Institut far Architektur von Anwendungssystemen
Universitat Stuttgart
UniversitatsstraBBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3093

Ein TaskManager fur PerFlows

Thorsten Hoger

Studiengang: Informatik
Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Tobias Unger

Dipl.-Inf. M.Sc.(USA) Stephan Urbanski

begonnen am: 1. Oktober 2010

beendet am: 2. April 2011

CR-Klassifikation: E.1, G.3, H.4.1

Inhaltsverzeichnis

. Grundlagen

1. Einleitung
1.1. Motivation e e e e e
1.2. Zieleder Arbeit
1.3. Aufbauder Arbeit

2. Grundlagen und verwandte Arbeiten
2.1. Motivation e
2.2. Personal Flows e
2.3. Taskkonzepte
23.1. PIMTasks
2.3.2. WS-HumanTask
2.3.3. Andere Arbeiten
2.4. Zusammenfassung e

Il. Theoretische Konzepte

3. Personal Task

3.1. Motivation o oo
3.2, SZENArio e e e e e e e e
3.3. Anforderungen
3.4. Definition
3.5. Eigenschaften

3.5.1. Felder

3.5.2. Status.
3.6. Taskattribute im Szenario L Lo L.
3.7. Zusammenfassung

4. Methoden der Priorisierung
4.1. Motivation
4.2. Anforderungen

10
11

13
13
13
14
15
16
16

17

19

21
21
21
21
22
22
22
23
23
24

25
25
25

4.3

4.4-.

Berechnungsmethoden
4.3.1. Echtzeit-Schedulingverfahren
4.3.2. Bewertungsalgorithmen 0000
Zusammenfassung

Priorisierungsalgorithmus

5.1.
5.2.
53

5.4.
55
5.6.
57
5.8.

Motivation
Algorithmus
Faktoren zur Priorisierung
5.3.1. Gewichtung der Faktoren
Priorisierung der Szenariotasks o L 0L
Pseudocode Implementierung L
Neuberechnungslogik
Erweiterung: zeitliche Ablaufe
Zusammenfassung

Architektur des TaskManagers

6.1.
6.2.
6.3.

6.4.
6.5.
6.6.

6.7.

Motivation oL e e
Anforderungen L L
Losungsansdtze o
6.3.1. Konzepte.
6.3.2. Auswahl L
Serverarchitektur
Schnittstellendefinition Lo
Clientkonzepte
6.6.1. Desktopclients o L.
6.6.2. MobileClients.
6.6.3. Anzeigeclients L L oo L
Zusammenfassung

Implementierung

Serverimplementierung

7.1.
7.2.

7-3

Motivation
Gesamtarchitektur L
7.2.1. Datenbank
7.2.2. ApplicationServer L L L Lo
7.2.3. Weboberflache
Zusammenfassung

Schnittstellenumsetzung

8.1.

Motivation e

29
29
29
30
30
33
33
34
34
36

37

37
37
39
39
41
42
42
42
43
43
44
44

45

10.

11.

V.

12.

8.2. Protokollalternativen
8.3. Pro/Contra je Zielplattform,
8.4. Auswahl
8.5. Zusammenfassungo

Desktop Client

9.1. Motivation e
9.2. Eclipse Plattform
9.3. Funktionalitit Rich Client
9.4. Zusammenfassung

Mobile Client

10.1. Motivation e e e
10.2. BlackBerry Client L
10.3. 10S Client L
10.4. Zusammenfassung

Erweiterungen

11.1. OS X Widgeto
11.2. Windows Gadget
11.3. Android App

Abschluss

Zusammenfassung und Ausblick

12.1. Evaluationo
12.2. Zusammenfassung der Arbeit L Lo
12.3. Ausblick

Anhang
Taskdatenmodell

Schnittstellendefinition

B.1. Benutzerverwaltung Lo Lo L
B.2. Kontextverwaltung
B.3. Taskverwaltung o

Literaturverzeichnis

57

57

57
58

59

61
61
61
62

63

65
65
66

69
71

73

73
74
75

77

Abbildungsverzeichnis

2.1. Tasks Microsoft Outlook 15
3.1. Zustandsiibergdnge von Aufgaben 0oL 24
6.1. Gesamtarchitektur Lo o 41
6.2. Beispiele der Client-Server Interaktion 43
7.1. Komponentengliederung des Servers 47
7.2. Kartenanzeige mit geoffnetem Taskdialog 49
9.1. Hauptansicht mit Aufgabenliste und Taskeditor 56
10.1. BlackBerry Client 58
10.2. Taskliste mit Taskdetails als Splitview 59
11.1. Mac OS X Dashboard 62
11.2. Draftshot der Anwendung 62
12.1. Konsolenausgabe der Priorisierung 66

Tabellenverzeichnis

3.1.
3.2.

5.1.
5.2.
5-3-
5.4.
5-5-

Aufgabenzustande L Lo o 23
Sals Beispielaufgaben L Lo 24
Bewertung je nach Eskalationsstrategie 31
Bewertung nach Spielraum 00 L 31
Wertigkeit der manuellen Prioritat 32
Wertigkeit der Entfernung oL 32
Bewertung der Beispielaufgaben 33

Teil I.

Grundlagen

1. Einleitung

1.1. Motivation

Die Allgegenwirtigkeit von Computern und dhnlichen Geréten hat in letzter Zeit ungeahnte
Ausmafle erreicht. Dabei haben sich sowohl die Leistungsfahigkeit als auch die Verbreitung
dieser Geréte vervielfacht. Vor allem im Bereich der Smartphones sind die Rechenleistung
und das Speicherangebot massiv gestiegen. Auch eine Internetverbindung kann mittlerweile
als dauerhaft gegeben betrachtet werden. Dies liegt einerseits am stark verbesserten Netz-
ausbau aber andererseits auch an der deutlichen Senkung der Preise fiir Endbenutzer. Als
weiterer Punkt sind mittlerweile sehr viele verschiedene Sensoren, wie Mikrofone, Kameras,
Beschleunigungssensoren und GPS-Empfdnger in nahezu jedem Smartphone integriert. Auf
Basis dieser neuen Rahmenbedingungen ergeben sich vollig neue Anwendungsszenarien
fiir mobile Endgeréte. Fiir Smartphones existieren einige Anwendungen, die Internet und
Sensorik verbinden. Als Beispiele sind hier Google Maps und Wikihood genannt. Google
Maps bietet dem Benutzer eine Karte seiner aktuellen Umgebung auf Basis der Lokationsin-
formationen seines Endgerates. Wikihood verkniipft die Lokationsdaten noch weiter indem
es dem Benutzer Wikipediaartikel zu Objekten und Personen mit Bezug zum aktuellen
Umfeld anzeigt. Bei falscher Anwendung und unsachgeméafiem Umgang durch den Benutzer
birgt diese Verkniipfung von Daten auch grofie Risiken, was eine Aufklarung des Benutzers
essentiell macht. Die genannten Anwendungen beschrinken sich dabei allerdings auf die
Sensordaten eines Endgerites und konnen so nur sehr lokal begrenzte Daten erfassen und
verwenden. Das Konzept der in Abschnitt 2.2 vorgestellten PerFlows erweitert dieses Modell.
PerFlows bieten dem Benutzer eine Grundlage zur Modellierung von personlichen Ablaufen
zur Abbildung seiner Alltagsaufgaben. Die Infrastruktur sorgt dann dafiir, dass die Aufgaben
und Anwendungen entsprechend dem aktuellen Kontext ausgefiihrt werden konnen. Das
heifst die Infrastruktur orchestriert die verfiigbaren Gerdte um die Aufgabe auszufiihren.
Durch diese Automatisierung sollten sich signifikante Zeitersparnisse und ein vermindertes
Stresslevel des Anwenders erreichen lassen, was wiederum die Produktivitit und Zufrie-
denheit des Einzelnen erhoht. Als Beispiel betrachten wir Sal die einen PerFlow fiir das
Einkaufen erstellt hat. Wir nehmen an, Sal besitzt ein Fahrzeug mit Navigationssystem und
eine digitale Einkaufsliste. Die aktuellen Angebote der Supermirkte sind im Internet abruf-
bar. Die Ausfithrungsumgebung der PerFlows wiirde nun automatisch einen Supermarkt
vorschlagen und auf Wunsch das Navigationssystem im Fahrzeug programmieren. Hierbei
werden zwei Dinge deutlich: Zum einen wird die Verbindung der einzelnen Komponenten,

1. Einleitung

Dienste und Geridte automatisch von der Infrastruktur tibernommen, zum anderen verfiigt
der Anwender jederzeit tiber die Kontrolle, d.h. die Infrastruktur fiihrt keine Aktionen
ohne Freigabe durch den Benutzer aus. Ausnahmen hiervon sind nur reversible Vorberei-
tungsaktivitdten, die bei Stornierung keinen Nachteil fiir den Benutzer mit sich bringen. Im
Beispiel muss Sal die Auswahl des Supermarkts freigeben, um die Programmierung des
Navigationssystems einzuleiten. Der Grund hierfiir ist die Annahme, dass sich Benutzer im
Alltag ungern von elektronischen Helfern bevormunden lassen und Personlichkeitsrechte
wie Selbstbestimmung wahrnehmen wollen. PerFlows sollen lediglich eine Hilfe anbieten, die
jederzeit abgelehnt werden kann. Eine Herausforderung im Beispielszenario ist allerdings die
Auswahl von momentan giinstigen Aufgaben. So ist beispielsweise der Vorschlag einkaufen
zu gehen wenig sinnvoll, wenn der Benutzer sich momentan in einer Besprechung befindet,
selbst wenn die Aufgabe eine Deadline in naher Zukunft hat. Daraus wird offensichtlich,
dass klassische Planungssysteme nicht fiir PerFlows in Frage kommen konnen. Erstens
verwenden die wenigsten Systeme aktuelle Sensordaten aus dem Kontext des Benutzers
und konnen somit wesentliche Kriterien nicht betrachten, zweitens arbeiten die Systeme in
der Regel nicht dynamisch und bewerten die Informationen nicht standig neu, wie es bei
kontextsensitiven Anwendungen zwingend notwendig ist. In der folgenden Arbeit soll nun
eine Priorisierung von personlichen Aufgaben an Hand verschiedener Kriterien entwickelt
werden. Diese Kriterien stammen zum einen aus den Eigenschaften der Aufgabe, wie zum
Beispiel Deadlines oder Ausfiihrungsorte, zum anderen sollen aber auch Kontextinformatio-
nen des Benutzers wie seine aktuelle Position mit in die Berechnung einbezogen werden.
In der Arbeit werden vorhandene Planungssysteme auf ihre Einsatzfahigkeit fiir PerFlows
untersucht und auf Basis der daraus gewonnen Ideen und Mingellisten ein Konzept fiir
die Umsetzung eines TaskManagers fiir PerFlows erstellt. Ein wesentlicher Bestandteil ist
die Umsetzung des TaskManagers auf realen Plattformen, um in zukiinftigen Arbeiten die
Evaluierung von Kriterien in einem realen Szenario zu ermoglichen. Die gewonnenen Er-
kenntnisse tiber eine sinnvolle Architektur des Gesamtsystems und die Implementierung fiir
unterschiedliche mobile Plattformen vervollstindigen diese Arbeit. Die Datenschutzaspekte
wurden hier bewusst ausgelassen, was aber nur der Abgrenzung der Arbeit dient, aber keine
Schmailerung der Relevanz dieser Themen bedeutet. Vor einem Einsatz der hier entwickelten
Losung miissen diese Fragestellungen unbedingt bearbeitet werden.

1.2. Ziele der Arbeit

Das Ziel dieser Arbeit gliedert sich in mehrere Bereiche. Zum einen soll ein Datenmodell fiir
die Verwaltung von Aufgaben erstellt werden, das es ermoglicht diese mit Kontextinforma-
tionen (z.B. Lokation) anzureichern und sie in PerFlows nutzen zu konnen. Des Weiteren
soll ein Algorithmus entwickelt werden, der diese Aufgaben anhand diverser Faktoren, wie
Lokationsinformationen und Zeitvorgaben, dynamisch priorisiert und dem Anwender eine
Empfehlung fiir die Abarbeitungsreihenfolge seiner Aufgaben gibt. Abschlieflend wird eine

10

1.3. Aufbau der Arbeit

konkrete Implementierung fiir diverse Endgerdte des Benutzers geplant und ausgefiihrt.
Hierbei werden auf Architektur- und Protokolliiberlegungen mit einflief3en.

1.3. Aufbau der Arbeit

Die folgende Arbeit gliedert sich in zwolf Abschnitte. Zu Beginn werden die Grundlagen,
die fiir diese Arbeit notwendig sind, erldutert. Dabei werden die Begriffe Aufgabe und Task
synonym verwendet. Die Grundlagen beinhalten bestehende Konzepte zur Taskverwaltung,
verwandte Arbeiten und das Konzept der PerFlows. Im Weiteren wird dann der Taskbegriff
fiir diese Arbeit definiert und von den bestehenden abgegrenzt. Im Kapitelg werden verschie-
den Methoden zur Priorisierung vorgestellt und anschliefSend der erarbeitete Algorithmus
ndher erldutert. Das Kapitel 6 betrachtet die Architektur des Gesamtsystems. Hier werden
verschiedene Ansitze gepriift und dann die einzelnen Komponenten der gewéhlten Infra-
struktur vorgestellt. Die Implementierung der Serverkomponente schliefst sich im Kapitel 7
an. Die Festlegung der Schnittstelle wird danach getroffen. Die Kapitel 9ff widmen sich der
Implementierung von Desktop- und Mobileclients, sowie den Erweiterungsmaoglichkeiten.
Eine Evaluation der entwickelten Komponenten mit einer anschlieffenden Zusammenfassung
der Arbeit und ein Ausblick auf zukiinftige Anwendungen im Bereich der PerFlows und
dartiber hinaus schliefien die Arbeit ab.

11

2. Grundlagen und verwandte Arbeiten

2.1. Motivation

In diesem Kapitel sollen die notwendigen Grundlagen fiir die vorliegende Arbeit erldutert
werden. Des Weiteren werden bestehende Konzepte zur Verwaltung von Aufgaben aus
dem wissenschaftlichen und kommerziellen Bereich vorgestellt und die Unterschiede und
Gemeinsamkeiten zum hier vorgestellten TaskManager beschrieben. Das Ziel ist es, die
hinter dieser Arbeit stehende Idee zu erkldren und alle notwendigen Voraussetzungen fiir
die folgenden Kapitel zu schaffen.

2.2. Personal Flows

In seiner wegweisenden und visiondren Arbeit im Bereich des ubiquitous computing “The
Computer for the 21st Century” [Weig1] beschreibt Mark Weiser eine Welt, in der alle Objekte
aus dem tdglichen Bedarf mit intelligenten Funktionen ausgestattet sind und uns bei unserer
Arbeit unterstiitzen. Die Unterstiitzung reicht dabei von digitalen Wanden und Projektions-
tafeln tiber mobile Endgerite bis hin zu digitalen Notizzetteln. Zur Zeit der Veroffentlichung
waren all diese Ideen noch nicht technisch umsetzbar und reine “Science-Fiction”. Durch den
dramatischen Anstieg der Anzahl an Computern und computerdhnlichen Gerate und der
Ausdehnung der Anwendungsbereiche in alle Lebenssituationen kann aus dieser Fiktion aber
heute Realitdt werden. Nahezu jeder hat heute ein Handy und der Anteil an Smartphones
wiéchst stark an. Auch durch die Miniaturisierung von Computern auf Subnotebooks oder
der Hype um Tablet-PCs zeigen, dass der Computer als Alltagsgegenstand langst Standard
ist.

Ein Vorschlag zur Umsetzung dieser Vision mit heutigen Mitteln findet sich im Paper “Per-
Flows for the Computers of the 21st Century” aus dem Jahre 2009 [UHW ' o09]. Die Autoren
beschreiben darin die Verwendung von aus dem Prozessmanagement abgeleiteten Methoden
zur Umsetzung personlicher Abldufe im téglichen Leben. Dazu fiihren sie das Konzept der
“Personal Workflows” oder PerFlows ein. Diese Arbeit basiert auf den Sentient Processes aus dem
Jahre 2006 [UBRo6]. Mit Hilfe dieser Flows lassen sich Aufgaben und Ziele einer Person samt
den dazu notwendigen Schritten als Prozess modellieren und in einer geeigneten Laufzeit-
umgebung ausfiihren. Der fiir die Ausfithrung notwendige Benutzerkontext beinhaltet als

13

2. Grundlagen und verwandte Arbeiten

eines der wichtigsten Merkmale die Position des Benutzers. Dazu liefert einer der Autoren
das Positionierungskonzept des SmartGPS [Hubo§].

Die Ausfithrung der PerFlows geschieht dann auf einem verteilten System, bei dem ein mo-
biles Endgerat des Benutzers die Rolle des Prozesskoordinators iibernimmt. Dieser verwaltet
die zu erledigenden Prozessschritte der aktiven PerFlows und fiihrt diese bei Aktivierung
auf geeigneten Geriten in der aktuellen Umgebung des Benutzers aus. Im Gegensatz zu den
genannten Arbeiten kann mittlerweile sogar von einer dauerhaften Internetverbindung der
beteiligten Gerdte ausgegangen werden, was die Koordination und Verwaltung der Daten
und Aufgaben wesentlich erleichtert.

Da ein Grofiteil der Aufgaben im personlichen Ablauf von einem Menschen ausgefiihrt wer-
den und nur einige unterstiitzenden Aufgaben automatisiert ablaufen, ist die Verwaltung von
personlichen Aufgaben eine Kernkomponente einer PerFlow-Umgebung. Das Prozesssystem
darf im Gegensatz zum geschiftlichen Einsatz dem Benutzer keine Aufgaben und Pro-
zessabldufe diktieren, sondern soll als Empfehlung verstanden werden und Abweichungen
des Benutzers vom aktuellen Prozess tolerieren und entsprechende Mafinahmen ergreifen.
Deshalb diirfen unumkehrbare Prozessschritte nur nach Genehmigung durch den Benutzer
ausgefiihrt werden und nur reversible Aktionen vollautomatisch aktiviert werden.

Nach der Vorstellung des Konzepts und der Ausfithrungsumgebung fiir PerFlows in
[UHW™o09] soll nun in dieser Arbeit der notwendige TaskManager fiir personliche Auf-
gaben konzipiert und implementiert werden. Dies berticksichtigt auch die Priorisierung der
Aufgaben nach Wichtigkeit und Gelegenheit, sowie die Statusverwaltung der Aufgaben zur
Kommunikation mit dem Prozesskoordinator. Im weiteren Verlauf sind mit den Begriffen
Flow, Workflow oder Prozess, wenn nicht anders angegeben, immer PerFlows entsprechend
des eben vorgestellten Konzepts gemeint.

2.3. Taskkonzepte

Die Verwaltung von Aufgaben im personlichen oder geschiftlichen Umfeld ist kein neues
Thema. Es existieren bereits diverse Losungen fiir Taskmanagementsysteme. Dies beinhaltet
reine Aufgabenlistensysteme wie zum Beispiel PIM-Losungen und komplexe Verwaltungs-
programme fiir die Verwendung in Geschiftsprozessen. In diesem Abschnitt werden nun
einige dieser Losungen vorgestellt und anschlieffend gekldrt, warum eine weitere TaskMa-
nagerentwicklung sinnvoll ist. Bei den vorgestellten Losungen handelt es sich sowohl um
theoretische Konzepte als auch um reale Implementierungen, die auf dem Markt verfiigbar
sind.

14

2.3. Taskkonzepte

2.3.1. PIM Tasks

Unter Personal Information Manager versteht man Systeme, die personliche Daten wie Kontakte,
Aufgaben und Notizen verwalten. Diese Art der Aufgabenverwaltung ist sehr weit verbreitet
und liefert die Grundlage einer digitalen Erfassung seiner ToDos. Das bekannteste Beispiel
in diesem Bereich diirfte Microsoft Outlook sein. Es bietet dem Benutzer die Moglichkeit
Aufgaben anzulegen, zu kategorisieren und ihren Fortschritt zu dokumentieren. Screenshots
der Anwendung finden sich in [Abb: 2.1].

a g - =) i
E A i GHIERE b= e Anordnen nach: Kennzeichen: F...
Aufgabe Einfiigen Text formatieren o @
. — i I sue Aufaabe einaeber
H X 3 B e B 4 O v
Kat i -
be S(ais:bﬂirr\‘(hl Serientyp Kaf E%OTIEN] v Kell'l Datum
Aktionen en Serie Zoom Freihand .
Einkaufen Y
U itdt P
e Sporttraining k4
Betreff: DA schreiben
Handbuch lesen Ow
Beginnt am: Fr01.10.2010 - Status: In Bearbeitung
Eéllig am: Do 31.03.2011 - Prioritgt: Normal - % erledigt: |60% :
[Erinnerun g: | Ohne Ohne B Zustindig: Thorsten Hoger
i) 4 Y Heute
Ll
(a) Einzelner Task (b) Komplette Worklist

Abbildung 2.1.: Tasks Microsoft Outlook

Weitere bekannte Beispiele fiir PIM-Losungen sind Apple iCal' und Mozilla Sunbird?. Auch
jedes Smartphone bringt im Betriebssystem eine Verwaltung von Aufgaben und Notizen mit,
die sich mit Desktoplosungen abgleichen lassen. Diese Systeme sind allerdings nur fiir die
Benutzung durch Menschen konzipiert und lassen sich schlecht automatisiert in Software ver-
wenden. Eine Integration in ein Workflowsystem ist mit diesen Produkten nicht zielfiihrend.
Auch bieten diese Systeme sehr eingeschrankte Moglichkeiten, die Aufgaben automatisch zu
priorisieren. Stattdessen setzen sie auf eine vorgegebene und statische Priorisierung durch
den Anwender. Aus diesen Griinden ist eine Verwendung dieser Komponenten in PerFlows
nicht durchfiihrbar, allerdings sollte eine Moglichkeit geschaffen werden, die Aufgaben
eines PIM-Systems im TaskManager zu integrieren. Dies ist aber nicht Bestandteil dieser

Thttp:/ /www.apple.com/de/macosx/what-is-macosx/mail-ical-contacts-apps.html
*http:/ /www.sunbird-kalender.de

15

2. Grundlagen und verwandte Arbeiten

Arbeit. Ein weiterer Nachteil von PIM-Systemen ist nach [OTMos3, 2.2], dass es “fiir eine
Verbesserung der personlichen Produktivitat wichtig ist, Aufgaben vorausschauend und
unter verschiedenen Blickwinkeln zu evaluieren” und konventionelle Aufgabenplaner diese
Anforderung nicht umsetzen kdnnen.

2.3.2. WS-HumanTask

Eine weitere Arbeit, die sich mit der Verwaltung von Task beschiftigt ist das Konzept
der WS-HumanTasks[AAD"o7b]. Es bietet eine Moglichkeit von Menschen auszufiihren-
de Aufgaben in Geschiftsprozessen zu verwenden. Dazu wird in einem BPEL-Prozess3
mit der Erweiterung BPEL4People[AAD ™ o7a] eine peopleActivity verwendet, die dann den
TaskManager bedient. Hierbei wird sehr stark auf die Interaktion von Taskverwaltung und
Prozessumgebung wert gelegt, daher zielt diese Losung in eine vergleichbare Richtung
wie die Verkntipfung von PerFlows mit Personal Tasks. Allerdings ist auf Grund der viel-
taltigen Einsatzmoglichkeiten im Geschéftsumfeld und der hohen Prozessanforderungen
an Geschiéftsprozesse die Verwendung von BPEL und Ws-HumanTask zu komplex fiir
den Anwendungsfall der Prozessverwaltung im personlichen Bereich. Ein wichtiger Unter-
schied von Geschéftsprozessen zu personlichen Workflows ist aufSerdem die gewtinschte
Prozesstreue im geschéftlichen Umfeld und die flexible, eher als Vorschlag zu betrachtende
Ausfiihrung im privaten Umfeld. Auch die Machtigkeit von WS-HumanTask im Bereich
der automatischen Zuweisung von Personen zu Tasks (potentialOwners) und die Integration
der, bei Bedarf auch multilingualen, Darstellungsbeschreibung von Tasks innerhalb der
Definition fithren zu dem Schluss, dass die Verwendung von WS-HumanTask im Bereich
der PerFlows iiberdimensioniert und von zu hoher Komplexitéat ist. Trotzdem beeinflussen
die Uberlegungen hinter WS-HumanTask die Entwicklung des Konzepts der persénlichen
Aufgaben.

2.3.3. Andere Arbeiten

Bereits 1992 haben Toyohide Watanabe und Teruo Fukumura in ihrer Arbeit A Scheduler
of Daily Personal Tasks on the Basis of the Object-oriented Model [WF92] das Problem der
Ablaufplanung von personlichen Aufgaben als wichtig erkannt und eine objekt-orientierten
Losungsansatz prédsentiert. Sie gehen dabei davon aus, dass jede Person einen eigenen
“Stundenplan” mit ihren Aufgaben hat und zusétzlich Mitglied in n Umgebungen ist, die
wiederum Aufgabenpldne beinhalten. Diese Umgebungen konnen baumartig geschachtelt
sein und somit dem einzelnen Benutzer mehrere parallele Zeitplane bieten. Der Benutzer, von
den Autoren Agent genannt, muss nun nach dem in [WFgz2, Fig. 7] beschriebenen Algorithmus
diese Zeitpldne verschmelzen um einen einzelnen, aktuellen Zeitplan zu erhalten, der dann

3Business Process Execution Language[Orgo7]

16

2.4. Zusammenfassung

ausgefiihrt werden kann. Allerdings gibt es auch hier keine Garantie der Ausfiihrbarkeit
durch inkompatible Zeitplane.

Auch im Artikel von Ohmukai, Takeda und Miki [OTMo3] liegt das Hauptaugenmerk auf
der Erstellung eines Ablaufplans fiir personenbezogene Aufgaben. Die Autoren wahlen
hier aber einen anderen Ansatz zur Aufstellung der Plane. Als Ausgangssituation fiir den
vorgeschlagenen Losungsweg steht dem System eine Liste von zu erledigenden Aufgaben
zur Verfligung, die dann in eine gemeinsame Liste gefiillt werden. Danach versucht das
System entstandene Konflikte bei der Ablaufplanung zu losen, indem es einzelne Aufgaben
umplant. Dabei werden die verschiedenen Plane getrennt erstellt und dann einzeln bewertet,
um den idealen Ablaufplan zu finden. Dieser dreistufige Ablauf ist dem menschlichen
Entscheidungsprozess nachempfunden, nach dem erst die notigen Informationen gesammelt
werden, danach die moglichen Optionen bestimmt werden und abschlieffend die beste
Losung gewdhlt wird.

Ein anderes Ziel verfolgt das Paper Supporting Flexible Processes Through Recommendations
Based on History [SWDAOo8]. Die Autoren stellen eine Methode zur Empfehlung von Aufgaben
basierend auf Zielfunktionen und Prozesslogs. Dabei definiert ein Benutzer welches Ziel er
in einem Prozess erreichen mochte. Zusatzlich liefert er ein Log seiner bisherigen Prozess-
schritte. Mit Hilfe dieser Daten sucht das System dann fiir diesen Fall relevante Ablauflisten
vergangener Ausfithrungen desselben Prozesses und versucht anhand der Zielfunktion
eine optimale Empfehlung des ndchsten Prozessschrittes zu geben. Der grundsitzliche
Unterschied zum TaskManager in dieser Arbeit ist die Tatsache, dass der Benutzer seine
ndchsten Aufgaben nicht kennt sondern erst vom System vorgeschlagen bekommt wogegen
der TaskManager bestehende Aufgabeliste anhand der Kontextinformationen des Benutzers
priorisiert.

2.4. Zusammenfassung

All diese Konzepte vernachldssigen den aktuellen Aufenthaltsort des Benutzers. Dies ge-
schieht entweder aus mangelnden Informationen tiber die Lokation oder aus der Annahme
einer geschéftlichen Nutzung in einer definierten Umgebung ohne Bezug zu anderen Berei-
chen des Benutzers. Da aber die Priorisierung von kontextbezogenen Aufgaben im personli-
chen Umfeld unabdingbar fiir den Einsatz in PerFlows ist, kann keines dieser Systeme alle
Anforderungen erfiillen. Deshalb wird im Folgenden ein neues Konzept zur Verwaltung von
Aufgaben erarbeitet.

17

Teil Il.

Theoretische Konzepte

19

3. Personal Task

3.1. Motivation

Um den Priorisierungsalgorithmus zu definieren und zu implementieren ist ein Taskmodell
notwendig, das die entsprechenden Attribute beinhaltet. Zur Hilfestellung bei der Definition
wird zunéchst ein Beispielszenario skizziert und dessen Aufgaben abschliefiend mit dem
definierten Modell beschrieben.

3.2. Szenario

Das folgende Szenario dient der Verdeutlichung der Konzepte und Algorithmen in dieser
Arbeit. Es bezieht sich dabei auf die Ausgangssituation von Sal aus Weisers Beispiel[Weig1].
Zusatzlich zu ihrem beschriebenen Tagesablauf sollen nun drei Aufgaben gezeigt werden,
die sie am Wochenende durchzufiihren hat. Als erste Aufgabe will Sal den Familieneinkauf
durchfiihren. Dazu muss sie in den 11 km entfernten Supermarkt fahren. Sie startet nun
den Einkaufen-Flow, der die Einkaufsliste aus dem digitalen Notizbuch entnimmt und den
TaskManager anweist eine Aufgabe einzuplanen. Weiter miissen ihre Kinder um 15:00 Uhr
zum Sport im 10 km entfernten Sportstadion sein. Diese Aufgabe hat eine harte Zeitgrenze,
da Verspatungen einer Nichterfiillung gleichkommen. Als letzte Aufgabe will Sal noch das
Handbuch ihres Garagenoffners lesen, das ihr vom Hersteller zugesendet wurde. Diese
Aufgabe stuft sie als priorisiert ein, weist ihr aber keine Deadline zu. Dies fiihrt zu einer
Unterordnung bei Aufgaben mit nahender Deadline.

3.3. Anforderungen

Um die Eigenschaften der Tasks entsprechend des gezeigten Szenarios einzuordnen, muss
das Taskmodell einerseits grundlegende Eigenschaften ausweisen, wie eine Bezeichnung,
Start- und Endzeiten sowie Laufzeitinformationen. Andererseits sind aber auch Kontextin-
formationen wie der Ausfithrungsort einer Aufgabe wichtig, um bei der Priorisierung eine
Zuordnung des Umfelds des Benutzers zu einzelnen Aufgaben zu ermoglichen. Ein weiterer
Aspekt ist die Trennung zwischen Taskmodell und Taskinstanz. Dabei wird eine Aufgabe

21

3. Personal Task

zuerst als Entwurf mit allen Attributen angelegt und dann bei Bedarf eine konkrete Instanz
erzeugt, die dann zur Priorisierung gelangt. Der Zugriff auf Kontextdaten aus dem PerFlow
soll ebenfalls moglich sein. Hierzu konnen entweder Daten aus dem Kontext an den Task
angehidngt werden oder die Taskanzeige kann auf die Ausfiihrungsumgebung des PerFlows
zugreifen und die benotigten Daten direkt referenzieren. Eine nicht-funktionale Anforde-
rung an das Taskmodell ist das Ziel einer niedrigen Komplexitdt, um dem Einsatzgebiet im
personlichen Umfeld gerecht zu werden. Deshalb gelten hier nicht dieselben Anforderungen
wie beispielsweise bei WS-HumanTask [AAD " o7b].

3.4. Definition

Der hier verwendete Taskbegriff beinhaltet eine geringere Komplexitt als Tasks im gewerbli-
chen Bereich oder in Geschiftsprozessen. Eine Erweiterung zu bisherigen Taskdefinitionen
aus PIM-Systemen ist die Verwendung der Lokation in Koordinatenform zur Vereinfachung
der digitalen Verarbeitung statt der iiblichen textbasierten Ortsangabe. Um dem Benutzer
die Verwaltung zu erleichtern gibt es keine verschiedenen Aufgabentypen, sondern nur
allgemeine auszufiihrende Aufgaben. Die Erzeugung von Aufgabenentwiirfen wird aus
dem TaskManager ausgelagert und kann entweder bei der Erfassung verwaltet werden oder
direkt in der PerFlow-Engine vorgehalten werden. Der TaskManager erhilt dann nur die
Taskinstanzen und unterscheidet somit nicht zwischen Modell und Instanz. Jede Aufgabe ist
somit eine einmalig auszufiihrende Einheit. Kontextdaten werden bei Bedarf direkt aus der
Engine geladen oder im Beschreibungsfeld hinterlegt. In einer weiteren Entwicklung kénnte
der Task allerdings um Ein- und Ausgabedaten erweitert werden, um Kontextdaten aus den
PerFlows zu verwenden und diese in einem Anzeigesystem darzustellen ohne Kenntnis von
der Ausfithrungsumgebung zu haben.

Zusammenfassend gilt fiir PersonalTasks nun:

Personal Tasks sind in sich abgeschlossene, aber trotzdem wahlweise pausierbare, Aufgabenpakete,
die von Privatpersonen im personlichen Umfeld zu bearbeiten sind und mit Kontextinformationen
angereichert wurden.

3.5. Eigenschaften

3.5.1. Felder

Die Felder der hier verwendeten Taskdefinition sind in der folgenden Liste aufgezéhlt. Eine
Beschreibung der einzelnen Felder findet sich im Anhang A.

22

3.6. Taskattribute im Szenario

e id e manualPriority
e name e location
e description e pausable
e state e runtime

e startTime

o dueTime

3.5.2. Status

e estimatedRuntime

e escalation

Der Status einer Aufgabe ist eine der Kerneigenschaften zur Verwaltung von Tasks und im
Feld state abgelegt. Die moglichen Werte sind in [Tabelle: 3.1] beschrieben. Die moglichen
Statusiibergdngen findet man in [Abb: 3.1].

Zustand Bedeutung

NotYetStarted | Die Aufgabe wurde noch nicht gestartet und wartet auf
Aktivierung

Running Die Aufgabe ist momentan in Bearbeitung

Waiting Die Aufgabe ist unterbrochen, da sie auf externe Ergebnisse
wartet

Paused Die Aufgabe ist pausiert und kann fortgesetzt werden.

Reopened Eine bereits geschlossene Aufgabe wurde wieder geoffnet
und kann gestartet werden

Closed Die Aufgabe ist als erledigt markiert

Deleted Die Aufgabe wurde geldscht

Tabelle 3.1.: Aufgabenzustinde

3.6. Taskattribute im Szenario

Entsprechend dieser Definition und den Angaben aus dem Szenario ergeben sich die Tasks
aus der Liste in [Tabelle: 3.2]. Sie dienen im weiteren Verlauf als Ausgangsbasis fiir alle
beispielhaften Berechnungen und Beschreibungen.

23

3. Personal Task

NotYetStarted

Paused

Abbildung 3.1.: Zustandsiibergédnge von Aufgaben

Attribut Task 1 Task 2 Task 3
Name Einkaufen | Training | Handbuch lesen
startTime - 14:15 -
dueTime 18:00 15:00 -

est. Runtime 30 min 20 min 10 min
location Supermarkt | Stadion Zuhause
manualPriority | Medium | Medium High
escalation Top Top Ignore

Tabelle 3.2.: Sals Beispielaufgaben

3.7. Zusammenfassung

Das hier gezeigte Datenmodell fiir personliche Aufgaben beinhaltet alle notwendigen In-
formationen, um die Priorisierung durchzufiihren und eine Integration in die PerFlow
Umgebung zu ermdoglichen. Es dient als Grundlage fiir die gesamte weitere Arbeit und
findet sich in dieser Form auch in der Implementierung wieder. Anhand des aufgezeigten
Szenarios wird die weitere Entwicklung der Komponenten erldutert.

24

4. Methoden der Priorisierung

4.1. Motivation

In diesem Kapitel werden Methoden der Priorisierung aus verschiedenen Bereichen vorge-
stellt. Sie dienen als Ideengrundlage fiir die Entwicklung des Priorisierungsalgorithmus im
darauffolgenden Kapitel.

4.2. Anforderungen

Bei der Priorisierung von Tasks miissen diese anhand von Informationen aus den Eigen-
schaften und Kontextinformationen des Benutzers in eine Reihenfolge gebracht werden, die
angibt welcher Task zuerst ausgefiihrt werden sollte, welcher als nidchstes und so weiter.
Dazu miissen die relevanten Attribute erkannt werden und ein Verfahren entwickelt werden,
das eine sinnvolle Priorisierung erlaubt. Eine essentielle Eigenschaft des Verfahrens muss die
dynamische Priorisierung sein. Das heifst Tasks werden bei der Verdnderung von Rahmen-
bedingungen neu priorisiert, um eine aktuelle Reihenfolge zu erhalten. Die Priorisierung
sollte versuchen die Aufgaben so einzuplanen, dass diese vor ihrer Filligkeit erledigt werden
konnen um Verspatungen zu minimieren. Die Performanceanforderungen des Verfahrens
beeinflussen spiter auch nachhaltig die Wahl der Architektur. So ist fiir eine Berechnung
auf dem mobilen Endgerit ein deutlich einfacherer Algorithmus zu entwerfen als fiir eine
zentralisierte Architektur.

4.3. Berechnungsmethoden

Priorisierung spielt in vielen Bereichen eine wichtige Rolle. Beispiele hierfiir sind Anwen-
dungen zur Einreihung von Arbeitsschritten in eine Sequenz, die heuristische Bewertung
von Daten, oder das Scheduling in Prozessoren. Bei allen Verfahren geht es darum, aus
einzelnen Attributen der Objekte ein Reihenfolge abzuleiten, die ausgefiihrt werden kann
oder Objekte anhand ihrer Eigenschaften zu bewerten, um dann entsprechende Aktionen
auszufiihren. Im Folgenden werden einige der bestehenden Verfahren vorgestellt. Hierbei
unterscheiden sich die Verfahren hauptsédchlich durch die Anzahl der zur Priorisierung

25

4. Methoden der Priorisierung

verwendeten Attribute. Bei den Bewertungsalgorithmen werden beliebige Eigenschaften zur
Entscheidung herangezogen, bei den Prozessorplanern liefert normalerweise ein zeitbasiertes
Attribut die notigen Informationen.

4.3.1. Echtzeit-Schedulingverfahren

Auf einer echtzeitfadhigen Maschine miissen die einzelnen Aufgabenpakete oder Prozesse
in eine Ausfiihrungsreihenfolge fiir die verfiigbaren Ressourcen gebracht werden. Dabei
handelt es sich primdr um die Vergabe von Rechenzeit auf dem Prozessor. Diese Algorithmen
heiffen Schedulingverfahren. Im Gegensatz zur restlichen Arbeit werden in diesem Abschnitt
die Aufgabenpakete fiir Prozessoren als Tasks bezeichnet. Die Verfahren FIFO, Least-Laxity-
First, Fixed Priority und Earliest-Deadline-First sollen hier nun beschrieben werden und ihre
Adaptionsmoglichkeit fiir personliche Aufgaben untersucht werden. Die Informationen iiber
die Schedulingverfahren stammen aus [Go10].

FIFO

Eines der einfachsten Verfahren ist das FIFO-Verfahren. Hierbei werden die Tasks entspre-
chend ihrer Erstellungsreihenfolge eingeplant. Der am friihesten erstellte Task wird zuerst
ausgefiihrt. Dieses Verfahren erlaubt keine Umpriorisierung bei verdnderten Rahmenbedin-
gungen, ist aber sehr einfach zu implementieren. Auf Grund fehlender Dynamik ist es fiir
die in dieser Arbeit geplante Anwendung nicht geeignet.

Earliest-Deadline-First

Beim Earliest-Deadline-First-Verfahren (EDF) liegt das Augenmerk auf der Einhaltung von
Deadlines. Es gehort daher zu den zeitbasierten Verfahren und plant immer den Task ein,
der den frithesten Fertigstellungstermin hat. Das fiihrt dazu, dass Tasks, unter der Vorausset-
zung der Machbarkeit, immer vor ihrer Deadline begonnen werden. Dieses Verfahren wird
sehr hdufig in Echtzeitsystemen eingesetzt[Go10]. Da die Zeitspanne bis zur Fertigstellung
nur einer der Aspekte der Aufgabenpriorisierung sein soll, ist dieses Verfahren fiir den
TaskManager nur bedingt geeignet.

Least Laxity First

Das Least-Laxity-First-Verfahren ist eine Abwandlung des EDF-Verfahrens. Dabei werden die
Aufgaben nach ihrem Spielraum sortiert und dann der Prozess mit dem geringsten Spielraum
gestartet. Unter dem Spielraum eines Prozesses versteht man die Zeitdifferenz zwischen
seiner Fertigstellungszeit und seiner geplanten Ausfiihrungszeit und seiner Bereitzeit, also

26

4.3. Berechnungsmethoden

die Zeitspanne die der Task “zu friith” fertig wéare wenn er sofort starten wiirde. Der
Rechenaufwand bei diesem Verfahren ist relativ hoch, da fiir jeden Task der Spielraum
berechnet werden muss. Aufierdem wird bei diesem Verfahren sehr oft umpriorisiert. Es ist
aber optimal fiir unterbrechbare Prozesse geeignet. Auf Grund des Ansatzes, Aufgaben so
spat wie moglich, aber immer rechtzeitig einzuplanen, wird es im folgenden Kapitel fiir die
Bewertung von Zeitprioritaten personlicher Aufgaben verwendet.

Fixed Priority

Das Fixed-Priority-Verfahren gehort wiederum zu den einfacheren Verfahren. Hierbei wird
jedem Prozess eine feste Prioritdt zugewiesen. Der Scheduler plant die Tasks dann so ein, dass
immer der Task mit der verbleibenden Hochstprioritat als néchstes startet. Dieser Ansatz
wird im hier entwickelten Algorithmus fiir die Bewertung der manuellen Priorisierung
aufgegriffen.

4.3.2. Bewertungsalgorithmen

Im Gegensatz zu den Schedulingverfahren, die die Gesamtheit der Aufgaben betrachten,
sind die Bewertungsalgorithmen fiir die Berechnung eines Wertes fiir ein einzelnes Objekt
ausgelegt. Hierbei wird einem Objekt eine Wertung vergeben, die unabhéngig von den
weiteren Objekten in der Priifung ist. Somit eignen sich diese Verfahren bei kontinuierlichen
Objektstromen, die auf Basis von Erfahrungswerten betrachtet werden. Als Beispiel einer
heuristischen Bewertung von Daten soll die Spamerkennung dienen. Hierbei wird eine einge-
hende Nachricht mit vielen verschiedenen Filtern und Algorithmen bearbeitet. Dabei vergibt
jeder Filter eine Wertung der Nachricht als Dezimalzahl, die die Nachricht als potentiellen
Spam, als neutral oder als erwiinscht einstuft. Das Spamsystem addiert nun die einzelnen
Bewertungen und vergleicht diese Summe gegen einen vordefinierten Schwellwert. Wird nun
dieser Schwellwert bei einer Nachricht {iberschritten, wird diese je nach Konfiguration als
Spam markiert oder geloscht. Eine Umsetzung dieser Art der Spam- und Virenbekdmpfung
erfolgt beim kombinierten Einsatz von amavisd® mit ClamAV? und SpamAssassin3. Ein
Beispiel der Bewertung eingehender Nachrichten lautet wie folgt.

amavis[19864]: ... Passed SPAM, ... quarantine:
Hits: 14.175, size: 10292, queued_as: 952F616FO0CBA, 4114 ms
amavis[19865]: ... Passed CLEAN ...

Hits: -2.563, size: 782, queued_as: 4CEA716FO0CA8, 291 ms

Thttp:/ /www.ijs.si/software/amavisd /
*http:/ /www.clamav.net
3http:/ /spamassassin.apache.org/

27

4. Methoden der Priorisierung

Hierbei wurde die erste Nachricht als SPAM markiert, da sie den Schwellwert von 10 deutlich
tiberschritten hat. Die zweite Nachricht wurde mit einem Wert von —2,563 akzeptiert und
dem Empfinger zugestellt.

Dieser Ansatz der Bewertung von Objekten durch Vergabe von Punkten und der anschlieflen-
den Einordnung anhand der Gesamtwertung soll nun auch im hier entwickelten Algorithmus
Anwendung finden. Hierbei dienen die Schedulingverfahren zur Berechnung der Summan-
den und die Gesamtsumme der Werte danach zur Priorisierung der Aufgaben.

4.4. Zusammenfassung

In diesem Kapitel wurden mehrere Methoden vorgestellt, um Tasks zu priorisieren. Dabei
wurden hauptsichlich Konzepte aus dem Prozessorscheduling aufgezeigt. Das Scheduling
von personlichen Aufgaben wird nun aus den Kernideen dieser Verfahren zusammengestellt,
wobei hierbei mehrere Verfahren kombiniert werden. Trotz der erhchten Komplexitat des
Least-Laxity-First-Verfahrens wird es im Folgenden fiir die Bewertung von Taskdeadlines
eingesetzt. Die Idee der Bewertung von Objekten durch eine Punktvergabe bildet im hier
entwickelten Algorithmus die Grundlage der Priorisierung, da dadurch eine sehr hohe
Flexibilitat gegeben ist und das Punktesystem sehr einfach durch einen erfahrenen Benutzer
den eigenen Bediirfnissen angepasst werden kann. Ein signifikanter Unterschied gegeniiber
den Schedulingverfahren fiir Prozessoren ist die Tatsache, dass bei PerFlows durchaus
einzelne eingeplante Tasks gar nicht zur Ausfithrung kommen, sondern verfallen oder
vorher wieder aus der Priorisierung entnommen werden. Dies muss bei der Entwicklung
des Algorithmus beachtet werden.

28

5. Priorisierungsalgorithmus

5.1. Motivation

In diesem Kapitel soll nun der konkrete Algorithmus zur Priorisierung von Aufgaben erldu-
tert werden. Dazu werden zuerst die relevanten Eigenschaften genannt und die verwendete
Gewichtung erldutert. Danach folgt der Algorithmus selbst sowie Angaben zur Neuberech-
nungslogik. Diese gibt an in welchen Féllen der Algorithmus neu angestofien wird um eine
Neupriorisierung der Aufgabenliste vorzunehmen. Abschlieflend wird eine Erweiterung des
Algorithmus fiir Aufgabenabldufe vorgestellt.

5.2. Algorithmus

Grundlage fiir die Priorisierung ist die Taskdefinition gemafs 3.4. Alle folgenden Schritte
basieren auf den getroffenen Annahmen und Festlegungen.

Zur Vereinfachung des Algorithmus wird davon ausgegangen, dass die Bewertung eines
Tasks unabhédngig von den anderen Tasks in der Liste ist. Die Priorisierung ergibt sich
anschlieffend aus der Sortierung der Aufgaben nach ihrer Bewertung. Zur Bewertung werden
nun fiir alle Faktoren verschiedenen Punktzahlen vergeben, die dann fiir jeden Task aufad-
diert werden und so die Bewertung der Aufgabe darstellen. Dabei bedeutet eine grofiere
Zahl eine hohere Bewertung und somit spéter eine hohere Priorisierung. Der Basiswert fiir
einen Task ohne relevante Faktoren ist 0. Die Bewertung eines Tasks hdngt dabei immer vom
Kontext des Benutzers ab, fiir den die Bewertung vorgenommen wird. Ein Task hat somit
keine globale Kennzahl, sondern wird fiir jeden Benutzer getrennt bewertet.

Die Abbildung x ist somit wie folgt definiert:
Sei T die Menge der Tasks und U die Menge der Benutzer im System, dann ist:
x:TxU—=IN

Fiir jeden bewertungsrelevanten Faktor i in einer Aufgabe oder im Kontext des Benut-
zers wird nun eine Kennzahl «; bestimmt, die die Wichtigkeit der Aufgabe anhand dieses
Blickwinkels bewertet. Dabei sollte der Maximal-, Neutral- und Minimalwert in sinnvollem
Zusammenhang mit den iibrigen Faktoren stehen, um die Gewichtung nicht zu sehr zu ver-
zerren. Weiter wird fiir jedes Faktorenpaar i, j eine Funktion p;; definiert, die die Kennzahlen

29

5. Priorisierungsalgorithmus

a; und &; als Argumente bekommt und als Funktionswert eine Anpassung der Kennzahl auf
Grund von Korrelationen der betreffenden Faktoren liefert. So kann eine Anpassungsfunk-
tion bei positiv korrelierten Werten die starke Wirkung der beiden Bewertungsfunktionen
teilweise kompensieren. Die Berechnung der Kennzahl x erfolgt nun anhand folgender
Formel.

Seien w;(T,v) die n Bewertungsfunktionen der Attribute und Kontextfaktoren und p;;(«;, a;)
die paarweisen Anpassungsfunktionen bei Korrelation der Faktoren i und j,
dann gilt fiir einen Task T € T und einen Benutzer v € U:

x(t,v) = Xy ai(T,0) + iy Xy pi(ei (T, 0), 4(T, 0))

Zur Erstellung einer priorisierten Liste wird nun fiir einen festen Benutzer v € U und fiir
alle aktiven Tasks 7; € T der Wert x; = x(T, v) berechnet. Die Sortierung aller Tasks nach
ihrem Wert x; bildet nun die Aufgabenliste des Benutzers v.

5.3. Faktoren zur Priorisierung

Bei der Priorisierung von Tasks sind ausgewdhlte Faktoren zu berticksichtigen. Dazu ge-
horen im Rahmen dieser Arbeit der Aufgabenstatus, der Falligkeitszeitpunkt, die Position
und die manuelle Prioritdt. Andere Faktoren dienen aber durchaus als Hilfswerte bei der
Berechnung der Prioritdt. In einer Erweiterung konnten hier zum Beispiel noch andere
Kontextinformationen wie das aktuelle Fortbewegungsmittel des Benutzer oder das aktuelle
Wetter am Ausfithrungsort mit eingezogen werden. Auf die Annahme einer Korrelation
einzelner Faktoren wird hier zur Vereinfachung verzichtet. Die Gewichtung der einzelnen
Aspekte in dieser Arbeit wird nun ausfiihrlich behandelt. Der Wertebereich der Kennzahl x
ist im hier umgesetzten Fall —100 < x < 115.

5.3.1. Gewichtung der Faktoren

Die folgenden Eigenschaften haben Einfluss auf die Bewertung:

Aufgabenstatus
Der Status einer Aufgabe legt die weitere Bewertung des Tasks fest. Ein laufender Task

(Status Running) wird, wenn er durch den anfragenden Benutzer bearbeitet wird, hoher
bewertet, da das Fertigstellen einer Aufgabe sinnvoller ist als eine neue Aufgabe zu beginnen.

30

5.3. Faktoren zur Priorisierung

Wenn der Task pausierbar ist gilt: ;1 = 10 sonst gilt: a; = 30. Wird ein laufender Task von
einem anderen Benutzer bearbeitet, wird er herabgestuft. Es gilt: ay = —25

Ein Task der sich im Zustand Paused befindet wird mit 10 Punkten bewertet um ihn einem
neuen Task vorzuziehen. a7 = 10

Befindet sich der Task im Wartemodus (Status Waiting) wird er heruntergestuft, da er
momentan nicht ausgefiihrt werden kann. a; = —10

Spielraum bis zur Falligkeit

Sollte fiir einen Task keine Filligkeit angegeben sein wird eine Wertigkeit von 0 angelegt.

Bei gegebener Falligkeit berechnet sich der Spielraum A aus der Differenz der Zeit bis zur
Falligkeit und dem geschétzten Ausfithrungsende bei sofortigem Beginn (A = due(t) —
(time(v) + duration(T))). Gegeniiber einer Bewertung nach Falligkeit hat dies den Vorteil,
dass die benoétigte Zeit zur Fertigstellung der Aufgabe in die Berechnung mit einfliefst. Die
Grundlage fiir diese Bewertung stellt das Least-Laxity-Verfahren dar [G610, S. 342].

Bei abgelaufenen Tasks wird der Wert der Eskalationsstrategie berticksichtigt [Tabelle: 5.1].

Eskalation | a»

Ignore 25
Kill —40
Top 50

Tabelle 5.1.: Bewertung je nach Eskalationsstrategie

Bei zukiinftigen Werten gilt [Tabelle: 5.2].

Spielraum in Minuten | a5
0<A<30 25
30 < A <60 15
60 <A <180 10
180 < A < 360 5
360 < A < 1440 0
1440 < A —-10

Tabelle 5.2.: Bewertung nach Spielraum

31

5. Priorisierungsalgorithmus

Manuelle Prioritéat

Benutzer haben die Moglichkeit den Aufgaben eine manuelle Prioritdt zu setzen. Dies ldsst
einen gewissen Spielraum zu die Priorisierung zu beeinflussen. Es wird wie bei bekannten
Taskplanungstools nur zwischen drei Varianten unterschieden. Ein Task kann High, Medium
oder Low als Prioritdt haben. Die soll auch nur eine Moglichkeit fiir spezielle Priorisierungen
sein und nicht flachendeckend verwendet werden, da hierdurch die automatische Priorisie-
rung ad absurdum gefiihrt wire. Die Wertigkeit der manuellen Bewertung findet sich in
[Tabelle: 5.3].

Prioritat ‘ o3

High 10
Medium | 0
Low —-10

Tabelle 5.3.: Wertigkeit der manuellen Prioritét

Entfernung Task - Benutzer

Die Einbeziehung der Entfernung zwischen dem Benutzer loc(v) und dem Ausfithrungsort
der Aufgabe loc(7) ist zentraler Bestandteil der vorliegenden Arbeit. Somit wird diesem Wert
auch eine grofie Relevanz zugemessen. Als Entfernung wird die Groffkreisdistanz verwendet.
Die Berechnung erfolgt {iber die Semiversus-Formel mit einem angenommenen Erdradius
von 6371km.

Mit Breitengrad ¢, und Langengrad A, gilt fiir die Entfernung ¢:

6 =2 x 6371 km x arcsin <\/sin2 (%) + cos ¢ cos ¢ sin? (AZA)>

Fiir die Bewertung der Entfernung gilt nun die [Tabelle: 5.4]

Entfernung in km | a4
0<dé<1 25
1<46<10 15
10 < 6 <100 o

100 < 6 < 1000 -15
1000 < ¢ -25

Tabelle 5.4.: Wertigkeit der Entfernung

32

5.4. Priorisierung der Szenariotasks

Zeitpunkt: 12:00 Uhr Zeitpunkt: 14:20 Uhr

Aktueller Ort: Zuhause Aktueller Ort: Zuhause
Task 1 | Task2 | Task3 | Worklist Task 1 | Task2 | Task3 | Worklist
«1 =0 | inaktiv | &y =0 | Task 3 (35) 01 =0 |a;=0 | ag =0 | Task 2 (40)
ny =5 ay =0 | Task 1 (5) =5 | ap=25|a,=0 | Task 3(35)
a3 =0 a3 =10 a3 =0 |a3=0 | a3=10 | Task 1 (5)
0(4:0 0(4:25 0(4:0 0(4:15 0(4:25

Zeitpunkt: 15:00 Uhr Zeitpunkt: 17:00 Uhr

Aktueller Ort: Stadion Aktueller Ort: Zuhause
Task 1 | Task2 | Task 3 | Worklist Task 1 | Task2 | Task 3 | Worklist
g =0 | fertig a1 =0 | Task 1 (35) fertig fertig a1 =0 | Task 3 (35)
ar =10 ay =0 | Task 3 (25) ar =0
063:0 063:10 0(3:10
DC4:25 lX4:15 lX4:25

Tabelle 5.5.: Bewertung der Beispielaufgaben

5.4. Priorisierung der Szenariotasks

Aus diesem Algorithmus und dem Szenario aus Abschnitt 3.2 ergeben sich fiir die Tasks
die Bewertungen und Reihenfolgen aus [Tabelle: 5.5]. Dazu wurden vier verschiedene
Kontextsituationen innerhalb Sals Tag verwendet. Man sieht, dass zu Beginn die Aufgabe 2
noch nicht eingeplant wurde, da sie eine Startzeit von 14.15 Uhr hat. Auf Grund der spéiten
Deadline und der Entfernung von 11 km wird das Einkaufen sehr niedrig eingestuft. Zum
zweiten Zeitpunkt ist dann die Aufgabe 2 aktiv und als hochprior eingeplant. Sal fahrt nun
ihre Kinder ins Stadion und erledigt damit diese Aufgabe. Um 15.00 Uhr ist dieser Task nicht
mehr im System, aber auf Grund der verdnderten Position von Sal wird ihr der TaskManager
nun vorschlagen die Einkdufe zu erledigen. Da das Handbuch zu Hause liegt hat Task 3 an
Prioritat verloren. Nach erledigtem Einkauf wieder zu Hause angekommen, verbleibt um
17.00 Uhr nur eine Aufgabe im System, die Sal nun erledigen kann.

5.5. Pseudocode Implementierung

Der Code zur Erstellung der Worklist besteht aus zwei Komponenten. Ein Teil ist die
Berechnung der Kennzahl eines einzelnen Tasks. Dieser Algorithmus findet sich in Listing
5.2, der andere Teil fasst die Berechnungen aller Tasks zusammen und generiert die Worklist.
Dies ist in Listing 5.1 dargestellt. Dieser Listengenerator muss dann fiir alle Benutzer im
System aufgerufen werden, fiir die eine Aufgabenliste erstellt werden soll.

33

5. Priorisierungsalgorithmus

Algorithmus 5.1 Priorisierung von Tasks
procedure PriORIZETAsKs(Tasklist T, User v)
List x // Erstelle Worklist
for all Task 7; € T do
prio(x;) < EVALUATEPRIORITY(T;, V)
task(x;) < T
end for
return sort(), prio) // Sortiere Tasks nach Kennzahl
end procedure

5.6. Neuberechnungslogik

In den vorangehenden Abschnitten wird erldutert, wie die Tasks priorisiert werden und
Worklists erstellt werden. Da sich die Position des Benutzers oder die Eigenschaften von
Aufgaben aber kontinuierlich &ndern, muss die Berechnung der Worklist stindig erneuert
werden. Grundsétzlich bieten sich zwei Moglichkeiten die Neuberechnung auszuldsen. Zum
einen kann bei Anderung von Parametern die Berechnung aktiv angestofien werden. Zum
anderen kann die Berechnung in einem gewissen Zeitintervall regelmaflig durchgefiihrt
werden. Bei der aktiven Berechnung muss nicht auf den Ablauf des Zeitgebers gewartet
werden und die Ergebnisse liegen direkt nach Anderung der Eigenschaften vor. Da die
Zeit aber einer der entscheidenden Faktoren in diesem Algorithmus ist und somit zu den
Kontextparametern gehort, ist in dieser Arbeit eine zeitgesteuerte Neuberechnung vorgese-
hen. In einer Erweiterung liele sich trotzdem zusétzlich aktiv bei Anderung von anderen
Parametern eine Neuberechnung anstofien lassen. Die hier implementierte Losung berechnet
alle Prioritdten in einem zweimintitigen Intervall neu. Dies sollte fiir die Demonstration des
Konzepts ausreichen.

5.7. Erweiterung: zeitliche Ablaufe

Eine Erweiterung des aufgezeigten Priorisierungsalgorithmus ist die Erstellung von idealen
Abldufen. Ziel ist es, aus den Aufgaben eines Benutzers einen zeitlichen Ablauf seiner
Aufgaben zu generieren. Aus Komplexitits- und Laufzeitgriinden wird dabei nicht der ideale
Ablauf bestimmt, da hierbei jede mogliche Reihenfolge tiberpriift werden miisste. Stattdessen
wird nach jedem Priorisierungsschritt die am hochsten bewertete Aufgabe ausgewdhlt. Diese
wird dann aus der Worklist entfernt und der Kontext des Benutzers angepasst. Dazu wird
die Position des Benutzers temporér auf den Ausfithrungsort der entfernten Aufgabe gesetzt
und der Zeitstempel um die geschétzte Ausfithrungsdauer der Aufgabe verschoben. Danach
wird ein weiterer Priorisierungslauf mit den verbleibenden Aufgaben gestartet. Dies wird
wiederholt, bis alle Aufgaben in den Ablauf einsortiert wurden. Der Algorithmus findet sich

34

5.7. Erweiterung: zeitliche Abldufe

Algorithmus 5.2 Bewertung von Tasks

procedure EVALUATEPRIORITY(Task 7, User v)
int prio = 0
if state(t) = Running then
if user(t) = v then
if pausable(T) = true then
prio < prio + 10

else
prio ¢ prio + 30
end if
else
prio < prio — 25
end if

end if
if state(T) = Paused then
prio < prio + 10
end if
if state(t) = Waiting then
prio < prio — 10
end if
prio < prio+ GETLAXITYPOINTS(T, v)
prio < prio+ GETPRIORITYPOINTS(T, v)
prio < prio+ GETDISTANCEPOINTS(T, v)
return prio;
end procedure

in Listing 5.3. Der so erzeugte Aufgabenablauf wird dann dem Benutzer zur Ausfithrung
vorgeschlagen. Durch die dynamische Neuberechnung des Ablaufs bei jeder Anderung bleibt
dem Benutzer aber erstens die Moglichkeit doch eine andere Aufgabe zuerst zu bearbeiten,
was dann durch den Aufgabenstatus auch berticksichtigt wird, und zweitens konnen weitere
Aufgaben der Liste hinzugefiigt werden, die dann beim nédchsten Durchlauf in den idealen
Ablauf integriert werden. Der Algorithmus besitzt allerdings zwei Einschrankungen. Er geht
davon aus, dass ein Benutzer immer nur eine Aufgabe gleichzeitig ausfiihren kann und bei
der tempordren Kontextanpassung werden keine Zeitaufwénde fiir das Erreichen der neuen
Lokation beriicksichtigt.

35

5. Priorisierungsalgorithmus

Algorithmus 5.3 Erstellung von Abldufen

procedure cREATESERIES(Tasklist T, User v)

List x <+ prior1zETASKS(T, v) // Priorisierung durchfiihren
Task T < x.first; // ersten Task auswéhlen
T + T.remove(T)

time(v) < time(v) + duration(t) // Kontext anpassen
loc(v) < loc(T)

return 7|| CREATESERIES(T, v) // rekursiver Aufruf

end procedure

5.8. Zusammenfassung

Der in diesem Kapitel vorgestellte Algorithmus stellt das zentrale Ergebnis dieser Arbeit
dar. Er erlaubt es Aufgaben anhand ihrer Kontextinformationen fiir einen Benutzer zu
priorisieren. Dieser Algorithmus wurde dann am Beispielszenario demonstriert und eine
Pseudocodeimplementierung vorgestellt. Zum Abschluss wurde der Algorithmus um die
Erzeugung idealer Abldufe erweitert.

36

6. Architektur des TaskManagers

6.1. Motivation

In diesem Kapitel soll die Architektur des Systems dargestellt werden. Zu Beginn werden
die Anforderungen an das Gesamtsystem definiert und mogliche Losungsansdtze diskutiert.
Anschliefsend wird das gewdhlte Konzept ndher erldutert und der Systementwurf, der
die Aufteilung in einzelne Komponenten beschreibt und die Definition der Schnittstellen
zur Kommunikation der Komponenten beschrieben. Im Anschluss werden verschiedene
Konzepte fiir Clientapplikationen dargestellt und die entsprechenden Theorien erarbeitet.
Ziel ist es, eine klare Struktur des TaskManagers aufzuzeigen, um eine ideale Interoperabilitdt
der verschiedenen Implementierungen zu gewahrleisten.

6.2. Anforderungen

Die Anforderungen an die Architektur des TaskManagers leiten sich einerseits aus den
gewtinschten Zielplattformen fiir Benutzer und andererseits aus Sicherheitsthemen und
Schnittstellentiberlegungen ab. Da eine moglichst grofse Zahl von Plattformen fiir die Benut-
zerinteraktion angestrebt ist und hier in kurzen Zeitabstinden neue Systeme hinzukommen,
sollte die Architektur eine relativ leichte Adaption auf verschieden Gerite erlauben. Auch
diirfen die Benutzerdaten nicht an ein konkretes Gerat gebunden sein. Auf Seiten der Infra-
struktur ist eine Interaktion mit der PerFlow-Plattform notwendig sowie die Anbindung von
Kontextinformationssystemen. Datenschutziiberlegungen beschrianken dabei die Moglich-
keiten der Ablage und des Zugriff auf Benutzerdaten. Die konkreten Anforderungen sollen
nun genauer beleuchtet werden.

Mehrbenutzerfahigkeit

Da Aufgaben mehreren Benutzer gleichzeitig zugewiesen werden kénnen und diese dann
die Zustandigkeit beim Start iibernehmen, muss das System eine Verwaltung von Benutzer-
daten beinhalten und muss die Daten auch mehreren Benutzer zuganglich machen. Eine
redundante Verwaltung aller Aufgaben pro Benutzer in einem eigenen System ist nicht
sinnhaft und auch schlecht durch die Ausfithrungsumgebung koordinierbar.

37

6. Architektur des TaskManagers

Mobile Endgerate

Die Grundidee der PerFlows geht von mobilen Geréten aus, die der Benutzer bei sich tragt.
Eine Architektur muss darauf ausgelegt sein, auf Gerdaten mit beschrankten Ressourcen
zur Ausfithrung zu kommen. Die Ortsverdnderlichkeit mobiler Endgeréte ist ebenso zu
berticksichtigen. Dies impliziert Einschrankungen bei der Internetkonnektivitdt und verbietet
das Voraussetzen einer gewissen Umgebung in der sich der Anwender bei der Benutzung
aufhalten muss.

Verschiedene Clients pro Benutzer

Je nach Aufenthaltsort und Zweck der Verwendung des TaskManagers wird der Anwender
verschiedene Gerite zur Bedienung des Systems verwenden. Das Abrufen der Aufgaben und
Listen wird eher tiber mobile Endgeréte erfolgen, wogegen die Verwaltung und Bearbeitung
von Aufgabendetails auf Desktopsystemen stattfinden wird. Es muss also moglich sein, von
wechselnden Endgerdten auf die Daten desselben Benutzers zuzugreifen ohne diese vorher
synchronisieren zu miissen.

Kurze Ladezeiten von Aufgabenlisten

Die Abfrage der aktuellen Aufgabenliste ist, wie fiir Smartphoneanwendungen typisch, keine
langere Verwendung der Applikation, sondern spielt sich innerhalb weniger Sekunden ab.
Um das Nutzererlebnis zu steigern und somit tiberhaupt eine sinnvolle Verwendung des
Systems zu ermoglichen, muss die Anwendung die Daten sehr schnell aufbereiten und
anzeigen. Der Benutzer hat kein Verstdndnis dafiir, nach dem Start der Applikation mehrere
Sekunden auf seine Aufgabeliste warten zu miissen.

Schnittstelle zur PerFlow-Engine

Da der TaskManager eine Komponente der PerFlow-Umgebung ist, muss er mit anderen Be-
standteilen wie dem Prozesskoordinator, der Benutzerverwaltung oder anderen Endgerdten
interagieren konnen. So muss die PerFlow-Engine beispielsweise iiber eine Schnittstelle neue
Aufgaben im TaskManager anlegen konnen, wenn eine entsprechende Prozessaktivitédt bear-
beitet wird. Hierzu muss der TaskManager allerdings durch diese Komponenten auffindbar
und auch sténdig erreichbar sein.

6.3. Losungsansatze

Datenschutz und Privatsphére

Da es sich bei den personlichen Aufgaben um Objekte innerhalb der Privatsphére eines
Menschen handelt, muss mit einer gesteigerten Sorgfalt mit ihnen verfahren werden. So kann
zum Beispiel keine ungeschiitzte, zentrale Ablage der Daten im Internet erfolgen, da sonst
jedermann Zugriff auf die Tasks anderer hitte. Auch der psychologische Aspekt der Ablage
der Daten im Netz ist bei der Wahl der Architektur zu bedenken. Fiir den Benutzer wére eine
Ablage auf dem Gerit oder auf einer Maschine im personlichen Zugriff wiinschenswert.

Einfaches Deployment

Auf Grund der Schnelllebigkeit mobiler und stationdrer Endgerdte und dem héaufigen
Austausch dieser Komponenten muss die Integration neuer Geréte in das Gesamtsystem sehr
einfach sein und auch von unerfahrenen Benutzern problemlos zu bewerkstelligen sein. Die
Integration neuer Komponenten darf vor allem auf den bestehenden Geriten keine weitere
Anpassung erfordern.

6.3. Losungsansatze

Zur Realisierung des TaskManagers stehen nun verschiedene Architekturkonzepte zur Aus-
wahl, welche aber auf die Erfiillung der eben erlduterten Anforderungen untersucht werden
miissen. Dazu wird das Konzept kurz beschrieben und auf die Tauglichkeit fiir das hier
aufgezeigte Szenario gepriift. Die Spannweite der Architekturansitze reicht hierbei von einer
monolithischen Anwendung bis hin zu einem P2P-System ohne zentrale Komponente.

6.3.1. Konzepte
Monolith

Eine Realisierung wire die Erstellung einer monolithischen Anwendung. Dazu wird eine
Applikation entwickelt, die auf einem Gerate ausgefiihrt wird und die gesamte Verwaltung
von der Erfassung tiber die Priorisierung bis hin zur Anzeige der Aufgabenlisten beinhaltet.
Die Datenhaltung befindet sich hierbei ebenfalls direkt in der Anwendung. Dieser Ansatz ist
fiir das Konzept untauglich, da die Anforderungen an die Unterstiitzung mehrerer Endgerite
nicht erfiillt werden kann ohne den gesamten Datenbestand auf alle beteiligen Gerite
zu replizieren und auf jedem die Priorisierung getrennt durchzufiihren. Die Konsistenz
der Daten und Listen kann hierbei nicht garantiert werden. Auch die Anbindung an die
Ausfithrungsplattform der PerFlows lasst sich in dieser Architektur schlecht umsetzen.

39

6. Architektur des TaskManagers

Client-Server

Eine weitere Moglichkeit besteht in der Realisierung als Client-Server-Anwendung. Dabei
existiert ein zentraler Server, der die Datenhaltung tibernimmt und die Berechnung der
Aufgabenlisten durchfiihrt. Jegliche Datenmanipulation durch Clients wird zentral auf dem
Server durchgefiihrt und steht sofort allen Clients zur Verfiigung. Durch die zentrale Ablage
der Daten auf dem Server gibt es allerdings Verzogerungen beim Abruf der Aufgabenlisten
durch den notwendigen Serverzugriff, der bei fehlender Internetkonnektivitat gar nicht
stattfinden kann. Dieses Problem muss bei einer Client-Server-Architektur unbedingt bertick-
sichtigt werden. Die Anbindung an die Ausfiihrungsumgebung stellt bei diesem Konzept
keine Probleme dar, allerdings muss der Anwender einen eigenen TaskManager-Server
betreiben.

Cloud

Durch die standige Verbindung zum Internet kann auch eine Implementierung als Clou-
danwendung angedacht werden. Dies ist die logische Konsequenz aus den Uberlegungen
zur Client-Server-Architektur und somit gelten dieselben Vor- und Nachteile. Ein weiterer
Vorteil besteht darin, dass der Benutzer sich nicht um eine Wartung oder Anbindung der
Serverkomponente kiimmern muss. Die Datenraten und Rechenleistungen einer Cloudan-
wendung lassen sich nahezu beliebig skalieren und erfordern keine nachtragliche Aufriistung
bei steigenden Performanceanforderungen. Der grofse Nachteil dieser Architektur ist al-
lerdings die zentrale Ablage der personlichen Daten vieler Nutzer an einer zentralen und
offentlich zugéanglichen Stelle. Zwar ist auch ein privater Server {iber dieselben Wege fiir
jeden erreichbar, trotzdem ist diese Zentralisierung von privaten Daten fiir die Anwender
im Allgemeinen nur bis zu einem gewissen Grad tragbar. Fiir die erfolgreiche Umsetzung
der PerFlow-Vision sollten aber alle Aufgaben und Prozesse im System hinterlegt sein, was
eine Unvereinbarkeit mit der zentralen Datenhaltung darstellen wiirde. Somit scheidet zum
jetzigen Zeitpunkt eine Realisierung dieser Architektur aus. Allerdings zeigen Projekte wie
Facebook® oder einige Googledienste eine wachsende Bereitschaft der Benutzer auch private
Daten in offentlichen Netzen zu lagern. Auch arbeiten die Betreiber von Cloud-Diensten
sicher bereits an einer Losung der Datenschutzproblematik bei Cloud-Anwendungen.

Peer-to-Peer

Der Verzicht auf zentrale Komponenten und die Umsetzung des TaskManagers als Peer-
to-Peer-System soll die moglichen Konzepte abschliefSen. Hierbei bilden alle Gerite eines
Benutzers oder einer logischen Einheit von Benutzern ein P2P-Netzwerk, das die Aufgaben

Thttp:/ /www.facebook.com

40

6.3. Losungsansatze

gemeinsam verwaltet und priorisiert. Durch die Verteilung der Daten und das Fehlen
einer Verwaltungsinstanz bestehen aber hinsichtlich der Datenkonsistenz beim Abruf der
Aufgabenliste dhnliche Probleme wie bei einer monolithischen Anwendung. Die Verwaltung
des P2P-Netzwerks birgt aufserdem eine nicht zu unterschitzende Komplexitit, die fiir
diesen relativ einfachen Anwendungsfall den Nutzen {iibersteigt.

6.3.2. Auswahl

Nach einer Abwédgung der in den Konzepten beschriebenen Vor- und Nachteile wurde
fiir die Implementierung in dieser Arbeit eine Client-Server-Architektur gewahlt[Abb: 6.1].
Diese lasst sich aufSerdem leicht implementieren und beschleunigt die Entwicklung einer
prototypischen Implementierung. Auf Grund der genannten Bedenken zur Offenlegung pri-
vater Daten wurde der Cloudansatz nicht weiter verfolgt. Das Verstandnis von Datenschutz
und Privatsphére unterliegt momentan aber einem massiven Wandel und bringt teilweise
iibertrieben Einschdatzungen und Interpretationen mit sich[Kir1o]. In weiteren Entwicklungen
konnte also eine Cloudanwendung als klarer Favorit fiir die Wahl der Architektur dienen.
Die Umwandlung der Client-Server-Struktur in eine Cloudapplikation ist aber bei Bedarf
durch die Wahl einer entsprechenden Plattform sehr einfach umzusetzen.

Abbildung 6.1.: Gesamtarchitektur

41

6. Architektur des TaskManagers

6.4. Serverarchitektur

Das Serversystem des TaskManagers gliedert sich in einzelne Komponenten, um eine Mo-
dularisierung zu ermoglichen. Die Aufteilung erfolgt nach dem Three-Tier-Prinzip. Die
zentrale Geschiftslogik wird durch eine Persistenzschicht unterstiitzt, die die Datenhal-
tung tibernimmt. Die Schnittstellen zu den Clients sind klar definiert, um eine Anbindung
verschiedener Anzeige- und Verwaltungskomponenten zu erméglichen. Da aus Komfort-
griinden eine Anbindung an andere Benutzerverwaltungen moglich sein soll, wird diese
vom eigentlichen TaskManager entkoppelt. Dies verhindert zum Beispiel eine Redundanz
bei der Verwaltung von Benutzern im PerFlows-Szenario. Die Verwaltung von Kontextinfor-
mationen, wie etwa Lokationsdaten von Benutzern wird ebenfalls vom Tasksystem getrennt.
Hier konnte im Produktivbetrieb eine umfangreichere Kontextlosung verwendet werden, wie
zum Beispiel die Nexus Plattform[GBH " 05]. Aus diesem Grund ist auch die Aktualisierung
der Kontextdaten durch die Sensoren nicht Teil der Taskclients, sondern muss separat durch
eine weitere Anwendung erfolgen. Dies betrifft sowohl mobile Sensoren in Smartphones als
auch stationdre Sensoren wie RFID-Baken oder Ortungssysteme.

6.5. Schnittstellendefinition

Die Schnittstellen bieten dem Client die Moglichkeit mit dem Server zu interagieren. Bei
den Schnittstellen handelt sich um die Benutzerverwaltung, die Taskverwaltung und die
Kontextverwaltung. Die Schnittstelle ist als reiner Prototyp entworfen und darf in dieser
Form nicht produktiv verwendet werden, da essentielle Sicherheitsfunktionen fehlen. So
verlangt die Benutzerverwaltung zum Beispiel keine Authentifizierung zur Bearbeitung von
Systembenutzern. Im realen Umfeld sollte die Benutzerverwaltung durch ein externes System
implementiert werden. Die Authentifizierung des Benutzers geschieht durch ein Sessionkon-
zept. Dazu wird beim Login eine Benutzersitzung erzeugt und dem Benutzer die SessionID
mitgeteilt. Bis zum Logout kann er dann die Funktionen der Task- und Kontextverwaltung
unter Angabe der SessionID verwenden. In den Abbildungen 6.2(a) und 6.2(b) werden einige
exemplarische Interaktionen beschrieben. Die vollstdndige Schnittstellendefinition inklusiv
aller Methode findet sich im Anhang B.

6.6. Clientkonzepte

Bei der Realisierung der Clients gibt es eine Menge verschiedener Nutzungsszenarien. Daher
gibt es mehrere unterschiedliche Clientkonzepte die im Folgenden kurz erldutert werden.
Dabei wird berticksichtigt, welche Gerite ein Benutzer haben konnte und auf welchen die
Verwendung des TaskManagers sinnvoll erscheint.

42

6.6. Clientkonzepte

Client TaskManager Client TaskManager
login{user, pwd) login{user, pwd)
L a
<=5essionlD>> << 5SessionlD=>
R ittt K------------4
getWorklist{sessionID) saveTask({sessionD, task)
> L
<< Task=> << Task>>
- E---—---—-—--=-=--
logout{user, pwd) logout{user, pwd)
>
=mmm === m == e
(a) Abfragen der Aufgabenliste (b) Anlegen eines neuen Tasks

Abbildung 6.2.: Beispiele der Client-Server Interaktion

6.6.1. Desktopclients

Eine Anwendung ist die vollwertige Administration des Taskplaners, um neue Tasks an-
zulegen, bestehende zu verdndern und Benutzereinstellungen zu setzen. Dieser Client ist
typischerweise eine Desktopanwendung mit vollem Funktionsumfang. Eine Realisierung als
Weblésung wire in diesem Szenario ebenfalls denkbar. Bei Desktopanwendungen kann von
einem leistungsstarken Host mit bestehender Internetverbindung ausgegangen werden, was
wenige Einschrankungen bei der Implementierung bedingt. So konnen Daten im Speicher
vorgehalten werden und Serverzugriffe konnen jederzeit ziigig stattfinden.

6.6.2. Mobile Clients

Ein weiteres Szenario ist die Verwendung von mobilen Endgerédten zur Anzeige der Worklist
und einzelner Aufgaben, wie zum Beispiel Smartphones, Tablets, oder Ahnliches. Eine
Bearbeitung von Tasks findet nur im begrenzten Rahmen statt. Hier sind hauptséachlich
Statusdnderungen interessant, aber keine komplette Editierfunktion. Dieser Clienttyp hat
allerdings die grofite Implementierungsvielfalt. Fiir die meisten Gerédte miissen eigene Versio-
nen entwickelt werden, da sich die Plattformen unterschiedlicher Programmiersprachen und

43

6. Architektur des TaskManagers

Betriebssysteme bedienen und auch die Bedienkonzepte der Plattform zu berticksichtigen
sind.

Auf diesen Geriten steht nur eine begrenzte Rechenleistung und Speichermenge zur Ver-
fugung, das heifit, die Anwendung sollte nur die aktuelle benttigten Daten vorhalten und
auf Grund eingeschriankten Multitaskings auch jederzeit mit Programmunterbrechungen
umgehen konnen. Die Verwendung der Internetverbindung muss optimiert werden, da
nicht zu jedem Zeitpunkt eine bestehende oder schnelle Verbindung angenommen werden
kann. Auch die Menge der Steuerdaten sollte gering gehalten werden, um eine tibermafsige
Nutzung von Internetressourcen zu verhindern.

6.6.3. Anzeigeclients

Ein dritter Typ Client ergibt sich aus der Moglichkeit reine Anzeigeobjekte zu entwickeln.
Diese dienen rein der Information des Benutzers und geben keine Moglichkeit der Bear-
beitung oder Interaktion. Beispiele hierfiir sind Mac OS X Widgets oder Windows Sidebar
Gadgets.

Da diese Clients durchgehend aktiv sind, aber nicht die Vordergrundaktivitdt des Benutzers
darstellen, ist eine ressourcenschonende Implementierung zwingend notwendig. Es sollte
darauf geachtet werden, keine zu grofien Mengen an Arbeitsspeicher zu verwenden. Auch
die Prozessor- und Netzwerklast sollte gering gehalten werden, um den Benutzer bei seiner
Tatigkeit nicht zu beintrachtigen.

6.7. Zusammenfassung

In diesem Kapitel wurden die grundlegenden Konzepte fiir die Entwicklung des TaskMana-
gers entworfen. AuSerdem ergeben sich einige Anforderungen an die Implementierung aus
den getroffenen Voriiberlegungen. Durch die Nutzung verschiedenster Clientanwendungen
muss die Schnittstelle weitgehend plattform- und sprachunabhingig sein. Auflerdem sollten
die Reprasentation der Daten einen geringen Overhead an Steuer- und Protokolldaten ent-
halten. Dies erméglicht die schnelle Ubertragung der Daten in langsamen Netzwerken wie
GPRS oder UMTS und eine schnellere Startzeit der Anwendung.

44

Teil lll.

Implementierung

45

7. Serverimplementierung

7.1. Motivation

In diesem Kapitel wird die Implementierung der Serverkomponente vorgestellt. Es handelt
sich dabei um die zentrale Einheit des TaskManagers, die die Verwaltung der Aufgaben
und die Priorisierung tibernimmt. Sie bietet dann Schnittstellen um Clients die Anfrage und
Bearbeitung von Daten zu ermoglichen. Die Realisierung erfolgt mit Hilfe eines Application
Servers und einer nachgeschalteten Datenbank.

7.2. Gesamtarchitektur

Das Gesamtsystem des TaskManagers gliedert sich in einzelne Komponenten um eine
Modularisierung zu ermoglichen. Die Aufteilung erfolgt nach dem Three-Tier-Prinzip. [Abb:

7.1]

Servlet

Postgres
PostGIS

Servlet

Enterprise ! Hibernate JPA+
lava Beans H Hibernate Spatial

Client Tier Enterprise Tier Data Tier

Abbildung 7.1.: Komponentengliederung des Servers

47

7. Serverimplementierung

7.2.1. Datenbank

Als Datenbank wird eine PostgreSQL" in der Version 9.0 eingesetzt. Auf dieser Basis wird
die PostGIS* Erweiterung genutzt. Sie bietet eine Unterstiitzung fiir Geometriedaten in der
Datenbank. Dies erleichtert die Verwaltung und ermoglicht eine intelligentere Nutzung der
Daten.

7.2.2. Application Server

Als Server wird ein JBoss AS in der Version 6.03 verwendet. Dies ist die neueste Communi-
tyversion des Application Servers von RedHat Enterprise. Er implementiert JavaEE in der
Version 6% und bietet eine Anbindung an die Datenbank mit Hilfe von JPA 2.0. Als konkrete
Datenbankanbindung wird Hibernate> verwendet, das fiir diesen Zweck um Hibernate
Spatial® erweitert wurde um die Geometriedaten der PostGIS-Datenbank zu verwenden.

Die Realisierung der Geschiftslogik findet in SessionBeans statt, die direkt mit der Persis-
tenzschicht interagieren konnen. Die Schnittstelle fiir die Clients wird durch ein Servlet
angeboten, das die empfangen Daten an die entsprechenden E]Bs delegiert. Die Neuberech-
nung der Taskprioritdten wird durch den JavaEE 6 Scheduler gesteuert.

7.2.3. Weboberflache

Die grundlegenden Funktionalitidten des Systems sind ebenfalls als rudimentdre Weboberfla-
che ausgefiihrt. Diese Webanwendung basiert auf der Verwendung von Servlets und Java
Server Pages”. An dieser Stelle sind auch einige zusitzliche Schnittstellen zur Anbindung
an standardisierte Protokolle implementiert. Ein Beispiel hierfiir ist der GeoRSS® Feed der
Worklist eines Benutzers.

Die Weboberfliche des TaskManagers bietet einzelne Funktionalitdten auf einem allgemein-
zugdnglichen Weg tiber den Browser. Dies beinhaltet vor allem die Anzeige der Worklist
eines Benutzers, die Anzeige von Aufgabendetails sowie die Erstellung einer Ubersichtskarte
iiber die Aufgaben auf der aktuellen Worklist ([Abb: 7.2]). Auch die Anzeige der zeitlichen

Thttp:/ /www.postgresql.org

*http:/ /postgis.refractions.net

Shttp:/ /www.jboss.org

“http:/ /www.oracle.com/technetwork/java/javaee/tech/index.html
Shttp:/ /www.hibernate.org

bhttp:/ /www.hibernatespatial.org

7http:/ /www.oracle.com/technetwork/java/javaee/jsp /index.html
8http:/ /www.georss.org

48

7.3. Zusammenfassung

Ablaufe (Abschnitt: 5.7) erfolgt iiber die Webdarstellung. Hierzu wird eine Karte eingeblen-
det auf der sich der Ablauf als Pfad darstellt zusammen mit einer einblendbaren textuellen
Erldauterung. Zur Visualisierung der Karte kann hier der Datenbestand von OpenStreetMap?
verwendet werden oder die Satellitenbilder von Google Maps eingeblendet werden, die iiber
die Kartenbibliothek OpenLayers'® angezeigt werden.

D 14
Name Task 5
Beschrebung: Blub
Startzeit:

Falligkeit:

man. Prioritat: High
Lokation 9.449, 48.713
Status: Running
akt. Laufzeit: 0

gesch. Laufzeit: 0
Eskalation: Ignore

§ o 12
Name Task 3
Beschreibung: FooBar
Startzeit:

q Faligkeit: 01.01.2011 13:00
man. Prioritat: Medium
Lokation 9.43,48.712
Status: NotYetStarted
akt. Laufzeit: 0
gesch. Laufzeit: 60
Eskalation: Ignore

Abbildung 7.2.: Kartenanzeige mit getffnetem Taskdialog

7.3. Zusammenfassung

In diesem Kapitel wurde die Implementierung der Serversoftware erldutert. Die Server-
komponente bietet die Kernfunktionalitdt fiir das System. Alle Datenverwaltungsaufgaben
werden hier iibernommen. Die Clients interagieren immer mit diesem zentralen Punkt.

Shttp:/ /www.openstreetmap.de/
°http:/ /openlayers.org/

49

8. Schnittstellenumsetzung

8.1. Motivation

In diesem Kapitel sollen die verschiedenen Moglichkeiten zur Umsetzung des Schnittstel-
lenprotokolls aus Abschnitt 6.5 verglichen werden. Dazu werden die Vor- und Nachteile
der Implementierungen betrachtet und die Unterstiitzung durch die verschiedenen Client-
plattformen gepriift. Anschlieflend wird das fiir diesen Zweck beste Protokollframework
verwendet.

8.2. Protokollalternativen

Es gibt eine Vielzahl unterschiedlicher Ansitze das Protokoll zu implementieren. Auf Grund
der Verwendung mehrerer verschiedener Clientplattformen ist die Verwendung von Binar-
protokollen in diesem Fall nicht ratsam. Die Interoperabilitdt der Systeme steht an oberster
Stelle. Deshalb fallen auch programmiersprachenabhingige Losungen wie zum Beispiel
Java-RMI aus. Die Losung sind hier standardisierte Protokolle aus dem Bereich der Web
Services. Aus diesem Segment sollen nun XML-RPC [Wingg], SOAP und JSON-RPC [Mat10]
untersucht werden. Eine Verschliisselung der Daten wihrend der Ubertragung zwischen
Client und Server ist in einer Produktivumgebung durchaus anzustreben, wurde aber im
Rahmen dieser Arbeit weder beriicksichtigt noch implementiert.

XML-RPC

XML-RPC ist ein Protokoll, das es Anwendungen auf verschiedenen Plattformen erlaubt
Methodenaufrufe tiber das Internet durchzufiihren. Als Transportprotokoll wird dabei HTTP
verwendet, um eine allgemeingiiltige und stabile Basis zu haben. Darin wird dann die
Darstellung der Daten und Methodenaufrufe in XML eingebettet. XML-RPC hat das Ziel so
einfach wie moglich zu sein aber trotzdem nicht die Machtigkeit zu weit einzuschranken
auch komplexe Datenobjekte zu verwenden.[Wingg]

51

8. Schnittstellenumsetzung

SOAP

Als Weiterentwicklung von XML-RPC wurde 1999 die erste Version von SOAP, damals
noch als Abkiirzung fiir Simple Object Access Protocol, verdffentlicht. Es bietet, wie sein
Vorgianger auch, die Moglichkeit Methodenaufrufe tiber das Netzwerk zu tatigen. Die
Datenreprasentation ist ebenfalls ein XML-Format, das jedoch deutlich komplexer ist als die
Darstellung eines XML-RPC Aufrufs. Als Transportprotokoll konnen neben HTTP auch viele
andere Protokolle dienen, wie zum Beispiel SMTP oder JMS. Diese Wahlfreiheit vergrofiert
die Einsatzmoglichkeiten von SOAP und hat dazu gefiihrt, dass es de facto Standard in
Anwendungssystemen im Geschdftsumfeld ist. Ein weiterer Vorteil von SOAP ist die explizite
Beschreibung der Schnittstelle und ihrer Objekte, Transportmoglichkeiten, Endpunkte und
sonstigen Metadaten.[WCL" o5]

Diese Flexibilitdt und Sicherung der Stabilitét fithren aber auch dazu, dass die Implemen-
tierung von SOAP in Anwendungen deutlich komplexer ist als andere RPC Methoden.
Auch der Datenoverhead der einzelnen Methodenaufrufe ist deutlich hoher, was gerade in
Verbindungen mit niedriger Datenrate zum Nachteil einer SOAP-basierten Losung werden
kann.

JSON-RPC

JSON-RPC ist ein einfaches RPC-Protokoll basierend auf der JavaScript Object Notation [Croo6].
Es ist transportunabhingig und kann iiber die verschiedensten Wege tibermittelt werden. Da
die Austauschobjekte reinen Text beinhalten, kann dies von einfachen TCP/UDP Sockets,
HTTP POST Requests oder SMTP Inhalten tibernommen werden. Durch die Verwendung
von JSON ist die Verwendung plattformunabhéngig und der Metadatenoverhead deutlich
geringer als zum Beispiel bei XML-Nachrichten. Auch die Verfiigbarkeit von Bibliotheken
fir verschiedene Programmiersprachen und Softwareplattformen ist deutlich hoher als bei
XML. JSON enthdlt allerdings keine Beschreibungssprache wie zum Beispiel XSD[W3Co4]
und bietet somit keine strenge Typsicherheit in der Schnittstelle.

8.3. Pro/Contra je Zielplattform

In diesem Abschnitt werden die Vor- und Nachteile der verschiedenen Protokolle im Hinblick
auf die geplanten Zielplattformen aufgezeigt und abschlieflend eine Entscheidung gefallt,
welches Protokoll fiir die Implementierung verwendet wird.

52

8.3. Pro/Contra je Zielplattform

Server / JBoss-AS

Die Serverkomponente hat vergleichsweise wenig Probleme mit den verschiedenen Trans-
portmethoden. Wahrend die SOAP Unterstiitzung direkt mit der Annotation @WebService
aktiviert werden kann und der Server die WSDL und XSD Dokumente selbststiandig erstellt
miissen bei XML-RPC und JSON-RPC entsprechende Webendpunkte als Servlets implemen-
tiert werden, was aber ein minimaler Mehraufwand ist. Aus Sicht der Serverimplementierung
ist somit keine Priferenz fiir eine Methode zu wihlen.

RCP / Java

Bei Java Clients muss fiir SOAP Schnittstellen eine Sammlung von Datenobjekte und Proxy-
klassen erstellt werden. Dies kann aber durch einen Generator direkt aus der WSDL ge-
schehen. Eine Implementierung fiir XML-RPC steht von Apache® zur Verfiigung. Diese hat
allerdings Probleme bei der Verwendung von Listen als Argumente und Riickgabewerte. Bei
der Verwendung von JSON-RPC muss ein entsprechendes JSON-Objekt erstellt werden? und
als Text serialisiert werden. Dieser kann dann beliebig an eine Serverschnittstelle versendet
werden. Programmatisch bedingt hier JSON-RPC den grofsten manuellen Aufwand, bietet
aber auch die grofite Flexibilitdt bei Veranderungen der Schnittstelle.

BlackBerry

Die Entwicklung auf dem BlackBerry basiert auf Java. Allerdings wird als Laufzeitumgebung
eine Abwandlung von JavaME verwendet. Die Verwendung von XML stellt eine grofiere
Hiirde dar und lasst sich auch nicht automatisch generieren oder verwenden. Auf Grund
der Speicheroptimierung lassen sich auch nur SAX-Parser verwenden, was die Entwicklung
nochmal erschwert. Eine SOAP Implementierung ist duflerst schwerféllig, da alle Nachrichten
“von Hand” erstellt werden miissen und dies sehr fehlertrdchtig ist. Die Unterstiitzung von
JSON hingegen ist kein Problem, da eine Implementierung fiir JavaME vorliegt 3. Somit
bedingt das Ziel einer BlackBerry Losung die Verwendung von JSON-RPC.

iOS / Objective-C

Unter Objective-C ist die Verwendung von XML und SOAP ebenfalls nicht trivial. Trotz des
eigentlichen de facto Standards XML ist eine Unterstiitzung seitens des Frameworks alles

'http:/ /ws.apache.org/xmlrpc/
*http:/ /www.json.org/java/index.html
3https://github.com/upictec/org.json.me/

53

8. Schnittstellenumsetzung

andere als gut. SOAP fillt auf Grund der manuell zu erstellenden Nachrichten wie beim
BlackBerry aus. Fiir JSON existiert eine Implementierung fiir iOS 4, die von Apple fiir den
Datenaustausch mit WebServices empfohlen wird. Auch der Apple Push Notification Service
verwendet zur Kommunikation mit den Endgerdten das JSON Datenformat[Mar1o].

8.4. Auswahl

Eines der wichtigen Ziele des TaskManagers ist die Verwendung von mobilen Endgeraten.
Da diese meist iiber Funknetzwerke an das Internet angebunden sind und nur begrenzte
Datenraten anbieten, sollte der Overhead von Metadaten im Transportprotokoll moglichst
minimiert werden. Auch muss das Protokoll von vielen Plattformen unterstiitzt werden,
da es fiir mobile Endgeréte eine Vielzahl von Plattformen und Programmiersprachen gibt.
Aus diesem Grund wird fiir die hier vorgestellte Arbeit JSON-RPC als Transportprotokoll
verwendet. Zur Ubermittlung der Nachrichten wird das HTTP-Protokoll eingesetzt. Diese
Wahl hilt auch eine Erweiterung auf Android offen, da auch dort JSON gut unterstiitzt wird,
wihrend die Implementierung fiir XML5 und SOAP® in ihrer Entwicklung stehen geblieben
sind und keine saubere Unterstiitzung anbieten. Durch die Redundanz des Feldnamens im
schlielenden Tag eines XML Elements ist ein XML Dokument auch deutlich grofier als ein
inhaltlich identisches JSON Objekt. Dies fiihrt wiederum zu einer lingeren Ubertragung
in langsamen Netzwerken und zu einem hoheren Datenaufkommen bei volumenbasierten
Abrechnungsmodellen der Nutzer.

8.5. Zusammenfassung

Dieses Kapitel hat die Alternativen der Schnittstellenimplementierung aufgezeigt und die
gewdhlte Losung ndher erldutert. Dazu wurden die Vor- und Nachteile der Alternativen im
Bezug auf die verschiedenen Zielplattformen beleuchtet und die JSON-Bibliothek als fiir
diesen Einsatz optimal angesehen.

4http://code.google.com/p/json-framework/
Shttp:/ /kxml.sourceforge.net/
bhttp:/ /ksoap2.sourceforge.net/

54

9. Desktop Client

9.1. Motivation

Da die Bedienung mobiler Endgeridte im Normalfall deutlich langsamer abléduft als die
Nutzung eines Desktop PCs, geschieht die Administration des TaskManagers iiber einen
Desktopclient. Aus Griinden der Entwicklungsgeschwindigkeit wurde im Rahmen dieser
Arbeit eine RichClient Anwendung entwickelt. Als Basis diente hierzu das Eclipse RCP
Framework, das im Folgenden kurz beschrieben wird.

9.2. Eclipse Plattform

Die Eclipse RCP* bietet dem Entwickler ein vollstindiges Framework zur schnellen Ent-
wicklung von Desktopanwendungen. Es liefert die gesamte Ausfithrumgebung inklusive
Lifecyclemanagement der Ul Komponenten, sodass der Entwickler nur noch die Oberfla-
chenmasken implementieren muss, um sie danach mit der Businesslogik zu verkniipfen. Als
Oberflachen Toolkit kommt dabei SWT? zum Einsatz, um eine dem nativen Betriebssystem
dhnliche Gestaltung zu erreichen.

9.3. Funktionalitat Rich Client

Die Rich Client Anwendung bietet unter anderem die Moglichkeit Aufgaben zu verwalten.
Dazu wird dem Benutzer eine Liste all seiner Aufgaben angezeigt und es ihm erméglicht,
neue Aufgaben zu erstellen, vorhandene Aufgaben zu editieren oder auch bestehende
Aufgaben zu l6schen. Das Anlegen einer Aufgabe geschieht iiber einen Editor, in dem der
Benutzer die Basisdaten der Aufgabe erfasst und danach die gewtinschten Benutzer als
mogliche ausfithrende Personen zuweist. Diese erhalten dann die Aufgabe ebenfalls in ihrer
Worklist auf jedem Client oder in der Aufgabeniibersicht in ihrem Desktop Client. Uber den
Editor konnen auch die Daten bestehender Aufgaben angezeigt und verdndert werden und

Thttp:/ /www.eclipse.org
*http:/ /www.eclipse.org/swt

55

9. Desktop Client

die Zuweisungen von Benutzern aktualisiert werden. Statusiibergidnge sind, sofern moglich,
direkt per Knopfdruck durchfiihrbar. Das Loschen von Aufgaben erfolgt entsprechend der
Taskdefinition durch den Ubergang der Aufgabe in den Status Deleted.

Ein weiterer Anwendungsfall des Desktop Clients ist die Anlage und Verwaltung von
benannten Positionen im System durch die Identifizierung von Koordinaten mit einem
Namen. Dazu steht eine Ubersicht der vorhandenen Lokationen zur Verfiigung sowie eine
interaktive Karte zur Erstellung neuer Positionen. Zur Anzeige von Karten werden auch hier
wieder Daten von OpenStreetMap verwendet.

] Task App - ’ | (B e -
File
1 Worklist £2 = OO Tasks 2 =8
NeueAufgahe| | MNeu laden | [t Taskd
o Beschreibung
MName Prioritat
i
Tack 2 &0 Pausable
: Task 8 50 i || Status Running -
Task3 45 Prioritét High -
Task 3 40
Task 4 40 Laufzeit (U=
Task7 35 gesch. Laufzeit 60 =
Task6 25
Task neu 5
Taskl 13 Speichern

Abbildung 9.1.: Hauptansicht mit Aufgabenliste und Taskeditor

9.4. Zusammenfassung

Auf Grund der Machtigkeit und vielseitigen Bedienbarkeit des Desktop PCs sind die Client-
anwendungen fiir diese Plattform am vielseitigsten und bieten auch den vollen Funktionsum-
fang inklusive Erstellen und Bearbeitung von Aufgaben. Eine Erweiterung des Rich-Clients
ist noch die Integration der Benutzerverwaltung, die hier nur rudimentér vorgesehen ist
aber nicht implementiert wurde.

56

10. Mobile Client

10.1. Motivation

Die Verwendung des TaskManagers soll die Verwaltung von personlichen Aufgaben erleich-
tern und eine Priorisierung anhand der aktuellen Kontextinformationen vornehmen. Um
diesen Kontext zu erfassen sollte die Bedienung des Tasksystems nicht an einen Desktopcom-
puter gebunden sein, sondern von {iberall zugreifbar sein. Auf Grund der weiten Verbreitung
von Smartphones liegt eine Bereitstellung der Aufgabenverwaltung als Applikation auf
mobilen Endgerdten nahe. Dabei sind aber einige Spezialititen von mobilen Gerédten zu
beachten. Zum ersten sind die Ausfithrungsumgebungen nicht standardisiert, so dass je-
des Smartphone potentiell eine eigene Implementierung benétigt. Zum anderen sind die
Hardwareausstattungen dieser Geréte leistungsdarmer als Desktops und somit unterstiitzen
diese auch nicht den gesamten Funktionsumfang von Desktopprogrammen und miissen
sparsamer mit Ressourcen wie Prozessorleistung, Speicher und Energie umgehen. Beispiele
sind hier das Positionsbestimmungsintervall auf Grund des hohen Strombedarfs eines GPS-
Empfangers, geringeres lokales Caching von Daten wegen verftigbaren Arbeitsspeichers und
das Transportformat um die Datenmenge gering zu halten, die {iber die Funkschnittstelle
tibertragen wird.

In der vorliegenden Arbeit sollen zwei Plattformen herausgegriffen werden und die Taskver-
waltung beispielhaft umgesetzt werden. Auf Grund der Verfiigbarkeit der Gerdte wurden
hierfiir ein BlackBerry 9700" von Research In Motion und ein iPad* der Firma Apple verwen-
det. Die Betriebssysteme der beiden Gerate sind RIM OS 5.0 fiir den BlackBerry und iOS 4.2
fiir das iPad.

10.2. BlackBerry Client

Bei der Clientsoftware fiir den BlackBerry miissen einige Unterschiede zu einem normalen
Desktop PC beachtet werden. Zum einen ist das Display des BlackBerry deutlich kleiner
(6, 2cm) und hat mit 480 x 360 Pixeln auch eine geringere Auflosung als ein Desktop PC mit

Thttp:/ /de.blackberry.com/devices/blackberryboldgyoo/
*http:/ /www.apple.com/de/ipad/

57

10. Mobile Client

1280 x 1024 auf einem Monitor mit 48cm Diagonale. Dies fiithrt dazu, dass nicht mehrere
Teile der Anwendung auf einmal angezeigt werden konnen und somit ein Navigationskon-
zept fiir die Anwendung benotigt wird. Aufierdem hat das Gerét allgemein ein anderes
Bedienkonzept, welches in der Anwendung ebenfalls verwendet werden sollte um eine intui-
tive Bedienung zu ermoglichen. Da das Hauptaugenmerk auf der mobilen Nutzung liegt
kann auch die WLAN-Verbindung unbeachtet gelassen werden und mit EDGE oder UMTS
Datenraten gerechnet werden. Diese bedingen eine sinnvolle und bedachte Nutzung von
Serverabfragen und wenig Overhead bei der Dateniibermittlung. Als weitere Schwierigkeit
kommt hinzu, dass die Entwicklung der App zwar in Java erfolgt, aber die Bibliothek nur eine
RIM spezifische Abwandlung von Java Mobile ist. Dieses RIM-JDK bietet einige der Vorteile
von Javas oder Java6 nicht an, wie zum Beispiel Generics. Auch die Oberflichenentwicklung
unterscheidet sich deutlich von der Arbeit mit dem Standard Widget Toolkit.

Der Funktionsumfang der BlackBerry Losung beschrédnkt sich daher auf das Anzeigen der
eigenen Worklist ([Abb: 10.1(a)]) und einer Detailansicht einzelner Aufgaben ([Abb: 10.1(b)]).
Eine Manipulation von Daten ist in dieser ersten Version nicht enthalten.

Task 2 (60) Mame: Task 3

Tasks(s Beschrelbung:

Tack 4 (40) Status: NotYetStarted

Task3(ar gesch, Laufzelt: 60 min

Task 7 (35) akt. Laufzelt: O min

Tasks (s Startzeit: Sun Feb 27 16:58:47 GMT 2011
Task B (25) Deadline: Sat Jan 01 12:00:00 GMT 2011

Prioritdt: Medium
Ort: 48.712° N 9.43° O

(a) Aufgabenliste auf dem BlackBerry (b) BlackBerry Taskdetails

Abbildung 10.1.: BlackBerry Client

10.3. iOS Client

Die Entwicklung auf dem iPad unterliegt grundsitzlich denselben Einschrankungen wie
beim BlackBerry. Dazu kommt noch ein vollig anderes Bedienkonzept der iOS-Familie und
die damit verbundenen Entwicklungsvorgaben seitens des Herstellers und die Tatsache, dass
das iPad ausschliefilich einen beriihrungsempfindlichen Monitor hat und jegliche Interaktion
mit dem Benutzer dartiber stattfindet. Dadurch miissen alle Oberflichenkomponente so

Ul
a0

10.4. Zusammenfassung

angelegt und entworfen sein, dass sie mit dem Finger bedient werden konnen, was eine
untere Schranke der Elementgrofien darstellt. Die Programmierung selbst findet in der
Sprache Objective-C statt, die fiir Entwickler anderer Sprachen nicht sehr intuitiv ist und
einige Fallstricke bietet. In dieser Arbeit wurde auch der Funktionsumfang der iPad-Losung
soweit reduziert, dass nur die Anzeige der Worklist und die Aufgabendetails ([Abb: 10.2])
verfligbar sind. Als Erweiterung gegentiber der Smartphoneldsung kénnte aber auf Grund
des grofleren Displays (25cm mit 1024 x 768) eine Anzeige der Worklist als interaktive Karte
umgesetzt werden, wie sie auch in der Weboberfldche verfiigbar ist. Dies wurde im Rahmen
dieser Arbeit nicht implementiert.

12:31 PM

arn
Root View Controller

Einkaufen

Taskname Einkaufen

Startzeit
Training Falligkeit 2011-01-01 18:00:00

man. Prioritat Medium
Lokation 9.449, 48.713
Status NotYetStarted
akt. Laufzeit 0 min

Handbuch lesen

gesch. Laufzeit 30 min

Eskalation Top

Abbildung 10.2.: Taskliste mit Taskdetails als Splitview

10.4. Zusammenfassung

Die Entwicklung fiir mobile Endgeréte stellt den Entwickler vor gewisse Herausforderungen
bei der Verwendung von Ressourcen wie dem verfiigbaren Anzeigebereich, der Internetanbin-
dung und vorhandener Rechenleistung. Dies verldngert die bendtigte Zeit zur Entwicklung
von Anwendungsfunktionalitdt erheblich im Gegensatz zu Desktopanwendungen. Trotz-
dem ist im Bereich der kontextbasierten Anwendungen eine Unterstiitzung von mobilen
Endgeriten zwingend erforderlich.

59

11. Erweiterungen

Zu den in den vorherigen Kapiteln aufgezeigten Losungen gibt es natiirlich beliebig viele
Erweiterungen und weitere Zielplattformen. Hier sollen nun einige Ideen aufgezeigt werden,
die an das entworfene Tasksystem angebunden werden kdnnten.

11.1. OS X Widget

Unter Mac OS X gibt es das sogenannte Mac OS X Dashboard® ([Abb: 11.1]). Es handelt
sich dabei um eine halbtransparente Ebene, die per Tastendruck aktiviert werden kann.
Auf ihr befinden sich kleine Minianwendungen, die Widgets genannt werden und zur
Unterhaltung oder zum Zugriff auf niitzliche Funktionalitdten einzelner Programme dienen.
Die Entwicklung von Widgets erfolgt in HTML und JavaScript. Eine Erweiterung des
TaskManagers wire nun die Entwicklung eines Dashboard Widgets zur Anzeige der Worklist
des Benutzers. Aufierdem konnte eine Anzeige von Aufgabendetails integriert werden.

11.2. Windows Gadget

Vergleichbar mit dem eben vorgestelleten Dashboard gibt es seit Windows Vista die so-
genannte Windows Sidebar?. Dies ist eine vertikale Leiste, die standardméflig am rechten
Bildschirmrand erscheint und ebenfalls Minianwendungen enthalt. Diese von Microsoft als
Gadgets bezeichneten Fenster werden wie unter Mac OS als Webseiten entworfen und kon-
nen sich per JavaScript Daten beschaffen. Durch die Verwendung von JSON als Datenformat
des TaskManagers ist eine Integration sehr leicht und stellt eine praktische Ausweitung der
Anzeigeclients dar. Die [Abb: 11.2] zeigt einen Designentwurf fiir ein TaskManager-Gadget.

Thttp:/ /support.apple.com/kb/HT2492
http:/ /windows.microsoft.com/de-DE/windows-vista/ Windows-Sidebar-and-gadgets-overview

61

11. Erweiterungen

Abbildung 11.2.: Draftshot der Anwendung

11.3. Android App

Im Rahmen dieser Arbeit wurden Clients fiir BlackBerry und iPad geschrieben. Die dritte
Plattform, mit dem momentan grofiten Zuwachs, ist Android. Die Programmierung fiir
androidfdhige Endgerite erfolgt mit dem javabasierten Android-SDK3 von Google. Auf
Grund dieser zunehmenden Verbreitung muss fiir eine erfolgreiche Verwertung der hier
erarbeiteten Losung unbedingt eine Androidanwendung entwickelt werden.

3http:/ /developer.android.com/sdk/index.html

62

Teil IV.

Abschluss

63

12. Zusammenfassung und Ausblick

12.1. Evaluation

Im Folgenden sollen nun noch einige Erkenntnisse und Erfahrungen, die bei der Implemen-
tierung gemacht wurden, zusammengefasst werden.

Datenmodell

Die Datenmodelldefinition aus Abschnitt 3.4 konnte vollstindig in die Implementierung
iibernommen werden und hat alle Beispielszenarien abbilden konnen. Bei der Implementie-
rung wurden noch ein paar Felder hinzugefiigt, die aber semantisch keine Relevanz haben,
sondern nur implementierungstechnisch fiir eine einfachere Verwaltung sorgen.

Algorithmus

Auch bei der Implementierung des Priorisierungsalgorithmus mussten keine wesentlichen
Anpassungen vorgenommen werden. Die Umsetzung des Algorithmus findet sich im Server
und lauft dort periodisch ab [Abb: 12.1]. Der Zeitaufwand fiir die gesamte Neuberech-
nung liegt im Bereich von Millisekunden. Da keine Mengengeriiste fiir einen realen Einsatz
vorliegen und die Testberechnungen schnell genug waren, wurden keine genauen Zeitmes-
sungen durchgefiihrt. Die aktuelle Implementierung des Algorithmus bietet aber sicher noch
Spielraum fiir eine Steigerung der Performance.

Server

Die Schwierigkeiten bei der Installation der Serverkomponenten in einer Zielumgebung
liegen hauptsdchlich an der Datenbank. Die Erweiterung der PostgreSQL-Datenbank um
die PostGIS-Komponenten bedarf dem genauen Befolgen der Installationsanleitung und
ist relativ fehleranfillig. Die restlichen Komponenten des Servers sind durch einfaches
Entpacken von Archivdateien problemlos auszuliefern. Das initiale Datenbankschema muss
anschliefend manuell erstellt werden, da die automatische Erstellung durch Hibernate
Probleme bei der Anlage der Geodatenfelder hat.

65

12. Zusammenfassung und Ausblick

Clients

Durch die gute Unterstiitzung von JSON auf den Zielplattformen konnte die Umsetzung fiir
die mobilen Endgerdte und den Desktopclient sehr schnell erfolgen. Dabei ergab sich die
Hauptschwierigkeit jeweils aus dem Einrichten und Einarbeiten in die Entwicklungsumge-
bungen und die plattformeigenen Konzepte und Sprachen.

12:00:00,051 [...] [task=Task [Task 1], user=SystemUser [Sal],
role=Creator, calculatedPriority=5]

12:00:00,051 [...] [task=Task [Task 3], user=SystemUser [Sal],
role=Creator, calculatedPriority=35]

14:20:12,064 [...] [task=Task [Task 1], user=SystemUser [Sal],
role=Creator, calculatedPriority=5]

14:20:12,064 [...] [task=Task [Task 2], user=SystemUser [Sal],
role=Creator, calculatedPriority=40]

14:20:12,064 [...] [task=Task [Task 3], user=SystemUser [Sal],
role=Creator, calculatedPriority=35]

15:00:03,633 [...] [task=Task [Task 1], user=SystemUser [Sal],
role=Creator, calculatedPriority=35]

15:00:03,633 [...] [task=Task [Task 3], user=SystemUser [Sal],
role=Creator, calculatedPriority=25]

17:00:01,527 [...] [task=Task [Task 3], user=SystemUser [Sal],
role=Creator, calculatedPriority=35]

Abbildung 12.1.: Konsolenausgabe der Priorisierung

12.2. Zusammenfassung der Arbeit

In der vorliegenden Arbeit wurde die Notwendigkeit der automatischen Verwaltung von
personlichen Aufgaben aufgezeigt und das Konzept der PerFlows vorgestellt. Hierzu wurde
das Paper von Mark Weiser naher betrachtet und das Szenario von Sal aufgegriffen. Danach
wurden Beziige zu verwandten Arbeiten aufgezeigt und andere Definitionen von Aufgaben
und ihrer Priorisierung erldutert. Das Hauptaugenmerk lag hierbei auf WS-HumanTask
und drei Arbeiten zur Aufgabenpriorisierung. Da sich keines der bestehenden Konzepte als
vollstandig passend erwiesen hat, wurde anschliefiend ein eigenes Datenmodell fiir Tasks
entwickelt und ein Algorithmus zur Priorisierung entworfen.

Im Weiteren folgten dann Uberlegungen zur Architektur des gesamten Tasksystems und der
Entwurf der Schnittstelle fiir den TaskManager, sowie notwendiger Zusatzkomponenten. Im
Kapitel 7 konnte dann eine funktionsfdhige Demonstrationsimplementierung umgesetzt wer-
den. Dazu wurden Plattformen fiir den Server und die Schnittstellenbeschreibung gewahlt

66

12.3. Ausblick

und die Software implementiert. Als Clients wurden eine Desktopanwendung sowie mobile
Oberflachen fiir BlackBerry und iPad umgesetzt. AbschliefSend folgte eine Vorstellung mogli-
cher Erweiterungen fiir die Implementierung. Zum Abschluss soll nun noch ein Ausblick
auf eine Weiterfithrung und Verwendung gewagt werden.

12.3. Ausblick

Die hier vorgestellte Losung ldsst sich nattirlich beliebig erweitern und weiteren Bediirf-
nissen und Anforderungen anpassen. Eine notwendige Erweiterung, die aus Griinden des
Arbeitsumfangs nicht umgesetzt wurde, ist die Schaffung einer Moglichkeit die Lokationsei-
genschaft des Tasks funktional zu erweitern. So sollte es moglich sein die Position eines Tasks
an ein dynamisches Objekt zu binden um beispielsweise Aufgaben zu definieren, die als
Ausfiihrungsort den Aufenthaltsort einer Person haben. Damit liefsen sich geplante Treffen
mit realen Personen als Aufgabe definieren, die dann durch die Kontextinformationen bei
Eintreten einer Gelegenheit hoch priorisiert werden. Weiter konnten Tasks auch mehrere
Ausfiihrungspositionen haben um Alternativen zu erfassen. Beispiele wéren hier Aufgaben
fiir zu tatigende Einkdufe, die in einem beliebigen Supermarkt stattfinden konnen.

Weiter muss in einem néchsten Schritt der entworfene TaskManager an die Ausfithrungsum-
gebung von PerFlows angebunden werden, um durch die Ausfithrung von Prozessen die
entstehenden Aufgaben in der Worklist sichtbar zu machen und eine Einbeziehung in die
Priorisierung zu ermoglichen. Dazu muss der PerFlow-Koordinator als Client Zugriff auf die
Schnittstelle des TaskManagers erhalten und Tasks erstellen und verdandern. In diesem Zug
sollte die Taskdefinition um Ein- und Ausgabedaten erweitert werden, um dem Benutzer
Prozesskontextdaten zur Verfiigung zu stellen und mehr Daten vom Benutzer in den Prozess
einbringen zu konnen. Auch sollte ein Callback-Handler implementiert werden, um dem
PerFlow-Koordinator Statusdnderungen von Aufgaben mitzuteilen, damit dieser den Prozess
entsprechend fortsetzen kann.

67

Teil V.

Anhang

69

A. Taskdatenmodell

id
Die ID ist eine eindeutige Zahl zur Identifikation eines Tasks im gesamten System. Sie ist
der Primérschliissel eines Tasks.

name
Der Name benennt die Aufgabe in kurzen pragnanten Worten. Er besteht aus einer frei
wahlbaren, nicht leeren, Zeichenfolge.

description
Die Beschreibung enthilt einen optionalen, lingeren Text, der den Inhalt der Aufgabe néher
erlautert. Das Beschreibungsfeld hat keine Einschrankungen beziiglich Inhalt oder Léange.

startTime

Die Startzeit definiert den frithstmoglichen Zeitpunkt um diese Aufgabe zu beginnen. Eine
Aufgabe mit einer zukiinftigen Startzeit wird in der Worklist nicht beriicksichtigt, sondern
erst mit Erreichen aktiviert.

dueTime

Die Félligkeitszeit gibt den Zeitpunkt an, an dem die Aufgabe abgeschlossen sein muss. Das
Verhalten einer unfertigen Aufgabe nach diesem Zeitpunkt wird durch das Feld escalation
charakterisiert.

manualPriority

Die manuelle Prioritit bietet dem Benutzer die Moglichkeit Einfluss auf die automatische
Sortieren der Aufgaben zu nehmen. Er kann einzelne Aufgabe als wichtig markieren um sie
hoher einzustufen. Mogliche Prioritdten sind High, Medium, Low.

location

Die Lokation gibt den Ort an, an dem die Aufgabe ausgefiihrt werden muss. Dieses optionale
Feld bietet die notwendigen Informationen um Aufgaben kontextabhédngig zu modellieren
und zu priorisieren. Die Position wird als Koordinatentripel aus Langengrad, Breitengrad
und Hohe (iiber NN) erfasst. Als Bezugskoordiantensystem dient [NIMoo].

pausable
Diese Feld gibt an, ob eine Aufgabe pausiert werden kann oder ob sie nach dem Beginn zu
Ende gefiihrt werden muss.

71

A. Taskdatenmodell

runUser

Bei einer bereits gestarteten Aufgabe wird hier angegeben, welcher Benutzer sie ausfiihrt.
Dies ist relevant um die Priorisierung der Aufgabe fiir verschiedene zugewiesene Personen
zu berechnen.

runtime
Die Laufzeit gibt an, wie lange die Ausfiihrung eines Task bisher lduft oder insgesamt
gedauert hat. Die Angabe erfolgt in Minuten.

estimatedRuntime

Dieses Feld gibt die geschdtze Laufzeit fiir die Aufgabe an. Anhand dieser Schitzung
wird der Spielraum einer Aufgabe bei der Priorisierung berechnet. Auch der Ablauf von
Sequenzen hidngt von diesem Wert ab. Die Angabe erfolgt ebenfalls in Minuten.

escalation

Das Eskalationsverhalten gibt an, wie mit einem {iberfélligen Task verfahren wird. Bei Ignore
wird die Aufgabe wie eine sofort fdllige behandelt. Eine Eskalation vom Typ Kill verwirft
eine iiberféllige und somit hinfillige Aufgabe und der Typ Top sorgt fiir eine starke Erhéhung
der Prioritdt der Aufgabe um eine rasche Ausfiithrung zu fordern.

72

B. Schnittstellendefinition

B.1. Benutzerverwaltung

Methode: login

Parameter: String login, String pwd

Riickgabe: String SessionlD

Die Methode meldet einen Benutzer am System an und gibt eine SessionID zurtick, die fiir
alle anderen Methoden zur Authentifizierung und Authorisierung dient.

Methode: logout

Parameter: String login, String pwd

Riickgabe: void

Die Methode dient zur Abmeldung eines Benutzers. Seine Session ist danach nicht mehr
giltig.

Methode: validate

Parameter: String sessionlD

Riickgabe: SystemUser

Die Methode dient zur Priifung einer SessionID. Ist diese giiltig wird der entsprechende
Benutzer zuriickgegeben.

Methode: getByLogin

Parameter: String loginName

Riickgabe: SystemUser

Die Methode liefert den Benutzer mit dem angegebenen Loginnamen zurtick.

Methode: saveUser

Parameter: Systemuser user

Riickgabe: SystemUser

Die Methode speichert den tibergebenen Benutzer und liefert die gespeicherte Version wieder
zuriick.

Methode: deleteUser

Parameter: SystemUser user

Riickgabe: void

Die Methode 16scht den angegebenen Benutzer aus dem System.

73

B. Schnittstellendefinition

Methode: getUsers

Parameter: -

Riickgabe: List(SystemUser)

Die Methode liefert eine Liste aller Systembenutzer zurtick.

B.2. Kontextverwaltung

Alle Methoden der Kontextverwaltung benétigen als ersten Parameter die SessionID des
anfragenden Benutzers um die Berechtigungen fiir die Ausfithrung zu priifen. Als Hilfs-
konstrukt fiir oft verwendete Positionen gibt es das Objekt der NamedLocation. Es beinhaltet
einen Namen und die Koordinaten der Position.

Methode: getNamedLocation

Parameter: String sessionlD, String name

Riickgabe: NamedLocation

Die Methode sucht eine benannte Position nach ihrem Namen.

Methode: getNamedLocations

Parameter: String sessionlD

Riickgabe: List(NamedLocation)

Die Methode liefert eine Liste aller benannten Positionen.

Methode: saveNamedLocation

Parameter: String sessionlD, NamedLocation loc

Riickgabe: NamedLocation

Die Methode speichert oder aktualisiert eine benannte Position.

Methode: deleteNamedLocation

Parameter: String sessionlD, NamedLocation loc
Riickgabe: void

Die Methode 16scht die angegebene benannte Position.

Methode: updateUserLocation

Parameter: String sessionlD, long userID, Location loc

Riickgabe: void

Mit Hilfe dieser Methode kann die Position des angegebenen Benutzers im System aktuali-
siert werden.

Methode: updateUserLocationName

Parameter: String sessionID, long userID, String name

Riickgabe: void

Im Gegensatz zur vorherigen Methode kann hier der Name einer benannten Position
verwendet werden.

74

B.3. Taskverwaltung

Methode: updateUserLocationAtTime

Parameter: String sessionlD, long userID, Location loc, long time

Riickgabe: void

Mit dieser Methode kann die Position zu einer gewissen Zeit gesetzt werden.

Methode: updateUserLocationNameAtTime

Parameter: String sessionlD, long userID, String name, long time

Riickgabe: void

Diese Methode dient zur Positionsdnderung zu einer gewissen Zeit in eine benannte Positi-
on.

Methode: getUserLocation

Parameter: String sessionlD, long userID

Riickgabe: Location

Diese Methode liefert die letzte bekannte Position des Benutzers.

Methode: getUserLocationAtTime

Parameter: String sessionlD, long userID, long time

Riickgabe: Location

Diese Methode liefert die Position des Benutzers zu einem bestimmten Zeitpunkt.

Methode: getUserTrack

Parameter: String sessionlD, long userID

Riickgabe: List(Location)

Diese Methode liefert eine Liste aller Wegpunkte des Benutzers.

Methode: getUserTrackAtTime

Parameter: String sessionlD, long userID, long start, long end

Riickgabe: List(Location)

Mit Hilfe dieser Methode lassen sich Wegpunkte eines Benutzers in einem gewissen zeitlichen
Bereich abfragen.

B.3. Taskverwaltung

Auch die Methoden der Taskverwaltung benétigen als ersten Parameter die SessionID des
anfragenden Benutzers zur Authorisierung.

Methode: getTask

Parameter: String sessionlD, long taskID

Riickgabe: Tusk

Diese Methode liefert Details zu einer bestimmten Aufgabe.

Methode: getTasks
Parameter: String sessionID, bool showDeleted

75

B. Schnittstellendefinition

Riickgabe: List(Task)
Diese Methode dient zur Abfrage aller zugewiesenen Aufgaben. Die Anzeige von geldschten
Aufgaben ist optional.

Methode: saveTask

Parameter: String sessionlD, Task task

Riickgabe: Task

Mit Hilfe dieser Methode kann eine Aufgabe angelegt oder verdndert werden.

Methode: deleteTask

Parameter: String sessionlD, Task task

Riickgabe: Task

Mit Hilfe dieser Methode kann eine Aufgabe geloscht werden.

Methode: getWorklist

Parameter: String sessionlD

Riickgabe: List(Task)

Diese Methode liefert die priorisierte Worklist des anfragenden Benutzers und beinhaltet
damit die Kernfunktionalitit dieser Arbeit.

Methode: processTask

Parameter: String sessionlD, long taskID, String state

Riickgabe: bool

Mit Hilfe dieser Methode ldsst sich eine gewéahlte Aufgabe von ihrem aktuellen Zustand
in einen neuen Zustand tiberfiihren. Der Riickgabewert zeigt an, ob diese Weiterschaltung
moglich war oder nicht.

76

Literaturverzeichnis

[AAD"o7a]

[AAD"o7b]

[Croo6]

[Go10]

[GBH ' 05]

[Hubo8]

[Kir10]

[Mar1o]

[Mat1o0]

A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Ko6-
nig, F. Leymann, R. Miiller, G. Pfau, K. Plosser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller. WS-BPEL Extension
for People vi. 2007. URL http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-bpeldpeople/BPEL4People_v1i.pdf. (Zitiert auf Sei-
te 16)

A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. K&-
nig, F. Leymann, R. Miiller, G. Pfau, K. Plosser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller. WS-HumanTask Specifica-
tion v1. 2007. URL http://download.boulder.ibm.com/ibmdl/pub/software/
dw/specs/ws-bpeldpeople/WS-HumanTask_v1.pdf. (Zitiert auf den Seiten 16
und 22)

D. Crockford. JSON Specification RFC 4627. 2006. URL http://wuw.ietf.org/
rfc/rfc4627.txt. (Zitiert auf Seite 52)

P. Gohner. Automatisierungstechnik I, 2010. SKRIPT. (Zitiert auf den Seiten 26
und 31)

M. Grossmann, M. Bauer, N. Honle, U.-P. Kdppeler, D. Nicklas, T. Schwarz.
Efficiently Managing Context Information for Large-Scale Scenarios. Pervasive
Computing and Communications, IEEE International Conference on, 0:331-340, 2005.
doi:http://doi.ieeecomputersociety.org/10.1109/PERCOM.2005.17. (Zitiert auf
Seite 42)

E. Huber. SmartGPS - Lokationsmodell fiir PerFlows. Master’s thesis, Universitat
Stuttgart, 2008. (Zitiert auf Seite 14)

M. Kirkpatrick. Facebook’s Zuckerberg Says The Age of Privacy is Over. 2010.
URL http://www.readwriteweb.com/archives/facebooks_zuckerberg_says_
the_age_of _privacy_is_ov.php. (Zitiert auf Seite 41)

C. Marcellino. Data in Your iPhone App, 2010. LECTURE g9 CS193P at Stanford
University. (Zitiert auf Seite 54)

Matt. JSON-RPC Specification. 2010. URL http://groups.google.com/group/
json-rpc/web/json-rpc-2-0. (Zitiert auf Seite 51)

77

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.readwriteweb.com/archives/facebooks_zuckerberg_says_the_age_of_privacy_is_ov.php
http://www.readwriteweb.com/archives/facebooks_zuckerberg_says_the_age_of_privacy_is_ov.php
http://groups.google.com/group/json-rpc/web/json-rpc-2-0
http://groups.google.com/group/json-rpc/web/json-rpc-2-0

Literaturverzeichnis

[NIMoo]

[Orgo7]

[OTMo3]

[SWDAOo8]

[UBRo6]

[UHW *o9]

[W3Co4]

[WCL"o5]

[Weig1]

[WFo2]

78

NIMA. World Geodetic System 1984. 2000. URL http://earth-info.nga.mil/
GandG/publications/tr8350.2/wgs84fin.pdf. (Zitiert auf Seite 71)

Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Business Process Execution Language (WS-BPEL) Version 2.0,
2007. URL http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.
html. (Zitiert auf Seite 16)

I. Ohmukai, H. Takeda, M. Miki. A Proposal of the Person-centered Approach
for Personal Task Management. In Proceedings of the 2003 Symposium on Ap-
plications and the Internet, pp. 234 — 240. IEEE Computer Society, 2003. doi:
10.1109/SAINT.2003.1183055. URL http://portal.acm.org/citation.cfm?
1d=827273.829223. (Zitiert auf den Seiten 16 und 17)

H. Schonenberg, B. Weber, B. F. van Dongen, W. M. P. van der Aalst. Supporting
Flexible Processes through Recommendations Based on History. In BPM, volume
5240 of Lecture Notes in Computer Science, pp. 51—-66. Springer, 2008. URL http://
dblp.uni-trier.de/db/conf/bpm/bpm2008.html#SchonenbergWDA08. (Zitiert
auf Seite 17)

S. Urbanski, C. Becker, K. Rothermel. Sentient processes - process-based app-
lications in pervasive computing. In Pervasive Computing and Communications
Workshops, 2006. PerCom Workshops 2006. Fourth Annual IEEE International Con-
ference on, pp. 4 pp. —611. 2006. doi:10.1109/ PERCOMW.2006.124. (Zitiert auf
Seite 13)

S. Urbanski, E. Huber, M. Wieland, F. Leymann, D. Nicklas. PerFlows for the
computers of the 21st century. In Pervasive Computing and Communications,
2009. PerCom 2009. IEEE International Conference on, pp. 1 —6. 2009. doi:10.1109/
PERCOM.2009.4912887. (Zitiert auf den Seiten 13 und 14)

W3C. XML Schema. 2004. URL http://www.w3.org/standards/techs/
xmlschema#w3c_all. (Zitiert auf Seite 52)

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. E. Ferguson. Web Services
Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005. (Zitiert auf Seite 52)

M. Weiser. The Computer for the 21st Century. Scientific American, 265(3):94-104,
1991. URL http://nano.xerox.com/hypertext/weiser/SciAmDraft3.html.
(Zitiert auf den Seiten 13 und 21)

T. Watanabe, T. Fukumura. A scheduler of daily personal tasks on the basis
of the object-oriented model. In TENCON ‘92. “Technology Enabling Tomorrow
: Computers, Communications and Automation towards the 21st Century.” 1992

http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://portal.acm.org/citation.cfm?id=827273.829223
http://portal.acm.org/citation.cfm?id=827273.829223
http://dblp.uni-trier.de/db/conf/bpm/bpm2008.html#SchonenbergWDA08
http://dblp.uni-trier.de/db/conf/bpm/bpm2008.html#SchonenbergWDA08
http://www.w3.org/standards/techs/xmlschema#w3c_all
http://www.w3.org/standards/techs/xmlschema#w3c_all
http://nano.xerox.com/hypertext/weiser/SciAmDraft3.html

Literaturverzeichnis

IEEE Region 10 International Conference., pp. 618 —622 vol.2. 1992. doi:10.1109/
TENCON.1992.272028. (Zitiert auf Seite 16)

[Wingog] D. Winer. XML-RPC Specification. 1999. URL http://www.xmlrpc.com/spec.
(Zitiert auf Seite 51)

Alle URLs wurden zuletzt am 28.03.2011 gepriift.

79

http://www.xmlrpc.com/spec

Erkldarung

Hiermit versichere ich, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Thorsten Hoger)

	I Grundlagen
	1 Einleitung
	1.1 Motivation
	1.2 Ziele der Arbeit
	1.3 Aufbau der Arbeit

	2 Grundlagen und verwandte Arbeiten
	2.1 Motivation
	2.2 Personal Flows
	2.3 Taskkonzepte
	2.3.1 PIM Tasks
	2.3.2 WS-HumanTask
	2.3.3 Andere Arbeiten

	2.4 Zusammenfassung

	II Theoretische Konzepte
	3 Personal Task
	3.1 Motivation
	3.2 Szenario
	3.3 Anforderungen
	3.4 Definition
	3.5 Eigenschaften
	3.5.1 Felder
	3.5.2 Status

	3.6 Taskattribute im Szenario
	3.7 Zusammenfassung

	4 Methoden der Priorisierung
	4.1 Motivation
	4.2 Anforderungen
	4.3 Berechnungsmethoden
	4.3.1 Echtzeit-Schedulingverfahren
	4.3.2 Bewertungsalgorithmen

	4.4 Zusammenfassung

	5 Priorisierungsalgorithmus
	5.1 Motivation
	5.2 Algorithmus
	5.3 Faktoren zur Priorisierung
	5.3.1 Gewichtung der Faktoren

	5.4 Priorisierung der Szenariotasks
	5.5 Pseudocode Implementierung
	5.6 Neuberechnungslogik
	5.7 Erweiterung: zeitliche Abläufe
	5.8 Zusammenfassung

	6 Architektur des TaskManagers
	6.1 Motivation
	6.2 Anforderungen
	6.3 Lösungsansätze
	6.3.1 Konzepte
	6.3.2 Auswahl

	6.4 Serverarchitektur
	6.5 Schnittstellendefinition
	6.6 Clientkonzepte
	6.6.1 Desktopclients
	6.6.2 Mobile Clients
	6.6.3 Anzeigeclients

	6.7 Zusammenfassung

	III Implementierung
	7 Serverimplementierung
	7.1 Motivation
	7.2 Gesamtarchitektur
	7.2.1 Datenbank
	7.2.2 Application Server
	7.2.3 Weboberfläche

	7.3 Zusammenfassung

	8 Schnittstellenumsetzung
	8.1 Motivation
	8.2 Protokollalternativen
	8.3 Pro/Contra je Zielplattform
	8.4 Auswahl
	8.5 Zusammenfassung

	9 Desktop Client
	9.1 Motivation
	9.2 Eclipse Plattform
	9.3 Funktionalität Rich Client
	9.4 Zusammenfassung

	10 Mobile Client
	10.1 Motivation
	10.2 BlackBerry Client
	10.3 iOS Client
	10.4 Zusammenfassung

	11 Erweiterungen
	11.1 OS X Widget
	11.2 Windows Gadget
	11.3 Android App

	IV Abschluss
	12 Zusammenfassung und Ausblick
	12.1 Evaluation
	12.2 Zusammenfassung der Arbeit
	12.3 Ausblick

	V Anhang
	A Taskdatenmodell
	B Schnittstellendefinition
	B.1 Benutzerverwaltung
	B.2 Kontextverwaltung
	B.3 Taskverwaltung

	Literaturverzeichnis

