von Clustern aufteilen und durch Verschieben von Objekten zwischen den Clustern eine
bessere Aufteilung suchen. Eine gute Partitionierung ist erreicht, wenn Objekte innerhalb
einer Partition ähnlicher zueinander sind als zu Objekten anderer Partitionen.

Nachteile sind, dass heuristische Verfahren je nach Anfangsverteilung auf die Cluster
zu unterschiedlichen Ergebnisclustern kommen können und dass die Anzahl der zu
erzeugenden Cluster vorher festgelegt werden muss.

Als Beispiele für Partitionierungsverfahren werden der k-Means- und der k-Medoids-
Algorithmus vorgestellt.

k-Means ist ein Clustering-Algorithmus, der als Eingabe eine Menge von Objekten
und eine Anzahl k der Clustern bekommt. Durch Festlegung der Schwerpunkte
für jedes der k Cluster durch ein zufällig gewähltes Objekt wird eine Anfangs-
verteilung geschaffen. In jedem weiteren Schritt werden den Clustern die ihrem
Schwerpunkt nächsten Objekte zugeordnet und der Schwerpunkt der Cluster neu
als Durchschnittswert alle enthaltenen Objekte berechnet. Die Schritte Zuordnung
und Neuberechnung der Schwerpunkte werden wiederholt, bis entweder eine Iterati-
onsgrenze erreicht ist oder ein Konvergenzkriterium, wie die mittlere quadratrische
Abweichung in Formel 4.5, konvergiert. E ist die Summe der quadratischen Abwei-
chung aller Objekte, p ist die Koordinate eines Objektes und mi der Mittelpunkt des
Clusters i.

61

4 Detailentwurf

Formel 4.5 Quadratische Abweichung [HK01, S. 402]

E =
k

∑
i=1

∑
p∈Ci

|p−mi|2

k-Medoids Im Gegensatz zum k-Means-Verfahren werden in k-Medoids Cluster durch
ein Medoid-Element, also ein reales Objekt des jeweiligen Clusters, statt durch den
Durchschnittswert aller Elemente des Clusters repräsentiert. Als Konvergenzkri-
terium wird der absolute Fehlerwert in Formel 4.6 verwendet; oj ist hierbei das
Medoid.

Der k-Medoids-Algorithmus testet ausgehend von einer Anfangsverteilung und
durch Zuteilen aller Objekte zum nächsten Medoid, ob das Ersetzen des Medoids
eines Clusters durch ein anderes Objekt den absoluten Fehlerwert verringert. Die
Ersetzungen werden entweder für eine festgelegte Anzahl an Iterationen fortgesetzt
oder bis keine Ersetzungen mehr stattfinden, also der Fehlerwert stabil wird.

Formel 4.6 absolute Abweichung [HK01, S. 405]

E =
k

∑
j=1

∑
p∈Cj

|p− oj|

Der Hauptunterschied zwischen k-Means und k-Medoids ist ihre Sensibilität gegenüber
Ausreißern. Objekte mit extremen Werten beeinflussen den Durchschnitt eines Clusters
stark, während ihr Einfluss auf ein Medoid eher gering ist, da sie aufgrund ihrer extremen
Werte nicht selbst zum Medoid werden. Die beiden Verfahren skalieren schlecht für grö-
ßere Datenmengen. Häufig wird stattdessen ein Clustering für eine zufällige Untermenge
der Daten, ein sogenanntes Sample, durchgeführt und der Rest der Daten den so gefunden
Clustern zugeordnet.

Im Gegensatz zu den Partitionierungsverfahren arbeiten hierarchische Verfahren entwe-
der zusammenfassend oder aufteilend statt mit einer festen Anzahl von Clustern. Die
zusammenfassenden Verfahren fangen mit jedem Objekt in einem eigenen Cluster an
und vereinigen sukzessive ähnliche Cluster, bis entweder nur noch ein Cluster übrig
bleibt oder eine Abbruchbedingung greift. Die aufteilenden Verfahren starten mit einem
einzigen Cluster, das alle Objekte enthält und in jedem Schritt aufgeteilt wird, bis alle
Objekte in einzelnen Clustern sind oder wiederum eine Abbruchbedingung greift. Die
beiden Verfahren werden in Abbildung 4.2 in Form eines Dendrogrammes verdeutlicht.

62

4.4 Erzeugung des Knotenleistungsclusterings

Vereinigendes Verfahren
Schritt: 0 1 2 3 4

Schritt:
Aufteilendes Verfahren

01234

Abbildung 4.2: Beispiel Dendrogramm: Clustering von A, B, C, D, E für vereinigendes
Verfahren (oben) und aufteilendes Verfahren (unten). Vergleiche [HK01]

4.4.3 Bewertung und Auswahl der Clusteringverfahren

Der Berechnungsaufwand bei hierarchischen Verfahren ist geringer als bei Partitionie-
rungsverfahren, da einmal getroffene Vereinigungs- oder Aufteilungsentscheidungen
nicht mehr revidiert werden können und daher in weiteren Schritten nicht mehr betrach-
tet werden müssen. Dies stellt jedoch auch den großen Nachteil dar, da nicht optimale
Entscheidungen nicht mehr überarbeitet werden können. Der Nachteil der Partitionie-
rungsverfahren ist, dass bei Start des Algorithmus die Anzahl der gewünschten Cluster
bekannt sein oder aber der Algorithmus mehrfach für verschiedene Clusteranzahlen
angewandt werden muss.

Im direkten Vergleich zwischen Partitionierungsverfahren und hierarchischen Clustering-
verfahren ergibt sich Folgendes für die drei Anforderungen

Einteilung in Cluster ähnlicher Leistungsfähigkeit: Kann von beiden Verfahren geleis-
tet werden; das hierarchische Verfahren ist jedoch flexibler bezüglich der Anzahl
der Cluster und kann sich somit eher an aktuelle Anforderungen anpassen.

63

4 Detailentwurf

Genauigkeit: Hierarchische Verfahren unterliegen keiner Veränderung durch zufällige
Anfangsverteilungen und sollten daher stabilere und genauere Ergebnisse erzeugen.

Geschwindigkeit: Hierarchische Verfahren müssen nach jedem Vereinigungsschritt we-
niger Elemente betrachten und ihre Laufzeit ist fest vorhersagbar, während Partitio-
nierungsverfahren im Allgemeinen in jedem Schritt alle Elemente neu betrachten
müssen und sehr lange Laufzeiten haben können, bis eine stabile Verteilung, vor
allem bei großen Anzahlen von Elementen, erreicht ist.

Da alle drei Anforderungen für den Einsatz eines hierarchischen Verfahrens sprechen,
wird ein solches verwendet. Das eingesetzte Verfahren ist ein vereinigendes, hierarchi-
sches Verfahren, dass jeweils die Cluster mit dem geringsten Abstand der Schwerpunkte
vereinigt. Durch dieses Vereinigungskriterium werden möglichst kompakte Cluster erzielt.
Die so erzeugten Cluster entsprechen der Zielsetzung von Clustern, deren Objekte alle
zueinander ähnlicher sind als zu den Objekten anderer Cluster.

Um eine möglichst hohe Flexibilität zu erhalten, wird die Clusterbildung nicht an einem
bestimmten Punkt abgebrochen. Vielmehr werden alle Vereinigungsstufen durchgeführt
und gespeichert, bis die Knoten vollständig vereinigt sind. Anhand der gespeicherten
Clusteringlevel kann später eine beliebige Clustergranularität ausgewählt werden.

Zur Auswahl eines geeigneten Clusteringniveaus wird pro Ebene von der vollständig
vereinigten Clusterung aus getestet, in wie vielen unterschiedlichen Clustern sich die in
den vorherigen Schritten selektierten Knoten befinden, bis eine Ebene mit der gewünschten
Granularität gefunden wurde. Die gewünschte Granularität kann von unterschiedlichen
Faktoren abhängen. Da mit der Granularität und damit der Clustergröße direkt die
Vorhersagequalität einhergeht, jedoch der Berechnungsaufwand für eine Vorhersage mit
zu betrachtender Clusteranzahl steigt, kann so je nach verfügbarer Rechenleistung und
gewünschter Vorhersagequalität ein Trade-Off getroffen werden. Zusätzlich kann auch
Wissen über die Systemumgebung verwendet werden, wie zum Beispiel die Kenntnis, dass
es unwahrscheinlich ist, mehr als 10 oder 100 unterschiedliche Rechnerkonfigurationen in
der Menge der verfügbaren Knoten zu haben. Dementsprechend ist es nicht sinnvoll, für
mehr als die Anzahl der unterschiedlichen verfügbaren Knotentypen eigene Vorhersagen
zu berechnen.

4.4.4 Algorithmus

Vollständiges hierarchisches Clustern erfordert n− 1 Vereinigungen von Clustern [Has09,
S. 523]. Für jede Vereinigung müssen die beiden Cluster mit dem geringsten Abstand bzw.
der geringsten Unähnlichkeit gefunden werden. Nach [HK01] erfolgt dies im Allgemeinen
durch Berechnung einer Distanzmatrix, die Ähnlichkeit oder Unähnlichkeit aller Cluster
zueinander angibt. Da die Distanzen symmetrisch sind, also dist(a, b) = dist(b, a), und

64

4.4 Erzeugung des Knotenleistungsclusterings

die Knoten zu sich selbst immer den Abstand 0 haben, ist nur der Teil unterhalb oder
der Teil oberhalb der Diagonale der Matrix belegt. Die Diagonale selbst ist aufgrund
der Symmetrie immer 0 und darf in der Distanzmatrix nicht belegt werden. Würden die
Distanzen der Knoten zu sich selbst in der Matrix gespeichert, würde der Algorithmus
zur Vereinigung der Knoten mit dem geringsten Abstand versuchen, Knoten mit sich
selbst zu vereinigen.

In Abbildung 4.3 links ist eine solche Distanzmatrix für fünf Knoten zu sehen. Für
n Knoten hat die Distanzmatrix ∑n−1

j=1 (j) Einträge, entsprechend der Anzahl an Werten
unter oder über der Diagonale.

k1 0 − − − −
k2 d 0 − − −
k3 d d 0 − −
k4 d d d 0 −
k5 d d d d 0

k1 k2 k3 k4 k5

k1 0 − − − −
k2 d 0 − − −
k3 d d 0 − −
c1 d d d 0 −
− − − − − −

k1 k2 k3 c1 −

Abbildung 4.3: Beispiel Distanzmatrix für die Knoten k1 - k5 und nach der Vereinigung
von k4 und k5 zu c1

In jedem Vereinigungsschritt werden zwei Knoten beziehungsweise Cluster entfernt und
durch ein neues Cluster ersetzt. Hieraus folgt, dass bei n Knoten nach n− 1 Vereinigungen
nur noch ein Cluster übrig bleibt. Bei einem einzigen Cluster ist die Distanzmatrix leer.
Dementsprechend hat die Distanzmatrix nach s Schritten ∑n−s

j=1 (j) Einträge, wenn die
vollständige Matrix Schritt 1 entspricht. Abbildung 4.3 rechts zeigt eine Distanzmatrix
nach dem ersten Vereinigungsschritt entsprechend s = 2.

Da die Vereinigung n − 1 mal durchgeführt wird, ergibt sich die Gesamtanzahl der
Vergleiche nach Formel 4.7.

Formel 4.7 Anzahl der Distanzen für alle Distanzmatrizen eines Clusterings für n Knoten

Anzahl Distanzen =
n−1

∑
s=1

n−s

∑
j=1

j

Da in jedem Schritt s jedoch nur zwei Cluster verschmolzen werden, bleiben die Distanzen
zwischen den anderen Clustern gleich und können direkt aus der ersten, vollständigen
Distanzmatrix übernommen werden. Dementsprechend ist nur im ersten Schritt eine
vollständige Distanzmatrix für n Knoten zu berechnen.

65

4 Detailentwurf

Für jeden Vereinigungsschritt sind dann die Distanzen des neu erzeugten Clusters zu
allen anderen Knoten und Clustern, die in der aktuellen Matrix noch vorhanden sind, zu
berechnen. Es müssen also n− 1-mal die Distanzen eines neu erzeugten Clusters zu allen
anderen Clustern berechnet werden. Da nach jedem Vereinigungsschritt die Größe der
Distanzmatrix um 1 gesunken ist, müssen n− 1-mal n− s− 1 Distanzen neu berechnet
werden, wobei s wieder den Vereinigungsschritt, beginnend bei 1 für die vollständige
Distanzmatrix, angibt. Da s von 1 bis n− 1 läuft, entspricht die Anzahl der benötigten
Vergleiche Formel 4.8.

In Abbildung 4.3 entsprechen die in diesem Vereinigungsschritt neu berechneten Distan-
zen den fett gedruckten Distanzen der rechten Distanzmatrix.

Formel 4.8 Aufwand für vollständiges hierarchisches Clustern mit Wiederverwendung
bereits gespeicherter Distanzen.

Anzahl Distanzen =
n−1

∑
s=1

s +
n−2

∑
s=1

s

4.4.5 Aufwandsreduzierung

Bei einem System, das laufend Änderungen erfährt, sei es durch neue und abgeschaltete
Knoten oder durch aktuelle Leistungsmessdaten, ist eine ständige Aktualisierung – gleich-
bedeutend mit einer Neuberechnung der Cluster – sehr aufwendig. Eine Neuberechnung
des gesamten Clusterings ist wiederum sehr aufwendig.

Wenn man sich die Formel 4.4 auf Seite 60 für die Distanzfunktion ansieht, stellt man fest,
dass die Distanz bei unterschiedlicher CPU und unterschiedlichem Betriebssystem immer
1, also maximal ist. Diese Knoten werden also erst in den letzten Schritten des Clusterings
vereinigt beziehungsweise müssen für unsere Auswertungen nie als gemeinsames Cluster
betrachtet werden, da die Knoten sowieso als nicht vergleichbar gelten.

Teilclustering: Anstatt eine vollständige Distanzmatrix aufzubauen und zu verglei-
chen, werden unvergleichbare Knoten (nach Voraussetzung 1) fix auf den Wert
unvergleichbar gesetzt und nicht weiter gemeinsam betrachtet. Da die Beziehung
unvergleichbar transitiv ist, können vergleichbare Knoten unabhängig von allen
Knoten, zu denen sie unvergleichbar sind, betrachtet werden. Dies entspricht einem
getrennten Clustering für jede der disjunkten Mengen von kompatiblen Knoten.

66

4.5 Berechnung der knoten- und operatorabhängigen Anforderungen

Selektive Neuberechnung: Direkt aus dem Teilclustering folgt, dass bei Änderungen
von Knoten eines der Teilcluster nicht alle Cluster neu berechnet werden müssen,
sondern nur das Clustering für die nach Voraussetzung 1 kompatiblen Knoten.

Verzögerte Neuberechnung: Als weitere Optimierung des Aufwands wird eine an Verfah-
ren zum Clustern großer Datenmengen angelehnte Technik verwendet. In Clustering-
Algorithmen für Datenmengen, die zu groß sind, um sie geeignet mit einem
Clustering-Algorithmus zu bearbeiten, der alle Elemente miteinander vergleicht,
wird sogenanntes Sampling verwendet. Beim Sampling werden nicht alle Daten-
punkte betrachtet, sondern zuerst nur eine möglichst repräsentative, häufig aber
auch nur zufällig ausgewählte Teilmenge. Auf dieser Teilmenge wird nun ein übli-
cher Clustering-Algorithmus angewandt und es werden die so festgelegten Cluster
verwendet, um ihnen die restlichen Datenpunkte zuzuordnen.

Um die Probleme mit geänderten oder neuen Knoten im Knotenleistungsclustering
zu verringern, wird, statt bei jedem neuen oder geänderten Knoten das Clustering
neu zu berechnen, das bisherige Cluster als fest betrachtet und die neuen oder geän-
derten Knoten werden den vorhandenen Clustern nach Ähnlichkeit hinzugefügt.

Das Hinzufügen zu den vorhandenen Clustern erfolgt von der Wurzel aus, indem
für den neuen oder geänderten Knoten jeweils entschieden wird, ob der rechte oder
der linke Untercluster ähnlicher ist. Da der Baum die maximale Höhe n− 1 hat,
müssen so bei zwei Unterclustern pro Ebene maximal 2(n− 1) Vergleiche zwischen
Knoten und Clustern zum Einfügen durchgeführt werden.

In regelmäßigen Abständen – wenn die Systemauslastung dies zulässt – werden
die Cluster neu berechnet. Hierbei gehen dann die seit der letzten Clusterbildung
neu hinzugekommen Knoten und seither veränderten Auslastungsdaten in die
Berechnung der Cluster mit ein.

Um den Algorithmus inklusive der Aufwandsreduzierung durch Teilclustering zu ver-
deutlichen, ist er in Listing 4.2 in mengenorientiertem Pseudo-Code angegeben.

4.5 Berechnung der knoten- und operatorabhängigen
Anforderungen

Die bereits in Abschnitt 3.5.1 vorgestellte Berechnung der knoten- und operatorabhängigen
Anforderungen wird durchgeführt, indem die Knoten anhand des Knotenleistungsclus-
terings in Cluster mit Knoten ähnlicher Leistungsfähigkeit gruppiert werden. Für jedes

67

4 Detailentwurf

Listing 4.2 Algorithmus zum hierarchischen Clustern
Definitionen:

K Menge der Knoten
Kc ⊂ K, ∀kx, ky ∈ Kc, kx 6= ky : kx ∩ ky = ∅

Disjunkte Teilmengen von K von miteinander vergleichbaren Knoten, ent-
sprechend der Aufwandsreduzierung durch Teilclustering

for all Kc do // Für jede Teilmengen Kc miteinander vergleichbarer Knoten
cluster(Kc) // das Clustering durchführen

end for
function cluster(k: knoten)

while |k| > 1 do // Bis alle Cluster vereinigt wurden
c1, c2 = min{dist(k)} // Cluster minimaler Distanz suchen
cm = merge(c1, c2) // Cluster minimalen Abstands vereinigen
k = k + cm // Neues Cluster hinzufügen
k = k\{c1, c2} // Alte, vereinigte Cluster entfernen
saveTree(cm = {c1, c2}) // Update des Clustering Baumes

end while
end function

dieser Cluster von Knoten ähnlicher Leistungsfähigkeit werden die statistischen Daten
über Operatorausführungen zusammengeführt.

Abbildung 4.4 verdeutlicht das Vorgehen. Auf der linken Seite ist der Teil eines Clusterings
für die Knoten A - G zu sehen. Das hier verwendete vereinigende Clusteringverfahren
fängt mit jedem Knoten in einem eigenen Cluster an und vereinigt in jedem Schritt zwei
der Cluster. In der Abbildung wurde die Clusterbildung bis zur Stufe vier durchgeführt.
Diese wird hier auch für die Auswertung verwendet. Für jedes der gefundenen Cluster
werden die statistischen Daten für die Ausführung des Operators aus der Datenbank, die
auf der rechten Seite der Abbildung zu sehen ist, abgerufen. Wie in der Mitte der Grafik
zu sehen ist, werden die Daten pro Cluster zusammengeführt und zu einem gemeinsamen
Wertesatz für das Cluster ausgewertet. Hierbei wird ein Gesamtdurchschnitt über die
Durchschnittswerte der einzelnen Knoten gebildet und jeweils ein Minimum und ein
Maximum über alle Minima und Maxima des Clusters gebildet.

Unter der Annahme, dass die statistischen Daten über die Operatorausführungen gemäß
dem Knotenleistungsclustering zwischen ähnlichen Knoten übertragbar sind, werden die
aggregierten Datensätze für die Berechnung der impliziten knoten-/operatorabhängigen
Anforderungen verwendet. Alle Knoten, die nach ihren aktuellen Auslastungsdaten
nicht genügend freie Ressourcen verfügbar haben, um den Minimalanforderungen ihres
Clusters für die Ausführung des Operators unter seiner Konfiguration zu entsprechen,

68

4.6 Optimierungsranking

B

A

D

C

E

A,B

C,D
C,D,E

0 1 2 3 4

F

G

F,G

Statistische
Daten

Statistik
{C,D,E}

Statistik
{F,G}

Statistik
{A,B}

A
B

C
D
E

F
G

Knoteleistungscluster StatistikenAuswertung

Abbildung 4.4: Veranschaulichung der Verwendung der Knotenleistungscluster zur Be-
rechnung der knoten-/operatorabhängigen Anforderungen

werden als inkompatibel markiert. Sollte die Anzahl der in der Anfrage angeforderten
Knoten durch die Anwendung der impliziten Anforderungen unterschritten werden, wird
dieser Filterungsschritt verworfen.

Die Cluster Minimal-, Durchschnitts- und Maximal-Werte werden an die jeweiligen
Datensätze der Knoten angehängt und erlauben es, auf höherer Architekturebene weitere
Bewertungen vorzunehmen.

4.6 Optimierungsranking

Das Optimierungsranking erfolgt, indem die nach Anwendung der vorherigen Schritte
verbleibenden als geeignet bewerteten Knoten anhand der Optimierungsreihenfolge
sortiert werden.

Die Optimimierungsreihenfolge ist eine geordnete Liste von Parametern und ihrer Sor-
tierungsrichtung. Als Beispiel hierfür ergibt die Optimierungsreihenfolge �(CPU-Takt,

69

4 Detailentwurf

Maximieren), (RAM, Maximieren), (Latenz, Minimieren)�, also eine absteigende Sor-
tierung nach CPU-Takt. Alle Knoten, die den gleichen CPU-Takt haben, werden dann
absteigend nach RAM sortiert. Für die Knoten mit gleichem CPU-Takt und gleicher
RAM-Größe wird nochmals eine Sortierung, diesmal aufsteigend, nach Latenz angewen-
det.

4.7 Zusammenfassung und Visualisierung der Daten

In den Abschnitten Speicherung der Sensordaten, Abschnitt 4.2, Erzeugung und Spei-
cherung der Kompatibilitätsmatrix, Abschnitt 4.3, und im Abschnitt Erzeugung des
Knotenleistungsclusterings, Abschnitt 4.4, wurden für den jeweiligen Bereich relevan-
te Daten erzeugt beziehungsweise gesammelt. In diesem Abschnitt werden alle bisher
erbrachten Daten nochmals zur Übersicht erfasst und in einen Zusammenhang gestellt.

In Abbildung 4.5 sind die verschiedenen Daten und ihre Zusammenhänge in einem
Entity-Relationship-Diagramm dargestellt. Zentraler Ausgangspunkt der Daten sind
die Entitäten Operator und Knoten. Beide werden jeweils über eine eindeutige ID, die
Operator ID beziehungsweise die Knoten ID, definiert. Ein Operator hat null oder
mehrere Konfigurationen. Die Konfigurationen sind über ihren Operator und ihr Preset
definiert. Jeder Operator hat null oder mehr Plattformanforderungen, die jeweils über
einen Schlüssel, einen Vergleich und einen Wert verfügen. Ebenso hat ein Knoten null
oder mehr Plattformeigenschaften, die jedoch nur aus Schlüssel und Wert bestehen.

Aus den Plattformanforderungen der Operatoren und den Plattformeigenschaften entsteht
unter der Anwendung des Vergleichs die Relation kompatibel. Sie verbindet jeweils einen
Operator mit einem Knoten, sofern diese zueinander kompatibel sind. Die Berechnung
dieser Relation ist in Abschnitt 4.3 beschrieben. Im unteren Teil der Abbildung 4.5 befinden
sie die Entitäten Knotenmessdaten und Operatormessdaten.

Die Knotenmessdaten sind durch einen Knoten, einen Messwert und ihr Bucket definiert.
Sie enthalten jeweils ihr Gewicht, den Minimal-, den Maximal-, den Durchschnittswert
und die Varianz. Die Operatormessdaten sind durch einen Operator, eine Konfiguration,
einen Messwert, einen Knoten und ihr Bucket definiert.

Die Entität letzter Wert ist durch einen Knoten und einen Messwert definiert. Als Attribut
trägt sie den Wert der letzten Messung des Messwertes für den Knoten.

Grau markiert auf der rechten Seite der Abbildung sind die Ergebnisse des Knotenleis-
tungsclusterings zu sehen. Ein Cluster, definiert durch eine Cluster ID, enthält eine Menge
der Knoten. Jedes Cluster hat ein Clustering-Level.

70

4.7 Zusammenfassung und Visualisierung der Daten

Abbildung 4.5: Übersicht über die gespeicherten Daten als ER-Diagramm

71

Kapitel 5

Implementierung

In diesem Kapitel werden Teile der Implementierung vorgestellt. Nachdem die vorherigen
Kapitel 3 und 4 die Architektur und die verwendeten Strukturen und Algorithmen
erläutert haben, wird in diesem Kapitel die tatsächliche Umsetzung besprochen. Auch in
der Implementierung sind einige Designentscheidungen zu treffen, die direkten Einfluss
auf die Effizienz und Wiederverwendbarkeit haben.

Die Realisierung des Auslastungsdienstes erfolgt in Java, da so ohne Schnittstellenpro-
bleme die von NexusDS bereitgestellten Schnittstellen benutzt werden können. Da Java
eine plattformunabhängige Programmiersprache ist, kann dieselbe Implementierung auf
verschiedenen Plattformen verwendet werden, ohne dass Anpassungen erfolgen müssen
oder die Programme entsprechend neu kompiliert werden müssen. Somit ist auch die
grundlegende Anforderung an den Auslastungsdienst nach Plattformunabhängigkeit
erfüllt.

In den folgenden Abschnitten sollen einige besonders interessante Konzepte der Im-
plementierung hervorgehoben und einige Entwicklungsentscheidungen erläutert sowie
verwendete externe Programme, Bibliotheken und Hilfsmittel vorgestellt werden.

Zuerst wird die Datenspeicherung für die Implementierung vorgestellt, dann wird im
zweiten Abschnitt auf die Implementierung des Auslastungsdienstes eingegangen.

In Abschnitt 5.3 wird die Implementierung der Sensoren vorgestellt.

In Abschnitt 5.4 wird die Erfassung der Messwerte auf den Knoten erläutert und die
hierfür verwendeten plattformabhängigen Verfahren erklärt.

Im letzten Abschnitt werden zwei Implementierungen für das Knotenleistungsclustering
vorgestellt. Eine Implementierung wird lokal auf einem Knoten berechnet, während
die andere Implementierung das Map/Reduce-Paradigma verwendet, um eine verteilte
Berechnung der Daten zu ermöglichen.

73

5 Implementierung

In vielen Abschnitten der Implementierung wird Bezug auf Datentypen von Java genom-
men. Dies sind insbesondere die Typen Integer, Float, String, Map, Set, Collection
und Vector. Diese Typen werden hier kurz vorgestellt, um den Text übersichtlicher zu
gestalten.

Der Typ Integer stellt eine Ganzzahl dar. Der Typ Float stellt eine Gleitkommazahl dar.
Der Typ String stellt eine Zeichenfolge dar. Der Typ Map<Typ1, Typ2> enthält eine Menge
von Schlüssel-Wert-Paaren mit dem Schlüsseln vom Typ Typ1 und Werten vom Typ Typ2.
Die Schlüssel sind hierbei eindeutig. Der Typ Set<Typ1> enthält unsortiert Objekte vom
Typ Typ1, die jeweils nur einmal im Set enthalten sind. Der Typ Collection ist dem
Typ Set sehr ähnlich, kann jedoch Objekte mehrfach enthalten. Der Typ Vector<Typ1>

enthält geordnete Daten vom Typ Typ1, die mehrfach vorkommen können. Vector ist
einem Array sehr ähnlich, kann jedoch zur Laufzeit vergrößert und verkleinert werden.

5.1 Datenspeicherung

Eine grundlegende Entscheidung für die Implementierung des Auslastungsdienstes ist
die Speicherung und der Zugriff auf die verwendeten Daten. In Abschnitt 4.7 wurden die
verwendeten Daten bereits in Form eines ER-Diagramms zusammengefasst.

Auf die statistischen Daten wird vom Auslastungsdienst häufig mit selektiven und durch-
schnittsbildenden Anfragen zugegriffen. Die Abfrage von Datensätzen über verschiedene
– auch zusammengesetzte – Indexe aus einer großen Datenmenge wird gezielt von Da-
tenbankmanagementsystemen unterstützt. Daher werden in der Implementierung die
statistischen Daten in einer SQL-basierten Datenbank gespeichert.

Die Knotenleistungsclusterbildung stellt besondere Ansprüche an die Datenhaltung
und Abfrage. Im Verlauf des Clusteringprozesses werden, wie in Abschnitt 4.4.4 gezeigt,
∑n−1

s=1 s+∑n−2
s=1 s Distanzen berechnet. Da jede berechnete Distanz als Eingabe die statischen

und statistischen Daten von zwei Knoten hat, ergeben sich, wenn jede Distanzberechnung
die Daten neu anfordert, 2 ∗ (∑n−1

s=1 s + ∑n−2
s=1 s) Datenbankanfragen. Zusammengefasst

ergibt dies n2 − 2n Anfragen, denen 2n− 1 unterschiedliche Datensätze gegenüberstehen.
Die 2n− 1 ergeben sich aus n unterschiedlichen Knoten und n− 1 Clustern, die im Verlauf
der Clusterbildung erzeugt werden.

Jeder in der Clusterbildung verwendete Datensatz besteht aus den Plattformeigenschaften
der zugrundeliegenden Knoten und aus den Durchschnittswerten ihrer Operatormessda-
ten. Die Datenbank muss also bei jeder Anfrage Daten aus mehreren Tabellen selektieren
und die Operatormessdaten aggregieren.

74

5.1 Datenspeicherung

N
o

d
e

P
K

N
o
d
e
ID

N
o

d
eA

tt
rL

o
n

g

P
K

K
e
y

P
K
,F
K
1

N
o
d
e
ID

V

al
u

e

N
o

d
eA

tt
rS

tr

P
K

K
e
y

P
K
,F
K
1

N
o
d
e
ID

V

al
u

e

O
p

er
at

o
r

P
K

O
p
e
ra
to
rI
D

C
o

m
p

at
ib

le

P
K
,F
K
1

O
p
e
ra
to
rI
D

P
K
,F
K
2

N
o
d
e
ID

O
p

er
at

o
rC

o
n

st
ra

in
tL

o
n

g

P
K
,F
K
1

O
p
e
ra
to
rI
D

P
K

K
e
y

V

al
u

e

C
o

m
p

ar
at

o
r

O
p

er
at

o
rC

o
n

st
ra

in
tS

tr

P
K
,F
K
1

O
p
e
ra
to
rI
D

P
K

K
e
y

V

al
u

e

C
o

m
p

ar
at

o
r

C
lu

st
er

P
K

C
lu
st
e
rI
D

Le

ve
lL

o
w

er

Le
ve

lU
p

p
er

La

te
N

o
d

es
C

o
u

n
t

In
C

lu
st

er

FK
1

C
lu

st
er

ID
FK

2
N

o
d

eI
D

O
p

er
at

o
rM

ea
su

re
m

en
ts

P
K
,F
K
5

O
p
e
ra
to
rI
D

P
K
,F
K
2

N
o
d
e
ID

P
K
,F
K
3

C
o
n
fi
gN

am
e

P
K
,F
K
4

M
Ty
p
e

B

u
ck

et

W
ei

gh
t

M

ax
V

al

M
in

V
al

V

ar
ia

n
ce

A

ve
ra

ge

C
o

n
fi

gu
ra

ti
o

n

P
K
,F
K
1

O
p
e
ra
to
rI
D

P
K
,F
K
2

C
o
n
fi
gN

am
e

M
ea

su
re

m
en

tT
yp

e

P
K

M
Ty
p
e

La
st

V
al

C
ac

h
e

P
K
,F
K
1

M
Ty
p
e

P
K
,F
K
2

N
o
d
e
ID

V

al
u

e

N
o

d
eM

es
ea

su
re

m
en

t

P
K

B
u
ck
e
t

P
K
,F
K
1

M
Ty
p
e

P
K
,F
K
2

N
o
d
e
ID

W

ei
gh

t

M
ax

V
al

M

in
V

al

V
ar

ia
n

ce

A
ve

ra
ge

A
bb

il
du

ng
5.

1:
Ü

be
rs

ic
ht

Ta
be

lle
n

fü
r

di
e

D
at

en
sp

ei
ch

er
un

g

75

5 Implementierung

Um zu verhindern, dass die Datenbank dieselben Daten wiederholt sucht und berechnet,
ist es sinnvoll, für die Knotenleistungsclusterbildung einen Cache, also einen Zwischen-
speicher, einzusetzen. Zu Beginn der Knotenleistungsclusterbildung werden alle hierfür
benötigten Daten aus der Datenbank abgefragt und in den Cache geschrieben. Bei einer
Clusterbildung, an der n Knoten beteiligt sind, werden also zu Beginn n Datensätze in
den Cache geschrieben. Im Verlauf der Clusterbildung werden n− 1 neue Datensätze
hinzugefügt und 2n− 1 Datensätze können aus dem Cache gelöscht werden, da sie nach
dem Verschmelzen zu einem Cluster nicht mehr benötigt werden.

Die Anforderungen an die Implementierung des Caches hängen stark mit der aktuellen
Implementierung der Knotenleistungsclusterbildung zusammen. In Abschnitt 5.5 wer-
den zwei unterschiedliche Implementierungen für die Knotenleistungsclusterbildung
vorgestellt: Eine Implementierung, die auf einem zentralen Rechner ausgeführt wird,
und eine weitere Implementierung, die mittels des Map/Reduce-Frameworks „Hadoop
MapReduce“ eine verteilte Berechnung durchführt.

Bei der lokalen Implementierung ist es sinnvoll, die Daten direkt im Arbeitsspeicher
vorzuhalten, sofern sie in den Arbeitsspeicher passen. Sollten die Daten die Arbeitsspei-
chergröße überschreiten, kann eine Auslagerung in das lokale Dateisystem erfolgen.

Bei der verteilten Implementierung müssen die Daten auf den jeweiligen Knoten verfügbar
sein. Eine Diskussion der hierfür geeigneten Verfahren findet sich in Abschnitt 5.5.2.

Aus dem ER-Diagramm in Abbildung 4.5 wurde nun ein Datenbankdiagramm in Ab-
bildung 5.1 mit den Tabellen und Spalten für die Daten entwickelt. Jede Tabelle in der
Abbildung ist mit ihrem Namen im grau hinterlegten Feld gekennzeichnet. Alle Felder
des Primärschlüssels einer Tabelle sind unterstrichen und mit PK gekennzeichnet. Spal-
ten, die ein Fremdschlüssel aus einer anderen Tabelle sind, sind mit FK und einer Zahl
gekennzeichnet. Alle Spalten, die eine ID enthalten, sind vom Typ UUID, sofern im DBMS
verfügbar oder von einem verfügbaren Typen, der UUIDs speichern kann. Das Diagramm
wird, beginnend mit der Tabelle Operator, grob im Uhrzeigersinn erläutert.

Die Tabelle Operator besteht aus dem Primärschlüssel OperatorID. Die Tabellen
OperatorConstraintStr und OperatorConstraintFloat haben jeweils eine OperatorID

als Fremdschlüssel und einen Key zusammen als Primärschlüssel. Key entspricht dem
Text von Key der Operatoranforderungen, ist also ein String. Die Value Spalten ent-
halten den Wert der Operatoranforderungen und sind vom Typ String für die Tabelle
OperatorConstraintStr und vom Typ Float für die Tabelle OperatorConstraintFloat.
Die Spalten Comparator enthalten den Vergleich der Operatoranforderungen codiert als
Integer, entsprechend der Definition von compareTo in Java.

Die Tabelle Compatible besteht aus den beiden Fremdschlüsseln OperatorID und NodeID

aus den Tabellen Operator und Node. Sie bilden zusammen den Primärschlüssel. Die

76

5.2 Implementierung des Auslastungsdienstes

Einträge von Compatible definieren, dass die so verbunden Knoten und Operatoren
kompatibel sind.

Die Tabelle Node enthält die Spalte NodeID. Die Plattformeigenschaften eines Knotens
werden in den Tabellen NodeAttrFloat und NodeAttrStr gespeichert. Sie enthalten je-
weils die NodeID als Fremdschlüssel und bilden den Primärschlüssel mit dem in Key

gespeicherten Key der Eigenschaft. In der Spalte Value wird der Wert der Eigenschaft
gespeichert. Für NodeAttrFloat ist Value vom Typ Float und für NodeAttrStr vom Typ
String.

Die Tabelle InCluster definiert die Relation NodeIDs aus Node und den ClusterIDs der
in Cluster gespeicherten Cluster.

5.2 Implementierung des Auslastungsdienstes

Der Auslastungsdienst wird für die Implementierung in zwei Hauptteile aufgeteilt, die
Datenerfassung und die Knotenanfrageverarbeitung. Die Datenerfassung empfängt die
Daten der Sensoren und bereitet sie auf. Die Datenerfassung ist also für die Pflege
der Kompatibilitätsmatrix, der Statistiken und der Knotenleistungscluster zuständig.
Die Knotenanfrageverarbeitung läuft asynchron zur Datenerfassung und beantwortet
Knotenanfragen des Anfragedienstes auf Basis der von der Datenerfassung bereitgestellten
Datenbasis. Die Schnittstelle zwischen Datenerfassung und Knotenanfrageverarbeitung
ist also nur die Datenbasis, die durch die Datenerfassung geschrieben und durch die
Knotenanfrageverarbeitung gelesen wird.

Abbildung 5.2 zeigt eine Übersicht über den Ablauf in Datenerfassung und Knotenanfra-
geverarbeitung. Die Datenerfassung in Abbildung 5.2a des Auslastungsdienstes erhält
die Daten der Sensoren. Die Sensoren senden zuerst ihre statischen Daten und machen
sich damit dem Auslastungsdienst bekannt. Nach der Anmeldung schicken sie regel-
mäßige Updates. Der Auslastungsdienst speichert diese Daten im Datenspeicher. Die
Datenerfassung verarbeitet regelmäßig die erhaltenen Daten zu aggregierten Statistiken
und berechnet beziehungweise aktualisiert das Knotenleistungsclustering.

Die Knotenanfrageverarbeitung in Abbildung 5.2b wartet auf Knotenanfragen durch den
Anfragedienst. Sobald eine Knotenanfrage eintrifft, werden in mehreren Schritten die
relevanten Knoten vom Datenspeicher abgefragt und immer weiter gefiltert. Am Ende
des Filterungsprozesses wird dem Anfragedienst eine Antwort zurückgeliefert.

77

5 Implementierung

Sen
so

r
A

u
slastu

n
gsd

ien
st

D
aten

sp
eich

er

A
n

m
eld

u
n

g

U
p

d
ate

sp
eich

ern

sp
eich

ern

sp
eich

ern

ab
fragen

D
aten

D
aten

 verd
ich

ten

C
lu

sterin
g b

erech
n

en

sp
eich

ern

D
aten

erfassu
n

g

(a)
D

atenerfassung

A
u

slastu
n

gsd
ien

st
D

aten
sp

eich
er

V
erteilu

n
gsd

ien
st

A
n

frage (O
P

1
)

A
b

frage O
P

1
 ko

m
p

atib
le K

n
o

ten

zu
 O

P
1

 ko
m

p
atib

le K
n

o
ten

O
p

erato
rstatistiken

 O
P

1
 ab

fragen

O
p

erato
statistik O

P
1

O
p

erato
r A

n
fo

rd
eru

n
gen

 b
erech

n
en

, K
n

o
ten

 filtern

C
lu

ster fü
r verb

leib
en

d
e K

n
o

ten
 ab

fragen

C
lu

ster fü
r verb

leib
en

d
e K

n
o

ten

im
p

lizite kn
o

ten
-/o

p
erato

rab
h

än
gige A

n
fo

rd
eru

n
gen

 b
erech

n
en

K
n

o
ten

/O
p

erato
rstatistiken

 fü
r C

lu
ster ab

fragen

K
n

o
ten

-/O
p

erato
rstatistik p

ro
 C

lu
ster

n
ach

 O
p

tim
ieru

n
gsran

kin
g so

rtieren

b
este Treffer selektieren

A
n

tw
o

rt an
 V

erteilu
n

gsd
ien

st

A
n

frageverarb
eitu

n
g

(b)
C

lusterbildung

A
bbildung

5.2:A
bläufe

im
A

uslastungsdienst

78

5.2 Implementierung des Auslastungsdienstes

5.2.1 Datenerfassung

Die Datenerfassung lässt sich weiter in zwei Abläufe unterteilen: in Speicherung und
Clusterbildung. Die Speicherung erfasst die eingehenden Daten und speichert sie in der
Statistik, während die Clusterbildung aus den statistischen Daten und den Plattformei-
genschaften das Clustering erstellt und aktualisiert.

Sensor
Dateneingang

Header

Plattformei-
genschaften

speichern

Ja

Knotenauslastungs-
daten in Cache

speichern

Nein

Statistische
Daten in
Buckets

aktualisieren

Kompatibilitäts
matrix

aktualisieren

Speicherung

Eingangs-
warteschlange

(a) Speicherung

Regelmäßig

Disjunkte
Clusterings
bestimmen

Für jedes Clustering Alter
und Anteil der dem

Clustering später
hinzugefügten Knoten

bestimmen

Clustering zu alt
oder Anteil der

hinzugefügten Knoten zu
hoch

Neues
Clustering
erstellen

Ja

Nein,
nächstes Cluster

nächstes Cluster

Clustering

(b) Clusterbildung

Abbildung 5.3: Abläufe der Datenerfassung

Abbildung 5.3 stellt die beiden Abläufe dar. Der Ablauf Speicherung in Abbildung 5.3a
wird beim Eingang von Sensordaten durchgeführt. Zuerst werden die eingegangenen
Daten in eine Warteschlange eingefügt, die dann in Eingangsreihenfolge abgearbeitet
werden. Der Speicherungsablauf überprüft zuerst, ob es sich bei den erhaltenen Daten
um einen Header – die Plattformeigenschaften eines Knotens zu Beginn der Übertragung
– oder um Messdaten handelt. Bei Empfang eines Headers wird der Knoten in die
Knotentabelle (Node) eingetragen und die Plattformeigenschaften des Knotens werden
in die Plattformeigenschaftentabellen NodeAttrFloat und NodeAttrStr gespeichert. Für
den neuen Knoten wird dann die Kompatibilitätsmatrix aktualisiert.

79

5 Implementierung

Handelt es sich bei den empfangenen Daten um Messdaten, dann werden die Knotenaus-
lastungsdaten in den Cache für die aktuelle Auslastung des Knotens geschrieben und die
statistischen Daten für den Knoten und die Operatoren aktualisiert.

Der Ablauf Clusterbildung in Abbildung 5.3b wird regelmäßig aufgerufen und erstellt eine
Liste von disjunkten, zueinander inkompatiblen Knotenmengen, für die, wie in Abschnitt
4.4.5 beschrieben, jeweils getrennte Clusterings berechnet werden. Der Zeitabstand für
die regelmäßigen Aufrufe entspricht mindestens der Zeitdauer, die die Berechnung
der Cluster benötigt, da es nicht sinnvoll ist, den Vorgang ein zweites Mal zu starten,
während die Cluster neu berechnet werden. Für jede der disjunkten Knotenmengen wird
überprüft, ob bereits ein Clustering erstellt wurde, wie lange dies her ist und wie viele
Knoten später zu dem Clustering hinzugefügt wurden. Wenn für eine Knotenmenge kein
Clustering existiert, wird dieses erstellt. Wenn das Alter eines Clusterings älter als ein per
Konfiguration vorgegebener Wert ist, wird die Clusterbildung neu durchgeführt. Ebenso
wird die Clusterbildung neu durchgeführt, wenn der Anteil der später zu einem Clustering
hinzugefügten Knoten eine per Konfiguration vorgegebene Schwelle überschreitet. Eine
solche Schwelle kann zum Beispiel 20 % nachträglich hinzugefügte Knoten sein.

Abbildung 5.4: Klassen für den Ablauf Speicherung

Die beiden Abläufe, Speicherung und Clusterbildung, werden jeweils in getrennten
Paketen implementiert und entsprechend den einzelnen Schritten der Abläufe weiter in
Klassen unterteilt.

Der Ablauf Speicherung wird durch die in Abbildung 5.4 gezeigte Klasse DataReceiver

implementiert. Über die Funktion startServer wird ein XML-RPC-Server bereitgestellt,
der die Funktionen addSensorData und remNode exportiert. Die Funktion remNode()

hat als Parameter eine NodeID und dient zum Abmelden eines Ausführungsknotens.
Aufrufe von remNode() werden an die Funktion removeNode() der Klasse NodeAttrKeeper

80

5.2 Implementierung des Auslastungsdienstes

weitergereicht, und von dieser Funktion wird der Knoten aus der Kompatibilitätsmatrix
entfernt. Über die Funktion addSensorData() können Sensoren ihre Daten übertragen.
Die Funktion addSensorData() hat einen Parameter vom Typ SensorData.

Der Typ SensorData ist in Abbildung 5.5 dargestellt. Er hat die zwei Subtypen
PlatformAttrs und Measurement. PlatformAttrs dient zur Speicherung von Plattformei-
genschaften und enthält eine Map, die die in Tabelle 4.1 aufgelisteten Eigenschaften
der Plattform enthält. Measurements enthält eine Map nodeMeasurements und ein Array
operatorMeasurements. Die Map nodeMeasurements enthält die in Tabelle 4.2 aufgelis-
teten Knotenleistungsmessdaten. Das Array operatorMeasurements enthält Datensätze
vom Typ OpMeasurement, der aus einer OperatorID und einer Map von Messwerten für
den Operator entsprechend Tabelle 4.3 besteht.

Abbildung 5.5: Datentypen für die Übertragung und Verarbeitung der Sensordaten

Die Funktion addSensorData fügt die Daten der sensorDataQueue hinzu. Die Funktion
handleQueueFirst wird aufgerufen, sobald die Queue Daten enthält. Sie überprüft mit der
Funktion isHeader, ob der vorderste Datensatz in der Queue ein Header ist. Wenn es sich
um einen Header handelt, wird die Funktion addData() der Klasse PlatformAttrKeeper

aufgerufen, und wenn es sich um Messwerte handelt, die Funktion addData() der Klasse
MeasurementKeeper. Nach der Weitergabe der Daten wird der Datensatz aus der Queue
entfernt.

Wird addData() der Klasse MeasurementKeeper mit Messdaten aufgerufen, so wird zuerst
mit der Funktion updateCache() der Cache für die letzten Messdaten des Knotens aktua-
lisiert. Dann werden über die Funktion updateBuckets() die Daten in das aktuelle Bucket
verrechnet. Wenn das aktuelle Bucket seine Zeit überschritten hat, werden durch diese

81

5 Implementierung

Funktion auch die Buckets verschoben, ein neues hinzugefügt und das älteste Bucket
entfernt.

Wird die Funktion addData() der Klasse PlatformAttrKeeper mit statischen Knotendaten
aufgerufen, fügt diese mittels storeData() die Plattformeigenschaften zu den Attribut-
tabellen (NodeAttrString und NodeAttrFloat) und den Knoten zur Tabelle Nodes hinzu.
Danach wird mittels updateCompatMatrix() für alle Operatoren die Kompatibilität zu
dem Knoten berechnet und in die Tabelle Compatible eingetragen.

Der in Abbildung 5.3b dargestellte Ablauf Clusterbildung wird durch die Klassen
ClusterMaintenance und Clusterer implementiert. Die in Abbildung 5.6 dargestell-
te Klasse ClusterMaintenance fragt die getrennt zu analysierenden Knotengruppen aus
der Datenbank ab und erzeugt für jede Gruppe einen Clusterer.

Abbildung 5.6: Definition der Klassen ClusterMaintenance und Clusterer

In Clusterings werden jeweils Referenzen auf die unterschiedlichen Clusterer verwaltet.
Die Funktion runMaintenance() führt die Überprüfung auf Alter und Anteil der später
hinzugefügten Knoten für alle Clusterer durch.

Die Klasse Clusterer speichert in der Variable nodes die IDs der enthaltenen Knoten. Die
Variable lastCalc gibt den Zeitpunkt an, zu dem die Clusterbildung zuletzt durchgeführt
wurde. Ein Clusterer bekommt über seiner Instanzierung einen eindeutigen Namen,
der das von ihm verwaltete Clustering definiert. Über die Funktion addNodes() werden
dem Clusterer neue Nodes hinzugefügt. Wird die Funktion addNodes() aufgerufen,
wenn bereits ein Clustering berechnet wurde, dann wird der Knoten den vorhanden
Clustern hinzugefügt. Wenn noch kein Clustering berechnet wurde, dann wird der
Knoten nur gespeichert, bis die Funktion calcClusters() aufgerufen wird. Die Funktion
calcClusters() berechnet das Clustering für die Knoten des Clusterers neu und schreibt
sie in die Datenbank sobald die Berechnung beendet ist.

82

5.2 Implementierung des Auslastungsdienstes

5.2.2 Knotenanfrageverarbeitung

Die Knotenanfragebearbeitung hat nach außen einen Server, der bei Eintreffen einer
Knotenanfrage einen neuen Knotenanfrageverarbeiter erzeugt, der die Knotenanfrage
bearbeitet und am Ende das Ergebnis ausliefert.

Abbildung 5.7: Definition der Klasse Request

Der Knotenanfrageverarbeiter bekommt als Eingabe die Knotenanfrage des Anfragediens-
tes und filtert in mehreren Schritten die verfügbaren Knoten anhand der Vorgaben. Jeder
dieser Filterschritte ist als getrennte Funktion implementiert, so dass diese Filter einzeln
erweitert, ersetzt oder entfernt werden können.

Die Knotenanfrage ist wie in Abbildung 5.7 definiert. Eine Anforderung vom Typ Request

enthält eine operatorID vom Typ String, die Anzahl der zurückzuliefernden Ausführungs-
knoten als nodeQuantity vom Typ Integer, ein Set constraints vom Typ Constraint und
ein Array optimizationOrder vom Type Optimization. Das Set constraints ist eine
Sammlung, in der kein Element mehrfach vorkommt. Der Typ Constraint enthält einen
Key vom Typ String und einen Wert vom Typ Comparable sowie einen Integer comparison,
der den von der Funktion compareTo() in Java verwendeten Werten entspricht.

Die in optimizationOrder gespeicherten Elemente des Typs Optimization bestehen je-
weils aus key vom Typ String und comparison vom Typ Integer. Negative Werte von
comparison entsprechen einer Minimierung des Wertes und positive Werte einer Maximi-
mierung.

Die Anfrage wird durch die in Abbildung 5.8 dargestellte Klasse RequestHandler be-
arbeitet. Ein RequestHandler hat als private Variablen die Variable request vom Typ
Request, die die zu bearbeitende Anfrage enthält, und das Set compatNodes, das die IDs

83

5 Implementierung

Abbildung 5.8: Definition der Klasse RequestHandler

der aktuellen Knoten enthält. Die Funktion getCompatibleNodes() liefert alle zu dem in
request enthaltenen Operator kompatiblen Knoten. Sie wird verwendet, um die Variable
compatNodes zu befüllen.

Nach der Ausführung von getCompatiblesNodes() werden die Funktionen
filterOperatorConstraints() und filterNodeConstraints() nacheinander aus-
geführt. Sie berechnen Anforderungen durch den Operator beziehungsweise durch
die Knoten und filtern die in compatNodes enthaltenen Knoten. Auf die nach den
Filterungsschritten noch verbleibenden Knoten wird die Funktion optimizationSort()

auf compatNodes angewandt. Sie liefert einen Vector mit der in request.nodeQuantity

geforderten Knotenanzahl entsprechend request.optimizationOrder sortiert zurück.

Abbildung 5.9: Definition der Klasse NodeRecommendation

Die Funktion prepNodeRecommendation() erzeugt aus dem sortierten Knotenvektor eine
NodeRecommendation wie in Abbildung 5.9 dargestellt. Die NodeRecommendation enthält
einen Vector operatorData, der Datensätze vom Typ StatisticsBucket enthält, und
einen Vector nodes mit Datensätzen vom Typ NodeData.

84

5.3 Implementierung der Sensoren

Jedes StatisticsBucket enthält einen startTimestamp und einen endTimestamp vom Typ
Integer, die den Zeitraum der Messdaten, die in dem Bucket enthalten sind, angibt. Die
Variablen min, max, avg und variance enthalten jeweils eine Map, die einem String mit
dem Messwertnamen den entsprechenden Statistikwert für den Zeitraum des Buckets
zuordnet.

Abbildung 5.10: Definition des NodeRequest Interfaces

NodeData besteht aus den Variablen nodeName, nodeData und operatorData. Die Va-
riable nodeName enthält einen String mit der KnotenID. Der Vector nodeData enthält
StatisticsBuckets, die die statistischen Daten des Knotens enthalten. Der Vector
operatorData enthält StatisticsBuckets, die die statistischen Daten für Operatoraus-
führungen auf diesem Knoten enthalten.

Wenn die NodeRecommendation fertig berechnet wurde, wird sie als Antwort auf die
Anfrage des Anfragedienstes zurückgegeben und der RequestHander wird beendet.

Die Schnittstelle des Auslastungsdienstes für den Anfragedienst wird durch das Interface
NodeRequest, wie in Abbildung 5.10 gezeigt, beschrieben. Das Interface wird per XML-
RPC exportiert und stellt die Funktion nodeRequest() bereit, die als Parameter einen
Request hat und eine nodeRecommendation zurückliefert.

5.3 Implementierung der Sensoren

Für die Implementierung der Sensoren ist erforderlich, ihre Ausführungsform und ihre
Schnittstellen festzulegen. Da die Sensoren als Dienst im NexusDS Framework ausgeführt
werden sollen, müssen sie die Service-Schnittstelle implementieren. Dies erfordert, dass
die in Abbildung 5.11 dargestellte Schnittstelle mit den Funktion start() und stop() im-
plementiert wird. Die Funktion start() startet die Datensammlung und die Anmeldung
am Auslastungsdienst, während die Funktion stop() die Sammlung beendet und den
Sensor und somit auch den Knoten vom Auslastungsdienst abmeldet.

Die Schnittstellen des Sensors bestehen aus der bereits in Abschnitt 5.2.1 eingeführten
Schnittstelle zum Auslastungsdienst und der Schnittstelle zur Abfrage der Operatormess-
daten. Die Abfrage der Operatormessdaten kann entweder durch regelmäßige Abfrage,
Pull-Verfahren, oder durch Empfang von durch die Operatoren versendeter Nachrichten,

85

5 Implementierung

Abbildung 5.11: Definition des Service Interface

Push-Verfahren, erfolgen. Das Pull-Verfahren hat als Vorteil, dass die Messdaten erzeugt
werden können, wenn der Sensor eine Statusmeldung absetzen will. Die Daten müssen so
nicht im Sensor zwischengespeichert werden.

Hingegen hat das Push-Verfahren den Vorteil, dass die Operatoren die Freiheit haben,
zu für den Operator sinnvollen Zeitpunkten Messdaten auszuliefern. So können die
Messdaten zum Beispiel ereignisabhängig, wenn Daten berechnet wurden oder wenn
der Operator eine Veränderung der Arbeitssituation erkennt, übertragen werden. Ist
die ereignisabhängige Messdatenauslieferung nicht gewünscht, kann der Operator aber
auch eine regelmäßige Messdatenauslieferung implementieren. Zusätzlich entfällt der
Verwaltungsaufwand für den Sensor, welche Operatoren verfügbar sind und abgefragt
werden müssen.

Aufgrund der größeren Flexibilität wird also das Push-Verfahren für die Übertragung der
Messdaten von den Operatoren an den Sensor implementiert. Da Sensoren, Ausführungs-
dienst und Operatoren alle in einem gemeinsamen Prozess auf demselben Computer
ausgeführt werden, kann die Übertragung der Daten durch einen einfachen Methodenauf-
ruf erfolgen. Da mehrere Sensoren zu beliebigen Zeitpunkten und damit auch gleichzeitig
ihre Messdaten übertragen können, ist dafür Sorge zu tragen, dass die Übertragungen
entsprechend synchronisiert werden. Dies erfolgt, indem die Daten in eine Warteschlange
eingefügt werden.

In regelmäßigen, konfigurierbaren Intervallen liest der Sensor die Knotenauslastungsdaten
und die in der Warteschlange vorhandenen Operatormessdaten und überträgt sie an den
Auslastungsdienst.

Abbildung 5.12 zeigt den Lebenslauf eines Sensors. Bei seinem Start erfasst der Sensor die
Plattformeigenschaften und meldet diese an den Auslastungsdienst. Damit ist der Sensor
und somit der Knoten dem Auslastungsdienst als verfügbar bekannt. Sobald Operatoren
vom Ausführungsdienst (der Ausführungsdienst ist nicht abgebildet) gestartet werden,
übertragen diese nach Bedarf Messdaten an den Sensor. Wenn ein Operator beendet wird,
zum Beispiel weil er seine Aufgabe erfüllt hat und nicht mehr benötigt wird, überträgt er
die letzten Messdaten an den Sensor.

86

5.3 Implementierung der Sensoren

Sensor Operator 1 Operator 2Auslastungsdienst

Messdaten

Messdaten

anmelden

Messdaten

Plattformeigenschaften erfassen

alle Messdaten übertragen Knotenmessdaten erfassen

letzte Messdaten

letzte Messdaten

abmelden

alle Messdaten übertragen

Abbildung 5.12: Sequenzdiagramm Lebenslauf eines Sensors

In regelmäßigen Abständen erfasst der Sensor die Knotenmessdaten und verschickt sie
zusammen mit den gesammelten Operatormessdaten an den Auslastungsdienst. Wird die
stop() Funktion des Sensors aufgerufen, überträgt er die verbleibenden Operatormessda-
ten an den Auslastungsdienst und meldet sich vom Auslastungsdienst ab.

Abbildung 5.13 zeigt die Klasse Sensor, ihre Subklasse NodeDatCollector sowie die
bereitgestellten Interfaces Service und PerfDataSink. Die Klasse Sensor hat die Varia-
blen interval und OperatorDataQueue. Die Variable interval gibt das konfigurierbare
Intervall an, zu dem der Sensor Daten an den Auslastungsdienst überträgt. Der Vec-
tor OperatorDataQueue enthält die über die Funktion savePerfData() des Interfaces
PerfDataSink übertragenen Operatormessdaten. Da die Implementierung von Vector in
Java synchronized und damit thread-safe ist, also parallele Zugriffe verarbeiten kann, ist
die Thread-Sicherheit für das Interface PerfDataSink gegeben.

Die Subklasse NodeDataCollector stellt die Funktionen getAttributes() und
getPerfData() bereit. Die Funktion getAttributes() gibt die Plattformeigenschaften

87

5 Implementierung

Abbildung 5.13: Klasse Sensor und die innere Klasse NodeDataCollector sowie die für
Service Manager und Operatoren bereitgestellten Interfaces

des Knotens zurück und die Funktion getPerfData() die aktuellen Knotenauslastungs-
daten.

5.4 Knotenauslastungserfassung

Die Erfassung der Knotenauslastungsdaten erfordert die Abfrage verschiedener vom
System zur Verfügung gestellter Werte. Je nach Betriebssystem gibt es hierfür verschie-
dene Schnittstellen zum Kernel, der diese Daten erfasst. Bei unix- und linuxbasierten
Systemen lassen sich die meisten Leistungsdaten aus den virtuellen Dateien des /proc/

Dateisystems auslesen [BYS+06]. Bei Windows-Systemen hingegen werden die Perfor-
mance Counter entweder über graphische Benutzeranwendungen oder über verschiedene
Programmierschnittstellen zur Verfügung gestellt [Mic10, Fri02].

Die von unix- und linuxbasierten Systemen angebotene Schnittstelle ist mit einer Java-
Anwendung relativ einfach zu benutzen. Es müssen die entsprechenden virtuellen Dateien
eingelesen und nach ihrer Struktur zerlegt werden. Die Werte müssen entsprechend
interpretiert werden und können dann als Messdaten fungieren. Bei Windows-Systemen
hingegen ist der Zugriff auf die angebotenen Schnittstellen aufwendiger. Entweder wird
das Betriebssystem zum Schreiben von Logdateien konfiguriert, die dann mit einiger
Verzögerung ausgelesen und interpretiert werden können, oder aber man greift mit Java

88

5.4 Knotenauslastungserfassung

auf die Windows-Programmierschnittstellen zu, indem über JNI1 die entsprechenden
Windows-Bibliotheken angesprochen werden. Der Zugriff über JNI ist aufwendig, da
zwischen den unterschiedlichen Repräsentationen der Daten konvertiert werden muss.

Java bietet seit Version 1.6 ein eigenes Interface zum Zugriff auf Systeminforma-
tionen. Das Interface OperatingSystemMXBean enthält vier Funktionen: getArch(),
getAvailableProcessors(), getName(), getSystemLoadAverage() und getVersion().
Mit diesen verfügbaren Funktionen wird also nur ein Teil der in Abschnitt 4.1 gefor-
derten Messwerte geliefert. Hinzu kommt, dass die Funktion getSystemLoadAverage()

bei einer Windows Java Virtual Machine keine Werte liefert, da der Windows Kernel
diesen Wert nicht generiert und auch Java diese Funktion nicht implementiert.

Eine weitere Möglichkeit zur Abfrage der Leistungsdaten ist SIGAR - System Information
Gatherer And Reporter, eine API, die für Java auf einer Vielzahl an Betriebssystemen
Systeminformationen und Performance Messdaten liefert. SIGAR liefert hierfür, sofern
für die jeweilige unterstützte Plattform notwendig, native Bibliotheken mit, die die
entsprechenden Informationen aus dem System auslesen und über eine einheitliche Java-
Schnittstelle zugänglich machen. SIGAR unterstützt eine Vielzahl an Plattformen. Eine
Liste der in der aktuellen Version 1.6.3 unterstützten Plattformen befindet sich im Anhang
in Abschnitt A.1.

Die von SIGAR zur Verfügung gestellten Informationen enthalten einen Großteil der in
den Tabellen 4.1 (Seite 50) und 4.2 (Seite 51) beschriebenen Eigenschaften. Es fehlen jedoch
Informationen zur CPU-Queue-Länge, zu den verfügbaren GPUs und zur Verfügbarkeit
von Programmen.

Auf Windowsplattformen kann SIGAR jedoch zusätzliche zu den standardmäßig zur
Verfügung gestellten Werte, nämlich Werte aus den Windows Performance Countern, ausle-
sen. Hierüber lässt sich also auch eine Abfrage der CPU-Queue-Länge realisieren. Auf
Linuxplattformen liefert das Programm vmstat die Information2, wie viele Prozesse auf
Aufmerksamkeit durch die CPU warten.

Die Indexierung verfügbarer Programme und ihrer Versionen und die Erkennung von
GPUs und ihrer Ausstattung muss durch plattformspezifische Abfragen erfolgen oder
manuell in die Eigenschaften eines Knoten eingepflegt werden, da auch hierfür keine
einheitlichen Schnittstellen in den verschiedenen Betriebssystemen bestehen.

Auf verschiedenen Unix-/Linux-Systemen gibt es eine Vielzahl unterschiedlicher Paket-
managementsysteme, über die Software installiert und verwaltet wird. Auf Windows-
systemen kommt zumeist keine zentrale Verwaltung installierter Software zum Einsatz.

1Java Native Interface [Ora], Java Schnittstelle, über die unter anderem native Bibliotheken einer Plattform
angesprochen werden können.

2Im vmstat Manual (man vmstat): r: The number of processes waiting for run time.

89

5 Implementierung

Dementsprechend kann eine automatische Erkennung nur erfolgen, indem alle unter-
schiedlichen Paketmanagementsysteme unterstützt und abgefragt werden oder pro Soft-
wareprodukt ein spezifischer Test zur Erkennung implementiert wird.

Die Erkennung der GPUs kann unter Windows über die DirectX-Schnittstelle erfolgen.
Auf Linux- und Unix-Systemen stehen jedoch wieder verschiedene Schnittstellen zur
Auswahl, die teilweise auf ein und demselben System unterschiedliche Ergebnisse in
Bezug auf die GPU-Zugriffsmöglichkeiten liefern können.

Daher werden in dieser Implementierung die Plattformeigenschaften, wie GPUs und
verfügbare Programme, durch eine manuelle Verwaltung in den Knoteneigenschaften
gepflegt. Die Daten können jedoch später durch die Entwicklung plattformspezifischer
Erkennungsmethoden automatisch eingepflegt werden.

5.5 Knotenleistungsclustering

Für das Knotenleistungsclustering wurden zwei unterschiedliche Implementierungen
durchgeführt. Die erste Implementierung arbeitet in einer einzelnen Instanz und verwen-
det eine SQL-Datenbank zur Datenhaltung und soweit möglich auch zur Berechnung von
Ergebnissen.

Die zweite Implementierung verwendet das Map/Reduce-Paradigma, um die Berech-
nung der Distanzen zwischen den Clustern, also die Berechnung der Distanzmatrix,
verteilt durchzuführen. Für eine effiziente Verteilung der Daten werden diese nicht in
Datenbanken, sondern direkt in Dateien geschrieben.

5.5.1 Lokale Berechnung

Die lokal berechnete Implementierung mit datenbankbasierter Speicherung und Be-
rechnung verwendet für die Speicherung aller Daten eine über JDBC3 angesprochene
SQL-Datenbank. Aufgrund der Verwendung der standardisierten Schnittstelle kann die
verwendete Datenbanksoftware mit relativ wenigen Änderungen am Programmcode ge-
gen eine andere ausgetauscht werden. Für die Entwicklung wurden die eingebettet –, also
ohne externen Datenbankserver – verwendbaren Datenbanken SQLite4 und HyperSQL5

verwendet. Beide Datenbanken können die Datenbank vollständig im Arbeitsspeicher hal-
ten, statt die Daten auf einen Festspeicher zu schreiben, und so den Zugriffsaufwand auf

3Standardschnittstelle für Datenbanken in Java.
4SQLite verfügbar unter: http://www.sqlite.org/
5HyperSQL verfügbar unter: http://hsqldb.org/

90

http://www.sqlite.org/
http://hsqldb.org/

5.5 Knotenleistungsclustering

die Festplatte umgehen, vorausgesetzt die Datenbank ist nicht zu groß für den verfügbaren
Arbeitsspeicher.

Die Speicherung der Knoteneigenschaften erfolgt in jeweils einer Tabelle für die float-
und stringbasierten Eigenschaften. Jede Zeile der beiden Eigenschaftstabellen enthält ein
Eigenschaftsschlüssel-Wert-Paar sowie als Index den Namen des Knotens. Durch diese
Form der Speicherung entsteht ein gewisser Aufwand beim Speichern eines Knotens, da
für jede Eigenschaft eines Knotens ein Insert auf der Datenbank ausgeführt werden muss.
Für einen Knoten mit m Eigenschaften müssen also insgesamt m Inserts in der Datenbank
ausgeführt werden. Durch die Zusammenfassung der m Inserts zu einer Transaktion
verringert sich der Aufwand wieder etwas.

Vorteil dieser Speicherungsform ist, dass Berechnungen teilweise in die Datenbank aus-
gelagert werden können. So kann beim Verschmelzen von Clustern die Berechnung der
Durchschnittswerte des neuen Clusters in der Datenbank ausgeführt werden. Durch die
Berechnung in der Datenbank entfällt der Aufwand für das Umwandeln zwischen dem
Datenbankformat und der Java-Repräsentation. Die Berechnung der Durchschnittswerte
für das Verschmelzen erfolgt, indem die Durchschnittswert der Eigenschaften (AVG) per
SQL-Anfrage für alle zu verschmelzenden Knoten abgefragt werden. Listing 5.1 zeigt
eine solche Anfrage für die Cluster q1, q2, q3, deren Float-Eigenschaften in der Tabelle
clusterFloatAttr gespeichert sind.

Listing 5.1 Beispiel SQL-Anfrage Durchnittsbildung beim Verschmelzen der Cluster q1 - q3

SELECT key, AVG(val) as val FROM clusterFloatAttr

WHERE cluster IN("q1", "q2", "q3")

GROUP BY key;

Beim Verschmelzen von String-Eigenschaften werden nur solche Eigenschaften übernom-
men, die für alle Knoten, die verschmolzen werden, denselben Wert haben. Die Abfrage
nach Eigenschaften, die dieser Anforderung entsprechen, lässt sich wiederum durch eine
SQL-Anfrage erreichen. Listing 5.2 zeigt eine Abfrage für das Verschmelzen der Cluster
q1, q2, q3, die aus der Tabelle clusterStrAttr ausschließlich Eigenschaften abfragt, die
bei allen zu verschmelzenden Knoten denselben Wert haben. Die Abfrage erfolgt durch
Gruppieren nach gleichen Werten und der Auswahl aller Schlüssel-Wert-Paare, die nur
einen unterschiedlichen Wert haben.

Listing 5.2 Beispiel SQL-Anfrage einheitliche String-Werte beim Verschmelzen der Cluster
q1 - q3

SELECT key, val FROM clusterStrAttr

WHERE cluster IN ("q1", "q2", "q3")

GROUP BY key, val HAVING COUNT(DISTINCT val) = 1;

91

5 Implementierung

Die Clusterbildung in dieser Implementierung erfolgt, indem die Distanzmatrix für
alle Knoten berechnet wird und in einer Datenbanktabelle die Entfernungen zwischen
jeweils zwei Clustern gespeichert werden. Die Speicherung der Distanzmatrix erfolgt in
der Tabelle DM, die die Einträge (ClusterA, ClusterB, Distanz) hat, wobei die ersten
beiden Felder String-Werte für die ClusterIDs sind und die Distanz ein Float.

Da in jedem Iterationschritt der Clusterbildung zwei Cluster durch ein neues Cluster
ersetzt werden, ist es sinnvoll, alle anderen, unveränderten Cluster nicht nochmals ab-
zuspeichern. Statt für jedes Clustering-Level alle beteiligten Cluster zu speichern, erhält
jedes Cluster eine obere und untere Grenze, die angibt, auf welcher Iterationsebene das
Cluster erzeugt wurde und auf welcher Iterationsebene es durch Verschmelzen zu einem
neuen Cluster entfernt wird. Die Lebensdauer eines Clusters wird in der Tabelle clusters

anhand Einträgen von (cluster, lower, upper) gespeichert. Bei der Erzeugung eines
neuen Clusters wird es in diese Tabelle mit seinem Namen und dem aktuellen Cluste-
ringiterationsschritt als lower-Wert eingetragen. Der Wert von upper wird zunächst auf
∞, repräsentiert durch den maximalen Integer-Wert, gesetzt. Sobald ein Cluster durch
Verschmelzen das Ende seiner Lebenszeit erreicht hat, wird der aktuelle Clusteringiterati-
onsschritt in den upper-Wert des Clusters eingetragen.

Der eigentliche Verschmelzungsprozess, das Zusammenfügen von mehreren Knoten zu
einem Cluster, wird durch eine Tabelle clustersNodes implementiert. In dieser Tabelle
werden einem Cluster die zu ihm gehörenden Knoten zugeordnet. Es werden hierbei
nicht die einzelnen Verschmelzungsschritte abgebildet, sondern nur deren Ergebnis. Dies
entspricht einem Baum, in dem jeder Knoten nicht auf seine direkten Nachfolger zeigt,
sondern direkt auf die Blätter. Vorteil dieser Speicherung ist, dass für ein Cluster mit einer
einzigen Anfrage alle enthaltenen Knoten abgefragt werden können, statt der Verzweigung
eines Baumes zu folgen. Da der Baum eine Höhe von n− 1 erreichen kann, müssten bei
der Verfolgung der Verzweigungen bis zu n− 1 Elemente betrachtet werden.

Um den Aufwand beim Zugriff auf die Werte eines Clusters zu verringern, werden die
Durchschnittswerte eines Clusters, die das Cluster repräsentiert, beim Verschmelzen in
die Tabellen clusterFloatAvg und clusterStrAvg geschrieben.

Eine Zusammenfassung über alle verwendeten Tabellen, ihre Felder und die SQL-
Typen der Felder findet sich in Tabelle 5.1. Die Tabellen clusterStrAttr und
clusterFloatAttr entsprechen den bereits in Abbildung 5.1 auf Seite 75 vorgestellten
Tabellen NodeAttrFloat und NodeAttrStr. Die Tabelle clusters entspricht der Tabelle
Cluster und gibt die Clusteringlevel an, auf denen die Cluster existieren. Die Tabelle
clustersNodes entspricht der Tabelle inCluster und ordnet die einzelnen Nodes den
Clustern zu. Die Tabelle dm speichert die Distanzmatrix. Sie hat keine Entsprechung in
Abschnitt 5.1, da die Distanzmatrix nur während der Clusterbildung benötigt wird. Die
Tabellen clusterFloatAvg und clusterStrAvg speichern die Durchschnittswerte eines
Clusters. Sie entsprechen daher den Tabellen NodeAttrFloat und NodeAttrStr, jedoch

92

5.5 Knotenleistungsclustering

Tabellenname
clusterStrAttr cluster VARCHAR key VARCHAR val VARCHAR
clusterFloatAttr cluster VARCHAR key VARCHAR val Float
clusters cluster VARCHAR lower Integer upper INTEGER
clustersNodes cluster VARCHAR node VARCHAR
dm clusterA VARCHAR clusterB VARCHAR dist FLOAT
clusterFloatAvg cluster VARCHAR key VARCHAR val Float
clusterStrAvg cluster VARCHAR key VARCHAR val VARCHAR

Tabelle 5.1: Tabellen für die Clusterbildung mit Feldnamen und Feldtypen

mit dem Unterschied, dass sie sich auf Cluster und nicht auf einzelne Nodes beziehen.
Auch ihre Daten werden ausschließlich für die Clusterbildung verwendet.

5.5.2 Map/Reduce-basierte Berechnung

Da die Clusterbildung einen quadratischen Aufwand für die Berechnungen der Distanz
aller Knoten zueinander hat, ist schon bei einigen hundert Knoten mit einem Berechnungs-
aufwand von mehreren Minuten zu rechnen, wenn die in Abschnitt 5.5.1 verwendete
Implementierung verwendet wird. Für große Knotenanzahlen ist eine solche Clusterbil-
dung offensichtlich kaum noch durch einen üblichen PC in einem akzeptablen Zeitraum
zu berechnen. Daher wurde der Algorithmus nochmals in einer auf dem Map/Reduce-
Paradigma basierten verteilbaren Version implementiert.

Das Map/Reduce-Paradigma basiert darauf, dass auf einer Menge von Schlüssel- und
Wert-Paaren parallel die gleiche Funktion angewendet wird. Die Funktion erzeugt aus
dem Eingabeschlüssel-Wert-Paar ein Zwischenergebnis. Das Zwischenergebnis hat wie-
derum die Form eines Schlüssel-Wert-Paares. In einem zweiten Schritt werden dann die
Zwischenergebnisse der Funktionsanwendung anhand der Schlüssel sortiert und zusam-
mengeführt. Die Anwendung der Funktion auf die Daten wird hierbei als Map-Schritt
bezeichnet und die Zusammenführung als Reduce-Schritt [DG08].

Der Map-Schritt ist parallelisierbar, da er ausschließlich von seinem Schlüssel-Wert-Paar
abhängt. Der Reduce-Schritt hingegen hängt im Allgemeinen von den Ergebnissen aller
Map-Anwendungen ab und muss daher zentral durchgeführt werden. Bei manchen
Algorithmen besteht die Möglichkeit, einen Reduce-Schritt auf jedem Map/Reduce-
Knoten auf Teilmengen der Daten – den sogenannten Combine-Schritt – zwischen Map
und Reduce durchzuführen, wenn durch eine verteilte Reduzierung von Teilmengen der
Map-Ergebnisse schon ein Vorteil erzielt werden kann. Die Anwendung des Combine-
Schrittes wird später anhand eines Beispiels erläutert.

93

5 Implementierung

K,V

K,V

K,V

K,V

K,V
K,V

K,V

K,V

Map Reduce

Reduce

Map

Map

Map

Map

Map

Map

Map

Node 1

Node 2

Node 3

Shuffle

Aus-
gabe

Aus-
gabe

Daten

Sort

Sort

Sort

Map Reduce

Node 5

Node 0Node 0 Node 4

Abbildung 5.14: Map/Reduce-Ablauf

Abbildung 5.14 stellt einen Map/Reduce-Ablauf dar. Die Daten werden als Menge von
Schlüssel-Wert-Paaren (Key, Value), vorgehalten. Jeder Datensatz wird von einem Map-
Prozess bearbeitet. Die Map-Prozesse werden in der Abbildung von drei Rechnern,
Node 1 bis Node 3, ausgeführt. Jeder der Rechner erhält die Map-Funktion und führt sie
nacheinander auf allen ihm zugeteilten Daten aus. Die Ergebnisse werden anhand ihrer
Schlüssel in der sogenannten Shuffle-Phase auf jedem Map/Reduce-Knoten sortiert und
dem für den jeweiligen Schlüssel zuständigen Reducer-Prozess gesendet. Die Anzahl der
Reducer hat als Obergrenze die Anzahl der verschiedenen Schlüssel und als Untergrenze
1. Alle Datensätze für einen Schlüssel werden auf demselben Reducer-Prozess bearbeitet.
Ein Reducer kann jedoch Daten für mehrere Schlüssel verarbeiten. Jeder Reducer führt
seine Reduzierfunktion auf den Daten eines Schlüssels aus und schreibt das Ergebnis in
seine Ausgabe.

Ein Beispiel für die Anwendung von Map/Reduce gibt White [Whi09] durch die Suche
nach den maximalen Jahrestemperaturen in den amerikanischen Wetteraufzeichnungen an.
Da eine Vielzahl an Wetterstationen existiert, ist die Datenmenge für die Jahre 1901-2001

sehr groß. Die Daten liegen als Datensätze, die jeweils eine Beobachtung einer Vielzahl
von Wetterparametern beschreiben, vor.

94

5.5 Knotenleistungsclustering

Verteilt: Map/Reduce

Abstand
berechnen

Abstand
berechnen

Abstand
berechnen

wiederholen, bis alle Cluster verschmolzen sind

Lokal

Cluster
minimalen
Abstands

auswählen

Gewählte
Cluster

verschmelzen

1.

2.

3.

Abbildung 5.15: Ablauf des Clusterbildungs-Algorithmus mit Map/Reduce

Um nun die Maxima-Suche mittels Map/Reduce durchzuführen, wird die Map-Funktion
jeweils mit einer Jahreszahl als Schlüssel und einem Datensatz als Wert aus diesem Jahr
gespeist. Die Map-Funktion analysiert den Datensatz und gibt die Jahreszahl als Schlüssel
und die Lufttemperatur aus dem Datensatzes als Wert zurück. Die Reduce-Funktion
wird für jeden Schlüsselwert (hier den Jahreszahlen) mit den von den Map-Funktionen
für diesen Schlüssel erzeugten Werten aufgerufen. Für die Maximaltemperatur muss
die Reduce-Funktion also nur das Maximum der übergebenen Werte auswählen und
zusammen mit der Jahreszahl zurückgeben.

Da in diesem Beispiel jeder Wert, der kein lokales Maximum ist, auch kein globales
Maximum werden kann, könnte die Reduce-Funktion zusätzlich auf jedem der Rechner
auf den lokal verfügbaren Ergebnissen als Combine-Funktion ausgeführt werden. Durch
das Anwenden der Combine-Funktion vor dem Reduce müssen weniger Daten zwischen
den Rechnern übertragen werden.

95

5 Implementierung

Für Map/Reduce steht ein Framework unter Betreuung der Apache Software Foundation6

zur Verfügung. Das Hadoop MapReduce7 genannte Framework stellt die Funktionalität zur
Verfügung, um Berechnungen per Map/Reduce durchzuführen. Da Hadoop MapReduce
in Java implementiert ist und direkte Schnittstellen für Java-Anwendungen anbietet,
wird hier Hadoop zur Implementierung des Algorithmus verwendet. Für einige Platt-
formen enthält Hadoop MapReduce zusätzlich native Bibliotheken, um Vorgänge zu
beschleunigen.

Wie bereits erläutert, wird bei der Verwendung von Map/Reduce der Map-Schritt verteilt
ausgeführt. Durch eine verteilte und parallele Ausführung des aufwendigsten Schrittes
im Clusterbildungs-Algorithmus kann die Zeit zur Berechnung der Cluster verringert
werden. Wie in Abbildung 5.15 dargestellt kann der Clusterbildungs-Algorithmus in die
Schritte 1., 2. und 3. aufgeteilt werden, die wiederholt werden, bis die Clusterbildung
vollständig durchgeführt ist. Im Allgemeinen wird hier von Clustern gesprochen, auch
wenn diese zu Beginn jeweils nur einen Knoten enthalten.

In der Implementierung des Algorithmus wird nun Schritt 1 verteilt ausgeführt, die
Schritte 2 und 3 zentral. Zur verteilten Berechnung der Abstände zwischen allen Clustern
wird jeweils der Abstand zwischen zwei Clustern durch eine Anwendung der Map-
Funktion berechnet. Die Map-Funktion benötigt als Eingabe die Daten der beiden Cluster
und hat als Ausgabe die Namen der Cluster und ihre Distanz.

Die Map-Funktion zur Distanzberechnung ist definiert als:

Map : id1, id2→ id1, (id2, dist)

Die Eingabe zweier ClusterIDs wird also auf die gleichen ClusterIDs und den Abstand
zwischen den Clustern abgebildet. Hierbei müssen jedoch die zweite ClusterID id2

und die Distanz dist zu einem Objekt verschmolzen werden, da die Map-Funktion
ausschließlich auf Schlüssel-Wert-Paaren arbeitet.

Der Reduce-Schritt wird in dieser Implementierung des Algorithmus nicht verwendet,
da auch die Distanzen gespeichert werden, die im aktuellen Schritt nicht minimal sind.
Die Distanzen, die im aktuellen Schritt nicht minimal sind, können in einem späteren
Schritt, nachdem die minimale Distanz durch Verschmelzen entfernt wurde, zur mini-
malen Distanz werden. Das Speichern der nicht minimalen Distanzen entspricht der
Wiederverwendung der Distanzmatrix aus dem vorherigen Schritt, wie in Abschnitt 4.4.5
beschrieben.

6The Apache Software Foundation http://www.apache.org/
7Hadoop MapReduce http://hadoop.apache.org/mapreduce/

96

http://www.apache.org/
http://hadoop.apache.org/mapreduce/

5.5 Knotenleistungsclustering

Mit der Entscheidung, alle berechneten Abstände für die spätere Wiederverwendung
zu speichern, folgt, dass der Map/Reduce-Prozess alle Abstände ausgeben muss. Es ist
sinnvoll, aus den erhaltenen Distanzen lokal das Minimum auszulesen, da eine verteilte
Ausführung den Aufwand kaum reduzieren würde. Für das lokale Auslesen müssen
die Ergebnisse einmal linear gelesen werden, während für eine verteilte Ausführung die
Distanzen des vorherigen Schrittes wieder in einen Map/Reduce-Prozess verteilt werden
müssten. Sie müssten also gelesen und an die Map/Reduce-Knoten übertragen werden.

Ebenso ist eine verteilte Durchführung von Schritt 3 nicht sinnvoll, da immer nur zwei
Cluster miteinander verschmolzen werden.

Um einen effizienten Zugriff der Map-Funktion auf die Clustereigenschaften zu ge-
währleisten, wurden verschiedene Konzepte evaluiert. Die zur Verfügung stehenden
Abfragemöglichkeiten sind per Datenbankabfrage, durch Speicherung in einem verteilten
Dateisystem, durch Verwendung der Clusterdaten als Map-Parameter (statt der IDs) und
durch Verwendung des Distributed Cache von Hadoop.

Die Verwendung einer Datenbank zur Speicherung und Abfrage der Daten hat den
Vorteil, dass die Daten nur an einem Ort gespeichert und verwaltet werden müssen.
Als Nachteil ergibt sich jedoch, das dies dem Verteilungsgedanken widerspricht und zu
einem Flaschenhals führt, da gleichzeitig viele Map-Prozesse Daten abfragen und sich so
gegenseitig behindern können. Zusätzlich ist bei einer entfernten Anfrage eine gewisse
Latenz für jede einzelne Anfrage nicht zu umgehen.

Ähnlich zur Speicherung in einer Datenbank verhält sich die Verwendung eines verteilten
Dateisystems. Zwar ist bei entsprechender Verteilung ein Flaschenhals unwahrscheinlicher,
jedoch kann es häufig zu Verzögerungen durch nicht lokal verfügbare Daten kommen.
Zudem entsteht ein Verwaltungs-Overhead durch die Verteilung und Abfrage.

Bei der Übergabe der Daten als Map-Parameter ist der große Vorteil, dass die benötigten
Daten in der Map-Funktion direkt vorliegen und keine weiteren Daten angefragt werden
müssen. Dies entspricht dem reinen Map/Reduce-Paradigma, da so die Map-Funktion
keine weiteren Daten lesen muss. Als Nachteil ergibt sich jedoch, dass dieselben Daten
mehrfach übertragen werden müssen.

Formel 5.1 Overhead pro Clusterbildungs-Schritt bei Übertragung der Clusterdaten als
Key und Value

Overhead = (2 ∗
n−1

∑
i=1

i)− n = 2 ∗ (n− 1)(n− 1 + 1)− n
2

= n2 − 2n

97

5 Implementierung

Im ersten Clusterbildungs-Schritt müssen, wie in Abschnitt 4.4.4 gezeigt, ∑n−1
i=1 i Abstände

für n verschiedene Knoten berechnet werden. Daraus ergibt sich, dass ∑n−1
i=1 i Map-Aufrufe

mit jeweils zwei Knotendatensätzen, also 2 ∗∑n−1
i=1 i Datensätze übertragen werden müssen,

obwohl es nur n verschiedene Datensätze gibt. Es entsteht also ein Daten-Overhead von
n2 − 2n, wie in Formel 5.1 gezeigt, der bei entsprechend großen Knoten- und damit
Clusteranzahlen durchaus zu einem Problem werden kann.

Die letzte Möglichkeit ist die Verwendung des Distributed Cache, der von Hadoop
MapReduce zu Verfügung gestellt wird. Hierbei handelt es sich um Dateien beziehungs-
weise gepackte Archive, die vor der Ausführung der Map-Funktion an alle Map/Reduce-
Knoten übertragen werden. Auf den Map/Reduce-Knoten werden die Dateien lokal für
die Map-Funktion verfügbar gemacht. Wenn nun alle Clusterdaten in eine einzige Datei
gespeichert und vor Ausführung an alle Map/Reduce-Knoten übertragen werden, entsteht
ein Daten-Overhead in Höhe von n ∗ (k− 1) mit k als Anzahl der Map/Reduce-Knoten,
auf denen die Berechnung ausgeführt wird. Der Overhead ergibt sich dadurch, dass nicht
bekannt ist, welchen Map/Reduce-Knoten das Map auf welche Daten ausführen, also
jeder Map/Reduce-Knoten alle Daten braucht. Bei einem Map/Reduce-Knoten würde
dieser den Zugriff auf alle n Knotendatensätze benötigen, bei k Map/Reduce-Knoten
braucht jeder zusätzliche Map/Reduce-Knoten eine Kopie der n Knotendatensätze.

Für die Implementierung wurde nun das zuletzt vorgestellte Konzept des Distributed
Cache verwendet, da hier die Kombination von Overhead und Latenz am geringsten ist.
Bei jeden Aufruf der Map-Funktion werden zwei Datensätze aus dem Distributed Cache
gelesen. Um die in Relation zu Arbeitsspeicherzugriffen langsamen Festplattenlesezugriffe
zu minimieren, wurde zusätzlich ein kleiner Arbeitsspeichercache für die Clusterdaten
entwickelt und implementiert.

Dieser Clusterdatencache macht sich zunutze, dass die Map-Funktion auf einem
Map/Reduce-Knoten häufig mit aufeinander folgenden Datensätzen arbeitet. Dazu
kommt es durch die blockweise Verteilung der Eingabedaten an die Map/Reduce-Knoten.
Als Beispiel sei folgende Ausführung für einen Map/Reduce-Knoten gegeben: Map(1, 2),

Map(1, 3), Map(1, 4), Map(1, 5), Map(1, 6), Map(2, 3), Map(3, 4), Map(4, 5),

Map(5, 6). Offensichtlich werden in dieser Ausführung die Daten des Clusters mit der
ID 1 fünfmal in direkt aufeinander folgenden Map-Aufrufen benötigt und der Datensatz
mit der ID 2 viermal.

Um nun ein wiederholtes Lesen des Datensatzes von der Festplatte zu umgehen, wurde
dem Lesen ein Cache mit zwei Einträgen vorgeschaltet. Dieser Cache ist in Form einer
FiFo-Queue der Länge zwei implementiert. Bei einer Leseanfrage wird immer zuerst der
Cache angefragt. Ist der Datensatz im Cache verfügbar, so wird er direkt aus dem Cache
zurückgeliefert und der Datensatz in der Queue an die letzte Position verschoben. Wenn
ein Datensatz im Cache nicht verfügbar ist, wird er von der Festplatte gelesen und in der

98

5.5 Knotenleistungsclustering

Queue hinten angefügt. Er verdrängt damit den ältesten, vordersten Datensatz aus der
Queue.

Der Cache macht sich zunutze, dass sich in Hadoop MapReduce über die Konfigurati-
on das Wiederverwenden der Java Virtual Machine (JVM) für nacheinander auf einer
Maschine ausgeführte Map-Anwendungen erzwingen lässt. Da die Map-Funktion als
static definiert ist, verwenden alle in einer JVM ausgeführten Map-Funktionen dieselben
Variablen. Die FiFo-Queue ist als static-Klassenvariable definiert.

Messergebnisse

Es wurde ein kurzer Test zu Bestätigung der Annahmen über die Parallelisierbarkeit
durchgeführt. Für den Test wurde nicht das vollständige Clustering durchgeführt, son-
dern nur der erste und aufwendigste Clustering-Schritt. Die absoluten Werte sind nicht
zuverlässig, da die Messumgebung aus zwei unterschiedlich ausgestatteten Computern
bestand und der Code für die Messungen nicht optimiert wurde. Anhand der Messdaten
lässt sich jedoch ablesen, dass durch die parallele Ausführung ein deutlicher Geschwin-
digkeitszuwachs zu erwarten ist.

Für die Messung wurde die einfach parallele Ausführung, also ein Map-Prozess, der
alle Distanzen berechnet, einer vierfach parallelen Ausführung gegenübergestellt. Der
Messrechner 1 ist ein PC mit einem AMD Athlon X2 Prozessor mit 2,5 GHz und Ubuntu
10.10 64 Bit. Der Messrechner 2 ist ein Notebook mit einem Intel Core2 Duo mit 2 GHz und
Ubuntu 10.04 32 Bit. Messrechner 1 ist in allen Tests der Masterknoten für die Verwaltung
und in den vierfach parallelen Tests zusätzlich ein Slaveknoten, der auch Berechnungen
durchführt.

Hadoop MapReduce wurde so konfiguriert, dass jeder Slaveknoten bis zu zwei parallele
Map-Vorgänge durchführen kann. Bei zwei Slaveknoten ergeben sich also maximal vier
parallele Map-Vorgänge.

Als Tests wurden jeweils mit einfacher und vierfacher Parallelität 179700, 319600 und
499500 Abstände berechnet. Bei den Tests mit einfacher Parallelität wurde die Steue-
rung von Messrechner 1 übernommen und die Berechnungen wurden von Messrechner 2

in einem einzigen Map-Vorgang durchgeführt. Für die Tests wurden jeweils 600, 800

und 1000 Knoten mit 100 Attributen erzeugt. Die Attribute wurden von einem Zufalls-
generator entweder mit einem zufälligen String oder einem zufälligen Integer Wert
befüllt. Die Anzahl der berechneten Abstände ergibt sich aus der Knotenanzahl n durch
((n− 1)2 + n− 1)/2.

Die Ergebnisse sind in Abbildung 5.16 dargestellt. Auf der X-Achse ist die Anzahl
der berechneten Abstände aufgeführt und auf der Y-Achse die für die Berechnungen

99

5 Implementierung

179700 319600 499600

0

100

200

300

400

500

600

1 parallel
4 parallel

berechnete Abstände

S
e
ku

n
d
e
n

Abbildung 5.16: Messergebnisse: Map/Reduce-Beschleunigung

benötigte Zeit. Dem Diagramm ist zu entnehmen, dass die parallel berechnete Version
einen deutlichen Zeitvorteil erzielt. Der Zeitvorteil wird bei größeren Knotenanzahlen
noch deutlicher, da hier der Overhead für den Start des Map-Prozesses weniger ins
Gewicht fällt.

100

Kapitel 6

Resümee

Ziel dieser Arbeit war es, NexusDS um einen Auslastungsdienst zu erweitern, der anhand
von Messdaten Empfehlungen für Ausführungsknoten zur Ausführung von Operatoren
gibt. Hierfür wurde NexusDS vorgestellt. Nach einer Analyse von verwandten Arbeiten
zur Leistungsmessung und Vorhersage von Anwendungsperformance in verteilten und
parallelen Umgebungen wurde eine Architektur für den Auslastungsdienst entwickelt.

Um den Auslastungsdienst mit Leistungsmesswerten und Daten über die Plattformeigen-
schaften zu versorgen, wurde das Konzept von verteilten Sensoren angewandt. Die von
ihnen gesammelten Daten werden im Auslastungsdienst zu Statistiken aggregiert.

Hierfür wurde analysiert, welche Messdaten erfasst werden müssen, um aus ihnen
Vorhersagen über die Leistung von Operatoren auf verschiedenen Ausführungsknoten
unter bestimmten Parametrisierungen zu berechnen. Für die Statistiken wurde eine
Vorgehensweise zur Historisierung von veralteten Daten vorgestellt.

Für die Verbreiterung der Datenbasis wurde das Konzept des Knotenleistungsclusterings
eingeführt und es wurden verschiedene Clusteringalgorithmen evaluiert. Für den ge-
wählten Algorithmus für hierarchisches Clustering wurden verschiedene Verfahren zur
Aufwandsreduzierung vorgestellt.

Um für die Implementierung des Auslastungsdienstes ein geeignetes Verfahren für die Be-
rechnung des Knotenleistungsclusterings zu haben, wurde das Map/Reduce-Paradigma
zur verteilten Berechnung vorgestellt. Auf der Basis von Map/Reduce wurde der Algo-
rithmus zur verteilten Berechnung der Distanzen zwischen den Clustern beim Knoten-
leistungsclustering entwickelt. Um die Festplattenzugriffe durch die Map-Funktion zu
minimieren, wurde ein Cache entwickelt, der sich die Datenstruktur und Reihenfolge der
Ausführung zunutze macht.

101

Kapitel 7

Zukünftige Arbeiten

An verschiedenen Stellen dieser Arbeit haben sich weitere Themen aufgezeigt, die in
zukünftigen Arbeiten zu einer Verbesserung des Systems führen können oder interessante
Forschungsthemen ergeben.

7.1 Bewertung der Vorhersagequalität

Der Auslastungsdienst erstellt Vorhersagen über geeignete Knoten für die Ausführung
von Operatoren unter ihrer Parametrisierung. Allerdings ist bei einer Vorhersage nicht
bekannt, wie gut ihre Qualität ist, also inwieweit sie der Realitität entsprechen wird. Ein
spannendes Thema ist daher zum einen die Messung in einem auf allen Architektur-
ebenen vollständigen System – das hier leider noch nicht zur Verfügung stand –, wie
weit die Vorhersagen des Auslastungsdienstes von einem Optimum abweichen. Dafür
könnte das Gesamtsystem im Produktivbetrieb beobachtet werden und anhand von
zusätzlichen Messdaten im Nachhinein beurteilt werden, wie gut die Entscheidungen des
Auslastungsdienstes tatsächlich waren.

Unabhängig von der Bewertung der Vorhersagen im Nachhinein wäre auch eine Selbstbe-
wertung der Vorhersagen durch den Auslastungsdienst interessant. Es könnte anhand der
Durchschnittswerte für die gemessenen Werte und der zugehörigen Varianz bestimmt
werden, mit welcher Wahrscheinlichkeit ein Ereignis eintritt. Das Ziel wäre also, anzu-
geben, mit welcher Wahrscheinlichkeit ein Operator auf einem bestimmten Knoten das
gewünschte Ergebnis liefert.

103

7 Zukünftige Arbeiten

7.2 Heuristik für die Anzahl der zu betrachtenden Cluster

Das implementierte Clusterbildungsverfahren erlaubt es, die Granularität, für die die
Knotenleistungscluster betrachtet werden, im Betrieb frei zu wählen. In der Arbeit wurde
als Heuristik angegeben, dass es nicht sinnvoll ist, mehr als die Anzahl unterschiedlich
ausgestatteter Systeme als getrennte Cluster zu betrachten.

Mit der Anzahl der betrachteten Cluster, für die Statistiken für die Operatorausführungen
zusammengeführt werden, ändert sich nicht nur der Aufwand, sondern auch die Vor-
hersagequalität. Die Extrembeispiele vom oberen und unteren Ende der Skala sind das
Betrachten eines einzelnen Clusters mit allen Knoten und das Betrachten aller Knoten
einzeln. Im ersten Fall wird die Vorhersage durch die vielen Knoten, die nicht ähnlich
sind, verfälscht. Für jeden Knoten kann es zu unrealistischen Abweichung von den Ober-
und Untergrenzen sowie von den Durchschnittswerten kommen. Im anderen Fall, dass
jeder Knoten für sich selbst betrachtet wird, kann es passieren, dass die Datenbasis für
den Operator auf diesem Knoten sehr dünn ist. Eine einzelner Ausreißer in diesen Daten
würde zu unrealistischen Vorhersagen führen.

Ziel ist, die optimale Anzahl der zu betrachtenden Cluster zu bestimmen. Wenn man
das System von außen betrachtet, ist die Anzahl der zu betrachtenden Cluster offensicht-
lich. Sie entspricht der Anzahl von sich unterschiedlich verhaltenden Systemen in den
Knotenkandidaten. Die Schwierigkeit ist jedoch, diese Anzahl innerhalb des Systems zu
bestimmen. Es wäre nun zu evaluieren, wie diese Anzahl berechnet werden kann.

7.3 Map/Reduce und NexusDS

Für die Implementierung des Knotenleistungsclusterings wurde in Abschnitt 5.5 das
Map/Reduce-Konzept eingeführt. Das Ziel von Map/Reduce ist ähnlich dem von
NexusDS. Beide Frameworks bieten Möglichkeiten zur Berechnung mittels eines ver-
teilten Ansatzes. Während NexusDS flexibel ist, wie die Verteilung und Abfolge von
Operationen aussieht, sind die Reihenfolge und das Format bei Map/Reduce fest vorge-
geben. Map/Reduce arbeitet immer auf Schlüssel-Wert-Paaren und Daten, die parallel
verarbeitet werden können.

Es wäre nun interessant, das Map/Reduce-Paradigma in NexusDS verfügbar zu machen.
Dafür müssten Operatoren geschaffen werden, die die Funktionen der verschiedenen
Schritte von Map/Reduce übernehmen. Wie in Abschnitt 5.5.2 erläutert, werden bei
Map/Reduce die Daten blockweise auf Map-Knoten verteilt, die dann für die im Block
enthaltenen Key-Value-Paare nacheinander jeweils die Map-Funktion ausführen. Für
diesen ersten Schritt werden zwei Operatoren in NexusDS benötigt: zum einen ein

104

7.3 Map/Reduce und NexusDS

Operator, der die Daten in Blöcke aufteilt und an verschiedene Knoten weiterreicht, und
zum anderen ein Map-Operator, der die Blöcke erhält und auf die darin enthaltenen
Daten die Map-Funktion anwendet.

Wird auch der Combine-Schritt implementiert, muss hierfür ein Puffer zwischen dem Map-
und dem Combine-Operator auf dem Knoten existieren. Sobald ein Block abgearbeitet ist,
kann die Combine-Funktion angewandt werden.

Nach dem Map- oder Combine-Schritt müssen die Daten sortiert werden und an die
Reducer-Operatoren weitergegeben werden. Für die Reduce-Operation ist zu beachten,
dass hierfür alle Ergebnisse für alle Datensätze aus den Datenblöcken vorliegen müssen.
Ein Reduce-Operator muss also die Information bekommen, wann er alle Ergebnisse
erhalten hat. Dies kann in NexusDS erfolgen, indem der Reducer per Konfiguration
mitgeteilt bekommt, von wie vielen Map- beziehungsweise Combine-Knoten er Daten
erhält. Er wartet dann, bis er von jedem dieser Knoten das Ende der Daten über eine
Punctation im Datenstrom mitgeteilt bekommen hat. Punctations sind Zusicherungen, die
im Datenstrom mit angegeben werden können (siehe auch [Dör09]).

105

Anhang A

Appendix

A.1 Von SIGAR unterstützte Plattformen

Die Monitoring Middleware unterstützt in Version 1.6.3 laut der Dokumentation1 die in
Tabelle A.1 aufgelisteten Plattformen.

1Die Dokumentation ist verfügbar unter http://support.hyperic.com/display/SIGAR/Home

107

http://support.hyperic.com/display/SIGAR/Home

A Appendix

Operating System Architecture Versions
Linux x86 2.2, 2.4, 2.6 kernels
Linux amd64 2.6 kernel
Linux ppc 2.6 kernel
Linux ppc64 2.6 kernel
Linux ia64 2.6 kernel
Linux s390 2.6 kernel
Linux s390x 2.6 kernel
Windows x86 NT 4.0, 2000 Pro/Server, 2003 Server, XP

Vista, 2008 Server, Windows 7

Windows x64 2003 Server, Vista, 2008 Server, Windows 7

Solaris sparc-32 2.6, 7, 8, 9, 10

Solaris sparc-64

Solaris x86 8, 9, 10

Solaris x64

AIX ppc 4.3, 5.1, 5.2, 5.3, 6.1
AIX ppc64 5.2, 5.3, 6.1
HP-UX PA-RISC 11

HP-UX ia64 11

FreeBSD x86 4.x
FreeBSD x86 5.x, 6.x
FreeBSD x64 6.x
FreeBSD x86, x64 7.x, 8.x
OpenBSD x86 4.x, 5.x
NetBSD x86 3.1
Mac OS X PowerPC 10.3, 10.4
Mac OS X x86 10.4, 10.5
Mac OS X x64 10.5

Tabelle A.1: Von SIGAR unterstützte Plattformen

108

Literaturverzeichnis

[BDG+
04] M. Bauer, F. Dürr, J. Geiger, M. Grossmann, N. Hönle, J. Joswig, D. Nick-

las, T. Schwarz. Information Management and Exchange in the Ne-
xus Platform. Technischer Bericht Informatik 2004/04, Universität Stutt-
gart: Sonderforschungsbereich SFB 627 (Nexus: Umgebungsmodelle für
mobile kontextbezogene Systeme), Germany, Universität Stuttgart, Institut
für Parallele und Verteilte Systeme, Verteilte Systeme; Universität Stutt-
gart, Institut für Parallele und Verteilte Systeme, Anwendersoftware, 2004.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=TR-2004-04&mod=0&engl=0&inst=AS. (Zitiert auf den Seiten 17

und 19)

[BWF+
96] F. D. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao. Application-level

scheduling on distributed heterogeneous networks. In Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM) - Supercomputing ’96, pp. 39–
es. Pittsburgh, Pennsylvania, United States, 1996. doi:10.1145/369028.369109.
URL http://portal.acm.org/citation.cfm?doid=369028.369109. (Zitiert
auf Seite 23)

[BYS+06] T. Bray, F. Yergeau, C. M. Sperberg-McQueen, J. Paoli, E. Maler. Extensible Mar-
kup Language (XML) 1.0 (Fourth Edition). First edition of a recommendation,
W3C, 2006. URL http://www.w3.org/TR/2006/REC-xml-20060816. (Zitiert
auf den Seiten 18 und 88)

[CEB+
09] N. Cipriani, M. Eissele, A. Brodt, M. Großmann, B. Mitschang. Ne-

xusDS: A Flexible and Extensible Middleware for Distributed Stream Pro-
cessing. In ACM, editor, IDEAS ’09: Proceedings of the 2008 International
Symposium on Database Engineering & Applications, pp. 152–161. ACM, 2009.
URL http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=INPROC-2009-94&engl=0. (Zitiert auf den Seiten 19 und 22)

109

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&mod=0&engl=0&inst=AS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&mod=0&engl=0&inst=AS
http://portal.acm.org/citation.cfm?doid=369028.369109
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-94&engl=0
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-94&engl=0

Literaturverzeichnis

[CLM10] N. Cipriani, C. Lübbe, A. Moosbrugger. Exploiting Constraints to Build a
Flexible and Extensible Data Stream Processing Middleware. In The Third
International Workshop on Scalable Stream Processing Systems, pp. 1–8. IEEE
Computer Society, 2010. URL http://www.informatik.uni-stuttgart.de/

cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-08&engl=0. (Zitiert auf
den Seiten 19 und 20)

[DG08] J. Dean, S. Ghemawat. MapReduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008. doi:http://doi.acm.org/10.1145/1327452.
1327492. (Zitiert auf Seite 93)

[Dör09] M. Dörr. Entwurf und Implementierung von Basisoperatoren für Nexus. Di-
plomarbeit, Universität Stuttgart: Sonderforschungsbereich SFB 627 (Nexus:
Umgebungsmodelle für mobile kontextbezogene Systeme), Germany, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=DIP-2776&engl=0. (Zitiert auf den Seiten 41 und 105)

[Fri02] M. Friedman. Windows 2000 performance guide. O’Reilly, Sebastopol CA, 2002.
(Zitiert auf Seite 88)

[FZ87] D. Ferrari, S. Zhou. An Empirical Investigation of Load Indices for Load
Balancing Applications. Technical Report UCB/CSD-87-353, EECS Department,
University of California, Berkeley, 1987. URL http://www.eecs.berkeley.

edu/Pubs/TechRpts/1987/5990.html. (Zitiert auf Seite 51)

[Geh96] J. Gehring. MARS—A framework for minimizing the job execution time in a
metacomputing environment. Future Generation Computer Systems, 12(1):87–99,
1996. doi:10.1016/0167-739X(95)00037-S. URL http://linkinghub.elsevier.

com/retrieve/pii/0167739X9500037S. (Zitiert auf Seite 25)

[Gra05] L. Grandinetti. Grid computing : the new frontier of high performance computing.
Elsevier, 1st ed. edition, 2005. (Zitiert auf Seite 46)

[Has09] T. Hastie. The elements of statistical learning : data mining, inference, and prediction.
Springer Series in Statistics. Springer, New York, 2nd ed. edition, 2009. (Zitiert
auf Seite 64)

[HK01] J. Han, M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001. (Zitiert auf den Seiten 59, 60,
62, 63 und 64)

[IEE09] IEEE. IEEE Standard for Prefixes for Binary Multiples. IEEE Std 1541-2002
(R2008), pp. c1 –4, 2009. doi:10.1109/IEEESTD.2009.5254933. (Zitiert auf den
Seiten 11 und 51)

110

http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-08&engl=0
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-08&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2776&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2776&engl=0
http://www.eecs.berkeley.edu/Pubs/TechRpts/1987/5990.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1987/5990.html
http://linkinghub.elsevier.com/retrieve/pii/0167739X9500037S
http://linkinghub.elsevier.com/retrieve/pii/0167739X9500037S

Literaturverzeichnis

[Koc09] M. Koch. Konzeption und Realisierung einer erweiterbaren Service-Schnittstelle
in einer verteilten Umgebung. Diplomarbeit, Universität Stuttgart, Fakul-
tät Informatik, Elektrotechnik und Informationstechnik, Germany, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_

view.pl?id=DIP-2913&engl=0. Published: Diplomarbeit: Universität Stuttgart,
Institut für Parallele und Verteilte Systeme, Anwendersoftware. (Zitiert auf
Seite 30)

[LDR03] D. Lee, J. J. Dongarra, R. S. Ramakrishna. visPerf: Monitoring Tool for
Grid Computing. In In ICCS 2003, Lecture Notes in Computer Science, Lec-
ture Notes in Computer Science, p. 233–243. Springer Verlag, 2003. doi:
10.1007/3-540-44863-2_24. (Zitiert auf Seite 26)

[Mic10] Microsoft. Monitoring Performance Data (Windows). Technical report,
2010. URL http://msdn.microsoft.com/en-us/library/aa392397(VS.85)

.aspx. (Zitiert auf Seite 88)

[Ora] Oracle. JDK 6 Java Native Interface-related APIs & Developer Guides. Tech-
nical report. URL http://download.oracle.com/javase/6/docs/technotes/

guides/jni/index.html. (Zitiert auf Seite 89)

[SV08] H. Sanjay, S. Vadhiyar. Performance modeling of parallel applications for
grid scheduling. Journal of Parallel and Distributed Computing, 68(8):1135–1145,
2008. doi:10.1016/j.jpdc.2008.02.006. URL http://linkinghub.elsevier.com/

retrieve/pii/S0743731508000464. (Zitiert auf Seite 25)

[Tan06] A. Tanenbaum. Distributed systems : principles and paradigms. Prentice Hall,
Harlow, 2nd ed. edition, 2006. (Zitiert auf Seite 48)

[WF04] P. Walmsley, D. C. Fallside. XML Schema Part 0: Primer Second Editi-
on. W3C recommendation, W3C, 2004. URL http://www.w3.org/TR/2004/

REC-xmlschema-0-20041028/. (Zitiert auf Seite 18)

[Whi09] T. White. Hadoop : the definitive guide. O’Reilly, Sebastopol CA, 2009. (Zitiert
auf Seite 94)

[Wol97] R. Wolski. Forecasting network performance to support dynamic scheduling
using the network weather service. In HPDC ’97: Proceedings of the 6th IEEE
International Symposium on High Performance Distributed Computing, p. 316. IEEE
Computer Society, Washington, DC, USA, 1997. (Zitiert auf Seite 24)

[WSP97] R. Wolski, N. Spring, C. Peterson. Implementing a performance forecasting
system for metacomputing. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing (CDROM) - Supercomputing ’97, pp. 1–19. San Jose, CA,

111

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2913&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2913&engl=0
http://msdn.microsoft.com/en-us/library/aa392397(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa392397(VS.85).aspx
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://linkinghub.elsevier.com/retrieve/pii/S0743731508000464
http://linkinghub.elsevier.com/retrieve/pii/S0743731508000464
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

Literaturverzeichnis

1997. doi:10.1145/509593.509600. URL http://portal.acm.org/citation.

cfm?doid=509593.509600. (Zitiert auf Seite 24)

[Öz99] M. Özsu. Principles of distributed database systems. Prentice Hall, Upper Saddle
River NJ, 2nd ed. edition, 1999. (Zitiert auf Seite 48)

Alle URLs wurden zuletzt am 31.10.2010 geprüft.

112

http://portal.acm.org/citation.cfm?doid=509593.509600
http://portal.acm.org/citation.cfm?doid=509593.509600

Erklärung

Hiermit versichere ich, diese Arbeit
selbstständig verfasst und nur die angegebenen
Quellen benutzt zu haben.

(Raimund Huber)

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Aufbau der Arbeit

	2 Grundlagen und verwandte Arbeiten
	2.1 Nexus
	2.1.1 AWML – Augmented World Model Language

	2.2 NexusDS
	2.2.1 Architektur
	2.2.2 Anwendungsstart

	2.3 Auslastungsmessung und Messdaten für Scheduling
	2.3.1 Application-level scheduling und Network Weather Service
	2.3.2 Mars – Framework
	2.3.3 Performance modeling of parallel applications for grid scheduling
	2.3.4 VisPerf: Monitoring Tool for Grid Computing

	3 Architektur des Auslastungsdienstes
	3.1 Überblick
	3.2 Problemanalyse
	3.3 Daten
	3.3.1 Kompatibilitätsmatrix
	3.3.2 Knoten- und Operatorstatistik
	3.3.3 Knotenleistungsclustering

	3.4 Sensordatenverarbeitung
	3.4.1 Operatorleistungsmessung

	3.5 Knotenanfragebearbeitung
	3.5.1 Ablauf Knotenanfrageverarbeitung

	3.6 Verteilte Ausführung des Auslastungsdienstes

	4 Detailentwurf
	4.1 Spezifikation der Sensormessdaten
	4.1.1 Plattformeigenschaften – statische Knotendaten
	4.1.2 Dynamische Knotendaten
	4.1.3 Operatormessdaten

	4.2 Speicherung der Sensordaten
	4.2.1 Gespeicherte Daten und Zugriffspfade
	4.2.2 Zeitgranularität und Historisierung

	4.3 Erzeugung und Speicherung der Kompatibilitätsmatrix
	4.4 Erzeugung des Knotenleistungsclusterings
	4.4.1 Definition der Distanzmetrik
	4.4.2 Clusteringverfahren
	4.4.3 Bewertung und Auswahl der Clusteringverfahren
	4.4.4 Algorithmus
	4.4.5 Aufwandsreduzierung

	4.5 Berechnung der knoten- und operatorabhängigen Anforderungen
	4.6 Optimierungsranking
	4.7 Zusammenfassung und Visualisierung der Daten

	5 Implementierung
	5.1 Datenspeicherung
	5.2 Implementierung des Auslastungsdienstes
	5.2.1 Datenerfassung
	5.2.2 Knotenanfrageverarbeitung

	5.3 Implementierung der Sensoren
	5.4 Knotenauslastungserfassung
	5.5 Knotenleistungsclustering
	5.5.1 Lokale Berechnung
	5.5.2 Map/Reduce-basierte Berechnung
	Messergebnisse

	6 Resümee
	7 Zukünftige Arbeiten
	7.1 Bewertung der Vorhersagequalität
	7.2 Heuristik für die Anzahl der zu betrachtenden Cluster
	7.3 Map/Reduce und NexusDS

	A Appendix
	A.1 Von SIGAR unterstützte Plattformen

