

Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D – 70569 Stuttgart

Diplomarbeit Nr. 3096

Iteration und wiederholte
 Ausführung von Aktivitäten

in Workflows

Bo Ning

Studiengang: Informatik

Prüfer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Betreuer : Dipl.-Inf. Mirko Sonntag

Begonnen am: 01.September 2010

Beendet am: 13.März 2011

CR-Klassifikation: H.4.1 Workflow-Management

 2

 3

Meinem Mann und meiner Tochter, Jindong und Shuning

zum Dank für eure liebevolle Unterstützung,

derer ich mir zu jeder Zeit sicher sein konnte.

 Meinem Betreuer, Dipl.-Inf. Mirko Sonntag

zum Dank für Ihre Hilfe und Betreuung.

Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

zum Dank für Ihre Zusage, dass ich die Diplomarbeit schreiben darf.

 4

 5

Inhaltsverzeichnis

1. Einleitung ..11

1.1 Motivation .. 11

1.2 Aufgabendefinition ... 11

1.3 Aufbau der Arbeit ... 12

2. Grundlagen ..13

2.1 Service-orientierte Architektur ... 13

2.1.1 Einführung von SOA ... 13

2.1.2 SOA-Dreieckmodell .. 15

2.2 Webservices ... 16

2.2.1 SOAP ... 17

2.2.2 WSDL .. 19

2.3 BPEL .. 22

2.3.1 Prozesse ... 22

2.3.2 Variablen ... 22

2.3.3 Aktivitäten ... 22

2.3.4 Korrelationsmengen (Correlation Sets) ... 24

2.3.5 Scopes und deren Handler ... 24

3. Apache ODE ...26

3.1 Grundlagen der Apache ODE... 26

3.2 Abweichungen vom WS-BPEL 2.0 Standard .. 27

3.3 Die Architektur der Apache ODE .. 28

3.4 ODE-BPEL-Compiler und ODE-Objekt-Modell ... 30

3.5 ODE-BPEL-Engine-Runtime ... 31

3.6 ODE Data Access Objects .. 33

3.7 Die BPEL Management API .. 34

4. Verwandte Arbeiten ..36

4.1 E-BioFlow .. 36

4.1.1 Die Vorteile von E-BioFlow mit dem ad-hoc-Editor .. 36

4.1.2 Die sechs Perspektiven von E-BioFlow .. 37

4.1.3 Ad-hoc Workflowdesign in E-BioFlow .. 38

4.1.4 Ein im Ad-hoc-Editor entworfener Anwendungsfall .. 39

4.2 Retry Scopes ... 40

4.2.1 Die zwei Szenarien .. 41

4.2.2 Das Konzept von Retry/Rerun-Scopes .. 41

4.3 Dynamische Modifikation des Workflows .. 42

5. Konzept für Iteration und Wiederholte Ausführung der

Aktivitäten im WS-BPEL 2.0 ...45

5.1 Die Unterschiede zwischen Iteration und Re-execution .. 45

5.2 Iteration .. 46

5.2.1 Iteration in Sequence ... 46

5.2.2 Iteration in Flow .. 47

5.2.3 Iteration in While, RepeatUntil und forEach... 50

5.3 Re-execution ... 50

5.3.1 Einfache Re-execution für die Aktivität ohne Kompensierung 51

5.3.2 Re-execution für die Aktivität mit Kompensierung .. 51

 6

6. Realisierung eines Prototyps ...54

6.1 Anforderungen an die Realisierung .. 54

6.2 Die Entwicklungsumgebung .. 54

6.3 Erweiterung der Apache ODE .. 55

6.3.1 XPathParser ... 55

6.3.2 Iterate ... 57

6.3.3 Re-execute ... 66

7. Zusammenfassung und Ausblick ..75

 7

Abbildungsverzeichnis

Abbildung 2.1 SOA als ein Tempel [Mel10] ... 13

Abbildung 2.2 SOA-Dreieckmodell ... 15

Abbildung 2.3 SOA-Dreieckmodell auf Webservices angepasst ... 17

Abbildung 2.4 Die allgemeine Struktur einer SOAP-Nachricht .. 18

Abbildung 2.5 Der Nachrichtenweg von SOAP [IBM] ... 18

Abbildung 2.6 Die syntaktische Struktur von WSDL 1.1 [WCL
+
05] 20

Abbildung 3.1 ODE-Architektur [Son08] .. 29

Abbildung 3.2 Verwaltung eines BPEL-Prozesses in der Apache ODE [Ste08] 30

Abbildung 3.3 Teil aus dem Klassendiagramm der Objekte im ODE-Objekt-Modell 31

Abbildung 3.4 Teil aus dem Klassendiagramm für die Objekte auf der Instanzebene 32

Abbildung 4.1 Alle Perspektiven von E-BioFlow mit ad-hoc-Editor [WOV09] 38

Abbildung 4.2 Der Screenshot des ad-hoc-Editors im E-BioFlow [WOV09] 38

Abbildung 4.3 Der erste Task MobyBlat [WOV09] .. 39

Abbildung 4.4 Die neuen Tasks "result" and "Scripting task" [WOV09] 40

Abbildung 4.5 Der Medikamententest [EKU
+
10] .. 41

Abbildung 4.6 Modifikationen vom Workflow ... 43

Abbildung 5.1 Iteration in Sequence, Fall 1 ... 46

Abbildung 5.2 Iteration in Sequence, Fall 2 ... 47

Abbildung 5.3 Iteration in Flow, Fall 1 .. 47

Abbildung 5.4 Iteration in Flow Fall 2 ... 48

Abbildung 5.5 Iteration in Flow, Fall 3 .. 48

Abbildung 5.6 Iteration in Flow, Fall 4 .. 49

Abbildung 5.7 Iteration in While ... 50

Abbildung 5.8 Re-execution in Sequence ohne Kompensierung ... 51

Abbildung 5.9 Re-execution in Sequence mit Kompensierung Fall 1 52

Abbildung 5.10 Re-execution in Sequence mit Kompensierung Fall 2 53

Abbildung 6.1 Klassendiagramm von XpathParser.java ... 55

Abbildung 6.2 Sequenzdiagramm für Iterate-Operation .. 59

Abbildung 6.3 Klassendiagramm für die Verwaltung von Prozessen und Instanzen 60

Abbildung 6.4 Request von Iterate in SoapUI ... 61

Abbildung 6.5 Das Sequenzdiagramm für die Operation Re-execute 67

Abbildung 6.6 Klassendiagramm von vier Klassen in DAO ... 69

Abbildung 6.7 Datenmodell von vier Klassen in DAO ... 69

Abbildung 6.8 Das Klassendiagramm für Snapshots ... 70

Abbildung 6.9 Datenmodell für neue SnapshotDAOs ... 71

 8

Verzeichnis der Listings

Listing 2.1 Der Body in einer SOAP-Nachricht .. 19

Listing 3.1 Variablen mit inlinern "from-spec" [OASIS] .. 27

Listing 3.2 Ein von ODE erlaubtes und von BPEL verbotenes Beispiel [ODE1] 27

Listing 4.1 Fault Handler mit <restart>-Aktivität in RetryScope [EKU+10] 42

Listing 6.1 Der Ausschnitt aus dem Klassendiagramm von XpathParser.java 56

Listing 6.2 Suche nach der Kindaktivität von OProcess in der Methode getCorrectElement . 57

Listing 6.3 Suche nach bestimmtem OAssign in Sequence in der Methode getCorrectElement

 .. 57

Listing 6.4 Die Iterate-Operation in ProcessAndInstanceManagementImpl.java 60

Listing 6.5 Ausschnitt aus der Klasse DebuggerSupport.java ... 61

Listing 6.6 Ausschnitt aus der Klasse BpelProcess.java .. 62

Listing 6.7 Der Ausschnitt der Klasse SEQUNECE .. 62

Listing 6.8 Erzeugen einer neuen Instanz der Klasse SEQUENCE ... 63

Listing 6.9 Der originale Konstruktor der Klasse ACTIVITY .. 64

Listing 6.10 Der geänderte Konstruktor der Klasse ACTIVITY ... 64

Listing 6.11 Die für Iterate neu erstellte Methode executeForIterateAndReexecute() 65

Listing 6.12 Der Ausschnitt aus der Methode executeForIterateAndReexecute() 66

Listing 6.13 Die neuen Methoden in ProcessInstanceDAOImpl.java...................................... 71

Listing 6.14 Die Methode storeSnapshot() in ACTIVITY.java ... 72

Listing 6.15 Die Methode reloadSnapshot() in BpelProcess.java ... 73

 9

Tabellenverzeichnis

Tabelle 2.1 Die vier verschiedenen Operationen in WSDL1.1 .. 21

Tabelle 2.2 Die basischen und strukturierten Aktivitäten in WS-BPEL 24

 10

Abkürzungsverzeichnis

BPEL Business Process Execution Language

DU Deployment Unit

EPR Endpoint Reference

FK Fremd Key

HTTP Hypertext Transfer Protocol

IT Informationstechnologie

JACOB Java Concurrent Objects

JMS Java Message Service

JPA Java Persistence API

MOM Message-oriented Middleware

OASIS Organization for the Advancement of Structured Information Standards

ODE Orchestration Director Engine

OMG Object Management Group

ORM Object-Relational Mapping

SOA Service-orientierte Architektur

UDDI Universal Description, Discovery, and Integration

W3C World Wide Web Consortium

WfMS Workflow Management System

WS-BPEL Web Services Business Process Execution Language

WSDL Web Services Description Language

XML Extensible Markup Language

YAWL Yet Another Workflow Language

 11

1. Einleitung

Auf der einen Seite sind die neuen Sprachen für Workflow nach den Bedürfnissen von den

Geschäftsprozessen entworfen worden, die auf einer eindeutigen Welt basieren und diese

Welt bezieht sich auf die ebenfalls eindeutigen Dateien. Aber im Vergleich zu den

Geschäftsprozessen, laufen die echten Prozesse auf einer wahren Welt und müssen mit der

Ungewissheit und auch der Instabilität über die Durchführungsumgebung rechnen. Deshalb

müssen die neuen Modellierungselemente entworfen werden, die die Fähigkeiten haben,

solche Probleme von Ungewissheit und Instabilität lösen zu können. Es gibt viele Faktoren,

die die obengenannten Probleme verursachen können. Zur Zeit laufen sehr viele

Geschäftsprozess innerhalb eines Netzwerks, wenn die Verbindungen zum Netzwerk plötzlich

nur für kurze Zeit unterbrochen sind, können die Geschäftsprozesse falsche Nachrichten

erhalten und zu fehlerhaften Ergebnissen führen, weil die Geschäftsprozesse sich nicht auf die

neusten Situationen reagieren können [EKU
+
10].

Auf der anderen Seite können die traditionellen Workflow-Technologien und Prinzipien der

Service-orientierten Architektur (SOA) angewandt werden, um die Wissenschaftler in ihren

Experimenten zu unterstützen [SK10]. Die Workflow-Eigenschaften legen die

Anforderungen an die Wissenschaftler fest. Die Unterstützung von IT-Systemen kann den

Wissenschaftlern bei den Experimenten, den Berechnungen, und auch den Simulationen

helfen. Solche Eigenschaften helfen die Wissenschaftlern, die Experimente zu entwerfen,

durchzuführen, zu überwachen, zu analysieren, die Ergebnisse zu verteilen und wieder

darzustellen, und auch den Ansatz von dem Trial-and-Error-Verfahren zu verfolgen, das ein

typischer Ablauf in E-Science ist [SK10].

1.1 Motivation

Die Workflow-Technologien sind wegen der folgenden Ursachen im wissenschaftlichen

Umfeld noch nicht ganz eingeführt worden. Die Hauptursache ist, dass die Definitionen von

Workflow innerhalb des geschäftlichen und wissenschaftlichen Bereichs unterschiedlich sind.

Es gibt ein Bedürfnis, die Definition von den zwei Gemeinden abzustimmen und abzuklären

[SK10]. Die andere Ursache sind die fehlenden Eigenschaften, die von der Wissenschaft für
die vollständige und intuitive Unterstützung bei den wissenschaftlichen Simulationen,

komplexen Berechnungen und Experimenten unbedingt benötigt werden [SK10]. So muss ein

neues Workflow Management System (WfMS) entwickelt werden, das auf traditionellen

Workflow-Technologien basiert und die Bedürfnisse der Wissenschaftler und der

wissenschaftlichen Anwendungen erfüllen kann.

1.2 Aufgabendefinition

Weil die wissenschaftlichen Experimente in einem Trial-and-Error-Verfahren nur

unzureichend durch existierende Workflow-Konzepte ermöglicht werden, muss ein Teil des

Workflows für die Konvergenz von Ergebnissen oder für die Reaktion auf Fehler erneut

ausgeführt werden können.

Ziel dieser Arbeit soll ein Konzept für die wiederholte Ausführung von bereits abgelaufenen

Workflow-Teilen erstellt werden. Zwischen der Iteration der Workflow-Teile und ihrer

Wiederholung soll unterschieden werden. Die Operation „Iteration“ verhält sich wie eine

 12

Schleife. Bei der Wiederholung muss der zu wiederholende Teil erst rückgängig gemacht

werden. Beide Operationen sollen an jeder beliebigen Stelle im Workflow durch einen

manuellen Eingriff eines Wissenschaftlers realisiert werden. Das Konzept soll auch durch

eine prototypische Implementierung in Apache ODE gezeigt werden.

1.3 Aufbau der Arbeit

Die vorliegende Arbeit ist in folgender Weise gegliedert:

Kapitel 2 - Grundlagen: Hier wird zunächst SOA kurz vorgestellt. Im Anschluss daran werden

die Webservices und als letztes BPEL vorgestellt. Alle Inhalte in diesem Kapitel sind die

Informationen von Technologien, die in dieser Arbeit benötigt sind.

Kapitel 3 - Dieses Kapitel beschäftigt sich mit dem grundlegenden Aufbau und auch den

wichtigen Komponenten der Apache ODE.

Kapitel 4 - In diesem Kapitel werden drei relevante Arbeiten vorgestellt.

Kapitel 5 - Dieses Kapitel beschreibt das Konzept von dieser Arbeit. Dabei werden einige

Beispielfälle vorgestellt.

Kapitel 6 - Hier wird die prototypische Implementierung der Funktionen Iterate und

Reexecute an der Apache ODE vorgestellt.

Kapitel 7 - Diese Diplomarbeit wird mit diesem Kapitel abgeschlossen.

 13

2. Grundlagen

Bei diesem Kapitel handelt sich um einen Überblick über die Grundlagen dieser Arbeit. Dazu

werden die für diese Arbeit relevanten Teile von SOA, Webservices und BPEL vorgestellt.

2.1 Service-orientierte Architektur

Der Begriff „Service-orientierte Architektur“ (SOA) wurde 1996 von dem

Marktforschungsunternehmen Gartner erstmalig genutzt [RNS96]. Es gibt keine allgemein

akzeptierte Definition von SOA. Die Service-orientierte Architektur kann als ein

architektonisches Konzept betrachtet werden, das die verschiedenartigen Systeme ermöglicht,

die reichhaltigen Geschäftskommunikationen zu integrieren [WCL+05]. Service-orientierte
Architektur kann auch als ein Architekturmuster der Informationstechnik aus dem Bereich der

verteilten Systeme betrachtet werden, um Dienste von IT-Systemen zu strukturieren und zu

nutzen [WSOA]. Dennoch wird häufig die Definition von der OASIS aus dem Jahr 2006

zitiert:

 „SOA ist ein Paradigma für die Strukturierung und Nutzung verteilter Funktionalität,

die von unterschiedlichen Besitzern verantwortet wird [SOA06].“

2.1.1 Einführung von SOA

Die wichtigsten Elemente von einer Service-orientierten Architektur können als ein Tempel

arrangiert werden [Mel10]. Um eine SOA definieren zu können, werden die Merkmale in

Anlehnung an [Dos05] vorgestellt.

Abbildung 2.1 SOA als ein Tempel [Mel10]

 14

Das Dach vom Tempel:

Das Dach von diesem Tempel ist dann die SOA und sie hat die vier unterstützenden Säulen

und auch die drei Stufen. Alle Säulen und Stufen werden gleich vorgestellt.

Die Säulen vom Tempel:

Verteiltheit - Die SOA ermöglicht, die Dienste über das Netz zu verteilen. Eine SOA

unterstützt jede moderne Architektur, d.h. SOA ist unabhängig von Plattform und die von

System unabhängigen Dienste können dadurch zur Verfügung gestellt werden.

Lose Kopplung - Dienste können von Anwendungen oder anderen Diensten bei Bedarf

dynamisch gesucht, gefunden und eingebunden werden [Mel10]. Die lose Kopplung kann auf

einer Seite die Interoperabilität zwischen den interagierenden Partner verbessern. Auf der

anderen Seite kann die lose Kopplung die Dienste stabil machen, wenn ein von den Partnern

benutzter Service sich geändert hat. Eine lose Kopplung ermöglicht dann die

Wiederverwendung von Diensten [Son08].

Verzeichnisdienst - Um die dynamischen Aufrufe von Diensten zu ermöglichen, müssen

diese Dienste zunächst gesucht und dann gefunden werden. Durch einen Verzeichnisdienst

kann ein bestimmter Dienst erhältlich sein, der schon im Verzeichnisdienst registriert ist. Es

kann nicht nur dem Verzeichnisdienst sondern auch dem Repository zur Verfügung gestellt

werden. Der Unterschied zwischen den Beiden liegt darin, dass Repository nicht nur den

Verweis auf diese Metadaten hat, sondern auch die Daten über die Dienste. Der

Verzeichnisdienst hat dagegen nur den Verweis auf diese Metadaten [Mel10].

Prozessorientert - Eine Service-orientierte Architektur hat keine Beschränkungen bezüglich

der Komplexität eines Dienstes [Int06]. Das hat Vorteile für den Dienstanbieter und

Dienstnutzer. Auf der Seite von Dienstanbieter kann er einen Dienst schnell und mit

geringerem Aufwand entwickeln. Der Dienstnutzer kann dann solch einen Dienst schnell

benutzen. Prozesse erlauben die Orchestrierung von einem Dienst oder mehreren Diensten,

die in neue Dienste auf einer höheren Ebene umgewandelt werden. Es führt zu einem

rekursiven Aggregationsmodell: ein Dienst kann aus anderen Diensten bestehen und kann

auch in einem höheren Dienst sein [Son08].

Die Stufen vom Tempel:

Standards - Offene Standards bieten die Investitionssicherheit [Int06]. Um einen Dienst zu

benutzen, muss der Dienstnutzer die Fähigkeiten haben, mit den Diensten zu kommunizieren.

Das bedeutet, dass die Schnittstelle von den Diensten in einer maschinenlesbaren Form

beschrieben werden muss. Ohne die offenen Standards ist es leider nicht realisierbar, dass ein

Dienstnutzer den Dienst von einem nicht bekannten Dienstanbieter verstehen kann.

Einfachheit - Die Einfachheit bezieht sich nicht auf die Technologie, weil diese durchaus

nicht immer einfach sind. Stattdessen bezieht sie sich auf die Anwendungen von SOA, die

durch die Methode der Automatisierung und durch die Unterstützung von Werkzeugen

vereinfacht werden können [Son08]. Die Einfachheit kann viele Anforderungen erfüllen und

eine schnelle Umsetzung der Anwendung einer SOA ermöglichen.

Sicherheit - Die Sicherheit ist die wichtigste Aufgabe von SOA. Die Sicherheit bedeutet die

 15

Authentifikation, die Integrität, die Vertraulichkeit usw. Sie ist sehr kritisch für den Erfolg

von SOA bei Geschäftsanwendungen.

2.1.2 SOA-Dreieckmodell

Die grundlegenden Prinzipien von der Arbeitsweise der SOA können in einem SOA-

Dreieckmodell dargestellt werden (siehe Abbildung 2.2).

Abbildung 2.2 SOA-Dreieckmodell

 Dienst (Service)

Die Definition des Dienstes kommt ursprünglich aus den Dienstleistungen, dies hat zur Folge,

dass es Unterschiede zwischen Produkten und Diensten gibt. [Mas07] Der Dienst ist im SOA

ein eigenständiges Softwareelement, z.B. ein Programm oder auch eine Softwarekomponente

und kann lokal oder über ein Netzwerk durch Nachrichten-basierte Kommunikation (z.B.

SOAP) von anderen aufgerufen werden. Der Dienst bietet die Funktionen nach außen an. Der

Dienst soll in einer von Maschinen lesbaren Form geschrieben sein und auf ihn kann nur über

die vorgeschriebene Schnittstelle zugegriffen werden.

 Dienstanbieter (Service Provider)

Der Dienstanbieter hat die Verantwortungen, die von ihm angebotenen Dienste bereitzustellen

und auch die Verfügbarkeit dieser Dienste sicherzustellen. Er muss nicht alle angebotenen

Dienste eigenständig implementieren, wenn er über das Netz mehrere kleine, einfache

Dienste in einem neuen und umfangreicheren Dienst zusammensetzt. Der Betrieb, die

Datensicherung und die Wartung von den Diensten gehören auch zu den Aufgaben des

Dienstanbieters. Der Dienstanbieter registriert seine Dienste bei einem Dienstverzeichnis. Im

Dienstverzeichnis kann der Dienstnutzer die benötigten Dienste finden und sie anschließend

nutzen. Der Dienstanbieter muss auch die Authentifisierung ermöglichen, um zu überprüfen,

ob ein Dienstnutzer berechtigt ist, die Dienste zu benutzen.

 Dienstnutzer (Service Consumer)

Der Dienstnutzer kann an dieser Stelle direkt mit dem Klienten in einer traditionellen Client-

 16

Server-Architektur verglichen werden [Mel10]. Es ist für den Dienstnutzer sehr wichtig, dass

sein gewünschter Dienst zu finden und zu liefern ist. Wenn der Dienstnutzer einen

bestimmten Dienst braucht, wird er den Dienst zuerst im Dienstverzeichnis suchen. Wenn

seine Suche erfolgreich ist, verbindet er sich dann über ein Protokoll mit dem Dienstanbieter

und das Protokoll muss den beiden bekannt sein. Wer den Dienst benutzt und wer den Dienst

zur Verfügung stellt, ist nicht wichtig.

 Dienstverzeichnis (Service Registry)

Das Dienstverzeichnis vermittelt zwischen dem Dienstanbieter und dem Dienstnutzer. Es ist

verantwortlich dafür, dass die Dienste des Dienstanbieters in das Verzeichnis eingetragen

werden können und die eingetragenen Dienste auch im immer aktiven und verfügbaren

Zustand sind. Mit UDDI kann der richtige Dienst gefunden werden, und damit können auch

die ausführlichen Informationen über den Dienst erhältlich sein. UDDI ermöglicht es den

Dienstanbietern die Implementierungen von ihren Diensten zu veröffentlichen und ermöglicht

es auch den Dienstnutzer den richtigen Dienstanbieter zu finden, der die besten Dienste nach

den Bedürfnissen des Dienstnutzers anbietet [WCL
+
05].

2.2 Webservices

Webservices sind die am meisten verwendete Technologie, um SOA, ein abstraktes

Architekturmodell, zu implementieren. Um Webservices einheitlich vorzustellen, werde ich

den Begriff anhand der Definition vom W3C erläutern.

Die Definition von Webservices lautet nach dem W3C wie folgt:

 „ A Web Service is a software system designed to support interoperable machine- to-
machine interaction over a network. It has an interface described in a machine-processable

format(specifically WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP messages typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards [W3].“

Webservices ermöglichen eine standardisierte direkte Interaktion mit anderer Software unter

der Verwendung der Nachrichten in Form von XML über das Netz. Dabei wird das HTTP-

Protokoll oder andere Protokolle, zum Beispiel JMS, zum Transport genutzt. SOAP kann zur

Kommunikation als Nachrichtenformat genutzt werden. Das SOA-Dreieck-Modell kann

jedoch durch die Technologien von Webservices gezeigt (siehe Abbildung 2.3) werden. Im

Laufe der Zeit haben sich drei Technologien für Webservices etabliert. Dies sind dann SOAP,

WSDL und UDDI.

 17

Abbildung 2.3 SOA-Dreieckmodell auf Webservices angepasst

2.2.1 SOAP

SOAP ist dafür entwickelt, die Kosten und Komplexität der Integration der Anwendungen,

die auf verschiedenen Plattformen aufgebaut sind, zu reduzieren [WCL+05]. SOAP basiert

auf XML und beschreibt die Art und Weise, wie die Informationen zwischen den

Kommunikationspartnern innerhalb einer verteilten Umgebung ausgetauscht werden können.

Bei der Übertragung von Daten werden die Parameter von Aufrufenden übergegeben, die in

Form einer XML-Struktur an den verarbeitenden Kommunikationspartner weitergegeben

werden [HW05]. Dieser Partner sendet dem Client auch die Ergebnisse der aufgerufenen

Anwendung in Form einer XML-Struktur zurück.

Weil die XML-Repräsentation der Objekte und Strukturen die Daten sehr groß machen kann

und deshalb von der Netzwerkbandbreite ziemlich stark abhängig ist, hat SOAP seine

Nachteile im Anwendungsbereich der Kommunikation zwischen mobilen Endgeräten und

einem Server, wo eine performante Übertragung besonders wichtig ist. Im Bereich der
Maschinensteuerung ist SOAP auch nicht geeignet, weil die Daten dabei in Echtzeit

übertragen werden müssen.

 18

Abbildung 2.4 Die allgemeine Struktur einer SOAP-Nachricht

Eine SOAP-Nachricht wird von einem initialen Sender zu einem finalen Empfänger

übermittelt. Aber es kann auch dazwischen andere Knoten geben, die als Mittler genannt

werden. Der gesamte Weg von dieser Nachricht zwischen dem initialen Sender und dem

finalen Empfänger wird Nachrichtenweg genannt. Die Abbildung 2.5 zeigt ein Beispeil eines

Nachrichtenwegs.

Abbildung 2.5 Der Nachrichtenweg von SOAP [IBM]

 19

Eine SOAP-Nachricht besteht aus 3 Teilen:

Envelope

Der Envelope ist das Wurzelelement in einer SOAP-Nachricht. Der Envelope wirkt wie ein

Umschlag für diese gesamte SOAP-Nachricht und dient als ein Container für die Anfrage und

die Anwort innerhalb dieser SOAP-Nachricht. Der Envelope definiert den Rahmen, was in

einer SOAP-Nachricht enthalten ist [Ulm].

Header

Der Header ist optional und kann aus vielen Headerblöcken bestehen. Die Headerblöcke

enthalten Daten für die Bearbeitung auf SOAP Knoten. Header spezifizieren durch das role-

Attribut, wer sie verarbeiten soll [Bur05]. Im Header können Meta-Informationen,

beispielweise zum Routing, zur Verschlüsselung, zur Transaktionsidentifizierung oder zur

Authentifizierung (Login, Passwort), untergebracht werden [Vik08] [WSOAP]. Wenn der

Envelope ein Header enthält, muss der Header das erste Element in diesem Envelope sein

[W3S].

Body

Der Body stellt die eigentliche Nachricht dar, die weitergeleitet werden soll. Ein Beispielcode

zeigt den Body in einer SOAP-Nachricht. Im Code wird eine Suchanfrage an die Google-

Suchmaschine geschickt. Die aufgerufene Methode im Code ist 'doSearchinGoogle'.

Anschließend folgen Hinweise, auf welche Weise die Daten decodiert werden sollen. Dies

wird im Code in Form eines XML-Schemas angegeben. Um diese Methode aufzurufen,

braucht man zwar auch die einzelnen Parameter. Der 'key'-Tag ist dann dieser benötige

Parameter, der den Suchstring darstellt. Hier wird 'aaaa' als der Suchstring gesendet.

Listing 2.1 Der Body in einer SOAP-Nachricht

2.2.2 WSDL

WSDL ist die Abkürzung von ' Web Services Description Language' und auch XML-basiert.

Während SOAP in erster Linie für Remote-Prozedur- oder -Funktionsaufrufe verwendet wird,

ermöglicht WSDL die Beschreibung der Schnittstelle von Services [Man07].

WSDL wird innerhalb von Web Services im folgenden Bereich benutzt.

Beschreibung über einen Service für seinen Client - In diesem Fall wird der schon

veröffentlichte Service für seinen Client beschrieben. Diese Beschreibung enthält die Angabe

über die Nachrichten, Operationen, den Nachrichtenaustausch und auch die Lage des

 20

Services. Zusätzlich enthält diese Beschreibung auch den Mechanismus, wie der Service

benutzt werden muss. Das Hauptziel von WSDL in diesem Bereich ist es, dem Client von

diesem Service zu ermöglichen, den Service zu benutzen [WCL+05].

WSDL 1.1

WSDL 1.1 ist die allgemeine Norm für die Beschreibung der Web Services. Es wird von

vielen Anbietern im Bereich der Werkzeugentwicklung und Laufzeit unterstützt [WCL
+
05].

Das WSDL-Dokument kann in zwei Gruppen von Abschnitten unterteilt werden. Die erste

Gruppe wird als abstrakter Teil bezeichnet, weil sie die abstrakten Definitionen enthält. Die

andere Gruppe ist dann der konkrete Teil, der die konkreten Beschreibungen enthält. Der

abstrakte Abschnitt definiert die eingehenden und ausgehenden Nachrichten der

verschiedenen Operationen auf plattform- und sprachunabhängige Weise. Weil sie keine

Elemente über die Spezifikationen von Maschinen oder Sprachen enthalten, können Dienste

definiert werden, die mit verschiedenen Technologien implementiert werden können. Die

spezifischen Funktionen wie Serialisierung der Nachrichten werden in der unteren

Abschnittsgruppe (der konkrete Teil) mit den konkreten Beschreibungen angegeben [Tap04].

Der konkrete Abschnitt zeigt, wo und wie die Dienste adressiert werden können [Son08]. Zur

syntaktischen Struktur von WSDL 1.1 siehe die Abbildung 2.6.

Abbildung 2.6 Die syntaktische Struktur von WSDL 1.1 [WCL
+
05]

 21

Abstrakte Definitionen

 Types

 Types sind die maschinen- und sprachunabhängigen Typedefinitionen,

 die zur Beschreibungen der Nachrichten (Message) dienen [Tap04].

 Message

 Message repräsentiert eine abstrakte Definition über die Daten, die

 übertragen werden.

 PortType

PortType ist eine Menge von abstrakten Operationen. Jede Operation

bezieht sich auf eine eingehende und auch eine ausgehende

 Nachricht sowie auf Fehlernachrichten [Tap04]. Es gibt vier

 Verschieden Operationstypen, wie die Abbildung 2.7 zeigt.

Operation Beschreibung

One-way Service erhält eine Nachricht ohne
Anwort

Request-response Service bekommt eine Nachricht und
produziert auch eine Antwortsnachricht

Solicit-response Service sendet eine Nachricht und
bekommt auch eine Antwort

Notification Service sendet eine Nachricht und erhält
nichts als Antwort

Tabelle 2.1 Die vier verschiedenen Operationen in WSDL1.1

Konkrete Beschreibungen

 Binding

 Binding verweist auf die einzelne Operation im PortType-Abschnitt. Binding

 spezifiziert ein konkretes Übertragungsprotokoll und auch das Format

 der Nachrichten, die von einem PortType definiert sind.

 Port

 Port spezifiziert den Ort, an dem ein Service erreichbar ist.

 Service

 Service wird benötigt, um eine Menge von zugehörigen Ports zu Aggregieren

 [Tap04].

 22

2.3 BPEL

Dieser Abschnitt basiert im Wesentlichen auf der Spezifikation der BPEL-Version 2.0

[OASIS]. BPEL ist die Abkürzung für Business Process Execution Language. BPEL ist eine

XML-basierte Sprache zur Beschreibung von Geschäftsprozessen, baut auf den Ideen der

Workflow-Definitions-Sprachen WSFL und XLANG auf [Ste08] und wurde von OASIS als

WS-BPEL 2.0, kurz BPEL, standardisiert.

2.3.1 Prozesse

Die grundlegenden Konzepte von WS-BPEL können in zwei Bereichen verwendet werden,

die abstrakt und ausführbar sind [OASIS]. Abstrakte Prozesse bieten eine abstrakte Sicht auf

die Geschäftsprozesse und ausführbare Prozesse dienen der konkreten Implementierung von

solchen Geschäftsprozessen [Ste08].

Ein abstrakter Prozess könnte einige benötigte konkrete betriebliche Einzelheiten ausblenden

[OASIS]. Abstrakte Prozesse verweisen auf das Geschäftsprotokoll oder

Nachrichtenaustauschprotokoll und das Geschäft- und Nachrichtenaustauschprotokoll

beschreibt nur die äußerlich sichtbaren Interaktionen zwischen den Geschäftspartnern. In

abstrakten Prozessen gibt es keine Inhalte über die Geschäftslogik von den individuellen

Geschäftspartnern. Ein Unternehmen kann seinen abstrakten Prozess vor einem existierenden

Geschäftsprozess vorzeigen, um seinem Partner zu zeigen, wie mit ihm zu interagieren ist.

Ein abstrakter Prozess kann als eine Projektion von einem ausführbaren Prozess betrachtet

werden.

Im Vergleich zu dem abstrakten Prozess enthält der ausführbare Prozess die Geschäftslogik

von Partnern. Im ausführbaren Prozess werden alle Einzelheiten beschrieben und definiert,

um alle Instanzen auf einer Workflowengine ausführen zu können. Die Einzelheiten können

die Typen von Variablen, die Attribute, die Ausdrücke und auch die Geschäftslogik sein. Weil

die ausführbaren Prozesse oft die innerbetrieblichen Informationen enthalten, werden sie dann

als Geheimnisse von Unternehmen betrachtet.

2.3.2 Variablen

Zur Zwischenspeicherung von Werten stehen typisierte Variablen zur Verfügung. Sie dienen

sowohl als Eingabeparameter als auch Ausgabeparameter von Aktivitäten [Ste08]. Variablen

können auch verwendet werden, um das Verhalten vom Prozess zu steuern. Variablen bieten

die Möglichkeit, die Nachrichten beizubehalten, die die Zustände eines Geschäftsprozesses

darstellen. Solche Nachrichten werden von Partnern empfangen oder zu Partnern gesendet.

WS-BPEL benutzt drei unterschiedliche Typen von Variablen: WSDL Message Type, XML

Schema Type und XML Schema Element [OASIS]. XPath ist die vorgegebene Sprache für

die Verarbeitung und Abfrage von Variablen [WCL+05].

2.3.3 Aktivitäten

In WS-BPEL wird zwischen basischen und strukturierten Aktivitäten unterschieden. Die

basischen Aktivitäten sind die grundlegenden Aktivitäten, welche die elementaren Schritte

des Verhaltens von Prozessen beschreiben. Im Gegensatz zu den basischen Aktivitäten

beinhalten strukturierte Aktivitäten auch die anderen Aktivitäten und ermöglichen deshalb die

Komposition von komplexen Prozessen zugelassen werden [Sch07]. Die strukturierte

 23

Aktivität definiert die Geschäftslogik für alle Aktivitäten, die sie beinhaltet [WCL+05]. Das

Verhalten von Aktivitäten in einem Geschäftsprozess ist wie folgt beschrieben [LR00]:

 Eine Aktivität ruft einen anderen Geschäftsprozess auf, der vollkommen

 unabhängig von dem ursprünglichen Geschäftsprozess arbeitet.

 Eine Aktivität ruft einen anderen Geschäftsprozess auf und wartet, bis

 dieser neue Geschäftsprozess abgearbeitet ist.

 Eine Aktivität ruft einen anderen Geschäftsprozess auf, eine später

 ausgeführte Aktivität wartet, bis dieser neue Geschäftsprozess

 abgearbeitet ist.

<invoke>, <receive> und <reply> sind die basischen Aktivitäten, mittels derer die

Kommunikation mit Geschäftspartnern ermöglicht wird. Die Nachrichten können durch

<invoke> und <reply> gesendet werden und durch <receive> empfangen werden. <invoke>

kann benutzt werden, um die Operationen der Webservices von Geschäftspartnern aufzurufen.

Eine <receive>-Aktivität empfängt eine einzelne eingehende Nachricht. Wenn der Werte des

Attributs "createInstance" der <receive>-Aktivität auf "yes" gesetzt ist, wird eine neue

Prozessinstanz instantiiert und begonnen [Son08]. <reply> ermöglicht das gleichzeitige

Senden einer Beantwortung an den Partner. <while>, <sequence> und <flow> sind die

Aktivitäten, die die Geschäftsprozesse strukturieren können. <while> kann eine Schleife

realisieren, um die enthaltenen Aktivitäten mehrmals ausführen zu können. Ein sequentieller

Ablauf kann durch <sequence> definiert werden. Dabei können die enthaltenen Aktivitäten in

einer vorgeschriebenen Reihenfolge nacheinander durchgeführt werden. <flow> definiert

dagegen einen parallelen Ablauf, d.h. die enthaltenen Aktivitäten können demgegenüber

parallel durchgeführt werden [Ste08]. In <flow> dienen die <links>-Konstrukte dazu, dass die

Abhängigkeiten zwischen den einzelnen enthaltenen Aktivitäten bestimmt werden können.

Die basischen und strukturierten Aktivitäten werden in der folgenden Tabelle angezeigt (siehe

bitte die Abbildung 2.8).

 24

Aktivitäten

Basische

Aktivität

Strukturierte

Aktivität

Beschreibung

<invoke> √ Aufruf von Web Services

<receive> <reply> √ Bereitstellung von Web Services

<assign> √ Update von Variablen und

Partnerlink

<throw> √ Signalisieren von internen

Fehlern

<wait> √ Verzögerte Ausführung

<empty> √ Nichts zu tun

<extensionActivity> √ Anfügen der neuen Typen von

Aktivitäten

<exit> √ Sofortige Beendigung eines

Prozess

<rethrow> √ Propagierung von Fehlern

<sequence> √ Sequenzielle Verarbeitung

<if> √ Bedingte Ausführung

<while> √ Wiederholte Ausführung

<repeatUntil> √ Wiederholte Ausführung

<pick> √ selektive Verarbeitung von

Ereignissen

<flow> √ Parallele Verarbeitung unter

Berücksichtigung von

Abhängigkeiten der Ausführung

<forEach> √ Verarbeitung von mehrfachen

Bereichen

Tabelle 2.2 Die basischen und strukturierten Aktivitäten in WS-BPEL

2.3.4 Korrelationsmengen (Correlation Sets)

Die Korrelationsmengen werden in <invoke>, <receive>, und <reply> verwendet [OASIS].

Die verschiedenen Instanzen eines BPEL-Prozesses können sich anhand von

Korrelationsmengen unterscheiden lassen. Wenn zu einem Zeitpunkt mehrere Instanzen eines

BPEL-Prozesses aktiv sind, werden die Daten von den Korrelationmengen benutzt, um die

eingehenden Nachrichten an die richtige Instanz weiterzureichen.

2.3.5 Scopes und deren Handler

<scope> ist die einzige strukturierte Aktivität, die die Aktivitäten beinhaltet, die nicht nur

innerhalb dieser <scope>-Aktivität sind, sonder auch mittels Handlern an dieser <scope>-

Aktivität angebracht werden können [WCL
+
05]. Die Gültigkeitsbereiche können anhand von

der <scope>-Aktivität festgelegt werden. In einer <scope>-Aktivität können für einen

einzigen Gültigkeitsbereich eigene Variablen und eigene Handler definiert werden Die

definierten Variablen und Handler sind dann nur in diesem Gültigkeitsbereich gültig. Der

Prozess hat auch eigene <scope>-Aktivität als der globale Gültigkeitsbereich, die auch

Prozessscope genannt werden kann. Die <scope>-Aktivität kann vier unterschiedliche

 25

Handler haben. Diese sind dann <compensationHandler>, <faultHandlers>,

<terminationHandler> und <eventHandlers>. Nachdem eine <scope>-Aktivität gestartet wird,

übergibt sie die Kontrolle an alle enthaltenen Aktivitäten und macht auch die

<eventHandlers>- und <faultHandlers>-Aktivitäten lauffähig. Nachdem diese <scope>-

Aktivität beendet wurde, deaktiviert sie diese Handlers. Wenn diese <scope>-Aktivität

erfolgreich beendet wurde, dann macht sie die <compensationHandler> lauffähig [WCL+05].

Jeder Scope inklusive dem Processscope kann eine Menge von <eventHandlers>-Aktivitäten

haben, die gleichzeitig laufen können und aufgerufen werden können, sobald ein

entsprechendes Event passiert [OASIS]. Ein <eventHandlers> dient dazu, auf eine bestimmte

eingehende Nachricht zu reagieren. Wenn eine entsprechende Nachricht ankommt, kann eine

Aktivität, die in diesem Event Handler festgelegt ist, gleich ausgeführt werden. Ähnlich kann

ein <eventHandlers> auch die Aktivitäten definieren, die später zu einem bestimmten

Zeitpunkt durchgeführt werden sollen.

Ein Fault Handler definiert die Aktivitäten, die für den Fall durchgeführt werden, dass ein

entsprechender Fehler (Fault) innerhalb des Gültigkeitsbereiches vorkommt, aber dieser Fault

noch nicht in einem enthaltenen Gültigkeitsbereich abgefangen und bearbeitet wurde [Ste08].

Wenn ein Fault nicht behandelt und bearbeitet werden kann, wird dieser Fault an den

umschließenden Gültigkeitsbereich weitergeleitet werden [Ste08]. Der Processscope ist der

weiteste Gültigkeitsbereich in einem Prozess. Wenn ein Fault im Processscope auch nicht

abgefangen werden kann, dann wird der Prozess als fehlerhaft beendet. Die von einem Fault

Handler spezifizierten Aktivitäten werden in <catch> oder <catchAll> definiert.

Die Aktivitäten, die für den entsprechenden Gültigkeitsbereich im Fall der Durchführung

einer Kompensation ausgeführt werden sollen, können in einer <compensationHandler>-

Aktivität definiert werden. Aber die Voraussetzung dafür, dass solche in

<compensationHandler> enthaltenen Aktivitäten ausgeführt werden, ist, dass dieser

Gültigkeitsbereich bereits beendet und verlassen wurde [Ste08]. Nicht alle

Gültigkeitsbereiche dürfen Compensation Handler haben und dies ist auch der Fall bei

Prozess bzw. Prozessscope. Ist in einem Scope kein Compensation Handler vorhanden, so

muss bei der Ausführung eines BPEL-Prozesses standardmäßig ein Compensation Handler

erstellt werden.

Termination Handler ist dann der letzte Handler-Type. Ein Termination Handler kann auch im

Scope definiert werden. Anhand vom <terminationHandler> kann eine erzwungene

Terminierung aller in dieser <scope>-Aktivität enthaltenen Kindaktivitäten durchgeführt

werden. Ähnlich wie die <compenstionHandler>-Aktivität wird auch ein Standard-

Termination-Handler definiert, wenn keiner vorhand ist. Es ist aber auch erlaubt, dass ein

Prozess kein Termination Handler besitzt.

 26

3. Apache ODE

Die Apache ODE (Orchestration Director Engine) wurden von der Apache Software

Foundation entwickelt und gehört auch zu den Top-Level-Projekten [WODE]. Sie ist unter

einer Open-Source-Lizenz in Version 2.0 verfügbar. Die aktuellste stabile Version der Apache

ODE ist 1.3.4, die auch in dieser Arbeit erweitert werden soll.

3.1 Grundlagen der Apache ODE

Die Apache ODE kann die Geschäftsprozesse ausführen, die nach dem Standard von WS-

BPEL geschreiben sind. Sie kommuniziert mit Web Services, sendet und empfängt die

Nachrichten, bearbeitet die Daten und behandelt auftretenden Fehlern auf die Weise, wie es

die BPEL-Prozesse vorher definiert hatten. Die Apache ODE kann nicht nur die Kurzzeit-

Ausführung sondern auch die Langzeit-Ausführung unterstützen und kann damit alle in der

Anwendung enthaltenen Services orchestrieren [ODE].

Die Apache ODE kann in folgenden drei verschiedenen Varianten verfügbar gemacht werden:

 WAR Deployment - hier wird die ODE als WAR gepackt und kann irgendwo entgepackt

werden. In der Entwicklungsumgebung wird das WAR-File "ode-axis2-war-1.3.4 "im

Ordner "axis-war\target" in den Orner "webapp" von Tomcat kopiert. Der Name des

WAR-Files muss normalerweise in "ode" umbennant werden. Wenn Tomcat gestartet

wird, läuft die Apache ODE auch. Wenn die Apache ODE erfolgreich deployed wurde,

kann die Seite "http://localhost:8080/ode" richtig im Browser angezeigt werden.

 JBI Deployment - hier ist die Apache ODE als eine ZIP-File gepackt und kann in einem

JBI Container deployed werden [Sch11].

 SMX4 OSGI Deployment

Die Eigenschaften der Apache ODE:

 ODE unterstützt den Standard von WS-BPEL 2.0 und auch den Standard von BPEL4WS

1.1.aber mit einigen Abweichungen.

 ODE unterstützt zwei verschiedene Kommunikationsebenen bezüglich Axis 2 und JBI.

 ODE unterstützt das Binding von HTTP und auch WSDL und erlaubt die Aufrufe der

 Webservices in REST.

 ODE macht es möglich, die Variable der Prozesse von außen zu einer Tabelle in einer

 Datenbank abzubilden.

 ODE bietet eine Managementschnittstelle für die Prozesse, Instanzen und auch

Nachrichten an.

 27

3.2 Abweichungen vom WS-BPEL 2.0 Standard

Der Standard WS-BPEL 2.0 kan durch die Apache ODE nur mit einigen Abweichungen

untersützt werden. Diese Abweichungen betreffen die Variablen und die folgenden

Aktivitäten.

 Variablen

Listing 3.1 Variablen mit inlinern "from-spec" [OASIS]

Der inliner "from-spec", damit eine Variable eventuell initialisert werden kann, wird jetzt

noch nicht von ODE unterstützt. Ein Patch in ODE-236 dafür ist momentan aber verfügbar.

 <receive>

In der <receive>-Aktivität kan die Syntax von <fromPart> leider noch nicht von ODE

unterstützt werden. Dabei muss ein Attribut nämlich variable verwendet werden. Außerdem

können nur die Variablen von Nachrichten im variable Attribute referenziert werden, obwohl

die Variablen von Elementen nach der Spezifikation auch erlaubt sind. Mehrere Start-

Aktivitäten werden auch nicht von der ODE unterstützt, wobei die Benutzung von initiate =

"join" ausgeschlossen ist. Die ODE kann die in der Spezifikation geschriebenen

Anordungsrichtlinien nicht gewährleisten, wobei die ODE noch toleranter als die

Spezifikation ist. Listing 5.2 zeigt einen BPEL-Code, der in BPEL nicht erlaubt ist, aber in

der ODE zulässig ist.

Listing 3.2 Ein von ODE erlaubtes und von BPEL verbotenes Beispiel [ODE1]

Außerdem kann die ODE leider zwischen conflictingRequest und conflictingReceive nicht

unterscheiden. Bei Beiden handelt es sich um die Fehler in Bezug auf mehrere unerledigte

Anfragen auf ein einziges partner-link/operation/messageExchange Tupel. Das bedeutet, dass

 28

conflictingReceive im Fall von conflictingRequest immer geworfen wird.

In der ODE wird das validate-Attribut einer <receive>-Aktivität ignoriert, weil die ODE die

Validation von Variablen nicht unterstützt.

 <reply>

Die Anpassungen von der <reply>-Aktivität in ODE spiegeln auch einige von der <receive>-

Aktivität wider. Die Syntax von <toPart> kann nicht in ODE unterstützt werden und das

Attibut variable muss in den Variablen, die auf Nachrichten basieren, referenziert werden.

 <invoke>

Wie <receive> und <reply>-Aktivitäten kann die Synax von <toPart> und <fromPart> nicht

unterstützt werden. Ähnlich muss in den Attributen inputVariable und outputVariable auf die

Nachrichten-basierten Variablen referenziert werden. Das validate-Attribut hier wird auch in

der ODE ignoriert.

 <assign>

Das validate Attribut von einer <assign>-Aktivität, das in der BPEL-Spezifikation definiert

ist, um die Variablen zu validieren, wird nicht in der ODE unterstützt. Deshalb kann der

Fehler invalidVariables niemals durch eine <assign>-Aktivität geworfen werden. Um die

benutzten Sprachen innerhalb einer Anweisung festzustellen, wird das expressionLanguage

statt des queryLanguage-Attributs in der ODE verwendet [Sch11].

 <pick>

Die <pick>-Aktivität hat die gleichen Einschränkungen in der ODE wie die oben

beschriebene <receive>-Akvtivität.

 <compensate>

Die <compensate>-Aktivität entspricht der Spezifikation nicht. Die Aktivität hat die gleiche

Auswirkung und die gleiche Syntax wie die <compensateScope>-Aktivität in der ODE.

 <validate>

Diese Aktivität kann noch nicht von der ODE implementiert werden. Die Prozesse, die

<validate> enthalten, können zu Compilerfehler führen.

3.3 Die Architektur der Apache ODE

In diesem Abschnitt werden nur die grundlegenden Informationen über die Architektur von
der Apache ODE vorgestellt. Die Hauptziele bei der Entwicklung der Apache ODE waren,

eine vertrauenswürdige, stabile Workflow-Engine zu entwickeln, die aus vielen Komponenten

zusammengebaut wird. Die Engine muss dabei die Fähigkeit haben, die langlebigen Prozesse

von BPEL durchführen zu können [Sch11]. Um die Apache ODE näher zu betrachten, wird in

diesem Abschnitt die Architektur von der ODE vorgestellt. Dazu steht die folgende

Abbildung 3.1 zur Verfügung.

 29

Abbildung 3.1 ODE-Architektur [Son08]

Die Hauptkomponenten der Apache ODE-Architektur sind ein ODE-BPEL-Compiler, eine

ODE-BPEL-Engine-Runtime, ODE Data Access Objects (DAOs) und auch der ODE

Integration Layer (IL). In dieser Abbildung wird der ODE Integration Layer in zwei

Komponenten beziehungsweise als Axis 2 und JBI dargestellt. Die vier Hauptkomponenten

sind auch in vier verschiedenen Farben dargestellt.

Die ODE-BPEL-Compiler (blau) ist verantwortlich dafür, dass die einzelnen BPEL-Artefakte,

die Dokumente des BPEL-Prozesses, WSDL- und auch XML-Schemata in einen

durchführbaren Prozess konvertiert werden können. Diese Dokumente können durch den

Compiler in eine für die ODE-BPEL-Runtime-Engine gut verständliche und lesbare Form

umgewandelt werden [Ste08]. Diese vom ODE-BPEL-Compiler kompilierten Ergebnisse

werden dann für die ODE-BPEL-Engine Runtime (grün) bereitgestellt. Die-Engine-Runtime

ist der Kern und die Hauptkomponente in der ODE und enthält die Data Access Objects

(DAO) als Schnittstelle für die Persistenzebene(hellgrün), eine API(hellgrün) für Axis 2 und

JBI und auch eine Engine (hellgrün), die das Prozessmodel nach seiner Definition ausführt.

Die Persistenzebene ermöglicht es, die Informationen über die Prozesse, die Instanzen und

auch Deployment Units (DUs) in der Datenbank (rosa) abzuspeichern. Der Geschäftspartner

 30

kann mittels des Integration Layers (lila) von der Engine aufgerufen werden.

3.4 ODE-BPEL-Compiler und ODE-Objekt-Modell

Wie in Abschnitt 3.3 schon vorgestellt wurde, wandelt der Compiler BPEL-Prozesse in eine

für die Engine gut verständliche Form um. Dabei werden die BPEL-Prozesse von dem

Compiler kontrolliert und auf die Kompatibilität zu dem ODE-Objekt-Modell untersucht

[Ste08]. Wenn der BPEL-Prozess erfolgreich kompiliert wurde, ist das Ergebnis nach der

Kompilierung ein ausführbarer Prozess. Wenn Fehler bei der Kompilierung auftreten, wird

eine Liste von Fehlernachrichten erstellt, die auf die Probleme in den Quelldateien hinweist.

Die übergegebenen BPEL-Prozesse werden zuerst vom Compiler überprüft und zum ODE-

Objekt-Modell (O-Model) kompiliert. Das erfolgreich kompilierte ODE-Objekt-Modell wird

dann in einer .cbp Datei abgespeichert [Ste08] (siehe die Abbildung 3.2). Nachdem die

BPEL-Prozesse in eine Form von ODE-Objekt-Modell umgewandelt wurden, werden sie

dann ausgeführt, dabei helfen aber auch die DAOs. DAOs ermöglichen die Daten auf eine

sichere Weise zu speichern und können zur Persistenz der Daten beitragen.

Abbildung 3.2 Verwaltung eines BPEL-Prozesses in der Apache ODE [Ste08]

Mindestens ein passendes Objekt im ODE-Objekt-Modell wird für jede Aktivität, für jeden

Prozess und für jeden Handler beziehungsweise Event Handler, Termination Handler,

Compensation Handler und auch Fault Handler vom ODE-Compiler erzeugt. Die folgende

Abbildung 3.3 zeigt einen Teil aus dem ODE-Objekt-Modell.

 31

Abbildung 3.3 Teil aus dem Klassendiagramm der Objekte im ODE-Objekt-Modell

Die Klasse OBase ist die oberste Klasse im ODE-Objekt-Modell und alle anderen Klassen

erben von dieser Klasse. Die Klasse OBase hat zwei wichtige private Attribute "_id" und

"_owner". Durch die zwei Attribute kann ein Objekt präzise identifiziert werden. Das Attribut

"_owner" deutet den Prozess an, zu dem das Objekt gehört. Die Klasse OProcess stellt einen

BPEL-Prozess dar und erbt ebenfalls von der Klasse OBase. Die Klasse OAgent erbt auch von

der Klasse OBase, die eingehende und ausgehende Links und lesbare und schreibbare

Variablen besitzt. Die Klasse OLink erbt von der Klasse OBase und hat zwei Attribute

"source" und "target", die auf die Quellenaktivität und die Zielaktivität verweisen. In dieser

Arbeit ist es sehr sinnvoll, die Klasse OActivity zu verstehen, weil diese Klasse die

grundlegende Klasse für alle Aktivitäten darstellt. Wie in der Abbildung gezeigt hat, erbt die

Klasse OActivity von der Klasse OAgent. Alle Aktivitätentypen in BPEL, die von Apache

ODE unterstüzt werden, erben von der Klasse OActivity . Das Attribut "parent" verweist auf

die Vateraktivität dieser betroffenen Aktivität. Die <sequence>-Aktivität in BPEL wird in

ODE als das Objekt OSequence dargestellt und hat eine Attribute "sequence", das auf die

Kinderaktivitäten von dieser <sequence>-Aktivität verweist.

3.5 ODE-BPEL-Engine-Runtime

Die ODE-BPE- Engine-Runtime existiert innerhalb des BPEL-Runtime Moduls und bietet die

Ausführung von den kompilierten BPEL-Prozesse an. Um die BPEL-Prozesse auszuführen,

müssen unterschiedliche BPEL-Konstrukte von der Runtime implementiert werden. Die

 32

Logik, wann eine neue Instanz erzeugt werden soll, muss auch von der Runtime

implementiert werden. Zu welcher Instanz eine eingehende Nachricht gehört, muss auch von

der Runtime selbst entschieden werden. Die Process Management API, die eine Schnittstelle

für den Benutzer mit der ODE anbiete, wird auch von der Runtime realisiert. Um eine

zuverlässige Ausführung von Prozessen in einer unzuverlässigen Umgebung zu garantieren,

basiert die Runtime auf DAOs, die Persistenz anbieten können. Die DAOs werden im

nächstem Abschnitt beschrieben.

JACOB

Mittels des ODE Java Concurrent Objects (Jacob) Framework können die BPEL-

Sprachkonstrukte auf der Ebene von Workflow-Instanzen implementiert werden. Jacob hat

einen Mechanismus zur Verfügung gestellt, der die folgenden zwei wichtigen Aufgaben

gewährleisten kann:

 1. Die Persistenz des Zustandes während der Ausführung.

 2. Die Nebenläufigkeit.

Mit Hilfe von Jacob kann die Implementierung der BPEL-Konstrukte vereinfacht werden,

weil nur die BPEL-Logik nicht aber Engine-spezifische Logik implementiert werden müssen.

Die folgende Abbildung stellt beispielweise einen Teil aus dem Klassendiagramm für die

Objekte auf der Instanzebene dar.

Abbildung 3.4 Teil aus dem Klassendiagramm für die Objekte auf der Instanzebene

 33

Die Klasse JacobObject ist die oberste Klasse für die Objekte auf der Instanzebene. Die

Klasse JacobRunnable erbt von der Klasse JacobObject. JacobObject wird als ein einfaches

Closure beschrieben [Yu10]. Ein Closure kann auch als eine Programmfunktion bezeichnet

werden, die beim Aufruf einen Teil von ihrem Erstellungskontext reproduziert, selbst wenn

dieser Kontext außerhalb dieser Programmfunktion nicht mehr existiert [WCL].

 Alle auf der Instanzebene existierenden Aktivitäten, Handler und Prozesse erben von der

Klasse JacobRunnable, welche eine run-Methode vordefiniert hat. Alle Akvititäten, die von

JacobRunnable erben, müssen ebenfalls auch die run-Methode besitzen, die die

Hauptfunktionalität der jeweiligen Aktivität implementiert. Mittels des Attributes "_self" von

der Klasse ACTIVITY kann das Objekt auf ein Objekt des ODE-Objekte-Modells verweisen,

weil die Klasse ActivityInfo durch das Attribut "o" auf die Klasse OActivity verweisen kann.

Aktivitäten, die zu verschiedenen Prozessinstanzen gehören, können beispielsweise auf

dasselbe Objekt des ODE-Objekte-Modells zugreifen.

Wenn eine neue Prozessinstanz erzeugt wird, wird eine neue Instanz von der Klasse

BPELRuntimeContextImpl erzeugt, die das Interface BPELRuntimeContext implementiert.

Die Klasse implementiert die BPEL Prozessinstanzen. In der Klasse

BPELRuntimeContextImpl stehen viele Funktionen zur Verfügung. Beispielsweise kann in

dieser Klasse die Methode terminate() aufgerufen werden, um den Prozess vorzeitig zu

beenden. Die Funktionalität, die in der Klasse BPELRuntimeContextImpl enthalten ist, wird

nicht mehr direkt im Jacob Framework implementiert [Ste08].

Virtual Processing Unit(VPU) und ExecutionQueue

Gleich wenn die neue Instanz der Klasse BPELRuntimeContextImpl erzeugt ist, wird eine

neue Instanz der Klasse JacobVPU auch erzeugt. Die JacobVPU ist der eigentliche Ort, wo

die wirkliche Ausführung stattfindet. Wenn ein JacobObject aufgerufen wird, wird das

JacobObject in der VPU als Continuation aufgelistet. Um ein JacobObject auszuführen, kann

das JacobObject mittels Continuation mit der run-Methode dieses JacobObjects verbunden

werden.

Um alle Artefakte in der Warteschlange zu verwalten, dient eine ExecutionQueue als

Container für die VPU, weil alle von der VPU verwalteten Teile in der ExecutionQueue

abgelegt werden. In der ExecutionQueue ist es möglich, die Artefakte aus der Warteschlange

zu holen oder sie wieder in die Warteschlange zu legen. ExecutionQueue zeichnet auch

gleichzeitig die Statistik der Ausführungen auf. Wenn eine Execution gestoppt wird, kann der

Status von der VPU serialisiert und abgespeichert werden, wenn der Status später noch einmal

gebraucht wird.

3.6 ODE Data Access Objects

Die ODE Data Access Objects vermitteln die Interaktionen zwischen der ODE-BPEL-Engine-
Runtime und der untergeordneten Datenbank. Normalerweise ist die Datenbank eine

relationale JDBC-Datenbank und in diesem Fall können die DAOs mittels OpenJPA

implementiert werden. Es ist auch möglich, eigene DAOs zu implementieren, wobei ein

Mechanismus zur Gewährleisung der Persistenz nicht mittels JDBC entwickelt werden kann.

Zur Zeit können die folgenden von der ODE-BPEL-Engine geforderten Aufgaben durch die

DAOs erledigt werden:

 34

 Aktive Instanzen - Die Instanzen, die schon erzeugt sind, können durch DAOs abgefragt

werden.

 Das Routing der Nachrichten - Welche Nachricht wird von welcher Instanz gewartet?

 Variablen - Die Werte der BPEL Variablen für jede Instanz sind mittels DAOs

abgespeichert.

 Partner Links - Die neuesten Werte der Partner Links in BPEL für jede Instanz sind auch

mit Hilfe von DAOs abgepeichert.

 Der Status von der Prozessausführung - Jacob "persistent virtual machine" serialisiert

den Status von der Prozessausführung [ODE2].

3.7 Die BPEL Management API

Die BPEL Management API besteht aus zwei Teilen, nämlich dem Process Definition

Management Interface und dem Process Instance Management Interface, und stellt die

Funktionalität zur Verfügung, um die BPEL Prozesse und auch die zu den Prozessen

gehörenden Instanzen zu verwalten. Mit Hilfe von der BPEL Management API kann der

Benutzer beispeilerweise wissen, welche Prozesse schon durch die Engine deployed wurden,

was die InstanzId für diese Prozesse ist, und die Zustände von den Aktivitäten.

Process Definition Management Interface

Diese API hat untenstehende Operationen definiert:

 list - listet die Informationen für alle, oder einige Definitionen der Prozesse auf. Die

Operation listProcesses() ist zuständig dafür, dass ein bestimmter Prozess aufgelistet

werden kann. Die Operation listAllProcesses() ermöglicht, dass die Informationen von

allen in der Engine verfügbaren Prozessen, wie die ID, die Zustände, die Version usw.

gezeigt werden.

 details - listet die ausführlichen Informationen über die Definition von spezifizierten

Prozessen auf. Die Informationen für einzelnene Prozesse inklusive einer Übersicht

dieser Instanz kann durch die Operation getProcessInfo() aufgelistet werden.

 set-properties - verändert die Eigenschaften. Die Operation setProcessProperty() kann

 eine Eigenschaft als einen einfachen Typen für den Prozess setzen.

 activate - aktiviert einen Prozess. Die Operation activate() kann einen Prozess aktivieren.

 retire - zieht einen Prozess zurück. Der Prozess kann durch die Operation

 setRetired()zurückgezogen werden und kann nicht mehr gestartet werden.

Process Instance Management Interface

Diese API definiert folgende Operationen:

 35

 list - listet die Informationen über alle oder einige Instanzen auf. Die Operation

 listAllInstances() kann alle vorkommenden Instanzen auflisten.

 detail - listet die ausführlichen Informationen über die vorgegebene Instanz auf. Die

 Operation getInstanceInfo() ist eine Operation dafür.

 suspend - unterbricht eine Prozessintanz vorübergehend. Dazu steht die Operation

 suspend() zur Verfügung und diese Operation kann den Status dieser Instanz von

 active auf suspended verändern. Dabei muss die Instanzid eingegeben werden.

 resume - setzt die Prozessinstanz fort. Die Operation resume() kann eine pausierte Instanz

 fortführen. Im Gegensatz zu suspend kann resume() den Status dieser Instanz von

 suspended auf active zurücksetzten.

 terminate - terminiert die Prozessinstanz. Die Operation terminate() kann eine Instanz

 sofort beenden. Aber es ist unmöglich, irgendeinen fault oder compensation handler

 auszuführen.

 fault - kann eine Prozessinstanz abbrechen. Die Operation fault() ermöglicht, dass eine

 Instanz erfolglos beendet wird und dabei ein bestimmter Fehler ausgeworfen wird.

 delete - löscht alle oder einige vollendete Instanzen. Die Operation delete() benötigt einen

 Parameter, nämlich filter , was ein vorgegebener Name, ein bestimmter Status usw. sein

 könnte.

 36

4. Verwandte Arbeiten

In diesem Kapitel werden drei relevante Arbeiten vorgestellt. Es existieren bereits

wissenschaftliche Workflowsysteme und die Konzepte, die Wiederholung von Aktivitäten

ermöglichen können.

4.1 E-BioFlow

Workflowsysteme sind schon erfolgreich für die Modellierung der Geschäftsprozesse und der

Biowissenschaft im Einsatz. Das Modell der Workflows wird meistens in den folgenden zwei

Bereichen verwendet. Bei Geschäftsprozessen ist das Workflowmodell am den Kontrollfluss

orientiert, der die Reihenfolge der Aufgaben definiert. Aber bei Biowissenschaft ist das

Workflowmodell am Datenfluss orientiert, der den Fluss der Informationen beschreibt. Die

Workflowsysteme für die Biowissenschaften sollen noch weiter entwickelt werden, damit die

Kontrollstrukturen besser modelliert werden können [WRV
+
08].

E-BioFlow ist dann ein Werkzeug des Workflows und wird im Bereich der Biowissenschaft

eingesetzt. E-BioFlow wird von BioRange an der Universität Twente in den Niederlanden

entwickelt. Es hilft den Biowissenschaftlern, die Experimente der Biowissenschaft durch die

Verbindung der Webservices zu entwerfen. E-BioFlow ist ein Workflowsystem, das auf dem

Kontrollfluss basiert. Die anderen Workflowsysteme im Bereich der Biowissenschaft sind

dagegen am den Datenfluss orientiert [BioF]. Mehrere erweiterte Kontrollstrukturen, zum

Beispiel die parallele Ausführung der Aufgaben, Iteration (loops) und auch die konditionale

Verzweigung (if-then-else) können durch das Paradigma des Kontrollflusses modelliert

werden [BioF].

Die von E-BioFlow erzeugten Daten sind deutlich im Workflowmodell dargestellt und

können als die Datenquelle für die nächsten Schritte in den Experimenten benutzt werden.

Solche Daten sind verfügbar als Eingabe für die neuen Aufgaben oder für die schon im

Workflow existerenden Aufgaben [WOV09].

E-BioFlow wurde schon im Jahr 2009 zu einem Workflowsystem mit dem ad-hoc Editor

weiterentwickelt. Es ermöglicht dem Entwerfer, den partiellen Workflow durchzuführen und

den partiellen Workflow mit den Daten, die von dem schon ausgeführten Workflow erzeugt

wurden, zu erweiteren [WOV09]. Die Vorteile vom ad-hoc-Editor im Vergleich zu den

traditionellen Workflowsystemen werden in den folgenden Abschnitten in Anlehnung an

[WOV09] vorgestellt.

4.1.1 Die Vorteile von E-BioFlow mit dem ad-hoc-Editor

- Die zu benutzenden Aufgaben sind oft unbekannt in der Designphase. Der ad-hoc Editor

 ermöglicht es dem Designer, die Aufgaben auszuprobieren.

- Der Designer des Workflows braucht nicht den kompletten Workflow im Voraus zu kennen,
 aber er kann den partiellen Workflow erweitern und ausführen.

- Im Fall einer kleinen Änderung im Workflow kann der ad-hoc Editor es ermöglichen, die

 entsprechenden Tasks zu wiederholen.

 37

 - Dazwischenliegende Ereigenisse können als die Informationsquellen benutzt werden, um

die nächsten Schritte vom Workflow zu entscheiden.

- Der Designer muss keine Vermutungen zu den Daten anstellen, die von den Aufgaben

produziert und gebraucht werden.

- Der Designer kann die Parameter einfach feinabstimmen und kann auch die Workflows

durch die getrennte Ausführung der Aufgaben austesten.

4.1.2 Die sechs Perspektiven von E-BioFlow

Die Schnittstelle von E-BioFlow bietet sechs verschiedene Perspektiven: die Perspektive des

Kontrolflusses, des Datenflusses, und die von Ressourcen, Engine von Workflows,

Provenienzsysteme und der ad-hoc-Editor [WOV09].

Die Perspektive des Kontrollflusses (Control flow) fokussiert die Reihenfolge von

Aufgaben. Sie bietet dem Designer des Workflows die Möglichkeit, die Reihenfolge der

Ausführung der Aufgaben zu modellieren. Dabei können die Aufgaben sequenziell, parallel,

iterativ und auch konditional durchgeführt werden.

Die Perspektive des Datenflusses (Data flow) wird benötigt, um die Überführung der Daten

zwischen Aufgaben zu modellieren.

Die Perspektive der Ressourcen (Resource perspective) wird benutzt, um die Typen der

Ressourcen zu definieren. Solche Ressourcen sind notwendig, um die Aufgaben auszuführen.

Die tatsächlichen Ressourcen werden zur Ausführungszeit des Workflows bestimmt.

Die Engine des Workflows (Workflow engine) kann die Workflows ausführen. Sie ist

verantwortlich für die Einplanung der Aufgaben, die Aufführung der Verbindungen und die

Übergabe der Daten zwischen Aufgaben. Sie ist aufgebaut auf einer YAWL-Engine

[VAD
+
04].

Das Provenienzsystem (Provenance system) erfasst alle Prozesse- und Daten-relevanten

Informationen der Ausführung des Workflows.

Ad-hoc-Editor ist fähig, das ad-hoc-Design durchzuführen.

Alle Perspektiven werden in der Abbildung 4.1 gezeigt. Alle Perspektiven außer der

Perspektive der Provenienz kommunizieren direkt mit dem Spezifikationscontroller

(Specification Controller). Der Spezifikationscontroller verwaltet die noch offenen

Workflows [WOV09]. Die Perspektiven senden die Anfragen an den Spezifikationscontroller

im Fall von Änderungen im Workflowmodell, während der Benutzer das Diagramm des

Workflows bearbeitet. Der Spezifikationskontroller setzt die Änderungen um und kündigt

allen Perspektiven die Änderungen an. Die Änderungen senden und empfangen all diejenigen

Perspektiven, die sich bei dem Spezifikationscontroller angemeldet haben. Der ad-hoc-Editor

ist die Perspektive, die mit der Engine interagiert.

 38

Abbildung 4.1 Alle Perspektiven von E-BioFlow mit ad-hoc-Editor [WOV09]

4.1.3 Ad-hoc Workflowdesign in E-BioFlow

Der Ad-hoc-Editor kombiniert die Eigenschaften von einem Editor, einer Engine und auch

einem Provenanzbrowser [WOV09]. Die Modelle der Workflows können vom Ad-hoc-Editor

und auch allen anderen Perspektiven gemeinsam benutzt werden. Wie in der Abbildung 4.1

gezeigt, kann der Ad-hoc-Editor durch den Controller der Spezifikation (Specification

Controller) von jeder Änderung wissen und ebenfalls die Änderungen in dem

Workflowmodell einsetzen, wenn ein Workflow im Editor modelliert wird. Der Ad-hoc-

Editor wird in der folgenden Abbildung 4.2 gezeigt.

Abbildung 4.2 Der Screenshot des ad-hoc-Editors im E-BioFlow [WOV09]

Wie in der Abbildung 4.2 gezeigt, werden der Task als Rechteck und die Daten als Kreis im

 39

Editor dargestellt. Die Daten haben zwei Ports, nämlich den Inputport und den Outputport.

Die Daten werden vom Inputport benutzt (used by) und vom Outputport hergestellt

(generated).

4.1.4 Ein im Ad-hoc-Editor entworfener Anwendungsfall

Im folgenden Abschnitt wird ein Anwendungsfall vorgestellt, der im Ad-hoc-Editor

entwickelt wird. Dabei gibt es eine Operation für meine Arbeit relevant, die ähnlich wie die

Iterate funktioniert.

Siehe bitte die folgende Abbildung 4.3.

Abbildung 4.3 Der erste Task MobyBlat [WOV09]

Um eine biowissenschaftliche Frage zu analysieren, ist ein Webservice nämlich der Blat-

Service, zu orchestrieren. Der Blat-Service kann in das Panel des Workflows gezogen werden.

Der Webservice benötigt zwei Inputdaten. Der erste Input ist als User benannt, der für die

Informationen über die Session verantwortlich ist. Der zweite Input ist als BlatJob benannt,
der die Namen der Datenbank und der Sequenz anbietet. Die beiden Inputs sind XML-

strukturiert. Aber der Editor kann dabei helfen, die komplizierten Datenstrukturen aufzubauen.

Ein Composertask kann vom Benutzer im Editor hinzugefügt werden und der User kann als

Inputdaten zu diesem Task angelegt werden bei rechtem Klick auf den Port. Der Benutzer hat

den Composertask ausgewählt und auch dem Editor den Hinweis gegeben, den Composertask

auszuführen. Der Editor lässt den Benutzer die Email-Adresse und das Passwort eingeben, um

die komplexe Datenstruktur aufzubauen. Dann wird das Ergebnis des Composertasks im

Editor gezeigt. Zwei Pfeile sind zu dem Workflowmodell neu hinzugefügt worden. Einer

davon legt den Outputport des Composertasks im Datenitem (User) an und der andere legt das

Datenitem (User) im Inputport des Tasks (MobyBlat) an. Der BlatJob Input kann auf die

gleiche Weise wie der User-Input für den Task (MobyBlat) im Editor erstellt werden.

Jetzt sind alle notwendigen Inputdaten für unseren Task (MobyBlat) verfügbar und der User

kann den Task gleich im Editor ausführen. Der Blat Service ergibt vier Ausgaben (siehe in

Abbildung 4.3) und dies sind "result", "user", "output" und "serviceNotes". "result" ist die

URL zum Blat-Bericht, "user" und "output" sind die Kopien von zwei Eingaben und

"serviceNotes" bezeichnet ein Objekt des MOBY-S. MOBY-S sind die Webservices, die für

 40

die Interoperabilität zwischen dem biowissenschaftlichen Host der Daten und den

analytischen Services dient [MOB]. Der Benutzer muss das Ergebnis anhand der URL vom

Blat herunterladen. Weil die URL ein Text im MOBY-S-XML-Format ist, muss der Benutzer

durch einen Rechtsklick auf die Daten der URL einen Decomposertask für das MOBY-S

Objekt anfordern (siehe die Abbildung 4.3). Nach der Ausführung des Decomposertasks ist

die URL jetzt im Klartext.

Nach weiteren Designschritten gibt es im Editor jetzt die neuen Tasks. Im Abbildung 4.4

werden alle neuen Tasks gezeigt.

Abbildung 4.4 Die neuen Tasks "result" and "Scripting task" [WOV09]

Der neue Task "Scripting task" ermöglicht das Herunterladen des Inhalts über eine gesicherte

Verbindung. Um den Task auszuführen, muss der Code vom Benutzer geschrieben werden.

Der Benutzer hat sich für die Programmiersprache Perl entschieden. Danach führt der

Benutzer den Task aus. Aber es kommt eine Fehlermeldung vom Programm, das der Benutzer

geschrieben hat. Nach der Behebung des Fehlers kann dieser Task nochmal ausgeführt

werden. Dieses Mal läuft der Task erfolgreich. Am Ende kann der Benutzer den kompletten

Workflow nochmal laufen lassen.

4.2 Retry Scopes

BPEL ist die meistens beliebteste Sprache zur Prozessmodellierung für die Modellierung der

Geschäftsprozesse und kommt ursprünglich aus der BPM- Domain. Das Hauptziel von BPEL

ist, die Geschäftsprozesse als Orchestrierung der Services zu modellieren und auszuführen

[EKU
+
10]. In diesem Fall wurden die Reaktionen auf die dynamischen Eigenschaften wie die

Netzwerkverbindung während der Designphase von BPEL nicht genug berücksichtigt. Viele

selten vorkommende Fehler sind im Prozessmodell nicht bedacht. Das hier vorgestellte

Konzept bietet eine Annäherung an ein anpassungsfähiges und stärkeres Prozessmodell in der
realen Welt. Die Aktivitäten können erneut angestoßen werden, wenn ein bestimmter Fehler

auftritt. Das hier vorgestellte, neue definierte Modellelement ermöglicht und erweitert die

<scope>-Aktivität, die auf Fehlersituationen in einer flexibleren Weise als die herkömmliche

<scope>-Aktivität von BPEL reagieren kann.

 41

4.2.1 Die zwei Szenarien

Um das Konzept besser zu verstehen, werden in diesem Abschnitt zwei Szenarien vorgestellt.

Beim ersten Szenario handelt es sich um einen Medikamententest in einem Prozess. Der

Medikamententest besteht aus drei Testphasen. Der erste Schritt ist das Abholen der

Ingredienzien. Der zweite Schritt wird die Mischung der Ingredienzien genannt und der letzte

Schritt ist der Test der Mixtur. Die Syntax dieses Testprozesses kann in BPMN 1.2

repräsentiert werden (siehe die Abbildung 4.5) [EKU
+
10].

Abbildung 4.5 Der Medikamententest [EKU
+
10]

Der Prozess hat nach diesem Medikamententest zwei Alternativen fortzufahren. Eine

Alternative wird ausgewählt, wenn die Mixtur die Anforderungen nicht erfüllen kann. Die

andere davon wird ausgewählt, wenn der Test erfolgreich ist. Wie die Abbildung 4.5 gezeigt

hat, sind die drei Testphasen gebündelt. Wenn ein Fehler während des Tests auftritt, muss das

Labor sauber gemacht werden und es müssen auch alle Aktivitäten vom Test neu gestartet

werden. Dieser Test kann als eine <scope>-Aktivität betrachtet werden. In diesem Prozess

werden einigen Reparaturarbeiten gemacht, bevor diese <scope>-Aktivität neu versucht wird.

Das zweite Szenario unterscheidet sich von dem ersten. Ein Prozess kann dazu entworfen

werden, einen Arbeiter einer Spedition zu unterstützen. In diesem Prozess werden alle

Anweisungen der Navigation passend zur aktuellen Position des Liefernten berechnet. Wenn

der Lieferant die richtige Route nicht verfolgt und sich dann mit dem Navigationsprozess in

Verbindung setzt, kann der Navigationsservice abhängig von der aktuellen Position eine neue

richtige Route berechnen. Dieser Prozess unterscheidet sich von dem ersten Prozess dadurch,

dass der Prozess nicht den Anfangsort des Mitarbeiters berechnen muss, wenn ein Fehler

auftritt. Die neue aktuelle Position kann als Input eingegeben werden und der Prozess kann

dabei neu gestartet werden. Im Vergleich zu erstem Beispiel wiederholt sich die <scope>-

Aktivität ohne irgendeine Reparaturarbeit.

4.2.2 Das Konzept von Retry/Rerun-Scopes

In den vorherigen zwei Abschnitten wurden die zwei verchiedenen Szenarien dargestellt und

die grundlegenden Informationen über BPEL und Scopes eingeführt. Abhängig davon kann

das Konzept jetzt erstellt werden. Zunächst sollen die Unterschiede zwischen den zwei

Szenarien erklärt werden.

1. Aus dem ersten Szenario kann ein Verhalten als Retry definiert werden. Retry bedeutet,

dass aufgrund eines auftretenden Fehlers einige Aktivitäten neu ausgeführt werden sollen,

aber zuvor müssen einige Dinge "sauber" gemacht werden.

 42

2. Aus dem zweiten Szenario kann ebenfalls ein Verhalten als Restart definiert werden.

Restart hat fast die gleichen Eigenschaften wie Retry, aber es ist etwas einfacher aufgrund der

Tatsache, dass die ausgeführten Aktivitäten nicht "sauber" gemacht werden müssen.

Das erste Szenario hat die Gemeinsamkeit mit der Operation von Reexecute gemein, dass

einige Aufgaben gemacht werden müssen, bevor die Aktivität neu durchgeführt wird. Das

zweite Szenario hat dann mit der Operation von Iterate gemein, dass keine Arbeit gemacht

werden muss, bevor diese Aktivität wiederholt wird.

Das neue Konzept von Retry/Rerun-Scopes benutzt eine neue Aktivität nämlich <restart>

innerhalb einer <catch>-Aktivität von einem Fault Handler. Das Attribut <times> der

<restart>-Aktivität definiert die Häufigkeit der Wiederholung eines Fault Handlers im Fall

eines bestimmten Fehlertyps: eine Endlosschleife kann dadurch auch vermieden werden.

Insbesondere ist zu beachten, dass der Zähler nicht zunimmt, wenn die dazugehörende

<scope>-Aktivität neu ausgeführt wird, sonder nur dann, wenn die <restart>-Aktivität neu

ausgeführt wird. Der Zähler läuft bei jeder Ausführung der <restatt>-Aktivität mit der

gleichen ID von Aktivitäten und auch der gleichen ID von Prozessen [EKU
+
10].

Die folgende Abbildung zeigt ein Beispiel, wie man mit dieser neuen vorgestellten <restart>-

Aktivität das Verhalten von Retry darstellen kann.

Listing 4.1 Fault Handler mit <restart>-Aktivität in RetryScope [EKU+10]

In der <catch>-Aktivität dieses Faulthandlers gibt es eine <sequence>-Aktivität, die auch die

Aktivitäten von <compensate>, <wait> und <restart> enthält. <wait> dient dazu, dass die

nachfolgende <restart>-Aktivität verzögert werden soll.

Für den RerunScope gibt es nur einen Unterschied zum RetryScope, wobei das Verhalten als

Restart aus dem zweiten Szenario im RerunScope realisiert wird. In der <sequence>-Aktivität

von dem Fault Handler im RerunScope wird nur die <compensate>-Aktivität nicht ausgeführt.

4.3 Dynamische Modifikation des Workflows

Wenn der Benutzer in manchen Situationen die Geschäftsprozesse ändern oder von einigen

Stellen der gesamten Geschäftsprozesse abweichen möchte, können die Geschäftsprozesse

nicht mehr wie vorher beschrieben ausgeführt werden. In diesem Abschnitt werden einige

Fälle in Anlehnung an [LR00] vorgestellt, wo der Benutzer einen laufenden Workflow

 43

modifizieren kann.

 Die tatsächliche Prozessinstanz

 Fall 1: Die Aktivität D wird gelöscht

 Fall 2: Die Aktivitäten A und B sollen nochmal ausgeführt werden

 Fall 3: Eine neue Aktivität E ist zu dem Prozess hinzugefügt worden

 Fall 4: Die Aktivität C wird eingehängt, um die zusätzlichen Information aus E zu

 bekommen

Abbildung 4.6 Modifikationen vom Workflow

Zu dem Zeitpunkt, zu dem die tatsächliche Prozessinstanz in der oben stehenden Abbildung

gezeigt wird, bearbeitet der Benutzer gerade die Aktivität C. Im Fall 1 wird die Aktivität D

aus dem gesamten Geschäftsprozess gelöscht, wenn diese Aktivität nicht nötig ist. Die

Modifikation hier wird nach [LR00] "delete step" genannt. Der Fall 2 kann als eine Iterate-

Modifikation betrachtet werden [LR00]. Während der Prozess läuft, kann der Benutzer

bemerken, dass die Aktivität C die von ihm vorher erwünschten Ergebnisse nicht produzieren

kann. Der Benutzer lässt deshalb um diesen Zeitpunkt die Aktivitäten A und B nochmal

ausführen. Im Fall 3 wird die neue Aktivität E zwischen den Aktivitäten C und D zu den

B C D A

B C D A

B C D A

E

B C D A

E

B C D A

 44

Prozessen hinzugefügt. E kann von dem Benutzer oder anderen ausgeführt werden. Die

Modifikation dieses Falls wird auch als "intermediate step" bezeichnet [LR00]. Im Fall 4

hängt der Benutzer die Aktivität C ein, weil er noch die zusätzlich benötigten Informationen

aus der Aktivität E braucht. Die in diesem Fall relevante Modifikation wird nach [LR00]

"inquiry" genannt.

 45

5. Konzept für Iteration und Wiederholte Ausführung der

Aktivitäten im WS-BPEL 2.0

Das Kapitel bezieht sich auf ein Konzept für Iteration und wiederholte Ausführung der

Aktivitäten in WS-BPEL 2.0, die sich innerhalb von <sequence>-, <flow>-, <while>-,

<repeatUntil>- und <forEach>-Aktivitäten befinden. Wiederholte Ausführung der Aktivitäten

wird in diesem Kapitel Re-execution genannt.

Die Unterschiede zwischen dem Konzept dieser Arbeit und dem Konzept des Retry/Rerun-

Scope aus dem Kapitel 4 sind im Folgenden beschrieben:

 In diesem Konzept wird keine neue Aktivität für WS-BPEL erzeugt. Bei Retry/Rerun

wird eine neue Aktivität, nämlich die <restart>-Aktivität für WS-BPEL kreiert.

 Die Operationen Iteration und Re-execute werden nicht im Prozess modelliert,

 sondern von außen durch die ProcessInstanceMangement-API ausgeführt.

 Die beiden Operationen können an jeder beliebigen Stelle ausgeführt werden. Aber das

 Konzept von Retry/Rerun wird nur für die <scope>-Aktivität definiert.

Vorbedingungen für die Operationen Iteration und Re-execution:

Bevor die beiden Operationen durchgeführt werden können, muss der laufende Prozess zuerst

angehalten werden (suspend).

Die Nachfolgeaktivitäten müssen dann auch ermittelt werden, weil die laufenden

Nachfolgeaktivitäten beendet werden müssen.

In allen Abbildungen steht das rote Häkchen für die Aktivitäten, die schon erfolgreich

ausgeführt wurden; ebenso zeigt der grüne Strich die Aktivitäten an, die zu diesem Zeitpunkt

der Ausführung von der "iterate/reexecute"-Operation, noch aktiv sind. Der schwarze Pfeil

zeigt die Aktivitäten, die von der "iterate/reexecute"-Operation nochmal durchgeführt werden

sollen, an. Das rote Kreuz steht für die Aktivitäten, die nicht ausgeführt werden können, weil

sie sich in einem toten Pfad befinden.

5.1 Die Unterschiede zwischen Iteration und Re-execution

Die Iteration soll nur als eine Schleife für die zu wiederholende Aktivität betrachtet werden.

Es müssen keine zusätzlichen Aufgaben mehr erledigt werden, um die Aktivität nochmal
auszuführen.

Bei der Re-execution dagegen müssen zusätzliche Aufgaben gemacht werden. Dabei müssen

die Aktivitäten auf dem Pfad der zu wiederholenden Aktivität bis zur gerade laufenden

Aktivität zuerst rückgängig gemacht werden. Das bedeutet, die Aktivität muss in dem

gleichen Zustand sein (beziehungsweise in einem ähnlichen Zustand je nach

 46

Kompensationslogik), wie zu dem Zeitpunkt, bevor sie ausgeführt wurde. Die zu

wiederholende Aktivität soll die gleichen Werte für Partnerlinks und Variablen besitzen wie

bei der vorherigen Ausführung und kann dann durch Re-execution nochmal ausgeführt

werden. Für diese zusätzliche Aufgabe muss ein Mechanismus gefunden werden, um die

Daten von Partnerlinks und Variablen zu speichern.

5.2 Iteration

In diesem Abschnitt werden einige Fälle für die Operation Iteration vorgestellt.

5.2.1 Iteration in Sequence

Zunächst wird das Konzept für die <sequence>-Aktivität vorgestellt. Für die <sequence>-

Aktivität werden zwei Fälle im Folgenden zur Verfügung gestellt (siehe bitte die Abbildung

5.1 und 5.2).

Abbildung 5.1 Iteration in Sequence, Fall 1

Die in diesem Beispiel gezeigte <sequence>-Aktivität ist eine Sequence mit 1-n beendeten

und einer aktiven Aktivität. Die Iteration wird von einer der beendeten oder aktiven

Aktivitäten ausgeführt. Wie die oben stehendene Abbildung zeigt, sind die Aktivitäten A, B

und C schon fehlerfrei ausgeführt worden, D ist zurzeit noch aktiv und B soll nochmal durch

der Iterate-Operation ausgeführt werden. Bevor die Iterate Operation ausgeführt werden kann,

muss man den Prozess überprüfen, ob B oder Nachfolgeaktivitäten noch aktiv sind. Wenn

dies nicht der Fall ist, kann B nochmal ausgeführt werden. Wenn B oder eine

Nachfolgeaktivität noch aktiv ist, muss sie erst beendet werden bevor B erneut ausgeführt

werden kann.

 47

Abbildung 5.2 Iteration in Sequence, Fall 2

Die in diesem Fall beschriebene <sequence>-Akivität besteht aus mehreren <sequence>-

Akivitäten und jede Sequence davon ist auch eine Sequence mit 1-n beendeten und einer

aktiven Aktivität. Die Iterate-Operation wird von einer der beendeten oder aktiven Aktivitäten

ausgeführt. In der Abbildung 5.2 besteht der Prozess aus insgesamt drei <sequence>-

Aktivitäten, nämlich SEQ A, SEQ B und SEQ C. SEQ A besteht auch aus SEQ B und SEQ C.

Die Aktivitäten A und B in SEQ B wurden schon erfolgreich ausgeführt und SEQ B wurde

deshalb auch vollständig ausgeführt. SEQ C ist jetzt aktiv, weil das in C enthaltene D noch
aktiv ist. Wenn eine Iteration von B aus gemacht werden soll, müssen wieder alle aktiven

Aktivitäten im Pfad mit B beendet werden. Im Beispiel sind das C und SEQ C. B kann nicht

ohne Weiteres wiederholt ausgeführt werden, da SEQ B bereits beendet ist. Deshalb muss

SEQ B erneut ausgeführt werden. Innerhalb der Sequence dürfen dann nur die Aktivitäten ab

dem Iterationspunkt ausgeführt werden (im Beispiel nur Aktivität B).

5.2.2 Iteration in Flow

Im Folgenden wird das Konzept für die <flow>-Aktivität in vier Fällen vorgestellt (siehe bitte

die folgende Abbildungen 5.3, 5.4, 5.5 und auch 5.6).

Abbildung 5.3 Iteration in Flow, Fall 1

 48

In diesem Beispiel wird eine Flow-Aktivität von der Iterate-Operation nochmal ausgeführt.

Dieser Prozess dieses Falls besteht aus einer <flow>-Aktivität, die die Aktivitäten A, B, C, D,

E und F enthält. A, B und C wurden schon erfolgreich ausgeführt. D und E sind zurzeit noch

aktiv. F ist inaktiv, weil F noch auf die Nachrichten aus D und E warten muss. Um die Iterate

-Operation bei einer Aktivität zu ermöglichen, müssen erst die Aktivität selbst und/oder ihre

Nachfolgeaktivitäten beendet werden (hier die zwei aktiven Aktivitäten D und E). Dann kann

A durch Iterate wiederholt ausgeführt werden.

 Abbildung 5.4 Iteration in Flow Fall 2

Bei diesem Beispiel handelt es sich um die Ausführung einer Iteration-Operation in parallelen

Pfaden von einer <flow>-Aktivität. Dieser Prozess besteht aus einer <flow>-Aktivität, die die

Aktivitäten A, B, C, D, E und F enthält. A, B und C wurden schon erfolgreich ausgeführt. D

und E sind zurzeit noch aktiv. F ist inaktiv, weil F noch auf D und E warten muss. Um B neu

auszuführen, muss die hinter B stehende aktive Aktivität D gefunden und dann beendet

werden. Die Aktivitäten in dem anderen Zweig von dieser <flow>-Aktivität können ohne

Einschränkung weiter laufen (im Beispiel Aktivität E). F beginnt zu laufen, sobald der

Kontrollfluss in beiden Zweigen bei F ankommt.

 Abbildung 5.5 Iteration in Flow, Fall 3

 49

In diesem Beispiel wird eine Flow-Aktivität von der Iterate-Operation nochmal ausgeführt.

Der einzige Unterschied von Fall 3 in der Abbildung 5.5 zu Fall 2 in der Abbildung 5.4 ist,

dass ein toter Pfad (Dead Path) der Transition Condition der ausgehenden Links von Aktivität

A entstanden ist. Der Zweig zwischen C und F braucht wegen der Dead Path Elimination

nicht besonders berücksichtigt zu werden. Es muss das gleiche wie im Fall 2 gemacht werden.

(siehe die Abbildung 5.4)

Abbildung 5.6 Iteration in Flow, Fall 4

Dieses Beispiel handelt von der Ausführung einer Iterate-Operation in toten Pfaden einer

<flow>-Aktivität. Der Fall 4 beschreibt, wie eine Aktivität E von der Iterate-Operation

nochmal ausgeführt werden kann. Die Iteration selbst ist von einer Aktivität in einem toten

Pfad nicht erlaubt, da dadurch Ausführungshistorien von nicht zusammenhängenden

Aktivitäten entstehen können. Allerdings kann die Iteration dann automatisch von einer

sinnvollen Vorgängeraktivität durchgeführt werden. Zuerst müssen die zuvor schon

evaluierten Pfade (Links) rückwärts bis zu der Aktivität, die schon erfolgreich durchgeführt

wurde, durchlaufen werden. Im Beispiel kann die Aktivität A dadurch gefunden werden. Von

dieser Aktivität aus sucht man alle aktiven Nachfolger und beendet sie (hier: Aktivität D). Es

wird jetzt die Aktivität erneut ausgeführt, die durch das rückwärts gerichtete Durchlaufen des

Pfades gefunden wurde.

 50

5.2.3 Iteration in While, RepeatUntil und forEach

Abbildung 5.7 Iteration in While

In diesem Abschnitt wird die Iterate-Operation innerhalb einer While-Aktivität vorgestellt.

Die <while>-Aktivität enthält eine <squence>-Aktivität und deshalb funktionert die Iterate-

Operation in While genauso wie in der Sequence-Aktivität. Es muss aber darauf geachtet

werden, dass es zu Endlosschleifen kommen kann, wenn Variablen so durch die Iterate-

Operation verändert werden, dass die While-Bedingung niemals false werden kann.

Die Iterate-Operation in der <repeatUntil>-Aktivität arbeitet fast auf die gleiche Weise wie

<while>. Es muss aber richtig aufgepasst werden, dass die Bedingung von <repeatUntil>

durch mehrmalige Ausführung der "rerun"-Operation verletzt werden kann, wenn zum

Beispiel ein Zähler als die Bedingung für die <repeatUntil>-Aktivität dient.

Für die <forEach>-Aktivität müssen zuerst die folgenden zwei Fälle unterschieden werden.

Wenn der Wert des Attributs "parallel" "no" ist, ist diese <forEach>-Aktivität eine serielle

<forEach>-Aktivität und kann die Iterate-Operation wie in <while> von einer bestimmten

Aktivität ausgeführt werden, weil sich die serielle <forEach>-Aktivität im Grunde nicht von

While und RepeatUntil unterscheidet. Allerdings kann die Aktivität selbst das Hochzählen des

Zählers übernehmen. Deshalb muss man nicht auf die ForEach-Bedingung achten wie bei

While und RepeatUntil. Wenn dieser Attributwert "yes" ist, ist diese <forEach>-Aktivität ein

paralleles <forEach>. Die enthaltene <scope>-Aktivität wird gleichzeitig ausgeführt. Es

werden mehrere Instanzen des Scopes gleichzeitig gestartet. Für eine Iteration muss die

richtige Scope-Instanz gefunden werden. Dazu muss die Iterate/Re-execute-Operation um

einen entsprechenden Parameter erweitert werden.

5.3 Re-execution

Die Unterschiede zwischen Iteration und Re-execution wurden schon in dem Abschnitt 5.1

beschrieben. Hier wird nur die Re-execution von einer Aktivität innhalb von einer

<sequence>-Aktivität, die schon im Abschnitt 5.2.1 als das erste Beispiel benutzt wurde,

 51

erläutert. Die Grundkonzepte von Re-execution der Aktivität sind gleich wie Iterate in

Sequence, Flow, While usw. Zusätzlich ist nur zu berücksichtigen, wie die Aktivitäten auf

dem Pfad der zu wiederholenden Aktivität bis zur gerade laufenden Aktivität rückgängig

gemacht werden. Um dies zu ermöglichen, müssen die Partnerlinks und die Variablen dieser

Aktivität abgespeichert werden und in manchen Fällen muss die Kompensierung auch

ausgeführt werden. Weil die Re-execution an jeder beliebigen Stelle eines Prozesses

durchgeführt werden kann, müssen die Werte von den Partnerlinks und den Variablen von

jeder Aktivität vor ihrer Ausführung gespeichert werden. Wenn eine Re-exection

durchgeführt wird, müssen die Werte von den beiden wieder abgeholt und zu dieser zu

wiederholenden Aktivität übergeben werden. Dafür können die Snapshots verwendet werden,

um sie zu speichern. In den folgenden Abbildungen stellt der Block in lila die Snapshots dar,

die vor der Ausführung von Aktivitäten schon abgespeichert werden sollen. Wir nehmen hier

drei Beispiele für Re-execute.

5.3.1 Einfache Re-execution für die Aktivität ohne Kompensierung

Abbildung 5.8 Re-execution in Sequence ohne Kompensierung

In diesem Beispiel gibt es nur die vier Aktivitäten A, B, C und D. Sie befinden sich alle

innerhalb einer <sequence>-Aktivität. Die zusätzlichen Aufgaben für Re-execute im

Vergleich zu Iterate sind nur die Snaptshots für alle A, B, C und D zu erzeugen. Wenn B

nochmals durch Re-execute auszuführen ist, werden die Werte von den Partnerlinks und den

Variablen aus dem Snapshot abgeholt und wieder an B übergeben, die schon vor der ersten

Ausführung von B abgespeichert wurden.

5.3.2 Re-execution für die Aktivität mit Kompensierung

In diesem Abschnitt wird Re-execute für die Aktivität mit Kompensierung vorgestellt. Die

Kompensierung muss für bereits ausgeführte Aktivitäten gemacht werden, die durch das Re-

execute erneut ausgeführt werden sollen. Die Kompensierung kann allerdings nur bei einer

erfolgreich ausgeführten <scope>-Aktivität und <invoke>-Aktivität gemacht werden. Das

bedeutet, wenn auf dem Pfad der zu wiederholenden Aktivität und den gerade aktiven

 52

Aktivitäten schon beendete Scopes und Invokes liegen, dann müssen die Scopes und Invokes

kompensiert werden. Hier werden zwei Beispiele betrachtet. Bei einem davon handelt es sich

um Re-execute für die Aktivitäten in der <scope>-Aktivität und das andere beschreibt über

die Re-execute speziell für die <invoke>-Aktivität.

Abbildung 5.9 Re-execution in Sequence mit Kompensierung Fall 1

Die Abbildung 5.9 zeigt die Aktivitäten A, B, C und D. B und C befinden sich in einer

<sequence>-Aktivität und diese Sequence existiert auch in einer <scope>-Aktivität mit einem

vordefinierten Compensation Handler. B muss durch Re-execute erneut ausgeführt werden.

Dabei müssen die Snapshots wie im Abschnitt 5.3.1 wieder für jede Aktivität A; B; C und D

erzeugt werden. Wenn die Operation Re-execute ausgeführt wird, wird der Compensation

Handler sofort aufgerufen werden, um das schon beendeten B und C zu kompensieren. Dann

werden die Werte für Parnterlinks und Variablen aus dem zu B gehörenden Snapshot wieder

an die Aktivität B übergeben. Jetzt läuft B nochmals. Sollte eine <scope>-Aktivität keinen

Compensation Handler besitzen, wird der implizite Compensation Handler aufgerufen.

 53

Abbildung 5.10 Re-execution in Sequence mit Kompensierung Fall 2

Die Abbildung 5.10 zeigt die Aktivitäten A, B, C und D. B und D sind jeweils die <invoke>-

Aktivitäten, die auch eigene Compensation Handler haben. Während dieser Prozess läuft,

müssen auch die Snapshots für jede Aktivitäten gemacht werden. Wenn die Operation Re-

execute aufgerufen wird, soll C zuerst und dann B kompensiert werden. Das heißt die

Kompensierung wird in umgekehrter Ausführungsreihenfolge durchgeführt. Jetzt werden die

Werte für Partnerlinks und Variablen aus dem Snapshot wieder geladen. Jetzt kann die B

endlich nochmals ausgeführt werden. In einigen Fällen besitzt die <invoke>-Aktivität auch

möglicherweise keinen Compensation Handler: in diesem Fall läuft die Re-execute Operation

auf die gleiche Weise wie es der Abschnitt 5.3.1 gezeigt hat.

 54

6. Realisierung eines Prototyps

Im vorhergehenden Kapitel wurde ein Konzept für die Iteration und wiederholte Ausführung

der Aktivitäten vorgestellt. In diesem Kapitel werden zunächst die Anforderungen an die

Realisierung (Abschnitt 6.1) beschriebn. Anschließend wird die Entwicklungsumgebung

(Abschnitt 6.2) eingeführt. Zuletzt wird die prototypische Umsetzung des Konzepts aus dem

Kapitel 5 im Abschnitt 6.3 erläutert. Der Prototyp hat die Einschränkung, dass die Aktivitäten

nur innerhalb einer <sequence>-Aktivität durch Iterate und Re-execute nochmal ausgeführt

werden können, wie der erste Fall in dem Abschnitt 5.2.1 gezeigt hat. Für die Aktivitäten in

anderen Fällen können die beiden Operationen von Apache ODE noch nicht unterstützt

werden.

6.1 Anforderungen an die Realisierung

Die Anforderungen werden in diesem Abschnitt beschrieben, die im Rahmen von den

praktischen Umsetzung der Aufgabendefinition im Kapitel 1 erfüllt werden sollen. Hier

werden die Anforderungen im Einzelnen beziehungsweise in den zwei Operationen "Iterate"

und "Reexecute" dargestellt.

Die Operation "Iterate" funktioniert wie eine Schleife. Sie greift auf den auf der BPEL-Engine

Apache ODE laufenden Prozess zu und führt dann eine bestimmte Aktivität nochmal aus.

Bevor diese Operation Iterate ausgeführt werden kann, muss der Prozess zuerst durch die

Operation "Suspend" ausgesetzt werden. Die Operation "Suspend" ist schon der Apache ODE

für den Benutzer angeboten worden. Zwei Parameter sind nötig für die Operation Iterate.

Einer davon ist die Prozessinstanz-ID, die zu jeder Prozessinstanz eindeutig zuordenbar ist,

und der andere ist ein XPath-Ausdruck. Mittels des XPath-Ausdrucks kann die neue

auszuführende Aktivität in der Apache ODE gefunden werden. Der Benutzer gibt die zwei

Parameter in eine SOAP-Nachricht ein und sendet die Nachricht zu den Prozess. Die BPEL-

Engine bearbeitet diese Nachricht, sendet dem Benutzer eine Nachricht als Response zurück

und führt die angegebene Aktivität neu aus.

Die Operation "Reexecute" unterscheidet sich von der Operation "Iterate". Dabei müssen die

Aktivitäten auf dem Pfad der zu wiederholenden Aktivität bis zur gerade laufenden Aktivität

zuerst rückgängig gemacht werden. Das bedeutet, die Aktivität muss in dem gleichen Zustand

sein (beziehungsweise. in einem ähnlichen Zustand je nach Kompensationslogik), wie zu dem

Zeitpunkt, bevor sie ausgeführt wurde.

6.2 Die Entwicklungsumgebung

Die Apache ODE in Version 1.3.4 wird in dieser Arbeit erweitert. Als eine Web-Container-

Umgebung wird Apache Tomcat in Version 6.0.26 verwendet. SoapUI in Version 3.5.1 wird

als die Benutzerschnittstelle von Webservices benutzt. Der Code der Arbeit wird in Eclipse

3.5.2 mit Java 6 geschrieben. Apache ActiveMQ als eine nachrichtenorientierte Middleware

(MOM) in Version 5.3.0 und Maven in Version 2.2.1 als ein Build-Management-Werkzeug

werden während der Entwicklungszeit verwendet. SimTechODE Auditing wird zur

Überwachung des BPEL-Prozesses benutzt werden. Dadurch können die ProzesseinstanzID,

der Ablauf des Prozesses und auch Informationen wie der Status, die Ereignisse über alle im

Prozess enthaltenen Aktivitäten in GUI präsentiert werden.

 55

6.3 Erweiterung der Apache ODE

In diesem Abschnitt wird die Erweiterung der Apache ODE in folgenden drei Teilen

vorgestellt.

6.3.1 XPathParser

Zuerst wird XPath in diesem Abschnitt kurz vorgestellt. Die XML Path Language (XPath) ist

eine vom W3C entwickelte Abfragesprache, mit der die Teile eines XML-Dokumentes

adressiert werden können [WXP].

Wie der Abschnitt 3.4 gezeigt hat, werden die übergebenen BPEL-Prozesse zuerst vom

Compiler überprüft und zum ODE-Objekt-Modell kompiliert. Deshalb gibt ein passendes

Objekt, das für jede Aktivität für jeden Prozess und für jeden Handler des ODE-Compilers

erzeugt wird. Um die beiden Operationen Iterate und Reexecute zu implementieren, muss

zuerst die Aktivität, die nochmal ausgeführt werden muss, beziehungsweise. das zu dieser

Aktivität passende Objekte im ODE-Objekte-Modell durch zwei Parameter xpath und

Prozessinstanz-ID gefunden werden. Dafür wird eine neue Klasse nämlich XPathParser.java

geschrieben. Das Klassendiagramm von dieser Klasse wird in der folgenden Abbildung 6.1

gezeigt.

Abbildung 6.1 Klassendiagramm von XpathParser.java

Der Hauptteil in dieser Klasse ist die Methode handleXPath, die auch eine Methode

getCorrectElement enthält. Die Methode getCorrectElement kann die richtige OActivity

mittels der Prioraktivität priorActivity, der jetzt zu bearbeitenden Aktivität activity und des

Suffixes dieser Aktivität activitySuffix finden. Die Methode getCorrectElement wird immer

rekursiv aufgerufen, bis die Zielaktivität in Form des ODE-Objekte-Modells gefunden werden

kann. In Listing 6.1 wird ein Ausschnitt der Klasse XpathParser.java gezeigt.

 56

Listing 6.1 Der Ausschnitt aus dem Klassendiagramm von XpathParser.java

Der eingegebene Xpath-Ausdruck wird zuerst durch das Zeichen / aufgeteilt. Jeder Teil davon

wird dann durch die Methode getCorrectElement hintereinander analysiert. Um die Klasse

besser zu verstehen, wird hier ein Beispiel eines Xpath-Ausdrucks benutzt. Der Xpath-

Ausdruck ist "/process/sequence[1]/assign[1]". Als Xpath-Ausdruck ist der erste abgetrennte

Teil dann "process". Der Anfangswert von actualElement ist dann OProcess. Weil der Wert

von activity jetzt "process" ist, kann die Methode getCorrectElement nicht aufgerufen

werden. Der Wert von priorActivity ist jetzt "process" und es folgt der nächste zu

analysierende Teil des Xpath-Ausdrucks, beziehungsweise ist "sequence" der Wert von

activity. Der Wert von activitySuffix ist 1, das heißt, die erste <sequence>-Aktivität im

Prozess soll gefunden werden. Jetzt sind die erforderlichen Parameter für die Methode

getCorrectElement vollständig. Weil in der Apache ODE zu jedem OProcess ein OSope als

Processscope hinzugefügt wird, kann das Objekt im ODE-Objekte-Modell in diesem OSope

gefunden werden (Siehe Listing 6.2). Das Ergebnis ist, dass OSequence als actualElement

gefunden wird.

public class XPathParser {

 static OBase actualElement;

 public OBase handleXPath(String xpath, BpelProcess process){

 String[] values = xpath.split("/");

 String priorActivity = null;

 actualElement = process.getOProcess();

 for (String value: values){

 int number = value.indexOf("[");

 String activity = value;

 String activitySuffix = null;

 if(number != -1){

 activity = value.substring(0, number);

 activitySuffix=value.substring(number+1,value.length()-1);

 }

 if (activity.compareTo("") != 0){

 if(activity.compareTo("process")!= 0){

 try{

 actualElement=getCorrectElement(actualElement,priorActivity,

 activity, activitySuffix);

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 priorActivity = new String(activity);

 }

 }

 return actualElement;

 }

 57

else if (priorActivity.compareTo("process") == 0){

 if(activity.compareTo("faultHandlers")==0){

 result = ((OProcess)element).procesScope.faultHandler;

 } else if(activity.compareTo("eventHandlers")==0){

 result = ((OProcess)element).procesScope.eventHandler;

 } else {

 result = ((OProcess)element).procesScope.activity;

 }

 }

Listing 6.2 Suche nach der Kindaktivität von OProcess in der Methode getCorrectElement

Der Wert von priorActivity ist auf "sequence" gesetzt. Jetzt wird der nächste Teil "assign" im

Xpath-Ausdruck gesucht. Die nötigen Parametern von activity und activitySuffix für die

Methode getCorrectElement sind "assign" und 1. Das folgende Listing 6.3 zeigt, wie das

richtige Objekt mit den oben beschriebenen Parametern zu finden ist. Ein OAssign mit

richtigem Suffix wird jetzt als das Ergebnis gefunden.

public OBase getCorrectElement(OBase element, String priorActivity,

String activity, String activitySuffix){

 OBase result = element;

 int activityNumber = 1;

 if (activitySuffix!=null&& activitySuffix.compareTo("")!=0){

 activityNumber = new Integer(activitySuffix);

 }

 int i = 0;

 if (priorActivity.compareTo("sequence")==0){

 for(OActivity childActivity :((OSequence)element).sequence){

 if(activity.compareTo("assign")==0){

 if (childActivity instanceof OAssign){

 i++;

 if(i == activityNumber){

 result = childActivity;

 break;

 }

 }

Listing 6.3 Suche nach bestimmtem OAssign in Sequence in der Methode getCorrectElement

6.3.2 Iterate

In diesem Abschnitt wird die Implementierung von der Operation Iterate beschrieben. Es gab

einige Überlegungen, wie man mittels der Iterate-Operation die bestimmten Aktivitäten erneut

ausführen kann. Es muss überlegt werden, ob das BpelRuntimeContextImpl-Objekt, das

schon von dieser Prozessinstanz erzeugt wurde, noch einmal erzeugt werden muss. Wie eine

Kindaktivität innerhalb einer <sequence>-Aktivität neu ausgeführt wird und wie eine neue

<sequence>-Aktivität zur Laufzeit hinzugefügt wird, muss auch bedacht werden. Was muss

mit den Aktivtäten getan werden, die durch suspend-Operationen nicht mehr ausführbar sind,

aber sich noch in der ExecutionQueue befinden? Der Ablauf der Erweiterung der Apache

ODE um die Iterate-Operation ist in Abbildung 6.2 durch ein UML-Sequenzdiagramm

 58

graphisch dargestellt. Mittels des Sequenzdiagramms können die Interaktionen, die den

Nachrichten- und Datenaustausch zwischen mehreren Kommunikationspartnern umfassen,

besser ausgedrückt werden.

Dieses Sequenzdiagramm zeigt, dass der Wissenschaftler zuerst eine der ODE Nachricht zur

erneuten Ausführung einer Aktivität schickt und gleich auch eine Antwort von der ODE

bekommt. Diese Nachricht wird dann von der ODE verarbeitet, dabei kann die richtige

Aktivität mittels der in der Nachricht existierenden Parametern durch die Methode

handleXPath in der Klasse XPathParser gefunden werden. Ein Job kann jetzt für Iterate

erstellt werden und wird dann in vielen Arbeitschritten erledigt. Die ausführlichen Details

über die Implementierung von Iterate werden in den folgenden Abschnitten beschrieben.

 59

Abbildung 6.2 Sequenzdiagramm für Iterate-Operation

 60

ProcessAndInstanceManagementImpl

Wie der Abschnitt 3.7 vorgestellt hat, hat die BPEL Management API in der Apache ODE

zwei Teile. Einer davon ist das Process Management Interface, das die Funktionalität

anbietet, um die zu den Prozessen gehörenden Instanzen zu verwalten (siehe die Abbildung

6.3). Der andere ist das Instance Management Interface. Das File pmapi.wsdl bietet einen

Web Service, das es den in den beiden Interfaces definierten Operationen ermöglicht, auf die

Prozesse und Instanzen in der ODE-Engine zuzugreifen.

ProcessAndInstanceManagementImpl implementiert eine API, die Operationen zur

Verfügung stellt, mit denen der Prozess und die Ausführung von diesem Prozess von außen

verfolgt und beeinflusst werden können [Ste08]. Die von dieser Klasse zur Verfügung

gestellten Funktionen sind beispielweise suspend, resume und terminate. Für die

Implementierung im Bereich der BPEL Management API sind drei Aufgaben zu erledigen.

 Die Operation Iterate muss im InstanceManagement.java-Interface hinzugefügt werden.

 Die Klasse ProcessAndInstanceManagementImpl.java, die InstanceManagement

 implementiert, muss auch um die Operation Iterate erweitert werden.

 public InstanceInfoDocument iterate(final Long iid, String xpath)

 throws ManagementException {

 getDebugger(iid).iterate(iid, xpath);

 return getInstanceInfo(iid);

 }

 Listing 6.4 Die Iterate-Operation in ProcessAndInstanceManagementImpl.java

 Alle abstrakten Definitionen und konkreten Beschreibungen von Iterate, z.B.<message>,

 <portType>, <operation> und <binding>, müssen im File pmapi.wsdl eingetragen werden.

Abbildung 6.3 Klassendiagramm für die Verwaltung von Prozessen und Instanzen

 61

Nach der dritten Aufgabe kann die iterate Operation im

InstanceManagementSOAP12Binding wie in Abbildung 6.4 gezeigt aufgerufen werden.

Abbildung 6.4 Request von Iterate in SoapUI

DebuggerSupport

Zuerst müssen der neue JobType beziehungsweise ITERATE in Scheduler.java, ein neues

Attribut, nämlich oelement, und die getter- und setter-Methode für oelement in der Klasse

JobDetails.java hinzugefügt werden. Alles, was die Iterate-Operation in dem Prozess tut, wird

innerhalb einer Transaktion der Datenbank ausgeführt. Durch eine Verbindung mit der

Datenbank kann ein Objekt des Typs ProcessInstanceDAO bekannt sein. Um die Operation

Iterate auszuführen, muss zuerst entschieden werden, ob der Prozess zu dem Zeitpunkt schon

durch die Operation Suspend pausiert wurde. Wenn der Zustand der Prozessinstanz suspended

ist, wird durch den Parameter Xpath die richtige Aktivität im Form von OBase mittels des

Aufrufs von der Operation handleXPath() in der XPathParser Klasse gefunden werden. Dann

wird ein neues Objekt der JobDetails-Klasse erzeugt und es sollen auch Attribute wie

JobType, IntanceId, ProcessId und OElement gesetzt werden. Wichtig ist, das neue erzeugte

JobDetails-Objekt als einen andauernden Job in dem Ablaufplan der BPEL-Engine

anzusetzen. Der Job wird dann gleich von der ODE-Runtime durchgesetzt werden, indem der

Wert von Date auf null gesetzt ist (siehe Listing 6.5)

 OBase element= new XPathParser().handleXPath(xpath, _process);

 JobDetails we = new JobDetails();

 we.setType(JobType.ITERATE);

 we.setInstanceId(iid);

 we.setProcessId(instance.getProcess().getProcessId());

 we.setOElement(element);

 _process._engine._contexts.scheduler.schedulePersistedJob(we,null);

Listing 6.5 Ausschnitt aus der Klasse DebuggerSupport.java

 62

BpelProcess

In der Klasse BpelProcess wird die Iterate-Operation weiterbearbeitet. Die in dieser Klasse

existerende Methode handleJobDetails wird dafür zur Verfügung gestellt. Eine Instanz von

der Klasse JobDetails ist als einziger Parameter für diese Methode gesetzt. Das bedeutet, das

gefundene Objekt vom Typ OBase, was wir im vorherigen Abschnitt im Attribut OElement

gesetzt haben, kann von dieser Methode handleJobDetails weiter benutzt werden. Abhängig

von den unterschiedlichen Jobtypen werden die in dem Ablaufplan vorkommenden Jobs

individuell behandelt werden (siehe bitte Listing 6.6).

 public void handleJobDetails(JobDetails jobData) {

 JobDetails we = jobData;

 switch (we.getType()) {

 case TIMER:

 ...

 case RESUME:

 ...

 case ITERATE:

 BpelRuntimContextImpl processInstance5=

 createRuntimeContextForIterate(procInstance,null);

 ...

 }

Listing 6.6 Ausschnitt aus der Klasse BpelProcess.java

Eine neue Instanz der Klasse BPELRuntimeContextImpl wird zuerst erzeugt; dies ist eine

Implementierung des Interfaces BPELRuntimeContext. Eine neue Instanz der Klasse

JacobVPU und eine Instanz der Klasse ExecutionQueueImpl werden direkt im Konstruktor

dieser Klasse angelegt. Alle ausführbaren Aktivitäten werden einer Warteschlange, die

ExecutionQueue genannt wird, hinzugefügt. Jedes Objekt, das sich in dieser Warteschlange

beziehungsweise ExecutionQueue befindet, repräsentiert eine Aktivität. Die Ausführung einer

Aktivität bedeutet, dass die run-Methode dieser Aktivität in Form von ACTIVITY ausgeführt

wird. Wenn diese Aktivität ausgeführt wird, wird das zu dieser Aktivität gehörende Objekt

aus der ExecutionQueue entfernt und dann ausgeführt.

public SEQUENCE (ActivityInfo self, ScopeFrame scopeFrame, LinkFrame

linkFrame, QName processname, Long pid){

 this(self, scopeFrame, linkFrame, ((OSequence) self.o).sequence,

 CompensationHandler.emptySet(), true, processname, pid);

 }

public SEQUENCE(ActivityInfo self, ScopeFrame scopeFrame, LinkFrame

linkFrame,List<OActivity> remaining, Set<CompensationHandler>

compensations, Boolean firstT, QName processname, Long pid) {

 super(self, scopeFrame, linkFrame, processname, pid);

 _remaining = remaining;

 _compensations = compensations;

 _firstTime = firstT;

 process_name = processname;

 process_ID = pid;

 }

Listing 6.7 Der Ausschnitt der Klasse SEQUNECE

 63

Weil wir zur Zeit nur die Aktivitäten innerhalb von einer <sequence>-Aktivität durch die

Iterate-Operation nochmal ausführen lassen und die Instanz von der Klasse SEQUENCE noch

nicht fertig ausgeführt ist, kann diese Instanz über das Attribut _index der ExecutionQueue

gefunden werden. Eine neue Instanz von SEQUENCE soll für die Operation Iterate erzeugt

werden. In Listing 6.7 steht _remaining für die Menge der Kindaktivitäten, die sich innerhalb

dieser <sequence>-Aktivität befinden. Die erneut auszuführende Aktivität gehört auch zu den

Kindaktivitäten. In _index gibt es mehrere Objekte für OSequence. Eines davon ist das Objekt

für OSequence, was am Anfang der ExecutionQueue hinzugefügt wurde und in dem noch

keine Kindaktivitäten ausgeführt wurden. Das andere ist auch das Objekt für OSequence, aber

dieses Objekt enthält weiniger Kindaktivitäten, weil einige davon schon fertig ausgeführt und

aus der Menge der Kindaktivitäten entfernt wurden. Diese zwei Objekte von OSequence

können basierend auf ihrer Länge unterschieden werden. Jetzt müssen die erneut

auszuführende Aktivität und auch ihre Nachfolgeaktivitäten wieder der Menge der

Kinderaktivitäten hinzugeführt werden. Die anderen Werte von Parametern, die von dem

Konstruktor der Klasse SEQUENCE benötig werden, können auch bekannt sein. Jetzt kann

die neue Instanz der Klasse SEQUENCE erzeugt werden (siehe Listing 6.8).

 sq = (SEQUENCE)it1.next();

 scopeframe = sq.get_scopeFrame();

 linkframe = sq.get_linkFrame();

 List<OActivity> activities = ((OSequence)sq._self.o).sequence;

 int a = activities.indexOf(element);

 List<OActivity> as = new ArrayList<OActivity>();

 //to find all the activities after the element, which should be

 iterated.and i will put

 //all these activities in a new SEQUENCE()as the _remaining

 for (int i = a; i< activities.size();i++){

 as.add(activities.get(i));

 }

 SEQUENCE sequence;

 QName process_name;

 Long processID;

 process_name = we.getProcessId();

 processID = we.getInstanceId();

 sequence = new SEQUENCE(sq._self, scopeframe, linkframe, as,

 CompensationHandler.emptySet(), false, process_name, processID);

Listing 6.8 Erzeugen einer neuen Instanz der Klasse SEQUENCE

SEQUENCE und ACTIVITY

Jetzt soll die Klasse SEQUENCE näher betrachtet werden. Jede Klasse von Aktivitäten in der

ODE-Runtime erweitert die Klasse ACTIVITY. ACTIVITY, wie der Abschnitt 3.5 vorgestellt

hat, erweitert die Klasse BPELJacobRunnable, die ebenfalls auch die Klasse JacobRunnable

erweitert. Wir haben nur eine neue Instanz von BPELRuntimeContextImpl erzeugt, aber diese

BPEL-Instanz wird noch nicht gestartet. Das bedeutet, dass die Instanz von JacobVPU auch

nicht läuft. Deshalb werden einige Änderungen in der Klasse ACTIVITY gemacht. Listing

6.9 zeigt den originalen Konstruktor dieser Klasse und Listing 6.10 stellt den neuen

geänderten Konstruktor dieser Klasse dar. Wenn in Listing 6.9 die Methode

getBpelRuntimeCntext() aufgerufen wird, muss eine aktive Instanz von JacobThread

 64

gefunden werden. Aber zum aktuellen Zeitpunkt läuft die Instanz von JacobVPU nicht und

deshalb kann keine aktive Instanz von JacobThread gefunden werden.

 public ACTIVITY(ActivityInfo self, ScopeFrame scopeFrame,

 LinkFrame linkFrame) {

 process_name = getBpelRuntimeContext().getBpelProcess().getPID();

 process_ID = getBpelRuntimeContext().getPid();

 assert self != null;

 assert scopeFrame != null;

 assert linkFrame != null;

 _self = self;

 _scopeFrame = scopeFrame;

 _linkFrame = linkFrame;

 _terminatedActivity = false;

 getFrames();

 }

Listing 6.9 Der originale Konstruktor der Klasse ACTIVITY

In dem neuen Konstruktor der Klasse ACTIVITY sind Prozessname und ProzessinstanzId auf

die bekannten Parametern gesetzt.

 public ACTIVITY(ActivityInfo self, ScopeFrame scopeFrame,

 LinkFrame linkFrame, QName processname, Long pid) {

 assert self != null;

 assert scopeFrame != null;

 assert linkFrame != null;

 process_name = processname;

 process_ID= pid;

 _self = self;

 _scopeFrame = scopeFrame;

 _linkFrame = linkFrame;

 _terminatedActivity = false;

 getFrames();

 }

Listing 6.10 Der geänderte Konstruktor der Klasse ACTIVITY

BpelRuntimeContextImpl

Des Weiteren wird der Konstruktor der Klasse SEQUENCE auch geändert. Jetzt wird die

neue Instanz der Klasse SEQUENCE schon erfolgreich erzeugt. Jetzt kann die neu kreierte

Instanz von BpelRuntimeContext endlich ausgeführt werden. Weil die neue <sequence>-

Aktivität in den JacobVPU angefügt wird, muss auch eine neue Methode zu der Ausführung

von BpelRuntimeContext speziell für die Iterate-Operation entwickelt werden. Hier wird sie

executeForIterateAndReexecute() genannt. Diese Methode braucht zwei Parametern. Einer

davon ist die auszuführende Aktivität in Form von OActivity. Der andere ist die neu erzeugte

Instanz der Klasse SEQUENCE.

 65

 public void executeForIterateAndReexecute(OActivity element,

 SEQUENCE sq){

 IncomingMessageHandlerincMess=IncomingMessageHandler.getInstance();

 boolean canReduce = true;

 ExecutionQueueImpl eql;

 Set<Continuation> reactions = new HashSet<Continuation>();

 ...

 }

Listing 6.11 Die für Iterate neu erstellte Methode executeForIterateAndReexecute()

Alle in der ODE-Runtime auszuführenden Aktivitäten werden als ein Objekt der Klasse

Continuation, die ebenfalls auch die Klasse ExecutionQueueObject erweitert, in _reactions

gespeichert. Dabei ist _reactions ein Attribut von ExecutionQueue. Wichtig ist hier, die zu

wiederholende Aktivität aus der ExecutionQueue zu entfernen, das heißt, sie aus _reactions

zu entfernen. Nach der Entfernung kann die neue Instanz der Klasse SEQUENCE endlich der

JacobVPU hinzugefügt werden. Weil die Instanzen vom OActivity in ODE-Runtime auf der
unterschiedliche Weise repräsentiert werden, muss eine Methode ergedacht werden, um das

richtige passende Objekt der Klasse Continuation für die zu wiederholende Aktivität in

_reactions zu finden. Beispielsweise wird das Objekt der Klasse OAssign als {OAssign :

Assign2, joinCondition=null}, das Objekt der Klasse OWait als {OWait#41-wait} und das

Objekt der Klasse OThrow als {OThrow#43-Throw} dargestellt. Das folgende Listing zeigt,

wie die Aktivität aus der ExecutionQueue zuerst gefunden, daraus entfernt und die als

Parameter mitgebrachte Instanz der SEQUENCE wieder im JacobVPU eingesetzt wird.

 66

 eql=(ExecutionQueueImpl) _vpu._executionQueue;

 Continuation continuation = null;

 Iterator <Continuation> it = reactions.iterator();

 String elementname = element.toString();

 //find the key name of this element. By different OActivity the

 //names are also

 //different, for example {OAssign : Assign2, joinCondition=null}

 // and {OWait#41-wait}and by {OThrow#43-Throw }

 int inof = elementname.indexOf("#");

 int inof2 = elementname.indexOf((char)32);

 String name;

 String activityname;

 if(inof == -1){

 name = elementname.substring(2,inof2);

 activityname = name.toUpperCase();

 }

 else{

 name = elementname.substring(2, inof);

 activityname = name.toUpperCase();

 }

 //to delete the activity from the _reactions, which should be

 // iterated.

 while(it.hasNext()){

 Continuation tmp1 = (Continuation)it.next();

 if(!tmp1.getClosure().getRunner()){

 if(tmp1.getClosure().toString().contains(activityname)){

 continuation = tmp1;

 break;

 }

 }

 }

 reactions.remove(continuation);

 //put the new "SEQUENCE" into the JacobVPU

 _vpu.inject(sq);

Listing 6.12 Der Ausschnitt aus der Methode executeForIterateAndReexecute()

Schließlich wird der JacobVPU ausgeführt und die Aktivität kann erfolgreich noch einmal

ausgeführt werden.

6.3.3 Re-execute

Im Kapitel 5 wurden das Konzept für die Operation Re-execute und auch die Unterschiede

zwischen den beiden Operationen Iterate und Re-execute schon vorgestellt. In diesem

Abschnitt werden nur die zusätzlichen Implementierungsaufgaben von Re-execute im

Vergleich zu Iterate beshrieben. Im folgenden Sequenzdiagramm für Re-execute werden die

Unterschiede in rot dargestellt(siehe die Abbildung 6.5).

 67

Abbildung 6.5 Das Sequenzdiagramm für die Operation Re-execute

 68

Für Re-execute sind zwei neue Methoden nämlich reexecute() in der Klasse

DebuggerSupport.java und reloadSnapshot() in der Klasse BpelProcess.java, hinzugefügt

worden. Der einzige Unterschied zwischen reexecute() und iterate() in DebuggerSupport.java

liegt in den Namen der Methode. Die andere neue Methode reloadSnapshot() wird später

vorgestellt. Außer den in Abbildung 6.6 repräsentierten Unterschieden beziehungsweise den

zwei neuen Methoden gibt es noch zusätzliche Aufgaben, um die Operation Re-execute zu

realisieren. Der Abschnitt 3.3 hat schon kurz vorgestellt, dass die Engine-Runtime der Apache

ODE die Data Access Objects (DAO) als die Schnittstelle für die Persistenzebene enthält. Die

Persistenzebene ist normalerweise eine relationale Datenbank. Die durch DAOs dauerhaft

gespeicherten Informationen enthalten die Daten über die Prozessinstanzen, Werte von den

Variablen, usw. Die Apache ODE bietet zwei verschiedene Implementierungen von DAOs an.

Eine Implementierung benutzt Hibernate, ein Open-Source-Persistenz- und ORM (Object-

Relational Mapping)-Framework für Java [WHIB]. Die andere Implementierung basiert auf

Apache OpenJPA, welches die Java Persistence API(JPA) implementiert, um die Java Objects

dauerhaft abzuspeichern [Son08]. In dieser Arbeit wird nur die Implementierung der Apache

OpenJPA betrachtet.

DAOs

In dem Paket bpel-dao bietet die APIs im Sourcecode die Ebene der DAOs an. Diese APIs

sind beispielsweise ProcessInstanceDAO, ScopeDAO, PartnerlinkDAO und auch

XmlDataDAO. ScopeDAO repräsentiert die Instanz von einem BPEL Scope. PartnerlinkDAO

stellt die Referenzen der Endpunkte (EPR) von einer speziellen Partnerlinkrole dar.

XmlDataDAO repräsentiert die XML-Daten, die zur Speicherung von BPEL-Variablen

dienen. In ProcessInstanceDAO kann ein ScopeDAO erzeugt werden und in ScopeDAO kann

ein PartnerlinkDAO erstellt werden. In dem Paket bpel-jpa gibt es die Implementierung von

OpenJPA für die DAOs. Die folgende Abbildung 6.6 zeigt ein Klassendiagramm von DAOs

und auch ihren jeweiligen Implementierungsklassen.

 69

Abbildung 6.6 Klassendiagramm von vier Klassen in DAO

Abbildung 6.7 Datenmodell von vier Klassen in DAO

 70

Die Abbildung 6.7 stellt das Datenmodell von den Tabellen dar, die durch die vier

Implementierungsklassen der DAOs erzeugt werden. Eine Prozessinstanz kann mehrere

Scopeinstanzen haben und eine Scopeinstanz kann auch mehrere Variablen und Partnerlinks

besitzen. Das heißt, dass die Beziehung zwischen Prozessinstanz und Scopeinstanz one-to-

many ist. Gleichermaßen ist die Beziehung zwischen Scopeinstanz und Variablen und die

Beziehung zwischen Scopeinstanz und Partnerlink auch one-to-many.

Wie der Abschnitt 5.3 über das Konzept von Re-execute vorgestellt hat, müssen auch einige

DAOs für die Snapshots erzeugt werden, um die Werte von Partnerlinks und Variablen für

jede Aktivität abzuspeichern. Wenn eine Aktivität durch die Operation Re-execute nochmals

ausgeführt wird, sollen die schon gespeicherten Daten dieser Aktivität aus den Snapshots

wieder geladen werden. Das bedeutet, dass die Daten von dieser zu wiederholenden Aktivität

in den DAOs von PartnerLinkDAO, XmlDataDAO, und ScopeDAO durch die Daten dieser

Aktivität aus Snapshots überschrieben werden müssen. Die Snapshots können in gewisser

Hinsicht als Zwischenspeicher betrachtet werden. Die ODE bietet noch keine Funktionalität,

Snapshots zu speichern, deshalb muss sie in dieser Arbeit entsprechend nachgerüstet werden.

Die folgende Abbildung 6.8 zeigt das Klassendiagramm von DAOs für Snapshots.

Abbildung 6.8 Das Klassendiagramm für Snapshots

 71

Wie das Klassendiagramm von ProcessInstanceDAOImpl gezeigt hat, werden zwei neue

Methoden, nämlich createSnapshot und getSnapshotDAO und auch das neue Attribut,

nämlich _snapshot eingebaut (siehe Listing 6.13). Mit den neuen Methoden kann ein

SnapshotDAO für jede Aktivität erzeugt werden, weil es ein ProcessinstanceDAO für jede

Aktivität gibt. Deshalb können auch die SnapshotPartnerlinksDAO und

SnapshotVariableDAO erstellt werden. Wie das SnapshotDAO genau erzeugt werden soll,

wird im folgenden Abschnitt erklärt. Zu jedem Snapshot wird auch der Xpath dieser Aktivität

abgespeichert.

 Public SnapshotDAO createSnapshot(String xpath, Long

 processinstanceId){

 SnapshotDAOImpl snap = new SnapshotDAOImpl(processinstanceId,

 xpath, this);

 _snapshot.add(snap);

 // Must persist the snapshotDAO to generate a snapshot ID

 getEM().persist(snap);

 return snap;

 }

 //to read the SnapshotDAO collection from the ProcessInstanceDAO

 public Collection <SnapshotDAO> getSnapshotDAO(){

 return _snapshot;

}

Listing 6.13 Die neuen Methoden in ProcessInstanceDAOImpl.java

Die folgende Abbildung 6.9 stellt das Datenmodell von SnapshotDAOs dar.

Abbildung 6.9 Datenmodell für neue SnapshotDAOs

Eine Prozessinstanz hat mehrere SnapshotDAO und jeder SnapshotDAO kann auch mehrere

SnapshotPartnerlinksDAO und SnapshotVariableDAO enthalten. Aber durch den FK (Fremd

Key) kann die Beziehung von one-to-many eindeutig dargestellt werden.

 72

ACTIVITY

Um die Snapshots für jede Aktivität abspeichern zu können, muss eine Methode in

ACTIVITY.java geschrieben werden. Weil alle in der ODE-Runtime laufenden Aktivitäten

diese Klasse erweitern, können die Snapshots für jede Aktivität dann durch den Aufruf dieser

Methode erzeugt werden. Listing 6.14 zeigt die neue Methode storeSnapshot().

public SnapshotDAO storeSnapshot(){

 String xpath;

 ProcessInstanceDAO pi;

 xpath = this._self.o.getXpath();

 pi = getBpelRuntimeContext().getProcessInstanceDao();

 //create a snapshot for this processInstanceDAO now!

 SnapshotDAO snapshotdao;

 snapshotdao = pi.createSnapshot(xpath, pi.getInstanceId());

 //create a collection for the SnapshotPartnerlinks

 Collection<PartnerLinkDAO> partnerlinks ;

 //create a collection for the SnapshotVariables

 Collection<XmlDataDAO> variables;

 SnapshotPartnerlinksDAO sp ;

 SnapshotVariableDAO var;

 for (ScopeDAO scope : pi.getScopes()){

 partnerlinks = scope.getPartnerLinks();

 Long scopeinstanceID;

 scopeinstanceID =scope.getScopeInstanceId();

 variables = scope.getVariables();

//put the content of the SnapshotPartnerlinks and SnapshotVariables

//into the SnapshotDAO

 for (PartnerLinkDAO partnerlink : partnerlinks){

 sp=

snapshotdao.createSnapshotPartnerlink(partnerlink.getPartnerLinkModelId

(), partnerlink.getPartnerLinkName(),partnerlink.getMyRoleName(),

partnerlink.getPartnerRoleName());

 sp.setMyEPR(partnerlink.getMyEPR2());

 }

 for(XmlDataDAO variable : variables){

 var=

snapshotdao.createSnapshotVariable(variable.getName());

 var.set(variable.get());

 }

 }

 return snapshotdao;

 }

Listing 6.14 Die Methode storeSnapshot() in ACTIVITY.java

Zuerst wird eine Instanz von ProcessInstanceDAO aus dem BpelRuntimeContext ermittelt

und dann wird eine Instanz von SnapshotDAO durch den Aufruf der Methode

createSnapshot() erzeugt. Dann werden die Instanzen von SnapshotPartnerlinksDAO und

SnapshotVariableDAO erstellt. Alle Partnerlinks und Variablen inklusive auch ihren

Attributen, die durch die Methoden getPartnerLinks() und getVariables() in den

PartnerLinkDAO und XmlDataDAO gespeichert sind, sollen in SnapshotPartnerlinksDAO

und SnapshotVariableDAO noch einmal gespeichert werden.

 73

Weil die Methode storeSnapshot() vor der Ausführung jeder Aktivität aufgerufen werden

muss, muss diese Methode in der run()-Methode vor dem Event Activity_Ready in allen

Aktivitätenklassen in der ODE-Runtime eingefügt werden.

BpelProcess

Jetzt sind alle notwendigen Daten von Partnerlinks und Variablen für die Operation Re-

execute in SnapshotDAO, SnapshotPartnerlinksDAO und SnapshotVariableDAO gespeichert.

In der Methode handleJobDetails wird die Operation Reexecute auch wie Iterate behandelt.

Der einzige Unterschied ist, dass eine zusätzliche Methode, nämlich reloadSnapshot()

aufgerufen werden muss, bevor eine neue Instanz von SEQUENCE erzeugt wird. Diese

Methode dient dazu, dass die Daten über Partnerlinks und Variablen aus

SnapshotPartnerlinksDAOs und SnapshotVariablesDAO wieder in den PartnerlinksDAO und

XmlDataDAO geladen werden können. Das heißt, dass die aktuellen Werte von Partnerlinks

und Variablen von dieser zu wiederholenden Aktivität, die schon ausgeführt wurde, durch die

Werte, die vor der letzten Ausführung dieser Aktivität von storeSnapshot() abgespeichert

wurden, überschrieben werden. Die Methode reloadSnapshot() wird auch in BpelProcess.java

eingefügt (siehe Listing 6.15).

 public void reloadSnapshot(Long processInstanceId, String xpath){

 ProcessInstanceDAO pi_dao;

 Collection<SnapshotPartnerlinksDAO> spl;

 Collection<SnapshotVariableDAO> svar;

 //get the current ProcessInstanceDAO with the given

 //ProcessInstanceID

 pi_dao = this.getProcessDAO().getInstance(processInstanceId);

 // get the data of the SnapshotDAO from the ProcessInstanceDAO

 Collection<SnapshotDAO> s = pi_dao.getSnapshotDAO();

 Collection<ScopeDAO> scopes = pi_dao.getScopes();

 Collection<PartnerLinkDAO> partnerlinks;

 Collection<XmlDataDAO> variables;

 for(SnapshotDAO snapshot : s){

 //only get the snapshot, which hat the given xpath!

 if(snapshot.getXpath().equals(xpath)){

 spl = snapshot.getPartnerLinks();

 svar = snapshot.getVariables();

 for(ScopeDAO scope : scopes){

 for(SnapshotPartnerlinksDAO snapshotpl : spl){

 Long scope_id_sp =snapshotpl.getScopeInstanceId();

 for (PartnerLinkDAO ps : partnerlinks){

 }

 }

 for (SnapshotVariableDAO snapshotvar : svar){

 Long scope_id_var = snapshotvar.getScopeInstanceId();

 for (XmlDataDAO variable :variables){

Listing 6.15 Die Methode reloadSnapshot() in BpelProcess.java

 74

Listing 6.14 zeigt, dass die Methode reloadSnapshot() zwei Parameter braucht. Sie sind

ProzessinstanceId und xpath, um die bestimmten ProcessInstanceDAOs und die bestimmten

SnapshotDAOs für die bestimmte Aktivität zu finden. Durch xpath können nur die Daten in

SnapshotDAOs für die Aktivität, bei der die erneute Ausführung starten wird, gefunden

werden. Anhand von ProcessInstanceDAO kann das dazu gehörende ScopeDAO produziert

werden und mittels ScopeDAO können die Daten von PartnerlinkDAO und XmlDataDAO

ermittelt werden. Anschließend werden die Werte von Partnerlinks und Variablen durch die

Werte aus SnapshotPartnerlinksDAO und SnapshotVariableDAO überschrieben. Nach dem

Aufruf von der Methode reloadSnapshot() wird dann eine neue Instanz von SEQUENCE

erzeugt und die Prozessinstanz der Methode executeForIterateAndReexecute() wird

ausgeführt. In dieser Methode executeForIterateAndReexecute() wird der JacobVPU

ausgeführt und die Aktivität kann erfolgreich noch einmal durch Re-execute ausgeführt

werden.

 75

7. Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurden die Möglichkeiten untersucht, mit denen Workflow-

Maschinen an die Anforderungen von Wissenschaftlern angepasst werden können. Solche

Möglichkeiten können den Wissenschaftlern bei Entwurf, Ausführung, Überwachung und

Analyse von Experimenten helfen. Dazu wurde ein Konzept entwickelt, um Aktivitäten in

Workflows von den Wissenschaftlern erneut ausführen zu können. Für die Wiederholung von

Aktivitäten gibt es 2 Szenarien. Erstens ist dies die einfache Iteration wie in einer Schleife.

Zweitens ist es dies das erneute Ausführen der Aktivitäten, als hätte es die Ausführung davor

nicht gegeben. Das Konzept besteht deshalb aus den zwei Operationen Iterate und Re-

execute, die diese beiden Szenarien abdecken. Das Konzept zu den zwei Operationen wurde

für die Sprache WS-BPEL in verschiedenen Fällen erstellt.

Auf Basis der oben beschriebenen Erkenntnisse wurde die Apache ODE prototypisch um die

Operationen Iterate und Re-execute erweitert. Die Operation Iterate ermöglicht es den

Wissenschaftlern, die Aktivitäten innerhalb einer <sequence>-Aktivität an beliebigen Stellen

erneut auszuführen. Die Operation Re-execute ermöglicht es den Wissenschaftlern, die

Aktivitäten innerhalb von einer <sequence>-Aktivität an beliebigen Stelle mit den Werten

von Partnerlinks und Variablen, die bei ihrer letzten Ausführung gültig waren, noch einmal

auszuführen.

Das im Rahmen dieser Diplomarbeit entwickelte Konzept von den zwei Operationen kann als

Basis zu der Entwicklung einer Workflow-Maschine für die Sprache WS-BPEL, die ähnliche

Funktionalität anbietet, dienen. Der in dieser Arbeit entwickelte Prototyp kann zu der

Weiterentwicklung der Apache ODE benutzt werden. Weil in dieser Arbeit nur die Sequence-

Aktivität zur Implementierung benutzt wurde, sind zukünftige Arbeiten möglich, die

Aktivitäten innerhalb der Flow-Aktivität, While-, forEach- und auch repeatUntil-Aktivitäten

durch Iterate und Re-execute erneut ausführen. Für das Re-execute soll in der Zukuft

umgesetzt werden, die zu wiederholenden Aktivitäten vor der erneuten Ausführung erst zu

kompensieren, wie im Kapitel 5 beschrieben wurde.

 76

Literaturverzeichnis

[BioF]E-BioFlow.

URLhttp://janus.cs.utwente.nl:8000/twiki/bin/view/BioRange/BioRangeSoftware#e_BioFlow.

[Bur05]H. Burkhart: Webtechnologien. 2005.

URL http://fgb.informatik.unibas.ch/lectures/archive/SS2005/CS211%20webtech/L11_f.pdf.

[EKU
+
10]H. Eberle; O. Kopp; T. Unger; F. Leymann: Retry Scopes to Enable Robust

Workflow Execution in Pervasive Environments. In: Proceedings of the 2nd Workshop on

Monitoring, Adaptation and Beyond (MONA+), 2009.

[Dos05]W. Dostal: Service-orientierte Architekturen mit Web Services.

Spektrum Akademischer Verlag, 2005.

[HW05]T. Holzherr, M. Wodischek: Java RMI und SOAP. 2005. URL https://www.ba-

horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2

003_02.pdf.

[IBM]IBM. URL

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webser

vices.doc/concepts/soap/dfhws_messagepath.html.

[Int06]S. Intas: Konzept für die Einbindung von Webservices in Ereignisgesteuerte

Prozessketten, 2006.

URL http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-

Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgeste

uerte_Prozessketten.pdf.

[LR00]F. Leymann, D. Roller: Production Workflow - Concepts and Techniques. Prentice

Hall, 2000.

[Man07]K. Manhart: Web Services implementieren mit WSDL, 2007.

URL http://www.tecchannel.de/webtechnik/soa/464653/web_services_implementieren_mit_w

sdl/index2.html.

[Mas07]D. Masak: SOA? Serviceorientierung in Business und Software. Springer Verlag,

2007. URL

http://books.google.de/books?id=0JNivfep8DMC&printsec=frontcover&dq=SOA+Tempel#v

=onepage&q&f=true.

[Mel10]I. Melzer et al.: Service-orientierte Architekturen mit Web Services. Konzepte –

Standards – Praxis. 2010 4
nd

 Edition, 2010. URL

http://books.google.de/books?id=e3qnVPngoUoC&pg=PA13&dq=SOA+Tempel&hl=de&ei=

FWdcTYqsApDz4gbL1o2bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ

6AEwAQ#v=onepage&q=SOA%20Tempel&f=false.

[MOB]MOBY. URL http://biomoby.open-bio.org/index.php/what-is-moby/.

http://janus.cs.utwente.nl:8000/twiki/bin/view/BioRange/BioRangeSoftware#e_BioFlow
http://fgb.informatik.unibas.ch/lectures/archive/SS2005/CS211%20webtech/L11_f.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-90&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-90&mod=0&engl=0&inst=IAAS
https://www.ba-horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2003_02.pdf
https://www.ba-horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2003_02.pdf
https://www.ba-horb.de/fileadmin/media/it/studienprojekte/projektarbeiten/se_seminar_it2003/se_seminar_it2003_02.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/concepts/soap/dfhws_messagepath.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/concepts/soap/dfhws_messagepath.html
http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgesteuerte_Prozessketten.pdf
http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgesteuerte_Prozessketten.pdf
http://www.se.uni-hannover.de/documents/studthesis/MSc/Sebastian_Intas-Konzept_fuer_die_Einbindung_von_Webservices_in%20Ereignisgesteuerte_Prozessketten.pdf
http://www.tecchannel.de/webtechnik/soa/464653/web_services_implementieren_mit_w%20sdl/index2.html
http://www.tecchannel.de/webtechnik/soa/464653/web_services_implementieren_mit_w%20sdl/index2.html
http://books.google.de/books?id=e3qnVPngoUoC&pg=PA13&dq=SOA+Tempel&hl=de&ei=FWdcTYqsApDz4gbL1o2bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ6AEwAQ#v=onepage&q=SOA%20Tempel&f=false
http://books.google.de/books?id=e3qnVPngoUoC&pg=PA13&dq=SOA+Tempel&hl=de&ei=FWdcTYqsApDz4gbL1o2bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ6AEwAQ#v=onepage&q=SOA%20Tempel&f=false
http://books.google.de/books?id=e3qnVPngoUoC&pg=PA13&dq=SOA+Tempel&hl=de&ei=FWdcTYqsApDz4gbL1o2bDA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEEQ6AEwAQ#v=onepage&q=SOA%20Tempel&f=false

 77

[OASIS]OASIS. URL http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html.

[ODE]Apache ODE. URL http://ode.apache.org/.

[ODE1] Apache ODE. URL http://ode.apache.org/ws-bpel-20-specification-compliance.html

[ODE2] Apache ODE. URL http://ode.apache.org/architectural-overview.html

[RNS96] Research Note SPA-401-068, 12 April 1996, "'Service Oriented' Architectures, Part

1" und SSA Research Note SPA-401-069, 12 April, 1996.

[Sal07]A. Salnikow: Ermittlung von Testabdeckungsmetriken in BPEL-Kompositionen, 2007.

URL http://www.se.uni-hannover.de/documents/studthesis/MSc/Alex_Salnikow-

Ermittlung_von_Testabdeckungsmetriken_in_BPEL.pdf.

[Sch07]B. Schurr: Analyse von XPath-Ausdrücken in BPEL Prozessbeschreibungen. DIP-

2687, 2007.

[Sch11]T. Schliemann: Unterstütung des "Model-as-you-go"-Ansatzes durch Modell-

Versionierung und Instanzmigration., DIP-3121, 2011.

[SK10]M.Sonntag; D. Karastoyanova: Next Generation Interactive Scientific Experimenting

Based On The Workflow Technology. In: Alhajj, R.S. (Hrsg); Leung, V.C.M. (Hrsg); Saif, M.

(Hrsg); Thring, R. (Hrsg): Proceedings of the 21st IASTED International Conference on

Modelling and Simulation (MS 2010), 2010.

[SOA06]Reference Model for Service Oriented Architecture 1.0, Commit Specification1, 2

August, 2006.

[Son08]M. Sonntag: Conceptual Design and Implementation of a BPEL
light

Workflow Engine

With Support for Message Exchange Patterns., DIP-2822. 2008.

[Ste08]T. Steinmetz: Ein Event-Modell für WS-BPEL 2.0 und dessen Realisierung in

Apache ODE ., DIP-2729, 2008.

[Tap04]Carlos C. Tapang: Web Services Description Language (WSDL) in Überblick, 2004.

URL http://www.microsoft.com/germany/msdn/library/xmlwebservices/WebServices

DescriptionLanguageWSDLImUeberblick.mspx?mfr=true.

[Ulm]T. Uml: Einführung in SOAP,URL http://www.devtrain.de/news.aspx?artnr=422.

[VAD
+
04]W. Van der Aalst, L. Aldred, M, Dumas, A. Ter Hofstede: Design and

implementation of the YAWL system. In G. Goos, et al, 16
th

 International Conference on

Advanced Information Systems Engineering. Springer Verlag. 2004.

[Vik08]B. Vikum: Serviceorientierte Architekturen - SOA 2008.

URL http://swt.cs.tu-berlin.de/lehre/sepr/ss08/referate/SOA_Ausarbeitung.pdf.

[W301]W3. URL http://www.w3.org/TR/ws-arch/.

[W3S]W3schools. URL http://www.w3schools.com/soap/soap_header.asp.

http://ode.apache.org/
http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://ode.apache.org/architectural-overview.html
http://www.se.uni-hannover.de/documents/studthesis/MSc/Alex_Salnikow-Ermittlung_von_Testabdeckungsmetriken_in_BPEL.pdf
http://www.se.uni-hannover.de/documents/studthesis/MSc/Alex_Salnikow-Ermittlung_von_Testabdeckungsmetriken_in_BPEL.pdf
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-23&mod=0&engl=0&inst=IAAS
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-23&mod=0&engl=0&inst=IAAS
http://www.devtrain.de/news.aspx?artnr=422
http://swt.cs.tu-berlin.de/lehre/sepr/ss08/referate/SOA_Ausarbeitung.pdf
http://www.w3.org/TR/ws-arch/
http://www.w3schools.com/soap/soap_header.asp

 78

[WCL]Wikipedia. URL http://de.wikipedia.org/wiki/Closure.

[WCL
+
05]S. Weerawarana; F. Curbera; F. Leymann; T. Storey; D. F. Ferguson: Web

Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-

Reliable Messaging, and More. Prentice Hall PTR, 2005.

[WHIB]Wikipedia. URL http://de.wikipedia.org/wiki/Hibernate_(Framework).

[WODE]Wikipedia. URL http://en.wikipedia.org/wiki/Apache_ODE.

[WOV09]I. Wssink, M. Ooms, P. Van der Vet: Designing workflows on the fly using e-

BioFlow, 2009. URL http://www.springerlink.com/content/1660n17463872507/.

[WRV
+
08]I. Wassink, H. Rauwerda, P. Van der Vet, T. Breit, A. Nijholt: BioFlow: Different

Perspectives on Scientific Workflows, 2008.

URL http://www.springerlink.com/content/j38vk6222j140k72/.

[WSOA]Wikipedia.

URL http://de.wikipedia.org/wiki/Dienstorientierte_Architektur#cite_ref-0.

[WSOAP]Wikipedia.

URL http://de.wikipedia.org/wiki/SOAP#Aufbau_von_SOAP-Nachrichten.

[WXP]Wikipedia. URL http://de.wikipedia.org/wiki/XPath.

[Yu10] J.Yu: Exploring ODE part 2, URL http://jeff.familyyu.net/2010/01/exploring-apache-

ode-source-code-part.html.

Alle URLs wurden zuletzt am 08.03.2011 geprüft.

http://de.wikipedia.org/wiki/Closure
http://en.wikipedia.org/wiki/Apache_ODE
http://www.springerlink.com/content/j38vk6222j140k72/
http://de.wikipedia.org/wiki/Dienstorientierte_Architektur#cite_ref-0
http://de.wikipedia.org/wiki/SOAP#Aufbau_von_SOAP-Nachrichten
http://de.wikipedia.org/wiki/XPath
http://jeff.familyyu.net/2010/01/exploring-apache-ode-source-code-part.html
http://jeff.familyyu.net/2010/01/exploring-apache-ode-source-code-part.html

 79

 Erklärung

 Hiermit versichere ich, diese Arbeit selbständig

 verfasst und nur die angegebenen Quellen

 benutzt zu haben.

 (Bo Ning)

