Institut fir Parallele und Verteilte Systeme
Abteilung Verteilte Systeme

Universitat Stuttgart
Universitatsstraf3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3102

Platzierungsoptimierung far
vertrauliche Verwaltung der
verteilten Positionsinformationen

Bjorn Schembera

Studiengang: Informatik

Prifer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Betreuer: M. Sc. Pavel Skvorzov

begonnen am: 2.November 2010

beendet am: 4.Mai 2011

CR-Klassifikation: C.24,G.1.6,1.2.8,K4.1

Abstract

Die vorliegende Arbeit beschéftigt sich mit der Sicherheit der Privatsphére bei Location-based
Services. Solche Dienste erlauben es den Nutzern mobiler Gerédte wie Smartphones, Informa-
tionen zur Umgebung zu erhalten (z.B. welche Restaurants sich in der Ndhe befinden). Dabei
muss die Positionsinformation des Benutzers stets bekannt sein. Hier wird das Anliegen nach
Privatsphére ein zentrales: Wer kann zu welcher Zeit wie auf Positionsdaten zugreifen? Es
besteht das Problem, dass der Speicherort dieser Positionsinformation (Provider) kompromit-
tiert sein oder es sich um einen nicht vertrauenswiirdigen Provider handeln kann. In diesem
Fall ist es Dritten technisch moglich, unautorisiert iiber Positionsinformation zu verfiigen.
Dieses Sicherheitsrisiko kann minimiert werden, indem die Positionsinformation zu Teilen
(Shares) auf autonome Provider verteilt wird, so dass sich die exakte Position nur aus allen
Teilen rekonstruieren ldsst. Der Ansatz ist somit eine Verteilung der Positionsinformationen.
Dieses bereits entwickelte System wird im Rahmen dieser Diplomarbeit so erweitert, dass
abhingig von den Parametern (Vertrauen, Risiko, usw.) unterschiedlich viele Teile auf dem
jeweiligen Provider platziert werden — dadurch kénnen unterschiedliche Sicherheitsbedenken
bei diesen Providern ausbalanciert werden und eine wenigstens angemessene, d.h. konstante
Verschlechterung der Privatsphére bei zunehmender Zahl kompromittierter Server erreicht
werden. Keine Instanz des Systems ist tiberproportional kritischer Punkt im Bezug auf
Privatsphare.

Hierzu wurde das System zundchst um eine Trust Database erweitert, in der die Vertrau-
enswerte der Provider gehalten und verwaltet werden. In der vorliegenden Diplomarbeit
werden Losungsansitze fiir die optimale Sicherheit hinsichtlich verschiedener Szenarien bei
verteilter Positionsinformation erortert. Ein Szenario ist ein Zuweisungsproblem aus der
Klasse der kombinatorischen Optimierung und ist im Allgemeinen schwer zu handhaben.
Hierfiir werden algorithmische Losungsansitze erarbeitet und evaluiert.

Danksagung

Zundchst mochte ich meinem Betreuer Pavel Skvorzov fiir die gute Zusammenarbeit danken.
Er fand immer die Zeit, Probleme auch im Detail zu diskutieren.

Fiir das sorgfiltige Probelesen und die vielen konstruktiven Anmerkungen danke ich Kaja
und Amir herzlich.

SchliefSlich mochte ich natiirlich meinen Eltern danken, fiir die fortwihrende Unterstiit-
zung wahrend des Studiums und daftir, dass sie mir 1997 mein erstes Programmierbuch
schenkten.

Inhaltsverzeichnis

2

Einleitung

1.1 Motivation o
1.2 Aufgabenstellung L L.
1.3 Szenarien

1.4

Der Gang der Untersuchung

Theoretische Grundlagen und verwandte Arbeiten
Location-based Services
Sicherheit der Privatsphére in Location-based Services

2.1
2.2

2.3

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

Zugriffskontrolle L
Verschliisselung
k-Anonymity L
Raumliche Verschleierung
Koordinatentransformation
Verteilung der Positionsinformation
Taxonomie der Sicherheitsverfahren

Kombinatorische Optimierung

2.3.1
2.3.2
2.3.3

Definition und Eigenschaften
Algorithmische Losungsansdtze
Zuweisungsprobleme
Klassische Zuweisungsprobleme
Generalisierte Zuweisungsprobleme

Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen
Systemmodell

3.1

3.2
33

3.1.1

Trust Database

Problemstellung und Anforderungen
Platzierungsstrategien

3.3.1
3.3.2

333

Szenario 1: Nicht vordefinierte Anzahl von Shares . .
Szenario 2: Vordefinierte Anzahl von Shares

Formalisierung der Problemstellung als Zuweisungsproblem

Komplexitit des Problems: NP-schwer
Diskussion der Losungsansadtze
Tabellarische Zusammenfassung der Losungskonzepte

15
15
17
18
19

21
21
23
25
25
25
26
26
28
29
30
30
33
36
39
41

45

45
47
51
53
54
59

59
60

61
81

3.4 Implementierung L L L

4 Evaluation

4.1 Evaluationsbedingungen L o L L
4.2 Szenario 2-b
4.2.1 Korrektheit
4.2.2 Geschwindigkeit L.
4.3 Szenario 2-C
4.4 Szenario 2-d L
4.4.1 Korrektheit
4.4.2 Geschwindigkeit 0oL
443 Konvergenz o
4.4.4 Initiale Heuristik o oo
5 Fazit
5.1 Zusammenfassung und Diskussion00 ..
52 Ausblick

Literaturverzeichnis

85
85
86
86
88
90
91
91
91
92
93

97

97
99

101

Abbildungsverzeichnis

1.1

2.1

2.2
2.3

2.4
2.5
2.6

2.7
2.8

2.9

3.1
3.2
3-3

3-4
3.5

37

3.8

39

Angemessene konstante Verschlechterung der Privatsphére. 17

Die prinzipielle Systemarchitektur bei LBS, bestehend aus mobilem Geriit,

Positionierungssystem, Location Server und Ortsbezogener Anwendung. 22
Schematische Darstellung von k-Anonymity mitk =10. 26
Darstellung der raumlichen Verschleierung der Position. Die exakte Position

wird unscharf und entspricht einer Aufenthaltswahrscheinlichkeit. 27
Koordinatentransformation schematisch dargestellt: Reprasentation des Punk-

tes 7 in zwei Unterschiedlichen Koordinatensystemen k4 und kg [Guto6]. . . . 27
Darstellung der Genauigkeitsvergroerung bei Share-Fusion. p; gibt die Posi-

tion nach Fusion der j-ten Share an, ¢; die Genauigkeit [DSR11]. 28
Taxonomie der Sicherheitskonzepte bei LBS. 29
Schematische Darstellung des Behilterproblems. 31
Zyklus von evolutiondren Algorithmen nach [Weio2]. 36
Exemplarische Zuweisung nach Zuweisungsmatrix (2.7) zwischen zwei Men-

genlU = {a,b,c} und V = {a’,V’, ¢’} mit jeweils drei Elementen 37
Darstellung der Systemarchitektur von Diirr und Skvorzov [DSR11]. 46
Um die Trust Database erweiterte Systemarchitektur. 48

(a) Optimaler Fall der Verteilung, wenn Exaktheit der Positionsrekonstruktion
konstant ansteigt. (b) Nicht-optimaler Fall der Verteilung, da bei dem ersten

kompromittierten Server sich eine genauere Position rekonstruieren liefle. . . . 52
Rechtfertigung der minA-Auswahlstrategie. Korrekter Fall. 69
Rechtfertigung der minA-Auswabhlstrategie. Widerspriichlicher Fall. 69

Motivation fiir das zweite Kriterium , minimales Maximum®“fiir den Algo-
rithmus von Szenario 2-b: Links im Bild ohne dieses Kriterium, rechts mit

diesem.o 69
Rechtfertigung der Selektionsstrategie des Algorithmus fiir Szenario 2-b, die
bei gleichen A- und Summenwerten das grofsere Element auswéahlt. 70
Problematischer Fall des Algorithmus fiir Szenario 2-b, schematische Darstel-
lung. 71
Ahnlichkeit von Szenario 2-c zum Behilterproblem. 74

10

4.1
4.2
4.3
4-4
4.5
4.6
4.7
4.8

49

Szenario 2-b: Fehlerrate der Heuristik (Deaktiviertes Backtracking) fiir m = 4
und m =8 Provider. L L
Szenario 2-b: Geschwindigkeit des exakten Algorithmus mit m = 4 und m = 8
Providern. Naive Methode zum Vergleich. Logarithmische Skalierung.
Szenario 2-b: Geschwindigkeit der Heuristik fiir verschiedene Anzahlen von
Providernm.
Szenario 2-c: Fehlerrate bei Anwendung eines evolutiondren Algorithmus bei
m=4Providern.
Szenario 2-d: Fehlerrate des evolutiondren Algorithmus fiir verschiedene
Anzahlen von Providernm.
Szenario 2-d: Laufzeitverhalten des evolutiondren Algorithmus fiir verschie-
dene Anzahlen von Providernm.o ...
Szenario 2-d: Konvergenz des evolutiondren Algorithmus zum Optimalwert
bei geringer Streuung des Risikos. m = 5 Provider und n = 12 Shares.
Szenario 2-d: Konvergenz des evolutiondren Algorithmus zum Optimalwert
bei starker Streuung des Risikos. m = 5 Provider und n = 12 Shares.
Szenario 2-d: Vergleich zweier Heuristiken fiir die initiale Population beim
evolutiondren Algorithmus mit m = 4 Providern

Tabellenverzeichnis

1.1

3.1
3.2
33
3-4
3-5
3.6
37
3.8

Ubersicht iiber die unterschiedlichen Szenarien 18
Schematische Darstellung der Tabelle der Trust Database mit Risikowerten . . 48
Beispielhafte Darstellung der Tabelle der Trust Database 50
Ubersicht iiber die unterschiedlichen Szenarien 53
Erklarung der Variablen in Szenario1, 54
Ubersicht iiber die Ergebnisse in Szenario 1. 58
Beispielhafte Gewichtungen fiir Fall2-d 76
Ubersicht iiber die behandelten Losungsansétze. 81
Ubersicht tiber die Laufzeitkomplexitdten, wobei m die Zahl der Provider und

n die Zahl der Shares darstellt. 81

Verzeichnis der Algorithmen

2.1

3.1
3.2
33

First-Fit Algorithmus nach [VKo8] 32
Exakter Algorithmus fiir Szenario2-b, 65
Heuristik fiir Szenario 2-¢ 75
Evolutiondrer Algorithmus fiir Szenario2-d 8o

11

Abkurzungsverzeichnis

NP Komplexitdtsklasse der nichtdeterministisch-polynomiellen Zeit
P Komplexitadtsklasse der deterministisch-polynomiellen Zeit
ABGAP Agent Bottleneck Generalized Assignment Problem

N Assignment Problem, Zuweisungsproblem

BaGAP Balanced Generalized Assignment Problem

BAP Bottleneck Assignment Problem

BGAP Bottleneck Generalized Assignment Problem

BOP Balanced Optimization Problem

GAP Generalized Assignment Problem, Generalisiertes Zuweisungsproblem
LBS Location-based Service, Standortbezogener Dienst

LS ...l Location Server

POI Point of Interest

TBGAP Task Bottleneck Generalized Assignment Problem

12

Variablenverzeichnis

Variable | Erklarung

m Anzahl der Provider

n Anzahl der Shares

I Menge aller Provider I = {1,2,--- ,m}

J Menge aller Shares | = {1,2,--- ,n}

i Ziahlvariable fiir Provider, i € |

j Zahlvariable fiir Shares, j € |

T Risiko des Providers i

Ti(start) Initiales, frei wéahlbares Risiko des Providers i, wobei ;) € [0, 1]
S Gewichtung der Share j

Si Sharerisiko aller einem Provider i zugeordneter Shares

n; Zahl der Shares auf dem Provider i

R; Fragilitat eines Providers i (spezifisches Sicherheitsrisiko)

A Die Differenz zwischen grofitem und kleinstem Fragilitatswert

Cij Kosten fiir eine Zuweisung von Objekt/Share i auf Objekt/Provider j, ¢;; € N
Xij Zuweisung von Objekt/Share i auf Objekt/Provider j, x;; € B

X Zuweisungsmatrix X = (x;;)

C Kostenmatrix C = (c;)

XgaA Als Genom codierte Zuweisung in Form eines Vektors

t Der Generationenzihler der evolutiondren Algorithmen

13

1 Einleitung

1.1 Motivation

In seinem bahnbrechenden Aufsatz , The Computer for the 21st Century” [Weig1] schrieb
Mark Weiser 1991 von seiner Vision des Ubiquitous Computing — einer Vorstellung, wonach
der wesentliche Fortschritt der Informationstechnologie im 21. Jahrhundert darin bestiinde,
dass die Computerisierung zunehmend unsichtbar und somit in das Alltdgliche Einzug
halten werde. Als technologische Grundlage fiir diese Entwicklung macht Weiser giinstige,
energieeffiziente und kleine Endgerite, ein Kommunikationsnetzwerk zwischen diesen
Geriten sowie eine Software-Anwendung aus. Vor allem die ersten beiden Aspekte finden
sich heute in der mafienhaften Verbreitung von Smartphones realisiert — zumindest teilweise,
weil die Gerdte zwar ubiquitdr’, d.h. allgegenwiértig sind, aber nach wie vor bewusst genutzt
werden und noch nicht in den ,,Hintergrund getreten” sind, wie es der Kern seiner Vision
vorsieht. 1991 schreibt Mark Weiser:

Heutzutage haben Computer keinerlei Wissen von ihrer Position und Umgebung. Wenn
ein Computer lediglich wiifSte, in welchem Raum er sich befinde, konnte er sein Verhalten
in spezifischer Weise anpassen, ohne dass auch nur eine Spur kiinstlicher Intelligenz
notig wire.” [Weig1] (eigene Ubersetzung)

In Zukunft soll der Kontext, in dem ein Computer genutzt wird, das Programmverhalten
beeinflussen®. Unter Kontext ldsst sich abstrakt ein Zusammenhang zwischen verbundenen
Teilen verstehen, welche die Situation eines Individums — oder genereller einer Entitat
— charakterisieren, also die Gesamtheit ihrer physischen, physiologischen und sozialen
Gegebenheiten [RDD 03] [DKo6]. In der vorliegenden Arbeit wird Kontext als physischer
Zusammenhang zwischen dem Raum und einem Individuum verwendet. Kontext entspricht
im Folgenden also der Position eines Individuums oder einer Entitat. Mittels der Position
als Kontext soll sich das Verhalten des Computersystems an die momentane Umgebung
anpassen oder Informationen dazu liefern. 1991 war man noch weit davon entfernt, die
Positionsinformationen von Gerédten einfach bestimmen zu kénnen. Heute, 20 Jahre spéter,
ist es technisch kein Problem mehr, die Positionen selbst von mobilen Geridten zu orten:

"Der Begriff ,, Ubiquitat” kommt eigentlich aus dem Bereich der Theologie und bezeichnete die Allgegegenwart
Gottes, wobei Gott als physikalisch nicht lokalisierbar geglaubt wird [RMg8].
2Daher wird auch von context-based- oder context-aware computing gesprochen [REFT06] [DKo6] [RDD " 03].

15

1 Einleitung

Eine Vielfalt von Moglichkeiten ist vorhanden und sogar die Bestimmung von Positionen
innerhalb von Raumen ist handhabbar.

Der Forschungsbereich, in den diese Diplomarbeit eingebettet ist, ist das Nexus-Projekt3
des Sonderforschungsbereichs 627 ,Umgebungsmodelle fiir mobile kontextbezogene An-
wendungen” [REFT06]. Dort soll durch Kontextinformationen ein Umgebungsmodell der
Welt geschaffen werden, das Mark Weisers oben skizzierten Vision nahe kommt.

Eine zentrale Stellung innerhalb dieses Projekts nehmen Location-based Services ein. Location-
based Services sind Dienste, die einem mobilen Nutzer Informationen bezogen auf seinen
gegenwartigen Standort liefern. Bei diesen Informationen kann es sich beispielsweise um
eine Liste aller Sehenswiirdigkeiten in einem gewissen Umkreis des Nutzers handeln.

Die Position des Nutzers muss der Instanz, die die Positionen verwaltet, stets bekannt sein,
um solche Dienste anbieten zu konnen. Aus diesem Grund handelt es sich bei Location-
based Services um eine sensible Technologie in Bezug auf die Privatsphdre der Nutzer.
Eine Aufgabe von Location-based Services ist es demnach, die Privatsphdre so gut wie
moglich im Rahmen der technischen Mdoglichkeiten zu schiitzen. Dabei gibt es mehrere
Verfahren, die von vertrauenswiirdigen Instanzen zur Lagerung der Positionsinformation
ausgehen. Das Manko dieser Verfahren ist allerdings die Annahme der Vertrautheit, denn
die Instanz kann einerseits von aufien kompromittiert sein, andererseits kann es auch von
innerhalb des Systems zu unautorisiertem Zugriff kommen, z.B. durch von vornherein nicht
vertrauenswiirdige Firmen oder totalitdre staatliche Institutionen.

Um diesen Schwichen beizukommen, wurden innerhalb des Nexus-Projekts Verfahren
entwickelt, die mit mehreren unabhingigen Instanzen zur Speicherung der Positionsin-
formation, genannt Provider, arbeiten [DSR11]. Das Risiko soll verringert werden, indem
die exakte Positionsinformation in mehrere Teile aufgeteilt wird. Diese Teile werden auch
als Shares bezeichnet. Die Shares werden dann auf die Provider aufgeteilt. Sicherheit der
Privatsphére soll erreicht werden, weil es unwahrscheinlich ist, dass alle Server gleichzeitig
kompromittiert sind. Selbst wenn einer dieser Server gehackt wiirde, liefSe sich nur eine
ungenaue Position rekonstruieren.

3Projektwebsite: http:/ /www.nexus.uni-stuttgart.de, Zugriff 16.4.2011

16

1.2 Aufgabenstellung

1.2 Aufgabenstellung

Im Rahmen dieser Diplomarbeit soll das Systemmodell in [DSR11], welches mit mehre-
ren Location Servern arbeitet, zundchst so erweitert werden, dass mit jedem Provider, der
Positionsinformationen speichert, ein Risikowert assoziiert wird. Auflerdem konnen die
Shares gewichtet und beide Fille kombiniert werden. Da jede Zuweisung einer Share auf
einen Provider einen anderen Faktor liefert, um den die Genauigkeit der Position verfeinert
wird, kommt es auf die getroffenen Zuweisungen an, wie genau die exakte Position bei
kompromittierten Providern rekonstruiert werden kann.

Konkret miissen dabei einem Provider, der ein hohes Sicherheitsrisiko aufweist, relativ weni-
ger Positionsinformationen zugewiesen werden als einem, der ein niedriges Sicherheitsrisiko
hat. Eine gleichférmige Verteilung von Sicherheitsrisiken zwischen den Servern ist erwiinscht
und Balance von entscheidender Bedeutung. Die Aufgabe ist folglich, die Positionsinforma-
tionen so auf die Provider zu verteilen, dass die Sicherheitsrisiken ausbalanciert werden.
Dieser optimale Zustand ist in Ausdruck (1.1) formalisiert.

R1:R2:"-:Rm (1.1)

Sind die Shares ungewichtet, soll damit erreicht werden, dass risikoreiche Provider, deren
Kompromittierung wahrscheinlicher ist, weniger Shares bekommen als vertraute Provider.
Sind die Shares gewichtet, wird durch den Balancezustand eine wenigstens angemessene
Verschlechterung (engl. graceful degradation) der Privatsphdre bei zunehmender Zahl der
kompromittierten Server erreicht, was in Abbildung 1.1 dargestellt und folgendermafien
motiviert ist: Bei k kompromittierten Servern kann eine nur um einen konstanten Faktor
hohere Genauigkeit der Position ermittelt werden — so gibt es keinerlei Flaschenhals im
System, der die Sicherheit tiberproportional beeintrachtigt, falls jener Server kompromittiert

wird.
1 ’7 1t ’7
§ Imf — 2 Imt —
2m 2m
Um - Um
1 2 3 - m 1 2 3 - m

Zahl kompromittierter Server Zahl kompromittierter Server
(a) Optimaler Fall (b) Nicht-optimaler Fall

Abbildung 1.1: Angemessene konstante Verschlechterung der Privatsphére.

17

1 Einleitung

1.3 Szenarien

Die Aufgabenstellung wird auf zwei Szenarien bezogen, wobei diese im Folgenden kurz
eingefiihrt werden. In jedem Szenario ist die Zahl der Provider als gegeben anzunehmen.

Szenario 1 In Szenario 1 wird davon ausgegangen, dass die Zahl der Shares und somit
auch deren Gewichtungen frei withlbar sind.

Szenario 2 In Szenario 2 wird davon ausgegangen, dass neben der Anzahl der Provider
auch die Anzahl der Shares vorgegeben ist. Damit sind auch die Gewichtungen der Shares als
gegeben zu betrachten.

Teilszenarien Jedes Szenario differenziert sich noch wie oben angedeutet in Teilszenarien,
wonach entweder Provider (b), Shares (c) oder beide (d) gewichtet sind. Auch der Fall, dass
beide ungewichtet (a) sind, wird der Vollstandigkeit halber betrachtet. In Tabelle 1.1 sind die
Szenarien iiberblicksartig dargestellt.

Anzahl der Shares

Szenario 1: nicht vordefiniert Szenario 2: vordefiniert
Fall | Providerrisiken | Sharerisiken || Fall | Providerrisiken | Sharerisiken
1-a | gleich gleich 2-a | gleich gleich
1-b | gewichtet gleich 2-b | gewichtet gleich
1-c | gleich gewichtet 2-c | gleich gewichtet
1-d | gewichtet gewichtet 2-d | gewichtet gewichtet

Tabelle 1.1: Ubersicht iiber die unterschiedlichen Szenarien

18

1.4 Der Gang der Untersuchung

1.4 Der Gang der Untersuchung

Im folgenden zweiten Kapitel werden die theoretischen Grundlagen dieser Arbeit beschrie-
ben sowie die verwandten Arbeiten vorgestellt. Dabei wird einerseits auf die Location-based
Services eingegangen, die den Rahmen dieser Arbeit bilden. Andererseits wird die kombinato-
rische Optimierung erldautert, die das Fundament fiir unsere Problemstellung bildet. Es wird
auch auf verwandte Problemstellungen sowie auf spezielle und generelle Losungsmoglich-
keiten eingegangen.

Im konzeptuellen Kapitel 3 wird zunéchst das Systemmodell vorgestellt, was eine bisherige
Entwicklung [DSR11] um eine Trust Database erweitert. Dann wird die Problemstellung selbst
expliziert und die Anforderungen an das System werden spezifiziert.

Die eigentliche Problemstellung, nimlich die Platzierung der Shares auf den Servern derart,
dass Sicherheitsrisiken ausbalanciert werden, wird anhand der beiden Szenarien konkret
behandelt. Fiir Szenario 2, in dem neben der Anzahl der Provider auch die Anzahl der
Shares und deren Gewichte als fest angenommen werden miissen, wird die Problemstel-
lung als Zuweisungsproblem formalisiert und es wird gezeigt, dass es sich dabei um ein
NP-schweres Problem handelt. SchliefSlich werden die Unterklassen des Problems behandelt
und algorithmische Losungsanséitze erarbeitet.

In Kapitel 4 folgt die Evaluation der im dritten Kapitel vorgeschlagenen Konzepte.

Das letzte Kapitel fasst die Ergebnisse der Arbeit kritisch zusammen, stellt Ankniipfungs-
punkte vor und liefert einen Ausblick.

19

2 Theoretische Grundlagen und verwandte
Arbeiten

In diesem Kaptitel werden die theoretischen Grundlagen, die fiir diese Arbeit von Bedeutung
sind, dargestellt sowie auf die verwandten Arbeiten eingegangen. Dabei teilt sich dieses
Kapitel in zwei Hauptabschnitte.

Zundchst werden in Abschnitt 2.1 Location-based Services vorgestellt, die den Hintergrund
der vorliegenden Arbeit bilden. Dabei wird besonderes Augenmerk auf die Sicherheit der
Privatsphdre bei Location-based Services gelegt. Location-based Services werden definiert
und abgegrenzt, um dann auf die einzelnen Ansidtze zur Wahrung der Privatsphére in
Teil 2.2 ndher einzugehen.

Abschnitt 2.3 erldutert das theoretische Fundament unserer Problemstellung, namlich die
kombinatorische Optimierung. Diese wird zundchst definiert und das Problem der Komplexitét
bei kombinatorischen Fragestellungen expliziert. Dann werden verschiedene algorithmische
Losungsansétze vorgestellt sowie deren Vor- und Nachteile besprochen. Schlieslich wird
auf Zuweisungsprobleme, einer speziellen Unterklasse der kombinatorischen Optimierung
eingegangen, da sich die Problemstellung dieser Diplomarbeit als Zuweisungsproblem
formalisieren lasst.

2.1 Location-based Services

Unter Location-based Service (LBS) versteht man einen mobilen Dienst, der dem Nutzer
standortsbezogene Informationen liefert [VIV'o1] [DSR11] [ACD"07]. Ein LBS kann nach
Virrantaus et al. [VTV'o1] wie folgt definiert werden:

,LBS sind Dienste, auf die von mobilen Geriten iiber ein mobiles Netzwerk zugegriffen
wird und die von der Fihigkeit Gebrauch machen, Positionen dieser Geriite bestimmen zu
konnen.” [VTV*o1] (eigene Ubersetzung)

Der LBS soll dem Nutzer bezogen auf die Position eines Nutzers Dienste verschiedener
Art anbieten. Hierbei kann es sich um einen Dienst handeln, der dem Nutzer angeforderte
Informationen {iber einen interessanten (raumlichen) Punkt (Point of Interest, (POI)) zukom-
men lasst, wenn er z.B. auf der Suche nach Hotels in seinem Umkreis ist oder tiber die

21

2 Theoretische Grundlagen und verwandte Arbeiten

gegenwartige Verkehrssituation auf seiner Route informiert werden will.
Der Kontext besteht in dieser Form im Wesentlichen aus der Position eines Nutzers — sie ist
der zentrale Faktor. Ein LBS besteht aus folgenden Teilen [DSR11] [VTV*o1] [RMo3]:

e Mobiles Gerit: Dieses Gerdt wird vom Nutzer gefiihrt und steht im Mittelpunkt des
Systems, da hier Dienste angefordert und bezogen werden. Hierbei handelt es sich
heutzutage um ein Smartphone, also ein Handy mit erweiterter Funktionalitdt wie bspw.
einem GPS-Empfanger.

e Positionierungssystem: Mittels dieses Systems kann das mobile Gerét seinen Auf-
enthaltsort bestimmen. Moglichkeiten zur Ortsbestimmung sind z.B. GPS oder das
Mobilfunksystem, welches die ID der momentanen Mobilfunkzelle liefert (die Cell ID).

e Location Server (LS): Dieser Teil ist fiir die Verwaltung der Positionsdaten der mobilen
Geréte zustandig, des Weiteren fiir die Bereitstellung dieser Daten an die ortsbezogene
Anwendung. Auf dem LS ist zumindest der momentane Aufenthaltsort, evtl. sogar ein
Bewegungsprofil der jeweiligen Endgerite abgelegt. Auflerdem werden auch Positionen
von statischen Objekten verwaltet.

e Ortsbezogene Anwendung: Dienst bzw. die eigentliche Anwendung, die dem Nutzer
bezogen auf seine Position, die im LS nachgeschlagen wird, Informationen liefert.

Positionierungssystem

Ortsbezogene
Anwendung

Position
beziehen

Position

bestimmen

Position ablegen
Mobiles Gerat Location Server

Abbildung 2.1: Die prinzipielle Systemarchitektur bei LBS, bestehend aus mobilem Geriit,
Positionierungssystem, Location Server und Ortsbezogener Anwendung.

Die Architektur eines LBS ist in Abbildung 2.1 schematisch dargestellt. Zwischen den Geréten
muss nattirlich ein Kommunikationsnetzwerk bestehen, um die Informationen austauschen

22

2.2 Sicherheit der Privatsphare in Location-based Services

zu konnnen. Da diese Schicht fiir unsere Problemstellung unerheblich ist, wird auf eine
Erlduterung verzichtet’.

Einfache LBS konnten auch ohne die Location Server auskommen, indem die Position direkt
vom mobilen Gerdt an den LBS weitergegeben wird und das mobile Gerét die gewiinschte
Informationen bezogen auf seinen gegenwartige Position direkt erhilt. Sobald aber die
Positionen von mehreren Objekten eine Rolle fiir den LBS spielen, ist ein Location Server
notwendig, der die Objektpositionen verwaltet. Nur mittels eines LS lassen sich beispielsweise
rdaumliche Anfragen {iber mehreren bewegten Objekten effizient realisieren.

2.2 Sicherheit der Privatsphare in Location-based Services

Im vorhergehenden Abschnitt wurden einige Beispiele fiir LBS genannt, z.B. ein unterstiit-
zender Dienst, der interessante Punkte findet. Dieser ist reaktiv und vom Nutzer autorisiert.
Dem gegeniiber stehen proaktive Diente, die im Hintergrund ablaufen und auf Ereignisse
reagieren, wie dem Besuchen eines Einkaufszentrums, so dass standortbezogene Werbung
geschaltet werden kann.

Da den Nutzern bei LBS aufgrund ihrer Position Dienste angeboten werden und ihre Position
gewissen Instanzen bekannt ist, handelt es sich um eine sensible Technologie bzgl. der Pri-
vatsphdre. Duckham und Kulik [DKo6] erweitern die klassische Definition der Privatsphare
fir Informationshandhabung nach Westin [Wes67] und kommen zu einer Definition der
Privatsphére der Position:

,Privatsphiire ist das Anrecht von Individuen, Gruppen oder Institutionen, selbst bestim-
men zu konnen, wann, wie und in welchem Ausmaf$ Information iiber ihre Position an
andere weitergegeben wird.” [DKo6] (eigene Ubersetzung)

Dieser Definition folgend bedeutet Privatsphire die Fahigkeit, selbstbestimmt mit der Positi-
onsinformation umzugehen, ihre Verarbeitung potentiell verweigern zu kénnen und sie vor
unautorisiertem Zugriff zu schiitzen. Es geht um die selbstbestimmte Kontrolle der eigenen
Positionsinformation.

Neben dem oben dargestellten problematischen Fall der unautorisierten bzw. unangeforder-
ten Bereitstellung von Informationen wie Werbung gibt es noch wesentlich kritischere Félle:
So hiangt die Position immer mit der Sicherheit der Person zusammen. Wissen Dritte tiber
meinen Standort Bescheid, kann dies Konsequenzen fiir mein persénliches Wohlergehen ha-
ben [DKo6]. Dartiber hinaus — und dies ist der wirklich heikle Punkt — lassen sich durch das
Bewegungsprofil Riickschliisse auf das Sozialverhalten, den Gesundheitszustand sowie die
personlichen Interessen ziehen [DKo6] [DFo3]. Ist bekannt, an welchem Ort sich eine Person
zu einer gewissen Zeit aufhilt, und findet an diesem Ort zu dieser Zeit beispielsweise eine

IDer Leser sei auf die Standardliteratur verwiesen [Tano3].

23

2 Theoretische Grundlagen und verwandte Arbeiten

Kundgebung statt, so konnen tiiber die Positionsinformation Riickschliisse auf die politische
Einstellung dieser Person getroffen werden. Ebenso koénnten Personen von Dritten aufgrund
der Positionsinformation gestalkt> werden. Dobson und Fisher bezeichnen diese Form der
potentiellen Unterhohlung der Privatsphire durch LBS auch als Geoslavery und zeichnen
eine diistere Vision der Entwicklung [DFo3], die es zu beachten gilt.

Dem Schutz der Privatsphédre bei LBS muss auf verschiedenen Ebenen nachgekommen
werden.
Zundchst muss diese Technologie als in gesellschaftliche Prozesse eingebettet verstanden
werden, so dass sich kritisch mit den Konsequenzen auseinandergesetzt werden kann. Dazu
ist eine Sensibilierung der Massen, aber auch eine kritische Haltung der Wissenschaft gegen-
iiber dem eigenen Forschungsgegenstand notwendig.
Neben den gesellschaftlichen Mafinahmen zum Schutz der Privatsphére gibt es ein recht-
liches Rahmenwerk, welches den Schutz der Privatsphére in der Bundesrepublik Deutsch-
land (BRD) regelt. So besagt § 98 des Telekommunikationsgesetzes, dass eine Nutzung
von Positionsinformationen, denen nicht zugestimmt wurde, untersagt ist. Wer in der BRD
diesem Grundsatz, der Teil der informationellen Selbstbestimmung ist, zuwiderhandelt,
macht sich strafbar.

Diese beiden Konzepte sind jedoch fiir Schutz der Privatsphére nicht hinreichend, da
der rechtliche Rahmen den technologischen Entwicklungen zeitlich hinterherhinken kann.
AufSerdem kann der rechtliche Rahmen bewusst oder unbewusst hintergangen und aus-
gehebelt werden, was ein jiingster Vorfall bei Smartphones der Firma Apple zeigt, die alle
Positionsdaten im Hintergrund unautorisiert mitschreiben3. Daher muss dem Problem der
Wahrung der Privatsphére bei LBS auch in technischer Hinsicht beigekommen werden. Die
folgenden Abschnitte beleuchten einzelne technische Sicherungsmafsnahmen fiir Location
Server im Detail.

>Stalking beschreibt, dass einer Person willentlich und beharrlich gegen ihren Willen nachgestellt, sie verfolgt
und/oder beldstigt wird. http://de.wikipedia.org/wiki/Stalking, Zugriff 16.4.2011

Shttp:/ /www.heise.de/tp/artikel /34/34601/1.html, Zugriff 24.4.2011. Zwar ist in diesem Fall das mobile Gerat
kompromittiert, was unserer Annahme widerspricht, denn diese Diplomarbeit geht von vertrauenswiirdigen
mobilen Geraten aus. Der Fall soll jedoch zeigen, dass selbst renomierten Firmen unter Umstdnden nicht
vertraut werden kann.

24

2.2 Sicherheit der Privatsphare in Location-based Services

2.2.1 Zugriffskontrolle

Die Methode der Zugriffskontrolle ist aus anderen Forschungsfeldern der Computerwis-
senschaften, wie z.B. der Betriebssysteme oder Datenbanken, bekannt und kann auch auf
Location-based Services angewendet werden [DKo6] [RPBog]. Schutz der Privatsphére soll
erreicht werden, indem Zugriffe von unautorisierten Instanzen abgewiesen und verboten
werden konnen. Dazu wird eine Zugriffsliste gefiihrt, welche Aktion auf einer Ressource
von welcher Person oder Entitdt ausgefiihrt werden darf.

Im Gegensatz zum klassischen Anwendungsfall wie beispielsweise bei Betriebssystemen
wird in vernetzen und mobilen Szenarien keine zentrale Verwaltung angestrebt, was den Ver-
waltungsaufwand stark erhoht. Auflerdem muss in diesem Fall von einer vertrauenswiirdigen
Verwaltung der Zugriffsliste ausgegangen werden.

2.2.2 Verschliisselung

Wie die Zugriffskontrolle ist die Verschliisselung ein Konzept, das nicht speziell auf Location-
based Services zugeschnitten ist. Allerdings ldsst es sich auf LBS anwenden [DKo6] [RPBog],
indem die Positionsinformationen verschliisselt auf dem Location Server abgelegt werden.
Dieses Verfahren entspricht von der Sicherheit her immer dem gegenwartigen Stand der
Verschliisselungsverfahren. Diirr und Skvorzov [DSR11] kritisieren an der Verschliisselung
der Positionsinformationen, dass dadurch raumliche Anfragen iiber Positionsinformationen,
wie sie bei LBS vorkommen und erwiinscht sind, unmoglich werden.

2.2.3 k-Anonymity

Dies ist eines der bekanntesten Konzepte zur Sicherung der Privatsphére. Die Idee hinter
k-Anonymity ist es, die eigene Position von der Position k — 1 weiterer Nutzer des LBS
ununterscheidbar zu machen [DKo6] [RPBog]. Man spricht hierbei auch von einem anonymi-
sierenden Verfahren, weil die Personen durch eine Gruppe anonymisiert werden [SDfMbog].
Dazu wird die eigene Position zundchst mit der von k — 1 benachbarten Nutzern zu einem
Cluster gruppiert. Dann wird die Positionsanfrage auf diesem Cluster ausgefiihrt. Die Grup-
pierung, Anonymisierung und Riick-Personalisierung wird durch einen anonymisierenden
Server vollzogen, dem vertraut werden muss — er kennt die Identitdt des echten anfragenden
Nutzers. Dies stellt eine generelle Schwachstelle des Konzepts dar [DKo6] [DSR11]. Das
Verfahren ist in 2.2 schematisch dargestellt.

Des Weiteren ist es keine triviale Aufgabe, eine gute Gruppierung im Hinblick auf Sicherheit
als Ununterscheidbarkeit von k Personen zu finden. Man denke hier daran, 40 Personen zu
gruppieren, entweder in einer Konzerthalle oder in der Wildnis. Im ersten Fall ldsst sich die
Gruppierung leicht finden, im zweiten Fall ist dies problematisch, wodurch die Qualitadt der
Sicherheit stark schwanken kann.

25

2 Theoretische Grundlagen und verwandte Arbeiten

N anonymisierender
N
! N Server
b N
N

Abbildung 2.2: Schematische Darstellung von k-Anonymity mit k = 10.

2.2.4 Raumliche Verschleierung

Bei der raumlichen Verschleierung (engl. Obfuscation) wird die Position eines Nutzers kiinstlich
unscharf bzw. ungenau gemacht [DKo6] [DSR11] [ACD"o7], was in Abbildung 2.3 darge-
stellt ist. Die Position entspricht einer spezifisch verteilten Aufenthaltswahrscheinlichkeit
innerhalb eines Radius r. Der Nutzer ist dadurch nicht exakt lokalisierbar und es lassen sich
je nach Stufe der Verschleierung nur vage Riickschliisse auf seine exakte Position treffen. Vom
Nutzer kann gesteuert werden, wieviele Informationen an welchen ortsbezogenen Dienst
herausgegeben werden. So ist es moglich, feingranular Dienste zu autorisieren oder eigene
Abstufungen zu definieren: Jedem Dienst werden gerade genug Informationen wie bendtigt
zuganglich gemacht. Ein weiterer Vorteil dieses Verfahrens ist, dass keine vertrauenswiir-
digen Instanzen zu Speicherung angenommen werden miissen. Dariiber hinaus kénnen
trotzdem Anfragen iiber Positionen getitigt werden, was bei einem anonymisierenden Ver-
fahren von vornherein ausscheidet. Allerdings ist die Exaktheit eines LBS beim Lokalisieren
von POIs nicht mehr gegeben.

2.2.5 Koordinatentransformation

Das Verfahren der Koordinatentransformation versucht, Privatsphére in LBS zu erreichen,
indem die reale Position auf ein anderes Koordinatensystem abgebildet wird [Guto6]. Dabei
ist die Funktion, die die Transformation realisiert, nur dem Nutzer selbst (oder einer Gruppe,
in der sich die Mitglieder gegenseitig vertrauen) bekannt. Alle Anfragen werden in diesem
transformierten Koordinatenraum berechnet — nur der Inhaber der Funktion zieht aus dieser
Information einen Nutzen, wodurch seine reale Position geschiitzt ist. Die Koordinatentrans-
formation ist in Abbildung 2.4 dargestellt und zeigt, wie ein Punkt in zwei verschiedenen
Koordinatensystemen reprasentiert wird und nur mittels einer Transformationsfunktion d; B,A
bestimmt werden kann.

26

2.2 Sicherheit der Privatsphare in Location-based Services

Abbildung 2.3: Darstellung der raumlichen Verschleierung der Position. Die exakte Position
wird unscharf und entspricht einer Aufenthaltswahrscheinlichkeit.

Abbildung 2.4: Koordinatentransformation schematisch dargestellt: Reprdsentation des
Punktes p in zwei Unterschiedlichen Koordinatensystemen k4 und kg
[Guto6].

27

2 Theoretische Grundlagen und verwandte Arbeiten

2.2.6 Verteilung der Positionsinformation

Diirr und Skvorzov kombinieren die Koordinatentransformation mit der raumlichen Ver-
schleierung und kommen zu einem neuen Ansatz fiir nicht vertrauenswiirdige Instanzen,
der mit mehreren unabhéangigen Location Servern arbeitet [DSR11].

Bei diesem Verfahren wird die Position so in Teile zerlegt, die Shares genannt werden, dass
die exakte Position nur rekonstruiert werden kann, wenn {iiber alle Teile verfiigt wird. Mit
jedem Teil der Positionsinformation kann die Position genauer rekonstruiert werden. Dies
ist in Abbildung 2.5 dargestellt. Die Shares sind als Vektoren zu verstehen, wobei jeder
Vektor die Genauigkeit um ein gewisses Ay erhoht. Diese Genauigkeit kann als Wahrschein-
lichkeitsverteilung innerhalb eines Kreises verstanden werden, dessen Mittelpunkt durch
den Vektor geliefert wird. Die vektorielle Addition von einigen Shares liefert somit eine
ungenaue Position einer Entitét, die sich iiberall innerhalb des jeweiligen Kreises befinden
kann. Nur wenn alle Shares addiert werden, kann die exakte Position rekonstruiert werden.
Da vektorielle Addition eine kommutative Rechenoperation ist, konnen die Vektoren in
beliebiger Reihenfolge addiert werden, was in Abbildung 2.5 verdeutlicht wird.

Po \I-\Pn Po \‘—Jpn

Abbildung 2.5: Darstellung der Genauigkeitsvergrolerung bei Share-Fusion. p; gibt die
Position nach Fusion der j-ten Share an, ¢; die Genauigkeit [DSR11].

Diese Teile der Positionsinformation werden auf unabhéingige Location Server, im Folgenden
auch Provider genannt, aufgeteilt, so dass bei einem kompromittierten Server oder einem
internen unautorisierten Zugriff die Position nur mit ungentigender Genauigkeit rekonstru-
iert werden kann. In diesem Konzept kann somit von nicht-vertrauenswiirdigen Instanzen
ausgegangen werden, was gegeniiber dem k-Anonymity-Konzept sowie der Zugriffskon-
trolle ein Vorteil ist. Dabei ist der Grundgedanke, dass es unwahrscheinlich ist, dass viele
oder alle Server gleichzeitig gehackt wurden und sich die Positionsinformation somit immer
nur ungenau rekonstruieren lasst. Auf dieser Systemarchitektur aufbauend wird spiter in
Abschnitt 3.1 eine Erweiterung vorgeschlagen, um der Aufgabenstellung beizukommen,
wobei auch die originale Systemarchitektur im Detail erldutert wird.

28

2.2 Sicherheit der Privatsphare in Location-based Services

2.2.7 Taxonomie der Sicherheitsverfahren

LBS Sicherheitskonzepte

vertraute Instanz unvertraute Instanz
- . Verteilte
o) raumliche Koordinaten- " Ver-
Zugriffslisten k-Anonymity . . Positions- "
Verschleierung transformation information schllsselung

Abbildung 2.6: Taxonomie der Sicherheitskonzepte bei LBS.

In Abbildung 2.6 ist eine iiberblicksartige Taxonomie der vorgestellten Sicherheitskonzepte
dargestellt. Hier werden die Konzepte nach der Vertrauenswiirdigkeit der Instanzen zur
Lagerung bzw. Verwaltung der Positionsinformation geordnet. Die Verfahren der raumlichen
Verschleierung, der Koordinatentransformation, der verteilten Positionsinformation und der
Verschliisselung gehen dabei von nicht-vertrauten Instanzen aus, wohingegen k-Anonymity
und Zugrifflisten Server annehmen, denen vertraut werden muss.

29

2 Theoretische Grundlagen und verwandte Arbeiten

2.3 Kombinatorische Optimierung

Bisher wurde nur auf den technologischen Rahmen, in dem sich die Problemstellung bewegt,
eingangen. Nun wird die Problemstellung selbst eingeordnet werden: Die Platzierung von
Positionsinformationen auf nicht-vertrauten Servern zur Ausbalancierung von Sicherheitsrisi-
ken kann am allgemeinsten als ein Problem der Kombinatorischen Optimierung kategorisiert
werden.

2.3.1 Definition und Eigenschaften

Kombinatorische Optimierung bedeutet, aus einer Vielzahl von moglichen Losungen (den
moglichen Kombinationen) eine optimale im Bezug auf ein gewisses Kriterium (das Optimali-
titskriterium) auszuwihlen [VKo8] [Hu82]. Bekannte Probleme dieser Art sind das Problem
des Handlungsreisenden* [VKo8], das Behiilterproblem> [VKo8, MTgo] oder Rucksackprobleme6
[MTgo]. Beim Problem des Handlungsreisenden geht es beispielsweise darum, die kiirzeste
Rundreise zu finden, die alle Stiddte genau einmal besucht und wieder beim Ausgangsort
endet.

Formal ist ein kombinatorisches Optimierungsproblem wie folgt definiert [VKo8]:
Sei L die Menge aller moglichen Losungen und die Formel (2.1)

f:L—R (2.1)

eine Funktion, die jeder moglichen Losung Kosten zuweist (die Kostenfunktion). Die Losung
eines kombinatorischen Optimierungsproblems besteht nun darin, eine optimale Losung-
instanz opt aus der Menge aller Losungen £ zu finden, die beziiglich der Kostenfunktion
besser, d.h. kleiner ist als alle anderen Losungen. Formal ausgedriickt lautet dies:

dopt € L VI € L: f(opt) < f(I) (2.2)

Ziel der kombinatorischen Optierung ist es, den Wert fiir opt zu finden.

Ubertragen auf unser Problem entspricht die Menge £ allen moglichen Belegungen von
Shares auf Providern. Die Kostenfunktion entspricht der Risikobewertung bzw. dem Grad
der Balance. Dann gilt es, aus allen moglichen Losungen die optimale im Bezug auf das
geringste Risiko auszuwihlen, was bei uns der besten Balance entspricht.

*engl. Travelling Salesman Problem, TSP
Sengl. Bin Packing
bengl. Knapsack Problems

30

2.3 Kombinatorische Optimierung

Fiir eine ausreichende Problembeschreibung im Hinblick auf Losungsmoglichkeiten ist diese
grobe Kategorisierung aber noch nicht ausreichend — diese kann erst in Kapitel 3 entwickelt
werden.

Das Behilterproblem Zunichst wird das Behilterproblem betrachtet [VKo8], welches ei-
nerseits ein typisches Beispiel fiir kombinatorische Optimierung ist und andererseits eine
gewisse Verwandtschaft einem unserer Teilprobleme hat, wie sich noch zeigen wird.

Bei diesem Optimierungsproblem geht es darum, Objekte so auf Behdlter aufzuteilen, dass
kein Behilter tiberlduft und die Zahl der benutzten Behélter minimiert wird.

Formal ist eine Menge von n Objekten mit unterschiedlichen Gewichten a1, a5, ...a, gegeben
sowie eine Behiltergrofe b. Fiir alle einzelnen Gewichte a;,i € {1,2,..n} gilt a; < b. Die
Aufgabe ist es, eine Zuordnung f von den Objekten A = {1,2,..n} zu den Behiltern B zu
finden, dass die Anzahl der Behilter minimal wird, also:

f:A{1,2,..,n} —{1,2,.k} (2.3)

so dass k minimal und
a; < b (2.4)
if(i)=j
gilt, was bedeutet, dass die Behiltergrofie nicht tiberstiegen werden darf. Dieses Problem ist
in Abbildung 2.7 visualisiert.

1 2 k

Abbildung 2.7: Schematische Darstellung des Behélterproblems.

31

2 Theoretische Grundlagen und verwandte Arbeiten

Algorithmus 2.1 First-Fit Algorithmus nach [VKo8]
1: fori=1ton do
2 f(i) « 1]161]'11{]1{211«:]((11):]' a, +a; < b}
3: end for

Ck /
4 k< iegl,?-x,n}f(Z)

Eine naive Methode wiirde alle Moglichkeiten durchprobieren und dann die beste auswéhlen.
Diese wiirde aber n" viele Abbildungen bzw. Moglichkeiten erzeugen, was schon bei einer
kleinen Grofie von n unzumutbar viele Losungen erzeugt und damit ineffizient ist.

Ein bekannter Approximationsalgorithmus zur Losung dieses Problems ist der First-Fit Al-
gorithmus, welcher in Algorithmus 2.1 dargestellt ist. Der Algorithmus weist jedes Element
a;,i € {1,---,n} dem ersten Behilter j zu, in dem noch gentigend Platz ist. Ist in keinem
der Behilter noch Platz, so wird ein neuer geoffnet.

Bei dem hier betrachteten Behélterproblem handelte es sich um ein Optimierungsproblem.
Der Vollstandigkeit halber sei erwédhnt, dass es neben dem jeweiligen Optimierungsproblem
noch ein entsprechendes Entscheidungsproblem gibt, welches danach fragt, ob das Problem fiir
eine gegebene Probleminstanz gelost werden kann oder nicht. Im Falle des Behélterproblems
geht es um die Frage, ob n Elemente auf k Behilter verteilt werden kénnen, ohne dass die
Bedingung (2.4) verletzt wird.

Der Wichtigkeit fiir unsere Untersuchung entsprechend wurde der Fokus aber auf Optimie-
rungsprobleme gelegt.

Kombinatorische Probleme sind haufig NP-schwer [CLRSo4] [HMUo3]. NP-Schwere
eines Problems betrifft den Zusammenhang eines Problems mit der Komplexitadtsklasse
NP und besagt, dass es mindestens so schwer losbar ist wie alle anderen Probleme
in dieser Komplexitdtsklasse. Ist ein Problem NP-schwer, so gibt es vermutlich? keinen
deterministischen Algorithmus, der das Problem in Polynomialzeit 16sen kann; fiir diese
Problemklasse sind bisher nur deterministische Algorithmen mit exponentieller Komplexitat
bekannt®.

Zum Nachweis, dass ein Problem A NP-schwer ist, muss ein Problem B, von dem schon
bekannt ist, dass es NP-vollstindig (oder NP-schwer) ist, in polynomialer Zeit auf A
reduziert werden konnen. Eine Reduktion ist ein Algorithmus oder ein Verfahren, der
Instanzen des einen Problems in die des anderen Problems transformiert, wobei jeweils die

7Unter der Annahme, dass P # N'P. Die Frage, ob dies wirklich gilt, ist eine der fundamentalsten ungeldsten
Fragen der Informatik [VKo8] [CLRSo4] [HMUo3].
8Bei Eingabelange 1 hat der Algorithmus eine Zeitkomplexitit von O(c")

32

2.3 Kombinatorische Optimierung

gleichen Losungen fiir gleiche Eingaben herauskommen miissen?. Zum Beweis muss eine
Funktion gefunden werden, die dies fiir alle Instanzen erledigt. Die Reduktionsvorschrift
selbst muss polynomiale Zeitkomplexitit besitzen.

NP-Vollstindigkeit schliefSlich besagt, dass ein Problem NP-schwer ist und wirklich in der
Komplexitdtsklasse NP liegt. Bei NP-vollstindigen Problemen ist die Verifikation, dass
ein gegebener Losungskandidat tatsdchlich eine Losung ist, in Polynomialzeit moglich,
wohingegen das Ermitteln von Losungen exponentielle Zeit beansprucht.

Martello und Toth [MTgo] setzen NP-Schwere mit Unlosbarkeit gleich, wohlwissend, dass es
hier nicht um die absolute Unmoglichkeit der Losungssuche geht, sondern um das Finden
von Losungen in annehmbarer Zeit, womit polynomielle Zeit gemeint ist. Ein polynomieller
Algorithmus wird als effizient bezeichnet.

2.3.2 Algorithmische Losungsansatze

Die Aufgabenstellung innerhalb der kombinatorischen Optimierung ist es, Algorithmen zur
Losung dieser Probleme zu finden. Mit den Ausfiihrungen des vorhergehenden Abschnitts
sollen jetzt prinzipielle Losungsansdtze diskutiert werden. Wie dargelegt wurde, sind diese
Probleme oft NP-schwer und machen damit eine Entscheidung zwischen Exaktheit der
Losung und Geschwindigkeit der Losungserzeugung notwendig.

Vollstdndige Enumeration

Die vollstindige Enumeration bezeichnet das Aufzdhlen und Bewerten aller Losungen bei
folgender Auswahl der Besten. Die Schwachstelle hier ist die grofse Anzahl der moglichen
Losungen, die exponetiell mit der Problemgrofle steigt. Zwar braucht die Berechnung schon
unverhdltnisméfig lange, kann aber bei heutiger Rechnerleistung fiir kleine Problemgrofsen
in Erwdgung gezogen werden, da die exakte Losung gefunden wird.

Branch-and-Bound

Branch-and-Bound ist ein an Backtracking angelehntes Verfahren fiir Optimierungsproble-
me [LW66] [Hu82].

Backtracking arbeitet sich durch einen Entscheidungsbaum und versucht, sukzessive Lo-
sungskandidaten zu einer Gesamtlosung zu konstruieren. Ist bei einer Auswahlentscheidung

9Dies betrifft Entscheidungsprobleme, die Losungen in Antworten der Form ja oder nein ausgeben. Dies kann auf
Optimierungsprobleme tibertragen werden, indem es um die zuldssigen Losungen des Optimierungsproblems
geht, die nach Reduktion gleich sein miissen [VKo8]: Eine Losung muss sowohl fiir Problem A als auch fiir
Problem B optimal sein.

33

2 Theoretische Grundlagen und verwandte Arbeiten

jedoch absehbar, dass keine giiltige Losung mehr konstruiert werden kann, wird der kom-
plette folgende Zweig verworfen. Gelangt die Suche in eine Sackgasse, geht der Algorithmus
einen Schritt bis zum nédchsten Entscheidungsknoten zurtick, um dort die noch nicht besuch-
ten Knoten nach dem selben Muster zu bearbeiten.

Branch-and-Bound erweitert diese strukturierte Suche im Entscheidungsbaum auf Optimie-
rungsprobleme, indem neben der Giiltigkeit noch die Optimalitdt der Losungskandidaten
als Entscheidungsfaktor miteinbezogen wird. Steht der Algorithmus vor einer Verzweigung
(engl. branch), wird gepriift ob das Weiterverfolgen in einer Richtung zu einem nicht-
optimalen Wert fiihrt, indem mit einer Schranke (engl. bound) verglichen wird. Nur wenn
der Wert unterhalb der Schranke liegt, wird in dieser Richtung weiterverfolgt — dann kénnte
eine bessere Losung konstruiert werden. Ist dies fiir keine der vorhandenen Verzweigungen
der Fall, muss einen Schritt zuriickgegangen werden.

Das Verfahren ist exakt, d.h. es findet immer eine Losung und kann als eine strukturierte
Aufzéghlung aller Losungskandidaten bezeichnet werden, bei der so frith wie moglich bereits
ungiiltige oder nicht-optimale Losungen ausgeschlossen werden. Dies senkt die Komplexitat
zwar, die Abarbeitungsdauer des Entscheidungsbaum liegt aber dennoch in O(c"), da im
schlechtesten Fall alle Knoten besucht werden miissten. Die praktische Effizienz von Branch-
and-Bound héngt stark von der konkreten Problemstellung ab. Mit der Problemstellung
hiangt ebenso zusammen, wie sich eine Grenze bestimmen ldsst und wieviele Zweige schon
frithzeitig ausgeschlossen werden koénnen.

Heuristiken

Als Heuristik wird ein problemspezifisches Losungsverfahren bezeichnet, das eine Néhe-
rungslosung von NP-schweren Problemen in effizienter Zeit bestimmt. Heuristiken fiir
bekannte NP-schwere Probleme finden sich in [VKo8].

Metaheuristiken

Eine Metaheuristik ist ein Verfahren zur ndherungsweisen Bestimmung von Losungen bei Op-
timierungsproblemen, das nicht problemspezifisch, sondern allgemein anwendbar ist [Weioz2].
Es folgt ein Uberblick tiber einige Verfahren und eine genauere Betrachtung der Evolutioniiren
Algorithmen, da ein in Kapitel 3 erarbeiteter Losungsvorschlag auf diesem Konzept beruht.

Lokale Suche Bei der lokalen Suche [Eglgo] wird zunédchst eine Startlosung bestimmt, was
zuféllig oder in Form einer Heuristik geschehen kann. Dann wird von dieser Startlosung
ausgehend die Nachbarschaft sondiert, d.h. die Loésungen, die numerisch nahe zur Startlo-
sung sind. Ist eine Losung in der Nachbarschaft besser, wird mit dieser fortgefahren. Das
Problem ist allerdings, dass das Verfahren in lokalen Maxima stecken bleiben kann, da es

34

2.3 Kombinatorische Optimierung

beim ersten lokalen Maximum dieses als Losung akzeptiert. Dieses Verfahren wird auch
Bergsteigeralgorithmus (engl. Hill Climbing) genannt.

Das Verfahren der Simulierten Abkiihlung [Eglgo] wird allgemein unter der lokalen Suche
kategorisiert. Dieses Konzept beruht auf der Nachbildung eines Abkiihlungsvorgangs in
der Physik, welcher der Gesetzmafiigkeit folgt, dass ein System im idealen Zustand Z pro-

_ Energie(2) . .
portional ist zue — *w ist, wobei Energie(Z) den Energiezustand des Systems und temp

die momentane Temperatur bezeichnet. Ubertragen auf Optimierungsprobleme bedeutet
dies, dass je geringer die Temperatur ist, desto weniger wahrscheinlich wird die Auswahl
eines Nicht-Optimums. Die Temperatur entspricht der Wahrscheinlichkeit fiir Akzeptanz
von nicht-optimalen Zustdnden.

Die vorgestellten Verfahren sind schnell, jedoch ist vor allem die reine lokale Suche unge-
niigend, da sie bei lokalen Optima stecken bleiben kann. Simulierte Abkiihlung wird von
Weicker [Weio2] als , launisch” und stark vom Optimierungsproblem abhingig bezeichnet.

Evolutionére Algorithmen Evolutionire Algorithmen bilden Optimierungsprobleme als evo-
lutiondre Prozesse nach [Weio2] [Nisg7]. Sie konnen als Erweiterung der lokalen Suche
begriffen werden. Im Gegensatz dazu werden mehrere Losungskandidaten erzeugt und
miteinander kombiniert, aufSerdem sorgen Mutationen dafiir, dass moglichst der komplette
Wertebereich abgedeckt wird. Darum spricht man bei evolutiondren Algorithmen auch von
populationsbasierten Verfahren, da sie mit mehr als einem Individuum arbeiten. In der Lite-
ratur finden sich des Weiteren die Verfahren Evolutionsstrategien, evolutionirens Programmieren
und genetische Algorithmen, wobei die Unterschiede im Detail liegen und die Ubergénge
flieSend sind. In der folgenden Ausfiithrung konzentriere ich mich auf die evolutiondren
Algorithmen.

Fiir die Anwendung eines evolutiondren Algorithmus auf ein Problem muss dieses zunéchst
als Genom codiert werden. Die Losungskandidaten werden meist als Bit-Vektoren, manchmal
aber auch als ganzzahlige Vektoren dargestellt. Potentielle Losungskandidaten werden als
Individiuen bezeichnet. Zunédchst werden initiale Losungskandidaten bestimmt, was entweder
komplett randomisiert oder basierend auf einer Heuristik geschehen kann. Die Gesamtheit
aller Individuen zu einem gewissen Zeitpunkt bezeichnet man auch als Population oder Gene-
ration. Individuen der anfangs erzeugten Startpopulation werden nun miteinander gekreuzt,
wobei es unterschiedliche Kreuzungsoperationen gibt. Je nach Kreuzungsoperator werden
verschiedene Teile der Genome miteinander kombiniert. SchliefSlich kommt es noch zu einer
zufdlligen Verdnderung an einzelnen Individuen, was als Mutation bezeichnet wird. Diese
Operation ist wichtig, um alle Werte im Bereich potentiell abdecken zu konnen. Die aus
einer Population erzeugten Individuen werden nun bewertet, was durch eine Fitnessfunktion
geschieht — sie bewertet die Giite eines Individuums im Bezug auf das Optimierungsziel.
Dann werden die am besten bewerteten Individuen ausgewdhlt und der Zyklus beginnt
von Neuem. Dieser Zyklus ist in Abbildung 2.8 dargestellt und endet, wenn entweder eine
bestimmte Anzahl von Generationen oder ein Abbruchkriterium erreicht wurde.

35

2 Theoretische Grundlagen und verwandte Arbeiten

Initiale Population

Start > Rekombination > Mutation

Ende |« Selektion < Bewertung
wenn Abbruchkriterium Fitnessfunktion
erreicht oder max. Zahl Optimierungsziel

der Generationen

Abbildung 2.8: Zyklus von evolutiondren Algorithmen nach [Weioz].

Uber evolutionire Algorithmen lasst sich sagen, dass sie ein gutes Approximationsverfahren
fiir kombinatorische Optimierungsprobleme darstellen, da sie durch den Mutationsoperator
in der Wertelandschaft ,springen” und so zuverldssig ein globales Maximum finden kénnen.
Des Weiteren sind die Parameter gut anpassbar und durch geschickte Wahl der initialen
Population verbessert sich die Laufzeit und die Qualitdt. Prinzipiell stofSen sie schnell
in die Ndhe der optimalen Losung vor, bendtigen dann aber Zeit, um sich weiter zum
wirklichen Optimalwert vorzutasten. Der Nachteil liegt in der erhohten Laufzeit gegentiiber
der lokalen Suche, weil die Operationen komplexer sind. Die Laufzeit von evolutiondren
Algorithmen hingt vom Abbruchkriterium ab: Wird iiber eine feste Anzahl von Generationen
iteriert, ist die Laufzeit sogar konstant und wird mafigeblich durch den Aufwand der
Kombinationsoperatoren bestimmt.

Schwarmintelligenz Das Verfahren der Schwarmintelligenz (engl. Swarm Intelligence) arbeitet
mit einfach gearteten Einzelindividuen, deren Interaktion {iber die Umwelt vermittelt einem
komplexen Verhalten des Gesamtsystems emergiert um Probleme zu losen [MRF " 03]. Ein
typischer Vertreter sind hierbei die Ameisenalgorithmen, die das kollektive Verhalten von
Ameisen zur Futtersuche nachbilden, um kiirzeste Wege zu finden [DSo3].

2.3.3 Zuweisungsprobleme

Zuweisungsprobleme stellen eine spezielle Unterkategorie der kombinatorischen Optimie-
rung dar [BDMog] und miissen im Folgenden besprochen werden, da sich unser Problem
als Zuweisungsproblem formulieren ldsst.

Bei dieser Problemklasse geht es darum, wie eine gewisse Anzahl von Objekten anderen
Objekten unter gewissen Kritierien zuwiesen wird [BDMog]. Statt abtrakt von Objekten
spricht man auch von Tasks oder Jobs, die Maschinen, Agenten oder Arbeitern zugewiesen
werden. Die Zuweisung ist mathematisch eine Abbildung zwischen zwei Mengen ¢/ und V.

2.3 Kombinatorische Optimierung

Eine solche Zuweisung ist eine Permutation der Anordnung und wird im Folgenden als
Zuweisungsmatrix (Assignment Matrix) in Formel (2.5) dargestellt,

X11 X12 - Xip
X21 X222 o Xop

X=(x)=1| (2.5)
Xn1 X2 Xun

wobei

xi; = {1, wenn Objekt i dem Objekt j zugewiesen ist (26)

0, sonst

Werden beispielsweise drei Objekte U = {a,b,c} drei anderen V = {da’,V’, ¢’} zugewiesen,
sieht eine mogliche Zuordnung wie folgt aus:

10
X = (xl']') =10 0 (2-7)
01

S = O

Die durch Matrix (2.7) bestimmte Zuweisung ist in Abbildung 2.9 grafisch dargestellt.

u v
OO

Abbildung 2.9: Exemplarische Zuweisung nach Zuweisungsmatrix (2.7) zwischen zwei Men-
genU = {a,b,c} und V = {a’,V/, '} mit jeweils drei Elementen

Zuweisungen werden durch eine Menge von linearen Gleichungen charakterisiert, die Ne-
benbedingungen genannt werden. Diese geben beispielsweise Auskunft dariiber, wie viele
Objekte der einen Menge U/ maximal einem Objekt der Menge V zugewiesen sind und vice
versa. Diese Nebenbedingungen hiangen von der konkreten Problemstellung ab.

Darf im obigen Beispiel einem Objekt der Menge U/ ein Element der Menge V zugewie-
sen werden (2.8) sowie einem Element aus der Menge V genau eines (2.9), so lauten die
Nebenbedingungen

37

2 Theoretische Grundlagen und verwandte Arbeiten

n
xj=1 Vje{l,2,--,n} (2.8)

i=1

n
injzl Vie{1,2,---,n} (2.9)

j=1

und

xij €B (2.10)

Auflerdem darf die Zuweisungsmatrix nur aus bool’schen Werten bestehen, was Nebenbe-
dingung (2.10) widerspiegelt.

Eine Zuweisung wird giiltige Zuweisung genannt, wenn sie alle entsprechenden Nebenbe-
dingungen erfiillt. Beispiel 2.9 ist somit eine giiltige Zuweisung in Bezug auf die genannten
Nebenbedingungen (2.8), (2.9) und (2.10). Es gibt n! giiltige Zuweisungsmatrizen, wenn alle
dieser Nebenbedingungen erfiillt sind.

Allein iiber die Zuweisungsmatrix ldsst sich allerdings kein Optimierungsproblem formu-
lieren — es fehlt das Kriterium, nach dem tiberhaupt optimiert werden soll. Dazu wird mit
jeder Zuweisungsoperation ein Zahlwert assozziert, der Kosten, Gewicht, Grofie, aber evtl.
auch Gewinn usw. représentiert.

In der Regel spricht man aber von Zuweisungskosten, die in einer Kostenmatrix C reprasentiert
werden:

C11 C12 Cln
€1 C2 -+ C2p

C=(p)=1 (2.11)
Cnl Cn2 Cnn

wobei ¢;; die Kosten (oder den Gewinn) darstellt, die entstehen, wenn Objekt i dem Objekt j
zugewiesen wird.

Eine Multiplikation X - C einer Zuweisungsmatrix mit der Kostenmatrix ergibt die Kosten
aller getdtigten Zuweisungen der Permutation X, wobei es sich hierbei um eine modifizierte
Multiplikation und nicht um die Standardmultiplikation bei Matrizen handelt.

2.3 Kombinatorische Optimierung

Um eine Optimierungsaufgabe formulieren zu konnen, wird noch ein Kriterium benétigt:
die Zielfunktion. Die Zielfunktion entspricht dem Optimierungsziel, das je nach Aufgaben-
stellung unterschiedlich geartet ist. Handelt es sich bei der Zielfunktion um eine lineare
Funktion, so spricht man von linearer Optimierung.

Klassische Zuweisungsprobleme

Mit dieser Vorarbeit ldsst sich das klassische Zuweisungsproblem (Assignment Problem, AP)
formulieren. Spezifisch fiir klassische Zuweisungsprobleme ist, dass die Zahl der Jobs und
der Agenten gleich ist. Hierbei geht es darum, n Jobs so n Agenten zuzuweisen, dass
die Gesamtkosten der Zuweisungen minimal werden. Die Zielfunktion, welche optimiert
wird, ist demnach eine Funktion, welche die Kosten aller Zuweisungen bestimmt und in
Gleichung (2.12) dargestellt ist.

Formal Iasst sich dieses klassische Zuweisungsproblem wie folgt fassen:

n n
minimiere Z Z CijXij (2.12)
i=1j=1
Unter den Bedingungen
n
xj=1 Vje{l2,---,n} (2.13)
i=1
n
xj=1 Vje{l,2,---,n} (2.14)
j=1
Xij €B (2-15)

Die praktische Relevanz dieser Problemstellung liegt auf der Hand: So stellt beispielsweise
die Zuweisung von n Jobs auf n Maschinen, wobei jede einzelne Job-Maschine-Zuweisung
andere , Kosten” Cij verursacht (hier z.B. Zeit, die benottigt wird, um ein Job zu bearbeiten),
eine solche praktische Anwendung dar.

Das Erzeugen aller Losungen wiirde die Generierung von n! moglichen Zuweisungsmatri-
zen bedeuten, was schon fiir kleine Werte von n unverhéaltnisméfsig hohen Rechenaufwand
bedeutet. Algorithmische Losungsansdtze sind die Ungarische Methode [BDMog] oder der
Simplex-Algorithmus [CLRSo4]. Diese Algorithmen driicken die Komplexitit auf eine poly-
nomielle Zeit. Auf die Algorithmen wird hier jedoch nicht ndher eingegangen, da sie nicht
unserer eigentlichen Problemstellung entsprechen.

39

2 Theoretische Grundlagen und verwandte Arbeiten

Abgeleitet von diesem klassischen Zuweisungsproblem gibt es eine Fiille weiterer Zuwei-
sungsprobleme, denen spezifisch ist, dass die Anzahl der zugewiesenen Objekte gleich ist.
Als umfassende Referenz hierfiir sei [Penos] genannt. Im Folgenden werden zwei dieser
Zuweisungsprobleme nédher betrachtet, die unserer Problemstellung dhneln.

Bottleneck Assignment Problem (BAP)

Ein Zuweisungsproblem, welches von der Problemstellung her in unsere Richtung weist,
ist das Bottleneck Assignment Problem (BAP) [Penos], [BDMog]. Hierbei geht es nicht um
die Miniermung der Gesamtkosten (-summe), sondern um die Minimierung des Maxi-
malwertes — wie kann eine Zuweisung gefunden werden, die den kritischen Wert, den
,Flaschenhals“minimiert. Formal ausgedriickt lautet die Zielfunktion:

minimiere n}?x{cijxij} (2.16)

Unter den Nebenbedingungen (2.13), (2.14) und (2.15) wie beim klassischen Zuweisungspro-
blem, wobei Z die Menge aller Agents und J die Menge aller Jobs ist. Bei dieser Variante
ist die Méachtigkeit der beiden Mengen gleich. Praktisch relevant ist die Problemstellung,
wenn es darum geht, kritische maximale Zuweisungskosten so klein wie moglich werden zu
lassen.

Algorithmische Losungsansitze in Polynomialzeit finden sich in [BDMog]. Die effiziente
Losbarkeit dieses Problems riihrt von der Tatsache her, dass die beiden Mengen von Objekten
die gleichen Kardinalitdten haben.

Balanced Optimization Problem (BOP)

Ein weiteres klassisches Zuweisungsproblem ist das Balanced Optimization Problem (BOP),
das Balancierte Zuweisungsproblem [MPTW84, BDMog, Penos], das unserer Problemstellung
dhnelt, da auch hier ein Differenz zwischen kleinstem und grofstem Wert minimiert werden
soll (,,Balanced”). Jedoch ist zu betonen, dass es sich um ein klassisches Zuweisungsproblem
handelt, also die Mengen von Agents und Jobs gleich grofs sind, was fiir die Problemstellung
unserer Arbeit nicht zutrifft. Der prinzipiellen Ndhe zu unserer Problemstellung wegen soll
diese Unterklasse der APs trotzdem aufgefiihrt werden.

Im Gegensatz zum BAP (siehe (2.16)) wird hier nicht nur der Maximalwert, sondern auch
der Minimalwert in die Betrachtung miteinfliefsen. Es soll die Differenz zwischen diesen
beiden Werten minimiert werden, was die Zielfunktion (2.17) ausdriickt. Im Hinblick auf
die Praxis ist diese Modellierung tiberall dort addquat, wo ,Kosten” angeglichen werden
sollen. Ein Beispiel in [MPTW84] veranschaulicht diesen Fall mittels einer Reiseagentur, die
verschiedene Reisegruppen auf verschiedene Rundreisen schickt, wobei die Kosten hier

40

2.3 Kombinatorische Optimierung

jeweils der beanspruchten Zeit entsprechen. Ziel ist es nun, die Reisegruppen so auf die
Rundreisen zu schicken, dass am Ende alle moglichst zum gleichen Zeitpunkt wieder an der
Sammelstelle ankommen. Mathematisch formalisiert werden kann dieser Fall wie folgt:

minimiere n}:%}x{cijxij} — IIIl,i]n{Cijxij} (2.17)

unter den Nebenbedingungen (2.13), (2.14) und (2.15) wie beim klassischen Zuweisungspro-
blem.

Martello et al. schlagen in [MPTW84] einen Algorithmus zur Losung des Problems vor, der
in [BDMog] erweitert wird, so dass eine polynomielle Komplexitit von O(n*) erreicht wird,
wobei n die Zahl der Agents und Jobs ist. Der Algorithmus baut auf der Losung fiir das
BAP auf und versucht, sich durch langsame Erhchung des Minimalwertes an ein Optimum
heranzutasten. Details finden sich in [BDMog].

Generalisierte Zuweisungsprobleme

Nachdem die klassischen Zuweisungsprobleme betrachtet wurden, deren Charakteristikum
eine gleiche Zahl von Agents und Jobs war, kommt die Untersuchung nun zu generalistierten
Zuweisungsproblemen [Penos, MTgo].

Ebenso wie beim klassischen Zuweisungsproblem geht es beim generalisierten Zuweisungs-
problem (Generalized Assignment Problems, GAP) um die Minimierung der Gesamtkosten
(-summe) aller Zuweisungen. Im Unterschied zum klassischen Zuweisungsproblem ist hier
die Beschrankung aufgehoben, wonach die Zahl der Agents und Jobs gleich sein muss. Diese
Erweiterung auf n > m Jobs findet sich in der im Vergleich zum AP verdnderten Zielfunktion
(2.18) und in der Nebenbedingung (2.20) wieder. Dies ist fiir unsere Problemstellung von
hoher Bedeutung, da die Zahl der Shares in der Regel grofer ist als die Zahl der Provider.
Seil ={1,---,m} die Menge aller Agents und | = {1,-- - ,n} die Menge aller Jobs, so kann
der Sachverhalt formal wie folgt dargestellt werden:

m n
minimiere Z Z CijXij (2.18)
i=1j=1
Unter den Bedingungen
m
xj=1 Vjie{L,2,--,n} (2.19)
i=1
n
inj >1 Vie{l2,---,m} (2.20)
j=1
xijj € B (2.21)

41

2 Theoretische Grundlagen und verwandte Arbeiten

Dabei bedeutet die erste Nebenbedingung (2.19), dass einem Job j immer nur genau ein
Agent i zugewiesen sein darf, ein Job somit nur von einem Agent bearbeitet wird. Die
zweite Bedingung (2.20) besagt, dass einem Agent auch mehrere, aber mindestens ein Job
zugewiesen werden muss. Die dritte Bedingung (2.21) gibt Auskunft {iber die Belegung der
Variablen der Zuweisungsmatrix, welche nur aus bool’schen Werten bestehen darf.

Hier gibt es m" giiltige Zuweisungsmatrizen. Beim Generalisierten Zuweisungsproblem
handelt es sich um ein NP-vollstdndiges Problem, was Martello und Toth durch Redukti-
on auf das multiple Rucksackproblem in [MTgo] zeigen. Da dieses Problem von unserer
Problemstellung entfernt ist, weil die Zielfunktion eine andere ist, sei hier eine Referenz
[CVWo92] genannt, die einen Uberblick iiber Algorithmen zur Lésung von GAPs enthiilt.

Bottleneck Generalized Assignment Problem

Wie zum klassischen Zuweisungsproblem gibt es auch zur generalisierten Variante eine
Ausformulierung, bei der es um die Minimierung eines Flaschenhalses geht. Diese Version
wird als Bottleneck Generalized Assignment Problem (BGAP) bezeichnet [MN88, MNg2, MTgs,
Penos]. In der Literatur finden sich zwei spezifische Ausformulierungen dieses Problems,
welche als Tusk BGAP und Agent BGAP bezeichnet werden und auf die im Folgenden
eingegangen wird.

Task Bottleneck Generalized Assignment Problem Das TBGAP entspricht, analog zum
klassischen Fall, der Ubertragung der Problemstellung auf eine Zielfunktion, die der Mini-
mierung eines Flaschenhalses dient, wenn die Zuweisungen fiir sich betrachtet den kritischen
Wert darstellen konnen. Formal ausgedriickt lautet dies:

minimiere rr}z}x{cijxij} (2.22)

unter den gleichen Nebenbedinungen (2.19), (2.20) und (2.21) wie beim GAP.

Sowohl Martello und Toth [MTg5] als auch Mazzola und Neebe [MIN88, MNo2] zeigen, dass
es sich um ein NP-schweres Problem handelt — deterministische Algorithmen benétigen
somit zur exakten Losung wahrscheinlich' einen exponentiellen Rechenaufwand mit der
Eingabegrofie (Paramter m und n) des Problems.

Mazzola und Neebe [MNog2] préasentieren eine exakte Losung: Indem zunichst eine
Heuristik angewandt wird, die manchmal die exakte Losung liefert. Ist dies nicht der Fall
wird ein Branch-and-Bound-Verfahren angewendet, um schliefilich zur exakten Losung zu
kommen, was den Algorithmus prinzipiell ineffizient macht. Die Evaluation soll jedoch

Wenn P # NP gilt [HMUo3].

42

2.3 Kombinatorische Optimierung

zeigen, dass dieser Aufwand vernachldssigbar ist und der Algorithmus in den meisten Féllen
trotzdem gute Performanz zeigt.

Martello und Toth stellen in [MTg5] einen exakten Branch-and-Bound und auch einen
Approximationsalgorithmus vor, wobei sich der exakte Branch-and-Bound-Algorithmus wie
der Algorithmus vom Mazzola und Neebe [MN92] von einer Grenze aus vortastet und dann
mit einer Branch-and-Bound-Strategie sukzessive die exakte Losung konstruiert.

Agent Bottleneck Generalized Assignment Problem Die Problemstellung des TBGAP ist
fiir unser Vorhaben weniger von Bedeutung, da bei uns der kritische Punkt nicht einzelne
Zuweisungen sind, sondern alle Zuweisungen auf jeweils einen Provider — es geht darum,
die Zuweisungen auf einen Provider, der evtl. als Flaschenhals wirkt, zu minimieren. Diese
Minimierung eines kritischen Agents kann mathematisch modelliert wie folgt ausgedriickt

werden:
n

minimiere (mlax(g CijXij)) (2.23)

Dabei gelten die gleichen Bedingungen (2.19), (2.20) und (2.21) wie beim GAP. Der Teil
(Xj_q cijxij) Zielfunktion (2.23) représentiert die Summe aller auf einem Agent platzierten
Jobs. Mazzola und Neebe bezeichnen dieses Problem darum als Agent Bottleneck Generalized
Assignment Problem (ABGAP) und erwdhnen es in [MN88] lediglich, ohne konkreter darauf
einzugehen.

Neben der genannten Referenz tritt das Problem auch unter dem Namen Imbalanced Time Mi-
nimizing Assignment Problem (ITMAP) bei Arora und Puri [AP97] auf'’. Zur Losung schlagen
die Autoren eine lexikografische Suche vor*?, welche wie die anderen Verfahren von einer
initialen Grenze ausgeht, die Schritt fiir Schritt zu einer optimalen Losung ausgebaut wird.
Der Evaluation der Autoren folgend liefert ihr Algorithmus aufgrund der guten initialen
Grenze in der Praxis schnell einen Optimalwert. Ein in der Originalversion vorhandener
Fehler wird in [MCAo1] beseitigt sowie ein weiteres Verfahren fiir ITMAP vorgeschlagen.

11 TImbalanced” im Namen ITMAP bezieht sich hier nicht wie in unserem Sinne auf einen Balancezustand
zwischen den Agents/Providern, sondern soll bedeuten, dass die Zahl der Agents nicht gleich der Zahl der
Jobs ist. Im Folgenden wird die Benennung ITMAP verworfen und auch ABGAP genannt, da es sich um die
gleichen Probleme handelt und sich so Unklarheiten vermeiden lassen.

?Im Allgemeinen bedeutet lexikographische Suche bei Optimierungsproblemen, dass Losungskandidaten als
Worter kodiert werden. Dabei werden Worter sukzessive konstruiert. Wenn absehbar ist, dass ein Wort
keine optimale Losung mehr darstellen kann, weil schon ein Teilwort (Partialwort) schlechter ist, wird der
komplette Zweig verworfen. Dieses Verfahren ist somit eine abgewandelte Form von Branch-and-Bound (im
Worst Case m" Schritte.

43

3 Konzepte zur Platzierungsoptimierung der
verteilten Positionsinformationen

Nachdem auf die verwandten Arbeiten eingegangen und die theoretische Fundierung
erlautert wurde, wird jetzt das Systemmodell vorgestellt: Die bestehende Architektur
nach [DSR11] wird um eine Trust Database erweitert, welche die Vertrauenswerte der
Provider hilt und verwaltet.

Dann werden in Abschnitt 3.2 die Anforderungen an das Systems thematisiert, welche die
maximale Sicherheit der Privatsphire bei LBS gewéhren sollen.

In Abschnitt 3.3 werden die konkreten Platzierungsstrategien fiir die verschiedenen
Szenarien besprochen: Es wird einerseits auf den Fall eingegangen, dass die Zahl der
Shares nicht vordefiniert ist. Sie kann also von Nutzer-Seite festgelegt werden. Damit ist die
Problemstellung, fiir welche Anzahl von Shares das Risiko optimal verteilt werden kann.
Im anderen Fall wird die Zahl der Shares als fest vorgegeben angenommen und es wird
gefragt, wie hier optimale Sicherheit erreicht werden kann. Bei dieser Problemstellung
handelt es sich um ein Zuweisungsproblem, welches entsprechend formalisiert wird und
von dem gezeigt wird, dass es sich um ein NP-schweres Problem handelt. SchliefSlich
werden Losungsansitze fiir dieses Problem erarbeitet. Dazu folgt in Abschnitt 3.3.2 eine
Diskussion der Ergebnisse und Losungsansitze aus Kapitel 2, wobei abgewogen wird,
welcher Losungsansatz im konzeptuellen Teil am besten geeignet ist, um den Anforderungen
beizukommen.

3.1 Systemmodell

Wie sich in Abschnitt 2.2 zeigte, ist der Schutz der Privatsphére bei Location-based Services
ein zentrales Anliegen. Durch die Sensibilitdt dieser Technologie miissen Wege gefunden
werden, um den Schutz der Privatsphdre zu gewéhren.

Verfahren wie k-Anonymity oder Zugriffslisten gehen von einer vertrauenswiirdigen Instanz
zur Speicherung der Positionsinformation aus. Diese Annahme ist jedoch zu kritiseren,
denn ein Location Server kann von aufien kompromittiert werden. Dartiiber hinaus ist
es moglich, dass intern ein unberechtiger Zugriff erfolgt, um z.B. Nutzerdaten mit der
Positionsinformation zu verkniipfen und fiir Werbung zu missbrauchen.

45

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

rights to access location servers—

Share location server1 Share

generation fusion |pBs 4
& access
~ '/ ‘\ }Q «—| LS, LS;

\ &

/’ \' .focauo servsrg
LBSE access
g are, B ,/ '\ LS, LS,

LS;

!ocat;on serve.rg/' LBS
3
access

aro, 2 /. B Sl

Abbildung 3.1: Darstellung der Systemarchitektur von Diirr und Skvorzov [DSR11].

Diirr und Skvorzov schlagen aus diesem Grund in [DSR11] ein System vor, welches mit
mehreren unabhingigen Location Servern arbeitet und das Prinzip der rdumlichen Ver-
schleierung der Positionsinformation mit der Koordinatentransformation verbindet. Dieses
Konzept wird auch als Verteilung der Positionsinformation bezeichnet und wurde im Detail
in Abschnitt 2.2.6 erldutert. Hierbei wird die exakte Positionsinformation in Teilvektoren,
auch Shares genannt, zerlegt und auf den unabhéngigen Location Servern, genannt Provider
platziert. Die Idee hinter diesem System ist, dass die exakte Position nur rekonstruiert werden
kann, wenn alle Provider gehackt werden, was einen unwahrscheinlichen Fall darstellt. Ein-
zelne Teile der Positionsinformation kénnen die exakte Position nur ungenau rekonstruieren.
Das Systemmodell nach 2.2.6 ist in Abbildung 3.1 dargestellt und besteht aus folgenden
Teilen:

Mobiles Gerat Dabei handelt es sich um ein Handy, ein Smartphone oder ein sonstiges
mobiles Gerét, welches in der Lage ist, die Position des Nutzers zu bestimmen, beispielsweise
via GPS oder durch GSM-Ortungsverfahren. Die Abtastung der Position erfolgt regelmafsig.
Eine Softwareanwendung auf diesem Gerét, dem vertraut wird, zerlegt die exakte Position
in Teile, die Shares. Dieser Prozess wird Share generation genannt. Zur Generierung der
Shares werden in [DSR11] zwei Algorithmen vorgeschlagen und evaluiert, auf die an dieser
Stelle jedoch nicht ndher eingegangen wird.

3.1 Systemmodell

Location Server / Provider In diesem Systemmodell gibt es im Gegensatz zu bisherigen
Ansitzen® mehrere Provider, denen nicht vertraut werden muss. Sie verwalten die Positi-
onsinformation des mobilen Gerétes, wobei jeder Location Server nur einen Teil, also eine
gewisse Anzahl von Shares bekommt.

Es ist hervorzuheben, dass bei diesem Ansatz die LS unabhéngig voneinder sein miissen.
Jeder LS stellt sowohl den mobilen Nutzern wie auch dem LBS Schnittstellen zur Verfligung.
Der Nutzer kann mittels dieser Schnittstelle seine Position hochladen oder einen gewissen
LBS zur Nutzung der gehaltenen Positionsinformation autorisieren. Dies geschieht, indem
jeder Provider eine Zugriffsliste* hilt, in der die Berechtigungen gesetzt werden kénnen. Zur
Seite des LBS bietet die Schnittstelle eine Moglichkeit zur Abfrage der Positionsinformati-
on.

Ortsbezogene Anwendung Diese Anwendung ist ein Dienst, der dem Nutzer bezogen auf
seine Position Informationen anbietet. In Abbildung 3.1 ist dieser Dienst mit LBS; bezeichnet.
Diesem Dienst miissen Positionsinformationen zugianglich gemacht werden, die er erhilt,
indem die LS abgefragt werden. Auf der Seite des LBS miissen die einzelnen Shares wieder
zusammengefiigt werden, was mittels einem Share Fusion-Algorithmus geschieht [DSR11].
Dann kann die Anwendung dem Nutzer Dienste wie POI-Finder usw. anbieten. Eine Neue-
rung im Vergleich zu anderen Konzepten3 ist, dass verschiedenen Diensten unterschiedliche
Genauigkeitsstufen der Position zugidnglich gemacht werden konnen. Die Dienste sind
also feingranular regulierbar. Diese Regulation wird durch die Zugriffslisten auf den LS
erreicht.

3.1.1 Trust Database

Momentan wird im Konzept von Diirr und Skvorzov [DSR11] von Providern ausgegangen,
die alle das gleiche Sicherheitsrisiko besitzen, was eine Einschrankung darstellt, die in der
Praxis nicht zutrifft.

Dieser Einschrankung kann beigekommen werden, indem mit jedem Provider ein Vertrauens-
oder Risikowert assoziiert wird. Dies bedeutet, dass die Zahl der platzierten Shares auf dem
jeweiligen Provider von Bedeutung ist: Auf einem Provider mit hohem Risiko sollten relativ
wenige Shares platziert werden, da bei seiner Kompromittierung, die als wahrscheinlicher
angesehen werden muss, eine genauere Position rekonstruiert werden kann. Um die Model-
lierung um diesen Aspekt zu erweitern, muss eine weitere Instanz ins System eingeftihrt
werden, die Vertrauens- oder Risikowerte der LS speichert und verwalten kann. Diese Instanz

Isiehe Abschnitt 2.2
2siehe Abschnitt 2.2.1
3siehe Abschnitt 2.2

47

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

wird als Trust Database bezeichnet. Das um die Trust Database erweitere Systemmodell ist in
Abbildung 3.2 dargestellt.

Risikowerte abfragen
Trust |« J

 Risikowerte eintragen
DB

Y

Mobiles Gerat

Shares
verteilen

Feedback-System

LS, | |LS,

Shares
beziehen

. . Dienste beziehen Ortsbezogene Dienste beziehen
Mobiles Gerat > 9 -«
Anwendung

Abbildung 3.2: Um die Trust Database erweiterte Systemarchitektur.

In der Trust Database wird zu jedem LS ein Vertrauenswert bzw. ein Risikowert gehalten,
der seine Wahrscheinlichkeit reprasentiert, kompromittiert zu sein. Die Trust Database ist
eine Datenbank, die in einer Tabelle zu jedem Location Server einen absoluten Risikowert
speichert. Dies ist in Tabelle 3.1 schematisch dargestellt.

Die Werte konnen auf verschiedene Weisen erzeugt werden, so z.B. durch ein automatisiertes
Feedback-System oder auch durch subjektive Bewertungen des Nutzers. Die Vertrauens-
werte konnen aus verschiedenen Werten wie Zuverldssigkeit, subjektiven Vertrauenswerten,
Angriffshistorie oder Reputation der Betreiber gebildet werden, wobei hierauf nicht wei-
ter eingegangen wird. Das angesprochene Feedback-System kann als Teil in dieser Trust
Database integriert sein, aber auch auflerhalb dieser liegen.

Location Server | Risikowert
1 1
2 %)
3 r3
m Tm

Tabelle 3.1: Schematische Darstellung der Tabelle der Trust Database mit Risikowerten
Das Vertrauen muss in einer gewissen Weise modelliert werden, um algorithmisch damit

arbeiten zu konnen. Gutscher [Gutoy] entsprechend kann ein Vertrauensmodell in vier
Komponenten unterteilt werden, die kurz erldutert werden.

48

3.1 Systemmodell

Die Vertrauenswerte miissen modelliert werden. Darunter wird die Reprédsentation der
Vertrauenswerte verstanden, die als bool’sche oder skalare Werte oder in Form einer diskreten
Verteilungsfunktion angegeben werden konnen.

Ein weiterer Teil ist die Berechnung der Vertrauenswerte: Hier wird festgelegt, wie die
unterschiedlich reprasentierten Vertrauenswerte potentiell miteinander verrechnet werden
konnen.

Neben diesen beiden Teilen werden noch Relationen und Schlussfolgerungsregeln als Teile
eines Vertrauensmodells genannt. Damit ist gemeint, wie die Beziehung zwischen den
Entitdten (bspw. , A vertraut B“) modelliert wird und welche Schliisse sich daraus ziehen
lassen (bspw. ,Wenn A vertraut B und B vertraut C, dann vertraut auch A der Instanz C”).

Fiir diese Arbeit ist vor allem von Bedeutung, wie die Vertrauenswerte repriasentiert
werden. Dabei werden die initialen Vertrauenswerte ;) als skalare Werte wie in Aus-
druck (3.1) formalisiert, wobei i den Index eines Providers reprasentiert.

ti(start) S [011] (31)

ti(start) bedeutet dann, wie sehr einem Provider i auf einer Skala von 0 bis 1 vertraut wird.
Risiko wird dann als Gegenereignis zum Vertrauen definiert:

Ti(start) = 1- ti(sturt) (3-2)

Somit gilt auch 7,y € [0,1], wobei diese Werte frei wihlbare Risikowerte sind. Dann
miissen alle Werte 7;(y,,4) auf Werte r; normalisiert werden, so dass nach der Normalisierung

Y ri = 1gilt
Norm.

Ti(start) — 1 (33)
Dies hat zum Ergebnis, dass es sich somit immer um relative Werte handelt, die in Bezug
zueinander stehen. Konkret wird ein Sicherheitsrisiko von 1 unter den Providern aufgeteilt
werden. Mit dieser Annahme lassen sich relative Aussagen {iiber das Risiko der Provider
treffen, die leicht quantifizierbar sind. Hétten alle Provider das gleiche Risiko, wiirde 1 zu
gleichen Teilen aufgeteilt werden usw.
Da es sich algorithmisch aber als vorteilhaft erweist, auf natiirlichen Zahlen zu operieren,
sollten diese Werte noch skaliert werden. Dazu wird ein Wert r; zunichst auf eine natiir-
liche Zahl abgebildet, was durch eine Multiplikation mit einem Faktor wie 100 oder 1000
geschehen kann, je nachdem, welche Genauigkeit reprasentiert werden soll*. Dann kann der
kleinste dieser Werte als Faktor 1 gesetzt werden, auf den sich alle anderen Werte beziehen.

4Dazu muss ferner gelten, dass r; € Q, weil sich die Skalierung auf ganzzahlige Werte sonst nicht durchfiihren
liefe.

49

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Seien beispielsweise 5 Provider mit den Risikowerten r1 = 0,25, r, = 0,5, 713 = 0,1, 74 = 0,05
und 75 = 0,1 gegeben, dann sind die entsprechenden auf natiirliche Zahlen skalierten Werte
1 (skat) = 25, To(skal) = 90, ¥3(skat) = 10, T4(skary = 5 und 7551,y = 10. Dies kann noch weiter
skaliert werden auf ry(gu) = 5, 2(skat) = 10, 3(skat) = 2, Ta(skary = 1 und 75541y = 2, wobei
jeweils die gleichen Risikorelationen zwischen den Providern reprasentiert werden. Eine
Trust Database mit den Werten aus diesem Beispiel ist in Tabelle 3.2 dargestellt.

Location Server | Risikowert
1 5
2 10
3 2
4 1
5

Tabelle 3.2: Beispielhafte Darstellung der Tabelle der Trust Database

Die Riicktransformation geschieht, indem alle ganzzahligen Risikowerte r; addiert werden.
Dann werden die jeweiligen Risikowerte durch diese Summe geteilt, was einen Wert r; € [0, 1]
liefert. Diese Rechenvorschrift ist in Formel (3.4) dargestellt.

Ti(skal
r = i(skal)

_ _ilekal) (3.4)
ZI Ti(skal) >4

Die beispielhafte Riicktransformation fiir den ersten Provider ist in Formel (3.5) dargestellt:

5

0,25 (3-5)

50

3.2 Problemstellung und Anforderungen

3.2 Problemstellung und Anforderungen

Die Aufgabe ist es, die optimale Platzierung von Shares auf Providern zu finden.
Optimalitit der Platzierung ist diejenige Belegung von Shares auf Providern, die im Falle von
ungewichteten Shares die gegebenen Sicherheitsrisiken ausgleicht. Dies fiihrt dazu, dass risi-
koreiche Provider weniger Shares zugewiesen bekommen als vertraute. Ist es wahrscheinlich,
dass ein Server gehackt wird, liefert seine tatsachliche Kompromittierung nur wenige Shares,
was die Sicherheit des Gesamtsystems erhoht.

Sind die Shares gewichtet, soll dadurch eine angemessene Verschlechterung (engl. graceful
degradation) der Privatsphére bei fortschreitender Zahl kompromittierter Provider erreicht
werden. Bei jedem weiteren Server, der gehackt wird, verschlechtert sich die Privatsphére
nur um einen konstanten Faktor.

Die Fragilitit R; eines Providers i bezeichnet sein spezifisches Sicherheitsrisiko, das er ins
System nach Aufnahme von Shares einbringt und wird berechnet als Multiplikation des
Risikowertes eines Providers mit den Risikowerten der auf ihm platzierten Shares, also

Ri =71 Si (36)

wobel S; = Y auf i zugeordnet Sj die Summe der Risiken der Shares s; auf dem platzierten
Provider i darstellt. Sind die Shares ungewichtet (= 1), wird der Risikowert eines Providers
mit der Anzahl der Shares multipliziert.

Der Zielzustand ist das Gleichgewicht der Fragilitat aller m Provider; dieser Zielzustand ist
in Formel (3.7) ausgedriickt.

Ri=Ry=---=Ry (3-7)

Die Problemstellung ist es nun, diesen Balance-Zustand durch eine entsprechende Plat-
zierung so weit wie moglich herzustellen. Dabei ist es nicht immer moglich, ein komplett
austariertes System zu erhalten.

Der Balance-Zustand wird durch eine moglichst geringe Differenz zwischen minimaler und
maximaler Fragilitat auf den Servern erreicht, weil dadurch die Risiken so gut wie moglich
austariert werden und eine Balance wie in Formel (3.7) erreicht werden kann.

Eine erste Formalisierung der Problemstellung, die im folgenden Verlauf dieser Arbeit
konkretisiert wird, lautet somit:

minimiere (Ryx — Ryin) V' Provider (3.8)

wobei (Ryax — Ryin) im Folgenden auch als A bezeichnet wird.

Hierdurch wird erreicht, dass gegebene Sicherheitsrisiken der Server relativ ausbalanciert
werden, wenn es sich um ungewichtete Shares handelt.

51

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Im Falle von gewichteten Shares wird eine angemessene Verschlechterung der Privatsphére
erreicht, wodurch es keine Schwachstelle im System gibt, die das Sicherheitsrisiko {iberpro-
portional gefidhrdet (keinen sog. Flaschenhals). Dieser Zusammenhang ist in Abbildung 3.3
dargestellt, wobei Abbildung 3.3(a) den Fall fiir eine optimale Losung, Abbildung 3.3(b) fiir
eine nicht-optimale Losung mit einem Flaschenhals im System zeigt.

Ein weiteres Argument fiir die angemessene Verschlechterung ist, dass der Angreifer kei-
nen Vorteil darin hat, einen Server mit hohem Risikowert oder mit schlechter Reputation
anzugreifen: Die erfolgreiche Kompromittierung liefert den moglichst gleichen Teil an Positi-
onsinformationen, wie wenn jeder beliebige andere Server gehackt wiirde.

1 ’7 1+ ’7
$ 3m —— < 3Im I
] 2
u w
2Im 2/m
Um - 1m
1 2 3 m 1 2 3 m
Zahl kompronittierter Server Zahl kompromittierter Server
(a) Optimaler Fall (b) Nicht-optimaler Fall

Abbildung 3.3: (a) Optimaler Fall der Verteilung, wenn Exaktheit der Positionsrekonstrukti-
on konstant ansteigt.
(b) Nicht-optimaler Fall der Verteilung, da bei dem ersten kompromittierten
Server sich eine genauere Position rekonstruieren liefse.

Sicherheit der Privatsphire kann somit interpretiert werden als die Fahigkeit, die Fragilita-
ten konstant zu halten, um Sicherheitsrisiken auszubalancieren, keine tiberproportionalen
Schwachstellen im System zu haben und eine angemessene Verschlechterung der Privatspha-
re im Fall von kompromittierten Servern zu erreichen.

Neben der eigentlichen Optimierung ist auch die Zeit zur Berechnung einer Platzierung
ein kritischer Faktor, da die Platzierung auf leistungsschwécheren mobilen Geréten berechnet
wird. Dartiber hinaus muss beachtet werden, dass bei jeder Positionsdnderung die Shares
evtl. neu platziert werden miissen. Will man von einer harten Grenze ausgehen, kann
die Abtastrate von GPS (1Hz) herangezogen werden. Allerdings haben andere Methoden
zur Positionsbestimmung eine weitaus geringere Abtastrate, wodurch obige Abschidtzung
relativiert wird [DSR11]. Somit ist eine kurze Berechnungsdauer (im Sekundenbereich) nach
der Optimalitdt der Platzierung eine weitere Anforderung an das System.

52

3.3 Platzierungsstrategien

3.3 Platzierungsstrategien

Nachdem das um die Trust Database erweiterte Systemmodell vorgestellt wurde, kann jetzt
auf die eigentliche Aufgabe, namlich die Erlangung des Balance-Zustands, eingegangen
werden. Dabei gliedert sich der Abschnitt in 2 Szenarien:

In Szenario 1 ist die Anzahl und damit auch die Gewichtung der Shares nicht von vornherein
festgelegt, so dass der Optimalzustand {iiber eine Justierung der Anzahl erreicht werden
kann.

Szenario 2 gibt die Zahl der Shares vor, was dazu fiihrt, dass es sich um ein Zuweisungspro-
blem handelt.

Zu jedem Szenario gibt es Unterklassen, die als Ubersicht in Tabelle 3.3 dargestellt sind. In
jedem Unterabschnitt sind zur Ubersicht noch einmal die Falle tabellarisch dargestellt und
der jeweils betrachtete Fall grau hinterlegt.

Anzahl der Shares

Szenario 1: nicht vordefiniert Szenario 2: vordefiniert
Fall | Providerrisiken r; | Sharerisiken s; || Fall | Providerrisiken r; | Sharerisiken s;
1-a | gleich gleich 2-a | gleich gleich
1-b | gewichtet gleich 2-b | gewichtet gleich
1-c¢ | gleich gewichtet 2-c | gleich gewichtet
1-d | gewichtet gewichtet 2-d | gewichtet gewichtet

Ansatz
Justierung der Anzahl Zuweisungsproblem

Tabelle 3.3: Ubersicht {iber die unterschiedlichen Szenarien

Ziel der Optimierung ist es, um noch einmal die Anforderungen 3.2 zu rekapitulieren, die
Fragilitaten der Provider anzugleichen, also einen Zustand der Balance zu erreichen:

Ry =Ry, =---=R,;; = R = konst.

53

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

3.3.1 Szenario 1: Nicht vordefinierte Anzahl von Shares

Variable | Erkldrung
n Anzahl der Shares
m Anzahl der Provider
T Risiko des Providers i
S Gewichtung der Share j
S; Sharerisiko aller einem Provider i zugeordneter Shares
n; Zahl der Shares auf dem Provider i
R; Fragilitat eines Providers i
R Relatives Gesamtrisiko bzw. Skalierungsfaktor

Tabelle 3.4: Erklarung der Variablen in Szenario 1

Zunichst wird der Fall betrachtet, dass die Anzahl der Shares n nicht von vornherein
festgelegt ist. Damit sind auch die Sharegewichte nicht fest vorgegeben. Jedoch ist von einer
beliebigen, aber festen Anzahl von Providern m auszugehen. Nun muss erortert werden, fiir
welche Anzahl von Shares das Sicherheitsrisiko minimal wird und optimal verteilt ist, so dass
jeder Provider das moglichst gleiche, moglichst geringe Sicherheitsrisiko darstellt. Hierbei
miissen vier Unterfille betrachtet werden, die sich darin unterscheiden, ob die Shares und
Provider jeweils gewichtet sind oder nicht. Die Semantik der in diesem Szenario benutzten
Variablen wird in Tabelle 3.4 dargestellt.

Provider ungewichtet / Shares ungewichtet (Szenario 1-a)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall | Providerrisiken r; | Sharerisiken s;
1-a | gleich gleich

1-b | gewichtet gleich

1-c¢ | gleich gewichtet

1-d | gewichtet gewichtet

In der ersten Unterklasse von Szenario 1 sind sowohl die Providerrisiken als auch die Risiken
der Shares gleich, dh.ri =n=..=r,=r=1lunds; =s = ... =5, =s = 1.

Soll der Balancezustand (Formel (3.7) erreicht werden, folgtausr-s-ny =r-s-npy =--- =
r-s-ny, dass jeder der m Provider eine gleiche Anzahl

Ny =mng=--+=1MNy (3-9)

54

3.3 Platzierungsstrategien

Shares bekommt. Dies ist nur moglich, wenn die Gesamtzahl der Shares n = k- m ein
ganzzahliges Vielfaches der Anzahl der Provider ist, alson =m, n =2-m,n =3 -m,... bzw.
wenn gilt n mod m = 0. Hétte ein Provider mehr Shares als ein anderer, so wiirden Dritte bei
dessen Kompromittierung tiber mehr Shares verfiigen, woraus sich eine exaktere Position
rekonstruieren liefse.

Zu Bestimmung der optimalen Zahl # ist lediglich ein Schritt notig, womit die Laufzeitkom-
plexitit O(1) betragt.

Provider gewichtet / Shares ungewichtet (Szenario 1-b)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall | Providerrisiken r; | Sharerisiken s;
1-a | gleich gleich

1-b | gewichtet gleich

1-c | gleich gewichtet

1-d | gewichtet gewichtet

Haben die Provider unterschiedliche gegebene Risikowerte r;, sind die Shares ungewichtet,
d.h. es gilt s1 = s, = ... =5, = s = 1 und ist nach der Anzahl der Shares gefragt, fiir die das
Sicherheitskrisiko minimal und ausbalanciert wird, so stellt sich der Sachverhalt wie folgt
dar: Wenn jedem Provider i seinem eigenen Risiko r; entsprechend umgekehrt proportional
viele Shares n; zugeordnet werden, kann ein konstantes Risiko erreicht werden, das fiir alle
Provider gleich ist — das eigene Gewicht eines Providers wird durch die Zahl der Shares
,ausbalanciert”. Die Herleitung erfolgt aus Formel (3.7), wonach alle Fragilititen im System
gleich sein miissen: Aus ry -s-ny =ry-5-1p = - -+ = Iy, - 5 - Ny, ergibt sich dann die gesuchte
Anzahl von Shares auf einem Provider n; als

1

n; = - (3.10)
1

bzw. n; = &, weil mit ganzen Zahlen operiert werden muss.
1

Die gesuchte Gesamtzahl der Shares, fiir die sich Optimalitéit einstellt, ist dann:

g

X (3.11)

T

m m
n:Zni: :R-Z
i=1 i=1

1
i=1 Ti
R skaliert die Werte und kann als ,relatives Gesamtrisiko” interpretiert werden — entschei-
dend ist, dass dieses R auf allen Providern gleich ist. Das Risiko kann nur dann gleich verteilt

werden, wenn R gerade und durch alle moglichen Gewichte r; teilbar ist. Dies konnte erreicht

55

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

werden, wenn R = rq - 15 - 13- - - 1 gelten wiirde — dann wére R aber nicht die minimale
Losung. Das R, welches sich durch alle 7; teilen ldsst und dabei minimal ist, kann mittels des
kleinsten gemeinsamen Vielfachen aller Werte r; bestimmt werden:

R=kgV(ri,ra, -+ ,rm) (3-12)

Indem R dem kleinsten gemeinsamen Vielfachen entspricht, konnen die Shares so auf die
Server verteilt werden, dass ein gleichverteiltes Risiko tiber allen Providern erreicht werden
kann, selbst wenn diese unterschiedliche Risikowerte besitzen. Wird nun ein Provider, fiir
den es wahrscheinlicher ist, kompromittiert zu werden, auch wirklich gehackt, gehen hier nur
wenige Shares verloren. Dies folgt aus dem konstanten Gesamtrisiko tiber allen Providern.

Die Laufzeit dieser Berechnung ist hauptsachlich durch die Bildung von n; = rl’ bestimmt.
Hierzu sind m Schritte notig, weil einmal tiber alle Provider iteriert werden muss. Das kgV’
lasst sich mittels des euklidischen Algorithmus bestimmen, welcher eine logarithmische
Komplexitat mit Ziffernlange besitzt. Da fiir unsere Problemstellung allerdings nur die Zahl
der Shares und der Provider von Bedeutung ist, ergibt sich auch hier die Laufzeitkomplexi-
tat O(m).

Provider ungewichtet / Shares gewichtet (Szenario 1-c)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall | Providerrisiken r; | Sharerisiken s;
1-a | gleich gleich
1-b | gewichtet gleich
1-c¢ | gleich gewichtet
1-d | gewichtet gewichtet
In diesem Fall sind die Providergewichte gleich, dh. ry = r, = --- =r,; =r = 1 und

die Sharegewichte unterschiedlich. Da in Szenario 1 die Zahl n der Shares frei wahlbar ist,
sind auch die Gewichtungen der Shares frei wiahlbar und bedeuten so einen zusatzlichen
Freiheitsgrad. Bezeichne S; das Gesamtgewicht aller dem Provider i zugeordneten Shares:
Si = LJj auf i zugeordnet §j- Dann gilt fiir die Provider nach der Balanceformel (3.7), dass r- S1 =
r-Sy =---=r-S,. Hieraus folgt

S1=5,=---=85, (3.13)

Optimalitdt wird erreicht, indem genauso viele Shares wie Provider erzeugt werden und alle
die gleiche Gewichtung besitzen. S; kann interpretiert werden als Gewichtung einer Share,
die evtl. noch weiter aufteilbar ist:

3.3 Platzierungsstrategien

Si:2-(5)=~-=k-(f) (3.14)

Dabei kann diese Grundshare mit Gewicht S; in k Shares aufgeteilt werden, wenn S; mod
k = 0 gilt. Dies bedeutet, dass ein Provider i eine Share mit Gewichtung S; haben kann,
zwei mit jeweiliger Gew1chtung 3 oder allgemein 7; Shares mit Gewichtung ()

Von der Abschédtzung der Laufzeit her betrachtet ist dieser Fall analog zu Fall 1-a: Es reicht
ein Vergleich, um die Zahl der notigen Shares zu bestimmen, ihre Gewichtung wird gleich
gewihlt. Die Laufzeitkomplexitit hierfiir ist O(1).

Provider gewichtet / Shares gewichtet (Szenario 1-d)

Szenario 1: nicht vordefinierte Anzahl von Shares

Fall | Providerrisiken r; | Sharerisiken s;
1-a | gleich gleich

1-b | gewichtet gleich

1-c¢ | gleich gewichtet

1-d | gewichtet gewichtet

Wird die Anzahl der Shares gesucht und ist die Aufgabe, das Risiko {iiber allen Providern
gleich zu verteilen, wobei die gegebenen Providerrisiken frei wahlbare, aber feste Werte 71,
r2, - -+, m, die Sharerisiken wie in Fall 1-c frei wahlbar sind und gilt S; = Y 4uf i zugeordnet Sjr
so lasst sich der Sachverhalt nach der Balance-Bedingung (3.7) formalisieren durch:

1. Provider: r1 - 51 = R
2. Provider: 7, - 5, = R
m. Provider: r, - S;, = R

Ausry-Sy =125y =+ =1y Sy folgt, dass das Sicherheitsrisiko minimal wird, wenn ge-
nauso viele Shares wie vorhandene Provider erzeugt werden und jede Share eine Gewichtung
bekommt, die umgekehrt proportional zum Providerrisiko ist:

Si=— (3.15)

bzw. S; = &, weil mit ganzen Zahlen operiert werden muss, wobei R den Skalierungsfaktor
beze1chnet

57

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Dadurch wird erreicht, dass das Risiko r; eines Servers ausbalanciert wird. Dies ist nur
moglich, wenn R mod r; = 0. Es muss noch der Wert fiir R bestimmt werden, fiir den
dies moglich ist. Analog zu Fall 2 1dsst sich wie in Formel (3.12) das kleinste gemeinsame
Vielfache verwenden, um R zu bestimmen.

Die Share S; kann wieder wie im vorhergehenden Fall als Grundshare verstanden werden,
die evtl. weiter aufgeteilt werden kann in:

51.:2.(521'):...:”1..(711:) (3.16)

Dabei kann jede Grundshare in n; Shares aufgeteilt werden, wenn S; mod n; = 0 gilt.

Die Komplextidt dieser Berechnung liegt in O(m): Zur Bestimmung der Zahl zu erzeu-
gender Shares ist zwar nur genau ein Vergleich notwendig, die Berechnung der jeweiligen
Gewichtung erfolgt aber, indem einmal tiber alle Providerrisiken iteriert wird.

Ubersicht der Ergebnisse fiir Szenario 1

Da sich die Optimalitdt der Platzierung hier jeweils iiber die Justierung der Anzahl der
Shares sowie deren Gewichtungen ergibt, lassen sich die Ergebnisse als geschlossene Formeln
ausdriicken. Die Ergebnisse sind in Tabelle 3.5 noch einmal zusammenfassend dargestellt.

Fall | Providerrisiken 7; | Sharerisiken s; || Ergebnis: Zahl zu erzeugender Shares
1-a | gleich gleich n=m

1-b | gewichtet gleich n=ymr, rB,

1-c | gleich gewichtet n = m mit gleichen Gewichten

1-d | gewichtet gewichtet n = m mit Gewichtung S; = rB,

Tabelle 3.5: Ubersicht {iber die Ergebnisse in Szenario 1.

58

3.3 Platzierungsstrategien

3.3.2 Szenario 2: Vordefinierte Anzahl von Shares

Das Problem stellt sich anders dar, wenn die Anzahl der Shares n beliebig, aber vordefiniert
ist. Dann konnen zwar Aussagen dariiber getroffen werden, fiir welche Anzahl der Shares sich
ein optimales Sicherheitsrisiko einstellt. Die Anzahl der Shares n und deren Gewichtungen
s; miissen jedoch als gegeben betrachtet werden; die Shares miissen auf die m gegebenen
Provider verteilt werden, namlich so, dass das Sicherheitsrisiko zwischen den Providern
ausbalanciert ist, was in Abschnitt 3.2 spezifiziert wurde. Die Anzahl der Shares ist in
diesem Fall also ein fester Parameter. Mit den Uberlegungen aus Teil 2.3 dieser Arbeit
wird ersichtlich, dass es sich um ein Zuweisungsproblem handelt, das zunéchst allgemein
formalisiert wird, um dann konkret auf die Unterfélle einzugehen.

Formalisierung der Problemstellung als Zuweisungsproblem

Wie bei den Zuweisungsproblemen aus Kapitel 2 wird eine Zielfunktion benétigt, die unter
gewissen Bedingungen minimiert werden soll. Diese Paramenter ergeben sich durch die
Aufgabenstellung, die besagt, dass das Sicherheitsrisiko auf allen Providern moglichst gleich
(klein) sein muss. Die weiteren Bedingungen ergeben sich aus dem Systemmodell, wonach
jeder Provider mindestens eine Share zugewiesen bekommen sowie eine Share genau einem
Provider zugeordnet sein muss. Hierbei ist I = {1,2,---,m} die Menge aller Provider,
J={1,2,---,n} die Menge aller Shares, wobei m < n gilt. Die Kosten fiir eine Zuweisung
einer Share j auf einen Provider i werden als ¢;; bezeichnet, wobei gilt, dass ¢;; € N, ¢;; > 0.
Diese Kosten entsprechen je nach Unterklasse dem Risiko des Providers, der Gewichtung
der Shares oder dem Produkt aus beiden, was im Folgenden dargestellt ist:

Szenario 2-a: cij=1
Szenario 2-b: Cij = T1i
Szenario 2-c: Cij = §j

Szenario 2-d: ¢jj =71;-8;

Die Zuweisungsmatrix X wird gebildet aus bool’schen Werten x;; € BB, die eine Zuweisung
einer Share j auf den Provider i darstellen, wenn sie den Wert 1 bzw. wahr besitzen. Formal
ausgedriickt heifit die Optimierungsaufgabe nun:

minimiere ((m?x(i CijXij)) — (mlln(i CijXij))) (3-17)
=1 =1

Unter den Bedingungen

xj=1 Vje{l2,---,n} (3.18)
=1

1

59

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

n
x;>1 Vie{1,2,--,m} (3.19)
=1

]
xijj € B (3.20)

Bedingung (3.18) besagt dabei, dass jede Share genau einem Provider zugewiesen sein muss.
Bedingung (3.19) bedeutet, dass einem Provider auch mehrere Shares gleichzeitig zugewiesen
sein konnen. Die letzte Bedingung (3.20) stellt die Anforderung an die Zuweisungsmatrix
dar, wonach diese Matrix aus bool’schen Werten gebildet werden muss.

Im Folgenden nenne ich dieses Problem in Anlehnung an die verwandten Zuweisungspro-
bleme aus Abschnitt 2.3.3 Balanced Generalized Assignment Problem (BaGAP).

Komplexitat des Problems: NP-schwer

Das eben formalisierte Problem muss noch einer Untersuchung bzgl. seiner Komplexitat
unterzogen werden. Dazu miissen die Darstellungen aus Abschnitt 2.3.1 angefiihrt werden:
Handelt es sich um ein NP-schweres Problem, muss dies durch eine Reduktion gezeigt
werden, die ein anderes NP-vollstindiges oder NP-schweres Problem auf das BaGAP poly-
nomiell reduziert.

Beweis Vom ABGAP ist bekannt, dass es NP-schwer ist [MN88] [APg7]. Die Zielfunktion
des ABGAP wird folgendermafien dargestellt:

n
minimiere (mlax(; CijXij)) (3.21)

Wihrend beim ABGAP (3.21) nur der Maximalwert der Gesamtsumme auf einem Provider
minimiert wird, geht es beim BaGAP (3.17) um die Minimierung der Differenz zwischen
Maximalwert und Minimalwert der Gesamtsummen auf dem jeweiligen Provider. Der Beweis
erfolgt durch die Angabe eines Reduktionsverfahrens, welches

ABGAP =, BaGAP (3.22)

leistet. Solch ein Reduktionsverfahren kann realisiert werden, indem zunéichst ein zuséatz-
licher Provider m + 1 hinzugefiigt wird, dessen Risiko 7,11 = T sehr hoch angesetzt wird.
Auflerdem wird eine Share eingefiigt, deren Gewichtung s,,;1 = 0 ist. Damit wird die Kos-
tenmatrix C um eine Zeile, die dem neuen Provider entspricht sowie um eine Spalte, welche
die neue Share représentiert, erweitert, was in Matrix (3.23) dargestellt ist.

60

3.3 Platzierungsstrategien

cn 2 - ¢ 0
21 o -+ ¢y 0
C=1 : : : L (323)
Cm1 Cm2 +++ Cmn O
s1-T sp-T --- s,-T O

Indem das System sowohl um einen Provider mit einem hohen Risikowert als auch eine
Share mit Gewicht 0 erweitert wird, wird sichergestellt, dass die Zuweisungen gemaf3 Ne-
benbedingung 3.19 giiltig bleiben. Wiirde lediglich ein Provider mit Risiko 0 eingefiihrt, so
wiirden alle Shares auf ihn zugewiesen, denn diese Zuweisungen wiirden in jedem Fall das
optimale A = 0 liefern, wobei die Zuweisung nicht mehr giiltig ware.

Durch eine derart aufgebaute Kostenmatrix wird erreicht, dass alle urspriinglichen Shares s;
mit j € {1,---,n} nicht auf den neuen Provider zugewiesen werden, weil er bei Zuweisung
zu hohe Kosten liefert, die unserem Ziel, die Differenz zu minimieren, von vornherein
widersprechen. Hierbei reicht es schon, wenn s; - T der doppelte Maximalwert aller Zu-
weisungskosten ist, da bei Auswahl dieser Zuweisung die Differenz immer grofier als der
Maximalwert der urspriinglichen Kosten wére. Somit konnte eine Zuweisung auf diesen
Provider niemals auf ein optimales A fiihren.

Die Zuweisung des neuen Providers m + 1 wird garantiert zu Share n + 1 erfolgen, denn
jede andere Zuweisung fiir Provider m + 1 wiirde zu hohe Kosten verursachen und damit
unserem Ziel, den A-Wert zu minimieren, widersprechen. Also gilt x(,,41)(41) = 1.

Mit dieser Zuweisung wird der Minimal-Term des BaGAPs (Formel 3.17) fiir jede Problemin-
stanz garantiert 0 und ist daher nicht mehr relevant. Will man nun ein BaGAP l6sen, gilt es,
ein ABGAP zu l6sen. Somit ist BAGAP NP-schwer. |

Diskussion der Losungsansatze

Indem das BaGAP als Zuweisungsproblem formalisiert wurde, gehort es zur Klasse der
kombinatorischen Optimierungsprobleme. Diese Eigenschaft macht eine Abwagung notwen-
dig zwischen einer exakten, aber mitunter ineffizenten Losung und einer Naherungslosung.
Dabei muss jedoch beachtet werden, dass eine exakte Losung hinfillig ist, wenn eine un-
verhéltnisméafig lange Zeit darauf gewartet werden muss. Diese Abwéagung hiangt von der
konkreten Problemstellung ab.

Die in Abschnitt 2.3.2 dargelegten Losungsansédtze sind generelle Verfahren fiir kombi-
natorische Optimierungsprobleme. Grundsitzlich ldsst sich sagen, dass die vollstindige
Enumeration vermieden werden sollte, da sie theoretisch wie praktisch exponentiell viele
Schritte mit der Eingabeldnge zur Losung eines Problems benétigt.

61

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Branch-and-Bound héngt stark von der Problemstellung ab: Kann aus dem Problem eine
Strategie abgeleitet werden, zuverldssig eine Schranke zu bestimmen, mit der friithzeitig
moglichst viele Zweige abgeschnitten werden konnen? Hierbei gilt fiir unser Problem, dass
der theoretische Optimalwert zur Erzeugung der Balance A = 0 ist. Die Nachbildung der
Austarierung in einem Entscheidungsbaum ist jedoch keine triviale Aufgabe, denn es muss
eine Schranke bestimmt werden, durch die schlechtere Losungen von vornherein ausge-
schlossen werden. Wiirde immer entlang dem Weg im Baum gegangen, der das minimale
A liefert, wird das globale Optimum unter Umstidnden nicht erreicht. Dies riihrt von der
Tatsache her, dass es sich bei der Zielfunktion, die in Formel (3.17) formalisiert wurde,
nicht um eine lineare Funktion handelt und darum ein lokaler Optimalwert nicht zu einem
globalen fithren muss. Es ist die Eigenart unserer Zielfunktion mit fortlaufender Zahl der
getdtigten Zuweisungen um den theoretischen Optimalwert von 0 zu zirkulieren. Dies riihrt
von der Tatsache her, dass in unserer Zielfunktion kein Wert fix gesetzt werden kann (im
Gegensatz zum ABGAP z.B., wo immer (¥ ¢;x;;) = 0 gilt). Ein Grenze wiirde also von
vornherein zu unspezifisch sein; die Senkung der Komplexitit durch Branch-and-Bound
wird als gering eingeschétzt, weswegen auf diesen Ansatz verzichtet wird.

Die metaheuristischen Verfahren bieten im Allgemeinen keine Garantie, dass der optimale
Wert gefunden wird, sind aber oft die einzige Moglichkeit, auch grofle Probleminstanzen
behandeln zu konnen. Gegeniiber problemspezifischen Heuristiken sind sie weniger schwer
zu erarbeiten, dafiir aber auch weniger genau. Unter den metaheuristischen Losungsansat-
zen sollte die reine lokale Suche nicht verwendet werden, da sie beim ersten gefundenen
Maximum stehen bleibt.

Evolutiondre Algorithmen als Vertreter der populationsbasierten Suchalgorithmen erweitern
das Paradigma der lokalen Suche auf mehrere Losungskandidaten. Durch die Mutations-
operation wird sichergestellt, dass ein grofier Wertebereich abgedeckt wird. Evolutionare
Algorithmen sind zwar im Vergleich zum Bergsteigeransatz langsamer, lassen sich aber
besser anpassen sowie mit problemspezifischen Heuristiken unterstiitzen. Weicker [Weioz]
empfiehlt lokale Suchalgorithmen wie simulierte Abkiihlung fiir gutmiitige Probleme, wohin-
gegen evolutiondre Algorithmen angewandt werden sollten, wenn viele lokale Optima bzw.
eine zerkliiftete Wertelandschaft dem Problem inhérent sind. Da es sich bei unserer Zielfunk-
tion, wie oben schon dargelegt, um solch eine , schwierige” Funktion handelt, wurde sich fiir
die evolutiondren Algorithmen zu Losung entschieden, da durch ihren Mutationsoperator
sichergestellt wird, dass die Wertelandschaft ausreichend abgedeckt ist. Eine ausfiihrliche
Darlegung des Konzepts der evolutiondren Algorithmen findet sich in Abschnitt 3.3.2 dieses
Kapitels.

Nicht fiir alle Teilszenarien war es notwendig, die diskutierten Losungsansétze ins Feld zu
fithren. In den folgenden Abschnitten werden die konkreten Losungsansétze fiir die Teilsze-
narien dargestellt. Dabei ist zu Beginn jedes Abschnitts noch einmal die Ubersichtstabelle
dargestellt, wobei der aktuell behandelte Fall jeweils grau hinterlegt ist.

62

3.3 Platzierungsstrategien

Provider ungewichtet / Shares ungewichtet (Szenario 2-a)

Szenario 2: vordefinierte Anzahl von n Shares

Fall | Providerrisiken r; | Sharerisiken s;
2-a | gleich gleich

2-b | gewichtet gleich

2-c | gleich gewichtet

2-d | gewichtet gewichtet

Dieser Fall ist einfach zu handhaben, da jede Zuweisung den gleichen Wert liefert. Somit
macht es keinen Unterschied im Hinblick auf die Optimalitdt, welche Share welchem Provider
zugeordnet wird. Es ist lediglich zu beachten, dass die Zahl der Shares gleichférmig auf den
Server verteilt wird. Algorithmisch kann dies mittels eines Rundlauf-Verfahrens (engl. Round-
Robin) geschehen, wobei Provider fiir Provider jeweils eine Share zugewiesen wird. Die
Platzierung ist sogar in konstanter Zeit beziiglich der Shareanzahl und Provideranzahl zu
erreichen: Die Rechenoperation n mod m liefert die Zahl der Provider, die eine Share mehr
bekommen als die restlichen, was in konstanter Zeit O(1) geschieht. Bei diesem Teilszenario
handelt es sich natiirlich nicht mehr um ein NP-schweres Problem, da die Kostenmatrix
derart degeneriert ist, dass es sich nicht mehr um ein Zuweisungsproblem handelt.

Provider gewichtet / Shares ungewichtet (Szenario 2-b)

Szenario 2: vordefinierte Anzahl von n Shares

Fall | Providerrisiken r; | Sharesrisiken s;
2-a | gleich gleich

2-b | gewichtet gleich

2-c | gleich gewichtet

2-d | gewichtet gewichtet

Haben die Provider unterschiedliche gegebene Risikowerte r;, sind die Gewichtungen der
Shares j gleich und ist die Anzahl der Shares n sowie der Provider m vorgegeben, so
handelt es sich um ein Zuweisungsproblem, wie wir es in Kapitel 2.3.3 kennengelernt haben.
Im Gegensatz zu den bereits genannten Problemen degeneriert hier die Kostenmatrix C
allerdings zu einem Kostenvektor, da alle Spalten gleich sind:

63

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

€11 €12 -+ Cip ¢t 1 - O €1 "

€1 C2 -+ C2p Cp C -+ O 2)
C=(p)=|. - . I=1. . . 1=1.1=1. (3.24)

Cm1 Cm2 " Cmn Cm Cm " Cm Cm T

Beispiel Seien m = 3 Provider mit den Gewichtungen r; = 2, r, = 5 und r3 = 1 gegeben
und sollen 1 = 7 gleichgrofie Shares auf sie verteilt werden, so wiirde die Kostenmatrix wie
in Ausdruck 3.25 aussehen.

22222 22 2
C=1]5555555|=]1]5 (3.25)
1111111 1

Die Kosten ¢;; entsprechen direkt den Risikowerten r; der Provider; somit gilt ¢;; = ¢; = 7},
weil die Sharegewichte gleich und damit nicht relevant sind. Es macht keinen Unterschied,
ob die Share j oder die Share [(j # [) auf ein und demselben Provider i platziert wird, der
Zuwachs wire der gleiche — nur zwischen den Providern gibt es Unterschiede. Dies bedeutet,
dass die Wahl eines Providers nicht vom ,,Zeitpunkt” abhidngt, da eine spdtere Zuweisung
auf diesen Provider keinen schlechteren Wert liefert. Die Optimalitit der Zuweisung von
Share j hdngt somit nur von den zuvor getroffenen Zuweisungen X = (x;;) ab.

Wie ldsst sich ein Algorithmus angeben, der diese Zielfunktion tatsachlich minimiert? Die
Ausnutzung der speziellen Problemstruktur erlaubt es, einen Algorithmus zu konstruieren,
der die Kostenmatrix zundchst einmal abscannt, d.h. jede Share betrachtet und aufgrund der
vorherigen Ergebnisse eine Auswahl trifft. Dies fiihrt aber unter gewissen Bedinungen, die
spater noch erkldrt werden, zu einem nicht-optimalen Ergebnis. Es bleibt nichts anderes
iibrig, als am Ende des Algorithmus einige Schritte zuriickzugehen, um die optimale Losung
in jedem Fall zu erreichen.

Das Vorgehen nimmt somit prinzipiell Anleihen an der Methode der dynamischen Pro-
grammierung, die gerade fiir Optimierungsprobleme oft eine passende Wahl darstellt — die
gesuchte optimale Losung kann aus den optimalen Losungen der vorhergehenden Losungen
konstruiert werden. Im Laufe des Erstellungsprozesses konnte der erste Verdacht, dass sich
das Problem mit reiner dynamischer Programmierung losen liefse, nicht erhdrten. Dies hétte
eine sehr hohe Effizienz des Algorithmus bedeutet. Um auf die Evaluation in Kapitel 4
vorzugreifen, ldsst sich sagen, dass bei Auslassen der Backtracking-Schritte sich dennoch
eine geringe Fehlerrate einstellt.

64

3.3 Platzierungsstrategien

Algorithmus 3.1 Exakter Algorithmus fiir Szenario 2-b

1: forj=1ton do // Auflere Schleife
maxSum <— —oo

2:

3: max < —oo

4 min <— oo

5: fori=1tomdo 4 // Innere Schleife
6: curSumli] < c; - 2;;11 Xik + Ci // Zuwachs fiir jeden Provider Speichern
7: curMin < cALcCMINIMUM

8: curMax <— CALCMAXIMUM

9: if curMin < min then

10: min <— curMin

11: end if

12: if curMax > max then

13: max < curMax

14: end if

15: curDeltali] = max — min // Deltas fiir diese Share speichern
16: end for

// Jetzt Auswahlstrategie anwenden
17: if multMinDeltas = false AND multSums = false then

18: ASSIGNSMALLESTDELTA(X) // Es gibt nur ein minimales A
19: else if multMinDeltas = true AND multSums = false then

20 ASSIGNSMALLESTSUM(X) // Wenn es mehrere gleiche A gibt
21: else if multMinDeltas = true AND multSums = true then

22: ASSIGNBIGGESTBRICK(X) // Wenn es mehrere gleiche A und Summen gibt gibt
23: end if

24: end for

25:

26: if BacktrackingEnabled = true then

27: BAckTRACK(M-1)

28: end if

Ein Algorithmus, der das Problem exakt 16st, wird in Algorithmus 3.1 dargestellt und
funktioniert wie im Folgenden erklart.

e Es werden alle Shares nacheinander tiberpriift, was durch die dufsere Schleife mit der
Zahlvariablen j geschieht, die sich von Zeile 1 bis Zeile 24 erstreckt.

e Fiir jede Share werden so sukzessive die Platzierungen auf allen Providern tiberpriift,
was mittels der verschachtelten, inneren Schleife (Zeilen 5 bis 16) mit der Zdhlvariablen i
geschieht.

65

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

o In dieser Schleife wird zunéchst jeder Zuwachs berechnet (Zeile 6), wiirde die momen-
tan betrachtete Share j auf den i-ten Provider zugewiesen werden und ebenso, welcher
A-Wert sich dadurch einstellen wiirde (Zeilen 7 bis 15). Diese Informationen werden
in der Feld-Variablen cursum[i] (der Zuwachs) sowie curDeltalil (das A) gespeichert.
Die Variable maxsum hilt die maximale (Zeilen-)Summe fiir den momentanen Schritt j,
d.h. den maximalen Wert in diesem Schritt und die Variablen max und min das Maxi-
mum bzw. Minimum zur Berechnung des A-Wertes, wiirde Share j auf den Provider i
zugewiesen.

Nachdem diese Informationen zusammengetragen wurden, kann die vorldufige Zuweisung
vorgenommen werden; dazu ist eine Selektionsentscheidung nétig, die in den Zeilen 17 bis
23 ablauft:

e minA
Es wird die Share j dem Provider zugewiesen, dessen Zuweisungskosten den A-Wert
am wenigsten ansteigen lassen. Dies entspricht unserem Ziel, namlich den A-Wert so
wenig wie moglich ansteigen zu lassen.

e minX
Gibt es mehrere gleiche A-Werte, so wird aufgrund des minimalsten Maximumwertes
entschieden, wobei fiir jeden Provider tiberpriift wird, welchen Zuwachs seine Selek-
tion ergeben wiirde und mit dem bisherigen Maximalwert verglichen wird — ergibt
die Zuweisung der Share auf den momentan untersuchten Provider einen kleineren
Zuwachs, so wird dieser ausgewédhlt und alle anderen werden deselektiert.

o BiggestBrick
Sind neben den A-Werten auch die Summenwerte gleich, so wird das Element mit
den grofiten Zuweisungskosten ausgewdihlt. Dies erweist sich fiir einige Sonderfélle
als wichtig, denn im Hinblick auf eine spétere Entscheidung kann die Auswahl eines
grofieren Elementes besser sein. Da sowohl A- als auch Summenwerte gleich sind,
macht es bezogen auf unser Optimierungsziel keinen Unterschied, ob wir ein kleineres
oder grofieres Element benutzen. Die Begriindung erfolgt im Beweis.

Abschliefsend miissen noch m — 1 Schritte Backtracking durchgefiihrt werden (Zeilen 26-28).
Warum dies tiberhaupt und warum genau m — 1 Schritte nétig sind, soll im folgenden
Abschnitt zum Korrektheitsbeweis gekldrt werden.

Die Laufzeit des exakten Algorithmus ist mafigeblich durch seine Backtracking-Schritte
bestimmt. Hierbei miissen die m — 1 letzten Shares noch auf die m Provider verteilt werden,
was zu einer Laufzeitkomplexitdt wie in Formel (3.26) fiihrt.

O(m™1) (3.26)

66

3.3 Platzierungsstrategien

Die Laufzeit des Algorithmus wird somit nur bestimmt durch die Zahl der Provider.

Zwar ist seine Laufzeit somit immer noch exponentiell, jedoch ist sie wesentlich gedriickt im
Vergleich zur naiven Methode, die in O(m") liegt, um n Shares auf m Provider zu verteilen.
Dies folgt, weil per Annahme immer n > m gilt.

Der Algorithmus kann aber auch ohne Backtracking als Heuristik mit einer gewissen
Fehlerrate verwendet werden.
Dies kann einerseits wichtig sein, um fiir grofie Werte von m noch Ergebnisse zu bekommen,
die durch Backtracking nicht effizient 16sbar wiren. Andererseits wird die vorgestellte Heu-
ristik auch von anderen Verfahren genutzt, beispielsweise von evolutiondren Algorithmen
fiir den Fall 2-d, dass sowohl Shares wie auch Provider gewichtet sind, um Teile der Startpo-
pulation zu erzeugen.
Daher soll eine Laufzeitabschdtzung von Algorithmus 3.1 mit deaktiviertem Backtracking
durchgefiihrt werden. Wie bereits erklart, berechnet der Algorithmus die Platzierung jeder
Share auf jedem Provider sukzessive und hélt vorherige Ergebnisse in einer Tabelle, dhnlich
der dynamischen Programmierung. Durch diesen Scan tiiber die Kostenmatrix kommt der
Algorithmus auf eine Laufzeit von

O(n-m) (3-27)

well fiir jede der n Shares alle m Providerrisiken berechnet werden miissen, um dann die
optimalste in Bezug auf das Optimierungsziel auszuwihlen.

Begriindung der Korrektheit des Verfahrens

Im Folgenden soll ein Korrektheitsbeweis fiir den oben angegebenen Algorithmus erarbeitet
werden. Da dieser an die Methode der dynamischen Programmierung angelehnt ist, muss
aus der Struktur des Problems heraus erkennbar sein, in welchen Fillen er geeignet ist und
wann es zu problematischen Féllen kommt, die mit Backtracking behandelt werden miissen.
Die fiir dynamische Programmierung geforderte Optimale Teilstruktur eines Problems [CLRSo4]
bedeutet, dass einmal getroffene Entscheidungen optimal bleiben fiir nachfolgende. Eine
optimale Losung wird also sukzessive durch optimale Teillosungen konstruiert, ohne an den
getroffenen Entscheidungen noch einmal etwas verdndern zu miissen. Zwar kann fiir das
vorliegende Problem von einer optimalen Teilstruktur im strengen Sinne keine Rede sein,
denn in einigen Fillen miissen mittels Backtracking noch einige Schritte korrigiert werden,
die aber streng begrenzt sind; jedoch hilft die Idee der dynamischen Programmierung bei
der Begriindung der Korrektheit.

67

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Fiir den hier betrachteten Fall (2-b) muss zunéchst eine Voraussetzung aufgestellt werden,
die den Unterfall wiedergibt:

cij=cij1 Vj€{l--,n} (3-28)

Dies entspricht unserer Problemstruktur insofern, dass die Providerrisiken unterschiedlich,
die Sharerisiken jedoch gleich gewichtet sind. Somit sind die Kosten fiir die Zuweisung aller
Shares auf einen gewissen Provider gleich. Diesen Sachverhalt spiegelt Voraussetzung 3.28
wider. Nachdem die Voraussetzungen geklart wurden, kann jetzt eine Behauptung aufgestellt
werden:

Wenn die Voraussetzung (3.28) gilt, dann ist Algorithmus 3.1 korrekt.

Gemaf der im vorhergehenden Abschnitt dargelegten Selektionsstrategie wihlt der Algo-
rithmus immer das minimalste A aus. Im Folgenden wird die Selektionsstrategie genau
betrachtet und begriindet, wieso diese Selektionsstrategie korrekt ist:

o Es gibt genau ein minimales A:
Die Zuweisung, fiir die sich ein minimales A einstellt, wird selektiert. Betrachtet man,
wie sich die A-Werte mit laufendem n verhalten, ist feststellbar, dass sie von einem
balancierten Zustand ausgehend evtl. in einen unbalancierten Zustand iibergehen und
von dort aus wieder in einen balancierten konvergieren usw.
Dem Selektionskriterium des Algorithmus entsprechend wird nun in einem Schritt
I — 1 der kleinste Wert cy;_1 ausgewdhlt; da dieser das kleinste A liefert, geht man
von gleichen Startniveaus aus. Im darauffolgenden Schritt | wird nun der optimale
Wert bzgl. des minimalen A-Wertes selektiert, was unserem Ziel enspricht. Wiirde
jedoch immer ein schlechterer Wert ausgewahlt, konnte ein balancierter Zustand nicht
mehr erreicht werden, denn die A-Werte wiirden sich stets weiter vom optimalen Wert
entfernen, statt sich ihm anzundhern. Dies widerspricht unserem Ziel.
Eine schematische Darstellung dieser Uberlegungen findet sich in Abbildung 3.4,
welche die korrekte Selektion darstellt: Im Schritt I — 1 wird das Optimum fiir diesen
Schritt ausgewihlt, namlich ¢q, darauf aufbauend dann erneut c¢; in Schritt /. Die vom
Algorithmus markierten Elemente sind mit * gekennzeichnet. In Abbildung 3.5 ist der
Fall dargestellt, dass ein nicht-optimales Element ausgewdhlt wird, welches nicht mehr
zu einem optimalen Zustand fithren kann: Wird im Schritt I — 1 ein nicht-optimaler
Wert ausgewdhlt, so kann im Allgmeinen in Schritt / der Wert nicht mehr optimal
werden. Die in diesem Fall markierten Elemente sind mit * gekennzeichnet.
Demnach muss der Algorithmus grundsatzlich mit dieser Selektion vorgehen, von
einigen Sonderféllen, die im Folgenden behandelt werden, abgesehen.

o Es gibt mehrere minimale A-Werte und genau einen minimalen Summenwert:
Wiirde hier unspezifiziert sein, welches Element ausgewihlt wird, kann es zu einer
Ungleichverteilung kommen, die sich auf spatere Schritte auswirkt. Dies hat folgenden
Grund: Gibt es mehrere gleich kleine Werte und einen Grofien, so werden Shares

68

3.3 Platzierungsstrategien

Schritt [-1 Schritt |

@l @l
G2 c2
c3 c3

Abbildung 3.4: Rechtfertigung der minA-Auswahlstrategie. Korrekter Fall.

Schritt |-1 Schritt |

@l @l

c2 c2
*

GS) G8)

Abbildung 3.5: Rechtfertigung der minA-Auswahlstrategie. Widerspriichlicher Fall.

solange auf die Provider mit kleinen Risiken zugewiesen, bis diese , aufgefiillt sind”.
Gibt es aber keinen Rundlauf zwischen den Providern, so wird das Risiko nicht
ausbalanciert, was zu einem schlechteren A in gewissen Schritten fiihren kann. Solch
eine Situation ist in Abbildung 3.6 dargestellt. Diese Behandlung garantiert also eine
Ausbalancierung, die unserer Problemstellung entspricht.

o Es gibt mehrere minimale A-Werte und mehrere minimale Summenwerte:
Dann wird die Zuweisung durchgefiihrt, die die grofiten Kosten verursacht. Dies ist

Abbildung 3.6: Motivation fiir das zweite Kriterium ,minimales Maximum“fiir den Algo-

rithmus von Szenario 2-b: Links im Bild ohne dieses Kriterium, rechts mit
diesem.

69

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Abbildung 3.7: Rechtfertigung der Selektionsstrategie des Algorithmus fiir Szenario 2-b, die
bei gleichen A- und Summenwerten das grofiere Element auswéhlt.

zu rechtfertigen, da trotzdem ein minimales A ausgewdhlt (und somit obige Selekti-
onsstrategie nicht unterlaufen) wird. Im Hinblick auf weitere Selektionen ist es sogar
notig, wenn es zu der in Abbildung 3.7 dargestellten Situation kommt: Sind bei einer
Selektionsentscheidung sowohl minimales A wie auch minimale Summe gleich, so gibt
es zwei Moglichkeiten, wie eine gerade betrachtete Share zugewiesen wird.

Hier muss aber die grofiere Zuweisung getétigt werden, denn falls ein gleich grofdes
Element folgt, war die Selektion des grofieren geschickter, was in 3.7 dargestellt wird.
Dieser Fehler wiirde sich ohne diese Strategie erst in einem weiteren Schritt wieder
amortisieren. Dies stellt sicher, dass bei gleich grofien Elementen die , kritischen”
grofien Elemente friih zugewiesen werden.

Im Folgenden muss noch auf einen Sonderfall des Algorithmus eingegangen werden,
denn es kann sein, dass durch die oben dargelegte Selektionsstrategie der Optimalwert nicht
erreicht werden kann, sondern eine begrenzte Anzahl von Backtracking-Schritten notwendig
ist.

Wann genau tritt nun eine Fehlstellung auf? Sie tritt dann auf, wenn die unteren Grenzen alle
ungefihr den gleichen Wert haben, also von einem (anndhernd) balancierten Zustand aus
weitere Selektionsentscheidungen getroffen werden und dabei mehrere relativ grofie und
relativ kleine Elemente vorkommen. Hauptséchlich tritt dies auf, wenn mehrere Elemente
gleich grof$ sind, da dann in einigen Schritten gleiche Ober- und Untergrenzen bestehen.

Da immer nur eine Zuweisung fiir sich betrachtet wird, kann es zu dem Fall kommen,
dass lange Zeit ein relativ kleines Element selektiert wird; nach einer gewissen Anzahl von
Schritten kommt der Algorithmus zu dem Punkt, an dem retrospektiv eine andere Selektion

70

3.3 Platzierungsstrategien

obere Grenze bei

untere Grenze b Selektion eines
groRen Elements

Abbildung 3.8: Problematischer Fall des Algorithmus fiir Szenario 2-b, schematische Dar-
stellung.

in einem vorhergehenden Schritt besser gewesen wire.

Solch eine Situation ist in Abbildung 3.8 dargestellt: Fiir Schritt 11 wére es besser gewesen, ab
Schritt 8 schon die Share auf den Provider mit hoherem Risiko zuzuweisen, also ein lokales
Non-optimum zu erreichen. Da der Algorithmus nicht vorausschauen kann, wird fiir diese
konkrete Konstellation das Optimierungsziel nicht erreicht. Die grofien Elemente , sperren”
sich gegenseitig: Steht man vor einer Selektionsentscheidung ! und wiirde eine Share auf
einen Provider mit hohem Risiko ¢, zugewiesen werden und die bisherige Untergrenze
ist b, so ergibt sich A = ¢, — b. Dies gilt ebenso fiir weitere Provider mit hohem Risiko cq.
Somit wird ein Provider mit kleinerem Risiko ¢ < ¢, selektiert, was fiir sich betrachtet bzgl.
dieses Schritts korrekt ist, im Hinblick auf weitere aber evtl. nicht. Hitten jedoch schon alle
Provider, vor allem jene mit htherem Risiko c,, eine Share zugewiesen bekommen, hitte
sich hier ein kleineres A einstellen konnen.

Von der anderen Seite her betrachtet heifst dies fiir den problematischen Fall, dass wenn
stattdessen alle anderen Provider mit hohen Risiken eine Share zugewiesen bekommen
hitten, die Fehlstellung nicht moglich wére. Dies bedeutet, dass die anderen m — 1 Provider
jeweils eine Zuweisung bekommen sollten, um diesen Zustand zu erreichen.

Nun ist zu erkennen, dass m — 1 Schritte korrigiert werden miissen, indem bis zu m — 1
vorhergehende Zuweisungen auf die Provider verteilt werden miissen. Daraus folgt, dass
nur m — 1 Backackting Schritte notwendig sind.

Der Fehler amortisiert sich iiber weitere Schritte wieder, ndmlich genau dann, wenn der
Algorithmus die geschilderte problematische Ausgangslage wieder zu einem balancierten
Zustand fiihrt. Diese Amortisierung findet spatestens dann statt, wenn alle m Provider
befiillt wurden.

71

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Eine geschlossene Formel?

Im Laufe des Erstellungsprozesses dieser Arbeit wurde die Frage aufgeworfen, ob sich dieser
Fall nicht auch mittels einer geschlossenen Formel l6sen liefle. Wird der Balancezustand
als Ziel gesetzt, so wiirde sich daraus zundchst r; -ny = rp-np = --- = ry - ny, ergeben.
Ahnlich wie in Szenario 1-b wiirde sich dann #; als der Wert ergeben, der das spezifische
Providerrisiko r; im Hinblick auf das Gesamtsystem ausgleicht, wobei n fest vorgegebene

Shares aufgeteilt werden miissen. Diesen Sachverhalt reflektiert n; = 7, wobei T hier
fur die Aufteilung steht, die noch naher spezifiziert werden muss. Indem T = 221:1%
(Gesamtvertrauen, was die Kehrwerte widerspiegeln) gesetzt wird, folgt n; = =;*+. Dann

k=1 G
wiirden aber die Shares so aufgeteilt werden, als wiirde das Gesamtvertrauen zu gleichen
Teilen zerlegt werden. Dieses muss noch mit dem spezifischen Risikowert r; in Verbindung

gesetzt werden, was den relativen Anteil ausmacht. Dies fiihrt zu einer Formel:

B n
EEDY %
Bei genauer Betrachtung der Formel zeigt sich jedoch, dass diese im Allgemeinen nicht kor-
rekt ist. Als Ergebnis fiir n; entstehen reelle Zahlen, also geteilte Shares. Die aufzuteilenden
n Shares lassen sich aber nicht zerlegen.
Eine einheitliche Regel zur Rundung auf ganze Zahlen liefert in einigen Féllen eine Differenz
zwischen vorgegebenem Wert n und)/’ n;, im Folgenden als ny;r; bezeichnet. Es gilt
nun, entweder n4;r; Shares auf die Provider hinzuzufiigen oder sie von ihnen wegzuneh-
men. Dabei muss die Optimalitdt der Zuweisung gewdihrleistet sein. Dies ist wieder ein
Zuweisungsproblem mit einer entsprechenden exponentiellen Komplexitit. In Experimenten
konnte gezeigt werden, dass n,;¢¢ mit der Zahl der Provider m steigt, so dass es asymptotisch
eine gleiche Laufzeitkomplexitdt wie oben vorgestellter Algorithmus hat und damit diesbzgl.
keine Vorteile bietet.

1 (3-29)

72

3.3 Platzierungsstrategien

Provider ungewichtet / Shares gewichtet (Szenario 2-c)

Szenario 2: vordefinierte Anzahl von n Shares

Fall | Providerrisiken r; | Sharerisiken s;
2-a | gleich gleich

2-b | gewichtet gleich

2-c | gleich gewichtet

2-d | gewichtet gewichtet

In diesem Fall sind die Provider ungewichtet, wohingegen die Shares eine gewisse, fest
vorgegebene Gewichtung besitzen.

Auch hier degeneriert — wie auch in Szenario 2-b in Abschnitt 3.3.2 — die Kostenmatrix zu
einem Vektor, der nur noch aus Sharegewichtungen besteht, denn es gilt ¢;; = s;.

€11 Ci2 -+ Cin 1 C -+ Cy
€21 €2 --- C2p 1 C -+ Cy

cC=1 . . . =t :<C1 o - Cn):(sl Sp - sn>
Cm1 Cm2 " Cmmn i C -+ Cy

(3-30)

Beispiel Seien n = 6 Shares mit den Gewichtungens; =7, =5,53 =4,54 =6,55 =1,
se = 2 gegeben und sollen diese auf m = 3 gleich grofse Provider verteilt werden, so wiirde
die Kostenmatrix wie folgt aussehen:

@

Il
ENERNEEN
Ul a1 Ul
IS
(o e NN

12
12|=(754612) (3.31)
12

Wie kann nun eine angemessene Verschlechterung der Privatsphére erreicht werden? Diese
soll iiber einen Balancezustand Ry = R, = --- = R,; zwischen den Providern hergestellt
werden, R; = ;- S; mit S; =} aufi zugeordnet j UNd 7 = 1. Dann ergibt sich fiir den Balance-
zustand Formel (3.32):

S51=5=---=85; (3.32)

Dieses Problem ldsst sich wie ein Behdlter- bzw. Rucksack-Problem interpretieren: Man setze
die Shares als n Gewichte im Behélterproblem und gehe von einer festen Anzahl von m

73

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Shares

Provider

Abbildung 3.9: Ahnlichkeit von Szenario 2-c zum Behalterproblem.

Behiltern aus, wobei jeder Behilter eine unbegrenzte Kapazitit hat. Diese Interpretation ist
in Abbildung 3.9 dargestellt.

Die hier dargestellte Ahnlichkeit zum Behalterproblem soll einerseits zeigen, dass es sich
auch hier, obwohl die Form der Matrix degeneriert ist, um ein schweres kombinatorisches
Optimierungsproblem handelt.

Andererseits konnten sich dafiir Hinweise auf Losungsmoglichkeiten ergeben, die an Algo-
rithmen fiir Rucksackprobleme angelehnt sind. Jedoch wird es sich immer um Heuristiken
handeln, wenn sie in polynomieller Zeit ablaufen. Darum wird, um auf den nédchsten Ab-
schnitt vorzugreifen, auch hier eine Anwendung von evolutiondren Algorithmen angedacht.
In diesem Kapitel wird allerdings eine Heuristik vorgeschlagen, um spéter zuverldssig einige
Individuen in die Startpopulation einbringen zu kénnen. Die Heuristik ist in Algorithmus 3.2
dargestellt und funktioniert folgendermafien:

Da die Behilter zunichst keine Kapazitdtsbeschrankung vorweisen, muss zunédchst mit der
Heuristik fiir Szenario 2-b eine obere Grenze border bestimmt werden (Zeile 1). Jetzt verfiigen
die Behdlter nur noch {iber begrenzte Aufnahmefihigkeit, wie im eigentlichen Behélterpro-
blem. Die Sortierung in Zeile 2 ist nicht unbedingt notig, zeigte aber bessere Ergebnisse in
der Praxis. Dann wird mittels einer Schleife (Zeilen 3 - 6) die Grenze sukzessive abgesenkt
und die Shares neu auf die Provider verteilt mittels der bekannten First-Fit-Heuristik fiir das
Behilterproblem. Indem die Grenze nach unten gedriickt wird, soll erreicht werden, dass
sich die Gewichte besser austarieren und dass somit der A-Wert weiter sinkt. Die Schleife
endet, wenn die Grenze zu niedrig gewdhlt wurde, so dass die Shares keinen Platz mehr
haben oder wenn der Optimalwert von A = 0 erreicht wurde.

Die Laufzeit richtet sich nach der Laufzeit des First-Fit-Algorithmus und der Sortierung.
Die While-Schleife wird selten ausgefiihrt, wie sich in der Praxis zeigte. Die Heuristik hat

74

3.3 Platzierungsstrategien

Algorithmus 3.2 Heuristik fiir Szenario 2-c
1: border <— HeuristicAlgorithm2b // obere Grenze mit dem Algorithmus 2b bestimmen
2: SORTDECREASING(C) // Kosten absteigend sortieren
3: while Behailter grofs genug do // Verdnderte First-Fit-Decreasing-Strategie anwenden
4 border < border — 1
5
6

FF(C) // First-Fit-Algorithmus 2.1 anwenden
: end while

somit eine polynomielle Zeitkomplexitdt und liegt aufgrund der Laufzeitkomplexitdt des
FF-Algorithmus und der Sortierung in O(n - log(n)) [VKo8].

Der Algorithmus hat allerdings nur den Status einer Heuristik und ist somit fehlerbe-
haftet. Auch liegt seine Fehlerrate iiber der eines evolutiondren Algorithmus, wie sich in
der Evaluationssektion zeigen wird. Daher kann diese Heuristik fiir einen evolutiondren
Algorithmus genutzt werden, um Individuen in die Startpopulation einzubringen, was
schon erwdhnt wurde. Das Konzept des evolutiondren Algorithmus wird fiir das nédchste
Teilszenario erortert.

75

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Provider gewichtet / Shares gewichtet (Szenario 2-d)

Szenario 2: vordefinierte Anzahl von n Shares

Fall | Providerrisiken r; | Sharesrisiken s;
2-a | gleich gleich

2-b | gewichtet gleich

2-c | gleich gewichtet

2-d | gewichtet gewichtet

Sind sowohl die Providerrisiken unterschiedlich wie auch die Shares gewichtet, so hat diese
Unterklasse im Gegensatz zu den anderen Problemauspragungen eine volle Kostenmatrix,
wie in Matrix (3.33) dargestellt.

€11 Ci2 -+ Cin
€21 C22 -+ Con

C=(ep)=| . . . (333)
Cml Cm2 - Cmn

Beispiel Seien m = 3 Provider mit den Gewichtungen ry =2, r, = 5 und r3 = 1 gegeben.
Es sollen n = 7 Shares auf die Provider verteilt werden, wobei jede Share wie in Tabelle 3.6
gewichtet ist, dann ergibt sich die Kostenmatrix wie in Matrix (3.35).

Share Nr. ‘ 1 2
Gewichtung ‘ 4 3

3 45 6 7
1 1 2 4 2
Tabelle 3.6: Beispielhafte Gewichtungen fiir Fall 2-d

Die Kostenmatrix wird konstruiert, indem die Risikowerte r; des Providers i mit der Gewich-
tung s; der entsprechenden Share multipliziert werden, also

Ci]‘ =7r;- S]‘ (334)

8 6 22 4 8 4
C=1(20 15 5 5 10 20 10 (3-35)
4 3 11 2 4 2

Wie erkennbar ist, handelt es sich bei den Spalten um Vielfache voneinander. Dies fiihrt
jedoch zu keiner Vereinfachung der Matrix oder des Verfahren, denn die Matrix degeneriert

76

3.3 Platzierungsstrategien

dadurch nicht in ihrer Form. Wie in Abschnitt 3.3.2 formal bewiesen wurde, handelt es sich
durch diese volle Kostenmatrix definitv um ein NP-schweres Problem.

Mit dieser Erkenntnis steht fest, dass fiir dieses Szenario abgewogen werden muss zwischen
einem exakten Algorithmus, der eine exponentielle und damit ineffiziente Laufzeit besitzt
und einem Naherungsalgorithmus, der dafiir in annehmbarer Zeit arbeitet. Die vollstindige
Enumeration scheidet von vornherein aus. Branch-and-Bound kommt fiir dieses Szenario
nur eingeschrdnkt in Betracht, was in der Diskussion in Abschnitt 3.3.2 erdrtert wurde.
Daher wurde ein evolutiondrer Algorithmus entworfen, der sich an [Weioz2] orientiert und
an das Problem angepasst wurde. Das Konzept der evolutiondren Algorithmen erschien aus
folgenden Griinden erfolgsversprechend:

e Beim vorliegenden Optimierungsproblem handelt es sich — um mit Weicker [Weio2] zu
sprechen — nicht um ein ,gutmiitiges” Problem in Bezug auf die Wertelandschaft: Die
Zielfunktion (Gleichung (3.17)) ist eine nicht-lineare Funktion, was bedeutet, dass lokale
Optima nicht zu globalen fiihren miissen und das wirkliche globale Optimum evtl. in
einem Bereich liegt, wo es in keinster Weise zu erwarten war. Des Weiteren zirkulieren
die Werte mit variabler Zahl der Zuweisungen um den theoretischen Optimalwert 0, es
lasst sich nicht erkennen, dass bei steigender Zahl von zugewiesenen Shares sich der
Optimalwert irgendwie stabilisiert.

Der Mutationsoperator der evolutiondren Algorithmen stellt jedoch sicher, dass ein
grofies Einzugsgebiet abgesucht wird und dass wieder aus lokalen Schein-Optima
entkommen werden kann.

e Entscheidend fiir Geschwindigkeit wie Giite eines evolutiondren Algorithmus ist die
Fitnessfunktion [Weioz]: Ist die Bewertung schnell, so ist es auch der Gesamtalgorith-
mus. Der Selektionsdruck wird durch die Strenge der Funktion festgelegt, hat also
Einfluss darauf, wie schnell oder wie gut ein Optimum erreicht werden kann. Unter
Selektionsdruck wird verstanden, wie schnell ein Algorithmus gegen ein Optimum
konvergiert, wobei gilt, dass je hoher der Selektionsdruck, desto hoher ist die Wahr-
scheinlichkeit, dass es sich nur um ein lokales Optimum handelt.

Unserem Problem ist eine einfache Bewertung zu eigen: Je ndher der Wert bei 0 ist,
desto nédher ist man am gesuchten globalen Optimum. Die Bewertung ist daher schnell
und der Selektionsdruck anpassbar.

e Die Kombinierbarkeit mit anderen, problemspezifischen Heuristiken ist mog-
lich [Weioz2], was zu wesentlichen Verbesserungen der Giite der Ergebnisse fiihrt.
So kann die fiir Szenario 3.3.2 erarbeitete Heuristik in Betracht gezogen werden.

Nach diesen allgemeinen Argumenten und der Bezugnahme auf unsere Problemstellung
soll jetzt zur Erlduterung der konkreten konzeptuellen Entscheidungen gekommen werden
und schliefflich der Algorithmus vorgestellt werden. Die nattirlichsprachliche Erklarung des
Algorithmus findet sich im folgenden Abschnitt, wobei der Pseudocode in Algorithmus 3.3
dargestellt ist.

77

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Zur Erstellung eines Algorithmus fiir unser Problem muss der Grundzyklus der evolutio-
ndren Algorithmen implementiert und angepasst werden.
Zundchst wird fiir das Problem eine gewisste Codierung verwendet, die sich von der oben
benutzten Matrizendarstellung unterscheidet, aber leicht transformiert werden kann.

Xca = (xi1, Xip, -+, Xin) (3-36)

Die Platzierung von Share j auf Provider i kann mit Formel (3.36) wie folgt reprasentiert
werden: Der Wert der j-ten Komponente x;; des Vektors X4 entspricht dem Provider 7, auf
dem die Share lokalisiert ist.

Diese Darstellung ist vorteilhaft, da sie genau einem Genom entspricht, an dem einzelne
Anderungen wie Mutationen leicht durchgefiihrt werden kénnen. Nun folgt der evolutionére
Grundzyklus, der auf diese Codierung zurtickgreift:

o Initialisierung Die erste Generation umfasst 10 Individuen und wird teilweise ran-
domisiert, teilweise durch eine Heuristik erzeugt. Dafiir wurde die Heuristik aus
Abschnitt 3.3.2 folgendermafsen angepasst: Es wird nicht mehr die Differenz, sondern
das Maximum minimiert. Dies erwies sich experimentell als besser im Hinblick auf
das Optimierungsziel.

3 Individuen der 10 initialen Individuen wurden auf diese Weise, der Rest komplett
randomisiert erzeugt.

e Rekombination Hier wird die potentielle neue Generation gebildet. Aus den 10 Indi-
viduen der vorhergehenden (oder im ersten Zyklus der Startpopulation) werden 40
neue durch Rekombination erzeugt.

Die Rekombinationsoperation wird mit einer Wahrscheinlichkeit von 0.5 als uniformer
Crossover auf zwei zuféllig gewdhlten Individuen ausgefiihrt. Durch den uniformen
Crossover sollen Individuen zu gleichen Teilen gemischt werden. Wird kein Crossover
durchgefiihrt, so wird ein Indivdiduum zufillig selektiert und unverdndert in die neue
Generation tibernommen.

Sollte durch den Crossover eine ungiiltige Belegung in Bezug auf die dem Problem
inhdrenten Nebenbedingungen (siehe (3.18) und (3.19)) erzeugt werden, wird diese
verworfen und ein zufélliges Indivduum in die neue Generation tibernommen. Auf
diese Weise wird von Anfang an vermieden, dass ungtiltige Platzierungen erzeugt
werden — sie werden friihzeitig eliminiert, so dass sie sich im Evolutionsprozess nicht
durchsetzen.

e Mutation Da der Mutationsoperator von hoher Bedeutung fiir die Abdeckung des
ganzen Suchraumes ist, wird dieser in jedem Fall nach der Rekombination angewandt.
Realisiert ist der Mutationsoperator als Vertauschung zweier Platzierungen: Der Ort
zweier zuféllig bestimmer Shares wird vertauscht. Diese Vertauschungsoperation bietet
den Vorteil, dass die Platzierung giiltig bleibt, da auf den entsprechenden Providern

78

3.3 Platzierungsstrategien

nur die jeweils andere Share platziert wird. Somit hat nach wie vor jeder Provider eine
Share.

e Bewertung Die 40 temporéar erzeugten Individuen werden bewertet. Die Bewertung
lasst sich berechnet, indem der Maximalwert und der Minimalwert der Zuweisungs-
kosten auf einem Provider bestimmt wird. Dazu sind lediglich ein Scan iiber dem
Genom X4 notig, der die Platzierungen notiert und die Werte speichert. Dann wird
die Differenz gebildet. Je ndher dieser Wert bei o liegt, desto besser ist ein Individium
im Hinblick auf unser Optimierungsziel minimiere A.

e Selektion In diesem Schritt werden die besten 10 der 40 erzeugten Individuen ausge-
wihlt. Dann beginnt der Zyklus entweder von Neuem, oder die Abbruchbedigung ist
erfiillt und der Algorithmus endet.

e Abbruchkriterium Der Algorithmus endet, wenn entweder eine vorgegebene Zahl
von Generationen durchlaufen wurde oder A = 0 gilt.
Die Zahl der Generationen wurde auf 2000 gesetzt. Zwar findet der Algorithmus meist
in weitaus weniger> Schritten ein Optimum — der Wert ergibt sich daraus, dass dem
Algorithmus Zeit gelassen werden soll, um sich auf ein Optimum ,einzupendeln”.
Vor allem bei stark unterschiedlichen Gewichten zeigte sich dies in der Praxis als
notwendig.

Der hier natiirlichsprachlich dargelegte Algorithmus wird nun als Pseudocode in Algorith-
mus 3.3 angegeben.

Die Laufzeit von Algorithmus 3.3 ist mafigeblich bestimmt durch die Operationen, die bei
evolutiondren Algorithmen auftreten. Diese operieren auf dem Genom X4, welches als
Vektor bzw. Array der Lange n (Anzahl der Shares) codiert ist. Da 2000 Generationen erzeugt
werden und die Kombinationsoperation, die selbst n Schritte benotigt, 40 mal ausgefiihrt
wird, entspricht dies also 80000 - n Schritten. Weiterhin kommen fiir die Evaluation der
nochmal 2000 * 40 - n Schritte hinzu, was in einer polynomiellen Komplexitédtsklasse liegt.
Jedoch werden mittels der Heuristik fiir Szenario 2-b einige Individuen erzeugt, was die
Laufzeit auf die Komplexitdt dieser Heuristik anhebt. Somit gilt, dass die Komplexitit des
evolutiondren Algorithmus in O(n - m) liegt.

5Wie sich in der Evaluation in Kapitel 4 zeigen wird, gentigen schon 200 Schritte, um das erste Mal ein Optimum
zu finden.

79

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

Algorithmus 3.3 Evolutiondrer Algorithmus fiir Szenario 2-d

1: 0
2: population|[1,2,3,4,6,7,8] < RandomPlacement
3. population|0,5,9] <— HeuristicPlacement // Initialisierung
4:
5: while t <2000 AND A > 0 do // Evolutiondrer Grundzyklus
6 for p = 1to 40 do // Vervielfdltigung der Generation auf 40 Ind.
7:
8: indl < RandomInd
9 ind2 <+ RandomlInd
10: u <— RandomBoolean
11: if u = true then
12: populationTemp|p] <— UniformCrossover(indl,ind2) // Uniformer Crossover
13: if Infeasible(populationTemp|p]) then // wenn ungtiltig
14 populationTemp[p] < ind2
15: end if
16: else
17: populationTemp[p] < ind1l
18: end if
19: populationTemp[p] <— Mutation(populationTemp[p]) // Mutation
20: end for
21:
22: Eval(populationTemp]]) // Evaluation
23 population][] <— Select10Best(populationTemp]]) // Selektion
24: A < BestA(population]])
25:
26: t—t+1

27: end while

8o

3.3 Platzierungsstrategien

3.3.3 Tabellarische Zusammenfassung der Losungskonzepte

Da es sich um insgesamt 8 verschiedene Teilszenarien handelt und jeweils mindestens ein
Losungskonzept vorgeschlagen wurde, findet sich in Tabelle 3.7 ein Uberblick, in welchem
Fall welches Szenario eingesetzt wurde. In Szenario 1 wurde von einer wahlbaren Grofse
von Shares und somit auch von einer freien Wahlbarkeit ihrer Gewichtungen ausgegangen.
Bei Szenario 2 wurde die Zahl der Shares und somit auch deren Gewichtungen als fest
vorgegeben angenommen, mit denen eine noch méglichst optimale Zuweisung durchgefiihrt
werden sollte.

Szenario 1 Szenario 2
Formel exakt | Heuristik | EA
a v v - -
b v v v -
C v - v v
d v - - v

Tabelle 3.7: Ubersicht {iber die behandelten Losungsansitze.

In Tabelle 3.8 findet sich ein Uberblick iiber die Laufzeitkomplexititen, welche fiir die
jeweiligen Konzepte abgeschitzt wurden. Zum Vergleich ist jeweils noch die naive Methode
eingetragen.

Szenario 1 Szenario 2
Formel naiv ‘ exakt ‘ Heuristik ‘ EA
a o) O(m") O(1) - -
b O(m) O(m") | O(m™1) O(n-m) -
c 01) O(m") - O(n-log(n)) | O(n-m)
d O(m) O(m") - - O(n-m)

Tabelle 3.8: Ubersicht iiber die Laufzeitkomplexitdten, wobei m die Zahl der Provider und n
die Zahl der Shares darstellt.

81

3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen

3.4 Implementierung

Im Hinblick auf die Evaluation in Kapitel 4 wurden die vorgeschlagenen Konzepte fiir
Szenario 2 in der Programmiersprache Java implementiert.

Dazu wurde eine Basisklasse erstellt, die allgemeine Methoden zum formalisierten Zuwei-
sungsproblem BaGAP bereitstellt, wie z.B. die Uberpriifung von Zuweisungsmatrizen auf
Giltigkeit bzgl. der Nebenbedingungen, die Ausgabe von A-Werten, Providerrisken usw. auf
der Standardausgabe sowie Umwandlungsmethoden zwischen verschiedenen Darstellungs-
formen (Zuweisungsmatrix und Vektor).

Dann wurden die konkreten Verfahren 2-b, 2-c und 2-d in eigenen Klassen implementiert,
die jeweils von der Basisklasse abgeleitet wurden und so alle Methoden usw. erbten.

Fiir Szenario 2-d zeigte sich ein enger Verzahnungsprozess zwischen Implementierung
und Evaluation, da fiir evolutiondre Algorithmen Erkenntnisse aus der Empirie von hoher
Bedeutung sind. Fiir dieses Szenario wurden auch unterschiedliche Startheuristiken, die von
der Heuristik fiir Szenario 2-b abgeleitet wurden, implementiert, getestet und abgewogen.

82

3.4 Implementierung

83

4 Evaluation

In diesem Kapitel sollen die in Kapitel 3 erarbeiteten Konzepte experimentell evaluiert
werden um zu {iberpriifen, ob sie den spezifizierten Anforderungen entsprechen.

Fiir Szenario 1, bei dem die Anzahl der Shares frei gewdhlt werden kann, war keine automa-
tisierte Evaluation notig. Die Optimalitdt der Platzierung ergibt sich hierbei direkt durch die
Justierung der Anzahl und Gewichtung der Shares, die moglichst geschickt zu wéhlen sind,
so dass die Sicherheitsrisiken der Server ausbalanciert werden. Dies ist im entsprechenden
Abschnitt 3.3.1 fiir jedes Teilszenraio hergeleitet und erortert. Die Berechnungszeiten hierfiir
liegen hochstens in einer linearen Komplexitdtsklasse mit der Zahl der Provider.

In Szenario 2 ist die Anzahl der Shares als fest anzunehmen und ein Zuweisungsproblem zu
l6sen. Dazu wurden die in Abschnitt 3.3.2 vorgestellten Konzepte evaluiert. Es sind jeweils
noch einmal die Ubersichtstabellen eingeblendet, die darstellen, welcher Unterfall gerade
betrachtet wird.

4.1 Evaluationsbedingungen

Zundchst folgen einige Ausfithrungen zu den Evaluationsbedignungen. Es wurden Korrekt-
heit und Geschwindigket getesten, aufSerdem fiir die evolutiondren Algorithmen auch deren
Konvergenzverhalten.

Korrektheit

Da die Hauptanforderung aus Kapitel 3.2 die Erreichung eines Gleichgewichts war, muss
die Korrektheit der vorgestellten Algorithmen evaluiert werden. Eine Platzierung ist optimal,
wenn sie den minimalen Wert von A liefert.

Dazu wurden jeweils 1000 zuféllige Probleminstanzen generiert, mit einem der erarbeiteten
Konzepte gelost und dann mit der naiven Losung verglichen.

Fehlerrate wird hier als Rate definiert, in wie vielen Féllen der Algorithmus nicht den
optimalen Wert findet.

Die Abweichung vom Optimalwert konnte nicht sinnvoll gemessen werden, da es sich
hierbei immer um eine relative Rate handelt. Aufgrund des relativen Charakters der Risiko-
und Ergebniswerte wire eine Abweichungsmessung wenig aussagekraftig.

85

4 Evaluation

Geschwindigkeit

Dartiber hinaus wurden Messungen iiber das Zeitverhalten der Algorithmen durchgefiihrt,
da eine gute Laufzeitkomplexitit eine weitere Anforderung darstellt. Die Messungen wurden
dabei auf einem Intel Core2 Quad-System mit 2,4GHz innerhalb von Java durchgefiihrt.
Dazu wurden exakter Algorithmus, Heuristik und evolutiondrer Algorithmus evaluiert.
Fiir jeden wurde die Zahl der Shares n variiert und fiir jede Variation eine Probleminstanz
zufallig erzeugt und berechnet. Diese Berechnung wurde 1000 mal durchgefiihrt, damit ein
zuverlassiger Mittelwert gebildet werden konnte, um simulationsbedingte Schwankungen
auszugleichen. Da sich die Berechnungsdauern teilweise im Bereich von Nanosekunden
aufhielten, war diese Wiederholung notwendig.

Konvergenz

Die Untersuchung des Konvergenzverhaltens lieferte auch wichtige Aufschliisse tiber das
Verhalten der evolutiondren Algorithmen, welche zur Feinabstimmung dieser Verfahren
unabdingbar sind. Hierbei wurde die Fitness, die dem A-Wert entspricht, gegeniiber der
Zahl der Generationen aufgetragen.

Dafiir wurde zunidcht eine spezielle Probleminstanz exakt berechnet. Dann wurde diese
Probleminstanz mit dem evolutiondren Algorithmus berechnet.

Dies wurde fiir zwei Fille durchgefiihrt, die sich durch eine unterschiedliche Streuung
der Risikowerte unterschieden. In einem Fall lagen die Risikowerte nah beieinander, es
wurde also von einer relativen Balanciertheit der vorgegebenen Risikowerte ausgegangen.
Im anderen Fall waren diese Risikowerte weit voneinander entfernt.

4.2 Szenario 2-b

’ Szenario 2: vordefinierte Anzahl von n Shares

Fall | Providerrisiken r; | Sharerisiken s;
2-a | gleich gleich

2-b | gewichtet gleich

2-c | gleich gewichtet

2-d | gewichtet gewichtet

4.2.1 Korrektheit

Exakter Algorithmus Da fiir den exakten Algorithmus 3.1 seine Korrektheit in Teil 3.3.2
dieser Arbeit bewiesen wurde, ist eine Evaluation der Korrektheit nicht mehr notwendig.

86

4.2 Szenario 2-b

Heuristik Allerdings ist es moglich, die dem Algorithmus zugrunde liegenden Backtracking-
Schritte abzuschalten, so dass dieser nur noch den Status einer Heuristik hat. Dies ist
einerseits von Bedeutung, weil diese Heuristik in einer Abwandlung spéter (im Fall 2-d)
fiir die evolutiondren Algorithmen als Startheuristik genutzt wird, andererseits aber auch,
weil die Backtracking-Schritte fiir eine grofie Zahl von Providern den Algorithmus ineffizent
werden lassen, so dass in diesen Fillen auf die Heuristik zuriickgegriffen werden muss.
Die Fehlerrate ist nun in Schaubild dargestellt 4.1.

012 | e R -
o fo s — e
0.08 |

0.06 [

Fehlerrate

0.04 |

0.02 [

20

Zahl der Shares n

Abbildung 4.1: Szenario 2-b: Fehlerrate der Heuristik (Deaktiviertes Backtracking) fiir m = 4
und m = 8 Provider.

Die Fehlerrate wurde fiir m = 4 und m = 8 Provider bei variabler Anzahl der Shares gemes-
sen. Dabei ist festzuhalten, dass die Fehlerrate zunéchst steigt und sich dann wahrscheinlich
auf einem Niveau von 8% einpendelt. Dies konnte jedoch nicht weiter tiberpriift werden,
weil die Vergleiche mit der naiven Methode zu lange dauerten.

87

4 Evaluation

4.2.2 Geschwindigkeit

Exakter Algorithmus Fiir den Algorithmus 2-b wurden auch Messungen zur Laufzeit
durchgefiihrt. Das Laufzeitverhalten fiir den exakten Algorithmus mit aktiviertem Back-
tracking ist fiir m = 4 und fiir m = 8 Provider in Schaubild 4.2 dargestellt, wobei die Zahl
der Shares variabel ist. Im Vergleich der Graphen ist erkennbar, dass die Geschwindigkeit

| | I l I |
exakter Algorithmus mitm=4 —— -
exakter Algorithmus mitm =8 -------
: : ‘ ‘ naive Methode -------- :
10000 [e e gt s =
100 S S "." ,, —
O R o S S
s . S =
N
0,0 [-
0.0001 |) S S—— ,

5 10 15 20 25 30
Zahl der Shares n

Abbildung 4.2: Szenario 2-b: Geschwindigkeit des exakten Algorithmus mit m = 4 und
m = 8 Providern. Naive Methode zum Vergleich. Logarithmische Skalierung.

stark von der Zahl der Provider bestimmt ist. Dies entspricht der theoretischen Uberlegung,
wonach Backtracking fiir die letzten m — 1 Schritte durchgefiihrt werden muss. Fiir m = 4
Provider liegt die Laufzeit noch im Bereich von Mikrosekunden, fiir m = 8 schon im Bereich
von Sekunden.

Dies legt den Schluss nahe, dass dieses Verfahren nur fiir eine Zahl von Providern geeignet
ist, die unter 10 liegt, da man bereits mit 8 Providern im Sekundenbereich ist. Jedoch ist
das Verhalten des Algorithmus relativ stabil gegeniiber zunehmender Zahl von Shares, was

88

4.2 Szenario 2-b

wiederum den theoretischen Uberlegungen entspricht. Im Schaubild 4.2 wurde auch noch
die Laufzeit eines naiven Aufzahlungsverfahrens dargestellt, die exponentiell mit der Zahl
der Shares steigt. Dieser Aufzdhlungsvariante ist der exakte Algorithmus in jedem Fall
vorzuziehen.

Heuristik Schliefdlich wurde noch die Laufzeit der Heuristik evaluiert, was fiir verschiedene
Anzahlen von Providern Provider in Schaubild 4.3 dargestellt ist. Das Schaubild zeigt, dass
die Laufzeit mit zunehmender Zahl der Shares linear ansteigt. Den Faktor des linearen
Anstiegs liefert dabei die Zahl der Provider: Je grofser die Zahl der Provider, desto starker
(aber immer noch linear) steigt die Laufzeit mit der Zahl der Shares an. Allerdings liegt die
Laufzeit in jedem Fall im Bereich von Mikrosekunden. Dies entspricht der theoretischen
Abschitzung, wonach die Laufzeit der Heuristik in O(n - m) liegt.

60 oo e N — [R e
m=4 ——
m=8 -------
m=12 ------e-
o —— e - e -
I — i T S -
=
5 .
e
c
>
x
© : : : O |
8
g 00 A A . A e
s ‘ | ‘ . ‘ -
T
N

20 fr

10

0 10 20 30 40 50

Zahl der Shares n

Abbildung 4.3: Szenario 2-b: Geschwindigkeit der Heuristik fiir verschiedene Anzahlen von
Providern m.

89

4 Evaluation

4.3 Szenario 2-c

’ Szenario 2: vordefinierte Anzahl von n Shares

Fall | Providerrisiken 7; | Sharesrisiken s;
2-a | gleich gleich

2-b | gewichtet gleich

2-c | gleich gewichtet

2-d | gewichtet gewichtet

Heuristik Die in Szenario 2-c entwickelte Heuristik wurde implementiert und einer Unter-
suchung unterzogen, wobei die Messreihen ergaben, dass die Fehlerrate der Heuristik unter

10% lagen.

0.06

0.04

Fehlerrate
o
o
@

0.02

0.01

2 4 6 8

10 12 14 16

Zahl der Shares n

18

Abbildung 4.4: Szenario 2-c: Fehlerrate bei Anwendung eines evolutiondren Algorithmus
bei m = 4 Providern.

Evolutionérer Algorithmus Wurde ein evolutiondrer Algorithmus fiir dieses Unterszenario
verwendet, so zeigt sich die Fehlerrate wie in Schaubild 4.4 dargestellt. Sie liegt fiir die
testbaren Problemgrofien immer unterhalb von 4% und ist damit der reinen Heuristik vorzu-

ziehen.

Die Ergebnisse der Laufzeitmessung entsprechen den Ergebnissen aus dem néchsten Ab-
schnitt, da der evolutiondre Algorithmus in gleicher Weise auch auf Szenario 2-c angewendet

wird.

90

4.4 Szenario 2-d

4.4 Szenario 2-d

’ Szenario 2: vordefinierte Anzahl von n Shares

Fall | Providerrisiken r; | Sharerisiken s;
2-a | gleich gleich

2-b | gewichtet gleich

2-c | gleich gewichtet

2-d | gewichtet gewichtet

Fiir den Losungsantz von Szenario 2-d, bei dem sowohl Shares als auch Provider gewichtet
sind, wurde die Methode der evolutiondren Algorithmen gewihlt. Hier lassen sich neben der
Korrektheit und Geschwindigkeit noch die Konvergenz des Algorithmus sowie ein Vergleich
verschiedener Startheuristiken evaluieren.

4.4.1 Korrektheit

Schaubild 4.5 zeigt die Fehlerrate bei laufender Zahl von Shares und bei unterschiedlicher,
aber fester Zahl von Providern. Dabei ldsst sich feststellen, dass es immer bei n,,., =2 - m
einen Hochpunkt der Fehlerrate gibt und dann fiir steigende Zahl von n die Fehlerrate
gegen 0 strebt. Dies konnte leider nur fiir kleine Werte von m getestet werden, da die
naive Methode den verwendeten PC wegen der Komplexitdt der Enumeration (exponentiell
mit Eingabeldnge!) schnell an seine Leistungsgrenze trieb. Die Tendenz sollte jedoch klar
erkennbar sein.

4.4.2 Geschwindigkeit

Schaubild 4.6 zeigt das Zeitverhalten des evolutiondren Algorithmus bei verschiedenen
Anzahlen von Providern und laufender Zahl von Shares. Dabei zeigt sich, dass die Geschwin-
digkeit im Bereich von Millisekunden und die Laufzeit mit der Zahl der Provider schwach
linear ansteigt. Dies entspricht den theoretischen Uberlegungen aus Abschnitt 3.3.2, wonach
der evolutiondre Algorithmus in der linearen Komplexititsklasse O(n) liegt. Die Zahl der
Provider verschiebt lediglich die Zeit nach oben — ansonsten ist das Verfahren, wie erwartet
stabil gegentiber der Zahl der Provider.

Das Verfahren eignet sich somit fiir die Aufteilung der Shares auf die Provider, da ein Bereich
von Millisekunden zur Erzeugung eines Platzierungsplans einen vertretbaren Aufwand
darstellt.

91

4 Evaluation

0.12

3333

TR

[SENAIN
i

0.1

0.08

Fehlerrate

0.06

0.04

0.02

Zahl der Shares n

Abbildung 4.5: Szenario 2-d: Fehlerrate des evolutiondren Algorithmus fiir verschiedene
Anzahlen von Providern m.

4.4.3 Konvergenz

Fiir einen evolutiondren Algorithmus ist das Konvergenzverhalten tiber die Zahl der Ge-
nerationen von hoher Bedeutung: Wie schnell konvergiert ein evolutiondrer Algorithmus
zum Optimalwert hin? Fiir dieses Experiment wurden zwei verschiedene Risikoverteilungen
getestet, wobei jeweils von m = 5 Providern und n = 12 Shares ausgegangen wurde:

Im ersten Fall ist die Streuung des Risikos der Provider gering, im zweiten Fall ist sie grof3.
Dann wurde die Fitness der bewerteten Generationen gegen die Generationen dargestellt.
Der Fall mit geringer Streuung der Risikorate wird in Schaubild 4.7 dargestellt. Hier wird der
Optimalwert bereits ca. nach der 25. Generation erreicht und pendelt sich dann ein, wobei
die durch die Mutationen bedingten schlechteren Generationen nahe beim Optimalwert
liegen, welcher in diesem Fall 50 betrdagt und im Schaubild eingezeichnet ist.

Der zweite Fall, bei dem die Streuung der Risikowerte der Probleminstanz grofs ist, wird
in Schaubild 4.8 dargestellt. Hierbei ist zu erkennen, dass es fast 100 Generationen beno-
tigt, bis der Optimalwert zum ersten Mal erreicht wird. Der Optimalwert liegt fiir diese
Probleminstanz bei 40. Auch weichen die schlechteren, durch Mutation erzeugten spateren
Populationen starker vom Optimalwert ab.

Diese Experimente fithrten dazu, dass die Zahl der Generationen bzw. Iterationen es evolu-

92

4.4 Szenario 2-d

250 -

200

150

Zeit (ms)

100

50

0 5 10 15 20
Zahl der Shares n

Abbildung 4.6: Szenario 2-d: Laufzeitverhalten des evolutiondren Algorithmus fiir verschie-
dene Anzahlen von Providern m.

tiondren Algorithmus auf 2000 festgelegt wurde, damit bei stark unterschiedlichen Grofien
das Optimum gefunden wird.

4.4.4 Initiale Heuristik

Ein weiterer Aspekt, der nicht unerheblich fiir die Giite eines evolutiondren Algorithmus
ist, ist das Problemwissen, mit dem dieser Algorithmus ausgestattet werden kann. Wie in
Abschnitt 3.3.2 besprochen, werden von Startpopulation, welche aus 10 Individuen besteht,
3 Individuen mittels einer Heuristik erzeugt, die an das Konzept aus Abschnitt angelehnt
ist. Jedoch wird hier nicht die Heuristik der minimalen A (,, minDelta-Strategie”)-, sondern
diejenige mit der minimalen Maximum (,,minMax-Strategie”)- Auswahlstrategie benutzt.
Experimentell zeigte sich dabei, wie in Abbildung 4.9 dargestellt, dass die minMax-Strategie
einen kleineren Hochpunkt liefert und somit fiir den evolutiondren Algorithmus besser
geeignet ist, da sie von vorne herein ,stirkere” Individuen in die Startpopulation einbringen
kann.

93

4 Evaluation

250 T T
Optimalwert -------
200
"
Il 150
© -
[a}
] I+
9]
£
L 100
+ o+ o+ + + + o+ HH
+
A AR R S I A i AHHHHE
50
0
0 100 200 300 400 500 600 700 800

Generationen

Abbildung 4.7: Szenario 2-d: Konvergenz des evolutiondren Algorithmus zum Optimalwert
bei geringer Streuung des Risikos. m = 5 Provider und n = 12 Shares.

250 I I
Optimalwert -------
200
« 150
©
e + o+
il :
L
b= e
L 100 T
R s b S s ST A S 4+ + o HE
oy + + + +
+ + + + o+ + +io+ o+ +
WA b b b R T L e B e ad
50 &
0
0 100 200 300 400 500 600 700 800
Generationen

Abbildung 4.8: Szenario 2-d: Konvergenz des evolutiondren Algorithmus zum Optimalwert
bei starker Streuung des Risikos. m = 5 Provider und n = 12 Shares.

94

4.4 Szenario 2-d

01 [[e U A
: ; minMax-Heuristik ——
minDelta-Heuristik -------
008 e e S ,,,,,,,,,,,,,,,,,, _
10 Y Y _
[0] H
©
ko)
e
[0}
'
0.04 e NN -
0 2 B i _
0]
0 5 10 15 20

Zahl der Shares n

Abbildung 4.9: Szenario 2-d: Vergleich zweier Heuristiken fiir die initiale Population beim
evolutiondren Algorithmus mit m = 4 Providern

95

5 Fazit

5.1 Zusammenfassung und Diskussion

Zu Beginn der Arbeit wurden im zweiten Kapitel einige Argumente dafiir vorgetragen,
warum Sicherheit der Privatsphire gerade bei Location-based Services von hoher Bedeutung
ist: LBS sind eine dufSerst sensible Technik in Bezug auf die Privatsphire, da sie mit der
Positionsinformation der Individuen arbeiten. In dieser Diplomarbeit wurde versucht, die
Sicherheit der Privatsphére in technischer Hinsicht zu erhohen.

Dazu wurde von einem Ansatz der verteilten Positionsinformationen ausgegangen, wonach
die exakte Positionsinformation in Teile zerlegt wird. Diese sog. Shares werden dann auf
unabhéngigen Location Servern, genannt Provider, abgelegt. Die exakte Position ldsst sich
nur mit allen diesen Shares rekonstruieren. Ein bestehendes Systemmodell [DSR11], welches
von ungewichteten Providern ausgeht, wurde um eine Trust Database erweitert, in der ver-
schiedene Vertrauens- oder Risikowerte zu jedem Server gespeichert sind. Zusétzlich kénnen
auch noch die Shares spezifisch gewichtet sein.

Die Aufgabe ist es schliefilich, die Teile der Positionsinformation den Providern so zuzuwei-
sen, dass die Fragilititen der Provider ausbalanciert werden, so dass risikoreiche Provider
relativ weniger Shares zugewiesen bekommen als vertrauenswiirdige. Eine Balance zwi-
schen den Fragilitdten der Providern fiithrt im Fall, dass die Shares gewichtet sind, zu einer
wenigstens angemessenen Verschlechterung der Privatsphére bei fortlaufender Anzahl kom-
promittierter Server, was bedeutet, dass bei jedem weiteren gehackten Provider genauso viele
Informationen bekannt werden wie bei jedem anderen auch. Somit gibt es keine Schwachstel-
le im System, die die Privatsphére iiberproportional beeintrachtigen konnte. Sind die Shares
nicht gewichtet, so ergibt sich dadurch eine Austarierung der risikobehafteten Provider,
wobei risikoreiche Provider relativ weniger Shares bekommen.

In der vorliegenden Arbeit wurden zwei Szenarien betrachtet, die noch weiter in Unterfélle
differenziert wurden, wonach entweder Provider, Shares oder beide gewichtet sind. Die
Anzahl der Provider sowie deren Risiken war immer als gegeben vorausgesetzt. Im ersten
Szenario wurde davon ausgegangen, dass die Zahl der Shares und somit auch deren Ge-
wichtungen frei wéhlbar sind. Im zweiten Szenario wurde von einer fest definierten Anzahl
von Shares ausgegangen (und auch von festgelegten Gewichtungen der Shares). Nun muss
diskutiert werden, inwiefern die Szenarien und die Losungsansatze fiir welche Situation
in der Praxis tauglich sind. Hierzu wurden die algorithmischen Konzepte fiir Szenario 2
implementiert und beziiglich Korrekt und Laufzeitverhalten evauliert.

97

5 Fazit

In Szenario 1, in dem sowohl die Zahl der Shares wie auch deren Gewichtungen nicht vor-
gegeben, sondern vom Nutzer zu bestimmen sind, ldsst sich die Optimalitdt der Platzierung
iiber geschlossene Formeln in linearer oder sogar konstanter Zeit berechnen. Szenario 1 zeigt
seine Berechtigung, weil die Generierung der Shares im Systemmodell [DSR11] auf der Seite
der mobilen Gerite erfolgt. Also werden in diesem Gerit genau die Shares erzeugt, die zur
Ausbalancierung der Sicherheitsrisiken der ausgewéhlten Location Server notwendig sind.
Selbst wenn mobile Gerdte auch heute noch stationdren PCs leistungsméfiig hinterherhinken,
sind diese Berechnungen in maximal linearer Zeit kein Problem. Des weiteren muss noch
betont werden, dass sich nur mit den Teilszenarien 1-c und 1-d eine angemessene Verschlech-
terung erreichen ldsst. Die Shares miissen gewichtet sein, da der Genauigkeitsgewinn bei
Zusammenfiigung der Shares nur iiber die Sharegewichte bestimmt wird.

Szenario 2 geht von einer festen Anzahl von Providern und Shares aus. Nun miissen
die Shares auf die Provider verteilt werden, damit eine Balance der Fragilititen erreicht
wird. Mit den Ergebnissen aus Abschnitt 2.3 konnte dieses Problem als Zuweisungsproblem
eingeordnet und formalisiert werden. Dieses Zuweisungsproblem wurde als Balanced Genera-
lized Assignment Problem (BaGAP) benannt. Dieses Problem ist nach dem Wissensstand des
Autors dieser Arbeit bisher noch nirgendwo formalisiert und bearbeitet worden. Es konnte
durch eine Reduktion eines verwandten Problems gezeigt werden, dass das BaGAP selbst
NP-schwer ist.

Fiir den Teilszenario 2-b, wonach die Provider gewichtet sind und die Shares nicht, wurde
ein Algorithmus vorgeschlagen, der eine begrenzte Zahl von Backtracking-Schritten ausfiihrt.
Im Verlauf dieser Arbeit wurde sehr viel Zeit auf die Suche nach einer Heuristik verwendet,
die dem Algorithmus ohne Backtracking-Schritte entspricht. In der Evaluation konnte die
theoretische Uberlegung, dass bei einer exakten Lésung die Komplexitit exponentiell mit
der Zahl der Provider steigt, bestitigt werden — fiir 4 Provider befindet sich die Laufzeit
noch im Bereich von Mikrosekunden, wéhrend fiir 8 Provider die Berechnung schon mehrere
Sekunden benétigt.

Sind sowohl Provider wie auch Shares gewichtet (Szenrio 2-d), so wurde ein metaheu-
ristisches Verfahren implementiert, namlich die evolutiondren Algorithmen, die sich als
vielversprechend erwiesen, was im Abschnitt 3.3.2 erortert wurde. Dieser zeigt ein gutes
Laufzeitverhalten im linearen Bereich in der Grofienordnung von Millisekunden. Jedoch
wird nicht in allen Féllen der Optimalwert erreicht, was in der Natur der Sache eines meta-
heuristischen Verfahrens lieg. Die Fehlerrate ist jedoch akzeptierbar, wobei Fehlerrate die
Falle bezeichnet, in denen der Algorithmus nicht das Optimum findet. Je grofier die Zahl
der Shares, desto stiarker nidhert sich die Fehlerrate 0% an. Szenario 2-c wurde schliefSlich
ebenfalls mit evolutiondren Algorithmen geldst. Zwar existiert auch hierfiir eine Heuristik,
jedoch liegt ihre Fehlerrate zu hoch.

Szenario 2 ist praktisch relevant vor allem fiir den Fall, dass mit schon erzeugten Shares
umgegangen werden muss. Dies tritt beispielsweise dann auf, wenn die Shares auf einem
mobilen Gerét erzeugt werden, die Erstellung des Platzierungsplans dann aber auf einem

5.2 Ausblick

anderen Geréat oder Server erfolgt. Vor allem fiir ein leistungsschwécheres mobiles Gerat
konnte eine exakte Berechnung durch die exponentielle Komplexitidt mittels des fiir 2-b
vorgestellten Backtracking-Verfahrens schon fiir kleine Anzahlen von Providern proble-
matisch sein. Treten viele Provider auf, bleibt nichts anderes {ibrig, als die Heuristik zur
Platzierungsberechnung zu verwenden und eine gewisse Fehlerrate zu akzeptieren. Fiir
Szenario 2-d wird von vorne herein zu einem metaheuristischen Verfahren geraten. Es liegt
im Wesen NP-schwerer Probleme, diese Herangehensweise notwendig zu machen.

5.2 Ausblick

Da aus der praktischen Anwendung heraus auf eine sehr theoretische Fragestellung, namlich
auf ein vermutlich neues Zuweisungsproblem gestofien wurde, finden sich hier einige
Ankniipfungspunkte. Auch weil viel Zeit fiir die Suche nach einer guten Heuristik investiert
wurde, sind einige Aspekte in diesem Rahmen nicht bearbeitet worden. Im Folgenden findet
sich ein Uberblick.

Da es sich beim BaGAP um ein Zuweisungsproblem handelt, das nach bestem Wissen noch
nicht in der Literatur behandelt wurde, steht eine algorithmentheoretische Bearbeitung dieses
Problems noch aus. Darunter verstehe ich vor allem die genaue theoretische Bearbeitung des
Problems, das Beleuchten verschiedener Losungsmoglichkeiten in einem theoretischen Sinne
und die Abschidtzung von Approximationsalgorithmen durch Methoden der theoretischen
Informatik.

Dartiber hinaus wére es fruchtbar, neben den hier vorgestellten evolutiondren Algorithmen
zur Losung noch weitere Metaheuristiken, wie z.B. die simulierte Abkiihlung, zu imple-
mentieren und zu vergleichen. Speziell die simulierte Abkiihlung, welche allgemein auch
zuverldssige Ndherungsergebnisse liefert, konnte etwas schneller sein als die hier vorgestell-
ten evolutiondren Algorithmen. Zur Abwédgung wére ein genauer Vergleich von Korrektheit
und Geschwindigkeit der Verfahren notig.

Des Weiteren wire eine Implementierung und Evaluation unter realen Bedingungen nétig,
da die vorgestellten Konzepte auf mobiler Hardware wie Smartphones laufen sollten, weil
die Erzeugung und somit auch die Erstellung des Platzierungsplans dort stattfindet. Dies
wire wichtig, weil dadurch weitere Messwerte iiber das Zeitverhalten der Algorithmen
vorliegen wiirden und sich so Riickschliisse fiir die Praxis liefern lief3en.

99

Literaturverzeichnis

[ACD"o7] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, P. Samarati.

[AP97]

[BDMog]

[CLRSo4]

[CVWo2]

[DFo3]

[DKo6]

[DSo3]

[DSR11]

Location privacy protection through obfuscation-based techniques. In Proceedings
of the 21st annual IFIP WG 11.3 working conference on Data and applications security,
pp- 47-60. Springer-Verlag, Berlin, Heidelberg, 2007. (Zitiert auf den Seiten 21
und 26)

S. Arora, M. C. Puri. A variant of time minimizing assignment problem. European
Journal of Operational Research, 110(2):314-325, 1997. (Zitiert auf den Seiten 43
und 60)

R. Burkhard, M. Dell’Amico, S. Martello. Assignment Problems. siam, 2009. (Zitiert
auf den Seiten 36, 39, 40 und 41)

T. H. Cormen, C. E. Leiserson, R. Rivest, C. Stein. Algorithmen - Eine Einfiih-
rung. Oldenbourg Wissenschaftsverlag GmbH, Miinchen, 2004. (Zitiert auf den
Seiten 32, 39 und 67)

D. G. Cattrysse, L. N. Van Wassenhove. A survey of algorithms for the generali-
zed assignment problem. European Journal of Operational Research, 60(3):260-272,
1992. (Zitiert auf Seite 42)

J. E. Dobson, P. F. Fisher. Geoslavery. Technology and Society Magazine, IEEE,
22(1):47-52, 2003. (Zitiert auf den Seiten 23 und 24)

M. Duckham, L. Kulik. Location privacy and location-aware computing. In
J. Drummond, R. Billen, D. Forrest, E. Joao, editors, Dynamic & Mobile GIS:
Investigating Change in Space and Time, chapter 3, pp. 34—51. CRC Press, Boca
Rator, FL, 2006. (Zitiert auf den Seiten 15, 23, 25 und 26)

M. Dorigo, T. Stiitzle. The Ant Colony Optimization Metaheuristic: Algorithms,
Applications, and Advances. Handbook of Metaheuristicse, 57, 2003. (Zitiert auf
Seite 36)

F. Diirr, P. Skvortsov, K. Rothermel. Position Sharing for Location Privacy in
Non-trusted Systems. In 2011 IEEE International Conference on Pervasive Computing
and Communications (PerCom), Seattle (March 21-25, 2011). 2011. (Zitiert auf den
Seiten 9, 16, 17, 19, 21, 22, 25, 26, 28, 45, 46, 47, 52, 97 und 98)

101

Literaturverzeichnis

[Eglgo]

[Guto6]

[Gutoy]

[HMUo3]

[Hu82]

[LW66]

[MCAo1]

[MNS88]

[MNo2]

[MPTW84]

[MRF* 03]

[MTo90]

102

R. W. Eglese. Simulated annealing: A tool for operational research. European
Journal of Operational Research, 46(3):271 — 281, 1990. (Zitiert auf den Seiten 34
und 35)

A. Gutscher. Coordinate transformation - a solution for the privacy problem
of location based services? In Proceedings of the 20th international conference on
Parallel and distributed processing, IPDPS’06, pp. 354—354. IEEE Computer Society,
Washington, DC, USA, 2006. (Zitiert auf den Seiten 9, 26 und 27)

A. Gutscher. A Trust Model for an Open, Decentralized Reputation System. In
Proceedings of the Joint iTrust and PST Conferences on Privacy Trust Management and
Security (IFIPTM 2007). 2007. (Zitiert auf Seite 48)

J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to automata theory, languages,
and computation - international edition (2. ed). Addison-Wesley, 2003. (Zitiert auf
den Seiten 32 und 42)

T. C. Hu. Combinatorial Algorithms. Addison-Weslex, 1982. (Zitiert auf den
Seiten 30 und 33)

E. L. Lawler, D. E. Wood. Branch-And-Bound Methods: A Survey. Operations
Research, 14(4):699—719, 1966. (Zitiert auf Seite 33)

F. M. Miiller, M. M. Camozzato, O. C. B. de Araujo. Exact Algorithms for the
Imbalanced Time Minimizing Assignment Problem. Electronic Notes in Discrete
Mathematics, 7:122—125, 2001. (Zitiert auf Seite 43)

J. B. Mazzola, A. W. Neebe. Bottleneck generalized assighment problems. Enginee-
ring Costs and Production Economics, 14(1):61-65, 1988. (Zitiert auf den Seiten 42,
43 und 60)

J. B. Mazzola, A. W. Neebe. An algorithm for the bottleneck generalized assi-
gnment problem. Comput. Oper. Res., 20:355-362, 1992. (Zitiert auf den Seiten 42
und 43)

S. Martello, W. R. Pulleyblank, P. Toth, D. de Werra. Balanced optimization
problems. Operations Research Lett., 3:275-278, 1984. (Zitiert auf den Seiten 40
und 41)

S. K. Mostéfaoui, O. Rana, N. Foukia, S. Hassas, G. D. Marzo, C. V. Aart, A. Ka-
rageorgos. Self-Organising Applications: A Survey. Engineering Self-Organising
Applications, First International Workshop, ESOA 2003. Melbourne, Victoria, July 15th,
2003. Workshop Notes, pp. 62—69, 2003. (Zitiert auf Seite 36)

S. Martello, P. Toth. Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Chichester, NY, revised edition, 1990. (Zitiert auf den
Seiten 30, 33, 41 und 42)

Literaturverzeichnis

[MTos5]

[Nisg7]

[Penos]

[RDD* 03]

[REF+06]

[RM98]

[RMo3]

[RPBog]

[SDfMboo]

[Tanos]

[VKo8]

S. Martello, P. Toth. The bottleneck generalized assignment problem. European
Journal of Operational Research, 83(3):621 — 638, 1995. (Zitiert auf den Seiten 42
und 43)

V. Nissen. Einfiihrung in evolutionire Algorithmen: Optimierung nach dem Vorbild
der Evolution. Braunschweig: Vieweg, 1997. (Zitiert auf Seite 35)

D. W. Pentico. Assignment problems: A golden anniversary survey. European
Journal of Operational Research, 176(2):774-793, 2005. (Zitiert auf den Seiten 40, 41
und 42)

K. Rothermel, D. Dudkowski, F. Diirr, M. Bauer, C. Becker. Ubiquitous Compu-
ting - More than Computing Anytime Anyplace? In D. Fritsch, editor, Photogram-
metric Week, pp. 3—11. Stuttgart, Germany, 2003. (Zitiert auf Seite 15)

K. Rothermel, T. Ertl, D. Fritsch, P. Kithn, B. Mitschang, E. Westkdmper, C. Be-
cker, D. Dudkowski, A. Gutscher, C. Hauser, L. Jendoubi, D. Nicklas, S. Volz,
M. Wieland. SFB 627 Umgebungsmodelle fiir mobile kontextbezogene Syste-
me. Informatik - Forschung und Entwicklung, pp. 105-113, 2006. (Zitiert auf den
Seiten 15 und 16)

A. Regenbogen, U. Meyer. Worterbuch der philosophischen Begriffe, chapter Ubi-
quitdt, p. 682. Wissenschaftliche Buchgesellschaft: Darmstadt, 1998. (Zitiert auf
Seite 15)

B. Rao, L. Minakakis. Evolution of mobile location-based services. Commun.
ACM, 46:61-65, 2003. (Zitiert auf Seite 22)

D. Riboni, L. Pareschi, C. Bettini. Privacy in Georeferenced Context-Aware
Services: A Survey. In C. Bettini, S. Jajodia, P. Samarati, X. Wang, editors, Privacy
in Location-Based Applications, volume 5599 of Lecture Notes in Computer Science,
pp. 151-172. Springer Berlin / Heidelberg, 2009. (Zitiert auf Seite 25)

A. Solanas, J. Domingo-ferrer, A. Martinez-ballesté. Location Privacy in Location-
Based Services: Beyond TTP-based Schemes. In C. Bettini, S. Jajodia, P. Samarati,
X. Wang, editors, Privacy in Location-Based Applications, volume 5599 of Lecture
Notes in Computer Science, pp. 151-172. Springer Berlin / Heidelberg, 2009. (Zitiert
auf Seite 25)

A. S. Tanenbaum. Computernetzwerke. Pearson Studium, Miinchen, 2003. (Zitiert
auf Seite 23)

J. Vygen, B. Korte. Kombinatorische Optimierung: Theorie und Algorithmen. Springer,
Berlin, 2008. (Zitiert auf den Seiten 11, 30, 31, 32, 33, 34 und 75)

103

Literaturverzeichnis

[VIV*to1] K. Virrantaus, H. Tirri, J. Veijalainen, J. Markkula, A. Katanosov, A. Garmash,
V. Terziyan. Developing GIS-Supported Location-Based Services. In Proc. of WGIS
2001, volume 2, p. 66. IEEE Computer Society, 2001. (Zitiert auf den Seiten 21
und 22)

[Weig1] M. Weiser. The Computer for the Twenty-First Century. Scientific American,
265(3):94-104, 1991. (Zitiert auf Seite 15)

[Weioz] K. Weicker. Evolutionire Algorithmen. Teubner, Stuttgart, 2002. (Zitiert auf den
Seiten 9, 34, 35, 36, 62 und 77)

[Wes67] A. E. Westin. Privacy and Freedom. Atheneum, New York, 1967. (Zitiert auf
Seite 23)

Alle URLs wurden zuletzt am 28.04.2011 gepriift.

104

Erkldarung

Hiermit versichere ich, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Bjorn Schembera)

	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Szenarien
	1.4 Der Gang der Untersuchung

	2 Theoretische Grundlagen und verwandte Arbeiten
	2.1 Location-based Services
	2.2 Sicherheit der Privatsphäre in Location-based Services
	2.2.1 Zugriffskontrolle
	2.2.2 Verschlüsselung
	2.2.3 k-Anonymity
	2.2.4 Räumliche Verschleierung
	2.2.5 Koordinatentransformation
	2.2.6 Verteilung der Positionsinformation
	2.2.7 Taxonomie der Sicherheitsverfahren

	2.3 Kombinatorische Optimierung
	2.3.1 Definition und Eigenschaften
	2.3.2 Algorithmische Lösungsansätze
	2.3.3 Zuweisungsprobleme
	Klassische Zuweisungsprobleme
	Generalisierte Zuweisungsprobleme

	3 Konzepte zur Platzierungsoptimierung der verteilten Positionsinformationen
	3.1 Systemmodell
	3.1.1 Trust Database

	3.2 Problemstellung und Anforderungen
	3.3 Platzierungsstrategien
	3.3.1 Szenario 1: Nicht vordefinierte Anzahl von Shares
	3.3.2 Szenario 2: Vordefinierte Anzahl von Shares
	Formalisierung der Problemstellung als Zuweisungsproblem
	Komplexität des Problems: NP-schwer
	Diskussion der Lösungsansätze

	3.3.3 Tabellarische Zusammenfassung der Lösungskonzepte

	3.4 Implementierung

	4 Evaluation
	4.1 Evaluationsbedingungen
	4.2 Szenario 2-b
	4.2.1 Korrektheit
	4.2.2 Geschwindigkeit

	4.3 Szenario 2-c
	4.4 Szenario 2-d
	4.4.1 Korrektheit
	4.4.2 Geschwindigkeit
	4.4.3 Konvergenz
	4.4.4 Initiale Heuristik

	5 Fazit
	5.1 Zusammenfassung und Diskussion
	5.2 Ausblick

	Literaturverzeichnis

