
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3093

Ein TaskManager für PerFlows

Thorsten Höger

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Tobias Unger
Dipl.-Inf. M.Sc.(USA) Stephan Urbanski

begonnen am: 1. Oktober 2010

beendet am: 2. April 2011

CR-Klassifikation: E.1, G.3, H.4.1

Inhaltsverzeichnis

I. Grundlagen 7

1. Einleitung 9
1.1. Motivation . 9

1.2. Ziele der Arbeit . 10

1.3. Aufbau der Arbeit . 11

2. Grundlagen und verwandte Arbeiten 13
2.1. Motivation . 13

2.2. Personal Flows . 13

2.3. Taskkonzepte . 14

2.3.1. PIM Tasks . 15

2.3.2. WS-HumanTask . 16

2.3.3. Andere Arbeiten . 16

2.4. Zusammenfassung . 17

II. Theoretische Konzepte 19

3. Personal Task 21
3.1. Motivation . 21

3.2. Szenario . 21

3.3. Anforderungen . 21

3.4. Definition . 22

3.5. Eigenschaften . 22

3.5.1. Felder . 22

3.5.2. Status . 23

3.6. Taskattribute im Szenario . 23

3.7. Zusammenfassung . 24

4. Methoden der Priorisierung 25
4.1. Motivation . 25

4.2. Anforderungen . 25

3

4.3. Berechnungsmethoden . 25

4.3.1. Echtzeit-Schedulingverfahren . 26

4.3.2. Bewertungsalgorithmen . 27

4.4. Zusammenfassung . 28

5. Priorisierungsalgorithmus 29
5.1. Motivation . 29

5.2. Algorithmus . 29

5.3. Faktoren zur Priorisierung . 30

5.3.1. Gewichtung der Faktoren . 30

5.4. Priorisierung der Szenariotasks . 33

5.5. Pseudocode Implementierung . 33

5.6. Neuberechnungslogik . 34

5.7. Erweiterung: zeitliche Abläufe . 34

5.8. Zusammenfassung . 36

6. Architektur des TaskManagers 37
6.1. Motivation . 37

6.2. Anforderungen . 37

6.3. Lösungsansätze . 39

6.3.1. Konzepte . 39

6.3.2. Auswahl . 41

6.4. Serverarchitektur . 42

6.5. Schnittstellendefinition . 42

6.6. Clientkonzepte . 42

6.6.1. Desktopclients . 43

6.6.2. Mobile Clients . 43

6.6.3. Anzeigeclients . 44

6.7. Zusammenfassung . 44

III. Implementierung 45

7. Serverimplementierung 47
7.1. Motivation . 47

7.2. Gesamtarchitektur . 47

7.2.1. Datenbank . 48

7.2.2. Application Server . 48

7.2.3. Weboberfläche . 48

7.3. Zusammenfassung . 49

8. Schnittstellenumsetzung 51
8.1. Motivation . 51

4

8.2. Protokollalternativen . 51

8.3. Pro/Contra je Zielplattform . 52

8.4. Auswahl . 54

8.5. Zusammenfassung . 54

9. Desktop Client 55
9.1. Motivation . 55

9.2. Eclipse Plattform . 55

9.3. Funktionalität Rich Client . 55

9.4. Zusammenfassung . 56

10. Mobile Client 57
10.1. Motivation . 57

10.2. BlackBerry Client . 57

10.3. iOS Client . 58

10.4. Zusammenfassung . 59

11. Erweiterungen 61
11.1. OS X Widget . 61

11.2. Windows Gadget . 61

11.3. Android App . 62

IV. Abschluss 63

12. Zusammenfassung und Ausblick 65
12.1. Evaluation . 65

12.2. Zusammenfassung der Arbeit . 66

12.3. Ausblick . 67

V. Anhang 69

A. Taskdatenmodell 71

B. Schnittstellendefinition 73
B.1. Benutzerverwaltung . 73

B.2. Kontextverwaltung . 74

B.3. Taskverwaltung . 75

Literaturverzeichnis 77

5

Abbildungsverzeichnis

2.1. Tasks Microsoft Outlook . 15

3.1. Zustandsübergänge von Aufgaben . 24

6.1. Gesamtarchitektur . 41

6.2. Beispiele der Client-Server Interaktion . 43

7.1. Komponentengliederung des Servers . 47

7.2. Kartenanzeige mit geöffnetem Taskdialog . 49

9.1. Hauptansicht mit Aufgabenliste und Taskeditor 56

10.1. BlackBerry Client . 58

10.2. Taskliste mit Taskdetails als Splitview . 59

11.1. Mac OS X Dashboard . 62

11.2. Draftshot der Anwendung . 62

12.1. Konsolenausgabe der Priorisierung . 66

Tabellenverzeichnis

3.1. Aufgabenzustände . 23

3.2. Sals Beispielaufgaben . 24

5.1. Bewertung je nach Eskalationsstrategie . 31

5.2. Bewertung nach Spielraum . 31

5.3. Wertigkeit der manuellen Priorität . 32

5.4. Wertigkeit der Entfernung . 32

5.5. Bewertung der Beispielaufgaben . 33

6

Teil I.

Grundlagen

7

1. Einleitung

1.1. Motivation

Die Allgegenwärtigkeit von Computern und ähnlichen Geräten hat in letzter Zeit ungeahnte
Ausmaße erreicht. Dabei haben sich sowohl die Leistungsfähigkeit als auch die Verbreitung
dieser Geräte vervielfacht. Vor allem im Bereich der Smartphones sind die Rechenleistung
und das Speicherangebot massiv gestiegen. Auch eine Internetverbindung kann mittlerweile
als dauerhaft gegeben betrachtet werden. Dies liegt einerseits am stark verbesserten Netz-
ausbau aber andererseits auch an der deutlichen Senkung der Preise für Endbenutzer. Als
weiterer Punkt sind mittlerweile sehr viele verschiedene Sensoren, wie Mikrofone, Kameras,
Beschleunigungssensoren und GPS-Empfänger in nahezu jedem Smartphone integriert. Auf
Basis dieser neuen Rahmenbedingungen ergeben sich völlig neue Anwendungsszenarien
für mobile Endgeräte. Für Smartphones existieren einige Anwendungen, die Internet und
Sensorik verbinden. Als Beispiele sind hier Google Maps und Wikihood genannt. Google
Maps bietet dem Benutzer eine Karte seiner aktuellen Umgebung auf Basis der Lokationsin-
formationen seines Endgerätes. Wikihood verknüpft die Lokationsdaten noch weiter indem
es dem Benutzer Wikipediaartikel zu Objekten und Personen mit Bezug zum aktuellen
Umfeld anzeigt. Bei falscher Anwendung und unsachgemäßem Umgang durch den Benutzer
birgt diese Verknüpfung von Daten auch große Risiken, was eine Aufklärung des Benutzers
essentiell macht. Die genannten Anwendungen beschränken sich dabei allerdings auf die
Sensordaten eines Endgerätes und können so nur sehr lokal begrenzte Daten erfassen und
verwenden. Das Konzept der in Abschnitt 2.2 vorgestellten PerFlows erweitert dieses Modell.
PerFlows bieten dem Benutzer eine Grundlage zur Modellierung von persönlichen Abläufen
zur Abbildung seiner Alltagsaufgaben. Die Infrastruktur sorgt dann dafür, dass die Aufgaben
und Anwendungen entsprechend dem aktuellen Kontext ausgeführt werden können. Das
heißt die Infrastruktur orchestriert die verfügbaren Geräte um die Aufgabe auszuführen.
Durch diese Automatisierung sollten sich signifikante Zeitersparnisse und ein vermindertes
Stresslevel des Anwenders erreichen lassen, was wiederum die Produktivität und Zufrie-
denheit des Einzelnen erhöht. Als Beispiel betrachten wir Sal die einen PerFlow für das
Einkaufen erstellt hat. Wir nehmen an, Sal besitzt ein Fahrzeug mit Navigationssystem und
eine digitale Einkaufsliste. Die aktuellen Angebote der Supermärkte sind im Internet abruf-
bar. Die Ausführungsumgebung der PerFlows würde nun automatisch einen Supermarkt
vorschlagen und auf Wunsch das Navigationssystem im Fahrzeug programmieren. Hierbei
werden zwei Dinge deutlich: Zum einen wird die Verbindung der einzelnen Komponenten,

9

1. Einleitung

Dienste und Geräte automatisch von der Infrastruktur übernommen, zum anderen verfügt
der Anwender jederzeit über die Kontrolle, d.h. die Infrastruktur führt keine Aktionen
ohne Freigabe durch den Benutzer aus. Ausnahmen hiervon sind nur reversible Vorberei-
tungsaktivitäten, die bei Stornierung keinen Nachteil für den Benutzer mit sich bringen. Im
Beispiel muss Sal die Auswahl des Supermarkts freigeben, um die Programmierung des
Navigationssystems einzuleiten. Der Grund hierfür ist die Annahme, dass sich Benutzer im
Alltag ungern von elektronischen Helfern bevormunden lassen und Persönlichkeitsrechte
wie Selbstbestimmung wahrnehmen wollen. PerFlows sollen lediglich eine Hilfe anbieten, die
jederzeit abgelehnt werden kann. Eine Herausforderung im Beispielszenario ist allerdings die
Auswahl von momentan günstigen Aufgaben. So ist beispielsweise der Vorschlag einkaufen
zu gehen wenig sinnvoll, wenn der Benutzer sich momentan in einer Besprechung befindet,
selbst wenn die Aufgabe eine Deadline in naher Zukunft hat. Daraus wird offensichtlich,
dass klassische Planungssysteme nicht für PerFlows in Frage kommen können. Erstens
verwenden die wenigsten Systeme aktuelle Sensordaten aus dem Kontext des Benutzers
und können somit wesentliche Kriterien nicht betrachten, zweitens arbeiten die Systeme in
der Regel nicht dynamisch und bewerten die Informationen nicht ständig neu, wie es bei
kontextsensitiven Anwendungen zwingend notwendig ist. In der folgenden Arbeit soll nun
eine Priorisierung von persönlichen Aufgaben an Hand verschiedener Kriterien entwickelt
werden. Diese Kriterien stammen zum einen aus den Eigenschaften der Aufgabe, wie zum
Beispiel Deadlines oder Ausführungsorte, zum anderen sollen aber auch Kontextinformatio-
nen des Benutzers wie seine aktuelle Position mit in die Berechnung einbezogen werden.
In der Arbeit werden vorhandene Planungssysteme auf ihre Einsatzfähigkeit für PerFlows
untersucht und auf Basis der daraus gewonnen Ideen und Mängellisten ein Konzept für
die Umsetzung eines TaskManagers für PerFlows erstellt. Ein wesentlicher Bestandteil ist
die Umsetzung des TaskManagers auf realen Plattformen, um in zukünftigen Arbeiten die
Evaluierung von Kriterien in einem realen Szenario zu ermöglichen. Die gewonnenen Er-
kenntnisse über eine sinnvolle Architektur des Gesamtsystems und die Implementierung für
unterschiedliche mobile Plattformen vervollständigen diese Arbeit. Die Datenschutzaspekte
wurden hier bewusst ausgelassen, was aber nur der Abgrenzung der Arbeit dient, aber keine
Schmälerung der Relevanz dieser Themen bedeutet. Vor einem Einsatz der hier entwickelten
Lösung müssen diese Fragestellungen unbedingt bearbeitet werden.

1.2. Ziele der Arbeit

Das Ziel dieser Arbeit gliedert sich in mehrere Bereiche. Zum einen soll ein Datenmodell für
die Verwaltung von Aufgaben erstellt werden, das es ermöglicht diese mit Kontextinforma-
tionen (z.B. Lokation) anzureichern und sie in PerFlows nutzen zu können. Des Weiteren
soll ein Algorithmus entwickelt werden, der diese Aufgaben anhand diverser Faktoren, wie
Lokationsinformationen und Zeitvorgaben, dynamisch priorisiert und dem Anwender eine
Empfehlung für die Abarbeitungsreihenfolge seiner Aufgaben gibt. Abschließend wird eine

10

1.3. Aufbau der Arbeit

konkrete Implementierung für diverse Endgeräte des Benutzers geplant und ausgeführt.
Hierbei werden auf Architektur- und Protokollüberlegungen mit einfließen.

1.3. Aufbau der Arbeit

Die folgende Arbeit gliedert sich in zwölf Abschnitte. Zu Beginn werden die Grundlagen,
die für diese Arbeit notwendig sind, erläutert. Dabei werden die Begriffe Aufgabe und Task
synonym verwendet. Die Grundlagen beinhalten bestehende Konzepte zur Taskverwaltung,
verwandte Arbeiten und das Konzept der PerFlows. Im Weiteren wird dann der Taskbegriff
für diese Arbeit definiert und von den bestehenden abgegrenzt. Im Kapitel4 werden verschie-
den Methoden zur Priorisierung vorgestellt und anschließend der erarbeitete Algorithmus
näher erläutert. Das Kapitel 6 betrachtet die Architektur des Gesamtsystems. Hier werden
verschiedene Ansätze geprüft und dann die einzelnen Komponenten der gewählten Infra-
struktur vorgestellt. Die Implementierung der Serverkomponente schließt sich im Kapitel 7

an. Die Festlegung der Schnittstelle wird danach getroffen. Die Kapitel 9ff widmen sich der
Implementierung von Desktop- und Mobileclients, sowie den Erweiterungsmöglichkeiten.
Eine Evaluation der entwickelten Komponenten mit einer anschließenden Zusammenfassung
der Arbeit und ein Ausblick auf zukünftige Anwendungen im Bereich der PerFlows und
darüber hinaus schließen die Arbeit ab.

11

2. Grundlagen und verwandte Arbeiten

2.1. Motivation

In diesem Kapitel sollen die notwendigen Grundlagen für die vorliegende Arbeit erläutert
werden. Des Weiteren werden bestehende Konzepte zur Verwaltung von Aufgaben aus
dem wissenschaftlichen und kommerziellen Bereich vorgestellt und die Unterschiede und
Gemeinsamkeiten zum hier vorgestellten TaskManager beschrieben. Das Ziel ist es, die
hinter dieser Arbeit stehende Idee zu erklären und alle notwendigen Voraussetzungen für
die folgenden Kapitel zu schaffen.

2.2. Personal Flows

In seiner wegweisenden und visionären Arbeit im Bereich des ubiquitous computing “The
Computer for the 21st Century” [Wei91] beschreibt Mark Weiser eine Welt, in der alle Objekte
aus dem täglichen Bedarf mit intelligenten Funktionen ausgestattet sind und uns bei unserer
Arbeit unterstützen. Die Unterstützung reicht dabei von digitalen Wänden und Projektions-
tafeln über mobile Endgeräte bis hin zu digitalen Notizzetteln. Zur Zeit der Veröffentlichung
waren all diese Ideen noch nicht technisch umsetzbar und reine “Science-Fiction”. Durch den
dramatischen Anstieg der Anzahl an Computern und computerähnlichen Geräte und der
Ausdehnung der Anwendungsbereiche in alle Lebenssituationen kann aus dieser Fiktion aber
heute Realität werden. Nahezu jeder hat heute ein Handy und der Anteil an Smartphones
wächst stark an. Auch durch die Miniaturisierung von Computern auf Subnotebooks oder
der Hype um Tablet-PCs zeigen, dass der Computer als Alltagsgegenstand längst Standard
ist.

Ein Vorschlag zur Umsetzung dieser Vision mit heutigen Mitteln findet sich im Paper “Per-
Flows for the Computers of the 21st Century” aus dem Jahre 2009 [UHW+

09]. Die Autoren
beschreiben darin die Verwendung von aus dem Prozessmanagement abgeleiteten Methoden
zur Umsetzung persönlicher Abläufe im täglichen Leben. Dazu führen sie das Konzept der

“Personal Workflows” oder PerFlows ein. Diese Arbeit basiert auf den Sentient Processes aus dem
Jahre 2006 [UBR06]. Mit Hilfe dieser Flows lassen sich Aufgaben und Ziele einer Person samt
den dazu notwendigen Schritten als Prozess modellieren und in einer geeigneten Laufzeit-
umgebung ausführen. Der für die Ausführung notwendige Benutzerkontext beinhaltet als

13

2. Grundlagen und verwandte Arbeiten

eines der wichtigsten Merkmale die Position des Benutzers. Dazu liefert einer der Autoren
das Positionierungskonzept des SmartGPS [Hub08].

Die Ausführung der PerFlows geschieht dann auf einem verteilten System, bei dem ein mo-
biles Endgerät des Benutzers die Rolle des Prozesskoordinators übernimmt. Dieser verwaltet
die zu erledigenden Prozessschritte der aktiven PerFlows und führt diese bei Aktivierung
auf geeigneten Geräten in der aktuellen Umgebung des Benutzers aus. Im Gegensatz zu den
genannten Arbeiten kann mittlerweile sogar von einer dauerhaften Internetverbindung der
beteiligten Geräte ausgegangen werden, was die Koordination und Verwaltung der Daten
und Aufgaben wesentlich erleichtert.

Da ein Großteil der Aufgaben im persönlichen Ablauf von einem Menschen ausgeführt wer-
den und nur einige unterstützenden Aufgaben automatisiert ablaufen, ist die Verwaltung von
persönlichen Aufgaben eine Kernkomponente einer PerFlow-Umgebung. Das Prozesssystem
darf im Gegensatz zum geschäftlichen Einsatz dem Benutzer keine Aufgaben und Pro-
zessabläufe diktieren, sondern soll als Empfehlung verstanden werden und Abweichungen
des Benutzers vom aktuellen Prozess tolerieren und entsprechende Maßnahmen ergreifen.
Deshalb dürfen unumkehrbare Prozessschritte nur nach Genehmigung durch den Benutzer
ausgeführt werden und nur reversible Aktionen vollautomatisch aktiviert werden.

Nach der Vorstellung des Konzepts und der Ausführungsumgebung für PerFlows in
[UHW+

09] soll nun in dieser Arbeit der notwendige TaskManager für persönliche Auf-
gaben konzipiert und implementiert werden. Dies berücksichtigt auch die Priorisierung der
Aufgaben nach Wichtigkeit und Gelegenheit, sowie die Statusverwaltung der Aufgaben zur
Kommunikation mit dem Prozesskoordinator. Im weiteren Verlauf sind mit den Begriffen
Flow, Workflow oder Prozess, wenn nicht anders angegeben, immer PerFlows entsprechend
des eben vorgestellten Konzepts gemeint.

2.3. Taskkonzepte

Die Verwaltung von Aufgaben im persönlichen oder geschäftlichen Umfeld ist kein neues
Thema. Es existieren bereits diverse Lösungen für Taskmanagementsysteme. Dies beinhaltet
reine Aufgabenlistensysteme wie zum Beispiel PIM-Lösungen und komplexe Verwaltungs-
programme für die Verwendung in Geschäftsprozessen. In diesem Abschnitt werden nun
einige dieser Lösungen vorgestellt und anschließend geklärt, warum eine weitere TaskMa-
nagerentwicklung sinnvoll ist. Bei den vorgestellten Lösungen handelt es sich sowohl um
theoretische Konzepte als auch um reale Implementierungen, die auf dem Markt verfügbar
sind.

14

2.3. Taskkonzepte

2.3.1. PIM Tasks

Unter Personal Information Manager versteht man Systeme, die persönliche Daten wie Kontakte,
Aufgaben und Notizen verwalten. Diese Art der Aufgabenverwaltung ist sehr weit verbreitet
und liefert die Grundlage einer digitalen Erfassung seiner ToDos. Das bekannteste Beispiel
in diesem Bereich dürfte Microsoft Outlook sein. Es bietet dem Benutzer die Möglichkeit
Aufgaben anzulegen, zu kategorisieren und ihren Fortschritt zu dokumentieren. Screenshots
der Anwendung finden sich in [Abb: 2.1].

(a) Einzelner Task (b) Komplette Worklist

Abbildung 2.1.: Tasks Microsoft Outlook

Weitere bekannte Beispiele für PIM-Lösungen sind Apple iCal1 und Mozilla Sunbird2. Auch
jedes Smartphone bringt im Betriebssystem eine Verwaltung von Aufgaben und Notizen mit,
die sich mit Desktoplösungen abgleichen lassen. Diese Systeme sind allerdings nur für die
Benutzung durch Menschen konzipiert und lassen sich schlecht automatisiert in Software ver-
wenden. Eine Integration in ein Workflowsystem ist mit diesen Produkten nicht zielführend.
Auch bieten diese Systeme sehr eingeschränkte Möglichkeiten, die Aufgaben automatisch zu
priorisieren. Stattdessen setzen sie auf eine vorgegebene und statische Priorisierung durch
den Anwender. Aus diesen Gründen ist eine Verwendung dieser Komponenten in PerFlows
nicht durchführbar, allerdings sollte eine Möglichkeit geschaffen werden, die Aufgaben
eines PIM-Systems im TaskManager zu integrieren. Dies ist aber nicht Bestandteil dieser

1http://www.apple.com/de/macosx/what-is-macosx/mail-ical-contacts-apps.html
2http://www.sunbird-kalender.de

15

2. Grundlagen und verwandte Arbeiten

Arbeit. Ein weiterer Nachteil von PIM-Systemen ist nach [OTM03, 2.2], dass es “für eine
Verbesserung der persönlichen Produktivität wichtig ist, Aufgaben vorausschauend und
unter verschiedenen Blickwinkeln zu evaluieren” und konventionelle Aufgabenplaner diese
Anforderung nicht umsetzen können.

2.3.2. WS-HumanTask

Eine weitere Arbeit, die sich mit der Verwaltung von Task beschäftigt ist das Konzept
der WS-HumanTasks[AAD+

07b]. Es bietet eine Möglichkeit von Menschen auszuführen-
de Aufgaben in Geschäftsprozessen zu verwenden. Dazu wird in einem BPEL-Prozess3

mit der Erweiterung BPEL4People[AAD+
07a] eine peopleActivity verwendet, die dann den

TaskManager bedient. Hierbei wird sehr stark auf die Interaktion von Taskverwaltung und
Prozessumgebung wert gelegt, daher zielt diese Lösung in eine vergleichbare Richtung
wie die Verknüpfung von PerFlows mit Personal Tasks. Allerdings ist auf Grund der viel-
fältigen Einsatzmöglichkeiten im Geschäftsumfeld und der hohen Prozessanforderungen
an Geschäftsprozesse die Verwendung von BPEL und Ws-HumanTask zu komplex für
den Anwendungsfall der Prozessverwaltung im persönlichen Bereich. Ein wichtiger Unter-
schied von Geschäftsprozessen zu persönlichen Workflows ist außerdem die gewünschte
Prozesstreue im geschäftlichen Umfeld und die flexible, eher als Vorschlag zu betrachtende
Ausführung im privaten Umfeld. Auch die Mächtigkeit von WS-HumanTask im Bereich
der automatischen Zuweisung von Personen zu Tasks (potentialOwners) und die Integration
der, bei Bedarf auch multilingualen, Darstellungsbeschreibung von Tasks innerhalb der
Definition führen zu dem Schluss, dass die Verwendung von WS-HumanTask im Bereich
der PerFlows überdimensioniert und von zu hoher Komplexität ist. Trotzdem beeinflussen
die Überlegungen hinter WS-HumanTask die Entwicklung des Konzepts der persönlichen
Aufgaben.

2.3.3. Andere Arbeiten

Bereits 1992 haben Toyohide Watanabe und Teruo Fukumura in ihrer Arbeit A Scheduler
of Daily Personal Tasks on the Basis of the Object-oriented Model [WF92] das Problem der
Ablaufplanung von persönlichen Aufgaben als wichtig erkannt und eine objekt-orientierten
Lösungsansatz präsentiert. Sie gehen dabei davon aus, dass jede Person einen eigenen
“Stundenplan” mit ihren Aufgaben hat und zusätzlich Mitglied in n Umgebungen ist, die
wiederum Aufgabenpläne beinhalten. Diese Umgebungen können baumartig geschachtelt
sein und somit dem einzelnen Benutzer mehrere parallele Zeitpläne bieten. Der Benutzer, von
den Autoren Agent genannt, muss nun nach dem in [WF92, Fig. 7] beschriebenen Algorithmus
diese Zeitpläne verschmelzen um einen einzelnen, aktuellen Zeitplan zu erhalten, der dann

3Business Process Execution Language[Org07]

16

2.4. Zusammenfassung

ausgeführt werden kann. Allerdings gibt es auch hier keine Garantie der Ausführbarkeit
durch inkompatible Zeitpläne.

Auch im Artikel von Ohmukai, Takeda und Miki [OTM03] liegt das Hauptaugenmerk auf
der Erstellung eines Ablaufplans für personenbezogene Aufgaben. Die Autoren wählen
hier aber einen anderen Ansatz zur Aufstellung der Pläne. Als Ausgangssituation für den
vorgeschlagenen Lösungsweg steht dem System eine Liste von zu erledigenden Aufgaben
zur Verfügung, die dann in eine gemeinsame Liste gefüllt werden. Danach versucht das
System entstandene Konflikte bei der Ablaufplanung zu lösen, indem es einzelne Aufgaben
umplant. Dabei werden die verschiedenen Pläne getrennt erstellt und dann einzeln bewertet,
um den idealen Ablaufplan zu finden. Dieser dreistufige Ablauf ist dem menschlichen
Entscheidungsprozess nachempfunden, nach dem erst die nötigen Informationen gesammelt
werden, danach die möglichen Optionen bestimmt werden und abschließend die beste
Lösung gewählt wird.

Ein anderes Ziel verfolgt das Paper Supporting Flexible Processes Through Recommendations
Based on History [SWDA08]. Die Autoren stellen eine Methode zur Empfehlung von Aufgaben
basierend auf Zielfunktionen und Prozesslogs. Dabei definiert ein Benutzer welches Ziel er
in einem Prozess erreichen möchte. Zusätzlich liefert er ein Log seiner bisherigen Prozess-
schritte. Mit Hilfe dieser Daten sucht das System dann für diesen Fall relevante Ablauflisten
vergangener Ausführungen desselben Prozesses und versucht anhand der Zielfunktion
eine optimale Empfehlung des nächsten Prozessschrittes zu geben. Der grundsätzliche
Unterschied zum TaskManager in dieser Arbeit ist die Tatsache, dass der Benutzer seine
nächsten Aufgaben nicht kennt sondern erst vom System vorgeschlagen bekommt wogegen
der TaskManager bestehende Aufgabeliste anhand der Kontextinformationen des Benutzers
priorisiert.

2.4. Zusammenfassung

All diese Konzepte vernachlässigen den aktuellen Aufenthaltsort des Benutzers. Dies ge-
schieht entweder aus mangelnden Informationen über die Lokation oder aus der Annahme
einer geschäftlichen Nutzung in einer definierten Umgebung ohne Bezug zu anderen Berei-
chen des Benutzers. Da aber die Priorisierung von kontextbezogenen Aufgaben im persönli-
chen Umfeld unabdingbar für den Einsatz in PerFlows ist, kann keines dieser Systeme alle
Anforderungen erfüllen. Deshalb wird im Folgenden ein neues Konzept zur Verwaltung von
Aufgaben erarbeitet.

17

Teil II.

Theoretische Konzepte

19

3. Personal Task

3.1. Motivation

Um den Priorisierungsalgorithmus zu definieren und zu implementieren ist ein Taskmodell
notwendig, das die entsprechenden Attribute beinhaltet. Zur Hilfestellung bei der Definition
wird zunächst ein Beispielszenario skizziert und dessen Aufgaben abschließend mit dem
definierten Modell beschrieben.

3.2. Szenario

Das folgende Szenario dient der Verdeutlichung der Konzepte und Algorithmen in dieser
Arbeit. Es bezieht sich dabei auf die Ausgangssituation von Sal aus Weisers Beispiel[Wei91].
Zusätzlich zu ihrem beschriebenen Tagesablauf sollen nun drei Aufgaben gezeigt werden,
die sie am Wochenende durchzuführen hat. Als erste Aufgabe will Sal den Familieneinkauf
durchführen. Dazu muss sie in den 11 km entfernten Supermarkt fahren. Sie startet nun
den Einkaufen-Flow, der die Einkaufsliste aus dem digitalen Notizbuch entnimmt und den
TaskManager anweist eine Aufgabe einzuplanen. Weiter müssen ihre Kinder um 15:00 Uhr
zum Sport im 10 km entfernten Sportstadion sein. Diese Aufgabe hat eine harte Zeitgrenze,
da Verspätungen einer Nichterfüllung gleichkommen. Als letzte Aufgabe will Sal noch das
Handbuch ihres Garagenöffners lesen, das ihr vom Hersteller zugesendet wurde. Diese
Aufgabe stuft sie als priorisiert ein, weist ihr aber keine Deadline zu. Dies führt zu einer
Unterordnung bei Aufgaben mit nahender Deadline.

3.3. Anforderungen

Um die Eigenschaften der Tasks entsprechend des gezeigten Szenarios einzuordnen, muss
das Taskmodell einerseits grundlegende Eigenschaften ausweisen, wie eine Bezeichnung,
Start- und Endzeiten sowie Laufzeitinformationen. Andererseits sind aber auch Kontextin-
formationen wie der Ausführungsort einer Aufgabe wichtig, um bei der Priorisierung eine
Zuordnung des Umfelds des Benutzers zu einzelnen Aufgaben zu ermöglichen. Ein weiterer
Aspekt ist die Trennung zwischen Taskmodell und Taskinstanz. Dabei wird eine Aufgabe

21

3. Personal Task

zuerst als Entwurf mit allen Attributen angelegt und dann bei Bedarf eine konkrete Instanz
erzeugt, die dann zur Priorisierung gelangt. Der Zugriff auf Kontextdaten aus dem PerFlow
soll ebenfalls möglich sein. Hierzu können entweder Daten aus dem Kontext an den Task
angehängt werden oder die Taskanzeige kann auf die Ausführungsumgebung des PerFlows
zugreifen und die benötigten Daten direkt referenzieren. Eine nicht-funktionale Anforde-
rung an das Taskmodell ist das Ziel einer niedrigen Komplexität, um dem Einsatzgebiet im
persönlichen Umfeld gerecht zu werden. Deshalb gelten hier nicht dieselben Anforderungen
wie beispielsweise bei WS-HumanTask [AAD+

07b].

3.4. Definition

Der hier verwendete Taskbegriff beinhaltet eine geringere Komplexität als Tasks im gewerbli-
chen Bereich oder in Geschäftsprozessen. Eine Erweiterung zu bisherigen Taskdefinitionen
aus PIM-Systemen ist die Verwendung der Lokation in Koordinatenform zur Vereinfachung
der digitalen Verarbeitung statt der üblichen textbasierten Ortsangabe. Um dem Benutzer
die Verwaltung zu erleichtern gibt es keine verschiedenen Aufgabentypen, sondern nur
allgemeine auszuführende Aufgaben. Die Erzeugung von Aufgabenentwürfen wird aus
dem TaskManager ausgelagert und kann entweder bei der Erfassung verwaltet werden oder
direkt in der PerFlow-Engine vorgehalten werden. Der TaskManager erhält dann nur die
Taskinstanzen und unterscheidet somit nicht zwischen Modell und Instanz. Jede Aufgabe ist
somit eine einmalig auszuführende Einheit. Kontextdaten werden bei Bedarf direkt aus der
Engine geladen oder im Beschreibungsfeld hinterlegt. In einer weiteren Entwicklung könnte
der Task allerdings um Ein- und Ausgabedaten erweitert werden, um Kontextdaten aus den
PerFlows zu verwenden und diese in einem Anzeigesystem darzustellen ohne Kenntnis von
der Ausführungsumgebung zu haben.

Zusammenfassend gilt für PersonalTasks nun:
Personal Tasks sind in sich abgeschlossene, aber trotzdem wahlweise pausierbare, Aufgabenpakete,
die von Privatpersonen im persönlichen Umfeld zu bearbeiten sind und mit Kontextinformationen
angereichert wurden.

3.5. Eigenschaften

3.5.1. Felder

Die Felder der hier verwendeten Taskdefinition sind in der folgenden Liste aufgezählt. Eine
Beschreibung der einzelnen Felder findet sich im Anhang A.

22

3.6. Taskattribute im Szenario

• id

• name

• description

• state

• startTime

• dueTime

• manualPriority

• location

• pausable

• runtime

• estimatedRuntime

• escalation

3.5.2. Status

Der Status einer Aufgabe ist eine der Kerneigenschaften zur Verwaltung von Tasks und im
Feld state abgelegt. Die möglichen Werte sind in [Tabelle: 3.1] beschrieben. Die möglichen
Statusübergängen findet man in [Abb: 3.1].

Zustand Bedeutung
NotYetStarted Die Aufgabe wurde noch nicht gestartet und wartet auf

Aktivierung

Running Die Aufgabe ist momentan in Bearbeitung

Waiting Die Aufgabe ist unterbrochen, da sie auf externe Ergebnisse
wartet

Paused Die Aufgabe ist pausiert und kann fortgesetzt werden.

Reopened Eine bereits geschlossene Aufgabe wurde wieder geöffnet
und kann gestartet werden

Closed Die Aufgabe ist als erledigt markiert

Deleted Die Aufgabe wurde gelöscht

Tabelle 3.1.: Aufgabenzustände

3.6. Taskattribute im Szenario

Entsprechend dieser Definition und den Angaben aus dem Szenario ergeben sich die Tasks
aus der Liste in [Tabelle: 3.2]. Sie dienen im weiteren Verlauf als Ausgangsbasis für alle
beispielhaften Berechnungen und Beschreibungen.

23

3. Personal Task

NotYetStarted Running

Waiting

Paused

Reopened

Closed

Deleted

Abbildung 3.1.: Zustandsübergänge von Aufgaben

Attribut Task 1 Task 2 Task 3
Name Einkaufen Training Handbuch lesen
startTime – 14:15 –
dueTime 18:00 15:00 –
est. Runtime 30 min 20 min 10 min
location Supermarkt Stadion Zuhause
manualPriority Medium Medium High
escalation Top Top Ignore

Tabelle 3.2.: Sals Beispielaufgaben

3.7. Zusammenfassung

Das hier gezeigte Datenmodell für persönliche Aufgaben beinhaltet alle notwendigen In-
formationen, um die Priorisierung durchzuführen und eine Integration in die PerFlow
Umgebung zu ermöglichen. Es dient als Grundlage für die gesamte weitere Arbeit und
findet sich in dieser Form auch in der Implementierung wieder. Anhand des aufgezeigten
Szenarios wird die weitere Entwicklung der Komponenten erläutert.

24

4. Methoden der Priorisierung

4.1. Motivation

In diesem Kapitel werden Methoden der Priorisierung aus verschiedenen Bereichen vorge-
stellt. Sie dienen als Ideengrundlage für die Entwicklung des Priorisierungsalgorithmus im
darauffolgenden Kapitel.

4.2. Anforderungen

Bei der Priorisierung von Tasks müssen diese anhand von Informationen aus den Eigen-
schaften und Kontextinformationen des Benutzers in eine Reihenfolge gebracht werden, die
angibt welcher Task zuerst ausgeführt werden sollte, welcher als nächstes und so weiter.
Dazu müssen die relevanten Attribute erkannt werden und ein Verfahren entwickelt werden,
das eine sinnvolle Priorisierung erlaubt. Eine essentielle Eigenschaft des Verfahrens muss die
dynamische Priorisierung sein. Das heißt Tasks werden bei der Veränderung von Rahmen-
bedingungen neu priorisiert, um eine aktuelle Reihenfolge zu erhalten. Die Priorisierung
sollte versuchen die Aufgaben so einzuplanen, dass diese vor ihrer Fälligkeit erledigt werden
können um Verspätungen zu minimieren. Die Performanceanforderungen des Verfahrens
beeinflussen später auch nachhaltig die Wahl der Architektur. So ist für eine Berechnung
auf dem mobilen Endgerät ein deutlich einfacherer Algorithmus zu entwerfen als für eine
zentralisierte Architektur.

4.3. Berechnungsmethoden

Priorisierung spielt in vielen Bereichen eine wichtige Rolle. Beispiele hierfür sind Anwen-
dungen zur Einreihung von Arbeitsschritten in eine Sequenz, die heuristische Bewertung
von Daten, oder das Scheduling in Prozessoren. Bei allen Verfahren geht es darum, aus
einzelnen Attributen der Objekte ein Reihenfolge abzuleiten, die ausgeführt werden kann
oder Objekte anhand ihrer Eigenschaften zu bewerten, um dann entsprechende Aktionen
auszuführen. Im Folgenden werden einige der bestehenden Verfahren vorgestellt. Hierbei
unterscheiden sich die Verfahren hauptsächlich durch die Anzahl der zur Priorisierung

25

4. Methoden der Priorisierung

verwendeten Attribute. Bei den Bewertungsalgorithmen werden beliebige Eigenschaften zur
Entscheidung herangezogen, bei den Prozessorplanern liefert normalerweise ein zeitbasiertes
Attribut die nötigen Informationen.

4.3.1. Echtzeit-Schedulingverfahren

Auf einer echtzeitfähigen Maschine müssen die einzelnen Aufgabenpakete oder Prozesse
in eine Ausführungsreihenfolge für die verfügbaren Ressourcen gebracht werden. Dabei
handelt es sich primär um die Vergabe von Rechenzeit auf dem Prozessor. Diese Algorithmen
heißen Schedulingverfahren. Im Gegensatz zur restlichen Arbeit werden in diesem Abschnitt
die Aufgabenpakete für Prozessoren als Tasks bezeichnet. Die Verfahren FIFO, Least-Laxity-
First, Fixed Priority und Earliest-Deadline-First sollen hier nun beschrieben werden und ihre
Adaptionsmöglichkeit für persönliche Aufgaben untersucht werden. Die Informationen über
die Schedulingverfahren stammen aus [Gö10].

FIFO

Eines der einfachsten Verfahren ist das FIFO-Verfahren. Hierbei werden die Tasks entspre-
chend ihrer Erstellungsreihenfolge eingeplant. Der am frühesten erstellte Task wird zuerst
ausgeführt. Dieses Verfahren erlaubt keine Umpriorisierung bei veränderten Rahmenbedin-
gungen, ist aber sehr einfach zu implementieren. Auf Grund fehlender Dynamik ist es für
die in dieser Arbeit geplante Anwendung nicht geeignet.

Earliest-Deadline-First

Beim Earliest-Deadline-First-Verfahren (EDF) liegt das Augenmerk auf der Einhaltung von
Deadlines. Es gehört daher zu den zeitbasierten Verfahren und plant immer den Task ein,
der den frühesten Fertigstellungstermin hat. Das führt dazu, dass Tasks, unter der Vorausset-
zung der Machbarkeit, immer vor ihrer Deadline begonnen werden. Dieses Verfahren wird
sehr häufig in Echtzeitsystemen eingesetzt[Gö10]. Da die Zeitspanne bis zur Fertigstellung
nur einer der Aspekte der Aufgabenpriorisierung sein soll, ist dieses Verfahren für den
TaskManager nur bedingt geeignet.

Least Laxity First

Das Least-Laxity-First-Verfahren ist eine Abwandlung des EDF-Verfahrens. Dabei werden die
Aufgaben nach ihrem Spielraum sortiert und dann der Prozess mit dem geringsten Spielraum
gestartet. Unter dem Spielraum eines Prozesses versteht man die Zeitdifferenz zwischen
seiner Fertigstellungszeit und seiner geplanten Ausführungszeit und seiner Bereitzeit, also

26

4.3. Berechnungsmethoden

die Zeitspanne die der Task “zu früh” fertig wäre wenn er sofort starten würde. Der
Rechenaufwand bei diesem Verfahren ist relativ hoch, da für jeden Task der Spielraum
berechnet werden muss. Außerdem wird bei diesem Verfahren sehr oft umpriorisiert. Es ist
aber optimal für unterbrechbare Prozesse geeignet. Auf Grund des Ansatzes, Aufgaben so
spät wie möglich, aber immer rechtzeitig einzuplanen, wird es im folgenden Kapitel für die
Bewertung von Zeitprioritäten persönlicher Aufgaben verwendet.

Fixed Priority

Das Fixed-Priority-Verfahren gehört wiederum zu den einfacheren Verfahren. Hierbei wird
jedem Prozess eine feste Priorität zugewiesen. Der Scheduler plant die Tasks dann so ein, dass
immer der Task mit der verbleibenden Höchstpriorität als nächstes startet. Dieser Ansatz
wird im hier entwickelten Algorithmus für die Bewertung der manuellen Priorisierung
aufgegriffen.

4.3.2. Bewertungsalgorithmen

Im Gegensatz zu den Schedulingverfahren, die die Gesamtheit der Aufgaben betrachten,
sind die Bewertungsalgorithmen für die Berechnung eines Wertes für ein einzelnes Objekt
ausgelegt. Hierbei wird einem Objekt eine Wertung vergeben, die unabhängig von den
weiteren Objekten in der Prüfung ist. Somit eignen sich diese Verfahren bei kontinuierlichen
Objektströmen, die auf Basis von Erfahrungswerten betrachtet werden. Als Beispiel einer
heuristischen Bewertung von Daten soll die Spamerkennung dienen. Hierbei wird eine einge-
hende Nachricht mit vielen verschiedenen Filtern und Algorithmen bearbeitet. Dabei vergibt
jeder Filter eine Wertung der Nachricht als Dezimalzahl, die die Nachricht als potentiellen
Spam, als neutral oder als erwünscht einstuft. Das Spamsystem addiert nun die einzelnen
Bewertungen und vergleicht diese Summe gegen einen vordefinierten Schwellwert. Wird nun
dieser Schwellwert bei einer Nachricht überschritten, wird diese je nach Konfiguration als
Spam markiert oder gelöscht. Eine Umsetzung dieser Art der Spam- und Virenbekämpfung
erfolgt beim kombinierten Einsatz von amavisd1 mit ClamAV2 und SpamAssassin3. Ein
Beispiel der Bewertung eingehender Nachrichten lautet wie folgt.

amavis[19864]: ... Passed SPAM, ... quarantine: ...
Hits: 14.175, size: 10292, queued_as: 952F616F00CBA, 4114 ms

amavis[19865]: ... Passed CLEAN ...
Hits: -2.563, size: 782, queued_as: 4CEA716F00CA8, 291 ms

1http://www.ijs.si/software/amavisd/
2http://www.clamav.net
3http://spamassassin.apache.org/

27

4. Methoden der Priorisierung

Hierbei wurde die erste Nachricht als SPAM markiert, da sie den Schwellwert von 10 deutlich
überschritten hat. Die zweite Nachricht wurde mit einem Wert von −2, 563 akzeptiert und
dem Empfänger zugestellt.

Dieser Ansatz der Bewertung von Objekten durch Vergabe von Punkten und der anschließen-
den Einordnung anhand der Gesamtwertung soll nun auch im hier entwickelten Algorithmus
Anwendung finden. Hierbei dienen die Schedulingverfahren zur Berechnung der Summan-
den und die Gesamtsumme der Werte danach zur Priorisierung der Aufgaben.

4.4. Zusammenfassung

In diesem Kapitel wurden mehrere Methoden vorgestellt, um Tasks zu priorisieren. Dabei
wurden hauptsächlich Konzepte aus dem Prozessorscheduling aufgezeigt. Das Scheduling
von persönlichen Aufgaben wird nun aus den Kernideen dieser Verfahren zusammengestellt,
wobei hierbei mehrere Verfahren kombiniert werden. Trotz der erhöhten Komplexität des
Least-Laxity-First-Verfahrens wird es im Folgenden für die Bewertung von Taskdeadlines
eingesetzt. Die Idee der Bewertung von Objekten durch eine Punktvergabe bildet im hier
entwickelten Algorithmus die Grundlage der Priorisierung, da dadurch eine sehr hohe
Flexibilität gegeben ist und das Punktesystem sehr einfach durch einen erfahrenen Benutzer
den eigenen Bedürfnissen angepasst werden kann. Ein signifikanter Unterschied gegenüber
den Schedulingverfahren für Prozessoren ist die Tatsache, dass bei PerFlows durchaus
einzelne eingeplante Tasks gar nicht zur Ausführung kommen, sondern verfallen oder
vorher wieder aus der Priorisierung entnommen werden. Dies muss bei der Entwicklung
des Algorithmus beachtet werden.

28

5. Priorisierungsalgorithmus

5.1. Motivation

In diesem Kapitel soll nun der konkrete Algorithmus zur Priorisierung von Aufgaben erläu-
tert werden. Dazu werden zuerst die relevanten Eigenschaften genannt und die verwendete
Gewichtung erläutert. Danach folgt der Algorithmus selbst sowie Angaben zur Neuberech-
nungslogik. Diese gibt an in welchen Fällen der Algorithmus neu angestoßen wird um eine
Neupriorisierung der Aufgabenliste vorzunehmen. Abschließend wird eine Erweiterung des
Algorithmus für Aufgabenabläufe vorgestellt.

5.2. Algorithmus

Grundlage für die Priorisierung ist die Taskdefinition gemäß 3.4. Alle folgenden Schritte
basieren auf den getroffenen Annahmen und Festlegungen.

Zur Vereinfachung des Algorithmus wird davon ausgegangen, dass die Bewertung eines
Tasks unabhängig von den anderen Tasks in der Liste ist. Die Priorisierung ergibt sich
anschließend aus der Sortierung der Aufgaben nach ihrer Bewertung. Zur Bewertung werden
nun für alle Faktoren verschiedenen Punktzahlen vergeben, die dann für jeden Task aufad-
diert werden und so die Bewertung der Aufgabe darstellen. Dabei bedeutet eine größere
Zahl eine höhere Bewertung und somit später eine höhere Priorisierung. Der Basiswert für
einen Task ohne relevante Faktoren ist 0. Die Bewertung eines Tasks hängt dabei immer vom
Kontext des Benutzers ab, für den die Bewertung vorgenommen wird. Ein Task hat somit
keine globale Kennzahl, sondern wird für jeden Benutzer getrennt bewertet.

Die Abbildung χ ist somit wie folgt definiert:
Sei T die Menge der Tasks und U die Menge der Benutzer im System, dann ist:
χ : T×U→N

Für jeden bewertungsrelevanten Faktor i in einer Aufgabe oder im Kontext des Benut-
zers wird nun eine Kennzahl αi bestimmt, die die Wichtigkeit der Aufgabe anhand dieses
Blickwinkels bewertet. Dabei sollte der Maximal-, Neutral- und Minimalwert in sinnvollem
Zusammenhang mit den übrigen Faktoren stehen, um die Gewichtung nicht zu sehr zu ver-
zerren. Weiter wird für jedes Faktorenpaar i, j eine Funktion ρij definiert, die die Kennzahlen

29

5. Priorisierungsalgorithmus

αi und αj als Argumente bekommt und als Funktionswert eine Anpassung der Kennzahl auf
Grund von Korrelationen der betreffenden Faktoren liefert. So kann eine Anpassungsfunk-
tion bei positiv korrelierten Werten die starke Wirkung der beiden Bewertungsfunktionen
teilweise kompensieren. Die Berechnung der Kennzahl χ erfolgt nun anhand folgender
Formel.

Seien αi(τ, υ) die n Bewertungsfunktionen der Attribute und Kontextfaktoren und ρij(αi, αj)

die paarweisen Anpassungsfunktionen bei Korrelation der Faktoren i und j,
dann gilt für einen Task τ ∈ T und einen Benutzer υ ∈ U:

χ(τ, υ) = ∑n
i=1 αi(τ, υ) + ∑n

i=1 ∑n
j=1 ρij(αi(τ, υ), αj(τ, υ))

Zur Erstellung einer priorisierten Liste wird nun für einen festen Benutzer υ ∈ U und für
alle aktiven Tasks τi ∈ T der Wert χi = χ(τi, υ) berechnet. Die Sortierung aller Tasks nach
ihrem Wert χi bildet nun die Aufgabenliste des Benutzers υ.

5.3. Faktoren zur Priorisierung

Bei der Priorisierung von Tasks sind ausgewählte Faktoren zu berücksichtigen. Dazu ge-
hören im Rahmen dieser Arbeit der Aufgabenstatus, der Fälligkeitszeitpunkt, die Position
und die manuelle Priorität. Andere Faktoren dienen aber durchaus als Hilfswerte bei der
Berechnung der Priorität. In einer Erweiterung könnten hier zum Beispiel noch andere
Kontextinformationen wie das aktuelle Fortbewegungsmittel des Benutzer oder das aktuelle
Wetter am Ausführungsort mit eingezogen werden. Auf die Annahme einer Korrelation
einzelner Faktoren wird hier zur Vereinfachung verzichtet. Die Gewichtung der einzelnen
Aspekte in dieser Arbeit wird nun ausführlich behandelt. Der Wertebereich der Kennzahl χ

ist im hier umgesetzten Fall −100 ≤ χ ≤ 115.

5.3.1. Gewichtung der Faktoren

Die folgenden Eigenschaften haben Einfluss auf die Bewertung:

Aufgabenstatus

Der Status einer Aufgabe legt die weitere Bewertung des Tasks fest. Ein laufender Task
(Status Running) wird, wenn er durch den anfragenden Benutzer bearbeitet wird, höher
bewertet, da das Fertigstellen einer Aufgabe sinnvoller ist als eine neue Aufgabe zu beginnen.

30

5.3. Faktoren zur Priorisierung

Wenn der Task pausierbar ist gilt: α1 = 10 sonst gilt: α1 = 30. Wird ein laufender Task von
einem anderen Benutzer bearbeitet, wird er herabgestuft. Es gilt: α1 = −25

Ein Task der sich im Zustand Paused befindet wird mit 10 Punkten bewertet um ihn einem
neuen Task vorzuziehen. α1 = 10

Befindet sich der Task im Wartemodus (Status Waiting) wird er heruntergestuft, da er
momentan nicht ausgeführt werden kann. α1 = −10

Spielraum bis zur Fälligkeit

Sollte für einen Task keine Fälligkeit angegeben sein wird eine Wertigkeit von 0 angelegt.

Bei gegebener Fälligkeit berechnet sich der Spielraum λ aus der Differenz der Zeit bis zur
Fälligkeit und dem geschätzten Ausführungsende bei sofortigem Beginn (λ = due(τ) −
(time(υ) + duration(τ))). Gegenüber einer Bewertung nach Fälligkeit hat dies den Vorteil,
dass die benötigte Zeit zur Fertigstellung der Aufgabe in die Berechnung mit einfließt. Die
Grundlage für diese Bewertung stellt das Least-Laxity-Verfahren dar [Gö10, S. 342].

Bei abgelaufenen Tasks wird der Wert der Eskalationsstrategie berücksichtigt [Tabelle: 5.1].

Eskalation α2

Ignore 25
Kill −40
Top 50

Tabelle 5.1.: Bewertung je nach Eskalationsstrategie

Bei zukünftigen Werten gilt [Tabelle: 5.2].

Spielraum in Minuten α2

0 < λ ≤ 30 25
30 < λ ≤ 60 15
60 < λ ≤ 180 10
180 < λ ≤ 360 5
360 < λ ≤ 1440 0
1440 < λ −10

Tabelle 5.2.: Bewertung nach Spielraum

31

5. Priorisierungsalgorithmus

Manuelle Priorität

Benutzer haben die Möglichkeit den Aufgaben eine manuelle Priorität zu setzen. Dies lässt
einen gewissen Spielraum zu die Priorisierung zu beeinflussen. Es wird wie bei bekannten
Taskplanungstools nur zwischen drei Varianten unterschieden. Ein Task kann High, Medium
oder Low als Priorität haben. Die soll auch nur eine Möglichkeit für spezielle Priorisierungen
sein und nicht flächendeckend verwendet werden, da hierdurch die automatische Priorisie-
rung ad absurdum geführt wäre. Die Wertigkeit der manuellen Bewertung findet sich in
[Tabelle: 5.3].

Priorität α3

High 10
Medium 0
Low −10

Tabelle 5.3.: Wertigkeit der manuellen Priorität

Entfernung Task - Benutzer

Die Einbeziehung der Entfernung zwischen dem Benutzer loc(υ) und dem Ausführungsort
der Aufgabe loc(τ) ist zentraler Bestandteil der vorliegenden Arbeit. Somit wird diesem Wert
auch eine große Relevanz zugemessen. Als Entfernung wird die Großkreisdistanz verwendet.
Die Berechnung erfolgt über die Semiversus-Formel mit einem angenommenen Erdradius
von 6371km.

Mit Breitengrad φ1,2 und Längengrad λ1,2 gilt für die Entfernung δ:

δ = 2× 6371 km× arcsin
(√

sin2
(

∆φ
2

)
+ cos φ1 cos φ2 sin2 (∆λ

2

))
Für die Bewertung der Entfernung gilt nun die [Tabelle: 5.4]

Entfernung in km α4

0 < δ ≤ 1 25

1 < δ ≤ 10 15

10 < δ ≤ 100 0

100 < δ ≤ 1000 -15

1000 < δ -25

Tabelle 5.4.: Wertigkeit der Entfernung

32

5.4. Priorisierung der Szenariotasks

Zeitpunkt: 12:00 Uhr
Aktueller Ort: Zuhause

Task 1 Task 2 Task 3 Worklist
α1 = 0 inaktiv α1 = 0 Task 3 (35)
α2 = 5 α2 = 0 Task 1 (5)
α3 = 0 α3 = 10
α4 = 0 α4 = 25

Zeitpunkt: 14:20 Uhr
Aktueller Ort: Zuhause

Task 1 Task 2 Task 3 Worklist
α1 = 0 α1 = 0 α1 = 0 Task 2 (40)
α2 = 5 α2 = 25 α2 = 0 Task 3 (35)
α3 = 0 α3 = 0 α3 = 10 Task 1 (5)
α4 = 0 α4 = 15 α4 = 25

Zeitpunkt: 15:00 Uhr
Aktueller Ort: Stadion

Task 1 Task 2 Task 3 Worklist
α1 = 0 fertig α1 = 0 Task 1 (35)
α2 = 10 α2 = 0 Task 3 (25)
α3 = 0 α3 = 10
α4 = 25 α4 = 15

Zeitpunkt: 17:00 Uhr
Aktueller Ort: Zuhause

Task 1 Task 2 Task 3 Worklist
fertig fertig α1 = 0 Task 3 (35)

α2 = 0
α3 = 10
α4 = 25

Tabelle 5.5.: Bewertung der Beispielaufgaben

5.4. Priorisierung der Szenariotasks

Aus diesem Algorithmus und dem Szenario aus Abschnitt 3.2 ergeben sich für die Tasks
die Bewertungen und Reihenfolgen aus [Tabelle: 5.5]. Dazu wurden vier verschiedene
Kontextsituationen innerhalb Sals Tag verwendet. Man sieht, dass zu Beginn die Aufgabe 2

noch nicht eingeplant wurde, da sie eine Startzeit von 14.15 Uhr hat. Auf Grund der späten
Deadline und der Entfernung von 11 km wird das Einkaufen sehr niedrig eingestuft. Zum
zweiten Zeitpunkt ist dann die Aufgabe 2 aktiv und als hochprior eingeplant. Sal fährt nun
ihre Kinder ins Stadion und erledigt damit diese Aufgabe. Um 15.00 Uhr ist dieser Task nicht
mehr im System, aber auf Grund der veränderten Position von Sal wird ihr der TaskManager
nun vorschlagen die Einkäufe zu erledigen. Da das Handbuch zu Hause liegt hat Task 3 an
Priorität verloren. Nach erledigtem Einkauf wieder zu Hause angekommen, verbleibt um
17.00 Uhr nur eine Aufgabe im System, die Sal nun erledigen kann.

5.5. Pseudocode Implementierung

Der Code zur Erstellung der Worklist besteht aus zwei Komponenten. Ein Teil ist die
Berechnung der Kennzahl eines einzelnen Tasks. Dieser Algorithmus findet sich in Listing
5.2, der andere Teil fasst die Berechnungen aller Tasks zusammen und generiert die Worklist.
Dies ist in Listing 5.1 dargestellt. Dieser Listengenerator muss dann für alle Benutzer im
System aufgerufen werden, für die eine Aufgabenliste erstellt werden soll.

33

5. Priorisierungsalgorithmus

Algorithmus 5.1 Priorisierung von Tasks
procedure priorizeTasks(Tasklist T, User υ)

List χ // Erstelle Worklist
for all Task τi ∈ T do

prio(χi)← evaluatePriority(τi, υ)
task(χi)← τi

end for
return sort(χ, prio) // Sortiere Tasks nach Kennzahl

end procedure

5.6. Neuberechnungslogik

In den vorangehenden Abschnitten wird erläutert, wie die Tasks priorisiert werden und
Worklists erstellt werden. Da sich die Position des Benutzers oder die Eigenschaften von
Aufgaben aber kontinuierlich ändern, muss die Berechnung der Worklist ständig erneuert
werden. Grundsätzlich bieten sich zwei Möglichkeiten die Neuberechnung auszulösen. Zum
einen kann bei Änderung von Parametern die Berechnung aktiv angestoßen werden. Zum
anderen kann die Berechnung in einem gewissen Zeitintervall regelmäßig durchgeführt
werden. Bei der aktiven Berechnung muss nicht auf den Ablauf des Zeitgebers gewartet
werden und die Ergebnisse liegen direkt nach Änderung der Eigenschaften vor. Da die
Zeit aber einer der entscheidenden Faktoren in diesem Algorithmus ist und somit zu den
Kontextparametern gehört, ist in dieser Arbeit eine zeitgesteuerte Neuberechnung vorgese-
hen. In einer Erweiterung ließe sich trotzdem zusätzlich aktiv bei Änderung von anderen
Parametern eine Neuberechnung anstoßen lassen. Die hier implementierte Lösung berechnet
alle Prioritäten in einem zweiminütigen Intervall neu. Dies sollte für die Demonstration des
Konzepts ausreichen.

5.7. Erweiterung: zeitliche Abläufe

Eine Erweiterung des aufgezeigten Priorisierungsalgorithmus ist die Erstellung von idealen
Abläufen. Ziel ist es, aus den Aufgaben eines Benutzers einen zeitlichen Ablauf seiner
Aufgaben zu generieren. Aus Komplexitäts- und Laufzeitgründen wird dabei nicht der ideale
Ablauf bestimmt, da hierbei jede mögliche Reihenfolge überprüft werden müsste. Stattdessen
wird nach jedem Priorisierungsschritt die am höchsten bewertete Aufgabe ausgewählt. Diese
wird dann aus der Worklist entfernt und der Kontext des Benutzers angepasst. Dazu wird
die Position des Benutzers temporär auf den Ausführungsort der entfernten Aufgabe gesetzt
und der Zeitstempel um die geschätzte Ausführungsdauer der Aufgabe verschoben. Danach
wird ein weiterer Priorisierungslauf mit den verbleibenden Aufgaben gestartet. Dies wird
wiederholt, bis alle Aufgaben in den Ablauf einsortiert wurden. Der Algorithmus findet sich

34

5.7. Erweiterung: zeitliche Abläufe

Algorithmus 5.2 Bewertung von Tasks
procedure evaluatePriority(Task τ, User υ)

int prio = 0
if state(τ) = Running then

if user(τ) = υ then
if pausable(τ) = true then

prio← prio + 10
else

prio← prio + 30
end if

else
prio← prio− 25

end if
end if
if state(τ) = Paused then

prio← prio + 10
end if
if state(τ) = Waiting then

prio← prio− 10
end if
prio← prio+ getLaxityPoints(τ, υ)
prio← prio+ getPriorityPoints(τ, υ)
prio← prio+ getDistancePoints(τ, υ)
return prio;

end procedure

in Listing 5.3. Der so erzeugte Aufgabenablauf wird dann dem Benutzer zur Ausführung
vorgeschlagen. Durch die dynamische Neuberechnung des Ablaufs bei jeder Änderung bleibt
dem Benutzer aber erstens die Möglichkeit doch eine andere Aufgabe zuerst zu bearbeiten,
was dann durch den Aufgabenstatus auch berücksichtigt wird, und zweitens können weitere
Aufgaben der Liste hinzugefügt werden, die dann beim nächsten Durchlauf in den idealen
Ablauf integriert werden. Der Algorithmus besitzt allerdings zwei Einschränkungen. Er geht
davon aus, dass ein Benutzer immer nur eine Aufgabe gleichzeitig ausführen kann und bei
der temporären Kontextanpassung werden keine Zeitaufwände für das Erreichen der neuen
Lokation berücksichtigt.

35

5. Priorisierungsalgorithmus

Algorithmus 5.3 Erstellung von Abläufen
procedure createSeries(Tasklist T, User υ)

List χ← priorizeTasks(T, υ) // Priorisierung durchführen
Task τ ← χ.first; // ersten Task auswählen
T← T.remove(τ)
time(υ)← time(υ) + duration(τ) // Kontext anpassen
loc(υ)← loc(τ)
return τ|| createSeries(T, υ) // rekursiver Aufruf

end procedure

5.8. Zusammenfassung

Der in diesem Kapitel vorgestellte Algorithmus stellt das zentrale Ergebnis dieser Arbeit
dar. Er erlaubt es Aufgaben anhand ihrer Kontextinformationen für einen Benutzer zu
priorisieren. Dieser Algorithmus wurde dann am Beispielszenario demonstriert und eine
Pseudocodeimplementierung vorgestellt. Zum Abschluss wurde der Algorithmus um die
Erzeugung idealer Abläufe erweitert.

36

6. Architektur des TaskManagers

6.1. Motivation

In diesem Kapitel soll die Architektur des Systems dargestellt werden. Zu Beginn werden
die Anforderungen an das Gesamtsystem definiert und mögliche Lösungsansätze diskutiert.
Anschließend wird das gewählte Konzept näher erläutert und der Systementwurf, der
die Aufteilung in einzelne Komponenten beschreibt und die Definition der Schnittstellen
zur Kommunikation der Komponenten beschrieben. Im Anschluss werden verschiedene
Konzepte für Clientapplikationen dargestellt und die entsprechenden Theorien erarbeitet.
Ziel ist es, eine klare Struktur des TaskManagers aufzuzeigen, um eine ideale Interoperabilität
der verschiedenen Implementierungen zu gewährleisten.

6.2. Anforderungen

Die Anforderungen an die Architektur des TaskManagers leiten sich einerseits aus den
gewünschten Zielplattformen für Benutzer und andererseits aus Sicherheitsthemen und
Schnittstellenüberlegungen ab. Da eine möglichst große Zahl von Plattformen für die Benut-
zerinteraktion angestrebt ist und hier in kurzen Zeitabständen neue Systeme hinzukommen,
sollte die Architektur eine relativ leichte Adaption auf verschieden Geräte erlauben. Auch
dürfen die Benutzerdaten nicht an ein konkretes Gerät gebunden sein. Auf Seiten der Infra-
struktur ist eine Interaktion mit der PerFlow-Plattform notwendig sowie die Anbindung von
Kontextinformationssystemen. Datenschutzüberlegungen beschränken dabei die Möglich-
keiten der Ablage und des Zugriff auf Benutzerdaten. Die konkreten Anforderungen sollen
nun genauer beleuchtet werden.

Mehrbenutzerfähigkeit

Da Aufgaben mehreren Benutzer gleichzeitig zugewiesen werden können und diese dann
die Zuständigkeit beim Start übernehmen, muss das System eine Verwaltung von Benutzer-
daten beinhalten und muss die Daten auch mehreren Benutzer zugänglich machen. Eine
redundante Verwaltung aller Aufgaben pro Benutzer in einem eigenen System ist nicht
sinnhaft und auch schlecht durch die Ausführungsumgebung koordinierbar.

37

6. Architektur des TaskManagers

Mobile Endgeräte

Die Grundidee der PerFlows geht von mobilen Geräten aus, die der Benutzer bei sich trägt.
Eine Architektur muss darauf ausgelegt sein, auf Geräten mit beschränkten Ressourcen
zur Ausführung zu kommen. Die Ortsveränderlichkeit mobiler Endgeräte ist ebenso zu
berücksichtigen. Dies impliziert Einschränkungen bei der Internetkonnektivität und verbietet
das Voraussetzen einer gewissen Umgebung in der sich der Anwender bei der Benutzung
aufhalten muss.

Verschiedene Clients pro Benutzer

Je nach Aufenthaltsort und Zweck der Verwendung des TaskManagers wird der Anwender
verschiedene Geräte zur Bedienung des Systems verwenden. Das Abrufen der Aufgaben und
Listen wird eher über mobile Endgeräte erfolgen, wogegen die Verwaltung und Bearbeitung
von Aufgabendetails auf Desktopsystemen stattfinden wird. Es muss also möglich sein, von
wechselnden Endgeräten auf die Daten desselben Benutzers zuzugreifen ohne diese vorher
synchronisieren zu müssen.

Kurze Ladezeiten von Aufgabenlisten

Die Abfrage der aktuellen Aufgabenliste ist, wie für Smartphoneanwendungen typisch, keine
längere Verwendung der Applikation, sondern spielt sich innerhalb weniger Sekunden ab.
Um das Nutzererlebnis zu steigern und somit überhaupt eine sinnvolle Verwendung des
Systems zu ermöglichen, muss die Anwendung die Daten sehr schnell aufbereiten und
anzeigen. Der Benutzer hat kein Verständnis dafür, nach dem Start der Applikation mehrere
Sekunden auf seine Aufgabeliste warten zu müssen.

Schnittstelle zur PerFlow-Engine

Da der TaskManager eine Komponente der PerFlow-Umgebung ist, muss er mit anderen Be-
standteilen wie dem Prozesskoordinator, der Benutzerverwaltung oder anderen Endgeräten
interagieren können. So muss die PerFlow-Engine beispielsweise über eine Schnittstelle neue
Aufgaben im TaskManager anlegen können, wenn eine entsprechende Prozessaktivität bear-
beitet wird. Hierzu muss der TaskManager allerdings durch diese Komponenten auffindbar
und auch ständig erreichbar sein.

38

6.3. Lösungsansätze

Datenschutz und Privatsphäre

Da es sich bei den persönlichen Aufgaben um Objekte innerhalb der Privatsphäre eines
Menschen handelt, muss mit einer gesteigerten Sorgfalt mit ihnen verfahren werden. So kann
zum Beispiel keine ungeschützte, zentrale Ablage der Daten im Internet erfolgen, da sonst
jedermann Zugriff auf die Tasks anderer hätte. Auch der psychologische Aspekt der Ablage
der Daten im Netz ist bei der Wahl der Architektur zu bedenken. Für den Benutzer wäre eine
Ablage auf dem Gerät oder auf einer Maschine im persönlichen Zugriff wünschenswert.

Einfaches Deployment

Auf Grund der Schnelllebigkeit mobiler und stationärer Endgeräte und dem häufigen
Austausch dieser Komponenten muss die Integration neuer Geräte in das Gesamtsystem sehr
einfach sein und auch von unerfahrenen Benutzern problemlos zu bewerkstelligen sein. Die
Integration neuer Komponenten darf vor allem auf den bestehenden Geräten keine weitere
Anpassung erfordern.

6.3. Lösungsansätze

Zur Realisierung des TaskManagers stehen nun verschiedene Architekturkonzepte zur Aus-
wahl, welche aber auf die Erfüllung der eben erläuterten Anforderungen untersucht werden
müssen. Dazu wird das Konzept kurz beschrieben und auf die Tauglichkeit für das hier
aufgezeigte Szenario geprüft. Die Spannweite der Architekturansätze reicht hierbei von einer
monolithischen Anwendung bis hin zu einem P2P-System ohne zentrale Komponente.

6.3.1. Konzepte

Monolith

Eine Realisierung wäre die Erstellung einer monolithischen Anwendung. Dazu wird eine
Applikation entwickelt, die auf einem Geräte ausgeführt wird und die gesamte Verwaltung
von der Erfassung über die Priorisierung bis hin zur Anzeige der Aufgabenlisten beinhaltet.
Die Datenhaltung befindet sich hierbei ebenfalls direkt in der Anwendung. Dieser Ansatz ist
für das Konzept untauglich, da die Anforderungen an die Unterstützung mehrerer Endgeräte
nicht erfüllt werden kann ohne den gesamten Datenbestand auf alle beteiligen Geräte
zu replizieren und auf jedem die Priorisierung getrennt durchzuführen. Die Konsistenz
der Daten und Listen kann hierbei nicht garantiert werden. Auch die Anbindung an die
Ausführungsplattform der PerFlows lässt sich in dieser Architektur schlecht umsetzen.

39

6. Architektur des TaskManagers

Client-Server

Eine weitere Möglichkeit besteht in der Realisierung als Client-Server-Anwendung. Dabei
existiert ein zentraler Server, der die Datenhaltung übernimmt und die Berechnung der
Aufgabenlisten durchführt. Jegliche Datenmanipulation durch Clients wird zentral auf dem
Server durchgeführt und steht sofort allen Clients zur Verfügung. Durch die zentrale Ablage
der Daten auf dem Server gibt es allerdings Verzögerungen beim Abruf der Aufgabenlisten
durch den notwendigen Serverzugriff, der bei fehlender Internetkonnektivität gar nicht
stattfinden kann. Dieses Problem muss bei einer Client-Server-Architektur unbedingt berück-
sichtigt werden. Die Anbindung an die Ausführungsumgebung stellt bei diesem Konzept
keine Probleme dar, allerdings muss der Anwender einen eigenen TaskManager-Server
betreiben.

Cloud

Durch die ständige Verbindung zum Internet kann auch eine Implementierung als Clou-
danwendung angedacht werden. Dies ist die logische Konsequenz aus den Überlegungen
zur Client-Server-Architektur und somit gelten dieselben Vor- und Nachteile. Ein weiterer
Vorteil besteht darin, dass der Benutzer sich nicht um eine Wartung oder Anbindung der
Serverkomponente kümmern muss. Die Datenraten und Rechenleistungen einer Cloudan-
wendung lassen sich nahezu beliebig skalieren und erfordern keine nachträgliche Aufrüstung
bei steigenden Performanceanforderungen. Der große Nachteil dieser Architektur ist al-
lerdings die zentrale Ablage der persönlichen Daten vieler Nutzer an einer zentralen und
öffentlich zugänglichen Stelle. Zwar ist auch ein privater Server über dieselben Wege für
jeden erreichbar, trotzdem ist diese Zentralisierung von privaten Daten für die Anwender
im Allgemeinen nur bis zu einem gewissen Grad tragbar. Für die erfolgreiche Umsetzung
der PerFlow-Vision sollten aber alle Aufgaben und Prozesse im System hinterlegt sein, was
eine Unvereinbarkeit mit der zentralen Datenhaltung darstellen würde. Somit scheidet zum
jetzigen Zeitpunkt eine Realisierung dieser Architektur aus. Allerdings zeigen Projekte wie
Facebook1 oder einige Googledienste eine wachsende Bereitschaft der Benutzer auch private
Daten in öffentlichen Netzen zu lagern. Auch arbeiten die Betreiber von Cloud-Diensten
sicher bereits an einer Lösung der Datenschutzproblematik bei Cloud-Anwendungen.

Peer-to-Peer

Der Verzicht auf zentrale Komponenten und die Umsetzung des TaskManagers als Peer-
to-Peer-System soll die möglichen Konzepte abschließen. Hierbei bilden alle Geräte eines
Benutzers oder einer logischen Einheit von Benutzern ein P2P-Netzwerk, das die Aufgaben

1http://www.facebook.com

40

6.3. Lösungsansätze

gemeinsam verwaltet und priorisiert. Durch die Verteilung der Daten und das Fehlen
einer Verwaltungsinstanz bestehen aber hinsichtlich der Datenkonsistenz beim Abruf der
Aufgabenliste ähnliche Probleme wie bei einer monolithischen Anwendung. Die Verwaltung
des P2P-Netzwerks birgt außerdem eine nicht zu unterschätzende Komplexität, die für
diesen relativ einfachen Anwendungsfall den Nutzen übersteigt.

6.3.2. Auswahl

Nach einer Abwägung der in den Konzepten beschriebenen Vor- und Nachteile wurde
für die Implementierung in dieser Arbeit eine Client-Server-Architektur gewählt[Abb: 6.1].
Diese lässt sich außerdem leicht implementieren und beschleunigt die Entwicklung einer
prototypischen Implementierung. Auf Grund der genannten Bedenken zur Offenlegung pri-
vater Daten wurde der Cloudansatz nicht weiter verfolgt. Das Verständnis von Datenschutz
und Privatsphäre unterliegt momentan aber einem massiven Wandel und bringt teilweise
übertrieben Einschätzungen und Interpretationen mit sich[Kir10]. In weiteren Entwicklungen
könnte also eine Cloudanwendung als klarer Favorit für die Wahl der Architektur dienen.
Die Umwandlung der Client-Server-Struktur in eine Cloudapplikation ist aber bei Bedarf
durch die Wahl einer entsprechenden Plattform sehr einfach umzusetzen.

Abbildung 6.1.: Gesamtarchitektur

41

6. Architektur des TaskManagers

6.4. Serverarchitektur

Das Serversystem des TaskManagers gliedert sich in einzelne Komponenten, um eine Mo-
dularisierung zu ermöglichen. Die Aufteilung erfolgt nach dem Three-Tier-Prinzip. Die
zentrale Geschäftslogik wird durch eine Persistenzschicht unterstützt, die die Datenhal-
tung übernimmt. Die Schnittstellen zu den Clients sind klar definiert, um eine Anbindung
verschiedener Anzeige- und Verwaltungskomponenten zu ermöglichen. Da aus Komfort-
gründen eine Anbindung an andere Benutzerverwaltungen möglich sein soll, wird diese
vom eigentlichen TaskManager entkoppelt. Dies verhindert zum Beispiel eine Redundanz
bei der Verwaltung von Benutzern im PerFlows-Szenario. Die Verwaltung von Kontextinfor-
mationen, wie etwa Lokationsdaten von Benutzern wird ebenfalls vom Tasksystem getrennt.
Hier könnte im Produktivbetrieb eine umfangreichere Kontextlösung verwendet werden, wie
zum Beispiel die Nexus Plattform[GBH+

05]. Aus diesem Grund ist auch die Aktualisierung
der Kontextdaten durch die Sensoren nicht Teil der Taskclients, sondern muss separat durch
eine weitere Anwendung erfolgen. Dies betrifft sowohl mobile Sensoren in Smartphones als
auch stationäre Sensoren wie RFID-Baken oder Ortungssysteme.

6.5. Schnittstellendefinition

Die Schnittstellen bieten dem Client die Möglichkeit mit dem Server zu interagieren. Bei
den Schnittstellen handelt sich um die Benutzerverwaltung, die Taskverwaltung und die
Kontextverwaltung. Die Schnittstelle ist als reiner Prototyp entworfen und darf in dieser
Form nicht produktiv verwendet werden, da essentielle Sicherheitsfunktionen fehlen. So
verlangt die Benutzerverwaltung zum Beispiel keine Authentifizierung zur Bearbeitung von
Systembenutzern. Im realen Umfeld sollte die Benutzerverwaltung durch ein externes System
implementiert werden. Die Authentifizierung des Benutzers geschieht durch ein Sessionkon-
zept. Dazu wird beim Login eine Benutzersitzung erzeugt und dem Benutzer die SessionID
mitgeteilt. Bis zum Logout kann er dann die Funktionen der Task- und Kontextverwaltung
unter Angabe der SessionID verwenden. In den Abbildungen 6.2(a) und 6.2(b) werden einige
exemplarische Interaktionen beschrieben. Die vollständige Schnittstellendefinition inklusiv
aller Methode findet sich im Anhang B.

6.6. Clientkonzepte

Bei der Realisierung der Clients gibt es eine Menge verschiedener Nutzungsszenarien. Daher
gibt es mehrere unterschiedliche Clientkonzepte die im Folgenden kurz erläutert werden.
Dabei wird berücksichtigt, welche Geräte ein Benutzer haben könnte und auf welchen die
Verwendung des TaskManagers sinnvoll erscheint.

42

6.6. Clientkonzepte

(a) Abfragen der Aufgabenliste (b) Anlegen eines neuen Tasks

Abbildung 6.2.: Beispiele der Client-Server Interaktion

6.6.1. Desktopclients

Eine Anwendung ist die vollwertige Administration des Taskplaners, um neue Tasks an-
zulegen, bestehende zu verändern und Benutzereinstellungen zu setzen. Dieser Client ist
typischerweise eine Desktopanwendung mit vollem Funktionsumfang. Eine Realisierung als
Weblösung wäre in diesem Szenario ebenfalls denkbar. Bei Desktopanwendungen kann von
einem leistungsstarken Host mit bestehender Internetverbindung ausgegangen werden, was
wenige Einschränkungen bei der Implementierung bedingt. So können Daten im Speicher
vorgehalten werden und Serverzugriffe können jederzeit zügig stattfinden.

6.6.2. Mobile Clients

Ein weiteres Szenario ist die Verwendung von mobilen Endgeräten zur Anzeige der Worklist
und einzelner Aufgaben, wie zum Beispiel Smartphones, Tablets, oder Ähnliches. Eine
Bearbeitung von Tasks findet nur im begrenzten Rahmen statt. Hier sind hauptsächlich
Statusänderungen interessant, aber keine komplette Editierfunktion. Dieser Clienttyp hat
allerdings die größte Implementierungsvielfalt. Für die meisten Geräte müssen eigene Versio-
nen entwickelt werden, da sich die Plattformen unterschiedlicher Programmiersprachen und

43

6. Architektur des TaskManagers

Betriebssysteme bedienen und auch die Bedienkonzepte der Plattform zu berücksichtigen
sind.

Auf diesen Geräten steht nur eine begrenzte Rechenleistung und Speichermenge zur Ver-
fügung, das heißt, die Anwendung sollte nur die aktuelle benötigten Daten vorhalten und
auf Grund eingeschränkten Multitaskings auch jederzeit mit Programmunterbrechungen
umgehen können. Die Verwendung der Internetverbindung muss optimiert werden, da
nicht zu jedem Zeitpunkt eine bestehende oder schnelle Verbindung angenommen werden
kann. Auch die Menge der Steuerdaten sollte gering gehalten werden, um eine übermäßige
Nutzung von Internetressourcen zu verhindern.

6.6.3. Anzeigeclients

Ein dritter Typ Client ergibt sich aus der Möglichkeit reine Anzeigeobjekte zu entwickeln.
Diese dienen rein der Information des Benutzers und geben keine Möglichkeit der Bear-
beitung oder Interaktion. Beispiele hierfür sind Mac OS X Widgets oder Windows Sidebar
Gadgets.

Da diese Clients durchgehend aktiv sind, aber nicht die Vordergrundaktivität des Benutzers
darstellen, ist eine ressourcenschonende Implementierung zwingend notwendig. Es sollte
darauf geachtet werden, keine zu großen Mengen an Arbeitsspeicher zu verwenden. Auch
die Prozessor- und Netzwerklast sollte gering gehalten werden, um den Benutzer bei seiner
Tätigkeit nicht zu beinträchtigen.

6.7. Zusammenfassung

In diesem Kapitel wurden die grundlegenden Konzepte für die Entwicklung des TaskMana-
gers entworfen. Außerdem ergeben sich einige Anforderungen an die Implementierung aus
den getroffenen Vorüberlegungen. Durch die Nutzung verschiedenster Clientanwendungen
muss die Schnittstelle weitgehend plattform- und sprachunabhängig sein. Außerdem sollten
die Repräsentation der Daten einen geringen Overhead an Steuer- und Protokolldaten ent-
halten. Dies ermöglicht die schnelle Übertragung der Daten in langsamen Netzwerken wie
GPRS oder UMTS und eine schnellere Startzeit der Anwendung.

44

Teil III.

Implementierung

45

7. Serverimplementierung

7.1. Motivation

In diesem Kapitel wird die Implementierung der Serverkomponente vorgestellt. Es handelt
sich dabei um die zentrale Einheit des TaskManagers, die die Verwaltung der Aufgaben
und die Priorisierung übernimmt. Sie bietet dann Schnittstellen um Clients die Anfrage und
Bearbeitung von Daten zu ermöglichen. Die Realisierung erfolgt mit Hilfe eines Application
Servers und einer nachgeschalteten Datenbank.

7.2. Gesamtarchitektur

Das Gesamtsystem des TaskManagers gliedert sich in einzelne Komponenten um eine
Modularisierung zu ermöglichen. Die Aufteilung erfolgt nach dem Three-Tier-Prinzip. [Abb:
7.1]

Abbildung 7.1.: Komponentengliederung des Servers

47

7. Serverimplementierung

7.2.1. Datenbank

Als Datenbank wird eine PostgreSQL1 in der Version 9.0 eingesetzt. Auf dieser Basis wird
die PostGIS2 Erweiterung genutzt. Sie bietet eine Unterstützung für Geometriedaten in der
Datenbank. Dies erleichtert die Verwaltung und ermöglicht eine intelligentere Nutzung der
Daten.

7.2.2. Application Server

Als Server wird ein JBoss AS in der Version 6.03 verwendet. Dies ist die neueste Communi-
tyversion des Application Servers von RedHat Enterprise. Er implementiert JavaEE in der
Version 6

4 und bietet eine Anbindung an die Datenbank mit Hilfe von JPA 2.0. Als konkrete
Datenbankanbindung wird Hibernate5 verwendet, das für diesen Zweck um Hibernate
Spatial6 erweitert wurde um die Geometriedaten der PostGIS-Datenbank zu verwenden.

Die Realisierung der Geschäftslogik findet in SessionBeans statt, die direkt mit der Persis-
tenzschicht interagieren können. Die Schnittstelle für die Clients wird durch ein Servlet
angeboten, das die empfangen Daten an die entsprechenden EJBs delegiert. Die Neuberech-
nung der Taskprioritäten wird durch den JavaEE 6 Scheduler gesteuert.

7.2.3. Weboberfläche

Die grundlegenden Funktionalitäten des Systems sind ebenfalls als rudimentäre Weboberflä-
che ausgeführt. Diese Webanwendung basiert auf der Verwendung von Servlets und Java
Server Pages7. An dieser Stelle sind auch einige zusätzliche Schnittstellen zur Anbindung
an standardisierte Protokolle implementiert. Ein Beispiel hierfür ist der GeoRSS8 Feed der
Worklist eines Benutzers.

Die Weboberfläche des TaskManagers bietet einzelne Funktionalitäten auf einem allgemein-
zugänglichen Weg über den Browser. Dies beinhaltet vor allem die Anzeige der Worklist
eines Benutzers, die Anzeige von Aufgabendetails sowie die Erstellung einer Übersichtskarte
über die Aufgaben auf der aktuellen Worklist ([Abb: 7.2]). Auch die Anzeige der zeitlichen

1http://www.postgresql.org
2http://postgis.refractions.net
3http://www.jboss.org
4http://www.oracle.com/technetwork/java/javaee/tech/index.html
5http://www.hibernate.org
6http://www.hibernatespatial.org
7http://www.oracle.com/technetwork/java/javaee/jsp/index.html
8http://www.georss.org

48

7.3. Zusammenfassung

Abläufe (Abschnitt: 5.7) erfolgt über die Webdarstellung. Hierzu wird eine Karte eingeblen-
det auf der sich der Ablauf als Pfad darstellt zusammen mit einer einblendbaren textuellen
Erläuterung. Zur Visualisierung der Karte kann hier der Datenbestand von OpenStreetMap9

verwendet werden oder die Satellitenbilder von Google Maps eingeblendet werden, die über
die Kartenbibliothek OpenLayers10 angezeigt werden.

Abbildung 7.2.: Kartenanzeige mit geöffnetem Taskdialog

7.3. Zusammenfassung

In diesem Kapitel wurde die Implementierung der Serversoftware erläutert. Die Server-
komponente bietet die Kernfunktionalität für das System. Alle Datenverwaltungsaufgaben
werden hier übernommen. Die Clients interagieren immer mit diesem zentralen Punkt.

9http://www.openstreetmap.de/
10http://openlayers.org/

49

8. Schnittstellenumsetzung

8.1. Motivation

In diesem Kapitel sollen die verschiedenen Möglichkeiten zur Umsetzung des Schnittstel-
lenprotokolls aus Abschnitt 6.5 verglichen werden. Dazu werden die Vor- und Nachteile
der Implementierungen betrachtet und die Unterstützung durch die verschiedenen Client-
plattformen geprüft. Anschließend wird das für diesen Zweck beste Protokollframework
verwendet.

8.2. Protokollalternativen

Es gibt eine Vielzahl unterschiedlicher Ansätze das Protokoll zu implementieren. Auf Grund
der Verwendung mehrerer verschiedener Clientplattformen ist die Verwendung von Binär-
protokollen in diesem Fall nicht ratsam. Die Interoperabilität der Systeme steht an oberster
Stelle. Deshalb fallen auch programmiersprachenabhängige Lösungen wie zum Beispiel
Java-RMI aus. Die Lösung sind hier standardisierte Protokolle aus dem Bereich der Web
Services. Aus diesem Segment sollen nun XML-RPC [Win99], SOAP und JSON-RPC [Mat10]
untersucht werden. Eine Verschlüsselung der Daten während der Übertragung zwischen
Client und Server ist in einer Produktivumgebung durchaus anzustreben, wurde aber im
Rahmen dieser Arbeit weder berücksichtigt noch implementiert.

XML-RPC

XML-RPC ist ein Protokoll, das es Anwendungen auf verschiedenen Plattformen erlaubt
Methodenaufrufe über das Internet durchzuführen. Als Transportprotokoll wird dabei HTTP
verwendet, um eine allgemeingültige und stabile Basis zu haben. Darin wird dann die
Darstellung der Daten und Methodenaufrufe in XML eingebettet. XML-RPC hat das Ziel so
einfach wie möglich zu sein aber trotzdem nicht die Mächtigkeit zu weit einzuschränken
auch komplexe Datenobjekte zu verwenden.[Win99]

51

8. Schnittstellenumsetzung

SOAP

Als Weiterentwicklung von XML-RPC wurde 1999 die erste Version von SOAP, damals
noch als Abkürzung für Simple Object Access Protocol, veröffentlicht. Es bietet, wie sein
Vorgänger auch, die Möglichkeit Methodenaufrufe über das Netzwerk zu tätigen. Die
Datenrepräsentation ist ebenfalls ein XML-Format, das jedoch deutlich komplexer ist als die
Darstellung eines XML-RPC Aufrufs. Als Transportprotokoll können neben HTTP auch viele
andere Protokolle dienen, wie zum Beispiel SMTP oder JMS. Diese Wahlfreiheit vergrößert
die Einsatzmöglichkeiten von SOAP und hat dazu geführt, dass es de facto Standard in
Anwendungssystemen im Geschäftsumfeld ist. Ein weiterer Vorteil von SOAP ist die explizite
Beschreibung der Schnittstelle und ihrer Objekte, Transportmöglichkeiten, Endpunkte und
sonstigen Metadaten.[WCL+

05]

Diese Flexibilität und Sicherung der Stabilität führen aber auch dazu, dass die Implemen-
tierung von SOAP in Anwendungen deutlich komplexer ist als andere RPC Methoden.
Auch der Datenoverhead der einzelnen Methodenaufrufe ist deutlich höher, was gerade in
Verbindungen mit niedriger Datenrate zum Nachteil einer SOAP-basierten Lösung werden
kann.

JSON-RPC

JSON-RPC ist ein einfaches RPC-Protokoll basierend auf der JavaScript Object Notation [Cro06].
Es ist transportunabhängig und kann über die verschiedensten Wege übermittelt werden. Da
die Austauschobjekte reinen Text beinhalten, kann dies von einfachen TCP/UDP Sockets,
HTTP POST Requests oder SMTP Inhalten übernommen werden. Durch die Verwendung
von JSON ist die Verwendung plattformunabhängig und der Metadatenoverhead deutlich
geringer als zum Beispiel bei XML-Nachrichten. Auch die Verfügbarkeit von Bibliotheken
für verschiedene Programmiersprachen und Softwareplattformen ist deutlich höher als bei
XML. JSON enthält allerdings keine Beschreibungssprache wie zum Beispiel XSD[W3C04]
und bietet somit keine strenge Typsicherheit in der Schnittstelle.

8.3. Pro/Contra je Zielplattform

In diesem Abschnitt werden die Vor- und Nachteile der verschiedenen Protokolle im Hinblick
auf die geplanten Zielplattformen aufgezeigt und abschließend eine Entscheidung gefällt,
welches Protokoll für die Implementierung verwendet wird.

52

8.3. Pro/Contra je Zielplattform

Server / JBoss-AS

Die Serverkomponente hat vergleichsweise wenig Probleme mit den verschiedenen Trans-
portmethoden. Während die SOAP Unterstützung direkt mit der Annotation @WebService
aktiviert werden kann und der Server die WSDL und XSD Dokumente selbstständig erstellt
müssen bei XML-RPC und JSON-RPC entsprechende Webendpunkte als Servlets implemen-
tiert werden, was aber ein minimaler Mehraufwand ist. Aus Sicht der Serverimplementierung
ist somit keine Präferenz für eine Methode zu wählen.

RCP / Java

Bei Java Clients muss für SOAP Schnittstellen eine Sammlung von Datenobjekte und Proxy-
klassen erstellt werden. Dies kann aber durch einen Generator direkt aus der WSDL ge-
schehen. Eine Implementierung für XML-RPC steht von Apache1 zur Verfügung. Diese hat
allerdings Probleme bei der Verwendung von Listen als Argumente und Rückgabewerte. Bei
der Verwendung von JSON-RPC muss ein entsprechendes JSON-Objekt erstellt werden2 und
als Text serialisiert werden. Dieser kann dann beliebig an eine Serverschnittstelle versendet
werden. Programmatisch bedingt hier JSON-RPC den größten manuellen Aufwand, bietet
aber auch die größte Flexibilität bei Veränderungen der Schnittstelle.

BlackBerry

Die Entwicklung auf dem BlackBerry basiert auf Java. Allerdings wird als Laufzeitumgebung
eine Abwandlung von JavaME verwendet. Die Verwendung von XML stellt eine größere
Hürde dar und lässt sich auch nicht automatisch generieren oder verwenden. Auf Grund
der Speicheroptimierung lassen sich auch nur SAX-Parser verwenden, was die Entwicklung
nochmal erschwert. Eine SOAP Implementierung ist äußerst schwerfällig, da alle Nachrichten
“von Hand” erstellt werden müssen und dies sehr fehlerträchtig ist. Die Unterstützung von
JSON hingegen ist kein Problem, da eine Implementierung für JavaME vorliegt 3. Somit
bedingt das Ziel einer BlackBerry Lösung die Verwendung von JSON-RPC.

iOS / Objective-C

Unter Objective-C ist die Verwendung von XML und SOAP ebenfalls nicht trivial. Trotz des
eigentlichen de facto Standards XML ist eine Unterstützung seitens des Frameworks alles

1http://ws.apache.org/xmlrpc/
2http://www.json.org/java/index.html
3https://github.com/upictec/org.json.me/

53

8. Schnittstellenumsetzung

andere als gut. SOAP fällt auf Grund der manuell zu erstellenden Nachrichten wie beim
BlackBerry aus. Für JSON existiert eine Implementierung für iOS 4, die von Apple für den
Datenaustausch mit WebServices empfohlen wird. Auch der Apple Push Notification Service
verwendet zur Kommunikation mit den Endgeräten das JSON Datenformat[Mar10].

8.4. Auswahl

Eines der wichtigen Ziele des TaskManagers ist die Verwendung von mobilen Endgeräten.
Da diese meist über Funknetzwerke an das Internet angebunden sind und nur begrenzte
Datenraten anbieten, sollte der Overhead von Metadaten im Transportprotokoll möglichst
minimiert werden. Auch muss das Protokoll von vielen Plattformen unterstützt werden,
da es für mobile Endgeräte eine Vielzahl von Plattformen und Programmiersprachen gibt.
Aus diesem Grund wird für die hier vorgestellte Arbeit JSON-RPC als Transportprotokoll
verwendet. Zur Übermittlung der Nachrichten wird das HTTP-Protokoll eingesetzt. Diese
Wahl hält auch eine Erweiterung auf Android offen, da auch dort JSON gut unterstützt wird,
während die Implementierung für XML5 und SOAP6 in ihrer Entwicklung stehen geblieben
sind und keine saubere Unterstützung anbieten. Durch die Redundanz des Feldnamens im
schließenden Tag eines XML Elements ist ein XML Dokument auch deutlich größer als ein
inhaltlich identisches JSON Objekt. Dies führt wiederum zu einer längeren Übertragung
in langsamen Netzwerken und zu einem höheren Datenaufkommen bei volumenbasierten
Abrechnungsmodellen der Nutzer.

8.5. Zusammenfassung

Dieses Kapitel hat die Alternativen der Schnittstellenimplementierung aufgezeigt und die
gewählte Lösung näher erläutert. Dazu wurden die Vor- und Nachteile der Alternativen im
Bezug auf die verschiedenen Zielplattformen beleuchtet und die JSON-Bibliothek als für
diesen Einsatz optimal angesehen.

4http://code.google.com/p/json-framework/
5http://kxml.sourceforge.net/
6http://ksoap2.sourceforge.net/

54

9. Desktop Client

9.1. Motivation

Da die Bedienung mobiler Endgeräte im Normalfall deutlich langsamer abläuft als die
Nutzung eines Desktop PCs, geschieht die Administration des TaskManagers über einen
Desktopclient. Aus Gründen der Entwicklungsgeschwindigkeit wurde im Rahmen dieser
Arbeit eine RichClient Anwendung entwickelt. Als Basis diente hierzu das Eclipse RCP
Framework, das im Folgenden kurz beschrieben wird.

9.2. Eclipse Plattform

Die Eclipse RCP1 bietet dem Entwickler ein vollständiges Framework zur schnellen Ent-
wicklung von Desktopanwendungen. Es liefert die gesamte Ausführumgebung inklusive
Lifecyclemanagement der UI Komponenten, sodass der Entwickler nur noch die Oberflä-
chenmasken implementieren muss, um sie danach mit der Businesslogik zu verknüpfen. Als
Oberflächen Toolkit kommt dabei SWT2 zum Einsatz, um eine dem nativen Betriebssystem
ähnliche Gestaltung zu erreichen.

9.3. Funktionalität Rich Client

Die Rich Client Anwendung bietet unter anderem die Möglichkeit Aufgaben zu verwalten.
Dazu wird dem Benutzer eine Liste all seiner Aufgaben angezeigt und es ihm ermöglicht,
neue Aufgaben zu erstellen, vorhandene Aufgaben zu editieren oder auch bestehende
Aufgaben zu löschen. Das Anlegen einer Aufgabe geschieht über einen Editor, in dem der
Benutzer die Basisdaten der Aufgabe erfasst und danach die gewünschten Benutzer als
mögliche ausführende Personen zuweist. Diese erhalten dann die Aufgabe ebenfalls in ihrer
Worklist auf jedem Client oder in der Aufgabenübersicht in ihrem Desktop Client. Über den
Editor können auch die Daten bestehender Aufgaben angezeigt und verändert werden und

1http://www.eclipse.org
2http://www.eclipse.org/swt

55

9. Desktop Client

die Zuweisungen von Benutzern aktualisiert werden. Statusübergänge sind, sofern möglich,
direkt per Knopfdruck durchführbar. Das Löschen von Aufgaben erfolgt entsprechend der
Taskdefinition durch den Übergang der Aufgabe in den Status Deleted.

Ein weiterer Anwendungsfall des Desktop Clients ist die Anlage und Verwaltung von
benannten Positionen im System durch die Identifizierung von Koordinaten mit einem
Namen. Dazu steht eine Übersicht der vorhandenen Lokationen zur Verfügung sowie eine
interaktive Karte zur Erstellung neuer Positionen. Zur Anzeige von Karten werden auch hier
wieder Daten von OpenStreetMap verwendet.

Abbildung 9.1.: Hauptansicht mit Aufgabenliste und Taskeditor

9.4. Zusammenfassung

Auf Grund der Mächtigkeit und vielseitigen Bedienbarkeit des Desktop PCs sind die Client-
anwendungen für diese Plattform am vielseitigsten und bieten auch den vollen Funktionsum-
fang inklusive Erstellen und Bearbeitung von Aufgaben. Eine Erweiterung des Rich-Clients
ist noch die Integration der Benutzerverwaltung, die hier nur rudimentär vorgesehen ist
aber nicht implementiert wurde.

56

10. Mobile Client

10.1. Motivation

Die Verwendung des TaskManagers soll die Verwaltung von persönlichen Aufgaben erleich-
tern und eine Priorisierung anhand der aktuellen Kontextinformationen vornehmen. Um
diesen Kontext zu erfassen sollte die Bedienung des Tasksystems nicht an einen Desktopcom-
puter gebunden sein, sondern von überall zugreifbar sein. Auf Grund der weiten Verbreitung
von Smartphones liegt eine Bereitstellung der Aufgabenverwaltung als Applikation auf
mobilen Endgeräten nahe. Dabei sind aber einige Spezialitäten von mobilen Geräten zu
beachten. Zum ersten sind die Ausführungsumgebungen nicht standardisiert, so dass je-
des Smartphone potentiell eine eigene Implementierung benötigt. Zum anderen sind die
Hardwareausstattungen dieser Geräte leistungsärmer als Desktops und somit unterstützen
diese auch nicht den gesamten Funktionsumfang von Desktopprogrammen und müssen
sparsamer mit Ressourcen wie Prozessorleistung, Speicher und Energie umgehen. Beispiele
sind hier das Positionsbestimmungsintervall auf Grund des hohen Strombedarfs eines GPS-
Empfängers, geringeres lokales Caching von Daten wegen verfügbaren Arbeitsspeichers und
das Transportformat um die Datenmenge gering zu halten, die über die Funkschnittstelle
übertragen wird.

In der vorliegenden Arbeit sollen zwei Plattformen herausgegriffen werden und die Taskver-
waltung beispielhaft umgesetzt werden. Auf Grund der Verfügbarkeit der Geräte wurden
hierfür ein BlackBerry 9700

1 von Research In Motion und ein iPad2 der Firma Apple verwen-
det. Die Betriebssysteme der beiden Geräte sind RIM OS 5.0 für den BlackBerry und iOS 4.2
für das iPad.

10.2. BlackBerry Client

Bei der Clientsoftware für den BlackBerry müssen einige Unterschiede zu einem normalen
Desktop PC beachtet werden. Zum einen ist das Display des BlackBerry deutlich kleiner
(6, 2cm) und hat mit 480× 360 Pixeln auch eine geringere Auflösung als ein Desktop PC mit

1http://de.blackberry.com/devices/blackberrybold9700/
2http://www.apple.com/de/ipad/

57

10. Mobile Client

1280× 1024 auf einem Monitor mit 48cm Diagonale. Dies führt dazu, dass nicht mehrere
Teile der Anwendung auf einmal angezeigt werden können und somit ein Navigationskon-
zept für die Anwendung benötigt wird. Außerdem hat das Gerät allgemein ein anderes
Bedienkonzept, welches in der Anwendung ebenfalls verwendet werden sollte um eine intui-
tive Bedienung zu ermöglichen. Da das Hauptaugenmerk auf der mobilen Nutzung liegt
kann auch die WLAN-Verbindung unbeachtet gelassen werden und mit EDGE oder UMTS
Datenraten gerechnet werden. Diese bedingen eine sinnvolle und bedachte Nutzung von
Serverabfragen und wenig Overhead bei der Datenübermittlung. Als weitere Schwierigkeit
kommt hinzu, dass die Entwicklung der App zwar in Java erfolgt, aber die Bibliothek nur eine
RIM spezifische Abwandlung von Java Mobile ist. Dieses RIM-JDK bietet einige der Vorteile
von Java5 oder Java6 nicht an, wie zum Beispiel Generics. Auch die Oberflächenentwicklung
unterscheidet sich deutlich von der Arbeit mit dem Standard Widget Toolkit.

Der Funktionsumfang der BlackBerry Lösung beschränkt sich daher auf das Anzeigen der
eigenen Worklist ([Abb: 10.1(a)]) und einer Detailansicht einzelner Aufgaben ([Abb: 10.1(b)]).
Eine Manipulation von Daten ist in dieser ersten Version nicht enthalten.

(a) Aufgabenliste auf dem BlackBerry (b) BlackBerry Taskdetails

Abbildung 10.1.: BlackBerry Client

10.3. iOS Client

Die Entwicklung auf dem iPad unterliegt grundsätzlich denselben Einschränkungen wie
beim BlackBerry. Dazu kommt noch ein völlig anderes Bedienkonzept der iOS-Familie und
die damit verbundenen Entwicklungsvorgaben seitens des Herstellers und die Tatsache, dass
das iPad ausschließlich einen berührungsempfindlichen Monitor hat und jegliche Interaktion
mit dem Benutzer darüber stattfindet. Dadurch müssen alle Oberflächenkomponente so

58

10.4. Zusammenfassung

angelegt und entworfen sein, dass sie mit dem Finger bedient werden können, was eine
untere Schranke der Elementgrößen darstellt. Die Programmierung selbst findet in der
Sprache Objective-C statt, die für Entwickler anderer Sprachen nicht sehr intuitiv ist und
einige Fallstricke bietet. In dieser Arbeit wurde auch der Funktionsumfang der iPad-Lösung
soweit reduziert, dass nur die Anzeige der Worklist und die Aufgabendetails ([Abb: 10.2])
verfügbar sind. Als Erweiterung gegenüber der Smartphonelösung könnte aber auf Grund
des größeren Displays (25cm mit 1024× 768) eine Anzeige der Worklist als interaktive Karte
umgesetzt werden, wie sie auch in der Weboberfläche verfügbar ist. Dies wurde im Rahmen
dieser Arbeit nicht implementiert.

Abbildung 10.2.: Taskliste mit Taskdetails als Splitview

10.4. Zusammenfassung

Die Entwicklung für mobile Endgeräte stellt den Entwickler vor gewisse Herausforderungen
bei der Verwendung von Ressourcen wie dem verfügbaren Anzeigebereich, der Internetanbin-
dung und vorhandener Rechenleistung. Dies verlängert die benötigte Zeit zur Entwicklung
von Anwendungsfunktionalität erheblich im Gegensatz zu Desktopanwendungen. Trotz-
dem ist im Bereich der kontextbasierten Anwendungen eine Unterstützung von mobilen
Endgeräten zwingend erforderlich.

59

11. Erweiterungen

Zu den in den vorherigen Kapiteln aufgezeigten Lösungen gibt es natürlich beliebig viele
Erweiterungen und weitere Zielplattformen. Hier sollen nun einige Ideen aufgezeigt werden,
die an das entworfene Tasksystem angebunden werden könnten.

11.1. OS X Widget

Unter Mac OS X gibt es das sogenannte Mac OS X Dashboard1 ([Abb: 11.1]). Es handelt
sich dabei um eine halbtransparente Ebene, die per Tastendruck aktiviert werden kann.
Auf ihr befinden sich kleine Minianwendungen, die Widgets genannt werden und zur
Unterhaltung oder zum Zugriff auf nützliche Funktionalitäten einzelner Programme dienen.
Die Entwicklung von Widgets erfolgt in HTML und JavaScript. Eine Erweiterung des
TaskManagers wäre nun die Entwicklung eines Dashboard Widgets zur Anzeige der Worklist
des Benutzers. Außerdem könnte eine Anzeige von Aufgabendetails integriert werden.

11.2. Windows Gadget

Vergleichbar mit dem eben vorgestelleten Dashboard gibt es seit Windows Vista die so-
genannte Windows Sidebar2. Dies ist eine vertikale Leiste, die standardmäßig am rechten
Bildschirmrand erscheint und ebenfalls Minianwendungen enthält. Diese von Microsoft als
Gadgets bezeichneten Fenster werden wie unter Mac OS als Webseiten entworfen und kön-
nen sich per JavaScript Daten beschaffen. Durch die Verwendung von JSON als Datenformat
des TaskManagers ist eine Integration sehr leicht und stellt eine praktische Ausweitung der
Anzeigeclients dar. Die [Abb: 11.2] zeigt einen Designentwurf für ein TaskManager-Gadget.

1http://support.apple.com/kb/HT2492

2http://windows.microsoft.com/de-DE/windows-vista/Windows-Sidebar-and-gadgets-overview

61

11. Erweiterungen

Abbildung 11.1.: Mac OS X Dashboard

Abbildung 11.2.: Draftshot der Anwendung

11.3. Android App

Im Rahmen dieser Arbeit wurden Clients für BlackBerry und iPad geschrieben. Die dritte
Plattform, mit dem momentan größten Zuwachs, ist Android. Die Programmierung für
androidfähige Endgeräte erfolgt mit dem javabasierten Android-SDK3 von Google. Auf
Grund dieser zunehmenden Verbreitung muss für eine erfolgreiche Verwertung der hier
erarbeiteten Lösung unbedingt eine Androidanwendung entwickelt werden.

3http://developer.android.com/sdk/index.html

62

Teil IV.

Abschluss

63

12. Zusammenfassung und Ausblick

12.1. Evaluation

Im Folgenden sollen nun noch einige Erkenntnisse und Erfahrungen, die bei der Implemen-
tierung gemacht wurden, zusammengefasst werden.

Datenmodell

Die Datenmodelldefinition aus Abschnitt 3.4 konnte vollständig in die Implementierung
übernommen werden und hat alle Beispielszenarien abbilden können. Bei der Implementie-
rung wurden noch ein paar Felder hinzugefügt, die aber semantisch keine Relevanz haben,
sondern nur implementierungstechnisch für eine einfachere Verwaltung sorgen.

Algorithmus

Auch bei der Implementierung des Priorisierungsalgorithmus mussten keine wesentlichen
Anpassungen vorgenommen werden. Die Umsetzung des Algorithmus findet sich im Server
und läuft dort periodisch ab [Abb: 12.1]. Der Zeitaufwand für die gesamte Neuberech-
nung liegt im Bereich von Millisekunden. Da keine Mengengerüste für einen realen Einsatz
vorliegen und die Testberechnungen schnell genug waren, wurden keine genauen Zeitmes-
sungen durchgeführt. Die aktuelle Implementierung des Algorithmus bietet aber sicher noch
Spielraum für eine Steigerung der Performance.

Server

Die Schwierigkeiten bei der Installation der Serverkomponenten in einer Zielumgebung
liegen hauptsächlich an der Datenbank. Die Erweiterung der PostgreSQL-Datenbank um
die PostGIS-Komponenten bedarf dem genauen Befolgen der Installationsanleitung und
ist relativ fehleranfällig. Die restlichen Komponenten des Servers sind durch einfaches
Entpacken von Archivdateien problemlos auszuliefern. Das initiale Datenbankschema muss
anschließend manuell erstellt werden, da die automatische Erstellung durch Hibernate
Probleme bei der Anlage der Geodatenfelder hat.

65

12. Zusammenfassung und Ausblick

Clients

Durch die gute Unterstützung von JSON auf den Zielplattformen konnte die Umsetzung für
die mobilen Endgeräte und den Desktopclient sehr schnell erfolgen. Dabei ergab sich die
Hauptschwierigkeit jeweils aus dem Einrichten und Einarbeiten in die Entwicklungsumge-
bungen und die plattformeigenen Konzepte und Sprachen.

Abbildung 12.1.: Konsolenausgabe der Priorisierung

12.2. Zusammenfassung der Arbeit

In der vorliegenden Arbeit wurde die Notwendigkeit der automatischen Verwaltung von
persönlichen Aufgaben aufgezeigt und das Konzept der PerFlows vorgestellt. Hierzu wurde
das Paper von Mark Weiser näher betrachtet und das Szenario von Sal aufgegriffen. Danach
wurden Bezüge zu verwandten Arbeiten aufgezeigt und andere Definitionen von Aufgaben
und ihrer Priorisierung erläutert. Das Hauptaugenmerk lag hierbei auf WS-HumanTask
und drei Arbeiten zur Aufgabenpriorisierung. Da sich keines der bestehenden Konzepte als
vollständig passend erwiesen hat, wurde anschließend ein eigenes Datenmodell für Tasks
entwickelt und ein Algorithmus zur Priorisierung entworfen.

Im Weiteren folgten dann Überlegungen zur Architektur des gesamten Tasksystems und der
Entwurf der Schnittstelle für den TaskManager, sowie notwendiger Zusatzkomponenten. Im
Kapitel 7 konnte dann eine funktionsfähige Demonstrationsimplementierung umgesetzt wer-
den. Dazu wurden Plattformen für den Server und die Schnittstellenbeschreibung gewählt

66

12.3. Ausblick

und die Software implementiert. Als Clients wurden eine Desktopanwendung sowie mobile
Oberflächen für BlackBerry und iPad umgesetzt. Abschließend folgte eine Vorstellung mögli-
cher Erweiterungen für die Implementierung. Zum Abschluss soll nun noch ein Ausblick
auf eine Weiterführung und Verwendung gewagt werden.

12.3. Ausblick

Die hier vorgestellte Lösung lässt sich natürlich beliebig erweitern und weiteren Bedürf-
nissen und Anforderungen anpassen. Eine notwendige Erweiterung, die aus Gründen des
Arbeitsumfangs nicht umgesetzt wurde, ist die Schaffung einer Möglichkeit die Lokationsei-
genschaft des Tasks funktional zu erweitern. So sollte es möglich sein die Position eines Tasks
an ein dynamisches Objekt zu binden um beispielsweise Aufgaben zu definieren, die als
Ausführungsort den Aufenthaltsort einer Person haben. Damit ließen sich geplante Treffen
mit realen Personen als Aufgabe definieren, die dann durch die Kontextinformationen bei
Eintreten einer Gelegenheit hoch priorisiert werden. Weiter könnten Tasks auch mehrere
Ausführungspositionen haben um Alternativen zu erfassen. Beispiele wären hier Aufgaben
für zu tätigende Einkäufe, die in einem beliebigen Supermarkt stattfinden können.

Weiter muss in einem nächsten Schritt der entworfene TaskManager an die Ausführungsum-
gebung von PerFlows angebunden werden, um durch die Ausführung von Prozessen die
entstehenden Aufgaben in der Worklist sichtbar zu machen und eine Einbeziehung in die
Priorisierung zu ermöglichen. Dazu muss der PerFlow-Koordinator als Client Zugriff auf die
Schnittstelle des TaskManagers erhalten und Tasks erstellen und verändern. In diesem Zug
sollte die Taskdefinition um Ein- und Ausgabedaten erweitert werden, um dem Benutzer
Prozesskontextdaten zur Verfügung zu stellen und mehr Daten vom Benutzer in den Prozess
einbringen zu können. Auch sollte ein Callback-Handler implementiert werden, um dem
PerFlow-Koordinator Statusänderungen von Aufgaben mitzuteilen, damit dieser den Prozess
entsprechend fortsetzen kann.

67

Teil V.

Anhang

69

A. Taskdatenmodell

id
Die ID ist eine eindeutige Zahl zur Identifikation eines Tasks im gesamten System. Sie ist
der Primärschlüssel eines Tasks.

name
Der Name benennt die Aufgabe in kurzen prägnanten Worten. Er besteht aus einer frei
wählbaren, nicht leeren, Zeichenfolge.

description
Die Beschreibung enthält einen optionalen, längeren Text, der den Inhalt der Aufgabe näher
erläutert. Das Beschreibungsfeld hat keine Einschränkungen bezüglich Inhalt oder Länge.

startTime
Die Startzeit definiert den frühstmöglichen Zeitpunkt um diese Aufgabe zu beginnen. Eine
Aufgabe mit einer zukünftigen Startzeit wird in der Worklist nicht berücksichtigt, sondern
erst mit Erreichen aktiviert.

dueTime
Die Fälligkeitszeit gibt den Zeitpunkt an, an dem die Aufgabe abgeschlossen sein muss. Das
Verhalten einer unfertigen Aufgabe nach diesem Zeitpunkt wird durch das Feld escalation
charakterisiert.

manualPriority
Die manuelle Priorität bietet dem Benutzer die Möglichkeit Einfluss auf die automatische
Sortieren der Aufgaben zu nehmen. Er kann einzelne Aufgabe als wichtig markieren um sie
höher einzustufen. Mögliche Prioritäten sind High, Medium, Low.

location
Die Lokation gibt den Ort an, an dem die Aufgabe ausgeführt werden muss. Dieses optionale
Feld bietet die notwendigen Informationen um Aufgaben kontextabhängig zu modellieren
und zu priorisieren. Die Position wird als Koordinatentripel aus Längengrad, Breitengrad
und Höhe (über NN) erfasst. Als Bezugskoordiantensystem dient [NIM00].

pausable
Diese Feld gibt an, ob eine Aufgabe pausiert werden kann oder ob sie nach dem Beginn zu
Ende geführt werden muss.

71

A. Taskdatenmodell

runUser
Bei einer bereits gestarteten Aufgabe wird hier angegeben, welcher Benutzer sie ausführt.
Dies ist relevant um die Priorisierung der Aufgabe für verschiedene zugewiesene Personen
zu berechnen.

runtime
Die Laufzeit gibt an, wie lange die Ausführung eines Task bisher läuft oder insgesamt
gedauert hat. Die Angabe erfolgt in Minuten.

estimatedRuntime
Dieses Feld gibt die geschätze Laufzeit für die Aufgabe an. Anhand dieser Schätzung
wird der Spielraum einer Aufgabe bei der Priorisierung berechnet. Auch der Ablauf von
Sequenzen hängt von diesem Wert ab. Die Angabe erfolgt ebenfalls in Minuten.

escalation
Das Eskalationsverhalten gibt an, wie mit einem überfälligen Task verfahren wird. Bei Ignore
wird die Aufgabe wie eine sofort fällige behandelt. Eine Eskalation vom Typ Kill verwirft
eine überfällige und somit hinfällige Aufgabe und der Typ Top sorgt für eine starke Erhöhung
der Priorität der Aufgabe um eine rasche Ausführung zu fordern.

72

B. Schnittstellendefinition

B.1. Benutzerverwaltung

Methode: login
Parameter: String login, String pwd
Rückgabe: String SessionID
Die Methode meldet einen Benutzer am System an und gibt eine SessionID zurück, die für
alle anderen Methoden zur Authentifizierung und Authorisierung dient.

Methode: logout
Parameter: String login, String pwd
Rückgabe: void
Die Methode dient zur Abmeldung eines Benutzers. Seine Session ist danach nicht mehr
gültig.

Methode: validate
Parameter: String sessionID
Rückgabe: SystemUser
Die Methode dient zur Prüfung einer SessionID. Ist diese gültig wird der entsprechende
Benutzer zurückgegeben.

Methode: getByLogin
Parameter: String loginName
Rückgabe: SystemUser
Die Methode liefert den Benutzer mit dem angegebenen Loginnamen zurück.

Methode: saveUser
Parameter: Systemuser user
Rückgabe: SystemUser
Die Methode speichert den übergebenen Benutzer und liefert die gespeicherte Version wieder
zurück.

Methode: deleteUser
Parameter: SystemUser user
Rückgabe: void
Die Methode löscht den angegebenen Benutzer aus dem System.

73

B. Schnittstellendefinition

Methode: getUsers
Parameter: -
Rückgabe: List(SystemUser)
Die Methode liefert eine Liste aller Systembenutzer zurück.

B.2. Kontextverwaltung

Alle Methoden der Kontextverwaltung benötigen als ersten Parameter die SessionID des
anfragenden Benutzers um die Berechtigungen für die Ausführung zu prüfen. Als Hilfs-
konstrukt für oft verwendete Positionen gibt es das Objekt der NamedLocation. Es beinhaltet
einen Namen und die Koordinaten der Position.

Methode: getNamedLocation
Parameter: String sessionID, String name
Rückgabe: NamedLocation
Die Methode sucht eine benannte Position nach ihrem Namen.

Methode: getNamedLocations
Parameter: String sessionID
Rückgabe: List(NamedLocation)
Die Methode liefert eine Liste aller benannten Positionen.

Methode: saveNamedLocation
Parameter: String sessionID, NamedLocation loc
Rückgabe: NamedLocation
Die Methode speichert oder aktualisiert eine benannte Position.

Methode: deleteNamedLocation
Parameter: String sessionID, NamedLocation loc
Rückgabe: void
Die Methode löscht die angegebene benannte Position.

Methode: updateUserLocation
Parameter: String sessionID, long userID, Location loc
Rückgabe: void
Mit Hilfe dieser Methode kann die Position des angegebenen Benutzers im System aktuali-
siert werden.

Methode: updateUserLocationName
Parameter: String sessionID, long userID, String name
Rückgabe: void
Im Gegensatz zur vorherigen Methode kann hier der Name einer benannten Position
verwendet werden.

74

B.3. Taskverwaltung

Methode: updateUserLocationAtTime
Parameter: String sessionID, long userID, Location loc, long time
Rückgabe: void
Mit dieser Methode kann die Position zu einer gewissen Zeit gesetzt werden.

Methode: updateUserLocationNameAtTime
Parameter: String sessionID, long userID, String name, long time
Rückgabe: void
Diese Methode dient zur Positionsänderung zu einer gewissen Zeit in eine benannte Positi-
on.

Methode: getUserLocation
Parameter: String sessionID, long userID
Rückgabe: Location
Diese Methode liefert die letzte bekannte Position des Benutzers.

Methode: getUserLocationAtTime
Parameter: String sessionID, long userID, long time
Rückgabe: Location
Diese Methode liefert die Position des Benutzers zu einem bestimmten Zeitpunkt.

Methode: getUserTrack
Parameter: String sessionID, long userID
Rückgabe: List(Location)
Diese Methode liefert eine Liste aller Wegpunkte des Benutzers.

Methode: getUserTrackAtTime
Parameter: String sessionID, long userID, long start, long end
Rückgabe: List(Location)
Mit Hilfe dieser Methode lassen sich Wegpunkte eines Benutzers in einem gewissen zeitlichen
Bereich abfragen.

B.3. Taskverwaltung

Auch die Methoden der Taskverwaltung benötigen als ersten Parameter die SessionID des
anfragenden Benutzers zur Authorisierung.

Methode: getTask
Parameter: String sessionID, long taskID
Rückgabe: Task
Diese Methode liefert Details zu einer bestimmten Aufgabe.

Methode: getTasks
Parameter: String sessionID, bool showDeleted

75

B. Schnittstellendefinition

Rückgabe: List(Task)
Diese Methode dient zur Abfrage aller zugewiesenen Aufgaben. Die Anzeige von gelöschten
Aufgaben ist optional.

Methode: saveTask
Parameter: String sessionID, Task task
Rückgabe: Task
Mit Hilfe dieser Methode kann eine Aufgabe angelegt oder verändert werden.

Methode: deleteTask
Parameter: String sessionID, Task task
Rückgabe: Task
Mit Hilfe dieser Methode kann eine Aufgabe gelöscht werden.

Methode: getWorklist
Parameter: String sessionID
Rückgabe: List(Task)
Diese Methode liefert die priorisierte Worklist des anfragenden Benutzers und beinhaltet
damit die Kernfunktionalität dieser Arbeit.

Methode: processTask
Parameter: String sessionID, long taskID, String state
Rückgabe: bool
Mit Hilfe dieser Methode lässt sich eine gewählte Aufgabe von ihrem aktuellen Zustand
in einen neuen Zustand überführen. Der Rückgabewert zeigt an, ob diese Weiterschaltung
möglich war oder nicht.

76

Literaturverzeichnis

[AAD+
07a] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Kö-

nig, F. Leymann, R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller. WS-BPEL Extension
for People v1. 2007. URL http://download.boulder.ibm.com/ibmdl/pub/
software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf. (Zitiert auf Sei-
te 16)

[AAD+
07b] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Kö-

nig, F. Leymann, R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen,
M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, M. Zeller. WS-HumanTask Specifica-
tion v1. 2007. URL http://download.boulder.ibm.com/ibmdl/pub/software/
dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf. (Zitiert auf den Seiten 16

und 22)

[Cro06] D. Crockford. JSON Specification RFC 4627. 2006. URL http://www.ietf.org/
rfc/rfc4627.txt. (Zitiert auf Seite 52)

[Gö10] P. Göhner. Automatisierungstechnik I, 2010. SKRIPT. (Zitiert auf den Seiten 26

und 31)

[GBH+
05] M. Grossmann, M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, T. Schwarz.

Efficiently Managing Context Information for Large-Scale Scenarios. Pervasive
Computing and Communications, IEEE International Conference on, 0:331–340, 2005.
doi:http://doi.ieeecomputersociety.org/10.1109/PERCOM.2005.17. (Zitiert auf
Seite 42)

[Hub08] E. Huber. SmartGPS - Lokationsmodell für PerFlows. Master’s thesis, Universität
Stuttgart, 2008. (Zitiert auf Seite 14)

[Kir10] M. Kirkpatrick. Facebook’s Zuckerberg Says The Age of Privacy is Over. 2010.
URL http://www.readwriteweb.com/archives/facebooks_zuckerberg_says_
the_age_of_privacy_is_ov.php. (Zitiert auf Seite 41)

[Mar10] C. Marcellino. Data in Your iPhone App, 2010. LECTURE 9 CS193P at Stanford
University. (Zitiert auf Seite 54)

[Mat10] Matt. JSON-RPC Specification. 2010. URL http://groups.google.com/group/
json-rpc/web/json-rpc-2-0. (Zitiert auf Seite 51)

77

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.readwriteweb.com/archives/facebooks_zuckerberg_says_the_age_of_privacy_is_ov.php
http://www.readwriteweb.com/archives/facebooks_zuckerberg_says_the_age_of_privacy_is_ov.php
http://groups.google.com/group/json-rpc/web/json-rpc-2-0
http://groups.google.com/group/json-rpc/web/json-rpc-2-0

Literaturverzeichnis

[NIM00] NIMA. World Geodetic System 1984. 2000. URL http://earth-info.nga.mil/
GandG/publications/tr8350.2/wgs84fin.pdf. (Zitiert auf Seite 71)

[Org07] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Business Process Execution Language (WS-BPEL) Version 2.0,
2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
html. (Zitiert auf Seite 16)

[OTM03] I. Ohmukai, H. Takeda, M. Miki. A Proposal of the Person-centered Approach
for Personal Task Management. In Proceedings of the 2003 Symposium on Ap-
plications and the Internet, pp. 234 – 240. IEEE Computer Society, 2003. doi:
10.1109/SAINT.2003.1183055. URL http://portal.acm.org/citation.cfm?
id=827273.829223. (Zitiert auf den Seiten 16 und 17)

[SWDA08] H. Schonenberg, B. Weber, B. F. van Dongen, W. M. P. van der Aalst. Supporting
Flexible Processes through Recommendations Based on History. In BPM, volume
5240 of Lecture Notes in Computer Science, pp. 51–66. Springer, 2008. URL http://
dblp.uni-trier.de/db/conf/bpm/bpm2008.html#SchonenbergWDA08. (Zitiert
auf Seite 17)

[UBR06] S. Urbanski, C. Becker, K. Rothermel. Sentient processes - process-based app-
lications in pervasive computing. In Pervasive Computing and Communications
Workshops, 2006. PerCom Workshops 2006. Fourth Annual IEEE International Con-
ference on, pp. 4 pp. –611. 2006. doi:10.1109/PERCOMW.2006.124. (Zitiert auf
Seite 13)

[UHW+
09] S. Urbanski, E. Huber, M. Wieland, F. Leymann, D. Nicklas. PerFlows for the

computers of the 21st century. In Pervasive Computing and Communications,
2009. PerCom 2009. IEEE International Conference on, pp. 1 –6. 2009. doi:10.1109/
PERCOM.2009.4912887. (Zitiert auf den Seiten 13 und 14)

[W3C04] W3C. XML Schema. 2004. URL http://www.w3.org/standards/techs/
xmlschema#w3c_all. (Zitiert auf Seite 52)

[WCL+
05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services

Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005. (Zitiert auf Seite 52)

[Wei91] M. Weiser. The Computer for the 21st Century. Scientific American, 265(3):94–104,
1991. URL http://nano.xerox.com/hypertext/weiser/SciAmDraft3.html.
(Zitiert auf den Seiten 13 und 21)

[WF92] T. Watanabe, T. Fukumura. A scheduler of daily personal tasks on the basis
of the object-oriented model. In TENCON ’92. ”Technology Enabling Tomorrow
: Computers, Communications and Automation towards the 21st Century.’ 1992

78

http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://portal.acm.org/citation.cfm?id=827273.829223
http://portal.acm.org/citation.cfm?id=827273.829223
http://dblp.uni-trier.de/db/conf/bpm/bpm2008.html#SchonenbergWDA08
http://dblp.uni-trier.de/db/conf/bpm/bpm2008.html#SchonenbergWDA08
http://www.w3.org/standards/techs/xmlschema#w3c_all
http://www.w3.org/standards/techs/xmlschema#w3c_all
http://nano.xerox.com/hypertext/weiser/SciAmDraft3.html

Literaturverzeichnis

IEEE Region 10 International Conference., pp. 618 –622 vol.2. 1992. doi:10.1109/
TENCON.1992.272028. (Zitiert auf Seite 16)

[Win99] D. Winer. XML-RPC Specification. 1999. URL http://www.xmlrpc.com/spec.
(Zitiert auf Seite 51)

Alle URLs wurden zuletzt am 28.03.2011 geprüft.

79

http://www.xmlrpc.com/spec

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Thorsten Höger)

	I Grundlagen
	1 Einleitung
	1.1 Motivation
	1.2 Ziele der Arbeit
	1.3 Aufbau der Arbeit

	2 Grundlagen und verwandte Arbeiten
	2.1 Motivation
	2.2 Personal Flows
	2.3 Taskkonzepte
	2.3.1 PIM Tasks
	2.3.2 WS-HumanTask
	2.3.3 Andere Arbeiten

	2.4 Zusammenfassung

	II Theoretische Konzepte
	3 Personal Task
	3.1 Motivation
	3.2 Szenario
	3.3 Anforderungen
	3.4 Definition
	3.5 Eigenschaften
	3.5.1 Felder
	3.5.2 Status

	3.6 Taskattribute im Szenario
	3.7 Zusammenfassung

	4 Methoden der Priorisierung
	4.1 Motivation
	4.2 Anforderungen
	4.3 Berechnungsmethoden
	4.3.1 Echtzeit-Schedulingverfahren
	4.3.2 Bewertungsalgorithmen

	4.4 Zusammenfassung

	5 Priorisierungsalgorithmus
	5.1 Motivation
	5.2 Algorithmus
	5.3 Faktoren zur Priorisierung
	5.3.1 Gewichtung der Faktoren

	5.4 Priorisierung der Szenariotasks
	5.5 Pseudocode Implementierung
	5.6 Neuberechnungslogik
	5.7 Erweiterung: zeitliche Abläufe
	5.8 Zusammenfassung

	6 Architektur des TaskManagers
	6.1 Motivation
	6.2 Anforderungen
	6.3 Lösungsansätze
	6.3.1 Konzepte
	6.3.2 Auswahl

	6.4 Serverarchitektur
	6.5 Schnittstellendefinition
	6.6 Clientkonzepte
	6.6.1 Desktopclients
	6.6.2 Mobile Clients
	6.6.3 Anzeigeclients

	6.7 Zusammenfassung

	III Implementierung
	7 Serverimplementierung
	7.1 Motivation
	7.2 Gesamtarchitektur
	7.2.1 Datenbank
	7.2.2 Application Server
	7.2.3 Weboberfläche

	7.3 Zusammenfassung

	8 Schnittstellenumsetzung
	8.1 Motivation
	8.2 Protokollalternativen
	8.3 Pro/Contra je Zielplattform
	8.4 Auswahl
	8.5 Zusammenfassung

	9 Desktop Client
	9.1 Motivation
	9.2 Eclipse Plattform
	9.3 Funktionalität Rich Client
	9.4 Zusammenfassung

	10 Mobile Client
	10.1 Motivation
	10.2 BlackBerry Client
	10.3 iOS Client
	10.4 Zusammenfassung

	11 Erweiterungen
	11.1 OS X Widget
	11.2 Windows Gadget
	11.3 Android App

	IV Abschluss
	12 Zusammenfassung und Ausblick
	12.1 Evaluation
	12.2 Zusammenfassung der Arbeit
	12.3 Ausblick

	V Anhang
	A Taskdatenmodell
	B Schnittstellendefinition
	B.1 Benutzerverwaltung
	B.2 Kontextverwaltung
	B.3 Taskverwaltung

	Literaturverzeichnis

