
Institut für Visualisierung und Interaktive Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3108

Entwicklung eines
Frontend-Generators für
Testanwendungen eines

Informationssystems

Markus Knittig

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Thomas Ertl

Betreuer: Dipl.-Inf. Florian Haag

begonnen am: 17. November 2010

beendet am: 17. Mai 2011

CR-Klassifikation: D.1.2, D.2.11, I.6.5, H.5.2

Inhaltsverzeichnis

1. Einleitung 7
1.1. Aufbau . 7

2. Aufgabenstellung 9

3. Grundlagen 13
3.1. Mobile Plattformen . 13

3.1.1. Apple iOS . 14

3.1.2. Android . 15

3.1.3. RIM BlackBerry . 15

3.1.4. Windows Phone 7 . 16

3.1.5. Palm webOS . 16

3.1.6. Weitere Smartphone-Betriebssysteme . 16

3.1.7. Fazit . 17

3.2. Modellgetriebene Softwareentwicklung . 17

3.2.1. Modelle . 17

3.2.2. Definition Modellgetriebene Softwareentwicklung 18

3.2.3. Domänenspezifische Sprachen . 18

Textuelle vs. grafische DSLs . 19

Interne DSL vs. Externe DSL . 19

3.3. Besehende Ansätze zur Generierung von mobiler Oberflächen 19

3.3.1. Sprachen für DSLs . 20

Ruby . 20

Scala . 21

3.3.2. Werkzeuge für DSLs . 21

Xtext . 22

Jetbrains MPS . 22

3.3.3. Fazit . 23

3.4. Verkehrsinformationssysteme . 24

3.4.1. DB Navigator . 25

3.4.2. VVS . 26

3.4.3. Öffi . 27

3.4.4. push&ride . 28

3.4.5. Fazit . 29

4. Konzeption 31
4.1. Grundlegende Architektur . 31

3

4.2. Die Oberfläche . 33

4.2.1. Informationsmodell . 33

Ort . 33

Zeit . 33

Verkehrsmittel . 33

4.2.2. Eingabe . 34

Textfeld . 36

Textfeld mit Autovervollständigung . 36

Auswahl nach Landkarte . 36

Auswahl aus Checkboxliste . 37

Liste aus Textfeldern . 37

4.2.3. Ausgabe . 37

4.2.4. Mock-Daten . 40

4.3. Benutzerparameter . 40

4.3.1. Führungsbedürfnis . 40

4.3.2. Leseaffinität . 40

4.3.3. Texteingaben . 41

4.3.4. Filter . 41

4.3.5. Zeit . 41

5. Realisierung des Prototyps 43
5.1. Allgemeines zur Entwicklung . 43

5.2. DSL . 43

5.2.1. Syntax . 44

5.2.2. Codegenerator . 46

5.3. Android Framework . 46

5.3.1. Android Grundlagen . 47

Projekt Layout und Konfiguration . 47

Activity . 48

Intent . 49

Ressourcen . 49

5.3.2. Model . 49

5.3.3. Mockup . 49

5.3.4. Prototype Framework . 50

Activities . 50

Komponenten . 51

Schnittstellen . 51

5.4. Entwicklungsergebnis . 51

6. Zusammenfassung 53

7. Ausblick 55

4

A. Anhang 57
A.1. Testfälle . 57

A.1.1. Verbindung . 57

A.1.2. Umstieg . 58

A.1.3. Reiseangebote . 58

A.1.4. Einfache Verbindung . 58

A.1.5. Platzreservierung . 59

A.1.6. Billigstes Angebot mit anschließender Taxi-Buchung 59

Literaturverzeichnis 61

5

1. Einleitung

Die Reise- und Verbindungsplanung im öffentlichen Verkehr ist meist immer noch relativ
zeitaufwendig für den Fahrgast. Es fehlt an Standardisierung und die Systeme beschränken
sich größtenteils auf die klassische Verbindungssuche. Im Rahmen des Forschungsprojektes
IP-KOM-ÖV [IPK] soll unter anderem der Zugang zu Fahrgastinformationen verbessert
werden und so die Basis für neue Informationsdienste für den Fahrgast geschaffen werden
[IPK10].

Ein wesentlicher Baustein sind dabei mobile Geräte. Damit sind insbesondere Smartphones
gemeint, aber auch Tablets entwickeln sich immer mehr vom Nischenprodukt zum Massen-
produkt. Ein Grundstein des Erfolges sind dabei die verfügbaren Anwendungen, sogenannte
Apps, auf mobilen Geräten. Die Hardware von Smartphones ist mittlerweile stark genug,
um innovative Anwendungen aller Art zu ermöglichen.

Im Rahmen des Projektes IP-KOM-ÖV sollen Prototypen erstellt werden, die verschiedene
Szenarien von Fahrgastinformationssystemen auf einem mobilen Gerät in Form von Apps
abbilden sollen.

Dazu soll modellgetriebende Softwareentwicklung eingesetzt werden. Statt die Prototypen
von Hand zu implementieren, soll ein formales Modell erstellt werden, das die Anforderun-
gen der Verkehrsinformationsdomäne beschreibt. Mit Hilfe von diesem formalen Modell
sollen dann Prototypen generiert werden, anstatt diese manuell zu implementieren. Da-
mit wird der Aufwand zur Erstellung neuer Prototypen reduziert, sowie eine einfachere
Entwicklung für Fachanwender und Entwickler gewährleistet.

Ziel ist es im Rahmen dieser Diplomarbeit mit Hilfe von modellgetriebener Softwareentwick-
lung einen Generator für Prototypen für Verkehrsinformationssysteme zu schreiben, der im
Rahmen des Projektes IP-KOM-ÖV eingesetzt werden kann.

In der Praxis konnte sich die modellgetriebene Softwareentwicklung allerdings noch nicht
in der Breite durchsetzen. Insbesondere für grafische Benutzeroberflächen fehlt es hier
an praktikablen Lösungen [DKW10]. Ein sekundäres Ziel ist es daher, im Rahmen dieser
Diplomarbeit festzustellen, wie praktikabel die modellgetriebende Softwareentwicklung sich
für eine bestimmte Anwenderdomäne einsetzen lässt.

1.1. Aufbau

Im Kapitel 2 werden die Anforderungen an den Prototyp Generator detailliert beschrieben.
Im Kapitel 3 werden die Grundlagen der Arbeit vorgestellt. Hier erfolgt die Evaluation

7

1. Einleitung

und Auswahl der verwendeten Plattformen und Ansätze. In Kapitel 4 wird die Konzeption
des Prototyp Generators unabhängig von konkret eingesetzten Technologien erläutert. Im
Kapitel 5 wird dann der technische Entwurf und die Realisierung des Prototyps beschrieben.
Abschließend werden in der Zusammenfassung die Ergebnisse der Arbeit bewertet und im
Ausblick auf zukünftige Entwicklungen eingegangen.

8

2. Aufgabenstellung

In diesem Kapitel soll die grundsätzliche Aufgabenstellung der Diplomarbeit erläutert
werden. Dazu werden die Funktion, die diese Arbeit im Rahmen des IP-KOM-ÖV Projektes
erklärt, sowie Anforderungen aus der Ausschreibung und Anfangsphase der Diplomarbeit
beschrieben.

Ausgangspunkt im Projekt IP-KOM-ÖV ist die Gesamtvorhabensbeschreibung, die Teil des
Forschungsantrages ist [IPK10]. In diesem Dokument werden unter anderem Arbeitspakete
für die einzelnen Projektpartner beschrieben. Diese Arbeit soll zur Fertigstellung von Arbeit-
spaketen der Universität Stuttgart beitragen. Die betreffenden Arbeitspakete sind Teil des
Arbeitskomplex 2 “Kommunikationsdienste für Kundengeräte”. Das Arbeitspaket 2.100 „Vor-
studie und Funktionale Beschreibung“ wurde bereits in der Fachstudie „IT-Einsatzszenarien
zur interaktiven Fahrgastunterstützung“ bearbeitet [AWZ10] und dient als einer der Aus-
gangspunkte der Arbeit. Die Diplomarbeit ist Teil von Arbeitspaket 2.300 „Machbarkeits-
nachweis und Prototyping für Interaktion, Mobilgeräte und Service-Orientierung“. Ein Ziel
des Arbeitspaketes ist es, durch Prototyping eventuelle hohe Kosten zu vermeiden. In dem
Arbeitspaket wird unter anderem von ein Prototyp erwähnt, der folgendes Ziel hat: „Der zu
entwickelnde Prototyp zeigt Vorteile und Schwachstellen der spezifizierten Konzepte auf
und dient so einer ersten Machbarkeitsstudie, welche die weitere Entwicklung maßgeblich
bestimmt.“. Für den Prototyp sollen zunächst „Ziele definiert und hieraus die zu entwi-
ckelnden Schnittstellen und Module definiert“ werden, dabei findet die Zieldefinition in
diesem Kapitel statt. Die Schnittstellen sind gegebenenfalls auch für das Arbeitspaket 2.200

„Systembeschreibung/-architektur“ relevant.

Folgende Punkte stellen einen Auszug der Anforderungen an diese Diplomarbeit dar:

• Externe Literatur soll nach ähnlichen Problemstellungen und etwaigen Lösungen
sowie sonstigen nützlichen Informationen zur Generierung von Benutzerschnittstellen
durchsucht werden.

• Bisherige studentische Arbeiten am VIS sollen bei Bedarf zu Rate gezogen werden.

• Anforderungen an System und Schnittstellen werden auf Grundlage möglicher Test-
und Vorführfälle erhoben.

• Da sich das Projekt IP-KOM-ÖV in einem frühen Stadium befindet und die Schnitt-
stellen auf dieser Seite noch nicht festgeschrieben sind, soll eine möglichst eingängige
Schnittstelle zum Ansteuern und Konfigurieren des Generators entworfen werden.
Dies kann beispielsweise ein XML-basiertes Format oder eine domänenspezifische
Konfigurationssprache sein, die einer späteren Anbindung der Testanwendungen an
standardisierte Schnittstellen wie WebServices oder Ähnliches nicht im Weg steht.

9

2. Aufgabenstellung

Abbildung 2.1.: Die geplante Architektur des IP-KOM-ÖV Projektes, die auch im entgültigen
Prototyp umgesetzt werden soll.

• Der Generator soll so entwickelt werden, dass er auf den IP-KOM-ÖV-
Entwicklungsrechnern ausführbar ist und Anwendungen erzeugt, die auf einem
Mobilgerät ausgeführt beziehungsweise angezeigt werden können.

• Für die Zukunft ist auch zu überlegen, wie die GUI-Generierung direkt auf dem
Mobilgerät stattfinden könnte.

• In der schriftlichen Ausarbeitung sollen alle Ergebnisse der Recherche, Analyse und der
gesamte Entwicklungsverlauf beschrieben werden. Dabei soll auch aufgezeigt werden,
inwieweit der hier entwickelte Generator mitsamt seiner Konfiguration, existierenden
GUI-Generatoren bei der Entwicklung von IP-KOM-ÖV überlegen ist.

Die Testfälle wurden im Laufe der Arbeit festgelegt und befinden sich im Anhang A. Weitere
Schnittstellen die teilweise in Zusammenarbeit mit dem Betreuer erstellt wurden, werden
in der Konzeption beschrieben. Für die Wahl der mobilen Plattform wurde ebenfalls im
Rahmes eines Gespräches mit dem Betreuer in der Anfangsphase folgende Anforderungen
festgelegt:

• Es reicht das die Prototypen auf einer Plattform laufen. Eine plattformübergreifende
Lösung ist nicht notwendig, kann aber verwendet werden, falls dies insgesamt die
beste Lösung ist.

• Die Plattform sollte einen relevanten Marktanteil besitzen, so dass die Weiterentwick-
lung gesichert und ausreichend Dokumentation im Web vorhanden ist.

10

• Der Bildschirm sollte zeitgemäß sein, also ausreichend Farben darstellen sowie 2D
Grafiken darstellen können. Eine Darstellung von 3D Grafiken wird dagegen nicht
benötigt.

• Was die Rechenleistung betrifft, sollte die Reaktionszeit möglichst gering sein. XML
Verarbeitung sollte performant unterstützt werden.

• Als Eingabe soll ein Touchscreen mit virtueller Tastatur dienen. Alternativ oder zusätz-
lich kann die Eingabe auch übere eine Hardware-Tastatur möglich sein.

• Optional soll es möglich sein Standardortinformationen zu bestimmen. Dies kann
alternativ aber auch durch einen Stub ersetzt werden.

• Neben den anderen genannten Kriterien ist auch die Präferenz des Diplomanten
entscheidend.

Die Ergebnisse dieser Arbeit sollen im Laufe des Projekt noch erweitert werden, voraus-
sichtlich über die nächsten zwei bis drei Jahren. Daher ist insbesondere eine gute Ent-
wicklerdokumentation wichtig, den optimalerweise kann der bestehende Prototyp einfach
weiterentwickelt werden.

Weiterhin sollen auch die Erkenntnisse, die im Zusammenhang mit der modellgetriebenden
Softwarentwicklung in der Arbeit gewonnen werden, gut dokumentiert werden.

11

3. Grundlagen

In diesem Kapitel werden verfügbare Konzepte und Technologien vorgestellt und evaluiert.
Im Abschnitt 3.1 werden mobile Plattformen für Smartphones vorgestellt und auf die
Tauglichkeit für den Einsatz im Projekt untersucht. Im Abschnitt 3.2 werden die Konzepte
und die Anwendung der modellgetriebenen Softwareentwicklung erläutert. In Abschnitt
3.4 werden verfügbare Verkehrsinformationssysteme, insbesondere für mobile Plattformen,
untersucht.

3.1. Mobile Plattformen

Mobile Geräte haben sich in den letzten Jahren von einfachen Handys, über Telefone mit
Zusatzfunktionen, so genannte Feature Phones [Fea], zu vollwertigen Plattformen mit einer
großen Auswahl an Anwendungen entwickelt. Diese werden allgemein als Smartphones
bezeichnet [Sma]. Für IP-KOM-ÖV ist die Auswahl der Plattform insbesondere deshalb von
großer Bedeutung, da das Projekt erst in mehreren Jahren abgeschlossen sein wird und sich
bis dahin noch einiges auf dem Markt der mobilen Plattformen ändern kann. So wurde
beispielsweise Windows Mobile 6.5 letztes Jahr obsolet [Win10], um ein weiteres Sinken
der Marktanteile zu vermeiden [Sma11]. Android konnte dagegen als Spätstarter seinen
Markanteil relativ zügig ausbauen, wie Abbildung 3.1 zeigt.

Seit der Einführung des iPhones von Apple hat sich die Smartphone-Landschaft grundlegend
gewandelt. Davor waren Smartphones ein Nischenprodukt, das hauptsächlich Geschäfts-
kunden bediente. Heute entwickeln sich Smartphones mehr und mehr zum Massenprodukt.
Diesen Erfolg hat Apple insbesondere seiner und der Software von Dritt-Herstellern zu
verdanken. Über die App Store können Dritt-Hersteller eigene Programme anbieten, auf die
jeder Nutzer der iOS1-Plattform zugreifen kann. Konkurrenten wie Google und Microsoft
folgten diesem Konzept und haben eigene Marktplätze für Smartphone-Apps geschaffen.
Während bei einfachen Handys und sogenannten Feature-Phones die Software und Bedie-
nung noch eine untergeordnete Rolle spielen, rücken diese beiden Aspekte bei Smartphones
in den Fokus.

Auch Apps für Verkehrsinformationssysteme gibt es schon in großer Zahl. So gibt es zum
Beispiel allein im Android Market über 1000 kostenlose und kostenpflichtige Apps in der
Kategorie Verkehr [Andd] und die offizielle App der Deutschen Bahn wurde bereits eine
Million Mal heruntergeladen [DBN]. Die meisten Anwendungen sind dabei zur Zeit noch

1Name des Betriebssystems des iPhones

13

3. Grundlagen

Abbildung 3.1.: Anteile der Betriebsysteme der aktuelle gekauften Smartphones in der USA
laut Umfrage von comScore im Februar 2011 [Sma11]

relativ einfach gestaltet und besitzen oft nur einen Bruchteil der Funktionalität, die zum
Beispiel über die Webanwendungen der jeweiligen Verkehrsunternehmens möglich ist. Auch
gibt es zur Zeit noch wenig Integration mit anderen Diensten, wie zum Beispiel mit sozialen
Netwerken oder Location-based Services.

Dieser Abschnitt soll einen kurzen Überblick über die verschiedenen mobilen Plattformen
geben und anschließend anhand der Kriterien der Aufgabenstellung beurteilen, inwieweit
diese für Prototypen für mobile Plattformen des Projektes geeignet sind.

3.1.1. Apple iOS

Mit iOS bezeichnet Apple die Plattform für ihr Smartphone iPhone sowie für ihr Tablet iPad.
In dieser Arbeit wird nur ersteres betrachtet, wobei die Anwendungsentwicklung für die
beiden Geräteklassen weitgehend indentisch erfolgt. Auf dem iPad sind allerdings wegen des
größeren Bildschirmes und der höheren Auflösung und des dadurch bedingten zusätzlichen
Platzes auch mehrere Panels in einer Anwendung möglich. Zum Beispiel verfügt die Mail
App in der iPad Version über ein Panel zum Auswählen von Mails und ein Panel zum
Anzeigen der ausgewählten Mail.

14

3.1. Mobile Plattformen

Die aktuellste Version von iOS ist 4.3. Die Entwicklungssprache und -werkzeuge entsprechen
im wesentlichen denen von Mac OS X, die Entwicklung ist daher auch nur auf einem Mac
möglich. Der C-Dialekt Objective-C [Obj] dient als Programmiersprache und die mobile
Variante des Framework Cocoa [Coc] wird für die Oberfläche verwendet. Eigene Anwendun-
gen lassen sich nur auf dem Gerät installieren, wenn man dem Entwicklerprogramm von
Apple für eine Jahresgebühr von hierzulande 99 Euro beitritt2 [iOSa]. Anwendungen können
zudem nur über die App Store verteilt werden, die allerdings auch auf eine bestimmte
Benutzergruppe beschränkt werden kann. Öffentliche Apps werden einem Reviewprozess
unterzogen, der neben der Funktionsfähigkeit der App unter anderem auch prüft, ob die
Richtlinien zur Gestaltung der Anwendung von Apple eingehalten wurden [iOSb].

3.1.2. Android

Android [Andb] wird im Gegensatz zu den meisten anderen Smartphone-Betriebssystemen
nicht von einem einzelnen Hersteller entwickelt, sondern durch das Konsortium Open Hand-
set Alliance [OHA], das von Google geführt wird. Die Quellen von Android sind größtenteils
frei verfügbar. Es wird daher von Herstellern nicht nur auf Smartphones eingesetzt, sondern
auch auf anderen Geräteklassen wie beispielsweise Netbooks und Tablets. Die Version 3.0
enthält auch offiziell Tabletunterstützung, mit der Anwendungen auf Tablets den zusätzlich
zur Verfügung stehenden Platz besser nutzen können.

Android liegt aktuell für Smartphones in der Version 2.3 vor. Die Entwicklung ist platt-
formunabhängig mittels Java möglich. Google hat hierfür mit der Dalvik Virtual Machine
eine eigene Java Virtual Machine entwickelt [Dal]. Diese ist so ressourcenschonend, dass
problemlos mehrere Instanzen auf einem Gerät laufen können. Daher verfügt Android auch
von Anfang an über echtes Multitasking. Ebenso ist es möglich C++ zu verwenden, was
dann aber nicht mehr plattformunabhängig ist. Entwicklungswerkzeuge werden für alle
gängigen Betriebssysteme angeboten. Bezüglich der Weitergabe der Anwendungen gibt es
keine Einschränkungen.

3.1.3. RIM BlackBerry

BlackBerry OS [Blab] ist vor allem in der Geschäftswelt weit verbreitet. Es wird nur von
der kanadischen Firma RIM auf gleichnamigen Geräten verwendet. BlackBerrys verfügen
meist über eine Hardware-Tastatur, wobei mittlerweile immer mehr Geräte entweder mit
zusätzlichem oder gar außschließlich mit Touchscreen angeboten werden. Eine weitere
Stärke von Blackberrys ist ihr Push-Service, mit dem E-Mails überall dort empfangen werden
können, wo Netzabdeckung besteht. Dieser Service kostet allerdings meistens extra bei den
Netzanbietern und verliert durch die immer bessere Verfügbarkeit des mobilen Internets
daher an Bedeutung. Die Entwicklung dafür ist mit C/C++ und Java SDK möglich [Blaa],
auch Java ME wird unterstützt. Mit dem PlayBook bietet auch RIM ein Tablet an [Pla].

2Stand 2011

15

3. Grundlagen

3.1.4. Windows Phone 7

Windows Phone 7 ist eine komplette Neuentwicklung von Microsoft, nachdem ihr vorheriges
Smartphone-Betriebssystem Windows Mobile 6.5 zunehmend an Marktanteilen verloren hat.
Es ist daher auch inkompatibel zu früheren Windows Smartphone-Betriebssystemen. Von
den Features und Beschränkungen lehnt es sich stark an iOS an. Bei der Oberfläche versucht
es aber neue Wege zu gehen. Der Startbildschirm besteht aus sogenannten Kacheln, die
kleine Informationshäppchen, wie die Anzahl der ungelesenen E-Mails oder den aktuellen
Facebook-Status, anzeigen. Als Entwicklungssprache wird C# mit dem Silverlight Framework
verwendet. Alternativ kann Visual Basic .NET als Entwicklungssprache eingesetzt werden
[VBN]. Das SDK ist, wie alle Entwicklungswerkzeuge von Microsoft, nur unter Windows
verfügbar.

3.1.5. Palm webOS

Die Firma Palm ist vor allem durch ihre Erfolge im Bereich PDAs (Personal Digital Assistant)
bekannt. Nachdem ihr Smartphone-Betriebssystem Palm OS mit dem iPhone nicht mehr
mithalten konnte, wurde Anfang 2009 dessen Nachfolger webOS vorgestellt [web]. Es basiert
auf Linux und ist wie iOS und Android auf die Bedienung per Touchscreen angepasst.
Entwickelt werden kann auf webOS, passend zum Namen, mit den für Webanwendungen
zur Verfügung stehenden Hilfsmitteln: HTML 5, CSS und JavaScript. Seit März 2010 ist es
auch möglich C- und C++-Code in Anwendungen zu verwenden.

Smartphones mit webOS sind ausschließlich von Palm erhältlich. Die Firma Palm wurde im
April 2010 von HP übernommen und firmiert seit Oktober 2010 als HP Palm. HP hat für
Juni 2011 auch Tablets mit webOS angekündigt [HPP].

3.1.6. Weitere Smartphone-Betriebssysteme

Neben den Smartphone Plattformen die sich zur Zeit gut am Markt verkaufen [Sma11] gibt
es noch ein paar weitere erwähnenswerte Smartphonebetriebssysteme.

Nokia pflegt gleich zwei Smartphonebetriebsysteme. Zum einen das relativ alte Symbian
[Sym], das vor allem im Low-Cost-Smartphone Markt zufinden ist. Zum anderen MeeGo
[Mee], das aus Maemo [Mae] und Moblin [Mob] hervorgegangen ist und im höherpreisige
Marktsegmente angesidelt ist. Für beide Systeme kann man mit dem C++ Framework Qt
entwickeln. Symbian unterstützt außerdem Java ME.

Auch Samsung hat 2010 mit Bada [Bad] ein eigenes Smartphone-Betriebssystem veröffentlicht.
Es zielt vor allem auf den Low-Cost-Smartphone Markt ab [Nor10]. Entwickelt wird mit
einem eigenen C++ SDK. Java ME wird ebenfalls unterstützt.

16

3.2. Modellgetriebene Softwareentwicklung

3.1.7. Fazit

Hauptkriterien für die Auswahl der mobilen Plattform für diese Arbeit sind niedrige Inves-
titionskosten, eine gewissen Zukunftssicherheit sowie eine brachbare Entwicklungsumge-
bung.

Die größten Investitionskosten fallen bei der iOS Plattform an. Neben einem iPhone, benötigt
man für die iOS-Entwicklung nämlich auch zwingend einen Mac von Apple. Gegen Windows
Phone 7 spricht dagegen hauptsächlich die noch recht geringe Verbreitung und die Frage
ob sich die relativ spät gestartete Plattform noch gegenüber der Konkurrenz behaupten
kann. Gleiches gilt auch für webOS. Auch für BlackBerry ist die Zukunft offen, da man zwar
stark im Geschäft mit Unternehmen ist, im Konsumermarkt kaum Fuss fassen kann. Dies
dürfte vor allem daran liegen, das die meisten Modelle immer noch keinen Touchscreen
besitzen. Die Wahl fällt daher auf Android, das alle Kriterien ohne Einschränkungen erfüllt.
Android-Geräte gibt es teilweise schon für unter 100 Euro [Che] und die Entwicklungswerk-
zeuge sind kostenlos und laufen auf allen relevanten Betriebssystemen. Es gibt eine große
Zahl an Geräteherstellern, die Plattform wird durch eon Konsortium wntwickelt und ist
weitgehend frei verfügbar. Man besitzt zudem bereits eine gewissen Marktanteil [Sma11]. Als
Entwicklungssprachen kommen die Top 3 der verbreitetsten Sprachen zum Einsatz [TIO].

3.2. Modellgetriebene Softwareentwicklung

In diesem Abschnitt werden die Grundlagen der modellgetriebenen Softwareentwicklung
vorgestellt. Im Abschnitt 3.2.1 wird der Begriff der Modelle genauer erläutert. In 3.2.2 wird die
modellgetriebene Softwareentwicklung definiert. Schließlich wird in 3.2.3 auf domainspezifi-
sche Sprachen eingegangen, die für den Einsatz von modellgetriebener Softwareentwicklung
notwendig sind. In den letzten beiden Abschnitten 3.3.1 und 3.3.2 werden dann konkret
Sprachen und Werkzeuge für domainspezifische Sprachen vorgestellt und verglichen.

3.2.1. Modelle

In diesem Abschnitt wird die Bedeutung von Modellen kurz zusammengfasst. Die Erklärun-
gen dazu wurde dabei weitgehend aus [JL06] entnommen.

Modelle treten in den verschiedensten Bereichen auf und sind ein wichtiges Hilfsmittel
unserer Welt. Beispielsweise sind Fotos, Fingerabdruck oder Matrikelnummer Modelle.
Es gibt zwei Arten von Modellen, deskriptive (d.h. beschreibende) und präskriptive (d.h.
vorschreibende) Modelle. Ein Foto ist ein Abbild, als deskriptiv. Ein Bauplan ist dagegen eine
Vorgabe, also präskriptiv. Im Informatikbereich sind alle Artefakte Modelle. Ob Spezifikation,
Entwurf oder Code, alles sind Modelle, die dazu eingesetzt werden, einen bestimmten
Ausschnitt der Softwareentwicklung abzubilden. Diese Modelle werden ineinander überführt.
Anhand des Entwurfs wird der Code geschrieben. Dabei sind nicht alle Details des Entwurfs
im Code berücksichtigt und umgekehrt. Die präterierten Attribute (vom lat. praeter: außer,

17

3. Grundlagen

ausgenommen) fallen weg und es kommen die abundaten Attribute (vom lat. abundans:
übervoll, überreich) hinzu, die nichts mit dem Orginal zu tun haben. Beide Eigenschaften sind
für die modellgetriebene Entwicklung wichtig. Denn dort wird in der Regel ein einfaches
Modell in ein reichhaltigeres Modell überführt, wobei aber nicht unbedingt immer das
ganze Modell berücksichtigt wird. Zum Beispiel kann es Teile geben, die nur für bestimmte
Varianten bestimmt sind oder integrierte Modelldokumentation, die im anderen Modell
wegfällt.

3.2.2. Definition Modellgetriebene Softwareentwicklung

Zum Thema modellgetriebene Softwareentwicklung findet man in der Literatur verschiedene
Definitionen. Das Buch „Modellgetriebene Softwareentwicklung“ [TS07] enthält folgende
Definition:

„Modellgetriebene Softwareentwicklung (Model Driven Software Development, MDSD) ist
ein Oberbegriff der Techniken, die aus formalen Modellen automatisiert lauffähige Software
erzeugen.”

Es muss also erst einmal ein formales Modell vorliegen. Formal heißt, dass es klare Re-
geln gibt, die über das Modell Aussagen macht. Dies ist notwendig, damit der Prozess
automatisiert ablaufen kann. Denn ein nicht formales Modell kann ein Rechner nur schwer
verarbeiten. Zudem soll der Prozess automatisiert sein, das heißt vereinfacht gesagt, das
man einfach ein Modell eingeben kann und dann per Knopfdruck das Zielartefakt daraus
erzeugt. Der dritte Teil der Definition spricht von lauffähiger Software, es soll also nicht noch
zusätzliche Handarbeit notwenig sein, um das Programm lauffähig zu machen.

3.2.3. Domänenspezifische Sprachen

Für modellgetriebene Entwicklung benötigt man eine Abstraktionssprache, die dann in eine
oder mehrere Zielsprachen überführt wird. Dies sind die sogenannten domänenspezifischen
Sprachen, abgekürzt mit DSL3. Eine DSL besteht üblicherweise aus zwei Teilen: Der Sprache,
also der Syntax, die die Domäne beschreibt und einem Codegenerator, der aus der Eingabe
das entsprechende Endprodukt erzeugt. Dies wird oft über Templateengines, wie zum
Beispiel StringTemplate [Str], realisiert. Eine alternative Möglichkeit wäre die DSL direkt zu
interpretieren. Dies ist aber nicht in allen Fällen, zum Beispiel wenn die Zielplattform eine
andere ist als die Entwicklungsplattform ist, möglich.

3Domain specific language (englische Bezeichung)

18

3.3. Besehende Ansätze zur Generierung von mobiler Oberflächen

Textuelle vs. grafische DSLs

Eine DSL kann sowohl textuell als auch graphisch dargestellt werden. Eine bekannte gra-
phische DSL ist zum Beispiel UML. Graphische Darstellungen sind zwar für den Menschen
meist leichter verständlich, allerdings gilt dies meist nur für einfache Modelle. Ein weiterer
Nachteil ist, dass ein spezielles Programm zur Anzeige benötigt wird. Auch für Operationen
für die man bei Text auf Standardwerkzeuge zurückgreifen kann, wie zum Beispiel ein
Diff, benötigen Werkzeuge, die dies unterstützen. Eine bekanntes Werkzeug zum Erstellen
von grafischen DSL ist zum Beispiel das kommerzielle Produkt MetaEdit+ [Met]. Diese
Diplomarbeit beschränkt sich allerdings auf Werkzeuge zur Erzeugung von textuellen DSLs.
Eine Auswahl wird im nächsten Abschnitt vorgestellt.

Interne DSL vs. Externe DSL

Als interne DSL bezeichnet man eine in eine bestehende Sprache eingebettete DSL. Diese
benutzt nur eine Teilmenge der Syntaxelemente der Hostsprache und lässt sich so im Idealfall
auch von jemandem verstehen, der die Hostsprache nicht beherrscht. Typischerweise sind
dynamische Sprachen dafür besser geeignet, es gibt aber mittlerweile auch statische Sprachen,
die gut für die Implementierung von internen DSLs geeignet sind. In dieser Arbeit werden
Ruby und Scala näher betrachtet. Prinzipiell sind aber auch Sprachen wie Python oder C#
geeignet.

Eine externe DSL ist dagegen eine eigene Sprache, die meist mit Hilfe eines Parsergenerators
entsteht. Sie ist dadurch zwar viel flexibler, aber auch aufwendiger zu erstellen. Denn für eine
eigene Sprache gibt es erst einmal keine Werkzeugunterstützung. Diese zu erstellen kann
unter Umständen genauso viel Zeit in Anspruch nehmen, wie die Erstellung der Sprache
selbst. Die Lösung dieses Problems sind sogenannte Language Workbenches [Fow05]. Diese
abstrahieren typischerweise den Parsergenerator, stellen ein Templatesystem zur Verfügung
und generieren auch eine passende Umgebung zum Bearbeiten der fertigen DSL. In dieser
Arbeit werden Eclipse Xtext und Jetbrains MPS als Vertreter von Language Workbenches
betrachtet. Ein weiteres bekannteres Werkzeug ist der „Workbench“ von Intentional Software
[Intb].

3.3. Besehende Ansätze zur Generierung von mobiler Oberflächen

Vergleiche zu Werkzeugen und Frameworks zur Generierung von grafischen Oberflächen
werden asuführlich in [DKW10] behandelt. Für mobile Oberflächen gibt es zur Zeit noch
wenig Werkzeuge. Ein Werkzeug für die Entwicklung für iPhone Apps ist iphonical [iph].
Bei ihm definiert man mit Hilfe einer eigenen DSL Domainklassen und kann daraus dann
entsprechende Formulare generieren, mit denen man Entities auflisten anlegen, ändern und
löschen kann. Das Projekt Applause [app] unterstützt neben dem iPhone auch noch das
iPad und Android. Es vereinfacht die Entwicklung der Oberfläche durch eine DSL, die die
graphischen Komponenten abstrahiert. beide Werkzeuge basieren auf Xtext (siehte 3.3.2).

19

3. Grundlagen

3.3.1. Sprachen für DSLs

Dieser Abschnitt betrachtet eine Auswahl an Sprachen und Werkzeugen für DSLs. Bei der
Auswahl wurde dabei praktische Einsatzfähigkeit und Verbreitung berücksichtigt.

Im Rahmen der Evaluation wurde versucht, mit den jeweiligen Sprachen und Werkzeugen
die Pseudosyntax 3.1 abzubilden.

travel {

group {

start,

destination

},

startdate,

transportation("Train", "Subway")

}

Listing 3.1: Pseudo-DSL für die Evaluation von Werkzeugen und Sprachen für DSLs

Das Schlüsselwort “travel” leitet den Hauptteil der DSL ein. Mit Hilfe des “group” Schlüssel-
wortes können beliebige verschachtelte virtuelle Gruppen gebildet werden. “start”, “destinati-
on”, “startdate” und “transporation” beschreiben die Elemente, die angezeigt werden sollen.
“transportation” hat dabei zusätzlich noch Parameter, die die möglichen Verkehrsmittel
beschreiben.

Ruby

Die Programmiersprache Ruby [Ruba] wurde 1995 von Yukihiro Matsumoto entworfen.
Sie wurde durch das Webframework „Ruby on Rails“ [Rubb] populär. Ruby on Rails
wird oft auch als DSL bezeichnet [Rub08]. Ruby ist dynamisch typisiert, das heißt Typen
müssen nicht deklariert werden, sondern werden zur Laufzeit ermittelt. Die Sprache bietet
außerdem umfangreiche Möglichkeiten zur Laufzeit Code zu generieren. Dies wird auch
als Metaprogrammierung bezeichnet [Per10]. Die Eigenschaft, dass Ruby bereits einen
Codegenerator eingebaut hat, begünstigt die Erstellung von DSLs.

travel {

group {

feature :start, :destination

}

feature :startdate

transportation ["Train", "Subway"]

}

Listing 3.2: Die Pseudo-DSL in Ruby

In dem Beispiel 3.2 werden insbesondere Closures [Fow04] sowie die Eigenschaft, dass man
Klammern bei der Übergabe von Parametern oft weglassen kann benutzt. Closures sind
vereinfacht gesagt anonyme Funktionen.

20

3.3. Besehende Ansätze zur Generierung von mobiler Oberflächen

def hello

print 'Hello '

Hier wird der zu \"ubergebende Codeblock eingesetzt

yield

print '!'

end

hello { print 'World' }

Listing 3.3: Einfaches Beispiel für eine Closure in Ruby. Ausgabe: Hello World!

Scala

Scala entstand Anfang dieses Jahrtausends an der Schweizer Hochschule EPFL. Während bei
der ersten Version noch stark der Forschungsaspekt im Vordergrund stand, ist es mittlerweile
auch ein Ziel, Scala in der Industrie zu etablieren. Scala läuft auf der Java Virtual Machine
[LY99] und ist statisch typisiert, das heißt der Typ einer Variable muss prinzipiell immer
dem Compiler bekannt sein. Im nächsten Abschnitt werden einige Methoden erläutert, die
sicherstellen, dass Scala trotzdem noch genügend flexibel ist für den Bau von DSLs.

In dem Beispiel 3.4 werden Type-Inferenz sowie die Apply Methoden benutzt. Type-Inferenz
bedeutet, dass der Datentyp vom Compiler automatisch erkannt wird und nicht bei jeder
Deklaration explizit angegeben werden muss. Die Apply Methode ist eine vereinfachte
Darstellung, die meist für das Factory-Pattern benutzt wird. In Scala kann jede Klasse ein
sogenanntes Kompanien-Object haben, von dem aus auch Interna der Klasse zugegriffen
werden kann. Dieses Object kann eine Apply Methode besitzen bei der man statt
Object.apply(Parameter) auch verkürzt Object(Parameter) schreiben kann. Weitere nützliche
Eigenschaften für DSLs sind die Infix-Operator-Notation und implizite Konvertierung von
Typen.

val travel = List[Feature](

Group(Feature(start, destination)),

Feature(startdate),

Transportation("Train", "Subway")

)

Listing 3.4: Die Pseudo-DSL in Scala

3.3.2. Werkzeuge für DSLs

Wie in Abschnitt 3.2.3 schon erwähnt, gibt es neben internen DSLs, auch externe DSLs.
Hierzu gibt es spezielle Werkzeuge, die auch als Lanuage Workbenches [Fow05] bezeichnet
werden.

21

3. Grundlagen

Abbildung 3.2.: Das Hauptfenster von Xtext

Xtext

Xtext [Xteb] (siehe Abbildung 3.2) ist ein Open-Source-Framework für die Entwicklung
domainspezifischer Sprachen. Es entstand aus dem openArchitectureWare-Projekt und ist
mittlerweile Teil des Eclipse Modeling Projektes. Aus der von Xtext definierten textuellen
Syntax wird sowohl eine ANTLR [ANTb] Grammatik als auch ein Editor für Eclipse [Ecl]
erzeugt. Im Hintergrund steht zudem ein generiertes EMF Modell [EMF], das entweder
direkt interpretiert werden kann oder zum Beispiel mittels einer Templatesprache weiter
transformiert werden kann.

Xtext wird maßgeblich von der deutschen Firma itemis entwickelt [Xted], die dazu Beratung
und Entwicklung anbietet. Es wird auch in der Industrie eingesetzt [Xtea].

Jetbrains MPS

Das von der Firma Jetbrains entwickelte MPS (siehe Abbildung 3.3) steht für “Meta Pro-
gramming System”. Der Hauptanwendungsbereich ist das Erweitern von Sprachen. Zum

22

3.3. Besehende Ansätze zur Generierung von mobiler Oberflächen

Abbildung 3.3.: Das Hauptfenster von Jetbrains MPS

Beispiel könnte Java mittels MPS um Konstrukte zur parallelen Programmierung erwei-
tert werden. Eine weitere Besonderheit ist, dass dies nicht auf rein textueller Basis erfolgt,
sondern mittels einer Meta-Ebene, die zwar textuell aussieht, aber die eigentliche Struktur
versteckt (WYSIWYG). Wie Xtext erzeugt auch MPS einen Editor mit Komfortfunktionen
wie Autovervollständigung und Outline-Funktion.

MPS ist Open Source und wurde von JetBrains unter anderem für ihr eigenes Produkt
YouTrack eingsetzt. Ansonsten wird auch profesioneller Support angeboten [MPS]. Mit dem
Realaxy ActionScript Editor gibt es auch die erste kommerzielle IDE, die auf MPS basiert
[Rea].

3.3.3. Fazit

Alle Sprachen und Werkzeuge haben sich im Test als brauchbar erwiesen. Da um flexibel
zu bleiben eine externe DSL erstellt werden soll, blieb die Wahl aber zwischen den zwei
Werkzeugen für DSL. Die Wahl fiel auf Xtext, da die Einstiegshürde nieriger ist. Jetbrains
MPS hat zudem seine Stärke eher beim erweitern bestehender Sprachen, was für diese Arbeit
nicht in Betracht kommt.

23

3. Grundlagen

3.4. Verkehrsinformationssysteme

Erst einmal gilt es zu klären, was genau überhaupt ein Verkehrsinformationssystem ist.
Recherchen ergaben dazu ernüchternde Ergebnisse, der Begriff taucht zwar häufiger auf,
aber eine einheitliche Definition scheint es nicht zu geben. In einer Diplomarbeit von 2000

am Institut für Straßen- und Verkehrswesen der Universität Stuttgart [Hob00] zählen hierzu,
neben Mobilfunk-, Internet-Diensten und WAP, unter anderem Verkehrsnachrichten im
Radio, digital über Radiofrequenzen übertragene programmbegleitende Informationen und
Videotext. In dieser Arbeit sind als Verkehrsinformationssysteme in der Regel solche gemeint
die auf mobilen Plattformen, genauer Smartphones, laufen. Eine weitere Einschränkung
ist, dass sich Verkehrsinformationssysteme in dieser Arbeit hauptsächlich auf das Verkehrs-
mittel Bahn konzentrieren. Weitere öffentliche Verkehrmittel wie Bus und Taxis sollen aber
gegebenfalls eingebunden werden.

Es gibt bereits eine Auswahl an Verkehrsinformationssystemen für mobile Plattformen. Die
meisten sind recht ähnlich aufgebaut. Es gibt eine Suchmaske für Verbindungen, die zu einer
Ergebnisliste führt. In der Regel kann man durch Auswahl der gewünschten Verbindung
dann noch einmal Details dazu abrufen.

In diesem Abschnitt werden ein paar Vertreter kurz beispielhaft vorgestellt.

24

3.4. Verkehrsinformationssysteme

3.4.1. DB Navigator

Abbildung 3.4.: Das Hauptfenster des DB Navigator

Die Deutsche Bahn bietet Apps für verschiedene Smartphone Betriebsysteme an, unter
anderem iPhone, Android (siehe Abbildung 3.4), BlackBerry, Symbian und Bada [DBN].
Daneben gibt es auch eine Java ME Implementierung. Die Grundfunkionalität ist dabei das
Suchen von Verbindungen aus der umfangreichen Datenbank der Bahn. Einzelne andere
Features können abweichen. Auch sind nicht alle Funktionen verfügbar, die über das Web
verfügbar sind. Die Funktion “’Ist mein Zug pünklich?’ ist zum Beispiel nur auf der mobilen
Webseite verfügbar, wird aber in den offiziellen Apps der Bahn nicht unterstützt.

25

3. Grundlagen

3.4.2. VVS

Abbildung 3.5.: Das Hauptfenster der VVS App

Der VVS (Verkehrs- und Tarifverbund Stuttgart) bietet seit Ende 2010 auch Apps für iPhone
und Android (siehe Abbildung 3.5) an [VVS]. Die Oberfläche wirkt allerdings nicht ganz
so durchdacht wie bei der Bahn App, so kann man einen Standort nicht einfach eintippen,
sondern muss diesen immer erst suchen beziehungsweise direkt auswählen. Zudem werden
in der Detailansicht auch nicht die Informationen zu den Abfahrts- und Ankuftsgleisen
angezeigt. Gut ist dagegen, dass vorliegende Störungen direkt als Popup angezeigt werden.

26

3.4. Verkehrsinformationssysteme

3.4.3. Öffi

Abbildung 3.6.: Das Hauptfenster von Öffi

Öffi [Oef] ist eine kostenlose App für Android (siehe Abbildung 3.6), die privat entwickelt
wird. Sie enthält viele Pläne von Regionen in Deutschland, sowie einige wenige von anderen
Regionen in Europa, Australien und Amerika. Das Projekt besteht genauer gesagt aus
zwei Apps: Eine App die nach Haltestellen in der Nähe sucht und dafür die nächsten
Abfahrtzeiten anzeigt und eine App für Verbindungsuche. Die Einstellungsmöglichkeiten
sind dabei eher minimal, dafür kann die App verfügbare Verbindungen visualisieren. Sie
kann auch komplette Netzpläne anzeigen. Weiterhin ist die App sehr gut in Android
integriert. Man kann Öffi zum Beispiel direkt von der Adresse eines Kontakts im Adressbuch
aufrufen.

27

3. Grundlagen

3.4.4. push&ride

Abbildung 3.7.: Das Hauptfenster von Push & Ride

push&ride [Pus] (siehe Abbildung 3.7) ist eine Java ME Anwendung und funktioniert im
Gegensatz zu den anderen Apps komplett offline. Sie hat dafür allerdings auch nur den VVS
Plan der Region Stuttgart. Zudem ist es keine Smartphone App im eigentlichen Sinne, es gibt
zwar auch eine Android Portierung, die allerdings weitgehend aus dem eingebetteten Java
ME Programm besteht. So unterstützt die Android App nicht die virtuelle Android Tastatur,
sondern man muss Eingaben umständlich über eine eigene abgespeckte Tastatur eingeben.
Außerdem werden auch teilweise Bildschirmelemente abgeschnitten. Dafür unterstützt
push&ride aber auch viele Feature Phones.

28

3.4. Verkehrsinformationssysteme

3.4.5. Fazit

Zusammengefasst unterscheiden sich bestehende Verkehrsinformationssysteme für mobile
Geräte bisher nicht besonders voneinander. Auch im Vergleich zu Verkehrsauskünften über
Webseiten oder stationäre Automaten sind keine allzu großen Unterschiede zu erkennen.
Zwar gibt es durchaus hilfreiche Funktionen wie Favoriten und GPS-Ortung, ansonsten fehlen
innovative Funktionen bisher. Auch wird in keiner Anwendung zwischen verschiedenen
Benutzertypen unterschieden.

Am besten schlägt sich der DB Navigator der Deutschen Bahn. Neben der Tatsache, dass
die Anwendung eine sehr guten Datenbasis besitzt, ist die Anwendung von der Oberfläche,
Bedienung und Performance, zumindest in der Android-Version, am besten. Aber auch alle
anderen Anwendungen bieten trotz mancher Unzulänglichkeiten, Alleinstellungsmerkmale
die für ihren Einsatz sprechen.

29

4. Konzeption

Dieses Kapitel beschreibt die Konzeption der DSL für Verkehrsinformationssysteme sowie
die Umsetzung und Darstellung des Prototyp-Framework für Verkehrsinformationssysteme.
Implementierungsdetails werden im nächsten Kapitel besprochen. Es wird dabei versucht,
die Konzepte möglichst generisch zu beschreiben, allerings lässt es sich nicht vermeiden,
dass die Technologiewahl einige Aspekte beeiflusst. Auch was DSLs angeht, sollte man
dieses Kapitel mehr als Erfahrungsbericht ansehen, da andere DSL unter Umständen völlig
andere Anforderungen haben können. Daher sollte man vorher prüfen, welche Werkzeuge
und Frameworks zum Einsatz kommen sollen (vgl. Grundlagen) und inwiefern sich die Kon-
zepte übertragen lassen. Grundsätzlich sollte dieses Kapitel aber zumindest Ansatzpunkte
liefern.

Die Konzeption erfolgte nicht vorab, sondern inkrementell und wurde in mehreren Iteration
verfeinert. Es würden also im Laufe der Arbeit auch Aspekte geändert, hinzugefügt oder
verworfen. Da sich im Laufe der Iterationen auch die Anforderungen geändert haben, sind
hier auch Anforderungen gelistet, die in der Endfassung der eigentlichen Anforderungen
weggefallen oder ersetzt wurden. Da diese Informationen aber die Arbeit beeinflusst haben,
werden sie hier trotzdem aufgeführt.

4.1. Grundlegende Architektur

Die Anwendung besteht, wie Abbildung 4.1 zeigt, aus zwei Hauptteilen. Zum einen die
Sprache an sich und zum anderen der Teil, der den Testprototyp generiert. Es war Anfangs
noch nicht klar, wie generisch die Sprache sein sollte. Es gab zwei Möglichkeiten: Die
erste Variante wäre die Sprache generisch zu gestalten, so dass man zwar entsprechende
Komponenten für die Domain hat, aber prinzipiell alles sehr frei gestalten kann. Die zweite
Variante wäre, dass man in der Sprache keinen direkten Einfluss mehr auf die Oberfläche hat,
sondern anhand Eingabe, Ausgabe und gegebenenfalls anderer Parameter eine Oberfläche
erstellt wird. Die ursprüngliche Idee war, es den Code für den Prototypen dynamisch zu
generien. Dieses Vorgehen wäre das passende Konzept für Variante eins. Es stellte sich
dann aber heraus, dass eigentlich Varinate zwei gewünscht wird. Entsprechend wurde der
ursprüngliche Plan modifiziert. Anstatt die Anwendung dynamisch zu generieren, sollte
diese weitgehend statisch sein, das heißt, dass kein eigener Code für jeden Prototyp erstellt
wird, sondern nur eine Art Konfiguration.

Die Anwendung sollte damit also nun in zweimal zwei Teile gegliedert werden. Auf der einen
Seite der Parser für die Syntax und der Generator, der die Koniguration für die Anwendung

31

4. Konzeption

Abbildung 4.1.: Der rote Teil beschreibt den Parser und Generator, der blaue Teil bildet
zusammen die Androidanwendung

erzeugt. Auf der anderen Seite die Konfiguration und das Framework, das zusammen den
eigentliche Prototypen bilden. Es sollte also keine Oberfläche direkt erzeugt werden, da
die Syntax der Sprache eine semantische Beschreibung der Oberfläche sein sollte. Es sollte
also beschrieben werden, welche Elemente angezeigt werden. Der Pool an Elementen ist
allerdings statisch und neue Elemente mit eigener Semantik können dabei nicht erzeugt
werden. Diese müssen, falls benötigt, durch programmatische Erweiterung der Anwendung
hinzugefügt werden. Der Vorteil ist, dass die Konfiguration nur eine dünne Schicht zwischen
DSL und der eigentlichen Anwendung ist. Ein Austauschen der beiden Teile ist problemlos
möglich. So könnte man beispielsweise die Xtext DSL durch eine Scala DSL ersetzen. Oder
auch den Android Teil durch einen Windows Phone 7 Teil. Durch die Konfiguration verliert
der Benutzer zwar Flexibilität, allerdings kann nur so die Sprache auf einem einfachen Level
gehalten werden, die vollkommen unabhängig von der Plattform ist.

32

4.2. Die Oberfläche

4.2. Die Oberfläche

Die Oberfläche besteht grundsätzlich aus zwei Teilen: Einem Eingabeteil und einem Aus-
gabeteil. Diese Teile bestehen gegebenenfalls aus mehreren Screens, die auch von der
Konfiguration abhängig sein sollen.

4.2.1. Informationsmodell

In diesem Abschnitt werden die relevanten Typen und gegebenenfalls ihre Ein- und Ausgabe
beschrieben.

Ort

Ein Ort ist für ein Verkehrsinformationssystem eine zentrale Eingabe. Es muss zumindest ein
Startort bekannt sein. Meistens auch ein Zielort, da man in der Regel zu einem bestimmten
Ort will. Der Ort kann dabei auf verschiedene Art und Weise ermittelt werden: Durch Eingabe
des Namens oder Koordinaten des Orts oder durch Auswahl auf einer Landkarte. Für den
Startort kann auch die Ermittlung via Standortsensoren wie GPS herangezogen werden. Für
den Zielort können auch ein semantischer Begriff wie zum Beispiel Supermarkt, Kino oder
Bank sinnvoll sein, wie es unter anderem die Online-Comminuty Qype [Qyp] anbietet. Diese
bietet auch entsprechende Zusatzinformationen zu Geschäften. Solche Zusatzinformationen
sind in der Ausgabe je nach Suchanfrage und Nutzertyp ebenfalls wünschenswert.

Zeit

Auch die Eingabe von Zeiten ist zentral für Verkehrsinformationssysteme. Typischerweise
wissen wir, wann wir los wollen oder wann wir da sein müssen. Ebenso, wie viel Zeit wir an
einem Zwischenhalt verbringen wollen. Die Zeiten sind auch in der Ausgabe wichtig; da
die Eingabezeiten in der Regel nicht exakt eingehalten werden, müssen wir dabei von Hand
auswählen, welche Zeitverschiebung für uns am ehesten akzeptabel ist. Optimalerweise
werden in der Ausgabe auch direkt mögliche Verspätungen angezeigt.

Verkehrsmittel

Im Gegensatz zu Ort und Zeit ist die Auswahl des Verkehrsmittels meist optional. Meist ist
es sinnvoll, hier alle Verkehrsmittel zu berücksichtigen, außer man will zum Beispiel Geld
sparen, indem man Schnellzüge nicht berücksichtigt. Anders kann es mit Eigenschaften
der Verkehrsmittel aussehen. Jemand, der im Rollstuhl sitzt, kann nur Verkehrsmittel be-
rücksichtigen, die damit verträglich sind. Bei einem Zug sind heutzutage neben klassischen
Ausstattungsmerkmale wie Speisewagen oder Schlafwagen auch Faktoren wie WLAN und
Strom wichtig. Diese Ausstattungsmerkmale sollten neben der Anzahl der Sitzplätze in den

33

4. Konzeption

jeweiligen Klassen und weiteren Informationen zum Zug auch in der Ausgabe abrufbar
sein. Eine weitere nützliche Funktion ist das Einstellen der Laufgeschwindigkeit, wie es zum
Beispiel die VVS App unterstützt [VVS].

4.2.2. Eingabe

Ein wesentlicher Baustein der Arbeit ist die Eingabe von Werten. Prinzipiell soll es mög-
lichst viele verschiedene Möglichkeiten geben Werte einzugeben. Dabei gibt es natürlich
verschiedene Werttypen, bei denen nicht immer jedes Eingabeelement Sinn macht. Bei
Eingabeelementen wie dem DatePicker ist klar, dass man mit ihnen nur Datumsangaben
auswählen kann. Eine Checkboxliste kann man zwar prinzipiell schon zur Ortsauswahl
nutzen, es macht in den meisten Fällen allerdings wohl keinen Sinn, da die Auswahl viel
zu eingeschränkt ist, es sei denn, man hat die Auswahl schon zuvor entsprechend einge-
schränkt. Ansonsten sind Eingabemöglichkeiten auch oft gut kombinierbar. So könnte man
beispielsweise für die Ortsauswahl das Textfeld mit Autovervollständigung zusätzlich mit
einem Button für die Auswahl von Orten auf der Landkarte versehen und nach der Auswahl
den Ort in das Textfeld eintragen.

Der Prototyp soll zum einen mit einer Anzahl an eingebauten Standardeingabeelementen,
die im Folgenden beschrieben werden, entwickelt werden. Zum anderen soll es auch möglich
sein, eigene Eingabeelemente zu entwickeln um diese dann im Prototyp verwenden zu
können.

In Abbildung 4.2 werden verschiedene Suchparameter auf einer Seite angezeigt. Weitere
Varianten wären zum Beispiel eine Eingabe über einen Wizard.

34

4.2. Die Oberfläche

Abbildung 4.2.: Eine Variante des Eingabescreens.

35

4. Konzeption

Textfeld

Ein Textfeld lässt beliebige Texteingaben zu. Es kann damit sehr flexibel eingesetzt werden.
Es eignet sich insbesondere für Werte, die nicht auf bestimmte Eingaben beschränkt sind,
wie zum Beispiel für einen Ortsnamen. Weniger geeignet ist es für Eingaben mit bestimmtem
Format wie zum Beispiel ein Datum oder Eingaben, bei denen die Eingabemenge beschränkt
ist wie zum Beispiel die Liste von Zugtypen.

Im Prototyp ist ein Textfeld die einfachste Art der Eingabe.

Textfeld mit Autovervollständigung

Das Textfeld mit Autovervollständigung ist, wie der Name schon sagt, ein Textfeld, das
automatische Textvervollständigung unterstützt. Dieser Mechanismus hat insbesondere
durch Webbrowser und in jüngster Zeit auch Webanwendungen Popularität erreicht. In der
einfachen Form werden nur Worte vervollständigt, die der Benutzer schon früher in dieses
Textfeld eingegeben hat. Oft kommen die Vorschläge auch aus einer Datenbank, die alle
möglichen Eingaben enthält. Ist diese Datenbank besonders groß, wie zum Beispiel eine
Liste aller möglichen Bahnhöfe in Deutschland, beschränkt sich die Datenbasis auf besonders
populäre Eingaben.

Im Prototyp soll die Autovervollständigung möglichst dynamisch gelöst werden. Dies soll
mit einer Abfrage der Datenbasis nach jeder Wortveränderung realisiert werden.

Auswahl nach Landkarte

Die Auswahl auf einer Karte ermöglicht die grafische Auswahl von Orten. Für die Nutzer
ist dies insbesondere dann sinnvoll, wenn er den genauen Ort nicht kennt, sondern nur
dessen ungefähre geografische Lage. Bei einer großen Karte ist eine Zoom-Funktion zur
schnellen Navigation wichtig. Auch eine Suche nach Orten ist eine sinnvolle Funktion. Sind
Standortinformationen über Sensoren, verfügbar kann die Karte auch entsprechend zentriert
werden und der aktuelle Standort besonders markiert werden.

Im Prototyp soll die Karte einfach aus einem grünen Hintergrund mit mehreren Orten
bestehen. Da die Karte in ihren Maßen beschränkt sein soll, ist eine Zoom-Funktion nicht
nötig. Auch die Erdkrümmung soll außer Acht gelassen werden. Die Auswahlfunktion soll
wahlweise auch mit dem Textfeld beziehungsweise mit dem Textfeld mit Autovervollstän-
digung kombiniert werden können. Die Karte wird dabei immer auf einem extra Screen
angezeigt.

36

4.2. Die Oberfläche

Auswahl aus Checkboxliste

Eine Checkbox ist ein Komponente der für die Auswahl boolescher Werte geeignet ist. Eine
Liste davon wird im Prototyp dafür verwendet, um die bei der Suche zu beachtenden
Verkehrsmittel auszuwählen. Da die Liste unter Umständen viel Platz auf dem Bildschirm
einnehmen kann, bietet es sich an, sie ein- und ausklappbar zu machen oder die Eingabe auf
einem extra Screen zu tätigen.

Liste aus Textfeldern

Die Liste von Textfeldern ist eine relativ spezielle Komponente. Im Ausgangszustand ist
entweder ein Textfeld vorhanden, in diesem Fall kann dieses Textfeld auch nicht mehr
entfernt werden, oder es muss erst dynamisch über einen Button hinzugefügt werden. Alle
hinzugefügten Textfelder können auch wieder duch einen Button gelöscht werden.

Im Prototyp wird die Liste aus Textfeldern für Zwischenhaltestellen benutzt. Sie sollen aber
auch für multiple Ortseingaben genutzt werden. In diesem Fall soll auch das Textfeld mit
Autovervollständigung beziehungsweise mit der Kartenfunktion als Listeneintrag dienen
können.

4.2.3. Ausgabe

Die Ausgabe hat im Vergleich zur Eingabe relativ wenige Konfigurationsoptionen. Eine
Listendarstellung hat sich zur Ausgabe bewährt, da es selten der Fall ist, dass nur es ein
eindeutiges Ergebnis gibt. Variable sind dabei die Daten, die in der Liste angezeigt werden.
Typischerweise gibt es dann noch einen oder mehrere Screens mit Detailinformationen zu
einem Listeneintrag.

37

4. Konzeption

Abbildung 4.3.: Eine Variante des Ausgabescreens.

In Abbildung 4.3 wird eine einfache Ergebnisliste mit Zeiten und Linie angezeigt.

Die Abbildung 4.4 zeigt eine Detailseite einer gefundenen Verbindung. Hier werden alle
möglichen Details angezeigt. In fortgeschritteneren Varianten könnten hier auch Operationen
wie zum Beispiel Ticketkauf möglich sein.

38

4.2. Die Oberfläche

Abbildung 4.4.: Eine Variante des Ausgabescreens.

39

4. Konzeption

4.2.4. Mock-Daten

Zur Demonstration der Anwendungen werden Mock-Daten benötigt. Dafür soll die An-
wendung eine Schnittstelle zur Verfügung stellen. Diese soll programmatisch sein und
Eingabedaten bekommen und daraus dann entsprechende Ausgabedaten zu generieren.
Dieser Vorgang soll dabei austauschbar in der Architektur vorgesehen sein.

Eine Validierung der Eingabe kann im Zuge des Generierens der Ausgabe auch vorgenom-
men werden. So kann bei unvollständigen Eingaben ein Fehler geworfen werden, der den
Nutzer zurück zur Eingabe bringt und dort die entsprechende Fehlermeldung anzeigt.

4.3. Benutzerparameter

Ein zentraler Punkt der Arbeit ist die Abbildung verschiedener Benutzertypen von Ver-
kehrsinformationssystemen mit Hilfe des Prototypgenerators. Im Rahmen einer Fachstudie
wurden schon einige Personas erarbeitet [AWZ10], optimalerweise sollte sich diese Liste aber
erweitern lassen. Dies soll mittels sogenannter Benutzerparamter erfolgen. Diese drücken
Eigenschaften aus, die der Benutzer des Prototyps haben soll und generiert entsprechend
eine passende Oberfläche. Die Abstufung muss dabei zwar eigentlich nicht so hoch sein,
aber um ausreichend Spielraum zu besitzen, wurde die Anzahl der Stufen auf 100 festgelegt.
Für den zu erstellenden Prototyp sollen aber Abstufungen im ganzzahligen Prozentbereich
auf jeden Fall ausreichen.

Für den Prototyp wurden dafür fünf Benutzerparameter festgelegt.

4.3.1. Führungsbedürfnis

Der Parameter Führungsbedürfnis steuert, wie sehr die GUI den Benutzer führen soll.
Ein Benutzer mit hohem Führungsbedürfnis bevorzugt weniger Eingaben und diese auch
eher nacheinander. Ein Nutzer der wenig Führungsbedürfnis hat, will dagegen eher mög-
lichst viele Eingaben auf einem Screen haben und dabei die Freiheit haben, diese beliebig
auszufüllen.

4.3.2. Leseaffinität

Der Paramter Leseaffinität gibt an, ob eher längere Erläuterungen oder kürzere Texte be-
vorzugt werden. Dies könnte zum Beispiel bestimmen, ob die Ausgabe eher kompakt oder
ausführlich ist. Der Parameter beeinflusst zudem, ob Anzeigebereiche eher ein- und aus-
klappbar oder eher statisch sein sollen.

40

4.3. Benutzerparameter

4.3.3. Texteingaben

Dieser Paramter bestimmt, ob der Benutzer Texteingaben mag, also eher textbasierte Einga-
beelemente oder eher grafische bevorzugt werden. Dies kann zum Beispiel beeinflussen, ob
der Benutzer das Datum über ein spezielles Widget eingibt oder dafür ein einfaches Textfeld
benutzt werden soll. Das Textfeld mag für diesen Zweck zwar meist umständlicher sein.
Es hat aber unter anderem den Vorteil, dass problemlos Copy und Paste benutzt werden
kann.

4.3.4. Filter

Mit diesem Parameter bevorzugt der Benutzer programmseitiges Filtern. Anhand dieses
Parameter wird bestimmen, ob eher viele Filtereingaben bevorzugt werden oder ob sich der
Benutzer lieber auf ein paar grundlegende Filter beschränkt, um sich anschließend durch
eine längere Ergebnisliste zu kämpfen und diese selber beim Lesen zu "filtern".

4.3.5. Zeit

Diese Parameter sagt aus ob, der Benutzer sich Zeit für Anfragen nimmt. Also ob eher
kurze schnelle Abfragen gewünscht sind oder mehr Wert darauf gelegt wird, dass die
Oberfläche möglichst umfangreiche Parameter für die Abfragen anbietet. Ein Benutzer, der
wenig Zeit hat, will eher weniger Auswahlmöglichkeiten und diese auch möglichst kompakt
dargestellt.

41

5. Realisierung des Prototyps

Dieses Kapitel beschreibt die praktische Umsetzung des Prototyps. Dabei werden die ver-
schiedenen Komponenten beschrieben und konkrete Problemlösungen aufgezeigt. Es dient
auch als Entwicklerdokumentation und setzt daher ein gewisses Grundverständnis der objek-
torientierten Programmierung [Boo04] sowie von der Sprache Java [Javb] und dem Umgang
mit der Entwicklungsumgebung Eclipse voraus. Bei weiteren eingesetzten Frameworks und
Bibliotheken werden entsprechende Verweise gesetzt, beziehungsweise kurz die Grundlagen
erläutert und gegebenfalls durch Beispiele veranschaulicht. Quelltextausschnitte sind aus
Platz- und Verständnisgründen teilweise gekürzt dargestellt.

In Abschnitt 5.1 werden kurz ein paar Fakten zur Entwicklung erläutert. Im Abschnitt 5.2
wird die Entwicklung der DSL anhand von Beispielen erklärt. Im Abschnitt 5.3 wird die Ent-
wicklung des Android Frameworks für die Prototypen eingegangen. Dabei werden sowohl
die Android Grundlagen erläutert, als auch auf die Schnittstellen der Arbeit eingegangen.
Im letzten Abschnitt 5.4 gibt es einen kurzen Eindruck vom Ergebnis der Arbeit.

5.1. Allgemeines zur Entwicklung

Die Entwicklung erfolgt mit dem JDK 1.6.0_24 unter Ubuntu Linux 10.04. Als Entwick-
lungsumgebung wird Eclipse 3.6.2 mit dem Eclipse Plugin Xtext in der Version 1.0.2 und
dem Eclipse Plugin Android Development Tools (ADT) in der Version 10.0.1 verwendet.
Als Quellcode Konventionen werden die Standardeinstellungen von Eclipse benutzt, die
weitgehend den Java Code Conventions [Java] entsprechen.

5.2. DSL

Am Anfang des DSL-Baus mit Xtext steht die Erstellung eines Xtext Projektes in Eclipse. Ne-
ben dem Projektnamen müssen der Name der Sprache, der typischerweise in der Konvention
von Java-Paketen angegeben wird, und die Dateierweiterung der Quellcodedateien der neuen
Sprache angegeben werden. Die Option „Create a generator project“ wird benötigt, da ein
Generator-Projekt erzeugt werden soll, das für die Umwandlung des domänenspezifischen
Quellcodes in eine Konfiguration für das Android Framework zuständig ist. Xtext erstellt
nun drei Projekte:

43

5. Realisierung des Prototyps

• de.knittig.da.vis_da_prototype: Das Hauptprojekt. Es enthält die Grammatik für die
DSL sowie zusätzliche Konfigurationen für Validierung, Scopes und Formatierung.
Außerdem liegt hier das aus der Grammatik generierte EMF Modell, auf das geparste
DSL abgebildet wird.

• de.knittig.da.vis_da_prototype.generator: Enthält das Template für die Generierung
der Konfiguration.

• de.knittig.da.vis_da_prototype.ui: Enthält den Quellcode für die Generierung eines
Eclipse Plugins für den DSL Editor.

5.2.1. Syntax

Die Syntax der Sprache wird durch die sogenannte Grammatiksprache von Xtext festgelegt.
Dabei wird beschrieben, wie die konkrete Synatx aussieht und wie sie während des Parse-
Vorgangs zu dem Modell abgebildet wird [Xtec].

Aus dieser Grammatiksprache werden drei Dinge generiert. Zum einen wird ein EMF
Modell [EMF] generiert, dies ist ein standardisiertes Java Domainmodellklassen, bei dem
Funktionalitäten wie Serialisierung, Abfrage und Validierung eingebaut sind. Zum anderen
wird eine ANTLR Grammatik [ANTb] erzeugt, die die definierte Syntax parsen kann. Als
letztes wird noch ein Eclipse Plugin erzeugt, das einen Editor für die Sprache bereitstellt.

grammar de.knittig.da.prototype.Vis with org.eclipse.xtext.common.Terminals

generate vis "http://www.knittig.de/da/prototype/Vis"

Model:

travel+=Travel;

Travel:

'travel' name=ID '{'

features+=FeatureType (',' features+=FeatureType)*

'}';

enum FeatureType:

start | destination | startdate | stopdate | stopover

Listing 5.1: Einfache DSL-Definition mit Xtext

Das Listing 5.1 zeigt ein einfaches Beispiel der Grammatiksprache von Xtext. In der ersten
Zeile wird die Grammatik eindeutig benannt und dabei von einer bestehenden Grammatik
abgeleitet. Die generate Anweisung ist für die Generierung des EMF Metamodells
nötig. Der erste Parameter gibt dabei den Paketname an, der zweite eine eindeutige
Namesraum-URL. Nun beginnt die eigentliche Definition der Grammatik. Als erstes
definieren wir ein Wurzelelement im Modell. Dies verweist dann auf den Typ Travel, der
einen Block mit einem eindeutigen Namen beschreibt. ID ist dabei ein von der Grammatik
org.eclipse.xtext.common.Terminals importiertes Element, das eine zusammenhängende
Zeichenkette beschreibt. In dem Block wird eine Liste von dem Typ FeatureType erstellt.

44

5.2. DSL

Abbildung 5.1.: Der durch einen Validator definierte Fehler in Eclipse mit dem DSL Eclipse
Plugin

Dabei muss die Liste mindestens ein Element vom Typ FeatureType enthalten und danach
null oder eine beliebige Anzahl, die jeweils durch ein Komma getrennt werden. FeatureType
ist dabei eine einfache Aufzählung von Konstanten.

travel default {

start, destination, startdate

}

Listing 5.2: Beispiel für die mit Xtext erstellte DSL

Mit Hilfe der Grammatik von Listing 5.1 kann dann die DSL 5.2 geparst werden. Mittels
der generierten EMF Klassen kann man dann per Javacode prüfen, welche Elemente in
der Aufzählung gesetzt sind. Die Grammatik ist aber noch verbesserungswürdig, da sie
auch zulässt, dass ein Listenelement mehrfach in der Aufzählung auftaucht. Dies lässt
sich nicht mit Hilfe der Grammatiksprache verhindern, stattdessen kann man in Xtext
hierfür zusätzliche Validiererklassen, die in Java implementiert werden, in der Konfiguration
angeben. Dort kann man eine Funktion wie in Listing 5.3 hinzufügen. Diese implementiert
eine einfache Prüfung, ob Elemente in der Aufzählung doppelt vorhanden sind und wirft
in diesem Fall einen Fehler, der dann, wie in Abbildung 5.1 zu sehen, im Editor des
Eclipse Plugins entsprechend angezeigt wird. Wichtig ist dabei die @Check Annotation, um
die Validierungsregel scharf zu schalten. Ansonsten wird die Methode zur Validierung
von Xtext ignoriert. Zudem sollte das EMF-Modell bereits generiert sein, damit man die
entsprechenden Domain-Klassen verwenden kann.

@Check

public void checkDupes(Travel travel) {

Set<FeatureType> featuresInEnumeration = new HashSet<FeatureType>();

for (FeatureType feature : travel.getFeatures()) {

if (featuresInEnumeration.contains(feature)) {

error("Enumeration contains duplicate", feature.ordinal());

} else {

featuresInEnumeration.add(feature);

}

}

}

Listing 5.3: Xtext Validator Beispiel

45

5. Realisierung des Prototyps

Abbildung 5.2.: Beispiel der Templateengine Xpand für die DSL aus Listing 5.2

Weitere Informationen dazu findet man in der Xtext Dokumentation [Xtec]. Hilfreich sind
dazu außerdem Kenntnisse aus dem Bereich Compilerbau. Falls diese nicht vorhanden sind,
kann man sich diese zum Beispiel über das bekannte „Drachenbuch“ [ASU86] aneignen.

5.2.2. Codegenerator

Nachdem man nun den Parser und Editor für die Sprache hat, ist der nächste Schritt einen
Codegenerator zu entwickeln. Dazu bietet Xtext eine eigene Templateengine an: Xpand. Sie
ist, im Gegensatz zu anderen Templateengines wie StringTemplate [Str], statisch typisiert,
das heißt, dass Fehler beim Zugriff auf nicht vorhandene Klassen oder Felder bereits vor der
Ausführung der Templateengine erkannt werden können. Xpand bezieht sich dabei direkt auf
das von Xtext generierte EMF Modell und bietet auch Funktionen wie Autovervollständigung
und Syntaxhervorhebung an.

Abbildung 5.2 zeigt ein einfaches Beispiel, welches die DSL von Listing 5.2 zu einer Java-
Klasse umwandelt.

5.3. Android Framework

Für die Entwicklung von Androidanwendungen wird das Android SDK [Ande] verwendet,
das neben den Bibliotheken auch einen Emulator zum Testen besitzt. Zudem gibt es damit
auch die Möglichkeit eine Anwendung direkt auf dem Gerät zu testen gibt. Für Eclipse gibt

46

5.3. Android Framework

es das ADT (Android Development Tools) Plugin [Anda]. Alternativ gibt es zum Beispiel
aber auch Android Unterütztung bei IntelliJ IDEA [Inta].

Für den Emulator wurde die Plattform Version 1.6 (API Level 4) zum Testen verwendet.
Zwar ist diese Version für Smartphone-Betriebssysteme schon relativ alt, aber da für den
Prototyp keine Funktionen der neueren Versionen benötigt werden, ist es aus Kompatibli-
tätsgründen sinnvoller eine ältere Version zum Testen zu verwenden, da diese zu neueren
Version abwärtskompatibel sind. Als Entwicklungsgerät wurde das Google Nexus One [Nex]
verwendet, auf dem die Version 2.2 läuft (API Level 8). Der Emulator hat eine Auflösung von
480x320 Bildschirmpunkten (HVGA), während das Nexus One eine Auflösung von 800x480

Bildschirmpunkten besitzt (WVGA).

Die Projektstruktur des Android Frameworks besteht aus drei Projekten:

• vis-da-model: Enthält Schnittstellen und Klassen der Ein- und Ausgabedaten. Siehe
5.3.2.

• vis-da-mockup: Enthält eine Mockup-Implementierungen der Datenquelle. Siehe 5.3.3.

• vis-da-prototype: Enthält den Code für die Interpretierung der Konfiguration und
Oberflächenkomponenten. Siehte 5.3.4.

Vor der Erläuterung zu den einzelnen Projekten, werden in 5.3.1 kurz die nötigen Android
Grundlagen zusammengefasst.

5.3.1. Android Grundlagen

Dieser Abschnitt erklärt kurz die wichtigsten Grundlagen, die für die Androidentwicklung
notwendig sind. Weiterführende Informationen findet man unter anderem auf der offiziellen
Seite für Android Entwickler [Andc].

Projekt Layout und Konfiguration

Wie in Abbildung 5.3 zu sehen, gibt es neben dem Quellcodeverzeichnis („src“) noch einige
weitere Ordner in einem Android Projekt:

• res: In diesem Verzeichnis werden die Ressourcen gespeichert. Die Verzeichnishierar-
chie ist dabei fest vorgegeben. Siehe 5.3.1.

• gen: Dieses Verzeichnis enthält generierte Dateien. Standardmäßig ist dies nur die
„R.java“, die Referenzen auf Ressourcen enthält.

• assets: Verzeichnis zur Ablage von beliebigen Daten, ohne Festlegung auf Verzeichnisse.
Zugriff über den AssetsManager.

47

5. Realisierung des Prototyps

Abbildung 5.3.: Das Layout eines frisch erstellten Android Projektes in Eclipse

Daneben gibt es noch die Konfigurationsdatei „AndroidManifest.xml“. Hier werden neben
Anwendungsname und -icon, auch alle Activities (siehe 5.3.1) sowie die Rechte, die die An-
wendung benötigt, aufgezählt. Die Datei „default.properties“ ist dabei für das Buildwerkzeug
Ant [Anta] vorgesehen.

Activity

Eine Activity1 ist ein Teil einer Androidanwendung. Weitere sogenannte Anwendungskom-
ponenten sind Services, Content Providers und Broadcast Receivers, die aber für diese Arbeit
nicht benötigt werden. Eine Activity repräsentiert einen einzelnen Bildschirm der Benutze-
roberfläche einer Anwendung. Alle Activities müssen von der Klasse Activity abgeleitet
werden. Eine Activity kann andere Activities aufrufen, dabei wird ein Intent übergeben
(siehe 5.3.1). Von der neu gestarteten Activity kommt man dann, ohne weiteres zutun,
mit dem Back-Button wieder zu der vorherigen Activity zurück. Auch wenn der Benutzer
per Home-Button auf den Startbildschirm zurückspringt oder eine andere Anwendung in
den Vordergrund springt, zum Beispiel bei einem Anruf, bleibem die letzten Activities der
Anwendung aktiv.

1Deutsch: Aktivität

48

5.3. Android Framework

Intent

Ein Intent ist eine abstrakte Beschreibung einer Operation, die ausgeführt wird. Sie werden
zur Übergabe von Daten zwischen Activities, Services und Broadcast Receivers verwendet.
Ein Intent kann dabei nicht nur innerhalb einer Anwendung Daten austauschen, sondern
auch anwendungsübergreifend. So kann zum Beispiel über einen Intent einfach innerhalb
einer Anwendung beim Klick auf eine Adresse Google Maps aufgerufen werden, wo diese
dann auf der Karte angezeigt wird.

Ressourcen

Mit Ressourcen bietet Android eine einfache Schnittstelle zum Zugriff auf Artefakte wie
Bilder, String, Menüs und Farben. Sie werden innerhalb des „res“ Verzeichnisses (siehe
Abbildung 5.3) gespeichert und beim Bauen der Anwendung über die „R.java“ Datei im
„gen“ Verzeichnis zugänglich gemacht. Im Gegensatz zu Dateien im „assets“ Verzeichnis
ist hier die Ordnerstruktur fest vorgegeben, das heißt Bitmaps müssen im Unterverzeichnis
„drawable“ abgelegt werden.

5.3.2. Model

Das Projekt „vis-da-model“ kapselt Domainklassen und -schnittstellen für die Ein- und
Ausgabe. Die zentrale Schnittstelle ist das DataProvider Interface. Es enthält nur die
Methode aus Listing 5.4.

OutputData getResults(InputData inputData) throws IOException;

Listing 5.4: Die Transformationsmethode des DataProvider Interface

Diese Methode transformiert die Eingabe in Form von InputData in die Ausgabe OutputData.
InputData und OutputData sind dabei beides Klassen, die eine HashMap kapseln, in der eine
dynamische Menge an Werten gespeichert wird. Um einfacheren Zugriff zu gewähren,
werden die Schlüssel für die Hashmaps als Stringkonstanten in den jeweiligen Klassen
vorgehalten. Die zugehörigen Werte sind Arrays von InputValues für die InputData Klasse
und Arrays von DataItems für die OutputData Klasse. Von diesen Basisklassen werden
verschiedene Typen abgeleitet. Wichtig ist dabei, dass die Basisklassen, und damit auch alle
abgeleiteten Klassen, serialisierbar sind, also das Interface Serializable implementieren.
Dies ist nötig, um die Daten in der Android Anwendung zwischenspeichern zu können.

5.3.3. Mockup

Das Projekt „vis-da-mockup“ enthält die Imlementierung des DataProvider Interfaces sowie
andere Implementierungen von Schnittstellen aus dem Modell Projekt. Es dient dazu die
Eingabedaten in die Ausgabedaten zu transformieren. In diesem Fall wird die Datenbank
SQLite [SQL] als Datenquelle verwendet, welche Android von Haus aus unterstützt.

49

5. Realisierung des Prototyps

5.3.4. Prototype Framework

Das Projekt „vis-da-prototype“ enthält das Android Framework für die Erstellung von
Prototypen. Es gliedert sich dabei in mehrere Teile auf:

• Activities: Enthält verschiedene Bildschirme für die Anwendung. Siehe 5.3.4.

• Komponenten: Enthält verschiedene Komponenten für die Oberfläche der Anwendung.
Siehe 5.3.4.

• Schnittstellen: Enthält übergreifende Schnittstellen und Domainklassen für die anderen
Teile. Siehe 5.3.4.

Activities

Eine Activity beschreibt, wie in 5.3.1 erläutert, einen Bildschirm in einer Androidanwendung.
Der Prototyp bestehe dabei aus relativ wenig Bildschirmen.

Der Wichtigste ist der Hauptbildschirm für die Abfrage von Verkehrsinformationen, auf dem
alle Eingaben getätigt werden. Er setzt sich sehr variabel zusammen und wird von der Klasse
ExpandableListActivity abgeleitet. Die Komponente ExpandableList ist eine Liste die ein-
und ausklappbar ist. Die Klasse ExpandableListActivity ist folglich eine Activity mit einer
ExpandableList, die den Bildschirm vollständig ausfüllt. Da unter Umständen nicht immer
Komponenten dabei sind, die überhaupt ein- und ausklappbar sein sollen und manche
sogar zwingend immer sichtbar sein sollen, können diese Komponenten an den Anfang
oder ans Ende der Komponente gesetzt werden. Stattdessen neben der ExpandableList noch
andere Komponenten auf dem Bildschirm zu platzieren funktioniert übrigens nicht: Die
Komponenten scrollen dann nicht mit, was für den Benutzer ein unschönes Erlebnis ist.

Für die Ausgabe gibt es zwei relevante Bildschirme: Einen zur Anzeige von Ergebnissen
und einer für die Detailansicht. Letzterer kann auch optional sein, dies macht allerdings
in der Praxis wenig Sinn, da meist nicht alle Informationen in der Ergebnisliste unterge-
bracht werden können. Im Augenblick sind beide Bildschirme als ListActivity implemen-
tiert, es könnte allerdings auch Varianten geben, in denen der Ergebnisbildschirm eine
ExpandableListActivity ist und der Detailbildschirm eine normale Activity mit individu-
ellen Komponenten.

Zwischen den verschiedenen Bildschirmen wird über Intents kommuniziert. Zwischen Ein-
und Ausgabe wird zudem die Implementierung des DataProvider aus dem Mockup Projekt
aufgerufen und die Eingaben zu in die Ausgaben transformiert.

50

5.4. Entwicklungsergebnis

Komponenten

Komponenten bezeichnen in diesem Fall grafische Komponenten. In Android sind alle grafi-
schen Komponenten von der Klasse View abgeleitet. Die wichtigsten wurden in Abschnitt
4.2.2 beschrieben, davon sind einige in Android Standardkomponenten, wie die TextView,
die ein Textfeld repräsentiert, oder die AutoCompleteTextView, die ein Textfeld mit Autover-
vollständigung abbildet. Für die Karten-Komponente gäbe es zwar eine Komponente, die
aber die reale Welt abbildet und somit nicht für diesen Zweck einsetzbar ist. Stattdessen wur-
de eine eigene Karten-Komponente erstellt, die zugleich auch die aufwendigste Komponente
ist. Der erste Versuch die Karte als Bitmap zu generieren und diese scoll- und anklickbar
zu machen schlug fehl, da dafür nicht genug Speicher vorhanden war. Im zweiten Versuch
wurden einfach Punkte auf eine View mit grünem Hintergrund eingezeichnet und diese beim
Scrollen korrekt verschoben. Dazu muss die Methode onTouchEvent mit dem Parameter
MotionEvent implementiert werden. Der Parameter enthält dabei, ähnlich wie bei einer Maus,
die Angabe, wann der Finger an das Touchdisplay angelegt wurde, wann er gezogen würde
und wann er wieder vom Display entfernt würde. Damit lässt sich dann die Verschiebung
des Kartenausschnittes berechnen. Weitere Komponenten sind der DateTimePicker für das
Auswählen von Datums- und Zeitwerten und die EditTextList, die eine erweiterbare Liste
von Textfelden darstellt.

Schnittstellen

In diesem Teil des Frameworks werden übergreifende Interfaces und Domainklassen abgelegt,
hauptsächlich zur Beeinflussung und Erweiterung der Generierung der Oberfläche, also
der Verschmelzung der Anwendungsteile von 5.3.4 und 5.3.4. Wichtig ist hier die abstrakte
Klasse AbstractControlCreator. In ihr gibt es verschiedene Methoden für die abstrakten
Komponenten (siehe 4.2.1). Die Auswahl soll unter Beachtung der Benutzerparameter (siehe
4.3) erfolgen. Zu beachten ist allerdings, dass diese Arbeit auf Grund der Komplexität
der Aufgabe keinen ausgefeilten Algorithmus dafür enthält, sondern diese Möglichkeit für
nachfolgende Arbeiten offen hält.

5.4. Entwicklungsergebnis

Das Ergebnis der Arbeit ist ein Eclipse Plugin für die Entwicklung der DSL für Verkehrsin-
formationssysteme für mobile Anwendungen. Mit ihm können verschiedene Testszenarien
abgebildet werden und es steht Erweiterungen offen. Wie das ganze dann aussehen kan
sieht man in Abbildung 5.4.

51

5. Realisierung des Prototyps

Abbildung 5.4.: Bildschirm des Prototyp in der Androidanwendung

52

6. Zusammenfassung

Im Rahmen dieser Diplomarbeit wurde ein Codegenerator für die Erstellung von Prototypen
für mobile Anwendungen im Rahmen des IP-KOM-ÖV Projektes entwickelt. Mit Hilfe der
Prototypen sollen verschiedene Testszenarien von Verkehrsinformationssysteme auf mobile
Geräten durchgespielt werden.

Dafür wurden, nach einer längeren Phase der Anforderungssammlung, verschiedene mobile
Plattformen sowie Sprachen und Werkzeuge für die Erstellung von DSLs untersucht. Die
Auswahl der mobilen Plattform gestaltete sich als einfach. Die Android Plattform ist dank
ihrer Offenheit und bereits größeren Verbreitung zur Zeit die beste Wahl. Die Wahl der
passenden Sprache beziehungsweise des passenden Werkzeuges für die Erstellung der DSL
gestaltete sich in diesem Fall schwieriger. Anhand von einer kleinen Beispiel DSL wurden
die verschiedenen Sprachen und Werkzeuge getestet. Hierbei machten alle Kandidaten eine
gute Figur. Mit Xtext wurde im Nachhinein betrachtet hier ebenfalls eine brauchbare Wahl
getroffen.

In der Konzeption wurde der Entwurf für die Prototypen erstellt. Dabei wurden die nötigen
Konzepte von Verkehrsinformationssysteme und die passenden grafischen Komponenten
für die Oberfläche beschrieben. Ebenfalls beschrieben wurden die Schnittstellen für Mockup-
Datenquellen und Benutzerparameter. Benutzerparameter sollen in Zukunft dazu dienen,
die Oberfläche an verschiedene Nutzertypen anzupassen.

Der größte Teil der Arbeit umfasst die prototypische Implementierung des Codegenerators
und des dazugehörigen Frameworks für Android. Dazu wurde eine DSL-Syntax mit Hilfe
der Xtext Grammatiksprache festgelegt, mit der, neben einem Parser, auch ein Editor für
die DSL erstellt wird. Aus der DSL wird dann eine Konfiguration generiert, die zusammen
mit dem Android Framework eine Androidanwendung ergibt. Diese Androidanwendung
bildet dann ein Testszenario des Projektes IP-KOM-ÖV für Verkehrsinformationssysteme auf
mobilen Geräten.

53

7. Ausblick

Mit dem Themen modellgetriebene Softwareentwicklung und mobile Plattformen behandelt
diese Arbeit, gleich zwei Themen in denen (hoffentlich) noch die nächsten Jahre noch einiges
an Innovation kommen wird.

Das Thema modellgetriebene Softwareentwicklung wird auch in den nächsten Jahren noch
ein großes Thema sein. Die Entwicklung von Werkzeuge wie Xtext und MPS hat in den
letzten Jahren deutlich an Fahrt aufgenommen. Zudem werden jedes Jahr neue Sprachen
entwickelt, die innovative Ansätze mitbringen und oft den Bau von DSLs gut unterstützen.
Zwar setzen sich die meisten davon nicht durch, aber im Zuge dessen ziehen auch die
großen Sprachen wie Java, C# und C++ mit neuen Sprachfunktionen nach. Allerdings sind
die Hürden für Einsteiger immer noch deutlich vorhanden, so dass davon auszugehen ist,
das sich das Tempo bei der Verbreitung der modellgetriebene Softwareentwicklung nicht
wesentlich beschleunigt.

Bei mobilen Plattformen gibt es gleich eine ganze Reihe von Trends. Hier die wichtigstens
Trends, die insbesondere auch für Verkehrsinformationssysteme interessant sind.

Tablets Mit der Einführung des iPads Anfang 2010 ist Apple ein weiterer großer Wurf
gelungen. Nachdem Tablets jahrelang ein Nischenmarkt waren, übertrifft das iPad im ersten
Jahr die meisten Erwartungen. Noch hat es keine andere Plattform geschafft diese Dominanz
zu brechen, aber es dürfte wohl nur eine Frage der Zeit sein bis sich ernsthafte Konkur-
renz für das iPad herausbildet. Nachdem Android diese Geräteklasse mittlerweile auch
offiziell unterstützt sind sie heißer Kandidat das Rennen zu machen. Wie Verkehrsinformati-
onssysteme optimal auf Tablets angepasst werden können, dürfte also auf jeden Fall eine
Zukunftsfrage sein.

Mobiles Bezahlen Statt am Schalter in der Schlange seine Fahrkarte zu lösen, werden wir
vielleicht schon in naher Zukunft überall bequem mit dem Handy das Ticket bezahlen.
Vereinzelt werden zwar schon Handytickets angeboten, doch das soll durch Near Field
Communication, abgekürzt NFC, noch einfacher werden. Denn diese Technik ermöglicht
unter anderem sichere und berührungslose Bezahlung. Android unterstützt NFC in der
neusten Version bereits. Das Gerücht geht um das auch das nächste iPhone NFC unterstützen
wird und Nokia hat angekündigt alle künftigen Smartphones mit NFC-Unterstützung
auszuliefern.

55

7. Ausblick

Augmented Reality Mit Augmented Reality1, abgekürzt AR, werden Bilder durch spezielle
Programme durch Einblendungen um Zusatzinformationen angereichert. Zum Beispiel In-
formationen zu Sehenswürdigkeiten oder der Weg zu einem eingegebenen Ziel. Mittlerweile
ist die Haardware von Smatphones stark genug und gibt es einige auf AR-Technologien spe-
zialisierte Hersteller, die Versuchen zusammen mit Partnern Inhalte für AR aufzubereiten.

3D LG hat bereits den die ersten Android-Geräte mit 3D Display demonstriert und ein
SDK für 3D ANwendungen zur Verfügung gestellt. Mit der 3D Kamera kann man zudem
auch 3D Bilder und Videos aufnehmen. Zwar sind 3D Anwendungen bisher hauptsächlich
im Unterhaltungsbereich, aber auch hier ist potenziall da das durch diese Technik ernsthafte
Anwendungen bereichert werden können.

1Deutsch: erweiterte Realität

56

A. Anhang

A.1. Testfälle

Diese Testfälle sollen vom Prototype Generator abgedeckt werden. Der „*“ bedeutet dabei
das mehrere oder auch kein Typ dieser Ein- oder Ausgabe möglich sind. Ein „?“ steht für kein
oder ein Ein- oder Ausgabeelement. Das „+“ Für ein oder mehrere Ein- oder Ausgaben.

A.1.1. Verbindung

Eingabe

• Startort

• Zielort

• Zwischenhalt*

• entweder Abfahrts- oder Ankunftszeit

• erlaubte Verkehrsmittel*

Ausgabe

• Verbindung*

– Teilstrecke*

∗ Abfahrtszeit

∗ Ankunftszeit

∗ Verkehrsmittel

57

A. Anhang

A.1.2. Umstieg

Eingabe

• aktuelles Vehikel

• Zielvehikel+

• Attribut des Umsteigeorts*

Ausgabe

• Umsteigehaltestelle*

A.1.3. Reiseangebote

Eingabe

• Startort

• Zielort

• Maximalpreis

Ausgabe

• Verbindung*

A.1.4. Einfache Verbindung

Eingabe

• Startort

• Zielort

• Startzeit

Ausgabe

• Verbindung*

58

A.1. Testfälle

A.1.5. Platzreservierung

Eingabe

• Platztyp

• Klasse

• Nähe zum Speisewagen?

Ausgabe

• möglicher Sitz-/Liegeplatz*

Zusätzlich benötigte Eingaben

• Um die Eingaben oben zu spezifizieren, wird auch eine Verbindung bzw. ein konkretes
Vehikel benötigt

A.1.6. Billigstes Angebot mit anschließender Taxi-Buchung

Eingabe

• Taxi mit Anreise (des Taxis)?

• Taxi mit Rollstuhlbeförderung?

Ausgabe

• Angebot*

Zusätzlich benötigte Eingaben

• eine Verbindung wird benötigt, an die die Taxifahrt angeschlossen werden soll

biblatex

59

Literaturverzeichnis

[Anda] ADT Plugin for Eclipse. URL http://developer.android.com/sdk/eclipse-adt.

html. (Zitiert auf Seite 47)

[Andb] Android. URL http://www.android.com/. (Zitiert auf Seite 15)

[Andc] Android Developers. URL http://developer.android.com/. (Zitiert auf Seite 47)

[Andd] Android Market. URL http://market.android.com/. (Zitiert auf Seite 13)

[Ande] Android SDK. URL http://developer.android.com/sdk/index.html. (Zitiert
auf Seite 46)

[Anta] The Apache Ant Project. URL http://ant.apache.org/. (Zitiert auf Seite 48)

[ANTb] Parsergenerator ANTLR. URL http://www.antlr.org/. (Zitiert auf den Seiten 22

und 44)

[app] applause. URL http://code.google.com/p/applause/. (Zitiert auf Seite 19)

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. (Zitiert auf Seite 46)

[AWZ10] O. Alkis, C. Wimmer, F. Zoabi. IT-Einsatzszenarien zur interaktiven Fahrgastun-
terstützung. Fachstudie, Universität Stuttgart, 2010. (Zitiert auf den Seiten 9

und 40)

[Bad] Bada. URL http://www.bada.com/. (Zitiert auf Seite 16)

[Blaa] BlackBerry Developer Zone. URL http://us.blackberry.com/developers/. (Zi-
tiert auf Seite 15)

[Blab] BlackBerry OS. URL http://www.blackberryos.com/. (Zitiert auf Seite 15)

[Boo04] G. Booch. Object-Oriented Analysis and Design with Applications (3rd Edition). Addi-
son Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004. (Zitiert
auf Seite 43)

[Che] Günstige Android-Geräte. URL http://geizhals.at/deutschland/?cat=

umtsover&xf=148_Android&sort=p. (Zitiert auf Seite 17)

[Coc] Cocoa. URL http://developer.apple.com/technologies/mac/cocoa.html. (Zi-
tiert auf Seite 15)

[Dal] Code and documentation from Android’s VM team. URL http://code.google.

com/p/dalvik/. (Zitiert auf Seite 15)

61

http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html
http://www.android.com/
http://developer.android.com/
http://market.android.com/
http://developer.android.com/sdk/index.html
http://ant.apache.org/
http://www.antlr.org/
http://code.google.com/p/applause/
http://www.bada.com/
http://us.blackberry.com/developers/
http://www.blackberryos.com/
http://geizhals.at/deutschland/?cat=umtsover&xf=148_Android&sort=p
http://geizhals.at/deutschland/?cat=umtsover&xf=148_Android&sort=p
http://developer.apple.com/technologies/mac/cocoa.html
http://code.google.com/p/dalvik/
http://code.google.com/p/dalvik/

Literaturverzeichnis

[DBN] DB Navigator. URL http://www.bahn.de/p/view/buchung/mobil/mobile-apps.

shtml. (Zitiert auf den Seiten 13 und 25)

[DKW10] A. Dridiger, M. Knittig, S. Wokusch. Modellgetriebene und generative Benutzungs-
schnittstellen. Fachstudie, Universität Stuttgart, 2010. (Zitiert auf den Seiten 7

und 19)

[Ecl] Eclipse. URL http://www.eclipse.org/. (Zitiert auf Seite 22)

[EMF] Eclipse Modeling Framework Project (EMF). URL http://www.eclipse.org/

modeling/emf/. (Zitiert auf den Seiten 22 und 44)

[Fea] Definition Feature Phone. URL http://www.phonescoop.com/glossary/term.

php?gid=310. (Zitiert auf Seite 13)

[Fow04] M. Fowler. Closure, 2004. URL http://martinfowler.com/bliki/Closure.html.
(Zitiert auf Seite 20)

[Fow05] M. Fowler. Language Workbenches: The Killer-App for Domain Specific Langua-
ges?, 2005. URL http://martinfowler.com/articles/languageWorkbench.html.
(Zitiert auf den Seiten 19 und 21)

[Hob00] E. Hobst. Qualität von Verkehrsinformationssystemen. Diplomarbeit, Universität
Stuttgart, 2000. (Zitiert auf Seite 24)

[HPP] HP attackiert Apple mit Tablet-PC und Smartphones. URL
http://www.welt.de/wirtschaft/webwelt/article12498962/

HP-attackiert-Apple-mit-Tablet-PC-und-Smartphones.html. (Zitiert auf
Seite 16)

[Inta] IntelliJ IDEA - Free IDE for Google Android. URL http://www.jetbrains.com/

idea/features/google_android.html. (Zitiert auf Seite 47)

[Intb] Intentional Software. URL http://intentsoft.com/. (Zitiert auf Seite 19)

[iOSa] iOS Developer Program. URL http://developer.apple.com/programs/ios/. (Zi-
tiert auf Seite 15)

[iOSb] iOS Human Interface Guidelines. URL http://developer.apple.com/library/

ios/#DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/

Introduction.html. (Zitiert auf Seite 15)

[iph] iphonical. URL http://code.google.com/p/iphonical/. (Zitiert auf Seite 19)

[IPK] IP-KOM-ÖV. URL http://www.ip-kom.net/. (Zitiert auf Seite 7)

[IPK10] Standardisierungs-Forschungsprojekt 19P10003 IP-KOM-ÖV Gesamtvorhabensbe-
schreibung, 2010. (Zitiert auf den Seiten 7 und 9)

[Java] Code Conventions for the Java Programming Language. URL http://java.sun.

com/docs/codeconv/html/CodeConventions.doc.html. (Zitiert auf Seite 43)

[Javb] Java. URL http://www.java.com/. (Zitiert auf Seite 43)

62

http://www.bahn.de/p/view/buchung/mobil/mobile-apps.shtml
http://www.bahn.de/p/view/buchung/mobil/mobile-apps.shtml
http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.phonescoop.com/glossary/term.php?gid=310
http://www.phonescoop.com/glossary/term.php?gid=310
http://martinfowler.com/bliki/Closure.html
http://martinfowler.com/articles/languageWorkbench.html
http://www.welt.de/wirtschaft/webwelt/article12498962/HP-attackiert-Apple-mit-Tablet-PC-und-Smartphones.html
http://www.welt.de/wirtschaft/webwelt/article12498962/HP-attackiert-Apple-mit-Tablet-PC-und-Smartphones.html
http://www.jetbrains.com/idea/features/google_android.html
http://www.jetbrains.com/idea/features/google_android.html
http://intentsoft.com/
http://developer.apple.com/programs/ios/
http://developer.apple.com/library/ios/##DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/##DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/##DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://code.google.com/p/iphonical/
http://www.ip-kom.net/
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html
http://www.java.com/

Literaturverzeichnis

[JL06] H. L. Jochen Ludewig. Software Engineering - Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag, 2006. (Zitiert auf Seite 17)

[LY99] T. Lindholm, F. Yellin. Java(TM) Virtual Machine Specification, The (2nd Edition).
Prentice Hall PTR, 2 edition, 1999. (Zitiert auf Seite 21)

[Mae] Maemo. URL http://maemo.org/. (Zitiert auf Seite 16)

[Mee] Meego. URL http://meego.com/. (Zitiert auf Seite 16)

[Met] MetaEdit+. URL http://www.metacase.com/mep/. (Zitiert auf Seite 19)

[Mob] Moblin. URL http://moblin.org/. (Zitiert auf Seite 16)

[MPS] Jetbrains MPS. URL http://www.jetbrains.com/mps/. (Zitiert auf Seite 23)

[Nex] Nexus One Details. URL http://www.google.com/phone/detail/nexus-one. (Zi-
tiert auf Seite 47)

[Nor10] P. Northam. Introduction to Bada, 2010. URL http://www.amiando.com/

eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.

pdf. (Zitiert auf Seite 16)

[Obj] Objective-C. URL http://developer.apple.com/documentation/Cocoa/

Conceptual/ObjectiveC/. (Zitiert auf Seite 15)

[Oef] Oeffi. URL http://oeffi.schildbach.de/. (Zitiert auf Seite 27)

[OHA] Open Handset Alliance. URL http://www.openhandsetalliance.com/. (Zitiert
auf Seite 15)

[Per10] P. Perrotta. Metaprogramming Ruby. Pragmatic Bookshelf, 1st edition, 2010. (Zitiert
auf Seite 20)

[Pla] BlackBerry PlayBook. URL http://us.blackberry.com/playbook-tablet/. (Zi-
tiert auf Seite 15)

[Pus] push&ride. URL http://www.pushandride.de/. (Zitiert auf Seite 28)

[Qyp] Qype. URL http://www.qype.com/. (Zitiert auf Seite 33)

[Rea] Realaxy ActionScript Editor. URL http://www.realaxy.com/. (Zitiert auf Seite 23)

[Ruba] Programmiersprache Ruby. URL http://www.ruby-lang.org/. (Zitiert auf Sei-
te 20)

[Rubb] Webframework Ruby On Rails. URL http://rubyonrails.org/. (Zitiert auf
Seite 20)

[Rub08] Webframework Ruby On Rails, 2008. URL http://www.artima.com/weblogs/

viewpost.jsp?thread=223054. (Zitiert auf Seite 20)

[Sma] Definition Smartphone. URL http://www.phonescoop.com/glossary/term.php?

gid=131. (Zitiert auf Seite 13)

63

http://maemo.org/
http://meego.com/
http://www.metacase.com/mep/
http://moblin.org/
http://www.jetbrains.com/mps/
http://www.google.com/phone/detail/nexus-one
http://www.amiando.com/eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.pdf
http://www.amiando.com/eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.pdf
http://www.amiando.com/eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://oeffi.schildbach.de/
http://www.openhandsetalliance.com/
http://us.blackberry.com/playbook-tablet/
http://www.pushandride.de/
http://www.qype.com/
http://www.realaxy.com/
http://www.ruby-lang.org/
http://rubyonrails.org/
http://www.artima.com/weblogs/viewpost.jsp?thread=223054
http://www.artima.com/weblogs/viewpost.jsp?thread=223054
http://www.phonescoop.com/glossary/term.php?gid=131
http://www.phonescoop.com/glossary/term.php?gid=131

Literaturverzeichnis

[Sma11] comScore Reports February 2011 U.S. Mobile Subscriber Market Share, 2011. URL
http://www.comscore.com/Press_Events/Press_Releases/2010/4/comScore_

Reports_February_2010_U.S._Mobile_Subscriber_Market_Share. (Zitiert auf
den Seiten 13, 14, 16 und 17)

[SQL] SQLite. URL http://www.sqlite.org/. (Zitiert auf Seite 49)

[Str] StringTemplate. URL http://www.stringtemplate.org/. (Zitiert auf den Sei-
ten 18 und 46)

[Sym] Symbian. URL http://symbian.nokia.com/. (Zitiert auf Seite 16)

[TIO] TIOBE Programming Community Index. URL http://www.tiobe.com/index.

php/content/paperinfo/tpci/index.html. (Zitiert auf Seite 17)

[TS07] S. E. u. A. H. Thomas Stahl, Markus Völter. Modellgetriebene Softwareentwicklung.
Dpunkt.verlag Gmbh, 2007. (Zitiert auf Seite 18)

[VBN] Windows Phone 7-Apps mit VB.NET. URL http://www.aboutdotnet.de/post/

Windows-Phone-7-Apps-mit-VB-NET.aspx. (Zitiert auf Seite 16)

[VVS] VVS App. URL http://www.vvs.de/fahrplan/mobilefahrplanauskunft/

vvs-app/. (Zitiert auf den Seiten 26 und 34)

[web] webOS Developer Center. URL https://developer.palm.com/. (Zitiert auf Sei-
te 16)

[Win10] Microsoft: “No Windows Phone 7 upgrade for Win-
dows Mobile 6.x devices”, 2010. URL http://apcmag.com/

microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.

htm. (Zitiert auf Seite 13)

[Xtea] ARText - Driving developments with TMF Xtext. URL http://www.eclipsecon.

org/summiteurope2009/sessions?id=988. (Zitiert auf Seite 22)

[Xteb] Xtext. URL http://www.eclipse.org/xtext/. (Zitiert auf Seite 22)

[Xtec] Xtext Documentation. URL http://www.eclipse.org/Xtext/documentation/.
(Zitiert auf den Seiten 44 und 46)

[Xted] Xtext Seite von Itemis. URL http://xtext.itemis.com/. (Zitiert auf Seite 22)

Alle URLs wurden zuletzt am 02.05.2011 geprüft.

64

http://www.comscore.com/Press_Events/Press_Releases/2010/4/comScore_Reports_February_2010_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2010/4/comScore_Reports_February_2010_U.S._Mobile_Subscriber_Market_Share
http://www.sqlite.org/
http://www.stringtemplate.org/
http://symbian.nokia.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.aboutdotnet.de/post/Windows-Phone-7-Apps-mit-VB-NET.aspx
http://www.aboutdotnet.de/post/Windows-Phone-7-Apps-mit-VB-NET.aspx
http://www.vvs.de/fahrplan/mobilefahrplanauskunft/vvs-app/
http://www.vvs.de/fahrplan/mobilefahrplanauskunft/vvs-app/
https://developer.palm.com/
http://apcmag.com/microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.htm
http://apcmag.com/microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.htm
http://apcmag.com/microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.htm
http://www.eclipsecon.org/summiteurope2009/sessions?id=988
http://www.eclipsecon.org/summiteurope2009/sessions?id=988
http://www.eclipse.org/xtext/
http://www.eclipse.org/Xtext/documentation/
http://xtext.itemis.com/

Abbildungsverzeichnis

2.1. IP-KOM-ÖV Architektur . 10

3.1. Smartphone-Betriebsysteme in der USA . 14

3.2. Das Hauptfenster von Xtext . 22

3.3. Das Hauptfenster von Jetbrains MPS . 23

3.4. DB Navigator . 25

3.5. Das Hauptfenster der VVS App . 26

3.6. Das Hauptfenster von Öffi . 27

3.7. Push & Ride . 28

4.1. Grobe Architektur des Prototypgenerators . 32

4.2. Eingabe Screen . 35

4.3. Ausgabe Screen . 38

4.4. Ausgabe Screen . 39

5.1. Fehleranzeige in Xtext DSL . 45

5.2. Xpand Beispiel . 46

5.3. Android Projekt Layout . 48

5.4. Bildschirm des Prototyp in der Androidanwendung 52

Verzeichnis der Listings

3.1. Pseudo-DSL für die Evaluation von Werkzeugen und Sprachen für DSLs . . . 20

3.2. Die Pseudo-DSL in Ruby . 20

3.3. Einfaches Beispiel für eine Closure in Ruby. Ausgabe: Hello World! 21

3.4. Die Pseudo-DSL in Scala . 21

5.1. Einfache DSL-Definition mit Xtext . 44

5.2. Beispiel für die mit Xtext erstellte DSL . 45

5.3. Xtext Validator Beispiel . 45

5.4. Die Transformationsmethode des DataProvider Interface 49

65

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Markus Knittig)

	1 Einleitung
	1.1 Aufbau

	2 Aufgabenstellung
	3 Grundlagen
	3.1 Mobile Plattformen
	3.1.1 Apple iOS
	3.1.2 Android
	3.1.3 RIM BlackBerry
	3.1.4 Windows Phone 7
	3.1.5 Palm webOS
	3.1.6 Weitere Smartphone-Betriebssysteme
	3.1.7 Fazit

	3.2 Modellgetriebene Softwareentwicklung
	3.2.1 Modelle
	3.2.2 Definition Modellgetriebene Softwareentwicklung
	3.2.3 Domänenspezifische Sprachen
	Textuelle vs. grafische DSLs
	Interne DSL vs. Externe DSL

	3.3 Besehende Ansätze zur Generierung von mobiler Oberflächen
	3.3.1 Sprachen für DSLs
	Ruby
	Scala

	3.3.2 Werkzeuge für DSLs
	Xtext
	Jetbrains MPS

	3.3.3 Fazit

	3.4 Verkehrsinformationssysteme
	3.4.1 DB Navigator
	3.4.2 VVS
	3.4.3 Öffi
	3.4.4 push&ride
	3.4.5 Fazit

	4 Konzeption
	4.1 Grundlegende Architektur
	4.2 Die Oberfläche
	4.2.1 Informationsmodell
	Ort
	Zeit
	Verkehrsmittel

	4.2.2 Eingabe
	Textfeld
	Textfeld mit Autovervollständigung
	Auswahl nach Landkarte
	Auswahl aus Checkboxliste
	Liste aus Textfeldern

	4.2.3 Ausgabe
	4.2.4 Mock-Daten

	4.3 Benutzerparameter
	4.3.1 Führungsbedürfnis
	4.3.2 Leseaffinität
	4.3.3 Texteingaben
	4.3.4 Filter
	4.3.5 Zeit

	5 Realisierung des Prototyps
	5.1 Allgemeines zur Entwicklung
	5.2 DSL
	5.2.1 Syntax
	5.2.2 Codegenerator

	5.3 Android Framework
	5.3.1 Android Grundlagen
	Projekt Layout und Konfiguration
	Activity
	Intent
	Ressourcen

	5.3.2 Model
	5.3.3 Mockup
	5.3.4 Prototype Framework
	Activities
	Komponenten
	Schnittstellen

	5.4 Entwicklungsergebnis

	6 Zusammenfassung
	7 Ausblick
	A Anhang
	A.1 Testfälle
	A.1.1 Verbindung
	A.1.2 Umstieg
	A.1.3 Reiseangebote
	A.1.4 Einfache Verbindung
	A.1.5 Platzreservierung
	A.1.6 Billigstes Angebot mit anschließender Taxi-Buchung

	Literaturverzeichnis

