Institut fir Visualisierung und Interaktive Systeme
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr.3108

Entwicklung eines
Frontend-Generators flr
Testanwendungen eines

Informationssystems

Markus Knittig

Studiengang: Softwaretechnik
Prifer: Prof. Dr. Thomas Ertl
Betreuer: Dipl.-Inf. Florian Haag
begonnen am: 17.November 2010
beendet am: 17.Mai 2011

CR-Klassifikation: D.1.2,D.2.11,1.6.5, H.5.2

Inhaltsverzeichnis

1. Einleitung
1.1. Aufbau e

2. Aufgabenstellung

3. Grundlagen

3.1. Mobile Plattformen L o
3.1.1. AppleiOS . . .
3.1.2. Android
3.1.3. RIMBlackBerry
3.1.4. WindowsPhone7
3.1.5. PalmwebOS.
3.1.6. Weitere Smartphone-Betriebssysteme
3.1.7. Fazit . . . oL

3.2. Modellgetriebene Softwareentwicklung
3.2.1. Modelle
3.2.2. Definition Modellgetriebene Softwareentwicklung
3.2.3. Domdinenspezifische Sprachen,

Textuelle vs. grafische DSLs
Interne DSL vs. Externe DSL
3.3. Besehende Ansitze zur Generierung von mobiler Oberfldchen.
3.3.1. Sprachenfir DSLs
Ruby
Scala
3.3.2. Werkzeuge flir DSLs
Xtext . . .
Jetbrains MPS
3.3.3. Fazit . . . oo

3.4. Verkehrsinformationssysteme
3.4.1. DBNavigator o o
3.4.2. VVS . oo e
3.4.3. Offi . . .
3.4.4. push&ride L
3.4.5. Fazit

4. Konzeption
4.1. Grundlegende Architektur 0oL

13
13
14
15
15
16
16
16
17
17
17
18
18
19
19
19
20
20
21
21
22
22
23
24
25
26
27
28

29

31
31

4.2. DieOberfliche

4.2.1. Informationsmodello L.

Ort . . e

Zeit e
Verkehrsmittel

422 Eingabe
Textfeld

Textfeld mit Autovervollstindigung

Auswahl nach Landkarte

Auswahl aus Checkboxliste

Liste aus Textfeldern

4.2.3. Ausgabe
4.2.4. Mock-Daten
4.3. Benutzerparameter oo
4.3.1. Fihrungsbediirfnis o0 0L
4.3.2. Leseaffinitat L
4.3.3. Texteingaben L L
43.4. Filter
4.3.5. Zeit

. Realisierung des Prototyps

5.1. Allgemeines zur Entwicklung o L.
52. DSL . oo e
5.2.1. Syntax
5.2.2. Codegenerator
5.3. Android Framework
5.3.1. Android Grundlagen. L 0L
Projekt Layout und Konfiguration

Activity L

Intent e
Ressourcen e

5.3.2. Model
53.3. Mockup
5.3.4. Prototype Framework
Activities L
Komponenten
Schnittstellen

5.4. Entwicklungsergebnis L 0 L.

6. Zusammenfassung

7. Ausblick

A. Anhang 57
A Testfalle. o oL 57
A.1.1. Verbindung L 57

A2, Umstieg 58

A.1.3. Reiseangebote L Lo 58

A.1.4. Einfache Verbindung 58

A.1.5. Platzreservierung L L o 59

A.1.6. Billigstes Angebot mit anschliefender Taxi-Buchung 59
Literaturverzeichnis 61

1. Einleitung

Die Reise- und Verbindungsplanung im 6ffentlichen Verkehr ist meist immer noch relativ
zeitaufwendig fiir den Fahrgast. Es fehlt an Standardisierung und die Systeme beschranken
sich grofitenteils auf die klassische Verbindungssuche. Im Rahmen des Forschungsprojektes
IP-KOM-OV [IPK] soll unter anderem der Zugang zu Fahrgastinformationen verbessert
werden und so die Basis fiir neue Informationsdienste fiir den Fahrgast geschaffen werden
[IPK10].

Ein wesentlicher Baustein sind dabei mobile Gerdte. Damit sind insbesondere Smartphones
gemeint, aber auch Tablets entwickeln sich immer mehr vom Nischenprodukt zum Massen-
produkt. Ein Grundstein des Erfolges sind dabei die verfiigbaren Anwendungen, sogenannte
Apps, auf mobilen Gerdten. Die Hardware von Smartphones ist mittlerweile stark genug,
um innovative Anwendungen aller Art zu ermoglichen.

Im Rahmen des Projektes IP-KOM-OV sollen Prototypen erstellt werden, die verschiedene
Szenarien von Fahrgastinformationssystemen auf einem mobilen Gerit in Form von Apps
abbilden sollen.

Dazu soll modellgetriebende Softwareentwicklung eingesetzt werden. Statt die Prototypen
von Hand zu implementieren, soll ein formales Modell erstellt werden, das die Anforderun-
gen der Verkehrsinformationsdoméne beschreibt. Mit Hilfe von diesem formalen Modell
sollen dann Prototypen generiert werden, anstatt diese manuell zu implementieren. Da-
mit wird der Aufwand zur Erstellung neuer Prototypen reduziert, sowie eine einfachere
Entwicklung fiir Fachanwender und Entwickler gewéhrleistet.

Ziel ist es im Rahmen dieser Diplomarbeit mit Hilfe von modellgetriebener Softwareentwick-
lung einen Generator fiir Prototypen fiir Verkehrsinformationssysteme zu schreiben, der im
Rahmen des Projektes IP-KOM-OV eingesetzt werden kann.

In der Praxis konnte sich die modellgetriebene Softwareentwicklung allerdings noch nicht
in der Breite durchsetzen. Insbesondere fiir grafische Benutzeroberfldchen fehlt es hier
an praktikablen Losungen [DKW1o0]. Ein sekundéres Ziel ist es daher, im Rahmen dieser
Diplomarbeit festzustellen, wie praktikabel die modellgetriebende Softwareentwicklung sich
fiir eine bestimmte Anwenderdoméne einsetzen ldsst.

1.1. Aufbau

Im Kapitel 2 werden die Anforderungen an den Prototyp Generator detailliert beschrieben.
Im Kapitel 3 werden die Grundlagen der Arbeit vorgestellt. Hier erfolgt die Evaluation

1. Einleitung

und Auswahl der verwendeten Plattformen und Ansétze. In Kapitel 4 wird die Konzeption
des Prototyp Generators unabhingig von konkret eingesetzten Technologien erldautert. Im
Kapitel 5 wird dann der technische Entwurf und die Realisierung des Prototyps beschrieben.
Abschlieffend werden in der Zusammenfassung die Ergebnisse der Arbeit bewertet und im
Ausblick auf zukiinftige Entwicklungen eingegangen.

2. Aufgabenstellung

In diesem Kapitel soll die grundsédtzliche Aufgabenstellung der Diplomarbeit erldutert
werden. Dazu werden die Funktion, die diese Arbeit im Rahmen des IP-KOM-OV Projektes
erkladrt, sowie Anforderungen aus der Ausschreibung und Anfangsphase der Diplomarbeit
beschrieben.

Ausgangspunkt im Projekt IP-KOM-OV ist die Gesamtvorhabensbeschreibung, die Teil des
Forschungsantrages ist [IPK10]. In diesem Dokument werden unter anderem Arbeitspakete
fiir die einzelnen Projektpartner beschrieben. Diese Arbeit soll zur Fertigstellung von Arbeit-
spaketen der Universitit Stuttgart beitragen. Die betreffenden Arbeitspakete sind Teil des
Arbeitskomplex 2 “Kommunikationsdienste fiir Kundengerate”. Das Arbeitspaket 2.100 , Vor-
studie und Funktionale Beschreibung” wurde bereits in der Fachstudie ,IT-Einsatzszenarien
zur interaktiven Fahrgastunterstiitzung” bearbeitet [AWZ10] und dient als einer der Aus-
gangspunkte der Arbeit. Die Diplomarbeit ist Teil von Arbeitspaket 2.300 ,,Machbarkeits-
nachweis und Prototyping fiir Interaktion, Mobilgerédte und Service-Orientierung”. Ein Ziel
des Arbeitspaketes ist es, durch Prototyping eventuelle hohe Kosten zu vermeiden. In dem
Arbeitspaket wird unter anderem von ein Prototyp erwéhnt, der folgendes Ziel hat: ,Der zu
entwickelnde Prototyp zeigt Vorteile und Schwachstellen der spezifizierten Konzepte auf
und dient so einer ersten Machbarkeitsstudie, welche die weitere Entwicklung mafigeblich
bestimmt.”. Fiir den Prototyp sollen zunéchst ,Ziele definiert und hieraus die zu entwi-
ckelnden Schnittstellen und Module definiert” werden, dabei findet die Zieldefinition in
diesem Kapitel statt. Die Schnittstellen sind gegebenenfalls auch fiir das Arbeitspaket 2.200
,Systembeschreibung/-architektur” relevant.

Folgende Punkte stellen einen Auszug der Anforderungen an diese Diplomarbeit dar:

e Externe Literatur soll nach dhnlichen Problemstellungen und etwaigen Losungen
sowie sonstigen niitzlichen Informationen zur Generierung von Benutzerschnittstellen
durchsucht werden.

e Bisherige studentische Arbeiten am VIS sollen bei Bedarf zu Rate gezogen werden.

e Anforderungen an System und Schnittstellen werden auf Grundlage moglicher Test-
und Vorfiihrfalle erhoben.

e Da sich das Projekt IP-KOM-OV in einem frithen Stadium befindet und die Schnitt-
stellen auf dieser Seite noch nicht festgeschrieben sind, soll eine mdoglichst eingéngige
Schnittstelle zum Ansteuern und Konfigurieren des Generators entworfen werden.
Dies kann beispielsweise ein XML-basiertes Format oder eine domédnenspezifische
Konfigurationssprache sein, die einer spateren Anbindung der Testanwendungen an
standardisierte Schnittstellen wie WebServices oder Ahnliches nicht im Weg steht.

2. Aufgabenstellung

Endgerate

Visualisierung & Interaktion

]
ral
(=] _
= E
g o
=1 E
Fo d w
[an) -
.5 g
m L
m
= o
=
21 =
= o
- 3
[
(=]
=

l
il
Clllent-ﬁ".ppllkatlclm I l
i
L

Tl By

Abbildung 2.1.: Die geplante Architektur des IP-KOM-OV Projektes, die auch im entgiiltigen
Prototyp umgesetzt werden soll.

e Der Generator soll so entwickelt werden, dass er auf den IP-KOM-OV-
Entwicklungsrechnern ausfiihrbar ist und Anwendungen erzeugt, die auf einem
Mobilgerédt ausgefiihrt beziehungsweise angezeigt werden konnen.

e Fiir die Zukunft ist auch zu iiberlegen, wie die GUI-Generierung direkt auf dem
Mobilgerit stattfinden konnte.

o In der schriftlichen Ausarbeitung sollen alle Ergebnisse der Recherche, Analyse und der
gesamte Entwicklungsverlauf beschrieben werden. Dabei soll auch aufgezeigt werden,
inwieweit der hier entwickelte Generator mitsamt seiner Konfiguration, existierenden
GUI-Generatoren bei der Entwicklung von IP-KOM-OV {iberlegen ist.

Die Testfdlle wurden im Laufe der Arbeit festgelegt und befinden sich im Anhang A. Weitere
Schnittstellen die teilweise in Zusammenarbeit mit dem Betreuer erstellt wurden, werden
in der Konzeption beschrieben. Fiir die Wahl der mobilen Plattform wurde ebenfalls im
Rahmes eines Gespraches mit dem Betreuer in der Anfangsphase folgende Anforderungen
festgelegt:

e Es reicht das die Prototypen auf einer Plattform laufen. Eine plattformiibergreifende
Losung ist nicht notwendig, kann aber verwendet werden, falls dies insgesamt die
beste Losung ist.

e Die Plattform sollte einen relevanten Marktanteil besitzen, so dass die Weiterentwick-
lung gesichert und ausreichend Dokumentation im Web vorhanden ist.

10

e Der Bildschirm sollte zeitgemafs sein, also ausreichend Farben darstellen sowie 2D
Grafiken darstellen konnen. Eine Darstellung von 3D Grafiken wird dagegen nicht
benotigt.

e Was die Rechenleistung betrifft, sollte die Reaktionszeit moglichst gering sein. XML
Verarbeitung sollte performant unterstiitzt werden.

o Als Eingabe soll ein Touchscreen mit virtueller Tastatur dienen. Alternativ oder zusitz-
lich kann die Eingabe auch tiibere eine Hardware-Tastatur moglich sein.

e Optional soll es moglich sein Standardortinformationen zu bestimmen. Dies kann
alternativ aber auch durch einen Stub ersetzt werden.

e Neben den anderen genannten Kriterien ist auch die Prdferenz des Diplomanten
entscheidend.

Die Ergebnisse dieser Arbeit sollen im Laufe des Projekt noch erweitert werden, voraus-
sichtlich tiber die ndchsten zwei bis drei Jahren. Daher ist insbesondere eine gute Ent-
wicklerdokumentation wichtig, den optimalerweise kann der bestehende Prototyp einfach
weiterentwickelt werden.

Weiterhin sollen auch die Erkenntnisse, die im Zusammenhang mit der modellgetriebenden
Softwarentwicklung in der Arbeit gewonnen werden, gut dokumentiert werden.

11

3. Grundlagen

In diesem Kapitel werden verfiigbare Konzepte und Technologien vorgestellt und evaluiert.
Im Abschnitt 3.1 werden mobile Plattformen fiir Smartphones vorgestellt und auf die
Tauglichkeit fiir den Einsatz im Projekt untersucht. Im Abschnitt 3.2 werden die Konzepte
und die Anwendung der modellgetriebenen Softwareentwicklung erldutert. In Abschnitt
3.4 werden verfiigbare Verkehrsinformationssysteme, insbesondere fiir mobile Plattformen,
untersucht.

3.1. Mobile Plattformen

Mobile Geréte haben sich in den letzten Jahren von einfachen Handys, iiber Telefone mit
Zusatzfunktionen, so genannte Feature Phones [Fea], zu vollwertigen Plattformen mit einer
groflen Auswahl an Anwendungen entwickelt. Diese werden allgemein als Smartphones
bezeichnet [Sma]. Fiir IP-KOM-OV ist die Auswahl der Plattform insbesondere deshalb von
grofler Bedeutung, da das Projekt erst in mehreren Jahren abgeschlossen sein wird und sich
bis dahin noch einiges auf dem Markt der mobilen Plattformen dndern kann. So wurde
beispielsweise Windows Mobile 6.5 letztes Jahr obsolet [Win10], um ein weiteres Sinken
der Marktanteile zu vermeiden [Sma11]. Android konnte dagegen als Spétstarter seinen
Markanteil relativ zligig ausbauen, wie Abbildung 3.1 zeigt.

Seit der Einfiihrung des iPhones von Apple hat sich die Smartphone-Landschaft grundlegend
gewandelt. Davor waren Smartphones ein Nischenprodukt, das hauptsédchlich Geschéfts-
kunden bediente. Heute entwickeln sich Smartphones mehr und mehr zum Massenprodukt.
Diesen Erfolg hat Apple insbesondere seiner und der Software von Dritt-Herstellern zu
verdanken. Uber die App Store kénnen Dritt-Hersteller eigene Programme anbieten, auf die
jeder Nutzer der iOS*-Plattform zugreifen kann. Konkurrenten wie Google und Microsoft
folgten diesem Konzept und haben eigene Marktplatze fiir Smartphone-Apps geschaffen.
Waéhrend bei einfachen Handys und sogenannten Feature-Phones die Software und Bedie-
nung noch eine untergeordnete Rolle spielen, riicken diese beiden Aspekte bei Smartphones
in den Fokus.

Auch Apps fiir Verkehrsinformationssysteme gibt es schon in grofser Zahl. So gibt es zum
Beispiel allein im Android Market iiber 1000 kostenlose und kostenpflichtige Apps in der
Kategorie Verkehr [Andd] und die offizielle App der Deutschen Bahn wurde bereits eine
Million Mal heruntergeladen [DBN]. Die meisten Anwendungen sind dabei zur Zeit noch

"Name des Betriebssystems des iPhones

13

3. Grundlagen

25%:

B Android

LY
B Apple
B Microsoft

13 5% Palm

Abbildung 3.1.: Anteile der Betriebsysteme der aktuelle gekauften Smartphones in der USA
laut Umfrage von comScore im Februar 2011 [Sma11]

relativ einfach gestaltet und besitzen oft nur einen Bruchteil der Funktionalitédt, die zum
Beispiel iiber die Webanwendungen der jeweiligen Verkehrsunternehmens moglich ist. Auch
gibt es zur Zeit noch wenig Integration mit anderen Diensten, wie zum Beispiel mit sozialen
Netwerken oder Location-based Services.

Dieser Abschnitt soll einen kurzen Uberblick iiber die verschiedenen mobilen Plattformen
geben und anschlieflend anhand der Kriterien der Aufgabenstellung beurteilen, inwieweit
diese fiir Prototypen fiir mobile Plattformen des Projektes geeignet sind.

3.1.1. Apple iOS

Mit iOS bezeichnet Apple die Plattform fiir ihr Smartphone iPhone sowie fiir ihr Tablet iPad.
In dieser Arbeit wird nur ersteres betrachtet, wobei die Anwendungsentwicklung fiir die
beiden Geriteklassen weitgehend indentisch erfolgt. Auf dem iPad sind allerdings wegen des
grofieren Bildschirmes und der hoheren Auflosung und des dadurch bedingten zusétzlichen
Platzes auch mehrere Panels in einer Anwendung moglich. Zum Beispiel verfiigt die Mail
App in der iPad Version tiber ein Panel zum Auswihlen von Mails und ein Panel zum
Anzeigen der ausgewdhlten Mail.

14

3.1. Mobile Plattformen

Die aktuellste Version von iOS ist 4.3. Die Entwicklungssprache und -werkzeuge entsprechen
im wesentlichen denen von Mac OS X, die Entwicklung ist daher auch nur auf einem Mac
moglich. Der C-Dialekt Objective-C [Obj] dient als Programmiersprache und die mobile
Variante des Framework Cocoa [Coc] wird fiir die Oberfliche verwendet. Eigene Anwendun-
gen lassen sich nur auf dem Gerit installieren, wenn man dem Entwicklerprogramm von
Apple fiir eine Jahresgebiihr von hierzulande 99 Euro beitritt* [iOSa]. Anwendungen konnen
zudem nur iiber die App Store verteilt werden, die allerdings auch auf eine bestimmte
Benutzergruppe beschriankt werden kann. Offentliche Apps werden einem Reviewprozess
unterzogen, der neben der Funktionsfdhigkeit der App unter anderem auch priift, ob die
Richtlinien zur Gestaltung der Anwendung von Apple eingehalten wurden [iOSb].

3.1.2. Android

Android [Andb] wird im Gegensatz zu den meisten anderen Smartphone-Betriebssystemen
nicht von einem einzelnen Hersteller entwickelt, sondern durch das Konsortium Open Hand-
set Alliance [OHA], das von Google gefiihrt wird. Die Quellen von Android sind grofstenteils
frei verfiigbar. Es wird daher von Herstellern nicht nur auf Smartphones eingesetzt, sondern
auch auf anderen Gerédteklassen wie beispielsweise Netbooks und Tablets. Die Version 3.0
enthalt auch offiziell Tabletunterstiitzung, mit der Anwendungen auf Tablets den zuséatzlich
zur Verfiigung stehenden Platz besser nutzen konnen.

Android liegt aktuell fiir Smartphones in der Version 2.3 vor. Die Entwicklung ist platt-
formunabhéngig mittels Java moglich. Google hat hierfiir mit der Dalvik Virtual Machine
eine eigene Java Virtual Machine entwickelt [Dal]. Diese ist so ressourcenschonend, dass
problemlos mehrere Instanzen auf einem Gerét laufen konnen. Daher verfiigt Android auch
von Anfang an iiber echtes Multitasking. Ebenso ist es moglich C++ zu verwenden, was
dann aber nicht mehr plattformunabhiangig ist. Entwicklungswerkzeuge werden fiir alle
gangigen Betriebssysteme angeboten. Beziiglich der Weitergabe der Anwendungen gibt es
keine Einschrankungen.

3.1.3. RIM BlackBerry

BlackBerry OS [Blab] ist vor allem in der Geschéftswelt weit verbreitet. Es wird nur von
der kanadischen Firma RIM auf gleichnamigen Gerdten verwendet. BlackBerrys verfiigen
meist tiber eine Hardware-Tastatur, wobei mittlerweile immer mehr Geréate entweder mit
zusédtzlichem oder gar aufischliefilich mit Touchscreen angeboten werden. Eine weitere
Starke von Blackberrys ist ihr Push-Service, mit dem E-Mails tiberall dort empfangen werden
konnen, wo Netzabdeckung besteht. Dieser Service kostet allerdings meistens extra bei den
Netzanbietern und verliert durch die immer bessere Verfligbarkeit des mobilen Internets
daher an Bedeutung. Die Entwicklung dafiir ist mit C/C++ und Java SDK moglich [Blaa],
auch Java ME wird unterstiitzt. Mit dem PlayBook bietet auch RIM ein Tablet an [Pla].

2Stand 2011

15

3. Grundlagen

3.1.4. Windows Phone 7

Windows Phone 7 ist eine komplette Neuentwicklung von Microsoft, nachdem ihr vorheriges
Smartphone-Betriebssystem Windows Mobile 6.5 zunehmend an Marktanteilen verloren hat.
Es ist daher auch inkompatibel zu fritheren Windows Smartphone-Betriebssystemen. Von
den Features und Beschrankungen lehnt es sich stark an iOS an. Bei der Oberfldche versucht
es aber neue Wege zu gehen. Der Startbildschirm besteht aus sogenannten Kacheln, die
kleine Informationshdppchen, wie die Anzahl der ungelesenen E-Mails oder den aktuellen
Facebook-Status, anzeigen. Als Entwicklungssprache wird C# mit dem Silverlight Framework
verwendet. Alternativ kann Visual Basic .NET als Entwicklungssprache eingesetzt werden
[VBN]. Das SDK ist, wie alle Entwicklungswerkzeuge von Microsoft, nur unter Windows
verfiigbar.

3.1.5. Palm webOS

Die Firma Palm ist vor allem durch ihre Erfolge im Bereich PDAs (Personal Digital Assistant)
bekannt. Nachdem ihr Smartphone-Betriebssystem Palm OS mit dem iPhone nicht mehr
mithalten konnte, wurde Anfang 2009 dessen Nachfolger webOS vorgestellt [web]. Es basiert
auf Linux und ist wie iOS und Android auf die Bedienung per Touchscreen angepasst.
Entwickelt werden kann auf webOS, passend zum Namen, mit den fiir Webanwendungen
zur Verfiigung stehenden Hilfsmitteln: HTML 5, CSS und JavaScript. Seit Marz 2010 ist es
auch moglich C- und C++-Code in Anwendungen zu verwenden.

Smartphones mit webOS sind ausschliefslich von Palm erhéltlich. Die Firma Palm wurde im
April 2010 von HP tibernommen und firmiert seit Oktober 2010 als HP Palm. HP hat fiir
Juni 2011 auch Tablets mit webOS angekiindigt [HPP].

3.1.6. Weitere Smartphone-Betriebssysteme

Neben den Smartphone Plattformen die sich zur Zeit gut am Markt verkaufen [Sma11] gibt
es noch ein paar weitere erwdhnenswerte Smartphonebetriebssysteme.

Nokia pflegt gleich zwei Smartphonebetriebsysteme. Zum einen das relativ alte Symbian
[Sym], das vor allem im Low-Cost-Smartphone Markt zufinden ist. Zum anderen MeeGo
[Mee], das aus Maemo [Mae] und Moblin [Mob] hervorgegangen ist und im hoherpreisige
Marktsegmente angesidelt ist. Fiir beide Systeme kann man mit dem C++ Framework Qt
entwickeln. Symbian unterstiitzt aufSerdem Java ME.

Auch Samsung hat 2010 mit Bada [Bad] ein eigenes Smartphone-Betriebssystem veroffentlicht.
Es zielt vor allem auf den Low-Cost-Smartphone Markt ab [Norio]. Entwickelt wird mit
einem eigenen C++ SDK. Java ME wird ebenfalls unterstiitzt.

16

3.2. Modellgetriebene Softwareentwicklung

3.1.7. Fazit

Hauptkriterien fiir die Auswahl der mobilen Plattform fiir diese Arbeit sind niedrige Inves-
titionskosten, eine gewissen Zukunftssicherheit sowie eine brachbare Entwicklungsumge-
bung.

Die grofiten Investitionskosten fallen bei der iOS Plattform an. Neben einem iPhone, benotigt
man fiir die iOS-Entwicklung namlich auch zwingend einen Mac von Apple. Gegen Windows
Phone 7 spricht dagegen hauptsédchlich die noch recht geringe Verbreitung und die Frage
ob sich die relativ spéit gestartete Plattform noch gegeniiber der Konkurrenz behaupten
kann. Gleiches gilt auch fiir webOS. Auch fiir BlackBerry ist die Zukunft offen, da man zwar
stark im Geschift mit Unternehmen ist, im Konsumermarkt kaum Fuss fassen kann. Dies
diirfte vor allem daran liegen, das die meisten Modelle immer noch keinen Touchscreen
besitzen. Die Wahl féllt daher auf Android, das alle Kriterien ohne Einschrankungen erfiillt.
Android-Gerite gibt es teilweise schon fiir unter 100 Euro [Che] und die Entwicklungswerk-
zeuge sind kostenlos und laufen auf allen relevanten Betriebssystemen. Es gibt eine grof3e
Zahl an Geriteherstellern, die Plattform wird durch eon Konsortium wntwickelt und ist
weitgehend frei verfiigbar. Man besitzt zudem bereits eine gewissen Marktanteil [Smaz11]. Als
Entwicklungssprachen kommen die Top 3 der verbreitetsten Sprachen zum Einsatz [TIO].

3.2. Modeligetriebene Softwareentwicklung

In diesem Abschnitt werden die Grundlagen der modellgetriebenen Softwareentwicklung
vorgestellt. Im Abschnitt 3.2.1 wird der Begriff der Modelle genauer erldutert. In 3.2.2 wird die
modellgetriebene Softwareentwicklung definiert. Schlielich wird in 3.2.3 auf domainspezifi-
sche Sprachen eingegangen, die fiir den Einsatz von modellgetriebener Softwareentwicklung
notwendig sind. In den letzten beiden Abschnitten 3.3.1 und 3.3.2 werden dann konkret
Sprachen und Werkzeuge fiir domainspezifische Sprachen vorgestellt und verglichen.

3.2.1. Modelle

In diesem Abschnitt wird die Bedeutung von Modellen kurz zusammengfasst. Die Erklarun-
gen dazu wurde dabei weitgehend aus [JLo6] entnommen.

Modelle treten in den verschiedensten Bereichen auf und sind ein wichtiges Hilfsmittel
unserer Welt. Beispielsweise sind Fotos, Fingerabdruck oder Matrikelnummer Modelle.
Es gibt zwei Arten von Modellen, deskriptive (d.h. beschreibende) und préaskriptive (d.h.
vorschreibende) Modelle. Ein Foto ist ein Abbild, als deskriptiv. Ein Bauplan ist dagegen eine
Vorgabe, also praskriptiv. Im Informatikbereich sind alle Artefakte Modelle. Ob Spezifikation,
Entwurf oder Code, alles sind Modelle, die dazu eingesetzt werden, einen bestimmten
Ausschnitt der Softwareentwicklung abzubilden. Diese Modelle werden ineinander tiberfiihrt.
Anhand des Entwurfs wird der Code geschrieben. Dabei sind nicht alle Details des Entwurfs
im Code berticksichtigt und umgekehrt. Die praterierten Attribute (vom lat. praeter: aufer,

17

3. Grundlagen

ausgenommen) fallen weg und es kommen die abundaten Attribute (vom lat. abundans:
iibervoll, tiberreich) hinzu, die nichts mit dem Orginal zu tun haben. Beide Eigenschaften sind
fiir die modellgetriebene Entwicklung wichtig. Denn dort wird in der Regel ein einfaches
Modell in ein reichhaltigeres Modell tiberfiihrt, wobei aber nicht unbedingt immer das
ganze Modell beriicksichtigt wird. Zum Beispiel kann es Teile geben, die nur fiir bestimmte
Varianten bestimmt sind oder integrierte Modelldokumentation, die im anderen Modell
wegfallt.

3.2.2. Definition Modellgetriebene Softwareentwicklung

Zum Thema modellgetriebene Softwareentwicklung findet man in der Literatur verschiedene
Definitionen. Das Buch ,Modellgetriebene Softwareentwicklung” [TSo7] enthilt folgende
Definition:

,Modellgetriebene Softwareentwicklung (Model Driven Software Development, MDSD) ist
ein Oberbegriff der Techniken, die aus formalen Modellen automatisiert lauffdhige Software
erzeugen.”

Es muss also erst einmal ein formales Modell vorliegen. Formal heifdt, dass es klare Re-
geln gibt, die iiber das Modell Aussagen macht. Dies ist notwendig, damit der Prozess
automatisiert ablaufen kann. Denn ein nicht formales Modell kann ein Rechner nur schwer
verarbeiten. Zudem soll der Prozess automatisiert sein, das heifst vereinfacht gesagt, das
man einfach ein Modell eingeben kann und dann per Knopfdruck das Zielartefakt daraus
erzeugt. Der dritte Teil der Definition spricht von lauffahiger Software, es soll also nicht noch
zusdtzliche Handarbeit notwenig sein, um das Programm lauffahig zu machen.

3.2.3. Domanenspezifische Sprachen

Fiir modellgetriebene Entwicklung benétigt man eine Abstraktionssprache, die dann in eine
oder mehrere Zielsprachen tiberfiihrt wird. Dies sind die sogenannten doménenspezifischen
Sprachen, abgekiirzt mit DSL3. Eine DSL besteht tiblicherweise aus zwei Teilen: Der Sprache,
also der Syntax, die die Doméne beschreibt und einem Codegenerator, der aus der Eingabe
das entsprechende Endprodukt erzeugt. Dies wird oft {iber Templateengines, wie zum
Beispiel StringTemplate [Str], realisiert. Eine alternative Moglichkeit wire die DSL direkt zu
interpretieren. Dies ist aber nicht in allen Féllen, zum Beispiel wenn die Zielplattform eine
andere ist als die Entwicklungsplattform ist, moglich.

3Domain specific language (englische Bezeichung)

18

3.3. Besehende Ansatze zur Generierung von mobiler Oberflachen

Textuelle vs. grafische DSLs

Eine DSL kann sowohl textuell als auch graphisch dargestellt werden. Eine bekannte gra-
phische DSL ist zum Beispiel UML. Graphische Darstellungen sind zwar fiir den Menschen
meist leichter verstandlich, allerdings gilt dies meist nur fiir einfache Modelle. Ein weiterer
Nachteil ist, dass ein spezielles Programm zur Anzeige benéttigt wird. Auch fiir Operationen
fiir die man bei Text auf Standardwerkzeuge zuriickgreifen kann, wie zum Beispiel ein
Diff, benotigen Werkzeuge, die dies unterstiitzen. Eine bekanntes Werkzeug zum Erstellen
von grafischen DSL ist zum Beispiel das kommerzielle Produkt MetaEdit+ [Met]. Diese
Diplomarbeit beschriankt sich allerdings auf Werkzeuge zur Erzeugung von textuellen DSLs.
Eine Auswahl wird im ndchsten Abschnitt vorgestellt.

Interne DSL vs. Externe DSL

Als interne DSL bezeichnet man eine in eine bestehende Sprache eingebettete DSL. Diese
benutzt nur eine Teilmenge der Syntaxelemente der Hostsprache und ladsst sich so im Idealfall
auch von jemandem verstehen, der die Hostsprache nicht beherrscht. Typischerweise sind
dynamische Sprachen dafiir besser geeignet, es gibt aber mittlerweile auch statische Sprachen,
die gut fiir die Implementierung von internen DSLs geeignet sind. In dieser Arbeit werden
Ruby und Scala nédher betrachtet. Prinzipiell sind aber auch Sprachen wie Python oder C#
geeignet.

Eine externe DSL ist dagegen eine eigene Sprache, die meist mit Hilfe eines Parsergenerators
entsteht. Sie ist dadurch zwar viel flexibler, aber auch aufwendiger zu erstellen. Denn fiir eine
eigene Sprache gibt es erst einmal keine Werkzeugunterstiitzung. Diese zu erstellen kann
unter Umstdnden genauso viel Zeit in Anspruch nehmen, wie die Erstellung der Sprache
selbst. Die Losung dieses Problems sind sogenannte Language Workbenches [Fowos]. Diese
abstrahieren typischerweise den Parsergenerator, stellen ein Templatesystem zur Verfiigung
und generieren auch eine passende Umgebung zum Bearbeiten der fertigen DSL. In dieser
Arbeit werden Eclipse Xtext und Jetbrains MPS als Vertreter von Language Workbenches
betrachtet. Ein weiteres bekannteres Werkzeug ist der ,,Workbench” von Intentional Software
[Intb].

3.3. Besehende Ansatze zur Generierung von mobiler Oberflachen

Vergleiche zu Werkzeugen und Frameworks zur Generierung von grafischen Oberflichen
werden asufiihrlich in [DKW10] behandelt. Fiir mobile Oberflichen gibt es zur Zeit noch
wenig Werkzeuge. Ein Werkzeug fiir die Entwicklung fiir iPhone Apps ist iphonical [iph].
Bei ihm definiert man mit Hilfe einer eigenen DSL Domainklassen und kann daraus dann
entsprechende Formulare generieren, mit denen man Entities auflisten anlegen, &ndern und
l6schen kann. Das Projekt Applause [app] unterstiitzt neben dem iPhone auch noch das
iPad und Android. Es vereinfacht die Entwicklung der Oberflache durch eine DSL, die die
graphischen Komponenten abstrahiert. beide Werkzeuge basieren auf Xtext (siehte 3.3.2).

19

3. Grundlagen

3.3.1. Sprachen fiur DSLs

Dieser Abschnitt betrachtet eine Auswahl an Sprachen und Werkzeugen fiir DSLs. Bei der
Auswahl wurde dabei praktische Einsatzfahigkeit und Verbreitung berticksichtigt.

Im Rahmen der Evaluation wurde versucht, mit den jeweiligen Sprachen und Werkzeugen
die Pseudosyntax 3.1 abzubilden.

travel {
group {
start,
destination
},
startdate,
transportation("Train", "Subway")

¥
Listing 3.1: Pseudo-DSL fiir die Evaluation von Werkzeugen und Sprachen fiir DSLs

Das Schliisselwort “travel” leitet den Hauptteil der DSL ein. Mit Hilfe des “group” Schliissel-
wortes kdnnen beliebige verschachtelte virtuelle Gruppen gebildet werden. “start”, “destinati-
on”, “startdate” und “transporation” beschreiben die Elemente, die angezeigt werden sollen.
“transportation” hat dabei zusitzlich noch Parameter, die die moglichen Verkehrsmittel
beschreiben.

Ruby

Die Programmiersprache Ruby [Ruba] wurde 1995 von Yukihiro Matsumoto entworfen.
Sie wurde durch das Webframework ,Ruby on Rails” [Rubb] populédr. Ruby on Rails
wird oft auch als DSL bezeichnet [Rubo8]. Ruby ist dynamisch typisiert, das heifst Typen
miissen nicht deklariert werden, sondern werden zur Laufzeit ermittelt. Die Sprache bietet
auflerdem umfangreiche Moglichkeiten zur Laufzeit Code zu generieren. Dies wird auch
als Metaprogrammierung bezeichnet [Per1o]. Die Eigenschaft, dass Ruby bereits einen
Codegenerator eingebaut hat, begiinstigt die Erstellung von DSLs.

travel {
group {
feature :start, :destination
}
feature :startdate
transportation ["Train", "Subway"]

X
Listing 3.2: Die Pseudo-DSL in Ruby

In dem Beispiel 3.2 werden insbesondere Closures [Fowo4] sowie die Eigenschaft, dass man
Klammern bei der Ubergabe von Parametern oft weglassen kann benutzt. Closures sind
vereinfacht gesagt anonyme Funktionen.

20

3.3. Besehende Ansatze zur Generierung von mobiler Oberflachen

def hello
print ’Hello ’
Hier wird der zu \"ubergebende Codeblock eingesetzt
yield
print !’
end
hello { print ’World’ }

Listing 3.3: Einfaches Beispiel fiir eine Closure in Ruby. Ausgabe: Hello World!

Scala

Scala entstand Anfang dieses Jahrtausends an der Schweizer Hochschule EPFL. Wahrend bei
der ersten Version noch stark der Forschungsaspekt im Vordergrund stand, ist es mittlerweile
auch ein Ziel, Scala in der Industrie zu etablieren. Scala lauft auf der Java Virtual Machine
[LY99] und ist statisch typisiert, das heifit der Typ einer Variable muss prinzipiell immer
dem Compiler bekannt sein. Im ndchsten Abschnitt werden einige Methoden erldutert, die
sicherstellen, dass Scala trotzdem noch gentigend flexibel ist fiir den Bau von DSLs.

In dem Beispiel 3.4 werden Type-Inferenz sowie die Apply Methoden benutzt. Type-Inferenz
bedeutet, dass der Datentyp vom Compiler automatisch erkannt wird und nicht bei jeder
Deklaration explizit angegeben werden muss. Die Apply Methode ist eine vereinfachte
Darstellung, die meist fiir das Factory-Pattern benutzt wird. In Scala kann jede Klasse ein
sogenanntes Kompanien-Object haben, von dem aus auch Interna der Klasse zugegriffen
werden kann. Dieses Object kann eine Apply Methode besitzen bei der man statt
Object.apply(Parameter) auch verkiirzt Object(Parameter) schreiben kann. Weitere niitzliche
Eigenschaften fiir DSLs sind die Infix-Operator-Notation und implizite Konvertierung von
Typen.

val travel = List[Feature] (
Group (Feature (start, destination)),
Feature(startdate),
Transportation("Train", "Subway")

)
Listing 3.4: Die Pseudo-DSL in Scala

3.3.2. Werkzeuge fiir DSLs

Wie in Abschnitt 3.2.3 schon erwédhnt, gibt es neben internen DSLs, auch externe DSLs.
Hierzu gibt es spezielle Werkzeuge, die auch als Lanuage Workbenches [Fowos] bezeichnet
werden.

21

3. Grundlagen

& o O e = e e . i B e

o et LUkl 5T T all | L =L
w RTIG Gf fahL H Ar L PR W1 P, S50 4 A LGk G ., Thra L g | TN 1
By S 0] e fra wtn BN Ry A s el M T 1.-.-..-., viard aviml
R N] ;.r..p e
L --n.,.. S,
L e T b L]
b T = terarm o= Hor
= ippri
Sgwn L I 5
ELS R T e e B] o E R F
E S S COMERT
] arii [
DidaTm | Clasis | = = F & Frory
= L]
[BT L= L
Sy -
LI
i 7w [0 Comandy’ nowessr Clans-50T4ns 10 °T
eyt Loy g ity
B
Py
danslbad | e ienc
dekriivia:
Ei' ross-]] breetlatelfm]
T i
ol meanl® G [F el T
e | §dik
e . - y L= |
L mpoa=s 5 W g L Ll-\J'lllHll]
i mrva s, A s g, b i
e YE BT Care
B MeETerg L e D
W
iy aadi'a oy |:1 =] B o) e

Abbildung 3.2.: Das Hauptfenster von Xtext

Xtext

Xtext [Xteb] (siehe Abbildung 3.2) ist ein Open-Source-Framework fiir die Entwicklung
domainspezifischer Sprachen. Es entstand aus dem openArchitectureWare-Projekt und ist
mittlerweile Teil des Eclipse Modeling Projektes. Aus der von Xtext definierten textuellen
Syntax wird sowohl eine ANTLR [ANTb] Grammatik als auch ein Editor fiir Eclipse [Ecl]
erzeugt. Im Hintergrund steht zudem ein generiertes EMF Modell [EMF], das entweder
direkt interpretiert werden kann oder zum Beispiel mittels einer Templatesprache weiter
transformiert werden kann.

Xtext wird mafigeblich von der deutschen Firma itemis entwickelt [Xted], die dazu Beratung
und Entwicklung anbietet. Es wird auch in der Industrie eingesetzt [Xtea].

Jetbrains MPS

Das von der Firma Jetbrains entwickelte MPS (siehe Abbildung 3.3) steht fiir “Meta Pro-
gramming System”. Der Hauptanwendungsbereich ist das Erweitern von Sprachen. Zum

22

3.3. Besehende Ansatze zur Generierung von mobiler Oberflachen

W] calculator - [C:\Users\user\MPSProjects\calculator] - jetbrains.mps.tutorial calculator.structure\Calculator - Jet...

|E|'Ie Edit Search View GoTo Geperate Build Run Tools Version Control Window Help
R 5G|iRA an|EEE-r®|s

JEIEE = [3 caiculator

‘\.I'iewgsu|'2 Logical View ~ = & |@& -
al concept C2loulator extends SassConcept &

n [C8 calewlator (C:\Users\usen\MPSProjects\calcl iNplenants <nones

#- |8l jetbrains.mps.tutorial.caloulator.sandbox

= |L] jetbrains.mps.tutorial.caloulator (generat

@ instance can be root: E

® true

-4 structure (generation required
- properties:
1+ 5} Calculator st
E ¥ editor
@ constraints ohildren:
H 4 typesystem <2 ... e
& 55 untime
raferences:

[#-[38 all models
+ (& Modules Pool

e 38

concept properties:

o =i

concept linksa:
< =

-

Structure] Editor | Constraints | Behawior || Typesystem || Action?|
Refactorings "Intentions ” Find Usages " Data Flow ” Generator ” Textgen |

=/ 0; MP5 Messages | & 2 Inspector

| | 0| e 5|
Abbildung 3.3.: Das Hauptfenster von Jetbrains MPS

Beispiel konnte Java mittels MPS um Konstrukte zur parallelen Programmierung erwei-
tert werden. Eine weitere Besonderheit ist, dass dies nicht auf rein textueller Basis erfolgt,
sondern mittels einer Meta-Ebene, die zwar textuell aussieht, aber die eigentliche Struktur
versteckt (WYSIWYG). Wie Xtext erzeugt auch MPS einen Editor mit Komfortfunktionen
wie Autovervollstindigung und Outline-Funktion.

MPS ist Open Source und wurde von JetBrains unter anderem fiir ihr eigenes Produkt
YouTrack eingsetzt. Ansonsten wird auch profesioneller Support angeboten [MPS]. Mit dem
Realaxy ActionScript Editor gibt es auch die erste kommerzielle IDE, die auf MPS basiert
[Real].

3.3.3. Fazit

Alle Sprachen und Werkzeuge haben sich im Test als brauchbar erwiesen. Da um flexibel
zu bleiben eine externe DSL erstellt werden soll, blieb die Wahl aber zwischen den zwei
Werkzeugen fiir DSL. Die Wahl fiel auf Xtext, da die Einstiegshiirde nieriger ist. Jetbrains
MPS hat zudem seine Stdrke eher beim erweitern bestehender Sprachen, was fiir diese Arbeit
nicht in Betracht kommt.

23

3. Grundlagen

3.4. Verkehrsinformationssysteme

Erst einmal gilt es zu kldren, was genau iiberhaupt ein Verkehrsinformationssystem ist.
Recherchen ergaben dazu erntichternde Ergebnisse, der Begriff taucht zwar haufiger auf,
aber eine einheitliche Definition scheint es nicht zu geben. In einer Diplomarbeit von 2000
am Institut fiir Stralen- und Verkehrswesen der Universitdt Stuttgart [Hoboo] zdhlen hierzu,
neben Mobilfunk-, Internet-Diensten und WAP, unter anderem Verkehrsnachrichten im
Radio, digital tiber Radiofrequenzen iibertragene programmbegleitende Informationen und
Videotext. In dieser Arbeit sind als Verkehrsinformationssysteme in der Regel solche gemeint
die auf mobilen Plattformen, genauer Smartphones, laufen. Eine weitere Einschrankung
ist, dass sich Verkehrsinformationssysteme in dieser Arbeit hauptsachlich auf das Verkehrs-
mittel Bahn konzentrieren. Weitere 6ffentliche Verkehrmittel wie Bus und Taxis sollen aber
gegebenfalls eingebunden werden.

Es gibt bereits eine Auswahl an Verkehrsinformationssystemen fiir mobile Plattformen. Die
meisten sind recht dhnlich aufgebaut. Es gibt eine Suchmaske fiir Verbindungen, die zu einer
Ergebnisliste fiihrt. In der Regel kann man durch Auswahl der gewiinschten Verbindung
dann noch einmal Details dazu abrufen.

In diesem Abschnitt werden ein paar Vertreter kurz beispielhaft vorgestellt.

24

3.4. Verkehrsinformationssysteme

3.4.1. DB Navigator

8 8 v H @ 21:02
Reiseauskunft

Start

Ludwigshurg Q’/
Ziel
I Stuttgart Hbf]\‘_’/

Abfahrtszeit
<Y 21002 T Fr01.04.2011

{ mp suchen

’ 4+ Erweitert

|| e

! .
“ Favoriten

ED Hauptmenii

Abbildung 3.4.: Das Hauptfenster des DB Navigator

Die Deutsche Bahn bietet Apps fiir verschiedene Smartphone Betriebsysteme an, unter
anderem iPhone, Android (siehe Abbildung 3.4), BlackBerry, Symbian und Bada [DBN].
Daneben gibt es auch eine Java ME Implementierung. Die Grundfunkionalitit ist dabei das
Suchen von Verbindungen aus der umfangreichen Datenbank der Bahn. Einzelne andere
Features konnen abweichen. Auch sind nicht alle Funktionen verfiigbar, die {iber das Web
verfiigbar sind. Die Funktion “’Ist mein Zug piinklich?” ist zum Beispiel nur auf der mobilen
Webseite verfiigbar, wird aber in den offiziellen Apps der Bahn nicht unterstiitzt.

25

3. Grundlagen

3.4.2. VVS
18] B ¥ M@ 2109
vvs VVS
"'
oo U N
Verbindungen Abfahrten Favoriten
Info (31) Einstellungen

Abbildung 3.5.: Das Hauptfenster der VVS App

Der VVS (Verkehrs- und Tarifverbund Stuttgart) bietet seit Ende 2010 auch Apps fiir iPhone
und Android (siehe Abbildung 3.5) an [VVS]. Die Oberfldche wirkt allerdings nicht ganz
so durchdacht wie bei der Bahn App, so kann man einen Standort nicht einfach eintippen,
sondern muss diesen immer erst suchen beziehungsweise direkt auswahlen. Zudem werden
in der Detailansicht auch nicht die Informationen zu den Abfahrts- und Ankuftsgleisen
angezeigt. Gut ist dagegen, dass vorliegende Storungen direkt als Popup angezeigt werden.

26

3.4. Verkehrsinformationssysteme

3.4.3. Offi

(P]&) « B M@ 2105

/ Offi Haltestellen
(H) Stuttgart (beta!) q g

WeimarstraBe ED 15am A
@ - Hochberg Adlerplatz 4 min
Teinacher StraRe BD33m4
EER) - Ludwigsburg ZOB 1h 06 min
August-Bebel-Strae DEDED 344m Y
@ - Hochberg Adlerplatz 3 min
Rundsporthalle DEDED 374m -
@ - ORweil HirschstraBe 14 min
Weststadt-Kirche EDaoim
m - Hochberg Adlerplatz 5 min
Markgroninger StraBe 532 FXLTNY
EER) - Ludwigsburg ZOB 1h 05 min
AlbrechtstraBe ED ssem
m - Eglosheim StraRenacker 18 min
Osterholzallee ED s90m 4
@ - Hochberg Adlerplatz 6 min
GénsfuBallee EDEDEDED 703m |
m - Hochberg Adlerplatz 8 min

AbelstraBe = ? = m%?&&@vtﬁ

Abbildung 3.6.: Das Hauptfenster von Offi

Offi [Oef] ist eine kostenlose App fiir Android (siehe Abbildung 3.6), die privat entwickelt
wird. Sie enthélt viele Pldne von Regionen in Deutschland, sowie einige wenige von anderen
Regionen in Europa, Australien und Amerika. Das Projekt besteht genauer gesagt aus
zwei Apps: Eine App die nach Haltestellen in der Ndhe sucht und dafiir die ndchsten
Abfahrtzeiten anzeigt und eine App fiir Verbindungsuche. Die Einstellungsmoglichkeiten
sind dabei eher minimal, dafiir kann die App verfiigbare Verbindungen visualisieren. Sie
kann auch komplette Netzpldne anzeigen. Weiterhin ist die App sehr gut in Android
integriert. Man kann Offi zum Beispiel direkt von der Adresse eines Kontakts im Adressbuch

aufrufen.

27

3. Grundlagen

3.4.4. push&ride

10 BYM@ 22
pushéride

Neue Route

Busse hinzufugen
Einstellungen

Beenden

21:23

Abbildung 3.7.: Das Hauptfenster von Push & Ride

push&ride [Pus] (siehe Abbildung 3.7) ist eine Java ME Anwendung und funktioniert im
Gegensatz zu den anderen Apps komplett offline. Sie hat dafiir allerdings auch nur den VVS
Plan der Region Stuttgart. Zudem ist es keine Smartphone App im eigentlichen Sinne, es gibt
zwar auch eine Android Portierung, die allerdings weitgehend aus dem eingebetteten Java
ME Programm besteht. So unterstiitzt die Android App nicht die virtuelle Android Tastatur,
sondern man muss Eingaben umsténdlich iiber eine eigene abgespeckte Tastatur eingeben.
Auflerdem werden auch teilweise Bildschirmelemente abgeschnitten. Dafiir unterstiitzt
push&ride aber auch viele Feature Phones.

28

3.4. Verkehrsinformationssysteme

3.4.5. Fazit

Zusammengefasst unterscheiden sich bestehende Verkehrsinformationssysteme fiir mobile
Gerate bisher nicht besonders voneinander. Auch im Vergleich zu Verkehrsauskiinften tiber
Webseiten oder stationdre Automaten sind keine allzu grofsen Unterschiede zu erkennen.
Zwar gibt es durchaus hilfreiche Funktionen wie Favoriten und GPS-Ortung, ansonsten fehlen
innovative Funktionen bisher. Auch wird in keiner Anwendung zwischen verschiedenen
Benutzertypen unterschieden.

Am besten schldgt sich der DB Navigator der Deutschen Bahn. Neben der Tatsache, dass
die Anwendung eine sehr guten Datenbasis besitzt, ist die Anwendung von der Oberflédche,
Bedienung und Performance, zumindest in der Android-Version, am besten. Aber auch alle
anderen Anwendungen bieten trotz mancher Unzuldnglichkeiten, Alleinstellungsmerkmale
die fiir ihren Einsatz sprechen.

29

4. Konzeption

Dieses Kapitel beschreibt die Konzeption der DSL fiir Verkehrsinformationssysteme sowie
die Umsetzung und Darstellung des Prototyp-Framework fiir Verkehrsinformationssysteme.
Implementierungsdetails werden im nichsten Kapitel besprochen. Es wird dabei versucht,
die Konzepte moglichst generisch zu beschreiben, allerings ldsst es sich nicht vermeiden,
dass die Technologiewahl einige Aspekte beeiflusst. Auch was DSLs angeht, sollte man
dieses Kapitel mehr als Erfahrungsbericht ansehen, da andere DSL unter Umstdnden vollig
andere Anforderungen haben konnen. Daher sollte man vorher priifen, welche Werkzeuge
und Frameworks zum Einsatz kommen sollen (vgl. Grundlagen) und inwiefern sich die Kon-
zepte iibertragen lassen. Grundsétzlich sollte dieses Kapitel aber zumindest Ansatzpunkte
liefern.

Die Konzeption erfolgte nicht vorab, sondern inkrementell und wurde in mehreren Iteration
verfeinert. Es wiirden also im Laufe der Arbeit auch Aspekte gedndert, hinzugeftigt oder
verworfen. Da sich im Laufe der Iterationen auch die Anforderungen gedndert haben, sind
hier auch Anforderungen gelistet, die in der Endfassung der eigentlichen Anforderungen
weggefallen oder ersetzt wurden. Da diese Informationen aber die Arbeit beeinflusst haben,
werden sie hier trotzdem aufgefiihrt.

4.1. Grundlegende Architektur

Die Anwendung besteht, wie Abbildung 4.1 zeigt, aus zwei Hauptteilen. Zum einen die
Sprache an sich und zum anderen der Teil, der den Testprototyp generiert. Es war Anfangs
noch nicht klar, wie generisch die Sprache sein sollte. Es gab zwei Moglichkeiten: Die
erste Variante wire die Sprache generisch zu gestalten, so dass man zwar entsprechende
Komponenten fiir die Domain hat, aber prinzipiell alles sehr frei gestalten kann. Die zweite
Variante wire, dass man in der Sprache keinen direkten Einfluss mehr auf die Oberfldche hat,
sondern anhand Eingabe, Ausgabe und gegebenenfalls anderer Parameter eine Oberfldche
erstellt wird. Die urspriingliche Idee war, es den Code fiir den Prototypen dynamisch zu
generien. Dieses Vorgehen wire das passende Konzept fiir Variante eins. Es stellte sich
dann aber heraus, dass eigentlich Varinate zwei gewiinscht wird. Entsprechend wurde der
urspriingliche Plan modifiziert. Anstatt die Anwendung dynamisch zu generieren, sollte
diese weitgehend statisch sein, das heifst, dass kein eigener Code fiir jeden Prototyp erstellt
wird, sondern nur eine Art Konfiguration.

Die Anwendung sollte damit also nun in zweimal zwei Teile gegliedert werden. Auf der einen
Seite der Parser fiir die Syntax und der Generator, der die Koniguration fiir die Anwendung

31

4. Konzeption

Abbildung 4.1.: Der rote Teil beschreibt den Parser und Generator, der blaue Teil bildet
zusammen die Androidanwendung

erzeugt. Auf der anderen Seite die Konfiguration und das Framework, das zusammen den
eigentliche Prototypen bilden. Es sollte also keine Oberfldche direkt erzeugt werden, da
die Syntax der Sprache eine semantische Beschreibung der Oberfldche sein sollte. Es sollte
also beschrieben werden, welche Elemente angezeigt werden. Der Pool an Elementen ist
allerdings statisch und neue Elemente mit eigener Semantik kdnnen dabei nicht erzeugt
werden. Diese miissen, falls benétigt, durch programmatische Erweiterung der Anwendung
hinzugefiigt werden. Der Vorteil ist, dass die Konfiguration nur eine diinne Schicht zwischen
DSL und der eigentlichen Anwendung ist. Ein Austauschen der beiden Teile ist problemlos
moglich. So kénnte man beispielsweise die Xtext DSL durch eine Scala DSL ersetzen. Oder
auch den Android Teil durch einen Windows Phone 7 Teil. Durch die Konfiguration verliert
der Benutzer zwar Flexibilitdt, allerdings kann nur so die Sprache auf einem einfachen Level
gehalten werden, die vollkommen unabhéngig von der Plattform ist.

32

4.2. Die Oberflache

4.2. Die Oberflache

Die Oberfldache besteht grundsitzlich aus zwei Teilen: Einem Eingabeteil und einem Aus-
gabeteil. Diese Teile bestehen gegebenenfalls aus mehreren Screens, die auch von der
Konfiguration abhidngig sein sollen.

4.2.1. Informationsmodell

In diesem Abschnitt werden die relevanten Typen und gegebenenfalls ihre Ein- und Ausgabe
beschrieben.

Ort

Ein Ort ist fiir ein Verkehrsinformationssystem eine zentrale Eingabe. Es muss zumindest ein
Startort bekannt sein. Meistens auch ein Zielort, da man in der Regel zu einem bestimmten
Ort will. Der Ort kann dabei auf verschiedene Art und Weise ermittelt werden: Durch Eingabe
des Namens oder Koordinaten des Orts oder durch Auswahl auf einer Landkarte. Fiir den
Startort kann auch die Ermittlung via Standortsensoren wie GPS herangezogen werden. Fiir
den Zielort konnen auch ein semantischer Begriff wie zum Beispiel Supermarkt, Kino oder
Bank sinnvoll sein, wie es unter anderem die Online-Comminuty Qype [Qyp] anbietet. Diese
bietet auch entsprechende Zusatzinformationen zu Geschiften. Solche Zusatzinformationen
sind in der Ausgabe je nach Suchanfrage und Nutzertyp ebenfalls wiinschenswert.

Zeit

Auch die Eingabe von Zeiten ist zentral fiir Verkehrsinformationssysteme. Typischerweise
wissen wir, wann wir los wollen oder wann wir da sein miissen. Ebenso, wie viel Zeit wir an
einem Zwischenhalt verbringen wollen. Die Zeiten sind auch in der Ausgabe wichtig; da
die Eingabezeiten in der Regel nicht exakt eingehalten werden, miissen wir dabei von Hand
auswahlen, welche Zeitverschiebung fiir uns am ehesten akzeptabel ist. Optimalerweise
werden in der Ausgabe auch direkt mogliche Verspatungen angezeigt.

Verkehrsmittel

Im Gegensatz zu Ort und Zeit ist die Auswahl des Verkehrsmittels meist optional. Meist ist
es sinnvoll, hier alle Verkehrsmittel zu berticksichtigen, aufier man will zum Beispiel Geld
sparen, indem man Schnellziige nicht berticksichtigt. Anders kann es mit Eigenschaften
der Verkehrsmittel aussehen. Jemand, der im Rollstuhl sitzt, kann nur Verkehrsmittel be-
riicksichtigen, die damit vertrdglich sind. Bei einem Zug sind heutzutage neben klassischen
Ausstattungsmerkmale wie Speisewagen oder Schlafwagen auch Faktoren wie WLAN und
Strom wichtig. Diese Ausstattungsmerkmale sollten neben der Anzahl der Sitzplidtze in den

33

4. Konzeption

jeweiligen Klassen und weiteren Informationen zum Zug auch in der Ausgabe abrufbar
sein. Eine weitere niitzliche Funktion ist das Einstellen der Laufgeschwindigkeit, wie es zum
Beispiel die VVS App unterstiitzt [VVS].

4.2.2. Eingabe

Ein wesentlicher Baustein der Arbeit ist die Eingabe von Werten. Prinzipiell soll es mog-
lichst viele verschiedene Moglichkeiten geben Werte einzugeben. Dabei gibt es natiirlich
verschiedene Werttypen, bei denen nicht immer jedes Eingabeelement Sinn macht. Bei
Eingabeelementen wie dem DatePicker ist klar, dass man mit ihnen nur Datumsangaben
auswéhlen kann. Eine Checkboxliste kann man zwar prinzipiell schon zur Ortsauswahl
nutzen, es macht in den meisten Fillen allerdings wohl keinen Sinn, da die Auswahl viel
zu eingeschrankt ist, es sei denn, man hat die Auswahl schon zuvor entsprechend einge-
schrankt. Ansonsten sind Eingabemoglichkeiten auch oft gut kombinierbar. So kdnnte man
beispielsweise fiir die Ortsauswahl das Textfeld mit Autovervollstaindigung zusatzlich mit
einem Button fiir die Auswahl von Orten auf der Landkarte versehen und nach der Auswahl
den Ort in das Textfeld eintragen.

Der Prototyp soll zum einen mit einer Anzahl an eingebauten Standardeingabeelementen,
die im Folgenden beschrieben werden, entwickelt werden. Zum anderen soll es auch moglich
sein, eigene Fingabeelemente zu entwickeln um diese dann im Prototyp verwenden zu
konnen.

In Abbildung 4.2 werden verschiedene Suchparameter auf einer Seite angezeigt. Weitere
Varianten wéren zum Beispiel eine Eingabe tiber einen Wizard.

34

4.2. Die Oberflache

Start |

Ziel |

Startdatum | 1/20/2011 Iﬂl

Erlaubte Verkehrsmittel
O Fernverkehr

M Regionalverkehr
M S-Bahn

M U-Bahn

M Bus

Zwischenhalte

Abbildung 4.2.: Eine Variante des Eingabescreens.

35

4. Konzeption

Textfeld

Ein Textfeld lasst beliebige Texteingaben zu. Es kann damit sehr flexibel eingesetzt werden.
Es eignet sich insbesondere fiir Werte, die nicht auf bestimmte Eingaben beschréankt sind,
wie zum Beispiel fiir einen Ortsnamen. Weniger geeignet ist es fiir Eingaben mit bestimmtem
Format wie zum Beispiel ein Datum oder Eingaben, bei denen die Eingabemenge beschrankt
ist wie zum Beispiel die Liste von Zugtypen.

Im Prototyp ist ein Textfeld die einfachste Art der Eingabe.

Textfeld mit Autovervolistandigung

Das Textfeld mit Autovervollstindigung ist, wie der Name schon sagt, ein Textfeld, das
automatische Textvervollstindigung unterstiitzt. Dieser Mechanismus hat insbesondere
durch Webbrowser und in jiingster Zeit auch Webanwendungen Popularitit erreicht. In der
einfachen Form werden nur Worte vervollstindigt, die der Benutzer schon friiher in dieses
Textfeld eingegeben hat. Oft kommen die Vorschldge auch aus einer Datenbank, die alle
moglichen Eingaben enthilt. Ist diese Datenbank besonders grofs, wie zum Beispiel eine
Liste aller moglichen Bahnhofe in Deutschland, beschréankt sich die Datenbasis auf besonders
populdre Eingaben.

Im Prototyp soll die Autovervollstandigung moglichst dynamisch geldst werden. Dies soll
mit einer Abfrage der Datenbasis nach jeder Wortverdnderung realisiert werden.

Auswahl nach Landkarte

Die Auswahl auf einer Karte ermdoglicht die grafische Auswahl von Orten. Fiir die Nutzer
ist dies insbesondere dann sinnvoll, wenn er den genauen Ort nicht kennt, sondern nur
dessen ungefihre geografische Lage. Bei einer grofien Karte ist eine Zoom-Funktion zur
schnellen Navigation wichtig. Auch eine Suche nach Orten ist eine sinnvolle Funktion. Sind
Standortinformationen iiber Sensoren, verfiigbar kann die Karte auch entsprechend zentriert
werden und der aktuelle Standort besonders markiert werden.

Im Prototyp soll die Karte einfach aus einem griinen Hintergrund mit mehreren Orten
bestehen. Da die Karte in ihren Maf3en beschrankt sein soll, ist eine Zoom-Funktion nicht
notig. Auch die Erdkriimmung soll aufser Acht gelassen werden. Die Auswahlfunktion soll
wahlweise auch mit dem Textfeld beziehungsweise mit dem Textfeld mit Autovervollstan-
digung kombiniert werden konnen. Die Karte wird dabei immer auf einem extra Screen
angezeigt.

36

4.2. Die Oberflache

Auswahl aus Checkboxliste

Eine Checkbox ist ein Komponente der fiir die Auswahl boolescher Werte geeignet ist. Eine
Liste davon wird im Prototyp dafiir verwendet, um die bei der Suche zu beachtenden
Verkehrsmittel auszuwéhlen. Da die Liste unter Umstdnden viel Platz auf dem Bildschirm
einnehmen kann, bietet es sich an, sie ein- und ausklappbar zu machen oder die Eingabe auf
einem extra Screen zu tétigen.

Liste aus Textfeldern

Die Liste von Textfeldern ist eine relativ spezielle Komponente. Im Ausgangszustand ist
entweder ein Textfeld vorhanden, in diesem Fall kann dieses Textfeld auch nicht mehr
entfernt werden, oder es muss erst dynamisch tiber einen Button hinzugefiigt werden. Alle
hinzugefiigten Textfelder konnen auch wieder duch einen Button geldscht werden.

Im Prototyp wird die Liste aus Textfeldern fiir Zwischenhaltestellen benutzt. Sie sollen aber
auch fiir multiple Ortseingaben genutzt werden. In diesem Fall soll auch das Textfeld mit
Autovervollstandigung beziehungsweise mit der Kartenfunktion als Listeneintrag dienen
konnen.

4.2.3. Ausgabe

Die Ausgabe hat im Vergleich zur Eingabe relativ wenige Konfigurationsoptionen. Eine
Listendarstellung hat sich zur Ausgabe bewéhrt, da es selten der Fall ist, dass nur es ein
eindeutiges Ergebnis gibt. Variable sind dabei die Daten, die in der Liste angezeigt werden.
Typischerweise gibt es dann noch einen oder mehrere Screens mit Detailinformationen zu
einem Listeneintrag.

37

4. Konzeption

12:06 - 12:16 0:10 R4

12:08 - 12:22 0:14 S1

12:16 - 12:40 0:14 S2

12:38 - 12:52 0:14 ST

12:46 - 13:00 0:14 S2

13:06 - 13:16 0:10 R4

13:06 - 13:22 0:14 ST

Abbildung 4.3.: Eine Variante des Ausgabescreens.

In Abbildung 4.3 wird eine einfache Ergebnisliste mit Zeiten und Linie angezeigt.

Die Abbildung 4.4 zeigt eine Detailseite einer gefundenen Verbindung. Hier werden alle
moglichen Details angezeigt. In fortgeschritteneren Varianten koénnten hier auch Operationen
wie zum Beispiel Ticketkauf moglich sein.

38

4.2. Die Oberflache

R4 nach Ulm Hbf

12:06 Gleis 4 Ludwigsburg

12:16 Gleis 2 Stuttgart Hbf

Abbildung 4.4.: Eine Variante des Ausgabescreens.

39

4. Konzeption

4.2.4. Mock-Daten

Zur Demonstration der Anwendungen werden Mock-Daten benétigt. Dafiir soll die An-
wendung eine Schnittstelle zur Verfiigung stellen. Diese soll programmatisch sein und
Eingabedaten bekommen und daraus dann entsprechende Ausgabedaten zu generieren.
Dieser Vorgang soll dabei austauschbar in der Architektur vorgesehen sein.

Eine Validierung der Eingabe kann im Zuge des Generierens der Ausgabe auch vorgenom-
men werden. So kann bei unvollstindigen Eingaben ein Fehler geworfen werden, der den
Nutzer zuriick zur Eingabe bringt und dort die entsprechende Fehlermeldung anzeigt.

4.3. Benutzerparameter

Ein zentraler Punkt der Arbeit ist die Abbildung verschiedener Benutzertypen von Ver-
kehrsinformationssystemen mit Hilfe des Prototypgenerators. Im Rahmen einer Fachstudie
wurden schon einige Personas erarbeitet [AWZ10], optimalerweise sollte sich diese Liste aber
erweitern lassen. Dies soll mittels sogenannter Benutzerparamter erfolgen. Diese driicken
Eigenschaften aus, die der Benutzer des Prototyps haben soll und generiert entsprechend
eine passende Oberfliche. Die Abstufung muss dabei zwar eigentlich nicht so hoch sein,
aber um ausreichend Spielraum zu besitzen, wurde die Anzahl der Stufen auf 100 festgelegt.
Fiir den zu erstellenden Prototyp sollen aber Abstufungen im ganzzahligen Prozentbereich
auf jeden Fall ausreichen.

Fiir den Prototyp wurden dafiir fiinf Benutzerparameter festgelegt.

4.3.1. Fuhrungsbediirfnis

Der Parameter Fithrungsbediirfnis steuert, wie sehr die GUI den Benutzer fiihren soll.
Ein Benutzer mit hohem Fiithrungsbediirfnis bevorzugt weniger Eingaben und diese auch
eher nacheinander. Ein Nutzer der wenig Fiihrungsbediirfnis hat, will dagegen eher mog-
lichst viele Eingaben auf einem Screen haben und dabei die Freiheit haben, diese beliebig
auszufiillen.

4.3.2. Leseaffinitait

Der Paramter Leseaffinitit gibt an, ob eher lingere Erlduterungen oder kiirzere Texte be-
vorzugt werden. Dies konnte zum Beispiel bestimmen, ob die Ausgabe eher kompakt oder
ausfiihrlich ist. Der Parameter beeinflusst zudem, ob Anzeigebereiche eher ein- und aus-
klappbar oder eher statisch sein sollen.

40

4.3. Benutzerparameter

4.3.3. Texteingaben

Dieser Paramter bestimmt, ob der Benutzer Texteingaben mag, also eher textbasierte Einga-
beelemente oder eher grafische bevorzugt werden. Dies kann zum Beispiel beeinflussen, ob
der Benutzer das Datum iiber ein spezielles Widget eingibt oder dafiir ein einfaches Textfeld
benutzt werden soll. Das Textfeld mag fiir diesen Zweck zwar meist umstandlicher sein.
Es hat aber unter anderem den Vorteil, dass problemlos Copy und Paste benutzt werden
kann.

4.3.4. Filter

Mit diesem Parameter bevorzugt der Benutzer programmseitiges Filtern. Anhand dieses
Parameter wird bestimmen, ob eher viele Filtereingaben bevorzugt werden oder ob sich der
Benutzer lieber auf ein paar grundlegende Filter beschrankt, um sich anschlieffend durch
eine langere Ergebnisliste zu kimpfen und diese selber beim Lesen zu "filtern".

4.3.5. Zeit

Diese Parameter sagt aus ob, der Benutzer sich Zeit fiir Anfragen nimmt. Also ob eher
kurze schnelle Abfragen gewtiinscht sind oder mehr Wert darauf gelegt wird, dass die
Oberflache moglichst umfangreiche Parameter fiir die Abfragen anbietet. Ein Benutzer, der
wenig Zeit hat, will eher weniger Auswahlmoglichkeiten und diese auch moglichst kompakt
dargestellt.

41

5. Realisierung des Prototyps

Dieses Kapitel beschreibt die praktische Umsetzung des Prototyps. Dabei werden die ver-
schiedenen Komponenten beschrieben und konkrete Problemldsungen aufgezeigt. Es dient
auch als Entwicklerdokumentation und setzt daher ein gewisses Grundverstdndnis der objek-
torientierten Programmierung [Booo4] sowie von der Sprache Java [Javb] und dem Umgang
mit der Entwicklungsumgebung Eclipse voraus. Bei weiteren eingesetzten Frameworks und
Bibliotheken werden entsprechende Verweise gesetzt, beziehungsweise kurz die Grundlagen
erldutert und gegebenfalls durch Beispiele veranschaulicht. Quelltextausschnitte sind aus
Platz- und Verstandnisgriinden teilweise gekiirzt dargestellt.

In Abschnitt 5.1 werden kurz ein paar Fakten zur Entwicklung erldutert. Im Abschnitt 5.2
wird die Entwicklung der DSL anhand von Beispielen erkldrt. Im Abschnitt 5.3 wird die Ent-
wicklung des Android Frameworks fiir die Prototypen eingegangen. Dabei werden sowohl
die Android Grundlagen erldutert, als auch auf die Schnittstellen der Arbeit eingegangen.
Im letzten Abschnitt 5.4 gibt es einen kurzen Eindruck vom Ergebnis der Arbeit.

5.1. Allgemeines zur Entwicklung

Die Entwicklung erfolgt mit dem JDK 1.6.0_24 unter Ubuntu Linux 10.04. Als Entwick-
lungsumgebung wird Eclipse 3.6.2 mit dem Eclipse Plugin Xtext in der Version 1.0.2 und
dem Eclipse Plugin Android Development Tools (ADT) in der Version 10.0.1 verwendet.
Als Quellcode Konventionen werden die Standardeinstellungen von Eclipse benutzt, die
weitgehend den Java Code Conventions [Java] entsprechen.

5.2. DSL

Am Anfang des DSL-Baus mit Xtext steht die Erstellung eines Xtext Projektes in Eclipse. Ne-
ben dem Projektnamen miissen der Name der Sprache, der typischerweise in der Konvention
von Java-Paketen angegeben wird, und die Dateierweiterung der Quellcodedateien der neuen
Sprache angegeben werden. Die Option ,Create a generator project” wird benétigt, da ein
Generator-Projekt erzeugt werden soll, das fiir die Umwandlung des doménenspezifischen
Quellcodes in eine Konfiguration fiir das Android Framework zustdandig ist. Xtext erstellt
nun drei Projekte:

43

5. Realisierung des Prototyps

o de.knittig.da.vis_da_prototype: Das Hauptprojekt. Es enthilt die Grammatik fiir die
DSL sowie zusitzliche Konfigurationen fiir Validierung, Scopes und Formatierung.
Auflerdem liegt hier das aus der Grammatik generierte EMF Modell, auf das geparste
DSL abgebildet wird.

o de.knittig.da.vis_da_prototype.generator: Enthélt das Template fiir die Generierung
der Konfiguration.

o de.knittig.da.vis_da_prototype.ui: Enthidlt den Quellcode fiir die Generierung eines
Eclipse Plugins fiir den DSL Editor.

5.2.1. Syntax

Die Syntax der Sprache wird durch die sogenannte Grammatiksprache von Xtext festgelegt.
Dabei wird beschrieben, wie die konkrete Synatx aussieht und wie sie wihrend des Parse-
Vorgangs zu dem Modell abgebildet wird [Xtec].

Aus dieser Grammatiksprache werden drei Dinge generiert. Zum einen wird ein EMF
Modell [EMF] generiert, dies ist ein standardisiertes Java Domainmodellklassen, bei dem
Funktionalitdten wie Serialisierung, Abfrage und Validierung eingebaut sind. Zum anderen
wird eine ANTLR Grammatik [ANTDb] erzeugt, die die definierte Syntax parsen kann. Als
letztes wird noch ein Eclipse Plugin erzeugt, das einen Editor fiir die Sprache bereitstellt.

grammar de.knittig.da.prototype.Vis with org.eclipse.xtext.common.Terminals
generate vis "http://www.knittig.de/da/prototype/Vis"

Model:
travel+=Travel;

Travel:
’travel’ name=ID ’{’
features+=FeatureType (’,’ features+=FeatureType)*

’}’;

enum FeatureType:
start | destination | startdate | stopdate | stopover

Listing 5.1: Einfache DSL-Definition mit Xtext

Das Listing 5.1 zeigt ein einfaches Beispiel der Grammatiksprache von Xtext. In der ersten
Zeile wird die Grammatik eindeutig benannt und dabei von einer bestehenden Grammatik
abgeleitet. Die generate Anweisung ist fiir die Generierung des EMF Metamodells
notig. Der erste Parameter gibt dabei den Paketname an, der zweite eine eindeutige
Namesraum-URL. Nun beginnt die eigentliche Definition der Grammatik. Als erstes
definieren wir ein Wurzelelement im Modell. Dies verweist dann auf den Typ Travel, der
einen Block mit einem eindeutigen Namen beschreibt. ID ist dabei ein von der Grammatik
org.eclipse.xtext.common.Terminals importiertes Element, das eine zusammenhdngende
Zeichenkette beschreibt. In dem Block wird eine Liste von dem Typ FeatureType erstellt.

44

5.2. DSL

@ - [Enumeration contains duplicate]
P 4T 5.
destination,
startdate,
startdate

Abbildung 5.1.: Der durch einen Validator definierte Fehler in Eclipse mit dem DSL Eclipse
Plugin

Dabei muss die Liste mindestens ein Element vom Typ FeatureType enthalten und danach
null oder eine beliebige Anzahl, die jeweils durch ein Komma getrennt werden. FeatureType
ist dabei eine einfache Aufzihlung von Konstanten.

travel default {
start, destination, startdate

}
Listing 5.2: Beispiel fiir die mit Xtext erstellte DSL

Mit Hilfe der Grammatik von Listing 5.1 kann dann die DSL 5.2 geparst werden. Mittels
der generierten EMF Klassen kann man dann per Javacode priifen, welche Elemente in
der Aufzahlung gesetzt sind. Die Grammatik ist aber noch verbesserungswiirdig, da sie
auch zuldsst, dass ein Listenelement mehrfach in der Aufzahlung auftaucht. Dies lasst
sich nicht mit Hilfe der Grammatiksprache verhindern, stattdessen kann man in Xtext
hierfiir zusatzliche Validiererklassen, die in Java implementiert werden, in der Konfiguration
angeben. Dort kann man eine Funktion wie in Listing 5.3 hinzufiigen. Diese implementiert
eine einfache Priifung, ob Elemente in der Aufzihlung doppelt vorhanden sind und wirft
in diesem Fall einen Fehler, der dann, wie in Abbildung 5.1 zu sehen, im Editor des
Eclipse Plugins entsprechend angezeigt wird. Wichtig ist dabei die @Check Annotation, um
die Validierungsregel scharf zu schalten. Ansonsten wird die Methode zur Validierung
von Xtext ignoriert. Zudem sollte das EMF-Modell bereits generiert sein, damit man die
entsprechenden Domain-Klassen verwenden kann.

@Check
public void checkDupes(Travel travel) {
Set<FeatureType> featuresInEnumeration = new HashSet<FeatureType>();
for (FeatureType feature : travel.getFeatures()) {
if (featuresInEnumeration.contains(feature)) {
error ("Enumeration contains duplicate", feature.ordinal());
} else {
featuresInEnumeration.add(feature);

}

X
Listing 5.3: Xtext Validator Beispiel

45

5. Realisierung des Prototyps

«IMPORT de::knittig::da::prototype::vis»

«DEFINE main FOR Travel-»
«FILE "de/knittig/da/MyConfiguration.java"»
package de.knittig.da;

import java.util.Arrays;
public class MyConfiguration implements Configurable {

public Configuration getConfiguration() {
Configuration configuration = new Configuration();

«FOREACH features AS feature»
configuration.set«feature.name.toLowerCase().toFirstUpper()=(true);

«ENDFOREACH>»
return configuration;

}

}

«ENDFILE»
«ENDDEFINE»

Abbildung 5.2.: Beispiel der Templateengine Xpand fiir die DSL aus Listing 5.2

Weitere Informationen dazu findet man in der Xtext Dokumentation [Xtec]. Hilfreich sind
dazu auflerdem Kenntnisse aus dem Bereich Compilerbau. Falls diese nicht vorhanden sind,
kann man sich diese zum Beispiel iiber das bekannte , Drachenbuch” [ASU86] aneignen.

5.2.2. Codegenerator

Nachdem man nun den Parser und Editor fiir die Sprache hat, ist der nédchste Schritt einen
Codegenerator zu entwickeln. Dazu bietet Xtext eine eigene Templateengine an: Xpand. Sie
ist, im Gegensatz zu anderen Templateengines wie StringTemplate [Str], statisch typisiert,
das heifit, dass Fehler beim Zugriff auf nicht vorhandene Klassen oder Felder bereits vor der
Ausfiihrung der Templateengine erkannt werden konnen. Xpand bezieht sich dabei direkt auf
das von Xtext generierte EMF Modell und bietet auch Funktionen wie Autovervollstandigung
und Syntaxhervorhebung an.

Abbildung 5.2 zeigt ein einfaches Beispiel, welches die DSL von Listing 5.2 zu einer Java-
Klasse umwandelt.

5.3. Android Framework

Fiir die Entwicklung von Androidanwendungen wird das Android SDK [Ande] verwendet,
das neben den Bibliotheken auch einen Emulator zum Testen besitzt. Zudem gibt es damit
auch die Moglichkeit eine Anwendung direkt auf dem Gerat zu testen gibt. Fiir Eclipse gibt

46

5.3. Android Framework

es das ADT (Android Development Tools) Plugin [Anda]. Alternativ gibt es zum Beispiel
aber auch Android Unteriitztung bei Intelli] IDEA [Inta].

Fir den Emulator wurde die Plattform Version 1.6 (API Level 4) zum Testen verwendet.
Zwar ist diese Version fiir Smartphone-Betriebssysteme schon relativ alt, aber da fiir den
Prototyp keine Funktionen der neueren Versionen benétigt werden, ist es aus Kompatibli-
tatsgriinden sinnvoller eine dltere Version zum Testen zu verwenden, da diese zu neueren
Version abwirtskompatibel sind. Als Entwicklungsgeridt wurde das Google Nexus One [Nex]
verwendet, auf dem die Version 2.2 lauft (API Level 8). Der Emulator hat eine Aufldsung von
480x320 Bildschirmpunkten (HVGA), wahrend das Nexus One eine Auflosung von 8oox480
Bildschirmpunkten besitzt (WVGA).

Die Projektstruktur des Android Frameworks besteht aus drei Projekten:

e vis-da-model: Enthdlt Schnittstellen und Klassen der Ein- und Ausgabedaten. Siehe
5.3.2.
e vis-da-mockup: Enthélt eine Mockup-Implementierungen der Datenquelle. Siehe 5.3.3.

e vis-da-prototype: Enthélt den Code fiir die Interpretierung der Konfiguration und
Oberflachenkomponenten. Siehte 5.3.4.

Vor der Erlduterung zu den einzelnen Projekten, werden in 5.3.1 kurz die nétigen Android
Grundlagen zusammengefasst.

5.3.1. Android Grundlagen

Dieser Abschnitt erkldrt kurz die wichtigsten Grundlagen, die fiir die Androidentwicklung
notwendig sind. Weiterfiihrende Informationen findet man unter anderem auf der offiziellen
Seite fiir Android Entwickler [Andc].

Projekt Layout und Konfiguration
Wie in Abbildung 5.3 zu sehen, gibt es neben dem Quellcodeverzeichnis (,,src”) noch einige
weitere Ordner in einem Android Projekt:

e res: In diesem Verzeichnis werden die Ressourcen gespeichert. Die Verzeichnishierar-
chie ist dabei fest vorgegeben. Siehe 5.3.1.

e gen: Dieses Verzeichnis enthdlt generierte Dateien. Standardmafiig ist dies nur die
,Rjava”, die Referenzen auf Ressourcen enthilt.

e assets: Verzeichnis zur Ablage von beliebigen Daten, ohne Festlegung auf Verzeichnisse.
Zugriff tiber den AssetsManager.

47

5. Realisierung des Prototyps

=52 Hello warld
-
=18 hello_world.com

+- 1] Hello_world, java

= G@ gen [Generated Java Files)
=1 £8 hello_world,com
+ m R.java
=B, Android 1.5
+ |_.1I=s- android.jar - Z:landroidlandroid-sdk-windaws
CIU assets
=2 res
== drawable
@ icon.png
== lavout
X| mnain.xml
== values
b4l strings. ml
O AndroidManifest,xml
default. properties

Abbildung 5.3.: Das Layout eines frisch erstellten Android Projektes in Eclipse

Daneben gibt es noch die Konfigurationsdatei ,,AndroidManifest.xml”. Hier werden neben
Anwendungsname und -icon, auch alle Activities (siehe 5.3.1) sowie die Rechte, die die An-
wendung benotigt, aufgezahlt. Die Datei ,,default.properties” ist dabei fiir das Buildwerkzeug
Ant [Anta] vorgesehen.

Activity

Eine Activity® ist ein Teil einer Androidanwendung. Weitere sogenannte Anwendungskom-
ponenten sind Services, Content Providers und Broadcast Receivers, die aber fiir diese Arbeit
nicht benotigt werden. Eine Activity reprdsentiert einen einzelnen Bildschirm der Benutze-
roberfliche einer Anwendung. Alle Activities miissen von der Klasse Activity abgeleitet
werden. Eine Activity kann andere Activities aufrufen, dabei wird ein Intent tibergeben
(siehe 5.3.1). Von der neu gestarteten Activity kommt man dann, ohne weiteres zutun,
mit dem Back-Button wieder zu der vorherigen Activity zuriick. Auch wenn der Benutzer
per Home-Button auf den Startbildschirm zuriickspringt oder eine andere Anwendung in
den Vordergrund springt, zum Beispiel bei einem Anruf, bleibem die letzten Activities der
Anwendung aktiv.

1Deutsch: Aktivitit

48

5.3. Android Framework

Intent

Ein Intent ist eine abstrakte Beschreibung einer Operation, die ausgefiihrt wird. Sie werden
zur Ubergabe von Daten zwischen Activities, Services und Broadcast Receivers verwendet.
Ein Intent kann dabei nicht nur innerhalb einer Anwendung Daten austauschen, sondern
auch anwendungsiibergreifend. So kann zum Beispiel tiber einen Intent einfach innerhalb
einer Anwendung beim Klick auf eine Adresse Google Maps aufgerufen werden, wo diese
dann auf der Karte angezeigt wird.

Ressourcen

Mit Ressourcen bietet Android eine einfache Schnittstelle zum Zugriff auf Artefakte wie
Bilder, String, Mentis und Farben. Sie werden innerhalb des ,res” Verzeichnisses (siehe
Abbildung 5.3) gespeichert und beim Bauen der Anwendung iiber die ,R.java” Datei im
,gen” Verzeichnis zuganglich gemacht. Im Gegensatz zu Dateien im ,assets” Verzeichnis
ist hier die Ordnerstruktur fest vorgegeben, das heifst Bitmaps miissen im Unterverzeichnis
,drawable” abgelegt werden.

5.3.2. Model

Das Projekt , vis-da-model” kapselt Domainklassen und -schnittstellen fiir die Ein- und
Ausgabe. Die zentrale Schnittstelle ist das DataProvider Interface. Es enthdlt nur die
Methode aus Listing 5.4.

OutputData getResults(InputData inputData) throws IOException;
Listing 5.4: Die Transformationsmethode des DataProvider Interface

Diese Methode transformiert die Eingabe in Form von InputData in die Ausgabe OutputData.
InputData und OutputData sind dabei beides Klassen, die eine HashMap kapseln, in der eine
dynamische Menge an Werten gespeichert wird. Um einfacheren Zugriff zu gewéhren,
werden die Schliissel fiir die Hashmaps als Stringkonstanten in den jeweiligen Klassen
vorgehalten. Die zugehorigen Werte sind Arrays von InputValues fiir die InputData Klasse
und Arrays von Dataltems fiir die OutputData Klasse. Von diesen Basisklassen werden
verschiedene Typen abgeleitet. Wichtig ist dabei, dass die Basisklassen, und damit auch alle
abgeleiteten Klassen, serialisierbar sind, also das Interface Serializable implementieren.
Dies ist notig, um die Daten in der Android Anwendung zwischenspeichern zu kénnen.

5.3.3. Mockup

Das Projekt ,vis-da-mockup” enthélt die Imlementierung des DataProvider Interfaces sowie
andere Implementierungen von Schnittstellen aus dem Modell Projekt. Es dient dazu die
Eingabedaten in die Ausgabedaten zu transformieren. In diesem Fall wird die Datenbank
SQLite [SQL] als Datenquelle verwendet, welche Android von Haus aus unterstiitzt.

49

5. Realisierung des Prototyps

5.3.4. Prototype Framework

Das Projekt ,vis-da-prototype” enthdlt das Android Framework fiir die Erstellung von
Prototypen. Es gliedert sich dabei in mehrere Teile auf:

o Activities: Enthélt verschiedene Bildschirme fiir die Anwendung. Siehe 5.3.4.

e Komponenten: Enthélt verschiedene Komponenten fiir die Oberfliche der Anwendung.
Siehe 5.3.4.

o Schnittstellen: Enthélt tibergreifende Schnittstellen und Domainklassen fiir die anderen
Teile. Siehe 5.3.4.

Activities

Eine Activity beschreibt, wie in 5.3.1 erldutert, einen Bildschirm in einer Androidanwendung.
Der Prototyp bestehe dabei aus relativ wenig Bildschirmen.

Der Wichtigste ist der Hauptbildschirm fiir die Abfrage von Verkehrsinformationen, auf dem
alle Eingaben getitigt werden. Er setzt sich sehr variabel zusammen und wird von der Klasse
ExpandableListActivity abgeleitet. Die Komponente ExpandableList ist eine Liste die ein-
und ausklappbar ist. Die Klasse ExpandableListActivity ist folglich eine Activity mit einer
ExpandableList, die den Bildschirm vollstandig ausfiillt. Da unter Umstdnden nicht immer
Komponenten dabei sind, die tiberhaupt ein- und ausklappbar sein sollen und manche
sogar zwingend immer sichtbar sein sollen, konnen diese Komponenten an den Anfang
oder ans Ende der Komponente gesetzt werden. Stattdessen neben der ExpandableList noch
andere Komponenten auf dem Bildschirm zu platzieren funktioniert tibrigens nicht: Die
Komponenten scrollen dann nicht mit, was fiir den Benutzer ein unschénes Erlebnis ist.

Fiir die Ausgabe gibt es zwei relevante Bildschirme: Einen zur Anzeige von Ergebnissen
und einer fiir die Detailansicht. Letzterer kann auch optional sein, dies macht allerdings
in der Praxis wenig Sinn, da meist nicht alle Informationen in der Ergebnisliste unterge-
bracht werden kénnen. Im Augenblick sind beide Bildschirme als ListActivity implemen-
tiert, es konnte allerdings auch Varianten geben, in denen der Ergebnisbildschirm eine
ExpandableListActivity ist und der Detailbildschirm eine normale Activity mit individu-
ellen Komponenten.

Zwischen den verschiedenen Bildschirmen wird iiber Intents kommuniziert. Zwischen Ein-
und Ausgabe wird zudem die Implementierung des DataProvider aus dem Mockup Projekt
aufgerufen und die Eingaben zu in die Ausgaben transformiert.

50

5.4. Entwicklungsergebnis

Komponenten

Komponenten bezeichnen in diesem Fall grafische Komponenten. In Android sind alle grafi-
schen Komponenten von der Klasse View abgeleitet. Die wichtigsten wurden in Abschnitt
4.2.2 beschrieben, davon sind einige in Android Standardkomponenten, wie die TextView,
die ein Textfeld reprasentiert, oder die AutoCompleteTextView, die ein Textfeld mit Autover-
vollstindigung abbildet. Fiir die Karten-Komponente géibe es zwar eine Komponente, die
aber die reale Welt abbildet und somit nicht fiir diesen Zweck einsetzbar ist. Stattdessen wur-
de eine eigene Karten-Komponente erstellt, die zugleich auch die aufwendigste Komponente
ist. Der erste Versuch die Karte als Bitmap zu generieren und diese scoll- und anklickbar
zu machen schlug fehl, da dafiir nicht genug Speicher vorhanden war. Im zweiten Versuch
wurden einfach Punkte auf eine View mit griinem Hintergrund eingezeichnet und diese beim
Scrollen korrekt verschoben. Dazu muss die Methode onTouchEvent mit dem Parameter
MotionEvent implementiert werden. Der Parameter enthélt dabei, &hnlich wie bei einer Maus,
die Angabe, wann der Finger an das Touchdisplay angelegt wurde, wann er gezogen wiirde
und wann er wieder vom Display entfernt wiirde. Damit ldsst sich dann die Verschiebung
des Kartenausschnittes berechnen. Weitere Komponenten sind der DateTimePicker fiir das
Auswihlen von Datums- und Zeitwerten und die EditTextList, die eine erweiterbare Liste
von Textfelden darstellt.

Schnittstellen

In diesem Teil des Frameworks werden iibergreifende Interfaces und Domainklassen abgelegt,
hauptsdchlich zur Beeinflussung und Erweiterung der Generierung der Oberfldche, also
der Verschmelzung der Anwendungsteile von 5.3.4 und 5.3.4. Wichtig ist hier die abstrakte
Klasse AbstractControlCreator. In ihr gibt es verschiedene Methoden fiir die abstrakten
Komponenten (siehe 4.2.1). Die Auswahl soll unter Beachtung der Benutzerparameter (siehe
4.3) erfolgen. Zu beachten ist allerdings, dass diese Arbeit auf Grund der Komplexitat
der Aufgabe keinen ausgefeilten Algorithmus dafiir enthilt, sondern diese Moglichkeit fiir
nachfolgende Arbeiten offen halt.

5.4. Entwicklungsergebnis

Das Ergebnis der Arbeit ist ein Eclipse Plugin fiir die Entwicklung der DSL fiir Verkehrsin-
formationssysteme fiir mobile Anwendungen. Mit ihm kénnen verschiedene Testszenarien
abgebildet werden und es steht Erweiterungen offen. Wie das ganze dann aussehen kan
sieht man in Abbildung 5.4.

51

5. Realisierung des Prototyps

SNelgrer il 02.05.2011 14:59

o Stopover

—————

o Transportation

Abbildung 5.4.: Bildschirm des Prototyp in der Androidanwendung

52

6. Zusammenfassung

Im Rahmen dieser Diplomarbeit wurde ein Codegenerator fiir die Erstellung von Prototypen
fiir mobile Anwendungen im Rahmen des IP-KOM-OV Projektes entwickelt. Mit Hilfe der
Prototypen sollen verschiedene Testszenarien von Verkehrsinformationssysteme auf mobile
Gerédten durchgespielt werden.

Dafiir wurden, nach einer lingeren Phase der Anforderungssammlung, verschiedene mobile
Plattformen sowie Sprachen und Werkzeuge fiir die Erstellung von DSLs untersucht. Die
Auswahl der mobilen Plattform gestaltete sich als einfach. Die Android Plattform ist dank
ihrer Offenheit und bereits grofieren Verbreitung zur Zeit die beste Wahl. Die Wahl der
passenden Sprache beziehungsweise des passenden Werkzeuges fiir die Erstellung der DSL
gestaltete sich in diesem Fall schwieriger. Anhand von einer kleinen Beispiel DSL wurden
die verschiedenen Sprachen und Werkzeuge getestet. Hierbei machten alle Kandidaten eine
gute Figur. Mit Xtext wurde im Nachhinein betrachtet hier ebenfalls eine brauchbare Wahl
getroffen.

In der Konzeption wurde der Entwurf fiir die Prototypen erstellt. Dabei wurden die nétigen
Konzepte von Verkehrsinformationssysteme und die passenden grafischen Komponenten
fiir die Oberfldche beschrieben. Ebenfalls beschrieben wurden die Schnittstellen fiir Mockup-
Datenquellen und Benutzerparameter. Benutzerparameter sollen in Zukunft dazu dienen,
die Oberfldache an verschiedene Nutzertypen anzupassen.

Der grofite Teil der Arbeit umfasst die prototypische Implementierung des Codegenerators
und des dazugehorigen Frameworks fiir Android. Dazu wurde eine DSL-Syntax mit Hilfe
der Xtext Grammatiksprache festgelegt, mit der, neben einem Parser, auch ein Editor fiir
die DSL erstellt wird. Aus der DSL wird dann eine Konfiguration generiert, die zusammen
mit dem Android Framework eine Androidanwendung ergibt. Diese Androidanwendung
bildet dann ein Testszenario des Projektes IP-KOM-OV fiir Verkehrsinformationssysteme auf
mobilen Geréten.

53

7. Ausblick

Mit dem Themen modellgetriebene Softwareentwicklung und mobile Plattformen behandelt
diese Arbeit, gleich zwei Themen in denen (hoffentlich) noch die nédchsten Jahre noch einiges
an Innovation kommen wird.

Das Thema modellgetriebene Softwareentwicklung wird auch in den nédchsten Jahren noch
ein grofles Thema sein. Die Entwicklung von Werkzeuge wie Xtext und MPS hat in den
letzten Jahren deutlich an Fahrt aufgenommen. Zudem werden jedes Jahr neue Sprachen
entwickelt, die innovative Ansitze mitbringen und oft den Bau von DSLs gut unterstiitzen.
Zwar setzen sich die meisten davon nicht durch, aber im Zuge dessen ziehen auch die
grofSen Sprachen wie Java, C# und C++ mit neuen Sprachfunktionen nach. Allerdings sind
die Hiirden fiir Einsteiger immer noch deutlich vorhanden, so dass davon auszugehen ist,
das sich das Tempo bei der Verbreitung der modellgetriebene Softwareentwicklung nicht
wesentlich beschleunigt.

Bei mobilen Plattformen gibt es gleich eine ganze Reihe von Trends. Hier die wichtigstens
Trends, die insbesondere auch fiir Verkehrsinformationssysteme interessant sind.

Tablets Mit der Einfithrung des iPads Anfang 2010 ist Apple ein weiterer grofier Wurf
gelungen. Nachdem Tablets jahrelang ein Nischenmarkt waren, tibertrifft das iPad im ersten
Jahr die meisten Erwartungen. Noch hat es keine andere Plattform geschafft diese Dominanz
zu brechen, aber es diirfte wohl nur eine Frage der Zeit sein bis sich ernsthafte Konkur-
renz fiir das iPad herausbildet. Nachdem Android diese Gerédteklasse mittlerweile auch
offiziell unterstiitzt sind sie heifser Kandidat das Rennen zu machen. Wie Verkehrsinformati-
onssysteme optimal auf Tablets angepasst werden koénnen, diirfte also auf jeden Fall eine
Zukunftsfrage sein.

Mobiles Bezahlen Statt am Schalter in der Schlange seine Fahrkarte zu 16sen, werden wir
vielleicht schon in naher Zukunft tiberall bequem mit dem Handy das Ticket bezahlen.
Vereinzelt werden zwar schon Handytickets angeboten, doch das soll durch Near Field
Communication, abgekiirzt NFC, noch einfacher werden. Denn diese Technik ermoglicht
unter anderem sichere und beriihrungslose Bezahlung. Android unterstiitzt NFC in der
neusten Version bereits. Das Gerticht geht um das auch das niachste iPhone NFC unterstiitzen
wird und Nokia hat angekiindigt alle kiinftigen Smartphones mit NFC-Unterstiitzung
auszuliefern.

55

7. Ausblick

Augmented Reality Mit Augmented Reality®, abgekiirzt AR, werden Bilder durch spezielle
Programme durch Einblendungen um Zusatzinformationen angereichert. Zum Beispiel In-
formationen zu Sehenswiirdigkeiten oder der Weg zu einem eingegebenen Ziel. Mittlerweile
ist die Haardware von Smatphones stark genug und gibt es einige auf AR-Technologien spe-
zialisierte Hersteller, die Versuchen zusammen mit Partnern Inhalte fiir AR aufzubereiten.

3D LG hat bereits den die ersten Android-Gerédte mit 3D Display demonstriert und ein
SDK fiir 3D ANwendungen zur Verfligung gestellt. Mit der 3D Kamera kann man zudem
auch 3D Bilder und Videos aufnehmen. Zwar sind 3D Anwendungen bisher hauptsichlich
im Unterhaltungsbereich, aber auch hier ist potenziall da das durch diese Technik ernsthafte
Anwendungen bereichert werden kdnnen.

1Deutsch: erweiterte Realitat

56

A. Anhang

A.1. Testfalle

Diese Testfélle sollen vom Prototype Generator abgedeckt werden. Der ,** bedeutet dabei
das mehrere oder auch kein Typ dieser Ein- oder Ausgabe moglich sind. Ein ,,?“ steht fiir kein
oder ein Ein- oder Ausgabeelement. Das ,+” Fiir ein oder mehrere Ein- oder Ausgaben.

A.1.1. Verbindung

Eingabe
e Startort
e Zielort
e Zwischenhalt*
e entweder Abfahrts- oder Ankunftszeit

e erlaubte Verkehrsmittel*
Ausgabe

e Verbindung?*
— Teilstrecke*
* Abfahrtszeit
* Ankunftszeit

* Verkehrsmittel

57

A. Anhang

A.1.2. Umstieg

Eingabe
o aktuelles Vehikel
o Zielvehikel+
o Attribut des Umsteigeorts*

Ausgabe

e Umsteigehaltestelle*

A.1.3. Reiseangebote

Eingabe
e Startort
o Zielort

e Maximalpreis
Ausgabe

e Verbindung*

A.1.4. Einfache Verbindung

Eingabe
e Startort
o Zielort

e Startzeit
Ausgabe

e Verbindung*

A.1. Testfalle

A.1.5. Platzreservierung

Eingabe
e Platztyp

o Klasse

e Nihe zum Speisewagen?
Ausgabe

e moglicher Sitz-/Liegeplatz*
Zusitzlich bendtigte Eingaben

¢ Um die Eingaben oben zu spezifizieren, wird auch eine Verbindung bzw. ein konkretes
Vehikel benotigt

A.1.6. Billigstes Angebot mit anschlieBender Taxi-Buchung

Eingabe
e Taxi mit Anreise (des Taxis)?
o Taxi mit Rollstuhlbeférderung?
Ausgabe
e Angebot*
Zusétzlich benétigte Eingaben
e eine Verbindung wird benétigt, an die die Taxifahrt angeschlossen werden soll

biblatex

59

Literaturverzeichnis

[Anda]

[Andb]
[Andc]
[Andd]
[Ande]

[Anta]
[ANTD]

[app]
[ASUS6]

[AWZ10]

[Bad]

[Blaa]

[Blab]

[Booo4]

[Che]

[Coc]

[Dal]

ADT Plugin for Eclipse. URL http://developer.android.com/sdk/eclipse-adt.
html. (Zitiert auf Seite 47)

Android. URL http://www.android.com/. (Zitiert auf Seite 15)
Android Developers. URL http://developer.android.com/. (Zitiert auf Seite 47)
Android Market. URL http://market.android.com/. (Zitiert auf Seite 13)

Android SDK. URL http://developer.android.com/sdk/index.html. (Zitiert
auf Seite 46)

The Apache Ant Project. URL http://ant.apache.org/. (Zitiert auf Seite 48)

Parsergenerator ANTLR. URL http://www.antlr.org/. (Zitiert auf den Seiten 22
und 44)

applause. URL http://code.google.com/p/applause/. (Zitiert auf Seite 19)

A. V. Aho, R. Sethi, J. D. Ullman. Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. (Zitiert auf Seite 46)

O. Alkis, C. Wimmer, F. Zoabi. IT-Einsatzszenarien zur interaktiven Fahrgastun-
terstiitzung. Fachstudie, Universitat Stuttgart, 2010. (Zitiert auf den Seiten 9
und 40)

Bada. URL http://www.bada.com/. (Zitiert auf Seite 16)

BlackBerry Developer Zone. URL http://us.blackberry.com/developers/. (Zi-
tiert auf Seite 15)

BlackBerry OS. URL http://www.blackberryos.com/. (Zitiert auf Seite 15)

G. Booch. Object-Oriented Analysis and Design with Applications (3rd Edition). Addi-
son Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004. (Zitiert
auf Seite 43)

Giinstige Android-Geréte. URL http://geizhals.at/deutschland/?cat=
umtsover&xf=148_Android&sort=p. (Zitiert auf Seite 17)

Cocoa. URL http://developer.apple.com/technologies/mac/cocoa.html. (Zi-
tiert auf Seite 15)

Code and documentation from Android’s VM team. URL http://code.google.
com/p/dalvik/. (Zitiert auf Seite 15)

61

http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html
http://www.android.com/
http://developer.android.com/
http://market.android.com/
http://developer.android.com/sdk/index.html
http://ant.apache.org/
http://www.antlr.org/
http://code.google.com/p/applause/
http://www.bada.com/
http://us.blackberry.com/developers/
http://www.blackberryos.com/
http://geizhals.at/deutschland/?cat=umtsover&xf=148_Android&sort=p
http://geizhals.at/deutschland/?cat=umtsover&xf=148_Android&sort=p
http://developer.apple.com/technologies/mac/cocoa.html
http://code.google.com/p/dalvik/
http://code.google.com/p/dalvik/

Literaturverzeichnis

[DBN]

[DKW10]

[Ecl]

[EMF]

[Fea]

[Fowo4]

[Fowos]

[Hoboo]

[HPP]

[Inta]

[Intb]
[10Sa]

[iOSb]

liph]

[IPK]
[IPK10]

[Java]

[Javb]

62

DB Navigator. URL http://www.bahn.de/p/view/buchung/mobil/mobile-apps.
shtml. (Zitiert auf den Seiten 13 und 25)

A. Dridiger, M. Knittig, S. Wokusch. Modellgetriebene und generative Benutzungs-
schnittstellen. Fachstudie, Universitdt Stuttgart, 2010. (Zitiert auf den Seiten 7
und 19)

Eclipse. URL http://www.eclipse.org/. (Zitiert auf Seite 22)

Eclipse Modeling Framework Project (EMF). URL http://www.eclipse.org/
modeling/emf/. (Zitiert auf den Seiten 22 und 44)

Definition Feature Phone. URL http://www.phonescoop.com/glossary/term.
php?gid=310. (Zitiert auf Seite 13)

M. Fowler. Closure, 2004. URL http://martinfowler.com/bliki/Closure.html.
(Zitiert auf Seite 20)

M. Fowler. Language Workbenches: The Killer-App for Domain Specific Langua-
ges?, 2005. URL http://martinfowler.com/articles/languageWorkbench.html.
(Zitiert auf den Seiten 19 und 21)

E. Hobst. Qualitit von Verkehrsinformationssystemen. Diplomarbeit, Universitat
Stuttgart, 2000. (Zitiert auf Seite 24)

HP attackiert Apple mit Tablet-PC und Smartphones. URL
http://www.welt.de/wirtschaft/webwelt/article12498962/
HP-attackiert-Apple-mit-Tablet-PC-und-Smartphones.html. (Zitiert auf
Seite 16)

Intelli] IDEA - Free IDE for Google Android. URL http://www.jetbrains.com/
idea/features/google_android.html. (Zitiert auf Seite 47)

Intentional Software. URL http://intentsoft.com/. (Zitiert auf Seite 19)

iOS Developer Program. URL http://developer.apple.com/programs/ios/. (Zi-
tiert auf Seite 15)

iOS Human Interface Guidelines. URL http://developer.apple.com/library/
ios/#DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/
Introduction.html. (Zitiert auf Seite 15)

iphonical. URL http://code.google.com/p/iphonical/. (Zitiert auf Seite 19)
IP-KOM-OV. URL http://www.ip-kom.net/. (Zitiert auf Seite 7)

Standardisierungs-Forschungsprojekt 19P10003 IP-KOM-OV Gesamtvorhabensbe-
schreibung, 2010. (Zitiert auf den Seiten 7 und 9)

Code Conventions for the Java Programming Language. URL http://java.sun.
com/docs/codeconv/html/CodeConventions.doc.html. (Zitiert auf Seite 43)

Java. URL http://www.java.com/. (Zitiert auf Seite 43)

http://www.bahn.de/p/view/buchung/mobil/mobile-apps.shtml
http://www.bahn.de/p/view/buchung/mobil/mobile-apps.shtml
http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.phonescoop.com/glossary/term.php?gid=310
http://www.phonescoop.com/glossary/term.php?gid=310
http://martinfowler.com/bliki/Closure.html
http://martinfowler.com/articles/languageWorkbench.html
http://www.welt.de/wirtschaft/webwelt/article12498962/HP-attackiert-Apple-mit-Tablet-PC-und-Smartphones.html
http://www.welt.de/wirtschaft/webwelt/article12498962/HP-attackiert-Apple-mit-Tablet-PC-und-Smartphones.html
http://www.jetbrains.com/idea/features/google_android.html
http://www.jetbrains.com/idea/features/google_android.html
http://intentsoft.com/
http://developer.apple.com/programs/ios/
http://developer.apple.com/library/ios/##DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/##DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/##DOCUMENTATION/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://code.google.com/p/iphonical/
http://www.ip-kom.net/
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html
http://java.sun.com/docs/codeconv/html/CodeConventions.doc.html
http://www.java.com/

Literaturverzeichnis

[JLo6]

[LY99]

[Mae]
[Mee]
[Met]
[Mob]
[MPS]
[Nex]

[Nor1o]

[Oef]
[OHA]

[Perio]

[Pla]

[Pus]

[Qypl
[Rea]
[Ruba]

[Rubb]

[Rubo8]

[Sma]

H. L. Jochen Ludewig. Software Engineering - Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag, 2006. (Zitiert auf Seite 17)

T. Lindholm, E. Yellin. Java(TM) Virtual Machine Specification, The (2nd Edition).
Prentice Hall PTR, 2 edition, 1999. (Zitiert auf Seite 21)

Maemo. URL http://maemo.org/. (Zitiert auf Seite 16)

Meego. URL http://meego.com/. (Zitiert auf Seite 16)

MetaEdit+. URL http://www.metacase.com/mep/. (Zitiert auf Seite 19)
Moblin. URL http://moblin.org/. (Zitiert auf Seite 16)

Jetbrains MPS. URL http://www.jetbrains.com/mps/. (Zitiert auf Seite 23)

Nexus One Details. URL http://www.google.com/phone/detail/nexus-one. (Zi-
tiert auf Seite 47)

P. Northam. Introduction to Bada, 2010. URL http://www.amiando.com/
eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.
pdf. (Zitiert auf Seite 16)

Objective-C. URL http://developer.apple.com/documentation/Cocoa/
Conceptual/ObjectiveC/. (Zitiert auf Seite 15)

Oeffi. URL http://oeffi.schildbach.de/. (Zitiert auf Seite 27)

Open Handset Alliance. URL http://www.openhandsetalliance.com/. (Zitiert
auf Seite 15)

P. Perrotta. Metaprogramming Ruby. Pragmatic Bookshelf, 1st edition, 2010. (Zitiert
auf Seite 20)

BlackBerry PlayBook. URL http://us.blackberry.com/playbook-tablet/. (Zi-
tiert auf Seite 15)

push&ride. URL http://www.pushandride.de/. (Zitiert auf Seite 28)
Qype. URL http://www.qype.com/. (Zitiert auf Seite 33)
Realaxy ActionScript Editor. URL http://www.realaxy.com/. (Zitiert auf Seite 23)

Programmiersprache Ruby. URL http://www.ruby-lang.org/. (Zitiert auf Sei-
te 20)

Webframework Ruby On Rails. URL http://rubyonrails.org/. (Zitiert auf
Seite 20)

Webframework Ruby On Rails, 2008. URL http://www.artima.com/weblogs/
viewpost.jsp?thread=223054. (Zitiert auf Seite 20)

Definition Smartphone. URL http://www.phonescoop.com/glossary/term.php?
gid=131. (Zitiert auf Seite 13)

http://maemo.org/
http://meego.com/
http://www.metacase.com/mep/
http://moblin.org/
http://www.jetbrains.com/mps/
http://www.google.com/phone/detail/nexus-one
http://www.amiando.com/eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.pdf
http://www.amiando.com/eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.pdf
http://www.amiando.com/eventResources/h/B/4LHaCKJ6ye6mu3/Phil_Northam_Introduction_to_bada.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://oeffi.schildbach.de/
http://www.openhandsetalliance.com/
http://us.blackberry.com/playbook-tablet/
http://www.pushandride.de/
http://www.qype.com/
http://www.realaxy.com/
http://www.ruby-lang.org/
http://rubyonrails.org/
http://www.artima.com/weblogs/viewpost.jsp?thread=223054
http://www.artima.com/weblogs/viewpost.jsp?thread=223054
http://www.phonescoop.com/glossary/term.php?gid=131
http://www.phonescoop.com/glossary/term.php?gid=131

Literaturverzeichnis

[Sma11]

[SQL]
[Str]

[Sym]
[TIO]

[TSo7]
[VBN]
[VVS]
[web]

[Wini1o]

[Xtea]

[Xteb]
[Xtec]

[Xted]

comScore Reports February 2011 U.S. Mobile Subscriber Market Share, 2011. URL
http://www.comscore.com/Press_Events/Press_Releases/2010/4/comScore_
Reports_February_2010_U.S._Mobile_Subscriber_Market_Share. (Zitiert auf
den Seiten 13, 14, 16 und 17)

SQLite. URL http://www.sqlite.org/. (Zitiert auf Seite 49)

StringTemplate. URL http://www.stringtemplate.org/. (Zitiert auf den Sei-
ten 18 und 46)

Symbian. URL http://symbian.nokia.com/. (Zitiert auf Seite 16)

TIOBE Programming Community Index. URL http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html. (Zitiert auf Seite 17)

S. E. u. A. H. Thomas Stahl, Markus Volter. Modellgetriebene Softwareentwicklung.
Dpunkt.verlag Gmbh, 2007. (Zitiert auf Seite 18)

Windows Phone 7-Apps mit VB.NET. URL http://www.aboutdotnet.de/post/
Windows-Phone-7-Apps-mit-VB-NET.aspx. (Zitiert auf Seite 16)

VVS App. URL http://www.vvs.de/fahrplan/mobilefahrplanauskunft/
vvs-app/. (Zitiert auf den Seiten 26 und 34)

webOS Developer Center. URL https://developer.palm.com/. (Zitiert auf Sei-
te 16)

Microsoft: “No Windows Phone 7 upgrade for Win-
dows Mobile 6.x devices”, 2010. URL http://apcmag.com/
microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.
htm. (Zitiert auf Seite 13)

ARText - Driving developments with TMF Xtext. URL http://www.eclipsecon.
org/summiteurope2009/sessions?1d=988. (Zitiert auf Seite 22)

Xtext. URL http://www.eclipse.org/xtext/. (Zitiert auf Seite 22)

Xtext Documentation. URL http://www.eclipse.org/Xtext/documentation/.
(Zitiert auf den Seiten 44 und 46)

Xtext Seite von Itemis. URL http://xtext.itemis.com/. (Zitiert auf Seite 22)

Alle URLs wurden zuletzt am 02.05.2011 gepriift.

http://www.comscore.com/Press_Events/Press_Releases/2010/4/comScore_Reports_February_2010_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2010/4/comScore_Reports_February_2010_U.S._Mobile_Subscriber_Market_Share
http://www.sqlite.org/
http://www.stringtemplate.org/
http://symbian.nokia.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.aboutdotnet.de/post/Windows-Phone-7-Apps-mit-VB-NET.aspx
http://www.aboutdotnet.de/post/Windows-Phone-7-Apps-mit-VB-NET.aspx
http://www.vvs.de/fahrplan/mobilefahrplanauskunft/vvs-app/
http://www.vvs.de/fahrplan/mobilefahrplanauskunft/vvs-app/
https://developer.palm.com/
http://apcmag.com/microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.htm
http://apcmag.com/microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.htm
http://apcmag.com/microsoft-no-windows-phone-7-upgrade-for-windows-mobile-6x-devices.htm
http://www.eclipsecon.org/summiteurope2009/sessions?id=988
http://www.eclipsecon.org/summiteurope2009/sessions?id=988
http://www.eclipse.org/xtext/
http://www.eclipse.org/Xtext/documentation/
http://xtext.itemis.com/

Abbildungsverzeichnis

2.1. IP-KOM-OV Architektur 10
3.1. Smartphone-Betriebsysteme inder USA 14
3.2. Das Hauptfenster von Xtext, 22
3.3. Das Hauptfenster von Jetbrains MPS 23
3.4. DBNavigator 25
3.5. Das Hauptfensterder VVS App., 26
3.6. Das Hauptfenstervon Offi 27
3.7. Push&Ride 28
4.1. Grobe Architektur des Prototypgenerators 32
4.2. Eingabe Screen L 35
4.3. Ausgabe Screen L 38
4.4. Ausgabe Screen L 39
5.1. Fehleranzeigein Xtext DSL 45
5.2. Xpand Beispiel L L o 46
5.3. Android Projekt Layout 48
5.4. Bildschirm des Prototyp in der Androidanwendung 52
Verzeichnis der Listings
3.1. Pseudo-DSL fiir die Evaluation von Werkzeugen und Sprachen fiir DSLs . . . 20
3.2. DiePseudo-DSLinRuby. 20
3.3. Einfaches Beispiel fiir eine Closure in Ruby. Ausgabe: Hello World! 21
3.4. DiePseudo-DSLinScala. 21
5.1. Einfache DSL-Definition mit Xtext 44
5.2. Beispiel fiir die mit Xtext erstellte DSL 45
5.3. Xtext Validator Beispiel 45
5.4. Die Transformationsmethode des DataProvider Interface 49

65

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Markus Knittig)

	1 Einleitung
	1.1 Aufbau

	2 Aufgabenstellung
	3 Grundlagen
	3.1 Mobile Plattformen
	3.1.1 Apple iOS
	3.1.2 Android
	3.1.3 RIM BlackBerry
	3.1.4 Windows Phone 7
	3.1.5 Palm webOS
	3.1.6 Weitere Smartphone-Betriebssysteme
	3.1.7 Fazit

	3.2 Modellgetriebene Softwareentwicklung
	3.2.1 Modelle
	3.2.2 Definition Modellgetriebene Softwareentwicklung
	3.2.3 Domänenspezifische Sprachen
	Textuelle vs. grafische DSLs
	Interne DSL vs. Externe DSL

	3.3 Besehende Ansätze zur Generierung von mobiler Oberflächen
	3.3.1 Sprachen für DSLs
	Ruby
	Scala

	3.3.2 Werkzeuge für DSLs
	Xtext
	Jetbrains MPS

	3.3.3 Fazit

	3.4 Verkehrsinformationssysteme
	3.4.1 DB Navigator
	3.4.2 VVS
	3.4.3 Öffi
	3.4.4 push&ride
	3.4.5 Fazit

	4 Konzeption
	4.1 Grundlegende Architektur
	4.2 Die Oberfläche
	4.2.1 Informationsmodell
	Ort
	Zeit
	Verkehrsmittel

	4.2.2 Eingabe
	Textfeld
	Textfeld mit Autovervollständigung
	Auswahl nach Landkarte
	Auswahl aus Checkboxliste
	Liste aus Textfeldern

	4.2.3 Ausgabe
	4.2.4 Mock-Daten

	4.3 Benutzerparameter
	4.3.1 Führungsbedürfnis
	4.3.2 Leseaffinität
	4.3.3 Texteingaben
	4.3.4 Filter
	4.3.5 Zeit

	5 Realisierung des Prototyps
	5.1 Allgemeines zur Entwicklung
	5.2 DSL
	5.2.1 Syntax
	5.2.2 Codegenerator

	5.3 Android Framework
	5.3.1 Android Grundlagen
	Projekt Layout und Konfiguration
	Activity
	Intent
	Ressourcen

	5.3.2 Model
	5.3.3 Mockup
	5.3.4 Prototype Framework
	Activities
	Komponenten
	Schnittstellen

	5.4 Entwicklungsergebnis

	6 Zusammenfassung
	7 Ausblick
	A Anhang
	A.1 Testfälle
	A.1.1 Verbindung
	A.1.2 Umstieg
	A.1.3 Reiseangebote
	A.1.4 Einfache Verbindung
	A.1.5 Platzreservierung
	A.1.6 Billigstes Angebot mit anschließender Taxi-Buchung

	Literaturverzeichnis

