
Institut für Parallele und Verteilte Systeme

Abteilung Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3102

Platzierungsoptimierung für
vertrauliche Verwaltung der

verteilten Positionsinformationen

Björn Schembera

Studiengang: Informatik

Prüfer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Betreuer: M. Sc. Pavel Skvorzov

begonnen am: 2. November 2010

beendet am: 4. Mai 2011

CR-Klassifikation: C.2.4, G.1.6, I.2.8, K.4.1

Abstract

Die vorliegende Arbeit beschäftigt sich mit der Sicherheit der Privatsphäre bei Location-based
Services. Solche Dienste erlauben es den Nutzern mobiler Geräte wie Smartphones, Informa-
tionen zur Umgebung zu erhalten (z.B. welche Restaurants sich in der Nähe befinden). Dabei
muss die Positionsinformation des Benutzers stets bekannt sein. Hier wird das Anliegen nach
Privatsphäre ein zentrales: Wer kann zu welcher Zeit wie auf Positionsdaten zugreifen? Es
besteht das Problem, dass der Speicherort dieser Positionsinformation (Provider) kompromit-
tiert sein oder es sich um einen nicht vertrauenswürdigen Provider handeln kann. In diesem
Fall ist es Dritten technisch möglich, unautorisiert über Positionsinformation zu verfügen.
Dieses Sicherheitsrisiko kann minimiert werden, indem die Positionsinformation zu Teilen
(Shares) auf autonome Provider verteilt wird, so dass sich die exakte Position nur aus allen
Teilen rekonstruieren lässt. Der Ansatz ist somit eine Verteilung der Positionsinformationen.
Dieses bereits entwickelte System wird im Rahmen dieser Diplomarbeit so erweitert, dass
abhängig von den Parametern (Vertrauen, Risiko, usw.) unterschiedlich viele Teile auf dem
jeweiligen Provider platziert werden – dadurch können unterschiedliche Sicherheitsbedenken
bei diesen Providern ausbalanciert werden und eine wenigstens angemessene, d.h. konstante
Verschlechterung der Privatsphäre bei zunehmender Zahl kompromittierter Server erreicht
werden. Keine Instanz des Systems ist überproportional kritischer Punkt im Bezug auf
Privatsphäre.
Hierzu wurde das System zunächst um eine Trust Database erweitert, in der die Vertrau-
enswerte der Provider gehalten und verwaltet werden. In der vorliegenden Diplomarbeit
werden Lösungsansätze für die optimale Sicherheit hinsichtlich verschiedener Szenarien bei
verteilter Positionsinformation erörtert. Ein Szenario ist ein Zuweisungsproblem aus der
Klasse der kombinatorischen Optimierung und ist im Allgemeinen schwer zu handhaben.
Hierfür werden algorithmische Lösungsansätze erarbeitet und evaluiert.

3

Danksagung

Zunächst möchte ich meinem Betreuer Pavel Skvorzov für die gute Zusammenarbeit danken.
Er fand immer die Zeit, Probleme auch im Detail zu diskutieren.
Für das sorgfältige Probelesen und die vielen konstruktiven Anmerkungen danke ich Kaja
und Amir herzlich.
Schließlich möchte ich natürlich meinen Eltern danken, für die fortwährende Unterstüt-
zung während des Studiums und dafür, dass sie mir 1997 mein erstes Programmierbuch
schenkten.

5

Inhaltsverzeichnis

1 Einleitung 15
1.1 Motivation . 15

1.2 Aufgabenstellung . 17

1.3 Szenarien . 18

1.4 Der Gang der Untersuchung . 19

2 Theoretische Grundlagen und verwandte Arbeiten 21
2.1 Location-based Services . 21

2.2 Sicherheit der Privatsphäre in Location-based Services 23

2.2.1 Zugriffskontrolle . 25

2.2.2 Verschlüsselung . 25

2.2.3 k-Anonymity . 25

2.2.4 Räumliche Verschleierung . 26

2.2.5 Koordinatentransformation . 26

2.2.6 Verteilung der Positionsinformation . 28

2.2.7 Taxonomie der Sicherheitsverfahren . 29

2.3 Kombinatorische Optimierung . 30

2.3.1 Definition und Eigenschaften . 30

2.3.2 Algorithmische Lösungsansätze . 33

2.3.3 Zuweisungsprobleme . 36

Klassische Zuweisungsprobleme . 39

Generalisierte Zuweisungsprobleme . 41

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen 45
3.1 Systemmodell . 45

3.1.1 Trust Database . 47

3.2 Problemstellung und Anforderungen . 51

3.3 Platzierungsstrategien . 53

3.3.1 Szenario 1: Nicht vordefinierte Anzahl von Shares 54

3.3.2 Szenario 2: Vordefinierte Anzahl von Shares 59

Formalisierung der Problemstellung als Zuweisungsproblem 59

Komplexität des Problems: NP-schwer 60

Diskussion der Lösungsansätze . 61

3.3.3 Tabellarische Zusammenfassung der Lösungskonzepte 81

7

3.4 Implementierung . 82

4 Evaluation 85
4.1 Evaluationsbedingungen . 85

4.2 Szenario 2-b . 86

4.2.1 Korrektheit . 86

4.2.2 Geschwindigkeit . 88

4.3 Szenario 2-c . 90

4.4 Szenario 2-d . 91

4.4.1 Korrektheit . 91

4.4.2 Geschwindigkeit . 91

4.4.3 Konvergenz . 92

4.4.4 Initiale Heuristik . 93

5 Fazit 97
5.1 Zusammenfassung und Diskussion . 97

5.2 Ausblick . 99

Literaturverzeichnis 101

8

Abbildungsverzeichnis

1.1 Angemessene konstante Verschlechterung der Privatsphäre. 17

2.1 Die prinzipielle Systemarchitektur bei LBS, bestehend aus mobilem Gerät,
Positionierungssystem, Location Server und Ortsbezogener Anwendung. 22

2.2 Schematische Darstellung von k-Anonymity mit k = 10. 26

2.3 Darstellung der räumlichen Verschleierung der Position. Die exakte Position
wird unscharf und entspricht einer Aufenthaltswahrscheinlichkeit. 27

2.4 Koordinatentransformation schematisch dargestellt: Repräsentation des Punk-
tes ~p in zwei Unterschiedlichen Koordinatensystemen kA und kB [Gut06]. . . . 27

2.5 Darstellung der Genauigkeitsvergrößerung bei Share-Fusion. pj gibt die Posi-
tion nach Fusion der j-ten Share an, cj die Genauigkeit [DSR11]. 28

2.6 Taxonomie der Sicherheitskonzepte bei LBS. 29

2.7 Schematische Darstellung des Behälterproblems. 31

2.8 Zyklus von evolutionären Algorithmen nach [Wei02]. 36

2.9 Exemplarische Zuweisung nach Zuweisungsmatrix (2.7) zwischen zwei Men-
gen U = {a, b, c} und V = {a′, b′, c′} mit jeweils drei Elementen 37

3.1 Darstellung der Systemarchitektur von Dürr und Skvorzov [DSR11]. 46

3.2 Um die Trust Database erweiterte Systemarchitektur. 48

3.3 (a) Optimaler Fall der Verteilung, wenn Exaktheit der Positionsrekonstruktion
konstant ansteigt. (b) Nicht-optimaler Fall der Verteilung, da bei dem ersten
kompromittierten Server sich eine genauere Position rekonstruieren ließe. . . . 52

3.4 Rechtfertigung der min∆-Auswahlstrategie. Korrekter Fall. 69

3.5 Rechtfertigung der min∆-Auswahlstrategie. Widersprüchlicher Fall. 69

3.6 Motivation für das zweite Kriterium „minimales Maximum“für den Algo-
rithmus von Szenario 2-b: Links im Bild ohne dieses Kriterium, rechts mit
diesem. 69

3.7 Rechtfertigung der Selektionsstrategie des Algorithmus für Szenario 2-b, die
bei gleichen ∆- und Summenwerten das größere Element auswählt. 70

3.8 Problematischer Fall des Algorithmus für Szenario 2-b, schematische Darstel-
lung. 71

3.9 Ähnlichkeit von Szenario 2-c zum Behälterproblem. 74

9

4.1 Szenario 2-b: Fehlerrate der Heuristik (Deaktiviertes Backtracking) für m = 4
und m = 8 Provider. 87

4.2 Szenario 2-b: Geschwindigkeit des exakten Algorithmus mit m = 4 und m = 8
Providern. Naive Methode zum Vergleich. Logarithmische Skalierung. 88

4.3 Szenario 2-b: Geschwindigkeit der Heuristik für verschiedene Anzahlen von
Providern m. 89

4.4 Szenario 2-c: Fehlerrate bei Anwendung eines evolutionären Algorithmus bei
m = 4 Providern. 90

4.5 Szenario 2-d: Fehlerrate des evolutionären Algorithmus für verschiedene
Anzahlen von Providern m. 92

4.6 Szenario 2-d: Laufzeitverhalten des evolutionären Algorithmus für verschie-
dene Anzahlen von Providern m. 93

4.7 Szenario 2-d: Konvergenz des evolutionären Algorithmus zum Optimalwert
bei geringer Streuung des Risikos. m = 5 Provider und n = 12 Shares. 94

4.8 Szenario 2-d: Konvergenz des evolutionären Algorithmus zum Optimalwert
bei starker Streuung des Risikos. m = 5 Provider und n = 12 Shares. 94

4.9 Szenario 2-d: Vergleich zweier Heuristiken für die initiale Population beim
evolutionären Algorithmus mit m = 4 Providern 95

10

Tabellenverzeichnis

1.1 Übersicht über die unterschiedlichen Szenarien 18

3.1 Schematische Darstellung der Tabelle der Trust Database mit Risikowerten . . 48

3.2 Beispielhafte Darstellung der Tabelle der Trust Database 50

3.3 Übersicht über die unterschiedlichen Szenarien 53

3.4 Erklärung der Variablen in Szenario 1 . 54

3.5 Übersicht über die Ergebnisse in Szenario 1. 58

3.6 Beispielhafte Gewichtungen für Fall 2-d . 76

3.7 Übersicht über die behandelten Lösungsansätze. 81

3.8 Übersicht über die Laufzeitkomplexitäten, wobei m die Zahl der Provider und
n die Zahl der Shares darstellt. 81

Verzeichnis der Algorithmen

2.1 First-Fit Algorithmus nach [VK08] . 32

3.1 Exakter Algorithmus für Szenario 2-b . 65

3.2 Heuristik für Szenario 2-c . 75

3.3 Evolutionärer Algorithmus für Szenario 2-d . 80

11

Abkürzungsverzeichnis

NP Komplexitätsklasse der nichtdeterministisch-polynomiellen Zeit

P Komplexitätsklasse der deterministisch-polynomiellen Zeit

ABGAP Agent Bottleneck Generalized Assignment Problem

AP Assignment Problem, Zuweisungsproblem

BaGAP Balanced Generalized Assignment Problem

BAP Bottleneck Assignment Problem

BGAP Bottleneck Generalized Assignment Problem

BOP Balanced Optimization Problem

GAP Generalized Assignment Problem, Generalisiertes Zuweisungsproblem

LBS Location-based Service, Standortbezogener Dienst

LS Location Server

POI Point of Interest

TBGAP Task Bottleneck Generalized Assignment Problem

12

Variablenverzeichnis

Variable Erklärung
m Anzahl der Provider
n Anzahl der Shares
I Menge aller Provider I = {1, 2, · · · , m}
J Menge aller Shares J = {1, 2, · · · , n}
i Zählvariable für Provider, i ∈ I
j Zählvariable für Shares, j ∈ J
ri Risiko des Providers i
ri(start) Initiales, frei wählbares Risiko des Providers i, wobei ri(start) ∈ [0, 1]
sj Gewichtung der Share j
Si Sharerisiko aller einem Provider i zugeordneter Shares
ni Zahl der Shares auf dem Provider i
Ri Fragilität eines Providers i (spezifisches Sicherheitsrisiko)
∆ Die Differenz zwischen größtem und kleinstem Fragilitätswert
cij Kosten für eine Zuweisung von Objekt/Share i auf Objekt/Provider j, cij ∈N

xij Zuweisung von Objekt/Share i auf Objekt/Provider j, xij ∈ B

X Zuweisungsmatrix X = (xij)

C Kostenmatrix C = (cij)

XGA Als Genom codierte Zuweisung in Form eines Vektors
t Der Generationenzähler der evolutionären Algorithmen

13

1 Einleitung

1.1 Motivation

In seinem bahnbrechenden Aufsatz „The Computer for the 21st Century“ [Wei91] schrieb
Mark Weiser 1991 von seiner Vision des Ubiquitous Computing – einer Vorstellung, wonach
der wesentliche Fortschritt der Informationstechnologie im 21. Jahrhundert darin bestünde,
dass die Computerisierung zunehmend unsichtbar und somit in das Alltägliche Einzug
halten werde. Als technologische Grundlage für diese Entwicklung macht Weiser günstige,
energieeffiziente und kleine Endgeräte, ein Kommunikationsnetzwerk zwischen diesen
Geräten sowie eine Software-Anwendung aus. Vor allem die ersten beiden Aspekte finden
sich heute in der maßenhaften Verbreitung von Smartphones realisiert – zumindest teilweise,
weil die Geräte zwar ubiquitär1, d.h. allgegenwärtig sind, aber nach wie vor bewusst genutzt
werden und noch nicht in den „Hintergrund getreten“ sind, wie es der Kern seiner Vision
vorsieht. 1991 schreibt Mark Weiser:

„Heutzutage haben Computer keinerlei Wissen von ihrer Position und Umgebung. Wenn
ein Computer lediglich wüßte, in welchem Raum er sich befände, könnte er sein Verhalten
in spezifischer Weise anpassen, ohne dass auch nur eine Spur künstlicher Intelligenz
nötig wäre.“ [Wei91] (eigene Übersetzung)

In Zukunft soll der Kontext, in dem ein Computer genutzt wird, das Programmverhalten
beeinflussen2. Unter Kontext lässt sich abstrakt ein Zusammenhang zwischen verbundenen
Teilen verstehen, welche die Situation eines Individums – oder genereller einer Entität
– charakterisieren, also die Gesamtheit ihrer physischen, physiologischen und sozialen
Gegebenheiten [RDD+

03] [DK06]. In der vorliegenden Arbeit wird Kontext als physischer
Zusammenhang zwischen dem Raum und einem Individuum verwendet. Kontext entspricht
im Folgenden also der Position eines Individuums oder einer Entität. Mittels der Position
als Kontext soll sich das Verhalten des Computersystems an die momentane Umgebung
anpassen oder Informationen dazu liefern. 1991 war man noch weit davon entfernt, die
Positionsinformationen von Geräten einfach bestimmen zu können. Heute, 20 Jahre später,
ist es technisch kein Problem mehr, die Positionen selbst von mobilen Geräten zu orten:

1Der Begriff „Ubiquität“ kommt eigentlich aus dem Bereich der Theologie und bezeichnete die Allgegegenwart
Gottes, wobei Gott als physikalisch nicht lokalisierbar geglaubt wird [RM98].

2Daher wird auch von context-based- oder context-aware computing gesprochen [REF+06] [DK06] [RDD+
03].

15

1 Einleitung

Eine Vielfalt von Möglichkeiten ist vorhanden und sogar die Bestimmung von Positionen
innerhalb von Räumen ist handhabbar.

Der Forschungsbereich, in den diese Diplomarbeit eingebettet ist, ist das Nexus-Projekt3

des Sonderforschungsbereichs 627 „Umgebungsmodelle für mobile kontextbezogene An-
wendungen“ [REF+

06]. Dort soll durch Kontextinformationen ein Umgebungsmodell der
Welt geschaffen werden, das Mark Weisers oben skizzierten Vision nahe kommt.
Eine zentrale Stellung innerhalb dieses Projekts nehmen Location-based Services ein. Location-
based Services sind Dienste, die einem mobilen Nutzer Informationen bezogen auf seinen
gegenwärtigen Standort liefern. Bei diesen Informationen kann es sich beispielsweise um
eine Liste aller Sehenswürdigkeiten in einem gewissen Umkreis des Nutzers handeln.
Die Position des Nutzers muss der Instanz, die die Positionen verwaltet, stets bekannt sein,
um solche Dienste anbieten zu können. Aus diesem Grund handelt es sich bei Location-
based Services um eine sensible Technologie in Bezug auf die Privatsphäre der Nutzer.
Eine Aufgabe von Location-based Services ist es demnach, die Privatsphäre so gut wie
möglich im Rahmen der technischen Möglichkeiten zu schützen. Dabei gibt es mehrere
Verfahren, die von vertrauenswürdigen Instanzen zur Lagerung der Positionsinformation
ausgehen. Das Manko dieser Verfahren ist allerdings die Annahme der Vertrautheit, denn
die Instanz kann einerseits von außen kompromittiert sein, andererseits kann es auch von
innerhalb des Systems zu unautorisiertem Zugriff kommen, z.B. durch von vornherein nicht
vertrauenswürdige Firmen oder totalitäre staatliche Institutionen.
Um diesen Schwächen beizukommen, wurden innerhalb des Nexus-Projekts Verfahren
entwickelt, die mit mehreren unabhängigen Instanzen zur Speicherung der Positionsin-
formation, genannt Provider, arbeiten [DSR11]. Das Risiko soll verringert werden, indem
die exakte Positionsinformation in mehrere Teile aufgeteilt wird. Diese Teile werden auch
als Shares bezeichnet. Die Shares werden dann auf die Provider aufgeteilt. Sicherheit der
Privatsphäre soll erreicht werden, weil es unwahrscheinlich ist, dass alle Server gleichzeitig
kompromittiert sind. Selbst wenn einer dieser Server gehackt würde, ließe sich nur eine
ungenaue Position rekonstruieren.

3Projektwebsite: http://www.nexus.uni-stuttgart.de, Zugriff 16.4.2011

16

1.2 Aufgabenstellung

1.2 Aufgabenstellung

Im Rahmen dieser Diplomarbeit soll das Systemmodell in [DSR11], welches mit mehre-
ren Location Servern arbeitet, zunächst so erweitert werden, dass mit jedem Provider, der
Positionsinformationen speichert, ein Risikowert assoziiert wird. Außerdem können die
Shares gewichtet und beide Fälle kombiniert werden. Da jede Zuweisung einer Share auf
einen Provider einen anderen Faktor liefert, um den die Genauigkeit der Position verfeinert
wird, kommt es auf die getroffenen Zuweisungen an, wie genau die exakte Position bei
kompromittierten Providern rekonstruiert werden kann.
Konkret müssen dabei einem Provider, der ein hohes Sicherheitsrisiko aufweist, relativ weni-
ger Positionsinformationen zugewiesen werden als einem, der ein niedriges Sicherheitsrisiko
hat. Eine gleichförmige Verteilung von Sicherheitsrisiken zwischen den Servern ist erwünscht
und Balance von entscheidender Bedeutung. Die Aufgabe ist folglich, die Positionsinforma-
tionen so auf die Provider zu verteilen, dass die Sicherheitsrisiken ausbalanciert werden.
Dieser optimale Zustand ist in Ausdruck (1.1) formalisiert.

R1 = R2 = · · · = Rm (1.1)

Sind die Shares ungewichtet, soll damit erreicht werden, dass risikoreiche Provider, deren
Kompromittierung wahrscheinlicher ist, weniger Shares bekommen als vertraute Provider.
Sind die Shares gewichtet, wird durch den Balancezustand eine wenigstens angemessene
Verschlechterung (engl. graceful degradation) der Privatsphäre bei zunehmender Zahl der
kompromittierten Server erreicht, was in Abbildung 1.1 dargestellt und folgendermaßen
motiviert ist: Bei k kompromittierten Servern kann eine nur um einen konstanten Faktor
höhere Genauigkeit der Position ermittelt werden – so gibt es keinerlei Flaschenhals im
System, der die Sicherheit überproportional beeinträchtigt, falls jener Server kompromittiert
wird.

(a) Optimaler Fall (b) Nicht-optimaler Fall

1

...

3/m

2/m

1/m

m...321

E
xa

kt
he

it

Zahl kompromittierter Server

1

...

3/m

2/m

1/m

m...321

E
xa

kt
he

it

Zahl kompromittierter Server

Abbildung 1.1: Angemessene konstante Verschlechterung der Privatsphäre.

17

1 Einleitung

1.3 Szenarien

Die Aufgabenstellung wird auf zwei Szenarien bezogen, wobei diese im Folgenden kurz
eingeführt werden. In jedem Szenario ist die Zahl der Provider als gegeben anzunehmen.

Szenario 1 In Szenario 1 wird davon ausgegangen, dass die Zahl der Shares und somit
auch deren Gewichtungen frei wählbar sind.

Szenario 2 In Szenario 2 wird davon ausgegangen, dass neben der Anzahl der Provider
auch die Anzahl der Shares vorgegeben ist. Damit sind auch die Gewichtungen der Shares als
gegeben zu betrachten.

Teilszenarien Jedes Szenario differenziert sich noch wie oben angedeutet in Teilszenarien,
wonach entweder Provider (b), Shares (c) oder beide (d) gewichtet sind. Auch der Fall, dass
beide ungewichtet (a) sind, wird der Vollständigkeit halber betrachtet. In Tabelle 1.1 sind die
Szenarien überblicksartig dargestellt.

Anzahl der Shares
Szenario 1: nicht vordefiniert Szenario 2: vordefiniert

Fall Providerrisiken Sharerisiken Fall Providerrisiken Sharerisiken
1-a gleich gleich 2-a gleich gleich
1-b gewichtet gleich 2-b gewichtet gleich
1-c gleich gewichtet 2-c gleich gewichtet
1-d gewichtet gewichtet 2-d gewichtet gewichtet

Tabelle 1.1: Übersicht über die unterschiedlichen Szenarien

18

1.4 Der Gang der Untersuchung

1.4 Der Gang der Untersuchung

Im folgenden zweiten Kapitel werden die theoretischen Grundlagen dieser Arbeit beschrie-
ben sowie die verwandten Arbeiten vorgestellt. Dabei wird einerseits auf die Location-based
Services eingegangen, die den Rahmen dieser Arbeit bilden. Andererseits wird die kombinato-
rische Optimierung erläutert, die das Fundament für unsere Problemstellung bildet. Es wird
auch auf verwandte Problemstellungen sowie auf spezielle und generelle Lösungsmöglich-
keiten eingegangen.
Im konzeptuellen Kapitel 3 wird zunächst das Systemmodell vorgestellt, was eine bisherige
Entwicklung [DSR11] um eine Trust Database erweitert. Dann wird die Problemstellung selbst
expliziert und die Anforderungen an das System werden spezifiziert.
Die eigentliche Problemstellung, nämlich die Platzierung der Shares auf den Servern derart,
dass Sicherheitsrisiken ausbalanciert werden, wird anhand der beiden Szenarien konkret
behandelt. Für Szenario 2, in dem neben der Anzahl der Provider auch die Anzahl der
Shares und deren Gewichte als fest angenommen werden müssen, wird die Problemstel-
lung als Zuweisungsproblem formalisiert und es wird gezeigt, dass es sich dabei um ein
NP-schweres Problem handelt. Schließlich werden die Unterklassen des Problems behandelt
und algorithmische Lösungsansätze erarbeitet.
In Kapitel 4 folgt die Evaluation der im dritten Kapitel vorgeschlagenen Konzepte.
Das letzte Kapitel fasst die Ergebnisse der Arbeit kritisch zusammen, stellt Anknüpfungs-
punkte vor und liefert einen Ausblick.

19

2 Theoretische Grundlagen und verwandte
Arbeiten

In diesem Kaptitel werden die theoretischen Grundlagen, die für diese Arbeit von Bedeutung
sind, dargestellt sowie auf die verwandten Arbeiten eingegangen. Dabei teilt sich dieses
Kapitel in zwei Hauptabschnitte.
Zunächst werden in Abschnitt 2.1 Location-based Services vorgestellt, die den Hintergrund
der vorliegenden Arbeit bilden. Dabei wird besonderes Augenmerk auf die Sicherheit der
Privatsphäre bei Location-based Services gelegt. Location-based Services werden definiert
und abgegrenzt, um dann auf die einzelnen Ansätze zur Wahrung der Privatsphäre in
Teil 2.2 näher einzugehen.
Abschnitt 2.3 erläutert das theoretische Fundament unserer Problemstellung, nämlich die
kombinatorische Optimierung. Diese wird zunächst definiert und das Problem der Komplexität
bei kombinatorischen Fragestellungen expliziert. Dann werden verschiedene algorithmische
Lösungsansätze vorgestellt sowie deren Vor- und Nachteile besprochen. Schließlich wird
auf Zuweisungsprobleme, einer speziellen Unterklasse der kombinatorischen Optimierung
eingegangen, da sich die Problemstellung dieser Diplomarbeit als Zuweisungsproblem
formalisieren lässt.

2.1 Location-based Services

Unter Location-based Service (LBS) versteht man einen mobilen Dienst, der dem Nutzer
standortsbezogene Informationen liefert [VTV+

01] [DSR11] [ACD+
07]. Ein LBS kann nach

Virrantaus et al. [VTV+
01] wie folgt definiert werden:

„LBS sind Dienste, auf die von mobilen Geräten über ein mobiles Netzwerk zugegriffen
wird und die von der Fähigkeit Gebrauch machen, Positionen dieser Geräte bestimmen zu
können.“ [VTV+

01] (eigene Übersetzung)

Der LBS soll dem Nutzer bezogen auf die Position eines Nutzers Dienste verschiedener
Art anbieten. Hierbei kann es sich um einen Dienst handeln, der dem Nutzer angeforderte
Informationen über einen interessanten (räumlichen) Punkt (Point of Interest, (POI)) zukom-
men lässt, wenn er z.B. auf der Suche nach Hotels in seinem Umkreis ist oder über die

21

2 Theoretische Grundlagen und verwandte Arbeiten

gegenwärtige Verkehrssituation auf seiner Route informiert werden will.
Der Kontext besteht in dieser Form im Wesentlichen aus der Position eines Nutzers – sie ist
der zentrale Faktor. Ein LBS besteht aus folgenden Teilen [DSR11] [VTV+

01] [RM03]:

• Mobiles Gerät: Dieses Gerät wird vom Nutzer geführt und steht im Mittelpunkt des
Systems, da hier Dienste angefordert und bezogen werden. Hierbei handelt es sich
heutzutage um ein Smartphone, also ein Handy mit erweiterter Funktionalität wie bspw.
einem GPS-Empfänger.

• Positionierungssystem: Mittels dieses Systems kann das mobile Gerät seinen Auf-
enthaltsort bestimmen. Möglichkeiten zur Ortsbestimmung sind z.B. GPS oder das
Mobilfunksystem, welches die ID der momentanen Mobilfunkzelle liefert (die Cell ID).

• Location Server (LS): Dieser Teil ist für die Verwaltung der Positionsdaten der mobilen
Geräte zuständig, des Weiteren für die Bereitstellung dieser Daten an die ortsbezogene
Anwendung. Auf dem LS ist zumindest der momentane Aufenthaltsort, evtl. sogar ein
Bewegungsprofil der jeweiligen Endgeräte abgelegt. Außerdem werden auch Positionen
von statischen Objekten verwaltet.

• Ortsbezogene Anwendung: Dienst bzw. die eigentliche Anwendung, die dem Nutzer
bezogen auf seine Position, die im LS nachgeschlagen wird, Informationen liefert.

Mobiles Gerät Location Server

Ortsbezogene
 Anwendung

Position ablegen

Position
beziehen

Positionierungssystem

Position
bestimmen

GPS

Abbildung 2.1: Die prinzipielle Systemarchitektur bei LBS, bestehend aus mobilem Gerät,
Positionierungssystem, Location Server und Ortsbezogener Anwendung.

Die Architektur eines LBS ist in Abbildung 2.1 schematisch dargestellt. Zwischen den Geräten
muss natürlich ein Kommunikationsnetzwerk bestehen, um die Informationen austauschen

22

2.2 Sicherheit der Privatsphäre in Location-based Services

zu könnnen. Da diese Schicht für unsere Problemstellung unerheblich ist, wird auf eine
Erläuterung verzichtet1.
Einfache LBS könnten auch ohne die Location Server auskommen, indem die Position direkt
vom mobilen Gerät an den LBS weitergegeben wird und das mobile Gerät die gewünschte
Informationen bezogen auf seinen gegenwärtige Position direkt erhält. Sobald aber die
Positionen von mehreren Objekten eine Rolle für den LBS spielen, ist ein Location Server
notwendig, der die Objektpositionen verwaltet. Nur mittels eines LS lassen sich beispielsweise
räumliche Anfragen über mehreren bewegten Objekten effizient realisieren.

2.2 Sicherheit der Privatsphäre in Location-based Services

Im vorhergehenden Abschnitt wurden einige Beispiele für LBS genannt, z.B. ein unterstüt-
zender Dienst, der interessante Punkte findet. Dieser ist reaktiv und vom Nutzer autorisiert.
Dem gegenüber stehen proaktive Diente, die im Hintergrund ablaufen und auf Ereignisse
reagieren, wie dem Besuchen eines Einkaufszentrums, so dass standortbezogene Werbung
geschaltet werden kann.
Da den Nutzern bei LBS aufgrund ihrer Position Dienste angeboten werden und ihre Position
gewissen Instanzen bekannt ist, handelt es sich um eine sensible Technologie bzgl. der Pri-
vatsphäre. Duckham und Kulik [DK06] erweitern die klassische Definition der Privatsphäre
für Informationshandhabung nach Westin [Wes67] und kommen zu einer Definition der
Privatsphäre der Position:

„Privatsphäre ist das Anrecht von Individuen, Gruppen oder Institutionen, selbst bestim-
men zu können, wann, wie und in welchem Ausmaß Information über ihre Position an
andere weitergegeben wird.“ [DK06] (eigene Übersetzung)

Dieser Definition folgend bedeutet Privatsphäre die Fähigkeit, selbstbestimmt mit der Positi-
onsinformation umzugehen, ihre Verarbeitung potentiell verweigern zu können und sie vor
unautorisiertem Zugriff zu schützen. Es geht um die selbstbestimmte Kontrolle der eigenen
Positionsinformation.
Neben dem oben dargestellten problematischen Fall der unautorisierten bzw. unangeforder-
ten Bereitstellung von Informationen wie Werbung gibt es noch wesentlich kritischere Fälle:
So hängt die Position immer mit der Sicherheit der Person zusammen. Wissen Dritte über
meinen Standort Bescheid, kann dies Konsequenzen für mein persönliches Wohlergehen ha-
ben [DK06]. Darüber hinaus – und dies ist der wirklich heikle Punkt – lassen sich durch das
Bewegungsprofil Rückschlüsse auf das Sozialverhalten, den Gesundheitszustand sowie die
persönlichen Interessen ziehen [DK06] [DF03]. Ist bekannt, an welchem Ort sich eine Person
zu einer gewissen Zeit aufhält, und findet an diesem Ort zu dieser Zeit beispielsweise eine

1Der Leser sei auf die Standardliteratur verwiesen [Tan03].

23

2 Theoretische Grundlagen und verwandte Arbeiten

Kundgebung statt, so können über die Positionsinformation Rückschlüsse auf die politische
Einstellung dieser Person getroffen werden. Ebenso könnten Personen von Dritten aufgrund
der Positionsinformation gestalkt2 werden. Dobson und Fisher bezeichnen diese Form der
potentiellen Unterhöhlung der Privatsphäre durch LBS auch als Geoslavery und zeichnen
eine düstere Vision der Entwicklung [DF03], die es zu beachten gilt.

Dem Schutz der Privatsphäre bei LBS muss auf verschiedenen Ebenen nachgekommen
werden.
Zunächst muss diese Technologie als in gesellschaftliche Prozesse eingebettet verstanden
werden, so dass sich kritisch mit den Konsequenzen auseinandergesetzt werden kann. Dazu
ist eine Sensibilierung der Massen, aber auch eine kritische Haltung der Wissenschaft gegen-
über dem eigenen Forschungsgegenstand notwendig.
Neben den gesellschaftlichen Maßnahmen zum Schutz der Privatsphäre gibt es ein recht-
liches Rahmenwerk, welches den Schutz der Privatsphäre in der Bundesrepublik Deutsch-
land (BRD) regelt. So besagt § 98 des Telekommunikationsgesetzes, dass eine Nutzung
von Positionsinformationen, denen nicht zugestimmt wurde, untersagt ist. Wer in der BRD
diesem Grundsatz, der Teil der informationellen Selbstbestimmung ist, zuwiderhandelt,
macht sich strafbar.

Diese beiden Konzepte sind jedoch für Schutz der Privatsphäre nicht hinreichend, da
der rechtliche Rahmen den technologischen Entwicklungen zeitlich hinterherhinken kann.
Außerdem kann der rechtliche Rahmen bewusst oder unbewusst hintergangen und aus-
gehebelt werden, was ein jüngster Vorfall bei Smartphones der Firma Apple zeigt, die alle
Positionsdaten im Hintergrund unautorisiert mitschreiben3. Daher muss dem Problem der
Wahrung der Privatsphäre bei LBS auch in technischer Hinsicht beigekommen werden. Die
folgenden Abschnitte beleuchten einzelne technische Sicherungsmaßnahmen für Location
Server im Detail.

2Stalking beschreibt, dass einer Person willentlich und beharrlich gegen ihren Willen nachgestellt, sie verfolgt
und/oder belästigt wird. http://de.wikipedia.org/wiki/Stalking, Zugriff 16.4.2011

3http://www.heise.de/tp/artikel/34/34601/1.html, Zugriff 24.4.2011. Zwar ist in diesem Fall das mobile Gerät
kompromittiert, was unserer Annahme widerspricht, denn diese Diplomarbeit geht von vertrauenswürdigen
mobilen Geräten aus. Der Fall soll jedoch zeigen, dass selbst renomierten Firmen unter Umständen nicht
vertraut werden kann.

24

2.2 Sicherheit der Privatsphäre in Location-based Services

2.2.1 Zugriffskontrolle

Die Methode der Zugriffskontrolle ist aus anderen Forschungsfeldern der Computerwis-
senschaften, wie z.B. der Betriebssysteme oder Datenbanken, bekannt und kann auch auf
Location-based Services angewendet werden [DK06] [RPB09]. Schutz der Privatsphäre soll
erreicht werden, indem Zugriffe von unautorisierten Instanzen abgewiesen und verboten
werden können. Dazu wird eine Zugriffsliste geführt, welche Aktion auf einer Ressource
von welcher Person oder Entität ausgeführt werden darf.
Im Gegensatz zum klassischen Anwendungsfall wie beispielsweise bei Betriebssystemen
wird in vernetzen und mobilen Szenarien keine zentrale Verwaltung angestrebt, was den Ver-
waltungsaufwand stark erhöht. Außerdem muss in diesem Fall von einer vertrauenswürdigen
Verwaltung der Zugriffsliste ausgegangen werden.

2.2.2 Verschlüsselung

Wie die Zugriffskontrolle ist die Verschlüsselung ein Konzept, das nicht speziell auf Location-
based Services zugeschnitten ist. Allerdings lässt es sich auf LBS anwenden [DK06] [RPB09],
indem die Positionsinformationen verschlüsselt auf dem Location Server abgelegt werden.
Dieses Verfahren entspricht von der Sicherheit her immer dem gegenwärtigen Stand der
Verschlüsselungsverfahren. Dürr und Skvorzov [DSR11] kritisieren an der Verschlüsselung
der Positionsinformationen, dass dadurch räumliche Anfragen über Positionsinformationen,
wie sie bei LBS vorkommen und erwünscht sind, unmöglich werden.

2.2.3 k-Anonymity

Dies ist eines der bekanntesten Konzepte zur Sicherung der Privatsphäre. Die Idee hinter
k-Anonymity ist es, die eigene Position von der Position k − 1 weiterer Nutzer des LBS
ununterscheidbar zu machen [DK06] [RPB09]. Man spricht hierbei auch von einem anonymi-
sierenden Verfahren, weil die Personen durch eine Gruppe anonymisiert werden [SDfMb09].
Dazu wird die eigene Position zunächst mit der von k− 1 benachbarten Nutzern zu einem
Cluster gruppiert. Dann wird die Positionsanfrage auf diesem Cluster ausgeführt. Die Grup-
pierung, Anonymisierung und Rück-Personalisierung wird durch einen anonymisierenden
Server vollzogen, dem vertraut werden muss – er kennt die Identität des echten anfragenden
Nutzers. Dies stellt eine generelle Schwachstelle des Konzepts dar [DK06] [DSR11]. Das
Verfahren ist in 2.2 schematisch dargestellt.
Des Weiteren ist es keine triviale Aufgabe, eine gute Gruppierung im Hinblick auf Sicherheit
als Ununterscheidbarkeit von k Personen zu finden. Man denke hier daran, 40 Personen zu
gruppieren, entweder in einer Konzerthalle oder in der Wildnis. Im ersten Fall lässt sich die
Gruppierung leicht finden, im zweiten Fall ist dies problematisch, wodurch die Qualität der
Sicherheit stark schwanken kann.

25

2 Theoretische Grundlagen und verwandte Arbeiten

Cluster

anonymisierender
 Server

Abbildung 2.2: Schematische Darstellung von k-Anonymity mit k = 10.

2.2.4 Räumliche Verschleierung

Bei der räumlichen Verschleierung (engl. Obfuscation) wird die Position eines Nutzers künstlich
unscharf bzw. ungenau gemacht [DK06] [DSR11] [ACD+

07], was in Abbildung 2.3 darge-
stellt ist. Die Position entspricht einer spezifisch verteilten Aufenthaltswahrscheinlichkeit
innerhalb eines Radius r. Der Nutzer ist dadurch nicht exakt lokalisierbar und es lassen sich
je nach Stufe der Verschleierung nur vage Rückschlüsse auf seine exakte Position treffen. Vom
Nutzer kann gesteuert werden, wieviele Informationen an welchen ortsbezogenen Dienst
herausgegeben werden. So ist es möglich, feingranular Dienste zu autorisieren oder eigene
Abstufungen zu definieren: Jedem Dienst werden gerade genug Informationen wie benötigt
zugänglich gemacht. Ein weiterer Vorteil dieses Verfahrens ist, dass keine vertrauenswür-
digen Instanzen zu Speicherung angenommen werden müssen. Darüber hinaus können
trotzdem Anfragen über Positionen getätigt werden, was bei einem anonymisierenden Ver-
fahren von vornherein ausscheidet. Allerdings ist die Exaktheit eines LBS beim Lokalisieren
von POIs nicht mehr gegeben.

2.2.5 Koordinatentransformation

Das Verfahren der Koordinatentransformation versucht, Privatsphäre in LBS zu erreichen,
indem die reale Position auf ein anderes Koordinatensystem abgebildet wird [Gut06]. Dabei
ist die Funktion, die die Transformation realisiert, nur dem Nutzer selbst (oder einer Gruppe,
in der sich die Mitglieder gegenseitig vertrauen) bekannt. Alle Anfragen werden in diesem
transformierten Koordinatenraum berechnet – nur der Inhaber der Funktion zieht aus dieser
Information einen Nutzen, wodurch seine reale Position geschützt ist. Die Koordinatentrans-
formation ist in Abbildung 2.4 dargestellt und zeigt, wie ein Punkt in zwei verschiedenen
Koordinatensystemen repräsentiert wird und nur mittels einer Transformationsfunktion ~dB,A
bestimmt werden kann.

26

2.2 Sicherheit der Privatsphäre in Location-based Services

 r

Mobiles
 Gerät

Abbildung 2.3: Darstellung der räumlichen Verschleierung der Position. Die exakte Position
wird unscharf und entspricht einer Aufenthaltswahrscheinlichkeit.

Abbildung 2.4: Koordinatentransformation schematisch dargestellt: Repräsentation des
Punktes ~p in zwei Unterschiedlichen Koordinatensystemen kA und kB

[Gut06].

27

2 Theoretische Grundlagen und verwandte Arbeiten

2.2.6 Verteilung der Positionsinformation

Dürr und Skvorzov kombinieren die Koordinatentransformation mit der räumlichen Ver-
schleierung und kommen zu einem neuen Ansatz für nicht vertrauenswürdige Instanzen,
der mit mehreren unabhängigen Location Servern arbeitet [DSR11].
Bei diesem Verfahren wird die Position so in Teile zerlegt, die Shares genannt werden, dass
die exakte Position nur rekonstruiert werden kann, wenn über alle Teile verfügt wird. Mit
jedem Teil der Positionsinformation kann die Position genauer rekonstruiert werden. Dies
ist in Abbildung 2.5 dargestellt. Die Shares sind als Vektoren zu verstehen, wobei jeder
Vektor die Genauigkeit um ein gewisses ∆φ erhöht. Diese Genauigkeit kann als Wahrschein-
lichkeitsverteilung innerhalb eines Kreises verstanden werden, dessen Mittelpunkt durch
den Vektor geliefert wird. Die vektorielle Addition von einigen Shares liefert somit eine
ungenaue Position einer Entität, die sich überall innerhalb des jeweiligen Kreises befinden
kann. Nur wenn alle Shares addiert werden, kann die exakte Position rekonstruiert werden.
Da vektorielle Addition eine kommutative Rechenoperation ist, können die Vektoren in
beliebiger Reihenfolge addiert werden, was in Abbildung 2.5 verdeutlicht wird.

Abbildung 2.5: Darstellung der Genauigkeitsvergrößerung bei Share-Fusion. pj gibt die
Position nach Fusion der j-ten Share an, cj die Genauigkeit [DSR11].

Diese Teile der Positionsinformation werden auf unabhängige Location Server, im Folgenden
auch Provider genannt, aufgeteilt, so dass bei einem kompromittierten Server oder einem
internen unautorisierten Zugriff die Position nur mit ungenügender Genauigkeit rekonstru-
iert werden kann. In diesem Konzept kann somit von nicht-vertrauenswürdigen Instanzen
ausgegangen werden, was gegenüber dem k-Anonymity-Konzept sowie der Zugriffskon-
trolle ein Vorteil ist. Dabei ist der Grundgedanke, dass es unwahrscheinlich ist, dass viele
oder alle Server gleichzeitig gehackt wurden und sich die Positionsinformation somit immer
nur ungenau rekonstruieren lässt. Auf dieser Systemarchitektur aufbauend wird später in
Abschnitt 3.1 eine Erweiterung vorgeschlagen, um der Aufgabenstellung beizukommen,
wobei auch die originale Systemarchitektur im Detail erläutert wird.

28

2.2 Sicherheit der Privatsphäre in Location-based Services

2.2.7 Taxonomie der Sicherheitsverfahren

LBS Sicherheitskonzepte

unvertraute Instanzvertraute Instanz

räumliche
Verschleierung

Koordinaten-
transformation

Ver-
schlüsselung

Zugriffslisten k-Anonymity
Verteilte

Positions-
information

Abbildung 2.6: Taxonomie der Sicherheitskonzepte bei LBS.

In Abbildung 2.6 ist eine überblicksartige Taxonomie der vorgestellten Sicherheitskonzepte
dargestellt. Hier werden die Konzepte nach der Vertrauenswürdigkeit der Instanzen zur
Lagerung bzw. Verwaltung der Positionsinformation geordnet. Die Verfahren der räumlichen
Verschleierung, der Koordinatentransformation, der verteilten Positionsinformation und der
Verschlüsselung gehen dabei von nicht-vertrauten Instanzen aus, wohingegen k-Anonymity
und Zugrifflisten Server annehmen, denen vertraut werden muss.

29

2 Theoretische Grundlagen und verwandte Arbeiten

2.3 Kombinatorische Optimierung

Bisher wurde nur auf den technologischen Rahmen, in dem sich die Problemstellung bewegt,
eingangen. Nun wird die Problemstellung selbst eingeordnet werden: Die Platzierung von
Positionsinformationen auf nicht-vertrauten Servern zur Ausbalancierung von Sicherheitsrisi-
ken kann am allgemeinsten als ein Problem der Kombinatorischen Optimierung kategorisiert
werden.

2.3.1 Definition und Eigenschaften

Kombinatorische Optimierung bedeutet, aus einer Vielzahl von möglichen Lösungen (den
möglichen Kombinationen) eine optimale im Bezug auf ein gewisses Kriterium (das Optimali-
tätskriterium) auszuwählen [VK08] [Hu82]. Bekannte Probleme dieser Art sind das Problem
des Handlungsreisenden4 [VK08], das Behälterproblem5 [VK08, MT90] oder Rucksackprobleme6

[MT90]. Beim Problem des Handlungsreisenden geht es beispielsweise darum, die kürzeste
Rundreise zu finden, die alle Städte genau einmal besucht und wieder beim Ausgangsort
endet.

Formal ist ein kombinatorisches Optimierungsproblem wie folgt definiert [VK08]:
Sei L die Menge aller möglichen Lösungen und die Formel (2.1)

f : L → R (2.1)

eine Funktion, die jeder möglichen Lösung Kosten zuweist (die Kostenfunktion). Die Lösung
eines kombinatorischen Optimierungsproblems besteht nun darin, eine optimale Lösung-
instanz opt aus der Menge aller Lösungen L zu finden, die bezüglich der Kostenfunktion
besser, d.h. kleiner ist als alle anderen Lösungen. Formal ausgedrückt lautet dies:

∃opt ∈ L ∀l ∈ L : f (opt) ≤ f (l) (2.2)

Ziel der kombinatorischen Optierung ist es, den Wert für opt zu finden.
Übertragen auf unser Problem entspricht die Menge L allen möglichen Belegungen von
Shares auf Providern. Die Kostenfunktion entspricht der Risikobewertung bzw. dem Grad
der Balance. Dann gilt es, aus allen möglichen Lösungen die optimale im Bezug auf das
geringste Risiko auszuwählen, was bei uns der besten Balance entspricht.

4engl. Travelling Salesman Problem, TSP
5engl. Bin Packing
6engl. Knapsack Problems

30

2.3 Kombinatorische Optimierung

Für eine ausreichende Problembeschreibung im Hinblick auf Lösungsmöglichkeiten ist diese
grobe Kategorisierung aber noch nicht ausreichend – diese kann erst in Kapitel 3 entwickelt
werden.

Das Behälterproblem Zunächst wird das Behälterproblem betrachtet [VK08], welches ei-
nerseits ein typisches Beispiel für kombinatorische Optimierung ist und andererseits eine
gewisse Verwandtschaft einem unserer Teilprobleme hat, wie sich noch zeigen wird.
Bei diesem Optimierungsproblem geht es darum, Objekte so auf Behälter aufzuteilen, dass
kein Behälter überläuft und die Zahl der benutzten Behälter minimiert wird.
Formal ist eine Menge von n Objekten mit unterschiedlichen Gewichten a1, a2, ...an gegeben
sowie eine Behältergröße b. Für alle einzelnen Gewichte ai, i ∈ {1, 2, ...n} gilt ai ≤ b. Die
Aufgabe ist es, eine Zuordnung f von den Objekten A = {1, 2, ...n} zu den Behältern B zu
finden, dass die Anzahl der Behälter minimal wird, also:

f : {1, 2, ..., n} → {1, 2, ...k} (2.3)

so dass k minimal und
∑

i: f (i)=j
ai ≤ b (2.4)

gilt, was bedeutet, dass die Behältergröße nicht überstiegen werden darf. Dieses Problem ist
in Abbildung 2.7 visualisiert.

...

1 2 k

...

?

a1 a
2

a
3

a
4

a
n

Abbildung 2.7: Schematische Darstellung des Behälterproblems.

31

2 Theoretische Grundlagen und verwandte Arbeiten

Algorithmus 2.1 First-Fit Algorithmus nach [VK08]
1: for i = 1 to n do
2: f (i)← min

j∈N
{∑h<i: f (h)=j ah + ai ≤ b}

3: end for
4: k← max

i∈{1,··· ,n}
f (i)

Eine naive Methode würde alle Möglichkeiten durchprobieren und dann die beste auswählen.
Diese würde aber nn viele Abbildungen bzw. Möglichkeiten erzeugen, was schon bei einer
kleinen Größe von n unzumutbar viele Lösungen erzeugt und damit ineffizient ist.
Ein bekannter Approximationsalgorithmus zur Lösung dieses Problems ist der First-Fit Al-
gorithmus, welcher in Algorithmus 2.1 dargestellt ist. Der Algorithmus weist jedes Element
ai, i ∈ {1, · · · , n} dem ersten Behälter j zu, in dem noch genügend Platz ist. Ist in keinem
der Behälter noch Platz, so wird ein neuer geöffnet.

Bei dem hier betrachteten Behälterproblem handelte es sich um ein Optimierungsproblem.
Der Vollständigkeit halber sei erwähnt, dass es neben dem jeweiligen Optimierungsproblem
noch ein entsprechendes Entscheidungsproblem gibt, welches danach fragt, ob das Problem für
eine gegebene Probleminstanz gelöst werden kann oder nicht. Im Falle des Behälterproblems
geht es um die Frage, ob n Elemente auf k Behälter verteilt werden können, ohne dass die
Bedingung (2.4) verletzt wird.
Der Wichtigkeit für unsere Untersuchung entsprechend wurde der Fokus aber auf Optimie-
rungsprobleme gelegt.

Kombinatorische Probleme sind häufig NP-schwer [CLRS04] [HMU03]. NP-Schwere
eines Problems betrifft den Zusammenhang eines Problems mit der Komplexitätsklasse
NP und besagt, dass es mindestens so schwer lösbar ist wie alle anderen Probleme
in dieser Komplexitätsklasse. Ist ein Problem NP-schwer, so gibt es vermutlich7 keinen
deterministischen Algorithmus, der das Problem in Polynomialzeit lösen kann; für diese
Problemklasse sind bisher nur deterministische Algorithmen mit exponentieller Komplexität
bekannt8.
Zum Nachweis, dass ein Problem A NP-schwer ist, muss ein Problem B, von dem schon
bekannt ist, dass es NP-vollständig (oder NP-schwer) ist, in polynomialer Zeit auf A
reduziert werden können. Eine Reduktion ist ein Algorithmus oder ein Verfahren, der
Instanzen des einen Problems in die des anderen Problems transformiert, wobei jeweils die

7Unter der Annahme, dass P 6= NP . Die Frage, ob dies wirklich gilt, ist eine der fundamentalsten ungelösten
Fragen der Informatik [VK08] [CLRS04] [HMU03].

8Bei Eingabelänge n hat der Algorithmus eine Zeitkomplexität von O(cn)

32

2.3 Kombinatorische Optimierung

gleichen Lösungen für gleiche Eingaben herauskommen müssen9. Zum Beweis muss eine
Funktion gefunden werden, die dies für alle Instanzen erledigt. Die Reduktionsvorschrift
selbst muss polynomiale Zeitkomplexität besitzen.
NP-Vollständigkeit schließlich besagt, dass ein Problem NP-schwer ist und wirklich in der
Komplexitätsklasse NP liegt. Bei NP-vollständigen Problemen ist die Verifikation, dass
ein gegebener Lösungskandidat tatsächlich eine Lösung ist, in Polynomialzeit möglich,
wohingegen das Ermitteln von Lösungen exponentielle Zeit beansprucht.
Martello und Toth [MT90] setzen NP-Schwere mit Unlösbarkeit gleich, wohlwissend, dass es
hier nicht um die absolute Unmöglichkeit der Lösungssuche geht, sondern um das Finden
von Lösungen in annehmbarer Zeit, womit polynomielle Zeit gemeint ist. Ein polynomieller
Algorithmus wird als effizient bezeichnet.

2.3.2 Algorithmische Lösungsansätze

Die Aufgabenstellung innerhalb der kombinatorischen Optimierung ist es, Algorithmen zur
Lösung dieser Probleme zu finden. Mit den Ausführungen des vorhergehenden Abschnitts
sollen jetzt prinzipielle Lösungsansätze diskutiert werden. Wie dargelegt wurde, sind diese
Probleme oft NP-schwer und machen damit eine Entscheidung zwischen Exaktheit der
Lösung und Geschwindigkeit der Lösungserzeugung notwendig.

Vollständige Enumeration

Die vollständige Enumeration bezeichnet das Aufzählen und Bewerten aller Lösungen bei
folgender Auswahl der Besten. Die Schwachstelle hier ist die große Anzahl der möglichen
Lösungen, die exponetiell mit der Problemgröße steigt. Zwar braucht die Berechnung schon
unverhältnismäßig lange, kann aber bei heutiger Rechnerleistung für kleine Problemgrößen
in Erwägung gezogen werden, da die exakte Lösung gefunden wird.

Branch-and-Bound

Branch-and-Bound ist ein an Backtracking angelehntes Verfahren für Optimierungsproble-
me [LW66] [Hu82].
Backtracking arbeitet sich durch einen Entscheidungsbaum und versucht, sukzessive Lö-
sungskandidaten zu einer Gesamtlösung zu konstruieren. Ist bei einer Auswahlentscheidung

9Dies betrifft Entscheidungsprobleme, die Lösungen in Antworten der Form ja oder nein ausgeben. Dies kann auf
Optimierungsprobleme übertragen werden, indem es um die zulässigen Lösungen des Optimierungsproblems
geht, die nach Reduktion gleich sein müssen [VK08]: Eine Lösung muss sowohl für Problem A als auch für
Problem B optimal sein.

33

2 Theoretische Grundlagen und verwandte Arbeiten

jedoch absehbar, dass keine gültige Lösung mehr konstruiert werden kann, wird der kom-
plette folgende Zweig verworfen. Gelangt die Suche in eine Sackgasse, geht der Algorithmus
einen Schritt bis zum nächsten Entscheidungsknoten zurück, um dort die noch nicht besuch-
ten Knoten nach dem selben Muster zu bearbeiten.
Branch-and-Bound erweitert diese strukturierte Suche im Entscheidungsbaum auf Optimie-
rungsprobleme, indem neben der Gültigkeit noch die Optimalität der Lösungskandidaten
als Entscheidungsfaktor miteinbezogen wird. Steht der Algorithmus vor einer Verzweigung
(engl. branch), wird geprüft ob das Weiterverfolgen in einer Richtung zu einem nicht-
optimalen Wert führt, indem mit einer Schranke (engl. bound) verglichen wird. Nur wenn
der Wert unterhalb der Schranke liegt, wird in dieser Richtung weiterverfolgt – dann könnte
eine bessere Lösung konstruiert werden. Ist dies für keine der vorhandenen Verzweigungen
der Fall, muss einen Schritt zurückgegangen werden.
Das Verfahren ist exakt, d.h. es findet immer eine Lösung und kann als eine strukturierte
Aufzählung aller Lösungskandidaten bezeichnet werden, bei der so früh wie möglich bereits
ungültige oder nicht-optimale Lösungen ausgeschlossen werden. Dies senkt die Komplexität
zwar, die Abarbeitungsdauer des Entscheidungsbaum liegt aber dennoch in O(cn), da im
schlechtesten Fall alle Knoten besucht werden müssten. Die praktische Effizienz von Branch-
and-Bound hängt stark von der konkreten Problemstellung ab. Mit der Problemstellung
hängt ebenso zusammen, wie sich eine Grenze bestimmen lässt und wieviele Zweige schon
frühzeitig ausgeschlossen werden können.

Heuristiken

Als Heuristik wird ein problemspezifisches Lösungsverfahren bezeichnet, das eine Nähe-
rungslösung von NP-schweren Problemen in effizienter Zeit bestimmt. Heuristiken für
bekannte NP-schwere Probleme finden sich in [VK08].

Metaheuristiken

Eine Metaheuristik ist ein Verfahren zur näherungsweisen Bestimmung von Lösungen bei Op-
timierungsproblemen, das nicht problemspezifisch, sondern allgemein anwendbar ist [Wei02].
Es folgt ein Überblick über einige Verfahren und eine genauere Betrachtung der Evolutionären
Algorithmen, da ein in Kapitel 3 erarbeiteter Lösungsvorschlag auf diesem Konzept beruht.

Lokale Suche Bei der lokalen Suche [Egl90] wird zunächst eine Startlösung bestimmt, was
zufällig oder in Form einer Heuristik geschehen kann. Dann wird von dieser Startlösung
ausgehend die Nachbarschaft sondiert, d.h. die Lösungen, die numerisch nahe zur Startlö-
sung sind. Ist eine Lösung in der Nachbarschaft besser, wird mit dieser fortgefahren. Das
Problem ist allerdings, dass das Verfahren in lokalen Maxima stecken bleiben kann, da es

34

2.3 Kombinatorische Optimierung

beim ersten lokalen Maximum dieses als Lösung akzeptiert. Dieses Verfahren wird auch
Bergsteigeralgorithmus (engl. Hill Climbing) genannt.
Das Verfahren der Simulierten Abkühlung [Egl90] wird allgemein unter der lokalen Suche
kategorisiert. Dieses Konzept beruht auf der Nachbildung eines Abkühlungsvorgangs in
der Physik, welcher der Gesetzmäßigkeit folgt, dass ein System im idealen Zustand Z pro-

portional ist zu e−
Energie(Z)

temp ist, wobei Energie(Z) den Energiezustand des Systems und temp
die momentane Temperatur bezeichnet. Übertragen auf Optimierungsprobleme bedeutet
dies, dass je geringer die Temperatur ist, desto weniger wahrscheinlich wird die Auswahl
eines Nicht-Optimums. Die Temperatur entspricht der Wahrscheinlichkeit für Akzeptanz
von nicht-optimalen Zuständen.
Die vorgestellten Verfahren sind schnell, jedoch ist vor allem die reine lokale Suche unge-
nügend, da sie bei lokalen Optima stecken bleiben kann. Simulierte Abkühlung wird von
Weicker [Wei02] als „launisch“ und stark vom Optimierungsproblem abhängig bezeichnet.

Evolutionäre Algorithmen Evolutionäre Algorithmen bilden Optimierungsprobleme als evo-
lutionäre Prozesse nach [Wei02] [Nis97]. Sie können als Erweiterung der lokalen Suche
begriffen werden. Im Gegensatz dazu werden mehrere Lösungskandidaten erzeugt und
miteinander kombiniert, außerdem sorgen Mutationen dafür, dass möglichst der komplette
Wertebereich abgedeckt wird. Darum spricht man bei evolutionären Algorithmen auch von
populationsbasierten Verfahren, da sie mit mehr als einem Individuum arbeiten. In der Lite-
ratur finden sich des Weiteren die Verfahren Evolutionsstrategien, evolutionärens Programmieren
und genetische Algorithmen, wobei die Unterschiede im Detail liegen und die Übergänge
fließend sind. In der folgenden Ausführung konzentriere ich mich auf die evolutionären
Algorithmen.
Für die Anwendung eines evolutionären Algorithmus auf ein Problem muss dieses zunächst
als Genom codiert werden. Die Lösungskandidaten werden meist als Bit-Vektoren, manchmal
aber auch als ganzzahlige Vektoren dargestellt. Potentielle Lösungskandidaten werden als
Individiuen bezeichnet. Zunächst werden initiale Lösungskandidaten bestimmt, was entweder
komplett randomisiert oder basierend auf einer Heuristik geschehen kann. Die Gesamtheit
aller Individuen zu einem gewissen Zeitpunkt bezeichnet man auch als Population oder Gene-
ration. Individuen der anfangs erzeugten Startpopulation werden nun miteinander gekreuzt,
wobei es unterschiedliche Kreuzungsoperationen gibt. Je nach Kreuzungsoperator werden
verschiedene Teile der Genome miteinander kombiniert. Schließlich kommt es noch zu einer
zufälligen Veränderung an einzelnen Individuen, was als Mutation bezeichnet wird. Diese
Operation ist wichtig, um alle Werte im Bereich potentiell abdecken zu können. Die aus
einer Population erzeugten Individuen werden nun bewertet, was durch eine Fitnessfunktion
geschieht – sie bewertet die Güte eines Individuums im Bezug auf das Optimierungsziel.
Dann werden die am besten bewerteten Individuen ausgewählt und der Zyklus beginnt
von Neuem. Dieser Zyklus ist in Abbildung 2.8 dargestellt und endet, wenn entweder eine
bestimmte Anzahl von Generationen oder ein Abbruchkriterium erreicht wurde.

35

2 Theoretische Grundlagen und verwandte Arbeiten

Initiale Population

Fitnessfunktion
Optimierungsziel

wenn Abbruchkriterium
erreicht oder max. Zahl
der Generationen

Abbildung 2.8: Zyklus von evolutionären Algorithmen nach [Wei02].

Über evolutionäre Algorithmen lässt sich sagen, dass sie ein gutes Approximationsverfahren
für kombinatorische Optimierungsprobleme darstellen, da sie durch den Mutationsoperator
in der Wertelandschaft „springen“ und so zuverlässig ein globales Maximum finden können.
Des Weiteren sind die Parameter gut anpassbar und durch geschickte Wahl der initialen
Population verbessert sich die Laufzeit und die Qualität. Prinzipiell stoßen sie schnell
in die Nähe der optimalen Lösung vor, benötigen dann aber Zeit, um sich weiter zum
wirklichen Optimalwert vorzutasten. Der Nachteil liegt in der erhöhten Laufzeit gegenüber
der lokalen Suche, weil die Operationen komplexer sind. Die Laufzeit von evolutionären
Algorithmen hängt vom Abbruchkriterium ab: Wird über eine feste Anzahl von Generationen
iteriert, ist die Laufzeit sogar konstant und wird maßgeblich durch den Aufwand der
Kombinationsoperatoren bestimmt.

Schwarmintelligenz Das Verfahren der Schwarmintelligenz (engl. Swarm Intelligence) arbeitet
mit einfach gearteten Einzelindividuen, deren Interaktion über die Umwelt vermittelt einem
komplexen Verhalten des Gesamtsystems emergiert um Probleme zu lösen [MRF+

03]. Ein
typischer Vertreter sind hierbei die Ameisenalgorithmen, die das kollektive Verhalten von
Ameisen zur Futtersuche nachbilden, um kürzeste Wege zu finden [DS03].

2.3.3 Zuweisungsprobleme

Zuweisungsprobleme stellen eine spezielle Unterkategorie der kombinatorischen Optimie-
rung dar [BDM09] und müssen im Folgenden besprochen werden, da sich unser Problem
als Zuweisungsproblem formulieren lässt.
Bei dieser Problemklasse geht es darum, wie eine gewisse Anzahl von Objekten anderen
Objekten unter gewissen Kritierien zuwiesen wird [BDM09]. Statt abtrakt von Objekten
spricht man auch von Tasks oder Jobs, die Maschinen, Agenten oder Arbeitern zugewiesen
werden. Die Zuweisung ist mathematisch eine Abbildung zwischen zwei Mengen U und V .

36

2.3 Kombinatorische Optimierung

Eine solche Zuweisung ist eine Permutation der Anordnung und wird im Folgenden als
Zuweisungsmatrix (Assignment Matrix) in Formel (2.5) dargestellt,

X = (xij) =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

...
xn1 xn2 · · · xnn

 (2.5)

wobei

xij =

1, wenn Objekt i dem Objekt j zugewiesen ist

0, sonst
(2.6)

Werden beispielsweise drei Objekte U = {a, b, c} drei anderen V = {a′, b′, c′} zugewiesen,
sieht eine mögliche Zuordnung wie folgt aus:

X = (xij) =

1 0 0
0 0 1
0 1 0

 (2.7)

Die durch Matrix (2.7) bestimmte Zuweisung ist in Abbildung 2.9 grafisch dargestellt.

a

b

c

a'

b'

c'

U V

Abbildung 2.9: Exemplarische Zuweisung nach Zuweisungsmatrix (2.7) zwischen zwei Men-
gen U = {a, b, c} und V = {a′, b′, c′} mit jeweils drei Elementen

Zuweisungen werden durch eine Menge von linearen Gleichungen charakterisiert, die Ne-
benbedingungen genannt werden. Diese geben beispielsweise Auskunft darüber, wie viele
Objekte der einen Menge U maximal einem Objekt der Menge V zugewiesen sind und vice
versa. Diese Nebenbedingungen hängen von der konkreten Problemstellung ab.
Darf im obigen Beispiel einem Objekt der Menge U ein Element der Menge V zugewie-
sen werden (2.8) sowie einem Element aus der Menge V genau eines (2.9), so lauten die
Nebenbedingungen

37

2 Theoretische Grundlagen und verwandte Arbeiten

n

∑
i=1

xij = 1 ∀j ∈ {1, 2, · · · , n} (2.8)

n

∑
j=1

xij = 1 ∀i ∈ {1, 2, · · · , n} (2.9)

und

xij ∈ B (2.10)

Außerdem darf die Zuweisungsmatrix nur aus bool’schen Werten bestehen, was Nebenbe-
dingung (2.10) widerspiegelt.

Eine Zuweisung wird gültige Zuweisung genannt, wenn sie alle entsprechenden Nebenbe-
dingungen erfüllt. Beispiel 2.9 ist somit eine gültige Zuweisung in Bezug auf die genannten
Nebenbedingungen (2.8), (2.9) und (2.10). Es gibt n! gültige Zuweisungsmatrizen, wenn alle
dieser Nebenbedingungen erfüllt sind.

Allein über die Zuweisungsmatrix lässt sich allerdings kein Optimierungsproblem formu-
lieren – es fehlt das Kriterium, nach dem überhaupt optimiert werden soll. Dazu wird mit
jeder Zuweisungsoperation ein Zahlwert assozziert, der Kosten, Gewicht, Größe, aber evtl.
auch Gewinn usw. repräsentiert.
In der Regel spricht man aber von Zuweisungskosten, die in einer Kostenmatrix C repräsentiert
werden:

C = (cij) =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

...
cn1 cn2 · · · cnn

 (2.11)

wobei cij die Kosten (oder den Gewinn) darstellt, die entstehen, wenn Objekt i dem Objekt j
zugewiesen wird.
Eine Multiplikation Xφ · C einer Zuweisungsmatrix mit der Kostenmatrix ergibt die Kosten
aller getätigten Zuweisungen der Permutation X, wobei es sich hierbei um eine modifizierte
Multiplikation und nicht um die Standardmultiplikation bei Matrizen handelt.

38

2.3 Kombinatorische Optimierung

Um eine Optimierungsaufgabe formulieren zu können, wird noch ein Kriterium benötigt:
die Zielfunktion. Die Zielfunktion entspricht dem Optimierungsziel, das je nach Aufgaben-
stellung unterschiedlich geartet ist. Handelt es sich bei der Zielfunktion um eine lineare
Funktion, so spricht man von linearer Optimierung.

Klassische Zuweisungsprobleme

Mit dieser Vorarbeit lässt sich das klassische Zuweisungsproblem (Assignment Problem, AP)
formulieren. Spezifisch für klassische Zuweisungsprobleme ist, dass die Zahl der Jobs und
der Agenten gleich ist. Hierbei geht es darum, n Jobs so n Agenten zuzuweisen, dass
die Gesamtkosten der Zuweisungen minimal werden. Die Zielfunktion, welche optimiert
wird, ist demnach eine Funktion, welche die Kosten aller Zuweisungen bestimmt und in
Gleichung (2.12) dargestellt ist.
Formal lässt sich dieses klassische Zuweisungsproblem wie folgt fassen:

minimiere
n

∑
i=1

n

∑
j=1

cijxij (2.12)

Unter den Bedingungen
n

∑
i=1

xij = 1 ∀j ∈ {1, 2, · · · , n} (2.13)

n

∑
j=1

xij = 1 ∀j ∈ {1, 2, · · · , n} (2.14)

xij ∈ B (2.15)

Die praktische Relevanz dieser Problemstellung liegt auf der Hand: So stellt beispielsweise
die Zuweisung von n Jobs auf n Maschinen, wobei jede einzelne Job-Maschine-Zuweisung
andere „Kosten“ cij verursacht (hier z.B. Zeit, die benötigt wird, um ein Job zu bearbeiten),
eine solche praktische Anwendung dar.

Das Erzeugen aller Lösungen würde die Generierung von n! möglichen Zuweisungsmatri-
zen bedeuten, was schon für kleine Werte von n unverhältnismäßig hohen Rechenaufwand
bedeutet. Algorithmische Lösungsansätze sind die Ungarische Methode [BDM09] oder der
Simplex-Algorithmus [CLRS04]. Diese Algorithmen drücken die Komplexität auf eine poly-
nomielle Zeit. Auf die Algorithmen wird hier jedoch nicht näher eingegangen, da sie nicht
unserer eigentlichen Problemstellung entsprechen.

39

2 Theoretische Grundlagen und verwandte Arbeiten

Abgeleitet von diesem klassischen Zuweisungsproblem gibt es eine Fülle weiterer Zuwei-
sungsprobleme, denen spezifisch ist, dass die Anzahl der zugewiesenen Objekte gleich ist.
Als umfassende Referenz hierfür sei [Pen05] genannt. Im Folgenden werden zwei dieser
Zuweisungsprobleme näher betrachtet, die unserer Problemstellung ähneln.

Bottleneck Assignment Problem (BAP)

Ein Zuweisungsproblem, welches von der Problemstellung her in unsere Richtung weist,
ist das Bottleneck Assignment Problem (BAP) [Pen05], [BDM09]. Hierbei geht es nicht um
die Miniermung der Gesamtkosten (-summe), sondern um die Minimierung des Maxi-
malwertes – wie kann eine Zuweisung gefunden werden, die den kritischen Wert, den
„Flaschenhals“minimiert. Formal ausgedrückt lautet die Zielfunktion:

minimiere max
I,J
{cijxij} (2.16)

Unter den Nebenbedingungen (2.13), (2.14) und (2.15) wie beim klassischen Zuweisungspro-
blem, wobei I die Menge aller Agents und J die Menge aller Jobs ist. Bei dieser Variante
ist die Mächtigkeit der beiden Mengen gleich. Praktisch relevant ist die Problemstellung,
wenn es darum geht, kritische maximale Zuweisungskosten so klein wie möglich werden zu
lassen.
Algorithmische Lösungsansätze in Polynomialzeit finden sich in [BDM09]. Die effiziente
Lösbarkeit dieses Problems rührt von der Tatsache her, dass die beiden Mengen von Objekten
die gleichen Kardinalitäten haben.

Balanced Optimization Problem (BOP)

Ein weiteres klassisches Zuweisungsproblem ist das Balanced Optimization Problem (BOP),
das Balancierte Zuweisungsproblem [MPTW84, BDM09, Pen05], das unserer Problemstellung
ähnelt, da auch hier ein Differenz zwischen kleinstem und größtem Wert minimiert werden
soll („Balanced“). Jedoch ist zu betonen, dass es sich um ein klassisches Zuweisungsproblem
handelt, also die Mengen von Agents und Jobs gleich groß sind, was für die Problemstellung
unserer Arbeit nicht zutrifft. Der prinzipiellen Nähe zu unserer Problemstellung wegen soll
diese Unterklasse der APs trotzdem aufgeführt werden.
Im Gegensatz zum BAP (siehe (2.16)) wird hier nicht nur der Maximalwert, sondern auch
der Minimalwert in die Betrachtung miteinfließen. Es soll die Differenz zwischen diesen
beiden Werten minimiert werden, was die Zielfunktion (2.17) ausdrückt. Im Hinblick auf
die Praxis ist diese Modellierung überall dort adäquat, wo „Kosten“ angeglichen werden
sollen. Ein Beispiel in [MPTW84] veranschaulicht diesen Fall mittels einer Reiseagentur, die
verschiedene Reisegruppen auf verschiedene Rundreisen schickt, wobei die Kosten hier

40

2.3 Kombinatorische Optimierung

jeweils der beanspruchten Zeit entsprechen. Ziel ist es nun, die Reisegruppen so auf die
Rundreisen zu schicken, dass am Ende alle möglichst zum gleichen Zeitpunkt wieder an der
Sammelstelle ankommen. Mathematisch formalisiert werden kann dieser Fall wie folgt:

minimiere max
I,J
{cijxij} −min

I,J
{cijxij} (2.17)

unter den Nebenbedingungen (2.13), (2.14) und (2.15) wie beim klassischen Zuweisungspro-
blem.
Martello et al. schlagen in [MPTW84] einen Algorithmus zur Lösung des Problems vor, der
in [BDM09] erweitert wird, so dass eine polynomielle Komplexität von O(n4) erreicht wird,
wobei n die Zahl der Agents und Jobs ist. Der Algorithmus baut auf der Lösung für das
BAP auf und versucht, sich durch langsame Erhöhung des Minimalwertes an ein Optimum
heranzutasten. Details finden sich in [BDM09].

Generalisierte Zuweisungsprobleme

Nachdem die klassischen Zuweisungsprobleme betrachtet wurden, deren Charakteristikum
eine gleiche Zahl von Agents und Jobs war, kommt die Untersuchung nun zu generalistierten
Zuweisungsproblemen [Pen05, MT90].
Ebenso wie beim klassischen Zuweisungsproblem geht es beim generalisierten Zuweisungs-
problem (Generalized Assignment Problems, GAP) um die Minimierung der Gesamtkosten
(-summe) aller Zuweisungen. Im Unterschied zum klassischen Zuweisungsproblem ist hier
die Beschränkung aufgehoben, wonach die Zahl der Agents und Jobs gleich sein muss. Diese
Erweiterung auf n ≥ m Jobs findet sich in der im Vergleich zum AP veränderten Zielfunktion
(2.18) und in der Nebenbedingung (2.20) wieder. Dies ist für unsere Problemstellung von
hoher Bedeutung, da die Zahl der Shares in der Regel größer ist als die Zahl der Provider.
Sei I = {1, · · · , m} die Menge aller Agents und J = {1, · · · , n} die Menge aller Jobs, so kann
der Sachverhalt formal wie folgt dargestellt werden:

minimiere
m

∑
i=1

n

∑
j=1

cijxij (2.18)

Unter den Bedingungen
m

∑
i=1

xij = 1 ∀j ∈ {1, 2, · · · , n} (2.19)

n

∑
j=1

xij ≥ 1 ∀i ∈ {1, 2, · · · , m} (2.20)

xij ∈ B (2.21)

41

2 Theoretische Grundlagen und verwandte Arbeiten

Dabei bedeutet die erste Nebenbedingung (2.19), dass einem Job j immer nur genau ein
Agent i zugewiesen sein darf, ein Job somit nur von einem Agent bearbeitet wird. Die
zweite Bedingung (2.20) besagt, dass einem Agent auch mehrere, aber mindestens ein Job
zugewiesen werden muss. Die dritte Bedingung (2.21) gibt Auskunft über die Belegung der
Variablen der Zuweisungsmatrix, welche nur aus bool’schen Werten bestehen darf.
Hier gibt es mn gültige Zuweisungsmatrizen. Beim Generalisierten Zuweisungsproblem
handelt es sich um ein NP-vollständiges Problem, was Martello und Toth durch Redukti-
on auf das multiple Rucksackproblem in [MT90] zeigen. Da dieses Problem von unserer
Problemstellung entfernt ist, weil die Zielfunktion eine andere ist, sei hier eine Referenz
[CVW92] genannt, die einen Überblick über Algorithmen zur Lösung von GAPs enthält.

Bottleneck Generalized Assignment Problem

Wie zum klassischen Zuweisungsproblem gibt es auch zur generalisierten Variante eine
Ausformulierung, bei der es um die Minimierung eines Flaschenhalses geht. Diese Version
wird als Bottleneck Generalized Assignment Problem (BGAP) bezeichnet [MN88, MN92, MT95,
Pen05]. In der Literatur finden sich zwei spezifische Ausformulierungen dieses Problems,
welche als Task BGAP und Agent BGAP bezeichnet werden und auf die im Folgenden
eingegangen wird.

Task Bottleneck Generalized Assignment Problem Das TBGAP entspricht, analog zum
klassischen Fall, der Übertragung der Problemstellung auf eine Zielfunktion, die der Mini-
mierung eines Flaschenhalses dient, wenn die Zuweisungen für sich betrachtet den kritischen
Wert darstellen können. Formal ausgedrückt lautet dies:

minimiere max
I,J
{cijxij} (2.22)

unter den gleichen Nebenbedinungen (2.19), (2.20) und (2.21) wie beim GAP.
Sowohl Martello und Toth [MT95] als auch Mazzola und Neebe [MN88, MN92] zeigen, dass
es sich um ein NP-schweres Problem handelt – deterministische Algorithmen benötigen
somit zur exakten Lösung wahrscheinlich10 einen exponentiellen Rechenaufwand mit der
Eingabegröße (Paramter m und n) des Problems.

Mazzola und Neebe [MN92] präsentieren eine exakte Lösung: Indem zunächst eine
Heuristik angewandt wird, die manchmal die exakte Lösung liefert. Ist dies nicht der Fall
wird ein Branch-and-Bound-Verfahren angewendet, um schließlich zur exakten Lösung zu
kommen, was den Algorithmus prinzipiell ineffizient macht. Die Evaluation soll jedoch

10Wenn P 6= NP gilt [HMU03].

42

2.3 Kombinatorische Optimierung

zeigen, dass dieser Aufwand vernachlässigbar ist und der Algorithmus in den meisten Fällen
trotzdem gute Performanz zeigt.
Martello und Toth stellen in [MT95] einen exakten Branch-and-Bound und auch einen
Approximationsalgorithmus vor, wobei sich der exakte Branch-and-Bound-Algorithmus wie
der Algorithmus vom Mazzola und Neebe [MN92] von einer Grenze aus vortastet und dann
mit einer Branch-and-Bound-Strategie sukzessive die exakte Lösung konstruiert.

Agent Bottleneck Generalized Assignment Problem Die Problemstellung des TBGAP ist
für unser Vorhaben weniger von Bedeutung, da bei uns der kritische Punkt nicht einzelne
Zuweisungen sind, sondern alle Zuweisungen auf jeweils einen Provider – es geht darum,
die Zuweisungen auf einen Provider, der evtl. als Flaschenhals wirkt, zu minimieren. Diese
Minimierung eines kritischen Agents kann mathematisch modelliert wie folgt ausgedrückt
werden:

minimiere (max
I

(
n

∑
j=1

cijxij)) (2.23)

Dabei gelten die gleichen Bedingungen (2.19), (2.20) und (2.21) wie beim GAP. Der Teil
(∑n

j=1 cijxij) Zielfunktion (2.23) repräsentiert die Summe aller auf einem Agent platzierten
Jobs. Mazzola und Neebe bezeichnen dieses Problem darum als Agent Bottleneck Generalized
Assignment Problem (ABGAP) und erwähnen es in [MN88] lediglich, ohne konkreter darauf
einzugehen.
Neben der genannten Referenz tritt das Problem auch unter dem Namen Imbalanced Time Mi-
nimizing Assignment Problem (ITMAP) bei Arora und Puri [AP97] auf11. Zur Lösung schlagen
die Autoren eine lexikografische Suche vor12, welche wie die anderen Verfahren von einer
initialen Grenze ausgeht, die Schritt für Schritt zu einer optimalen Lösung ausgebaut wird.
Der Evaluation der Autoren folgend liefert ihr Algorithmus aufgrund der guten initialen
Grenze in der Praxis schnell einen Optimalwert. Ein in der Originalversion vorhandener
Fehler wird in [MCA01] beseitigt sowie ein weiteres Verfahren für ITMAP vorgeschlagen.

11„Imbalanced“ im Namen ITMAP bezieht sich hier nicht wie in unserem Sinne auf einen Balancezustand
zwischen den Agents/Providern, sondern soll bedeuten, dass die Zahl der Agents nicht gleich der Zahl der
Jobs ist. Im Folgenden wird die Benennung ITMAP verworfen und auch ABGAP genannt, da es sich um die
gleichen Probleme handelt und sich so Unklarheiten vermeiden lassen.

12Im Allgemeinen bedeutet lexikographische Suche bei Optimierungsproblemen, dass Lösungskandidaten als
Wörter kodiert werden. Dabei werden Wörter sukzessive konstruiert. Wenn absehbar ist, dass ein Wort
keine optimale Lösung mehr darstellen kann, weil schon ein Teilwort (Partialwort) schlechter ist, wird der
komplette Zweig verworfen. Dieses Verfahren ist somit eine abgewandelte Form von Branch-and-Bound (im
Worst Case mn Schritte.

43

3 Konzepte zur Platzierungsoptimierung der
verteilten Positionsinformationen

Nachdem auf die verwandten Arbeiten eingegangen und die theoretische Fundierung
erläutert wurde, wird jetzt das Systemmodell vorgestellt: Die bestehende Architektur
nach [DSR11] wird um eine Trust Database erweitert, welche die Vertrauenswerte der
Provider hält und verwaltet.
Dann werden in Abschnitt 3.2 die Anforderungen an das Systems thematisiert, welche die
maximale Sicherheit der Privatsphäre bei LBS gewähren sollen.
In Abschnitt 3.3 werden die konkreten Platzierungsstrategien für die verschiedenen
Szenarien besprochen: Es wird einerseits auf den Fall eingegangen, dass die Zahl der
Shares nicht vordefiniert ist. Sie kann also von Nutzer-Seite festgelegt werden. Damit ist die
Problemstellung, für welche Anzahl von Shares das Risiko optimal verteilt werden kann.
Im anderen Fall wird die Zahl der Shares als fest vorgegeben angenommen und es wird
gefragt, wie hier optimale Sicherheit erreicht werden kann. Bei dieser Problemstellung
handelt es sich um ein Zuweisungsproblem, welches entsprechend formalisiert wird und
von dem gezeigt wird, dass es sich um ein NP-schweres Problem handelt. Schließlich
werden Lösungsansätze für dieses Problem erarbeitet. Dazu folgt in Abschnitt 3.3.2 eine
Diskussion der Ergebnisse und Lösungsansätze aus Kapitel 2, wobei abgewogen wird,
welcher Lösungsansatz im konzeptuellen Teil am besten geeignet ist, um den Anforderungen
beizukommen.

3.1 Systemmodell

Wie sich in Abschnitt 2.2 zeigte, ist der Schutz der Privatsphäre bei Location-based Services
ein zentrales Anliegen. Durch die Sensibilität dieser Technologie müssen Wege gefunden
werden, um den Schutz der Privatsphäre zu gewähren.
Verfahren wie k-Anonymity oder Zugriffslisten gehen von einer vertrauenswürdigen Instanz
zur Speicherung der Positionsinformation aus. Diese Annahme ist jedoch zu kritiseren,
denn ein Location Server kann von außen kompromittiert werden. Darüber hinaus ist
es möglich, dass intern ein unberechtiger Zugriff erfolgt, um z.B. Nutzerdaten mit der
Positionsinformation zu verknüpfen und für Werbung zu missbrauchen.

45

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Abbildung 3.1: Darstellung der Systemarchitektur von Dürr und Skvorzov [DSR11].

Dürr und Skvorzov schlagen aus diesem Grund in [DSR11] ein System vor, welches mit
mehreren unabhängigen Location Servern arbeitet und das Prinzip der räumlichen Ver-
schleierung der Positionsinformation mit der Koordinatentransformation verbindet. Dieses
Konzept wird auch als Verteilung der Positionsinformation bezeichnet und wurde im Detail
in Abschnitt 2.2.6 erläutert. Hierbei wird die exakte Positionsinformation in Teilvektoren,
auch Shares genannt, zerlegt und auf den unabhängigen Location Servern, genannt Provider
platziert. Die Idee hinter diesem System ist, dass die exakte Position nur rekonstruiert werden
kann, wenn alle Provider gehackt werden, was einen unwahrscheinlichen Fall darstellt. Ein-
zelne Teile der Positionsinformation können die exakte Position nur ungenau rekonstruieren.
Das Systemmodell nach 2.2.6 ist in Abbildung 3.1 dargestellt und besteht aus folgenden
Teilen:

Mobiles Gerät Dabei handelt es sich um ein Handy, ein Smartphone oder ein sonstiges
mobiles Gerät, welches in der Lage ist, die Position des Nutzers zu bestimmen, beispielsweise
via GPS oder durch GSM-Ortungsverfahren. Die Abtastung der Position erfolgt regelmäßig.
Eine Softwareanwendung auf diesem Gerät, dem vertraut wird, zerlegt die exakte Position
in Teile, die Shares. Dieser Prozess wird Share generation genannt. Zur Generierung der
Shares werden in [DSR11] zwei Algorithmen vorgeschlagen und evaluiert, auf die an dieser
Stelle jedoch nicht näher eingegangen wird.

46

3.1 Systemmodell

Location Server / Provider In diesem Systemmodell gibt es im Gegensatz zu bisherigen
Ansätzen1 mehrere Provider, denen nicht vertraut werden muss. Sie verwalten die Positi-
onsinformation des mobilen Gerätes, wobei jeder Location Server nur einen Teil, also eine
gewisse Anzahl von Shares bekommt.
Es ist hervorzuheben, dass bei diesem Ansatz die LS unabhängig voneinder sein müssen.
Jeder LS stellt sowohl den mobilen Nutzern wie auch dem LBS Schnittstellen zur Verfügung.
Der Nutzer kann mittels dieser Schnittstelle seine Position hochladen oder einen gewissen
LBS zur Nutzung der gehaltenen Positionsinformation autorisieren. Dies geschieht, indem
jeder Provider eine Zugriffsliste2 hält, in der die Berechtigungen gesetzt werden können. Zur
Seite des LBS bietet die Schnittstelle eine Möglichkeit zur Abfrage der Positionsinformati-
on.

Ortsbezogene Anwendung Diese Anwendung ist ein Dienst, der dem Nutzer bezogen auf
seine Position Informationen anbietet. In Abbildung 3.1 ist dieser Dienst mit LBSi bezeichnet.
Diesem Dienst müssen Positionsinformationen zugänglich gemacht werden, die er erhält,
indem die LS abgefragt werden. Auf der Seite des LBS müssen die einzelnen Shares wieder
zusammengefügt werden, was mittels einem Share Fusion-Algorithmus geschieht [DSR11].
Dann kann die Anwendung dem Nutzer Dienste wie POI-Finder usw. anbieten. Eine Neue-
rung im Vergleich zu anderen Konzepten3 ist, dass verschiedenen Diensten unterschiedliche
Genauigkeitsstufen der Position zugänglich gemacht werden können. Die Dienste sind
also feingranular regulierbar. Diese Regulation wird durch die Zugriffslisten auf den LS
erreicht.

3.1.1 Trust Database

Momentan wird im Konzept von Dürr und Skvorzov [DSR11] von Providern ausgegangen,
die alle das gleiche Sicherheitsrisiko besitzen, was eine Einschränkung darstellt, die in der
Praxis nicht zutrifft.
Dieser Einschränkung kann beigekommen werden, indem mit jedem Provider ein Vertrauens-
oder Risikowert assoziiert wird. Dies bedeutet, dass die Zahl der platzierten Shares auf dem
jeweiligen Provider von Bedeutung ist: Auf einem Provider mit hohem Risiko sollten relativ
wenige Shares platziert werden, da bei seiner Kompromittierung, die als wahrscheinlicher
angesehen werden muss, eine genauere Position rekonstruiert werden kann. Um die Model-
lierung um diesen Aspekt zu erweitern, muss eine weitere Instanz ins System eingeführt
werden, die Vertrauens- oder Risikowerte der LS speichert und verwalten kann. Diese Instanz

1siehe Abschnitt 2.2
2siehe Abschnitt 2.2.1
3siehe Abschnitt 2.2

47

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

wird als Trust Database bezeichnet. Das um die Trust Database erweitere Systemmodell ist in
Abbildung 3.2 dargestellt.

Mobiles GerätTrust
 DB

LS1 LS2 LSm...

Ortsbezogene
 Anwendung

Shares
verteilen

Shares
beziehen

Feedback-System

Risikowerte abfragen

Mobiles Gerät
Dienste beziehen

Risikowerte eintragen

Dienste beziehen

Abbildung 3.2: Um die Trust Database erweiterte Systemarchitektur.

In der Trust Database wird zu jedem LS ein Vertrauenswert bzw. ein Risikowert gehalten,
der seine Wahrscheinlichkeit repräsentiert, kompromittiert zu sein. Die Trust Database ist
eine Datenbank, die in einer Tabelle zu jedem Location Server einen absoluten Risikowert
speichert. Dies ist in Tabelle 3.1 schematisch dargestellt.
Die Werte können auf verschiedene Weisen erzeugt werden, so z.B. durch ein automatisiertes
Feedback-System oder auch durch subjektive Bewertungen des Nutzers. Die Vertrauens-
werte können aus verschiedenen Werten wie Zuverlässigkeit, subjektiven Vertrauenswerten,
Angriffshistorie oder Reputation der Betreiber gebildet werden, wobei hierauf nicht wei-
ter eingegangen wird. Das angesprochene Feedback-System kann als Teil in dieser Trust
Database integriert sein, aber auch außerhalb dieser liegen.

Location Server Risikowert
1 r1

2 r2

3 r3

· · · · · ·
m rm

Tabelle 3.1: Schematische Darstellung der Tabelle der Trust Database mit Risikowerten

Das Vertrauen muss in einer gewissen Weise modelliert werden, um algorithmisch damit
arbeiten zu können. Gutscher [Gut07] entsprechend kann ein Vertrauensmodell in vier
Komponenten unterteilt werden, die kurz erläutert werden.

48

3.1 Systemmodell

Die Vertrauenswerte müssen modelliert werden. Darunter wird die Repräsentation der
Vertrauenswerte verstanden, die als bool’sche oder skalare Werte oder in Form einer diskreten
Verteilungsfunktion angegeben werden können.
Ein weiterer Teil ist die Berechnung der Vertrauenswerte: Hier wird festgelegt, wie die
unterschiedlich repräsentierten Vertrauenswerte potentiell miteinander verrechnet werden
können.
Neben diesen beiden Teilen werden noch Relationen und Schlussfolgerungsregeln als Teile
eines Vertrauensmodells genannt. Damit ist gemeint, wie die Beziehung zwischen den
Entitäten (bspw. „A vertraut B“) modelliert wird und welche Schlüsse sich daraus ziehen
lassen (bspw. „Wenn A vertraut B und B vertraut C, dann vertraut auch A der Instanz C“).

Für diese Arbeit ist vor allem von Bedeutung, wie die Vertrauenswerte repräsentiert
werden. Dabei werden die initialen Vertrauenswerte ti(start) als skalare Werte wie in Aus-
druck (3.1) formalisiert, wobei i den Index eines Providers repräsentiert.

ti(start) ∈ [0, 1] (3.1)

ti(start) bedeutet dann, wie sehr einem Provider i auf einer Skala von 0 bis 1 vertraut wird.
Risiko wird dann als Gegenereignis zum Vertrauen definiert:

ri(start) = 1− ti(start) (3.2)

Somit gilt auch ri(start) ∈ [0, 1], wobei diese Werte frei wählbare Risikowerte sind. Dann
müssen alle Werte ri(start) auf Werte ri normalisiert werden, so dass nach der Normalisierung
∑I ri = 1 gilt:

ri(start)
Norm.→ ri (3.3)

Dies hat zum Ergebnis, dass es sich somit immer um relative Werte handelt, die in Bezug
zueinander stehen. Konkret wird ein Sicherheitsrisiko von 1 unter den Providern aufgeteilt
werden. Mit dieser Annahme lassen sich relative Aussagen über das Risiko der Provider
treffen, die leicht quantifizierbar sind. Hätten alle Provider das gleiche Risiko, würde 1 zu
gleichen Teilen aufgeteilt werden usw.
Da es sich algorithmisch aber als vorteilhaft erweist, auf natürlichen Zahlen zu operieren,
sollten diese Werte noch skaliert werden. Dazu wird ein Wert ri zunächst auf eine natür-
liche Zahl abgebildet, was durch eine Multiplikation mit einem Faktor wie 100 oder 1000
geschehen kann, je nachdem, welche Genauigkeit repräsentiert werden soll4. Dann kann der
kleinste dieser Werte als Faktor 1 gesetzt werden, auf den sich alle anderen Werte beziehen.

4Dazu muss ferner gelten, dass ri ∈ Q, weil sich die Skalierung auf ganzzahlige Werte sonst nicht durchführen
ließe.

49

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Seien beispielsweise 5 Provider mit den Risikowerten r1 = 0, 25, r2 = 0, 5, r3 = 0, 1, r4 = 0, 05
und r5 = 0, 1 gegeben, dann sind die entsprechenden auf natürliche Zahlen skalierten Werte
r1(skal) = 25, r2(skal) = 50, r3(skal) = 10, r4(skal) = 5 und r5(skal) = 10. Dies kann noch weiter
skaliert werden auf r1(skal) = 5, r2(skal) = 10, r3(skal) = 2, r4(skal) = 1 und r5(skal) = 2, wobei
jeweils die gleichen Risikorelationen zwischen den Providern repräsentiert werden. Eine
Trust Database mit den Werten aus diesem Beispiel ist in Tabelle 3.2 dargestellt.

Location Server Risikowert
1 5
2 10
3 2
4 1
5 2

Tabelle 3.2: Beispielhafte Darstellung der Tabelle der Trust Database

Die Rücktransformation geschieht, indem alle ganzzahligen Risikowerte ri addiert werden.
Dann werden die jeweiligen Risikowerte durch diese Summe geteilt, was einen Wert ri ∈ [0, 1]
liefert. Diese Rechenvorschrift ist in Formel (3.4) dargestellt.

ri =
ri(skal)

∑I ri(skal)
(3.4)

Die beispielhafte Rücktransformation für den ersten Provider ist in Formel (3.5) dargestellt:

r1 =
5
20

= 0, 25 (3.5)

50

3.2 Problemstellung und Anforderungen

3.2 Problemstellung und Anforderungen

Die Aufgabe ist es, die optimale Platzierung von Shares auf Providern zu finden.
Optimalität der Platzierung ist diejenige Belegung von Shares auf Providern, die im Falle von
ungewichteten Shares die gegebenen Sicherheitsrisiken ausgleicht. Dies führt dazu, dass risi-
koreiche Provider weniger Shares zugewiesen bekommen als vertraute. Ist es wahrscheinlich,
dass ein Server gehackt wird, liefert seine tatsächliche Kompromittierung nur wenige Shares,
was die Sicherheit des Gesamtsystems erhöht.
Sind die Shares gewichtet, soll dadurch eine angemessene Verschlechterung (engl. graceful
degradation) der Privatsphäre bei fortschreitender Zahl kompromittierter Provider erreicht
werden. Bei jedem weiteren Server, der gehackt wird, verschlechtert sich die Privatsphäre
nur um einen konstanten Faktor.
Die Fragilität Ri eines Providers i bezeichnet sein spezifisches Sicherheitsrisiko, das er ins
System nach Aufnahme von Shares einbringt und wird berechnet als Multiplikation des
Risikowertes eines Providers mit den Risikowerten der auf ihm platzierten Shares, also

Ri = ri · Si (3.6)

wobei Si = ∑j auf i zugeordnet sj die Summe der Risiken der Shares sj auf dem platzierten
Provider i darstellt. Sind die Shares ungewichtet (= 1), wird der Risikowert eines Providers
mit der Anzahl der Shares multipliziert.

Der Zielzustand ist das Gleichgewicht der Fragilität aller m Provider; dieser Zielzustand ist
in Formel (3.7) ausgedrückt.

R1 = R2 = · · · = Rm (3.7)

Die Problemstellung ist es nun, diesen Balance-Zustand durch eine entsprechende Plat-
zierung so weit wie möglich herzustellen. Dabei ist es nicht immer möglich, ein komplett
austariertes System zu erhalten.
Der Balance-Zustand wird durch eine möglichst geringe Differenz zwischen minimaler und
maximaler Fragilität auf den Servern erreicht, weil dadurch die Risiken so gut wie möglich
austariert werden und eine Balance wie in Formel (3.7) erreicht werden kann.
Eine erste Formalisierung der Problemstellung, die im folgenden Verlauf dieser Arbeit
konkretisiert wird, lautet somit:

minimiere (Rmax − Rmin) ∀ Provider (3.8)

wobei (Rmax − Rmin) im Folgenden auch als ∆ bezeichnet wird.

Hierdurch wird erreicht, dass gegebene Sicherheitsrisiken der Server relativ ausbalanciert
werden, wenn es sich um ungewichtete Shares handelt.

51

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Im Falle von gewichteten Shares wird eine angemessene Verschlechterung der Privatsphäre
erreicht, wodurch es keine Schwachstelle im System gibt, die das Sicherheitsrisiko überpro-
portional gefährdet (keinen sog. Flaschenhals). Dieser Zusammenhang ist in Abbildung 3.3
dargestellt, wobei Abbildung 3.3(a) den Fall für eine optimale Lösung, Abbildung 3.3(b) für
eine nicht-optimale Lösung mit einem Flaschenhals im System zeigt.
Ein weiteres Argument für die angemessene Verschlechterung ist, dass der Angreifer kei-
nen Vorteil darin hat, einen Server mit hohem Risikowert oder mit schlechter Reputation
anzugreifen: Die erfolgreiche Kompromittierung liefert den möglichst gleichen Teil an Positi-
onsinformationen, wie wenn jeder beliebige andere Server gehackt würde.

(a) Optimaler Fall (b) Nicht-optimaler Fall

1

...

3/m

2/m

1/m

m...321

E
xa

kt
he

it

Zahl kompromittierter Server

1

...

3/m

2/m

1/m

m...321

E
xa

kt
he

it

Zahl kompromittierter Server

Abbildung 3.3: (a) Optimaler Fall der Verteilung, wenn Exaktheit der Positionsrekonstrukti-
on konstant ansteigt.
(b) Nicht-optimaler Fall der Verteilung, da bei dem ersten kompromittierten
Server sich eine genauere Position rekonstruieren ließe.

Sicherheit der Privatsphäre kann somit interpretiert werden als die Fähigkeit, die Fragilitä-
ten konstant zu halten, um Sicherheitsrisiken auszubalancieren, keine überproportionalen
Schwachstellen im System zu haben und eine angemessene Verschlechterung der Privatsphä-
re im Fall von kompromittierten Servern zu erreichen.

Neben der eigentlichen Optimierung ist auch die Zeit zur Berechnung einer Platzierung
ein kritischer Faktor, da die Platzierung auf leistungsschwächeren mobilen Geräten berechnet
wird. Darüber hinaus muss beachtet werden, dass bei jeder Positionsänderung die Shares
evtl. neu platziert werden müssen. Will man von einer harten Grenze ausgehen, kann
die Abtastrate von GPS (1Hz) herangezogen werden. Allerdings haben andere Methoden
zur Positionsbestimmung eine weitaus geringere Abtastrate, wodurch obige Abschätzung
relativiert wird [DSR11]. Somit ist eine kurze Berechnungsdauer (im Sekundenbereich) nach
der Optimalität der Platzierung eine weitere Anforderung an das System.

52

3.3 Platzierungsstrategien

3.3 Platzierungsstrategien

Nachdem das um die Trust Database erweiterte Systemmodell vorgestellt wurde, kann jetzt
auf die eigentliche Aufgabe, nämlich die Erlangung des Balance-Zustands, eingegangen
werden. Dabei gliedert sich der Abschnitt in 2 Szenarien:
In Szenario 1 ist die Anzahl und damit auch die Gewichtung der Shares nicht von vornherein
festgelegt, so dass der Optimalzustand über eine Justierung der Anzahl erreicht werden
kann.
Szenario 2 gibt die Zahl der Shares vor, was dazu führt, dass es sich um ein Zuweisungspro-
blem handelt.
Zu jedem Szenario gibt es Unterklassen, die als Übersicht in Tabelle 3.3 dargestellt sind. In
jedem Unterabschnitt sind zur Übersicht noch einmal die Fälle tabellarisch dargestellt und
der jeweils betrachtete Fall grau hinterlegt.

Anzahl der Shares
Szenario 1: nicht vordefiniert Szenario 2: vordefiniert

Fall Providerrisiken ri Sharerisiken sj Fall Providerrisiken ri Sharerisiken sj

1-a gleich gleich 2-a gleich gleich
1-b gewichtet gleich 2-b gewichtet gleich
1-c gleich gewichtet 2-c gleich gewichtet
1-d gewichtet gewichtet 2-d gewichtet gewichtet

Ansatz
Justierung der Anzahl Zuweisungsproblem

Tabelle 3.3: Übersicht über die unterschiedlichen Szenarien

Ziel der Optimierung ist es, um noch einmal die Anforderungen 3.2 zu rekapitulieren, die
Fragilitäten der Provider anzugleichen, also einen Zustand der Balance zu erreichen:

R1 = R2 = · · · = Rm = R = konst.

.

53

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

3.3.1 Szenario 1: Nicht vordefinierte Anzahl von Shares

Variable Erklärung
n Anzahl der Shares
m Anzahl der Provider
ri Risiko des Providers i
sj Gewichtung der Share j
Si Sharerisiko aller einem Provider i zugeordneter Shares
ni Zahl der Shares auf dem Provider i
Ri Fragilität eines Providers i
R Relatives Gesamtrisiko bzw. Skalierungsfaktor

Tabelle 3.4: Erklärung der Variablen in Szenario 1

Zunächst wird der Fall betrachtet, dass die Anzahl der Shares n nicht von vornherein
festgelegt ist. Damit sind auch die Sharegewichte nicht fest vorgegeben. Jedoch ist von einer
beliebigen, aber festen Anzahl von Providern m auszugehen. Nun muss erörtert werden, für
welche Anzahl von Shares das Sicherheitsrisiko minimal wird und optimal verteilt ist, so dass
jeder Provider das möglichst gleiche, möglichst geringe Sicherheitsrisiko darstellt. Hierbei
müssen vier Unterfälle betrachtet werden, die sich darin unterscheiden, ob die Shares und
Provider jeweils gewichtet sind oder nicht. Die Semantik der in diesem Szenario benutzten
Variablen wird in Tabelle 3.4 dargestellt.

Provider ungewichtet / Shares ungewichtet (Szenario 1-a)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall Providerrisiken ri Sharerisiken sj

1-a gleich gleich
1-b gewichtet gleich
1-c gleich gewichtet
1-d gewichtet gewichtet

In der ersten Unterklasse von Szenario 1 sind sowohl die Providerrisiken als auch die Risiken
der Shares gleich, d.h. r1 = r2 = = rm = r = 1 und s1 = s2 = ... = sn = s = 1.
Soll der Balancezustand (Formel (3.7) erreicht werden, folgt aus r · s · n1 = r · s · n2 = · · · =
r · s · nm, dass jeder der m Provider eine gleiche Anzahl

n1 = n2 = · · · = nm (3.9)

54

3.3 Platzierungsstrategien

Shares bekommt. Dies ist nur möglich, wenn die Gesamtzahl der Shares n = k · m ein
ganzzahliges Vielfaches der Anzahl der Provider ist, also n = m, n = 2 ·m, n = 3 ·m, ... bzw.
wenn gilt n mod m = 0. Hätte ein Provider mehr Shares als ein anderer, so würden Dritte bei
dessen Kompromittierung über mehr Shares verfügen, woraus sich eine exaktere Position
rekonstruieren ließe.
Zu Bestimmung der optimalen Zahl n ist lediglich ein Schritt nötig, womit die Laufzeitkom-
plexität O(1) beträgt.

Provider gewichtet / Shares ungewichtet (Szenario 1-b)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall Providerrisiken ri Sharerisiken sj

1-a gleich gleich
1-b gewichtet gleich
1-c gleich gewichtet
1-d gewichtet gewichtet

Haben die Provider unterschiedliche gegebene Risikowerte ri, sind die Shares ungewichtet,
d.h. es gilt s1 = s2 = ... = sn = s = 1 und ist nach der Anzahl der Shares gefragt, für die das
Sicherheitskrisiko minimal und ausbalanciert wird, so stellt sich der Sachverhalt wie folgt
dar: Wenn jedem Provider i seinem eigenen Risiko ri entsprechend umgekehrt proportional
viele Shares ni zugeordnet werden, kann ein konstantes Risiko erreicht werden, das für alle
Provider gleich ist – das eigene Gewicht eines Providers wird durch die Zahl der Shares
„ausbalanciert“. Die Herleitung erfolgt aus Formel (3.7), wonach alle Fragilitäten im System
gleich sein müssen: Aus r1 · s · n1 = r2 · s · n2 = · · · = rm · s · nm ergibt sich dann die gesuchte
Anzahl von Shares auf einem Provider ni als

ni =
1
ri

(3.10)

bzw. ni =
R
ri

, weil mit ganzen Zahlen operiert werden muss.

Die gesuchte Gesamtzahl der Shares, für die sich Optimalität einstellt, ist dann:

n =
m

∑
i=1

ni =
m

∑
i=1

R
ri

= R ·
m

∑
i=1

1
ri

(3.11)

R skaliert die Werte und kann als „relatives Gesamtrisiko“ interpretiert werden – entschei-
dend ist, dass dieses R auf allen Providern gleich ist. Das Risiko kann nur dann gleich verteilt
werden, wenn R gerade und durch alle möglichen Gewichte ri teilbar ist. Dies könnte erreicht

55

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

werden, wenn R = r1 · r2 · r3 · · · rm gelten würde – dann wäre R aber nicht die minimale
Lösung. Das R, welches sich durch alle ri teilen lässt und dabei minimal ist, kann mittels des
kleinsten gemeinsamen Vielfachen aller Werte ri bestimmt werden:

R = kgV(r1, r2, · · · , rm) (3.12)

Indem R dem kleinsten gemeinsamen Vielfachen entspricht, können die Shares so auf die
Server verteilt werden, dass ein gleichverteiltes Risiko über allen Providern erreicht werden
kann, selbst wenn diese unterschiedliche Risikowerte besitzen. Wird nun ein Provider, für
den es wahrscheinlicher ist, kompromittiert zu werden, auch wirklich gehackt, gehen hier nur
wenige Shares verloren. Dies folgt aus dem konstanten Gesamtrisiko über allen Providern.
Die Laufzeit dieser Berechnung ist hauptsächlich durch die Bildung von ni =

1
ri

bestimmt.
Hierzu sind m Schritte nötig, weil einmal über alle Provider iteriert werden muss. Das kgV
lässt sich mittels des euklidischen Algorithmus bestimmen, welcher eine logarithmische
Komplexität mit Ziffernlänge besitzt. Da für unsere Problemstellung allerdings nur die Zahl
der Shares und der Provider von Bedeutung ist, ergibt sich auch hier die Laufzeitkomplexi-
tät O(m).

Provider ungewichtet / Shares gewichtet (Szenario 1-c)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall Providerrisiken ri Sharerisiken sj

1-a gleich gleich
1-b gewichtet gleich
1-c gleich gewichtet
1-d gewichtet gewichtet

In diesem Fall sind die Providergewichte gleich, d.h. r1 = r2 = · · · = rm = r = 1 und
die Sharegewichte unterschiedlich. Da in Szenario 1 die Zahl n der Shares frei wählbar ist,
sind auch die Gewichtungen der Shares frei wählbar und bedeuten so einen zusätzlichen
Freiheitsgrad. Bezeichne Si das Gesamtgewicht aller dem Provider i zugeordneten Shares:
Si = ∑j auf i zugeordnet sj. Dann gilt für die Provider nach der Balanceformel (3.7), dass r · S1 =

r · S2 = · · · = r · Sm. Hieraus folgt

S1 = S2 = · · · = Sm (3.13)

Optimalität wird erreicht, indem genauso viele Shares wie Provider erzeugt werden und alle
die gleiche Gewichtung besitzen. Si kann interpretiert werden als Gewichtung einer Share,
die evtl. noch weiter aufteilbar ist:

56

3.3 Platzierungsstrategien

Si = 2 · (Si

2
) = · · · = k · (Si

k
) (3.14)

Dabei kann diese Grundshare mit Gewicht Si in k Shares aufgeteilt werden, wenn Si mod
k = 0 gilt. Dies bedeutet, dass ein Provider i eine Share mit Gewichtung Si haben kann,
zwei mit jeweiliger Gewichtung Si

2 oder allgemein ni Shares mit Gewichtung (Si
ni
).

Von der Abschätzung der Laufzeit her betrachtet ist dieser Fall analog zu Fall 1-a: Es reicht
ein Vergleich, um die Zahl der nötigen Shares zu bestimmen, ihre Gewichtung wird gleich
gewählt. Die Laufzeitkomplexität hierfür ist O(1).

Provider gewichtet / Shares gewichtet (Szenario 1-d)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall Providerrisiken ri Sharerisiken sj

1-a gleich gleich
1-b gewichtet gleich
1-c gleich gewichtet
1-d gewichtet gewichtet

Wird die Anzahl der Shares gesucht und ist die Aufgabe, das Risiko über allen Providern
gleich zu verteilen, wobei die gegebenen Providerrisiken frei wählbare, aber feste Werte r1,
r2, · · · , rm, die Sharerisiken wie in Fall 1-c frei wählbar sind und gilt Si = ∑j auf i zugeordnet sj,
so lässt sich der Sachverhalt nach der Balance-Bedingung (3.7) formalisieren durch:

1. Provider: r1 · S1 = R

2. Provider: r2 · S2 = R

· · ·
m. Provider: rm · Sm = R

Aus r1 · S1 = r2 · S2 = · · · = rm · Sm folgt, dass das Sicherheitsrisiko minimal wird, wenn ge-
nauso viele Shares wie vorhandene Provider erzeugt werden und jede Share eine Gewichtung
bekommt, die umgekehrt proportional zum Providerrisiko ist:

Si =
1
ri

(3.15)

bzw. Si =
R
ri

, weil mit ganzen Zahlen operiert werden muss, wobei R den Skalierungsfaktor
bezeichnet.

57

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Dadurch wird erreicht, dass das Risiko ri eines Servers ausbalanciert wird. Dies ist nur
möglich, wenn R mod ri = 0. Es muss noch der Wert für R bestimmt werden, für den
dies möglich ist. Analog zu Fall 2 lässt sich wie in Formel (3.12) das kleinste gemeinsame
Vielfache verwenden, um R zu bestimmen.
Die Share Si kann wieder wie im vorhergehenden Fall als Grundshare verstanden werden,
die evtl. weiter aufgeteilt werden kann in:

Si = 2 · (Si

2
) = · · · = ni · (

Si

ni
) (3.16)

Dabei kann jede Grundshare in ni Shares aufgeteilt werden, wenn Si mod ni = 0 gilt.

Die Komplextiät dieser Berechnung liegt in O(m): Zur Bestimmung der Zahl zu erzeu-
gender Shares ist zwar nur genau ein Vergleich notwendig, die Berechnung der jeweiligen
Gewichtung erfolgt aber, indem einmal über alle Providerrisiken iteriert wird.

Übersicht der Ergebnisse für Szenario 1

Da sich die Optimalität der Platzierung hier jeweils über die Justierung der Anzahl der
Shares sowie deren Gewichtungen ergibt, lassen sich die Ergebnisse als geschlossene Formeln
ausdrücken. Die Ergebnisse sind in Tabelle 3.5 noch einmal zusammenfassend dargestellt.

Fall Providerrisiken ri Sharerisiken sj Ergebnis: Zahl zu erzeugender Shares
1-a gleich gleich n = m
1-b gewichtet gleich n = ∑m

i=1
R
ri

1-c gleich gewichtet n = m mit gleichen Gewichten
1-d gewichtet gewichtet n = m mit Gewichtung Si =

R
ri

Tabelle 3.5: Übersicht über die Ergebnisse in Szenario 1.

58

3.3 Platzierungsstrategien

3.3.2 Szenario 2: Vordefinierte Anzahl von Shares

Das Problem stellt sich anders dar, wenn die Anzahl der Shares n beliebig, aber vordefiniert
ist. Dann können zwar Aussagen darüber getroffen werden, für welche Anzahl der Shares sich
ein optimales Sicherheitsrisiko einstellt. Die Anzahl der Shares n und deren Gewichtungen
sj müssen jedoch als gegeben betrachtet werden; die Shares müssen auf die m gegebenen
Provider verteilt werden, nämlich so, dass das Sicherheitsrisiko zwischen den Providern
ausbalanciert ist, was in Abschnitt 3.2 spezifiziert wurde. Die Anzahl der Shares ist in
diesem Fall also ein fester Parameter. Mit den Überlegungen aus Teil 2.3 dieser Arbeit
wird ersichtlich, dass es sich um ein Zuweisungsproblem handelt, das zunächst allgemein
formalisiert wird, um dann konkret auf die Unterfälle einzugehen.

Formalisierung der Problemstellung als Zuweisungsproblem

Wie bei den Zuweisungsproblemen aus Kapitel 2 wird eine Zielfunktion benötigt, die unter
gewissen Bedingungen minimiert werden soll. Diese Paramenter ergeben sich durch die
Aufgabenstellung, die besagt, dass das Sicherheitsrisiko auf allen Providern möglichst gleich
(klein) sein muss. Die weiteren Bedingungen ergeben sich aus dem Systemmodell, wonach
jeder Provider mindestens eine Share zugewiesen bekommen sowie eine Share genau einem
Provider zugeordnet sein muss. Hierbei ist I = {1, 2, · · · , m} die Menge aller Provider,
J = {1, 2, · · · , n} die Menge aller Shares, wobei m ≤ n gilt. Die Kosten für eine Zuweisung
einer Share j auf einen Provider i werden als cij bezeichnet, wobei gilt, dass cij ∈N, cij ≥ 0.
Diese Kosten entsprechen je nach Unterklasse dem Risiko des Providers, der Gewichtung
der Shares oder dem Produkt aus beiden, was im Folgenden dargestellt ist:

Szenario 2-a: cij = 1
Szenario 2-b: cij = ri

Szenario 2-c: cij = sj

Szenario 2-d: cij = ri · sj

Die Zuweisungsmatrix X wird gebildet aus bool’schen Werten xij ∈ B, die eine Zuweisung
einer Share j auf den Provider i darstellen, wenn sie den Wert 1 bzw. wahr besitzen. Formal
ausgedrückt heißt die Optimierungsaufgabe nun:

minimiere ((max
I

(
n

∑
j=1

cijxij))− (min
I
(

n

∑
j=1

cijxij))) (3.17)

Unter den Bedingungen

m

∑
i=1

xij = 1 ∀j ∈ {1, 2, · · · , n} (3.18)

59

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

n

∑
j=1

xij ≥ 1 ∀i ∈ {1, 2, · · · , m} (3.19)

xij ∈ B (3.20)

Bedingung (3.18) besagt dabei, dass jede Share genau einem Provider zugewiesen sein muss.
Bedingung (3.19) bedeutet, dass einem Provider auch mehrere Shares gleichzeitig zugewiesen
sein können. Die letzte Bedingung (3.20) stellt die Anforderung an die Zuweisungsmatrix
dar, wonach diese Matrix aus bool’schen Werten gebildet werden muss.

Im Folgenden nenne ich dieses Problem in Anlehnung an die verwandten Zuweisungspro-
bleme aus Abschnitt 2.3.3 Balanced Generalized Assignment Problem (BaGAP).

Komplexität des Problems: NP-schwer

Das eben formalisierte Problem muss noch einer Untersuchung bzgl. seiner Komplexität
unterzogen werden. Dazu müssen die Darstellungen aus Abschnitt 2.3.1 angeführt werden:
Handelt es sich um ein NP-schweres Problem, muss dies durch eine Reduktion gezeigt
werden, die ein anderes NP-vollständiges oder NP-schweres Problem auf das BaGAP poly-
nomiell reduziert.

Beweis Vom ABGAP ist bekannt, dass es NP-schwer ist [MN88] [AP97]. Die Zielfunktion
des ABGAP wird folgendermaßen dargestellt:

minimiere (max
I

(
n

∑
j=1

cijxij)) (3.21)

Während beim ABGAP (3.21) nur der Maximalwert der Gesamtsumme auf einem Provider
minimiert wird, geht es beim BaGAP (3.17) um die Minimierung der Differenz zwischen
Maximalwert und Minimalwert der Gesamtsummen auf dem jeweiligen Provider. Der Beweis
erfolgt durch die Angabe eines Reduktionsverfahrens, welches

ABGAP �p BaGAP (3.22)

leistet. Solch ein Reduktionsverfahren kann realisiert werden, indem zunächst ein zusätz-
licher Provider m + 1 hinzugefügt wird, dessen Risiko rm+1 = T sehr hoch angesetzt wird.
Außerdem wird eine Share eingefügt, deren Gewichtung sn+1 = 0 ist. Damit wird die Kos-
tenmatrix C um eine Zeile, die dem neuen Provider entspricht sowie um eine Spalte, welche
die neue Share repräsentiert, erweitert, was in Matrix (3.23) dargestellt ist.

60

3.3 Platzierungsstrategien

C =


c11 c12 · · · c1n 0
c21 c22 · · · c2n 0
...

...
...

...
...

cm1 cm2 · · · cmn 0
s1 · T s2 · T · · · sn · T 0

 (3.23)

Indem das System sowohl um einen Provider mit einem hohen Risikowert als auch eine
Share mit Gewicht 0 erweitert wird, wird sichergestellt, dass die Zuweisungen gemäß Ne-
benbedingung 3.19 gültig bleiben. Würde lediglich ein Provider mit Risiko 0 eingeführt, so
würden alle Shares auf ihn zugewiesen, denn diese Zuweisungen würden in jedem Fall das
optimale ∆ = 0 liefern, wobei die Zuweisung nicht mehr gültig wäre.
Durch eine derart aufgebaute Kostenmatrix wird erreicht, dass alle ursprünglichen Shares sj
mit j ∈ {1, · · · , n} nicht auf den neuen Provider zugewiesen werden, weil er bei Zuweisung
zu hohe Kosten liefert, die unserem Ziel, die Differenz zu minimieren, von vornherein
widersprechen. Hierbei reicht es schon, wenn sj · T der doppelte Maximalwert aller Zu-
weisungskosten ist, da bei Auswahl dieser Zuweisung die Differenz immer größer als der
Maximalwert der ursprünglichen Kosten wäre. Somit könnte eine Zuweisung auf diesen
Provider niemals auf ein optimales ∆ führen.
Die Zuweisung des neuen Providers m + 1 wird garantiert zu Share n + 1 erfolgen, denn
jede andere Zuweisung für Provider m + 1 würde zu hohe Kosten verursachen und damit
unserem Ziel, den ∆-Wert zu minimieren, widersprechen. Also gilt x(m+1)(n+1) = 1.
Mit dieser Zuweisung wird der Minimal-Term des BaGAPs (Formel 3.17) für jede Problemin-
stanz garantiert 0 und ist daher nicht mehr relevant. Will man nun ein BaGAP lösen, gilt es,
ein ABGAP zu lösen. Somit ist BaGAP NP-schwer. �

Diskussion der Lösungsansätze

Indem das BaGAP als Zuweisungsproblem formalisiert wurde, gehört es zur Klasse der
kombinatorischen Optimierungsprobleme. Diese Eigenschaft macht eine Abwägung notwen-
dig zwischen einer exakten, aber mitunter ineffizenten Lösung und einer Näherungslösung.
Dabei muss jedoch beachtet werden, dass eine exakte Lösung hinfällig ist, wenn eine un-
verhältnismäßig lange Zeit darauf gewartet werden muss. Diese Abwägung hängt von der
konkreten Problemstellung ab.

Die in Abschnitt 2.3.2 dargelegten Lösungsansätze sind generelle Verfahren für kombi-
natorische Optimierungsprobleme. Grundsätzlich lässt sich sagen, dass die vollständige
Enumeration vermieden werden sollte, da sie theoretisch wie praktisch exponentiell viele
Schritte mit der Eingabelänge zur Lösung eines Problems benötigt.

61

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Branch-and-Bound hängt stark von der Problemstellung ab: Kann aus dem Problem eine
Strategie abgeleitet werden, zuverlässig eine Schranke zu bestimmen, mit der frühzeitig
möglichst viele Zweige abgeschnitten werden können? Hierbei gilt für unser Problem, dass
der theoretische Optimalwert zur Erzeugung der Balance ∆ = 0 ist. Die Nachbildung der
Austarierung in einem Entscheidungsbaum ist jedoch keine triviale Aufgabe, denn es muss
eine Schranke bestimmt werden, durch die schlechtere Lösungen von vornherein ausge-
schlossen werden. Würde immer entlang dem Weg im Baum gegangen, der das minimale
∆ liefert, wird das globale Optimum unter Umständen nicht erreicht. Dies rührt von der
Tatsache her, dass es sich bei der Zielfunktion, die in Formel (3.17) formalisiert wurde,
nicht um eine lineare Funktion handelt und darum ein lokaler Optimalwert nicht zu einem
globalen führen muss. Es ist die Eigenart unserer Zielfunktion mit fortlaufender Zahl der
getätigten Zuweisungen um den theoretischen Optimalwert von 0 zu zirkulieren. Dies rührt
von der Tatsache her, dass in unserer Zielfunktion kein Wert fix gesetzt werden kann (im
Gegensatz zum ABGAP z.B., wo immer (∑J cijxij) = 0 gilt). Ein Grenze würde also von
vornherein zu unspezifisch sein; die Senkung der Komplexität durch Branch-and-Bound
wird als gering eingeschätzt, weswegen auf diesen Ansatz verzichtet wird.
Die metaheuristischen Verfahren bieten im Allgemeinen keine Garantie, dass der optimale
Wert gefunden wird, sind aber oft die einzige Möglichkeit, auch große Probleminstanzen
behandeln zu können. Gegenüber problemspezifischen Heuristiken sind sie weniger schwer
zu erarbeiten, dafür aber auch weniger genau. Unter den metaheuristischen Lösungsansät-
zen sollte die reine lokale Suche nicht verwendet werden, da sie beim ersten gefundenen
Maximum stehen bleibt.
Evolutionäre Algorithmen als Vertreter der populationsbasierten Suchalgorithmen erweitern
das Paradigma der lokalen Suche auf mehrere Lösungskandidaten. Durch die Mutations-
operation wird sichergestellt, dass ein großer Wertebereich abgedeckt wird. Evolutionäre
Algorithmen sind zwar im Vergleich zum Bergsteigeransatz langsamer, lassen sich aber
besser anpassen sowie mit problemspezifischen Heuristiken unterstützen. Weicker [Wei02]
empfiehlt lokale Suchalgorithmen wie simulierte Abkühlung für gutmütige Probleme, wohin-
gegen evolutionäre Algorithmen angewandt werden sollten, wenn viele lokale Optima bzw.
eine zerklüftete Wertelandschaft dem Problem inhärent sind. Da es sich bei unserer Zielfunk-
tion, wie oben schon dargelegt, um solch eine „schwierige“ Funktion handelt, wurde sich für
die evolutionären Algorithmen zu Lösung entschieden, da durch ihren Mutationsoperator
sichergestellt wird, dass die Wertelandschaft ausreichend abgedeckt ist. Eine ausführliche
Darlegung des Konzepts der evolutionären Algorithmen findet sich in Abschnitt 3.3.2 dieses
Kapitels.

Nicht für alle Teilszenarien war es notwendig, die diskutierten Lösungsansätze ins Feld zu
führen. In den folgenden Abschnitten werden die konkreten Lösungsansätze für die Teilsze-
narien dargestellt. Dabei ist zu Beginn jedes Abschnitts noch einmal die Übersichtstabelle
dargestellt, wobei der aktuell behandelte Fall jeweils grau hinterlegt ist.

62

3.3 Platzierungsstrategien

Provider ungewichtet / Shares ungewichtet (Szenario 2-a)

Szenario 2: vordefinierte Anzahl von n Shares

Fall Providerrisiken ri Sharerisiken sj

2-a gleich gleich
2-b gewichtet gleich
2-c gleich gewichtet
2-d gewichtet gewichtet

Dieser Fall ist einfach zu handhaben, da jede Zuweisung den gleichen Wert liefert. Somit
macht es keinen Unterschied im Hinblick auf die Optimalität, welche Share welchem Provider
zugeordnet wird. Es ist lediglich zu beachten, dass die Zahl der Shares gleichförmig auf den
Server verteilt wird. Algorithmisch kann dies mittels eines Rundlauf-Verfahrens (engl. Round-
Robin) geschehen, wobei Provider für Provider jeweils eine Share zugewiesen wird. Die
Platzierung ist sogar in konstanter Zeit bezüglich der Shareanzahl und Provideranzahl zu
erreichen: Die Rechenoperation n mod m liefert die Zahl der Provider, die eine Share mehr
bekommen als die restlichen, was in konstanter Zeit O(1) geschieht. Bei diesem Teilszenario
handelt es sich natürlich nicht mehr um ein NP-schweres Problem, da die Kostenmatrix
derart degeneriert ist, dass es sich nicht mehr um ein Zuweisungsproblem handelt.

Provider gewichtet / Shares ungewichtet (Szenario 2-b)

Szenario 2: vordefinierte Anzahl von n Shares

Fall Providerrisiken ri Sharesrisiken sj

2-a gleich gleich
2-b gewichtet gleich
2-c gleich gewichtet
2-d gewichtet gewichtet

Haben die Provider unterschiedliche gegebene Risikowerte ri, sind die Gewichtungen der
Shares j gleich und ist die Anzahl der Shares n sowie der Provider m vorgegeben, so
handelt es sich um ein Zuweisungsproblem, wie wir es in Kapitel 2.3.3 kennengelernt haben.
Im Gegensatz zu den bereits genannten Problemen degeneriert hier die Kostenmatrix C
allerdings zu einem Kostenvektor, da alle Spalten gleich sind:

63

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

C = (cij) =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

...
cm1 cm2 · · · cmn

 =


c1 c1 · · · c1

c2 c2 · · · c2
...

...
...

...
cm cm · · · cm

 =


c1

c2
...

cm

 =


r1

r2
...

rm

 (3.24)

Beispiel Seien m = 3 Provider mit den Gewichtungen r1 = 2, r2 = 5 und r3 = 1 gegeben
und sollen n = 7 gleichgroße Shares auf sie verteilt werden, so würde die Kostenmatrix wie
in Ausdruck 3.25 aussehen.

C =

2 2 2 2 2 2 2
5 5 5 5 5 5 5
1 1 1 1 1 1 1

 =

2
5
1

 (3.25)

Die Kosten cij entsprechen direkt den Risikowerten ri der Provider; somit gilt cij = ci = ri,
weil die Sharegewichte gleich und damit nicht relevant sind. Es macht keinen Unterschied,
ob die Share j oder die Share l (j 6= l) auf ein und demselben Provider i platziert wird, der
Zuwachs wäre der gleiche – nur zwischen den Providern gibt es Unterschiede. Dies bedeutet,
dass die Wahl eines Providers nicht vom „Zeitpunkt“ abhängt, da eine spätere Zuweisung
auf diesen Provider keinen schlechteren Wert liefert. Die Optimalität der Zuweisung von
Share j hängt somit nur von den zuvor getroffenen Zuweisungen X = (xij) ab.

Wie lässt sich ein Algorithmus angeben, der diese Zielfunktion tatsächlich minimiert? Die
Ausnutzung der speziellen Problemstruktur erlaubt es, einen Algorithmus zu konstruieren,
der die Kostenmatrix zunächst einmal abscannt, d.h. jede Share betrachtet und aufgrund der
vorherigen Ergebnisse eine Auswahl trifft. Dies führt aber unter gewissen Bedinungen, die
später noch erklärt werden, zu einem nicht-optimalen Ergebnis. Es bleibt nichts anderes
übrig, als am Ende des Algorithmus einige Schritte zurückzugehen, um die optimale Lösung
in jedem Fall zu erreichen.
Das Vorgehen nimmt somit prinzipiell Anleihen an der Methode der dynamischen Pro-
grammierung, die gerade für Optimierungsprobleme oft eine passende Wahl darstellt – die
gesuchte optimale Lösung kann aus den optimalen Lösungen der vorhergehenden Lösungen
konstruiert werden. Im Laufe des Erstellungsprozesses konnte der erste Verdacht, dass sich
das Problem mit reiner dynamischer Programmierung lösen ließe, nicht erhärten. Dies hätte
eine sehr hohe Effizienz des Algorithmus bedeutet. Um auf die Evaluation in Kapitel 4

vorzugreifen, lässt sich sagen, dass bei Auslassen der Backtracking-Schritte sich dennoch
eine geringe Fehlerrate einstellt.

64

3.3 Platzierungsstrategien

Algorithmus 3.1 Exakter Algorithmus für Szenario 2-b

1: for j = 1 to n do // Äußere Schleife
2: maxSum← −∞
3: max ← −∞
4: min← ∞
5: for i = 1 to m do // Innere Schleife
6: curSum[i]← ci ·∑

j−1
k=1 xik + ci // Zuwachs für jeden Provider Speichern

7: curMin← calcMiniMum

8: curMax ← calcMaximum

9: if curMin < min then
10: min← curMin
11: end if
12: if curMax > max then
13: max ← curMax
14: end if
15: curDelta[i] = max−min // Deltas für diese Share speichern
16: end for

// Jetzt Auswahlstrategie anwenden
17: if multMinDeltas = f alse AND multSums = f alse then
18: assignSmallestDelta(X) // Es gibt nur ein minimales ∆
19: else if multMinDeltas = true AND multSums = f alse then
20: assignSmallestSum(X) // Wenn es mehrere gleiche ∆ gibt
21: else if multMinDeltas = true AND multSums = true then
22: assignBiggestBrick(X) // Wenn es mehrere gleiche ∆ und Summen gibt gibt
23: end if
24: end for
25:

26: if BacktrackingEnabled = true then
27: Backtrack(m-1)
28: end if

Ein Algorithmus, der das Problem exakt löst, wird in Algorithmus 3.1 dargestellt und
funktioniert wie im Folgenden erklärt.

• Es werden alle Shares nacheinander überprüft, was durch die äußere Schleife mit der
Zählvariablen j geschieht, die sich von Zeile 1 bis Zeile 24 erstreckt.

• Für jede Share werden so sukzessive die Platzierungen auf allen Providern überprüft,
was mittels der verschachtelten, inneren Schleife (Zeilen 5 bis 16) mit der Zählvariablen i
geschieht.

65

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

• In dieser Schleife wird zunächst jeder Zuwachs berechnet (Zeile 6), würde die momen-
tan betrachtete Share j auf den i-ten Provider zugewiesen werden und ebenso, welcher
∆-Wert sich dadurch einstellen würde (Zeilen 7 bis 15). Diese Informationen werden
in der Feld-Variablen curSum[i] (der Zuwachs) sowie curDelta[i] (das ∆) gespeichert.
Die Variable maxSum hält die maximale (Zeilen-)Summe für den momentanen Schritt j,
d.h. den maximalen Wert in diesem Schritt und die Variablen max und min das Maxi-
mum bzw. Minimum zur Berechnung des ∆-Wertes, würde Share j auf den Provider i
zugewiesen.

Nachdem diese Informationen zusammengetragen wurden, kann die vorläufige Zuweisung
vorgenommen werden; dazu ist eine Selektionsentscheidung nötig, die in den Zeilen 17 bis
23 abläuft:

• min∆
Es wird die Share j dem Provider zugewiesen, dessen Zuweisungskosten den ∆-Wert
am wenigsten ansteigen lassen. Dies entspricht unserem Ziel, nämlich den ∆-Wert so
wenig wie möglich ansteigen zu lassen.

• minΣ
Gibt es mehrere gleiche ∆-Werte, so wird aufgrund des minimalsten Maximumwertes
entschieden, wobei für jeden Provider überprüft wird, welchen Zuwachs seine Selek-
tion ergeben würde und mit dem bisherigen Maximalwert verglichen wird – ergibt
die Zuweisung der Share auf den momentan untersuchten Provider einen kleineren
Zuwachs, so wird dieser ausgewählt und alle anderen werden deselektiert.

• BiggestBrick
Sind neben den ∆-Werten auch die Summenwerte gleich, so wird das Element mit
den größten Zuweisungskosten ausgewählt. Dies erweist sich für einige Sonderfälle
als wichtig, denn im Hinblick auf eine spätere Entscheidung kann die Auswahl eines
größeren Elementes besser sein. Da sowohl ∆- als auch Summenwerte gleich sind,
macht es bezogen auf unser Optimierungsziel keinen Unterschied, ob wir ein kleineres
oder größeres Element benutzen. Die Begründung erfolgt im Beweis.

Abschließend müssen noch m− 1 Schritte Backtracking durchgeführt werden (Zeilen 26-28).
Warum dies überhaupt und warum genau m − 1 Schritte nötig sind, soll im folgenden
Abschnitt zum Korrektheitsbeweis geklärt werden.

Die Laufzeit des exakten Algorithmus ist maßgeblich durch seine Backtracking-Schritte
bestimmt. Hierbei müssen die m− 1 letzten Shares noch auf die m Provider verteilt werden,
was zu einer Laufzeitkomplexität wie in Formel (3.26) führt.

O(mm−1) (3.26)

66

3.3 Platzierungsstrategien

Die Laufzeit des Algorithmus wird somit nur bestimmt durch die Zahl der Provider.
Zwar ist seine Laufzeit somit immer noch exponentiell, jedoch ist sie wesentlich gedrückt im
Vergleich zur naiven Methode, die in O(mn) liegt, um n Shares auf m Provider zu verteilen.
Dies folgt, weil per Annahme immer n ≥ m gilt.

Der Algorithmus kann aber auch ohne Backtracking als Heuristik mit einer gewissen
Fehlerrate verwendet werden.
Dies kann einerseits wichtig sein, um für große Werte von m noch Ergebnisse zu bekommen,
die durch Backtracking nicht effizient lösbar wären. Andererseits wird die vorgestellte Heu-
ristik auch von anderen Verfahren genutzt, beispielsweise von evolutionären Algorithmen
für den Fall 2-d, dass sowohl Shares wie auch Provider gewichtet sind, um Teile der Startpo-
pulation zu erzeugen.
Daher soll eine Laufzeitabschätzung von Algorithmus 3.1 mit deaktiviertem Backtracking
durchgeführt werden. Wie bereits erklärt, berechnet der Algorithmus die Platzierung jeder
Share auf jedem Provider sukzessive und hält vorherige Ergebnisse in einer Tabelle, ähnlich
der dynamischen Programmierung. Durch diesen Scan über die Kostenmatrix kommt der
Algorithmus auf eine Laufzeit von

O(n ·m) (3.27)

weil für jede der n Shares alle m Providerrisiken berechnet werden müssen, um dann die
optimalste in Bezug auf das Optimierungsziel auszuwählen.

Begründung der Korrektheit des Verfahrens

Im Folgenden soll ein Korrektheitsbeweis für den oben angegebenen Algorithmus erarbeitet
werden. Da dieser an die Methode der dynamischen Programmierung angelehnt ist, muss
aus der Struktur des Problems heraus erkennbar sein, in welchen Fällen er geeignet ist und
wann es zu problematischen Fällen kommt, die mit Backtracking behandelt werden müssen.
Die für dynamische Programmierung geforderte Optimale Teilstruktur eines Problems [CLRS04]
bedeutet, dass einmal getroffene Entscheidungen optimal bleiben für nachfolgende. Eine
optimale Lösung wird also sukzessive durch optimale Teillösungen konstruiert, ohne an den
getroffenen Entscheidungen noch einmal etwas verändern zu müssen. Zwar kann für das
vorliegende Problem von einer optimalen Teilstruktur im strengen Sinne keine Rede sein,
denn in einigen Fällen müssen mittels Backtracking noch einige Schritte korrigiert werden,
die aber streng begrenzt sind; jedoch hilft die Idee der dynamischen Programmierung bei
der Begründung der Korrektheit.

67

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Für den hier betrachteten Fall (2-b) muss zunächst eine Voraussetzung aufgestellt werden,
die den Unterfall wiedergibt:

cij = cij+1 ∀j ∈ {1, · · · , n} (3.28)

Dies entspricht unserer Problemstruktur insofern, dass die Providerrisiken unterschiedlich,
die Sharerisiken jedoch gleich gewichtet sind. Somit sind die Kosten für die Zuweisung aller
Shares auf einen gewissen Provider gleich. Diesen Sachverhalt spiegelt Voraussetzung 3.28

wider. Nachdem die Voraussetzungen geklärt wurden, kann jetzt eine Behauptung aufgestellt
werden:

Wenn die Voraussetzung (3.28) gilt, dann ist Algorithmus 3.1 korrekt.

Gemäß der im vorhergehenden Abschnitt dargelegten Selektionsstrategie wählt der Algo-
rithmus immer das minimalste ∆ aus. Im Folgenden wird die Selektionsstrategie genau
betrachtet und begründet, wieso diese Selektionsstrategie korrekt ist:

• Es gibt genau ein minimales ∆:
Die Zuweisung, für die sich ein minimales ∆ einstellt, wird selektiert. Betrachtet man,
wie sich die ∆-Werte mit laufendem n verhalten, ist feststellbar, dass sie von einem
balancierten Zustand ausgehend evtl. in einen unbalancierten Zustand übergehen und
von dort aus wieder in einen balancierten konvergieren usw.
Dem Selektionskriterium des Algorithmus entsprechend wird nun in einem Schritt
l − 1 der kleinste Wert c1l−1 ausgewählt; da dieser das kleinste ∆ liefert, geht man
von gleichen Startniveaus aus. Im darauffolgenden Schritt l wird nun der optimale
Wert bzgl. des minimalen ∆-Wertes selektiert, was unserem Ziel enspricht. Würde
jedoch immer ein schlechterer Wert ausgewählt, könnte ein balancierter Zustand nicht
mehr erreicht werden, denn die ∆-Werte würden sich stets weiter vom optimalen Wert
entfernen, statt sich ihm anzunähern. Dies widerspricht unserem Ziel.
Eine schematische Darstellung dieser Überlegungen findet sich in Abbildung 3.4,
welche die korrekte Selektion darstellt: Im Schritt l − 1 wird das Optimum für diesen
Schritt ausgewählt, nämlich c1, darauf aufbauend dann erneut c1 in Schritt l. Die vom
Algorithmus markierten Elemente sind mit * gekennzeichnet. In Abbildung 3.5 ist der
Fall dargestellt, dass ein nicht-optimales Element ausgewählt wird, welches nicht mehr
zu einem optimalen Zustand führen kann: Wird im Schritt l − 1 ein nicht-optimaler
Wert ausgewählt, so kann im Allgmeinen in Schritt l der Wert nicht mehr optimal
werden. Die in diesem Fall markierten Elemente sind mit * gekennzeichnet.
Demnach muss der Algorithmus grundsätzlich mit dieser Selektion vorgehen, von
einigen Sonderfällen, die im Folgenden behandelt werden, abgesehen.

• Es gibt mehrere minimale ∆-Werte und genau einen minimalen Summenwert:
Würde hier unspezifiziert sein, welches Element ausgewählt wird, kann es zu einer
Ungleichverteilung kommen, die sich auf spätere Schritte auswirkt. Dies hat folgenden
Grund: Gibt es mehrere gleich kleine Werte und einen Großen, so werden Shares

68

3.3 Platzierungsstrategien

Schritt l-1 Schritt l

c1 c1

c2 c2

c3 c3

...

* *

Abbildung 3.4: Rechtfertigung der min∆-Auswahlstrategie. Korrekter Fall.

Schritt l-1 Schritt l

c1 c1

c2 c2

c3 c3

...

*

*

Abbildung 3.5: Rechtfertigung der min∆-Auswahlstrategie. Widersprüchlicher Fall.

solange auf die Provider mit kleinen Risiken zugewiesen, bis diese „aufgefüllt sind“.
Gibt es aber keinen Rundlauf zwischen den Providern, so wird das Risiko nicht
ausbalanciert, was zu einem schlechteren ∆ in gewissen Schritten führen kann. Solch
eine Situation ist in Abbildung 3.6 dargestellt. Diese Behandlung garantiert also eine
Ausbalancierung, die unserer Problemstellung entspricht.

• Es gibt mehrere minimale ∆-Werte und mehrere minimale Summenwerte:
Dann wird die Zuweisung durchgeführt, die die größten Kosten verursacht. Dies ist

Abbildung 3.6: Motivation für das zweite Kriterium „minimales Maximum“für den Algo-
rithmus von Szenario 2-b: Links im Bild ohne dieses Kriterium, rechts mit
diesem.

69

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

1 2

3

4

1 2

3

3

?

1 2 3

4

Δ

Δ

Abbildung 3.7: Rechtfertigung der Selektionsstrategie des Algorithmus für Szenario 2-b, die
bei gleichen ∆- und Summenwerten das größere Element auswählt.

zu rechtfertigen, da trotzdem ein minimales ∆ ausgewählt (und somit obige Selekti-
onsstrategie nicht unterlaufen) wird. Im Hinblick auf weitere Selektionen ist es sogar
nötig, wenn es zu der in Abbildung 3.7 dargestellten Situation kommt: Sind bei einer
Selektionsentscheidung sowohl minimales ∆ wie auch minimale Summe gleich, so gibt
es zwei Möglichkeiten, wie eine gerade betrachtete Share zugewiesen wird.

Hier muss aber die größere Zuweisung getätigt werden, denn falls ein gleich großes
Element folgt, war die Selektion des größeren geschickter, was in 3.7 dargestellt wird.
Dieser Fehler würde sich ohne diese Strategie erst in einem weiteren Schritt wieder
amortisieren. Dies stellt sicher, dass bei gleich großen Elementen die „kritischen“
großen Elemente früh zugewiesen werden.

Im Folgenden muss noch auf einen Sonderfall des Algorithmus eingegangen werden,
denn es kann sein, dass durch die oben dargelegte Selektionsstrategie der Optimalwert nicht
erreicht werden kann, sondern eine begrenzte Anzahl von Backtracking-Schritten notwendig
ist.
Wann genau tritt nun eine Fehlstellung auf? Sie tritt dann auf, wenn die unteren Grenzen alle
ungefähr den gleichen Wert haben, also von einem (annähernd) balancierten Zustand aus
weitere Selektionsentscheidungen getroffen werden und dabei mehrere relativ große und
relativ kleine Elemente vorkommen. Hauptsächlich tritt dies auf, wenn mehrere Elemente
gleich groß sind, da dann in einigen Schritten gleiche Ober- und Untergrenzen bestehen.
Da immer nur eine Zuweisung für sich betrachtet wird, kann es zu dem Fall kommen,
dass lange Zeit ein relativ kleines Element selektiert wird; nach einer gewissen Anzahl von
Schritten kommt der Algorithmus zu dem Punkt, an dem retrospektiv eine andere Selektion

70

3.3 Platzierungsstrategien

1 2 3 4 8 9 10

5

6

1 2 3 4

7

8

5

6

107

11

9

11

untere Grenze b

obere Grenze bei
Selektion eines
großen Elements

Abbildung 3.8: Problematischer Fall des Algorithmus für Szenario 2-b, schematische Dar-
stellung.

in einem vorhergehenden Schritt besser gewesen wäre.
Solch eine Situation ist in Abbildung 3.8 dargestellt: Für Schritt 11 wäre es besser gewesen, ab
Schritt 8 schon die Share auf den Provider mit höherem Risiko zuzuweisen, also ein lokales
Non-optimum zu erreichen. Da der Algorithmus nicht vorausschauen kann, wird für diese
konkrete Konstellation das Optimierungsziel nicht erreicht. Die großen Elemente „sperren“
sich gegenseitig: Steht man vor einer Selektionsentscheidung l und würde eine Share auf
einen Provider mit hohem Risiko cg zugewiesen werden und die bisherige Untergrenze
ist b, so ergibt sich ∆ = cg − b. Dies gilt ebenso für weitere Provider mit hohem Risiko cg.
Somit wird ein Provider mit kleinerem Risiko ck < cg selektiert, was für sich betrachtet bzgl.
dieses Schritts korrekt ist, im Hinblick auf weitere aber evtl. nicht. Hätten jedoch schon alle
Provider, vor allem jene mit höherem Risiko cg, eine Share zugewiesen bekommen, hätte
sich hier ein kleineres ∆ einstellen können.
Von der anderen Seite her betrachtet heißt dies für den problematischen Fall, dass wenn
stattdessen alle anderen Provider mit hohen Risiken eine Share zugewiesen bekommen
hätten, die Fehlstellung nicht möglich wäre. Dies bedeutet, dass die anderen m− 1 Provider
jeweils eine Zuweisung bekommen sollten, um diesen Zustand zu erreichen.
Nun ist zu erkennen, dass m− 1 Schritte korrigiert werden müssen, indem bis zu m− 1
vorhergehende Zuweisungen auf die Provider verteilt werden müssen. Daraus folgt, dass
nur m− 1 Backackting Schritte notwendig sind.

Der Fehler amortisiert sich über weitere Schritte wieder, nämlich genau dann, wenn der
Algorithmus die geschilderte problematische Ausgangslage wieder zu einem balancierten
Zustand führt. Diese Amortisierung findet spätestens dann statt, wenn alle m Provider
befüllt wurden.

71

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Eine geschlossene Formel?

Im Laufe des Erstellungsprozesses dieser Arbeit wurde die Frage aufgeworfen, ob sich dieser
Fall nicht auch mittels einer geschlossenen Formel lösen ließe. Wird der Balancezustand
als Ziel gesetzt, so würde sich daraus zunächst r1 · n1 = r2 · n2 = · · · = rm · nm ergeben.
Ähnlich wie in Szenario 1-b würde sich dann ni als der Wert ergeben, der das spezifische
Providerrisiko ri im Hinblick auf das Gesamtsystem ausgleicht, wobei n fest vorgegebene
Shares aufgeteilt werden müssen. Diesen Sachverhalt reflektiert ni = n

T , wobei T hier
für die Aufteilung steht, die noch näher spezifiziert werden muss. Indem T = ∑m

k=1
1
rk

(Gesamtvertrauen, was die Kehrwerte widerspiegeln) gesetzt wird, folgt ni =
n

∑m
k=1

1
rk

. Dann

würden aber die Shares so aufgeteilt werden, als würde das Gesamtvertrauen zu gleichen
Teilen zerlegt werden. Dieses muss noch mit dem spezifischen Risikowert ri in Verbindung
gesetzt werden, was den relativen Anteil ausmacht. Dies führt zu einer Formel:

ni =
n

ri ·∑m
k=1

1
rk

(3.29)

Bei genauer Betrachtung der Formel zeigt sich jedoch, dass diese im Allgemeinen nicht kor-
rekt ist. Als Ergebnis für ni entstehen reelle Zahlen, also geteilte Shares. Die aufzuteilenden
n Shares lassen sich aber nicht zerlegen.
Eine einheitliche Regel zur Rundung auf ganze Zahlen liefert in einigen Fällen eine Differenz
zwischen vorgegebenem Wert n und ∑m

i=1 ni, im Folgenden als ndi f f bezeichnet. Es gilt
nun, entweder ndi f f Shares auf die Provider hinzuzufügen oder sie von ihnen wegzuneh-
men. Dabei muss die Optimalität der Zuweisung gewährleistet sein. Dies ist wieder ein
Zuweisungsproblem mit einer entsprechenden exponentiellen Komplexität. In Experimenten
konnte gezeigt werden, dass ndi f f mit der Zahl der Provider m steigt, so dass es asymptotisch
eine gleiche Laufzeitkomplexität wie oben vorgestellter Algorithmus hat und damit diesbzgl.
keine Vorteile bietet.

72

3.3 Platzierungsstrategien

Provider ungewichtet / Shares gewichtet (Szenario 2-c)

Szenario 2: vordefinierte Anzahl von n Shares

Fall Providerrisiken ri Sharerisiken sj

2-a gleich gleich
2-b gewichtet gleich
2-c gleich gewichtet
2-d gewichtet gewichtet

In diesem Fall sind die Provider ungewichtet, wohingegen die Shares eine gewisse, fest
vorgegebene Gewichtung besitzen.
Auch hier degeneriert – wie auch in Szenario 2-b in Abschnitt 3.3.2 – die Kostenmatrix zu
einem Vektor, der nur noch aus Sharegewichtungen besteht, denn es gilt cij = sj.

C =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

...
cm1 cm2 · · · cmn

 =


c1 c2 · · · cn

c1 c2 · · · cn
...

...
...

...
c1 c2 · · · cn

 =
(

c1 c2 · · · cn

)
=
(

s1 s2 · · · sn

)

(3.30)

Beispiel Seien n = 6 Shares mit den Gewichtungen s1 = 7, s2 = 5, s3 = 4, s4 = 6, s5 = 1,
s6 = 2 gegeben und sollen diese auf m = 3 gleich große Provider verteilt werden, so würde
die Kostenmatrix wie folgt aussehen:

C =

7 5 4 6 1 2
7 5 4 6 1 2
7 5 4 6 1 2

 =
(

7 5 4 6 1 2
)

(3.31)

Wie kann nun eine angemessene Verschlechterung der Privatsphäre erreicht werden? Diese
soll über einen Balancezustand R1 = R2 = · · · = Rm zwischen den Providern hergestellt
werden, Ri = ri · Si mit Si = ∑j auf i zugeordnet sj und r = 1. Dann ergibt sich für den Balance-
zustand Formel (3.32):

S1 = S2 = · · · = Sm (3.32)

Dieses Problem lässt sich wie ein Behälter- bzw. Rucksack-Problem interpretieren: Man setze
die Shares als n Gewichte im Behälterproblem und gehe von einer festen Anzahl von m

73

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

...

1 2 m

...

?

s1 s
2

s
n

s3

Provider

Shares

...

1 2 m

Ziel

Δ = 0

Abbildung 3.9: Ähnlichkeit von Szenario 2-c zum Behälterproblem.

Behältern aus, wobei jeder Behälter eine unbegrenzte Kapazität hat. Diese Interpretation ist
in Abbildung 3.9 dargestellt.

Die hier dargestellte Ähnlichkeit zum Behälterproblem soll einerseits zeigen, dass es sich
auch hier, obwohl die Form der Matrix degeneriert ist, um ein schweres kombinatorisches
Optimierungsproblem handelt.
Andererseits könnten sich dafür Hinweise auf Lösungsmöglichkeiten ergeben, die an Algo-
rithmen für Rucksackprobleme angelehnt sind. Jedoch wird es sich immer um Heuristiken
handeln, wenn sie in polynomieller Zeit ablaufen. Darum wird, um auf den nächsten Ab-
schnitt vorzugreifen, auch hier eine Anwendung von evolutionären Algorithmen angedacht.
In diesem Kapitel wird allerdings eine Heuristik vorgeschlagen, um später zuverlässig einige
Individuen in die Startpopulation einbringen zu können. Die Heuristik ist in Algorithmus 3.2
dargestellt und funktioniert folgendermaßen:
Da die Behälter zunächst keine Kapazitätsbeschränkung vorweisen, muss zunächst mit der
Heuristik für Szenario 2-b eine obere Grenze border bestimmt werden (Zeile 1). Jetzt verfügen
die Behälter nur noch über begrenzte Aufnahmefähigkeit, wie im eigentlichen Behälterpro-
blem. Die Sortierung in Zeile 2 ist nicht unbedingt nötig, zeigte aber bessere Ergebnisse in
der Praxis. Dann wird mittels einer Schleife (Zeilen 3 - 6) die Grenze sukzessive abgesenkt
und die Shares neu auf die Provider verteilt mittels der bekannten First-Fit-Heuristik für das
Behälterproblem. Indem die Grenze nach unten gedrückt wird, soll erreicht werden, dass
sich die Gewichte besser austarieren und dass somit der ∆-Wert weiter sinkt. Die Schleife
endet, wenn die Grenze zu niedrig gewählt wurde, so dass die Shares keinen Platz mehr
haben oder wenn der Optimalwert von ∆ = 0 erreicht wurde.

Die Laufzeit richtet sich nach der Laufzeit des First-Fit-Algorithmus und der Sortierung.
Die While-Schleife wird selten ausgeführt, wie sich in der Praxis zeigte. Die Heuristik hat

74

3.3 Platzierungsstrategien

Algorithmus 3.2 Heuristik für Szenario 2-c
1: border ← HeuristicAlgorithm2b // obere Grenze mit dem Algorithmus 2b bestimmen
2: sortDecreasing(C) // Kosten absteigend sortieren
3: while Behälter groß genug do // Veränderte First-Fit-Decreasing-Strategie anwenden
4: border ← border− 1
5: FF(C) // First-Fit-Algorithmus 2.1 anwenden
6: end while

somit eine polynomielle Zeitkomplexität und liegt aufgrund der Laufzeitkomplexität des
FF-Algorithmus und der Sortierung in O(n · log(n)) [VK08].

Der Algorithmus hat allerdings nur den Status einer Heuristik und ist somit fehlerbe-
haftet. Auch liegt seine Fehlerrate über der eines evolutionären Algorithmus, wie sich in
der Evaluationssektion zeigen wird. Daher kann diese Heuristik für einen evolutionären
Algorithmus genutzt werden, um Individuen in die Startpopulation einzubringen, was
schon erwähnt wurde. Das Konzept des evolutionären Algorithmus wird für das nächste
Teilszenario erörtert.

75

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Provider gewichtet / Shares gewichtet (Szenario 2-d)

Szenario 2: vordefinierte Anzahl von n Shares

Fall Providerrisiken ri Sharesrisiken sj

2-a gleich gleich
2-b gewichtet gleich
2-c gleich gewichtet
2-d gewichtet gewichtet

Sind sowohl die Providerrisiken unterschiedlich wie auch die Shares gewichtet, so hat diese
Unterklasse im Gegensatz zu den anderen Problemausprägungen eine volle Kostenmatrix,
wie in Matrix (3.33) dargestellt.

C = (cij) =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

...
cm1 cm2 · · · cmn

 (3.33)

Beispiel Seien m = 3 Provider mit den Gewichtungen r1 = 2, r2 = 5 und r3 = 1 gegeben.
Es sollen n = 7 Shares auf die Provider verteilt werden, wobei jede Share wie in Tabelle 3.6
gewichtet ist, dann ergibt sich die Kostenmatrix wie in Matrix (3.35).

Share Nr. 1 2 3 4 5 6 7

Gewichtung 4 3 1 1 2 4 2

Tabelle 3.6: Beispielhafte Gewichtungen für Fall 2-d

Die Kostenmatrix wird konstruiert, indem die Risikowerte ri des Providers i mit der Gewich-
tung sj der entsprechenden Share multipliziert werden, also

cij = ri · sj (3.34)

C =

 8 6 2 2 4 8 4
20 15 5 5 10 20 10
4 3 1 1 2 4 2

 (3.35)

Wie erkennbar ist, handelt es sich bei den Spalten um Vielfache voneinander. Dies führt
jedoch zu keiner Vereinfachung der Matrix oder des Verfahren, denn die Matrix degeneriert

76

3.3 Platzierungsstrategien

dadurch nicht in ihrer Form. Wie in Abschnitt 3.3.2 formal bewiesen wurde, handelt es sich
durch diese volle Kostenmatrix definitv um ein NP-schweres Problem.
Mit dieser Erkenntnis steht fest, dass für dieses Szenario abgewogen werden muss zwischen
einem exakten Algorithmus, der eine exponentielle und damit ineffiziente Laufzeit besitzt
und einem Näherungsalgorithmus, der dafür in annehmbarer Zeit arbeitet. Die vollständige
Enumeration scheidet von vornherein aus. Branch-and-Bound kommt für dieses Szenario
nur eingeschränkt in Betracht, was in der Diskussion in Abschnitt 3.3.2 erörtert wurde.
Daher wurde ein evolutionärer Algorithmus entworfen, der sich an [Wei02] orientiert und
an das Problem angepasst wurde. Das Konzept der evolutionären Algorithmen erschien aus
folgenden Gründen erfolgsversprechend:

• Beim vorliegenden Optimierungsproblem handelt es sich – um mit Weicker [Wei02] zu
sprechen – nicht um ein „gutmütiges“ Problem in Bezug auf die Wertelandschaft: Die
Zielfunktion (Gleichung (3.17)) ist eine nicht-lineare Funktion, was bedeutet, dass lokale
Optima nicht zu globalen führen müssen und das wirkliche globale Optimum evtl. in
einem Bereich liegt, wo es in keinster Weise zu erwarten war. Des Weiteren zirkulieren
die Werte mit variabler Zahl der Zuweisungen um den theoretischen Optimalwert 0, es
lässt sich nicht erkennen, dass bei steigender Zahl von zugewiesenen Shares sich der
Optimalwert irgendwie stabilisiert.
Der Mutationsoperator der evolutionären Algorithmen stellt jedoch sicher, dass ein
großes Einzugsgebiet abgesucht wird und dass wieder aus lokalen Schein-Optima
entkommen werden kann.

• Entscheidend für Geschwindigkeit wie Güte eines evolutionären Algorithmus ist die
Fitnessfunktion [Wei02]: Ist die Bewertung schnell, so ist es auch der Gesamtalgorith-
mus. Der Selektionsdruck wird durch die Strenge der Funktion festgelegt, hat also
Einfluss darauf, wie schnell oder wie gut ein Optimum erreicht werden kann. Unter
Selektionsdruck wird verstanden, wie schnell ein Algorithmus gegen ein Optimum
konvergiert, wobei gilt, dass je höher der Selektionsdruck, desto höher ist die Wahr-
scheinlichkeit, dass es sich nur um ein lokales Optimum handelt.
Unserem Problem ist eine einfache Bewertung zu eigen: Je näher der Wert bei 0 ist,
desto näher ist man am gesuchten globalen Optimum. Die Bewertung ist daher schnell
und der Selektionsdruck anpassbar.

• Die Kombinierbarkeit mit anderen, problemspezifischen Heuristiken ist mög-
lich [Wei02], was zu wesentlichen Verbesserungen der Güte der Ergebnisse führt.
So kann die für Szenario 3.3.2 erarbeitete Heuristik in Betracht gezogen werden.

Nach diesen allgemeinen Argumenten und der Bezugnahme auf unsere Problemstellung
soll jetzt zur Erläuterung der konkreten konzeptuellen Entscheidungen gekommen werden
und schließlich der Algorithmus vorgestellt werden. Die natürlichsprachliche Erklärung des
Algorithmus findet sich im folgenden Abschnitt, wobei der Pseudocode in Algorithmus 3.3
dargestellt ist.

77

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Zur Erstellung eines Algorithmus für unser Problem muss der Grundzyklus der evolutio-
nären Algorithmen implementiert und angepasst werden.
Zunächst wird für das Problem eine gewisste Codierung verwendet, die sich von der oben
benutzten Matrizendarstellung unterscheidet, aber leicht transformiert werden kann.

XGA = (xi1, xi2, · · · , xin) (3.36)

Die Platzierung von Share j auf Provider i kann mit Formel (3.36) wie folgt repräsentiert
werden: Der Wert der j-ten Komponente xij des Vektors XGA entspricht dem Provider i, auf
dem die Share lokalisiert ist.
Diese Darstellung ist vorteilhaft, da sie genau einem Genom entspricht, an dem einzelne
Änderungen wie Mutationen leicht durchgeführt werden können. Nun folgt der evolutionäre
Grundzyklus, der auf diese Codierung zurückgreift:

• Initialisierung Die erste Generation umfasst 10 Individuen und wird teilweise ran-
domisiert, teilweise durch eine Heuristik erzeugt. Dafür wurde die Heuristik aus
Abschnitt 3.3.2 folgendermaßen angepasst: Es wird nicht mehr die Differenz, sondern
das Maximum minimiert. Dies erwies sich experimentell als besser im Hinblick auf
das Optimierungsziel.
3 Individuen der 10 initialen Individuen wurden auf diese Weise, der Rest komplett
randomisiert erzeugt.

• Rekombination Hier wird die potentielle neue Generation gebildet. Aus den 10 Indi-
viduen der vorhergehenden (oder im ersten Zyklus der Startpopulation) werden 40

neue durch Rekombination erzeugt.
Die Rekombinationsoperation wird mit einer Wahrscheinlichkeit von 0.5 als uniformer
Crossover auf zwei zufällig gewählten Individuen ausgeführt. Durch den uniformen
Crossover sollen Individuen zu gleichen Teilen gemischt werden. Wird kein Crossover
durchgeführt, so wird ein Indivdiduum zufällig selektiert und unverändert in die neue
Generation übernommen.
Sollte durch den Crossover eine ungültige Belegung in Bezug auf die dem Problem
inhärenten Nebenbedingungen (siehe (3.18) und (3.19)) erzeugt werden, wird diese
verworfen und ein zufälliges Indivduum in die neue Generation übernommen. Auf
diese Weise wird von Anfang an vermieden, dass ungültige Platzierungen erzeugt
werden – sie werden frühzeitig eliminiert, so dass sie sich im Evolutionsprozess nicht
durchsetzen.

• Mutation Da der Mutationsoperator von hoher Bedeutung für die Abdeckung des
ganzen Suchraumes ist, wird dieser in jedem Fall nach der Rekombination angewandt.
Realisiert ist der Mutationsoperator als Vertauschung zweier Platzierungen: Der Ort
zweier zufällig bestimmer Shares wird vertauscht. Diese Vertauschungsoperation bietet
den Vorteil, dass die Platzierung gültig bleibt, da auf den entsprechenden Providern

78

3.3 Platzierungsstrategien

nur die jeweils andere Share platziert wird. Somit hat nach wie vor jeder Provider eine
Share.

• Bewertung Die 40 temporär erzeugten Individuen werden bewertet. Die Bewertung
lässt sich berechnet, indem der Maximalwert und der Minimalwert der Zuweisungs-
kosten auf einem Provider bestimmt wird. Dazu sind lediglich ein Scan über dem
Genom XGA nötig, der die Platzierungen notiert und die Werte speichert. Dann wird
die Differenz gebildet. Je näher dieser Wert bei 0 liegt, desto besser ist ein Individium
im Hinblick auf unser Optimierungsziel minimiere ∆.

• Selektion In diesem Schritt werden die besten 10 der 40 erzeugten Individuen ausge-
wählt. Dann beginnt der Zyklus entweder von Neuem, oder die Abbruchbedigung ist
erfüllt und der Algorithmus endet.

• Abbruchkriterium Der Algorithmus endet, wenn entweder eine vorgegebene Zahl
von Generationen durchlaufen wurde oder ∆ = 0 gilt.
Die Zahl der Generationen wurde auf 2000 gesetzt. Zwar findet der Algorithmus meist
in weitaus weniger5 Schritten ein Optimum – der Wert ergibt sich daraus, dass dem
Algorithmus Zeit gelassen werden soll, um sich auf ein Optimum „einzupendeln“.
Vor allem bei stark unterschiedlichen Gewichten zeigte sich dies in der Praxis als
notwendig.

Der hier natürlichsprachlich dargelegte Algorithmus wird nun als Pseudocode in Algorith-
mus 3.3 angegeben.

Die Laufzeit von Algorithmus 3.3 ist maßgeblich bestimmt durch die Operationen, die bei
evolutionären Algorithmen auftreten. Diese operieren auf dem Genom XGA, welches als
Vektor bzw. Array der Länge n (Anzahl der Shares) codiert ist. Da 2000 Generationen erzeugt
werden und die Kombinationsoperation, die selbst n Schritte benötigt, 40 mal ausgeführt
wird, entspricht dies also 80000 · n Schritten. Weiterhin kommen für die Evaluation der
nochmal 2000 ∗ 40 · n Schritte hinzu, was in einer polynomiellen Komplexitätsklasse liegt.
Jedoch werden mittels der Heuristik für Szenario 2-b einige Individuen erzeugt, was die
Laufzeit auf die Komplexität dieser Heuristik anhebt. Somit gilt, dass die Komplexität des
evolutionären Algorithmus in O(n ·m) liegt.

5Wie sich in der Evaluation in Kapitel 4 zeigen wird, genügen schon 200 Schritte, um das erste Mal ein Optimum
zu finden.

79

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Algorithmus 3.3 Evolutionärer Algorithmus für Szenario 2-d
1: t← 0
2: population[1, 2, 3, 4, 6, 7, 8]← RandomPlacement
3: population[0, 5, 9]← HeuristicPlacement // Initialisierung
4:

5: while t < 2000 AND ∆ > 0 do // Evolutionärer Grundzyklus
6: for p = 1 to 40 do // Vervielfältigung der Generation auf 40 Ind.
7:

8: ind1← RandomInd
9: ind2← RandomInd

10: u← RandomBoolean
11: if u = true then
12: populationTemp[p]← Uni f ormCrossover(ind1, ind2) // Uniformer Crossover
13: if In f easible(populationTemp[p]) then // wenn ungültig
14: populationTemp[p]← ind2
15: end if
16: else
17: populationTemp[p]← ind1
18: end if
19: populationTemp[p]← Mutation(populationTemp[p]) // Mutation
20: end for
21:

22: Eval(populationTemp[]) // Evaluation
23: population[]← Select10Best(populationTemp[]) // Selektion
24: ∆← Best∆(population[])
25:

26: t← t + 1
27: end while

80

3.3 Platzierungsstrategien

3.3.3 Tabellarische Zusammenfassung der Lösungskonzepte

Da es sich um insgesamt 8 verschiedene Teilszenarien handelt und jeweils mindestens ein
Lösungskonzept vorgeschlagen wurde, findet sich in Tabelle 3.7 ein Überblick, in welchem
Fall welches Szenario eingesetzt wurde. In Szenario 1 wurde von einer wählbaren Größe
von Shares und somit auch von einer freien Wählbarkeit ihrer Gewichtungen ausgegangen.
Bei Szenario 2 wurde die Zahl der Shares und somit auch deren Gewichtungen als fest
vorgegeben angenommen, mit denen eine noch möglichst optimale Zuweisung durchgeführt
werden sollte.

Szenario 1 Szenario 2
Formel exakt Heuristik EA

a X X - -
b X X X -
c X - X X
d X - - X

Tabelle 3.7: Übersicht über die behandelten Lösungsansätze.

In Tabelle 3.8 findet sich ein Überblick über die Laufzeitkomplexitäten, welche für die
jeweiligen Konzepte abgeschätzt wurden. Zum Vergleich ist jeweils noch die naive Methode
eingetragen.

Szenario 1 Szenario 2
Formel naiv exakt Heuristik EA

a O(1) O(mn) O(1) - -
b O(m) O(mn) O(mm−1) O(n ·m) -
c O(1) O(mn) - O(n · log(n)) O(n ·m)

d O(m) O(mn) - - O(n ·m)

Tabelle 3.8: Übersicht über die Laufzeitkomplexitäten, wobei m die Zahl der Provider und n
die Zahl der Shares darstellt.

81

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

3.4 Implementierung

Im Hinblick auf die Evaluation in Kapitel 4 wurden die vorgeschlagenen Konzepte für
Szenario 2 in der Programmiersprache Java implementiert.
Dazu wurde eine Basisklasse erstellt, die allgemeine Methoden zum formalisierten Zuwei-
sungsproblem BaGAP bereitstellt, wie z.B. die Überprüfung von Zuweisungsmatrizen auf
Gültigkeit bzgl. der Nebenbedingungen, die Ausgabe von ∆-Werten, Providerrisken usw. auf
der Standardausgabe sowie Umwandlungsmethoden zwischen verschiedenen Darstellungs-
formen (Zuweisungsmatrix und Vektor).
Dann wurden die konkreten Verfahren 2-b, 2-c und 2-d in eigenen Klassen implementiert,
die jeweils von der Basisklasse abgeleitet wurden und so alle Methoden usw. erbten.
Für Szenario 2-d zeigte sich ein enger Verzahnungsprozess zwischen Implementierung
und Evaluation, da für evolutionäre Algorithmen Erkenntnisse aus der Empirie von hoher
Bedeutung sind. Für dieses Szenario wurden auch unterschiedliche Startheuristiken, die von
der Heuristik für Szenario 2-b abgeleitet wurden, implementiert, getestet und abgewogen.

82

3.4 Implementierung

83

4 Evaluation

In diesem Kapitel sollen die in Kapitel 3 erarbeiteten Konzepte experimentell evaluiert
werden um zu überprüfen, ob sie den spezifizierten Anforderungen entsprechen.
Für Szenario 1, bei dem die Anzahl der Shares frei gewählt werden kann, war keine automa-
tisierte Evaluation nötig. Die Optimalität der Platzierung ergibt sich hierbei direkt durch die
Justierung der Anzahl und Gewichtung der Shares, die möglichst geschickt zu wählen sind,
so dass die Sicherheitsrisiken der Server ausbalanciert werden. Dies ist im entsprechenden
Abschnitt 3.3.1 für jedes Teilszenraio hergeleitet und erörtert. Die Berechnungszeiten hierfür
liegen höchstens in einer linearen Komplexitätsklasse mit der Zahl der Provider.
In Szenario 2 ist die Anzahl der Shares als fest anzunehmen und ein Zuweisungsproblem zu
lösen. Dazu wurden die in Abschnitt 3.3.2 vorgestellten Konzepte evaluiert. Es sind jeweils
noch einmal die Übersichtstabellen eingeblendet, die darstellen, welcher Unterfall gerade
betrachtet wird.

4.1 Evaluationsbedingungen

Zunächst folgen einige Ausführungen zu den Evaluationsbedignungen. Es wurden Korrekt-
heit und Geschwindigket getesten, außerdem für die evolutionären Algorithmen auch deren
Konvergenzverhalten.

Korrektheit

Da die Hauptanforderung aus Kapitel 3.2 die Erreichung eines Gleichgewichts war, muss
die Korrektheit der vorgestellten Algorithmen evaluiert werden. Eine Platzierung ist optimal,
wenn sie den minimalen Wert von ∆ liefert.
Dazu wurden jeweils 1000 zufällige Probleminstanzen generiert, mit einem der erarbeiteten
Konzepte gelöst und dann mit der naiven Lösung verglichen.
Fehlerrate wird hier als Rate definiert, in wie vielen Fällen der Algorithmus nicht den
optimalen Wert findet.
Die Abweichung vom Optimalwert konnte nicht sinnvoll gemessen werden, da es sich
hierbei immer um eine relative Rate handelt. Aufgrund des relativen Charakters der Risiko-
und Ergebniswerte wäre eine Abweichungsmessung wenig aussagekräftig.

85

4 Evaluation

Geschwindigkeit

Darüber hinaus wurden Messungen über das Zeitverhalten der Algorithmen durchgeführt,
da eine gute Laufzeitkomplexität eine weitere Anforderung darstellt. Die Messungen wurden
dabei auf einem Intel Core2 Quad-System mit 2,4GHz innerhalb von Java durchgeführt.
Dazu wurden exakter Algorithmus, Heuristik und evolutionärer Algorithmus evaluiert.
Für jeden wurde die Zahl der Shares n variiert und für jede Variation eine Probleminstanz
zufällig erzeugt und berechnet. Diese Berechnung wurde 1000 mal durchgeführt, damit ein
zuverlässiger Mittelwert gebildet werden konnte, um simulationsbedingte Schwankungen
auszugleichen. Da sich die Berechnungsdauern teilweise im Bereich von Nanosekunden
aufhielten, war diese Wiederholung notwendig.

Konvergenz

Die Untersuchung des Konvergenzverhaltens lieferte auch wichtige Aufschlüsse über das
Verhalten der evolutionären Algorithmen, welche zur Feinabstimmung dieser Verfahren
unabdingbar sind. Hierbei wurde die Fitness, die dem ∆-Wert entspricht, gegenüber der
Zahl der Generationen aufgetragen.
Dafür wurde zunächt eine spezielle Probleminstanz exakt berechnet. Dann wurde diese
Probleminstanz mit dem evolutionären Algorithmus berechnet.
Dies wurde für zwei Fälle durchgeführt, die sich durch eine unterschiedliche Streuung
der Risikowerte unterschieden. In einem Fall lagen die Risikowerte nah beieinander, es
wurde also von einer relativen Balanciertheit der vorgegebenen Risikowerte ausgegangen.
Im anderen Fall waren diese Risikowerte weit voneinander entfernt.

4.2 Szenario 2-b

Szenario 2: vordefinierte Anzahl von n Shares

Fall Providerrisiken ri Sharerisiken sj

2-a gleich gleich
2-b gewichtet gleich
2-c gleich gewichtet
2-d gewichtet gewichtet

4.2.1 Korrektheit

Exakter Algorithmus Da für den exakten Algorithmus 3.1 seine Korrektheit in Teil 3.3.2
dieser Arbeit bewiesen wurde, ist eine Evaluation der Korrektheit nicht mehr notwendig.

86

4.2 Szenario 2-b

Heuristik Allerdings ist es möglich, die dem Algorithmus zugrunde liegenden Backtracking-
Schritte abzuschalten, so dass dieser nur noch den Status einer Heuristik hat. Dies ist
einerseits von Bedeutung, weil diese Heuristik in einer Abwandlung später (im Fall 2-d)
für die evolutionären Algorithmen als Startheuristik genutzt wird, andererseits aber auch,
weil die Backtracking-Schritte für eine große Zahl von Providern den Algorithmus ineffizent
werden lassen, so dass in diesen Fällen auf die Heuristik zurückgegriffen werden muss.
Die Fehlerrate ist nun in Schaubild dargestellt 4.1.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20

F
eh

le
rr

at
e

Zahl der Shares n

m = 4
m = 8

Abbildung 4.1: Szenario 2-b: Fehlerrate der Heuristik (Deaktiviertes Backtracking) für m = 4
und m = 8 Provider.

Die Fehlerrate wurde für m = 4 und m = 8 Provider bei variabler Anzahl der Shares gemes-
sen. Dabei ist festzuhalten, dass die Fehlerrate zunächst steigt und sich dann wahrscheinlich
auf einem Niveau von 8% einpendelt. Dies konnte jedoch nicht weiter überprüft werden,
weil die Vergleiche mit der naiven Methode zu lange dauerten.

87

4 Evaluation

4.2.2 Geschwindigkeit

Exakter Algorithmus Für den Algorithmus 2-b wurden auch Messungen zur Laufzeit
durchgeführt. Das Laufzeitverhalten für den exakten Algorithmus mit aktiviertem Back-
tracking ist für m = 4 und für m = 8 Provider in Schaubild 4.2 dargestellt, wobei die Zahl
der Shares variabel ist. Im Vergleich der Graphen ist erkennbar, dass die Geschwindigkeit

 0.0001

 0.01

 1

 100

 10000

 5 10 15 20 25 30

Z
ei

t (
s)

Zahl der Shares n

exakter Algorithmus mit m = 4
exakter Algorithmus mit m = 8

naive Methode

Abbildung 4.2: Szenario 2-b: Geschwindigkeit des exakten Algorithmus mit m = 4 und
m = 8 Providern. Naive Methode zum Vergleich. Logarithmische Skalierung.

stark von der Zahl der Provider bestimmt ist. Dies entspricht der theoretischen Überlegung,
wonach Backtracking für die letzten m− 1 Schritte durchgeführt werden muss. Für m = 4
Provider liegt die Laufzeit noch im Bereich von Mikrosekunden, für m = 8 schon im Bereich
von Sekunden.
Dies legt den Schluss nahe, dass dieses Verfahren nur für eine Zahl von Providern geeignet
ist, die unter 10 liegt, da man bereits mit 8 Providern im Sekundenbereich ist. Jedoch ist
das Verhalten des Algorithmus relativ stabil gegenüber zunehmender Zahl von Shares, was

88

4.2 Szenario 2-b

wiederum den theoretischen Überlegungen entspricht. Im Schaubild 4.2 wurde auch noch
die Laufzeit eines naiven Aufzählungsverfahrens dargestellt, die exponentiell mit der Zahl
der Shares steigt. Dieser Aufzählungsvariante ist der exakte Algorithmus in jedem Fall
vorzuziehen.

Heuristik Schließlich wurde noch die Laufzeit der Heuristik evaluiert, was für verschiedene
Anzahlen von Providern Provider in Schaubild 4.3 dargestellt ist. Das Schaubild zeigt, dass
die Laufzeit mit zunehmender Zahl der Shares linear ansteigt. Den Faktor des linearen
Anstiegs liefert dabei die Zahl der Provider: Je größer die Zahl der Provider, desto stärker
(aber immer noch linear) steigt die Laufzeit mit der Zahl der Shares an. Allerdings liegt die
Laufzeit in jedem Fall im Bereich von Mikrosekunden. Dies entspricht der theoretischen
Abschätzung, wonach die Laufzeit der Heuristik in O(n ·m) liegt.

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

Z
ei

t (
M

ik
ro

se
ku

nd
en

)

Zahl der Shares n

m=4
m=8

m=12

Abbildung 4.3: Szenario 2-b: Geschwindigkeit der Heuristik für verschiedene Anzahlen von
Providern m.

89

4 Evaluation

4.3 Szenario 2-c

Szenario 2: vordefinierte Anzahl von n Shares

Fall Providerrisiken ri Sharesrisiken sj

2-a gleich gleich
2-b gewichtet gleich
2-c gleich gewichtet
2-d gewichtet gewichtet

Heuristik Die in Szenario 2-c entwickelte Heuristik wurde implementiert und einer Unter-
suchung unterzogen, wobei die Messreihen ergaben, dass die Fehlerrate der Heuristik unter
10% lagen.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2 4 6 8 10 12 14 16 18

F
eh

le
rr

at
e

Zahl der Shares n

m=4

Abbildung 4.4: Szenario 2-c: Fehlerrate bei Anwendung eines evolutionären Algorithmus
bei m = 4 Providern.

Evolutionärer Algorithmus Wurde ein evolutionärer Algorithmus für dieses Unterszenario
verwendet, so zeigt sich die Fehlerrate wie in Schaubild 4.4 dargestellt. Sie liegt für die
testbaren Problemgrößen immer unterhalb von 4% und ist damit der reinen Heuristik vorzu-
ziehen.
Die Ergebnisse der Laufzeitmessung entsprechen den Ergebnissen aus dem nächsten Ab-
schnitt, da der evolutionäre Algorithmus in gleicher Weise auch auf Szenario 2-c angewendet
wird.

90

4.4 Szenario 2-d

4.4 Szenario 2-d

Szenario 2: vordefinierte Anzahl von n Shares

Fall Providerrisiken ri Sharerisiken sj

2-a gleich gleich
2-b gewichtet gleich
2-c gleich gewichtet
2-d gewichtet gewichtet

Für den Lösungsantz von Szenario 2-d, bei dem sowohl Shares als auch Provider gewichtet
sind, wurde die Methode der evolutionären Algorithmen gewählt. Hier lassen sich neben der
Korrektheit und Geschwindigkeit noch die Konvergenz des Algorithmus sowie ein Vergleich
verschiedener Startheuristiken evaluieren.

4.4.1 Korrektheit

Schaubild 4.5 zeigt die Fehlerrate bei laufender Zahl von Shares und bei unterschiedlicher,
aber fester Zahl von Providern. Dabei lässt sich feststellen, dass es immer bei nhoch = 2 ·m
einen Hochpunkt der Fehlerrate gibt und dann für steigende Zahl von n die Fehlerrate
gegen 0 strebt. Dies konnte leider nur für kleine Werte von m getestet werden, da die
naive Methode den verwendeten PC wegen der Komplexität der Enumeration (exponentiell
mit Eingabelänge!) schnell an seine Leistungsgrenze trieb. Die Tendenz sollte jedoch klar
erkennbar sein.

4.4.2 Geschwindigkeit

Schaubild 4.6 zeigt das Zeitverhalten des evolutionären Algorithmus bei verschiedenen
Anzahlen von Providern und laufender Zahl von Shares. Dabei zeigt sich, dass die Geschwin-
digkeit im Bereich von Millisekunden und die Laufzeit mit der Zahl der Provider schwach
linear ansteigt. Dies entspricht den theoretischen Überlegungen aus Abschnitt 3.3.2, wonach
der evolutionäre Algorithmus in der linearen Komplexitätsklasse O(n) liegt. Die Zahl der
Provider verschiebt lediglich die Zeit nach oben – ansonsten ist das Verfahren, wie erwartet
stabil gegenüber der Zahl der Provider.
Das Verfahren eignet sich somit für die Aufteilung der Shares auf die Provider, da ein Bereich
von Millisekunden zur Erzeugung eines Platzierungsplans einen vertretbaren Aufwand
darstellt.

91

4 Evaluation

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20

F
eh

le
rr

at
e

Zahl der Shares n

m=2
m=3
m=4
m=5

Abbildung 4.5: Szenario 2-d: Fehlerrate des evolutionären Algorithmus für verschiedene
Anzahlen von Providern m.

4.4.3 Konvergenz

Für einen evolutionären Algorithmus ist das Konvergenzverhalten über die Zahl der Ge-
nerationen von hoher Bedeutung: Wie schnell konvergiert ein evolutionärer Algorithmus
zum Optimalwert hin? Für dieses Experiment wurden zwei verschiedene Risikoverteilungen
getestet, wobei jeweils von m = 5 Providern und n = 12 Shares ausgegangen wurde:
Im ersten Fall ist die Streuung des Risikos der Provider gering, im zweiten Fall ist sie groß.
Dann wurde die Fitness der bewerteten Generationen gegen die Generationen dargestellt.
Der Fall mit geringer Streuung der Risikorate wird in Schaubild 4.7 dargestellt. Hier wird der
Optimalwert bereits ca. nach der 25. Generation erreicht und pendelt sich dann ein, wobei
die durch die Mutationen bedingten schlechteren Generationen nahe beim Optimalwert
liegen, welcher in diesem Fall 50 beträgt und im Schaubild eingezeichnet ist.
Der zweite Fall, bei dem die Streuung der Risikowerte der Probleminstanz groß ist, wird
in Schaubild 4.8 dargestellt. Hierbei ist zu erkennen, dass es fast 100 Generationen benö-
tigt, bis der Optimalwert zum ersten Mal erreicht wird. Der Optimalwert liegt für diese
Probleminstanz bei 40. Auch weichen die schlechteren, durch Mutation erzeugten späteren
Populationen stärker vom Optimalwert ab.
Diese Experimente führten dazu, dass die Zahl der Generationen bzw. Iterationen es evolu-

92

4.4 Szenario 2-d

0

50

100

150

200

250

0 5 10 15 20

Z
ei

t (
m

s)

Zahl der Shares n

m=3
m=5
m=10

Abbildung 4.6: Szenario 2-d: Laufzeitverhalten des evolutionären Algorithmus für verschie-
dene Anzahlen von Providern m.

tionären Algorithmus auf 2000 festgelegt wurde, damit bei stark unterschiedlichen Größen
das Optimum gefunden wird.

4.4.4 Initiale Heuristik

Ein weiterer Aspekt, der nicht unerheblich für die Güte eines evolutionären Algorithmus
ist, ist das Problemwissen, mit dem dieser Algorithmus ausgestattet werden kann. Wie in
Abschnitt 3.3.2 besprochen, werden von Startpopulation, welche aus 10 Individuen besteht,
3 Individuen mittels einer Heuristik erzeugt, die an das Konzept aus Abschnitt angelehnt
ist. Jedoch wird hier nicht die Heuristik der minimalen ∆ („minDelta-Strategie“)-, sondern
diejenige mit der minimalen Maximum („minMax-Strategie“)- Auswahlstrategie benutzt.
Experimentell zeigte sich dabei, wie in Abbildung 4.9 dargestellt, dass die minMax-Strategie
einen kleineren Hochpunkt liefert und somit für den evolutionären Algorithmus besser
geeignet ist, da sie von vorne herein „stärkere“ Individuen in die Startpopulation einbringen
kann.

93

4 Evaluation

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800

F
itn

es
s

/ D
el

ta

Generationen

Optimalwert

Abbildung 4.7: Szenario 2-d: Konvergenz des evolutionären Algorithmus zum Optimalwert
bei geringer Streuung des Risikos. m = 5 Provider und n = 12 Shares.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800

F
itn

es
s

/ D
el

ta

Generationen

Optimalwert

Abbildung 4.8: Szenario 2-d: Konvergenz des evolutionären Algorithmus zum Optimalwert
bei starker Streuung des Risikos. m = 5 Provider und n = 12 Shares.

94

4.4 Szenario 2-d

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20

F
eh

le
rr

at
e

Zahl der Shares n

minMax-Heuristik
minDelta-Heuristik

Abbildung 4.9: Szenario 2-d: Vergleich zweier Heuristiken für die initiale Population beim
evolutionären Algorithmus mit m = 4 Providern

95

5 Fazit

5.1 Zusammenfassung und Diskussion

Zu Beginn der Arbeit wurden im zweiten Kapitel einige Argumente dafür vorgetragen,
warum Sicherheit der Privatsphäre gerade bei Location-based Services von hoher Bedeutung
ist: LBS sind eine äußerst sensible Technik in Bezug auf die Privatsphäre, da sie mit der
Positionsinformation der Individuen arbeiten. In dieser Diplomarbeit wurde versucht, die
Sicherheit der Privatsphäre in technischer Hinsicht zu erhöhen.
Dazu wurde von einem Ansatz der verteilten Positionsinformationen ausgegangen, wonach
die exakte Positionsinformation in Teile zerlegt wird. Diese sog. Shares werden dann auf
unabhängigen Location Servern, genannt Provider, abgelegt. Die exakte Position lässt sich
nur mit allen diesen Shares rekonstruieren. Ein bestehendes Systemmodell [DSR11], welches
von ungewichteten Providern ausgeht, wurde um eine Trust Database erweitert, in der ver-
schiedene Vertrauens- oder Risikowerte zu jedem Server gespeichert sind. Zusätzlich können
auch noch die Shares spezifisch gewichtet sein.
Die Aufgabe ist es schließlich, die Teile der Positionsinformation den Providern so zuzuwei-
sen, dass die Fragilitäten der Provider ausbalanciert werden, so dass risikoreiche Provider
relativ weniger Shares zugewiesen bekommen als vertrauenswürdige. Eine Balance zwi-
schen den Fragilitäten der Providern führt im Fall, dass die Shares gewichtet sind, zu einer
wenigstens angemessenen Verschlechterung der Privatsphäre bei fortlaufender Anzahl kom-
promittierter Server, was bedeutet, dass bei jedem weiteren gehackten Provider genauso viele
Informationen bekannt werden wie bei jedem anderen auch. Somit gibt es keine Schwachstel-
le im System, die die Privatsphäre überproportional beeinträchtigen könnte. Sind die Shares
nicht gewichtet, so ergibt sich dadurch eine Austarierung der risikobehafteten Provider,
wobei risikoreiche Provider relativ weniger Shares bekommen.
In der vorliegenden Arbeit wurden zwei Szenarien betrachtet, die noch weiter in Unterfälle
differenziert wurden, wonach entweder Provider, Shares oder beide gewichtet sind. Die
Anzahl der Provider sowie deren Risiken war immer als gegeben vorausgesetzt. Im ersten
Szenario wurde davon ausgegangen, dass die Zahl der Shares und somit auch deren Ge-
wichtungen frei wählbar sind. Im zweiten Szenario wurde von einer fest definierten Anzahl
von Shares ausgegangen (und auch von festgelegten Gewichtungen der Shares). Nun muss
diskutiert werden, inwiefern die Szenarien und die Lösungsansätze für welche Situation
in der Praxis tauglich sind. Hierzu wurden die algorithmischen Konzepte für Szenario 2

implementiert und bezüglich Korrekt und Laufzeitverhalten evauliert.

97

5 Fazit

In Szenario 1, in dem sowohl die Zahl der Shares wie auch deren Gewichtungen nicht vor-
gegeben, sondern vom Nutzer zu bestimmen sind, lässt sich die Optimalität der Platzierung
über geschlossene Formeln in linearer oder sogar konstanter Zeit berechnen. Szenario 1 zeigt
seine Berechtigung, weil die Generierung der Shares im Systemmodell [DSR11] auf der Seite
der mobilen Geräte erfolgt. Also werden in diesem Gerät genau die Shares erzeugt, die zur
Ausbalancierung der Sicherheitsrisiken der ausgewählten Location Server notwendig sind.
Selbst wenn mobile Geräte auch heute noch stationären PCs leistungsmäßig hinterherhinken,
sind diese Berechnungen in maximal linearer Zeit kein Problem. Des weiteren muss noch
betont werden, dass sich nur mit den Teilszenarien 1-c und 1-d eine angemessene Verschlech-
terung erreichen lässt. Die Shares müssen gewichtet sein, da der Genauigkeitsgewinn bei
Zusammenfügung der Shares nur über die Sharegewichte bestimmt wird.

Szenario 2 geht von einer festen Anzahl von Providern und Shares aus. Nun müssen
die Shares auf die Provider verteilt werden, damit eine Balance der Fragilitäten erreicht
wird. Mit den Ergebnissen aus Abschnitt 2.3 konnte dieses Problem als Zuweisungsproblem
eingeordnet und formalisiert werden. Dieses Zuweisungsproblem wurde als Balanced Genera-
lized Assignment Problem (BaGAP) benannt. Dieses Problem ist nach dem Wissensstand des
Autors dieser Arbeit bisher noch nirgendwo formalisiert und bearbeitet worden. Es konnte
durch eine Reduktion eines verwandten Problems gezeigt werden, dass das BaGAP selbst
NP-schwer ist.
Für den Teilszenario 2-b, wonach die Provider gewichtet sind und die Shares nicht, wurde
ein Algorithmus vorgeschlagen, der eine begrenzte Zahl von Backtracking-Schritten ausführt.
Im Verlauf dieser Arbeit wurde sehr viel Zeit auf die Suche nach einer Heuristik verwendet,
die dem Algorithmus ohne Backtracking-Schritte entspricht. In der Evaluation konnte die
theoretische Überlegung, dass bei einer exakten Lösung die Komplexität exponentiell mit
der Zahl der Provider steigt, bestätigt werden – für 4 Provider befindet sich die Laufzeit
noch im Bereich von Mikrosekunden, während für 8 Provider die Berechnung schon mehrere
Sekunden benötigt.
Sind sowohl Provider wie auch Shares gewichtet (Szenrio 2-d), so wurde ein metaheu-
ristisches Verfahren implementiert, nämlich die evolutionären Algorithmen, die sich als
vielversprechend erwiesen, was im Abschnitt 3.3.2 erörtert wurde. Dieser zeigt ein gutes
Laufzeitverhalten im linearen Bereich in der Größenordnung von Millisekunden. Jedoch
wird nicht in allen Fällen der Optimalwert erreicht, was in der Natur der Sache eines meta-
heuristischen Verfahrens lieg. Die Fehlerrate ist jedoch akzeptierbar, wobei Fehlerrate die
Fälle bezeichnet, in denen der Algorithmus nicht das Optimum findet. Je größer die Zahl
der Shares, desto stärker nähert sich die Fehlerrate 0% an. Szenario 2-c wurde schließlich
ebenfalls mit evolutionären Algorithmen gelöst. Zwar existiert auch hierfür eine Heuristik,
jedoch liegt ihre Fehlerrate zu hoch.
Szenario 2 ist praktisch relevant vor allem für den Fall, dass mit schon erzeugten Shares
umgegangen werden muss. Dies tritt beispielsweise dann auf, wenn die Shares auf einem
mobilen Gerät erzeugt werden, die Erstellung des Platzierungsplans dann aber auf einem

98

5.2 Ausblick

anderen Gerät oder Server erfolgt. Vor allem für ein leistungsschwächeres mobiles Gerät
könnte eine exakte Berechnung durch die exponentielle Komplexität mittels des für 2-b
vorgestellten Backtracking-Verfahrens schon für kleine Anzahlen von Providern proble-
matisch sein. Treten viele Provider auf, bleibt nichts anderes übrig, als die Heuristik zur
Platzierungsberechnung zu verwenden und eine gewisse Fehlerrate zu akzeptieren. Für
Szenario 2-d wird von vorne herein zu einem metaheuristischen Verfahren geraten. Es liegt
im Wesen NP-schwerer Probleme, diese Herangehensweise notwendig zu machen.

5.2 Ausblick

Da aus der praktischen Anwendung heraus auf eine sehr theoretische Fragestellung, nämlich
auf ein vermutlich neues Zuweisungsproblem gestoßen wurde, finden sich hier einige
Anknüpfungspunkte. Auch weil viel Zeit für die Suche nach einer guten Heuristik investiert
wurde, sind einige Aspekte in diesem Rahmen nicht bearbeitet worden. Im Folgenden findet
sich ein Überblick.

Da es sich beim BaGAP um ein Zuweisungsproblem handelt, das nach bestem Wissen noch
nicht in der Literatur behandelt wurde, steht eine algorithmentheoretische Bearbeitung dieses
Problems noch aus. Darunter verstehe ich vor allem die genaue theoretische Bearbeitung des
Problems, das Beleuchten verschiedener Lösungsmöglichkeiten in einem theoretischen Sinne
und die Abschätzung von Approximationsalgorithmen durch Methoden der theoretischen
Informatik.

Darüber hinaus wäre es fruchtbar, neben den hier vorgestellten evolutionären Algorithmen
zur Lösung noch weitere Metaheuristiken, wie z.B. die simulierte Abkühlung, zu imple-
mentieren und zu vergleichen. Speziell die simulierte Abkühlung, welche allgemein auch
zuverlässige Näherungsergebnisse liefert, könnte etwas schneller sein als die hier vorgestell-
ten evolutionären Algorithmen. Zur Abwägung wäre ein genauer Vergleich von Korrektheit
und Geschwindigkeit der Verfahren nötig.

Des Weiteren wäre eine Implementierung und Evaluation unter realen Bedingungen nötig,
da die vorgestellten Konzepte auf mobiler Hardware wie Smartphones laufen sollten, weil
die Erzeugung und somit auch die Erstellung des Platzierungsplans dort stattfindet. Dies
wäre wichtig, weil dadurch weitere Messwerte über das Zeitverhalten der Algorithmen
vorliegen würden und sich so Rückschlüsse für die Praxis liefern ließen.

99

Literaturverzeichnis

[ACD+
07] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, P. Samarati.

Location privacy protection through obfuscation-based techniques. In Proceedings
of the 21st annual IFIP WG 11.3 working conference on Data and applications security,
pp. 47–60. Springer-Verlag, Berlin, Heidelberg, 2007. (Zitiert auf den Seiten 21

und 26)

[AP97] S. Arora, M. C. Puri. A variant of time minimizing assignment problem. European
Journal of Operational Research, 110(2):314–325, 1997. (Zitiert auf den Seiten 43

und 60)

[BDM09] R. Burkhard, M. Dell’Amico, S. Martello. Assignment Problems. siam, 2009. (Zitiert
auf den Seiten 36, 39, 40 und 41)

[CLRS04] T. H. Cormen, C. E. Leiserson, R. Rivest, C. Stein. Algorithmen - Eine Einfüh-
rung. Oldenbourg Wissenschaftsverlag GmbH, München, 2004. (Zitiert auf den
Seiten 32, 39 und 67)

[CVW92] D. G. Cattrysse, L. N. Van Wassenhove. A survey of algorithms for the generali-
zed assignment problem. European Journal of Operational Research, 60(3):260–272,
1992. (Zitiert auf Seite 42)

[DF03] J. E. Dobson, P. F. Fisher. Geoslavery. Technology and Society Magazine, IEEE,
22(1):47–52, 2003. (Zitiert auf den Seiten 23 und 24)

[DK06] M. Duckham, L. Kulik. Location privacy and location-aware computing. In
J. Drummond, R. Billen, D. Forrest, E. Joao, editors, Dynamic & Mobile GIS:
Investigating Change in Space and Time, chapter 3, pp. 34–51. CRC Press, Boca
Rator, FL, 2006. (Zitiert auf den Seiten 15, 23, 25 und 26)

[DS03] M. Dorigo, T. Stützle. The Ant Colony Optimization Metaheuristic: Algorithms,
Applications, and Advances. Handbook of Metaheuristicse, 57, 2003. (Zitiert auf
Seite 36)

[DSR11] F. Dürr, P. Skvortsov, K. Rothermel. Position Sharing for Location Privacy in
Non-trusted Systems. In 2011 IEEE International Conference on Pervasive Computing
and Communications (PerCom), Seattle (March 21-25, 2011). 2011. (Zitiert auf den
Seiten 9, 16, 17, 19, 21, 22, 25, 26, 28, 45, 46, 47, 52, 97 und 98)

101

Literaturverzeichnis

[Egl90] R. W. Eglese. Simulated annealing: A tool for operational research. European
Journal of Operational Research, 46(3):271 – 281, 1990. (Zitiert auf den Seiten 34

und 35)

[Gut06] A. Gutscher. Coordinate transformation - a solution for the privacy problem
of location based services? In Proceedings of the 20th international conference on
Parallel and distributed processing, IPDPS’06, pp. 354–354. IEEE Computer Society,
Washington, DC, USA, 2006. (Zitiert auf den Seiten 9, 26 und 27)

[Gut07] A. Gutscher. A Trust Model for an Open, Decentralized Reputation System. In
Proceedings of the Joint iTrust and PST Conferences on Privacy Trust Management and
Security (IFIPTM 2007). 2007. (Zitiert auf Seite 48)

[HMU03] J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to automata theory, languages,
and computation - international edition (2. ed). Addison-Wesley, 2003. (Zitiert auf
den Seiten 32 und 42)

[Hu82] T. C. Hu. Combinatorial Algorithms. Addison-Weslex, 1982. (Zitiert auf den
Seiten 30 und 33)

[LW66] E. L. Lawler, D. E. Wood. Branch-And-Bound Methods: A Survey. Operations
Research, 14(4):699–719, 1966. (Zitiert auf Seite 33)

[MCA01] F. M. Müller, M. M. Camozzato, O. C. B. de Araujo. Exact Algorithms for the
Imbalanced Time Minimizing Assignment Problem. Electronic Notes in Discrete
Mathematics, 7:122–125, 2001. (Zitiert auf Seite 43)

[MN88] J. B. Mazzola, A. W. Neebe. Bottleneck generalized assignment problems. Enginee-
ring Costs and Production Economics, 14(1):61–65, 1988. (Zitiert auf den Seiten 42,
43 und 60)

[MN92] J. B. Mazzola, A. W. Neebe. An algorithm for the bottleneck generalized assi-
gnment problem. Comput. Oper. Res., 20:355–362, 1992. (Zitiert auf den Seiten 42

und 43)

[MPTW84] S. Martello, W. R. Pulleyblank, P. Toth, D. de Werra. Balanced optimization
problems. Operations Research Lett., 3:275–278, 1984. (Zitiert auf den Seiten 40

und 41)

[MRF+
03] S. K. Mostéfaoui, O. Rana, N. Foukia, S. Hassas, G. D. Marzo, C. V. Aart, A. Ka-

rageorgos. Self-Organising Applications: A Survey. Engineering Self-Organising
Applications, First International Workshop, ESOA 2003. Melbourne, Victoria, July 15th,
2003. Workshop Notes, pp. 62–69, 2003. (Zitiert auf Seite 36)

[MT90] S. Martello, P. Toth. Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Chichester, NY, revised edition, 1990. (Zitiert auf den
Seiten 30, 33, 41 und 42)

102

Literaturverzeichnis

[MT95] S. Martello, P. Toth. The bottleneck generalized assignment problem. European
Journal of Operational Research, 83(3):621 – 638, 1995. (Zitiert auf den Seiten 42

und 43)

[Nis97] V. Nissen. Einführung in evolutionäre Algorithmen: Optimierung nach dem Vorbild
der Evolution. Braunschweig: Vieweg, 1997. (Zitiert auf Seite 35)

[Pen05] D. W. Pentico. Assignment problems: A golden anniversary survey. European
Journal of Operational Research, 176(2):774–793, 2005. (Zitiert auf den Seiten 40, 41

und 42)

[RDD+
03] K. Rothermel, D. Dudkowski, F. Dürr, M. Bauer, C. Becker. Ubiquitous Compu-

ting - More than Computing Anytime Anyplace? In D. Fritsch, editor, Photogram-
metric Week, pp. 3–11. Stuttgart, Germany, 2003. (Zitiert auf Seite 15)

[REF+
06] K. Rothermel, T. Ertl, D. Fritsch, P. Kühn, B. Mitschang, E. Westkämper, C. Be-

cker, D. Dudkowski, A. Gutscher, C. Hauser, L. Jendoubi, D. Nicklas, S. Volz,
M. Wieland. SFB 627 Umgebungsmodelle für mobile kontextbezogene Syste-
me. Informatik - Forschung und Entwicklung, pp. 105–113, 2006. (Zitiert auf den
Seiten 15 und 16)

[RM98] A. Regenbogen, U. Meyer. Wörterbuch der philosophischen Begriffe, chapter Ubi-
quität, p. 682. Wissenschaftliche Buchgesellschaft: Darmstadt, 1998. (Zitiert auf
Seite 15)

[RM03] B. Rao, L. Minakakis. Evolution of mobile location-based services. Commun.
ACM, 46:61–65, 2003. (Zitiert auf Seite 22)

[RPB09] D. Riboni, L. Pareschi, C. Bettini. Privacy in Georeferenced Context-Aware
Services: A Survey. In C. Bettini, S. Jajodia, P. Samarati, X. Wang, editors, Privacy
in Location-Based Applications, volume 5599 of Lecture Notes in Computer Science,
pp. 151–172. Springer Berlin / Heidelberg, 2009. (Zitiert auf Seite 25)

[SDfMb09] A. Solanas, J. Domingo-ferrer, A. Martínez-ballesté. Location Privacy in Location-
Based Services: Beyond TTP-based Schemes. In C. Bettini, S. Jajodia, P. Samarati,
X. Wang, editors, Privacy in Location-Based Applications, volume 5599 of Lecture
Notes in Computer Science, pp. 151–172. Springer Berlin / Heidelberg, 2009. (Zitiert
auf Seite 25)

[Tan03] A. S. Tanenbaum. Computernetzwerke. Pearson Studium, München, 2003. (Zitiert
auf Seite 23)

[VK08] J. Vygen, B. Korte. Kombinatorische Optimierung: Theorie und Algorithmen. Springer,
Berlin, 2008. (Zitiert auf den Seiten 11, 30, 31, 32, 33, 34 und 75)

103

Literaturverzeichnis

[VTV+
01] K. Virrantaus, H. Tirri, J. Veijalainen, J. Markkula, A. Katanosov, A. Garmash,

V. Terziyan. Developing GIS-Supported Location-Based Services. In Proc. of WGIS
2001, volume 2, p. 66. IEEE Computer Society, 2001. (Zitiert auf den Seiten 21

und 22)

[Wei91] M. Weiser. The Computer for the Twenty-First Century. Scientific American,
265(3):94–104, 1991. (Zitiert auf Seite 15)

[Wei02] K. Weicker. Evolutionäre Algorithmen. Teubner, Stuttgart, 2002. (Zitiert auf den
Seiten 9, 34, 35, 36, 62 und 77)

[Wes67] A. F. Westin. Privacy and Freedom. Atheneum, New York, 1967. (Zitiert auf
Seite 23)

Alle URLs wurden zuletzt am 28.04.2011 geprüft.

104

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Björn Schembera)

	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Szenarien
	1.4 Der Gang der Untersuchung

	2 Theoretische Grundlagen und verwandte Arbeiten
	2.1 Location-based Services
	2.2 Sicherheit der Privatsphäre in Location-based Services
	2.2.1 Zugriffskontrolle
	2.2.2 Verschlüsselung
	2.2.3 k-Anonymity
	2.2.4 Räumliche Verschleierung
	2.2.5 Koordinatentransformation
	2.2.6 Verteilung der Positionsinformation
	2.2.7 Taxonomie der Sicherheitsverfahren

	2.3 Kombinatorische Optimierung
	2.3.1 Definition und Eigenschaften
	2.3.2 Algorithmische Lösungsansätze
	2.3.3 Zuweisungsprobleme
	Klassische Zuweisungsprobleme
	Generalisierte Zuweisungsprobleme

	3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen
	3.1 Systemmodell
	3.1.1 Trust Database

	3.2 Problemstellung und Anforderungen
	3.3 Platzierungsstrategien
	3.3.1 Szenario 1: Nicht vordefinierte Anzahl von Shares
	3.3.2 Szenario 2: Vordefinierte Anzahl von Shares
	Formalisierung der Problemstellung als Zuweisungsproblem
	Komplexität des Problems: NP-schwer
	Diskussion der Lösungsansätze

	3.3.3 Tabellarische Zusammenfassung der Lösungskonzepte

	3.4 Implementierung

	4 Evaluation
	4.1 Evaluationsbedingungen
	4.2 Szenario 2-b
	4.2.1 Korrektheit
	4.2.2 Geschwindigkeit

	4.3 Szenario 2-c
	4.4 Szenario 2-d
	4.4.1 Korrektheit
	4.4.2 Geschwindigkeit
	4.4.3 Konvergenz
	4.4.4 Initiale Heuristik

	5 Fazit
	5.1 Zusammenfassung und Diskussion
	5.2 Ausblick

	Literaturverzeichnis

