Institut fir Architektur von Anwendungssystemen

Universitat Stuttgart
UniversitdtsstraRe 38
D — 70569 Stuttgart

Diplomarbeit Nr. 3096

Iteration und wiederholte
Ausfihrung von Aktivitiaten
in Workflows

Bo Ning
Studiengang: Informatik
Prufer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Betreuer : Dipl.-Inf. Mirko Sonntag
Begonnen am: 01.September 2010
Beendet am: 13.Mérz 2011

CR-Klassifikation: H.4.1 Workflow-Management

Meinem Mann und meiner Tochter, Jindong und Shuning

zum Dank fUr eure liebevolle Unterstiizung,
derer ich mir zu jeder Zeit sicher sein konnte.

Meinem Betreuer, Dipl.-Inf. Mirko Sonntag
zum Dank fUr Ihre Hilfe und Betreuung.
Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

zum Dank fUr Ihre Zusage, dass ich die Diplomarbeit schreiben darf.

Inhaltsverzeichnis

1 EINIEITUNG oo 11
1.1 IMIOTIVALION 1.t bbbttt b bbbttt ettt be b 11
1.2 AUTQabENdETiNITION.coiiiieec e 11
1.3 AUTDAU e AFDEIT.....cuiiiiiieieiee et nre s 12

2. GrUNAIAZENeeeiiie e 13
2.1 Service-orientierte ArChiteKEUN ..o 13

2.1.1 EinfUNIUNG VON SOA . ..ot bbbt 13
2.1.2 SOA-DIeieCKMOUEIL.........oouiiiiiii e 15
2.2 WWEDSEIVICES ...veeveeieeesieesieetees e estesseeste e e s teesteesteaseesteeseeaneesseeneeaseesaeeneeanaesseenseeneesreensenneens 16
2.2 L SOAP .. ot b e r et bbbt ans 17
2.2.2 WSDLo ittt bbb bbbttt bbb 19
2.3 BPEL ..ttt ettt bt teere et e 22
2.3 1 PIOZESSE ...ttt 22
2.3. 2 VANADIEN ..ot 22
2.3.3 AKLIVITEIBN ...ttt bbbttt bbb e 22
2.3.4 Korrelationsmengen (Correlation SEtS)........ccoceierieriienienie e 24
2.3.5 Scopes und deren HandIerovoiiiiiiiiieee s 24

3. APACHE ODE ... 26
3.1 Grundlagen der APache ODE..........ccoooeiiiiiie e 26
3.2 Abweichungen vom WS-BPEL 2.0 Standardccoovririniniiieienc e 27
3.3 Die Architektur der APache ODEccoiveiiiiiiieeie et sre e 28
3.4 ODE-BPEL-Compiler und ODE-Objekt-Modell............ccccooiiiiiiiiiiieee, 30
3.5 ODE-BPEL-ENGINE-RUNLIME........cciiiiiiieie ettt 31
3.6 ODE Data ACCESS ODJECTS.ecuieiiiiiiiiesiisiieieie ettt 33
3.7 Die BPEL Management APlooiiiiiieiiiie ittt ettt sne e 34

4. Verwandte ArDEITENeeiiiie e 36
AL E-BIOFIOW ...t 36

4.1.1 Die Vorteile von E-BioFlow mit dem ad-hoc-Editor............cccovvevviniveieiernenn, 36
4.1.2 Die sechs Perspektiven von E-BIOFIOWccccoovieiiiiiic i 37
4.1.3 Ad-hoc Workflowdesign in E-BIOFIOWccccviiiiiiiiieiieee e 38
4.1.4 Ein im Ad-hoc-Editor entworfener Anwendungsfall ..., 39
4.2 REIIY SCOPES ...ttt ettt etttk ettt b etk b et b bt se b e e bt e nbe et e e nne e e 40
4.2.1 DI€ ZWET SZENAIIENeiiiiieiieiie sttt sttt sttt sb e e b e nbe e b seenbeeneas 41
4.2.2 Das Konzept vON Retry/REIUN-SCOPES........coceiiririeieieie sttt 41
4.3 Dynamische Modifikation des WOrkflowsccccvoiiiiiiiiiiiii e, 42

5. Konzept fU Iteration und Wiederholte Ausfthrung der

Aktivitden IMWS-BPEL 2.0cccoooeiiieee e, 45
5.1 Die Unterschiede zwischen Iteration und Re-eXECULIONccccvvviieierieieneneniesieeeens 45
oI | (=] - LA o] oSSR 46

5.2.1 IEration iN SEQUENCEcoveeviiie ettt ste ettt s e ste e sreesreesaesneesteennesreas 46
5.2.2 HEratioN IN FIOWc.vooiieieiee et sae e ene e 47
5.2.3 Iteration in While, RepeatUntil und forEach.............cccccoeeviiiiiiiiici e 50
5.3 RE-EXECULION. ... eutiieieite e tee et ste et et e e et este e e e e s e sseeseeaseesteeseeaneesseenseeneesreeseaneens 50
5.3.1 Einfache Re-execution fir die Aktivit& ohne Kompensierungccoceevvevieeinnen, 51
5.3.2 Re-execution fUr die Aktivit&l mit KOMPenSierung........cocevevvrenieieenienenesieseennns 51

5

6. Realisierung eines ProtOtyPscocvveiiveiiiee i 54

6.1 Anforderungen an die REAIISIEIUNG.........cuciveiiiiiiiiee et 54
6.2 Die ENtwicklungSUMQEDUNGccooiiiiiiiii s 54
6.3 Erweiterung der APache ODE............ccoiiiiuiiiie ittt 55
6.3.1 XPANPAISETciuieiieiieciiee ettt e te e esseesaeeneesreenteeneens 55
5.3.2 TEBIALE ...ttt nne e 57
5.3.3 RE-BXECULE ...ttt sttt et e e b et e et e e srb e e nbeesnbeenteennneen 66

7. Zusammenfassung und AUSBICKccoiviiiiiii 75

Abbildungsverzeichnis

Abbildung 2.1 SOA als ein Tempel [Mel10] ..o 13
Abbildung 2.2 SOA-Dreieckmodell ..o 15
Abbildung 2.3 SOA-Dreieckmodell auf Webservices angepasst...........cccvveverververiesiveneanens 17
Abbildung 2.4 Die allgemeine Struktur einer SOAP-Nachricht...........c.ccooiiiiiiiiieneiee, 18
Abbildung 2.5 Der Nachrichtenweg von SOAP [IBM]ccccoiieiiiiiiieiese e 18
Abbildung 2.6 Die syntaktische Struktur von WSDL 1.1 [WCL05].....ccccvvvveiriieerireieian 20
Abbildung 3.1 ODE-ArchiteKtur [SON08]coviieiiiieiieie e 29
Abbildung 3.2 Verwaltung eines BPEL-Prozesses in der Apache ODE [Ste08]..........c.......... 30
Abbildung 3.3 Teil aus dem Klassendiagramm der Objekte im ODE-Objekt-Modell............. 31
Abbildung 3.4 Teil aus dem Klassendiagramm fUr die Objekte auf der Instanzebene............. 32
Abbildung 4.1 Alle Perspektiven von E-BioFlow mit ad-hoc-Editor [WOV09]............c........ 38
Abbildung 4.2 Der Screenshot des ad-hoc-Editors im E-BioFlow [WOV09]ccccceenenee. 38
Abbildung 4.3 Der erste Task MobyBlat [WOWV09]cccooiiiieiiiieieeie e 39
Abbildung 4.4 Die neuen Tasks "result™ and "Scripting task” [WOV09]..........cccceorviennnnns 40
Abbildung 4.5 Der Medikamententest [EKU 10]..........cooeeiiririeeeiieeeeeseeees s eneneeeens 41
Abbildung 4.6 Modifikationen vom WOrKFIOWcocooiiiiiiiieee 43
Abbildung 5.1 Iteration in Sequence, Fall L..........ccccooiiiiiiiiiicec e 46
Abbildung 5.2 Iteration in Sequence, Fall 2. 47
Abbildung 5.3 Iteration in FIOW, Fall L.........ccccoviiiiiie e 47
Abbildung 5.4 Iteration in FIOW Fall 2...........cooiiiiiee e 48
Abbildung 5.5 Iteration in FIow, Fall 3..........ccoooiiiii e 48
Abbildung 5.6 Iteration in FIOW, Fall 4..........coooviiiiiiee e 49
Abbildung 5.7 Iteration iINWHIIEcoviiiiicc e 50
Abbildung 5.8 Re-execution in Sequence ohne KOMPENSIEIUNGccvrerirerieiierienienienieneeas 51
Abbildung 5.9 Re-execution in Sequence mit Kompensierung Fall 1..........ccccocevveviiieinnnen. 52
Abbildung 5.10 Re-execution in Sequence mit Kompensierung Fall 2..........ccccooeieiiiinnnns 53
Abbildung 6.1 Klassendiagramm von XpathParser.javacccceceevveieeieiieeieerie e 55
Abbildung 6.2 Sequenzdiagramm fUr Iterate-Operation..........ccccvevvrieereniesieese e e 59
Abbildung 6.3 Klassendiagramm fir die Verwaltung von Prozessen und Instanzen 60
Abbildung 6.4 Request von Iterate in SOAPUIcoooiiiiiiiiiiieie e 61
Abbildung 6.5 Das Sequenzdiagramm fUr die Operation Re-eXeCUtecccvevvveeiveiineerieennn, 67
Abbildung 6.6 Klassendiagramm von vier KIassen in DAOccooiiieniniinieienene e 69
Abbildung 6.7 Datenmodell von vier KIassen in DAOccccccciiiiiie i 69
Abbildung 6.8 Das Klassendiagramm fUr SNapShOtS..........ccccviviiriiieiinescse e, 70
Abbildung 6.9 Datenmodell fUr neue SNapShOtDAOSccveiiiiiiieiie e 71

Verzeichnis der Listings

Listing 2.1 Der Body in einer SOAP-NaChIICNTcccooiiiiiiic e 19
Listing 3.1 Variablen mit inlinern "from-spec” [OASIS]cccoveieiieie e, 27
Listing 3.2 Ein von ODE erlaubtes und von BPEL verbotenes Beispiel [ODE1] 27
Listing 4.1 Fault Handler mit <restart>-Aktivit& in RetryScope [EKU+10]ccoeevveinnnee. 42
Listing 6.1 Der Ausschnitt aus dem Klassendiagramm von XpathParser.java...............cc....... 56

Listing 6.2 Suche nach der Kindaktivit& von OProcess in der Methode getCorrectElement. 57
Listing 6.3 Suche nach bestimmtem OAssign in Sequence in der Methode getCorrectElement

.. 57
Listing 6.4 Die Iterate-Operation in ProcessAndInstanceManagementimpl.java.................... 60
Listing 6.5 Ausschnitt aus der Klasse DebuggerSUpport.javaccceeevevveeneeiineesiesieesiee s 61
Listing 6.6 Ausschnitt aus der Klasse BPelProCess.java.........c.cuuviveieieneniesesesiseseeeees 62
Listing 6.7 Der Ausschnitt der Klasse SEQUNECEcccccoeiiieiiiiiii e 62
Listing 6.8 Erzeugen einer neuen Instanz der Klasse SEQUENCEcccccveoeviveieiiiesinennn. 63
Listing 6.9 Der originale Konstruktor der Klasse ACTIVITY ..o 64
Listing 6.10 Der ge&nderte Konstruktor der Klasse ACTIVITY ...ccoovvieiiveiievieneee e 64
Listing 6.11 Die fUr Iterate neu erstellte Methode executeForlterateAndReexecute() 65
Listing 6.12 Der Ausschnitt aus der Methode executeForlterateAndReexecute() 66
Listing 6.13 Die neuen Methoden in ProcessinstanceDAOIMpl.java.........ccccevevvnieninninenne. 71
Listing 6.14 Die Methode storeSnapshot() in ACTIVITY JaVa.......ccccceeveervereneeseeniesiesnennn 72
Listing 6.15 Die Methode reloadSnapshot() in BpelProcess.javaccccevvevvereiencnennniens 73

Tabellenverzeichnis

Tabelle 2.1 Die vier verschiedenen Operationen in WSDLL.1........cccccooiviiiiieiie i 21
Tabelle 2.2 Die basischen und strukturierten Aktivit&en in WS-BPEL...........cccccevvviveieennnne 24

AbkUrzungsverzeichnis

BPEL Business Process Execution Language
DU Deployment Unit

EPR Endpoint Reference

FK Fremd Key

HTTP Hypertext Transfer Protocol

IT Informationstechnologie

JACOB Java Concurrent Objects

JMS Java Message Service

JPA Java Persistence API

MOM Message-oriented Middleware

OASIS Organization for the Advancement of Structured Information Standards
ODE Orchestration Director Engine

OMG Object Management Group

ORM Object-Relational Mapping

SOA Service-orientierte Architektur

UDDI Universal Description, Discovery, and Integration
W3C World Wide Web Consortium

WIMS Workflow Management System

WS-BPEL Web Services Business Process Execution Language
WSDL Web Services Description Language

XML Extensible Markup Language

YAWL Yet Another Workflow Language

10

1. Einleitung

Auf der einen Seite sind die neuen Sprachen fUr Workflow nach den BedCrfnissen von den
Geschdtsprozessen entworfen worden, die auf einer eindeutigen Welt basieren und diese
Welt bezieht sich auf die ebenfalls eindeutigen Dateien. Aber im Vergleich zu den
Gesch&tsprozessen, laufen die echten Prozesse auf einer wahren Welt und missen mit der
Ungewissheit und auch der Instabilit& Uber die Durchfihrungsumgebung rechnen. Deshalb
missen die neuen Modellierungselemente entworfen werden, die die F&nigkeiten haben,
solche Probleme von Ungewissheit und Instabilit& I&en zu kénnen. Es gibt viele Faktoren,
die die obengenannten Probleme verursachen k&wnen. Zur Zeit laufen sehr viele
Gesch&tsprozess innerhalb eines Netzwerks, wenn die Verbindungen zum Netzwerk pl@zlich
nur fUr kurze Zeit unterbrochen sind, kéanen die Gesch&tsprozesse falsche Nachrichten
erhalten und zu fehlerhaften Ergebnissen fthren, weil die Gesch&tsprozesse sich nicht auf die
neusten Situationen reagieren kénnen [EKU™10].

Auf der anderen Seite kéinen die traditionellen Workflow-Technologien und Prinzipien der
Service-orientierten Architektur (SOA) angewandt werden, um die Wissenschaftler in ihren
Experimenten zu untersttizen [SK10]. Die Workflow-Eigenschaften legen die
Anforderungen an die Wissenschaftler fest. Die Unterstiizung von IT-Systemen kann den
Wissenschaftlern bei den Experimenten, den Berechnungen, und auch den Simulationen
helfen. Solche Eigenschaften helfen die Wissenschaftlern, die Experimente zu entwerfen,
durchzufthren, zu (berwachen, zu analysieren, die Ergebnisse zu verteilen und wieder
darzustellen, und auch den Ansatz von dem Trial-and-Error-Verfahren zu verfolgen, das ein
typischer Ablauf in E-Science ist [SK10].

1.1 Motivation

Die Workflow-Technologien sind wegen der folgenden Ursachen im wissenschaftlichen
Umfeld noch nicht ganz eingefihrt worden. Die Hauptursache ist, dass die Definitionen von
Workflow innerhalb des gesch&tlichen und wissenschaftlichen Bereichs unterschiedlich sind.
Es gibt ein BedUtfnis, die Definition von den zwei Gemeinden abzustimmen und abzukl&en
[SK10]. Die andere Ursache sind die fehlenden Eigenschaften, die von der Wissenschaft fir
die vollsténdige und intuitive Unterstitzung bei den wissenschaftlichen Simulationen,
komplexen Berechnungen und Experimenten unbedingt ben&igt werden [SK10]. So muss ein
neues Workflow Management System (WfMS) entwickelt werden, das auf traditionellen
Workflow-Technologien basiert und die BedUfnisse der Wissenschaftler und der
wissenschaftlichen Anwendungen erfidlen kann.

1.2 Aufgabendefinition

Weil die wissenschaftlichen Experimente in einem Trial-and-Error-Verfahren nur
unzureichend durch existierende Workflow-Konzepte ermd&glicht werden, muss ein Teil des
Workflows fir die Konvergenz von Ergebnissen oder fir die Reaktion auf Fehler erneut
ausgefthrt werden k&nnen.

Ziel dieser Arbeit soll ein Konzept fUr die wiederholte Ausfthrung von bereits abgelaufenen

Workflow-Teilen erstellt werden. Zwischen der Iteration der Workflow-Teile und ihrer
Wiederholung soll unterschieden werden. Die Operation ,,lteration* verh&8t sich wie eine

11

Schleife. Bei der Wiederholung muss der zu wiederholende Teil erst rickgéngig gemacht
werden. Beide Operationen sollen an jeder beliebigen Stelle im Workflow durch einen
manuellen Eingriff eines Wissenschaftlers realisiert werden. Das Konzept soll auch durch
eine prototypische Implementierung in Apache ODE gezeigt werden.

1.3 Aufbau der Arbeit

Die vorliegende Arbeit ist in folgender Weise gegliedert:

Kapitel 2 - Grundlagen: Hier wird zun&hst SOA kurz vorgestellt. Im Anschluss daran werden
die Webservices und als letztes BPEL vorgestellt. Alle Inhalte in diesem Kapitel sind die
Informationen von Technologien, die in dieser Arbeit bendigt sind.

Kapitel 3 - Dieses Kapitel besch&tigt sich mit dem grundlegenden Aufbau und auch den
wichtigen Komponenten der Apache ODE.

Kapitel 4 - In diesem Kapitel werden drei relevante Arbeiten vorgestelit.

Kapitel 5 - Dieses Kapitel beschreibt das Konzept von dieser Arbeit. Dabei werden einige
Beispielfdle vorgestellt.

Kapitel 6 - Hier wird die prototypische Implementierung der Funktionen Iterate und
Reexecute an der Apache ODE vorgestellt.

Kapitel 7 - Diese Diplomarbeit wird mit diesem Kapitel abgeschlossen.

12

2. Grundlagen

Bei diesem Kapitel handelt sich um einen Uberblick (ber die Grundlagen dieser Arbeit. Dazu
werden die fUr diese Arbeit relevanten Teile von SOA, Webservices und BPEL vorgestellt.

2.1 Service-orientierte Architektur

Der Begriff ,Service-orientierte Architektur (SOA) wurde 1996 von dem
Marktforschungsunternehmen Gartner erstmalig genutzt [RNS96]. Es gibt keine allgemein
akzeptierte Definition von SOA. Die Service-orientierte Architektur kann als ein
architektonisches Konzept betrachtet werden, das die verschiedenartigen Systeme erm@glicht,
die reichhaltigen Gesch&tskommunikationen zu integrieren [WCL+05]. Service-orientierte
Architektur kann auch als ein Architekturmuster der Informationstechnik aus dem Bereich der
verteilten Systeme betrachtet werden, um Dienste von IT-Systemen zu strukturieren und zu
nutzen [WSOA]. Dennoch wird h&ufig die Definition von der OASIS aus dem Jahr 2006
zitiert:

»SOA ist ein Paradigma fUr die Strukturierung und Nutzung verteilter Funktionalit&,
die von unterschiedlichen Besitzern verantwortet wird [SOA06]."

2.1.1 EinfUhrung von SOA

Die wichtigsten Elemente von einer Service-orientierten Architektur k&inen als ein Tempel
arrangiert werden [Mel10]. Um eine SOA definieren zu k&nen, werden die Merkmale in
Anlehnung an [Dos05] vorgestellt.

Service-orientierte

Architektur
i
i 2 5 _
£ =1 B S a
= e = o=
£ < 5 o8
o o (7] o o
g 3 :
=
Einfachheit
Sicherheit
Standards

Abbildung 2.1 SOA als ein Tempel [Mel10]

13

Das Dach vom Tempel:

Das Dach von diesem Tempel ist dann die SOA und sie hat die vier untersttizenden Sé&ulen
und auch die drei Stufen. Alle S&ulen und Stufen werden gleich vorgestellt.

Die S&ulen vom Tempel:

Verteiltheit - Die SOA erm@licht, die Dienste (ber das Netz zu verteilen. Eine SOA
untersttizt jede moderne Architektur, d.h. SOA ist unabh&ngig von Plattform und die von
System unabhé&ngigen Dienste kéinen dadurch zur Verfigung gestellt werden.

Lose Kopplung - Dienste kéwnen von Anwendungen oder anderen Diensten bei Bedarf
dynamisch gesucht, gefunden und eingebunden werden [Mel10]. Die lose Kopplung kann auf
einer Seite die Interoperabilit& zwischen den interagierenden Partner verbessern. Auf der
anderen Seite kann die lose Kopplung die Dienste stabil machen, wenn ein von den Partnern
benutzter Service sich geé&ndert hat. Eine lose Kopplung ermdglicht dann die
Wiederverwendung von Diensten [Son08].

Verzeichnisdienst - Um die dynamischen Aufrufe von Diensten zu erm&glichen, missen
diese Dienste zun&hst gesucht und dann gefunden werden. Durch einen Verzeichnisdienst
kann ein bestimmter Dienst erh&tlich sein, der schon im Verzeichnisdienst registriert ist. ES
kann nicht nur dem Verzeichnisdienst sondern auch dem Repository zur Verfigung gestellt
werden. Der Unterschied zwischen den Beiden liegt darin, dass Repository nicht nur den
Verweis auf diese Metadaten hat, sondern auch die Daten (ber die Dienste. Der
Verzeichnisdienst hat dagegen nur den Verweis auf diese Metadaten [Mel10].

Prozessorientert - Eine Service-orientierte Architektur hat keine Beschréankungen bezUglich
der Komplexit& eines Dienstes [Int06]. Das hat Vorteile fir den Dienstanbieter und
Dienstnutzer. Auf der Seite von Dienstanbieter kann er einen Dienst schnell und mit
geringerem Aufwand entwickeln. Der Dienstnutzer kann dann solch einen Dienst schnell
benutzen. Prozesse erlauben die Orchestrierung von einem Dienst oder mehreren Diensten,
die in neue Dienste auf einer hcheren Ebene umgewandelt werden. Es fihrt zu einem
rekursiven Aggregationsmodell: ein Dienst kann aus anderen Diensten bestehen und kann
auch in einem hd&heren Dienst sein [Son08].

Die Stufen vom Tempel:

Standards - Offene Standards bieten die Investitionssicherheit [Int06]. Um einen Dienst zu
benutzen, muss der Dienstnutzer die F&higkeiten haben, mit den Diensten zu kommunizieren.
Das bedeutet, dass die Schnittstelle von den Diensten in einer maschinenlesbaren Form
beschrieben werden muss. Ohne die offenen Standards ist es leider nicht realisierbar, dass ein
Dienstnutzer den Dienst von einem nicht bekannten Dienstanbieter verstehen kann.

Einfachheit - Die Einfachheit bezieht sich nicht auf die Technologie, weil diese durchaus
nicht immer einfach sind. Stattdessen bezieht sie sich auf die Anwendungen von SOA, die
durch die Methode der Automatisierung und durch die Unterstiizung von Werkzeugen
vereinfacht werden k&inen [Son08]. Die Einfachheit kann viele Anforderungen erfUlen und
eine schnelle Umsetzung der Anwendung einer SOA erm@lichen.

Sicherheit - Die Sicherheit ist die wichtigste Aufgabe von SOA. Die Sicherheit bedeutet die

14

Authentifikation, die Integrit&, die Vertraulichkeit usw. Sie ist sehr kritisch fUr den Erfolg
von SOA bei Gesch&tsanwendungen.

2.1.2 SOA-Dreieckmodell

Die grundlegenden Prinzipien von der Arbeitsweise der SOA k&nen in einem SOA-
Dreieckmodell dargestellt werden (siehe Abbildung 2.2).

| ‘ Diensty

Bindetsi =ht
Nachrichten

b N\

Dienstanbieter |]

L J

HeFE Dienstverzeichnis

Abbildung 2.2 SOA-Dreieckmodell
® Dienst (Service)

Die Definition des Dienstes kommt urspringlich aus den Dienstleistungen, dies hat zur Folge,
dass es Unterschiede zwischen Produkten und Diensten gibt. [Mas07] Der Dienst ist im SOA
ein eigensténdiges Softwareelement, z.B. ein Programm oder auch eine Softwarekomponente
und kann lokal oder (ber ein Netzwerk durch Nachrichten-basierte Kommunikation (z.B.
SOAP) von anderen aufgerufen werden. Der Dienst bietet die Funktionen nach auf®n an. Der
Dienst soll in einer von Maschinen lesbaren Form geschrieben sein und auf ihn kann nur Cber
die vorgeschriebene Schnittstelle zugegriffen werden.

® Dienstanbieter (Service Provider)

Der Dienstanbieter hat die Verantwortungen, die von ihm angebotenen Dienste bereitzustellen
und auch die Verf{gbarkeit dieser Dienste sicherzustellen. Er muss nicht alle angebotenen
Dienste eigenstandig implementieren, wenn er Uber das Netz mehrere kleine, einfache
Dienste in einem neuen und umfangreicheren Dienst zusammensetzt. Der Betrieb, die
Datensicherung und die Wartung von den Diensten geh&en auch zu den Aufgaben des
Dienstanbieters. Der Dienstanbieter registriert seine Dienste bei einem Dienstverzeichnis. Im
Dienstverzeichnis kann der Dienstnutzer die bendigten Dienste finden und sie anschlief&nd
nutzen. Der Dienstanbieter muss auch die Authentifisierung ermcglichen, um zu Uberprifen,
ob ein Dienstnutzer berechtigt ist, die Dienste zu benutzen.

® Dienstnutzer (Service Consumer)

Der Dienstnutzer kann an dieser Stelle direkt mit dem Klienten in einer traditionellen Client-

15

Server-Architektur verglichen werden [Mel10]. Es ist fUr den Dienstnutzer sehr wichtig, dass
sein gewtinschter Dienst zu finden und zu liefern ist. Wenn der Dienstnutzer einen
bestimmten Dienst braucht, wird er den Dienst zuerst im Dienstverzeichnis suchen. Wenn
seine Suche erfolgreich ist, verbindet er sich dann Uber ein Protokoll mit dem Dienstanbieter
und das Protokoll muss den beiden bekannt sein. Wer den Dienst benutzt und wer den Dienst
zur Verfigung stellt, ist nicht wichtig.

® Dienstverzeichnis (Service Registry)

Das Dienstverzeichnis vermittelt zwischen dem Dienstanbieter und dem Dienstnutzer. Es ist
verantwortlich dafir, dass die Dienste des Dienstanbieters in das Verzeichnis eingetragen
werden kénnen und die eingetragenen Dienste auch im immer aktiven und verfigbaren
Zustand sind. Mit UDDI kann der richtige Dienst gefunden werden, und damit k&inen auch
die ausfthrlichen Informationen (ber den Dienst erhdtlich sein. UDDI ermcglicht es den
Dienstanbietern die Implementierungen von ihren Diensten zu verdfentlichen und erm@glicht
es auch den Dienstnutzer den richtigen Dienstanbieter zu finden, der die besten Dienste nach
den BedUrfnissen des Dienstnutzers anbietet [WCL"05].

2.2 Webservices

Webservices sind die am meisten verwendete Technologie, um SOA, ein abstraktes
Architekturmodell, zu implementieren. Um Webservices einheitlich vorzustellen, werde ich
den Begriff anhand der Definition vom W3C erl&utern.

Die Definition von Webservices lautet nach dem W3C wie folgt:

» A Web Service is a software system designed to support interoperable machine- to-
machine interaction over a network. It has an interface described in a machine-processable
format(specifically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP messages typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards [W3]."

Webservices ermcglichen eine standardisierte direkte Interaktion mit anderer Software unter
der Verwendung der Nachrichten in Form von XML (ber das Netz. Dabei wird das HTTP-
Protokoll oder andere Protokolle, zum Beispiel JMS, zum Transport genutzt. SOAP kann zur
Kommunikation als Nachrichtenformat genutzt werden. Das SOA-Dreieck-Modell kann
jedoch durch die Technologien von Webservices gezeigt (siehe Abbildung 2.3) werden. Im
Laufe der Zeit haben sich drei Technologien fir Webservices etabliert. Dies sind dann SOAP,
WSDL und UDDI.

16

‘ Dienstpd

SOAP |
Va e

WSDL UDDI

k

Abbildung 2.3 SOA-Dreieckmodell auf Webservices angepasst

2.2.1 SOAP

SOAP ist daftr entwickelt, die Kosten und Komplexit& der Integration der Anwendungen,
die auf verschiedenen Plattformen aufgebaut sind, zu reduzieren [WCL+05]. SOAP basiert
auf XML und beschreibt die Art und Weise, wie die Informationen zwischen den
Kommunikationspartnern innerhalb einer verteilten Umgebung ausgetauscht werden k&nnen.
Bei der Ubertragung von Daten werden die Parameter von Aufrufenden (bergegeben, die in
Form einer XML-Struktur an den verarbeitenden Kommunikationspartner weitergegeben
werden [HWO05]. Dieser Partner sendet dem Client auch die Ergebnisse der aufgerufenen
Anwendung in Form einer XML-Struktur zurUck.

Weil die XML-Repré&entation der Objekte und Strukturen die Daten sehr grof3machen kann
und deshalb von der Netzwerkbandbreite ziemlich stark abh&ngig ist, hat SOAP seine
Nachteile im Anwendungsbereich der Kommunikation zwischen mobilen Endger&en und
einem Server, wo eine performante Ubertragung besonders wichtig ist. Im Bereich der
Maschinensteuerung ist SOAP auch nicht geeignet, weil die Daten dabei in Echtzeit
Ubertragen werden missen.

17

SOAP Envelope

SOAP Header
Headerblock 1

Header block m

SOAP Body

Bodv child element 1

Bodwv child element n

Abbildung 2.4 Die allgemeine Struktur einer SOAP-Nachricht

Eine SOAP-Nachricht wird von einem initialen Sender zu einem finalen Empf&nger
Ubermittelt. Aber es kann auch dazwischen andere Knoten geben, die als Mittler genannt
werden. Der gesamte Weg von dieser Nachricht zwischen dem initialen Sender und dem
finalen Empfénger wird Nachrichtenweg genannt. Die Abbildung 2.5 zeigt ein Beispeil eines

Nachrichtenwegs.

T,
™

TN / ‘
/ SOAP { Ultimate
SOAP |

||interrr|ed iary | | d
\, / \ recemy
.
\;}"\-——"‘J\\ {_;i""-—o—"
&
SOAP S04P S04P
message message message
- ;
—— ™, _____/r’
o~ ‘r\ /} "-\.\

"'/ Initial 1L".I I."'r SOAP 1‘\'.I
SQAP | | intermediary
sender |/ L I

. . S

Abbildung 2.5 Der Nachrichtenweg von SOAP [IBM]

18

Eine SOAP-Nachricht besteht aus 3 Teilen:
Envelope

Der Envelope ist das Wurzelelement in einer SOAP-Nachricht. Der Envelope wirkt wie ein
Umschlag fUr diese gesamte SOAP-Nachricht und dient als ein Container fr die Anfrage und
die Anwort innerhalb dieser SOAP-Nachricht. Der Envelope definiert den Rahmen, was in
einer SOAP-Nachricht enthalten ist [UIm].

Header

Der Header ist optional und kann aus vielen HeaderblGken bestehen. Die HeaderblGrke
enthalten Daten fUr die Bearbeitung auf SOAP Knoten. Header spezifizieren durch das role-
Attribut, wer sie verarbeiten soll [Bur05]. Im Header kd&wnen Meta-Informationen,
beispielweise zum Routing, zur Verschlisselung, zur Transaktionsidentifizierung oder zur
Authentifizierung (Login, Passwort), untergebracht werden [Vik08] [WSOAP]. Wenn der
Envelope ein Header enth&t, muss der Header das erste Element in diesem Envelope sein
[W3S].

Body

Der Body stellt die eigentliche Nachricht dar, die weitergeleitet werden soll. Ein Beispielcode
zeigt den Body in einer SOAP-Nachricht. Im Code wird eine Suchanfrage an die Google-
Suchmaschine geschickt. Die aufgerufene Methode im Code ist 'doSearchinGoogle'.
Anschlief®nd folgen Hinweise, auf welche Weise die Daten decodiert werden sollen. Dies
wird im Code in Form eines XML-Schemas angegeben. Um diese Methode aufzurufen,
braucht man zwar auch die einzelnen Parameter. Der 'key'-Tag ist dann dieser bendige
Parameter, der den Suchstring darstellt. Hier wird 'aaaa’ als der Suchstring gesendet.

<SCRAP-ENV:Body>
<m:doSearchinGoogle xmlns:m="urn:GoogleSearch™
<S0LP-ENV:encodingityle =
http://schemas.xmlsoap.orgs/soap/encoding/ >
ckey ®Hsi:type = "msd:string"raaaa</kev>
</m:doSearchinGoogle>
</50LP-ENV: Body>

Listing 2.1 Der Body in einer SOAP-Nachricht

2.2.2 WSDL

WSDL ist die AbkUrzung von " Web Services Description Language' und auch XML-basiert.
Wéarend SOAP in erster Linie fir Remote-Prozedur- oder -Funktionsaufrufe verwendet wird,
erm@ylicht WSDL die Beschreibung der Schnittstelle von Services [Man07].

WSDL wird innerhalb von Web Services im folgenden Bereich benutzt.
Beschreibung (ber einen Service fU seinen Client - In diesem Fall wird der schon

vercffentlichte Service fr seinen Client beschrieben. Diese Beschreibung enth&t die Angabe
tber die Nachrichten, Operationen, den Nachrichtenaustausch und auch die Lage des

19

Services. Zusdzlich enthdt diese Beschreibung auch den Mechanismus, wie der Service
benutzt werden muss. Das Hauptziel von WSDL in diesem Bereich ist es, dem Client von
diesem Service zu ermdylichen, den Service zu benutzen [WCL+05].

WSDL 1.1

WSDL 1.1 ist die allgemeine Norm fir die Beschreibung der Web Services. Es wird von
vielen Anbietern im Bereich der Werkzeugentwicklung und Laufzeit unterstiizt [WCL'05].

Das WSDL-Dokument kann in zwei Gruppen von Abschnitten unterteilt werden. Die erste
Gruppe wird als abstrakter Teil bezeichnet, weil sie die abstrakten Definitionen enth&t. Die
andere Gruppe ist dann der konkrete Teil, der die konkreten Beschreibungen enthdt. Der
abstrakte Abschnitt definiert die eingehenden und ausgehenden Nachrichten der
verschiedenen Operationen auf plattform- und sprachunabh&ngige Weise. Weil sie keine
Elemente (ber die Spezifikationen von Maschinen oder Sprachen enthalten, kGnen Dienste
definiert werden, die mit verschiedenen Technologien implementiert werden k&nen. Die
spezifischen Funktionen wie Serialisierung der Nachrichten werden in der unteren
Abschnittsgruppe (der konkrete Teil) mit den konkreten Beschreibungen angegeben [Tap04].
Der konkrete Abschnitt zeigt, wo und wie die Dienste adressiert werden kéanen [Son08]. Zur
syntaktischen Struktur von WSDL 1.1 siehe die Abbildung 2.6.

<definitions=>

<fypes=>
<message name="_">
</message>
<porfl'vpe name="_">
< pcrr fIvpe>
<binding name="_">
{-‘r;f-i-r-lding>
<service name="_.">
</services

</definitions>

Abbildung 2.6 Die syntaktische Struktur von WSDL 1.1 [WCL"05]

20

Abstrakte Definitionen

° Types
Types sind die maschinen- und sprachunabh&ngigen Typedefinitionen,
die zur Beschreibungen der Nachrichten (Message) dienen [Tap04].
° Message
Message repr&sentiert eine abstrakte Definition Uber die Daten, die
Ubertragen werden.
o PortType
PortType ist eine Menge von abstrakten Operationen. Jede Operation
bezieht sich auf eine eingehende und auch eine ausgehende
Nachricht sowie auf Fehlernachrichten [Tap04]. Es gibt vier
Verschieden Operationstypen, wie die Abbildung 2.7 zeigt.
Operation Beschreibung
One-way Service erhélt eine Nachricht ohne

Anwort

Request-response

Service bekommt eine Nachricht und
produziert auch eine Antwortsnachricht

Solicit-response Service sendet eine Nachricht und
bekommt auch eine Antwort
Notification Service sendet eine Nachricht und erhalt

nichts als Antwort

Konkrete Beschreibungen

Tabelle 2.1 Die vier verschiedenen Operationen in WSDL1.1

Binding

Binding verweist auf die einzelne Operation im PortType-Abschnitt. Binding
spezifiziert ein konkretes Ubertragungsprotokoll und auch das Format
der Nachrichten, die von einem PortType definiert sind.

Port

Port spezifiziert den Ort, an dem ein Service erreichbar ist.

Service

Service wird bendigt, um eine Menge von zugeh&igen Ports zu Aggregieren

[Tap04].

21

2.3 BPEL

Dieser Abschnitt basiert im Wesentlichen auf der Spezifikation der BPEL-Version 2.0
[OASIS]. BPEL ist die AbkUrzung fUr Business Process Execution Language. BPEL ist eine
XML-basierte Sprache zur Beschreibung von Gesch&tsprozessen, baut auf den Ideen der
Workflow-Definitions-Sprachen WSFL und XLANG auf [Ste08] und wurde von OASIS als
WS-BPEL 2.0, kurz BPEL, standardisiert.

2.3.1 Prozesse

Die grundlegenden Konzepte von WS-BPEL k&nnen in zwei Bereichen verwendet werden,
die abstrakt und ausfthrbar sind [OASIS]. Abstrakte Prozesse bieten eine abstrakte Sicht auf
die Gesch&tsprozesse und ausfihrbare Prozesse dienen der konkreten Implementierung von
solchen Gesch&tsprozessen [Ste08].

Ein abstrakter Prozess k&nnte einige bendigte konkrete betriebliche Einzelheiten ausblenden
[OASIS]. Abstrakte Prozesse verweisen auf das Gesch&8tsprotokoll — oder
Nachrichtenaustauschprotokoll und das Gesch&t- und Nachrichtenaustauschprotokoll
beschreibt nur die &ufZrlich sichtbaren Interaktionen zwischen den Gesch&tspartnern. In
abstrakten Prozessen gibt es keine Inhalte Uber die Gesch&tslogik von den individuellen
Gesch&tspartnern. Ein Unternehmen kann seinen abstrakten Prozess vor einem existierenden
Gesch&tsprozess vorzeigen, um seinem Partner zu zeigen, wie mit ihm zu interagieren ist.
Ein abstrakter Prozess kann als eine Projektion von einem ausfihrbaren Prozess betrachtet
werden.

Im Vergleich zu dem abstrakten Prozess enth&t der ausfihrbare Prozess die Gesch&tslogik
von Partnern. Im ausfthrbaren Prozess werden alle Einzelheiten beschrieben und definiert,
um alle Instanzen auf einer Workflowengine ausfthren zu k&inen. Die Einzelheiten k&nen
die Typen von Variablen, die Attribute, die Ausdritke und auch die Gesch&tslogik sein. Weil
die ausfinrbaren Prozesse oft die innerbetrieblichen Informationen enthalten, werden sie dann
als Geheimnisse von Unternehmen betrachtet.

2.3.2 Variablen

Zur Zwischenspeicherung von Werten stehen typisierte Variablen zur Verfi{gung. Sie dienen
sowohl als Eingabeparameter als auch Ausgabeparameter von Aktivit&en [Ste08]. Variablen
k&nen auch verwendet werden, um das Verhalten vom Prozess zu steuern. Variablen bieten
die Md@lichkeit, die Nachrichten beizubehalten, die die Zusténde eines Gesch&tsprozesses
darstellen. Solche Nachrichten werden von Partnern empfangen oder zu Partnern gesendet.
WS-BPEL benutzt drei unterschiedliche Typen von Variablen: WSDL Message Type, XML
Schema Type und XML Schema Element [OASIS]. XPath ist die vorgegebene Sprache fir
die Verarbeitung und Abfrage von Variablen [WCL+05].

2.3.3 Aktivit&en

In WS-BPEL wird zwischen basischen und strukturierten Aktivit&en unterschieden. Die
basischen Aktivit&den sind die grundlegenden Aktivitden, welche die elementaren Schritte
des Verhaltens von Prozessen beschreiben. Im Gegensatz zu den basischen Aktivit&en
beinhalten strukturierte Aktivit&en auch die anderen Aktivit&en und ermdglichen deshalb die
Komposition von komplexen Prozessen zugelassen werden [SchO7]. Die strukturierte

22

Aktivit& definiert die Gesch&tslogik fUr alle Aktivit&en, die sie beinhaltet [WCL+05]. Das
Verhalten von Aktivit&en in einem Gesch&tsprozess ist wie folgt beschrieben [LROO]:

[Eine Aktivit&a ruft einen anderen Gesch&tsprozess auf, der vollkommen
unabh&ngig von dem urspringlichen Gesch&tsprozess arbeitet.

[Eine Aktivita ruft einen anderen Gesch&tsprozess auf und wartet, bis
dieser neue Gesch&tsprozess abgearbeitet ist.

[Eine Aktivita ruft einen anderen Gesch&tsprozess auf, eine sp&er
ausgefthrte Aktivit& wartet, bis dieser neue Gesch&tsprozess
abgearbeitet ist.

<invoke>, <receive> und <reply> sind die basischen Aktivitden, mittels derer die
Kommunikation mit Gesch&tspartnern ermdylicht wird. Die Nachrichten k&nen durch
<invoke> und <reply> gesendet werden und durch <receive> empfangen werden. <invoke>
kann benutzt werden, um die Operationen der Webservices von Gesché&tspartnern aufzurufen.
Eine <receive>-Aktivita empféngt eine einzelne eingehende Nachricht. Wenn der Werte des
Attributs “createlnstance” der <receive>-Aktivita auf "yes" gesetzt ist, wird eine neue
Prozessinstanz instantiiert und begonnen [Son08]. <reply> ermdglicht das gleichzeitige
Senden einer Beantwortung an den Partner. <while>, <sequence> und <flow> sind die
Aktivitden, die die Gesch&8tsprozesse strukturieren k&nnen. <while> kann eine Schleife
realisieren, um die enthaltenen Aktivit&en mehrmals ausfthren zu k&inen. Ein sequentieller
Ablauf kann durch <sequence> definiert werden. Dabei k&inen die enthaltenen Aktivit&en in
einer vorgeschriebenen Reihenfolge nacheinander durchgefihrt werden. <flow> definiert
dagegen einen parallelen Ablauf, d.h. die enthaltenen Aktivitden k&inen demgegentber
parallel durchgefihrt werden [Ste08]. In <flow> dienen die <links>-Konstrukte dazu, dass die
Abh&ngigkeiten zwischen den einzelnen enthaltenen Aktivit&en bestimmt werden k&nnen.
Die basischen und strukturierten Aktivitden werden in der folgenden Tabelle angezeigt (siehe
bitte die Abbildung 2.8).

23

Aktivitaen Basische | Strukturierte Beschreibung
Aktivité Aktivitét

<invoke> N Aufruf von Web Services
<receive> <reply> N Bereitstellung von Web Services
<assign> N Update von Variablen und
Partnerlink
<throw> N Signalisieren ~ von internen
Fehlern
<wait> \ Verzéyerte Ausfihrung
<empty> \ Nichts zu tun
<extensionActivity> N Anfigen der neuen Typen von
Aktivit&den
<exit> N Sofortige Beendigung eines
Prozess
<rethrow> \ Propagierung von Fehlern
<sequence> \ Sequenzielle Verarbeitung
<if> \ Bedingte Ausfihrung
<while> \ Wiederholte Ausfihrung
<repeatUntil> \ Wiederholte Ausfihrung
<pick> N selektive ~ Verarbeitung von
Ereignissen
<flow> N Parallele Verarbeitung unter
Bericksichtigung von
Abhéngigkeiten der Ausfthrung
<forEach> N Verarbeitung von mehrfachen
Bereichen

Tabelle 2.2 Die basischen und strukturierten Aktivit&en in WS-BPEL

2.3.4 Korrelationsmengen (Correlation Sets)

Die Korrelationsmengen werden in <invoke>, <receive>, und <reply> verwendet [OASIS].
Die verschiedenen Instanzen eines BPEL-Prozesses k&wnen sich anhand von
Korrelationsmengen unterscheiden lassen. Wenn zu einem Zeitpunkt mehrere Instanzen eines
BPEL-Prozesses aktiv sind, werden die Daten von den Korrelationmengen benutzt, um die
eingehenden Nachrichten an die richtige Instanz weiterzureichen.

2.3.5 Scopes und deren Handler

<scope> ist die einzige strukturierte Aktivit&, die die Aktivitden beinhaltet, die nicht nur
innerhalb dieser <scope>-Aktivit& sind, sonder auch mittels Handlern an dieser <scope>-
Aktivitd angebracht werden kénnen [WCL*05]. Die Gutigkeitsbereiche kénnen anhand von
der <scope>-Aktivita& festgelegt werden. In einer <scope>-Aktivita k&wnen fir einen
einzigen GuUtigkeitsbereich eigene Variablen und eigene Handler definiert werden Die
definierten Variablen und Handler sind dann nur in diesem GuUtigkeitsbereich gutig. Der
Prozess hat auch eigene <scope>-Aktivita als der globale GUtigkeitsbereich, die auch
Prozessscope genannt werden kann. Die <scope>-Aktivita kann vier unterschiedliche

24

Handler haben. Diese sind dann <compensationHandler>, <faultHandlers>,
<terminationHandler> und <eventHandlers>. Nachdem eine <scope>-Aktivita gestartet wird,
tbergibt sie die Kontrolle an alle enthaltenen Aktivitden und macht auch die
<eventHandlers>- und <faultHandlers>-Aktivitden lauffénig. Nachdem diese <scope>-
Aktivitd beendet wurde, deaktiviert sie diese Handlers. Wenn diese <scope>-Aktivita
erfolgreich beendet wurde, dann macht sie die <compensationHandler> lauffanig [WCL+05].

Jeder Scope inklusive dem Processscope kann eine Menge von <eventHandlers>-Aktivit&en
haben, die gleichzeitig laufen ké&nen und aufgerufen werden kd&inen, sobald ein
entsprechendes Event passiert [OASIS]. Ein <eventHandlers> dient dazu, auf eine bestimmte
eingehende Nachricht zu reagieren. Wenn eine entsprechende Nachricht ankommt, kann eine
Aktivit&, die in diesem Event Handler festgelegt ist, gleich ausgefihrt werden. Ahnlich kann
ein <eventHandlers> auch die Aktivitden definieren, die sp&er zu einem bestimmten
Zeitpunkt durchgefihrt werden sollen.

Ein Fault Handler definiert die Aktivit&en, die fUr den Fall durchgefthrt werden, dass ein
entsprechender Fehler (Fault) innerhalb des GuUtigkeitsbereiches vorkommt, aber dieser Fault
noch nicht in einem enthaltenen GUtigkeitsbereich abgefangen und bearbeitet wurde [Ste08].
Wenn ein Fault nicht behandelt und bearbeitet werden kann, wird dieser Fault an den
umschlief&nden GUtigkeitsbereich weitergeleitet werden [Ste08]. Der Processscope ist der
weiteste GuUtigkeitshbereich in einem Prozess. Wenn ein Fault im Processscope auch nicht
abgefangen werden kann, dann wird der Prozess als fehlerhaft beendet. Die von einem Fault
Handler spezifizierten Aktivit&en werden in <catch> oder <catchAll> definiert.

Die Aktivitden, die fUr den entsprechenden Gtigkeitsbereich im Fall der Durchfihrung
einer Kompensation ausgefthrt werden sollen, k&nen in einer <compensationHandler>-
Aktivit& definiert werden. Aber die Voraussetzung dafir, dass solche in
<compensationHandler> enthaltenen Aktivitden ausgefihrt werden, ist, dass dieser
Gutigkeitsbereich bereits beendet und verlassen wurde [Ste08]. Nicht alle
Gutigkeitsbereiche dirfen Compensation Handler haben und dies ist auch der Fall bei
Prozess bzw. Prozessscope. Ist in einem Scope kein Compensation Handler vorhanden, so
muss bei der Ausfthrung eines BPEL-Prozesses standardm&dg ein Compensation Handler
erstellt werden.

Termination Handler ist dann der letzte Handler-Type. Ein Termination Handler kann auch im
Scope definiert werden. Anhand vom <terminationHandler> kann eine erzwungene
Terminierung aller in dieser <scope>-Aktivitd enthaltenen Kindaktivitden durchgefihrt
werden. Ahnlich wie die <compenstionHandler>-Aktivitat wird auch ein Standard-
Termination-Handler definiert, wenn keiner vorhand ist. Es ist aber auch erlaubt, dass ein
Prozess kein Termination Handler besitzt.

25

3. Apache ODE

Die Apache ODE (Orchestration Director Engine) wurden von der Apache Software
Foundation entwickelt und geh&t auch zu den Top-Level-Projekten [WODE]. Sie ist unter
einer Open-Source-Lizenz in Version 2.0 verfUgbar. Die aktuellste stabile VVersion der Apache
ODE ist 1.3.4, die auch in dieser Arbeit erweitert werden soll.

3.1 Grundlagen der Apache ODE

Die Apache ODE kann die Gesch&tsprozesse ausfthren, die nach dem Standard von WS-
BPEL geschreiben sind. Sie kommuniziert mit Web Services, sendet und empféngt die
Nachrichten, bearbeitet die Daten und behandelt auftretenden Fehlern auf die Weise, wie es
die BPEL-Prozesse vorher definiert hatten. Die Apache ODE kann nicht nur die Kurzzeit-
Ausfihrung sondern auch die Langzeit-Ausfthrung untersttizen und kann damit alle in der
Anwendung enthaltenen Services orchestrieren [ODE].

Die Apache ODE kann in folgenden drei verschiedenen Varianten verf{gbar gemacht werden:

® \WAR Deployment - hier wird die ODE als WAR gepackt und kann irgendwo entgepackt
werden. In der Entwicklungsumgebung wird das WAR-File "ode-axis2-war-1.3.4 "im
Ordner "axis-war\target” in den Orner "webapp™ von Tomcat kopiert. Der Name des
WAR-Files muss normalerweise in "ode"™ umbennant werden. Wenn Tomcat gestartet
wird, 1&uft die Apache ODE auch. Wenn die Apache ODE erfolgreich deployed wurde,
kann die Seite "http://localhost:8080/ode" richtig im Browser angezeigt werden.

® JBI Deployment - hier ist die Apache ODE als eine ZIP-File gepackt und kann in einem
JBI Container deployed werden [Sch11].

® SMX4 OSGI Deployment
Die Eigenschaften der Apache ODE:

® ODE unterstiizt den Standard von WS-BPEL 2.0 und auch den Standard von BPEL4WS
1.1.aber mit einigen Abweichungen.

® ODE untersttizt zwei verschiedene Kommunikationsebenen beziglich Axis 2 und JBI.

® ODE unterstiizt das Binding von HTTP und auch WSDL und erlaubt die Aufrufe der
Webservices in REST.

® ODE macht es maglich, die Variable der Prozesse von auf&n zu einer Tabelle in einer
Datenbank abzubilden.

® ODE bhietet eine Managementschnittstelle fir die Prozesse, Instanzen und auch
Nachrichten an.

26

3.2 Abweichungen vom WS-BPEL 2.0 Standard

Der Standard WS-BPEL 2.0 kan durch die Apache ODE nur mit einigen Abweichungen
unterstizt werden. Diese Abweichungen betreffen die Variablen und die folgenden
Aktivit&en.

® Variablen

=variables=
=variable name = "BPELVariableName' messageType="QName" ?
tyvpe = "QName"? element = "QName" 7=+
from-spec?
</variable=
</wvariables=

Listing 3.1 Variablen mit inlinern "from-spec” [OASIS]

Der inliner "from-spec”, damit eine Variable eventuell initialisert werden kann, wird jetzt
noch nicht von ODE untersttizt. Ein Patch in ODE-236 daflr ist momentan aber verfigbar.

® <receive>

In der <receive>-Aktivita kan die Syntax von <fromPart> leider noch nicht von ODE
untersttizt werden. Dabei muss ein Attribut n&nlich variable verwendet werden. Auf&rdem
k&nnen nur die Variablen von Nachrichten im variable Attribute referenziert werden, obwohl
die Variablen von Elementen nach der Spezifikation auch erlaubt sind. Mehrere Start-
Aktivitden werden auch nicht von der ODE unterstiizt, wobei die Benutzung von initiate =
"Join" ausgeschlossen ist. Die ODE kann die in der Spezifikation geschriebenen
Anordungsrichtlinien nicht gewéarleisten, wobei die ODE noch toleranter als die
Spezifikation ist. Listing 5.2 zeigt einen BPEL-Code, der in BPEL nicht erlaubt ist, aber in
der ODE zul&ssig ist.

<flow=
<receive ... createlnstance=""ves" /=
=assign ... /=

=/flow=

Listing 3.2 Ein von ODE erlaubtes und von BPEL verbotenes Beispiel [ODE1]

AufZ®rdem kann die ODE leider zwischen conflictingRequest und conflictingReceive nicht
unterscheiden. Bei Beiden handelt es sich um die Fehler in Bezug auf mehrere unerledigte
Anfragen auf ein einziges partner-link/operation/messageExchange Tupel. Das bedeutet, dass

27

conflictingReceive im Fall von conflictingRequest immer geworfen wird.

In der ODE wird das validate-Attribut einer <receive>-Aktivita ignoriert, weil die ODE die
Validation von Variablen nicht untersttizt.

® <reply>

Die Anpassungen von der <reply>-Aktivit& in ODE spiegeln auch einige von der <receive>-
Aktivita wider. Die Syntax von <toPart> kann nicht in ODE untersttizt werden und das
Attibut variable muss in den Variablen, die auf Nachrichten basieren, referenziert werden.

® <invoke>

Wie <receive> und <reply>-Aktivitden kann die Synax von <toPart> und <fromPart> nicht
unterstiizt werden. Ahnlich muss in den Attributen inputVariable und outputVariable auf die
Nachrichten-basierten Variablen referenziert werden. Das validate-Attribut hier wird auch in
der ODE ignoriert.

® <assign>

Das validate Attribut von einer <assign>-Aktivit&, das in der BPEL-Spezifikation definiert
ist, um die Variablen zu validieren, wird nicht in der ODE untersttizt. Deshalb kann der
Fehler invalidvariables niemals durch eine <assign>-Aktivit& geworfen werden. Um die
benutzten Sprachen innerhalb einer Anweisung festzustellen, wird das expressionLanguage
statt des queryLanguage-Attributs in der ODE verwendet [Sch11].

) <pick>

Die <pick>-Aktivitd hat die gleichen Einschréokungen in der ODE wie die oben
beschriebene <receive>-Akvtivita.

® <compensate>

Die <compensate>-Aktivit& entspricht der Spezifikation nicht. Die Aktivit& hat die gleiche
Auswirkung und die gleiche Syntax wie die <compensateScope>-Aktivit& in der ODE.

® <validate>

Diese Aktivita kann noch nicht von der ODE implementiert werden. Die Prozesse, die
<validate> enthalten, k&nen zu Compilerfehler fthren.

3.3 Die Architektur der Apache ODE

In diesem Abschnitt werden nur die grundlegenden Informationen Uber die Architektur von
der Apache ODE vorgestellt. Die Hauptziele bei der Entwicklung der Apache ODE waren,
eine vertrauenswirdige, stabile Workflow-Engine zu entwickeln, die aus vielen Komponenten
zusammengebaut wird. Die Engine muss dabei die F&higkeit haben, die langlebigen Prozesse
von BPEL durchfthren zu kénnen [Schll]. Um die Apache ODE né&ber zu betrachten, wird in
diesem Abschnitt die Architektur von der ODE vorgestellt. Dazu steht die folgende
Abbildung 3.1 zur Verfigung.

28

4 N

jﬂ Runtime Environment
—» Axis2
Partmer
Web & JACOB
Bervice = e _ = DAO
|| JRI Engine -
L 3

Abbildung 3.1 ODE-Architektur [Son08]

Die Hauptkomponenten der Apache ODE-Architektur sind ein ODE-BPEL-Compiler, eine
ODE-BPEL-Engine-Runtime, ODE Data Access Objects (DAOs) und auch der ODE
Integration Layer (IL). In dieser Abbildung wird der ODE Integration Layer in zwei
Komponenten beziehungsweise als Axis 2 und JBI dargestellt. Die vier Hauptkomponenten
sind auch in vier verschiedenen Farben dargestellt.

Die ODE-BPEL-Compiler (blau) ist verantwortlich dafir, dass die einzelnen BPEL-Artefakte,
die Dokumente des BPEL-Prozesses, WSDL- und auch XML-Schemata in einen
durchfthrbaren Prozess konvertiert werden k&nnen. Diese Dokumente k&nen durch den
Compiler in eine fUr die ODE-BPEL-Runtime-Engine gut versténdliche und lesbare Form
umgewandelt werden [Ste08]. Diese vom ODE-BPEL-Compiler kompilierten Ergebnisse
werden dann fUr die ODE-BPEL-Engine Runtime (grin) bereitgestellt. Die-Engine-Runtime
ist der Kern und die Hauptkomponente in der ODE und enthdt die Data Access Objects
(DAO) als Schnittstelle fir die Persistenzebene(hellgrin), eine API(hellgrin) fir Axis 2 und
JBI und auch eine Engine (hellgrin), die das Prozessmodel nach seiner Definition ausfihrt.
Die Persistenzebene erm@ylicht es, die Informationen Uber die Prozesse, die Instanzen und
auch Deployment Units (DUs) in der Datenbank (rosa) abzuspeichern. Der Gesch&tspartner

29

kann mittels des Integration Layers (lila) von der Engine aufgerufen werden.

3.4 ODE-BPEL-Compiler und ODE-Objekt-Modell

Wie in Abschnitt 3.3 schon vorgestellt wurde, wandelt der Compiler BPEL-Prozesse in eine
fir die Engine gut versténdliche Form um. Dabei werden die BPEL-Prozesse von dem
Compiler kontrolliert und auf die Kompatibilit& zu dem ODE-Objekt-Modell untersucht
[Ste08]. Wenn der BPEL-Prozess erfolgreich kompiliert wurde, ist das Ergebnis nach der
Kompilierung ein ausfthrbarer Prozess. Wenn Fehler bei der Kompilierung auftreten, wird
eine Liste von Fehlernachrichten erstellt, die auf die Probleme in den Quelldateien hinweist.
Die (bergegebenen BPEL-Prozesse werden zuerst vom Compiler {berpridt und zum ODE-
Objekt-Modell (O-Model) kompiliert. Das erfolgreich kompilierte ODE-Objekt-Modell wird
dann in einer .cbp Datei abgespeichert [Ste08] (siehe die Abbildung 3.2). Nachdem die
BPEL-Prozesse in eine Form von ODE-Objekt-Modell umgewandelt wurden, werden sie
dann ausgefthrt, dabei helfen aber auch die DAOs. DAOs ermdylichen die Daten auf eine
sichere Weise zu speichern und kénnen zur Persistenz der Daten beitragen.

BPEL-Prozess

o~

JRE| WO ERISU]

Abbildung 3.2 Verwaltung eines BPEL-Prozesses in der Apache ODE [Ste08]

Mindestens ein passendes Objekt im ODE-Objekt-Modell wird fUr jede Aktivit&, fir jeden
Prozess und fUr jeden Handler beziehungsweise Event Handler, Termination Handler,
Compensation Handler und auch Fault Handler vom ODE-Compiler erzeugt. Die folgende
Abbildung 3.3 zeigt einen Teil aus dem ODE-Objekt-Modell.

30

OBase

OAgent

incomingLinks: Set<OLink=>
outgoingLinks: Set<OLink>
variableRd: Set<Vvariable=
variablewr: Set<variable=
nested: Set<OAgent>

i

OActivity

joinCondition: OExpression
suppressjoinFailure: Boolean

Y

_id: int o

_owner: OProcess
debuginfo: Debuginfa

_Xpath: String

art: Boolean

OLink

declaringFlow: OFlow

name: String
transitionCondition: OExpression
source: OActivity

target: OActivity

OProcess

guid: String
instanceCount: int
version: String
constants: OConstants
uuid: String
targetNamespace: String

sourcelinks: Set=OLink>
targetLinks: Set=0OLink=
name: String

processName: String
processScope: OScope
allPartnerLinks: Set<OPartnerLink=

failureHandling: OFailureHandling properties: List<OProperty=>

_parent: OActivity

T [—

parent

OSequence

sequence: List<OActivity=>

Abbildung 3.3 Teil aus dem Klassendiagramm der Objekte im ODE-Objekt-Modell

Die Klasse OBase ist die oberste Klasse im ODE-Objekt-Modell und alle anderen Klassen
erben von dieser Klasse. Die Klasse OBase hat zwei wichtige private Attribute " id" und
" owner". Durch die zwei Attribute kann ein Objekt pr&ise identifiziert werden. Das Attribut
" owner" deutet den Prozess an, zu dem das Objekt geh&t. Die Klasse OProcess stellt einen
BPEL-Prozess dar und erbt ebenfalls von der Klasse OBase. Die Klasse OAgent erbt auch von
der Klasse OBase, die eingehende und ausgehende Links und lesbare und schreibbare
Variablen besitzt. Die Klasse OLink erbt von der Klasse OBase und hat zwei Attribute
"source™ und "target”, die auf die Quellenaktivit& und die Zielaktivit& verweisen. In dieser
Arbeit ist es sehr sinnvoll, die Klasse OActivity zu verstehen, weil diese Klasse die
grundlegende Klasse fUr alle Aktivitden darstellt. Wie in der Abbildung gezeigt hat, erbt die
Klasse OActivity von der Klasse OAgent. Alle Aktivitdentypen in BPEL, die von Apache
ODE unterstiet werden, erben von der Klasse OActivity . Das Attribut "parent” verweist auf
die Vateraktivita dieser betroffenen Aktivitd&. Die <sequence>-Aktivita in BPEL wird in
ODE als das Objekt OSequence dargestellt und hat eine Attribute "sequence”, das auf die
Kinderaktivit&en von dieser <sequence>-Aktivita verweist.

3.5 ODE-BPEL-EnNgine-Runtime

Die ODE-BPE- Engine-Runtime existiert innerhalb des BPEL-Runtime Moduls und bietet die
Ausfthrung von den kompilierten BPEL-Prozesse an. Um die BPEL-Prozesse auszufthren,
mussen unterschiedliche BPEL-Konstrukte von der Runtime implementiert werden. Die

31

Logik, wann eine neue Instanz erzeugt werden soll, muss auch von der Runtime
implementiert werden. Zu welcher Instanz eine eingehende Nachricht geh&t, muss auch von
der Runtime selbst entschieden werden. Die Process Management API, die eine Schnittstelle
fUr den Benutzer mit der ODE anbiete, wird auch von der Runtime realisiert. Um eine
zuverl&sige Ausfihrung von Prozessen in einer unzuverl&sigen Umgebung zu garantieren,
basiert die Runtime auf DAOSs, die Persistenz anbieten k&nen. Die DAOs werden im
n&hstem Abschnitt beschrieben.

JACOB

Mittels des ODE Java Concurrent Objects (Jacob) Framework ké&wnen die BPEL-
Sprachkonstrukte auf der Ebene von Workflow-Instanzen implementiert werden. Jacob hat
einen Mechanismus zur Verflgung gestellt, der die folgenden zwei wichtigen Aufgaben
gewéhrleisten kann:

1. Die Persistenz des Zustandes wéarend der Ausfthrung.

2. Die Nebenl&aufigkeit.
Mit Hilfe von Jacob kann die Implementierung der BPEL-Konstrukte vereinfacht werden,
weil nur die BPEL-Logik nicht aber Engine-spezifische Logik implementiert werden missen.

Die folgende Abbildung stellt beispielweise einen Teil aus dem Klassendiagramm fir die
Objekte auf der Instanzebene dar.

JacobRunnable

f

BPELJacobRunnable PROCESS
<
_oprocess: OProcess
ACTIVITY Activitylnfo
_self: Activityinfo ald: lonc
_scopeFrame: ScopeFrame o C.)Acti‘vity
_linkFrame: L|r1.kFrame self: TerminationChannel
process_name: QName parent: ParentScopeChannel
process_|D: Long
SEQUENCE

-remaining: List<OActivity>

_compensations: Set<CompensationHandler>
_firstTime: Boolean

_fault: FaultData

process_name: QName

process_|D: Long

Abbildung 3.4 Teil aus dem Klassendiagramm fUr die Objekte auf der Instanzebene

32

Die Klasse JacobObject ist die oberste Klasse fUr die Objekte auf der Instanzebene. Die
Klasse JacobRunnable erbt von der Klasse JacobObject. JacobObject wird als ein einfaches
Closure beschrieben [Yul0]. Ein Closure kann auch als eine Programmfunktion bezeichnet
werden, die beim Aufruf einen Teil von ihrem Erstellungskontext reproduziert, selbst wenn
dieser Kontext auf%rhalb dieser Programmfunktion nicht mehr existiert [WCL].

Alle auf der Instanzebene existierenden Aktivit&en, Handler und Prozesse erben von der
Klasse JacobRunnable, welche eine run-Methode vordefiniert hat. Alle Akvitit&en, die von
JacobRunnable erben, missen ebenfalls auch die run-Methode besitzen, die die
Hauptfunktionalit& der jeweiligen Aktivita& implementiert. Mittels des Attributes "_self" von
der Klasse ACTIVITY kann das Objekt auf ein Objekt des ODE-Objekte-Modells verweisen,
weil die Klasse Activitylnfo durch das Attribut o™ auf die Klasse OActivity verweisen kann.
Aktivitden, die zu verschiedenen Prozessinstanzen geh&en, kénnen beispielsweise auf
dasselbe Objekt des ODE-Objekte-Modells zugreifen.

Wenn eine neue Prozessinstanz erzeugt wird, wird eine neue Instanz von der Klasse
BPELRuntimeContextimpl erzeugt, die das Interface BPELRuntimeContext implementiert.
Die Klasse implementiert die BPEL Prozessinstanzen. In der Klasse
BPELRuntimeContextimpl stehen viele Funktionen zur Verfigung. Beispielsweise kann in
dieser Klasse die Methode terminate() aufgerufen werden, um den Prozess vorzeitig zu
beenden. Die Funktionalit&, die in der Klasse BPELRuntimeContextimpl enthalten ist, wird
nicht mehr direkt im Jacob Framework implementiert [Ste08].

Virtual Processing Unit(VPU) und ExecutionQueue

Gleich wenn die neue Instanz der Klasse BPELRuntimeContextimpl erzeugt ist, wird eine
neue Instanz der Klasse JacobVPU auch erzeugt. Die JacobVPU ist der eigentliche Ort, wo
die wirkliche Ausfthrung stattfindet. Wenn ein JacobObject aufgerufen wird, wird das
JacobObject in der VPU als Continuation aufgelistet. Um ein JacobObject auszufthren, kann
das JacobObject mittels Continuation mit der run-Methode dieses JacobObjects verbunden
werden.

Um alle Artefakte in der Warteschlange zu verwalten, dient eine ExecutionQueue als
Container fir die VPU, weil alle von der VPU verwalteten Teile in der ExecutionQueue
abgelegt werden. In der ExecutionQueue ist es mdylich, die Artefakte aus der Warteschlange
zu holen oder sie wieder in die Warteschlange zu legen. ExecutionQueue zeichnet auch
gleichzeitig die Statistik der Ausfihrungen auf. Wenn eine Execution gestoppt wird, kann der
Status von der VPU serialisiert und abgespeichert werden, wenn der Status sp&er noch einmal
gebraucht wird.

3.6 ODE Data Access Objects

Die ODE Data Access Objects vermitteln die Interaktionen zwischen der ODE-BPEL-Engine-
Runtime und der untergeordneten Datenbank. Normalerweise ist die Datenbank eine
relationale JDBC-Datenbank und in diesem Fall k&winen die DAOs mittels OpenJPA
implementiert werden. Es ist auch mdglich, eigene DAOs zu implementieren, wobei ein
Mechanismus zur Gewé&arleisung der Persistenz nicht mittels JDBC entwickelt werden kann.
Zur Zeit kénnen die folgenden von der ODE-BPEL-Engine geforderten Aufgaben durch die
DAO:s erledigt werden:

33

Aktive Instanzen - Die Instanzen, die schon erzeugt sind, knen durch DAOs abgefragt
werden.

Das Routing der Nachrichten - Welche Nachricht wird von welcher Instanz gewartet?

Variablen - Die Werte der BPEL Variablen fir jede Instanz sind mittels DAOs
abgespeichert.

Partner Links - Die neuesten Werte der Partner Links in BPEL fir jede Instanz sind auch
mit Hilfe von DAOs abgepeichert.

Der Status von der Prozessausfthrung - Jacob "persistent virtual machine™ serialisiert
den Status von der Prozessausfthrung [ODEZ2].

3.7 Die BPEL Management API

Die BPEL Management API besteht aus zwei Teilen, namlich dem Process Definition
Management Interface und dem Process Instance Management Interface, und stellt die
Funktionalita& zur Verflgung, um die BPEL Prozesse und auch die zu den Prozessen
gehdenden Instanzen zu verwalten. Mit Hilfe von der BPEL Management API kann der
Benutzer beispeilerweise wissen, welche Prozesse schon durch die Engine deployed wurden,
was die Instanzld fir diese Prozesse ist, und die Zust&nde von den Aktivit&en.

Process Definition Management Interface

Diese API hat untenstehende Operationen definiert:

list - listet die Informationen fir alle, oder einige Definitionen der Prozesse auf. Die
Operation listProcesses() ist zusténdig dafir, dass ein bestimmter Prozess aufgelistet
werden kann. Die Operation listAllProcesses() ermcglicht, dass die Informationen von
allen in der Engine verfigbaren Prozessen, wie die ID, die Zusténde, die Version usw.
gezeigt werden.

details - listet die ausfthrlichen Informationen ther die Definition von spezifizierten
Prozessen auf. Die Informationen fUr einzelnene Prozesse inklusive einer Ubersicht
dieser Instanz kann durch die Operation getProcessinfo() aufgelistet werden.

set-properties - ver&ndert die Eigenschaften. Die Operation setProcessProperty() kann
eine Eigenschaft als einen einfachen Typen fUr den Prozess setzen.

activate - aktiviert einen Prozess. Die Operation activate() kann einen Prozess aktivieren.

retire - zieht einen Prozess zuritk. Der Prozess kann durch die Operation
setRetired()zurickgezogen werden und kann nicht mehr gestartet werden.

Process Instance Management Interface

Diese API definiert folgende Operationen:

34

list - listet die Informationen (ber alle oder einige Instanzen auf. Die Operation
listAllinstances() kann alle vorkommenden Instanzen auflisten.

detail - listet die ausfihrlichen Informationen (ber die vorgegebene Instanz auf. Die
Operation getlnstancelnfo() ist eine Operation daftr.

suspend - unterbricht eine Prozessintanz voribergehend. Dazu steht die Operation
suspend() zur ~ Verfigung und diese Operation kann den Status dieser Instanz von
active auf suspended ver&ndern. Dabei muss die Instanzid eingegeben werden.

resume - setzt die Prozessinstanz fort. Die Operation resume() kann eine pausierte Instanz
fortfthren. Im Gegensatz zu suspend kann resume() den Status dieser Instanz von
suspended auf active zuricksetzten.

terminate - terminiert die Prozessinstanz. Die Operation terminate() kann eine Instanz
sofort beenden. Aber es ist unm@lich, irgendeinen fault oder compensation handler
auszufithren.

fault - kann eine Prozessinstanz abbrechen. Die Operation fault() ermdglicht, dass eine
Instanz erfolglos beendet wird und dabei ein bestimmter Fehler ausgeworfen wird.

delete - IGscht alle oder einige vollendete Instanzen. Die Operation delete() bendigt einen

Parameter, namlich filter , was ein vorgegebener Name, ein bestimmter Status usw. sein
kdnnte.

35

4. \VVerwandte Arbeiten

In diesem Kapitel werden drei relevante Arbeiten vorgestellt. Es existieren bereits
wissenschaftliche Workflowsysteme und die Konzepte, die Wiederholung von Aktivit&en
ermcylichen kénnen.

4.1 E-BioFlow

Workflowsysteme sind schon erfolgreich fir die Modellierung der Gesch&tsprozesse und der
Biowissenschaft im Einsatz. Das Modell der Workflows wird meistens in den folgenden zwei
Bereichen verwendet. Bei Gesch&tsprozessen ist das Workflowmodell am den Kontrollfluss
orientiert, der die Reihenfolge der Aufgaben definiert. Aber bei Biowissenschaft ist das
Workflowmodell am Datenfluss orientiert, der den Fluss der Informationen beschreibt. Die
Workflowsysteme fUr die Biowissenschaften sollen noch weiter entwickelt werden, damit die
Kontrollstrukturen besser modelliert werden kénnen [WRV'08].

E-BioFlow ist dann ein Werkzeug des Workflows und wird im Bereich der Biowissenschaft
eingesetzt. E-BioFlow wird von BioRange an der Université Twente in den Niederlanden
entwickelt. Es hilft den Biowissenschaftlern, die Experimente der Biowissenschaft durch die
Verbindung der Webservices zu entwerfen. E-BioFlow ist ein Workflowsystem, das auf dem
Kontrollfluss basiert. Die anderen Workflowsysteme im Bereich der Biowissenschaft sind
dagegen am den Datenfluss orientiert [BioF]. Mehrere erweiterte Kontrollstrukturen, zum
Beispiel die parallele Ausfthrung der Aufgaben, Iteration (loops) und auch die konditionale
Verzweigung (if-then-else) k&inen durch das Paradigma des Kontrollflusses modelliert
werden [BioF].

Die von E-BioFlow erzeugten Daten sind deutlich im Workflowmodell dargestellt und
k&nnen als die Datenquelle fir die n&hsten Schritte in den Experimenten benutzt werden.
Solche Daten sind verfigbar als Eingabe fir die neuen Aufgaben oder fUr die schon im
Workflow existerenden Aufgaben [WOV09].

E-BioFlow wurde schon im Jahr 2009 zu einem Workflowsystem mit dem ad-hoc Editor
weiterentwickelt. Es ermdglicht dem Entwerfer, den partiellen Workflow durchzufihren und
den partiellen Workflow mit den Daten, die von dem schon ausgefthrten Workflow erzeugt
wurden, zu erweiteren [WOV09]. Die Vorteile vom ad-hoc-Editor im Vergleich zu den
traditionellen Workflowsystemen werden in den folgenden Abschnitten in Anlehnung an
[WOV09] vorgestellt.

4.1.1 Die Vorteile von E-BioFlow mit dem ad-hoc-Editor

- Die zu benutzenden Aufgaben sind oft unbekannt in der Designphase. Der ad-hoc Editor
ermdylicht es dem Designer, die Aufgaben auszuprobieren.

- Der Designer des Workflows braucht nicht den kompletten Workflow im Voraus zu kennen,
aber er kann den partiellen Workflow erweitern und ausfthren.

- Im Fall einer kleinen Anderung im Workflow kann der ad-hoc Editor es erméyglichen, die
entsprechenden Tasks zu wiederholen.

36

- Dazwischenliegende Ereigenisse k&inen als die Informationsquellen benutzt werden, um
die n&hsten Schritte vom Workflow zu entscheiden.

- Der Designer muss keine Vermutungen zu den Daten anstellen, die von den Aufgaben
produziert und gebraucht werden.

- Der Designer kann die Parameter einfach feinabstimmen und kann auch die Workflows
durch die getrennte Ausfihrung der Aufgaben austesten.

4.1.2 Die sechs Perspektiven von E-BioFlow

Die Schnittstelle von E-BioFlow bietet sechs verschiedene Perspektiven: die Perspektive des
Kontrolflusses, des Datenflusses, und die von Ressourcen, Engine von Workflows,
Provenienzsysteme und der ad-hoc-Editor [WOV09].

Die Perspektive des Kontrollflusses (Control flow) fokussiert die Reihenfolge von
Aufgaben. Sie bietet dem Designer des Workflows die Md@lichkeit, die Reihenfolge der
Ausfithrung der Aufgaben zu modellieren. Dabei kénnen die Aufgaben sequenziell, parallel,
iterativ und auch konditional durchgefthrt werden.

Die Perspektive des Datenflusses (Data flow) wird bendigt, um die Uberfihrung der Daten
zwischen Aufgaben zu modellieren.

Die Perspektive der Ressourcen (Resource perspective) wird benutzt, um die Typen der
Ressourcen zu definieren. Solche Ressourcen sind notwendig, um die Aufgaben auszufthren.
Die tatsé&hlichen Ressourcen werden zur Ausfthrungszeit des Workflows bestimmt.

Die Engine des Workflows (Workflow engine) kann die Workflows ausfthren. Sie ist
verantwortlich fUr die Einplanung der Aufgaben, die Auffthrung der Verbindungen und die
Ubergabe der Daten zwischen Aufgaben. Sie ist aufgebaut auf einer YAWL-Engine
[VAD*04].

Das Provenienzsystem (Provenance system) erfasst alle Prozesse- und Daten-relevanten
Informationen der Ausfihrung des Workflows.

Ad-hoc-Editor ist f&nig, das ad-hoc-Design durchzufthren.

Alle Perspektiven werden in der Abbildung 4.1 gezeigt. Alle Perspektiven auf%®r der
Perspektive der Provenienz kommunizieren direkt mit dem Spezifikationscontroller
(Specification Controller). Der Spezifikationscontroller verwaltet die noch offenen
Workflows [WOV09]. Die Perspektiven senden die Anfragen an den Spezifikationscontroller
im Fall von Anderungen im Workflowmodell, w&arend der Benutzer das Diagramm des
Workflows bearbeitet. Der Spezifikationskontroller setzt die Anderungen um und kindigt
allen Perspektiven die Anderungen an. Die Anderungen senden und empfangen all diejenigen
Perspektiven, die sich bei dem Spezifikationscontroller angemeldet haben. Der ad-hoc-Editor
ist die Perspektive, die mit der Engine interagiert.

37

ST %eﬂ;?ﬁ:ctives Sends task and ~~" - Provenance
process-oriented mode data related oc? -T:::: ::m‘
a)) \ i
information of tlhe i Pl
Resource workflow execution provenance data

Perspective |
Sends partial ——~ * i
workflows for i~

Data Flow execution

Perspective

Ad-hoc Editor
investigative data-

Engine

Control executes

Flow oriented mode workflows
Perspective
il 1 1
- Workflow 1

S N NS S
I Specification Controller

manages workfiow specifications

Abbildung 4.1 Alle Perspektiven von E-BioFlow mit ad-hoc-Editor [WOV09]

4.1.3 Ad-hoc Workflowdesign in E-BioFlow

Der Ad-hoc-Editor kombiniert die Eigenschaften von einem Editor, einer Engine und auch
einem Provenanzbrowser [WOVQ9]. Die Modelle der Workflows kéinen vom Ad-hoc-Editor
und auch allen anderen Perspektiven gemeinsam benutzt werden. Wie in der Abbildung 4.1
gezeigt, kann der Ad-hoc-Editor durch den Controller der Spezifikation (Specification
Controller) von jeder Anderung wissen und ebenfalls die Anderungen in dem
Workflowmodell einsetzen, wenn ein Workflow im Editor modelliert wird. Der Ad-hoc-
Editor wird in der folgenden Abbildung 4.2 gezeigt.

|12 e BioFlow {vorsion?.7) University of Twente - 2009 M=[=
Rk Edt Spacfications Help
i [miew [open (¥ 5ave | <5 unda e

Naigatar Furs. Carkrol Row porspectins | Doka Flam perspective | Resouce porspesthes | A4 hoc edtor | Brgine | Pravenance|
Provenance Avlai ticks
B RS 2 ek & nsetre
Samrchon: |gorigt

P —————————— L L A
Name =

gutCragnAlkikbarcrptijs

& QetMASTAN AysEspDate \ h

gehASCAmarEamDesa " : o

* eNASCIDCiDesTotn N, T
-# QetNASCnCHDesCrEkiN . R

& geNASCATarEDeso
& EHASCAmarETDens

® QuNASCaCiDancrption —— T , —
% gethASChmaysE s - i
eNASCITCkDesRtIN K B e
L e QuEncesl ; s Teal e
' S .

- QeTargetFResIDyTran)
~—# getTransriptiodesBvild |
& getTransopkoa guenceEr “’"‘I"“’
qulnpreaa oy
EvocGslDOoDus citiony

! : . i e
! # ENTMEGSDesipton p) | K
I ® getTransoptEyonoog / : Ry -
; --# QetReporlersCiTrEso L | = .
Y — ! -
.

& PDA_d2 smbolSaript
& harcssaGal TransorptsFroml
NarchasGat Transa phaFromd
MachseGet TransiptsFronl el
harcissaGe Transa psFronF Ty
Saphratssk bk B
f |* £ | 1 [

S 3
leJf,h‘ gensated Y used by

<]

Abbildung 4.2 Der Screenshot des ad-hoc-Editors im E-BioFlow [WOV09]

Wie in der Abbildung 4.2 gezeigt, werden der Task als Rechteck und die Daten als Kreis im

38

Editor dargestellt. Die Daten haben zwei Ports, n&mlich den Inputport und den Outputport.
Die Daten werden vom Inputport benutzt (used by) und vom Outputport hergestellt
(generated).

4.1.4 Ein im Ad-hoc-Editor entworfener Anwendungsfall

Im folgenden Abschnitt wird ein Anwendungsfall vorgestellt, der im Ad-hoc-Editor
entwickelt wird. Dabei gibt es eine Operation fUr meine Arbeit relevant, die &nlich wie die
Iterate funktioniert.

Siehe bitte die folgende Abbildung 4.3.

=

- =
result
BlatJob 27 (<2xmivell”
(<?xmlvelyy - - b
used by| MobyBlat generated o
- A o 47 - 5 Delete
, B Compatible tasks in worlffow »
\ , genzrated -
; I: “ o f outy Compatible tasks in repository b~ Connect to services b
2 % (=2 Compose data structure »
14 | Split data structure » LURL
genergted
\\

c
v
-
[,
Z
T T T T T T

Abbildung 4.3 Der erste Task MobyBlat [WOVQ09]

Um eine biowissenschaftliche Frage zu analysieren, ist ein Webservice namlich der Blat-
Service, zu orchestrieren. Der Blat-Service kann in das Panel des Workflows gezogen werden.
Der Webservice bendigt zwei Inputdaten. Der erste Input ist als User benannt, der fUr die
Informationen (ber die Session verantwortlich ist. Der zweite Input ist als BlatJob benannt,
der die Namen der Datenbank und der Sequenz anbietet. Die beiden Inputs sind XML-
strukturiert. Aber der Editor kann dabei helfen, die komplizierten Datenstrukturen aufzubauen.
Ein Composertask kann vom Benutzer im Editor hinzugefigt werden und der User kann als
Inputdaten zu diesem Task angelegt werden bei rechtem Klick auf den Port. Der Benutzer hat
den Composertask ausgewé&hnlt und auch dem Editor den Hinweis gegeben, den Composertask
auszufthren. Der Editor 1&st den Benutzer die Email-Adresse und das Passwort eingeben, um
die komplexe Datenstruktur aufzubauen. Dann wird das Ergebnis des Composertasks im
Editor gezeigt. Zwei Pfeile sind zu dem Workflowmodell neu hinzugefigt worden. Einer
davon legt den Outputport des Composertasks im Datenitem (User) an und der andere legt das
Datenitem (User) im Inputport des Tasks (MobyBlat) an. Der BlatJob Input kann auf die
gleiche Weise wie der User-Input fir den Task (MobyBlat) im Editor erstellt werden.

Jetzt sind alle notwendigen Inputdaten fir unseren Task (MobyBlat) verfigbar und der User
kann den Task gleich im Editor ausfihren. Der Blat Service ergibt vier Ausgaben (siehe in
Abbildung 4.3) und dies sind "result”, "user”, "output” und "serviceNotes". "result” ist die
URL zum Blat-Bericht, "user” und “output” sind die Kopien von zwei Eingaben und
"serviceNotes" bezeichnet ein Objekt des MOBY-S. MOBY-S sind die Webservices, die fir

39

die Interoperabilité&c zwischen dem biowissenschaftlichen Host der Daten und den
analytischen Services dient [MOB]. Der Benutzer muss das Ergebnis anhand der URL vom
Blat herunterladen. Weil die URL ein Text im MOBY -S-XML-Format ist, muss der Benutzer
durch einen Rechtsklick auf die Daten der URL einen Decomposertask fir das MOBY-S
Objekt anfordern (siehe die Abbildung 4.3). Nach der Ausfthrung des Decomposertasks ist
die URL jetzt im Klartext.

Nach weiteren Designschritten gibt es im Editor jetzt die neuen Tasks. Im Abbildung 4.4
werden alle neuen Tasks gezeigt.

result result 4 nNamespace - = H
{=<7aml ¥ 3 . —genaraked = fhiat)
LY ’ used by Scripting . content
;en{e.rated I task I - genersted” 7 (BLAST
7’ S o]
~
gendrated usea By = o
“ w
~ r

| %] ltem viewer - content
Sringvalue! Score = 118 bits (288), Expect = 4e-28 lad
| Idsntiti=s = &0/&0 (100%)
Strand = Flus / Plus

@

encral

é

gentrated

@

v
;ena'gted

~yfservicehlotes
(BL!\T se| 'E'L'lE:_U: 1 ctgtcaagtcagogactatctgagyastctcaaataaacatgtatas)

PEEErerrerr et e e e et e r e e el

Shheot: 15505417 ctgtcaagtcagogactatctgagyasatoicaaataaacatgratas
v
<] >

@

Abbildung 4.4 Die neuen Tasks "result” and "Scripting task" [WOV09]

Der neue Task "Scripting task" erm&glicht das Herunterladen des Inhalts (ber eine gesicherte
Verbindung. Um den Task auszufthren, muss der Code vom Benutzer geschrieben werden.
Der Benutzer hat sich fUr die Programmiersprache Perl entschieden. Danach fihrt der
Benutzer den Task aus. Aber es kommt eine Fehlermeldung vom Programm, das der Benutzer
geschrieben hat. Nach der Behebung des Fehlers kann dieser Task nochmal ausgefihrt
werden. Dieses Mal |&uft der Task erfolgreich. Am Ende kann der Benutzer den kompletten
Workflow nochmal laufen lassen.

4.2 Retry Scopes

BPEL ist die meistens beliebteste Sprache zur Prozessmodellierung fir die Modellierung der
Geschdtsprozesse und kommt urspringlich aus der BPM- Domain. Das Hauptziel von BPEL
ist, die Gesch&tsprozesse als Orchestrierung der Services zu modellieren und auszufihren
[EKU™10]. In diesem Fall wurden die Reaktionen auf die dynamischen Eigenschaften wie die
Netzwerkverbindung wéhrend der Designphase von BPEL nicht genug bericksichtigt. Viele
selten vorkommende Fehler sind im Prozessmodell nicht bedacht. Das hier vorgestellte
Konzept bietet eine Ann&berung an ein anpassungsféhiges und st&keres Prozessmodell in der
realen Welt. Die Aktivitden k&nen erneut angestof®n werden, wenn ein bestimmter Fehler
auftritt. Das hier vorgestellte, neue definierte Modellelement erm@glicht und erweitert die
<scope>-Aktivitd, die auf Fehlersituationen in einer flexibleren Weise als die herk&mmliche
<scope>-Aktivit& von BPEL reagieren kann.

40

4.2.1 Die zwei Szenarien

Um das Konzept besser zu verstehen, werden in diesem Abschnitt zwei Szenarien vorgestellt.

Beim ersten Szenario handelt es sich um einen Medikamententest in einem Prozess. Der
Medikamententest besteht aus drei Testphasen. Der erste Schritt ist das Abholen der
Ingredienzien. Der zweite Schritt wird die Mischung der Ingredienzien genannt und der letzte
Schritt ist der Test der Mixtur. Die Syntax dieses Testprozesses kann in BPMN 1.2
repraentiert werden (siehe die Abbildung 4.5) [EKU™10].

Fetch Mix Test |
Ingredients | | Ingredients Mixture |

T
f

I

1

Clean Up &.’ Mixture not
Fulfilling

Requirements ¢
Abbildung 4.5 Der Medikamententest [EKU"10]

<

Der Prozess hat nach diesem Medikamententest zwei Alternativen fortzufahren. Eine
Alternative wird ausgewéahlt, wenn die Mixtur die Anforderungen nicht erfdlen kann. Die
andere davon wird ausgewé&hnlt, wenn der Test erfolgreich ist. Wie die Abbildung 4.5 gezeigt
hat, sind die drei Testphasen gebUndelt. Wenn ein Fehler wé&bhrend des Tests auftritt, muss das
Labor sauber gemacht werden und es missen auch alle Aktivitden vom Test neu gestartet
werden. Dieser Test kann als eine <scope>-Aktivita betrachtet werden. In diesem Prozess
werden einigen Reparaturarbeiten gemacht, bevor diese <scope>-Aktivit& neu versucht wird.

Das zweite Szenario unterscheidet sich von dem ersten. Ein Prozess kann dazu entworfen
werden, einen Arbeiter einer Spedition zu untersttizen. In diesem Prozess werden alle
Anweisungen der Navigation passend zur aktuellen Position des Liefernten berechnet. Wenn
der Lieferant die richtige Route nicht verfolgt und sich dann mit dem Navigationsprozess in
Verbindung setzt, kann der Navigationsservice abh&ngig von der aktuellen Position eine neue
richtige Route berechnen. Dieser Prozess unterscheidet sich von dem ersten Prozess dadurch,
dass der Prozess nicht den Anfangsort des Mitarbeiters berechnen muss, wenn ein Fehler
auftritt. Die neue aktuelle Position kann als Input eingegeben werden und der Prozess kann
dabei neu gestartet werden. Im Vergleich zu erstem Beispiel wiederholt sich die <scope>-
Aktivit& ohne irgendeine Reparaturarbeit.

4.2.2 Das Konzept von Retry/Rerun-Scopes

In den vorherigen zwei Abschnitten wurden die zwei verchiedenen Szenarien dargestellt und
die grundlegenden Informationen (ber BPEL und Scopes eingefthrt. Abh&ngig davon kann
das Konzept jetzt erstellt werden. Zun&hst sollen die Unterschiede zwischen den zwei
Szenarien erkl&t werden.

1. Aus dem ersten Szenario kann ein Verhalten als Retry definiert werden. Retry bedeutet,

dass aufgrund eines auftretenden Fehlers einige Aktivitden neu ausgefthrt werden sollen,
aber zuvor missen einige Dinge "sauber™ gemacht werden.

41

2. Aus dem zweiten Szenario kann ebenfalls ein Verhalten als Restart definiert werden.
Restart hat fast die gleichen Eigenschaften wie Retry, aber es ist etwas einfacher aufgrund der
Tatsache, dass die ausgefthrten Aktivit&en nicht "sauber” gemacht werden missen.

Das erste Szenario hat die Gemeinsamkeit mit der Operation von Reexecute gemein, dass
einige Aufgaben gemacht werden missen, bevor die Aktivita neu durchgefihrt wird. Das
zweite Szenario hat dann mit der Operation von lterate gemein, dass keine Arbeit gemacht
werden muss, bevor diese Aktivit& wiederholt wird.

Das neue Konzept von Retry/Rerun-Scopes benutzt eine neue Aktivit& namlich <restart>
innerhalb einer <catch>-Aktivité& von einem Fault Handler. Das Attribut <times> der
<restart>-Aktivita definiert die Haufigkeit der Wiederholung eines Fault Handlers im Fall
eines bestimmten Fehlertyps: eine Endlosschleife kann dadurch auch vermieden werden.
Insbesondere ist zu beachten, dass der Z&hler nicht zunimmt, wenn die dazugeh&ende
<scope>-Aktivita neu ausgefihrt wird, sonder nur dann, wenn die <restart>-Aktivit& neu
ausgefthrt wird. Der Zé&nler l&uft bei jeder Ausfihrung der <restatt>-Aktivit& mit der
gleichen ID von Aktivit&en und auch der gleichen ID von Prozessen [EKU"10].

Die folgende Abbildung zeigt ein Beispiel, wie man mit dieser neuen vorgestellten <restart>-
Aktivita das Verhalten von Retry darstellen kann.

<faultHandlers>
<catch faultName="NoUserFound"?
faultVariable=" BPELVariableName ">
<sequence>
<compensate />
<wait />
<restart times="5" />
</sequence>
</catch>
</faultHandlers>

Listing 4.1 Fault Handler mit <restart>-Aktivit& in RetryScope [EKU+10]

In der <catch>-Aktivit& dieses Faulthandlers gibt es eine <sequence>-Aktivit&, die auch die
Aktivitden von <compensate>, <wait> und <restart> enthdt. <wait> dient dazu, dass die
nachfolgende <restart>-Aktivit& verz&gert werden soll.

FU den RerunScope gibt es nur einen Unterschied zum RetryScope, wobei das Verhalten als
Restart aus dem zweiten Szenario im RerunScope realisiert wird. In der <sequence>-Aktivité&
von dem Fault Handler im RerunScope wird nur die <compensate>-Aktivit& nicht ausgefihrt.

4.3 Dynamische Modifikation des Workflows

Wenn der Benutzer in manchen Situationen die Gesch&tsprozesse &ndern oder von einigen
Stellen der gesamten Gesch&tsprozesse abweichen mé&chte, kéwnen die Gesch&8tsprozesse
nicht mehr wie vorher beschrieben ausgefthrt werden. In diesem Abschnitt werden einige
Fdle in Anlehnung an [LROO] vorgestellt, wo der Benutzer einen laufenden Workflow

42

modifizieren kann.

OO~

Die tats&hliche Prozessinstanz

OmOnOR’

Fall 1: Die Aktivita D wird gel&scht

—(O—(—C

Fall 2: Die Aktivitden A und B sollen nochmal ausgefihrt werden

-

Fall 3: Eine neue Aktivit& E ist zu dem Prozess hinzugefigt worden

oo

Fall 4: Die Aktivit& C wird eingehé&ngt, um die zus&zlichen Information aus E zu
bekommen

Abbildung 4.6 Modifikationen vom Workflow

Zu dem Zeitpunkt, zu dem die tats&hliche Prozessinstanz in der oben stehenden Abbildung
gezeigt wird, bearbeitet der Benutzer gerade die Aktivita C. Im Fall 1 wird die Aktivita D
aus dem gesamten Gesch&tsprozess gel&scht, wenn diese Aktivita nicht ndig ist. Die
Modifikation hier wird nach [LROO] "delete step™ genannt. Der Fall 2 kann als eine Iterate-
Modifikation betrachtet werden [LROO0]. Wé&rend der Prozess lauft, kann der Benutzer
bemerken, dass die Aktivit& C die von ihm vorher erwinschten Ergebnisse nicht produzieren
kann. Der Benutzer 1&st deshalb um diesen Zeitpunkt die Aktivitden A und B nochmal
ausfithren. Im Fall 3 wird die neue Aktivita& E zwischen den Aktivitden C und D zu den

43

Prozessen hinzugefigt. E kann von dem Benutzer oder anderen ausgefithrt werden. Die
Modifikation dieses Falls wird auch als "intermediate step” bezeichnet [LROO]. Im Fall 4
h&ngt der Benutzer die Aktivit& C ein, weil er noch die zus&zlich bendigten Informationen
aus der Aktivita E braucht. Die in diesem Fall relevante Modifikation wird nach [LROO]

"inquiry" genannt.

44

5. Konzept fir Iteration und Wiederholte AusfChrung der
Aktivitéen im WS-BPEL 2.0

Das Kapitel bezieht sich auf ein Konzept fUr Iteration und wiederholte Ausfthrung der
Aktivitden in WS-BPEL 2.0, die sich innerhalb von <sequence>-, <flow>-, <while>-,
<repeatUntil>- und <forEach>-Aktivitden befinden. Wiederholte Ausfthrung der Aktivit&en
wird in diesem Kapitel Re-execution genannt.

Die Unterschiede zwischen dem Konzept dieser Arbeit und dem Konzept des Retry/Rerun-
Scope aus dem Kapitel 4 sind im Folgenden beschrieben:

® In diesem Konzept wird keine neue Aktivita fir WS-BPEL erzeugt. Bei Retry/Rerun
wird eine neue Aktivit&, namlich die <restart>-Aktivita fir WS-BPEL kreiert.

® Die Operationen Iteration und Re-execute werden nicht im Prozess modelliert,
sondern von auf&n durch die ProcessinstanceMangement-API ausgefihrt.

® Die beiden Operationen kénnen an jeder beliebigen Stelle ausgeftnrt werden. Aber das
Konzept von Retry/Rerun wird nur fUr die <scope>-Aktivita definiert.

Vorbedingungen fUr die Operationen Iteration und Re-execution:

Bevor die beiden Operationen durchgefthrt werden kéinen, muss der laufende Prozess zuerst
angehalten werden (suspend).

Die Nachfolgeaktivitden muissen dann auch ermittelt werden, weil die laufenden
Nachfolgeaktivit&en beendet werden missen.

In allen Abbildungen steht das rote H&chen fir die Aktivitden, die schon erfolgreich
ausgefthrt wurden; ebenso zeigt der grine Strich die Aktivitéden an, die zu diesem Zeitpunkt
der Ausfihrung von der "iterate/reexecute”-Operation, noch aktiv sind. Der schwarze Pfeil
zeigt die Aktivit&en, die von der "iterate/reexecute"-Operation nochmal durchgefihrt werden
sollen, an. Das rote Kreuz steht fUr die Aktivit&en, die nicht ausgefthrt werden k&inen, weil
sie sich in einem toten Pfad befinden.

5.1 Die Unterschiede zwischen Iteration und Re-execution

Die Iteration soll nur als eine Schleife fU die zu wiederholende Aktivit& betrachtet werden.
Es missen keine zusdzlichen Aufgaben mehr erledigt werden, um die Aktivit& nochmal
auszufihren.

Bei der Re-execution dagegen missen zus&zliche Aufgaben gemacht werden. Dabei missen
die Aktivit&en auf dem Pfad der zu wiederholenden Aktivit& bis zur gerade laufenden
Aktivita zuerst ritkgéngig gemacht werden. Das bedeutet, die Aktivitd muss in dem
gleichen Zustand sein (beziehungsweise in einem &bnlichen Zustand je nach

45

Kompensationslogik), wie zu dem Zeitpunkt, bevor sie ausgefthrt wurde. Die zu
wiederholende Aktivité soll die gleichen Werte fUr Partnerlinks und Variablen besitzen wie
bei der vorherigen Ausfthrung und kann dann durch Re-execution nochmal ausgefUhrt
werden. FUr diese zus&zliche Aufgabe muss ein Mechanismus gefunden werden, um die
Daten von Partnerlinks und Variablen zu speichern.

5.2 Iteration
In diesem Abschnitt werden einige Fdle fr die Operation Iteration vorgestellt.

5.2.1 Iteration in Sequence

Zun&hst wird das Konzept fir die <sequence>-Aktivit& vorgestellt. FUr die <sequence>-
Aktivita werden zwei Fdle im Folgenden zur Verflgung gestellt (siehe bitte die Abbildung
5.1und 5.2).

Process

Sequence

Iterate

060

Abbildung 5.1 Iteration in Sequence, Fall 1

Die in diesem Beispiel gezeigte <sequence>-Aktivit&l ist eine Sequence mit 1-n beendeten
und einer aktiven Aktivit&. Die Iteration wird von einer der beendeten oder aktiven
Aktivit&en ausgefithrt. Wie die oben stehendene Abbildung zeigt, sind die Aktivitden A, B
und C schon fehlerfrei ausgefthrt worden, D ist zurzeit noch aktiv und B soll nochmal durch
der Iterate-Operation ausgefthrt werden. Bevor die Iterate Operation ausgefihrt werden kann,
muss man den Prozess Uberprifen, ob B oder Nachfolgeaktivitden noch aktiv sind. Wenn
dies nicht der Fall ist, kann B nochmal ausgefthrt werden. Wenn B oder eine
Nachfolgeaktivital noch aktiv ist, muss sie erst beendet werden bevor B erneut ausgefthrt
werden kann.

46

Process

SEQ A
SEQB

Tterate

©-©

L

|
SEQC |
e .-\II

Abbildung 5.2 Iteration in Sequence, Fall 2

Die in diesem Fall beschriebene <sequence>-Akivit& besteht aus mehreren <sequence>-
Akivit&en und jede Sequence davon ist auch eine Sequence mit 1-n beendeten und einer
aktiven Aktivita. Die Iterate-Operation wird von einer der beendeten oder aktiven Aktivit&en
ausgefthrt. In der Abbildung 5.2 besteht der Prozess aus insgesamt drei <sequence>-
Aktivitaen, namlich SEQ A, SEQ B und SEQ C. SEQ A besteht auch aus SEQ B und SEQ C.
Die Aktivitden A und B in SEQ B wurden schon erfolgreich ausgefihrt und SEQ B wurde
deshalb auch vollsténdig ausgefihrt. SEQ C ist jetzt aktiv, weil das in C enthaltene D noch
aktiv ist. Wenn eine Iteration von B aus gemacht werden soll, missen wieder alle aktiven
Aktivit&en im Pfad mit B beendet werden. Im Beispiel sind das C und SEQ C. B kann nicht
ohne Weiteres wiederholt ausgefthrt werden, da SEQ B bereits beendet ist. Deshalb muss
SEQ B erneut ausgefthrt werden. Innerhalb der Sequence dirfen dann nur die Aktivit&en ab
dem Iterationspunkt ausgefthrt werden (im Beispiel nur Aktivit&a B).

5.2.2 Iteration in Flow

Im Folgenden wird das Konzept fir die <flow>-Aktivit& in vier Fdlen vorgestellt (siehe bitte
die folgende Abbildungen 5.3, 5.4, 5.5 und auch 5.6).

Process

Iterate

Abbildung 5.3 Iteration in Flow, Fall 1

47

In diesem Beispiel wird eine Flow-Aktivitéa von der Iterate-Operation nochmal ausgefihrt.
Dieser Prozess dieses Falls besteht aus einer <flow>-Aktivitd, die die Aktivitden A, B, C, D,
E und F enthd&t. A, B und C wurden schon erfolgreich ausgefthrt. D und E sind zurzeit noch
aktiv. F ist inaktiv, weil F noch auf die Nachrichten aus D und E warten muss. Um die Iterate
-Operation bei einer Aktivita zu ermdglichen, missen erst die Aktivit& selbst und/oder ihre
Nachfolgeaktivitden beendet werden (hier die zwei aktiven Aktivit&en D und E). Dann kann
A durch Iterate wiederholt ausgefihrt werden.

Process

Flow

Iterate

Abbildung 5.4 Iteration in Flow Fall 2

Bei diesem Beispiel handelt es sich um die Ausfthrung einer Iteration-Operation in parallelen
Pfaden von einer <flow>-Aktivit&. Dieser Prozess besteht aus einer <flow>-Aktivit&, die die
Aktivitden A, B, C, D, E und F enth&t. A, B und C wurden schon erfolgreich ausgefthrt. D
und E sind zurzeit noch aktiv. F ist inaktiv, weil F noch auf D und E warten muss. Um B neu
auszufthren, muss die hinter B stehende aktive Aktivit& D gefunden und dann beendet
werden. Die Aktivitden in dem anderen Zweig von dieser <flow>-Aktivité& k&winen ohne
Einschrékung weiter laufen (im Beispiel Aktivita E). F beginnt zu laufen, sobald der
KontrollIfluss in beiden Zweigen bei F ankommt.

Process

Flow

Iterate

Abbildung 5.5 Iteration in Flow, Fall 3

48

In diesem Beispiel wird eine Flow-Aktivité von der Iterate-Operation nochmal ausgefihrt.
Der einzige Unterschied von Fall 3 in der Abbildung 5.5 zu Fall 2 in der Abbildung 5.4 ist,
dass ein toter Pfad (Dead Path) der Transition Condition der ausgehenden Links von Aktivita
A entstanden ist. Der Zweig zwischen C und F braucht wegen der Dead Path Elimination
nicht besonders bericksichtigt zu werden. Es muss das gleiche wie im Fall 2 gemacht werden.
(siehe die Abbildung 5.4)

Process

Flow

Iterate

Abbildung 5.6 Iteration in Flow, Fall 4

Dieses Beispiel handelt von der Ausfthrung einer Iterate-Operation in toten Pfaden einer
<flow>-Aktivita. Der Fall 4 beschreibt, wie eine Aktivitd E von der Iterate-Operation
nochmal ausgefihrt werden kann. Die Iteration selbst ist von einer Aktivit& in einem toten
Pfad nicht erlaubt, da dadurch Ausfihrungshistorien von nicht zusammenh&ngenden
Aktivitden entstehen kdnnen. Allerdings kann die Iteration dann automatisch von einer
sinnvollen Vorgéangeraktivita durchgefthrt werden. Zuerst missen die zuvor schon
evaluierten Pfade (Links) rickwéts bis zu der Aktivit&, die schon erfolgreich durchgefihrt
wurde, durchlaufen werden. Im Beispiel kann die Aktivit& A dadurch gefunden werden. Von
dieser Aktivita aus sucht man alle aktiven Nachfolger und beendet sie (hier: Aktivita D). Es
wird jetzt die Aktivita erneut ausgefihrt, die durch das rickwéts gerichtete Durchlaufen des
Pfades gefunden wurde.

49

5.2.3 Iteration in While, RepeatUntil und forEach

While Condition

Iterate
.................. '@

SEQ SEQ SEQ

..
e
(& =}

Abbildung 5.7 Iteration in While

In diesem Abschnitt wird die Iterate-Operation innerhalb einer While-Aktivit& vorgestelit.
Die <while>-Aktivit&é enth&t eine <squence>-Aktivité und deshalb funktionert die Iterate-
Operation in While genauso wie in der Sequence-Aktivitd. Es muss aber darauf geachtet
werden, dass es zu Endlosschleifen kommen kann, wenn Variablen so durch die Iterate-
Operation ver&ndert werden, dass die While-Bedingung niemals false werden kann.

Die Iterate-Operation in der <repeatUntil>-Aktivita arbeitet fast auf die gleiche Weise wie
<while>. Es muss aber richtig aufgepasst werden, dass die Bedingung von <repeatUntil>
durch mehrmalige Ausfihrung der “rerun”-Operation verletzt werden kann, wenn zum
Beispiel ein Z&nler als die Bedingung fUr die <repeatUntil>-Aktivit&a dient.

FU die <forEach>-Aktivita missen zuerst die folgenden zwei Fdle unterschieden werden.
Wenn der Wert des Attributs "parallel” "no™ ist, ist diese <forEach>-Aktivit& eine serielle
<forEach>-Aktivita und kann die Iterate-Operation wie in <while> von einer bestimmten
Aktivita ausgefihrt werden, weil sich die serielle <forEach>-Aktivita im Grunde nicht von
While und RepeatUntil unterscheidet. Allerdings kann die Aktivit& selbst das Hochzé&nlen des
Z&lers tbernehmen. Deshalb muss man nicht auf die ForEach-Bedingung achten wie bei
While und RepeatUntil. Wenn dieser Attributwert "yes" ist, ist diese <forEach>-Aktivit& ein
paralleles <forEach>. Die enthaltene <scope>-Aktivit& wird gleichzeitig ausgefthrt. Es
werden mehrere Instanzen des Scopes gleichzeitig gestartet. FUr eine Iteration muss die
richtige Scope-Instanz gefunden werden. Dazu muss die lterate/Re-execute-Operation um
einen entsprechenden Parameter erweitert werden.

5.3 Re-execution

Die Unterschiede zwischen lteration und Re-execution wurden schon in dem Abschnitt 5.1
beschrieben. Hier wird nur die Re-execution von einer Aktivitd innhalb von einer
<sequence>-Aktivit&, die schon im Abschnitt 5.2.1 als das erste Beispiel benutzt wurde,

50

erl&utert. Die Grundkonzepte von Re-execution der Aktivit& sind gleich wie lterate in
Sequence, Flow, While usw. Zusd&zlich ist nur zu berUcksichtigen, wie die Aktivitéden auf
dem Pfad der zu wiederholenden Aktivita bis zur gerade laufenden Aktivit& rickgéngig
gemacht werden. Um dies zu ermd&glichen, missen die Partnerlinks und die Variablen dieser
Aktivita abgespeichert werden und in manchen F&8len muss die Kompensierung auch
ausgefthrt werden. Weil die Re-execution an jeder beliebigen Stelle eines Prozesses
durchgefthrt werden kann, missen die Werte von den Partnerlinks und den Variablen von
jeder Aktivita vor ihrer Ausfihrung gespeichert werden. Wenn eine Re-exection
durchgefihrt wird, missen die Werte von den beiden wieder abgeholt und zu dieser zu
wiederholenden Aktivita (bergeben werden. Dafir kénnen die Snapshots verwendet werden,
um sie zu speichern. In den folgenden Abbildungen stellt der Block in lila die Snapshots dar,
die vor der Ausfthrung von Aktivit&en schon abgespeichert werden sollen. Wir nehmen hier
drei Beispiele fUr Re-execute.

5.3.1 Einfache Re-execution fir die Aktivité ohne Kompensierung

Process

Sequence

Re-execute

.lllllllllllll’

efefeiel

Abbildung 5.8 Re-execution in Sequence ohne Kompensierung

In diesem Beispiel gibt es nur die vier Aktivitden A, B, C und D. Sie befinden sich alle
innerhalb einer <sequence>-Aktivitaé. Die zusdzlichen Aufgaben fir Re-execute im
Vergleich zu lterate sind nur die Snaptshots fir alle A, B, C und D zu erzeugen. Wenn B
nochmals durch Re-execute auszufthren ist, werden die Werte von den Partnerlinks und den
Variablen aus dem Snapshot abgeholt und wieder an B (bergeben, die schon vor der ersten
Ausfthrung von B abgespeichert wurden.

5.3.2 Re-execution fir die Aktivitat mit Kompensierung

In diesem Abschnitt wird Re-execute fir die Aktivita mit Kompensierung vorgestellt. Die
Kompensierung muss fir bereits ausgefthrte Aktivitden gemacht werden, die durch das Re-
execute erneut ausgefthrt werden sollen. Die Kompensierung kann allerdings nur bei einer
erfolgreich ausgefthrten <scope>-Aktivita und <invoke>-Aktivit& gemacht werden. Das
bedeutet, wenn auf dem Pfad der zu wiederholenden Aktivit& und den gerade aktiven

51

Aktivit&en schon beendete Scopes und Invokes liegen, dann missen die Scopes und Invokes
kompensiert werden. Hier werden zwei Beispiele betrachtet. Bei einem davon handelt es sich
um Re-execute fUr die Aktivitden in der <scope>-Aktivita und das andere beschreibt (ber
die Re-execute speziell fUr die <invoke>-Aktivita.

Process
Sequence p——y
@ -
Scope CH
Re-execute Sequeng .
llllllllllll.ll!* B "‘\.'

Abbildung 5.9 Re-execution in Sequence mit Kompensierung Fall 1

Die Abbildung 5.9 zeigt die Aktivitden A, B, C und D. B und C befinden sich in einer
<sequence>-Aktivit& und diese Sequence existiert auch in einer <scope>-Aktivita mit einem
vordefinierten Compensation Handler. B muss durch Re-execute erneut ausgefthrt werden.
Dabei missen die Snapshots wie im Abschnitt 5.3.1 wieder fU jede Aktivitd A; B; C und D
erzeugt werden. Wenn die Operation Re-execute ausgefihrt wird, wird der Compensation
Handler sofort aufgerufen werden, um das schon beendeten B und C zu kompensieren. Dann
werden die Werte fUr Parnterlinks und Variablen aus dem zu B geh&enden Snapshot wieder
an die Aktivita B bergeben. Jetzt 1&uft B nochmals. Sollte eine <scope>-Aktivit& keinen
Compensation Handler besitzen, wird der implizite Compensation Handler aufgerufen.

52

Process
Sequence
—
® |
Re-execute — A
ll.l.lllll....’ ° ,-\.I|I
i
C -\,‘I
—
> -

Abbildung 5.10 Re-execution in Sequence mit Kompensierung Fall 2

Die Abbildung 5.10 zeigt die Aktivitden A, B, C und D. B und D sind jeweils die <invoke>-
Aktivitden, die auch eigene Compensation Handler haben. Wé&arend dieser Prozess lauft,
muissen auch die Snapshots fUr jede Aktivitden gemacht werden. Wenn die Operation Re-
execute aufgerufen wird, soll C zuerst und dann B kompensiert werden. Das heild die
Kompensierung wird in umgekehrter Ausfihrungsreihenfolge durchgefihrt. Jetzt werden die
Werte fUr Partnerlinks und Variablen aus dem Snapshot wieder geladen. Jetzt kann die B
endlich nochmals ausgefthrt werden. In einigen F&len besitzt die <invoke>-Aktivita auch
mdylicherweise keinen Compensation Handler: in diesem Fall 1&uft die Re-execute Operation
auf die gleiche Weise wie es der Abschnitt 5.3.1 gezeigt hat.

53

6. Realisierung eines Prototyps

Im vorhergehenden Kapitel wurde ein Konzept fUr die Iteration und wiederholte Ausfthrung
der Aktivitden vorgestellt. In diesem Kapitel werden zun&hst die Anforderungen an die
Realisierung (Abschnitt 6.1) beschriebn. Anschliefend wird die Entwicklungsumgebung
(Abschnitt 6.2) eingefthrt. Zuletzt wird die prototypische Umsetzung des Konzepts aus dem
Kapitel 5 im Abschnitt 6.3 erl&utert. Der Prototyp hat die Einschréokung, dass die Aktivit&en
nur innerhalb einer <sequence>-Aktivit& durch Iterate und Re-execute nochmal ausgefihrt
werden k&nnen, wie der erste Fall in dem Abschnitt 5.2.1 gezeigt hat. FUr die Aktivit&en in
anderen Fdlen kdnnen die beiden Operationen von Apache ODE noch nicht unterstiizt
werden.

6.1 Anforderungen an die Realisierung

Die Anforderungen werden in diesem Abschnitt beschrieben, die im Rahmen von den
praktischen Umsetzung der Aufgabendefinition im Kapitel 1 erfdIt werden sollen. Hier
werden die Anforderungen im Einzelnen beziehungsweise in den zwei Operationen "lterate™
und "Reexecute” dargestellt.

Die Operation "lIterate” funktioniert wie eine Schleife. Sie greift auf den auf der BPEL-Engine
Apache ODE laufenden Prozess zu und fthrt dann eine bestimmte Aktivit& nochmal aus.
Bevor diese Operation Iterate ausgefihrt werden kann, muss der Prozess zuerst durch die
Operation "Suspend" ausgesetzt werden. Die Operation "Suspend" ist schon der Apache ODE
fUr den Benutzer angeboten worden. Zwei Parameter sind ndig fir die Operation lterate.
Einer davon ist die Prozessinstanz-1D, die zu jeder Prozessinstanz eindeutig zuordenbar ist,
und der andere ist ein XPath-Ausdruck. Mittels des XPath-Ausdrucks kann die neue
auszufthrende Aktivit& in der Apache ODE gefunden werden. Der Benutzer gibt die zwei
Parameter in eine SOAP-Nachricht ein und sendet die Nachricht zu den Prozess. Die BPEL-
Engine bearbeitet diese Nachricht, sendet dem Benutzer eine Nachricht als Response zuritk
und fihrt die angegebene Aktivit& neu aus.

Die Operation "Reexecute™ unterscheidet sich von der Operation "lterate”. Dabei mUssen die
Aktivitden auf dem Pfad der zu wiederholenden Aktivit& bis zur gerade laufenden Aktivita
zuerst rickgéngig gemacht werden. Das bedeutet, die Aktivit& muss in dem gleichen Zustand
sein (beziehungsweise. in einem &nlichen Zustand je nach Kompensationslogik), wie zu dem
Zeitpunkt, bevor sie ausgefihrt wurde.

6.2 Die Entwicklungsumgebung

Die Apache ODE in Version 1.3.4 wird in dieser Arbeit erweitert. Als eine Web-Container-
Umgebung wird Apache Tomcat in Version 6.0.26 verwendet. SoapUl in Version 3.5.1 wird
als die Benutzerschnittstelle von Webservices benutzt. Der Code der Arbeit wird in Eclipse
3.5.2 mit Java 6 geschrieben. Apache ActiveMQ als eine nachrichtenorientierte Middleware
(MOM) in Version 5.3.0 und Maven in Version 2.2.1 als ein Build-Management-Werkzeug
werden wé&rend der Entwicklungszeit verwendet. SimTechODE Auditing wird zur
Uberwachung des BPEL-Prozesses benutzt werden. Dadurch kénnen die ProzesseinstanziD,
der Ablauf des Prozesses und auch Informationen wie der Status, die Ereignisse tber alle im
Prozess enthaltenen Aktivit&en in GUI pr&entiert werden.

54

6.3 Erweiterung der Apache ODE

In diesem Abschnitt wird die Erweiterung der Apache ODE in folgenden drei Teilen
vorgestellt.

6.3.1 XPathParser

Zuerst wird XPath in diesem Abschnitt kurz vorgestellt. Die XML Path Language (XPath) ist
eine vom W3C entwickelte Abfragesprache, mit der die Teile eines XML-Dokumentes
adressiert werden kénnen [WXP].

Wie der Abschnitt 3.4 gezeigt hat, werden die (bergebenen BPEL-Prozesse zuerst vom
Compiler Uberpridt und zum ODE-Objekt-Modell kompiliert. Deshalb gibt ein passendes
Objekt, das fUr jede Aktivita fUr jeden Prozess und fUr jeden Handler des ODE-Compilers
erzeugt wird. Um die beiden Operationen Iterate und Reexecute zu implementieren, muss
zuerst die Aktivit&, die nochmal ausgefihrt werden muss, beziehungsweise. das zu dieser
Aktivita passende Objekte im ODE-Objekte-Modell durch zwei Parameter xpath und
Prozessinstanz-1D gefunden werden. DafUr wird eine neue Klasse nanlich XPathParser.java
geschrieben. Das Klassendiagramm von dieser Klasse wird in der folgenden Abbildung 6.1
gezeigt.

XPathParser

actualElement: OBase

handlexPath{string, EpelProcess): OBase
getCorrectElement{OBase, String, String, String): OBase

Abbildung 6.1 Klassendiagramm von XpathParser.java

Der Hauptteil in dieser Klasse ist die Methode handleXPath, die auch eine Methode
getCorrectElement enthdt. Die Methode getCorrectElement kann die richtige OActivity
mittels der Prioraktivita priorActivity, der jetzt zu bearbeitenden Aktivit& activity und des
Suffixes dieser Aktivit& activitySuffix finden. Die Methode getCorrectElement wird immer
rekursiv aufgerufen, bis die Zielaktivité in Form des ODE-Objekte-Modells gefunden werden
kann. In Listing 6.1 wird ein Ausschnitt der Klasse XpathParser.java gezeigt.

55

public class XPathParser {

static OBase actualElement;

public OBase handleXPath (String xpath, BpelProcess process) {

String[] values = xpath.split("/");

String priorActivity = null;

actualElement = process.getOProcess|();

for (String value: values) {

int number = value.indexOf("[");

String activity = value;
String activitySuffix = null;
1f (number !'= -1) {
activity = value.substring (0, number);
activitySuffix=value.substring (number+1l,value.length()-1);

}

if (activity.compareTo ("") !'= 0){
if (activity.compareTo ("process") != 0) {
tryf

actualElement=getCorrectElement (actualElement,priorActivity,
activity, activitySuffix);
}
catch (Exception e) {
e.printStackTrace () ;
}
}
priorActivity = new String(activity);

}

return actualElement;

Listing 6.1 Der Ausschnitt aus dem Klassendiagramm von XpathParser.java

Der eingegebene Xpath-Ausdruck wird zuerst durch das Zeichen / aufgeteilt. Jeder Teil davon
wird dann durch die Methode getCorrectElement hintereinander analysiert. Um die Klasse
besser zu verstehen, wird hier ein Beispiel eines Xpath-Ausdrucks benutzt. Der Xpath-
Ausdruck ist "/process/sequence[1]/assign[1]"”. Als Xpath-Ausdruck ist der erste abgetrennte
Teil dann "process”. Der Anfangswert von actualElement ist dann OProcess. Weil der Wert
von activity jetzt "process” ist, kann die Methode getCorrectElement nicht aufgerufen
werden. Der Wert von priorActivity ist jetzt "process" und es folgt der n&hste zu
analysierende Teil des Xpath-Ausdrucks, beziehungsweise ist "sequence” der Wert von
activity. Der Wert von activitySuffix ist 1, das heil3, die erste <sequence>-Aktivita im
Prozess soll gefunden werden. Jetzt sind die erforderlichen Parameter fUr die Methode
getCorrectElement volisténdig. Weil in der Apache ODE zu jedem OProcess ein OSope als
Processscope hinzugefigt wird, kann das Objekt im ODE-Objekte-Modell in diesem OSope
gefunden werden (Siehe Listing 6.2). Das Ergebnis ist, dass OSequence als actualElement
gefunden wird.

56

else if (priorActivity.compareTo ("process") == 0) {
if (activity.compareTo ("faultHandlers")==0) {
result = ((OProcess)element) .procesScope.faultHandler;
} else if(activity.compareTo ("eventHandlers")==0) {
result = ((OProcess)element) .procesScope.eventHandler;
} else {
result = ((OProcess)element) .procesScope.activity;

}

Listing 6.2 Suche nach der Kindaktivit& von OProcess in der Methode getCorrectElement

Der Wert von priorActivity ist auf "sequence™ gesetzt. Jetzt wird der n&hste Teil "assign” im
Xpath-Ausdruck gesucht. Die ndigen Parametern von activity und activitySuffix fir die
Methode getCorrectElement sind "assign” und 1. Das folgende Listing 6.3 zeigt, wie das
richtige Objekt mit den oben beschriebenen Parametern zu finden ist. Ein OAssign mit
richtigem Suffix wird jetzt als das Ergebnis gefunden.

public OBase getCorrectElement (OBase element, String priorActivity,
String activity, String activitySuffix) {

OBase result = element;
int activityNumber = 1;
if (activitySuffix!=nullé&é& activitySuffix.compareTo("") !=0) {

activityNumber = new Integer (activitySuffix);

}

int 1 = 0;
if (priorActivity.compareTo ("sequence")==0) {
for (OActivity childActivity : ((OSequence)element) .sequence) {
if (activity.compareTo ("assign")==0) {
if (childActivity instanceof OAssign) {
i++;
if (i == activityNumber) {
result = childActivity;
break;

Listing 6.3 Suche nach bestimmtem OAssign in Sequence in der Methode getCorrectElement
6.3.2 lterate

In diesem Abschnitt wird die Implementierung von der Operation Iterate beschrieben. Es gab
einige Uberlegungen, wie man mittels der Iterate-Operation die bestimmten Aktivit&en erneut
ausfthren kann. Es muss Uberlegt werden, ob das BpelRuntimeContextimpl-Objekt, das
schon von dieser Prozessinstanz erzeugt wurde, noch einmal erzeugt werden muss. Wie eine
Kindaktivita innerhalb einer <sequence>-Aktivita neu ausgefthrt wird und wie eine neue
<sequence>-Aktivita zur Laufzeit hinzugefingt wird, muss auch bedacht werden. Was muss
mit den Aktivt&en getan werden, die durch suspend-Operationen nicht mehr ausfthrbar sind,
aber sich noch in der ExecutionQueue befinden? Der Ablauf der Erweiterung der Apache
ODE um die Iterate-Operation ist in Abbildung 6.2 durch ein UML-Sequenzdiagramm

57

graphisch dargestellt. Mittels des Sequenzdiagramms kdnanen die Interaktionen, die den
Nachrichten- und Datenaustausch zwischen mehreren Kommunikationspartnern umfassen,
besser ausgedrickt werden.

Dieses Sequenzdiagramm zeigt, dass der Wissenschaftler zuerst eine der ODE Nachricht zur
erneuten Ausfthrung einer Aktivit& schickt und gleich auch eine Antwort von der ODE
bekommt. Diese Nachricht wird dann von der ODE verarbeitet, dabei kann die richtige
Aktivita mittels der in der Nachricht existierenden Parametern durch die Methode
handleXPath in der Klasse XPathParser gefunden werden. Ein Job kann jetzt fUr Iterate
erstellt werden und wird dann in vielen Arbeitschritten erledigt. Die ausfthrlichen Details
Uber die Implementierung von Iterate werden in den folgenden Abschnitten beschrieben.

58

Wissenschaftler ProcessAndinstanceManagementimpl DebuggerSupport XPathParser JobDetails BpelProcess BpelRuntimeContextimpl SEQUENCE ExecutionQueuelmpl JacobVPL

Senden der Nachricht mit _uma:_m.n _ _ _ _ _

_ @az intancelD und Xpath
_ _ _ | _ | | __ |

>c¢c+n_90vm$ﬁ_o: >c¢c3mﬁgmﬁ:en_m _ _
_ iterate{Long, String) handleXPath _ _

in DebuggerSupport » iN XPathParser _ _
_ Rickantwort: die Informationen

ber eine bestimmte Instanz

- - ="

(ckantwort von OEleflent

mﬂmpﬂm: eines Objekts von jobDetails und _ _ _ _ _
Setzen Qm;ﬁ:gﬂm_ fur das Objekt _

Stellen die JobDetails als ein andauen
|

E

Job. _ Erzeugen eines neuen
BpelRuntimeCentextimp!

! Aufruf der Method
getOElement() un
_ _ _ _ Rickgabe des
Ergebnises Rickantwort der EQ von
_ _ ﬂ _ - - EpelRuntimeContextimpl _ _ _

_ _ _ _ _ Aufruf der Operation gfl scopeFrame() und _ ﬂ _
get_linkFrame() und Erfeugen einer neuen SEQ

Riickantwort der SEQ _ _

_ _ _ _ _ executeForiterateAndRe mnr_.nm_“p _ _
Lascnen das zu wiederholende OElement

inden EQ _

Emm_._emmmo:._am:,. <ﬂc !:Ec_._n_n_mzz.ycmjm: _
die VPU

Abbildung 6.2 Sequenzdiagramm fir Iterate-Operation
59

ProcessAndInstanceManagementimpl

Wie der Abschnitt 3.7 vorgestellt hat, hat die BPEL Management API in der Apache ODE
zwei Teile. Einer davon ist das Process Management Interface, das die Funktionalita
anbietet, um die zu den Prozessen geh&enden Instanzen zu verwalten (siehe die Abbildung
6.3). Der andere ist das Instance Management Interface. Das File pmapi.wsdl bietet einen
Web Service, das es den in den beiden Interfaces definierten Operationen ermcglicht, auf die
Prozesse und Instanzen in der ODE-Engine zuzugreifen.
ProcessAndInstanceManagementimpl implementiert eine API, die Operationen zur
Verflgung stellt, mit denen der Prozess und die Ausfthrung von diesem Prozess von auf&n
verfolgt und beeinflusst werden k&wnen [Ste08]. Die von dieser Klasse zur Verfigung
gestellten Funktionen sind beispielweise suspend, resume und terminate. FUr die
Implementierung im Bereich der BPEL Management API sind drei Aufgaben zu erledigen.

® Die Operation Iterate muss im InstanceManagement.java-Interface hinzugefigt werden.

® Die Klasse ProcessAndInstanceManagementimpl.java, die InstanceManagement
implementiert, muss auch um die Operation Iterate erweitert werden.

public InstanceInfoDocument iterate(final Long iid, String xpath)
throws ManagementException ({
getDebugger (iid) .iterate (iid, xpath);
return getInstancelInfo(iid);

}

Listing 6.4 Die Iterate-Operation in ProcessAndInstanceManagementimpl.java

® Alle abstrakten Definitionen und konkreten Beschreibungen von Iterate, z.B.<message>,
<portType>, <operation> und <binding>, missen im File pmapi.wsdl eingetragen werden.

<<InstanceManagement>> <<ProcessManagement>>

listinstances(String, String, int) listPro ce sses(String. String}

suspend(Long) listallProcesses(]

resume(Lang) getProcessinfo(QName]

terminate(Long) setRetired(QName, boolean)

iterate(Long, String) setProcessProperty(QName, QName, String)

\va

ProcessAndinstanceManagementimpl

_msgs: Messages

_log: Log

_db: BpelDatabase
_store: ProcessStore
_calender: Calendar
_server: BpelServerimpl

listinstances(String, String, int)
suspend{Long]

resume(Long]

terminate(Leng)

iterate(Long, String)

listProcesses(String, String)
listAllProcesses(]

getProcessinfo(QName)

setRetired(QName, boelean)
setProcessPropertylQName, QName, String)

Abbildung 6.3 Klassendiagramm fUr die Verwaltung von Prozessen und Instanzen

60

Nach der dritten Aufgabe kann die iterate Operation im
InstanceManagementSOAP12Binding wie in Abbildung 6.4 gezeigt aufgerufen werden.

i¢ Requestl n‘d‘ B
! |http://localhost:8080/ode/processes/InstanceManagement '] Y + @:‘

P =@ OD i
<

<“zoap:Envelope xmlns:soap="http: /S vl org/Z003/08/s0ap—en/* | N

-

“soap:Header /=
“<zoap:Body:>

R | XML
R | XML

“pmap:iterate
=iid=Z453</iidx
“xpathx/processssequence[l] fassigm(l] </ xpath>
</pmap:iterate>
“fzoap: Bodys
“/f=oap: Enwelopes

q

B [

Aut Headers.. Attachments.. WS-A WS-R.. IMSHead.. IMSProperty. | w e

[2l4]
=
=

Abbildung 6.4 Request von Iterate in SoapUI

DebuggerSupport

Zuerst missen der neue JobType beziehungsweise ITERATE in Scheduler.java, ein neues
Attribut, namlich oelement, und die getter- und setter-Methode fUr oelement in der Klasse
JobDetails.java hinzugefigt werden. Alles, was die Iterate-Operation in dem Prozess tut, wird
innerhalb einer Transaktion der Datenbank ausgefihrt. Durch eine Verbindung mit der
Datenbank kann ein Objekt des Typs ProcessinstanceDAO bekannt sein. Um die Operation
Iterate auszufthren, muss zuerst entschieden werden, ob der Prozess zu dem Zeitpunkt schon
durch die Operation Suspend pausiert wurde. Wenn der Zustand der Prozessinstanz suspended
ist, wird durch den Parameter Xpath die richtige Aktivit& im Form von OBase mittels des
Aufrufs von der Operation handleXPath() in der XPathParser Klasse gefunden werden. Dann
wird ein neues Objekt der JobDetails-Klasse erzeugt und es sollen auch Attribute wie
JobType, Intanceld, Processld und OElement gesetzt werden. Wichtig ist, das neue erzeugte
JobDetails-Objekt als einen andauernden Job in dem Ablaufplan der BPEL-Engine
anzusetzen. Der Job wird dann gleich von der ODE-Runtime durchgesetzt werden, indem der
Wert von Date auf null gesetzt ist (siehe Listing 6.5)

OBase element= new XPathParser () .handleXPath (xpath, process);
JobDetails we = new JobDetails () :;

we.setType (JobType.ITERATE) ;

we.setInstancelId (iid);
we.setProcessId(instance.getProcess () .getProcessId());
we.setOElement (element) ;

_process. engine. contexts.scheduler.schedulePersistedJob (we,null) ;

Listing 6.5 Ausschnitt aus der Klasse DebuggerSupport.java

61

BpelProcess

In der Klasse BpelProcess wird die Iterate-Operation weiterbearbeitet. Die in dieser Klasse
existerende Methode handleJobDetails wird dafUr zur Verfigung gestellt. Eine Instanz von
der Klasse JobDetails ist als einziger Parameter fUr diese Methode gesetzt. Das bedeutet, das
gefundene Objekt vom Typ OBase, was wir im vorherigen Abschnitt im Attribut OElement
gesetzt haben, kann von dieser Methode handleJobDetails weiter benutzt werden. Abh&ngig
von den unterschiedlichen Jobtypen werden die in dem Ablaufplan vorkommenden Jobs
individuell behandelt werden (siehe bitte Listing 6.6).

public void handleJobDetails (JobDetails jobData) {
JobDetails we = jobData;

switch (we.getType()) {
case TIMER:

case RESUME:
case ITERATE:

BpelRuntimContextImpl processInstanceb=
createRuntimeContextForIterate (procInstance,null) ;

Listing 6.6 Ausschnitt aus der Klasse BpelProcess.java

Eine neue Instanz der Klasse BPELRuntimeContextimpl wird zuerst erzeugt; dies ist eine
Implementierung des Interfaces BPELRuntimeContext. Eine neue Instanz der Kilasse
JacobVPU und eine Instanz der Klasse ExecutionQueuelmpl werden direkt im Konstruktor
dieser Klasse angelegt. Alle ausfihrbaren Aktivitden werden einer Warteschlange, die
ExecutionQueue genannt wird, hinzugeftpt. Jedes Objekt, das sich in dieser Warteschlange
beziehungsweise ExecutionQueue befindet, repr&sentiert eine Aktivita. Die Ausfihrung einer
Aktivita bedeutet, dass die run-Methode dieser Aktivita in Form von ACTIVITY ausgefthrt
wird. Wenn diese Aktivita ausgefihrt wird, wird das zu dieser Aktivit& gehdende Objekt
aus der ExecutionQueue entfernt und dann ausgefihrt.

public SEQUENCE (ActivityInfo self, ScopeFrame scopeFrame, LinkFrame
linkFrame, QName processname, Long pid) {

this(self, scopeFrame, linkFrame, ((0OSequence) self.o) .sequence,

CompensationHandler.emptySet (), true, processname, pid);
}

public SEQUENCE (ActivityInfo self, ScopeFrame scopeFrame, LinkFrame
linkFrame, List<OActivity> remaining, Set<CompensationHandler>
compensations, Boolean firstT, QName processname, Long pid) {

super (self, scopeFrame, linkFrame, processname, pid);

_remaining = remaining;

_compensations = compensations;

_firstTime = firstT;

process name = processname;

process ID = pid;

}

Listing 6.7 Der Ausschnitt der Klasse SEQUNECE

62

Weil wir zur Zeit nur die Aktivit&en innerhalb von einer <sequence>-Aktivit& durch die
Iterate-Operation nochmal ausfihren lassen und die Instanz von der Klasse SEQUENCE noch
nicht fertig ausgefthrt ist, kann diese Instanz Uber das Attribut _index der ExecutionQueue
gefunden werden. Eine neue Instanz von SEQUENCE soll fUr die Operation Iterate erzeugt
werden. In Listing 6.7 steht _remaining fUr die Menge der Kindaktivit&en, die sich innerhalb
dieser <sequence>-Aktivita befinden. Die erneut auszufthrende Aktivita geh&t auch zu den
Kindaktivit&en. In _index gibt es mehrere Objekte fir OSequence. Eines davon ist das Objekt
fir OSequence, was am Anfang der ExecutionQueue hinzugefigt wurde und in dem noch
keine Kindaktivitden ausgefthrt wurden. Das andere ist auch das Objekt fUr OSequence, aber
dieses Objekt enthdt weiniger Kindaktivit&en, weil einige davon schon fertig ausgefthrt und
aus der Menge der Kindaktivitden entfernt wurden. Diese zwei Objekte von OSequence
kénnen basierend auf ihrer L&nge unterschieden werden. Jetzt missen die erneut
auszufthrende Aktivitaa und auch ihre Nachfolgeaktivitden wieder der Menge der
Kinderaktivitden hinzugefihrt werden. Die anderen Werte von Parametern, die von dem
Konstruktor der Klasse SEQUENCE bendig werden, kéhnen auch bekannt sein. Jetzt kann
die neue Instanz der Klasse SEQUENCE erzeugt werden (siehe Listing 6.8).

sq = (SEQUENCE) itl.next();

scopeframe = sg.get scopeFrame () ;

linkframe = sqg.get linkFrame();

List<OActivity> activities = ((OSequence)sq. self.o) .sequence;
int a = activities.indexOf (element) ;

List<OActivity> as = new ArrayList<OActivity> ()

for (int i1 = a; 1< activities.size();i++){

as.add(activities.get (1))
}

SEQUENCE sequence;

QName process name;

Long processID;

process name = we.getProcessId();

processID = we.getInstancelId();

sequence = new SEQUENCE (sq. self, scopeframe, linkframe, as,
CompensationHandler.emptySet (), false, process name, processID);

Listing 6.8 Erzeugen einer neuen Instanz der Klasse SEQUENCE

SEQUENCE und ACTIVITY

Jetzt soll die Klasse SEQUENCE né&hner betrachtet werden. Jede Klasse von Aktivit&en in der
ODE-Runtime erweitert die Klasse ACTIVITY. ACTIVITY, wie der Abschnitt 3.5 vorgestellt
hat, erweitert die Klasse BPELJacobRunnable, die ebenfalls auch die Klasse JacobRunnable
erweitert. Wir haben nur eine neue Instanz von BPELRuntimeContextimpl erzeugt, aber diese
BPEL-Instanz wird noch nicht gestartet. Das bedeutet, dass die Instanz von JacobVPU auch
nicht 1&uft. Deshalb werden einige Anderungen in der Klasse ACTIVITY gemacht. Listing
6.9 zeigt den originalen Konstruktor dieser Klasse und Listing 6.10 stellt den neuen
geéanderten Konstruktor dieser Klasse dar. Wenn in Listing 6.9 die Methode
getBpelRuntimeCntext() aufgerufen wird, muss eine aktive Instanz von JacobThread

63

gefunden werden. Aber zum aktuellen Zeitpunkt l&ft die Instanz von JacobVPU nicht und
deshalb kann keine aktive Instanz von JacobThread gefunden werden.

public ACTIVITY (ActivityInfo self, ScopeFrame scopeFrame,
LinkFrame linkFrame) {

process name = getBpelRuntimeContext () .getBpelProcess().getPID();
process ID = getBpelRuntimeContext () .getPid();

assert self != null;

assert scopeframe != null;

assert linkFrame != null;

_self = self;

_scopeFrame = scopeFrame;

_linkFrame = linkFrame;

_terminatedActivity = false;

getFrames () ;

}

Listing 6.9 Der originale Konstruktor der Klasse ACTIVITY

In dem neuen Konstruktor der Klasse ACTIVITY sind Prozessname und Prozessinstanzld auf
die bekannten Parametern gesetzt.

public ACTIVITY (ActivityInfo self, ScopeFrame scopeFrame,
LinkFrame linkFrame, QName processname, Long pid) {

assert self != null;

assert scopeFrame != null;

assert linkFrame != null;

process name = processname;
process ID= pid;

_self = self;

__scopeFrame = scopeFrame;
_linkFrame = linkFrame;
_terminatedActivity = false;
getFrames () ;

Listing 6.10 Der ge&anderte Konstruktor der Klasse ACTIVITY

BpelRuntimeContextImpl

Des Weiteren wird der Konstruktor der Klasse SEQUENCE auch ge&ndert. Jetzt wird die
neue Instanz der Klasse SEQUENCE schon erfolgreich erzeugt. Jetzt kann die neu kreierte
Instanz von BpelRuntimeContext endlich ausgefihrt werden. Weil die neue <sequence>-
Aktivit& in den JacobVPU angefigt wird, muss auch eine neue Methode zu der Ausfihrung
von BpelRuntimeContext speziell fUr die Iterate-Operation entwickelt werden. Hier wird sie
executeForlterateAndReexecute() genannt. Diese Methode braucht zwei Parametern. Einer
davon ist die auszufthrende Aktivita in Form von OActivity. Der andere ist die neu erzeugte
Instanz der Klasse SEQUENCE.

64

public void executeForIterateAndReexecute (OActivity element,
SEQUENCE sq) {
IncomingMessageHandlerincMess=IncomingMessageHandler.getInstance () ;
boolean canReduce = true;
ExecutionQueuelImpl eqgl;
Set<Continuation> reactions = new HashSet<Continuation>();

Listing 6.11 Die fir Iterate neu erstellte Methode executeForlterateAndReexecute()

Alle in der ODE-Runtime auszufithrenden Aktivit&en werden als ein Objekt der Klasse
Continuation, die ebenfalls auch die Klasse ExecutionQueueObject erweitert, in _reactions
gespeichert. Dabei ist _reactions ein Attribut von ExecutionQueue. Wichtig ist hier, die zu
wiederholende Aktivit& aus der ExecutionQueue zu entfernen, das heil3, sie aus _reactions
zu entfernen. Nach der Entfernung kann die neue Instanz der Klasse SEQUENCE endlich der
JacobVPU hinzugefigt werden. Weil die Instanzen vom OActivity in ODE-Runtime auf der
unterschiedliche Weise repr&entiert werden, muss eine Methode ergedacht werden, um das
richtige passende Objekt der Klasse Continuation fUr die zu wiederholende Aktivit& in
_reactions zu finden. Beispielsweise wird das Objekt der Klasse OAssign als {OAssign :
Assign2, joinCondition=null}, das Objekt der Klasse OWait als {OWait#41-wait} und das
Objekt der Klasse OThrow als {OThrow#43-Throw} dargestellt. Das folgende Listing zeigt,
wie die Aktivita aus der ExecutionQueue zuerst gefunden, daraus entfernt und die als
Parameter mitgebrachte Instanz der SEQUENCE wieder im JacobVPU eingesetzt wird.

65

eql=(ExecutionQueuelImpl) vpu. executionQueue;

Continuation continuation = null;

Iterator <Continuation> it = reactions.iterator();

String elementname = element.toString();

//find the key name of this element. By different OActivity the
//names are also

//different, for example {OAssign : Assign2, joinCondition=null}
// and {OWait#4l-wait}and by {OThrow#43-Throw }

int inof = elementname.indexOf ("#");

int inof2 = elementname.indexOf ((char) 32);

String name;

String activityname;

if (inof == -1){
name = elementname.substring(2,inof2);
activityname = name.toUpperCase();

}

else(

name = elementname.substring (2, inof);

activityname = name.toUpperCase() ;

}

//to delete the activity from the reactions, which should be
// iterated.

while (it.hasNext ()) {

Continuation tmpl = (Continuation)it.next();
if (!'tmpl.getClosure () .getRunner ()) {
if (tmpl.getClosure () .toString() .contains (activityname)) {
continuation = tmpl;
break;

}

}

reactions.remove (continuation) ;

//put the new "SEQUENCE" into the JacobVPU
_vpu.inject (sq);

Listing 6.12 Der Ausschnitt aus der Methode executeForlterateAndReexecute()

Schliefdich wird der JacobVPU ausgefihrt und die Aktivité kann erfolgreich noch einmal
ausgefihrt werden.

6.3.3 Re-execute

Im Kapitel 5 wurden das Konzept fUr die Operation Re-execute und auch die Unterschiede
zwischen den beiden Operationen Iterate und Re-execute schon vorgestellt. In diesem
Abschnitt werden nur die zus&zlichen Implementierungsaufgaben von Re-execute im
Vergleich zu Iterate beshrieben. Im folgenden Sequenzdiagramm fir Re-execute werden die
Unterschiede in rot dargestellt(siehe die Abbildung 6.5).

66

Wssenschaftler ProcessAndinstanceManagementimpl DebuggerSuppert XPathParser JobDetails BpelProcess BpelRuntimeContextimpl SEQUENCE ExecutionQueuelmpl JacobVPL
Senden der Nachricht mit _um_.me.n _ _ _ _ _ _
on intancelD und Xpath
_@ | | | | _ | | |
Aufruf der Qperation Aufruf der Methade _
_ reexecute(Long, String) _ handlexPath _ __ _ _
Debuggersupport » N XPathParser _ _
_ Rickantwort: die Informationen _ _ _ _ _
tber eine bestimmte Instanz kantwort von OEleffent _
_.A. - - - = Erzeugen eines Objekts von jobDetails und _ _ _ _ _
_ Setzen %;ﬁ:vcﬁm fur das Objekt N _ _ _ _
I " .
_ F Jstellen die JobDetails als ein andauerddllob. _ wnm_m,umm m_:mm zﬁmm,mj _
elRuntimeContextim
_ _ _ Aufruf der Method i ° _ _ _
getOElement() un
_ _ _ _ Ruckgabe des Rickantwort der EQ von | _ _
Ergebnises BpelRuntimeContextim
| | | | il T | | |
Aufruf der Meth:
_ _ _ _ _ reloadSnapshot() _ _ _

' scopeFrame() und
get_linkFrame() und Erfleugen einer neuen SEQ _ _

Rickantwort der SEQ
« - e |
Aufruf von

executeForiterateAndrefceute() m_ _
Léschen das zu wieddrholende OElement
inden EQ

Lg

die VPU ; ,

Fugen die SEQ in dem <_u_c hinzu und dann Ausfuffren

Abbildung 6.5 Das Sequenzdiagramm fUr die Operation Re-execute
67

FU Re-execute sind zwei neue Methoden né&nlich reexecute() in der Klasse
DebuggerSupport.java und reloadSnapshot() in der Klasse BpelProcess.java, hinzugefigt
worden. Der einzige Unterschied zwischen reexecute() und iterate() in DebuggerSupport.java
liegt in den Namen der Methode. Die andere neue Methode reloadSnapshot() wird sp&er
vorgestellt. AufZr den in Abbildung 6.6 repr&entierten Unterschieden beziehungsweise den
zwei neuen Methoden gibt es noch zus&zliche Aufgaben, um die Operation Re-execute zu
realisieren. Der Abschnitt 3.3 hat schon kurz vorgestellt, dass die Engine-Runtime der Apache
ODE die Data Access Objects (DAO) als die Schnittstelle fCr die Persistenzebene enth&t. Die
Persistenzebene ist normalerweise eine relationale Datenbank. Die durch DAOs dauerhaft
gespeicherten Informationen enthalten die Daten (ber die Prozessinstanzen, Werte von den
Variablen, usw. Die Apache ODE bietet zwei verschiedene Implementierungen von DAOSs an.
Eine Implementierung benutzt Hibernate, ein Open-Source-Persistenz- und ORM (Object-
Relational Mapping)-Framework fUr Java [WHIB]. Die andere Implementierung basiert auf
Apache OpenJPA, welches die Java Persistence API(JPA) implementiert, um die Java Objects
dauerhaft abzuspeichern [Son08]. In dieser Arbeit wird nur die Implementierung der Apache
OpenJPA betrachtet.

DAOs

In dem Paket bpel-dao bietet die APIs im Sourcecode die Ebene der DAOs an. Diese APIs
sind Dbeispielsweise ProcessinstanceDAO, ScopeDAO, PartnerlinkDAO und auch
XmlDataDAO. ScopeDAO repré&sentiert die Instanz von einem BPEL Scope. PartnerlinkDAO
stellt die Referenzen der Endpunkte (EPR) von einer speziellen Partnerlinkrole dar.
XmlIDataDAO repr&entiert die XML-Daten, die zur Speicherung von BPEL-Variablen
dienen. In ProcessinstanceDAO kann ein ScopeDAO erzeugt werden und in ScopeDAO kann
ein PartnerlinkDAO erstellt werden. In dem Paket bpel-jpa gibt es die Implementierung von
OpenJPA fir die DAOs. Die folgende Abbildung 6.6 zeigt ein Klassendiagramm von DAOs
und auch ihren jeweiligen Implementierungsklassen.

68

ProcessinstanceDAQ

ProcessinstanceDAOImMpl

_instanceld: Long

_scopes: Collection=ScopeDAD>
_rootScope: ScopeDAOImMpl
_faultid: long

ScopeDAO

ScopeDAOImMpl

_scopelnstanceld: Long
_modelid: int
_name: 5tring

getinstanceld(): Long

createScope(ScopeDAO, String, int): ScopeDAO

PartnerLinkDAC

PartnerLinkDAQImMpl

_id: Leng

_myEPR: String
_myEPRElement: Element
_partnerEPR: String
_partnerePRElement: String
_scopeld: Long

_scope: ScopeDAOImpl

getscopelD(): Long
getMyEPR(): Element
getMyRoleName(): String
getPartnerEPR(): Element
setMyEPR(Element): void
setPartnerEPR(Element): void

_processinstance: ProcessinstanceDAOImp

getPartnerLinks(): Collection=PartnerLinkDAO>
getvariables(): Collection<XmlDataDAD>
getProcessinstance(): ProcessinstanceDAC

createPartnerLink(int, String, String, String): PartnerLinkDAC

1
XmlDataDAD
*
XmlDataDAOImpl
_id: Long
_data: String
_node: Node

_name: String
_scopeld: Long
_scope: ScopeDAOIMpl

getScopelnstanceld(): Long
get(): Node

getName(): String
getScopeDAO(): ScopeDAC
getProperty(String): String
set{Node): void
setProperty(String, String): void

Abbildung 6.6 Klassendiagramm von vier Klassen in DAO

ODE_PROCESS_INSTANCE

ODE_SCOPE

0..%

ODE_XML_DATA

ODE_PROCESS_INSTANCE Table

0.%

ODE_PARTNER_LINK

ODE_SCOPE Table

PROCESS_ID

D
INSTANCE_STATE {references ODE_PROCESS}

SCOPE_ID

MODEL_ID PROCESS_INSTANCE_ID

{references ODE_PROCESS_INSTANCE}

ODE_XML_DATA Table

ODE_PARTNER_LINK

SCOPE

XML_DATA_ID DATA

ID

{references OD_E75COPE}

PARTNER_LINK_ID)| MY EPR

SCOPE_ID
{references ODE_SCOPE}

Abbildung 6.7 Datenmodell von vier Klassen in DAO

69

Die Abbildung 6.7 stellt das Datenmodell von den Tabellen dar, die durch die vier
Implementierungsklassen der DAOs erzeugt werden. Eine Prozessinstanz kann mehrere
Scopeinstanzen haben und eine Scopeinstanz kann auch mehrere Variablen und Partnerlinks
besitzen. Das heil3, dass die Beziehung zwischen Prozessinstanz und Scopeinstanz one-to-
many ist. Gleichermal%n ist die Beziehung zwischen Scopeinstanz und Variablen und die
Beziehung zwischen Scopeinstanz und Partnerlink auch one-to-many.

Wie der Abschnitt 5.3 Uber das Konzept von Re-execute vorgestellt hat, missen auch einige
DAOs fur die Snapshots erzeugt werden, um die Werte von Partnerlinks und Variablen fir
jede Aktivita abzuspeichern. Wenn eine Aktivit&a durch die Operation Re-execute nochmals
ausgefthrt wird, sollen die schon gespeicherten Daten dieser Aktivit& aus den Snapshots
wieder geladen werden. Das bedeutet, dass die Daten von dieser zu wiederholenden Aktivita
in den DAOs von PartnerLinkDAO, XmIDataDAO, und ScopeDAO durch die Daten dieser
Aktivita aus Snapshots Uberschrieben werden missen. Die Snapshots k&anen in gewisser
Hinsicht als Zwischenspeicher betrachtet werden. Die ODE bietet noch keine Funktionalit&,
Snapshots zu speichern, deshalb muss sie in dieser Arbeit entsprechend nachger(stet werden.
Die folgende Abbildung 6.8 zeigt das Klassendiagramm von DAQOs fir Snapshots.

ProcessinstanceDAQ SnapshotDAC
ProcessinstanceDAOImMpl SnapshotDAOIMpl

instanceld: Long

scopes: Collection<ScopeDAO>
rootScope: ScopeDAOImMpl

_faultid: long

_snapshot: Collection<SnapshotDAO>

- _id: Long

- _processinstanceld: Long

_xpath: String

_variables: Collection<SnapshotvariabelDACI>
_partnerlinks: Collection<SnapshotPartnerlinksDAO>
_processinstanceDao: ProcessinstanceDAOImpl

createScope(ScopeDAO, String, int): ScopeDAC |1 =
getinstanceld(): Long —
createSnapshet(String, Leng): SnapshotDAC
getSnapshot(}: Collection<SnapshotDAO=

createSnapshotPartnerlink{int,String, String.String): SnapshotPartnerlinksDAO
createSnapshotVariable{String): SnapshotvariableDAO
getProcessinstanceDAO(): ProcessinstanceDAO

getxpath(): String

getVarnabls(): Collection<SnapshetVariableDAO>

getPartnerlinks(): Collection<SnapshotPartnerlinksDAO>

SnapshotPartnerinksDAC

1

T SnapshotVariableDAO
*®

SnapshotPartnerlinksDACImMpl T

_id: Leng
_snapshotid: Long SnapshetVariableDACImpl
_snapshot: SnapshotDACImMpl
_myEPR: String
_myEPRElement: Element id: Long

_partnerEPR: String snapshotld: Long
_partnerEPRElement: String snapshot: SnapshetDAGIMpl
_scopeld: Leng data: String

node: Node

name: String

scopeld: Long

getSnapshotiD{): Lang -
setSnapshetDAO(SnapshotDAOIMpl): void
setScopelnstanceld(Long): void

getScopelnstanceld(): Long
getMyEPR(): Element
getMyRoleNamel(): String
getPartnerEPR{): Element
setMyEPR(Element): void
setPartnerePR(Element): void

setScepelnstanceld(Long):void
getScopelnstanceld(): Long
getSnapshotiD(): Long
setSnapshotDAO(SnapshotDAOIMpl): void
get(): Node

getNamel): String

set{Node): void

Abbildung 6.8 Das Klassendiagramm fir Snapshots

70

Wie das Klassendiagramm von ProcessinstanceDAOImpl gezeigt hat, werden zwei neue
Methoden, namlich createSnapshot und getSnapshotDAO und auch das neue Attribut,
nanlich _snapshot eingebaut (siehe Listing 6.13). Mit den neuen Methoden kann ein
SnapshotDAO fiUr jede Aktivit& erzeugt werden, weil es ein ProcessinstanceDAO fUr jede
Aktivitaa gibt. Deshalb k&wnen auch die SnapshotPartnerlinksDAO und
SnapshotVariableDAO erstellt werden. Wie das SnapshotDAO genau erzeugt werden soll,
wird im folgenden Abschnitt erkl&t. Zu jedem Snapshot wird auch der Xpath dieser Aktivit&
abgespeichert.

Public SnapshotDAO createSnapshot (String xpath, Long
processinstancelId) {
SnapshotDAOImpl snap = new SnapshotDAOImpl (processinstanceld,
xpath, this);
_snapshot.add(snap) ;
// Must persist the snapshotDAO to generate a snapshot ID
getEM() .persist (snap);
return snap;
}
//to read the SnapshotDAO collection from the ProcessInstanceDAO
public Collection <SnapshotDAO> getSnapshotDAO () {
return snapshot;

}

Listing 6.13 Die neuen Methoden in ProcessIinstanceDAOImpl.java

Die folgende Abbildung 6.9 stellt das Datenmodell von SnapshotDAOSs dar.

1 0.*
ODE_PROCESS_INSTANCE ODE_SNAPSHOT_DATA
1 1
0.* 0.*
ODE_SNAPSHOT_VARIABLE ODE_SNAPSHOT_PARTNERLINKS
ODE_PROCESS_INSTANCE Table ODE_SNAPSHOT DATA Table
PROCESS_ID PROCESS_INSTANCE_ID
b INSTANCE_STATE {references ODE_PROCESS} SNAPSHOT_ID | ACTIVITY_PATH {references ODE_PROCESS_INSTANCE}
ODE_SNAPSHOT_VARIABLE Table ODE_SNAPSHOT_PARTNERLINKS
SNAPSHOT_ID
D DATA SNAPSHOT_ID D MY_EPR

{references ODE_SNAPSHOT DATA} {references ODE_SNAPSHOT_DATA}

Abbildung 6.9 Datenmodell fUr neue SnapshotDAQOs

Eine Prozessinstanz hat mehrere SnapshotDAO und jeder SnapshotDAO kann auch mehrere
SnapshotPartnerlinksDAO und SnapshotVariableDAO enthalten. Aber durch den FK (Fremd
Key) kann die Beziehung von one-to-many eindeutig dargestellt werden.

71

ACTIVITY

Um die Snapshots fir jede Aktivita abspeichern zu k&nen, muss eine Methode in
ACTIVITY.java geschrieben werden. Weil alle in der ODE-Runtime laufenden Aktivit&en
diese Klasse erweitern, kéinen die Snapshots fUr jede Aktivita dann durch den Aufruf dieser
Methode erzeugt werden. Listing 6.14 zeigt die neue Methode storeSnapshot().

public SnapshotDAO storeSnapshot () {
String xpath;
ProcessInstanceDAO pi;
xpath = this. self.o.getXpath();
pi = getBpelRuntimeContext () .getProcessInstanceDao () ;
//create a snapshot for this processInstanceDAO now!
SnapshotDAO snapshotdao;
snapshotdao = pi.createSnapshot (xpath, pi.getInstancelId()):;
//create a collection for the SnapshotPartnerlinks
Collection<PartnerLinkDAO> partnerlinks ;

//create a collection for the SnapshotVariables
Collection<XmlDataDAO> variables;
SnapshotPartnerlinksDAO sp ;

SnapshotVariableDAO var;

for (ScopeDAO scope : pi.getScopes/()) {

partnerlinks = scope.getPartnerLinks();

Long scopeinstancelD;

scopeinstancelID =scope.getScopelnstanceld() ;

variables = scope.getVariables();
//put the content of the SnapshotPartnerlinks and SnapshotVariables
//into the SnapshotDAO

for (PartnerLinkDAO partnerlink : partnerlinks) {

Sp=
snapshotdao.createSnapshotPartnerlink (partnerlink.getPartnerLinkModelId
0), partnerlink.getPartnerLinkName (), partnerlink.getMyRoleName (),

partnerlink.getPartnerRoleName ()) ;
sSp.setMyEPR (partnerlink.getMyEPR2 ()) ;

for (XmlDataDAO variable : wvariables) {
var=

snapshotdao.createSnapshotVariable (variable.getName ()) ;
var.set (variable.get());

return snapshotdao;

}

Listing 6.14 Die Methode storeSnapshot() in ACTIVITY .java

Zuerst wird eine Instanz von ProcessinstanceDAO aus dem BpelRuntimeContext ermittelt
und dann wird eine Instanz von SnapshotDAO durch den Aufruf der Methode
createSnapshot() erzeugt. Dann werden die Instanzen von SnapshotPartnerlinksDAO und
SnapshotVariableDAO erstellt. Alle Partnerlinks und Variablen inklusive auch ihren
Attributen, die durch die Methoden getPartnerLinks() und getVariables() in den
PartnerLinkDAO und XmIDataDAO gespeichert sind, sollen in SnapshotPartnerlinksDAO
und SnapshotVariableDAO noch einmal gespeichert werden.

72

Weil die Methode storeSnapshot() vor der Ausfthrung jeder Aktivita aufgerufen werden
muss, muss diese Methode in der run()-Methode vor dem Event Activity Ready in allen
Aktivitdaenklassen in der ODE-Runtime eingefUpgt werden.

BpelProcess

Jetzt sind alle notwendigen Daten von Partnerlinks und Variablen fUr die Operation Re-
execute in SnapshotDAO, SnapshotPartnerlinksDAO und SnapshotVariableDAO gespeichert.
In der Methode handleJobDetails wird die Operation Reexecute auch wie Iterate behandelt.
Der einzige Unterschied ist, dass eine zusdzliche Methode, namlich reloadSnapshot()
aufgerufen werden muss, bevor eine neue Instanz von SEQUENCE erzeugt wird. Diese
Methode dient dazu, dass die Daten ber Partnerlinks und Variablen aus
SnapshotPartnerlinksDAOs und SnapshotVariablesDAO wieder in den PartnerlinksDAO und
XmlDataDAO geladen werden k&nnen. Das heif3, dass die aktuellen Werte von Partnerlinks
und Variablen von dieser zu wiederholenden Aktivit&, die schon ausgefthrt wurde, durch die
Werte, die vor der letzten Ausfihrung dieser Aktivit& von storeSnapshot() abgespeichert
wurden, tberschrieben werden. Die Methode reloadSnapshot() wird auch in BpelProcess.java
eingefiyt (siehe Listing 6.15).

public void reloadSnapshot (Long processInstanceld, String xpath) {
ProcessInstanceDAO pi dao;
Collection<SnapshotPartnerlinksDAO> spl;
Collection<SnapshotVariableDAO> svar;
//get the current ProcessInstanceDAO with the given
//ProcessInstancelD
pi dao = this.getProcessDAO () .getInstance (processInstanceld);
// get the data of the SnapshotDAO from the ProcessInstanceDAO
Collection<SnapshotDAO> s = pi dao.getSnapshotDAO () ;

Collection<ScopeDAO> scopes = pi_dao.getScopes();

Collection<PartnerLinkDAO> partnerlinks;
Collection<XmlDataDAO> variables;

for (SnapshotDAO snapshot : s){
//only get the snapshot, which hat the given xpath!

if (snapshot.getXpath () .equals (xpath)) {
spl = snapshot.getPartnerLinks();
svar = snapshot.getVariables();

for (ScopeDAO scope : scopes) {
for (SnapshotPartnerlinksDAO snapshotpl : spl) {
Long scope id sp =snapshotpl.getScopelnstancelId();
for (PartnerLinkDAO ps : partnerlinks) {

for (SnapshotVariableDAO snapshotvar : svar) {
Long scope_id var = snapshotvar.getScopelnstanceld();
for (XmlDataDAO variable :variables) {

Listing 6.15 Die Methode reloadSnapshot() in BpelProcess.java

73

Listing 6.14 zeigt, dass die Methode reloadSnapshot() zwei Parameter braucht. Sie sind
Prozessinstanceld und xpath, um die bestimmten ProcessinstanceDAOs und die bestimmten
SnapshotDAOs fUr die bestimmte Aktivit& zu finden. Durch xpath k&nen nur die Daten in
SnapshotDAOs fUr die Aktivit&, bei der die erneute Ausfihrung starten wird, gefunden
werden. Anhand von ProcessinstanceDAO kann das dazu geh&ende ScopeDAO produziert
werden und mittels ScopeDAO k&inen die Daten von PartnerlinkDAO und XmIDataDAO
ermittelt werden. Anschlief®nd werden die Werte von Partnerlinks und Variablen durch die
Werte aus SnapshotPartnerlinksDAO und SnapshotVariableDAO (berschrieben. Nach dem
Aufruf von der Methode reloadSnapshot() wird dann eine neue Instanz von SEQUENCE
erzeugt und die Prozessinstanz der Methode executeForlterateAndReexecute() wird
ausgefthrt. In dieser Methode executeForlterateAndReexecute() wird der JacobVPU
ausgefthrt und die Aktivita kann erfolgreich noch einmal durch Re-execute ausgefthrt
werden.

74

7. Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurden die M&jlichkeiten untersucht, mit denen Workflow-
Maschinen an die Anforderungen von Wissenschaftlern angepasst werden ké&nnen. Solche
Mdglichkeiten kénen den Wissenschaftlern bei Entwurf, Ausfihrung, Uberwachung und
Analyse von Experimenten helfen. Dazu wurde ein Konzept entwickelt, um Aktivit&en in
Workflows von den Wissenschaftlern erneut ausfthren zu kéanen. FUr die Wiederholung von
Aktivit&en gibt es 2 Szenarien. Erstens ist dies die einfache Iteration wie in einer Schleife.
Zweitens ist es dies das erneute Ausfthren der Aktivit&en, als h&te es die Ausfthrung davor
nicht gegeben. Das Konzept besteht deshalb aus den zwei Operationen Iterate und Re-
execute, die diese beiden Szenarien abdecken. Das Konzept zu den zwei Operationen wurde
fir die Sprache WS-BPEL in verschiedenen Fdlen erstellt.

Auf Basis der oben beschriebenen Erkenntnisse wurde die Apache ODE prototypisch um die
Operationen Iterate und Re-execute erweitert. Die Operation Iterate ermcglicht es den
Wissenschaftlern, die Aktivit&en innerhalb einer <sequence>-Aktivit&a an beliebigen Stellen
erneut auszufithren. Die Operation Re-execute ermcylicht es den Wissenschaftlern, die
Aktivit&en innerhalb von einer <sequence>-Aktivit& an beliebigen Stelle mit den Werten
von Partnerlinks und Variablen, die bei ihrer letzten Ausfthrung gUtig waren, noch einmal
auszufthren.

Das im Rahmen dieser Diplomarbeit entwickelte Konzept von den zwei Operationen kann als
Basis zu der Entwicklung einer Workflow-Maschine fir die Sprache WS-BPEL, die &nliche
Funktionalité anbietet, dienen. Der in dieser Arbeit entwickelte Prototyp kann zu der
Weiterentwicklung der Apache ODE benutzt werden. Weil in dieser Arbeit nur die Sequence-
Aktivit& zur Implementierung benutzt wurde, sind zukinftige Arbeiten mdglich, die
Aktivitden innerhalb der Flow-Aktivita, While-, forEach- und auch repeatUntil-Aktivit&en
durch Iterate und Re-execute erneut ausfithren. FUr das Re-execute soll in der Zukuft
umgesetzt werden, die zu wiederholenden Aktivitéen vor der erneuten Ausfihrung erst zu
kompensieren, wie im Kapitel 5 beschrieben wurde.

75

Literaturverzeichnis

[BioF]E-BioFlow.
URLhttp://janus.cs.utwente.nl:8000/twiki/bin/view/BioRange/BioRangeSoftware#e_BioFlow.

[Bur05]H. Burkhart: Webtechnologien. 2005.
URL http://fgb.informatik.unibas.ch/lectures/archive/SS2005/CS211%20webtech/L11_f.pdf.

[EKU™10]H. Eberle; O. Kopp; T. Unger; F. Leymann: Retry Scopes to Enable Robust
Workflow Execution in Pervasive Environments. In: Proceedings of the 2nd Workshop on
Monitoring, Adaptation and Beyond (MONA+), 2009.

[Dos05]W. Dostal: Service-orientierte Architekturen mit Web Services.
Spektrum Akademischer Verlag, 2005.

[HWO5]T. Holzherr, M. Wodischek: Java RMI und SOAP. 2005. URL https://www.ba-
horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2
003_02.pdf.

[IBM]IBM. URL
http://publib.boulder.ibm.com/infocenter/cicsts/v4rl/index.jsp?topic=/com.ibm.cics.ts.webser
vices.doc/concepts/soap/dfhws_messagepath.html.

[Int06]S. Intas: Konzept fUr die Einbindung von Webservices in Ereignisgesteuerte
Prozessketten, 2006.

URL http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-
Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgeste
uerte_Prozessketten.pdf.

[LROO]F. Leymann, D. Roller: Production Workflow - Concepts and Techniques. Prentice
Hall, 2000.

[Man07]K. Manhart: Web Services implementieren mit WSDL, 2007.
URL http://www.tecchannel.de/webtechnik/soa/464653/web_services_implementieren_mit_w
sdl/index2.html.

[Mas07]D. Masak: SOA? Serviceorientierung in Business und Software. Springer Verlag,
2007. URL
http://books.google.de/books?id=0JNivfep8DMC&printsec=frontcover&dq=SOA+Tempel#v
=onepage&q&f=true.

[Mel10]l. Melzer et al.: Service-orientierte Architekturen mit Web Services. Konzepte —
Standards — Praxis. 2010 4™ Edition, 2010. URL
http://books.google.de/books?id=e3gnVPngoUoC&pg=PA13&dg=SOA+Tempel&hl=de&ei=
FWdcTYqgsApDz4gbL102bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ
6AEWAQ#v=0nepage&q=SOA%20Tempel&f=false.

[MOB]MOBY. URL http://biomoby.open-bio.org/index.php/what-is-moby/.

76

http://janus.cs.utwente.nl:8000/twiki/bin/view/BioRange/BioRangeSoftware#e_BioFlow
http://fgb.informatik.unibas.ch/lectures/archive/SS2005/CS211%20webtech/L11_f.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-90&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-90&mod=0&engl=0&inst=IAAS
https://www.ba-horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2003_02.pdf
https://www.ba-horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2003_02.pdf
https://www.ba-horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2003_02.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/concepts/soap/dfhws_messagepath.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/concepts/soap/dfhws_messagepath.html
http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgesteuerte_Prozessketten.pdf
http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgesteuerte_Prozessketten.pdf
http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgesteuerte_Prozessketten.pdf
http://www.tecchannel.de/webtechnik/soa/464653/web_services_implementieren_mit_w%20sdl/index2.html
http://www.tecchannel.de/webtechnik/soa/464653/web_services_implementieren_mit_w%20sdl/index2.html
http://books.google.de/books?id=e3qnVPngoUoC&pg=PA13&dq=SOA+Tempel&hl=de&ei=FWdcTYqsApDz4gbL1o2bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ6AEwAQ#v=onepage&q=SOA%20Tempel&f=false
http://books.google.de/books?id=e3qnVPngoUoC&pg=PA13&dq=SOA+Tempel&hl=de&ei=FWdcTYqsApDz4gbL1o2bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ6AEwAQ#v=onepage&q=SOA%20Tempel&f=false
http://books.google.de/books?id=e3qnVPngoUoC&pg=PA13&dq=SOA+Tempel&hl=de&ei=FWdcTYqsApDz4gbL1o2bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ6AEwAQ#v=onepage&q=SOA%20Tempel&f=false

[OASIS]OASIS. URL http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html.
[ODE]Apache ODE. URL http://ode.apache.org/.

[ODE1] Apache ODE. URL http://ode.apache.org/ws-bpel-20-specification-compliance.html
[ODEZ2] Apache ODE. URL http://ode.apache.org/architectural-overview.html

[RNS96] Research Note SPA-401-068, 12 April 1996, "'Service Oriented' Architectures, Part
1" und SSA Research Note SPA-401-069, 12 April, 1996.

[Sal07]A. Salnikow: Ermittlung von Testabdeckungsmetriken in BPEL-Kompositionen, 2007.
URL http://www.se.uni-hannover.de/documents/studthesis/MSc/Alex_Salnikow-
Ermittlung_von_Testabdeckungsmetriken_in_BPEL.pdf.

[Sch07]B. Schurr: Analyse von XPath-Ausdritken in BPEL Prozessbeschreibungen. DIP-
2687, 2007.

[Sch11]T. Schliemann: Unterstiiung des "Model-as-you-go"-Ansatzes durch Modell-
Versionierung und Instanzmigration., DIP-3121, 2011.

[SK10]M.Sonntag; D. Karastoyanova: Next Generation Interactive Scientific Experimenting
Based On The Workflow Technology. In: Alhajj, R.S. (Hrsg); Leung, V.C.M. (Hrsg); Saif, M.
(Hrsg); Thring, R. (Hrsg): Proceedings of the 21st IASTED International Conference on
Modelling and Simulation (MS 2010), 2010.

[SOAO6]Reference Model for Service Oriented Architecture 1.0, Commit Specificationl, 2
August, 2006.

[Son08]M. Sonntag: Conceptual Design and Implementation of a BPEL"" Workflow Engine
With Support for Message Exchange Patterns., DIP-2822. 2008.

[Ste08]T. Steinmetz: Ein Event-Modell fir WS-BPEL 2.0 und dessen Realisierung in
Apache ODE ., DIP-2729, 2008.

[Tap04]Carlos C. Tapang: Web Services Description Language (WSDL) in Uberblick, 2004.
URL http://www.microsoft.com/germany/msdn/library/xmlwebservices/WebServices
DescriptionLanguageWSDLImUeberblick.mspx?mfr=true.

[UIm]T. Uml: EinfUhrung in SOAP,URL http://www.devtrain.de/news.aspx?artnr=422.
[VAD'04]W. Van der Aalst, L. Aldred, M, Dumas, A. Ter Hofstede: Design and
implementation of the YAWL system. In G. Goos, et al, 16" International Conference on
Advanced Information Systems Engineering. Springer Verlag. 2004.

[Vik08]B. Vikum: Serviceorientierte Architekturen - SOA 2008.
URL http://swt.cs.tu-berlin.de/lehre/sepr/ssO8/referate/SOA_Ausarbeitung.pdf.

[W301]W3. URL http://www.w3.0rg/TR/ws-arch/.

[W3S]W3schools. URL http://www.w3schools.com/soap/soap_header.asp.

77

http://ode.apache.org/
http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://ode.apache.org/architectural-overview.html
http://www.se.uni-hannover.de/documents/studthesis/MSc/Alex_Salnikow-Ermittlung_von_Testabdeckungsmetriken_in_BPEL.pdf
http://www.se.uni-hannover.de/documents/studthesis/MSc/Alex_Salnikow-Ermittlung_von_Testabdeckungsmetriken_in_BPEL.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-23&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-23&mod=0&engl=0&inst=IAAS
http://www.devtrain.de/news.aspx?artnr=422
http://swt.cs.tu-berlin.de/lehre/sepr/ss08/referate/SOA_Ausarbeitung.pdf
http://www.w3.org/TR/ws-arch/
http://www.w3schools.com/soap/soap_header.asp

[WCL]Wikipedia. URL http://de.wikipedia.org/wiki/Closure.

[WCL'05]S. Weerawarana; F. Curbera; F. Leymann; T. Storey; D. F. Ferguson: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005.

[WHIB]Wikipedia. URL http://de.wikipedia.org/wiki/Hibernate_(Framework).
[WODE]Wikipedia. URL http://en.wikipedia.org/wiki/Apache_ODE.

[WOVO09]I. Wssink, M. Ooms, P. Van der Vet: Designing workflows on the fly using e-
BioFlow, 2009. URL http://mww.springerlink.com/content/1660n17463872507/.

[WRV*08]I. Wassink, H. Rauwerda, P. Van der Vet, T. Breit, A. Nijholt: BioFlow: Different
Perspectives on Scientific Workflows, 2008.
URL http://www.springerlink.com/content/j38vk6222j140k72/.

[WSOA]Wikipedia.
URL http://de.wikipedia.org/wiki/Dienstorientierte_Architektur#cite_ref-0.

[WSOAP]Wikipedia.
URL http://de.wikipedia.org/wiki/SOAP#Aufbau_von_SOAP-Nachrichten.

[WXP]Wikipedia. URL http://de.wikipedia.org/wiki/XPath.

[Yul0] J.Yu: Exploring ODE part 2, URL http://jeff.familyyu.net/2010/01/exploring-apache-
ode-source-code-part.html.

Alle URLs wurden zuletzt am 08.03.2011 geprft.

78

http://de.wikipedia.org/wiki/Closure
http://en.wikipedia.org/wiki/Apache_ODE
http://www.springerlink.com/content/j38vk6222j140k72/
http://de.wikipedia.org/wiki/Dienstorientierte_Architektur#cite_ref-0
http://de.wikipedia.org/wiki/SOAP#Aufbau_von_SOAP-Nachrichten
http://de.wikipedia.org/wiki/XPath
http://jeff.familyyu.net/2010/01/exploring-apache-ode-source-code-part.html
http://jeff.familyyu.net/2010/01/exploring-apache-ode-source-code-part.html

Erkl&rung

Hiermit versichere ich, diese Arbeit selbsténdig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Bo Ning)

79

